repo_name
stringlengths
6
92
path
stringlengths
7
220
copies
stringclasses
78 values
size
stringlengths
2
9
content
stringlengths
15
1.05M
license
stringclasses
15 values
knowledgeanyhow/notebooks
airline/Exploration of Airline On-Time Performance.ipynb
2
375407
{ "metadata": { "name": "", "signature": "sha256:4997000efd69b335ff55f6eed3b9ee20a47bb92f0fd25ec1119af0e633fbe289" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Exploration of Airline On-Time Performance\n", "\n", "In this notebook, we explore a sample of data from the U.S. Department of Transportation (US-DOT) Research and Innovative Technology Administration (RITA) [Bureau of Transportation Statistics](http://www.rita.dot.gov/bts/about/) (BTS). The data comes from the [On-Time Performance](http://www.transtats.bts.gov/Fields.asp?Table_ID=236) table:\n", "\n", "> This table contains on-time arrival data for non-stop domestic flights by major air carriers, and provides such additional items as departure and arrival delays, origin and destination airports, flight numbers, scheduled and actual departure and arrival times, cancelled or diverted flights, taxi-out and taxi-in times, air time, and non-stop distance.\n", "\n", "## Questions\n", "\n", "For the purposes of this notebook, I have captured a subset of the table in a [Cloudant](https://cloudant.com) database. We will start by connecting to the database and simply looking at the available data. Once we understand the content, we will try to answer the following questions about flights during the month of June, 2014:\n", "\n", "1. What is the distribution of departure delays of at least 15 minutes by state? Arrival delays?\n", "1. Is there a tendency of flights from one state to another to experience a delay of 15 minutes or more on the arriving end?\n", "1. How did arrival delay in minutes vary day-by-day?\n", "\n", "## Connect to Cloudant\n", "\n", "To get to the data, we can use a [Cloudant client for Python](https://cloudant.com/python/). We'll can install the official client by shelling out to `bash` and running a `pip` command right here." ] }, { "cell_type": "code", "collapsed": false, "input": [ "!pip install cloudant" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Requirement already satisfied (use --upgrade to upgrade): cloudant in /usr/local/lib/python2.7/dist-packages\r\n", "Requirement already satisfied (use --upgrade to upgrade): requests-futures==0.9.4 in /usr/local/lib/python2.7/dist-packages (from cloudant)\r\n", "Requirement already satisfied (use --upgrade to upgrade): requests>=1.2.0 in /usr/lib/python2.7/dist-packages (from requests-futures==0.9.4->cloudant)\r\n", "Requirement already satisfied (use --upgrade to upgrade): futures>=2.1.3 in /usr/local/lib/python2.7/dist-packages (from requests-futures==0.9.4->cloudant)\r\n", "Cleaning up...\r\n" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we'll import the `cloudant` package we just installed and use it to connect to the read-only `rita_transtats_2014_06` database in the `parente` user account." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import cloudant" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "account = cloudant.Account('parente')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "database = account.database('rita_transtats_2014_06')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `cloudant` package builds on the popular Python [requests](http://docs.python-requests.org/en/latest/) package. Almost every object that comes back from the API is a subclass of a `requests` class. This means we can perform a HTTP GET against the database and get the JSON body of the response with a couple method calls." ] }, { "cell_type": "code", "collapsed": false, "input": [ "database.get().json()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 5, "text": [ "{u'compact_running': False,\n", " u'db_name': u'rita_transtats_2014_06',\n", " u'disk_format_version': 5,\n", " u'disk_size': 160707408,\n", " u'doc_count': 502500,\n", " u'doc_del_count': 0,\n", " u'instance_start_time': u'0',\n", " u'other': {u'data_size': 265247850},\n", " u'purge_seq': 0,\n", " u'update_seq': u'502516-g1AAAADveJzLYWBgYMlgTmGQT0lKzi9KdUhJMtJLykxPyilN1UvOyS9NScwr0ctLLckBKmRKZEiy____f1YSA-PrcKJ1JTkAyaR6qMZX84nWmMcCJBkagBRQ736w5mgSNR-AaIbYvDgLACDLUQs'}" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the above, we can see the database contains roughly 500,000 documents. We can grab a couple from the database to inspect locally." ] }, { "cell_type": "code", "collapsed": false, "input": [ "items = []\n", "for i, item in enumerate(database.all_docs(params={'include_docs' : True})):\n", " if i > 1: break\n", " items.append(item)\n", "print items" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[{u'value': {u'rev': u'1-40fc15f608f95f0428e2e9d6b468e483'}, u'id': u'04da0d01eb0f15d5c56eb1399a000a35', u'key': u'04da0d01eb0f15d5c56eb1399a000a35', u'doc': {u'DISTANCE': 1947.0, u'DEST_AIRPORT_ID': 12892, u'ARR_DEL15': 0.0, u'ORIGIN_STATE_ABR': u'GA', u'_rev': u'1-40fc15f608f95f0428e2e9d6b468e483', u'ARR_DELAY_NEW': 0.0, u'UNIQUE_CARRIER': u'DL', u'ORIGIN_AIRPORT_ID': 10397, u'DISTANCE_GROUP': 8, u'DEP_DEL15': 0.0, u'_id': u'04da0d01eb0f15d5c56eb1399a000a35', u'DEST_STATE_ABR': u'CA', u'DEP_DELAY_NEW': 0.0, u'FL_DATE': u'2014-06-30'}}, {u'value': {u'rev': u'1-4dd24d56dc537210f49fe327c7773178'}, u'id': u'04da0d01eb0f15d5c56eb1399a001198', u'key': u'04da0d01eb0f15d5c56eb1399a001198', u'doc': {u'DISTANCE': 282.0, u'DEST_AIRPORT_ID': 13487, u'ARR_DEL15': 0.0, u'ORIGIN_STATE_ABR': u'NE', u'_rev': u'1-4dd24d56dc537210f49fe327c7773178', u'ARR_DELAY_NEW': 0.0, u'UNIQUE_CARRIER': u'DL', u'ORIGIN_AIRPORT_ID': 13871, u'DISTANCE_GROUP': 2, u'DEP_DEL15': 0.0, u'_id': u'04da0d01eb0f15d5c56eb1399a001198', u'DEST_STATE_ABR': u'MN', u'DEP_DELAY_NEW': 0.0, u'FL_DATE': u'2014-06-30'}}]\n" ] } ], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "The dictionary format is hard to read and contains metadata from Cloudant that we don't care about. Let's use the `pandas` package to put the data in a tabular, HTML format instead." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import pandas" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "pandas.DataFrame([item['doc'] for item in items])" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>ARR_DEL15</th>\n", " <th>ARR_DELAY_NEW</th>\n", " <th>DEP_DEL15</th>\n", " <th>DEP_DELAY_NEW</th>\n", " <th>DEST_AIRPORT_ID</th>\n", " <th>DEST_STATE_ABR</th>\n", " <th>DISTANCE</th>\n", " <th>DISTANCE_GROUP</th>\n", " <th>FL_DATE</th>\n", " <th>ORIGIN_AIRPORT_ID</th>\n", " <th>ORIGIN_STATE_ABR</th>\n", " <th>UNIQUE_CARRIER</th>\n", " <th>_id</th>\n", " <th>_rev</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 12892</td>\n", " <td> CA</td>\n", " <td> 1947</td>\n", " <td> 8</td>\n", " <td> 2014-06-30</td>\n", " <td> 10397</td>\n", " <td> GA</td>\n", " <td> DL</td>\n", " <td> 04da0d01eb0f15d5c56eb1399a000a35</td>\n", " <td> 1-40fc15f608f95f0428e2e9d6b468e483</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 0</td>\n", " <td> 13487</td>\n", " <td> MN</td>\n", " <td> 282</td>\n", " <td> 2</td>\n", " <td> 2014-06-30</td>\n", " <td> 13871</td>\n", " <td> NE</td>\n", " <td> DL</td>\n", " <td> 04da0d01eb0f15d5c56eb1399a001198</td>\n", " <td> 1-4dd24d56dc537210f49fe327c7773178</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 8, "text": [ " ARR_DEL15 ARR_DELAY_NEW DEP_DEL15 DEP_DELAY_NEW DEST_AIRPORT_ID \\\n", "0 0 0 0 0 12892 \n", "1 0 0 0 0 13487 \n", "\n", " DEST_STATE_ABR DISTANCE DISTANCE_GROUP FL_DATE ORIGIN_AIRPORT_ID \\\n", "0 CA 1947 8 2014-06-30 10397 \n", "1 MN 282 2 2014-06-30 13871 \n", "\n", " ORIGIN_STATE_ABR UNIQUE_CARRIER _id \\\n", "0 GA DL 04da0d01eb0f15d5c56eb1399a000a35 \n", "1 NE DL 04da0d01eb0f15d5c56eb1399a001198 \n", "\n", " _rev \n", "0 1-40fc15f608f95f0428e2e9d6b468e483 \n", "1 1-4dd24d56dc537210f49fe327c7773178 " ] } ], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Returning to [the source of the data](http://www.transtats.bts.gov/Fields.asp?Table_ID=236), we can get definitions for each of these fields. \n", "\n", "<dl class=\"dl-horizontal\">\n", "<dt>ARR_DEL15</dt>\n", "<dd>Arrival Delay Indicator, 15 Minutes or More (1=Yes)</dd>\n", "<dt>ARR_DEL15</dt>\n", "<dd>Arrival Delay Indicator, 15 Minutes or More (1=Yes)</dd>\n", "<dt>ARR_DELAY_NEW</dt>\n", "<dd>Difference in minutes between scheduled and actual arrival time. Early arrivals set to 0.</dd>\n", "<dt>DEP_DEL15</dt>\n", "<dd>Departure Delay Indicator, 15 Minutes or More (1=Yes)</dd>\n", "<dt>DEP_DELAY_NEW</dt>\n", "<dd>Difference in minutes between scheduled and actual departure time. Early departures set to 0.</dd>\n", "<dt>DEST_AIRPORT_ID</dt>\n", "<dd>Destination Airport, Airport ID. An identification number assigned by US DOT to identify a unique airport. Use this field for airport analysis across a range of years because an airport can change its airport code and airport codes can be reused.</dd>\n", "<dt>DEST_STATE_ABR</dt>\n", "<dd>Destination Airport, State Code</dd>\n", "<dt>DISTANCE</dt>\n", "<dd>Distance between airports (miles)</dd>\n", "<dt>DISTANCE_GROUP</dt>\n", "<dd>Distance Intervals, every 250 Miles, for Flight Segment</dd>\n", "<dt>FL_DATE</dt>\n", "<dd>Flight Date (yyyymmdd)</dd>\n", "<dt>ORIGIN_AIRPORT_ID</dt>\n", "<dd>Origin Airport, Airport ID. An identification number assigned by US DOT to identify a unique airport. Use this field for airport analysis across a range of years because an airport can change its airport code and airport codes can be reused.</dd>\n", "<dt>ORIGIN_STATE_ABR</dt>\n", "<dd>Origin Airport, State Code</dd>\n", "<dt>UNIQUE_CARRIER</dt>\n", "<dd>Unique Carrier Code. When the same code has been used by multiple carriers, a numeric suffix is used for earlier users, for example, PA, PA(1), PA(2). Use this field for analysis across a range of years.</dd>\n", "</dl>\n", "\n", "\n", "\n", "For the purposes of the specific questions stated at the top of this notebook, we only need a subset of the available columns, namely delay metrics, origin and destination states, and the flight date. We'll ignore the other fields." ] }, { "cell_type": "code", "collapsed": false, "input": [ "columns = [u'FL_DATE', u'ORIGIN_STATE_ABR', u'DEST_STATE_ABR', u'ARR_DEL15', u'ARR_DELAY_NEW', u'DEP_DEL15', u'DEP_DELAY_NEW', u'DISTANCE', u'DISTANCE_GROUP',]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Moving forward, we'll assume we only have 1 GB of RAM total. Since we're only dealing with half a million records here, we can probably pull the entire contents of the database into local memory. If the data proves too large, we can rely on the map/reduce and search capabilities in Cloudant to work with the data instead.\n", "\n", "Being optimistic, we write a little loop that gets up to 20,000 docs at a time from the database. It stores the 20,000 in a simple Python list. Once the buffer reaches the threshold, we create a DataFrame from the buffer which reduces the data to just the fields we want. We do this chunking because appending to a DataFrame one row at a time is much slower." ] }, { "cell_type": "code", "collapsed": false, "input": [ "%%time\n", "dfs = []\n", "buff = []\n", "for i, item in enumerate(database.all_docs(params={'include_docs' : True})):\n", " buff.append(item['doc'])\n", " if i > 0 and i % 20000 == 0:\n", " print 'Processed #{}'.format(i)\n", " df = pandas.DataFrame(buff, columns=columns)\n", " dfs.append(df)\n", " buff = []\n", "# don't forget the leftovers\n", "df = pandas.DataFrame(buff, columns=columns)\n", "dfs.append(df)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Processed #20000\n", "Processed #40000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #60000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #80000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #100000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #120000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #140000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #160000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #180000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #200000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #220000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #240000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #260000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #280000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #300000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #320000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #340000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #360000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #380000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #400000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #420000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #440000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #460000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #480000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Processed #500000" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "CPU times: user 29 s, sys: 1.92 s, total: 30.9 s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "Wall time: 43.5 s\n" ] } ], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can build one DataFrame by quickly concatenating all the subframes we built in the loop above." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df = pandas.concat(dfs)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 11 }, { "cell_type": "markdown", "metadata": {}, "source": [ "At this point, we have two copies of all the data in memory, which is undesirable. Before we delete the temporary buffer and subframes to free up some RAM, let's ensure the DataFrame row count matches the document count in the database." ] }, { "cell_type": "code", "collapsed": false, "input": [ "assert len(df) == database.get().json()['doc_count']" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "del dfs\n", "del buff" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "!free -m" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " total used free shared buffers cached\r\n", "Mem: 989 700 289 1 73 178\r\n", "-/+ buffers/cache: 449 540\r\n", "Swap: 2047 29 2017\r\n" ] } ], "prompt_number": 14 }, { "cell_type": "markdown", "metadata": {}, "source": [ "As one last step, we reset the index on the DataFrame so that it is a unique, monotonically increasing integer. As it stands, we have dupes in our index because of our chunking (i.e., each chunk starts at index 0). This reset will prove important in some of our later plots where the index must be unique per row." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df = df.reset_index(drop=True)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Distribution of Delay Counts by State\n", "\n", "> What is the distribution of departure delays of at least 15 minutes by state? Arrival delays?\n", "\n", "Let's look at some basic information about delays to start and work up to delays grouped by state. Because the question asks about delays 15 minutes or longer, we'll focus on the `DEP_DEL15` and `ARR_DEL15` columns." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.DEP_DEL15.value_counts() / len(df)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 16, "text": [ "0 0.731817\n", "1 0.248993\n", "dtype: float64" ] } ], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "df.ARR_DEL15.value_counts() / len(df)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 17, "text": [ "0 0.718265\n", "1 0.258054\n", "dtype: float64" ] } ], "prompt_number": 17 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Roughly a quarter of all departures and a quarter of all arrivals have delays. We can look at the distribution more closely once we enable and configure plotting with [matplotlib](http://matplotlib.org/) and [seaborn](http://web.stanford.edu/~mwaskom/software/seaborn/)." ] }, { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [ "import matplotlib.pyplot as plt" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 19 }, { "cell_type": "code", "collapsed": false, "input": [ "import seaborn as sns\n", "sns.set_palette(\"deep\", desat=.6)\n", "colors = sns.color_palette(\"deep\")\n", "sns.set_context(rc={\"figure.figsize\": (18, 5)})" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 20 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's group by state now and sum the number of delays. We'll do it for both departure and arrival delays." ] }, { "cell_type": "code", "collapsed": false, "input": [ "by_origin_state = df.groupby('ORIGIN_STATE_ABR')\n", "departure_delay_counts = by_origin_state.DEP_DEL15.sum()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 21 }, { "cell_type": "code", "collapsed": false, "input": [ "by_dest_state = df.groupby('DEST_STATE_ABR')\n", "arrival_delay_counts = by_dest_state.ARR_DEL15.sum()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 22 }, { "cell_type": "markdown", "metadata": {}, "source": [ "To plot, we'll put both series in a DataFrame so we can view the arrival and departure delays for each state side-by-side." ] }, { "cell_type": "code", "collapsed": false, "input": [ "delay_df = pandas.DataFrame([departure_delay_counts, arrival_delay_counts]).T" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 23 }, { "cell_type": "code", "collapsed": false, "input": [ "delay_df.sort('DEP_DEL15', ascending=False).plot(kind='bar', title='Number of delayed flights by state')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 24, "text": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7f67ac978990>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAABCAAAAFbCAYAAAAEMf/AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WmYHGXZt/FzQgiICZOEREIgBInxQgVkUcFHWVRUUBQF\nZFNEQEVRRNwRREXADdlEEBdkUXgEQVxAFvFFQB9FWURFL1BDGAJEIAkkoEwS5v1QNUOnp2fpme5M\nZ3L+jiNHemq56u6e7p6qf911V1tXVxeSJEmSJEnNNGakGyBJkiRJkkY/AwhJkiRJktR0BhCSJEmS\nJKnpDCAkSZIkSVLTGUBIkiRJkqSmM4CQJEmSJElNZwAhSVKDRcR5EfGFEdz+9yJiQUT8bhDLbhIR\nT0fEgPsEEfGuiLipMa0cvIi4ISIO7Wd+z/ONiJ0ioqNi3l8iYsdBbufeiHhNI9pcVXfnyjZJkrS6\nMoCQJI165YHl/IhYp2LauyPi/zVpk13lv5UuInYAdgGmZ+b2I9GGJujz9azxfNsq52fm5pl5YwO2\n09IhwlDaVwZPmzarTZIkVTOAkCStLsYAR67E7bUNvMjABtMzocpM4N7M/G8jtr8KWN2eb6M15H0q\nSdJgjB3pBkiStBJ0AScDn4iIszLzscqZEbEJ8C9gbGY+XU67AbgwM78bEe8C3gP8HjgYeBR4JxDA\n54G1gI9n5gUVZadExLXA9sBtwDsz876y9mbA14FtgIeBz2TmpeW884D/UBxY7wi8GfhVVXunA98E\nXgEsAL6cmd8pL1M4E1gzIhYDJ2fm56vWHQN8BTgIeBw4pWp+ezltN+Bp4HvAZ7tfl6plTwfeCrQD\n9wAfzsybI2Ia8E9gRmYuKJfdBrga2CAzl0fEIcDHgGnALcB7K16f15avzzTgQoqD5F4HyrWeL3BD\n1TL3Aodm5vUR8azydXsT8BBwHnBEZs6oWGXriDiV4vW/unydxgK/AMaV2+kCng9sDJwFzKb4nf0g\nMz9a3c6KthwNfARYAhyTmRdFxEuBn5WvS1e53J7AcZm5VY0abwC+Cszgmd/fN/tp3+nAZmX7LgM+\nkplLI6K7V8ifIqILOCQzL42I3YETyud/F/C+zPxzX89JkqR62ANCkrS6+CPFwenHBrl8dXf8lwF/\nAiYDFwOXUAQIs4B3AGdWXOLRBrwdOB6YAtwB/AAgIp4NXAd8H5gK7AecFREvqNjW/sAXMnM88Jsa\nbftf4D5gA2Bv4KSIeFVmfhd4H/B/mTmhOnwovRd4I7AV8JJy/crneR7QWT6vrYHXAe/u4zW6BXgx\nMAm4CLg0IsZl5kMUr/U+FcseCFxchg97AEdThBdTgJsoXlMiYgrFgfKngfUogoxXUOPSiD6eb3VQ\nUfl7/CzFQflzgddS/N4q67YBbwNeXy6zJfCuzHwC2BV4oNzOuuVzPB04NTPbgU0p3hN9mVY+n+kU\noca3ImJ2Zv6BItB6fdVrdX4fdb5LEdasC7wI+H+Z+WQf7VtG0etnPeDlwGuAw8vXrntcjC3LdS6N\niK3L+u+heJ+fA/w0Isb187wkSRo0AwhJ0uqiCzgOOKI8yK3XnMw8vzxLfQnFgeTxmbk0M6+jOGh/\nXsXyP8/MmzOzEzgGeHlEbATsXlHr6cy8A7ic4sC32xWZ+X8AmflUZSMiYgbwP8AnM7MzM/8EfIei\nRwYM3KV+H4qD5nmZuRA4qXudiFifoufDUZn5n8x8GDiNIiTpJTN/kJkLy+dxCkVPkChnX0BxgE9E\nrFHWuLCc9z7gi1l4GvgisFVEbAy8AfhLZl6emcsz8zSK3gp9qecSgrcBJ2XmY5k5jyJAqFy/Czgj\nMx8qX5ufUQQ1fW2nE5gdEVMy88nM/P0A2/9M+X65EbgS2LecXvlaTaYIfS7qo0Yn8KKIWLd8Hrf3\n1b7MvC0zbyl/P3OBbwE79dO+9wLnZOYfMrOr7NHzFEUvHkmShs1LMCRJq43M/GtE/Bz4FPC3Olef\nX/H4P2W9h6umjS8fdwH3V2z3iYhYQBFazAS2i4iFFeuOpTgI7bVuDdOBBeVZ+W73UfRmGIwNgMrB\nCu+reDwTWBN4MKI7R2BM1TI9IuJjwCFlm7qAdSl6NAD8BDi7vLxlM+CxzPxjxXZOj4ivVZXcsGxf\n9fNv1OCP06tq1XqdK8OO/5Tr9OVQil4uf4uIOcDnM/PKPpZdmJn/qfh5bkXtHwB/LXvQ7APcmJnz\nqwuU9gKOBb4UEXcCn8rMmnc7iYjnU1yisS2wDsX77I+1li3NBN4ZEUdUTFuT4nciSdKwGUBIklY3\nn6UYk6Hy4Lf7YH4diuvzoegyP1RtFNfoAxAR4ym6tM+jOJj/dWa+boi1HwAmR8T4zOxu68b0H1pU\nerBcvlvl4w6KM97r1RrzoVJ594mPA6/OzL+W0xZQnonPzP9GxKUUZ/Y345mABYrX4AuZeXGNurNZ\n8bVb4bUcpgfLWn8vf66nbq1LQP4BHAAQEXsBP4qIyVVBQ7dJEbFOebkEFAf7d5Z17i9vmbonxet1\nVl+NKEOct5S9So6g6I2zca32AWcDtwL7liHYhykCjL7cB5yYmSf1s4wkSUPmJRiSpNVKZv4T+CEV\nd8QoezLMAw6MiDXKARJnDXNTb4iIV5TXz3+BYpyCeRRd758fEe+IiDXLfy8tB6aEAS4pyMwO4LfA\nFyNirYjYkqIXwvcH2a5LgA9FxIYRMYmiN0h37QeBa4FTImJCRIyJiFkRsWONOhMoxhh4JCLGRcRx\nFD0gKl1AMWjnm3nm8gsoBk38dES8EIqBLyOi+xKUqyguMXhrRIwFPsTwwqBKlwBHR8TEiNgQ+CCD\nv13qfGC9iOh5juXvcGr542Nlrf6Cm8+Xv+8dKMbhuLRi3gXAJ4HNKS7J6aVc9+0R0Z6Zy4HFwPK+\n2kfRI2cx8GT5/np/jedU+T7/NvC+iHhZRLRFxLMj4o1lgCZJ0rAZQEiSVkfHU/R2qDz4fA/FGf1H\ngBey4uCP1QNSUuPn6nk/oOht8SjFYI7vAMjMxRTX+O9HEXo8SDEGwriKdQc6KN4f2ISiN8TlFHdM\n6L5TxkDrfxu4hmJAzT9SDPhYufw7y7bcRXGHjUt5JgCorH11+e9u4F6KyxVWuFQjM39DcUB+axmc\ndE+/Avgy8L8R8RjwZ8pBGDPzEYqxGr5E8bt4HnBzP8+nnt/N8RQ9ReZQBC2XUoypMGDtzPw7xUCZ\n/4qIBRGxQdnmv5R3njgV2K96zI6KOg8CCyl+ZxcCh2Xm3RXLXE7Rk+HH2f8tRd8BzClft/dSDHZa\nq33TKAZcPYDibhnfohi8tPK1+RxwfkQsjIi9M/NWis/BmRS/+3t4ZmwRSZKGra2rq+99lHKgqwuA\n51D8wfpWZp5RDpD0Q8p7bwP7ZOaicp2jKc7ELAc+lJnXltO3pRhZe23gqsw8spy+VrmNbSh20vYt\nB0qSJEmruIj4JXBRZp470m2pFhHvp9iHedVItwUgIu6hCCZ+NeDCkiStggbqAbGUYiTsF1GMgPyB\n8jZhnwKuy8znA9eXP1N2pdyX4szRrhS3FevuSno2xX24Z1OMGL1rOf1Q4NFy+qkUZ0QkSdIqLiJe\nSnGC4Ycj3RaAiJhWXhYzJopRNj8C/Hik2wUQEXsCXYYPkqTRrN8AorwN1R3l4yUUI4ZvSHEtZ/f9\nqc8H3lI+3oPiHt9LM/Ne4B8UI31vAEzIzFvK5S6oWKey1mUU96iWJEmrsIg4H7gO+HDVHTtG0jiK\n8ScepziBcgX9DPi4skTEDWU7PjDCTZEkqakGfReM8jZaWwO/B9avuD3UfGD98vF0oPJWUPdTBBZL\nWXF07nnldMr/OwAyc1lEPFaOIL2gvqciSZJaRWYeNNJtqJaZ9wFbjHQ7qmXmziPdBkmSVoZBDUJZ\njn58GXBkOXhWj8wczGBZkiRJkiRpNTZgD4iIWJMifLiwHLUaYH5ETMvMh8rLK/5dTp/HivfU3oii\n58O88nH19O51NgYeKG+31T5Q74dly5Z3jR27xkBNlyRJkiRJK1eftxTvN4AoB5D8LnBXZp5WMeun\nwEEUA0YeRHENZff0iyLiFIpLK2YDt2RmV0Q8HhHbAbcABwJnVNX6HbA3xTWZ/Vq48MmBFmHq1Ak8\n/PDiAZcbDGtZy1ojX8da1rKWtazVurVasU3Wspa1rGWtxtYabJ2pUyf0OW+gHhCvoLjf9J0RcXs5\n7WiKe3NfEhGHUt6GEyAz74qISyjuHb4MOLy8RAPgcIrbcD6L4jacV5fTvwtcWN566lGK+6JLkiRJ\nkqRRpN8AIjNvpu9xInbpY52TgJNqTL+VGgM/ZeZTlAGGJEmSJEkanQY1CKUkSZIkSdJwGEBIkiRJ\nkqSmM4CQJEmSJElNZwAhSZIkSZKazgBCkiRJkiQ13UC34ZQkSZIkaZXS2dlJR8fcAZdbuHA8CxYs\nGVTNGTNmMm7cuOE2bbVmACFJkiRJGlU6OuZy3CkXMn7ilIbUW7LoEY7/yIHMmjW7z2Ve8IIXMGvW\n81i2bBlrrDGWXXd9A/vu+3ba2tq47bY/cvTRH2X69A17lv/gB49i221fyo47voxZs57H8uXLmTnz\nuRx77OeACTW30b1sPdvYdddX89rX7sB11920Qq077riNM874Gv/85z/4/OdPYuedX9NrOwDTpm3A\nF7/4tSG8ar0ZQEiSJEmSRp3xE6fQPnnaStve2muvzfe+dxEACxcu5POfP4YnnniCQw89DICtttqG\nL3/51F7rrbXWM+sdf/xnuOKKy/jgB99XcxuVy9azDWjrNWXatA045pjPc/HFF/a7nUZa5ceA6Ozs\n5J//vKfXv87OzpFumiRJkiRpNTRp0iQ+8YljuPzyS3qmdXUNvN6WW76Y+++/v6nb6DZt2gbMmvU8\nxoxZebHAKt8DolbXmiWLHuHME97PpEkbjGDLJEmSJEmrq+nTN2T58qdZuHAhAHfeeTsHH3xAz/wT\nT/zqCpdLLFu2jN/97rdsv/0rGrqNqVM3q7vtnZ1Pccgh72DNNdfkHe84iB122LnuGrWs8gEErPyu\nNZIkSZIk1WPLLbfmK1/pfXlEZ+dTPaHBi1+8DbvvvkfDt1Gvyy67kilTpvDAA/M48sj3s+mmz2Pq\n1BcMu+6oCCAkSZIkSWol8+bdzxprjGHSpEnMmdP3cuPGrTXk8RYGu42BtLWtOEbElCnFFQbTp2/I\n1ltvyz33JFttZQAhSZIkSVIvSxY9MmK1Fi5cyMknf5G99tq3YW1o1ja6urroqhg8YvHixay11lqM\nGzeORYsWceedf+Ltbz9ouM0FDCAkSZIkSaPMjBkzOf4jBw643OTJ41mwYMmga/bnqaeKSykqb5G5\n337vAIoeBtXjM7zrXe9mp51e3av3QX+6L9eoZxt7770HTz31X/bc84090/fb7+1sueVWfPrTH2fx\n4sf57W9v4txzv8UFF/yQe+/9Fyef/EXa2sbQ1fU0Bx74LmbO3GTQbeyPAYQkSZIkaVQZN24cs2bN\nHnC5qVMn8PDDixuyzbvuuqvPWltvvS1XX31DzXnXXvvrQW/j17/+fZ/z+tvGjTfeUnP65Zdf2Wva\nFlu8mPPP/99Bt6keq/xtOCVJkiRJUuuzB4QkSZIkSS3isccW8Z73HMiyZctXmH766Wez7rrtI9Sq\nxjCAkCRJkiSpRbS3T+SKK65o2KUhrcRLMCRJkiRJUtMZQEiSJEmSpKbzEgxJkiRJ0qjS2dlJR8fc\nAZdbuLC+23COGzduuE1brRlASJIkSZJGlY6OuRx/0QlMWK8xgzYufvQxjjvg2EHd2lN9M4CQJEmS\nJI06E9ZrZ+L6k1b6dm+88QaOOebj/OAHl7Lxxpvw4IMP8Pa3v42ZM2eybNkyXvSiLfjEJ45hzJgx\n3HbbHzn66I8yffqGLF26lB13fBXvfe/hfda+6qqfcdZZp/Oc56zPk0/+h+nTN+SQQ97D5ptvCcCJ\nJ36OO+64nfHjnw3A2ms/ix/96BKuuupnZP6No476xAr1zjnnG1xzzVUsXryY6667sdd2pk59DgB7\n7bUvBx/8jmG/NgYQkiRJkiQ1yC9/eQ3/8z+v5LrrruHQQw8DYKONNuJ737uIp59+mqOO+gA33vj/\n2Hnn1wDw4hdvw1e+cipPPfUUhxzydnbc8VVMnfqymrXb2trYZZfX8+EPfxyA2277I8cc83HOOOMc\nZs7chLa2Nj74wSPZaadX91qvlh122Im9996X/fbbs9/tNIqDUEqSJEmS1ABPPvkkd931F4466pP8\n6lfX9Zo/ZswYXvCCFzFv3v295q211lo873nP54EH5vW7ja6urp7H22zzEt785j356U8vrzl/IC98\n4east96Umtuop85gjcoeEE8vX8acOXN6DSbioCGSJEmSpGa5+eZfs912L2fatGlMnDiJzL+z7rrr\n9sx/6qmnuOOO2zjooEN6rfv444/xt7/9lYMOOrSubc6eHT0BRFdXF9/4xhmcf/53Adh001mcccZp\ndYcJbW1t3HDDr7jjjtuYMWMmH/rQR5g6dUJdNWoZlQHEE4sXcfqV56ww4IiDhkiSJEmSmumXv7yG\nffY5AIBXveo1/PKX17DXXvswb979HHzwATz44ANsu+1LefnLX9mzzp133s673nUA999/H3vssReb\nbjqrrm1Whgv1XoLRl1e8Ygde+9pdGTt2LD/5yeWceOLnuOii79dVo5ZRGUBA4wYc6ezs5O6777Y3\nhSRJkiStQhY/+thKrbVo0SJuu+2P/Otf/6StrY3ly5czZswY9tzzbWy4YTEGxGOPLeIDH3gvf//7\nXWy22QsB2HLLrfnKV07lwQcf4EMfeh/77LN/Xb0N7rkn2WSTTYf83GpZd91nTubvvvsenH32GQ2p\nO2oDiEapdfsWe1NIkiRJUuuaMWMmxx1w7IDLTZ48vtfJ5v5q9ueaa65h113fyMc+dnTPtA9+8L3M\nn/9Qz8/t7RN573sP55xzvsGpp35jhfU32GA6b3vbfpx33nc5+eQv1dxG9aUUt99+Kz/72Y/5+tfP\n6XOZvqb159FHH+kZG+Lmm29sWMBhADEII3X7FkmSJElS/caNGzeoE8ZTp07g4YcXN2SbV155Jfvu\ne+AK03be+dV8//vnrXAJxI477sy5536Lu+76C21tbVReHbHHHnux//578tBDD7HGGs/utY22tjau\nv/467rzzDv773/8yffpGnHjiV9l44016lqkcA6KtrY3LL7+MtrY2rrrq59x00697ljvnnO9x6aUX\n88tfXktn51PsuecbedOb3sLBB7+HH/3oh9x8869ZY42xtLe38+lPf7Yhr5EBhCRJkiRJw3TBBRf0\nCjP23ns/9t57v17LnnfeRT2Pt956257Ha621FpdffmWfwchuu+3Obrvt3mcbagUFa665Zp/rHX74\nkRx++JG9ph922Ac47LAP9LmdofI2nJIkSZIkqensASFJkiRJUgu5/PLLOffc760wbcstt+Kooz4x\nQi1qDAMISZIkSZJayJ577skOO7x2pJvRcF6CIUmSJEmSms4AQpIkSZIkNZ0BhCRJkiRJajoDCEmS\nJEmS1HQGEJIkSZIkqekMICRJkiRJUtMZQEiSJEmSpKYzgJAkSZIkSU1nACFJkiRJkprOAEKSJEmS\nJDWdAYQkSZIkSWo6AwhJkiRJktR0BhCSJEmSJKnpDCAkSZIkSVLTGUBIkiRJkqSmM4CQJEmSJElN\nZwAhSZIkSZKabuxIN6CVdHZ20tExd4Vp9903t4+lJUmSJEnSYBlAVOjomMtxp1zI+IlTeqbN77iH\njbZvG8FWSZIkSZK06jOAqDJ+4hTaJ0/r+XnxokeARSPXIEmSJEmSRgHHgJAkSZIkSU1nACFJkiRJ\nkprOAEKSJEmSJDWdAYQkSZIkSWo6AwhJkiRJktR0BhCSJEmSJKnpDCAkSZIkSVLTjR1ogYg4F3gj\n8O/M3KKc9jng3cDD5WKfzsxflPOOBg4BlgMfysxry+nbAucBawNXZeaR5fS1gAuAbYBHgX0zc26D\nnp8kSZIkSWoBg+kB8T1g16ppXcApmbl1+a87fHghsC/wwnKdsyKirVznbODQzJwNzI6I7pqHAo+W\n008FvjysZyRJkiRJklrOgAFEZt4ELKwxq63GtD2AizNzaWbeC/wD2C4iNgAmZOYt5XIXAG8pH78Z\nOL98fBnwmsE3X5IkSZIkrQqGMwbEERHxp4j4bkRMLKdNB+6vWOZ+YMMa0+eV0yn/7wDIzGXAYxEx\neRjtkiRJkiRJLWbAMSD6cDZwfPn4C8DXKC6lWCkmTVqHsWPXAGDhwvGDXm/y5PFMnTqhz/mNrNWf\noa5nLWutqrVasU3Wspa1rGWtxtZqxTZZy1rWspa1GltruHWGFEBk5r+7H0fEd4CflT/OA2ZULLoR\nRc+HeeXj6und62wMPBARY4H2zFzQ3/YXLnyy5/GCBUsG3e4FC5bw8MOL+53fqFp9mTp1wpDWs5a1\nVtVardgma1nLWtayVmNrtWKbrGUta1nLWo2tNdg6/YUUQ7oEoxzTodtbgT+Xj38K7BcR4yLiucBs\n4JbMfAh4PCK2KwelPBD4ScU6B5WP9wauH0qbJEmSJElS6xrMbTgvBnYCpkREB/BZYOeI2Iribhhz\ngMMAMvOuiLgEuAtYBhyemV1lqcMpbsP5LIrbcF5dTv8ucGFE3ENxG879GvTcJEmSJElSixgwgMjM\n/WtMPref5U8CTqox/VZgixrTnwL2GagdkiRJkiRp1TWcu2BIkiRJkiQNigGEJEmSJElqOgMISZIk\nSZLUdAYQkiRJkiSp6QwgJEmSJElS0xlASJIkSZKkpjOAkCRJkiRJTWcAIUmSJEmSms4AQpIkSZIk\nNZ0BhCRJkiRJajoDCEmSJEmS1HQGEJIkSZIkqekMICRJkiRJUtMZQEiSJEmSpKYzgJAkSZIkSU1n\nACFJkiRJkprOAEKSJEmSJDWdAYQkSZIkSWo6AwhJkiRJktR0BhCSJEmSJKnpDCAkSZIkSVLTGUBI\nkiRJkqSmM4CQJEmSJElNZwAhSZIkSZKazgBCkiRJkiQ1nQGEJEmSJElqOgMISZIkSZLUdAYQkiRJ\nkiSp6QwgJEmSJElS0xlASJIkSZKkpjOAkCRJkiRJTWcAIUmSJEmSms4AQpIkSZIkNZ0BhCRJkiRJ\narqxI92A0aqzs5OOjrm9pre3bz4CrZEkSZIkaWQZQDRJR8dcjjvlQsZPnNIzbcmiRzjzhPczadIG\nI9gySZIkSZJWPgOIJho/cQrtk6eNdDMkSZIkSRpxjgEhSZIkSZKazgBCkiRJkiQ1nQGEJEmSJElq\nOgMISZIkSZLUdAYQkiRJkiSp6QwgJEmSJElS03kbzpXo6eXLmDNnDgsWLFlh+owZMxk3btwItUqS\nJEmSpOYzgFiJnli8iNOvPIcJ67X3TFv86GMcd8CxzJo1ewRbJkmSJElScxlArGQT1mtn4vqTRroZ\nkiRJkiStVI4BIUmSJEmSms4AQpIkSZIkNZ0BhCRJkiRJajoDCEmSJEmS1HQGEJIkSZIkqekMICRJ\nkiRJUtMZQEiSJEmSpKYzgJAkSZIkSU1nACFJkiRJkprOAEKSJEmSJDWdAYQkSZIkSWo6AwhJkiRJ\nktR0BhCSJEmSJKnpDCAkSZIkSVLTGUBIkiRJkqSmGzvQAhFxLvBG4N+ZuUU5bTLwQ2AmcC+wT2Yu\nKucdDRwCLAc+lJnXltO3Bc4D1gauyswjy+lrARcA2wCPAvtm5tzGPUVJkiRJkjTSBtMD4nvArlXT\nPgVcl5nPB64vfyYiXgjsC7ywXOesiGgr1zkbODQzZwOzI6K75qHAo+X0U4EvD+P5SJIkSZKkFjRg\nAJGZNwELqya/GTi/fHw+8Jby8R7AxZm5NDPvBf4BbBcRGwATMvOWcrkLKtaprHUZ8JohPA9JkiRJ\nktTChjoGxPqZOb98PB9Yv3w8Hbi/Yrn7gQ1rTJ9XTqf8vwMgM5cBj5WXeEiSJEmSpFFiwDEgBpKZ\nXRHR1YjGDNakSeswduwaACxcOH7Q602ePJ6pUyf0Ob9Va/VnqOtZy1ors1Yrtsla1rKWtazV2Fqt\n2CZrWcta1rJWY2sNt85QA4j5ETEtMx8qL6/4dzl9HjCjYrmNKHo+zCsfV0/vXmdj4IGIGAu0Z+aC\n/ja+cOGTPY8XLFgy6EYvWLCEhx9e3O/8VqzVl6lTJwxpPWtZa2XWasU2Wcta1rKWtRpbqxXbZC1r\nWcta1mpsrcHW6S+kGOolGD8FDiofHwRcUTF9v4gYFxHPBWYDt2TmQ8DjEbFdOSjlgcBPatTam2JQ\nS0mSJEmSNIoM5jacFwM7AVMiogM4DvgScElEHEp5G06AzLwrIi4B7gKWAYdnZvflGYdT3IbzWRS3\n4by6nP5d4MKIuIfiNpz7NeapSZIkSZKkVjFgAJGZ+/cxa5c+lj8JOKnG9FuBLWpMf4oywJAkSZIk\nSaPTUC/BkCRJkiRJGjQDCEmSJEmS1HQGEJIkSZIkqekMICRJkiRJUtMZQEiSJEmSpKYzgJAkSZIk\nSU1nACFJkiRJkprOAEKSJEmSJDWdAYQkSZIkSWo6AwhJkiRJktR0BhCSJEmSJKnpDCAkSZIkSVLT\nGUBIkiRJkqSmM4CQJEmSJElNZwAhSZIkSZKazgBCkiRJkiQ1nQGEJEmSJElqOgMISZIkSZLUdAYQ\nkiRJkiSp6QwgJEmSJElS0xlASJIkSZKkpjOAkCRJkiRJTWcAIUmSJEmSms4AQpIkSZIkNd3YkW6A\nBtbZ2UlHx9xe09vbNx+B1kiSJEmSVD8DiFVAR8dcjjvlQsZPnNIzbcmiRzjzhPczadIGddUyzJAk\nSZIkjQQDiFXE+IlTaJ88bdh1GhlmSJIkSZI0WAYQq6FGhRmSJEmSJA2WAcQq6unly5gzZw4LFixZ\nYfqMGTMZN27cCLVKkiRJkqTaDCBWUU8sXsTpV57DhPXae6YtfvQxjjvgWGbNmj2CLZMkSZIkqTcD\niFXYhPXambj+pJFuhiRJkiRJAxoz0g2QJEmSJEmjnwGEJEmSJElqOgMISZIkSZLUdAYQkiRJkiSp\n6QwgJEkW5hN8AAAgAElEQVSSJElS0xlASJIkSZKkpjOAkCRJkiRJTWcAIUmSJEmSms4AQpIkSZIk\nNZ0BhCRJkiRJajoDCEmSJEmS1HRjR7oBGnlPL1/GnDlzWLBgyQrTZ8yYybhx40aoVZIkSZKk0cQA\nQjyxeBGnX3kOE9Zr75m2+NHHOO6AY5k1a/YItkySJEmSNFoYQAiACeu1M3H9SSPdDEmSJEnSKOUY\nEJIkSZIkqensAaGW1dnZyd13373C2BSOSyFJkiRJqyYDCLWsjo65HH/RCT1jUzguhSRJkiStugwg\n1NIcm0KSJEmSRgcDCA1ZZ2cnHR1ze01vb998BFojSZIkSWplBhAaso6OuRx3yoWMnzilZ9qSRY9w\n5gnvZ9KkDUawZZIkSZKkVmMAoWEZP3EK7ZOnjXQzJEmSJEktzttwSpIkSZKkpjOAkCRJkiRJTWcA\nIUmSJEmSms4AQpIkSZIkNZ0BhCRJkiRJajoDCEmSJEmS1HQGEJIkSZIkqenGjnQDNLo8vXwZc+bM\nYcGCJStMnzFjJuPGjRuhVkmSJEmSRtqwAoiIuBd4HFgOLM3Ml0XEZOCHwEzgXmCfzFxULn80cEi5\n/Icy89py+rbAecDawFWZeeRw2qWR88TiRZx+5TlMWK+9Z9riRx/juAOOZdas2SPYMkmSJEnSSBru\nJRhdwM6ZuXVmvqyc9ingusx8PnB9+TMR8UJgX+CFwK7AWRHRVq5zNnBoZs4GZkfErsNsl0bQhPXa\nmbj+pJ5/lWGEJEmSJGn11IgxINqqfn4zcH75+HzgLeXjPYCLM3NpZt4L/APYLiI2ACZk5i3lchdU\nrCNJkiRJkkaBRvSA+GVE/DEi3lNOWz8z55eP5wPrl4+nA/dXrHs/sGGN6fPK6ZIkSZIkaZQYbgDx\niszcGtgN+EBE7FA5MzO7KEIKSZIkSZK0GhvWIJSZ+WD5/8MR8WPgZcD8iJiWmQ+Vl1f8u1x8HjCj\nYvWNKHo+zCsfV06f1992J01ah7Fj1wBg4cLxg27v5MnjmTp1Qp/zrTVytQZbfyh1Kg1nXWuNfB1r\nWcta1rJW69ZqxTZZy1rWspa1GltruHWGHEBExDrAGpm5OCKeDbwO+DzwU+Ag4Mvl/1eUq/wUuCgi\nTqG4xGI2cEtmdkXE4xGxHXALcCBwRn/bXrjwyZ7H1bd77M+CBUt4+OHF/c631sjUGmz9odTpNnXq\nhCGva62Rr2Mta1nLWtZq3Vqt2CZrWcta1rJWY2sNtk5/IcVwLsFYH7gpIu4Afg/8vLyt5peA10bE\n3cCry5/JzLuAS4C7gF8Ah5eXaAAcDnwHuAf4R2ZePYx2SZIkSZKkFjPkHhCZOQfYqsb0BcAufaxz\nEnBSjem3AlsMtS1a9XV2dtLRMXeFaffdN7ePpSVJkiRJq5phjQEhNUpHx1yOO+VCxk+c0jNtfsc9\nbLR99V1eJUmSJEmrIgMItYzxE6fQPnlaz8+LFz0CLBq5BkmSJEmSGma4t+GUJEmSJEkakAGEJEmS\nJElqOgMISZIkSZLUdAYQkiRJkiSp6QwgJEmSJElS0xlASJIkSZKkpjOAkCRJkiRJTTd2pBsgNVpn\nZycdHXN7TW9v33wEWiNJkiRJAgMIjUIdHXM57pQLGT9xSs+0JYse4cwT3s+kSRvUVcswQ5IkSZIa\nwwBCo9L4iVNonzxt2HUaGWZIkiRJ0urMAEIaQKPCDEmSJElanRlASCOos7OTu+++mwULlvRMmzFj\nJuPGjRvBVkmSJElS4xlASCOoo2Mux190AhPWawdg8aOPcdwBxzJr1uwRbpkkSZIkNZYBhFYLTy9f\nxpw5cxrS06CRtQAmrNfOxPUnDWldSZIkSVpVGEBotfDE4kWcfuU5Delp0MhakiRJkrS6MIDQaqOR\nPQ3stSBJkiRJ9Rkz0g2QJEmSJEmjnz0gpJWks7OTjo65K0y77765fSwtSZIkSaOLAYS0knR0zOW4\nUy5k/MQpPdPmd9zDRtu3jWCrJEmSJGnlMICQVqLxE6fQPnlaz8+LFz0CLKq7Tq3eFADt7ZsPp3mS\nJEmS1DQGENIqqFZviiWLHuHME97PpEkbDLt+Z2cnd999d8NuNSpJkiRJBhDSKqq6N8XTy5cxZ86c\nukODvsamOO/mC73VqCRJkqSGMYCQRoknFi/i9CvPqTs06HtsCm81KkmSJKlxDCCkUWTCekMLDRo1\nNoUkSZIk9WXMSDdAkiRJkiSNfvaAkNQ0tQazBAe0lCRJklZHBhCSGqZ6QMvqwSzBAS0lSZKk1ZUB\nhKSGqR7Q0sEsJUmSJHUzgJDUUJUDWjqYpSRJkqRuBhCSWlL15RwA7e2bN6x2K45N0ch2tepzlCRJ\n0urLAEJSS6q+nGPJokc484T3M2nSBnXXauTYFNW1li5dyvz5z2bJks4VlhvKgX5Hx1yOv+iEhoyZ\n0chajWQwIkmStPoygJDUsiov5xiORo5NUatW++zHG3agP2G9xo2Z0chajdKqwYgkSZKazwBC0mqh\nkWNTVNeasF5byx3ot7JWDEYkSZLUfGNGugGSJEmSJGn0sweEJKlfrTpuQ6u2S5IkSbUZQEjSCKk1\nOGYj6gynVi2tOm5Dq7ZLkiRJtRlASFolPL18GXPmzBlVZ7trD47ZNuw6w6nVV5jRquM2tGq7JEmS\n1JsBhKRVwhOLF3H6leeMurPdjRocs/qOIUOt1cgwQ5IkSapkACFpleHZ7pWjUWFGsy8NkSRJ0qrF\nAEKS1BT2ppAkSVIlAwhJUtOsKr0pvKOGJElS8xlASJJaXrN7U7TqHTUMRiRJ0mhiACFJWiU0uzdF\nK44x0qrBiCRJ0lAYQEiSVivN7k3R6F4LjQpG7E0hSZJGmgGEJGm10+zeFOfdfGHL9VqwN4UkSRpp\nBhCSJA1R370pWu9yDvBWtpIkaWQZQEiSNAyryp0+JEmSRpoBhCRJLaDZY1M0kuNJSJKkoTCAkCSp\nRawqvSkaOZ6EYYYkSasPAwhJkkaZldGbolHjSTQ7zDDIkCSpdRhASJI0Cq0qvSmgeWGGd/mQJKm1\nGEBIkqQ+NbI3RSPDjL5qNSrMaGRvilatJUnSymYAIUmS+tWo3hSNDDNWRjBy3s0X1t2bopG1amlk\nL4/RHmY4vogktR4DCEmStNI0KsxoZK2+w4z6e1M0slZfWu2SlUYe6DeyViPHF5EkNYYBhCRJWu21\nYjCyqlyy0sgD/UaHBo0KaxrJnhmSVmcGEJIkSS1oVblkZThBRiNrNVOr9swwzJC0qjGAkCRJalGt\n2DOjOswYzi1eG1mrVpjRKK3aM8PLTCStagwgJEmSVJfKMGM4oUgjazU7zGhkL49GauadX2B09aZY\nHZ6j1OoMICRJkjQqtGKY0ahajRwTpJZWvTTEy19GzurwHLXytUwAERG7AqcBawDfycwvj3CTJEmS\ntJpqtV4eK+PWs0PpTTGYW8/C4A70V0atVrz8pVUP9L3ER83QEgFERKwBnAnsAswD/hARP83Mv41s\nyyRJkqTW0PxbzzZygNORvY3t6hDY9FW/kWFGK17iU6vWUJ9fI2tpcFoigABeBvwjM+8FiIj/BfYA\nDCAkSZKkBmvFAU5btVarBjYro8fIUKzsXjGDDWuaXWvp0qXMn/9slizp7JlmmNFbqwQQGwIdFT/f\nD2w3Qm2RJEmSpB6rVjAysj1GVr1eMY2r1T778RENM5pZq1adwdaq1CoBRFc9C2+77eY9j5cuXcqi\nx5cwZswavH7/jwHw5OKFrPno4z3L/PzUS+l6uosbv3kNa665Zs/0W2/9S6/aSxY9wjUXn9zz8/Jl\nSxlzdRdtY9rY/ai3AcWbqa/2VLZrix32XWFad7t+fuqlPdMq21WrPQBvfevuPc+xsl2vnva6FZbr\nblet9lQ+3yWLHllh+k0/+3bPc6xs11GvP6Jmne76la89wOv3/1iv1x7gZ1+7pNdrX9mebt3t6n79\nK197gJ3eueLzrW5Pt+527fb2T/ZMq2xXPe8HgF/84Mu9XvsxV3fxpo/uAwzu/QBwySU/7vXaP7l4\nIb/52qU9z3Ew74dtt92812sPsNUr91jhtR/s+wFWfE9cc/HJvV77wbwfoPfncTjvh+529fV+2P2o\nt/V67ft6vtWfx+r3Q/dzrGzXYD+P1e8HWPE9Uc/nsfr9UNmuO+/MmnUG+37obtdb37p7r9e++vkO\n9H6AwX0e/X5+xmj/fh7s53Ew38/dz3Ewn0e/n4f+/dz9HCvb5ffzis+3Ed/P3c+xsl1+P/duT2W7\n/H4u1PN5hBW/n2//TWO+n+GZ16fez+NNV36312t/+2/q/zxecsmPa07/2dcuadj3c2U76vl+rtTz\nefzNit/Pxx1wbJ/t6bZ06VIWLnqctjFjeMVu7wLg0fn3MX7jJTx74ngAbjj/GiZNmDTg+6GjYy4f\n+dxp3H7TFT3Tli9fxpixRbt2OvB1PLFoCV894isrBCN9fR6f++JdWGf8xF5t+vWF1/Y8x8p29fX6\nVGrr6qrr2L8pImJ74HOZuWv589HA0w5EKUmSJEnS6NAqPSD+CMyOiE2AB4B9gf1HtEWSJEmSJKlh\nxox0AwAycxnwQeAa4C7gh94BQ5IkSZKk0aMlLsGQJEmSJEmjW0v0gJAkSZIkSaObAYQkSZIkSWo6\nAwhJkiRJktR0rXIXDA1RRGyXmb8f6Xa0koiYlpkPjXQ71BoiYuP+5mfmfSurLSMhItbMzKUj3Q4J\nICLWyMzlI92OZoqIbcqHbUCvgbYy87aV26LWFRHtmflYH/M2Hu3fz60kIsYBLwLmZea/R7o9GpyI\n2Cwz/14+Xjsz/1sxb/vM/N3Ita71RMTk/uZn5oKV1ZbV2SofQPT3ByoidsjMmxqxDWDfzPzqcGuV\n9fbKzMsaUQv4ETBjuEUi4lnA7pl56RDXHw+QmUuGuH4jvyT/FBF/Bi4GLsvMRUMtFBGRmdnHvFdk\n5m+GWns4IuKjwGOZ+Z2q6YcCEzLztDpr9eUp4B/AtZn59CBqbQF8nGInBuAvwNcy887Btqei1mbA\ne4HNykl3Ad/u6/fRj6uocRAATC3/rVFHm77ez+yuzPxQnW3razvDCg0iog14DcXtjHcH1q9j3c/2\nMasLIDOPH2q7qrbz0sz8Qx3L71W2oa3i/562ZeblDWhT3d+DEbFnI7a9MkXERpl5fx3Lj8vMzj7m\nPTcz59Sx+dsi4v2Z+ds61umrXQf1Mav7vXrBcLcxRH+k+O57tI/5r2rERurdl4iIXSn+PlxaNX1v\nir8n1zWiXXW6Adi6bMf1mfmaink/6Z43GAP8LevKzFOG1MIVt9EG7JOZP2xArYbuWw5h++cAX8/M\nv0REO/A7YBmwXkR8LDMvGkbtKcCOwNzMvHWINbak+PvfBfwtM/8yjLYcwIr7EhdnZl+fz/5qvQv4\nUFWtr2fm+XXWOSkzP13v9vtwMc98Tn4LbFMx72zq+wz9uZ/ZXZm5Zf3Nazm38cw+4XTggYp5XcCm\nK71FDRYRr87MX5WPV/gbXc8+S0Rcm5mva0YbV/kAArih/BI9ufusSkRMA04GXgBsO5SiEfEc4G0U\nO/DTgR83prkAnAY0KoAYsohYA9iV4jm+FrgZqCuAiIjDgU8B48uflwBfzsxv1NmcsyPiFuCTwwkM\nShsCuwD7ASdFxO8ovqB/kpn/qbPW3yLi+8DhNcKVM6nji72WiHgexeu/X2a+aKDlK7wd2L7G9AuB\nWyneY4M1gdoH6AATgVcDh1J8HvoUEXtQfO6+CHytnLwtcFlEfDwzrxhsgyLi5cDlwLeAcyguF9ua\n4vO+Z2b+32BrZebmVbU3oXjP7gKcONg6pVvpffDbbVi3FBpOaFBR4+Xl+m8BJlPc3vjjdZZ5gt7P\n5dkU74EpwJADiIh4Udm+/YDHqO/7+U0V7Xoz8NOq+UMKARrwPfiZoW67RlsauvMXEdtS7EzdlZl/\njYgZFO3dFei3Z1CVn0TEWzLzqar6L6b4Pcyso9Z7ga9HxJ+AT2TmwjrWrfZSer9X2yjeKxsBDQkg\nIuJlmXlLHat8hOL78kngh8CPM3NxI9pSpd59ieMovhuq/Rr4GTCoAGKAXgsvycw/1tGmSv2emRyE\nvv6W1eyJ0p/ypMphwCyKMOmbwB4UfzP+QfF7rdtw9y0bfECwQ2YeVj4+GMjMfEu5D301MOgAIiKu\npNh/+0tEbADcDvwBmBUR387MU+uo1U4RPm0M/Ini97dFRNwH7JGZj9dR6wXAr4BrKQ48xwAvAz5d\nHqT9vY5aBwFHUny+by/btTXw1YjoqjPw3A1oVABRqda+ST3e1M+8ej9D36R4T9T8rqizVsPe95m5\nSUXd2zNzyPvxEfEJijCrY7jtavDf/6/xzPHJ5ax4rFLPPsvUOrZZl9EQQGwLfAm4IyI+DGwBHAV8\nFXhnPYUiYl1gT4o/DM8DrgCem5kbNrTFI6g8yNmJ4jm+Afg9sAPF83yyzlrHAv8D7JyZ/yqnbQqc\nERGTM/MLdZR7CXAE8IeI+MJwzlxl5jKKP55XR8RaFF/0+wKnRcSvMvOAOsr9FbgfuD0i3lnPgW9f\nImLDsj37U7xfv0RxQFaPsbXOSGZmZ/k7HrTM/NxAy0TEYHowfAF4bWbeWzHtTxHxK4qDlEEHEMBn\ngf0z84aKaT+OiOspdqJ3q6MWABHxfIo/+NtTfDkfUW8vg8w8r97tDqJdww4NIuKLwF7Av4BLgM8B\ntw6lvZl5ckXddSnO9hwM/C/PBEv1tO25FO/v/YFOYBPgJVXvk8G0610VNW/PzIPrbUvF+g37Hmyw\ncynOYC2geK1giDuUEXECxXviDuBLEXEFxd+30yl+p/W4FbgqIt7U/fpExM7A9yneG4OWmb+PiO2B\n9wG3RkRlD6W6ehFl5ge7H0fEGIqznJ+kOJNbV7hYrv9WygPOzLwqIl4CnAQ8B9iqjnadRvH3ZhbF\nd/31ETEXODEz76inXQ22Vq2u9Zn5cEQ8u44610fE66q7KkfE6yjewxsNs51DMpi/ZXW4AHgc+D/g\ndcC7gP8CB9T7O2zwvmUjDwgqA8XXUQavmflQRNRba5OKHgoHU/SafGdETKD4Tht0AAGcQNGL6NXd\nPS/LoPiLFJ/rI+qsdWRmXlI5sexRdyLFd+RgHQ7sWdXj61dlrR9SX+C5RvRzKcBIXQbQ19/l7p4/\nwNw6yv2T4jv+s5n5g2E2rWkHwsM0Hfht+f1+EXBpZj48xFodFO/xDvo+0bWytUfEnvRx0m04vT9X\n+QCiPHtyWBk+XEfRleblQ0yj5pc1Ptt9OUD5wo+oiPhZP7PXq7NcB0WXsXOBj2TmExExZ4g73e8E\nXlzZqyAz/xURbwPupDggHZSy98ppEXEdxYf5LFbcKV13CO0jM5+KiLuAv1GEHC+os8SyzPx0RFwN\nfD8iLgC+MJjLEapFxGEUOyDPobh05hDgp0PcaWqLGmNdRMT61J9SD9jlfpDJ69haf7wy896IWLOe\nNgGbVoUP3bV+HRHfqqdQFJeFHENxWchXgENziNegl5/FPntAZOab66jVsNAAeDfFQeLZwC/KIGoI\nZXrath5FkPt2ip2qbYZypjoi/g8YR7Fj+5by+2FOveFDEzTyezD6OXNR71mLjSh21F8A/JmiN8Zv\ngd8OYYd0T2DrzPxvuaPbAbxoKK99Zh5bBs7XRMRuFAcrp1H8Todytnsyxffxvynet08zhLPUUFyu\nBBwEfIwiSNo7s+7LtKDobfVc4Bbg2CguZ9sMOKae3luVMvOfEfETYB3gHUBQBEIjZULUuLyrfA3X\nrqPOOcD/i4jXdgcaEXEARVjzhjrbNDUiPkLx+698DHUedMSKl8jVukyrnuDted2f3Yj4DvAgMHMI\nvSihsfuWjTwgeCwi3gTMoziZdGjZtnrfDwCV76ldgG8DZObiiKh3f2kXYMvK/azMXB4Rx1B8L9Zj\ni8zsFTJk5mXl3+B6TMgal5uV+zgT6qy1GcV3Xy31XgawUUScQfGe2LDiMRQ9ggetkT1/MvOrEXER\ncGpEHEKxf1K5X1/Pe7VpB8LDkZkfLr+zdqQ40fKZ8oTdRcDldfZ8u5ZiH3U6xet8cWbe3ug216md\n/nvFrL4BRERMojiDvD3FWdHdgF9ExJGZeX2d5Y6mOEA8KyIuoc7LEara1d+XZL1dq/s763hyP/Nq\n+RFF9+V9YcBwYyBP1/pjnJn/iYi6D/DKHb6jKQ4WzxrKQX5FrY0pvgz2o7g85GLgTfV0t6uUmTdG\n0Z35m8BNEfGOIZQ5k6JnxpGZ+aeynUNpDhQ9fK6M4prX7j9iLymn13uWulFd7pdGxMzMXCEhj4iZ\nrLhzMhj9jSVS70HiHRS9WH5O0fXyZRWve707pduXtS6mONiBZ/4g1nvw1MjQYAOKywf2B86MiBuA\nZ9U62BhIRJxMcSb4WxQ7gcPpOj4f2JziO+85FGFLK2jk9+Aciktmhn22IjM/WrZnLYrP88spgspv\nR8SizKwnQH0qy8HIMnNBRNwznOAnM0+IiP9QdGMGeE1m3lNvnYh4H0UPn5MpwsAhX7oUER+k6M1x\nPbBbrYODOmxPedATEWsDDwGzcmjXic+i+NuzB3Afxc7kiUM5eG3wvsTlwLci4ogsLyksD5xOp44d\nycz8dkT8l+Ls72spPkfvo+gNeW+dbfoOxaUT1Y/bKA9i61B5idznKXrLDfX7uWcfpjz4nTfE8AEa\nuG9JYw8IDgPOAKYBH87MB8vprwGurLNd90fEERRhxtYU+zpExDrUf6zRWevvVmYujYinaq3QjyeG\nOK+W/w5xXi1/zWF0/a/ycZ5531eHGvUGxA3r+QOQmfOiuDznRIr3beV+fV0BBA1635f7zd2vV3Xo\nWfdYMeWxyg0Ulwh/gCJA+xLFvt06ddTp7jm3CcXfj3PLz89FFGHE3XU0a9OI+CnF83pu1T7Oc+uo\n89Bwepv2Z5UPIHhmB/4DWXS9vyYitqIYU+Ddmbn/YAtVdZvcj6Kb3AYR8UmKazjr+eX390Gp15zq\ng7qhqkjrdqb4g3gyMDEi9gWuzPoGkXwgInbJzF9WToyI11CcLRi0iPgtRdeuV1af1a9XWWsjirPK\n78khDoBULYuxKfaL4jrAm4Bn1VliA4prP8+I4jrQHwH19gzobssFEfEwRTjQPXbEX4HPZOYv6qzV\nqC73nwV+GREnsmIocjRFt+h6zKhK8SvV22310PL/7h3QFc6K1Vmr8kB/f4qdtIsz86911qmuNazQ\noPzu+wVF+Lo2xQHxOhQ7hddnfZcdfYSi+/+xFGeCK+fV1Rspi+uJJ1KcjT8+ijFPJsUQ7t5T/Qe0\n6ue6ep80+Huws1HfzxWeBaxLsdPVTtGzr96BXDeteo02qfi53t46lXWmAvcAp5TvjbpqUXTjfXnW\nuBQgInbPzJ/XUesMil4UrwReWeO9Wk/vk6XdoXfZa2TOUMKH0j0UZ2qvoNiZ3xh4fxTdmOvdwa3e\nl+jecd6YYiybehxL0SX93iiup4diEOtzy3mDlpkXlgeDd1D87d4hh9D1eIg9APuqdV734/IkVF0D\nA1bZMiIqw9dnVfxc7/dgI/ct72vgAcGTmfn66omZeXXU32vxUIr9kV0oBtbs7jG3HfC9OmutFcWd\nZCoHHO7+f606a1UfYK4wr85aL+gnEJxVZ62GGWKvyb40rOdPRGwOnFXWeGlFwDUUjXzfV44VUx16\nDicQ35Li870P8AjFvm/dyhD3SxSXTm5N8fk5jjoGTKcIv7tV78fXc+K65uDTjTAaAoins2oE4cy8\nIyL+B3hPPYUiYjawfmbeTJHWnRhF9+0zKLoWDvqXP5wzTTVcwTOjRF9WqztZPcqdrF9RnL1YE3g9\nxU74NyjOeA/WERSDk91MccDZRjEmxytZ8c0/GMdVBxnD8CngpuGcWavwneoJmXl+RMyhSIbrcTxw\nUWaeHcVgcPsC8yPi7xRdteoakKgMGuoKG/oSDehyn5lXlK/Lx3jmGs27gLd19/ioQ2WiX62uRL+R\nf5yrDvTXovjc/DoiPpeZZ9ZZ7gjgNxQ7bmMoDjSGFBpEcfeG91FcX3wncG5m/qgMlGoNOtefPzXw\nzEx3cHcuRZq/PsUf51MjYkZm1nMHn69RvCfWoeiqCEWX0CGN2VD1PTiOoX8Pzq4+gwI8DNxc7xn5\niP/f3v0Hy1WXdxx/38AgUMeKlGoLE0PVPCWatoBiASs/KtAWZhLEClRFE2sq1DEmYylS2vKjiFUp\nMI5QqpS0DGTaDDZidSwjMChgaUXEGOjT2pKqKBZQoIMO0XL7x/Nd7rmb3c357j7r3dz7ec3cgbu7\n53tOvnvP+T7nOd8f9jFgGfC/xFCAu4C/qD0XixXM1NdLiTobtr4y635/oofVLKWL7nlET6W2Mmcr\n/8Wum4uXNH6vTWZ0eo1NUyZoLqoD3GYsUW7KTicS2duon8z6EKK3w4XE38RRRE+gvYggvNUwn656\n2psYCnprIyHVuq7sJ7TqTi13rwn225b5n8yOLU8n2pOam9el1mMFLjN7DfCdso+2Pmdmv9F9nWqc\ni617hrn7d4keFd2v3wbcVnFMEL2P+j38qL2Jbd5gNg3Tw6Z2CO8gV2QVZIlDQ8nt+XMPMeHhZbUP\nVXp4jpm9ptyfjSQz6Wkxt9hpRDz/DNE79ngv8+INWebuxFC204jeSLcRD/ha88YQZjPbr7w2zNwU\ny4fYppX5kIDo2T243HxWjRUnxrTOyli5+xYzW0skIFqzWA2iX6Ax9JwGjBhwmdlK4IDGzdKdzGSB\n11cWt514Ur6UCJoBPk9c1GsvWEeWpFH3BXSYIOQY4GjbcTLG6rK8sZpHI/h7I9Htujb4+3dituTm\n+K4PNy5grXUFbc2Gp/rfaIld7kui4S3Dbt8oZ8OoZXQkN86UHgYnEt/ZEiKQGGaVnAOIa85BRNLg\nLmAD8B7ql+n7G+J8vINouJYRQ32eJGklgAwlSP0IsQpCzcoJENeqi4khCZ2nt4uJpwMjzSbuMaHr\np2gKOaEAAAxkSURBVIBPmVntU4sPs2OAu4ToPXK+u2+sKGsx8YTvP4iuzA8Bw64KlFlfmWWtA242\nsxM7T35Lnb+JGEfbWnKiv/vmYuieBskBrhHtzqlEYmsTsMjdjx6iuKuJoTM/KD2TziUmvT2YuP6/\noWU5mb0yxrbqzigaSd2XEL1ZrikJ6BTuvqWUW3v+3E3vuPdJoj2p6X2bdi4mt7NnA9/sPDEvvU5P\nIXranF9zXMk9bLZllQWcYoPnNKipr8yhoWk9f4hhxyuB95Wk5Z3lZ5g5jTayY/w81PwIyUnPB4gE\nwek+xHLzXcd1PBFXnkg8gNgIrKnskdkpa4pIWryL8vDcYmj8R9z9goqiHh7Qg2ikpY3nQwJiUPeq\n2sp5Ya8/IHf/qsWYnNbc/bk7/9ScOJvZN7t7EN3kf4q4+am5WbkcOMfdr2m+WLoh1TaEmUFIWll9\ngr+pYYI/38n4rsriMusrpct9ZgCSHMykNc5mdh0x5OUzwIUliByK9x7vv6r893HqzsWD3H15Ke/j\nxPJnw0q7pu7seySevrb1IeJp8oGdJFnp4XEpkQRYW1HWIGcRM1G30i/AtZj48RYqzm13P8FiNYaX\nE38H64nl5x4D/tnd/6RtWeTWV1pZHqtLPE30IlpBzIVyGNGFv6qnR2aiP7OnwRgC3H8ETnD3b5Ty\nax8WdCxqBP6nAle7+43EUsmte6ll1pUnrrrT9ffQvHGC+punnkndmuPpc1zdao/reQPi1Jqx3ann\nIrk3wVcTT34xs9cS3dE7ibKraZ8oSz0Xk7/HzPpKGxqa2fOnT4wz1JxGHqvqXdQvfva6YUyZ8fPl\nxASut1tMPnknw08cfQ7x9/DeIbbttg44khj68iA8u0rhX5rZ+oo4bjd69yAa2XxIQGRWzvMHvFc7\nI3CmZkZy1EZ1j04QU9zhMc71MatbhgsiYbPDDdiQDWFaEJJZFrnBX+f4tjHi+K7k+lpU8/kBMhvU\niWyciSdDTxGB6NphkzVdMsb7P/tkzt1/bCOsgEHuNTXzezwJWOqzZ0Z/0mJSQycvAZHCY+LHYbZ7\nBthiZo8DTxBPNk8ixlLXJCAy6yu17t39FjNbBdxOBGzHepkws7KctER/ck+DzAC3s3zj5y1WY9rE\n8BOe7mYzc8y8DljTeK91PJhcV2mr7iQ/+ElL6iYfV2qcmnUuktvOpiTKirRzMfl7zEwaZA4NHYeM\nGAeYyPg5M8lybM2+d+IM4DhvDLvwWIXsTcSKPG0TEA9X9phobT4kIDIr50tmtsbdZw3dMLN30H+5\nnLHLzEgC+3SV/a7Gr7UT8qQ2hFlBSHJZmcFf59hGHt9VykmrryTjmqBxYhrnxGRN9nj/zG6TmdfU\nzL+JZ7zHyjge41SHXjFnXMzsGKD2if5a4mnK4URS6S7ipuAaYkm0Gpn1lVZW11PEPYlr4CM2M3/A\nsMMTR5WWbE4OcDcDmy2Wx1tBXPP3M7OriAkMbx5YwGwbiWvfo8T8HV8ox/gy6ob6pNWV5a66kykz\nqZspLU7NPBeTb4JTEmXluDIfSKXJThpY3tDQNMkxTqfMSY2f05IsSXb3HnM+uPsjpQ7n3EQcxAR5\nD/APJUPUuZAfSozJPXnOjirX3X0ar3cy84SyrcyGMC0IySwrM/iz3PFdExe0Jd/oz/vGmcTx/slJ\nyjTJ3+MDZvZW75rZ3szeAlQtr7uTrrStl80qZfUahrMPMVnaGTVlEX+bfw+sc/dvV27bLa2+MstK\nfoqYKTXZnB3glnbieuB6i+E9byC67LZug9z9YjO7lVh28eZGUmmKmYmD28isq7RVd5JlJnUzpcWp\n2ediYjublSjrHNekPawB8urLEoeGJkuLcSY1fh5HkiXJoEk/ayYEfd2oB9LP1PR0xkIBc8fM9vXh\nl8rqVd4UMQHcK4gAdau735pV/lyzmIV+M/A0M+u5H0Jkv1d6xRKYZvYi4mK5nR4NoVcsuVOeom2n\n94lR1dhnltWn/E7wd1pNl6kS+G0EbvQRx3eN+984rB4N6k3EigwPzVVZXY3z301Q44zNHu9/BDHj\n8DDj/TOPKfuamvU9HkCs9f1DZl9v9iauN9/KOubK41rS9dI08NgwgVGmzPqa1Lofh0ay+XQiFvhb\n6pPNzQD3yklIEI9DRl1JvUmMU7PbWTM7nJlE2VPltaXAc939ywM3nl3ORJ6LmfVV4sGn+rw9l8my\ntBhnUuNnM/snYhWgrwFfLD9bPGcVvqFZTDjZb5Wqvdx9zjsg7PIJCKlXGq9jiYvCSI3XJDaEMjeS\nG9QF0Th3WCzLegQxadBJwL7u/tNze1SjG0NQ2n3tut/dbxn5QOepzPpaiHU/QrJ5IhPE4zRsXcn8\nMKnt7KSei5NaX+MyX2McmMwHSbsCJSBEJEVmg7oQGucB4/3vAr7m7v83YPNdwkL4HkVERGS2hRDj\nNM3nJMs4KAEhIjIHzOwyYom3LyaM9xcRERGZCAshxlloSZZMSkCIiIiIiIiItLQQkizjogSEiIiI\niIiIiIxd2pr2IiIiIiIiIiL9KAEhIiIiIiIiImOnBISIiIiIiIiIjJ0SECIiIiIiIiIydrvP9QGI\niIhIHTN7DvB+YAXwI+CHwAXu/kkzOxr4DODAbsB3gXe4+7ay7QbgX939o+X3VwJ/BiwFvgdMATe4\n+6Xl/W3Ab7n7/WXbU4Gl7v7NXuX1Od7fBt5Xyt4TuMfd32xmdwN7lB8DtpRNvuzubzezg4CtwHp3\nv9zMVgHvLp9ZDPwAeLT8/nvAWcCvN14DuMjdP7GT+vxN4NPA6919c+P1DY3yOnW5yt2/ZWZLgK+X\nY54qx/L77n7voH2JiIgsZEpAiIiI7HquBPYGlrn7djN7OfBZM/teeX+ru78KwMw+AFwKnFLemy4/\nmNlyIllxhrt/try2H7Cusa/u5bIeBi4AVneX14uZ/RzwUeBgd3+ovPYrAO7+6vL7i4EvufvBXZuv\nBj4BrAIud/drgWvLNtcSiY8rG/s6E7ik+VpLq4Eby383N16fbpZnZn8OnEskOgC+3zlmM3sn8HHg\n0Mp9i4iILBgagiEiIrILKTfrbwTOdPftAO6+FbgY+FN2TAbcDhzUp7g/BD7WST6Ush5x93P7fH4a\nuAo4rvRO6JgacMgvInppdJIjuPtXuj6zw/ZmtjvwO0QyZFHpqdGt134HHcsOzGxf4Cjgd4FXm9kL\ne5VnZouA59H4d3QZVM8iIiKCEhAiIiK7muXA19398a7X7wZ+uflCuWleAfQbFnBw2a7GU8AlRMKj\nja8A/wJ8w8w2mdlaM3tBi+1OBB4oQz2uY6bHxSBTwDlmdm/j55d2ss2bgZvc/QmiF8Rbe5UHPAQc\nDVzWp5yT6V/PIiIigoZgiIiI7GraPOFfVm6a9yfmJjikTcFmdgXwWuBngcM6Qya6TAN/Baw3s8N2\nVqa7TwMnl2EiRwErgT8ws+Xu/v0Bm64mEg8A1wP3mdk6d396wDazhky0tApYW/7/OuCvgQ/2Ks/M\nziOGWZxc3n9+qef9iCExr6rYr4iIyIKjHhAiIiK7li3AS81sn67XfxW4r/z//WVugv2Be4D39inr\nXuDZJIK7ry3b7UFMutiTu/+YGO5xSduDdvet7n6lux8PPEEkI3oqwyCOBy40sweBO4C9mJnHIoWZ\nHQosAzaU/dwAHGhmR/TZ5EbguMbvj5f6WkwkLy7KPD4REZH5RgkIERGRXUhZzWITcFVZDQMzewUx\nOeIFNHpIuPuPgDOBNWb2C41iOp/5YHnvhM4bpcy+yYfGtjcAP8OAREIp7+fN7PDG7wcQPQYeHLDZ\nGcAmd3+xux/o7gcCb6f9MIy2VgMf6Oyj7Of8xn6muso7hlhdZBZ3fwY4GzjSzH6tYv8iIiILihIQ\nIiIiu56zgG8D95vZA8TT93e7+xfK+89OROnu/wNcQSzbSfN9d/8qcBIxnOK/yrKYnyOW5fxOn313\ntp0mkh5LGLAKBjHc83wz+7cyXOHTwB+5+31dn2uW8TZi2EXTTcArzWxxn206uueAWNProMxsT+C0\nHvvZCJxiZnuX8jvl3Vc+/7Ze+y9DQ84DPtRrfyIiIgJT09ODYgYRERERERERkdGpB4SIiIiIiIiI\njJ1WwRAREZGRmdkfA6/v8dZx7v7oT/p4mszsk8REkU3/7e4r5+J4REREFioNwRARERERERGRsdMQ\nDBEREREREREZOyUgRERERERERGTslIAQERERERERkbFTAkJERERERERExu7/Ae3ecKvZMdKrAAAA\nAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f67ac9784d0>" ] } ], "prompt_number": 24 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Big states with big airports appear to be in the top five. But we haven't accounted for how many total flights these states service. We should plot the percentage of flights that are delayed." ] }, { "cell_type": "code", "collapsed": false, "input": [ "pct_departure_delay = departure_delay_counts / df.ORIGIN_STATE_ABR.value_counts()\n", "pct_arrival_delay = arrival_delay_counts / df.DEST_STATE_ABR.value_counts()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 25 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ranking states of origin by their percentage of departures tells a different story than the plot above. For example, here we see Illinois and Arkansas at the top of the list whereas IL was third in total departure delay counts and AR was ranked 25th or so. California, which is #2 in the number of total departure delays is only #17 in percentage of departures delayed. Not bad." ] }, { "cell_type": "code", "collapsed": false, "input": [ "pct_departure_delay.order(ascending=False).plot(kind='bar', title='% flights with departure delays by origin state')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 26, "text": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7f67abb67e90>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAABBYAAAFLCAYAAABiCg8kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xm4HFWZ+PFvSIgj3kiIiaIQiMb4uo+4APNTlHFBnNEB\nRYWouKGiDrgw7gsqrigiKqNGcGUU1FEUZ0QUHR3cgXEbja8iJl4DOMFchIiaAPn9ceqGTqe3qts3\nuZ18P8+TJ91Vp9463bequuqtc07N2rRpE5IkSZIkSU3ssr0rIEmSJEmSRpeJBUmSJEmS1JiJBUmS\nJEmS1JiJBUmSJEmS1JiJBUmSJEmS1JiJBUmSJEmS1JiJBUnSdhERt4yIL0bENRHx6Yh4WkRc1DL/\nuohYMmCsmyLiTtNW2f7rf2VEnNFj/tNbP1uD+B+NiDc2XX5URMSS6m/Z9/xkqt9pXXXqNg3rPigi\nfjHsspIkDcuc7V0BSdLoiojTgKcCvwCekJlrqulPAg7IzBf2WPzxwG2BBZl5U0Q8vXVmZs4bUh2f\nDhyTmQcNI14nmfnWlvUtAS4H5mTmTUNaxabq37SKiG8AZ2Xmh6Z7XRpcZl4E3HXYZeuIiJuAO2fm\n5QOW/wZuS5K007DFgiSpkYjYH7gvcDvgW8Arqum7Ay8BXt0nxL7AL4d48T3TzJrh8TqZUvIiImYP\nqyIqImIm3QSqsw1OeyJMkjRzzKQfK0nSaFkCfCszN0bE14Hjq+lvBt6emeu7LRgRb6AkImZFxOHA\nC4Eb28psvkMaEbcBPgo8GEjgK8BD2lohPCIi/gVYBHwiM4+LiLsB7wd2jYjrgI2ZuSAi/gF4B7AY\nuBZ4V2a+s0M9VwOPzcz/iYgnA2cB98jMlRFxDPDozHxsRLweWJqZRwP/XS1+TURsAg6husiKiHcA\nxwDXAM/PzC93+X72Az4E3Bn4Em0XaRHxaOBNlOTMz4HnZuZPq3mrgA8ARwO3Bz4PPC8z/xoR84F/\nA/annAN8u1p2TUS8GTgIOLBqifIR4FTaWl+03omuWoM8G/g+peXK+yLiTcBbgCcAtwDOBV6cmX/p\n8Dl3Ad4OPK36O5zaNn/3atqjgJuqOr2uUzIqIt4NPBbYHfgV8KLM/FZE7An8GlicmeuqsvcFvlx9\nP3esvuu/BTYCX8vMo9rjtzim+nvPAt6Zme/st47MbN+2bwGcXH1HAJ8GXp6ZGyLiYMrf6D3Ai4Gv\nRMRHKN/54pbYHwKWVuvYREnSvbZavrXsKuC9lL/PvlX5p2XmXzt8h3du+y4uzMzlETG5Tf+42qaf\nCXyVGttSZr4gIu5a1eW+wFrgtZn5mR7ftSRpRNhiQZLU1M+AgyLib4CHAf8bEfcH7pKZ5/RaMDNf\nR7n4PCcz52Xmh+l9N/RfgesorSOeRrlIar8j+o/A/YF7A0+MiEdm5krgucB3q/UsqMp+CHhOZt4a\nuAfw9S7r/QZwcPX6IZSLx4e0vP9Gh2Umkx27Z+atM/N71Wc7gNJl5DaUi+mOTcQjYi4lGfAxYA/g\nM8AR3JycmEw6PBtYAKwAzouIXVvCPImS0FgK3AV4TTV9l2rZfap/fwZOB8jMVwMXAf9cfVcv6PKd\ntHfL2L/6Xm5L+ZueTEmI/G31/17AiV1iPYfyd7sP5W/3+LbYHwU2VJ9jv+ozPatLrB9U69wD+CTw\nmYiYm5lXUf5OT2wpezRwdnXB/0bgy5k5v6rre7rEn3Rw9bkOAV4eEQ8bYB3tXk353v62+rc/N/+N\noGzne1D+Rse2LlhtH+cCH67KnA0cTvcWApsoCYxHUpIo9wae3qVs+3fxXoDMfHA1/97VtvEZam5L\nEXErbk5GLAKOoiSi7talLpKkEWKLBUlSI5n5s4j4LPA9YCWlxcIXgGdGxAsoF8PjlIuLP3YIMYsB\nmlZXzesfR2kp8BdgZUR8jJsv+Ce9LTOvBa6NiP+iXKxe0GUdG4B7RMRPq7r9sMvqvwkcRrlr/iDg\nrcAjKC0CHkzbHfaWz9XJ6sn+5hHxccpF1W0z8//ayh1IaSHw7ur9ZyPi4pb5zwFWZObktI9HxKuq\n5S6iXEie3jLexZspF4ivre6mnzsZKCLewtZJlbpdLq7IzH+t4v2VkvC4d2ZeU017K/AJ4FUdln0i\npbXIZF3fQpW4iYjbUVoqzK/+7n+u7n4/G/hge6DM/ETL21Mj4jVAAD8FPk7ZPj9QbU9HAY+pym4A\nlkTEXlU9vtPn874hM/9MSaR9BFgOfK3POto9CTguM6+uPusbKAmiyQTMTZSWGRuBjRHRuuyBwOzM\nfG/1/tyI+EGfOr+nSn4QEV+k7BudDPxdNNiWHg38JjM/Vr3/UUR8jpL0OKlP/SVJM5yJBUlSY5l5\nGnAaQET8M+VCfA7l4u8+lO4OrwBeOYXVLKpijrdM+12Hcle1vL4euFWPmEdQ7hC/LSJ+AryialnQ\n7r+BU6qm7rMprQdeHxH7Ulok/Gjwj3Fz/TLz+upicQxoTyzcAVjTNm11y+t9gadGxPEt03atlpvU\n+l39dnJeROwGvIty93qPav5YRMzKzMk73nX7xreuaxGwG3Bpy8XwLLq3kLx9h7pO2pfyua5sibVL\nW5nNIuIllCb6d6B8hlsDC6vZXwDeXw2seVfgj5l5STXvZZQ79T+IiAlK94aPdKkvHep7rwHW0e4O\nbPk33fw3qqzNzA09lm3fPsY7FWzRum/8uW1drQb+LhpsS/sCB1RxJ82hJGQkSSPOxIIkacqqu8vP\nptxNPQz4SWbeGBGXAL2a1A9iLXADZTyEX1XTFteo3lbrqS74Dq/uLB9P6eO+T4dyl0XE9VWZb2bm\ndRFxFaXVQOujDjd1ed3ElZRm6K32BS6rXv8WeHNmvqVHjH3aXk9eiP4LpWvE/pn5fxFxH+B/KBf/\nnZ488afq/92AyTEz9mwr07rM1ZQL17tn5pU96jfpyg51nTQO/BW4Tb8BPiPiIOClwEMz82fVtHVU\nd8wz8y8R8RngKZSL/s0Xs5n5e8rfk4h4IHBhRHyzx9MP9qGM8zH5ek2/dXRwBWWMkpUtca5omd9r\nG+q0fezDzdtHP11j1/wu6m5Lv6XsQ4cMWE9J0ghxjAVJ0jCcSmm6/RfKYH8PqPpUH0zpf9/JQE3u\nqz7qn6O0FLhlNQDc0fS++GrtZvF7YO/JMQgiYteIeHJE7F7Fvo62gSPbfBM4rvofSl/61vftn2Ut\npSn70gE+XiffAW6IiBdUdX0c8ICW+WcAz42I/SNiVkTcKiL+MSLGWury/IjYKyIWUPrzf6qaN0a5\n8P9jNe91bev+fWu9M3Mt5cL56IiYHRHP7PW5qgTAGcBpEbEIoKpHt4vJTwMvqMrsQfVkkSrWlZRB\nOk+NiHkRsUtELI2IB3eIM4+SfLo6IuZGxImUFgutPg48A/gnyiCcVPV7QkTsXb29hrJd9UpkvKba\nDu9BGavgUy3zOq6jg7OrOAsjYiGlC0Sv8q2+C9wYEcdFxJyIOIwtt49+uu53fb6LLbYNam5LwH8A\nd4mIp1Tb9a4R8YBqf5YkjTgTC5KkKYmIhwK3zswvAFR9//+Tcsf5IcDbuizaflez0/tJx1FG+7+K\nMqjh2ZT+4J3Ktsf6GmWgyasiYrLbwVOA30TEHyl3aJ/c4yN+k3IR9d9d3m+xvsy8nvJkjG9HxLqI\nOKDDZ+tUZ6rlN1LGlHg68AfKOASfbZl/KaV1yOnAOkorjtbBLDdRBi/8CiWp8yvKEySgdFu5JaVl\nwXeA89vq8W7g8VW9T6umPZvSGuBq4O6U0f+3+twtXk65e/696vv9KuXOdidnUMbB+DFwSfU5W+M9\nFZhLefLFOkpXlMkWE63r/nL175fAKsoF7xZdJjLz25SL5Eszs7XrwP2rul5H6c7wgsxc1aW+myh/\n/8uAC4F3ZOaFA6yj3Zuqz/uT6t8l3Pw3mlxPp3VTdZF4HOXpIhOUbfc/6L0/tMfpNr/Xd/F64GMR\nMRERj6fmtpTlKTGHUMaeWENpefFWyt9XkjTiZm3a1LvFZkQcSvnxmA2cmZkndyn3AEoW/cjM/Gyd\nZSVJqiMiTgZum5nP2N51mWki4jfAMZnZ7UkXO62IuBD4ZPUUkpFdR4d1fh94X8vAiJIkbVM9x1io\n+p6eDjyckl2+OCLOqx7f1V7uZMrdglrLSpLUT5TR+25BGeH/AZRB+o7ZrpXSSKlugNyXMgbIyK6j\nWs+DKa0zrqa0WLgnLedgkiRta/26QuwPXJaZq6qmmefQ+cfyeODfKf1K6y4rSVI/8yjN5NdTfk9O\nyczztm+VNCqiPJ70q8CLMvNP/crP1HW0rg74EaUrxIuBx1cDL0qStF30eyrEXmz9eK8DWgtExF6U\nhMFDKXeRNg26rCRJg6ie4rBse9djFGTmHbd3HWaazHzajrCOlnWdQRmfQpKkGaFfYmGQR2adRnn+\n96aIaB2Fu/bjtm644cZNc+bMrruYJEmSJEmafh2fLtQvsbCGLZ8VvpjS8qDV/YBzSvdXFgKPioiN\nAy67hYmJ6/tUp1i0aB5r1143UNmdPdZMrJOxjGUsYxlruLFmYp2MZSxjGctYMzfWTKyTsUYj1qJF\n8zpO75dYuARYFhFLgCuAI4HlrQUy806TryPiI8AXM/O8iJjTb1lJkiRJkjTaeg7emJk3UJ4dfgHl\nGdKfysyVEXFsRBzbZNnhVFuSJEmSJM0E/VoskJnnA+e3TVvRpewz2t5vtawkSZIkSdpx9HvcpCRJ\nkiRJUlcmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJ\nUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMm\nFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJ\nkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJUmMmFiRJkiRJ\nUmNz+hWIiEOB04DZwJmZeXLb/MOAk4Cbqn8vzcyvV/NWAdcCNwIbM3P/YVZekiRJkiRtXz0TCxEx\nGzgdeDiwBrg4Is7LzJUtxS7MzC9U5e8FnAvcuZq3CTg4M9cNveaSJEmSJGm769diYX/gssxcBRAR\n5wCHAZsTC5n5p5byY8DVbTFmNa3chg0bGB9fvdX0iYkx1q1bv/n94sX7Mnfu3KarkSRJkiRJDfVL\nLOwFjLe8/x1wQHuhiDgceCtwe+CQllmbgAsj4kZgRWaeUady4+OrOfHUsxibv7BrmfXXXM1JJxzN\n0qXL6oSWJEmSJElDMGvTpk1dZ0bEEcChmfns6v1TgAMy8/gu5Q+ijMMQ1fvbZ+aVEbEI+CpwfGZe\n1G19N9xw46Y5c2Zvfv/LX/6SV5zyGXZfsGfXOv5x3VW87SVP4C53uUuvzylJkiRJkqamY4+Efi0W\n1gCLW94vprRa6CgzL4qIORFxm8z8Q2ZeWU1fGxHnUrpWdE0sTExcv8X71u4Ovaxbt561a68bqGy7\nRYvmNV52FGLNxDoZy1jGMpaxhhtrJtbJWMYylrGMNXNjzcQ6GWs0Yi1aNK/j9H6Pm7wEWBYRSyJi\nLnAkcF5rgYhYGhGzqtf3BcjMP0TEbhExr5p+K0oXiZ/2rakkSZIkSRoZPVssZOYNEXEccAHlcZMf\nysyVEXFsNX8FcATw1IjYCKwHjqoW3xP4XERMrucTmfmV6fkYkiRJkiRpe+jXFYLMPB84v23aipbX\nbwfe3mG5y4H7DKGOkiRJkiRphurXFUKSJEmSJKkrEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKkx\nEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKkxEwuS\nJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmS\nJKkxEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKkxEwuSJEmSJKmxOdu7AtvKhg0bGB9fvdX0iYkx\n1q1bv/n94sX7Mnfu3G1ZNUmSJEmSRtZOk1gYH1/Niaeexdj8hV3LrL/mak464WiWLl22DWsmSZIk\nSdLo2mkSCwBj8xey+4I9pxzH1g+SJEmSJBU7VWJhWGz9IEmSJElSYWKhoWG1fpAkSZIkaZT1TSxE\nxKHAacBs4MzMPLlt/mHAScBN1b+XZubXB1lWkiRJkiSNtp6JhYiYDZwOPBxYA1wcEedl5sqWYhdm\n5heq8vcCzgXuPOCyO71hjtfQKVZ7nEFjSZIkSZI0iH4tFvYHLsvMVQARcQ5wGLA5OZCZf2opPwZc\nPeiyGu54DY79IEmSJEna1volFvYCxlve/w44oL1QRBwOvBW4PXBInWU13PEaHPtBkiRJkrQt9Uss\nbBokSGZ+Hvh8RBwEnBURd21SmT322I05c2Zvfj8xMTbQcgsWjLFo0byeZYxVL9aGDRtYtWpVW/wr\ntyq3ZMmSxt0q+tXBWMYylrGMte3jGMtYxjKWsXaOWDOxTsYa3Vj9EgtrgMUt7xdTWh50lJkXRcQc\nYEFVbuBlASYmrt/iffvYAN2sW7eetWuv61vGWIPH+vWvfzWt3SoWLZrXtw7GMpaxjGWsbRvHWMYy\nlrGMtXPEmol1MtZoxOqWfOiXWLgEWBYRS4ArgCOB5a0FImIpcHlmboqI+wJk5h8i4o/9ltXMZrcK\nSZIkSVI/PRMLmXlDRBwHXEB5ZOSHMnNlRBxbzV8BHAE8NSI2AuuBo3otO30fRTOVT6uQJEmSpB1X\nvxYLZOb5wPlt01a0vH478PZBl9XOx6dVSJIkSdKOq29iQRoGu1VIkiRJ0o5pl+1dAUmSJEmSNLpM\nLEiSJEmSpMZMLEiSJEmSpMYcY0EjxSdMSJIkSdLMYmJBI8UnTEiSJEnSzGJiQSPHJ0xIkiRJ0szh\nGAuSJEmSJKkxWyxop+V4DZIkSZI0dSYWtNMa1ngNnRIUYJJCkiRJ0s7BxIJ2asMYr2GQBAU4qKQk\nSZKkHZOJBWkIHFBSkiRJ0s7KwRslSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYk\nSZIkSVJjJhYkSZIkSVJjPm5SmkE2bNjA+PjqraZPTIyxbt36LaYtXrwvc+fO3VZVkyRJkqSOTCxI\nM8j4+GpOPPUsxuYv7Flu/TVXc9IJR7N06bJtVDNJkiRJ6szEgjTDjM1fyO4L9tze1ZAkSZKkgTjG\ngiRJkiRJaszEgiRJkiRJaszEgiRJkiRJaszEgiRJkiRJaszEgiRJkiRJaqzvUyEi4lDgNGA2cGZm\nntw2/8nAy4BZwHXA8zLzJ9W8VcC1wI3Axszcf5iVl9Tdhg0bGB9fvdX0iYkx1q1bv8W0xYv3Ze7c\nuTt1LEmSJEnN9EwsRMRs4HTg4cAa4OKIOC8zV7YUuxx4cGb+sUpCfBA4sJq3CTg4M9cNv+qSehkf\nX82Jp57F2PyFPcutv+ZqTjrhaJYuXbZTx5IkSZLUTL8WC/sDl2XmKoCIOAc4DNicWMjM77aU/z6w\nd1uMWVOvpqQmxuYvZPcFexpLkiRJ0rTpl1jYCxhvef874IAe5Y8BvtTyfhNwYUTcCKzIzDMa1VKS\nppldNCRJkqRm+iUWNg0aKCL+Hngm8MCWyQ/MzCsjYhHw1Yj4RWZe1C3GHnvsxpw5sze/n5gYG2jd\nCxaMsWjRvJ5ljGWs6Yo1aBxjzexYv/zlLwfuVnH6m57HXnvdZZvE6qXfNm6snSvWTKyTsYxlLGMZ\na+bGmol1MtboxuqXWFgDLG55v5jSamELEXFv4Azg0MycmJyemVdW/6+NiHMpXSu6JhYmJq7f4n37\nnb1u1q1bz9q11/UtYyxjTUesQeMYa+bHGrRbxbaM1a31w4IFw2tJ0SRWN4sWzeu77xlr+LFmYp2M\nZSxjGctYMzfWTKyTsUYjVrfkQ7/EwiXAsohYAlwBHAksby0QEfsAnwOekpmXtUzfDZidmddFxK2A\nQ4A39K2pJGmzmTrY5aDdPezqIUmStOPrmVjIzBsi4jjgAsrjJj+UmSsj4thq/grgRGAP4P0RATc/\nVnJP4HPVtDnAJzLzK9P2SSRpBzUTB7scJEkx6NM4TFJIkiSNtn4tFsjM84Hz26ataHn9LOBZHZa7\nHLjPEOooSZqBZmKSQpIkSdte38SCJEnTbVhJCls/SJIkbXsmFiRJOwy7aEiSJG17JhYkSTsUu2hI\nkiRtWyYWJEnqYpgDZ0qSJO2odtneFZAkSZIkSaPLxIIkSZIkSWrMxIIkSZIkSWrMMRYkSZpmPmFC\nkiTtyEwsSJI0zab7MZjtCQowSSFJkrYdEwuSJG0DM/ExmMNMUszUWJIkafqZWJAkacTMxCTFTI1l\nwkOSpOlnYkGSpJ3YsJIUMzXWTEx4DDrmBpikkCSNBhMLkiRphzbTEh6DJChg8ISHJEnbm4kFSZKk\nbWxYyY5htn6wJYUkqSkTC5IkSSNqmK0fbEkhSWrKxIIkSdIIm2ldPcDWD5K0szGxIEmSpKGy9YMk\n7VxMLEiSJGnohtmSQpI0s+2yvSsgSZIkSZJGl4kFSZIkSZLUmIkFSZIkSZLUmGMsSJIkacYa5hMm\nfFqFJE0PEwuSJEmasYb5hIlhxjJJIUk3M7EgSZKkGW2YT5gYViwfqSlJNzOxIEmSJDXgIzUlqXDw\nRkmSJEmS1FjfFgsRcShwGjAbODMzT26b/2TgZcAs4DrgeZn5k0GWlSRJkiRJo61ni4WImA2cDhwK\n3B1YHhF3ayt2OfDgzLw38EbggzWWlSRJkiRJI6xfi4X9gcsycxVARJwDHAasnCyQmd9tKf99YO9B\nl5UkSZIkSaOt3xgLewHjLe9/V03r5hjgSw2XlSRJkiRJI6Zfi4VNgwaKiL8Hngk8sO6yk/bYYzfm\nzJm9+f3ExNhAyy1YMMaiRfN6ljGWsaYr1qBxjGWsnTHWqO7XxjLWdMYa9f3aWMOPtWHDBlatWtVh\nHVduNW3JkiXMnTt34HW36reNG2vnijUT62Ss0Y3VL7GwBljc8n4xpeXBFiLi3sAZwKGZOVFn2VYT\nE9dv8X7duvV9qndzubVrr+tbxljGmo5Yg8YxlrF2xlijul8by1jTGWvU92tjDT/Wr3/9K0489SzG\n5i/sGWf9NVdz0glHs3TpsoHXPWnRonl9t3Fj7TyxZmKdjDUasbolH/olFi4BlkXEEuAK4EhgeWuB\niNgH+BzwlMy8rM6ykiRJkmBs/kJ2X7Dn9q6GJDXSc4yFzLwBOA64APg58KnMXBkRx0bEsVWxE4E9\ngPdHxA8j4ge9lp2mzyFJkiRJkraDfi0WyMzzgfPbpq1oef0s4FmDLitJkiRJknYc/Z4KIUmSJEmS\n1JWJBUmSJEmS1JiJBUmSJEmS1JiJBUmSJEmS1JiJBUmSJEmS1JiJBUmSJEmS1Fjfx01KkiRJGg0b\nNmxgfHz1VtMnJsZYt279FtMWL96XuXPnbquqSdqBmViQJEmSdhDj46s58dSzGJu/sGe59ddczUkn\nHM3Spcu2Uc0k7chMLEiSJEk7kLH5C9l9wZ7buxqSdiImFiRJkiRtxW4VkgZlYkGSJEnSVobZrWLQ\nJIUJCmk0mViQJEmS1NGwulUMkqRw3AdpdJlYkCRJkjTtHPtB2nHtsr0rIEmSJEmSRpctFiRJkiSN\nDMdrkGYeEwuSJEmSRobjNUgzj4kFSZIkSSNlWOM12PpBGg4TC5IkSZJ2SrZ+kIbDxIIkSZKknZZP\nq5CmzsSCJEmSJE2R3Sq0MzOxIEmSJElTZLcK7cxMLEiSJEnSENitQjurXbZ3BSRJkiRJ0ugysSBJ\nkiRJkhqzK4QkSZIkzSAOBKlRY2JBkiRJkmYQB4LUqOmbWIiIQ4HTgNnAmZl5ctv8uwIfAfYDXp2Z\n72yZtwq4FrgR2JiZ+w+t5pIkSZK0g3IgSI2SnomFiJgNnA48HFgDXBwR52XmypZifwCOBw7vEGIT\ncHBmrhtSfSVJkiRJ0gzSb/DG/YHLMnNVZm4EzgEOay2QmWsz8xJgY5cYs6ZeTUmSJEmSNBP1Syzs\nBYy3vP9dNW1Qm4ALI+KSiHh23cpJkiRJkqSZrd8YC5umGP+BmXllRCwCvhoRv8jMi7oV3mOP3Zgz\nZ/bm9xMTYwOtZMGCMRYtmtezjLGMNV2xBo1jLGPtjLFGdb82lrGmM9ao79fGMtZ0xhrV/Xomx+qm\n6XLGMlYn/RILa4DFLe8XU1otDCQzr6z+XxsR51K6VnRNLExMXL/F+9ZHqfSybt161q69rm8ZYxlr\nOmINGsdYxtoZY43qfm0sY01nrFHfr41lrOmMNar79UyO1cmiRfMaLWcsY3VLPvRLLFwCLIuIJcAV\nwJHA8i5ltxhLISJ2A2Zn5nURcSvgEOANfWsqSZIkSZJGRs/EQmbeEBHHARdQHjf5ocxcGRHHVvNX\nRMSewMXArYGbIuKFwN2B2wKfi4jJ9XwiM78yfR9FkiRJktRqw4YNjI+v3mLaxMTYVq0iFi/el7lz\n527LqmkH0q/FApl5PnB+27QVLa+vYsvuEpPWA/eZagUlSZIkSc2Mj6/mxFPPYmz+wq5l1l9zNSed\ncDRLly7rGcskhbrpm1iQJEmSJI2usfkL2X3BnlOOM8wkhXYsJhYkSZIkSQMZVpJCO5ZdtncFJEmS\nJEnS6LLFgiRJkiRpm3K8hh2LiQVJkiRJ0jbleA07FhMLkiRJkqRtzvEadhwmFiRJkiRJI8tuFduf\niQVJkiRJ0siyW8X2Z2JBkiRJkjTS7FaxfZlYkCRJkiQJu1U0ZWJBkiRJkiTsVtGUiQVJkiRJkip2\nq6hvl+1dAUmSJEmSNLpMLEiSJEmSpMZMLEiSJEmSpMZMLEiSJEmSpMZMLEiSJEmSpMZMLEiSJEmS\npMZMLEiSJEmSpMZMLEiSJEmSpMZMLEiSJEmSpMZMLEiSJEmSpMZMLEiSJEmSpMZMLEiSJEmSpMbm\nbO8KSJLBpMRWAAAgAElEQVQkSZK0I9mwYQPj46u3mj4xMca6deu3mLZ48b7MnTt3W1VtWvRNLETE\nocBpwGzgzMw8uW3+XYGPAPsBr87Mdw66rCRJkiRJO5rx8dWceOpZjM1f2LPc+muu5qQTjmbp0mXb\nqGbTo2diISJmA6cDDwfWABdHxHmZubKl2B+A44HDGywrSZIkSdIOZ2z+QnZfsOf2rsY20W+Mhf2B\nyzJzVWZuBM4BDmstkJlrM/MSYGPdZSVJkiRJ0mjrl1jYCxhvef+7atogprKsJEmSJEkaAf0SC5um\nEHsqy0qSJEmSpBHQb/DGNcDilveLKS0PBlF72T322I05c2Zvfj8xMTbQihYsGGPRonk9yxjLWNMV\na9A4xjLWzhhrVPdrYxlrOmON+n5tLGNNZ6xR3a+NZaymcQatVzdNlxt2rH6JhUuAZRGxBLgCOBJY\n3qXsrCksC8DExPVbvG9/DEc369atZ+3a6/qWMZaxpiPWoHGMZaydMdao7tfGMtZ0xhr1/dpYxprO\nWKO6XxvLWE3jDFqvThYtmtdouanE6pZ86JlYyMwbIuI44ALKIyM/lJkrI+LYav6KiNgTuBi4NXBT\nRLwQuHtmru+07OAfTZIkSZKknduGDRsYH1+91fSJibGtEhiLF+/L3Llzt1XVNuvXYoHMPB84v23a\nipbXV7Fll4eey0qSJEmSpMGMj6/mxFPPYmz+wp7l1l9zNSedcDRLly7bRjW7Wd/EgiRJkiRJ2n7G\n5i9k9wV7bu9qdNXvqRCSJEmSJEldmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmN\nmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNmViQ\nJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNmViQJEmS\nJEmNmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNmViQJEmSJEmNzdneFZAkSZIkSdNvw4YNjI+v\n3mr6xMQY69at32La4sX7Mnfu3IHimliQJEmSJGknMD6+mhNPPYux+Qt7llt/zdWcdMLRLF26bKC4\nJhYkSZIkSdpJjM1fyO4L9hxqzL6JhYg4FDgNmA2cmZkndyjzHuBRwPXA0zPzh9X0VcC1wI3Axszc\nf2g1lyRJkiRJ213PwRsjYjZwOnAocHdgeUTcra3MPwB3zsxlwHOA97fM3gQcnJn7mVSQJEmSJGnH\n0++pEPsDl2XmqszcCJwDHNZW5p+AjwFk5veB+RFxu5b5s4ZVWUmSJEmSNLP0SyzsBYy3vP9dNW3Q\nMpuACyPikoh49lQqKkmSJEmSZp5+iYVNA8bp1irhQZm5H2X8hX+OiIMGrpkkSZIkSZrx+g3euAZY\n3PJ+MaVFQq8ye1fTyMwrqv/XRsS5lK4VF3Vb2R577MacObM3v5+YGOtTvWLBgjEWLZrXs4yxjDVd\nsQaNYyxj7YyxRnW/NpaxpjPWqO/XxjLWdMYa1f3aWMZqGmeUY7Xql1i4BFgWEUuAK4AjgeVtZc4D\njgPOiYgDgWsy8/cRsRswOzOvi4hbAYcAb+i1somJ67d4v27d+oE+xLp161m79rq+ZYxlrOmINWgc\nYxlrZ4w1qvu1sYw1nbFGfb82lrGmM9ao7tfGMlbTOKMWq1uioWdXiMy8gZI0uAD4OfCpzFwZEcdG\nxLFVmS8Bl0fEZcAK4PnV4nsCF0XEj4DvA/+RmV8Z+FNIkiRJkqQZr1+LBTLzfOD8tmkr2t4f12G5\ny4H7TLWCkiRJkiRp5uo3eKMkSZIkSVJXJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIk\nSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJj\nJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYk\nSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIkSVJjJhYkSZIk\nSVJjJhYkSZIkSVJjJhYkSZIkSVJjc/oViIhDgdOA2cCZmXlyhzLvAR4FXA88PTN/OOiykiRJkiRp\ndPVssRARs4HTgUOBuwPLI+JubWX+AbhzZi4DngO8f9BlJUmSJEnSaOvXFWJ/4LLMXJWZG4FzgMPa\nyvwT8DGAzPw+MD8i9hxwWUmSJEmSNML6dYXYCxhvef874IAByuwF3GGAZbdwv/vdc4v3Gzdu5Jpr\n1/OoJ7+8Y/kLzj6Fm266ke9+8V/ZddddN0+/9NL/7Vj+/E+czC67zN5q+iOXvwSA9ddc3bM+kz79\n6XO3KjtZn0mt9epWn/vd756bP2NrvSbrM2lyXd3q0xq/tV6t9Wmt18ue+aiu9ZnUWq/2+kw6/xMn\nb/Xdt9entV6d6gPl83b6Pjt93o0bN3Kvg47sGGcyfvs20e37f+xjH73Vdz9Zn9Z696oPDLY9tNbr\nJz/JjnEG3R4m6/XYxz56q+8e6m0PAA981NO71mfSINtDnf2x3/bQXvf2+rTWq9/2AIPtj4NsD631\n6rc/tte/6f7Yvk1MdX+crNdU90ePz2xRL4/PM/P4POj+OMjxGQbbHz0+31wvj8/FTDw+w+D7Y7/j\nc2vdO9VnksfnwuMzW8Sficfn1np5fO69P7aatWnTpq4zI+II4NDMfHb1/inAAZl5fEuZLwJvy8xv\nV+8vBF4OLOm3rCRJkiRJGm39WiysARa3vF9MaXnQq8zeVZldB1hWkiRJkiSNsH5jLFwCLIuIJREx\nFzgSOK+tzHnAUwEi4kDgmsz8/YDLSpIkSZKkEdYzsZCZNwDHARcAPwc+lZkrI+LYiDi2KvMl4PKI\nuAxYATy/17LT9kkkSZIkSdI213OMBUmSJEmSpF76dYWQJEmSJEnqysSCJEmSJElqzMSCJEmSJElq\nrN/jJrUTiog9M/Oq7V2PdhFx3+rlLGCrwUEy83+2bY12HhGxe2b+scu8fTLzt9u6Tpq66ok99wDW\nZOb/bcd6zM7MG7fX+rVziogDMvP727seUxUR+/Sav6MfnyNi18zcuJ3WfdfM/EX1+m8y8y8t8w7M\nzO9tj3pp+4mIBb3mZ+a6bVUXaVsb2cRCRByRmZ/dTuvueiEVEQdl5kU1490VeA5w12rSz4EzMjOn\nVtPGfhwRPwXOBj6bmdc0DRQR/9Jj9l+By4CvZOZNA4S7BPhf4A9d5v99zeoBEBFjAJm5vsnyVYx7\nAS+lXKRBqec7M/MnNeO8rsusTVUdT6oRa25mbugy746Z+ZsaVfsGsF+17Ncy82Et874wOW8qqpPj\nIzPzHTWWiW77SUQ8MDO/XSPWQzPz69XrLb6fiHhcZn5u0Fg91tHkMx4KzMvMz7RNfzzwx8z8ao1Y\nK4D3Zub/RsTuwPeAG4DbRMRLMvOTg8bqsY5bAo9ur28f/xMRz8vM70x1/UOuV6942+U3KCKOoBwP\nZrX8P2nTMLbTmSIi7k35XdwErMzM/x3yKv4dWFyjPk/rMmvy+PzxGrH+hbL/ntk2/RjK/n7aoLGA\nL9Eh2Q4sqv7NrhGrvZ4LgQcDqzPz0prLfiUzD2m67j6xZwEPA5YDjwZuV2PZYV7wn83Nv3/fAe7b\nMu/91PhtjIj39pi9KTNfUL96HdfzgMy8eEix9s7M3w0p1lASRNW28cTM/FTN5RYCT2LLc/GzM7Pb\nOWc3/8PN++MdgCta5m0C7lQz3oxSXR90sykz710z3tOBF7Dl9/7ezPxYzThDOU+bySLiLZn5qiHF\n6nV9tikzT20Sd2QTC8BpwFBO6iJi/8z8QY1FvlGdoJ8yeZctIvYETgHuBtyvxrr/Dvgc8EHK4zp3\nofwQfaPaSb47YJyXUQ6A4zU+Rzd7AQ8HjgLeEhHfo/x4fiEz/1wz1jw6n/AAzAceChwDPGGAWCdU\n5a4HPgWcm5nX1azPZhHxfOAVwFj1fj1wcmb+a804h1H+9m8F3llNvh/w2Yh4aWZ+vka4P7H193Ur\nyne0EBg4sQB8ISIOz8y/ttX3b4HzgH1rxGrVMxtfR0TclvI3XU75AT63ZoiVEfFvwPM7JIZOp17C\n450t5T/Xtuxrq2m1DeEznggc3mH6N4EvAgMnFoCDMvPY6vUzgMzMw6vj15eBRomFiJgNHEr5jI8A\nvgXUuYB/DvDeiPgx8LLMnGhSj2moVy9T/g2KiDtT6nZUZt6jX/nKY7j5GPFPlH251cDb6TBPEId5\nEVklvb4A7AP8mJI8uVdE/BY4LDOvHcZ6GngAWx+fZ1H+JnsDAycWgCcDB3aYfhZwKWX7Gkhm3rP1\nfUQsofy2PRx4c406ERH/Cby8Sj7eHvghcDGwNCLOyMx31Qi3qM66B6zf31H2mcMpv0XHUZL6dbw/\nIn5A+ZyNb5x0MKt/kZ4uZetk4aQpPcItIu5BdawB/kiN89Rq+ftRLoh/npk/i4jFlN/FQyn7adN6\nTSVBNAYcCyyl3Mz5AHAYZZu/jHKeOGisuwFfB75CSQzsAuwPvKq66fCLQWNl5pKWuD/MzMY3XoZ1\nXO3T6vT+mXlJjXCP6TGv1nZaJWtfSDm//yFl298PeEdEbKqTrGUK52kd6vUByvGh43dWM9YwEzGP\nAoaSWKD79VnHVuGDGuXEQi0RsQvwWKoDUGZ+KSLuD7wFuC1wnxrh7ge8DfhRRLwIuBfwYuAdwFNr\nVu11wPLM/EbLtHMj4muUC4pHDRjnDsB3ImI15eLgM5m5tmZdAMjMGygXGV+OiFtUdTgSOC0ivp6Z\nT6oR6/X9ykTEQHf1qzs4p0XE0qo+X6s+75sz80eD1qla52uA/wccnJmXV9PuBLwnIhZk5htrhHsj\n8IjMXNUy7ccR8XXKSf/AiYXMPKWljremZHGfAZzDzUmLQV0KfCkiHpOZ11cxDwb+rYq5XVSf63GU\nE4k7U76fO2bmXg3C/Qz4HfDDiHjqoIm46Tbkz3iLTt0UMnNtRNyqZqzWJNMhVBfZmXlVRNQKVJ0Q\nPoTyGf8B+D5wEOVzXl8nVmZ+PyIOBJ4LXBoRrXdga92pG2a9pkNE7EU5fi2n/Ha8jXKyP5DMfHpL\nrB9m5lT25Q9T7rKuAyZbNzW9OBrmReSbKC3UHjrZmq1KEr2VctFw/BDXNbDMPG7ydXVO8STg5ZSW\nP7Uu4IE5nVqUZeaGahuuLSLuQjnpPJDye3F8gzvAS1pahjyD0qLwqRExj7Kt1Eks7B4Rj6PLhXKd\nu4sR8VbgCOBy4NPA64FLM/OjNeoz6f6UbejiiHhjzYuXadPws3QVEXekHFuWU/bvJcD9285VBonz\nJsp3/yPgbRHxecrv27sp5yhN6jaMBNHHgWuB71J+z54O/AV4Ut1zQsox54WZ+em2eh5B2bePqBlv\nWIZ1XP1aRBzS3g0jIg6h/A7sPWigbtvPZEsRYHWNej0feFxbC9qvV9/7p6iXrB2mX1PORV6XmZ+Y\nYqxxym/XON0Th4OaHT262tTpZjPI9VkTO01igdIi4I7AD4DXVM0N7wq8uuYdZaq7acdWSYWvUpo5\n/V3D1gJ3aksqTK7jmxHxwRp1elFEnEBpsngU8Nrqgv2TwOea3tnPzL9GxM+BlZQf47vVWT4GaNpf\nt9lUZv46Ir4A7AY8BQjKD14dTwX+trUFRmZeHhFPAH5CSRYMak6nA21mroqIXWvWi4i4DSVR9WTK\nQfW+Te7gZuZrqgTKBRHxKMoP72nA4TWz0wCLqu1rVttrqP/D93vKfvO6yeao1clnEzdk5qsi4svA\nv0XEx4E35mBda6bTMD/jvE5NRKtt629qxvpjRDwGWENJrB0zhVjjlCaLHwZOyMw/RcRvpnDxvoBy\njPk/SlLsJpplzoddr6GIiGMpJ9K3pTTBfyZw3nT9uA9ob8qF4t2An1JadHwH+E6dE5TK0C4iKXfa\n7926H2fmjRHx6qqeA4uIL/aYfZs6sap4uwJPA15CSVo9PrNRt8VZ0WE8o4i4HfXv+t0LeDWlK97b\ngWOy+ZglrceZhwNnAGTmdRFR97i6O73vbtbZJp5FOS68Hzi/SsDUrE5RfTenRcRXKTdk3seWicxb\n1wi3d0S8h7Ld79XyGkrrz4FV22rXFguZ+U81Yn0XmEtJHh9end/8pm5SofI4YL/M/Et1UTMO3KNJ\nrCEniO48ef4YEWcCVwL7NmhZC3CvzNwqeZCZn63qvL0M67i6AviviHjE5I2KiHgS5ebqP9Sp0DBb\nilC6fW3VLbc6f55Xp16lal1bB9RqGZCZ74iITwLviohnUo47rceIOseur1COy3egfDdnZ+YPayzf\n6q6U42AntbrZxJZdrzp1q2yUNJzRiYU+zUcGbi5VOZDqRCUi/ga4Clia9ftOERF7UO4yHUi5m/8o\n4PyIeGFmfq1muF79+uve9buJ0hf+GxHxz5STgrdRdojd6sSK0hf8qOrfGKUrxGPqNAerDK1pf9VS\n4SjKAey3lB30zQ1/RG7qtFxm/jki6p6QbYyIfTNziyxtROzLlidpfUXEKZSWNR+kbK+Nu3oAZOab\nIuLPlKZ9AA/LzF81CHUmpdlU++tZVCeeNbyScoH1voj4NENomp6Z/x2lqeYHgIsi4ikNwtwpIs6j\nfKY7tl2Q3LFmrGF+xs8BH4yI47Pq7lH94L6b+s3+jgXeA+wJvCgzr6ymPwz4z5qx/p3SFP/Iqk69\nLuB6iojnUu5WnUK5KJpKs99h1muYv0GnU1qCvTAzf1zFb1q1ocjMf6nqcQtKUufvKAmPMyLimsys\nk0ge5kXkhk532jNzY0T8tdMCPfRq6XVKj3lbiYjjKHdovwY8qtMJcQ3vAP4zSj/XyRPF+1fT67ZO\n+xGl5dZ/UJpv79+ybdU9QfxdRBxPST7uR9lmiYjdqH/OeNUUW9S0uj2lO9Ny4PSI+AZwy05J10FU\nN5deSUnIvG8KyeiXcvNJefsJf90E/oGUv+PZlKQV3HyyX/eY+HvgnpTj1G0pF/JN/TWrQSkzc11E\n/KphggKGmCACNp+rVYnHNQ3PB6GcqzaZt5Vqn57cJtpvxNTtuz6U42pmnhERf6G0BngE5ffxuZRW\nu6tq1AeG21LkLw3ndfIbSneaqXZJAiAz10TpGvZmyt+g9Rgx8O9Z3tzaegnlGubD1fH0k5Qkwy9r\nVOtnOYWuNW1au169gdJKvunxZrMZnVig985U18bJH44q6/qbJkmFyuRB8Z+zdBu4ICLuQ+m396zM\nXF4j1uK2DHerJs2mJwe8OorSJOlqyo9nneW/Q7mT9Wng2VlzwKZWOdym/b+i3K36POWgtg/wvKr5\nVd2D9RUR8fDMvLB1YkQ8jJL1ruN1wIUR8Wa2PEF8JaWZbB0nUJosvobSsqZ1Xq07KW0XVIso39+p\nVcxadz+GeVc1t+zSchTl73n7iHg5ZdyMOgfZ1rjXAEdF6bN3EXDLmiEOa3ndvm3WugAZ8md8DaWZ\n5qoofcyhDDj34WpeHddn5iM71PfLdVvXtLSSOphysn8KMD8ijgT+M+sNhvpESquvrbp8RMSjM/M/\ntlO92n+DJn+E96H0Ya/j9pSxNt4TZdyNfweatGjaIuHV9r7Wft3ilsCtKSexu1Na4dUaeBb47RAv\nIm8R5SlArQNUTv5/i5qxftOe9J2C91Ba1DwIeFCH43OdO2Ifj4i1lOT65PgaPwNem5nn16zXMZN1\nqP7f4s5Tg1gnUW5MHNnSWu4A4CM1Y3UcPLiJ6lzrfMpNnL+hXEDsRkmEfC1rdNGsznFWAw9qbzHS\noF4fncrybVqTJ8spyd6zM/NnDep1eETMp7Q2OCnKeC57RLMnodyp7TizpOV93WPOMBNE946I1psv\nt2x5X7flSXsCYIt5NevV2ne9/UZM3f1xaMfVzDyrSsz+iLL9H5TNukwPs6XI3Xok8JfWjLVhWMf6\niLgn8D7KZ3tAy02YxqoEztso3Yn2oxxPT2QKg+tOsT4fnXxd3RivNVhmNzM6sTCFjGgnd23beJe2\nvK87eMZN2Taqe2b+KCL+H/DsmvVqzXa3GzjbHaVv5VGULORNlIz3IVmNH1DTK4CLpnjXsLVuQ2na\nz82tGzZRDbhYaXKwPp4yuOG3KMmAWZSxMx7ElheYfWXm5yPiN5SmsZN9f38OPGHyzmQNPx5iNvKd\nlO9lN0pTLCjN1Go3CY8hPq1iUmb+mpIJfnOUprzLKSeOdX5MzmyfkJkfq/4eT69Zn29Mvo6IRdW0\nRuOURMQy4HaZ+S22/IzvoTQ9rPNDcl9K64STKOM1PIRyR/6WlBOWOk3WL4yIQ9vvtFZN/V5DGQxy\nYFWy9uuUuyBzgUdS/o7/SmmRNKi9KC2ZttBSr4ETCx3qtWvTerX+BlUXusspyYFV1B+48STgk5n5\n/igDnx0J/D4ifkHprjbogEzD3K/PAO4OXEfpJvgd4NSGx+dbRMSDqm1+qq6ie+K57gne57n5iTaf\nzQ7NnWsY6mjuVQKhbhKhU5yPTr02m2P9ntKyqX36fwH/VTPcvYZSKSDKU12eSzkG/gT4cGb+e3XD\notPgtr2c2H5TYQr1Glr3hbbkyS0ox5tvRsTrM/P0unWrku0fptwhvR0lgfuuiFicmQM/DYVyTjR5\nzLkz5bjT6JhDOUf6NiWBtQsledsoQZSZw7wga00AtKrdKnOYN2KAu0SHJ1xFxIOAK6vzqL7arn92\no3QD+3rLjaY610DDbClSq3t1H8vaW4cAa4FvNWhddillMMh3NWkR1UlEzKF0OzmK0kr0vyg3Jut4\n9zDqMp1mdGIhyij93S4Y62Yj2zfeqdx56tg8vboQH3hchGqZj9ZcdzcrKRvp8qz5iMMO/h44OLYe\nQKrJIw+H1rR/yAfrDZSWE3ehnFgD/DflB6T2AbJKIBw9tNoNx7cpF7XPpHQdgbK9f4T6o8oO82kV\nW8nMn1Jao9SqV7Y8waPlwu+JlCZxtS78qu39dZRBpGZX026kPPboDXViUcay2KKlUGb+NCJeSEks\n1LGC0oXl+uoO1KuqOu5H2a8eXyPWi4GvRMQ/TraaiIhXUpJ+D65Zry1kGYjui8AXq5h1DK1eEXE4\nsHfLifi3ufmO0wk1YwVlmzqScoLyGWCXzDy4TpzKLykjXbf2szylJSk8qGHu1/tQWgD8itL0fQ3Q\ndJT8s9n68zXtR/oyYHzyLlHVCukIyl221zeMCVNMDAzzZkdbsrb1wrTJ7+ww++YPLRZwVY+7wHVb\nGX6M8rv9LcrJ+d0p3Yqupf4Abw+sbgRN+RyH4XZfoGqN8Y+UY8ISyoVE3ScJbaVKGL2X8vSduk+E\nGuYxZ2/K7+PdKAmi7wAfBV5EzUeGtySbllLOHz5UJWdqG+b55ZBvxHyfztcc11K+x0Fbdg+z9d3Q\nWooM+QbyKWydHFpCaf37+sw8u0as0ykJy1dWSZlvV/9qjz8UZYDMoyj79Q8ox4rn1Gw9OemI6D3m\nRpMWi0M1oxMLmTnWv9TAsVZNvh7CnadeTaZq/VgO8Uf8NMpgbN+MMmjjt2k+CNcwLyKH2bR/mAfr\n04BXZOaH2tZxb+odrId9Ija0bYvSV3eMMhr+dVVdb025E3gK5RE/A8khdmkZZsKwy4XfrIYXfi8G\nHkhp9vabKv6dgA9ExAk1v/vbdUrwZeZPovSzq2OXln34SGBFZn6W8jjTWi1isjwN56+UO2KHUfq7\n7k9pEjmURzxWnk8ZBXl71OtlbHmhPpfSNelWlBPYOhchKymtJR6Zmb8FqPbP2rJPP8saoYa5Xz8y\nytMN7kEZX+EEymMd/wB8LzNPrBHrjcAbu32+rNf9ZwXljg4R8WBK89HJZNoK6iXThmbINzuG+Ts7\nzIvbYcaaTee7wE3cLTPvBZubX188hVjD/O6H1n0hIs6i7ItfAk6qEu6N9DsvobR6G9QwjzmdxnV5\nRvX/NdQ7PndMNtVYfrMhn18Oc/u6dY9ziYHHfhrmNdAwW4oM85jaLTkUZcDRr1Hjd7bLdtp0/KFX\nVOt+SYPrsXZDOz63ffetySGo/3u22YxOLAzTkO88DfPHcigbyTB3gmFeRGbmLnXK9zHMg/XtOv1o\n1z1YV2bqidijgbvkliOrXxtloLyk5g/wsLq0DDNhyBAv/ChPCnlEtnR/yDKS9pMpT3iok1iY32Ne\n3acvzI6b+58+HHhOy7zax/DM/FpEPAP4JiUB+dCsBubanoZYr7mT20LlW1nG0/nD/2/v/l2jCKI4\ngH8FCxVBQhAsLGz09VpI0hksBRUsFFErxUKI/hHWdlrZCEFERLFTMIVCgiBpIsrrVQR/IIKIQXMW\nbzV7cS9mdr7HzeW+ny6BzO1dZuZm3u68Z+nlOf+UDH1qUXnkLjITQ3n+OUvquK7aWTSzL4j69l+r\n1zhYXVcSwvsDiME0dN9dy1o8kW92MPMP0Ta35Lbet3jaq5e/d6Ld/adlJD4lr3GYxxdOI9Y50wCm\nc27EgLsuoc45FUZelyKDTeSxTVlLkPdANOT1YK/X+JwxX2T3U3efavviDZh5WPry2Y9MYAHcDQjz\ny5L5JQ5wJmtmXgSaEifrSqkLsWVvyHTtcSYuKQM280gLGXPjt9kbciq4+4fqbFyKF2Z2wd27jkaZ\n2Xn0LhXUy23EQvUj4kzrs6qtvUh8bH1VhHoL4q7wB1s5Z9kqQp2LfF1j9R/c/VLtx6QkXB6liB9Y\nlNc6ipgTd5rZDUQSzsdrNtDA8s9ZMsf1NOJJtwnExm0OEdS5iSgjlozw/gBiMI15d42NGKylbW7J\nG2UmZqI+6hqHdXyBfCOGuS5hzjnMvC5FBpuqNlj9i7WWYO6BhoqZHQKQ9NmT+ylNwfPzX6MUWKDf\neWJgdRLmICh4E1niZF3yQH9tZud8VaZXMzsDILVsKO1ICxN547dWgp7U5D2XAdyvnnb4058OIM6z\nH5rtWloAAAKPSURBVE9pyN2vmtksokTk49oCbxNWkoWuty1ahPo/jzAmlbclR86f9xjbF7Fy5y6J\nx1nIGQAz1WOVJxCPN667fxnvnCVzXO9BVP+54u7vEv+2C/H9AcRgWqnY37OszS25rcNtXr8J+fFr\n2mfPPL7ARF6XMOccZl6XIoNN5LHNWksUuQdisubqEmOIhL9nE5tj9lMq5lzfD5s6HUri/6FR24Cc\nQiSKuYXEDYiZjXv7UpVN7a3uJA8RGY/fJrTxCJHl9SWituw8gEVvUdmhikAvoXkzNci7mvXJ+nrm\nYmAXYiAuoWGy9sTSMoz/YdUOrW+Z2W5Erd3v6H6P2xDv8Q3jdUpT2/idTHkEzSJRY68s11vdPSkQ\na5EM8hCilngHUX94NqUNSWeR/fwBgB8AFqpf70c8CXHMM8vLZVzXLGLDfM8zzlmWOq5Z76/W3gRW\ngmnfqt/tA7Dd3RfW/OMhwPyeXbW5vZOzuWW2VSryZ7+MeIy+ycDWSwB1XUKdc6w7r8skonpIcl4X\nJvL6krqGZq4lGHugUtm/+as6AD61DG6X2k+Ln59HLrBQ13YDQr4G5oKguEHAVOpkXfJAr97jFOL6\nOgBeufuTwV6VSH819PsNFdTRuJY65ua25I2yrB97XdKPOcei7O4kImnyEQDj7r4jp82Maynyhlo/\nlbAHGgYF9tOi5+eRDiyUoB+dpKRBMAqGYaCLiIjIaCh1XbJGXpc5AC/d/dcgrkukTv20PQUWNggN\nAhEREREplZldQ5SHnM/N6yLSL+qn7SmwsEFoEIiIiIiIiMggKLAgIiIiIiIiIq0xa+aKiIiIiIiI\nyIhRYEFEREREREREWlNgQURERERERERaU2BBRERERERERFr7DT3YIdVeJ8E1AAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f67b205be50>" ] } ], "prompt_number": 26 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly, when we look at destination states ranked by percentage of arrivals delayed, we see some new states at the head of the list. For instance, Delaware, second to last in the total number of delays overall, has the highest percentage of arrival delays for inbound flights. Iowa and Kansas are also new entries near the top." ] }, { "cell_type": "code", "collapsed": false, "input": [ "pct_arrival_delay.order(ascending=False).plot(kind='bar', color=colors[1], title='% flights with arrival delay by destination state')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 27, "text": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7f67ad3fec10>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAABBYAAAFLCAYAAABiCg8kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcHGWd+PFPSIhKEoToKBIi0Ri/3isegV0vVpENroLn\nQtRVFBV1AV1XWffngaKugqiorG4E7wO8OOIRQTzxYsEVL+JXEYNDADeaEQOoCTC/P56a0NPpnu6u\n6clMJ5/365VXuqqe+vbTPVXVVd96nqdmjY6OIkmSJEmSVMcu010BSZIkSZI0uEwsSJIkSZKk2kws\nSJIkSZKk2kwsSJIkSZKk2kwsSJIkSZKk2kwsSJIkSZKk2kwsSJKmXETcISK+EBF/jIjPRMRzI+Ki\nhuWbImJJl7FujYh7TlllO7//f0TE6RMsP7Lxs22nOr0/Il7bhzgfiYg3dVl2SfW36HguMVXfSUS8\nISI+3u+4Veyuv4se4345Iv6533Gr2BNum5IkTZU5010BSdJgiIhTgecAvwCekZnrq/nPBPbPzJdN\nsPrTgbsACzPz1og4snFhZi7oUx2PBI7KzEf1I14rmfnWhvdbAlwJzMnMW6fqPbuo00v6FGq0+jco\nprKuk/4uIuINwNLM3JpIyMwnTLJeY7EPBD6emYsbYr+1/RpTIyJuBe6VmVd2Wf6blHp/cEorJkna\nrmyxIEnqKCKWAw8B7gp8B3h1Nf+OwCuB13QIsS/wy+m8+J5is7bHm0TE7Bbz+v1bvl0+S59MdV0H\n6buYTr18T4OUuJIkdckWC5KkbiwBvpOZWyLi68Cx1fy3ACdn5g3tVoyIN1ISEbMi4snAy4Bbmsps\nvesZEXcCPgI8GkjgAuAxTa0QHh8R/wYMAZ/MzGMi4r7A+4FdI2ITsCUzF0bEE4C3A4uBPwHvysx3\ntKjnVcBTMvN/I+JZwMeB+2fm2og4CnhiZj6l6S70t6vV/xgRo8DBVBdOEfF24Cjgj8BLM/Mrbb6f\nVwMvoLToGAZek5nnVsuOBF4IXExpLfL+iNgH+AslWfNo4LCqaf1wZr4uItYCr8zML1Ux5gDXAo/P\nzMsi4rPAI4E7AD8GXpKZl7eqW1M9dwFOBp5bfY/vbFp+x2reIcCtwIeBE1olkyLi3cBTgDsCvwJe\nnpnfiYi9gF8DizNzY1X2IcBXgLtl5i1NoUaB20fEWcATqljPy8yfRMSrKC1pnt7wvu8Bbs3Ml7eo\n037AB4F7AV+m6QI4Ip4IvJnyvV8OvDgzf1ot+3fKPrE7cA3wUmAu8B/ctt1fkZn7Nd6xr/6+LwC+\nT4ttJSKeB7wK2AfYAJyUmR+IiHnAGmButa2PAgEcTUMLiYg4FHgrsDdwGeVv/Ytq2TrgvZTtat/q\nO35uZv61xXdzr+q7+RtgC3BhZq6MiLHt/8fV9v984KvAJ4DllPPM71bf1fqIeAvwKOCAqgXUhzPz\nuIi4T1WXh1Sf83WZ+dnmekiSZi5bLEiSuvFz4FERcXvgccDPIuJhwL0z86yJVszME4D/BM7KzAWZ\n+SEmvsP5X8AmSuuI51IufJrvcv4j8DDgQcA/RcQ/ZOZa4MXA96v3WViV/SDwoszcHbg/8PU27/tN\n4MDq9WMoF7iPaZj+Zot1xpIdd8zM3TPzB9Vn25/SZeROlIvxiZp9XwE8sqrfG4FPRMRdG5Yvr+py\nF0oiZxawEnhTZs6ntCBpbLb/qWr5mH8A/i8zL6umv0S5eB4C/hf45AR1a/Qiyvf+YMp3/3TG/10+\nAmwGlgL7UZIsL2gT638oF6l7VvX9bETMzczrKN/zPzWU/WfgzBZJBSjfxWHAZxpinVu17PgEsKJK\neIwlWA4HPtocJCLmAudWy/YEPgs8jduSRGNJhxcCC4FVwOqI2DUiAvgX4GHV3/BgYF2VHGjc7ver\n3q65i8Vy2m8rvwP+sYr7POBdEbFfZt4IrACuqWLvnpnXNsaNiHtX38dxwJ0pyZIvVN/DWD2eQdk+\n7kHZl45s8R0DvAn4SmbuASyiJAHIzEdXyx9U1eOzlHPLDwJ3r/79GTitKv8a4CLgX6ryx1VJkrFk\nxBBwBPC+KlEoSRoQJhYkSR1l5s+BzwM/oNw9fTvwbuDYiDguIr4VEZ8Yu4hrYRZdNJeuLgifSrnT\n/ZcqWfDRFuu+LTP/lJnDwDcoF7u0KAflYvf+EbF7Zl6fmT9q8/bf4rZEwiMpd3rHph9dLW/1uVq5\nKjM/mJmjwMeAu0XEXVoVzMzPVRfUZOZnKHfd928ock1m/ldm3pqZf6FcEJ6bmd+v1hm7wzxWlzOB\nQ6skEMAzq3lj7/eRzLwxM7dQEhl/ExHdjHHxT5TWHuszc4Ry0TwLoEqEHAL8a2b+OTM3AKdSLhJb\nfeZPZuZI9ZneCdyOcsed6vt6dhV3dhVjogEaL83Ms6vEwzuB2wMHVBfaF1EunqFciG9o8/c/gDJO\nxrsz85bM/DxwScPyFwGrMvOSzBzNzI8BfwX+Fri5qv/9I2LXzPxtw3gD3Wz3bbeVzPxyZv6mev1t\nSuudsWRWq7iN8w4HvpiZX6u+m1MorVT+rqHMezLzuurv+QVu24+abQaWRMSizNycmd9r92Eyc2Nm\nnlPtvzdQtpPHNBVrrOcTgd9k5ker7eEy4Gxu+7tJkgaAXSEkSV3JzFMpF4tExL9QLrTnUO7iPpjS\n3eHVlObfdQ1VMYcb5l3dotx1Da9vAuZNEPNpwGuBt0XET4BXVy0Lmn0bOKVqjj+bctf6DRGxL6VF\nwmUt1mlna/0y86ZyU5v5wP81F4yI5wD/SuluMlbuTg1FhpvXaTNv7P2uqLpDHBoRXwSeBLyueq/Z\nlFYPT6d812PdFO5MaSUykbs1ve9vG17vC+wKXFt9Vig3LxrLbBURr6Q0m9+bkijZvaoDwHmULh9L\ngPsA12fmpRPUa+v2kZmjEXF1FRdKUurFwBmUZEW7BMXewPqmeVc1fb7nRMSxDfN2pXTP+HZEvBx4\nAyW5cD7wiiqx0Y2220pEHAKcACyjfJ+7AT/pMu7eNHz/1XczTGlxsM17U1oW7E1rx1NaLfxPRIwA\n78jMD7cqGBG7Ae+itITYs5o9PyJmVckTGN9iY19g/yrumDmUJIskaUCYWJAk9aS6O/1Cyl3ew4Cf\nZOYtEXEppdl1K90O2LaBcgd4MeXOPdXrbm3zPtVF6ZOri+pjKc3m796i3BURcVNV5luZuSkirqPc\nrW58VOJom9c9q5IWHwAeS+nCMRoRP2L8Hd0673EmpTvEbODyhjvozwQOBR6XmVdFxB7ARrobfO9a\nxn9vja+HKXfw75QdBuiMiEdRxg14bNUShojYWofM/Es1DsSzKYmFTheYW7ePahyIfSjjHEBJUrwv\nIh5A6cbxygk+26KmeftSuqlAuUB/S2b+Z6uVM/NM4Myq5ccq4CRad+HpWkTcjtJK6NnAedU+dg63\n/a06xV4PPLAh3izKd9WcQBnTNl5m/o6yHxARjwAujIhvZesnQfwbcG9geWb+X0Q8mNLlZhatn7Tx\nW8r+dnCHzyNJmsFMLEiSevVOqq4KEXEl8PCqn/SBlLEAWulq1Pjq4ulsSkuBF1Au7v6Z8XePW8Ue\ni/87YJ+qSfqWiNiV0oT/i5l5fTXQXau++mO+BRxDGXwPSn//Y4AT23yWDZS7/ku5LRHSi3mUC63f\nA7tUrRce0GGdTk3gAc6iNEFfyPgxFOZTEgAbq79Z84XyRH+nzwDHVa0gbqJ6MghAZl4bERcA74yI\n1wE3UvrtL6qa8DdaQEke/b4a2+DVlBYLjT5W/RuicwuYh0bEUyhN+Y+jDGz5g6pef46Iz1PGGrg4\nM1u1fgH4HnBzRBxHGQD0ScDDga9Vy08HzomICyldJHajbO/fotzl34cySOFfq/cf+x6vAw5qulvf\nrbnVv98Dt1atFw4Gflot/x1wp6qLz59arP9Z4NUR8VhKYuxlVd3adWNo+7ePiGdQEl9XUwaYHOW2\n1i6/o2z/Y0mG+ZTWD9dHxEJKi4tGY+XHfJHSmujZwKereQ8GNmU10KQkaeZzjAVJUteqi5TdM/M8\ngMy8hDIY4DClH/Xb2qzafKey1fSYYyhPC7iO0pT9TEof71Zlm2N9jTLQ5HURMdbt4NnAbyLiespd\n12dN8BG/Rbkw+nab6XHvl5k3UboWfDciNkbE/i0+W6s6U61/OfAOylMBrqMkFb7T5rN1Pa8as+F7\nlDEAPt1Q7mOUJM164GfV+070d2l0OnA+5UkSl1LupjeWfQ7lQvhySiuIzwJ7tYj7lerfL4F1lIvQ\ncV0mMvO7lAvXH1bjaLQzShl08fDqPZ8FPLVpoMePUr7XtuM0VONNPJUyeOEfKMmozzcs/yGllc5p\n1fv8qvq8UMZXeCslyXQtpUvHWDJk7MkGf6ha9LSqf8ttJTM3URIln6necyWlBcZYnX5B2TeurLa9\nuzF+20zKtv/eqm7/CDwpM29u8zVM9Ld/GPCDKjF3HnBcZq6rlr0B+GhEjETE0yndpe5ASYh8j/L0\nisa47waeXtX51GochoMpY2msp3yHb6VsS5KkATFrdHTiBHpErKD8SMwGzsjMk9qUezjlBOXwatCj\nsUcZ/Ylyd2hLZi7vW80lSTuFiDgJuEtmPm+666Ltp2od8KksTxGZTJzFlKcu3DUneCyqJEmqb8Ku\nEFV/1NOAgyhZ5EsiYnU1SndzuZModyAajQIHZvUsakmSOqke33c7SpPvh1MG+TtqWiul7aq6WfEQ\nyhgek4mzC6XP/5kmFSRJmjqdxlhYDlwx1twtIs6i/MivbSp3LPA5yglgs6761UqSVFlAaeK9N6U/\n9imZuXp6q6TtJSI+SjnXOC4zb5xEnHmU7ec3lEdNSpKkKdIpsbCIbR/51fhsbSJiEeUE4LGUxEJz\nX80LI+IWyvOfT590jSVJO7TqKQ7Lprsemh6Z+dw+xbmRMj6GJEmaYp0SC92MYHwq5Zngo9WjjBpb\nKDyiGil6CPhqRPwiMy9qHQZuvvmW0TlzZnfxlpIkSZIkaTtr2SOhU2JhPeOfH76Y0mqh0UOBs0qX\nWO4MHBIRWzJzdWZeC5CZG6pnLy9n/LPAxxkZualDdYqhoQVs2LCpq7I7e6yZWCdjGctYxjJWf2PN\nxDoZy1jGMpaxZm6smVgnYw1GrKGhBS3nd0osXAosi4glwDWUxzmtbCyQmfccex0RHwa+kJmrI2I3\nYHZmbqr6OR4MvLFjTSVJkiRJ0sDYZaKF1bOOj6E8t/py4NOZuTYijo6IozvE3gu4KCIuAy4GvpiZ\nF/Sj0pIkSZIkaWbo1GKBzFwDrGmat6pN2ec1vL4SePBkKyhJkiRJkmauCVssSJIkSZIkTcTEgiRJ\nkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJ\nqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3E\ngiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJkiRJqs3EgiRJ\nkiRJqs3EgiRJkiRJqm1OpwIRsQI4FZgNnJGZJ7Up93Dg+8Dhmfn5XtaVJEmSJEmDacIWCxExGzgN\nWAHcD1gZEfdtU+4k4Cu9ritJkiRJkgZXp64Qy4ErMnNdZm4BzgIOa1HuWOBzwIYa60qSJEmSpAHV\nqSvEImC4YfpqYP/GAhGxiJIweCzwcGC023U72bx5M8PDV20zf2RkPhs33rB1evHifZk7d24voSVJ\nkiRJUh/MGh0dbbswIp4GrMjMF1bTzwb2z8xjG8p8FjglMy+OiI8AX8jMz3ezbrObb75ldM6c2Vun\nf/nLX/KCj7yCeUML2tbxxg2bOOPId3Lve9+7u08sSZIkSZLqmNVqZqcWC+uBxQ3TiyktDxo9FDgr\nIgDuDBwSEVu6XHeckZGbxk1v3HgD84YWsGDvPSas5MaNN7Bhw6YJy7QzNLSg9rqDEGsm1slYxjKW\nsYzV31gzsU7GMpaxjGWsmRtrJtbJWIMRa6jNTf9OiYVLgWURsQS4BjgcWNlYIDPvOfY6Ij5MabGw\nOiLmdFpXkiRJkiQNtgkHb8zMm4FjgPOBy4FPZ+baiDg6Io6us25/qi1JkiRJkmaCTi0WyMw1wJqm\neavalH1ep3UlSZIkSdKOo9PjJiVJkiRJktoysSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJ\nkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJ\nkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmoz\nsSBJkiRJkmqbM90V2F42b97M8PBV28wfGZnPxo03bJ1evHhf5s6duz2rJkmSJEnSwNppEgvDw1dx\n/OrXM29oQdsyN27YxMmHnsjSpcu2Y80kSZIkSRpcO01iAWDe0AIW7L3HdFdDkiRJkqQdxk6VWOgX\nu1VIkiRJklR0TCxExArgVGA2cEZmntS0/DDgRODW6t+rMvPr1bJ1wJ+AW4Atmbm8n5WfLnarkCRJ\nkiSpmDCxEBGzgdOAg4D1wCURsToz1zYUuzAzz6vKPxA4B7hXtWwUODAzN/a95tPMbhWSJEmSJHV+\n3ORy4IrMXJeZW4CzgMMaC2TmjQ2T84HfN8WYNelaSpIkSZKkGalTV4hFwHDD9NXA/s2FIuLJwFuB\nuwEHNywaBS6MiFuAVZl5+uSqK0mSJEmSZpJOiYXRboJk5rnAuRHxKODjQFSLHpGZ10bEEPDViPhF\nZl7ULs6ee+7GnDmzt06PjMzv5u1ZuHA+QxOMdzCTY01kMutORRxjGctYxjLWzI01E+tkLGMZy1jG\nmrmxZmKdjDW4sTolFtYDixumF1NaLbSUmRdFxJyIuFNm/iEzr63mb4iIcyhdK9omFkZGbho33fiE\nhYls3HgDGzZs6lhmJsZqZ2hoQe11pyKOsYxlLGMZa+bGmol1MpaxjGUsY83cWDOxTsYajFjtkg+d\nxli4FFgWEUsiYi5wOLC6sUBELI2IWdXrhwBk5h8iYreIWFDNn0fpIvHTjjWVJEmSJEkDY8IWC5l5\nc0QcA5xPedzkBzNzbUQcXS1fBTwNeE5EbAFuAI6oVt8LODsixt7nk5l5wdR8DEmSJEmSNB06dYUg\nM9cAa5rmrWp4fTJwcov1rgQe3Ic6SpIkSZKkGapjYkFTa/PmzQwPX7XN/JGR+ePGcli8eF/mzp27\nPasmSZIkSVJHJham2fDwVRy/+vXMm2AEzhs3bOLkQ09k6dJl27FmkiRJkiR1ZmJhBpg3tIAFe+8x\n3dWQJEmSJKlnJhZ2IK26VTR3qQC7VUiSJEmS+sfEwg7EbhWSJEmSpO3NxMIOpl/dKmz9IEmSJEnq\nhokFtWTrB0mSJElSN0wsqC0HlZQkSZIkdWJiQVPObhWSJEmStOMysaAp189uFSYpJEmSJGlmMbGg\n7aJf3SpMUkiSJEnSzGJiQQNnpiUpWiUowCSFJEmSpJ2DiQXt1PqRpOgmQQE+RUOSJEnSjsnEgtQH\n/WpFYesHSZIkSYPGxII0g9j6QZIkSdKgMbEgzTC2fpAkSZI0SEwsSDsoWz9IkiRJ2h5MLEg7sH61\nfpAkSZKkdkwsSOrIbhWSJEmS2jGxIKkju1VIkiRJasfEgqSu2K1CkiRJUiu7THcFJEmSJEnS4OrY\nYiEiVgCnArOBMzLzpKblhwEnArdW/16VmV/vZl1JOx/Ha5AkSZJ2LBMmFiJiNnAacBCwHrgkIlZn\n5tqGYhdm5nlV+QcC5wD36nJdSTuZfo7XYJJCkiRJmn6dWiwsB67IzHUAEXEWcBiwNTmQmTc2lJ8P\n/L7bdSXtnPo1XoODSkqSJEnTr1NiYREw3DB9NbB/c6GIeDLwVuBuwMG9rCtJk9GvJIWtHyRJkqR6\nOiUWRrsJkpnnAudGxKOAj0fEfepUZs89d2POnNlbp0dG5ne13sKF8xnqcMfSWMaaqljdxjHWzI71\ny1/+suvWD2cc+U4WLbp32zKbN29m3bp1Lep77TbzlixZUjtJ0WkbN9bOFWsm1slYxjKWsYw1c2PN\nxDoZa3BjdUosrAcWN0wvprQ8aCkzL4qIOcDCqlzX6wKMjNw0brr5LmE7GzfewIYNmzqWMZaxpiJW\nt3GMNfNjddv6oVOsX//6V1M+jsTChf1rSTE0tKDj/mKsmR1rJtbJWMYylrGMNXNjzcQ6GWswYrVL\nPnRKLFwKLIuIJcA1wOHAysYCEbEUuDIzRyPiIQCZ+YeIuL7TupK0o3IcCUmSJO0sJkwsZObNEXEM\ncD7lkZEfzMy1EXF0tXwV8DTgORGxBbgBOGKidafuo0jSjslxJCRJkjSTdWqxQGauAdY0zVvV8Ppk\n4ORu15UkTQ9bP0iSJGkqdEwsSJJ2HP1q/SBJkiSNMbEgSepZt90quulS0c9YkiRJ2v5MLEiSetZN\nt4puu1T0M5ZJCkmSpO3PxIIkqZZ+dqvYnk/RcAwJSZKk/jKxIEnaoWzvp2jY+kGSJO3sTCxIktSC\nrR8kSZK6Y2JBkqQ2bP0gSZLUmYkFSZKm2FQPUNmcoACTFJIkafsxsSBJ0nYwEweoNEkhSZL6wcSC\nJEkDZkdPUpjwkCRpsJhYkCRpJzYTkxQzNeEhSZJaM7EgSZL6ol9Jin7G8ukekiRNPRMLkiRph9bP\nhIckSdrWLtNdAUmSJEmSNLhssSBJktQFx2uQJKk1EwuSJEld6Nd4Da0SFFAvSdHPWJIk1WViQZIk\nqUv9GK+hmwQFdJek6GcsSZLqMrEgSZK0nc3EJ2hIklSXgzdKkiRJkqTabLEgSZIkx2uQJNVmYkGS\nJEmO1yBJqs3EgiRJkgDHa5Ak1dMxsRARK4BTgdnAGZl5UtPyZwHHA7OATcBLMvMn1bJ1wJ+AW4At\nmbm8n5WXJEnSzGO3CknauUyYWIiI2cBpwEHAeuCSiFidmWsbil0JPDozr6+SEB8ADqiWjQIHZubG\n/lddkiRJM5HdKiRp59KpxcJy4IrMXAcQEWcBhwFbEwuZ+f2G8hcD+zTFmDX5akqSJGmQ2K1CknYe\nnR43uQgYbpi+uprXzlHAlxumR4ELI+LSiHhhvSpKkiRJkqSZqlOLhdFuA0XE3wPPBx7RMPsRmXlt\nRAwBX42IX2TmRe1i7LnnbsyZM3vr9MjI/K7ee+HC+Qx1aGpnLGNNVaxu4xjLWDtjrEHdr41lrKmM\nNej79faOtXnzZtatW9fiPa7dZt6SJUtqj9fQ6e9vLGPtaLFmYp2MNbixOiUW1gOLG6YXU1otjBMR\nDwJOB1Zk5sjY/My8tvp/Q0ScQ+la0TaxMDJy07jp5sF92tm48QY2bNjUsYyxjDUVsbqNYyxj7Yyx\nBnW/NpaxpjLWoO/X2zvWr3/9qykfr2FoaEHHv7+xjLUjxZqJdTLWYMRql3zolFi4FFgWEUuAa4DD\ngZWNBSLi7sDZwLMz84qG+bsBszNzU0TMAw4G3tixppIkSVIDx2uQpJltwsRCZt4cEccA51MeN/nB\nzFwbEUdXy1cBrwf2BN4fEXDbYyX3As6u5s0BPpmZF0zZJ5EkSZIkSdtdpxYLZOYaYE3TvFUNr18A\nvKDFelcCD+5DHSVJkiRJ0gzVMbEgSZIk7Qg2b97M8PBV28wfGZm/zbgQixfvW3sgSEna2ZhYkCRJ\n0k5hePiqKR8IUpJ2RiYWJEmStNPo10CQtn6QpNuYWJAkSZJ6ZOsHSbqNiQVJkiSpBls/SFJhYkGS\nJEmaRrZ+kDToTCxIkiRJ06xfrR8kaTqYWJAkSZJ2EP3sVmEXDUndMrEgSZIk7SD62a3CLhqSumVi\nQZIkSdqB9LNbhV00JHVjl+mugCRJkiRJGly2WJAkSZI0pbodr8GxGqTBZGJBkiRJ0pTqZrwGx2qQ\nBpeJBUmSJElTzvEapB2XiQVJkiRJA8NuFdLMY2JBkiRJ0sCwW4U085hYkCRJkjRQ7FYhzSwmFiRJ\nkiTtlPrZrcIuGtqZmViQJEmStFPqZ7cKu2hoZ2ZiQZIkSdJOq5/dKuyioZ3VLtNdAUmSJEmSNLhs\nsSBJkiRJM4jjNWjQdEwsRMQK4FRgNnBGZp7UtPxZwPHALGAT8JLM/Ek360qSJEmSxnO8Bg2aCRML\nETEbOA04CFgPXBIRqzNzbUOxK4FHZ+b1VSLhA8ABXa4rSZIkSWrieA0aJJ1aLCwHrsjMdQARcRZw\nGLA1OZCZ328ofzGwT7frSpIkSZKmTqtuFc1dKsBuFZqcTomFRcBww/TVwP4TlD8K+HLNdSVJkiRJ\nfWS3Cm0PnRILo90Gioi/B54PPKLXdcfsueduzJkze+v0yMj8rtZbuHA+QxPsKMYy1lTG6jaOsYy1\nM8Ya1P3aWMaayliDvl8by1hTGWtQ9+uZHqubbhXdxNq8eTPr1q1rin/tNuWWLFlSu/VDpzoYa2bG\n6pRYWA8sbpheTGl5ME5EPAg4HViRmSO9rNtoZOSmcdPNzXPa2bjxBjZs2NSxjLGMNRWxuo1jLGPt\njLEGdb82lrGmMtag79fGMtZUxhrU/XpnifXrX/9qSls/DA0t6FgHY01vrHbJh06JhUuBZRGxBLgG\nOBxY2VggIu4OnA08OzOv6GVdSZIkSdLg6Negko79sGOZMLGQmTdHxDHA+ZRHRn4wM9dGxNHV8lXA\n64E9gfdHBMCWzFzebt0p/CySJEmSpAHQz7EfTFJMv04tFsjMNcCapnmrGl6/AHhBt+tKkiRJktSv\n1g8OUDn9OiYWJEmSJEmayfqVpFA9u0x3BSRJkiRJ0uAysSBJkiRJkmozsSBJkiRJkmozsSBJkiRJ\nkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmozsSBJkiRJkmoz\nsSBJkiRJkmozsSBJkiRJkmqbM90VkCRJkiRpJti8eTPDw1eNmzcyMp+NG28YN2/x4n2ZO3fu9qza\njGZiQZKpuJUXAAAgAElEQVQkSZIkYHj4Ko5f/XrmDS1oW+bGDZs4+dATWbp02Xas2cxmYkGSJEmS\npMq8oQUs2HuP6a7GQHGMBUmSJEmSVJuJBUmSJEmSVJuJBUmSJEmSVJuJBUmSJEmSVJuJBUmSJEmS\nVJtPhZAkSZIkqY82b97M8PBV28wfGZnPxo03jJu3ePG+zJ07d3tVbUp0TCxExArgVGA2cEZmntS0\n/D7Ah4H9gNdk5jsalq0D/gTcAmzJzOV9q7kkSZIkSTPQ8PBVHL/69cwbWjBhuRs3bOLkQ09k6dJl\n26lmU2PCxEJEzAZOAw4C1gOXRMTqzFzbUOwPwLHAk1uEGAUOzMyNfaqvJEmSJEkz3ryhBSzYe4/p\nrsZ20WmMheXAFZm5LjO3AGcBhzUWyMwNmXkpsKVNjFmTr6YkSZIkSZqJOiUWFgHDDdNXV/O6NQpc\nGBGXRsQLe62cJEmSJEma2TqNsTA6yfiPyMxrI2II+GpE/CIzL2pXeM89d2POnNlbp0dG5nf1JgsX\nzmeoQ98VYxlrqmJ1G8dYxtoZYw3qfm0sY01lrEHfr41lrKmMNaj7tbGMVTdOt/Vqp+56/Y7VKbGw\nHljcML2Y0mqhK5l5bfX/hog4h9K1om1iYWTkpnHTzaNltrNx4w1s2LCpYxljGWsqYnUbx1jG2hlj\nDep+bSxjTWWsQd+vjWWsqYw1qPu1sYxVN0639WplaGhBrfUmE6td8qFTYuFSYFlELAGuAQ4HVrYp\nO24shYjYDZidmZsiYh5wMPDGjjWVJEmSJEkDY8LEQmbeHBHHAOdTHjf5wcxcGxFHV8tXRcRewCXA\n7sCtEfEy4H7AXYCzI2LsfT6ZmRdM3UeRJEmSJGnHsnnzZoaHr9pm/sjI/G1aRixevC9z587dXlXb\nqlOLBTJzDbCmad6qhtfXMb67xJgbgAdPtoKSJEmSJO2shoev4vjVr2dehzEQbtywiZMPPZGlS5dt\np5rdpmNiQZIkSZIkTZ95QwtYsPce012Ntjo9blKSJEmSJKktEwuSJEmSJKk2EwuSJEmSJKk2EwuS\nJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmS\nJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2\nEwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKm2OZ0KRMQK4FRgNnBG\nZp7UtPw+wIeB/YDXZOY7ul1XkiRJkiQNtglbLETEbOA0YAVwP2BlRNy3qdgfgGOBU2qsK0mSJEmS\nBlinrhDLgSsyc11mbgHOAg5rLJCZGzLzUmBLr+tKkiRJkqTB1imxsAgYbpi+uprXjcmsK0mSJEmS\nBkCnMRZGJxG753X33HM35syZvXV6ZGR+V+stXDifoaEFE5YxlrGmKla3cYxlrJ0x1qDu18Yy1lTG\nGvT92ljGmspYg7pfG8tYdeNs71gTqbsedE4srAcWN0wvprQ86EbP646M3DRueuPGG7p6o40bb2DD\nhk0dyxjLWFMRq9s4xjLWzhhrUPdrYxlrKmMN+n5tLGNNZaxB3a+NZay6cbZ3rHaGhhZ0tV675EOn\nxMKlwLKIWAJcAxwOrGxTdtYk1pUkSZIkSQNowsRCZt4cEccA51MeGfnBzFwbEUdXy1dFxF7AJcDu\nwK0R8TLgfpl5Q6t1p/LDSJIkSZKk7atTiwUycw2wpmneqobX1zG+y8OE60qSJEmSpB1Hp6dCSJIk\nSZIktWViQZIkSZIk1daxK4QkSZIkSRp8mzdvZnj4qm3mj4zM3+bpE4sX78vcuXO7imtiQZIkSZKk\nncDw8FUcv/r1zGvz2MgxN27YxMmHnsjSpcu6imtiQZIkSZKkncS8oQUs2HuPvsZ0jAVJkiRJklSb\niQVJkiRJklSbiQVJkiRJklSbiQVJkiRJklSbiQVJkiRJklSbiQVJkiRJklSbiQVJkiRJklSbiQVJ\nkiRJklSbiQVJkiRJklSbiQVJkiRJklSbiQVJkiRJklSbiQVJkiRJklSbiQVJkiRJklSbiQVJkiRJ\nklSbiQVJkiRJklSbiQVJkiRJklSbiQVJkiRJklTbnE4FImIFcCowGzgjM09qUeY9wCHATcCRmfmj\nav464E/ALcCWzFzet5pLkiRJkqRpN2GLhYiYDZwGrADuB6yMiPs2lXkCcK/MXAa8CHh/w+JR4MDM\n3M+kgiRJkiRJO55OXSGWA1dk5rrM3AKcBRzWVOZQ4KMAmXkxsEdE3LVh+ax+VVaSJEmSJM0snRIL\ni4Dhhumrq3ndlhkFLoyISyPihZOpqCRJkiRJmnk6jbEw2mWcdq0SHpmZ10TEEPDViPhFZl7ULsie\ne+7GnDmzt06PjMzv6s0XLpzP0NCCCcsYy1hTFavbOMYy1s4Ya1D3a2MZaypjDfp+bSxjTWWsQd2v\njWWsunEGOVajTomF9cDihunFlBYJE5XZp5pHZl5T/b8hIs6hdK1om1gYGblp3PTGjTd0qN5t5TZs\n2NSxjLGMNRWxuo1jLGPtjLEGdb82lrGmMtag79fGMtZUxhrU/dpYxqobZ9BitUs0dOoKcSmwLCKW\nRMRc4HBgdVOZ1cBzACLiAOCPmfm7iNgtIhZU8+cBBwM/7fpTSJIkSZKkGW/CxEJm3gwcA5wPXA58\nOjPXRsTREXF0VebLwJURcQWwCnhptfpewEURcRlwMfDFzLxgij6HJEmSJEmaBp26QpCZa4A1TfNW\nNU0f02K9K4EHT7aCkiRJkiRp5urUFUKSJEmSJKktEwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2\nEwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuS\nJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmS\nJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKk2EwuSJEmSJKm2OZ0KRMQK4FRg\nNnBGZp7Uosx7gEOAm4AjM/NH3a4rSZIkSZIG14QtFiJiNnAasAK4H7AyIu7bVOYJwL0ycxnwIuD9\n3a4rSZIkSZIGW6euEMuBKzJzXWZuAc4CDmsqcyjwUYDMvBjYIyL26nJdSZIkSZI0wDp1hVgEDDdM\nXw3s30WZRcDeXaw7zkMf+oBx01u2bGHkz3/k709onY/45ptWM3rrKJfd4VvsuuuuW+f/8Ic/a1n+\nG288j1m7zNpm/oGvOxSAGzdsmrA+Yz7zmXO2KTtWnzGN9WpXn4c+9AFbP2NjvcbqM2bsvdrVpzF+\nY70a69NYrxO+8qq29RnTWK/m+oz5xhvP2+a7b65PY71a1QfK5231fbb6vFu2bGHZ8x7SMs5Y/OZt\not33/5SnPHGb736sPo31nqg+0N320Fivn/wkW8bpdnsYq9dTnvLEbb576G17AHj4i/++bX3GdLM9\n9LI/dtoemuveXJ/GenXaHqC7/bGb7aGxXp32x+b6190fm7eJye6PY/Wa7P7o8Zlx9fL4PDOPz93u\nj90cn6G7/dHj82318vhczMTjM3S/P3Y6PjfWvVV9xnh8Ljw+My7+TDw+N9bL4/PE+2OjWaOjo20X\nRsTTgBWZ+cJq+tnA/pl5bEOZLwBvy8zvVtMXAv8OLOm0riRJkiRJGmydWiysBxY3TC+mtDyYqMw+\nVZldu1hXkiRJkiQNsE5jLFwKLIuIJRExFzgcaG5/sRp4DkBEHAD8MTN/1+W6kiRJkiRpgE2YWMjM\nm4FjgPOBy4FPZ+baiDg6Io6uynwZuDIirgBWAS+daN0p+ySSJEmSJGm7m3CMBUmSJEmSpIl06goh\nSZIkSZLUlokFSZIkSZJUm4kFSZIkSZJUW6fHTaoL1VMv7g+sz8z/m+767Kgi4o6ZeX2bZXfPzN9u\n7zpV7/2Q6uUsYJtBSzLzf7dvjfovIhZOtDwzN26vugyCiJidmbdMdz2knV1E3Cczf1G9vn1m/qVh\n2QGZ+YNpqtdemXnddLz3TBARu2bmlumuhzqLiLtPtHy6zr0mEhH7Z+bF010PaWczoxMLEfHYzPx6\n9foemfmbhmVPzcyz+/AedwcOz8y397DOKuC9mfmziLgj8APgZuBOEfHKzPzUZOs1U0XE0zLz8zXW\nexBwH8qF99rM/FmNt/8msF8V72uZ+biGZeeNLZsGlwI/A/7QZvnfdxsoIuZm5uY2y8btA13EuiAz\nD+62fAf/y21Jk72BaxqWjQL37KFe/zbB4r8CVwAXZOatvVZyqtTY7v83Il6Smd/rw3v/dILFo5n5\noB5iPY3y95rV8H9jrK6PqRMl8yLiUZl5UbexqnUeCLyKkqSFsk+9IzN/0mOcE9osGgXIzBN7iLUC\nWJCZn22a/3Tg+sz8ai9164d+XgxHxHPbLBr7rj42idh3Bh4NXJWZP6wbpylmz7/XwJnc9tvwPeAh\nDcveT4+/G9Xneibl9wzKU6/OzMx2x/92flzt22cCn8/MP/a4fkcRcQfgic3b73SJiFnA44CVwBOB\nu9aMMx8gM2+YRF3uA7yI8X/H0zMz68Zs8R77ZObVfYr18My8pIfy0e6zRMQjMvO7Pbz9l2lx0wQY\nqv7N7iFWS9W28U+Z+enJxqp8Dljcw/v/G+WYfkbT/KMovwGn9qNSdRJqEXEkcBzjt9X3ZuZH+1Cf\nno8REfHeCRaPZuZxk63XjiQi/jMz/1+fYvXl2reKNdG5+GhmvrNO3BmdWADewW0/+mcz/gTgddW8\nnkXEXYBnUH7c9gbO6THEozLz6Or184DMzCdHxF7AV4C+JBYiYnlm/k+XZY+nnNwM9+O9J3Aq0PUF\nVpV4OQ+4O/BjyoXMAyPit8BhmfmnmvWY8A56F/Xq50X3Kyjb003Ap4FzMnNTzVjnRcSTM/OvjTMj\n4m+A1cC+PcQaqlmHbWTmkoa6/CgzJ5PEWUDrkxSAPYDHAkdRvtMJ9fOiu4OetnvKCet7I+LHwPGZ\nOTKJ937SBMt6fazPkxrWOZSyTTXq5Zj6zSrJespY64zqGHgKcF/god0GiojDqvXeSjnuU63/+Yh4\nVWae20O9bmTb72UeZZu6M9B1YgF4PfDkFvO/BXwB6Dqx0Mdjzvsj4n+Af+/DxejD2fa7mkXZTvYB\nuk4sRMSXqjr9LCLuBvwIuARYGhGnZ+a76lSwD7/XjWZ1LjJhXe4LfB24gJJs3QVYDvy/6kbIL3oI\ntwg4CDgC+M+I+AElyXBeZv55EnWcDaygfF+PB74DTCqxEBH3quIdkZn371S+xfp/W63/ZMpv9zGU\nJGKvcV4KvBqYX03fAJyUmf9Voz5nAx+gPCZ9F8r55TerE/fv9xjvoZTk+uWZ+fOIWEw5R11BOfep\nJSLuT/W9A9fTwzEVWBsRnwBe2iIBcxo9JNQy8wFN9VpC+TscBLylhzqNJYWOBpZSksf/DRxWxbmC\ncg41HZ4FHNBi/seBH1LOAWqZTEKtSv6+jHKe+SPKMWw/4O0RMVon+duHY8QP2fbGxJiezkk6tER+\nWGZe2kOs/6b8BrWM12O9+nlueQjQl8QCk7j2baHduXjL1tfdmumJhb6JiN2Bp1J2pHsB5wL3yMxF\nNcI1XvQdTLVDZuZ1EdFrvXYBnkJ1kM3ML0fEw4D/BO4CPLjLUHsD34uIqyiJjc9m5oaeKjM13ky5\no//YsTvQ1UHtrZQfkmOnqV79vOg+FTg1IpYChwNfq/4Ob8nMy3oM90PgyxHxpMy8CSAiDgQ+QUli\n9eKOEfFU2hz8+5X17FVmvqFTmYjo9i71hyh3ITcCYy09JnXx0A+ZeXFEHAC8GPhhRDTe8ekpo5+Z\n61rNH7vDA1zVQ6wjG9b/UWb2uk01eijwNuCyiHg58EDgX4G3A8/pMdabgMc3fdYfR8TXKcmPrhML\nmXnK2OvquH8cZd85i9uSFt26XavubZm5ISLm9RirX8ech1GOm5dExJsm06ogM48Ze139Fj0T+HdK\nK7yeLhiAJQ0t0Z5HaXX0nIhYQNlHu04s9Pn3up/eDLwsMz/TOLNqCfQW4GndBsrMmyk3Ir4SEbej\nnHweTvkt+XpmPrPbWNWx4DGU7+sJwMXAoyjf2U3dxmmKuaiqz0rKvv02ygVuLzHeSvlOrgQ+A7wB\n+GFmfqRGfV4L/B1wYGZeWc27J/CeiFiYmW/qIdwJwMrM/GbDvHMi4muUZOIhPdTrzZTPeBnwtog4\nl7Ltvpty7OlJRNyD8j2vpPymLQEe1u53YAI/B64GfhQRz+k1WdKmbvemXCAdQDmWHlujO8vHgD8B\n36ecPx8J/AV4Zo3zpX6a06q1aGZurvavnvUpofZS4KlNrVW/Xh1zPk2Xyd9+HiPq7L8T+FpEHJxN\n3Wkj4mDK+d0+PcT6NeV864TM/OQk6zVMuU4Zpn0SpVuzY4LuxM2ffXvp5ly8jp0msQD8jnJ36YSx\nZqTVRVcd10fEk4D1lB+6o6p4uwK37zHWB4B7AP8DvLZqdnUf4DW93KXLzJdHxCsoTU+PAF5XXZx9\nCjh7EnfQJ+sg4EGNzdoz85aIeA0wUUawlaHqM85qeg29n7T3/aI7M38dEecBuwHPBoJystFLjNdW\nJ1DnR8QhlB/eU4En95K5rdyRie92T0tiIbpoqt5DNngfygXLfSnb03coFzHfm66DdYOFlIvA/6Mk\njG6lRiZ4pt7hqVphHF0lFb5K6R7ztzVbTc1pdeKcmeuq42pPIuJOlCTHsygnXg+p2WpkQaumqzWP\n9X055lStQ06NiK9SksnvY3zSavdeKlV9lucCr6ScbD69ZnPwxu/oIOD0qr6bIqLXbk39/L3eJyLe\nQ/neFzW8htJqoBcPzMxtkgeZ+fnqIrqWzPxrRFwOrKUcM+7bY4hhSvPoDwGvyMwbI+I3dZIKEXE0\n5eLjLpTm5M8HVtc8CX0B5dj3fmBNdZFWIwxQkpV/09iaIzOvjIhnAD+hJCe7dc+mpMJYvG9FxAd6\nrNdTgf0y8y/VxcMwcP8aiQAi4vvAXMrNqidXn+83dWIBN2fm/4uIrwCfiIiPAW/KGl0Mo3RTew2l\nm9rJwFFZfwyhe439vkfEGcC1wL51WulExBcmWHynHsPNihbjnkTEXen9N7tvCTVKN4xtusBWv40L\neojTz2PEF5igxUJmHtpDuFXANyLi8WNJ/Ih4JuXm6hN6qVdmvj0iPgW8KyKeTznuNP429nLOewFl\nW9+bco51Zmb+qJf6NLgP5TjYSk9diSm9nNpdO/XaNbaxS0urrrG1urTM9MTCPSNiNeXD3qPpIHKP\nHmP9B+XH8n0R8Rkm1zTwaOA9wF7AyzPz2mr+44Av9RjrAKoL74i4PXAdsDR7769J9YPxTUpzvn+h\nnNy9jbJz7dZtnA5NgHrtE7m5VUY7M7dExF9brTCBMyhNd5pfz6I6ie1B3y66q5YKR1Au9n5LOQi9\npW5z1sx8c0T8mdLUFuBxmfmrGqGum+Qd6a2i9MUaO/A0J3V67YvVt6bqmflvVf1uRzkh/1vKifDp\nEfHHzOz6BL2f231EvJhyZ+IUyklY7WZlzNA7PBGxJ+X4cgDlDt8hwJqIeFlmfq3HcFsiYt/MHNf6\nIiL2ZfwFazf1OoXSCuwDlGPrZJKqZwMfiIhjs2pOXJ3MvZveE3P9POYcRflNew3wvjoXC1WcYyh3\nVb8GHNLqBLYHV0fEsZSE+36Uu/FExG70fq7Rz9/rV3Hbsav55K7XZO2NNZe1FGXMiCOqf/MpXSGe\nlL11qYCSADiU0sKg0wVXJ6dR/nYvy8wfV/Hqxrobpan1SuC0iPgmcIdWybou3NrqNzUz/xwRvV7k\nTjQ2Q68XWn/NakDQzNwYEb+qmQiAklB7AOX35i6UC9NJycxvR+mq8d/ARRHx7BphLqO0fvgipevP\n8oZtotcLkK1/q+om0/q650pM3ALtlAmWtfJ24EvVuc7YceJh1fxeW7r1M6H2l5rLmvXzGHEAZXs4\nk5KMhobzwV4CZebpEfEXSiuMx1f1ezGlZdK6XiuWmeujdMt7C+X3tvG3sevf2LytJfISyvH5Q9Vv\n2acoSYZf9lCtn+fkug83+g2lO00/WuY2dml5I6W1Vq2/Y6OZnlg4rOF1847d00EjxzdXP4LStPJu\nEfHvlD7xvWwkN2XmP7R4j6/UuLu2ZeyksMp4/6ZOUqFRlIESj6A0k/495SStFxOd/PbqdlGemtA4\nWNzY/7frJVCfm+38tl8X3cCvKHfLz6VcAN4deEnV9Kyni+6mg/1QFfud1Y9Sr5ngloNA1tTYF6s5\nqdPrD0k/m6qPuQOwO+Xi7Y6Uu+c9DfrHttv92HZ6d0p/0l78E+Xu/TbN6CPiiZn5xR5iTdUdnuZk\nba/b19iJ079kadZ9fkQ8mDIGwAsyc2UPsU4ALoyItzD+pO4/KE3ze/EKyrb/WkorsMZlvd7Rfy2l\n+fu6KOPCQBkQ7EPVsl705ZgTEd+jdH95ZPPdtRreQ2lR80jgkS2+q176kR5FSQoeRBlgcayFyP7A\nh3upVD9/r2veJWynOak6blkvgaq/4z6UO5ovzEkMcNnQYvFAykX8KcAeEXE48KXsbZDDu1HGtHhP\nlPEtPgf03GqoqtfNwBpKwvH2lBPi3ShJqK9lD909gGsi4qDMvLBxZkQ8jnJM7MXippYrjXptxXLP\npuPokobpno6pWcbq2oPSCuLEKGNb7BmTfMJBlrFYjojSX/8iyu9lL46q/h/7rR93Z7PHWA+KiMZk\n7x0apns9Pv+mORldV2Z+LCI2UI5hY+OI/Bx4XWau6TFcPxNq953gpsfSboNMwTFi7POtpNxQPTMz\nf95DjMa6fby60XgZ5bftUVmjK3dEPAB4H+V48PCGm761VcmNt1G6Oe1H+S17PX0YsLSmzX3c5j8y\n9rq6ITTpwUBhhicWGpuqRcRQNW9S4wZk5q8pmay3VM27VlJ++LreQSknwCua7+5UTW9eSxnUq1v3\naTpoLG2Y7vrELkrftyMo2b5bKZnEg7Pqi9iLSWTbW7mO9heLPe300cfR3ikJj0dm5nd6qUMbY+87\nSjWoVKXOACjvqNbZjdIUC0pz9zr9ZB9YY52W+pzU6VtT9Yg4HbgfsInSneh7wDvrxGrc7qtk2ErK\nCfY6ehu4EcrJ6TZ98BuOEb0kFvp9h6df29et2TQ6f2ZeFhF/B7ywl0CZeW5E/IbSHH9s3JXLgWeM\n3TXtwY/7eHfgIZTWCSdS+vo/hnLX5w6U5Fov3W3uHS1GY4+IRwLXVr9N3Xh988XVJPTSBHNCmfk7\nSmu+5vnfAL7RS6yIWAbctTo+N/5ev4fSRLbrk7o+N9ttTKo2qtNq7tXARZNszbRVdYPi65Q7f3OB\nf6Acw/6L0hKsWycCn8rM90cZhPBw4HcR8QtKt8quByGLMuL8iyn7zk+AD2Xm56qEcqtBUSdyLGVw\n4+9Qko+zKOO8PJLxN6G60diKpVmvrVgO47Zj6r0ox9W6x9SxJMCHKHdI70pJUr8rIhZnZtdPOaBs\nq82xP1odZ4/ssU4f6aV8h1j9vCA7l9ueFPb5bNFNqRdVAqHXJEIrxwLfpSRkdqHctKibUOu1W1Rb\nTceIXal5jGhKGN6uivGtiHhDZp7WS52arn92o3Rh+XrDzbRekts/pAxu+K4aCZx29ZtD6ZJxBKVV\n+jcoN0J68e5+1KWyrLnFMLAB+M4kWxz2zYxOLFR3fE+gDHgyu5p3C+UxK2+cbPzM/CnlTnOvo3X+\nK3BBRPzj2J2TiPgPykXSo3uM1XzQqHuXdC1lg1+ZPT6erVmUkZbbnez0mlE+HhgeyxxWGfOnUbKS\nb+ixav0c7f1Myqi6k+4/1eeL7u9STqSfz/9v7/xCrKqiMP6NhvRHKpGgB4mJwIVFDxUUKoSK4EOC\nSlKKaPiQRARjElE9hBQ9ZSQU1TxI/xCJkCQhSFDIHM2KHlKSVQ9FZAgmyECFUjM9rHNnztw5987d\n53y3e5j7/UBk/u2777lnr733d9b+VhyrAOJeeBfp9+mFNk/XUjMpmCX8mKnqtyEyX35CpGCfB1DK\nKd9iJtuMWEhfRKRfz3H3FSWaY8YI5hMe5v1V+LllG6XUc8rIBIStqX/XZYYRR5H+yp4kvoCYj+5B\nvMeNCW2dRvE1G0X4qHSaKbY8E2+ax3XyWGSKyOQN/F40Zdq5+xkzG0IICykw03Z3J752O1YCWGHT\njeHKCOVT8DChOwzgcBZ3UvgR0+fGPbmHFym8j8geOoFYnN+JOGIxioSKIxlXEZlti7N2AOA4QtBJ\nElrJWSzMmDqFTKx7A1FhKKUiFDxXKSMnlD+CSKVOEsqZYzsnNt2BWH/vyzaqVakkkjatcfLvtcx4\nXISIYUsQgtpJAO8B2ImE8uPZ6/6S8vutMLP1ABblNv4jmMyy2lWivWsBPISICYOIzXOZij3MTNE3\nEYLl85lgMZL9S/bcsjCP3IR4j18j5o8diZkdDR629v5KKXPjHkwXtwcR2Zm73f1Aif5RqbWwgFic\nL0ektPwMTLgAv2NmuxI3RrTNskflhisItW4d4jzV/Yj0naQnpcSnpHsRRpJfWJg2jqCkiZ27z5/5\ntzpmGKHywcweRKQUNRbmw0hYmDsxhd7DQfplI5yfImdSvIrIeri9seHO3utriIAylNDWXBQ/XSsD\nU9Shpaq7+xoLN/u7EP4KuxDlTC8B+MrdX0zo1zlEJsEad/8VADJhJhlyjGA+4WHeX+3SwsscAWJt\nSmn9QghLjfj5KIBhdz+IKIOZmklxY5Ho6+7fWzjBdwptLJJFZNoGHpGt0OpaDSa2RUvbJcd6Zkxt\nx5MId/OO8BnOFie+9hJ3vxuYOMb1TeLf59kL4Dl335f/psXRzxRhjh1vaDF1pn4hsqU6batIKB8o\nKWB04nkAAAVPSURBVJQzx3ah2FSiT2y67f20Pfv/MtLK+LJi9LOYKgzOy/p2A0L0SOnTh4g112cA\nXsoe0paCmSna4rqX8txCiBoHADyTuocqoOvitoVx7FEkxOimeyv/wAooYQTdoO7CwjZECbKJ4w8e\nLrlbEI7RHS8QyZtluPtRM9uOqGc+giinmGKkAoD3lJQ8oJgwF+ZMt3cAtPNTzAXiWgCLfWoVjVEL\nM0BH2gR8gZHZk/WBKerMYfQp194YgDNmdhlR63sUcR0fQHyWndIob3fcwkn7Y1QwyGHFCDLM+4sp\nXDEXrsx+zbXJc7GrAezI/Sx1/ry5zc86rjBBHovMeZF57pZyrQBu2i64m49ueM3QIM2NE0+i3f0f\nK29gB4TYNG0DU0KYA7jxhhlTmf2iCeXgjm2m2JTP5qu0MerSeKzs/USM0fMa90HGCQ8/t0uWXjp5\nCyIWDgEYqvJwiJwp2oBx3VdVeP1mqJ4URXgYx6b+DXVf3KDuwsI1XuCp4FFDvGd9b1J5rkU8kb+Y\nOxOUovIwgz/AMbFjQluYk1PoG21WPj9FnpDGvMDh3eNsfSnndxZsUYfUpyFEps5SxCL2JGITvw9R\nmrFjPMq7HrIo77gO8V5vMbO3EYZxR9o2MLVfzBjBhHl/0YQrcCdeZr8OIDahfyDOTH8JTHgApB65\n+dbMdrj7lGMiZvY4WpeiKqSOY5G8gaddq+zvKGm77M1HHT/HBoy5EdxjXDSxCdx4w4ypzH7RhHLy\n2KaJTeRsvlp6PxFZkP/C3Z/KfZlkPEt+OETbA9X0urPHTyFmthJALeaOugsL7cw3KMYcZSCrPJTg\nX9cBBe7CnJZCb9zzU8wF4jkze8yb3FnNbCuA1BJkq0u8fiHdEHVIDCJc1Z92998ZDWb3wH4A+7P0\nso2ItLiOhYVuKcEEmPcXjf9j4i3Zr1fM7BiitPCR3AZiAJMmk52yE8AnWcZdY3N8H8IjZEOnjdR4\nLDLP3VKuVdYnWtpu1h5r80H7HGdIl+641HTWFm1uJG/8aGITOd7QYiqzX0yhHKCObabYRIMcV2ne\nT0ROtxg/T2AyO6YXMDNF63jdAfDGjxVXCFmAMMPfVqGLNAbGxymGxF3BwqixlbPude5ed2GkY3LB\nfzPC3OUDJAR/M/sc4aZ6FlHv/hSAM05ynK6CmS3F5ML8z+x7iwHMd/fvetSnY4gF00GveH6qaUJ6\nq+ICcRGi1u7fmLqgvh7ABnf/rUpfK/RrDCHqFAl6vXwCLxJg3l9mttArlsZtaq954v0U4SJ/PrEd\nar+YWBj1rUTUqh9H1Lc+lthGLcdi0wb+I8IGvvK1ytoZQ6TtFpEqSDNjfV0/R9rcyMTMbkUsxK+i\nQGzyxNJyxHhDnbNZ/WrRdkMo35SS6s0e23WEPR5tqvfTMkSVrjLeTxQsKowcAnAFQGPdfS8i22e9\nVy9dXImqe6BcO7W67lmfaOPHpnsMjQO4VPahaDeotbDQr1QI/rUbUP1AFyakAQCrEJ/lOIAf3P1o\n5Y4KgXreX/2wcJ3tMDfwdaWuYkC/QBSbuiGCVY6pdY2D/TC2u4VFydZlCCP6tQAWuvtNPepL831a\navx0m7J7oKY26nTd+2r8SFiYhdRpQAkhxEz028QrhOgddY03de2XSMNaez+dBHDW3f/tYfdmLbru\n9UDCwixBA0oIIYQQQojeYWavI8ppnmJ5P4mZ0XWvBxIWZgkaUEIIIYQQQggheoGEBSGEEEIIIYQQ\nQpSGWYtUCCGEEEIIIYQQfYaEBSGEEEIIIYQQQpRGwoIQQgghhBBCCCFKI2FBCCGEEEIIIYQQpfkP\nWJxEM0W3ZYsAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f67abf97d50>" ] } ], "prompt_number": 27 }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can get a sense of the difference between the two percentages for each state by plotting them on the same axes. In the plot below, we find that most states see more arrival delays than departure delays. The disparity seems greatest for smaller, less populated states that don't have huge airports (e.g., DE, IA, RI). We can't say for sure without studying more data or perhaps correlating the disparity with the state's ranking in terms of the total number of flights it serviced. We'll leave that as an exercise for the future." ] }, { "cell_type": "code", "collapsed": false, "input": [ "pct_delay_df = pandas.DataFrame([pct_departure_delay, pct_arrival_delay], index=['PCT_DEP_DEL15', 'PCT_ARR_DEL15']).T" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 28 }, { "cell_type": "code", "collapsed": false, "input": [ "pct_delay_df.sort('PCT_ARR_DEL15', ascending=False).plot(kind='bar', title='Overlapping % delay plots for comparison')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 29, "text": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7f67a96854d0>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAABBYAAAFLCAYAAABiCg8kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xt8XGWd+PFPaEm1TUlTGiiU0O6W8qDihUUKu6yIwiI3\nwRsiVwUFVhe8gigiCosgKoqIq1WQVX4iXriICoLgBdZFF5b1tsK3FGibXmB7SUsLStqS3x9nEibT\nmcxkMklmks/79eqrmXOe53u+ZzIzyfnmeZ7T1NPTgyRJkiRJUjW2Ge0EJEmSJElS47KwIEmSJEmS\nqmZhQZIkSZIkVc3CgiRJkiRJqpqFBUmSJEmSVDULC5IkSZIkqWoWFiRJY1ZK6bmU0t+OwHH+lFI6\nYLiPM1QppcUppYMqaDcn99yN6O8JKaV/Tyn96wgcZ/+U0iMppQ0ppaOG+3j1Knf+c0Y7D0lS45s4\n2glIksaPlNI7gA8Bfws8BdwMfDQi1o9mXkMVEXsOR9yU0suB64EdgEsi4gu57dsC9wJvjojlgwjZ\nk/tXryrOL6X0HLBbRDxWxXEuAq6MiC9V0XfMiIipo52DJGlscMSCJGlEpJQ+BHyarLCwHbAfMBv4\nWe5CuZbHGiuF80uBDwIvBz6WUtoht/2DwA8GWVRoFE3D1DbfrsCfq+mYUppQ5THrxhh6f0iS6oQ/\nWCRJwy6ltB3wSeCUiLgzt3lJSumtwOPAiSmlO4BFwKyI6Mr12wu4E5gZEVtSSqcCZwMzgf8CTo+I\npbm2zwFnAh8gK5zPLcjhCOBistES64FrIuLC3L45wGPAGbk8m4DLI+Ly3P5PAnsCm4HDgUdy5/KH\n3P7FwKkR8fNc2xcDfwHeCCwF3h4R/51r+3fANbn8fkr2F/qFEfHxIk/dHODnEbEppfQIsGtK6YXA\nm4B/qOB5Pyl3zlOAzxfsawLOBd4FTAPuBv6597kvaHsKcA6wC7AKuCwivpbb9yfgIxHx49zjbYGV\nwEER8fuCOAcC/w/4MllxZCPwsYi4vkT+pwEfBqYD/5HLb2VK6Z5ck9+nlHqAU4FfAP8O7A88B/wv\n8OqI6CmI+SjZ8/qjlNJmYHugHfhqru/a3PldnWv/SbLv/V+Ao8heX98oiPlCsuf5zbnn8o/AP0XE\nX3NTLS4FdgZ+B7w7Ih7O9VsMXAWcDPwN8D3gvNx5/APZa/yYiFhXwWt0PvBFYI9crjcCH4yITbn9\nW70/8kd9pJQOBz4LdJCNJvpCXuyi34e8uO8mKxi2A9+OiDMLv5eSpLHNEQuSpJHwD8ALgJvyN0bE\n08BtZBdhK4D7yC7Oeh0PfD9XVDga+CjZxfoMsqkA3yk4ztHAPmQX9oU2AidGRCtwBPDuXMx8BwK7\nAYcA5xasR3AU2YVfG9n0hFvy/npdOHz/9bncWoFbyS4eSSk1k03/+EYuzneANxTp3+tPwOtSSruQ\nXQw/RnbxeHZEbCnRh9yxXgz8G3AC2UXt9mSFgV7vzZ3TAcBOQBfZBX8xTwJHRMR2wCnAF3JFH4Bv\nAifmtT0cWF5YVMizYy6XnYG3A19LKc0rkv9rgUuAY3L5LQFuAIiI3vUsXhYRUyPi+2QXtp1kr40d\nyKbYbPW8RsRcsmLPkRGxXe7C+4bctp2AtwCXpJRek9ftKLLXYSvZ977Q54C9gL8nu/g+B3gupbR7\nrv17c3ndRlbQ6P3DTg9ZkeggIAFHArcDH8mdwza5vvkOpPhrdDPwPrLn9u9zMd9T0Heg98c1ZIW6\n7YCXAD+Hgb8PeY4AXgm8DHhrSul1ReJLksYwCwuSpJEwA1gdEc8V2fdEbj9kF2HHQd9f1I/l+Qu5\nfwYujcxzZH8FfkVKqSMv1qURsS4ini08SET8KiL+N/f1H8kujl5d0OzCiPhLRPwJuLY3l5wHIuKm\n3AX958kKJfuVON97I+KnuQvb/0c2lYFc+wkR8aWI2BIRN5P9VbqUs8n+GvxD4P3AP5KNtlicUvph\nSumXKaW3lOj7FuBHEfEfEdENfJzsL/m9zgDOj4gVuYvrC4G3FFuwMSJui4jHc1/fQzaK5FW53d8G\njkgpteQenwRcN8A5AXw8IjblYv2E7Pvcq7cYcALZqJLf5fL/KPD3KaVdS8TsJrvwnZN7bn9dJgcA\ncq+ffwDOjYjuXEHkarJRBL3+MyJuBYiIvxb034as2PK+iFgZEc9FxG9yOR8L/Dgi7s69bj4HvJD+\no02+FBGrcoW1e4H7IuL3udfwzWQFi3xFX6MR8WBE/Ffu+EuAr7H167vk+4Ps+XtJSmm7iFgfEf+T\n217J9+HTEfFURHSSjRx5RZH4kqQxzMKCJGkkrAZmlLjLwE5kw+shG9Hw9ymlmWR/SX8uIv4jt282\n8MWUUldKqQtYk9s+Ky9WZ6kEUkr7ppR+kVL6v5TSOrIL6+0LmuX3X0r2V/Vey3q/yBUMlhXsz/dk\n3tfPAC/InfvOQOG6CJ2UWCsgIpZGxBERsTfwI7JFB88GLicb7XAU8PmUUluR7jsV5PwMzz9nkI2A\nuDnv+fwz2V+9dywMlFI6LKX0m5TSmlzbw8k9d7kL4l+TFSWmAYeSFRtK6YqIv+Q9XpLLtVj+S/Ly\nfzqX/6wibSEbxr8IuDOl9GhK6dwBcsi3M7A2F7/X0oLjLKO0GWRFpkeL7NspFwvoe910FsTOf638\npeDxX4EW+iv6Gk0p7Z5S+nFKaWVKaT3wKQZ+fRd6M9n3dXGuYNVbNKvk+/BE3tfPFMlZkjTGWViQ\nJI2E+4Bn6T/NgdxfuQ8lm99Pbn7/nWR/6T2e/lMdlpIN1W7L+zclIn6T12agOwpcD9wC7BIR08jm\n1Bf+HNy14Ov8IkDfyIhckWAXYMUAxytmJVtfGO9KZXdCuAD4WkSsIpvz/0BEPEV20Tu3SPuVBTlP\npv+F5lLg0ILnc3Lv3Pm8fpPI5ut/BtghItrIhvTnF0N6p0McQ/bX/X4xCrTlcuk1m+LP4wqy4kdv\nHlNy+RddsDIiNkbE2bmpDkcBH8wN4y9nBTA9b8QFZN+T/GLCQN+f1WQFgN1KxJ6ddw5NZN+TgRbd\nLLcgZanX6FfIikO75aZsfIytX98lzyMiHoiIN5Ctk3AL2bSf3nOYk3cOA34fJEnjk4s3SpKGXUSs\nTyldCHwppfQU2fztWWRrAHTSf+j89WRzzHcF8ue5fxX415TS7yPizymlVuCQ3Pz6SrSQ/bW8O7fQ\n3fHAHQVtzk8pnU62wOM7yIaB99o7pfRGspED7yW7mPwNg3MfsCWldGbufI4gm/P+84E65dZLeDXP\nD6F/HDgopbQBmEfeX8Xz/AD4bUppf+B+stEO+ReaXyVbS+DtEbE0pdQO/H3vkP88zbl/q8nWDTiM\nbH7/H/Pa3Ey2PsOOwGUDnUvOhSml88imhhxBNk0Dsovq3gvr7wDfSSldDzxMNs//N5FbrJPsL/tz\nydad6F2cM8hGDjwFbMn9G1BEdKaU/hO4NKV0NtlaB6eSvT7KiojnUkrfIBs5chLwf8B84L/JLs4/\nkitw3Eu2BsJfgf+sJHYJpV6jLcAG4JmU0h5kU2j+r5KAuQU330o2bWN97nXV+9yV+z4UqvZOHZKk\nBuaIBUnSiIiIz5KteP85snUCfkM2xPqg3Bz/XreS/fV3ZW4thN7+t5BdtN6QG+r9RyB/kbhif43N\n3/Ye4KJcYePjwHeLtP8V2XD6u4DPRsRdeXF+SDaSYi3ZxdybSiyg2FMkl57cOXSTLdb3TrLFEk8A\nfkw2v30gVwHvzVuM8KNkxY0/AZ+KiK0uICPiz8C/kBVqVuTyzh8K/0Wy5/rO3HNyH9kFcWHOG3LH\n+l4uxnFkz0X+sf5KNo1lDgULdBbxBNm5ryArKJ0REQvzjtl73LvJvk835tr+DfC2vDifBL6Zm8px\nDFmB5WdkF9f/CXw5In5VJpdex+VyX5HL/4KI6C32FPt+Fjqb7PV4P9k0gUuBbXLndSLwJbLpPkcA\nr4+IzQPE6in4uvDYpV6jZ5MVQ54iW1/hhiKxBjrWicDjuffW6eQKFhV8H4q91isZgSNJGkOaenoG\n/uxPKR0KXAFMAK6OiKJ/iUgp7UP2S8mxEXFjbttinv+rwaaImF+sryRJoynvVn4To8gCkymlT5AN\nMT9pGI79W+DfIuKbtY49klJKHwfmRcTJA7Q5ELguIjpKtVFx5V6jkiSNpgGnQuRuo3UVcDDZXLr7\nU0q3RsRDRdpdRnY/7nw9wIERsbZ2KUuSNOJqNrw7pXQAsJBsasEJZOslFP78bCgppelk0wdqXniR\nJEn1r9xUiPnAoohYHM/f57nwnt8AZ5HN5VxVZJ9z7SRJjWCgIXy1HN6dgN+RTQf4APCWiHhy4C71\nK6V0GtkaD7fn3cFjIA6Tr57PnSSpLg04FSJ3b+zXRcRpuccnAvtGxFl5bWaR3aP7tcA3yO6ZfVNu\n32Nk82i3AAsi4uvDdSKSJEmSJGnklbsrRCWV8SuAj0RET+42SvkjFPaPiJW5laZ/llJ6OCLuLRVo\n8+YtPRMnTqjgkJIkSZIkaYQVnZFQrrCwnLx7YOe+XlbQZm+yFboBZgCHpZQ2RcStvfexjohVKaWb\nyaZWlCwsdHU9UyadTHv7VFat2lBR2/Eeqx5zMpaxjGUsY9U2Vj3mZCxjGctYxqrfWPWYk7EaI1Z7\n+9Si28sVFh4A5uVWIl5Bdput4/IbRMTf9n6dUrqWbCrErSmlycCEiNiQUppCds/rC8tmKkmSJEmS\nGsaAizfm7rN8JnAH8GfguxHxUErpjJTSGWVizwTuTSn9Dvgt8OOIuLMWSUuSJEmSpPpQbsQCEXE7\ncHvBtgUl2p6S9/VjwCuGmqAkSZIkSapf5W43KUmSJEmSVJKFBUmSJEmSVDULC5IkSZIkqWoWFiRJ\nkiRJUtXKLt4oSZIkSdJgdHd309m5ZFB9urpaWLt2Y8n9HR2zaW5uHmpqGgYWFiRJkiRJNdXZuYQL\nPn8dLdNm1CTexnWrueiDJzF37ryaxFNtWViQJEmSJNVcy7QZtE6fOWLHO+CA+cyduxtbtmxh993n\ncc455zNp0gtYs2Y1V155OQ8//BAtLVOZPn06Z5xxJp/61CcAePLJJ5kypYWWlilMm9bGF77w5a1i\nr1y5ghNOOIY5c+bQ3d3NC184mTe96RgOO+xIAG677Uf82799kfb2Hfr6fPKTl9Dc3MwJJxzD7Nmz\n2bRpM/vtN59/+ZcP0dTUNORjTJw4gfPP/1eam5s599wP8K1vfbdfvJ///C6+8Y2vsXTpYr7+9W+R\n0h79jjN79mwAXvKSl3HZZZ8a0nNvYUGSJEmS1PAmTXoB1157PQCXXXYht9xyI8ceewLnnXcOhx/+\nei688FIAFi16hKeffrqv7SWXXMj++7+KV7/6tQPG32WXXfjGN74NwIoVy/nYx86hp6eHww9/PU1N\nTRx88Ot4//vP6ddn5coV7LLLLlx77fVs2bKFs88+k3vu+SWvfvVrhnyM9vaprFq1gZUrVxSNNXfu\nblxyyWf57GcvKXqc3vOvBRdvlCRJkiSNKa985StZtmwZDz74ANtuuy1HH/2mvn277TaPl7/8Ff3a\n9/T0DCr+zjvP4qyzPsgPfnBDX/9yMSZMmMBee+3F8uWdw3aMfLNnz2HXXWdX3H4oHLEgSZIkSRoz\nNm/ezD333MNee83nsccW9U0BqLV58xJLlizue3z33T/jD3/4HQBNTU189avX9mv/17/+lfvuu493\nvOP0mhxj220nctVVV1eV+8qVKzjllOOZMqWF0057Dwcf/Kqq4vSysCBJkiRJanjd3c9yyinHA7Df\nfvty5JFHc8stPxi24xWOHjj44EO2mgoBsHz5Mk455Xiampp43esOYd99/74mx+idCjFYM2a0c+ON\nP2G77bYj4mE++tEPsd9+tw06Tj4LC5IkSZKkmtu4bvWIxmpuntS3bkDvRfff/M1cfvnLn9csj3yP\nPBLMmfO3fY9LTVOYNWuXrfKq9TEGY9ttt2XbbbcFIKU9mDVrF5YsWcIOO+xadUwLC5IkSZKkmuro\nmM1FHzxpUH2mT29h7dqNA8YcrL333ocFC77MrbfezFFHvRF4fvHGwnUWBmPlyhV8+ctf5Jhj3lZ1\njJE8Rn5BYt26dUydOpUJEyawfPkyli3rpKOjg2efrT6+hQVJkiRJUk01Nzczd+68QfWpdmh/r2K3\ncAS45JLPceWVl/Ptb3+T5uZmdtppFu9734cq6ptv+fJlnHrqCX23gjzmmLf13Qqyqamp3/oHAB/6\n0EfZfvvtK4pdzTEmTpzA+973YWbMmMHSpUt405uO6Itz1lkfYMKEiVxxxWdZt24dH/7w+5k3L3H5\n5Vfyu9/9N9dcs4CJEyfS1LQN55xzHtttt92QnnsLC5IkSZKkhnfnnb8qun3GjBlcdNGlJfudd94n\nysbeaaedufvuX5fcf9hhR/YVAAp985s3lI1fzTHyCzG//OVvivY54IADt9p24IEHceCBB1WUU6W8\n3aQkSZIkSaqaIxYkSZIkSQIefXQRF198Qb9tU6ZMrvq2jpUeo7l5EgsWXFuiR/2zsCBJkiRJEjB3\n7m59d3DoNdS1Hyo5RqNzKoQkSZIkSaqahQVJkiRJklQ1p0JIkiRJkmqqu7ubzs4lg+rT1dXC2rUb\nS+7v6JhNc3PzUFPTMLCwIEmSJEmqqc7OJVx0/cVM3b61JvE2rFnPBcefz9y582oST7VVtrCQUjoU\nuAKYAFwdEZeVaLcPcB9wbETcOJi+kiRJkqSxZer2rUzbsW3EjnfAAfOZO3c3tmzZwu67z+Occ85n\n0qQXsGbNaq688nIefvghWlqmMn36dM4440w+9alPAPDkk08yZUoLLS1TmDatjS984cslj/G9713P\nV7/6ZX70ozuYMqUFgAcffICPfvRD7LzzLDZt2sQBB7yG009/DwC33fYj/u3fvkh7+w5s2rSJk08+\niUMOOapk/GuuWcCPf/xDpk2bxl/+8lfmzp3Laae9hzlz/gaAM888nbVr1zBp0iQmTpzAzJmz+Nd/\n/TTXXLOAyZOncNxxJ/aLd8klF3Lffb+mra2Nb33ru0WPA/DhD5/Di160VxXPembAwkJKaQJwFXAw\nsBy4P6V0a0Q8VKTdZcBPB9tXkiRJkqShmjTpBX13W7jssgu55ZYbOfbYEzjvvHM4/PDXc+GFlwKw\naNEjPP30031tL7nkQvbf/1W8+tWvLXuMn/3sDvbZZz6/+tUvOPzw1/dtf/nL/47PfOYLPPvss5x6\n6gkccMBr2GOPF9HU1MTBB7+O97//HJ56aj0nnfRW9tnnVbS1FS+4NDU1ceyxx/O2t2UFgrvv/hnv\ne98/861vfZfW1mk0NTXxiU98ipT26He3iqampqLxjjjiKN7ylmO5+OJPDHicod75otzijfOBRRGx\nOCI2ATcARxdpdxbwA2BVFX0lSZIkSaqZV77ylSxbtowHH3yAbbfdlqOPflPfvt12m8fLX/6Kfu17\nenrKxly+fBlbtmzmpJNO5a677ijaZtKkSey22+6sWLG8L25v7O22a6Wjo4Mnnlgx4HHyUznooH9i\nn3324847f5q3v3yuvV7+8r2YOnW7sscZqnJTIWYBnXmPlwH75jdIKc0iKxi8FtgH6Km0bzW6u7tZ\nuHBhv0U9XMRDkiRJkgSwefNm7rnnHvbaaz6PPbaIlPaoSdy77rqD17zmn9hzz5eybFknXV1raWub\n3q/NU0+t56GH/pe3v/2dQP+RBE88sZLOzk5mzdplUMfdffc9WLJkMZAVFS666Py+qRB77bUP73nP\ne6s6nxtv/C4//elP2GOPF/HJT34cKD7qoRLlCguV1DCuAD4SET0ppaa8bAZd/2hrm8zEiRMGbLNw\n4ULef9VH+hYB2bBmPVec+Wlmzdp9sIfr094+teq+jRCrHnMylrGMZSxj1TZWPeZkLGMZy1jGqt9Y\nw51TV1dLzeL3mj69ZcC8u7uf5bTTTgKyEQvveMcJ3HDDDbzwhc0D9nvBC7Zlu+1eOGCb9vap/OpX\nd/PlL3+Z9vapvO51h3D//f/BCSecwLRpk/njH3/Hu951IkuWLOFtb3sb++6bjYhoaZnEL35xF3/6\n0+957LHHOPfcc5k7t3RhYcqUSUyePKlfLlOmNDN5cnYOzc0TueKKL/CSl7ykbL9ezz47hYkTJ/Tb\n9653vYMPf/iDAFxxxRV8+tOf5pJLLimZVznlCgvLgY68xx1kIw/y7Q3ckFICmAEcllLaVGHffrq6\nnimb8Nq1G7daBGTt2o1VzwcZ6lySeo9VjzkZy1jGMpaxahurHnMylrGMZSxj1W+skchp7dqNbFiz\nvibHgOwPyuWu+5qbJ/H1r1/XL6/29ln8+Me3Ddjvr3/dxFNP/aVkm/b2qfzmN//D4sWLOfnktwOw\nadMmdtppZw455CjWrXuGl770FXzmM19g5coVvPe9/8yRR76ZHXecycaNz/La1/4T73//OTz88ENc\neOF5HHDAIUyePLnosZ5++lmee25Cv1wefPD3vPjFL2HVqg1s2rSFrq5ncuf2/HNfrF+vtWufZvPm\nLQX7mlm9OpsFcNBBh/Oxj51d0WuiVPGlXGHhAWBeSmkOsAI4Fjguv0FE/G3v1ymla4EfRcStKaWJ\n5fpKkiRJksaejo7ZXHD8+YPqM316S78p78ViDtbee+/DggVf5tZbb+aoo94IPL94Y+E6CwO56647\nOPXU0znxxHf0bTvmmKN54okn+rXbaaedOeaYt/Hv/34N5577sX5rLOyxx4t4zWteww9+cAMnn3xq\nRcf95S/v5oEHfst73/vBvm2DWWOhlNWrVzNjxgwA7rnnF+y+e/UzAKBMYSEiNqeUzgTuILtl5DUR\n8VBK6Yzc/gWD7TukbCVJkiRJda+5uZm5c+cNqs9QR1KUujPCJZd8jiuvvJxvf/ubNDc3s9NOs3jf\n+z5UUd9ed999J5/73JX9th1wwIHcffcdvPjFe5Lf/eij38xxx72JJ598gqampn6xTzvtNN785rfw\n1rcezwte8IKix/re967nzjtv67vd5JVXLqC1dVrf/vw1Flpatuu7PeY3v3kN3//+d/ra3XTTT/jE\nJ87jd797kKeeWs+b3nQE73znGRxxxFF85StXsmjRQqCJnXfemU9/+pIhLeZYbsQCEXE7cHvBtqIF\nhYg4pVxfSZIkSZJq7c47f1V0+4wZM7jooktL9jvvvE+U3Nfre9/74VbbzjrrA31f77XX3n1fT5o0\niZtu+gkAhx12JIcddmTfvh122KFvXzGnnno6p556esn9X/rS85fi+YWYUv0uvLD4ugkf//hF/R7P\nmDG8t5uUJEmSJEkqqeyIBUmSJEmSxoNHH13ExRdf0G/blCmTueqqq2t6nG996xv84hd39dv22tf+\nEyeddEqJHvXNwoIkSZIkScDcubtx7bXX99tWy7to9Dr55FMrXsCxETgVQpIkSZIkVc3CgiRJkiRJ\nqpqFBUmSJEmSVDULC5IkSZIkqWoWFiRJkiRJUtUsLEiSJEmSpKpZWJAkSZIkSVWzsCBJkiRJkqpm\nYUGSJEmSJFXNwoIkSZIkSaqahQVJkiRJklQ1CwuSJEmSJKlqFhYkSZIkSVLVLCxIkiRJkqSqWViQ\nJEmSJElVmzjaCYym7u5uFi5cyNq1G/u2dXTMprm5eRSzkiRJkiSpcYzrwkJn5xIuuv5ipm7fCsCG\nNeu54PjzmTt33ihnJkmSJElSYxjXhQWAqdu3Mm3HttFOQ5IkSZKkhjTuCwu14rQKSZIkSdJ4VLaw\nkFI6FLgCmABcHRGXFew/GrgIeC7375yI+Hlu32LgKWALsCki5tcy+XritApJkiRJ0ng0YGEhpTQB\nuAo4GFgO3J9SujUiHsprdldE/DDX/qXAzcBuuX09wIERsbbmmdchp1VIkiRJksabciMW5gOLImIx\nQErpBuBooK+wEBFP57VvAVYXxGgaepoaad3d3XR2Lum3rbV1z1HKRpIkSZJUr8oVFmYBnXmPlwH7\nFjZKKb0BuBTYCTgkb1cPcFdKaQuwICK+PrR0NVI6O5dwweevo2XaDAA2rlvNVRe/m7a2nUY5M0mS\nJElSPSlXWOipJEhE3ALcklJ6FXAdkHK79o+IlSmlduBnKaWHI+LeUnHa2iYzceKEAY/V1dWy1bbp\n01tob59aSaoNEavXUPoONU5XVwst02bQOn3msORkLGMZy1jGqm2seszJWMYylrGMVb+x6jEnYzVu\nrHKFheVAR97jDrJRC0VFxL0ppYkppe0jYk1ErMxtX5VSuplsakXJwkJX1zNlE86/60L+tlWrNpTt\n2yixIPumVtu3FnGKnQ9Qk5ygdudnLGMZy1jGqs+cjGUsYxnLWPUbqx5zMlZjxCpVfNimTL8HgHkp\npTkppWbgWODW/AYppbkppabc138HEBFrUkqTU0pTc9unkE2R+GPZTCVJkiRJUsMYcMRCRGxOKZ0J\n3EF2u8lrIuKhlNIZuf0LgDcDJ6eUNgEbgbflus8Ebkop9R7n2xFx5/CchiRJkiRJGg3lpkIQEbcD\ntxdsW5D39WeAzxTp9xjwihrkKEmSJEmS6lTZwoJGXnd3NwsXLuy3zkFHx2yam5tHMStJkiRJkrZm\nYaEOdXYu4aLrL2bq9q0AbFiznguOP5+5c+eNcmaSJEmSJPVnYaFOTd2+lWk7to12GpIkSZIkDcjC\nwhhWbEoFOK1CkiRJklQ7FhbGsMIpFeC0CkmSJElSbVlYGONqNaXiuS2befzxxx39IEmSJEnqx8KC\nKvL0hnV88ScLHP0gSZIkSerHwoIq5oKSkiRJkqRCFhY04lxUUpIkSZLGDgsLGnG1XFTSIoUkSZIk\njS4LCxoVtZpWYZFCkiRJkkaXhQU1PIsUkiRJkjR6LCxIeeqxSCFJkiRJ9czCgjRMalWkcPSDJEmS\npHpmYUGqc45+kCRJklTPLCxIDcDRD5IkSZLqlYUFaRxx9IMkSZKkWrOwII0ztRr9IEmSJElgYUFS\nlZxWIUmSJAksLIy67u5uOjuX9Nu2dOmSEq2l+uG0CkmSJElgYWHUdXYu4YLPX0fLtBl9257sfIRd\n9msaxawv6+QaAAAgAElEQVSkyjitYvwqVhQFaG3dcxSykSRJ0miysFAHWqbNoHX6zL7HG9atBtaN\nXkKSVEaxoujGdau56uJ309a20yhmJkmSpJFWtrCQUjoUuAKYAFwdEZcV7D8auAh4LvfvnIj4eSV9\nJQlcr6FRFRZFJUmSND4NWFhIKU0ArgIOBpYD96eUbo2Ih/Ka3RURP8y1fylwM7BbhX0lqabrNVik\nkCSV4jQuSRoe5UYszAcWRcRigJTSDcDRQF9xICKezmvfAqyutK9qq/CHpYtAqpHUar0GF5WUJJXi\nNC5JGh7lCguzgM68x8uAfQsbpZTeAFwK7AQcMpi+qp3CH5YuAqnxqlZFCkc/SNLY4zQuSaq9coWF\nnkqCRMQtwC0ppVcB16WU9qgmmba2yUycOGHANl1dLVttmz69hfb2qYM+Xj3EKtavmEpj5f+wLLUI\n5EjnVWlsYxmr3mItXLiQ91/1ka1GP1xx5qeZNWv3QcXqLVIUmjNnTtVFimo+q2oVa6DPiNHMazzH\nqsecjFVcd3c3ixcv3mp7a+ukMXOO9RrLzy5jGav2cYxlLChfWFgOdOQ97iAbeVBURNybUpoITM+1\nq7gvQFfXM2XSYau/HPZuW7VqQ9m+9RirWL9S7Ro1VqWxjWWseoxVbPRDNbEeffSRmq4j8fTTa2o2\nkqK9fWrNnmegqs/QYqrJa7zGqsecjFXao48+MuzD8Uf7HOs1lp9dxjJWbeMYa/zFKlV8KFdYeACY\nl1KaA6wAjgWOy2+QUpoLPBYRPSmlvwOIiDUppfXl+krSeOI6EpJ6ORxfkjSWDFhYiIjNKaUzgTvI\nbhl5TUQ8lFI6I7d/AfBm4OSU0iZgI/C2gfoO36lIagTFVuR2odHBcx0JSZIk1YtyIxaIiNuB2wu2\nLcj7+jPAZyrtK2l8K7YitwuNjh5HP0iSJGmoyhYWJKnWCocAl1poVCOjVqMfJEmSND5ZWJAk1cRz\nWzbz+OOP95tWUe2UimJTNJyeIUmSVJ8sLEiSauLpDev44k8W9E2rGMqUisIpGkOJZZFCkiRpeFlY\nkCTVTC2nVQzXXTRcQ0KSJKm2LCxIQ+RdDqT6N5x30XD0gyRJGu8sLEhD5F0OpPHD0Q+SJElbs7Ag\n1YB3OZDGD0c/SJIk9WdhQZKkUVCr0Q/FChRgkUJjR7EphwCtrXuOQjaSpGIsLEiSRtV4XqekFqMf\nCgsUYJFCY0uxKYcb163mqovfTVvbTqOYmSSpl4UFSdKocp2SoRuuO2hAfRQpLHiocMqhJKm+WFiQ\nJI061ympH/VYpKjXgockScpYWJAkScOiVkWKWsaqZZFCkiRlLCxIkqRxpZYFD0mSBNuMdgKSJEmS\nJKlxOWJBkiSpCq7XIElSxsKCJElSFWq5XsNzWzbz+OOPexcNSVJDsrAgSRozuru76exc0m/b0qVL\nSrSWhq5W6zU8vWEdX/zJgrq7i4YkSZWwsCBJGjM6O5dwweevo2XajL5tT3Y+wi77NY1iVlJl6vEu\nGpIkVcLCgiRpTGmZNoPW6TP7Hm9YtxpYN3oJSZIkjXEWFiRJklSU6zVIkiphYUGSJElFuV6DJKkS\nFhYkSZJUkus1SJLKKVtYSCkdClwBTACujojLCvafAHwYaAI2AO+OiD/k9i0GngK2AJsiYn4tk9f4\nU7ji+1hb7d0V7SVJY5XTKiRp7BqwsJBSmgBcBRwMLAfuTyndGhEP5TV7DDggItbnihBfA/bL7esB\nDoyItbVPfXC8YBsbCld8H2urvbuivSRprHJaxcgo9jsvQGvrnqOQjaTxotyIhfnAoohYDJBSugE4\nGugrLETEfXntfwvsUhCjLq6IvGAbO/JXfB+Lq727or0kaaxyWsXwK/Y778Z1q7nq4nfT1rbTKGYm\naSwrV1iYBXTmPV4G7DtA+3cCt+U97gHuSiltARZExNcHk1ytRxl4wSZJkqSxrvB3XkkabuUKCz2V\nBkopvQY4Fdg/b/P+EbEypdQO/Cyl9HBE3FsqRlvbZCZOnND3eOHChRWNMpg+vYX29qkD5tfV1VLR\neVQSq9L4I51XvcaqNHaj5lVpTiMdazDxG/X5qmVexhpcrHr9vKnXz/rhjFUPr4dax+ru7mbx4sV9\nj9evX1UXedUqlp+Dg4tVrN9zWzbz+OOPb7V9zpw5A67XMNBzX837uB5jjYdzNFZtYtVjTsZq3Fjl\nCgvLgY68xx1koxb6SSm9DPg6cGhEdPVuj4iVuf9XpZRuJptaUbKw0NX1TL/Ha9durGiUwdq1G1m1\nasOAJ1K4UNBA7crFqnQkxUjnVa+xKo3dqHlVmtNIxxpM/EZ9vmqZl7EGF6teP2/q9bO+VA61iFUP\nr4dax3r00UcqWk+nUc/Rz8HBxSrW7+kN6/jiTxYMer2GgZ77at7HxbS3Tx3VWOPhHI019Fj1mJOx\nGiNWqeJDucLCA8C8lNIcYAVwLHBcfoOU0q7ATcCJEbEob/tkYEJEbEgpTQEOAS4sm2kDcL0GSRr7\n/KwfXWN9PZ1aGc+LU7tegyTVjwELCxGxOaV0JnAH2e0mr4mIh1JKZ+T2LwAuANqAr6SU4PnbSs4E\nbsptmwh8OyLuHLYzGWGu1yCplPH8i/5Y42e96p0FMElSPSg3YoGIuB24vWDbgryv3wW8q0i/x4BX\n1CBHSWoo/qIvaSRZAJMkjbayhQVJ0uD5i74kNYbehSAL1ybo6Jg94EKQUqMoNpKytXXPUcpGY5WF\nBUnC6QuSNF5VuxCk1CgKR1JuXLeaqy5+N21tO41yZhpLLCxIEk5fkKTxrFYLQXZ3d7Nw4UJHP6ju\nFI6klGrNwoIk5Th9QZI0FJ2dS7jo+osd/SBp3LGwIEmSJNWIox8kjUcWFiRJkqQ64+gHSY3EwoIk\nSZJcxLYO1Wr0gyQNNwsLkjROeNEgaSAuYjt21fKWmk7RkFSMhQUNu8KLmXq5kKnXvFQ5L5QHx4sG\nSeW4iO3YVMtbatbDFI1iP/8BWlv3HJHjS9qahQUNu8KLmXq5kKnXvFQ5L5QHz4sG5bPAKo0ftZxW\nMdpTNIr9/N+4bjVXXfxu2tp2GlQsixRSbVhY0IjIv5ippwuZes1LlfNCWaqeBVZJjarw53+1almk\nkMYzCwuSJI1jFlgllTLcUw6LrdcwGms11KpIIY1nFhYkSdKQOa1CGnuGe8ph4XoN3k5TalwWFqQx\nyoUNJY0kp1VIY9NwTzkc7fUaJNWGhQVpjHJhQ0kjzWkVkkZLsVtqegtMaeRYWJDGMBc2lCRJ40Hh\nLTWdViGNLAsLkiRJkhqe0yqk0WNhQZIkSZJyajmtol7ufCENNwsLkiRJqikXEFYjq+W0Cu98ofHC\nwoIkSQ3E2zoOjs/X6HABYTW6Wk6rcIqGxgMLC5IkNRBv6zg4Pl+jxwWEJWn8sLAgSVKD8baOg+Pz\nJWkscL0G1bOyhYWU0qHAFcAE4OqIuKxg/wnAh4EmYAPw7oj4QyV9JUmSJEnluV6D6tk2A+1MKU0A\nrgIOBV4MHJdSelFBs8eAAyLiZcC/Al8bRF9JkiRJUgV612uYtmNbX4FBqgflRizMBxZFxGKAlNIN\nwNHAQ70NIuK+vPa/BXaptK8kSZIkaeQUu50mOK1CQ1OusDAL6Mx7vAzYd4D27wRuq7KvJEmSJGkY\nFd5OE5xWoaErV1joqTRQSuk1wKnA/oPt26utbTITJ07oe9zV1VJRv+nTW2hvnzpgG2MZa7hiVRqn\nkWMNJn6jnmO9xhpM/Ho8x0Z9X9c6VqXxG/kcx0OsSmPX43vRWLWPNZj4vr4qjz+WPiNKxa+HnxvF\nboFZSazu7m4WL17c7/GTT7LVSIc5c+ZUPfqhmufGWKMfq1xhYTnQkfe4g2zkQT8ppZcBXwcOjYiu\nwfTN19X1TL/HhcNzSlm7diOrVm0o28ZYxhqOWJXGaeRYg4nfqOdYr7EGE78ez7FR39e1jlVp/EY+\nx/EQq9LY9fheNFbtYw0mvq+vyuOPpc+IUvEb+efGo48+stUtfFvnPVWz0Q/t7VOrem6MNXKxShUf\nyhUWHgDmpZTmACuAY4Hj8huklHYFbgJOjIhFg+krSZIkSWochbfwnbp901ajH6pR7Haa4NoPjWLA\nwkJEbE4pnQncQXbLyGsi4qGU0hm5/QuAC4A24CspJYBNETG/VN9hPBdJkiRJUgMqvJ0mVD/6wSLF\nyCs3YoGIuB24vWDbgryv3wW8q9K+kiRJkiQVKrb2QzVqWaRQZcoWFiRJkiRJaiS1KlKoMtuMdgKS\nJEmSJKlxWViQJEmSJElVs7AgSZIkSZKqZmFBkiRJkiRVzcUbJUmSpFHU3d1NZ+eSftuWLl1SorUk\n1R8LC5IkSdIo6uxcwgWfv46WaTP6tj3Z+Qi77Nc0illJUuUsLEiSJEmjrGXaDFqnz+x7vGHdamDd\n6CUkSYNgYUGSJEkaJKcvqJCvCY1nFhYkSZKkQXL6ggr5mtB4ZmFBkiRJqoLTF1TI14TGK283KUmS\nJEmSqmZhQZIkSZIkVc2pEJIkSZKGlQsbqlF1d3ezcOFC1q7d2G97R8dsmpubRymr+mNhQZIkqQKF\nF0ZeFEmVc2FDNarOziVcdP3FTN2+tW/bhjXrueD485k7d94oZlZfLCxIkiRVoPDCyIsiaXBc2FCN\naur2rUzbsW2006hrFhYkleXwRUnK5F8YeVEkSVLGwoKkshy+KEmSJKkUCwuSKuLwRUmSJEnFeLtJ\nSZIkSZJUNQsLkiRJkiSpak6FkCRpmLkAqiRJ6u7uZuHChaxdu7Hf9o6O2TQ3N49SVrVRtrCQUjoU\nuAKYAFwdEZcV7N8DuBbYC/hYRFyet28x8BSwBdgUEfNrlrkkSQ3CBVAlSVJn5xIuuv5ipm7f2rdt\nw5r1XHD8+cydO28UMxu6AQsLKaUJwFXAwcBy4P6U0q0R8VBeszXAWcAbioToAQ6MiLU1yleSpIbk\nAqiSJGnq9q1M27FttNOouXJrLMwHFkXE4ojYBNwAHJ3fICJWRcQDwKYSMfxzjCRJkiRJY1S5wsIs\noDPv8bLctkr1AHellB5IKZ022OQkSZIkSVJ9K7fGQs8Q4+8fEStTSu3Az1JKD0fEvaUat7VNZuLE\nCX2Pu7paKjrI9OkttLdPHbCNsYw1XLEqjWMsY1UTazDx6/EcG/V9bSxjDWesev28MZax6iFWo76v\nax2r0vhj6Ryr/f1mvMbqVW2/WscqV1hYDnTkPe4gG7VQkYhYmft/VUrpZrKpFSULC11dz/R7XLha\nZilr125k1aoNZdsYy1jDEavSOMYyVjWxBhO/Hs+xUd/XxjLWcMaq188bYxmrHmI16vu61rEqjT+W\nzrHa32/GayzICgHV9BtKrFLFh3KFhQeAeSmlOcAK4FjguBJt+62lkFKaDEyIiA0ppSnAIcCFZTOV\nJEmSJEkNY8DCQkRsTimdCdxBdrvJayLioZTSGbn9C1JKM4H7ge2A51JK7wNeDOwA3JRS6j3OtyPi\nzuE7FUmSJElSI+ju7qazc0nf46VLlwzQWoW6u7tZuHDhVqMgOjpm09zcPOL5lBuxQETcDtxesG1B\n3tdP0H+6RK+NwCuGmqAkjWeFP3TBH7ySJKnxdXYu4YLPX0fLtBkAPNn5CLvs5w0FK9XZuYSLrr+Y\nqdu39m3bsGY9Fxx/PnPnzhvxfMoWFiRJo6fwhy74g1eSJI0NLdNm0Dp9JgAb1q0G1o1uQg1m6vat\nTNuxbbTTACwsSFLdy/+hC/7glSRJUn2xsCBJkiRJdcSpkGo0FhYkSZIkqY44FVKNxsKCJEmSJNUZ\np0KqkVhYkCRJkiSpTjXC1BgLC5IkSZIk1alGmBpjYUGSJEmSpDpW71NjLCxIkiRJkhpW4VSBepsm\nMB5YWJAkSZIkNazCqQL1Nk1gPLCwIEmSJElqaPlTBeptmsB4sM1oJyBJkiRJkhqXhQVJkiRJklQ1\nCwuSJEmSJKlqFhYkSZIkSVLVLCxIkiRJkqSqWViQJEmSJElVs7AgSZIkSZKqZmFBkiRJkiRVzcKC\nJEmSJEmqmoUFSZIkSZJUtYmjnYAkSZIkSfWgu7ubzs4lfY+XLl0yQGv1KltYSCkdClwBTACujojL\nCvbvAVwL7AV8LCIur7SvJEmSJEn1orNzCRd8/jpaps0A4MnOR9hlv6ZRzqr+DTgVIqU0AbgKOBR4\nMXBcSulFBc3WAGcBn6uiryRJkiRJdaNl2gxap8+kdfpMJk9tG+10GkK5NRbmA4siYnFEbAJuAI7O\nbxARqyLiAWDTYPtKkiRJkqTGVq6wMAvozHu8LLetEkPpK0mSJEmSGkC5NRZ6hhB70H3b2iYzceKE\nvsddXS0V9Zs+vYX29qkDtjGWsYYrVqVxjGWs8RirUd/XxjLWcMZq9Pe1sYw1nLEa9X1tLGNVolTs\nkXwvDqTaflC+sLAc6Mh73EE28qASg+7b1fVMv8dr126s6EBr125k1aoNZdsYy1jDEavSOMYy1niM\n1ajva2MZazhjNfr72ljGGs5Yjfq+NpaxKu1TTaxavhdLaW+fWlG/UsWHcoWFB4B5KaU5wArgWOC4\nEm0Ll8ocTF9JkiRJksaEwttWwti+deWAhYWI2JxSOhO4g+yWkddExEMppTNy+xeklGYC9wPbAc+l\nlN4HvDgiNhbrO5wnI0mSJEnSaCu8bSWM7VtXlhuxQETcDtxesG1B3tdP0H/Kw4B9JUmSJEka63pv\nW9lrw7rVwLrRS2gYlbsrhCRJkiRJUkkWFiRJkiRJUtXKToWQJEmSJEljU3d3NwsXLtzq7hMdHbNp\nbm6uKIaFBUmSJEmSxqnOziVcdP3FTN2+tW/bhjXrueD485k7d15FMSwsSJIkSZI0jk3dvpVpO7ZV\n3d81FiRJkiRJUtUsLEiSJEmSpKpZWJAkSZIkSVWzsCBJkiRJkqpmYUGSJEmSJFXNwoIkSZIkSaqa\nhQVJkiRJklQ1CwuSJEmSJKlqFhYkSZIkSVLVLCxIkiRJkqSqWViQJEmSJElVs7AgSZIkSZKqZmFB\nkiRJkiRVzcKCJEmSJEmqmoUFSZIkSZJUtYmjnYAkSZIkSRp+3d3ddHYu6bdt6dIlJVpXzsKCJEmS\nJEnjQGfnEi74/HW0TJvRt+3JzkfYZb+mIcUtW1hIKR0KXAFMAK6OiMuKtLkSOAx4BnhHRPxPbvti\n4ClgC7ApIuYPKVtJkiRJklS1lmkzaJ0+s+/xhnWrgXVDijngGgsppQnAVcChwIuB41JKLypocziw\nW0TMA04HvpK3uwc4MCL2sqggSZIkSdLYU27xxvnAoohYHBGbgBuAowvaHAV8EyAifgtMSyntmLd/\naGMqJEmSJElS3SpXWJgFdOY9XpbbVmmbHuCulNIDKaXThpKoJEmSJEmqP+XWWOipME6pUQn/GBEr\nUkrtwM9SSg9HxL2lgrS1TWbixAl9j7u6Wio6+PTpLbS3Tx2wjbGMNVyxKo1jLGONx1iN+r42lrGG\nM1ajv6+NZazhjNWo72tjGavaOI0cK1+5wsJyoCPvcQfZiISB2uyS20ZErMj9vyqldDPZ1IqShYWu\nrmf6PV67dmOZ9J5vt2rVhrJtjGWs4YhVaRxjGWs8xmrU97WxjDWcsRr9fW0sYw1nrEZ9XxvLWNXG\nabRYpQoN5aZCPADMSynNSSk1A8cCtxa0uRU4GSCltB+wLiKeTClNTilNzW2fAhwC/LHis5AkSZIk\nSXVvwMJCRGwGzgTuAP4MfDciHkopnZFSOiPX5jbgsZTSImAB8J5c95nAvSml3wG/BX4cEXcO03lI\nkiRJkqRRUG4qBBFxO3B7wbYFBY/PLNLvMeAVQ01QkiRJkiTVr3JTISRJkiRJkkqysCBJkiRJkqpm\nYUGSJEmSJFXNwoIkSZIkSaqahQVJkiRJklQ1CwuSJEmSJKlqFhYkSZIkSVLVLCxIkiRJkqSqWViQ\nJEmSJElVs7AgSZIkSZKqZmFBkiRJkiRVzcKCJEmSJEmqmoUFSZIkSZJUNQsLkiRJkiSpahYWJEmS\nJElS1SwsSJIkSZKkqllYkCRJkiRJVbOwIEmSJEmSqmZhQZIkSZIkVc3CgiRJkiRJqpqFBUmSJEmS\nVDULC5IkSZIkqWoTyzVIKR0KXAFMAK6OiMuKtLkSOAx4BnhHRPxPpX0lSZIkSVLjGnDEQkppAnAV\ncCjwYuC4lNKLCtocDuwWEfOA04GvVNpXkiRJkiQ1tnJTIeYDiyJicURsAm4Aji5ocxTwTYCI+C0w\nLaU0s8K+kiRJkiSpgZWbCjEL6Mx7vAzYt4I2s4CdK+jbz95779nv8aZNm1j31EYOO+Hcvm3PbOhi\n2zVPAfDjL3yfnud6uOerd7Dtttv2tfnv//5T0fi3f/syttlmQt/jLZs3sc1Pe3j9h94KwIY16wfM\np9f3vnczG9et7rftmQ1d/Pry79O0TRNAv7xK5bP33nv2nWN+Xq/4x6P7zjE/r1L55MfPz+veH32d\nbX7a05dTb14feN1ZJfPplZ/X6447u9/z3utHl39vq+e+MJ/8vO74zueA55/33ryO/MAxWz33pc53\n06ZNvPRVx/Y9Lnw99J5jfl6lnv83vvHIfs994esB+r8mhvJ6yM/rD3+IonEqfT305vXGNx651XNf\neL75ed3xnc9t9dwDvPrkQ0rm06vw9dB7jvl5Deb9mP96gP6viSM/cEzfOZbKJz+v/NdDfl69rweo\n7P1Y+Hrozeu1M/s/P5W+HwtfE9W+HwtfE0N9P/bmNdT3o5/P9MtrsJ/Pxd6Pfj4/r1afz8Xej9V+\nPveeY35efj5vnU9+Xn4+Z+rx87n3HCt5P5b7fIba/b401j6fe88xP69qP59h6/ejn8/D8/mcn5ef\nzwO/H/M19fT0lNyZUnozcGhEnJZ7fCKwb0ScldfmR8CnI+LXucd3AecCc8r1lSRJkiRJja3ciIXl\nQEfe4w6ykQcDtdkl12bbCvpKkiRJkqQGVm6NhQeAeSmlOSmlZuBY4NaCNrcCJwOklPYD1kXEkxX2\nlSRJkiRJDWzAwkJEbAbOBO4A/gx8NyIeSimdkVI6I9fmNuCxlNIiYAHwnoH6DtuZSJIkSZKkETfg\nGguSJEmSJEkDKTcVQpIkSZIkqSQLC5IkSZIkqWoWFiRJkiRJUtXK3W5SFcjd9eIlwPKI+L/Rzmes\nSim1RsT6Evt2jYilI51T7th/l/uyCdhq0ZKIeHBkM6q9lNL0gfZHxNqRyqURpJQmRMSW0c5DGu9S\nSntExMO5r18QEX/N27dfRPxmlPKaGRFPjMax60FKaduI2DTaeai8lNKuA+0frd+9BpJS2jcifjva\neUjjTV0XFlJKr42In+e+/puIeDxv35si4qYaHGNX4NiI+Owg+iwAvhQRf0optQK/ATYD26eUzo6I\n64eaV71KKb05Im6sot/LgD3ILrwfiog/VXH4XwJ75eLdHREH5e37Ye++UfAA8CdgTYn9r6k0UEqp\nOSK6S+zr9x6oINadEXFIpe3LeJDniyY7Ayvy9vUAfzuIvD40wO5ngUXAnRHx3GCTHC5VvO4fTCm9\nOyL+swbH/uMAu3si4mWDiPVmsu9XU97/+bEq/kwdqJiXUnpVRNxbaaxcn5cC55AVaSF7T10eEX8Y\nZJxPlNjVAxARFw0i1qHA1Ij4fsH2twDrI+Jng8mtFmp5MZxSenuJXb3P1beGEHsGcACwJCL+u9o4\nBTEH/fMa+A7P/2z4T+Dv8vZ9hUH+3Mid1/FkP88gu+vVdyKi1Od/Kb/Pvbe/A9wYEesG2b+slNIL\ngSMLX7+jJaXUBBwEHAccCexYZZwWgIjYOIRc9gBOp//38esREdXGLHKMXSJiWY1i7RMR9w+ifSp1\nLiml/SPi14M4/G0U+aMJ0J77N2EQsYrKvTbeGhHfHWqsnB8AHYM4/ofIPtOvLtj+TrKfAVfUIqlq\nCmoppXcA76X/a/VLEfHNGuQz6M+IlNKXBtjdExHvHWpeY0lK6ZKIOK9GsWpy7ZuLNdDv4j0R8flq\n4tZ1YQG4nOd/6N9E/18APp7bNmgppR2AY8h+uO0M3DzIEK+KiDNyX58CRES8IaU0E/gpUJPCQkpp\nfkT8V4VtP0z2y01nLY49gCuAii+wcoWXHwK7Ar8nu5B5aUppKXB0RDxVZR4D/gW9grxqedH9QbLX\n0zPAd4GbI2JDlbF+mFJ6Q0Q8m78xpfRy4FZg9iBitVeZw1YiYk5eLv8TEUMp4kyl+C8pANOA1wLv\nJHtOB1TLi+4yBvW6J/uF9Usppd8DH46IriEc+/UD7BvsbX1en9fnKLLXVL7BfKb+Mldk/Vzv6Izc\nZ+DngBcBe1caKKV0dK7fpWSf++T635hSOicibhlEXk+z9fMyhew1NQOouLAAXAC8ocj2XwE/+v/t\nnXm0XFWVxn8BJBAZZQEiAQNBPhCwZRABURnCpCCjkoAigwyN0IG0LVMEBKJ0EyXQyCiITGlRMIKM\nmjCFICDNDG5pSGQQaMSF2MyQ9B/7VHJfpd57dW7t56tFzrdWVupVvdpv16179tn728MB2iYWAm3O\nOZLuAY4KCEY/xfzXagh+nwwH2iYWJF2XdHpE0krA/cC9wEhJF5jZ6XUUDNivqxjS/6/0qcvawDTg\nZpxsXQjYGDg2JUL+kCFuZWAUMBr4nqTf4STDr8zsjQ50XBjYHr9e2wDTgY6IBUlrJHmjzWyd/n6/\nxfs3Te/fBd+7D8NJxFw5hwJHA0ukn/8P+Hcz+1ENfa4GzsePSV8I9y9vTY77XZnyNsTJ9cfM7FFJ\nq+A+6va471MLktYhXXfgb2TYVOBxSZcBh7YgYM4ig1Azs3Wb9BqBfw+jgAkZOjVIoYOBkTh5fC6w\nc5LzP7gPNRjYG9ikxfOXAvfhPkAtdEKoJfJ3LO5n3o/bsPWB0yTNqUP+BtiI+5g/MdFAlk/STyXy\nRmb2+wxZ5+J7UEt5mXpF+pY7ACHEAh3Evi3Qmy/esvq6XXQ7sRAGSUsBu+ELaQ1gCrCama1cQ1w1\n6BMkTDQAABONSURBVNuWtCDN7AVJuXotBOxKMrJmdr2kjYDvASsAn2xT1EeAGZL+hBMbPzezl7KU\nGRicgmf0t2pkoJNR+z6+kRw+SHpFBt2TgEmSRgJ7AlPT9zDBzB7IFHcfcL2knczsdQBJWwCX4SRW\nDpaWtBu9GP8o1jMXZnZif78jqd0s9UV4FvKvQKPSo6PgIQJmdrekTYBDgPskVTM+WYy+mc1q9Xwj\nwwP8KUPWvpX3329mufdUFRsCpwIPSDoCWA84EjgN2CdT1snANk2f9UFJ03Dyo21iwcwmNh4nu/8v\n+Nr5L+aRFu1iaKv2NjN7SdIHM2VF2ZyNcLt5r6STO6kqMLPDGo/TXrQXcBRehZcVMAAjKpVo++FV\nR/tIWhJfo20TC8H7dSROAcaa2ZXVJ1Ml0ARg93YFmdm7eCLiRklDcedzT3wvmWZme7UrK9mCz+PX\n6wvA3cBn8Wv2ertymmSunPQZg6/tU/EAN0fG9/Fr8hRwJXAicJ+ZXVxDn/HAZsAWZvZUem514ExJ\nHzKzkzPEnQCMMbNbK8/9UtJUnEzcIUOvU/DP+ABwqqQp+L17Bm57siBpNfw6j8H3tBHARr3tA33g\nUeBZ4H5J++SSJb3otiYeIG2C29LDa7SzXAK8CtyF+8/7Am8Ce9XwlyKxSKtqUTN7O62vbAQRaocC\nuzVVq05LNudntEn+RtqIOuu3D0yVtK01tdNK2hb374ZnyHoS97dOMLPLO9TrGTxOeYbeSZR2sbD6\naCdu/uz/KLTji9fBAkMsAC/i2aUTGmWkKeiqg79J2gl4Dt/oDkjyPgAslinrfGA14B5gfCq7Wgs4\nLidLZ2ZHSBqHl56OBr6TgrMrgKs7yKB3ilHAJ6pl7Wb2nqTjgL4YwVZYPn3GIU2PId9pDw+6zexJ\nSb8ChgFfBYQ7GzkyxicH6iZJO+Ab7yRglxzmNmFp+s52DwqxoDZK1TPY4OF4wLI2fj9Nx4OYGYNl\nrCv4EB4E/i9OGM2mBhPcrRmeVIVxcCIVfoO3x2xas2pqkVaOs5nNSnY1C5KWw0mOvXHHa4OaVSNL\ntipdrWnrQ2xOqg6ZJOk3OJl8Nj1Jq6VylEqf5evAt3Bnc4+a5eDVazQKuCDp+3dJuW1Nkfv1cEln\n4td95cpj8KqBHKxnZvORB2Z2VQqia8HM3pL0GPA4bjPWzhTxDF4efREwzsxekzSzDqkg6WA8+FgB\nLyffH7imphP6Ddz2nQPckIK0GmIAJyv/qVrNYWZPSfoy8BBOTraL1ZtIhYa82ySdn6nXbsD6ZvZm\nCh6eAdapQQQg6S5gUTxZtUv6fDPryALeNbNjJd0IXCbpEuBkq9FiKG9TOw5vU/sP4ACrP0Nojcb+\nLunHwPPAR+tU6Ui6to+Xl8sUN0Qt5p5IWpH8PTuMUMPbMOZrgU1745IZciJtxLX0UbFgZl/KEHce\ncIukbRokvqS98OTqF3L0MrPTJF0BnC5pf9zuVPfGHJ/3Zvxe/wjuY002s/tz9KlgLdwOtkJWKzHe\n5dRb7JTbGlttaWnVGlurpaXbiYXVJV2Df9jVmozIapmyjsE3y7MlXUlnpYEHA2cCHwaOMLPn0/Nb\nA9dlytqEFHhLWgx4ARhp+f2apA3jVryc75u4c3cqvriGtSunnxKg3J7It1sx2mb2jqS3Wr2hD/wY\nL91pfjyE5MRmICzoTpUKo/Fg72ncCE2oW85qZqdIegMvtQXY2syeqCHqhQ4z0nMh78VqGJ5mUie3\nFyusVN3M/jXpNxR3yDfFHeELJL1iZm076JH3vaRD8MzERNwJq11WRpdmeCQti9uXTfAM3w7ADZLG\nmtnUTHHvSPqomfWovpD0UXoGrO3oNRGvAjsft62dkKpXA+dLOtxSOXFy5s4gn5iLtDkH4HvaccDZ\ndYKFJOcwPKs6FdihlQObgWclHY4T7uvj2XgkDSPf14jcr/+Nebar2bnLJWtfq/laS8hnRoxO/5bA\nWyF2sryWCnAC4Et4hUF/AVd/OAv/7saa2YNJXl1ZK+Gl1mOAsyTdCizeiqxrA7Nb7alm9oak3CC3\nr9kMuYHWW5YGgprZXyU9UZMIACfU1sX3mxXwwLQjmNnt8laNc4E7JH21hpgH8OqHX+OtPxtX7onc\nAGTud5WSTM/V9ZXouwJtYh+vtcJpwHXJ12nYiY3S87mVbpGE2ps1X2tGpI3YBL8fJuNkNFT8wRxB\nZnaBpDfxKoxtkn6H4JVJs3IVM7Pn5G15E/D9tro3tr3H2rxK5BG4fb4o7WVX4CTDHzPUetQ6ax+u\nYibeThNRmVttafkuXq1V63usotuJhZ0rj5sXdpbRsJ7l6qPx0sqVJB2F98Tn3CSvm9l2Lf7GjTWy\na+80nMLEeM+sQypUIR+UOBovk/4L7qTloC/nNxdD5acmVIfFNf4fmiMouGzn6aigG3gCz5ZPwQPA\nVYF/TqVnWUF3k7FfPsn+YdqUcpnglkMga6Lai9VM6uRuJJGl6g0sDiyFB29L49nzrKF/zH/fN+7T\nVfF+0hx8Bc/ez1dGL2lHM/t1hqyByvA0k7W591fDcfqmeVn3TZI+ic8A+IaZjcmQdQLwW0kT6OnU\nHYOX5udgHH7vj8erwKqv5Wb0x+Pl77Pkc2HAB4JdlF7LQYjNkTQDb3/ZvDm7VgNn4hU1mwObt7hW\nOX2kB+Ck4Ch8wGKjQuTTwE9ylIrcr2tmCXtDM6na47UcQel7HI5nNA+0DgZcVioWt8CD+InAMpL2\nBK6zvCGHK+EzLc6Uz7f4BZBdNZT0ehe4ASccF8Md4mE4CTXVMto9gD9LGmVmv60+KWlr3CbmYJWm\nypUqcqtYVm+yoyMqP2fZVPNZXcvgVRAnyWdbLKsOTzgwn8UyWt6vfwe+X+bggPR/Y6/vkdnMlPUJ\nSVWyd/HKz7n2eWYzGV0XZnaJpJdwG9aYI/Io8B0zuyFTXCShtnYfSY+R7QoZABvR+Hxj8ITqZDN7\nNENGVbdLU6LxAXxv+6zVaOWWtC5wNm4PPlVJ+tZGIjdOxduc1sf3suMJGFhaE28H3vMXNx6nhFDH\nw0Chy4mFaqmapOXTcx3NDTCzJ3Ema0Iq7xqDb3xtL1DcAd6+ObuTSm/G40O92sVaTUZjZOXnth07\nee/baJztm40zidta6kXMQQdseyu8QO/BYtaiV+C0d5zw2NzMpufo0Asaf3cOaahUQp0BKD9I7xmG\nl2KBl7vX6ZNdr8Z7WiKY1AkrVZd0AfBx4O94O9EM4Id1ZFXv+0SGjcEd7FnkDW4Ed07n68Gv2Igc\nYiE6wxN1f822pun8ZvaApM2AA3MEmdkUSTPxcvzG3JXHgC83sqYZeDAwO7ABXp1wEt7r/3k867M4\nTq7ltNusqRbT2CVtDjyf9qZ2cHxzcNUBckow+4SZvYhX8zU/fwtwS44sSR8DVkz2ubpfn4mXyLbt\n1AWX7VZJ1SrqVM0dDdzRYTXTXKQExTQ887cosB1uw36EV4K1i5OAK8zsHPkQwj2BFyX9AW+rbHsI\nmXzi/CH42nkIuMjMfpEI5VZDUfvC4fhw4+k4+TgEn/OyOT2TUO2gWsXSjNwqlp2ZZ1PXwO1qXZva\nIAEuwjOkK+Ik9emSVjGztk85wO/VZtk/TXZ230ydLs75/X5kRQZkU5h3UthV1qJNKQeJQMglEVrh\ncOBOnJBZCE9a1CXUctuiekWTjfgANW1EE2E4NMm4TdKJZnZWjk5N8c8wvIVlWiWZlkNu34cPNzy9\nBoHTm36L4C0Zo/Gq9FvwREgOzojQJeFjzRXDwEvA9A4rDsPQ1cRCyviegA88WTg99x5+zMp3O5Vv\nZg/jmebcaZ1HAjdL+mIjcyLpGDxI+lymrGajUTdL+jh+w4+xzOPZmiGftNybs5PLKH8beKbBHCbG\nfHeclTwxU7XIae+T8am6HfdPBQfdd+KO9P54WwX4vfAT8u/TF/rIruVWUkQe4RdZqr4qXvnyBF6C\n/RxQa1K+fCcbgzvSL+Hl1wuZ2RY1xEXaiMgMT+T91fJ7S4FSbp8yiUD4Wu77Bhjn4a1Ir6dM4rH4\nfrQ+/hn3yJB1N62v2av4HJV2K8U+k8ib5nWdvRYjSeTgAH4STZV2ZvawpLE4sZCDyLLdEzP/dl/Y\nEthC8w+Gq0OU94D5ELprgWuT3cnBH5l/b5xYSV7k4Kd49dB03Dn/ON5i8SoZJ44kvI1Xtq2Z5ADc\njhM6WURrcBVLpE3tgUTW/Sd+wlDOiVBY5aSMClH+FbyUOosoj1zbFbJpJO5/X5gC1U7REUna5ONU\nP2ud9Tgct2Fr44TaDOBi4Agyjh9Pf3dWzu/3Bkm7AMMrgf+dzKuyGldD3mLAF3GbMAIPnuuc2BNZ\nKXoWTlgekwiLO9O/7Jlb8uGRo/HPeA++fxyUWdnRwO7qe75Szt44kfnJ7RF4deaJZja5hn6h6Gpi\nAXfOP4OXtMyEuVOAz5U0LjMwCguWzU9ueAtn63bG+6k2xst3sjKlgVnSSfggydvkQxvvpOYQOzNb\nov/fahvn4Swfkj6HlxQ1HPPzyHDMLbCE3nyC9MkK6J8KrqQ4Da96WK0RcKfP+gPcoIzNkLUwrbNr\ndRBJ6oSVqpvZdvJp9uvg8xXG4ceZvgz8zsyOz9DrcbySYDszexogETPZCLYRkRmeyPurr7LwOi1A\nUUFpmF44sdSwn3sC55nZVfgxmLmVFEu1In3N7CH5JPh2EbYWg0nksAAer1bo7VqNyJQVVrYbbOsj\nbWpfOBSfbt4WrJ/e4sy/vbaZrQdz27juzXx/FZOAo83swuqT8tbPHGIu2t6E2dT+9MKrpdqV1Yoo\nH1KTKI9c2y3Jpho6RWOgZz/tl/5/hbxjfKNs9LfpSQwumnT7IE565Oh0Ke5zXQ+clJK0tRBZKdrL\nda81cwsnNSYD38qNoVpgwMlt+eDYqWTY6KZ7q5qwghqDoBvodmJhH/wIsrntD+ZTcvfGJ0a37SAG\nB8uY2VRJ++Hnmd+JH6eYM0gFiMuSBi+oSEQ65pHT3oGw/qlIB3FHYE3reYrGq/JhgEbeBvxCRGVP\n0iGS1FkoQqeKvNnAw5Jewc/6fhW/jp/Gv8t20Tje7nb5JO2f08GAnCgbEYzI+yuSuIp0XCP1Wljz\n+mJHAQdVXsvdP5fp47W2T5gIXouR+2Jk323ItYLYsl1ig4+BmDUThqC9cW4m2szeVf0BduBk03wB\nTA1iDmLtTaRNjdQrjCgndm1Hkk3Var6OAqMBWo8dz34KtNGLNu6DhOnm89xeVv7RyXvjtnAsMLaT\n5FBwpWgDEdd9qw7+fjNCZ1K0gvng2Nz3hMbFDXQ7sbCItZipYH6G+KDp3sTyLIZn5F+q9ATlsDyR\nxh9ihthFIswxDy6hb8jsuH8qeEOabS0mvJv31tea/B6FaFInSKexeKXOprgTOwMP4i/Ej2ZsG+bH\nu06RH++4M/5Zl5d0Dj4w7uY+BfTUK9JGRCLy/gojrojdeCP1mowHoX/Be6bvgLkzAHJbbn4v6SAz\n69EmIulAej+KqiW6cS0GB/Bh1yq9L6RsNzr46MbvsYGIvZHYNq4wsolYexNpUyP1CiPKg9d2GNkU\nXM3XlbOfArFs9QczO6zyY9bg2eDkUFgM1KXXPXr9tISkLYGu2Du6nVjoa/hGyGCOOghmeUKMf7cu\nKGId87ASesX2T0U6iI9L+ro1TWeV9DUg9wiyUTX+fksMBKkThBH4VPUjzezPEQLTPXA5cHkqL9sD\nL4trm1gYKCY4AJH3Vxj+ERtvTb0mSJqGHy18cyWAGMK8IZPt4gjgl6nirhEcb4jPCNm1XSFdvBYj\n+25DrlXSKaxsN8mLCj7Cvsd+yqXbPmo6yQrbG4MDvzCyKdjehNnUSL0iiXIIXduRZFMYgu1q2Oyn\nQNzdy/o5hHnVMYOByErRbrzuQNz6UesTQpbFh+Hv04GKYRgyZ07IQOIBgXxQY2+TdRc3s24nRtpG\nxfiPwYe7XEKG8Zd0Ez5N9RH8vPu7gIctaOJ0J5C0KfMc89fSc2sCS5jZfw+STtNwh+kq67B/qmlD\nOrtDB3E4ftbuG/R0qIcBu5rZs53o2oFes3FSpxWhN5gZ+IIMRN5fkpazDo/GbZLXvPFeg0+Rfy5T\nTqhekZAP6tsSP6t+Dn6+9bRMGV25FpsC+J8FBPAdX6skZzZettsKuYR0pK3v1u8xbG+MhKQP4474\n27QgmyzzaLlAexO6Z0fp1YvsBlE+OqfUO3ptdyOi16N6zn7aDD+lq87spxDITxiZArwFNPzuDfBq\nn12s86OLO0KnMVBFTldd96RT2PrR/DOG5gAv102KDgS6mlhYUNGB8e+6BbUgYAA2pCHAVvh3OQd4\nzMymdqxoQQHdeX8tCI7r+x2RAXy3olvJgAUFgWTTQJBgHdvUbrWDC8LaHijIj2zdDB9EvyOwnJkt\nPUi6NN+ntdbPQKNuDNQko5uu+wK1fgqx8D5ENy2ogoKCgv6woG28BQUFg4dutTfdqldBHtT77KcZ\nwCNm9t4gqve+Rbnu3YFCLLxPUBZUQUFBQUFBQUFBweBB0un4cZp3Rc1+Kugf5bp3Bwqx8D5BWVAF\nBQUFBQUFBQUFBQUFg4FCLBQUFBQUFBQUFBQUFBQUFNRG5FmkBQUFBQUFBQUFBQUFBQUFCxgKsVBQ\nUFBQUFBQUFBQUFBQUFAbhVgoKCgoKCgoKCgoKCgoKCiojUIsFBQUFBQUFBQUFBQUFBQU1Mb/A2gw\nED94iWmlAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f67abdaa850>" ] } ], "prompt_number": 29 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Delay Tendency\n", "\n", "> Is there a tendency of flights from one state to another to experience a delay of 15 minutes or more on the arriving end?\n", "\n", "While there are many ways to answer this question, we'll look at visualizations of two metrics:\n", "\n", "1. How many times does a delay occur for an (origin &rarr; destination) state pair over all flights during the time period? (This is the [support of a simple association rule](http://en.wikipedia.org/wiki/Association_rule_learning#Useful_Concepts).)\n", "2. What percentage of total flights from an origin to a destination are delayed during the time period?\n", "\n", "First, we'll compute the support. We do so by grouping all of the arrival delay counts by the origin and destination." ] }, { "cell_type": "code", "collapsed": false, "input": [ "from __future__ import division" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 30 }, { "cell_type": "code", "collapsed": false, "input": [ "delay_counts_df = df[['ORIGIN_STATE_ABR', 'DEST_STATE_ABR', 'ARR_DEL15']].groupby(['ORIGIN_STATE_ABR', 'DEST_STATE_ABR']).sum()\n", "delay_counts_df.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th>ARR_DEL15</th>\n", " </tr>\n", " <tr>\n", " <th>ORIGIN_STATE_ABR</th>\n", " <th>DEST_STATE_ABR</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th rowspan=\"5\" valign=\"top\">AK</th>\n", " <th>AK</th>\n", " <td> 351</td>\n", " </tr>\n", " <tr>\n", " <th>AZ</th>\n", " <td> 5</td>\n", " </tr>\n", " <tr>\n", " <th>CA</th>\n", " <td> 11</td>\n", " </tr>\n", " <tr>\n", " <th>CO</th>\n", " <td> 21</td>\n", " </tr>\n", " <tr>\n", " <th>GA</th>\n", " <td> 3</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 31, "text": [ " ARR_DEL15\n", "ORIGIN_STATE_ABR DEST_STATE_ABR \n", "AK AK 351\n", " AZ 5\n", " CA 11\n", " CO 21\n", " GA 3" ] } ], "prompt_number": 31 }, { "cell_type": "markdown", "metadata": {}, "source": [ "We divide each (origin &rarr; destination) delay count by the total number of flights during the period." ] }, { "cell_type": "code", "collapsed": false, "input": [ "support = (delay_counts_df / len(df))\n", "support.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th>ARR_DEL15</th>\n", " </tr>\n", " <tr>\n", " <th>ORIGIN_STATE_ABR</th>\n", " <th>DEST_STATE_ABR</th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th rowspan=\"5\" valign=\"top\">AK</th>\n", " <th>AK</th>\n", " <td> 0.000699</td>\n", " </tr>\n", " <tr>\n", " <th>AZ</th>\n", " <td> 0.000010</td>\n", " </tr>\n", " <tr>\n", " <th>CA</th>\n", " <td> 0.000022</td>\n", " </tr>\n", " <tr>\n", " <th>CO</th>\n", " <td> 0.000042</td>\n", " </tr>\n", " <tr>\n", " <th>GA</th>\n", " <td> 0.000006</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 32, "text": [ " ARR_DEL15\n", "ORIGIN_STATE_ABR DEST_STATE_ABR \n", "AK AK 0.000699\n", " AZ 0.000010\n", " CA 0.000022\n", " CO 0.000042\n", " GA 0.000006" ] } ], "prompt_number": 32 }, { "cell_type": "markdown", "metadata": {}, "source": [ "We unstack the multiple indices so that we have a N x N matrix with origins as rows and destinations as columns." ] }, { "cell_type": "code", "collapsed": false, "input": [ "support = support.unstack()\n", "support.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr>\n", " <th></th>\n", " <th colspan=\"21\" halign=\"left\">ARR_DEL15</th>\n", " </tr>\n", " <tr>\n", " <th>DEST_STATE_ABR</th>\n", " <th>AK</th>\n", " <th>AL</th>\n", " <th>AR</th>\n", " <th>AZ</th>\n", " <th>CA</th>\n", " <th>CO</th>\n", " <th>CT</th>\n", " <th>DE</th>\n", " <th>FL</th>\n", " <th>GA</th>\n", " <th>...</th>\n", " <th>TT</th>\n", " <th>TX</th>\n", " <th>UT</th>\n", " <th>VA</th>\n", " <th>VI</th>\n", " <th>VT</th>\n", " <th>WA</th>\n", " <th>WI</th>\n", " <th>WV</th>\n", " <th>WY</th>\n", " </tr>\n", " <tr>\n", " <th>ORIGIN_STATE_ABR</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>AK</th>\n", " <td> 0.000699</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> 0.000010</td>\n", " <td> 0.000022</td>\n", " <td> 0.000042</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> 0.000006</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td> 0.000050</td>\n", " <td> 0.000004</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td> 0.000209</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>AL</th>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td> 0.000064</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> 0.000080</td>\n", " <td> 0.000364</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td> 0.000631</td>\n", " <td> NaN</td>\n", " <td> 0.000018</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>AR</th>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> 0.000008</td>\n", " <td> 0.000036</td>\n", " <td> 0.000098</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> 0.000163</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td> 0.000826</td>\n", " <td> 0.000002</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>AZ</th>\n", " <td> 0.000026</td>\n", " <td>NaN</td>\n", " <td> 0.000008</td>\n", " <td> 0.000129</td>\n", " <td> 0.002559</td>\n", " <td> 0.000352</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> 0.000086</td>\n", " <td> 0.000113</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td> 0.000722</td>\n", " <td> 0.000239</td>\n", " <td> 0.000072</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td> 0.000291</td>\n", " <td> 0.000062</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>CA</th>\n", " <td> 0.000056</td>\n", " <td>NaN</td>\n", " <td> 0.000008</td>\n", " <td> 0.001847</td>\n", " <td> 0.011355</td>\n", " <td> 0.001409</td>\n", " <td> 0.000014</td>\n", " <td>NaN</td>\n", " <td> 0.000302</td>\n", " <td> 0.000344</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td> 0.002113</td>\n", " <td> 0.000557</td>\n", " <td> 0.000406</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td> 0.001423</td>\n", " <td> 0.000068</td>\n", " <td>NaN</td>\n", " <td> 0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 53 columns</p>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 33, "text": [ " ARR_DEL15 \\\n", "DEST_STATE_ABR AK AL AR AZ CA CO \n", "ORIGIN_STATE_ABR \n", "AK 0.000699 NaN NaN 0.000010 0.000022 0.000042 \n", "AL NaN NaN NaN NaN NaN 0.000064 \n", "AR NaN NaN NaN 0.000008 0.000036 0.000098 \n", "AZ 0.000026 NaN 0.000008 0.000129 0.002559 0.000352 \n", "CA 0.000056 NaN 0.000008 0.001847 0.011355 0.001409 \n", "\n", " ... \\\n", "DEST_STATE_ABR CT DE FL GA ... TT TX \n", "ORIGIN_STATE_ABR ... \n", "AK NaN NaN NaN 0.000006 ... NaN 0.000050 \n", "AL NaN NaN 0.000080 0.000364 ... NaN 0.000631 \n", "AR NaN NaN NaN 0.000163 ... NaN 0.000826 \n", "AZ NaN NaN 0.000086 0.000113 ... NaN 0.000722 \n", "CA 0.000014 NaN 0.000302 0.000344 ... NaN 0.002113 \n", "\n", " \n", "DEST_STATE_ABR UT VA VI VT WA WI WV WY \n", "ORIGIN_STATE_ABR \n", "AK 0.000004 NaN NaN NaN 0.000209 NaN NaN NaN \n", "AL NaN 0.000018 NaN NaN NaN NaN NaN NaN \n", "AR 0.000002 NaN NaN NaN NaN NaN NaN NaN \n", "AZ 0.000239 0.000072 NaN NaN 0.000291 0.000062 NaN NaN \n", "CA 0.000557 0.000406 NaN NaN 0.001423 0.000068 NaN 0 \n", "\n", "[5 rows x 53 columns]" ] } ], "prompt_number": 33 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Unfortunately, we now have a multilevel set of columns. One way to remove the outer level is to rotate the matrix, reset the outer index to drop it, and then rotate it back.\n", "\n", "In the resulting matrix, each cell represents the proportion of total, system-wide flights that were delayed between an (origin &rarr; destination) pair." ] }, { "cell_type": "code", "collapsed": false, "input": [ "support = support.T.reset_index(level=0, drop=True).T\n", "support.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th>DEST_STATE_ABR</th>\n", " <th>AK</th>\n", " <th>AL</th>\n", " <th>AR</th>\n", " <th>AZ</th>\n", " <th>CA</th>\n", " <th>CO</th>\n", " <th>CT</th>\n", " <th>DE</th>\n", " <th>FL</th>\n", " <th>GA</th>\n", " <th>...</th>\n", " <th>TT</th>\n", " <th>TX</th>\n", " <th>UT</th>\n", " <th>VA</th>\n", " <th>VI</th>\n", " <th>VT</th>\n", " <th>WA</th>\n", " <th>WI</th>\n", " <th>WV</th>\n", " <th>WY</th>\n", " </tr>\n", " <tr>\n", " <th>ORIGIN_STATE_ABR</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>AK</th>\n", " <td> 0.000699</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> 0.000010</td>\n", " <td> 0.000022</td>\n", " <td> 0.000042</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> 0.000006</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td> 0.000050</td>\n", " <td> 0.000004</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td> 0.000209</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>AL</th>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td> 0.000064</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> 0.000080</td>\n", " <td> 0.000364</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td> 0.000631</td>\n", " <td> NaN</td>\n", " <td> 0.000018</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>AR</th>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> 0.000008</td>\n", " <td> 0.000036</td>\n", " <td> 0.000098</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> 0.000163</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td> 0.000826</td>\n", " <td> 0.000002</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>AZ</th>\n", " <td> 0.000026</td>\n", " <td>NaN</td>\n", " <td> 0.000008</td>\n", " <td> 0.000129</td>\n", " <td> 0.002559</td>\n", " <td> 0.000352</td>\n", " <td> NaN</td>\n", " <td>NaN</td>\n", " <td> 0.000086</td>\n", " <td> 0.000113</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td> 0.000722</td>\n", " <td> 0.000239</td>\n", " <td> 0.000072</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td> 0.000291</td>\n", " <td> 0.000062</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>CA</th>\n", " <td> 0.000056</td>\n", " <td>NaN</td>\n", " <td> 0.000008</td>\n", " <td> 0.001847</td>\n", " <td> 0.011355</td>\n", " <td> 0.001409</td>\n", " <td> 0.000014</td>\n", " <td>NaN</td>\n", " <td> 0.000302</td>\n", " <td> 0.000344</td>\n", " <td>...</td>\n", " <td>NaN</td>\n", " <td> 0.002113</td>\n", " <td> 0.000557</td>\n", " <td> 0.000406</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td> 0.001423</td>\n", " <td> 0.000068</td>\n", " <td>NaN</td>\n", " <td> 0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 53 columns</p>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 34, "text": [ "DEST_STATE_ABR AK AL AR AZ CA CO \\\n", "ORIGIN_STATE_ABR \n", "AK 0.000699 NaN NaN 0.000010 0.000022 0.000042 \n", "AL NaN NaN NaN NaN NaN 0.000064 \n", "AR NaN NaN NaN 0.000008 0.000036 0.000098 \n", "AZ 0.000026 NaN 0.000008 0.000129 0.002559 0.000352 \n", "CA 0.000056 NaN 0.000008 0.001847 0.011355 0.001409 \n", "\n", "DEST_STATE_ABR CT DE FL GA ... TT TX \\\n", "ORIGIN_STATE_ABR ... \n", "AK NaN NaN NaN 0.000006 ... NaN 0.000050 \n", "AL NaN NaN 0.000080 0.000364 ... NaN 0.000631 \n", "AR NaN NaN NaN 0.000163 ... NaN 0.000826 \n", "AZ NaN NaN 0.000086 0.000113 ... NaN 0.000722 \n", "CA 0.000014 NaN 0.000302 0.000344 ... NaN 0.002113 \n", "\n", "DEST_STATE_ABR UT VA VI VT WA WI WV WY \n", "ORIGIN_STATE_ABR \n", "AK 0.000004 NaN NaN NaN 0.000209 NaN NaN NaN \n", "AL NaN 0.000018 NaN NaN NaN NaN NaN NaN \n", "AR 0.000002 NaN NaN NaN NaN NaN NaN NaN \n", "AZ 0.000239 0.000072 NaN NaN 0.000291 0.000062 NaN NaN \n", "CA 0.000557 0.000406 NaN NaN 0.001423 0.000068 NaN 0 \n", "\n", "[5 rows x 53 columns]" ] } ], "prompt_number": 34 }, { "cell_type": "markdown", "metadata": {}, "source": [ "At this point, we have a DataFrame that we can query but no clear idea of where to start looking. A visualization of the entire DataFrame can help us find interesting pairs. We borrow and slightly modify some code from `seaborn` to plot our asymmetric matrix as a heatmap." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 37 }, { "cell_type": "code", "collapsed": false, "input": [ "def asymmatplot(plotmat, names=None, cmap=\"Greys\", cmap_range=None, ax=None, **kwargs):\n", " '''\n", " Plot an asymmetric matrix with colormap and statistic values. A modification of the\n", " symmatplot() function in Seaborn to show the upper-half of the matrix.\n", " \n", " See https://github.com/mwaskom/seaborn/blob/master/seaborn/linearmodels.py for the original.\n", " '''\n", " if ax is None:\n", " ax = plt.gca()\n", "\n", " nvars = len(plotmat)\n", "\n", " if cmap_range is None:\n", " vmax = np.nanmax(plotmat) * 1.15\n", " vmin = np.nanmin(plotmat) * 1.15\n", " elif len(cmap_range) == 2:\n", " vmin, vmax = cmap_range\n", " else:\n", " raise ValueError(\"cmap_range argument not understood\")\n", "\n", " mat_img = ax.matshow(plotmat, cmap=cmap, vmin=vmin, vmax=vmax, **kwargs)\n", "\n", " plt.colorbar(mat_img, shrink=.75)\n", " \n", " ax.xaxis.set_ticks_position(\"bottom\")\n", " ax.set_xticklabels(names, rotation=90)\n", " ax.set_yticklabels(names)\n", "\n", " minor_ticks = np.linspace(-.5, nvars - 1.5, nvars)\n", " ax.set_xticks(minor_ticks, True)\n", " ax.set_yticks(minor_ticks, True)\n", " major_ticks = np.linspace(0, nvars - 1, nvars)\n", " ax.set_xticks(major_ticks)\n", " ax.set_yticks(major_ticks)\n", " ax.grid(False, which=\"major\")\n", " ax.grid(True, which=\"minor\", linestyle=\"-\")\n", "\n", " return ax" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 38 }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the plot, gray boxes represent cases where there are no flights between the origin (row) and destination (column) states. We see mostly light yellowish boxes representing state pairs where delays occur, but in tiny numbers compared to the total number of system-wide flights. \n", "\n", "We do see a couple very hot spots, namely in the (CA &rarr; CA) and (TX &rarr; TX) cells. We also see a few moderately hot spots, for example (TX &rarr; CA) and (FL &rarr; NY). We can interpret these cells as indicators of where delays tend to occur most across the entire set of flights." ] }, { "cell_type": "code", "collapsed": false, "input": [ "fig, ax = plt.subplots(figsize=(18,18))\n", "asymmatplot(support, names=support.columns, ax=ax, cmap='OrRd')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 39, "text": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7f679b621890>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAA8kAAANJCAYAAAA/fH5BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcZWd93/nPKUmtququlqD7qrUg0RKIH5twIGxhbMRi\nQEhmsY2NOhmPsWObmNH4xcRxgsdOTJIxNjaJZQSOYTAgMmGxwmJWYzvEChgjm6BhFT8sSwLtqm5r\nqV6KlrrO/FG3oChXt6qe51adOl2f9+tVr6p77v3e5znnPOfc+9Rz7nObtm2RJEmSJEkw1nUFJEmS\nJEnaKOwkS5IkSZI0ZCdZkiRJkqQhO8mSJEmSJA3ZSZYkSZIkachOsiRJkiRJQyd2WXjbzrVNYz9d\nkiRJ0rpruq6ANqZOO8lNM0Z7341l2e3nMj09U5QdDKaqsszuK8oyvqOzbOn6Qv326uO27mJ9F/Lt\noemibDMx6Gw/9S3bZdldHhNu635kuzzX96199Xlb93F79S27kN9M7yVqs+3BO4uyAM3krl6us7Qc\nh3ElSZIkSRpadSc5Il4aEXMREcPbuyPiy4vu/9mI+HxEnDLKikqSJEmStNZKRpL3AB8d/v4eEfET\nwGXA8zPz3sq6SZIkSZK0rlbVSY6IbcDTmO8Iv3zJfT8O/CvgeZn5dyOroSRJkiRJ62S1I8kvAf44\nM78FTEfEk4bLdwNXMN9BvmuE9ZMkSZIkad2stpO8B7hq+PdVw9stcBfwTZaMLkuSJEmS1Ccr/gqo\niHgo8Gzg8RHRAicAc8CbgYPAJcCnI+KuzHz3WlRWkiRJkqS1tJqR5JcB78rM3Zl5bmaeA9wEnAOQ\nmdPARcDrIuL5I6+pJEmSJElrbDWd5EuBDy5Z9n7gNcxfck1m3gS8GHh7RDx5FBWUJEmSJGm9rPhy\n68x8zjLLrmB+wq7Fy74EPKy+apIkSZIkra+S70mWJEmSJOm4ZCdZkiRJkqShFV9uvVb2fntnUW4w\n4nqsxvTMlqLcYLwu27ZzRdmmKDU6O7fNFianaI98uyjZULetO1W4n7V6g6nDm6pc9UNfz119bNd9\n3dZanfbwTFGuGd9R1Ub6eEzsPTBZnB2UR6UNp2nbtsvyOy1ckiRJ0qbV9ViSNqjOR5Knp8v+uzcY\nTG26bHtouijbTAyKy10ou6t6twduK8tuPbN3+3gh3x68syjbTO7q3Tp3va2Z3VcWHt9RVe+acruq\nc5fnELNrn13Ib6a22fW27lu9+5hdyLf33VSUbbbv7uxc39dt3bd6DwZTRTkd//xMsiRJkiRJQ0Wd\n5Ih4aUTMRUQMb++OiC+PtmqSJEmSJK2v0pHkPcBHh78lSZIkSTourLqTHBHbgKcBlwEvH3mNJEmS\nJEnqSMlI8kuAP87MbwHTEfGkEddJkiRJkqROlHSS9wBXDf++anjbr3KSJEmSJPXeqr4CKiIeCjwb\neHxEtMAJwBzw5jWomyRJkiRJ62q135P8MuBdmfnzCwsi4s+Bc0ZZKUmSJEmSurDaTvKlwG8uWfZ+\n4DVARMTNi5a/OjPfX1M5SZIkSdLRvbZpNuRHX1/btk3XdSi1qk5yZj5nmWVXAFeMrEaSJEmSJHWk\n9HuSJUmSJEk67thJliRJkiRpaLWfSRYwmDrcSbav9u4fL8oNJoDmhNFWpg+OfLvrGqzaZmzX0lrp\n6/HUtnNFud5+YE39MfdAcbTmeJye2VJWZtnbJm1ijnqOXtO2nX7Oe0N+yFySJEnSce+4+D/dv9ug\nE3f9m80ycddamJ6eKcoNBlOdZZndV5RlfEdVtj00XRRtJgbF6wvdbuv24J1F2WZyV+/a1kK+nflW\nUbaZOqeXx0SX27qrend1DulyW/fteOzra0yXx0QXr1F93Mddlr3Zsgv59p7ri7LNqY/s3Tm3623d\nt3oPBlNFuY2mtz3RDczReUmSJEmShlY9khwRLwU+ADwmMzMidgPXAV8HTgI+B/xcZpZ9OEmSJEmS\npI6UjCTvAT46/L3g+sx8IvAE4Fzgh0dQN0mSJEnSMYxt0J8+W1X9I2Ib8DTgMuDlS+8fjh7/FfCI\nkdROkiRJkqR1tNpO/kuAP87MbwHTEfGkxXdGxDhwIfCVEdVPkiRJkqR1s9pO8h7gquHfVw1vt8Aj\nIuJa4A7g9sz8+OiqKEmSJElaTteXVW/qy60j4qHAs4E/iIgbgV8Cfoz5Wcf/dviZ5EcAj46IJ69F\nZSVJkiRJWkurmd36ZcC7MvPnFxZExJ8D5yzczsx9EfErwOuA54+qkpIkSZKk40dEXARcDpwAvC0z\nX7/MY94IvBA4CLwiM68dLn87cAlwV2ZesOjx/x54MfNXO+8bZm5e8o1MAH+Zma86Wt1WMxJ+KfDB\nJcveD7xmWAkAMvNDwGkR8dRVPLckSZIkaZWaDfpzLBFxAvAm4CLgscCeiHjMksdcDDwyM88Hfg74\nT4vufscwu9RvZeb3ZeY/AD4E/Nqi+67PzCcOf47aQYZVjCRn5nOWWXYFcMUyy//BSp9XkiRJkrSp\nPJX5TutNABHxXuYnib5u0WNeDFwJkJnXRMSpEXF6Zt6RmZ8ejg5/j8ycWXRzG7C3pHKrudxakiRJ\nkqRaZwE3L7p9C/NfNfxgjzmL+cmijyoifh34CeYv0X76orvOHU42fS/wq5n5maM9R98nHpMkSZKk\nTavrWawLZ7duH/whwN+/cvtBc5n5K5l5DvBO4HeGi28Dzh5ONv3PgXdHxNTRnsNOsiRJkiRpPd0K\nnL3o9tnMjxQf6zEPGy5bqXcDTwHIzMOZeffw7y8Afwucf7Rg07Yr7cSviU4LlyRJkrRpPdj8Ur3w\nW02zIftU/7Jtj7p9I+JEIIHnMj/K+1fAnsy8btFjLgYuy8yLI+LpwOWZ+fRF9+8GPrJkduvzM/Nv\nhn//H8BTM/MnImIncHdmHomI84D/ATw+M+9Zrn7dfyZ5dl9ZbnwH09MzD/64ZQwGU1XltofuKoo2\nE6cxd+PHirJj515Ce+C2snK3nlm8rWB+e9Vs6/bQdFG2mRhUbeuacuvaR1m5C2W3+29+8Acul912\ndtU6d3U8dbqtO9pe3R0T5dm+nkO6atd167v++/g7+f2r+Qf9ouy2syrbdUfZg3eWZSd3VW/rmjbS\nx2wXx9NC2e29NxRlm1POoz14zI8+Hj07eXpn566q88+B24uyAM3WM3q5zseDPvb0M/OBiLgM+CTz\nXwH1B5l5XUS8cnj/WzLz4xFxcURcDxwAfmohHxHvAS4EdkTEzcC/ycx3AL8REQEcYX60eOHri58J\n/LuIuB+YA155tA4ybIROsiRJkiRpU8nMTwCfWLLsLUtuX3aU7J6jLH/ZUZZ/APjASuu26k5yRLx0\nWMBjMjMj4n8HfmbJcz5u4f7VPr8kSZIkSV0pGUneA3x0+Pu1mflm4M0Ld0bE64Br7SBLkiRJ0tpy\nJubRW9U2jYhtzH9/1WXAy5e5/5nAjwGvGkntJEmSJElaR6v9x8NLgD/OzG8B0xHxpIU7IuJU4B3A\n/5aZ+0dYR0mSJEmS1sVqO8l7gKuGf181vL3g94F3ZeZfjqJikiRJkqRjG9ugP3224s8kR8RDgWcD\nj4+IlvmpulvglyLiJ5n/oud/vCa1lCRJkiRpHaxm4q6XMT9SvPBdU0TEnw8/h/zrwA9k5tyoKyhJ\nkiRJ0npZTSf5UuA3lyx7P/AKYAL4wPz3Nn/HZZn5F1W1kyRJkiQdVdN1BY5DK+4kZ+Zzlll2xWir\nI0mSJElSd/r+mWpJkiRJkkZmNZdbS5IkSZI2EEc9R89tKkmSJEnSUOcjyW1bNiF2lx9Qb++5vijX\nTJzGZ55yaVH2mXtn4OCdRVm2nslg6nBZdhTmHugme3imLDcxYHpmS1F0MA4UtunvOHBHWW7b2TRN\n+f+9umojVeeAI7Mjrct6qdlPtG15du5IebZSVfuqPab65oFD5dnKbdXe842iXLPtLJjdV1boxKAs\nNwqze8tyk7s6PZ76qMv3e+3MN8vKPuU8OPLt8oKPdPjeq9TBwvcgAFvPGF09Vqn4NWZ2X8v4Due9\n0t/TtDVvuOp1WrgkSZKkTWp2H8dDJ/lNTbMh+1SXtW1vt233I8mHpotyzcSA6emykcLBYKr8P97j\nO5i7/bNF0bEznsH/2DlVlH3m3hna6WuLss3gieXrCzC+o2pbtwduL8o2W8+gPXBbYfZM2ntvKMue\ncl7d+paO+APN5C7aO/+6LLvrKVXtuqtszTmg3X9zWblAs+3sXp5/SttXM7mr6lgsXV/odp272k9V\n55DSUa+ph9NWjAI1k6czd8t/L8qOPezZtHd/vazchzy67jxQk/27r5ZlH/q44uMJ6o6pwWCql9ku\nzrcLZVe165rjcf+tZdltZ3W3nwrfa8L8+83eva5KR7GqTnJEnA5cDjwZuAe4E3h1Zv5NRLwa+A1g\nV2beN/KaSpIkSZK0xlb8wbiIaIAPAp/KzEdm5pOBXwZ2DR+yB/hT4EdGXktJkiRJ0t/TbNCfPlvN\nSPKzgcOZ+daFBZn5JYCIeARwEvA64N8C7xxhHSVJkiRJWhermWL18cD/PMp9lwJ/mJmfAx4ZEadV\n10ySJEmSpHW2mk7ysWZNuxS4avj3h4AfK66RJEmSJGlFxjboT5+t5nLrrwIvW7owIi4Azgf+LCIA\ntgA3Am8eRQUlSZIkSVovK+7kZ+angJMj4mcXlkXEE4A3Ar+WmecOf84CzoyIc0ZfXUmSJEmS1s5q\nvyf5h4HLI+JfAbPATcAzgVcuedwHgZcDv11bQUmSJEnS8vo+k/RGtKpOcmbeznzn98Ee94vFNZIk\nSZIkqSN9/0y1JEmSJEkjs9rLrSVJkiRJG4SjnqPnNpUkSZIkaajzkeSmKe+nD6YOF2fbdq4o1wDN\n1MOLy/3+L36kOMvJp5ZnK9Vs62N/xfaDqGgfzcmnFGd3bjtUmJwqLvM7JgbF0bY9UpRrqDsmarJV\nxrbUPkMnavYThdt6WHJFtk47d39RrgFoylvKzsmZwuQU7dwDRcnqdn3CeEW4rvTmIY8uD28pP+dS\neEzMZyuOiZMfWp6teH2qVfeaXK7qtbFmH1dqat4/jZ1UkT2hPNuV8R11+Y72c+lrDDjplZbXtG13\nb5ro8h2bJEmSpE2rPXgHzeTpve8nv61pNmSf6mfatrfbtvORZGb3leXGd1Rl20PTRdFmYkC7/9ay\n7LazmLv1z4uyY2c9i/a+G8vK3X5u+baC+m194LaiaLP1TNqDd5RlJ0+vbB93lZU7cRrtwTvLygWa\nyV20991Ult2+u67eNcdEV9nabV1R9vR02QjlYDBVt58O3F6W3XpG1bFYur4wXOeKY7lue9Wcf8ra\nVzO5q659VJRbfUxUta+KbE37qNleVXWu29Y1baTm9a2zc1fFPq4+/0xfW1b24ImdvYep2U9V+3jm\nW0VZgGbqnM7WubRc6Wj8TLIkSZIkSUOrGkmOiNOBy4EnA/cAdwKvBrYAVwBnMt/xfldm/t+jraok\nSZIkabHeXtO8ga14JDkiGuCDwKcy85GZ+WTgNcDpwB8Br8vMRwPfBzwjIl61FhWWJEmSJGmtrOZy\n62cDhzPzrQsLMvPLwKOAz2Tmnw2XHQIuY74DLUmSJElaI2Mb9KfPVlP/xwP/c5nlj126PDNvALZF\nxLaKukmSJEmStK5W00k+1tTiXgovSZIkSeq91Uzc9VXgZcss/xrwzMULIuI8YH9m7q+omyRJkiTp\nGPp+afNGtOJtmpmfAk6OiJ9dWBYRTwAS+P6IeO5w2QTwRuD1I66rJEmSJElrarX/ePhh4Acj4vqI\n+Arw68DtwEuAX42IrwNfAq7JzDePtqqSJEmSJK2tVX1PcmbeDrz8KHc/u746kiRJkqSVcnKo0fMS\ndkmSJEmShuwkS5IkSZI0tKrLrdfC9MyWotxgvC67d/94WXYC9h7aXpbdBmM7LijKAjRbysqF8m0F\n9duasYpm1pxQHK1rHxNl2QnYe2CyKAswmAROKs9X1bvimGia8v+3VR2Lldu6pt41mop23ZxQfizv\nPThVlBtsLS7yu2UfKHuS+f1Uvr1q1rm0fQ3KmyUATcU5s/qYqGpf28rK3QrN2Enl5Vbsp7o6172F\nGkwdLs5WvSZXqHttLD8H1GqmzinO1pxDatp1V/bOPqQ4O5jqbj8XlzuYOi6uVHbUc/Satj3W1x+v\nuU4LlyRJkrRpHRed5P+3aTZkn+p/bdvebt/uR5KnZ4pyg8FUL7PM7ivKMr6jKltaZ6hf5/bQXUXZ\nZuI02kPThdlB79rHQr5me/WxXXe5rbuqd9/OA6PY1pupffVxfbssu6/7uLjO0MtjuY/Zhbzteu2z\nXZZdfSxLy+i8kyxJkiRJKuPl1qO36k5yRJwOXA48GbgHuA94GvAN4Bzg3uHPdGY+f3RVlSRJkiRp\nba2qkxwRDfBB4B2Zeelw2ROAqcz8i4h4B/CRzPzA6KsqSZIkSdLaWu1I8rOBw5n51oUFmfmlJY/p\n7Qe0JUmSJKlP7HyN3movYX888D/XoiKSJEmSJHVttZ3kDTm9uCRJkiRJo7Day62/CrxsLSoiSZIk\nSVodZ7cevVVt08z8FHByRPzswrKIeEJEfP/IayZJkiRJ0jor+Z7kHwYuj4h/BcwCNwKvXnS/l2RL\nkiRJknpp1Z3kzLwdePlR7vup6hpJkiRJklbE2a1Hz0vYJUmSJEkaspMsSZIkSdJQyWeSVWF6ZktR\nbjA+4oqso6Y5oSK7+f6PU7O9utLXdt3HevexzrU22zp3ub5dld3HfVxaZ5ivdx/Xua9s1zrebb53\ny2uvadtO59lyki9JkiRJXTguPs77X5tmQ/apXta2vd2+nY8kT0/PFOUGg6lNl2V2X1GW8R3F5S6U\n3VW9u1jnrvbxQn4zrXPX23ozHcubdVub3fhlb7Zsl2VvtmyXZW+2bJdlV78mS8vovJMsSZIkSSrj\n5dajt6pOckQcAb4EnAQ8ALwL+J3MbCPiWcAfATcsivxiZn5qRHWVJEmSJGlNrXYk+WBmPhEgIgbA\nu4HtwGuH91+dmS8eXfUkSZIkSVo/xaPzmTkN/Bxw2aLFvf1wtiRJkiT1TbNBf/qs6jPJmXljRJww\nHFUG+IGIuHbRQ34kM2+sKUOSJEmSpPUy6om7Pp2ZLxrxc0qSJEmStC6qJkOLiPOAI8NLryVJkiRJ\n62hsg/70WXH9h5dY/z5wxeiqI0mSJElSd1Z7ufXE8DPH3/kKqMz8j8P7Wv7+Z5L/fWZ+YAT1lCRJ\nkiRpza2qk5yZR318Zl4NnFpdI0mSJEnSivT90uaNyG0qSZIkSdKQnWRJkiRJkoZG/RVQ62rntkOF\nyam6crceLC5358l7i7PtkcNFyYaaOs+XPZgqKxugnS1b52Z8B3N3Z1F27IxnFOU2gvZQ2WTxzfiO\nqrZZY+e22eJyq46n8bsLs8P8yfuKszXaufuLcg11572dk/uLszXngFo1582uVB0TW0q/MKJ+P9Uc\njztm/7ow+xx2Ts4Ul9tV2yzfTwBT7Jy4pzxbsZ86214T9xUm64/jHQ98uTD5jKrtVXPuqjmH1Cgv\nd77srt6bb3ZN1xUoFBEXAZcDJwBvy8zXL/OYNwIvBA4Cr8jMa4fL3w5cAtyVmRcsevxvAz8EHAb+\nFvipzLx3eN8vAz8NHAF+ITP/5Gh1a9q2HclKFuq0cEmSJEmbVl/7l9/jo02zIftUP9S2R92+EXEC\nkMAPArcCfw3syczrFj3mYuCyzLw4Ip4G/G5mPn143w8A+5mfSHpxJ/l5wH/LzLmI+E2AzHxNRDwW\neDfwFOAs4M+AR2Xm3HL163wkeXq67L/Hg8EU7aG7irLNxGl15R68s6zcyV20991Ylt1+Lu2B28uy\nW88orjPM15vZwhG38R2095SNBjenBnO3f7YoO3bGM6r2cRfZhXx799eLss1DHl3VNuuOxcLR74lB\n3fE0862iLEAzdQ7tfTeVZbfvrjyH3FFW7uTpVee9mnNI8TkAYHxH3faqOG92dR6oOibuvaEse8p5\n1fup5nicu/lTRdmxs59De+C2snK3nln1+lS1jwv3E8zvq3b/zWXZbWdX7afOttf+W4uyzbazql9X\na95LVL3/qXnPV3EO6eLctVB2V+/Na7LqzFOB6zPzJoCIeC/wEuC6RY95MXAlQGZeExGnRsTpmXlH\nZn46InYvfdLM/NNFN68BfnT490uA92Tm/cBNEXH9sA6fW65ynXeSJUmSJEllmrFeDoifBSz+b+Et\nwNNW8JizgJWONvw08J7h32fyvR3ihedaVlEnOSKOAF9atOilwLnAL2bmi0qeU5IkSZK0Kaz0EvGl\n/wFYUS4ifgU4nJnvLqlD6Ujywcx84pKKnFv4XJIkSZKkzeNW4OxFt89mfnT3WI952HDZMUXEK4CL\ngeeWPpeXW0uSJElSTzVNLy+3/jxw/vBzxbcBLwf2LHnMh4HLgPdGxNOBezLzmJMyDGfM/iXgwsxc\nPF37h4F3R8R/ZP4y6/OBvzra85R+T/JERFw7/Hl/4XNIkiRJkjaZzHyA+Q7wJ4GvAe/LzOsi4pUR\n8crhYz4O3DCcZOstwKsW8hHxHuCzwKMi4uaI+KnhXVcA24A/HfZVf2/4XF8D/nBY1ieAV2XmyC+3\nPrT0cmtJkiRJklYiMz/BfId18bK3LLl92VGyS0edF5aff4zyXge8biV183JrSZIkSeqpsX7Obr2h\nlV5uLUmSJEnScad0JHm567db4LkRsfi7rF6WmdcUliFJkiRJ0roq6iRn5vZlll0NTFbXSJIkSZK0\nIj2d3XpD83JrSZIkSZKGnLhLkiRJknqqceKukXMkWZIkSZKkoaZtj/odyuuh08IlSZIkbVKz+2B8\nR++HYf9kYsuG7FM9/9Dh3m7b7i+3nt1XlhvfQbv/1qJos+0s2oN3lmUnd9Vl772hLHvKebQH7ygs\n93TaQ9NFWYBmYlC1n+Zu+e9F0bGHPZv23r8tyjanPKKubRVur2ZiwPT0TFm5wGAwRTvzrbKyp86p\naptV26umbc58syw79fDi9Z0vexftgdvLslvP6G571Zx/DtxWlt16ZvW2rtpe93yjrNxTH9XZeaCq\n3Ir9VFzuQtk17atiP9Uci52d9wrP1TB/vq4pu6v3Tl2VW/26uveLZWXv/L6q80B7T5ZlT43u2kfl\n+8Wujseqc99xwIm7Rs/LrSVJkiRJGlrxSHJE7AJ+B3gacDdwGPitzPzQ8P7LgZcBZ2fmhhzylyRJ\nkiTpWFbUSY6IBvgQ8I7M/MfDZecALx7+PTb8+2vAhcCfr0VlJUmSJEnf5ezWo7fSkeTnAN/OzLcu\nLMjMbwFvGt58FvBF4H3AHuwkS5IkSZJ6aKWfSX4c8IVj3L+H+Q7yR4CLI+KE2opJkiRJkrTeVjqS\n/D2fMY6INwHfz/znkv8X4IXAqzPzQERcA1wEfGyUFZUkSZIkfS9ntx69lY4kfxV40sKNzLwMeC4w\nAF4AnAp8JSJuBH6A+ZFlSZIkSZJ6ZUWd5Mz8FDAeEf9s0eKtw997gH+amedm5rnAucDzImJitFWV\nJEmSJGltreZ7kl8KXBgRNwwvqX4n8GvMjyR/59LqzDwIfAb4oRHWU5IkSZK0RDPWbMifPlvx9yRn\n5h0sfxn1u5Z57I/WVEqSJEmSpC6sZiRZkiRJkqTj2opHkiVJkiRJG4uzW4+eI8mSJEmSJA31eiR5\n76HtRbnBNth7YLIsOwnNWMVmq8g2YycVZ/fuHy/ODiZgemZLWXYc9p385LIs0Jx8alEWoD1yuCjX\nUL69BiOY0705aeuDP+goatp1zT7ee6CszoNJ2Dv70LLsVPn6fqfsg9vKsls73F4V+3jvwamy7Nb6\nbV21ve4/oyxLZbkV54GacpsTTi7KQnm53ym75jVqfEdxtuZYrDkmauydfUhxdjBV10aq2nXFe6eu\nyh1Mlb2eL2i2Paw825SPJzXjO4uzXbWPWl29DynODqYcgtWymrZtuyy/08IlSZIkbVrHRSf56odu\n25B9qgv/bn9vt2/3I8mz+8py4zuYnp4pig4GU1XZmjq3M98qijZT53SyraB+e3W2rQ/cXhRttp7R\nyfou5Pt4TPQt22XZmy3bZdl9zXZ5rq8pu4/nrs34utrHbPF+guq2udmOifbQdFEWoJkY9LN9Scuo\n+kxyROxfcvsVEXHF8O/XRsQv1jy/JEmSJEnrqXYkeenQfnuM+yRJkiRJI+Ts1qM36tmt3UOSJEmS\npN6qHUmeiIhrF91+KPBHlc8pSZIkSVInajvJhzLziQs3IuIngbLv+5EkSZIkrUoz5sW8o+bl1pIk\nSZIkDY26k7yYHWZJkiRJUq+sxezW7TJ/S5IkSZJGzNmtR6+qk5yZ25fcvhK4cvj3v615bkmSJEmS\n1ttaXm4tSZIkSVKv1F5uLUmSJEnqiLNbj54jyZIkSZIkDXU+kjw9s6UoNxgfcUXWyd7ZhxTlBlPQ\ntkeKsn3+31LbzhXlGmDvwW1F2cHWotjItPfvL8o14ztGXBOtlcHU4U6y0lrq4+t5H+u8GZXuJ5jf\nV+3cA0XZpqLswXg/29fe/eWFDyZGWBGpY03bdjoBtbNfS5IkSepCn8eSvuOzZzxkQ/apnnH73b3d\nvt2PJE/PFOUGg6nOsszuK8oyvqOq3PbQXUXZZuK04nIXyu5qW7eHpouyzcSgd21rId/OfLMo20w9\nvHfr3PW27uM5pKvzT1+3dR+zXezjLsvu637ymNj42YV8e/DOomwzuat369z1tu5bvQeDqaKcjn9+\nJlmSJEmSpKGqkeSI2J+Z2xbdfjXwG8CuzLyvtnKSJEmSpKNzduvRqx1JXnr9+x7gT4EfqXxeSZIk\nSZLW3cgut46IRwAnAa9jvrMsSZIkSVKvjPIzyZcCf5iZnwMeGRGnjfC5JUmSJElLNE2zIX/6bNSd\n5KuGf38I+LERPrckSZIkSWtuJF8BFREXAOcDfxYRAFuAG4E3j+L5JUmSJElaD6P6nuQ9wK9l5usX\nFkTEDRFxTmZ+a0RlSJIkSZIWGXN265Eb1ezWLwc+uOS+Dw6XS5IkSZLUC1UjyZm5ffj7Ecvc94s1\nzy1JkiQuox7yAAAgAElEQVRJ0nob1eXWkiRJkqR11veZpDeiUc5uLUmSJElSrzmSvM52bjtUmJwC\nNt9/ifbuHy/KDSZGXJF11Jy0resqaI1Nz2wpyg3KDgf1jO1j/QymDnddBa2DvQcmi3KDSdi5bbaw\n1KnCXLc8JqR5Tdu2D/6otdNp4ZIkSZI2reNiBOrz5562IftUT77xrt5u385HkqenZ4pyg8FUZ1lm\n9xVlGd9Be+iuomgzcRrtoenC7KB4faHbbb2Zsgv5mvbVt3Xuelv3rd59bB+1ebPrk13I96199fF4\nWii7j9urb9lRlN3Fe69eHhPQ3/OAtIzOO8mSJEmSpDJO3DV6VZ3kiNifmdsiYjdw3fBnHJgBfi8z\nr6yvoiRJkiRJ66N2JHnx9e/XZ+aTACLiXOADEdFk5jsry5AkSZIkaV2syVdAZeaNwD8HfmEtnl+S\nJEmSBM3Yxvzps7Ws/rXAo9fw+SVJkiRJGqm17CT7CXJJkiRJUq+s5ezWTwS+tobPL0mSJEmbmrNb\nj96ajCQPZ7v+beCKtXh+SZIkSZLWwihnt35ERHyB734F1O9m5rsqn1+SJEmSpHVT1UnOzO3D3zcB\nk6OokCRJkiRpZZoxL7cetZ5Pzi1JkiRJ0ujYSZYkSZIkaWgtZ7dekZ3bZguTU+zceqA8O353cba9\nv6zcZnwH7V3XlmUf/gI4PFOUZWLAzq0Hy7IATDGYOlyc3jn2zcLk49k5/neF2co6n7yvk3IB2kPT\nRblmfEdVu945ub88u6WszjBVdw4obh/DfMU5pKp9nXhrYfLRtLNl+7gZ31FVbm277up4LD/3TbFz\n4r7ybFW7rjiOtx0qzM7n2wfK6t0AO+e+XljuU9g5dlNh9oKq/dTO3V+UbICdJ91eWO582VXHRPF+\nrnzvVPM6cdJthdkozH3XTv6mMPkkaOfKyz3xlsLkYzprH6XnABgeFzXv+WrOm4XZ9tBs20wMen+t\n8pizW49c07btgz9q7XRauCRJkqTNqT00zfHQSf7So8/ckH2qJ3z9tt5u285HkotHzSYGtAfvKMtO\nnk47862y7NQ5Vdm5b36yKDv28BfQ3ntDWbmnnEd78M6iLEAzuQtmC0dyxnfQ7vtKWbk7Hk87U/Yf\nyWbq4XV1vu+msnK37y4vd6Hsu8tGY5qHPLquXR8oGxVptp5R1zZrzgGF7QPm20jNOaSqfdXs43uu\nL8ue+siqcmvbdVfHY+m5r5ncRbu/bOS92XZWZbuuOI4P3VWUnS/7tLp1vvOvy7K7nkK778tl2R0X\n1NW55n3EPd8oygI0pz6q7pgo3M/NxGl161zzOnFPlmVPDaanC6+kAwaDKdrpL5SVPXhS3Tnk7uvK\nsg95THfto/B4guExVfOer+a8WZiVjqbzTrIkSZIkqYyzW49e9cRdEbF/+Ht3RJT9K1iSJEmSpA1g\nFLNbb8hr4CVJkiRJWi0vt5YkSZKknmp6Ort1RFwEXA6cALwtM1+/zGPeCLwQOAi8IjOvHS5/O3AJ\ncFdmXrDo8Q8F3gc8HLgJ+PHMvCcidgPXAQsTtPxlZr7qaHXze5IlSZIkSesmIk4A3gRcBDwW2BMR\nj1nymIuBR2bm+cDPAf9p0d3vGGaXeg3wp5n5KOC/DW8vuD4znzj8OWoHGewkS5IkSZLW11OZ77Te\nlJn3A+8FXrLkMS8GrgTIzGuAUyPi9OHtTwN3L/O838kMf7+0pHJebi1JkiRJPdXT2a3PAm5edPsW\n4GkreMxZwLG+y25XZi58d9udwK5F950bEdcC9wK/mpmfOdqTOJIsSZIkSVpPK538eel/AFY8aXRm\ntosefxtwdmY+EfjnwLsjYupo2VHPbh0RcfOinx8dwfNLkiRJko4ftwJnL7p9NvMjxcd6zMOGy47l\nzoVLsiPiDOAugMw8nJl3D//+AvC3wPlHe5Lqy60zc/vw903AltrnkyRJkiStTE9nt/48cP5w1unb\ngJcDe5Y85sPAZcB7I+LpwD2LLqU+mg8DPwm8fvj7QwARsRO4OzOPRMR5zHeQbzjak3i5tSRJkiRp\n3WTmA8x3gD8JfA14X2ZeFxGvjIhXDh/zceCGiLgeeAvwnRmpI+I9wGeBRw2vYP6p4V2/CTwvIr4B\nPGd4G+CZwBeHn0m+CnhlZt5ztPo5cZckSZIkaV1l5ieATyxZ9pYlty87SnbpqPPC8r8DfnCZ5R8A\nPrDSunXeSd67f7woN5iAvQe2lmUnYe/sQ8qyU8CJE0VZgLFdTy7OsmVbcXTvgcni7GASpmfKrqQf\njAOTpxWXzQll7QPq6rz32zvKshXlLpRd075q2vXeg2Xta7AV9h4elGWpPAfMPrQoC/Pr3IydVJyv\nOibGy9oXACefUhxtJsr2E9S365rt1Ww56rwaD6r03DeYhL2Htpdlt9W1a04sP+/t3V9+/hhMQFNR\ndnPKeeXZrWcWZ6v2U8X7iKbmOKbyNapwP1e/d6p5nbi/bB+Xn7UWqWhfzVj5W+Vmovz9T2fto/B4\nguExNffwsiyV7wdKs4OpXl6nvFRPZ7fe0Jq2XfEEYWuh08IlSZIkbVrHRe/yun/w8A3Zp3rM//fN\n3m7fzkeSp6dninKDwVRn2fbQdFG2mRjA7L6iLOM7aA/dVVjuacXrC6PYXuX1bg8+2Gfzj5Kd3NW7\ntrWQb2e+WZRtph7eu3XuelvXHI9dnUO6Ov90eQ7paj919xrT3bm+Zlt3le1qPxXXGXrbNvuWXci3\nB4/1lapH10yevunadZfn+s6OZWkZnXeSJUmSJEllejq79YZWNbt1ROwf/t4dEXMRcdmi+94UET9Z\nW0FJkiRJktZL7VdALb7+/S7gFyLipGXukyRJkiRpwxvl5dbTwGeY/9Lmt43weSVJkiRJy2jGasc9\ntdSot+hvAf8iItxTkiRJkqTeGWlnNjNvBK4B/vEon1eSJEmSpPWwFrNbvw74r8DVa/DckiRJkqSh\nZszZrUdt5JdFZ2YCXwNehJN3SZIkSZJ6ZJSzWy/++9eBh1U+tyRJkiRJ66rqcuvM3D78fRPwhEXL\nvwScUFUzSZIkSdKxNV5uPWrOQi1JkiRJ0pCdZEmSJEmShtZidmtJkiRJ0jpwduvRa9q20wmonf1a\nkiRJUheOi97l3zz9/A3Zpzr/c3/T2+3b+Ujy9PRMUW4wmOplltl9RVnGd1RlS+sM3W6v9tB0UbaZ\nGPSufSzk24N3FGWbydN7t85db+u+1bv2HOK2Nvtg+b61rz5muyx7s2UX8r6urn22y7KrX1elZXTe\nSZYkSZIklWnGnGZq1FbdSY6I/Zm5bfj3xcDvAD8ITAJvAU4BTgY+nZmvHGFdJUmSJElaUyUjyS1A\nRDwX+F3g+Zl5c0R8EvgPmfmR4f2PH101JUmSJElae0WXW0fEM4G3Ai/MzBuHi08Hbl14TGZ+pb56\nkiRJkqSjaZrezo+1YZV0kseBDwIXZuY3Fi3/HeBTEfFZ4E+Ad2TmvSOooyRJkiRJ66LkU96Hgb8A\nfmbxwsx8J/AY4CrgWcDnImJLZf0kSZIkSUcz1mzMnx4r6STPAT8OPDUifnnxHZl5e2a+IzNfCjwA\nPG4EdZQkSZIkaV0UzReembPAJcA/iYifBoiIiyLipOHfpwM7WPQZZUmSJEmSNrri2a0z8+6IuAj4\nHxExzfwl1pdHxOzwcf8iM+8aTTUlSZIkSUv5Pcmjt+pOcmZuX/T3LcB5w5sfAX5xRPWSJEmSJGnd\n+W8HSZIkSZKGir4nWZIkSZLUPb8nefQcSZYkSZIkaWjTjiQPpg53kq3RtnNFuYbu6gywc9vsgz9o\nWVNQuM699kDp9tp8att1V8fFZitXq7Nz68HC5NRI67Fati8dS6ftY+7+4mhNvave/3Skr6+r0qg1\nbdt2WX6nhUuSJEnatI6L65Rves4FG7JPtftTX+7t9u18JHl6eqYoNxhMVWWZ3VeUZXxHZ9n20HRR\ntJkYlJc7LLtmW9fUuz14Z1l2cldnbas0u5Bv77upKNts3927de7sOIbq43GznX9q23Uf21dX2S7O\newtl96199XEfd1l2L8/XIzj/tPtvLso2287u7H1b7/YT9PY8IC1n1Z9Jjoj9i/6+OCIyIj4VEf9s\n0fKnRcQXI+KEUVVUkiRJkqS1VjKS3AJExHOB3wWeDxwA/jIi/ivwd8AVwM9n5pFRVVSSJEmStMRY\nb69q3rCKLreOiGcCbwVemJk3Dpe9Afgt4PPAFzPzsyOrpSRJkiRJ66CkkzwOfBC4MDO/sWj57wM/\nCTwL+If1VZMkSZIkaX2VfE/yYeAvgJ9ZvDAzW+AtwMcz8+4R1E2SJEmSdAxNM7Yhf/qspPZzwI8D\nT42IX17mvg05BbkkSZIkSQ+mqIufmbPAJcA/iYifXnSXnxqXJEmSJPVWSSe5BRheUn0R8KsR8UOL\n7nMkWZIkSZLWQTPWbMifPlv1xF2ZuX3R37cA5y26fSVw5WiqJkmSJEnS+ur3J6olSZIkSRqhou9J\nliRJkiR1r++XNm9EjiRLkiRJkjS0aUeSp2e2FOUG43Xltu2Rolzt/4dK1xfq15nCdQbggUOVhffQ\nSVu7roG0oQymDnddhfXV0++WbNu5olxDP/dxH+vcpZr2Ue3AHWW5bWdXFdv374mVNrOmbTudjNqZ\nsCVJkiR14bi4Tvnmi5+8IftUZ3/8873dvp2PJE9PzxTlBoOpzrLM7ivKMr6D9tBdRdFm4jTaQ9OF\n2UHx+kL99moPlv0Ht5k8nfa+m8qy23f3rm0t5LvYz10eT50ciwDjO6qO5a7OIV1luzyHdLWfusp2\nea6ve30rr3cf93Ht+aePbbOv7bq986/Lyt71lN6dc7tu171cZ2kZXgciSZIkSdLQqkeSI2J/Zm47\nyn2XAy8Dzs7MDTnsL0mSJEnHC2e3Hr2SkeRlO78RMQa8GPgacGFNpSRJkiRJ6sIoL7d+FvBF4O3A\nnhE+ryRJkiRJ62KUneQ9wPuAjwAXR8QJI3xuSZIkSdISzVizIX/6bCSd5IjYArwQ+EhmHgCuAS4a\nxXNLkiRJkrReRvUVUC8ATgW+EhEAk8As8LERPb8kSZIkSWtuVJ3kPcA/zcz3AUTEJHBjRExk5qER\nlSFJkiRJWqRp+n1p80ZU0kmejIibF93+PeD5wM8tLMjMgxHxGeCHgKvqqihJkiRJ0vpYdSc5M5eb\nkOs3lnncjxbVSJIkSZKkjozqcmtJkiRJ0nobG+UXFglG+xVQkiRJkiT1miPJ6+2B2YpwO7JqrKu2\not4nbR1dPfriyOGua7Bqg6nyOtdka7XtkaJc7fQYbTu3qcqt1dV+6kzh+nau4tzVVdusOf+0c/cX\nZ5vKsmt0VW7TdDgus+1hnRRb2kZ6e+6SjiNNW9OBqdfTXp8kSZKknjsu/idx+48+Y0P2qc54/2d7\nu307H0menp4pyg0GU51lmd1XlGV8B+3Mt4qizdQ5tIfuKstOnFa8vlC/vdoDtxdlm61n0B6aLstO\nDHrXthby7f5bi7LNtrN6eUx0kh3muzimBoOpqnZddf7p4HiCEZxDOtpPXWXbg3cUZZvJ06v3U1X7\nqjh3dXWur1rfwv0E8/uqpuyu1rlv5S6UXfM+pIs2UnMsd/Z6DtWv6Z2ts7QMP5MsSZIkSdLQikaS\nI2IO+C+Z+RPD2ycCtwOfy8wXLXrch4BdmfmP1qKykiRJkqTvapreXtW8Ya10JPkA8LiIGB/efh5w\nC4s+UxwRpwKPB7ZExLkjraUkSZIkSetgNZdbfxy4ZPj3HuA9fO+H3X8E+AhwFXDpSGonSZIkSdI6\nWk0n+X3ApRFxMnABcM2S+y8dPuYPme9ES5IkSZLWUDM2tiF/+mzFtc/MLwO7me8Af2zxfRGxC3hk\nZn4uM28ADkfE40ZZUUmSJEmS1tpqvwLqw8AbgAuBwaLlPw48NCJuHN6eYr4z/avVNZQkSZIkaZ2s\ntpP8duDuzPxqRDxr0fI9wAsy8xqAiNgN/Bl2kiVJkiRpzTRjzm49aiu93LoFyMxbM/NNi5a1EfFw\n4OyFDvLwcTcB90bEU0ZZWUmSJEmS1tKKRpIzc/syy64Grh7ePHuZ+/9hXdUkSZIkScejiLgIuBw4\nAXhbZr5+mce8EXghcBB4RWZee6xsRHwf8PvAVuAm4J9k5szwvl8Gfho4AvxCZv7J0erW72nHJEmS\nJGkza5qN+XMMEXEC8CbgIuCxwJ6IeMySx1zM/OTQ5wM/B/ynFWTfBvzLzHwC8EHgl4aZxwIvHz7+\nIuD3IuKofWE7yZIkSZKk9fRU4PrMvCkz7wfeC7xkyWNeDFwJMPxo76kRcfqDZM/PzE8P//4z4EeH\nf78EeE9m3j/8aPD1w+dZ1mon7tpQBlOHO8m27ZGiXANw4nhxucNnKLJz26GKcqcqssCRb5dnC7d1\nr42dUBzduW22MFm3j9t2rihXO81EO/dAcbYB9u6fKMoOJiq3deH2qtd2VG6ltn/1Lj/nTtGMnVRc\nbs1rG3R3LNccE7XrXKwpP1fXqmlfnZ2va9479VTNsdxXnZ1DNrmeTtx1FnDzotu3AE9bwWPOAs48\nRvarEfGSzPwj4Mf47seCzwQ+t8xzLavzTvJgUPHmfHxHJ9lm4rSOsoMHf9AalAt1+6nZvrs8O3l6\ncbamzl1loW6da9pI1T6uKLfqWJzcVV4u3a1zVb07OnfVtuuqbV2xvbo6lqvOuR29tkFlu9521Pca\nD57t6JioO54qznvVZXfzXqKrY6L6dXXrGeXhjtpXZ+9DOjyHdPneS51Y6X/AV/sfgJ8G3hgR/5r5\nry8+1n9Sj1qHzjvJ09MzRbnBYApm95UVOr6jKtseuqso2kycVpmdLswOistdKLtmP7X33VRW7vbd\ntAfvKMtOnl5V5y6yC/mada5pI1X7uKLcqmPx4J1lWebflHe1zqX1biZ3dXbuqm3XVdu6Ynt1dR6o\n2dadvLYN81Xtev+tZdltZ3V2TNQdT2XbCkZw7uvovURXx0T16+qB28vK3npGZ+2rq3NXl+eQztZZ\nXbmV7538+WzmR3eP9ZiHDR9z0tGymZnACwAi4lHAJcd4rqO+cHXeSZYkSZIklWnGejnN1OeB8yNi\nN3Ab85Nq7VnymA8DlwHvjYinA/dk5p0Rse9o2YgYZOb0cFKuX2U42dfwud4dEf+R+cuszwf+6miV\nW9EWjYi5iPjPi26fGBHTEfGR4e1XDG9/ISK+ERF/HBH/aCXPLUmSJEnaPDLzAeY7wJ8Evga8LzOv\ni4hXRsQrh4/5OHBDRFwPvAV41bGyw6feExEJXAfckpnvHGa+Bvzh8PGfAF6VmdWXWx8AHhcR45k5\nCzyP+SHthSdumZ8t7BcAIuJZwAci4tmZ+fUVliFJkiRJ2gQy8xPMd1gXL3vLktuXrTQ7XP5G4I1H\nybwOeN1K6raasfmP891ruvcA7+G7H6RuFv1NZv458Fbmv89KkiRJkrQGmqbZkD99tppO8vuASyPi\nZOAC4JoHefwXgEeXVkySJEmSpPW24k5yZn4Z2M38KPLHRvnckiRJkiRtBKud3frDwBuAC4EH+yK0\nJzL/wWhJkiRJ0loY6/elzRvRakd73w68NjO/eqwHRcSFwM8C/09pxSRJkiRJWm8rHUluATLzVuBN\ni5Ytnt365RHx/cAkcAPwI8Mvc5YkSZIkqRdW1EnOzO3LLLsauHr495XAlaOtmiRJkiTpWJoxp4Ia\nNbeoJEmSJElDdpIlSZIkSRpa7ezWG8r0zJai3GC8Lrt3/0RZdqI2O77u5S7ka+z99o6ycoFm7KS6\nwnuoZp1r2kiNmnKrjsUDk0VZgMEkDKYOF+dr1rkZKz/1dnXu6lLN9upKzbZu27mibEN5+4CFNlLR\nrk8sy0L5sTyY7O69QNPUjTN09z6kq9eJ7s4/ew9uKyt7a91+6qMuzyEq1zTObj1qTdu2D/6otdNp\n4ZIkSZI2reOid3n3P33BhuxTPeQPPtnb7dv5v+enp2eKcoPBlNl1yHZZ9mAwBbP7irKM7+jttt5M\n67xZt/Vm2sejKHszba/BYIr20HRRtpkYuJ/WMVu8vtDbde5btsuyN9sx0WXZ1ftJWkbnnWRJkiRJ\nUplmrLcDthvWijvJETEH/JfM/Inh7ROB24HPZeaLIuIVwG8DtyyK7cnMr4+wvpIkSZIkrZnVjCQf\nAB4XEeOZOQs8j/kO8cI18C3wnsz8hRHXUZIkSZKkdbHaqRk/Dlwy/HsP8B6++4H3huPkw++SJEmS\n1AtNszF/emy1n0l+H/BvIuKjwAXAHwA/sOj+l0fE9w//boFnDEedJUmSJEna8FbVSc7ML0fEbuZH\nkT+2zEPe6+XWkiRJkqS+Kpnd+sPAG4ALgcGS+/o9ri5JkiRJPeLs1qO32s8kA7wdeG1mfnXUlZEk\nSZIkqUurGUluATLzVuBNi5Ytnt168WeSAX4+Mz9XXUtJkiRJktbBijvJmbl9mWVXA1cP/74SuHJ0\nVZMkSZIkHZNXW49cyeXWkiRJkiQdl+wkS5IkSZI0VDK7tSRJkiRpI2i83nrUmrZtH/xRa6fTwiVJ\nkiRtWsdF7/LeV12yIftUp/zex3q7fTsfSZ6eninKDQZTMLuvrNDxHVXZ9tB0UbSZGNAeuqswe1pl\nuWXZhXzV9jp4Z1m5k7toD95RmD29s7ZVWu5C2e3d1xVlm4c8pqqN9PNYLDueYOGYKj8e646J8nZd\ndTx10D5gvo3UtK+a/dTLdt3BeQ8WtnXF68yB28uyW8/obFt38doG88djH9e57jju7vzT7r+1rOxt\nZ/XuWO7s3DXMd/W6WrW9pGV03kmWJEmSJJXxauvRK564KyLmIuI/L7p9YkRMR8RHhrdfERFXjKKS\nkiRJkiSth5rZrQ8Aj4uI8eHt5wG38N3PGW/Ia+MlSZIkSTqa2q+A+jhwyfDvPcB7+O4H4B34lyRJ\nkqS1NNZszJ8eq+0kvw+4NCJOBi4ArqmvkiRJkiRJ3ajqJGfml4HdzI8if2wUFZIkSZIkqSujmN36\nw8AbgAuBwQieT5IkSZK0As5uPXq1l1sDvB14bWZ+dQTPJUmSJElSZ2pGkluAzLwVeNOiZe0yf0uS\nJEmStOEVd5Izc/syy64Grh7+fSVwZXnVJEmSJEnH5PXWIzeKy60lSZIkSTou2EmWJEmSJGloFLNb\nS5IkSZK64LDnyHXeSR5MHe66CqvXzpVnj9xfnp17oDjaNHVHz/TMlqLcYJzKz0n07zMW1W167OTR\nVGSVujoWq9pWZftomhOKs53Vu+b8U5OttHPbocLkFDXba+fWA8XltoXbq6H2nFl+vu70NXWzfSau\ncn1r2khX2brjuEOV74EqCu6k1Jp93Na81wRoy+fsral38blvdl/L+I5NdvLSSjRtRWMeAWe/liRJ\nkrT+ZvdxPHSSZ/7PF23IPtXU73ykt9u285FkZveV5cZ3dJZtD95ZFG0md9Huv7Usu+0s2gO3l2W3\nnlG+vgDjO5ienimKDgZTtIfuKso2E6dVbeuaOnfStob59t4biqLNKefRHpouy04MOjue6tpW2fpC\n/TpX1bvmHFJxHujieIIRnAcq2nV78I6y7OTpVeV2dc6sPv90tK17+V6gcD/B/L6qaSNdZbs6jqvP\nP128f6p8v9jZPi6sMwxfo/r2vu040Wy2K3nWwYquP4mIuYj4z4tunxgR0xHxkeHtV0TEkYi4YNFj\nvhIR54y+ypIkSZIkrY2VfkjjAPC4iBgf3n4ecAvfe7n0LcCvLLq9IYf9JUmSJOm40TQb86fHVjOT\nwceBS4Z/7wHew3dnJGiBjzLfkX7U6KonSZIkSdL6WU0n+X3ApRFxMnABcM2S++eA3wL+rxHVTZIk\nSZKkdbXiTnJmfhnYzfwo8seW3L0wovxu4OkRsXsUlZMkSZIkHV3XV1Ufh1dbr/qrpz8MvIHvvdT6\nOzLzCPAfgNfUV02SJEmSpPW12k7y24HXZuZXj/GYdwI/CAxKKyVJkiRJUhdW+j3JLUBm3gq8adGy\ndunfmXl/RPwucPkI6ylJkiRJWmqs59c2b0Ar6iRn5vZlll0NXD38+0rgykX3XQFcMaI6SpIkSZK0\nLlZ7ubUkSZIkScetlV5uLUmSJEnaaLzaeuQcSZYkSZIkaajzkeTpmS1FucF4d9mqL/6q+tKw9sEf\nchSl6wvDda4xd6Q8285VFl6mi7a1kKd9oDhfo+qYqDCYOlz3BBXatqxtVv/DtqtzSNPd/0X37p8o\nyg0moKmo994DW8vKnawrt0pH571h4RXZboYy2sLtVVvbpjmh8hn6p+Y47tS37y7LbT1jtPXogWas\nsmvQ0Xmz+D3MYMoxWC2raduaF8RqnRYuSZIkadM6LjrJB1/zwxuyTzX5mx/s7fbtfiR5eqYoNxhM\ndZZtD91VlG0mTqM9cFtZduuZVdnS9YURbK8Dtxdlm61nVGX71rYW8u093yjKNqc+ivbQdFl2YlC1\nzszuK8oyvqMqW7q+ML/ONcdyZ+eQg3eUZSdP76R9QP0xVdNG+lhuzT4urjMMj6matnlnWXZyVyfn\ngWZi0M25a5jv22tU/Xun7s4/7d99razshz62rm1WHBNd7af6c0g370Oq1llaxoo6yRExB/yXzPyJ\n4e0TgduBz2Xmi4bLXgr8W+Ak4AHgX2fmH61JrSVJkiRJWgMr/eDAAeBxEbHw6cPnAbcwvFw6Ir4P\n+G3gxZn5WODFwBsi4oIR11eSJEmStKDZoD89tppP138cuGT49x7gPXx39f/F/8/e/YdZdpUFvv/u\n7tBUdXc1ke6ThITGBJK8YgYwMiM4KIKiw48ZYsarkFEQxDsZuTFjhjBekRlAB/EHyc04EIRBEO6V\nkDggBiEDAzrMOFdBSORXwqsBAiEJ6eomCdXd1XSSPvPHORUqZVV3nbVO1T676/t5nvP02fvsd6+1\n1157n1q91lkbeG1mfgUgM28BXge8fDzZlCRJkiRp7Y3SSL4aeH5EPBR4HPDxRZ99N/CpJdt/Cjin\nLozCUfUAACAASURBVHuSJEmSJK2fVU/clZmfjYjTGfQif2DNciRJkiRJWpVmU8fHNk+gUR9mdi3w\neh481BrgRuAfLtn2icDnyrMmSZIkSdL6GrWR/Dbg1Zn5+SXrXw/8SkR8J8Cwx/lXgMuqcyhJkiRJ\n0jpZ7XDrPkBm3ga8YdG6hfWfjohfBt4fEQ8B7gVenpmfGXN+JUmSJEkLHG09dqtqJGfmjmXWfQz4\n2KLlPwb+eHxZkyRJkiRpfY063FqSJEmSpOPWqme3liRJkiRNmMbx1uNmT7IkSZIkSUP2JBfYu3+6\nKK43DXsPzpTFbquLbVOzeUtF8Mb7f5xmamdx7N79U0VxvbIq/YDZubJz3Juqiy09XhhejxXXco2q\ne8iBsgu6t7W9+lGrpo50Md2ac1yaZ1i4pmrq5tay2Ip819wHetPt3LsW4jeaVu8/Wx5WHFpVNyuu\nibbU30O6+T0jLdX0+/020281cUmSJEkb1nExTvnQv/+JiWxTTf3aezpbvq33JM/OzhXF9Xozxq5D\n7DjS5tC+soSndtI/eGdRaLP15M6WdU15de2Y2y7rruW7i7Ftpm1sN9LeaLFtpr3RYhfi+/tvK4pt\ntp/WuWNuu6y7lu9er2yUpsYjIp4JXAFsBt6amb+1zDa/CzwLOAi8KDNvOFpsRLwbiGH4icDdmXlu\nRJwO3AR8YfjZX2bmS1fKW+uNZEmSJEnSxhERm4E3AM8AbgP+OiKuzcybFm3zbODMzDwrIp4EvAl4\n8tFiM/P5i+JfD9y9KNmbM/Pc1eRv1Y3kiDgC/GFmvmC4fAJwB/BXmfnPIuJk4PeBRwIPAW7JzOes\ndv+SJEmSpBFt6uSo5u9j0Gi9BR7oAT6PQW/vgucC7wDIzI9HxIkRcQpwxrFiI6IBfgp4eknmRpkV\n6QBwTkQs/CL/R4Gv8e3fFf8a8KHM/J7MPAf45ZIMSZIkSZKOa6cBty5a/tpw3Wq2OXUVsT8I3JmZ\nX1y07oyIuCEi/ntE/MDRMjfq1MEfBBZ6hy8AruLbP3g/hUF3NwCZ+bkR9y1JkiRJOv6tdrKx0m7y\nC4B3LVq+Hdg9HG79b4B3RcSKP0oftZF8NfD8iHgo8Djg44s+eyPw+xHxZxHxioh4xIj7liRJkiSN\noGkm83UMtwG7Fy3vZtAjfLRtHjnc5qixw58Fn8+g7QpAZh7OzLuG768HvgictVLmRmokZ+ZngdMZ\ntMw/sOSzDwOPBv4z8F3ADRGxa5T9S5IkSZKOe58EzoqI0yNiC/A84Nol21wLvBAgIp7MYKbqO1cR\n+wzgpsy8fWFFROwaTvhFRDyaQQP5SytlbtSe5IXMvp4HD7UGIDPvysyrMvOFwF8DTy3YvyRJkiTp\nOJWZ9wEXAR8CbgSuzsybIuLCiLhwuM0HgS9FxM3Am4GXHi120e6fx6CtuthTgU9HxA3AHwEXZubd\nrKDkEVBvA+7KzM9HxNMWVkbE04GPZ+bB4fjuxwBfKdi/JEmSJGk1VjG2eRJl5nXAdUvWvXnJ8kWr\njV302YuXWfde4L2rzdsojeT+MIHbGDyXamHdwo+unwi8ISLuY9BD/Z8z81Mj7F+SJEmSpFatupGc\nmTuWWfcx4GPD969nMAxbkiRJkqROKhluLUmSJEmaAB0dbT3RSibukiRJkiTpuGRP8jrrzRwujt21\nfb4wcsXnZK+L2bktRXG9KWg2WUWlxXZtP1QY2e59QKtX8z3Rpq7mW8e/5oSp4ljrtbQxNf1+/9hb\nrZ1WE5ckSZK0YR0XA5UPv/anJrJNteVXr+ls+bbeTTc7O1cU1+vNdDKWQ/uKYpnaSX9+T1FoM31S\ncZ6hu+XVtfqxEL+Rjrntsu5avnu9Gfrzs0WxzXTPsu5IbBv3gIW0u5bvLp7jNtPeaLEL8TV103o9\n+WlX37ukZfibZEmSJEmShlbdkxwRR4A/zMwXDJdPAO4A/gp4D/Cvh5ueA3wBuB+4LjNfMdYcS5Ik\nSZIGnN567EYZbn0AOCcipjLzEPCjwNeAfmb+AfAHABHxZeBpmfmNMedVkiRJkqQ1Nepw6w8Czxm+\nvwC4iuPkB++SJEmSJI3aSL4aeH5EPBR4HPDx8WdJkiRJkrQaTTOZry4bqZGcmZ8FTmfQi/yBtciQ\nJEmSJEltKXkE1LXA64EfAnrjzY4kSZIkSe0paSS/DbgrMz8fEU8bc34kSZIkSavV9bHNE2iURnIf\nIDNvA96waF1/ue0kSZIkSeqaVTeSM3PHMus+BnxsybpHjyFfkiRJkqRjaEadilnHZJFKkiRJkjRk\nI1mSJEmSpKGSibs2vF3bDhZGztC/71BRZAPQL/+5967tZekOzFTEwq4te4rT7X/r7qLIZmpnYZrt\n699XVr8adtKbOTzm3Ky9mjyXX4sAM+zadqA4tirf2+eL062Z9qH8PlB3D6hVc8/topp7QK2aullz\nv27r3lV1HW/dX5Fy7T2ke9dym3lu62+Jtr5jarT596IqOHHX2DX9iobXGDjJlyRJkqQ2HBety/t+\n54KJbFOd8PKrOlu+rfckz87OFcX1ejOtxfYP3lkU22w9mf7+28pit59Wl+78bFEsQDPdqyuve75Y\nlu7DHlMV27W6tRDf339rUWyzfTcc2leW8NTO1sqrJs+l1wQMr4uDXy+MPaUu3/Nloyua6ZMqY8vu\nAzX3AGj3ntu1+0DtPaD6/lNTvyru123du6qu4wN3lMUCzbZHVN5D1v9arq7XLd5/2qqbbX3HtHGe\noN36VXUfkJbReiNZkiRJklSos/21k2ukRnJEHAEuz8xLh8uXAtsy8zXD5RcCL2cwjPo+4A8z87Lx\nZlmSJEmSpLUx6uzWh4HzI2JhJoMHxr9HxLOAfw38aGY+HngycM9YcilJkiRJ0joYdbj1vcBbgEuA\nVy757FeAl2Xm1wEy8zDw1uocSpIkSZKW1Ti79diVPCf5SuCnI2LHcHmhN/kc4FNjyZUkSZIkSS0Y\nuZGcmXPAO4GLh6v8rwtJkiRJ0nGhdHbrK4DrgbcvWvd54B8Cf16bKUmSJEnSKmyyz3LcSoZbk5l3\nAdcAL+Hbw61fB/xORJwMEBFbIuIlY8mlJEmSJEnrYNRGcn/R+8uAXQsLmXkd8AbgIxHxOQa/T/YJ\n3ZIkSZKkzhhpuHVm7lj0fg+wbcnnfwD8wTgyJkmSJEk6Bme3Hrui4daSJEmSJB2PbCRLkiRJkjRU\nOru1JEmSJKltzm49dk2/3z/2Vmun1cQlSZIkbVjHRevy/t99wUS2qTZf/P92tnxb70menZ0riuv1\nZjZcbP/gnUWxzdaTi9NdSLutY+bQvqJYpnZ27hwvxLdxnrt6TXS1XlfdB+b3FMU20ydtyLLeSPeQ\nLp+njRTbZtobLXYhvuY+4D1k8tOu/p6QltF6I1mSJEmSVKhxmqlxW3UjOSKOAJdn5qXD5UuBbZn5\nmoh4NfDzwCyDx0J9FnhlZt40/ixLkiRJkrQ2Rvlvh8PA+RGxc7i8eOx7n0ED+tzMPBu4GviziNg1\npnxKkiRJkrTmRmkk3wu8Bbhkhc8f+GF2Zl4DfBj4F+VZkyRJkiQdVdNM5qvDRh3AfiXw0xGxYxXb\nXg981+hZkiRJkiSpHSM1kjNzDngncPG49y1JkiRJUttKZre+gkEv8duPsd25wCcK9i9JkiRJWo1N\n3R7aPIlG7u3NzLuAa4CX8O3Jux50ZiLiJ4BnAFfVZlCSJEmSpPUySk/y4tmsLwMuWvLZJRHxM3z7\nEVA/nJmFT2CXJEmSJGn9rbqRnJk7Fr3fw6AxvLD8GuA1482aJEmSJOmoGqeCGjdLVJIkSZKkIRvJ\nkiRJkiQNlcxuLUmSJEmaBM5uPXZNv98/9lZrp9XEJUmSJG1Yx0Xr8v43//xEtqk2X/jWzpZv6z3J\ns7NzRXG93kxrsRwqnLR7amdVbH9+T1FoM31S8fFCd8u6a3VrIb5/4Pai2GbbqZ075rbLuov1uj8/\nWxTaTPdauZ6gm3Wkq/Wj9jxtpHvuRr3/bKTYhfj+wa8XxTZbT9lw10Tx8UJ3j1laRuuNZEmSJElS\noaazHbYTa6RGckQcAS7PzEuHy5cC2zLzNRHxauDngcXdHE/LzHvGlVlJkiRJktbSqD3Jh4HzI+J1\nmbmPB/+muM+gAX352HInSZIkSdI6GrWRfC/wFuAS4JXLfG5fvyRJkiStl00+1XfcSn6TfCXwmYj4\n7SXrG+CSiPiZ4fI3MvNHqnInSZIkSdI6GrmRnJlzEfFO4GJgftFHDreWJEmSJHVa6ezWVwDXA29f\nst7h1pIkSZK0XpzdeuyKBrBn5l3ANcBL+PbkXZ4dSZIkSVKnjdqTvHg268uAi5Z8tvg3yQDnZeZX\nSzMnSZIkSdJ6GqmRnJk7Fr3fA2xbtPwa4DXjy5okSZIk6aic3XrsLFFJkiRJkoZsJEuSJEmSNFQ6\nu7UkSZIkqW3Obj12NpILzM5tKYrrTdXF7t0/XRZbFjY2vZnD7WagY5rND207CxvGru2HCiNnxpqP\nUezdP1UU15uuu/9Ix+K9XpNq74Ftx95oGb2tG+++WXq80N1jlpbT9Pv9Y2+1dlpNXJIkSdKGdVx0\nwd7/josmsk21+Wff0Nnybb0neXZ2riiu15sxdh1ix5E2h/aVJTy1syq2q2W9kY657bLuz88WxTbT\nvdauia6Wddfy3WZsG/VjHGlvpHrtNdGN2DbT3mixbaZdfc+VlrHqibsi4khEvH7R8qUR8arh+1dH\nxMuWbH9LRDx8fFmVJEmSJGltjTK79WHg/IjYOVxe3K3f5+8PnZ7Ibn9JkiRJOm5s2jSZrw4bJff3\nAm8BLlnh886OOZckSZIkCUb/TfKVwGci4reXrG+ASyLiZxatO7UqZ5IkSZIkrbORGsmZORcR7wQu\nBuYXfdQHLs/MyxdWRMSXx5NFSZIkSdKyfE7y2JXMbn0FcD3w9iXrPTuSJEmSpGOKiGcyaFtuBt6a\nmb+1zDa/CzwLOAi8KDNvOFZsRPwi8FLgfuADmfnLw/W/AvzccP3FmfnhlfI28i+qM/Mu4BrgJXx7\nci4byJIkSZKkY4qIzcAbgGcC3w1cEBGPXbLNs4EzM/Ms4F8CbzpWbEQ8HXgu8PjM/AfA64frvxt4\n3nD7ZwJXRsSKbeFRGsmLZ6u+DNi15DNnt5YkSZKkddRsaibydQzfB9ycmbdk5r3Au4HzlmzzXOAd\nAJn5ceDEiDjlGLG/ALxuuJ7MnB2uPw+4KjPvzcxbgJuH+1nWqodbZ+aORe/3ANsWLb9mme0fvdp9\nS5IkSZI2jNOAWxctfw140iq2OY3BBNErxZ4FPDUifgM4BFyamZ8cxvzVMvtaVrcfYCVJkiRJ6prV\njjoe9We9JwDfkZlPBl7O4GfCI+ehZOIuSZIkSdIkaDrZ73kbsHvR8m4GvbtH2+aRw20ecpTYrwHv\nBcjMv46IIxGxa4V93bZS5jpZopIkSZKkzvokcFZEnB4RWxhMqnXtkm2uBV4IEBFPBu7OzDuPEfs+\n4IeHMWcDWzJz7/Dz50fElog4g8Gw7E+slLnWe5J7M4c7l+6u7fPH3mhZM+zaMnvszVaKrUi3rXIG\n6B/+ZlFcM7WT/v1l+W6oO8etltd9h4riGmDX9rJYmCmMG6i6JiryvGvbwcLYQXxT8T+vNfnuH7m3\nKHJwjivKetuB4thaVffcrfsLI+vy3dY9ZHZuS1maU8VJPqDfP1IUV/uIi/Jrue77rc3viZp7SN3f\nMC19T1Sc41q7pu8uTruqrCvuuW3VzfL6AbXf6dpYMvO+iLgI+BCDxzj9fmbeFBEXDj9/c2Z+MCKe\nHRE3AweAFx8tdrjrtwFvi4jPAocZNrIz88aIuAa4EbgPeGlmrjjcuun3W52E2hmwJUmSJLXhuHiM\n7ZGrXzaRbapNz7uss+Xbek8yh/aVxU3tZHZ2rii015upSrc/v6cotJk+if49XyqLfdijq9ItPl6o\nLuv+N79cFNvsOIP+gTvKYrc9ouoct1EvYVhe+1f8ecRRNdtPoz9fNlKhme7VneOaa6Iiz/2DdxbF\nAjRbT668D9Tk++tlsVtPqSvrinRr63VVWVfcB9r6nmjru636/lNRr6vOceG1XHsdtxI7jG+trNv6\nnqg4x/Xfq7cee8Pl0t6+u7Jel99z26rXpfUDht9vLdWvqnu9tAx/kyxJkiRJ0lBVI3k4W9jrFy1f\nGhGvGr5/dUS8rDaDkiRJkqQVNM1kvjqstif5MHB+ROwcLi8eDz+RY+MlSZIkSVpJbSP5XuAtwCVj\nyIskSZIkSa0ax8RdVwKfiYjfHsO+JEmSJEmrtclppsatukQzcw54J3BxfXYkSZIkSWrPuP7b4Qrg\nJcC2Me1PkiRJkqR1N5ZGcmbeBVzDoKHshF2SJEmStB7ansXa2a3/nsUN4suAXYuWTwC+Vbl/SZIk\nSZLWTdXEXZm5Y9H7PTx4uPU5wP+q2b8kSZIkSetpHLNb/z0R8RkggQ+vxf4lSZIkSXR+aPMkWpNG\ncmY+fi32K0mSJEnSWlqTRvIoZue2FMX1plpMt18xN9kJ0+WxFUqPF+rLutmy49gbrRS7uTzfNee4\nrXoJQMUx791floFeZbXcu79sB73pujzvPbC1KBagVx4K1Oa77EEAva3QNJuLYgGaTQ8pjq1Vc03t\nPbi9LLbyeQudvYd0UOm13Nvavb8jFtKuuYdUXU9tfU9UnOOuqrnXt3X/aZq66Yraql/SuDX9mgZf\nPWfCliRJktSG42Kc8pH3vWIi21Sbfvw3Olu+7fckz84VxfV6M63F9g/eWRTbbD2Z/oE7ymK3PYL+\n/J6y2OmTio8X6suLQ/vKEp7aWRXbtbq1EN+fny2KbaZ7nTvmtsu6i/Wra9cTdLOObLTYhfia+89G\nu568JiY/diG+v//Wothm++5O1utWrgno7jFLyxjLc5IlSZIkSToerKqRHBFHIuL1i5YvjYhXDd+/\nevj5YxZ9/kvDdd87/ixLkiRJkoDB7NaT+Oqw1fYkHwbOj4idw+Wl494/Czx/0fJPAp+rzJskSZIk\nSetqtY3ke4G3AJcs81kfeB9wHsCwR/luYB/HyY/hJUmSJEkbwyi/Sb4S+OmIWO55Pt8EvhoR5wDP\nA64erp/ImdYkSZIk6biwqZnMV4etupGcmXPAO4GLV9jkauAC4MeBP67PmiRJkiRJ62vU2a2vAF4C\nLH06eh/4U+BngK8MG9SSJEmSJHXKSI3kzLwLuIZBQ3lhKHUDNJk5D/wy8Nqx5lCSJEmStLxm02S+\nOuyEVW63+LfFlwEXLfmsD5CZVyNJkiRJUketqpGcmTsWvd/DouHWmfmaFWKeXp07SZIkSZLW0Wp7\nkiVJkiRJk6bjM0lPom4PFpckSZIkaYxa70nuzRzuXCxH7isO7e+5viiuOeM5cOT+4nSrjrdSv1+W\n76Yytq36sWv7oeJYmKmqX+Vpz3TyWqyt1/3+kaK42v+vrTlPNXmuuZ7a1Nb9q63rqSbd6vvPffPF\n0f0j9xbFNbR1zDNV10R1WW8wNeepWsXfTzX1us2/vUr17y/Pc+21LE2Spt/vH3urtdNq4pIkSZI2\nrLb/H3gsjlz36olsU2161qs7W76t9yRzaF9Z3NTO1mL7+28rCm22n8aRL3+gKHbTGc+hf+COsnS3\nPaL8eAGmdjI7W/bo615vhv78nqLYZvqkqtjW6sf8bFks0Ez3qs5zadrNdK+T12Jtva4pr7projzd\nutjy66n0eGFwzDXlVVNH2jpPbdxDaurHA/FzXy2LnXkU/YNfL4vdekonr4nasq6pm12MbeN++0Da\n37ylLO0dp1fV67buXVXnqfBvEKj/O6StY5aW42+SJUmSJEkaWnVPckQcAS7PzEuHy5cyeBTUnwO/\nmZn/eNG2JwC3AU/IzLL/gpMkSZIkHd0m+z3HbZQSPQycHxE7h8v94et/Ao+MiEct2vYZwGdtIEuS\nJEmSumSURvK9wFuASxatazKzD1wDPH/R+ucDV9VnT5IkSZKk9TNq3/yVwE9HxI4l669i2EiOiIcC\nzwLeU589SZIkSdKKmmYyXx02UiM5M+eAdwIXL1n/KWB7RJzNoIH8V5l599hyKUmSJEnSOih5BNQV\nwPXA25esX+hNfiwOtZYkSZKktdfxXttJNPJUaJl5F4PfIL+EwcRdC64CXgA8HfiTseROkiRJkqR1\nNEojeXGD+DJg1+IPM/MLwH7gzzJzfgx5kyRJkiRpXa16uHVm7lj0fg+DZyQv3ebcMeVLkiRJknQs\njc9JHjdLVJIkSZKkIRvJkiRJkiQNlcxuLUmSJEmaBE5uPXZNv98/9lZrp9XEJUmSJG1Yx0Xz8shH\nf2Mi21SbfuQVnS3f1nuSZ2fniuJ6vRk4tK8s0amdVbH9+dmi0Ga6R/8bN5bFPvy76R/8elns1lOK\nyxkGZV1znvqzNxTFNr1z6X/zy2WxO86oOsc1x1tb1v3Z64tim973tnbM/fk9RbHN9El119OB24ti\nAZptp1ZdU1X5rkn34J2FsSdXnafael11z/3mLUWhzY7TW7mWq4+3om4Vp7uQdk3d3H9rWez23fT3\n31YYe1rnzhPU3wfq7tfl9asq3Yp7V/X36txXytKe+c66e31Lf8O0Wq9b+J6pvl9Ly2i9kSxJkiRJ\nKtR0tsN2Yo3USI6II8DlmXnpcPlSBo+C+l/Ar2XmPx6u3wx8EviFzPyr8WZZkiRJkqS1Mers1oeB\n8yNi53C5D/Qz8yPAVyLiJcP1vwh8wgayJEmSJKlLRh1ufS/wFuAS4JXDdQv9+5cAfxERfwX8X8A/\nGksOJUmSJEnLc7j12JU8J/lK4KcjYsfilZn5deAK4P8Hfj0z7x5D/iRJkiRJWjcjN5Izcw54J3Dx\nMh9fCWzOzHfWZkySJEmSpPVW0pMMgx7jlzCYtOsBmXkEn30sSZIkSeujaSbz1WFFjeTMvAu4hkFD\n2UaxJEmSJOm4MGojeXGD+DJg1zG2kSRJkiSpM0aa3Tozdyx6v4clw62XbiNJkiRJWkvdHto8iUp/\nkyxJkiRJ0nHHRrIkSZIkSUMjDbeWJEmSJE0QR1uPXdPvtzrPlpN8SZIkSWrDcdG8PPKx357INtWm\nH/q3nS3f1nuSZ2fniuJ6vZnWYvvzs0WxzXSP/vyewtiTqmI5tK8oFoCpnXXldeCOothm2yPoH/x6\nWezWUzpXtxbi+3fdVBTbfMdjy89z5Tnu2rUI9ddjTb5rzlNbsbX1uq3y6mS9PnhnUWyz9eTq81RT\n1v39txaFNtt3d/Ic136vtnXMbaVb87dT9ffqgdvL0t52aueOeaPW66pjlpbReiNZkiRJklSo6WyH\n7cQaqZEcEY8E3gg8lsGkX38KvBx4CvCyzPxni7b9A+D9mfmeseVWkiRJkqQ1tOrZrSOiAd4LvDcz\nzwbOBrYDr2X53xb3V1gvSZIkSdJEGuURUD8MzGfmOwAy8whwCfBzwNYVYuz7lyRJkqS10jST+eqw\nUYZbnwN8avGKzJyLiK8CZwI/GBE3LPr4UcD767MoSZIkSdL6GKWRfKyh0/9zyW+S3449yZIkSZKk\nDhlluPWNwBMXr4iIHQx6jG8eZ6YkSZIkSavQ9rDq43C49aobyZn5UWBrRLwAICI2A5cBbwcOrk32\nJEmSJElaP6P0JAOcD/xkRPwtkAwax68YfrbSDNeSJEmSJHXCSM9JzsyvAc9d5qOPDV+Lt31xRb4k\nSZIkScfU7aHNk2jUnmRJkiRJko5bNpIlSZIkSRoaabi1JEmSJGmCdHS0dUQ8E7gC2Ay8NTN/a5lt\nfhd4FoO5sF6UmTesJjYiXgb8DrArM78REacDNwFfGG7yl5n50pXyZiN53bVTi2fnthTH9qbq0m42\nl6dNswEHOzxkR3Fo6XmuPcdt2bu/POO9aWiazWPMjdbKRqvXzab2vpr7/SNFcQ2wd/7Eotje9m6e\n49rv1baOua10S+/Xvem6dAG4b744tDdzuDi26eDfMF2t1+qe4ZOS3gA8A7gN+OuIuDYzb1q0zbOB\nMzPzrIh4EvAm4MnHio2I3cCPAl9ZkuzNmXnuavLX9PutTkDt7NeSJEmS2tDRPtgHO/K/Lp/INtWm\np/ybFcs3Ir4feFVmPnO4/H8DZOZvLtrm94A/z8yrh8tfAJ4GnHG02Ij4I+DXgT8BnrioJ/n9mfm4\n1eS99Z7k2dm5orheb6a12P78bFFsM92rjN1TGHtS8fFCfXlxaF9ZwlM7WznmturWQnx//21Fsc32\n0zp3zG2XdU3dbOuaaCu2zXvIRott8zzVfEd1sazbvP90Ld9djF2I79/zxaLY5mGP6dw9t+2y7lq+\ne72ZoriJ03SyrX8acOui5a8BT1rFNqcBp64UGxHnAV/LzM9ExNI0z4iIG4B7gFdm5l+slLmRGskR\n8UjgjcBjGUz69afAy4GnAC/LzH823O4/AE8EzsvM8nEqkiRJkqTjzWp7v1f9PwARMQ28gsFQ66Xx\ntwO7M/OuiPhe4H0RcU5mLvs/LKv+sURENMB7gfdm5tnA2cB24LUsOsiIeCXw/cCP20CWJEmSJC1x\nG7B70fJuBj3CR9vmkcNtVop9DHA68OmI+PJw+09FxEmZeTgz7wLIzOuBLwJnrZS5UXqSfxiYz8x3\nDHd+JCIuAb4M/Dk8MIvYPwH+SWZ+a4R9S5IkSZJG1c3h1p8Ezhr+Vvh24HnABUu2uRa4CHh3RDwZ\nuDsz74yIfcvFDifuOnkheNhQXvhN8i7grsy8PyIezaCB/KWVMjfKtHvnAJ9avGLYPf1V4EzgB4AL\ngWdl5sER9itJkiRJ2iAy8z4GDeAPATcCV2fmTRFxYURcONzmg8CXIuJm4M3AS48Wu0wyi4d0P5VB\nD/MNwB8BF2bm3Svlb5Se5GONG/874ETgxxgMy5YkSZIk6e/JzOuA65ase/OS5YtWG7vMNo9e9P69\njNBGHaUn+UYGk3E9ICJ2AI8CbgbuBJ4DXBERTxthv5IkSZKkIs2Evrpr1Y3kzPwosDUiXgAP7ko9\nzwAAIABJREFUPAD6MuDtwMHhNn8H/HPg/4uIJ4w/u5IkSZIkrZ1RepIBzgd+MiL+FkgGjeNXDD/r\nA2TmJ4EXA9dGxBnjyqgkSZIkSWttpOckZ+bXgOcu89HHhq+F7f4b8J11WZMkSZIkHVU3Z7eeaKP2\nJEuSJEmSdNwaqSdZkiRJkjRB7EkeO3uSJUmSJEkaar0nuTdzuO0sFDjWI6OP4lt3lcVN96BfkW6L\nZue2FMX1pqBpNhen21bdqk5380PGk5ENoJv3D43K87x6tWXVNOX/d97F87Rr+6HCyJlOHu+GtWWm\nOLTfP1IU19V+Peu1NND02214dbPVJ0mSJKnruvr/GQ9y5BP/aSLbVJu+7xc7W76t9yRzaF9Z3NRO\nZmfnikJ7vZmq2P78nqLYZvok+nf/bVnsiWfTP3hnWezWk4uPF+rLqya2pn60VbeK0x2mXVO/2jpP\nnasf0M06UpnnNo4X2r0PbKh6XXOOa+NbvJ7qvs9ni2Kb6V51WXexbnYtdiG+6u+2NupIi/VjI9Zr\naTn+JlmSJEmSpKGRepIj4pHAG4HHMmhg/ynwcuApwJ8AXwIeCrw3M1853qxKkiRJkh7E2a3HbtU9\nyRHRAO9l0AA+Gzgb2A68lsFvi/9HZp4LfC/wExHxxDXIryRJkiRJa2aU4dY/DMxn5jsAMvMIcAnw\nc8DWhY0y8xDwN8Cjx5hPSZIkSZLW3CiN5HOATy1ekZlzwFeBMxfWRcTDge8DbhxHBiVJkiRJK2km\n9NVdozSSjzW1+A9GxN8AtwLvy8zPl2dLkiRJkqT1N0oj+UbgQb8zjogdwKOAm4H/mZnfw6DH+Z9H\nxO6x5VKSJEmSpHWw6kZyZn4U2BoRLwCIiM3AZcDbgYOLtrsF+I/AvxtrTiVJkiRJD9Y0k/nqsFGf\nk3w+8JMR8bdAMmgcv2L42eLh2L8HPHP4yChJkiRJkjphpOckZ+bXgOcu89HHhq+F7Q4xGIYtSZIk\nSVJnjNRIliRJkiRNkI4PbZ5Eow63liRJkiTpuNV6T/Ls3JaiuN7UmDOyXk6YbiXZ3szhVtIF2PXQ\nfYWRM/TvO1QU2dBe3SpN94G0D+8vC54+qdXzXKomz/37y2MboN8/Uhxble/+/cXp1sR2Vf/IvUVx\nXT7mUrX3n5proq3rqUbTlPcVlB4vDI551/ay7zeY2XD3+mr3f6s4tKaO1Kgpr7rvp7p6LR0vmn7/\nWI8/XlOtJi5JkiRpwzou2vZHrn/TRLapNn3vL3S2fNvvSZ6dK4rr9WZai+3P7ymKbaZPor//1rLY\n7bvpH7yzLHbryXCotDcXmNpZV17fvKUottlxOv39t5XFbj+tc3VrIb5/z5eKYpuHPbr8PFee45rY\nmjz3D9xRFgs02x5Bf362LHa6V5fvmntIRWwb9QPGcM89+PWi2GbrKZ27D9ReE9X3n4proq3rqbX7\nT+HxQnfLq7P1uuJvr5p8dzG2tl538p4rLcPfJEuSJEmSNDRyT3JE3A98Zhh7E/CzmTkfEScAdwBv\nzcxfGW82JUmSJEl/j7Nbj11JT/LBzDw3Mx8HHAb+1XD9jwKfAn5iXJmTJEmSJGk91Q63/gvgzOH7\nC4A3AV+KiO+v3K8kSZIkSeuuuJE8HF79LOAzETEFPB24DriGQYNZkiRJkrSmmgl9dVdJI3k6Im4A\n/hq4BXgb8E+B/56Zh4H3AT8eEd0uGUmSJEnShlPyCKj5zDx38YqIuAB4SkR8ebjq4cCPAB+pzJ8k\nSZIkSeum+jnJEbED+AHgkZl573DdixgMubaRLEmSJElrxdmtx65kuHV/yfKPAx9daCAPXQv804h4\nSHHOJEmSJElaZyP3JGfmjiXL7wTeuWTdN4CT67ImSZIkSdL6qh5uLUmSJElqicOtx672OcmSJEmS\nJB037EkusHf/dFFcbxr2zp9YFrsd9h7YWhZbFjY+mx9aHNqcMDXGjHTElpni0Nm5LUVxvRaLuSbP\nzeay2AVNU/7/hFX5bjYXp1tz/+li/QBoNm2s6S36/SNFcePoR9i7v+xk96aBwny3qc1roqasu3gt\nt5nn5oTyP4Q2WlmX1ksY3gek40TT7y+dh2tdtZq4JEmSpA3ruBinfOQzb53INtWmx/98Z8u39Z7k\n2dm5orheb8bYEWI5tK8oFoCpnVVp9w/cURTbbHtEeb4r89xG7EJ8f362KLaZ7nXumNuu123Vr41Y\nry2v1ce2cQ9YSLsq3wfvLIpttp7cyXNcep5gY96v27z/dPFe37Vroja+1b8lpGX4m2RJkiRJkoZG\n7kmOiPuBzwxjbwJ+NjPnF63fDNwMvDAz948zs5IkSZIkraWSnuSDmXluZj4OOAz8qyXrHw98E7hw\nXJmUJEmSJGk91A63/gvgMcus/8sV1kuSJEmSNLGKJ+6KiBOAZwEfXLJ+M/BjwEfrsiZJkiRJOqqm\ns5NIT6ySRvJ0RNwwfP8/gN9fsv404Bbg9+qzJ0mSJEnS+ilpJM9n5rkrrY+IaeBDwHnAH1flTpIk\nSZKkdTT2R0Bl5jxwMfDaiLDvX5IkSZLWStNM5qvDShrJ/WOtz8y/YfAYqJ8qyZQkSZIkSW0Yebh1\nZu5YzfrMfG5ppiRJkiRJakPx7NaSJEmSpJZ1fGjzJBr7b5IlSZIkSeoqG8mSJEmSJA01/f5K83Ct\ni1YTlyRJkrRhHRfjlI98/g8msk216ZwXdbZ8W/9N8uzsXFFcrzez4WI5tK8olqmdxekupF2T7/78\nbFFsM91r5ZjbOscL8RvpmDdqWW+kczyOtDdSeXX5Xr/RYovPE3S2bnYtts20N9q9q820q8+TtIzW\nG8mSJEmSpEJO3DV21Y3kiLgf+AywmcGzkV+Ymfsj4nTg/Zn5uNo0JEmSJElaD+OYuOtgZp6bmY8H\nvglcOIZ9SpIkSZK07sY93PovgSeMeZ+SJEmSpOU0PrBo3MZWohGxGfgx4HPj2qckSZIkSetpHI3k\n6Yi4AbgD2A383hj2KUmSJEnSuhtHI3k+M88FvhM4BJw3hn1KkiRJko6pmdBXd41tuHVmzgMXA6+N\niG6XiiRJkiRpQxpHI7m/8CYz/4bBY6B+ari+v1KQJEmSJEmTpnp268zcsWT5uYsWH1+7f0mSJEnS\nChoH8Y6b84VLkiRJkjRkI1mSJEmSpKHq4daSJEmSpJY09nuOW9Pvtzq3lhN7SZIkSWrDcfFj3iN5\n1US2qTbFBZ0t39Z7kmdn54rier0ZY9chdhxpc2hfWcJTO+kfuKMotNn2iM6Wdf/gnUWxzdaTO3fM\nrdUtGNSv+dmi0Ga619o10bXz1GbaXY3tz+8pim2mT2r1PNXk22vi+I9t4xwvpN3W3xJtXMvW69Fj\npeW03kiWJEmSJJXqbIftxCpqJEfErwIXAPcDR4ALgeuB/wD8c2AO+Bbwa5n5X8eTVUmSJEmS1tbI\njeSI+H7gOcC5mXlvRDwceCiDBvLJwDnD9ScBPzTW3EqSJEmSOi8inglcAWwG3pqZv7XMNr8LPAs4\nCLwoM284WmxE/DrwXAZzX+0bxtw6/OxXgJ9j0NF7cWZ+eKW8lUyFdgqwNzPvBcjMbwD3AD8P/OKi\n9Xsy848K9i9JkiRJWo2mmczXUUTEZuANwDOB7wYuiIjHLtnm2cCZmXkW8C+BN60i9rcz8wmZ+T3A\n+4BXDWO+G3jecPtnAldGxIpt4ZJG8oeB3RGREfHGiHgqcCbw1czcX7A/SZIkSdLG8X3AzZl5y7CT\n9d3AeUu2eS7wDoDM/DhwYkSccrTYzFw8i9t2YO/w/XnAVZl5b2beAtw83M+yRm4kZ+YB4IkMWvOz\nwNU4rFqSJEmStDqnAbcuWv7acN1qtjn1aLER8dqI+CrwIuB1w9WnDrc7WnoPKHrydGYeycyPZear\ngYsYtPJ3R4TzqEuSJEnSutk0oa+jWu2znUeeujszfzUzHwW8ncHvlkfOw8iN5Ig4OyLOWrTqXOAm\n4G3Af4yIhwy360XE/zHq/iVJkiRJx7XbgN2Llnfz4J7e5bZ55HCb1cQCvAv4R0fZ120rZa7kEVDb\ngf8UEScC9wF/x2Do9RyDGa5vjIhDwAHg3xXsX5IkSZJ0/PokcFZEnA7czmBSrQuWbHMtg1HL746I\nJwN3Z+adEbFvpdiIOCsz/24Yfx5ww6J9vSsiLmcwzPos4BMrZW7kRnJmXg88ZYWPf3n4kiRJkiSt\ntWPMJD2JMvO+iLgI+BCDxzj9fmbeFBEXDj9/c2Z+MCKeHRE3M+iAffHRYoe7fl1EBIPHPH0R+IVh\nzI0RcQ1wI4OO3pdm5orDrUt6kiVJkiRJKpaZ1wHXLVn35iXLF602drh+xZ/7ZuZvAL+xmrwVTdwl\nSZIkSdLxyJ5kSZIkSeqqDg63nnQ2kjtk1/b5wsh2n8w1O7elKK43Bc3msthuW+2M+CqtWzCoX3v3\nT5XFThcnC9RdE129D2j19u4vq2C19bJWTb5rrgl1Q6vneFP5n7u9mcPFsV29liVB0++3+ge5rQFJ\nkiRJbTguumCP3PyeiWxTbTrzJzpbvq33JM/OzhXF9XozGy62P7+nKLaZPqk43YW02zpmDu0rimVq\nZ+fO8UJ8/+DXi2Kbrad07pjbLuuu5but+8BGLeuNFNtm2hstts20N1rsQnx/frYotpnubai/QzZq\nvT4+dLYtOrFGbiRHxK8yeA7V/cAR4ELgt4FTgG8BW4CPAK/MzHvGl1VJkiRJktbWSLNbR8T3A88B\nzs3MJwA/AtzKYNj0vxiuezyDxvKfjDmvkiRJkiStqVEfAXUKsDcz7wXIzG9k5h3Dz5rhunuBfws8\nKiIeP7acSpIkSZIerNk0ma8OGzX3HwZ2R0RGxBsj4qmLPnvgB+OZeQT4NPBdY8ijJEmSJEnrYqRG\ncmYeAJ4I/EtgFrg6In52+PHSX4w3OHu1JEmSJKlDRp64a9hL/DHgYxHxWWChkfxAgzgiNgOPA24a\nRyYlSZIkSctonN163EaduOvsiDhr0apzga8M3zfDbR4CvA74amZ+biy5lCRJkiRpHYzak7wd+E8R\ncSJwH/B3DB4B9V+AP4yIbwEPBf4bcN44MypJkiRJ0lobqZGcmdcDT1nmo6ePJzuSJEmSpNVzuPW4\ndXtubkmSJEmSxshGsiRJkiRJQyPPbi1JkiRJmhCN/Z7jZiO5wK7thwojZ9i1fb44ln43Hzu9a+tc\nYeQM/fvKyrrTv8w4vL8sbut4szGK3szhzsUCdddjVbrl95Ca2l2Xbnu6mu9Su7YdKIysP96q77eK\nfLd1LdYoLytoM9+1981Ourfwe3W6V5VsF+9dG7J+SMto+u02vLrZ6pMkSZLUdZ3uV1lw5Mt/OpFt\nqk1n/NPOlm/rPcmzs2W9jL3eTGux/fnZothmukd/fk9h7En0D95ZFrv15OLjhTGU14Hbi2KbbafS\n339bWez20zpXtxbi+3ffXBTbnHhma8fMoX1FsUztbCd2GF9zPbZ3D2knttV7SAv5bvU75uDXi2Kb\nrafU339q6ldFvtu6Ftuol9Bu3ay553btelqI73/zy0WxzY4zqsqri/eu2u/VrtWRXq+bI46WaprO\ntkUnlgPYJUmSJEkaGqknOSJ2Ah8ZLp4C3A8s/DfZE4DLM/PS4baXAtsy8zVjyqskSZIkSWtqpEZy\nZu4DzgWIiFcBc5l5+XD5EHB+RLxuuN1Ejo2XJEmSpOOHw63HrXa49eIzci/wFuCSyn1KkiRJktSK\ncf8m+UrgpyNix5j3K0mSJEnSmhtrIzkz54B3AhePc7+SJEmSpGU0mybz1WFrkfsrgJcA29Zg35Ik\nSZIkrZmxN5Iz8y7gGgYNZSfvkiRJkqQ100zoq7tqG8n9Fd5fBuyq3LckSZIkSetqpEdALbb0+ceZ\nuWPR+z043FqSJEmS1DHFjWRJkiRJUsuabg9tnkTdnnZMkiRJkqQxsie5wN79U0VxvWnYu3+6PPbA\n1rLYsrCx2Xtwpiiutw32zpc9cru3HXozh4ti27b33pOL4npjzscoZue2FMX1ptqJXYivuR5r1N1D\n2oltU1fzXWrvgbJfK43jXl9Vvyry3da1WKO0rKDdfNfcc7tq77fKpsnpUVdeXbx31X6vSseLpt9v\ndQJqZ7+WJEmS1IbjYpxy/9aPTGSbqtn9jM6Wb+s9ybOzc0Vxvd6MsesQ22batbEc2lcUy9ROy/o4\nj20z7Y0W22baxnYj7Y0W22baGy22zbQ3WmybaVf/vSgtw98kS5IkSZI0NHJPckTsBD4yXDwFuH/4\n72eBLcP39wxfs5n5Y+PJqiRJkiTpwTo7qnlijdxIzsx9wLkAEfEqYC4zL1/4PCLeDrw/M987tlxK\nkiRJkrQOxjHcern/uvC/MyRJkiRJndP6xF2SJEmSpEKN/ZPj5sRdkiRJkiQN2UiWJEmSJGnI4daS\nJEmS1FWN/Z7jNo4S7a9ynSRJkiRJE62qJzkzX7PMuhfX7FOSJEmSpLY43FqSJEmSOsvZrcfNAeyS\nJEmSJA3ZSJYkSZIkaajp91udY8sJviRJkiStv0P7YGpn58cq92//HxPZpmpOfWpny7b93yQf2lcW\nN7WT/je/XBTa7DiD/j1fLIt92GPo33VTWex3PJYjf/PmothN33Mh/dnry9LtfW95OQNM7WR2dq4o\ntNeb4citHymK3bT7GfT3froottn1BPrze8pip0+if/DrZbFbTykuKxiUV8157h+4oyx22yPqYvff\nWha7fTf9Oz9eFnvyk+gfuL0oFqDZdmpxfLPt1KproibdqvP0jc+XxT78nOqyrrrX3/OlsnQf9ui6\ndCvKuqp+zH21LN2ZRxV/L8Lwu/Hum8tiTzyz7jt5/21lsdtPo393lsWeGFX3+tLzBMNzNT9bFjvd\nq7z/VNxDar5XK/7uqv1e/cCmsoGTzzlypK68Kq6nmnNcVT8Kv89h+J1ecU3V3K+r/s6VluFwa0mS\nJEmShkbqSY6IncBCt+ApwP3ALDDDoMH9xMy8KyK+A/gU8LTMLP+vVkmSJEnSUdjvOW4jNZIzcx9w\nLkBEvAqYy8zLh8svB34TuHD475ttIEuSJEmSuqT2N8mLf4z9/wCfiohfAv4x8NLKfUuSJEmStK7G\nNnFXZt4XEf8WuA740cy8f1z7liRJkiQto+nsJNITa9wD2J8F3A48bsz7lSRJkiRpzY2tkRwR3wM8\nA/h+4JKIOGVc+5YkSZIkaT2MpZEcEQ3wJuBfZ+atwO8Arx/HviVJkiRJK2iayXx1WG0juT/89/8E\nbsnMjw6XrwQeGxE/WLl/SZIkSZLWTfHEXZn5mkXv3wK8ZdHyEeCJdVmTJEmSJGl9jW12a0mSJEnS\nehv3XMyyRCVJkiRJGrKRLEmSJEnSUNPv94+91dppNXFJkiRJG9ShfTC1s9vTMAP9Oz8+kW2q5uQn\ndbZs2/9N8qF9ZXFTO5mdnSsK7fVmqtLtH7yzKLTZejL9ua+Wxc48iv6BO8pitz2iuKxgUF6tlfX8\nbFFoM91rrW6V5hkG+e7P7ymMPamT11MrsWNIe0OVV8XxQt11UXstd628Wqsfw/iq77eKc7yhvmOG\nadccc1uxXbueYHj/qajXXTvm2nNcWlZQX16t1E1pBQ63liRJkiRpaKSe5Ig4HXh/Zj5u0bpXA5cC\nfwdsAc4Acvjxr2fme8eSU0mSJEnSEp0d1TyxxjHcug/8+8y8PCK+E/jTzDx3DPuVJEmSJGldjWu4\ndbPkX0mSJEmSOqf9ibskSZIkSWUa+ynHbdSe5JWmF5/IacclSZIkSRrFqI3kfcB3LFm3Eyh/5o0k\nSZIkSRNipEZyZu4H7oiIpwNExMOBfwL8xRrkTZIkSZJ0VM2Evrqr5DfJLwTeGBGXD5dfnZlfXvS5\nQ68lSZIkSSuKiGcCVwCbgbdm5m8ts83vAs8CDgIvyswbjhYbET8JvBr4LuAfZeb1w/WnAzcBXxju\n+i8z86Ur5W3kRnJm3gT88Aqf3QI8ftR9SpIkSZI2hojYDLwBeAZwG/DXEXHtsK25sM2zgTMz86yI\neBLwJuDJx4j9LHA+8OZlkr15tY8qHtcjoCRJkiRJ661pJvN1dN/HoNF6S2beC7wbOG/JNs8F3gGQ\nmR8HToyIU44Wm5lfyMy/rS1SG8mSJEmSpPV0GnDrouWvDdetZptTVxG7nDMi4oaI+O8R8QNH29BG\nsiRJkiR11qYJfR3VauexGtcMYLcDu4fDrf8N8K6ImFlp45KJu8ZramdxaK+34nGtabrN1pPLY2ce\nVR677RHFsVVlVRtfU9bTvVbSrTneqjwDzfRJ5cEdvJ5ai62M32jlVXsPaeta7mR5tXhNVH2/VZzj\njfYdA3XH3FZsJ68n6up1F4+56m+YmrKCLt43uz0Fc7fdBuxetLybQY/w0bZ55HCbh6wi9kEy8zBw\nePj++oj4InAWcP1y27feSJ6dnSuK6/Vm4NC+skSndlal258veyx0M92j/81bymJ3nE7/wB1lsdse\nUZxnGOS7qrzmvlqW7syj6N/zxbLYhz2mtfpRGrsQ37+77GcUzYlnt3bMNenWxJZeE1B3XTTTvbp8\nH/x6WbpbT6E/v6csdvok+gfvLEz35Op6XXUPaSHftXmuO97y+lF7nqrq9T1fKgptHvboqnrd1v2n\nOLbNtKd2tnY91dxvq79XK+pmVVm39B3TRp6h3XxX/Q2jtnwSOGs46/TtwPOAC5Zscy1wEfDuiHgy\ncHdm3hkR+1YRC4v+EyQidgF3Zeb9EfFoBg3kFW8ODreWJEmSpK5qe4Kugom7MvM+Bg3gDwE3Aldn\n5k0RcWFEXDjc5oPAlyLiZgazVb/0aLEAEXF+RNwKPBn4QERcN0zyh4BPR8QNwB8BF2bm3Svlb6Se\n5Ij4M+A3M/PDi9b9EnA28O+BO4CLMnO5KbclSZIkSSIzrwOuW7LuzUuWL1pt7HD9HwN/vMz69wDv\nWW3eRu1Jvgp4/pJ1zwPeBfwk8F9ZvqtbkiRJkqSJN2oj+T3AcyLiBIDhOPBTM/MvGDSeXwmcFBGr\nmYJbkiRJklSlmdBXd43USM7MbwCfAJ49XPV84OqI2A2clJmfBv4Lg95lSZIkSZI6pWTirsVDrp83\nXH4eg8YxDH4I7ZBrSZIkSVLnlDSSrwV+JCLOBbZm5g0MGsUvjogvDz9/XEScOcZ8SpIkSZKWansW\n64LZrSfdyI3kzNwP/DnwduBdEXE2sC0zH5mZZ2TmGcBvYm+yJEmSJKljSp+TfBXwOL499Pq9Sz5/\nD39/FmxJkiRJkibaSM9JXpCZfwJsHi7+2jKffxY4pyJfkiRJkqRj6vbQ5klU2pMsSZIkSdJxx0ay\nJEmSJElDRcOtJUmSJEkToOMzSU+iTjeSZ+e2FMX1purS3bu/bAe9adj7rZ1lscDeg9vLYreV5xkG\n+a7RPGRbeexDTyyObat+1GqmyuoItHfMNenWxJZeE1B3XfSmK/N9oOya6G2FvfvLLsjeNOw9sLU4\n3TY1mzr9VTWyZtNDWku7pl43D31Ycbo19bqt+0+b6u4/7dwHau63tfYe7pWlTeU10ZQP2Gzte7Xy\n78WNeD3q+NT0+/020281cUmSJEkb1nHRBdv/xucmsk3VPPwfdLZ8W//v+dnZuaK4Xm/G2HWIHUfa\nHNpXlvDUzqrYrpb1Rjrmtsu6a/nuYuw40t5o10Qbx7uQdtfy3cnzBBvu+63L9x+viclPu/o8HRc6\n2xadWFUTd0XEn0XEjy1Z90sR8cGI+Gxd1iRJkiRJWl+1s1tfBTx/ybrnAa+r3K8kSZIkSeuutpH8\nHuA5EXECQEScDpwK3Fq5X0mSJEnSsTTNZL46rKqRnJnfAD4BPHu46vnA1TghlyRJkiSpg2p7kuHB\nQ66fN1zu9n8dSJIkSZI2pHE0kq8FfiQizgW2ZuYNY9inJEmSJOmYNk3oq7uqc5+Z+4E/B94OvKs6\nR5IkSZKk/93encfLUVb5H/9cwpIEIpFwAYFgEOQIGGYQdEiAEdkEBWFEJdEZFkHwx4AgIwqKwoAo\nM4KAMiCCzrgMERUFVBCcICpJEEUwbB5FQDbBGFaBsIT+/XGeJp1Od1V11b2p27nf9+uVV/p216mn\nuru6qs6zldRkqFL8WcDU9H+TxiWLiIiIiIhIX1l5KFbi7pcDY1r+vhfYaijWLSIiIiIiIl30+UzS\nI1F/dxYXERERERERGUJKkkVERERERESSIeluLSIiIiIiInVQd+uhpiRZht2Cp1YtFTc4dog3pE80\nGi+VitPhsX8MTni+7k3oKzqGyIpI+7WIyMg10GjUOgm1ZsAWEREREZE6rBBtDI3Hfz8ic6qBiZv1\n7edbe0vyggVPlYobHJyg2OUQW2fZg4MTYNHCUrGMndS3n3Xj2QWlYgfGDfbde677s9Z+PfyxdZbd\nr7F17B/Nsvttu/vye4K+fc/9Fltn2aPtN1Fn2ZW/pxVC3+aiI1ZPSbKZXQuc7u7XtDz3SWAm8Byw\nEfBE+rfA3Xcfwm0VERERERERGVa9zm49C5jR9tzbgMPcfWvgCuAj7r61EmQRERERERHpN70myZcC\nbzezlQHMbAqwvrtf37KM2vtFRERERESWg4GBgRH5r5/1lCS7+6PAjUTrMUSr8iVDvVEiIiIiIiIi\ndei1JRmW7nK9f/pbREREREREpO+VSZKvAHYxs62B8e5+8xBvk4iIiIiIiBQyMEL/9a+ek2R3/xvw\nU+C/gYuHfItEREREREREalKmJRmii/VUOne1HpE3sxYRERERERHJ09N9kpvc/XJgTIfnD668RSIi\nIiIiIlJMn88kPRKVbUkWERERERERWeEoSRYRERERERFJSnW3FhERERERkZFA3a2HWu1J8trjniwZ\nOWFIt6MXa6/xbMnICaw95v6SsVuw9vi/lS63ToMTni8d22gsLhU3ULHcKiqX+9ILQ7Mhy1GV91wl\ndu01FpWOhQm17SNVVDn+9OP7hT7+LZfUaLxUKm4ojntrr/5MycgJo+54XfZ7gtF5OVvYwmyCAAAg\nAElEQVTn8afK9VOVY26V33Jdqn5P/XqeEWk30GjUOhm1ZsIWEREREZE6rBh1Vk/eMzJzqlds3Lef\nb+0tyY2/PVgqbmCNDViw4KlSsYODEyrFNp79S6nYgXHr0Hj0jnKxa21B4+k/l4td/VWl3y9U/7xY\ntLBcwWMnVfqsq5Rby/tNZTeefqhU6MDq69f2m6jyWVfbPxaUiwUGxg323z7Sh78JqHf/6sdyy+7X\nlfZpiP3rmUfKlT1+3b7bN6v/Fqsdf+o6XvfjeaLq8afK9VOla74Kv+W++56g8jm9tve8IhjQNFND\nTZ+oiIiIiIiISJLbkmxmZwH3uvs56e+rgfvc/QPp7zOBB4AvAn8GLnL3E4Zvk0VERERERESGR5GW\n5OuB6QBmthIwCdii5fVpwBxgN+AmYL8h3kYRERERERHpaGCE/utfRZLkeUQiDLAlcBvwlJlNNLPV\ngM2Bm4GZwPnA3WY2reOaREREREREREaw3O7W7v6Qmb1oZpOJZHkesEF6/CQwn0i23wIcSrQ0z0zL\niYiIiIiIyHAZ6O9W25Go6MRdc4ku19OJ5HdeejwtvbY3cJ27Pw9cBuxrZvq2REREREREpK8UTZLn\nANsDU4FbgRtYkjTPJVqOdzOze4hxyWsBuwz51oqIiIiIiIgMo15akvcCFrp7w90fAyYSLcm3ADsA\nk919Y3ffGDiSSJxFRERERERk2NQ9QdfonLgLYrKuSUQLctN84HFiLPJsd3+h5bUrgL3MbJUh2UoR\nERERERGR5SB34i4Ad18MrNn23MEtf3697bVHgXUrb52IiIiIiIjIclQoSRYREREREZERSLNbD7mi\n3a1FREREREREVnhKkkVERERERESSgUajUWf5tRYuIiIiIiKj1orRT/nph0ZmTrX6+n37+dY+JnnB\ngqdKxQ0OTqgtlkULS8UydhKNZxeUCh0YN0jjmYfLxY5fr/T7heqfV+PZv5SKHRi3TqXYftu3mvGN\nx+4sFTvwys378jdRS+wQlF3bb+KZR8rFjl+30vGnzmPIaIut83uqdn4rv1/X9Vus81jfb9vdj7HN\n+CrXT3Wd3/rufA59+XscHJxQKk5WfOpuLSIiIiIiIpL03JJsZmcB97r7Oenvq4H73P0D6e8zgQeA\n97v71KHcWBEREREREWmh2a2HXJmW5OuB6QBmthIwCdii5fVpwNzqmyYiIiIiIiKyfJUZkzwPOCs9\n3hK4DVjPzCYCzwKbA48OzeaJiIiIiIiILD89tyS7+0PAi2Y2mWg1ngfcmB5vC9wKPD+UGykiIiIi\nIiKdDIzQf/2r7OzWc4ku19OBzwMbpMdPEN2xRURERERERPpO2dmt5wDbA1OJluMbWJI0z6Xfqw5E\nRERERERkVKrSknwccJe7N4DH0pjkLYBDgVcM0faJiIiIiIhINwO6q+9QK/uJ3kbMan1Dy3Pzgcfd\nvTlpV6PKhomIiIiIiIgsb6Vakt19MbBm23MHtzy+F9iq0paJiIiIiIiILGdlu1uLiIiIiIhI7TQd\n1FBTB3YRERERERGRREmyiIiIiIiISDLQaNQ6v5Ym9xIRERERkTqsGP2UF/11ZOZUY9fu28+39jHJ\nCxY8VSpucHCCYpdDbJ1lDw5OgEULS8UydlLfftaj6T3X/Vlrvx7+2DrLVmx/lD3aYusse7TFNuPr\nOubqWN8fsVIfM9sDOBsYA1zk7v/RYZkvAHsCzwAHufvNWbFmthZwCfBq4F7gPe7+eHrtBOD9wGLg\nQ+5+TbdtU3drERERERERWW7MbAxwLrAHsAUw08w2b1vmbcCm7v5a4DDg/AKxxwM/cffNgNnpb8xs\nC2D/tPwewHlm1jUXzkySzewsMzu65e+rzezClr/PNLPFZrZZW9zZZvbRrHWLiIiIiIhIVQMj9F+m\nNwF3ufu97v4C8C1gn7Zl3gF8DcDdfwlMNLP1cmJfjkn/75se7wPMcvcX0u2K70rr6SivJfl6YDpA\nyrQnEdl303Tgp8CM5hNpuf2AWTnrFhERERERkdFnA+D+lr8fSM8VWWb9jNh13f2R9PgRYN30eP20\nXFZ5L8sbkzwPOCs93hK4DVjPzCYCzwKvA95MJMSnpOX+EfiTu9+PiIiIiIiIDJ+xk/pxgqyik40V\neW8Dndbn7g0zyyqn62uZLcnu/hDwoplNBqYRSfON6fG2wHx3nw+8ZGZbpbAZwMVZ6xUREREREZFR\n60Fgcsvfk1m6pbfTMhumZTo9/2B6/Ejqko2ZvQr4S8a6HqSLIhN3zSW6VU8nkuR56fE0YE5aZhYw\nIw2i3gf4ToH1ioiIiIiIyOjza+C1ZjbFzFYlJtW6om2ZK4ADAMxsO+Dx1JU6K/YK4MD0+EDgspbn\nZ5jZqma2MfBaovG3oyJJ8hxge2AqcCtwA0uS5rlpmW8B7wF2JVqXFxRYr4iIiIiIiIwy7v4icCRw\nNXAHcIm732lmh5vZ4WmZK4G7zewu4ALgiKzYtOrTgd3M7PfAzulv3P0O4Ntp+auAI9y9a3frIvdJ\nngscR8wg1gAeS2OStwAOTYXebWZ/TRtxdqFPRkREREREREYld7+KSFhbn7ug7e8ji8am5x8lGm47\nxXwG+EyRbSvSknwbMav1DS3PzSeaux9teW4WYMD3ihQsIiIiIiIiMtLktiS7+2JgzbbnDu6w3DnA\nOUO3aSIiIiIiIiLLV5GWZBEREREREZFRQUmyiIiIiIiISKIkWURERERERCQZaDS6zny9PNRauIiI\niIiIjFKLFsLYSQN1b4aMPEVuATWsFix4qlTc4OCEvoxl0cJSsYydROOZR0qFDoxft/Q2Q/9+Xv22\nfzTjR9N7rvuz7rft7sf9o2q8YpdPbJ1lj7bYOssebbHN+CrHzX475tb9WffduVGkC3W3FhERERER\nEUlyk2QzO8vMjm75+2ozu7Dl7zPN7Dkze33Lc8eZ2ZeGfnNFREREREREhk+RluTrgekAZrYSMAnY\nouX1acAngfPSMhsAhwMfG9ItFRERERERERlmRcYkzwPOSo+3BG4D1jOzicCzwObAm4FtzOxA4O3A\nSe7+xDBsr4iIiIiIiMiwyW1JdveHgBfNbDLRajwPuDE93ha41d1fAI4BTgMmufv/Dt8mi4iIiIiI\niAyPohN3zSW6XE8nkuR56fE0YA6Au/8ZmA2cP/SbKSIiIiIiIjL8iibJc4DtganArcANLEma57Qs\n9xK697GIiIiIiIj0qV5akvcCFrp7w90fAyYSLclzh2vjRERERERERJanoknybcSs1je0PDcfeNzd\nH21bVi3JIiIiIiIi0peKzG6Nuy8G1mx77uAOyy3znIiIiIiIiEi/KNqSLCIiIiIiIrLCU5IsIiIi\nIiIikihJFhEREREREUkGGg3NsyUiIiIiIiICakkWEREREREReZmSZBEREREREZFESbKIiIiIiIhI\noiRZREREREREJFGSLCIiIiIiIpIoSRYRERERERFJlCSLiIiIiIiIJCvXvQFSnpmtAeDuf1sOZe3s\n7temxxu7+z0tr73T3b9Xcr3/4O6/HKrt7LD+f8t4ueHuny+xzo2A/d39c+W3rBwz28/dL814/cAu\nLzUA3P3rPZa3KrAl8KC7/yVn2THuvriX9Rcofxywl7t/p2T8G939VznLvA44DHhdeuoO4EJ397w4\nd/9dejzW3Re1vLadu9+QEfvFjFU33P1DOWVvlPW6u9+X9fpQMbO1gX8E/uTuN+Us+xl3//jy2K4O\nZa8NvJelv+NZ7r6wQOya7v5El9c2yvqszWytrHW7+6MZsVnHrueAu4Br3P2lDrFvSA8HSL/9tnJ/\nk1Hueu7+cEbZXeXt96ONma3i7i+UiBsA3uPulwzDZg0ZM9uK+E01gDvd/bYCMSd1eal5jjpl6LZw\nqXK7/lbNbEd3/0VGbOlrHBHpX7UnyTkXINu6+69LrjczmciJfZO735izjHW7iDaz7d19TolyCyVf\nZnYEcDywRvr7b8B/uPt/5cRd4+6797pdyZnA1unx91oeA3wyPVfGd4HJZQILJlAT6HCRSJeLx4yy\n1gHeDcwE1ge+XyDmIOBDLH1h/kV3/1rRcjs4G8jar9/Isu9rANgb2BDITJLN7IK0jbeZ2ZrADcCL\nwCQz+4i7X5wR/hsz+3/uPjfvTeRswxhgD+Kz3g24HiicJJvZlil2BvAEsE3GstOIfffLwAVE75qt\ngevShdG8jKJmseR3MBd4Q8tr57P0b6TdTcT3NNDhtSL75ZVdlhtM/8ZkBZvZVOA4ogIE4DbgTHef\nnxP3I+Bjaf94FXAz8CtgEzO70N3PygjfEyiVJKeE8Ql3v6jt+UOACe5+dkbs5sC1wDXAb4jv+E3A\nx1Pl3+9yir+O9F2a2Wx336XltcvJ/p5/w5LvaX3goZbXGsBrMmK7HbsAJgI7A4cQx6V2vya+026V\nAG/JKPe3ZnYrsX9f6u6PZyzb7nwzu5HYR3qJA+K8zZLfRfvvo5GVqJjZqu7+fJfXlqrY7XGbNnT3\nB3pYfgDYhTgG7QWsm7HsGsDhwCbE9/UlYB/gNKISpGuSnL6jbhruvlXOdu5B/Ha+0/b8u4jf2k8y\nYtck9v2NgN8S39NUM7sP2Mfdn8wo+mmW3a9XJ/bltYGuSXLFa5jr0vntjGZlrpmtB5wBbE7GeYJq\n1ziVVP2eh0Ne5U+VbTazjxIVmPeX2K4vEceejjmFSK9qT5KB2Wa2e3uNupntDnyVuLAvIzOZMLOV\ngH8inZzc/Uoz2xb4DLAO8Pc567/TzL4JHNGhJfdcsi+cWrejp+TLzE4EpgM7ufvd6bnXAF8ws7Xc\n/dSM8MEi2zSS9ZpAufvJFcp6BfDOVNamwGXAxu6+QYHYA4GjgWOJRGKA2Cc+Z2aNXlt0i3L3I1u2\nYSWi9exjRLJ7WoFV7Ojuh6fHB8cqfd90MfFjICtJPgz4opn9Fviouz9WdLvTheWbic/6bcAvgR2J\nz/uZAvEbE0nxTOB5YAqwrbvfmxN6EjDT3a9ree77ZjYb+BSR2BXRKdntyt3/p5flO8S/vvVvM5tC\nVJztSs73bGb7EBeGnyUqvyAuEC81s+Pc/bKM8CktrUUHEy2ZB5jZBKKiICtJHpPVsprVqgq8D9iu\nw/PfICocuibJwKeBo939261PpoTsNGC/jNh2mS3D7dx9Skt5N7t7ofNCij05bxkz61apcSxxXnmG\nSLS+7+5PFSx6A2I/mgF8xsxuIBLmy9392ZzYbYGjgF+Z2akljnN7sySBegdwRdvrWYnK5Wa2r7s/\n1/qkmf1dWs+rswo2s22ISos73P12M5tMJEd7EMlgplThNhPYl9hPjiQqorJ8HXgSmAfsDhwELALe\n6+635MTunfFakYq2T6Vtbfcz4AdA1ySZ+E39Gti52ZMhnZs/S/ymjuoW6O5nNB+nc+yHiGPJt1hy\nPOqmyjXMNsDpwC1mdgwwFfgw8DnggArr7ZmZbUqqyHX3LXMWv5/4XO+ne8Vqt3KqVCq0r6tw5Q9x\n7T4XeJQ4H0Px7V4fmGtmfyKuN77j7gsKxv4RuMnMTnL3/y0YI9LVSEiSLwB+ama7Nbtzmtl7iWT1\nbcNY7peBjYEbgRNTi8TrgE/kXCQ23Q48ANxsZgfktDgtpUryRRzM/671YsXd7zazdwPzgawkeU0z\neyddWq9GaneiKglUW7fWTi0TWd1aHyEuFE5qdiFMn18RRwDvbGu9uDZdmF9CTotuFWa2CnAg8BHi\ns3pXXtfhFq0XmLuTKiDc/WEzywx091+a2XbAB4kTVWtrZ95nfT/R0v5V4Fh3f9rM7imYIM8DVk3b\num/6PdxTIEEGeE1bgtx8Lz8zsy8XiC/FzH5ARkuyu7+j4Ho2I1pntyMuMI8q0L3zVGC3ts/nt2Z2\nLZFMZB3/Wte9K3AhgLs/ZWbLdPtt8zoioe0kr1V15U6thO7+fDo+ZJnq7sskwu5+qZl9Nie2NkW6\npXZrkUkt62eb2SbA/kRl9J+A0/KSL3d/kagQ+7GZrUZUFO2f1netu783I3ZxWu4nxIXueSx9DHhF\nTtkHNR+nSoWDs5ZvcxNwpZnt3TxumNlOwDeJJKwrM/s0UVlyC3C6mV1GnKPPIZK4rNjPpti7gW8D\nJwM3FawI27T5HZrZRcCfgVcXqIyg2/Et/R7eA/wpZxWreYchNO6+wMxWz4ndFdjKW7r6u/tiM/sE\nkNWK2NzGSUSC+j7iXPiGgpWqpa9h0voPTwnyT4heHdMKtlhaRutoodZcM9uA+B3NJBL004mKqDzX\nAP9JJI+XEK2sNxeIgyFoGClZ+bMhUWG6ObE/XE8kzXNzKkNx92PM7FhiGM8M4JOpMvBi4HtZlX3u\n/jkzuxg4y8zeT/Toaj3+jMhrXBm5ak+S3f1CM1tEJBC7EQeRDxItpfcOY9HbkQ7yZjYWeBjYxAuM\nUUtedPePm9mPgW+a2deBU73D+LAOqiRfL3U6gbr7s2aWNx50TbJrn7MOIK8xsyuIk9PG6SK/aeOs\nQtuWbTcpKzYpnUCxdLfWfydqz5sn2Lza9hOIk8N5ZvZteujyS3RjW6Z7n7vfm1rdusrpqpRVe4uZ\nHUlc1M0G9izRxfAJM9sbeJDosXBIWu8qwNgC8WsRrUl/IT77lyjWtf27RMvR/qm8rH2m3SPA64nP\nZh3iYrWorPH8efvXhmb2BeL9bdDyGKI1Lst2RCXbLKIiA4rvl83u0p8gukv/J3CIFx8PvnKnY2va\nN1fJiX3AzI4i9o+tiWQKMxtP/vnk9l5aUtsMWIexsma2Lvmf19MlX2saTBdtA22PYXh755Tultrk\n7n80s8uB8cA/A0YkgoW4+3NmdgdwJ/G73jwvJlU4n0Dsn+cVPCdW5u4npp5WV5vZnkQl39lExVne\nsK13Alu7+6LU2+F+YMuC1yCHEse684GrUsVN0c1++TebkswHiyTIUK2rdjLBOnSbLXisf75TZZy7\nv2Bmz3UKaFn/GUQvvi8T12BFezhAhWsYM3slkZhuR1T87AlcZWZHu/vsnHLvIVpPe+oxlMo9nLiO\nWIc4z70fuKJITxFYqsJrCpE0fjUdby8mEubfZ4SXrlSoUvnj7v+W1rEacdyYRrzvC83scXfPPI6k\nY8Z1RBf5fyUqZU4nfmPjc2IftBgWdBqxr7Qef5QkS09qT5IB3P0b6cB6C1H7uWOR7hVVkgnghebJ\nO50Y7+khQX6Zu/88ddP6EvALM/vnAmFVkq+HzGxXd/+/1ifNbBeiFjrLfT3WzLfap+Vxe5eoM8iW\n1YUqLxYqJFCtB/R0Miw8HritNWYG0cL2KjP7GNF9MevktKjka5B9EZDnC0SCugOwQ9vFWpEa78PT\nOtYDjnH35j61C/CjrEAz+yBRw3wGkbQVHvPdUnu8E/HbOAOYaGb7Az/yjMnpPLqDTyQudE9JXdle\nacUmhZvclty2ykt0j2NJBUx7C2neRfmriOECM9O/HxEXPLfnxDXdQiTZPyTG176p5bvOa7V/wcxe\n7e5LtTSZ2atZuqW4k0OI5GxXYv6EZuvPPwD/XXDby/gc8COLscnNz3rb9HxuF822xHap1wqUfREx\nPrj98QCpJb2btL3NfaR9OzInDvQK3VJbjln7APcRCdNpPSRgG6X4GcTcF7OAvT1n/LaZzSXO4Tu0\nV2gsD+7+aTN7lhgLDrCLu/+hQOhznibec/dHzewPPVTSt/6WzzWz64BxnRLQDrYys9YkcVzL33kt\n71W6akOai8HMjmoeX1MF7jnkJxOrWUwO1zp2vPn/ajmxxxJdcE8kevG1vpb3nh+ucA3TrMj419Rb\n4moz+3tiHP2h7j4zI/b59uNlD84lKhOPdvffAvRQifKytD+eTvR02Jo43n6K7PknqjSMVKn8aRoH\nvCJtx5pE633mvBetLCaGm0H0jPgrce2ctfzrgfOIa+E3tly/iJQy0GgUvo4dFm2J7hTiAr/ZgpM3\nwH9K21PNg/RGwPHu3rW7djqR3tXy1CbEeIbcclP8MuPLLMahngaMc/fcFtKWC5kZwGuJ8ZGZyZfF\npESXE91XbiLe7zZEUrSPZ8wuaWZPA7t726RiZrYD8Gd3/2PnyGXWMwjRLavg8stckPfKYnztTsSF\nyJ7ExDWHkJNAta2jpzGBXdYxNW3D/u6+ScZy7ftXq03cPbM2tML2Tcl6Pe/Cz8wmd+t+ZtGNsWsF\nhUV33RmduvCZ2V7u/sOsstuWXxV4K/FZ7+7ua/cQuy5xUp0JTHb3rhPDWUyultXtucoka4Wk2vZm\nxcDJ7n5ugZiD0sPmAbx9GEHX7TazfYnk8jSWTjhPICY9yZ2UrgwzO6hIK0RG/J7ENjbH8N0OfNbd\nr8qJO5mMyfvc/d/LblOetrIH2h/nlW3Ldks92wt0S7Xo+n4rUbHXnETp5WQmKzlPie6GROvRLM+Z\ntbwtdpkK3F60VYDuCLTOOJw5DKEtdgfgD0QvkyKxTwA/71J2L8MfxhItjjPTNsz2jO7pVZjZfF/S\nVXsMPXTVTjErE2OLDyUqUiAm0fwqcGJWgp8qArpePLp714nhqpyHK8be5e6bdnh+APiAu3cdXmMx\nOWp7L7QFwPV5vbUsZtZ/N3Gd12xNPtjde5pvJ31fb0vr2QX4KfH7vDwjpsrntTJLKn/eQrTs7kac\nUzMrf8zsQmAL4CliSOM84IaCx67NiPe4P9EKPAv4lqc5eHJinyPmETirQAWVSK6R0JLcXsu1VKKb\nFdh6wZ9qNWcSB6N7yZ4BGJbtNla43OSi9ifc/Wtmdg9Ro9uVmb0WWNfdrycuVE9LydcXiLHYWTWD\nzxOtCZsRByGIk/uFQN7J8ZfEQavdk0S3tK41julEchIxHmVMem4xMRNy3kXmZSyZHfZS7zA+ME9q\n9b+W6Ja/CksSqP8iuh4uF+5+K3HxmTdLb263xG7SCbnbBUhmTXsPrR/d/J+Z7dF+4rcY33MiMaFL\nNxsQ3UGX0hJbOEn2GH/6A+AHZpZZe9wh9hHgi8QkYpmT9VRM2iqNK04X1G8nLgimEC04hRLUKtvt\n7pel49RHWDLBzh3Au5stHd1UfM/75XT9y/y8UjKcmRB3iTu515hWVuGWNVXKtmrdUpvb1CDdBSEp\nMvTheOAXvfQEabG9mU1n2e+46O19zkzLjifGYkJUNhYZWlMldp+W2E1TfKFYi7ssfDDFzQe+6u7f\nTa3/nSbG6hS7CXFe+Upq5SyidFft5A3EMeeUtO1vJnpsjSN6S2SNHf0ocH+zpS41EOxH9CI4uYdt\n6NXUCrEdfz9pP8+bf+IMlvQgaZpCtISf7O6zMmJPAS529/MtJoPbH3jEzH5HjLHNvJawmMR2BnGu\nuJFIGg8r2DiwmpntkK41e3UUMIdojFiJuD4cTwy5yav82YjoUfAHYmjOg0DR2e7vJCoAZnrO3RY6\nOJf4zZ2QGuDmpH+5Y6FFOqk9Sa6S6Fr0/ZhJHHQWEN2WV3L3nYaz3BT/8u2WWuLfQ4xdyYs/m7Zu\nI+5+q5kdTSTJebHHu/tXWp9M3VIyE13gFZ0OOu4+32J24CwfBrYnurDck8p8DfAlMzs2q2WiTdbk\nPB2llq8NW1rY5rCkm+SxObGtCWdrVzbISTjrSlbdfY38pTqrss3Jh4FrzOztzR4NKUl9HzGRxnDF\nZjmCmN2zo7zEjbjwKxWbk7iVHldsZt8gWkSvBE5JlS+FVU3QUzL8L72UmVQZS13l82pNVFvfd27y\nVSXJTarcsqZK2aW7pVasGHgLsJMtOyFakW2uOo56DlFx/H6WtG5uRHQtzauYrCv2a8T3dD3R0rcF\n0bX2SfInaOwYmxPTVKWrNsSkqbu4+zMWw1U+TlSCb00kje/KiwUws38kugE3Yy/Iic0a/pDZywF4\nuEJs6XK7/Z4sxq/PJo5p3fyeuKtF68RbZ7S0mOY5Pq3/IyUSvVkdyi466deGxDXl5kTlz1zgf4Bj\nyL6FHO7+1tT7b0tiPPKxxC3CFhItyp/KCD+bmA/lZxYTds2h+KRflcZCi7SrPUmukugSNU4/BN7q\n6Sbx6SA43OV2ix8oGL9uRrI6pUDsMhfUBRPdiRmv5U3UcQAxI+7LXaw9ZhF+HzEJWdEkuYyPsvTJ\nZFXiALg6cdDueiFSJeGsOVktpco2p/grU5elqyxuFXQoMeZ1x7yuUlViK6olcaPauOL3EQnF0cDR\nvSRAVbe7YoJd5T1Xia2SfFVK3LzaLWtKl+3uK+Wsu6uKyXmVba7yWUEMA1iDuHPBUy3rOZNozctK\nIOuK3dzdp6aYi4j7hhdVOtbdM++FXsBKLUnH/sAF7n4pcSu4zB4lFWPHsGyrbFF1xXbkMX49b5nM\nibcKlLFzhe07FTi1W9meMbSvS8J5cPr/cXIqgFLvv1vN7HHgCaLH4l7E/BVdk+QhSnQrjYUWaao9\nSaZCosuS2yj93GKW6e9QfPbBKuVWja+SrFaJ/bWZHeZtY2/M7AN0vzVL08reYQyyx+0i8vaj1hrv\nnlpzk1Wbn3Fyvcckawst/1YVtaiarNbJ3Web2cHE/TLnEPfCzJtsrHJsBbUkbqlb5FVEpUBzXPHP\nUve7zHHFVRKgqttNhQS74nuuEls6+RqCxK3T2OBCt6wZirJLqi3RLftZJXsBm/nStxZ60mJSQCc7\nWa0r9uXu0e7+Yl7SNISxVY2xJZOL7Urc574p75xeJfZhLz8PQF2xHZnZW4BC+7aXm3hrSFQsu+eE\nM/WKnE4kuC8SLcFzgK8QM7EXUabc9rHQc4HPD3MlvazARkKSXDrR9bif8WUWt0LYhzgxD5rZ+cQE\nWNdkhFdJsKvGV0lWq8QeA3w/tf42l92GGDvyTzmxWZMgZE6QMAQ13q9sW9+RLX8O5y1YRp22FvCx\nRJe6BenirZfu6VVi2+Xd8qGWxC1td+lxxVVU3O5KM2tXec8VY0snXxVjq4wNrpo0llJXolv1syJu\ncbjMLaM8xtzm3Uqqrtgq3Z6rdpmuYhZxzPgrMfb6F/DynCl540erxPYd63wnlYAZum4AAAJwSURB\nVFcSk6UdUHAdnSbe6tbjY0iVKbtiwjmFmPjvw+7+UI/bWqXcKmOhRZZR++zWTS2JbnMmva+Tn+h2\nWs9axHiYGUW6qVQtt0y8ma1HXBg+T4dk1TOmra8Sm+IH0na+nkhKbnf3a3PeZnOSrm6TmIxz92Gr\ncLG4Ofx1HSoGPgi82bNv3SCjQIfk6wpiAp0HhyvWlh5XfIn3OK64qirvuWUdPc2sXeU9V4xtTb7O\n6yX5qhKb4l8ijredKgPzKn8qlV1Fh0S36MzYVT7r0p9Vir+cmMzoa23P/wsxsVzW/AK1xPYzM5tG\n3O7vGnd/Oj23GbCGu/9mOGLNbJKXuN1mzbFT2p5qAAu9wORZ1nnirSuKxFZVpWwzuxqYRLT8zkv/\nbvVyE/oVVrVcW3os9HRisrciY6FFljFikuRWvSa6I6XcXuLLJqtVY/uRxS19LgOeY8n9L99AtFbu\n6zXcj1NGjhoTt5eIbq2dDGsrUNUEvULFQOn3PASxZRPVSolbFXWVXWeiW4WZbUjcu/VZlq4EHk9U\nAj8w0mJFsljcGnEWcKkv5xmWq5ZdV8I5FOVazCQ+nZhwdi9gkruvOTxbLCuqEZkki7RLFQM7EwfO\nFb5iQIqrK3GrU8X3XGsLuAy/OhPdqjoc6+9w99kjOVZkRVZXwtlrudZ9LPRc4DZ3X9wtVqQTJcki\nIqNIv1YMiIjI8lFXwlmlXDM7i7id2rxex0KLdKIkWUREREREgPoSTiW6MpIoSRYRERERERFJqt6r\nU0RERERERGSFoSRZREREREREJFGSLCIiIiIiIpIoSRYRERERERFJlCSLiIiIiIiIJP8fpInZsY9M\naokAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f67a9448550>" ] } ], "prompt_number": 39 }, { "cell_type": "markdown", "metadata": {}, "source": [ "To understand what the percentage of flights for a particular (origin &rarr; destination) state pair that are delayed, we can look at a second metric using the same visualization. Here we compute the total number of flights for each (origin &rarr; destination) pair." ] }, { "cell_type": "code", "collapsed": false, "input": [ "trip_counts_df = df[['ORIGIN_STATE_ABR', 'DEST_STATE_ABR', 'FL_DATE']].groupby(['ORIGIN_STATE_ABR', 'DEST_STATE_ABR']).count()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 40 }, { "cell_type": "markdown", "metadata": {}, "source": [ "To put trip counts DataFrame and our earlier `delay_counts` DataFrame on the same axes, we rename the columns to `COUNTS` in both cases." ] }, { "cell_type": "code", "collapsed": false, "input": [ "delay_counts_df = delay_counts_df.rename_axis({'ARR_DEL15' : 'COUNTS'}, axis=1)\n", "trip_counts_df = trip_counts_df.rename_axis({'FL_DATE' : 'COUNTS'}, axis=1)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 41 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we divide the delay counts by the total trip counts and perform the same transforms we did previous to produce the N by N matrix. In this case, each cell represents the proportion of flights between each (origin &rarr; destination) that were delayed." ] }, { "cell_type": "code", "collapsed": false, "input": [ "mat = (delay_counts_df / trip_counts_df).unstack().T.reset_index(level=0, drop=True).T" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 42 }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this second heatmap plot, the (CA &rarr; CA) and (TX &rarr; TX) hotspots from the firt visualization no longer stand out. Though there are many in-state delays for these two states, there are even more flights, keeping the percentage of delayed flights for these in-state trips lower than other routes.\n", "\n", "To the contrary, we see some cases where all flights from one state to another had arrival delays:\n", "\n", "* (AR &rarr; UT)\n", "* (MT &rarr; NY)\n", "* (CO &rarr; RI) and (RI &rarr; CO)\n", "\n", "We can also see some other moderately hot spots, such as (AK &rarr; NJ) and (OK &rarr; MN), which seem to have a higher percentage of delays than other state pairs.\n", "\n", "One \"crosshair\" jumps out in the visualization: the row and column representing Illinois are nearly both filled with non-gray cells. On closer inspection, we see Illinois sends flights to and receives flights from every other state except one: TT, the state code abbreviation for U.S. Pacific Trust Territories and Possessions. And though it is difficult to make accurate relative value judgments from this visualization, it appears the run of cells in the row and column for Illinois are darker than most other row or column runs (e.g., GA)." ] }, { "cell_type": "code", "collapsed": false, "input": [ "fig, ax = plt.subplots(figsize=(18,18))\n", "asymmatplot(mat, names=mat.columns, ax=ax, cmap='OrRd', cmap_range=(0., 1.0))" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 43, "text": [ "<matplotlib.axes._subplots.AxesSubplot at 0x7f679b051950>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAANJCAYAAAA4PqBUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmYHFW9xvG3aiAJmAkxnSaEkJiFcAgkEBYJRiDsIMgq\nW4iAElZBRAF3Ba+7oCKLsiMoAiJEVkW4SABZruwJCT/MBiFEmDRbIoRlqu4f06PjMJNM/6pnanrm\n+3meedJd3W+d09VV1X1yTp+K0jQVAAAAAAC1Ks67AgAAAAAAZEHDFgAAAABQ02jYAgAAAABqGg1b\nAAAAAEBNo2ELAAAAAKhpNGwBAAAAADVtjTwLT5PGNIrr8qwCAAAAgN4pyrsCqJ4o5+vYpsn8m13B\neMx+amhY7soWi/WZsskLd7my8YjdlC570pWNBk9U8vRlvnI3O8b9eqXs2yvTtn7yElc2nnickiX3\n+rLDdszl9Tbnk5k/cWXjKV/O7X2qtWyeZWc+Jhbc6srGo/dhW9dIdu7mH3Flxz31fOb3SStLvnC/\nQk1u63TFYlc26j+cY6IGss35xt+e4srWffo8pa+bKxsNDDW3vYrFeqWlWa6sJEWFCbX4mmnY9iAM\nRQYAAAAA1LSKG7YhhP1DCEkIIZTvjwwhzGrx+LEhhEdDCOtUs6IAAAAAALTF02M7VdJt5X//Swjh\nCEknS9rdzN7IWDcAAAAAAFarooZtCKG/pElqarwe2uqxQyR9RdJuZvZq1WoIAAAAAMAqVNpju5+k\nP5vZC5IaQghblpePlHS+mhq1r1SxfgAAAAAArFKlDdupkm4o376hfD+V9Iqk59WqFxcAAAAAgM7W\n4evYhhAGSdpJ0vgQQiqpTlIi6UJJb0naW9L9IYRXzOx3nVFZAAAAAABaq6TH9iBJV5vZSDMbZWYj\nJC2SNEKSzKxB0p6SfhBC2L3qNQUAAAAAoA2VNGwPkzSj1bIbJX1VTcORZWaLJO0r6YoQwtbVqCAA\nAAAAAKvS4aHIZrZzG8vOV9OkUS2XPS1pg+xVAwAAAABg9TzXsQUAAAAAoNugYQsAAAAAqGkdHorc\nWUoDPjDCuUOKVa5HJUprbevKFSUtS8e4s+/dfKcr23ezY1y5aim8eocvWDxUqh/iLrfUZytfse4S\nq2SNNfOuQa9RKN3qCxYPz1buu084kzsoGjA8U9no/gbfPTu3spMHL3Hl4p2/pmL9u1WuTedb9vZA\nV67Yv8oVQaeKhvvPm8veW9+VK0oqLLjSV2jxFF+uCpYlI93Z3L8/odeL0jTNs/xcCwcAAADQa0V5\nVwDVk3uPbUPDcleuWKzvddl3vnuwK9v3Wze4y20uO0u9E7velY3DoUrm3+zLjtmv5t7j5nzyt5+7\nsvHHv1hzrzn3bf2s75Lb8caHZzsmltznK3fYDkqXPenKRoMn5rqta20f6W3Z5nxyzw9d2Xjnr0kr\nS76C+xVqbntxTNRGtjmfzDzblY2nnJHtXP/Ieb5yJ51Ss9u61updLNa7cuie+I0tAAAAAKCmuRq2\nIYT9QwhJCCGU748MIcyqbtUAAAAAAFg9b4/tVEm3lf8FAAAAACA3Ff/GNoTQX9IkSTtIulPSWVWu\nEwAAAACghwohXCFpb0mvmNmEdp5znqRPSHpL0mfMbJWXlfD02O4n6c9m9oKkhhDClo51AAAAAAB6\npysl7dnegyGEvSRtaGZjJR0n6VerW6GnYTtV0g3l2zeU73PZHgAAAADAapnZ/ZJeW8VT9pV0Vfm5\nj0gaGEIYsqp1VjQUOYQwSNJOksaHEFJJdZISSRdWsh4AAAAAANoxTNLiFvdflLSBpJfbC1T6G9uD\nJF1tZic2Lwgh3CtpRIXrAQAAAACgPVGr+6scJVxpw/YwST9qtexGSV+VFEIILVvVp5rZjRWuHwAA\nAADQQWdFUbf8WehZadq6YVqJJZKGt7i/QXlZuypq2JrZzm0sO1/S+ZWsBwAAAACAdtwi6WRJ14UQ\ntpX0upm1OwxZclzuBwAAAAAArxDCtZKmSBpcHvV7pqQ1JcnMLjazO0IIe4UQ5kn6l6TPrm6dNGwB\nAAAAAF3GzKZ24DknV7JOGrYOhfdnOZOT1fe7q30P23bebVrjo+Od5earNGgvV64oSWljVetSC9JF\nz/uCH69uPSpRePmG1T+pLcWjq1uRCqVP/N0X3PjwbAW/t8IdjfoPX/2TUNMKcy7yBaeckbns5Tc+\n4Mqts7P0+qlHuLIDL7rDlQM67L133dEL1x3gyp2VpiqNXm0HU5uKrhR6M8/1W3uiKE1z/a1xt/yh\nMwAAAIAeL8vkRt3G/3TTyaO+nW3yqIrl3mPb0LDclSsW63PLJksfdGXjoZP15imfdGUHnHebGv/8\nHVe2bs8z3a9Xynlbz7vJlY03PLDm9q3mfOM1p7qyddPOze99mn2FKxuPPzrfbX3tF13Zuqk/z7a9\nFvl6qOKRe0krS66s+hVy3da1djzmet6bebYrG085I/P79MZJe7uy61x4u14/wTc6Z+BFd9Tk+8Qx\n0f2zzfnk7u+7svGu39BZke97+VlpWnPbq7fu1z1Bj2idVwE91wAAAACAmlZxj20IYX9JN0kaZ2YW\nQhgpaa6kZ9U0k9XDko4zs6SaFQUAAAAAoC2eHtupkm4r/9tsnpltIWkzSaMkHVCFugEAAAAAViHu\npn9draIyQwj9JU1S08VyD239eLmX9v8kjalK7QAAAAAAWI1KG9P7Sfqzmb0gqSGEsGXLB0MI/dR0\nod3ZVaofAAAAAACrVGnDdqqk5gtW3lC+n0oaE0J4QtI/JS01My5KBwAAAACdLO8hxzU3FDmEMEjS\nTpIuDyEslHSGpIPVNMP0/PJvbMdI2jiEsHVnVBYAAAAAgNYqaUwfJOlqMxtpZqPMbISkRZJGND/B\nzEqSviHpB1WtJQAAAAAA7aikYXuYpBmtlt0o6atqGo4sSTKzP0paN4SwTfbqAQAAAADaE3XTv67W\n4evYmtnObSw7X9L5bSyfmLFeAAAAAAB0SB6/6wUAAAAAoGo63GMLAAAAAOhe6KlswnYAAAAAANS0\nKE3T1T+r8+RaOAAAAIBeK485jqruJ1HULdtUX07TLt2+uQ9Fbrz2i65c3dSfq6FhuStbLNYrWfqg\nKxsPnaz01Wdc2WjQpkoevdBX7tYnKVlwiy87el/3tpKatlembf3Ph1zZeL2PKVn6gC87dDslC2/3\nZUftrfSVR13ZaN2tlcy63JWVpHjCdCWPnOfLTjpFyZMX+7ITj8/0HqfLnnRlo8ETlcxvPdl6x8Rj\nDlDyzJWurCTFm35WyWO/8mW3OjHbMZFh30ye+70vu9EhtXsOeeEvrmw8Yvds5TqP5XjC9GzlPnWp\nr9zNj1Wy4FZXVpLi0fsoefoyX3azY5TM/Y0vO+4IJU84z11bHK/G677kytYd9jMlj3xg/suOlTvp\n8+7XKzW95iz7SC1mk2d/58rGGx+e+fyTpexk3k2+7IYHKvm78zvfR0/K731yngOk8nlgzlW+7CZH\n5faae4Ie0TqvAoYiAwAAAABqWsU9tiGE/SXdJGmcmVkI4SRJx7Ra56bNj1enmgAAAAAAtM0zFHmq\npNvK/55lZhdK+vdYixDCDyQ9QaMWAAAAADoXQ3CbVLQdQgj9JU2SdLKkQ9t4fAdJB0v6XFVqBwAA\nAADAalTawN9P0p/N7AVJDSGELZsfCCEMlHSlpCPNbEUV6wgAAAAAQLsqbdhOlXRD+fYN5fvNLpJ0\ntZn5psAFAAAAAFQk7qZ/Xa3Dv7ENIQyStJOk8SGEVFKdmq5De0YI4ShJwyUd3im1BAAAAACgHZVM\nHnWQmnpkT2xeEEK4t/y72u9L2t7MkmpXEAAAAACAVamkYXuYpB+1WnajpM9IWkvSTSGElo+dbGZ/\ny1Q7AAAAAEC7orwr0E10uGFrZju3sez86lYHAAAAAIDKcNkjAAAAAEBNq2QoMgAAAACgG6Gnsgnb\nAQAAAABQ03LvsY0mjM+7ChVLS3NcuWjQplLffv6C31/pjhaW3eIvtzjNn5Wkxvf82TTNkPVP0r0s\nCqt/UhuKkrTS/z5lFY3Y3p0dNONLvuBxlyrTtAVrrJ1PVpIGrpct7xQVNvGH6zfwZ99c6s9mVFhx\nny9Y3FtK3q9uZTooWn9SLuWqT4b9uvSCPztaUpzTFCSDx7ij0UYb+cvt39+fjfv4s71R3Zr5lR1n\n+Lr7oQyfE4PW92fzstY62fKvlapTjwoV69/1BVeWUvUrMPdSDxGlWRoO2eVaOAAAAIBeamVJPaFh\ne0EUdcs21clp2qXbNvce22T25a5cPH66GhqWu7LFYr2SpQ/6yh06Wck/bvBlxx6sZJbz9U6YruS5\n3/uyGx2iZO41rqwkxeOmZdvWS3w9NfGwHZS8dL8vu/72Shbc6suO3ifb6/37ha6sJMUfPUnJI+f5\nspNOUfqqdzTBJmq85FhXtu64S5Uue8pX7uDNlTx/pysbf2QPJXa9KytJcThUyfwZvuyYAzLtI+mb\nC13ZaMCobOeuJy/2ZSce7369Uvm4WHi7r+xReytZdIcvO3KvbO9TabYrGxXGZzuHOM/X8bhp2c8/\nGT6Tk7m/8WXHHaFk8d2+7PBdlTx+kS+75QlKnrnSl930s5nPP1n2kVrMZvnulPn8k+X7U5Zzbk6f\nMXm8T1L5e+7ffubLfvxLmeqtlfn0FKN7qahhG0JYT9K5kraW9LqklyWdamb/CCGcKumHkoaY2ZtV\nrykAAAAAAG3o8ORRIYRI0gxJ95jZhma2taSvSRpSfspUSXdJOrDqtQQAAAAAfEDUTf+6WiU9tjtJ\netfMLmleYGZPS1IIYYykNSX9QNJ3JP26inUEAAAAAKBdlVzuZ7ykx9p57DBJvzezhyVtGEJYN3PN\nAAAAAADogEoatquabeswSc2/Nv+jpIPdNQIAAAAAdEjcTf+6WiVDkZ+RdFDrhSGECZLGSro7hCBJ\nfSQtlOSfmhEAAAAAgA7qcGPazO6R1DeE8O9rgoQQNpN0nqQzzWxU+W+YpPVDCCOqX10AAAAAAP5b\npdexPUDSuSGEr0haKWmRpB0kHd/qeTMkHSrp7KwVBAAAAAC0LY8ZiLujihq2ZrZUTQ3W1T3vNHeN\nAAAAAACoQB6/6wUAAAAAoGoqHYoMAAAAAOgm6KlswnYAAAAAANS0/Hts6/q4o4VFV/uCxZOkxY/7\nskMnS8n7vqwkrVjuz767wh1tvOVWdzYeN00Fu8QXLp4mvTTLlx22g7TMfNn1t1c6/ylfdvQ+Kjx3\nmS9b/KK0ZsbD6r333NH0ubtcuWjbTRSN39Rf7rN3+8rdbnPpBef+8ZE9pBfn+7KSFCQte9GXHeMv\nVpLSV55w5aIBo6RF/+crdOhkaeVKX7YaVr7uz5ae9+VGSoUXf+fLFo9XOv9eVzQqjPeVWZYueM4X\nHCdp+ZuZyla8pjua/sN5vh4nad6jvuzwXaU+/jrrrbf82bcz7NMZXbjuAFfurDTNVG7hhd/6gsUT\npddezlR2Jq+/4s++sciXGzpZeiPH1+yVZVtJUsZ9zCtZdKc7G298eBVrgjxFaU47YFmuhQMAAADo\nnZJnf6d448NrflLhy6KoW7apjknTLt22uffYJnN/48rF445Q8vcLfdmPnqTk/y7wZbc5WYld68uG\nqUoeOteX/dipSmZf4cuOP1rv/fgwV1aS1vzKdUoe+Kmv7O1Oy/Y+Pe3rOY03O0aNd33Pla3b7ZtK\n/vZzX7kf/6KSJy92ZSUpnnh8tm398C982W2/oORB5745+dRsdb7/HF92+9OV/O8PXFlJinf5upJH\nzvdlJ31eDQ2+0RfFYr2SeTf5yt3wwGznkAz7h/f1SuXXPPcaX9njpil57Fe+7FYnKnnCdzzGWxyf\n6XMiy/7RePuZrmzd3t9Rcs8PXVlJinf+mpI5vpFQ8SZHqvGWb7qydft+T8lff+Qrd6evKpl9uS87\nfnq2z6eM5/os+8hZke+74llpmu3cleVYzOF4ksr1zvKd71nfqI9448OVPH6RL7vlCZnep0zvsfOY\nkMrHRYbvA5nq7Xyf0LPwG1sAAAAAQE2rqMc2hLCepHMlbS3pdUkvSzpVUh9J50taX02N5avNzNdd\nBgAAAADokJofS10lHe6xDSFEkmZIusfMNjSzrSV9VdJ6km6W9AMz21jS5pImhxA+1xkVBgAAAACg\npUqGIu8k6V2z/0yPa2azJG0k6QEzu7u87G1JJ6up0QsAAAAA6CRxN/3rapWUOV7SY20s36T1cjNb\nIKl/CKF/hroBAAAAALBalTRsVzWNNEO7AQAAAAC5qGTyqGckHdTG8jmSdmi5IIQwWtIKM1uRoW4A\nAAAAgFXgMjdNOrwdzOweSX1DCMc2LwshbCbJJG0XQtilvGwtSedJ+nGV6woAAAAAwAdU2sA/QNKu\nIYR5IYTZkr4vaamk/SR9M4TwrKSnJT1iZv4rPAMAAAAA0EEVXcfWzJZKOrSdh3fKXh0AAAAAQEcx\n2VEThmQDAAAAAGoaDVsAAAAAQE2raChyZygN3t+VK0oqjTzSnx11lD876JPurEZu48pKUrTBDqt/\nUjteP/pSd7YoqRSOc2dVHO0uW4WN3NFXJ37BlStKKm10jD877HBXtjmvtT/kzpfGHO0utzR2ujsb\nb/0ZV1aSShsf7y63tNnn3eUWJUUjt3XnM+m/vjsabeg/D2TZP7IqDd7XX/Z6m/rL3cB3PGb9nMgi\n2tS/X5YmnOzOFiWpb707/+rHvuIuN/7Ysat9XntKQw5xl5vle4RWZLvww+A+rziT9TrplTczle1V\nGvFpVy7P40mStE7BHS0V9nHlipI0ZGN3uXnxHhNSFb4vZuB+n4r1PWIULz2VTaI0XdXlaTtdroUD\nAAAA6LV6RMP2t1HULdtUn07TLt2+uffYNjQsd+WKxfqazCZLH3Rl46GTlb4+z5WNBm7orrNUhde8\n6E+ubDzyE0qW3OfLDtuh5vaP5nzy+EWubLzlCbm9Zq0subLqV8h1W6cv/92VjYZ8NNsx8c+HXdl4\nvW2VNjzuykbFLXPd1pm2Vy86D2Q9Z2Y+/8yf4St7zAG96hxSLNYreeCnrqwkxdudpvSN+a5stM6Y\nmtyvc/1ctWtd2ThMzXjuutdX7rAda3Zb11q9i0X/KBV0P7k3bAEAAAAAPgxFblJxwzaEsJ6kcyVt\nLel1SW9KmiTpOUkjJL1R/msws92rV1UAAAAAAD6oooZtCCGSNEPSlWZ2WHnZZpLqzexvIYQrJd1q\nZjdVv6oAAAAAAHxQpT22O0l618wuaV5gZk+3ek6P+BE2AAAAAHR3tdr4CiHsqaaRwHWSLjOzH7d6\n/MOSrpA0WtJKSUeb2TPtra/SIdnjJT1WYQYAAAAAAElSCKFO0gWS9pS0iaSpIYRxrZ72dUmPm9nm\nko6U9ItVrbPShm23nEoaAAAAAFAztpE0z8wWmdl7kq6TtF+r54yT9FdJMjOTNDKE0O5ljytt2D4j\naasKMwAAAACAThB307/VGCZpcYv7L5aXtfSUpAMlKYSwjaSPSNpgVduhw8zsHkl9QwjHNi8LIWwW\nQtiukvUAAAAAAHqtjowE/pGkgSGEJySdLOkJSY3tPdlzHdsDJJ0bQviKmn7Eu1DSqRVWEgAAAADQ\nOy2RNLzF/eFq6rX9NzNbLuno5vshhIWSFrS3woobtma2VNKh7Tz22UrXBwAAAADwqdFZkR+VNDaE\nMFLSS2pqX05t+YQQwjqS3jazd8sjhmea2Yr2Vljpb2wBAAAAAHAzs/fVNLz4TklzJF1vZnNDCMeH\nEI4vP20TSbNCCM9K2kPSF1a1Ts9QZAAAAAAA3MzsT5L+1GrZxS1uPyQpdHR9NGy7WGmNCa5cUVL6\n4n2ubDRwQ1euavr092ffXLz657Sl9ZxqNeS92+525fpueUKVa9JxDcv7uHLFflWuSIWWxRu7cu3O\nM99R77/tji7TWFcuc51zVOqzhStXq6+59CHffIzVeL2lAbvmUnYtnkNK4Th3tihp2bvrurOoTGnQ\nJ125rNu61Md3IRHeY1SKIbhNojTNda4nJpoCAAAAkIca/Xnqf/tDFHXLNtVBadql2zf3HtuGhuWu\nXLFY3+uyyewrXNl4/NHucpvLzlTvl+53ZeP1t1cy9xpfdty0mnuPm/Pv/M9Brmzfb/+h5l5z3ts6\nt2P5xb+6svEGO7GtyXZKNs+ye1s2z7J7WzbPsntbNs+ys2bRc+TesAUAAAAA+DAUuUlFDdsQQqOk\npyWtKel9SVdL+rmZpSGEHSXdrP++ttBpZnZPleoKAAAAAMAHVNpj+5aZbSFJIYSipN9JGiDprPLj\nM81s3+pVDwAAAACAVXP3XJtZg6Tj1HT9oWY94gfYAAAAAFALom7619Uy/cbWzBaGEOrKvbeStH0I\n4YkWTznQzBZmKQMAAAAAgFWp9uRR95vZPlVeJwAAAAAA7co0iVYIYbSkxvKwZAAAAABAF4q76V9X\nc5dZHn58kaTzq1cdAAAAAAAqU+lQ5LXKv6H99+V+zOxn5cdSffA3tt81s5uqUE8AAAAAANpUUcPW\nzNp9vpnNlDQwc40AAAAAAB2Sx7Df7ojtAAAAAACoaTRsAQAAAAA1rdqX++lShQVX+oLFU7KV++Lv\nnOUer8L8K5zZL6jpZ8w+hX/+3p1VcboG/e+ZvuxhP5PeXe4vu1/vG92+5l47u7OFV/7gCxY/6y5T\nkgYnc5zJSSq87Nw3i9NVWHq9s1xJxWMylZ1J2uiOZtpeL/zWmT1Ra599hC8rST/5oz8rqbD8Xl+w\nmN/V5wpzLvIFp5zh36+Lx2jQ7zN8vp10ZabPqCz1zpIt1r/ry2ZUaJjhDxePVOHV25zZqSosyfA9\nZPE1zuwJvlxZlvc4q0znzbcfdpa6mwrLbnGWOy237eXePySpeIIKL13nzB7rLxeK8q5ANxGlqb+x\nVAW5Fg4AAACg1+oRbcLboqhbtqk+maZdun1z77FtaPD15hWL9UoeOc+VjSedkq3cJy72lbvF8Uoe\n/oUvu+0XlMy+3JcdP13JLF9WkuIJ09V43Zdc2brDfqZk0R2+ckfupWTh7b7sqL0zvcd5ZJvzyaO/\ndGXjrT+n5BnfKIZ4089mes3py4+4stGQSdn266cvc2UlKd7smExlZzqHLL7bV+7wXbNtr8d+5ctu\ndaL+9eX9XVlJ+tBP/phtey241ZWNR++T23kgmXm2KxtPOcO9X8ebHaPGC/2jL+pOujLbZ1SGemfJ\namXJlVW/Qrb3eM7VvnIlxZscqcSu9WXDVCVPOr+HTDxeyeO+0QTxlidk214Z3uPMn6tZzpsv3OXL\njthNyVxf72c8blou26tYrHfvH1LTPpI8dakvu/mxuZ2v0XPk3rAFAAAAAPhEcY/oeM7M1bANITRK\nerrFov0ljZJ0mpnl96MmAAAAAECv4+2xfcvMtmi5IIQwqgr1AQAAAACgIgxFBgAAAIAaFUUMRZb8\nDdu1QghPlG8vMLNPVatCAAAAAABUwtuwfbv1UGQAAAAAAPLAUGQAAAAAqFExsyJLkuK8KwAAAAAA\nQBbeHtu0nWW7hBAWt1h2kJk94iwDAAAAAIDVcjVszWxAG8tmSlo7c40AAAAAAB3CrMhNGIoMAAAA\nAKhpTB4FAAAAADUqYvIoSfTYAgAAAABqXJSmbc0D1WVyLRwAAABA75Qsvkfx8J1rvrvzL2v16ZZt\nqt3ffrdLt23uQ5HT0ixXLipMUPKPG1zZeOzBSp6+zJfd7Bglc672ZTc5UsnfL/RlP3qSkicu9mW3\nOF7Joj+5spIUj/yE3vmfg1zZvt/+g5Lnfu8rd6NDlNi1vmyYqmT+DF92zAFKnrrUl938WDU0LHdl\nJalYrFcy63Jf2ROmK1lwiy87et9s2zrLe/zs73zZjQ93v8dS+X3Osq3n3+wsd79s2SznnyzHxNzf\nuLKSFI87wp2Pxx2R7TXPvsKXHX90tmNi7jW+7LhpSmae7ctOOUPJ83e6spIUf2SPbJ9Rj/7Sl936\nc0oW3eHLjtwr076Vvvx3VzYa8lH3e9xU9jQli+/xZYfvnO1YzrBfN/72FFe27tPnKZl3k6/cDQ/M\n/rma4TM9eel+X3b97TOdf9LXn3Nlo4EbZTuOne+T1PReZXmfM30fcB5PPQWTRzVhKDIAAAAAoKZ1\nuMc2hDBE0s8lTZL0mqR3Jf3EzP5YfvxcSQdJGm5m3bI7HAAAAADQ83SoYRtCiCT9UdKVZnZ4edkI\nSfuWb8fl23MkTZF0b2dUFgAAAADwH8yK3KSjPbY7S3rHzC5pXmBmL0i6oHx3R0lPSbpe0lTRsAUA\nAAAAdJGO/sZ2U0mPr+LxqWpq1N4qaa8QQl3WigEAAAAA0BEd7bH9r9/MhhAukLSdmn5n+3FJn5B0\nqpn9K4TwiKQ9Jd1ezYoCAAAAAP4bsyI36WiP7TOStmy+Y2YnS9pFUlHSHpIGSpodQlgoaXs19eAC\nAAAAANDpOtSwNbN7JPULIZzQYvGHyv9OlTTdzEaZ2ShJoyTtFkJYq7pVBQAAAADggyq5ju3+kqaE\nEBaUhxv/WtKZauqx/fewYzN7S9IDkj5ZxXoCAAAAAFqJ4qhb/nW1Dl/H1sz+qbaHGF/dxnM/laVS\nAAAAAAB0VCU9tgAAAAAAdDsd7rEFAAAAAHQvzIrchB5bAAAAAEBNy73HNl1ZcuUiSaWBe7qyRUml\noYe6s9EG27uykqThW67+Oe0ZPNYdLX1oO3e2KOnNE690Z0sf/oQ7Gw3z1zsaso07W1r/MFeu6C6x\nheXL3dFS/U6uXFFSaZBvvres73GpsI8/O2BXV/bf+fUOyVD2zvlkiwdkKNe3vYqSSoP3d2Wz5jO/\n5iEH+7NZjonB+7qz2ujjrqwkldae7M4WJUUjtnbno5H+sksf8n2uZt23FNe5spL/PW4uu9Tvo/5s\nlmM5w3796h7f95e7zm7ubGHe5a5s0wpOlfoPdsejASP9Za/1YXd02XtDXbmipNLII91Z9feV2yzL\n+5zp+4D3eCrW09XZg0RpmuZZfq6FAwAAAOi1ekTDduag/t2yTTXl1RVdun1z77FNltzrysXDdlRD\ng69nq1iN2o5qAAAgAElEQVSsz5RN31zoykYDRin550OubLzex5QsvseXHb6z+/VK2bdXpm29YrEr\nG/UfrnTFEmd2WC6vtzmfPHiuKxtPPjW396nWsnmW3duyeZZdq9lk6YOubDx0cub3KX35EVc2GjJJ\n6bInfdnBE/P7jGl43JWNiltyTHRhNnnI97koSfHHTlUyf4YvO+aATN9DspSb27Z2fk+Vmr6r1uL+\nhZ4j029sQwgrWt3/TAjh/PLts0IIp2VZPwAAAAAAq5O1x7Z1t3e6iscAAAAAAFXErMhNqj0rMlsV\nAAAAANClsvbYrhVCeKLF/UGSbs64TgAAAAAAOixrw/ZtM9ui+U4I4ShJ/msFAAAAAAA6LIoZNCsx\nFBkAAAAAUOOq3bBtiUYuAAAAAKDTdcasyGkbtwEAAAAAVcasyE0yNWzNbECr+1dJuqp8+ztZ1g0A\nAAAAQEd05lBkAAAAAAA6XdahyAAAAACAnDArchN6bAEAAAAANS33HttSn61cuWKV61GRlSVfbsAo\nlerGu6JFSXp1vq/c4Tv7ct1Auugvrlw0frqWvT1g9U9sQ7G/K1Y9b/0r5wqgsxWW/9UXLO6rgl3i\nzJ7my6Hrvbs8t6Ibf3uuK7fGaddqWTrGlc3z83yZxrpyuX4H6YVKG053Z4uSVFriC4+Rlr090Fdu\nf6k0YFdf1pWqDu/3VInjAvmL0jTXiYuZNRkAAABAHnrEGN4Hh364W7apJi99rUu3b+49tg0Nvv+Z\nLhbrc8umrzzqykbrbp2p3OSpS13ZePNj3eU2l53Xtk5mX+7KxuOn19y+1ZxP7v6+Kxvv+o2ae815\nb+vc9usFt7iy8eh9lTzwU192u9N65bauxWzy/J2ubPyRPTK/T+//dKoru8Zp19bktuaY6NnZ5nzy\nfxe4svE2J9fca857W9davYvFelcO3RO/sQUAAAAA1LRMPbYhhBVm1r/F/VMl/VDSEDN7M2vlAAAA\nAADtY1bkJlmHIrcezz1V0l2SDpT064zrBgAAAAD0QCGEPSWdK6lO0mVm9uNWjw+W9FtJ66mp3XqO\nmf26vfVVbShyCGGMpDUl/UBNDVwAAAAAAP5LCKFO0gWS9pS0iaSpIYRxrZ52sqQnzGyipB0l/TSE\n0G7HbDV/Y3uYpN+b2cOSNgwhrFvFdQMAAAAAWomiqFv+rcY2kuaZ2SIze0/SdZL2a/WcpZKar985\nQFLJzN5vb4XVbtjeUL79R0kHV3HdAAAAAICeYZikxS3uv1he1tKlkjYNIbwk6SlJX1jVCqvSsA0h\nTJA0VtLdIYSFamrkMhwZAAAAANBaR669+3VJT5rZ+pImSrowhNDuNZqq1WM7VdKZZjaq/DdM0voh\nhBFVWj8AAAAAoJU4jrrl32oskTS8xf3hauq1bWmyyiOCzWy+pIWSQrvboeIt99+aW9qHSprR6rEZ\n5eUAAAAAADR7VNLYEMLIEEIfNbUbb2n1nGcl7SpJIYQhamrULmhvhZku92NmA8r/jmnjsdOyrBsA\nAAAA0POY2fshhJMl3ammy/1cbmZzQwjHlx+/WE1X27kyhPCUmjpkv2xmr7a3zqzXsQUAAAAA5KQD\nMxB3S2b2J0l/arXs4ha3l0nap6Prq+asyAAAAAAAdDl6bD36DnJHC6//2RcsHiwVN3aXW6tKQw5x\n5YpVrkeXWrNP3jVAJyvV7+TKFSVp1FZVrQu6n9Lak125apz3orBhFdZSO4r17+ZdBXSB0qijXLmi\npMF9XnGW2u7Erd1aYVnrnzhWoDitehUBHKI07chMy50m18IBAAAA9Fq1OYa3lUdHrdst21RbL3yl\nS7dv7j22DQ3LXblisT63bPpGu5NxrVK0zmgl/7jBlY3HHqzkpft92fW3d79eKd9t3Zuyzflk5tmu\nbDzljJp7zXlv61qrd7FYr2TJva5sPGxHtjXZ1eYbb/uWK1v3ye/W3GsuFuullSVXVv0KHBM1kK1G\n2ekb813ZaJ0xNbe9isV6JXOvcWUlKR43rSZfM3qO3Bu2AAAAAACfWp08qtoyNWxDCCvMrH8IYaSk\nueW/fpKWS/qlmV2VvYoAAAAAALQva49ty/Hc88xsS0kKIYySdFMIITKzX2csAwAAAACAdnXK5X7M\nbKGkL0k6pTPWDwAAAACQorh7/nW1zizyCUm97/o0AAAAAIAu1ZkNW37FDAAAAADodJ05K/IWkuZ0\n4voBAAAAoFdjVuQmndJjW54l+WxJ53fG+gEAAAAAaFbNWZHHhBAe138u9/MLM7s64/oBAAAAAFil\nTA1bMxtQ/neRpLWrUSEAAAAAQMdEMUORpc6dPAoAAAAAgE5HwxYAAAAAUNM6c1bkDim8dJ0vWDxW\ng/54mi977CUadN/3fNlP/Vjpo746R7t8Xel9/+srd+zBSp+425ddf3sN+tPXfVlJOvJ8DfjVZ33Z\nb/9BhbkX+7LF01V44bfO7IkqLL3emT1Ggx76sS+77/dUeDrDnGm7fF1qfN8dL8y5yBeccoYGXnms\nL/vl6zIdT4XZF/qyO31VhafO82UladdvqPDcpb5s8UsqPPNLX3bHr6iw4NfOcj+v9K83+bKf3lGD\n7v++L3vgjzTogR/4spJ0wA8zHcuDHvuZL7vnmRo040u+7HGXatBfvuXLTjtXg578hS+72zezvU+/\nP8WXlaSTrlTUr587nul9euJcX3b3b/nPubt8XY33+Y7juizllssuLLvFly1Oy3TOzfL55v4uceT5\nmeqcVZbjMbnZt2/WHXl+pmOi8PINvmzxaA28/Bhf9qvXS6V/+rJlWfavARcd7ct+6wb1P+8oV/Rt\nKV3ruzfV/DjemFmRJUlRmqarf1bnybVwAAAAAL3T2986UD2hYfv0xut3yzbVZs++1KXbNvce2+Qp\nX49JvPmxarz0OFe27thL1HjjV3zZT/1Yyf/6ei7iXb6uxstP8JU7/SI13n6mL7v3d9R49eddWanp\nfx3f+Z+DXNm+3/6DkvvOcWXjHU5X8tivfNmtTlTy9GW+7GbHqPGWb7qydft+z71/SE37SHLPD33Z\nnb+mZObZvuyUM/TeTw5zZdf88nXZjqe//siVjXf6qpK7nT1bkuJdv6Hkb77/TY8//iUl9/r+Vzre\n8StKHvH19MSTPq/G3/p65Oo+fZ4ab/qqL3vgj9Q442uurCTVHfDDTMdy45+/4yt3zzPVeIlvJELd\ncZeq8ZpTfdlp56rxLl/vVN1u38z2Pl3oHF0jqe6kK93HVLzrN7K9T3/5ri+7+7eyfSbnUG5z2cnc\na3zZcdMynXOzfL55v0vUHXl+pjo3NCx3ZSWpWKzPdjxmec0Zjolk9hWubDz+aL33o0Nd2TW/er2S\nB37qykpSvN1pmfavd757sCvb91s36O1vHejKomfJvWELAAAAAPBhVuQmmSePCiGsKP87MoQwK3uV\nAAAAAADouGrMitwtx3QDAAAAAHoHhiIDAAAAQI2KmBVZEtexBQAAAADUOBq2AAAAAICaxlBkAAAA\nAKhRzIrchB5bAAAAAEBNq0aPbctZkUMIYXGL+6ea2Y1VKAMAAAAAgDZlbtia2YDyv4sk9cm6PgAA\nAABAxzArchOGIgMAAAAAahoNWwAAAABATYvSNF39szpP2tCw3BUsFuuVVzaZd5MrG294oNLSbFc2\nKoxX41++68rW7f4t9+uVqrC9/uH7mXU89lNKFtzqy47eJ7f9I+u2Tv73B65svMvXa+41576tMxzL\nmY6JJff5yh22g5JZl/uyE6Yrfe1ZVzb68Ma5nkOynDdrbd8sFuuVPPwLVzbe9gvZj4kM+1cy9xpf\ndtw0aWXJlVW/Qm7vk7vOUq717k3Z5nzy6IWubLz1SUrmz/Blxxyg9JXHXNlo3a1qdlvXWr2Lxfoe\nMYZ37sSP5Nqga8+4J5/v0u2be8M2z8IBAAAA9Fo0bDtRVzdsc7+ObQ3+zw49thVm6bGtLE+Pbedn\nm/P02HYMPbZdm6XHtgL02JLtQJ4e287P5ll25mMZPUbuDVsAAAAAgA+zIjfJNHlUCGFF+d+RIYQk\nhHByi8cuCCEclbWCAAAAAACsStZZkVuO535F0ikhhDXbeAwAAAAAgE5RzaHIDZIekHSUpMuquF4A\nAAAAQBuimCu4StW/ju1PJJ0eQmDrAgAAAAC6RFUboGa2UNIjkg6v5noBAAAAAGhPZ8yK/ANJf5A0\nsxPWDQAAAAAoi2JmRZaqPxRZZmaS5kjaR0wgBQAAAADoZNWcFbnl7e9L2iDjugEAAAAAWK1MQ5HN\nbED530WSNmux/GlJdZlqBgAAAABYtYihyFInDEUGAAAAAKAr0bAFAAAAANS0zpgVGQAAAADQBZgV\nuUmUprlOXMysyQAAAADy0CNahP/Ydmy3bFONffgfXbp9c++xbWhY7soVi/U1mU3mXuPKxuOmKXnh\nLl92xG7uOks5b68HfurKxtudVnP7R3O+8c/fcWXr9jyz5l5z3tu61updLNYrueeHrmy889fY1mRX\nm0+WPujKxkMn19xrzntb11q9azHbnE8e+5UrG291Ys295ry3da3Vu1isd+XQPeXesAUAAAAA+EQx\n0yZJjoZtCGGFmfUv395L0s8l7SppbUkXS1pHUl9J95vZ8VWsKwAAAAAAH+DpsU0lKYSwi6RfSNrd\nzBaHEO6U9FMzu7X8+PjqVRMAAAAAgLa5hiKHEHaQdImkT5jZwvLi9SQtaX6Omc3OXj0AAAAAQHui\nqEfMgZWZp2HbT9IMSVPM7LkWy38u6Z4QwoOS/iLpSjN7owp1BAAAAACgXZ5fGr8r6W+Sjmm50Mx+\nLWmcpBsk7Sjp4RBCn4z1AwAAAAC0J466519XbwZHJpF0iKRtQghfa/mAmS01syvNbH9J70vatAp1\nBAAAAACgXa65oc1spaS9JU0LIRwtSSGEPUMIa5ZvryepoBa/uQUAAAAAoDO4Z0U2s9dCCHtKui+E\n0KCm4cfnhhBWlp93upm9Up1qAgAAAABa4zq2TSpu2JrZgBa3X5Q0unz3VkmnValeAAAAAAB0CM17\nAAAAAEBNc13HFgAAAACQP65j24QeWwAAAABATeu1PbaD+y5zJus1eK3X3Vn1HbD6p7Vn3qO+3Ijd\nVKx/119uRoOTOc7kJGnEZlWtSy2I+vfPuwo1o/DyDf5w8WgVXr3DmT3UX66kwvuznMnJ0kj/VdTy\nPA+g4wpzL/YFi6dnLjv9u/OY2HeyCstu8WWL03w51JTCm3f7gsUDshf+hvd7mzQ4ft6ZHK9BD/7I\nF93v+84ys8v6OVFY8jtnwcdnKheQpChN0zzLz7VwAAAAAL1WjxjDu2jnCd2yTTXynlldun1z77Ft\naFjuyhWL9Zmy6ZsLXdlowCilKxb7sv2HK1lwqysbj95HyT0/9GV3/pq0suTKSpL6FbJt65cfcWWj\nIZOUvHCXKxuP2C23fcubbc4nD/zUlY23O63mXnPWbDL7CldWkuLxRyux633ZcGi2ei990Ffu0MlK\nFvh6xeLR+/rPAxnOAVLt7l+57df3nePKxjucnvl9arzlm65s3b7fUzL3Glc2HjetJt8njonKssn8\nGa5sPOaA7J+rGb4/paXZrmxUGK/Gm7/hytbt9/3c3qes3xeTJ30jTuKJx+f3mtFjVPwb2xDCiha3\n9wohWAjhnhDCCS2WTwohPBVCqKtWRQEAAAAAaIunxzaVpBDCLpJ+IWl3Sf+S9FAI4Q+SXpV0vqQT\nzayxWhUFAAAAALQS1+aI6hDCnpLOlVQn6TIz+3Grx0+X1DwRwxqSxkkabGZt/nDeNRQ5hLCDpEsk\nfcLMFpaXnSPpJ5IelfSUmfnG2gEAAAAAeqzyyN4LJO0qaYmkv4cQbjGzuc3PMbNzJJ1Tfv4nJZ3a\nXqNW8jVs+0maIWmKmT3XYvlFko6StKOkrRzrBQAAAAD0fNtImmdmiyQphHCdpP0kzW3n+YdLunZV\nK/Rcx/ZdSX+TdEzLhWaWSrpY0h1m9ppjvQAAAACACkRR3C3/VmOYpJYz8r5YXvYBIYS1Je0h6cZV\nrdDTsE0kHSJpmxDC19p4rFtONw0AAAAA6BYqaTPuI+mBVQ1DlnwNW5nZSkl7S5oWQji6xUO1+ctl\nAAAAAEBXWSJpeIv7w9XUa9uWw7SaYchShlmRzey18kxW94UQXjGz28qP0WMLAAAAAF0gqs1ZkR+V\nNDaEMFLSS5IOlTS19ZNCCOtI2kFNv7FdpYobtmY2oMXtFyWNbnH/KklXVbpOAAAAAEDvYGbvhxBO\nlnSnmi73c7mZzQ0hHF9+/OLyU/eXdKeZvb26dbou9wMAAAAAgJeZ/UnSn1otu7jV/Q53nNKwBQAA\nAIAaVaNDkavONXkUAAAAAADdRa/tsV32zmBXrigp+d3/uLJ1x10qLTFXVqP3kYrr+rKSGpb3cWeL\n/dxRSVL68ixXLhoySXrjhWyF16K4Lu8a1I66vtny779VnXpUKvL/z2q8/sfd2WTezb4yxx+9+id1\nosHx887k+KrWo8skjbkVHY0evfontadvvTtarH/XX25OBkfzM6QnVq0eNePFeb7cmCqUPWAdf7av\nPxsNzFBuTpInf+vOxtt+QdEGk6pYG6AyUZrmOokxMygDAAAAyEOPGMO7eK+tu2Wbavgdj3bp9s29\nx7ahYbkrVyzW55ZtvORYV7buuEuV3H+OKxtvf7qSWZf7shOmu1+vlH17JU9f5srGmx2Ty2vOa99q\nzicPnuvKxpNPrbnXnHnfmnuNKytJ8bhpSp650pfd9LPZ6v3Ph3zlrvcxaWXJlVW/gpLZV/jKHX90\nrueQtDTblY0K42tzv773x65svONXsp9/MuwjyYJbfNnR+2bar/N6n9JlT7qykhQNnliT+2am/Xrm\n2a5sPOWM7Pv1o7/0lb3155SuWOzKRv2HK5n5E1+5U76c3/v08C9cWampx9Z7XOR5TKDn4De2AAAA\nAICaVnGPbQhhhZn1b+excyUdJGm4mXXLLnEAAAAA6CmYFbmJp8e2zQZrCCGWtK+kOZKmZKkUAAAA\nAAAdVc2hyDtKekrSFZKmVnG9AAAAAAC0q5oN26mSrpd0q6S9QghcswQAAAAAOlEUR93yr6tVpWEb\nQugj6ROSbjWzf0l6RNKe1Vg3AAAAAACrUq3L/ewhaaCk2SEESVpb0kpJt1dp/QAAAAAAtKlaDdup\nkqab2fWSFEJYW9LCEMJaZvZ2lcoAAAAAALQQRcyKLPkatmuHEFperfqXknaXdFzzAjN7K4TwgKRP\nSrohWxUBAAAAAGhfxQ1bM2trUqgftvG8T7lqBAAAAABABao1FBkAAAAA0NXial7opnaxFQAAAAAA\nNY0eW4don6P84Q9/2J99u0bn4Ro4wh2N1tuiihWpEWuvnXcNKlZ4+2FncjcNXut1Z7ZeGjDcmS37\n0JBsea/3/uWOJq+ZKxcPnSytuZa73Dyl7y135Wp2Ko3BxfzKfucdfzZN3dFk8T2uXDz2YHeZkjQ4\nmeNMTlK6Yqm73GjwRBUaZvjCxSPd5UrSYM1zJrN9Hkeb7pYpn8na/f3Zd5yfUf2HK9pkV3+5eRm+\neaZ42jDLlYsGT8xULiBJUZrhg6gKci0cAAAAQK9Vs/8H2tLST03ulm2qoTc+2KXbN/ce24YG3//E\nF4v1uWWTpQ+4svHQ7ZTMvtyXHT9dyf9d4Mtuc7L79UpV2F4v/MWVjUfsrrThcVc2Km5Zc/tWcz55\n8hJXNp54XH7HxAt3ubLxiN2Urli8+ie2Ieo/XMmS+1xZSYqH7aBk0R2+7Mi9sm2vxXf7yh2+q5Kl\nD/qyQycrsWt92TA133PIPx9yZeP1PlZz54FisV7J7Ctc2Xj80dnPP4/9ylf2VicqmX+zLztmPyX/\n8F1AIR57cKZtnb78iCsbDZmkZNGfXFlJikd+Qsmcq33ZTY7M9pobnnBlo+IW2cpd9qSv3METs+/X\nGbZ1WnL2QBYm1OR3mGTJva6sJMXDdlQy9ze+7LgjcnvN6Dn4jS0AAAAAoKZ1qMc2hJBIusbMjijf\nX0PSUkkPm9k+LZ73R0lDzOxjnVFZAAAAAMB/RFGPGFGdWUd7bP8ladMQQr/y/d0kvagWv5ENIQyU\nNF5SnxDCqKrWEgAAAACAdlQyFPkOSXuXb0+VdK3++wfXB0q6VdINkg6rSu0AAAAAAFiNShq210s6\nLITQV9IESa1nXDis/Jzfq6nhCwAAAADoRFEcd8u/rtbhEs1slqSRamq03t7ysRDCEEkbmtnDZrZA\n0rshhE2rWVEAAAAAANpS6eV+bpF0jqQpklpeQf4QSYNCCAvL9+vV1AD+ZuYaAgAAAACwCpU2bK+Q\n9JqZPRNC2LHF8qmS9jCzRyQphDBS0t2iYQsAAAAAnSaKmRVZ6vhQ5FSSzGyJmV3QYlkaQviIpOHN\njdry8xZJeiOE8NFqVhYAAAAAgNY61GNrZgPaWDZT0szy3eFtPL5VtqoBAAAAALB6lQ5FBgAAAAB0\nFxFDkaXKLvcDAAAAAEC3U9M9toV3H3Mmd1Th7Yed2d2k+a0v4dtBQ7dzllmW4Yfhhed/4y+3+Dl/\nVpJef8GXGyGly55xRaPilr4yu4P33nNHC3N+5QtO+bK7TEnSK8/5ciN2U/rKk65o1H+49MYiX7mS\nNGwHlT60vStalFSYe7Gv3OLp0uvP+7LDJb31si8rSctf82fztGJp3jWoWOG5y3zB4helQWP95T51\nnjurXb8h9evnz/9zvi83RtIrL/qyY6W+353qy553m6J1NvRlJenlef7sSCmd5zxvbiIVFl/jyxZP\nUNrwtCsaFbfwlVmWLnrQV+7giZnKlSQtf90dTV/1vU9RYYLSV82XzfM7zKvO41iShu2odNZTvuy4\nI/zlgsmjyqI0TfMsP9fCAQAAAPRaPaJF2DBtx27Zpipec2+Xbt/ce2wbGpa7csVivZIl97qy8bAd\nlbxwly87YjclD/zUl93uNCWzL/dlx09X8uiFvuzWJyl59JeubFP+c9nep6d9PRfxZscomevraY7H\nHZGpznlkm/PJ353v80dPUjLzJ77slC9ne4+z7JsLbvVlR++jZM7VrqwkxZscme0133eOr9wdTlcy\ny3kemDBdyfwZvuyYA9zngSznACn7MZXMu8mVjTc8MLfzQPK3n7uy8ce/qOSl+33Z9bdXcvf3XVlJ\ninf9hpJnrvRlN/2skr/9zJf9+Jcyba83T/mkKzvgvNuklSVXVv0KSh4535eVFE/6vBpv8V0RsW7f\n7yl5/CJfuVueoGTOVb7sJkdl/JzI7/yTPOIbyRBPOkXJP270Zcd+Sold68uGqfmdu5yfT1LTZ1Tj\n7093ZesOOSe314yeI/eGLQAAAADAJ4qZNknqYMM2hJBIusbMjijfX0PSUkkPm9k+IYTPSDpb0mJJ\n/SUtkPQdM3uoU2oNAAAAAEBZR5v3/5K0aQiheVaJ3SS9qP/8RjaVdK2ZbWlmG0n6kaSbQggbV7W2\nAAAAAAC0Ukm/9R2S9i7fnirpWv3nB9dRi9sys3slXSLpuOxVBAAAAAC0JYqibvnX1Spp2F4v6bAQ\nQl9JEySt7po3j0uixxYAAAAA0Kk63LA1s1mSRqqpt/b2aq4bAAAAAACvSmdFvkXSOZKmSCqu5rlb\nSJrjqRQAAAAAoAPiHnE53swq7VW9QtJZZvbMqp4UQpgi6VhJl3orBgAAAABAR3S0xzaVJDNbIumC\nFstazop8aAhhO0lrq+lyPweamVWxrgAAAAAAfECHGrZmNqCNZTMlzSzfvkrSVdWtGgAAAABgVaKY\nqY0kJngCAAAAANQ4GrYAAAAAgJpW6azI3Uqpz1auXFFSaa1t/dlwnD875BB/9iNHZsge4co257Mo\nDT3UX+6HhmQsvQa99ZY7WtrkRFcu83ucZd+s39GfLR7gyjbnC+896Uxvr9K4493lRutPcpYrlQbs\n6i7Xex7Iun9k9vZredegYqWNjnHlipLSh27zFfqp7VXa/BRftlx2ad2D3FmN3sZddpbt9c63rnWX\n27C8j6/cfpJG+L6DNHv1Y1/xlS2pNHyaP1s80J3NIs/zT2n0Z91llwbu7s7WotJ6vu+pUtNrfnWn\nM91Z+EURsyJLUpSm6eqf1XlyLRwAAABAr9UjWoSvTd+jW7apPnz5nV26fXPvsW1oWO7KFYv1ZLsg\nm2fZxWK9khf+4srGI3av2W2dzDzblY2nnFFzrzn3bf3S/a5svP72meqdlma7slFhfM1u60zngVmX\nu7LxhOk1t72KxXo13ujryav71I/zfZ+WPuDKxkO3q8n3KVn6oCsrSfHQyTX5mmstm2fZxWK9EvON\nJojDVLZ1F2bRc+TesAUAAAAA+ERxj+h4zqzDDdsQQiLpGjM7onx/DUlLJT1sZvuEED4j6WxJL7aI\nTTWzZ6tYXwAAAAAA/kslPbb/krRpCKGfma2UtJuaGrHNY7pTSdeamX/mCgAAAAAAKlTp5X7ukLR3\n+fZUSdfqPz+6jtRDfoANAAAAADUhirrnXxer9De210v6dgjhNkkTJF0uafsWjx8aQtiufDuVNLnc\nuwsAAAAAQKeoqGFrZrNCCCPV1Ft7extPuY6hyAAAAACAruSZFfkWSedImqIPXk+ZocgAAAAA0EWY\nFblJpb+xlaQrJJ1lZs9UuzIAAAAAAFSqkh7bVJLMbImkC1osazkrcsvf2ErSiWb2cOZaAgAAAADQ\njg43bM1sQBvLZkqaWb59laSrqlc1AAAAAMAqMRJZkm8oMgAAAAAA3QYNWwAAAABATfPMigwAAAAA\n6A4ixiJLUpSm6eqf1XlyLRwAAABAr9UjWoRvfG7vbtmmWueXt3fp9s29x7ahYbkrVyzWK1n6gCsb\nD91OyZyrfdlNjlSy+B5fdvjO+n/27jxMrqrO//i7qlkikAymU4JAIBLhGPZNVlFkQDYBAwMYGUAB\nQX8iisAoLiM4OrgA4giMIKLgMAgqKCiIoiMiAgrImnjYDEsA6XRAIhAJufX7o6uhiUm663srXV2d\n9ypWMrAAACAASURBVOt56knVrfu559StW9V1cs49t3jk57Hs2u8oV+493wplAaobHUHx2P/Fsmu9\nnfpTt4aylddtVWp/lTq2Zv0mVu6abw2X+3LZN50ZK3u7j1I8el0sO3GXcvtr5jWxciftQfHkTbHs\n6ttRPPjjUBagOnlfioeuimXX3bvc90+J46uYeXUsO2nPUt8hZY/rcp/HX4ey1TV3Klfu4zfEyl1j\nR+p/+UMoW1ntzRQ3nBYrd8cTyn///PmnsbLfsBfF9Nj8kdUNDqO4//ux7HoHUH/qtlC28rotKZ74\nXazc129Pcd9loSxAdf0DYV5vLDymm/rTM0LRymunlPrObdffidLH9Z3fjJW96fvLfefmS2PZdFD7\nvruCv9mg8bvt4WtjZa+zW6lsmf2l0aPtDVtJkiRJUowjkfuEJ49KKRUppe8OeLxcSqknpXRV4/F7\nU0pfb0UlJUmSJElanDI9ts8BG6aUxuSc5wG7Ao/xynmzI3KstyRJkiSpvVJKuwNnAl3A+TnnLy1i\nnZ2ArwLLA7NzzjstbntlL/dzNbBX4/404BJeOQnbTnFJkiRJWpqqlZF5W4KUUhdwFrA7sAEwLaU0\nZaF1VgXOBvbOOW8E/MsSd0OZfQhcCrw7pbQisDFwS8ntSZIkSZJGt62BB3LOM3PO84HvAfsutM57\ngB/mnB8DyDnPXtIGSzVsc853A5Po662NTaUoSZIkSVqWrAk8OuDxY41lA60HjE8p/V9K6daU0iFL\n2mArZkW+EjgNeBtQa8H2JEmSJElD0KGzIg9lPqblgS2AfwZWAm5KKd2cc75/USuXHYoMcAFwcs75\n3hZsS5IkSZI0us0CJg54PJG+XtuBHgV+nnN+IefcC/wG2HRxGyzTY1sHyDnPou/E3/5l9UXclyRJ\nkiQJ4FZgvZTSJOBx4CD6Tm8d6MfAWY2JplYEtgHOWNwGww3bnPO4RSy7Hri+cf9C4MLo9iVJkiRJ\ng+jAscg555dSSscA19J3uZ9v5ZxnpJSObjx/bs75TymlnwF3AQXwzZzz9MVtsxXn2EqSJEmSNGQ5\n52uAaxZadu5Cj0+jbz6nQbXiHFtJkiRJktrGHltJkiRJ6lR2VQIjoGHb/fdbg8m3w2N3xqKvfwvV\ndfcKlgv03BfLTdwZev8cy64NPDkjXm5JvStuFcrVgPrzT4WyFYDnl3gd5qWm2r1hONs9+8p4wbWD\nqT/+RDw/J3h8TYTuniti2dqhUIl/o/Z2bRQrFuDFv4XLBWDenHC0d7nFTsq3RDWA+SXrHfXck+0p\nF+j+6y9iwdp+8Le/xMt95ufBcveHx++OZdfYkdnVN8WKBerz5sXKBcae/b5wlpN/APUinn/m6Xh2\npfjVAv+0636h3JQ7Hw6X2Qo9c1cI5WpjYPZLa8WylPvO7Z79o1CW2iHw7KxYthVKfKZY7jXx7DPx\n764yepffLJSrAfWnHwyXW3ndVvDS8+F870rbh3I1YEI99tu8/hT1yuu27LwTVLVIlXq9rRMXO2uy\nJEmSpGFXf+o2RkPDdu5xe4/INtXYr141rPu27T22xWP/F8pV13o7xR/OjmXf/CGY1xvKMqab4vZv\nxMrd4gMUfzx38BUXld386FKvt7jnW6EsQHWjI+jpmRvK1mpjKWZeHSt30p4Uf/rfWPZN7ylV51LH\nx4yLY1mgOuVgFvzw46Fs1/5forjzm7FyN30/xfSLYtkNDqV4+NpYdp3dyh1bJfd1MT02cXt1g8Pa\n95nosM8TNF7zA5fHyn7jfhT50lg2HURx/w9j2fX2p7j1nFh2q/9X6vhY8IvPh7Jdu36aeSf/SygL\nMObkH1A8dFUoW113b4rfnRnLbv9Rilm/jmXX3IkZm64Tyk6582GKJ34XK/f121Pcd1koC1Bd/8BS\nx0i7ssWM74ay1SmHUNx1fiy7yZHlv39u+Xqs7G0+XO536i3/FSz32Pa9x8HvW2h85z4YG/1VnTy1\nVL3rT90Wyo4WlQ6cFXlpGNL4wZRSkVL67oDHy6WUelJKVzUevzeltCCltPGAde5JKa3d+ipLkiRJ\nkvSKoZ4Y9xywYUppTOPxrsBjvHoo8WPApwY8HpFd4pIkSZI0alQqI/M2zJqZ8eVqoH/GpWnAJTTm\n96GvEfsT+hq/67euepIkSZIkLVkzDdtLgXenlFYENgZuWej5Avgy8MkW1U2SJEmSpEENuWGbc74b\nmERfb+1PF3q6v+f2f4FtU0qTWlE5SZIkSdLitXvE8QgZidz05XyvBE7j1cOQX5ZzXgCcDnyifNUk\nSZIkSRpcsw3bC4CTc873LmGd7wC70He9ZEmSJEmSlqqhXse2DpBzngWcNWBZfeH7Oef5KaWvAbEL\n2kmSJEmShqbqdWxhiA3bnPO4RSy7Hri+cf9C4MIBz30diF0NW5IkSZKkJjQ7FFmSJEmSpBFlqEOR\nJUmSJEkjjSORAXtsJUmSJEkdru09tr0rbhXK1YDeSYeGsz1zV4hlxwD/tFooC8Dzz8ezXV3haO9q\nB4azpae3nvNILDcJWGFs2dJDyhwfvRP2CZdbAyqvXTWcn//ja0O5FTd9P721qaFsDaiuFvscA3Q/\n9J1YsPZheKYnXC4AT/eWy0eV+Uz0/DmerdcHW2up6f2nXUO5GlBZdVK83FXfES6XBQvC5ZZRec1r\nwtkVDjm4XOF/+0s8O++FeHbGjbHcmjuRvnliuNj6r78fC07bHuY8ES63U/VOeFcoVwN48cWW1qUp\nL70UjlZWWSNeblfbf2Y3r1quz6t+++9iwcmx3yD9ZlfWD+VqtbH2dY4ilXobf+jwyqzKkiRJkjSc\nRkXD9vlPTB2RbaqVvnjFsO7ftv9XUk/P3FCuVhvbtmzx4BWhbHXyVIobvxrL7nAcxe3fiGW3+ED4\n9UIL9leJehcPXRXLrrt3xx1b/fniV6eGstWdT+Lvn/uXUHbFf/9BqdfMvGDP55huiltiE6hXt/kw\nxU3xq4pVt/soxY1nxLI7fKx9n4k/nB3LvvlDFDMujmWnHNzW75D6X24JZSurbVPufSpxbJYq97en\nx8p9y/Hhv0/Q+Bt11/mx7CZHlvruKq77Qiy7y6cofn/W4CsuKrv1MSy45LhQtmvaVylu/looC1Dd\n9iMd9zeq9G+BW88JZatb/b/yf1dL/PaqP5ND2cqqqS2vufT7dH9wFANQXe8AFnw/NoKi64CvtO01\na/QYUsM2pVQAF+ecD2k8Xg54Arg557x3Y9m7gFOA5YGXgM/knH+8VGotSZIkSVLDUAfSPwdsmFIa\n03i8K/AYjaHEKaVNga8A++ScNwD2AU5LKW3c4vpKkiRJkvpVRuhtmDVzhvjVwF6N+9OAS3ilyicA\nX8g5PwyQc54JnArEZ3SQJEmSJGkImmnYXgq8O6W0IrAxMPCkpw2A2xZa/zZgw3LVkyRJkiRpyYY8\neVTO+e6U0iT6emt/utRqJEmSJEkakkp1VEzuXFqzF6u6EjiNVw9DBpgOLHwhyy2Be+JVkyRJkiRp\ncM02bC8ATs4537vQ8tOAk1JK6wA0enZPAmLXLJAkSZIkaYiGOhS5DpBzngWcNWBZ//I7U0ofB65K\nKS0PzAdOzDnf1eL6SpIkSZL6ORIZGGLDNuc8bhHLrgeuH/D4CiB+ZXhJkiRJkgKaHYosSZIkSdKI\nMuRZkSVJkiRJI0zFschgj60kSZIkqcPZYxvQO26XUK4G9K5/ZDw78eBwtp1e+N7PQrmVt/hAi2vS\nGep/fTacffaD3w7lyh4jPXNXiJU7BnrXfW8sC/S+8YhQ9uX8+u8PZ8so81nunXRoPDthn3C2nWZX\nNwjlSr9PJY7NUuWmo8LlRv8+vZx//UHx7MbHxLObHhvPvuGwcHbOLp+Llzv58FC2P7+s6V3nkFCu\nJftqhdjfKIDZ89cI5Wq0+TUH9a66ezhbA+bs9O/hrFRWpV6vt7P8thYuSZIkaZk1Ksbwzvv3/Udk\nm2rM5344rPu37T22PT1zQ7labazZYci2ouzn/u1doezKX/4RxUNXhbLVdffu2H294IqTQtmuqad2\n3Gtu977utHp3YradZZvtjLKXtWw7y17Wsv354g9nh7LVN3+o415zu/d1p9W7Vhsbymlk8hxbSZIk\nSVJHG3KPbUqpAC7OOR/SeLwc8ARwc85575TSasC3gLWA5YGZOee9lkKdJUmSJEkA1VExorq0Znps\nnwM2TCmNaTzeFXiMV86T/Rxwbc55s5zzhsDHW1dNSZIkSZIWrdmhyFcD/b2w04BLeOWk69WBWf0r\n5pzvKV07SZIkSZIG0WzD9lLg3SmlFYGNgVsGPHc28K2U0q9SSp9MKb2+VZWUJEmSJP2jSmVk3oZb\nUw3bnPPdwCT6emt/utBzPwfWBb4JvAn4Y0ppQmuqKUmSJEnSokUu93MlcBrwNha6nnLO+Wn6hidf\nklK6CngrcHnZSkqSJEmStDiRy/1cAJycc7534MKU0ttTSis17o8FJgMPl6+iJEmSJGmR2j3meISM\nRW6mx7YOkHOeBZw1YFn/rMhbAmellF6ir8H8zZzzba2qqCRJkiRJizLkhm3Oedwill0PXN+4fxp9\nQ5QlSZIkSRo2kXNsJUmSJEkjQDtmIB6JIufYSpIkSZI0YthjO8y6n/l5LFjbn+4F9w6+3iJtG8y1\nxvMnfjeUWxng78+0tC6dYMGfHgrlulpcD41M3c/dEAvW9mxtRbTUdP/l+7Fg7fDWVqRJZ7/uH85Y\nGpKT6/XBV5JKKH7z21Cu+uYPMeE10d8hY4M5SVGVenv/oPjXTJIkSVI7jIpBvC9+4cAR2aZa4VOX\nDev+bXuPbU/P3FCuVhvbkdni/h+GstX19qd48uZYdvVtw3WGNu+vGbHe3uqUQzru+OjPv3jqQaHs\nCidd2nGvud37utPqXauNpZh5dShbnbSn+7pDssU9F4Sy1Y0Ob+v7dHLwJK+T6/WOfJ/8TIz8bH/+\npdOnhbLLHX8J9b89GspWVpnYcftrWT2uNXp4jq0kSZIkqaMNucc2pVQAF+ecD2k8Xg54ArgZ+CHw\nkcaqGwJ/AhYA1+ScP9nSGkuSJEmS+jgtMtDcUOTngA1TSmNyzvOAXYHHgHrO+TvAdwBSSn8Gdso5\nz2lxXSVJkiRJ+gfNDkW+GtircX8acAmj5KRrSZIkSVJnarZheynw7pTSisDGwC2tr5IkSZIkaSgq\nlZF5G25NNWxzzncDk+jrrf3p0qiQJEmSJEnNiFzu50rgNOBtQK211ZEkSZIkqTmRhu0FwNM553tT\nSju1uD6SJEmSpKFyVmSguYZtHSDnPAs4a8Cy+qLWkyRJkiRpOAy5YZtzHreIZdcD1y+0bN0W1EuS\nJEmSNIhKs9MBj1LuBkmSJElSR7NhK0mSJEnqaJHJo5Z53fm8WLB2PPU/T49l19sf7v9tLLv6tnQ/\neVksC1A7Ip4FuudcHSz3IFh+5VJld6Lldn1rODuh8mAwuVm4zLK6598RTO5I99PXxAuuHUj3X4Kf\ni9oR8c9U7Qi6n/9dLMtu8OLfglnonv2jWLB2SLjMVuh+5mexYO2A1lZkuMyZ07aiu+87PxasHce/\n3/bf8XLn/CRY7rRwmQDjvnF4LPiZ79Pdc3m84Nph8XztMMbf8uVY9p3/Ecu1QDs/x9W3viWcrc99\nNJSrrDKx1O+f7r/+IpjdL5Zr6J59ZTxcO7hU2SrByaMAqNTrbZ3ryYmmJEmSJLXDqGgRvvSVaSOy\nTbXciZcM6/5te49tT8/cUK5WG9u2bPHb00PZ6luOZ8HPY/9b2vWOz1DccFqs3B1PoLj7W6EsQHXj\nI8rtr3xprNx0EMUDsf/Rrr5xv447tvrzxa1nh7LVrT5EfXas97MyYbP2fZ4evyGUra6xI8V98ZEI\n1fUPpLgn9rmobnRE+DNV3fgIioevjWXX2S38mqvrH0gx47ux7JRDSh/XpY6R+78fylbXO6Djvgdq\ntbEUvwl+17/1hPLfPzd+NVb2DsdR3P6NWHaLD1DkS2LZNK3Uvv77f8R6A1f8zPcppl8YygJUNzgs\nnK9ucBgLfvKZULbrnf/RvuO6DZ/jl8v+Q/Dv6ps/RPFEbIRN9fXbd+Tvn2LGxaEsQHXKwR35navR\no+0NW0mSJElS0Kjody6vqYZtSqkAzsg5n9B4fAKwcs75lMbjQ4ET6Rti/BJwcc451r0pSZIkSRqV\nUkq7A2cCXcD5OecvLfT8TsCPgYcai36Yc/784rbX7KzILwJTU0rdjccvj+dOKe0BfATYNee8CbAt\n8Ncmty9JkiRJGsVSSl3AWcDuwAbAtJTSlEWsen3OefPGbbGNWmh+KPJ84DzgOODTCz13EnB8zvlJ\ngJzzi0BwekVJkiRJ0mAqnTkr8tbAAznnmQAppe8B+wIzFlpvyC8uch3bc4CDU0rjGo/7e203BG4L\nbE+SJEmStOxYExh4Pa3HGssGqgPbp5TuTCldnVLaYEkbbLphm3OeC1wEHNtY1JH/RSBJkiRJaouh\nXKLodmBiznlT4OvAj5a0cqTHFvpO8j0CWHnAsnuBrYLbkyRJkiQ1q1oZmbclmwVMHPB4In29ti/L\nOc/NOT/fuH8NsHxKafxid0Nk3+WcnwYuo69x29/aPhX4SkppNYCU0goppSMi25ckSZIkjVq3Auul\nlCallFYADgKuHLhCSmm1lFKlcX9roJJznrO4DTbbsB3YZXw6MKH/QaMVfRZwXUrpHvrOt/Wqx5Ik\nSZKkl+WcXwKOAa4FpgOX5pxnpJSOTikd3VjtX4C7U0p30Ddi+N1L2mZTsyLnnMcNuP8Urx6KTM75\nO8B3mtmmJEmSJCmoM2dF7u8YvWahZecOuH82cPZQtxc9x1aSJEmSpBHBhq0kSZIkqaM1NRRZkiRJ\nkjSCDD4D8TKhUq8P5RJCS01bC5ckSZK0zBoVLcIF/3XIiGxTdR373WHdv23vse3pmRvK1Wpjl7ls\nMfOawVdchOqkPcLl9pfdrtfMvN5QljHdHfce9+cXfOf/hbJd7z2n415zu/d1p9W7VhtLMevXoWx1\nzZ2WyX1dPHlTKFtdfbuOPD469X1alrLtLHtZy/bni1+dGspWdz6J+t9mhbKVVdbsuP21rB7XGj3a\n3rCVJEmSJAVVnDYJmmjYppQK4Iyc8wmNxycAK+ecT0kpnQwcCfTQdwmgu4FP55xntL7KkiRJkiS9\nopnm/YvA1JRSd+PxwLHcdfoavZvnnNcHLgV+lVKa0KJ6SpIkSZK0SM00bOcD5wHHLeb5l08Ozjlf\nBvwceE+8apIkSZKkJapURuZtmDU7IPsc4OCU0rghrHs78KbmqyRJkiRJ0tA11bDNOc8FLgKObfW2\nJUmSJEmKiMyKfCZ9vbHfHmS9zYHfB7YvSZIkSRqK6qi4HG9pTfeq5pyfBi4DjuCVCaRetTdTSvsD\nuwCXlK2gJEmSJElL0kyP7cBZkE8HjlnoueNSSv/KK5f72Tnn3Fu+ipIkSZIkLd6QG7Y553ED7j9F\nXwO2//EpwCmtrZokSZIkaYkqTm0ETvAkSZIkSepwNmwlSZIkSR0tMiuyJEmSJGkkcFZkACr1en3w\ntZaethYuSZIkaZk1KlqEC849ckS2qbqOPn9Y92/be2x7euaGcrXa2LZli3xpKFtNB1E8fG0su85u\nFHd/K5bd+Ijw64U27+uZ14Sy1Ul7dNyx1Z8vfnNaKFt96wkd95rbva/bVe96zx9D2Uptc4oHrwhl\nq5OnUtz5zVh20/d37L7uxGxxQ/A7YMf4d8DLZd/y9VjZ23y4I/f1svj9syxl+/PFLf8Vyla3OZZ6\nz+2hbKW2Rcftr1ptLPVncigLUFk1deRr1ujR9oatJEmSJCmoMio6nktrqmGbUiqAM3LOJzQenwCs\nnHM+JaV0MnAk0DMgslPO+a+tqqwkSZIkSQtrtsf2RWBqSunUnHMvrz5Htk5fo/eMltVOkiRJkqRB\nNNuwnQ+cBxwHfHoRz9sPLkmSJEnDpeoVXCF2ju05wF0ppS8vtLwCHJdS+tfG4zk5538uVTtJkiRJ\nkgbRdMM25zw3pXQRcCzwwoCnHIosSZIkSRp20VmRzwRuB7690HKHIkuSJEnScHFWZABCA7Jzzk8D\nlwFH8MoEUu5RSZIkSdKwa7bHduAsyKcDxyz03MBzbAH2zTk/Eq2cJEmSJEmDaaphm3MeN+D+U8DK\nAx6fApzSuqpJkiRJkpbIWZGB4FBkSZIkSZJGChu2kiRJkqSOFp0VWZIkSZLUbs6KDNiwDekdv2co\nVwN6V9o+nl39wHC2nSasODuYHAvF/JbWpSOsvWG7a7DM6H7+d8HkbuUKLl4MR3vH7RLK1YDeNd4d\nzmoY1dZoW9HVTd8Tzpb6rpeWot513xfK1YDZrBfOdqLZ8+PfP536mjV6VOr1+uBrLT1tLVySJEnS\nMmtUdHUuuPCYEdmm6jrsrGHdv23vse3pmRvK1WpjzQ5DthVl15/9cyhbGfcGioeuDGWr6+7Tsfu6\nmHlNKFudtEfHvea27+uHrw1lq+vsVu4z8ZdbQtnKatt07L7utHq3M1v86X9D2eqb3lP6fWJebyw8\nprvUd30nvk9+JkZ+tp1lL2vZdpZdNqvRY8iTR6WUipTSaQMen5BS+mzj/skppeMXWn9mSml866oq\nSZIkSdI/amZW5BeBqSml7sbjgV3edf5xWPGI7BKXJEmSpFGjWh2Zt+HeDU2sOx84DzhuMc+PijHq\nkiRJkqTO0uw5tucAd6WUvrzQ8gpwXErpXwcsa9+0jpIkSZKkZUZTDduc89yU0kXAscALA56qA2fk\nnM/oX5BSis0iIUmSJEkaGq9jCzQ3FLnfmcARwMoLLXePSpIkSZKGXdMN25zz08Bl9DVu+yeIslEr\nSZIkSWqLZoYiD5zl+HTgmIWec1ZkSZIkSRpGlap9jNBEwzbnPG7A/acYMBQ553zKItZft3TtJEmS\nJEkaxPBfYEiSJEmSpBZq9nI/kiRJkqSRomJfJdhjK0mSJEnqcG3vsa2NfbEt5XbPvyOY3JHuR/4n\nFq19kO6Hvh3MHkv3zIuC2Q/Rfd/5sSxA7bh4FqjP+l0oVxn3Bnj2iXC53c9eFwvWptJ991mx7M4n\nxXIDPTY9lpu0B92Pfy+Wrb0/lmvofux/g+UeTfcTlwazR9I95yexLEBtGjx6Tyy7zm6M/79/mFpg\naA48jfqfbw5FK6ttQ/esS2Ll1o6i+95zYtmdPh7LDTD+jq/Fgrt+mu45V8eytYNiuYZS+zqfF8we\nT2/33rForMRXKWb9JpSrTp5K/bFYtrLBG+j+84WhLLVjGH918Hv3sLPifxtrxzGh+FMsC8Cb6e65\nIlj2oaV+O5X5DVNG95/ODZZ7QqlyAbpnxf9Gvfaio2LZ4y8pd3zV74tl2ZLxt50Ri+7+2fhxCVA7\nlO4Z7XufpUq93tbJi505WZIkSVI7jIrphItLjx+RbarqQacP6/5te48t83pjuTHd9PTMDUVrtbEU\nj98QylbX2JHitv+OZbf8IMUt/xXLbnMsxR/OjmXf/CGKG78aygJUdziu3L6ecXGs3CkHU9wR+5+/\n6mZHUzwY+1/H6uSpFL86NZbd+aTwvoLG/vrt6bGy33I8xZ3fjGU3fX+59/iPwfdp86Mp7or9j3Z1\nkyMpcrBHDaimaaX29YLLYv+73HXgaRQ3x3ovq9t+hOKOWE9gdbOjKH79pVh2p4+XPq4X/OLzoWzX\nrp+myLFe/Wo6qNxxXWZflzi2ytS59PdPme/N6bFe1+oGh1H8PjZKprr1MSy48JjBV1yErsPOCv9t\nrO5wHPW//CGUBais9maK6bFRWNUNDi3126nMb5hSn6cbTouVu+MJ5Y/rEr8lXjp9Wii73PGXlDu+\nnrotlK28bksW/Cw2oqhr98+Gj0voOzaL3wTf57fG3+cy33212thQTiOT59hKkiRJkjpaqYZtSqlI\nKZ024PEJKaXPNu6fnFI6vmwFJUmSJEmLUamMzNswK9tj+yIwNaXU3Xg8cHz3iBzrLUmSJEkaXco2\nbOcD5wHlps2VJEmSJCmoFZNHnQPclVL6cgu2JUmSJEkaqqrTJkELJo/KOc8FLgKOLV8dSZIkSZKa\n06rm/ZnAEcDKLdqeJEmSJElD0pKGbc75aeAy+hq3TholSZIkScOh3bMfj5JZkQc2Yk8HJgx4vBzw\n95LblyRJkiRpiUpNHpVzHjfg/lO8eijyhsCNZbYvSZIkSdJgWjEr8j9IKd0FZODnS2P7kiRJkiTa\nMux3JFoqDduc8yZLY7uSJEmSJC1sqTRsm9Ezd4VQrjamXLm9y28WKxegqytecFG0Jdu7/pHhbC2c\n7DPvoh+EciudejCVNbYMl9s7bpdQrgb0bnxMONtOvWu8O5QrW+/etd4TLrf39QfFs+PfGcr251k+\n9v0DMOftnw2X2zv58HCWsSXerdXWimdLmrPZR0K5vvd5z3C2jN41p4XL7U1HhbNt9cRDsdxkYMVx\ng662OL1vOCyUqwFz9jw1nOXv80JZgNnVN4WzNaC3NjWcLfPbqXftfw2XW0bvm45uS7kAVOJTynQd\n+flwNvrbqwbMrqwfzs7Z8mPhLI8/GsoCsAH0Tmnj+6xlXqVeb+skxs6gLEmSJKkdRsUY3uJHnxyR\nbarqu/5zWPdv+3tse+aGcrXa2LZlizvOC2Wrmx1FcdOZsex2H6W45eux7DYfDr9eKL+/nj8p9r/S\nK516BfWnbg1lK6/bquOOrf588dvTQ9nqW47vuNfc9n3dhs9U6e+fB68IZauTp1LMuDiWnXJwW79D\nzC79bH++zPdPmWOzbZ+nX8V6e6s7n+RnogOy/fnizm+GstVN30/9rw+GspV/mtxx+6tWG0tx3RdC\nWYDqLp/qyNes0aPtDVtJkiRJ0rIlpbQ7cCbQBZyfc/7SYtZ7M3ATcGDO+fLFbW9IJx2klIqU0mkD\nHp+QUvps4/7JjecnD3j+o41lWwzpVUmSJEmSmlepjMzbEqSUuoCzgN2BDYBpKaUpi1nvS8DPANyq\nmwAAIABJREFUGGTo+FDPpn8RmJpS6m48Xngc993AwFlrDgDuGeK2JUmSJEnLjq2BB3LOM3PO84Hv\nAfsuYr0PAz8Aegbb4FAbtvOB84DjFvFcHfhRf0UaPbfPAL2MkhOyJUmSJEktsyYwcBruxxrLXpZS\nWpO+NuZ/NxYtcZKsZuY/Pwc4OKW0qPn8nwUeSSltCBwEXDqUwiVJkiRJJVQrI/O2ZENpJ54JfCLn\nXKevw7QlQ5HJOc8FLgKOXcwqlwLTgHcBsakRJUmSJEmj3Sxg4oDHE+nrtR1oS+B7KaU/A/sD56SU\n9lncBpudFflM4Hbg2wstrwM/Ab4C/CHnPDel1OSmJUmSJEnLgFuB9VJKk4DH6Rv1O23gCjnndfvv\np5S+DVyVc75ycRtsZigyOeengcuAI3il+7gCVHLOLwAfB+IXwJIkSZIkDV2lOjJvS5Bzfgk4BrgW\nmA5cmnOekVI6OqV0dGQ3DLXHduAY6NMblRj4XL1RwUuRJEmSJGkJcs7XANcstOzcxaz7vsG2N6SG\nbc553ID7TwErD3h8ymIybx/KtiVJkiRJKqPZc2wlSZIkSSPF4DMQLxOaOsdWkiRJkqSRpu09trWx\nL4az46/791hw2lcZ//vTYtm9ToEVxsSyAF0ldvn41cPRcd84PF7uZ74fzwJjDpkaztb//kwoVwEm\nLP94sNTEgg/uHov+4EZW/uqhwXKB/7wCVl4lHO9+8IJYsPYRJrwmtq9hbKlyux/4VjD70Xi5jbJZ\ndUI8X0L3c7+NBWt7wJjXxguuL4hn22gC9weTW5Qqd/wNwbkQ9/si3fm8WLZ2PN3P/DyY3Z/u6d+I\nZQHediL1vz4bz78wJxztnv7fseDb/o3xt54ey+5xMrxutVgW4u8TQG3/eLZDdT/yP7Fg7YPlC18u\n/tur/tTtoVzlnybT3XN5rNDaYbFcK6wxcfB1lqD7T4s8PXJwtRNKlSsBVOr1oVwbd6lpa+GSJEmS\nllmjYgxvcc3JI7JNVd3j5GHdv23vsWVebyw3ppsFlxwXinZN+yoLfvrZWHavUyimXxTKVjc4lOL3\nZ8WyWx9DcX+s57S63gH8/T8OCGUBVvzM9+npmRvK1mpjy+2vR6+LZSfuQv2ZHMpWVk08+S87hLKr\n/+BGnv9kvId6pf+8guKPsf/trG5+NMXNX4tlt/0I9b89GspWVplYqtzipjNj2e0+Gi735bLzJbFs\nmlbuMzHzmsFXXFS5k/agmPXrWHbNnUp9FqOvF/pec5n9Ve8J9pjUtihV7oLLPxHKdu33RYrfxnoR\nq285nuL+H8ay6+1Pcf1XQlmA6ttOLPe38Z7Y6IvqRkdQXP/lWPZt/8aCa04OZbv2OJnintioj+pG\nh4ffJ+h7r8ocm52YLW6L9cpXt/xg6e+f4t5vx8re8H2lfnsV0y+MZTc4rH3vU/DvBDR+t90QGxFZ\n3fGEtr1mjR6eYytJkiRJ6mhD7rFNKRXAGTnnExqPT6Dvsj//B3wx57z9gHWXA2YBm+acn2xtlSVJ\nkiRJAFTtq4TmemxfBKamlLobj+uN2w3AWimltQesuwtwt41aSZIkSdLS1kzDdj5wHjDwxNZKzrkO\nXAa8e8DydwOxk9ckSZIkSWpCs/3W5wAHp5TGLbT8EhoN25TSisAeQHxWBUmSJEnS4CqVkXkbZk01\nbHPOc4GLgGMXWn4bsEpKaX36GrU355yjF8WUJEmSJGnIIpf7ORO4HVh47vT+XtspOAxZkiRJkpa+\nNvSOjkRNT6GVc36avnNqj6Bv8qh+lwCHAG8HftyS2kmSJEmSNIhmGrYDG7GnAxMGPplz/hPwN+BX\nOecXWlA3SZIkSZIGNeShyDnncQPuP0XfNWwXXmfzFtVLkiRJkjSYitexhcBQZEmSJEmSRhIbtpIk\nSZKkjhaZFVmSJEmSNBI4KTIAlXq9PvhaS09bC5ckSZK0zBoVTcLil/85IttU1X/+5LDu37b32Pb0\nzA3larWxPHvsO0PZcf/1E4pbzw5lq1t9iGLGd2PZKYdQ3P2tWHbjIyhu+Xosu82Hw/sZ+vZ1mfep\neOTnoWx17XdQ5NglkatpGsWMi2PZKQeXer1l93Vx/VdC2erbTmTBee8PZbuO+map17zgipNi5U49\nlSJfGspW00EUD18bygJU19mN4qErY9l19ymX/fNPY9k37FXquG7ndwjzemPhMd0U9/8wFK2ut39b\nPsu12liKmVeHstVJe7LgzH8NZbs++j8UT/wulAWovn57iukXxrIbHEZx32Wx7PoHlvqbXOp9KlPn\nB+NXNqxO3rfUd1+p11ziPS5V7u3fiJW7xQfK/10t89vrT/8by77pPRT3fjuW3fB9FLN+E8uu+daS\nf9uuCmX78ntT/OrUWHbnk9r2fa3Ro+0NW0mSJElSUGVUdDyX1lTDNqVUAGfknE9oPD6Bvsv+3Ah8\nLue8fWN5F3Ar8MGc882trbIkSZIkSa9odlbkF4GpKaXuxuM6UM85Xwc8nFI6orH8w8DvbdRKkiRJ\nkpa2ZocizwfOA44DPt1Y1t/3fRzw25TSzcCHgDe3pIaSJEmSpEVzKDIQu47tOcDBKaVxAxfmnJ8E\nzgR+B/xHzvmZFtRPkiRJkqQlarphm3OeC1wEHLuIp88BunLOF5WtmCRJkiRJQxHpsYW+ntkj6Js4\n6mU55wKvTStJkiRJw6NSGZm3YRZq2OacnwYuo69xa0NWkiRJktQ2zTZsBzZiTwcmDLKOJEmSJElL\nVVOzIuecxw24/xQLDUVeeB1JkiRJ0tLkrMgQP8dWkiRJkqQRwYatJEmSJKmjNTUUWZIkSZI0gjgS\nGYBKvd7WuZ6caEqSJElSO4yKJmFx/ZdHZJuq+rZ/G9b92/Ye256euaFcrTa2bdnilq+HstVtPkxx\nx7mx7GZHU9z/w1h2vf0pZl4dygJUJ+1Zbn89eEWs3MlTKZ68KZZdfbuOO7b688Xvzgxlq9t/lOKR\nX8Sya+/acfurVhtLccd5oSxAdbOjSn2mStV75jWxciftQfHgj2PZyfuG91d1s6NKH9dl9ld99p2h\nbGXCpp15XN/8tVC2uu1Hyn//PPqrWNkTd6b47emx7FuOp/70jFC28top7Xuf7rkglAWobnQ4xZM3\nx7Krb1vu8zTn3lC2Mn7DcvsrXxLKVtO08sf17d+Ilb3FB8q95t+fFSt362Padlw/92/vCmUBVv7y\njyhmXBzKVqcc3LbXrNGj7Q1bSZIkSVJQZVR0PJfWVMM2pbQWcDYwhb6Jp34CnAjsAByfc957wLrf\nAa7KOce6RCRJkiRJGoIhz4qcUqoAlwOX55zXB9YHVgG+wKLPla0vZrkkSZIkSS3TzOV+dgZeyDlf\nCJBzLoDjgMOBlRaTsV9ckiRJkpaWSmVk3oZZM0ORNwRuG7gg5zw3pfQI8EZgx5TSHwc8vTZwVfkq\nSpIkSZK0eM00bAcbVnzDQufYfht7bCVJkiRJS1kzQ5GnA1sOXJBSGkdfz+wDrayUJEmSJGkI2j3k\neIQMRR5ywzbn/EtgpZTSIQAppS7gdODbwPNLp3qSJEmSJC1ZMz22AFOBA1JK9wGZvgbtJxvPLW5m\nZEmSJEmSlpqmrmObc34M2GcRT13fuA1c930l6iVJkiRJGpTTGkHzPbaSJEmSJI0oNmwlSZIkSR2t\nqaHIkiRJkqQRxJHIgA3bmLnPhqP1WY/HgpsB1XgHe+/KO4aztXCy4YWn49l5JbIdqv7kk+Fs72u2\nDeVKv8dt0rvmtHC2BrDiuJbVpRmVsRPD2bzfsaHclDv3hRVXDpfbTrPr64ZynXpcV960e9vKXnDx\nuaFc9RM705uOCmVrwOyX1gpn26V3tQPC2RrQ27VhOFvG7AVrt6Xc3vHvbEu5QKnfTxMqDwWTm5b6\ne94uz5/43XB2ZaB3wqKm4hlcp35fa2Sp1OttnbjYWZMlSZIktcOo6OssbjxjRLapqjt8bFj3b9t7\nbHt65oZytdrYtmWL674QylZ3+RQLfvrZULZrr1MoHrwiVu7kqeHXCy3YX/dcEMpWNzqcYubVseyk\nPTvu2OrPL7j8E6Fs135f7LjX3O59XTzyi1C2uvaupepd770nlK10b8SMTdcJZafc+TDFjItD2eqU\ng9v6HbKsZevP5FC2smoq/T7N/+JBoezyn7i0I/d1O79/Oq3enZjtzxd3nBfKVjc7ivrsO0PZyoRN\nWXDlp0PZrn0+37H7utPqXauNDeVGnMqoaJ+X1lTDNqW0FnA2MIW+iad+ApwI7AAcn3Peu7He54Et\ngX1zzi+2tMaSJEmSJA0w5JMOUkoV4HLg8pzz+sD6wCrAFxgwpDil9GlgO+BdNmolSZIkSUtbM2fT\n7wy8kHO+ECDnXADHAYcDKwGklI4HdgP2zjn/vcV1lSRJkiQNVKmMzNswa6ZhuyFw28AFOee5wCPA\nG4G3AEcDe+Scn29ZDSVJkiRJWoJmGraDzbZ1f+PfdwTrIkmSJElS05pp2E6nb0Kol6WUxgFrAw8A\nfwH2As5MKe3UqgpKkiRJkhanMkJvw2vIDduc8y+BlVJKhwCklLqA04FvA8831rkf2A/4n5TSpq2v\nriRJkiRJr9ZMjy3AVOCAlNJ9QKavQfvJxnN1gJzzrcD7gCtTSm9oVUUlSZIkSVqUpq5jm3N+DNhn\nEU9d37j1r/cLYJ1yVZMkSZIkLVEbZiAeiZrtsZUkSZIkaURpqsdWkiRJkjSC2GML2GMrSZIkSepw\nbe+xnbD8E8Hk2JbWoylpu3C08qYt4uVWV4hn26h3tQNCuRrAmNeGy50wZk4wWe7Yqo19sVS+MmXj\nUvllSffzvyuR3o2XLj4/lFzhpF1LlAt0LR+OpqtidQaorP32cLadul+6O5jcvqX1GC713j+FcpVV\nE92zr4wXXDuY5d73sXC8u+fyYLmHhcssa0L14WByoxLHJXTqsdmxVp0Yz1bjP5Wrb31vvNw2mVB5\nqETaC6KovSr1er2d5be1cEmSJEnLrFExhrf4/ddHZJuquvWHh3X/tr3Htv7MfaFcZdX16emZG8rW\namNLZYtHfxXKVifuTPHgj2PZyftS/Pmnsewb9gq/Xii/v0rt6ydvCmWrq29HfW7sf+IrY9cpVWfm\n9YayAIzppphxcShanXJw296nth0fD18bygJU19mNF089KJRd4aRLS9W7/kwOZSurJopHfhHKVtfe\nlfpzj8fKXXmNtn6HFE/Eeuarr9++M4/rMn8ngt8f0PcdUv/LLaFsZbVtKKZfGCt3g8Patq/rvfeE\nspXujcLHJXTusdlp2f58MfOaULY6aQ/qc+4NZSvjN6T+zAOx7KpvbN9nYvadoSxAZcKmHXeM1Gpt\nHAGqlmt7w1aSJEmStGxJKe0OnAl0AefnnL+00PP7Ap8DisbtxJzzYnsYm2rYppTWAs4GptA38dRP\ngBOBHYAfAw8BKwKX55w/3cy2JUmSJElN6sBZkVNKXcBZwC7ALOAPKaUrc84zBqx2Xc75x431Nwau\nAN64uG0OeVbklFIFuJy+Ruv6wPrAKsAX6DtX9jc5582BLYD9U0pbNvPiJEmSJEnLhK2BB3LOM3PO\n84HvAfsOXCHn/NyAh6sAs5e0wWYu97Mz8ELO+cJGQQVwHHA4sNKACswD7gDWbWLbkiRJkqRlw5rA\nowMeP9ZY9ioppXellGYA1wDHLmmDzTRsNwRuG7gg5zwXeIQBXcIppfH0tcCnN7FtSZIkSVLTKiP0\ntkRDmsk55/yjnPMUYG/gu0tat5mG7WCF75hSuoO+lvePcs6xaeQkSZIkSaPZLGDgRaYn0tdru0g5\n5xuA5VJK3Ytbp5mG7XTgVefNppTGAWsDDwA35Jw3o69nd7+UUomrYUuSJEmSRqlbgfVSSpNSSisA\nBwFXDlwhpTS5Mc8TKaUtAHLOi72u5pAbtjnnXwIrpZQOaWy8Czgd+Dbw/ID1ZgJfAz4z1G1LkiRJ\nkgIqlZF5W4Kc80vAMcC19HWgXppznpFSOjqldHRjtf2Bu1NKf6SvffnuJW2z2evYTgXOSSl9hr5G\n8U+BTwLb8+qhyt8A7ksprZVzXmyXsiRJkiRp2ZNzvoa+SaEGLjt3wP0vA18e6vaaatg2Gqn7LOKp\n6xu3/vXm0TdEWZIkSZKkparZHltJkiRJ0kgxyLDfZUUzk0dJkiRJkjTitL3Hdvb814dytRbXoynP\n98SzTz4Uy00G5j4RLrb7uRvCWWp7xrNA97PXBcudCvOeCZc7e974WLFjw0UC0DN3hXC2NgaY+3Q4\n3z3rf4MFHz34OkvJ+Gs+GQse+nWYN6dU2csddHA42/3492LB2vup/3VmKFpZNcHfHo+VC9Qf+WWs\n3CmHhMtsiRdmt7f8YVeEk70TFnW20NDUgPqzj4SyldW2gfkvhst+7UVHxYLHXxIuE6D+0PWDr7QI\nle6NoHdGvODXb8/4W0+PZfc4mfG3nRHL7v7ZWK4FJtTvCya3HHyVwTw7KxytB79zK+M3pN7zx1h2\n1TfSPefqUJbaQXQviF5xc1vqT94WzEJlwqbhrNQKlXp9SNfGXVraWrgkSZKkZdaoGMNb3P7fI7JN\nVd3ig8O6f9veY9vTMzeUq9XGti1b5EtD2Wo6iOLGr8ayOxxHcdf5sewmR1LMDP7PH1CdtGe5/fXg\nFbFyJ0+lmHnN4CsuKjtpj447tvrzxe/PCmWrWx9Dcce5g6+4qOxmR7dtfy246MOhbNehX6fI8d6a\nappG8dCVg6+4qOy6+1Dc+c1YdtP3Uzx8bSy7zm4U0y+MZTc4jGLGd2PZKYeUPq5LfYeUeJ867Xug\n7Hdm6e+f+78fK3u9A0p9Jl46fVoou9zxl5Tb1384O5StvvlDFPd8K5QFqG50BAuuOTmU7drjZBb8\n7JRYdvfPtu24rj8V6wmsvG7L8sd1md9Pj/will1713KfpzK/NZ+8OZZdfVuKey4IZQGqGx3ekd+5\nGj08x1aSJEmS1NGa7rFNKS0A7mpkZwCH5ZxfSCktBzwBnJ9zPqm11ZQkSZIk/QNnRQZiPbbP55w3\nzzlvDLwIfKCxfFfgNmD/VlVOkiRJkqTBlB2K/FvgjY3704D/Bh5KKW1XcruSJEmSJA1JuGHbGHq8\nB3BXSmkM8HbgGuAy+hq5kiRJkqSlqjJCb8Mr0rB9TUrpj8AfgJnABcA7gV/nnF8EfgS8K6XkYG9J\nkiRJ0lIXudzPCznnzQcuSClNA3ZIKf25sWg88M/AdSXrJ0mSJEnSEpW+jm1KaRzwFmCtnPP8xrL3\n0jcc2YatJEmSJC0tzooMxIYi1xd6/C7gl/2N2oYrgXemlJYP10ySJEmSpCFousc25zxuoccXARct\ntGwOsFq5qkmSJEmSNLjSQ5ElSZIkSW3iUGSg/HVsJUmSJElqK3tsA3rH7xnK1YDe9Y+MZ19/UDjL\n4/eFsgBMir3el415bThaWalWruxO9MIL4Wjvmu8J5dq5l+fs8Z+hXA1gfnxfAVRWWSOc7V3j3aFc\nDaiutlW83Np+4XJ7J7wrnG2rec+0uwbD69mn2lZ076q7h3I1gLHxM5Aqm2wYzpbRO+nQUK4G8Nxz\npcqes9Xx4bLnbPmxcLZdZlfWD+VaUudqvB+n9zXbhnI1gNmzYoWuB5XuFMsCvV2xz1MN6F3tgHC5\nbf9boWVepV5feC6oYdXWwiVJkiQts0bFGN7irvNHZJuqusmRw7p/295j29MzN5Sr1caabSJb/O7M\nUBaguv1Hy5U969exctfcifpTt4aylddt1XHvU3++uP4roWz1bSd23GsufVzfc0EoC1Dd6PC2HV/M\n6w1lGdPdce9TK8oupl80+IqLUN3g0I7bX7XaWIo/nhvKVjc/ur3v00NXhrLVdfdhwS8+H8p27frp\n9r1Pt/xXKAtQ3ebYjjw2Oy3bn4/+rahudHi5Y+Sm2G+v6nYfpT77jlC2MmGzjv2ub1dWo4fn2EqS\nJEmSOlrTPbYppQXAXY3sDOCwnPMLA5Z3AQ8Ah+ac/9bKykqSJEmStLBIj+3zOefNc84bAy8CH1ho\n+SbAs8DRraqkJEmSJEmLU3Yo8m+ByYtYftNilkuSJEmS1FLhyaNSSssBewBXL7S8C3gH8MtyVZMk\nSZIkLVFlVEzuXFqkYfualNIfG/d/A3xroeVrAjOBb5SvniRJkiRJSxZp2L6Qc958cctTSq8BrgX2\nBa4oVTtJkiRJkgbR8sv95JxfAI4FvpBSsl9ckiRJkpaWSmVk3oZZpGFbH2x5zvkO+i75c2CkUpIk\nSZIkDVXTQ5FzzuOGsjznvE+0UpIkSZIkDVV4VmRJkiRJUps5KzKwFM6xlSRJkiRpONmwlSRJkiR1\ntEq9vri5oIZFWwuXJEmStMwaFWN4i3u/MyLbVNUN3zus+7ft59j29MwN5Wq1sctc9uTg+PmT6/Vw\nuf1ll6l38eivQtnqxJ0pZv0mll3zrR33Hvfni5nXhLLVSXt03Gtu976uz74jlK1M2KxUvet/fTBW\n7j9N7th9XWp/9d4dyla6N+64/VWrjYV5vaEsY7rb+j4ta9n6nOmhLEBl/AYd+Zo7LdvOsvuOkXtD\n2cr4Dd3Xw5jV6NH2hq0kSZIkKcjJo4AWNGxTSguAu4Au+q5de2jO+W8ppUnAVTnnjcuWIUmSJEnS\n4rRi8qjnc86b55w3AZ4Fjm7BNiVJkiRJGpJWD0W+Cdi0xduUJEmSJC1KxQvdQAsv95NS6gLeAdzT\nqm1KkiRJkjSYVjRsX5NS+iPwBDAR+EYLtilJkiRJ0pC0omH7Qs55c2AdYB6wbwu2KUmSJEkaVGWE\n3oZXy4Yi55xfAI4FvpBScs5pSZIkSdKwaEXDtt5/J+d8B32X/Dmwsby+uJAkSZIkSa1QelbknPO4\nhR7vM+DhJmW3L0mSJElajIqDZaGFQ5ElSZIkSWoHG7aSJEmSpI5WeiiyJEmSJKlNKvZVAlTq9bbO\n7+TkUpIkSZLaYVScnFrkS0Zkm6qapg3r/m17j21Pz9xQrlYba3YYsq0ou3jwilC2OnkqxcyrY9lJ\ne3bsvi6u/0ooW33biR33mstm60/PCGUBKq+dQvH7s0LZ6tbHlKt37z2hbKV7o457n9pZdqdmixvP\nCGWrO3ysvd/1JT5PxSO/iGXX3rXj3uN2lt3W4/qeb4Wy1Y2OKP939cavxsre4bhyr/mOc2PlbnZ0\nx73H7Sy7bFajR9sbtpIkSZKkqFHR8VxaqGGbUvoUMA1YABTA0cDtwOeB/YC5wN+Bz+Wcf9aaqkqS\nJEmS9I+aPtM4pbQdsBewec55U+CfgUfpa9SuBmyYc94SeBdg/74kSZIkaamK9NiuDszOOc8HyDnP\nSSmtBBwJTBqw/Cng+y2rqSRJkiTp1SoORYZYw/bnwL+nlDJwHXAp8AzwSM75b62snCRJkiRJg2l6\nKHLO+TlgS+AooIe+hu3bWlwvSZIkSZKGJDR5VM65AK4Hrk8p3Q18AJiYUhqbc47PEy5JkiRJakLT\nfZWjUmTyqPVTSusNWLQ5MAO4APhaSmn5xnq1lNK/tKaakiRJkiQtWqTHdhXg6ymlVYGXgPvpG5Y8\nl76ZkaenlOYBzwGfaVVFJUmSJElalKYbtjnn24EdFvP0xxs3SZIkSdLS5qzIgAOyJUmSJEkdzoat\nJEmSJKmjhWZFliRJkiSNAA5FBmzYdpTunitiwdqhra1Ik3rH7RLK1YDKquu3tjIdoP6Xv7S7Ch1j\n9ktrhbM1oPcNh4WzZcwu1gmX2/3CzcFSdw3mNNx6139/KFf2uCyrzOep9zXbhrPqDL2rHRjKteY9\nroeTEyoPBpOb0bvme0JJj2spplKvxz/sLdDWwiVJkiQts0ZFV2fxwA9HZJuq+sb9h3X/tr3Htqdn\nbihXq41d5rLF9ItC2eoGh4bL7S+7Xa+5/swDoWxl1Td23Hvcn19w2QmhbNeBp3Xca273vu60etdq\nYyke+UUoW117V/e12RFZ9rKWbWfZy1q2P1/ceEYoW93hY9Rn3xHKViZs1nH7a1k9rkeHzmyfp5R2\nB84EuoDzc85fWuj5g4F/o+8FzgU+mHO+a3Hba7phm1L6FDANWAAUwNHAl4HVgb8DKwDXAZ/OOf+1\n2e1LkiRJkkavlFIXcBawCzAL+ENK6cqc84wBqz0EvDXn/NdGI/g8YLHnrjQ1K3JKaTtgL2DznPOm\nwD8Dj9I3pPg9jWWb0NfA/XEz25YkSZIkLRO2Bh7IOc/MOc8HvgfsO3CFnPNNAzpKbwGWOLlKs5f7\nWR2Y3SicnPOcnPMTjecqjWXz6esyXjultEmT25ckSZIkDVWlOjJvS7YmfR2k/R5rLFucI4Crl7TB\nZhu2PwcmppRySunslNJbBzz38knLOecCuBN4U5PblyRJkiSNbkOe8Cql9HbgcODjS1qvqYZtzvk5\nYEvgKKAHuDSl1D+//8JnLVdw1mNJkiRJ0qvNAiYOeDyRvl7bV2mMAP4msE/O+eklbbDpyaMavbHX\nA9enlO4G+hu2LzdiGycDbwzM+Mct/P/27jterqrc//hnJnQNBE4GIiEQpDxSgkRQCb1GqihcTHK9\nP5QaC0oRLNcCyOWCUlUEKWK59xIRQcGC9GIKID0RfKRK18MJgajUzPz+WPuQyWRmz56155w5c/J9\nv17ndaY9e63Zs2fPftZae20RERERERFpi0JXzop8N7CRmY0HngOmECYofpuZrQtcBfyHuze9VEqr\nk0dtbGYbVT00EfhrcruQvGZ54DTgKXef18ryRUREREREZHhz97eAo4DrgIeAy939YTObbmbTk5d9\nA1gduMDM7jOzu9KW2WqP7TuB75nZKOAt4BHC5X5+Afyfmb0OrAjcQM2sViIiIiIiIiIA7n4tcG3N\nYxdW3T4cODzr8lpKbN39XmC7Ok/t0spyREREREREpB26cihy27U6K7KIiIiIiIjIkKLEVkRERERE\nRLpay7Mii4iIiIiIyBBRUF8lKLGNsvpPjowLPH4GPX+5JC62dCwsejMutsN6/nZFXGDZJhjbAAAg\nAElEQVTpUCrzH4oKLYzaMK7MIaCwxuqdrkLLRhcei4zckp7HLo0LLR1Nz8MXNn9dw/jj6Xl2RmRs\n5D4g0TP/N5HlToM3FsaX++qcyMjJ0WW2Q89rd0ZG7t7WegyWnr9cHBdYOi5/2X5RZNlfyPVdXuOe\ns+Ni9zwxLq4N1rjv3PjgyV9vX0Va1PPyDXGBpQPaW5HBtMKK0aGVyH1uAeh57mdxhZaOiItrg54X\nfh4fXDqsfRURiVCoVCrNXzVwOlq4iIiIiIgss4bFrEvlJ34zJHOq4vr7Dur67XiPbW9vXEtYqTSy\nY7FvnTmt+QvrWO74GZRnnRMVW9zuWMpzfxgXO+Gw6PcL+ddXeV5cK35x80MpP35NXOy7P9x121Z/\nfPnGU6Nii7t/tWPvufLi/VGxhdFbUr7jO1GxxW2Opnz7mVGxAMUdj6d8f1zvVHHLI/N9Jzyup7ho\n0yg/elVc7IYHUH7q+rjYdSd3dh/y9I1RscVxu3fdfqBUGkl5VlzvZXG74/Lvf2aeFVf29l/I9V1e\n9PuTo2JH7Hlixz6nRdefEhULMGLy1zu3feXYh3Tb96k/vvzH70fFFt//WcrP/SEudu0dKD8QN/qi\n+N4jOrd9RB5rQr7jzU7uc4eDQmFY5Oe5aUC2iIiIiIiIdLWWemzNrAfobzofAywCepP77wXOdvfj\nk9ceD7zD3eOaYUVEREREREQyaCmxdfc+YCKAmZ0ILHT3s5P7rwEfNbPTktcNybHeIiIiIiIiw4eG\nIkP+ocjVa/FN4CLg2JzLFBEREREREcms3efYng983MxWbfNyRUREREREROpqa2Lr7guBnwKfb+dy\nRUREREREpI5CcWj+DbKBKPFc4DDgHQOwbBEREREREZEltD2xdfeXgJ8TkltNICUiIiIiIjJgCkP0\nb3DlTWwrDW6fBYzOuWwRERERERGRplq63E+12uvTuvuqVbf/joYii4iIiIiIyCCITmxFRERERESk\nwwq6ji0MzORRIiIiIiIiIoNGPbYRXvrERVFxJaBv48PjY8d8LDq2k/rWOigqrgT0jdwlOrbn4Quj\nYikdHxfXJn3vjbtaVic/5xcrG0TFlYC+DQ6Nj91kelTs2/Fjp0XH5tG3xr7R5fattkd87MqTomM7\nqW+lD0bFdbresfo2PiIqrh3vt8+OjC47z3d5/lbHRcd2yvyJx0THdrLeefYh3apv/MFRcSWgb/kt\n42PXnhod2ymxx5rQ3duIDA+FSqWjExdr1mQREREREemEYTGGt/L0jUMypyqM231Q12/He2x7exdG\nxZVKIxU7CLGdLDtvbPn2M6Niizser3U9zGM7WfayFtvJshXbHWUva7GdLHtZi+1k2ctabCfLzhsr\nw4fOsRUREREREZGu1nKPrZn1ADcmd8cAi5L/c4EVktsvJ3+97j65PVUVERERERGRJQ2LEdW5tZzY\nunsfMBHAzE4EFrr72f3Pm9mPgF+7+1Vtq6WIiIiIiIhIA+0YilyviUDNBiIiIiIiIjIoOj55lIiI\niIiIiEQqqE8RNHmUiIiIiIiIdDkltiIiIiIiItLVNBRZRERERESkWxXUVwnt6bGtZHxMRERERERE\npO1y9di6+8l1HjskzzJFREREREREWqGhyCIiIiIiIl1LsyKDJo8SERERERGRLqfEVkRERERERLpa\noVLp6DxPmmRKREREREQG3atfPYCVT72q68fxVp67fUjmVIW1dxzUddvxc2wXXXFCVNyIg86gfPNp\nUbHFXb+SL/b2M+NidzyeRdeeFBU7Yq+TKM85N67cScdQvu/CqFiA4sTp9PYujIotlUZSvuM7ceVu\nczTl++PqXdxyOosuODQqdsSnL831OcWuK0jWV55tc+ZZcbHbfyHf9nXL6XGxu3yZ8l3nxcV+4CjK\n91wQFQtQ3OrTueqd6zsx79K4cjc/NN/nlGf7yLmu3zprWlTscl+YkWs/UH7sl3GxG3yURdefEhU7\nYvLX820ft307Kra40xdZ9NsTo2IBRuxzMuXbzogs+wTKsyO3zW2Pyfc7kec3+eqvRsWO2P9Uyvf+\nICoWoPi+T1G+83txsR/8XM7tK/4zzvOdKM86O67c7Y7L/7uaZ/ua+8O42AmH5VrXeT7jThyzQbK+\n8mxfPzkqKnbEJ87j1a8eEBUrw4uGIouIiIiIiEhXa6nH1sx6gBuTu2OARUAvMJKQJG/l7i+Z2erA\nPcDO7v5UG+srIiIiIiIib1NfJbSY2Lp7HzARwMxOBBa6+9nJ/ROA04Hpyf8LldSKiIiIiIjIQMt7\njm31CcHnAPeY2THAtsBnci5bREREREREpKm2TR7l7m+Z2ReBa4E93H1Ru5YtIiIiIiIidRS6fmLn\ntmj3gOy9gOeACW1eroiIiIiIiEhdbUtszWxLYHdgEnCsmY1p17JFREREREREGmlLYmtmBeAC4Gh3\nfxo4A4i7sJyIiIiIiIhkUygMzb9BljexrST/jwCedPebkvvnA5uY2Q45ly8iIiIiIiKSKnryKHc/\nuer2RcBFVffLwFb5qiYiIiIiIiLSXNtmRRYREREREZHB1u75gLuT1oKIiIiIiIh0NSW2IiIiIiIi\n0tUKlUql+asGTkcLFxERERGRZVNlgVMYZYM/fW+bVf5255DMqQprfXBQ123Hz7FdNOPYqLgR086h\nt3dhVGypNBJe64uKZaUeys/eGhVaHLsz5RfuiIsdsw3lp26Ii113j+h1BWF95VnXlfl/iootrLEZ\n5WduiYotrrMLlQUeV+4oy/d+X/pzVCxAYfX3UL7jO1GxxW2OpvLi/XHljt4y13suP/eHqNji2jvk\n+pzKz94eFQtQHLsj5UeujIvd6MB828grT0TFFlZdn8rf746LXXNrKn3z4mJ7Ns+9D6ks+Etc2aM2\npvzH70fFFt//WcqPXhUXu+EB0dtXceyO+b5POfb1lb/fExULUFhzK8pPXR9Z9mTKd0d+Tlt/Nt/6\nen52XLnv2jbX96k879KoWIDi5ofmes+dis117PTY1VGhxQ32z73/yXPcVnnlyajYwqrjKf/1urhy\n1/tQxz7j2OMu6PCxV2S5MrxoKLKIiIiIiIh0tZZ6bM1sPPBrd59Q9dhJwPHAI8AKwPpAf7PJKe4e\n11wuIiIiIiIiTXT9aOq2aMdQ5ArwDXc/28zWA37j7hPbsFwRERERERGRpto1FLlQ819ERERERERk\nUHR88igRERERERGJVFDfIrTeY9toKukhOcW0iIiIiIiIDH+tJrZ9wOo1j/UAve2pjoiIiIiIiEhr\nWkps3f0fwPNmtguAma0BfAiYOQB1ExERERERkVSFIfo3uGLOsT0Y+L6ZnZ3cP8ndn6h6XsOSRURE\nREREZNC0nNi6+8PArg2eexLYImedRERERERERDLTrMgiIiIiIiLdSrMiA+27jq2IiIiIiIhIR6jH\nVkREREREpGuprxKgUKl0dK4nTTQlIiIiIiKdMCzG8FZ67xuSOVWhNHFQ12/He2x7exdGxZVKIynf\ndkZUbHGnE/KVe/9FceVueSTle38QF/u+T1G+67y42A8cRdkvj4oFKNqUfOvr8Wviyn33hyk/cmVc\n7EYHUv7j9+Ni3//ZXO83NrY/vnznd6Niix/8POV5l8bFbn5ovs/4ngviyt3q05RvPi0udtevUH72\n1qhYgOLYnfN9p/LsByK/j0WbQvmhn8TFbvoJFv3+5KjYEXuemHu7zrV9PXt7VGxx7I4d+S7nfr85\ntsvc+595P4wre/PDKD9wcVzse4+g/KcfxcVudghvnTUtKna5L8zI95v8fPyVDovv2p7KAo+KLYwy\nFv34M1GxIz55PuXbvh0VW9zpi/m267sjf5O3jv9NbkfZ5WduiYtdZ5dcv42VvrlRsYWeCfzrKx+N\nil3ltF9SfuK3UbEAxfX3odJ7X1RsoTSR8syz4srd/gu5tk3pHDPbEzgXGAFc4u7fqnn+PcCPgInA\nV909dSNRv7WIiIiIiEi3KhSG5l8KMxsBnAfsCWwKTDOzTWpe1gd8Djgzy2poKbE1s5vNbHLNY8eY\n2flmNtrM3jSz6a0sU0RERERERJYpHwAedfcn3f1N4GfA/tUvcPded78beDPLAlvtsZ0BTK15bApw\nGXAQ8HsgbkyQiIiIiIiILAvGAk9X3X8meSxaq4ntlcA+ZrYcgJmNB9Z295mEhPdrwJpmlqtSIiIi\nIiIikkVhiP6lavuEVy0ltu4+H7gL2Dt5aCpwuZmNA9Z09weAXxB6cUVERERERERqPQuMq7o/jtBr\nGy1m8qjq4chTkvtTCAktwBVoOLKIiIiIiIjUdzewkZmNN7MVCPlko0upZLpsUExiew2wm5lNBFZx\n9/sIiewhZvZE8vwEM9swYtkiIiIiIiKSVadnP46YFdnd3wKOAq4DHgIud/eHzWx6/2TEZjbGzJ4G\njgW+ZmZPmdk7Gy2z5evYuvs/zOwWwjWFLjOzjYF3uPs6/a8xs5MIye4prS5fREREREREhjd3vxa4\ntuaxC6tuv8CSw5VTxV7HdgYwgcXDkq+qef5Klp49WURERERERKTtWu6xBXD3q4ERyd1v1nl+LrBZ\njnqJiIiIiIhIU5lOQR32YntsRURERERERIYEJbYiIiIiIiLS1aKGIouIiIiIiMgQ0GQG4mVFVye2\nfZt+KiqulLfcsXGX6S0BfeM+Hh+7/ifiY9fYOyq2Pz6XFUfFx660enRo3/iDo+Jyv9+81vtAdGjf\nWgdFxeX+Tqz7H9Hl9k04Kj52ha2iYt+Oz/OdyrMfiPw+loC+0gHRsfO3Oi46tpMqc2+JCxy7Y3sr\nMkgK4yd1rOy+tT4WFVcCCutsE1/umv8WXe5LB18UHZvnN7lyw+VRsQAcvD0U4g/B5u/zrai4EtC3\n6aejY/PoW69zv8l5yu5bcevoWHrWi4oFeLE8Prrcfx7306jYVYC+d8bvN0vAi8Rd7bME9NmR0bEi\nAIVKpdLJ8jtauIiIiIiILLOGRVdnZf68IZlTFdbYfFDXb8d7bHt7F0bFlUojFTsIse0ou/zs7VGx\nxbE7Un765rjYcbt27bouv3BHVGxxzDZd9547va67rd7dGNuOshf9/uSo2BF7nth166tUGknl7/dE\nxRbW3Kqjn1Olb25UbKFnQld+Tot++rmoWIARB3+PysuPRcUWVtugK9dXt+5/ch3/PPm7qNji+L21\nrgcxdngYFvl5brkmjzKzm81scs1jx5jZ78ws7hdOREREREREpAV5Z0WeAUyteWwKcFrO5YqIiIiI\niIhkkjexvRLYx8yWAzCz8cDawNM5lysiIiIiIiLNFApD82+Q5Ups3X0+cBfQP8XnVOByNCmUiIiI\niIiIDJK8Pbaw5HDkKcl9ncEsIiIiIiIig6Idie01wG5mNhFYxd3va8MyRUREREREpKniEP0bXLlL\ndPd/ALcAPwIuy10jERERERERkRa0K5WeAUxI/vfTebYiIiIiIiIy4JZrx0Lc/WpgRNX9J4Et2rFs\nERERERERaaADMxAPRYM/+FlERERERESkjZTYioiIiIiISFdry1BkERERERER6QQNRQYltjII+laY\nGBVXAqgsamtdusKfb4uLG7NNe+shA2b0cs9GRr6nrfXoFvO3Oi4qrtTmegyWyiNx+4DCmlu1uSat\nqbz2UlRctx6OjfjYSbniX3xjzai4bt2ul0WVe2+PCxy/d3srIrKMKFQqHZ28WDMni4iIiIhIJ3Rr\n29oSKgv+MiRzqsKojQd1/Xa8x7a3d2FUXKk0UrGDENvJskulkZSfuiEqtrjuHl27rsu3fisqtrjz\nl7ruPXd6XXeq3pWX/hwVW1j9PVrXy0BsedbZUbHF7Y7r6OdUfjaud6o4dseu/Jx4rS8qFoCVerry\nPXdbbCfLLpVGsuiqL0fFjjjgdK3rQYwdHoZFfp5bS4mtmd0MnO7u11c99nVgGvA6sC7wcvLX6+6T\n21hXERERERERkaW0OivyDGBqzWN7A0e6+0TgGuB4d5+opFZEREREREQGQ6uJ7ZXAPma2HICZjQfW\ndveZVa9RX7iIiIiIiMggKBQKQ/JvsLWU2Lr7fOAuQi8thN7by9tdKREREREREZGsWu2xhSWHI09J\n7ouIiIiIiIh0RExiew2wm5lNBFZx9/vaXCcRERERERHJpDBE/wZXy4mtu/8DuAX4EXBZ22skIiIi\nIiIi0oKYHlsIw48nUH8Y8pC8QLCIiIiIiIgMTy1dx7afu18NjKjz+CG5ayQiIiIiIiLZdGAG4qEo\ntsdWREREREREZEhQYisiIiIiIiJdLWoosoiIiIiIiAwFGooMQyCx7fnnzLjA0l7trUgLet56IDJy\ne3penRMZO5me1+6MjN09Mq49el65MS6w9FGY/3hc7Lowevm/xcUyMjIu6Hnp2vjg0sdg5ZVzld8J\nPQt+HxdYOojRPBpZ6kR6/jU7MhbgQ/Q8Ezmxe2l6jnKh8vqCqLgC0LPw1rhCS/vR8/dfRMZ2dvqE\nngXXxwWWDsxV7ujln4uMtFzlMnLV6NCel2+IL7d0AD2L5kUGTwKfFRc6dkfWuOnEuNipZ8fFJUYv\n/3xk5EjKflV0ucX3HhEd2616Xvh5XGDpsPxlv3JzZNn7M5pHIkt9H4X11ouM7ZzRxSdzRE9gjRu/\nERc67Zwc5YoEhUqlo5MYawZlERERERHphOHR1fnKE0Mzp1p1/UFdvx3vsS0/Gde7VRy/F729C6Ni\nS6WRuWLLz8f1MhfftT3lp+J6HorrTqb8dFzPZ3Hc7tHvF9qwvh77ZVRscYOPUr7/wrjYLadTWRDX\nE1gYtWG+9/uXyFZpoLjxxyjf+d242A9+vnPfiUeuiIotbnQQld77omILpYmU/3pdVCxAcb0PUb4v\ncvuaOD3f+nrhjrhyx2xD+fFfx8W+ez/Kf/pRXOxmh3R2H/LIlVGxxY0OzFVuZYFHxRZGWb73++Al\nUbHFLQ6n/GiOXsQND6D8QtyoouKYSZRvPi0udtevsOhnx0XFjph6ds7P+C9RsYVRG1N+4OKoWAg9\ntp3aX3fsd2LuD6NiixMOy73/KT92dVzZG+xPpffeqNhC6X2U77kgrtytPt2xz6nSNzcqFqDQM4FF\nM46Nih0x7ZyOvedhoaBpk0CTR4mIiIiIiEiXa9pja2bnAE+6+3eS+9cBT7n7Ecn9s4BngO8BzwOX\nuPtXBq7KIiIiIiIiIotl6bGdCWwLYGZFoAfYtOr5ScAsYA/gHiDfbB0iIiIiIiKSUWGI/g2uLInt\nHELyCrAZMA9YaGajzGxFYBPgPmAacAHwuJlNqrskERERERERkTZrOhTZ3Z8zs7fMbBwhwZ0DjE1u\nvwI8SEiQdwEOJ/ToTkteJyIiIiIiIgOlMDwmd84r6+RRswnDkbclJKxzktuTkuf2A2519zeAXwEf\nMTOtYRERERERERlwWRPbWcB2wARgLnAHixPd2YQe2j3M7AnCebZrALu1vbYiIiIiIiIiNVrpsd0X\n6HP3iru/BIwi9NjeD2wPjHP39d19feAoQrIrIiIiIiIiA6bTk0R1z+RRECaM6iH01PZ7EFhAOLf2\nJnd/s+q5a4B9zWz5ttRSREREREREpIGmk0cBuPsiYLWaxw6puvvTmufmA2vlrp2IiIiIiIhIE5kS\nWxERERERERmCNCsykH0osoiIiIiIiMiQpMRWREREREREulqhUql0svyOFi4iIiIiIsus4TGG95/P\nDc2c6h1rD+r67fg5tr29C6PiSqWRHYstP3pVVGxxwwMo3/btuNidvkh55llxsdt/Ifr9QhvW10M/\nbf7COoqbHkz5uT/Exa69Q9dtW/3x5VtOj4ot7vLlzn0nfEZUbNGmUXnx/qjYwugtKT/8f1GxAMVN\nPk559rlxsdsek299PX1zXLnjdqX82NVxsRvsT3nW2XGx2x3X0X3IshZbnhO5XU6K3y7fLvvpG+PK\nHrd7ru9T+Zlb4mLX2aXrPuNOlr2sxfbHl2edExVb3O7YfL9Rz8+MK/dd23dsXce+Xwjvudu2kVJp\nZFScDE0aiiwiIiIiIiJdreUeWzM7B3jS3b+T3L8OeMrdj0junwU8Axzq7hPaWVkRERERERGpolmR\ngbge25nAtgBmVgR6gE2rnp8EzM5fNREREREREZHmYs6xnQP0n6ywGTAPGGNmo4BXgU2A+e2pnoiI\niIiIiEi6lnts3f054C0zG0fonZ0D3JXc3hqYC7zRzkqKiIiIiIhIPYUh+je4YmdFnk0YjrwtcDYw\nNrn9MmGosoiIiIiIiMigiJ0VeRawHTCB0EN7B4sT3dkMl2tCiYiIiIiIyJCXp8f2BOBRd68ALyXn\n2G4KHA6s2qb6iYiIiIiISCMFXcEV4nts5xFmQ76j6rEHgQXu3j9xVCVPxURERERERESyiOqxdfdF\nwGo1jx1SdftJYItcNRMRERERERHJIHYosoiIiIiIiHScpjeC+KHIIiIiIiIiIkOCElsRERERERHp\naoVKpaNzPGmCKRERERER6YThMYb3tReHZk610uhBXb8dP8e2t3dhVFypNFKxgxDbybJLpZGUH/tl\nVGxxg4927bpe9PuTo2JH7Hli173nTq/rTtW70ntfVGyhNFHrWrEDEtvJspe12E6WvazF9scvOu+T\nUbEjjvpxrnovuuiIuHKPvLhr13W31btUGhkVJ+1hZnsC5wIjgEvc/Vt1XvNdYC/gX8An3b3hQZSG\nIouIiIiIiMigMbMRwHnAnsCmwDQz26TmNXsDG7r7RsCRwAVpy0xNbM3sHDM7uur+dWZ2cdX9s8xs\nkZltXBN3rpl9MeP7EhERERERkSiFIfqX6gPAo+7+pLu/CfwM2L/mNR8GfgLg7ncCo8xsrUYLbNZj\nOxPYFsDMikAPIaPuty1wCzC1/4HkdQcCM5q9GxEREREREVnmjAWerrr/TPJYs9es02iBzc6xnQOc\nk9zeDJgHjDGzUcCrwHuAnQhJ7DeT1+0I/NXdn0ZEREREREQGzko93TgJVtYJr2rfW8O41B5bd38O\neMvMxgGTCInuXcntrYEH3f1BoGxmWyRhU4HLMlZUREREREREli3PAuOq7o8j9MimvWad5LG6skwe\nNZsw5HhbQmI7J7k9CZiVvGYGMDU5CXh/4IoMyxUREREREZFlz93ARmY23sxWAKYA19S85hrgYAAz\n2wZY4O5/a7TALIntLGA7YAIwF7iDxYnu7OQ1PwM+BuxO6MXtzfqOREREREREZNnh7m8BRwHXAQ8B\nl7v7w2Y23cymJ6/5HfC4mT0KXAh8Jm2ZWa5jOxs4gTBrVQV4KTnHdlPg8KTQx83sReB0wrWIRERE\nREREROpy92uBa2seu7Dm/lFZl5elx3YeYTbkO6oee5DQFTy/6rEZgAFXZS1cREREREREJK+mPbbu\nvghYreaxQ+q87jvAd9pXNREREREREZHmsvTYioiIiIiIiAxZSmxFRERERESkqymxFRERERERka5W\nqFQqnSy/o4WLiIiIiMiyqfKvFyisMqbQ6XpIe2S53M+A6u1dGBVXKo3sylhe64uKZaUeyo//Oiq0\n+O79ousMnV1fld77omILpYldt330x1devD8qtjB6y657z51e191W71JpJOUX7mj+wjqKY7bRulbs\nkCx7WYvtZNnLWmx/fPm2M6JiizudQGWBR8UWRlnXra9u3q4r/3ohKlaGFw1FFhERERERka7WNLE1\ns3PM7Oiq+9eZ2cVV988ys9fNbPOqx04wsx+0v7oiIiIiIiIiS8rSYzsT2BbAzIpAD7Bp1fOTgK8D\n5yevGQtMB77U1pqKiIiIiIiI1JHlHNs5wDnJ7c2AecAYMxsFvApsAuwEbGVmnwD2AU5095cHoL4i\nIiIiIiIiS2jaY+vuzwFvmdk4Qu/sHOCu5PbWwFx3fxM4BjgV6HH3/xu4KouIiIiIiIgslnXyqNmE\n4cjbEhLbOcntScAsAHd/HrgJuKD91RQRERERERGpL2tiOwvYDpgAzAXuYHGiO6vqdWV0bVoRERER\nEREZRK302O4L9Ll7xd1fAkYRemxnD1TlRERERERERJrJmtjOI8yGfEfVYw8CC9x9fs1r1WMrIiIi\nIiIigybLrMi4+yJgtZrHDqnzuqUeExERERERERlIWXtsRURERERERIYkJbYiIiIiIiLS1ZTYioiI\niIiISFcrVCqa60lERERERES6l3psRUREREREpKspsRUREREREZGupsRWREREREREupoSWxERERER\nEelqSmxFRERERESkqymxFRERERERka6mxFZERERERES62nKdroDEM7N3Arj7PwahrF3d/ebk9vru\n/kTVcwe4+1WRy/2gu9/ZrnrWWf4XUp6uuPvZEctcF5ji7mfE1yyOmR3o7lemPP+JBk9VANz9py2W\ntwKwGfCsu/+9yWtHuPuiVpafofyVgX3d/YrI+Pe7+x+bvOY9wJHAe5KHHgIudndvFufuf05ur+Tu\nr1U9t42735ES+72URVfc/fNNyl437Xl3fyrt+XYxs9HAjsBf3f2eJq/9b3f/z8GoV52yRwP/zpKf\n8Qx378sQu5q7v9zguXXT1rWZrZG2bHefnxKbtu96HXgUuN7dy3Vi35fcLJB892vKvTel3DHu/kJK\n2Q012+6XNWa2vLu/GRFXAD7m7pcPQLXaxsy2IHynKsDD7j4vQ8yJDZ7q/436ZvtquES5Db+rZraD\nu/8hJTb6GEdEBlfHE9smBw1bu/vdkctNTQCaxH7A3e9q8hprdOBrZtu5+6yIcjMlTGb2GeDLwDuT\n+/8AvuXu328Sd727T261XomzgInJ7auqbgN8PXksxi+AcTGBGZOekdQ5sKPBAV9KWWsCBwHTgLWB\nX2aI+STweZY8mP6eu/8ka7l1nAukbdfvZ+n3VQD2A9YBUhNbM7swqeM8M1sNuAN4C+gxs+Pd/bKU\n8HvN7NPuPrvZm2hShxHAnoR1vQcwE8ic2JrZZknsVOBlYKuU104ibLsXARcSRp6c+UkAABZ8SURB\nVLFMBG5NDmbmpBQ1g8Xfg9nA+6qeu4AlvyO17iF8ToU6z2XZLn/X4HWl5G9EWrCZTQBOIDRaAMwD\nznL3B5vE/Rb4UrJ9vAu4D/gjsIGZXezu56SE7wVEJbZJkveyu19S8/hhwEh3PzcldhPgZuB64F7C\nZ/wB4D+TBrs/Nyn+VpLP0sxucvfdqp67mvTP+V4Wf05rA89VPVcB3p0S22jfBTAK2BU4jLBfqnU3\n4TNtlLjvklLuA2Y2l7B9X+nuC1JeW+sCM7uLsI20EgeE320Wfy9qvx+VtOTCzFZw9zcaPLdEY2yL\ndVrH3Z9p4fUFYDfCPmhfYK2U174TmA5sQPi8fgDsD5xKaLhomNgmn1EjFXffokk99yR8d66oefzf\nCN+1G1JiVyNs++sCDxA+pwlm9hSwv7u/klL0P1l6u34HYVseDTRMbHMew9ya/L6d2d8Aa2ZjgDOB\nTUj5nSDfMU4ueT/ngdCswSZPnc3si4RGx6cj6vUDwr6nbk4hy4aOJ7bATWY2ubbl2swmA5cSDsZj\npCYAZlYEPkryg+LuvzOzrYH/BtYEtmyy/IfN7H+Bz9TpMT2P9IOd6nq0lDCZ2deAbYGd3f3x5LF3\nA981szXc/ZSU8FKWOg1lrSY97n5SjrJWBQ5IytoQ+BWwvruPzRD7CeBo4DjCwX+BsE2cYWaVVntO\ns3L3o6rqUCT0Un2JkKCemmERO7j79OT2IWGR/pHkAOD3QFpieyTwPTN7APiiu7+Utd7JweBOhHW9\nN3AnsANhff8rQ/z6hER2GvAGMB7Y2t2fbBJ6IjDN3W+teuyXZnYT8A1CMpZFvQS1IXf/cSuvrxO/\nefV9MxtPaOzanSafs5ntTziYO43QYAXhoO5KMzvB3X+VEj6+qlfmEEKP4cFmNpKQ3KcltiPSejDT\nei+BjwPb1Hn8fwiNBA0TW+C/gKPd/efVDyZJ1KnAgSmxtVJ7YGu5+/iq8u5z90y/C0nsSc1eY2aN\nGiKOI/yu/IuQHP3S3RdmLHosYTuaCvy3md1BSHKvdvdXm8RuDXwO+KOZnRKxn9uPxUnPh4Frap5P\nSy6uNrOPuPvr1Q+a2XuT5ayXVrCZbUVoaHjI3f9kZuMICc2ehAQuVdJINg34CGE7OYrQeJTmp8Ar\nwBxgMvBJ4DXg3939/iax+6U8l6Vx7BtJXWvdBvwaaJjYEr5TdwO79o8YSH6bTyN8pz7XKNDdz+y/\nnfzGfp6wL/kZi/dHjeQ5htkKOB2438yOASYAxwJnAAfnWG7LzGxDksZXd9+sycufJqzXp2ncGNqo\nnDwNAbXLytxgQzh2nw3MJ/weQ/Z6rw3MNrO/Eo43rnD33oyxjwH3mNmJ7v5/GWNkmBkKie2FwC1m\ntkf/UEcz+3dCgrn3AJZ7EbA+cBfwtaTl/z3AV5sc2PX7E/AMcJ+ZHdykZ2cJeRImwg74vdUHGO7+\nuJkdBDwIpCW2q5nZATToJRqqQ23yJD01Qz7r9QCkDfn8G+HH/cT+4XXJ+sviM8ABNb0ENycH05fT\npOc0DzNbHvgEcDxhXf1bs2G1VaoPCieTNBq4+wtmlhro7nea2TbApwg/LtW9is3W9dOEHu1LgePc\n/Z9m9kTGpHYOsEJS148k34cnMiS1AO+uSWr738ttZnZRhvgoZvZrUnps3f3DGZezMaEXdBvCQeHn\nMgx9PAXYo2b9PGBmNxMSgLT9X/WydwcuBnD3hWa21JDYGu8hJKH1NOu9XK5eb5y7v5HsH9JMcPel\nkld3v9LMTmsS2zFZhmw26vlIerDPNbMNgCmEBuS/Aqc2S5jc/S1CI9bvzWxFQuPOlGR5N7v7v6fE\nLkpedwPh4PR8ltwHrNqk7E/2304aAg5Je32Ne4Dfmdl+/fsNM9sZ+F9C4tSQmf0XoYHjfuB0M/sV\n4Tf6O4TEKy32tCT2ceDnwEnAPRkbrzbs/wzN7BLgeWC9DA0INNq/Jd+HjwF/bbKIFb3O6SXu3mtm\n72gSuzuwhVcNg3f3RWb2VSCtt66/jj2EpPLjhN/C92VsCI0+hkmWPz1Jam8gjJ6YlLFn0FJ6ITP1\nmprZWML3aBohqT6d0HjUzPXAtwkJ3+WE3sz7MsRBGzozIhts1iE0cm5C2B5mEhLd2U0aMHH3Y8zs\nOMIpLlOBrycNeJcBV6U10Ln7GWZ2GXCOmR1KGDlVvf8Zkse40l4dT2zd/WIze41w0L8H4Yv/KUKP\n5JMDWPQ2JDtmM1sJeAHYwDOcc5V4y93/08x+D/yvmf0UOMXrnO9UR56EqVzvR8/dXzWzZuc3rkZ6\nK2/al/7dZnYN4Qdl/eTAvN/6aYXWvLZWT1psIjrpYckhnycTWqn7fxSbtWp/hbBDP9/Mfk4Lw2EJ\nQ7yWGvrm7k8mvVsNNRnGk9ZKipkdRTgQuwnYK2L43ctmth/wLGFkwGHJcpcHVsoQvwah1+bvhHVf\nJtuw718QemimJOWlbTO1/gZsTlg3axIOMLNKOz+92fa1jpl9l/D+xlbdhtDrlWYbQsPYDELjA2Tf\nLvuHEn+VMJT428Bhnv385uXq7VuTbXP5JrHPmNnnCNvHREIChJmtQvPfkz+10mNZo2B1zv00s7Vo\nvr7+Gflcv1JyoFWouQ0DOwomeshmP3d/zMyuBlYB/gMwQvKWibu/bmYPAQ8TvtebNItJGom/Qtg+\nz8/4m5ibu38tGdF0nZntRWiYO5fQ2NXslKYDgInu/loyquBpYLOMxyCHE/Z1FwDXJo0tWav99nc2\nSQyfzZLUQr5hzImRVmdIacZ9/Rv1GtDc/U0ze71eQNXyzySMlruIcAyWdSQB5DiGMbPVCcnkNoTG\nmr2Aa83saHe/qUm5TxB6KVsamZOUO51wHLEm4XfuUOCaLCMyYIlGqvGERO/SZH97GSHJ/UtKeHRD\nQJ4GG3f/QrKMFQn7jUmE932xmS1w99T9SLLPuJUwfPyzhIaU0wnfsVWaxD5r4ZSZUwnbSvX+R4nt\nMqDjiS2Au/9PsjO8n9DKuEOWoQd5EgDgzf4f3OTH7IkWktq3ufvtyRCmHwB/MLP/yBCWJ2F6zsx2\nd/cbqx80s90Irb1pnmqxBbza/lW3a4cLnUm6tOFFzWIhR9JTvRNOfsAyn99a0+sxldCT9S4z+xJh\naF/aD8prkc9B+g93M98lJJXbA9vXHGBlaVmenixjDHCMu/dvU7sBv00LNLNPEVpyzyQkWpnPYa5q\npd2Z8N04ExhlZlOA33rKBGkehkqPIhycfjMZ5rW6ZZuYbFxNQlqtWXJ6AosbTWp7IpsdSL+LMJR+\nWvL3W8JByp+axPW7n5AY/4ZwvugHqj7rZr3jb5rZeu6+RI+Oma3Hkj2y9RxGSKh2J8wH0N/L8kHg\nRxnrHuMM4LcWzrXtX9dbJ483Hb5Yk4wu8VyGsi8hnO9ae7tA0mPdSFLf/m2kth6pk9d5jiGbVfus\n/YGnCEnOqS0kTesm8VMJcznMAPbzJucjm9lswm/49rWNEIPB3f/LzF4lnNsMsJu7P5Ih9HVPJn9z\n9/lm9kgLDevV3+XzzOxWYOV6SWMdW5hZdWK3ctX9Zj3ceYYxQzK3gJl9rn//mjS6fofmCcCKFiYo\nqz4Xuv//ik1ijyMMT/0aYbRc9XPN3vMLOY5h+hsfPpuMSrjOzLYknBd+uLtPS4l9o3Z/2YLzCA2A\nR7v7AwAtNHy8LdkeTyeMKJhI2N9+g/T5FPJ0ZuRpsOm3MrBqUo/VCL3kqfM4VLMwOdlUwgiEFwnH\nzmmv3xw4n3As/P6q4xdZhhQqlczHngOiJjkdTzgo7+8paXaS+fiah/p3rOsCX3b3hkOZkx+/R6se\n2oAwPr9puUn8UudLWTiv8lRgZXdv2hNZdfAxFdiIcL5fasJkYWKcqwlDO+4hvN+tCInM/p4yK6GZ\n/ROY7DUTW5nZ9sDz7v5Y/cilllOCMGQp4+uXOohulYXzRXcmHDzsRZg85TCaJD01y2jpHLcGy5iQ\n1GGKu2+Q8rra7avaBu6e2uqYo37j055vdrBmZuMaDc2yMMSvYaOChaGsU+sNbzOzfd39N2ll17x+\nBeBDhHU92d1HtxC7FuGHcBowzt0bTk5mYYKvtCHBeSb6yiRp1e5P5k9y9/MyxHwyudm/A68dYt+w\n3mb2EUJCeCpLJolfIUy80XRitBhm9sksrf0p8XsR6th/TtqfgNPc/domcSeRMoGcu58cW6dmasou\n1N5uVrYtPWTzXM8wZNPCsPC5hMa4/ol83k5A0hLqJDldh9BLM8ObzHZdE7tUo2srahotdwCqZ6pN\nHaJfE7s98AhhNEeW2JeB2xuU3cqpASsRevamJXW4yVOGbudhZg/64mHMI2hhGHMSsxzhXNnDCY0f\nECZyvBT4WlpSniTvDQ8e3b3h5GR5fodzxj7q7hvWebwAHOHuDU89sTBBZ+1or15gZrNRURZmZD+I\ncJzX32t7iLu3NH9M8nntnSxnN+AWwvfz6pSYPOtrORY32OxC6EHdg/CbmtpgY2YXA5sCCwmn+80B\n7si479qY8B6nEHpbZwA/82ROmSaxrxPOiz8nQ6OSDFNDoce2tjVpieQ0LbD6ID1pPZxG2IE8SfrM\nsbD0kKrM5SYuqX3A3X9iZk8QWk4bMrONgLXcfSbh4PLUJGH6LuHc4rQWuDcIrfYbE3YcEH6QLwaa\n/aDdSdjR1HqFMGSrYctesvM/kXB+xYjksUWEGXSbHRj+isWzil7pdc53aybpXb+ZMGR9eRYnPd8n\nDMsbFO4+l3DA2Gx216ZD9hpJfkQbHTSktmi30MvQyI1mtmftj7WF81W+RphUpJGxhKGSS6iKzZzY\nejif8tfAr80stZW2TuzfgO8RJrJKnTAmZ6KV6zzZ5CB4H8KP+HhCT0mmpDJPvd39V8l+6ngWT/Ly\nEHBQf49CIznf84FNhsWlrq8kgU1NYhvEndRqTDXLcXmSPGVbviGb/XWqkMyen8hyWsCXgT+0MuKi\nynZmti1Lf8ZZL+VyVvLaVQjnFkJoIMxy2kme2P2rYjdM4jPFWpid/1NJ3IPApe7+i6SXvd7kTPVi\nNyD8rvww6U3MInoYc+J9hH3ON5O670QYGbUyYVRC2rmQXwSe7u8RSxr1DyT01p/UQh1aNSFHbN3v\nT7KdN5tP4UwWj9ToN57Q43ySu89Iif0mcJm7X2BhQrIpwN/M7M+Ec0ZTjyUsTKQ6lfBbcRch0Tsy\nY4P+ima2fXKs2arPAbMIHQhFwvHhKoTTUZo12KxL6Ll/hHDayrNA1lnSHyYk7dO8ySz9dZxH+M59\nJek0m5X8NT23V4aPjie2eZJTC+MiphF2FL2EIb1Fd995IMtN4t++tE5V/McI52I0iz+XmiEV7j7X\nzI4mJLbNYr/s7j+sfjAZspGanAKr1ttRuPuDFmaVTXMssB1heMcTSZnvBn5gZsel9QDUSJsgpq6k\nh2mdqp6sWSweQnhck9jqJLF6mBc0SRI7lWC6+zubv6q+PHVOHAtcb2b79I8cSBLLjxMmcxio2DSf\nIcwKWVezZItwsBYV2yTZij5P1sz+h9Dz+Dvgm0mDSWZ5k+okgf1/rZSZyHNucJ71VZ1cVr/vpglT\nnsQ0kefyJHnKjh6ymTOZ3wXY2ZaelCtLnfOeFzyL0Nh7KIt7EdclDLts1pjYqdifED6nmYQetU0J\nw05fofkkgXVjm8T0yzOMGcLEnbu5+78snMrxn4SG64mERO/fmsUCmNmOhCGy/bEXNolNOzWg2bXl\nX8gRG11uo++ThfOxbyLs0xr5C+FqCNWTP51Z1TPZzJeT5R8fkZzNqFN21omn1iEcU25CaLCZDfwY\nOIb0y4Xh7h9KRtltRji/9jjC5aD6CD2330gJP5cwv8dtFiaNmkX2iadyndsrw0PHE9s8ySmhZec3\nwIc8ufB2suMa6HIbxRcyxq+VkmCOzxC71EFwxuR0VMpzzSaLOJgwk+rbw489zD77ccJEWFkT2xhf\nZMkfgBUIO613EHa0DQ8e8iSJHU4wo+SpcxL/u2Q4z7UWLgtzOOEczh2aDSPKE5tTR5It8p0n+3FC\nEnA0cHQrSUveeudMivO85zyxeRKmXMmW57s8SXTZ7l5ssuyGcibUeeqcZ11BGCL/TsKM9wurlnMW\nodcsLenrVOwm7j4hibmEcF3nrKJj3T31WtUZFKsShSnAhe5+JeGyX6kjN3LGjmDp3s+sOhVbl4fz\nsZu9JnXypwxl7JqjfqcApzQq21NOe2uQJB6S/F9Ak0abZJTdXDNbQLie/CuEYfofJAzrbqXcVpPT\nXOf2SnfreGJLjuSUxZfMud3C7MRXkH3Wujzl5o3Pk2Dmib3bzI70mnNJzOwIGl+Go99yXuecWg+X\nBmi2HVW3LLfUa5pYoX8dJ2Z6mOirz5pflqAj8iaYneTuN5nZIYTrGc4iXKuw2YRXuWNz6EiylQwZ\nvJaQyPefJ3tbMjQt9TzZPElL3nqTIynO+Z7zxEYnTG1Ituqd65rp8iTtKDtSx5LT2HWV2BfY2Je8\njMwrFiamc9ITzE7Fvj102N3fapbotDE2rxG2eIKr3QnXIe/X7Dc9T+wLHn9ee6di6zKzXYBM27bH\nTf7UFjnLbjlJTEYfbktISt8i9LjOAn5ImME7i5hya8/tnQ2cPcAN6zLEDIXENjo59XC92V9ZmPZ+\nf8KPacnMLiBMwnR9SniepDhvfJ4EM0/sMcAvk17W/tduRTgX4qNNYtNOxE89Sb8NLcur1yzvqKq7\nA3m5jWVOTU/zSoThZr3JAVcrQ7fzxNZqNr1/R5KtpN7R58nmkbPeuWZkzvOec8ZGJ0w5Y/Oc65o3\n0YvSqeQ077oiXM5uqcsDeTiHtNllgzoVm2dIcN7hxHnMIOwzXiScS/wHeHsOkGbnQ+aJ7TpW/woc\nqxMm7Do44zLqTf7UaGRFW8WUnTNJHE+YfO5Yd3+uxbrmKTfPub0yTHR8VuR+Vclp/wxsP6V5clpv\nOWsQzu+YmmUIR95yY+LNbAzhYO4N6iSYnjJFeZ7YJL6Q1HNzQiLxJ3e/ucnb7J8oqtFEGiu7+4A1\nkli44PatdZL5TwE7efo0/bIMqJMwXUOYxOXZgYq1Jc+TvdxbPE82rzzvuWoZLc3InOc954ytTpjO\nbyVhyhObxJcJ+9t6DXjNGmxylZ1HneQ064zKedZ19LpK4q8mTKjzk5rH/x9hcrO08+U7EtvNzGwS\n4dJu17v7P5PHNgbe6e73DkSsmfV4xKUVOxw7vuahCtDnGSZwsvqTP12TJTavPGWb2XVAD6GHdU7y\nN9fjJpXLLG+5tuS5vdsSJhzLcm6vDBNDJrGt1mpyOlTKbSU+NsHMG9uNLFy+5VfA6yy+PuH7CL2C\nH/EOXC9Rho4OJltlwpDPega0tyVvUp0jmY9+z22IjU0ucyVbeXSq7E4mp3mY2TqEa2u+ypINt6sQ\nGm6fGWqxImksXAZvBnClD/LMvHnL7lSS2I5yLcxAvS1h0tN9gR53X21gaixDyZBMbEVqJcn8roSd\n3bBP5iW7TiVbnZTzPXe0p1kGXieT07zq7OsfcvebhnKsyHDWqSSx1XKt8bm9s4F57r6oUawMH0ps\nRUSWId2azIuIyODoVJKYp1wzO4dw6aw5rZ7bK8OHElsREREREQE6lyQqOZW8lNiKiIiIiIhIV8t7\nLUURERERERGRjlJiKyIiIiIiIl1Nia2IiIiIiIh0NSW2IiIiIiIi0tWU2IqIiIiIiEhX+/+SG/Eh\n482BbwAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x7f679b307f50>" ] } ], "prompt_number": 43 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Of course, this plot only shows proportions of delayed flights between two states and doesn't depict the number of flights between the two nor the magnitude of the delay. So while all flights between Rhode Island and Colorado were delayed, we need to keep in mind ..." ] }, { "cell_type": "code", "collapsed": false, "input": [ "print delay_counts_df.loc['RI', 'CO']\n", "print trip_counts_df.loc['RI', 'CO']" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "COUNTS 3\n", "Name: (RI, CO), dtype: float64\n", "COUNTS 3\n", "Name: (RI, CO), dtype: int64\n" ] } ], "prompt_number": 44 }, { "cell_type": "markdown", "metadata": {}, "source": [ "there were only three of them!\n", "\n", "A visualization that captures both the proportion of (origin &rarr; destination) flights delayed as well as the proportion of total flights represented by that state pair is yet another exercise for the future." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Delay Distribution by Date\n", "\n", "> How did arrival delay in minutes vary day-by-day?\n", "\n", "To address this question, we can group the `ARR_DELAY_NEW` column by date and look at their descriptive stats. A Tukey box plot by day is a reasonable way for us to start." ] }, { "cell_type": "code", "collapsed": false, "input": [ "fig, ax = plt.subplots(figsize=(18,10))\n", "sns.boxplot(df.ARR_DELAY_NEW, df.FL_DATE, ax=ax)\n", "fig.autofmt_xdate()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAABCkAAAJHCAYAAAC92Ax3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X+UnNV54PlviUYSSCpCQptA48ReW1yH2M4QY4P24JBk\nvTEjbPDZzCLAsbHxmZkzrAfHwcRggxwEzi8bk/HZsXfnZGziSSSazOZ42I0DON7Y8SYRwjGO7ZC9\nhGSYCGFArEV1Sxj9QLV/vFWqVtNdLXV31X2q6vs5h8Pb1SXV1Vv3ve99n/vce2vNZhNJkiRJkqTS\nVpQugCRJkiRJEhikkCRJkiRJQRikkCRJkiRJIRikkCRJkiRJIRikkCRJkiRJIRikkCRJkiRJIYz1\n8i9PKX0OuAR4Juf8utZrbwL+V+BE4BBwbc75odbvbgKuAV4Erss5P9B6/Q3AXcBq4Es55w/0styS\nJEmSJKn/ep1J8Xng4lmv/TZwS875XGBz62dSSucAm4BzWn/mMymlWuvPfBZ4X855PbA+pTT775Qk\nSZIkSQOup0GKnPPXgT2zXv4ecErr+IeAXa3jy4BtOeeDOefHgceA81NKZwDrcs47Wu/7AvCOXpZb\nkiRJkiT1X0+ne8zjRuD/SSl9kipIsqH1+pnA9hnvewKYAA62jtt2tV6XJEmSJElDpMTCmf+Rar2J\nHwM+CHyuQBkkSZIkSVIwJTIp3pRzfkvr+D8Dv9s63gW8fMb7zqLKoNjVOp75+i4WcOjQi82xsROW\nXlpJkiQtm+eeg5Sq40cfhVNO6f5+SdJQqs33ixJBisdSShflnL8G/DzwaOv1e4GtKaVPUU3nWA/s\nyDk3U0pTKaXzgR3Au4BPL/Qhe/Y835vSS5IkadGmpuDw4TUAPPvsPg4cKFwgSVLfjY+vm/d3vd6C\ndBtwEXBaSmkn1W4e/wr49ymlVcAPWj+Tc34kpXQP8AidrUmbrb/qWqotSE+i2oL0vl6WW5IkSb1R\nr8PmzfuPHEuSNFOt2Wwu/K4BtHv39HD+wyRJkgZcu/tZmzfZV5I0zMbH14Wa7iFJkqQRZnBCkjSf\nErt7SJIkSZIkvYRBCkmSJEmSFIJBCkmSJEmSFIJBCkmSJEmSFIJBCkmSJEmSFIJBCkmSJEmSFIJB\nCkmSJEmSFIJBCkmSJI2kZrP6T5IUh0EKSZIkjaTJyTEmJ8dKF0OSNEOtOaTh4927p4fzHyZJkqQl\nazRgw4Y1AGzfvo96vXCBJGmEjI+vq833OzMpJEmSNHJq83aPJUklmd8mSZKkkVOvw+bN+48cS5Ji\ncLqHJEmSRlK7G2xWhST1V7fpHmZSSJIkaSQZnJCkeFyTQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIk\nhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQ\nQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIk\nSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIk\nhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQ\nQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhWCQQpIkSZIkhTDWy788pfQ54BLgmZzz62a8/m+Ba4EX\ngT/OOX+49fpNwDWt16/LOT/Qev0NwF3AauBLOecP9LLckiRJkiSp/3qdSfF54OKZL6SUfg64FHh9\nzvm1wCdbr58DbALOaf2Zz6SUaq0/9lngfTnn9cD6lNJRf6ckSZIkSRp8PQ1S5Jy/DuyZ9fK/AX4j\n53yw9Z7drdcvA7blnA/mnB8HHgPOTymdAazLOe9ove8LwDt6WW5JkiRJktR/JdakWA/8TEppe0rp\nqyml81qvnwk8MeN9TwATc7y+q/W6JEmSJEkaIiWCFGPAqTnnC4AbgHsKlEGSJEmSJAXT04Uz5/EE\n8EcAOeeHUkqHU0qnUWVIvHzG+85qvXdX63jm67sW+pBTTz2ZsbETlq3QkiRJkiSpt0oEKb4I/Dzw\ntZTS2cDKnPOzKaV7ga0ppU9RTedYD+zIOTdTSlMppfOBHcC7gE8v9CF79jzfu3+BJEmSJElalPHx\ndfP+rtdbkG4DLgJ+JKW0E9gMfA74XErpO8AB4N0AOedHUkr3AI8Ah4Brc87N1l91LdUWpCdRbUF6\nXy/LLUmSJEmS+q/WbDYXftcA2r17ejj/YZIkSZIkDbDx8XW1+X5XYuFMSZIkjbBms/pPkqTZDFJI\nkiSpryYnx5icLLE0miQpOqd7SJIkqW8aDdiwYQ0A27fvo14vXCBJUt853UOSJEkh1ObtlkqSVGYL\nUkmSJI2oeh02b95/5FiSpJmc7iFJkqS+anc/zaqQpNHUbbqHmRSSJEnqK4MTkqT5uCaFJEmSJEkK\nwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCF\nJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmS\nJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkK\nwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCF\nJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmS\nJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkKwSCFJEmSJEkK\nwSCFJEmSJEkKYayXf3lK6XPAJcAzOefXzfrd9cAngNNyzt9vvXYTcA3wInBdzvmB1utvAO4CVgNf\nyjl/oJflliRJkiRJ/dfrTIrPAxfPfjGl9HLgfwT+24zXzgE2Aee0/sxnUkq11q8/C7wv57weWJ9S\nesnfKUmSJEmSBltPgxQ5568De+b41aeAX5312mXAtpzzwZzz48BjwPkppTOAdTnnHa33fQF4R4+K\nLEmSJEmSCun7mhQppcuAJ3LO3571qzOBJ2b8/AQwMcfru1qvS5IkSZKkIdLTNSlmSymdDHyEaqpH\nW22et0uSJEmSpBHS1yAF8CrgFcDfpJQAzgL+OqV0PlWGxMtnvPcsqgyKXa3jma/vWuiDTj31ZMbG\nTlieUkuSJEmSpJ7ra5Ai5/wd4PT2zyml/wq8Ief8/ZTSvcDWlNKnqKZzrAd25JybKaWpViBjB/Au\n4NMLfdaePc/35N8gSZIkSZIWb3x83by/6+maFCmlbcBfAmenlHamlN476y3N9kHO+RHgHuAR4E+A\na3PO7d9fC/wu8PfAYznn+3pZbkmSJEmS1H+1ZrO58LsG0O7d08P5D5MkSZIkaYCNj6+bd23Kvu/u\nIUmSJEmSNBeDFJIkSZIkKQSDFJIkSZIkKQSDFJIkSZIkKQSDFJIkSZIkKQSDFJIkSZIkKQSDFJIk\nSZIkKQSDFJIkSZIkKQSDFJIkSZIkKQSDFJIkSZIkKQSDFJIkSZIkKQSDFJIkSZIkKQSDFJIkSSOk\n2az+kyQpIoMUkiRJI2RycozJybHSxZAkaU615pCG0nfvnh7Of5gkSdIiNRqwYcMaALZv30e9XrhA\nkqSRND6+rjbf78ykkCRJGhG1ebuEkiTFYK6fJElSH7STV0sGCup12Lx5/5FjSZKicbpHYBE6M5Ik\naXncfXc1NnTFFYeKlsP+hSSptG7TPQxSBBalMyNJkpbGtSAkSeroFqRwukdQjQZs2bIKgI0bD9mZ\nkSRpgJm1IEnSsTFIEZSdGUmShodrQUiSdGyc7hGY0z0kSRoergUhSVLFNSkGlJ0ZSZIkSdKwcU2K\nAWVwQpIkSZI0SlaULoAkSZIkSRIYpJAkSZIkSUEYpJAkSZJGXLPZWQ9NkkoySCFJkiSNuMnJMSYn\nXa5OUnnu7iFJkiSNsEYDNmxYA8D27fuo1wsXSNLQ67a7h5kUkiRJ0ghzRzlJkZjTJUmSJI2weh02\nb95/5FiSSnK6hyRJkjTi2o8EZlVI6odu0z3MpJAkSZJGnMEJSVG4JoUkSZIkSQrBIIUkSZIkSQrB\nIIUkSZIkSQrBIIUkSZIkSQrBIIUkSZIkSQrBIIUkDYFms7N9nCRJkjSoDFJI0hCYnBxjctJdpSVJ\nkjTYas0hHXrbvXt6OP9hkjRLowEbNqwBYPv2fdTrhQskSZIkdTE+vq423+/MpJCkAVebt4mXJEmS\nBou5wZI04Op12Lx5/5FjSZIkaVA53UOShkC7KTerQpIkSdF1m+5hJoUkDQGDE5IkSRoGrkkhSZIk\nSTqK25urFIMUkiRJkqSjuL25SunpmhQppc8BlwDP5Jxf13rtE8DbgAPAPwDvzTk3Wr+7CbgGeBG4\nLuf8QOv1NwB3AauBL+WcP7DQZ7smhSRJkiQdP7c3V6+V3IL088DFs157APjJnPNPAY8CNwGklM4B\nNgHntP7MZ1JK7YJ/Fnhfznk9sD6lNPvvlCRJkiQtA9e6Ukk9zd/JOX89pfSKWa99ecaPDwK/2Dq+\nDNiWcz4IPJ5Segw4P6X034B1Oecdrfd9AXgHcF8vyy5Jg8TdPSRJ0nJxe3OVVHqS0TXAttbxmcD2\nGb97ApgADraO23a1XpcktbTnjF5xxaHCJZEkScNg0yb7FCqjWJAipfRR4EDOeWupMkjSMGg0YMuW\nVQBs3HjIEQ9JkrRkZmeqlCJBipTSe4CNwP8w4+VdwMtn/HwWVQbFrtbxzNd3LfQZp556MmNjJyy5\nrJIU3cqVsKK1wtBpp63jlFPKlkeSJElarL4HKVqLXt4AXJRzfmHGr+4FtqaUPkU1nWM9sCPn3Ewp\nTaWUzgd2AO8CPr3Q5+zZ8/zyF16Sgrr55qo5P3DgELt3Fy6MJC3AdXQkabSNj6+b93e93oJ0G3AR\ncBrwNPAxqt08VgLfb73tr3LO17be/xGqdSoOAR/IOd/fer29BelJVFuQXrfQZ7sFqaRRYodf0iC5\n+27X0ZGkUdZtC9KeBilKMkghSZIUT6MBGzasAWD79n2uoyNJI6hbkGJFPwsiSZKk0WbGlySpm9Jb\nkEqSJGmE1OuwefP+I8eSJM3kdA9JkiT1levoSPF5naqXnO4hSZKkMGo1H3yk6CYnx5icNPE+kmaz\nEzwaZmZSSJIkSZKOcIHbmIZpZ6RumRSGxiRJkiRJR5jpFE+jAVu2rAJg48ZDQx04MkghSZIkSTrC\nBW7jGaXAkdM9JEmSRoiL4Uk6FrYV8YzKdA+DFJIkSSNkmDq5ktQPUQI2UcqxHAxSSJIkycXwJGkR\nDO4uPxfOlCRJ0lCMvklSP43SgpVRGKSQJEkaES6GJ0nHx+Bu/zndQ5IkaYQM05xmSeoHp3ssP9ek\nkCRJkiRpEQzuLj/XpJAkSZIkaREMTvTXitIFkI5Fs9mJYEqSJEmShpNBCg2EyckxJidN/JEkSZKk\nYeaaFArPPd0lSZIkaXh0W5PCTAqF5xwwSZIkSRoN5s8rPPd0lyRp+bhKvSQpMqd7aCDYoZIkaXnc\nfXc1RnXFFYcKl0SSNKq6TfcwSCFJkjQiGg244IJqnacHH3SdJ0lSGd2CFE73kCRJGhG1GuzfX7oU\nkiTNzyCFJGmoOD1Mml+zCTUvDklSYAYpJElDZXLS+fbSfGo1WLXKGbGSpLhck0KSNDQaDdiwoZpv\nv3278+2lubhwpiSpNNekkKQecWpBR4Rz4fcgLWzTJoMTkqS4DFJI0hI4taAjwrmo12Hz5v1HjiW9\nlME8SVJkTveQpEVyakFHpHMRIaMjQhl0NL8TSZLi6DbdY0U/CyJJw8SHnY5I56JWK1+eycmxI5kl\nisHvpKPZ7ARtJEmKxkwKSVoCF6Dr8FxUImWVqOJ3cjSvVUlSaS6cKUk94gJ0HZ6LSq3mKHU0pTNr\nImk0YMuWVQBs3Hho5AM2kqR4DFJIOm7O7e7wHHR4Lir1Olx88aEjxyrPBVU7vE4lSdEZpJB03CLs\n4iBF1WjA/fdX18jU1P6RfyiOwkyfSr0Ot9yyn1rNgI0kKSaDFJKOi6nCUneOVMfk93I0pyRJkqLq\nGqRIKX0B+DPgz3LOj/elRJJCs6MvdefUAkXWaMBtt1WB5ksuMdAsSYpnoUyKbwO/CHwqpdSgClh8\nlSpo8U89LpukgHwAkxbm1AJFZaBZkhTdMW1BmlI6ATgXuAj4WeBCYE/O+b/raemWwC1Ipd5x4UxJ\nGlxuQSpJKm3JW5DmnF9MKT0P/AB4AXgOeGx5iidp0BickKTBZaaPJCmyhdakuJYqc+KngL8HvgZ8\nEvjrnLN3OEmSpAFjoFmSFNlCmRSfBh4CbgX+75zzU70vkiRJkiRJGkULBSl+hGr9iZ8BrksprQX+\ngmoBza/lnL/X4/JJkiRJkqQRcUwLZ7a1ghS/CHwEeHXO+YReFWypXDhzebhAoiRJkiRpOS1p4cyU\n0jjwc1RrU/ws8ApgB7B1WUqn0CYnXQFckiRJktQfXTMpUkqPAK+kWpfiz4CvAn+Vc36hL6VbAjMp\nlq7RgA0b1gCwffs+6vXCBZIkSZIkDbylZFJcB/xFzvkHy1skDQKneEiSJEmS+mnFAr8/pR2gSCm9\nfuYvUkr/qmelKqzZ7KzFMMrqddi8eT+bN+83i0KSJEmS1HMLZVLcDPwfrePfA86d8bt/A/yHbn84\npfQ54BLgmZzz61qv/TAwCfw48Dhwec75udbvbgKuAV4Erss5P9B6/Q3AXcBq4Es55w8c2z9vcVyH\noWPTJs+BJEmSJKk/FsqkWKrPAxfPeu1G4Ms557OBr7R+JqV0DrAJOKf1Zz6TUmpPOPgs8L6c83pg\nfUpp9t+5bBoN2LJlFVu2rGJqqlefMjhqNad9SJIkSZL6o6dBipzz14E9s16+lCorg9b/39E6vgzY\nlnM+mHN+HHgMOD+ldAawLue8o/W+L8z4M8vOB3JJkqTecmqtJGk+C033OC2ldC1Qm3FM++dFfubp\nOeenW8dPA6e3js8Ets943xPABHCwddy2q/V6T7TXYWgfS5IkaXk5tVaSBlM7wNzLwf2FghRfAd44\nxzHAny71w3POzZRSuDi66zBI0vHrx01L0uBrT60F2LjxkINCkjRA+hFk7hqkyDm/pwef+XRK6Udz\nzk+1pnI803p9F/DyGe87iyqDYlfreObruxb6kFNPPZmxsROWqciSpIXcdVcVoLj66tIlkRTZypWw\nojXh+LTT1nHKKWXLI0k6Ns89B7ffXh2/+930rP3uGqRoLWY5r5zzI4v4zHuBq4Hfav3/izNe35pS\n+hTVdI71wI5WtsVUSul8YAfwLuDTC33Inj3PL6JokqTFaDTghhvWAHDhhfscGZXU1c03V13QAwcO\nsXt34cJIko7J1BQcPlz19559dh8HDiz+7xofXzfv7xaa7vElYK7pGOuAU4GuqQoppW3ARVTrWewE\nNgO/CdyTUnofrS1IoQp4pJTuAR4BDgHX5pzbn30t1RakJ1FtQXrfAuWWJPWRUzwkHQ+n1krS4OnX\n+o215nEsrZxSWgNcD/wvwBdyzjf0qmBLtXv3dLi1LiRpmN19twvhSZIGn2ssSfNbrutjfHzdvH/D\nQpkUAKSUxqiyGT5MlV3x0znnBdeFkCSNDkdGJUnDwN1npPn1I3i30JoUNao1ID4G/DXwcznnR3tf\nLEnSoHHESZI06Nx9RipvoUyKbwNrgFuBbwBjMxfTXOTCmZIk9czhw9X/27sHSDqaqezS/LwupPIW\nClKso1o489fm+f0rl7U0kqSBFeXB5/rrqxGwO+/cX7YgUlCmskvz69fCgJLmd1wLZ84npXRazvnZ\nZSjPsnHhTEnqrwgLZ+7cCeedtxaAb35zLxMTxYoihdRowIYN1fZx27eX2y44SlBTmov1U+q9JS+c\neQy+DJy7TH+XJGnARJnD6xQPqbsoD11mc3T4QByP34VU1nIFKSRJIyxKh25iAq666uCRY0lHi5DK\nHiWoGYUBG0k6mkEKSdKSRXjwabvjDteikLopvV1wlKBmBAZsJOmlDFJIkpZF6QefNqd8SN2VDhJE\nCmqWVvq7kDRYRmV6mEEKSdKyGPYb5vEYlU6EtFhRgpqlGbCRdDxGZXpY1yBFSul1OefvHMPf80fL\nVB5JkgbeqHQipMUygNdhwEbSsRil6WFdtyBNKf0T8L8Bv5lzPty3Ui0DtyCVJJXQaMAFF1RbPD74\nYLktHiVJ0vCYmur0L0puIb1cum1ButDM3XOB1wF/lVJ6zbKWSpKkIVSrwf791X+SJEnLoT09bPPm\n/QMfoFhI10yKtpTSO6gyKv4CaGdUNHPOl/ewbEtiJoUkqYRGA376p9cC8PDDe4e+IyFJkvpjmNa8\n6pZJseDCmSmlOnAp8BTwx8wIUixL6SRJGiK1Gqxa5S1SkiQtr2EIThyLhRbOvBj4LPD7wL/OOR/s\nS6kkSRpQrtYvSZK0eAstnPld4D0552/Mev0k4F/knP9Tj8u3aE73kCSVMkzpmJIkScttKdM93pBz\nPrL0V0rpAuAa4H8GvgmEDVJIklSKwQlJkqTFWXDhzJTSy4B3A++l2g3kZcDrcs5P9r54i2cmhSRJ\nkiRJ8Sx6C9KU0heBbwGvAN6bc/4JYCp6gEKSJEmSJA2erkEK4I1ABv4S+HbviyNJkiRJkkbVQkGK\nHwM+Cfwi8ERK6fPA6p6XSpIkST3RbHYWd5UkKZoF16RoSymdBryLam2KU4CtOeebeli2JXFNCkmS\npJe6++5q3fQrrjhUuCSSpOMxTLuHdVuT4piDFDOllN5ItUbFtUspWC8ZpJAkSTpaowEbNqwBYPv2\nfdTrhQukoXrokNRbwxRkXvTCmfPJOT8ErF90iSRJktR3PgjHMzk5xuTkWOliSAqu0YAtW1axZcsq\npqZKl6a3ltIivmbZSiFJkqSeq9dh8+b9R45VVvuhA2DjxkN+J5LmNUpBZsO2kiRJI2TTpvJpwk5x\nqIz6v1/SsYsSZO5H+22QQpIkDT0fijsinIP2vOorrywfMCkpykNHFF6nUncRgszt6Wm9XBej68KZ\nKaXdXf7sqTnnsEEOF86UJEltw7TY2KBrNODcc6vFO7/1LRfv9MG8w+tUim05F1/utnDmQkGGNy7+\nYyVJkspz3n8s09Owd2/tyPGofx8GJypep0czeKWI+lUfuwYpcs6P96cYkiRJvWEnP5Z6HVavro7X\nrStbFsXhdXq0fqTUS8erX1PUugYpUkoP5Jx/oXX8mZzztTN+982c80/3rmiSJA0mR8Bicd5/LM0m\njI15fehoXqcdZpUosn6si7HQdI/xGccbZv3OW4skSXNwBCyeCIuNqVKrwerVLh2ml/I6rRjAU2T9\nqJ9hF76UJGkQOQIWk53+OBwx13yiXKels+G8RjTqDFJIkrSMonSypcgcMVdkEbLhvEY0yhbagvQQ\nsKf14w8Bz8349Q/lnE/sYdmWxC1INaxKR/clLcxt9CRpMC3nFouDzj6nemkpW5C+epnLImmJIkT3\npbnYmelwBEySBpP3sA77nCqlaybFTCml0wByzs/2tETLxEwKDSOj+4osSvaAwRJJ0lJEuZ+VZJ9T\nvbaUTApSSh8EPgy8rPXz08Bv5Zx/Z9lKKOmY+NClqCItFhlh5MdAiSQNrgjZcKXvI96/VFLXIEVK\n6ZeAfw1cDeyg2nb0jcCdKaVnc86/3/siSmpztWdFFaUzEyVYEiFQIklanAj3tNL3EfucKmmhhTO/\nDrw/5/w3s15/PfDvc85v7nH5Fs3pHhpWpSPr0nwipMdOTcEFF5RNTzVFVpK0FFHuI/Y51UtLme5x\n+uwABUDO+dsppZctuWSSjps3CkUVIT02wsiP16jmY4df0rGI0kZEKYdGz0JBir1dfvf8chZEkjTY\nonRmSgdLIgRKFFPp9G3FZPBKs3kf0ahbaLrHTuA3qNaiaGu2fr4x5/zy3hZv8ZzuIUmjKUKHP0IZ\nFEuU9G3FE2GqHNhuReP3oWG3lOkeX6FaKHMuf7roEklaNG9aUncRRqu9PjWbdUJzibLYL8RoOyXF\n149nka6ZFMcqpXRxzvm+ZSjPsjGTQsMqyoiLFJGj1YosSvttsDuOCIv9gm1nRFHaC2m25aqbS8mk\nOFa/AYQKUkjDKNKIixSRD12KrPR6KW2OmMcRZe0B285YovT3DGjGU/o76VfdXK4gxXFLKd0E/BJw\nGPgO8F5gDTAJ/DjwOHB5zvm5Ge+/BngRuC7n/ECBYktFeZOQuovS4ZfmEqEN9+EnngjBK9vOWKJc\nFwY04yn9nfSrbhYJUqSUXgH8S+Ancs77U0qTwBXATwJfzjn/dkrpw8CNwI0ppXOATcA5wATwpyml\ns3POh0uUXyrFToS0sAgdfikqH37iifKd2HbGEaG/FyWgqY4I30m/6mapTIop4CBwckrpReBk4Eng\nJuCi1nt+D/gqVaDiMmBbzvkg8HhK6THgTcD2PpdbKs5OhNRdlA6/FJEPP5qPbWcspft71od4onwn\n/aibRYIUOefvp5TuAP4J+AFwf875yyml03POT7fe9jRweuv4TI4OSDxBlVEhjZwoDZQUlWnkUnc+\n/Ejxlb5OIgQ0dbQo30k/6uaigxQppXNyzo+0fvzocf7ZVwG/DLwCaAB/mFL6pZnvyTk3U0rdduhw\n9w5JavHBvMM0cqm70u1EvQ633FK+oy2pu9IBTb3UqHwnCwYpUkqvBxLw7ZxzTin9KPBx4G20Mh1y\nzl86zs89D/jLnPP/1/qMPwI2AE+llH405/xUSukM4JnW+3cBL5/x589qvTavU089mbGxE46zWJrN\nBx9pMNx1V3WdXn116ZKU9dxzcPvt1fG73w2nnFK2PJLmtm5d1WaNj5cuiSTpePTj+bBrkCKl9EHg\nFuBR4DWab0kIAAAgAElEQVQppduA64HfB85ewuf+v8AtKaWTgBeAtwA7gH3A1cBvtf7/xdb77wW2\nppQ+RTXNY33r/fPas+f5JRRPbe7RLMXXaMANN1T721944Wjvbz81BYcPV+fi2Wf3ceBA4QJJeolG\nA371V6vr9M1vHu02S5IGzXI9H46Pr5v3dwtlUvxL4JxWZkMC/hb4mZzzXy6lQDnnv0kpfQH4BtUW\npN8E/gOwDrgnpfQ+WluQtt7/SErpHuAR4BBwbc7Z6R495sJW0mAw06kjynxNSfOzzZKkwdSv58Na\nszn/s35K6eGc87kzfv5uzvm1vSnK8tq9e9ogxhJNTcEFF1QjHdu3O9IhRWbWU4fT1KT4bLMkafAs\n5/Ph+Pi6eXtqCwUp/gH4t+33Ap9u/VwDmotYi6JvlhKksIPbYSdCGgy2W5qL9UJRWTclaTAt43SP\nRQcpvsrRu2jUZv6cc/65JZWsh5YSpPDBvMNOhCQNLu9nisr+haRBYpvVsVznYtFBikG22CBFo9FJ\nYXnwwbJTHLwYJEmL1WjAhg1O2VNMBtAkDRLbrOXXLUix4Bakc0kpnQLclHO+cdGlCqpWg/37S5ei\ncvfdY9RqXgySpONngFtRuTC3onOgUDPZZvXfQluQ/jDwUeAngIeBW4H3ALcB/1evC1dCswm1AC1S\nowE337wagI0b93oxSJKOizudKKoA3Sypq8lJR83VYZvVfwtlUvwusB/4P4GNwF8CB4C35Jy/0+Oy\nFVGrwapV5afATE/D3r2dYzuYUkyOtmguUerFpk12sBWPATRF5qh5R5R7WWm2Wf23UJDi7PaWoyml\n/wg8A5yVc97b85IVEqUS1uuwZk3VMqxbV64ckrpztEVziVIvRr1jqbgMoCkq282OKPeyCKK0WaMS\nOFpod4+Hc87nzvdzZMOwBem2bVXDcOWVMS4KSUdzYULNxXohSYPNRRK9l0U1THVzKQtnvjKldA/V\n1qMAr0gp/WHruJlzvnw5ChhN6eBE2zBUPmmYRWkrFIv1IqYoAxAReC6k7iKMmpe+Tm0f4hmlqUgL\nBSl+GWjSCVL8cetngB/vVaFUsXGQYosyPUyxWC9iMm25w3MhdRehD176OvVeFk+EetkvXad7zJZS\nOpNqd4/3ACtyzq/uTbGWbinTPSTpWJUe6VBM1otYTFvu8FxI8UW5Tr2XxeN0j5aU0onAZcA1wJuA\nE4G35py3L1sJg/GClHSsbCc0F+tFLH4fHZ4LKb4o12mUcqgjwlSkfugapEgp/Q6wCfhr4C7gfwL+\nbpgDFFA+vUqSJC0f05Y7PBdSfF6nms+oBI4W2t3jB8D9wCdyzn/Reu2/5pxf2afyLdpip3tESa+S\nJEnLxyzJDs+FFJ/XqYbdUqZ7nAlcBfy7lNIpwO8fw58ZaDYEkgaRnRmpO6+NDs+FJCmyY144M6X0\neuB9VEGLvwP+IOf8v/ewbEuylIUzh2lBEkmjwXZLis9goqRj5X1dw65bJsVx7e4BkFJaSbWQ5ntz\nzhuXWLaeWUqQwk6EpEHiNDVpMPjQIelYeF/XKFjS7h6z5ZwPAH/Y+m8oGZyQNEhss6T4Gg3YsmUV\nABs3HvKhQ9K8otzXHbhVKUO9voQkjQJXAZfis5Mv6VhFua+746FKOe7pHoNiKdM9JA0GI/wdnosO\nz4WicrqHpGNV+l7mlBP12rJO95CkKIzwd/hA3mG9UFSbNlknJR2b0vf10p+v0WYmhaSBZIRfc7Fe\nSIOh9CixpIWZ/aVeMpNC0tCxYxtPhIcO64U0GMx4krqLcE81+0ulGKRQVxEaSGkuURaVUkeEh44o\n9cK2U5qfO51IC4twT/UeplKc7qGuTPNSZD4IxhFpmkWEemHbKc1vagouuCBGeyFFFOmeqlgi9HGW\ni9M9tCiOdCi6YWigh0Wk76J0WWw7NZ9h6lwuRZSMJymqUW8jNL8IGTb9YJBC87KBlHSsfOjosO3U\nfEalc3ksnOsuzc97quYySoMgTvdQV6YsSzpWjhJ32HZqNtO3JR0P76mabdimyjndQ4vmSIci8wYe\ni99Dh22nZvP6kHQ8bDM02yhl2JhJIWlgOVotaZBEabMM8ErSYBqm9rtbJoVBCkkDydRpSYMmSucy\nSrBEkjS6nO4haeiU7uRL0vGK0G6N0sJrkqTBZJBC0kAapXl5krRcIgRKJEnqxukekgZWlNRpSRok\nTveQJJXmmhQDygcwSZK03OxfSJJK6xakWNHPguj4TE6OMTnpjBxJkrR8ajUDFJKkuMykCMqdCzQf\nR8AkSZIkDTIzKQaQD6Cajxk2kiRJkoaVmRSBubCVZjPDRpIG1+HD1f9XOEQkSRpx3TIpHI4NbNMm\ngxM6mhk2kjS4rr9+FQB33rm/cEnU5hRKSYrHTAppwJhhI0mDZ+dOOO+8tQB885t7mZgoXCAB3lMl\nqRQzKaQhYoaNJA0ep3jE02jAli1VdsvGjYecQinNYqaRSjFIMQcvSEVmvZSkwTMxAVdddfDIscrz\nfip1116o3Uwj9ZvTPeZg6p80GAwoai7WC0UVZeFMr5EO+3zS3FysXb3mdI/jYOqfNDgiRPjt7McT\noV5IcykdnGjzGulwCqU0N/s1KslMilmmpuCCC4waStFFifA7ChdLlHph8EpRRblGovBaleZnHyee\nYWqzzKQ4DvU6bN68/8ixpJgiNM5mXsUToV5Ap2N35ZV27BRLlGskSkfbrBJpfmYaxTMqbVaxTIqU\n0g8Bvwv8JNAE3gv8PTAJ/DjwOHB5zvm51vtvAq4BXgSuyzk/0O3vX8qaFFFunJK6Kx3hN/MqptL1\notGAc8+t6sW3vmW9iMJ7e0fpayRKGcwqkTRIhq3NippJ8e+AL+Wc/0VKaQxYA3wU+HLO+bdTSh8G\nbgRuTCmdA2wCzgEmgD9NKZ2dcz7ci4LZgZEGQ+kIv5lXMZWuF9PTsHdv7cixdSOGURl9Ohalr5Eo\nWWj29yQNklFqs4oEKVJKpwBvzjlfDZBzPgQ0UkqXAhe13vZ7wFepAhWXAdtyzgeBx1NKjwFvArb3\nu+yS4ojQWF9+uQ880ZSuF/U6rF5dHa9bV7YsqkR5KI6i9DVS+vPbDDRLGiSj1GaVyqR4JbA7pfR5\n4KeAvwZ+GTg95/x06z1PA6e3js/k6IDEE1QZFZJU1D33ODqrozWbMDYW50FMfhfRROpol84qkaTj\nMSptVqkgxRjw08D7c84PpZR+hypj4oicczOl1G1dieHclkTSwHB0VnOp1WD16hi3KNdhqER6KFYl\nSkd71K8NSYNlVNqsUkGKJ4Ancs4PtX7+z8BNwFMppR/NOT+VUjoDeKb1+13Ay2f8+bNar83r1FNP\nZmzshGUutiR1rFwJK1ZUx6edto5TTilbHsUwPg6f+ETVkXjVq8rO97jrrqocV19dtBghvP/91f9H\npYOnwWEwUVFZN1VKkSBFKwixs7X45aPAW4C/bf13NfBbrf9/sfVH7gW2ppQ+RTXNYz2wo9tn7Nnz\nfK+KL0lH3Hxz1YweOHCI3bsLF0ZhbNxY/b9knWg04IYbqlXAL7xw8FcBl4ZVhJ1OpLlYN9VL4+Pz\nD+SU3IL0p6i2IF0J/APVFqQnAPcAP8ZLtyD9CNUWpIeAD+Sc7+/29y9lC1JJOlaOMigqt8iV4hu2\nLQU1PBqNzj3kwQetm1p+IbcgzTn/DfDGOX71lnne/+vAr/e0UJJ0nAxOKCrXYZDi8x6iqGo12L+/\ndCk0qooFKSRJUm9FWJzQbCNpfgYTFVWzCTUbbhVikELSwPLhR1FFqZulPx9gctI5zdFEqZ+qRAgm\nSrPVarBqlbPnVYZBCukYRenURShHhDKADz+Ky7pZcZvemKyfsZS+l0pzMcvnaFH6vqOi2MKZvebC\nmVpuUVY4jlCOCGWIstiYNy3NFqVuQvn66eKd8USqn5JiK30PiSRC33fYhFw4UxokUUYDI5QjQhkg\nzg3TEUnNFqVuQvn6Wa/DW9966MixyotUPyPwIUyan9dFJUrfd5QYpJiDNyzNFqUuRChHhDJA9cBz\nyy1l0xC9aWkuUVJkI9TPRgPuu6/qatx66/6Rv0Yi9C+i1M8oSgfyJMUXpe87SgxSzMEblmaL0qmL\nUI4IZZip5I3Dm5bmc/nl5e8fEepnrRajHFFE6V+4UGMlQiBPmk+EoKYq0fq+o8A1KWZxrqbmE+Vm\nEaEcEcoQ5Vp1jqLmsm3bGLVa+XoRoX5GKEMEUdosdbhmiiKL0HZG6O9F4blYfq5JcRxqtU4llGaK\n0ihFKIdl6HBEUrM1GnDzzasB2Lhxb9EHnwj1M0IZIojSZqnDNVMUVZQsnyjZXxHYhveXQYpZ6nW4\n+GJvWFJ0UVLvvGlptulp2Lu3czzq9TNCGSKI0mapwzVTFFWEdjNKoESjySDFLI0G3H9/dVqmprxh\nSZFFGKE1/a/Dc1Gp1+Hkk6uTsW5d4cLoiAj1M0KbpQ7XTFFUEYKaka6NCO23+ssgxSxWfmlwRLhe\nTYXs8FxU6nW49NJD1GqOmEcSoX5GaLOiOHy4+v+KFeXKEOFBUJpP6aBmpOsjQvut/nLhzDlEWKhG\nRzOCqohcCK/Dc9HRaMC5566lVoOHHy67JoUq1s+jRQgQfPCDVRr5nXfuL1cIYpwLKaoI/W/b7+Hl\nwpnHqXTkUi9lBFURGTTr8Fx0TE/Dvn2dYztU5Vk/j3b99WUDBDt3wtatJwLwoQ/tZ2KiSDEAuOce\n+xfSfCK0nW5qMJoMUswhwgWpDhfuUVSRUiFL81x01OuwZo1rUkRi/eyIECCIkrVg/0KRRchiiKC9\nC49TKEeLQQqFN+qNs2Iz86rDc1Fpr0nRPlYMl19u/YQYAYKJCbjqqoNHjkuxf6HIzCKuNBpw771V\nYNVdeEaHQQqF5wiYIrOT2xHlXJQefZq5raG7RMVhWn8lSoDgjjvKrkUB9i8Ul1k+HU6hHE0GKdRV\n6c5+W4QR2ijnIko5IvBcaC6lR59qNXjhhSIfrXnY4T9ahABBhIwOiNG/UIf39YrrMHQ4hXI0GaRQ\nV+2dTq68suxNPMLNqvSDT7RyROC50GwRHkabTThwoBai3VLF7+JoUQIEEVg3YolyXy8dLKnX4eKL\nnTYI1b//4x8342nUuAWp5lVto1dt+fOtb432lj9Rtj+KUo4IPBeay9QUvPa1awH47nfLbP/5d38H\nF11UleHP/3wvr3lN/8ugl3J7cSm2SPf10u1FpHMRgVsFDye3INWiVHPAakeOR7mBjDLSEqUcEXgu\nNJdGozPVolS7Va936qepqXGY1t9RepRYmkuU+hghIy/KuYjCNYU6RqX9NkihedXrsLYaDBz5jnaU\nxbWilCMCz4XmEmGUZWICrrjiICtWlF2YUEcb9g7d8YiSUi/NFOW+HmE9iCjnIoIIQaNIRqX9drqH\nutq2bYxabfgvhGMRJXIZpRwReC40lw9+sOrM3HlnucUBt26tOhFXXTXa86p1tAjfh2nkiizCNQIx\n7iNRzkVpU1NwwQXl26wI38ewtd9O99CiGZzoiHKTiFKOCDwXmkvpnQsaDbj99qqD+7a3lR31iTDi\nEqFjF0WE7yPK92C90Fwi1IdGA+6/v/w20hHORQRRskpsv/vLIIW6inIx2JlRVNbNeEpP+YhSF6Kk\nyEbo2EUQ5fuwwy91F6UNV0fpNYVsv/vPIIUGgp2ZWHww77BuarYonYgI12eUjh2Ub7cifB9tl19u\nh1+aT70Ob32r239GUrr9LP35M5Vuv/vFIIXCszMTjw/mFetmTBG2Kis96gMxOtqROnal260owSso\nv1J+pHohzdZowH33VdfIrbeWm+6hOGy/j9aPfpYLZyq8KAvmqDJsi/YsxdQUnHtutQXOww/vHelz\nEYkLnlUajU7b+eCD5a7Vu+8u36GK0m5FqRcRzkWEeiHNZWoKzj+/fNupWGy/O5arn+XCmRpokaKX\ncgRspmYThjXQO6h27oStW08E4EMf2l9sC9DSo/ZQXasRrtcIqakRzgPEKEeEMkCMbCNpLhGy0CDG\nQ7E6InwPEcrQr36WQQoNBDszcRg06qj2Uq+FuGlEEKFDVXrRTIgzDSjKtRohNbVeh1tuKX8uIohS\nLyK0F9JcGg24996q3dqypdx0jwjBbsUSof3uVz/LIIW6itKJKP35OppBo0qzCS++WLoUcUToUE1M\nwFVXHTxyXEKk9qr0tRolYNMW6bspqXS9gCpduFaD3/mdslsGS7NNT8O+fbUjxyXarUYDbr01Ttup\nOEpnJ/arn2WQQl1FeOhQPHb0K9PT8MILneNR7kRE6lDdcUfZh556HX7hF8qnCkP5a7X057c1GnDb\nbTHqZwSlv5edO2Hbtipd+IYbyk3LkuZSr8Paarkp1q0rU4ZaDfYbvwslysBthOzET36y95XTIMUc\nolTC0qKNgEnR1OuwalXVYJTqyLSVbrcidahKT/loNOC//JfyqcJQvl60p1nUam7HGknpevHUU53j\n732vXNaTNJd6HW6//YWi7VZ1jZafTlq6rYgkwsBtlGezyckxajW48srenQuDFHNorzjdyxM/CGyQ\npO6aTTjxxBgXSumbZ7MJNRsNoMqqef75sqnCbaXrRVvp9WWjLIQXxd13Vx3MUvXizDM7x2ecUaQI\nCirKQ3HpNrP97y/ddka5h5QWJThQ+rqA6lzceONqAC65pHc72xmkmKXRgI9+tKqEl1wy2tkDERZn\nkSKr1eBQgPt2hJtnrdbJKlEMEerFzGkWJe+pjQbcd1/V5bn11rLZLaU1GnDzzVUHc+PGMlsnr10L\nK1dW7UbpLDR1RAgQRHkoLv0wWH0XZe+pEe4hUVTZouUjBBGezZ58sjPV+ckne1cOgxSzRFgsJ5II\ni2tJUTUaMdakKN2Zghg3zijqdTj55PLTgCLUiwhlgDjbsUYwPQ1793aOSwU1V67s/+fOJcKDeRSl\nAwQ+FHdEuEa8JjoibTlf+tls5nXZyz6OQYpZIiyWE4kNlDS/0msftEUJEJS+cUZRr8Pb336IFSvK\nfh8R6kWEMkQqRwT1OqxZUzaIFqnDX/rBHGIESiIECKKMVkP576Reh4svPlR0XQzbzY4qW7R0KWKY\nmIDx8eaR416pRblJLLfdu6cX/Q/btq3sXM1ISjfSUmSNBrzudVVU87vfLZM23ea1GkejAa99bVUv\n/vZvrRftbXpPOKFcGSDGuYhi27aya29NTcHrX78GgG9/e1/RaUAbNlTl2L69XDnaa6GV7HdOTcEF\nF5Q9F40GnHtuVYZvfavc9wHlv5PqXKylVoOHHy53H7Hd7CjdbraVrpuPPAI/+7NVH+fP/3wvr3nN\n4v+u8fF189YsMynmYHCiY+vWqoq8850xFl2zkfRcRFKrwdq1MQK91oc4nnyys9NJL+drHosI9eJD\nH6qGn+68s+z2LxHORRSXX17+nn74cPkvJEKdiJDBADF24okyWh1hS+0I07LAPudspc9DhPaiX1nE\nBinmULoCRtFodDqXb3972bmBEdIxo/BcxGEqpObSr/max6J0B3PnTti69UQAPvSh/W41GcT116+i\nVisXOJqe7gTySj6ARXkwj6RkgnW9Dh/7WPl7aoQttaNscX799TGCzKXNXAS69O4epadEnXEGjI1V\nZZm5U9NyM0gxh9KduihyhhdfrE7Co4/CeeeVKUeEqGEUnot4So9I6qVKt+ETE3D++S8eOS6p9Jba\nK1aU30KvrXS9iGLnTti2rXzgKEq9gPIP5jffXDZQAnF24omwtlFVH2pF24oIZTDI3BHlvhFhPZ+q\nrep9GQxSzMGR6kqUCzJKOSLwXMTTfgi86qrRbi8gzkNg6Ta80YDvfKfKh5yaKvfgEWFL7YkJuOCC\nF6nVygdsSteLKPbu7Vyr09Nly1JalAfzHTtOoFYrO9e9VoMXXrCTAZ17WMlnwQjZRlEWB4+gnXXV\nPi4lwq4v9Tr82q/1/lwYpJjFkeqOlODEKoDK2WeXK4cp9R2ei1gaDbjhhqq9eNvbRru9gBgPgRHa\n8OlpeP758ltZR9hSu9GAxx6LEbApXS+imJjopJH3MlW3myg7qZUOqEKszJaDB8unt5TO/oIYo9UR\nTEzAVVcdPHI86prN8m1GvQ7//J8fOnJcSj8yngxSzFK68kVSr8MnPvFC8RREiJT+V76ORDgXqjz5\nJBw8WDtyPMq7OER5CKzVYqWRlxThQbB0e9kWpRylr1Oo6sVv/mb5rWlvv718/yLCVIsoo9XVyH35\noGbp7C+I0V5Ua1JUxyUDeZ/85GivRdHWaMAtt6wG4JJLyu220mjA/fdXj+9TU/uH+hoxSDFLpJHq\nCJ2Z0tvstEW4YUQYJVYs3/te5/jpp1nSNkxLVXr0KcI1Cp295dvHJcxMoS+ZTl+vw223lX0QjHJP\njVKOSPeR0tds6c9vKz3VYmICrrzyYPEpUfV652G41ENxhOwvqPrfK1aUraBVNkfRIgBVm1V6KlIE\nUXZbidJu9oNBijlEGamO0JkZpYuhmyijxFA9jNZqZetFhABaBFH+/RFGnyKskg/VubjvvqrtvPXW\nMqMMMwMT7U5NKRHqaJR7aulyRLmPNBpw441lp6lFWQsiylSLN73pxeLXaoTslijZA9VWqGUjBNPT\ncOBA57jUdfrhD6+mViubPQDl+531OqxZU363lSgB934wSBFUlM5M6UYhiij//kYDbr65SjfbuLHc\nDSNCAC2CmWu1vPrV5coRZfQJyo/8RNg6buaDzhlnlCtHlAfBKO1n6XKU/vy2J5/spPWXmqZWq8EP\nflD+hESYatFowO23l79Oofw9vdmEE04onz4Q5UGwdJtRtRWd41HOQqvX4eMfL18noHzAvV+KBilS\nSicA3wCeyDm/PaX0w8Ak8OPA48DlOefnWu+9CbgGeBG4Luf8QK/KVfpCgPINU1uEcwHlgyVRblgR\n0s2iBNAimJjojICVTtNds6Y6LhXhn1kvSna0q4Wtyjaghw8X/fgjXJ8jliirw8/87FLtRbMJ+/eX\nr5wRFgaM0t+D8mWp1WD16rJlaCv9IBjhvh5FowG33lq+31n6Wait9HXaL6UzKT4APAK0L78bgS/n\nnH87pfTh1s83ppTOATYB5wATwJ+mlM7OOS97VzDKA1iEh+Io5wJiBEtK37Cgqgsnn1w23WxUGsdj\nEWXngnod3v72g0XTdGs12Lu3fOWIkKb72GNHH5d6+ImwPoeOFmF1+LVrO1vYlbqPPPkkHDoUY9Hh\nO+4om3pVr8Nb3+p1CtW//2MfKx/Ig/LXab0Ol15a9r4+MQErV5bdCQhiZEi2y6H+KRakSCmdBWwE\nPg78SuvlS4GLWse/B3yVKlBxGbAt53wQeDyl9BjwJmD7cpcrUgUs/VAc5VxECZZEOB/1Olx22aHi\nc0ZLB9CiqNVi1ItGA/7oj06kVoMtW8qsw9BolN/THWKsjdHeUQM6I2ElNBrwJ39Sdn0OdVTT9cpn\nG0XIsImQzdFWespHpOu0dNYqlO/7RhFhfaUIOwFBjAzJdjkgRr+vtH6ci5KZFHcCNwAzq/3pOeen\nW8dPA6e3js/k6IDEE1QZFcvOB7COKOfCxqCj0YAHHii/9VCUTkTpG0aUkepdu8rPG525QGTJHS3a\nSj6EzVyHouSaFLUa7NtX7vN1tGq6Xvm1YxoNOHiwU6YS5Vi7thPkLR2kKC3KKDHEyFqN0ucr3b+o\n1ToLZ5b0jW9Uu9/80i+VrROlMyQhxvUB5esm9OdcFAlSpJTeBjyTc344pfSzc70n59xMKXWrkT2r\nrVEewCJcDBHORZRgSQRRbt5RylH6Ghml/aoXMvNBo+RDR5TFIiNoNODAgfIPxRE6VOqYGbgqFVB8\n8snOFoulp3uUrp/NZmfqS0lR5v1HUbp/ESF7IMruNxGeA6JkdUP5utmvc1Eqk+K/By5NKW0EVgP1\nlNJ/Ap5OKf1ozvmplNIZwDOt9+8CXj7jz5/Vem1ep556MmNjJ/Sg6P3x3HNw++3V8bvfDaecUrY8\npb3//dX/R72TOz4On/hEdR5e9arRHn6KcI2sXNlJFT7ttHXFrtOVKztzzF//+jLlWLmyMzL6yleW\nPRelv5Pnn+8c//APr2N8vP9lAPjBD2KU4667qnpx9dVlPj+K732vczw2Vu77yLl8OZ56qnN86qnl\nzgXA5z9f1c/3vKfM5z//fCeT4sQTy52LlSs7I/cl72cRROlftBcRLfV9RLmHQPnngHYfB8peH1Hq\nZrvN6uW5KBKkyDl/BPgIQErpIuBDOed3pZR+G7ga+K3W/7/Y+iP3AltTSp+imuaxHtjR7TP27Hm+\n26/Dm5qCw4eryczPPrsvRMqXYti4sfr/7t1ly1FalGvk539+VSstc3/R7+Sf/bOTWuX4QZFyPPII\nNJtraTbh29/ey2te0/8ytH30o2Otc3GoyLn4/vcB1raO93LSSf0vA8BJJ8GVV65qHZepn40G3HBD\ndZ1eeOG+kR6drXZ9qerFoUN7i7UXVeZA2XKcfDKsXl2V4aSTyp2LRgOuu66qn29+c5n6GaW9aDQ6\n5Xj22b0j3e+M0r/4hV+o2u9S/YuTToKrrip7D4mk9PcBMepmowH79i1PGcbH5x9wLb27R1t76sZv\nAveklN5HawtSgJzzIymle6h2AjkEXJtzLj85qYcipDZJkUW4RhoNuOeeqhm97bZy0z127oSHHqoy\nx3btKrObROnF52YruSbFzBT60utztLfILSVS9lvptP6JCbjyyoOsWFF2y+KZi7mWmppVLcj3QtEF\nbqG6PvftKz8lKoIo8/4jiLAAc5TppKV3v4kiyvcRoe/75JNw+HDvd2cqHqTIOX8N+Frr+PvAW+Z5\n368Dv97HohV3+eXl14Mo3anTS919d3XZXnll+fpRWuk1U3LuNNSPPgrnnVemHBECBGecASe0ZtiV\n3KoswpoUM7cg/cd/pFhWSaMBt99e9lxE6FC1lZ7HC3DeeS8W++y2CO1FJBF2OmnvCFRyPZ9I12oU\nJXQhxOkAACAASURBVOtGrQYvvFAr3v+2vahUC9zGeBgq3fedOfgyc9H05VY8SKH5tUdoS3aoInTq\n1NFowEc/6qKAbaWDaKU7D23tEdr2cQnT0+109rIjkhG+k5k7erzsZeXKEeFcQPkOFcRYFLDRgA9/\nuCrDZZeVa78nJmDTpoPUauXai+peVk24v+SSvUVHJVeurG4kJbNKbr+9fFYJxBgciyBCsLvZjLG7\nRxSl+3vVQr9mGsHR941e7mBmkCKoCKvIRihDW/vhp2REt3QDCaamznb99VX9vPPOMumIM9Om2yNh\npZRO66/X4eSTy3b22+UoPRp4+umd45JbkEY4FxAjWBJhm8ecO7s4lMy8AvjKV9rdvzInpbqXdY5L\n7jxz4onlR6ujiDA4FkGE+jA93QlSlL5GoPw5ufvuaq2pUnWzmg5V5KNfovQAcjvQ3eupiwYpgird\nGEQpQ1vph1Eo3yhAdZNas8a95aFah2Hr1rJbYz34YOf4oYfKpvXfckvZUcl6vRodbh+XVHrkPlJ6\nbOlzEUXV0S77MDrzuigZ1PzKV+DZZ6sT8bWvwUUX9b8Mu2bsz/a975XL6GjvSFRSowE331w+qyTS\nwFRpEQK8UdY2itD3nZl5tXFjuT5O6XVKIM51+uCDJ/S87TRIEVSEBjJCGaB6GP2DPyj7MBqlUajX\n4dJLDxZvJCOI8CA4c8T8R36kXDmmpzvzAkuNuERZVArKj/ysXQtjYwYTI2nXhZLZuhEWrISjM0ra\n2Qz9NnNl/Geemf99vVal1JdN4Y7QfkP5YE1b6fa7rfTUl3q9cw5KtRdR+r5RrpEdO6qFt0quCVf6\nuoBqgO7xx6tO+De+0busQIMUgUUYAYtQhggPo1EWzJn5IHjrrWUfBEuLsA7Dxo2d1dDbW8OWUGXY\nlJ1qUavB3r3lrxGAX/mValvYUplX09Nw6FDnuOR1GmEULIJms/OdlBLhXgZw4YVzH/dThI42tFPq\ny0+hjHA+ogxMRWmzSk99mZiAK64ou3ZMhHoZxc6dsG1bNWB6ww1lBkwhxnXaXiS91wxSzCFKFLf0\n50cpw9q1sLrK8ir2ABZlwZwIqakQ5xopvQ5DowEnnFAVYGqqbNbTbbeV3461PUJbsrMfYRpQFFFG\nwSK0F9PT8MILneMS52JiAt75zrKBVYAnnugc93L7uG5mLihbcnHZCNrTOKF85lXp7IEIC9y2yxGp\n7SwlwgMxxJj6EiXIDOWv036tu2WQYg5Roriq1Gqwdm3ZlrrqXJePDrTnxLWPS4mwDWqE1benp+H5\n5zvHJb+Thx6q5ge+851lvpOZaeMl58/O3A6rVDkidKigfBCxLcI9NcIuDgB33FF49U6Onl7x9NNl\n1tJJqXN89tn9//y2eh3Gxsrv7vHa174YYhpn6eyBCAvctstROkCwcyfcfXcVcP/VXy0XcI+QUR1h\n6svEBFx1VfkgM5S/TvsVsDFIMUuU6GkUEUbAIkRyo2RStJXOHoiwDWqEzsyjj3aOH3us3I1rZhpi\nqeyBmQsBlnwInPnZpcrxD//QOf7Hfyy3oGqEtjPKPbXZhBUrykdtIozGrV/fOX71q8uUodHoHJcM\n8DYanR1XSpVj507Yvr3Kn961q+y2sKWv1fYCt6XV6/DWtx4qGjiKEviPEOxuT33p9W4SC4kQZI5w\nnbbX3YLe9rMMUsxSq8ELLwS4IoOIMAIG5VOb/v/2zjxM0qq6/5/q7lkY2p5hBmQZGBaRC6JsCmJE\nAeOCshg1JqK4RJMYTcQoalBRVFBURI1JzGL8Je4mioJLUHGBqET2RZa5wzAzzSzMwPRM9cwwa3fX\n74/7Fu+pmuq93vecnj6f5+HhTld1vd++dd/z3nvuOedaMNJgwzhZOQa1VoOK8hcj/3ZZFK9sLCx8\nrEQPWDgBRzpsNMcFuO2sYyHdA2w4/utHemtiwWaBDR0dHTbuEzsa9DeE+vvhBz9Ijn+t+l+bNuVt\nGSFYNnV7YeFe0bZddu4RXcqqu+VOiiZqNdi1S99Agv5kxsKCuE7dWaKVXmBlF85C9EBPT74I09wx\nT2dW696rz3pWnopUVHXjsVA/s7re1mDt2rytFUIOaXx+/OPbVXfAZI69zN3UQNt2WojmqF+7bi80\n7ZYFx7+FlKjmSAotLJzEs3AhHH74kGqBRLCRTmolkiJtxuRtjf7o7c3bK1bozTEuuiitA7QKUYOd\n1BcLqc49PfDiF+tG+ZSFOyma2Lw5P8VBO8dcezJjwVsHNtILLCyIIT3AtU8ZSUUadReBdR3ai5+V\nK/MTLTTDdAGWL+8wsdNhAW3btW5dY1vLYWPBdoKNnOZaDWbM0B0YVhz/FjIXrdiqzZthcDBva6V7\nLFuWOkT7OQK69rNSgV279K4v0b5P+vry9oYNOhqsFKK2YC+sPE/7++Gaa6bHKX/upGjCyi6xhclM\nTw9ccskO9cWohfQCCwtiSBOY+gNcqyo76C8C62gvfiw8OAHuvx9uvjnlNC9erLcotoCFgqpW0j0s\n2E6wYS8sLH4s9AM0RlJohZHLivAHHaSjAWzM+SxEtkCj7dSad1o5JcoCixbl7YMP1tHQ0aHvrIHk\nuHv2swdVo42sPE9TwXb9NVE9LctrUpRITw8ce+wgHR26xtHKZOaWW9KJAdqhTWUUaBkN7dxugLlz\n87ZWX1hYBFpBOz+yjiywpbXosLIwr1T0vxe50JDfTdlYsZ0WsLD4seLslteW922Z3HZb3r7zTjj9\ndB0dPT3wsY/pRgZaKPYLeU02zfmnTBt85BG9BamsB6HlODrttNbtMunuho4O/TS5/n6IMe0KaR33\nbumoYG1uvRXqaVlF2m93UjSxcmW+I6kZdmdhMmPhxABIxqm+A6bpvdQ+8gdsHIFkxYEG+ilRVnbA\nQsiP0dM6zs/Swvyoo4ZUFx31Ao2g2xdWbKd2fSWwUylfO/oLbJzEY+UegXwz5rWv1avboh3NAek+\n3blT7/rQ+PdrOdDAhuO/VoPOTp1r11mzBoaGKk+0NaPxtMdmTw+cd94u9ehy0J+Hd5XkPXAnRRNW\nFh0Ar361h7KDDR0W0m/qfPazupUzLTjQIH0nH/mI7nfyyCN5W7tY5B//8cATbQ22bcvbmosOC47m\nfffN27KIZtlYsJ2g70yElFJQL5ComV6gPbmEtNioo7VbbSGEHBo3Y977Xp3NmJ4euPxy/TpPmzfn\nC0Etp6YFB1qzDi1nyerVeb0ULQeBvKa2A61+VLAW/f1w3XX6tSAsnGB2wglQT/c48cTiruNOCsO8\n5z26FXUt7NrXr/2613n0gCUs7AZWKrrHcoGdI0j7++H665M537RJ5+GZHlqJ448v//p1LOTQWtkN\nXLgQjjhC99QAKw7eWi3/b7pj4dSAAw7I25qOPCsRNhbGpYVjpK2kqC1cmM/7tJyaFgowWzmFJx1q\nkLe1Cuhv3Vr+dZuxcIJZcnQXH2HjToomrHgNrVTUveoq5fMuMz7zGf3ogZe8RHenuo6F46AsOG36\n+2HnTt3iQXPm5G3NxaiF70O7DkQdCzm0cjKn6UizcGqAhbEJaSKlvSsJNlJf1q/P21qnBtS/C20s\n7Nz398PFF6fn+jnn6DnyenrycanZFwPZHoh2ilr9OaKFLC6rdZT1vfc2tqd7UW7tOWcdzajEMnEn\nRRMLF8L55+9SP6/aSpiuFR3f+Y5uuHB/P/zkJ/phXitXwje+oe+8soCF1CwrD/CeHjjyyKEn2hrc\ndVfevvtuPftpIYdW7rZopr5YuEd6euBDH9I/JcrKBoSF1Be5O1qt6mh4+OG8rRXNYYU1a/KjxTUd\naAsXwmteozv/lSmUmoUzk1NT9zux4PiXUU777aenA/Qd3lbWQ6DfF2XhTooWnHzyoPoAWLgQDjtM\nN0zXChbChSsVG0bBkpHUxkJFdCsPcAt1GGRNCs2QSAuLUZn6o5kGZAULaRbd3TZ2iT/6Uf3UlyOP\nzNtHHKGjQXs8WMKCzbKChXmWFSwU75S2QrbLpqcHZs7UrcNgJQUe9CPyyjrG2p0UTfT3wwc+MBuA\nc8/dorpjvny5bpgu6N8I9WtrT2jqu4H1thbd3TBrlq6htoKFiugyBFMrHBPs7D5ZoLsbZs7UTfeQ\nucSPPqqjARqP89PMab7kEv1Q9jVr8ueI1s5opZLnVWty6ql5+znP0dEgnXcyba5s0uJH1150d+en\nOGinGX/727pFRLXnenXk365Vk8JC8U4r1GowNKQ/OK680oABB7797S4qFb2IvLLuU3dSNLFmTX40\nlmbYnZViThZCU3t64KyzbNSD0Pbya1/fEj09cOyxg6ph5BYWgWBjXFhZdFQq+hFHS5bk7aVL9XRY\nyGnevBkef9xGHq82aWJXUb9fLZzusddeeVsz2qhWg5kzdb8QC6c4gBcdljzwQN5eskQnHUnbTlhi\n82bYtUv/OfLe9+rXhEuO/7SZ/rKX6WymlzU23UnRhJWwu4MOSjvm9bYGFtIs6jp++lPdkwv6++Gy\ny2z0hXaFYytYSHGQVfJljnXZaE8srWiApGPXLt2F4KJFeVvzuMvVq/O2lhOtpyd3Wmk+Uy2kh9XH\npPa9cvXVefuaa3QWYFaOLK5UYPZs3S9k7ty8rXmPWKiBYKXocF9f3taKhtO2E5awcPKMlZpwmzfn\n98aevg5wJ0UT9XB60H1Y9PTACSfo7hJb8eKmEFldMRZSTsBGITwrWIg2kjuAcmewbKSN0DzTvc6q\nVToawMYpDtJJcdhh5V+/jkwt0FoI1iOeOjp0J1ObNuVtLXuRniH6DxJ5ssbOnToaYszbmtFGFk7u\nsjLv1I5AAzvzTnmMttaR2jKNU9PJbGFsWsDC/QHpO9l7b90UtbIintxJ0USlAt3d+pOIlSvhllt0\nd4ktPLzBRi5aTw889alD6hXqFy6EWbNSX2ju0FrAwq6PBQ2QxkJHR7JfWuNi9uy8remwsTDJXbGi\nsa11csFpp7Vul4mFZxnYKEJXqaTib9o8+9nw1a+m9imn6GiwMuG3cHJXqjGlP+9cuBBOPXVQtWC7\nlWeqdLRrpURZeJbValCp2Bib9XpsmjVCZqRACvVN7Msv162RJ1MGi3SguZOiiZ4e+PCH9Y9Ls/AA\nt/DwBhuGeuVK+N3v9CfaPT3wqU/pF/CsTyQ0x2lZ1YVHQuatynbZ1Gq6dSDAjpNCevW1JhIylF22\ny0YeNakVFvrgg3l76dLpXdS1pwde+lJ9x788fUdrfJ5wQt7W2qkGG5GaPT1wySX6887+fli8OD3U\nN23S0SJTXzRrUixenLcfeEDH0SznFDHC6aeXr6FSgV27yr9uMz098IlPbFe9RzZvhoGBvK2dZqG5\nNpLpzUWmOruTYhi0Q/sXLoTzz9c9r9qCcwDSd1E/r1oLS2kW55+vV8S0zkUX6RcPkveFLBBYJlbu\nEQs6ZGFGzeNYLVTrP/TQvC1TP8rGgrNbfgeaBRKl3dZKfbFQXwlg2bK8LaN+ymT58rytXc9n1y79\nneJ6fSXN53ulAlu26NbzkTZCc7fagg2X0Rxa98iqVfn8W7OoK8B3vjODSgUuuEDnHrGS+iJPzDr7\nbJ0aeWWlOruToglZLFLry69z8smDqg+LerqHtnd/8+b8xBUt76WFomtWWLkSvvlN/eJBFsJCLWiA\nNNEeUPZdWTlPPYWn6nptrCzALIQsSweiljMRbDjyLOzaA2zcmLdlgcAykTVCpJ6y2bwZdu7UPTVg\n5Ur41rfSM/V979N7pq5alT9HtBakVo7TtvA8qy+Im9tlYiFNDuD++/No5sWLdepz1GrQ0aHv0LRw\nYpbciCpyU8rAPostKpX05dcHgBb9/fDhD8/mQx+a3fAwL1vDD34wg2uvnaGmAdINWD9WcLo7CAC+\n8Y0uvvlNPf+ihd1ZsKFj/vy8LcNUy6buyNu+XS/S54478vbdd+togPT379iR/tPqC2mnNFNfmkOW\nNbBQlR3gqKPyttaio1aDWq1GTTlUs+70B73CmTKvXLO+Uk9PepZ0durNLywUgQYbz1R5kobWqRpg\nw24de2zePuYYHQ1WnMwWxmalkv+nSU9PSoXq7tazWTJytsjjzT2Soon+fv1d+/q1tY+YsaABknc/\nTe70vPs9PTBjhm4IOaTxedFFKfn/3HN1zkeupyLV21qkIka638lTnpK3NaMHenqgq0u3L7r8afIE\n++yTtzVTXyyELFvBQtRTpaK3IyqRGrQKecpdWe26LfXTTrTmORbq6ICNVIvf/z5v33svvOxlOjoe\neihvL1ums3MvN0G0niMWnDVgY2xaiNKEZKMuu0y/PkedIiNsDPimbGHBWwf1s+VrzJlTm/bRA7LI\nl1a4WXKSVABdA3XbbbnD5s479XSccsogz3724OhvLJBU0KnCrl36Dw1t+vthYKDCwEBFbSIhFz6a\ntQcsYCGXGGyELFtJlbNQV6inBy69dAeXXqpXjwJsOGxkBIemk0Ief6p5FKoFLNwjBx+ctzV37u+5\nJ2/fe6+OBll0WB7ZWyYWCpQDrF2bt2VKUJlUKnnEqjbavpLHHsvbRUY8+d5XE93deZV67SNmzjtP\ntx6EFQ/qUUelXdpKpTFkt0zWrNHP1YTG/GFpJMqkvx8+9KF0k5x9tk40BzSGry9ZolN9e+XKvC0X\npmVjwbm6YUPe1hqb0Hhvatnw++/P21qTS7Bjwy1gxVny6lfrFz6W94jWCQoyxUFz0i91aBVUdXLk\nc/zkk/V0yCMWZbtMLDgTZSqWptNI+zADsFGzBWzUTpS2Um4ktxsDU1tbVCrQ3V2ju1v3jujvh+99\nbwZXX61bD8ICPT1w5ZXbufLK7WpGwcLCB+Dww/P2YYfpaKinAW3ZorvwkTvUWhXqpZNCc8e8+ahJ\nDWTtBc3jUG+9NW9rRRvJSa2m8+rmm/O27JcySTWFalQqulGBq1fnba2dOEgnI73nPbo5HzKH+MlP\n1tEgo63k8cXTESvORHlfrFuno0HumGtpgMZjN7XqtlSrrdtlYiUVyQJyPGqOzVSAOf2nhbTfRc73\n3EnRRP1Ei5e8RPdkj9Wr80Go5cW14LmUaOrp7obOzhqdnboT7RDytlZUSU8P7L13jb331u2LsqoL\nj4S0EZr2wkIFbitRJfLBrbUzKlMrZN2SspF9oRVS39+fUuVqNb1UJGgsbKsVPVA/xeGb35zR4DSZ\njsi6LTL3vmwsOGxkmok8HrZs5K55kcXwRkLu1mtpADjiiLyttSG0YEHenjdPR4OFiBLQT28AO2Oz\nXhtDsz6G3JQqMr3X0z2a6O+H665L3fLRj+rljVpYdFjJRevvh4svTjtP556r4zzavDk/K1qziGjz\njrlWEdHLL9/xRFsLueDRWoxaqXxtwaEoQ7Y1w7ePOy5vH3+8joZB3XItTyAXf1oLQZlXvXSpXrHd\no4+GI44YeqKtwZYt+b2q6bCREUayUGGZSEem5uLHgg2Xzn7Nej5HHw0LFtSoVPTuEem8W7dOT4dc\nhGqNi6c+NW/LDarpiIU5joX0G6gXYNbtkLJSz91J0UQ9jEYbCzekfHBq7TxBmsDUz5bXygOzEo5p\nZcIP+p5tOXHQ2gGTu9Oaxd+0vwto/PstFJbSxMqRghYWghZ2ZyE5eNetS8GjmzbpPEcWLoSZM9PD\nXfPYTTnZlmHtZWLlqMnmNCCNZ6oFhzukSJ++vvQwWb1apy8sRMKBjWeqhXopVmr5yLGo5TSyUPsL\n0rPrxS8eeKKtQVlrVCNdbodaLS2I64tiLSwUtrJCymlO/033nDgLOy79/fDBD87mAx+YrVovRe4y\naKW+yF1IWSyxbCw4NaVnff16PR0WTkaS6Uf77qujARpDMrXy/pt3RrXYvDkV+Nq6Vfd0j+OOG+KE\nE4ZUo9BkRJ6WDZf2QhbdLRtpq7ScJdKpW2QRutGQNSm06rZYiISDRrst0y7K5Ne/zts33aSj4frr\n8/Yvf6mjAWxEMVipz9HfD9de28W113bt8TULPZKiidWrbVRvPeigdKJFvT2dWbgQ/vRPd1Gp6EUO\nWPEmW1iMbt6ce/U1U1/kqQlap3vIB4RWYSuwsetjZWHe0wP7719TPRlJOgSme1HALkOzDG37uXIl\n3HZbJ6C3Uw2N96rWAkw6mbVy/qGxZoysQ1Am8jvQqq8ENnburSCdV9KhViYybVCreKcV+20hOrFe\nBBp01wHJ4a6bfl5WFLFHUjRhpXprrQadnek/TQ1WqEdSaNHTk4z1jBm6xknusmhNIqykvlhYmFvB\nQl61hZ0OSBEty5d3sGxZB4sX62iQkT2yiGbZWKiUL500mvn2PT0wa1b6T8uGN6fraSFt54wZOhpk\nip5mPR85JrXGhVwQax7fbKEw4D/8Q97+53/W0QCNJxbIiLQykfM9LSfFmWfm7Re8QEcDNKYraj3L\nrBSBtkBZ94c7KZqwsvDZvDk/3UPrZrCSf7VyJXz72zP41rf0KqL396cIm127dBfmckKlNeG3UlDV\nQh6vfFhq5lVbQE60NdM9LDia5XW1duGg0UEwS+nUSwvh9JCc7jNm6C3KoXHHS9NhI9M9tO7Vu+/O\n21rFO6HxGab1bLdS20g6KbQieOVx4suX62gA+O1v8/Ytt+hokGlQWs4rK+keFo57l45lTSdzfdO0\nq0vPseo1KZSQIYiaO2AWsJJ/Va+IXqu5w0Z+J1q1SqwUVF2yJG/L1I8ysXBMGTRW65eT/zKRRzxO\n99oxd9yRt2+/XU+HPLZO6wg7uWOuVeAW0gbEli26jtWjjkrPko4OvTo6AC98Yet2mVgpnClT9rTG\nxqGH5u1Fi3Q0gI0oSfkcke2ykc5lrfH5tKflba1TTizMs8DGPWJlE7tWSxumWkWPoXHuL6Mq2o2R\npZcdmo94nM5YCI+FlLdb16Hl3e/utpHuYSHkzYrzSubxah2veMgheVvTSSF3XLR27uVk5qGHdDQA\n/N//5e2bb9bRYClVThsLjlWAW2/N29KpVya1GnR01Ojo0B0g0pGpVfBXzq80i7/JHWqtxaic5GtG\n2EgbrrVTLGtyaD3XoXGTUtYtKRP5XNdaj8h5jaYDTaYUaN0jFiKZYfd6bBqUdcy6OymakDlgmjsu\n8qGtZZzSSSf6R7Km0KYaXV01tUJ4mzfbSPeQOwuaRtIC8qFVpCd3JOSESmunGhp3XI45RkeDvDe1\nvg+wsfiR+cNaucRWsOKwsRA6nZ4jFQYGdHOa68XBQW98SvutlfMPjY4zrWeqlagSmWqilUIpC1Br\nzsGbj6bVQG6abtyoo+GZz8zbJ52kowFsRDNbSe+1UOBWboYVuTFm4Gu3hQzB1AzHtBA6fdtteVtr\n5wngF7+Axx+v8PjjFW68UU+HBeTiT2tXUkZzaD28oTEvcdUqHQ1ysq+JjFyQOb1lIicRM2fqaIBG\np6rWAkz+/Zp9ISe2WqfPWCjeCY07gppRTxaw0BeyNohmnRALBX/l80vrWQY2TjqRcwo51yibgw/O\n21qFXeUcp7dXR4Occ2sdgwo2apBZiFgFGxEdZTmN3EnRhHxAaBpIWZVeK+xO82QRiZUjkCxgoSig\n3DHXDN+Wk2s5oSiTG27I25oONOmYWLZMR4O0nVqFraCx7oHWUagWdjrARg6tBQ1gI+2kpyevSaGZ\nKiftlmyXiRUnhVz8adktGUav9SyDxnRardRaK0dZSxuhVRtD1hzQcrhbqM0BNooOy0h7zQK3Fubg\nMt26yGOs3UnRhIWQImg8qkyrWI2VPMnTT095vJ2dNU4/XUdDfXLZ2ak7ubRwtKGFnSeAww/P21q7\nPjJsXO4Yl418YGqlZ8n84SIfWqMhH+BaKThy10eG7JaNhXFhxWFjgVWrkv0cGtLdBJELc60dWitI\nZ79WZOADD+RtzVMDLGzSSTulWRhQniyi5fiX8xpZ1L9MpANNsyZFWTUQRkJGUmhFJoKNunDSYeXp\nHiVi4cxssBGma2UH7OabYWiowuBgpSEFpUzqk8vBQd3JZXd3+l4qFb3xacWRJ1MctCYRVh5acpIr\no7DKRKY1aO6M/vCHeftHP9LRYMWRZ+FetRIiKx1HWrnu0kmjmW8vHYpau8RW0oAs1EyRO7SaTk15\nFOy99+pokH0h22VjwYbLI6S1nqnbt7dul41MNdFKO5Ebt/K7KRsLp/CUVS/FwBTGFhbOzIbGSYTW\nbqAFIw02ijlZmVxu3qx/HKsVR56FycysWXlbMy1J5szKcNkysTDZh8bJg9Z3Ind9NOuWyMWfloPA\nQlFXsBHRIe9TrTx3aKw9oFV7y8opDrJop9bC47TT8vbzn6+jAeCAA/K21nPEggaA9evztlahXRnl\npFWrRM6/NZ0UFpwlJ5yQt48/XkcDNEZ8aTl45aZUkXZTxUkRQjgkhPCrEMJ9IYR7QwgXZj+fH0K4\nPoSwJITwsxDCPPE77w8hPBhCWBxCeHFR2ix8+QDnnJO3zz5bR4OFXThIFYUrlRqVSo0TT9TRYGVy\nKQuYymPkysSKI09602+5RUeDnOBq1ueQUU9ahRplzqxmmK506mqlnVhJ95A6tCJ9LITpgo3IQAtH\nPIKN0yRkzSvNyCsLi59f/Spv/+//6mgAG/eqhQKJ0DgWtOoPSEeJ1npEOmiknrKxYL+tpMDLTTmt\ne0TO8Yq0m1rL0F3Au2KMxwKnAn8dQjgGuBi4PsZ4FPCL7N+EEJ4G/CnwNOAs4IshhEK0WyjOArBw\nITzrWYOcfPIgCxfqaAgBoAbUVE866emBE08c4qSThtSOIO3pgc7OVBdDM3rAyvi0gIWCqocemrcP\nOURPh5w8aC065ENL00khjx3VchDIh7bmEaSybo3cPS8TuRuodfIM2JhgWogKhMboHq1aJdJOaW4I\nyQKRWhsQFupiQOPGh9YmiJX0MOnstzDX0MKCQ9MKsk6J5rNs//3ztiwUXiYyiniPi6SIMa6NMd6V\ntbcADwALgfOAr2Rv+wrwR1n75cC3Yoy7YowrgKXAKUVok5NazUlEfz/cc08n99zT2TDpLlsD8ls4\niQAAIABJREFUVADdM91XroQ77ujk9ts7G86uLpNaDQYHKwwN6bpzLRx5acGjDY07cVrRAzJ8XYa1\nl42Fh5aMsNGyWWAj7URGoWmekmShLywU44PGI7XvuENHgwxf17pPwUbNK7kYLTKneTTkPE9rx1xu\nfGhG5MnIs3320dNhATnP0Yr0kc9UrTRjC6nnVrASXW4hsrusuYV6l4cQDgNOBG4G9o8x1n3K64D6\n1PsgQGZkrSI5NdqOXARrHqO3eXPagduxQy+kXj68NZ0UMixWK0T29tvT/2u1xpSLspFpDTffrKNB\nLkA163PI3WotHb/8Zd7WOsoPGndDtXbu5W6T5s6ThQKecuGnuQCT40Jrx1wuujSLjVk4UtvC0XHQ\n6CCQ7TKRqQWa0Uby2lrpHtJmaTncodHprlU/xsomiIy8ku0ykTZLa4H8zGe2bk9HLDg0rVCWo1vV\nSRFC6AauBt4ZY2xYBscYU57B8BTix7FyDq6F2gPyGFSt0xPARsEzC0WUoHESpbXokGFumiFv8qGt\nNbGTkVeaoany/tS6V+UpAVonBoCNXHfppNHcfZEhmbJdJhby3IGGtMmDD9bRYCGyBRp3ybV2R6Vz\nQDNCsKyw5ZGQmy8ypLxsLIxPOdfScqA1X1vr2W4hbdDKmsgCVhxoFk73kPdEkbVK1Pa7QggzSA6K\nr8UYr8l+vC6EcECMcW0I4UCgngG1GpAZ3wdnPxuWffaZQ1fX+LdOZAjmk5/8JLXqwnKhsXy5jg45\nwe/q0usLufs0d66ODpnbfeSRen2x7755e/58HR2NoWZ6fRGjbOvpqFOp6GlozDHX0dFYaEyvL6ST\nQus72XffPLVB8znSWIROR8fKlXl79Wq9vpC7PdWqjg5ZOFPzmSon252d09teyHoQ69fr6JAFmGfO\n1OuLxmg4HR1yIbx1q15fNC7CdHTI5/rOnToa7r8/by9erPd9yE25gQEdHXJTbuVKvb6QxXX7+nR0\nyLpjRX4fKk6KEEIF+DJwf4zx8+KlHwBvBD6V/f8a8fNvhhA+S0rzeCowYj3/jRsndiZh2lVIcZj7\n7LNFbdc87fokHfvvr6Mj7TB0Z229vkjpBUlHf7+OjjTB1dUAdYdNd9bW0ZGiB/T7Ij20ko5t23R0\nSA07duj1xdFHw113JR3HHKOjI+0AJg29vXp9kXaJk465c3V0pEVg0tDZqdcXqR5E0rFypY4OC/Yb\n6hEd3VlbR0cq2Jk07LXX9H6m7r03bNjQnbX1+kLOc7q6dHScdBJcd13ScOKJen2RHKvdWVtHR4pm\n0Z93pujMpGPGDD0ddQ2Viv4cZ/t2vX6Q885qVUdHKmqbNKxapdcXcq61bJmOjpSumDTMmTM5Dfvt\nN/xpBFqBqM8FLgDODCHcmf13FvBJ4EUhhCXAC7J/E2O8H/hv4H7gOuDtWTpI22ncnS3iCmNj0aK8\nfdhhOhrkoNNMcbBwbJuVMC8Zjip3X8pEhnZppjgce2ze1ipaaSE8FmwUEZVhoZq1SmQtIa1CjdJ+\na53OBI2h/FopODJ8XTNt0MK9unhx3tY8gtQCFk5bgcade60USnmih+YJCjLqSRa8LRM5FjRPUhsa\n0rt2HQvPVFmH4oQTdDSADft99NGt22UjbZZWCo5MdS5ybKpEUsQYf8PwDpIXDvM7nwA+UZioDAtF\nlMCP/ZHIFIfpXnFaLrq0FmBycqnlKAEbC3NpnDWLy953X96+914dDYsW5ZNtzeNYLeQSy6JSWseg\ngo0q4PLEAFkpvmwsVGa3cpShrBOiVQ/CSmFuea9q2QsZOq1ZRFSGbGvdqxYWo9CcaqGnQxsLtXyg\n8bh3LR3S6a+5FpGbIFp9UdZx2gYe27aQEzl5fnbZ/P73eVtr0WHBWwfwghe0bk9H5OJPc3xaQO7K\nau1KysmLnGiWjXQWaRV/a8wZ1dEANhajMpqjt1dPh4VCu4cfnref8hQdDdBoI7QK/spFoDw2uGws\n2C0rR5DKyECt41jls0yzGLXcENMqWim/A81ITQvHSMvNF63nujxRrn7KnQYWoo1klI/mBp10/Gsd\nZS1rFhZZoNzAdM4WchBqHTsENtIL5IRK3hRlIwtnaoX/HXBA3tacXMrdDa2iPVbuEQupL43FZXU0\nQOMkSktHY/FOHQ3QOD41w8gtICf5WosOGUKueay3LJAoJ7xlYuEUHmicX2jNNSwcmwyNi2Kte0Qe\n663lKIFGh5VWJLF8jmg6uy2kO8s5joXTmTSf6/LEwzvu0NEgN4wfeEBHQ/O1tXTI8VhkJLM7KZqQ\nYStbJ1Z7sy1YyIeTRkErmgPghhvy9m9+o6NBhrxpRjDcfHPrdplYCccsy5M7EnISpXnUopxEae0y\nyGgrzUWH/PuLPBprJFJRqd3bZSP7Yu1aHQ1WHLwWUl8sOtC0nBQWNmLARhi53LXXdHZbOC7YipNC\nzsG15uNyXqOV0io3QLQcJWAjWlSmWGs5usFGlHtZ96Y7KZqQE0rNXeJbb83bt92mo0EW+ZLHEJXN\n736Xt2+6SUeDBUcJNDqLtL4TK5NLCwtzuRjX3GWQztUi8wNHQi6CteqlQGP0gNa4sHK2fOMxYToa\nZOqi5nNEFg7VKiJq4T6FRkez1sLUSs6/fJ5pLQSlzZIRP2Ujw/m1dqsbjwrW0QCN41MrJUqOC61o\nDit1t2QUtYyuLhN5Xc3NBwuO1dWr83aREZLupGjCgicZGtMrtCZUsv6BZsEcaRi0jJP0mmpVvQYb\n+fbSo625GxhC3j7qKB0N0qOv5d2Hxt1qrTQgOcHXmuyDjVMDrORVy1NvtKqRy1B2rXB6aFz8aTmv\n5MRW03ZaSA+zcoqDXIRpLYrlvEYW5ysbK5t0FpBrASvrAg0sFGmExvS4hx7S0SAjMzXr6FiYg5cV\nXWRgyWMLC5WeofFhoVVFVi52tIqzABxxROt2mUivoeZOh4XvRBpqzaNp5c69lg5pqDXTYORCUCtN\nzUJoKtjJdbeAnMxpFeSTdXQ0nyMWTlCQzw5N2ynvEa1IHwvFO6HRSaOVNmhlQWwhldNKuoc8VU62\npxuy8LPmBp20U1pzHHlvatosC87usiKq3UnRhIVifNB4Q2qdjyw96Zq7xFKHlndffh+aIW8WJhEW\nivEBLFmSt2VqUpnIyb5mDRvpsNHKlZR/v2You3QcaU345W6o5s6oLFqpdcqIlfQwuVuvtXO/fHne\n1iycaQELRRqhMWpVa0PISuqLnOdpOZpltKim7bBQF84CMnVTbtaVjYVnqqyppOlwt7AOkGuxItfK\n7qRowsrJBdIxobX4kQs/rSMewcYkV4bHau4SW6jDIKONNHNGZREnzYJOFpD3iNYDzMKDExodihYq\n1GtOdi1UqJdOTc3oxAcfzNta4cLHHZe3n/50HQ1OI/IZprUhJOcUmptjFhbmFuroQOOCXDOCQBsL\nRRrBRrSRjFjVshXQGBWpFSFZ1uaxOymauP76vC2LJZZNf3/e1tqttlD/ABon11qT3Pvuy9uaxd+k\ng0BrXMidJ81dYhnRohndUkfzfrFw0on8+zX7wsKupJzAaE5mpHNVy9kr0z206iuBjaMmp3NuezPS\nRshxWjYyIi9GHQ1yI0rTXliIpJBYcJqAHQe8BnItIttlYyGKwUrkrHx+aT3LpH0ocs5pZBlqBzkI\nNR8WcvEnJ3ll8tSn5u0jj9TRAI2TS61iNfLhrXlEmPz7LfSF5q6PvFe1dszlwk8z4kcuxrV2n+R9\nobnokBNKrUmulYmdLH582GE6GqSTWTM9zMJC4yc/yds/+5meDgtYSMuCxjohWsf0yjmO3K0tG3nU\numaRRAvIvH/Nwq7aWIhggMY5ntYcR859NSPtLUQzy43BIh027qRoQu70aDkHwEbev9xV0Ez3kHmi\nWjmj0mGlmT9rYWEux6NmhWMLWDjKD2yMC+mksRKFpYUcF5ohyxaiB6wUo5aLYq3vRNqI6V7U1QoW\niohaeY5YKZJoASvHBTsJWcNHpu6ViYVjaaEx1VsWsi8TmQ4la1+1m2k+ldwdC2E00Pjg1DKQ0iGg\n6Um2sCi2MMEFOPzw1u0ykTssBx2kowEavxMrYaFaWNgllt50zVBIJ8fCPSJ3Z2VkR9nIelNaZ9zL\njQ/NTRAnx8KOuQUNYKPmlRVkCLtmZKA2Fpx4YONZJp8hmkdIWyhmWlbkrDspmpAPC62JDNhYdMlj\nl2Q+WNnIImdaFdEtLALBRuEeC2MT7BxVZgG5K6sVSWFBg9OIhbotFop3QuOOk1ZEhwwXnu7Ffq0g\nnQI9PToaLBT7hcaIWVmrYzpipfixNjJdUTMVSd4X0nFSJn68eY6cTxS5FnEnRRNyMa55NrKFM91l\nEdGf/1xHA8B+++VtWbSxTORERtN5ZSGMXhYOfeABPR1W6kFYQ6svrBTOdGwhIwE16zzJ1BetPN7p\nvNixinQQaEWAyTRjzfmFXAhq7ppbQN6rmqH92ljZuJVzcK0oBpmKpTkmTjwxbx9/vI4GuS4t0mnk\nU8km5KJLK+8JbBxBaiX0T4bdae0+yeJamn0hF6BaBTytHCkoJ1SeXpCjtRCSO09+ioE9tJxXMhRU\n03lloaCqhWNQnUYs1PORCx5NR5a029M9OtFJyDm3jAQrGwv3yJ135u277tLRAI1OTc0T9srAnRRN\nyImMpqdMLkC1JnYyf1jmFZeN9JpqGUm5CNY87lLq0Aq9s5L64tjFd4xtYOEEBfkc1Vz4WNgxt7IT\n5+RYCOG2cIIZ+LPd2R2ZJqe5QWelNoYF5KapbJdJWbUC3UnRRFnHqoyGhUm+jObQNApyt17rOD/5\n8NbcDZSTGS1niSzaI9uODTzVwqljIdrISgi5hRRKeWKCVsEzpxE5z9FKR7KSKic3gTR3zR07WImE\nk+n3Wmnf8royDb1sHnmkdbtMyopA8+lsE3IRqBnKLh+WWjvmMjRVHkdaNjKnWWthLq+r5SgBG0cK\nWjnpxGmNBQen49SxUlBVOmm0nCUWnmVOIxaO/7Qyv7AS9eTYQdoszY3bFSvy9sMP62iQKfBaEQxg\n4zuR0f4yJb/duJOiCVk484AD9HRI76VW7QELaRbQWCdk8WIdDfI4VtkumzlzWrfL5DnPydunnqqj\nwXGc0ZGnFezpuaujYWFHcNGivH3ooToanEasHCtYRzPlwp0UTjMW0yy0nIkW5t/QGD2hFc1c1klV\n7qRoQkZPaOYGWphQ7bVX3tY8u1tGdGgVM5VGUXOnuqxjf0ZCHlMmvduO49hC7rjI9nTEQlFAGQmn\nuWPu5FhJ5bSAnP9qHhfs2GS6n6JmpTi4TBtcuVJHg7SVcr3abpT26O1iJZTdQm6g9JpqTnDnzMkn\ndFp9YSG3GxqNgYUHhhd/cxy7zJ6d226tk5Fmzcp346Z7nrvcfdP6PpxGrBTFtoYX0SyPX//6Bm68\n8ZctXvmIaA9w+eUf2+0dp5/+Ap73vDMKUtbIdB8TMtJKbuKWjYUaNnvtlTvdi3yuT3O/8e7Ixbhm\naJNcgGoNQumk0YwekDnNWo4jC0fCgg1PrswH9OJvjmMX6dQsMm90JKw8R8ra+RkJmbo53R02jj0s\nzDudnLlz14u2UhEy5wlkJJxWrUCw4aSQ6+Mia015JEUTVgqjWHhAWCl4Jr23Wk4KObnUmuBCY+SC\nzBUsE7nbJI224zi2kBMprfRF6UzVOlUDbBzHKucU08XBO1V2ia2gGSFpoYjodOR5zzuj5Ti/5BJ4\n8pPTl/Lgg08Gdr9HnPKQKXpaheuhcR2ktSYq6zhtd1I0YeHLh0ZnidYpIxYqyIKNYk5WalJYQ9Nh\n4ziOM5WwcsS5DfxB2orpHlLvNPKqV12UtdxBoY3crNXaJITGKAatiH/5LCsyqsSdFE3IB4TmYlQ6\nCLTCiuQNqVmTwsLxXNIQaBWstIKcXE/3vnAcxxkrM2fmba1Tu8pmLLvEjz7ahS/CphceYTM2Fi7U\nVuDUkZukmlGB04lp8pgcO3LiMF0mEY7jOFONiU5yp9MEt6srn1hp1aRwcmThzO5uPR1WOP103yV2\nmvEIG8cmnZ15VLXm+nD+/Pzo0X320dFQqeSb+n66R4mUFcLiOFMVC+k3GrReFH9EtH3XxwJPetJG\nNm/uydrFh15ZHhfy/vSTePSRRYd7e/V0WOH447UVOFp4hI0z1bBwjDXA2rV5+9FHdTSUVb/GnRSO\n44yLvfeG9VnRabkzOD3xXR8txjLJfeihBehMcn1cOLvjTiPHGZ3TTvMIG8cZDgtFoMvCnRSO44wL\nC0fCatBqUey7PjZ5xSvKm+T6uHDGigyRtXCCl+NY5KSTtBU4jl2mUxqnOykcxxkXXjizkWc8w3d9\nrHHIIdoK4LjjfFw4jcgdsDIiKbxui+M4zp7FdCrg6U4Kx3HGhQwv29NDzcbCmWdqK3AscsYZ2goc\npzVz5mxi69aerO2eZsdxnKnInn5ksTspHMcZFzJ6wiMpymX4ndEPi3bxO6OWi0U6jpMYS92WFSvm\n4dE+juM4jjU8K9JxnAkz5PUBTXDhhR8DakAta2vgg8FxpgrnnXcR55130ehvdBzHcRwFPJLCcZwJ\n48XfymW4nVGAL3whLTguucSLRTqOMzKHHaatwHEcx3GGx50UjuNMmDIiKSZa/A2mV3rBhRdqK4Dn\nPteLRTqO4ziO4ziTw50UjuNMSWbP3sL27T1Ze+so73bK4JnP1FbgOI7jOGPDT8DJ8VpTjjXcSeE4\njmnGUvzt4Yd78N17x3Ecx3Emyz77rGXjxp6s/aiyGj26urYzMNCTtffw8y4dc7iTwnGcKcs553h6\ngeM4juM442csmyAxHsR0mGOMVmtqzZo5FN0Pnt7rSNxJ4TjOlOWII7QVOI7jOI6zp/HqV7d3E+Rr\nX/t/9PauGNfv9PYuB+Dyyz88yjsbOfTQw3j96988rt8ZjrPOsrAZ5KeHTUfcSeE4juM4juNMmDIX\nYDD+RZjXHnDGy4EHtvfzentXsHzpcg7cZ9GYf2dO51wAtvcNjvl3Htn48Li1jcRRR7X140ZkLJEt\nfnrY9MGdFI5jEA95c5yJLXzAxu5TmfgCzNGmt3cFDzy0lM75+4/5d4ZmzAZgycbN47rW4IZ143r/\nKCra+FlOM1M1eqAoDtxnEW/9w/cXeo1//cUVhX6+Fs95joWIjulH6/mFvDeLW4u4k8JxphQ+oSoS\n67uB04208HmAyoJZ4/q92owBABZXl439d/p2DPva1B0Xbi+c8uicvz/d51xQ+HW2/Ojr4/4dCzu0\nVjYfynRq9vau4KGHlrPvgrFHD8yckaIH+qtjjx5Y39fe6AHHHiefrK3AqXPhhR/jC1+46ol2UbiT\nwnGasHAMk4UJ1XSkt3cFDy69j559xv47lc70/3V9943rWps2juvt05bKglnMPO+Qwq+z8wcrh30t\nOUsWU1nQPebPq81I9+ni6qpx6aj1bRnX+8GGvZiOCzALeLTR5Dn1VO0d2gHR1nQsFnPtfRcs4o9e\nfkkhn13nmmsvL/TzHWe6Mtz84gtfSHbzkkvcSeE4yljakdSeUO3Z9OwDp764eNP4u58NtPy5lUXH\n1I0eKIbKgm5mnXtc4dfZ8cN72vp5s2Zp2wsrtrM8HWU6bJID7UE65u83Lo21GSk6KW6sjvl3hjY8\nNq5rTBVOOaWc64zNmTiTou9VC05Nx7GMhc1K61x4YfHXcCeF4zQx2jFM2g/vMgxD2VhZmFugt3cF\nSx66j73nV8b1e0PZzv3qjfeP+Xce31AbUcfih+5j5oKx6xjMNCyrjl0DwM6+4XU4k+Otby3nOlYW\nPlZ0tKYYR0nH/P2Yc/arCvlsydYfX134NaYrL3yhtjMxsSfm/fv8Isc3HyaDFYf79MGdFMpYCZG1\nwPB9UU6BltHZ8x7eVujtXcHSpfcxb974fq8zS7VYv37sqRbVsW8cqrH3/ApPf2nx5vne61pHc9SZ\nuaDCk8+dUbiOR3+4q/BrOHqceaYN23nsseXosO0ocSzytKdpK0jsiXn/vb0rWPbQcvafP/a6GACz\ns9oYj28ce22MdRts18bo7V3BigeXcfDcsffFkzp6ABh4dOT5QjOr+ofvC+sFVS1sVvr6cJo7KWyH\n87jHrk5ZBVpG16F26WnBvHlw5h92Fn6dX/1i7BMOx3EmzzOeoa0g8Yd/qK0A3NldHL5j7gzH/vMX\nccFLP1j4db5+3ccLv8ZkOXjuIt79BxcXfp3P3vTJYV+rO0sW9Swc8+f1VFJNqKF1wxe5bubhTavH\n/N6xYcF+t399aDXCZko5KUIIZwGfBzqBf48xfqr9VynXOWBlx0XziJk6w/UFtL9Ai4UbcipMqCyM\nC8dx7NgLt52Tw53dxZFS1B6ic8GB4/q9oRlzAHiwunXMvzPY98iwr1nYJZ7K94gzPVjUs5CLn/23\nhV7jkzd/vq2fV6b9LnN92Nu7gt6lD7Jo7thrG83tSHWNao+NLzz54f6x1zaaMk6KEEIn8I/AC4HV\nwK0hhB/EGB+Y6GdaCOcZGV2PXVERDBN5eL785e19cPb2rmDZ0vs4YG7HmD9rr440LrY+Nr4ht7a/\nteOrt3cFDy29j/3mja/2wKzOpGPT+rHn/T9WbV/Ov5XIFseZTqQCiZHKgp5x/V5tRrIvi6vDL6p2\n+52+TaPoWELH/Lnj0JDsbNy4bsy/AzC0oX8UDeM4hgeozejMdIx9kjS0YfhjeCw4bJxGOhccyNxz\niy/E0v/Dfx32td7eFcSHljF7wdhPJRqYke7r3urYU9+29418ItHSh5Yxd9/xpTh0zEw6Husfe2h/\n/3rbKQ6O04qpbb/bvz5cNHc/3v+84msbXfHrsdc2mjJOCuAUYGmMcQVACOHbwMuBEVeME/Mm1wfh\n4eMW2U6vdrsX5hPri1dm/2/dFzfe+MthcqZGdhAsf/A+Fs4de2h/d0da6O98dPGYf2d1/8hh/QfM\n7eANp88e8+dNlK/euH3Y1/abV+HVZ8wqXMN3bhg+PM7KuHCcZqrVKrW+HSMeD9ouan07qNJ6RyDp\n2NL2kzda69gyrI7Kgh5mnXNq4Rp2/Oh3I77eMX8us845owQdN4ygYR9mnf3i4jX8+GfDvpafrLFg\nzJ9Xm5FqvMSNG8alY2hD37jeXzbVapXBvvVs+dHXC7/WYN86qhXbaXuzFxzCES+/aPQ3ToJl1141\n4utz913E8//o/YVqAPjfa64o/Bp7AtVqlY0bN/Cvvyi2vx7Z2Ms+nfMLvcaeQEo5eYhFc8ceedXT\nkaKuhh4de9QVwMP97Y28avf60CpTyUmxEJAz1VXAs0f7pRTCsoRFc8d+w77hFalbao+tH5fAh/uH\nn3QkHZFFc8e++zS3oyPTsXYcGlrvPNU1rFj6AIfM3WvMn/f6VyRv+uBjK8b8OwAr+7eN+PrCuZ28\n/bQ54/rM8fLF34zPiExX6hEd88cR0fHHr0yRGRvHEc0BsGGYiI5qtUq1Wk69iGoVurqGX4xu2jj8\n8aDtZNNGmNW5u45qtcrjfbVRi1q2g8f7alQrw/fFzr5aKUUtd/bVhl2YO45lOuYvYPbZ5xR+ne0/\n/lHLn1erVYb6Hivl5I2hvseoji/wz5nmVKtV+vo2cM21lxd6nfV9vdTwhfloVKtVqv0bRqwX0S5W\n9T/MvJmtv5NqtUp1U1/b0zGaeXjTKubNGt6JvGjugbz/D/6iUA0AV9z0pWFf6+1dQe+DS1k0d/8x\nf97cjrTBWnt085h/5+H+8UUyWmAqOSkmFK9erVbZPjBAb3V3B8Lg0BADQ8PXoFi3pfWX39XRQWfH\n7mkCOwYHqA5zdECuo9GJMJqGpGPLmHWMpmHHwBArq7s7EAaGagwODd/Fj27Z2fLnnR0Vujp2n7Xs\nGBwaUcfavkE++OPG/h0cgoEJlgTp6oDOpq9kxwAcMHMkDUN8+trdHRmDQ+m/8dLZQgPAzkE4YEbr\nxeja9TW+eM3ukRZDE9RQ19E8PHcNwNAIC/NdA9DXwoEwNJT+G45NW1qPmY4WGgAGBhh2XKTXdv/5\naBpGopWOgVHW/gMDyYHQLh0j9cVwDA4kB0IrDbUJaKgMo2FwlL6o7Wp9PGhtkImV7+mASosAqtow\nfpB58+bxyDC537WtA7BtAk6tvTqpzGn96Js3zPEySUdrZ3Ft607Y1to+jqxjJpU5M8eso1qtUlu7\nge1fabGzPziJwdnKaO0aoEprZ3a1WmVoXR/bvnJN4wvtvlEBBgapVnaPNEsaHmPbV/9r998p4Eat\nVlqfcJN0rGXrV7/SpGFwkn3R4iYZ2EW1Mkx64sAuhvpapLAMDSUt49bQOUxfDO+wTPfI7hs7Q9u2\nUNv6+Pg1AJU5e9OxV3eLF4a/RwbWrqHvPz+y++8MDky8Lzpb2ItdO6hyUMtfqVarbF37CPf/v8Z8\n+9rgALWJaAAqHZ1UmnQM7dpBlda7wNVqlb61j/CDf3/bbq8NDQ4wNAEdHR2ddLToi8FdO5hRG343\neteuHazv6238ncFBhoYm5ojv6Oiis7PxHtm1a/ho0Wq1ytp1j3DV1/9yt9cGhwYZnICOzo4uOlvc\npzsHdnBApXVfzJs3j43rd59cbN7Wz5btE3PSd8+ex5P2at78rAz7LAPYMbCj5ckbA0MDDE5gXHR2\ndNLVsfu42DEwcoHLHQM7eXjTqiYNE/s+ko4uupq+kx0Dwz+bq9Uq6/rW8Lbrdk+ZKKIv9p85vL3Y\nPrCT3iYnwuDQIAOjaFi3pXU6YldH527jc8fAzhHXZev61vBXP/yX3V5L69Tx90XS0GqtvIv9x3ho\nXKVWmxrn04cQTgU+EmM8K/v3+4GhYopnOo7jOI7jOI7jOI5TNlMpkuI24KkhhMOANcCfAuerKnIc\nx3Ecx3Ecx3Ecp22M/WgDZWKMA8DfAD8F7gf+azIneziO4ziO4ziO4ziOY4spk+7hOI7jOI7jOI7j\nOM6ezZSJpHAcx3Ecx3Ecx3EcZ8/GnRSO4ziO4ziO4ziO45jAnRSO44xICGGMhwU5juM1nyCOAAAe\naUlEQVQ4ddx2Oo7jjB+3nQ5McydFCKEz+79qP4QQnhJCaH0ofXkanhVC6NHUYIUQwrtDCAdr67BA\nCOGjwN+O+kZnWuG2s0GD284Mt505bjudVrjtbNDgtjPDbWeO206nzrR0UoQQ/iyEcBfwTmUdF4QQ\n7gOuBL6n4TnMNNwDXAp8J4Qwq2wNTXpeGUJYoHTtN4YQbgROBDaHECoaOoSej4cQzlS69utDCDcA\nbwBer6FBEkI4O4Swv7KGp2pP6jIdR4cQ5ihd221nowYTtlPTbmbXN2M7Ne1mdn0zttOC3cx0qNtO\nTbuZXd9tZ6MGt5247Wy6vtvO3XVMa9s57ZwUIYRjgLcBPwSeH0I4IsY4VKZXO4RQCSG8HHgr8JYY\n4yuBOcBf1F8vScfLgL8C3hZjPBdYCLywjGsPo+dS4EvAaxSufRrwH8B7YoyvjzH2xxhVjr4JIZwU\nQrgVeBrQW+YkIoTQFUJ4C2ksvi/GeDiwOoTw9LI0NOl5ZQhhMfAO4MshhGMVNLw8hPAQ8DHgS4pO\ntJeGENYCnwL+O4Swb8nXV7edmQ63nY1a1Oxmdv3nYsB2atrN7PpmbKcFu5npULed2nYz06BuO33e\n2VKLtu00Me9029mgxW1nrkHddk4LJ0UI4Un1dozxAeCNwOeAB4C/yX4+VJaOzAjdA7wxxvi77OW/\nB14uXi9UQ8b1McbTYoy/DSHMAx4GukMI3UVdfxhN9XG4Dfhq+lF4VvZaYQ/OpnHxG+A24OjstYtD\nCOeW2Rfibz0a+FqM8RUxxmXAYAnXro/NAeDqGOPzY4y3ZJOrzUVffxhNTwb+EnhzjPEsoAso9YER\nQpgP/Dnw2hjj+cBjwAdCCEeVrGM28Argghjjy4HVwN+GEE4s+Lqd9XZmO1+Pju3sFP+8n9QPZdtO\nqeFX2rZTy25mny/HxW+Bm1GynZp2M7t+JzxhO6/Vtp0W7GamQ912atnN7NpPjH/leWd3di3Neae0\nBerzTmXbKceF6rzTgO2sj00T8063nQ0a1GynZI93UoQQLgbuDCF8OoTwpuzHi2OMG4DvA08JIZye\nvbdzmI9pp44rQwgXxBiXA73iLU8B/i97byFGsqkv3hhj3BVC6AwhHAD8GKgCFwBXZUaiMJocBPUH\ndSewhXQznJO9VsiDs6kv/jz78duBr4QUhjiP5En9TAjh6CI0CC3SeQXwUmBX9toXgEtDCKeEEGYW\ndP3mcVHNxkVHNrk6jBSKWHgebZMTbRCYDRyQ/XsIODCEcGBZziugQrKT9e/m28CrgLNDwSGqTQvB\n7cBRQN2bfiXpfnlB9jAp4vqXkcbefkJHVLCddR1Pzn70cIyxbNvZrGFH9vNSbWdTP9fHZGl2M9Ow\n27gg7RKXajuFc6D+t76YEu1mdp2GcRFjXJ/9vFTb2TQuKsAMSrabLXTUd2NLtZ1Ni8DtpAVYaXYz\n0/B3wI3ZfO+N2Y815p11HZ8JIbxWad4p++L12byzQ8F2ynFR+pwz0yD74s3ZjzVsp3RcQclzzuw6\ncmy+Xmve2eQQUplzttChMu8MIfTUP1/LdjazRzspQggvAF4GvAi4DrgihHCcuDEfAG4ghb8RYxws\n4oHRpON/gCtDCMdn16sbgQOApZmOthvJFn3xybqGGONa4OwY42tJ3v79gUParUFoaVgUZz+bAfQA\n38j0HRhC+FwI4aUFXL+5Ly4LIZwUY7wNuJAUCnkx8DrS93JYuzUILbIv3pL9+GrgrBDCd4BHsp+9\nDXhtAddvNS6OizEOktuHbwCnQbE7P019cUGMsQ/4R+BVIYRHgZXAccBlFBQe2qThtZmG3wNvDMm7\n/UzgdtK4WFiEhkxHw0Iwe0h/H3hqCGFmjHEpcAdwEMl50c5rzwohvJ+UF/oM4CTxWn1M3E/BtrOF\njhOza9UdBF3ZWwuznSNoGAohVMq0nS2cAx3ZxOlJlGM3W46LrB/uIu0Ov7kM2zmMo+S7lGc3W44L\nQX1CW7jtbOFAqwL/QIl2cxgdXcDdlGg7mxaBb8p+fA0l2M3s+vuGEL5C+lvfAtwCvD2EcLCwTWXY\nzmYdNwPvzHSUMu8cpi/+JtMwVLLtbHCUZD+bQXm2s1VfvDWEcFiM8XbSvLMs2yn74s+yH5dpO1uN\nzfq4GCQthKEc2yn7oj7f07CdUsf5wAZKnneGEN4L3AR8LoRQL1pamu0cjj3SSSE8XjOBu2KMy2OM\nvwK+AHxSvPVx4DukYjWXhxCuBA4vSccVADHGndl7ng78JiQ+EtqUfzQWDRn9mZ4NwHpgn3Zcv4We\nVoviE2OMu7K3zCVN+v4IOBuIbbz2WL6Pf4wx3pq1HwM2Ul5ffDykHLy7SN79vWOMV2TabgaODG3y\noo7lHslC8CDtGldDymktZNenqS9+QtpJOD7G+F1SHu93Y4xvJVV83ggcWYKGz4YUXvcvpD74Oumh\neSlwKsnL3m4Nuy0Es0XgELACmA/UC1vdkL2n3d/JLtIO19OA3wFnhhCOyF6rT2QLtZ1j0CHHZyG2\ncywaMh3V7P+F2M7hnAOZg7lG+k56KMhuClr2RX1xE2P8YuboLcx2Dnd/ZC/3Apso0G4Khh0X2f1a\nD5cuzHa2cpRk194RY7wGuJZy7OZwOlYD/wVsB75GgbZzBOfAvqTJ/r4Ubzch2cWfxhj/JHPc/Ty7\n/sFN7ynado6oo+h551g0ZDqKtp3DOUoWZXPOCuXYzuH6YiE8Me8s2na26ou/CiEcmGkpdM4pGG1s\n1tcCRdrOVn1Rd+JdTXlzzlY63kWKXvg3Uh+UYTu/DJwC/CnpuXFe5sRbSnm2syV7pJNCeITnAPND\nVhk1u/kODCH8SfbvIdID9DiS1/CxzFtUqo4QwpGkQfkx4FtAX+bRK00DaVdufgjhKlJ/3NaO69cZ\nYVH898AnQvLszwD+k2QUPkGaBD6/XRpG6Ysni75AqS++AHwcWEPu2X9KFnY1F9hV30WeLOMYF5Ai\njt4cY6yJyXdbGKYvfkkaF9KhOBhC2CfGuJk0sWhbpeERNHwB+GyMcUWM8d2kCJvXxhjvJXnY57dL\ng2C3xQ8pJBfg18Ba4EUhhEOyycw62vzwzOzikhjj48B/kyZSp4QQZsUYayGFY9Yo0HaOpgNSVEcI\nYREF2c7RNNT7ItNSmL1g5AXxbNK4/QoF2c06Y/g+Ktn/S+0LoO40WkJyLh5QlN2sM4ZxUZ/EFWY7\nad0XcrFboUC7OYqOIwBijL+PMV5E8baz1cLnXtLC5zbSM7VQu5k5ZraRFjh1BkhRNmvEewq1nWPR\nkb2vMNs5Vg3Ze4u0F8M6BzK71UXBtnOUvljZ9N6y++I+0s74KlKUd6G2c4z3SH1dWqTtHG5c1CN5\napRjO4ezW0fEGJeVNO/cDHwuxvjqGON9JKfEPaS/+SekOeeLi7SdI7FHOClCOrbmOPHvCkCM8Xuk\nzjxbvP3TwLvFvz9JGhSHxBg/XbKOi7J2hfRQXwc8N8b4DyVqeFfWfjpp16MLOCPG+NBENbRihEXx\nJ0lG8nTge8CnY4wnxxj/HriTxvzJcTHRcZEtAL5Ncpo8L8b44EQ1tGKEvvgEcCgpBPLrpFCrfwgh\nfJFUffrmiV5zkvfIb0lRHp1iQd8WxuAsOYc0DvYmRVdcRYp0uKUEDZ8gTWZek/37kRDCISGEfyJN\nftu+4zLM4udZIYS9YtptuoaUN/n1EMKXSLvqd0z0es3jQujYnk0olpO+/+cDxwiNkCo+F2I7x6Fj\nFsmJ03bbORYNQC2EcDxpZ7Qo2zncgnivbDJ5C/DxdtlNmHBf1G3nf1Gc7WzVFyeHEGZnk+lrSd9F\nW+wmTHhs1ifVN1Gc7RxuXNTzhR8jObAKsZuj6DhZOhNjjGuLsp0jLHyOB6oxxo2kVLm22c3sug3j\nIuYRRbLg3wLg0Rjjw/I9FGg7x6IjYzYF2c6xashs539TgO0cZUH8SGYvbqZg2zmOvijMdo5yj6yP\nKbLmGlLaR2G2c4z3SH1+UYjtHKMD7VEKtp2jfCdr6z8o0nZmn78jxnhv1s9vIq2JF5L6//mkzboO\n2mg7x0PX6G+xS2bgvkoKg75HvFQJKYdmB/B54MIQwu3ZZOIm4LQQwpOyG+Ud2UDR0PG8kEJq+oFj\nY4yPMEHaoOEh4PyYFf6aLCHl/d0dY7wn+3cl84h+L4TwPtKi+LvZ2z8NXBpjPC3TBECM8asTvPZk\n+mIWyVCdH9u3qzDevvg74Psxxo+GVHH6JOC92SRwvNeezD0yB9gWU1j95yfwp7fSM+6+iDE+L6Sj\nwi4gPcD/YCJ9MQkNf0tyWgH8E2l8vCzGuHWiGlrpqCMXPyGE+uInAnfGGJcAfxdC+CPSrum7Yoxb\nJnDtluMi28Woh6t3kh6a3yJVuD42hPAMYHuM8Tsk2znZPpiMjo2k3Z9jY4xrmCCT0HAcsCHG+KMQ\nwmti2mWYFOMcE0uAO7LvQr53QnYzu/5kvo/+GOMPQghteY5M8P7YQqo99QvgBCZoN7PrT6YvHo8x\nfi+m0OVJ286JjAtSaO6DpBN5upik3ZyAjsWkyLT6ouOLpAKFk7KdzRpGWfisyF57kDbYzez6o46L\nEEJnNj4OJtkpQggvybT8FPibouadY9BxFrCVVDCzcNs5goZtMcYbM3vRdts50rggnShCTOmkT1C0\n7RyhL7bHGG8oynaOco/0Zq89TopqPpm0YC/Udo5wjwzGGH9elO0cy7gg2c6lFGg7R/lOHm769UJs\npyT7Tu4CDo2p5tYFwD/GGI8G3hXS8cVHMAnbORGmtJOClD/+TzHGf5M/zB6KO0IITyF5Jo8FPhhC\nuBM4F1hRHxiTfVBMUkdvdiM+akDDLlJO2qSY4KL4N8AfZIvi7UAtxkkVcZpMX9RD27ZP4vrAhPvi\nt8BzQwjdMcYtMeUpTibsbzL3yKQWoJJJ9MVpWV+sDCF8cjLjok1OzfPb8LCayOLnaSHVK9kWY/xu\nTDnnk2GkcUE2LvpIO5H9IYQHSUVM+4B3Zu9tx/iYqI4NJCfJEE3hw2VryN47qUn2BMfEMSGEpwFb\nY3KwdcTJFxhrR19MapI9yftja4zx6hjjLUx+52vS98hkmcS4eDrJUXJ1ZjcnNS4m6bDZli0Gz5/M\n5HaSC59ajPFnbbCbMLZxsSG7/unAjBDCv5Byud+fvbfoeedIOo4DLs7mfWXYzmE1ZO8t3HY2j4ts\nEfbEgjjkaTiToR3jonDbOcI9MhRjvD6mmmy3TkYHbeiLyTLBcVHLnEaDMcbrQwhXTHZctMNuUYLt\nBIgp5aTOz4GXhBDmxxg3xBivnej1J8OUclK0MCRHk05CIITwblLV5N/FdJTNxcB7SOe8XkVKZ/gL\n4Jdx8uF16josaBiG0hfFe2hfTHSXZ4/ti4InEWN1ak7KQTEGHYUsfiYwLt4F/FkI4brsvX8LfCbG\n+PGJXN+SDgsaWtAOp9G4F6J7al9MhD21L9rguGqXjslugqgsfCY4Lt5MXqfjVOCqGONfTVSDFR0W\nNLSgHc6Bcc8t9tS+mAh7al+0Yc7ZLh1l2M6+mBWyDSEsJJ1y0htTmrEaU8ZJEUJ4B+l81huB78RU\nOXoNsH8I4RpSDs/JwFtCCB8npVAcJTr4NyGEmyb7wLagw4IGoUV1Uex90XB97wtjGiaoo62LnwmO\ni2Pq4yKEsAJ4xmQdNBZ0WNCQfY76gtj7okGD94UxHRYWPpMdF6Sokr+uT/6nsg4LGjIdPi5yHd4X\nuQ71vrCiY4Ia3hRCuIHkVH4d8J8xxqsmqqFdVGq1th6NXAghhFeSPErvIx1ztY1U3OMPSGdN3xZj\nfG9IFbV/TqpU+oPsdztJYUyT/kMt6LCgQWh5B/AC4AnjFEK4AlhGyutfS6oQ3EU6teI5wH9Jz1yY\nRIiy90XD9b0vjGloh46Qinh2THTxM8lx0RXzYz4nhQUdFjRkn6U6JrLP8L7INXhfGNPRBg3nAL+Z\n5KJ8MuNiZsyP+ZwUFnRY0JB9lo+LXIf3Ra5DvS+s6GiDhlOAGGPsn6iGdjJVTvd4NvDFmI5p/Cgp\nr+b9McZvkzp8VgjhgJjyam4iO7Iv8ybVz5LfU3RY0FA3Tm8gVX49nhQevwi4G3gt8GDmCbyAdKTN\nohjjP8cYNwRRrXeSi0DvixzvC0Ma2qCjK9OwbZKLjsmMi7YsvgzpUNdgZEyA94XE+8KQjklqmJlp\n+NFkFxxMbly0ZfFlSIe6Bh8XOd4XOVb6woKOSWqYkWm4JRpxUIBxJ0XIz8tdRgo/IaZqzT8ghRKd\nBlwJ7ATeH0L4MPAqUmXWduUTmdBhQUMTaoti74sc7wuzGiarY1KLHyvjwoIOCxoEqgti74sc7wuz\nOlQXPlbGhQUdFjQIfFzkeF/kqDtKDOmYjIZdbdLQVkw5KUII+2X/r3vk6zuZ3wW2hXR8FMAjwC9I\nx8LcAVwBPADsBbwoxnjnVNdhQcMwuko3Tt4XDdf0vjCsQUuHlXFhQYcFDS00qYxN74uG63pfGNYx\n3ceFBR0WNLTQNK3HRZMm74tck7rNsqLDgoaiUK9JEVJo9Rzgy8AhMcbnip9XgLrANwGvAc6K6ZiY\n9wLdMcZL9xQdFjS00LRfjPGx0JR7G0JYAPwn8OUY4zUhhLmkEKK9Y4yfzl5/NXAoybO3cpzX9b7I\nP9/7wqgGTR1WxoUFHRY0NOlRG5veFw3X9r4wqsPHhQ0dFjQ06Zn240Lo8b7I9ajbLCs6LGgoC/XT\nPTIPzuMhBIB9QwhvjzF+Eeisd34IYW/gp8DzgX8LIXwEOAm4b0/SYUFDdo0G4wQ8N8Y40GScNgDf\nA94WQrg2pmPH5gB7Z39LH/AvE9XgfZHjfWFLgxUdVsaFBR0WNFgYE9lneF9keF/Y0mFBQ/YZ6uPC\nig4LGnxc5Hhf5FjpCws6LGjQQDXdI4RQyf47EFgH/Dmpc/cRN8FlwPeBA4CLsvd9g3Sm7BV7ig4L\nGurEGGsxL3y1bwjh7Vm7M8ZYPwViDsk4rSEZp4Uk4zTpvCbvixzvC3saLOiwMi4s6LCgAfTHBHhf\nSLwv7OmwoMHKuLCgw4IG8HEh8b7IsdAXVnRY0KBB6ekeIYQzgO0xxt8FccRfCOFa4K+BvwMeJ3l7\nHgO+BHw4xrhUfMacGOPWqa7DgoYWmipZ8wDgYlLO2ReB58cYN2bvuYxUoOViUmGWdwOnkc7efUdM\nRVnGe90z8L6oX/cMvC9MatDUYWVcWNBhQUOTHrWx6X3RcO0z8L4wqcPHhQ0dFjQ06Zn240J8lvdF\n/lnqNsuKDgsatCjNSRFCeBLwFeBM4Brgopify3oU8LYY47tCCOcBXwdWxBiPE7/fCdS9RVNahwUN\nTXrOQMk4eV80XNv7wqAGbR1WxoUFHRY0iM86A8Wx6X3RcH3vC4M6tDVYGRcWdFjQID7rDHxc1D/r\nDLwv6p91Bm47zWiwQJk1KXYCvwL+HXguqXjHv2avrQGODCH8EAjAjcATXp8QQmcbvUAWdFjQsJtx\nCiEsaTJOy2KMq0II15OM08sy4/TauhYy4zSJG8H7Isf7wpAGQzpMjAsjOtQ1GBkT4H0h8b4wpMOC\nhgz1cWFIh7oGHxc53hc5VvrCgg4LGixRaE2KEMIbQghnhJTHtIPk6fk5sAR4ZgipIgvwJNIZrsuA\nZ8YYzwUOCSE8E2CyN4EFHRY0tKBunF5HMkavFq9J4/QZknFaJv6ezhjj4ES8p94XOd4XpjWo6bAy\nLizosKChCbWx6X2R431hWse0HxcWdFjQ0MS0HxcC74scCzbLig4LGszQ9nSPkHJnDgS+CQwBS4Fu\n4J0xxsey9xwFvJEUynJZ9rN5Mcaq+JyGf09FHRY0tND0BuBh4O4Y48YQwuxM2/kkL+pVMcYYUsGc\njwFbgUtijJtDCLcDfxljvH0C1/W+yK/rfWFUg6YOK+PCgg4LGpr0qI1N74uGa3tfGNXh48KGDgsa\nmvRM+3EhPsf7Iv8cdZtlRYcFDVZpq5MiZGe2hhACKTfmdSGELuDzwEExxleK974CeBHwOWAV6QvZ\nCVRilnszlXVY0CA+X9U4eV80XN/7wpgGCzqsjAsLOixoyD5bfWx6XzRo8L4wpsOIBivjQl2HBQ3Z\nZ/u4yD/b+yL/bPW+sKLDgoapQFucFCHlwFxOSh+5jhQi9McxxjeK19cAfxJjvFH83geAt5C+mDNi\njA9MdR0WNDTpUTNO3hcN1/a+MKhBW4eVcWFBhwUN4jNVx6b3RcP1vS8M6tDWYGVcWNBhQYP4TB8X\n+Wd6X+SfqW6zrOiwoGGqMOmaFCGE04HbgXkkT9BlpDNZzwwhnAJP5C19BPio+L0/AT5Iyr15Rhse\nFOo6LGgQn9kZQrgC+HhIVWKPAgYyDQPAO4HnZprJfv590k3wE9IRNkfEVHxlIosv74v8+t4XxjRY\n0GFlXFjQYUFD9nnqY9P7okGD94UxHUY0WBkX6josaMg+z8dF/nneF/nnqfeFFR0WNEw12lE4s0bK\nl3lbjPFLwL3A4cClwD/DE9667wOPhRAOz35vLfDSGOOfxxgf3UN0WNBgxTh5X+R4XxjSYEiHiXFh\nRIe6BiNjArwvJN4XhnRY0JChPi4M6VDX4OMix/six0pfWNBhQcNUpB1OiluB72SDHeA3wKIY438A\nnSGEC7OOPxgYiDEuB4gx/m+M8X/bcH1LOixoAAPGCe8LifeFLQ1WdFgZFxZ0WNBgYUyA94XE+8KW\nDgsawMa4sKLDggYfFzneFzlW+sKCDgsaphyTdlLEGLfFGLfH/CiaFwHrs/abgWNCCD8GvgXcMdnr\nWdZhQUOGunHyvsjxvjCnwYQOK+PCgg4LGjAwJrLP877I8L4wp8OCBivjwoQOCxrwcSHxvsgx0RdG\ndFjQMOXoatcHhVT0owbsTyrUArAJ+ABwLLAixriqXdezrENbQ4xxW9OPXgT8Pmu/GfiLzDgdBfxb\nUTrA+0LifWFDgyUdoD8uLOnQ1GBpTID3hcT7woYOCxokFmyWFR1+j+R4X+R4X9jQYUHDVKRtToqY\nKpXOJnnqjgsh/H3WfkeM8Tftus5U0GFBA9h4cHpf5Hhf2NJgRYeVcWFBhwUNFsYEeF9IvC9s6bCg\nAWyMCys6LGjwcZHjfZFjpS8s6LCgYSrRliNI64QQngP8FrgJ+I8Y45fb9uFTTIcFDZmO2cCXSHlO\nbyE3TptK1OB9kWvwvjCkwYoOQ+NCXYcRDepjItPhfZHr8L4wpMOChkyH+riwosOIBh8XuQbvi1yD\nlb5Q12FBw1ShbZEUGSuBS4DPxBh3tvmzp5oOCxoATgReRyrQovUA977I8b6wpcGKDivjwoIOCxos\njAnwvpB4X9jSYUED2BgXVnRY0ODjIsf7IsdKX1jQYUHDlKCtkRSOPUIIBwNvQP8Bro73RY6FvrCg\nwZIOxw4+JnK8L3Ks9IUFHRY0OPbwcZHjfZFjpS8s6LCgYargTgrHcRzHcRzHcRzHcUww6SNIHcdx\nHMdxHMdxHMdx2oE7KRzHcRzHcRzHcRzHMYE7KRzHcRzHcRzHcRzHMYE7KRzHcRzHcRzHcRzHMYE7\nKRzHcRzHcRzHcRzHMYE7KRzHcRzHcRzHcRzHMUGXtgDHcRzHcfYcQggrgG3A9uxHvwL6ge4Y43vH\n+Rk7gL2B+4BPxRj/r+l9NwMzY4wnhhAWAD/PXuoGDgKWZP/+cfba/wBRfMTdMcY3jfmPcxzHcRyn\ncNxJ4TiO4zhOO6kBr4ox3l//QQjh0sl8RgjhFcD/hBBeEmO8JfvZscBcYEcI4aQY4x3AidlrpwOf\niTGeLDScAdwnf+Y4juM4jj083cNxHMdxnHZTaeeHxRi/D/wL8B7x4zcDXwW+lrULu77jOI7jOOXh\nkRSO4ziO47STCvDdEEI93ePv2vS5twDnAYQQZgCvBU4BBoC7QwgXxRh3jPIZTwsh3Cn+fXWM8fI2\n6XMcx3Ecpw24k8JxHMdxnHbSKt3jOW34XBkdcQ6wOMa4Mvv8O4BXAN8e5TPu93QPx3Ecx7GNOykc\nx3Ecx5kKnAz8Pmu/GXh6CGF59u+9SSmsozkpHMdxHMcxjjspHMdxHMcpmonUiHjid0IILwf+Cnhx\nCOEA4PnAQTHGx7PXZwGPhBAOqUdXOI7jOI4zNXEnheM4juM4RVMD3hpCeI342cdijF8a4Xe+G0KQ\nR5C+NMZ4awjhfcD/1B0UADHGHSGE7wNvAi4T12zW0FyTYnWM8ZyJ/UmO4ziO4xRBpVZrfoY7juM4\njuM4juM4juOUjx9B6jiO4ziO4ziO4ziOCTzdw3Ecx3Gc0gkhfAh4ZYuXXhRjXF+2HsdxHMdxbODp\nHo7jOI7jOI7jOI7jmMDTPRzHcRzHcRzHcRzHMYE7KRzHcRzHcRzHcRzHMYE7KRzHcRzHcRzHcRzH\nMYE7KRzHcRzHcRzHcRzHMYE7KRzHcRzHcRzHcRzHMcH/B0hOJ9U4UtDGAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f679ad6e190>" ] } ], "prompt_number": 45 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Oh my, outliers! If the data are to be trusted, there's at least one flight every day that is over 500 minutes (8 hours) late in arriving. In the most extreme case, a flight scheduled on 2014-06-19 appears to have arrived 1800 minutes (30 hours) late. \n", "\n", "Whether this information is accurate or not requires some fact checking against other historical sources. For now, we can turn off the fliers to get a better view of the interquartile range." ] }, { "cell_type": "code", "collapsed": false, "input": [ "fig, ax = plt.subplots(figsize=(18,10))\n", "sns.boxplot(df.ARR_DELAY_NEW, df.FL_DATE, ax=ax, showfliers=False)\n", "fig.autofmt_xdate()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAABCIAAAJHCAYAAABFOPeAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuUpWdBJvqnurpzaZL0TjpNuCbBUV5FUXTUYTyW1UTG\ng9yXjKhnEYG4HBRHRR0HIn3CmGkkoCIzc8ZznNFoCKMHPXgCIXKESeiaVgSvYzTACwmpHQKk0+mu\nXSF00ulLnT+qQjrpXdeu79u7d/1+a2V11fftd79Pqnd93fX0u99vbG5uLgAAAABt2DToAAAAAMDG\noYgAAAAAWqOIAAAAAFqjiAAAAABao4gAAAAAWqOIAAAAAFqzucknL6Vcm+RFSe6ttT574divJnlx\nkoeT3JHktbXW2YVzVya5IsmxJD9Ta/1wk/kAAACAdjW9IuJ3k7zgccc+nOQba63fkuQzSa5MklLK\ns5L8UJJnLYz5zVKKFRsAAAAwQhr9Qb/WujfJzOOOfaTWenzh008kedrCxy9L8ge11iO11ukktyf5\nzibzAQAAAO0a9IqDK5L8ycLHT0ly9wnn7k7y1NYTAQAAAI0ZWBFRSnlzkodrrb+/xMPm2soDAAAA\nNK/RzSoXU0p5TZIXJvneEw5/IcnTT/j8aQvHFnX06LG5zZvH1z0fAAAAcMrG+h1svYgopbwgyS8m\nmay1PnTCqQ8k+f1Syjsz/5aMr0vyl0s918zMocZyAgAAAGu3Y8e5fY+Pzc019+6HUsofJJlMcmGS\nfUnekvm7ZJyR5ODCw/6i1vr6hcf/Uub3jTia5GdrrX+61PPv3/9lb90AAACAIbRjx7l9V0Q0WkQ0\nTREBAAAAw2mxImLQd80AAAAANhBFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUE\nAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQA\nAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAA\nANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA\n0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0JrNgw4AAAAwqvbu3ZOp\nqVv6nuv1ekmSTqdz0rnJycsyMbGzyWgwMFZEAAAADMDs7ExmZ2cGHQNaNzY3NzfoDGu2f/+XT9/w\nAADAhrZ791VJkl27rh5wEmjGjh3njvU7bkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAA\nANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA\n0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQ\nGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAa\nRQQAAADQms2DDgAAwOlr7949mZq6pe+5Xq+XJOl0Oiedm5y8LBMTO5uMBsCQsiICAIBGzM7OZHZ2\nZtAxABgyVkQAALBmExM7F13ZsHv3VUmSXbuubjERAMPOiggAAACgNYoIAAAAoDWNvjWjlHJtkhcl\nubfW+uyFYxckeW+SS5JMJ3llrbW3cO7KJFckOZbkZ2qtH24yHwAAANCupldE/G6SFzzu2JuSfKTW\n+swkNy98nlLKs5L8UJJnLYz5zVKKFRsAAAAwQhr9Qb/WujfJ47dKfmmS6xY+vi7Jyxc+flmSP6i1\nHqm1Tie5Pcl3NpkPAAAAaNcgVhxcVGvdt/DxviQXLXz8lCR3n/C4u5M8tc1gAAAAQLMG+taHWutc\nkrklHrLUOQAAAOA00+hmlYvYV0p5Uq31nlLKk5Pcu3D8C0mefsLjnrZwbFHnn781mzePNxQTAIBT\nsWXL/N/Tduw4d8BJYDj5HmGjGkQR8YEkr07y9oVfbzjh+O+XUt6Z+bdkfF2Sv1zqiWZmDjUYEwCA\nU3HkyLEkyf79Xx5wEhhOvkcYdYuVbE3fvvMPkkwmubCU8vkkVyW5JskfllJ+LAu370ySWusnSyl/\nmOSTSY4mef3CWzcAAACAEdFoEVFr/ZFFTj1/kcf/SpJfaS4RAAAAMEgD3awSAAAA2FgUEQAAAEBr\nFBEAAABAaxQRAAAAQGsUEQAAAEBrFBEAAABAaxQRAAAAQGsUEQAAAEBrFBEAAABAaxQRAAAAQGsU\nEQAAAEBrFBEAAABAaxQRAAAAQGsUEQAAAEBrFBEAAABAaxQRAAAAQGs2DzoAAAAwWvbu3ZOpqVv6\nnuv1ekmSTqdz0rnJycsyMbGzyWjAELAiAgAAaM3s7ExmZ2cGHQMYICsiAACAdTUxsXPRlQ27d1+V\nJNm16+oWEwHDxIoIAAAAoDWKCAAAAKA1iggAAACgNYoIAAAAoDWKCAAAAKA1iggAAACgNYoIAAAA\noDWKCAAAAKA1iggAAACgNZsHHQAAFrN3755MTd1y0vFer5ck6XQ6fcdNTl6WiYmdTUYDAGCNrIgA\n4LQzOzuT2dmZQccAAGANrIgAYGhNTOzsu7Jh9+6rkiS7dl3dciIAAE6VFREAAABAaxQRAAAAQGsU\nEQAAAEBrFBEAAABAaxQRAAAAQGsUEQAAAEBrFBEAAABAaxQRAAAAQGsUEQAAAEBrFBEAAABAaxQR\nAAAAQGsUEQAAAEBrFBEAAABAaxQRAAAAQGsUEQAAAEBrFBEAAABAaxQRAAAAQGsUEQAAAEBrNg86\nAMCw2Lt3T6ambul7rtfrJUk6nU7f85OTl2ViYmdT0RggrwsAgPVlRQTACszOzmR2dmbQMRgyXhcA\nAKtnRQTAgomJnYv+6/Xu3VclSXbturrFRAwDrwsAgPVlRQQAAADQGkUEAAAA0BpFBAAAANAaRQQA\nAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAA\nANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUEAAAA\n0BpFBAAAANAaRQQAAADQGkUEAAAA0JrNg5q4lHJlklclOZ7kH5K8NskTkrw3ySVJppO8stbaG1RG\nAAAAYH0NZEVEKeXSJD+e5Ntqrc9OMp7kh5O8KclHaq3PTHLzwucAAADAiBjUWzPuT3IkydZSyuYk\nW5N8MclLk1y38Jjrkrx8MPEAAACAJgykiKi1Hkzy60nuynwB0au1fiTJRbXWfQsP25fkokHkAwAA\nAJoxqLdm/JMkb0hyaZKnJDmnlPKqEx9Ta51LMtd+OgAAAKApg9qs8tuTfKzWeiBJSil/nOSfJ7mn\nlPKkWus9pZQnJ7l3qSc5//yt2bx5vPm0wIa3Zcv8tWbHjnMHnIRkeH4/hiUHDCvfI/TjdfEoXws2\nqkEVEZ9O8r+XUs5O8lCS5yf5yyRfSfLqJG9f+PWGpZ5kZuZQwzEB5h05cixJsn//lwechGR4fj+G\nJQcMK98j9ON18ShfC0bdYiXboPaI+Psk707y10luXTj8X5Jck+RflFI+k+Syhc8BAACAETGoFRGp\ntb4jyTsed/hg5ldHAAAAACNoULfvBAAAADYgRQQAAADQGkUEAAAA0BpFBAAAANAaRQQAAADQGkUE\nAAAA0BpFBAAAANCazYMOAADA2uzduydTU7ecdLzX6yVJOp1O33GTk5dlYmJnk9EAYFFWRAAAjJjZ\n2ZnMzs4MOgYA9GVFBADAaWpiYmfflQ27d1+VJNm16+qWEwHA8qyIAAAAAFqjiAAAAABao4gAAAAA\nWqOIAAAAAFqjiAAAAABao4gAAAAAWqOIAAAAAFqjiAAAAABao4gAAAAAWqOIAAAAAFqjiAAAAABa\no4gAAAAAWqOIAAAAAFqjiAAAAABao4gAAAAAWqOIAAAAAFqjiAAAAABao4gAAAAAWrN50AEAeKy9\ne/dkauqWk473er0kSafT6TtucvKyTEzsbDIaAACcMisiAE4Ts7MzmZ2dGXQMAAA4JVZEAAyZiYmd\nfVc27N59VZJk166rW04EAADrx4oIAAAAoDWKCAAAAKA1iggAAACgNYoIAAAAoDVLblZZSnl3ko8m\n+WitdbqVRAAAAMDIWu6uGbcmeUWSd5ZSZjNfSuzJfDFxV8PZAAAAgBGzZBFRa/21JL9WShlP8q1J\nJpP8yyTvKqXM1Fq/poWMALRs7949mZq6pe+5Xq+XJOl0On3PT05e1vf2owAAkKxwj4ha67Ekh5I8\nmOShJL0ktzeYC4AhNTs7k9nZmUHHAADgNLXcHhGvT7Izybck+WySqSS/luRvaq1HG08HwEBMTOxc\ndFXD7t1XJUl27bq6xUQAAIyK5faI+I9J/irJLye5pdZ6T/ORAAAAgFG1XBGxPcl3J/meJD9TSjkn\nyZ9nftPKqVrrlxrOBwAAAIyQ5TarnE1y08J/WSgiXpH5FRJfm2S86YAAAADA6FhuRURKKTuSPC/z\ne0XsTHJpkr9M8vsN5gIAAABG0HKbVX4yyTMyv0/ER5P8VJK/qLU+1EI2AAAAYMQstyLiZ5L8ea31\nwTbCAAAAAKNt0zLntz1SQpRSvvnEE6WUf9VYKgAAAGAkLVdE7Drh4+sed+4n1zkLAAAAMOKWKyIA\nAAAA1o0iAgAAAGjNcptVXlhKeX2SsRM+ziOfN5oMAAAAGDnLFRE3J/mOPh8nyX9vJBEAAAAwspYs\nImqtr2kpBwAAALABLFlElFKetdT5Wusn1zcOAAAAMMqWe2vGnySZ63P83CTnJxlf90QAAADAyFru\nrRmXnvh5KeUJSX4hyU8leWdzsQAAAIBRtNyKiCRJKWVzktcneWPmV0l8W631C00GAwAAAEbPcntE\njCW5PMlbkvxNkufVWj/TRjAAAABg9Cy3IuLWJE9I8stJ/jrJ5hM3sLRZJQAAALAayxUR52Z+s8p/\nt8j5Z6xrGgAAAGCkrWqzysWUUi6std63LokAAACAkbVpnZ7nI+v0PAAAAMAIW68iAgAAAGBZiggA\nAACgNYoIAAAAoDWKCAAAAKA1SxYRpZRnr/B5/ngdsgAAAAAjbrkVETeVUn6plLLk42qt/34dMwEA\nAAAjarki4luTPDvJX5RSvr6FPAAAAMAI27zUyVrrgSQ/Ukp5eZI9pZQ/T3J84fRcrfWVTQcEAAAA\nRseSRUSSlFLOS/LSJPckuSknFBEN5gIAAABG0JJFRCnlBUn+zyTvSfK6WuuRVlIBAAAAI2m5FRG/\nluQHa61/feLBUsrZSf5lrfX6xpIBAAAAI2e5IuKf1loPP/JJKeW5Sa5I8oNJ/jaJIgIAAABYseU2\nqzxcSnlikh9N8trM32XjiUm+sdb6xRbyAQAAACNkuT0ibkjynUn+OMlra61/WUq5cz1KiFJKJ8lv\nJ/nGzG98+dokn03y3iSXJJlO8spaa+9U5wIAAACGw6Zlzn9HkprkY0luXee5/0OSP6m1fkOSb07y\n6SRvSvKRWuszk9y88DkAAAAwIpYrIi7O/IaVr0hydynld5OcdaqTllK2JZmotV6bJLXWo7XW2czf\nJvS6hYddl+TlpzoXAAAAMDyW2yPiWJKbktxUSrkwyeVJ/mkppZvk92utV65x3mck2b9QbHxLkr9J\n8oYkF9Va9y08Zl+Si9b4/AAAAMAQWu6uGV9Va70vyW8k+Y1Syndkfk+HU5n325L861rrX5VS3pXH\nvQ2j1jpXSpk7hTmA08jevXsyNXXLScd7vfltYjqdTt9xk5OXZWJiZ5PRAACAdbTiIuJEC+XBr5zC\nvHcnubvW+lcLn/8/Sa5Mck8p5Um11ntKKU9Ocu9ST3L++VuzefP4KcQAhsW5556VLVtO/n6+//75\nImLHju2Ljtux49xGsyX5arY25hrmDMOSYxgyDFMOeLxheW0OSw6Gi9fFo3wt2KjWVEQs+Pq1Dlwo\nGj5fSnlmrfUzSZ6f5LaF/16d5O0Lv96w1PPMzBxaawRgyDznOc/Nc57z3JOO7959VZLkjW98y6Jj\n9+//cmO5HnHkyLHW5hrmDMOSYxgyDFMOeLxheW0OSw6Gi9fFo3wtGHWLlWynUkScqp9O8t9KKWck\nuSPzb/UYT/KHpZQfy8LtOwcXDwAAAFhvAysiaq1/n/nbgz7e89vOAgAAALRjySKilLJ/idPnr3MW\nAAAAYMQttyKi34oFAAAAgDVZsoiotU63lAMAAADYADYtdbKU8uETPv7Nx53726ZCAQAAAKNpySIi\nyY4TPv7njzs3ts5ZAAAAgBG3XBEBAAAAsG4UEQAAAEBrlrtrxrNPuIVn53G38+w0lAkAAOCU7N27\nJ1NTt/Q91+v1kiSdTv8faSYnL8vExM6morXO14Jhs1wR8bWtpAAAAGjJ7OxMksV/+N5IfC0YhBXf\nvrOUcuHCsfsazgQAAHBKJiZ2Lvov+bt3X5Uk2bXr6hYTDY6vBcNm2T0iSik/V0q5J8m9Se4tpXyp\nlPKG5qMBAAAAo2bJIqKU8qokr0vy6iTbk1yY5DVJ/tXCOQAAAIAVW26PiNcl+aFa69+fcOxPSyk/\nnOQ/J3lPY8kAAACAkbPcWzMuelwJkSSptd6a5InNRAIAAABG1XJFxANLnDu0nkEAAACA0bfcWzN2\nlFJen2TshGNzC59f2FgqAAAAYCQtV0TcnOQ7Fjn339c5CwAAADDiliwiaq2vWcmTlFJeUGv9/9Yl\nEQAAADCyltsjYqXetk7PAwAAAIyw9SoiAAAAAJaliAAAAABao4gAAAAAWqOIAAAAAFqz5iKilPKs\nEz598zpkAQAAAEbckrfvTJJSyjcnKUlurbXWUsqTkrw1yYuTXJQktdY/aTQlAAAAMBKWXBFRSvm5\nJHuS/EKST5RSfiHJ3yY5kOSZjacDAAAARspyKyJ+PMmzaq33lFJKktuSfE+t9WPNRwMAAABGzXJ7\nRByutd6TJLXWmuTTSggAAABgrZZbEXFeKeWFCx+PJTl74fOxJHP2hgAAAABWY7ki4vNJfnGJzxUR\nAAAAwIotWUTUWne2lAMAAADYAJbbI6KvUsq2Uso16x0GAAAAGG1LrogopVyQ5M1JviHJ3yX55SSv\nSfLvk3yw6XAAAADAaFluj4jfTnI4yY1JXpjkY0keTvL8Wus/NJwNAAAAGDHLFRHPrLV+U5KUUn4n\nyb1JnlZrfaDxZAAAAMDIWW6PiCOPfFBrfTjJnUoIAAAAYK2WWxHxjFLKHyYZW/j80lLKHy18PFdr\nfWVz0QAAAIBRs1wR8YYkc3m0iLhp4fMkuaSpUAAAAIyWvXv3ZGrqlr7ner1ekqTT6Zx0bnLyskxM\n7GwyGi1bsoiotf7eiZ+XUp6S+btmvCbzb+u4uqFcAAAAbBCzszNJ+hcRjJ7lVkSklLIlycuSXJHk\nO5NsSfK/1lo/3nA2AAAARsTExM5FVzbs3n1VkmTXLv/WvREsuVllKeVdSe7K/AqI30vytCQHlRAA\nAADAWiy3IuJ1Sf40ya/WWv88SUopjYcCAAAARtNyRcRTkvxvSf5DKWVbkvesYAwAAABAX0u+NaPW\nOlNr/c+11m9P8ookFyQ5q5TyP0opr2slIQAAADAyliwiTlRrvbXW+rNJnprkP2V+A0sAAACAFVv1\n2yxqrQ8n+aOF/wAAAABWbMUrIgAAAABOlSICAAAAaI0iAgAAAGiNIgIAAABojSICAAAAaI0iAgAA\nAGiNIgIAAABojSICAAAAaI0iAgAAAGiNIgIAAABojSICAAAAaI0iAgAAAGiNIgIAAABojSICAAAA\naI0iAgAAAGiNIgIAAABozeZBBwAAADidXX/9tel2p1c9rtu9M0mye/dVqxp3ySWX5vLLr1j1fDAs\nFBEAAACnoNudzp2335knn3/xqsZtHd+WJHnowLEVj/nSzF2rmgOGkSICAADgFD35/Ivzuu+9svF5\nfuvmtzU+BzTNHhEAAABAaxQRAAAAQGsUEQAAAEBrFBEAAABAaxQRAAAAQGvcNQMAgNPe3r17MjV1\ny0nHe71ekqTT6fQdNzl5WSYmdjYZDYDHsSICAICRNTs7k9nZmUHHAOAEVkQAAHDam5jY2Xdlw+7d\nVyVJdu26uuVEACzGiggAAACgNYoIAAAAoDUDfWtGKWU8yV8nubvW+pJSygVJ3pvkkiTTSV5Za+0N\nMCIAwIZ3/fXXptudXvW4bvfOJI++PWKlLrnk0lx++RWrng+A08Og94j42SSfTHLuwudvSvKRWus7\nSilvXPj8TYMKBwBA0u1O51N33J7xCy5a1bjjW85Kknxm5ssrHnPs4L5VzQHA6WdgRUQp5WlJXpjk\nrUl+fuHwS5NMLnx8XZI9UUQAAAzc+AUX5ZwXv6rxeR744HsanwOAwRrkHhG/keQXkxw/4dhFtdZH\navB9SVZXuwMAAABDbSArIkopL05yb63170opO/s9ptY6V0qZazcZAAAAjL69e/dkauqWvud6vfmt\nGjudTt/zk5OX9b1l8koN6q0Z35XkpaWUFyY5K8l5pZTrk+wrpTyp1npPKeXJSe5d6knOP39rNm8e\nbyEuMChbtsx/j+/Yce4yjxz9HMOQYVhyDEOGYcoBj7fer81Hnq8tW7aMr3t236fDYxh+T5r4Hnko\nx9bluVY636h9jwxLjo3k3HPPWvT6fv/980XEjh3bFx17Kr9XAykiaq2/lOSXkqSUMpnk39RaLy+l\nvCPJq5O8feHXG5Z6npmZQ01HBQbsyJH5P9T371/5RmejmmMYMgxLjmHIMEw54PHW+7X5yPO15ciR\nY+ue3ffp8BiG3xPfI499rmTw3yPDkmMjec5znpvnPOe5fc89crejN77xLYuOX8nv1WJlxSD3iDjR\nI2/BuCbJvyilfCbJZQufAwAAACNi0LfvTK11KsnUwscHkzx/sIkAAACApgzLiggAAABgA1BEAAAA\nAK1RRAAAAACtGfgeEQAAwOnn+uuvTbc7vepx3e6dSR7dlX+lLrnk0lx++RWrng8YPooIAABg1brd\n6dxxx525cPvFqxp3xpZtSZLZ3spveXnfgbtWNQcw3BQRAADAmly4/eK8/GW7Gp/nhvfvbnwOoD32\niAAAAABaY0UEDNDevXsyNXXLScd7vV6SpNPp9B03OXlZJiZ2NhkNWrOW9xiv9f3Fyen7HmPXCwBg\nVCgiYAjNzs4kWfwHCxgl3e50PnXHpzK2/cwVj5nbcjRJ8une51Y119yBw6t6/OnA9QIAON0oImCA\nJiZ29v2Xykf+lXfXrqtbTgSDMbb9zJzx0qc3Ps/DH/h843M0xfUCABgV9ogAAAAAWqOIAAAAAFqj\niAAAAABao4gAAAAAWqOIAAAAAFqjiAAAAABa4/adwIZz/fXXptudXtWYbvfOJI/eKnGlLrnk0lx+\n+RWrGkP71vKaSLwugMfau3dPpqZu6Xuu1+slSTqdzknnJicv63t73jYzrHcOgKUoIoANp9udzmdv\nvy3nnb/yMWPj87/uO3DbisfcP7PKYAxMtzudT93x6YxtP2dV4+a2zCVJPt27e+VjDjywqjmA0TA7\nO/+HwmIlwEbJAJAoIoAN6rzzk+d+X7OXwI9/+Gijz8/6Gtt+Ts58yTc3Ps/hG29tfA5gMCYmdi66\nouCRlVO7dl098hkAlmOPCAAAAKA1iggAAACgNYoIAAAAoDWKCAAAAKA1iggAAACgNYoIAAAAoDWK\nCAAAAKA1iggAAACgNYoIAAAAoDWbBx0AADg97N27J1NTt/Q91+v1kiSdTqfv+cnJyzIxsbPRHG1m\nAADWzooIAOCUzc7OZHZ2ZsNnAACWZ0UEALAiExM7F11RsHv3VUmSXbuuHliONjMAAGtnRQQAAADQ\nGkUEAAAA0BpvzQAAGGLXX39tut3pVY3pdu9M8ujbVVbjkksuzeWXX7HqcQCwUooIAIAh1u1O51N3\nfDabLtix4jFzW85MktSZ3qrmOn5w/6oeDwBroYgAABhymy7Yka0vekXj8xy66X2NzwEA9ogAAAAA\nWmNFBBvS3r17MjV1S99zvd78MtZOp9P3/OTkZYvevg4AAIClWREBjzM7O5PZ2ZlBxwAAABhJVkSw\nIU1M7Fx0VcMjO4zv2nV1i4kAAAA2BisiAAAAgNZYEQEwANdff2263elVjel270zy6Kqd1bjkkktz\n+eVXrHocAACsN0UEwAB0u9P5zB235QkXjK14zPEtc0mSL8x8clVzfeXg3KoeDwAATVJEAAzIEy4Y\nyzd9f/OX4X/80NHG5wAAgJWyRwQAAADQGisiADawNveqsE8FAACJIgJgQ+t2p/PpO27LGdtXvlfF\nsYW9Kj7XW/leFQ8fsE8FAADzFBEAG9wZ28fyxJdsaXSOe2880ujzAwBw+rBHBAAAANAaKyIAAFZp\n7949mZq6pe+5Xq+XJOl0Oiedm5y8LBMTO5uMBsAS1nr9TlzD15MVEQAA62h2diazszODjgHAKrl+\nt8eKCACAVZqY2Lnov4o9ckeZXbuubjERACvh+j0crIgAAAAAWqOIAAAAAFqjiAAAAABao4gAAAAA\nWqOIAAAAAFqjiAAAAABao4gAAAAAWqOIAAAAAFqjiAAAAABao4gAAAAAWrN50AGAjeP6669Ntzu9\nqjHd7p1Jkt27r1r1fJdccmkuv/yKVY8DAACao4gAWtPtTuf2229Lp7PyMePj87/ed99tq5qr11vV\nwwEAgJYoIoBWdTrJ8753vPF5PnrzscbnAAAAVs8eEQAAAEBrrIgAAABOW/agelSbX4th/jow/BQR\nAADAaavbnc7n7rgzF11w8YrHnLVlW5LkKzOreyvnvoN3rerxbet2pzP92c/ladtW/rU4d9N5SZKj\n9x5d8Zi7Z4f768DwU0QAAACntYsuuDiv+v43Nz7Pez701sbnOFVP23Zxfv673tToHO/82DWNPj+j\nzx4RAABTuS/SAAAgAElEQVQAQGusiKB1e/fuydTULX3P9Rbuudjpc3/HycnLMjGxs8loAAAANMyK\nCIbK7OxMZmdnBh0DAACAhlgRQesmJnYuurLhkd16d+26usVEAAAAtMWKCAAAAKA1iggAAACgNQN5\na0Yp5elJ3p3kiUnmkvyXWut/LKVckOS9SS5JMp3klbXW3iAyAgAAAOtvUCsijiT5uVrrNyZ5bpKf\nKqV8Q5I3JflIrfWZSW5e+BwAAAAYEQMpImqt99Ra/+fCxw8k+VSSpyZ5aZLrFh52XZKXDyIfAAAA\n0IyB7xFRSrk0ybcm+USSi2qt+xZO7Uty0aByAQAAAOtvoLfvLKWck+R9SX621vrlUspXz9Va50op\ncwMLt8727t2Tqalb+p7r9ea3weh0Oiedm5y8bNFbXQIAAAyT66+/Nt3u9KrHdbt3Jkl2775qVeMu\nueTSXH75Faueb9A2+s+HAysiSilbMl9CXF9rvWHh8L5SypNqrfeUUp6c5N6lnuP887dm8+bxpqOu\ni3PPPStbtvTPev/98y+0HTu29x23Y8e5jWYbJo98jQb5/yxDcxb7Hmhyvn5fwzZzDEOGYckxDBkW\nyzEMGU7luZLBXy+GIccwZGgixzC8Pochw6k8VzJ6r4thyDD/fMfW5blWOt/if44MNseWLeN5aEi+\nFkdzdKAZvvjFz2f6s5/Lxec9dVXPd97YOUmS4/sOr3jMXfd/4bS9Xgz7z4dNfy0GddeMsSS/k+ST\ntdZ3nXDqA0leneTtC7/e0Gf4V83MHGos43p7znOem+c857l9zz3S+r3xjW/pe37//i83lmvYHDky\nfwEf5P+zDM155P+rzfn6fQ3bzDEMGYYlxzBkWCzHMGQ4ledKBn+9GIYcw5ChiRzD8Pochgyn8lzJ\n6L0uhiHDsLwuhiHHMGRoO8dSGS4+76l50z97Q+MZrvnEu07b68Ww/3y4Xl+LxYqMQa2I+F+SvCrJ\nraWUv1s4dmWSa5L8YSnlx7Jw+87BxAMAAACaMJAiotb6Z1l8o8znt5kFAAAAaM/A75oBAAAAbByK\nCAAAAKA1iggAAACgNYoIAAAAoDWKCAAAAKA1iggAAACgNYoIAAAAoDWbBx2gaXv37snU1C19z/V6\nvSRJp9Ppe35y8rJMTOxsKhoAAKtw/fXXptudXtWYbvfOJMnu3Veter5LLrk0l19+xarHAbC0kS8i\nljI7O5Nk8SICAIDh0e1O59N33JHx7U9e8ZjjW7YmST7bO7SquY4d+NKqHg/Ayo18ETExsXPRVQ2P\nNOO7dl3dYiIAANZqfPuTs+0lr2t8ntkbf6vxOQA2KntEAAAAAK1RRAAAAACtGfm3ZgAAAMBG1eZG\nvyvd5FcRAQAAACOq251O9/bP5uJtO1Y8ZtumM5Mkc/t7Kx5z1+z+FT9WEQEAAAAj7OJtO3LlxCsa\nneNte9+34sfaIwIAAABojRURG8jevXsyNXVL33O93vySm06n0/f85ORli94GlaW1+Z6sZOXvy3qE\n1wUMj2G/XgAArAdFBEmS2dmZJIv/wMnadbvTueP227KjM7biMWeOzyVJ7r/vk6uaa39vblWPX47X\nBbSr253Op+6oGdt+3orHzG2Zv7Z8uvelVc01d+D+VT0eAGC9KCI2kImJnYv+6/Uj/5K2a9fVLSba\nOHZ0xvKDO89sfJ4/2nN41WO8LmC4jG0/L2e++LmNz3P4gx9vfA4AgH7sEQEAAAC0xooIAABYobXs\n5ZKsfT+XxfZysacMcDpTRAAAwAp1u9Opd3wuZ21/+qrGHd0yv/dLt3dkxWMeOvD5JXPcfsfnsu3C\ni1f8fJvOmM+wf/boisckyex9d63q8QDLUUQAAMAqnLX96fmal/1C4/N87v2/vuT5bRdenO95+ZWN\n5/gfN7yt8TmAjcUeEQAAAEBrrIgAAL7K+98BgKYpIgCAr+p2p/OpOz6TTRdsW9W4uS3ziyzrzL4V\njzl+cHYFOc5fRYbxhQz7VzxmPsfMqh4PAJwaRQQA8BibLtiWM1+8s/F5Dn9wzzI5zs+ZL/q+5nPc\n9OHG5wAAHmWPCAAAAKA1VkQw0tp8j7H3FwMAACxPEcFI63an87nbb8uTtq188c/Zm+aSJIf2f2rF\nY+6ZPb7qbAAAABuRIoKR96Rtm/Kjk2c1Ose7px5q9PkBAABGhT0iAAAAgNYoIgAAAIDWeGsGAEAf\na9nwOLHpMcAwsGn9cFNEAAD00e1O51N3fDabLti+qnFzW7YkSerMwRWPOX7wwKrmAGBp3e50pj97\nRy7e9uQVjzlv09YkyfF7D614zF2zX1p1NhQRAACL2nTB9pz1ohc3Ps9DN32w8TkANpqLtz05V37X\njzc6x9s+9l8bff5RZY8IAAAAoDWKCAAAAKA1iggAAACgNYoIAAAAoDWKCAAAAKA17ppBI9x7HQAA\ngH4UETSi253OnZ+9LU/dNr6qcedsOp4kefjeT694zBdmj61qDgAAAAZHEUFjnrptPK//7q2Nz/Ob\nf3ao8TkAAABYH/aIAAAAAFpjRcQ6si8CAAAAiZ8Pl6KIWEfd7nS6t9dcvG3bqsZt2zS/MGVu/z0r\nHnPX7Oyq5gAAAKA93e50up+9PRdvu2hV47ZtOitJMnfvl1c85q7ZfauaY9AUEevs4m3bcuXO7258\nnrft+bPG5wAAAGDtLt52Ua787lc1Ps/b/uw9jc+xnuwRAQAAALRmZFZErOX9NxvhvTcAAAAwTEam\niJjfn+EzuXjbBSses23T/P/+3P77VjzmrtmDq84GAAAAzBuZIiJJLt52QX5p5/c3Osev7PlQo88P\nAAAAo8weEQAAAEBrFBEAAABAa0bqrRnMs3En/XhdMKx6vV7mDhzOwx/4fONzzR04nF56jc8Do6bX\n6+XYgfvywAebvz3csQP70hs71vg8sJ56vV5mZg7mt25+W+NzfWmmm/PHV74vHgwjRcQI6nanM337\np/L0bWeveMx5m44mSY7tn17xmM/PPrjaaAxQtzudO26/LRd0xlY8Zsv4XJJk5r5PrnjMwd7cqrMB\nAAAbhyJiRD1929n5txNf2+gc79h7e6PPz/q7oDOWFz2v2W/7mz56tNHnZ/R0Op3ck4M546VPb3yu\nhz/w+XQ6ncbngVHT6XRy79x4znnxqxqf64EPviedzrmNzwPrqdPp5Kxj5+Z133tl43P91s1vy1md\n8cbngSbZIwIAAABojRURAGx48/tUPJDDN97a+FxzBx6wTwUAsKFZEQEAAAC0xooIADa8+X0qHsiZ\nL/nmxuc6fOOt9qkAADY0KyIAAACA1lgRATAAvV4vXzkwl3/8UPN3GfnKgbn0xvrvSdDr9fLwgbnc\ne+ORRjM8fGDOvggAACSxIgIAAABokRURAAPQ6XTylbkv5pu+v/nL8D9+6OiiexJ0Op0czBfzxJds\naTTDvTcesS8CAABJrIgAAAAAWmRFBNCaXq+XXi/56M3HWpgr2bx58X0R7p9JPv7hZvdnuH8mOXPc\nvgjAqen1ejl+YH8O3fS+xuc6fmB/emONT8OI6PV6OXDgYG54/+7G57rvQDdzuaDxeU53vV4vvdmD\neefHrml0nrtn70rnDL8frJ0VEQAAAEBrrIgAWtPpdHL06BfyvO8db3yuj958bMl9EQ4f+0Ke+33N\nXgI//uHF92YAWKlOp5N9c8nWF72i8bkO3fQ+1y1WrNPpZCzn5uUv29X4XDe8f3e2dZr/+8PprtPp\n5JyHz8nPf9ebGp3nnR+7Jps7fpRk7ayIAAAAAFqjxgIAAGBd9Hq99O4/kGs+8a7G57rr/rvTOXN7\n4/Ow/qyIAAAAAFpjRQQAAADrotPp5LzDZ+dN/+wNjc91zSfelU2dMxufh/VnRQQAAADQGkUEAAAA\n0Jqhe2tGKeUFSd6VZDzJb9da3z7gSAAAwJDq9Xo5eOBg3vOhtzY+174D3VwwdkHj88CoG6oVEaWU\n8ST/R5IXJHlWkh8ppXzDYFMBAAAA62XYVkR8Z5Lba63TSVJK+b+TvCzJpwYZCgAAGE6dTidb5s7N\nq77/zY3P9Z4PvTVP6Iw3Pg+MuqFaEZHkqUk+f8Lndy8cAwAAAEbAsK2ImFvrwF6vl30H7s3rbvhv\njzl+7PjxHD1+fE3PuXnTpoxvemxXc/jY0Vy0pf+XbT7DgfzEDTeddG6tOfpleDTHWUvk+Ep++sZ/\neMzxo8fncuz42r7E45vGsnnT2OMyHM9FW3qLZrjnwLG8+aYvn3Tu2PHk6Bp+SzZvSsb7VGeHjyZP\nOmOpHMfzjvcfOinDsbW9LDLeJ8fDx5InLfW1uG8uv3nDQyedO77GHOObkj4vixw5mhzfvHiOfffN\n5d3/75GTMqzxWySb+uQ4ejQZWyTDfI7kozcfO+n4Qw/N/7daZ501/1+/eS68cPFx988kH//w0ccc\nO/xgcngNGZLkzLOSM88+eY6Lti8+5isH5/KPHzp60vGHH5zLkUN9Bixjy9bkjLPHTjr+lYNzyfmL\nj3v4wFzuvfGxr4tjh+Zy7MHVZ0iS8bOT8a2PzfHwgbmks/iYuQOH8/AHPn/y8UNHkwdPfr0s6+zx\njG09+Vo9d+DwojnmDjyQwzfe2ifDw8mDD68+Q5KcfUbGtp5x0jyLZej1epm752Aeuu7DJ588tsZv\n1k2LXDyPHE0vZ590uNfr5fi+A3nwuhtOHrPuF4xj6Y31v+3afI79efDd712/HP0yJMnRo+mNbVkk\nwz059O7r+mQ4dgoZ+vxr6tEj6Y0t/u9Dxw/uz6Gb3nfS8bkHD2Xu0FdWHWNs6xMydvbWvvPk/P4v\n0GMH9+WBD77n5DEPPrDmDJvOPqfvPDn/3L5jer1ejt7zxRz4vX/XJ+DR+d+X1do0noz3+bvdkcPp\n5Sl9Mxy650v55LUn35pw7tjRzK0hw9im8Yz1yXD8yOH08uS+Y3q9Xg7c86V84Ld/8rFjjh3N8bV8\nHZJs2jSeTX1yHDtyOFvm+ue478BdueH9u086fujQbA49uPjfBxaz9exOtm7d1neebZ1nLDpu38G7\nTtoj4oEHZ/OVQ6vPkCRP2NrJOWefnGPfwbvyNef3z/GlmbvyWze/7aTjX35wNg88tPoc55zVybl9\nMnxp5q48Y/viX4u7Z+/KOz92zWOO3X94Nvc/NLvqDEly3lnbct6Zj81x9+xdufSJX7PomLvu/0Ku\n+cS7Tjo+e/j+zB6+f9UZtp15XradeV7feS69qH+O+Z+Jvpif/NDVjzl+9PjRHFvj98j4pvFs3vTY\n75HDRw/nojNOvlacmOEnbvr1k84dO34sR9eQY/Om8Yz3+XPk8NGHl89x4//1uAzH15Th0RyP/1n5\nSC46+Y/Tvsbm5tb8s/+6K6U8N8m/q7W+YOHzK5Mct2ElAAAAjIZhWxHx10m+rpRyaZIvJvmhJD8y\n0EQAAADAuhmqPSJqrUeT/Oskf5rkk0neW2u1USUAAACMiKF6awYAAAAw2oZqRQQAAAAw2hQRAAAA\nQGsUEUCSpJSywpvtAPAI106A1XPtZEMUEaWU8YVfB/r/W0r5J6WUk2/a3m6Gby+lnHwT3g2olPLz\npZSnDTrHMCil/HKSk2+IzoY2DNfOYbhuLuRw7Vzg2vko1076ce18TA7XzgWunY9y7SQZ8SKilPLa\nUsr/TPKzA87xqlLKbUl+NckfD6IBXMhwa5K3JPmjUsqZbWc4IcsPlFK2D3D+V5dSppJ8a5Ivl1LG\nBpjlraWU5w1w/stLKXuS/GiSyweVYyHLi0opFw0yw0KOrxv0X95KKV9fStk6wPkHfu0chuvmCTlc\nO+Pa+bj5XTtPzuHa6dr5+ByunXHtfNz8rp2PzTDw6+ZCjoFcO0e2iCilfEOSn0xyY5LvKaV8Ta31\neJvtdCllrJTysiSvS/JjtdYfSLI1yY8/cr6lHC9M8hNJfrLW+pIkT03y/Dbm7pPlLUn+a5IfHtD8\n353kd5P8m1rr5bXW2Vpr67eOKaV8Wynlr5I8K0m37b8olFI2l1J+LPOvxX9ba31Gki+UUr6pzRwL\nWX6glPLpJD+d5HdKKd/YdoaFHC8rpdyR5P9v78yjLamqO/w9uhlkUERUkEFFw0bRJmAgKgita6Gi\nOKDRSIOCjcYhoiIiaAZURAhDEAc0EpdzHJiNY8QBAyjIICriBsKogAwNqNDdQPfLH+dUV/X1jbem\n/fr+vrV69Xv31qv63n777nvOvlWnPgic2segxcz2MrPbgH8Dvm5mm/bgEKF29l4387FUO8vj74pq\np2rnxB6qnfRfO6OMOfOxVDvL42vciWrnBA69183s0WvtXKMaEWa2UfG1u18FHACcBFwFvC0/vrIr\nj1xofgkc4O4/y0+fDLys8nyrDpnvu/tu7n6BmW0M3ARsaGYbtnX8CXyKXFsKfCE9ZH+Tn2v1zXEg\nL84HLgG2y88dYWYv6SoWld91O+CL7r6Pu18HrOjo+EVuPgSc4e67u/vFeQD1py4cBnweA/wDsNjd\nXwjMB/p4Q9gEeAOwyN33Be4A3mdm23bosB6wD7C/u78M+D3wTjPbsYNjzyu+zrXztXRcO6sOwG9I\ncei0bk7g8aMRr53VvLgAuIjRrZ3zYFXtPEe1c5XHqNfOVfnf17izcOhzzFn1yIz6uLOaF6M+7izy\nU+PO0qH3upk9equdBWtMI8LMjgAuN7PjzOzA/PBv3X0JcBbwJDPbI287b5LdNOlxvJnt7+7XAzdW\nNnkS8NO8bSuFcCAWB7j7g2Y2z8w2A74F3APsD5yYC0ErDDQAijfiecCfScm+d36uzYZMNRZvyA+/\nFfi8pVMGNyZ1RE8ws+1a9Kg2pwD2Ah7Mz30UONLMdjGzdVp0GMyLe3JerJUHUE8gnTbY6nWtA02y\nFcB6wGb5+5XA5ma2eZcNKmCMVA+Lv89XgVcCL7YWTycdmOgtA7YFiq748aTXy/Pym0VbDkeR8u/R\nFRfvsnZWHB6TH7rJ3Tutm5N4LM+Pd107q3EucrLr2vkXeUH6tLfr2lk0AIrf9fl0XztXywt3vzM/\n3nXtrObFGLA2/dTOqkfxqWrXtbM60VtGmmR1XTsPB87L470D8sOdjjsrDieY2aI+xpwDHseb2Wvz\nuHOtHmpnNS/6GndWY7E4P9xH7aw2qKCfcWc1P1/b47iz2vTpZdw54NDLmDN7PLw4Rl+1s8oa0Ygw\ns+cBLwL2BL4DHGNmCyovvquAH5NOV8PdV7TxpjDg8W3geDPbIR+veKFvBlybPRovhBPE4tjCwd1v\nA17s7otIXfvHAls17ZA9Vpv05sfWBh4OfDm7bW5mJ5nZXi05DMbiKDPbyd0vAd5OOnXxCGA/0t/l\nCS15VGNxUH74DOCFZnYacGt+7C3AopYcJsqLBe6+grIOfBnYDdr7BGcgFvu7+13Ax4FXmtntwM3A\nAuAoWjyNc8BjUfb4FXCApU71M4BLSXmxRUsOq0308pvwWcBfmdk67n4tcBnwOFKDounjr2tm7yVd\np/l0YKfKc0VO/IYWa+cEDjvm4xQNgPl507br5mQeK81srOPaOdgAWCsPjjaig9o5WV7kOPyC9Cnv\n4o5q50TNkNPpqHZOlhcVikFrF7VzsEl2D/Axuq+dgx7zgSvotnZWJ3oH5ofPprvauamZfZ70ux4E\nXAy81cy2rNSntmvnoMNFwDuyQ5djzoli8bbssbLj2rlaMyQ/tjbd1c6JYvEmM3uCu19KGnd2VTur\nsXh9frjL2jlRfhZ5sYI02YVuamc1FsV4r9PaOeCwL7CEjsec2eMw4ELgJDMrFgrtrHZOxJxuRFQ6\nV+sAv3D36939R8BHgWMrm94HnEZaIOZDZnY88MSOPI4BcPcH8jZPA863xPutoWuCZuKQuTf7LAHu\nBB7ZxPEHXCaa9O7o7g/mTR5BGtS9HHgx4A0ffyZ/j4+7+8/z13cAd9NNLI62dD3cL0gd+g3c/Zjs\ndRHwZGuwGzqT10g+XQ7Sp7/3WLrOtO1G3XdJnwbs4O6nk66pPd3d30RaRflu4MlNO0zi8e+WTof7\nFCkGXyK9MR4JPJPULW/y+H8x0cuTvJXADcAmQLGQ1I/zNm18mvYg6ZOqpwI/A55rZtvk54oBa6u1\ncxqHam62Ujdn6pFd7sn/t1I7J2sA5CbyOOlv8nBarJ2ZCWNRTGLc/ZTczG2tdk72GslP3wj8kZZr\nZ2bSvMiv2eLU5tZq50TNkHzs5e5+NnAOHdTOKTx+D3wNWAZ8kXZr52QNgE1Jg/pN6aZ23gd8z91f\nnZtz5+bjbzmwTZu1c0qHtsecM/XILm3XzsmaIVvncecY3dTOyWKxBawad7ZdOyeKxZvNbPPs0vq4\nMzNdfhbzgTZr50SxKJp1Z9DBuHMSh0NIZyB8mvT7t1o3Kx6fAXYB/p70vvHS3Ki7lu5q518wpxsR\nle7u+sAmllcdzS+wzc3s1fn7laQ3yQWk7t8duevTqYeZPZmUfB8EvgLclTtznTmQPl3bxMxOJMXj\nkiaOD1NOek8GPmypQ7828DnSi/7DpEHe7k05wLSxeEwlFvQQi48CRwO3UHbnn5RPj3oE8GDxaXAT\nzCIvIJ05tNjdxysD7NpMEosfkvKi2jBcYWaPdPc/kQYOja7eO4XHR4F/d/cb3P1dpDNlFrn7r0md\n8k2a9GCCyQ3p9FmA/wVuA/Y0s63yYOUPtDCxyHXxane/D/g6abC0i5mt6+7jlk6dHKfd2jmpA6Qz\nM8xsa1qqmzPxKGKRfVqpF5mpJr3rkfL287RYO2FGf5Ox/H+nsQCKxtDVpAbiZm3WTphRXhQDtVZq\nZ2aiWFQntGO0XDun8NgGwN1/5e6H0n7tnGhy82vS5OYS0vtqq7UzN1+WkiYxBQ+Rzpa5pbJNa7Vz\nJg55u1Zr50w98rZt1otJGwC5bs2n5do5TSxuHti261hcSfqE+3eks7VbrZ0zfI0U8882a+dkeVGc\nkTNO+7Vzspq1jbtf19GYE9JaHCe5+6vc/UpS4+GXpN/5u6Rx5/PbHndOxJxqRFi65cuCyvdjAO5+\nJilgL65sfhzwrsr3x5L++Fu5+3Edexyavx4jvXH/AdjV3T/WocMh+eunkT69mA8sdPf/G9ZhkCkm\nvceSiuAewJnAce6+s7ufDFzO6tczzpph8yIP8r9Kao48x92vqeNRZYpYfBh4POlUxS+RTon6mJmd\nQlrR+aI6x635GrmAdMbGvMqkvTYzaIbsTcqDDUhnSZxIOlvh4qYcpvH4MGnA8pr8/a1mtpWZfYI0\nwG30k5NJJjd/Y2YP8/SJ0dmkaxi/ZGankj4Zv6zOMQfzouKyLA8arif9/XcHnlLxhLSScu3aWcNh\nXVKjpnbdHNYDGDezHUifcDZeO/PxJ5v0PiwPGC8Gjm6zdlZcpopFUTu/Rgu1Mx9/oljsbGbr5QHz\nOaS/RWu1s+IyVX4WA+cLaaF25mNMlhfF9bt3kJpUrdXOKTx2rjYN3f22tmrnFJObHYB73P1u0qVt\nrdZOL88Mqi6y9yjgdne/qboNLdXOmThk1qPF2jlTj1w7v04LtXOaSe+tuV5cRMu1cxaxaK12TvMa\nudPTWTJnky7RaK12zvA1UowvWqmdM2yS3U6LtXOav8dtxQNt1s3KMZa7+69znA8kzYm3IMV/d9IH\ncmvRYO2cKfOn36R/chH7Aum05V9WnhqzdE3LcuAjwNvN7NI8YLgQ2M3MNsovhoNzQvTh8RxLp7/c\nC2zv7rcyJA04/B+wr+fFtupg6Rq8K9z9l/n7sdzVPNPM3kOa9J6eNz8OONLdd8s+ALj7F2ocv04s\n1iUVo329gU8IhojF4cBZ7v4BS6s47wQclgd5wxy/zmtkfWCpp9PgPzLM8QdcZh0Ld3+OpVts7U96\ng372sLGo4fFOUmMK4BOk/HiRu9/flENBdXJjZsXkxoHL3f1q4HAzeznpk89D3P3PQx5/wrzIn0YU\np5bPI705foW0cvT2ZvZ0YJm7n0aqnXViUMfhbtInONu7+y3UoIbHAmCJu3/TzF7j6dOCWswyL64G\nLst/i+q2jdfOGf5N7nX3b5hZK+8jBdO8Rv5MWgvqB8Bf00LtnGEs7nP3Mz2dZtx47SyYKi9Ip9Fe\nQ7rTzXxaqJ3TePyWdIZZMbE4hbQoYKO1c5rJzQ35uWvosHaa2bycH1uSahVm9oLs8j3gbXXGnTUc\nXgjcT1qkspPaOYXHUnc/L9eLxmvnVHlBulMHni7/XEXbtXOKWCxz9x+3VTuneY3cmJ+7j3SG8s6k\nSXmrtXOK18gKdz+3rdo5k7wg1c5raah2zvLvcdPAjzdSNyfyqJL/Jr8AHu9pDaz9gY+7+3bAIZZu\n/7sNNWrnbJkTjQjS9dyfcPdPVx/Mb3zLzexJpA7j9sA/mdnlwEuAG4oEqNuEqOlxY36x3R7A4UHS\nNWJDM+Sk93zg2XnSuwwYd6+9cFKdWBSnoS2rIzBkLC4AdjWzDd39z56uGax7el6d10itoldQIxa7\n5VjcbGbH1s2LhhqX+9Z8QxpmcvNUS+uHLHX30z1d/12XqfKCnBd3kT5RvNfMriEtHnoX8I68bd38\nGNZhCakJspKB03z78Mjb1hpID5kXTzGzpwL3e2qireX1F/VqIha1BtI1XyP3u/sZ7n4x9T/Bqv0a\nqUuNvHgaqRlyRq6dtfKiZlNmaZ7w7VtnAFtzcjPu7v/TYe1cko+/B7C2mX2KdG31e/O2dcedwzos\nAI7IY76uauekHnnb1mvnYF7kidaqSa+Vl8zUoYm8aL12TvEaWenu3/e0RtrP63jQQCzqMmRejOfG\n0Ap3/76ZHVMnL5qoWdSsmzP1APB0iUjBucALzGwTd1/i7ufUcRiGkI2ICYrFdqS7DGBm7yKtRvwz\nT7eBOQJ4N+k+qCeSLj14I/BDr38JRu8eERwmoJdJ7xoYizqDtTUyFg0MEup6FI3LWp8oTuPQ2uRm\niLw4BHi9mX0nb/tO4AR3P3ouO0TyGKCJxtCsJ5traiyGYU2NRQPNqaY86n6K1svkZsi8WEy5bsYz\ngbpeq+4AAA3HSURBVBPd/c1z2SGSxwBNNABmPb5YU2MxDGtqLII0p5o4+2BG9dvz4rFmtgXp7iE3\nerosuBfCNSLM7GDS/UvPA07ztCLzLcBjzexs0nU1OwMHmdnRpMsdtq0E8Xwzu7Dum3IEjwgO2aP3\nSa9isZqDYhHMI8LkZsi8eEqRF2Z2A/D0Ok2YCA7BPJQXpYdiUXr0HosoHhEmN3XzgnR2yD8WA/y5\n6hDMQ3lReigWpUeEWPTuUMPjQDP7MalxvB/wOXc/sY5HXcbGxxu/rfDQmNkrSN2h95BuEbWUtKDG\ns0n3Yr7E3Q+ztFL1uaQVQL+Rf3Ye6ZSj2r9QBI8IDnlfBwPPA1YVHzM7BriOdI39baRVd+eT7gbx\nLOBr1e6a1TyVWLFYzUGxCOZR18HSoplr1WwA1MmL+V7eJnNoIjgE81BelB6KRenReyyieDTgsDdw\nfs0GQJ28WMfL22QOTQSHYB7Ki9JDsSg9IsSid4eGPHYB3N3vrePRBNHumvG3wCmebnP4AdJ1Lu91\n96+SgrqumW3m6TqXC8m3vMtdoeJe62uKR+8Oufi8jrSa6g6k09i3Bq4AFgHX5I7e/qRbwWzt7p90\n9yVWWQG37mQTxaKKYhHIo6bD/Hz8pXUnFdTLi0YmWEEcQngoL0oUi5IosYjgUdNhnezwzboDeurl\nRSMTrCAOITyUFyWKRUmEWERwaMBj7exxsQdoQkCQRoSV95O9jnSqCJ5WQf4G6bSf3YDjgQeA95rZ\nvwKvJK142tR15SE8IjhU6HXSq1iUKBZhPXqd3ETIiwgOkTwyI58XFRSLkt6bIYE8ep3cRMiLCA6R\nPDIjnxcVFIuS3pshQRzqejzYoEcj9NKIMLNH5/+LznrxieTpwFJLt14CuBX4AemWKpcBxwBXAQ8D\n9nT3y+e6RwSHCZx6KT6KxWrHVSwCe4xyXkRwiOQx4DSyeTGBk2JROvVes6J4jHJeRHCI5DHgNLJ5\nMYGTYlE6jWzNiurRNJ2tEWHpNOj1gc8AW7n7rpXHx4BC5EDgNcALPd1i5TBgQ3c/ck3xiOAw4PNo\nd7/DBq6DNbNHAZ8DPuPuZ5vZI0in+mzg7sfl518FPJ7Unbt5iGMrFuUxFIugHqOeFxEcInlUfEY6\nLwZ8FIvSp/eaFcVj1PMigkMkj4rPSOfFgI9iUfqMdM2K6NE2nd01I3di7jMzgE3N7K3ufgowrwiw\nmW0AfA/YHfi0mb0f2Am4ck3yiOAwWHyAXd39oYHiswQ4E3iLmZ3j6XZd6wMb5N/jLuBTdTwUixLF\nIpZHBIe8j97zIoJDFA/lRYliURIlFhE8IjjkffSeFxEcongoL0oUi5IIsYjgEMmjSzq5NMPMxvK/\nzYE/AG8gBfCRlUQ/CjgL2Aw4NG/3ZdJ9V49ZUzwiOEAqPl4uNLWpmb01fz3P3Ys7K6xPKj63kIrP\nFqTi08g1RopFiWIRzyOCQ4S8iOAQyUN5UaJYlESIRRSPCA4R8iKCQyQP5UWJYlESIRYRHCJ5dElr\nl2aY2UJgmbv/zCq3xzOzc4B/BA4H7iN1be4ATgX+1d2vrexjfXe/f657RHAY8BnLX24GHEG6/usU\nYHd3vztvcxRpQZQjSAuhvAvYjXRf2oM9LYIyzLEXolgUx16IYhHSY9TzIoJDJI/KvkY6LwZ8FIty\nX73XrCgeo54XERwieVT2NdJ5MeCjWJT7GumaFdGjaxpvRJjZRsDngecCZwOHennf0m2Bt7j7IWb2\nUuBLwA3uvqDy8/OAouszpz0iOFT2tZAei49isdrxFYuAHn07RMiLCA6RPPK+FjLieVHZ10IUi2Jf\nC1HtDOEQIS8iOETyyPtayIjnRWVfC1Esin0tZMRrVjSPPmljjYgHgB8B/wnsSlow4z/yc7cATzaz\n/wYMOA9Y1b0xs3kNdnMiePTuMFh8zOzqgeJznbv/zsy+Tyo+L8rFZ1HhQS4+NRNdsShRLAJ5RHDI\n9J4XQRxCeCgvShSLkiixiOARwSHTe14EcQjhobwoUSxKIsQigkMkjwg0skaEmb3OzBZauq5oOalj\ncy5wNfAMs7QKCrAR6R6n1wHPcPeXAFuZ2TMA6iZ6BI8IDgMUxWc/UrF5VeW5avE5gVR8rqv8LvPc\nfcWwHVDFokSxCO0x0nkRwSGSR4WRzosBFIuSCDUrisdI50UEh0geFUY6LwZQLEpGumYF9eidoS/N\nsHQty+bAfwErgWuBDYF3uPsdeZttgQNIp50clR/b2N3vqexnte/nokcEhwGf1wE3AVe4+91mtl72\n2pfUCT3R3d3SAjUfBO4H/tnd/2RmlwL/4O6XDnlsxaI8tmIR1GPU8yKCQySPyn5GOi8GfBSLcj+9\n16woHqOeFxEcInlU9jPSeTHgo1iU+xnpmhXRIxpDNSIs39PUzIx0rcp+ZjYf+AjwOHd/RWXbfYA9\ngZOA35GC/gAw5vlamGGJ4BHBIe+79+KjWKzmoFgE8wji0HteRHAI5qG8KPetWJT77j0WUTyCOPSe\nFxEcgnkoL8p9KxblviPEoneHSB6RmVUjwtI1KR8iXdLxHdLpPH/n7gdUnr8FeLW7n1f5ufcBB5GC\nv9Ddr6ojHcEjgkNln70WH8ViteMrFgE9+naIkBcRHCJ55H2OfF5U9qlYlPvsvWZF8ejbIUJeRHCI\n5JH3OfJ5UdmnYlHuc+RrVjSP6Mx4jQgz2wO4FNiY1NE5inTP0uea2S6w6jqi9wMfqPzcq4F/Il0L\n8/QGCnHvHhEc8v7mmdkxwNGWVl7dFngoH/8h4B3ArtmX/PhZpCT/LunWL9t4Wuxk2AKoWJQOikUw\njyAOvedFBIdgHsqLcn+KRbm/3mMRxSOIQ+95EcEhmIfyotyfYlHuL0IseneI5DFXmM1ileOk61fe\n4u6nAr8GnggcCXwSVnXdzgLuMLMn5p+7DdjL3d/g7rc34BzBo3eHKMUHxaKKYhHII4JDpve8COIQ\nwkN5UaJYlESJRQSPCA6Z3vMiiEMID+VFiWJREiEWERwiecwlZtOI+DlwWk5ogPOBrd39s8A8M3t7\nDu6WwEPufj2Au//E3X/SoHMEjwgOvRefjGJRoljE8ojgADHyIoJDFA/lRYliURIlFhE8IjhAjLyI\n4BDFQ3lRoliURIhFBIdIHnOGGTci3H2puy/z8jYuewJ35q8XA08xs28BXwEua1YzlkcEB2IUH8Wi\ngmIRziOCQ4i8iOAQyEN5UaJYlISIRRCPCA4h8iKCQyAP5UWJYlESIRYRHCJ5zBnmz/YHLC20MQ48\nlrQ4CsAfgfcB2wM3uPvvGjMM7NGng7svHXhoT+BX+evFwBtz8dkW+HQbDlUUixLFIoZHBIcqo16z\nongoL0oUi5IosYjgEcGhSoS6FcGhbw/lRYliURIhFhEcInnMJWbdiPC0Auh6pI7bAjM7OX99sLuf\n37RgZI8IDlHeHBWLEsUilkcEB4iRFxEcongoL0oUi5IosYjgEcEBYuRFBIcoHsqLEsWiJEIsIjhE\n8pgLzOr2nQVm9izgAuBC4LPu/pmmxeaKRxCH9YBTSdccHURZfP7YsYdiUXooFoE8Ijhkjwh50btD\nFA/lxWoOikXpECUWvXtEcMgeEfKid4coHsqL1RwUi9Kh91hEcIjkEZ1ZnxGRuRn4Z+AEd3+gQZ+5\n6BHBYUdgP9KCKL29OaJYVFEsYnlEcIAYeRHBIYqH8qJEsSiJEosIHhEcIEZeRHCI4qG8KFEsSiLE\nIoJDJI/QDHVGhIiFmW0JvI7+3xx7R7EoiRKLCB4RHEQ8lBclikVJlFhE8IjgIOKhvChRLEoixCKC\nQySP6KgRIYQQQgghhBBCiM6Y8e07hRBCCCGEEEIIIeqiRoQQQgghhBBCCCE6Q40IIYQQQgghhBBC\ndIYaEUIIIYQQQgghhOgMNSKEEEIIIYQQQgjRGWpECCGEEEIIIYQQojPm9y0ghBBCiLmFmd0ALAWW\n5Yd+BNwLbOjuh81yH8uBDYArgX9z958ObHcRsI6772hmjwLOzU9tCDwOuDp//6383LcBr+ziCnc/\ncMa/nBBCCCFaR40IIYQQQsyWceCV7v6b4gEzO7LOPsxsH+DbZvYCd784P7Y98AhguZnt5O6XATvm\n5/YATnD3nSsOC4Erq48JIYQQIh66NEMIIYQQwzDW5M7c/SzgU8C7Kw8vBr4AfDF/3drxhRBCCNEd\nOiNCCCGEELNlDDjdzIpLMw5vaL8XAy8FMLO1gUXALsBDwBVmdqi7L59mH081s8sr35/h7h9qyE8I\nIYQQDaBGhBBCCCFmy0SXZjyrgf1Wz3LYG/itu9+c938ZsA/w1Wn28RtdmiGEEELERo0IIYQQQkRh\nZ+BX+evFwNPM7Pr8/QakS0qna0QIIYQQIjhqRAghhBCiCYZZs2HVz5jZy4A3A883s82A3YHHuft9\n+fl1gVvNbKviLAkhhBBCzE3UiBBCCCFEE4wDbzKz11Qe+6C7nzrFz5xuZtXbd+7l7j83s/cA3y6a\nEADuvtzMzgIOBI6qHHPQYXCNiN+7+97D/UpCCCGEaIOx8fHB93AhhBBCCCGEEEKIdtDtO4UQQggh\nhBBCCNEZujRDCCGEEK1gZv8CvGKCp/Z09zu79hFCCCFEDHRphhBCCCGEEEIIITpDl2YIIYQQQggh\nhBCiM9SIEEIIIYQQQgghRGeoESGEEEIIIYQQQojOUCNCCCGEEEIIIYQQnaFGhBBCCCGEEEIIITrj\n/wFxh+E34aYCngAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x7f679a66ab90>" ] } ], "prompt_number": 46 }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that the median arrival delay on most days is zero (or better than zero: this data column counts early arrivals as zeros). Some days see greater skew toward longer delays than others, particularly over the five day periods of Sunday, 2014-06-08 through Friday, 2014-06-13 and Monday, 2014-06-23 through Friday, 2014-06-27. There's also another period of elongation from Wednesday, 2014-06-18 through Thursday, 2014-06-19. These might relate to weather patterns during those weeks or an increase in number of passengers (e.g., summer vacations). Further study and sources of data are required to test these hypotheses." ] }, { "cell_type": "code", "collapsed": false, "input": [ "!cal 6 2014" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " June 2014 \r\n", "Su Mo Tu We Th Fr Sa \r\n", " 1 2 3 4 5 6 7 \r\n", " 8 9 10 11 12 13 14 \r\n", "15 16 17 18 19 20 21 \r\n", "22 23 24 25 26 27 28 \r\n", "29 30 \r\n", " \r\n" ] } ], "prompt_number": 47 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Going Further\n", "\n", "If you wish to take this exploration further, here are some questions you might consider addressing with additional thinking and data.\n", "\n", "* How accurately can a model predict if a flight will be delayed or not using simple features like origin, destination, day of the week, etc.?\n", "* What factors (e.g., U.S. weather) help explain the greater median arrival delay and dispersion from 2014-06-08 to 2014-06-13?\n", "* How do the results above contrast with the results from applying the same analyses to data from June, 2001? June, 2002?" ] } ], "metadata": {} } ] }
mit
Ledoux/ShareYourSystem
Ouvaton/Concluder.ipynb
1
7082
{ "nbformat": 3, "worksheets": [ { "cells": [ { "source": "\n<!--\nFrozenIsBool False\n-->\n\n#Concluder\n\n##Doc\n----\n\n\n> \n> A Concluder\n> \n> \n\n----\n\n<small>\nView the Concluder notebook on [NbViewer](http://nbviewer.ipython.org/url/shareyoursystem.ouvaton.org/Concluder.ipynb)\n</small>\n\n", "cell_type": "markdown", "prompt_number": 0, "metadata": { "slideshow": { "slide_type": "slide" } } }, { "source": "\n<!--\nFrozenIsBool False\n-->\n\n##Code\n\n----\n\n<ClassDocStr>\n\n----\n\n```python\n# -*- coding: utf-8 -*-\n\"\"\"\n\n\n<DefineSource>\n@Date : Fri Nov 14 13:20:38 2014 \\n\n@Author : Erwan Ledoux \\n\\n\n</DefineSource>\n\n\nA Concluder\n\n\"\"\"\n\n#<DefineAugmentation>\nimport ShareYourSystem as SYS\nBaseModuleStr=\"ShareYourSystem.Objects.Conditioner\"\nDecorationModuleStr=\"ShareYourSystem.Classors.Tester\"\nSYS.setSubModule(globals())\n#</DefineAugmentation>\n\n#<ImportSpecificModules>\n#</ImportSpecificModules>\n\n#<DefineClass>\n@DecorationClass()\nclass ConcluderClass(BaseClass):\n\t\n\t#Definition\n\tRepresentingKeyStrsList=[\n\t\t\t\t\t\t\t\t\t'ConcludingTestVariable',\n\t\t\t\t\t\t\t\t\t'ConcludingConditionTuplesList',\n\t\t\t\t\t\t\t\t\t'ConcludedConditionIsBoolsList',\n\t\t\t\t\t\t\t\t\t'ConcludedIsBool'\n\t\t\t\t\t\t\t\t]\n\n\tdef default_init(self,\n\t\t\t\t_ConcludingTestVariable=None,\n\t\t\t\t_ConcludingConditionTuplesList=None,\n\t\t\t\t_ConcludedConditionIsBoolsList=None,\n\t\t\t\t_ConcludedIsBool=True,\n\t\t\t\t**_KwargVariablesDict\n\t\t\t\t):\n\n\t\t#Call the parent init method\n\t\tBaseClass.__init__(self,**_KwargVariablesDict)\n\n\tdef do_conclude(self):\n\t\t\"\"\" \"\"\"\n\n\t\t#debug\n\t\t'''\n\t\tself.debug(('self.',self,['ConcludingConditionTuplesList']))\n\t\t'''\n\t\t\n\t\t#Apply __getitem__\n\t\tself.ConcludedConditionIsBoolsList=map(\n\t\t\t\tlambda __ConcludingConditionTuple:\n\t\t\t\tself.condition(\n\t\t\t\t\t\tself.ConcludingTestVariable[\n\t\t\t\t\t\t\t__ConcludingConditionTuple[0]\n\t\t\t\t\t\t] if type(\n\t\t\t\t\t\t\t__ConcludingConditionTuple[0])\n\t\t\t\t\t\tin SYS.StrTypesList else __ConcludingConditionTuple[0],\n\t\t\t\t\t\t__ConcludingConditionTuple[1],\n\t\t\t\t\t\t__ConcludingConditionTuple[2]\n\t\t\t\t\t).ConditionedIsBool,\n\t\t\t\tself.ConcludingConditionTuplesList\n\t\t\t)\n\n\t\t#all\n\t\tself.ConcludedIsBool=all(self.ConcludedConditionIsBoolsList)\n\n\t\t#Return self\n\t\t#return self\n#</DefineClass>\n\n```\n\n<small>\nView the Concluder sources on <a href=\"https://github.com/Ledoux/ShareYourSystem/tree/master/Pythonlogy/ShareYourSystem/Objects/Concluder\" target=\"_blank\">Github</a>\n</small>\n\n", "cell_type": "markdown", "prompt_number": 1, "metadata": { "slideshow": { "slide_type": "subslide" } } }, { "source": "\n<!---\nFrozenIsBool True\n-->\n\n##Example\n\nLet's do a simple conclude call", "cell_type": "markdown", "prompt_number": 2, "metadata": { "slideshow": { "slide_type": "subslide" } } }, { "cell_type": "code", "prompt_number": 3, "language": "python", "input": [ "\n", "#ImportModules\n", "import ShareYourSystem as SYS\n", "from ShareYourSystem.Objects import Concluder\n", "import operator\n", "\n", "#Definition of an instance Concluder and make it print hello\n", "MyConcluder=Concluder.ConcluderClass().conclude(\n", " {'MyColorStr':'Black','MySuperInt':6},\n", " [\n", " ('MyColorStr',operator.eq,\"Black\"),\n", " ('MySuperInt',operator.gt,3),\n", " (1,operator.eq,1)\n", " ]\n", ")\n", " \n", "#Definition the AttestedStr\n", "SYS._attest(\n", " [\n", " 'MyConcluder is '+SYS._str(\n", " MyConcluder,\n", " **{\n", " 'RepresentingBaseKeyStrsListBool':False,\n", " 'RepresentingAlineaIsBool':False\n", " }\n", " ),\n", " ]\n", ") \n", "\n", "#Print\n", "\n", "\n", "\n", "\n", "\n" ], "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "\n", "\n", "*****Start of the Attest *****\n", "\n", "MyConcluder is < (ConcluderClass), 4537219024>\n", " /{ \n", " / '<New><Instance>IdInt' : 4537219024\n", " / '<Spe><Instance>ConcludedConditionIsBoolsList' : \n", " / /[\n", " / / 0 : True\n", " / / 1 : True\n", " / / 2 : True\n", " / /]\n", " / '<Spe><Instance>ConcludedIsBool' : True\n", " / '<Spe><Instance>ConcludingConditionTuplesList' : \n", " / /[\n", " / / 0 : \n", " / / /(\n", " / / / 0 : MyColorStr\n", " / / / 1 : <built-in function eq>\n", " / / / 2 : Black\n", " / / /)\n", " / / 1 : \n", " / / /(\n", " / / / 0 : MySuperInt\n", " / / / 1 : <built-in function gt>\n", " / / / 2 : 3\n", " / / /)\n", " / / 2 : \n", " / / /(\n", " / / / 0 : 1\n", " / / / 1 : {...}< (builtin_function_or_method), 4522748384>\n", " / / / 2 : 1\n", " / / /)\n", " / /]\n", " / '<Spe><Instance>ConcludingTestVariable' : \n", " / /{ \n", " / / 'MyColorStr' : Black\n", " / / 'MySuperInt' : 6\n", " / /}\n", " /}\n", "\n", "*****End of the Attest *****\n", "\n", "\n" ] } ], "collapsed": false, "metadata": { "slideshow": { "slide_type": "-" } } } ] } ], "metadata": { "name": "", "signature": "" }, "nbformat_minor": 0 }
mit
NYUDataBootcamp/Projects
UG_F16/RodriguezBallve-Spain's_Labor_Market.ipynb
1
292917
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Exploring Spain's Broken Labor Market" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Author** Bosco Rodríguez Ballvé\n", "**Date** Fall 2016\n", "**Class** Data Bootcamp @ NYU Stern \n", "**Instructors** Coleman, Lyon\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Abstract" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A successful economy in the 21st century, in which the mix of products and services is changing constantly, requires a dynamic labor market as a mechanism to shift capital and labor. The ability of an economy to reallocate jobs across firms, industries, and geographical areas is, perhaps, even more important than capital. \n", "\n", "Decades of persistently high unemployment in Spain, regardless of business cycle fluctuations, suggest that lack labor market dynamism has hindered Spain’s economy. Currently, almost a decade after the Great Recession, with economic recovery underway, Spain’s unemployment rate remains stubbornly high. Particularly amongst the youth. Chronic unemployment suggests deep rooted, structural causes that go beyond demand-deficient or cyclical unemployment. \n", "\n", "The aim of this project is to compile and process data to shed ight on the relationship between education levels, age and structural unemployment in Spain." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Loading the modules" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "from pandas_datareader import data, wb # we will be working with World Bank Data \n", "import wbdata\n", "import pandas\n", "import matplotlib.pyplot as plt\n", "import sys \n", "import matplotlib as mpl \n", "import matplotlib.pyplot as plt \n", "import datetime as dt \n", "%matplotlib inline " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data extraction and clean up" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "My first data source is the World Bank. We will access World Bank data by using 'Wbdata', Wbdata is a simple python interface to find and request information from the World Bank's various databases, either as a dictionary containing full metadata or as a pandas DataFrame. Currently, wbdata wraps most of the World Bank API, and also adds some convenience functions for searching and retrieving information.\n", "\n", "Documentation is available at http://wbdata.readthedocs.org/ \n", "\n", "We install it with 'pip install wbdata'\n", "\n", "Credits go to:\n", "\n", "Sherouse, Oliver (2014). Wbdata. Arlington, VA. Available from http://github.com/OliverSherouse/wbdata.\n", "\n", "Let's get to it." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>name</th>\n", " <th>source</th>\n", " <th>sourceNote</th>\n", " <th>sourceOrganization</th>\n", " <th>topics</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>685</th>\n", " <td>6.0.GDPpc_constant</td>\n", " <td>GDP per capita, PPP (constant 2011 internation...</td>\n", " <td>LAC Equity Lab</td>\n", " <td>GDP per capita based on purchasing power parit...</td>\n", " <td>b'World Development Indicators (World Bank)'</td>\n", " <td>Economy &amp; Growth</td>\n", " </tr>\n", " <tr>\n", " <th>7437</th>\n", " <td>NY.GDP.PCAP.KD</td>\n", " <td>GDP per capita (constant 2010 US$)</td>\n", " <td>World Development Indicators</td>\n", " <td>GDP per capita is gross domestic product divid...</td>\n", " <td>b'World Bank national accounts data, and OECD ...</td>\n", " <td>Economy &amp; Growth</td>\n", " </tr>\n", " <tr>\n", " <th>7439</th>\n", " <td>NY.GDP.PCAP.KN</td>\n", " <td>GDP per capita (constant LCU)</td>\n", " <td>World Development Indicators</td>\n", " <td>GDP per capita is gross domestic product divid...</td>\n", " <td>b'World Bank national accounts data, and OECD ...</td>\n", " <td>Economy &amp; Growth</td>\n", " </tr>\n", " <tr>\n", " <th>7441</th>\n", " <td>NY.GDP.PCAP.PP.KD</td>\n", " <td>GDP per capita, PPP (constant 2011 internation...</td>\n", " <td>World Development Indicators</td>\n", " <td>GDP per capita based on purchasing power parit...</td>\n", " <td>b'World Bank, International Comparison Program...</td>\n", " <td>Economy &amp; Growth</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id name \\\n", "685 6.0.GDPpc_constant GDP per capita, PPP (constant 2011 internation... \n", "7437 NY.GDP.PCAP.KD GDP per capita (constant 2010 US$) \n", "7439 NY.GDP.PCAP.KN GDP per capita (constant LCU) \n", "7441 NY.GDP.PCAP.PP.KD GDP per capita, PPP (constant 2011 internation... \n", "\n", " source \\\n", "685 LAC Equity Lab \n", "7437 World Development Indicators \n", "7439 World Development Indicators \n", "7441 World Development Indicators \n", "\n", " sourceNote \\\n", "685 GDP per capita based on purchasing power parit... \n", "7437 GDP per capita is gross domestic product divid... \n", "7439 GDP per capita is gross domestic product divid... \n", "7441 GDP per capita based on purchasing power parit... \n", "\n", " sourceOrganization topics \n", "685 b'World Development Indicators (World Bank)' Economy & Growth \n", "7437 b'World Bank national accounts data, and OECD ... Economy & Growth \n", "7439 b'World Bank national accounts data, and OECD ... Economy & Growth \n", "7441 b'World Bank, International Comparison Program... Economy & Growth " ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wb.search('gdp.*capita.*const') # we use this function to search for GDP related indicators" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>name</th>\n", " <th>source</th>\n", " <th>sourceNote</th>\n", " <th>sourceOrganization</th>\n", " <th>topics</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>9238</th>\n", " <td>SL.AGR.0714.FE.ZS</td>\n", " <td>Child employment in agriculture, female (% of ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment by economic activity refers to the ...</td>\n", " <td>b\"Understanding Children's Work project based ...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9239</th>\n", " <td>SL.AGR.0714.MA.ZS</td>\n", " <td>Child employment in agriculture, male (% of ma...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment by economic activity refers to the ...</td>\n", " <td>b\"Understanding Children's Work project based ...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9240</th>\n", " <td>SL.AGR.0714.ZS</td>\n", " <td>Child employment in agriculture (% of economic...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment by economic activity refers to the ...</td>\n", " <td>b\"Understanding Children's Work project based ...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9241</th>\n", " <td>SL.AGR.EMPL.FE.ZS</td>\n", " <td>Employment in agriculture, female (% of female...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment is defined as persons of working ag...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Agriculture &amp; Rural Development ; Social Pro...</td>\n", " </tr>\n", " <tr>\n", " <th>9242</th>\n", " <td>SL.AGR.EMPL.MA.ZS</td>\n", " <td>Employment in agriculture, male (% of male emp...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment is defined as persons of working ag...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Agriculture &amp; Rural Development ; Social Pro...</td>\n", " </tr>\n", " <tr>\n", " <th>9243</th>\n", " <td>SL.AGR.EMPL.ZS</td>\n", " <td>Employment in agriculture (% of total employment)</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment is defined as persons of working ag...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Agriculture &amp; Rural Development ; Social Pro...</td>\n", " </tr>\n", " <tr>\n", " <th>9244</th>\n", " <td>SL.EMP.1524.SP.FE.NE.ZS</td>\n", " <td>Employment to population ratio, ages 15-24, fe...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9245</th>\n", " <td>SL.EMP.1524.SP.FE.ZS</td>\n", " <td>Employment to population ratio, ages 15-24, fe...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9246</th>\n", " <td>SL.EMP.1524.SP.MA.NE.ZS</td>\n", " <td>Employment to population ratio, ages 15-24, ma...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9247</th>\n", " <td>SL.EMP.1524.SP.MA.ZS</td>\n", " <td>Employment to population ratio, ages 15-24, ma...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9248</th>\n", " <td>SL.EMP.1524.SP.NE.ZS</td>\n", " <td>Employment to population ratio, ages 15-24, to...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9249</th>\n", " <td>SL.EMP.1524.SP.ZS</td>\n", " <td>Employment to population ratio, ages 15-24, to...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9255</th>\n", " <td>SL.EMP.INSV.FE.ZS</td>\n", " <td>Share of women in wage employment in the nonag...</td>\n", " <td>World Development Indicators</td>\n", " <td>Share of women in wage employment in the nonag...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender ; Social De...</td>\n", " </tr>\n", " <tr>\n", " <th>9257</th>\n", " <td>SL.EMP.MPYR.FE.ZS</td>\n", " <td>Employers, female (% of female employment)\\r\\n</td>\n", " <td>World Development Indicators</td>\n", " <td>Employers refers are those workers who, workin...</td>\n", " <td>b'ILO Key Indicators of the Labour Market (KIL...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9258</th>\n", " <td>SL.EMP.MPYR.MA.ZS</td>\n", " <td>Employers, male (% of male employment)\\r\\n</td>\n", " <td>World Development Indicators</td>\n", " <td>Employers refers are those workers who, workin...</td>\n", " <td>b'ILO Key Indicators of the Labour Market (KIL...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9259</th>\n", " <td>SL.EMP.MPYR.ZS</td>\n", " <td>Employers, total (% of total employment)\\r\\n</td>\n", " <td>World Development Indicators</td>\n", " <td>Employers refers are those workers who, workin...</td>\n", " <td>b'ILO Key Indicators of the Labour Market (KIL...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9260</th>\n", " <td>SL.EMP.OWAC.FE.ZS</td>\n", " <td>Own-account workers, female (% of female emplo...</td>\n", " <td>Gender Statistics</td>\n", " <td>Own-account workers are workers who, working o...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9261</th>\n", " <td>SL.EMP.OWAC.MA.ZS</td>\n", " <td>Own-account workers, male (% of male employmen...</td>\n", " <td>Gender Statistics</td>\n", " <td>Own-account workers are workers who, working o...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9262</th>\n", " <td>SL.EMP.SELF.FE.ZS</td>\n", " <td>Self-employed, female (% of female employment)...</td>\n", " <td>World Development Indicators</td>\n", " <td>Self-employed workers are those workers who, w...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9263</th>\n", " <td>SL.EMP.SELF.MA.ZS</td>\n", " <td>Self-employed, male (% of male employment)\\r\\n</td>\n", " <td>World Development Indicators</td>\n", " <td>Self-employed workers are those workers who, w...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9264</th>\n", " <td>SL.EMP.SELF.ZS</td>\n", " <td>Self-employed, total (% of total employment)\\r\\n</td>\n", " <td>World Development Indicators</td>\n", " <td>Self-employed workers are those workers who, w...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9267</th>\n", " <td>SL.EMP.TOTL.FE</td>\n", " <td>Total employment, female (ages 15+)</td>\n", " <td>Africa Development Indicators</td>\n", " <td>Total employment shows the total number employ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td></td>\n", " </tr>\n", " <tr>\n", " <th>9268</th>\n", " <td>SL.EMP.TOTL.MA</td>\n", " <td>Total employment, male (ages 15+)</td>\n", " <td>Africa Development Indicators</td>\n", " <td>Total employment shows the total number employ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td></td>\n", " </tr>\n", " <tr>\n", " <th>9269</th>\n", " <td>SL.EMP.TOTL.SP.FE.NE.ZS</td>\n", " <td>Employment to population ratio, 15+, female (%...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9270</th>\n", " <td>SL.EMP.TOTL.SP.FE.ZS</td>\n", " <td>Employment to population ratio, 15+, female (%...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9271</th>\n", " <td>SL.EMP.TOTL.SP.MA.NE.ZS</td>\n", " <td>Employment to population ratio, 15+, male (%) ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9272</th>\n", " <td>SL.EMP.TOTL.SP.MA.ZS</td>\n", " <td>Employment to population ratio, 15+, male (%) ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9273</th>\n", " <td>SL.EMP.TOTL.SP.NE.ZS</td>\n", " <td>Employment to population ratio, 15+, total (%)...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9274</th>\n", " <td>SL.EMP.TOTL.SP.ZS</td>\n", " <td>Employment to population ratio, 15+, total (%)...</td>\n", " <td>World Development Indicators</td>\n", " <td>Employment to population ratio is the proporti...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9278</th>\n", " <td>SL.EMP.UNDR.FE.ZS</td>\n", " <td>Time-related underemployment, female (% of emp...</td>\n", " <td>Gender Statistics</td>\n", " <td>Time-related underemployment refers to all per...</td>\n", " <td>b'ILO Key Indicators of the Labour Market (KIL...</td>\n", " <td>Gender</td>\n", " </tr>\n", " <tr>\n", " <th>...</th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " <tr>\n", " <th>9408</th>\n", " <td>SL.UEM.PRIM.ZS</td>\n", " <td>Unemployment with primary education (% of tota...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment with primary education is the sha...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9409</th>\n", " <td>SL.UEM.SECO.FE.ZS</td>\n", " <td>Unemployment with secondary education, female ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Female unemployment with secondary education i...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9410</th>\n", " <td>SL.UEM.SECO.MA.ZS</td>\n", " <td>Unemployment with secondary education, male (%...</td>\n", " <td>World Development Indicators</td>\n", " <td>Male unemployment with secondary education is ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9411</th>\n", " <td>SL.UEM.SECO.ZS</td>\n", " <td>Unemployment with secondary education (% of to...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment with secondary education is the s...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9412</th>\n", " <td>SL.UEM.TERT.FE.ZS</td>\n", " <td>Unemployment with tertiary education, female (...</td>\n", " <td>World Development Indicators</td>\n", " <td>Female unemployment with tertiary education is...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9413</th>\n", " <td>SL.UEM.TERT.MA.ZS</td>\n", " <td>Unemployment with tertiary education, male (% ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Male unemployment with tertiary education is t...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9414</th>\n", " <td>SL.UEM.TERT.ZS</td>\n", " <td>Unemployment with tertiary education (% of tot...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment with tertiary education is the sh...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9416</th>\n", " <td>SL.UEM.TOTL.FE.NE.ZS</td>\n", " <td>Unemployment, female (% of female labor force)...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9417</th>\n", " <td>SL.UEM.TOTL.FE.ZS</td>\n", " <td>Unemployment, female (% of female labor force)...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Education ; Social Protection &amp; Labor ; Gende...</td>\n", " </tr>\n", " <tr>\n", " <th>9418</th>\n", " <td>SL.UEM.TOTL.MA.NE.ZS</td>\n", " <td>Unemployment, male (% of male labor force) (na...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9419</th>\n", " <td>SL.UEM.TOTL.MA.ZS</td>\n", " <td>Unemployment, male (% of male labor force) (mo...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Education ; Social Protection &amp; Labor ; Gende...</td>\n", " </tr>\n", " <tr>\n", " <th>9420</th>\n", " <td>SL.UEM.TOTL.NE.ZS</td>\n", " <td>Unemployment, total (% of total labor force) (...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9421</th>\n", " <td>SL.UEM.TOTL.ZS</td>\n", " <td>Unemployment, total (% of total labor force) (...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Education ; Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9422</th>\n", " <td>SL.WAG.0714.FE.ZS</td>\n", " <td>Children in employment, wage workers, female (...</td>\n", " <td>World Development Indicators</td>\n", " <td>Wage workers (also known as employees) are peo...</td>\n", " <td>b\"Understanding Children's Work project based ...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9423</th>\n", " <td>SL.WAG.0714.MA.ZS</td>\n", " <td>Children in employment, wage workers, male (% ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Wage workers (also known as employees) are peo...</td>\n", " <td>b\"Understanding Children's Work project based ...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9424</th>\n", " <td>SL.WAG.0714.ZS</td>\n", " <td>Children in employment, wage workers (% of chi...</td>\n", " <td>World Development Indicators</td>\n", " <td>Wage workers (also known as employees) are peo...</td>\n", " <td>b\"Understanding Children's Work project based ...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12130</th>\n", " <td>ccx_unempr_pop_eld</td>\n", " <td>Unemployment rate - elderly</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12131</th>\n", " <td>ccx_unempr_pop_fem</td>\n", " <td>Unemployment rate - female</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12132</th>\n", " <td>ccx_unempr_pop_mal</td>\n", " <td>Unemployment rate - male</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12133</th>\n", " <td>ccx_unempr_pop_rur</td>\n", " <td>Unemployment rate - rural</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12134</th>\n", " <td>ccx_unempr_pop_tot</td>\n", " <td>Unemployment rate in total population</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12135</th>\n", " <td>ccx_unempr_pop_urb</td>\n", " <td>Unemployment rate - urban</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12136</th>\n", " <td>ccx_unempr_pop_wrk</td>\n", " <td>Unemployment rate - working age</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12137</th>\n", " <td>ccx_unempr_pop_you</td>\n", " <td>Unemployment rate - youth</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12159</th>\n", " <td>ccx_yaurr_pop_fem</td>\n", " <td>Youth to adult unemployment rate - female</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12160</th>\n", " <td>ccx_yaurr_pop_mal</td>\n", " <td>Youth to adult unemployment rate - male</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12161</th>\n", " <td>ccx_yaurr_pop_rur</td>\n", " <td>Youth to adult unemployment rate - rural</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12162</th>\n", " <td>ccx_yaurr_pop_tot</td>\n", " <td>Youth to adult unemployment rate in total popu...</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12163</th>\n", " <td>ccx_yaurr_pop_urb</td>\n", " <td>Youth to adult unemployment rate - urban</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12582</th>\n", " <td>per_lm_alllm.adq_pop_tot</td>\n", " <td>Adequacy of unemployment benefits and ALMP (% ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Adequacy of unemployment benefits and active l...</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>121 rows × 6 columns</p>\n", "</div>" ], "text/plain": [ " id \\\n", "9238 SL.AGR.0714.FE.ZS \n", "9239 SL.AGR.0714.MA.ZS \n", "9240 SL.AGR.0714.ZS \n", "9241 SL.AGR.EMPL.FE.ZS \n", "9242 SL.AGR.EMPL.MA.ZS \n", "9243 SL.AGR.EMPL.ZS \n", "9244 SL.EMP.1524.SP.FE.NE.ZS \n", "9245 SL.EMP.1524.SP.FE.ZS \n", "9246 SL.EMP.1524.SP.MA.NE.ZS \n", "9247 SL.EMP.1524.SP.MA.ZS \n", "9248 SL.EMP.1524.SP.NE.ZS \n", "9249 SL.EMP.1524.SP.ZS \n", "9255 SL.EMP.INSV.FE.ZS \n", "9257 SL.EMP.MPYR.FE.ZS \n", "9258 SL.EMP.MPYR.MA.ZS \n", "9259 SL.EMP.MPYR.ZS \n", "9260 SL.EMP.OWAC.FE.ZS \n", "9261 SL.EMP.OWAC.MA.ZS \n", "9262 SL.EMP.SELF.FE.ZS \n", "9263 SL.EMP.SELF.MA.ZS \n", "9264 SL.EMP.SELF.ZS \n", "9267 SL.EMP.TOTL.FE \n", "9268 SL.EMP.TOTL.MA \n", "9269 SL.EMP.TOTL.SP.FE.NE.ZS \n", "9270 SL.EMP.TOTL.SP.FE.ZS \n", "9271 SL.EMP.TOTL.SP.MA.NE.ZS \n", "9272 SL.EMP.TOTL.SP.MA.ZS \n", "9273 SL.EMP.TOTL.SP.NE.ZS \n", "9274 SL.EMP.TOTL.SP.ZS \n", "9278 SL.EMP.UNDR.FE.ZS \n", "... ... \n", "9408 SL.UEM.PRIM.ZS \n", "9409 SL.UEM.SECO.FE.ZS \n", "9410 SL.UEM.SECO.MA.ZS \n", "9411 SL.UEM.SECO.ZS \n", "9412 SL.UEM.TERT.FE.ZS \n", "9413 SL.UEM.TERT.MA.ZS \n", "9414 SL.UEM.TERT.ZS \n", "9416 SL.UEM.TOTL.FE.NE.ZS \n", "9417 SL.UEM.TOTL.FE.ZS \n", "9418 SL.UEM.TOTL.MA.NE.ZS \n", "9419 SL.UEM.TOTL.MA.ZS \n", "9420 SL.UEM.TOTL.NE.ZS \n", "9421 SL.UEM.TOTL.ZS \n", "9422 SL.WAG.0714.FE.ZS \n", "9423 SL.WAG.0714.MA.ZS \n", "9424 SL.WAG.0714.ZS \n", "12130 ccx_unempr_pop_eld \n", "12131 ccx_unempr_pop_fem \n", "12132 ccx_unempr_pop_mal \n", "12133 ccx_unempr_pop_rur \n", "12134 ccx_unempr_pop_tot \n", "12135 ccx_unempr_pop_urb \n", "12136 ccx_unempr_pop_wrk \n", "12137 ccx_unempr_pop_you \n", "12159 ccx_yaurr_pop_fem \n", "12160 ccx_yaurr_pop_mal \n", "12161 ccx_yaurr_pop_rur \n", "12162 ccx_yaurr_pop_tot \n", "12163 ccx_yaurr_pop_urb \n", "12582 per_lm_alllm.adq_pop_tot \n", "\n", " name \\\n", "9238 Child employment in agriculture, female (% of ... \n", "9239 Child employment in agriculture, male (% of ma... \n", "9240 Child employment in agriculture (% of economic... \n", "9241 Employment in agriculture, female (% of female... \n", "9242 Employment in agriculture, male (% of male emp... \n", "9243 Employment in agriculture (% of total employment) \n", "9244 Employment to population ratio, ages 15-24, fe... \n", "9245 Employment to population ratio, ages 15-24, fe... \n", "9246 Employment to population ratio, ages 15-24, ma... \n", "9247 Employment to population ratio, ages 15-24, ma... \n", "9248 Employment to population ratio, ages 15-24, to... \n", "9249 Employment to population ratio, ages 15-24, to... \n", "9255 Share of women in wage employment in the nonag... \n", "9257 Employers, female (% of female employment)\\r\\n \n", "9258 Employers, male (% of male employment)\\r\\n \n", "9259 Employers, total (% of total employment)\\r\\n \n", "9260 Own-account workers, female (% of female emplo... \n", "9261 Own-account workers, male (% of male employmen... \n", "9262 Self-employed, female (% of female employment)... \n", "9263 Self-employed, male (% of male employment)\\r\\n \n", "9264 Self-employed, total (% of total employment)\\r\\n \n", "9267 Total employment, female (ages 15+) \n", "9268 Total employment, male (ages 15+) \n", "9269 Employment to population ratio, 15+, female (%... \n", "9270 Employment to population ratio, 15+, female (%... \n", "9271 Employment to population ratio, 15+, male (%) ... \n", "9272 Employment to population ratio, 15+, male (%) ... \n", "9273 Employment to population ratio, 15+, total (%)... \n", "9274 Employment to population ratio, 15+, total (%)... \n", "9278 Time-related underemployment, female (% of emp... \n", "... ... \n", "9408 Unemployment with primary education (% of tota... \n", "9409 Unemployment with secondary education, female ... \n", "9410 Unemployment with secondary education, male (%... \n", "9411 Unemployment with secondary education (% of to... \n", "9412 Unemployment with tertiary education, female (... \n", "9413 Unemployment with tertiary education, male (% ... \n", "9414 Unemployment with tertiary education (% of tot... \n", "9416 Unemployment, female (% of female labor force)... \n", "9417 Unemployment, female (% of female labor force)... \n", "9418 Unemployment, male (% of male labor force) (na... \n", "9419 Unemployment, male (% of male labor force) (mo... \n", "9420 Unemployment, total (% of total labor force) (... \n", "9421 Unemployment, total (% of total labor force) (... \n", "9422 Children in employment, wage workers, female (... \n", "9423 Children in employment, wage workers, male (% ... \n", "9424 Children in employment, wage workers (% of chi... \n", "12130 Unemployment rate - elderly \n", "12131 Unemployment rate - female \n", "12132 Unemployment rate - male \n", "12133 Unemployment rate - rural \n", "12134 Unemployment rate in total population \n", "12135 Unemployment rate - urban \n", "12136 Unemployment rate - working age \n", "12137 Unemployment rate - youth \n", "12159 Youth to adult unemployment rate - female \n", "12160 Youth to adult unemployment rate - male \n", "12161 Youth to adult unemployment rate - rural \n", "12162 Youth to adult unemployment rate in total popu... \n", "12163 Youth to adult unemployment rate - urban \n", "12582 Adequacy of unemployment benefits and ALMP (% ... \n", "\n", " source \\\n", "9238 World Development Indicators \n", "9239 World Development Indicators \n", "9240 World Development Indicators \n", "9241 World Development Indicators \n", "9242 World Development Indicators \n", "9243 World Development Indicators \n", "9244 World Development Indicators \n", "9245 World Development Indicators \n", "9246 World Development Indicators \n", "9247 World Development Indicators \n", "9248 World Development Indicators \n", "9249 World Development Indicators \n", "9255 World Development Indicators \n", "9257 World Development Indicators \n", "9258 World Development Indicators \n", "9259 World Development Indicators \n", "9260 Gender Statistics \n", "9261 Gender Statistics \n", "9262 World Development Indicators \n", "9263 World Development Indicators \n", "9264 World Development Indicators \n", "9267 Africa Development Indicators \n", "9268 Africa Development Indicators \n", "9269 World Development Indicators \n", "9270 World Development Indicators \n", "9271 World Development Indicators \n", "9272 World Development Indicators \n", "9273 World Development Indicators \n", "9274 World Development Indicators \n", "9278 Gender Statistics \n", "... ... \n", "9408 World Development Indicators \n", "9409 World Development Indicators \n", "9410 World Development Indicators \n", "9411 World Development Indicators \n", "9412 World Development Indicators \n", "9413 World Development Indicators \n", "9414 World Development Indicators \n", "9416 World Development Indicators \n", "9417 World Development Indicators \n", "9418 World Development Indicators \n", "9419 World Development Indicators \n", "9420 World Development Indicators \n", "9421 World Development Indicators \n", "9422 World Development Indicators \n", "9423 World Development Indicators \n", "9424 World Development Indicators \n", "12130 Global Social Protection \n", "12131 Global Social Protection \n", "12132 Global Social Protection \n", "12133 Global Social Protection \n", "12134 Global Social Protection \n", "12135 Global Social Protection \n", "12136 Global Social Protection \n", "12137 Global Social Protection \n", "12159 Global Social Protection \n", "12160 Global Social Protection \n", "12161 Global Social Protection \n", "12162 Global Social Protection \n", "12163 Global Social Protection \n", "12582 World Development Indicators \n", "\n", " sourceNote \\\n", "9238 Employment by economic activity refers to the ... \n", "9239 Employment by economic activity refers to the ... \n", "9240 Employment by economic activity refers to the ... \n", "9241 Employment is defined as persons of working ag... \n", "9242 Employment is defined as persons of working ag... \n", "9243 Employment is defined as persons of working ag... \n", "9244 Employment to population ratio is the proporti... \n", "9245 Employment to population ratio is the proporti... \n", "9246 Employment to population ratio is the proporti... \n", "9247 Employment to population ratio is the proporti... \n", "9248 Employment to population ratio is the proporti... \n", "9249 Employment to population ratio is the proporti... \n", "9255 Share of women in wage employment in the nonag... \n", "9257 Employers refers are those workers who, workin... \n", "9258 Employers refers are those workers who, workin... \n", "9259 Employers refers are those workers who, workin... \n", "9260 Own-account workers are workers who, working o... \n", "9261 Own-account workers are workers who, working o... \n", "9262 Self-employed workers are those workers who, w... \n", "9263 Self-employed workers are those workers who, w... \n", "9264 Self-employed workers are those workers who, w... \n", "9267 Total employment shows the total number employ... \n", "9268 Total employment shows the total number employ... \n", "9269 Employment to population ratio is the proporti... \n", "9270 Employment to population ratio is the proporti... \n", "9271 Employment to population ratio is the proporti... \n", "9272 Employment to population ratio is the proporti... \n", "9273 Employment to population ratio is the proporti... \n", "9274 Employment to population ratio is the proporti... \n", "9278 Time-related underemployment refers to all per... \n", "... ... \n", "9408 Unemployment with primary education is the sha... \n", "9409 Female unemployment with secondary education i... \n", "9410 Male unemployment with secondary education is ... \n", "9411 Unemployment with secondary education is the s... \n", "9412 Female unemployment with tertiary education is... \n", "9413 Male unemployment with tertiary education is t... \n", "9414 Unemployment with tertiary education is the sh... \n", "9416 Unemployment refers to the share of the labor ... \n", "9417 Unemployment refers to the share of the labor ... \n", "9418 Unemployment refers to the share of the labor ... \n", "9419 Unemployment refers to the share of the labor ... \n", "9420 Unemployment refers to the share of the labor ... \n", "9421 Unemployment refers to the share of the labor ... \n", "9422 Wage workers (also known as employees) are peo... \n", "9423 Wage workers (also known as employees) are peo... \n", "9424 Wage workers (also known as employees) are peo... \n", "12130 NULL \n", "12131 NULL \n", "12132 NULL \n", "12133 NULL \n", "12134 NULL \n", "12135 NULL \n", "12136 NULL \n", "12137 NULL \n", "12159 NULL \n", "12160 NULL \n", "12161 NULL \n", "12162 NULL \n", "12163 NULL \n", "12582 Adequacy of unemployment benefits and active l... \n", "\n", " sourceOrganization \\\n", "9238 b\"Understanding Children's Work project based ... \n", "9239 b\"Understanding Children's Work project based ... \n", "9240 b\"Understanding Children's Work project based ... \n", "9241 b'International Labour Organization, Key Indic... \n", "9242 b'International Labour Organization, Key Indic... \n", "9243 b'International Labour Organization, Key Indic... \n", "9244 b'International Labour Organization, Key Indic... \n", "9245 b'International Labour Organization, Key Indic... \n", "9246 b'International Labour Organization, Key Indic... \n", "9247 b'International Labour Organization, Key Indic... \n", "9248 b'International Labour Organization, Key Indic... \n", "9249 b'International Labour Organization, Key Indic... \n", "9255 b'International Labour Organization, Key Indic... \n", "9257 b'ILO Key Indicators of the Labour Market (KIL... \n", "9258 b'ILO Key Indicators of the Labour Market (KIL... \n", "9259 b'ILO Key Indicators of the Labour Market (KIL... \n", "9260 b'International Labour Organization, Key Indic... \n", "9261 b'International Labour Organization, Key Indic... \n", "9262 b'International Labour Organization, Key Indic... \n", "9263 b'International Labour Organization, Key Indic... \n", "9264 b'International Labour Organization, Key Indic... \n", "9267 b'International Labour Organization, Key Indic... \n", "9268 b'International Labour Organization, Key Indic... \n", "9269 b'International Labour Organization, Key Indic... \n", "9270 b'International Labour Organization, Key Indic... \n", "9271 b'International Labour Organization, Key Indic... \n", "9272 b'International Labour Organization, Key Indic... \n", "9273 b'International Labour Organization, Key Indic... \n", "9274 b'International Labour Organization, Key Indic... \n", "9278 b'ILO Key Indicators of the Labour Market (KIL... \n", "... ... \n", "9408 b'International Labour Organization, Key Indic... \n", "9409 b'International Labour Organization, Key Indic... \n", "9410 b'International Labour Organization, Key Indic... \n", "9411 b'International Labour Organization, Key Indic... \n", "9412 b'International Labour Organization, Key Indic... \n", "9413 b'International Labour Organization, Key Indic... \n", "9414 b'International Labour Organization, Key Indic... \n", "9416 b'International Labour Organization, Key Indic... \n", "9417 b'International Labour Organization, Key Indic... \n", "9418 b'International Labour Organization, Key Indic... \n", "9419 b'International Labour Organization, Key Indic... \n", "9420 b'International Labour Organization, Key Indic... \n", "9421 b'International Labour Organization, Key Indic... \n", "9422 b\"Understanding Children's Work project based ... \n", "9423 b\"Understanding Children's Work project based ... \n", "9424 b\"Understanding Children's Work project based ... \n", "12130 b'The Atlas of Social Protection: Indicators o... \n", "12131 b'The Atlas of Social Protection: Indicators o... \n", "12132 b'The Atlas of Social Protection: Indicators o... \n", "12133 b'The Atlas of Social Protection: Indicators o... \n", "12134 b'The Atlas of Social Protection: Indicators o... \n", "12135 b'The Atlas of Social Protection: Indicators o... \n", "12136 b'The Atlas of Social Protection: Indicators o... \n", "12137 b'The Atlas of Social Protection: Indicators o... \n", "12159 b'The Atlas of Social Protection: Indicators o... \n", "12160 b'The Atlas of Social Protection: Indicators o... \n", "12161 b'The Atlas of Social Protection: Indicators o... \n", "12162 b'The Atlas of Social Protection: Indicators o... \n", "12163 b'The Atlas of Social Protection: Indicators o... \n", "12582 b'The Atlas of Social Protection: Indicators o... \n", "\n", " topics \n", "9238 Social Protection & Labor ; Gender \n", "9239 Social Protection & Labor ; Gender \n", "9240 Social Protection & Labor \n", "9241 Agriculture & Rural Development ; Social Pro... \n", "9242 Agriculture & Rural Development ; Social Pro... \n", "9243 Agriculture & Rural Development ; Social Pro... \n", "9244 Social Protection & Labor \n", "9245 Social Protection & Labor ; Gender \n", "9246 Social Protection & Labor \n", "9247 Social Protection & Labor ; Gender \n", "9248 Social Protection & Labor \n", "9249 Social Protection & Labor \n", "9255 Social Protection & Labor ; Gender ; Social De... \n", "9257 Social Protection & Labor ; Gender \n", "9258 Social Protection & Labor ; Gender \n", "9259 Social Protection & Labor \n", "9260 Gender \n", "9261 Gender \n", "9262 Social Protection & Labor ; Gender \n", "9263 Social Protection & Labor ; Gender \n", "9264 Social Protection & Labor \n", "9267 \n", "9268 \n", "9269 Social Protection & Labor \n", "9270 Social Protection & Labor ; Gender \n", "9271 Social Protection & Labor \n", "9272 Social Protection & Labor ; Gender \n", "9273 Social Protection & Labor \n", "9274 Social Protection & Labor \n", "9278 Gender \n", "... ... \n", "9408 Social Protection & Labor \n", "9409 Social Protection & Labor ; Gender \n", "9410 Social Protection & Labor ; Gender \n", "9411 Social Protection & Labor \n", "9412 Social Protection & Labor ; Gender \n", "9413 Social Protection & Labor ; Gender \n", "9414 Social Protection & Labor \n", "9416 Social Protection & Labor \n", "9417 Education ; Social Protection & Labor ; Gende... \n", "9418 Social Protection & Labor \n", "9419 Education ; Social Protection & Labor ; Gende... \n", "9420 Social Protection & Labor \n", "9421 Education ; Social Protection & Labor \n", "9422 Social Protection & Labor \n", "9423 Social Protection & Labor \n", "9424 Social Protection & Labor \n", "12130 Social Protection & Labor \n", "12131 Social Protection & Labor \n", "12132 Social Protection & Labor \n", "12133 Social Protection & Labor \n", "12134 Social Protection & Labor \n", "12135 Social Protection & Labor \n", "12136 Social Protection & Labor \n", "12137 Social Protection & Labor \n", "12159 Social Protection & Labor \n", "12160 Social Protection & Labor \n", "12161 Social Protection & Labor \n", "12162 Social Protection & Labor \n", "12163 Social Protection & Labor \n", "12582 Social Protection & Labor \n", "\n", "[121 rows x 6 columns]" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wb.search('employment') # we use this function to search for employment related indicators" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>id</th>\n", " <th>name</th>\n", " <th>source</th>\n", " <th>sourceNote</th>\n", " <th>sourceOrganization</th>\n", " <th>topics</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>9392</th>\n", " <td>SL.UEM.1524.FE.NE.ZS</td>\n", " <td>Unemployment, youth female (% of female labor ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Youth unemployment refers to the share of the ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9393</th>\n", " <td>SL.UEM.1524.FE.ZS</td>\n", " <td>Unemployment, youth female (% of female labor ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Youth unemployment refers to the share of the ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9394</th>\n", " <td>SL.UEM.1524.FM.NE.ZS</td>\n", " <td>Ratio of female to male youth unemployment rat...</td>\n", " <td>Gender Statistics</td>\n", " <td>Ratio of female to male youth unemployment is ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9395</th>\n", " <td>SL.UEM.1524.FM.ZS</td>\n", " <td>Ratio of female to male youth unemployment rat...</td>\n", " <td>Gender Statistics</td>\n", " <td>Ratio of female to male youth unemployment is ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9396</th>\n", " <td>SL.UEM.1524.MA.NE.ZS</td>\n", " <td>Unemployment, youth male (% of male labor forc...</td>\n", " <td>World Development Indicators</td>\n", " <td>Youth unemployment refers to the share of the ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9397</th>\n", " <td>SL.UEM.1524.MA.ZS</td>\n", " <td>Unemployment, youth male (% of male labor forc...</td>\n", " <td>World Development Indicators</td>\n", " <td>Youth unemployment refers to the share of the ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9398</th>\n", " <td>SL.UEM.1524.NE.ZS</td>\n", " <td>Unemployment, youth total (% of total labor fo...</td>\n", " <td>World Development Indicators</td>\n", " <td>Youth unemployment refers to the share of the ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9399</th>\n", " <td>SL.UEM.1524.ZS</td>\n", " <td>Unemployment, youth total (% of total labor fo...</td>\n", " <td>World Development Indicators</td>\n", " <td>Youth unemployment refers to the share of the ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9400</th>\n", " <td>SL.UEM.LTRM.FE.ZS</td>\n", " <td>Long-term unemployment, female (% of female un...</td>\n", " <td>World Development Indicators</td>\n", " <td>Long-term unemployment refers to the number of...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9401</th>\n", " <td>SL.UEM.LTRM.MA.ZS</td>\n", " <td>Long-term unemployment, male (% of male unempl...</td>\n", " <td>World Development Indicators</td>\n", " <td>Long-term unemployment refers to the number of...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9402</th>\n", " <td>SL.UEM.LTRM.ZS</td>\n", " <td>Long-term unemployment (% of total unemployment)</td>\n", " <td>World Development Indicators</td>\n", " <td>Long-term unemployment refers to the number of...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9406</th>\n", " <td>SL.UEM.PRIM.FE.ZS</td>\n", " <td>Unemployment with primary education, female (%...</td>\n", " <td>World Development Indicators</td>\n", " <td>Female unemployment with primary education is ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9407</th>\n", " <td>SL.UEM.PRIM.MA.ZS</td>\n", " <td>Unemployment with primary education, male (% o...</td>\n", " <td>World Development Indicators</td>\n", " <td>Male unemployment with primary education is th...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9408</th>\n", " <td>SL.UEM.PRIM.ZS</td>\n", " <td>Unemployment with primary education (% of tota...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment with primary education is the sha...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9409</th>\n", " <td>SL.UEM.SECO.FE.ZS</td>\n", " <td>Unemployment with secondary education, female ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Female unemployment with secondary education i...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9410</th>\n", " <td>SL.UEM.SECO.MA.ZS</td>\n", " <td>Unemployment with secondary education, male (%...</td>\n", " <td>World Development Indicators</td>\n", " <td>Male unemployment with secondary education is ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9411</th>\n", " <td>SL.UEM.SECO.ZS</td>\n", " <td>Unemployment with secondary education (% of to...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment with secondary education is the s...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9412</th>\n", " <td>SL.UEM.TERT.FE.ZS</td>\n", " <td>Unemployment with tertiary education, female (...</td>\n", " <td>World Development Indicators</td>\n", " <td>Female unemployment with tertiary education is...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9413</th>\n", " <td>SL.UEM.TERT.MA.ZS</td>\n", " <td>Unemployment with tertiary education, male (% ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Male unemployment with tertiary education is t...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor ; Gender</td>\n", " </tr>\n", " <tr>\n", " <th>9414</th>\n", " <td>SL.UEM.TERT.ZS</td>\n", " <td>Unemployment with tertiary education (% of tot...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment with tertiary education is the sh...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9416</th>\n", " <td>SL.UEM.TOTL.FE.NE.ZS</td>\n", " <td>Unemployment, female (% of female labor force)...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9417</th>\n", " <td>SL.UEM.TOTL.FE.ZS</td>\n", " <td>Unemployment, female (% of female labor force)...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Education ; Social Protection &amp; Labor ; Gende...</td>\n", " </tr>\n", " <tr>\n", " <th>9418</th>\n", " <td>SL.UEM.TOTL.MA.NE.ZS</td>\n", " <td>Unemployment, male (% of male labor force) (na...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9419</th>\n", " <td>SL.UEM.TOTL.MA.ZS</td>\n", " <td>Unemployment, male (% of male labor force) (mo...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Education ; Social Protection &amp; Labor ; Gende...</td>\n", " </tr>\n", " <tr>\n", " <th>9420</th>\n", " <td>SL.UEM.TOTL.NE.ZS</td>\n", " <td>Unemployment, total (% of total labor force) (...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>9421</th>\n", " <td>SL.UEM.TOTL.ZS</td>\n", " <td>Unemployment, total (% of total labor force) (...</td>\n", " <td>World Development Indicators</td>\n", " <td>Unemployment refers to the share of the labor ...</td>\n", " <td>b'International Labour Organization, Key Indic...</td>\n", " <td>Education ; Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12130</th>\n", " <td>ccx_unempr_pop_eld</td>\n", " <td>Unemployment rate - elderly</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12131</th>\n", " <td>ccx_unempr_pop_fem</td>\n", " <td>Unemployment rate - female</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12132</th>\n", " <td>ccx_unempr_pop_mal</td>\n", " <td>Unemployment rate - male</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12133</th>\n", " <td>ccx_unempr_pop_rur</td>\n", " <td>Unemployment rate - rural</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12134</th>\n", " <td>ccx_unempr_pop_tot</td>\n", " <td>Unemployment rate in total population</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12135</th>\n", " <td>ccx_unempr_pop_urb</td>\n", " <td>Unemployment rate - urban</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12136</th>\n", " <td>ccx_unempr_pop_wrk</td>\n", " <td>Unemployment rate - working age</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12137</th>\n", " <td>ccx_unempr_pop_you</td>\n", " <td>Unemployment rate - youth</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12159</th>\n", " <td>ccx_yaurr_pop_fem</td>\n", " <td>Youth to adult unemployment rate - female</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12160</th>\n", " <td>ccx_yaurr_pop_mal</td>\n", " <td>Youth to adult unemployment rate - male</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12161</th>\n", " <td>ccx_yaurr_pop_rur</td>\n", " <td>Youth to adult unemployment rate - rural</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12162</th>\n", " <td>ccx_yaurr_pop_tot</td>\n", " <td>Youth to adult unemployment rate in total popu...</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12163</th>\n", " <td>ccx_yaurr_pop_urb</td>\n", " <td>Youth to adult unemployment rate - urban</td>\n", " <td>Global Social Protection</td>\n", " <td>NULL</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " <tr>\n", " <th>12582</th>\n", " <td>per_lm_alllm.adq_pop_tot</td>\n", " <td>Adequacy of unemployment benefits and ALMP (% ...</td>\n", " <td>World Development Indicators</td>\n", " <td>Adequacy of unemployment benefits and active l...</td>\n", " <td>b'The Atlas of Social Protection: Indicators o...</td>\n", " <td>Social Protection &amp; Labor</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " id \\\n", "9392 SL.UEM.1524.FE.NE.ZS \n", "9393 SL.UEM.1524.FE.ZS \n", "9394 SL.UEM.1524.FM.NE.ZS \n", "9395 SL.UEM.1524.FM.ZS \n", "9396 SL.UEM.1524.MA.NE.ZS \n", "9397 SL.UEM.1524.MA.ZS \n", "9398 SL.UEM.1524.NE.ZS \n", "9399 SL.UEM.1524.ZS \n", "9400 SL.UEM.LTRM.FE.ZS \n", "9401 SL.UEM.LTRM.MA.ZS \n", "9402 SL.UEM.LTRM.ZS \n", "9406 SL.UEM.PRIM.FE.ZS \n", "9407 SL.UEM.PRIM.MA.ZS \n", "9408 SL.UEM.PRIM.ZS \n", "9409 SL.UEM.SECO.FE.ZS \n", "9410 SL.UEM.SECO.MA.ZS \n", "9411 SL.UEM.SECO.ZS \n", "9412 SL.UEM.TERT.FE.ZS \n", "9413 SL.UEM.TERT.MA.ZS \n", "9414 SL.UEM.TERT.ZS \n", "9416 SL.UEM.TOTL.FE.NE.ZS \n", "9417 SL.UEM.TOTL.FE.ZS \n", "9418 SL.UEM.TOTL.MA.NE.ZS \n", "9419 SL.UEM.TOTL.MA.ZS \n", "9420 SL.UEM.TOTL.NE.ZS \n", "9421 SL.UEM.TOTL.ZS \n", "12130 ccx_unempr_pop_eld \n", "12131 ccx_unempr_pop_fem \n", "12132 ccx_unempr_pop_mal \n", "12133 ccx_unempr_pop_rur \n", "12134 ccx_unempr_pop_tot \n", "12135 ccx_unempr_pop_urb \n", "12136 ccx_unempr_pop_wrk \n", "12137 ccx_unempr_pop_you \n", "12159 ccx_yaurr_pop_fem \n", "12160 ccx_yaurr_pop_mal \n", "12161 ccx_yaurr_pop_rur \n", "12162 ccx_yaurr_pop_tot \n", "12163 ccx_yaurr_pop_urb \n", "12582 per_lm_alllm.adq_pop_tot \n", "\n", " name \\\n", "9392 Unemployment, youth female (% of female labor ... \n", "9393 Unemployment, youth female (% of female labor ... \n", "9394 Ratio of female to male youth unemployment rat... \n", "9395 Ratio of female to male youth unemployment rat... \n", "9396 Unemployment, youth male (% of male labor forc... \n", "9397 Unemployment, youth male (% of male labor forc... \n", "9398 Unemployment, youth total (% of total labor fo... \n", "9399 Unemployment, youth total (% of total labor fo... \n", "9400 Long-term unemployment, female (% of female un... \n", "9401 Long-term unemployment, male (% of male unempl... \n", "9402 Long-term unemployment (% of total unemployment) \n", "9406 Unemployment with primary education, female (%... \n", "9407 Unemployment with primary education, male (% o... \n", "9408 Unemployment with primary education (% of tota... \n", "9409 Unemployment with secondary education, female ... \n", "9410 Unemployment with secondary education, male (%... \n", "9411 Unemployment with secondary education (% of to... \n", "9412 Unemployment with tertiary education, female (... \n", "9413 Unemployment with tertiary education, male (% ... \n", "9414 Unemployment with tertiary education (% of tot... \n", "9416 Unemployment, female (% of female labor force)... \n", "9417 Unemployment, female (% of female labor force)... \n", "9418 Unemployment, male (% of male labor force) (na... \n", "9419 Unemployment, male (% of male labor force) (mo... \n", "9420 Unemployment, total (% of total labor force) (... \n", "9421 Unemployment, total (% of total labor force) (... \n", "12130 Unemployment rate - elderly \n", "12131 Unemployment rate - female \n", "12132 Unemployment rate - male \n", "12133 Unemployment rate - rural \n", "12134 Unemployment rate in total population \n", "12135 Unemployment rate - urban \n", "12136 Unemployment rate - working age \n", "12137 Unemployment rate - youth \n", "12159 Youth to adult unemployment rate - female \n", "12160 Youth to adult unemployment rate - male \n", "12161 Youth to adult unemployment rate - rural \n", "12162 Youth to adult unemployment rate in total popu... \n", "12163 Youth to adult unemployment rate - urban \n", "12582 Adequacy of unemployment benefits and ALMP (% ... \n", "\n", " source \\\n", "9392 World Development Indicators \n", "9393 World Development Indicators \n", "9394 Gender Statistics \n", "9395 Gender Statistics \n", "9396 World Development Indicators \n", "9397 World Development Indicators \n", "9398 World Development Indicators \n", "9399 World Development Indicators \n", "9400 World Development Indicators \n", "9401 World Development Indicators \n", "9402 World Development Indicators \n", "9406 World Development Indicators \n", "9407 World Development Indicators \n", "9408 World Development Indicators \n", "9409 World Development Indicators \n", "9410 World Development Indicators \n", "9411 World Development Indicators \n", "9412 World Development Indicators \n", "9413 World Development Indicators \n", "9414 World Development Indicators \n", "9416 World Development Indicators \n", "9417 World Development Indicators \n", "9418 World Development Indicators \n", "9419 World Development Indicators \n", "9420 World Development Indicators \n", "9421 World Development Indicators \n", "12130 Global Social Protection \n", "12131 Global Social Protection \n", "12132 Global Social Protection \n", "12133 Global Social Protection \n", "12134 Global Social Protection \n", "12135 Global Social Protection \n", "12136 Global Social Protection \n", "12137 Global Social Protection \n", "12159 Global Social Protection \n", "12160 Global Social Protection \n", "12161 Global Social Protection \n", "12162 Global Social Protection \n", "12163 Global Social Protection \n", "12582 World Development Indicators \n", "\n", " sourceNote \\\n", "9392 Youth unemployment refers to the share of the ... \n", "9393 Youth unemployment refers to the share of the ... \n", "9394 Ratio of female to male youth unemployment is ... \n", "9395 Ratio of female to male youth unemployment is ... \n", "9396 Youth unemployment refers to the share of the ... \n", "9397 Youth unemployment refers to the share of the ... \n", "9398 Youth unemployment refers to the share of the ... \n", "9399 Youth unemployment refers to the share of the ... \n", "9400 Long-term unemployment refers to the number of... \n", "9401 Long-term unemployment refers to the number of... \n", "9402 Long-term unemployment refers to the number of... \n", "9406 Female unemployment with primary education is ... \n", "9407 Male unemployment with primary education is th... \n", "9408 Unemployment with primary education is the sha... \n", "9409 Female unemployment with secondary education i... \n", "9410 Male unemployment with secondary education is ... \n", "9411 Unemployment with secondary education is the s... \n", "9412 Female unemployment with tertiary education is... \n", "9413 Male unemployment with tertiary education is t... \n", "9414 Unemployment with tertiary education is the sh... \n", "9416 Unemployment refers to the share of the labor ... \n", "9417 Unemployment refers to the share of the labor ... \n", "9418 Unemployment refers to the share of the labor ... \n", "9419 Unemployment refers to the share of the labor ... \n", "9420 Unemployment refers to the share of the labor ... \n", "9421 Unemployment refers to the share of the labor ... \n", "12130 NULL \n", "12131 NULL \n", "12132 NULL \n", "12133 NULL \n", "12134 NULL \n", "12135 NULL \n", "12136 NULL \n", "12137 NULL \n", "12159 NULL \n", "12160 NULL \n", "12161 NULL \n", "12162 NULL \n", "12163 NULL \n", "12582 Adequacy of unemployment benefits and active l... \n", "\n", " sourceOrganization \\\n", "9392 b'International Labour Organization, Key Indic... \n", "9393 b'International Labour Organization, Key Indic... \n", "9394 b'International Labour Organization, Key Indic... \n", "9395 b'International Labour Organization, Key Indic... \n", "9396 b'International Labour Organization, Key Indic... \n", "9397 b'International Labour Organization, Key Indic... \n", "9398 b'International Labour Organization, Key Indic... \n", "9399 b'International Labour Organization, Key Indic... \n", "9400 b'International Labour Organization, Key Indic... \n", "9401 b'International Labour Organization, Key Indic... \n", "9402 b'International Labour Organization, Key Indic... \n", "9406 b'International Labour Organization, Key Indic... \n", "9407 b'International Labour Organization, Key Indic... \n", "9408 b'International Labour Organization, Key Indic... \n", "9409 b'International Labour Organization, Key Indic... \n", "9410 b'International Labour Organization, Key Indic... \n", "9411 b'International Labour Organization, Key Indic... \n", "9412 b'International Labour Organization, Key Indic... \n", "9413 b'International Labour Organization, Key Indic... \n", "9414 b'International Labour Organization, Key Indic... \n", "9416 b'International Labour Organization, Key Indic... \n", "9417 b'International Labour Organization, Key Indic... \n", "9418 b'International Labour Organization, Key Indic... \n", "9419 b'International Labour Organization, Key Indic... \n", "9420 b'International Labour Organization, Key Indic... \n", "9421 b'International Labour Organization, Key Indic... \n", "12130 b'The Atlas of Social Protection: Indicators o... \n", "12131 b'The Atlas of Social Protection: Indicators o... \n", "12132 b'The Atlas of Social Protection: Indicators o... \n", "12133 b'The Atlas of Social Protection: Indicators o... \n", "12134 b'The Atlas of Social Protection: Indicators o... \n", "12135 b'The Atlas of Social Protection: Indicators o... \n", "12136 b'The Atlas of Social Protection: Indicators o... \n", "12137 b'The Atlas of Social Protection: Indicators o... \n", "12159 b'The Atlas of Social Protection: Indicators o... \n", "12160 b'The Atlas of Social Protection: Indicators o... \n", "12161 b'The Atlas of Social Protection: Indicators o... \n", "12162 b'The Atlas of Social Protection: Indicators o... \n", "12163 b'The Atlas of Social Protection: Indicators o... \n", "12582 b'The Atlas of Social Protection: Indicators o... \n", "\n", " topics \n", "9392 Social Protection & Labor \n", "9393 Social Protection & Labor ; Gender \n", "9394 Gender \n", "9395 Gender \n", "9396 Social Protection & Labor \n", "9397 Social Protection & Labor ; Gender \n", "9398 Social Protection & Labor \n", "9399 Social Protection & Labor \n", "9400 Social Protection & Labor ; Gender \n", "9401 Social Protection & Labor ; Gender \n", "9402 Social Protection & Labor \n", "9406 Social Protection & Labor ; Gender \n", "9407 Social Protection & Labor ; Gender \n", "9408 Social Protection & Labor \n", "9409 Social Protection & Labor ; Gender \n", "9410 Social Protection & Labor ; Gender \n", "9411 Social Protection & Labor \n", "9412 Social Protection & Labor ; Gender \n", "9413 Social Protection & Labor ; Gender \n", "9414 Social Protection & Labor \n", "9416 Social Protection & Labor \n", "9417 Education ; Social Protection & Labor ; Gende... \n", "9418 Social Protection & Labor \n", "9419 Education ; Social Protection & Labor ; Gende... \n", "9420 Social Protection & Labor \n", "9421 Education ; Social Protection & Labor \n", "12130 Social Protection & Labor \n", "12131 Social Protection & Labor \n", "12132 Social Protection & Labor \n", "12133 Social Protection & Labor \n", "12134 Social Protection & Labor \n", "12135 Social Protection & Labor \n", "12136 Social Protection & Labor \n", "12137 Social Protection & Labor \n", "12159 Social Protection & Labor \n", "12160 Social Protection & Labor \n", "12161 Social Protection & Labor \n", "12162 Social Protection & Labor \n", "12163 Social Protection & Labor \n", "12582 Social Protection & Labor " ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "wb.search('unemployment') # we use this function to search for unemployment related indicators" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th></th>\n", " <th>GDP/capita(US$ 2016)</th>\n", " <th>UnemploymentRate</th>\n", " <th>YouthUnempRate</th>\n", " <th>UnempW/PrimEd.</th>\n", " <th>UnempW/SecEd</th>\n", " <th>UnempW/TertEd</th>\n", " <th>Ni-nis</th>\n", " </tr>\n", " <tr>\n", " <th>country</th>\n", " <th>year</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th rowspan=\"26\" valign=\"top\">Spain</th>\n", " <th>2015</th>\n", " <td>25831.582305</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2014</th>\n", " <td>29718.500216</td>\n", " <td>24.700001</td>\n", " <td>57.900002</td>\n", " <td>54.500000</td>\n", " <td>23.100000</td>\n", " <td>22.500000</td>\n", " <td>18.000000</td>\n", " </tr>\n", " <tr>\n", " <th>2013</th>\n", " <td>29370.663867</td>\n", " <td>26.299999</td>\n", " <td>57.099998</td>\n", " <td>53.799999</td>\n", " <td>23.299999</td>\n", " <td>22.200001</td>\n", " <td>19.440001</td>\n", " </tr>\n", " <tr>\n", " <th>2012</th>\n", " <td>28647.835243</td>\n", " <td>25.200001</td>\n", " <td>54.299999</td>\n", " <td>54.700001</td>\n", " <td>23.299999</td>\n", " <td>21.100000</td>\n", " <td>19.570000</td>\n", " </tr>\n", " <tr>\n", " <th>2011</th>\n", " <td>31832.238081</td>\n", " <td>21.700001</td>\n", " <td>47.099998</td>\n", " <td>55.099998</td>\n", " <td>23.799999</td>\n", " <td>20.100000</td>\n", " <td>19.200001</td>\n", " </tr>\n", " <tr>\n", " <th>2010</th>\n", " <td>30737.832271</td>\n", " <td>20.200001</td>\n", " <td>42.500000</td>\n", " <td>57.200001</td>\n", " <td>22.900000</td>\n", " <td>18.799999</td>\n", " <td>18.799999</td>\n", " </tr>\n", " <tr>\n", " <th>2009</th>\n", " <td>32333.466104</td>\n", " <td>18.100000</td>\n", " <td>38.500000</td>\n", " <td>58.599998</td>\n", " <td>22.700001</td>\n", " <td>17.600000</td>\n", " <td>19.400000</td>\n", " </tr>\n", " <tr>\n", " <th>2008</th>\n", " <td>35578.736190</td>\n", " <td>11.500000</td>\n", " <td>25.400000</td>\n", " <td>58.299999</td>\n", " <td>22.400000</td>\n", " <td>18.000000</td>\n", " <td>13.920000</td>\n", " </tr>\n", " <tr>\n", " <th>2007</th>\n", " <td>32709.401038</td>\n", " <td>8.400000</td>\n", " <td>18.900000</td>\n", " <td>54.599998</td>\n", " <td>23.700001</td>\n", " <td>20.500000</td>\n", " <td>10.440000</td>\n", " </tr>\n", " <tr>\n", " <th>2006</th>\n", " <td>28482.609483</td>\n", " <td>8.600000</td>\n", " <td>18.500000</td>\n", " <td>53.799999</td>\n", " <td>22.799999</td>\n", " <td>22.500000</td>\n", " <td>10.280000</td>\n", " </tr>\n", " <tr>\n", " <th>2005</th>\n", " <td>26510.717453</td>\n", " <td>9.300000</td>\n", " <td>20.400000</td>\n", " <td>53.900002</td>\n", " <td>21.900000</td>\n", " <td>23.299999</td>\n", " <td>11.120000</td>\n", " </tr>\n", " <tr>\n", " <th>2004</th>\n", " <td>24918.645842</td>\n", " <td>11.200000</td>\n", " <td>22.799999</td>\n", " <td>54.799999</td>\n", " <td>21.500000</td>\n", " <td>22.500000</td>\n", " <td>10.310000</td>\n", " </tr>\n", " <tr>\n", " <th>2003</th>\n", " <td>21495.707408</td>\n", " <td>11.500000</td>\n", " <td>23.400000</td>\n", " <td>56.400002</td>\n", " <td>21.400000</td>\n", " <td>21.200001</td>\n", " <td>9.960000</td>\n", " </tr>\n", " <tr>\n", " <th>2002</th>\n", " <td>17019.535414</td>\n", " <td>11.600000</td>\n", " <td>23.000000</td>\n", " <td>56.799999</td>\n", " <td>20.700001</td>\n", " <td>22.500000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2001</th>\n", " <td>15359.108440</td>\n", " <td>10.700000</td>\n", " <td>21.299999</td>\n", " <td>57.799999</td>\n", " <td>20.200001</td>\n", " <td>21.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2000</th>\n", " <td>14787.756064</td>\n", " <td>14.200000</td>\n", " <td>26.299999</td>\n", " <td>59.599998</td>\n", " <td>19.400000</td>\n", " <td>21.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1999</th>\n", " <td>15859.086026</td>\n", " <td>15.900000</td>\n", " <td>29.299999</td>\n", " <td>58.900002</td>\n", " <td>20.000000</td>\n", " <td>21.100000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1998</th>\n", " <td>15534.359889</td>\n", " <td>19.000000</td>\n", " <td>35.299999</td>\n", " <td>61.500000</td>\n", " <td>18.500000</td>\n", " <td>20.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1997</th>\n", " <td>14872.565891</td>\n", " <td>21.100000</td>\n", " <td>38.700001</td>\n", " <td>62.200001</td>\n", " <td>19.400000</td>\n", " <td>18.299999</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1996</th>\n", " <td>16236.771679</td>\n", " <td>22.500000</td>\n", " <td>41.500000</td>\n", " <td>63.799999</td>\n", " <td>18.799999</td>\n", " <td>17.299999</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1995</th>\n", " <td>15561.972746</td>\n", " <td>23.100000</td>\n", " <td>41.700001</td>\n", " <td>65.300003</td>\n", " <td>18.700001</td>\n", " <td>16.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1994</th>\n", " <td>13465.377826</td>\n", " <td>24.299999</td>\n", " <td>44.200001</td>\n", " <td>68.000000</td>\n", " <td>17.700001</td>\n", " <td>14.400000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1993</th>\n", " <td>13362.018346</td>\n", " <td>22.799999</td>\n", " <td>42.099998</td>\n", " <td>70.699997</td>\n", " <td>16.400000</td>\n", " <td>12.900000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1992</th>\n", " <td>16105.418729</td>\n", " <td>18.400000</td>\n", " <td>33.200001</td>\n", " <td>72.099998</td>\n", " <td>16.900000</td>\n", " <td>11.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1991</th>\n", " <td>14782.038901</td>\n", " <td>16.400000</td>\n", " <td>29.799999</td>\n", " <td>62.000000</td>\n", " <td>15.000000</td>\n", " <td>12.400000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1990</th>\n", " <td>13773.365698</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>61.200001</td>\n", " <td>16.000000</td>\n", " <td>12.300000</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " GDP/capita(US$ 2016) UnemploymentRate YouthUnempRate \\\n", "country year \n", "Spain 2015 25831.582305 NaN NaN \n", " 2014 29718.500216 24.700001 57.900002 \n", " 2013 29370.663867 26.299999 57.099998 \n", " 2012 28647.835243 25.200001 54.299999 \n", " 2011 31832.238081 21.700001 47.099998 \n", " 2010 30737.832271 20.200001 42.500000 \n", " 2009 32333.466104 18.100000 38.500000 \n", " 2008 35578.736190 11.500000 25.400000 \n", " 2007 32709.401038 8.400000 18.900000 \n", " 2006 28482.609483 8.600000 18.500000 \n", " 2005 26510.717453 9.300000 20.400000 \n", " 2004 24918.645842 11.200000 22.799999 \n", " 2003 21495.707408 11.500000 23.400000 \n", " 2002 17019.535414 11.600000 23.000000 \n", " 2001 15359.108440 10.700000 21.299999 \n", " 2000 14787.756064 14.200000 26.299999 \n", " 1999 15859.086026 15.900000 29.299999 \n", " 1998 15534.359889 19.000000 35.299999 \n", " 1997 14872.565891 21.100000 38.700001 \n", " 1996 16236.771679 22.500000 41.500000 \n", " 1995 15561.972746 23.100000 41.700001 \n", " 1994 13465.377826 24.299999 44.200001 \n", " 1993 13362.018346 22.799999 42.099998 \n", " 1992 16105.418729 18.400000 33.200001 \n", " 1991 14782.038901 16.400000 29.799999 \n", " 1990 13773.365698 NaN NaN \n", "\n", " UnempW/PrimEd. UnempW/SecEd UnempW/TertEd Ni-nis \n", "country year \n", "Spain 2015 NaN NaN NaN NaN \n", " 2014 54.500000 23.100000 22.500000 18.000000 \n", " 2013 53.799999 23.299999 22.200001 19.440001 \n", " 2012 54.700001 23.299999 21.100000 19.570000 \n", " 2011 55.099998 23.799999 20.100000 19.200001 \n", " 2010 57.200001 22.900000 18.799999 18.799999 \n", " 2009 58.599998 22.700001 17.600000 19.400000 \n", " 2008 58.299999 22.400000 18.000000 13.920000 \n", " 2007 54.599998 23.700001 20.500000 10.440000 \n", " 2006 53.799999 22.799999 22.500000 10.280000 \n", " 2005 53.900002 21.900000 23.299999 11.120000 \n", " 2004 54.799999 21.500000 22.500000 10.310000 \n", " 2003 56.400002 21.400000 21.200001 9.960000 \n", " 2002 56.799999 20.700001 22.500000 NaN \n", " 2001 57.799999 20.200001 21.000000 NaN \n", " 2000 59.599998 19.400000 21.000000 NaN \n", " 1999 58.900002 20.000000 21.100000 NaN \n", " 1998 61.500000 18.500000 20.000000 NaN \n", " 1997 62.200001 19.400000 18.299999 NaN \n", " 1996 63.799999 18.799999 17.299999 NaN \n", " 1995 65.300003 18.700001 16.000000 NaN \n", " 1994 68.000000 17.700001 14.400000 NaN \n", " 1993 70.699997 16.400000 12.900000 NaN \n", " 1992 72.099998 16.900000 11.000000 NaN \n", " 1991 62.000000 15.000000 12.400000 NaN \n", " 1990 61.200001 16.000000 12.300000 NaN " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "#I have identified the relevant variables in the three fields\n", "#To download data for multiple indicators, I specify them as a list \n", "#ESP is the ISO code for Spain\n", "#I equalize the start and end dates\n", "wb.download( indicator=['NY.GDP.PCAP.CD','SL.UEM.TOTL.ZS','SL.UEM.1524.ZS',\n", " 'SL.UEM.PRIM.ZS', 'SL.UEM.SECO.ZS','SL.UEM.TERT.ZS','SL.UEM.NEET.MA.ZS','SL.UEM.NEET.MA.ZS'], \n", " country=['ESP'], start=1990, end=2015)\n", "#Construct the dataframe\n", "data = wb.download(indicator=['NY.GDP.PCAP.CD','SL.UEM.TOTL.ZS','SL.UEM.1524.ZS',\n", " 'SL.UEM.PRIM.ZS', 'SL.UEM.SECO.ZS','SL.UEM.TERT.ZS','SL.UEM.NEET.MA.ZS','SL.UEM.NEET.MA.ZS'], \n", " country=['ESP'], start=1990, end=2015)\n", "esplbr = pd.DataFrame(data)\n", "#Rename the columns for clarity \n", "esplbr.columns = [\"GDP/capita(US$ 2016)\", \"UnemploymentRate\", \"YouthUnempRate\", \"UnempW/PrimEd.\", \"UnempW/SecEd\",\"UnempW/TertEd\", \"Ni-nis\"]\n", "esplbr\n", "#What on earth are Ni-nis? A Spanish neologism for \"ni estudia, ni trabaja\": percentage of youth \"not working, not studying\"\n", "#A cultural and socioeconomic phenomenon" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>country</th>\n", " <th>year</th>\n", " <th>GDP/capita(US$ 2016)</th>\n", " <th>UnemploymentRate</th>\n", " <th>YouthUnempRate</th>\n", " <th>UnempW/PrimEd.</th>\n", " <th>UnempW/SecEd</th>\n", " <th>UnempW/TertEd</th>\n", " <th>Ni-nis</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Spain</td>\n", " <td>2015</td>\n", " <td>25831.582305</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Spain</td>\n", " <td>2014</td>\n", " <td>29718.500216</td>\n", " <td>24.700001</td>\n", " <td>57.900002</td>\n", " <td>54.500000</td>\n", " <td>23.100000</td>\n", " <td>22.500000</td>\n", " <td>18.000000</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Spain</td>\n", " <td>2013</td>\n", " <td>29370.663867</td>\n", " <td>26.299999</td>\n", " <td>57.099998</td>\n", " <td>53.799999</td>\n", " <td>23.299999</td>\n", " <td>22.200001</td>\n", " <td>19.440001</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Spain</td>\n", " <td>2012</td>\n", " <td>28647.835243</td>\n", " <td>25.200001</td>\n", " <td>54.299999</td>\n", " <td>54.700001</td>\n", " <td>23.299999</td>\n", " <td>21.100000</td>\n", " <td>19.570000</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Spain</td>\n", " <td>2011</td>\n", " <td>31832.238081</td>\n", " <td>21.700001</td>\n", " <td>47.099998</td>\n", " <td>55.099998</td>\n", " <td>23.799999</td>\n", " <td>20.100000</td>\n", " <td>19.200001</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Spain</td>\n", " <td>2010</td>\n", " <td>30737.832271</td>\n", " <td>20.200001</td>\n", " <td>42.500000</td>\n", " <td>57.200001</td>\n", " <td>22.900000</td>\n", " <td>18.799999</td>\n", " <td>18.799999</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Spain</td>\n", " <td>2009</td>\n", " <td>32333.466104</td>\n", " <td>18.100000</td>\n", " <td>38.500000</td>\n", " <td>58.599998</td>\n", " <td>22.700001</td>\n", " <td>17.600000</td>\n", " <td>19.400000</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Spain</td>\n", " <td>2008</td>\n", " <td>35578.736190</td>\n", " <td>11.500000</td>\n", " <td>25.400000</td>\n", " <td>58.299999</td>\n", " <td>22.400000</td>\n", " <td>18.000000</td>\n", " <td>13.920000</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>Spain</td>\n", " <td>2007</td>\n", " <td>32709.401038</td>\n", " <td>8.400000</td>\n", " <td>18.900000</td>\n", " <td>54.599998</td>\n", " <td>23.700001</td>\n", " <td>20.500000</td>\n", " <td>10.440000</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Spain</td>\n", " <td>2006</td>\n", " <td>28482.609483</td>\n", " <td>8.600000</td>\n", " <td>18.500000</td>\n", " <td>53.799999</td>\n", " <td>22.799999</td>\n", " <td>22.500000</td>\n", " <td>10.280000</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>Spain</td>\n", " <td>2005</td>\n", " <td>26510.717453</td>\n", " <td>9.300000</td>\n", " <td>20.400000</td>\n", " <td>53.900002</td>\n", " <td>21.900000</td>\n", " <td>23.299999</td>\n", " <td>11.120000</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>Spain</td>\n", " <td>2004</td>\n", " <td>24918.645842</td>\n", " <td>11.200000</td>\n", " <td>22.799999</td>\n", " <td>54.799999</td>\n", " <td>21.500000</td>\n", " <td>22.500000</td>\n", " <td>10.310000</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>Spain</td>\n", " <td>2003</td>\n", " <td>21495.707408</td>\n", " <td>11.500000</td>\n", " <td>23.400000</td>\n", " <td>56.400002</td>\n", " <td>21.400000</td>\n", " <td>21.200001</td>\n", " <td>9.960000</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>Spain</td>\n", " <td>2002</td>\n", " <td>17019.535414</td>\n", " <td>11.600000</td>\n", " <td>23.000000</td>\n", " <td>56.799999</td>\n", " <td>20.700001</td>\n", " <td>22.500000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>Spain</td>\n", " <td>2001</td>\n", " <td>15359.108440</td>\n", " <td>10.700000</td>\n", " <td>21.299999</td>\n", " <td>57.799999</td>\n", " <td>20.200001</td>\n", " <td>21.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>Spain</td>\n", " <td>2000</td>\n", " <td>14787.756064</td>\n", " <td>14.200000</td>\n", " <td>26.299999</td>\n", " <td>59.599998</td>\n", " <td>19.400000</td>\n", " <td>21.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>Spain</td>\n", " <td>1999</td>\n", " <td>15859.086026</td>\n", " <td>15.900000</td>\n", " <td>29.299999</td>\n", " <td>58.900002</td>\n", " <td>20.000000</td>\n", " <td>21.100000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>Spain</td>\n", " <td>1998</td>\n", " <td>15534.359889</td>\n", " <td>19.000000</td>\n", " <td>35.299999</td>\n", " <td>61.500000</td>\n", " <td>18.500000</td>\n", " <td>20.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>Spain</td>\n", " <td>1997</td>\n", " <td>14872.565891</td>\n", " <td>21.100000</td>\n", " <td>38.700001</td>\n", " <td>62.200001</td>\n", " <td>19.400000</td>\n", " <td>18.299999</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>Spain</td>\n", " <td>1996</td>\n", " <td>16236.771679</td>\n", " <td>22.500000</td>\n", " <td>41.500000</td>\n", " <td>63.799999</td>\n", " <td>18.799999</td>\n", " <td>17.299999</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>Spain</td>\n", " <td>1995</td>\n", " <td>15561.972746</td>\n", " <td>23.100000</td>\n", " <td>41.700001</td>\n", " <td>65.300003</td>\n", " <td>18.700001</td>\n", " <td>16.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>Spain</td>\n", " <td>1994</td>\n", " <td>13465.377826</td>\n", " <td>24.299999</td>\n", " <td>44.200001</td>\n", " <td>68.000000</td>\n", " <td>17.700001</td>\n", " <td>14.400000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>Spain</td>\n", " <td>1993</td>\n", " <td>13362.018346</td>\n", " <td>22.799999</td>\n", " <td>42.099998</td>\n", " <td>70.699997</td>\n", " <td>16.400000</td>\n", " <td>12.900000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>Spain</td>\n", " <td>1992</td>\n", " <td>16105.418729</td>\n", " <td>18.400000</td>\n", " <td>33.200001</td>\n", " <td>72.099998</td>\n", " <td>16.900000</td>\n", " <td>11.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>Spain</td>\n", " <td>1991</td>\n", " <td>14782.038901</td>\n", " <td>16.400000</td>\n", " <td>29.799999</td>\n", " <td>62.000000</td>\n", " <td>15.000000</td>\n", " <td>12.400000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>Spain</td>\n", " <td>1990</td>\n", " <td>13773.365698</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>61.200001</td>\n", " <td>16.000000</td>\n", " <td>12.300000</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " country year GDP/capita(US$ 2016) UnemploymentRate YouthUnempRate \\\n", "0 Spain 2015 25831.582305 NaN NaN \n", "1 Spain 2014 29718.500216 24.700001 57.900002 \n", "2 Spain 2013 29370.663867 26.299999 57.099998 \n", "3 Spain 2012 28647.835243 25.200001 54.299999 \n", "4 Spain 2011 31832.238081 21.700001 47.099998 \n", "5 Spain 2010 30737.832271 20.200001 42.500000 \n", "6 Spain 2009 32333.466104 18.100000 38.500000 \n", "7 Spain 2008 35578.736190 11.500000 25.400000 \n", "8 Spain 2007 32709.401038 8.400000 18.900000 \n", "9 Spain 2006 28482.609483 8.600000 18.500000 \n", "10 Spain 2005 26510.717453 9.300000 20.400000 \n", "11 Spain 2004 24918.645842 11.200000 22.799999 \n", "12 Spain 2003 21495.707408 11.500000 23.400000 \n", "13 Spain 2002 17019.535414 11.600000 23.000000 \n", "14 Spain 2001 15359.108440 10.700000 21.299999 \n", "15 Spain 2000 14787.756064 14.200000 26.299999 \n", "16 Spain 1999 15859.086026 15.900000 29.299999 \n", "17 Spain 1998 15534.359889 19.000000 35.299999 \n", "18 Spain 1997 14872.565891 21.100000 38.700001 \n", "19 Spain 1996 16236.771679 22.500000 41.500000 \n", "20 Spain 1995 15561.972746 23.100000 41.700001 \n", "21 Spain 1994 13465.377826 24.299999 44.200001 \n", "22 Spain 1993 13362.018346 22.799999 42.099998 \n", "23 Spain 1992 16105.418729 18.400000 33.200001 \n", "24 Spain 1991 14782.038901 16.400000 29.799999 \n", "25 Spain 1990 13773.365698 NaN NaN \n", "\n", " UnempW/PrimEd. UnempW/SecEd UnempW/TertEd Ni-nis \n", "0 NaN NaN NaN NaN \n", "1 54.500000 23.100000 22.500000 18.000000 \n", "2 53.799999 23.299999 22.200001 19.440001 \n", "3 54.700001 23.299999 21.100000 19.570000 \n", "4 55.099998 23.799999 20.100000 19.200001 \n", "5 57.200001 22.900000 18.799999 18.799999 \n", "6 58.599998 22.700001 17.600000 19.400000 \n", "7 58.299999 22.400000 18.000000 13.920000 \n", "8 54.599998 23.700001 20.500000 10.440000 \n", "9 53.799999 22.799999 22.500000 10.280000 \n", "10 53.900002 21.900000 23.299999 11.120000 \n", "11 54.799999 21.500000 22.500000 10.310000 \n", "12 56.400002 21.400000 21.200001 9.960000 \n", "13 56.799999 20.700001 22.500000 NaN \n", "14 57.799999 20.200001 21.000000 NaN \n", "15 59.599998 19.400000 21.000000 NaN \n", "16 58.900002 20.000000 21.100000 NaN \n", "17 61.500000 18.500000 20.000000 NaN \n", "18 62.200001 19.400000 18.299999 NaN \n", "19 63.799999 18.799999 17.299999 NaN \n", "20 65.300003 18.700001 16.000000 NaN \n", "21 68.000000 17.700001 14.400000 NaN \n", "22 70.699997 16.400000 12.900000 NaN \n", "23 72.099998 16.900000 11.000000 NaN \n", "24 62.000000 15.000000 12.400000 NaN \n", "25 61.200001 16.000000 12.300000 NaN " ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Wbata renders a complex multi-index, which I convert to old-school columns that are easier to work with\n", "esplbr.reset_index(inplace=True) \n", "esplbr" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Index(['country', 'year', 'GDP/capita(US$ 2016)', 'UnemploymentRate',\n", " 'YouthUnempRate', 'UnempW/PrimEd.', 'UnempW/SecEd', 'UnempW/TertEd',\n", " 'Ni-nis'],\n", " dtype='object')" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "esplbr.columns" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Country</th>\n", " <th>Year</th>\n", " <th>GDP/capita(US$ 2016)</th>\n", " <th>UnemploymentRate</th>\n", " <th>YouthUnempRate</th>\n", " <th>UnempW/PrimEd.</th>\n", " <th>UnempW/SecEd</th>\n", " <th>UnempW/TertEd</th>\n", " <th>Ni-nis</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>Spain</td>\n", " <td>2015</td>\n", " <td>25831.582305</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>Spain</td>\n", " <td>2014</td>\n", " <td>29718.500216</td>\n", " <td>24.700001</td>\n", " <td>57.900002</td>\n", " <td>54.500000</td>\n", " <td>23.100000</td>\n", " <td>22.500000</td>\n", " <td>18.000000</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>Spain</td>\n", " <td>2013</td>\n", " <td>29370.663867</td>\n", " <td>26.299999</td>\n", " <td>57.099998</td>\n", " <td>53.799999</td>\n", " <td>23.299999</td>\n", " <td>22.200001</td>\n", " <td>19.440001</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>Spain</td>\n", " <td>2012</td>\n", " <td>28647.835243</td>\n", " <td>25.200001</td>\n", " <td>54.299999</td>\n", " <td>54.700001</td>\n", " <td>23.299999</td>\n", " <td>21.100000</td>\n", " <td>19.570000</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>Spain</td>\n", " <td>2011</td>\n", " <td>31832.238081</td>\n", " <td>21.700001</td>\n", " <td>47.099998</td>\n", " <td>55.099998</td>\n", " <td>23.799999</td>\n", " <td>20.100000</td>\n", " <td>19.200001</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>Spain</td>\n", " <td>2010</td>\n", " <td>30737.832271</td>\n", " <td>20.200001</td>\n", " <td>42.500000</td>\n", " <td>57.200001</td>\n", " <td>22.900000</td>\n", " <td>18.799999</td>\n", " <td>18.799999</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>Spain</td>\n", " <td>2009</td>\n", " <td>32333.466104</td>\n", " <td>18.100000</td>\n", " <td>38.500000</td>\n", " <td>58.599998</td>\n", " <td>22.700001</td>\n", " <td>17.600000</td>\n", " <td>19.400000</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>Spain</td>\n", " <td>2008</td>\n", " <td>35578.736190</td>\n", " <td>11.500000</td>\n", " <td>25.400000</td>\n", " <td>58.299999</td>\n", " <td>22.400000</td>\n", " <td>18.000000</td>\n", " <td>13.920000</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>Spain</td>\n", " <td>2007</td>\n", " <td>32709.401038</td>\n", " <td>8.400000</td>\n", " <td>18.900000</td>\n", " <td>54.599998</td>\n", " <td>23.700001</td>\n", " <td>20.500000</td>\n", " <td>10.440000</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>Spain</td>\n", " <td>2006</td>\n", " <td>28482.609483</td>\n", " <td>8.600000</td>\n", " <td>18.500000</td>\n", " <td>53.799999</td>\n", " <td>22.799999</td>\n", " <td>22.500000</td>\n", " <td>10.280000</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>Spain</td>\n", " <td>2005</td>\n", " <td>26510.717453</td>\n", " <td>9.300000</td>\n", " <td>20.400000</td>\n", " <td>53.900002</td>\n", " <td>21.900000</td>\n", " <td>23.299999</td>\n", " <td>11.120000</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>Spain</td>\n", " <td>2004</td>\n", " <td>24918.645842</td>\n", " <td>11.200000</td>\n", " <td>22.799999</td>\n", " <td>54.799999</td>\n", " <td>21.500000</td>\n", " <td>22.500000</td>\n", " <td>10.310000</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>Spain</td>\n", " <td>2003</td>\n", " <td>21495.707408</td>\n", " <td>11.500000</td>\n", " <td>23.400000</td>\n", " <td>56.400002</td>\n", " <td>21.400000</td>\n", " <td>21.200001</td>\n", " <td>9.960000</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>Spain</td>\n", " <td>2002</td>\n", " <td>17019.535414</td>\n", " <td>11.600000</td>\n", " <td>23.000000</td>\n", " <td>56.799999</td>\n", " <td>20.700001</td>\n", " <td>22.500000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>Spain</td>\n", " <td>2001</td>\n", " <td>15359.108440</td>\n", " <td>10.700000</td>\n", " <td>21.299999</td>\n", " <td>57.799999</td>\n", " <td>20.200001</td>\n", " <td>21.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>Spain</td>\n", " <td>2000</td>\n", " <td>14787.756064</td>\n", " <td>14.200000</td>\n", " <td>26.299999</td>\n", " <td>59.599998</td>\n", " <td>19.400000</td>\n", " <td>21.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>Spain</td>\n", " <td>1999</td>\n", " <td>15859.086026</td>\n", " <td>15.900000</td>\n", " <td>29.299999</td>\n", " <td>58.900002</td>\n", " <td>20.000000</td>\n", " <td>21.100000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>Spain</td>\n", " <td>1998</td>\n", " <td>15534.359889</td>\n", " <td>19.000000</td>\n", " <td>35.299999</td>\n", " <td>61.500000</td>\n", " <td>18.500000</td>\n", " <td>20.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>Spain</td>\n", " <td>1997</td>\n", " <td>14872.565891</td>\n", " <td>21.100000</td>\n", " <td>38.700001</td>\n", " <td>62.200001</td>\n", " <td>19.400000</td>\n", " <td>18.299999</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>Spain</td>\n", " <td>1996</td>\n", " <td>16236.771679</td>\n", " <td>22.500000</td>\n", " <td>41.500000</td>\n", " <td>63.799999</td>\n", " <td>18.799999</td>\n", " <td>17.299999</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>Spain</td>\n", " <td>1995</td>\n", " <td>15561.972746</td>\n", " <td>23.100000</td>\n", " <td>41.700001</td>\n", " <td>65.300003</td>\n", " <td>18.700001</td>\n", " <td>16.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>Spain</td>\n", " <td>1994</td>\n", " <td>13465.377826</td>\n", " <td>24.299999</td>\n", " <td>44.200001</td>\n", " <td>68.000000</td>\n", " <td>17.700001</td>\n", " <td>14.400000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>Spain</td>\n", " <td>1993</td>\n", " <td>13362.018346</td>\n", " <td>22.799999</td>\n", " <td>42.099998</td>\n", " <td>70.699997</td>\n", " <td>16.400000</td>\n", " <td>12.900000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>Spain</td>\n", " <td>1992</td>\n", " <td>16105.418729</td>\n", " <td>18.400000</td>\n", " <td>33.200001</td>\n", " <td>72.099998</td>\n", " <td>16.900000</td>\n", " <td>11.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>Spain</td>\n", " <td>1991</td>\n", " <td>14782.038901</td>\n", " <td>16.400000</td>\n", " <td>29.799999</td>\n", " <td>62.000000</td>\n", " <td>15.000000</td>\n", " <td>12.400000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>Spain</td>\n", " <td>1990</td>\n", " <td>13773.365698</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>61.200001</td>\n", " <td>16.000000</td>\n", " <td>12.300000</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Country Year GDP/capita(US$ 2016) UnemploymentRate YouthUnempRate \\\n", "0 Spain 2015 25831.582305 NaN NaN \n", "1 Spain 2014 29718.500216 24.700001 57.900002 \n", "2 Spain 2013 29370.663867 26.299999 57.099998 \n", "3 Spain 2012 28647.835243 25.200001 54.299999 \n", "4 Spain 2011 31832.238081 21.700001 47.099998 \n", "5 Spain 2010 30737.832271 20.200001 42.500000 \n", "6 Spain 2009 32333.466104 18.100000 38.500000 \n", "7 Spain 2008 35578.736190 11.500000 25.400000 \n", "8 Spain 2007 32709.401038 8.400000 18.900000 \n", "9 Spain 2006 28482.609483 8.600000 18.500000 \n", "10 Spain 2005 26510.717453 9.300000 20.400000 \n", "11 Spain 2004 24918.645842 11.200000 22.799999 \n", "12 Spain 2003 21495.707408 11.500000 23.400000 \n", "13 Spain 2002 17019.535414 11.600000 23.000000 \n", "14 Spain 2001 15359.108440 10.700000 21.299999 \n", "15 Spain 2000 14787.756064 14.200000 26.299999 \n", "16 Spain 1999 15859.086026 15.900000 29.299999 \n", "17 Spain 1998 15534.359889 19.000000 35.299999 \n", "18 Spain 1997 14872.565891 21.100000 38.700001 \n", "19 Spain 1996 16236.771679 22.500000 41.500000 \n", "20 Spain 1995 15561.972746 23.100000 41.700001 \n", "21 Spain 1994 13465.377826 24.299999 44.200001 \n", "22 Spain 1993 13362.018346 22.799999 42.099998 \n", "23 Spain 1992 16105.418729 18.400000 33.200001 \n", "24 Spain 1991 14782.038901 16.400000 29.799999 \n", "25 Spain 1990 13773.365698 NaN NaN \n", "\n", " UnempW/PrimEd. UnempW/SecEd UnempW/TertEd Ni-nis \n", "0 NaN NaN NaN NaN \n", "1 54.500000 23.100000 22.500000 18.000000 \n", "2 53.799999 23.299999 22.200001 19.440001 \n", "3 54.700001 23.299999 21.100000 19.570000 \n", "4 55.099998 23.799999 20.100000 19.200001 \n", "5 57.200001 22.900000 18.799999 18.799999 \n", "6 58.599998 22.700001 17.600000 19.400000 \n", "7 58.299999 22.400000 18.000000 13.920000 \n", "8 54.599998 23.700001 20.500000 10.440000 \n", "9 53.799999 22.799999 22.500000 10.280000 \n", "10 53.900002 21.900000 23.299999 11.120000 \n", "11 54.799999 21.500000 22.500000 10.310000 \n", "12 56.400002 21.400000 21.200001 9.960000 \n", "13 56.799999 20.700001 22.500000 NaN \n", "14 57.799999 20.200001 21.000000 NaN \n", "15 59.599998 19.400000 21.000000 NaN \n", "16 58.900002 20.000000 21.100000 NaN \n", "17 61.500000 18.500000 20.000000 NaN \n", "18 62.200001 19.400000 18.299999 NaN \n", "19 63.799999 18.799999 17.299999 NaN \n", "20 65.300003 18.700001 16.000000 NaN \n", "21 68.000000 17.700001 14.400000 NaN \n", "22 70.699997 16.400000 12.900000 NaN \n", "23 72.099998 16.900000 11.000000 NaN \n", "24 62.000000 15.000000 12.400000 NaN \n", "25 61.200001 16.000000 12.300000 NaN " ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# housekeeping for column names \n", "esplbr.columns = [\"Country\", \"Year\", \"GDP/capita(US$ 2016)\", \"UnemploymentRate\", \"YouthUnempRate\", \"UnempW/PrimEd.\", \"UnempW/SecEd\",\"UnempW/TertEd\", \"Ni-nis\"]\n", "esplbr\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Year</th>\n", " <th>GDP/capita(US$ 2016)</th>\n", " <th>UnemploymentRate</th>\n", " <th>YouthUnempRate</th>\n", " <th>UnempW/PrimEd.</th>\n", " <th>UnempW/SecEd</th>\n", " <th>UnempW/TertEd</th>\n", " <th>Ni-nis</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2015</td>\n", " <td>25831.582305</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2014</td>\n", " <td>29718.500216</td>\n", " <td>24.700001</td>\n", " <td>57.900002</td>\n", " <td>54.500000</td>\n", " <td>23.100000</td>\n", " <td>22.500000</td>\n", " <td>18.000000</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2013</td>\n", " <td>29370.663867</td>\n", " <td>26.299999</td>\n", " <td>57.099998</td>\n", " <td>53.799999</td>\n", " <td>23.299999</td>\n", " <td>22.200001</td>\n", " <td>19.440001</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2012</td>\n", " <td>28647.835243</td>\n", " <td>25.200001</td>\n", " <td>54.299999</td>\n", " <td>54.700001</td>\n", " <td>23.299999</td>\n", " <td>21.100000</td>\n", " <td>19.570000</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2011</td>\n", " <td>31832.238081</td>\n", " <td>21.700001</td>\n", " <td>47.099998</td>\n", " <td>55.099998</td>\n", " <td>23.799999</td>\n", " <td>20.100000</td>\n", " <td>19.200001</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>2010</td>\n", " <td>30737.832271</td>\n", " <td>20.200001</td>\n", " <td>42.500000</td>\n", " <td>57.200001</td>\n", " <td>22.900000</td>\n", " <td>18.799999</td>\n", " <td>18.799999</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>2009</td>\n", " <td>32333.466104</td>\n", " <td>18.100000</td>\n", " <td>38.500000</td>\n", " <td>58.599998</td>\n", " <td>22.700001</td>\n", " <td>17.600000</td>\n", " <td>19.400000</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>2008</td>\n", " <td>35578.736190</td>\n", " <td>11.500000</td>\n", " <td>25.400000</td>\n", " <td>58.299999</td>\n", " <td>22.400000</td>\n", " <td>18.000000</td>\n", " <td>13.920000</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>2007</td>\n", " <td>32709.401038</td>\n", " <td>8.400000</td>\n", " <td>18.900000</td>\n", " <td>54.599998</td>\n", " <td>23.700001</td>\n", " <td>20.500000</td>\n", " <td>10.440000</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>2006</td>\n", " <td>28482.609483</td>\n", " <td>8.600000</td>\n", " <td>18.500000</td>\n", " <td>53.799999</td>\n", " <td>22.799999</td>\n", " <td>22.500000</td>\n", " <td>10.280000</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>2005</td>\n", " <td>26510.717453</td>\n", " <td>9.300000</td>\n", " <td>20.400000</td>\n", " <td>53.900002</td>\n", " <td>21.900000</td>\n", " <td>23.299999</td>\n", " <td>11.120000</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>2004</td>\n", " <td>24918.645842</td>\n", " <td>11.200000</td>\n", " <td>22.799999</td>\n", " <td>54.799999</td>\n", " <td>21.500000</td>\n", " <td>22.500000</td>\n", " <td>10.310000</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>2003</td>\n", " <td>21495.707408</td>\n", " <td>11.500000</td>\n", " <td>23.400000</td>\n", " <td>56.400002</td>\n", " <td>21.400000</td>\n", " <td>21.200001</td>\n", " <td>9.960000</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>2002</td>\n", " <td>17019.535414</td>\n", " <td>11.600000</td>\n", " <td>23.000000</td>\n", " <td>56.799999</td>\n", " <td>20.700001</td>\n", " <td>22.500000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>2001</td>\n", " <td>15359.108440</td>\n", " <td>10.700000</td>\n", " <td>21.299999</td>\n", " <td>57.799999</td>\n", " <td>20.200001</td>\n", " <td>21.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>2000</td>\n", " <td>14787.756064</td>\n", " <td>14.200000</td>\n", " <td>26.299999</td>\n", " <td>59.599998</td>\n", " <td>19.400000</td>\n", " <td>21.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>1999</td>\n", " <td>15859.086026</td>\n", " <td>15.900000</td>\n", " <td>29.299999</td>\n", " <td>58.900002</td>\n", " <td>20.000000</td>\n", " <td>21.100000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>1998</td>\n", " <td>15534.359889</td>\n", " <td>19.000000</td>\n", " <td>35.299999</td>\n", " <td>61.500000</td>\n", " <td>18.500000</td>\n", " <td>20.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>1997</td>\n", " <td>14872.565891</td>\n", " <td>21.100000</td>\n", " <td>38.700001</td>\n", " <td>62.200001</td>\n", " <td>19.400000</td>\n", " <td>18.299999</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>1996</td>\n", " <td>16236.771679</td>\n", " <td>22.500000</td>\n", " <td>41.500000</td>\n", " <td>63.799999</td>\n", " <td>18.799999</td>\n", " <td>17.299999</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>1995</td>\n", " <td>15561.972746</td>\n", " <td>23.100000</td>\n", " <td>41.700001</td>\n", " <td>65.300003</td>\n", " <td>18.700001</td>\n", " <td>16.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>1994</td>\n", " <td>13465.377826</td>\n", " <td>24.299999</td>\n", " <td>44.200001</td>\n", " <td>68.000000</td>\n", " <td>17.700001</td>\n", " <td>14.400000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>1993</td>\n", " <td>13362.018346</td>\n", " <td>22.799999</td>\n", " <td>42.099998</td>\n", " <td>70.699997</td>\n", " <td>16.400000</td>\n", " <td>12.900000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>1992</td>\n", " <td>16105.418729</td>\n", " <td>18.400000</td>\n", " <td>33.200001</td>\n", " <td>72.099998</td>\n", " <td>16.900000</td>\n", " <td>11.000000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>1991</td>\n", " <td>14782.038901</td>\n", " <td>16.400000</td>\n", " <td>29.799999</td>\n", " <td>62.000000</td>\n", " <td>15.000000</td>\n", " <td>12.400000</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>1990</td>\n", " <td>13773.365698</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>61.200001</td>\n", " <td>16.000000</td>\n", " <td>12.300000</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Year GDP/capita(US$ 2016) UnemploymentRate YouthUnempRate \\\n", "0 2015 25831.582305 NaN NaN \n", "1 2014 29718.500216 24.700001 57.900002 \n", "2 2013 29370.663867 26.299999 57.099998 \n", "3 2012 28647.835243 25.200001 54.299999 \n", "4 2011 31832.238081 21.700001 47.099998 \n", "5 2010 30737.832271 20.200001 42.500000 \n", "6 2009 32333.466104 18.100000 38.500000 \n", "7 2008 35578.736190 11.500000 25.400000 \n", "8 2007 32709.401038 8.400000 18.900000 \n", "9 2006 28482.609483 8.600000 18.500000 \n", "10 2005 26510.717453 9.300000 20.400000 \n", "11 2004 24918.645842 11.200000 22.799999 \n", "12 2003 21495.707408 11.500000 23.400000 \n", "13 2002 17019.535414 11.600000 23.000000 \n", "14 2001 15359.108440 10.700000 21.299999 \n", "15 2000 14787.756064 14.200000 26.299999 \n", "16 1999 15859.086026 15.900000 29.299999 \n", "17 1998 15534.359889 19.000000 35.299999 \n", "18 1997 14872.565891 21.100000 38.700001 \n", "19 1996 16236.771679 22.500000 41.500000 \n", "20 1995 15561.972746 23.100000 41.700001 \n", "21 1994 13465.377826 24.299999 44.200001 \n", "22 1993 13362.018346 22.799999 42.099998 \n", "23 1992 16105.418729 18.400000 33.200001 \n", "24 1991 14782.038901 16.400000 29.799999 \n", "25 1990 13773.365698 NaN NaN \n", "\n", " UnempW/PrimEd. UnempW/SecEd UnempW/TertEd Ni-nis \n", "0 NaN NaN NaN NaN \n", "1 54.500000 23.100000 22.500000 18.000000 \n", "2 53.799999 23.299999 22.200001 19.440001 \n", "3 54.700001 23.299999 21.100000 19.570000 \n", "4 55.099998 23.799999 20.100000 19.200001 \n", "5 57.200001 22.900000 18.799999 18.799999 \n", "6 58.599998 22.700001 17.600000 19.400000 \n", "7 58.299999 22.400000 18.000000 13.920000 \n", "8 54.599998 23.700001 20.500000 10.440000 \n", "9 53.799999 22.799999 22.500000 10.280000 \n", "10 53.900002 21.900000 23.299999 11.120000 \n", "11 54.799999 21.500000 22.500000 10.310000 \n", "12 56.400002 21.400000 21.200001 9.960000 \n", "13 56.799999 20.700001 22.500000 NaN \n", "14 57.799999 20.200001 21.000000 NaN \n", "15 59.599998 19.400000 21.000000 NaN \n", "16 58.900002 20.000000 21.100000 NaN \n", "17 61.500000 18.500000 20.000000 NaN \n", "18 62.200001 19.400000 18.299999 NaN \n", "19 63.799999 18.799999 17.299999 NaN \n", "20 65.300003 18.700001 16.000000 NaN \n", "21 68.000000 17.700001 14.400000 NaN \n", "22 70.699997 16.400000 12.900000 NaN \n", "23 72.099998 16.900000 11.000000 NaN \n", "24 62.000000 15.000000 12.400000 NaN \n", "25 61.200001 16.000000 12.300000 NaN " ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# we know we are dealing exclusively with Spain, so we drop the reduntdant 'Country' column\n", "esplbr.drop('Country', axis=1, inplace=True)\n", "esplbr" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Year object\n", "GDP/capita(US$ 2016) float64\n", "UnemploymentRate float64\n", "YouthUnempRate float64\n", "UnempW/PrimEd. float64\n", "UnempW/SecEd float64\n", "UnempW/TertEd float64\n", "Ni-nis float64\n", "dtype: object" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# what do I have in my hands?\n", "esplbr.dtypes" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "RangeIndex(start=0, stop=26, step=1)" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "esplbr.index" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plotting the data" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x11bf333c8>" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAFzCAYAAACJofukAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XdcVfX/wPHX2y0qmrPMkas0J+CeOXKUmmkOtFw5+7Vs\naH3LVZbZMptamuZIzVxpmrhyYGniyq24NTU0wBGo8Pn9cS50xYvC5cIB7vv5eJyH3DPf93DlvO9n\nijEGpZRSSqmUymJ3AEoppZTKHDSpUEoppZRHaFKhlFJKKY/QpEIppZRSHqFJhVJKKaU8QpMKpZRS\nSnmEJhVKKaWU8ghNKpRSSinlEZpUKKWUUsojNKlwk4iMEpFYEWlsdywZgeNerbE7Dmci8quIxNod\nR1oRkdKO38O3dseilMqcMnVS4fRHdFkqnN44lnRHRKY63nesiDxzm/3mOu3XMy1j9KQUJAcGSNWk\nQkQeFZGfReSciFwTkb9F5E8RmSIi7VPz2olIt59bpVTGl83uAFSqug70Bb5MuEFE7gLaO/bJ6J8D\ndx+UTwE+Ho4lnoiMBEYCV4ClwDGse10Z6AJUAH5Kreu7cBqoBESk4TWVUl4koz9MVOIMsBxoJyJV\njTF/Jtj+FJAD66Fmxzdm2xljTqXWuUWkNDAcOA7UNcacS7A9J1Anta7vijHmBnAwLa+plPIumbr6\nIzlExFdEhjmK0k+LSLTj3+9EpOwdjn1aRHaJyL8ickpEPhaRvIns205E1opIuIhcFZEdIjJERLIm\n2C++/ltEKorIQhEJE5EYESmVxLf1HVbx/tMutvUG9gG/A+IizsdF5HsROSQiVxzxrheRji72dTtW\nERnvOHaG8z0QkbwiMlpEdjvu0z8i8ouINEhwfCzQ2PoxvionSe0GXFWbiEivuOogEWkpIsGO9x8m\nItNEpOCdzutQG+v/18KECQWAMSbaGLM+wbXj2+kk9TMlIn1FZJGIHHXse8Fxnx5ysa/LNhWO+xAj\nItkcMRwVkSgROSAig5P4fpVSSksqnFQCRgFrgQVYRdYVgUDgERHxN8acdHHcy0AzYC5WEXcL4EWg\njog0NsbExO0oIi8BHwIXgFmOa7QHPgIaAp1cnL8C1oN/FzAVKARcS+J7Og0EAd1F5BXHN1VExB+o\nAbyK9RlwVXXwLhANbAD+Aoo4Yv1RRJ4zxnyRklhFJBtW0tMN+NgY84rTtrsc160EBAMrAF/gMWCt\niDxhjImrNhgF9AFKOX6OS5B23Oa+xEms2sQ4rvUoVklOMFbi0hMo6/j5Ti44/q2QhH0TxpPkzxTw\nOdZ7XQn8DdwLdABWicjjxpglSbwuwGygFlYJVwxWFc0XInLNGDMlGe9DKeWtjDGZdgFKY31TX5aE\nffMBBVysbwLcACYlWD/Sce5/gcoJts3E+qM8xGldWawH7BmguNP67MB6x/49XMQeA4xI5vue6jiu\nNtDRcZ5OTtu/wEoYigDDHPv2THCO+1yc1wfYCVwEciUnVsf2NY6f82AlCjHAqy72neXY1ifB+sJY\n1QlngRxO69cCMW58Pm45DujliDUaq9oibr0Aa+LuaxLOnQerDUUssAToAVS4wzHJ+kzF3XsX5ykG\nnAL2J/L/4VsX9yEW2ATkcVp/v+Mzuzel/xd10UUX71i0+sPBGHPJGBPuYv06YA/Wt0VXvjPG7Emw\n7n9Yf6R7O63rAWQFPjLGnHE6/3WsB7sk2D/OWaxSA3f9BIRhNdiMq8vvBiw1xvyd2EHGmGMu1l0F\npgH5sb7RJjtWESmE9RBripU0fOBiexesBGRqguuHAR9gJUOJ/T48ZZYx5nenaxuskhXB9Xu/iTHm\nClZpx27gEWAGcMBRjfOTiHS4zeFJ/UxhjDnu4trngPlABREpeadY4w4DXnPEHXeeg1ilNA+ISJ4k\nnkcp5cW0+sOJox76Raxv+IW5+f5EuzjEABtvWWnMCRE5CVQWkWzGqnao4di8zsX+v4lIlNM+znY6\njneLMeaGiMwEnhORe4CHgALAbdsciEgR4HWgNdY33NzOpwWKuxFrMayHVAmggzHGVVffWljJV06x\nek8kVAHrwV4RSI2uwnG2uVgX17CzQFJOYIzZCVQTkbpYSVQAVjXXo0BbEZlpjEnYlTc5nylEpAxW\nwtEUq+ojZ4JzFQdcVdu5cqf3fMXFdqWUiqdJhYOIdAbmAJewiuaPAVex/jDH1dm7cksjPKf1pbGq\nVf7BahNwp/1dPagT2z85vsVKlvpgJRVnserNXXK0adiK9fAPxqqvD8cqfq+B9Q08p4tD7xTrPVj3\n4TCwJZF94hpCNnAsrhis6oXUYoBIF+vjEqasLrYlfjKrxCO+1EOs8SlmAD1EZL4xZnGCQ5L0mRKR\ncsAfQF6s0p+fHHHHYiUZjXH9e0oszssuVrv1npVS3kmTiv+MwqrL9jfGHHHeICKBtzmu2G3WG6wk\nBf57SBXD9TfHYrh+kKV4oCJjzG4R+QP4P8d13jfG3G7Qp35YCcWbxpixzhtEZBhWUuHyUncIZQdW\nFcIU4FcRaeqiCibuHnxkjBl6h/NlSMaYn0RkPDACq0FmwqQiqZ+pl7Cqop40xsx23tFRKqWjvSql\n0pS2qfhPWWCfi4TiHsc2VwRodMtKqxtlSWCPU3XAdsf+D7nYvy6Qy7FPavkWq6QArIactxP3fl0N\nzJSiB5Ux5jusEpOKWIlFkQS7/IH14KyXjNPGgNWnNCWxpTFXpQKQvM/U7X5PDVMcoVJKJZMmFf85\nDpR3fsg5GjV+hdVDIzE9RaRqgnVjse6t88P7e6yi5JcciUrcNbID47AepNNS8gbuYAZWV8NHjDGH\n7rDvcayH200PJhHpDrRJaSDGmBlYvSweANaJSFGnbeeAH4D6IvKKq+NFpLaI5HJaddHxb1IbJaY6\nEaklIk85PkMJtxUB+pNI+wmS/pmKa6SZ8Pf0OtaonUoplaa8pfqjqogk9u18vzFmHPAZ8CmwQ0R+\nxLo3Dzv22QlUS+T4FcBvIjIHa5yAFlgN8jZhjSEAgDHmiKPq4ENgl4j8gNXwrR1W171FxpjvU/Ae\nb8vRcyOxIaETfsOfgdUj5XMRaYb18KqOVVQ/H9fjaSQ3nlmOgaemYyUWTY0xZx2bn8G6J+NE5Cng\nN6w2HSWBmkB5rFKXKMf+a4AngAUistyxfqcxZqmb4XmixKM4VlXP5yKyHtiPlVSWBtpitQlZaoyZ\nl+A4QxI/U8BErFKfBY7P0wWgLuCHNb7Fox54H0oplWTekFTEtYBPbMKsdcA4Y8wXInINeA6rTUE4\n1h/m/wE/kvggSR9jPaxfxHrYXQTGY43XcFNPCGPMeBE5hFUX3gNrmOyDjtefJXL+tJj86aZrGGNO\nizX76vtAc6zPyTasJKs01tgXrs5xu1hv2W6Mme1ILGYAa0SkmTHmrDHmHxGpDzwLdAW6Y31LP4uV\n4I3G6iYb5xtHXN2AoY54v8P6/d1JYr/XJL+PRKzC+h23AvyB+lgNKv/BarQ5CyuhciVJnyljzA4R\neRgYAzyOVQ0UjNXANW7wrqTGf6f3rJRSdyRW93ullN0cXWhHAE1NgiG8lVIqI0gXbSpEpLhYcz+E\niTXPw07HUNLO+7wlImcc21eKSHm74lVKKaXUrWxPKkSkAFaRbTRWUXElrLkP/nHaZxhWUfgArIGp\nrgArRCRHmgeslFJKKZfSQ5uK14ATxph+TusSDj38AvB2XMM7EemJNRBQB6yeAkoppZSyme1tKkRk\nD/ALVsv+Jlgza35pjJns2F4GCAVqGGN2OR33K7DdGDMkzYNWSiml1C3SQ0lFWWAw1vTf72BVb3wq\nItGO8Qzuxmp9nnDo4nOObbdwTErVCmuo7ShX+yillFLKpVzAfcAKY8yF5ByYHpKKLMAWY8xwx+ud\nIlIFGITV1dAdrbC67CmllFLKPT2wBm5MsvSQVPwF7Euwbh//jYVwFmswomLcXFpRjMSHtT4GMHPm\nTCpVquSxQNXtDRkyhPHjx9sdhlfRe5729J6nPb3naWvfvn08+eST4HiWJkd6SCqCsYZrdvYAjsaa\nxpijInIWaxCmXQAi4gvUAb5I5JxRAJUqVcLf3z+RXZSn5c+fX+93GtN7nvb0nqc9vee2SXbzgfSQ\nVIwHgh3zFfyAlSz0w5obIc4nwJsichgrc3obOMWtszsqpZRSyia2JxXGmK0i8jjwHjAcOAq8YIyZ\n47TP+yLiA0wCCgAbgDbGmGt2xKyUUkqpW9meVAAYY5YBy+6wzyhgVEqvdeLECcLCwu68o0q28PBw\ntm3bZncYtilcuDClSpWyOwyllLJNukgq0sqJEyeoVKkSV69etTuUTCsgIMDuEGzj4+PDvn370jSx\nCAwMTLNrKYve87Sn9zzj8KqkIiwsjKtXr2qvEOVxca2lw8LCNKnI5PSepz295xmHVyUVcbRXiFJK\nKeV5tk8oppRSSqnMQZMKpZRSKgOLNbHsOb+Hydsmcyz8mK2xaFJhsyxZshAZGXnTujJlyrBr165E\njkhbruJLbxYvXsyWLVviXx8/fpxs2bLh7+9PjRo18PPzY9my23YuSvRcSimV3oRHhbPi8ApG/TqK\nVjNbUXBcQap8VYWBSwfy+6nfbY3NK9tUpCciYncIt5Xe4wNYtGgRNWrUoHbt2vHrfH1947u3/vzz\nzwQGBhIeHn7H9+PqXEopZZdYE8v+sP38dvI3fjtlLfv+3ofBUDB3QeqVqMer9V+lXsl61Cpei3w5\n89kar5ZU2OxOU8+XKVOGkSNHUr9+fcqVK8c777wTv+3cuXN07dqVunXrUr16dUaMGHHTccOHD6dB\ngwaULl2aSZMmMW3aNOrXr0/ZsmWZO3du/L5ZsmRh+PDh+Pv7U7FiRb7//r/5Y5zj27p1Kw0aNKB6\n9erUrVuXTZs2AfDcc88xduzY+P0OHDhAqVKliI2NZfTo0XTt2pX27dvzwAMP0L59e/bs2UPr1q2p\nWLEiPXr0iD/u8uXLDBgwgLp161KjRg0GDRrEjRs3AGjatCmvvvoqjRs3pkKFCjzzzDMALF++nJ9+\n+okPP/wQf39/vv3221vuYfPmzbl8+TIXL14EYM2aNdSvX5+AgACqVq3K1KlTb3uumTNnUrduXWrW\nrMlDDz2UbkqRlFKZj6tSiMpfVmbA0gH8ceYPGpVqxNTHpnLg2QOEvRrG0u5LeaPxGzQr08z2hAK0\npOImV6/C/v0pO0fFiuDj45l44kRERLBp0yYuXLhAuXLl6Nu3L/fccw+9evXijTfeoFGjRsTExNC2\nbVvmz59Pp06dALh69SrBwcGEhoZStWpV3nzzTTZt2sTWrVt55JFH6Nq1a/w1smbNyrZt2zh69Cg1\na9akYcOGN3WNvH79Op06dWLKlCm0aNGC4OBgOnXqRGhoKM899xytWrXitddeQ0T46quvGDRoEFmy\nWDlrSEgI27Ztw9fXl4ceeoj+/fuzatUqcubMSc2aNVm+fDlt2rTh5ZdfpnHjxnz99dcA9O/fnwkT\nJvDyyy8DcOTIEdatW0d0dDQPPvggmzdvpk2bNrRv3x4/Pz+ef/55wKr+cDZv3jyaNWtGoUKFAGss\njeDgYESEf/75Bz8/P1q1auXyXJs2bWL27Nls2LCB7Nmzs3HjRrp3787u3bs9+0tWSnmlc5fPsfTg\n0gxRCpEUmlQ42b8fUjp2U0gIJKe3amLF8c7ru3fvDkChQoUoW7YsR48eJX/+/KxevZrz58/HlyZc\nuXKFAwcOxB8XlzSUK1eOXLly8cQTTwBQs2ZNLl68SGRkJL6+vgD069cPsEo4GjduzPr16+NmqQOs\n0oesWbPSokULABo0aECxYsXYsWMH9evXp3LlyixevJiWLVsye/Zs9uzZE39sy5Yt46/j7+9Prly5\n8HFkXn5+fhw6dIg2bdqwaNEifv/9dz766CMAoqKiyJ49+03vR0TIlSsXNWrUIDQ0lDp16ri8f5GR\nkfj7+3PhwgUuXLjAmjVr4reFhYXRt29fDh48SLZs2bh48SK7d++mePHit5xn8eLF7Nq1izp16sTf\n5/DwcKKjo8mZM6fLayulVFKsPrKabvO7cfHfi1QpWoVGpRoxtP5Q6pWsR4WCFTJE9XNCmlQ4qVjR\nSgpSeo7kKFKkCBcuXIh/6IL10CtatGj861y5csX/nDVrVm7cuIExBhFh8+bNNz14nSU8zvm1iMRX\nLcCt1TBJ+TA77/P8888zbtw4zp8/T8uWLSlcuHCS4oh7P3ExzJ8/n/Llyyfp/TjHn5Bzm4q3336b\nrl27cuDAAXLkyMGgQYN49NFHmT9/PmCVXERFuZ6MzxhDr169GDNmTKLXUkqp5Ig1sYzbOI43175J\n8zLNmdlxJkXzFL3zgRmAtqlw4uNjlTKkZElu1UerVq2YNGlS/Ovp06dTrlw5ihUrdtvj8uTJQ9Om\nTXn33Xfj1/3111+cOXMmeQE4xLUrOHbsGBs3bqRx48Y3bX/ggQeIjY1l9erVgFUtcO7cOWrUqAFY\npRFnz57lnXfe4dlnn3Urhscff5xx48YRExMDWCUCoaGhdzzO19eXiIiIm9Y5J0nDhw+nSJEifPXV\nV/HnLV26NADr169n586diZ6rffv2zJw5k5MnT8afNySlmadSymuFR4Xz+NzH+d+a//G/hv9jeY/l\nmSahAE0qbDd+/HjOnDlD9erV8ff3Z86cOcybNy9+e8ISA+fXs2bN4vDhw1StWpVq1arRqVMnLly4\ncMfjXL2OiYnB39+f1q1b89lnn1GyZMmb9suePTsLFixgxIgR1KhRg5deeon58+fHV2MAPP300xQt\nWjTRKglXnOP4+OOP46s2qlevTosWLeLbR9wu/qeeeoq5c+cSEBAQ37gy4f4ffvgh48aNIyoqirFj\nxzJs2DD8/f2ZNm0adevWTfRcDRs25P333+fxxx/Hz8+PKlWq3NTIVSmlkmrXuV3U/Lom64+vZ2ng\nUt5u9jZZs2S1OyyPkjv1PsiIRMQfCAkJCblpOO5t27YREBBAwvXeLkuWLISHh99UBeOOdu3aERgY\nGN8GxJvoZ0spdTszds5g4NKBPFD4AeZ3mU/Zu8raHVKi4v6eAQHGmGRNPa0lFSrFjYFCQkKoUKEC\n2bJl04l/lFLKSfSNaJ75+Rl6LupJ1ypd2dR3U7pOKFJKG2qq+DYM7goICODQoUMeikYppTKHkxEn\n6TyvM9vPbmdS20n09++fIXt0JIcmFUoppZSHxXUX9cnuw8Y+G6l1by27Q0oTWv2hlFJKeUisiWXs\nhrG0nNkS/3v8CRkQ4jUJBWhJhVJKKeUR4VHh9FrUi58O/MSbjd5k1EOjMl3vjjvRpEIppZRKoV3n\ndtFxbkcu/HuBJYFLaHt/W7tDsoVWfyillFIpMGPnDOpOrkveHHkJGRDitQkFaFJhqyeffJI33njj\npnVt27bl448/dut827dvv2ngrJiYGLJkycLVq1dd7l+yZEn27t1707pGjRqxbNkyt67vaQ0bNqRc\nuXLxs6e+8sorSTru6NGjfPPNN6kcnVLK2zl3F+1SuQu/Pf1bpu4umhSaVNjo888/5/vvv48f9nnK\nlClcunSJl156ya3zhYSE8MMPP9y0LiN3XxIRPvvsM7Zt28bmzZuZP38+ixYtuuNxoaGh8TOdKqVU\najgZcZIm05owZfsUJj46kamPTSV39tx2h2U7bVPh5Or1q+wPS9nc5xULV8Qne9ImAClQoAATJ06k\nd+/eLFy4kJEjRxIcHAzAe++9x6xZsxAR/Pz8+OKLL8ibNy/Dhw8nOjqa999/H4AJEyawZ88eRo8e\nzdtvv82lS5fw9/enQYMGfPLJJxhj+PTTT1m4cCFhYWGMHDmSnj17Jim+Ro0aUa9ePX7//Xf++uuv\n+CG8gfjk588//yQqKooGDRrw6aefkjVrVho1akTdunXZvHkzJ06coG/fvvj7+zNu3DhOnz7Niy++\nGD+1eMmSJenevTurV68mMjKSZ555hhdffPGWWPLnz09AQED8sN3Xrl2jffv2XLx4kaioKGrUqMHX\nX39Nrly5GDx4MH/99Rf+/v6UKVOG+fPnc+DAAYYMGcKFCxeIjo5m8ODBDBw4MEn3QSmlnIVeDKXu\nlLrkzpbbq7qLJoUmFU72h+0n4OuUzX0eMiAE/3uSPkxzq1atWLRoEbVq1eKDDz6gdOnSLFmyhO+/\n/57ff/+dPHny8PTTT/PGG28wYcKERM9zzz33MGLECFasWBFfWhE3qFXevHnZvHkze/bsoX79+klO\nKsCaYGz9+vX8+++/VKxYkd69exMQEMCLL77Iww8/HF/N0KdPHz7//HNeeOEFAE6dOsX69eu5ePEi\nZcqUoW/fvmzYsIFTp05RsWJF+vbtS968eQG4cOECW7duJSwsDD8/Pxo0aECtWjf/Jz1z5gx79uxh\n7NixgDUXyZw5cyhQoAAAAwcO5Msvv+Sll15i4sSJvP7662zZsgWAGzdu0KNHD+bMmUP58uW5evUq\ntWvXpk6dOvEToimlVFKNXjeaHFlzsG3gNgr7FL7zAV5EkwonFQtXJGRAymagrFg4mXOfA6+++iqz\nZ8+mX79+AKxevZpu3bqRJ08eAAYPHpysRCChuLk4KleuDMD58+cpWrRoolUjzuu7desGQO7cuale\nvTqhoaEEBASwePFiQkJCGDduHABRUVHxSQJA586dAShYsCClS5emXbt2AJQoUYKCBQty4sQJHnzw\nQcCaiAygcOHCdOjQgdWrV8cnFc8//zzDhg2LL2moUKECYM0W+v7777N8+XJiYmKIjIzk33//dfl+\n9u3bx759++jSpUv87KX//vsve/fu1aRCKZUsBy8cZNafs5jQeoImFC5oUuHEJ7tPskoZPCVr1qxk\nyZJ48xbnh3y2bNluangZFRV123OLCLly5Yp/nSVLFm7cuAFAkSJF4mc1jRMWFkbRov9Nw+t8bNas\nWeOPNcawaNEi7rvvPpfXTXhcYudJLOY4n332GW3atGHHjh00adKEli1b0rx5c2bMmEFwcDDBwcH4\n+Pgwfvx4fvvtN5fnM8ZQpEgRtm1L1rw4Sil1izHrx3B33rvp59/P7lDSJW2omU44zxbbokUL5s6d\ny5UrVwCYNGkSLVu2BKB8+fJs3boVYwxXrlxhwYIF8cf5+voSERGR6HkTatWqFZMnTyY2NhawSkiu\nXLlClSpV7hhvhw4deO+99+KP/eeffwgNDU3iu73ZtGnTACuhWbx4MS1atLgl/ho1ajBq1Chee+21\n+OsVLlwYHx8fIiMjmT59evwxCe/Dgw8+SO7cuZk5c2b8usOHD99yr5RS6nbiSileb/g6ubLluvMB\nXkiTinTC+dt527Zt6dGjB3Xr1qVatWpERUUxZswYwKpWKFSoEJUqVaJDhw5x09MC8PDDD3P58mX8\n/Px47rnnbjlvwtfDhw8nX758+Pn54e/vz5gxY1i4cCE5c+a847ETJkwga9as1KhRg2rVqtGyZUtO\nnjx5x+NcvS5YsCA1a9akfv36vPLKK/HvKeF+zz77LOHh4SxZsoTevXsTERHBgw8+SLt27WjSpEn8\nfn5+fpQvX55q1arRqVMnsmXLxtKlS5k7dy41atSgSpUqDBgw4I6lPEop5UxLKe5MbvdNNqMSEX8g\nJCQkBH///6oz4uaIT7he2adkyZKsWLEivn1FRqWfLaUyt4MXDlLpi0pMaD2BZ2s/a3c4qSru7xkQ\nYIxJVr2xllQoW2XkcTSUUt5DSymSRhtqKludOHHC7hCUUuq2nHt8aFuK29OSCqWUUuo2tJQi6bSk\nQimllEqEllIkj5ZUKKWUUonQUork0ZIKpZRSygUtpUg+Lamw2X333ceDDz4YP4gUQK1atVi/fj0j\nR45k9uzZyT7nkiVLePnllz0ZplJKeR0tpUg+LamwmYgQHR3N5MmTGTBgwE3bRo8e7dY527VrFz/X\nhlJKqeTTUgr3aElFOjBq1CjefvvtW0Z47NOnD59++qnLY0aPHk23bt1o3749lStXpkWLFoSHhwPw\n3Xff8fjjjwPWcNQNGzbEz8+P6tWrM2LEiNR9M0oplQloKYV7tKTC2dWrsH9/ys5RsSL4+CTrkOrV\nq9OsWTPGjx/P66+/nuTjtmzZwrZt2yhQoACBgYFMmjSJYcOGAf8NKvX555/Trl27+PVxiYdSSinX\ntJTCfZpUONu/H5zm0nBLSAi4MUzzW2+9RZ06dRg4cGCSj2ndujUFChQAoF69euzevfuWfRo3bszQ\noUO5dOkSTZo0uWmyLqWUUrfSUgr32Z5UiMhIYGSC1fuNMQ867fMW0A8oAAQDg40xhz0eTMWKVlKQ\n0nO4oXTp0nTv3p0xY8a4HLq6QYMGXL16lVy5csVP8Z2U6cQ7duxIgwYNWLlyJZ9//jmffPIJP//8\ns1sxKqVUZqelFClje1LhsBtoDsQ9TeOfjiIyDHgW6AkcA8YAK0SkkjHmmkej8PFxq5TBU9544w0q\nVapEjhw5btkWHBzs1jkPHz5MuXLlePLJJ6lVqxYNGjRIaZhKKZVpaSlFyqSXhpo3jDF/G2POO5aL\nTtteAN42xiw1xuzGSi6KAx1sidTDnEslChUqxPPPP89ff/11yzZ3/fjjj1StWhV/f3+6devGpEmT\nUnxOpZTKjA5dOMSsP2fxesPXtZTCTbZPfe6o/ngFiASigN+A140xJ0WkDBAK1DDG7HI65ldguzFm\nSCLn1KnPVZrSz5ZSGV+vRb1YdWQVoc+HenVSkdGnPv8d6A20AgYBZYD1IpIHuBswwLkEx5xzbFNK\nKaVS7NCFQ8zcNVNLKVLI9jYVxpgVTi93i8gW4DjQBUhR/84hQ4aQP3/++NfanVIppZQrYzZ4Z1uK\n2bNn3zJyc0REhNvnsz2pSMgYEyEiB4HywK9YjTeLcXNpRTFg+53ONX78eJfVH0oppVScuFIKb+zx\nERgYSGBg4E3rUvKsTA/VHzcRkbxYCcUZY8xR4CxWz5C47b5AHWCTPREqpZTKTLy1lCI12F5SISIf\nAEuwqjzuBUYD14E5jl0+Ad4UkcNYXUrfBk4Bi9295r59+1IQsVK30s+UUhmTN5dSpAbbkwqgBPA9\nUAj4G9hDaBJ7AAAgAElEQVQI1DXGXAAwxrwvIj7AJKzBrzYAbdwZo6Jw4cL4+Pjw5JNPeix4peL4\n+PhQuHBhu8NQSiWDllJ4lu1JhTEmMAn7jAJGpfRapUqVYt++fYSFhaX0VErdonDhwpQqVcruMJRS\nSaSlFJ5ne1KR1kqVKqV/+JVSSmkpRSrwuqRCKaWU0lKK1JHuen8opZRSqU1LKVKHllQopZTyKlpK\nkXq0pEIppZRX0VKK1KMlFUoppbyGllKkLi2pUEop5TW0lCJ1aUmFUkopr6ClFKlPSyqUUkp5hdHr\nRmspRSrTkgqllFKZ3vd/fs+sP2cxud1kLaVIRVpSoZRSKlP789yf9F/Sn6eqPUVfv752h5OpaVKh\nlFIq0wqPCqfjDx2pULACE9tORETsDilT0+oPpZRSmVKsiaXnwp6EXQ3jl/6/4JPdx+6QMj1NKpRS\nSmVKYzeMZcnBJSwNXEq5guXsDscraPWHUkqpTCcoNIjha4czsslIHr3/UbvD8RpJKqkQke2AScq+\nxhj/FEWklFJKpcCx8GMEzg+kdfnWjGgywu5wvEpSqz8WOf2cC3gG2Av85lhXF6gMfOm50JRSSqnk\niboRRacfOpE/Z35mdpxJFtEC+bSUpKTCGDM67mcRmQx8aowZ7ryPiIwGSno2PKWUUirpnl32LHv/\n3sumvpsomLug3eF4HXdSuM7AdBfrZwKdUhaOUkop5Z5vQr5hyvYpTHx0In73+NkdjldyJ6n4F2jg\nYn0DICpl4SillFLJ98fpP3h2+bMMChhErxq97A7Ha7nTpfQT4CsR8Qe2ONbVAfoCb3sqMKWUUiop\nwq6G0emHTvjd7ccnrT+xOxyvluykwhjznogcAV4AnnSs3gf0Mcb84MnglFJKqduJiY0hcH4gUTei\n+LHLj+TMltPukLyaW4NfOZIHTSCUUkrZavja4aw5uoZVT62ihG8Ju8Pxem71tRGRAiLST0TeFZGC\njnX+InKvZ8NTqel05GleW/UaIWdC7A5FKaWSbdH+RYzdOJb3mr9H0zJN7Q5H4UZSISLVgIPAMOBV\noIBjU0dgrOdCU6kl6kYU7254lwc+f4APNn1A3Sl1GbN+DDdib9gdmlJKJcnBCwfpubAnnSp14pX6\nr9gdjnJwp6TiY2CaMaYCN/f2WAY09khUKlUYY1i0fxGVv6zMyF9HMiBgAGdfPsuwBsMY+etIGk1t\nxOGLh+0OUymlbuvytct0nNuRe33vZepjU3Xm0XTEnaSiFjDJxfrTwN0pC0ellr1/76XVzFY8Pvdx\nKhSswK5Bu/i41ccUyVOEMc3GsKHPBv6+8jfVJ1Zn0tZJGJOkUdmVUipNGWPo91M/jkccZ0GXBeTL\nmc/ukJQTd5KKaMDXxfr7gb9TFo7ytPCocF785UWqfVWNI/8c4aduP7G8x3IqFal00371S9Znx6Ad\nPFn1SQb9PIi2s9ty9vJZm6JWSinXJmyewNw9c/m2/be3/B1T9nMnqfgJGCEi2R2vjYiUAsYB8z0W\nmUqRmNgYvgn5hgqfVWDytsmMaTaGPc/sod0D7RItKsybIy+T2k1iSeAStp7ZSpUvq7Bg34I0jlwp\npVzbcHwDrwS9wiv1XqFz5c52h6NccCepeBnIC5wHcgPrgMPAJeANz4Wm3BV8Ipjak2szYOkAWpdv\nzcHnDvJaw9eS3H+77f1t2T14N41KN6LTD53ovag3EVERqRy1Ukol7sylM3Se15lGpRsxtoX2CUiv\nkp1UGGMijDEPA+2A54HPgUeMMU2MMVc8HaBKutORp+mxoAcNpzZEEDb13cSMx2dQPF/xZJ+rSJ4i\nLOiygKmPTWXBvgVUn1id9cfXp0LUSil1e9dirtF5XmeyZcnGnE5zyJbFrSGWVBpwp0tpWQBjzEZj\nzJfGmPeNMas8H5pKKucuoquOrGJK+yls6b+FeiXrpei8IkLvGr3ZOWgnpfKX4qFpDzF05VCib0R7\nKHKllLqzV4Je4Y/TfzCv8zyK5S1mdzjqNtyp/jgsImtF5EkRyeXxiFSSJewiOjBgIAefPUhfv75k\nEbfGNXOpzF1lWNtrLe+1eI9Pfv+EWt/UYte5XR47v1JKJWbajml8tuUzPmn9SYq/KKnU586Txx/Y\nhTVexVkRmSQidTwblrqThF1E/xz8Jx+1+oj8ufKnyvWyZsnK0AZD+aP/HwDU+qYWHwR/QExsTKpc\nTymllh9aTr+f+tHfvz+Daw62OxyVBO60qdhhjHkBKI41M+k9wAYR2S0iL4lIEU8HqW42aeukW7qI\nVixcMU2uXf3u6mzpv4Xnaz/PsFXDaDa9GcfCj6XJtZVS3mPL6S08Me8JHqnwCF8++qUOcJVBuF1G\nboy5YYxZAHTGGrK7PPAhcFJEpovIPR6KUTm5FnONEb+OoEvlLnfsIppacmXLxQctP2Btr7UcCz9G\nta+q8d2O73TALKWURxy8cJBHv3+U6sWqM+cJbZiZkbj9mxKRmlglFd2AK1gJxRSgBDASWAzU9kCM\nysmi/Ys4f+U8bzZ+0/Ypfpvc14Rdg3bxwi8v0HtxbyZvn0yZAmXwzemLb05f8ufMH/+zb05f8ue6\n+bVvTl9yZM1h63tQSqUvZy+fpdXMVhTxKcLS7kvxye5jd0gqGZKdVIjIS0Af4AGs+T56AsuMMbGO\nXY6KSG/gmIdiVE4mbp1Io1KNeLDIg3aHAkD+XPmZ1mEa7R9oz9QdUzkWfozI6EgioiOsf6MiiDGJ\nt7vIlS3XzYmHIxHpXrU7XSp3ScN3opSyW2R0JG1mteFazDXW9V5HwdwF7Q5JJZM7JRWDgW+xJhX7\nK5F9zgNPux2VculA2AHWHlvLrI6z7A7lFh0rdaRjpY63rDfGEHUjKj7JiFsiohK8dtp+IuIEXX/s\nysYTG/mw5YdamqGUF4i+Ec3jcx/n6D9H2dBnA6Xyl7I7JOWGZCcVjtlJ77TPNeA7tyJSifo65GsK\n5S5Ep0qd7A4lyUSE3Nlzkzt7bu7Om7T55owxfPnHlwxZMYStZ7Yyr/M87vW9N5UjVUrZJdbE0nNR\nT4JPBBP0VBBVi1W1OyTlJrcaaopIARF5WUQmO5YhIuKRvowi8pqIxIrIxwnWvyUiZ0TkqoisFJHy\nnrheRhF1I4ppO6fRp0Yf29tSpDYR4f9q/x/r+6znRMQJ/L/2Z+3RtXaHpZRKBcYYhvwyhHl75vF9\np+9pXLqx3SGpFHBnRM2aQCgwBCjoWF4CQkXEPyXBiEgtYACwM8H6YcCzjm21sRqGrhARrykX/3Hv\nj1z89yIDAgbYHUqaqVuiLtsGbqNK0Sq0mNGC94Pf1x4mSmUyH2z6gE+3fMoXj3zhsgpVZSzulFSM\nx5qp9D5jTEdjTEegDLAU+MTdQEQkLzAT6AeEJ9j8AvC2MWapMWY3VuPQ4kAHd6+X0UzcOpHmZZpT\nodAda58ylaJ5irLiyRUMrT+UYauG8cS8J4iMjrQ7LKWUB0zfOZ1hq4YxvPFwBtfSwa0yA3eSiprA\nOGPMjbgVjp/fd2xz1xfAEmPMGueVIlIGuBtY7XS9SGAz4BVjtu4+v5vgk8EMDBhodyi2yJYlG2Nb\njGVh14WsOrKKWt/UYs/5PXaHpZRKgeWHltN3cV+e9nua0Q+Ntjsc5SHuJBWRgKtmuSWxpj9PNhHp\nBtQAXnex+W7AAOcSrD/n2JbpTdo6iWJ5ivFYxcfsDsVWHSp2YGv/reTImoPak2sz+8/ZdoeklHKD\n82iZE9tO1NEyMxF3koq5wBQR6SoiJR1LN2AykOy/8iJSAqvapIcx5rob8WRqV65dYcauGfT166td\nK4EKhSrw+9O/07FSR7ov6M7zy5/nWsw1u8NSSiWRjpaZubnz23wFq+RgutPx14GvgNfcOF8AUATY\nJv+lq1mBxiLyLFAREKAYN5dWFAO23+7EQ4YMIX/+mzulBAYGEhgY6EaY9pi7Zy6R0ZH09+9vdyjp\nRp4ceZjeYTp1762r3U6VykD+uvRX/GiZSwKX6GiZ6cDs2bOZPfvm8oCIiAi3zyfutqYXER+gnONl\nqDHmqpvnyQOUTrB6GrAPeM8Ys09EzgAfGGPGO47xxUowehpj5rk4pz8QEhISgr9/ijqk2K7O5DoU\nyl2IZT2W2R1KuvT7qd954ocnuB57nTmd5tC0TFO7Q1JKuRARFUGTaU34++rf/Pb0bzq4VTq2bds2\nAgICAAKMMduSc2xKJhS7aoz507G4lVA4znPFGLPXecHqMnrBGLPPsdsnwJsi0k5EqmKVkpzCml8k\n09r21za2nN7itQ00k0K7nSqV/kXfiKbjDx05Fn6MX3r8oglFJpak6g8RWZDUEzq6mKbUTU8FY8z7\njpKRSUABYAPQxjFyZ6Y1aesk7s13L4/e/6jdoaRrcd1Oh68ZzrBVw9h8ejNTH5uKb05fu0NTyuvp\naJneJaltKtyvYHGDMaaZi3WjgFFpGYedLkVf4vvd3/NyvZe1IVMSxHU7rVOiDr0W9aLWN7VY0GUB\nlYtWtjs0pbyW82iZP3b5UUfL9AJJeloZY/qkdiDqZrP+nMXV61fp59/P7lAylLhupx1/6EjtybWZ\n3G4ygVUzTsNcpTKT94Pf59Mtn/LlI1/qaJlewu02FSJSVEQaOZaingzK2xljmLh1Im3vb0sJ3xJ2\nh5PhJOx2OnbDWLtDUsrrfLfjO15b/RpvNnpTR8v0IskuV3f0vPgC6IbV9RMgRkTmAv9njEnTqpLM\naMvpLew8t5OxzfVh6K64bqfl7irH/9b8j8joSN5t/q4OsqNUGrhw9QL9l/Snb42+vNX0LbvDUWnI\nncr6bwA/oC3wm2NdPWACVkPKbp4JzXtNCplE6fylaVmupd2hZGgiwqiHRpEvRz5eWfkKkdGRfPbI\nZ2QRtwvolFJJsOrIKq7HXuetpm9pIu9l3Ekq2gKtjDEbndatEJH+wC+eCct7hUeFM2f3HN5s/CZZ\ns2S98wHqjl6u/zL5cuZj0NJBXLp2iW8f+1YbvyqVioJCg6hcpLIOSOeF3PnLegHXvUEigH9SFo6a\nsXMG12Ov09evr92hZCoDAgaQL0c+ei7qyeVrl5ndaTY5s+W0OyylMh1jDCtCV9Clche7Q1E2cKcc\neAzwsYjET+bl+PkD4G1PBeaNjDFMDJlIh4oduDuvV8yVlqYCqwaysOtClh1aRvs57bly7YrdISmV\n6ewL28fpS6dpVa6V3aEoG7iTVAwG6gInROSwiBwGTgD1gYEisi1u8WSg3iD4ZDB7/97LoIBBdoeS\nabW9vy3Leywn+EQwrWa2IiJK2xUr5UlBoUHkzJqTRqUb2R2KsoE71R+LPB6FAmDi1omUL1he569I\nZU3LNGVVz1W0mdWGZtOb8UuPXyiSp4jdYSmVKawIXUGj0o10sjAvleykwhgzOjUC8XZhV8OYt3ce\n7zR7R3snpIG6Jeqyrvc6Hp7xME2mNWHlUyu1UZlSKRR1I4p1x9ZpN1IvlqKnl4jkFRFf58VTgXmb\n73Z8B0DvGr3tDcSLVCtWjQ19NnD52mUaTW3EkX+O2B2SUhla8Ilg/r3xr3aH92LJTipEpIyI/Cwi\nV/ivx8c/QDja+8MtxhgmhUziiQefoLBPYbvD8Sr3F7qfjX03kjVLVhp+25C9f++1OySlMqwVoSu4\nO+/dVC2qk4Z5K3dKKmYCdwF9geZAM8fS1PGvSqa1x9Zy6OIhneLcJqXyl2JDnw0U9ilM46mNCTkT\nYndISmVIQaFBtCzXUge88mLuJBXVgT7GmLnGmF+NMeucF08H6A0mbp1IpcKVaFRKW0vb5e68d/Nr\n718pV7AczaY3Y8PxDXaHpFSGcvbyWXae20nLslr14c3cSSr+AEp6OhBvde7yORbuX8jAgIGa3dus\nYO6CrHpqFf73+NNqZitWHF5hd0hKZRgrQ1cC8HC5h22ORNnJnaSiHzBMRHqJSICIVHNePB1gZvft\ndmvI6J7Ve9odigLy5czHsu7LaFamGe1mt2PBvgV2h6RUhhB0JAi/u/0omkcnrfZm7iQVRYBywFSs\nUosdwHanf1USxZpYvt72Nd2qdOOu3HfZHY5yyJ09Nwu7LqRjpY50nteZ6Tun2x2SUularImNb0+h\nvJs7g199i5U8BALnAOPRiLxIUGgQx8KPaQPNdCh71uzM6jiLfDny0WtRLy5FX+L/av+f3WEplS7t\nOreL81fO69Dcyq2kojTQ3hhz2NPBeJtJIZOoXqw6de6tY3coyoWsWbLydbuvyZczH88uf5brsdd5\nse6LdoelVLoTFBqET3Yf6pesb3coymbuJBVrsHqAaFKRAqciT7HkwBI+a/OZNtBMx0SEj1p+BMDQ\nlUN5pMIj3F/ofpujUip9WRG6gofue0hn/lVutalYAowXkVEi0klE2jsvng4ws5qybQq5suWiR7Ue\ndoei7kBEeKfZO5TwLcFzy5/DGK3xUyrOlWtX2Hhio1Z9KMC9koqJjn9HuNhmgKzuh+MdbsTeYPL2\nyXSv2h3fnDqyeUaQO3tuPm3zKe1mt2PhfqsRp1IK1h9fz7WYa9pIUwFulFQYY7LcZtGEIgmWHVrG\nqchT2kAzg2l7f1va3t+WF395kSvXrtgdjlLpworQFZT0LckDhR6wOxSVDqR0QrFcngrEm0wKmUTN\n4jUJKB5gdygqmSa0nsD5K+d5Z8M7doeiVLoQFBpEq3KttG2YAtybUCyriAwXkdPAZREp61j/tog8\n7fEIM5lj4cdYfmg5gwIG2R2KckPZu8ryWsPX+HDThxy8cNDucJSy1cmIk+wL26dVHyqeOyUVbwC9\ngaHANaf1u7FG21S3MXnbZPLlzEe3Kt3sDkW5aViDYdpoUymsUooskoXmZZvbHYpKJ9xJKnoCA4wx\ns4AYp/U7gYoeiSqTuh5znSnbp/BUtafIkyOP3eEoN8U12gwKDWLh/oV2h6OUbYKOBFGreC0K5i5o\ndygqnXAnqbgX12NUZAGypyyczO2nAz9x9vJZbaCZCWijTeXtYmJjWBm6Uqs+1E3cSSr2Aq7m6H4C\nnfvjtiaGTKR+yfpULVbV7lCUB2ijTeXNQv4K4Z+of3R8CnUTd5KKt4DPRWSY4/iOIvINVluLtzwZ\nXGby+6nfWXVklTbQzES00abyZkGhQfjm9KX2vbXtDkWlI+6MU7EYaAe0AK5gJRKVgHbGmJWeDS9z\nWH98PS1ntKReiXp0rtzZ7nCUB2mjTeWtVoSuoFmZZmTPqrXe6j9ujVNhjNlgjHnYGFPUGONjjGlo\njAnydHCZwfJDy2k1sxW1761N0FNB5MqmQ3tkJtpoU3mjyOhIfjv5m1Z9qFu4PfiViOQQkRIiUsp5\n8WRwGd28PfN4bM5jtCrXiqXdl5I3R167Q1KpQBttKm+z9uhaYkyMNtJUt3Bn8KsKIrIB+Bc4Dhx1\nLMcc/ypg6vapdJvfjc6VOzOv8zwtocjktNGm8iYrQldQ7q5ylL2rrN2hqHTGnZKKaUAs0BYIAPwd\ni5/jX6/36eZP6ftTX/r792fG4zO0ztELaKNN5U3ihuZWKiF3kooawEBjzHJjzA5jzE7nxdMBZiTG\nGMasH8MLv7zAq/Vf5atHvyKLpGh6FZWBaKNN5Q1CL4YS+k+oVn0ol9wdp6KwpwPJ6IwxDF05lOFr\nhzOm6RjGtRinE+x4GW20qbxBUGgQ2bJko2mZpnaHotIhd5KKYcD7IvKQiBQSEV/nxdMBZgQxsTEM\n/nkwH/72IRNaT+CNxm9oQuGltNGmyuyCjgRRr0Q9fHN65Z97dQfuJBWrgLrAauA88I9jCXf861Wu\nx1yn56KefLPtG75t/y3P13ne7pCUzbTRpsqsrsdcZ83RNVr1oRKVzY1jtMzLIepGFF1/7MryQ8uZ\n02mODmylgP8abb674V161+jN/YXutzskpTxi8+nNREZHaiNNlahkJxXGmHWpEUhGc/naZTrM6UDw\nyWAWd1tMmwpt7A5JpSPDGgxj+s7pPLf8OX7p8YtWh6lMISg0iIK5C+J/j3b0U64lufpDRNonsjQR\nkXvcDUBEBonIThGJcCybRKR1gn3eEpEzInJVRFaKSHl3r+cJ4VHhtJzRki2nt/BLj180oVC30Eab\nKjMKCg2iRdkWZM2S1e5QVDqVnJKKRbfZZkRkDtDfGHM1mTGcxGr8eQgQoDewWERqGGP2OSYuexbo\niTXA1hhghYhUMsZcS+a1Uuz8lfO0nNGSk5EnWd1zNbXurZXWIagMwrnRZqtyrciTI4/dISnltov/\nXuSPM38wIGCA3aGodCzJJRXGmCyuFuAu4GGsga/eTG4AxpifjTG/GGNCjTGHjTFvApexGoMCvAC8\nbYxZaozZjZVcFAc6JPdaKXUy4iSNpzbm3JVzrOu9ThMKdUfaaFNlFquPrCbWxPJw2YftDkWlYyke\nmckYE2GMWQMMATqm5FwikkVEugE+wCYRKQPcjdXTJO56kcBmoF5KrpVchy8eptHURkTdiGJDnw1U\nKVolLS+vMigdaVNlFitCV1CpcCVK5i9pdygqHfPkcI/7gRLuHCgiVUTkEhANfAk8bow5gJVQGOBc\ngkPOObalid3nd9NoaiNyZcvFxr4bKV/Q1iYdKoPRkTZVRmeM0aG5VZK406U0MWWBM24eux+oDuQH\nngCmi0jjlAY0ZMgQ8ufPf9O6wMBAAgMDk3yOP07/QetZrSmVvxQrnlxB0TxFUxqW8jJxjTbbzW7H\nwv0L6VgpRQV6SqW5AxcOcDLypI5PkQnNnj2b2bNn37QuIiLC7fOJJ745iUgN4FtgnTFmiAfOtxI4\nDLwPhAI1jDG7nLb/CmxP7Foi4g+EhISE4O/vften6zHXeeDzB7g7790s67GMArkKuH0updrNbsfO\nszvZ93/7tNGmylAm/D6BoauGcnHoRf3seoFt27YREBAAEGCM2ZacY5PTpfQfEbnoYokGQrBG1xyZ\nrMhvH1dOY8xR4CzQ3CkOX6AOsMlD10pU9qzZ+SnwJ4KeCtKEQqWYNtpUGVXQkSAalWqkCYW6o+RU\nf7yYyPpI4IAxZq87AYjIu8By4ASQD+gBNAHiytk+Ad4UkcNYXUrfBk4Bi925XnJpg0zlKc4jbXaq\n1ImA4gF2h6TUHUXfiObXY78ysomnvjOqzCzJSYUx5rtUiqEo8B1wDxAB7AJaOnqUYIx5X0R8gElA\nAWAD0MaOMSqUSqlhDYbx86GfaTKtCTM7zqRDxTTvGa1UsgSfDObq9avaSFMliSd7f7jFGNPPGFPW\nGJPbGHO3MSY+oXDaZ5QxprgxxscY08oYc9iueJVKidzZc/Nrr19pU6ENHed25L2N72mPEJWuBYUG\nUSxPMaoWq2p3KCoDsD2pUMrb5MmRh7lPzOXNxm/y+urX6bWoF1E3ouwOSymXgkKDeLjcw2QRfVyo\nO9NPiVI2yCJZeKvpW8zuNJt5e+fR9LumnLuccDgWpex17vI5tp/drlUfKsk0qVDKRt2qdGNd73Uc\nDz9OrW9qsfPsTrtDUireqiOrAGhRtoXNkaiMwu2kQkTKi0grEcnteK1zOyvlhtr31mZL/y0UyVOE\nBt82YNH+283dp1TaCToSRPVi1bk7b5oNYKwyuGQnFSJSSERWAQeBZVi9NgCmiMhHngxOKW9RwrcE\n63uv1wacKt3QobmVO9wpqRgP3ABKAc7TnM8FWnsiKKW8kTbgVOnJn+f/5Ozlszo0t0oWd+b+aAm0\nMsacSlDjcQgo7ZGolPJScQ04KxWuRJ/FfTh08RCLui6iWN5idoemvExQaBC5s+WmQakGdoeiMhB3\nSirycHMJRZyCWLOMKqVSKLBqIOv7rOdY+DFtwKlssSJ0BQ/d9xC5suWyOxSVgbiTVGwAejq9NiKS\nBRgKrPVIVEopat9bmz/6/6ENOFWau3r9KhuOb9CqD5Vs7iQVQ4EBIrIcyIE1k+huoDEwzIOxKeX1\ntAGnssP64+uJjonWpEIlW7KTCmPMbuB+YCPWpF55gAWAnzEm1LPhKaW0AadKa0GhQZTwLUGlwpXs\nDkVlMO401MQYEwHo/M1KpRFtwKnSUlBoEC3LtkSHH1LJ5c44FdUSWaqKSAURyZkagSqltAGnSn2n\nIk+x5+89tCqv41OkhX//tZbMwp02FTuA7Y5lh9PrHcB+IEJEvhMRbTKsVCpwbsDZZFoTjoUfszsk\nlYmsDF2JIDQv09zuUDKtc+dgyhR47DEoVAiKFYOXXoJjx+yOLOXcSSoewxpNcwBQ3bEMAA4A3YGn\ngWbAGA/FqJRKoIRvCVb3XE2BXAV4csGT3Ii9YXdIKpMIOhJEzeI1KeRTyO5QMg1jYO9eeO89qFcP\n7rkHBgyAf/6Bt96CZ5+FadOgXDno3Bl++83uiN3nTlLxBvCiMWaKMeZPxzIFGAK8bIyZBTwHPO7J\nQJVSNyuQqwDfd/qe3079xpj1msOrlIuJjWFl6EodmtsDbtyAX3+1SiAqVIDKlWHMGCheHKZOtUor\n1q+HV16Bd9+Fkyfh889h506oX99KPubNs86TkbiTVFQHjrtYfxyo6vh5B//NCaKUSiX1S9ZnZJOR\nvL3+bTae2Gh3OCqD2352Oxf+vaBdSd0UGWklAk89BUWLQtOmMHcuPPwwLFsGYWEwfz706gWFC998\nbJ48MHgw7N8PP/0EuXNDly5Qvjx8/DFERNjznpLLnaRiP/CaiOSIWyEi2YHXHNsA7gXOpTw8pdSd\n/K/R/6hfsj49FvQgPCrc7nBUBrbi8Ary5chH3RJ17Q4lwzh5Er78Elq1shKFLl3gzz+tKo0//rC2\nf/UVtGkDuZLQ0jBLFmjXDtasgW3boHFjGDYMSpbMGO0u3Ekq/g9oC5wSkVWOGUtPOdYNduxTFvjS\nMyEqpW4nW5ZszOo4i4ioCAYuHaiDYym3RN2I4uttX/Po/Y+SPWt2u8NJ165csdpC+PtDqVLwwgsQ\nGwsffWQ99HfssLbXrGklCe7y84Pp0+H4cXjuuYzR7sKdwa82AWWAEcAuxzICKGOM+d2xzwxjzAee\nDKWMmOAAACAASURBVFQplbhS+Uvxdbuv+WHPD0zbMc3ucFQG9OnmTzlz6QyjHxptdyjpWmQktG5t\nNbqsWBHmzLGqNVautB78pVNhWs3ixeGddzJGuwt3B7+6BEz0cCxKqRToUrkLKw6v4Lnlz9GgVAPu\nL3S/3SGpDCLsahjvbHiHQQGD9HNzG+HhVkKxfz+sXQt16qTt9ePaXQwcCD//DOPHW9UtpUtbpSVP\nPw2+vmkbU0JuF8yIyIMi0lpE2jsvngxOKZU8E9pM4F7fe+k+vzvXYq7ZHY7KIN5a9xYAI5qMsDmS\n9OvCBWjeHA4dgtWr0z6hcOaq3cXQoVCiBCxebF9c4N6ImmVFZCfWJGI/A4scy0LHopSySd4cefm+\n4/fsOreLN9e8aXc4KgM4dOEQX239iv81/B9F8hSxO5x06fx5aNYMTpywHuQBAXZH9J+E7S6qVbM3\nHndKKiYAR4GiwFWgMtYMpVuBhzwWmUpVV6/Ct99aLZaHDIFNm6yGRirjCygewLvN3+WDTR+w6sgq\nu8NR6dxrq1+jeL7iPF/nebtDSZf++svqGnr+PKxbB9Wr2x2Ra3HtLsqUsTcOd5KKesAIY0wYEAvE\nGmM2Aq8Dn3oyOOV5hw/Dyy9bxWT9+kF0tNXQqEEDq15uyBCrVbEmGBnbS/Ve4uGyD/PUwqf4+8rf\ndoej0qmNJzayYN8C3mn2Drmz57Y7nHTn/9u77/CoyuyB49+X3kGUDipVDLpAkFWaBbGDYNlVcIXF\nsq7K/hQLCFgiiDQLCMKuu4rwqLB2URRRFJFiwAQUAekgRSBsMEAIIeX8/jiJJCFtkpm5M5PzeZ77\nZOZmZnIyuZk5897znnf3brjkEu0R8c03EBXldUShryRJRXngSNblg0DjrMs7gXP8EZTxr4wM+Phj\nnSfdurVOS7rzTj03uHix/uMsXqx96OfO1apiSzDCWzlXjln9ZpGemc4d8+6waabmFCLCIwsfIbpR\nNAPOH+B1OCFn505NKFJTNaFoY/WrxVKSpOIntKsmQCwwzDnXDZ1Wus1fgZnSS0iACRO0I9v11+u0\np5kzNYmYNEnnOwOUL6//PNOmWYIRSRrVbMTMvjP5ZNMnTF9lbWNMbu+sf4fYPbE8d8VzlHOlaKYQ\ngbZu1eJH0Fba2a+VpmglOZKeyXG/J9GeFd8C1wIP+CkuU0IiEBsLAwdqB7anntKEYeVK7e72179q\n+9eCWIIRWXq36c2QzkN4eOHDrN2/1utwii1TMtl3dB8Hkg/YKEsApKan8tiXj9GnTR8ua36Z1+GE\nlI0bNaGoUkUTikD0nYhkzh//sM65usAhCZH/fudcNBAXFxdHdHS01+EExbFj+sb/8ss6xah5c53P\nPHjwqT3mSyIjA5Yu1UYr770H+/ZpXcbNN+s86QsvLF3nOBM4x9OP0/nfnRERVt29yvNz55mSyYHk\nA+xK2sXuw7vZdVi/5ry85/Ae0jLTADi96um0q9+OdvXaEVUvinb12tGufjvqVauHc87T3yVcvbDi\nBYZ9MYy1967l3Hrneh1OyFi3TqeNnn66Thtt2NDriLwRHx9PJ53i0klE4n25r89JhXPuNeCBrAZY\nOfdXB6aKyB0+PWAAlKWkYssW7Ss/c6Y2ZrnmGrjvPm3QUr58YH5mQQlGnz46naldO93q1g3Mzze+\n++nAT3T+d2fu7Hgn066dFtCflZCcwI7fdhQrYQCoXL4yTWs1pWmtpjSr3YymNbO+1mpKWkYa6xLW\nsT5hPesS1rHx4MYik4361esH9PcLd4kpibR8qSW3truVGb1neB1OyPjhB+jVS2dRfPkl1CvDs2uD\nnVRkAI1E5ECe/WcA+0SkRF06/SnSk4qMDF3xbvp0WLBA37zvvFO7rAX73F9GBixbBm+/rZn95s26\nD6BBg5MJRlSUJRtem75qOvd/ej/zbp1Hn3P6+P3xv935LeOWjuOzLZ/9vq+whKFZLf16RrUzij3i\nkJaRxtZDW1l34GSikTfZOKPaGSeTjKyE47z651kPhiwPff4Q/47/N1v+sYUGNRp4HU5I+P57uPJK\naNECPv9cRyrKsqAkFc65WoADDgGtgZzz1MoDfYDxItI4n7sHVSQnFenpWnT52We6WM3998MttxRe\nJxFMqamwaROsX69DievW6WVLNrwnIvT7bz+W/bKMH+/9kcY1S/+vKiLM3zyf8UvHs2zXMs6rfx4P\nXfQQHRp28DlhKI30zHS2JG4pNNkY1H4QL171IqdVPS3g8YSqbYe20XZaW5665ClGXTzK63BCwnff\nab+eqCh9Xa1Tx+uIvBespCITKOzGAjwlImN9CSAQIjmpePhhmDIFPvhATzeEi9RUTSxyJhrr1uWf\nbERF6aeGa66BCp6Pe0WWg8cO8ocZfyCqXhQLb19Y4qr/9Mx03l73NuOXjmftgbV0bdaVEd1HcG3r\na0NqJkF2srFo2yJGfjWSGpVq8EpvXYmzLLrl3VtY9ssyNv1jE9UqVvM6HM99+y1cey106KCjvzVr\neh1RaChNUoGIFGsDLkE7ZmYCN2Rdz966AI2L+1iB3oBoQOLi4iSSvP66CIi89JLXkfjP8eMia9eK\nzJ0r8sQTIjfdJNK6tf6ejRqJjBghsnmz11FGli+3fikuxsnEpRN9vm9KWorMWDVDWkxpIcQgV79x\ntXyz4xvJzMwMQKT+tStpl1z9xtVCDDLog0GSeCzR65CCavkvy4UYZObqmV6HEhIWLRKpVk2kZ0+R\no0e9jia0xMXFCTpQEC2+vv/6fAc4Cyjn6/2CuUViUrFihUilSiJ33ikSBq/fpRYXJ3LffSK1a+tR\neumlIm+8IXLsmNeRRYZhC4dJhdEVZNWeVcW6fdLxJBn/7XhpMKmBuBgnf37nzxK/Nz7AUfpfZmam\nvBb/mtQaV0saP99YPtn4idchBUVmZqZ0fbWrtJ/RXtIz0r0Ox3MLFohUqSJy1VX2mpKf0iQVJZpS\n6pyrA/wRXf8j11iniMz2+QH9LNJOf+zZo/UTLVroYjaVK3sdUfCkpOgMk1df1Z4ZderAbbdpYWrH\njl5HF75OZJyg22vd+O34b6y+ZzU1KtXI93YHkg8w5bspvLzqZY6lHWNQ+0EM6zaM1qe3DnLE/rX7\n8G7u/vhuFmxZUCZqLd5b/x43v3MzX9z+Bb1a9PI6HE99/LFOhb/ySp3BVqWK1xGFnqCc/pCTowB9\ngMPoaZDf0MLN7C3R18cLxEYEjVQcOyZywQUiTZuK7NvndTTe2rxZT4c0bKijF9HRItOnixw65HVk\n4WnTwU1SfWx1Gfzh4FO+t+PQDhkyf4hUfaaqVB9bXR5a8JDsTtrtQZSBU1ZGLVLTU6XVS63k6jeu\n9joUT2VkiMyeLVKhgsiNN4qkpnodUegK9umPTcBkoJqv9w3WFilJRWamyIABIlWr6ukAo9LSRD76\nSOT660XKl9dhzNtvF1m8uGycGvKnmatnCjHI3LVzRURk3YF1cvv7t0v5p8tL3Ql1JebrGDmYfNDj\nKAMr0mstpnw3Rco9XU7W7l/rdSie+N//RJ57TqRlS33HGzBA5MQJr6MKbcFOKpKBFr7eL5hbpCQV\nEyboX2juXK8jCV1794qMGyfSqpU+V61bi4wfL/Lrr15HFh4yMzPl1ndvlVrjasn1c64XYpAmzzeR\nF1e8KEdTy071WqSOWhxKOSR1J9SVuz66y+tQgu7770UGD9YPHZUqidx2m8jy5fbBoziCnVS8D/zZ\n1/sFc4uEpGL+fBHnREaO9DqS8JCZqSMVf/mLvoiULy/St6/IJ5/Yi0hRDqUckpZTWkqbqW3k1fhX\nJTW97I4LR9qoxaMLH5VqY6vJ3sN7vQ4lKFJS9BTHhRfqu9uZZ4o8+6zI/v1eRxZeglqo6Zy7E11I\nbCawFkjL+X0RmefTAwZAuBdqbtgAF12kC3t9+KGtqeGr336Dt96C//wHVq+G7t3hpZessLMwJzJO\nUKFchZDqMeEVEeH1Na/z4OcPhnVfix2/7aDttLY81v0xYi6N8TqcgNqxA/75Ty3oPnhQizDvuw96\n9w7ccgWRLNiFmpmFbBkleLwRwEq0+HM/8AHQJp/bjQb2AseAL4BWhTxm2I5UJCbqEH5UlEhSktfR\nhL8vvhBp105Hff72N5EDB7yOyISLcB+1GPDeAGn4XEM5knrE61ACIiND5LPPRHr31v/v2rVFHnxQ\nZONGryMLf6UZqfD5Y4mIlCtkK0lO2AOYClwI9AIqAgudc783nnbODQeGAH9Dp7ImA5875yqV4OeF\nrPR0uPVWzbTnzYNatbyOKPz16gVr1mgX0rffhjZtdNQiLa3o+5qyrWmtpnw64FNeu/41Pvj5A86b\ncR7zN833OqxiWbVnFW+tfYsxl40pcLpwuEpMhOef1//la66B3bvhlVd06v2LL+p+4yFfsxDJPSJQ\npTT3L+Axz0BHPbrn2LcXGJrjei0ghQJqOwjTkYqHHtJagC+/9DqSyHTggMg99+inmqgoHcUwpjhy\njlr85f2/yM7fdnodUoEyMzPl4pkXy3nTz4uoRlfffy9yxx1WeBkMQR2pcM6Vd8494ZzbAxx1zrXI\n2j8mq96itOpk/TKJWY/bHGgILMq+gYgcBmLR9uARYdYseOEF3S6/3OtoIlO9enreNS5OFy+74gq4\n4QbYts3ryEyoyzlqsWDLAlpPbc1Dnz9EQnJC0XcOsnkb57Fk5xIm9ppI+XLhX1Awf77WmF1wgS5J\n/uSTsGsXvPEGdOkCQVivzvigJFVZo4C/AsOAEzn2/wTcVZpgnC5nOBlYKiLrs3Y3RJOM/Xluvj/r\ne2Hvu+/gb3/TLpH/+IfX0US+jh1hyRKYM0eXPI6Kgscfh+RkryMzocw5x+COg9n2f9sY1WMU/4n/\nDy1eakHM4hgOpx72OjxAl4Yf/uVwerXoxdWtrvY6nFLZuFEX++rdW7tefvSRfgAYMQLq1/c6OlOQ\nksz+2ALcIyKLnHNHgPYiss051xZYISIl7nXrnJsBXAV0E5Ffs/Z1AZaiC5btz3Hb/wKZItI/n8eJ\nBuIuvvhiateunet7/fv3p3//U+7imbLcgjsUJCfDhAkwcaKOZEycqHUt9unHFOXgsYOMXzqeaSun\nUaNSDUb2GMl9ne+jSgXv+j5PXzWdIZ8OIf6eeDo07OBZHKVx+DCMHq11UE2b6uhtv372Pxkoc+bM\nYc6cObn2JSUlsWTJEgjk0ue/38G5FKCtiOzMk1REAStFpERVQc65aWgL8B4i8kuO/c2BrUAHEfkx\nx/7FwGoRGZrPY4XFlNKUFLj4Yti3Tz8xN2jgdURl1/bt8Mgj8P77NgXV+Gb34d2M/mY0r61+jUY1\nG/HUJU/x1w5/pUK5CkGNI+l4Eq2mtqJ3m97M7DszqD/bHzIz9TTwiBFw5AiMHAkPPxxCa3OI6Hz1\nvXv10+DBg/opsGrVU7dq1U5erlIl7PoClGZKaUmO+vXojI2defbfDKwuweNlJxR9gUtyJhQAIrLd\nObcPuBz4Mev2tdDZIi+X5OeFAhG4+25Ytw6WLrWEwmvNm+vCZYsWwQMPQKdO+vd55hkdwTCmIE1r\nNeWVPq/wSNdHePLrJ7n747uZtHwSz1z2DDdF3RS03h8Tlk0g+UQyYy4bE5SfVygRmDlT31CjoqBt\n20Kzg9hY+L//g5UroX9/HTFs2jSI8R47pslC9rZnT+6v2VtKSskev3Ll3IlG3uSjbVu46y5o186/\nv5cHSpJUjAZmOeeaoDUZNzrnzgEGAr19fTDn3HSgP3A9kOycy357TRKR41mXJwOPZ5162QGMAXYD\nH5Ug/pAwaRK8+SbMnQshPJhS5lx+uU5BnTFDC8LefhuefhruvRcqVvQ6OhPK2pzehrk3z2V4t+GM\n/Gokf373z0Q3iubZns9yZcsrcQEcv9+VtIsXv3uRh7s8TNNawXw3LsCsWVoklq1cOT3H266dblFR\n0K4dv9Zuy2MxVZg9Gzp00FqnHj38GIcIJCTovNPdu7XCM2eikH35t99y369GDWjSBBo3hjPP1IrQ\nxo1Pbk2a6KeNtDRNSFJSdMt5uajr2ZePHdM3g8mToVs3uOceXUa1atX8f6cQV9Klz3ugXTXbAzWA\neGC0iCwswWNlooWYeQ2WHMuoO+di0D4VdYBvgftFZEsBjxnSpz8+/VSLj0aMgLFjvY7GFCQhAZ54\nQufAn3uuJhoXX+x1VCZcLNm5hBGLRrB813IuOesSxl0+ji7NAjNhbdCHg1iwZQFb/rGFmpVrBuRn\nFNvevZo4XH+9nkdcv16HZLO/rlunb+ZABuXYWa4F5c5vx5nXtKPceZpsFDWyAeROGHbtyp045Ewg\nUlNP3qdixZNJQc4EIe/lmkF+Dk+c0ErUf/1Lh0vr1IGBA7WC34PRi9Kc/ihRUhHqQjmpsBbc4WfN\nGhgyRGfpzJihp0WMKQ4RYf7m+Yz6ahQ/7v+RPm36MLbnWM5vcL5Pj5OansqeI3vYlbSL3Yd3s+tw\n7q+rf13N9Oum8/cL/h6g36SYRLSqMjZWk4i6dU+5yfz58Pg/kqi+cz33X7qOG85ZT5WtuZONXCMb\nUVHQsKEmK3kTiBM5JiBWrKjnTLK3Zs1O/VqvXui/6G7ZAv/+t54+SkjwZPQiqEmFc64zUE5EYvPs\nvxBt0/29Tw8YAKGaVBw6BBdeqMf+ihXWMTOcpKdrrcX06TB8ODz7bOi/NpnQkSmZzP1pLk98/QTb\nD21nwPkDGH3ZaFqc1qLIhGH34d0cSD6Q6/FOq3IaTWs1pVntZjSt2ZTz6p/HvZ3vDXpx6CnmztWi\niPff1yYwOWzcCEOHwmef6WnGKVPy+RCelJT/yEZCgo4ihHvC4AsPRy+CnVSsBMaJyAd59t8IDBeR\nC316wAAIxaQiNRX69tVCpFWroGVLryMyvhLRNsCPPKIfGmbNCtvTnsYjaRlpvLr6VUZ/M5qEYwnU\nrVq3yIShWe1mNK3VVPfVakaTWk1Cs/V2QoKOKvTsCf/97++7Dx+GMWM0iWjSxKaIlkiQRy+CnVQc\nBc4Xke159jcHfhQRj0/ohVZSIQLvvAOPPaajdgsWWMfMcPfBB3DbbdC+vX6QsEY8xlfH0o7xavyr\nJKUmhUfCUBy33qqfqNetg/r1ycyE2bP1te/IEa0he/hhS8RLJe/oxWmnnRy9iIry248J9iql/wO6\n5LO/K3DI18cLxEaIrP2xdKnIRReJgK6kt369p+EYP1q5UqRBA5HmzUU2bPA6GmM89v77+kI3Z46I\niKSkiHTrprtuvVXkl188ji8Sbd4sMmyYSL16+kR37y4ye7bIsWOlfuigrv0BLATGOed+b1XpnKsD\nPIsuSV7mbd2qo1Ldu+tpj0WL4OOPdQaBiQydO2vhZtWqOtts8WKvIzLGI4mJOue6b1+45RYApk7V\n/49Fi7QdfrNmHscYiVq10nbAu3fr3PfKlXXU4u23PQ2rJEnFI0AzYKdz7mvn3NfAdnQdjof9GVy4\nSUzUQqRzz9Xi59mztVNmz55eR2YC4eyzYdkybbN+5ZX69zamzBk6VD89TZ8OzpGYqIXM99xjr31B\nUakS/OlPutra5s162UM+lwqLyB7n3B+A29A+FSnATGCOiKT5Ob6wkJoKL7+sxUjp6RATAw8+qM3S\nTGSrU0f7jtx7LwwapKNUMTFWhGbKiE8/1Wx65kzt74AmFOnp2jzOBFmrVl5H4FtS4ZyrCPwLGCMi\nrwQmpPCRswjzl1+0f0FMjLXcLmsqVtTC7JYtdb2CrVvh1VdtcTgT4ZKSdDjiqqs0owZ27NBTH6NG\n2etgWeXT6Y+skYibAhRLWFm2DLp21VOI7drBjz9qYyT7RyqbnNPq9rlz4d139XRIYqLXURkTQI8+\nqonFK6/8PjT3+OPa7+qhhzyOzXimJDUVHwL9/B1IuCioCNOPs3lMGLvllpOz6rp00enlxkScL7/U\n4blJk3RtDGD1al3CIiZGl84wZVNJ2q9tBp50znUD4oDknN8UkZf8EVioSUzUmomXX9bRiNmztVdB\nJDVwM/7RrZtWvl93nSYWH36o+4yJCEeP6rneyy77vWe9iA5cnHNO7nXETNlTkqTiTuA3oFPWlpMA\nEZVUWBGmKYlWrbQV+w03aLOzWbN+n21nTHgbORIOHNDRiqxPVQsX6gjdhx9CBY87hRtvlWT2R/NA\nBBKKMjJ0uuCGDVaEaXxXt66+2N51lzYb3LpV6y5sZogJW99+q5WYkyf/vtZARoauh9Otmy5Masq2\nEueUzrlKQHNgq4ik+y+k0FG+vCbl7dtbzYQpmcqV9VRZy5ZaEb9tmxb0VqzodWTG+CglRc9tdO2q\ny/ZmefNN+OEHWL7cEmZTgqTCOVcNmAoMytrVBtjmnJsK7BGR8X6Mz3P9+3sdgQl3zukoV4sWOmqx\nY4cmGlnT+o0JD08+qXPn583TT1zA8eM64+Omm7R+yJiSlBmOQ5teXQocz7H/S8DOGhtTgIED4Ysv\nYM0aaN5c1wCy2SEmLMTG6vKiTz8Nbdv+vnvqVNi7VxteGQMlSyr6AUNEZClamJltHWALehtTiEsu\n0dqK0aP1A98552gB55o1XkdmTAFSU+GOOyA6WpcZzZKzHXebNh7GZ0JKSZKKesCBfPZXJ3eSYYzJ\nR+3aWti2fTtMmwarVkHHjnDNNbBkiU7PMyZkPPOMrinx2mu5pnZYO26Tn5IkFd8D1+W4nv0SeBew\notQRGVNGVK2qa4Zs2gRvvKGLDV5yiTZW++QTSy5MCFi9GsaN08KJ88//fXd2O+5HH7UZcSa3kiQV\nI4FnnXMz0ELPB5xzC4HBwCh/BmdMWVChgjZS++EH7c4K0KePzjp66y39NGhM0KWl6WmPdu10gaMc\nrB23KYjPSUVWLUUHNKFYC1yJng7pIiJx/g3PmLKjXDno3RuWLoVvvoEmTTTZaNNGp6EeP170Yxjj\nNxMmwNq1etqjUqXfd1s7blOYEjWZFpGtInK3iPxRRKJE5C8istbfwRlTFjkHF18Mn30G8fHQubO2\nBTj7bH2dP3zY6whNxFu3TquJhw2DTrkbJw8bZu24TcGKnVQ458o554Y555Y551Y558Y756oGMjhj\nyrqOHeG//4Wff9ZuhU8+qes3jRqlnZKN8bv0dBg8WHvN56nCXLhQu3NPmGDtuE3+fBmpGAU8CxwB\n9gAPAC8HIihjTG6tW+sK09u2aQOtKVPgrLO0UM5qLoxfTZ4M33+vpz2qVPl9d0aGjlJYO25TGF+S\nioHAfSJytYj0A/oAtznnbJ1OY4KkSRN47jltbDh8OLz4IgwYoDV1xpTapk3wxBMwdChcdFGub2W3\n4540ydpxm4L5khCcCXyWfUVEvkSnk1qzYWOCrG5dLZR7911dGfJPf9IeRcaU2K+/Qr9+mrmOGZPr\nW9aO2xSXL0lFBXK35QZIA2xpJGM80q8ffPABLFgAN95oM0RMCe3apdXBhw/D/PlQrVqub1s7blNc\nvpTaOOB151zOz0NVgH8655Kzd4jIjf4KzhhTtOuu0/4Wfftqf4uPPjrlPcGYgm3fDj176uUlS3Tl\nuxysHbfxhS8jFbPQfhRJObY3gL159hljguyKK+DTT2HFCrj2Wjh61OuITFjYtElHKCpUyDehAGvH\nbXxT7JEKERkcyECMMaVz6aXw+ee6hshVV2mSUbu211GZkLV+PVx+OZx2GixaBI0anXKT7Hbco0ZZ\nO25TPDZzw5gI0q2b9hFYv15HLw4d8joiE5LWrNGFZurXh8WL800oQCeCWDtu4wtLKoyJMH/8o37w\n3LpVT5UfPOh1RCakrFqlB8ZZZ8HXX2tikY/Vq3WhO2vHbXxhSYUxESg6Wj+A7tkDl10G+/d7HZEJ\nCcuWQa9e0LatZp516xZ4U2vHbUrCkgpjItT55+vCZP/7n9Zb7N3rdUTGU4sXa7FNx45afFNIwY21\n4zYlZUmFMRHs3HM1sTh6VE+h79rldUTGE9kVvF27agVvzZoF3jQz09pxm5KzpMKYCNe6tc4WTE/X\n2YPbt3sdkQmqefM0O+jVSy8X0cTE2nGb0rCkwpgyoHlzHbEoX15HLLZsCczPSUvTmScbNmjysnev\nnn45elS/JxKYn2sK8O672lu7Tx94771cC4Tl5/hxnT5q7bhNSdnZMmPKiDPP1BGLnj11xOKrr7Re\nrzTS0iAuTk/XL14MS5dCcnLBt3cOKlfW97bKlfPfcn6vZk2oV08nKNSrd+rlGjXs03SB3nwTBg6E\nW2+FWbOKVRzx7LPWjtuUjiUVxpQhjRvriEWvXjpisWgRnHde8e9fUBJRowb06KFdFy+8UEdEUlNz\nb8ePn7qvqO9t2waxsZCQkH/PjSpV8k828l5v2FBnUJaZBOTVV+Huu2HwYHjlFf2DFCIjAx55RFc9\nj4mxdtym5CypMKaMadBA2xNccYXOCvniC50QkJ/iJBGXXqpTWAM9SyAtTXtuJCToduDAycvZ17dv\nh5Ur9XLeJKR7dxg3Tr/6bM8eWL5c+6Dv36+ZU7du0L596E2PePllGDIE7r0Xpk2DcoWf5U5Ohttu\n0/Vjpk2D++8PUpwmIoXEf4NzrgfwKNAJaAT0E5F5eW4zGrgLqAMsA+4VkQCdGTYmsp1xho5SXHWV\nng5ZuBA6dw6tJCKvihW18WMBzR9PkZam9RwHDsDGjTqk36OHLsA2dqzmAwXecc0aTSCWL9cte9rM\n2WfrsMe778KJE1C9uhYfdO+uScZFF3nbKeqFF+Dhh2HoUHj++SKHZvbt03KLDRu0hvO664IUp4lY\nTkKgcso5dzXQFYgD3gduyJlUOOeGA8OBgcAO4BngfOBcETmRz+NFA3FxcXFER0cH/hcwJkwlJelM\nw59+0vfGZctOJhHdu2sCkZ1EVKzodbSlk5kJ77yjrac3b4b+/WH0aGhVO+FkArFihXacTEmBSpXg\nggv0ienaVb9mZzSpqZp9LV2q27Jlupxn+fLQoYMmGNmJRuPGwfkFx46Fxx+HkSPhmWeKTCh+D5NX\nugAACw1JREFU+kmTiPR0Xe28Q4fghGlCX3x8PJ06dQLoJCLxvtw3JJKKnJxzmeQZqXDO7QUmiciL\nWddrAfuBQSLydj6PYUmFMcV05Igua52YqN03IyWJyFdGBmlr1hH74nL2vb+c9ikraE3WgGejRpo8\nZG8dO2q1aHFkZupwSHaSsXSpFoSArvyZnWR0767VsUWckihSWppmf9nb66/ruZ0xYzSxKMLChfCn\nP+msoE8+gaZNSxeOiSylSSpC4vRHYZxzzYGGwKLsfSJy2DkXC3QBTkkqjDHFV7MmvPWW11H4UWqq\njuv/+uvJbfduHYGIjaXikSN0L1+ezD90YE21a7h7TReWpHel721nMvwxx+mnl+BnliunncbOPVcL\nJEF/7rJlJ5OMt97SisjTTtMko1s3OP10nW+bnHzya3EunzhlgBYmToRHHy0y1P/8B/7+dz31NXdu\noX2wjPFZyCcVaEIh6MhETvuzvmeMiXQiOqTy66+nJgx5t7wVmhUqaB1Ex44wYoSOQlxwAeWqVyca\neC5Jyw9eeAH+9Yq+Lz/4oB9KIxo1gptv1g00IYiNPZlkjB2rCUL16ie3GjVyXz7ttPz3573csGGR\nUzYyM7UHxfjxcN99MGVK6NWYmvBnh5QxJjRNnKhTErKThWPHcn+/WrWTlZuNGkFUVO7r2dvppxd6\nuqF2ba2tGDJEiznHjIGpU/UN+J57in8GpEg1asDll+sG+i7vXFDmuaakwKBBWl/6/PNax1lmptea\noAqHpGIf4IAG5B6taACsLuyOQ4cOpXaeRXP69+9P//79/R2jMcbfKlXS2RbZBZING+ZOFmrW9Os7\nY/362qdh6FB4+mn9+sIL2rfh9tuLbPXgu9LWVRRTQgL07asTWt57D264ISg/1oSJOXPmMGfOnFz7\nkpKSSvx44V6oOVBE3snnMaxQ0xhTKhs2aM3j++9rqcQzz+gbcjh9wv/5Z53hkZysgz6dO3sdkQkH\npSnUDIm1P5xz1Z1z7Z1z2ZOaWmRdb5Z1fTLwuHOuj3PufGA2sBv4yIt4jTGR79xz9ZP9ypU6O+Km\nm7Tn1UcfaROuULd4sZaPVKkC331nCYUJjpBIKoAL0FMZcWhR5vNAPPA0gIhMBKYC/wJigarANfn1\nqDDGGH/q3FmnYC5apKMU/fpp6++zztKRizFjdFrm3r2hs2Da7Nlw5ZXQqZNOQDn7bK8jMmVFSNRU\niMg3FJHgiEgMEBOMeIwxJq+ePfUT/+bNsHo1xMfrNnmy9vgAbYEeHa1bx4769eyzg3fKRETrQZ5+\nGu68E2bMiNB+IyZkhURSYYwx4cA5nbnZpg3ccovuE4FffsmdaLz2mk5YAahT59REo3Vr/xd+pqbC\nXXfBG2/oLJbHHguv+g8TGSypMMaYUnBOT4WcdZaeGsm2b1/uROPdd+G55/R71avr2iNnnqlTWmvV\nOrnlvZ5zX9Wq+ScKiYl6KiY2VhtaZSc8xgSbJRXGGBMADRvquirXXHNyX2KiTu2Mj9eEY98+PZ1y\n+PDJLSWl4McsXz7/xGPDBu0N9tVXWpxpjFcsqTDGmCCpW1drM3r2LPg2J05ogpCdZCQl5U468rse\nHQ0TJkDLlsH7XYzJjyUVxhgTQipV0iagJVqDxBiPhcqUUmOMMcaEOUsqjDHGGOMXllQYY4wxxi8s\nqTDGGGOMX1hSYYwxxhi/sKTCGGOMMX5hSYUxxhhj/MKSCmOMMcb4hSUVxhhjjPELSyqMMcYY4xeW\nVBhjjDHGLyypMMYYY4xfWFJhjDHGGL+wpMIYY4wxfmFJhTHGGGP8wpIKY4wxxviFJRXGGGOM8QtL\nKowxxhjjF5ZUGGOMMcYvLKkwxhhjjF9YUmGMMcYYv7CkwhhjjDF+YUmFMcYYY/zCkgpjjDHG+IUl\nFcYYY4zxC0sqjDHGGOMXllQYY4wxxi8sqTDGGGOMX1hSYYwxxhi/sKTCGGOMMX5hSYUxxhhj/MKS\nCmOMMcb4hSUVxhhjjPELSyqMMcYY4xeWVBhjjDHGLyypMH4zZ84cr0Moc+w5Dz57zoPPnvPwEVZJ\nhXPufufcdudcinPuO+dcZ69jMifZP37w2XMefPacB5895+EjbJIK59wtwPPAU0BH4Afgc+fcGZ4G\nZowxxhggjJIKYCjwLxGZLSI/A38HjgF3eBuWMcYYYyBMkgrnXEWgE7Aoe5+ICPAl0MWruIwxxhhz\nUgWvAyimM4DywP48+/cD5+Rz+yoAGzZsCHBYJqekpCTi4+O9DqNMsec8+Ow5Dz57zoMrx3tnFV/v\n6/QDf2hzzjUC9gBdRCQ2x/4JwMUi0iXP7QcAbwY3SmOMMSai3CYib/lyh3AZqTgIZAAN8uxvAOzL\n5/afA7cBO4DjAY3MGGOMiSxVgLPR91KfhMVIBYBz7jsgVkQeyLrugF+Al0RkkqfBGWOMMSZsRioA\nXgBed87FASvR2SDVgNe9DMoYY4wxKmySChF5O6snxWj0tMca4CoRSfA2MmOMMcZAGJ3+MMYYY0xo\nC4s+FcYYY4wJfZZUGGOMMcYvwjapcM6NcM6tdM4dds7td8594Jxrk+c2M51zmXm2T72KOdwV5znP\nut1o59xe59wx59wXzrlWXsQbKZxzPZxz85xze7KO4evzfN+Ocz8r6jnPuo0d5wHknHsqn+N6vddx\nlQWlWbwzbJMKoAcwFbgQ6AVUBBY656rmud1naGFnw6ytfzCDjDBFPufOueHAEOBvwB+BZHTht0rB\nDzdiVEcLk+8DCiqCsuPcvwp9zu04D5qfyH1cd/c2nMhX2sU7I6ZQM+sXPoB22FyatW8mUFtEbvQ0\nuAhVwHO+F5gkIi9mXa+FtlMfJCJvexZshHDOZQL9RGRejn12nAdQAc+5HecB5px7CugrItFex1KW\nFNATahfaE2piUfcP55GKvOqgnygS8+y/NGuo/mfn3HTnXF0PYotUuZ5z51xz9NNEzoXfDgOx2MJv\ngWbHeZDYcR5UrbNOQW11zr3hnGvmdUCRzB+Ld0ZEUpGVSU0GlopIznNunwEDgZ7AMOAS4NOs25tS\nKOA5b4gmGfkt/NYwiOGVNXacB5cd58HxHfBX4Crg70BzYIlzrrqXQUW4whbvLNaxHTbNr4owHYgC\nuuXcmWcYcp1zbi2wFbgU+Dpo0UWmfJ9zE3x2nJtIJCI51534yTm3EtgJ/BmY6U1UpihhP1LhnJsG\nXAtcKiK/FnZbEdmOLk5mVdqlUMhzvg9wFH/hNxMAdpwHnB3nHhCRJGATdlwHkq+Ld54irJOKrDe3\nvsBlIvJLMW7fFDgdKDT5MAUr7DnPejPbB1ye4/a10Nkiy4MZZ1lmx3lg2XHuDedcDTShsOM6QEQk\nDYgj97Htsq4X69gO29Mfzrnp6LS564Fk51x2ZpUkIsezzrs9BbyHvgC0Aiagma7Py7maop/zrMuT\ngcedc1vQpefHALuBj4IcbsTIOpZboZ+OAVo459qjBbKJ2HHud4U95yKyCzvOA845Nwn4GD3l0QR4\nGkgD5ngZVxlQusU7RSQsNyATHabJuw3M+n4VYAH6Qnsc2AbMAOp5HXu4bkU95zluFwPsBY6hb2yt\nvI49nDe08DK/5/41O86D/5znuI0d54H9G8xBE7UU4BfgLaC513GVhQ3tz7Ij67lfAVxQ3PtGTJ8K\nY4wxxngrrGsqjDHGGBM6LKkwxhhjjF9YUmGMMcYYv7CkwhhjjDF+YUmFMcYYY/zCkgpjjDHG+IUl\nFcYYY4zxC0sqjDHGGOMXllQYY4wxxi8sqTDGGGOMX1hSYYwxxhi/+H/iBXfC9GTcgwAAAABJRU5E\nrkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x114ebf2e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# with a clean and orthodox Dataframe, I can start to do some graphics\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "# we invert the x axis. Never managed to make 'Year' the X axis, lost a lot of hair in the process :(\n", "plt.gca().invert_xaxis() # Came up with this solution\n", "# and add the indicators \n", "plt.plot(esplbr.index, esplbr['UnemploymentRate'])\n", "plt.plot(esplbr.index, esplbr['YouthUnempRate'])\n", "plt.plot(esplbr.index, esplbr['Ni-nis'])\n", "# and modify the plot\n", "plt.title('Labor Market in Spain', fontsize=14, loc='left') # add title\n", "plt.ylabel('Percentage Unemployed') # y axis label \n", "plt.legend(['UnemploymentRate', 'YouthUnempRate','Ni-nis'], fontsize=8, loc=0) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Observations**\n", "\n", "* Spain has recently lived through a depression without precedent, yet unemployment rates above 20% are nothing new: there is a large structural component in addition to the demand-deficient factor.\n", "\n", "* Youth unemployment is particuarly bad, which is the norm elsewhere too, but the spread is accentuated in Spain. Deductively, this hints at labor market duality between bullet-proof contracts and part-time or 'indefinite' contracts. \n" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x11b7c35c0>" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAFzCAYAAACJofukAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VGX2wPHvCT1IEUFAioKIdEKCYEBBpIgKAq6orIq6\nKq6uK7IWdHUt4IrK+gN1ce0KlthwRVkVUbAjaAIiVZAmUqRIkdBzfn+8d5LJMClzM8lkkvN5nvtk\ncu+de8/Ue+atoqoYY4wxxhRVQqwDMMYYY0zZYEmFMcYYY6LCkgpjjDHGRIUlFcYYY4yJCksqjDHG\nGBMVllQYY4wxJiosqTDGGGNMVFhSYYwxxpiosKTCGGOMMVFhSUUERGSNiKyKdRx+iUiWiMyKdRyl\nQby/lvkRkU9FJCvWcRhjyp8ynVSIyPHehTS/JZILS6ke07wQFxOllD+GElTo50FEehbifVSakjV7\nnfNR1KRLROqLyEMi8r2I7BKRPSKyXEQmiUiLKMUYeM/dHY3jGVNSKsY6gBKyEng5j207SjKQYlbQ\nxaQ1kFlCsZRF3wHT89i2pgTjMEXjO+kSkXOA14DqwDfA08AhIAkYAVwtItep6vNRitWYuFJukgpV\nHRPrIGJNVX+MdQxx7jt7H5VfIpICTAUOA4NUdXrI9q7Ae8DTIrJRVT8oyumKcF9jYqZMV3/4JSKD\nRORbEckUkU0i8pSI1M5j3zyLUkXkRa8Is2ke5/hIRLaKyF4RWS0iU0SkTdA+J4nIwyKSHrTfchEZ\nJyLVQ46XBfRwN3MVyz8fvE+4YnoROUZEJorIKhHZJyKbReR1EWmbz2M6XkRuFJGl3n3WiMjdIlLo\nL0MR+ZOIvOM99r0isk1EPhSRM8Lsm10cLCIpIjLTK3reISJvi8jxeZyj0K9ltARVuz0vIq1EZLqI\n/CYi20XkVRE5xtsvVUQ+FpGd3rZnRKRaPo+7u/d+2+Ud7y0ROTGCuCqIyN9EZIH3fOwQkVkiMiBk\nv6u8c96Sx3HO9Lb/J2jdGu/9U1NE/iMiG0TkdxH5TEQ6efs0FJGXvfdXpojMkDyqC0TkBBF5VkTW\neu+vDSLyQh6fpSzvcRwrIpNFZIt3/Dki0jN0Xwr4nOTjUaAy8NfQhAJAVecCf8R9rz4e/FmQ/L8L\n7vW29fD+vweYhStNuTcoxsPB9xeRSiIySkTmee+J3SKyWEQeEZFaIedoKyJveM/9Pu+1miAidcLE\nE8vXMtl7Xwf2/dV7fH8P/5KY0qa8lFQUmogMB14EdgKTvb8DgI9xXyj7Q+6SX1Fq2G0i8ggwCtgG\n/Bf4FWgC9MYVsS/xdj0fuBKY7S0JwKnAaKCHiPRQ1cPevvd6+zb1bge+0BYU8Hjr4opxmwGfAmne\n7QuAc0Wkn6p+HeYx/Qv35Twd+BAY7J23EvCP/M4Z5N9efDOBLUAj7zgfi8gQVX0vzH264B7/LOBJ\noJN3n3Yi0k5VDwQ9tkhfy2hrDnwNfAs8A3QGLgYai8gdwEfe8hRwBnAV7nW7OsyxUoG/Ax8AjwFt\ngSHAaSJyqqquKUQ8U4HzgOW45746cBHwroiMUtVHvf3SgEe8eP4V5jjX4N4DTwetU9xzOhOogqsi\nqO8df6aIdAdmABuAl4AWXizTRaS1qmZ/TsT94p8BVMO9v1YAJ+Au2Gfn8XhrA1/iqjOnAMfinusP\nRSRFVQOfqXvx9zlpAXQD1uPeU2Gp6sciMhf3Pu2Fe58Gnp/Cfk/MBo4HrsB9Jj8N2m+HF09V3Pu4\nG/Aj8Dzu/XwSrhpmMrDQ2/c03PNZEXgTWIt7P43EfcZPVdXtIfGU+GspIh2Br3DVSdO8OGsDbXDv\nuQfyeP5MaaKqZXbBfTCzcB+6e/JYzgravwbuwrMLODFofQXcBzsLWBVyjtnA4TzO/wKuqLRp0LoB\n3nHmA7VD9k8A6gX93xCoGOa4d3nHHVbYWLztWcCskHXPe8caG7K+v7f/8jCPKQvXTuXYoPXHANtx\nX3pHxJzX6xNmXX3cF/eykPU9vfMeBi4I2TbZW39hUV7LfOIMnHtePu+jrmHed4eBG0KONd3btg0Y\nEBLXAtyFoV4ej/vqkGON8LZNK+h9AAz39v0k+PUBGuOS2v3ACUHrJ3nnPD3kOEcDe3FVQcHrV3v7\npwEJQetv9c67HRgfcp/AOQYHravoHWsH0CFk/27AwTCPN/D8PBay/k/etici+Zzk8R4IPH9TCrHv\n/V48d4Z8bnJ9FwRtu8fb1iPM6353Huf4l7f9BUBCttUAEr3bgvusHgb6hOz3kHeMZ0rDa+k9psME\nfS6C33eRvF62xG6JeQDF+uByf7nntfxf0P6XeftPCHOs7kQnqXg/9AvEx+Oq48XyXGFj8bbnSipw\npQqZuItK1TD7z/Bi7R7mMQ3P5/G2LeLr9qh3nCZB63qGxh9m2/igdRG/lvnEE3xhz2u5Mcz77scw\nx7rU2zYzzLZAstgzzLmXhtlfcKUOh4Bj8nsf4JKJw0BKmOPcwZEXwfbeeSeH7DvS2/fakPWBC1Gj\nkPWNvePsDH2PAad52+4JWjfEW3dnaJze9rdwF6OjQt7Xu/AupEHrKwAHgG8j+Zzkcd7bvPP8sxD7\nXuvt++8wn40iJxXe49qJu7jXKiCWwHP8Xpht1YGtwB5yJ5oxeS3JSSr65PeYbCndS3mp/pihqucU\nYr+OuKK/L8Nsm4P78i6qU4D9qvp5YXYWkT8BlwPtgFrktINR4LgixtIKqIq7UO8Ls3020AfXsv2r\nkG0ZYfZf7/0tVJsFEWmGK9Lvhav6qBK0OfD4fvZ53uJ4LZ9S1esj2H9hmHUbvb/f57Mt3Osa+vyj\nqioiX+GKnzuSU9QeThKQqarpYbbNxiUoSUHH/kFEvgEuEJG/quoub9NVuET01TDH+U1Vf8njMa0I\n8x4L93i74l63Vl7bglANcJ+BluR+L/yoqrl6NqnqYRHZTCHfj3GkFa40Yqaq7ixg307e389CN6jq\nHhH5DugLnAwsDtoci9fyDeAm4B0ReR1X/fK5qm7I5/GZUqa8JBWFFWjc9GvoBlXNEpFtUTrH+gL3\nAkTkceAvwDpcHeNGctoB3Evui7AfNb2/m/PYvhF3sakZZtuuMOsCF+oKBZ1YXAPDb4GjcBe1d71j\nZuGSjB6Ef3yFPW9JvJYFyS/W/LZVCrMtr9cosL5WHtsDauLeR+FsDNon2FO4X9iXAk949ePtgBdU\ndXeY4xzxmLwLe9hthH+8dXDvuT/mESu4C1X1kHXhjh84R4Hvx0LY5P1tUoh9m+Bi3FjQjj4FXuvQ\ni344Nb1Y8vuMB/YLVuKvparO8xrW/h0YhmtTIiLyLTBaVT/N5zimlLCkIrdA1n9s6AYRScC1GwhN\nCLIC21U1tBdIuC/6HbgMPV8iUg+4HlfPnqqq+4O21cclFUUV+HKon8f2BrgPfV5f2EXxN9zzc6mq\npgVvEJGGuKSiKPy8lqVZXq9RYH1Bv1h3Eea58DQI2ifY68AEXMPRJ7y/imt0Wlx2eecYoEXrkhlt\ngcbKZ4iIqLry+jz09v7OCVoX+G4I951bUEIYKjC2TqNC7LsLd2HP7zMe2C/aIn4tVfUrXOPRKriS\njoG4H1bTvYbYa4ohThNF1qU0t+9xH8DTw2zrRvgvhN+8v7k+4F53so5h9p8HVAnt6hZGcy+WT4IT\nCk9eF9zDQecujGXAPuAUrzV5qF7e33xbxvvU3Pv7bphtp0Xh+H5ey9Kse+gK73XuhvviDledEmw+\nkCgincNs6xW0TzaviHsK0FFcN98LcW07voks9IjMxb1u3YrxHJF+TlDVlbjEohGuOjIsEemNuxiu\nwpXABYT9nvAk5xUj4UtZluMu2KeEdh0NI/CanhEm1kRcj6S93jGjzfdrqar7VfVzVb0V1+ujGq6a\nxpRyllTkNg33Yf2TiJwUWCkiFXEtusP5FvfBuSJk/c24rpmhJnn7PyoiRwdvEDeOQODX5Frvb7fg\nLz8RaYz7kIX7pRToFlaYIlpU9SCuhXc9XGO94Fj6A/1w9adH1OdHQeDx5UogvK6WR4yP4YOf17I0\naykiI0LWjcDVR09X1YKqcybj3nfjvOcAABFpgis1Okj4dhJPefd7GVdV9XSYfaJpGq6a5m8ickRC\nKCIVvS6NRRHR5yTISNzz9LiInBsmti645zALN5ZF8Gc07PeEiFxA+B8Jecaorhv5U7i2Io96JW/B\nx6wpOePYfAX8hOu+2Tv3kfgHrsTuVVWNRnuxUBG9liJyqldCESpQmhKu3ZcpZeLt15pfLfJoKBQw\nTlUPqOouEbkRV4/8rYi8Rs7YBpmEryN9Adcy/F5vYJifcNl/G1zjqFxfGKr6gYiMB24BVohIYJyK\nRrhi0/G4rnGbRGQqbqyK70TkE9yH61xc//Rwgx7Nwo0v8baIfID7EH6vYQbqCTIa19L8Lu8DPpec\ncSp+x/XpLw5Pesd+W0TewHWxPBXXsGw67nH65vO1LMgp+byP9qnqQ/6izSWvX88zcBeQc3AN6trh\nHsuvuMZt+VLVl0TkfNx4AgtFZDouSbgQ1030b+GKllV1qYh8gSvx2Ycbl6DYqOoB70L7PvCZuMHa\nfsAl0cd7cWzFfb788vM5QVXTReQPuET8PRGZQ06j3yRco+ZDuK6/H4bcfRruu+EKcYM+zccNm9+L\n8O/3ZbhxIC4WkQO4qjrFfTfsBu7GlYhcBqR6j2M/7nvhLFzJ1kKvMe8VuLFk3heR4HEqzsCNG5Hr\nB0W0+HgtRwO9RORzXA+UfbhSnN64brH/LY44TZTFuvtJcS64N25+3QADS82Q+52Hq6YIXHyexNV7\nrgZ+CnOe9rhBjHbjijmn4i7ML+C+ZMJ1IxuMSw62e+f5ydu/ddA+icDD3rZM3BfNHbhk8DCuaiT4\nmBWAcV6c+719ng/afsR9vPV1cHXnq3Af5M24AW/ahNk3v8d0RNe4Al6fHsDnuDribbiqkKRwx8El\nPoeBf+TzOj8XZltEr2UecQbOnd+yrZDx5Pc4Liekuy5BXQtxxcizcCUwv+EGMmoe5jizgUNh1ifg\nBl1b4D0fO3BdTc8t4PEHxnt4OZ998nw+83nf5fc8NQT+z3vPZ3qPdxHeQGGFOX5ecRX0OSnE+6EB\nboyHhd5rsYecAcVOzOd+TXHfDTu8+83AXTTDfm5wPcVmefsH3mfB3dMrea9nOu4HwE7cRfshjvxO\na4trI7MZ9xlfhRvgrE5peS1x1Rsv4Ab/2xH0eMaEi9OW0rmI92IaY0ohr+3NbOBejdG8IyLyb+A6\n4ExVPaJrojHGBMS8TYWIJIjIWHFjzWeKyEoRuSvMfmPEjRmfKW7eh6hMMWyMyZvXC2k4boRTSyiM\nMfkqDW0qbseNQDccV+zVGXhRRHao6r8BRGQ0cIO3zxpcQ7sZ4saZPxD2qMYY37y2Gym4tgfViU4X\nZmNMGVcakopU3PjvgYZN60Tkj7gJeQJG4uammA7ZE0VtxrVLeKMkgzUmBpS8J6MqLkNxSfwG4A5V\nfbOEz2+MiUMxr/7A9f3uHej2J26muu64FsOBoZwb4BqUAa5lP66XQmqJR2tMCVLVz1S1gqqOLeHz\nXumdt4mqPlyS5zbGxK/SUFLxIG6I2GUichiX6Nypqq952wOjOoYOM7uZPEamFJFjcN2q1mB9m40x\nxphIVMVNUT9DCx4DJ5fSkFRchBsb/mJcm4okXH/8Darqt0/8WcArUYrPGGOMKY8uIfygeHkqDUnF\nw7jBpwJ1totF5ATceAwv4SbyCYxdH1xaUZ+QYYWDrAF4+eWXad26dfQjNmGNGjWKCRMmxDqMcsWe\n85Jnz3nJs+e8ZC1dupRLL70UvGtpJEpDUpFIzjj3AVl47T1UdbWIbMKNqrYQ3DC0uNHkJuVxzH0A\nrVu3Jjk53LD6pjjUqlXLnu8SZs95ybPnvOTZcx4zETcfKA1JxXu4IaLX44YfTsaNEvds0D4TvX1W\n4jKnsbhha6eVbKjGGGOMyUtpSCpuwCUJk3BTM28A/uOtA0BVH/Zm1AtMovMFcLaNUWGMMcVv3bp1\nbN26NWbn37FjBxkZGTE7f1lXt25dmjZtGpVjxTypUNU9uFkS/1bAfvdiA/AYY0yJWrduHa1btyYz\nMzOmcaSkpMT0/GVZYmIiS5cujUpiEfOkwpQdw4YNi3UI5Y495yWvvD3nW7duJTMz0xq+l1GBRplb\nt261pMKULuXty7Y0sOe85JXX59wavpvCKA0jahpjjDGmDLCkwhhjjDFRYUmFMcaYUm3t2rWccsop\nudZdeeWVvP/++yUax2OPPcYdd9yR/f/AgQO5/vrrs/+/7LLLePPNnLn3unbtCkDFihVJTk6mffv2\nXHTRRezbd+TwDxs3buSyyy6LKJ5evXplV0slJydz0003HbHPZ599xtChQyM6blFYUmGMMabUE5FY\nh0BqairffPNN9v9btmxhyZIl2f/PmTOHbt26AfDDDz/Qvn17AOrUqUNGRgY//PADlSpV4sknn8x1\nXFWlYcOGvPRS5DNTvP3222RkZJCRkcHEiRPD7lOSz50lFcYYY+KSqlKvXj1uvfVWOnToQN++fdm7\ndy8Aq1aton///nTp0oU+ffqwbt06wP26v+WWW+jcuTNJSUnMnz+fAQMG0LJlS5544gnA/brv06cP\nZ599Nq1bt+a2224DoFOnTixevJisrCxWrlxJy5YtqVatGpmZmWzdupWDBw/SqFEjAGbMmEG/fv2y\n4ww4/fTTWblyJWvXrqVDhw4MGzaMtm3bsmzZsuzSmMmTJzN06FD69OlDs2bNmDJlCvfddx8dO3ak\nf//+HDx4MPt4WVlZRzwv8+bNo3379iQnJ+cqOSkJ1vvDGGOML5mZsGyZv/u2agWJiUWPYfv27Zxz\nzjmMHz+eyy+/nLfffptLLrmE66+/nqeffpqmTZsye/ZsbrnlFt544w0AatSowXfffccDDzzAxRdf\nzHfffUdWVhatW7fOrs6YO3cuy5Yto2HDhvTq1YvPP/+cHj160KpVKxYuXMiiRYtITU1lw4YNzJ07\nlz179pCampod18cff8yrr+aei+vQoUN88MEHnH322QAsW7aMtLQ02rZty9q1a3OVKCxdupT09HS2\nbNlC69atmTx5Mvfccw9//OMfef/99xk0aBAAQ4cOpWrVqgBccskl3HzzzVx99dVMmTKFTp06cfHF\nFxf9SY6AJRXGGGN8WbYM/I5JlZ4Ohe2hmlfxvYhw1FFH0atXL8ANkLVmzRr27NnDF198weDBg1FV\nVJUaNWpk3++8884DoH379nTu3Dl7W82aNdm5cycA3bt3zy51uOCCC/jyyy/p0aMHp556Kl9//TVL\nlizhqquu4pdffmHOnDlkZmZmJxV79+5l79691KlTB3Ajgga64/bo0SP7fi1btqRt27ZhH1vv3r2p\nUqUKjRs3pkqVKgwcODA75jVr1mTvN3Xq1Fzjh+zcuZMDBw7QqVMnwCUafqpV/LKkwhhjjC+tWrnk\nwO99C+uYY45h+/btudZt376dunXrUqVKlex1FSpU4PDhw2RlZdGgQYM8h/YO3CchISHX/RMSEjh8\nOHR+S5e8BBKb1NRU/vvf/7J27Vo6duxIo0aNePrpp9m7dy8PPPAA4KpPevTokX3/o48+OmwsifkU\n1YTGValSpbAxBletlAaWVBhjjPElMbHwpQ1FUb16dY4++mjmzJlDamoq69evZ9GiRbRr1y7sRbVG\njRrUr1+f6dOnM2DAALKysli6dGmepQIBwcf6+uuv2bBhA8ceeyxTp05lzJgxgEsqRo4cScuWLUlI\nSODYY49l06ZNrFu3Lrt04KOPPmLIkCFhj5vX+QobV0HbatWqRdWqVVmwYAFJSUmkpaUV6hzRYkmF\nMcaYUm/y5Mlcd9117Nq1i0qVKvH000+TmJiYZ9XIK6+8wp///GfuuusuDh06xLXXXkvbtm3z7QkR\nvK1Lly5cffXVrF69mkGDBnH66acD0KBBAypWrEjnzp2z9z3xxBOpVq0aFSu6S+rXX3/N+PHjwx43\nr/PlJ7/9gttUtG3blpdeeomnn36ayy67jMqVK9O9e3c2bdoEwFNPPYWIMGLEiEKd1w8pbUUn0SAi\nyUB6enq6DStrjDFFkJGRQUpKCuXp+/Szzz5j0qRJ2Q07I7F+/XpuuOEG3nnnnWKILPrCvb6BdUCK\nqkY0Pax1KTXGGGOipHHjxnGTUBQHq/4wxhhjgvTs2ZOePXvGOoy4ZCUVxhhjjIkKSyqMMcYYExWW\nVBhjjDEmKiypMMYYY0xUWFJhjDGmVIv3qc/HjBlDu3bt6NChA126dGHt2rURn/u+++6jSZMmJCcn\n06lTJ0477bSw+9WrVy/iY0eT9f4wxhhT6pWWqc8DM5aCm/p89+7d2f/PmTOHBx98EMiZ+nzOnDl8\n9tlnLFy4kISEBDZs2ED16tV9nf+OO+7IlcSEE+vnyUoqjDHGxKV4mPp806ZN1K1bl4QEd7k97rjj\nqFWrFuCG8+7WrRspKSkMHz6cQ4cOAfC///0vu0Ti0ksvzfV4Q23dupXevXvToUOHXKUosWIlFcYY\nY3zJPJjJsq3+5j5vVbcViZWKPvd5aZ/6vHLlytxzzz20a9eOPn36cNlll5GSksK2bdsYP348s2fP\npkqVKtxzzz0888wzXHDBBdx444189dVXNGjQgB07dmQf88EHH+S5555DVWnVqhVpaWncd999DBw4\nkJtuuoknn3yyyM9nUVlSYYwxxpdlW5eR8rS/uc/TR6ST3LBww37H+9TnCxYsYPbs2Xz88cf069eP\nN954g3379rFw4UJSU1NRVQ4cOMC5557LN998Q+/evWnQoAEAtWvXzo47XPXHl19+yZ133gm4ac7v\nvvvuQj2nxcWSihKybRuMGQOdO0P//hDjtjTGGFNkreq2In2Ev7nPW9Ut/Nzn8T71eUJCAr1796Z3\n797UrVuXadOm0a9fPwYMGMBzzz2X61zvvfdeRNOZB8dWGlibihIyfjxMmgTDh0P9+pCaCmPHQkYG\nlME53Ywx5UBipUSSGyb7WiKp+gie+hyIaOpzgKysLBYvXlzgecJNfX7o0CGmTp2a3dsiNTWVTz/9\nlEqVKuWa+vyHH37INfV5v379APjxxx9ZtWpV9vEXLVpE06ZNOfXUU5k9e3Z2W4/du3ezZs2a7PUb\nNmwA4LfffgsbX8Bpp53Ga6+9BriZWWPNkooSsGMHPPEE3HwzbNwIzz0HjRq5RCMlxd2+6ip4+23Y\ntSvW0RpjTOkzefJkbr/9djp16sT5559fqKnPH3/8cZKSkujQoQOzZs0C8u8dEW7q8/bt29O1a9cC\npz4/+eSTc0193q1bNwB+//13Lr30Utq3b0+HDh1QVf76179St25dnnnmGf7whz/QsWNHevbsybp1\n66hXrx6PPfYY5557Lp06dWLkyJHZ53nooYeyG3AmJyezf/9+7r77bt599106dOjAzz//7PPZjaJA\nfVNZWoBkQNPT07U0uP9+1SpVVDduzL1+/37VWbNUb7lFtXVrVVCtVEn1zDNVH3lEddky1ays2MRs\njDGqqunp6Vqavk9LwqeffqpDhw71dd+ff/5ZBw0aFOWIik+41zewDkjWCK+/MS+pEJHVIpIVZnk8\naJ8xIrJBRDJFZKaItIhlzJHYswcmTnQlEV67m2yVK0OvXq7EYskSWLUKJkyAKlXgzjuhVSto0QJu\nvBFmzIB9+2LzGIwxxhROeZ/6POZJBdAZaBC09MVlSG8AiMho4AZgBNAF2APMEJHKMYk2Qs8+C7/9\nBrfeWvC+zZrBX/4C77/vGnZOnw5nnQXTprnGncccA+edB089BZs2FX/sxhhTHvXs2TO7+6mJTMyT\nClXdpqq/BhZgIPCTqn7h7TISGKuq01V1ETAcOA4YHKOQC+3AAfjXv+CPf4QTTojsvomJcO65ri3G\nmjWwaBHccw/s3OkSj+bN4d57XUmIMcYYUxrEPKkIJiKVgEuA57z/m+FKLz4J7KOqu4C5QGq4Y5Qm\nL78M69fD7bcX7Tgi0LYt3HYbfPYZ/PqrqxIZNw5OOglefBGysqISsjHGGONbqUoqgCFALWCy938D\nXFXI5pD9NnvbSq3Dh+HBB2HIEGjTJrrHrlPHHXvZMujRA6680o1/MXt2dM9jjDHGRKK0JRV/Aj5Q\n1ai0GBg1ahTnnXderiUtLS0ahy7Q22/DihVQnEOxN2sGr70GX3/tGn2eeSYMGgQ//lh85zTGmJIW\nr7OUpqSkZHcBbdiwIU2aNMl3htFwVq9ezdSpU7P//+STT6hTp06urqUrVqw44n6nn346P0ZwMbjp\nppuyr5OjRo0q9P1ClZoRNUWkKdCH3G0lNgEC1Cd3aUV9YH5Bx5wwYQLJyYUbBjaaVOGBB6BPHwj5\nHBSL1FSYMwdefx1Gj3ZVJddfD3ff7Rp3GmNMvCsNo0ZGOktpp06dePbZZwE3/XndunULnGU0WFZW\nFj/99BNvvfUWf/jDH7LX9+/fn1dffTXf+0b6fE2cODH7epmRkUFKir/h10tTScWfcIlDduqpqqtx\niUXvwDoRqQl0Bb4u6QAL68MPYcEC+PvfS+6cInDxxa5KZOxYeOEF195i4kTXYNQYY8oajYNZSoNj\nDTVu3Di6dOlCUlISjz76KOBKIvr27cvZZ5/NGWecwV133cWMGTNITk5m8uTJeR4rKyuLa665hjZt\n2jBkyBD2xWgMglKRVIhLqa4AXlTV0CaHE4G7RGSgiLQHpgDrgWklG2XhjRsHXbvCGWeU/LmrVXMN\nQ1esgAsvdKN4tm0L77xjw4EbY8qewCylCxcu5LjjjuPtt98GyJ6ldN68edx5553ccsst2fcJzFJ6\n4YUXcvHFF5OWlsa3337L/fffn73P3LlzefbZZ1m8eDFz587l888/p2LFitmzlH7zzTekpqbSuXNn\n5s6dm/1/wMcff0yfPn3yjPuDDz5gy5YtzJs3j/T0dP773/+yfPlywJUUTJkyhc8//5x//vOf9O/f\nn4yMDC6//HKA7CQjeGTNN998kx07drBkyRLuvfde5s8vsDC/WJSW6o8+QBPghdANqvqwiCQCTwG1\ngS+As1X+Zb5uAAAgAElEQVS1VP7+/uILt0yb5koPYqV+fXjySbjhBpdYDBkCPXvC//0fxKBGyBhT\nFmVmuuJRP1q1cn3nCyHeZykN56OPPmL69Ol8+umnqCq///47K1asoFq1apx++unUy2fWyXDVH19+\n+SUXXXQRAB07dqRt27Z5P6HFqFQkFao6E6iQz/Z7gXtLKp6iGDcO2rWDAQNiHYnTrp0bjfPDD11y\n0bmzm9Tsn/90c44YY4xvy5a5CYz8SE8v9C+ceJ+lNJysrCzGjBnDsGHDcq3/5JNPSCxkshUuzoBw\nVSQloVRUf5QVCxbABx+46oeEUvbM9u8P33/vBtN6/33X3sIGzzLGFEmrVi458LO0KvzU5/E8S2le\n+vXrxzPPPJPd9mHNmjX8/vvvYR/LrpCZJsM95tNOOy17FNCFCxcW6vEWh1JRUlFWjBvnunl6JVCl\nTsWK8Oc/w7BhLtZx4+CZZ1ypxfDhpS8RMsaUcomJJVafOnnyZK677jp27dpFpUqVCjVL6Z///Gfu\nuusuDh06xLXXXkvbtm0jnqV09erVDBo0qMBZSqtVq5ZrltLx48fn+3jOPfdcli1bRpcuXQCoU6dO\ndnuQYJ06dWLPnj0kJyczcuRIGjduzEcffURycjKqiojwxBNPMHToUD7++GPatGlD69atY9LzEbBZ\nSqNl+XJVEdUnnyyxUxbZqlWqF17oZkft1MnNmGqMMcFsltLI2CylJioeftg1jvQa58aFZs3c2BZf\nfZUzeNbgwTZ4ljHG+GWzlJoi+/lnmDLFNYSsWjXW0USuWzc3eFZaGsyf77qg3nQThLSLMsaYcsFm\nKfXPkoooeOQROOoouPbaWEfiX+jgWc8/Dy1a2OBZxhhjCs+SiiLassU1dvzrXyGoG3TcssGzjDHG\n+GVJRRE99pj7lX/jjbGOJLoCg2d9/z00b+4Gz+rVC/Lo9m2MMcZYUlEUu3bB44+7ao+yOnFXYPCs\nDz5wpTKdO8MVV8Avv8Q6MmOMMaWNJRVF8OSTbpTav/0t1pEUPxs8yxgTKwkJCdx9993Z/996661M\nmTIFgBEjRrB69epCHys9PZ3Ro0dHPUbjWFLh0969bh6NK64oP8NdBwbPWrHCVfeMG+eSixdfhKzQ\naeCMMSZKjjrqKF555RX2hPkV8/TTT9OsWbNCHyslJYWHHnoomuGZIJZU+PTCC646wJsRt1ypVQse\nfND1FOnRA6680lWLfPghHDoU6+iMMWVNlSpVuOSSS5g0adIR23r16sWSJUuOWH/fffdxzTXX0LNn\nT1q0aJHdRfSzzz5j6NChAMyePZsOHTrQqVOn7JEtTdHYMN0+HDwI48e73hEtWsQ6mthp1gxeew1G\njoRRo+Dss6FuXTeZ2uDB0LdvoSchNMbEoczDh1mWmenrvq0SE0mskOc8krmICCNHjqRr167cdNNN\nhT7HqlWrmD17NmvWrOGss87iwgsvzD4ewIQJE5gwYQK9e/dm9+7dkT8IcwRLKnx47TVYs8ZNb24g\nNdUNnjVvnntO3nnHVYlUqwZnneUSjAEDym5jVmPKq2WZmaSkp/u6b3pKCskR9MM/5phjGDhwIM89\n91yh7zNgwAASEhJo3rx59pTmwbp3787o0aO5/PLLGTp0aK7p0Y0/llREKCvLFf0PGAAdOsQ6mtJD\nBLp2dcsDD8Dy5TkJxhVXQIUKcPrpLsEYNAhOOCHWERtjiqpVYiLpPqc+b+WjGPPmm2+mT58+nHPO\nOUdse+edd7jvvvsQEaZOnQqQa1rzcEaPHs0555zDe++9x6mnnsqcOXNo2LBhxHGZHJZUROjdd2HJ\nEjfglcnbySe79ia33QYbN8J777kE47bb3BDgnTq5BGPwYGjf3iUlxpj4klihQkSlDX6pN/Je48aN\n6d69O2+99RZJSUm59hk8eDCDBw8u8BjBVq1aRfv27Wnfvj1ffvklq1evtqSiiKyhZgRU3a/wnj3d\nfBmmcBo2hBEjXFfULVvcJGatWrnhzTt2hBNPdN1yP//cGnoaY44UPCX56NGj2bhxY/a6/KYyz+sY\nARMmTKBdu3YkJSXRqFEjUlNToxNwOWYlFRGYNQu+/dYNBmX8qVnTNXC98EI3p8inn7oSjNdfhwkT\nXEPPgQPh/PNdQ88CSi+NMeXAr7/+mn27ZcuWHDx4MPv/WbNmhb3PPffcE/YYPXv2pGfPngA8/vjj\n0Q613LOSigg88ACkpLiLnSm6ypWhXz83oNbPP8PcuXDNNa7R58CBOVPJT58O+/fHOlpjjDEFsaSi\nkObOdSUVd9xh9f/FISEBunRxidvSpbBokWt78e23lmAYY0y8sKSikMaNc+0AhgyJdSTlQ9u2bhjw\nJUsswTDGmHhhSUUhLFrkukfefrv7RW1KliUYxhgTH6yhZiE8+CA0bQp//GOsIzFt2+YkGYsXw5tv\nwhtvwJQpbvjwQYNg6FBr5GlMtC1dujTWIZhiEO3X1ZKKAqxa5UbQnDgRKlWKdTQmWGESjCFD3CBl\nxx/vBuAyxkSmbt26JCYmcumll8Y6FFNMEhMTqVu3blSOZUlFGKqwbp0rbv/Pf9zw0lddFeuoTH7y\nSzDA9TRp3tzNqtqypfsbuH3ccVatZUxemjZtytKlS9m6dWusQzHFpG7dujRt2jQqxyrXSUVw8rB4\nsVuWLHHL77+7fapXh8cfd/NYmPgQnGCsXeuGDF+xwi0//ujax6xeDYcPu/2rVXMTw4UmGyedBMce\na719jGnatGnULjqmbCsXSUVhk4c2bdzF6IILci5MTZrYr9h4dvzxbunXL/f6gwddYhFINAJJx6uv\nujEzAiP61qiRk2D06uWmebdqMGOMCU/CjYde4kGIHAc8BJwNJAIrgCtVNSNonzHA1UBt4CvgOlVd\nmcfxkoH0gQPT2bw5Oc/kIfDXkgcTbN8++Omn3MnGsmXw1VduSPF//tM1BrUSDGNMWZSRkUGKmygu\nJfg6XBiFKqkQkflAobIPVU2OJAARCSQJnwBnAVuBk4DfgvYZDdwADAfWAPcDM0SktaoeyOvYP/3k\nBlSykgcTiapVc94vwX74wXUrvugi+Ne/4OGH4YwzYhKiMcaUSoWt/ngn6HZV4HpgCTDHW3cq0BZ4\nwkcMtwPrVPXqoHVrQ/YZCYxV1ekAIjIc2AwMBt7I68AvvQTJEaU4xuStfXv43//cfCW33eaqQ845\nx3U5bt8+1tEZY0zsFeo3u6reF1iAesBjqpqqqn/zlm7ARKC+jxgGAt+JyBsisllEMkQkO8EQkWZA\nA1xJRiCeXcBcwKaUMyXujDPcsO1vvOGqSDp2hCuucO12jDGmPPNTETAUmBJm/cvAH3wcrzlwHbAc\n6Af8B3hMRC7ztjfAVb1sDrnfZm+bMSVOxLWrWLIE/v1v+OAD16Dzttvgt98Kvr8xxpRFfpKKvUD3\nMOu7A/t8xpCuqv9Q1e9V9RngGeDPPo5lTImqVAmuvx5WrnTtLZ54wo2HMX68a/BpjDHliZ8upROB\n/3g9LOZ567oCfwLG+jjeRiB0nNClwPne7U2A4KpWgksr6gPz8zvwqFGjqFWrVq51w4YNY9iwYT7C\nNCZvNWq4cTGuuw7GjIG//92NbzJ2LFx6afRH81SFjRtd19jjj4/usY0x5UdaWhppaWm51u3cudP3\n8Xx1KRWRC3GNJ1t7q5YCj6pqno0m8znWK0BjVe0ZtG4CcIqqnub9vwEYr6oTvP9r4hKM4ar6Zphj\nJgPp6enpJFtLTRMDK1bAnXe6kT3bt3eNOc8+O7JuqKqwbVvurq3Bt/fscft17eradFx0ERx9dLE8\nHGNMOVLsXUpDeclDxAlEHiYAX4nIHd4xu+LGo7gmaJ+JwF0ishLXpXQssB6YFqUYjImqk05yDTnn\nzXPtLM491zXwfOgh18052M6dRyYMgds7duTs17ixO26XLq7046STYO9e18vpL39xs7cOHuwG6OrT\nx+Y6McaUPF9JhTe2xAW4Rpb/UtXtXunAZlX9JZJjqep3IjIEeBD4B7AaGKmqrwXt87CIJAJP4Qa/\n+gI4O78xKowpDbp0gdmzXUPO0aNdqcKQIW7Cs0DysGVLzv7HHusafLZr5/YLjObZogUkJoY/x0UX\nuaqQV16BF16A/v3dfCbDh7tp4Vu1KpnHaowxEVd/iEgH4GNgJ3ACcLKqrhKR+4Gmqjo86lFGyKo/\nTGl0+DC8/DI88oibbyR0rpEWLVyyURSqkJ4OL77ohhz/7TerHjHF7/BhV+K2Y0fO8vvvbpygxo1j\nHZ2JVFGqP/wkFR8DGap6m4jsBjp6SUU34FVVPSGiAxYDSyqMgf374b33XILxwQeup4pVj5j87N3r\nhqQPTg5++y33/+GW3bvzPmaHDq7675xz4NRToWK5mHEqvpV0m4pTgGvDrP8FGzfCmFKjShU3RP0F\nF1j1iCnY/Pnwhz+4ifaC1agBtWvnXk44wf2tVevIbYGlShU3X87//gfPPAPjxrmSsv79XYLRvz/U\nrRuTh2qKkZ+kYj9QM8z6lsCWMOuNMTHWsCHccgvcfLOrHnnhBXjqKdcrJVA9MnAgNGoU60hNLDz3\nnGvs27ata/jbsKFLDGrWLFrJwkUXueXwYfj2W3j/fZdkpKW5nlCnnuoSjHPPhaQkm6SvLPBT/fEs\ncAxwIbAd6AAcxs0P8rmq3hTtICNl1R/GFGzfvpzqkQ8/hKwsdzE55RTXwPSUU6BzZ6hTJ9aRmuKy\ndy/ccAM8/zyMGAGPPuom1CtuGze6Krn//Q9mznTVJw0b5iQYffq4EhITGyXdpqIW8BbQGagBbMBV\ne8wBzlHVPREdsBhYUmFMZH79Fb7+2v2anDcPvvsupztrixYuwQgkG5065d0TxcSPn35yVWPLlsGT\nT7qqsFg4cAC+/NIlGO+/7+KpVAl69HAJxrnnuobMpuSUaFKRfUeR03ClFEfhGm5+7OtAxcCSCmOK\nJivLDT3+7bc5icb8+a50o0IFV0weKM045RTXBbZSpVhHbQpr2jSXRNSrB1OnusaUpcWqVTkJxuzZ\nrsFx69aueubyy+Goo2IdYdlX0iUVzVV1VUR3KmGWVBgTfQcPwuLFOUnGt9/CokWuvrxqVVeCccop\nrhvhcce5MTfq1XON8SpXjnX0BuDQIbjrLjcI2+DBruqrqN2Yi9OePTBrlmvn8fbbrkrkmmtclU3T\nprGOruwq6aQiC/gMeA54S1VL3bRJllQYUzIyM10JRnCJxsqVR+5Xu7ZLMAKJRn63LQkpHps3w8UX\nwxdfuAa6N98cXw0j162DSZPg6addG4whQ9wost26xdfjiAclnVQkAVcCw4DKwOvA86o6N6IDFSNL\nKoyJnT17XBuNLVvcUtDtvXuPPEYgCWnTxtX7n3ee64lg/PnyS7jwQjc42uuvu/YK8WrPHpgyBSZO\ndCPSdu7skouhQy0ZjZZYtamoCJwHXAH0B34EngdeUtWYdi21pMKY+LFnT/iEI9B4dM4cN+bBWWe5\nC+PAgZZgFJYqTJjg5p/p3h1ee831sigLsrJgxgyXXHz0kXtcf/kLXHutjX9RVDFJKrIPIFIFuB4Y\nhyu5OICbGGy0qm4s0sH9x2RJhTFlxM8/w1tvuQnavvnGEozC2rUL/vQn1xDz1lvhgQfK7miWixfD\nY4+5EgxwE+6NHOkaEJvIFSWpSPB7UhHpLCJPABuBvwH/Ak4E+gLHYTOIGmOioEkTGDXKlVisW+dG\nZvz1V3fhOPZYGDTIjRa6a1esIy09fvjBVQvMnOkaOD78cNlNKMD1RnrqKZeA3n236znSvj307et6\nkmRlxTrC8iPipEJE/iYiPwBf45KH4cDxqnqXqq5W1S9wVSJWRGCMiaqCEozBgy3BeOklN0pqtWpu\nvJEhQ2IdUcmpWxfuuAPWrHET6u3cCQMGuKHoJ01yk5yZ4uWnoeYKXNuJF/Oq3hCRysAwVZ1c9BAj\nZ9UfxpQv69a5KpI338ypIunf3zXeKy9VJPv3uwaLTz7phl2fNMkGKVN174eJE1010FFHQWpqwb2Q\nqlcv3z1KYtqmojSypMKY8itcgnHWWXD66W5+iaSksteQb80al0D98AP8+99w1VXl+6IYzrp1rjvq\n4sW5GwYHRo4NVrVq7mQjXPLRoIHrnVQWE7cSTypEpDZwFdDaW7UY1610Z8QHKwaWVBhjICfBeOcd\nyMhwPU3ATZwWSDACS/PmkOC7lVnJ2b8fli+HJUvcBXLxYjfyZO3a7te4feVF5sAB2Lq18F2gg5OQ\nhAQ3hHjoe6l+/ZKL/9AhWLsWVqxwS//+cNJJRTtmSY9T0RmYAewF5nmrTwGqAf0iDaA4WFJhjAl1\n+LCb72LBgtzLRq8S96ijoGPH3BeHdu1KZoKtcMIlD0uWuMHFDh92+zRs6Bopdurk2hIcfXRsYi1P\nAknIL7+4kqH589376Pvv3aBc4EoxQhONFi3cEPd+ZGW58/34Y07yELi9apUb7RbcOB0vv+xKrYqi\npJOKL4CVwDWqeshbVxF4FmiuqjEfVsWSCmNMYW3e7C4IwYnG8uXui7xCBdfIL/ji0LKlq1KpXNnN\ndxJY/JZyBJKHQNIQSCB++unI5KFNG/c3cNuSiNIjKwtWr855DwXeUz//7LYnJro5VoLfS+3b51Sf\nqLr3YnDCELi9cqWbdwfce7JZM/c+POkktwRuN2niP3EJVtJJxV6gk6ouC1nfBvhOVWNew2RJhTGm\nKDIz3bwmwYnG99+79XmpUMElF6HJRvD/odvWr3cXjECXR0seyp5t245MWpcscQljoPokMdElEIGS\nDhE3t0lwwhC4fcIJxT95X1GSCj89l3cBTYFlIeubALt9HM8YY0qVxEQ3C2uXLjnrAtUnq1a5IvCD\nB92S1+38tgVut2uXkzi0aQN16sTuMZviccwxcOaZbgnYt88lFgsW5Mz+e/HFOcnDiSfGrtqtqPwk\nFa8Dz4nILbixKgC6A+OBtGgFZowxpUmFCu6XYsuWsY7ExLuqVV2D2rJYkO4nqbgFUGBK0P0PAv8B\nbo9SXMYYY4yJMxEnFap6ABgpInfghuUG+ElV86ltNMYYY0xZ53s0eC+J+CGKsRhjjDEmjhUqqRCR\ntwt7QFU93384xhhjjIlXhS2pKBUjZRpjjDGm9CpUUqGqVxZ3IMYYY4yJb77bVIjIscDJ3r/LVfXX\n6IRkjDHGmHgU8cCyIlJTRF4CfgE+85ZfRORlEanl43j3iEhWyLIkZJ8xIrJBRDJFZKaItIj0PMYY\nY4wpXn5Gq38G6AoMAGp7ywCgM/CUzzgWAfWBBt5yWmCDiIwGbgBGAF2APcAMEans81zGGGOMKQZ+\nqj8GAGep6pdB62aIyDXAhz7jOKSqW/LYNhIYq6rTAURkOLAZGAy84fN8xhhjjIkyPyUV2wjfG2Qn\n8JvPOE4SkV9E5CevGqUJgIg0w5VcfBLYUVV3AXOBVJ/nMsYYY0wx8JNU3A/8n4g0CKzwbo8Hxvo4\n3jfAFcBZwJ+BZsDnIlIdl1AormQi2GZvmzHGGGNKCT/VH9cBLYB1IrLOW9cU2A/UE5FrAzuqaoHT\npajqjKB/F4nIPGAtcCFHzoRqjDHGmFLKT1LxTtSjCKKqO0XkR1zi8ikguEacwaUV9YH5BR1r1KhR\n1KqVu0PKsGHDGDZsWNTiNcYYY+JVWloaaWm5JxjfudP/eJeiqkWNKapE5ChgHfAPVZ0kIhuA8ao6\nwdteE5dgDFfVN/M4RjKQnp6eTnJZnFvWGGOMKSYZGRmkpKQApKhqRiT39T34FWQnALnaZXgNKSM5\nxnjgPVyVRyPgPtxU6q95u0wE7hKRlcAaXLuN9cC0osRujDHGmOiKOKnwemT8GzgDqBq8CdeoskKE\nh2wMvAocA2wBvgROVdVtAKr6sIgk4sbAqA18AZztTcFujDHGmFLCT0nFy7gE4k+4aogi1Z+oaoEN\nHFT1XuDeopzHGGOMMcXLT1LREVfPsjzawRhjjDEmfvkZp+JboEm0AzHGGGNMfPNTUnE18KSINMLN\n2XEweKOqLoxGYMYYY4yJL36SinrAicALQesU/w01jTHGGFMG+EkqnscNPDWMKDTUNMYYY0zZ4Cep\nOB44T1VXRjsYY4wxxsQvPw01Z+F6gBhjjDHGZPNTUvEeMEFE2gM/cGRDzXejEZgxxhhj4oufpOJJ\n7+/dYbZZQ01jjDGmnIo4qVBVP1UmxhhjjCnjipQgiEjVgvcyxhhjTHkQcVIhIhVE5B8i8gvwu4g0\n99aPFZGroh6hMcYYY+KCn5KKO4ErgNuA4JlCF+FG2zTGGGNMOeQnqRgOjFDVV4DDQeu/B1pFJSpj\njDHGxB0/SUUjINzAVwlApaKFY4wxxph45SepWAKcHmb9Bbjhu40xxhhTDvkZp2IMMNmbpTQBOF9E\nTsZViwyIZnDGGGOMiR8Rl1So6jRgINAH2INLMloDA1V1ZnTDM8YYY0y88FNSgap+AfSNcizGGGOM\niWO+kgoAEakMHEtIaYeqritqUMYYY4yJPxEnFSJyEvA80C10Ezb3hzHGGFNu+SmpeBE4hGuUuRGX\nSBhjjDGmnPOTVCQBKaq6LNrBGGOMMSZ++R2nom60AzHGGGNMfPOTVIwGHhaRM0TkGBGpGbxEO0Bj\njDHGxAc/1R8fe38/CVlvDTWNMcaYcsxPUtEr6lEYY4wxJu5FnFSo6mfFEYgxxhhj4luhkwoROS+P\nTTuBH1V1YzQCEpHbgQeAiar6t6D1Y4CrgdrAV8B1qhputlRjjDHGxEAkJRXv5LNNReQ14BpVzfQb\njIicAowAvg9ZPxq4ATdp2RrgfmCGiLRW1QN+z2eMMcaY6Cl07w9VTQi3AEfj5gFJBu7yG4iIHAW8\njCuN2BGyeSQwVlWnq+oiXHJxHDDY7/mMMcYYE11+upTmoqo7VXUWMAo4vwiHmgS85x0rm4g0AxoQ\n1NtEVXcBc4HUIpzPGGOMMVHke0KxMJYBjf3cUUQuxo3U2TnM5ga4rqqbQ9Zv9rYZY4wxphSIZlLR\nHNgQ6Z1EpDEwEeijqgejGA+jRo2iVq1audYNGzaMYcOGRfM0xhhjTFxKS0sjLS0t17qdO3f6Pp6o\nFn0+MBFJws1c+pmqjorwvoOAt4HDuAG0wA2gpd66VsBKIElVFwbd71NgfrjziUgykJ6enk5ycnLk\nD8gYY4wppzIyMkhJSQE3z1dGJPeNpEvpb4SfkbS6d5yZwD2RnNzzMdA+ZN2LwFLgQVVdJSKbgN7A\nQi+WmkBXXDsMY4wxxpQCkVR/3JTH+l3AclVd4icAVd2Dm6Qsm4jsAbap6lJv1UTgLhFZietSOhZY\nD0zzc05jjDHGRF+hkwpVnVycgYSeLuTcD4tIIvAUbvCrL4CzbYwKY4wxpvSIZkPNqFHVM8Osuxe4\nt8SDMcYYY0yhFHmcCmOMMcYYsKTCGGOMMVFiSYUxxhhjosJ3UiEiLUTkLBGp5v0vBd3HGGOMMWVX\nxEmFiBwjIh8DPwLvAw29Tc+JyCPRDM4YY4wx8cNPScUE4BDQFAie5vx1oH80gjLGGGNM/PHTpbQf\ncJaqrg+p8VgBHB+VqIwxxhgTd/yUVFQndwlFQB1gf9HCMcYYY0y88pNUfAEMD/pfRSQBuA2YHZWo\njDHGGBN3/FR/3AZ8IiKdgcrAw0BbXElF9yjGZowxxpg4EnFJhaouAloCX+Im9KqOm7q8k6r+FN3w\njDHGGBMvfM39oao7gX9GORZjjDHGxLGIkwoR6ZDHJgX2AetU1RpsGmOMMeWMn5KKBeRMTR7oUxo8\nVflBEXkduFZV9xUlOGOMMcbEDz+9PwbhRtMcAXT0lhHAcuCPwFXAmcD9UYrRGGOMMXHAT0nFncBN\nqjojaN0PIrIeGKuqXURkD/AIcEs0gjTGGGNM6eenpKIjsDbM+rVAe+/2AnLmBDHGGGNMOeAnqVgG\n3C4ilQMrRKQScLu3DaARsLno4RljjDEmXvip/vgL8C6wXkQWeuvaAxWAAd7/zYEnih6eMcYYY+JF\nxEmFqn4tIs2AS3CDYAG8Cbyqqru9fV6KXojGGGOMiQd+B7/aDTwZ5ViMMcYYE8d8JRUAItIGaIqb\n/yObqr5b1KCMMcYYE3/8jKjZHPgvrh2FcuQAWBWiE5oxxhhj4omf3h+PAquBY4FM3AylPYDvgDOi\nFpkxxhhj4oqf6o9U4ExV3SoiWUCWqn4pIncAjwGdohqhMcYYY+KCn5KKCsBu7/ZW4Djv9lrg5GgE\nZYwxxpj446ekYhFuVM3VwFzgNhE5gJv/Y1UUYzPGGGNMHPGTVNwPVPdu3w1MB74AtgEXRykuY4wx\nxsSZiKs/VHWGqr7t3V6pqq2AusCxqvpJpMcTkT+LyPcistNbvhaR/iH7jBGRDSKSKSIzRaRFpOcx\nxhhjTPGKOKkQkedFpEbwOlXdDiSKyPM+YvgZGA0kAynALGCaiLT2zjcauAFXvdIF2APMCJ57xBhj\njDGx56eh5uVAtTDrqwHDIz2Yqv5PVT9U1Z+8ko+7gN+BU71dRuKmVJ+uqou8cxwHDPYRuzHGGGOK\nSaGTChGpKSK1cINd1fD+DyxHA+cAvxYlGBFJEJGLgUQgMMdIAyC7WkVVd+EaiKYW5VzGGGOMia5I\nGmruwI2aqcCPYbYrcI+fIESkHTAHqIrrrjpEVZeLSKp33NBp1Dfjkg1jjDHGlBKRJBW9cKUUs4A/\nANuDth0A1qrqBp9xLMN1U60FXABMEZEePo+VbdSoUdSqVSvXumHDhjFs2LCiHtoYY4yJe2lpaaSl\npeVat3PnTt/HE1UteK/gO4gcD/ysqlm+z1rwOWYCK4GHgZ+AJFVdGLT9U2C+qo7K4/7JQHp6ejrJ\nycnFFaYxxhhT5mRkZJCSkgKQoqoZkdw34nEqVHWtiNQWkS64+T8SQrZPifSYYSQAVVR1tYhsAnoD\nC8G17QC6ApOicB5jjDHGRImfWUoHAq8ARwG7yJmdFO92REmFiDwAfACsA2oAlwA9gX7eLhOBu0Rk\nJWJBK3cAACAASURBVLAGGAusB6ZFGrsxxhhjio+fETUfAZ4H/q6qmVGI4VhgMtAQ2IkrkeinqrMA\nVPVhEUkEngJq40bvPFtVD0Th3MYYY4yJEj9JRSPgsSglFKjq1YXY517g3miczxhjjDHFw8/gVzOA\nztEOxBhjjDHxzU9Jxf+A8SLSBvgBOBi8UVXfjUZgxhhjjIkvfpKKZ7y/d4fZpkAF/+EYY4wxJl75\n6VLqp8rEGGOMMWVckRIEEakarUCMMcYYE9/8TH1eQUT+ISK/AL+LSHNv/VgRuSrqERpjjDEmLvgp\nqbgTuAK4DTfnR8AioMDuocYYY4wpm/wkFcOBEar6CnA4aP33QKuoRGWMMcaYuOMnqWiEm+wr3LEq\nFS0cY4wxxsQrP0nFEuD0MOsvAOYXLRxjjDHGxCs/41SMASaLSCNcUnK+iJyMqxYZEM3gjDHGGBM/\nIi6pUNVpwECgD7AHl2S0Bgaq6szohmeMMcaYeOGnpAJV/QLoG+VYjDHGGBPH/IxTcYqIdA2zvquI\n2ERjxhhjTDnlp6HmJOC4MOsbeduMMcYYUw75SSraAAvCrJ/vbTPGGGNMOeQnqdgPNAizviFwqGjh\nGGOMMSZe+Wmo+REwTkQGqepOABGpDTwAWO8PY4wpQapK5sFMqleuHutQSq2d+3aycPNCFm5eiIhw\nXI3jaFSjEY1qNqJ+9fpUSKgQ6xDLDD9JxS3A58BaEQkMdpUEbAYui1Zgxhhjcjt4+CDLty1nwaYF\nuZZte7fRpl4b+jXvR98T+9Lz+J7lMslQVdbvWp/z3Gx2f1f9tgqASgmVUJRDWTmF6gmSQIOjGtCo\nRqNcyUbo7VpVaiEisXpocSPipEJVfxGRDsAlQEdgL/ACkKaqB6McnzHGxJYq/PorLF7slu3boVUr\naNMGWraEKlWK5bS79u/i+03fZ18gv9/8PYt+XcT+w/sBaFa7GUkNkrix6400rtmYr9Z9xdSlU5k4\ndyKVEirRvWl3+jbvS9/mfUlumFzmfo0fPHyQZVuXHZFAbN+7HYCjqx5NUoMkBp08iKQGSSQ1SKJV\n3VZUTKjIlj1b+GX3L2zYvYFfdv2Sc3v3L3yx7gs27N7Atr3bcp0vsVJiTuLhlXBUTPA1KsMRKiZU\nJLFSItUrVad65eq5blev5P0fcrtyhcpROXe0iaoWfmeRSsBTwFhVXV1sURWRiCQD6enp6SQnJ8c6\nHGNMPFCFzZthyZKcBCJwe7u7UFG5MtSqBVu2uP8rVICTTnIJRtu2bokw2Sjo13XlCpVpd2w7kuon\n0bFBR5IaJNGhfgdqV60d9lg/bvuRj376iJmrZjJ7zWx+P/A7darVoXez3vRt3pd+J/bj+NrHR+Up\nKym79u9i4eaF2c/R/E3zWfTrIg4cdhNlBxKs4KVJzSZFKlnYd2gfG3ZvyE48AklHIAHZ/PtmsjQr\nKo/vYNZB9hzYQ+bBTDIPZqIUfF3OKxEZ02sMfZr3KVI8GRkZpKSkAKSoakYk940oqQAQkZ1AkiUV\nxpi4FEgegpOGcMlDoDQiOFk48USoWNHtF3rfxYth0yZ3/woVoEWL3Pdt25aDJzZj2e7V+f667tSw\nE0n1k3L9uq5Uwd9cjQcPH+Sb9d8wc9VMZq6aybxf5pGlWZxU5yT6ndiPvs370qtZL2pWqRmNZ5aD\nhw+yY9+O7GXPwT3sObCHPQfdBTPP295+ed3ee2ive1kqVKZtvba5koe8Eqx4parsPbQ3/+fr/9u7\n9/Coqnv/4++VZJLJhVxJCIRLgEAg4Q7hpiBFQIUqaLUWFKqtttr2eayn53dsT221alutj609Wq1S\ny7EWeI72EqwoglZFQSEQkDuES7gkhITcyD1zWb8/1kwyCUlIyGQml+/refaTPTs7k8VmZ+Yza6/9\nXW0cxwemPsCMwZeVkuoQX4eK14G9WuvfdegHfUhChRB+oDUcOAA7d8K0aTBhAvj7GrTWcPQo/Pvf\nsG9fYwhob3joKI+wUbdvD9Vf7iL4SA7hxZcAsAfA8Rg4mAD5Q6I5f+1EQufMZ9LAyUxKnMTgyMFd\net2+tKaUj3I/aujJOFl6kkAVyMzBM82lkpELSYlNoby2vEk4uGypa3l7ta26zd9vCbC02aXfsN7s\n03dcWBwTBkxgTP8x3bbb32ecTqiogLKylpcbb4TU1E79is6Eiqu5IJQD/FwpdQ2wGzP/RwOt9f9c\nxXMKIXoihwO2b4fMTLOcPNn4vQEDYMECWLjQLINaqpnXBS5ehA8+gC1bzHL2LFgsJjykp8MNNzSG\niKsNDx601uRV5DUdPFm3lxMJJ2AhBN8YzOzwCSyqHcyM8n6kXrCz9PRFgvYcgs2fwKRy+N5AWBHb\n5SEsJjSG28bexm1jbwPgRMmJhl6M53c8z+OfPN7izykUUdYooq3RTZbRcaOJDom+bHu0NZooaxQR\nwRENwSDMEnbVPS69ltMJhw/DiROXh4PS0pZDQ3m5CcstCQ01f2edDBWdcTU9FW1d9tBa6xGda1Ln\nSU+FEF2opsa8aWdmwttvmzfxgQNh6VJYtgxmzYKsrMY39WzXB530dBMuFi2CuXMh3Et3J9TVwbZt\nsHmz+X179pgXXffvW7gQrruu079Pa01FfQWny07z5YUvL7v7Ajp4+cLpNG3+wx9g40aIjIR774UH\nHzRjMnzM7rSzK38XBZUFxFhjmgSEfiH9CFBXU9ZINFFVZXrytm0zYfzzz01QcAsNhejoq1uiorw2\naNinlz96AgkVQnhZSYl548vMhE2boLrafBq69VYTJDIyIKCVN52iIvjwQ/OGv3kznDtnLjvMnm0C\nxsKFMHmyGYfQHu7LLO4QsXWrCToJCY0hYsECSEq6wtOYkFBYVUhRVRFF1UVN1ps/LqwqbBgYCF4e\nHJibC3/8I/zpT1BcbP4N3/8+LFnS6Z4U4UfnzpnwsG2bWfbuNb17UVEmfF9zjfk7SE83waCL7iTq\nKL+ECqVUMDAcOKG17laVNCVUCOEFZ87Ahg0mSHzyiXkxnDnThIilS83lhI5yj3FwB4KPP4bKSoiN\nbXKpRA8dSn5FPkXVReaNPP88/T7dQdTWncRuz8ZaVIo9xELR5FTOzUrjdMZoLgxPwIaDekc9NocN\nm9PWsF7vqKe4ptiEhSpXWHA/dzNxoXHEh8cTHxZPQngC8WHxxIc3rg/qN4jxA8Z3zeDA2lp46y3T\ne7FjBwwdCt/9Ltx3nwlNovuy22H//sZeiG3bzN8QmMtss2ebEHHNNebyW2shvBvw9UDNMOAF4Juu\nTaO11ieVUi8AeVrrpzv4fD8BbgXGYGpebAce0Vofa7bfE8B9QDSwDXhQa328leeUUCG6L6fTXDv3\n9yDG5tw9AO7xEdnZZizC9debIHHzzV4dF6G1pqgsjwsfbMC5+X1iPtvN4KP5BGg41l+xebimLggW\nnoAJheZn9iTC5pGwZQR8NhTqPK4qBAcGYwmwmK+BlibrwYHBxFhjWgwJnutxYXFeqz3Qabt3w0sv\nwbp15py54w743vfMJ9zudu70ReXlJvi5eyF27DAB2WKBqVMbeyFmz4bElma26L58HSp+D1wD/BDY\nBExwhYqlwONa68kdfL53gfXALszA0V8D44CxWusa1z6PAI8Aq4Bc4ClgvGufyz5qSKgQ3UphYeMn\nl+3bYdcuqK83Lz4Wi7kU0JF1z8dBQd55g3EPuDx5Evr1M93uy5aZkeRRUZ166tKaUnJKcsgpziGn\nJIdjxccaHpfXlTfsNyRyCJOtySw5E8qMIxWk7D6Fxe6kcu5Mar4yh/p5cwhMHIglwNIQFNzrgSqw\n91Y7LCmBNWvg5ZfNgL5Jk0y4WLHCe+NSRNvq6szdQ1lZZkxEVpYZYKk1xMU1BohrrjF3Plmt/m5x\np/g6VJwG7tRaf6GUqgAmukJFCpCtte7UDc9Kqf5AITBXa/2Za1s+8Kz7NlalVCSmLPg3tdZvtvAc\nEiqEf7hHc3t2gR53daglJZkXnZkzISICbDYTLmy2jq+7v9q9eOVx3DgzRmLevA4VbrpUd6lJdcKz\nl85yvOR4Q3i4WH2xYf/EiERGxY5iVOwoRseNZlScWR8ZO5IwS5j3/i29kXtg50svwTvv+H1gZ6/l\ncJhLdO7wkJUFX37Z+EFgwgSYPt2MI5o92xz7XhZofX1LaTzmTb+5cGhHGbAri3Y9TwmAUmo4ZlbU\nD907aK0vKaV2ALOAy0KFED5TVWVedNxdoO7R3AEBMHGi+aTv/hQzdKi/W9sh9Y56zlecb7WcsbvK\nYJWtyV3lxIXGkRKbwui40dyUchOj4kyASIlN8VqRpT4pIMCcTzfe2HRg5/PPmwGvP/sZXHutv1vZ\ns2gNp083hoedO81lp8pKExRSU02AWLXKfJ0wocf3QnS1qwkVu4AlmHEV0Bgk7gM+70xjlOm/fB74\nTGt9yLU50fU7LjTb/QItT8EuRNfJy2vaC7F3r+ktiIw017offtiEiBkzTG9EN+ZwOjhReoJDRYc4\nVHSI3LLcJoGhqLqoyf4hgSEkRSY1TLI0JXFKw2P3fAiD+g3CGiQvul0uORmefhoef9wM7HzuOZgz\nB266CZ56CqSHtmXFxWbsg2cvhLvk+tChpvfh0UdNgJg61fxdiw65mlDx38B7Sqk0188/5FqfDVzX\nyfa8BKRhxmwI4X9OJ3z6KaxdC++/3ziae/hwEx6+/e3GW8KucEvkmfIzbDiygc0nNxMRHEFyVDLJ\n0Y3L0KihhFpCvf5P8AwPBwsPcrDoIIeKDnHk4pGGyamirdGMiBlBUr8kZiTNIGnM5TM1xlhjeu+4\nhZ7KaoWVK+Guu+Bvf4Of/9y8Gd5+OzzxBIwd6+8W+pe7hon7dmZ3DZO4OBMgHnzQfM3IMMXaRKdd\n1S2lSqmRwI8xs5RGANnAM1rr/VfdEKVeBG4G5mitz3hsHw6cwMw3ss9j+8fAHq31wy081xRg99y5\nc4lqNshs+fLlLF++/GqbKfoCrc011HXrYP16c695crIZuHjttSZEDBzYjqfRHCg8QOaRTDKPZpJ9\nPhtLgIU5w+bgcDrILcvl7KWzTSYlSoxIbAwaHQwd7Q0P6fHpZklIJy0+jfT4dBIjEiUw9AZ2O7zx\nBvziF6aS6MqV8NhjJgT3Be47mNwhwrOGyYIF5jLRnDnmeHTifLc5nVxyOAhSihClCAkI6LF/P+vX\nr2f9+vVNtpWXl7N161boqcWvXIFiKXCd1vpkC99vbaDmKq31Wy3sLwM1+7Cy2jJyy3LJLculqKqI\n1P6pTBwwkSjrFe5iyM01QWLtWjN/Q1wc3HmnGWU/e3a7XoQcTgfbz25vCBInS0/SL7gfi0ctZtmY\nZdyUclOTdtgcNvIq8hra23w5d+kcDu1o2L956AizhHH44mEJD6KpujpYvRp++UvT5X/ffaZb30el\n0rXWvF1cjF1rkq1Wkq1WYoOCuubcO3++aVn2ggLTgzNnTmNxtfHjW60LYXM6KbHbuWizcdFmo9j1\ntaXH7vVyh+Oy57G4woU7ZDQsrsfBbXwv2WplSVwc48PDu8Xfp0/u/lBKBQD/iXnzD8YMnPyF+7bP\nq6WUeglYDtwCeNamKNda17r2+S/MLaX3YG4pfRJIB9LlltK+xzM0tLR43qboqcUKiPWhqLfeMkFi\n+3YICzM9EitWmBcky5XnKqix1fDByQ/IPJLJ28fe5mL1RQZGDGRp6lKWjVnGvOR5hARdXaU8u9NO\n3qVmoaO8cb2yvpIx/ceQ1j+N9AQTItLi0yQ8CKO6Gl58EZ55xqz/4AfwyCPQv3+X/tpfnT7NT081\nndEhIjCwIWC0tLQ7dFRXmx4Id4jY7+ognzQJFi6katEiCqdOpSgwkCKbjcL6eopstob15kGhpYCg\ngDiLhf4WC3FBQfR3rfe3WBq2RwcFYdeaOqeTOvdX9+LxuL6N77kfH6muptLhYFhICF+Ni+Pm/v2Z\nFx1NiJ8KZPkqVPwMeAz4AKgFbgDWa62/1bHmXva8Tlq+a+RerfVfPPZ7HPgO5u6QT4HvS/Gr3sHh\ndFxW/fBC1YV2hYbQoNAmlwiaLzHWGI4WH20yT8PRM9nM2VPKXfth0QkIQHF0ajLFyxYR8417SB02\n9YoTH5XUlLDx2EYyj2ay6fgmqm3VjOk/hmWpy1g2ZhkZSRkyV4LoPsrL4be/NYtS8B//YZYuGIj4\n14ICVh45wuPJyfwgKYnc2toWl1M1NVQ5Gy/9hbs+sV+2hIQQk5ND8eefU3TgAIX5+RRFRFA0eDCF\nqakUDR5MUXQ0hVpTZLNR4/GcblGBgcQHBxNvsRDfQkBoHhqig4II9GEor3M6+aSsjH8VF/Ovixc5\nXVdHeEAAi2JjuTkujiVxcSQE+252Vl+FihzMJYhXXY8XABuBUK315f+LfiShwjec2snRi0fJys8i\nKy+LnJIcEwyctoZw0J513cadyFcKDfFh8e37dGOzmU8169ahMzNRVVWUTB7LjutG8lY6bK0+zInS\nE4CpzJgen96kR2PigImU15Wz4cgGMo9m8knuJzi0g5mDZ7IsdRlLxyxlTP+rKFsthC9dvGh6LV58\n0fTK/fjHZo6RMO/UCPmotJQb9u3j7gEDeC01tc2/Ta01JXb75YGjpobcsjJO2WxUtTL4OUopEqzW\nhpCQ4BEY4oODSfBY72+x+O0T/9XQWnOwqsoEjOJivrh0CYAZkZHcHBfHV31wmcRXoaIOSNFan/XY\nVuvadq4jv7SrSajwPq01Zy+dZWfeTrLyssjKz2JX/i4q6isAGB03mrT4NKxB1sZKh22UTG6pKqLn\nekJ4QsdCQ0tsNnPr2Pr18H//Z15Qx441I+VXrLhs8Nqlukvsu7CvSa/G/sL9TeaHsARYuH7E9SxL\nXcbNqTczqJ+PpvMWwpvy882tp6tXm0shjz4K999vKrVepQOVlVy7Zw/TIyPZOH48lva+kTudplrl\nxx+bZetWKC1Fh4RQMn8+uddfT+nUqcRPnEh8WBj9LRaCe1BI6KzC+nreLS7mneJi3i8t9cllEl+F\nCgeQqLUu8thWgSnT3dZ06D4noaLzLlZfbAgPO/N2kpWfRWGVqXk2OHIwGYMyzJKUwbRB07pmcqWO\ncDpN5UrPMrp79pgJmpKSYPlyEyYmTuzQqG+bw8bR4qPsOb+HkKAQbky5UQo4id7j1Clzp8gbb5g6\nDY89Bnff3eGZUfPr6piZnU1sUBBbJ08msq2fbyVEEBJiar3Mm2eWGTOk0FQzLV0miQgMZFFMDF/1\n4mUSX4UKJ/AeUOex+Wbg30BDST2t9W0daUBXkFDRMZX1lWSfz24ID1l5WZwqMzkxxhpDRlIG0wdN\nJyPJBImB/a58O2WX0toUofKsgrdrl7luDJCS0lhGd8YMs97eabWF6IsOHzY1Lv72N/NGHh9vloSE\nxvXmj13rFVYrc7/8kos2G19MmUJS8xLvEiK6RGuXSdaOHcvyTtbc8FWoWNOe/bTW93akAV1BQkXb\nquqr2Hp6K1tObuGDkx9wsOggTu0kNCiUqYOmNvRCTE+azoiYEf6/i6CkxIQGzyp458+b7w0a1Fi8\nZvp0M5lPTIx/2ytET7V3r3nTLyoyS2Fh0/XS0ia72wIDufnpp/k8LY3P/vAHxjscjcEjMtL0FkqI\n8An3ZZIFMTEM7uRx9cncH90hLIir49RO9pzfw+YTm9lycgvbzm6j3lHP4MjBLByxkIdmPERGUgZp\n8Wn+n/bZbjcB4vPPG3shTpgBlERHm9Bw772NQSIpyb/tFaI3mTTJLK2x2Uzdi8JCdFERD9bV8WFo\nKJv27GH8kCEmeJw6Zf5uS0pMpdmHHpIQ4QMJwcHc046ifF3Nz+8goqucKT/DlhNb2HxyMx+e/JDi\nmmIigiOYlzyPZxc+y6KRi0iNa3t0ts+cOGGq323ZAv/+t7mMYbWa+Qu++tXGXoiRI1stYCOE8AGL\nBRITITGRX+bm8lpuLq+PGcP1X/mKv1smugkJFT5QXlvO2v1ree/4e0Rbo81cCh6TMCX1SyIxIvGK\ntRHacqnuEh/nftwQJI4VHyNABZAxKIMHpz3IwpELmTl4JsGBvrvXuVWlpSY8uIPEqVNmYNjMmebe\n+UWLzPwF7Sg8JYTwvb8UFPCz3FyeSE5mVaLM6ygaSajoIlprtp/dzurs1bx58E3qHfXMS55HWW0Z\n285sI78iv6GkMoBCkRCe0HTWx36tT+pkd9rJystiy8ktbDm5hS/OfYHdaWd49HAWjVzEr+b/ivnD\n5xMT2g3GF9TXwxdfNFbAy8oyg7dSU2HJElNGd948mRFQiB7gw9JSvn30KN9OTOTRYcP83RzRzUio\n8LLi6mLe2PcGq7NXc6joECNiRvCzuT/jnkn3NLlrQmtNSU1JwzTTeRV5Ztpp1/rOvJ3kVeQ13Mbp\nZg2yMqjfIIqriymvKycqJIr5w+fzwk0vsHDEQkbGjvT1P/lyWsPRo409ER9/DJWVZi6NBQvM/fAL\nF5pb2IQQPcb+ykpuO3CA66OjeXn06O5x+VR0K706VNTZ6668kxdorfnk9Ceszl7N3w/9Had2cuvY\nW/n9jb9n/vD5LZZrVkoRFxZHXFgcEwZMaPW56x31FFQWXBY8IoIjWDBiARlJGf4fXAlQVgabNjXO\nDnjunCmkc+218NOfmhAxebKMiRCih8qrq2Px/v2MCA3lrfT09he3En1KN3g36jpz18xl4t6JDUWa\npidNZ2z/sQQGeKdmQWFVIa/vfZ3V2avJKclhdNxonpr/FN+c+E3iw+O98juCA4MZGjWUoVHd8FN9\nWRls2ABvvmnChM0G48bBHXc0TjEcHu7vVgohOumS3c6SfftQwMbx4+nXweJYou/o1WfGj2b/iAuR\nF9h6Ziuv7H4FjSbcEs6UgVOYnjS9IWwMjx7e7m48p3by4ckPeTX7VTYc2UCACuD2tNv50y1/Ys7Q\nOb2/O7B5kLDbTW/Ec8/BbbfJLZ5C9DI2p5PbDx4kt7aWzyZPZlDz4lZCeOjVoeLr6V9vKH5VUVfR\npGrk3w//nec+fw6AuNC4hmqR7rAxIKJpRbL8inzW7FnDa3te41TZKdLj03l24bOsnLiS2NBYn//b\nfKqtIPG1r5kCVEKIXkdrzXePHePjsjI2TZjAuIgIfzdJdHO9OlR46hfSj+uSr+O65OsathVVFTWU\npd6Zv5M/7vojT259EoAhkUPISMpgSuIUsvKzeOfYOwQHBnPnuDtZO2UtMwfP7N29EhIkhOjznjx9\nmjUFBbwxZgzzpVKtaIc+EypaEh8ez+JRi1k8ajFgUvmZ8jONc2DkZ/HMtmcYGTuSF256gRXjVxBl\njfJzq7uQBAkhhMvrBQU8lpvLU8OHc7fUohDt1KdDRXNKKYZFD2NY9DDuSL/D383xDQkSQohmtpSU\ncN/Ro9w3cCD/Lbd+iw6QUNEX5eWZIJGZCR99BA6HBAkhBAD7Kiv52sGDLIiJ4eVRo3r3ZV7hdRIq\n+gKtzdTGmZlmycoyZbHnzYPnn4dbb5UgIYTgXG0ti/ftIyU0lDfT0giSWhSigyRU9FZOpymN7Q4S\nOTmmZsTixfDDH5qv0dH+bqUQopv4pKyMuw4dIlAp3pFaFOIqyVnTm9TWmom6MjPh7bfhwgVISIBb\nboHf/Q6uv16mHhZCNGF3Onni9GmeOn2auVFR/HXsWKlFIa6ahIqerqwM3n3XBIn33jNzbIwcCStX\nwrJlZubPQO9UEBVC9C65NTXcdfgwOy5d4onkZH4ybBiBMoZCdIKEip6ooAD+8Y/GgZZ2O0ybBj/+\nsQkSaWkgLwxCiDa8WVjId44eJTooiK2TJzM7qhffLi98RkJFT+FwmIm6Xn0V/vUvExrcAy1vuQWG\nDPF3C4UQPUCVw8FDOTm8VlDA1+PjeWX0aKItFn83S/QSfSdUaG0mvKqvN19bW2++zW6H1FRISfFP\nu8+ehT//2SxnzsCECSZIrFgBsb28PLgQwqv2VlTwjUOHOFtXx2upqdybmCi3jAqv6t2hYu5ccxdE\nfb35pN8Zo0bBkiVmmTMHunIgk91uxkm8+qoZJxEaCt/4BnznO5CRIZc2hBAdorXm9+fO8cjJk6SF\nh7N76lTGyAzCogv07lBx//0wfDgEB4PFYpaOrgcGwu7dsHEjvPWW6SWIiIAFC8xtmYsXe29mzlOn\n4LXXYM0ayM+HqVPh5ZdNoIiM9M7vEEL0KYX19dx75AjvlpTww8GDeXrECEKk/oToIr07VKxcCa5Z\nSjslKcmMW9Aa9u83AWPjRnjgAdMTMmmSCRdLlsCMGR2726K+3tz+uXq1KZMdEQF3320C0eTJnW+7\nEKLP2lJSwqojR3Bozcbx41kcF+fvJoleTuJqRyhlxjT85Cfw2WdQVATr1kF6OrzyClxzDQwYYELB\nunVQUtL6c+XkwCOPmAGWd9wBFRWml+L8eXjpJQkUQoirVu908siJEyzat49x4eF8OW2aBArhE92i\np0IpNQf4f8BUYCCwTGv9drN9ngDuA6KBbcCDWuvjvm5rE7GxsHy5WRwO2LnT9GC8+y6sXQsBATBr\nVmMvRmoq/POfplfio48gJsb0ptx/P4wb59d/ihCibWU2Gwerqym12UgLDyfZaiWgG45vOlFTw/JD\nh9hTWclvRozgR0OGdMt2it6pW4QKIBzYC7wG/KP5N5VSjwA/AFYBucBTwPtKqbFa63oftrN1gYEm\nQMyaBU89ZcZEvPuuWX79a/jpT818G3a7GUD6xhtm8q7QUH+3XAjhocJu51B1NQerqjhQVcVB15JX\n3/SlJjwggPTwcMaHhzM+IsJ8DQ8nPjjYTy2HvxYU8GBODgMsFrZPnkyGjMUSPtYtQoXWehOwCUC1\nfH/TQ8CTWut3XPusAi4Ay4A3fdXODhk0CO67zyx1dfDpp/Dll6bHYswYf7dOiD6vyuHgcFUVB10B\nwh0iztTVAaCAEVYr6eHhrEpMZFx4OOnh4cQGBXGoupr9lZXsr6piT2UlawsLqXU6AUiwWC4LRaoS\nowAACKFJREFUGmnh4YR3YWXbCrud7+fk8MaFC6wcMIA/jBolc3cIv+j2Z51SajiQCHzo3qa1vqSU\n2gHMoruGCk8hIeZukQUL/N0SIfoMrTVVDgfFdjtF9fUcralp0vNwqrYW7do32WolPSyMbyQkkO4K\nD2PDwghrJQgMsVq5waNOjENrjtfUNASNA1VVbCwu5vfnzqFpDCieQWNceDj9AgOpcTqpdTov/+pw\ntPt72RUVFNvtvDFmDHcnJnb5sRWiNd0+VGAChcb0THi64PqeEKKXq3M6KbbZKLbZKLHbL1svsdko\nbrZeYrNRr3WT5xkcEkJ6WBi39u/fEB7SwsKI6OSn+kClSA0LIzUsjNs9tlc7HByqqmoIGvurqlh9\n/jwF9e2/ahukFNaAAEIDAlr+GhjInOhoHhs2jJSwsE79O4TorJ4QKoQQfdB/Hj/Om0VFFNtsVLsu\nLXhSQHRQEHEWC7Gur8OsViZHRDTZ5l5SQkOJ8vElgbDAQKZFRjKt2diGi/X1HKiqotbpbAgGrQWH\nIKkpIXqQnhAqCjCvHwNo2lsxANjT1g8+/PDDRDWbJGf58uUsX77c220UQnjZlH79CA0MbBIOPNej\ng4J67Iya/YODmefHAZ1CuK1fv57169c32VZeXn7Vz6d0s+5Bf1NKOWl2S6lSKh94Vmv9O9fjSEzA\nWKW1fquF55gC7N69ezdTvFH8SgghhOgjsrOzmTp1KsBUrXV2R362W/RUKKXCgRRMjwTACKXURKBE\na30WeB54VCl1HHNL6ZPAOWCDH5orhBBCiBZ0i1ABTAM+wgzI1MBzru2vA9/SWv9GKRUGvIIpfvUp\ncFO3qVEhhBBCiO4RKrTWn3CFkuFa68eBx33RHiGEEEJ0nAwrFkIIIYRXSKgQQgghhFdIqBBCCCGE\nV0ioEEIIIYRXSKgQQgghhFdIqBBCCCGEV0ioEEIIIYRXSKgQQgghhFdIqBBCCCGEV0ioEEIIIYRX\nSKgQQgghhFdIqBBCCCGEV0ioEEIIIYRXSKgQQgghhFdIqBBCCCGEV0ioEEIIIYRXSKgQQgghhFdI\nqBBCCCGEV0ioEEIIIYRXSKgQQgghhFdIqBBCCCGEV0ioEEIIIYRXSKgQQgghhFdIqBBCCCGEV0io\nEEIIIYRXSKgQQgghhFdIqBBCCCGEV0ioEF6zfv16fzehz5Fj7ntyzH1PjnnP0aNChVLq+0qpU0qp\nGqXUF0qpDH+3STSSP3zfk2Pue3LMfU+Oec/RY0KFUupO4DngMWAy8CXwvlKqv18bJoQQQgigB4UK\n4GHgFa31X7TWR4AHgGrgW/5tlhBCCCGgh4QKpZQFmAp86N6mtdbAB8Asf7VLCCGEEI2C/N2AduoP\nBAIXmm2/AKS2sL8V4PDhw13cLOGpvLyc7OxsfzejT5Fj7ntyzH1Pjrlvebx3Wjv6s8p84O/elFID\ngTxgltZ6h8f2Z4C5WutZzfZfAaz1bSuFEEKIXuUurfW6jvxAT+mpuAg4gAHNtg8AClrY/33gLiAX\nqO3SlgkhhBC9ixVIxryXdkiP6KkAUEp9AezQWj/keqyAM8D/aK2f9WvjhBBCCNFjeioAfgv8r1Jq\nN7ATczdIGPC//myUEEIIIYweEyq01m+6alI8gbnssRe4QWtd5N+WCSGEEAJ60OUPIYQQQnRvPaJO\nhRBCCCG6PwkVQgghhPCKHhsqlFI/UUrtVEpdUkpdUEr9Uyk1utk+a5RSzmbLu/5qc0/XnmPu2u8J\npVS+UqpaKbVFKZXij/b2FkqpOUqpt5VSea5z+JZm35fz3MuudMxd+8h53oWUUo+1cF4f8ne7+oLO\nTN7ZY0MFMAd4AZgBLAAswGalVGiz/d7DDOxMdC3LfdnIXuaKx1wp9QjwA+A7wHSgCjPxW7Dvm9tr\nhGMGJn8PaG0QlJzn3tXmMZfz3GcO0PS8vta/zen9Ojt5Z68ZqOn6BxdiKmx+5tq2BojSWt/m18b1\nUq0c83zgWa3171yPIzHl1L+ptX7Tb43tJZRSTmCZ1vptj21ynnehVo65nOddTCn1GLBUaz3F323p\nS1qpCXUWUxPqN1f6+Z7cU9FcNOYTRUmz7fNcXfVHlFIvKaVi/dC23qrJMVdKDcd8mvCc+O0SsAOZ\n+K2ryXnuI3Ke+9Qo1yWoE0qpvyqlhvi7Qb2ZNybv7BWhwpWkngc+01p7XnN7D1gFzAf+C7gOeNe1\nv+iEVo55IiZktDTxW6IPm9fXyHnuW3Ke+8YXwD3ADcADwHBgq1Iq3J+N6uXamryzXed2jyl+dQUv\nAWnANZ4bm3VDHlRK7QdOAPOAj3zWut6pxWMufE/Oc9Ebaa095504oJTaCZwGvg6s8U+rxJX0+J4K\npdSLwGJgntb6fFv7aq1PYSYnk1HandDGMS8AFO2f+E10ATnPu5yc536gtS4HjiHndVfq6OSdl+nR\nocL15rYU+IrW+kw79h8MxAFthg/RuraOuevNrAC43mP/SMzdItt92c6+TM7zriXnuX8opSIwgULO\n6y6itbYBu2l6bivX43ad2z328odS6iXMbXO3AFVKKXeyKtda17quuz0G/B3zApACPINJuh2ezlVc\n+Zi71p8HHlVKHcdMPf8kcA7Y4OPm9hquczkF8+kYYIRSaiJmgGwJcp57XVvHXGt9FjnPu5xS6lng\nX5hLHknALwAbsN6f7eoDOjd5p9a6Ry6AE9NN03xZ5fq+FdiEeaGtBU4CLwPx/m57T12udMw99nsc\nyAeqMW9sKf5ue09eMAMvWzr2f5bz3PfH3GMfOc+79v9gPSao1QBngHXAcH+3qy8smPosua5j/zkw\nrb0/22vqVAghhBDCv3r0mAohhBBCdB8SKoQQQgjhFRIqhBBCCOEVEiqEEEII4RUSKoQQQgjhFRIq\nhBBCCOEVEiqEEEII4RUSKoQQQgjhFRIqhBBCCOEVEiqEEEII4RUSKoQQQgjhFf8fPlT22OTtxRgA\nAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11c579da0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# let's take a look at unemployment by education level\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "# we invert the x axis\n", "plt.gca().invert_xaxis()\n", "#we add the variables \n", "plt.plot(esplbr.index, esplbr['UnempW/PrimEd.'])\n", "plt.plot(esplbr.index, esplbr['UnempW/SecEd'])\n", "plt.plot(esplbr.index, esplbr['UnempW/TertEd'])\n", "plt.plot(esplbr.index, esplbr['Ni-nis'])\n", "# we modify the plot\n", "plt.title('Education and Employment Outcomes', fontsize=14, loc='left')\n", "plt.ylabel('Percentage Unemployed') \n", "plt.legend(['UnempW/PrimEd.', 'UnempW/SecEd','UnempW/TertEd', 'Ni-nis'], fontsize=7, loc=0) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Observations**\n", "\n", "* Those unemployed with only primary education completed and ni-nis start to rise hand in hand ten years ago, when the crisis hits. This suggests overlap between the two groups.\n", "* The elephant in the room a massive construction bubble that made Spain's variant of the crisis particularly brutal. For decades, a debt-fueled bubble in real estate signaled youngsters to drop the books and pick up the bricks.\n", "* The labor market now faces the painful readjustment of the economy's productive model, from \"deuda y ladrillo\" (debt and brick) to exports, that account for Spain's recent growth\n", "\n", "P.S.: if you ever need to investigate (how not to execute) a Keynesian stimulus plan, check out how the government's *Plan E* added fuel to malinvestments http://www.economist.com/node/13611650 \n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Digging for more" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I'm interested in measuring structural unemployment. Ideally, I would build an unemployment model myself based on separation and accesion rates to arrive at the Natural Rate of Unemployment, as we see in one of my three bibles:\n", "\n", "http://www.stern.nyu.edu/sites/default/files/assets/documents/The_Global_Economy_Amazon_Digital%20%282%29.pdf\n", "\n", "In the interest of time, I sought an indicator that acts as a proxy for structural unemployment. The NAIRU and NAWRU come to mind, but they are not reported by the World Bank. \n", "\n", "And so I became acquainted with Quandl's API and proceeded to dig through several economic databases, and landed at the notorious OECD database: I suspect Quandl and I are going to become good friends moving forward. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Load the modules" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Don't forget the the DMV paperwork\n", "import quandl # Quandl package\n", "quandl.ApiConfig.api_key = '3w_GYBRfX3ZxG7my_vhs' # register for a key and unlimited number of requests \n", "# Playing it safe\n", "import sys # system module\n", "import pandas as pd # data package\n", "import matplotlib.pyplot as plt # graphics module \n", "import datetime as dt # date and time module\n", "import numpy as np\n", "%matplotlib inline \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data extraction and clean up " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We're going to be comparing Spain's NAIRU to that of Denmark. Don't tell Sanders, but Denmark is well known for having one of the most 'flexible' labor markets in Europe." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>OECD/EO91_INTERNET_ESP_NAIRU_A - Value</th>\n", " <th>OECD/EO91_INTERNET_DNK_NAIRU_A - Value</th>\n", " </tr>\n", " <tr>\n", " <th>Date</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1990-12-31</th>\n", " <td>14.353311</td>\n", " <td>6.724285</td>\n", " </tr>\n", " <tr>\n", " <th>1991-12-31</th>\n", " <td>14.571544</td>\n", " <td>6.860554</td>\n", " </tr>\n", " <tr>\n", " <th>1992-12-31</th>\n", " <td>14.953883</td>\n", " <td>6.932394</td>\n", " </tr>\n", " <tr>\n", " <th>1993-12-31</th>\n", " <td>15.478153</td>\n", " <td>6.912441</td>\n", " </tr>\n", " <tr>\n", " <th>1994-12-31</th>\n", " <td>15.824915</td>\n", " <td>6.700012</td>\n", " </tr>\n", " <tr>\n", " <th>1995-12-31</th>\n", " <td>15.807487</td>\n", " <td>6.448332</td>\n", " </tr>\n", " <tr>\n", " <th>1996-12-31</th>\n", " <td>15.465041</td>\n", " <td>6.182695</td>\n", " </tr>\n", " <tr>\n", " <th>1997-12-31</th>\n", " <td>15.006013</td>\n", " <td>5.900041</td>\n", " </tr>\n", " <tr>\n", " <th>1998-12-31</th>\n", " <td>14.366738</td>\n", " <td>5.663739</td>\n", " </tr>\n", " <tr>\n", " <th>1999-12-31</th>\n", " <td>13.586143</td>\n", " <td>5.476128</td>\n", " </tr>\n", " <tr>\n", " <th>2000-12-31</th>\n", " <td>12.956937</td>\n", " <td>5.294450</td>\n", " </tr>\n", " <tr>\n", " <th>2001-12-31</th>\n", " <td>12.448287</td>\n", " <td>5.209656</td>\n", " </tr>\n", " <tr>\n", " <th>2002-12-31</th>\n", " <td>12.150120</td>\n", " <td>5.148396</td>\n", " </tr>\n", " <tr>\n", " <th>2003-12-31</th>\n", " <td>11.908023</td>\n", " <td>5.129223</td>\n", " </tr>\n", " <tr>\n", " <th>2004-12-31</th>\n", " <td>11.784227</td>\n", " <td>5.087734</td>\n", " </tr>\n", " <tr>\n", " <th>2005-12-31</th>\n", " <td>11.764572</td>\n", " <td>5.023641</td>\n", " </tr>\n", " <tr>\n", " <th>2006-12-31</th>\n", " <td>12.025529</td>\n", " <td>4.976982</td>\n", " </tr>\n", " <tr>\n", " <th>2007-12-31</th>\n", " <td>12.599862</td>\n", " <td>5.008570</td>\n", " </tr>\n", " <tr>\n", " <th>2008-12-31</th>\n", " <td>13.485426</td>\n", " <td>5.104536</td>\n", " </tr>\n", " <tr>\n", " <th>2009-12-31</th>\n", " <td>14.771787</td>\n", " <td>5.339819</td>\n", " </tr>\n", " <tr>\n", " <th>2010-12-31</th>\n", " <td>15.646397</td>\n", " <td>5.507396</td>\n", " </tr>\n", " <tr>\n", " <th>2011-12-31</th>\n", " <td>16.207122</td>\n", " <td>5.608726</td>\n", " </tr>\n", " <tr>\n", " <th>2012-12-31</th>\n", " <td>16.465432</td>\n", " <td>5.662474</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-31</th>\n", " <td>16.531184</td>\n", " <td>5.680385</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " OECD/EO91_INTERNET_ESP_NAIRU_A - Value \\\n", "Date \n", "1990-12-31 14.353311 \n", "1991-12-31 14.571544 \n", "1992-12-31 14.953883 \n", "1993-12-31 15.478153 \n", "1994-12-31 15.824915 \n", "1995-12-31 15.807487 \n", "1996-12-31 15.465041 \n", "1997-12-31 15.006013 \n", "1998-12-31 14.366738 \n", "1999-12-31 13.586143 \n", "2000-12-31 12.956937 \n", "2001-12-31 12.448287 \n", "2002-12-31 12.150120 \n", "2003-12-31 11.908023 \n", "2004-12-31 11.784227 \n", "2005-12-31 11.764572 \n", "2006-12-31 12.025529 \n", "2007-12-31 12.599862 \n", "2008-12-31 13.485426 \n", "2009-12-31 14.771787 \n", "2010-12-31 15.646397 \n", "2011-12-31 16.207122 \n", "2012-12-31 16.465432 \n", "2013-12-31 16.531184 \n", "\n", " OECD/EO91_INTERNET_DNK_NAIRU_A - Value \n", "Date \n", "1990-12-31 6.724285 \n", "1991-12-31 6.860554 \n", "1992-12-31 6.932394 \n", "1993-12-31 6.912441 \n", "1994-12-31 6.700012 \n", "1995-12-31 6.448332 \n", "1996-12-31 6.182695 \n", "1997-12-31 5.900041 \n", "1998-12-31 5.663739 \n", "1999-12-31 5.476128 \n", "2000-12-31 5.294450 \n", "2001-12-31 5.209656 \n", "2002-12-31 5.148396 \n", "2003-12-31 5.129223 \n", "2004-12-31 5.087734 \n", "2005-12-31 5.023641 \n", "2006-12-31 4.976982 \n", "2007-12-31 5.008570 \n", "2008-12-31 5.104536 \n", "2009-12-31 5.339819 \n", "2010-12-31 5.507396 \n", "2011-12-31 5.608726 \n", "2012-12-31 5.662474 \n", "2013-12-31 5.680385 " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# We extract the indicators and print the dataframe\n", "NAIRU = quandl.get((['OECD/EO91_INTERNET_ESP_NAIRU_A','OECD/EO91_INTERNET_DNK_NAIRU_A']), #We call for both\n", " start_date = \"1990-12-31\", end_date = \"2013-12-31\") # And limit the time horizon \n", "NAIRU" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "pandas.core.frame.DataFrame" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# What do we have here?\n", "type(NAIRU)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Index(['OECD/EO91_INTERNET_ESP_NAIRU_A - Value', 'OECD/EO91_INTERNET_DNK_NAIRU_A - Value'], dtype='object')" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "NAIRU.columns " ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>NAIRU Spain</th>\n", " <th>NAIRU Denmark</th>\n", " </tr>\n", " <tr>\n", " <th>Date</th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>1990-12-31</th>\n", " <td>14.353311</td>\n", " <td>6.724285</td>\n", " </tr>\n", " <tr>\n", " <th>1991-12-31</th>\n", " <td>14.571544</td>\n", " <td>6.860554</td>\n", " </tr>\n", " <tr>\n", " <th>1992-12-31</th>\n", " <td>14.953883</td>\n", " <td>6.932394</td>\n", " </tr>\n", " <tr>\n", " <th>1993-12-31</th>\n", " <td>15.478153</td>\n", " <td>6.912441</td>\n", " </tr>\n", " <tr>\n", " <th>1994-12-31</th>\n", " <td>15.824915</td>\n", " <td>6.700012</td>\n", " </tr>\n", " <tr>\n", " <th>1995-12-31</th>\n", " <td>15.807487</td>\n", " <td>6.448332</td>\n", " </tr>\n", " <tr>\n", " <th>1996-12-31</th>\n", " <td>15.465041</td>\n", " <td>6.182695</td>\n", " </tr>\n", " <tr>\n", " <th>1997-12-31</th>\n", " <td>15.006013</td>\n", " <td>5.900041</td>\n", " </tr>\n", " <tr>\n", " <th>1998-12-31</th>\n", " <td>14.366738</td>\n", " <td>5.663739</td>\n", " </tr>\n", " <tr>\n", " <th>1999-12-31</th>\n", " <td>13.586143</td>\n", " <td>5.476128</td>\n", " </tr>\n", " <tr>\n", " <th>2000-12-31</th>\n", " <td>12.956937</td>\n", " <td>5.294450</td>\n", " </tr>\n", " <tr>\n", " <th>2001-12-31</th>\n", " <td>12.448287</td>\n", " <td>5.209656</td>\n", " </tr>\n", " <tr>\n", " <th>2002-12-31</th>\n", " <td>12.150120</td>\n", " <td>5.148396</td>\n", " </tr>\n", " <tr>\n", " <th>2003-12-31</th>\n", " <td>11.908023</td>\n", " <td>5.129223</td>\n", " </tr>\n", " <tr>\n", " <th>2004-12-31</th>\n", " <td>11.784227</td>\n", " <td>5.087734</td>\n", " </tr>\n", " <tr>\n", " <th>2005-12-31</th>\n", " <td>11.764572</td>\n", " <td>5.023641</td>\n", " </tr>\n", " <tr>\n", " <th>2006-12-31</th>\n", " <td>12.025529</td>\n", " <td>4.976982</td>\n", " </tr>\n", " <tr>\n", " <th>2007-12-31</th>\n", " <td>12.599862</td>\n", " <td>5.008570</td>\n", " </tr>\n", " <tr>\n", " <th>2008-12-31</th>\n", " <td>13.485426</td>\n", " <td>5.104536</td>\n", " </tr>\n", " <tr>\n", " <th>2009-12-31</th>\n", " <td>14.771787</td>\n", " <td>5.339819</td>\n", " </tr>\n", " <tr>\n", " <th>2010-12-31</th>\n", " <td>15.646397</td>\n", " <td>5.507396</td>\n", " </tr>\n", " <tr>\n", " <th>2011-12-31</th>\n", " <td>16.207122</td>\n", " <td>5.608726</td>\n", " </tr>\n", " <tr>\n", " <th>2012-12-31</th>\n", " <td>16.465432</td>\n", " <td>5.662474</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-31</th>\n", " <td>16.531184</td>\n", " <td>5.680385</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " NAIRU Spain NAIRU Denmark\n", "Date \n", "1990-12-31 14.353311 6.724285\n", "1991-12-31 14.571544 6.860554\n", "1992-12-31 14.953883 6.932394\n", "1993-12-31 15.478153 6.912441\n", "1994-12-31 15.824915 6.700012\n", "1995-12-31 15.807487 6.448332\n", "1996-12-31 15.465041 6.182695\n", "1997-12-31 15.006013 5.900041\n", "1998-12-31 14.366738 5.663739\n", "1999-12-31 13.586143 5.476128\n", "2000-12-31 12.956937 5.294450\n", "2001-12-31 12.448287 5.209656\n", "2002-12-31 12.150120 5.148396\n", "2003-12-31 11.908023 5.129223\n", "2004-12-31 11.784227 5.087734\n", "2005-12-31 11.764572 5.023641\n", "2006-12-31 12.025529 4.976982\n", "2007-12-31 12.599862 5.008570\n", "2008-12-31 13.485426 5.104536\n", "2009-12-31 14.771787 5.339819\n", "2010-12-31 15.646397 5.507396\n", "2011-12-31 16.207122 5.608726\n", "2012-12-31 16.465432 5.662474\n", "2013-12-31 16.531184 5.680385" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Dataframe housekeeping \n", "NAIRU.columns = ['NAIRU Spain', 'NAIRU Denmark']\n", "NAIRU" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Index(['NAIRU Spain', 'NAIRU Denmark'], dtype='object')" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Nice and polished\n", "NAIRU.columns" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "['seaborn-colorblind',\n", " 'seaborn-dark-palette',\n", " 'fivethirtyeight',\n", " 'seaborn-bright',\n", " 'seaborn-muted',\n", " 'grayscale',\n", " 'bmh',\n", " 'seaborn-dark',\n", " 'seaborn-poster',\n", " 'seaborn-darkgrid',\n", " 'classic',\n", " 'seaborn-white',\n", " 'seaborn-whitegrid',\n", " 'seaborn-pastel',\n", " 'seaborn-ticks',\n", " 'ggplot',\n", " 'dark_background',\n", " 'seaborn-deep',\n", " 'seaborn-paper',\n", " 'seaborn-talk',\n", " 'seaborn-notebook']" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "plt.style.available #Take a look at the menu" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAF0CAYAAADb+cjMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xd4VGX2wPHvIYAQlCJdkI4CgpSArIo0RXQVu7uCSBHF\ntfxAdGUta0GxoCKyiopLFBSMfaWo2FDEhkgEESlKUxBBilSpeX9/nDthMswkMzeTzCQ5n+eZJ8mt\nZ+7M3Jx5qzjnMMYYY4wp6kolOgBjjDHGmHiwpMYYY4wxxYIlNcYYY4wpFiypMcYYY0yxYEmNMcYY\nY4oFS2qMMcYYUyxYUmOMMcaYYsGSGmOMMcYUC5bUGGOMMaZYKPZJjYhkBT065rLd34K2W1mYMSYT\nEVktIlmJjiMSEekmIm+IyFoR2SsiW0RkqYi8KiLXi8hRiY6xOBORT7zPSL0ot+/vbT8rj+1We9t1\njk+kRU/Qtbor0bGUBEHXO69H55D9RESuFJGPRWSziOwTkd9EZIGIPCsifcKcK/SYB0Vkq4h8KiKD\nCu9ZHxbX6pC49nvPaYmITBGRfiJyRAz7h3vMCtnnE4lwbYO26RjNfSOc0rHuUEQF5oK4HJgbYZvL\ng7YryRyQlEmNd7O/B41xCfAVsB84HrgQuBiYB3wdtM9q4FjnXEohhxs1EbkHuAsY4Jx7IcHh5MVR\nMJ+TgjpuUWPXIAYi0gX4GJjonLvS52F+Aj6LsM4BvwWdrwwwDegJHETvNWuAI4DWwCCgL/BShGNN\n8n5PARoDpwCdRKS7c+5yn/HnR+Bz9wawExCgItAQuBToDYwSkYHOuZlR7B/O0gj7AIwAuuXnCYQq\nKUnNQeAH4O8icqNzLsc/bRE5GjgLyATSEhBfMukOlEl0EKFEpB1wN7APuNQ5Nz1kfQ30ZvJHyK5F\n4Z+E/UM3AZLoAEqgz2JIiP4PTWjWAGc6534MXikizYH+kXYOPY+InA68C1wmIlOcc+/EFHn8/NM5\n93PwAu+e+m/gBmC6iJzjnHs/2v3zIMBuoLOIdHPOfewr6jCKffVTkClAdfQNGeoyNMGbXKgRJSHn\n3Crn3PJExxHGRegH4dXQhAbAObfROfdYksaeF/tHZow/hf3ZuQj9AnJvaEID4Jxb4py7NdqDOec+\nAl70/rwgPiHGh3dPHYImNinA815JVVwODzyNvn4j4nRMoGQlNS+hF7JvmHV90aKzqbkdQESaichE\nEflZRPZ49agZItIizLZHiMggEXlLRFaIyG6vDnW2iPw9wvHLiMh1IvK1iGwSkV0iskpEpofu49Vl\nHoxwnC5efeRzIcsnBuoxRaSniMzyYsoSkYqRjisi9QP1myJSTkQe8rbbIyI/isjwXK5ZF2+/7aLt\nX94WkTSJvf1AdfT1+z2ajQPXAKinf+ao410ZtF12GxER6SMiXwZize1aBu2ffU3DrDtaRO4Xke9E\nZKeIbPN+HyUiNb1tVqNVTwATQ+Ls7G1zj/d3vwgxhHvNsuMWkZoiMkFEfhGtMx/ibVNLRIZ71yDQ\nRmm9aJul9tFc54IWeL1EpJSI/EtElnnvu5+992HZCPuVF5HbRCRTRHZ4jy9zuYaB86SIyJ3e+3q3\niPwgIgOCtuvuvZ+3ee/nSaIlvaHHC35f9RWRb7zP8wbvPXNMjNehvBfXIi+uPyTMvUREyoreO3YG\nPtNhjnWyF9vHQcuy32Mi0k5E3hW9N2wWkVdEpI63XaqIPCx6X/rTi+fiXOKO5Z6ZfU8QkWNF5CUR\n2eg933kicm7I9s8Ds9D7woCQz05BtUuq7v3cFMdjfov+cz82t41EpLqIHBCRtbls08t7/q/HMb6H\n0JKpWmiVVLy8BSwAThWRHvE6aIlJapxz64BPgfNEJDWwXEQaAn8B3gT+jLS/iFyAvvmuQP+xTgVW\noi/y1yLSKWSXBsB/0eqsVegL+C3QEciI8KF7CXgSOA740ttnDXAqcE3oU8rrOYcRqOa4HHgHSPV+\nzg06Xm7HLQu8j9Ybz0NvKMcAD4nIvaEbi8hFwIdAF2ARWsx6LDAHvQ6xPIdf0A/+xSJSPa+N0Xrw\niWgRp/N+DzxeC9oucE1uB14A9gLTvXijEbbqSLQYeiFwK1AVmAl84K3+J/r8AV5FP9ig9fqBGJ/n\nUF1+XtVTua2rjr5WZwNfoK/3bm/d+cCDQA0v1jeBdeg3xs9F5IxcjlvYXkJfo6XAe8CRwHBgQuiG\n3vvjK+B+oCbwCTAbbXs1UUTG5nKeV4FhwHfePg2AdBEZICKXoK9jivdzJ3o/+F+Y4wRes1vQdhQ7\n0M/zTqAf8GW0iY2IHIl+Zkagr+d09L3SAb2XjMk+qXP70PdPefRzHs5gL7bxYeL9C/A5h96zm9B7\n3IdekvSJ95y/Rt9PzYFXwv1T8nHPDMTREH3PtkfvH5lAO+B/Ie/JOV6MgraLmRj0WEDBCNyHrhKR\neDXfCHRu2JvbRs6539H7b20RidQOJdA29MUI62PmNdd4DX3e8Wz/4tAmBYK2lYzTUZ0r1g+00es+\n7/dBaPuavkHr7/SWnY7eALOAlSHHqI/elLYB3ULWnYm+GVcDpYOWHw10DxNPffSDvR+oF7S8gXfu\nFUDlkH3KAh1Dlq0CDkZ4zl28Yz0Xsvx5b/lB4JII+x52XC/mwH4fARWC1rXznssOIDVo+VHAZm+f\nv4cc756g490V5evYENjl7bfNey6DgDZAqVz2i3idvPUfe8fcBXSK9lqGXNODQOegZSnoP9+DwKPB\n7wtvfXOgYdDfd3vb9otwjrzWh3vNAnEfRG9IZcPsdwLQPMzyHsAeYHmE63Uw+L2bx+vW34tjVh7b\nrQq9jkGf34PA90D1kPfkFm9dw5B93vaWjwbKBC2vjv4zPoi2hwh3noXA0UHLu3rr1gEbgbOC1h2J\nJr8HgS4R3ld7gZ4h740XvXVvRrhWd4Usf8Jb/gE5P3vHoYnvQeCvQcubessyw1zno9DEalPwe8J7\njwWuwdUh8b4f9Bp8AJQLWn+lt9/HIefxc8/sHxTDqJB9hnrrPonl8xnlezPqfYG/e/tkefE/hiZp\njfLYL4vI9+vPved8bxTnv9w71n/DrDsSvY9tCX7fR/m5y/XzDPTxzvuZn/3DfDYOAqd4f8/z/g7+\nbHUkivtG2OPHukNRe5AzqamElsa8G7R+CbAWzRYjJTWPexf92gjnCKw/P8qYAsnV9UHLOnjnfiOW\nN2OEdXklNVNjOS6Hkpr9QJMw+0zj8H/sg7x93guzfUrQhyGqpMbbr5t3IznoPQI3ly3AOKBWLNfJ\nWx/4gI2N5VqGXNPQ536pt89CQKJ4XgWZ1OwGavv43LzonfOECNersJOabmH2+U/odUF7oGQBX0Y4\nTxtv/f8inKdrmH3me+smhln3f4RPRALX6YUw+xyNJhYHgDphrtVdQctS0X9U+4GmYY51Q7jPGVrC\ncRBIC1n+D2/7x8K8xw5LGrx1vTj0+W8csq4UmuztAVKClsd8zwx6/j9x+BeBFPRL0h5yJkLxSGpy\ne2wJs99QYDs570FZ6JfVfwFHhNknR1LjXbemHLon7yYkOY8QcyqaLB6WuKAlgFnA+BiuQbRJzZne\nsRdH2D+3azgkwmcjkNSc4203N2gb30lNSen9BIBzbpuIvI1WQdVA/1kfD4x2zjmRiG3OAkWr4YqZ\nQYuChwAnEdIuR0RORb/t1QHKoclTbW9106BNl6I3r3NE5J/AFOfc+uifXdQcWnztxxrn3E9hli9H\n35i1g5ad6p3rsLpd59xBEXkDLeaPmnPuYxFp4p3rTPR6n4gmq9eiVVOnuTAN+KLg95qEcwb63NOd\n9wlNoMzc3kdem5Sz0GtZHS0VBGjl/WwKLC7QCPO2H632CLWcnJ8n0PeFI0L7OOfcAhHZiT7fcOeZ\nHWb5SjQZ+iDCOkJiCPZKmBi2iMj7aPVfp3DbBElDq5LmRXhfv4gmd6eGLH8G7cl4NZqUBVyNXp//\nhjmWI/fnuNo5tyLkuWSJyBq0xLYasMFb5fueiSZWB0LOc1BEVgFt0aqxDcRPbl26d4UucM6NFZFJ\n6BASXdEvpE3R/ycPov9fujvnDqtOksPHAHNogtTPObcqr0Cdc7tFZCra1foctEozIFD1NCWv4/gQ\n+OcY6X72OpG7dP+Q24Gdc2+LyDygvWgPq7d9xgiUnC7dwSajY5pcBjQiujdBA+/nr7kkPg79UAPg\n1T//Dy1diPRGyB4ozjm3Q0SuRuu5RwEPi8hyNKt90Tn3RR4xxiKWrnfBIjVQ2+H9DB6kKXCT/yWX\nGGLuueDd7KZ6j8B1vgx4AP2n/CThe7jlxe81CSfQ4G9FrlsVjojPS0RaoaVs9YniPepTtEldbjfN\n3yIkh+Hedw28Yz0gIg/kcr5wA4pFOk/gZr0ul3WRBihbE2H5au9nXu1qAutXh1vpfVHbBlQUkSrO\nua3eqrfQqqneInKT98+wLZoUfO6cWxLhfLk9x3DrgteHvg4Qwz0zSCz3mXiIpUs3AM65P4B074GI\nHAtcD9yMtku6CU1wQk30fmahycwitBpyWwynn4JWB12Ol9R4X9K7A2udc5/G8lyiFHidtkRYH2uX\n7lB3o+397kGrj30riUnNO2g9b3/0hrHEOZdXo7JAg+qJeWwXPLDfw2hC8zH6gi0G/vBKhHqgjR1z\nfNqdcy+LyAfoN7gz0aLVwcA1IjLaOXdLHucPjTeSPVEeJ1TSDcrnnNsOPCsi69FEp5uIlHPOxfoc\n/V6TZGhsn1sMuT2vV9HeYU+hyfRK59wuABG5H23knN8us4FGyam5bnVo/WHfjIntfRe4FnPIPakM\nl7zkdZ6ke/97DnsuzrkDoj32bkOT/ufIvZQmILfn6Od1mJjHduEGQ03W6xyRc+4X4FbRLs/D0FKU\nw5KaWJOnCN5HG16fIyJHOed2oCU3KYQf9C8e2no/cy118cs5N1NEvgI6isj5BA14GKsSl9Q45/aJ\nyGsc+oA/HsVua9FSnZuDvgnl5QK0zvy8wD+KII1yiW8zegN6DkBEzkT/+dwkIs8FfcPa561Pdc7t\nDjlMrl0DC0mgyiNSLMcS3wHnAsNppwCVyceHIsQ+7+eREdaHe36B0qnGBR2DiJRCu1rGRESaoVWv\n85xzN4TZJF6xB751N8wllqPQb4KOyN/SYz3fW865MbluWTjqow1swy0H+DWP/QPr64db6ZVUVgZ2\nh7k3PYsmpleLSAb6j287ej8paH7umcXBLDSpCVcCFRdeVdwraMnQxWjiWGBVT9495hLv+B/H+/hB\n7ka/7N8NXOf3IMnwLTMRXkRb//9OdJltoJ75whjOUQXYHiahAW1BH9U/dKcjOAaK404IWhVIGo4L\ns9uZ0QZZgD7H64IdusL7kEQc28KnQPukfeQcQyKQ/Pl9r0e8ziJSBW1LEOpD9LlHO6dLIGmJ9CVj\nvXe8cK+13xGgq3g/D0siRKQy2i4oHr5FqyeqiUiHCNuc5/380Tm3MZ/n8/NZLUh/C13gvW8CbX8+\nz2P/+WjnhjQRCZdoXuH9PKxNiFcdMBNttzISbXs22Ucpph+F9Trk9dkpbIH7UKSquniZgt4T+njt\nDNsDi5xz4RLo/LoDLdFdi06HUCCccx+gwwS0Jh//H0pkUuOc+8w5V8M5V8srNszLaLQY/1EROexD\nKjrg1cUh404sB6qIyN9Cth2GNi4LPUYbEblQQkZsFB3Y6y/en8Gxzkbf1LcF/8MWkd5ocXOiG6i+\nhta/9pDDBxu8k0N17lERkftEB/06rJRLdGCw8XgNREMaGQa+6R4fy/kCnHOr0XYprUSkV9A5U9Fi\n/HADnL2Jvv4tReSR0PEsRKSFNz5ScIySS4yBOvK+IpL9jd07Rm5jruTmJ7SYv7t3Uwwc8wj0WlaJ\ntGMsvMaS49Hn94x4gw4Gne94dHCvaEtN8zrf1+g/1E4i8qSEmeBURE4UET/trmIl6NQs2V8yRCQF\nfZ4VgOnOuVxLprxS2OfQEshxIWNsHYeO9urQxsLhPOPFMczb7rBxfQqIn3umH/n6fMdKRKaJyP95\niWnouo4cej1eO2znOHLOzUWrV7uh415BnEtpRAftfAIdH+kAMDC0AXcBuBt9v16Hz/9hyZLdJjXn\n3AovWZgCvCEiP6FdwXehvZraoW0C2nLoQ/YgWiL0sohcj2a5rdEP32NoQ7Jg9dEseJuIfINWn1QG\nOqPVDtO8N3LAOLR75iVAaxH5Dv2WcAJ60ww9fkELbR+03Wv4/Ao6QNgQtLFjKy/O8eiAgvuIzpFo\nV8p/eg2of0BvmnXR7n+lgR85vEfVNLRt0izREVR3AZucc7fF8NxGoA0C3xSRT9GSh5PQtllTOVTS\nAGQXD1+M1n3fhH6b+hK9RoHX6EK0OyTednuAYV7j3V/RD/TDzrkfnXMrReQF9Fv5Ai+GVDTZfdv7\nvV4Mzwfn3O8ikg5cBSwUnQ33T+A09MvORGBgLMfMxZ1oL54uwAoR+QwtJa2D9topDWQ4556J0/n6\nogM9Xote+wXoNa2E9pY7Fv2MvBen80Xi0Cqgd73XbD36Xm2I3g/+L8rj3Obt1wNYKSKz0aSoO9po\ndqyLPGfQO+iXobrAN865hbmcJ25TDvi8Z/o5zxrv3tdeROaibRcPovfLaHs0niY6OnEkU5xzH3q/\nH4t+kRjtva9WoZ+XxmgPOYfec56N/dnEbAo6Gvlg9AtKRj6ONVq0V6CgnQMaovfqUujrM8A5NyuK\n/cPZ7Zy7PpognHMficgc9D7kT6x9wIvaA28ArCi3rYl+IFZEWN8QHQgr0P36D/Sf6xR0TpDQsRXO\nQouX/0DHWJiJduHs4p0nPeTct6HfMteg/2B+Rb+l9yNoDIigfY5D/6n+gdaVz0KToMOO723/PGHG\nAgnZZhVwIGRZfW+/jyLsczcRxlHx4vnIi28repNtj44Om2Ogrzxem6PRFv+T0NFCN6IDeP3uXaOb\ngPJh9ktBk5LlaOKQ4/VF64gPkPc4Df3QcWcCr8szaGlGxGuK1quP4tDNfIsX+/1AjZBtz/CexzYO\njcMTPPZNaW+/1V4MyznUkDfcaxb2PRCyjQA3oj0wdnnPaxJ64w77mkZ7vSK8DoPRrtmbvNdug/d+\nuDSPz2+kz2N/L8Y7w6wri7Y5mONd9z+9axdo83BMDOfJ7TWO9FkLjMVRz3vvzPeu8UbveMfE+HzK\no6UAi9DG13941/JvUVz7F7zjDsplm9w+w3l9/iO+J4jhnpnb88/tPGjbnTe8a7ufKMe/CjpfXo8h\nIee6Hu11tAT9vO5Bk9SpkV4P7/11IK+YYvxMNQ2KMebxXLxjrAp5rvvR/1WB1+hywgzcmcv+4R6b\nI7yOp0Q4ZtegfcO+53J7iHcQYwqViMxEv3n+xTk3L9HxGBNPXqlgZ3RAtXgOFxBrHOXR9h0paCIV\nro2fMcVGUrSpEZHTvLrKdaKTcZ0Xsr6CVz/+i+jkZotFJHQuJJNkROQYb/yE4GXitSs6E1hmCY0x\nBeoGtBp7oiU0piRIljY1FdBi+XS0kWWoMWiRVB+0auZM4GkRWeecm1FYQZqYnQZMFpFv0dftCKAl\n2kh4F9qewxgTR17ngofRiUr/ilb9jkpoUMYUkqRIapxzM9H2JoiEHX7yZGCSc26O9/cEEfkH2ljT\nkprkNR9to3EaWtVUDm0APQmdsG5pAmMzpqAlqm7/KHSiyb3oZ/CfzjnfjXGNKUqSIqmJwhfofBrP\nO+d+FZ12vSkF33vB5IPTeaKsNMaUOM65bgk89xqSpGmBMYWtqCQ1/4d2kVsrIgc41Gsm7MBVIlIV\nnf9nNf6HvzfGGGNKonJoM4H3nI5yX2QUlaRmCDpOw7noQGidgadE5FcXvu98TwpmplJjjDGmpLic\ngptPqkAkfVIjIuXQ8TkucM696y3+XnTG2X9yaM6fYKsBJk+eTPPmzQslzuJo2LBhjBmTDNPnFF12\nDfPPrmH+2TXMv5J0DZcsWULfvn0hwuzwySzpkxp0XpsyaJVTsINErjfeA9C8eXPatQs3NY+JRqVK\nlez65ZNdw/yza5h/dg3zr4RewyLXfCMpkhoRqQA04dAw3Y1EpDWwxTn3izcs+KMi8n9o1+Cu6Cid\nNyYiXmOMMcYkn6RIatBh8z9Gu0A6dDI00K6/V6KzWj8ITEaHy18D3OacK4z5NYwxxhhTBCRFUuOc\nm00uXRCdcxuBQfE4188//8ymTZvicahi748//iAzMzPRYRSIatWqUa9eTHNAGmOMSXJJkdQUlp9/\n/pnmzZuze/fuRIdSZKSlpSU6hAKRmprKkiVLCjyx6d27d4EevySwa5h/dg3zz65h0VCikppNmzax\ne/du6xVVwgVa9m/atMmSmiLArmH+2TXMP7uGRUOJSmoCrFeUMcYYU/zYUNrGGGOMKRYsqTHGGGNM\nsWBJTYI1aNCAFi1akJWVlb2sQ4cOfPrppzm269+/P5UqVeLPP//Msbxhw4Z89913AAwcOJC6devS\nrl07WrRoQb9+/diz59DYSaVKlWL79u0R9w924MABhg4dSsuWLWnTpg0tW7bk8ccfz9dznT59Ojff\nfHO+jmGMMcZEYklNgokIe/fuZcKECRG32bFjBzNmzKBNmza89tpruR5v+PDhZGZmsnDhQlauXMmT\nTz6Z41zRGjt2LOvXr2fRokUsWLCAzMxMevbsGfX+4fTq1YvRo0fnvaExxhjjgyU1SeCee+7hvvvu\ny1GqEiwjI4MePXpw00035Zr8BCtTpgydOnVizZo12cucc1HHtHbtWmrUqJGdCJUtWza7x9js2bNp\n1aoV/fv3p1WrVnTo0IGFCxcCsGHDBrp3706HDh1o1aoVQ4YMyT7mpEmTuPDCC3Mc4/rrr6dNmza0\natWq2I6JY4wxpnBYUhNk927IzMzfw88QOK1bt6Z79+4RJ0tLT09n0KBBnHPOOfz000/8+OOPeR5z\n27ZtfPLJJ1x88cWxBwRcffXVTJs2jRNOOIHBgwfzyiuv5Kgi++GHHxg4cCCLFi1i+PDhXHbZZQBU\nrlyZGTNmMG/ePBYuXMiqVat49dVXs/cLLi1atmwZAwcOZMGCBdxwww3cfvvtvmI1xhhjwJKaHJYu\nhbS0/D2WLvV37nvvvZexY8eyZcuWHMsXLVrE+vXr6dGjB6VLl+byyy8nPT094nEeeeQRWrduTa1a\ntTj22GPp2rVr9rpI1U/hlrdo0YKVK1cybtw4GjRowD333MP555+fvb5BgwbZx7700kv57bffWLt2\nLVlZWQwfPpw2bdrQtm1b5s+fz4IFC8Ket0mTJrRv3x6Ak08+mZUrV0Z8XsYYY0xeSuQ4NZE0awbz\n5+f/GH7Ur1+fPn36MHLkyBxJRnp6Ojt37qRRo0YA7N+/n6ysLB544AFKlTo8J73lllsYMmQIa9eu\npVOnTowfP55rrrkGgOrVq7N582YqVqyYvf2mTZuoUaNG2JhKly5N165d6dq1K4MGDaJ27dr88ccf\nYbcVEUSExx57jN9//5158+ZRpkwZbr755ojVauXKlcv+PSUlhQMHDuRxlYwxxpjILKkJkpoKiRyT\n74477qB58+aULVsW0ARmypQpzJ07l6ZNm2Zvd/LJJ/P222/Tq1eviMeqW7cuTzzxBNdccw0DBgzg\niCOOoGfPnowfP56HHnoIgBdeeIHGjRtTs2bNw/afM2cOTZs2pVatWgB88803VK1alcqVKwOwevVq\nZs+eTZcuXXj99depVasWderUYevWrdSqVYsyZcrw22+/8dprr3HJJZfE7RoZY4wxkVj1U4IFl8pU\nrVqVIUOGsH79egDeeustGjRokCOhAejTp092FVTw/qHVSL169aJ58+Y89dRTAIwZM4Zff/2V1q1b\n065dO15++eWIval+/vlnzjnnHFq2bEnbtm0ZNWoU06ZNy17fokULJk6cyIknnsioUaPIyMgAYOjQ\noXz11VfZDYl79Ojh99IYY4wxMZFYesQUFSLSDpg/f/78HNMhZGZmkpaWRuhyE5vZs2czbNiwIttb\nyd4HxhgTWeAeCaQ554rUjd5KaowxxhhTLFhSY2LWpUuXIltKY4wxpviypMYYY4wxxYIlNcYYY4wp\nFiypMcYYY0yxYEmNMcYYY4oFS2oSrEGDBrRo0SLHvEodOnTg008/zbFd//79qVSpEn/++WeO5Q0b\nNuS7774DYODAgdStW5d27drRokUL+vXrl2M031KlSrF9+/aI+webPXs2qamppKWl0bJlS1q1asXN\nN98ccUThZDBixAhuuummRIdhjDEmQSypSTARYe/evbnOvr1jxw5mzJhBmzZtIg6WFzB8+HAyMzNZ\nuHAhK1eu5Mknn8xxrlg0a9aM+fPn8/333/PVV1+xY8cOTj/99Jhm+y4sBw8eTHQIxhhjEsySmiRw\nzz33cN9990WcIykjI4MePXpw00035Zr8BCtTpgydOnVizZo12cvyk4xUqFCBp556ik2bNjFz5kwA\nfvrpJ84991w6duxImzZtskcuBi0VevDBB+nYsSONGzdm4sSJ2esaNmzInXfeyamnnkr9+vUZP348\nEydO5JRTTqFRo0a88sor2dv27duXk046iTZt2tCrVy82btwIwJo1a6hSpQq33nor7du3Z9y4cTni\n/eGHH2jVqhXvvfee7+dsjDGmaLG5n4Ls3r+bpZt8TrPtaVatGallUmPap3Xr1nTv3p0xY8Zw2223\nHbY+PT2dkSNH0q1bN6699lp+/PHHw6ZOCLVt2zY++eST7Hme4qF06dK0bduWxYsX07NnT3r37s2U\nKVM47rjj+PPPP/nLX/5Cx44dAyNRUr58eebOncuyZcvo0KED/fr1y56Ec/fu3Xz++eesWLGCVq1a\n8e9//5svvviCb775hr/+9a/8/e9/B2Ds2LFUrVoVgFGjRnH33Xfz9NNPZz/HVq1aZT/HESNGAFp1\ndv311zNlyhRat24dt+dvjDEmuVlSE2TppqWkPZuWr2PMHzyfdrVjH3r/3nvvpWPHjtkzagcsWrSI\n9evXZ8+hdPnll5Oenh4xWXnkkUdIT09n+fLlnHvuuXTt2jV7XaTqp1iqpQKlPcuWLWPx4sVcdtll\n2ct27tzyuEoyAAAgAElEQVTJDz/8kJ3U9OnTB4Djjz8+e4LLY445BiA7aWncuDHlypXLnvSyffv2\nbN26le3bt1OxYkUmT57M5MmT2bNnD3v37qVatWrZsZQtW5bLL788R3wfffQRM2fO5IMPPqBOnTpR\nPy9jjDFFnyU1QZpVa8b8wfPzfQw/6tevT58+fRg5cmSOJCM9PZ2dO3fSqFEjQGfuzsrK4oEHHsgu\n9Qh2yy23MGTIENauXUunTp0YP358dqJUvXp1Nm/eTMWKFbO337RpEzVq1Igqxv3797NgwQKuvfZa\nnHNUrVo14sjCIkK5cuWy/y5VqhQHDhzI/jt4XUpKSo6/RYQDBw7w+eef88QTTzB37lyqVq3K9OnT\nufvuu7O3S009vESsSZMmLFu2jC+++IJLL700qudljDGmeLCkJkhqmVRfpSzxcscdd9C8eXPKli0L\naBIxZcoU5s6dm6O66eSTT+btt9+mV69eEY9Vt25dnnjiCa655hoGDBjAEUccQc+ePRk/fnx2Kc8L\nL7xA48aNqVmzZthjBLfB2bVrFzfffDPVq1enZ8+eZGVlUbFiRSZOnMiAAQMAWLFiBVWrVqVy5cr5\nar8T2Hfr1q1UrFiRKlWqsG/fPsaPHx8xvoD69evz1FNPceaZZ7Jr167s2IwxxsDevbB5M2zZEvnn\nihWJjtI/S2oSLLhUpmrVqgwZMiS7NOKtt96iQYMGh7Wf6dOnD+np6fTq1SvH/qHVSL169eLxxx/n\nqaeeYtiwYYwZM4Ybb7yR1q1bk5KSQq1atXLtTbV8+XLatWvHvn37AOjZsycfffQRIkJKSgozZsxg\n6NChPP744xw4cIDq1avz0ksvUbly5cNiyS3OSH+fddZZTJ48meOPP55q1apxxhln8Ouvv0bcL6Bm\nzZrMmjWLs88+m507d3LDDTdEfI7GGFOUOQc//ghLluSeqAR+7t4d/jiVK8PRR0PVqlC6CGcGkozd\nc/NLRNoB8+fPn0+7dodKXgLTqYcuNyWLvQ+MMUXZzp3w8ccwcya8+y6sWnVo3VFHaWISSFDC/Qxd\nVrlyzkQmcI8E0pxzRWr24iKcjxljjDHFn3OweLEmMTNnwpw5sG8fNGwIZ58NZ50FHTpoglKmTKKj\nTSxLaowxxpgks20bfPjhoURm7VooVw66dYNHHtFkpkkTiHFM1WLPkhpjjDEmwbKyYOFCrU6aORO+\n+AIOHoRmzeCSSzSJOe00KF8+0ZEmN0tqjDHGmATYvBk++EATmffegw0b4Mgj4fTTYdw46NkTGjRI\ndJRFS1IkNSJyGnALkAbUBi5wzk0L2aY58BDQBY17MXCxc25trOdbsmRJvmM2RZe9/saYRNmzB558\nEl5/Hb7+WtvLnHgi9O+vpTGnnALeqB7Gh6RIaoAKwAIgHXgzdKWINAbmAP8F7gR2ACcA4SdLiqBa\ntWqkpqbSt2/ffAdsirbU1NQcoxMbY0xBe/99uP56WLMGLrgArrlGS2O8gdZNHCRFUuOcmwnMBJDw\ng4+MBN52zgVPjLQqzHa5qlevHkuWLGHTpk3+AjXFRrVq1ahXr16iwzDGlAC//go33QSvvAJdu8K0\nadC8eaKjKp6SIqnJjZfknAM8LCIzgbZoQvOgc25qrMerV6+e/TMzxhhT4A4ehKeegjvu0J5LL7wA\nfftaj6WCdPjkQcmnBnAk8C/gHaAH8D/gTa8tjjHGGJNU5s2Dk06CoUOhTx9YtgyuuMISmoJWFJKa\nQIxvOef+45z7zjk3CpgB/COBcRljjDE5/PGHtpvp2FG7aX/5JTzzDFSpkujISoakr34CNgEHgNAu\nK0uAU3PbcdiwYVSqVCnHst69e9O7d++4BmiMMaZkcw5eegluvhl27YLHHoMbbkj+eZQyMjLIyMjI\nsWzbtm0Jiib/km7uJxHJIqRLt4h8DvzknOsftOxNYLdz7rCuTJHmfjLGGGPibdkyuO46mDULLr0U\nxoyBOnUSHZV/NvdTPolIBaAJEKhtbCQirYEtzrlfgEeAl0VkDvAxcDZwLjpmjSkABw/C1q36LaNM\nmUM/SxWFCktjjCkEf/4JDz4Io0ZB3bo6iN5ZZyU6qpItKZIaoD2arDjvMdpbPgm40jn3loj8A7gd\nGAssAy5yzn2ZiGCLs+XL4fnntZX+r78evr5UKU1ugh+BhCev5dWqwd//rgNMlfRJ14wxRdvMmdp2\n5pdf4NZb4bbbbAqDZJAUSY1zbjZ5NFp2zk0EJhZGPCXNjh3w6quazHz+uU5D37s3nHGGNnTbvz/n\n48CBw5dFs+6HH+D886F6dbj8chgwAFq3TvSzN8aY6K1bB8OGwWuvQffu8M47cPzxiY7KBCRFUmMK\nn3Pw6aeayLz2mhaj9ugBGRk60mW5cgVz3kWLYNIkePFFePxxaNNGk5s+fTTZMcaYZHTggM7H9O9/\nQ2oqTJmiX/6si3ZysRYSJcwvv8DIkdC0qY5s+dlnWmy6erVOqHbZZQWX0AC0agWPPgpr18L06dC4\nMdxyiw4TfsEF8NZbsG9fwZ3fGGNiNXcudOigJTT9+mnD4D59LKFJRlZSUwLs2aPJwvPP64yw5ctr\nC/3nntOp7BPxwSxTBs49Vx+bN2sJ0cSJcOGF2vYmUD3Vpk3hx2aMMQGTJsGVV+q9KJDcmORlJTXF\nlHPwzTfazbB2bS0m3b0bJkyA337TBKJz5+T4plG1qo7n8M03Wj01YAC8/DK0battbsaMgY0bEx2l\nMaakefppvR8NGmQJTVFhSU0xs3GjDvp04on6AZw6Fa69VotL58zRbxxHHZXoKCNr2RIeeUSrp2bM\ngOOO054FdepoI+P//c+qp4wxBW/0aP1SOHQojB+f/IPoGWVJTTHx4YdadVOnjraRad5cx0z4+Wd4\n4AFNDoqS0qXhnHO0EfOvv2qj4vXr4aKLtP3NkCGQWaSGhDLGFAXOwX33wT//CbffriXFyVCibaJj\nSU0Rt2yZ/vPv0UMb+44Zo0nAq6/qIFApKYmOMP+qVtXxIL7+Gr7/XkubXnsN0tLg9NO1sbMxxuSX\nc/ql8K67tEPF/fdbQlPUWFJTRG3dqi3xW7aEJUvgjTe05OKGGzQJKK5OOAEeflh7cb3+OmzapI2d\ne/TQMXaMMcaPrCytaho1Sr8c3nFHoiMyflhSU8QcOKCN15o21Ua/996rg9pddFHJ+kZRujRcfDF8\n+60mdBs2QKdOcOaZOiuuMcZE6+BBGDwYnnxS28/ceGOiIzJ+WVJThHz0kfYIuu466NVLpzS47baC\nHVcm2ZUqpQndggVaJbV+PZxyila9ffVVoqMzxiS7/ft17JnA9DCDByc6IpMfltQUAT/9pAPTnXEG\nVKoE8+bpB7B27URHljxKlYJLLoGFC7U90dq1cPLJOs/U118nOjpjTDLau1fno3v1VXjlFejbN9ER\nmfyypCaJbd8Ow4drO5LMTB2gbs4caN8+0ZElr1KldGDB777TsW7WrIGOHbUx9bx5iY7OGJMs/vxT\nvyy+844OTnrJJYmOyMSDJTVJ6OBBSE/XdjNPPqkN1pYu1SkMSlK7mfwoVUq/gS1apMngypVw0kla\nbTd/fqKjM8Yk0s6d+kXn00/h7bf1d1M8WFKTZObM0UHzrrpKq5uWLdPuhampiY6saEpJ0WTw++91\nAroff9SSrvPOs3FujCmJ/vhDOxR8843Od3f66YmOyMSTJTVJYvVq+NvfdOqC0qXhiy/0n/CxxyY6\nsuIhJUUnoFu8GCZP1mQxLU2Ln7/9NtHRGWMKw6ZNmsQsXaodLzp1SnREJt4sqUmwnTt1KvtmzXQQ\nuUmTtNfOyScnOrLiKSVFJ8tcvFh7OixeDO3a6WjMCxcmOjpjTEH57Tfo2lU7EXzyic3jVFxZUpMg\nWVnw4otw/PHw6KM6JPfy5dq1sJS9KgWudGm44goduHDSJG1706YNXH21JprGmOLjl1+0FHzrVpg9\nW+fGM8WT/fssZHv3avXHSSdpAnPqqfqPdeRIOPLIREdX8pQura/D0qU6qGFGhiY3NsaNMcXDihU6\n6vj+/dpmsVmzREdkCpIlNYXk5591crRjj9USgsqVtQj01VehYcNER2dKl4Z//EMH8ateXeva775b\nb4TGmKJp6VItoTniCO3p1KhRoiMyBc2SmgLkHHzwgTZGbdgQxo3TnjhLluis2l26JDpCE6pJE/02\nd9ddOpndqadqtaAxpmhZuFATmqOP1ion63RRMlhSUwC2bYOxY7WY88wztfhz3DhYtw7+8x8r/kx2\npUtrUvPFF9r9s21bePZZTVKNMcnv66+hWzdNZD75BGrVSnREprBYUhNHixZpFUadOtrwt00b/Ybw\n3Xe63NrMFC0nnaTdva+4Aq65Rse22bAh0VEZY3KzYIGO8dWsmXbbrlo10RGZwmRJTT7t26dzhnTu\nrC3qp02DW27R4fkDy20U4KKrQgV45hl9Xb/+Glq1gunTEx2VMSac3bu1ir9JE3j/fW27aEqW0tFs\nJCLfAlEVvjvn2uUroiJi3Tqtknj2WR3/oEsXbfR7wQVQpkyiozPx1quXlsRddZWW2AweDKNHW+mb\nMcnk5pu1U0Zmpn02S6qokhrgraDfywHXAT8AX3rL/gKcADwVv9CSj3NanTRuHPzvf1C+vFZNXHcd\ntGyZ6OhMQatRA6ZOhQkT4MYbYdYs7Z7fsWOiIzPGTJ+upapPP23tFkuyqJIa59yIwO8iMgH4j3Pu\nzuBtRGQEUOzalzunUxi8845+WBYvhubN4fHHdXyTihUTHaEpTCI6QF/XrtC3r/aOuvNOnXS0dLRf\nEYwxcfXbb3DllVqies01iY7GJJKf2/ClQPswyycD3wBX5iuiBMvKgh9+0G69c+bo2Abr1unw+uef\nr72XunWzdjIlXdOmOq3F/ffDfffBu+/qCNFNmyY6MmNKFudg4EC9R0+YYPfmks5PUvMncCrwY8jy\nU4E9+Y6okO3fr/WvgSTms89gyxb91t2+vU6CeNpp+o386KMTHa1JJmXKwD33wNlna6lNmzZagnfV\nVXZjNaawPPkkzJyppek1aiQ6GpNofpKax4GnRaQd8LW3rCNaQnNfvAIrKLt36xD4gVKYr77SZamp\nOonkkCGaxHTsqD1fjMlLx47a9fumm7QB8YwZ8N//2g3WmIK2eLH2Nv2//9MvF8aI8zGimIj8DRgK\nNPcWLQHGOudejWNsvnkJ1/z58+fToEE7Pv/8UBIzfz4cOKClLp06aQJz2mk6U7P1WjL5NW3aoZKa\n556Dc85JdETGFE979+pYUgcPwrx52nHDxEdmZiZpaWkAac65zETHEwtfTRu95CUpEpjc/O1vOpov\nQN26mrz0768/W7Sw2bBN/J13nnb9HjQIzj1XS/5Gj7ZGxMbE2+2369xOltCYYL5utSJSGbgEaAQ8\n6pzb4pWObHDOrYtngPnRqpUOd9+5M9Svb+0cTOGoWVO7l44bp12/f/wRXn7ZesoZEy8ffACPPaaP\nE09MdDQmmcSc1IjIicCHwDagATAB2AJcBNQD+sUxvny5806tVjKmsInADTfAccfBpZdqVefbb9uk\nesbk1+bNWuJ+xhkwdGiiozHJxk8FzGPAROdcU3L2dnoH6ByXqIwpJs48UyfG3L5dGxTPn5/oiIwp\nupzTcaL27oVJk6wJgTmcn7dEB2B8mOXrAF9zoYrIaSIyTUTWiUiWiJyXy7bPeNsM8XMuYwrbCSfA\n3LlaStO5s45KbIyJXXq6juY+YQIcc0yiozHJyE9SsxcI1zrgOOB3n3FUABag0y9E7I4lIhei3ceT\npt2OMdGoWRM+/li7nV54obYF8NHx0JgSa/lyrW666ir9DBkTjp+kZhpwl4gEOkA7EakHjALe8BOE\nc26mc+4u59xUIGxzXhGpA4wF+gAH/JzHmERKTdVJT//1L51479prdXgBY0zu9u/XAS7r1IExYxId\njUlmfpKam4EjgY1AeWA28BOwA7gjfqEdIiICvAA87JxbUhDnMKYwlCoFDz6oxefp6drte/v2REdl\nTHIbMUIHuJwyxWbfNrmLufeTc24b0ENEOgEnoglOpnPuw3gHF+RWYJ9z7skCPIcxhWbQIGjQAC6+\nWKfgmDFDhx0wxuQ0Zw488ACMHAkdOiQ6GpPs/HTpbuScW+mc+wz4rABiCj1fGjAEaBvrvsOGDaNS\npUo5lvXu3ZvevXvHKTpj/Dv9dO0Zdc452jNq+nS7aRsT7I8/tNqpUyettjXxl5GRQUZGRo5l27Zt\nS1A0+RfzNAkikoVWOaUDrzvn4jqJpXf8C5xz07y/hwKjydmAOAXIAn52zjUKc4zsaRLa2UA1Jslt\n3KgzwC9cCJMnw0UXJToiY5LD5ZdrKeZ331lJZmEqytMk+GlT0w74Dh2v5jcRGS8iHeMbVg4voNVc\nrYMevwIPAz0L8LzGFIoaNWDWLOjVCy65BB55xHpGGTNlCrz0Ejz9tCU0Jnp+2tQsAIaKyM3AecAA\nYI6ILAeeA150zsXUtVtEKgBNONTzqZGItAa2OOd+AbaGbL8f+M0592Os8RuTjMqXh4wMaNIEhg/X\nqRXGjbNJVk3JtHo1XHedltT06ZPoaExR4ns8RufcAefcm8ClwL/QpORR4BcReUFEasdwuPbAt8B8\ntJppNJAJjIh0er9xG5OsSpWC++/X2b2ff17b2hThqm1jfDl4EK64AqpU0cTemFj4njtYRNoDVwKX\nAbvQhCYdqAvcDUwFTormWM652cSQYIVrR2NMcTFwoPaMuugiOOUUnTOqQYNER2VM4XjoIW1AP3s2\nhPTzMCZPMZfUiMhNIrII+AI4Bp3Asr5z7t/OuVXOuTlolZS10DXGp27d4MsvYc8e7Rk1d26iIzKm\n4H39Ndx9N9x+u/Z4MiZWfqqfrgVeQhOZC5xzM5xzWSHbbAQG5Ts6Y0qwZs3gq6+0nU3XrvD664mO\nyJiCs3OntqFJS4O77kp0NKaoijmpcc41dc496Jxbn8s2+5xzk/IXmjGmenX46COd6+bSS7XNzcGD\niY7KmPi78UZYv16HNbAG8sYvX21qRKQyWhLT3Fu0GHjOG23YGBNH5cpp99amTeHOO+H992HSJGtn\nY4qPN9/UaUMmTND3uTF++WlT0x5YAQwDjvYeNwErvEHvjDFxJqLz38yapd1dW7XSXlI2no0p6tat\ng6uv1obxV16Z6GhMUeenTc0YdKbuBs65i5xzFwENgRnA4/EMzhiTU9eusGiRVkUNGqQjEW/YkOio\njPFnwwY46ywtjXz2WU3ejckPP0lNe2CUc+5AYIH3+8PeOmNMAapYUUtppk7VXlEtW8IbbyQ6KmNi\ns24ddOkCmzfDhx9C1aqJjsgUB36Smu1AvTDLjwV25C8cY0y0zjsPvv8eTjtNp1fo108nADQm2a1Z\nA507w+7d8Omn0Lx53vsYEw0/Sc0rQLqI/F1EjvUelwETgIw89jXGxFH16lpKM2mSlty0aqXfeo1J\nVitWaEIDmtA0aZLYeEzx4iep+SfwJjrR5GrvMRF4HZ0uwRhTiES0lGbRIjjuOOjRA4YM0W/BxiST\nZcs0oSlXTkcMth58Jt78jFOzzzk3FKgCtPEeRzvnhjnn9sY7QGNMdOrVgw8+gLFj4b//hXbtdIRW\nY5LB999rG5oqVTShqVs30RGZ4ig/E1ruds4t8h72ndCYJFCqlJbSfPutNig+5RQdnXX//kRHZkqy\nb7/Vnnu1a8Mnn0CtWomOyBRXUQ2+JyJvRntAr4u3MSaBmjXTSQEfeADuu08nxXzxRWjRItGRmZJm\n7lzttt20Kbz3npbUGFNQoi2p2RbDwxiTBEqX1lKaL7+EP//U6qgxYyArdKY2YwrIZ59pG68TTtAG\n7JbQmIIWVUmNc25gQQdijCkY7dvD/Plwxx1w003aS2riRGukaQrWrFnQqxecdBJMnw5HHpnoiExJ\n4LtNjYjUEJHTvEeNeAZljImv8uXhscf0H82qVXDiifD88zbNgikYM2fCOedAp05a9WkJjSksfuZ+\nqigiLwLrgNneY52ITBaRSvEO0BgTP926adfvSy7ReXbOP1/nkjImXqZO1fdVjx76e2pqoiMyJYmf\nkpr/Ah2Bc4HK3uNcdIqE8fELzRhTEALTLLz1FnzzDRx/PAwfbqMRm/x77TVNmHv1gtdf1/FojClM\nfpKac4ErnXPvOee2e4/3gKuBXvENzxhTUM4/H378UdvajBunI7s+8YR1/zb+TJ4Ml10Gf/sbvPwy\nlC2b6IhMSeQnqdlM+F5O24Ct+QvHGFOYKlTQHlI//QQXXABDh+oEmVOnWnsbE730dB3VesAAeOEF\n7XlnTCL4SWpGAo+JSPbwSd7vjwD3xSswY0zhqV0bJkyABQugfn1NcLp10+opY3IzbhxcdRX84x86\nknVKSqIjMiWZn6TmWuAvwM8i8pOI/AT8DJwCXCMimYFHPAM1xhS8E0/UAdLefRc2bYIOHeCKK+CX\nXxIdmUlGjz0GN9wAw4ZpclPKd39aY+LDTyHhW3GPwhiTNER0BNgzztAGxXfeqY0+hw2DW2/VhsbG\n3H8//PvfcNtt+rtIoiMyxkdS45wbURCBGGOSS+nSMHgw9O4NDz8Mo0drFdWIEXD11dZuoqRyTtth\njRwJ996riY0lNCZZ5KuwUESO9MatyX7EKzBjTHI46iidP2r5cjj7bLj+eq2mevtta0xc0uzapdVN\nI0fCqFFaimcJjUkmfgbfaygib4vILg71eNoK/IH1fjKm2KpbFyZN0sbDtWrBuefqAGsLFiQ6MlMY\nZs7UnnHPPQdPPaVjGxmTbPyU1EwGqgBXAqcD3b1HN++nMaYYa9cOPvoIpk2DtWv174EDYd26REdm\nCsKGDVoFefbZOpbRokVw7bWJjsqY8PwkNa2Bgc65V5xznzjnZgc/4h2gMSb5iOiosYsWwZNPwowZ\n0LSptrX47bdER2fiIStL21A1a6YzbL/4Irz/viY2xiQrP0nNPODYeAdijCl6ypSB667TwfuGDNEG\nxcccA1266OjEVnpTNC1ZAl27aoPwCy7Qv/v2tfYzJvn5SWquAv4lIv1FJE1ETgx+xDtAY0zyq1QJ\nHnpIk5gJE3Sk4ptv1nY4p5yi45msWZPoKE1e9uyBu++G1q21xG3WLJ3NvVq1REdmTHT8JDXVgcbA\n82ipzQLg26CfxpgSqmpVnf37nXdg40YdMr96dbj9dmjQQAfzGzVKS3ZMcvnkE01mHnxQxyP67jsd\nVdqYosRPUvMcmrycDDQCGob8NMYYKlfW0YinToXff4eMDJ2CYcQIbX/Tpo12DV66NNGRlmybN2si\n2q2bJqALFuj4MzbDtimK/CQ19YF/OefmOudWO+fWBD/iHaAxpug76iidwfn11zXBef11aN5cS22a\nN4cTTtBqj0WLbOybwuIcTJmi1//NN2H8ePj0U2jRItGRGeOfn6RmFtoDKm5E5DQRmSYi60QkS0TO\nC1pXWkRGich3IrLT22aSiNSOZwzGmMJRoQJcfLGW3Pz+u5bkpKXB2LE6qF+zZlpdlZlpCU5BWbFC\np8Lo21dLaJYs0dGjbe4mU9T5Geh8OjBGRFoBi4D9wSudc9N8HLMC2iYnHXgzZF0q0AYYAXyHjpHz\nH2AqcJKPcxljkkS5cnDeefrYt0/Hv3n9dS01ePBBaNhQB/k74wztUVWpUqIjLtr279fpLkaMgJo1\ndVTov/410VEZEz/iYvwqJCJZuax2zrl8TTzvHf+C3JIjEWkPzAXqO+fWhlnfDpg/f/582rVrl59w\njDEJsH8/zJ4Nb7yhI9muXg0pKXDSSZrgnHEG/OUvULZsoiMtOr76SktjFi/WyUlHjNBSM2NCZWZm\nkpaWBpDmnMtMdDyxiLmw0TlXKpdHvhKaGFQGHDo1gzGmmClTRhOXp5+GVau0uuSpp7SL+LhxWmpT\npYqWMjz2mPbUycrt61YJtn27ztd0yimaBH7zDTz6qCU0pnjK74SWhd4+XkSOAB4CXnLO7Szs8xtj\nCl+jRlrK8Oqr2g4nMxPuuQcOHoQ77tCuyLVq6XD+6ek2Js6mTdoIuG9frcKbOBHGjIG5c6Ft20RH\nZ0zB8VP9lALcDvwDqAkc55xbKSL3Aaudc+n5CiiX6icRKY22uakNdIuU1ASqnzp37kylkEr43r17\n07t37/yEaIxJInv2wJdf6lD+H36oJRFZWTqcf6Cqqls3OProREdacLKy9Hm/+64+vv5aG1m3batz\nNl1zDdSrl+goTTLKyMggIyMjx7Jt27bx6aefQhGsfvKT1NwF9AfuAv4LtPSSmr8DNzrnTs5XQBGS\nGi+heQ1oAHR3zkWcEdza1BhTcm3dqgPJBZKc5ct1eP+0NE1wTj4ZGjfWEozU1ERH69+mTToX07vv\narujTZu0IfWZZ2oic9ZZUNv6iBofinKbGj+9n/oBg51zH4nIM0HLFwLN4hNWTkEJTSO0hCZiQmOM\nKdmqVIELL9QHwC+/aK+qDz/UIf8feujQtrVra9VW48b6CP69evXkmusoUmlMmzY6R9Nf/6qNp0v7\nuasbU0z4efvXAcINcl4KKOMnCBGpADQBAreQRiLSGtgCrAfeQLt1nwuUEZGa3nZbnHP7Q49njDEB\nxx4LAwbowzlYvx5WrtTGxytW6O/Ll2tpx8aNh/Y78shDSU5o4lO/vjZmLmiRSmN69NAqJSuNMSYn\nP0nND8BpQGhTvEvwP/dTe+BjtEeTA0Z7yyeh49P08pYv8JaL93c34FOf5zTGlDAiOov4McdAp06H\nr9+xQ5Oc0KTnrbe08fGBA7pdSoq2UWnUSJOmI47QnkVlyuT/5969WrIUXBrTurWWxpx9tpbGFEZC\nZUxR5CepuReYJCJ10NKZi0TkeLRa6lw/QTjnZpN7Tywb59IYU+COOkoTiNZhxkw/cECrsoKTnRUr\nYNkyHThw3z4dXye3n9E2YaxYUdvGDB6spTHHHBPf52lMcRVzUuOcmyoivdCGwrvQJCcT6OWc+yDO\n8aHbingAACAASURBVBljTFIoXVobFzdsqA2O/Th4MO/kB3T+JSuNMSZ2vpqUOefmAD3iHIsxxhRr\nKSlQvrw+jDHx57udvIiUBWoQUjXknPs5v0EZY4wxxsQq5qRGRJoCzwGnhK5CG+8W1lQJxhhjjDHZ\n/JTUTAQOoI2C16OJjDHGGGNMQvlJatqgowwujXcwxhhjjDF++ekq/QNQLd6BGGOMMcbkh5+k5l/A\nwyLSVUSqikjF4Ee8AzTGGGOMiYaf6qcPvZ8fhSy3hsLGGGOMSRg/SU23uEdhjDHGGJNPfkYUnl0Q\ngRhjjDHG5EfUSY2InBdh1TZguXNufXxCMsYYY4yJXSwlNW/lss6JyMvA1c653fmMyRhjjDEmZlH3\nfnLOlQr3AKqg80C1A/5dUIEaY4wxxuTGT5fuHJxz25xzs4BhwEX5D8kYY4wxJnb5TmqCLAXqxvF4\nxhhjjDFRi2dS0wj4NY7HM8YYY4yJWlySGhFpAzwKvB2P4xljjDHGxCqWLt1bCT8jdwXvOB8Ad8cp\nLmOMMcaYmMTSpfvGCMu3A8uccz/EIR5jjDHGGF+iTmqcc5MKMhBjjDHGmPyIZ0NhY4wxxpiEsaTG\nGGOMMcWCJTXGGGOMKRYsqTHGGGNMseA7qRGRJiLSU0TKe39L/MIyxhhjjIlNzEmNiFQVkQ+B5cA7\nQG1vVbqIjI5ncMYYY4wx0fJTUjMGOADUA3YHLX8FOCseQRljjDHGxCqWwfcCzgR6OufWhtQ4/QjU\nj0tUxhhjjDEx8lNSU4GcJTQBRwN78xeOMcYYY4w/fpKaOUC/oL+diJQChgMfxyUqY4wxxpgY+al+\nGg58JCLtgbLAw8AJaEnNqXGMzRhjjDEmajGX1DjnvgeOAz4DpqLVUW8CbZ1zK+IbnjHGGGNMdPyU\n1OCc2wbcH68gROQ04BYgDe0ifoFzblrINvcCVwGVgc+Ba51zP8UrBmOMMcYUbTEnNSJyYoRVDtgD\n/Oyci7XBcAVgAZCOlvqEnvNfwA1oW57VwEjgPRFp7pzbF+O5jDHGGFMM+SmpWYAmMACBPt0uaP1+\nEXkFuMY5tyeaAzrnZgIzIeLIxEOB+5xzM7xt+gEbgAuAV2N+BsYYY4wpdvz0fjofHU14MNDaewwG\nlgF9gEFAd7Q0Jd9EpCFQC/gosMw5tx2YC5wcj3MYY4wxpujzU1JzB3Cjc+69oGWLRGQtWppykojs\nAkYD/4xDjLXQkqANIcs3eOuMMcYYY3yV1LQG1oRZvgZo5f2+gENzQhljjDHGFDg/JTVLgVtFZHCg\nka6IlAFu9dYB1OHwkhW/fkPb7tQMOWZN4Nvcdhw2bBiVKlXKsax379707t07TqEZY4wxRVdGRgYZ\nGRk5lm3bti1B0eSfOOfy3ip4B5FTgGlAFvCdt7gVkAKc65z7SkSuAGo55x6JOSCRLEK6dIvIr8Aj\nzrkx3t8V0QSnn3PutTDHaAfMnz9/Pu3atYs1BGOMMabEyszMJC0tDSDNOZeZ6HhiEXNJjXPuC6/x\n7uXoIHwArwEvOed2eNu8GMsxRaQC0IRDvakaiUhrYItz7hfgceDfIvIT2qX7PmAtOvifMcYYY4zv\nwfd2AM/EMY726LxRznuM9pZPAq50zj0sIqnAeHTwvTnA2TZGjTHGGGMCfCU1ACLSAqiHzv+ULXQk\n4Gg452aTR6Nl59w9wD2xHtsYY4wxJYOfEYUbAf9D29E4Dh+ALyU+oRljjDHGRM9Pl+6xwCqgBrAb\nnaG7M/AN0DVukRljjDHGxMBP9dPJQHfn3Cavp1KWc+4zEbkN+A/QNq4RGmOMMcZEwU9JTQqww/t9\nE3CM9/sa4Ph4BGWMMcYYEys/JTXfo6MKr0LnXxouIvvQ+Z9WxjE2Y4wxxpio+UlqRgIVvN/vAmag\nXaw3A5fFKS5jjDHGmJj4GXzvvaDffwKaicjRwFYX6/DExhhjjDFxEnObGhF5TkSOCl7mnNsCpIrI\nc3GLzBhjjDEmBn4aCvcHyodZXh7ol79wjDHGGGP8ibr6yZtEUrzHUSKyJ2h1CvBXYGN8wzPGGGOM\niU4sbWr+4NDcTMvDrHfA3fEIyhhjjDEmVrEkNd3QUppZwMXAlqB1+4A1zrlf4xibMcYYY0zUok5q\nvEknEZGGwC/OuawCi8oYY4wxJkZ+unSvEZHKInISOv9TqZD1L8QrOGOMMcaYaPmZpbsXMAU4EtjO\nodm58X63pMYYY4wxhc5Pl+7RwHPAkc65ys65KkGPo+McnzHGGGNMVPwkNXWA/zjndsc7GGOMMcYY\nv/wkNe8B7eMdiDHGGGNMfviZ0PJt4BERaQEsAvYHr3TOTYtHYMYYY4wxsfCT1PzX+3lXmHUOHV3Y\nGGOMMaZQ+enS7afKyhhjjDGmQOUrQRGRcvEKxBhjjDEmP2JOakQkRUTuFJF1wE4RaeQtv09EBsU9\nQmOMMcaYKPgpqbkDGAAMR+d8CvgeuCoOMRljjDHGxMxPUtMPGOycmwIcDFq+EPj/9u48OqrzTvP4\n96eltEtIILQhQEgIjB3kSIBjwNiGAA42xnGc6eBkkm6P0z0nk550Nk8WT08fp6e99Ewct9tJp08y\nE9udwafTkzFOTAzBkDhgvCAcbLywCrMICYSE0L6+88ctFZIQNpJqURXP55w6t/TeW3V/96VEPXrv\nNjcoVYmIiIiM0lgvvnfoEu+VOL5yRERERMZmLKHmHeCGEdrvAt4YXzkiIiIiYzOW69Q8ADxpZkV4\noehOM5uDt1vqtmAWJyIiInK5Rj1S45zbCKwFPg604YWcq4C1zrnfBrc8ERERkcszlpEanHN/AFYG\nuRYRERGRMRvLdWoWmtl1I7RfZ2a60aWIiIhExFgOFH4CKByhvcg/T0RERCTsxhJq5gF/HKH9Df88\nERERkbAbS6jpAvJHaC8AesdXzsjMLM5/G4YjZtZuZofM7P5QrEtERESi01hCzRbgQTPLGmgws0nA\n3wGhOvvpW8BfAF/Cu2rxfcB9ZvblEK1PREREosxYzn76BvAS8L6ZDVxs71qgHvj3wSpsmOuBjc65\nF/w/HzOzu4FFIVqfiIiIRJmxXKfmJDAfb7TkHaAa+ArwEefc8eCWF/AysMLMZgOYWQWwBNgUovWJ\niIhIlBnVSI2ZJQI/Br7nnPvn0JQ0ooeATOA9M+vDC2Pfdc49E8YaREREZAIb1UiNc64H+FSIavkg\nfwLcDXwG+CjwBeCbZhaq3V0iIiISZcZyTM2zwB3Ao0Gu5YM8AjzonPuF/+e3zWwm8G3g6Uu96Ktf\n/SpZWVlD2tavX8/69etDVKaIiEj02LBhAxs2bBjS1tzcHKFqxm8soeYg8NdmtgTveJq2wTOdc/8Q\njMKGSQX6hrX18yEjTY8++iiVlZUhKEdERCT6jfSH/p49e6iqqopQReMzllDzH4BzQJX/MZgDQhFq\nfgXcb2YngLeBSuCrwE9CsC4RERGJQqMONc65klAU8iG+DHwP7zYMU4Fa4Ef+NhEREZGx3aUbwMx8\nQAlw2DkXkisJD3DOtQFf8z9ERERELjKWu3SnmtlPgXa8XUHT/e2Pm9m3glyfiIiIyGUZy20SHgQq\ngJuAzkHtW/FOvRYREREJu7HsfroD+BPn3Ctm5ga1vw2UBqcsERERkdEZy0hNLnB6hPY0vLOfRERE\nRMJuLKFmN3DroJ8Hgsy9wK5xVyQiIiIyBmPZ/fQd4DdmNs//+q/4ny8GbgxmcSIiIiKXayx36d4B\nXIsXaN4CVuHtjrreOVcd3PJERERELs+YrlPjnDsMfDHItYiIiIiM2WWP1JhZnJndZ2Y7zex1M3vI\nzFJCWZyIiIjI5RrN7qfvAn8HtAAnga/g3bZAREREJOJGE2o+D3zJOXeLc+4OYC3wWTMbyxlUIiIi\nIkE1mkAyHfjNwA/Oua14p3MXBrsoERERkdEaTahJYOhtEQB6gMTglSMiIiIyNqM5+8mAn5lZ16C2\nZOCfzKxtoME5d2ewihMRERG5XKMJNU+O0PYvwSpEREREZDwuO9Q45/4slIWIiIiIjIfOXBIREZGY\nMKYrCsvY9fT10NjRyNmOswAkxiXii/eRGO9NffG+QFt8XHyEqxUREYkeCjXj0O/6Odd5job2hose\nZ9rO0NBxcfu5znOX/f6GXQg6/tAzEHhGaps5aSZLpy9lSfES5k6Zi5mFcOtFREQmFoWaS+jq7eJI\n0xEOnD3AgbMHONx0mDPtZ4aElrMdZ+l3/Re9Njs5mympUwKPq6ZcxZTUKeSm5gbaclJyiLM4uvu6\n6envobuv23ve1zOqtoH2rr4u3qx/k6fffJp+18/klMksLl7M0ulLWTp9KVUFVSQlJEWgJ0VERMLj\nig41/a6fk+dPcuDsAfaf3R8IMAfOHqDmXE0gsGT4MijLKSMvPY/pWdOpzK8cElpy04aGlYS4yHVr\nS1cLr5x4hR3HdrDz+E4e+P0DtPW0kRSfxMKihSwpXsLS6UtZXLyYnJSciNUpIiISbFdEqGnqaLoo\ntOw/u5+DZw/S0dsBeMe2lOaUUj65nE/O/STlk8uZM2UO5ZPLyUvLi5pdORlJGawsXcnK0pUA9Pb3\nsrduLzuO7WDH8R08ufdJHt75MADzcuextHgpS6Z7QadkUknUbKeIiMhw5pyLdA1BZ2aVQPX8v55P\nbXotDe0NgXnTMqdRPrmc8pwLoaV8cjkzJ82M6AhLuDjnqDlX443kHNvJjuM7eOfMOwAUpBd4Accf\ndK7Nv/aK6BMREblgz549VFVVAVQ55/ZEup7RiOlvrGkZ0/j0ok8HgsvsnNmk+dIiXVZEmRmzsmcx\nK3sWn6/4PACNHY28fPzlQMi5b+t9dPd1k5mUyfKS5ayatYrVZauZlT0rwtWLiIhcWkyP1FRXV1NZ\nWRnpcqJOV28Xu2t3s/3odjYf3syu47voc32U5ZQFAs7NM28mIykj0qWKiEiQaaRGYkpSQhJLpi9h\nyfQl3L/sfs53nWdbzTa2HN7CC4df4Ie7f0hCXAKLixezunQ1q0pXUVlQSZzpWo4iIhI5GqmRUTvU\neIgth7ew+fBmttVso7W7lSmpU1g5ayWrSlexqnQVhRmFkS5TRETGQCM1ckUpyymjLKeMLy38Ej19\nPew6sYvNhzaz5cgWntn3DA7HR6Z+hFWlq1hdupobZtxAckJypMsWEZEYp5EaCaqG9ga2HtnK5sOb\n2XJ4C7UttSQnJHPjjBtZXbqaNbPXUD65XKeOi4hMUNE8UqNQIyHjnOPtM28HRnF+f/T3dPV1UZpd\nyprZa1gzew03zbxJozgiIhNINIca7X6SkDEzrpl6DddMvYavL/467T3tbK/ZzvMHn2fj/o08/trj\npCSksGLWCtaUeSFnxqQZkS5bRESilEZqJCKcc7zb8C7PH3ieTYc2sePYDnr7e7k692rWzF7DrbNv\nZXHxYhLjEyNdqojIFUUjNSKjZGbMy53HvNx5fHPJN2nubOa3R37LpoObeGrvU/z9y39PZlImq0pX\ncevsW7ml7Bby0/MjXbaIiExgCjUyIWQlZ3HXvLu4a95d9Lt+3jj1BpsObmLToU3cs/EeHI6qgipu\nnX0ra2avYUHhAuLj4iNdtoiITCBRs/vJzAqBh4FPAKnAQeDPRhoa0+6n2HKm7QybD29m08FNvHDo\nBZo6m5iSOoVPlH2CteVruaXsFl3dWEQkSLT7KcTMbBKwE3gRWA00ALOBpkjWJeGRm5bL5+Z/js/N\n/xy9/b28euJVNh3cxK8P/pqn33waX7yPFSUrWDdnHbfPuZ2CjIJIlywiIhEQFSM1ZvYQcL1z7sbL\nXF4jNVeImqYantv/HM/uf5Y/vP8H+lwf1xVdx7o567hj7h3MnTJX18QRERmFaB6piZZQ8zbwAlAM\n3AicBH7onPvJJZZXqLkCNXY08vwB73TxFw69QFtPG7NzZrNuzjrWzV3H9dOu13E4IiIfQqEmxMys\nA3DA/wT+DVgEPAb8hXPu6RGWV6i5wnX2dvLikRfZuH8jz+1/jvq2enJTc1lbvpZ1c9exctZKUhJT\nIl2miMiEo1ATYmbWBbzmnLthUNtjwALn3JIRlq8EqpctW0ZWVtaQeevXr2f9+vWhLlkmkH7Xz6sn\nXmXj/o08+96z7D+7n5SEFFaXrWbdnHXcVn4bU1KnRLpMEZGw27BhAxs2bBjS1tzczEsvvQQKNaFh\nZkeBLc65Px/U9h+B7zrnikdYXiM1ckn7G/YHAs4rJ17BzFhSvIQ75t7BLWW3cNWUq3QcjohcsTRS\nE2Jm9nNg2uADhc3sUWChc27pCMsr1MhlqW+t51cHfsWz7z3L1iNb6errIj89n+Uly1k+czkrZq1g\n5qSZkS5TRCRsojnURMUp3cCjwE4z+zbwr8B1wL3AFyNalUS9vPQ87q28l3sr76Wtu42dx3eyrWYb\nL9a8yIa3NuBwlEwqYXnJclaUrODmkpt1ZWMRkQkqKkKNc263mX0SeAj4r0AN8BXn3DORrUxiSZov\njVWlq1hVugqApo4mXnr/JV6seZFtNdv46Rs/BeDq3Ku9kZyS5dw08yYmJU+KZNkiIuIXFaEGwDm3\nCdgU6TrkypGdks26ud7p4AB1rXVsr9nOtpptPH/weR5/7XHiLI7KgsrArqolxUtI86VFuHIRkStT\n1IQakUjLT89n/UfWs/4j3tlzR88dZVvNNrbVbOOpN5/ikZcfITEukY9N+xgrSlawvGQ5i4oWkZSQ\nFOHKRSRWOefo7O2kvaednv4eevp6xj2tebcm0ps1ZlFxoPBo6UBhCTfnHO81vOeFnKPb2F6znabO\nJnzxPubnzWdBwQIWFi1kYeFCrsq9ioQ4/T0hcqVzztHR20FzZzPNXc0fPr3EvJ7+nqDUE2/xJMYn\nEncqjvYn2iEKDxRWqBEJgb7+PvbW72XX8V28Xvs6u2t3886Zd3A4UhNT+Wj+R1lQuICFhQtZWLSQ\nspwy4iwu0mWLSBA452jqbOLE+RMcbz7uTc8PnZ5tP0tzVzO9/b2XfJ90XzpZSVlkJWcNnY7QluZL\nIzEukcT4xMDUF++7qO2DpgOXstDZTyIyRHxcPJUFlVQWXAjVrd2t7Dm1h921u3m99nV+feDXPPbq\nYwBkJWVRVVjFwsKFgbAzPWu6rpcjMsFcTmA5cf4E7T3tgdfEWRyFGYUUZxYzLXMaFXkVTEmdMnJg\n8U8zkzJ1W5cxUKgRCZN0XzrLZixj2YxlgbbGjkaqa6sDQefnb/2ch3c+DEBuam4g4Cwo9HZf6XRy\nkfBoaG9gb91e9tbvZd/pfbzf/P5lBZZr865lWuY0pmVOozjLa8tPz9cu5zBRL4tEUE5KDitLV7Ky\ndGWgra61jt21uwNB50e7f8SZ9jMAFGUUUVVYRVWB96gsqKQgoyBS5YtEvb7+Pg6cPcDe+r2BELO3\nfi+1LbUApCSkcPXUqymZVBIILANhpTizmLz0PAWWCUT/EiITTH56PreV38Zt5bcB3nD38fPHef2k\nd2xO9alqHnv1MRo7GgEoSC8YEnSqCqsozCiM5CaITEjNnc0XhZd9p/fR2dsJeH80VORX8IWKL1CR\nV0FFfgWzc2ZrN1AUUagRmeDMjOlZ05meNZ1PzfsU4AWdY83HqD5VTXVtNdWnqnni9SdoaG8AvGBU\nWVA5JOgUZRTpGB25IvS7fo40HRkSXvbW7eX95vcB8MX7mJc7j4q8Cu6+5m4q8iuoyKtgcurkCFcu\n46VQIxKFzIwZk2YwY9IM7rzqTuDCiE51bTV7Tu2h+lQ1P67+MafbTgMwNW1qYJfVQNApzixW0JGo\n19ffxx/r/hi4pMLOYztp6W4BvM99RV4Fn5736UB4mTtlLonxiRGuWkJBp3SLxDDnHCdbTgZGcwbC\nTl1rHQDZydmBAxkHHnlpeUN+zk/PJzslW6ecy4ThnOOdM+8EQszvjv6Oc53nSE1MZen0pdw04yYq\nCyqpyK/QwfVjoFO6RWRCMrPAmRgDt3sAqG2ppbq2mrdOv8WpllPUtdVRc66GXSd2Ud9aH/grd0BC\nXMKIYWd4W156Hhm+DI3+SFA55zjSdCQQYrbVbON022kS4xK5vvh6/uq6v2LFrBUsKlqEL94X6XIl\nghRqRK5AhRmFFM4pZO2ctSPOb+tuo76tnrrWOupa66hvvfC8rq2Ot06/xdYjW6lrraOrr2vIaxPi\nEshOziY7JTswzUnJ8Z4Pa89O9s/zP09NTFUgEgBOnD/h3WvNH2KONR8jzuJYULiAe669h+Uly1ky\nfQmpiamRLlUmEIUaEblImi+NWb5ZzMqe9YHLOedo7moeEn4aOxpp7GikqbOJpo4mmjqbOHn+JPtO\n7wv83NrdOuL7JcYlXhR6Bl8p1Rfnu+hKqQPPffG+wJVRR3o+sFxyQjLpvnTSfGmk+9K954lpOsMl\nws60neF3R38XGI05cPYAAPPz5nPn3DtZXrKcZTOWkZWcFeFKZSJTqBGRMTMzJiVPYlLyJOZOmXvZ\nr+vp6xkSegamjR2NF9r87ee7ztPd1x244d7A8+6+7sAN+EZ6PlrJCcmkJQ4KOv7QM9B2qXkZSRnk\npOQMeaQlpmnEaZjuvm5OtZziZMtJaltqOXn+JCdbvMe+0/t4s/5NAMonl7N85nL+9ua/5aaZN5Gb\nlhvhyiWaKNSISNglxicyNW0qU9OmhuT9nXP0ub4Rw1BHbwdt3W209bTR2t1Ka3crbd3e84vaerxp\nXWvdiPOH73oLbF9c4kVB53IemUmZUXdA9sBtAwIhZdC0tvVCeBk4C29AckIyRRlFFGUWUVVQxTeu\n/wY3l9zMtMxpEdoSiQUKNSISc8yMBEvwrvQawjN3e/t7Od91nqaOpsBut4send70YOPBIe0j3cgw\nzuLITs4mIymDDF8GmUmZgecZvowLz0eYZiZlDmlL86WNGJB6+nro7O2ko7eDjp6OEaedvZ2XnNfR\n00FDR0MgrNS21AYuXjdgatrUQGBZVLQo8Lwoo4jCjEKKMovITs7WaJYEnUKNiMgYJcQlBEZZSim9\n7Nc552jtbr1kEGrpbuF813laulto6WqhqbOJY83HAj8PTPtc3weuZ2B3WV9/XyCQfNhrhktJSCEl\nMWXINCclh+KsYj427WNDAktRZhH56fk6A0kiRqFGRCTMzMwbUUnKYMakGWN6D+ccnb2dFwLQoLAz\neNra3Uq8xV8UTJITki9qGz71xfs0miJRRaFGRCQKmZkXPhJTQnZskki0ia4j0kREREQuQaFGRERE\nYoJCjYiIiMQEhRoRERGJCQo1IiIiEhMUakRERCQmKNSIiIhITFCoERERkZigUCMiIiIxQaFGRERE\nYoJCjYiIiMQEhRoRERGJCQo1IiIiEhMUauSSNmzYEOkSop76cPzUh+OnPhw/9WF0iMpQY2bfMrN+\nM/t+pGuJZfolHj/14fipD8dPfTh+6sPoEHWhxswWAn8O7I10LSIiIjJxRFWoMbN04F+Ae4FzES5H\nREREJpCoCjXAE8CvnHPbIl2IiIiITCwJkS7gcpnZZ4BrgQWXsXgywLvvvhvSmmJdc3Mze/bsiXQZ\nUU19OH7qw/FTH47fldSHg747kyNZx1iYcy7SNXwoM5sG7AY+7pzb52/bDrzhnPvaCMvfDfw8vFWK\niIjElM865/5PpIsYjWgJNeuAXwJ9gPmb4wHnb0tygzbEzCYDq4GjQGdYixUREYluycBMYLNz7myE\naxmVaAk1acCMYc0/A94FHnLOaT+TiIjIFS4qjqlxzrUB7wxuM7M24KwCjYiIiED0nf002MQfYhIR\nEZGwiYrdTyIiIiIfJppHakREREQCFGpEREQkJkzYUGNmN5jZc2Z20n/zytuHzZ9qZj/zz28zs01m\nVjZsmVlm9kszO21mzWb2jJlNHbbMd8xsp/89GsOxbeESxj486n//gUefmd0Xjm0MtTD2YaWZbTGz\nJjM7Y2Y/9p/1F9XM7Ntm9pqZnTezejP7f2ZWPsJyD5hZrZm1m9lvR+jDJDN7wswazKzFzP5thD7c\naGbvm1mH/72eMrOCUG9jqIWrD83sxkG/v/3DHlXh2NZQCWIfftHMtvt/j/vNLHOE94jZ75RoMGFD\nDZAG/BH4EiMfFLwR7zz6tXhXGj4GbDWzFAAzSwW2AP3ATcBiIAn41bD3SQT+FfhRsDdgAghXHzrg\nfiAPyAcKgMeDuiWRE/I+9H/x/hY4ACwCbgGuxrtsQbS7Ae+zcB3wcbzfty0D/QNgZv8F+DLejWoX\nAW3AZjPzDXqfHwC3Ap8ClgGFwP8dtq5twKeBcuBOoBT4RfA3KezC1Yc7ufD7m+9//AQ44pyrDsmW\nhU+w+jAF+A3w37n0ySqx/J0y8TnnJvwD7wvh9kE/z/a3zR3UZkA9cI//51VAD5A2aJlMvIv1LR9h\nHV8AGiO9rdHYh0AN8J8jvY3R2ofAF4FTw9Z1jf+9Z0V6u4Pch1P827V0UFst8NVh/dMB/LtBP3cB\nnxy0zBz/+yz6gHWtBXqB+EhvdzT2Id4lP+qB70R6mydCHw57/Y3+3+HMD1hHTH+nTNTHRB6p+SBJ\neCm5a6DBeZ+iLmCpv8nnX6Z70Ou68H+Qw1PmhBbsPvyWf1h7j5l9w8ziQ1b5xBGsPkwaNh8uXAk7\n1j6rk/D6oxHAzErwRgReHFjAOXceeBW43t+0AO8LdvAy+/FGxQaWGcLMcoDPAjudc31B34rICksf\nAuuAHGJjxHC4sfShRIFoDTXvAceBB81skpn5/EOH0/CGTgFewRs+fMTMUvzHJ/wPvG2O+v3sQRDM\nPnwM+Aze7pV/Ar4DPByWrYisYPXhNiDfHwYTzSwbeBDvP92Y+ayameHtAtnhnBu4mGY+3nbWD1u8\n3j8PvN2a3f4vmUstM7COh8ysFWgAioE7grcFkReOPhzkHrzL5NeOu/AJZBx9KFEgKkONc64X+CTe\nvvNGoBVvOHAT3l/AOOca8Pav3+af34Q3nPjGwDJXsmD2oXPuB865l5xz+5xz/wx8DfhLM0sMeY0k\nHgAAA1FJREFU3xaFX7D60P8f6xfw+q0dbxj8CHCa2Pqs/hCYhxeAQ+URvGObVuLtHng6hOuKhHD0\nIWZWhHf/vJ+Ecj0REpY+lMiIitskjMQ59wZQaWYZgM85d9bMXgFeH7TMVmC2fyi61zl33sxO4X1h\nXPFC2Iev4X22ZgIHQ7YBE0Cw+tA59wzwjJnl4o3sAHydGPmsmtk/AmuAG5xzpwbNqsM7DimPoX8l\n5+EFv4FlfGaWOWykIc8/L8A514gXMA+Z2XvAcTO7zjn3alA3KALC1Yd+9+CNdg0/KSCqjbMPJQpE\n5UjNYM65Fv8XyWy8/cbPjrBMo/+LZDmQCzwX7jonshD04UfxRhhOh6TgCShYfeicO+Oca8f7K7ID\n76yoqOb/IlkH3OycOzZ4nnOuBu8LZcWg5TPxzlJ52d9UjXfA7+Bl5gDTgV0fsOqB47qSxrkJEReB\nPvxT4MlYOh4pCH0oUWDCjtT4jz0ow0vPALPMrALvaPLjZnYXcAbvQLf5ePtIf+mce3HQe/wp3p28\nz+CdSvsD4PvOuYODlinGOxhuBhDvXwfAIefdSDNqhaMPzexjeL/424EW/zLfB552zjWHfCNDLIyf\nw/+E959nK94ZU48A941wDERUMbMfAuuB24E2M8vzz2p2zg0cDP0D4H4zOwQcBb4HnMA7XR5/EPwp\n8H0za8L7nP0D3kHAr/nXswhYCOzA28VXBjyAN1L4QcFnwgtXHw5a3wq8UdafhnK7wikYfeh/n4HL\nVszG+z9hvpm1AMecc03+ZWL2OyUqRPr0q0s98I5N6MfbLz748b/88/8S74ukE++U4r8BEoa9x4PA\nKf8y7wFfGWE9/3uEdfQByyLdB9HQh3ijMrvwhvzbgH3AfUBipLc/WvrQv8yTeKGnA2+4++5Ib3uQ\n+m+kvusDPj9sub/BO5aoHdgMlA2bn4R3nZEGvC/kXwBTB82/Bu/MlTP+9zgM/CNQEOk+iJY+HLTc\nz4GXIr3dE7QP/9sl3uvzg5aJ2e+UaHjohpYiIiISE6L+mBoRERERUKgRERGRGKFQIyIiIjFBoUZE\nRERigkKNiIiIxASFGhEREYkJCjUiIiISExRqREREJCYo1IiIiEhMUKgRERGRmKBQIyIiIjHh/wP8\n6cU4khN58QAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11c7d48d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# We are ready to plot\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "#we add the variables \n", "plt.plot(NAIRU.index, NAIRU['NAIRU Spain'])\n", "plt.plot(NAIRU.index, NAIRU['NAIRU Denmark'])\n", "#We modify the plot\n", "plt.title('Measuring Structural Unemployment ESP v DEN', fontsize=15, loc='left') # add title\n", "plt.ylabel('Percentage Unemployed') # y axis label \n", "plt.legend(['NAIRU Spain', 'NAIRU Denmark'], fontsize=8, loc=2) # more descriptive variable namesDescribe what each of these arguments/parameters does\n", "plt.style.use(\"bmh\")" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "**Observations**\n", "\n", "* Although the NAIRU is not a perfect proxy for structural unemployment, it's a good place to start\n", "* Again, we witness how Spain's unemployment problem is almost ingrained in its 'production function'\n" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "*****\n", "\n", "This project has left me at the doors of great questions,\n", "\n", "that this course has given me the tools to answer,\n", "\n", "and for that I thank you,\n", "\n", "Bosco Rodríguez Ballvé" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
tensorflow/probability
tensorflow_probability/python/experimental/nn/examples/vib_dose.ipynb
1
185056
{ "cells": [ { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "XXDeo-aGOAXF" }, "source": [ "##### Copyright 2020 The TensorFlow Authors.\n", "\n", "Licensed under the Apache License, Version 2.0 (the \"License\");" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "9XRGdjHNOE9D" }, "outputs": [], "source": [ "#@title ##### Licensed under the Apache License, Version 2.0 (the \"License\"); { display-mode: \"form\" }\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "KJihamFwOLUT" }, "source": [ "# VIB + DoSE\n", "\n", "<table class=\"tfo-notebook-buttons\" align=\"left\">\n", " <td>\n", " <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/probability/blob/main/tensorflow_probability/python/experimental/nn/examples/vib_dose.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n", " </td>\n", " <td>\n", " <a target=\"_blank\" href=\"https://github.com/tensorflow/probability/blob/main/tensorflow_probability/python/experimental/nn/examples/vib_dose.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View source on GitHub</a>\n", " </td>\n", "</table>" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "IaFh9M5MRAd0" }, "source": [ "In this example, we train a deep variational information bottleneck model (VIB) on the MNIST dataset. We then use density of states estimation to turn our VIB model into an Out-of-distribution (OOD) detector. Our current implementation achieves near-SOTA performance on both OOD detection and classification simultaneously without any exposure to OOD data during training.\n", "\n", "## References\n", "\n", "The VIB paper (Alemi et al. 2016) can be found [Here](https://arxiv.org/abs/1612.00410)\n", "\n", "The DoSE paper (Morningstar et al. 2020) can be found [Here](https://arxiv.org/abs/2006.09273)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "B0HrNKbJw2bA" }, "source": [ "### 1 Imports" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "cellView": "both", "colab": {}, "colab_type": "code", "id": "cttwhYKYGhPj" }, "outputs": [], "source": [ "import functools\n", "import sys\n", "import time\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "import tensorflow.compat.v2 as tf\n", "tf.enable_v2_behavior()\n", "\n", "import tensorflow_datasets as tfds\n", "import tensorflow_probability as tfp\n", "\n", "# Globally Enable XLA.\n", "# tf.config.optimizer.set_jit(True)\n", "\n", "try:\n", " physical_devices = tf.config.list_physical_devices('GPU')\n", " tf.config.experimental.set_memory_growth(physical_devices[0], True)\n", "except:\n", " # Invalid device or cannot modify virtual devices once initialized.\n", " pass\n", "\n", "tfb = tfp.bijectors\n", "tfd = tfp.distributions\n", "tfn = tfp.experimental.nn" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "nbQ3rcTowypZ" }, "source": [ "### 2 Load Dataset" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "cellView": "both", "colab": { "height": 150 }, "colab_type": "code", "id": "rjgnFMxvG9Ab", "outputId": "7751f329-299e-4c0c-9960-be487e996ba0" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAABmCAYAAADWImfBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGK9JREFUeJzt3XmUHGX1xvEnrkBYZJcQFIUQ2SIk\nKjlEUDYFBLcDKEgQMICIRGQxIIsQECRCgAPIFkBAQUWQALKEfZOobMbACWsMoGBiQFlEQc3vj995\n3ro1XdPTnemurun5fv5J5a2e7pqe7urq+7733iGLFi1aJAAAAACSpLd1+gAAAACAKuECGQAAAAi4\nQAYAAAACLpABAACAgAtkAAAAIOACGQAAAAi4QAYAAAACLpABAACAgAtkAAAAIHhHmQ82ZMiQMh8O\nAAAA6FVvDaWJIAMAAAABF8gAAABAwAUyAAAAEHCBDAAAAARcIAMAAAABF8gAAABAUGqZNwDA4LHN\nNttIkg444IA09tnPflaSNGXKFEnS4YcfXv6BAUAfiCADAAAAARfIAAAAQDBkUW8tRNrxYAOsk95q\nq60mSVphhRUkSf/5z3/Svscff7wjx9SI0aNHS5K+9rWvpbH9999fkjR9+nRJ0owZM+rex2OPPSZJ\nuuuuu9pxiAC6jM+Xn/70p9PY1KlTJUnLLbdcze3feustSfnlFxdeeGE7DxElede73iVJeve7312z\nb+utt07b3/ve9yRJG264Yc3tvO+EE05oxyFWhi/BjjvuuDR27LHHduhoOm/ppZeWJF1wwQVp7Mtf\n/rIkaebMmWnM55lXXnml349JJz0AAACgASTp9bD22mun7TvuuENSFhlxxEOSzjnnHEnSwQcfXOLR\n9W6jjTZK29dff70kadVVV01j/obkBBn/25uXX35ZknT33XenMUeDnn/+eUnSn/70p34eNYCByFGe\n3XffPY3tvffekqQxY8Y0dB9vf/vbJUnLLLNMi4+udd7xjuwjcsKECZKkESNG1NzutddekyRNmzYt\njc2fP1+S9O9//7udh9hy/ruMHDkyje23335N3ceoUaMkSZtttlka8wxyUbSuaGyTTTZp6jEHmp5R\n4k984hOdOZAK+NCHPpS2b7jhBknSmmuumcb8+oivifHjx0uSzj777LYdFxFkAAAAIOACGQAAAAi6\nfonF5ptvnravvPJKSVm4/uKLL6653QYbbJDGPI3o27/zne9M+5z05qkkKZ98UBYvrbj66qvTWFxa\nsbicmPi5z30ujXnbCXyXX3552nfKKadIyi9DKUv8m912222SpPPPPz+NHX300S1/zDi1vNNOO0nK\nJ0UuXLiw5Y9ZRX6t7bbbbmksLvexM888U5L0wAMPlHNgaCtPg44bNy6NFU2he3nBaaedlsaclOdl\nXKeffnp7D7YfjjrqqMLtnvy7H3nkkWnMS/RuvfXWNObtBx98sKXH2UqrrLKKJGnWrFmlP/Ybb7yR\ntuNn2mDwyU9+stOHUDovX7355pvT2BprrCEp/xk+efJkSdJTTz2VxuLyp3YhggwAAAAEXRtBfs97\n3iMpHyVeaaWVJGURjsMOO6zm5/7yl7+k7RgRlLKyM5K07rrrSpLefPPNFh3x4rnkkkskSe9///tL\ne8z11ltPUr78jiOJBx10UGnHYXvttVfaXnnllSVJO+64Yxpz6ahWJhVOmjQpba+//vqSssRNSdpl\nl11a9lhV4eSd73znO2nMSaqxhKNnH6Jhw4ZJyjqrlSkmgDiSOXz4cEnS73//+7TvjDPOkCT94Q9/\nKPHoqi8+fy4T6ShPkZdeeilt77PPPpKka665Jo05anTFFVe09Dhbadddd5WUn31qtiLqFltskftX\nyhKzHnroIUnSz3/+87TPJTUH8+svPt/xs7sbDeakvCWXXFJSdj6O55ObbrpJknTIIYeksddff11S\nVoBAkmbPnt324ySCDAAAAARdFUH+2Mc+lrYd3awXWY3fUJ955pmasRdffDF3++OPP77mPp5++unF\nO9gOmTNnjqT82mKvE3TURMrK8zgSL0mbbrppr/f7jW98Q1I+kuhvgLHBSiv52BwNLNonFRerX1wu\nPTN06NCafVtttVXLHqdKPvzhD0vKol/xteMZjFjk/rnnnpMkXXrppWlsyy237PX+3/ve90qqfb+1\nSlyTH5tYSFn0X8rWlccmQPfdd1+v93vjjTdKyq+b/MIXviBJ+tnPflb3mDybMW/evLq36ySv8Tvw\nwAPTWCyD2dOzzz4rSfr2t7+dxmLk2FwOrsrqrTfuDzfQcLmqWLbKpeJiZN25LmXyDED8LIyzdD09\n/PDDkvIzDY4Q9sXvHUeOf/rTnzZ3sANMXGfcc81xPId2uz333FNSNtM6d+7ctM9jjhpHcfbyz3/+\ncxuP8P8RQQYAAAACLpABAACAoKuWWGy//fZpu2i629OlXkrQbIg+Jh95KUFMSCnLZz7zmbTdaHLe\nggULJGUd9IqWhkyZMqVmO/7OTjZx+ZW4jMEJXN/85jfTmBfgt6vjnkvs7bzzzjX7LrvssrQdp8z7\ny4mbsctPNxo7dmza/vGPfyxJWmuttSRliVdSNg37v//9r+Y+4nSYlyO4y1pMeHVSUjvK8UnSzJkz\n07anr+NyIvOSgrjsIm73tO+++/a6r6/OY6+++qok6Xe/+52kziQvFonT5F5a8fWvf72hnx3o7wmX\nIpSy5+Ftb8tiSEWv8Z77YpK3l9m4JJ6UJeI5afVLX/pS2uelKfG1s8MOO0jKlu5I0iOPPCKpfUvX\nvORu4sSJacxLqYr4eGLpOp8r6t1/fIxuT8izwVjKzT7ykY+kbZd29PVTTGr3UqMiZXfvJYIMAAAA\nBF0VQX700UfTtpuCxFIgsSxZMyZMmCBJWnbZZdOYS/7EMj1led/73pe2l1lmmYZ+xpGzZpMKY4T8\nqquukiSNGDFCkvT973+/7s9ed911kvIl11r5DfC8885r2X31xYlqbnJQpMoJV82KJXZGjhwpKUvO\nu/baaxu6j5hk4YiZy6odc8wxad/UqVP7d7B9iBErzwA44TYm7b3yyiuSpPHjx6exeuXMijjhMCpK\n6PT71glOVREjf/Uix7fccoukfNR1oPLfIjaV8vk9Ro0d9Xc0dfTo0WnfjBkzJBUnchdxpDk2UHnh\nhRck5RPVXBIvzoL4HNTu819MPr333nt7vZ2jwH29VxzxdkK3VD8yPdg4CbpbxRkJN127//77JVW3\ncQ4RZAAAACDgAhkAAAAIhixqtj1Qfx4s1MgdSG6//XZJ+Sm42267TVI+Ya5dSRM9xakv19XsyxNP\nPCEp6wDYH64r7IQ/qX7d19itLCZ/9dfLL78sSVpuueVq9sXlH61I/nKN7TjV2VN8fdSbkqwyJ1rF\npTgXXHCBpKwma1+nDC8BitPvTjZygmeslfuvf/2rn0ddHeuss46k/PvMS5Niwtd///tfSdnyrapM\nNftcJxV3+vr73/8uKUuCdoLWQPbVr35VUtZxM4qfWe4S2u5lJXGJRUzis1//+teS8vXIO8FJnCef\nfLKkvj+LXPv2Jz/5SVuPq8qKzp133nmnpHzHxW7iz87f/OY3acyfL07c8/KlTuntM40IMgAAABB0\nVZJeq7nL0XrrrVezz1G1sqLGUewM1+gEgMvBuVtYf77FO+nJUXQp+3ZY1G1viSWWWOzH6ikmMiy9\n9NI1+/3N9Nxzz23ZYw4mTjKLkTOXpvJrzeXQpCyqHDvlbbvttpKkp556Ko3ttNNOkqRf/epX7Tjs\nynjyySclSSeddFIac+Q4vlddAq8qkWP74Ac/WHf/HnvsIak7IsdOHD3rrLN6vU0s2zZt2rS2H5PU\nd0dJJ+51QkxSdilQJ1z1ZTBHjusl4HVj5DjOJrhMaJxBcxlWR47jNYJ/1knTnUQEGQAAAAi4QAYA\nAAACllj0sMEGG6RtJ0O4Y9zdd9+d9rnu5UDhZRmrr756y+4z1kh28k67xc6B7t4XLbXUUpKk4cOH\np7FmOyYOZhtttFHN2N/+9jdJWV3cOM3qTnNOmJSypJ2YzLRw4cLWH2wFuVNW7Hxmsd5zrH9bBUcc\ncYSkfI31Ivfcc0+v+3zu3GyzzWr2xXrTMblXkqZPn562nZT25ptv9nHE/edlQT5nFInJQzE5up1i\nbfuixPb4OVQWv55jp9RGl1aYX2NFvPRqzpw5i3F01Rc7hw4GX/ziF9N27M5pTmaeO3eupPyyPX+u\nx+RtFwGIz+Nbb73VwiMuRgQZAAAACAZsBNmRK0n6/Oc/LykfmYh9v82LxN0dKZYf8/auu+6axlZc\ncUVJWXQ0LrTv5ALyWELs4x//eFM/265Se44s+BthfKxRo0alMSd1nXPOOYv1OKeeemra9t97+eWX\nT2NOYLn88svTWEwWW1xFpeR6Ou6449L2dtttJ6mcSFgr+TUfXX/99ZKyb/mx+9tee+0lKV/mL3au\nGwxcqk3KythFnmk58cQTSzumRsSojSPHRUm/p59+etp2d0R3lozRTncVLeomGPV8jHjedrJOGe+b\njTfeuPB4Iidjl8GlEN3tUSo+trIqs6699tpp+5e//GW/78+v/9id0Nzl9he/+EUac3nOVpy/Ua6i\n66/IxQL8Po/vM0eOXX5Rkg4//HBJ0k033ZTGyphJIYIMAAAABAMmguwyUe7jHovYN/ot299cvS9+\nyyn6xuPb+zE7sfaryBVXXJG2x40b1+vtYoT8hRdekFRcDL8VXB4qPu/tiH7Mnj07bft3j6XDRo4c\nKUn6wAc+kMbidjvFcj2OkMdoUFV96lOfStuTJk2q2e9v+W5MEL/FD2Ze5z5x4sS6t/Pa7bhOuwqG\nDh2atvfdd99ebxdny7xu1yW7VlpppbTPM0ZF7/E4q+C1q7HsU1XVa4DUattvv31Dt+tERLUVUeue\nn79Fdt5557TtBhNxPeujjz4qqTPlVZtVr7SblJ9x7BZezx8bqBWZN2+eJOm73/2upPw1jbnBkpSV\nkT3vvPPS2JgxYyRJ//znP/txxPVV/wwFAAAAlIgLZAAAACCo9BKLWCrp0ksvlZR1WVmwYEHa5ymb\niy++OI15oXecIvMU5+TJkyVJ++yzT0PHEbspDSRxuuq5555r62MdfPDBve6Lj33rrbe27DFdEigm\nVm699daSsi5PZXICk5SfCqoqL/+IiWWevp0/f34a81RWs2Wdup0Tl2JpSIudHK+55prSjqkdjjnm\nmMX+2WuvvVZS/vnwe2ONNdbo34H10+jRo3vd99BDD0nKlqa1S3xu6y3HeuKJJ9J2Wcs+4jngyCOP\nlJQl5UrZdPqyyy4rKd/h1edCl4iUsiU4cVlOveRnl/R88MEH09jYsWMlSQ888EAzv0qpXOqxr9Ju\nfS3BGIh23HFHSdlSxyiWW91mm20k1V8uFP/uFu/XnXRZYgEAAACUpJIRZCfkOWosZZFjR4kbjf5G\n/rZeVMS/nq985SuSpPvvvz+NDbTyXe0QywCttdZavd4uNhFpR4LJI488krZnzZolSTrrrLPS2A9/\n+MPcY8forpsaHHLIIXUfw1GB2GPezjjjDElZKRqpeqXOVl111bTt6LqTgmLkyuXxYsMIv+f8nMbk\nzxdffLFNR1xdLq3oUmfRfffdJylL7B1M3Fjp7LPPTmMuAxeTdoYNG5b7udgcoszkKyd6FyWNtTsh\n27MO++23Xxpz2b1YitOfMy6LJUn/+Mc/2npsFpMz3fzH/0pZOb8111xTUtZQS8rOC/HcbLEZ0Uc/\n+lFJ0kEHHSSpOPIYOanLDWXKaBbRLH9WFOnGxLzIZVaL3HjjjWl7oJTuI4IMAAAABFwgAwAAAEEl\nl1h4ejJOZ3uaN/aCr2f11VeXlCUXSNl0lqfU4lSxu/zEJATXfd17770lSX/84x/TvjPPPLOh42iH\nyy67LG0feOCBkoqnptydSMp3pekvL61whzVJGjFiRK+3j89bu7nWZuzj7ueoyC233JL7tzdO1PS0\nYkw+ufLKKyVVb1mFlE3bxiQfT+G6pm1RwkucAvNr3clBm2yySdo3ffr0Fh9xNcU66U409fkp1vA8\n4IADyj2wDvHU9tSpU9PYSSedJClfV7teQtnjjz8uKd9Jr50JNz35c6DMbnVeWuHlKHHpkx8zLt/z\n0gMnDVaJl1E0u8wqLrvwtp+PO++8M+1zbf3Ir5UVVlhBkvTXv/61qccuQ+zR0FP8/QabZrsxFnXk\ndB1sSXr11Vf7fUx9IYIMAAAABJWJIDvxRcq+gTnCINVPynOSQFwc78X8MXnM38xPOeUUSfnol6No\n1113XRpbuHChpCz5IHb0ueSSSyTlExnK8tprr6XtekkKMZLjhEdHUxtN9FhiiSXStsvuuHNdvaix\nJD3//POSsiS2bhKfP3f5qYpYjs3JRjG67ddFUQJNkRVXXDH3/xg973bu9ub3u5RFjn/7299KykeN\nY0JqNyv6PT2T4hJOfXFi7NNPP926A2vCk08+KSmfbNwOsZSbZzFj5LinOOM1bdq09h1YL1yuLX7e\nuRvks88+m8Z8Xu9PybVRo0ZJkg477DBJxVHjyJ8pVUuSj9ce9ZL0uj2C7GumIrfffntD9+FZz3jO\ntTh7/sYbbzR5dM0jggwAAAAEXCADAAAAQWWWWMRkOicrFCV4eDpsq622SmNOsCvqynPzzTenbU91\nNTol5Dqx7oTlmrlSVutz/PjxDd1Xu3iZSFE3r1VWWSVtu5bz8OHDJUkzZ85M+9ztKibLOJHLt5ek\n3Xbbralj23DDDSV1ZhnKYOQOVccff3wac0LdpptumsYaWVoRu2L5Ne5pzZjw1+0uuugiSdK6666b\nxvx69rTwQF1WEevtNmvllVeWJE2aNCmNeTmKE2WjmFzjWtt9Jca2mxPDvvWtb7XsPnfYYYe0fdRR\nR0mSNt544zTm6eOiJEAnp3diWUV06KGHSiqu2Ttu3Li07d/1mWeekZTVoJekG264oeZnjzjiCEn5\n393dFJ101xd/BrkrblXUW1YxmMyYMaPXfe64KEkvvfRSbl9cFuilPfE5dRe+spdrEkEGAAAAgspE\nkGNCmb9hxnIp7lDlSKn7cEtZSa+YQOBvmjFa3GyXJifhuIOe+4xLWURuu+22S2OxU0xZJk+eLClf\n8uQHP/hBr7f3cxqfW0dQYkJevWhQkauvvlpSvitbGWVY2ikm1zg6W2VOnltqqaXSmL+px7+to1gW\nO1s5ohPLd3nMr7UFCxa08rArJybd7bHHHjX7Xfbu3nvvLe2Y2iEm+26++eaS8hGaGPlsRFFU1LMN\n8dw5b968pu63Xfz7F0XSY7SrJ7+/YvLq0UcfLSl//ivix/JsTKcT8orEmcd63CXRHSVjZ8mimVX/\n7o2W0HNCXuyKGkuzVkm90m7RscceW7jdLfx5c9ddd6UxPzeemZCyIgqOHMeEUJfNjOcnd+Isu5Qq\nEWQAAAAgGLKoXRXRix6szpq3+O15zz33rNn/2GOPSZLuuOMOSdI999yT9vmbZlxX2w6x7IjX9Dpy\nIGWF8jshRgV9THF9YFzj04h63/YdQYxrCCdOnCipemvD+uNHP/pR2naZIzv11FPTtteiVkWMCF94\n4YWSGo8GesYgRgD8t43rSLvRkksuKSn/GnZJt7i2bpdddpHUnWvrXcpRykperr/++g39rM/JMXfE\nTVVi45mqcKR09uzZkorXwV511VU1Y87LiA1zGo2O+vk4+eSTJWWfZ1XiWYRWN71p5DlyPoyUzeD5\n71NljV5GbbHFFmm7m0u+eUZKymbWY1k2/02HDh0qSRozZkza58hxzIlq93PV29+PCDIAAAAQcIEM\nAAAABJVZYhHLSsXud+ZlFJ2c1nRpo7gdu0CVvYC8L7vvvnvadqLVCSec0NDPOkkvlvQ67bTTJEkP\nP/ywpCyJsVvVW2LhEnZStZceuJ99LIvYU0yamjNnjqTB1S3PXB4vlpz00oCYgFRGByeUZ5111pEk\n7b///mlswoQJkvIJr/U+KouWD7hzmJdVSNKUKVNacMTt5c/insm8Ura8SKrtehfPkcsvv3zNz7qr\npxPupaxE4rnnnisp/xnabFJ9J/V1GdWfkooD3bBhwyRl3Xwlacstt5SU/f3dhVPKkqDLXFrDEgsA\nAACgAZWJIANV0w0RZNQXS3XNnTtXUr6E5LbbbiupfgF8dJ/VVltNUhbpkvLJrz29/vrrkvLJ5vPn\nz5eUlXQDUE1EkAEAAIAGcIEMAAAABCyxAHoxatSotH3++edLkk488URJ+fqlA71j4GAWa65fdNFF\nNftdp5PEPADoTiyxAAAAABpQW8cFgCRp1qxZaXvs2LEdPBK0S0zIK3LooYdKykrAAQAGByLIAAAA\nQMAFMgAAABCQpAcAAIBBiSQ9AAAAoAGlJumVGKwGAAAAFgsRZAAAACDgAhkAAAAIuEAGAAAAAi6Q\nAQAAgIALZAAAACDgAhkAAAAIuEAGAAAAAi6QAQAAgIALZAAAACDgAhkAAAAIuEAGAAAAAi6QAQAA\ngIALZAAAACDgAhkAAAAIuEAGAAAAAi6QAQAAgIALZAAAACDgAhkAAAAIuEAGAAAAAi6QAQAAgIAL\nZAAAACDgAhkAAAAIuEAGAAAAgv8DFuzI4PE2ZsEAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 1000x200 with 1 Axes>" ] }, "metadata": { "tags": [] }, "output_type": "display_data" }, { "data": { "text/plain": [ "(<Figure size 1000x200 with 1 Axes>,\n", " <matplotlib.axes._subplots.AxesSubplot at 0x7f32fd30ce48>)" ] }, "execution_count": 0, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "[train_dataset, eval_dataset], datasets_info = tfds.load(\n", " name='mnist',\n", " split=['train', 'test'],\n", " with_info=True,\n", " shuffle_files=True)\n", "\n", "def _preprocess(sample):\n", " return (tf.cast(sample['image'], tf.float32) * 2 / 255. - 1.,\n", " tf.cast(sample['label'], tf.int32))\n", "\n", "train_size = datasets_info.splits['train'].num_examples\n", "batch_size = 32\n", "\n", "train_dataset = tfn.util.tune_dataset(\n", " train_dataset,\n", " batch_size=batch_size,\n", " shuffle_size=int(train_size / 7),\n", " preprocess_fn=_preprocess)\n", "\n", "eval_dataset = tfn.util.tune_dataset(\n", " eval_dataset,\n", " repeat_count=1,\n", " preprocess_fn=_preprocess)\n", "\n", "x = next(iter(eval_dataset.batch(10)))[0]\n", "tfn.util.display_imgs(x)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "sbaPm7ABwvde" }, "source": [ "### 3 Define Model" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "iK6_hK6RyunW" }, "outputs": [], "source": [ "input_shape = datasets_info.features['image'].shape\n", "encoded_size = 16\n", "base_depth = 32" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "N3Q78OptyyOx" }, "outputs": [], "source": [ "prior = tfd.MultivariateNormalDiag(\n", " loc=tf.zeros(encoded_size),\n", " scale_diag=tf.ones(encoded_size))" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": { "height": 287 }, "colab_type": "code", "id": "96g5flbdy6lK", "outputId": "8d52909d-5a7f-4fd9-82e6-1bab750a4683" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=== encoder ==================================================\n", " SIZE SHAPE TRAIN NAME \n", " 32 [32] True bias:0 \n", " 800 [5, 5, 1, 32] True kernel:0 \n", " 32 [32] True bias:0 \n", " 25600 [5, 5, 32, 32] True kernel:0 \n", " 64 [64] True bias:0 \n", " 51200 [5, 5, 32, 64] True kernel:0 \n", " 64 [64] True bias:0 \n", "102400 [5, 5, 64, 64] True kernel:0 \n", " 64 [64] True bias:0 \n", "200704 [7, 7, 64, 64] True kernel:0 \n", " 152 [152] True bias:0 \n", " 9728 [64, 152] True kernel:0 \n", "trainable size: 390840 / 1.491 MiB / {float32: 390840}\n" ] } ], "source": [ "Conv = functools.partial(\n", " tfn.Convolution,\n", " init_bias_fn=tf.zeros_initializer(),\n", " init_kernel_fn=tf.initializers.he_uniform()) # Better for leaky_relu.\n", "\n", "encoder = tfn.Sequential([\n", " lambda x: 2. * tf.cast(x, tf.float32) - 1., # Center.\n", " Conv(1, 1 * base_depth, 5, strides=1, padding='same'),\n", " tf.nn.leaky_relu,\n", " Conv(1 * base_depth, 1 * base_depth, 5, strides=2, padding='same'),\n", " tf.nn.leaky_relu,\n", " Conv(1 * base_depth, 2 * base_depth, 5, strides=1, padding='same'),\n", " tf.nn.leaky_relu,\n", " Conv(2 * base_depth, 2 * base_depth, 5, strides=2, padding='same'),\n", " tf.nn.elu,\n", " Conv(2 * base_depth, 4 * encoded_size, 7, strides=1, padding='valid'),\n", " tf.nn.leaky_relu,\n", " tfn.util.flatten_rightmost(ndims=3),\n", " tfn.Affine(4*encoded_size, encoded_size + encoded_size * (encoded_size + 1) // 2),\n", " lambda x: tfd.MultivariateNormalTriL(\n", " loc=x[..., :encoded_size],\n", " scale_tril=tfb.FillScaleTriL()(x[..., encoded_size:]))\n", "], name='encoder')\n", "\n", "print(encoder.summary())" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": { "height": 107 }, "colab_type": "code", "id": "P6cn2Qhh0lkz", "outputId": "7fca6506-f16c-44ee-cce8-7a421b1704ca" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "=== Affine__lambda ==================================================\n", " SIZE SHAPE TRAIN NAME \n", " 10 [10] True bias:0 \n", " 160 [16, 10] True kernel:0 \n", "trainable size: 170 / 0.001 MiB / {float32: 170}\n" ] } ], "source": [ "DeConv = functools.partial(\n", " tfn.ConvolutionTranspose,\n", " init_kernel_fn=tf.initializers.he_uniform()) # Better for leaky_relu.\n", " \n", "Affine = functools.partial(\n", " tfn.Affine,\n", " init_kernel_fn=tf.initializers.he_uniform())\n", "\n", "decoder = tfn.Sequential([\n", " Affine(encoded_size, 10),\n", " lambda x: tfd.Categorical(logits=x)])\n", "\n", "print(decoder.summary())" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "J9XuHd6Iw7_a" }, "source": [ "### 4 Loss / Eval" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "z90ohRKUs0xL" }, "outputs": [], "source": [ "def compute_loss(x, y, beta=1.):\n", " q = encoder(x)\n", " z = q.sample()\n", " p = decoder(z)\n", " kl = tf.reduce_mean(q.log_prob(z) - prior.log_prob(z), axis=-1)\n", " # Note: we could use exact KL divergence, eg:\n", " # kl = tf.reduce_mean(tfd.kl_divergence(q, prior))\n", " # however we generally find that using the Monte Carlo approximation has\n", " # lower variance.\n", " nll = -tf.reduce_mean(p.log_prob(y), axis=-1)\n", " loss = nll + beta * kl\n", " return loss, (nll, kl), (q, z, p)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "6PO6SxWm_5RA" }, "outputs": [], "source": [ "train_iter = iter(train_dataset)\n", "\n", "def loss():\n", " x, y = next(train_iter)\n", " loss, (nll, kl), _ = compute_loss(x, y, beta=0.075)\n", " return loss, (nll, kl)\n", "\n", "opt = tf.optimizers.Adam(learning_rate=1e-3, decay=0.00005)\n", "\n", "fit = tfn.util.make_fit_op(\n", " loss,\n", " opt,\n", " decoder.trainable_variables + encoder.trainable_variables,\n", " grad_summary_fn=lambda gs: tf.nest.map_structure(tf.norm, gs))" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "cellView": "code", "colab": {}, "colab_type": "code", "id": "iUmS-7IATIcI" }, "outputs": [], "source": [ "eval_iter = iter(eval_dataset.batch(5000).repeat())\n", "\n", "@tfn.util.tfcompile\n", "def eval():\n", " x, y = next(eval_iter)\n", " loss, (nll, kl), _ = compute_loss(x, y, beta=0.05)\n", " return loss, (nll, kl)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "QuCSidxVABmA" }, "source": [ "### 5 Train" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "xKbiQZcu-z5l" }, "outputs": [], "source": [ "DEBUG_MODE = False\n", "tf.config.experimental_run_functions_eagerly(DEBUG_MODE)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "cellView": "both", "colab": { "height": 1000 }, "colab_type": "code", "id": "ba5W_N6oTNbo", "outputId": "c8705f83-d522-4db3-87e2-852c649ffbc6" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "it: 1 ms/it:2564.3797 trn_loss:22.1861 tst_loss:19.4266 tst_nll:10.1761 tst_kl:185.0093 sum_norm_grad:845.5634\n", "it: 235 ms/it:2.2164 trn_loss:1.5428 tst_loss:1.3213 tst_nll:0.9611 tst_kl:7.2048 sum_norm_grad:14.4196\n", "it: 469 ms/it:2.1324 trn_loss:0.9982 tst_loss:0.9201 tst_nll:0.5909 tst_kl:6.5845 sum_norm_grad:10.1642\n", "it: 703 ms/it:2.1391 trn_loss:0.9315 tst_loss:0.7142 tst_nll:0.3821 tst_kl:6.6419 sum_norm_grad:14.4733\n", "it: 937 ms/it:2.1684 trn_loss:0.9210 tst_loss:0.6675 tst_nll:0.3780 tst_kl:5.7918 sum_norm_grad:14.7734\n", "it: 1171 ms/it:2.1175 trn_loss:0.7251 tst_loss:0.5506 tst_nll:0.2207 tst_kl:6.5989 sum_norm_grad:8.4730\n", "it: 1405 ms/it:2.0846 trn_loss:0.6943 tst_loss:0.5861 tst_nll:0.3270 tst_kl:5.1835 sum_norm_grad:9.5136\n", "it: 1639 ms/it:2.1750 trn_loss:0.6642 tst_loss:0.5858 tst_nll:0.3445 tst_kl:4.8274 sum_norm_grad:6.8234\n", "it: 1873 ms/it:2.0080 trn_loss:0.5778 tst_loss:0.5379 tst_nll:0.2793 tst_kl:5.1727 sum_norm_grad:7.8218\n", "it: 2107 ms/it:2.0313 trn_loss:0.7633 tst_loss:0.4800 tst_nll:0.1764 tst_kl:6.0714 sum_norm_grad:13.6137\n", "it: 2341 ms/it:2.0713 trn_loss:0.5730 tst_loss:0.4819 tst_nll:0.2155 tst_kl:5.3266 sum_norm_grad:6.4923\n", "it: 2575 ms/it:1.9554 trn_loss:0.5458 tst_loss:0.4853 tst_nll:0.2122 tst_kl:5.4622 sum_norm_grad:6.2071\n", "it: 2809 ms/it:1.9702 trn_loss:0.5840 tst_loss:0.4678 tst_nll:0.2076 tst_kl:5.2025 sum_norm_grad:7.0371\n", "it: 3043 ms/it:2.0315 trn_loss:0.4956 tst_loss:0.4598 tst_nll:0.2057 tst_kl:5.0823 sum_norm_grad:5.5657\n", "it: 3277 ms/it:2.0027 trn_loss:0.7635 tst_loss:0.5070 tst_nll:0.2752 tst_kl:4.6358 sum_norm_grad:12.0438\n", "it: 3511 ms/it:2.1219 trn_loss:0.5925 tst_loss:0.4679 tst_nll:0.2242 tst_kl:4.8740 sum_norm_grad:7.9167\n", "it: 3745 ms/it:2.0533 trn_loss:0.4950 tst_loss:0.4469 tst_nll:0.2054 tst_kl:4.8289 sum_norm_grad:6.2624\n", "it: 3979 ms/it:2.0403 trn_loss:0.5245 tst_loss:0.4639 tst_nll:0.2495 tst_kl:4.2869 sum_norm_grad:8.0653\n", "it: 4213 ms/it:2.0021 trn_loss:0.4222 tst_loss:0.4056 tst_nll:0.1512 tst_kl:5.0866 sum_norm_grad:3.7033\n", "it: 4447 ms/it:2.0186 trn_loss:0.5910 tst_loss:0.4387 tst_nll:0.1962 tst_kl:4.8495 sum_norm_grad:12.2965\n", "it: 4681 ms/it:1.9985 trn_loss:0.4816 tst_loss:0.4088 tst_nll:0.1494 tst_kl:5.1885 sum_norm_grad:6.8221\n", "it: 4915 ms/it:1.9830 trn_loss:0.6091 tst_loss:0.4167 tst_nll:0.1475 tst_kl:5.3833 sum_norm_grad:9.1217\n", "it: 5149 ms/it:1.8724 trn_loss:0.5090 tst_loss:0.4217 tst_nll:0.1713 tst_kl:5.0073 sum_norm_grad:7.9420\n", "it: 5383 ms/it:1.8790 trn_loss:0.4645 tst_loss:0.4319 tst_nll:0.1895 tst_kl:4.8482 sum_norm_grad:5.6776\n", "it: 5617 ms/it:1.8531 trn_loss:0.4660 tst_loss:0.4289 tst_nll:0.1903 tst_kl:4.7722 sum_norm_grad:5.7069\n", "it: 5851 ms/it:1.8618 trn_loss:0.6393 tst_loss:0.4061 tst_nll:0.1760 tst_kl:4.6033 sum_norm_grad:9.4343\n", "it: 6085 ms/it:1.8427 trn_loss:0.6755 tst_loss:0.3991 tst_nll:0.1175 tst_kl:5.6326 sum_norm_grad:12.9892\n", "it: 6319 ms/it:1.8549 trn_loss:0.4403 tst_loss:0.4069 tst_nll:0.1804 tst_kl:4.5294 sum_norm_grad:5.7477\n", "it: 6553 ms/it:1.8505 trn_loss:0.4728 tst_loss:0.3854 tst_nll:0.1366 tst_kl:4.9755 sum_norm_grad:8.0551\n", "it: 6787 ms/it:1.8351 trn_loss:0.5107 tst_loss:0.4182 tst_nll:0.1753 tst_kl:4.8581 sum_norm_grad:8.2919\n", "it: 7021 ms/it:1.8778 trn_loss:0.4387 tst_loss:0.4044 tst_nll:0.1686 tst_kl:4.7156 sum_norm_grad:7.9755\n", "it: 7255 ms/it:1.8988 trn_loss:0.5133 tst_loss:0.3726 tst_nll:0.1204 tst_kl:5.0447 sum_norm_grad:7.5885\n", "it: 7489 ms/it:1.9521 trn_loss:0.5418 tst_loss:0.3804 tst_nll:0.1413 tst_kl:4.7819 sum_norm_grad:9.0569\n", "it: 7723 ms/it:1.9067 trn_loss:0.4752 tst_loss:0.3914 tst_nll:0.1323 tst_kl:5.1816 sum_norm_grad:6.8096\n", "it: 7957 ms/it:1.9925 trn_loss:0.4323 tst_loss:0.3928 tst_nll:0.1711 tst_kl:4.4322 sum_norm_grad:4.3328\n", "it: 8191 ms/it:2.0536 trn_loss:0.4623 tst_loss:0.3915 tst_nll:0.1625 tst_kl:4.5813 sum_norm_grad:6.5804\n", "it: 8425 ms/it:1.9761 trn_loss:0.4686 tst_loss:0.4019 tst_nll:0.1885 tst_kl:4.2679 sum_norm_grad:10.3905\n", "it: 8659 ms/it:1.9916 trn_loss:0.4340 tst_loss:0.3946 tst_nll:0.1682 tst_kl:4.5282 sum_norm_grad:8.5048\n", "it: 8893 ms/it:1.9981 trn_loss:0.4335 tst_loss:0.3881 tst_nll:0.1704 tst_kl:4.3545 sum_norm_grad:5.8678\n", "it: 9127 ms/it:1.9771 trn_loss:0.4327 tst_loss:0.3541 tst_nll:0.1326 tst_kl:4.4309 sum_norm_grad:4.2285\n", "it: 9361 ms/it:2.1010 trn_loss:0.4541 tst_loss:0.3744 tst_nll:0.1422 tst_kl:4.6440 sum_norm_grad:6.0872\n", "it: 9595 ms/it:2.1687 trn_loss:0.4879 tst_loss:0.3705 tst_nll:0.1419 tst_kl:4.5713 sum_norm_grad:8.0271\n", "it: 9829 ms/it:2.1297 trn_loss:0.4340 tst_loss:0.3659 tst_nll:0.1262 tst_kl:4.7925 sum_norm_grad:4.3710\n", "it:10063 ms/it:1.9912 trn_loss:0.4504 tst_loss:0.3567 tst_nll:0.1261 tst_kl:4.6131 sum_norm_grad:9.4326\n", "it:10297 ms/it:1.9539 trn_loss:0.4492 tst_loss:0.3568 tst_nll:0.1328 tst_kl:4.4807 sum_norm_grad:5.5835\n", "it:10531 ms/it:1.9733 trn_loss:0.5599 tst_loss:0.3872 tst_nll:0.1688 tst_kl:4.3683 sum_norm_grad:9.9607\n", "it:10765 ms/it:1.9135 trn_loss:0.4590 tst_loss:0.3560 tst_nll:0.1185 tst_kl:4.7496 sum_norm_grad:7.2496\n", "it:10999 ms/it:1.9435 trn_loss:0.4926 tst_loss:0.3750 tst_nll:0.1588 tst_kl:4.3244 sum_norm_grad:9.7788\n", "it:11233 ms/it:1.9424 trn_loss:0.4168 tst_loss:0.3887 tst_nll:0.1521 tst_kl:4.7316 sum_norm_grad:6.4282\n", "it:11467 ms/it:1.9486 trn_loss:0.4855 tst_loss:0.3630 tst_nll:0.1365 tst_kl:4.5314 sum_norm_grad:6.8357\n", "it:11701 ms/it:1.9792 trn_loss:0.4255 tst_loss:0.3509 tst_nll:0.1415 tst_kl:4.1889 sum_norm_grad:8.1672\n", "it:11935 ms/it:2.0565 trn_loss:0.9048 tst_loss:0.3502 tst_nll:0.1108 tst_kl:4.7893 sum_norm_grad:17.4914\n", "it:12169 ms/it:1.9606 trn_loss:0.4105 tst_loss:0.3719 tst_nll:0.1567 tst_kl:4.3048 sum_norm_grad:7.8450\n", "it:12403 ms/it:1.9195 trn_loss:0.5903 tst_loss:0.3401 tst_nll:0.1140 tst_kl:4.5210 sum_norm_grad:14.9188\n", "it:12637 ms/it:1.8873 trn_loss:0.5405 tst_loss:0.3791 tst_nll:0.1601 tst_kl:4.3801 sum_norm_grad:9.0125\n", "it:12871 ms/it:1.9079 trn_loss:0.4144 tst_loss:0.3623 tst_nll:0.1552 tst_kl:4.1417 sum_norm_grad:7.9198\n", "it:13105 ms/it:1.9527 trn_loss:0.4402 tst_loss:0.3502 tst_nll:0.1365 tst_kl:4.2753 sum_norm_grad:7.6147\n", "it:13339 ms/it:1.9742 trn_loss:0.4194 tst_loss:0.3486 tst_nll:0.1009 tst_kl:4.9551 sum_norm_grad:9.2509\n", "it:13573 ms/it:1.9693 trn_loss:0.4537 tst_loss:0.3597 tst_nll:0.1215 tst_kl:4.7642 sum_norm_grad:9.9120\n", "it:13807 ms/it:1.9929 trn_loss:0.4179 tst_loss:0.3442 tst_nll:0.1229 tst_kl:4.4276 sum_norm_grad:7.1764\n", "it:14041 ms/it:2.1040 trn_loss:0.4295 tst_loss:0.3321 tst_nll:0.1044 tst_kl:4.5530 sum_norm_grad:6.1030\n", "it:14275 ms/it:2.0596 trn_loss:0.4154 tst_loss:0.3295 tst_nll:0.1003 tst_kl:4.5832 sum_norm_grad:2.8553\n", "it:14509 ms/it:2.0969 trn_loss:0.4184 tst_loss:0.3500 tst_nll:0.1244 tst_kl:4.5129 sum_norm_grad:5.8089\n", "it:14743 ms/it:2.0690 trn_loss:0.4793 tst_loss:0.3450 tst_nll:0.1234 tst_kl:4.4316 sum_norm_grad:9.5562\n", "it:14977 ms/it:2.0498 trn_loss:0.4134 tst_loss:0.3449 tst_nll:0.1132 tst_kl:4.6330 sum_norm_grad:7.9562\n", "it:15211 ms/it:2.0104 trn_loss:0.4901 tst_loss:0.3225 tst_nll:0.1064 tst_kl:4.3218 sum_norm_grad:10.7398\n", "it:15445 ms/it:2.0153 trn_loss:0.4784 tst_loss:0.3519 tst_nll:0.1349 tst_kl:4.3405 sum_norm_grad:9.7245\n", "it:15679 ms/it:2.0310 trn_loss:0.3431 tst_loss:0.3237 tst_nll:0.1082 tst_kl:4.3102 sum_norm_grad:4.9854\n", "it:15913 ms/it:1.9814 trn_loss:0.3959 tst_loss:0.3293 tst_nll:0.1034 tst_kl:4.5176 sum_norm_grad:3.0724\n", "it:16147 ms/it:2.0627 trn_loss:0.5097 tst_loss:0.3382 tst_nll:0.1116 tst_kl:4.5327 sum_norm_grad:10.6121\n", "it:16381 ms/it:2.1213 trn_loss:0.4401 tst_loss:0.3625 tst_nll:0.1481 tst_kl:4.2885 sum_norm_grad:8.5930\n", "it:16615 ms/it:2.0884 trn_loss:0.4569 tst_loss:0.3361 tst_nll:0.1037 tst_kl:4.6498 sum_norm_grad:8.3505\n", "it:16849 ms/it:2.1010 trn_loss:0.3757 tst_loss:0.3360 tst_nll:0.1131 tst_kl:4.4568 sum_norm_grad:4.9292\n", "it:17083 ms/it:1.9548 trn_loss:0.3774 tst_loss:0.3365 tst_nll:0.1294 tst_kl:4.1424 sum_norm_grad:5.1466\n", "it:17317 ms/it:1.9870 trn_loss:0.3638 tst_loss:0.3347 tst_nll:0.1163 tst_kl:4.3666 sum_norm_grad:7.1032\n", "it:17551 ms/it:1.9729 trn_loss:0.4665 tst_loss:0.3293 tst_nll:0.1112 tst_kl:4.3629 sum_norm_grad:10.1453\n", "it:17785 ms/it:1.9861 trn_loss:0.4739 tst_loss:0.3185 tst_nll:0.0894 tst_kl:4.5811 sum_norm_grad:9.4185\n", "it:18019 ms/it:2.0727 trn_loss:0.5350 tst_loss:0.3348 tst_nll:0.1270 tst_kl:4.1559 sum_norm_grad:15.3189\n", "it:18253 ms/it:2.0919 trn_loss:0.3890 tst_loss:0.3294 tst_nll:0.1010 tst_kl:4.5673 sum_norm_grad:5.5265\n", "it:18487 ms/it:2.0712 trn_loss:0.3504 tst_loss:0.3340 tst_nll:0.1233 tst_kl:4.2134 sum_norm_grad:3.2770\n", "it:18721 ms/it:1.9735 trn_loss:0.7267 tst_loss:0.3346 tst_nll:0.1066 tst_kl:4.5604 sum_norm_grad:15.6311\n", "it:18955 ms/it:2.0385 trn_loss:0.4850 tst_loss:0.3310 tst_nll:0.1166 tst_kl:4.2878 sum_norm_grad:12.0765\n", "it:19189 ms/it:2.0587 trn_loss:0.4337 tst_loss:0.3307 tst_nll:0.0906 tst_kl:4.8015 sum_norm_grad:6.5287\n", "it:19423 ms/it:1.9682 trn_loss:0.3695 tst_loss:0.3246 tst_nll:0.1148 tst_kl:4.1954 sum_norm_grad:7.4739\n", "it:19657 ms/it:1.9996 trn_loss:0.3982 tst_loss:0.3221 tst_nll:0.1014 tst_kl:4.4138 sum_norm_grad:7.1784\n", "it:19891 ms/it:1.9658 trn_loss:0.4141 tst_loss:0.3271 tst_nll:0.1146 tst_kl:4.2483 sum_norm_grad:4.7158\n", "it:20125 ms/it:2.0556 trn_loss:0.4565 tst_loss:0.3315 tst_nll:0.1079 tst_kl:4.4724 sum_norm_grad:9.7472\n", "it:20359 ms/it:2.0957 trn_loss:0.4421 tst_loss:0.3249 tst_nll:0.0941 tst_kl:4.6159 sum_norm_grad:7.1348\n", "it:20593 ms/it:2.1301 trn_loss:0.4268 tst_loss:0.3383 tst_nll:0.1172 tst_kl:4.4216 sum_norm_grad:5.0516\n", "it:20827 ms/it:2.1488 trn_loss:0.4111 tst_loss:0.3223 tst_nll:0.1087 tst_kl:4.2715 sum_norm_grad:7.2810\n", "it:21061 ms/it:2.0671 trn_loss:0.4297 tst_loss:0.3282 tst_nll:0.1211 tst_kl:4.1413 sum_norm_grad:7.6730\n", "it:21295 ms/it:2.1069 trn_loss:0.3883 tst_loss:0.3148 tst_nll:0.0962 tst_kl:4.3707 sum_norm_grad:4.0889\n", "it:21529 ms/it:2.1123 trn_loss:0.4523 tst_loss:0.3146 tst_nll:0.1020 tst_kl:4.2506 sum_norm_grad:9.0019\n", "it:21763 ms/it:2.0259 trn_loss:0.3251 tst_loss:0.3408 tst_nll:0.1331 tst_kl:4.1549 sum_norm_grad:3.0425\n", "it:21997 ms/it:2.0289 trn_loss:0.4182 tst_loss:0.3255 tst_nll:0.1191 tst_kl:4.1282 sum_norm_grad:13.4229\n", "it:22231 ms/it:2.0642 trn_loss:0.3769 tst_loss:0.3183 tst_nll:0.0942 tst_kl:4.4826 sum_norm_grad:4.3627\n", "it:22465 ms/it:1.9880 trn_loss:0.4083 tst_loss:0.3318 tst_nll:0.1125 tst_kl:4.3876 sum_norm_grad:8.9119\n", "it:22699 ms/it:2.0486 trn_loss:0.4075 tst_loss:0.3149 tst_nll:0.1035 tst_kl:4.2273 sum_norm_grad:9.2416\n", "it:22933 ms/it:2.0700 trn_loss:0.6194 tst_loss:0.3251 tst_nll:0.1209 tst_kl:4.0831 sum_norm_grad:14.2433\n", "it:23167 ms/it:2.0895 trn_loss:0.3624 tst_loss:0.3203 tst_nll:0.1111 tst_kl:4.1843 sum_norm_grad:5.3762\n", "it:23401 ms/it:2.1256 trn_loss:0.4200 tst_loss:0.3208 tst_nll:0.1137 tst_kl:4.1426 sum_norm_grad:7.3948\n", "it:23635 ms/it:2.0076 trn_loss:0.4218 tst_loss:0.3246 tst_nll:0.1141 tst_kl:4.2101 sum_norm_grad:9.3826\n", "it:23869 ms/it:2.0529 trn_loss:0.3513 tst_loss:0.3231 tst_nll:0.1158 tst_kl:4.1456 sum_norm_grad:6.5274\n", "it:24103 ms/it:1.9774 trn_loss:0.3698 tst_loss:0.3249 tst_nll:0.1131 tst_kl:4.2363 sum_norm_grad:3.5558\n", "it:24337 ms/it:1.9532 trn_loss:0.3951 tst_loss:0.3080 tst_nll:0.0846 tst_kl:4.4674 sum_norm_grad:6.9629\n", "it:24571 ms/it:1.9453 trn_loss:0.3477 tst_loss:0.3244 tst_nll:0.1142 tst_kl:4.2042 sum_norm_grad:3.3070\n", "it:24805 ms/it:1.9472 trn_loss:0.4807 tst_loss:0.3144 tst_nll:0.1007 tst_kl:4.2733 sum_norm_grad:12.1261\n", "it:25039 ms/it:1.9297 trn_loss:0.3501 tst_loss:0.3229 tst_nll:0.1098 tst_kl:4.2604 sum_norm_grad:4.8262\n", "it:25273 ms/it:1.9937 trn_loss:0.3407 tst_loss:0.3171 tst_nll:0.1183 tst_kl:3.9766 sum_norm_grad:3.6831\n", "it:25507 ms/it:2.0576 trn_loss:0.3658 tst_loss:0.3301 tst_nll:0.1313 tst_kl:3.9757 sum_norm_grad:9.4814\n", "it:25741 ms/it:2.0903 trn_loss:0.3454 tst_loss:0.3084 tst_nll:0.0869 tst_kl:4.4296 sum_norm_grad:3.8930\n", "it:25975 ms/it:1.9681 trn_loss:0.5474 tst_loss:0.3155 tst_nll:0.1113 tst_kl:4.0841 sum_norm_grad:13.9938\n", "it:26209 ms/it:1.9730 trn_loss:0.3537 tst_loss:0.3101 tst_nll:0.1051 tst_kl:4.0990 sum_norm_grad:7.3103\n", "it:26443 ms/it:1.9639 trn_loss:0.3909 tst_loss:0.3342 tst_nll:0.1349 tst_kl:3.9864 sum_norm_grad:8.8077\n", "it:26677 ms/it:1.9515 trn_loss:0.6007 tst_loss:0.3139 tst_nll:0.1028 tst_kl:4.2218 sum_norm_grad:14.1734\n", "it:26911 ms/it:1.9763 trn_loss:0.3362 tst_loss:0.3238 tst_nll:0.1199 tst_kl:4.0780 sum_norm_grad:2.8671\n", "it:27145 ms/it:2.0580 trn_loss:0.3860 tst_loss:0.3262 tst_nll:0.1228 tst_kl:4.0682 sum_norm_grad:7.2712\n", "it:27379 ms/it:2.0713 trn_loss:0.3619 tst_loss:0.3141 tst_nll:0.1113 tst_kl:4.0557 sum_norm_grad:3.7555\n", "it:27613 ms/it:1.9912 trn_loss:0.3931 tst_loss:0.3081 tst_nll:0.0844 tst_kl:4.4757 sum_norm_grad:4.9184\n", "it:27847 ms/it:2.0003 trn_loss:0.3528 tst_loss:0.3003 tst_nll:0.0825 tst_kl:4.3564 sum_norm_grad:3.5294\n", "it:28081 ms/it:1.9999 trn_loss:0.3667 tst_loss:0.3210 tst_nll:0.1091 tst_kl:4.2371 sum_norm_grad:4.0780\n", "it:28315 ms/it:1.9958 trn_loss:0.4151 tst_loss:0.3157 tst_nll:0.1091 tst_kl:4.1333 sum_norm_grad:8.0124\n", "it:28549 ms/it:1.9592 trn_loss:0.3867 tst_loss:0.3029 tst_nll:0.0771 tst_kl:4.5160 sum_norm_grad:6.2654\n", "it:28783 ms/it:1.9346 trn_loss:0.3660 tst_loss:0.3025 tst_nll:0.0969 tst_kl:4.1116 sum_norm_grad:5.3995\n", "it:29017 ms/it:1.9569 trn_loss:0.3517 tst_loss:0.3338 tst_nll:0.1289 tst_kl:4.0977 sum_norm_grad:4.6849\n", "it:29251 ms/it:1.9131 trn_loss:0.4085 tst_loss:0.3247 tst_nll:0.1175 tst_kl:4.1435 sum_norm_grad:9.0536\n", "it:29485 ms/it:1.9595 trn_loss:0.3752 tst_loss:0.3147 tst_nll:0.1122 tst_kl:4.0505 sum_norm_grad:4.7891\n", "it:29719 ms/it:1.9346 trn_loss:0.3727 tst_loss:0.3083 tst_nll:0.0964 tst_kl:4.2381 sum_norm_grad:6.7759\n", "it:29953 ms/it:2.0285 trn_loss:0.3990 tst_loss:0.3085 tst_nll:0.0953 tst_kl:4.2622 sum_norm_grad:7.3109\n", "it:30187 ms/it:1.9758 trn_loss:0.3465 tst_loss:0.3055 tst_nll:0.0979 tst_kl:4.1509 sum_norm_grad:2.8357\n", "it:30421 ms/it:1.9056 trn_loss:0.3583 tst_loss:0.3100 tst_nll:0.1061 tst_kl:4.0766 sum_norm_grad:4.7825\n", "it:30655 ms/it:1.8991 trn_loss:0.3609 tst_loss:0.3078 tst_nll:0.1008 tst_kl:4.1389 sum_norm_grad:4.8327\n", "it:30889 ms/it:1.9618 trn_loss:0.3803 tst_loss:0.3030 tst_nll:0.0885 tst_kl:4.2900 sum_norm_grad:5.8705\n", "it:31123 ms/it:1.9961 trn_loss:0.3822 tst_loss:0.3060 tst_nll:0.0986 tst_kl:4.1475 sum_norm_grad:6.3708\n", "it:31357 ms/it:2.0221 trn_loss:0.3590 tst_loss:0.3049 tst_nll:0.0973 tst_kl:4.1510 sum_norm_grad:6.3759\n", "it:31591 ms/it:2.0693 trn_loss:0.3420 tst_loss:0.3239 tst_nll:0.1013 tst_kl:4.4518 sum_norm_grad:3.3461\n", "it:31825 ms/it:2.0284 trn_loss:0.4415 tst_loss:0.3072 tst_nll:0.0897 tst_kl:4.3499 sum_norm_grad:9.5457\n", "it:32059 ms/it:2.0904 trn_loss:0.3310 tst_loss:0.3235 tst_nll:0.1210 tst_kl:4.0506 sum_norm_grad:4.4962\n", "it:32293 ms/it:2.0523 trn_loss:0.3475 tst_loss:0.3073 tst_nll:0.0976 tst_kl:4.1942 sum_norm_grad:2.9907\n", "it:32527 ms/it:2.0279 trn_loss:0.3822 tst_loss:0.3030 tst_nll:0.0885 tst_kl:4.2909 sum_norm_grad:6.4391\n", "it:32761 ms/it:2.1237 trn_loss:0.3487 tst_loss:0.2980 tst_nll:0.0892 tst_kl:4.1751 sum_norm_grad:4.0340\n", "it:32995 ms/it:2.0325 trn_loss:0.3242 tst_loss:0.3046 tst_nll:0.0942 tst_kl:4.2068 sum_norm_grad:3.3843\n", "it:33229 ms/it:2.1112 trn_loss:0.3349 tst_loss:0.2955 tst_nll:0.0929 tst_kl:4.0524 sum_norm_grad:5.4820\n", "it:33463 ms/it:2.0662 trn_loss:0.3708 tst_loss:0.3049 tst_nll:0.0964 tst_kl:4.1704 sum_norm_grad:6.5565\n", "it:33697 ms/it:2.0295 trn_loss:0.3910 tst_loss:0.3141 tst_nll:0.1185 tst_kl:3.9124 sum_norm_grad:5.9624\n", "it:33931 ms/it:2.1063 trn_loss:0.3667 tst_loss:0.3074 tst_nll:0.1012 tst_kl:4.1236 sum_norm_grad:7.7475\n", "it:34165 ms/it:2.0386 trn_loss:0.3843 tst_loss:0.3068 tst_nll:0.1036 tst_kl:4.0647 sum_norm_grad:6.2470\n", "it:34399 ms/it:2.0712 trn_loss:0.3196 tst_loss:0.3183 tst_nll:0.1044 tst_kl:4.2791 sum_norm_grad:2.4702\n", "it:34633 ms/it:1.9954 trn_loss:0.4186 tst_loss:0.2918 tst_nll:0.0850 tst_kl:4.1355 sum_norm_grad:11.2958\n", "it:34867 ms/it:2.0290 trn_loss:0.3490 tst_loss:0.3103 tst_nll:0.1054 tst_kl:4.0978 sum_norm_grad:4.6524\n", "it:35101 ms/it:2.0491 trn_loss:0.3254 tst_loss:0.3236 tst_nll:0.1347 tst_kl:3.7779 sum_norm_grad:2.4251\n", "it:35335 ms/it:2.0614 trn_loss:0.4333 tst_loss:0.3064 tst_nll:0.0928 tst_kl:4.2723 sum_norm_grad:15.8115\n", "it:35569 ms/it:2.0692 trn_loss:0.3628 tst_loss:0.3102 tst_nll:0.1123 tst_kl:3.9575 sum_norm_grad:5.2651\n", "it:35803 ms/it:2.0196 trn_loss:0.4141 tst_loss:0.3014 tst_nll:0.0861 tst_kl:4.3049 sum_norm_grad:7.4971\n", "it:36037 ms/it:2.0879 trn_loss:0.3861 tst_loss:0.3149 tst_nll:0.1040 tst_kl:4.2179 sum_norm_grad:7.1164\n", "it:36271 ms/it:2.0546 trn_loss:0.3436 tst_loss:0.3121 tst_nll:0.1148 tst_kl:3.9463 sum_norm_grad:2.8987\n", "it:36505 ms/it:2.0313 trn_loss:0.4668 tst_loss:0.2996 tst_nll:0.0929 tst_kl:4.1330 sum_norm_grad:11.8821\n", "it:36739 ms/it:1.9949 trn_loss:0.3284 tst_loss:0.3236 tst_nll:0.1262 tst_kl:3.9475 sum_norm_grad:3.9522\n", "it:36973 ms/it:2.0319 trn_loss:0.4026 tst_loss:0.3093 tst_nll:0.0988 tst_kl:4.2098 sum_norm_grad:12.1101\n", "it:37207 ms/it:2.0001 trn_loss:0.3315 tst_loss:0.3223 tst_nll:0.1218 tst_kl:4.0097 sum_norm_grad:2.7307\n", "it:37441 ms/it:1.9650 trn_loss:0.4421 tst_loss:0.3109 tst_nll:0.0940 tst_kl:4.3375 sum_norm_grad:8.6157\n", "it:37675 ms/it:2.0528 trn_loss:0.3616 tst_loss:0.2983 tst_nll:0.0928 tst_kl:4.1100 sum_norm_grad:12.3748\n", "it:37909 ms/it:2.0344 trn_loss:0.3869 tst_loss:0.2949 tst_nll:0.0938 tst_kl:4.0207 sum_norm_grad:6.6917\n", "it:38143 ms/it:1.9725 trn_loss:0.3351 tst_loss:0.3060 tst_nll:0.0925 tst_kl:4.2701 sum_norm_grad:3.3357\n", "it:38377 ms/it:1.9798 trn_loss:0.3290 tst_loss:0.3083 tst_nll:0.1192 tst_kl:3.7826 sum_norm_grad:5.5441\n", "it:38611 ms/it:1.9754 trn_loss:0.4292 tst_loss:0.3134 tst_nll:0.1180 tst_kl:3.9093 sum_norm_grad:10.6579\n", "it:38845 ms/it:2.0106 trn_loss:0.4040 tst_loss:0.2904 tst_nll:0.0897 tst_kl:4.0145 sum_norm_grad:6.2913\n", "it:39079 ms/it:1.9976 trn_loss:0.3487 tst_loss:0.3186 tst_nll:0.1229 tst_kl:3.9149 sum_norm_grad:7.3521\n", "it:39313 ms/it:2.0086 trn_loss:0.3488 tst_loss:0.3006 tst_nll:0.0960 tst_kl:4.0906 sum_norm_grad:3.8146\n", "it:39547 ms/it:2.0086 trn_loss:0.3602 tst_loss:0.3044 tst_nll:0.1013 tst_kl:4.0610 sum_norm_grad:4.1065\n", "it:39781 ms/it:2.0482 trn_loss:0.4210 tst_loss:0.2894 tst_nll:0.0878 tst_kl:4.0334 sum_norm_grad:7.2917\n", "it:40015 ms/it:2.0252 trn_loss:0.3613 tst_loss:0.2999 tst_nll:0.0974 tst_kl:4.0500 sum_norm_grad:4.0550\n", "it:40249 ms/it:2.0063 trn_loss:0.3924 tst_loss:0.3005 tst_nll:0.1033 tst_kl:3.9432 sum_norm_grad:5.7406\n", "it:40483 ms/it:2.0391 trn_loss:0.3393 tst_loss:0.2997 tst_nll:0.0997 tst_kl:4.0006 sum_norm_grad:5.3864\n", "it:40717 ms/it:2.0076 trn_loss:0.4238 tst_loss:0.2982 tst_nll:0.0857 tst_kl:4.2494 sum_norm_grad:13.8314\n", "it:40951 ms/it:2.0627 trn_loss:0.2797 tst_loss:0.3108 tst_nll:0.1172 tst_kl:3.8734 sum_norm_grad:2.4416\n", "it:41185 ms/it:2.0867 trn_loss:0.3180 tst_loss:0.3058 tst_nll:0.1108 tst_kl:3.8987 sum_norm_grad:2.5621\n", "it:41419 ms/it:2.0742 trn_loss:0.4763 tst_loss:0.3105 tst_nll:0.1105 tst_kl:4.0001 sum_norm_grad:9.6593\n", "it:41653 ms/it:2.0275 trn_loss:0.3460 tst_loss:0.3154 tst_nll:0.1242 tst_kl:3.8240 sum_norm_grad:8.2430\n", "it:41887 ms/it:2.0529 trn_loss:0.3495 tst_loss:0.2947 tst_nll:0.0951 tst_kl:3.9915 sum_norm_grad:6.4585\n", "it:42121 ms/it:2.0405 trn_loss:0.3794 tst_loss:0.3076 tst_nll:0.1091 tst_kl:3.9698 sum_norm_grad:8.3901\n", "it:42355 ms/it:2.0599 trn_loss:0.3690 tst_loss:0.3099 tst_nll:0.1064 tst_kl:4.0709 sum_norm_grad:5.9114\n", "it:42589 ms/it:2.0279 trn_loss:0.3238 tst_loss:0.2942 tst_nll:0.0702 tst_kl:4.4802 sum_norm_grad:3.2264\n", "it:42823 ms/it:2.0444 trn_loss:0.3442 tst_loss:0.3001 tst_nll:0.1081 tst_kl:3.8386 sum_norm_grad:5.5690\n", "it:43057 ms/it:2.0192 trn_loss:0.3318 tst_loss:0.3118 tst_nll:0.1116 tst_kl:4.0026 sum_norm_grad:3.2110\n", "it:43291 ms/it:1.9677 trn_loss:0.3935 tst_loss:0.3002 tst_nll:0.1001 tst_kl:4.0032 sum_norm_grad:11.5776\n", "it:43525 ms/it:1.9658 trn_loss:0.3071 tst_loss:0.3102 tst_nll:0.1131 tst_kl:3.9408 sum_norm_grad:4.3626\n", "it:43759 ms/it:1.9620 trn_loss:0.3644 tst_loss:0.2980 tst_nll:0.0992 tst_kl:3.9754 sum_norm_grad:5.5277\n", "it:43993 ms/it:1.9328 trn_loss:0.3614 tst_loss:0.3072 tst_nll:0.1156 tst_kl:3.8331 sum_norm_grad:7.3897\n", "it:44227 ms/it:1.9292 trn_loss:0.3308 tst_loss:0.2909 tst_nll:0.0970 tst_kl:3.8780 sum_norm_grad:2.4891\n", "it:44461 ms/it:1.9642 trn_loss:0.4045 tst_loss:0.2893 tst_nll:0.0951 tst_kl:3.8827 sum_norm_grad:7.6299\n", "it:44695 ms/it:1.9854 trn_loss:0.3186 tst_loss:0.3050 tst_nll:0.1065 tst_kl:3.9710 sum_norm_grad:3.9649\n", "it:44929 ms/it:2.0799 trn_loss:0.3767 tst_loss:0.3039 tst_nll:0.1033 tst_kl:4.0110 sum_norm_grad:8.9531\n", "it:45163 ms/it:2.0373 trn_loss:0.3146 tst_loss:0.2952 tst_nll:0.0945 tst_kl:4.0136 sum_norm_grad:2.7310\n", "it:45397 ms/it:2.0647 trn_loss:0.3301 tst_loss:0.2869 tst_nll:0.0841 tst_kl:4.0547 sum_norm_grad:4.1736\n", "it:45631 ms/it:2.1135 trn_loss:0.3127 tst_loss:0.3072 tst_nll:0.1161 tst_kl:3.8221 sum_norm_grad:2.9071\n", "it:45865 ms/it:2.0044 trn_loss:0.3673 tst_loss:0.3104 tst_nll:0.1286 tst_kl:3.6354 sum_norm_grad:10.2989\n", "it:46099 ms/it:2.0737 trn_loss:0.3188 tst_loss:0.3074 tst_nll:0.1103 tst_kl:3.9426 sum_norm_grad:2.2955\n", "it:46333 ms/it:1.9900 trn_loss:0.2997 tst_loss:0.3047 tst_nll:0.1083 tst_kl:3.9283 sum_norm_grad:3.3990\n", "it:46567 ms/it:1.9837 trn_loss:0.3438 tst_loss:0.3015 tst_nll:0.0958 tst_kl:4.1142 sum_norm_grad:8.2752\n", "it:46801 ms/it:1.9785 trn_loss:0.3467 tst_loss:0.3049 tst_nll:0.1095 tst_kl:3.9077 sum_norm_grad:2.6538\n", "it:46875 ms/it:2.0126 trn_loss:0.3597 tst_loss:0.2929 tst_nll:0.0980 tst_kl:3.8981 sum_norm_grad:4.1507\n" ] } ], "source": [ "num_train_epochs = 25. # @param { isTemplate: true}\n", "num_evals = 200 # @param { isTemplate: true}\n", "\n", "dur_sec = dur_num = 0\n", "num_train_steps = int(num_train_epochs * train_size // batch_size)\n", "for i in range(num_train_steps):\n", " start = time.time()\n", " trn_loss, (trn_nll, trn_kl), g = fit()\n", " stop = time.time()\n", " dur_sec += stop - start\n", " dur_num += 1\n", " if i % int(num_train_steps / num_evals) == 0 or i == num_train_steps - 1:\n", " tst_loss, (tst_nll, tst_kl) = eval()\n", " f, x = zip(*[\n", " ('it:{:5}', opt.iterations),\n", " ('ms/it:{:6.4f}', dur_sec / max(1., dur_num) * 1000.),\n", " ('trn_loss:{:6.4f}', trn_loss),\n", " ('tst_loss:{:6.4f}', tst_loss),\n", " ('tst_nll:{:6.4f}', tst_nll),\n", " ('tst_kl:{:6.4f}', tst_kl),\n", " ('sum_norm_grad:{:6.4f}', sum(g)),\n", "\n", " ])\n", " print(' '.join(f).format(*[getattr(x_, 'numpy', lambda: x_)()\n", " for x_ in x]))\n", " sys.stdout.flush()\n", " dur_sec = dur_num = 0\n", " # if i % 1000 == 0 or i == maxiter - 1:\n", " # encoder.save('/tmp/encoder.npz')\n", " # decoder.save('/tmp/decoder.npz')" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "G1ImqkK7xAv1" }, "source": [ "### 6 Evaluate Classification Accuracy" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "Fg2mxVJPsSOQ" }, "outputs": [], "source": [ "def evaluate_accuracy(dataset, encoder, decoder):\n", " \"\"\"Evaluate the accuracy of your model on a dataset.\n", " \"\"\"\n", " this_it = iter(dataset)\n", " num_correct = 0\n", " num_total = 0\n", " attempts = 0\n", " for xin, xout in this_it:\n", " xin, xout = next(this_it)\n", " e = encoder(xin)\n", " z = e.sample(10000) # 10K samples should have low variance.\n", " d = decoder(z)\n", " yhat = d.sample()\n", " confidence = tf.reduce_mean(d.probs_parameter(), axis=0)\n", " most_likely = tf.cast(tf.math.argmax(confidence, axis=-1), tf.int32)\n", " num_correct += np.sum(most_likely == xout, axis=0)\n", " num_total += xout.shape[0]\n", " attempts +=1\n", " return num_correct, num_total" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": { "height": 35 }, "colab_type": "code", "id": "8fZiEgQJuoMW", "outputId": "f9624596-07f9-4f35-a63f-9178ec36bf8b" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy: 0.9930\n" ] } ], "source": [ "nc, nt = evaluate_accuracy(eval_dataset.batch(100), encoder, decoder)\n", "print(\"Accuracy: %.4f\"%(nc/nt))" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "lyyh37u80SNT" }, "source": [ "The accuracy of one training run with this particular model and training setup was 99.15%, which is within a half of a percent of the state of the art, and comparable to the mnist accuracy reported in Alemi et al. (2016)." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "Y0A3I1IymUWT" }, "source": [ "# OOD detection using DoSE\n", "\n", "From the previous section, we have trained a variational classifier. However, this classifier was trained assuming that all of the inputs are from the distribution which generated the training set. In general, we may not always receive images drawn from this distribution. In these situations, our model prediction is unreliable. We want to be able to identify when this may be the case to avoid serving these flawed predictions. \n", "\n", "In this section, we turn the VIB classifier into an OOD detector using DoSE." ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "T6eHmdEjIeuL" }, "source": [ "### 1 Get statistics" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "Z3QMQ-L3mTQJ" }, "outputs": [], "source": [ "def get_statistics(encoder, decoder, prior):\n", " \"\"\"Setup a function to evaluate statistics given model components.\n", " \n", " Args:\n", " encoder: Callable neural network which takes in an image and \n", " returns a tfp.distributions.Distribution object.\n", " decoder: Callable neural network which takes in a vector and \n", " returns a tfp.distributions.Distribution object.\n", " prior: A tfp.distributions.Distribution object which operates \n", " on the same spaces as the encoder.\n", " Returns:\n", " T: A function, which takes in a tensor containing an image (or \n", " batch of images) and evaluates statistics on the model. \n", " Optionally it also returns the prediction, under the assumption \n", " that the DoSE model will only dress an actual classifier.\n", " \"\"\"\n", " def T(x, return_pred=False):\n", " \"\"\"Evaluate statistics on an input image or batch of images.\n", " \n", " Given an input tensor `x` containing either an image or a batch of \n", " images, this function evaluates 4 statistics on a VIB model; the\n", " kl-divergence between the posterior and prior, the expected entropy\n", " of the decoder computed using samples from the posterior, the \n", " posterior entopy, and the cross-entropy between the posterior and\n", " the prior. We also allow for the prediction to be optionally\n", " returned.\n", "\n", " Args: \n", " x: rank 4 tensor containing a batch of images\n", " return_pred: Bool indicating whether to return the model\n", " prediction.\n", " Returns:\n", " tf.tensor containing the 4 statistics evaluated on the input.\n", " pred (optional): The prediction of the model.\n", " \"\"\"\n", " pzgx = encoder(x)\n", " z = pzgx.sample(100, seed=42) # Seed is fixed for determinism.\n", " pxgz = decoder(z)\n", "\n", " kl = pzgx.kl_divergence(prior)[tf.newaxis,...]\n", " dent = tf.reduce_mean(pxgz.entropy(), axis=0)[tf.newaxis,...]\n", " eent = pzgx.entropy()[tf.newaxis,...]\n", " xent = pzgx.cross_entropy(prior)[tf.newaxis,...]\n", " if return_pred:\n", " pred = tf.math.argmax(\n", " tf.reduce_mean(pxgz.probs_parameter, axis=0), \n", " axis=-1)\n", " return tf.concat([kl, dent, eent, xent], axis=0), pred\n", " else:\n", " return tf.concat([kl, dent, eent, xent], axis=0)\n", " return T" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "nwVSy6J3JK46" }, "outputs": [], "source": [ "T = get_statistics(encoder, decoder, prior)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "n2szpmf2IymI" }, "source": [ "### 2 Define DoSE helper classes and functions" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "KK0cmEgwoEGH" }, "outputs": [], "source": [ "def get_DoSE_KDE(T, dataset):\n", " \"\"\"Get a distribution and decision rule for OOD detection using DoSE.\n", "\n", " Given a tensor of statistics tx, compute a Kernel Density Estimate (KDE) of\n", " the statistics. This uses a quantiles trick to cut down the number of \n", " samples used in the KDE (to lower the cost of evaluating a trial point).\n", "\n", " Args:\n", " T: A function which takes an input image and returns a vector of\n", " statistics evaluated using the model.\n", " dataset: A tensorflow_datasets `Dataset` which will be used to evaluate\n", " statistics to construct the estimator.\n", " Returns:\n", " is_ood: A function which takes a new point `x` and `threshold`, and \n", " computes the decision rule KDE.log_prob(T(x)) < threshold\n", " dose_kde: A tfd.MixtureSameFamily object. The distribution used as the KDE\n", " from which the log_prob of a batch of statistics can be computed.\n", " \"\"\"\n", "\n", " # First we should evaluate the statistics on the training set.\n", " it = iter(dataset)\n", " for x, y in it:\n", " if not \"tx\" in locals():\n", " tx = T(x)\n", " else:\n", " tx = tf.concat([tx, T(x)], axis=-1)\n", "\n", " n = tf.cast(tf.shape(tx)[-1], tx.dtype)\n", " num_quantiles = int(25)\n", " q = tfp.stats.quantiles(tx, num_quantiles, axis=-1)\n", " q = tf.transpose(q, tf.roll(tf.range(tf.rank(q)), shift=-1, axis=0))\n", " # Scott's Rule:\n", " h = 3.49 * tf.math.reduce_std(tx, axis=-1, keepdims=True) * (n)**(-1./3.)\n", " h *= n / num_quantiles\n", " \n", " dose_kde = tfd.Independent(\n", " tfd.MixtureSameFamily(\n", " mixture_distribution=tfd.Categorical(logits=tf.zeros(num_quantiles + 1)),\n", " components_distribution=tfd.Normal(loc=q, scale=h)),\n", " reinterpreted_batch_ndims=1)\n", " is_ood = lambda x, threshold: dose_kde.log_prob(tf.transpose(T(x), [1, 0])) < tf.math.log(threshold)\n", " dose_log_prob = lambda x: dose_kde.log_prob(tf.transpose(T(x), [1, 0]))\n", "\n", " # T(x) returns shape [T, N], but dose_kde works on shape [N, T]\n", " return is_ood, dose_kde, dose_log_prob, tx\n", "\n", "\n", "class DoSE_administrator(object):\n", " def __init__(self, T, train_dataset, eval_dataset):\n", " \"\"\"Administrate DoSE for model evaluation in a more efficient way.\n", "\n", " This high level object just calls the lower level DoSE methods, but\n", " also evaluates the DoSE log-probabilities on the evaluation dataset.\n", " Using these, we can do things like compute auroc much more efficiently.\n", " \"\"\"\n", " dose_build = get_DoSE_KDE(T, train_dataset)\n", " \n", " # Call DoSE on an image/batch x for lp threshold `threshold`\n", " self.is_ood = dose_build[0]\n", "\n", " # Actual dose distribution\n", " self.dose_dist = dose_build[1]\n", " self.dose_lp = lambda t: self.dose_dist.log_prob(tf.transpose(t, [1, 0]))\n", "\n", " # Get the log-probability of a batch from dose\n", " self.dose_log_prob = dose_build[2] \n", "\n", " # This helps us evaluate auroc more reliably.\n", " self.training_stats = dose_build[3]\n", " \n", " # Get training_log probs efficiently\n", " train_size = self.training_stats.shape[-1]\n", " bs = train_size // 1000\n", " for i in range(1000):\n", " tlp = self.dose_lp(self.training_stats[..., bs*i:bs*(i+1)])\n", " if not hasattr(self, 'training_lp'):\n", " self.training_lp = tlp\n", " else:\n", " self.training_lp = tf.concat([self.training_lp, tlp], axis=0)\n", "\n", " # Get log_probs, images, labels, and statistics \n", " # on the evaluation dataset.\n", " eval_it = iter(eval_dataset)\n", " for x, y in eval_it:\n", " if not hasattr(self, 'eval_lp'):\n", " self.eval_stats = T(x)\n", " self.eval_lp = self.dose_lp(self.eval_stats)\n", " self.eval_label = y\n", " self.eval_ims = x\n", " else:\n", " tx = T(x)\n", " self.eval_stats = tf.concat([self.eval_stats,\n", " tx], \n", " axis=0)\n", " self.eval_lp = tf.concat([self.eval_lp,\n", " self.dose_lp(tx)],\n", " axis=0)\n", " self.eval_label = tf.concat([self.eval_label, y], axis=0)\n", " self.eval_ims = tf.concat([self.eval_ims, x], axis=0)\n", "\n", " \n", " def get_acc(self, threshold):\n", " \"\"\"Evaluate the OOD accuracy for a certain threshold probability.\n", " \n", " This computes the decision rule: `log q(x) < tf.math.log(thresh)`\n", " on the eval dataset. It uses this decision rule to evaluate the\n", " number of correct predictions, along with the 4 components of the\n", " confusion matrix.\n", "\n", " Args:\n", " threshold: A threshold on the DoSE probability density.\n", " Returns:\n", " nc: Number of correct predictions\n", " nt: Number of total predictions\n", " tp: Number of true positives\n", " tn: Number of true negatives\n", " fp: Number of false positives\n", " fn: Number of false negatives\n", " \"\"\"\n", "\n", " yhat = self.eval_lp < tf.math.log(threshold)\n", "\n", " fp = tf.reduce_sum(tf.cast(\n", " tf.logical_and(tf.math.not_equal(yhat, self.eval_label), \n", " tf.equal(self.eval_label, False)),\n", " tf.int32),axis=0)\n", " fn = tf.reduce_sum(tf.cast(\n", " tf.logical_and(tf.math.not_equal(yhat, self.eval_label), \n", " tf.equal(self.eval_label, True)),\n", " tf.int32),axis=0)\n", " tp = tf.reduce_sum(tf.cast(\n", " tf.logical_and(tf.equal(yhat, self.eval_label), \n", " tf.equal(self.eval_label, True)),\n", " tf.int32),axis=0)\n", " tn = tf.reduce_sum(tf.cast(\n", " tf.logical_and(tf.equal(yhat, self.eval_label), \n", " tf.equal(self.eval_label, False)),\n", " tf.int32),axis=0)\n", " nc = tp+tn\n", " nt = tf.cast(tf.size(self.eval_label), tf.float32) \n", " return nc, nt, tp, tn, fp, fn\n", " \n", " def roc_curve(self, nbins):\n", " \"\"\"Get the roc curve for the model.\"\"\"\n", "\n", " nc, nt, tp, tn, fp, fn = self.get_acc(\n", " np.float32(np.exp(np.percentile(self.eval_lp, 0.))))\n", " fpr = [fp.numpy() / (fp.numpy()+tn.numpy())]\n", " tpr = [tp.numpy()/ (tp.numpy() + fn.numpy())]\n", " for i in range(1, nbins+1):\n", " nc, nt, tp, tn, fp, fn = self.get_acc(\n", " np.float32(np.exp(np.percentile(self.eval_lp, i/float(nbins)*100.))))\n", " fpr.append(fp.numpy()/ (fp.numpy() + tn.numpy()))\n", " tpr.append(tp.numpy()/ (tp.numpy() + fn.numpy()))\n", " return fpr, tpr\n", "\n", " def precision_recall_curve(self, nbins):\n", " \"\"\"Get the precision-recall curve for the model.\"\"\"\n", "\n", " nc, nt, tp, tn, fp, fn = self.get_acc(\n", " np.float32(np.exp(np.percentile(self.eval_lp, 0.))))\n", " precision = [tp.numpy()/ (tp.numpy() + fp.numpy())]\n", " recall = [tp.numpy() / (tp.numpy() + fn.numpy())]\n", " for i in range(1, nbins+1):\n", " nc, nt, tp, tn, fp, fn = self.get_acc(\n", " np.float32(np.exp(np.percentile(self.eval_lp, i/float(nbins)*100.))))\n", " precision.append(tp.numpy()/ (tp.numpy() + fp.numpy()))\n", " recall.append(tp.numpy() / (tp.numpy() + fn.numpy()))\n", " return precision, recall" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "jXozW6F4I9hy" }, "source": [ "### 3 Setup OOD dataset" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "8ivxmHF4txD4" }, "outputs": [], "source": [ "# For evaluating statistics on the training set, we need to perform a\n", "# pass through the dataset.\n", "train_one_pass = tfds.load('mnist')['train']\n", "train_one_pass = tfn.util.tune_dataset(train_one_pass, \n", " batch_size=1000,\n", " repeat_count=None,\n", " preprocess_fn=_preprocess)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "Xhcfu7UX8eC4" }, "outputs": [], "source": [ "# OOD dataset is Fashion_MNIST\n", "ood_data = tfds.load('fashion_mnist')['test'].map(_preprocess).map(\n", " lambda x, y: (x, tf.ones_like(y, dtype=tf.bool)))\n", "\n", "# In-distribution data is the MNIST test set.\n", "ind_data = tfds.load('mnist')['test'].map(_preprocess).map(\n", " lambda x, y: (x, tf.zeros_like(y, dtype=tf.bool)))\n", "\n", "# Our trial dataset is a 50-50 split of the two.\n", "hybrid_data = ind_data.concatenate(ood_data)\n", "hybrid_data = tfn.util.tune_dataset(hybrid_data, batch_size=100,\n", " shuffle_size=20000,repeat_count=None)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "oj7j-Z-SJXWv" }, "source": [ "### 4 Administer DoSE" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": {}, "colab_type": "code", "id": "Rp7837jIwvTV" }, "outputs": [], "source": [ "DoSE_admin = DoSE_administrator(T, train_one_pass, hybrid_data)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "K9HhI88EJd8N" }, "source": [ "### 5 Evaluate OOD performance" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": { "height": 409 }, "colab_type": "code", "id": "MjWjlZOBok5z", "outputId": "9a502caf-992f-42ab-a90e-3c7f2b2fcd22" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/export/hda3/borglet/remote_hdd_fs_dirs/0.colab_kernel_brain_frameworks_gpu_wmorning.kernel.wmorning.579822584826.14b334fb3717c109/mount/server/ml_notebook:162: RuntimeWarning: invalid value encountered in int_scalars\n" ] }, { "data": { "text/plain": [ "Text(0.5, 1.0, 'AUPRC: 0.9896')" ] }, "execution_count": 0, "metadata": { "tags": [] }, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAFQCAYAAAACxSJuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl0VPX9//HXJGHJTghrSFgjiJGI\nEijgAlotSwuloBiEKqJEBI+KP1rtoi1Uj2C/1lqxpVGksonbUY5oQFQWt4IRAQGRLSwJCIQ9CSQw\n+fz+uM3IkG0gmZk7M8/HOXMmM/fOzfsDmXde+dx75zqMMUYAAACwrTB/FwAAAICaEdgAAABsjsAG\nAABgcwQ2AAAAmyOwAQAA2ByBDQAAwOYIbAAAADZHYINL//79lZCQoNLS0krPv/zyy27PrVy5UsnJ\nya7HDodD0dHRiomJUZs2bfTII4/I6XS6vWbJkiXq1auXoqOjlZiYqNGjRys/P99tnQMHDuiee+5R\n69atFRsbq8svv1x/+tOfVFxc7NEY1q9frx49eigqKko9evTQ+vXrq123oKBAv/zlL9W0aVMlJydr\n1qxZbss/+eQTXXPNNYqLi1PHjh2VnZ3tWlZaWqrJkycrKSlJCQkJmjhxos6ePetavnv3bg0ePFgJ\nCQlq1aqVHnjgAZ07d86jMQC4NN7qYe3bt1dkZKRiYmLUqlUrjR07VkVFRW7bW7t2rQYPHqwmTZqo\nadOm6tWrl+bMmeNx7QsXLlS7du0UHR2tYcOG6ejRo9Wu+8UXX6hXr16KjY1Venq6PvvsM7flL7zw\ngjp06KC4uDhlZGS4La+t7zmdTv3xj39UUlKSYmNjdfXVV+v48eMejwNeZABjTF5engkLCzMJCQnm\njTfecFvWr18/89JLL7k9t2LFCtOmTRvXY0lm+/btxhhjtm/fbpKSkkx2drZr+ZtvvmliY2PN/Pnz\nTUlJiTlw4IC5++67Tbt27czRo0eNMcYcOXLEtGvXzowaNcrk5eUZY4zZu3evefDBB82GDRtqHUNp\naalp27at+dvf/mbOnDljnn/+edO2bVtTWlpa5fr9+/c3Dz30kCkrKzPr1683CQkJ5pNPPjHGGFNW\nVmbi4uLMrFmzTHl5uVm7dq2Jjo4269evN8YY8+c//9lcd9115siRI+bQoUPmJz/5iXniiSdc2x40\naJC56667zOnTp82BAwfMlVdeaZ5//vlaxwDg0tRnD/vuu+9My5Ytzb/+9S9jjDHt2rUzy5cvN8YY\nc+DAAZOenm5+//vfu177xRdfmOjoaDN9+nRz+PBhU15ebnJzc81tt93mUe2bNm0yMTExZtWqVebU\nqVNm1KhR5vbbb69y3SNHjpjExETzxhtvmHPnzpl58+aZJk2auProf//7XxMVFWVyc3NNeXm5+ec/\n/2maNWtmzp07Z4ypue8ZY8wf/vAHc+ONN5rdu3eb8vJy8+2335rTp097NA54F4ENxhhjpk6davr2\n7WsmT55sfv7zn7stu9hmZ4wxt912m5k4caIxxpjy8nLTtm1bM2PGDLdtOJ1Ok5aWZh5//HFjjNUo\nrrzySuN0Oi9pDMuWLTNJSUmmvLzc9VxKSorJycmptO6pU6eMJHPo0CHXc+PHjzdjxowxxhjzww8/\nGEmmuLjYtTwjI8MsXLjQGGNMjx493H4pLFiwwCQnJ7seX3755eb99993PZ4yZYrJysq6pHEBqF19\n97Bbb73VTJo0yRjjHtiMMeY3v/mNGTx4sOvxtdde6+p3l+J3v/udGTVqlOvxjh07TIMGDczJkycr\nrfvee++ZK664wu25yy67zLz88svGGGMWLVpkevbs6VpWVFRkJJn9+/fX2veOHj1qoqOjzY4dOy55\nLPAedolCkjR37lyNHj1ao0eP1rJly3Tw4MFL3tbWrVv16aefKjU1VZL0/fffa+/evbrtttvc1gsL\nC9OIESO0fPlySdJHH32k4cOHKyys+h/LX/ziF5o+fXqVyzZv3qz09HQ5HA7Xc+np6dq8eXOldc3/\nrshmzrsymzFGmzZtkiS1bNlSo0aN0pw5c+R0OvXll19qz549uu6661zrXvja/Px8nThxQpL00EMP\nadGiRSopKVFBQYFycnI0cODAascFoG7qs4dt2bJFn376qa6++upKy/Lz85WTk+PqbyUlJfryyy91\n66231rjNJk2aVNp1WWHz5s266qqrXI87deqkhg0batu2bZXWvbD3VDxX0bsGDRokp9OpNWvWyOl0\n6pVXXlH37t3VqlWrWvvet99+q4iICL311ltq1aqVOnfurBdffLHGccF3CGzQZ599pj179mjkyJHq\n0aOHOnXqpIULF170dq655hpFR0era9eu6t+/vyZOnChJKiwslCS1bt260mtat27tWn7kyJEq1znf\nkiVL9Nhjj1W5rKioSPHx8W7PxcfH69SpU5XWjY2N1bXXXqu//OUvOnPmjNatW6e3335bJSUlrnVG\njRqladOmqVGjRrr++uv11FNPKSUlRZLVFJ9//nkdPnxYP/zwg/7xj39Ikuv1/fr10+bNmxUXF6fk\n5GRlZGRo2LBhNY4NwKWpzx6WkJCgIUOG6N5779Xdd9/tWjZs2DDFxsYqJSVFLVq00NSpUyVJx44d\nU3l5ea296/jx464/+C50Mb2rb9++2r9/v1577TWdPXtWr776qnbu3OnqPbGxsRoxYoSuu+46NWrU\nSFOnTlV2drYcDketfa/ij85t27YpLy9Pb731lv785z+7/qiGfxHYoFdffVU/+9nP1KxZM0nSHXfc\noVdffdW1PCIiwu2Aekk6e/asGjRo4PbcunXrVFRUpNdff11r1qxxnShQsd0DBw5U+t4HDhxwLU9M\nTKxyHU/FxMTo5MmTbs+dPHlSsbGxVa6/YMEC5eXlKSUlRffff79Gjx7tOgh569atuv322zV37lyV\nlZVp8+bNeuaZZ/T+++9Lkv7whz/o6quvVvfu3dW3b18NGzZMDRo0UIsWLVReXq4BAwZo+PDhKi4u\nVmFhoY4dO6ZHH330kscGoHr12cOOHTumnTt36sknn3Sb7X/33Xd16tQprVy5Ulu3bnX9oZmQkKCw\nsDCf9a7ExEQtXrxYf/vb39SyZUstXbpUN998s6t3vfzyy3rllVe0efNmlZWVaf78+frFL36h/fv3\nS6q570VGRkqSnnjiCUVGRio9PV2ZmZn64IMPLnlsqD8EthB3+vRpvfHGG1q1apVatWqlVq1a6bnn\nntOGDRu0YcMGSVLbtm21e/dut9fl5eWpXbt2lbbncDg0cuRI9enTR9OmTZMkdenSRcnJyXrzzTfd\n1i0vL9fbb7+tn/70p5Kkm2++We+8847Ky8svaSxpaWnauHGj23T/xo0blZaWVuX67dq105IlS3T4\n8GGtWbNGR44cUa9evSRJmzZtUpcuXTRgwACFhYWpS5cu+vnPf66cnBxJVmObOXOmCgoKtGvXLiUm\nJqpHjx4KDw/X0aNHtW/fPj3wwANq1KiREhMTdffdd9P0AC+o7x5Wm379+mns2LGaMmWKJCkqKkp9\n+vTR22+/fcljSEtLc9UqSbt27VJpaak6d+5cbQ1fffWVjh49qnnz5un777939a4NGzZoyJAh6ty5\ns8LCwjRw4EC1bt1aX3zxhaSa+156erokuR1WAhvxy5FzsI2FCxeahIQEs2fPHnPgwAHX7frrrzeP\nPPKIMcaYpUuXmubNm5s1a9aY8vJy8/3335vLL7/cdQaVMZUP2N24caOJjIw0Bw4cMMZYB8LGxsaa\nBQsWuJ0lmpKSYgoLC40xP54lOmbMGLN7925jjDH5+flm8uTJF3WW6N///ndz5swZ88ILL9R4luiW\nLVvMyZMnTWlpqZk3b55JTEx0HYy7Y8cOEx0dbT7++GNTXl5uduzYYTp16uQ68zU/P98UFBSY8vJy\n8+WXX5rk5GSzbNky17Y7dOhgnn76aXP27Flz7NgxM2zYMHPHHXd4/P8CwDPe6mHnu/Ckg0OHDpmo\nqCjzzTffGGOM+fzzz010dLR55plnXP1s/fr11Z7peaFNmzaZ2NhYs3r1alNUVGRGjx5d42vXrVtn\nysrKzIkTJ8xDDz1k+vbt61r2n//8x1x22WVm586dpry83Hz44YcmMjLSfPfdd8aYmvueMcZcf/31\nJisry5w5c8Zs2bLFNG/e3Hz00UcejQPeRWALcQMGDHA1tfO9/vrrpmXLlubs2bPGGGNmz55trrji\nChMbG2s6depknn76abezOatqdgMHDnTb9rvvvmsyMjJMVFSUSUhIMJmZmWbv3r1urykoKDB33323\nadmypYmJiTFdunQxf/7zn11naw4cONA89dRT1Y5n3bp15pprrjGNGzc2V199tVm3bp1r2fz5893O\nrnruuedMs2bNTFRUlLn22mvNV199VenfIC0tzcTExJg2bdqY3/72t64xr1q1yrRr185ERkaazp07\nm/nz57u99ptvvjH9+vUzTZo0MYmJiebWW281Bw8erLZuAJfGmz2swoWBzRhjJkyYYIYPH+56vGbN\nGjNw4EATFxdnEhISTK9evcyrr77qWh4dHW1Wr15d7TgWLFhgUlJSTFRUlBk6dKg5cuSIa9l9991n\n7rvvPtfjzMxMExcXZ+Li4szIkSPdekt5ebl5/PHHTUpKiomJiTGXX365mTt3rmt5bX0vPz/fDBgw\nwERHR5sOHTqYWbNmVVszfMthzAWnmwAAAMBWOIYNAADA5nwS2MaNG6cWLVroyiuvrHK5MUYPPvig\nUlNTlZ6ernXr1vmiLADwCD0MgL/5JLCNHTtWS5curXZ5Tk6Otm/fru3btys7O1v333+/L8oCAI/Q\nwwD4m08C2w033KCmTZtWu3zx4sW688475XA41Lt3bx0/frxOn2kDAPWJHgbA32xxDFtBQYHrE+Ql\nKTk5WQUFBX6sCAA8Rw8D4G0R/i5AUqXroknVf3Bfdna2srOzJVmfRn/55Zd7tTZ/cjp/vJWXWzdj\nar55ss7F3ip48nV9LYO9XPh2rOnxxax7sa8NC5MaN97t+pR5u7jUHvbNN7sUFdVRxcVSXJyUkCAV\nFUlnzkilpdK5c955X9Tl/+TcufqvJ5hVd2nk6j6bNjzcfR2HQ4qIqPyaiq/Dw63vER7+43MXbjsi\nQmrQwHq+Yv0Lt1Vxq6q+ijE4HNbXNVzuGbXYvfvS+5ctAltycrL27dvnepyfn6+kpKQq183KylJW\nVpYkKSMjQ7m5uT6psSbGSEeOSAUF0smTUnHxj7eiopofX3grKbGa9enT9VNbWJjUsKH1Zq3uVtPy\nijd3xRu8uvuall3Mayq+ltybyPmNyNPnzq/9Um611VzT15fymrp8Xd/bsvMHnWdkZPi7hErq2sMc\nDunECevWpInUrZuUmiq1bCk1ayYlJkrx8VLjxlJkpPutQQPrF3JEhPUzX3F//tcV9/Xx/3runBUm\ni4ulQ4d+DAthYdKBA9byi3mPHT5s/VEqVR0YLuU5Txlj9Wyn0/0P1PPvy8utdapaVuH8dc7/o/nU\nqaq3Xd3XTqf173r+H8zHj1u/Nyq2XbH98nLr3/rkSev3xalT0tmz7ssrtumN0N+woXv4q/g/jYqS\noqOtW1SU9TPauLHUqJH1ddOm1s9yxc9sgwbWz3zjxu4/u1FRUkyM9ZqoKKlNG2u9QFeX/mWLwDZ0\n6FDNnDlTmZmZWrNmjeLj42u9kK4vnTwpbdhgBbJdu6QdO6TCQqvRHD4s7d/vWcA6/wf5/FubNu4/\n4I0aSbGx1i0uzrrFxFg/0BXh6vyQVdVzFTf+EgK8r649bOpU6eBB6Z57pO7d7f2+rfhFGx0ttWjh\nvuyyy/xTE2q2f78VBMvKpGPHrN9XFeGvIviVllYOe8ZYy86etYLfuXPWpELFxEJV4bCkpPIExLFj\n1vZPn7Z+dxYVWa+5WK1bSx06WL8TU1Ks351t2ljPN2smtW9v/Uza+Q/OuvBJYBs1apRWrlypwsJC\nJScna+rUqa4L8U6YMEGDBw/WBx98oNTUVEVFRWnOnDm+KKtaR49Kn34qrVolrV4tffON+w9X69bW\nD0Xz5lK7dtYPTEqKlJxs/QVQEb5iYtyDmJ2bMIDqebuHPfGEN6oGLNVM9vpVebkV8CpCZMUhAOcH\nw+JiK+QVF0t790qbN0v79lkTJevWWTO8F4qMtH4PN29u/W5OTLS+bt7c+r2dmipdeaX1fKAJ6Csd\n1Ncu0WPHpI8//jGgffut9ddCo0ZS795Sv35Snz5S27bWD34wTMsCgcouh0LUh2AaC+BrZWXWbvgD\nB6yZu7w8K9gdP249d/Dgj3vDiovdXxsTI3XpYoW3Fi2krl2ln/xEuvxy706u1OU9b4tdov5QViat\nWSPNny/Nm2el+KgoqW9fado0K6T16mWFNgAAYC8NG1p7udq1q33d06etAPf999KmTdZM3caN0kcf\nWbuMK6aumjSRevSwglxKirWbtXdva7bO30IusJ08Kc2aJT3/vPWf1LixNGaMdPfdUs+e1nFfAAAg\neERGWuGrfXtpwAD3ZaWl0u7d1h62tWutw6BefvnHWbnwcOmnP5Wuu846ztRfu5hD5qgqp1N64QWp\nUyfp0Uelzp2lN96wTiR46SVrZo2wBgBAaGnUyNo9On68lQdyc60TI44ds75++GHphx+sY03btLHC\n21tv+f4jbkJihs0YaeJEKTvb+oeePl2y4ScDAAAAm6jYPdqjh/X466+lOXOkd96RbrvN+tidOXOk\ngQN9c2Zq0M+wGSM99pgV1n73O2n5csIaAAC4OD16SDNnWic2LFxofQLE4MHSsGFVn7Fa34I+sD3+\nuPTMM9KECdJTTwXv57MAAADvCw+XRo2StmyxJoTee0+64QbrjFRvCurA9vnnVkgbNUp68UXCGgAA\nqB+NGklPPy2tWGGdtHDLLdZHinhL0AY2Y6RHHrHO5nj2WT60FgAA1L9+/aR337U+2PfnP7eu7uAN\nQRtjZs+2Ts998knrygQAAADeMHCg9ZmuX3xhTRJ5Q9AGtpkzrWuOjR3r70oAAECwu/12aehQ6W9/\nsz4WpL4FZWDbtMm6WPvkyRy3BgAAfON3v7OuR/7yy/W/7aAMbM8/b53Fcfvt/q4EAACEit69rWuP\nz51b/9sOysD2+efS9ddbF3QFAADwlQEDrL18u3fX73aDLrDt3St99521HxkAAMCXxo2zDsd64YX6\n3W7QBbb337fub7nFv3UAAIDQk5JifbzHO+/U73aDLrDNny9deaWUlubvSgAAQCi6+WYpL0/as6f+\nthlUgc3plNaskQYN4uxQAADgH/37W/crV9bfNoMqsB05YoW2lBR/VwIAAEJVWprUrJl12ar6ElSB\n7eBB675ZM//WAQAAQldYmDXLtmKFdanMetlm/WzGHtats+6vusq/dQAAgNB2443WJ1ds3Vo/2wuq\nwLZ+vdS4sdS5s78rAQAAoexXv7Lulyypn+0FVWD7+mupe3cpIsLflQAAgFDWurXUsqX12bD1IWgC\nW3m59M03Uo8e/q4EAABA6tqVwFbJ/v1SUZHUpYu/KwEAACCwVamw0LpPTvZvHQAAAJLUrp104oRU\nXFz3bQVNYNu507onsAEAADto0cK6P3So7tsKmsC2fr0UHi516+bvSgAAAH4MbBWfE1sXQRPYCgul\nhATrYz0AAAD8LSnJui8oqPu2giawbd8utWnj7yoAAAAsHTpY97t21X1bQRXY0tP9XQUAAIClSRMp\nLk7Kz6/7toIisJ0+bf1jdOzo70oAAAB+FB8vnTxZ9+0ERWArKLA+OJfABgAA7CQ2lsDmUvH5JjEx\n/q0DAADgfLGx0qlTdd9OUAS206et+8hI/9YBAABwvrg4AptLxT9EVJR/6wAAADgfM2znqbjKQadO\n/q0DAADgfBzDdp6Kf4imTf1bBwAAwPni45lhczl+3LosFcewAQAAO4mLsyaWjKnbdoIisO3fL7Vu\nLTkc/q4EAADgR/Hx1kePFRXVbTtBEdjy87ksFQAAsJ+4OOu+rsexBU1ga9vW31UAAAC4i4+37k+c\nqNt2giKwFRZKzZv7uwoAAAB3BLb/cTqlo0elZs38XQkAAIA7don+z7Fj1pkXBDYAAGA3zLD9z/79\n1n3Llv6tAwAA4EIVgS3kZ9gKC617AhsAALCbil2iATPDtnTpUnXp0kWpqamaPn16peUnTpzQkCFD\ndNVVVyktLU1z5szxaLsVnx4cE1Of1QLAj7zVvwAEv5gY63NiAyKwOZ1OTZo0STk5OdqyZYtee+01\nbdmyxW2dF198UVdccYU2bNiglStX6v/9v/+nsrKyWre9b591n5TkjcoBhDpv9i8AwS8sTIqKkkpK\n6rid+imnZmvXrlVqaqo6duyohg0bKjMzU4sXL3Zbx+Fw6NSpUzLGqKioSE2bNlVERESt287Lkxo3\nllq18lb1AEKZN/sXgNAQGSmdPl23bfgksBUUFCglJcX1ODk5WQUFBW7rPPDAA/ruu++UlJSkbt26\n6fnnn1dYWOXysrOzlZGRoYyMDB0+fFjHjkmJiVyWCoB31Gf/kir3MADBr3Fj6cyZum3DJ4HNVHHF\nU8cFCWvZsmXq3r279u/fr/Xr1+uBBx7QySpOqcjKylJubq5yc3PVvHlzlZZa/xAA4A312b+kyj0M\nQPBr3DhAZtiSk5O1r+JgM0n5+flKuuCgszlz5mj48OFyOBxKTU1Vhw4dtHXr1lq3feYMgQ2A93iz\nfwEIDZGRATLD1rNnT23fvl15eXkqKyvTokWLNHToULd12rZtq48//liSdPDgQX3//ffq2LFjrdsm\nsAHwJm/2LwChoT5m2HxyVGxERIRmzpypAQMGyOl0aty4cUpLS9OsWbMkSRMmTNDjjz+usWPHqlu3\nbjLGaMaMGWrmweULTp+2kisAeIM3+xeA0FAfM2wOU9UBGgEiIyNDkZG5atBA+uQTf1cDwBcyMjKU\nm5vr7zLqRTCNBUD1BgywrnRw9uylv+cD/koHZWVSw4b+rgIAAKBqAXPSgTedPSs1aODvKgAAAKoW\nMCcdeFNpKTNsAADAvphhk3Wph+hof1cBAABQNWbYxDFsAADA3phhk7VLtFEjf1cBAABQtYYNrQmm\nugj4wHbmDDNsAADAviIipHPn6raNgA9sxcVSfLy/qwAAAKhaRITkdNZtGwEd2CoGHxfn3zoAAACq\nE1EP15UK6MBWXm7dc2kqAABgVyEf2CouqsUH5wIAALsisBHYAACAzRHY/hfYGjf2bx0AAADVCfnA\nVnEMG5/DBgAA7CrkA1vFDBuBDQAA2FXIB7aKGTZ2iQIAALsK+cBWMcPGlQ4AAIBdEdgIbAAAwOYI\nbHysBwAAsLnw8Lpvg8AGAADgRQS2/wW2+phqBAAA8AYCGzNsAADA5sLqIW0R2AAAALyIGTYCGwAA\nsDkCG8ewAQAAmwv5XaJOp3UfHe3fOgAAAKoT8jNs5eXW7FpkpL8rAQAAqFrIBzapfqYZAQAAvCXk\nd4kaQ2ADAAD2xgybCGwAAMDeCGwisAEAAHtjlyi7RAEAgM0xwyYCGwAAsLeQD2zMsAEAALsL+V2i\nEoENAADYW8jPsEkENgAAYG8hH9jYJQoAAOwu5AObRGADAAD2FvLHsBlTP6kVAADAW0J+hq28XGrc\n2N9VAAAAVC/kA5sxUoMG/q4CAACgeuwSNVLDhv6uAgAAoHrMsDHDBgAAbI7ARmADAAA2xy5RAhsA\nALC5gJphW7p0qbp06aLU1FRNnz69ynVWrlyp7t27Ky0tTf369at1m8ZIERH1XSkAuPNG/wIQOuoj\nsPkk7jidTk2aNEnLly9XcnKyevbsqaFDh+qKK65wrXP8+HFNnDhRS5cuVdu2bXXo0CGPts0MGwBv\n8mb/AhAaAmaX6Nq1a5WamqqOHTuqYcOGyszM1OLFi93WWbhwoYYPH662bdtKklq0aFHrdvngXADe\n5q3+BSB0BMwu0YKCAqWkpLgeJycnq6CgwG2dbdu26dixY+rfv7969OihuXPn1rpddokC8DZv9S8A\noSNgdokaYyo953A43B6fO3dOX3/9tT7++GOdPn1affr0Ue/evdW5c2e39bKzs5Wdne16DYENgDfV\nZ/+S3HvY4cOHvVM0AFsJmBm25ORk7du3z/U4Pz9fSUlJldYZOHCgoqOj1axZM91www3asGFDpW1l\nZWUpNzdXubm5Cg+PYJcoAK+qz/4lufew5s2be7V2APYQFiZd8HfexW+jfkqpWc+ePbV9+3bl5eWp\nrKxMixYt0tChQ93W+eUvf6lPP/1U586dU0lJidasWaOuXbvWuF12iQLwNm/1LwChpa55xSdxJyIi\nQjNnztSAAQPkdDo1btw4paWladasWZKkCRMmqGvXrho4cKDS09MVFhame++9V1deeWWN2yWwAbgU\n5eXlbo/DajiFy1v9C0BoqWtecZiqDtAIEA0aZOjee3P1r3/5uxIAvpKRkaHc3NyLft26des0adIk\nbdy4UWfOnJFkHZ/mcDjkdDrru0yPXOpYAASe+Hjpsssu/T0f0PNTxkiNGvm7CgCB4K677tKQIUP0\nyiuvKCoqyt/lAAgxAbFL1FuMkRo29HcVAALBnj179NRTT1U6wxMAfKGugS2gryVaXs6VDgB45le/\n+pU+/PBDf5cBIESF9AybxAwbAM+cOXNGv/rVr3TdddepVatWbsv4oFsA3lbXCaaAD2zMsAHwxBVX\nXOF2/U8A8KWQn2HjpAMAnvjTn/7k7xIAhLCQD2w1fHwSALhZsWKF5s2bp4KCArVp00ZjxozRTTfd\n5O+yAISAkD7pQCKwAfDMyy+/rNtvv12tWrXS8OHD1bp1a91xxx166aWX/F0agBAQ8jNsXEsUgCee\neeYZLV++XFdddZXrudtvv10jRozQ+PHj/VgZgFDQoIH1cWSXKuDnp5hhA+CJI0eOVDrpoEuXLjp6\n9KifKgIQStglGvAjAOAL1113nR555BGVlJRIkoqLi/Wb3/xGffv29XNlAEJBXfcI1inubNq0qW7f\nvR6wSxSAJ2bNmqWNGzcqPj5eLVu2VJMmTbRhwwb9+9//9ndpAEKA149hO3nypLZv36527dqpWbNm\nkqQNGzZo6tSpysnJ0enTp+sgB/VWAAAXCElEQVRWQR0xwwbAE61bt9aqVau0b98+HThwQElJSUpO\nTvZ3WQBChFcD2/vvv6/MzEwVFxerYcOGmj9/vlavXq158+Zp/Pjx2rFjR92+ez0gsAGojjHGde3Q\n8vJySVKbNm3Upk0bt+fCaCQAvKyuewRrDGx//OMf9eyzz+rXv/61XnnlFd11110aOnSodu7cqaZN\nm9btO9cTdokCqE58fLxOnjwpSYqIiKh04feKQOd0Ov1RHoAQ4tUZtry8PGVlZUmSJkyYoMmTJ2v2\n7NmKioqq23etR/xhDKA6mzdvdn2dl5fnx0oAhDqvBraK3QWSFB4erpiYGFuFNUmKjPR3BQDsKiUl\nxfV1u3bt3JadPn1a4eHhatiwoa/LAhCCvLpLtKSkRDfccIPr8alTp9weS9Lq1avrVkEd0WsBeGLK\nlCkaOXKkevXqpffff1+33nqrHA6HXn/9dQ0ZMsTf5QEIcl6dYZs9e7bb43vuuadu380LLjgkBQCq\ntGDBAk2bNk2SNG3aNM2fP1/x8fGaPHkygQ2A13k1sN11112SpKNHj9rmJIMLEdgAeKKkpERRUVE6\ncuSIdu3apREjRkiS9uzZ4+fKAIQCr35w7n//+1+1adNGzZs3V7t27bR+/fq6fTcvILAB8ETnzp21\nYMECzZw5U7fccoskqbCwUJEcCAvAB7x6aaopU6ZozJgx+vbbbzVy5EhNmTKlbt/NCwhsADzxz3/+\nUy+++KJWrFihv/zlL5KkZcuW6Wc/+5mfKwMQCup6zH2NeW/Lli1atWqVwsPD9eSTT1Y6y8oOCGwA\nPNGzZ0998cUXbs+NHj1ao0eP9lNFAEJJ//7S119f+utrDGznzp1T+P92ujZq1EhlZWWX/p28hMAG\noDqrV692ndn+ySefVLveTTfd5KuSAISoUaOkZ5+99NfXGNjOnDmjO++80/W4uLjY7bEkzZ0799K/\nez0gsAGozsSJE7Vp0yZJ1Z/l7nA4tGvXLl+WBQAXrcbA9oc//MHt8e9//3uvFnMpCGwAqlMR1iSu\ndAAgsNUY2Dp37qxRo0b5qpZLQmAD4In169crMTHR7eoH+/bt09GjR3XVVVf5sTIAqF2NZ4ned999\nvqrjkhHYAHhizJgxOnv2rNtzZWVl+vWvf+2nigDAczUGNmOMr+q4ZAQ2AJ7Yu3evOnbs6PZcp06d\ntHv3bv8UBAAXocZdok6nUytWrKgxuPn77CoCGwBPJCcna926dbrmmmtcz61bt05JSUl+rAoAPFNj\nYCstLdU999xTbWCzw9lVBDYAnpg8ebJ++ctf6re//a06deqknTt36v/+7/8qnVwFAHZUY2CLjo72\neyCrDYENgCfGjx+vJk2aaPbs2dq3b59SUlL07LPP6tZbb/V3aQBQqzpe2cr/CGwAPHXbbbfptttu\n83cZAHDROOkAQEgwxuill17ST3/6U6Wnp0uyroTwxhtv+LkyAKhdjYHt1KlTvqrjkhHYAHjiiSee\n0OzZszV+/Hjt3btXknUiwowZM/xcGQDUrsbAFggIbAA88Z///EdLlixRZmamHP9rHB06dLD9cboA\nIBHYAIQIp9OpmJgYSXIFtqKiItdzAGBnBDYAIWHQoEF65JFHVFpaKsk6pu3xxx/XkCFD/FwZANSO\nwAYgJDz33HPav3+/4uPjdeLECcXExGjPnj0cwwYgIPCxHgCCnjFGhYWFeuutt3T06FHt2bNHKSkp\natWqlb9LAwCPENgABD2Hw6Fu3brp1KlTatGihVq0aOHvkgDgorBLFEBIuPrqq7Vt2zZ/lwEAl4QZ\nNgAhoX///ho4cKDGjh2rlJQU15mikjRu3Dg/VgYAtQv4wBYR8CMA4Auff/65OnTooFWrVrk973A4\nCGwAbC/g4054uL8rAGBnJSUlevLJJxUTE6NrrrlGv//979WoUSN/lwUAF8Vnx7AtXbpUXbp0UWpq\nqqZPn17tel999ZXCw8P11ltv+ao0AEHsgQce0HvvvaeuXbvq7bff1pQpUy56G/QvAP7mk8DmdDo1\nadIk5eTkaMuWLXrttde0ZcuWKtd79NFHNWDAAI+3zTFsAGqSk5OjDz/8UM8884xycnK0ZMmSi3q9\nN/sXAHjKJ4Ft7dq1Sk1NVceOHdWwYUNlZmZq8eLFldZ74YUXNGLECE65B1BviouL1bp1a0lSSkqK\nTpw4cVGvp38BsAOfHMNWUFCglJQU1+Pk5GStWbOm0jrvvPOOPvnkE3311Vceb5sZNgA1OXfunFas\nWCFjTJWPJemmm26q9vXe7F8A4CmfBLbzG2MFxwVJ6+GHH9aMGTMUXstZBNnZ2crOzj5vO/VTI4Dg\n1KJFC7ezQBMTE90eOxwO7dq1q9rX12f/ktx72OHDh2tdHwAkHwW25ORk7du3z/U4Pz9fSUlJbuvk\n5uYqMzNTklRYWKgPPvhAERERGjZsmNt6WVlZysrKkiQ5HBlerhxAoNu9e3edXl+f/Uty72EZGfQw\nAJ7xSWDr2bOntm/frry8PLVp00aLFi3SwoUL3dbJy8tzfT127Fj94he/qLLZXYgZNgDe5M3+BQCe\n8klgi4iI0MyZMzVgwAA5nU6NGzdOaWlpmjVrliRpwoQJvigDAC4a/QuAHThMVQdoBAiHI0PffZer\nyy/3dyUAfCUjI0O5ubn+LqNeBNNYANSuLu95Lv4OAABgcwEf2AAAAIJdwAc2ZtgAAECwC/jABgAA\nEOwCPrAxwwYAAIIdgQ0AAMDmAj6wAQAABLuAD2zMsAEAgGBHYAMAALC5gA9sAAAAwS7gAxszbAAA\nINgFfGADAAAIdgEf2JhhAwAAwY7ABgAAYHMBH9gAAACCXcAHNmbYAABAsAv4wAYAABDsAj6wMcMG\nAACCHYENAADA5gI+sAEAAAS7gA9szLABAIBgF/CBDQAAINgFfGBjhg0AAAQ7AhsAAIDNBXxgAwAA\nCHYBH9iYYQMAAMEu4AMbAABAsAv4wMYMGwAACHYENgAAAJsL+MAGAAAQ7AI+sDHDBgAAgh2BDQAA\nwOYCPrABAAAEu4APbA0b+rsCAAAA7wr4wBYW8CMAAACoGXEHAADA5ghsAAAANhfwgY2zRAEAQLAL\n+MAGAAAQ7AI+sDHDBgAAgl3ABzYAAIBgR2ADAACwuYAPbOwSBQAAwS7gAxsAAECwI7ABAADYXMAH\nNnaJAgCAYOezwLZ06VJ16dJFqampmj59eqXlCxYsUHp6utLT09W3b19t2LDBV6UBQI3oXwD8LcIX\n38TpdGrSpElavny5kpOT1bNnTw0dOlRXXHGFa50OHTpo1apVSkhIUE5OjrKysrRmzRpflAcA1aJ/\nAbADn8ywrV27VqmpqerYsaMaNmyozMxMLV682G2dvn37KiEhQZLUu3dv5efne7RtdokC8CZv9i8A\n8JRPAltBQYFSUlJcj5OTk1VQUFDt+rNnz9agQYOqXJadna2MjAxlZGTUe50AcKH67F+Sew87fPhw\nvdYKIHj5ZJeoMabSc45qpsZWrFih2bNn67PPPqtyeVZWlrKysv63jQxm2AB4VX32L8m9h/GHJwBP\n+SSwJScna9++fa7H+fn5SkpKqrTexo0bde+99yonJ0eJiYm+KA0AakT/AmAHPtkl2rNnT23fvl15\neXkqKyvTokWLNHToULd19u7dq+HDh2vevHnq3LmzL8oCgFrRvwDYgU9m2CIiIjRz5kwNGDBATqdT\n48aNU1pammbNmiVJmjBhgqZNm6YjR45o4sSJrtfk5ubWum12iQLwJm/2LwDwlMNUdYBGgHA4MlRW\nlqsGDfxdCQBfycjICJowFExjAVC7urznA/5KBwAAAMEu4AMbu0QBAECwC/jABgAAEOwCPrAxwwYA\nAIJdwAc2AACAYEdgAwAAsLmAD2zsEgUAAMEu4AMbAABAsCOwAQAA2FzABzZ2iQIAgGAX8IENAAAg\n2BHYAAAAbC7gAxu7RAEAQLAL+MAGAAAQ7AhsAAAANkdgAwAAsDkCGwAAgM0R2AAAAGyOwAYAAGBz\nBDYAAACbI7ABAADYHIENAADA5ghsAAAANkdgAwAAsDkCGwAAgM0R2AAAAGyOwAYAAGBzBDYAAACb\nC+jA5nD4uwIAAADvC+jABgAAEAoIbAAAADZHYAMAALA5AhsAAIDNEdgAAABsjsAGAABgcwQ2AAAA\nmyOwAQAA2ByBDQAAwOYIbAAAADZHYAMAALA5AhsAAIDNBXRg4+LvAAAgFAR0YAMAAAgFBDYAAACb\nI7ABAADYnM8C29KlS9WlSxelpqZq+vTplZYbY/Tggw8qNTVV6enpWrduna9KA4Aa0b8A+JtPApvT\n6dSkSZOUk5OjLVu26LXXXtOWLVvc1snJydH27du1fft2ZWdn6/777/dFaQBQI/oXADvwSWBbu3at\nUlNT1bFjRzVs2FCZmZlavHix2zqLFy/WnXfeKYfDod69e+v48eM6cOCAL8oDgGrRvwDYgU8CW0FB\ngVJSUlyPk5OTVVBQcNHrAICv0b8A2EGEL76JMabSc44LPkTNk3UkKTs7W9nZ2ZKkBg02KSMjo56q\n9K/Dhw+refPm/i6jXgTLWIJlHFJwjWXr1q0+/X712b8k9x62aVNw9LBg+vliLPYTLOOQ6ta/fBLY\nkpOTtW/fPtfj/Px8JSUlXfQ6kpSVlaWsrCxJUkZGhnJzc71UtW8xFvsJlnFIwTcWX6rP/iUFZw8L\nlnFIjMWOgmUcUt36l092ifbs2VPbt29XXl6eysrKtGjRIg0dOtRtnaFDh2ru3Lkyxui///2v4uPj\n1bp1a1+UBwDVon8BsAOfzLBFRERo5syZGjBggJxOp8aNG6e0tDTNmjVLkjRhwgQNHjxYH3zwgVJT\nUxUVFaU5c+b4ojQAqBH9C4Ad+CSwSdLgwYM1ePBgt+cmTJjg+trhcOjFF1+8qG1W7FYIBozFfoJl\nHBJjqStv9C8peP5fgmUcEmOxo2AZh1S3sThMVUfLAgAAwDa4NBUAAIDNBURgC6bLwtQ2lgULFig9\nPV3p6enq27evNmzY4Icqa1fbOCp89dVXCg8P11tvveXD6i6OJ2NZuXKlunfvrrS0NPXr18/HFXqu\ntrGcOHFCQ4YM0VVXXaW0tDTbHms1btw4tWjRQldeeWWVy4PpPR9MYwmU/iUFTw+jf9mP1/qXsblz\n586Zjh07mp07d5rS0lKTnp5uNm/e7LbO+++/bwYOHGjKy8vNl19+aXr16uWnamvmyVg+//xzc/To\nUWOMMR988IEtx+LJOCrWu/HGG82gQYPMm2++6YdKa+fJWI4dO2a6du1q9uzZY4wx5uDBg/4otVae\njOWpp54yv/3tb40xxhw6dMgkJCSY0tJSf5Rbo1WrVpmvv/7apKWlVbk8mN7zwTSWQOhfxgRPD6N/\nhVb/sv0MWzBdFsaTsfTt21cJCQmSpN69eys/P98fpdbIk3FI0gsvvKARI0aoRYsWfqjSM56MZeHC\nhRo+fLjatm0rSbYdjydjcTgcOnXqlIwxKioqUtOmTRUR4bNzjzx2ww03qGnTptUuD6b3fDCNJRD6\nlxQ8PYz+FVr9y/aBLZguC3Oxdc6ePVuDBg3yRWkXxdP/k3feecftTDo78mQs27Zt07Fjx9S/f3/1\n6NFDc+fO9XWZHvFkLA888IC+++47JSUlqVu3bnr++ecVFmb7NlBJML3ng2ks57Nr/5KCp4fRv0Kr\nf9kvml7A1PNlYfzpYupcsWKFZs+erc8++8zbZV00T8bx8MMPa8aMGQoPD/dVWZfEk7GcO3dOX3/9\ntT7++GOdPn1affr0Ue/evdW5c2dflekRT8aybNkyde/eXZ988ol27typW265Rddff73i4uJ8VWa9\nCKb3fDCNpYKd+5cUPD2M/hVa/cv2ga2+LwvjT57WuXHjRt17773KyclRYmKiL0v0iCfjyM3NVWZm\npiSpsLBQH3zwgSIiIjRs2DCf1lobT3++mjVrpujoaEVHR+uGG27Qhg0bbNfwPBnLnDlz9Nhjj8nh\ncCg1NVUdOnTQ1q1b1atXL1+XWyfB9J4PprFI9u9fUvD0MPpXiPWvuhxY5wtnz541HTp0MLt27XId\niLhp0ya3dZYsWeJ2AF/Pnj39VG3NPBnLnj17TKdOncznn3/upypr58k4znfXXXfZ8oBdYzwby5Yt\nW8xNN91kzp49a4qLi01aWpr59ttv/VRx9TwZy4QJE8yf/vQnY4wxP/zwg0lKSjKHDx/2Q7W1y8vL\nq/ag3WB6zwfTWAKhfxkTPD2M/hVa/cv2M2zBdFkYT8Yybdo0HTlyRBMnTnS9xm4XvfVkHIHCk7F0\n7dpVAwcOVHp6usLCwnTvvfdWe7q2P3kylscff1xjx45Vt27dZIzRjBkz1KxZMz9XXtmoUaO0cuVK\nFRYWKjk5WVOnTtXZs2clBd97PpjGEgj9SwqeHkb/Cq3+xZUOAAAAbC7wTq8AAAAIMQQ2AAAAmyOw\nAQAA2ByBDQAAwOYIbAAAADZHYAMAwKZWrlyp5ORk1+P27dvro48+8mNF8BcCG2ylffv2ioyMVExM\njOv2xRdfyOFwuB63b99e06dPd73G4XAoOjpaMTExatOmjR555BE5nU4/jgJAsDq/R7Vq1Upjx45V\nUVGRv8tCCCCwwXbee+89FRUVuW4Vl+w4fvy4ioqK9Nprr2natGlaunSp6zUbNmxQUVGRVq1apddf\nf12vvPKKv8oHEOQqetT69ev1zTff6Omnn/Z3SQgBBDYEnD59+igtLU2bNm2qtCw1NVXXXnut1q9f\n74fKAISSVq1aacCAAa5+U1paqilTpqht27Zq2bKlJkyYoNOnT7vWX7x4sbp37664uDh16tTJ9Ufn\nnDlz1LVrV8XGxqpjx47697//7ZfxwN4IbAgoxhh9/vnn2rx5s66++upKy7du3apPP/1UqampfqgO\nQCjJz89XTk6Oq988+uij2rZtm9avX68dO3aooKBA06ZNkyStXbtWd955p/7617/q+PHjWr16tdq3\nby9JatGihZYsWaKTJ09qzpw5mjx5statW+evYcGmuDQVbKV9+/YqLCxURIR1mdv+/fvr73//uzp0\n6KD4+Hg5HA61atVK999/vx588EFJ1jFssbGxcjqdKikpUWZmpv7zn/+oUaNG/hwKgCBU0aMcDoeK\niop000036e2331Z8fLxiYmK0ceNGderUSZL05Zdf6o477lBeXp7uu+8+RUVF6bnnnqv1ewwbNkw3\n3nijHnroIa1cuVJjxoxRfn6+6/u//PLLuvnmm706TtiP7S/+jtDz7rvvujWj3bt3S5JbkLvQunXr\n1KlTJ7355pt67LHHVFxcTGAD4BUVPWrVqlW64447VFhYqLKyMpWUlKhHjx6u9YwxrhOg9u3bp8GD\nB1e5vZycHE2dOlXbtm1TeXm5SkpK1K1bN5+MBYGDXaIIGg6HQyNHjlSfPn1cuyEAwFv69eunsWPH\nasqUKWrWrJkiIyO1efNmHT9+XMePH9eJEydcZ5CmpKRo586dlbZRWlqqESNGaMqUKTp48KCOHz+u\nwYMHi51fuBCBDUHnscceU3Z2tn744Qd/lwIgyD388MNavny5Nm7cqPHjx2vy5Mk6dOiQJKmgoEDL\nli2TJN1zzz2aM2eOPv74Y5WXl6ugoEBbt25VWVmZSktL1bx5c0VERCgnJ0cffvihP4cEmyKwIeh0\n69ZN/fr101//+ld/lwIgyDVv3lx33nmn/vKXv2jGjBlKTU1V7969FRcXp5tvvlnff/+9JKlXr16u\nEwri4+PVr18/7dmzR7GxsfrHP/6hkSNHKiEhQQsXLtTQoUP9PCrYEScdAAAA2BwzbAAAADZHYAMA\nALA5AhsAAIDNEdgAAABsjsAGAABgcwQ2AAAAmyOwAQAA2ByBDQAAwOYIbAAAADb3/wF4BetbUZe9\n5QAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1000x500 with 2 Axes>" ] }, "metadata": { "tags": [] }, "output_type": "display_data" } ], "source": [ "fp, tp = DoSE_admin.roc_curve(10000)\n", "precision, recall = DoSE_admin.precision_recall_curve(10000)\n", "plt.figure(figsize=[10,5])\n", "plt.subplot(121)\n", "plt.plot(fp, tp, 'b-')\n", "plt.xlim(0, 1.)\n", "plt.ylim(0., 1.)\n", "plt.xlabel('FPR', fontsize=12)\n", "plt.ylabel('TPR', fontsize=12)\n", "plt.title(\"AUROC: %.4f\"%np.trapz(tp, fp), fontsize=12)\n", "plt.subplot(122)\n", "plt.plot(recall, precision, 'b-')\n", "plt.xlim(0, 1.)\n", "plt.ylim(0., 1.)\n", "plt.xlabel('Recall', fontsize=12)\n", "plt.ylabel('Precision', fontsize=12)\n", "plt.title(\"AUPRC: %.4f\"%np.trapz(precision[1:], recall[1:]), fontsize=12)" ] }, { "cell_type": "code", "execution_count": 0, "metadata": { "colab": { "height": 321 }, "colab_type": "code", "id": "NXftuKHAjcib", "outputId": "32136743-138e-4696-8e26-25a9d582ee3c" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Most False Positive\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAABoCAYAAAB8B5V6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3WWYHGXWxvGbxRcCBIeQxQkEC+5h\nkeCS4Isl+AKLBtfFA8EDBIIT3NngDos7LB4kuEvQsMDm/fBe91OnmM5Mp6e9/78vqesZq5l0V1VX\nn3PuCcaOHTtWAAAAAAAAAACMpz/VegcAAAAAAAAAAI2JG8wAAAAAAAAAgJJwgxkAAAAAAAAAUBJu\nMAMAAAAAAAAASsINZgAAAAAAAABASbjBDAAAAAAAAAAoCTeYAQAAAAAAAAAl4QYzAAAAAAAAAKAk\n3GAGAAAAAAAAAJRkomr+sAkmmKCaPw4AAAAAAAAAUAZjx44tuE4FMwAAAAAAAACgJNxgBgAAAAAA\nAACUhBvMAAAAAAAAAICScIMZAAAAAAAAAFCSqob8AQAAAOU2fPhwSdLWW2+d1rp37y5J+vDDD2uy\nTwAAAECroIIZAAAAAAAAAFASKpgBAADQcCaeeOK0/eijj0qS+vbtm9Z+++23qu8TAACt4tBDD03b\n888/vyRpm222qdXuAKgxKpgBAAAAAAAAACXhBjMAAAAAAAAAoCSMyEDL6N27tySpT58+aW3MmDGS\npH322SetXXXVVW2+9pFHHpEkvfzyy20+9sEHH6Tt7777rjw7CwBoo1evXpKknXfeOa29++67kqTB\ngwfXZJ/qXZcuXdL2ggsuKElaY4010traa68tSZpxxhnbfO2PP/6YthdZZJFK7WLJunbtmrY9DuPJ\nJ59Ma59++mnV9wloBH/6U1Zj5FEz/fv3T2v33nuvJOmjjz5Ka//73/8kSb/++ms1dhFNYvrpp0/b\nPt98++23aW3EiBFV3yd0Xr9+/SRJBx10UFq76aabarU7AOoEFcwAAAAAAAAAgJJMMHbs2LFV+2ET\nTFCtH9Xhz7/44oslSbfddltau/vuuyVJo0ePru6OoSq6desmSXrggQfS2lxzzVXU1/qxU+jp8tpr\nr6XtIUOGSJKGDRtW8n5W28orryxJevDBB9OaKwJXWGGFtPbJJ59Udb8AQJJ69OiRtn2e7t69e1q7\n7777JOW7U5BVeccOnfi3/COH5EnSSy+9JEk6++yz09qrr75a7l3stCuvvDJtP/fcc5Kkr776Kq35\nWg+ta8opp0zbvqbxdY8kTTHFFJKkPfbYY7y/t58nRx11VFq7+eabJRW+XqwHvu6N+7zVVlsV9bWv\nv/66JOn4449Pa34Ourq5Ufmcsuyyy6Y1b8ff7emnn5YkPfbYY2ntww8/rMYuVpyfA8svv3xae+ut\nt8b5+e+8807a9uNq6qmnTmsOXJ1sssnS2meffSYp//i7/vrrO7PbqJEbbrhBUj5Y111SPlagY8cc\nc0zaPuywwyRJ++23X1o77bTTJDX+MRbNZ1zXOVQwAwAAAAAAAABKwg1mAAAAAAAAAEBJWirkz20b\nkrTBBhtIkp555pm0duqpp0qSdtxxx7RWry1uGH8OKll88cXT2uSTT97m8xx+9NNPP6U1t1Nuvvnm\nbb42jtk455xzJEn77rtvWltrrbUkSaNGjerU/leK/x6x9cZhhT/88ENN9gnNaf7555ckPf/882nt\nP//5j6R8WyptYJCkSSaZRFI+QMZtzDF8LrZrtxK39kvStttuK0k644wz0tqEE04oKT8e7I033pCU\njRqRpBNPPFFSPhCv3p+D/t1jeJTPW606FiM+HlZccUVJ+Tb+gw8+WFL+//7ZZ59t830GDhwoSdp6\n663T2jXXXDPOnxtb3f/73/+O726XVbymc7BzbL//85//LCn/nPB1finX+wsvvHCbnzHVVFNJyh+j\nam3AgAFp2y3Y8drVAZkxqHrkyJGSpOmmmy6t+Rx+2WWXpTWfw/2vVP/Hj0KuvvpqSdLSSy+d1hyE\nGH8fr8Xn1korrVSNXaw4/27zzjtvWvPjuWfPnmnNYy7i36o9v//+e9o+8sgjJUnTTjtt53YWNeFj\ngJSNxrjxxhvTGqMxxl88fvhYc9JJJ6W1O++8U5L0yiuvVHfH6lAcwePXjXHcrcX7F/4aX/9K2bis\nOFKt3nl0URxn55Fc8f5Ura/DJCqYAQAAAAAAAAAlaomQP79zEataPvjgA0nSXnvtldb8bn6siHnq\nqaeqsYtoQHPPPbekfPXcxhtvLCn/WB80aJAk6dBDD63i3hXPAVAnn3xyWvNhYfvtt09rsWKlFbj6\nL1Zy3HXXXZLy74zOPPPMkqRpppkmrbmyxVVkUuGKnptuuklSPijSgSqXXnpp536BOjHLLLOkbb8L\nP8ccc6S1HXbYQRIhL2jL1QmxUsxhpP/85z/T2sMPP1zN3aqJWJ269957S8p3W80+++xtvsbVGiec\ncEJa8zHn+++/r8h+Vsumm24qSTruuOPS2jLLLCNJ+uabb2qyT7U2dOjQtL3aaqtJylep+pzWUXWp\nK2/jY649rnCMX1tt3tcLLrggrW222Wbj/PxCFczlUk8VzL5O9bk3rsXnybHHHispC5OK4mPokEMO\nkZS/NjSfy6XG6SKInVOPP/64pPzzo1DA95NPPikpO97EtfiYa8Tgvw033FCS9NBDD6W1b7/9ts3n\nuYo1hrvttttukqTZZpstrblyOVbQX3HFFeXb4ToTH0/2xBNPtFlzV8Cqq67a5mMxlPfjjz+WlH99\nVuj7VdPw4cPTtrtczj333LS26667lvy9l1hiCUlZR7mUVffG10l//etfJUlffPFFyT+rntxxxx1p\n213Up5xySlpzl1kjVduWw5JLLpm2HVrt+yxSdnx2h7qUXRPG15lecyC4JG2yySaS8l079Sh2Zfmc\n7e5OKTs3uZJZykJ7x4wZU/H9I+QPAAAAAAAAAFBW3GAGAAAAAAAAAJSkJUL+ZpppJkn5Vp6FFlqo\nzee98847krJWBCkbmt2IgRUov3nmmSdtX3XVVW3WCvn5558ruk+d9dxzz43zY3GETLlbq90KVShk\nqB4ssMACkrLWR0madNJJx/n5sR3WrTkx2MShkQ4ZkrJjUjw2vffee20+78orr5QkjR49evx+iRpy\nMGYMaHMgktvbJemGG26o7o5ViFv2HGAT11ZZZZW05hEPKCyOmhk8eHCbjzvMrhHbj0vh4+RZZ52V\n1mJrtr355puS8q2ll1xyiaT6CPwot2222UZSvs3fIyBaVaHW5BjUN/HEE0vqeCSEx2tsueWWbT4W\n20kdFlerx9eUU06Zts877zxJ7Y/FiOI1/YsvvihJuvXWW9NaDKwzj5bw7y3lz9P1Io7582gM77sk\nvf/++5LywVIeG1iIXxtJhQNVPS7D5zspG6kWr4HqkccNSdljolCgX2xXP/PMMyVlrwGkLHwpHpsb\n8Rx1yy23FPV5DnIbNmxYWvMx+Zdffklru+yyi6TmHoux3nrrpe34mLCvv/5aUn4sj4/FM8wwQ5vP\nLzS+Z80110xr9957rySpX79+ndntksWQv88//1ySdP7555fl+91+++2S8sGi/hv06NEjrfl3j4+/\nRubxD1I2piiOK2qF0Rh+TkjZSNGddtoprfl5FF9T+vV5DD/06614L+/ll1+WlA/Cq/fRGBbPR97n\neI73Nd7ll1+e1vr06SNJGjFiRDV2sSAqmAEAAAAAAAAAJWmJCma/i+wqBSmrTnz11VfbfH58B9rV\nz5988kkldxF1KFap9OzZU1L+3a/2xMdVvYedOMzD4R6SdPTRR0vKD8530EesMBzfauZevXql7YED\nB0oqXCVVD/yOp6uHpezdw0LVTTGAwu+qxuqxkSNHSsoqXaSsumPWWWdNaw7rGjJkSFpzZZAH90vS\nb7/9Nj6/Ttn4/z8Gv7jiYs8990xrruR1tY+UVSDE37eRxYqtBx54oHY70kR69+6dth2S6UpcqTXO\nxbFayVXcsevKlRyxqtkhJr/++ms1drHmfF6NVaet8ruPj1jVUojPNzG0zRXMhaqVY0fPM888U7b9\nLMX666+ftrfYYouivsaBob7GkaR77rmnqK914NDBBx9c7C7WRKzsjpXLdtFFF0lqv2p5XFzNHIND\nfe3oClYpCyrzsapexWpRVysX+ngMfPdrylgBXijcrZm5WySGlzsQ+7rrrktrzRYOHjsWXGUbA4cL\ndTR4LT6+XJXoCmAp6wTpKIB08cUXL2XXO81BqvF3PPzwwyW13wnbkRja5u8dX3c5uDUGn7vzIJ7f\n3CXaiOKx2MfOZuw8K8TXu/Gey6KLLipJuvrqq9Pa/vvvLyl/fttuu+0k5V9n+rjsSn9JOvDAAyU1\nZgB07Ahxtf9kk02W1nyOjR3O++67ryQqmAEAAAAAAAAADYgbzAAAAAAAAACAkrTEiAy3Tayzzjpp\nzcEXM844Y1r797//LSlffu+21FZoy62lv/zlL5LyLUSjRo2q0d78vzgOwyMyCrUrPf7442n7rrvu\nkpQfixHHTNSz2Grs3+ncc89Na/7/cNifJK2++upFfe/55ptPktS1a9e0tsMOO5S8r5XidmEpG6Mz\n1VRTpbXbbrtNknTzzTcX9f0KtSfHFmOHOHgUgCQNHTo09/OlrIUsjqD47LPPitqHcoiBAieffLKk\n/O/mNrk555wzrbld1n8zKWu9bnRuiYyBfoU40I9gv465LXTyySdPaw4SiseKZgvcjcEmDpIaMGBA\nWnMrnM8tUhYIU0qLe7PwqJ5yjcVw+28Ma202bmtfY4010prD8bp165bWfH0cj2+1HocR+ZzsVuJx\n8SiDeD12zDHHSCo+fG7aaadN2x6r0aVLl+J3tg699NJLnf4eb7/9dtr2cyYGc/mapTPhX9UQr+nb\nC/nrKBjziSeeqMDe1S9f38Xn4P333y8pP8qtWfg1TAy5dDh3oZEWMZTNAbxnnHFGm+8bR6vVe5Cb\n2/Nj2F45vl8MbfM1n8Ocoy+//DJte0xIDDpsliDJVriui2NlPGbnhRdeSGsefRH/z/36N74e6N69\nu6T82Ep/PL5OjyMdG1l7I6fi+I+33nqrGrvTLiqYAQAAAAAAAAAlaYkKZotVyA7aOuCAA9LaLbfc\nIikfYuZ3Kx9++OG0FgduNwpXrsSqSIdSLL300mltrrnmkiTNM888ae2OO+6QJB1xxBFp7Ysvvmjz\nM1wNvsQSS6Q1V8V09DO8f7FKa8cddyziN6ucc845J227kmfqqadOa648GzZsWFobPnx4lfausvxO\n+qabbprW/LvNPPPM4/39XDW0yiqrpDV3B/z8888l72e5TDLJJJLyoVlrr712m8+bbbbZJOUrgBx6\n0xmPPPJI2nYleXyuWgwIjJXklbb77runbQcX9u/fP615n1ddddW0Vugd1HgcbTTxHff2KpePOuqo\ngl9TTjFcMG7/Uaycrscq6lj5M8sss0iSTjrppLTmqoNmq1qO3LEgZUFrrryUsqpJB93g/3UmPNfX\nPq6SkbJwoRhU1mwGDRokKQuAkbIOvxikud9++0mq30AcB1rGa81CHN7XmeOwu9ekfPjmH8XzXbHV\n0ZUSw6Fc8RQrsX1dV2wnViGxWtnXT/F4Xuj6pR4VG/IXP68VxM4ad/XG44FfO8cOznXXXbdKe1cd\n8fxw4oknSso/jwq58cYbJUmHHHJIWquHasJyKPdzwUF9MZyvvfNv7IZw503s/mzkCubYTR+DH5uN\nz8Xx+fH0009Lyp9fv//++9znS1mnbAyAdJBffD0cw4lbiZ9PUn4SQ61QwQwAAAAAAAAAKAk3mAEA\nAAAAAAAAJWmpERmRQyliq/Ptt98uKd9K7HbwRhyLEVtH3P7o8RSSNHLkSElZuKEkvfHGG7l/pazt\naZFFFklrjz76qCSpV69eaW255ZaTlG9P8MiLOAbh0ksvlSS9++67ac0BMmPGjCnyt6u82Lrs7Thc\n3uMUYku3Axtii3OzeO6559qs7bTTTm0+9uyzz0qSVl555bQ277zzSsr//eop0MLtnh6BIWWP8fg4\n9fHg2muvTWs+lgwePDitxcDEcvDjqVZjDmL70Q8//CApH97nY0mxrcGFWlHrXUeBfh7/Uu7/ozgC\nIwbCFCPus/crjqmptYkmyi5BXn31VUnS9ddfn9ZioE6zcattDLPxsfNvf/tbWmuW9tpai9cqDqaK\nI6B8jecQU0l68cUXq7R3lRPPSwMHDpSUD87p3bu3pCxcqRHEduL2xOCfUsXHTSE+96211lpprdbX\nsR9//HHa9gi3GKTla/rYjv6vf/1LkjR69OiifkYch+CxaTEI7+qrrx7f3a6JcoX8NZsYbu1RKvG6\n14HYcdxOI75ONof4SVkr/pZbbpnW2vv/j9fCHh1XD6P/ym3DDTeUVL7nggP6PFZEKv481Gxj084+\n++y07bA7j4JqdHPPPXfadkD1hRdemNb22msvSfnRTubxmlJ2LROfW832OCiFg8Djcage/i6N9yof\nAAAAAAAAAFAXWraCuT2uppXylbyN5sADD0zbrsKM1WuucohVh67C2HPPPdOaw5ccFiJJ008/vSTp\n8ssvT2uuZv3ss8/SWq0rOcotvuvmKrNYYei/QUfVjo3otNNOkyR16dIlrbmKIVa9eCi/35WUsne8\nY3DeiBEjKrav48sVXauttlpa82M3Bjs63NIhUZK0wgorSMqHg/pvdNVVV7X7c+eff35JWWWAJG2w\nwQZtPs+VFLUKXYqhhnF7fD355JOSshApSTrzzDMlNX6FULkrl8v992gvDLAeuGIqhuiUI0CznsSA\nVIcjxSrurbbaShJVy53lwD5J+vXXXyXlq15dXenKDyk7pnft2rUau1hxjz32mKR8wPITTzwhKV+Z\nN2rUqKruV6li9936669f1NfEip7xNcMMM0iSdtlll3Y/zwG99fp3PPbYYyVlHYZS1l3mbkIpq1I9\n44wz0trzzz8vKd+V6OdRoRBuV0HHr613MbDM27HDyh01m222WVor1IF13XXXVWoXayJWI/s6Pz42\nfL1z5513VnW/ys1h47FbytX5HYXZuZsvBjs3Y+WyHXrooZI6d23qjhkpO8YWa6WVVkrbfg7GgPRG\n5qBUKf9ashm4g1mSZpppJknSb7/9ltYKVS5bvD/lbmHkHy8nnHCCpKzrWsp3gtYKFcwAAAAAAAAA\ngJJwgxkAAAAAAAAAUBJGZARu0f3+++9rvCflEUd9uCV9jTXWSGsecxHD2NyCcs0116S1ZZZZRlI+\n8KaR29k98kOSDjnkEEn5VmyPPNhkk03a/T5uB4xjR+aZZ56y7We9is+PzTffXJJ08MEHt/m8GLDj\n8RqXXXZZhfeuNG6jjmNg7Keffkrb+++/vyRpySWXTGsOhYqhmsOHD5eUb3/3WhyB4fEQMVzQgX4x\nlOfpp58er9+nXrmt8oILLkhrHkHy7bff1mKXihZHYBQaN+EAvs6E6Hm8TKtYddVV0/YBBxwgqXMj\nWOpdbCt32/E999yT1mI4V6vr0aNH2nY75dtvv13U18bRRLvvvrukfMu+Rx3FAFc/92oVpNoZvu6I\nY9GWWmopSVlwpJRd/7m1u5HEsQSTTjppUV/jERAxdPeUU06R1H5briSdeuqpkqSePXuO137WG1+/\nxLFtJ554oqTs2l6S+vbtm/tXysKm4jWf29o93ivyY07KAqri8c3Pt3oaARRfy3g7BiR57fTTT09r\nbkWOn+fXC77WlbKRNI0oHiP82q979+5pzf/X8fnhoN56F18Hn3/++ZKkbt26pbVCr299PJh11lnT\nmsPNY2C5Ry3F1xJvvvlmOXa75vx36czr/3jcGN/vE7/Wz73XXnut5H2pJ/G44TEr8X5CPR0zx1e8\nF/DBBx9Iyo8B8bm9HoLp6lG8jzDxxBNLkgYNGpTWfC/PIyjrBRXMAAAAAAAAAICSTDC2iqWoHQ3M\nrzUHgsQgg7vvvrtWu9NpMcDG1TuF3j10hY+UVZg28zD1GNTXv39/SflwkpNOOklSx9UHDvQbOnRo\nm4/Fd5yajYf0S9k7kzGYy2LFh6t3YxV8s5h88skl5QMvHdrnymgpG8TvKuj4tfHxd9ddd0mSzjvv\nvArtce35XWwpCxS96aabarU7RYlVy65W7kgMfylG7CYpRyhfrMbsTGV1pcSqul69eknKKvglaY89\n9qj6PlWCu2Li/4erAmNVWHvn3VjN4hCi2PngY82VV17Z5mtj5W+jhBDFwNX77rtvvL52yJAhadtV\nvbETpb2fN74/q1a22WabtH300UdLkv7yl7+kNXfHHHbYYWmtWa7rrrjiCklZ0HIpHn744bTtitR4\nHdNRuJ9dfPHFkqQddtih5H2ptimmmEJSFuotSQMHDpSUDzAut48++khS/phXa7Fbc9NNN5WUr6x0\nWJK79aQsQDNWgPv1bQwDrIegpVLFoFRXsseAb4daxvBN/43qvQskBoe1dwsk3rNwFXLsgJ1yyikl\n5YPt/fooVjCPHDlSUr4q3F188Vq43iveH3roIUn5bs1dd91VkjRs2LCivkfsxlxiiSUk5TtCXRUe\n+fNuv/32Np8Xg+Mbka974zHR56PYZdOIXUeFjBgxQpK0zjrrtFmL3TOtKt6j23fffSVJiy++eFpb\nbLHFJGXnUil7bdBRV1aljOsYSgUzAAAAAAAAAKAk3GAGAAAAAAAAAJSkefv4i/T3v/89bffp06fN\nWiPyEPD7778/rTkkZ+edd05rRxxxhCSpd+/eae2SSy6pwh7WxnbbbSdJGjBgQFpzaX9sh3QAUEdi\n2EMriQFthUZjWGzrmGOOOSTlW94/+eST8u9cDbjlPI7WcfvPJJNMktY8CsLtclLWThcD/ZolEKQ9\n1113Xdp2C/ctt9yS1uox7KHQuIk44qHQSIv48UqL4zjqPSxwkUUWkSQdfvjhac0jI5rxuOrWv9hy\nO3jwYEnSmDFj0trWW28tKX/sdIDHxhtvnNY8WqeQeCyxGHDndtN65QCmueeeO60VGlvh1tLYKuhz\nt0ONJemXX36RlA+Jc6BzDBat59EYE044YdpeffXVJWUBdlJ2feeRX1J+ZFOz2XvvvSXlx+nstdde\nkrLr347E616HW0fFTg9sxMBrj0q54YYb0ppHc8XRK2effXZR389f29EYmkLBgLUWw7Uc1Fco5K/Q\n18RxRD6+NOLjoZA4EsQt2HFskUcwnnPOOWnN4wLjceipp56q6H5Wy7zzzjvOj80888xp2///8bWR\nR6nE87//lnFklcczHnPMMWXY4/LzGDuP/JI695wu9rni0RjTTTddWovHqUbmkHNf50mFw+abxfbb\nby9JuvHGG9PaeuutJyn/GqbQCJlW4DG1Un50jDnILwaCe0xMvBb2WLxvvvmmIvtZDCqYAQAAAAAA\nAAAladkKZgcYHHzwwWntlVdekdT4lZWupHTVqJRVa7z11ltpzUPyY2CVA0u22GKLSu9m1cXQQ3MF\nx3fffTfe38+VVq3GAVNS9g50DO9zUJkrEqXsHcpmFt95dOVyrJrzmsNEpSysqBmrll1h2K9fv7TW\ntWtXSVK3bt3SmkML3nvvvbS27bbbSio+TK/aXM0cq5pdwVyokrmU8L72AgLrvUK5I/F5YT6WNEoI\n3fhw9XGsMHAF6h133JHWXJ1aSAzwiF/zR7H62R0SCy+8cFpziFe9Bgq5KrWj8OETTzyxzee5gjlW\nIDqIaZ999klrPl/FcNV6Fiuyjz/+eEn56q/ddttNUnNXLUf+f3aAo5Qdi+M1/dJLLy2p+KrmYsXA\npc8//7ys37tW/Jqoo2v/999/X1LWbSFlVVUx1LiQGWaYoTO7WBHxOOgK03h+cnBmDFR1B5YrnqUs\nIDCGJMYK8UbjjjtJevzxxyXlgzEdlLfjjjumtXvuuUdS/lq4HqvWV1111bQdz5ft8XVsrN71cSCe\nRwqF1PlnxJ/rqucYpujrulgp7s6MeghIv/POOyXlK6zdTRLPzbEzrT2xotscQBofQz5uxKrlL7/8\nstjdrmvunnnjjTdqvCfV4XP3BhtskNZ8PRsDif38OPbYY9NaM1czOzw0dtCfeuqpkvJ/l0LnWHe4\nxa4Td1zEzuCOOozKjQpmAAAAAAAAAEBJuMEMAAAAAAAAAChJy47IcPl49+7d05pbURyY0qjWX399\nSdL555+f1uJoDHv22WclSbfeemtai620zcAtkpK04YYbtvm4AyocBDQuDmyI4UoxhMiuuuqqkvaz\nEXjMxVlnnZXWPN7ArRxSfjSGxcdYs1l00UUlZUP1paydMrZqe0RLDP57/fXXq7GLVRPbZj1uJwZU\n2b333pu2fbydccYZ01oMQmwUhcZmoLAXXnhBUn4sis/FDgCUpJdeeqm6O1Yhc845p6R8MMdWW20l\nKT8W46uvvpIk7bDDDmnNIUnxWOK2/Dj2qWfPnpKkRx55pM3Pjy3fHlNTr1599VVJ2fWJlI0YiS3a\nAwcOlCSNHj06rfl87yAZSVpggQUkScOHD09rjTIaw+eKOGLHoZCDBg1KazEwp1W5zTaOj3H4jUeI\nSFkAb7Fi67dbxOP1Tr2OmilGbMV3IO2KK67Y5vNia7KvA19++eXx/nnFBmjXyimnnCIpa/uXsoA2\n/ytlY3zimBpvx6/df//9K7ezFeLxZTFs14FbHosRxXBUf168Djz00EMlSccdd1z5d7ZEDz30UMHt\n9nhkQ6HzaxzVE8/xfxTHYThAM45U8X2JGDrqx5ND6mvJr1fi6xaP/4ijiTzmIn7esGHD2nw/P2fi\nGL2NNtpIktSjR4+05vObQwYbnV8zSlmAZqu9bojhc74GjuOZzjvvPEnZ6CEpG0v6zDPPVGMXq8qj\neeMI0mL5uLzTTjulNY/ymW+++dJavEdRDVQwAwAAAAAAAABK0lIVzH379k3bru699tpr01qzVVnG\nAAqHnEw99dRpzQFAsaIjBjs0g1h10KdPH0n5sKRYnfJHfmdRyioq4zuoXbp0kZQPpbr++us7ucf1\nJVa49O/fX1K+EsFBC67oaHauTI5/Fwd9xGr5QhziEKsdmo3Db6TCXQEOgYlVh66cin+XRg9aRXFi\nlZTfhZ9mmmna/Rp3kUw0UXa3NOlMAAALMUlEQVT5Uqhrop6MGDFCUj7s1CF10YUXXigpX4U5/fTT\nS8pfv1gMjCwUzuXjc6x+ai8gsJ7Easdvv/1WUr7zwQGgMVTp9NNPlyS9++67ac2hZDHspFH4nLLm\nmmumNVfQxaAlZGJolysp2wvPHBdXlB1yyCFpzWF2jchdeFIWjBmrDguFYLtyOVZVlVK53CjcLRI7\nPhxEVii8L4aUFQoIbEQOVIuBjPG1UHsOOuggSVkwopQ9f04++eS01lHHaD1yd1HsWHDo3KOPPprW\n3HkTf19/TQzZ8jk5VmgW6oAt9m9fTUsttVTadsdRrDh2oG7sunJFalzzcyUeY33MiV0nhaqfG1m8\nL+HHkKv/W5FfQ/v6V5Juu+02SVnXkCQ99thjkvJdjs3WBdwZ8frExyv/WwuNfSYEAAAAAAAAANQM\nN5gBAAAAAAAAACWZYGxMKaj0DwvtRLXw4osvpm2XjXtsglQ4wKARubXpqKOOSmsOO4njIdy2E9sS\nYohOM1hwwQXTtltLv/vuu7S25JJLSsq3WA8ZMkSStPnmm6c1hxYUerrsu+++afvMM88sx27XjRhK\n4RbLk046Ka05jCqOCWnPEksskbZjiFOjcEtpbN9y6GFs83LLz9VXX53Whg4dKqlw4CakX3/9NW17\nvE8jtrWjeM8//3zaXmihhSTlw8sOP/zwNl/jMSzxmLPttttWahfLwi19bq2WCofEdobDMmOY3eDB\ngyU1ZhuhA7ekLLRvqqmmSmtuN/YYECkLA3rnnXfSmltzGyW8OY4ycBhmHBuzyy67SGruQOGO+HHg\nIBspez4df/zxac3XbYXE1yMOTozPT7d5x8dXvfPvO2DAgDYf22yzzdJ27969JRW+no0Bhh6HFgOZ\nmplHoMXn1vLLLy8p39rv40xsdXdIbfw8jyZsJB7/FsedebRZfE3Unhg25eNvDFb192nEURkxoO20\n006TlA9h9XMqXp98/fXXkvLHHH9eDI73sT9+nl9f7LXXXuX5BcrMrxHjuB2/ForHF/9OHa1deeWV\nkur/mq4zHFosZSFsMYAtjm5tdTF01oGcPjdLzXfPpRQe1+pAaykLAh81alTFf/64biNTwQwAAAAA\nAAAAKElLVDA7uO7oo49Oa66kjO8aobkNHDhQUr4C1+FBsXo9VhBZoXdaHeJw2WWXpTUHHjQLv7sq\nZVXe8Z15V8TH8Ir2nHDCCWnbVcAxeLKezDzzzJIKh/e98soradtVGA7ykrJKohgG6PAKFOZKFymr\nsIrvyKL5xJC/s88+W1LWVSJl1QmuxJWy6oVYkequk3o3yyyzpG1XB/qxHsWQuva6imKoh49JH330\nUaf3sx7ECuZdd91VUj74b9JJJ5WUr9aMgTCNqlDFTqysjZWozcrdDFJ2/R6PC676i9cn4yuew/1Y\nu/TSS0v+ftXgalpJWmyxxSTlq/Vd/VfsNdWnn36attdff31J0ksvvZTWYldRK4kVcg5hi9XKxVZj\nTjjhhBXdz0oq1F0Uj0MOVI0hdA5Nd9iflAXCbbXVVmnNnX1VvP1QUbGC2SGjsdrb531XuUvt/+77\n7bdf2nbY2Ztvvlmena2ifv36tVl77bXX0ravbaabbrq05u5ydwlIWSdbPP83IneSx85gP6emnHLK\ntOYO2FbmbpKLLroorfn1tDtcJemmm26q7o7ViXjd++GHH0rKh40W21VeDlQwAwAAAAAAAADKihvM\nAAAAAAAAAICSNN2IDLfO7b///mnNoSgbbrhhWnvmmWcqvi+oL3379pWUb/Mq9uHvVp6bb745rbml\nvxGDKkqxxRZbSMoHDjkAJ7ZVur3HrU6StOOOO0rKj9Lo2bOnpPxztZ70799fUj5swu26sb3W3J4q\nZe09sS2QERnt80gSSRo5cqQkabnllktrL7/8ctX3CZX1pz9l73Efc8wxkvIjANzqHUcfrLLKKpKk\nxx9/PK21wtgAtIYzzjgjbf/jH/+QlG+3vv7666u+T9Xm8TFSvt2+VHF0mUcefPbZZ2mtUULs7rvv\nvrTt42AcFTTRRBON82tjWKGDEONYqmq21DaSYoP/fC5r9JA/i+MN4mum9vg1fnysOQQ9vnaKoeqt\nJLb2r7vuupLyr0Fvv/12Sa1xjJeyUaVxHNZKK60kKT8iwyOyGilwtRD/TjPNNFNai0G1zSCOvTvw\nwAMlFR9Q6bFnUjaCZ+edd05rDj+MIaKtNk5k9tlnl5SFf0rSRhttJKl2I60YkQEAAAAAAAAAKKum\nqGCebLLJ0vZTTz0lKR8S4oAgv5uC1hZDdFx1+vXXX6e1jz/+WJJ0yy23pLVY6dHqYiDDs88+Kykf\nWuB3FOPf1NUxsVr5k08+kSS99957ldvZTnCgQNy/t956S5LUp0+ftDZo0CBJ+XcUHZDywgsvVHw/\nm0WsvnK4VXx3es0116z6PqF6fH3ggExJ6tGjhyRpzjnnTGvuIojVfEcddVQ1dhGoGD/uY6eLK/gL\nVTC7slLKn4/MQVqNWJnamQpmn6OlLND5uuuuS2vfffddJ/eudtZYY420Ha9j/+jWW29N274GiS/1\nWjW8rzOKDf6LQUuuxmxEsfrajzWH7krSggsuKCn/fPPfIAbSuVIXaEUzzjhj2nawfQxiPv/886u+\nT5UUQz+fe+45SVm3jZTdM4h8v+6yyy5La4suuqikrGpZyiqXW61qOfJ9iammmiqt1TrokApmAAAA\nAAAAAEBZcYMZAAAAAAAAAFCShh6R4RLx2Crrtp4BAwaktRdffFFS8YFuAIrjALyFF144rTm4Yd55\n501r8803n6T6bdddffXVJUlrrbVWWttvv/3afJ7b/eLnOYDCbZNS7VtWGp1DMDzySMraNAlLBNBs\nHBIWx3Ftv/32kqTRo0entTFjxkjKB+I4HOrBBx9Ma5dccokk6ffff6/I/lbSeuutl7bjqDJzQN+F\nF16Y1q644gpJ0qhRo9Ka/1ZAOXk8TRyRseyyy0qSnnjiibRWbDgegObnkL+uXbumtaOPPlqS9MAD\nD9Rkn8otjtbx77b11lunNZ+T43Fy7bXXlpS/pvHX3HvvvWntxx9/rMAe15cuXbqkbd9XieMhhw4d\nKkn69NNPq7tj7WBEBgAAAAAAAACgrBq6ghkASjXJJJOk7bvuuktSfnC+K7GjE044QZLUr1+/tNa3\nb19J0siRI9NaI1aN1aMhQ4ak7SOPPFJSPjwSAJrJtNNOm7bdneeODimr2n3nnXfSmsNxOO8AAIBa\nc3C7w/mkrBq3W7duac1VynEaQaxcbgWuXI6BxO7UimsxwLdeUMEMAAAAAAAAACgrbjADAAAAAAAA\nAErCiAwALSkGChx22GGS8q0evXr1kiSdeuqpaW322WeXJF1zzTVpjSAhAAAAAADQChiRAQAAAAAA\nAAAoKyqYAQAAAAAAAADtooIZAAAAAAAAAFBW3GAGAAAAAAAAAJRkomr+sCpO4wAAAAAAAAAAVBgV\nzAAAAAAAAACAknCDGQAAAAAAAABQEm4wAwAAAAAAAABKwg1mAAAAAAAAAEBJuMEMAAAAAAAAACgJ\nN5gBAAAAAAAAACXhBjMAAAAAAAAAoCTcYAYAAAAAAAAAlIQbzAAAAAAAAACAknCDGQAAAAAAAABQ\nEm4wAwAAAAAAAABKwg1mAAAAAAAAAEBJuMEMAAAAAAAAACgJN5gBAAAAAAAAACXhBjMAAAAAAAAA\noCTcYAYAAAAAAAAAlIQbzAAAAAAAAACAknCDGQAAAAAAAABQEm4wAwAAAAAAAABKwg1mAAAAAAAA\nAEBJuMEMAAAAAAAAACgJN5gBAAAAAAAAACXhBjMAAAAAAAAAoCT/B4ombtuxtZ+dAAAAAElFTkSu\nQmCC\n", "text/plain": [ "<Figure size 2000x200 with 1 Axes>" ] }, "metadata": { "tags": [] }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Most True Negative\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAABoCAYAAAB8B5V6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3WecXHX5/vErCKg06U0IIjVBeu9g\nACHSBUKXEnqREhBIICBSpEdEIogiUgy99ypK70KoQRCkg5QfTcX8H/xf1/fcJ3MyOzs77cx+3o/O\n67u7s2dnZ86cOXPf9zVg4sSJEwUAAAAAAAAAQC9N0e4dAAAAAAAAAACUExeYAQAAAAAAAAB14QIz\nAAAAAAAAAKAuXGAGAAAAAAAAANSFC8wAAAAAAAAAgLpwgRkAAAAAAAAAUBcuMAMAAAAAAAAA6sIF\nZgAAAAAAAABAXbjADAAAAAAAAACoy5St/GUDBgxo5a8DAAAAAAAAADTAxIkTC9epYAYAAAAAAAAA\n1IULzAAAAAAAAACAunCBGQAAAAAAAABQFy4wAwAAAAAAAADqwgVmAAAAAAAAAEBduMAMAAAAAAAA\nAKjLlO3egUYYMGBA2v72t78tSRo9enRa23XXXWu6nUMOOUSSdPrpp6e1//3vf43YRQAAAAAAAADo\nOlQwAwAAAAAAAADqwgVmAAAAAAAAAEBdSjciY4opsmviw4YNkyStvfbaaa1oHMann34qqXjcxTTT\nTJO2TzrppIrvGzNmzGR/FkDvfOMb30jbZ511liRpp512Smt+Tl9++eUt3S8AAAAAqNVhhx2WthdZ\nZBFJ0gILLJDWVl99dUnSxIkTK3729ddfT9uDBw+WJP3f//1fU/YTAFqFCmYAAAAAAAAAQF1KV8E8\n++yzp+0tt9xSUvbpoCQ999xzkqRzzjknrV1zzTWSpFdeeaXi9kaNGpW2jzrqKEnSKaecktbuuOMO\nSdJTTz3V111HC80111ySpE033bTia/FxcNNNN/Xqdr/3ve+l7R//+MeSpJlmmimtPfroo33+Hd0i\nPlfXXHNNSdKIESPS2rLLLitJeuaZZ9Ja/DS/WU444QRJ0nzzzZfWnnjiCUnSH/7wh7T25ZdfSpI+\n/PDDqrfnx8TLL7+c1j777LPG7CzQj80xxxySpAUXXDCtPfbYY5Kkzz//vKafdfCvlFUXDRkypOL7\nhw8f3redrcGUU2anXF/72tcqvr7JJptIyr/O2DbbbJO2Y3VUNT62Hn300WntiiuuqOlnO53vy1gV\n9tVXX7Vrd5pq++23T9t//OMfJUkXXnhhWvvtb38rSfrLX/6S1rr1vuhUAwcOTNtTTz21JOmll15q\n1+6gwaaaaqq0Pf3001d8fb/99pOU74q1FVdcMW1fdtllkqRLLrkkrX300UeSeM52stlmm02StOOO\nO6a1H/3oR5KkFVZYIa0NGDCg4mf9GhVfq/xeZ5555klrs846qyQqmIH+Zt5555WUn8LgjoYtttgi\nrb3//vuSpA022CCtPfLII63YxV6jghkAAAAAAAAAUBcuMAMAAAAAAAAA6jJgYtHU+Wb9soLWkU5y\n7LHHSpKOOOKItOawsW233Tat0cbU+VZbbTVJ0t13313xtU8++SRtO5zhhhtuSGvVxjS89tpradtj\nOIrE3/Hqq69Kyka1SNLFF18sSXr++ecnextl4DblmWeeOa3tvffekrKWQUn61re+JSkflulWj1NP\nPTWtxfE0zfL2229LylreIo/YkbIRGhMmTEhrfmysvPLKac0tkf/+97/T2qWXXipJuuCCC6ruy733\n3iuJEFEpH/bo/1HZx8t41MHvf//7tLbccstJyrdLnnbaaZKkn/70p2mtv73OzDDDDJKkX/3qV2nN\noyzisdajaOLzrciMM84oKT/CyK3rRYpGVjTK17/+dUn545uPk63w5JNPpm2HIrstu0w23HDDtO1x\nRn4dkbLxR3HUUTccW6+66qq07TEqRWLbve+Lev7PDsaedtpp09obb7whqf8cl/ycjcdpv4fZfffd\n05pHYzigWMpGKMTzRY+riaNu2i0eV/faay9J2TgzKWvfv++++9KaW3h7Ov6Wkc9j4/msxxbE94Xx\nONQICy20kKT8uWYncTj3Pvvsk9Z8buP3N5L0ne98R1L+ORO/3ghx3FMrjR8/XlI2ZkvKxujF83y/\n9/PYPan4//rCCy9Ikh544IG0ttFGG0kq//vCWvn945gxY9La5ptvLqn6+2uU18ILLyxJGjp0aFrz\nqBlft5GyY4hHCknZOXM85yuz+DriY+t6661X089+8MEHadv3Sxx/18rz3sldRqaCGQAAAAAAAABQ\nFyqYg80220xSVrUcLb300mm7WwL/Nt54Y0n5ats4TNzmnHNOSdJaa61V9fYcTHD99ddXfC1Wvfj+\n/fOf/9y7He4FV6fGIJxVVllFkvTNb36z4vtjhde6664rKf8JkcX7quh2auVP5XbYYYe09t///rfu\n22uFxRZbTFK+8tcVl77PohiO5/v3F7/4RVq79dZbm7KfPXHlRbzvHdj49NNPp7Xvf//7Nd2eq5pv\nv/32tPbFF19Ikvbcc8+qP+sq77POOqum39WNllpqKUn5So4//elPkvJVzUUc/ubHZhQ7Blpp1VVX\nTdt33nlnxde9Fis0llhiCUn5v7en6vdu4ypNvy5F8dyh1lMW/0zR98dgUVfJx+rxRjvxxBMlSYcc\nckhDbi++DpmrJmNloV+TYzeJn1tl5Ao5Kav4cNizlFVc/vWvf01ru+22m6SsYqyMbrvttrRdFFDZ\naP/85z8l5QMy3W3j1zZJOvnkkyXlX/s6UQwc9muFqwWlLBA0WmmllSRlVYpSVtHtQJ4ohvz6GH/X\nXXdVfP3BBx/s/R/QYO7Oevjhh9PaLLPMIil/rPU58OOPP57WfL/Fx0GZ7bzzzmnbIdSDBg3q9e24\nYvU///lPWvv4448lSWPHjq36s7fccoukzg138/HUz4nJqfaaW+37J/czrsKL7yWKOg+bxUHkUhag\nGoM7XW345ptv1v074n3qAONu7A4wd4ZI0kEHHSRJOu6449KaQ2z9nqzs1l9//bR97rnnSsoHO/px\nH6837LHHHpK6J5DZVctSdiyJXSIWj3/umIo/6+4fdwiXlbsg4nldPNeq189//vO0PXr06D7fXq2o\nYAYAAAAAAAAANBQXmAEAAAAAAAAAdWFERuCwDrfCSFnZ+nnnnZfWYsBH2ThsTcrGARSV5tfTktxb\nU0zR2s83HOgX2wiKuNVt0003TWseg7DiiiumNYdR3XzzzRW3EcMwHF5VJAaqxLbedvPogRgoNGrU\nKElZK7aUPU5i25hHE8SxD40O+mg0t9DGoC+Pt4jD8seNGycp36rtltd//etfaW2DDTaQlG9xclBK\n5DClOJrm2WeflST94x//qOMvKYfYYnzHHXdIyoJupKwFKo4m8mOy6NgU73sfqw899NBG73ZVc889\ntyTpyiuvTGtu74pt/P57Y+Ccv++YY45Jaw6+OP7449OaQyi7ZXyGjymSNHLkSEn5+8WtsQ59lIpf\nj9xqGUNCPHbk888/T2sew3Httdemtfj1ZjnyyCMl9RxQ5L83PvfPOeeciu+77rrrJOWfCw4M+fvf\n/57Wil6buplblmPY3VRTTSUp3/buERBlEcc5xQDDdvNzMbawH3zwwZKk888/vx27lON9iG3KcVxG\nLeLf5lEG8TnmUV8x1Cv+TKdwuKyUhUwvsMACFd8XW9P9XuiVV15p7s61gdvVt99++7QW2/cnFf+n\n+++/v6T8ccTn790y3iC+L/Q5aQz9LNKXERk+54vnzB4b4HOmVvF70xhA7v/5dtttl9bKPG6qXeJo\noqIxdh4Vufzyy6e1OMKyLBZddFFJ+YBUv0bEkSAOrDvppJPSmkPk4+imzz77TFI2UlDKnpdxjFMn\nOuCAA9K2n1NxRKbH08URGR47E98X+n1evKYSx92VhUPfd9xxx7Tm6wxxRK9HkPm9YBRHO/lxEh8H\nHgkbz0uahREZAAAAAAAAAICGooK5wN/+9re0PXjwYEndU8EcP5V+7bXXavoZBwr1VIXqsCQHW0Qx\n5M8VnzEApRX8qVcM4fL/taiqJQabuMI03gczzTSTpHz1pMWqiGqVPJ1QwexK7a222iqtDRs2rOL7\n/AlqDHF0JWCsGEMmVoD7fx3/z652iZWcDo90RaLUPdXMDhJyyKWU3S9Flcl+zEnZ8SpWn7oC/JRT\nTklrrahILeLwyBgC6wqnolCoIrE6wSGA8e91Rdnaa6/dt51tM1cauyNAysJkY6WYq11iFUgZOZwk\nhs6aK1ikrOogdoQUccVCDJp1xUenV7O0Qqz4cJVZrJwqW2V3/Htc6dfT+bSPjfF87KGHHpIkjR8/\nvuL7P/roo7TtTgkfr+PtxPPjIv6+t956q+r3NZo7H3bddde0dtppp0nKV6b6frn77rsrbiN2K7nK\nKFZPFoVrloW7HiRp6NChFV/3OWtP53I+V46h1EWB2J0onvs7YCl2lhVVT5ofN1LPx+cy83vE2CVV\n6/mGj0nxPZErFWNlcjz/60TTTDONpOLn+zLLLJO2y1hZ20rxueWw3Rg+5vPjxRdfvOJn11hjjbQd\nu8o72ZRTTpm2ff0gHiu23nprScXnaPE1yj975plnpjWHxMb3Az5ffPTRR/u8780Uu678OhO7U+N7\nplrEji6HQpaJuysd5ihl1fyxsruaeEz2/Ruv7/l23E3dTFQwAwAAAAAAAAAaigvMAAAAAAAAAIC6\nTNnzt6CbFJXLx5Z9B+DF8AoPXi970IdbNz3KQ5J22mknSfmwBo/SiC0cbl+ILexFozEcohiDIIq4\n3a5d7czx73ArXAzw8DgCBxlKWUshbWG1iyEWRYEW5vYnSTriiCMkSb/5zW/Smp+XnRQE2RMHYrot\nTJI23nhjSfmQRHOAkpQFm8XWrzKOCXHAWHxuxVbbSU2YMCFtu6U5Bk+65buMYmDJvffeKynfWuVR\nEfE16pFHHmnR3jXXkksuOdmvxTZShwH2ZJ111pGUjRWRsrEP7733Xlrz8yg+rlo9uqAdYjv2Cy+8\nICn/el62ERnx73HLbQy/sbFjx6btMWPGSJKef/75Ju9d+8Tnjkd9xXBhiy26Pt9p9Yi2dvF4lSFD\nhqQ1j566+uqr01ocoVGNjyVxFFWto33axee7DnmVssdOfGz4+OtQ7/7I4wBjC3a1SZox8PL++++X\nJB1yyCFprYyvNwMHDmz3LpSaxz3E55aDrk844YS05udbfB/scRhlPPeL53l+jxPHW1V7vx+/5kDJ\nGE677rrrVvxMHGvVyeI4L4/AK7p+0l94JMg+++xT923E8xdfH4gjVdZaay1J2XtuKT9epRWoYAYA\nAAAAAAAA1IUK5mDmmWeWlA/OsW4JMYvhFQ40iQFj99xzT8v3qZ08CH2zzTZLaw6xi48DB3i5SkbK\nqj9iFc2VV14pKR/eV8TVrO36lHbGGWdM2w60iFztHasnewp5RP2eeeaZtO2Ah8MPPzytuRJxscUW\na+2O9VIM8HB1whRTZJ9jVquEiaFBPg6VJTxochyIFJ/nDjspquw5++yz07YDG2I3SZkq2Cf105/+\nNG37cRAfD7/+9a8llbNypSexqnhSsbo9hsP2Vqx2mfT24rHbx5JTTz01rf3nP/+p+/c2SwwscQBt\nfF11Bczll1+e1vz8iD873XTTScpXL5aZjx9FIXX+30rdXbnsMKUYoBxDis3dIg43lKTZZptNkjTr\nrLOmtWrPz7IbMWKEpHyI1NNPPy0pH5ZUxB0SsdLK57vtCtOth6tx4//c4t/xzjvvtGyfOpWPl7Wa\nf/750/Z3v/tdSdLKK6+c1hzC5dd3SXr33Xf7sotNEd/vXXzxxRVf97G1p5DT/mqllVZK265cnnvu\nudOaO9Nuv/32tBZDVc0dR1988UVT9rNV/L666HpST3wfxcA3nyvHgMxO7RiZVHwf52sP5557blpz\ndXtRqOaBBx6Ytv16Fa+5bLLJJpKkG264Ia35nLDMoby94WPToosumtZ+8pOfSJJGjhyZ1qhgBgAA\nAAAAAACUAheYAQAAAAAAAAB1GTCxWs9yo39ZGPTdiTwmIbZcWmwDKmPYlAd+x6CxZ599VlK+tQVZ\nO4fD/qI777wzbf/+97+XJO2yyy5pLQZjVOMWrB133LHu/ewLt4lKWfvjrrvumtbmmmuuip9xW9uf\n//zntOZAhtg25jDIsodCtsvgwYMlZW2sUtbq4xDJTuPjS3x+WGzPP/TQQyVJ48ePT2tup1t22WXT\nmsM3Y0hIp3Mr3IMPPpjWPFqnLx5++OG07eDEMplnnnkkZaNfJGmWWWaRlA8pGTRokKR8CKJDEss+\nKsUt/TGAbPjw4XXfnoN3X3zxxbS2yCKLSCoeeVTEwSCSdOyxx0rKj6lppemnnz5tO2Tq9NNPT2s+\nd4yjDHyfzjvvvGntzTfflJSF1ErZ+VrRCIUy8v83HhsdJBTb/f167rFdkvTvf/+7FbvYdB4fddxx\nx9V9G0888UTa9utWHKNS5nFEcUTMfffdJykfsuqQUJ+/RXGkldvai1prYxCeQ/7iOKdO4rEyJ554\nYlqbaaaZKr7PLfu//OUv09qNN94oKX9flb19vxaxNd3jreJ7ojhyxXycLrqsEN83/+AHP5CUjUPo\nBDH4PIZLmwPPi8aoxNErfu4VhaF79KCUD9g0P3+KRkd0Kr+uxrEifj8Yx3a9/fbbFT/rc/44wsih\nZHHkQVnEY4pD2uO1I4e5x6BDv2YvuOCCac0hmWussUZa83Nq8803T2vVguM7SRxt5jDZOBrOQaE+\nr5Wyv3fhhRdOax6NEa8lFh1rPMq01uDabrHaaqulbY+ZfOONN9JaPFdupMldRqaCGQAAAAAAAABQ\nFyqYg6IK5ltuuUVS/lOjMn567SC/n/3sZ2nNVT6xUvLkk0+WVBwg019Uq2Du6ZOzIq4aiqE7roqI\nA9jbLVYtu4LUoR2StPPOO1f8TFHFgqvM/FiS8oFSqM6fQsZK8UsvvVSStPXWW7dln3riMLs77rgj\nrU099dSS8kFCsVLBHFwYq8f83HM1t1SeKta4z66EitUxRVy54opdKQtsiFVXRxxxRMP2s1Vcde1K\nOik7bnz11VdpzaFtMVi06Pt8rIlhMa7SjFUvnRhC5eeEJA0ZMkRSPnB14MCBkqSnnnqq6u34vnrg\ngQfSmqsIY5eDK+iPPvrotBYDUmzJJZeUlD8XaCVXLUnStttuK0l67rnn0trvfvc7SfkqON+XroaT\niit6/DhxFaPUHYG1sVrqpptukiStsMIKFd8Xq6X8OOjEUMeexK6rxx57TFK+UrcR4nHGj0nft2US\ng7uPOeYYSfnnTqyqm9Tuu++etmPo7KRcdSZlx55OD8mLj5cLL7xQUnbuImWVqPGxZnfddVfa9vuj\nk046Ka19+eWXDd3XTuLXKL8+SdljyN0TUvZ67S4UKf+aZ66qO+qoo9KaO0Jbze97YqBaPIdrhGqV\n3dG9994rSRo3blxaq/YcbDV3DcVz0gMOOEBSPmDW/9eewlN9jI3V3Outt56k/PldGfn8PXZi+W/r\n6TqCO8ni+wFX9y600EJpragqvNP5/UA8V/e5TK3XV+J7iWWWWUZS/rzW1youuOCCBuxxefj5KWXX\nLmMFOBXMAAAAAAAAAIBS4AIzAAAAAAAAAKAujMgIHGTxwx/+MK2NHj1aUj4Qp4w8TP+MM85Ia9/5\nznck5cdhOKgqfl9REEg3a8SIjNii6FEkF110UaN2sWM4IDC2OLvduqjN8Pjjj0/bbrOKoV79VQzm\nOu200yTlwyPdgvrII4+0dscKOKDNLWBSFuoRW689Gia2HVez//77p223le27775prZNaBZsltuE6\nGGPMmDFpLQbvlIWf5w4ukWpvGZ30+3v6mRhUev755/dmN7vannvumbZ9fIkhTR4L5vEUUu3P275Y\nddVVJeXbJbfbbruKtWq22WabtO3XWIfpSFnIpMeKSFkITAzkLDO30saxSn4djq2jHrUUx1114iiZ\nIvEY4BEyHq8kZcFcHqcyOR4j4mBaSZpvvvkqvu+tt96SlLXgxrVOFwO3hg0bJil/7nXkkUdW/IyP\nz/vtt19a8zEiHiscyHnYYYeltTgOrczcThz/5z7HjWMT3NId3zt5O75XLFNYWyPF0DuPS4jnchZD\nIT1KrdXjGT2+LLbdF42RKuIgv/fffz+t+bni1zap9+c7kcfOxXObOO6m2eKIE4/BiOH0Dj+M5++1\n8rEpjkepNaS4LOLYAodlvvTSS2nN11ziyCuH08UQzEsuuURSdn7UTTyKMz5nLJ6fxPG15mDnGGLr\nsWm33XZbQ/ezTDxmx9cOJEZkAAAAAAAAAABKot9XMM8555xp25W6MQBjkUUWkZT/xKnbxGqW4447\nTlJWdStln4C0oqKpmVyV4CHzkjTzzDNLyocfVjPFFNlnMq5OcKWmlFXPxArmWDnVH7gyfuWVV05r\nBx10kKR8ZcgTTzwhKR8q4yqk/sKfXjtwRsrCRuPjZtCgQZJaE6ITq7kc1uIqHil7zsQK/9dff11S\nvpLd/99abbDBBmn7+uuvl5QPyBgxYkSvbq+MPvvss7TtKpqDDz44rcX7oyxc6T5+/Pi0VlTR8+yz\nz0rKKmKkLFA3BlU4uC4eX/yYjBzeU8YglGa68847JWUV8lEMCHSoTDPdf//9kvJVUq4s/eSTT6r+\nrI8XMVzIx8ehQ4emNb/ex+eOHxvx9SiGCnYDd9/FYFBXOruSWcoq48rUSbTllltKys7PpayKttaw\nNXfiSFn1XVFlb1zz+XGnc5iUlIUUxsAtV+7HCnBX+sdgqVNOOUWStP7666c1/0yspPvTn/7UsH3v\nVLFjy8eUM888M61NN910krLjqySts846Ldq7zuXQ3hg062NSvCbggNkYVOrX/1aIx5KtttpKUj4U\n0oGO8f2eK5djlaUrVuO1hVrtsccekvKBtO4Eje8H/PUYjN0sY8eOTdt+rxb/b/56rVXVsdrb1x6W\nXnrptLbEEktIylfvzj333JKycMhu53OgeCwZOXKkpHxob3/lLhop61aL7wH8etXfKpjj89LneCut\ntFJao4IZAAAAAAAAAFAKXGAGAAAAAAAAANSl34/IOPTQQ9N2UetBJ47IcHunlA04b5QFF1xQUr49\n5ayzzpKUD/8oizhg/5e//KWk/EiG3ioKm4rhVWVsYW8Fj4K48cYb09rqq68uKWvhlKSNNtqotTvW\nZg6buvLKK9Oax9NccMEFaa2odbdZ4v/IrUaxPc9jTGJA1vDhwyVlAWJS74N/4ogMB3zF51McFdGt\nYqulw2JisGNsHy0Ljz+Io6eKOPCn1tEMsX3VoV8zzjhjWvNjMgbIlEUc3eDQm0aF7fp++c1vflPx\ntVaPyLjsssskSffcc09aiyNSJjVw4MC0/de//lVSfiTCaqutJqk4jM3nNpJ0yy23SMq3OzsYppUB\nSq0QWyT9XIjt4A899JAkaY011khr8X7pD3x/xGPttNNOK0n66KOP0loMYupk8T3CzTffLElafPHF\nq/6MzzviKAOPvojjrjyuKIZr9ocRGUU22WSTtO2xD8stt1xae/jhhyVJW2+9dVp75ZVXWrNzkxHD\nt+Px3vw6XRS4FflxFUevVHufHMPbHn/8cUnSQgstlNb8GIsjDGNodH8Sn79+PsaQP4cLxvPBZo2w\njMGxfn2N/H6g1ktJcbxBfB0y/x3xseRjUxz90818LcqhgFI2ftDjA/szj8mTsvehccTXAgssIKnn\nMWvdJj6fPJIwjpVhRAYAAAAAAAAAoBSm7PlbOpdDFc4///y0Nsccc0iSzj333LR2xx13SMoqpKRs\naHwcpm+xgq8Tq1luv/32tO1AsFhx3Bf+1NAD5aXsE9QxY8ZUfF+n23fffdN2rZXLriJ01W1PGl1F\n3mizzz572nYVQaurKHyfxv+HP4WPFR+dzhXxDr6Usqp2hxtKxfevv+4wHUk65phjKr7v+OOPl5QP\nr/LviCGTzapYiJV+/gTYwRtS/jhqDsCpp+rRFQ0xbNSfiPa3T6CLPgluYZNRU7ga8vnnn2/o7cbH\noStShw0bltYcsNTpFcyxsuvXv/61pHwnhyvAY4V/X6qZi6qG2uUXv/iFpKySWZJeffVVSdJ1112X\n1n74wx9KykLHpKxKOVZSFlUuWzxncbWyHzdxO74elSn4bnIeeOCBtL333ntLyrq5pKwKzufJUtZd\n1F/4dT12vJVZPCc94IADJOXDHi12Tv3hD3+QlA+aHTJkiKT8OYG7Re69994G7nE5XXPNNWnb78tu\nvfXWtOYg2tj92a5OLL+Pi++D/H65SFG3ZlTUVXfGGWdIyp/Xfvzxx5Ly4ZFFHRIO9OuvVctRfP46\n+G/bbbdNa0sttZSkfNfJXXfd1ZR9iecisfrYfB5W63lqDD+cMGGCpPxzpqhT2o+h/sLdA//973/T\nWqM62LqBr99JWRh67DTqtveNMQR7n332kZQPpfZr8YYbbljxs/Ex1GpUMAMAAAAAAAAA6sIFZgAA\nAAAAAABAXUrdD+aWH4+JiGIL+7vvvisp36Lr8Qff/e5305pbM2NoWyeGnTh8RMpCEho1IsOeffbZ\ntO3Wpni/uG2n0y277LJVv+7W3Ng+6yH648aNS2txrEHZnH322WnbYyl+9rOftWVffv7zn1esdXpA\nTAy2cIt2bNHxY+P111+vWKuH/18zzzxzWvOonqFDh6a17bbbru7fUU1sVz/ssMNy+yRJl1xyiaR8\nW5tbbWPLeTUeXyBJo0ePlpQPlXF7vMeF9GfvvPNOu3ehqhis9+GHH7ZlH2J7nM0wwwxt2JPeGzVq\nVNreYYcdKr5++eWXS8qO3fWI43t+/OMf1307jeZQtRhoevXVV0vKt++79S8GljhgK67Vyq/3HpUh\nZWFF8fVoq622kpQP3ywzt1GPGDEirflYG4MlfU591VVXtXDv2sdjAxysGsUw2zLy/7xRLfRuzS0a\nldWfeZxOHA/hILwDDzywYu22225r4d5lIXHVxmL0lf/O+L7LI3o85kiSBg8e3LR96DYehxHb5Fsp\nnlsVnWf11qBBg9K2r8PEsTygSUpQAAANg0lEQVTxfVR/5fslnvO169y6E22//fZp26N8HPrcTTwG\n+OKLL05r8Thq77//vqTic+GddtqpOTtXAyqYAQAAAAAAAAB1KV0Fc/z0taiK1lV1ruyVpPnnn1+S\nNNtss1W9bX9CNHDgwLQWB2l3ivgpoqttbrjhhrT24osvVvyMPzV/+eWX01q1cLp4H1gczl8WMYgi\nhgHZ448/Lkk66aSTKr7minapuCL14YcfliRde+21fd7PZoqBczHAstlipb0r0DbddNO09r///U9S\n/jHZSRwA6k4JSZprrrkkZfsexTAxB3IssMACac2Pp/nmm6/q73UlTPxfHXrooZKyELBmOvbYY9O2\nq6hjMIw/QY2Bfl9++aUk6YMPPkhrRaEUrgaPnSNf+9rXJOVDg7wPndhB0mp33nlnu3ehqj/+8Y9p\n2wEUrQjHjc+jGIBjDpDrdD2dl8w000yS+hZc4q4DSZplllkqvu6g5FhJ1Eonn3xy2nZw0cILL5zW\n9tprL0n5quZGBP/EziVXK7tiXJLuv/9+SdKKK66Y1nysa5YYqOr9a/T/JXaauII5dgK6w6lbKphj\nYPP6668vSdp8883TWrVuIIfk4f974okn2r0LveZullaEhcXzXlfXxarMRofd1srvYWoNY4shf7Xy\nz8Twubhd7XdcccUVvf59zeLgMB//pezawsiRI9NaswK04nUOB7LGAFK//yhjIOIzzzyTtv1ep54u\npG7j8zwp6wC4++6727Q3nS0ew7z92GOPtWt3msbH7KKq5WjWWWeVlD+3d+dVDHluNSqYAQAAAAAA\nAAB14QIzAAAAAAAAAKAupRuRMcUU2TXxaaaZpuLrbr+IoTFucV9wwQWr3vaSSy4pSbrmmmvSmkcn\nnHrqqWmtFW1W1cTRIG6jd3vn5Lit57333ktrb7/9tqT8iAK3h55xxhlpzcPTd955577sdlvEIJIz\nzzxTUtZuK2UjNGJr/+9+97uabtutsu1qK67V+PHj03YMp2uWxRZbTFJ+tITbb+NoCQeCjB07tun7\nVKs4RsXPGY/FkLKW5Ti+wsF/cZyDA3ViGIHbkmNbndtXvvrqq7TmbQ/ul5oX6Ffkiy++SNt+rvzq\nV79Ka1tssYWk/PgPtx3PO++8aW2XXXaRlP87PL4njs9we37RSI3+wqE3sQ2yLL71rW+lbT/n/b9v\nBr/+xeBJ82uaVJ7HU08t56uvvrokae21105rtQZ2/ehHP5KUD/kr4pE0RaN/WiGO29lggw0q9qUV\no3J8fF5++eXTmoP/PEZCyo51zbqv4sgZBzI2eiyBAxKl7P6Oenq8lMWWW24pKQurlaSll156st8f\nW28PPvhgSYROTeqtt95q9y7UJI708zn9sGHD0lpfRg4VmX322SXlz3v9eIrvKVoxPqrIRhttJCn/\n3Pb53aKLLlr1Z2sdq1Ht++PjxuPi4vvqThrH4+sMcVyRt2MQaCPG58T3ZP4fnXjiiWmtKKzYYell\nOceJYmi13wu5xb8/83mFlD1/yh4w2yweuRnFMbH9TdHx1mPd4vlkT9cJG40KZgAAAAAAAABAXUpX\nLhUrlPzpa6xk+slPfiIpf0XfIVKvvfZaWhs6dKik/KfJiyyyiKR8MNyoUaMkZWFXkrTffvv18a/o\nmzi0e++995YknXXWWWktDoufVPyk0NuuOJWyT1Cjd999V1K+yrcsYgiCK2ZjsMS+++4rKV9F60/z\newpjK4sLL7wwbfvTrHPOOSetOSjy+OOP7/Vt+7G29dZbpzUHfcXnzOeffy5J2njjjdOaP33vpKCK\nWJHgoMsYsnbCCSdIyndSjBkzRpL05JNPpjWHJHVLSEMM5ojbk4rVMa7MuO+++5q2X92iWjVk7EDo\nRC+88ELa9ifkseLd1Zd9qfiM4aDHHHOMpPxrvKv+/bwrEx9/pez1KAbcTT311JLyXUWjR4+WJF19\n9dVpzdXKMVRpzz33lFRcGe/OAal9VXVFYgdFO8Rg5+HDh0vKd8T5f+TwpUZbfPHF07b/p/GY68d9\nfPzH1yPzed0KK6yQ1hyG6RAhKQu0ioqCotvt73//e9p2BWTcd59HxGpMn4P0FFj20EMPScqfA3V6\neHMrxOOQjRs3rg170nvTTTdd2nZ14G9/+9u0tuuuu0rKd0/01korrZS2/R4sPn+tE8Lir7/++oq1\niy++WJK08sorp7Xllluuob/XHb/xfYjfU3Yqv1/xNQEpCxHz8V+S1l13XUn5kPhqIY6x28vH9h12\n2CGt+bW+iK9FSOUJMK5VK8PnO9Waa65ZsXbeeee1YU86l8Ph4zWuCRMmSMqfH3QLn9PEc+Ki87Wi\nbpzpp59eUr4y3ueCPt9pNiqYAQAAAAAAAAB14QIzAAAAAAAAAKAuAyb2dnp/X35ZD21q9d6eQ6ck\n6aijjpKUbyl0y0ocdu2wriKx3XD//feXlC+/jyGAnSK2ahUFgjnAJrZLus0ghnU5GOOyyy5Law6o\niONJymyppZZK226DrDX8Lj6GTzvtNEnSIYcc0sC9ay4HVDjwUMpCpGI7ZK2HBd8f8fvdvupwSCm7\nrxodVtRobhmU8mM/7MMPP5SUDxR48803JeXbqJ9++ulm7SK6WAwMdSvUkCFD0lqt4W6tFIMxYxus\nOUAujhSoNm7JrV1SFqC52267pbWiY5Pbk/16XVYeL9TT+AWH48TWON9vPQVF+n/k8VqS9Omnn/Z+\nZ/sRj16TssdkDExpZEBVDCaOAbPm9vL4ffGcpl5xVIDD0G666aY+326jHH744Wn7uOOOq/t23LIf\nR854tE67Qi47lQPr4ug8j1NoRfBmX8RWYp9/emSQlAWaX3rppWnNI4diELOtuuqqadvnzH6/GX9f\nDGz28fyKK65IazH0GOXhkZx+LEnVR1pERe+TiviYHq8xXHnllZKke+65J611y3HqX//6lyRp9913\nT2vx2kN/Eo9DDnSebbbZ2rU7HcnjcONxfMSIEZLygaHdJobTXnTRRRVf9wjBONrM94tHQUnZuWMc\nBXrJJZf0ef8md1yjghkAAAAAAAAAUJdSVzADfeWqhBhKNXjwYElZOGQUP1l2OEOsOiwjB+HEiiwH\nBMUqkJ133llS/hMvV/TG+8Vhd50e5FHEFTuStOOOO0rKqvql7P6IwWYeov/KK680fwfR1YoqmA8+\n+OC0dvrpp7d8n3oy1VRTpW1XBcYKA/voo4/StqtxYiCOQzV/8IMfpLUZZ5xRUv7cwdVlRxxxRFpz\nBbPDecrK3VO+LyTp5ptvliQttNBCdd9urOx20NWXX35Z9+31N/FcwMGt8847b1qL4aZ9FYNw/Zq7\nySabNOz2pfxz0ceUGPz71ltvNfT3NULsLFxmmWUkZUFZUna/TTPNNGnNHR+xc8qhs4888kjzdrZL\n+HzIYWaStNZaa0nqrHDmnvj5Gavg/diJYdTuVC16WzzHHHOk7Wmnnbbi6+5aiwFsRdVmKLfVVlst\nbbs6cMUVV0xrMRjQiiqYfe4Tq9vdSVGm51ZfUMGcdRXHrvqxY8dK6lunTjfyufB6662X1txB3s0V\nzNE666wjKf/e6bXXXqv4vvnmm0+SdPvtt6c1hySOHDkyrZ144ol93icqmAEAAAAAAAAADcUFZgAA\nAAAAAABAXRiRAUzCbakxwMGBb0ceeWRa+8tf/tLaHUNbxHb1JZZYQpJ04403prVuCdxA+5VxREbk\ncRmxdT2GFDbCuHHjJOVbv7rZPPPMIykfdOgg3/nnnz+tucUyjvlxkFUMrWrhKV9X8qiGOLKhKBSs\nEdw+u+2226Y1t2jHkSl+HDz11FNp7YsvvqhY88iIGBA4YcKERu92W/jYM91006U1t2CjPjvttJMk\naZVVVklrsZ29zGaYYQZJ0vLLL5/WRo0aVfF9DzzwgKR8kLrXzjvvvLT2xhtvSCr/yDygVXx8jiG5\nu+yyS7t2py0c0BYD5gcNGiRJevXVV9uyT52KERm9t+GGG6Ztj4KNIX8Otu0LRmQAAAAAAAAAABqK\nCmYAADrALbfckraXXHJJSVmog5QFCQEA0EzuPhk2bFha65YKZgDt5YCxGKLritT+Yvjw4ZKkbbbZ\nJq01uuuvW5x99tmSpD322COtuVsyVsGjtahgBgAAAAAAAAA0FBeYAQAAAAAAAAB1YUQGAAAAAAAA\n0GSnnHKKpCzATuo/AdboDozIAAAAAAAAAAA0FBXMAAAAAAAAAICqqGAGAAAAAAAAADQUF5gBAAAA\nAAAAAHWZspW/rIXTOAAAAAAAAAAATUYFMwAAAAAAAACgLlxgBgAAAAAAAADUhQvMAAAAAAAAAIC6\ncIEZAAAAAAAAAFAXLjADAAAAAAAAAOrCBWYAAAAAAAAAQF24wAwAAAAAAAAAqAsXmAEAAAAAAAAA\ndeECMwAAAAAAAACgLlxgBgAAAAAAAADUhQvMAAAAAAAAAIC6cIEZAAAAAAAAAFAXLjADAAAAAAAA\nAOrCBWYAAAAAAAAAQF24wAwAAAAAAAAAqAsXmAEAAAAAAAAAdeECMwAAAAAAAACgLlxgBgAAAAAA\nAADUhQvMAAAAAAAAAIC6cIEZAAAAAAAAAFAXLjADAAAAAAAAAOrCBWYAAAAAAAAAQF24wAwAAAAA\nAAAAqMv/A74B1qBGFlscAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 2000x200 with 1 Axes>" ] }, "metadata": { "tags": [] }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Most False Negative\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAABoCAYAAAB8B5V6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztvWe8LFWV/v84QUdnZJQZR1HRERUD\niIiCCBIkCCjJMKIgIgYQERFEUISrYgIDSBBUUFBA0giIoCJJckYl4xAEB0wzo844Ofh78f9/dz11\ne9Hdp++55/S9PN83pz7rdFdX7dp77V1Va63nYb///e9/rxBCCCGEEEIIIYQQQghhhvzBfB9ACCGE\nEEIIIYQQQgghhCWTPGAOIYQQQgghhBBCCCGEMBF5wBxCCCGEEEIIIYQQQghhIvKAOYQQQgghhBBC\nCCGEEMJE5AFzCCGEEEIIIYQQQgghhInIA+YQQgghhBBCCCGEEEIIE5EHzCGEEEIIIYQQQgghhBAm\nIg+YQwghhBBCCCGEEEIIIUxEHjCHEEIIIYQQQgghhBBCmIg/mssfe9jDHjaXPxdCmJA11lhDkvSC\nF7yg2b74xS/O1+HMK+63fv/73w/8/93vfrck6VGPelSzPfKRj5QkLbvsss122mmnSZIuueSSxXKc\nYe6gT1T9IQRJ+uM//uO2/d///d8D//+jP/r/ll+HHXbYgO2+++5rtv/93/8d2B+fc9/0zGc+U5L0\nn//5n8226667SpJ+97vfDfz+KL823xx44IFt+7e//a0k6Ywzzmi222+/XZK03HLLNdvWW28tSXru\nc5/bbI9//OMlSeeee26zffnLX14MRzy3HHvssW37CU94giTpv/7rv5qNPuJ9j+0/+ZM/aTb6Gn0l\nhBBCkKQ/+IMuDvH//u//xvrOi1/8YknSs5/97GZ76lOfKkn6wz/8w4HP+9rmf/7nfyRJj33sY5uN\nueyee+5ptm9+85uSpPvvv7/ZHvGIRwzsm9/75S9/OdaxLwqrrbZa295ss80kSauvvnqzbbvttpKk\nf/u3f5vxvrkOCxYsaLY111xTkrTffvs120033SSpvw4MYXHyYPcPiWAOIYQQQgghhBBCCCGEMBEP\n+/0chq4kgnnJZFGi9dZee21J0jrrrNNsHpkUppOvfOUrkqRNN9202X71q19Jkh7zmMc02z/90z9J\nkv7+7/++2XhT7G9pzz//fEndW+dpgz7uPmrY2/q99tqrbX/605+W1LWP1I0Vf/v/l3/5lwO/MYxJ\nIgfC/EGkBBGnzv7779+2DzjgAEnSb37zm2ajTxC9IUl/9md/Jkn6wAc+0GyHHHLIwL6r/jSNEalL\nM+NGA7/sZS9r229+85slddE+Ujfm3Z8+7nGPG9jvP/zDP0jq9xeiWa677rpmu/HGGyVJf/d3f9ds\nF110kSTp1ltvHTi+hz/84W2baNe57kuvetWrJEnf+MY3mu3qq6+W1J3jKPyYL7zwQknShhtu2GxL\n8lq0ikzGl/z5n/95s9FHPJKJaG7+J3UR4Etym4TJ8DUGY2Zxjvf11ltPknTVVVc1WyLtQpg+hq1n\nV1xxxbbN2paxLUlPfvKTJUk/+clPmo15a/nll5/xsfzjP/6jJOkv/uIvxvr8Aw880LY5fr/33G23\n3WZ8DAuz++67t+2NNtpIUhelLUn/8i//Iqm/lnvd614nSfrCF77QbMsss4wk6ac//WmzEfXsUdfM\n3dxHStKdd94pSdp4442b7bzzzpMkXXzxxc126KGHzuDMQpgZiWAOIYQQQgghhBBCCCGEMKvkAXMI\nIYQQQgghhBBCCCGEiUiJjNBjpuUwvIg/BfbXWmutZvvTP/1TSf3U1h133FFSl0IidUX+KzGkMPe8\n//3vlyRts802zfYf//EfkvpidqRUu0gDfchLaVAiw/e3JIJ41Le//e1mI43JxftIlXra057WbKSV\n7bPPPs2G8J+nLIelh1122UWSdOSRRzYbfs997M9+9jNJXTkEqUspJIVO6sqx7L333ovpiMNs4WIs\nq6yyiqQu1VPq/OOvf/3rZkMkxktV3HHHHZL65TAomfP85z+/2f793/9dknT99dc3W1VOgTRTn38/\n97nPSZJuueWWZiN9fq7L83zrW9+SJL3iFa9oNtrN/e4xxxwjSfr5z3/ebIj8veENb2i2lVZaSVJf\nAAhh1qOOOqrZvH2nGdJsTznllGZD/IjrLXVzsl8/tl0McIUVVpDUL9VyzTXXzPZhh9B82SabbNJs\nnkY/38z0/sfFMv/6r/9aUn/dCz4u2XdVGgShVkk6/fTTBz43rGxBCLNJNRY+8pGPSJLe9ra3NRv3\nhfyVuj7rQn2UU9xqq62a7Z//+Z8l9cspMg+7j/jud78rqb+2YQwgqO7f9XtU1jE+tiglxe/PhLe/\n/e2S+mUSKW/h58FcyzMQqVujPfGJT2w21mE+pv/qr/5KUndfIHUl87wUI5/78Y9/3Gycp/scnrlU\nZdFCWFRSIiOEEEIIIYQQQgghhBDCrJII5ocYkwhCEfG06667NttNN90kqYsOkrq3hx6Fd/PNN0vq\nCtRL3Zt5f+u2KEKCYfbZaaedJEl77LFHs/32t78d+Bxvaf2NMTaP7jj55JMldQJn08rmm2/etrff\nfntJ0hprrNFslUgS0Yb+NhxhB39rTtTY7bff3mzrr7++JOnuu+9uNsYWUeSSdN99901yOmEO4Xp5\n9OSznvUsSXXUAdFIkrTDDjtIko4//vhm+9d//VdJ/f7yohe9SFIneiZJZ5xxhiTpoIMOmoWzCIsK\n0eUeMVtFqxHt4n7ytttuk9Rde6kTdfFIHXyxR6Lih4hIlbrod/dN1bEQWeP/O+mkkyQtXrHRa6+9\nVlLXr6UukoeoXEl60pOeJKnfBkRDcpyS9OEPf1hSLfLjkc5EfnukOEKILmA0jdC/fLzfddddkvrt\nUwmHgkevk5Xzxje+sdlOPPHEWTziMJ8MW/O7KCQR7Iw1SXrCE54w8DmyCZZddtlmw5c94xnPaLYb\nbrhBUt/3vPSlL5XUFyIlWt6jE+fyfsDn4Soq8rjjjpPU96vurybFIxY5Bh+rz3ve8yT153+iEpeU\nbIuwZOHzIWsLF3pnLNx7773NVt3vsWZwH0F2lO9vGB7le//990uSfvSjHzUbkcF+X8r48DHNvO/Z\n1kQhExk9Co9CRizQ1xhkC/kxk9mK4KHU3Rd6tDcZD49+9KOb7fLLL5fUzc1Sdw/h58Ex+P03x+r3\nqNzDekZtCLNFIphDCCGEEEIIIYQQQgghzCp5wBxCCCGEEEIIIYQQQghhIv5o9EfCkoqnxhHCXoWy\nu0AbIkMbb7zxwOdcKIj9eKrbFltsIUm66qqrmq1K6WLfXiIjTBcI1n32s59tNlJ+PH2QvuOpVaRL\nLr/88s3mKUHTyAUXXCCpn9JF2ring5GW7ZBW7uViSBX18UF7eJo57ezp9KRiIgAoSTvvvLMk6Yc/\n/GGzpazM/EHK2cUXX9xs+DpPaSXt3lOMGSu/+93vmg3BMveTiHr42PnBD34gSXrKU57SbJ/85Ccl\nSQceeGCzIaRy1llnzfDMwqKC2JPPl5TWccFGUhg9/ZLSDX7N8Rf4I6lLr/ZUUH7Pv0tf8xJV/C7l\nW6TOX735zW8eOJ/ZLovxnve8p22/4AUvkCTdeOONzYYYkKfq/+IXv5DUF9GhnV1wCFEcT5ulxJeP\nGX7PU0tpj0MPPbTZdt99d0n1Wmq+WG655ST1+wN+w68V/siPF5uXPaHfeHmDsPRR9dtPfepTbZsU\nd/db9Cefl/ic3zfwOV8brrrqqgO/xxrSBSVJEfcSGXM5xnztypjiXkbqRDU5dt/277qoFnAelUCr\n+xT2g5+T+uuIhb8bwuKg6l/bbbdd267Ka+EPfMwyT/u64+lPf/rAdxEX9nl9t912k9QXTadEoK+V\nKL3jZcLwXT6vM6Z9DFJ2bFwQD5a6+zgXbOa5yTnnnNNsiBT7eayzzjqSpMsuu6zZWOdTHk3qylW5\nz8FHuI+lhJGvA/Gn7scpLbLmmms2mz+nCWFxkAjmEEIIIYQQQgghhBBCCBORCOalmCoKwN9+8Vbu\nNa95TbNdeumlkvoiQ7yBW2WVVZqNYvH+xpPIGn9T+etf/1pS/808bzWnKSoo9CF6wq+LR9lCdd2I\nrvMoKX9DPS1sueWWbZs33ogwOH7eRKl43+WtPpF3UveG3KNaeBvt+2M//haescebbUnad999JXXR\nNFLGzHyC0If7tZ/+9KeS+v2+yuBAzMOjWbmW3q+qKFXEuTw6AQEUxAMl6fOf/7ykRDDPFYjGSN34\n9og8rpf7QeZBz/Sgv7iPoD95tFzVX/i/9yv+75976lOfKqkv5Iav+epXv9psL3nJSyT1fdNs4CKY\nv/nNb3rHLnUCWu7f2PZ+TwbAT37yk2ZDGMvHG2PURXQQ8nPxTcaWRy8SwTxNvpbz8Lagj/h8wzX1\ntqD/+efYj0ebhaWHYZlORPxLnd/w/sJ3fS3CescjmNmuRDj9XoLx6f7NM7Xmgyoq89RTT23bH/zg\nByX1s9uYk12oj7byNqjmcO6Z/Hrw/0qQ0Rn1/xAmYZggrEf78n/vz/TjKqPB55lq3xtuuKGkvoj5\nLrvsIkn6m7/5m2YjUvfmm28e2F91P+XZgUTtPu5xj2s2zwQdB4S0pS6b1Nf5jHP8m9QJcRO1LEnf\n+MY3JEmrr756sxFhvcEGGzTbt7/9bUn9NT3+uYqI9ntPvsPzGKmL9vZI7EQwh8VNIphDCCGEEEII\nIYQQQgghTEQeMIcQQgghhBBCCCGEEEKYiJTIWAqpUuJIf/zYxz7WbHfddZck6Zprrmk2UkcoMi91\n6SYu2vHsZz97YH+Ik1100UXNhpiHF92HbbbZpm2ffPLJY5xZmGtcSAg8FYrUIE8VBE97dkGEaWG9\n9dZr26QJ+7lVaYvD0k39u6RdeloYqZNVWqWnW7HtaV6IYT3xiU9stgceeGDY6YVFYFT5HlL2br31\n1mZ78pOfLKlf8oCU9CuuuGLAxjWVur7hJYcQY/M0QwTcXJCL795zzz3N9tznPvdBz837WkSDZgcX\naEHQ0UtFcT0QfZS6PkaJE6kro1OlVFfXzf0z/cBTtBG7c59DiYX111+/2fAliE1KXaplVTZoUfBS\nDMwRnoZLyQvSOqVO3AdBIf+uzzP4XYT9JGnHHXcc+Nzxxx8vqZ/6z/WY9lIRXEsvkYFfQOBH6trC\n/Rd9w9uWEgZJv186qUTl6BNHH310szGn+VoN/0GpOweRTd+fl8Ng/vK5CuErF0tGkNYFpedSwHjU\nHMg4c7+K33W/yn58f6wJfQ7HVpXm4B7qwZimUj1h6WFYv7r88svb9qabbipJuuGGG5qN/uzzEVSi\n1Q4if/gFSTrhhBMkdaWyJOnuu++WVI+t6h7LxxtrB39W4aU2xsFLm+21116SOjFCqfMDfnys/84/\n//xmo/3uvPPOZmM95mU7KOvx2Mc+ttlOP/10Sf0yidj8XoKSYC72TLkRFz8OYXGTCOYQQgghhBBC\nCCGEEEIIE5EI5ocIiOl4tHL1xp2I4+uuu25gH7xFlLq3hh61iSCOw1tIf8tIxBZCgZK08cYbS5LO\nO++8sc4nzA30G6mOtq0ES/icv0X26MppwaM8EbLy86DP+pv5KpqQN8UuhsX/PUoFWxWt7L9B9KK/\ngWbMuECWR/yE2aUS8PCIVHDhMD7nghs33nijpP61JPvDfSxiHR7ZQFSsC4LQnw4++OBmQ2DOI0QQ\nLHvpS1/abJdddpmk6YqCGjea2iO78CVzcR7jCtHut99+bRs/4D4Pwb9nPvOZA/tGcE7qMn0844dI\nYvcl+CaiDqUu0tijDfmuR64QIYyIn9QJx3jkL5+b7QhmRAalLkvD+y5R3L62IGLQbcOEiTxClzbw\nzAKiK73tmeuqbKtpgmgqj3LHv7iQ0RFHHCGp8wWS9IEPfEBSX1QJqnYMSw+V//LsCd8eBxfXHIb7\nD+4HPMuRzEgfnwjmzgWjhMgqIVLGoH+e//ucBpVgqX8u2QNhPhmWMeDzDPcpHrlPhLBnLzA+RkXM\nslb2NQtCeL4W5rh8rLJe9LUDay/PrmCu33///Ycey7jwDGX77bdvtkMOOUSStNJKKzUbcyzPVKQu\nc8M/x3MVv79g7fj973+/2cjEOvTQQ5uNyGS/99xzzz0l9X1sCPNBIphDCCGEEEIIIYQQQgghTEQe\nMIcQQgghhBBCCCGEEEKYiJTIWAohncTTrkiv/c53vtNsb3nLWyR1ReGlTmznpptuarYFCxZIkr70\npS8127D0/Kc85Sltm9QNT3dZdtllJfUFj9Zee21J/TTpCy644EF/I8wNP//5z9s25QCqNCrva57G\nDF5eZVpwwTzO01MeEZRCvE2SlllmGUn12PLPkS75iEc8otmqVDK2vU1JrXJBK1LSXJgwJTIWH1Uf\np4yF44JIjA8vZUAKoKf2kf7r37344osl9VP26U+eusx3SI2TuhRBF32kLMDLXvayZqNExlwzU8Em\nxpgk7bHHHpJqERMfH4jE+vxGamclQFrhfotjHVU2gHY+55xzmo30UC/BQ5r12Wef3WyMfb++lNDw\ndEn6i1/fX/3qV5KkT37yk832rW99S5J00kknNRv7wfdIXT91oS1KSngpF0QAvU1nG9rZ/STt5teX\n8eNrFa6Np66Tdu4po8cdd5ykuiyEj9UlJU2dsiKjUvtpU1KEHS/JhDCSl8NamqFfeYkC+qGLZs6l\n0Nxcw7lVAsbVOKh8aFU+qCot5WOxEuGiP7/+9a9vtk9/+tPjnsoiM0rkz8WWgbFVrXXdxr6r9vN2\noU9Wwn/OfPXFaixwrb39KH+E0K0k/fjHP5bUn1uWFmbqI7ykFSWqzjjjjLG+66Uq6E+j5oBxqY6f\n+31KsEndPbuLyXIMvsZgfhnVLvvuu6+kft848sgjJXVCvFJXLs7bgG0vkVGJAbK2ni2qdSXrVNZl\nkvTd735XUr/8ByXIvLwQ+/N5mnbbbrvtmu2www6TJL373e9utksvvVRStw6VUhpjSWWmvqTyB4vy\nG1XJJh9Hk8w9iWAOIYQQQgghhBBCCCGEMBGJYH6I4UX3edtWFef3aD0XA1oYf1vPW8vHPvaxzUZ0\nUfX22t94/uxnP5PUjyqdRhApkTqxrhNOOGHod6o3/ZVtGnGhKo8iBN6c+Xnw9svfqnm05nzDdfM3\n3/RP739EUp566qnNduutt0rqhKikLgLR31QzjjySg2hCf9tMxsDzn//8ZiMKxMcWx/ekJz1prHMM\ni0b1tvaFL3xh2yaqiYgsqYtq8u/iC/FvUtfHPGqTyMzHP/7xA7/rY5C+QRaI4xFR+GIX+YO5joIa\nJhxTvXn3CGYiOC688MJmYwy4kAv+x6Nt2XcVkefHxLF4VOe44NfWXXfdZsO3+zgncmXllVduNiJ/\n3OcQxeKRTghFuo2IN/yRJL3rXe+S1BfbpY95pBPRyh5twzzt4lpXXXVVdcoTM0z8ytu+EtDiGlUC\nqT6OuOZ+fRmr7oux+ef4rkcS0c7TFH137733Sur7Ht8GrmkVFelrL86xivBe0qHf+3Ue91pWmYCz\n4TvHFTadLaqoJbZHnU/13Sq6aeH9Oi48efPNNw98l/65xhprNNtyyy0nqT9vzgbVXDDqGuCb3Idy\nnr5Gw0dVUeHeLuzH/Rtt4D6qYi6FbUf9Fu3GtZKkZz3rWZL695TcP+K3pO58/b6A/Xn74afcX/F/\nz/wZN4JvthnWRmQASV22sM9zW221laT+uQ27l6x+y/vQQQcdJKkvAO0ZP+Ow0047tW3Wjv7MgP7p\n9z+IyPp6hzWajy1fnwLr42c84xkD/3vf+97Xtrln+8EPftBs3Dt51gnzoLdLNTcuCtV1oF1c0PQ5\nz3mOpH60MmtWF95lPfa0pz2t2e666y5J/XXvBz/4QUn960sfG9X/l+ZsnKWFYeuNas1QXXPPAnrN\na14jqZ/tOiz7fNQ8yL2n+/FRJII5hBBCCCGEEEIIIYQQwkTkAXMIIYQQQgghhBBCCCGEiUiJjKWY\nKhye9FOpS23yFLbDDz9cUl3SoCoqXoXVuwAAeEo32y7iQ0rLXKRw+Hnwe6PSA0477TRJfQHDH/7w\nh5L6KU6kbbmYU7XvykZKa5VKNF9cd911bfvFL36xpH7KbVXqgxRAF0eZrxS2ilVXXVVSJz4idefh\naXdrrrmmpEU7dk+F8vSpYbzpTW+S1BfXQCzO97f99ttL6othzDbDUqtIUZM6kTNSJKWuTUmLlaTX\nvva1kvqCZdNIdb4u2kYKm6e1MQb8GmHzND7SAr3cDmUwPJ2Ofb/61a9utksuuURSvywA481TFPGn\nyy+//IOd4pxRlcMYNqY8jfSKK66Q1E8RQ/zQ+xV9cdddd222z3/+85JGzykci6c777LLLpKkb3zj\nG83mvgE23XRTSf2yUIj2+LyAgBpCLVKXgvq85z2v2c477zxJ0g477NBsjMFjjjmm2VZffXVJ0vXX\nX99spF96mQu2XeCRtsKfS11/xjdK0pvf/GZJnViN1PeZM8XnTqhSAFkfPOpRj2q2qqwB/d7bnnHh\naYbMq57izravBSqRM1Jfp6lEBj7Aj70qP8J5+Jqv+jz78b60JMI5+XgfJny12267tW3awIWsabeq\nPMQooePKxlww12XRRgn6LPy5qpRGdW7D+pzj8yZj2sci+/E5ErHT2S6RMcn9BSWbfF1Of6lE1irh\nP5/vOIbqfsrX1pQNcIH0+Up1H5a+7WU9WLN8//vfbzbuB1daaaVmq/wv5+6l68D7BvcVlBaQZl+g\ntOrHHGvlUyjhIElf/OIXJfVLLVH6wvsLY+G9731vsyGid/XVVw/8RuU3Nt9887aNoDP3pVJf8HcY\n3OscccQRzca9n8+vlOnyNmAt79eAMeNzfiU2Szmva6+9ttnOP/98Sf1yGFxrLxPGOPP7TJ4p+PhY\nbbXVBn53Uaj6Bv3efcTtt98uSdpkk02a7cQTT5TUF2vnWC+//PJm45h9nX/00UdL6pdBuOWWWyT1\nn6VMEynNMXOqtqrG/tve9ra2vc0220jqr/25j/roRz/abPvvv//Afph/q3sy98/cC1F6Y5xSGYlg\nDiGEEEIIIYQQQgghhDARS0UEsxdxrwQZeArvb3kQIZimyJS5wN9SLFiw4EE/52/OeFvp362E3KAS\nqvCoZt5u+htPrtckBfmHvSXzNzDDiqOPgmgCPw+EDl71qlcNfM5FLog+9eiEzTbbTJL0ile8otkQ\n+PJIoh133HHGxzqb3HTTTQO2UUIpXEsXkZomNtpoI0n9qHqukQuWvP/975ckffzjH2+26g35sDeA\nlfihU2UCvOMd7xj4PMfq/opoh1Esylvk6jtHHXWUpE6ATZIe/ehHS+pnPtAPXCSUKFDaVurESaYd\njzQlusKjhuk7HsFM9Nbpp5/ebEQ5IMomdVGiHp1An/je977XbPhO2lvq+sEKK6zQbER8IC63OKlE\njbw/V+OC6B2PriSSx6N3EIvxaFva96KLLmo2RHR8fNxxxx2S+tft0ksvldQf5wjbuG9nnHtEvkdH\nA8fgEUxEErsgJ77dBfiIvPFjJlrIxfuIwEVkQ+oE2VwgEJFRFz8kMsmzIZhjPTqQ/uI+hXE+W1QR\nzBzLlVde2WwINX7iE58YOD7va8MiBr3/sSb0yDgyLlxclbHs32WczVQsaXFCFHklHOaw3mBuc6ro\n0xtuuGG2DnFeqKJ86C9vfetbm23jjTeWJH35y19uNs7dhYwRt/JMiWFzaPW/aYjcqrLMZhpFPeo8\n+H/VD91v4ff9XmxYNOs0gI9138Pxe8Qi7VyJxfocyLlV0cB+30UWjUe4zobwpI99/JsLuQ2Lzvfv\nck7Ms1KXWbPHHns0G3Okz3PcO/mcSz/w7DbmPu8vzJEezTrbEczDBPVcOPkNb3iDpC6bUOr8i68D\nEdry+zn6gc8trJWrCGaH+0ciF6VuTJNVJQ2PYPY2/cpXviKpP5eSzez7oF0865k1v/dx1id+jbgn\n9vuuH/3oR5K6qGVJ2nLLLSX1fTbRuw5R7ZVfq8bbbFHd7+EH/JqTDebHjnDhN7/5zWZjjc59qf//\n5S9/ebORjXjuuecO/MZs9/9JGCYm67A+ddF0zs37M3OFZxEecMABs3fAc0R13w/j+u43vvGNbZt5\nwYU2mTtdJJ5+6veUVQTzsOdhH/vYx9o289oGG2wgSTr22GNHHncimEMIIYQQQgghhBBCCCFMRB4w\nhxBCCCGEEEIIIYQQQpiIOS2RUaXZkNLgoeKVKBB4qiepKJ6KT+qGf5f0H0/DIF2HtFKpK8ruKYXD\n0oUmSX+b9qLnHN+otJJhqVp+fRE68lQoUo38c6SSezriTKnKolTn4UJGCK+5AEGVUnjVVVdJ6qcq\nbLHFFpL6/Y+ULgSmpE5UyUWfaAM+v/B+poXbbrutbZMi4detSlOm7X/+85/PxSHOGFLi/VpSuN5T\nHiuhS/qEi1xwvj6mK782zP85pI27MNchhxwiSbr77ruHnFkN42KU+BHX0FM8SfP31Hn258eCuICn\n3THmPQWQ8XjggQc2G6JtLro0LlVKLuc2qnTDTKE8he+v8uMu1kEJHEoVSN04d/E+Sm542QzmKxdZ\nI23Q06O4Ns95znOajXb2FEXaapjwlX/O269K+4VRKXGkPLrwD+UXXLyH8kKvfOUrm43zRDhP6lIt\nEYKSpK9+9auS+uVE6IsHH3xwsyGi9/SnP73ZWAu4vyLVcVR/YVx6qQrSQ708CWWPEPuRpLXXXrt3\nPlLXx0ip9f+7eA+lOzxVlXWOj0vWNO5LaHNPyWTscw0kaf3115fU71d77rmnJsXLjQDznwv10De8\nRAb4eGeN5/50XKE3UlBdpJP0Qv+NSnBqWvC1EumknqLLda7KXPk5Tus8DcPS8x1KnDCuJOl1r3ud\npL7/IA3XxecQtPT0bdrorLPOajYfR+PgcwZiOxyT1C/VM4xqTVrZoBIXnG3GLdPgqdCsbXxM0s6+\nVh9XEHlRqEQ9q7ZCnM7T0PmOj6OqbGB1n8RveEmQ6n4FsWcvkTHueVSCjeD3P/hk9wFeemrh/fm5\nVf2P+c3LYVC6y9dFHKuX5qDeW15pAAAgAElEQVQtV1555WZj3eF+jXs1v3cfl2FilZVP8RJKn/rU\npyT1114XXnihpH7JN8rsfOELX2g22tzvM/HZfm/MfnxtiACvz83M+y7qxf7G9SkIbkvSiiuuOHBu\nvkYC+qeXcmGN6SW3KqF3+gTlzCTpIx/5iKS+b6ckh5fNYq7zdSjbXlaz6vd+TzcbVP2EUjNeHpSy\nS/vtt1+zIczma1LWrKxNpe7e9Mwzz2w2SsN4Gaf5Lo0x6l6WcjKUdZC6vuFtxTzpJR5Yv++8887N\nRrkHfKPUiVGOOj4YJVhbncewOXTc8lHjglin1IkOu9+g3/vagnsEn1dZD7mNPkkZOqnzz+7rKGvl\npR0pzUYJnpTICCGEEEIIIYQQQgghhLDYmNMI5uotaPX2lf97xCcRSh5ViEiHi0jwJslFd4jCcxtR\nRi4AREQD0WS+Xb2V9ujTSqxrWITBXDAqwmBYUfZJvgseVQVVIX6/brxlufbaa6tTGQpvxPztZhW1\nRCSARwly3fztcHW9eMvo0SdEdnmkGoJwH/zgB5utesvImyQvos5b+nvvvXfg8/OFv9Hm7aKPQdrK\n+wvRGP7daYJj/trXvtZsvg2IEXiEAf1lVBQoVG9Qq6hmt/kb6tlgWPRp9blVVlml2b71rW9J6meO\n8GaUyFSp86MehU9buZAb0QTuYxmPHkXjworDGHYdRkXWjgsCFO7vieTwaBGiLNz/kQGw9dZbN9sV\nV1whqR+hscMOOwz8LlGlLtqCj/DopwsuuEBSF4Xv//f+R6T4T37yk/I8Ydy+XUFEikeuEFHoGQMc\nF2/FpS6aySMQ2eYa+Lb7STJGPHLq61//uiTplFNOaTaiwT06h4hGHydEXhx55JFDzraLzHDhHyKr\nPRMK8Z411lij2RC8dH9K5J5HOtN3PRKHPuSR0/QNzyYhOsHHKvOuR/4QieWCPsMiQyaBCKsKj0ar\n5ssqypEoKu9r2KosG4do+ne+853Nxpjx+d8jtaYNxr3UjX0/V86jEoP183JR4bmEa+S+rJqrqvsG\ncL9KRqNnx3jkMhBN6OLM7LsSviS6Weqi9TzSigwdz95hDvAoIyLKh42DB2NYVFUVkTXufDeJWFyV\nDTTsXsdF4Iim97Uh/tyvL75xLvAoZHysC5JWmYVVBuK4vmJYBB19TuoyHxGSkzr/XK0hR/WD1VZb\nTVI/u5Isqb333rvZTj31VEn9a0B7uCBzlYnK9T/ttNOajYhkBAClzid527M//12yBya5h2YedJ9Y\n9XH6nUd2E3XqIs60PYJ4Ujcfvfvd7262D3/4w5K6iFOp8xEesY2/qMTiPPOM+0v3jcyR/oyEeZB1\nntT1IY+ABI9+5rvum6rvcPzeLmR9eJQ5a35vb9Ydn/nMZ5qNqEkEBSXpmmuukdTP7OIe4cYbb2w2\nnvX4mo829Tlltp+/VOOMse9twH2cR+Aec8wxkqRDDz202RBs9PXdF7/4RUn9fnXxxRdL6l8Xrv+o\ne7yZ3v94++Hjqkjwak72SGyOj+wdqbte3oe4li6MTeaIP7fj+p544onNhgjgvvvuO3As4177YUJ3\njl/7Kltu2O95xDZ+g+eaUteH1lprrWZDBNOzEslocF+Mze85OFbPEmXNv+222zYbc87ZZ5/dbKwJ\n/b4GP44/clH5ByMRzCGEEEIIIYQQQgghhBAmIg+YQwghhBBCCCGEEEIIIUzEnJbIINTew8iHpeMi\n9iJ1KTyTiFxVED5O2pDUpXl7Oi5h8KRtOKOKx48bdr+4WJTi44uSUu7XlzRmUnWkLsTeU6FIlfIU\nxXGp0kP22WcfSf10SVI3XECEFABPy91jjz0k9QWASCnwdrnzzjsldakcUpcS6X2XdGYXpfrkJz8p\naeaiMfMJacyeClilBU67yN+44i6k43gaGufkKURQpS2OeyxV+YUqzWuScUn6kZd3IVXGU/ZIs3Ex\nFoT3vJwDx+KiY5TQoBSA1KXduZ8kbdHb55JLLun9ltQJjN1zzz3NRsqctxVj39uKlCBPDb/lllsk\ndWNxJjAf+DGT7uc2RGA8/YhUatImpc7XuJALpTZIiZK6fuclRmg/T712wQagn3h6r6doDYNj+dzn\nPtdspJqffPLJA5/3dFhStDxVCz/p4j1c16OPPrrZ3vGOd0jqCyIiduep7vyfMleStOGGG0rql1pA\noM1TX0lHdOEkyrFsv/32zYa4Cp+X+ilkwFigDy+8DS960Ysk9dOd6Tu+3mAucWE9+ounRtLfPX2Q\n9EzaW+pS0b2MxLnnnitJ+uxnPztwnIsTLzW0MJ4aXlEJaGHzUh/DvuvQlp5eS5u6L/E0zmmD1FCp\n70uA/uD+g7nFU9Pnaw3C2BmVxkra9stf/vJmO+CAAyR14lRSV4LHU6s333xzSf01GindvuajdIPb\nEHH2FFPGm4s/0r4+33AMXh7iPe95j6R+f0VkzT9XUZXSWpTSGJN+3qnKGziUN/LSIawZXEyR+Xwu\nhP2cqvQQeJkmfIRfN87d+wb92EsUVe07TADaryn79nmYMg1elqJai1bXgznI5xHO030AwsS+XmBO\n8fIQzJd+HpTq8TIN7MdLWnFv5efL3P3tb3+72RalvMGwsgF+38JazlP7KcXgQngc64tf/OJmo3zO\njjvu2GysfXxtzVrO+xrX18+RY3Y/xPX17zKfux9inHnqOiW0qnIXlFyQuvWxr0UoaeJihfQD7imk\nzv95WRnO3ceHl5KESy+9VFK/RCFCbi4OyrrYy8+xZnD/UpUNmu3nMNWYpj95WRTK41HuQurE6fx8\neVbgbU/pNUpqSJ34m88z3AeMehY1rKRphbeZX8NhsK7kPlLq1vTj4uJ99Be//6aPef/jN7z9eIYz\n22LG3n7j9ivua7k/lLr7GRcaplTeggULmu1DH/qQJGnddddtNp6F+rhEPNJ9zrASQb4mZPz4vQnr\nSfeTCz+XYD4ZRiKYQwghhBBCCCGEEEIIIUzEnEYwE9nlQje86feC80BhfKmLbPU3FzxR9zdYvC31\nYuG8ofS35jzVd3E3xK387TC/4W8uqt/lPCqBGH97SASEiwchqrAkUb0J8ze7sMkmm0jqv0XhbaRH\n4fE2yCPueOtWRQT422muIaJOvh+iUKQuAs0LzvMG368bIhgescCbWz9m3w8QMeZCWlxzF/SrBJSI\n5KiitCqRxLmGNvWxxfXwMcO2RxhOExzzqLe5vBX268G2vxkd901mJaBZRebNdL+jQMyIt5xSHdGA\nqCFidVIXmezRjlUEDv3eI0jxtz5+K3EcBNc8ioa3uRyT1L05dV/COHNRFKI6EBCRurezX/rSl5qt\nisatYM7xaGqfh4DI77e+9a3NRvSTC0rxpt/P7ZxzzpHUF1MkEsCjKGk3jyqoREEZg/4Gep111pHU\nj5KuoG984AMfaLZXvvKVkvrii8yDHlXCNSKDxI/fBbnoTx7tW0VhEB3tQim0s4vE8uae+UbqzrMS\n4fCII4RU3GfTF13wsoLxW/k/n6Poi34sV111laR+BDrX1SMMiAZzMUDa2a8vaygX6mEO80jnqu8u\nvF9p0bImKohEma1MD/yjt3MVCVgdP8KZHtVSibaQkYHY6TRB1JnUjUVfn3g0C1TtTT+cL9w3EhXp\n2WP4dl+/4ys88v3444+X1F+Xg0fwV5HTRNd7FOPf/u3fSupHudN+/rv0FxcDZA7wz9G/fO1AdoWL\nnS6KIPdMI9Umgd/weZg5AMFUqZszfG5mvPn6l/ada3FrfJ2vs1iL7Lnnns3GebqfoX39WnJ9q3Vb\nJYLt/Y/+7NeNOcDnf/q298lx7wc4fu9rG2ywgaQuI0Dq1vn0f6nz3WQKSd2aykWIN9poI0n9+3nu\nF4jgdzwCF8gmkLq1o2flMJZd8PX222+X1IkMS936wEWzsG233XbNRrSwC6qR7ecCqJxH5UN9Pcb8\n632D6+Xza9VP6Ad+71n5M55zVMJ/bvP5ADguH79kdO20007NVkUck2Xgbcr9gos4EslbZRd5+7Ee\nJ3tc6gR4XWCM6E9fM3PP4f6F5zDezn4dZoNhIp0+zxCd6vMCkcsudEhf9Mhk2mWvvfZqNiKdWcdL\n3TOy6jpXxzzuvODXF7FCvy9kPHqmImO1ilquMgZcaJvobF9vM77dvzGOPBuOc/IoX+7t/J6CceE2\nxqCvK7mW7nfJtDz22GMHzgNxYam7/pyP1GVecd8ndSL33jfJ1rzhhhuajX7iGbBse1Yx18OjuJlr\nvXoAberzB9fGM7+qqHVstFXllxYmEcwhhBBCCCGEEEIIIYQQJiIPmEMIIYQQQgghhBBCCCFMxJyW\nyLj22msl9UPKSdd0IR5Crz0FhhIZbiO83VMWSM2oxMcc0kO8mL6nKECV5s2+PcWEsPoqXQkhD9+P\nlxmYb0al7QzDBZlIc/FC7RdccIGkfog/uMBTJaI4TITDIUXLUygRwCHtQOrSXF1MDLE9isJL0q23\n3iqpn2rEdfX2Id3FU6tI1fLvku7Cbz0Yo85zviGF3FPTaRfvQ4xHTzlfEqkE5DwVHugT/rmqDMew\n1NfFWfaEVDcXOqJ8gKfw4v9IPfPjYhxLnQ/z88WPe7kEfKuLxZDa5L6TNCsXbKK8io83vuPfRTiz\nKqPj14qUa++748L+/Br570FV3oA0JU8Ffec73ympn3ZPeSHfL+lTnv7Gd7ydh/UrT9nzuW4YCGkg\nEiZJhx9++MDnOC4XMSFF2kuRkC7mJUa22morSf1UN/qTzwWk63q6JtfVU7Q4lipdvEqJc0GaE088\nUVK/HSm7NEpUmO9UZXQc0so89Z8UPC9fAS5sglAk85LUpYW6cKz/Hyh34mOa9nPxKPA+Pttp9qRE\n+txIu3iqZUVVWmdYKrqnHlbnQXq3j4nqWrpo6bTh/bpK2fc0SGCMzXba8CSQJuqClvSNqqyN+zLO\nw1OwaY8q/dOh/3tfwnf7vQkpo14KjfsLT9XGF3tpJJ8DFt6fl7DxOW8YlXjVsLIZPvfNdG0xSjyQ\n/blAEaJA7o+4Hl6OAB/lYnG0i6dgzxecu/tk1rF+f0G/8vtR2qVaIzpV6aFK/Nj3DfgjFyumNIGv\ni+jPXm6C4/IyCMwPPs9xXJWAofvuQw45RFK/5AbrRPcvtJWX7GHcuq9l3Pq5sS7ycU5/qdrZ2++U\nU04ZOBZE39dbb71mq+Ye5lcv68Va2X1KJTRLmTg/X9Yx3n74CLfh1/w8WId5f6C/eB/i+Lz8na+5\ngDb39qNMkpeqwNf5sVC+wgXDaQ8X6axEDTnP3XffvdlYj7PGkbr1pN+Tc1y+jmE8+vWgnb0swLhl\nuMalWk+wXvQ1KW1/3HHHNRul3nzNjFibzwWU1Tj00EObjbJuX/7yl5uNflyVmnFm2gZ+r/iWt7xF\nUl/AkOvr45d+78/RvATtwvi4w7/4dRsXSsf5vEpJOj++Yffu7jvxQ36d6cfuSyh56qV8ua/2/XH9\n/T6Y+xkvwUObe7+/8MILJXWio1Ln770kDW3v/Q+xdl+L0EaVD/P7TI7P1w7MB+zXx+KDkQjmEEII\nIYQQQgghhBBCCBMxp2EMiJL4G23wN8ZENHjxdqKf/Q0HUXP+loK3Ih7twNsEt/FGwt9q8HbCP8db\nyFERAVW0SAVvMYiwnQYmERPjDZFHLPCmy8/Ni9kDb0y8zVwcDLjWHiXNWxR/u85bfS8a/6EPfUhS\n/40Tb4Apui51b+H33XffZkNUqYq08rdavIX0KCfe/Pgb7YsuukhSv49TjN3fdPH2yd9CEeHnb6F4\nM784qaJjuEb+NrR6K8h3RkWlTTuVKAD9wH1AJQ4Fo6KBFt7HwvueDejjHhW5//77S+pH8BFR6cdX\niWZUkX78v4r29jaozo3PeRv4WJ4p+G//LcbUJL6OCDWPeKMt3W+RZeMCRltuuaWkfoQQUc3uI4jk\n8N9w/wNEKngEM2+l/Vri99z/4ddGwTXnTbXURd56VDM+ydvgsMMO6/2Vuki3HXbYodmYB/18icrx\nqGZ8pl83rqVHCCGI6P60imhk26OBiIRxv0u73X///ZoNbrvttoHfoN3cnzMG/PjoBy7Ox/zn16OK\n6mQs+NzjYh5zCfO5nxvX3yPtXAQaiIzzbLCqb3D9vd8jFMn6ROqiRVxYtIpm8TXotOHXmb7hNsaH\nt0XVR8YRa5ktPKOMvnnmmWc2G37Bj4/r4VE3bHvUDT7ZP0df8zaoRNsYdy4yTZYFft337RHM9GsX\nT62EwPE9fn8xrvjSsHXETIUyx/m9YZ974QtfKKkf3cl87YKRPgcsjK/fx81imG0Y7+5vWBe5WBz3\nEh4hR7Sor1mq6Hv6na8hqwwwqCLUnUpojsjGSiDQoZ+eddZZA+fh++M83E/T70fd+3Kefp9+0kkn\nSer7ePbnGVv0CRcXZKw88MADA8fsUZsIRLqQNcfi423BggWS+mJdlXAYx+LCulxL9xscC+sPqe9D\noFof058q0V33V6xPvK/hw6rr4T6RyGBfxwwTOfesYsTa/HOV+BdrQxfp5D64itL3Y+Y5gmdDeEYL\ncPxPfOITm40+5OveSrRttu+nqv0RYe1jAZ/o4pY8M+CeTOrmGb9GJ5xwwsB3eUbh2eBkNHpGPELX\nLio3U7wfsO39jwxAX49xbVwcj37g9xJcG/c5jCMfH/gw90Ns+3dpc4/cZ41bPZfz8+A3fMyyHxcq\nZX9kVPix+ngjM84zZTk3PxZs7pu4b/RIcdap3jd8PQKMAc9IZnz4/RntVlUtcBtjtcp0o/9X2REL\nkwjmEEIIIYQQQgghhBBCCBORB8whhBBCCCGEEEIIIYQQJmL+lT7+fxBHW3g7zA9VOp2nsVAa4zWv\neU2zkdr02c9+dui+K9EsTxUA0qz22WefZqtSq0gt8LQnwv0pRSF1qQeeEkfK1Pe+971mI6XAU29I\nl/CUR37jhhtuaDZSufy7iFyRJi11afJVapqn/PJ/F3CaixIZFVVKX1UGgeOvyp4sSVTiJJWYJ7bq\nulVpaG6bbQGKYSBK4NueOk+pF09RY9vT6jlfF71h/HoKHf3ZU18rEaJK6BCbpw/Svr4/xqO3IylE\nLj5D2tPFF1+smULKl6c4kfrlaZ+f+tSnJHVlMaSu3dwPIa5G6qgkffe735UkveAFLxj4fU+/pD0Q\nNpWk973vfZKkq6++utnWXnttSf3Ur3GFZfFN3s74Yi/NQUqplxEgddNTdLEdfPDBzcb1cD9eiTji\nc8YdWxXe19h2X1YJGJHG5+LD41IdH+No/fXXbzbmCBf+o918nqEPVSKTXvaGc/MSAaQJe4odNkpH\nzBVVeSFwgSD6s0NJAk8fpK18XFb+4EUvepGkfqol7UbpNakTv/J5y9Mfpw2/zrRtNUdXfdi/O0og\naDbx1GV8qPdhxrmPHfyBXxf6sAsJ0w88rbMST+Pch61npG7+2HDDDZuN7/g8xzj2/sV+vG9yTlX5\nm1HlKyqfUq1FhvnERRHt9NT0LbbYQlI/Pfr000+XJJ188slj7c/7QZXiPNtU8wi4wBiiVJtttlmz\nVeK4XP8qFd+vB33XS77w/0okviqD4CCgtfLKKzcb6za/R9h8880l9ccWx+pzwQ9/+ENJ/XmYY/Vj\nwa9636VPeN+oSvBw31OVt/RzZA7wORLRTV+DV0Ku559/vqR+aj/n7mMLQS7va/gDP5ZK0I+xWpX1\n8n7FOqsqe1eJoY8q4VCtqdi3XzeOz1P7Sen3e9RKSJC2dH91ySWXSOrPH6xj3Zdwrb00Av7Z+wF4\n6RzWp5TjkDrhuq997WvNtu2220qS7rzzzmajL3rbc21Gid3OlFElDOmzvo6hj1FiR+pKY7zrXe9q\nNp6beNklzveII45otk984hOS+uU8EVf19WIlZD4bgs1+3sy7Pv8+FPByqJSK8tIw1bxPX6zWXL72\n4h7aS20xjnycM2aq0mfeT6tyNjCqVCTH7/5q4TI/w/YPiWAOIYQQQgghhBBCCCGEMBFTE8EcFo1x\nxcTGxb/LmxePWFxnnXUk9QuOE7lcFRCv8LctVQQzkez81pIKohp77713s1UCXtNEFTEzTByqesNb\niV0sSXAe/vZw2NvwagxWNm+rSqhnphGai0IyR0bzy1/+UlL/eiDQ4kIHRPJ+5zvfaTbeUF944YXN\ntsIKK0iSdt9992a77777JPWjSom8PO+885qNfROhLHVZEx5NQOSPRxx5ZMs4uDARv0F0s9RFM3v0\nBJFJHuVD5JJHcfuYAvp9Fb3rb/8r4Qlsfr6MX5+DuIY+R1WCOYiSEOG1qNx4442S+kJCREldeeWV\nzVYJ4NLX/PiYP1zUg+vlvgSbR8fMtujNuFTZC3D99de3bUR9PWoNwRz/LudWZYR4dAXjzfsG1x8B\n3gfDhb2mjVGiaBy7Zx1AJYw9FyBKJHXXhUggqcuM86wIouDcL1TzKuPYrz3rSvdl1ZxbiXDhU6qo\nYW9TIsbcp/Fd/w36n/epqn9V838lzDVsbT3J2qGKiOZYdt5552YjevaMM85oNiKXq7VNdSw+j+Db\n3ZdVjLsuGpZV52y00UaS+v2PaFvPKqn6FX2xilb2qLRKlIrIWhdoHZXpBvSxa665ptnImPJjIdPD\no4uJzvYIYaJtfX7lPH3MIHbnv8E19EwsIjh9fwhVuUAW/d7HDGPPs8KI/vTo3SoaneytK664otmI\nTPeMMqJxEROVurWK35Mxfisha28XPlfd83pENNtVNtUoW/UbfgxAdDvCeVIdYVqNhSpa3iPi4Zhj\njhn4fBVJTN+u1nkO/rnKFKp8dhURXX3O10+VKNps4PMR97rV/HH22Wc3G9kwLmxLZrjfL5966qmS\n+pHORHl/4QtfGPicj3PuG770pS8121zcSz4UIPtU6q61i0fT77xvMAZcZJ0+6/1l2Hzp91NVxnQl\n6s5vjMq2ZixX48g/x30w81v1zG5hEsEcQgghhBBCCCGEEEIIYSLygDmEEEIIIYQQQgghhBDCRKRE\nxlLCbKVAEM7v6UKki7mox2qrrSapLl8xbgquf242CvFPO9NeFsOp+lOVElGlm3Kenga5JFKlmFTM\ndOx5W7HvuRT7CzODlCCEZCRpxRVXlNQX0SEVz1OhEIpycUEEhFwUhf976iaprJ5aSp/0ckU77rij\npL4YIKlQP/jBD5ptpv6nEp7ysYBgzig4lirl26EtPcWYlK8qfdVTujgun0f4jqdzzkWqYJXKjZgm\nZQGkTjzK09CqazQspb8SevP0PP7vQlWebjeXcG2qsgCUJJG6tG3SsqWuDap+4G1AW3rqIem63n6M\nUR8zwwRIpxFP2afMBcJ5UtcWnl4OPk5cpGZx42UQPvrRj471Ha6H9xHK7vh4ogSA+0ZKbXifq9a4\nrG28XSjP46nLpIP757C5CCHlXbzMSyXY44I+C5/vKH9JG7z97W9vNspcefmKcUtLVP+nvIC3M+u6\nE044YeDzPj9UpQf4jaoM0igqP0hbVqUqHD631157Ndsmm2wysD9S8CuxYvebVQkFzsm/63M8MG/6\nXD/u/U/VN1z4bGG89BAgNLa0c9xxx/X+Ol4yiuvg4miUwPHSDVW5B66/9+FKrL3qk5XIHz7C+1Al\nms7n3LdXYpnD0tiruc37OH7NRTApJ+P7rQTL8NWVcKf/LiWTXvnKVzYb7fGqV72q2TgG/1wlHlmJ\nM95xxx0PegzjrgertnrZy142YPPrQVkvX6dyfC7SyfzrAsZbb721JOnwww9vNkpjeNkMym5SvkCq\n13eV70zZjEWDkrD8dVjvS90axMt+0Z+rsl9+jfAr3oewuY9gjetl4NiPr33oG5QylLo5zz/HWPaS\nftyfUe5vnNJqiWAOIYQQQgghhBBCCCGEMBGJYJ5yqjdOlc2LvPP2tYqOGEUlwMMbXn97iKiHU4kv\nYPO3tByzv22phJvCdOGiJFCJ4/C2za/vkgjHX4lI5e3vQwdEUw4++OBmQ8xm8803b7avfOUrkqRj\njz222TbddNOBzyHq4T6PaCoHgTmPxth1110l9SNDeIO+0047Ndthhx0mqS8aSLTDuBFMs9XHx81o\n4c38uBFt00rVblWENRFRHu1QiRBW0XJERHmEJNExbvMoYHABq7mEyC4/N4SJPFIMH+tRG4yBSuiw\nEkrxzxGZ4REfVUTS3XffLakfsVWth6YRoiIRyZNq8U/wCDTOe1rhWt5///3NxvYka9xppMpqqoTD\nyJyRumhcz1JB4MmF0qoIV37P+ze/QSS41GXP+HjabbfdxjonfFTlD33uGxZl6cfHOPYowUrsDBDF\nkqT3ve99kvprWNrXf59z998l2sujUPHjfh74I49aRrzXo2PB24Vj8P1V7TbNoqNLEpVPXFp8ybhU\n/au6Z6tEYj0jimhHxpjUjQ+PwAXv40Q6u4jo0UcfLUk66qijBj7naxuPXF543+47PXsQZnofV61h\n/TdYv/gajUhPz/I+5ZRTJHUi3FIXxcp8LXXZkG9961ubbZ999pEkHXHEEc321a9+VVI/u8czzRcm\n961zA5lEC28/1FgyVs8hhBBCCCGEEEIIIYQQpo48YA4hhBBCCCGEEEIIIYQwEalLMOV4SkMlToLA\nEynbUpfO4SISnloyDFJkXKhqjTXWkNQvQv/5z39+4Lukh1TpflVqhqe6eRp4mH9IEfSUn2GifZXI\n35JOlRZVCXNU6dYzFY9I6tL0QkmLD33oQ832kpe8RJL005/+tNnOPPPM3t+5xstwcHxeOmmVVVaZ\n82N6KFKNZeZnL79AWYOvf/3rzeb+FvCn7nNIBXVhHVK5XUyENQBCHlInjjPXVGWwEApxITWo/K+n\nrlflMEhb9XR22m+UYN9ll10mSdpuu+2arUqlnkY8ZRlIU/bSIFCVTgnTAf208gWVKKULJ1I6aYcd\ndmi2BQsW9D7v29VveLmm5ZdfXpJ0xRVXNNu4JY+GrWk8vdyFjhbGf6sqpYFY24YbbthslKXyVHHu\nf/y3KJfh9zqUoPDxgbN7M24AAAu6SURBVP9wAc2q/AelMShPJUm77777g56bU4n3VXi7hTBb8GyB\ncnBSN/a8FAU2F7empMVnPvOZgf2+8Y1vbNuU2/E+jJD1rbfe2myUeqPknNQ95/A5nGcG7sNYY3iZ\nteuuu27guGZDvNd9Dr/nz1lYj7sI3H777SdJOvXUU5vtKU95iqRuzS51ZY8uuOCCZjvooIMk9X3K\nLrvsIqlf2mTYs5SI/IW5JBHMIYQQQgghhBBCCCGEECYiEcxTwLgRkFVkKFFpiHtI0sc//nFJ0gYb\nbNBsZ5xxxljHwpvMxzzmMc223nrrSeq/dauOfdgbsepz/tbt4Q9/+FjHF+aG6lpWUU+VKBVvZKed\nqk/S//3/lRjlKPHNYXjbErlSRUTnDfN0wHXYYostmo1IJ4/smm9uueWWtv2mN71JUl/0C0G1sHip\nxjTztAvl/vrXv5bURaZInR91X1L5HHCRK9YHnmmCwIhH/vK7FYszwsV9KxBd69GB4MdMW47rY309\nwXc8qrnijjvukNSfy4jU8uObxujfKrqT6HXPPAMXCQ3zz7hjzaP1rrnmGknSS1/60gEbkb1SF0V4\n/PHHD+zPx9haa60lqS9IR2SeC25V3+X4xz0P9wXj9kUiBrfddttmW3311R90fx7FyP9dgA/xMo9q\nxje6r+CcXCCQ+d+zRImcPvfcc8c6H6eKWq/8pUeOhjAJ+ItLL7202RgzHv1KRpTPLdwLeT9kXCJg\nJ3Vjz9ecPKPwsfW1r31NkrTCCis02/777y9JOvLII5uNbAR/zkHmhq+zmKc9S6uar8fNwoDKr3l2\nE0J+nqGGmDZRy5K0xx57SJI+/OEPNxvXwduKa+SZXfhgj4g+55xzJPXXLJX4IVSiriEsLhLBHEII\nIYQQQgghhBBCCGEi8oA5hBBCCCGEEEIIIYQQwkSkRMYUsCipqKSlXHnllc126KGHSuqnsVC8/0c/\n+lGzkQ7jabakVJPyIXWpMlWaXHXslW1UautsFN0Ps0d1PRBkcki58RSdcQUlpxEXoiJFsUpbnETY\nb9h30v+ni2WXXbZtP+MZz5DUT1cjDc2FSqFKHXYmKaWyMD7eSDn09EaOy9MbOeYIfSxeqvTLyy+/\nXJL0wAMPNBvCbK997WsHPu9p21xX900IuHnaNv1gueWWa7a111574LvDhKIWZ39gneElOki5dZEf\nWGaZZdo2Y8rHFudRiZdVpUO8xFiVHkrauwvm8bmnPe1pzTbfJTKqEkr33nvvg36u8jfzfQ6hzwtf\n+MK2TWk79930TR/vrNFdpA5xKBf+e/nLXy6pLwT+y1/+UpL09Kc/vdlWXHFFSX2R0BNOOGHgWCux\n8aqvVULR4P6oKu8CO++8c9v+2Mc+Jqk/D1cp+6TJe4kM7mFc8JLjcp8MLp5KuZ1KUPV5z3tes918\n880D+xlW7sxT7H3fwDzi7ZcSGWFRwR84rCd83qzWGJSYueeee5qNkoive93rxvp9L+V2/fXXS+qL\nZVOKzkv1rLTSSpL6pa9Yz1bz4Ktf/eqB3/X1sZc9nBQvj4O/9fJk+C4XP3zve98rSfrOd77TbPhb\nBFWlbr347Gc/u9lWXXVVSdIll1zSbKyR3C/8+Mc/ftBjnmlpkBAWhUQwhxBCCCGEEEIIIYQQQpiI\nRDBPAQgAEW0kdeI8HplCVJpHnxCR/La3va3ZKJjPG0hJWnfddSXVEU/+VnDllVeWJO20007NdsAB\nB8z8pMbAo/882iBMJx79MRufm0Y8sobx4Tbelo8SoKreFA+LXK32F+aP97znPW2b6++RjUQdjIoo\nGjfDYzZgHpG66DIXUEL4CREVafH59ocyVYTfmmuuKak/r9KfXPCFaDX3ocyN7heYsz3SuRKFIiLJ\n51oiiE888cSBzy/O6HaEg110buONN5bUF/7hGMgckLpIHV+rsB+PuvrZz34mqb9u4v+VSLLznOc8\np/dbUtfmVYThfFFFht59990Dn6PPVaK7w7KRpMxBc41H1HkGAnCtXaSOqD+PACai1iOY+b9H9RHN\n7OOJCDrPMPje9743cCyVWGa1LhqGj0WiqSs8Go/oQKKHpa49PDoRZmvMcs/k+8M33XXXXRPv14UY\n8c8+pvGDnnHi0eUhTALj230EfsD7H88PvM+RSUFEsdSJZbrYqD97WPi7zLOS9NznPldSf4668847\nJUlPetKTmu2YY46R1I/6Z1100003Ndt111038LswG1HLjgsT4g886vrCCy+U1An7Sd2aa/3112+2\n+++/X5J03333NRtZLIi2Sp3AoZ8j4oe+BvJjWJhkL4a5JBHMIYQQQgghhBBCCCGEECYiD5hDCCGE\nEEIIIYQQQgghTERKZEwBpIh5etnmm28uqZ8CS+qml9IgzcVTyUixc9ttt90mSdpss82ajfRuUlwk\naa211pLUF/c444wzJPVTcEelmy6MnxtpOFtuuWWzkeJBcfswfVQpRpQP8FRLT8tf0vC0oWGpoJWw\n1CRE3G86WbBgQdvee++9JfVFPR75yEdK6pccgrlINa/63Jlnntm2EVxxn02Kb8piLF4qUSuEWS67\n7LJmo2+QOurbnjJaiTOSHurp7KTCe8o8/cTL/Lhg3cIszrTJc889V1K/Tx599NEP+nlSZeeKq6++\nWlIniCx1bV6VmZgvKp9C//I0W0oKXHXVVc2GQNovfvGLgX1kLpo/XCDu/e9/v6QufVzq0p4RepI6\nv+BrL9bynl6OP/D1zEYbbSSpf81vvPFGSdKee+45cHzjzmnuP6r+xP0M6d6SdMEFFwx8ju9edNFF\nzUb5Dy+xw3ki7OfH6mUzmK/9fqoSCeXcvE0RATzvvPMGjnNROO2009o2YosugIZYtqe/H3LIIbN6\nDOGhxzOf+UxJ/VJQ9HefmxkfXkrDSzsAcwrPCZZGvEwN67tvfvObzXbsscdK6pcToUQVZcAkaaut\ntpIk7bXXXs3GdXj961/fbOutt54k6aijjmo2nt0cfvjhzXbSSSdJ6q/5KJtRkbIYYS5JBHMIIYQQ\nQgghhBBCCCGEiXjY7+fwlUYiJGYf3ph54XyibVwshKL8Hq3Mm8c77rij2XhDPtuie9UbwPe+973N\nxjGcffbZs/q7YTK4Xh6NRxSNR5wgquQCKAhUvuENb1jsx7koVIIHfh7836NUKzGMyoUO83XjutwI\nLU0HW2+9taR+9BMibNdff32zIZw0F1R910WDtttuu4FjIvLrc5/73BwcYXC4Xt6HyCDyCGb8j0cX\n8R2PUkEg0KMS8VP+G6wBEAOWuv5SZWhMA7SVR01yzOOuIUf52PjWsDRCJK9HMFdCeETFeiQ7Ecyz\nBeO3GmvbbLNN2z7rrLMkLdni0CEsKbAm8PtvMl+4d5M6QT3PhB6G3+MPEzkf9/6nEk333+D//lvY\nqiyyEMLi4cHGdCKYQwghhBBCCCGEEEIIIUxEHjCHEEIIIYQQQgghhBBCmIg5LZERQgghhBBCCCGE\nEEIIYekhEcwhhBBCCCGEEEIIIYQQJiIPmEMIIYQQQgghhBBCCCFMRB4whxBCCCGEEEIIIYQQQpiI\nPGAOIYQQQgghhBBCCCGEMBF5wBxCCCGEEEIIIYQQQghhIvKAOYQQQgghhBBCCCGEEMJE5AFzCCGE\nEEIIIYQQQgghhInIA+YQQgghhBBCCCGEEEIIE5EHzCGEEEIIIYQQQgghhBAmIg+YQwghhBBCCCGE\nEEIIIUxEHjCHEEIIIYQQQgghhBBCmIg8YA4hhBBCCCGEEEIIIYQwEXnAHEIIIYQQQgghhBBCCGEi\n8oA5hBBCCCGEEEIIIYQQwkTkAXMIIYQQQgghhBBCCCGEicgD5hBCCCGEEEIIIYQQQggTkQfMIYQQ\nQgghhBBCCCGEECYiD5hDCCGEEEIIIYQQQgghTEQeMIcQQgghhBBCCCGEEEKYiDxgDiGEEEIIIYQQ\nQgghhDARecAcQgghhBBCCCGEEEIIYSLygDmEEEIIIYQQQgghhBDCROQBcwghhBBCCCGEEEIIIYSJ\n+H8ERN2xfadiCgAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 2000x200 with 1 Axes>" ] }, "metadata": { "tags": [] }, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Most True Positive\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAABoCAYAAAB8B5V6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztnWe4blV1th/TezcxiYnGgrGhYosC\n0qRXqYemVKniUepBRECqAiIgIIp0AiJVOoceJIBwBGuIWBM0UWNMM93vx3fdcz1r73HetsvZfN9z\n/9nvNff7rjLLmHOtOcZ4nvGTn/zkJwohhBBCCCGEEEIIIYQQxuSnVvQFhBBCCCGEEEIIIYQQQnh6\nkhfMIYQQQgghhBBCCCGEECYiL5hDCCGEEEIIIYQQQgghTEReMIcQQgghhBBCCCGEEEKYiLxgDiGE\nEEIIIYQQQgghhDARecEcQgghhBBCCCGEEEIIYSLygjmEEEIIIYQQQgghhBDCROQFcwghhBBCCCGE\nEEIIIYSJyAvmEEIIIYQQQgghhBBCCBPxM/N5smc84xlzctxVVlmlfV5ttdUkSUuXLm1lX/rSlyRJ\nP/VT3fv0//3f/5Uk/dIv/dK04+yxxx6t7MILL5Qk3XXXXbN92WND/f3kJz8Z+7e/93u/J0nac889\nWxl15Mf7+Z//eUnSRhtt1Mr+/d//XZJ01FFHtbLf+q3fkiT9wz/8w9jXEuYXH3eD+s6f/dmftc9r\nrrmmJOnBBx9sZcuWLZMk/fM//3Mr+7mf+zlJ0vOf//xW9rKXvUyS9MxnPrOVMQbvuOOOWb3mpxPY\nH7+3//mf/xnpt3/6p38qSfrKV76y3ONKnV2bD376p3+6fR71PoJ04oknSpI23HDDVvaf//mfkqTv\nfe97rezwww+XJH3uc5+bx6ubH6q5bIsttpAk/fEf/3ErO/300+f3wkIITxuGzX0777yzpL5N4Xv+\n/ec+97mSpH333beVYZt8nuM3breq55r5WLPMZD0Bw57Jqv+Pusag3ryN/uu//muMq5sffB7+hV/4\nBUnSeuut18q+//3vS5I++9nPtrJXvOIVkqRbbrmllT311FOSpL/5m7+Zu4udZT7ykY9Ikn7xF3+x\nlX3rW9+S1O/3v/3bvy1J+o3f+I1W9oMf/GDa8X75l39ZUr/Neab04/H8yHOpJK2++uqSpH/8x3+c\n5FbCHDHqs9h73/ve9nmllVaa9n36mNsAyv7+7/++lf3whz+UJD355JOt7GMf+9icXHMITzfo28PW\nPvT7Yd/jGcvHzDve8Y5p3+M4g8417TdlaQghhBBCCCGEEEIIIYQwhHn1YJ5t1l13XUnSu9/97lbG\nzvKmm27aylZeeWVJnSeu1L2FZ8dakr7+9a9Lkl70ohe1MjzL2IWVpO9+97uS5sezbJiHAdf1whe+\nsJXttttukqR//dd/bWUf/ehHJUkveMELWhl19Ad/8AetDI/U3/3d3512PLzDpc4z5Nvf/nYru+ii\niyRJ//RP/9TKshu94qm8bQ444IBWttlmm0nqvAqkbly4hwEehv49+h9jQpJ+9KMfSep2sSXptNNO\nkyTtv//+rYzogVNOOWXgNT9d8J3CykNzVM8fjnPrrbe2sj/5kz+R1N/JP+mkk3rnmkvcu522fP3r\nX9/KPv/5z0uSDj300Gll9Aep8373a/7VX/1VSdLv//7vtzJszsEHH9zKqMuTTz65lfn5VjSDIkyu\nvPLKad/bcccdWxneGgceeGAru+yyyyR1XkZTPz/dqHbS3/Wud7UybM7999/fys4991xJ/R31//iP\n/5AUD/q54HWve137/NBDD037/0yiqEKYBPqczxmVFzJ4BOJ+++0nSfqXf/mXVva1r31NUn/tv/XW\nW0uS/u7v/q6VEbFX2Ra/lkGePXPJuOd705ve1D4/8sgjkvrPCBXVOF9nnXUk9evl7rvvnvY9/j/M\nNs+VTam8GF/60pe2smOPPVaS9OMf/7iV3XvvvZKkxx9/vJXRX1784he3shtuuEGS9MY3vrGVsY7+\n+Mc/3so++clPSlpxUWbD4Jr9me01r3mNpH4EYsXP/Mz/fX3gHqm0tXtE08e8r/EbPKOlLgqSvhnm\nn6qfVuPS+/juu+8uSTr11FNbGXbX+9Wo0A/8WZFIabczW2655XKPMRNbQr+WpP/+7/+WJP3hH/5h\nK+M+/+qv/qqVVZ77/HYY2B+3k1XdM2b+7d/+rZX5+abi9o978jlv1VVXlSRtvvnmrYz3Xf+/QLS1\ne8vTHgvVC55r8f5CP6j6n883jK1Fixa1smc/+9mSuj4sSW95y1skSddcc00rm2TeigdzCCGEEEII\nIYQQQgghhInIC+YQQgghhBBCCCGEEEIIE7GgU2S8+c1vbp/f9773SeqHKvz6r/+6pH7qC9zCPYzg\nL//yLyX1Qy5e/epXS5JOOOGEVobLuYfTbbLJJpK6EDqpc0P3xPSI4n31q18d9fZGonLN93Qdf/RH\nfySpn+aC0OFHH320leHyvs8++7QyQtIJE5C6MIybb765lSHssP3227eyq6++WlI/XQL19qxnPauV\nPZ1TZAwLkahC+0gxMizUhPQQhKlI0u233z7xtQzCz7HrrrtKkhYvXtzKaEPv47Qb35e6cKe99tqr\nld1zzz2S+iI6n/jEJyT106x86lOfktQPfydc0fsQ1/rpT3961NubV6pwXRg1hOR3fud32mfE+whL\nlKTnPe95krqxLXX9iXAWx0NlZjvcdMmSJZL6Ap/YWxezwS6T1kHq7IHbZ0K0vK64Vg+XxI4jOCN1\n9+l2HLv78pe/fLwbmwOqOif9y1//9V+3MsT7Kgjblbq0RsxfkvS3f/u3kqRrr722lRH+NmpI3nzD\nfOT9lH7v8/SHPvShab9ljvVUKdTRQgo1ni1YW3hf4vMk81EF8/3RRx/dykhn5O3hKXDGPUcIswV9\nrhrv/jxAuoK99967lf3Kr/yKpC79ndSltvOUEaRz2njjjVsZY8IFvi+//HJJfaFj7JqHp87n+Hjb\n297WPrOOQChL6sS8fc1HCgO3q1/4whck9e0Mc7KnQeCZyQXuaBtPTUiZp0+rbPxc2ZTqeL7OQrzv\nO9/5TisjJRyCc1K37vXnQmyoi5yzzvFnMViocxXj4jd/8zdbGW3t7UYb/ezP/mwro7/7sw5rEE9f\nxWcvYx3ox/P/hxVD1U9dwJ33Gx46P9sp+khX4OnT+OxrFsa3l/HO4/rrr5/4/N4P6c9eB8wL/p6D\nZzpf43rfHgTf83qshNyqZ8+q7rl+UslJ3fsGnwex7aSQlfpCpguFmYjoVmtmT4HC+xp/1n7iiSfG\nOsdCgHuq3jsdcsgh7fOaa64pSTryyCNbGesDT/dEf37nO9/Zyj784Q+PfV3xYA4hhBBCCCGEEEII\nIYQwEc/4yTy+ph91p+s5z3mOpP4bczyZ3CuX3RjfqeF2fu3Xfq2VIZDl3g5cC7sVkvTwww9L6u9C\n8Sbfq4mdbBcewoNz7bXXHukeJwHvzvXWW6+VXXfddZL6O2wkv3fPize84Q2SpL/4i79oZXjBubgW\nu/WenJ/dQ68XPJ28Ti+88EJJ/d3w9ddfX1JfnAphwIUqfDEI393k+t27YxB4kUudNziiIlJXR4O8\n04b9v/qfe9sgEufeCXj80H5StyvsopCf+cxnJPV3h9daay1Jndet1HnCuCcHfeKxxx5rZVyD77oh\nVlkJm62o/jKJ9zgemtSP1Hkfu23Ce9sFQ/GmQsTPf0MbSH2RuNnEd97xUnbvWOytf68S9KlEBjz6\nYurxvJ45ju82U/cuyoPtQnRUGhwJMBOG7YZX3g777ruvpL5437hst9127fMuu+wiSdpwww1b2Yr2\nYJ7ENjG3u2c8XndVnR5//PGtDI/umXipLCT8fiu7VpXheeG/ZU52Lz1EnFygCiE/Xx8cdNBBkvre\n9Ywjj2ZaURDR4p4miJK4cA12w6PLvvjFL0rqR1MhDF0J4C50z5VRr3Mm94Od9rm5Og62zr2BL7nk\nEkn9ddG41zJMwPOMM86Q1K1rpW4ORTTW78MjYYh2cUHLiy++WFJf4JvnBl8LMzf7PDxX65PKrlZl\n7rHN84qLrDE+POKIMn+WqOwvEWp+P3j8+nMD49KvD3vknr94P8/lWm5QX/PnlcMOO2xaGTaP/0ld\nJJ6vXVjHfuADH2hleDTiGS113mHuJb2iccFmhNn9eQCvf48sZB52oT7GhUeeMfaIepW6fuD1gkCa\nR1fyPI0w4kKD9W71vHfccce1z3i3+1gggo2IQKmzrb6OHvVZcjaobImvK1mzelty/dUae5jw6SDb\n7/aAz26HPAoS6Kcuhs41uDfmuFT1wnsMqVuLuiAs11JF01f35owq1Me1VGsWny+rMvC5kWt2/Hl/\nRTOTNUP1G/oi3txSNw/695nXvvSlL018LXNJ1b70NZ/3yfrg44h1Ps8PUmeD/d0gHs5u21nX+doH\nllcv8WAOIYQQQgghhBBCCCGEMBF5wRxCCCGEEEIIIYQQQghhIhakyN8xxxwjqR9iT6jWj370o1aG\nKzuhbJL0zGc+U1Lf/Z8QFA8hxm2cUHapEznzEGzCgDzE7o477pAkfeUrX2llhJp5YvpK0GImvP3t\nb5fUD+Orwste+cpXSuqHaxAW5fWHm7yHxZC+YtmyZa1slVVWkVSHyXuie8LGOL8kveQlL5HUDxvn\nHAs9LYaHIFTXOiic6T3veU/7vGjRIkn9UB5wcTxE7zxtC2FUk4Rm0Bfpr1InYuLJ2wmNfMUrXtHK\nEIO86aabWhnpK7wPEYax7bbbtrKTTz5ZUj0+GNtSd59+PMKFKjG7hdRfXBiTkFsPo+I+PH0Pob7e\nlojEeJgm/eqpp55qZYT1+DiqmI1QHgRQpS5ExtuIMBxEVv18VRokF8Kprot7w3YvD0LSPFSVz253\n5ypFRnXtVXibixD62INx2+iKK65on7HVngYBYY4qtcSKogr7xL5JXQoDF6OCKiTe23TPPfeUVKfI\neDqmXfJ+MOiaPbSPsGNPYUCaIrftjFFSI0mdra763xFHHNE+Ew7t49zTBQwCe4Yo5SR4WDnhip4W\niD72+OOPtzLqz+3zq171Kkn9lAj0P7c549pMbw/sfNV3Z5tRr3NQuprKbvm1+7wFz33ucyX102GA\nC9futttukjqR0nGuuboWcDEn1hMeso+d8THEutfDvAmfvu+++1rZgw8+KKmfSoY1vz8P0NdIQyd1\nwle+vhsUTj8TqpDp888/v5UhyuzPRKQU8jYiZN/nUtYxPl8zZjw1zbnnnitJ+sY3vtHKGKu+bsNW\n3HjjjdPuo+p/s2Wvq76GMLWvcUkd52nbeM4855xzWhnrd56DJOmqq66S1E+7Q59cd911W1mVitFF\ne1cEBxxwQPvMM6WHR2M73XYz3+yxxx6tjNQnX/7yl1vZ5ptvLqmfful73/uepH5/4dnd02b4c+NC\nwZ8Bq7F89913S+rSa0pdf/H+TBobr2fSNHnZqCLxs4GPE1Lweb//wQ9+IKnf72HY+B13HvTf8rla\nw3p70P9cGJu1Ms+lUn/eGIXKfnjq0yq1Cdfq6br4vx+PeqlSbVb2r0qH4ev8qcf1Y/tcwTzpcxnH\n9lQQrNFJK7bQINWm3y/zzKh9zoWsWTP7nOcpRRci9BcfHzwP+poL+8Kc5ngqDd5BuX1jPeT9b7/9\n9pNUp8hY7rWO/M0QQgghhBBCCCGEEEIIwViQHsw77LCDpL53EztS7rHgHs6TMkxQrQIvH9/5YRfS\nd7RnA/cwwAvDk8sj3OG7WuzGeP3x2XewEHZAlE2qd5vxTvAdNs735JNPtjKO47vSeL3g1SJ1u74L\nnWpHbJh3HR7b7vnLjg8J1qWuj7n4F33RBfPcC3gQVT/G29F3mxHS8J1WxDzcu2P11VeXJJ144omt\nDK+vKkm+97VDDjlEUt+zASEcvC2lLsrAd9O4jy222KKV4RHNjvp8Ue0s49F79dVXtzI8dNyLAQ8w\nr6vVVltt2m8feughSf0xjY3D01/q6sA93vHOco+Y2fBg9vH7wAMPTPv/bbfdJqnfN9kVdjvEvbtQ\nAGVep9gkF+bCY9rtPd4db33rW1sZnlUuCDsfUM+Vp4l7/91www0Tn6Pqf9hlF8dZ0R7MVV+rvH12\n2mmn9tnnHMDzorKx7hGFhzjeUlIndvt08Vp2Bon4SV0fc88L+PM///P2GTGqs88+u5V96lOfGuta\n/ByIpl166aWtbNNNN13ub/1cRFp87Wtfa2X0Z/eGpM/6uoT1i9tEbKF7Ia+88sqS+t7KHId1jCTd\neeedkjohN6nz3HNbjD3zCDHmJu+TeE65CBZrUbxA55JqfTquV/Mwbx/q1KNy8HLzNR+iQT7Puajb\nbMBYcM9pRMLcyx1PHV+7Uld47ErdOuLMM89sZdhQr0e8pVy0mnWMr5Wwa+7BPBuey4OEiqQ6Sopo\ng3XWWaeVIUzocxX91Z+h8LhjrSF1XlAeuVCJ/DLHexsRwemesNh4n58GiVzNBI8KI5rT+wbeeghG\nSt3awr02sR9uUw499NDeX6lrf/ce55nNI89oD1/bzCdf//rX2+dtttlGUj/il7Hiz7J4r3lULhG/\nvlb/+Mc/LqnfXxBjfe1rX9vK8Lp3m1xFeC5EfM5g7e2ikBWsT32tTiSA2xLG6HxEYiE0L3VilX6u\nDTbYYNpveN6rRPfmg6ou7r///vaZ8U0ErtS9b6g8OYd5YhPl4usx7p1+LXV2zX+LjfN3ONSf2z9+\n49fCvOVzfSXuxm8rT2ef47lWn5u5DxfK5bl/IXgwV8+yrE+f85zntDLqtxKF9H7qa0xgzYcdlOqI\nmxUt8ldFhPrajPdrHn08CI9I/uY3vznt/2R2cI9ojs1zF89cg4gHcwghhBBCCCGEEEIIIYSJyAvm\nEEIIIYQQQgghhBBCCBOxIFNkEGboLu+EMXkIJ+H7HvJDWEDlGu8hYoQjVGEJLghCyJmHOayxxhqS\npMWLF7cyQg9cNHA2qER8PCE5YiOEcUndPRG+KHVu9e7iT1iUhxsQ6ugCY7jne3tQz15/hL566E1V\n9/OJh5hwraMmg3cBIH5D20tdygNP3YC43wUXXDDw2NSlC80QmuYhxLRHFR49DNrX+ySpZt785je3\nMoTIPvnJT7ayfffdd9rxqnBhwug89IZQWv5KXV15nZJCw9M+0F5+vzvvvLMk6bTTTqtvdI6owrFo\n65VWWmna/5YsWdI+c08ebnr66aePdX4f59gzTydCYn8Pu5uNcDpEsaQuFBkhI6kL7XRbwvgeFnpD\naJjbZ8LGKjEMDyMlRPXee+9tZR6+PJ8MCpny+WNUsAfDUlsQEu5jBlZU2KJT1QvtS0oDqbaPo/bd\npUuXSuoLi44SrrVQqfpQNV+6ONNWW20lqR/KyP89lLuCEMth4oKMZRe4IUXGpz/96Wnf9zQJCKWQ\ntsPP4XPFoP7i4ezYW7dNCAz7OUgZhpit1IXt+zluueUWSf3QcMJDh6XG4vq8jTydx1wzKEzT1zv0\nB09pQaoZUpdJXaoAD+2nbn0dSKoDr1tSLJx33nmtrEp/MxMY555qievyNFKkqfN5kzWVp2nA1voa\ngxBo1ilSvcblGtzWEjrqYpg+D84VVT945JFHJPWFu3l28fQVl19+uaR+P+A5wNOnsYbzOuWzCyJS\nLx6+7WmNpjIfKQDe8pa3tM8IHHq7XXvttZL64e/UladBwL7484+nsYPtttuudwypWz+5rUBkcq7E\niIfhqchICeJzM/fh45x1r9tu2tz7Ic8uvm7jN25rWed4miHS7CEAKPVT4MwG9E/vp1XKIfqkp7p5\nwQteIKlfVy72OQj6O+JZUpeWx1O0kMLQxwTX5/2K/1cpGYbBMwRpMaTuGd+fR72fAONnPsZvJWha\nlXk6Fuwu85fUpS8ZliKD+vN+j030emHsex/nOG47K7E9+pP3v2qeqX5brZWoez8e+Pe4N39+BH+G\n8lQMKwK/36pf8W5pk002aWWnnnqqpP58zlhBqNeP52nM+L/XPe/NRhW0ng+qlFukyJT67x6AFFFe\np/RPfzfDsUltKnV23FP/kNrJ1znDiAdzCCGEEEIIIYQQQgghhIlYMB7Mnuj+rLPOkiQdffTRrYzd\nNt/RxMPFd0HZ/XRvB97k+y4Fn/3tPjtJ7rXBDsdjjz3WyvCKwGNC6nao3bNxEk+2qXgi+euvv15S\nf6fyla98paS+Bxe7We7ZjdiOJ8RHwMt3avD0cC8UdsJ8h4idrieeeGLaOTbeeONWxi5tlWB9Pqi8\nIitcOIw693rBu8fv7cgjj5Q03BOh2nnkHL4zRR9yj2i8VF1sbZCADLvsUtdPXAgKz2QXWjznnHMk\n9UU42AH0HU92r937EE9KF5XhPnwXmR1HPNukbpy7SA2e1e6l6rZhRVAJbvkO6uGHHy6pEx+TpEcf\nfXSk49En3Q7Rbu4BzO6re8LgLe9iRbOBi+PgtYN4pdS1oe/WM/a9DI8Vv1/srvdhzuHjjeO4zcGu\nucci/dP7lYsUzibDRPT23HNPSf25Z1Sq3frKQw1PSRc2qxjkYT2X3ifV+XbZZRdJfS84PLuG/ba6\nD4SB3HtokGftQoV7c6+RynOZyBL3AENcyqMXKirxmcrmVBBt4r89/vjjJfXrGTvv/b4S/cQOVGOn\n8uhxTyJ+42sz5g3vV3zPBapYJ/q14MHh18IaxdcJlWAOc6OPI7y3EbzCO3K2qDy3HNrq9a9/fSvD\nm8ujhoi6cxuKrcX7W+rqzD1dED/E+1uSPvjBD058zaOCsGMlbuSRWLSftwviN25vWDO7By6C3d7X\nOa97+dL//H7ofx55NhsezMM8+KqIPKI7Fi1a1MoYJ+69iy3xZxSerXwe5nwu4swzltsjbJhHHVTM\npwire1oR1eFrKurK6wVB7mGw9nfwenY7yNrVPeh9vbsi8DmG5wp/liUqwddR9HuiHaTOnnsUDetA\nX0PyPbcveMY9+9nPbmV4mc+W938lksxYGTWK1UHosIrMG0bV7xEMRexveTD2h0WoMVbd/lX3iR13\n705slz93gR+PaxnVng/zwB3kmTxM5LSCseWCw/7sMgoejUTUqUd/YOvc0545wNuIedfLGHtum6rn\n+er9FPXhaxY+V8+UXsZv/Xmea/E53r3pVwTVWvi4445rZdwvY0fqbKvfG3XqtpZ+7/VXiVauKPHV\niiqylXcuvtYjSt3XdbS/3xt9o/JU93eN2AHeMUjdmmKcqJJ4MIcQQgghhBBCCCGEEEKYiLxgDiGE\nEEIIIYQQQgghhDARCyZFhocMEBr54Q9/uJXh/u5hE4R3uWs3VGEsw8KQ+b+LneCi7iGXhPB4+AIh\noZ4yYlThpkF4ygOSy3s6jF133VVSP2SaJOWEAkpduIa7/xMK5yGUhCV4WCBJ0f23hBZ4eBQCPC5G\nQLoHF+eZjXqZhEFh45VolosfElLgoTKEYXi4AfXiYhgVhBd6SANjoBIyWnXVVVuZp7eYioewkaaB\nFBiStM8++0wrI3Tt4IMPbmWMNxK7S11aCE99QRgGYfD+vRNOOKGVcb8+BhEhuvTSS1sZfXKbbbZp\nZfMZVunQXzykEEEfF7JEtKX6bRWuVoXBVyINHt5DHbgdos/uvfferczbdVIIkZS60K8XvvCFrQxR\nCBdYIpz4K1/5Siv77ne/27t2qa4X+pDbIcL3OIbUhUC7mBjjbLZtybDQtAr6hKcJqRg19K/6HmGa\nnj5gUOhhxWyNpyrFQnVexkcVflyl6xiWuoE2J6xdkjbaaCNJT68UGVCFsbpoL2I73ONMjw3DwlxZ\nR3h/ob3WXXfdVoZt93mfNvKxyrVUtq4SuPHzYiM87JPQTl//YTM9HQZjZViKm0HCSV6PlUA0678j\njjhC0mQpMqg/vzbO623F/Xh/INTcU5uxTq3Wx25XuV9Pl0D7+VqYVC2eIgOq9BUzSYvh0P891Rfr\nUw8TRazY24+1jdsU5i2vA8o8rRwpNB5//PFp1+JliO24mPJsCB0Oq79qbJOyxNNmfe5zn5PUT4OA\nCKDPI/Qhf24gvNz7EGJZHrrMutOf2QipRVBwlHuaTW6++eb2mTWXr9We//znS+o/wyCC7QJnpD10\n+0ZYtq+LWAN76Dz152s573fzCfbP05iQbspTJ/JM4qknGVMebk1Ki49//OOtjJSI3v/4rYficz5P\ns0L/G0dEairDRMLoxy70BW7/aGt/DibE3tfviPL52nWDDTaQ1KULkbpnRe//XKvbnJNOOklSX3iN\nZyLq1o/t6aEQ4na7gF32sve///2SOpF1v6dKmHNYqh4+V+lGR12TVv/zOaV6Z1Cl22Pe+sQnPtHK\nrrnmmuWet1oHPPTQQ+0zQqG+ruQZx7/nawugTr1eGFveh/i/p3jgGcLrgDry9zAcx99BVOtn/u/p\nj0hjc9RRR037/oqi6geeqof3XJ6OcqeddpLUjU+ps7FVP/U2x0b4+Kiez+dz3hpG9XxJyhAXET37\n7LMl9Z/naf9qbLktqVJ8Mo/7u49hxIM5hBBCCCGEEEIIIYQQwkQsGA9mF0bAU3fZsmWtjF1N3/Fk\nV9h3KvnsXpaVR0WVSL5Kps/Ohp+X//vOyiOPPCKp3jGZCS4cgoeE73iyi+wepOxQu1dz5TmIdzHe\nh1K3M89x/by+U0jd4wUgSWuttZak/k4SHr/uKcHuLMIb88WgXSjfFcRjwXeDXNgO2AXydqZe/Fx4\nXVU7YwceeGD7jGey75qzE7fyyitP+16Fex3gbXvjjTe2Mtpwhx12aGV4rLgwB7uz66+/fiujXti1\nlzpPGMasJN1www2SpEMOOaSVcf2+00r/RMhQ6ryU3EPOBdzmk6q/4J2w4447Tvufe7jQD0YVE6k8\nnSsPDO9reKidcsoprWw2PJgre+r2b7XVVpPUFwRh9913yLGTbjf47PXCOXxnGU9t9/bB+8jHAl6x\nlQfBTJhkxxq77GNwtkHUzb3MVtTu+qDz0kekzjMID0hnVM/tCkSVpE6Mwu3GMPHVFQ3zh/d75ks8\nyyTp/PPPn5PzV55J7j3GmsznacavrxmuuuoqSX0xVrwl/RyVZ7LbPeD/1f+cQV5PlZd0JSxa2edK\n1Mg9pytPGMa8CyeNSyX+xX0sAq6+AAAgAElEQVS4JzHzpd8PwkTuWUuEi3vW4qnr623q4sknn2xl\neO+6Jzaey1W/qYQRZ0vkj/WQC1qyxth6662nncPrkfpzD1zWvS46Rn343EL0oPd/2tm9QFmju8C3\ni0zNJtU6wSPtmCOPPfbYab/15xU8dL0P03e8DyNo7pFseDdVbepiikTiIU4u1eKfsx19xDrMRaup\nN+8HrC28ThlbHh3Dut29mvHGvfXWW1sZ/cXPyzl8vPHZPVLnA/quz81ED/r6nbUXHrFSZw98jYvH\nm48P6sCFyqlzt/s8D1bRaG5rx2VQ1JfUFwUF+qI/m3ANfn3cJ5E9krT55ptPOy92xfs4x/Eyxq97\nTmPrPAKb/uLe8th+bw9sO0Lufg4H79699tqrlTHvV5EX1THmY83p562uoSojiuW8885rZaN6XPKc\n7OOX9yFrrrlmK+Pe/XmePlF5l3qbE4Xp4GFaeYD7XDbITnp7VM9iVXQWn2dLVHM2qAQPfbyxBnHv\nccZHFTHg788qsVvwdnNheZiP/j4owt6hD/nazKOTADvkQqqsh7xOuV/vG9U7F38HMCrxYA4hhBBC\nCCGEEEIIIYQwEXnBHEIIIYQQQgghhBBCCGEiFkyKDELepC78yIXSSLvgYfcktvZwHMIC3MV7NkKw\nXGzvO9/5jqR+WgXwMLnZgHNJXUiVhySRmsOF0khv4a7+hIER8iFJDzzwgKR+eAChfx6iQxoMF/XC\nnZ9jSF2InbvkE7bg4QueTHw+qQQPwMOPEDqoQro9ZKoKpaiEqqrUGIQrenge6Sg8ZAVRgEq0ssJD\nwGgHD+0jTMTPyz156hVPlwGkQHn44YdbGeFY3q9IneCCg4Qcnnbaaa3sqaeektTvu4Ti+TVXAoxz\nRSU65knyEcxxCAGs+sNsgf3x0NxK9A7BIQ8nHhcXQFm6dKmkvjgO4bIusISYjYeScV3e/7lmLyNk\nycPBCM31vkFYj4d4nnHGGZL6IaiDUtIMA4EeFyuiH3h4G2U+z5D6x/sLaRy8jQhVrULiqxC7H/7w\nh+0z4XZuXxhvntaIEDEX1mH+oK2kbkz7eJsJ9FPEUaRuDvN5ejZAbEqSFi9eLKkfMs985cKTCx1S\nHXgaJNLyuAjrqKkYBoXdVSkMCPmVuvHjtp3x4SJE1C9jUZLWWGMNSf01UtV3B11X9b9JQhWr442a\nNq26ZvC5ApGnnXfeeezrm4qnEyNc18WXWBd7qCffY00sdSG/Pi9VYl2U+Xqbe/O5voKwcg+vrNZX\no4Z/gofsb7vttpL6gsicw1O6MA+7vcQO+vqJPuzPBaTm8vRkrIc8tQTrmHe/+92trBK9nSuGpchg\nfXL44Ye3MkLwXbjnox/9qKT+Oo/r97UDNtbLWIOceuqpreyxxx7rXZPUzTOerpDngNlIH7g86BPe\n75kbPY3PbrvtJqmf0ornUFK/SZ0YmqeaYS2wxRZbtDLSZfhapBKnn29xc6Af+PMj49bXSlw/Io1S\nN869zRlHnsKJud5TJzL2vG9wPF8/0RfpSzOFZyEXDKf/uf2jPXw9xjOY3wfrT39+RSDS+zP2wm0i\n6z8fC9Szh/szvldfffVWxjO+p8NgnehpPXiGPfroo1sZopUOonfebqS5chC2czFA7s3TL7h9BMag\nryc23XRTSf3UZfRJT0tBCg9PgcY5KrFd77v0J1+rszZ0IctqHmIt/KEPfWja/yqhcl/TV+t2rsGf\n57k+n8uq/sdc5qm++L/bD/7v5yeVQfUs6ymC+I0LVK4ouNYqjY4/w2yyySaS+u/jEBR1cVXuyZ85\nSP3jY5/5vkoT4nU/aqrLmTDq2gi7wfwldbban+14H+frOurS07awRvL+XKUqYZwNS13nxIM5hBBC\nCCGEEEIIIYQQwkQsGA/mvffee9pndtCk2juQN/kuKof3mnvY8Nbed3l4C+9v4/m/7yTggeO7/x/4\nwAckSZtttlkrQ2zKvevYvfP7GBf3qGBHzHdTEJG48sorWxle3n4f7Lr5bh/H8R0d7tc9j9hV8vP6\nThhwbE8gjjeJe5qwM4UH63xBW1e7Ub57WHkuU3/eDymbRKiK3TEXMWNX0z1w8Ih///vfP/B44N6+\nJH733T528byNKPNdXzyN99hjj1a23XbbSep7GHAO76cIbXkdIL7g/W/LLbeU1K9TxIxccGgST9RJ\nqTxr3EsA4RoXTuT6ZiIEUPVJ32Uc5HHn/Q8vm0k8mOknG2200bTjuUfZG97wBknSnXfe2cqwnZVX\nbiXA59dM/bl9xvtk//33b2V45LuA0XXXXdf7viQtWbJEUt8LeVSYU1xoBo8AHx+UuUcKXtfeX5mb\n/HjsDvv9VtEV2GW8oPy37pXLbr3bbHbk3bZT5p7OMxHUQTzHPQzYBff74Bxuw/ACcq8c8D5Of/J+\nxW/chmGT3MsML8MnnniileG9deGFF04772yJko1K5cmGSBZif1LX393uMr5Zi0h9L1eo7qPyFoED\nDjigfWYe8utkfnExINYbb33rW1sZnp6+vuLzXNZt5YU8TCx10P/47P1vkLggojJ4to0DfdcjwDyy\nD/BUu+mmm1oZUSceUbbVVltJko4//vhWxprUxQCxG24LGMeVt4rff+XpAi7eS7SLe1gPwm0KYmN+\nfXjD+RyE55nbPOyzjx3Ej12klggOF0/F7ro9x8b7epb1k4t1DYqWmwT6YXU8X3sxh/uci530tSa4\n95pHGQJzhXuacm8uEsZ6yL2+KiE3mEuPMKLgWKtJ3Zzh7YanpIui4dnt3mHMH+7JSVt7dAdzGutk\nqfOC9z7JePRIp/l4FsJT272zEYpyr2vGynHHHdfKGI8u2Mi6mDEhdffrEaGsldwO0x4eNbnqqqtK\nknbddddW5h7i40IUldturtn7JGPL+zhrM1/fVf2Y9wzuBU+ZzyOc18clZe4BzPjx43Fety/042rN\n5/1+EG7raAc/Hmsln49oV78PrsXXswiMuWgq62dvD87hXpY8P/Kc4efzNuKz2xzqaNmyZa2MqCKv\nF97nePQH9r5aR1Wiwb7+5Ld+b8yd3pZVZDC2wUXUqnUMttptJ+3l56Xf+TVzLZX3s9uh+aCKZqrW\nVPQrHx9nnXWWpH4dVM9s4PdLH/J24z2WP+MvJKq1K/ORzxn77LOPpM7DW5L23HNPSbWwZPX87fZt\nUIRk9e5vecSDOYQQQgghhBBCCCGEEMJE5AVzCCGEEEIIIYQQQgghhIlYMCkyPOSC8Jn11luvlREe\n4G7chHJ7aAHu3h52j/u9h/NVIQhV6Cju9DvssEMrw8XfRT34HuF8Uj/p+KTstNNO7TOhAB7aQnL8\n173uda1s7bXXltRPJE8IgKdfoJ5dmAv3ew+nI4E4AkRSF77gggcIpXhoC/VbhWtUyfTnEq7B+wHh\nOJXIVZXkvQqt9T5EPVehox6+jViGh+whnuLXQtjRqCJ//luuH+E3qQ5TIkQHkQOpE2nykCTC/T1s\njNA57xsPPvigpK5upS7k0MM5EeTyPlmJaxCW7ePJxS9nkyp00+seIcZTTjmllVGnMwmxr/qViz0x\nViuRHy9z+zMu2Be3nR7eBYSz+fe4FhdVoP+5bSdkycOOGSt+H4iIuK0jHNVDodZZZx1JXZjy1M/j\nwvV56Ctj0NMuEbZVhfsRJi91YccegkWIEeNE6sJvXRSF8/n9cC0+Phi/HkpG/fl8yTzp7eFz57gQ\nWucpPJg7XQSGMEQPg+Q+/PqoSx87HNvrD5tT1YvPR4wZT++CDVsIKTIGQeohqZufPf3BKqusIqlL\nPSR1Nvj0009vZR/84Acl9UMFq7A7IH2AJN13332S+uMSW0dqGqkTIfS0C7Sbn3dcobdRqdJweFti\nh/y+R72Gah7n2B72Thkh3bfccstyf+fnd5vC+oCwdcdD2Dmvr9EIDfbQ9MMOO0xSP10SoY+kmJC6\ncedjh+95CLHbRJiaGkSSNt54Y0n91FyVENQgfK1UhZdjt3y9w/99ziK829uR9YSn8KBvuHhfJZKM\n3fXwVK7PBeSw8W4HZ8Kg9G4nnXRS+4yAlwu5sa6r+rzbf+/PwPj1Obea65nL/HvUs6fSeMc73iGp\nPxYHpeyZBOYHXz9RL572gfWk1wE27LbbbmtlpKJhreHXfMUVV7Qy2twFWnkG8zQSzJuIt80XrLMJ\nM5e6tby3PePWn29pG79m0jh5u2GH/Hj0RZ/r+b/bNVJavOxlLxvzzmpo/yptgV8zNszTdfHZ1xg8\nm/jalXvyMHRseiWy5r9lzeK2mJQ0btuxrf4sxtjzczDnjpr2jGcZqUtp4SlJuAYXQON+fcxwDZ4i\ng2vxlBvYErdN2KQqhZzbF37rfYhzuH3m2J5iiTRinuYUXLwcPG0LuN3lOb1K2+ZzPP3A3yMwH/hv\neXfkdUC/82cs6tLXwvzWr4++5s/VvGeo+qS/g5grqrRjw1JkkGrIx+oll1wiqf/OivW9H4M+6+tP\n+qfbJp5JPLXoimaYAC59wlP/sfb3Z4Tdd99dUr9vVOlG6WveT0mv5vMlv62enZZHPJhDCCGEEEII\nIYQQQgghTMSC9GBmF8/fvLNb5d4JvLV3waNqh78SwwLf0WFnyHcK2QlzMQy8zdwj67Of/ayk/i6A\n72RPiu+gcmz3GMNDjh1IqdtJ9504dsd8R4f7rHa/fOcMzxU/Hu1Qef66wA07jn4f7ikzn1Ttz+6X\ne2RVjOoFxe6r77SyE+feMfQdFxRkZw1BHKlra99FHnR97kmM2Mn73ve+VoZXwjHHHNPK2JlaffXV\nW9nixYsl1d6YCPFJnSDIUUcd1crwOnWPHsaPezUjBOW7atiB+++/v5XhnT/fifgZM359iGm6uBZe\nOW7DBokfVVR2y0VEqSvf5eZ8Pqbd83Fc8D7x++C63EMD7zb3PmG33K8P2+rtVom60Xd9PGF3fTeX\nvogQmtTNFd5GM4kcYZfbhWPxWPAxiOeP2wPqrfIq8Trlft07m88uQME9+ZyCjaiEaL1u2ZF3QQa8\nqNz72dtwFNzrjznA+wZzhN8v/3dvPrwmKq85Hwv0ba9T5g/3cMHryb1jsFPuRYNXk9f95z73uek3\nOo9UXiUOawv3Tn3ooYck9b1PXvrSl0rqi7rxeenSpa3siCOOkNT3oH/Xu94lqS+GVgmLEaXk3jHY\nZ7c9CElVYnuVh8Ywr41BeJ3xuRKn8+8NOl8ljlz93+uF9dLFF1+83ONW0SeI80l975OpuKcz/dm9\ntLBbPhdUQq+sld1LkLHqtgL7VnnD4bEudXbSI5O4T79m71ej4La2iphhPeHRcqw73Q4yh2LDpa7v\n+rMEYlTepngpu/3luhDQkbroLBfGYf03Wx7M1fqANYivwVkn+BoSb3C3gwhy7rjjjq2M9nfPc/7v\nzz/0IV8bItDmHr3Un68r6S8+h9P/ZkvM+fOf/7ykfgQn1+peX3gSI2gt1V7FzCP33HNPK6NOfZ3A\n9bu3PmsRIk39twjDzxe0bxWR4v2LdeChhx7ayugTL3nJS1pZ9ayIZ6s/c+AFV4ntub3CE3+11VYb\n885qsN3uWct86YJ5U78v1eOtsrHUpdscfuvzCL/1uucZwddKrG3cXhER4uOca/Uxg52sxIMrXHCO\ndxUumooIpnv+VhFltL+/DwGvZ/pfFTVReZT72pQ69fNSpz4PYtuJ8JKkSy+9dNp1VdcHVQSkty/3\nUUXE+/VV6yfuzddtlPk6mn7i7xFoV29frsH7LnXp9cJ1eX/hfKP2l9mC6/M6xTZss802rawSrMfj\n3J/xqEu3L9xTdQ6vK8Zb1Q+83eYq+q7Cz1G9d2Kd78L2vPfxfsVzja/ruCd/7qKP+XtPskMQASl1\nfcfreRjxYA4hhBBCCCGEEEIIIYQwEXnBHEIIIYQQQgghhBBCCGEiFkyKDETPpL5b9lQIF5GkG2+8\nUVJfLG6XXXaR1A9Xq4Tmpv5P6tzQPeyJMCqH0CsPJSPcaaWVVmplHjo0LoQmemgVIcHuBk/aAj8X\n7v6eSgOq5PKVqKHXFaE0HgJDiKWHH4GHQxLu5GEJCAmNkyx8Uvy8uPh7/VFGaKFThbYMC5HgfPvu\nu28rO/zwwyVJV111VSvzEMupuLjl1OtcHgjSeH8lPNRDHwgZIazTf0MqD6kLwa7CiivBMj/He97z\nHkn9/kcoz5IlS1oZoh4ezslxECiSulAZDxeaD6o6R0Dr6quvbmXbbrutpH66E+q5Sv8xLH3GQQcd\nJKkLU5G6kBbvz1X6mZlQhQnRvh7OWYXCEX7r90s/qUS4qnCmamx5/3vVq14lqR/miqCp9z8P/RsX\n6sDD87g+D3emzNuSe/PwoyrlQRUWyG89fRA2x+uP9vewNtrIxyX/9zQShFF5qHTV5oPwcGfO4ddM\n+/s8yH34XMFYqNIRVGkJPIwUvF6qMEPuvRIY8fAyQslmS2RqXKrzEp4qdfPlvffe28oIf6xS0ngd\nUL9+v6RI8e8R+uxCfYTL+nxUpbdCGKgSIfL+VYVzzhWjpuGYRPivCn0l7JfUK57iqToXuFgc9s0F\nAgnt93B/fsP3pW4O91RVg/C5lD7kgn7YKA9FRayNdAj+PU+ZwvHcDo6bLs77GenLSH0gdf3/ggsu\naGX0P58PWdf5fEPqDtZMUp3ijjrye2Od7WOCFHIupsyzgYt1jcsw0VHCwD3VDekrPPUF9eZrXO7D\nj/uFL3xBUr+uuHef8xE99rR82Ocnn3yylbHe9bUmdeQpMsZNJzYM5n9PSYc4lItH0odcMNrXcIPw\nlEPAmsHTz5DWyO0Bz2wuVDUb6RQnoUojwTzi4risfap0Uz5W99lnH0l9G4EN8efCKvUOc8ZMngs9\nhQfp0/xczHmeCqVKv8C48FQ92AZPY4aN83rh/z5+uQafcxlnnjKCdZOL7d51112S+uOE33gaBFL+\nuG1nXvB5BvwcO++8s6T6uXRYaqkqfQBllcCd29MqFQllVcpBPz/23lMA8GzvqRG8zqfibc73qvc2\nPj64hiqlhZ+X+/V75P/+W/7vdrdK9cW1+jlGTYtCn6hEJmfr+XEQ3jeqZ0DgnYDU2QFPd8I48pRN\nVToM8DHDWK3ayMcMfcjH/nymyHCq89F3TjnllFbGWhDhVam2L9SB93sfj/DVr35VUpc6TOrWSNTf\nKKky4sEcQgghhBBCCCGEEEIIYSIWjAezv43HI9B3fdmp850fhIzWX3/9VsZuqu8asWMybKec3/gu\nz2233TbtWt7+9rdL6nt3PPzww5L6Ikgnn3yypL5YwqhwDe7Nwi6Le4dddtllkvreIoid+K4MOxa+\n08pOnZfx2Xc88V50kQG8GNxjAa655pr2GQ8c/+1MhMjGpdoB2nzzzdtn94aEKrF6tdMKvqu63377\nSeqLXCC0dMIJJwy8VnbnEOeTpOuvv37gbwBvYb+3a6+9VlLfUwcPF/cwYFz4Tj/CJr5bjzeOe7Ow\nk7jHHnu0snPOOUdS34sG8S/fLd10000l9fsaXgc77bRTK8MTxc/hwp5zje+ks1u6aNGiVsZOHhEV\nUn9MQWV/8CLwKAy84Kqdd7dN9FOP1pgJeKRUYorLli1rn70dAE9FtzmDPBU9iqD6PmJt7gGx1lpr\nSerbHHbh3YvBBafGhTnFPc/ony5qxK6wXws7u+7pXNkN+pDvANPHfHe9EsKhD3kZ3/M5oPIyp20q\nL71RcVvCWHZhPaIR3IucubPyAnH7XHmucG9VPXqEBNfg4n2MFfe0w6YjlLE8VpTHwt577y1J2nXX\nXVsZ3m1ui/HeYcxKXf1627P2YX3iv3UR1h122EFSJ+Ln7L///u0z6w2H9vJ1CV6V3k+py2GembPN\noPOOKvxXUf22ihqbek4HTxEHOyd1bXrzzTe3Mrww3VOS8eHeKhVElLkAH/OM9xu8LD0iavvtt5fU\n95jFTrpgHtfsY7bykhmE3xtrGm8fxrTXKdfgdoY+jjC31K1zWGtI3djy+ZXz+bjjnnx9Qv/35wFE\nEmdC1V8R55M62+2eyUR4+jyC55F75lViP3jyep2ybnebjFC0RyzQ73wNSV36fMj84F6qs20DsO08\nR0pdv+d5zs/rYspVBCf169GkjFvv1wh2uigVUQF+PMbysLE62+BN7XaLNvL25f/ebnzPbRPPcS5I\nRx348w/rJz8v48cF4fns3onV89kgiGiTuncG7onImsXHfhWpSHu5hzDvFqoIMB9v1fdY77qdxOPd\nvVRZN7lXOL/xc1QeqfRnb8tBUdQukMo7FJ//TzzxREn9vltF1THmfe6rvIGZczxSBptTrWcr8V6/\nFs7ndcCa2p8pB9mXysO6Ep7266vW1vQxf8ajXvy3VfQi11d5IXubc5/V+q6K5qvGdCWgPd9U3tms\nLTyCjuctf2+CeLTfG32oilb3/lf1g2odyLNk5cE8lwyKBHC22morSX0xVATc/X6pI+/j3Ke/W+B7\nVRRLFTk66F3YVOLBHEIIIYQQQgghhBBCCGEi8oI5hBBCCCGEEEIIIYQQwkQsmBQZHqpLCECVsN/F\nl974xjdK6rtsEyrrYd78f5ibO7/x8BQE//y8hHogmuTX7+IVHoY4KZ5aAjz8jtB1D+t49NFHe9ck\nda7xfrxbb71VUj9tASGPLqhCqIKHTBH+UaXIcNEM6t7LZiukf1wInb/99ttbmV8XVCEA9A0PgaE/\nve1tb2tliOyQFkOqU2NU4RCEJXi4hot0DQKhGU8dQSiSh2ptsMEGkvopX7beemtJ/TQNCMyR2sKv\n9b777mtlhEVvueWWrYxwVA+nP+SQQyT1w3IQnvIQO37rAi30P+5xvqA9qlAiD8siLN9TBTD23G4Q\nuul2iJBXhMYk6YEHHpDUT0vx/e9/X1J//BLONhMxUYe+VvVJwmKlvijj1Otz8RTsKKGZUhdy7fdb\nibvRdyrBIR8TjEsPVfVw6HHBRvj8wfncxhIa6e2B7XQhPMayhxNzTz7OCUWqxG+8fbkG75P81q+P\nNvT+xz156JeP0UGQOsRDRrGdHkKObSdky6/Pw/24/iodSxUa6eF04PMbdertwfmqEDEPkeUzfXi+\ncVFhREQ9DQGha1UYn4cTT/2+1BdWAtrS04T4WmYqHtbrNgkQh3Wb7WGwUAk7zgfYlUpkryqr1o4V\nlUjnTMJOCbv3NVVVV4TW+5ignd2ukoKK+USSttlmG0n99R3j168dO73uuuu2ssWLF0uqU5x56Dzp\nXXwt7DZnFDzdBIJ5HtKNnfT1Dp99zcJa2dPkYMMuvfTSVobAnYtSVgKopMFy4SEEGH0Omo2Q2qpv\netox5iVPCUX4rKceIKWKr/mwH96/mT/cNmI7fR5hHHud0od83GM3fM28xhprSOo/G1Fv3p9nIrjK\nsT3NCutebJ/UpZBzMWXuzVM8IFzn8xwp5Ny+fuADH5DUD13ms7cR9eyikD5W5grGoKcTq8SKqXvv\nw4zvAw44oJW5aDnwbOBpEmnXI488spUh5uWipFV/HhcXueI+fE1VibXzuVr3eog4Y6BKdefpIViX\neP1hs31uqcRiWVP5MznH9t9yb35errUSe6748Ic/3D4jWlqlyPI6oI78mvl/VeZjmmcmvz7aw9M+\n0F5ez9RplVLN171Vukdfs06l+m1le/z5Bxvn9pTz+fVR91VKGv8edVWl3PI6pd68zfl/1Z+r9Cle\nxvw2l7aH9vX74H2Dv3thXYJgtNSNGR/Tlfgm6We8r/HsWaVU8b7BZ3/GYk1dCWPOB34f1filv/g1\nM894vTCmqlSCXgfMB/6szWdS4TrjrN/jwRxCCCGEEEIIIYQQQghhIhaMB7N7tbJz4B6L7Cq4Nxxv\n6KsdytkSb8Fr172bTjvtNEnSQw891MrYMfHdMrwiJoFdGffaYPfJhQTZgXOPADy/fQeQ3S/fhWcn\n7nnPe14rq7xZ8ARwDw12v9xjBjER/y1eUu79/LrXvU5SXwxjNqhEUdwb47jjjpMkLV26dNpvXdQL\nD3Bv82rXGtGPAw88sJXdcMMNkgZ7LUvdLlW1Q+llo3r+sNvndY+XkvcNvEquuOKKVob3mnupsKvp\n3nX0SfdEQKTu8MMPb2WVdyce3XiD+PW5SCfiQu7xyZiuPIpmi8qLttrJxlvZowi4PvfsRrS08iDE\ny0jqxuo666zTykb18KeOZisiAO/jm266qZUh2sJfqdvV9Dan75533nmtjF1Vt8+MqWOOOaaV4e3q\nu82IM/nuOvZnzz33bGX0J7clbpPGhTHg3rZ4K/nOLXbFxzmeo+zQS51XonvbMr59B5px654clfgM\n9ezfo968/riWajfcvTZcjG8QlWAEn6v5172kKg+h6njgY7CauxmXlQe43xtlVSSPz0eV5/Jse9kO\nEg0899xz22fE+CovJJ+DaF+ve+7dvZHpY26vGMuVmE2Fr3PckwfoY3iaSrXHzNTvS3X7zqTuB3kp\nV+uDqv9Vc/2wPsncWM0jo97PoD7inurUn49d5tJjjz22lSFy5nMLa2u353iieh8humjNNddsZYOE\n+lgzSZ19HrV/VXj9EeHkYnY8B1x33XWtjHnL1094g3tEBetdt6HUuXv/V956RIO5fas8yn0szAaI\nebotO/vssyX125c2ci9uvNB9ncA60IVrmdP8mQOPX39GuPPOOyX1bQ9rM3++oH7xFJY6MVEXGEXE\ndCZeyw7eV+6tjFjcJZdc0sqIdHJPOtrfPdTPOOMMSX2BQH5DZJ7UrRMqzzcXY8U7v4pWmku4Zhfu\npP09AtHnI2A8eh/3NTqwDnMvbkTi3TuW+c3HG/assr+j4nMfnvu+zqId/LmK/uJzQSWwXM0ZlY3g\n/+45WEW4VKJ82MxKXMvXBHyu5hlfu2LTKzFZH6veDlPx+62ikCir5kUvq9aLzJtextqs8oh2qEu/\nFurPz+vPtVOpIoSr+dff5dDH3cbz/sfrvhozVQQi/cTPW3li0099Xq36QSX8V8G1euTyIPx4gwTz\nnMqms/bwNQ2ey253mV1dCugAACAASURBVOu8Djie1zOffT6vvMerSDbuySN+eCb3Z/f5FKMe1m7M\n8R69RR34b7F7Po7oaz6miZbwPsn7sCrCf5x5Oh7MIYQQQgghhBBCCCGEECYiL5hDCCGEEEIIIYQQ\nQgghTMSCSZFB2gmpH+Y3lVVXXbV9/tjHPiZp9sQhwN3hCSfyEAmECfbee+9WRviCh7A9//nPl9QX\nMRsVwkQ8tIXr8pABju2pIAgD8pABwvgqIS0Pf+N7HjaMW72HZuCS72E24CI1hNS6m34VWjUbVGEM\nHgJDCgMSyktdG3koL+FCpGuQpIsvvlhSX7yC9vfQgl122WXaNVQCgVWKjCpMaZD4kkO6Ew+jom1c\nTATBH0Q2pC6EcuWVV25lhKp4eBmhFJ4GhvQbfu2EAHoIDH326quvbmX0IT/HZZddJqkL0ZU6EZ3Z\nDikcNWWJC5FUYU+00SabbNLKCBn+4Ac/2Mre+973SurESaXOvnjfoF78Wqpk/9QH4Z8zhRBFbzdC\naQi3lrqQVx/n9APCEqWuP3laI+yzf68K26HPer+i77q9ok96WC9hPaOOHQf79+Mf/7iVYRs8zJV+\nsGTJklbG9Xv6BfpQlVrC7415w20s9tvHNDbO08VU6RKqNBL83+3vqEK0nK8SPXO7O0hQzeuA8TNq\nKgE/Htfg94ut8+MRzu5jtRJYPOywwyR1IefS+KJkw+DefRwjrONrBkQ4PKyT/3s/cAFk4NiexgIR\n1rXXXruV0cdGXTd5m7v4EHBdzKVSt16qbLafq0pRAVWo4LBUFYPCNP1cg9JReFmVXqM6P78htHCS\nkMpBv/GwdtY0vhYmFdmZZ57ZyhBjdZFGPnv6KvqXi5PSX4YJ11XXTP/y9ee4kG5A6tJ0+Tqa8e6p\nFhYtWiSpb/cJ/fcxQV15CgXCnnfeeedWVoXJ89nrlDQDpIiT+mvH2YD28PRVzMOeKoU52cN7Wcv7\n9TEne2o4Ukb4epE1swtFMw+7DWK9dtFFF7Uy+oGnE2Fd6X2NFBmzxVlnnSWpWzdKnWhflbrJ04Qc\nccQRkvoiq/fcc48k6aCDDmplrDd8DPKM4PaNfudjh/Wup3yZD7gGt4P77befpC7VndStXV3M8/rr\nr5c0PP0YdbX55pu3MsaKP4shiOjzLOOxSqs0Kj4/sS5yG8acUqUc8jVfFWJfibBTl1VqPf9etQ6s\n0ilxDp83eR7wlBscx58buH6fN0lvWaXI8PWE24GpeDqCav1XzeGMLa8DrrVKHVKlO/N7oz78XJT5\nmK7EGSshZCClpdSJHvo7DRc+A55dvN3o476WGzSfV+JzLrzL3OnzPvOgP1+Az1HUpdcf5/Ox5e+M\nRmGSd2u0h78zwBb7/Eva1yoVSpXKyuue5xl/rqE+qjWL1xV9yAVr/VkSZit906Tsvvvu7fOJJ54o\nqS8ySSpJ7+v0Re/DtL/3K2ym15/P91OJyF8IIYQQQgghhBBCCCGEOWfBeDC7EAQicC7yh4em797w\nlt09IGHUt+z+PT77LhSeHr7Dh+gNu4NSX4wK8Ai44447RrqWCjyapG53otpN8d1hzkvieanbJXMv\nkMcff1xS57UndTs57u3w3Oc+V1J/t5k6qkR/vE6pF/fMG9Xjkl033zXF69p3YGgP362qkp7j8X75\n5Ze3Mjzz8GqRuh1RF1PceOONJfV3BV/84hdL6otXVIwqWsE1+w5bVb8VeA2759uFF14oSXrVq17V\nyvDuQaxO6sabezXhGXTLLbe0so022kiSdPPNN7cyPHX233//VnbOOedI6tc9HhJ4S0tdP/V2o/+5\ntyj9AEGIuaDamWfX1fuBCxIOAo8e94p805veJKlf9/QNr4NR+wt2wO3kTGAs+O4lfdFtLH3IPSCq\n+uP/3g/4XuWdPUyYld1t987CS9rnhcrbe1TY0fb75djuKcFOsHs/gdtJ99YAPGt8t57Pbosrz0vs\nqH8Pu1F53VaRGd5uo0YFYF/ctnNv3lbch7cB//f7HeT14n2j6lccxz1rqggEzluJxbhXBH3Ioyau\nuuqqaeedCZU3LnOYe6Nj47xf4Vngwl3MeT6Xchy3sQcffLCkvrfcIC9zB/vnbVX1sUoIhHNUHkCV\np71TiUKCt+UwMb6px6v60iRi0BzPxzbztM+hg65t1PUp6xKP2mBN6HMkZR4ZwlrJ+3ol6IIoqYuT\nsp70MUZbVvXk9pJ2mcm8hDCY1Nk8L+O6Tj311FbGOHFPMNrXvVnpw972XL/PffRT7zd4t/m6iHEy\n21EPDmvwT3/6062MOnAhZu7dBRu5D/d+XmuttST1vVTx4matK3X35G2JuJB7/yHS5FEM2ByvP/qV\n912eJarnuEng3rw98DD0OZx+Wq2Z/beIMrstI3rRn8+wBx6xddddd0nqRzYyLivbOJdw7/5ciGCj\ng9Cs2yjsinv6VTCm/HmPtYqvRei77nFXeeCOi3vh4bnsz/OIfXr/q54VK7G9ymbzm2Hix4Mitgat\ncfyzr3E5h9vnar1NFIu/X5l6TdJgb9bq3qr1mx+vEpqjb/j6k//7XM79un2uhI75v9czn72tqihr\nqJ5r/HnP7TwQ9VeJ3roXfOWdzfV7n2ROdqFybJjb7M0220xSP/Jx0Jzs5+Wz97XKq30Q3icZ0173\nVVRY9U6NZwm/Pt5LeX/GNlSCfg514Pa0eh6grb1PYhP9e1yz2ya385NSCV5Wz6qVPXBBSfqEv8vj\nnnxsYcM8SpXz4a0vdfXiUcr+fDkT4sEcQgghhBBCCCGEEEIIYSLygjmEEEIIIYQQQgghhBDCRCyY\nFBkeWoDbehUG7OIaTz31lKQ65KJyMx8G4QseLnLJJZdI6qdVWG211ST1Q34IYXMXfkLJJuHlL3+5\nJGnHHXdsZVV4NLjYCSIdhDpJXYilh5ggpOLu94STeOjDGmusIalOLu9u/1XIBQIk3m6EB3goY3Xs\nqg0JdXRRCtKXeFgxoQC0i9RPNA+0tYdwUL8unkKYaRVGgGDFOFQhLfQdDzGpRJUqSNfiKTVIzXLu\nuee2MlJZuJAL4VP0a/+Nh2UjWLf99tu3sj322ENSvy1pN8aOX8uGG27Yyhjz3icPOeQQSf3wo6VL\nl0rqUmrMFlXIm4dHnXDCCZK69DxSJ1Bw9NFHDzw24VakUZG6eq7CDKuwomFQb4MS8o8DY8Dbw8cF\nYGM9RJzfuN3g/z7uCD2tUjO4HScMzNMHEOrzrW99q5UhNORhTzNJkVGF6WJ33d5XqRa4/mHzEaFc\nHnJWpcepQjepZw8vo04roUi/FqiELIdRpQ7xMNjq2FCFU44aGgZV2KyHxFXtRh34nMx9+PlJa/DN\nb35zuecfh+paK+EiQh59/j3++OMlSVdeeWUrGyasBKeccoqkfsj8GWecMe172BdvF/qT2x7mt2H2\niPB5t2vUs/eRKmVJJXRUpc2ofjvoe/6/KuVGJUJUhbRW8FtvZ9rXU5Ut73fLA/vm6b9Yj/n6GNG2\nj3zkI62sEgRl7eA2nPbYaaedWhlzmou2chwfY6OmEKls2bh43VKnPs+RfsHrhbWPryWreYn1oqda\nquY52rQSUPL1Cf/3+dDbcDYgjZmv5bAbfm/Ysirk18tIvVKJvHo6FlIKVH3X14b0NRdu+uIXvyip\nbwNoL09LwfOFp16bCdgtH4ucz++DZyv/HikWrrvuulaGnSZFnNStoz3dBP2AlBpSt2b1FCMcz9On\nzQe0Pyk6pE68z1Ov8EzkY5A+Nux5BBvhaz76pK93GCu+ZuG31bpiVO699972mZQ/PvdiT338UuY2\noBLImnqdUp0io0oJVs1flSBdJSJOHfk6hr7m98FY9t8OSivo9ezP51Op5sMqdYiPLerDr4Xrd3tF\nPVepNKqUG1X9VakgvI1GXeMyvkmTI0mbbrqppH7KUPqzH5f78LmCOqjqxcuoS7edrOndTlJ/3p8r\n0bup/5O6PjSJ+DDv4/x9CHOtr7sHpUXzd1avfe1rJfWf40ib4XM3NtPrlGvw47Eu8D6JDfPfYruq\n63M7xPE8FclMqNIGDlobeTqlI488UlInrCt17/VcZBd76/dGnV522WWt7Pzzz1/ueT011kzSFDnx\nYA4hhBBCCCGEEEIIIYQwEQvGg9k9dh555BFJnYey1O0y+tt9dlb8rf24ojHV7pLvZuAN5LsFeED4\nTrXvxswG7C66FzS7N54MHtxTEs8G3+nCI9p3ZdiBW3vttVvZF77wBUl9MQxE4txDmQTovtOBx6oL\nLbDT5eIflXhVRSXyh5fyG97whlbGTo0nZacNfVeL3TH3NGE3tRIK8HtjR9G9WSsv1irRfUX1f/qx\nt5t7FQ2C/uL94NBDD5UkXXTRRa1su+22k9TfsV5zzTUlSZ/85CdbGZ687hWOmKF7ElGXLoL53ve+\nV1JfNAjPZBfDxIvGRaLoO747zM4yopRS501dUe18Vzu8Ps7XW289SdJBBx3Uyqgj31nmnoZ5MLML\n7h64eHs7g/rLMFEo7s29aGYCu6CVYJ6L3nA+91LB/rkHPeO22h120YTKdiIqgweV1O1o++41/QSx\nyanXOi7YHLcbjMdKRML7qf9mKsPESSpvlqo9+F7128rjyHfKmUPdE2ZUjwYfA8Bc4tdC/VWildXc\nPMzTtNpJr8Y09eZzCmWV8IV7K+ElMlu79oM8YHfeeef2GbHPUT1DK1zA5t3vfrekvqgrDBMXquba\nSpypgnpze4Cnoo8ZvKl8LHDeQd7Ifs2VbXe4fm/zysunGquVl9kgTxM/BmsQ1kjDPIq4bxeK5nj+\nW/qrR0rggeh2jjHtHk8cz9uP3xIVJNUCUJWA4iBvKf8+5/M1wbi4EC5rDPe8JKLQ65Q6cK9c5nCf\nl974xjdK6s+b9913n6S+lxZrEZ9vsBu+nl1ppZUk9YXDEOGcCYiPSp39XbRoUSvDE9ajF1m3u32r\n7Cr35M8DtKv3Nf5fRf/5ORgn++yzTyuj/3m7sW73fk89z5YHM2KtbgPwAPN+wPhxoTs8+/15j7WI\ne3yyjvHnAc7hESfYKLfTJ554oiRp1VVXbWWjrvNnAuPD7RtjxZ/3KkGwUedG+hjPkVLX1u7tSDt4\ntDD9b1SP0wp/RqWPe+QjdtrnpWrtQH+uonwq+zdsLq0idSrv54rq+hiP7qHMPflcWkUGg4uEuQ2Z\nircH9VLdWyWYWwncOdXzD8f231Zl/Nbn6Oocg+Zwbw/eN7kn52233SZJ2n333VsZzy5uD6o24lq8\nrHomon7d5tCW/p4DW1w9h3j9Vf2z6n+jwpzo7+M8cmgQ1ZzyqU99arnfZ3xKXZS1v29gziZCWOrs\nitczUV78HYeZRFBU/bnqf7xX9Pch9CF/Rpj6P6nLPODvcDifR+wfccQRkvpRHYPwNqoiuiYhHswh\nhBBCCCGEEEIIIYQQJiIvmEMIIYQQQgghhBBCCCFMxIJJkXH77be3z7jEe3gHYWirrLJKK3vTm94k\nqR8CWCV+rxKrQxW26C75hPd42ASpBw4++OBWhhu8u5kTIuhiLKNCWCDhWV7m4n3gbv2EUHhIA+kj\nvAyBAA83QPDC01wQguCCArjQe11VIk2k+Nhkk01aGeFiHpblxwbSoWyxxRatjJCCKpm5h0jQJzyU\ngzAD7xu0WyUS5oIWhJchMigNDvWYBK7B23LUEPZnPetZkvrh76R98L7LvZPuQupSUHjIFO3lY7AS\nmSRcyMPfCPm56qqrWhmpObxfIUrlqWZIm0HIqtSlmeB/w6hEH4ZBXZHKQ5IOP/xwSf3w0Be+8IWS\n+v35hhtukNRPvUIqDcJUHA93mYkQEuE4Pn5nwjrrrCNJestb3jLwe9gkH4Pch9vELbfcUlK/Xkhl\n4XaN/uSh/bS19zX+v9Zaa7Wy3XbbTZJ02GGHtbIDDjhAUi1wNowqnQMpINxe0cc95MxtP1SCV9gm\nDz2swlL5rfcX7JnbOmyxH48692tirHpYqoeED4I+5qHNjPkq7ZLboWoMViG3g8TYqtQIXgeD0iX4\n8bhWt0NVWPmoVOGw1K+HnVJvHhaNCJYLrpL+yuuP/lLNBZ7WCMGmUUUBnSp0kroaNgcRal4JXvpx\nsRfDBH2q8NrqOqvw0ErAsBJOqtqN8/l4q+wBx/M2YnxUNqCC8EYPnee3nnIG++d2kHbx66TvVqHu\n/j3Gu6evmnpf0vhiQFX/GTWMtsLXWaz9PQUa/f7qq69uZeedd56kvtgk9eJpmBh3LkKMaKCL81Hn\n3kasaZjbpC5VhQsdV+vZcfH0ZDfddJOkvlgc615/HqBvIAoodWt0D70lXRfrRknaa6+9JPX7BqkO\nWBtI3Zjx9qCP0VZSZ/MQxZKku+++W1I/nQhpGnz+qkLdR4V5zs/Bc8iNN9447fuV4LDPaY8++ui0\n/2PjP/OZz7Qy5nhPwwEe+o2YtqfmmA+w097HsYO+fme+8TFNu/q6HCp77v1q7733ltRP38eY8bHK\nOn8mdsPbkjHv60/GpYeS025VSoZhKTIGpR4Y9Xujph8ZJhTN/z31z6D0G/5egmfAbbbZppXRD3ws\nUr9+3CrlVjV/VGkkqpRvVSqmag6nDobNW4NSfFVie/590kcyZ0jdWK7WHZUN82seJLDszwhVui7G\naNVfhtVBVX+D2GCDDdpn0oMwB0ld2hmfV5lnPHXXqOsI0kG5wCzpLaoUi54KBzxdDKnCSA0rdWPe\n51XSN3lqMeyQi7r6uBhEdb/YexfzXrJkiaT+fMn64aSTTpp2zbx38DLva6wd/bdVaoxBqdtm8i5i\necSDOYQQQgghhBBCCCGEEMJELBgP5o9+9KPtM96BvhPHDoOLQ7H7OUxQZZDn8rAdFnZM3FMXIQj3\nwsP703fN77rrLkmTeTAj+uA77q9+9asl1Z6zLhKBN00lvOJeuYiruVfEN7/5zd7/pO7e/Ld89p0k\n3wUHdry33XbbVsbul5+jAi9b3/lmt69K3l4J9bnnD3VQeTc5eL34OWjrZcuWDTzvMEGkQeAp456h\no8J9uhgBu/Xe//Agvfjii1sZ/ck9+LgG32Gjzb/+9a+3MjxNvU7xkmfnTupEcXwnGLETh50497qm\n7/jYGhU8oRD2kbrdQPf8JRrCvR24Vvd2wANshx12aGV4MPNX6sTpPvShD027plG9qkdlVK+5YVTj\nERvifWjx4sXTvjfIjvrOKHV/1llntbLKi5H+h2CP1Hn9eZ3imeS7wzMZg1yrH4NxUUU5eN1TV+51\nQJnPH9hJH+fcm9cVn92DnnHmv8Xjx/tV5anAcdwjb9S6QmBz0003bWXMz+45UEUBVV7Ig7xUnEo0\no/rtoMglt03YgyeeeKKVca2IZ0idp51TCcNVu/54f7iNfeyxx6ZdH/bZIwbwYB42B7Aecvvsc+xU\nhq1zKptEvx/VCwWRQUk69thjJQ33dGIsDBM/4voqgUD3NuR7HgVUeahxDu//lZcZ/6/ElPy87kk+\nlaoPI9rmY4I53PsZv/Uyn6OANUglUOPeN/vuu+9I1zcTuJaZiM/6XITHka87iKyq2tTXMXjZ+tqU\nevb5n3v3iC3WxX481sfupVWJ1HrfmBSPFrnnnnsk1cI+fn76iXtQ8wzhdYUHrouIczxfM9PXfY2L\nR7LXAe3l3+N8LsBLGxEpKXV15QKBp59+uiblggsukCS9613vamVel6MwTOhpXPEoF8lFzOvWW28d\n6xgzpYpoYI7ya0FA220tXpvVHF3NHT6/skZykW7Go0dc8D0XTmTeHBX3gOTzI4880soYyy4eXQkY\nV1E0g94ZDBNPG/T/YV6lzEFVdEq1/vDIGheOm4r3A7w18dj1c7hQOfdReUb7XMocX0Um+ZqZuqy8\nx4dFK1VRUpT5eUdd4w7y4PQ5l/V2tcZwaIcqWs6vmXv3e6veVVAvlcBiRSWW7WOa5wG397QN0eNS\nV6fu1bz22mtL6s+rzBUelcA7A59XWRd4u1AHHkXNb30uRfyXyFWpm8v8PljnVwLkDu02zIOeMeDv\nwAbhEVhkXfB5kHcuvHeQuneb/q6C9ybDIsRYH1QROg73VkVRe1tG5C+EEEIIIYQQQgghhBDCCiUv\nmEMIIYQQQgghhBBCCCFMxIJJkeEhcZ/97Gcl9cNECVFwt3rC3ypX+2EMEhSqEr+7ez2hER5eRgiC\nu/hPIrYDhCr4OUhI7uFHgCu91IVAe2Jw8KTnpH1wd35CELwOCOvg/FIXauFhE1U6ANIMeIjELbfc\nIqkWBXRw2XfBEsIWEVD043hYYCXoN/V/Uhf+4e1LCKCHXBCm6eIuMBNBEgfxDQ+pGRVSDrzvfe9r\nZSTl91AeBKUIcZG6cERC46SuD5199tmt7Nxzz5XUCS1KXSjFa1/72lZGHS1atKiV0Y/XWGONVkY6\nD29fOProo9tn0mV4eP4gXKjvwAMPlNTvL9SHh3gSJuLhKSeffLIk6bLLLmtlO+64o6R+CBZpYBg7\nUv8+gb42an/xc1RjheN4uOlMqEKaOQeCjJL0zne+c9r3qT+3G/QNH2+Mae+Tnk4B6H+V2KiLKdGP\nvX5GDWOqoI1e85rXtDJCkfw6mZsqkdiqfT28sUq1UP2P43kZoVp+Dq6lCtPz8EZC9ly0yPvsILDf\nHiqIffRwqkFhfH4fg0IjnSrkkc/DxE4Ie/O6ItzOU21xjte//vWt7Pzzz5927FFFMBiPHtJP3/F0\nJ9Sfh7oRyo24ltT1He9/CFiSUkPqhwKPC3VQrblGTZ3g4XmEXnsd0F7eD6gDb7cqtQn/97ak33l4\nY5UmgXnV+xf360IpVQoP6sPDB7kGF4aZKn7loY/MGW7z6Id+XO7D10qVLav6PaJansqDEPHjjz++\nlbG2HhbSPYhhYtmklBpVUKjC+zp15X2Tdban0qK/+rzOmPaxzfPCW9/61mnnc/FebISHdLMGcaE0\n2sjvd1iKhVG444472mfWNN7XmX+9HzK2vP5I3eXpdEir4c8ojFVfR3PvvhYmTYg/d/EbTzfwohe9\nSFInoCh19s3nEery/vvv12zAOTwV1CCxsyp1kzMohUwV6l7h608+b7jhhq3MRbfnCtrX053RX1zE\nETHl6jkJcSqnCuNH1Fvqnk19niOlkK9dSQHp9mpYyPdUPAUfY8XTo9BPqxQ2LiLOffg4rtIbVGmV\n6E/DbGwl7FwJE0MljufvTRiPLuJ8++23L/f8nlaO5zNf07N2dJtDn3BbXK1TuQ9fv5Nmxeco7IvX\nM/NrNTdX622vZ9ZoPvZHfT4aNM49BSl2ze1f9fxD+3q7YUddIJWUEl5/XH+V5qLqa1UqkgpfF9Hm\nVYpFT5lD+hQXx6tS0jG+qR+pqyNfO1dpzLjmSujQrxlBWJ8/+F4leudtz3l9fYAd8DSYHNt/O+id\njK8Z6Nt+zRzPnynpB/5+j3HmcyjPbN6+pGfy+z3zzDOXe30V3ierdI/+ThDon+OIAcaDOYQQQggh\nhBBCCCGEEMJELBgPZvfaQGzHvVXYQXLPI7wxfaeh2oVi52JUrw3fleGzJ85nl9Tf+OMh4fdRibGM\nCh4wBxxwQCtjt8V3F/C2dc8o91SYlMqz2+uF3adhYib81j3lTjrpJEnSCSec0MrcE2sq7hmNxzS7\n7FK3M+o7Ouw2exuxe115/1ViDu7li0etJ7Cf+v1xqPoiO1zrrrvu2Mdj59nrBQ923ym8/PLLJUlv\ne9vbWhkiU96vqDevA/7vZXjCuIAHu4wuhEKZ7x4ec8wxkvpeXIwZF/qAUT278TyWunp+xSte0crY\nifVdZHYe3WPsHe94h6S+h8Gdd94pqS+cxE6/Cw/gJeo7heN6ug/rV4x59wyZCZUHM/fuQqDUaSU4\nNEy0Ddwjit1eH7/YW/f85Xtej/RtP9dMvMcQZvV+ynmxM1K32+xeB9U1DxKG851gv/epVPXo3+dz\n5cXtQlbMnQ888EArY1wOA7tXeZB4fWNPq/t2rxc8Gyq761DPvoPPeb2s8hapxOLw+PH5nDqqog4c\nIi08agdBUx8feBD5eKIPeR1gf7xfUS9ur2jfXXfdtZUhNuq2GCoBj2FUfYx+PCzSqGK//faTJO21\n116tjHurPOOcar1BG3ofYd5wjyhsg9cz80ZlFypRzcpmexnXv3Tp0lZ222239Y577733ts9EXPha\nCW859zZjzvN5mDnc13eVzWMd+JnPfKaVHXzwwZL6a2aYiaBf5bHo18K9uWim26FRcBvPXOp1xTX4\nGps68D5Fm/p4R1zYxfGIuqoEaX1+ZRy7dzF2xqMDB3nMjoqvT4g2dM88+r/PpYwZ/x6i5H488LkK\nm+Pettyvty92yD0b8UJ2m4c4d+WR5WOWCLGZRGA4CDBfffXVrWzQM9GwqNdBY2XUcVT1U/7OF9hB\nbyPazedSxLTdDvmaGgZFKFx77bXtMxFvPrawGz6mmZsRiJ0E974nQtKfdfi/3xvPKUTWSl3f9nb7\n9re/Lak/jzDO/d74fzVvViJ1Pi6r52nGnp+Xundbx2/ddh522GHTjgfu/cx86Z6c2AF/hmbcDuv3\nXJe3byXS7qKMk+J2HPviIo6nnXbaSMepxKixDf6sw9rL3ztVtpVx5r89/PDDJUmnnnrqtOMNE/zl\nOdPrrPL2riIGmSt8XvAxOhWP4OOzR+0gvu7vKphLuB+p65NVdI8/zzOO/D4GRe36vSEE6m3uXsXA\nb7wOOIfPUbSrr/OZ24dlJVh99dUl9edVosv83UK1PuA3lV3lOUPqbNJRRx017XtV362o1vujikeO\nQzyYQwghhBBCCCGEEEIIIUxEXjCHEEIIIYQQQgghhBBCmIgFkyLjwQcfbJ+32GILSX2Xd1JknHfe\nea2MdBQenoL7u4dvecJtwH28SofhoSiESnuIIsIDnuQdIQMPm/BwxXFB8MBTHhDe46kH4Lrrrmuf\nSexfJcn3ECLCDYa5w/PbSpjr5ptvHnYrve9LnTCLixUOSpFxzTXXlJ+B6/fQEdIgVKI3Hr5AuEGV\nNuP9739/K7v74zQcJAAABklJREFU7ruXe32TUIV/IHxBKNY4EBrkof1VepK3v/3tkvqhLYSCIt4i\ndWPGw1wJffWUFqussoqkvlAf46hKXVOFknm4CGFFHk5CeGOVwqHCxzTpWCo8bJJ+4KE1a665pqR+\nOBih8C7Kcs4550iq222S8PJR+epXvyppdgSFpL6Ng0ps4qKLLpLUT2NCn/BxQsirt+/ixYsl9UPK\nuA9vK0LrXCyLkNJLLrmklSEm5rgYxbjQnzfbbLNWxrjwa6Y/e+h1JeKILfF+MEjcxeE4XvdV2qVK\nAIX5z207YWArr7xyKxtXINIFm5jz/Nop83qphD4qcZIqDQJ1NSxlUwXH9nG56qqrSpKuvPLKVsbc\n42HA9D+fazmeC5oSdufhn4T+ucAi/3e7xphxm7P11ltL6s+XtKWvJ6p0HlW47kwgXHaQKOXywD7O\nh3jVQsfXXODhyU83hoV+V+HC4+JpHwiB9n5IWhkPp2dM+HxYhRozfv0+WBNW9txtFEJ0CB5L3TrR\n09p87WtfG3qPw/C1NTaK+Unq7IKHiHPNW221VSvDpvhcQFixhwGvv/76kvrCQ+C2jLnR53VsrK/j\nqV8XhSY9k6eaq0SmZgIpPEihKNVrm/nE10W0UZVubz7wNQQCkVVqM/9eleKmEvqCqk39uYtz+Dj3\nVAKzAWlsPJ1N6PBnRcb0nnvu2cqwk57Ci+fpqi39nQvrXm/ffffdV1JfOJ60C25LKrFdzlGlFnB7\nzzshT5E1LtX7EBfB5NnZbSJ91++XdeDDDz/cykjB58zGXDET/D3RoDSOnqaBZ0D+Oi46S5oknguk\nrg95Ohiuwe0MqbE87SzrpkoY3mGeJlWbJC1btkxSvw8xd/p7JcaF9yHmywpEdKVOnHv77bdvZby3\nIFWG1N27p5CpBKWxoy95yUtaGSKtLtYObosHiVZWZX6/SZERQgghhBBCCCGEEEIIYYXyjJ/MRO1j\n3JPN0lvx/x9g9913+9jpcu+Epwuf+MQn2me8MJYsWdLKRvWEDoNxTw08tt1r7hvf+IakbhdM6nbR\n3FOH3WMvw1S4534lgsQuWuX55uYGD7lDDjmklQ3yZJ+EQV4WoQ/iDC4egMCRi40uJBARY6dc6gQ0\n3LNrVLhPBCilWhy02umvomKY89wbgz5ZeQ35b/mNj61KwIP/V6Jofg48WxGMkjrRERdcHRV25N2T\nA+8F94rAs8Xvo/JEqYQiK6/mqq4Gee26DWOX3gXaYNttt512jiuuuGK5x50Ev2+8gNwbo/LYng+4\nLu+nzCUIl0hd9FYIc4kL8UAllObgOb3aaqu1MiKr3Iv8ZS97mSTpy1/+cisjWpJoLqnzjPMoj8pj\nC69nF8jifPMt5DYuLnbmQkfAWs/rANtURWMsBJh7Ntxww1aGh+EFF1ww5+f3+Yu6InJG6uy+e8WN\nK4I5EzbffPP2GZFYj/Kh/jxSh/WQi1yNurYmas3nOX7rXst4fJ555pmj3koIITwt8Ihf3oGxFpE6\nb36PBGAN8rGPfayVDRMaBI7j72ugEgP09RXi7+61Xj0jwPKeV+LBHEIIIYQQQgghhBBCCGEi8oI5\nhBBCCCGEEEIIIYQQwkTMa4qMEEIIIYQQQgghhBBCCP/vEA/mEEIIIYQQQgghhBBCCBORF8whhBBC\nCCGEEEIIIYQQJiIvmEMIIYQQQgghhBBCCCFMRF4whxBCCCGEEEIIIYQQQpiIvGAOIYQQQgghhBBC\nCCGEMBF5wRxCCCGEEEIIIYQQQghhIvKCOYQQQgghhBBCCCGEEMJE5AVzCCGEEEIIIYQQQgghhInI\nC+YQQgghhBBCCCGEEEIIE5EXzCGEEEIIIYQQQgghhBAmIi+YQwghhBBCCCGEEEIIIUxEXjCHEEII\nIYQQQgghhBBCmIi8YA4hhBBCCCGEEEIIIYQwEXnBHEIIIYQQQgghhBBCCGEi8oI5hBBCCCGEEEII\nIYQQwkTkBXMIIYQQQgghhBBCCCGEicgL5hBCCCGEEEIIIYQQQggTkRfMIYQQQgghhBBCCCGEECYi\nL5hDCCGEEEIIIYQQQgghTEReMIcQQgghhBBCCCGEEEKYiLxgDiGEEEIIIYQQQgghhDARecEcQggh\nhBBCCCGEEEIIYSLygjmEEEIIIYQQQgghhBDCRPwfqwJLPUrIEQQAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 2000x200 with 1 Axes>" ] }, "metadata": { "tags": [] }, "output_type": "display_data" }, { "data": { "text/plain": [ "(<Figure size 2000x200 with 1 Axes>,\n", " <matplotlib.axes._subplots.AxesSubplot at 0x7f3051175128>)" ] }, "execution_count": 0, "metadata": { "tags": [] }, "output_type": "execute_result" } ], "source": [ "Sorted_ims = tf.gather(DoSE_admin.eval_ims, tf.argsort(DoSE_admin.eval_lp))\n", "Sorted_labels = tf.gather(DoSE_admin.eval_label, tf.argsort(DoSE_admin.eval_lp))\n", "sorted_ind = tf.gather(Sorted_ims, tf.where(Sorted_labels == False))[:,0]\n", "sorted_ood = tf.gather(Sorted_ims, tf.where(Sorted_labels == True))[:,0]\n", "\n", "print(\"Most False Positive\")\n", "tfn.util.display_imgs(sorted_ind[:20])\n", "print(\"Most True Negative\")\n", "tfn.util.display_imgs(sorted_ind[-20:])\n", "print(\"Most False Negative\")\n", "tfn.util.display_imgs(sorted_ood[-20:])\n", "print(\"Most True Positive\")\n", "tfn.util.display_imgs(sorted_ood[:20])" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "VLDpJs-u1N3j" }, "source": [ "DoSE on this particular classifier appears to get 0.982-0.993 AUROC and 0.982-0.993 AUPRC. This is comparable to the accuracy of the classifier itself, but was trained without access to the OOD dataset in question." ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "VIB + DoSE", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
mne-tools/mne-tools.github.io
dev/_downloads/c6baf7c1a2f53fda44e93271b91f45b8/50_beamformer_lcmv.ipynb
1
15968
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n\n# Source reconstruction using an LCMV beamformer\n\nThis tutorial gives an overview of the beamformer method and shows how to\nreconstruct source activity using an LCMV beamformer.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Authors: Britta Westner <[email protected]>\n# Eric Larson <[email protected]>\n#\n# License: BSD-3-Clause" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\nimport mne\nfrom mne.datasets import sample, fetch_fsaverage\nfrom mne.beamformer import make_lcmv, apply_lcmv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction to beamformers\nA beamformer is a spatial filter that reconstructs source activity by\nscanning through a grid of pre-defined source points and estimating activity\nat each of those source points independently. A set of weights is\nconstructed for each defined source location which defines the contribution\nof each sensor to this source.\nBeamformers are often used for their focal reconstructions and their ability\nto reconstruct deeper sources. They can also suppress external noise sources.\nThe beamforming method applied in this tutorial is the linearly constrained\nminimum variance (LCMV) beamformer :footcite:`VanVeenEtAl1997` operates on\ntime series.\nFrequency-resolved data can be reconstructed with the dynamic imaging of\ncoherent sources (DICS) beamforming method :footcite:`GrossEtAl2001`.\nAs we will see in the following, the spatial filter is computed from two\ningredients: the forward model solution and the covariance matrix of the\ndata.\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data processing\nWe will use the sample data set for this tutorial and reconstruct source\nactivity on the trials with left auditory stimulation.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data_path = sample.data_path()\nsubjects_dir = data_path / 'subjects'\nmeg_path = data_path / 'MEG' / 'sample'\nraw_fname = meg_path / 'sample_audvis_filt-0-40_raw.fif'\n\n# Read the raw data\nraw = mne.io.read_raw_fif(raw_fname)\nraw.info['bads'] = ['MEG 2443'] # bad MEG channel\n\n# Set up the epoching\nevent_id = 1 # those are the trials with left-ear auditory stimuli\ntmin, tmax = -0.2, 0.5\nevents = mne.find_events(raw)\n\n# pick relevant channels\nraw.pick(['meg', 'eog']) # pick channels of interest\n\n# Create epochs\nproj = False # already applied\nepochs = mne.Epochs(raw, events, event_id, tmin, tmax,\n baseline=(None, 0), preload=True, proj=proj,\n reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6))\n\n# for speed purposes, cut to a window of interest\nevoked = epochs.average().crop(0.05, 0.15)\n\n# Visualize averaged sensor space data\nevoked.plot_joint()\n\ndel raw # save memory" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Computing the covariance matrices\nSpatial filters use the data covariance to estimate the filter\nweights. The data covariance matrix will be `inverted`_ during the spatial\nfilter computation, so it is valuable to plot the covariance matrix and its\neigenvalues to gauge whether matrix inversion will be possible.\nAlso, because we want to combine different channel types (magnetometers and\ngradiometers), we need to account for the different amplitude scales of these\nchannel types. To do this we will supply a noise covariance matrix to the\nbeamformer, which will be used for whitening.\nThe data covariance matrix should be estimated from a time window that\nincludes the brain signal of interest,\nand incorporate enough samples for a stable estimate. A rule of thumb is to\nuse more samples than there are channels in the data set; see\n:footcite:`BrookesEtAl2008` for more detailed advice on covariance estimation\nfor beamformers. Here, we use a time\nwindow incorporating the expected auditory response at around 100 ms post\nstimulus and extend the period to account for a low number of trials (72) and\nlow sampling rate of 150 Hz.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data_cov = mne.compute_covariance(epochs, tmin=0.01, tmax=0.25,\n method='empirical')\nnoise_cov = mne.compute_covariance(epochs, tmin=tmin, tmax=0,\n method='empirical')\ndata_cov.plot(epochs.info)\ndel epochs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When looking at the covariance matrix plots, we can see that our data is\nslightly rank-deficient as the rank is not equal to the number of channels.\nThus, we will have to regularize the covariance matrix before inverting it\nin the beamformer calculation. This can be achieved by setting the parameter\n``reg=0.05`` when calculating the spatial filter with\n:func:`~mne.beamformer.make_lcmv`. This corresponds to loading the diagonal\nof the covariance matrix with 5% of the sensor power.\n\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The forward model\nThe forward model is the other important ingredient for the computation of a\nspatial filter. Here, we will load the forward model from disk; more\ninformation on how to create a forward model can be found in this tutorial:\n`tut-forward`.\nNote that beamformers are usually computed in a :class:`volume source space\n<mne.VolSourceEstimate>`, because estimating only cortical surface\nactivation can misrepresent the data.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Read forward model\n\nfwd_fname = meg_path / 'sample_audvis-meg-vol-7-fwd.fif'\nforward = mne.read_forward_solution(fwd_fname)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Handling depth bias\n\nThe forward model solution is inherently biased toward superficial sources.\nWhen analyzing single conditions it is best to mitigate the depth bias\nsomehow. There are several ways to do this:\n\n- :func:`mne.beamformer.make_lcmv` has a ``depth`` parameter that normalizes\n the forward model prior to computing the spatial filters. See the docstring\n for details.\n- Unit-noise gain beamformers handle depth bias by normalizing the\n weights of the spatial filter. Choose this by setting\n ``weight_norm='unit-noise-gain'``.\n- When computing the Neural activity index, the depth bias is handled by\n normalizing both the weights and the estimated noise (see\n :footcite:`VanVeenEtAl1997`). Choose this by setting ``weight_norm='nai'``.\n\nNote that when comparing conditions, the depth bias will cancel out and it is\npossible to set both parameters to ``None``.\n\n\n## Compute the spatial filter\nNow we can compute the spatial filter. We'll use a unit-noise gain beamformer\nto deal with depth bias, and will also optimize the orientation of the\nsources such that output power is maximized.\nThis is achieved by setting ``pick_ori='max-power'``.\nThis gives us one source estimate per source (i.e., voxel), which is known\nas a scalar beamformer.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "filters = make_lcmv(evoked.info, forward, data_cov, reg=0.05,\n noise_cov=noise_cov, pick_ori='max-power',\n weight_norm='unit-noise-gain', rank=None)\n\n# You can save the filter for later use with:\n# filters.save('filters-lcmv.h5')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is also possible to compute a vector beamformer, which gives back three\nestimates per voxel, corresponding to the three direction components of the\nsource. This can be achieved by setting\n``pick_ori='vector'`` and will yield a :class:`volume vector source estimate\n<mne.VolVectorSourceEstimate>`. So we will compute another set of filters\nusing the vector beamformer approach:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "filters_vec = make_lcmv(evoked.info, forward, data_cov, reg=0.05,\n noise_cov=noise_cov, pick_ori='vector',\n weight_norm='unit-noise-gain', rank=None)\n# save a bit of memory\nsrc = forward['src']\ndel forward" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Apply the spatial filter\nThe spatial filter can be applied to different data types: raw, epochs,\nevoked data or the data covariance matrix to gain a static image of power.\nThe function to apply the spatial filter to :class:`~mne.Evoked` data is\n:func:`~mne.beamformer.apply_lcmv` which is\nwhat we will use here. The other functions are\n:func:`~mne.beamformer.apply_lcmv_raw`,\n:func:`~mne.beamformer.apply_lcmv_epochs`, and\n:func:`~mne.beamformer.apply_lcmv_cov`.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "stc = apply_lcmv(evoked, filters)\nstc_vec = apply_lcmv(evoked, filters_vec)\ndel filters, filters_vec" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Visualize the reconstructed source activity\nWe can visualize the source estimate in different ways, e.g. as a volume\nrendering, an overlay onto the MRI, or as an overlay onto a glass brain.\n\nThe plots for the scalar beamformer show brain activity in the right temporal\nlobe around 100 ms post stimulus. This is expected given the left-ear\nauditory stimulation of the experiment.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "lims = [0.3, 0.45, 0.6]\nkwargs = dict(src=src, subject='sample', subjects_dir=subjects_dir,\n initial_time=0.087, verbose=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### On MRI slices (orthoview; 2D)\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "stc.plot(mode='stat_map', clim=dict(kind='value', pos_lims=lims), **kwargs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### On MNI glass brain (orthoview; 2D)\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "stc.plot(mode='glass_brain', clim=dict(kind='value', lims=lims), **kwargs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Volumetric rendering (3D) with vectors\nThese plots can also be shown using a volumetric rendering via\n:meth:`~mne.VolVectorSourceEstimate.plot_3d`. Let's try visualizing the\nvector beamformer case. Here we get three source time courses out per voxel\n(one for each component of the dipole moment: x, y, and z), which appear\nas small vectors in the visualization (in the 2D plotters, only the\nmagnitude can be shown):\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "brain = stc_vec.plot_3d(\n clim=dict(kind='value', lims=lims), hemi='both', size=(600, 600),\n views=['sagittal'],\n # Could do this for a 3-panel figure:\n # view_layout='horizontal', views=['coronal', 'sagittal', 'axial'],\n brain_kwargs=dict(silhouette=True),\n **kwargs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Visualize the activity of the maximum voxel with all three components\nWe can also visualize all three components in the peak voxel. For this, we\nwill first find the peak voxel and then plot the time courses of this voxel.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "peak_vox, _ = stc_vec.get_peak(tmin=0.08, tmax=0.1, vert_as_index=True)\n\nori_labels = ['x', 'y', 'z']\nfig, ax = plt.subplots(1)\nfor ori, label in zip(stc_vec.data[peak_vox, :, :], ori_labels):\n ax.plot(stc_vec.times, ori, label='%s component' % label)\nax.legend(loc='lower right')\nax.set(title='Activity per orientation in the peak voxel', xlabel='Time (s)',\n ylabel='Amplitude (a. u.)')\nmne.viz.utils.plt_show()\ndel stc_vec" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Morph the output to fsaverage\n\nWe can also use volumetric morphing to get the data to fsaverage space. This\nis for example necessary when comparing activity across subjects. Here, we\nwill use the scalar beamformer example.\nWe pass a :class:`mne.SourceMorph` as the ``src`` argument to\n`mne.VolSourceEstimate.plot`. To save some computational load when applying\nthe morph, we will crop the ``stc``:\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "fetch_fsaverage(subjects_dir) # ensure fsaverage src exists\nfname_fs_src = subjects_dir / 'fsaverage' / 'bem' / 'fsaverage-vol-5-src.fif'\n\nsrc_fs = mne.read_source_spaces(fname_fs_src)\nmorph = mne.compute_source_morph(\n src, subject_from='sample', src_to=src_fs, subjects_dir=subjects_dir,\n niter_sdr=[5, 5, 2], niter_affine=[5, 5, 2], zooms=7, # just for speed\n verbose=True)\nstc_fs = morph.apply(stc)\ndel stc\n\nstc_fs.plot(\n src=src_fs, mode='stat_map', initial_time=0.085, subjects_dir=subjects_dir,\n clim=dict(kind='value', pos_lims=lims), verbose=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References\n\n.. footbibliography::\n\n\n.. LINKS\n\n\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
AaltoML/kalman-jax
kalmanjax/notebooks/2d_log_gaussian_cox_process.ipynb
1
157430
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 2D Log-Gaussian Cox Process via Spatio-Temporal Kalman Smoothing\n", "\n", "## Import and load data" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rainforest data loaded\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAE/CAYAAADlrq9SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9f5Bk13Uedt5iF1jsYrEzmB2Ci13OqsetwkjYEhbhDKUeOj1QMrScpaxEZJISF5FY6lUoW11RlR0NpTiUmkhSkTKukhKFpEimEsRyIi4lJ6miVBzDpmQiFjgmiwwoiagMyyCkGKQAsVciCJC2JNK8+WP6vPnemXPuj/ejZ3b2naqune1+7/6+53znu/eemznnqJVWWmmllVZaaaWV6cuxgy5AK6200korrbTSyu0qLRBrpZVWWmmllVZaOSBpgVgrrbTSSiuttNLKAUkLxFpppZVWWmmllVYOSFog1korrbTSSiuttHJA0gKxVlpppZVWWmmllQOSFoi10kort5xkWfbFLMsenXKeP5tl2funmWcrrbRy9KUFYq200kqyZFn2Nfh8K8uyfw3/f+ygy1dVsixbz7Lsj/A759x/7Zz7mwdUpFZaaeWIyvGDLkArrbRy64lz7h7+ewJYfsw59zHr+SzLjjvnvjmNsrXSSiut3ErSMmKttNJK7ZJl2X+TZdmHsyz7UJZlrxLRf5Jl2bEsy/5ulmVfyLLsZpZlN7Ism4V33phl2T/PsuzlLMs+m2VZPzKvk1mW/XKWZS9mWfalLMt+McuyO+H3t0zSeyXLsueyLPtrk+9/LMuy/zfLslcnZfqxyfdnieg3iWgBWL7XTOr0v0K6P5hl2bOT8v5OlmUPwm9fzLLs72RZ9gdZln110g53TX57TZZlH52892dZlv3f1Vq7lVZauZWlBWKttNJKU/KDRPRrRHSWiD5MRH+biN5MRH0iukhEXyOiXyYiyrLsdUT0ESIaEdF9RPQzRPR/Zlk2F5HPzxHRMhF9FxE9QkRvJKL/YpLuKhH9L0T0nxPRDBF9LxH9f5P3/mRSnnuJ6D8lov8xy7Lvcs59lYj+BhH9S+fcPZPPlzHDLMu+g4j+ARH9Z0Q0T0QfI6KPZFl2Ah77j4noTUS0SESvJ6Ifnny/QUTPT957LRG9K6KOrbTSyhGVFoi10korTcnvOud+0zn3Lefcvyaiv0lEf9c59yXn3J8T0eNE9B9lWXaMiH6EiD7inHty8vw/IqLfI6K/HpHPY0T0bufceAKY/ivaAz3Xieh/cs799iTdF5xznycimpTtebcrv0NEv01E/3Zk3X5oUt7fcc59g4h+gXYB53fDM/+9c+4l59yfEtFvEdGVyfffIKIHiGjBOfeXzrmWEWulldtYWiDWSiutNCUviP8vENFvTpbkXiaiP5h8/xoiukREb+PfJr9/D+0ClpA8QHssF03+vjD5+3VE9AXtpSzLvj/Lsk9OlgdfJqK/RkTnYiom83TOfYuIvgj5EhG9BH//KyLifXW/MHn3tydLohuRebbSSitHUFog1korrTQlTvz/i0T0JufcDHxOOudeol3Q9oT47bRz7u9F5PPHtAvkWBaI6EuTv18gor8iX8iy7G4i+odE9PNEdL9zboaI/jERZUbZvXlOWL2LkK8pzrlXnHN/2zn3bUT0HxDRT2dZthZ6r5VWWjma0gKxVlppZVryfiL6b7MsWyDKN63/wOS3f0BEP5hl2ZuyLLtjsgH/e7Msi2HEPkREP5dl2bksy+aJ6GeJ6H+b/PY/E9GPTdI6lmXZxcmm+ruI6E4iGhPRv8my7PuJ6N+FNP+EiM5lWXbGyPPXiegHsix7dLIvbIOIXiWiT4YKm2XZ38iy7K9kWZYR0VeJ6N8Q0bci6tlKK60cQWmBWCuttDIt+UUi+ke0uyT3KhF9gohWiIicc39Eu5v7f5Z2wdG/pN0N9jE66nHa3U/2OSL6fdoFQz8/SfcTtLsR/5dpF/T8UyJ6nXPuZdo9PPB/EdGfEdF/SLv7uGjy3ueI6P8goj+aLJW+BjN0zj1LRG8nol+ZlPevE9EPTPaLheRBIvod2j2s8DQR/Q/OuX8W8V4rrbRyBCVzLsTAt9JKK6200korrbTShLSMWCuttNJKK6200soBSRQQy7LsjyaBCT+bZdmnJ9/dl2XZP8my7F9M/p2dfJ9Ngis+l2XZ72dZ9m81WYFWWmmllVZaaaWVW1VSGLHvdc5dcc4tT/7/M0T02865b6fd+Ds/M/n+3yOib5983kG7eyhaaaWVVlpppZVWWhFSZWny3yeivz/5++/T7jFs/v5XJ0ES/zkRzWRZdr5CPq200korrbTSSitHUmKBmCOif5xl2WeyLHvH5Lv7nXMvTv5+iYjun/x9gYqBHGWQw1ZaaaWVVlpppZVWiOh45HN/1Tn3pckR7n+SZdkO/uicc1mWJR2/nAC6dxARnT59+vVLS0spr9+y8s1vfpNu3rxJ586do+PHY5v/cElsHV566SX60pe+RBcuXKDXvva1SWlq76ak16QcVDnKjp1QeVPT5fTOnz9Px44dy9/jdGZmZujll1+mc+fO0c2bN5PGwJe//GX62te+Rq+++irde++99Morr6jv8rNERK95zWsKY4bl5MmT9NBDD9EXv/hF+pM/+RO688476du//duJiOiFF16gu+66i8bjMZ0/f57uu+8+euGFF+jEiRP0p3/6p3TPPffQpUuX6ObNm/SVr3yF/vIv/zJP98yZM7S4uBhsK1+7xowhfJ+IKukNzu/ee++lTqeTp8F5fOtb36IXX3wxeUzXPbbkO0REf/iHf2iOA1kGHnOY3ze/+c08DSKiu+66i9je3Lx5k86cOUN//Md/TA888AC9+uqr+9ob/5a66dy5c/TSSy/R17/+dSIi+trXvkZnzpyhe+65Jx+XKfLnf/7n9MILL9DrXvc6OnnypPr98ePHC+XBefdnf/ZnRESl8ua2Shlz1rhKSUuOEU2PTMNWWnrNks985jM3nXPztWTunEv6ENG7ieiniOjzRHR+8t15Ivr85O8PENHb4Pn8Oevz+te/3t0qMh6P3ebmphuPx6Xe39zcdETkNjc3ay7Z9CS2DiltJdPU3i3T9invxD5bdQzEpKV9X3bshMqbmu54PHaj0citr6/n743HY3f16lVHRPm//H3qGOA0dnZ2Cu9iWvjsaDTKf5+fn3dE5LIsc9evX3dbW1vu7rvvLqTL5Zubm8vf5+9OnTqVP8v148+xY8f25elrI2wHKTs7O259fd1tbGxE9UsVvcH9tba2tq/snO76+robjUZuPB7nz/P/Q2lvbm7u6yutDrHC72C/yPKFxgXmx991Op3CONjY2HBE5LrdriOifOxge1+9etWNRqP87/F47HZ2dvLxyb/xh8eUNkZ8c4HbnMuytLRUeA7nlqwj9iHnXda+aG3vS8s3zjmtjY0Nt7S0VGhD7TlZn5j86xTuH+7TUL5E9GmXiJ+sTwzwOk1EZ+DvT9Bu8MK/R0Q/M/n+Z4hoc/L3m4loi3avCvkeIvpUKI9bCYhVBVJ1GvGDyjcFPMS+H1JSKWUPKWYr3WmB5Jjyad9L4122zaTxtIyoT1BZYj00ABUrWD+tbNgm4/E4NzwbGxv5s8PhsGAM2bgSkbvvvvvc9va229nZ2WcY8Ltut+uGw2EOXLRPv99Xx/9oNHIbGxuu3+/nz21sbOwDNWjAR6NRcD6h8U8VaagRuEpAjc+nzAU04BZI0v6v1VUaRARDIVDq0y07OztuY2MjB2TcR8PhcN94QICBoEQCMwZzCwsLbmFhoTBG1tfXVUdKayMEUeggcNlv3Ljh5ubm3GAwKMyNjY0N1+v13Orqquv1emq+MW0j+0eCT5/4+hTBJc9FBNW+MoT0SBW74PstNt1pA7FF2o1a/XtE9CwR/ZeT7+do97TkvyCijxHRfZPvMyJ6L+1etPsHRLQcyiMWiE0DxPgGQYqneNhkGiBDy0NrM6ssVvumlp2fX1pactvb2+aYkelWAZIpIgFFLKiVBtLXLhIoab+xwrcUt0+k4uJ+w3mT2k6s/FlRo1e8sbGxj0HSjAYbMP5sbW25brebGykGWcPh0K2vr+fARo49bqOzZ8+aYEyOc8mgEVEBzOHzWl1944GfCTFxvr6SOg0BmjSMMXrOB56suRpyPLDvrLGUMq4sZ0sCeAbQFkBAoI7AbGNjowDIGOBJcOvcnqOxurpa6Et8t9Pp5L/zeOdxK4G7ZONCwElre2tc1WVrpS7GOVJmLKNDEmMXYp1yy3b52mCqQGwan1ggNk0wodGisfk3CRjLpj1NEGuBB/Q2tbJYnnhq2Xd2dnLv6+rVq0nltZ5BLzSWso/xvlJEGkhfOmg4JNDE31KZD60eZZgLTTSWiNud2Yv19XWzHD4Pejwe76szls0C5WwUicjde++9KusgQdja2loO9AaDgSMit7q6WjD0ErwyENAMOLYNAsUyc1kCGskqpoAezaHgulggzgJ5cixV0fNYZgYyGxsbav7j8R7zhW1hOY9Sh3F5h8NhDvKtNpTAiR2CkydPOiJyMzMz+W+8nM7jfmVlxfX7fTccDvPveJzx9ynAmaUOgJ+Sp5zjqYLMJOvi7e1tFUg7F+f0WnUJ6a/bFohNC0xYnRqbf5OAse60m25Tbk/LwGjPhhRKSHiyd7vdUks5Wlq41MRK22f4p+E0WILGBT1kZECGw6GbnZ3N26lMe7ORGwwGBbagLCPm6//hcJgbr7LCjMRwOPSyH/IdbicJWFjQgWCAxuOGGTFkNDTwp6Uh28by7FPaWb6LzBx/z98x22ONY61MyBZZ7Iyv/FV1AI79zc3NvF7cpthO+Gy3281BN/aVBF7b29s5CGCg1+/33eLiYs78SDCKbYOAXTKoFy9eLPx/aWmpwJbJ93l8+fZSxrRXyImxpIyOq9K/3N6oe5E0kfPL57jGlCPkkBxZIFZmADUBIKQXlSpNlq3utKcFGKYBolnQuFTNTxpU3PDsa7tpOQ0+ZlEaQo25weW51DwZlPKem7L7w2LaKuS5p3q7seXa2NhwDz/8cM5aaPlrSp11yLVr16L2xmDfhJgC+V4I+PjaQjPEEpxhuj7AistuDGYQmFvtFaODUp1g3PvH4BtBGTvbRMUN9uxQdDqdHFyhYce9ZJLh4nQQGMg5MR6Pc/bsxo0bbmVlJR9bzJz2er0cYCH4YGeEiNwdd9xRyMMC+LL96jxU0aS99jFUPKaQSeaPxmLKdpF9F1NnrX2OLBBLGQxVvMKQoNG9laRMG0wTIE1L0DhphiA1LVRgsXugmm5X6fljfkjZy7KzMWKjkQrAcd6xIcNlN1ZwKelWMcT8PeYrn00Bcdjf0tOWJ9l8fcx5Mkidm5sLAt4yhk3uIbLasEzavKcHD09Y/StBCTOH1vPY5zFlk0YYgaHFesh3JehCp2R5edmNJsvEEkhJw760tJTvPSSifJP+cDgsAARexpYOPbJwnA8vRWrOI+fLdum+++7L31tcXNwHrrSDHZyGBfbrsB0+kJ7KmPvAJI8p3JtnOUgWA8oAbn193buPmMuvnXA+skCsCsKuk9mpyogdlEyL3TpMoo0ZVs6+PTdl0k2RpvtCev6Yn6TskQlArz/EYFlti8YGWRMf8I0FrantrnnJkiEIATGt7biNmBVhg2e9Z9UJWQzMP9aIWelK1krb1xRbVksQXMn+3draygEJAkIJJiwmpixDwvngUqNkNjTnaWNjowB81tbW3Pb2dg6AFhYW8vZjkMX7vVgQ4HB7zM/P530styvgvEPZ3t523W7XraysqIya7CPOj/cbDgYDt7y87GZmZtz169ej2C3ZfiHWVb7nG1OaDkKAjHoHgblvTPpOCSOwi2GRLf0i9aTlFCDjjHJkgVhMJ8Q0dlUJpVXlKHlM+tN4ts53p5mmFDTE/EFlLb3a1HTLAinLAPmercsblXmjApdl8tVT/jYe7y2ToLOC7JtlaENgSMvTBwStfKRxsNpGA+6SEen3+25tba3ACMUyYviMZixk22ptraWNzMZoNHI3btxw8/PzOSAKAcOUMcZ9LPchjcd78doYPDAQtPbW1hUTSi4pSUYM2wgPq/B3DMbwtCoRFZYH+Zlut5uPCQQUnU7HraysFJgwdG6QceHwJdqc43IsLy87InIPPPCA6/V6+cZ73o8mWc/19XXzNG6or8sCfmtMWSAG25Z1BC+1xjhdqC9kH+Mcj9Gv1rzQdLT2rGXvjzwQk3semjbmKTIeF/cJpLzHnR67F8S5ZpgVrU1jDUGKpJY9VUngZMaJz8tBvFRwkMA0pg2a6GMUyzN3zl9PVECodDktn6KWdYoFYtvb2/lRd/kOlqEM8+YrhwYAEcgj4K8KmrXvLECpGQ80fqyLeNm0jjGrsScak3D69Gn32GOPqQyVdUjEYuxSyqYxfxJMc9/xgR1N/zJoZDDJAXvf/OY3F+LP4RImLgvye6xvut2u29racuvr6/n+Se4rBIWyDqi78IN7C+WWAjw5WQVwWc/GjncrH2YJe71eEHRpfYhjD4Er/8YnRrkNfQAvhThJabcjD8RSY4VMU9DbSmHEUEHhoApJE0BUa1OfIShbhpCxiSlXSvlHo1HBU5QGJKWsdUmsAqorby0tuWeMlZVm0FBQGfO4nZ2ddb1erxB/KwYQxXrpWuBMud9IhsmIaQP+PnaPzHhcPKGlgRNu29ggu7ES6hsEFbzxe3t7O6oNYoT7HRlBbG/sJ4yazmWW2wGstosta0xd0FhLx2xmZqYwZiUY397eLuwdw/h6o9GosLzM7BUzaLjcKfX70tJSzlhKcIqys7NTCAa7urpaAJK8ER3zCDFBKXYzhgXS2COfSOcvBoxLwKXpKg20bm4WlzllfZrCEEceiKHEeJPTlKqgJBRnp+lyWO/6DGddzFYonTpAE09U9oRjmZjDBvhjRLIAPobKOTtcAraN9CzRsJ44cSI3BLHlC4ExCY4kC4d1QmWsHZoItYHG1lhltcaDHE9oeKURKDtHqzgkqWlogn2CrBDqLAag7PggOGYjiqEenItjI2U5fP2J4x8PFmxtbbnFxUV3//33F+rAByawX7geDLDuvvtud+PGjUK/cf4YF44/uA+VWZper+cuXbqUp0e0uwdNbgyXABXTlL+F9gBqfViFEZN9JYkE37iSTgx/h2NKCwODTo0F+DhtGTvNx4jFOovyt1B731ZATJPDZjQPgk2puw186aXWL6RYmwLQEjhIIx569zABfhSrbAgCQuECpDeLihGVouVNciyt48eP7zNUlsR4phYgtOrPzzMjLVk0or09O8wSyfprSp7THSl7exD8SeW8s7Pjer2eW1xcdFtbW4XfJSjTFHvZcacZO6uvY0TmyfOGQ5z4+o1ZG5mnZEVCBtGK/G+NaXm6kcsoA/dmWZb/3el0Cn0gT8ZiPbnPGFz1+/38JOTdd9+9L3irBFT44SVNvst0bW0t36zPIFCbB7H6q25B8Kk5O75xZTk8yGb5xlSI8fY5VCkS48j4bOxtD8QOi4FkiQVFqUqyLDiK9Qhi00uVg+ofTXFXKcthAfw+ACMvtE4B7RpwtcYORpjHy5F9ItPS9mpwGbQ4QFp6o9GosJka93HxvMLvtPprrJVk0/h9VMjypgKW1H1AmK+P7fGNYctQaHWLGfuyjTRmEscE95m8sgZBK7NlsXs1pYGNcUSZqUOdyqcSr1y5UgBgEmyNx7sxvXgOSZCGfcaflZWVfbd2SCDG12KdP3/eEe0Faj1+/LgK0pgtQ+CD4wDHUQxTU1Ywbe30MdY1ZEu0d3d2dvLlbi1kBL7H10SFTk36dFCorJauk/HJrLa+7YHYYZNYhYfKA72ckKeYOuFimIhUOQjW7yDTaiK9smlbrAl6/r7gtTEGzeddMvvCR+aJdjfhaorSByB8DEeMB8qGkfdFIWBCQ2ztb9EMmZwbkmmSYFVrJ20PnkwXTyDi71pbYHsgWENWxDLIWNcYUIbGh+uN+5q0PT0yXS6H3MfE78eGkEFDHAoiG9qAjWCRgQUCeGwf/k7GiUIgxuCq0+nsi66PB0gQmDLjdeHChX3ga21tLWfCBoOBF2xhe/vmiaUnYoGbTFsjDnAs+saUliembzF82J5VGbFUu4fpyvbW0miB2C0q0nPiwehTymXAgIX0Q2nEGNEU7ygm38PCOk1b6qi3FWgwRSzlrfW9thQq94tpRgNBjmSBpBeKylsaW543GCWd9wJa7SmBBi7hoqEOzZXUeSjLLsFUytyxgFgMM+FLw7lif3H/MkOEDE7MvOc8MJ4Wfxe7jKSxKVrfhoyxVl/tYAWPAT6FqD0/GAxcr9fLN9RjH0rgiICblzGZ4cHrrm7cuJHHKsN9YNhmXGfJTlrAytdOsUAYGTEN0GO7WvPbdygj5rBMCDyWsWcxYh1qstJogdgtLhZQQgPFEov+Y/IJPYf5W5PM8ow1iQEbZYDmUZAYhuKg2kV6vaic+W+5EVuWX2OmtGd8Y0QGUkQjR7S334aBmQZINRA5Nze373StfN5iBGIlZv7EivYu95G26VkTC4hpjNjly5cLTKu8rNwyUiFQX9aAav9H9klrYwQ3OIZ9OpaI3MMPP5xvqpcR8HmfpAzVgSfosV8QiHEb8rjjtDqdzr6Ay7LNfY56aJxY8zcE4JHlw3dwTsv5zeXEeGexDk0ZxzTGiUyR2HZmaYHYERVrYJUNhphK4eIAjFGgdTBiBylNlK9qm0jgMG2mcDweF6740gyXfJ6NTq/XK4ChMkDcB+S4LIPBwJ0+fTo3crz/h2ObaYpZMmJoDCXTJI223PtlldcqexkwIkWmh3GkYtoYjanGOHBfbWxs5O3Z7/f3AYHYZRtNyhhbTRDsYD1w7vjiUGljRIah4BAWc3NzBWCK909qupnLgSEvMHgsgy3ev8bLl8yYYfwx7Ctk7creoRtix6RDrm2axzaWv2F7xOzhknmnsmA+BjAWTGHaMSfPsRwtELsFpapHHOPJyLzkhsuygKouBVqH1AmemqhXVZYwhoWJaYOy7YTKGo2IdXqQlRZ+qrBAGnODbTIa7W3W56Wza9euuaWlpTy4qO9qMtwrxN67ZNI04MHtIJU0LpfiXEPDK28hCM1HWefNTT24rGTErPRkcE3NILOOkVHlMV000LGMmFanVEZMCpcDT3TKq4dwfMYwQbwMidcOIdhH0M9pWvMUgd3s7GzhRCk7BAzouP+4Hv1+X70RABlcOT9ihZ0maxN8yCHnNCy2jNuRl/ew/WP0lc/51PSmZhf5u5Sr7aTO8Y0/LEcLxG5BkQMp1UilgAZ8FvMpCwKaNPypUid4OoyMWIzEtEHZdkIPHJUZGm9c5uN4Phojlirj8f6QGhgJHZkFjmnGoAGZsU6nY45drgduIse0pfGRil1uXmeWgvPmIJ58qIFob6M3nzyVS1s+w4OBU3FJaH19Pd9fJBkhmR6eGOR3ODyHBkC73a7KtGn6QXP6Qgc/QrpF6i8ej9g/MnCq1HfWqb+Q8Mk+BkonT57MARn3Kd4vKdPGMYxBYhHcIGskAYy8t5KBBo+zKkBMtq2UMkBZpof/lyyg7B8EaqGxI0GXdA40Vix2O08KEDvSjNiFCxcaN+AHIVKhawYhVkmkGPBU5kvzeFMGcpn6lJVpAb7DLNMCxtK7ZWPI4QEkq1JVNJAkA4tubGwUrp9hkMPARJZJjksu+/Xr191wOCxsog6BIjb4CIo4z8FgkM8bBIn44XxSFL7GJkgDpzld2IcYtR37TRpzqQe4TSWDgm0q2wYPQ/j62Oof2S7oAOBzoeCfWAcfW2iVT+vHTqeTgytmDHk+yJtgeJzwM8iKasFOEXQicOM6M0Csw9mpohdCQBr/j2yx7E8tBhy3ocVeam2DALdsHX222ZfWkQNiTRrwaRvuWAZqmuXyAULn9lPSfN9fbL9oFPFRklgPyfdbU/3d5DiSSlMaT2aHrI37KcKKW+6TYWW+sLDgrly5ku/r4n8RVGjjkNuHyyiXePhd3/iVoAiXw+TF2DxvOIjo/fff7xYWFlyv13M3btwoBJpNbR9prJnVsi7aHsFSI28K5wj0PrAkARnXFdNFZgJBMwPT2DsQQ3NEY8ScCzt+3C9yn1tIn2F9eJytrKzkDBkGC5YglOeD1icSPCNwQ4ChXas1TZ0ayjMWpDgXt80A2wqZMa2vML0y7F1s3a0To1KOHBBrkhGbBlNjga/Dwt5oHqzlgeLzMYEVZfpV5bC0GYqvT32eWajdpZTx5Jrc1C+VplwWGI93N6XLAJdl6iKZDxx7khWbn5/PDW2n03HXr19Xl9qwLAxIer1e/ne/3y/UKeRMIKhjNgZZuNFo5AaDgZudnc03eOOSEp/ylJevx7SVHIOhTfPYnnIfXKzjNB6P991lqeWFYBRjiWlzwicpekQzmvg9lgPnbWi/EjOm165d28daISCUJ4jxou8RLGXzGON80cnFvVYS+DZpryyJ0SexRIN8Vv5fgn3c/G/dR1nGNqSMKcs2WnPlyAGxJveITcOwH0bwhWJ5nVZZLbARO+FSf0eZBnCWklJ+Cbx8J220tvYZgtS6S8DcpGjerXN7ISbm5+fN5asY0ZgP/g6vgDl27Jh761vf6vr9fr7nCm8X8AFiZK4sg+ArswasuWwc9gABI8eJGg6HhT1j8jCB1Va+uSp/05hAbk8tRlZs/8jxjiBUsj2SXWSQivX1zbUyjojcU8hlYWYJ7yOU9ZZxo9CpmJ+f31cOHEdWvggoNMcC5yyztJw/tu1BhK9J1SdlnS2cP6PRaB8g1cZ4WUllxLR5ZJWvBWIlpSmQ1ES6daepDbIYdsxXltgypnq6Md56Sv4hiTGE8jsJvMq2RQwwtmSaoN8CYloQRK1sZcqqGTT84N4not2rZJgJQUaNwQhuQJf9KGM3aaKFpOAlK14qfeCBB9y9996bX2uDRptod09bbEgLHisYp8oSawwjeGBAJOcYszS4ZCodBwQaCC5wiYn33DGQwHhSVjlTxr/lIGIbS3ZJ7nfFNGSoBf4/b86XgATbjceZzBeBMe4H0xx1BD74L5Yf51sqqEidb2VAcll9HeNkaAxZrC2Krb81prRxJNrpD20AACAASURBVHV+C8RKykGwLT7xDSrfhvkykwyVlg88pLRR7LNlPSeN3dCeq8oIWeWzwIfvnZi8UHEdtjFpiRaVfHNz021tbbmlpSV3/fp1s62cKzf3uP1Pnjzpjh07tg+I3XPPPfu+m5+fdydPniywM2isZbujR46b8H1zA436YDBwZ8+eze8VlIwY0e5yKAIzHteacUYZj8cFkOATXxpyT5icX3jaVIIE1BUIuBiA8ub1zc3NAkhjZkmCSMvwIUtiXW+klWk4HLpLly65lZWVAkuHDoIGxjj2Xb/fLzBiPKa5XjherNOiIT1ggQQZAkO7SghvKdAYRkvq1is4ZjT91VRecs9YyOHg72PrL+vFzhgDbb7KDcNxcD+2QKyk1OGl1ymhQWVtmI8ZZFpdYzyXKgomJKleivRAtOea3CPlA2J1pZviUTp3cGNWsg/yiL4WHLVqucfjceGEpHVpsvVBNoLBBpcPjTGfRGPGjAPDynElx5tk7Obm5nJAtrCwUNgPJMvlAxiYny/uEz9jjR9rLsv5xRHgeZnVAh+SweEPHwTY2tpy6+vrOUjD8AxWua2wFJpB1cYQlsVi3hCM8mXS2jtamgiaU/ZP+cSnv7HdJVOmMYyWVNUTIZYK2zakv6rYCZl+E4zYaFS8I1ReZm/1fQvEapJpsRGxg0d+b4Eh3yCLBTGhdOpumzKgKWYyNQlMmkpbAryUtj4oBk1TWEtLS+6tb32rI9oNqhoL4FPyHAwGOQC7ePFiDqg0hgw/x48fzxkEPN2I4QwwlIMMvGpdz4Tfo1Hijfi8H4sBBtFeiA1eSpWR0a1xFuprnFMIGrh+Wkw2zahJxoVPPMo5y8/zXqbBYFCIucWsndV2Wt00sIttYS1987MbGxvu0qVLjmgvTEJoHxsCc1yu5fQxTttoNCosv/oAR+zcjNW7/Byzzjdu3PC2q5ZuSIeljj0NeIXyaEJn1ambuXwIdNHJRFYS82uBWE3SNLuggaKy4CLV28JlltCzPEGkJ1K2DL68YpYRYxT5rSB1e2+pz1Z9XysnM0fIHqGxj3EAYvOVxhMBE147Iz8cOuLSpUuu3+/ngAH3iMm0h8NhwchY9ZCGEq9NWlpaylkhDnKLeeCJzZh5EHK4fFH/EehwveUyj0wf2wSXhTDUAjJj2I6Li4tJ8a3kUrcluESEbB06BQxAuSzaci7nNxgM8qUmrDvXCcEs6izrIutQf1Vhg1gY3Pf7fe+7GuAJgSAf4PKNvdHkMAaGLKmTDQ+JVu6y+UiHJDY4cQvEDpHEeDfa5PYZqjITSpYnxiBKZVh20sZIyiTBSRCbpuapHYRgmerwBOtWYmXZN2RYcExrsZCqlhedifX19dwI8+lIZmAsJoxZOvnp9/t52bi8cklVm7Ms/B7GPuJ0pDctARjGL+Pl1irjQnNs5HwIMWLSadve3i6cNkT2TmNqGIgi2Ivt/5hxiKwls4pcFwSZWH8ECBh6QtsQL/OSehMPHOD9m9Ngg9AZ5dPBKysryexWWUbMJ9j+OPZxXJV1KmPf156rk3kLkRLOtUDMbLCDEF/npww0q+MlWg8pADQWIVCCE0oq2JgyNCXackRo4vnqMk2xDBZLqqLyLeeWqWPKO9YyHO+pSjFIKWWT4G59fX3fpcxE5B566KF8SRCv8el0OvneL1624nKHvN4Yxwr3fTGwYSDCIA3Lg8uevNxRxwETbZnRGmuaXuDftXssufy83GfpHwZs/Fws+5+yfInL0LxUiMtGWB7NAcVxhPG8NEYOyyxZU9yvyOmjA2L1U8q8kH2CB2HYIakDaJQVBt/9ft899thjrtPpuMFgsA/cpzp6vu9SyhayrWXEKlMLxCIaaVpSl8GX9dAUSwzbgoAkdOLSxyJpIKdMG1dZZtTKgB63ry74fN1Mma/PQ+PBp7jlu2j4fZf0pvZL7Jjl9JGVQvajbtCrzQE80djv993Kykp+AhGZ3O3tbbe2tlYAQES7G9AxzhizaRqYjGk3uRyIY43HORvR1dXVAlOGy7l1jMWUOSpZDOw3jGeFoBIZPkvPyBOZMTpKll22Mc5pBj9zc3P7WMj5+fl9gWY1/aAtK/oiuHM5uG69Xi8fNzJAq0xbzoXUucH16PV6BbCJbOC0nEuf84vl0uxWrKNZxVGNTVcbG1XSY2mBWEQj3WpiDR5N4fuMHwOSUOyakPHGd6qAqdhlxlAZJDANTSr5fJ2goQoA8l0vowERn6GzFJkGPMuOAXlCjtkP3iuGm9K1uEtl2IBQubEcsu247vLk06VLl1RWrQ4Qa5URWQ2i8D2MqRIaC/JZZMTwvlBmihBk4ve+8eQ7UORzgKzy4vwej3cPa8zNzeUb1fk3yRRLHbWzs5ODcr4HFPUX15/3BsoycT/iBd8MhrCcEhxJR8tyvHz6G+dct9t1W1tb5oEFX1plBPtVtvF4vBsupNPp5DqgrGPR5D7gGFIjJDGAugVih1DqBoQ4IWUwwtTQEjEAzicxhtsyClqwyFC9fRNA83J9dZIGoQq7Z5Ux9jlkTmKMmgbEkCXTFDMCAayjNgZix9Fosu8GQ0AgwNUMI47fFG/ZZ6CYFePTh7jnS44/Bh3M5PE7HDsKT8RxW4RCRcSUlcuJsYcQFE7jFgRZRg0QSYCNcb+sjeyx8z/2HRbcisAb0weDQQE489jDE50WAMKlSwTAWBYNIGGZMQ08ZNHtdgtL9WWBmKYLuE7b29uFYMVyf5scQ1V1mga+EIzLPsXvy87nFAe9DocuNR3ZpthfcLn7Z93tBMTqBjlNSB0GXopmzFLykgY3dY9XisHGMll/x4g1AeT7qAi1NqpjMlYVZGmsdrT6GN+XyhqNgvwdD2Agm6H9jYxNbOR2zgsvVdZYE63sMWPBegaNAPc5l8H3LF/SjKARxwCPI7kcF+MRy/7V6sl/W/fnxYjl5MSIBsyZ2VhcXCwAHgZjsj4xekD2d6xDhc4GAi8NSPHfWv6oD7C/O52O6rBoAAlBKzoavM8Qlwrlc5azYTE/2rzntLC+p06dcltbW/uAUoyui/0d+47/1ZZzx+NxITxLjFjzOYUR43aRByVS6lkVzGF/gRPzgrudgFgTIKduKcuSlEk3No1YUBPzfspkL2s4NO/dqr9UhHV7iXUIl91HiWuARb4vDSArST4dxkaCGRg0pmiEpcIl2guSura2FlUXWQY8xRYyDlUZsZixwd+jR4/GUxozbi8+PclsDC6DbW7q+4y4THIfFTIbuDdMApzYNqji2GjtJscFs9Zs8K3x6utnDF7rG+dcL+wDHM/YnrOzs67X6+WnOTVmS84RLvvc3Fxh2VG2qzV2uJwc7gQB+pUrVwphUK5evZrH+LIYf19/WXOK85cHO5hd9e1t1OplsXdWG0qnLRZQa1LHEiSCYt/Ytxwj/K2MPbAIjZYRm6LUnXfsxKxitKzfy4JAyxOLKYtmCCyxaHwpMQDxIMeMlKqemhwz2KaovHE/C182vbCw4JaXl/M9HaPJ/qD19fXC8kev14tuLzzWj+CmirKtu7/QcGGd2aPn8m5sbOQGj0EpMo2SMcNwCc7ZrOVoNCrswQoBchStv8s4NpZI1lQuf2t3alp5a2xKaJzLNvOxD9a452clyEBdZTGVPkCMIJ7nEbJzct+f7wqq8XiXOV5dXc0vm5dtgYIx03jMaqeWEdhL0caO5ZRYTjM6HSEAU/X3GJFz2eo3jaW0nNkUsepA7R6xZkVTGnUxKz5Fmur5xjxTh+K2jI3ltWvvxjAmsUDsMIGsaYimLHEZ49q1a/tOWKEnL71J9PqJ9oJxhvqI/4/GiBVgTL/5JGWeWYoZ2ZmrV68WAk2ice12uzmzwN9xGAw+Ycl7xfhQAsdyihnHOObxZF+sY1SHE+YTTc8wmJEMX6hfGGzwZd8x5Ympt+XAybHG/5eHk7AeDCjkkrwFGhH08B7De++9NwdmPMYwQKzmhEgmh8Gapk/xeQ1oYVo8b7X5JkP/8Bzo9/tua2vL3XfffXk66MjhoRvMP+REhpzsaelqHBfoSNTBhFmhTlog1rDEMC4hKcOChLzPMgyXNRBT6uUzNprXju9ZnoxWrhjPf5og7DACPvTq2RvHPSvyupo77rij4GWPx+N9yjrESrAhQ/YBGbA6gFiKwkfwgAaNv+e9TrzciKBrZmZmn0G7ePGiu3DhQiHNtbW1fYZ0YWGhwGxYwiwTLmGhRy7BdIyesRwfbpeUUBxynjGQ0vbJxcwBK/J7qo7RrlOS78qxJoGgXKJEVhOBpW8ZFccbtwmPjytXrhQC3vp0GOe7urqal48PJHA4DO1d7SASXrOkxYLjduJ3eV8bz4F+v7/v3tPhcFjYb4rBeX3jifWHZM6wPGUYqDL2TWuzKvYbn0fArPV1C8QaljpZJG2ilzVcZdC9VZeqTF8VEKi9bxkai2GLLXddzMFhEayPVIhoACQjhqefcPxZABqXmvB5DbjFtnHZvkBAxO/LDd4MdrjcGHyTGQt52TMyYkS7G7ux3dgYIxuG6Vl1QZCkRXTn3zGifWjpXwMgCDiwzKmCwFaG2NCWnWXfM6iQ+wxj9JyshwTV0phqYwgv9EbnQTonGlBAgMMHF3C/F9d/ZWWl0M4c6f/SpUsFpkSWG8uBABDrqrWpBHMyxAiPE5mfFqKFw3QQ7S2/swOCzslwOAzeQODc3onHbrdbYNUQBIXGs28cSsfPl4acS3I5PVW0cWeFcGmB2CGVWOOEdHDZ9K3fUiLwl/UUYp/XBq8lIYZNY3FiRE5u6wSpBUiaZMTqyJPbWQa7JNplwTqdjlteXi4YRAmspLJDZYqAD41xGZBaFtiiMZL9hZvEEdTwwQVcRsVlGjbQGxsbuUFaXl5WN0NLliFkaDSwzOVBYIBxmJCV0ECeBZ4l8I4BYpoTZIEWNuxra2v7mAI0lhzWQQMRWpkkAEOQL8sYGjfymiUZWFeCV9TPEowzIJfP8djhsSI/Um9JZo6BwtbWVs4+4nyygDYybzzm8JSzBvY6nY5bWVnJx6vUCwjGiPaWXfkqrn6/79Wz29vbhWu6sI4YuqUsIybHhM/pke9UdZpjbCz/dqSBWNPGr0mRBgwlVkHJZ2MFjZXlMVWR1HTqZq7KBobVPG7NkB4E++UDQbHlkP0+NzeXXzkiDZSMCm45DDHsZJkxGnqnjNPAZWPDIOMfYTwojjuGShvZIGlUnSseTECwixupfXXBcYd/j8d7IUCQibBAXgiYpPSHNcYkUMEy8cEONowMLhHs4DtY1hBrKJkp6byFxqjmpGG/sp7VACQuq7LDwnUdAaPJZVtdXc3BmO92Bs6LmVeeg7gEiO0vbQK/z+VbXV0txKPT3t3Y2Nh3uICDrw6Hw4Ij0el0Csv0CwsLhRsofPHupJ2TY72sHrXIhBid2ARusOYDl+NIA7GDMIh1idZZLFivkMHRjsqHBCejj/kpWy82QE0xaCEJLZGE8paTPJY5bFJSGTHtN+734XDoTp8+nXvMzu0xBTI4ZurcKgOQyrxbBrwjGyT37kijdP369X19j0Ct0+kUxvh4PC6cjkOwIDeCW4Z4OBwW4nNpYRt4aUtjpbT2qjpWNUbMAqh4ZZRcNpQnJTVH1DKusgxoxDkNa0kI2xfLirpVe1dzhpkFkidIed8l1kcGwZUrGjJvHJf4Hp+ixXJpZdXS0MYbl3N1dTUHUwiq5OfChQv5UuvMzExhr9iJEyfypXhrHkpdbLV56ji1bGQTTl+MSGZOju0jDcRSGvAgjGdILNASU1b0ojQgZilQX0BNn9cbK4cVHFvlOqzlrSo+JoSVBsZPwqCrrIR5Camp8sQ+U5XVwTQYLOCm/IWFhXwfDxpAqei53fB0o0wfQZgEC9JYy7rIoLnI+uBSqQVUOU4VP9vEmJbsFLJMg8FgXxljwZVsQ6v84/Henr9Op1MIMcJtLQEIggGLofOJBqwQHHOgYtSvg8GgEG9O5iEBKt4Ryf3Ne72wDUPOO7NqliOs1YWX2XHu88Ed+VlfX3dbW1sFVhmX6EMMVV16GMdPVR2uAadUQSCmje0jDcRS5LAaXE2xxYil4GS6cgLwJPRtWGTDjJtxUwBvKiOWImUBdRWmpsm0mhJfGSVTgyCDFWrKPqIq5YktcxmHS/4tjTUyYtLY4LzCOWoZQun5s5FeXl4unNLz7RfDK74sQ+0zYmwcu91u6bYu85t0CsvcJ8jjMhQuQtaVdRM6mHKVgMc2HrrA9mRd5dNbrBMx9AaCbQykimPp1KlTbjAY7NPTPBa0uyEtBlC2DT6nHcbxtTWeAmZnhJclGUCePXvWLSwsuLe85S2FUBacJ27Ex3bA/OtmxLTnMNZd1XFXFh/46jkZs21AV9/3By3S2+aBULW8GrhCDxsntVUW9k5l2Xz5OJce5ymFVi4DqEPplmVXmmBuyr4TK9LAW4Eyyx4SYam7DrHpYR/I/pDGFo3xXXfdlRskn+6wyoF5YdoSQPkC2so0UJH7lt4kIxZzV6vPAUTvPiSoV6x9STES65AiAAjF9pJAjNkrHtdc3q2trajleARE2tIzsmRExaC/cixKcIX1tp6V0e61sR7rNDOwxL1fqBeI9thjZL9w/Mk5hMygxYjJ/uY8Q0vs8j2c01iGVFarLBFipWMRH3Q7X3F0WMGXJrKsqYAjBcTgiTHtdBsrGNwPYaVdFXz4DGfZesrnfOmiYq/S1pZXVgY4lnnHKpf1jNWnbFirMmJ1gVJfepqkAPudnZ085tPly5drA57IELHBlydVY52aUF5ln7EcQOfSgJg0OD6D5iuT5jiWSUf7XR6ikP2EewPPnj2777oj2S6yvgzGtCVpot29ZQikd3Z2ckDIQV/5PQ2UWKfAU51YTAvLgPXm2GVra2vuxo0bOTvW6XSCgWi1uWP1qxYwV47DkCOFzyAzV6eTXjYdSXzc1oxYWYMWK00BPW3AhSQWxMQepY8BKL5yphqVqps3pViA3AK8VfYHOLd3UlPbXBtjNLW6px6eQACQMna0NKq2ic+bLeN9lh0PoVAmGFcqJf0YoIAgpw7P2weepFQBrhY7oc11fifmZGjsniwsf1WmAtNC9nc0WZrWYmmh3pDzEsEU9gW+s7GxkZ+m5I3w+CwCoGvXruVtbrWPZM/KOqrj8bgQvkWLeYeMHsd88zGFVr9q5UCbIg9YxIw5TVcj4EkJVDwNQYeGbuc9Yk0BJZamgF6ZdOv0prEMMUeTNWWZWgf5fNW2teqpKeU62i1lj4YUBD9lmQkuIy4tlGF3Qk5AlTnF75Y56VtWMJ6SNp5xX1aKSKDvAyllHQtkL9DgcQgLCXo0oICx0kL5++acNUZj3pXvc79bbYL1QNBpGfdUdlCyVnNzc+4tb3mLO3nypCPajTCPgXNjnVENnPHYQ6CFgYCZjcNDFhLQoLMQAhoxfcjl0WLeyVObyOqFdJ+2uoLzjb9jkMpXQiHj5bMjPnKgadLFKp9PcHtHnUDsjne/+9100PLBD37w3e94xzv2fX/z5k1673vfSw8++CCdOnWKiIhOnTpFb3zjG/P/1y0PPvggzc/P04/+6I/WmoeVrlZHlti6xj7HZXj88cfp3Llz6jPnzp2j559/nmZnZ+nxxx+n+fl5euMb3+itgy+/U6dO0Te+8Q26fPkyPfLII973ZVvI/1v1fPDBB+nZZ5+lj370ozQ/P09vetObotrjve99L73zne8s1FG2xWOPPUYLCwv0/PPP00/+5E+a7WbV/dFHH6Uf//Efz8vy8Y9/nJ566il69NFH6fLly7S5uUkf//jH6fLly/vKe/PmTXrPe95Ds7Oz9OKLL9LLL79Mp06doh/5kR+JKgPLqVOn6PLly/Tss8/SI488si+fUDuE0n7jG99ITz/9dF6vRx99NOpd7t9z587RE088oc4B7fkf/uEfphdffJF+8Rd/kV588cW837nsH/rQh+hDH/oQPfjgg0n14fy/+tWv0nve8x564okn6KmnnqJnn32Wvu/7vm/fGCyji97+9rfTRz/6UXr++efp5Zdfpg984ANERHT27Fl68sknaWFhgc6dO0dvf/vbaXl5mT784Q/Tu971Lnrqqadobm6O7rzzTvqVX/kV+tjHPka/9mu/RltbW/S7v/u7dOPGDfru7/7ufePTN2etMcpt/fTTT9Mb3vAGIiI6f/48PfHEE4W+4rH0hje8gU6cOEHnz5+n69ev53X67Gc/mz//9NNP0+OPP56PDU73U5/6FL3rXe/K++/mzZv09re/nd73vvcVvtvc3KSPfvSj9PTTT9Ply5fp3LlzedvfvHmTfumXfomef/55Wl5epq985Sv0yiuv0Je//GV69dVX6fTp0/TKK6/QU089RZ/85CdpYWGBvvM7v5POnTunzgduk0cffZSeeOIJeuc735n///Lly3T27Fn61V/9VfrIRz5CH/jAB6jb7dIjjzxCzjn6i7/4C/qFX/gF+sQnPkEvvPAC3X333TQcDgvt+973vpc+8IEP0NLSEn3mM5+hN7/5zfSmN70pOC5Zj2J5WV8/8cQTNDc3R8888wy94Q1voIceeoi+4zu+g1588UX6whe+QHfeeSd94xvfKKT7tre9jZ555hlV/zzxxBP0vve9jxYWFgr6/5lnnqEnn3wybyPOfzwe01e/+lX6+te/Tj/90z+d11fTLTjPnnnmGfqpn/opWlhY2DdGm7LFKDG67/Of/zy97W1vo8997nNERPSJT3yCTp06Rc8///z43e9+9/trKUgsYiOiO4joGSL6rcn/O0T0SSJ6jog+TER3Tr6/a/L/5ya/f1sobSt8xTQQ8UFLnXQ9SxWGI6Y8Kemn9GEVBq3M0m8qk1jHONTGN5HOJOHv8n7HmPRj6xBqB1wqqMKq+ZaQicLLptYyhlx6szbPx5QR23x9fT144i9VJCOGzAv/LfOUTBKGUMCPFuy4rC7gvGQcK9++H7y+h9/j71ifcLrW/jMf68Ifiznpdrv7lt6YqbGWK62wI77xhX0p88O24nmr9YlvPoVYJK2fuB2xbeXdkvw5c+ZMHozWalNr3EhGn/PEeHmo30IRAFLyDkmZ93x2g3/DsTMajZBVnf5mfSL6O0T0awDEfp2Ifmjy9/uJ6G9N/v4JInr/5O8fIqIPh9K+cOHCvkln0daHWaxJHGOckK7X0msK/ITqUDX9FIBUpv3KlitWygA8fFdbdkHj69tjUyZvqw3qAOeW4kxNRy5bhNoB6xCzjGG1QWh8cHvLeE+pBz9iRRor1gF4ByWXp9/vF/Y/LSws5IDMuoy8Stm5LHgi0TKsmA9uoNcAdshAW3MGDxpp7+CSI54a5Fhy3Ke8dNbv99X9WdYY4SXG4XC471n+XLx4sRDLju+tTHWMtN8sW4BjBq8XGo1G7tq1a+706dPu2LFjeRllHDQ8lCAlZtnYKldID8UG67UkBayGJKQviPbuocXQUDTtzfpEdJGIfpuI/h0i+i0iyojoJhEdn/zeI6InJ38/SUS9yd/HJ89lgfT3Kee6wNc0wVxVRsc3sKqmFStlmI2QNAGQ6ihXjFQpu/au9ATr9v5S04tJJ4YRq5KXc/F756w0rACfKcBeMgqpew5TReZnsUP4YcPJm7KZ8UHmRTp3Zdi8GPCjtS1u8C/rSPraygeieV/Ugw8+mO8N4/rjdVK8gd0XXkFeA8b7vrrd7r42wsDBXHccQ6mOUew4Rf2Be9iQHSPa3bfFF38zoFxbWysAJm2MyHx8TmGME42A2TcmY8ZNCKzidyHdJU/Ha2BRMo/j8djRtDfrE9E/JKLXE9GjEyB2joieg99fR0Sfm/z9OSK6CL99gYjOKWm+g4g+TUSfnpmZCU6GsuIbaHVLzGAsm960AGVTrNK0wHDdUmYs+t6pEqiQ3085QBAak2XZo5CEFHeonKmiOS0htpHz4z4ZDodq7Kymxm9obLGh7/V6bnV11Q2Hw4JRIKKc7ej3+/l7yGalAmesK15GLsePNEyS1ZPGW2P8y7SVry7M3uGl1hyigfOPvepLG094+wKWh+ciL1Nye2Bw17pus7DaAvuL+5zHMR4Y0PSB5QhgGr5lTNlels7hPvDdsmClG1pCxu/QGZCXuvsAJ7eBBp5lHSbvTA+IEdH3E9H7Jn/XBsTwI09NSk+xCiiQN8XfqpJq2Hzp+BSaNpjrllsRmKUAE9+zsY6B1UZWSA3rfWkwLQMaG2ok9nvJ/IXeryqa04InOX0AFPf0xATjrLOsoe8xb+674XDoTp06tY8pY0GgllpmzE8zvvw7tw8uw8lxhcuFzMpsb28n7+GLGTMMGrgc2D68DYABQEwomJATrAEPnEshRiylXjHzxWcfQmyzBjJY5OnOGEZMzhcGgoPBoJRTm7qHFE9Ta1dnYTtIxgzBYmi5dtpA7OeJ6ItE9EdE9BIR/Ssi+t+pxqVJCcTqZMRw4+JBGP66DI9m2HxegaXMYj1THPx1S1nDltKWdRt8OWF9xsKXNyoWH0DR2oiNDe8X8ilFvOdOA2ASpMirgqw2iD1qbhmGukGNT3CJ0rfciIDjypUr+T6bmP5MFV//y3hMUgdyH3Lfnj171l28eHFfsNIqThu+q+3jkW2BbadtsMcDD0S710Ph5fShseEbcygIEHmesuFFRqcMS2i1kzUmsJ9SA2eXeSb0nMVQxQBeBlELCwv7rvoJOYH8O4NjXNaNEdS5sfHWRmKPJ65AoM6zVhZwvEmGUNZtqkCs8PCEEZv8/RtU3Kz/E5O/h1TcrP/roXTL3jUZI77rR+qQuoBPTD68WZfpcemdxlwgqw0uTZpstxBQsdozhSFtwuBbLE9qfr4YPT6QjWyaj/HAcjKokulJYCZZDV/9Nc80xXNvghHTBMEA0V58J5wDDMTkSURN8Vctu+bdSz2B3ryVf8pG9zKSYtQRdFgGazwe56coORjqiRMn9rFTGP9Ntot2KbtVLn4HN+Rz/vxvE1tVv6ZtXAAAIABJREFUuAwypp7lMPsAr1avmLw1sBXj5FmC7Cqz8Kk2rWpcvxS7pbF/mu3zrSxotlv77rAAsUUi+hTthqn4DSK6a/L9ycn/n5v8vhhKtyoQm6Zyl2IZUO6w2LADMSKVOE9ezstH4R5kG6WIpSR8IECTJurrYxpSFKZlZEMsBhpi37OhtOTvIQNv1fEgx1RM3tIwMtBBLxiVfafTKWx+l21YFdxrYxjB4mg0KgRrRUPt88xl+qHyWcAghgH0OQwhB4tB0czMjFteXi5Egd/c3CzoLzSeCE5jBMEDG18MxFnXKVgL4EjQoPULPouOVZUbNLA8mGeMk+dLU+4Tk/VrSg/E6EQpGhDT0tna2nLz8/Puxo0b6vjFesMl33k7TPK5va44CgkOtGkaB62D5WREkFS1TMikYJ1DV77cSuJjxFKUR0o7THPMWAyCc9M7KKHlU6YNqpa3jKItkzfng3cBarG85FxFZ0oDqqlshbbcKIG5ZkBlLC4sG7ddDJD2tZ3l6KSA71CfcJmZeWWGkueCjLHG+UgGOQZIynEl04s9MFMWlIbSkEtjcglXtmHMCoVlB+vSndZvVjuk7jOuQ29b7STLiAdRJCCWDhoDLxlLj263S79DYnkCdUjqRNQUQIoHlqrcrTrXDS4Okv1IldQx0AQAYpHtpnlsLHUtB6eODTlGrb62jnmXHROo7FK99RCI09JBEKz1tzReUlnLNoyd1yHnzDKaeLF1t9stMHk4jjSnzDeGLCCDjBQb0ZjTubFAEA20dT1VjGjMUwrro427UF6y70div2jqXNDqIMc0phmzZzcVkMfUN6Ze8hlOgw/JYZlTgXzq81q7aunwuB4MBm59fd2trKw4InIrKytudXXVPfzww+7ee+91RHvXRfH+QiBCWkbMEtngVYxbSNlaA9Cn4ENSBhRo6dcNLmLSOyxgrQ7Pqi5BpiG0pFi1z7gebKQtUCXnhGRDkAnC8ob2ppUpb2j5TwONMU6Xxg5YjBSWQTIVFmCQbRaqpwRPKRvQ5TIbllOyRykGW2NuZFT2fr+/j22XbZY6bvH9WNCA4AdjgVnjPNT/PsZMayssJ/ZL7MqHbxxbeacCbO29kPjKZaVlAT78HscRjh3fikCKHbMcMU0H+uotw1tg/Dnt89rXvtbdd999bmtry9HtfOl3SGRnyn1TZbyWWK+tDkajLlDgS6eM5xRTrrrB31EQaRxjlEOsYbcUt/QGpeCRdG0csBLjpTwGZVVjoMVIyBBoBjZk+GIAG/8uN/HWuTFeM74aOMTnJfMiyy0Ba2g5KNa5lIyYtWyDy7qpehXTCjm6EpTymLT6BtvNCrGR4rjKcaftm/Kdtkt1GnwALSR1Ov4+cCTj9KH+4VOrsJ+qAJBi5rCvLqFyawc/tDywPNrnrrvuckS7+0fx+8myegvELJEdZO2ripGywG2aQKTMZEWAGTshYqTpE6ohqQvE1i1odFONliaWl2ota8iyMMDiE2Satym9xfX19dLlrSIhj936Dn8LLWFqjFjMlS91jDc5F7XN2jF1jgXhMc4lpq3tP7VCAsRKLNiQAGUE+/x8eUqggEZULvFa7ekrM+bB7c1z2wq1kOo0VNlTHBrzvnrFpo/6gfvBYplwTDKIlSAtNG5jy8115z7n+YTAXTLieGiEiPLwKvyZmZlx29vb+fVYROQee+yxFoj5OsVSlnUZwdhyTCvNMuBPeuMh1iBWqqQRq6iayr+K1OmBxqTn81KR+dXywedi9vT47qI7LBLLNjhn64oYsINGI5RvrOBclEu//Ju2zGLpudglGd9YxXppdcTvZJvUKVodJUNo9dtoNModDQnGUo2+VTaNdYu5JF7Tv5imL2ZWSv81rQutsiCjrtlbLJ9c2k0trwWQ+cNXdGHfMDPKy6P8O19VxUAM7+hk7ID/b4GYkBhFXNeR5VSpCs5Cyj7GgMR4oKnlTGUmQmmkGNOUMk1DpOeeCqJ86flEOhnWtTyxDESZsk5TrPKksFjIlmB7aYBN6gwJOiyDWqV+6CxK1gX7zzJcdYw/OV6kA2vtT6tDfOmFQKH2LJ/MRMAUwzjGCBpmzMfnUOI8tcaXL40YXSP7rGofpdoMbcyEfi/riGvzdjTaDerKV05h3+PJVNYDzLIuLy8XfiPa2zM2Nzfntra2Co5pC8QSOqqKsqwDtFT1mstMIplnyMMtI3WkEwtgtD48TCBBA5SsaMowsLF1Y8WtXcuDkgIUrffKSp39pJVHA0y+vPGqG2Qu5LPctuxRjzwby5ua49r3GjhLSVszXD6HCtuLwZfvDs+q4mPYUpxOLCfGgtIArDWuQu3LTMrMzIwj2r1r0jffka3BeFRyzGHdJejVYluFxl3V8RkCu7HOc1ld4MtH2gbZzwzEWEfwRfa9Xq+w1Ij7Ic+cOZN/3+/389Of3W63oGtaIObKI+gUSVX8WjmaXg618rWUk+UVpqZbR91S+7AuQNmUh4i/oSKIGSdaf4VYDVYcGBcrlL7Wbqzs5QXFdcyjsiDQqocccwhG5bj0GV3ci6WVS4JcH9CryojFjuUycy4EvND4y7G7ubl3DyczPqGrsGL72HrOB8RCacmbRTAtH4AN6RpLeP4xk4J3GXJ5cD8Ubo/RxqZWDi3ILb8Xuye37N7d0Piuor9DeYb6Rwq3Jy478ulavqZpcXGxsFzNz/ISKh9Q2dracv1+362trbmdnZ08+OtgMCg4b7cNEPN5ij4wFEPxxohvMMVspqzTK6hDsOxlQIysTx2MSUxZNYBSpR3LKoTU92ONpkxPM0YamGKFryn1lHrxeNDi/lQVzK+MkZUSais0VlWMbozzUtf4jx3LZfILGVMNrCBIRbDP7eBz5KqyNGXmtdRrkuUssz84Zv6ygV9eXi4Ychn6BFkwTq8MiMIy+a6zs9qnqr5PkRT2so45hY6vvCZMnnjs9/v5d2tra7mzwfpP6g0LxN82QMzqFGmkpYFGSrpOoJDqkdY50Kz0yrzv8+BTvJzU8qSm3dQSSEy5Q8a5TPvFlkeyPLI8VftBCi/jXL9+vdGN+XUAsVDdy7BGDDiw7laf4AbkaTtVVcKHxAAf6eByWzL4QsZHe1/7vyV1th2WU+t3rvvS0tK+se0rf0hXI1uKLBfecbmysuJmZ2fzgKH8rE+3WWNYK1voUICvXUJS5RR8jJ0LOduWaM/g3GD9jIGDicj1ej23vr6eM1vMkiHjOzc3p14ErhEAtw0QszpFfo+djp1b90nJOkBUnVGPm5C684hVbNpvsYa7jPFNKbevjFLqGCOoQHCZI4bdKZNfjNEpK5YSOyzCZWKQwWE6JKsuj+Q3OQctQbYvNf8UgMRzidsAlyPlSkMMIGhC5Jy3nHO2AXhDAQJpDHHBwWLZQMulesyb5ynGJsMxcvnyZTc3N5cDMGbDsF25LS17JsEA72kaDodJzmTZ8erTCaH8Yw50SOBfpVyareDnuO25f7SYYJcvX/Yy6Vretw0QixWfsq/TwJRF6zHlCKUdAhtljJzm8VSpoyY+JseXZoxXKPNo0kCFnvUB7dg8UHGgAokBr2WYCOv9siyHr06+fmkSoIXqwuXjvSMbGxvOueJmff6+CrsQKlfsO3U7HFqZ0Kgx4Oj3+251dXVfgE7NmDYNuDFPzhcPFUiHnPtPHtJAQMSfU6dO5X+zwZZ7MOW84XGBMc74c+HChX37LkejvdAa3MbS6ZL9jDqu2+1Gt1OV8eLrx9C81siREKCzmK4YG6UBMaw/Ht4YDoc5gL777rsL/bW4uBi8HgzAdHvFUayUVXipRo3FGnShNFMGdpnfNYm5DgWFB2HKkm9ZpWzVRwMPVZjPMu2WypbF5sHpYqBEqUylckFjEGIPpdG0lKBMK6WNyoA46bnWacBl2X3MiVZuX8DSpgGqJk2CHAkIuH20+GZyTDbl/LJo47PX6+Ub4ZnJWltbK5SJ921tb2/ngAkNMi9JdTqd/E5BDlnA/2ejzXrSqi9R8cQd0e7SJLYXl53BwHA4zDf1452m2jwaDoeu0+nkjFhKm9XR7ilpl3Hs5LgZj8eF/V4x5ZTzmNPkdHh5Gu9xJdq9ughZSl99AMB/ybVAzG6oqhKrSLTnmvJ0fYxL2XxT9wCgwtHuCqtTrIlsMTp15BP7rMZSWcomFSRqYwENpHVqjQGDVCJYDrmZGQXbUgKxlDYqC2zrvscS05b9UtepZwnqUso0TccB8401njI/CZI1FsfHbFQVbXziHi2MpI710a4XY3aE9wfxciWDOQZ4nJ52bZR0iDAUAn56vV6BeeP9Y3h6b3Nz72otBgqawxSzQb9u/Sgd37K6TAsejoBflh3zlvdVxpbXuWK4GgR12CcM4NG2WemORoXbHV50RwmIPfzww5Unbp1GOeUiWus5nxdgDTip0H2KsSqDU0bG4709FbhPxFe3OsSqc6ynVXc5pALxPZt6v6QP3LPywH0pLBYjJssRcylxlXZMmRP4HbMCHLerSY8/9r3QXEsBdSnpctqa0UttXyvfmDbwGV45JkPjq6pojo1cbpJgCcf+9vZ2IXYXG1288ggdHZxjPj3M7clATF6Pw2kg48XlxYMXuNkc2xQZGAYLGEfM51DVoQ9xDGC7+e75lIALQTO2p+bQomhtEuM8+cAc3gfK/cKfwWDgut2u297ejmqDI8eIXbhwIclYWc+U9TJZLGMWI7KMMi2cIFIRWwrdZ5RT6lgHSJX548Tw1a1qXjxZpFelSZ15W+VJBd6xZbYCi2p5hPah4d/aXYFN1D9GtP7Rxk5sH8YC9LLSlN6JSTe1LZzbr3Nk38deaRZrKPFZZGt4zmL8rKqOrWwXfg71gwYKNAM6Go1UYMDOALJrFgslT+ktLCw4or1rcnjvEa8ccLl5D5oEU2gDJMvIQFHGKYt13qsKt12/388Bp3VPLfZP6E7SUFnx8EOM86ulh0uQbEPknNBYU61OCN5GR3GPWIgRizWwKYwFCneg3JuTkoYso1SKlqGMNa5VpEw6oXc0D7UqmyJFGqPQOKhy3DpFtP5Do5XSBhoIjwUA1jMauKlj/1VVoOtjxLgtU+62tNqgaUAupYn8yoSqkDoHl7ukgUdWSbZhjB7VyifnAn9wE71PYtoR+5zz8e1ZlUbUp6dQ3zDrIy9j1yL043vXrl0rxOPDiO8MCBiMacFnMTCxXH3AJdKyeiNFpF1EMIiMmHVCkuuEt1PE6sTNzc38Mu5Lly5Fvetz9LDMyHjidVOWDZZgntOn2+3UZOwAS/HkUDTFk6pcLUakzOA5DJIKfquW3wKnUnn62IdptSV6o2j86ho7lrerlQGVnjQychNwGdZZ9ksq+xMrZeeuL626y1hnfpZjxiJBVUx+8nvp/XOayLxoQVBj+tja08fvM3MyOzubG7yQMU7VoVyf0P2OmqNrOQV4Yhkvi+a8GFQySOON3xyJnd/h37B9MX6VNPyyLpINwvpqzr1z6YeCYm0TsoTD4XBfe1qHviQg7/f7UXOE8+UxxGxjKN5YqE95/OHewlDQd5+eva2AmG/QWBM3NVaXBQJ8irIuiTWA0zQsnH+MQq5aNs0AS4WCeciJoRkejU2JnbixZZbLCHWkq6UfA5zQ68PnURGGGDFLicv29tXbV8aQxLAwdUiKsU/VLyn6B9tVq7sPiCFQT9F1nC4bJAkusCyhJS+LsUPjbW2OTnWQfXNA01FaP2B7+uYX1lO+wwYcA7Zim1l9yCczEeRZY4cBGO4H42d9Y0Lro7LtKtPDvtPaz9K74/E4r3tM33N+zPxdv349f49ZRn4/ZQ7IeiDDhYylZm99YPe2AmK+QSN/q0OZayCg7JVAdRh6DZjULVY5Y/KtCjpkn/li6CDwwI267NVo7BSLpsTKtmssSK0iKe1qlYfrHHPCNcYhwPQQOMeMn1B9mmpTnyLV/m+VH/9vhQDB9gkBCF6C5bAKGNvI1178LoZUKAtuLKdTW/KK3YzPaWrhJGT/xoyJWECL5dL6SeoGBkiDwcC7xwzz5zRwWYuNOfanHA8xgIGfl0t/cjmyDiclNR3ZdxZY12Rra8vNzs66Rx55JLjMzuny/GEmjNk4vBkBx2TsDSxavUNjxUpjZ2fHEdEL7nYBYmU8VjQSqelaijtmM7WUsoa+Sp5lRAOfZTz7MhIylPwMKgKchHIiWv2vTa6y7VoFwKXmV6XvfZ5dGZEMAXrDKeyCJVXGUqwzYemMFP1iHcVnI8rLN5ZuQQMtj9YvLS1FzbdUNgDrYAFe/k0CE85T2+tl6Qqek91u19x7U/WkJZdXAl/+nk8mShAzHo/33QMZcuA1AIwhY7T9eFpbWv2DS5G8nHz16tWcGeM2atIOyDKlAmQf0EFG3tJLWlsQ7S5RopPiXJGRZdCvxf8KlV8bv3i/qjZucQ672wWIlZEUTyqk9GOAQpVy1PleWZHUsubxpEy+suIzEtjucnLH7v+os5zTAnBVgW5KOmUUcKx3HAPEqvSRVb+m55JmPCywj6ANAcTVq1fd1tZWfsTel09qXDqtXay2QpAXA7bwHQnGt7a2CicELceI2Y4Qm+Grm3aZtgQ2sq1w8zzfQSjvGLTaRl6ZIy+Nxvx9oSZkHZC95vbs9/sFwK0xpmV1c6zzktofcuzI/YSaLtccbwy+K/sRQXyMbkmpn2S2NbZ18sztwYjVpUTLGOZpAI+U8jYpGmsgvdW6AEFMOTTFiSCtalDbabdvlXx941CyhGXGMwoqmdhyxp5U1ZiZOvtgmn2q5YXKG+toLWM6V2w7yyBJEJfqAMbovhDI8809DaSNx0XGaWFhwa2trRWW7RioLC8vJ7EZLMyIyDAKCGDk73h4ARkzPC3vY8S4DdDwY7qou5D11OL+yb6QS5Da6WEL1IfCLlhjxue8hMC+9kyqropxKqyyWCc1Y8T3vBzrvpOpdLvsEZsmG9BU3iwpoRWmAXpQLGXtMyJ15SN/9+15CXk+se3mey6lntMCfughskJCRe9Txqn5bG4WT9eFylyn91y2vE04aj7Ryq4ZBmxHNjrYhxbDoeWTEg+O8w2dCPPVR/sdmS8faOHnu91uHr1esmZcRm1TunNh5xn3ByEQ5MCtHPoADyZI5oo/vLQYG2svFtxiniHGBpmxmD2GXCdeluv3+/tAcsjmyN8RIIX0CY4JBKgpc7GsDqjT6bJWg3h8S6Ya256OWhyxg2DEQs/U7WFbR3zLlrcOqYNFSZGYiefz5kNArA5glKIcqgC/lLZFpUdE+Z1zrIDZo+f9OFVlPB5X2gAbm0fVsVVGkYcAT8zzoTT47+FwmCtxBM6xzo3GgFjsCj4rl1Ys0KSxWVoZGEDyh/+P5cD80bhtb28X7lSUc1uySVqcLg3YYqR8CWpxvuDyVq/Xy+dNp9Nxg8HAra+v52BG7kNKHUea+OLBSV2HS3i+bSFYV6yb3MMXC7A5bVweDTliCEhwbKc47WV1QJ1EhbTLXCYe36hncQxOPrfH0mSqVFHudRl5S6YVbDRFps1KVGUepgFQm2LEpMeY0vb8Pm8G165KkV53lbaKAWLTchZ8UkbhS49XA/z4XizTqDkQaNBYv/T7/WTmQJZF6xeNXdNADZZVfq8J6kXMA7/HsmHMKQygGXK+uK2YIUM2j9PAkBgIuGSd8aosCYC5bETkzp8/74jIXb58WQVAPqnihGlty+2AoFdjTrH/EPQyA9jtdqPJBG1epDCpLAw2h8NhAZjVAZRC5U55XlsKtewyA7ErV644or0TnAzsJ7/fHoxYSiNrA9Z6TpMQEKsThR8WifWIfQaryXaJKZ9z5fcpxebvM9axoilTuVQVW57t7e18yYcNl2RKyvYLGlWfUcITY4cBlPlEM9ga4yLLz+/hsfkUkdfglGkjOQatJaDQbxqjYjFlKKgXsT7a3Y3r6+sFJ4H3OK2urrpOp6MeROCyMSvFgAL1MNdNLmP6loOxb4fDYX71EBpV/hw/fjyfS6lzsYwTprWt9n0Kw4TzsYxY5YzJm8cT6w1kgqclPrAlGWJ0IKy6cXvyeCQit7i4mAeZnaR1tIDY+fPnS3mJzsXFKorxbEPG/LAYmybK4TPaGuWPz02jXUJ9HLvsmwpO+PmYfRsh8YHYMukiwyI96PG4uNk3pY9iwQezc8zw+JyYgxIErnJuxzhwKYyYJVUdlZT30SCix49LY3JshMRiTaRRQxA0Ozvrer1e4RACjymrzDImoHR+MB3N2UBwKQ0xMolE5Phu46WlpfxkZ7fbzcd03U6lBXyteYnAQf7mC56K93vWpY9jGU10mJEJnpZIMIhl5vbEpWlkeDWHhN+RJzfF52gtTZY1Rs6lI3aLkowBdIdBqrB+1rO+97Tnynr3ZQXz1Qxjk4wYTuyyzIgvfctbtp7HvrACGkqAl2LMY8EHeuCHFYhJI2+VL3b8l5Fpvr+zs7Nvn5CMt8esUlm2FGOlybGLY4eN240bN9zZs2fdxYsXvYyYplMsNg7z4zJghHRt+YmZOoz0zkCH69TEHMc6YryrsmPO2tMkdVWZvrVIjNTxm3KwpA6R40Abl1oYDMmiWgQDpz8cDl2/38/HfsuIRYpvkvsGdFUvtk6RE8E3MVBxhSaQrGMZ1mTa7aMB6qaFJ2FVRqwOsfoMAxDi8XxkyFIBKD/v88BDz8jn6lT2KfWQG8sPQqbJHKOh2djYKDAB/FldXU12qNCgWfGxpHHjE4oaG5aSF+o2zRnhOaGxzDyHeVnp4Ycfdt1u121vb7vxeJwvVfISZZ36BUECLq2W1aESkGI6voMBIalTp/sAjvWsr7yxtsy6xk2OpVj9I7+XbUS3S/iKquIbXLHGI0WaULYpE0QqK997oUHmk1g2rW45SKayabCQyohp39e9JDAejwv3BVriA/X4mzXGqjgFsfWIBYNNsb1cR9zsW3celpFmAHDp0qUcpFy8eDHZueD0cExY729vb7ulpSX3wQ9+0Nwv5OtnmReDGWQ35V5GBp5yeY7TYlYMT0eyzuQP3mlYxzhEYIgXhVdJG+eLHNspy84odc45Lp+25Gc9K8dQCjEi2UDue1ym9rGdVt1lPaRuaIFYQJpWqqGOK+tVaOmWNdSpnkbZiajVedqA6VbOL2bMoFKRYwMVb937HNEY+hS7D9SXYcR8bRJbh9Q5qoGMOvWHBMtNzBk0+riRnjccX7hwwc3MzBSAh69vZZmkXvW1T8y+TcngYb5yyRENMp5CxXpiNH1mhxH03Lhxw83Pz7sbN27kaXI6J0+edA8//HC+7BQDAGLEqovVxmXSkQxUnc6YLIOvrPy7tifTet4CjpYOsfLE5WdkHCVo18ChZcPECcn8Xa4fEf2Ba4GYLdYED0nspIhB8WXSn/Zem7oUjTS0MZR0XYLeUFP5hYBCFSMa8y4qFawjfo+KNwRCYudF2XpVbQ82qtoyQ4x37BuDlpOG4wivqql7XFnLR3UafQR76+vr+ZIcf06ePOmI9kI5WHmmMBtaPUNOgbXkH6Nf+W8EX1hvNsoMNBEEdzqdwkEWed+n3EOkORFlnH2uF4JHHKe+eWPpAPyN540vIn+KyPrHBnmNnTe+OlnOp5UGA6SFhQW3sLDgtra28vbg+yita6w0QIiglg+QILM2+e1ld9SBmA8th6SscY5VhnWyR5jetPeyYD2qxjnDNi+juMtKWdBdJg+Loq7DiPoklhGT5dXGmTUvps0qWiKZqdRyxoIHywvWgos23SaxRiclLXnaa319vbApHQ2MlicCxiYcKwQl2riOdWi5bLzni9uRl0aJ9pZmB4NBIbxGp9Nxo9Eoj56+tbVl6jA5XpCRi9V5eJiCPxhXzqdHfGMkdk6EwJ7vvRg9G3KifHXiTfZ4UXuMXtXGAhG5U6dO7Tu16+snvKSe9Sq+g3ndVowYNuD6+rrdmxEdFPt7VUarbJlijEfThlJeGZLq+dUBiMrUcRoAIsSyxGxob6pMqWPFGvcxscOaEul5+zbWpqRV5rmmx5OWfp3OhGQIOKo9ty2DkrW1NW9ecjzU1SaoT1KdZcmisRHHUCoYyoV1Fv6uhSLA0BkSxHLZJBBiXSDZEl9dEHzyHZsas+47ATrNNo9hBGW5cFUnZtxIEgIZfq09rDmL4wD7FQMMa3HiOI/BYFDoDwTaVvnpdtgjNh6PCxMopjNTQFUZFqMp5iNmkDedNwdolJfoxtLNdSjrppklKallDgFpWe4m61Nn2hYLNS2WzGIb6mCGDwvTxxJi4tC7t9gP/M2nO7ST4bFXV8lo6WXYwZAeS2HhcQ8QG0iuizTAksngfNjY9/t91+v13PLysltbW8uNMIJU/hfrjeNSlj0FdGA/8LVkGvuG7Fkqm6Xl2RTgR0GA6rMZElRz3/Z6PZPht9JD0gavrpLL1hpY5u94HyU7KDEnUG8LIMadFYPgtUERMlQ8EMpENp+2YcK8614u0ehnXC5oKl8pIePTRN51KaaDYFeaYik0g9A0MAs5IqF8fb/H6IEyzGJZiRkraFgsQyc9dw1YWbESU6/xkUtwsYL5aaxGjDPBz2H8s7m5uTwmFwIsDkPB/8qyclrYhgi8hsNhgUGTYSawras6Qrx0yrG2MF1krlAXc52Hw2FyH5QFcpaExrG8/1Y+L8GTj6X12SC2G7gPkoEcsmS4Jw/1Cv/O70uG08eKHmkglqqErWdi3vMpvFhpSllboKRulgXLLxVVaPLWWXdfvZpilmKBftNy2Fgb53RHZdqMJUsoX9/voba13j2IsYEGx5r/PDfZwOHVQCGdGTvOZDn47kZmkyzHVRpMBBTanr8UHc0Gc3Z2tgCSUG9dv37dEZG7fv261x6Mx8UwF3JvLgYkxXsr+dTl1tZW5T21CL7wI4Er1gGD0sbqCp8tiXm3rF6SQIbbmMEWlotBUL/fV/ONcbSQLUXHYTgcum63m+eBp4SxjL1er9AHo8l+Nd57iHlxnY40EJumsq8ySFma8jgsVszmuBKIAAAgAElEQVTH4vnyT1EcmnfeNEAqG9etapsfBAiyvMNpOgOxAEUumaU6SXVIFUYs9Lv1G9e/iUjrlmjjQFsCQ3ZKRsqPAZCp4BTbQi71aA6cHDNV9h9KnYd3XErAikuVsn5WnXx6Gw0vUTE4bV1zFp1e3MyP4IzLtb29XTjRG9uWqWXVypZaL+ybnZ2dQkBhLPt4vLdvke/J9PWVlh+Pr36/n7OhKysr+26S4NAty8vL7urVq7kTI+ePNm45r9uWETtMEmLefN51HYZSM44ovgEbex9jTDlifksVWXYc9L5l0YNiaaqIVtcq7VhG0eLpMM0ZkexG2bY/DPO5zBiRgCflvbJslOYY+vZ58R4uZBpQR6TqKfmsXE5k44rGbTTaH6PJinNVl7MrWTZuCz7NhiEKrHGMZfIdtkEQyKcrOSJ/HeNa6xfc/ybHXwzQ9uURI1yOTqfj1tbWkq4q0nQbBltlMMRAnsEeOjya8+EjTCRwxM/GxkbOlvHF7/fdd1+hDBaxESIvjjQQOyziA0KpnmZdYCFkHH1GICYUyDSMppWHtZ/FBzynVeY6xadUytalrKLFwJhlxmdMvlXBWpX+jQGTPsFlilix6hurA+RzctM8l4mZEQY/CDDk+JKgMrZNLdaIy9DtdnPQI1mO2PbGZ2NArGTncElKu+IrxOrs7OwUmK66Tyym1F2Wmesmx1/TOm88Hhfa1QolE6qTc3tjiEEQUfG+z9FotM/h4XcQ2Mc4RTjOifY2/kO4iUKYkqqx1m5LIDZtg6spztgyyOeqeMkp+cjvpKcQYurKMgfoVcSGuQgZqlhGrKwcFIDzjasySwFlxDIAVlvUAYbKgrUqTkzsu9Y8KmOILWBRVndgPdg4452FWvlkvfH9GFCpAViLlZJAUMvfJ/ispgNk++G+Nf5wezB4uHr16j5jboF8BhmnT5/O2xT/RYBXd3gaLKN2alYyNU3pLC1dZlqRwQodbLPmETJid999d/53p9NR9+hx/blfFxcXCwyXrx7YbnjlGzr6ZUgWTW5LIFYXqxQrVQZ9rCddtU7a+xrboXnNaPjZE/QZjphJ5mOvcAOslm4T18lUZWqaEFlf9PZ8ATabKEMqg1aW1apSntR0YwB8jANSx/ioa4xxneQVLlYAaG1pJyU4ts8p0vSBT1f4wgDIdOX/LaAiWTE2vr1eLw85EQOC8bQlM478HcYSYyDAMaU0cFq2Xzc392JY9Xq9fMxqTllTOktLl/Mn2jugEWLOrfKNx7snPvmghWQyfWBefnxADMfLaGQHh9Xsc4wOkvrktgFiZTzKaYtWrlgg1hQjZu3/kQAMlTtHFGaRHqWm9PkZVrQYTFH2mbVHLUW5xIK2poFDHYKAOYWtqDPvWIV+2ICtrzyowGMMhgVSNA861Vmoe4xJgGXpGVk/OedDZbK2CWB7xgISHN/y9xAA5rS1UAjyAIAvAK3VTgy0GCAgAGQQefXq1RwosaMky1d1XOBpSASCmm5vwlnVgPRoNMo32DMA9THEIQcI5yWfQvUxbOPx3jIjXlYv+1DWA5kwZI01x1fTt1o9pa7m8XrbALEmDEYZ8aWbiq6r5hfzjqUkJbhiI6QpSqnAtWjnlgcrwRcHUOz3+/sCIKYoMWtC1NF+0xasv0/BNZl3nflNs819eiFkMJwr7rtCpY1hA5CRkHPAAiTTFouJ0pYUec5rTItzRfAl29dn7JjltvbcbG9vu36/nzNVvvLLcrBobIx8F5k3WUcEN7LOyMzw71L3cXDS0LJWDMjF57l8eBqyzAERX3tav/nmENdbLslub2+7TqfjVlZWCgynBMLaGMN5yb+HTn7yzRArKyv7bA8L2gQc7/LAA7KZvrwRMHLducxynE8ViBHRSSL6FBH9HhE9S0SPT77vENEnieg5IvowEd05+f6uyf+fm/z+baE8fIxYipGqyysvM2jrZDN8ijD0jlQGPs+Hf5eMAAcb5ItTeRBqmzax/hoAZAXDk6FKu5X1QFPTP8wArpX69ubguERgIY0vGmTLCE+DCXTO7bu2iAWNoQ8oWm0nHS3rHWw7eVk26ittKTGmjSz2LcYOaDpwPB7nMaQwECqnyRHV+T0MIcFjAFcDtLZjEChvJbHE0sMjZV9Y7PtW21m/+doUgSvmpcXqwiVc3oQvo+Nr40mOVa1OGpDS2sIKsTMejwu3LsjfNdnZ2XFra2s5G4gHJrgNeSvPtIFYRkT3TP4+MQFX30NEv05EPzT5/v1E9Lcmf/8EEb1/8vcPEdGHQ3n49oilTOI6DClSogwSUjyNOkQCDsuL1UBWrLfBgl4hb57k//MGVskKYLoWoMIJwidmlpeX84lfBcA2BZimbVTrkLJtYb13O4BRnOMYhRuX1+V9htJgyTna9M0TnCc6NpyfZKhi9BSWfzQaucuXLzsico899ti+dxHgIFiQAVvlkim2LbdfCFSFHEefaGwaAkfcfiHBOC974gZxBiTMDGFYDK19UvSuJrH6x3ouZKck0LN0MPYfPoPR63kTP39wQz1/BoNBIT3Mx0d2cNmYCWNwx2NOjh9fvTlv7eokX9sSUWFPG+fHIH0y7g9maZKIThHR/0NE301EN4no+OT7HhE9Ofn7SSLqTf4+Pnku86X78MMPTxXo+AQ7og6Wq0r5Q5S3/J0HqbaEYoncbM+A6dSpUwXForECIaWK3iV+UBGEvD8UCTarAiZtU3MMe3CYpCx4tN67FcFoGdFYHlxe4X+tsSbbqcl2k+P+xIkT7q1vfWtuWGNAgFVeOf/n5ubMmFtaW2jsBhpemS//hkZXY4fKzHOLTRsOhzlbw2Xa2tpynU7HPfLII4UrkZhBmZmZyYEA3irA0fixvDs7O67X67nFxcVgjLEYsFSWEYttH24jBJoWY8XtheAMWUTev3Xs2LF9en52dtY5VwR2luOnLadrH9+eQ639OD3pqPgYyevXrxdCbCCAx0NnRPSCmyYQI6I7iOizRPQ1IvrviOgcET0Hv7+OiD43+ftzRHQRfvsCEZ3zpX/hwoUDV/7SQ0wBCD6poqBDE07zhiUwC03YnZ0d1+/33fLysltdXS0Ea5T7wXBCjkYjdSlEqztT2HiHG0642LbRwGAVCQW5vRVAyWFkxA4awJZlUvhEr8aQWYyYVNByn1QdugQdLrkcKC+PDvUrMng8J4fDoRsMBrnxsea1xVb5HBj5mzTK2hzj73B5OEask9kIOhl8cFBP/GxsbLjhcJg7ofi9BKxcXmRXuV4+B9oCixKE1KlzOF28lQCda14BkWVCBg1tCZ4mRXvBn/vvv98R7TFiGlhnkWzZeLy7VYbDXMzMzOTLhJ1Oxw2HQ3P5VoJ8WXdrDyT2C9eLiNy9996r7m3E590BMWIzRPRPieivVgViRPQOIvo0EX364sWLB848NGV06zRKWlpcbrxAVqN7fWlJWtgXTkECMt9SiOadaCc6Y5d1NIq7rPCE99HVBw0opil1ArC6GMuyYo17zfvWjAR+5wMmoTwlAyElts0R5GmgMWU/FoISnue8rMjzISaSeghQ8P99y0gWULXGUai9JMvHugnfQ2ONHz7Jx/9nUKotXbPOGo1G+4AIgpzYwx1S/9atc9AhRhCMut63EV7qed4Tx441L2tjG4TGAQv3BzONuKdrfn4+j2dmLcljmhrzhqCYP9bhEs7/4sWLeV4amObnadqMWOEFop8jog2qcWnyMAR0tRixgzDGlkdpKT/fZkWLGcO0pDfPE433BGjAJ1YpWsYQlWwsCK4TLOAG3NsJcFlS1hHRxqelvJoSHyODIg01jj00NGi4Yh0Fa975GLHY9goxRGiUQmVFfTEzM5Pv9cH9MAw2NDZEMgwI2mS7IejR5llozPmet0C1Bk5lmhxz7KGHHnInT550RLt7iDBcg7ZUpo0R/GgAIGbPXln9E/ue1HnYLj7n1gcoNUBPtLtUac07bZwjGMTPzMxMvszLfYkBjLH9GfhpY1/aG5z/c3Nzbjgc5vMU98DxrRHYPlLHTBWIEdE8Ec1M/r6biP4ZEX0/Ef0GFTfr/8Tk7yEVN+v/eiiPpgK6lhng0osta6CqCOYZ4y2FwFrIe5W/SyVThoHSyoonvjQFOg3DLb1DnmDT7uMy0qTCLpu2D9BPS1KBfGjsVW1nHyOoGWDtee05HrPz8/P7liFT2mA0GhWAF7INzE7g/9lAYVnldgguh4yL55tnqe2sAS3rpGgMAOYPLkVyLC85HmQ+GALFWrqOKUMVnZMKZGVw3VAZrXTkdzs7e5d6awFXfYDOueKSIo5L3jIi5wI7CTwu8bSqNabY9gwGg33Lz3ghOYMweQhHzlFuezdFIPZdRPQMEf0+7S47/tzk+0XaDWvx3ASU3TX5/uTk/89Nfl8M5cFAzDcxq4CqVPAmGbGYwVpWQoO8rLJKMSzsJTI9zHsJBoNB7h3WAZZw435Kn9Rp4EPGeJqgMFa4/taprZA0CTQ1MFDl5FjVMhykSM8/xESzaOXXQMvGxkZhH1eMkyaFx9CVK1ccEbkzZ864K1eu5Msxa2tr+XIQs0WdTic3frxRmzd4axv7rRWFuvoJx5nGOlrtgnMfje9gMCicFtfmiiy7D1SmAvKU31Kek2WU7FedekGWxWovPF3Lz41Ge1Hwb9y44TqdjltdXVWXyBFEcx+yndJiyLHg6V4NgLPDIe+mtJyG8fiAlyab+Lz+9a9XvY6YDvdJDACJmQyoYMuAMl8+1mSYtnHR9sSElnBSRcZAiu0f3MvSdHscRnYMqfkyzNa0mKrYOex7/zAAqliJNT4h0BWTNqfV7/ejnSPtd2YPVldXC8BjeXk5f5aN2crKiut2u/kl2mi0yrDkdQgCPY2tkL9b++cYkHY6nX1bMmSwUq2NfX0t7UVMbDCUunQQzvvxeJz3vQxc28R804Cqphv4OdbxuDzM/Yo2R7Jr+C7XzWLEODYm30/KbKbsH8vWSbB9JIFYjKGvquil+BSlnNz4XWr+Ps/VmgxNeiuaoBLSYiOF2r7MpPbtT3CuuDdGCybbhBxGMMBKZHt7O/isNm6mxYhp/0+RKuWss99i0wqVt24mN1X3aeVjALK2tpZf3UNE7rWvfW3BaFshKS5dumSeJJuGoJ2Qcb4w+C4uhfJvw+EwB5ZaHbG9UlloaaTRaffZDG2spYxl3xjTwGEqiE51HLS9g1Za2E64fw3Lqd00wO/hHsbQfb3YFil9giyqtszujhoQi1HoiJ7rWCpMzQMHTshDst6JNTaphsU3oX0UeUreZZg9n2hADPOQHt1hA0hVJKU+KW2LoA2VyLQ83ypSto81o+pLK2T8NG9eKmZpcENzIrVuVjiMOnSCZB+IyGVZlrNg2rv4nm/OppYnVbCvuTy8pw0NOoNFuaTKwMyqI/8/hYXmdzUmjvO3Is1XnT9aCB4Jilh/WqfE69Dr/BwGPA2JnB8bGxt5TDdmKjUbEUugWG3Bz8zOzrrhcKieopR5yb2PR5YR83VSqLHrFKnUY5SHz1v1KXVfeqkKy8eEMIKPTY/bNyVeVxnv3weE0YtrmgU7CEmpW8p4QMU8jfY7DAAZlSWXw1d331zR5rxvTPJc8QWrlAY3BiTyMhIGk0wRnzOFgIr3gfHn+PHjKvhDRgCXt0JtjWnUpbelg4EnoJHtYIYf63fs2DF37dq1YJum6jNknGT4DNk+OF5jTrn6ftecVVzSsxg/TNvXL6kgO4YRQ4DMoAZtKAIezdFJcbIkkOL0cFme/9bAoywzloVuh0u/Uz3aOiXVY5GGwPKgY6WMJx3y8lMEjUuMgsV2igV9PkNRpe1uFWmqbk2yiIe1P1LHfpXn5XNo+LVtFRI0hHQK/4ZH6eUG55j6aPMRjR1v+ufo8RxAk+e9TIeZDrx7z1dHrU6pDmGsyP5BwMis35UrV9yJEyei+irGSfYdUrBuJsD/xy4zpzhTsp1DByli+qWsXdFsmASIGkjkPcTIbvqWJVMBIt6jyWNZXm7uSwfzO9JA7LApe20ShQZmrIdopZEKBOsWTdn4PC9tstWpYG43qToH6gTlKG2fFWU83otJxdG4ed4wK6Cx63LJSNMvbDAYMPX7/ai9QFg2afz4b7ycmTctY2DStbW1vDw7O3vXlM3Pz7utra2CnorZdhEae004DKNRMdgqL1+ePHnSnTlzRgUgqU631eYxAC8W+Fv7Q31p+li2VCdfa5MY++YDfBq7hOCUx7m2P4zTQtYsVGd8D1k2CzDHnHYej4/40uRhV/Yx5QsN8JTB3SQwtYyANhC1JS/Nk4ql9A8b4J62+OpfdQ6UUZ5Vy5zyTNU86payeSIbhgBGHpVnRksz4r55P4Jj/QwqfMsnllHHZRlkIxiQcRwxzEdeQXT69Om8LhK4pLL3Vvnq1n3cP/1+v8AwEu2GLuAwHZyvT3dJ3RgbmsT3vZUHrkhYy2a+NHGclWH9Qs9r32HbaaAlBMR5rGN9NTZYMmKSZbPYPV/5tHbTQLYGLt1RBWIpA0U2TujZOhR8Hd5diodUp2EKMXdyIGIk79glr8MCpA8D0CvbToeVEYuRJkBkU3OuapmZtTp79mxu8Dc3i/tk5N6U0WiUx+nDYKCad44bxgeDQX7iL0awvvJvXJbhWEoMvHBPFYdx4HIwYEMDG6t/LeG21w5HVRlLWDYEzHyvMS+DYZ4x4CbWAbf+jmkLPCWugRGZl1aOOqMLxIhks3zOuGWH+INp+Oqws7N72frCwoJ7y1vekscfQ8dAjgF0GFIYMSwnl+9IM2Kys2Jo1sO0FBbDbKUYxTrLHfJUZJtj9OxYsdKcNiA6DICwLNg6DCAypixNAD7t/VBfxvS1b+yXYQlGo1G+3LW8vJzvbbGAChoCaXjwO75aRS5NpjJPMaACjT0DMQQtvV6vsPG6idO3XBdrP1DZ/LD+GMB1MBi4fr9fWEqOsTWSiYkFVVp/hZxuZMR8eR0mHYLhj0LbU+TYxFsK5HKlr920q5HYYZCx7+QSprydQeowzcEYj8eF5VI6ynvEZGeFYldZDVaHgajrHemhpICEJhmxkOBelzoU4jTlMICZsmU4DCAypix1lrOKUQkZtvF4vC9YZ5WyI5BCoGTtOZKn4zSjPh6P9wEjZG4QLKWyM/J7XgaS+8O4LPLy40uXLlVivUIiDVxdaSIrItsSAbIGHGT7yWj8oXGD78v+4v9by2ipDFqqo5eSR4xIML22tpYEILn9Q30v68v5XbhwwZ0/f94RkbvjjjscERXYMdzzKHEF9ynfFIH9pbUtlvW2AGLcIL4YH7EdliK+CVRWsPPLeOAHLVWAY911jfFeU9I5jP0xzfJUUdix5azK4JQVVJpojGNZJUvYuCNY6vf7qkOYEgpHBlXGpUzUgZYDGiPczrzMKE+SybYrw8alitSPdQszlRyjSoaV0ACRHI9yb12KPZJLddx/DBS0+xkt8ektbR+UFSKjzvnGaeE+vJS+xPEX0jc47iUAtD7swKADNBwOXa/Xy7cVXLp0qeCMWPMLfyOiz7qjDsRYUgdMFSWFihO9pSrKoUp5DoukKN+m2ZwYpjQlHWQomzIEh1mqeNV15FEmr9hnNSAWiveVki+zRxivStaxDseO38O9QiFWxSo7Lslwehojwd/xJcy8P62JvUda+9cJ+DDwa6yTKB2+7e3tfUuasaL1OwJdDBcSqrdvDPFSeb/fL9gybSN7Xe2L9o2BJY+Z2DbC8ReaI/L38XhcAIDnz593d955Z86UYbBfaTvw88ADD3hZORwP4IB9yd0uQCx1wFQBAqisNbq6jGgD5zCxL2WkDpakat51M2JNndw67BJ7RUoVqbsNY8uFRiImenYoPX4O9+6kACI55mIdtPF4XDiBie+HYv1pdYxhrTXgZu2pKSu+cVGnQxdz0Mj6nu0AB7cOxeaKrSenOzc3VziAodXbx4Kh8BLz4uLiPgbIWoKNKavvGSwvXjmV4lRpLFdsW3L+/MFArbxEikwX9+FosjzPoFGOaysfsS/t9gFiKZLKPsnntU6raujlxK2bHZiGWIPysIOWKiwL/9+nvA5bfctILCNm1TX1hJRPyjJTvu9jGNSUfGUwylSdI8sVCzYwnhc/rwFDq27/f3vvGiNZlpyHxSV31jM9mumpbjWWy272sBpFqLFcoFfLbmmzTGQJ0limm4JpGIRN9lomVC3snxRMv8pY+k/CP/SDI8OSCRGCCIqyJBgcG7RgCYTSBEUTsH+kV16aNJ+13iUt8+EVmTZ3adkGJBE+/lEZ2V9GRZwT53FvZlXdAApVlXnvecaJ+OI7Ly1wSQVUXC/r7tnaYCwGOvq6lsvSdytgZnBhAV7sRy8YZ3CkpRkDbRZbw4I6op3q7+kXj3+y0owBeivP3PJJWa1WWwD0gw8+CIeHh2EymWyAd2x8yrWjslxyOZHQh5szNZkjuVGUNIatjEAJw2JFGfsglpGSdchhKvoGMLE+8IiH6di3fiqRGqcZgn7Xnee93Gc95dQcVmvHvlpdvrPPoysa0NccRA7A8QQLsTaNlRtto7bOyJNuiR3oe0x5212CXOvqHkzPwzjlArcQ8oDYe++9t5mOKwE3nudTz2Bwliq75ve87YJpSNYW+0Cm67EFWuAjdYduwmJ9rbFLKOCSNGuNgUTTuXnuG9NSy1RIGQLAxPrAIy0M0nUSC9AMxYhZOoPveB1WrVjRMjpiWZcYSNTS8OqtFdFz+jGbGQNynC4eJOtdYlHKbLQEzLEyeewPOuL5fB5db6XlEStHLoPqbU88dy7VN7lnaOWUB9uKdWs6nZpn5sl0PYBWlgPLL9uX2xyPY/ICZhyHcgzfSCBmsVe1Bt7zfMuoQtYD3ymZ4riKMhQjVmIoR4kLGyNt0XtL0XaapVjYPu/ZRMEIHB2yxo7w99o5WVh2jNq9TO5qtdqaisLPNYdmjYn5/PL5WFge7ftWwmXS2qel5Aa66Ii5HfmqIW/bSmmhk7E0PLeaYL2w/Diua2cC5DiUi+Nz7jCOiVUO7XOstxdsSn98I4GYBobQIHhRcwhlOy81mrqUwcFO1W6e95ZzBBK67BMTt6991MoJ4GJVrR1b1T815anlpwGbVn1tHUEgnQoCGHTYKQbF+jsmnBcCBGwHzpMdj2YzLcds3ZdptX2pIGNSC8QshuT99983pxatdNBGL5fLS5edWz6iFMB421JjVj3C6WM7INDgdLnOMbDkvcYO857PX939yRsfam2E1WatgnDZ1jKNaw3EUvSkR+Gl5HaCHDCp91PfayyYlgeCtVT0P8or8QLYvqY9SsoyNFCr0R05JmOLw1vpaK6xx3LmgBmvaMAQQYxkxErZ9ByxQKgXJMRsjmRItKlSDRRoDFusDVI77bSA3HKyeB6VvO9T/h9jxiQ4RUZHc8oaE5oLtrzjphSIaYBb0xntxPkWxITHv/FzQ4wXz7OpQ4avJRCTxt4CWkM4slgemrH1OF98J5WGlV5N3bU8c9/3Dp6hwUaqbl7D0Yo18oDyUqBSyqLU1C0n+BmiDVukmZuHBgw9DmqosZAzPlliuogMSQpE8blVmCYCF08+lrOT72oBLK6Nwt94I4EGMFJ2FneLxjZo5Bzaa4kn8PCAGU3P5/NXl8cvFotL95xiGjK4sNq8Rtew7XJ8ae1Y8tpebfepJtcSiOUY+6FE63iN3fKuZ5FpWAa7D+ON5S5ZwB5T4pSxzJHcqEUyAtYGCU+ardicWL4tjYnlDFqLVebY5zWgP8fwe8qjpVkS7JSA3T6CKq+kbErss8ViER4/fhwWi4VaTnnlD/c3n1rOJ5Vrp6V7AIUsj3aERgjbwEFOP+JRA1ob5NhcSycZSGrsUU4fe2yPNvalvZPpcPnQ9sv/tf7XruTSxrOsowWs0UfyVK92En/OGMYyaEx0KTuN1x8h+JZyLYHYUJGjV1arbWoSFTSF4vH/PpxxaX3mibn/1PteB1VTP83ApKIs3jWWW7eW5Y7VJVae3Dw1Qy+dQd8i85X104KVkvS5jsh0xOqXE017IncpJdNCJfnUihzrOUCd68ggiw+8lGCG1/sw84TXzKCzxzW9cq1aDotkAQ8tGONgHlmwVL1T/eENRjSwlNJH7q/Uhgj5jufEfOxPvDorZS+9gYsF/Li/tSuXcJ3pe++957bbli/Vpo7RBsXGq5Ymlxt3DGtyLYHYvonsyFIjv8uIWBMt4tknwYFlGQE2XLPZbOsk5Vw21YpyW5455XUwNUzw0H2KAJgdh+ZYShkxLS8PsPOOqZygAsVyMrn55z6bK9hm9+7d29y1iFckoWjnPiFbodlBXlzPV/4gI8asGF79xPqiTUl5QBACSytI43pwfTH9VCCMOluzhkkLlFK6hCAlB5zyM7g2DvsA9TTXzskx7AWi+L+8Sov/n06nYTqdhtls5mJFY8JtJ6eh8dR8roNsm5Tupcb4CMQKxTtI+FmPIsp0vd/1GRFrZbCi0iHyz5UUeyGdc2zxeE4+mkH0vlsqKXYpR4bSKQ9Yrk1fYwtqjlDwBEexdyVjEVu870m3LyCGZWXndHR0ZJ7iPp/PN8/du3cvLBaLrV11yHyh87J2IbIeI+hi0DaZTNT+s1gJBnIIWmLHLmh5azbfGmux8S9BT4xlidWLBcuKV+7w/zkBvKy3DFwsO5fSUytQ9eqsPBRV2o0WNgNBpba54uDgYLPGTwsscuuEZR6BmCIelI+N2NJx5LBl/FkrxiAm0vBwdFLKwNQ4j5aORzrGmohKM9Se9Er1xxtZlkifLEsqr9T/OYIOEd+vGbP4bqnxxbzxeActuEv1swQDOUGit57oCHn6EPsHHdatW7e2mAXOXwJQ+a7sC64XLvJH+5PqO34e159NJpNwdHQUFovFJbuJaWv3QXJ74Inz1gaE2PjHdGJATJuO0wCdZKpQxxCASr8RA4mLxSIcHR2Fp0+fbvpSY0C9+iV1siRAjdnq1eryLRU1gkGCvEMSAyStRpUAACAASURBVArUl9I8VquREVMbJ3bFAUtfBz7G0tIG41DMBRpFjdqviQZCyHMefdXZayAsQQOLEakn3xL9Garvdy019Uw5nKEDgVjgZNUTWRzMHz/HNDEd+W5NPVery4e+Yvuy0z8+Pt6AHpzi0oCLBZRDuGxjkc2U4EKb+kFAQvRq6pOIwhtvvLEpDwJhtmu4Hg3zwOULkgnxBnEa8NbanR3+3bt3N+yiVj8ZEDAowbLKZ/hdnGLG77FP0R/m3jOqSazPUTTdxT6V7+P6z5TEyqwB3IODg82mEV7G8uLFiw3ILxlfKCMQE4JKoi2ml8/lIPpasRixIZgLyxlIg+p1lrH3U2n1UWcJwEudrKT0U4eI1shVY75KpbaMV6GOIdjllGOP/5/NZipjgunUADFNJOCRThUdPAaz8jgIDMBSNhanERkkSXCtHSchD7zmaaW7d+9u0jo8PNwAFq7X8+fPL20YkGzc8fHxJeDbajE/f8+sG9HFVK/sX8+MDS61kDoSWxKAYHEO08ratHSt7df0AG0p6i4/h+Xg9Hg938nJiQluPf5K9ifrMn+GDHQr2zICMSHeDvMwOJZxjOW3ryLrK41nS2e5izbxRmkp4UH68OHDMJ1OsxjTmFPKFS9ovymsmiX7Ov6wXBL8sI5pzmho+yLLyawYnkI/nU7Ds2fPwsnJicoCIVjU7AB/j4uo5VjVTu+3xvL5+Xl4+vTphhVjoLNcLjcA7PT0NJycnGwYDyyHnIrKZcRSfYLpzWazDXBMnVmWyiN1NFLMPiBT2AcZgEwXBuNyMwXbR2xr7DN5ubZMnz+PnbUm+1Oe/ZZTX++zIxBLiMfAecAaRnc1TFIfkjuQ5KBpCSD6EA/IKx1cbAj4IlptZ5G3j2W71oiWp/bZvgKRoSTWN6Vtk/teCiDLMmqOwsov59lU+VP1im06kGwWggFmfpjhs3TUUwcJ2qwjKhhYHBwchIcPH27ABjM/OK2Hyy/4PT7Coe9xg6A7Bpg8OlfCXDGjiIe41uzwTeWDjJgFyGUd5KG78pquEGwm19sWpX7a+94IxArFw3ahSGWSRnWXjrB0gErKu09AidF2blvFnFqJYBpoHNjReCJNTXIBbSxdrQz7DJZ3Iak26dv4xp73BA/8HC4cl++zfnrWvabKn6qXNkZloCLZLJxyZPZJnvGWo7tcX5y+5OAXgyRkmjSgyKfGS3uzWq22pqq89r9UPFPL2I65LFlMkJWSU6QItr3T31b+Kb1CEkNjxCw2NBYMtwiWSt/TPhuBmFNaObZ9AF5SWkU0fTp5NAa5jtHr1ErSYyPE0xxHR0dbUVgpeGwd4e4D87pvUgOAYpKbRuqZ2PcYBPEiZXTMCEJaMWKYlnSMCPy0PLSdgEdHR1s70eQan5xAL8ak4Lo1Xk9EROGdd94JRBeL4plJidVDjmsvECkRj23l9rHOdqvJG/uZQbTMx1t/BHaa7nj1H/VbHjfE7SU3S+2T39XszgjEnKI13ujc6iSHKcKoupYtqhE0jGhMFovF1oLaEOrAo0e3curY17NXWbR6th7TLRlYuawhhFdjQ7u7sGbTSaz/cbqM9RuPsvHuUkWHenp6Gl5//fUtMMa7GE9PT8Px8XE4OTkpAhqYD09b4dTj6enpFtPjrQf/Lc8Daz1+UjpUw4h5g+jYc95AwjqfK0dPZV9K+7pabW+Y2iffzG2oHScyAjGneCnGmvT2VVpE9Zp4nVTsuVK6OyZeBkI7uweNChv82WzWO6uSKneOXMcAo682rGGzvCKZnRxWqERSTCFO/yFTEjvKxtIpflYeCyEdba1jRQfOvw8PDzcAD5ma2LjDenA7TKdTlRWsHT/eYy68NiJGJniBnmRYPTqG+SIYyb1KTvYhb2Y4OjoKy+Vy63vu3yHW8XHZvO2v1fdaA7EhjGSpDOHshnTMJfVp4RwtWlyjs2UalqGLOQ1k5nhNgrWTplUf9wFYayLcvqWP/PsabzLdPoOz1sGgJbEzuTiv1NiS5T47OwsnJyeX1o8ho3x4eBiePHmyOX+MGbHZbJZ1d6Ic13JaVgKmGCsTq6t8H21Riz7RNj+gpMCtLLMET1yH1JmHGGTilK23rrI8MV2KCZaD64LHavD3eOdk7Zj3ls/TFzeWEdNYCk/jDSFDOLtU/b1Sw4iVMAyWsmqCxs/DZGFfS4o75UxlRJPSn1Z93AKwyrKiE9k35qv1uIyBzhZpe0C8R3jd0pMnT9yHAbdcn8SASdtxGNOtlH7iuMG2wc/xBPiSQ0OxHXhcy+lG2SeeNZwxB8t2Cs+7yh3vlm5yX8T0IGWnZDvLOqB/iJVfY9487F8rn6C9x2XnjSp8VJC2bCS3P7Cu3rPhvH1hfXatgZhsyNxI7qpLjiL1JbmOSRrtlIPRBqfmQDTjnqL+tbxwcOfoT6wcQ4gsK67z2XVZcr/PlSEDrpqyy+k53PhhSUsghmOPdxTG0uW6Ws4YwYp1Gv5777136VJwPgEfx3GqD7Edlsvlpvw8baWNPQ8z43GwNX1uBUQ1OivLY52ZFQNVtcFf374Hy4751IwHWWY59VzSv1r7aJ9dayAmK71LBmxXogGAIQFoLlhhw82Uc86A0ga/7PNdgW8ZffapgymngieOt7hj01ue1mtovHkjeM4F332Ux8qX1xR+4hOfKApErM9ynCqvuXn58mUgsu9SDGF7EwFP2c9msy12GkGGLAcvcn/27FkgovA1X/M1l4CgNm5TdZbBHAM6zu/4+HjrbCweD17gWWJDreetgKiFnUoB5VgZa32lFhTnlDkHAOLfNUBMlhn7pm97de2BGMp1Z8BigkZzaJYs1u7WICrtq5QTwnZorQsxAMRgYLFYbHZutRbOX7vXD0GqtnMJt/a3ahPpCHLWlbQS6VDkdPSQZdHKo8lqpV/vwt+lyivzyHGqcnxw38mDWGVZUJfYefEaL+uYB64jHx8hf6yLprGM1rQeB3J8PyBe1C1/vExKqh0tcCDHXmvAlSrvbDbLtjk15cKA2hPklQBA6zmNeMgpt+Y7+p7FWK1WgYh+I9wUIHaTRXOKLdix2FURLLFBg84ZnU8rIGZ9j4a3pv4eI4Kf51xM66mPlg/nwSeGTyaTrUWt8hwoPB+oxXSLLA+3cWuD5imj1E/JiA3JznnLjM/FptMsiV1l4x0f0hnhzkgrTzm1KtdeSrBzfn5+aWckX4WkTdfJMuK0Ho5jBLJ8SCzRxTEVzLTxhhu2NSW6JAUZFdQr/ty6fqcvkX3HC9pjdSwZ98w2cptyIIg6E7MrqNPL5dIFGlPlxDT3lYCRehxGIHZzxGKIcmhrlNTOHh6k2qJTzXDxYYEac+VxKLH6aO/HHHEu+4DMF76Di4JPT0834CgHXHH5PKwbrpuQP+wEZVvIqUrZLqUG2gsASgQdnHVwYw6LsY8SA7OeMVA63qV4Ai7Wc57y477ha3G06WDWPQZf6MzlOEKRzh/1lYHAhz/84UBE4e233w5EdOnOxpTE2k4b6zKwxGDHwwz1JfIi81jfl+gHv8M/eGWV1FktfY1ZtfyJV0pYtiFEK9c6gPlyGIHY9ZQWUR6LpcyxCAYHVoxGlvQ9GjqMqtDYWlMJsTqnjIC3zrH8tHfQUOG2ajwV2iqH9440DbCxQeTjANAZyEMouT3xupwWDjynLXOE9QN3+Ml8LGDsTb/WabZII+ZELcAVc0Il4Nj7nGQ2eNeidi2OlkfOIZ84pmT9cYzxz2uvvbYBht7+iLWdzN9qq30FATXPaO/gGkG2Ido0byp9rz/KkX0KtuSYBUb4q+G6A7FYR/TdSUMpQYrytZ6LRc+eemjGCtduSMCRUwdkPCQ75lnToaWPjjnHKHj7UTMkknFio4UslbVuL4cR0xgu2e6cnlyDxO3J05l8zQynWxvNtx4HXA9eu6TtjKtxgjVMGn/XYtpTMmJWn1jl9QQaKdCjjTUtXY3ZYBDmuX7n/Pw8TKfTza7JVABkgezz8/MwmUzCRz7ykfD222+HBw8eBCIKb775ZlgsFm49TPVxCuR7A4HSsbFLv2YJ2uyWYOq6iLTTvDmGiH4lXHcgFjOqXmNdqthDRURetscT5cVAmXQC1hoW6Tws8Rg7BhTaAaq5AAHrmOob77MxBsJKjxmOR48ebf7WjFdJhGhF61hW7XBHOZ3paSOtDfoSi83Bsqf031v21Luefvbof0pKAyxv2tYGCkxPA2IpvSjZnYp6W7NpROoDrkVLbVSK6YL3vk5uM9z57QHEuT6ihV9rLdZYzHl/nwK+PgX1nW7CYv0WkUOpYrdUjBb18BiaGKDAKNpy9DnTQTlgSFs/4HVKWh1TbWY5/lgZY+9ozk1jxLANS9Zq5fQBpofnL/F2+hRI4b9bsD8psYIIzrvUeZeM7V2yETlj3cPaaP2XCspKgV9qvKUOMfWkizZKO1U/1iaaLiCzj7YvdVA4//A0vyeQy5E+dLBFX9fof8lMBwr2/S7BmHfsgY3/uXCdgZjXmXoatuVgKSlX6ygn5kRT5c5lojztkHrPmvbzMAYpx5IjMYCFf6eML7J92J4I0iaTiXqhc21AoPU9Hu0QaxsuA14l0oL9ya0Dl6Mmb+wH720OqfJ5x0bfgI2ZVi+jabHPnvJajidnPJQCetRH2Y8pW2CVA+vAZZrNZhuWL8b6rFYXU04HBwcbIMZtg2f41eiaJi30Kbe9WuXN78u1qznvyl3gfQaFsXKg3nnLQdf9HDFUolq07RWP8cHPvc61teFGA9baKFh5eZSyNVCSn9UC2tj7qGOeemgsj7bYOIcR057DqJ53txFdHBfAp497p0FXq+1pTOu8p1pJRZUt9EQ7U61WL3hdVCqdPsf9+fn51uny2lS0BTgsxtsCvqvV6tKaR62OsWCM8zs6Orp05VAs8JHvYx96wKGnfTWQmHoHgxp8D8FxybiOSYtA3Rvsts67JqhCFmyooDBWjpjuWTIoECOibyCinyaiXyaiXyKi711/foeIfpKIvrj+fbD+vCOiHyCiLxHRzxPRJ1N5xBixvoFYzoAtYcT6KG8qsitxALHrNDxptWJ9Sp7zpBF7JqVjKScQi+5zRLah5mTxh6d7vW0jAWMr/dHq0Cq6tdqa9dUynJ4xzP/zWqR79+5tHanhAQRWebnvcqZbcLE8HgfD7aiNMc7HOkLCYq2wn4guzuuK1VuKBLByd6Wn7KvVq4vFT09PN8doeIKiXEDsYTytjT44ZjCAaQGi+gZzsQC39uaWmrLn9EtLsWy5dy0hytBA7KMMpojoLSL6X4joY0T0PhF9dv35Z4no+9d/PyeixRqQfYqIPpfKg4FYihVpKdJADY3Ia5XYMpYlxqHFOTCl9bEMdE5atQYxlV8q/Zzy5gBKPMsMp0d4uzmzELHyye9SjrZFW3rWDHnbTEbdXkOp1fv999/fOHo8OR4PDdWcr7ctMEiaR3bVWvWXx8rEDnmV6SB7qgUVmgPinY5EFyflp3RJS0+bDrXyk04fz87j9ufDXHlnrWWbS21EChhrAIHHIS/klzo1hL+KiRzT+L82bay1RQtQeRXEqie2ibcdBgVil14g+jtE9C8Q0ReI6KPhFVj7wvrvv0pE3w3Pb56zfhiIDakMaOC9UykpZgQ/SzmM2rpa73sNAT7nmd7qGxBjutL5pvqlj3NsUmX0viPXl+Ssp4g5D+z/WPly26bvCN37jBxHmkOJiawH58dnmPF0GrJCfMUPnhz/7rvvXpp2k/lIp+e5AUOrv2Rmc0AR5y/1K6Ubt2/f3tQVgb0nUPDYQ024ntwX2N4vXrwIz58/3wBmXoLRgnmyQKpWNgZdeDaf52icXQEazJf/joFYCTj6sO+7AKUpscpUwtDtDIgR0TcS0a8T0dsEh5mt2a+vrv/+cSL6Vvjup4joaSzdGCPWl2BesakpBAVyl1xsTUZq0NfWtRZ8WIxBX8AxR2SUr5XR6pddiAbW0Smjs8+5GF0yLCVObxeOISdg8eqbxeSlDKtkCBaLxYZ94b5gMPL06dPNd7xoGx1arJy5rJ1WbmmHcvsYdxwycGCwIy+o5vRns1l44403Ns948uE+iQHHmGPj97DMeKWPtJ+1tpLfZ3DHp8dr6XHZeP2cdjj1dDrdtCuOK9azkqUJreoo9b0WNNeU+SqwbJZd8chOgBgR/QEi+hki+lfX/39VfP+VkAHEiOgzRPR5Ivr8w4cPc9vvktQMAguIYZp47x8CAZ5KkI64ZCdJjtQquVTAFMPSx0D2lBHbVTPO3HetDyPMqZ8WjbJTXi6XYTqdbg5dlaffe8uBOlry/pD9hoJgwDsWLOOoMYTyM238WWwBX6yMgIvo4hBRvtaKAZlmGyTjyT9yB5jFpGhTjyVOQQaFnIfcQCJtBbaFtuBeiiwvXlSPbYL2xDorjutpHVWRY8dlu0kdl8FxbIcev8tTrrjbEoM+tjmWfuba5hb2fGhQlOszPDK0fUqxhzEZHIgR0WtE9BNE9O/CZ02nJms7ABvUq3ApOlIOLGl05O4taWxaKJRWRq/B1gweP48HJiIzyD+pNrTAa209U4ZE5imdUEnasfxy9Aj7RjplCSBypRXAH5rZRKBjsTKyb6wyyjHH7Y39L52uZFRQz7kt+ZqXyWSyWTeFTjc1NYz/a3XFdLB8yFbxGM9x4rJeMo2zs7NNHsfHx5t1exJEpsa8FQzEdDFlW2V/Ytk99ytqfWEFQxrYS9kD7F8JpK01kFadPfbHa6Os51Ljug+Ag2MJ117WyNAsWq7fQxkUiNHFtOPfJKK/JD7/C7S9WP/99d/fTtuL9f9BKo9v+ZZvacbwWJFUyuDHED1S5xIEeAd2qWhRlret0EBJA8/1OTo6UiPHFMiLsYglbeExJFr/ekBpzLHH+rw0mtPWHmlgOCdNed+kBmq0d2XblLIuJcLtfnR0tLXQWWNOtCBGc2jz+fzS9K4FSFJtLYGFjIq1dLVAaLlchsPDw/Ds2bNwfHx8qX+kI5esCvcpArZcsCA/kwwhTrFp78Xun5VtI9stB3Bo6XJZuf4MTDV2SxMJjrguDA5KfIqmo9imsTEky9wSXFg+a2gmSZYHg4oa2VU9Suzi0EDsW9dG4+eJ6OfWP8+J6C5dTDt+kYj+PhHdCa+A2w8S0a8S0S9QYn1YaMSIseREDCmHgOI9q6W1ImmOJSd6shgxNv64XkJGqJ5ypdq5NtKTz8g1U1YUE6u7LKtn95CnfNIoSYdcYpARHHN/IZMZE26bFuUoEctReJ2JLKdsi1o2NseRYVlQb87PzzdHODAjELvBgscyGn3tc02vZRlz7I8Eg9LpxA4G9uQr2yi3/WUZc9NEcIjnm5UGHNhGy+Vya3odA1ytXKU20Fsu1pW+1sbmlJeftXbPetLbFfhCKbH7gwKxIX7wHLHaTilhP3INMb8bW6zfh5PLbZtY/fh/afBr218Cx1y6NyboiFOnw1vGUgI06dRTTiY2vSijeukESjZYcHmZBeLF5LgmTnOsq9XlQ2an02k1M9fSmcQcuVUnGZQMJXIsyWUJt27d2uhRDVDhZxjQaaDE0vkckWWRSxVKpJXtKAlsEYhhXWqv0JKBFfcvrxvW1tXhsTN96ajHHtWm3cqHpdKzZlcs6QvYaoxYrOzXGojVKkFOJ2l5We9b0bocCH2i+9xIS4viY8xRbpljkTI6jdqpMAvcpUBRbGBx2bzsiga8cx2HxQSlhOvLIEyeAi/rhG10dHQUnj59ugXISpikPgMMFk1/WuZXOjZj/Zyz7sjDDHgYsZzp6VT5h7JdqfKEoANNb5m0jQ+1F1njzQN4YC5u3tLSx/FYcgOKp859HtnjbfNWz3mBmEUe1EjKR95oRqzEcZcYES3C9jqAPoyWx1BrYNAqa4wRQyl1evI9C2jUOtUcAKr1qYx68B65nKiypP21KajcNuFynp6ehsePH4fFYnEJAEsHLqdoiF4dllkCxFrre66utyhfKz3vS7jveK2TVZ+c+yhDyDuPbAggFgsKpaP1lj3XiaZktdpmlJnhwoCGxxbumud3McjL1R1PnXODcu8zOdJqXHjLxfm1ut4vZp89ZbuWQKzWcee+o+XnXSTbl9TUIcZO5aST85w3Ty8gtNLIif7QmUljLrf4IyjLib5jZUXByNhyOjn944kEZVvLBeC17GQraeE4c21GqSPKNdAlfYvT5CmwjDrecnynnHsrR55jA0ptU62g0+d+kQwZboBoOdtQAqr6Am+ecrb0malx1Wp9aAhlbYZyLYGYxabExDtgte9kfkMeCmopcIkjYjAhz8bJAXVoMGKDqkUElKKhtTxynCyebcR1Wi6Xm3vs2Chq4Aw/KwFmsiwW8NEMtMzL2hySY9i15/tiR1o8n6tfKZvRB5DwgGKpR5468Jomnn7G8dEXILLqZulKyfhvBVhz82oFMjits7OzDaPM902WApE+6u2xCyXgrc90StLicZd7HmMs71j/xUiAawnESpTTqwCe6Lsk/9IBpYGAEkHGRRr+nCge04lFHDXAlyUFxHLKrdUBaWvZzjIa1BgxzzEhqfKk9BLbm9OR7W7d/5kDpLQ1bV4gVwOKSiVXp3L7oWUgEXMEVttr5ccpLOsU/BblLpEWNjJWdgShLe8ljY3dUuE+YqBcs0i+ddlaAarS/GqAZW5ankCotgyYV8xHX0sgViJWpw0VQeayCyUHC1rpMYjgnxrnig7ae2Cox8DOld1duayOV7RBw9HMcrlU89QYFc8xIal+T+kfT0Odnp5umDqckuIInBcII7Nm6YwVWeZe7Fsa5bdcPKy1e4mz0fqhRvc0wBx7FoE+Ow6tP3icWPdEDrlcorXtTIFr3N1o7TaUuuyx+7F65NZptVqFyWQSiCg8e/YsejJ/bZvsQ3ot8vOWqbTsXsDmSTdl5y3QPQKxiKBD1oBAS8mN1Jja5rO7SgGZZLByDMoQA0hG+gh0+HcfEb4FRqxoq7RMuY5AOlx2yuyEmAnh7fDWvXsxoyDzwCtatDJZoCTFWFrtUXoivCZaX9Q40lTaue96p65xnM5ms63drhKoaenFyjpUcNn3WMXzp6zF7VK/SsqE7+S+j/1IROH+/fthMpn0ejzFVZe+9CY3/xoMkBpjIxCLCBrLlvRljaAhIaLwzjvvbE2ZxZyY5jAxQst1mkOJdFoa+9Q3QJZA13MlS82ARX3T6osgRwNL/D2DL7neLXZhOOeB1/YgiJO6hc4Fv8My5gYa2lEuKSYy1p45QE17XwtwUgFEKrjAunjKwWCLwTYfmIptVgK2UtF6rF08gRi3XeygzhrRxgczw9Pp9FIZrfs6vYLAL/eML+5Hvi8Wf1K+ZWi2qkT6KOOu09Rscoty4fsjEHM21D4NgvPz880FwkjFy6hYCjpnNFq4g2cfgViMfeo7Tzn42Oh7ppVyy2kxsFo6KUePC4K1Iww0tko6TgZiDNpwaswDknB6yDtNbdXLAnstjaEmHpATe097PsXSWeVarVabvrhz50744IMPtsB3LljEZ7T6xaaIc1gKbxuW9iW+x3qtrbuTAUbtIm1r7aWnvBj8TiYT1xT3rpkhj1yFMobQZnmCTCNXf/H9EYhdQeEOPDo62orGUsrFRoqnIPl5nsLaBT2eCzL6zBdFo6MRcHjWV+UyQrJ/SuuBgJunLCWtrr0nHSbrhbZDNMcBe4Frqp4a2MtNo5T9aLmbLVUOCxhhe2LfxoCAt780IBi786+EUUiNmZpZB9YPDiolyMI2xXrVgIbSU++xHzXGLlbHlM2pSSf2nHcctLLdpeMuN/2adEuAmUXujEDMkBpD2reUDsjWzFKLdtAcBQKCVmX15GsNktg78j18Rk4fpox+zpqqmPNCQGddDxUzEvIdZFBzwJAHuHrrWet8Qig7Ww/rO9S4R/2XGz7wOpzFYmFero11kA7NUw8EC2dnZ31U81Je3sM1NT2UoN86ggdBWAsn77EJWvlzNmp4+8qyZd4yx56TQRrauz7Gg5bfvosFzHAdqNXvIxAzJKasJbSmJrsGdLnlSEUArfLWGIFWbR7LN5WH5gCwrDw1zEY+BeykeHYLcjp40XrqAvmY44oZVH5P7tbLcTo5z2hi9UmJPuSWAZ07OqO+nYIG7JG15rVJPE0Z01ctQPDUIxd014g23mOCAQI7NCwvf49Alten8dqxmmlJbFdrzMYA2nw+D7PZbLOTORdkxcoj35NMuPV8Kl0J6Pu8KBzz3uWh6Lki22sOm8xwnfkIxDJkCEZsKMPeqhzyuT4HSw4bkQt4Ynmm8pAsFxp9ySDliocRQ/bAO70iIzOsj2ZQpXOJGXX83lOG3HZpyYjlvrsrRkzLH9dx8pRkbBpbgptWY6QvSdkS/n65XG7WPlpjRdNtufYS1yzmtodcY+YNTlar7bVhyDjG7I5klXPuIq2Z7o1JzKbsk14NKVqwc3Z2trU8BANbHItE9HNhBGJ+aalsfStuKdOV+1xfgFJLN8VklUaQKRCG66ZkZM0DrGQXFYoHiEmH5dmJFmMcNIMqFyF7nWQt21cqpUzXrgOglGA52fkfHx+H09PTzWYdS1e0fm0tfYBhawxwfSwQGrMLyIxpu55zbQYGQRpzmLKT8oeZTQtUYz1yp+tq+khbA6cxYxrr2rosQ4A8LY+cdYBasMN6hn2r+Ssi+o0wArHLDWnJro14jkIOUVbNEFnP5Q6kFOjSnivtw1hbsXPAYyCYoUBDzk6itL1L2sjbxxb41Poud7qlZTm9gvXJTXvf2SEWrZzIukog0pK9k0xMbEq+pT5w/bTF9hx4xA5q9QZtyO7m2gx5/AW3A5/qH2PJ+NiKt956a2NHjo+Po0x6DPyUiFc3tFtEZN00sGul27f9qNV5zIPTip1H58mL9ZmnoZHZvPGMWA2z4wUefUmsjNJw43qlXZSn5LmUtHCcuYwYRum4NgvbGqNVK90+nH5Nmh7nJctfqvut6i4BCRrNmjZgx9zKWhf0pwAAIABJREFU2XnqUBKU4GGlyBoh2xJjVFPlsQCfTBsdcEuGQ+vfmvRyn5NBiAWC5IYWPmAXzzrU6sY2ebFYhOfPn2/sCdGreyetsrQSry2OMWIlgLxvRixVr1Qa+D3362w222qDmH5q6Z+fn2+xuNJmAXC/eUAsFrF4FMUbfbUSrzNHZgYHeK2z8pYtp9z7Bkq0dNDo4vy+dHYxgIK60gKMyrJ56mq1vZaGdLASqLABiq0NSTnZmv7RGA1PnVNtwfXCIyH6YpNL9ACDASuQYMCUuxAd+xzZXzwKQoK/1n3M72m3OFjPxuyK90w1+Zmclpd9hW2FeuhZIqDZArYpvJsTdaL0nLKUtLa9ffq+luWQfekNvrU0NPujpc99iOcpzmazzTpHnpYmot8KNw2I1SqO9n7MuOYgcU0w7RTw4QH97rvvhuPj43BychKly/uUmOL3UZ5WQEeuxUAHxWvE0OB6+75FRIhAyFtXWT5r+kfWH/uK35lMJpcuK7bAmyybfK5EaoKl2OcYuT5+/HjDWOzDmrYQ8tYPymhd6qBkyrHP5/N58lBhTzCYOwb5vdjZZVoeKaCE5Yg5Sv7MYsQ8QE973vpOY1/kGrE+11XWSJ+BVgvxli+mq1bbe/sX00d7h0wz29P1318ONw2I9SE1xikV5ecAGGTCJCM29JRqTPFzB63n+RYAW0Yw8oBILyWdW57UAJfOMedcKOkAuE7vvvvupm4cmeMaBvx9dnYWHj16tNEpnIqROy9jRqyvhcaWw/T2Cesm1mvowCUm3rbAcS6nz+TOXnYQ2PcefYqN49IxyDrz4sWLzZQQpif1nesomagYUJJlQwBUMxXN6S6Xy+x1oquV/0yxfZE+A60W4g0GYj6xJKDwjAXWucPDw60bR64dI/bkyRM3Yu1bNCNnPWc5+dw08Xv+wemMXTqXmvbPLbsXnGi7fuQUDRpJ7Z46y4jnlNl6VoLDGqOBaeEPHgegMVu4RohZC3aAEujjNJZWnhzGoIb1y9U1jRHb1W0TNaKxRZLlQkYMgZkXHKPzamVTpK7x4mY8h0ljdZmd9QRGUpBl9DCOmqCesv7cu3fPzWK1BC9DMVWxfPYhgMmpb8zu5gS3Of5bA2t03daI3b9/32yMFPMUa7AS4fxq8tQ+w3RTjkdGr0OzYjWiKbu33F4WEiPY1erVtM1yudw6xZxZIVzLgUa0ZDB7nkVAaA10bz5cXq7DwcHB1rlGJycnW46PwdanP/3pQETh2bNnW+BeAlDUyxLHooEIbzqyDXIBgtQHXGB7VZiKELbbgRma5XJpOgDcXu9hhWoBr2XjkOFi/eSf2F2p3FeaffQEJmgXS/oa9eaDDz7YAEPPFLK0a7U+J8VU1YIjT/muso/JESvg0caY56ghum4HunoYsZRDw6kWD4CyhB37dDrNOgUbRQIpLp9UdstxWQ7KW69W0ZQ3HXyuxoCkokN52CMbQlyszaCE7/Rkw3/37t0NOIsxYi0EHURNX0hnx1Nw0+l0c58kgyyuN7cFOxd+Fh0k6mCtEW7plDzsAJZXOzGcAQGupWsBPDzfeb5PCZ53JUXaAeukdAvAWYvqU2VGJosBItpayb5y+TXnNpvNNuxsrN08elna1lh+ZJtjQMyya9w2paf+e3S+Rjz2GNtjl6xY35KyVZpexO6GvXZArMXxFbhg1EM3xvLBwclGQzNc6HDxe5wK0waCBiwQyFiD0luvVtGUNx0NeJYYz1Qfa+feYHTLhh6dAYISqy41Bn0oI4r1ZICJeoqnQfNYODw8xB0+W+vFGMjkLm4dSjRwH7sJQUayOFZKmTbt+VRaVnDlFTwBXooVoHHQIT+XZZTOhb9P1Qnb/N69e5syymDn67/+67f0j9OTdjLHptQweTFhoCeXgsSe15w4st99AZnaYC71rrShN0Ws8fT8+fPwwQcfhIODg/Dxj388TKfTkRHzNCZGZHhqekl6EtjhIGN2AY0lnivD+eKglA5CskY5bFIJQ1UjfeQXA6Yx1tN79QsaRu0oC62MkmnwtpusS2sAY9WT/14sFuHo6Cicnp5uTU/i1BUDMqJX5+twXa2t9iVA3mJhSttCjhFkYNiBxsa4ti7QU5YUE+MJNGrYhZx2lEEjMmXaO9wmuYzY+fl5OD4+3twMIBlW/vzhw4dq+mgvc2yKNYPQCuyUpqfZ7z4Z9pp6e9p7F4zYPuwulVPb2Fa4Bldjw1arVaDrdrJ+bI1YTLjh0PFIZ57rEPhAPL7glQ0IGp/pdLqVL9PSGB3KiNjDGu0DE5ErKbDgqaMHCGlRKE4loEHMBeK5jCO+h3m1dhQp0ehzrD+faP6JT3xiA8R4Pc/p6ekGmLVgxGTdveDWqydW9OphpnKcZCxdD0harbbXLMrnc3UzxbBhmjH9xXLlOD8LBKNNPD09Dffu3QsvX75U+1wbr7H8PDaghZSCqL5BRMugxmuT8CDYPkElS1/nrVmitSHeuCLryutw33nnHbWfuV3DdQJipYwYGnv+saauPM7RijDZiCHrFsJlA4NsTAyY1AysfQNr2L7W3ynDkmt4NMNu5Z0jtQBkyL5ZrVbh9PQ03LlzJ7x48WLrOAscE6yzbHDkouoc0OkFVF5wEEJ5tJ/DTOUcTxDTRQtsYrr8GTJHckerh/VGNtd7VEIMIMhyeUUCQanvOAPA9rImGOb0ebYhdkgsS61t1UB7DIz0HXC1TN/bHqgfrdkxrQwxXe3DP2ptivZRjq0U2L6WjFjuOWJaJGNF4CVGABc0a6xbCkBo61RYzs/PN87QEyFaZRyKdZESc1TW3x4HhuJhATQmIscYtwJNQwNjqY/8w2CD14QxMCN6dVAw7rZ88uRJFhtm9RmCLu0MrFR03RfLwXqAmze8DAbuXMwNKM7OzramgnHzgGdKFXWf+5XXPVr2gsuRYsSQ4feKVkeNFWtxawPqktx8Im0oHlPiDQCtvPEYFA94Rzufy3B6pC+bkmoPi8yoFatPcm1Nbl4oqLfo20vPgxuBWIjP0edOL6HEnMr9+/fDnTt3wgcffJAcfBYoDCFcYtxKyugdJC0HtMfYp9717lhENuMqRJ19iwZq2YA8evRo42DlFTfz+XwDzLRzxTQHmnushxZJz2H9WWn7luquHHvy2jBP2ngcRg7ox7aQV5Z5F3PjWOFycGBo2ZyYvZFpI4jyLFLXBOuJOpTrWK0AjctoTe8iq8vfaSBCpq/1Feoqg2+5M9vTDlfBjnj1pLVYQXkMNJWWL/au1l9esG6lFW4yENM6VhqDUlQvI9Kzs7OtXXevv/56cvDFaE3tUtZSSSlsS0XXLs7OTTMH/PTNNHmj9pp0W6UZCzw4osdF+trhtsjIWGwD6r6XyUJWwHNzgLdNSoAyM1K4oQanSNnJ8ncaa7JaXUz53r17NywWC7XcMQZGTtXVsAyp3ddYthhQs8BiKYjgdn769Gk4PDwMi8VCDdJStliyFIvF4hIDKN/D8p+cnGy+09pH9i0+I8cMjwXss1RfyXbv22Z5xAMscoPpFvXSNor0YStjkhon/IwF5GU6dN1O1teAmLdjrCheAjSvSOOhXT/EDs5y4prjtJ6tUcCUs8qNUGMSO9/Im+Y+GCoppcbJEtQ7TLOm31OghvNBxxVzgtZ3XseP9cztb6/u5eoK2gHWU8n48PfT6VStp0wDy4htnHIgLfUcwUqMwYq1qwQgzChNp9MtEOEFIJgm0asrpuSdrvxMjIHBdJABtMakVU5Pm2NbynVt2oyKN82U4x5S+rDDLeolF+fHfGZNWWvF8t1GMHP9pyY9EU7scwug5XYsD8zJZLJZ+yEvepVljQ1ONOhWPb3idQIWCMiJ0q2t77F89020gaWBGOsdbx7awcKyn1v0e6rsuaIxBtZiWstppxxTqj1zHCrmz3kdHR1tpmPl+NeYQ95Zimvq+JgarLsctyVjqEQQqGjrWTzl0PpEnhmF+WjpS3syn8/DbDbb2ES84UHawViQs1q9YjHlpe0tg1atntosCuqVBxxYjntXUluGmsAi9py0JzGfidIS3OYAa3miPpdDBHDX64ojLyMmjWGqMTXjlNuxaPRjFLvHCIZw+UydnCjUI1r9rDqXKPnQUV8LI8CCZfdE6/Idb/45YNgbbWtlsu6xLBVvdB+LGj0HFMfE097oTNGQ43KCVNBgnaz+/vuXj6XR+hT7wGOTSgVtBE63yrbIuVbKClCxLhaIwuem0+lmAwiC39xgRnNy2rNe+5+qP7elBFxSd63jPix2NKfOnnIODeos3fBKjm+wAI/1XE47WEFkqnyYl1wnOJ/PLwUadN0OdPWuEfMOxFiDl4CfluBDshg5RtQjGiCwdveUKHlLA5ELnmLieS4FlkrLmFPOnHRjEXnfmxm8wQXqM/+ds0MxJ198RjpTHNcWA+MdG/y+nL6SY2cOmyFaAzEvM5HShVg66ASlXWTdQ1CL9ZU/s9ms6ABdWQftCjPuJ7nesSYI0YIJ1AXWAa1dPX7IG+h5yjeUcJ64Y7ilb9C+95wn5h0LqTS1YFjTebYteCi41pc3FojVOE/LebTMNzetvh0qRu3ytH9UwF1EX1g+L3iKya7qUJp/DGR5wOKu68tlwLWDuJ6y1AHlCAYyCL6stuFneG1UiuGW64aYgdSO6WhpG6w7JFPvaWWw2MsQth2W1Ed+Fusowddbb70ViC52lCMgLQERWt2xX7XPauym1WYIQPm+4dRNBJa/0ViU2vK1fE/qOYLdPq5s0vTCcziu9l5Mx7Q0tXbhNOT4kMyz1aY3FoilRCqW1uhoXGqiWI8CxQCPFpW2FgR66DCkAu4i+uLy7RpMoLQqj9dQxxzB0H2hSao9MIJGVizGSrUuX87VR+jApXPHC7E5HU4LwQG+13pqGIFl7nSjB7BL3cLz0qQ94xsYXr58GebzV7c04EXzfCPKu+++u2kbZBFKQQS2NwM7uUvYu/O8hJ1DH+GZfrbGLAbCLfTEU5cc+yHHL66fLL3EvLb83vdaBL5SjzhN3rWbOm9vBGJCrOgNG10DQR6DYXW4h1KNAR7P9EcLkWBQ+2yXgKiPvEvTzDFiXhZC+1/rk9qy16RRCgpj42goncIy4FlpGgPE7Y7naOGBr/hbAjZ5TEcfp49j+jlA3qO3WvryzlxMg52zxqiHsG3bTk9Pw8nJyWbhPpar9HopfF/aKk/baz5B9mFsDCKo19bmaXlZY7lVUOLtZw8o5//lAbZy52tJPiXP9S0xRozbExlz1vtYua8dEKu59BsbVIueLPEOaEwbDxn03Nu2Wm0v+MSokzudI4/W0xyc/z4Mgpj0wQBJfagFJNpzOety5P8SoLeSUsNvtZcWvAwBrCwHGRNsUzagMd3COs/n8/Ds2bNAROHFixebReh4Sbocl6Xl5HdTTkEDWtg/svypcuDz8jJ4rY7MiOFtDPLIHnlmG7I/Mij2jEVN35CZms/nbraQ3zs5OVEPNbaOKUn1RYnU6IpMJwb4UmnHAsLcA9G9drsP+95CtD7BszI92ODaAbHSS7+tBk0pJjrS1IDWDAJHzZ6BiopoRXz8u3WU3XoQ7BN75UmzVSSKgieeyyMAcsrXwjBLkeA+ljYGBbH26rMtNSkFqSk7YLFjCBqIKDx8+PASE4a2Qju5PTd4ijlEeegsf47sHebv7RfNjml10t6zpua4HmdnZ+Hk5CRMp9NLLBuvr6oJDmQ/We2N7YjgUN42wcDDGoN92KRaW+zxMV5fJgNCXJzvZTCvGiMmRfPFOOY8S4+uHRCrYcQ0BZeKaSlgjgFdrV7d1TabzbYGcSy9FKugKURfjFhp+kM741ZS054SKHMa7JT5EEsNjO/K+HD/SIepiTa1HmMkPIxGqWC+LW+eQInZiZcvX4aDg4Pw4MGDjfN+5513NvWWgRsChJJFzcgm4a6s58+fby2Wxva3AsfUeW+yzxBYaVMv1jsWEzOfb++klAx/KasUA84pWyqZvz7WO+VKrU2wgBy3S6keYlDpfX8X9i0X+OXccRtjnG8UI5ZaIxbrBMtwILsUi0BzlEnrPO700ou8+wALlpRGZZqiyrLvMvKJOQpvmWJgHdvMOtjWYj5b16nmHQl4YhGf1ectRR6wWtp2HvAQewbXhfF0HU/J8Xhmm4GsitU+HnuFa9OQ7ZKHyVpjPBUcSRuYai+W3PaXDBu2V43eWOORy6WV0wPW+pK+87LS53aYzWYbZisnTetOz5i0sG9aWWL5e/O07HZu3p7+vHFArNY4a43qZQ8sg26dOYMsmdax3ouvPZKrdKXGwnpPOqNdsWWYtwWWc9IIIR/ktgalVp1C8O3YjaXpmcIoCVRy5Pz8fHOH6+HhYZXz1PqZP2N2LbabcrlchsPDwzCZTDanu2uOKdYnqfLI7549exZu3bqlMjipRcKyflq9vH0tRbNvsffR9nnK7c2fwTmn6QHWLaRU93PtX2n55diXwD62eay2zLVl95TFCvy89jXXbqfqE/vuxgGx0oaSgmyGdop0zKiygmg7jRCQWQBAgqYcKjjVLn1fs2IJArHcwdlyMFvgK0dv0AC3BMulEgOUqENW2axgwAPauV/7nNKR51KVjgPLceJaPk8+nqAGWbEYsIs5jdVqtbVo/OHDh5t0cF2TJ6jKPchVtldMv7k9UmVpzUJxvrwMpGVw5ykbAksZlLVy/CGUgyBrt35JcJbTV60CzZReeqZYWwf9nsBJ++7GAbGY5HQKK/Gbb765FS1yGjxNoDFZPEDZQDx69MiMOFOMWO45QfsqNQNSYyRbgDNvGh6w3Pfp9V7RGLEUkLfGhcegct/0cagj54nnUtUwb1Y9+XOeajw+Pr6Uj8b+pI6OQICSM1WCzyHgOjk52XyO7S7PF4zZlBLmhu2dxWSVMEMIDkuntLlOfJbTyclJMxvp8RXYB7LPNWDmGWexetYyYrXpeaXV7IcH9ORuOqiVlL8eGTGH5EQC5+fnm0XWR0dHG8N7dna2mSaRg1B2CBrRml1zMWNvfVabT18i28gTHWpATBukqTqUTtN5Bt8uGbGUtDD01vR8aZTvEa8R9+puLMLG8aotQeCyaFOCMgDj8uJ6UA0wecrHaR4dHW1ddI3PSuajFQsgmQcNUJbaDXSkst1yypfqtxLxAkvLLlgzHlZbtWZtsGyt7lDO8UE1sx9Wvp4yeMreh3jacwRiILkKKBcI4xTJwcHBlmFCg4jRkIdCzVGWGDtTM5D7MAZSVqtXUy3yvJ5YvppR4bbVLuS10vIcrLuPUsI45KTt0b1WxrWkbKnrhUoduRTPrkJtSpD1TjI7MmpP6Z9WXywT7sLFMlprgVr1D+9O1RjJUqcux3INmCtl1FLpluoTTteXArpaQd0rAc8ak8d10Wy2fMZjq2r9nkeG8mupeoxADCQXRbOxwCtNrMtkNZram2+OsmhOeVeMWO47XE+cts25lBfbSa7riUWcLNp5WLFoto82KBFsN01HaljSEtZpCOPmKaPXEbdsi5zxJz9PASZtmhcBMLL0d+/e3Voa4WUmS/Q11i6lNqBFUNoXK1I7pltM19eWQQtUS4APXumFQQhOCa5Wlw/s9dQ51++VtEdf9jk33UGBGBH9CBH9DhH9Inx2h4h+koi+uP59sP68I6IfIKIvEdHPE9EnPYXIAWKS2vQ6WTmQMKqwOgAX5udKrkFpxQDkiixnSTTMfVByOC0aF57yOTg4CJPJJJydnWVdnxNjFnOczlARV0x3UyxpTL/kGCkJVFo6/Zx0+gSbHvHeIYtpWkwDsm248UFOCS+Xy826VY2NT42lEn1t6cxaBqVeKbFTGICXLmWoma5v0Q4yDQRXqfGOOmWRDzKfWFCUCmCGCGhbimzLlAwNxKZE9EkBxN4nos+u//4sEX3/+u/nRLRYA7JPEdHnPIXIAWKoiCkniyKp5diuJ/nO4eGhuYi/VcSO0ceQiisHdovBk6PQaByIaMshEW3vLk2B1hJGTDOOpevOciRl2FN14TZIrVPMNf5a3/XNnJXoXF9G3rMj1XKGmo6yE8MNAYvFYuvMJ36fNwvx9ULsMK01iyXgIAYi+5J9YMTQlnO75og1Hodk5TAN1Al5X7GHncQAQbOPKbsp7baW3xABrVc8gWvu7TaDArGL/OgbBRD7AhF9dP33R4noC+u//yoRfbf2XOynL0bMQucyao2BKTlVxpJSMhn1purDzw+huH1HLTlsB7fjdDrd7ETlE875uhkGRZ6Tsr0AObYgfwgDwnl4zo6ydJd1EzeetHAW0hh5mTivSKDrdR5DBCieHakWmImtkcKgkdPndWXyWXRwyMbHAKC3nLG+3QfpqzxsX9mmyFmOFNDSyiXHRe4SiBrBvNHXeOwfEhGlfgftVyvbk5Ka9GJ6VWrf9gGIfRX+7vh/IvpxIvpW+O6niOipkeZniOjzRPT5hw8fZjWqF4xZjR9jVqST4Oh0Npttpe9dG5ICYlgmqx6tFXpI45syZhoQvX379ub3ycnJ1jUwmsHJYWwkANL6p2+ginl4zo6yDP5isdja7WsBiFxGAvVQ+7+2PeTxLSkH5g2csA41ZSxlOiymlp9h1ht3Smpyfn6+YW5ms5mpi6lycrvJY3pwGivW117J1S9PoNTHeMNpOVlHzW5IgCPbRrM7Q9tV7eDdWCCMIJ/f88wOWfnLQKOm7l59Lskjlnapzu0VEFv//5WQCcTwJ3exPnZIbACkHKoWyXq3jaei01SEZT2Tqm8L8eTrLZvWhlrZY5cLs5HDO+tef/31rX6VdxCWRIScz2w225qiiNWR8yk9qiQlHudnGT00qlwfOR2ssSAxsfSaQVAMbHgFgxiPbnuATqwOfUsMKGrOWgMCso8ZoPMGmFLnE1sLa/V1KTsSs33Ws7Gy5zpHr71HPZL2C22UDKZjZS8FsbWitb220x/rzfrXYiyztADQKd3oOyi+ikBs8KlJa5B5I3aLoZKK6902XrK93DJ88n65WN2HEq/BlKBAA8Pexcbz+att1Dg9KYFXCGELmHnPHEJQRXT54m5NVqvVpamkXQs6j9R0bS6QtIIFHD8lutjiIEpPcJOTZqtxFUtHBgkInhE0S/3m97BfcwOoGItjMSm5YEIGSKnx3lfwifnO53Pz2KG5mEbDfFLAdRd2WKtnrExoj+XOSDl2W9anRVr7Ama9sg9A7C/Q9mL999d/fzttL9b/B570PUDMG42wAZPMgAbEcODlnnJf0nnaIJKGeUhJsUe5jJg0dPKoEMsJ87t4dQyfrD2dTlXwLSl2j7Pi7/DoEk8dY2cu7Vo8LECLGwJqwU2L8960tFN2IVbmIZgzaXfYVsljEDxO31NefEZ7Hlm5GCPs7W9rBqH21pBcxy7ZHvwbF2FLH8Df8QYKLvu+HubsYY3YluKGD8n24fMt6pnq974AeAspbYNBgRgR/SgRfZmI/hkR/SYRvSSiu3Qx7fhFIvr7RHRn/WxHRD9IRL9KRL9AjmnJUMCISeHOY6XDIyo8hi01bZbzea6sVq/WjvS5S0+TFmBSS09uu7fAruY02FCis7Le8671qO0rCfz6MhIlRyegWP1ZWv+S96wytNiJmtu3HqdVqhelwBSDj9y8c/XDAuZyGYDmPL22wTsz0Df7goBXHtqNm1oQfOK45md4t6y0Mbkgpi/2zJMu2lK8ti8GzGttWirg847dvtqtVGLlGZwR6/un5kBXbix03BYY097TKGoUr6KmFGjfFCyEMmci20Mz/Mg4cXSmHYQo35WsJk4xMOsVuxfQqlMKoGiMHabD5ZlMJskp5Bpq3cMapRggCeo9J8u3ZIz61PPctHP0G/vNA3hKHViN42vFNiHIsOxky0ATbTOO8ViQ7Cm/ZUv4e7Qfcuc12xP+jg/2ZtCCV1lhMOkFMbtgdlg0W4pt0xfwyQWmu2wjr8TKOAKxYKNpHjBnZ2fJbeip9GKfS0kpVWu2YkjBssvyalO+aODw+5QR0NgCNp4cwaNBjJULRcsHnQOvFcOzo7AOHFmzYeb1VjJdjERLdK6WEQshbOp0dHS0NR4Q3Mn6a6Dak5dH+jL0LdOV/eYBxKX51zCDGutQEgDKdsxNM0ewbR8/fhy9TsrrkC090OyHBNlsj2az2Wa5AS+J4PEgy4lnuXlBzL7Y9T7GdKsyxVjh0nK2rl8svRsNxLhhNKSPbAk6zyGm/EoMYghXIyqI1S219k4DYCyy7lpboCHHBajMtrGBzWlHTJNBmFy4L+vARvrWrVubsmDkLfXPYwi8QNIr5+fnm7PYOF3N8WP9cY0Qgs9Wa2Ra6jemJdOtcYoljFiLOngkFazEAh1vfrL+lh6U6OhqtdparzRfr/+8f/9+ePDgQTg9PS06PkGrn2aL8Bmuz9nZ2ebYFzwnkog2n/OUXmm59lX2wd/EyqD591Zpx8Sj2/KZGwnEZAednZ1d2gKPkR0/R3RxGXXtYKp1lLWM275KTb2kU7GiTi2i5W39bHRz2pHT4TRiEa8E9gjuY0bDUx7rGIdcneDnkQ2LOZDVarU1RaN9XnOnnla2vhmxmAHWvvMwKX2My1zAaNUL7eD7779v7hz21kPqn1zfidN8KVAn8+Oy8jiT4KdGzzA/C4hJ1o91++DgILx48SIcHBxsyvF1X/d14Y033tg5WOlLdulvPEyYDG5jY1Ebw54rrHLGmVY2fuZGAjHZQRYjxv+fn59vHXZZM6jkQI49h6ABO3yoSGTfgJ2nPJ4Iid/nfuepSlx4m+tELcOtlW0OC5xx8auVX+7ArtEVfp6nVzy7O602kg6+hGHKzbOFeACOdWwB/62tH0pNqcsxXyMay2elLXW35l5cWSf8XzJvqfVpmk6fnp5upgP5+7feeiu8/fbb4dOf/nSTtjs/Pw/T6XRzALT2PTPpPI75lH0iCo8ePdpaE8bB1j7ZUpZSZrJlXUrS89g1jy3VAmCNjMkpRw5xwM/cSCBmGQqr4bixcddIqaDYGusEAAAgAElEQVShtowGgjVpzDFi65vqbg34agdwDOzkREhyEMp7weQUjacNNJ2SfYT5WXe6aW1UMrDxcwvQp9LhcuWwa14QqxnAlOwiGLHE6jNu7+Pj4y2gPVfW0cl0sL010JYjsu1jDkOOGU9QUSMevZAL3tEGY9DEbVozRStF29WM70gmHUEXg8Szs7OtK5BatmlLIFQyjmKBhVbWlK8qKUNpG1hXommsWSkjViI3EoixeJ1eS8WX26E15ZNGR7tMdQhH1LLeCC5LyxwzZqURkuaMMB8PwNNEghitHuxMMMKOXZfE5Z3P864S0Zy91U5oOOU6Nc+7Wh/HItMcwIGR6q4Zhlgwh33PrBKPd17aoOkVtr0GUL3j0WvDrP5szXjklNUCXNwm0jnKseSRFIshD5aV73BfTiaTDSDj9ZS3bt0KL1++3GKCmWGrYRlT5S+VkjWMHh8my5qyG0PpWywY946PPuTGAjF0GugM+m58Th/XpWGZUCliVP6QyttCuN6lp7Jbn3m+i6UvHZ4VweXqRSwSlIASnQkyIpqgYUOd8LZNCljGDGeqjREopdquRH9bgPm+RDJk0vHiejn5vCY5wEm+42UZS8ZMbhCQElmn5XIZHj9+HF68eLEBOdqatdIAyTO+U7aH25dtOP/Nm3Q+9KEPbZUXxxQGNa3YztTnMfEydVqgEZvVwfcwsOuT5EiVO5afZaNSbF5u/tZ3NwKIxYwaHouAO+m0IwVaDH4JrrDjLUOLi1J34YBSg8UzmHKd6FCAWDIyQ7AEMi12NLweKzbw0RniVFeuY4/pmmQDUvXA2wxk2VsYs1g9WkspoJdn0klmUzIPJUxEyqhznnycQs0yCmRpuX44ZddqbMo6cR6Hh4ebO0/5NzJM8kwvb595xrfFmmjOXDJpvDj/zp07WwG1xiznsMGpdovVLSYWEIvZi9KASKYxN6brc8QbHJYGJbV+SGtfLWC69kDMUho5mOTOHs25YSTgne/HtGOD2/oM8609fLFUUspYq+y1z5ZIy6iyVHjKgu/C5CuYvJITbWpGkB22dhyFxQxguhjAsH7LKNmT3hCiBVEtnBkaWhynKQa7BvBrwAD7AE+6L3UgnB6zPJzmgwcPwvHxcfVaWUvk4aeoV3hgLBGF11577ZLN1sQTMOCzMnDI0QmerpxMJibg0hxxrlgMjof9kfX1ABDpL0uCK80e1fq13AA0V2rf14CYphfXHoh5QYzHULMCslHy0MwI3kpZgV06ME/+uy5f39JqMEvWxNp6nwMSYwYZDb12vIV2AXmMGZB5siHh85TQgWoGvDa6rBEJkrRAS5bXIzhNxX3LrPpisVCPFInl42kjK0CMrSnNFdTPx48fh2fPnjVnwyzB413u3LmzYYq5LIvFYsM8HRwcJBkxDSBbddACBy/jtlpt30bB76eOA2k1vRqrS67ExoFXl2OCzHvNes+SvIf0V17C5doDMW+je8AGUqkM7LyIfMjFxTWR0CiXRQMeOcyedADoNA8PD8PTp0+3WAZ2OnIBcgo4SACGERe+y0zcN3/zN4c7d+6ExWJhlj0XEL7xxhvh2bNn6hRcTnqtRI4/a7qoNn0Evfw3H3nDQZgnr1JGLKWXJcHUcrncMGK85u3Zs2eXgEZr28btd/v27S2mWBtHx8fHyfTkNCse5CzLjQAhl7GyfIE1/Zd6L5VPamozZ1zljE0JBEsAH74zdIC2y4DQkmsPxLyS6hyLSvUiXi3S6gsElUTVuXKTgJx0tiVr3R4/fry1K5LBmMaWcD4W6LJY2xhg1J7DaZ/avlytVuHOnTtb5T4/P984cu2KHw3EtBZLz7GtcgCZpfcIOLH/8IqbVLDW51jy2jf8Hg/11U7fx++lXcxZayiF2+Pp06cb8MdTivyjTat7687/a0tMcGykgI5V7txAI7f/c3YteiU1TmKf17JSQ/uSffRdIxBbixVl4v9eg51iLvpG5H0xYrl12EeFrxHWAWtRumWEEbitVpfPPpJGKbWOxYomZToyX/59fn6+OQH89u3bm6n2En3EccGO8+HDh1v5v/nmm2G5XJr10BxeK91JOUcJelOL6D2sx2p1eYoqpjdWP7WUWLqWbZNHbmA6OH3IgBPbRe4AzgU08/l8a70VBsG5umqxonhwrRx/tUxpn+JlxHLEAkaev0epl2sJxFJGx6NA0sHVRM2p//uWVvnlRkEpQHoVxWoDy0FruhNbH5GaxuA0UwaRy6NNoSNLx87Iu2BW5ocMAh7JwmCE2RLNcWplb8mSxdK3QG/qkm4rQGOwYJ0bJpkWllg/DSUx3dWO+FmtXh3Pcfv27TCbzS5N+T558mTDZllrpFLlYdaK379792744IMPiu/ulPVspWv7ZM8l6CwpUy47Vlv2XfuEVP5DlO9aArGYwniVCRVa7nrM7ZhdGNc+8s+tt/Z8LpjbB7GAj6cuElghI4bnEHHf4FEWNW0jASDqs/a5Nx+uD96Ryelp1/6kbpCQeXP6sWuRvKLpvcUmskhGLNU+CBqwn5ERYjAh7zTV0h9qTKTAvHToCFZknflstBDCJabs8PAw+y5XBHo8tcmAPgbsU2lbIKWW6UnZ1yHtHAL71PizxCpv7pErKfuvlXkXviDVf0P472sJxFowYiFcLFblBbfT6XSj0LmK483TW+4WgGgoiTmaqwLKYoyBVmY0+HIdCjoxuZibQQ1OxzDjUKI7nBeyGR6jEusLnMqTrJHsz9Q0kiyf1l6lIoGoVrdU/2F7YRk1RkxOO/KGCD5x3TuVNNQ40PTAGpuynmdnZ5uzvTho4GcYKD148GDrfl7cPRpjoDjv2WymMoypACVVL+2ZWL094gXrpY48RydiBEKt5NbD0xf82S4ParYAuvy+zzF5LYFYK8HjBWQUW6M4VsfGjD4yBbtS2tVqtYnsOVKVjk06PwlaLUeogYZ9kdyFxzIqlYuYJ5NJeP311zdgDBfdclswI+A1pFr7cVro+DxGJeaoWAdOTk7C6enp1oLpGOiWxg7vEsRpPAamtTvxahwqTqXJhdHesYc2gi+Q9mzVzy13qZOIjVVLTzCImM1mG9Alg4x79+5tgNTx8XE4Ojra7FBMjXF+RgLy0mBWs9UxYObJp89AWAMFpUDOCka8ZcOySLvvzT+33iV63Mpf1ALmGhmBWEQWi0W4e/duOD09vdTRJSdjs6QYFnacDATnsENJHp+Rkj4UFcEBGlfr4FpcZ2I5Mg007EosQ+0tlxVhYVvI6SzZR+fn5+Hdd98NRK92jXmcg2w/zRinDHSKQZBtIpkxDYBxubj+eIYZf4dTWDlG0Yqyc/We8+TLmpl94TLN5/ohuLG0cB2eB8jllrsGcHp1hXV5Pp9v9ZHmqHGt3Pvvv68e9xNjHFLsRAi67U0FtzF7OUSbe0UGcdwfudOLJfnF2s4a67uWFn3h0bmadD3pjUAs2KBKdjIzI2yMY4CiJqJChy2vYMo9K6il0VitVmE2m4XDw8PNAl00FAwUmUlAA47P1BjFlsDSEo0R0qafStPFaR3tsmLWs9PT0/Ds2bPw1ltvbU3TxES2D7c5MroIoqwpQOkcNQeNOwO1eiJQ52f5cE7tKrHSM75a6bgEyrwcAUFHCpBjXTgtHjOTyUQ9u0p7t08mIcZMSXZInt2lMa7MfjHDi3rtOUcut//kvZ2xNPqwF33aIE6bx0fOERUl5ZJ9rAUz5+fn4eXLl+Hu3bvmmYN9SUt/4NU/T8DgEWl7Y++PQCyELUVEkQ2HC3BTUUQLp8BOwGuYLQDRIprSomhptDUWpfXW/NSgaZGH1W6pvk05UskuWP2isWZEFwuVc1kfDYitVqvNNCAeTYBpSraklKGS6XnS0Mrsza9EZHkZNEon6BlP2piQx5VYoo2ZPuqq1UHTXSxPjN3lKcpbt25t/S/7zwKAuc4Wj51o1S4xGSL4kxIDy6l3vL5HCxqsIFkDvzXibVNvnTzpecG69VysLFr+0o7F3h+BWPBPM7IBOD4+dk/r1EjpwEopVEk5NcMQS6Ov6D5Vx1Jjb9UX2y6VhseRxtLBaHg6nW6mJm/fvr2ZLsM0PYbFyssCRq3aT6uzJyhYrbZ3lQ7hAFuxKdZaQl64P5lMomtsuI143ZzWVrWBnnw/djhoDLSh45Yn1VvHVXBezKB5gbaXsehLWgXXOVJSx9x3cAPEfB6/gFsDvzXSEmBhei2moC3fFXvf4y9i799IIJbTQGiMhrymCMtVmm+u4njT6ssQlgxOqy+R0ZGOIxcUlg5gq98sxgdBEJf31q1b4eXLl2paVrk87ZhiRlr3bYlBxXbygriS8dLK6UlmHZ/heqUAhQXmS5yDVmbZjnjMgVeXUk5PK9Nq9epICg4qcMo3J/gaWnadf0vBusibEWLsW+s2aJke63UMSJZIjo+src+NBGIWi6I1OBrQHJq4pfQRkdUAq74iRC9r4omQ8TN26KkziLz51b5nATEJIl977bUt3fPKvjgODYiUgGzPtCZeUq2tZ2otWn0ks47P4Lo/3BVqsVDMiKWOfEDwnqqrp8xStP5IBRqxvPmn7wNshx4D+zLmUiJ1Ul5OL2Vf6uUhFVqP9yHrfiOBWC4jZq0ZaSH7EBHWsGNDlCXVX6nysxOLTXWldCBHX1IAN9V+yODxuhsPECvNry/Bfqkpgweg427MxWIRjo6ONjv4Ssdrjk6kysxtgWDRw2iik9GYeQlWc6dmcnZ/y/7MAbxsR+URCH3pZl8Ab1/yK5UYCxsjInZdr1g5LLb4KsmNBGK54nHkpbIPir5PUY90NriQ1Gojj1NMDVTuB8/UpdVn6JxymB9NuN6xXXbecu1Kx7wMp/Zerj4ul8vNxeq8EYGn3EoNdE27SdDC7YC7RaVoeoqfyR2MMlgpOV8wdaWTVT5tV/eunTVKTvDUMr9Y/+akozGQfZdda6vSdmvd3p709sGXlsoIxByiTSW1UrR9AUG7FulIEBixQ8116FJSUVUtiEqBOXwvZTRKjIp1VECOjrXWxxhotfKxpm5jgu/gYbjM1pQY6FoWT/Z1CuTH6s3fxYBlSXlLzkNEdi92LIVX+rKBOeOtleQAW000NrTvA7xzZxg86ewCFGl6dFX86wjEHJKic/uMvnLTGlLxWuYlnZWMBq2ouyXIyFkvo31nsT9y+ojXAMUOBi25100DsrmGUL5XG5Vb7RIrH7aTt38RqOCp/TVRfY7E2un8/Nw80gHfxd2Gst24fnjVmkwDn2/plDT71hIc9OW0Yza6L6k56DuE/hkxrR1w7NSMlz7auzYdr27tGrCNQKxQYuhfRraeTsat7zXXW6RYn77ZjhLgiIuTLceRYqGGcAiyX7HPYtMznC6zM3jSeitGzAKyqX5IBREyKi9ZEKvVJeawciJrdFa54CAGnnMlxl7wd7y8QbaxBrLwHX42dnegfF5rt1bgPIR+gk0+X897e4E33X1nQ6TI9mihnyxaX7L+1QKWPtq71r57yzQUg2eVZwRiod4gS8CA96R5o0d5jQT/zj2HK1YPj7JZiuKNsHMjkJgR8DjhFAvV8hwzCcTwoM4YQLEcr3aqvrcs8pkWUWwsD8lMeo8BserSKlKticIRvOSMtRhrof2ez+ebdWusr6hH2hhA3ca0LCZVPq+Ni1I71xegsewm9snQZdqH/CSobwkQLDvu1QsZVPbdHq3bPce/9SGW3RuBWNg2yLkKFmMQMLJNOa7lchmOjo42VweVUP9epxorh5VGqeO0/kcwYh1emeOEre/k5cE5kqoLXlbtdd7sJFPXJdX0VY7kGiBvYNEy35jxrAmgmNHkNWWpy6FZsN1T4wXXODLTwwea8uaf5XIZJpNJODw8DMvl8lI5MS3rsFSrfLG0hmSKNGCJLDKC0fv375ttIevRN4Oxi/z6ZMRKyyEDj9gMgCW107YtJNaPNWDM++7IiCUahxU+V8Fkx2rO2zOYpIEsWSOUWnfkTScWMeSuV5DtgxFVrUOPKT9/53Fc3rLLPHMYKemYU3X3GIxUX5QaltR7pbpQKjwm5a7l2sADdfHs7CycnJxsrStLXVDPz1nsE7eRvAro+Ph464R5ZII0FgjLogUWnvLwc2dnZ5u7TrUx0RczINlHGfRyH3Mb4YyCh8Hom9G46umXiLRZlh30Su1GhhYSK3cp2EY2t8TPhHCNgVhfTij1vGYIPQ5jPp9vdWYuSEFD1wrYaA43l5qOGcwWrEhKaqIwLU9Z/9RmAk5Hm2aS7aB9FjMYqT4oNSwpAFqbfq4g8+hhrLzlw/elk/AwRyl2QDIbfK4ZM3B4lZMEglZemv5oDB2WW9oXBDq5bVYq2hiwgCvaQW95+mb6+mZLhmb4PNIy4EKiIOdIniGltI/R91oBUir9awvEchS7ZTSiASItfTRMGPHj9EPOkQ1e5s1TdsleISjU7qYbAlDJsnkBXYmBi6Utna9nEbvF6Mgy5h6fkWJvWwYjXnDmSSv3vVj7xdLKAf0SsHsAfAoQWwDJWk+G/ZkDMmU9pR6hTZpOp5cOVbXazNPGfYin3+QzMpBtXd4aoOR5V9rvodu8lVjl1sbCPoFOlFxfaj1v+VOt3tcWiOUockvF8HaiRNHSkOD/QymsdD5eRiyn/fD9GmVnp5WKmksMmsdo5By4ymVlJkRGTTG2LCbWJdN9SCsAbX1mvZdaRJ/LmHjHktd5xtokN1jIGVNeAMr/y6Avx6bs2nFqNhX1Q9oC/r/F2YNYBi+7kXrX+myXYKUV8LPKnRMU7VrQN9e0/8iIVTbYECKNCxoW7f8hpNT5lBglNpalzhGNb42RTNXRStuz9kyCNX7n6OhocxAmshdepku2x75HlxYoSDFiMYZQCxK85chh5GLpt7AbGhDv01mVpFtallQbWn0i/5a7B1er7bVuz549Cw8fPgyTySScn59v3Tva16xIDlBKgS6tnfr2STL9EuDn9QW5ddk1UPPaqJZy7YDYkydPmjjloZWhNZhoUYY+085xyDFjrRn5PqNJTts6oBPLKNcdrVarrbsGLfDtnVrp22DEjOoQ1wb11cc57yLgT6XD/SF3xMamObHPW19WLkFeia7U2ATUb629LQZIMlqS3cIARP689957m+9zGLFcfcppF0xbXrTNhw+ngrrWIutbc8OCN2D06rUGUnflh4fK49oBsfv377vnZWPSpzMPYfeof2gpjbjwMmft7KRWO3pKyqSxlZrRxXJb1xD1Xe4S0fpMOtdc0FBSR60cuQwXvpcDSBAISECK6UjmBsuLOmyxQpyP94gKq27YJrg4/+7du0XsaQyIesuTy4ghW85tjOCWn8GrrN55551ApB+Y6y2r1ItW4xHbgQMxDMi4Dqm7jFvah10wYl6mH9Po2w9LkcGxp4za57nLKa4dEKthxEqNe4l4FGzfHHONlLQtt9G9e/e2mCVOLwaI+pRY+ftmqYYQroN2wrlkfbzGNSfv3KmNnIi7hPmITR9LNnM6nYbj4+NwcnKytfCfHa/MV1trWAp+0IkgmDk4ONhijHL0sgaIlYjGKiIDNpvNVJavxc4+qRutQQCy6VwPrENqLNWWpw+GO6eMpQB5aEbMs2nKqmeKBeY8rj0jVnPFUS4lWqMknneHjgaktBg4WhredubvlsvlJWbJE7n0NfBTdfRGVX1KjW6iE9ecMAIfC7CVSk1k7gGFJY5Hi9BxKpGBFLJZXpZWO1up1PagE8G+efjwYSDyHTzsyadEcoMv2Xa8FIDXhbUEh5ZOtKi7DECRyUOg6QlQa8vDbfv48eOwXC7DfP7qSJWzs7PiOrYq474QDzW+HwOJ1KHdKCMQA8mlRPsGSkMoZiyPkmhYtomWhuXYYgbJA/Dks+iYaxyB9YxkQ/idXbJ1sowlusntZh38KdtXYyxLZQhD7o16U3nIfkYA5DXApefcIbuCu2ZlG3C57t27tzcnmsfAsNUe/DkfgtsSiLWy41q9LJYNbV6tHua8I6dG+efo6GjnAMhqi30BaCyW/vIudj7vMMfGjEBMkdXKd0p9nwoylPLFDEEJEJPl5jRw/YMWJfJ6FpxWwTLlGCwN3Hnf90ZD2nSVxU7sgtFsAWis867Q8KBh36WjzxFkBlpdLG3teCt1mKmoGlkiGQRYfeSZui2peymriLcFcB1T14Zx27Sc+q9lomRgop27iEcCYflL9aPUtjBYmM1m4ezsLMxms40e7cJOoVht0TfhkStSf7lc8r7oHNZ9BGLBnlrKYTRaA6ehlC9m2FrUSWOnrCiRHQYfbCvXJpUY/ZZ1SeVR8sxVENk/Wr9dFRAWwkW/5O5Uy+lL1G+NLU2lg/YnZoc00KLZjRqG2FvPHOG8F4vFpU0EuMEgJ90a+5D6P1VPDPys9W0t7bhk5HMEQRwD4L6PaKkVqwy1AU+pIJhFv3l+fh6m0+lmfWgO230jgFiqkzRjiSxNDgvTasDF6HvtuV0Y1JzyxAaNrKtnrU8fZRxK+s6/D9CpTbXmROZ9gWOLvUulKZna1Hs5YySm6zGghO2KgISniOVCe20HrtepWvWpDXi86axWq63pMb7e6fT0dOtMMG95cth7KxC0/s9hzOS7Hmecy8h52t3SAxlUpdps39goFOzzIcsZI2qwHDnrP681ENMiQU0sJ+GhwL2AqVRSBqaFApY4ROud2ig5Fd3sOpKvnVaoyd9bxj6mRD0AOyZanVu0A7ID2nRBqtzadJL2nLZhpES08iCjgmMAGRY2/DjFj+2X25atx6+UVDq4DpE3e0gWMKdeOUAslxHLEbkL1hNUpsrO30+n00sbYyygj+y1ZlvlnZ7ettknwXYbspwWUSP9gwbCLX2+1kDMMnCeyNxjAPpyeiipQbqrgdIiovakV/pcTGrLKJ1E7tqbmj5L6S8Ckz51IrcOrRkxdCg4HSQDopS+WIGUF6i1kFTAeH5+vlnHg8bfG7yk8m3VJzlpa2wGrnlj9s9bnhbljoEQL2sl9cVjG/gd62gR/h5/+Ew6tEHz9S5ZbkfeHWmdtagRDUMwS611rC8SJJW3bD+t7bzAdu+BGBF9GxF9gYi+RESfTT2vMWKxXSzeBtSkb6dnDRZv+fqUWicQS682r1i71chqtb2Jw3KgffSNzAvXZaH+DqUXQxjsmHinJUoBinSkQxj7FEvF0XUr3S6xezHnl3I6nB+vr+HLx3FauY9x6xXZHvi/d2YiV1/YVvFOO8lOMbiaTCZhMpmE09PTrcX10i4gUJNMcQpweexmC/vS2nb0bYs0vdaYd22Dn3eM7TUQI6KvJaJfJaJHRPRhIvqfiehjsXe0NWIpR1WKrPt2ejEF27UjHLIsuelL5qpUJOvCP7FpJAvsx/Lgdz2nMc/n842R5cW2OefVtJJdBAIao8KGr6UjtwKsIeqsBR25LF9JXiwybQtMaSyLBWS4HdGBySnIXYn3pouSmYmcYJ7PFuPzvKy24vFuHbTMU5c8NRrb8TydTsNkMtm6jSDVHy10r/U4GtoPa/bB8jmeMRbC/gOxCRH9BPz/fUT0fbF3Shbrxxpol+JliXLfLXkulUafkWxuGa3y5KYjnQ4CMMmCSdbCmw8O4NRpzFyn1OGh2rtDsTpW3i3ylAGVbC9kBfpwFEPYhxgLU9OPpfbAAmaxM8D4sNCzs7NLTA9Osx4cHITZbLYT9otFW1CtSYkee/SF08VrrVC3Hz16FIgo3L9/P0wmk017WqDQylPaJ+06Lk8dh/Qr+yLaESQa6Pb6wKvIiH0nEf0w/P+niegvx95pdaDrkO/2IV6n0cq57BuIRZH0vbeMGiNmTbtowMAjvGgWp2gsHdKcomfwx1iMvqWlXsQYixDSa21a55/7fW4eEojVtGXpuxpDl9JPdPJyQTg/0/IQ4BopPVDXIzn6gM9iO2KwxT985IcGxGJBqNzQwozYdDptXv999ge5MkRdWgKx7iK9dtJ13XcS0beFEP7s+v8/TUR/NITw58RznyGiz6z//TgR/WLTgvjkI0T0gIh+k4h+ewf5S/kQEd0lov+TiH6/wXOt8kvJHySi/6PifU24b/53Ivr/qL6MlpS0QY7elLYxv/dVInqn4H2vaH3XSi88MmRemrS2AbI+NfXzvJsae6n6oZ7dWX/2u7Stc/zM/01EHyWi3yCif5JRj5sg2FdERIdE9DYR/WO6AGNvE9HvEdE/pFd9iX1n9ZNmB+4az7aswy7GYksZoi5/KITwVouEPtQiESG/RUTfAP8/WH+2JSGEHyKiHyIi6rru8yGEpz2UZZQBZOy/qytj311tGfvv6srYd1dbuq77fKu0vqZVQiD/IxF9U9d1h13XfZiIvouI/m4P+YwyyiijjDLKKKNcaWnOiIUQfr/ruj9HRD9BFzsofySE8Eut8xlllFFGGWWUUUa56tLH1CSFEP4eEf29jFd+qI9yjDKYjP13dWXsu6stY/9dXRn77mpLs/5rvlh/lFFGGWWUUUYZZRSf9LFGbJRRRhlllFFGGWUUh+wciHVd921d132h67ovdV332V2XZ5Rt6bruG7qu++mu636567pf6rrue9ef3+m67ie7rvvi+vfB+vOu67ofWPfnz3dd98nd1mCUruu+tuu6n+267sfX/x92Xfe5dR/9F+tNNdR13T+3/v9L6++/cZflHoWo67p3uq77sa7rzruu+5Wu6ybj2Ls60nXdv7O2m7/Ydd2Pdl33+jj+9le6rvuRrut+p+u6X4TPssdb13Xfs37+i13XfU8q350Csa7rvpaIfpCI/iUi+hgRfXfXdR/bZZlGuSS/T0T/XgjhY0T0KSKarfvos0T0UyGEbyKin1r/T3TRl9+0/vkMEf2V4Ys8ipDvJaJfgf+/n4j+YgjhiIi+QkQv15+/JKKvrD//i+vnRtmt/KdE9N+EEB4T0RO66Mdx7F0B6bruPhH9W0T0NITwcbrYvPZdNI6/fZb/jC7uykbJGm9d190hojkR/VEi+iNENGfwZsmuGfB1cuUAAAPkSURBVLE/QkRfCiH8WgjhnxLRB0T0HTsu0yggIYQvhxD+p/Xf/5guHMF9uuinv7F+7G8Q0b+y/vs7iOhvrg8f/h+I6J2u6z46cLFHWUvXdQ+I6NuJ6IfX/3dE9MeJ6MfWj8i+4z79MSL6E+vnR9mBdF13m4imRPTXiIhCCP80hPBVGsfeVZIPEdEbXdd9iIhuEdGXaRx/eyshhP+OLg40Rskdb/8iEf1kCOF3QwhfIaKfpMvgbkt2DcTu08UpzSy/uf5slD2UNVX+h4noc0T0kRDCl9df/SO6OBmaaOzTfZO/RET/AV3cTkC0PqU7hMCnTWP/bPpu/f3vrZ8fZTdySEQrIvrr66nlH+667k0ax96VkBDCbxHRf0xEv04XAOz3iOhnaBx/V01yx1v2ONw1EBvlikjXdX+AiP4rIvq3Qwj/F363vndr3H67Z9J13Z8iot8JIfzMrssySpF8iIg+SUR/JYTwh4no/6FX0yJENI69fZb1dNR30AWg/noiepMSzMgo+y19jbddAzHXdUij7Fa6rnuNLkDYfx5C+Nvrj3+bpz3Wv39n/fnYp/sj/zwR/ctd1/1Dupj2/+N0sebonfVUCdF2/2z6bv39bXp1d94ow8tvEtFvhhA+t/7/x+gCmI1j72rIe0T0v4YQViGEf0ZEf5suxuQ4/q6W5I637HG4ayA2Xoe057Jeo/DXiOhXQgj/CXz1d4mId4N8DxH9Hfj831zvKPkUEf0e0LqjDCghhO8LITwIIXwjXYyt/zaE8Gki+mki+s71Y7LvuE+/c/38yLbsSEII/4iIfqPruj+0/uhPENEv0zj2ror8OhF9quu6W2s7yv03jr+rJbnj7SeI6E92XXewZkX/5PozU3Z+oGvXdc/pYh0LX4f053daoFG2pOu6byWi/56IfoFerTP6D+lindh/SUQPieh/I6J/LYTwu2uD85fpgoL/f4noz4QQml2OOkqZdF33x4jo3w8h/Kmu6x7RBUN2h4h+loj+jRDCP+m67nUi+lt0sQ7wd4nou0IIv7arMo9C1HXdJ+hio8WHiejXiOjP0EUAPY69KyBd1/1HRPSv08Xu858loj9LF+uFxvG3h9J13Y8S0R8joj9IRL9NF7sf/2vKHG9d153ShZ8kIvrzIYS/Hs1310BslFFGGWWUUUYZ5abKrqcmRxlllFFGGWWUUW6sjEBslFFGGWWUUUYZZUcyArFRRhlllFFGGWWUHckIxEYZZZRRRhlllFF2JCMQG2WUUUYZZZRRRtmRjEBslFFGGWWUUUYZZUcyArFRRhlllFFGGWWUHckIxEYZZZRRRhlllFF2JP8/jaUKIGyOlPYAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 720x360 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import sys\n", "sys.path.insert(0, '../')\n", "import numpy as np\n", "from jax.experimental import optimizers\n", "import matplotlib.pyplot as plt\n", "import time\n", "from sde_gp import SDEGP\n", "import approximate_inference as approx_inf\n", "import priors\n", "import likelihoods\n", "from utils import softplus_list, discretegrid\n", "\n", "plot_intermediate = False\n", "\n", "data = np.loadtxt('../../data/TRI2TU-data.csv', delimiter=',')\n", "\n", "nr = 100 # spatial grid point (y-aixs)\n", "nt = 200 # temporal grid points (x-axis)\n", "scale = 1000 / nt\n", "\n", "t, r, Y = discretegrid(data, [0, 1000, 0, 500], [nt, nr])\n", "\n", "np.random.seed(99)\n", "N = nr * nt # number of data points\n", "print('rainforest data loaded')\n", "\n", "plt.figure(1, figsize=(10, 5))\n", "plt.plot(data[:, 0], data[:, 1], 'k.', markersize=2)\n", "plt.title('Tree locations')\n", "plt.xlim(0, 1000)\n", "plt.ylim(0, 500);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Build the GP model" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/wilkinw1/Library/Python/3.7/lib/python/site-packages/jax/lib/xla_bridge.py:116: UserWarning: No GPU/TPU found, falling back to CPU.\n", " warnings.warn('No GPU/TPU found, falling back to CPU.')\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "building SDE-GP with Spatial Matern-3/2 prior and Poisson likelihood ...\n", "inference method is Extended Kalman Smoother (EKS)\n" ] } ], "source": [ "var_f = 1 # GP variance\n", "len_f = 10 # lengthscale\n", "\n", "prior = priors.SpatialMatern32(variance=var_f, lengthscale=len_f, z=r[0, ...], fixed_grid=True)\n", "lik = likelihoods.Poisson()\n", "inf_method = approx_inf.ExtendedKalmanSmoother(damping=0.5)\n", "# inf_method = approx_inf.ExtendedEP()\n", "\n", "model = SDEGP(prior=prior, likelihood=lik, t=t, y=Y, r=r, approx_inf=inf_method)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Set up the optimiser" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "opt_init, opt_update, get_params = optimizers.adam(step_size=2e-1)\n", "# parameters should be a 2-element list [param_prior, param_likelihood]\n", "opt_state = opt_init([model.prior.hyp, model.likelihood.hyp])\n", "\n", "\n", "def gradient_step(i, state, mod):\n", " params = get_params(state)\n", " mod.prior.hyp = params[0]\n", " mod.likelihood.hyp = params[1]\n", "\n", " # grad(Filter) + Smoother:\n", " neg_log_marg_lik, gradients = mod.run()\n", " # neg_log_marg_lik, gradients = mod.run_two_stage() # <-- less elegant but reduces compile time\n", "\n", " prior_params = softplus_list(params[0])\n", " if (i % 5) == 0:\n", " print('iter %2d: var=%1.2f len=%1.2f, nlml=%2.2f' %\n", " (i, prior_params[0], prior_params[1], neg_log_marg_lik))\n", "\n", " return opt_update(i, gradients, state)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Optimise the hyperparameters and site parameters" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "optimising the hyperparameters ...\n", "iter 0: var=1.00 len=10.00, nlml=25473.41\n", "iter 5: var=0.98 len=10.99, nlml=24866.37\n", "iter 10: var=1.42 len=11.95, nlml=24804.02\n", "iter 15: var=1.58 len=12.86, nlml=24779.10\n", "iter 20: var=1.42 len=13.67, nlml=24692.80\n", "iter 25: var=1.23 len=14.40, nlml=24617.45\n", "iter 30: var=1.21 len=15.02, nlml=24576.84\n", "iter 35: var=1.31 len=15.56, nlml=24566.41\n", "iter 40: var=1.36 len=16.01, nlml=24567.53\n", "iter 45: var=1.32 len=16.39, nlml=24558.20\n", "optimisation time: 261.67 secs\n" ] } ], "source": [ "print('optimising the hyperparameters ...')\n", "t0 = time.time()\n", "for j in range(50):\n", " opt_state = gradient_step(j, opt_state, model)\n", "t1 = time.time()\n", "print('optimisation time: %2.2f secs' % (t1-t0))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Make predictions" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "calculating the posterior predictive distribution ...\n", "prediction time: 5.02 secs\n" ] } ], "source": [ "print('calculating the posterior predictive distribution ...')\n", "t0 = time.time()\n", "# nlpd = model.negative_log_predictive_density(t=t, r=r, y=Y)\n", "mu, var = model.predict(t=t, r=r)\n", "t1 = time.time()\n", "print('prediction time: %2.2f secs' % (t1-t0))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plot the posterior mean" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAFKCAYAAABrfyUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9ebxtWVUe+o3dnP7ce6vvAROwCyIigj4rgoIIBgMxqCgxaFCfJv5injG2JCZoTIzGqFGEihCVINggShRpkkh4BATpgh0v0lRRdauKqlu3OX2z9x7vjznnmt88a6y99j73NLcZ3+93f3ed1cw515xzzb3W+MY3hqgqHA6Hw+FwOBxXNzrH3QCHw+FwOBwOx/HDXwodDofD4XA4HP5S6HA4HA6Hw+Hwl0KHw+FwOBwOB/yl0OFwOBwOh8MBfyl0OBwOh8PhcMBfCh0Oh8PhcDgc8JdCh8PhcDgcE0JEniIi7xGRd4rI60Skf9xtchwc/KXQ4XA4HA7HpLgXwFeo6pcBuBvA8463OY6DhL8UXsYQkbtF5JnH3Y6jgoj8uYg8/bjb4QgQkX8jIv9kn9dOPJYi8lki8mERWRWRf7yf+q5UiMiviMiPH1LZ7xORv3EYZR80LsW14VJs00FAVR9Q1c345w6A0XG2x3Gw8JfCI4KIzIrIq0Tknvjj9mEReQ4dv1tENuOx8yLybhH5ThE5tjESkReKyHtFZF1EHorb/1BE5Djao6p/Q1XfcRhli8g3icj7RWRNRB4QkT8UkTsPo64rASJyA4C/D+CV+7l+yrH8fgB/pKrLqvrz+6lvv2j78LqcPsz20dafBvCyKcpfo3+juJ6lv180fYsnxzTz6ajGbG+bLqe5MglE5NEAngXgvx53WxwHB38pPDr0EMzuTwNwEsBLAfymiDyGzvkaVV0G8GgA/xbADwB41dE2M0BE/imAnwPwUwBuBnATgO8E8KUAZo6jTYcFEfleAD8L4CcQ7vNRAF6OY6RFRKR3XHVPiG8B8GayGFQ4hLY/GsCf7+fC4+7H467/IvEmAF8uIjdPcrKqLqV/AD6FsJ6lfa/lcy/zfrlscVD9LiInALwGwLeo6u5BlOm4RKCq/u+Y/gH4CIC/G7fvBvDMPcefgmCaf3zD9cU1AD4HwDsAnEf4Ef3bdOxJAD4EYBXAbwH4DQA/3lDuSQDrqW1j2v+DAD4ey/wLAH+HjimAx9Lfv8L1Ibzwno7X/n8AnjFu/977ban7bgDfF/v3QrzXuTH3ugbg68bcp9mvAP46gLMAnhT/vhXAwwCePma8fii29xyA/8ztisd/ILZ7G+FDYtyY3gHgd2KdjwD4BTp2K4A3xGOfBPCPL6bvjXv5HwD+Xkvb28bomXv+ro1ZrGcIYCuO02dOMNettuynP16D8Pxtxrq/f08fmMf3UX/jMaPfvwDAB2NbfwPA61E+V2afj2lr4xjF428H8OJ9rG3F+B5Bv0w6n5r6YWxdTeW1zJ+qTUa9PwDgDXvq+HkAP7fPtWNcP9b63Sj/JQDeCuCXYvn/B8DnAvgehBf8MwC+Np7bA/BmjFkf/N/l++/YG3C1/kOwSG0B+Oz4d20Rjfs/BeC7GsrgRacP4GMAfhjBkvcVcZH6rPj3PfEB7wP4WgRfkKaXwmcDGFiLx57zvi4uRh0A34DwInlLPNb4UhjbdC+AW+Pfj0F4wTL3N9zvuLrvBvC+ePxaAH8J4Dv3c6/j+jUe//a4UC/ERfWnx/TX3QD+DOFl7loA/wvlD/rdAD4cj8+3jGkXwP8G8B8ALCL84N0Zy+kA+ACAfxGv+2sAPgHgq/bb98a9PAzgi5raPuEY7f0RN8cM4eXv26YYk739OHV/WHOu7RkcM47j6m88ZtSVnuP/J/bBCwDsopxDE/d52/nx+M8D+Jl9rG9H1i/7mE97z22tq6m8cfOnoU1p/bol9vWp+HcPwEMAvnDataOt/Xv7vaH8n0f4sHwGwtryBpS/Gd8D4IPx3G+O574j/vuGaeeH/7t0/x17A67Gf/Eh+28AXkn7aoto3P/HAH6koRxeZP4mgAcBdOj46wD8SwBfhvAlK3TsXWh+Kfx7AB7cs+/dCFaZTQBf1nDdhwE8L26Peyl8bFwAnwmgT+eY+9v6yKj7bpRWrH8H4BUN171o773uOd7Yr/T3mwD8KcKX+OyYsu4GvZwC+GoAH99z/B9MUjeAL0F4MbO++p8K4FN79v0QgnVhX31v1LGL+EFjtX3CMdr7g2mOGeovhWPHxOjHqftjkjnXdHzK+huPGXV9GYD7UT7H70bDc9zW523nx7//NYBXt82H4+yXfcynvee21tVU3rj509Am/vsPAXx73H4ugL9o6U9z7Whr/95+byj/fwL4Pvr7xwD8Pv39DAAfmXYe+L/L75/7FB4xonDkNQiWuu+e4JLbECjKNtwK4F5VZSXYPfH6WwGc1vh0R9wb2/Micgb/w3jsEQDXs/+Jqv5fqnoqHuvEa/9+FMycF5HzAB4P4Pq2hqrqxwD8E4SXm4dE5PUicmvTfquMCep+kLY3ACw1NKd2r3swrl8T/lOs/z+q6nZDOQn37iln7/3x8XF13wHgHlUdGHU8GsCtqW9i//wwgJsOou8jzgFYHtP2/cyPScdskjHhtkzdH2PaOCkmqr/l2F5Yz/E9fMK0fT7B+csIH4MHhcPolyZMOp8mratW3kXOn19F+ABH/P81Lec3rR2TtL94Ng08AcDv09+fa/z90ZYyHFcA/KXwCBFVu69CeFj/rrY46IrIFyH80L1rguLvB3DHHrXyoxAshA8AuG2PavgOAFDV12p2Bk9q6Pcg+J40Ci2i8uw/IbzYXhdfGP8MQKpjA4FSTSic1VX111X1ToQFTQH85Lj9U9Y9DdK9Pr/h+Lh+hYgsIYhUXgXgX4rItS313bGnnPv3HOcf/HF13wvgUQ0vs/cC+KSqnqJ/y6r61cDF9T3hIwA+s6ntBzxGezF2TPa2BfvsD6McC03HJ61/bNv2wHqOH5U2Jujzoq0TjtHnILgpHBQOo18upg1t7WgvbPLnZm+9vwvgCSLyeARL4WvrlxRoWjsmaX/jPI7zYAbBjzDhiQhW44Qn7PnbcYXCXwqPFr+EsMh+jRqqzQQROSEiz0VwIv8vqvqnE5T9XoQXse8Xkb6E+FhfE8t4D4Kz/neLSE9EnocgYjGhqucB/CsALxeRF4jIsoh0ROSJCP5riP8rAoUJEflWBCtDwocBfJOIdEXk2Qiq63R/nyUiXyEiswh+lZsARk37jSa21T0xVPUCgi/OL4rI80VkIfbfc0Tk32F8vwJBof1+Vf02AH+AQCmNwz8Skdvjy+OPIDisN2Fc3e9DeEn4tyKyKCJzIvKl8br3AVgVkR8Qkfk4Bo8XkS86gL5PeDNoTA0c2BgZaBuTvZi6P+jaTyP4aDWh7fjY+luO7cV7EPxf/3G8769F+Ry39fneto49X0TmAHwhgtjkMHBQ/TIt9vbDvuua8rkp6lXVLQC/DeDXAbxPVT/VUl3T2nGxffX5AP40Wd4lKIsfjfDhx+cc5MeB4xKFvxQeEeLX2P+N8AX2oNjxu/6riKwifPn9CICfAfCtk5SvqjsIP4zPQVCKvRzA31fVj8ZjX4ugMDuPQFX8PoKFrKm8fwfgexFixH06/nslgort3ar6FwD+PcIP1acBfB6C83PC98T2nEfw2/tdOjaLEHLnDAIlcyOCD0zT/r1ta6t7Kqjqv4/3+lKEH8h7EawnvzuuX+PL9bMBfFcs6nsBPEnGx2T7dQBvQ3AE/ziAxsDDLWM6jMceiyBGug9BKIB47LkIc+2T8dpfRlBaX1TfE34NwFeLyHxD2w90jPaU3dgvDefvpz8S/g2Al0Za7vuM4tuOj62/pW3WfX8tQjigswjj/Tt0vK3Pi7ZOcP7XAHiHqlbWbAnxO3/Yus9pcVD9sg/s7YeLqWua58aaK7+K0O9t1DHQsHYcQF99PupWwY+p6gZQuTw9HhNYCg9yfjiOB1K6pziuFojIexEcr//zcbflaoGI3I0gmPhvx92Wg4CI/ASAh1T1Z4+7LY6DR1wjXqKqf3bcbblSISKPQvDVu1lVV8acdzeuoLXDcenCA4heJRCRpyHE0DqDYLl7AoC3HGujHJc1VNUtAlcwVPWpx92GKxnRAve9AF4/7oXQ4ThK+Evh1YPPAvCbCH5EnwDwAlV94Hib5HA4HFcfRGQRgbK/B8EFxeG4JHCk9HE0ga8iiB4Gqvrk6DT7GwhBP+8G8PWqek5EBMGJ/6sRnMq/RVU/eGSNdTgcDofD4biKcBxCky9X1Seq6pPj3z8I4L+r6uMA/Pf4NxCcyB8X/30HgnLX4XA4HA6Hw3EIuBTUx89DUGAh/v982v9rGvDHAE6JyC3H0UCHw+FwOByOKx1H7VOoAN4mIoqQ4u0uhKwCybftQeQo7LehjMJ+X9znfnAOh8PhcDguKXzVly/qI2eHU13zgY9sv1VVLxm/0qN+KbxTVU+LyI0A3i4iRVwxVdX4wjgxROQ7EOhldNH7wgU5seeMKYrbj3ulpP8oCUDHSNpAZWc/zrYKm5I/6GSXXywmzT1htUPsP6otsfqLL1Jzc2wD+DzLV5bHJSXD4PNGo7HViVSDXS+HMcqxayf12TW7WvaZ/ENqG3mTyxSjP0a0oA1jf9A9SDFu8Zpet17miPuVykx9w93CZXY7ZdloOI+g3bB/NJOvGfbSMWouNUMGaV9uSCoHAHZj9MVTJ9arfStnQ9z2mRXjfqh9SvNMUj/wedY8H2l9XxOq5aPhvNR3XerDau5S3cbcL9ppjZE1BE1tT5vW88LjW3SHlv/X2oHa9ToTBnvUM/qdrpch7zMaR00a9cMfxfzZztd3doe1dmrsb+1T22gudHZGtWvSmlTMmQE9b4NYz5DmnDXuDeutCfN6Y34Yz6U5t7l9VtnW+BV/8DxsmfvW2mbCmD/UthU9e0ZVb2gpZGo8cnaI9731Ue0nErq3/FVratijxJG+FKrq6fj/QyLyRoRo/J8WkVtU9YFIDz8UTz+NMq3P7SjTWKUy7wJwFwCc6FynX9zf88Kt45Iy7D01LUiTXyPdsGpIL3elzMzUy+bFY2cnbAxbviisFw5qn7Y9QBcJsV5uDVjtEOsFDICkH6p+P++bidsdWoF5DIbGePDxWL9yfxp9W4zL7Gz4f3cnF7m1HcuhsnkRNMa6KoebtrWVt9NYj+o/BEXbrBce68UonDz2eFUW1xPbLNTvmMnbOhv6RlbWqn2jldVwjPoy9QEAyGJMbnP9KSonlCkbOS46l6kbm/Uy+/TsLId0yrpMGRLTy5bYP+CDE3MAgPXb56p96zeFE3bpG3GGMvjOPxLGePZ8bsfOiXxvDz8x1PW3v/K91b63v/aLAQC3/beciryzRmM9F/pwtJDnWWcjjL+sUwIjHrf0IbJFceQHlM463bPWf4DVei4AyFzoB1lerPalcUkvUAAgW7u0Hef++gbVQ+Wn+cMfALFNur1D1wzpsMZboHGbj21boJjnfHw33jv1gdKLaipL6d52bg/zb+vaPJ97m3RN3OxfyO2sXuqo7uFC7pvNG8IYbp/IY7X8qXz93P2rsfLch6OTYc5u3pLbNpjP5S+eDnOls5nvbbgU6hnO536dOZfnQvfhC+F+L6xW+3RQT3cu1kd2w++HeX1a0/h3bDbPYz0R7qmY2+v0jJ+Pa8UOzYUEXou7/JYdt+mjUVN/jhrmdrq+4ffFqrO6XyrzbZv/5Z69lxwEFMBobCKoSx9H9lIYJfgdVV2N288C8DIAbwLwYoSo8C8G8HvxkjchpGV7PYCnArgwUQiVNFnSj3DTi1XCFC+A4+uleujHNi2csltf6Ivva3ppqF6ouG10H2NfXtvu94hQ3g9ZztJazGab3Xi/XePLE3te9szKLGtMRMO4yFJYwHWDFpe0IDX82OYy6UWRfyQTDAuNtk1D6wu74b6tF0h+WUN6yaKXbJkLL6+6kF+cRgv5hXa4GPpmZkAva/EFruhXfimM/Tnq1l8UZMDjZ1hOtcE6kOri5yWe27EsEwBm4otZ/2z+wToRX4JG8/QjR9d3tkL5skvlnMx9sx1/4N9y9+dU++bW4vU0p0ZL+Zrda8M1W9fneTZ3JrRp5tP2/aZ1QdjyxeOW5hKNeXpJkk16IeW5Ej90dJ3m6XZ8qeMfepqn2q9/NGiXXqziy5zyC3wc18LQt0svmqlNPG7pB5razqjmSmFdpg/q+OzxetpbC3XOUh91dnPbh7PhPjsDup847kr9LnRNb2NU1Beu53bE6+gZ2ropjP/DT8x9tHsiX3PdbHgRnr2Q61m/MYy10i/xKbJods/UP/DMF8CRMb869Q9nAOa6UtlN6TelsApuhhdAXsbSPoDG3fr4ZaMAf5jPpQ9z4yOo+DCiWqsyGwwW1frSYPE8dCiGB/VOcUw4SkvhTQDeGCd0D8Cvq+pbRORPAPymiLwEIWbT18fz34wQjuZjCCFpJkr35nA4HA6Hw3HUCJbCyztL3JG9FKrqJxByLO7d/wiAZxj7FcA/mqYOAX1FRf+gVp+uEX/7TOcgOlmjDCpv4muNLyQAEr+C9DCa29ZOwxIpbCwzqG3Laqj8dZisQwatBtAYTkOXJ4sCW7bmM2U1vHYJANBlWn9tvbi2hsrviq4ZGF/dlmWsre3TuDnEMZAmermi+ujxThYetmwal7N1oOoHpvrZ0hStjjpLfbwd+6Ow9I2/t+IZjRYCtkJYlmA1rMKVZRNAalGX+4AtBoYPXY9o0Gs/Gjrnwnbmn6/5aJgfnTMXcjlkbevHokTzPOtdCPcha0Qfc9sTfUwWtsKKmsZrLlukJNG2bE1hy3rqe7Z4VxaYbNlkCreyIPOzSu0YnYz04RxZCuNYdwv/P4Pm1rplVFvcKUp/NrbM98r2Ahgshfk5WMzzUOm537w2bC88nPf110I7RuT/lyyKADCYq1v42WcxzXm2NCefwX5meiHDfE0/Wh/ZZzD5LI7oHtmiabMfFnXa8mPQMSxnlq8wW/UsCxuvd9ZvK7MkXYNFmSemIlrZCzeGNLcbGC/Lcl74dRptSgzBUcVkdvrY4XA4HA6H4yqHQjE8woQghwF/KXQ4HA6Hw+E4ADh9fClBpKbIlDYaso22a3nrrxy8mS5jJ+rUHosGYFM9OwUnerDBFG9FepgUrUrhhvZVMNS4Ba1XCUmY6qtTyVJoE+Lxoe1cvh8xkEikUNmZfi5Tn8OoouusEB0W78dS5xXtHNRFEKHNo/r1bSKZgwLT5InuZYoltYMo0g6LSiIVWAhEKsUyzVNSfQ5PkIK0KieWz3QoH0+hLYx9ocljHMlZGWnRlExtJaECUajFXDDWAtnKfdN/OFDFp3aIXv50VIJuEhXM4oZYV5/6WKJ4STdI1Wu5EjTN8dROK1RIm7M9jUG1ZvCzTpR0ooU7RogdABhElSyHW+nE4x0Wn7Bgpip8VNtXtpwWgzhGpesDiV/mQ5u3bl2u9m3cFBXvvGRQBRs3pT9I4Rvp4d0FFvhQM3Yi5Ui07uYNuR3DuVDWzAVSH8eQSN3tYnbnMrdDP/S28jxdOBOu6a3nff37s3tCpQbftdekJCYxw0ZxH/L6YJWT1voisgK5iiQ3BivMEWi8Cto/XmOE7eFzizWnUgo3CI1SNzT9ZnXqlLUa7ieHBQUw9JdCh8PhcDgcDodbCi8hqGo9fEmLxUmt49P4BFRO3+woboeSMSq3z0siCZbv09c4oiFyqqlnxe1riWfVGk+vEvXUv0JZBFNYQQ8IbRbPSuxBlqLOWrbW9B+KFgnaN6q+Ulusw6MGS6AVL3EfaBX7WGEZZurWFKEYaincTrGPw3Gk69niEGMwpvIAYPeGLLwYLIY5OXOe4pUZAa8LpFiPvM+yaBSCl2jBneNwKjTn0r1tUIiWZK3rGJYLrr9prGKZ3XV6NtI9sTXCekZY4DGqWyStWH7F9VKfx1IElU6W9SmeqzTWHNqKLEGD5TDGfQ7wXIQiqseK1GgZUw71ZI0lW2uNNQPG9SwkUQr7kmJSnn9cbvvuUihz8YFcz8xa3p49F473tmhuJ50RRQ/rUoi9mfVwwu587q+Nm/L26qPD9uL9NKdi33XoEZtZze3oR6tiby1X1FsN253zOUg6HskBNau4fzxPCpGFwURZ8VTZ2opmFHOvXxeqcQgfGOGJCktiajOtOUVotq14Lse5TGtwEZLMEN7w2sV1GpbCo4QCB+5TKCJ3APg1hAguCuAuVf25PecIgJ9DiNiyAeBbVPWD8diLAbw0nvrjqvqr4+q7ol4KHQ6Hw+FwOI4Lh0BSDwD8U1X9oIgsA/iAiLxdVf+CznkOgMfFf08F8EsAnioi1wL4UQBPRnih/ICIvElVzzVVdmlEOnY4HA6Hw+G4jKFQDKf811qm6gPJ6qeqqwD+EsBte057HoBf04A/BnAqZoj7KgBvV9Wz8UXw7QDG5lm+wiyFWqODTHq48fKLMPuyM23Rhkp5UbukiSY005QVWQ7qDrx0sd2mJPCwqFxLPMJgaqIw29epvqrGQoDBlIJRf4vjfWs6vyo2Yl24w+nDRpwuKzpwjzidVqRq2uoraOrdKUQDuYCxZY47D+D5YccUqyjJbU7hF6nVpnuzsqAkWo9pxsW8ZKTUXKONfE0SHRTt4XpMOtWKy0bCqtiO3euyyGV3mVOahWds5iFq+0o6SOUwJRn7Tmh+iOWSwDHjkmM8ZyziuI/dOs1d0Wmcxq5I4RifS8tBn+oqKNpEwbHwhhud6jSyQnBswuHJnEpwdymU1bvAWUHyOtZd2YlNq7uPFC4JFyuyqnJjc2xDakdMG7j4ILkSxNudP0Miqu18zagb7pnjDO4uxjSIy3nfDNHPs49EqpdiF26fynVu3hTr2aE4hOvp/9z2REMDKHMvp307MS4npUEc7dhpAytYazSjY1D0LOayRCGGGEOMeKxC8RDFyDpkPctFlhse11imblNmFCvNnZU6seHeqntX+7f10KHVI30oEJHHAPgCAO/dc+g2APfS3/fFfU37G3GFvRQ6HA6Hw+FwHD1CRpOpcb2IvJ/+vktV79p7kogsAXgDgH+iqit7jx8U/KXQ4XA4HA6H46IhGE4fLO6Mqj55bKkifYQXwteq6u8Yp5wGcAf9fXvcdxrA0/fsf8e4uq6sl0I1qD+LyjvsiONm+Zby2Y5TqMn0Xaj2iOa0Ypel8zieIVMPyazObEQVD5Hoql59SpgxsICsGuR4i/mifD1XOjIo0TZV+KQoKGcj/dM2HY9tLvrImisGhdvatnGKc0xHFVuoKBSOQ7dFsTHjvBnRvkrF2NB22Yn1k0qxAlE5HU7RFWP4cWo8nY30MV/Paf8MdSGfm9LXcby70XKgfTduzfTvxvWUXm491HmSeJt+UkHP5fvZuT7TpcOonJ07k4931nJ/yXaML8htj1RxQY2TMns0E9rBqeA6W+F+u6tZXaocxy5RbOwKwPMj0dOk9Kxi/fVsBW+iyaWI25j6I7d3uFB/1pmqTX0AUExLa80h6pNjOFbp9ngtSJQzFzCidliPAV3f2Qxtmv90HqvObri3zsqmec3sQuib9VtzH23eEFqwdV0+b+FBasb2IP6f9y08lNs56oe+76/m61Nsw9kL9Lzs0vyJ1Ptwgebcdkr710CXpvlXpDltWX9GdSq4+E1Kc43nj0H/Fikv03PJ9PCwofzq+LB2TK0Yrw1xYU2kexPbHpeeTStN3lGkuVNMl411EkRl8asA/KWq/kzDaW8C8N0i8noEockFVX1ARN4K4CdE5Jp43rMA/NC4+q6sl0KHw+FwOByOY8I+LIVt+FIA3wzgT0Xkw3HfDwN4FACo6isAvBkhHM3HEELSfGs8dlZEfgzAn8TrXqaqZ8dVduW+FB6HhXBKiJnYnMBfjNZXnyEAKSxfTRlCxsFokzTFU+walpPBMQjaJ7SylRa+9BXbJj4yMs20jZsF/tJvykSxt+pCrFPf5gwMHAssfcGr4bDeaOUcE6Ozs5YtML2F7Gwvw7hN4gOdMZYUnofRulncG2dGSOWQWGP7+iAUWL093/DuUr58NBMtMPPZ8tGvHM7ZSpWvSVabUY8ydHCbq5iE+aLRcrA0DpZz29Zuy9tb14YSBtkgifmHQjk3bBmx2ABI2s3zg2PKRQvgaJ6EJqm/R5RRhiyF2zeHbB/drVxPdyP2e8Pc621EIQGJBwpLUVpfODZd23pqZXNK+4qyDZENx8PjNkeLZXeFBEJRxCObZNYjzDwU+mawmGNsbp+K2UdIKNKxhCBkDZtZzfN4+b7wf3+F+jhaBbsUh7AgiNIt0b0lSzI/v0VcvvRcMqHBDbSEKGkf96uRYUjm5uiPNKeInWIhSWozj3mRcatTnsf72uZJsYbW4xDCYrz4uBGPkZm11gxAB4iQ0eRg61HVdwHjC9WwoP6jhmOvBvDqSeu7cl8KHQ6Hw+FwOI4Qo+NSPh8Q/KXQ4XA4HA6H4yJxGJbCo8aV/1K4H8p4GjPzYVLSDQm8zdRYRvof81qiD1vTz1X0w/GmDkpopG3bKGADEwtZWERjxP8qqGCr742YguXhekzK5KAv7D5gBTnle2DH6zQXCvcDTRtmO6q0hBZNvbpa7eqSc7oMQ9zA4SLF5TOeHZ6vOTm9nfatqpP6eOOGsEytPZppyHz9KMaS2zmRr5nt1+dsimcIZKqwQxQrCyuwGYQMnF5OZgM1lUQqALB5HW3fFMocznNs1ES7Ur8Z/cHDx/RhigHYWSUhUbqGhCRM63bi9SxyQIy32OH7uUDt6NbpQ6akh0tBoFKIJHZC/X1KL4gtus/KzWEfLiVNad0sWMIJXufi89RfzWO9dH8oc/7hXPbi6Xwf3fUkzCL6mLqmtxr6O8VNBJBjTrIrh5k2jsQ8UaQz2rbjWJrpPGFQxoRKZEH0bxGDsxIdMi0b56mRGrO4hvu1oI9j3/fqz52VtjGUFV1aWGhi/eaxCCsdZ5eTfl1kVZSTnpOLTD86CRSC4WWeE+TKfyl0OBwOh8PhOAI4fexwOBwOh8NxlcPp4ysNbTRFMssXilTjmiNSORfUZaW6YlM9S9YitcFfMcnkzymDxFD9Nd1PUrQa+wrz/UiM4pYAACAASURBVKRx/QqFrpGekKlcosuqGGxN8RRTMUzLpTR4bSn4rHY2waLwrfRR3XpqtOLeE+3G/d6kRK4OG/umSfFoIaUP5H5jyjLFBKP0Ydgx2mPNBabIlO89lk+q4LU7wvFvetq7qn1PWfx4tX1jN9Db33THt1f7bn7zKQDA7Dmi0LiLUh/3cz2F2tagaBMFy8/8iJjz0Uy4ZjSf720416ldU8CKUziiPk7KWr7GUoLSGFUp3jhFX7qE45gSpZ1U2LJAcRdJ8bx9Tdg/WMjtnFkN270i7R89lykmobV+cDpFSr2XKFadpzR2pGiX3XAd09gyCNudndx26945ZeHMhRiHcCfv6z2Uk0TIWkiDqTT+HZof3US38nNtjTHd22hptn58rb5rPyjcglLXWm4bACTNpmLdT2s9066kRE/zi+63mLOJSubxT+UXETGMeIwNblLjUKyh7OZwMvS3ErWdYpZOFQ9x3xAM1eljh8PhcDgcjqsaIc2dvxRe3phKVDLhF81hxEPir7K0wYKH9LVEX2rCX0bJh9oQRgh/6XcMUYnWhQDxQLxmH/fbErev+NgapcwrRlL34qLxlsLyy7ee4F2tbCtcfLqGLFumDZQtivE+Cwsuj2U1p8aLeYr7iaKANstoIV5pubdxWVa43zl+4Chaa9jCJjuxj3nuGVljCssGj0ESVqxsVPsWT58EAPzeJz+v2tf9a/lZ/Fc3/DkA4Luf9I5q38sffhYAYOF0bu/cI7nOmbUovKDYdN01sj4Z4ojk5N7dyu2dpywXnZgVZncpXzt3NlocN0mQsGv0TSEqojrTfh7fOcPixNfErCQskknXW9ZBIFvzqvED0KXsJrNxvPqr+frearRickYTyxrDVsEkRJjN4zK8bjlf36v3O8dW7Gjdwps6TEmtw7NZtsKc6tGYDjXUX2Rw4ViBKZ7mNsccNKxkxr5inaL7TBlv+B47K3H+8PgW4rbJfnPs55eeSxaFxLWzEmXQuUWWJEsA0hAHV4d1cYspritEZWPuja/lPrayoJDQqXs+Wnjn2YSfYrDugy3ZB5w+djgcDofD4bjKoer0scPhcDgcDocDwMgthZcYxpmIJ6V1p4mRdRgw0piJkSqqjJEXU84RrVrQUN2BsS/FliLKmWnOSiRBF1kp7wpqsy5eMXuwSIdkxLZiGqNjnNc3HNq5ACMFH6d6SrHLylRwSVjREgesRThTUD4pmx73B49l1/iqNOIhllRQ3M/0sVXOrhEbr4myMcagupbSYQ1P5hxuOyejuIko2H7a3m9W+NT3G5mSPPWxsD1428lq329d97Rq+7XX/M3Qjt3cR3Pn45ygoextE30cU5Z112lOUCq6SmBAY5nSqPXP5L4+Sfee+mPz+tyXiaYWoiFHBe1mpeOkOWmNi3ENC2JS65TcQhLVzwINRkqDV8RqJCqwG6nVLtGhqT8KipWfnbiusHuKzgfqe3Rqsdq3cXueUyk7WX8t153iIQLAKNLf7LLQTTEYifouYvTFvhnRM7R9bbiP4Wzet0RxHbtp/lrCCCA/o9bvA4t56N53TsW+o0e1fzY+Q3xNh2nbFquTFT8wro2FGK9P4xbHkJ/lFKeyx7EJCxcQgz5mWCK7ira1RWdmvN3UD03xX9O6PaK2ra/n6+PvU4dT+KX72O+aNAWC+tgthQ6Hw+FwOBxXOZw+vvRxsdlJJg0vM009baFN2jCqW7SqMBZDKpuFFek+rGwKDU7uleWsSTSQLHSF1c5IjG5Amqx+qR0c6iG1mcu0rJNcft+wiFhhXfi8aKEphCT7+Loss8bUv+TNdvAtVAIP2seWwPjV3+HsAfP5yziF9eiw07cx/kWbY1mFtSxZgEjYMJphi0Ycf8v42Gn40k/31uBAn+a0kqWwf98jAIAbt7OlcDjHoS+kaA8A7C6G4yz66G3SnIoWviJDBzned5LFxLBydNayCKZPVrLeari+u5XDkFSiFLbAtK0pNFc0mZrJCmqGLNrdoePxPpeyJQhLYc6MKBsLZzyprHEstqB7q0RrHKInza9Rg/UorQU0T3Ux9NFgiQQY3Xxv/a0k5iFLH1lj0/wbsdAkhZqhthehhFI/kcBj+2TY3rwh7+tuZevlQpyHHV5DeU1K64ZlBaP1aLSY59RgMc59blq0fPIaKm2ZN1iollgeZnCShXauLiQJ19ez13R2DSbBuDfLuheKt4RuLb8BRn/JTLKm0hrMz44lzOL+SnPWyjq1H0HklHD1scPhcDgcDocDADD0jCYOh8PhcDgcVzc89/GlCCvryHG1YZrzrLh9TeZ3SyywWxeSmPHQrHKYHuY2tZnqDYjlGN8m3GnLnGJhaNAcLJKxrrFoCCMjwb7dkY05V4V4lJZSW+5dLPqnIdbb5k2BvmQn+rTNVO/MCrsfhP/nHsxO250zF2pt665sV9tzkbbjW+vEmGG6a8Q4mwSJGmUB0IWQaaJLY95l8ULqD6bgrgtUoPYoXhl14fY14dzNaymm4A25zMXTgTLvbBONGWPaddZyXDSObZfQJ2q7ioPHlB/HBU3jWogY6m4SxXOV7pdi7GkRkzDGD6RyuilTSBOFlq7fj7CuIcaeSdfFuZSELQCwQEKSSvDCcR2Zfu7GcaFMJJ3o8lCMBbtrJNcLnscp8w41d2eZ5sJCdNGgsRKm9ZeiiwDfe5yf0uAq0I/iJh6DFLOwM0PzlIV/yXWDhSgUK3R4IlDEnTXqr3QbRLtzLMlEsXbP5We9amcRl9FweeF9bbERjViyapwrdO9ixeBscm+y2mmtNakdVmzbQ8DIfQodDofD4XA4rm64+tjhcDgcDofDEehj9ym8RDGOwj1OapnRaTC1G3EITdWXpSQm2s6keq14d0xNtaltreNW4vWWdEZlgnYDlqqP+4Mob1NdlqhGGusiJtw4SnOKNFMTq5OLdhjH2xSHPG6pHDrcWckUTPdk2N5ZphhpS/W4fbPn8/bM+e1YTlbW6lamSat6qA8760n5SOMfaSq1lO/F/TQ8nxMqBJWoYp2LMfgWcx9s3Bpota1TpGxdp3ZGxevmjUyx5+egM4xKYlIs91cDLdgvKGVWycZzmWaM1KUuZkWyEB2a4hcWCn/L3YKf0XSupS7HHuq9KiaU0+VUb8ukKl9Iad+onVxAbDP3e5Uab8ixUdltoB7rT2LfcQo9GM+l0L4ijWKkRGXA1xjuI7O0nkYKeDhfp4LZnWJ3kebCfLie3RQYw5Ohn0aUNjAppjsXaG2j++yv7BZlA5k+VlKKK7mFbNwR3EJ2l3M9G9fnMVx5XLiBpXuWqn0pnePiA3kezJ2mMahU4/U0iEU0hsKtqEXBW6X4o3lq0PYFqogIdVcgXqvLddv6/alfX6YFje0YE4v1IOHqY4fD4XA4HI6rHKrwOIWXFCTHhRtrwWErhRpfS9MIHiy0WSINK4kZt4+tQ/zlNKnjvhFdnp160xd0o0VyYDnBt1hyUttGDV96uaKxxRRWzjSWbF3kNnfqX4LSJuwYE0OL71BbqACup7IATmOJTue2ZC4o1pnYN+zQzo7ks2fCGCvFf+um7CbULck6CADdM6vh8MpqrnOzbiksxDpWfMl4vBCaWFlwLGFVA9L8EbZcEJKFcPu6bPlauyVaLqjq5dP5+t5G6MPeZraM9LZIFLBm11VvHHVoim3HGThSXL1lihl3IlvjOhtRJMFCgKYsGqlKq78sazz312Yon2NbKllGd09S+yK6bVZww4op1nGrvRRHUKz1oRCv0LOeiuSmGXFMlQQLySK6u1yfrx3WVdDhKnYiWwrZGpt+Z+gZ4+0K9Lx01+Oc5HVsO/YD3SNbcNduD43aOcHZWPL1131miOF5dnhdLjPGqp07z5lVyMJrrX1JZDfL1lQal3QfTYKoNAfYkhzZL901BH6gNX6rxRLI18e1xIwFC1AMX7KMpv+PJDuZeJo7h8PhcDgcjqsdisvfUjh160VkUUSOhpx3OBwOh8PhcBwJWi2FItIB8EIALwLwRQC2AcyKyBkAfwDglar6sUNt5cQQtKXR2gsdGVQym5knpZLbYvFZYId0phTSfoMyLOpqqad0to3v8Rx3i6nktI/vI4lfmlK07S2b0SScsOjSxPG1pEUq+qu43BCiGGVZ9IFa/dp0TSqzZX4UQpJqTrF4pT4uJoXfRt+xeIVEIZ1HQlnzO5k+nI1CAqVUX92zFKdsNWwzZVyll+o03K81F3brcftawfOnuve6+ECt2JQANKY826GUdrsxbOPCA/m8uQeziKazEujU/lmKi2bMjyKtX8+YnyyoianCOheMmIRE247mjGXXcoxvwqR9zFRdoknX8ph3C/eS8F9nm1wSNgz3gbbxt54Xo01FzD/jeeA5l0QwALB9XaC5C9eI9TiGm0asPmR6urdZj8vZo9iEI1oOR7NhP4uXOGZlZzMKZtY5FWB0c+BYf+ziEfu2s8rCvtgQFnCdJNGJoSrrbOd7f/ihEwCA5QfyfSzfF+5z5ly9baEAYx00Yn0Wbgwz9bR+wvM0pdZjwWQSrQwaYpammKR8c4aLCP82TizsGxnuR0cUp/CgQ9KIyKsBPBfAQ6r6eOP4P0N4PwPCO93nALhBVc+KyN0AVgEMAQxU9clt9U3S+j8C8NcB/BCAm1X1DlW9EcCdAP4YwE+KyN+boByHw+FwOByOKxIKwUin+zcBfgXAsxvrVP0pVX2iqj4R4T3tf6rqWTrly+Px1hdCYDKfwmeqau3TNFb6BgBvEBFbt+9wOBwOh8NxleCgLYWq+k4RecyEp38jgNddTH2tL4XphVBEvg7AW1R1VUT+OYAvAPDjqvpB66Xx2FCZxg1Ks1KxNlDLVoo8i6I9KHUyfyUQJWSWbqi2xKAxTWUikONIWbGnGBb9Y9E7fAnTCIkSYOqIaQhDfZopI6LdqHxF/X7N2HcGzPRw1E4rHqI2qJyrtEyG6rYRlVyS7o37K1IsTLtIHF9tGKuK9uf7YRpzNSqIt0hdbNCYTG3pdjzXTIfIrhE0lpbbQBpDa8wJZdq2ukq+QBqPXaLDSK3bfyhcv0ypz2YvhD6avz/TpfLAmVxmvN/OHKluOUZb7CexqNzVXOZog1XDse9YtZ0U/lRPZzdvS1Lhcn8VCuE41qzq7BvxIYsUb6PacTOlJdGcna3Yzi2iPpmmHhfjzXJTAar+KNoWYygW6lHjeShozKXcXxs3xfSEN/JzGWL0zT1MLhRbRPVuxdR5u0TRxliBvWtze7cWczvWbwzHdxcXq31zZ/J99M+FujgdXzWW/FxxzMi03WlbQzlGY/h/SF4Oo9ncd50Lob+WKA7h4qfWwrFVSsdIau9qrvGaEp9BjruIEbkapflruRfR9cWz3KmvfQXMtKDGbxtBzNR6XGdqRz2ah/YOXwqh2Feau+tF5P30912qete0hYjIAoJF8bv3NOltEsJkvHKScqch2f+5qv6WiNwJ4BkAfgrALwF46hRlOBwOh8PhcFyBEAynD0lzZlJqtwVfA+B/7aGO71TV0yJyI4C3i8hHVfWd4wqZ5qUwfWr8LYQ32T8QkR+frs2HCxHJFggrbpdtg6uX0/BVbGYIMU+cLL6XNgg4xIpNZsTtK+4nRXJv+qKvvtpp325LLLZYljY4Clt1tVrwLKFJyzXpq7Gp7CqbiyEasRKwF9fyNWmbvjwLQUs6XkTtp20r6v8oRfo3rCEAJFqC2JKU4nrJdrb0FbAcptmSnMaVrU/JysbXFpakeqw3c2njmHTpnlg0kDba4llyOdSmaq4ZGXEKoQn1jayGuvokkuitBNOKrGSrXiGiqTLv0HxmJ5gU15OsrWlclKyDVvYQjtFYZf1o6PcqQwhZxkYUxzAJKzavz/01/3Aof/7jNFYX1nL5sW8mXq+AatyV5mkpGuiV7WUYTAGAKnOGcH+l8VVjzgAQMdYkOnfrujDWG0/IZcog9Ne1o2xOm6eYlJ3VeC6tXZ1owV2itnd3sqhk61TYv3YbrQU0QfqrO8U9AqhiL+rAWFMA6hu6JsU7VLK6bedr+nH6buUwhBgskKUwik5mVul+17ZjOSy8YVFInEvMvFQZa+zfD9lObI6d/UqHBlk4iOc2xBcdyyAYGZwA2BZrXkuSZX4hr6ejuN10bweJfVoKDwovxB7qWFVPx/8fEpE3AngKgLEvhdO0/rSIvDJW/GYRmZ3yeofD4XA4HI4rFsNoLZz030FARE4CeBqA36N9iyKynLYBPAvAn7WVNc1L3dcDeCuAZ6nqeQDXAvhnU1yfGtoVkQ+JyO/Hvz9DRN4rIh8Tkd8QkZm4fzb+/bF4/DHT1uVwOBwOh8NxFFAVjLQz1b82iMjrALwHwGeJyH0i8hIR+U4R+U467e8AeJuqUpwx3ATgXSLyvwG8D8AfqOpb2uqbhj7eBLCIoG55GYA+gPNTXJ/wPQD+EsCJ+PdPAvgPqvp6EXkFgJcg+Cq+BMA5VX2siLwwnvcNraVXFF6itsbHKzQdV4t0adPHtjPb01K3JWhoTiRuxL6zUkq1OPBnCq2BZkr7LYd1EO3DEzvR1EUfcYq+SKdRHMlEt3FaJbWozRYUdHqiBRv62Lr3TOdTPDMSA2nqb6ZDWmIbWs+8GT+SnKCTGKgomfsgxeBqi4dpJbxnCragtGOcMUOMUwhvmFKszqWxTmKcNsHTFCmnTPeAnbowq4ixmdrG9zOb6cVq76nlXA6nNEvUG9PHcR/Tw6ULSHoumUKNlDPNGaYcK+d3WnNGFA9xMB+2t0/mff0NI6UYjWV+Lo3nZmQ/yya4zLRtUcU83w2KrhjpNP94LLschy7uJwo2xZQEgNmzYbxW18gFI13O032Dxm11rawbqNwo+tRH3bUcH7B3c9jeui7fz+wFatNadEWwXBIoRp62pCysnhcal875nGry5MfDnJ1Zy3To7kLu0Zm1UObCJy/kIlfWUoNyPbP1mLRFqsH4PHWsNQPIfcfiECPFYzG/+sb8s9xT+Pd2Ptxnsc4Y4iU0CdXi/Cye5VT27hTuFBeBg85ooqrfOME5v4IQuob3fQLA509b3zStfzmAL0Z4KQRCQMRfnKYyEbkdwSfxl+PfAuArAPx2POVXATw/bj8v/o14/BlyNMkLHQ6Hw+FwOKaCAhjF/MeT/rvUMI2l8Kmq+iQR+RAAqOq5RPVOgZ8F8P0A0uf5dQDOq2r6dL4PwG1x+zYA98a6BiJyIZ5PcSUM7MmIUFicmkLRJKTsEpTpoxAIbKVi+AtosswpZkYL/tph8UH62mn7yrTAX2L8tVQJCQxL0Kjh68/ILlFYjSxrm/HFaEWhLxOaJyFBcULtmlZYoQ8KEcT4dpghEkY8bqmd9IU9advasrVYKO7HsjLUMwoUbTKOC4dlsKx+VtYQtnJZlvNJswzwNU3CKuu5rYRV9jNQJX0oLJrJcZ7u8eRS3o7PxvYtZClko+KZYJ3qbJLFqeFexsIadyN7kXa4P/IY9DbD9ux5sg5diOPBFkcOSWRlhdl7DHvm7sCwPhfhRYxsPimC10zu48FytsZqL4og2FofhT/aJKKy5hyFALrmoyErTXcni3HmzgUr1/wDxJxdyNa2JAwqnttkoaN2dEiss7AW5sXcQ7mezgaFn4nWPOWwPQZbU1hwrVBBFrOyktvevyec23uIYtKwZS1Zr1dz29WwpglbCtNYsrW9ElbR+PLvR7qPYk1qWaPTutAgXqoYAF67FoOFtnhueR6mvqPjZqYhNnhW4ZiOwlIoV1Xu492Y81gBQERuwMRvRICIpDQtH5iuia3lfoeIvF9E3r+jRlomh8PhcDgcjkNGUB8feEaTI8U0lsKfB/BGADeKyL8G8AIAL53i+i8F8LdF5KsBzCH4FP4cgFMi0ovWwtsBnI7nnwZwB4D7RKQH4CSAR/YWGoMx3gUAJ7vXX2RUaYfD4XA4HI794aAzmhw1JnopjL587wTwAYTA1QLg+ar6l5NWpKo/hJCXDyLydADfp6ovEpHfQnjBfD2AFyNLqt8U/35PPP4/tCUInqpmJ3CTCjREAYYQoXRyZQplt3aNWhZpiyouoq7X67Ec+MWK/8ZgAUf84mj87qgcxYk+TBQNm+d36/GmmkQfJp3XljXGgCXwsGCKgsKB8L+ZsaQhs8ak7StEMlEkQe0s5tS42HxNFHy6nihDNZy6i2vSHO9OWDeVpSOa74Uwo55VpjqvcDjnezdEAxUd1tC/iTIqsja0ZDRpgSlESVQRUWBKFJrOh/2D+fw8dAY0txMlxWKOVFajiCrFpKzHsRTOlkL3q8a4dXYoTt2FQA/21klocjZQqJzVpcgasp94qimTRIMQpYp5t2m4l+ySu80ix/qLMTh3c1aQfhKaNWWXSLH+iNbluH+9M4FaPUH9lvqLxSVFhh/LpSWtqExT829BzOzSYSqY4v5VtDG7wczGMabx10K0GN2CrExF/Fzx8fX1WjsZqZ+K8U9Fs3MXU6dpSlvretNPbPptZDrcmGale1FaH+zjFfgZaJMNxHkzOJlp/Z1r8o0mYRY/yzMroe96q/WYogeNlPv4csZEL4WqqiLyZlX9PAAfPeA2/ACA18dA2B8C8Kq4/1UAXiMiHwNwFiE+osPhcDgcDsclidHVYCmM+KCIfJGq/snFVqqq7wDwjrj9CYQo23vP2QLwdRdbl8PhcDgcDsdhQxUYXg2WwoinAniRiNwDYB2BqVRVfcKhtGw/UK2ndmqlCY14R01qKSvFjpWqh83hiT6yVH2dBjozhQdkysCMp0d1pot26/HbivOsOGMtdFNj3D1LdWr0d0G370OpajdqH19jRrzEqVTOFQVbVyQDKFP3JbTRuqP6uCWqqKBgLfqZqZpuS92VItWg/whF0vieMXd3aTumeNNCfW7EM2OkuV1Q+S3x9JI7hRXLk/czPRj7sEhDZlBTs2dpLJkKHMSxZvo4pSK01PagZ7Ap/mgCx4dL48prwTalXjPo9EQba5uaksu0XGOY0o7UuHJ7iS6VqMIuVMOJslzL1/TXNqrt3kOBNi7GIKlluQ9Y5ZrmHEhta8x9jjk36ndq5ZiuOdY617XV+Dof6tc5KrOYS2kNp3narbtgsNtAFU+T609rCu8zUlZKg+tLoo05dmY1/4pnNa8vYin8q2uJHp4nJXmcFx1ec2gMNbZJYNDcDWtB9WxQ6jwr7SO7l+hsOHfz5hy38eEvoL757KDC3l7LbV/4q3DuyU8Sn37Rpq1mXBX0ccRXHVorHA6Hw+FwOC5jBJ/Cq4c+/oeq+gO8Q0R+EsEn8NLDOAsQf3XxdrLq8de09aVvxI8rrINWphEL/EXI+9OXXJN10MhoooZgQWCIRoYtE9awLjDYmb+a+9y2caIPAJI+Ci2rHdfTkmmmONeKnVe1rel+jya6ff4abmjHbrIK1q0DYwo19tWFTEUcwio7TUPsy2hVYPFJZUngeGZs0YzZHNRy6m9BYWEdFgfqJ1fxzqb4Ak/tYGuXIdYprD9N2Rz27mvIeFSVbokGNrMopBgX43lhC0wlyGBrWcqyYsUmbGp7x3guWTTQ7xb/A0CHLZGpfp4LyVLM/UoZYLAerIbW2lZgQEKVhfmyvUCR7Sf1PbdzGK1HLNDpsBU0Wp1aOQpeT6PVcbjEFsu8WfUNPw/WM84W7c6YbBu0bVrweE7xM2o+13EXl18Id7r1a5IIZoctxRw7N15jxTFltDFBPP4pixL1x3BpPv6f58RoJvfrMG5v3JD3bd+cn4NbTwRhzv1nsxClF43X3e2jCU5yUPmMjwvTvNJ+pbHvOQfVEIfD4XA4HI7LFVdFnEIR+S4A/xDAXxORj9ChZQDvPqyGORwOh8PhcFw+uDro418H8IcA/g2AH6T9q6p69lBadRAYI0Qo4lE1iEoSihRwoxYn+gSL+mxLc2Y5lBfiFBZrtIhb0nktNIRJbRYpmup0bUFJpJh0JmtC7SGqJ8cMaxBr5J15OwkNjPhvtboSUj0NtIvEL7S2OJNTwRJEGM7njKpNnKw97eN75LmZ5l+Dk7wYNGdF0Y+oPwoqKMbg5PkxjLQbUbBgGirSh61CpTaxjUV9Txr/sem4IcaBETuxiT6uKD5DeNOGwh0ilc/Pd9dwD+D5wQKzjkH1JXHB0JgzQH6GWfCQ1jkWUzBttzAT/8/H+1RmdyNmi7L6uimVpO4jLlxsp8wSbUtChNSP3TVKT7cTacgd6jcWXsWyimfIiPvHvwWjSElzDLwO9c1MXNM66/UsWsIxA3lcLPeklI6RC7BifHK/81pRpSo1XHDEoJkBMy0kRtGdouFZrqhvpsuNNKzWb85YF6pwQt6OQzCczWOxcyr313Amrts0vAufzPN4/c9uBgDccU8e39mzwXWju3H4cQoBXJL5jKdB66+fql5Q1bsBvAjA3wTwYlW9B8CSiNRCyTgcDofD4XBcbUghaab5d6lhGpPILwL4EgDfGP9ejfscDofD4XA4rnqMtDPVv0sNU8UpVNUniciHAEBVz4kUiXSOH5KpqmROb1WxskotmfX5OMflskzjVhq7i0SiSYvamPqUMSqqhhhpasSpq+YjUwtMOaaYYGzeH59pMJ9L/WrFlytjMI4t0qRDG1MRpuORKSjobku1t49xa1Wa8/yJtIs5FgC5JNTpvyLu2gw9aulci6bm40xZWi4PbYrFNEYjm4Ifh6Y+Mil2RqVyrNdZ0v88lgYtnI7xTlbmJyq41xC3McVJmyKupkXhmWrsFoqNXVaqtYCvMVJRFki0MdPhqTxO60Y0Z2crquBJ4Z1iNYYTjLmd6FCqWg1KsQ2lS0q8nqh6jhWZ08LVx01n8/MyumaZji/V6pRI+6Z0dgCK2HiDE4FyXnkU7VvId7r4QKhr4cEcL6+3Efqze4GU5lasUZ778RlnxXnxm3NQcV0ZnTF9yL8FrDSvYj3a4zuWNrbWJgbNyU6keHsUH3Lzhry9fSKUyWMxs5qLOvmJ0Ob5T+WdnJ7wsHHVJnewpgAAIABJREFUpLmL2BWRLuIzLCI3oBDpOxwOh8PhcFy9uNx9Cqd5Kfx5AG8EcKOI/GsALwDw0kNp1QFgrHM7f33x12zKJMGWkSJG25j4cYV4pcUh3cpiwNvpC5zvgY9bX+CW5cVIeF+2w7BswHBILq5pEcRYztTcN0Z7quwWDQKeymJpxTgrGkJ9lGJg8VgYmSiE7nesdRm2JaiM+9at12mUJWzAsyqqYsrZQhLbUsjzo26RkBYLX2W5LWJOGllQrHaytdRK+tOtz+3yOFvuo7iFnfWToKUQNBhZQQg6imNRCFaGteOcXYTnX+Vwz9kUUh81OuOXLAXva4JpMbUs2m2w1g+rbO4PsqB01oJ1q7PN/U7b6dlgZiWVz1Z/ilNYibhahHlFO+M818UcZ260YFjJ6X6TOGZ3KT8ju4t5Tu3Oh/JH1PSl06HNcw/lDCyMnZOhrM2bctu2bsz3OZyJ68swFzp3LlrB2cLK9xb3F1buKFiphDxA8TypxjpZXDK052wNvO6amXno2jSG/AzMUr/PReEPj28RA7QeO7e6nufMZt2KytZlWQ3jwS8msyfy9YO5OD9oyZhZyf05cz60qcP9meL+9qd53dkfUkiayxkT95KqvlZEPgDgGQi/7c9X1b88tJY5HA6Hw+FwXEa4FP0Ep8FUr86q+lEAHz2ktjgcDofD4XBcnrhEA1JPg4lfCkXkyQB+BMCj43UCQFX1CYfUtn1AsvnaMGe3Il2z20K7FlVGIUFDDD1TSLD3GLAnVlPaJmFFUafsOQ82FWw6uVtUWz1+X7G/jQIzhBXFNQ3xFseC25liGjZRoGkM2Dl9ZMUuJGqjchVgqq+F5rKoYCuuo0VTFDQm88cpMJeRUozcGFhcUNHpRexDg15mpLYVdBaLfdI8pdRpA6NtjCSIMYQ+BZrcJBK4v3qJljNSQBrCGIDcD5guGxM3LZwwqLdnZNBpbeuH4URfCMGSsIbjSFrxPwshmfG8FNR5OmbEIQRswVxCgytAJbjYNeYEt2OO4gf2F8O1fN6Flbyd0iAWc7stDdqwbA/2hMhIdD8/d9txzuzmtnW2Kd5ijHk3pHRpvc16OUrzpxN/A2YucOW5zF5kQbs7FMsxlUljOZyjcZ+pp+Mz42laaBFWMcSac/OZjtdrT4YNFjRtptSJ9NwtL1Tbg2vCdu+R9XzNylo+N15XrMEngsBnRKkCu4/QaEYqmu8nUdL8/M8/kOnj3magvnmsksAHALpnY/vY9SGN8czhv6wpri6fwtcC+GcA/hQuMHE4HA6Hw+EocNVYCgE8rKpvOrSWXA6wLHhS/yorMkkYzummfJ+/pg1Bi231M6wYbO0Y1p2TC7GEZTXkaqLFQ/h+LauQ5dDeIMqxwou0Zoix6uGv4GS9oK9Usb7AWVSQviQ5bIf1MFv91WY9Mq5RKzQFt88SS5BTt2Wt0352BC9aPi57ToPFIQtNxodDKTPV1C1S1bncXr7GEgtZ91b0V3PWBoAsvGyASWKLNnFSgxVUq1BC9YwUxdzjMTCc9SsrNjvtW6KhIgtG/frCamyFimIH/1Q+O/gnGJk8inZo3coJoLp3dtYfXBsshRzGpm+FxOKQINHi3WjBTevGZhYKiGVp5LbF4102bJI1rhJ+8DxO2U+oD0fzub/6a+H4iXtI0EKWps4glDX3cH5Ge+djmBu2FJJIphJHbOSGdlI7xokYAfu5IUib4I2fUStUTJqfM7nto6UcbmfnVDje2czt7NL6VNVFYbR2bwiWwq0bsqVwkfq7cz5Y9SorJQCN4Xh0l/poJYuBZpLghvuD+k62W8I1HTIOQ2giIq8G8FwAD6nq443jTwfwewA+GXf9jqq+LB57NoCfQ3hp+WVV/bdt9U3zUvijIvLLAP47gGoUVfV3pijD4XA4HA6H44rEIVgKfwXALwD4tTHn/L+q+lzeEUMI/iKArwRwH4A/EZE3qepfjKtsmpfCbwXw2QD6yPSxAvCXQofD4XA4HFc1DiN4taq+U0Qes49LnwLgY6r6CQAQkdcDeB6AA3sp/CJV/ax9NOx4MKnAhOnDNgdeiyZNZvPCVE9UTqR425ytCybYongKmtOgj6wsBtb9TErVNsHK1sGU8sigh026lGhMK5m7JUhpdKyvU1upzsIJngMEpvK5TKO9akcSNFGN8dBwJDfGr4BFjRYUe53GlB7fT50qLLPGpLYZlDFgZsmwBA0F0jM2w/M9XrVLDvwtWT3UEjewsCZd3xTHMgqR2mICmhhHtdfOja4iTMvOZ4otOb9zbESN87SYm0xjRrqraDn3V6JtB3URjdW2RiS3jVGdlgdItGStKQC0ygCTn//hfLinwULe11vLgoYq5mGRISqWyWPOY2C4JBTUZ79OfWrMfjE4QWPRIyHC+UBsdYmGrChtqrszyDSnbIc+XlyneUh9rL1OLDvH3ZP1zVqZXRKapLnQ4Swqu3W3jcI9oYp9aayhQBbhtcTJ5ZiCnfOrteO5wdQfa3l7PtK2nfMkLuFYgEamom7su5kZcuvZIqp3YFDB6fnnOb5BfWzR7AV1bjxvVZatw49TCOxLaHK9iLyf/r5LVe+asowvEZH/DeB+AN+nqn8O4DYA99I59wF4altB0/TSu0Xkc9tMjw6Hw+FwOBxXHXRf9PEZVX3yRdT6QQCPVtU1EflqAL8L4HH7LWyal8IvBvBhEfkkgk/hJRiSxuFwOBwOh+PocRwZTVR1hbbfLCIvF5HrAZwGcAedenvcNxbTvBQ+e4pzjw9GXK8KltpWDVrGoomLOgzKqSmGWjKHF+Z/S4HJhw2FnaVoZYq8hSpuUm5OhCZqIm0X1FWiKRuozzY1aLrEih/ICm6iF1ObiqTyKbURU6S0ndKoTZxGLDQk/N9E1Y2jihtTxRkxJy2wKjjF8lvMccRGy4v5eHIvWM+0i67F+F2Fyp0p2pR6sZ6SsDUOoQE1lO/AFP2xn/nKClxLYdmGTv36QnkdqSvlGHmsJJ4NNGZBXaX7obkprDSOtJ4a9D3ALg1Gf/Dzb6SaLJDm/vZ2/RiI+ib1qM6RcraXaLlc9iCmkttZyu2YJQWvzEc6dpb2zYQypeF+UxxE5XbQNox27C6HMtdv4RR8eXM5Klm7Z+j5X8/x9ipsZHpZYorJDs99chvQeG/WWPJYdFY4VWVcp5g+TvOL1emUoq9yRRCifEmZbaW8FMuliX8LtrbKa4EqpSaPvxA9LCuhv7jfilSUaR/V2Yn9OXs/PQ87hlsI0/LW7yWv9bUaUdDtac6OTmQ3hqpv2n7XDwhH/VIoIjcD+LSqqog8BSG05yMAzgN4nIh8BsLL4AsBfFNbea0vhSIiGnBP2zmT3oTD4XA4HA7HlYTDEJqIyOsAPB3B9/A+AD+KIPiFqr4CwAsAfJeIDABsAnhhfB8biMh3A3grQkiaV0dfw7GYxFL4RyLyBgC/p6qfoobOALgTwIsB/BGCbPpYIaAv/EkFAvwFbhkVrC9ww6JQfLUXVsPmzApTxV0zxRj7EI1MkeFFDOfhwqKl9XZW/Vk4tE8oeGkREhTO6UIWj1Rn17Cc8hcyXV9tWzHhWlDG6jNiwTEskYRRjyViavzOSuIDsi7s3kBWw34of/Yh+mqPlqrCcsoWb0O8JMniRbH4zDFii4QVc5Dvw4iXWQhERtNbJcWytibr8UxL29vGfCdbdSrLBu8jB/5kZSnqjH2shpW62M/PSKeFAUhgQQLNBV2IgguyWMpatIJtZesPC9GSRUrpGRrN1i10aW4BwHDWyPBjtZdFIfPxei6bs4qk++CpWQhNYjtIvLBzKtznymPyRYNFfnZCf1z7cBaiYDVY3gqRkxUflraF+zONl/XcWplCgLw+MaORxprXLraSpnI2yBpWzI8xTAfP9wGtg4Y1Lt0bi2k4xqfGOV/M3UIsJPX2JAsfC5boeBXjl54XtlRW++YNqx8/L9x3cf5sX1+/prs1BSt0ETDj3V5UefqNLcd/ASFkjXXszQDePE19k7wUPhvAPwDwumiGPI/wlHUBvA3Az6rqh6ap1OFwOBwOh+NKwxWf5k5VtwC8HMDLRaQP4HoAm6p6/rAb53A4HA6Hw+E4GkwVuEdVdwE8cEhtuXiI5Nh5cVdJXcV9logByCZpIxZfWY3xJaCGeZ7LbInLVxZ1cU729uHpBR4VmmK5jYtJ2OZiWrS3xaxfpYqjfQNjDKx2NqX9S2U2zQWrnYkioflR0B0VNXqRsSDTfTSlYIuUY4eoyy7FU8NiC6VtwBRmVOmyiP4xqBFheihtWC4WyOKooq9ZIDJG1KIt00QsZ/smajo9r00CnzQvWCRjxQ/lZz3RZUyrpXY0uDFU8QMNWi1cFuNt8rj0k9AoU2SjU0vV9uatQXS0u5SvWf5EmBMdFg+MiNqM7WOxVmeDXTTC8Q4910sxlRxTud1zWYhQCRU6xjPE99jj9RZjkbIOchq7/lrYnjubL96i8nejBivFMwSoP42xAGCnneQ5ncaLBSLp55QFXCySiGtWQdsbdGlBL0v9mjbXHDXEJ3tOqF2bY99ybEp6PTDWouJZnTDepxjuWCyY0xNLtbaNqI8lrnkFLc+IfdfdYWFnrG7j8FPg6f5C0lxSOJpojg6Hw+FwOBxXOA7ap/CoMdFLoYTPhx9U1Z845PYcHPZYDIFsFZpKoGFEklfrC4w/pNi6YAgecpT6Bmf7NhihUdqFCvHLmC2BRviPJguOua8SxLRYBc0QPnUL7lTg+6jEHC1f+pzNI11fhO0xMmOws/bIsOBZmWrarKRGmZzRRlraLojhdFZydoEe9Uc3hmXg0BcpDEVj1p40RsZYlVaK+v2qFTqpyVpazTnbOigxJElhsdyKVoGBUU8bjFBOBZpCuViCGWPOVKYrBlkUq7kkDVaVZAlsDYPFAqAY+mY+Z+DYuS5bDVceHZb17WvyNTMr4fjCAyRiGBgWTZ5nHNIoWaXpmm4Ur3RZ5LKVLTiV9dMIkcPWZelkAcion7ITUeaUOc5OEf7rbJNFM4acmTvHmWTq/TlcyO3sJ/EC9zuLgazQKITKslaIYHrcxFipkd3IWut5zmzQnEqWQstKbbSH67Ssck3XWLOvYAgQ15QmQeXsbFF3rKBeJwlVUjgnveZEtW/jM04CAHobZDmnZ7j3SNxXiA7rre9uUn/GuVJYvg8NB68+PmpMZPNV1RGA57ae6HA4HA6Hw3GVQlWm+nepYZr4Dx8RkR8VmSKmicPhcDgcDsdVgJTRZJp/lxqm8Sm8FsDTEIIkvhfARwB8RFV/61Batl8kU3Kij7t1qqbNYb2R/rOoBItumzCOd0FTNpnlreMpfiBTAum+myiBdO9tr/QmZdwQpzDRrUShVc7YTQncDVN/ptPbxDIN7RiDYiy4XxtiIo4vLPYhP8hWgvbCEXx60ZCZ9YNp7hhzTDkDA8XOq2KOsbipLR6eISqpwJQxx3q0hDCGcKKVwuVv0yRE6dcFPIVbBkeQM+aCtrkUpPVBGuZBuo8pXAGqdYXbs1t/Vss4l3EJbsq8ko6z03/qG6J6++ezgOTUX4X/R7O5X+fui3H5tuvikqJN3HaKbZfoTd3hbByj4tjeNuU4pvV92hRjMdLGAxJL7S5zZo7w38yFvCvRizOreX4M+/k+RrGq4Xyus3cyChoWMnUtHHMyZZqhfQWFa8wvnYtlsXiE508UQRQZTdJpnB2E+zi5aAwaBDHjwBQ909wWvWz9thVjZLiX0PWj2I9FH6a1gsdfsktCmvPDE3kMzj029N3MKo3VVr7fxVhn33APKNpEa06ijTlDy6FBJx+eSxUTvxSq6tcDgIjMAvgbAD4PwFMAXFovhQ6Hw+FwOBzHgCs+TuFeqOo2gA/Gfw6Hw+FwOBxXPRRXifr4ssI4220V/61FUWbEb2pCdW5TXLa026JGGylQQyk8KZiGsugy6xqx71f2UPFhmynrej+m+F1Fyy3K2IpdxwyalRaOFZgWdW5hiviQE4NpzBZqtK3OrPau04sF1W+kPBTY7TCVilaaRN7ujaExueyCjm+Od9ZIfVv9we1N1JkR16/xWaxU0HmXpHPHpQHbUw+sGIw8T8eXVGsP168NLhTSjdTpLFF1nOYsKYyJYh2l9GBE5XdWMi03txppMn6WV0P8wIKmNNICKtGphRLZdJ0xlNVoSV9pKfRpfUnq48FCnocDosF7W6EsjjnXidu98/l+ups59t1gMZTFsQ0rdXPfXi8rGtRK2wbbPSHFcFSKHzk4mbfTnOyuEoWf6mHVNo9RahO3o1iP49ppjI+wy8FsVqpLcgXYNtS4PCcofmS6p8GpfD9F1IHYpN45bkCcpxx3caueoq+zkSnn/lr9KWNXgOFcaFOvR7+3u6RUji4PHXJ9kNS3u4cfp/BKUB9feS+FDofD4XA4HMeAq8ancC9E5BYAZyOdfGlAteYwW4xPlW3DtlxIfMPnayzLBgseKitXS9NMB/4Gp93KyR0NzvppW+qWwMbyq2qM2FUNsaWqczkRPGcfiKYZLdoRvw7rrSmOF9kBrAQcllClwSIo42JwNcXl2wdsq189S0orDDFPIURIX/hNFkkMG/cBeR5PWncjjKweVjYF04LXZB00ranUpmQl4Xtvs/q1iaNyQXTYyODC10jdsb5NEGXFGrXaXlgfo9WmsOqQpXC0HCxeI4rV14mWEeGYb2xdSnOe4+61WUmSdZoFCXPZOpmsYGLEWGQoj+9gzPNQrGf5vO5maOcMG8N2cpt6WzFjxSplZjGyW3Ceke52sJJ111kEUbf0yTZZApM1zYo5C+S+5T5IljGeM8vZQlfdM49bbHthtSsskpblldpcZe4xRGMLZNU7uZyvSZazdbomzcMZEv3wPIwxHjduIYsjPY4zK4NaO3RhNjaXrKks3In9wJa+2dVw7mCWnpGCQYrzkOJUCllZJfaXUJ1V7MyWWI8HhcudPr6Y8DKvAfBREfnpg2qMw+FwOBwOx+UIVVz2cQr3bSlU1WdK+OT93ANsj8PhcDgcDsdliavap1CDXfjPD6gtB4tk1meqpoXsN+nBFrorCwXsNFamg3Z1kB116w64Yxoa/uO86VaZjFQ+05TReb0x3VESNLDj+9ICHU90PF2fRAFs0reSoPO+SEkrUdNFirbN4ERvOmBT+1tThbXATElWHI/93hZ3z5pnhXsAX9OtH0991KnTjAC5OTSIWMaJWziNYRGvM5VvpMsyhSTA/oRQFgyxR9G2CWl5MZ6nch8JPFKaMxJwmOPGlFPl9D9NmkwjnSIft+YuPW9p/RAWfURatnDg521L3JIEYparBl1TxJlT42RD5MAoaDuznngfljsNgE6kj4Wo5+4Gu6wYQqZOShVJgoQlSgF4ItxHn453tsO4svikSLeY6HymU4u50JK6szqP4+XFe6N4ebqxWStbrViPtCa1rqfJ3Wc+i4YG1y7mduyEvunQ3E/uByySKVIFxnnY26Rx2crbvfW4NlMfDCJ1PprJ4ze7wVRv7Hta6xfvC/0xms3XjKgdM+dC33XWcozWYu6nMWQxVyXca4gFesC4anwKY3zCvwvgMXydqr7s4JvlcDgcDofDcXnhUqSEp8E0lsLfA3ABwAcAXDriEofD4XA4HI5jhuLS9BOcBtO8FN6uqs8+tJYcNCw17qSYJgWaoVI0FY1jUoLVjieaqjU92D5QxKEKw19MYW5HSl9HdNbwmkwfJ7pGiXbprUTz/oW6mjociFQPUcWjE4GyGC5lOqN3Lsdd6zwc28Qp1i7WRm8qVlOKNXosLKUoxwcsaM4xbWo4poYisY2GmtTNoUC8t0JtX1DJ9VRyFvVZVpkUqftYBJv6I9Uvk4+vTMoKkcJXlwOdlube3jbJMGx3DPpZmlL9WXEbDaq5GAMx0pgV6dRS7FROl1aPXWfFpiyUpElJzK4tW8a3Pc93ou2q1Il8buWSQmWSErgqv6CUDQUo9adEWrCYUayITusG93Fq23y+382bMn28vRzaNzuf29lfi/Hu1lgJTK4EsUwhCpZXDDPGXxojouC7Z9eo/Kg0Xs37UtpAU2UM5DWJ+5jGtVIYG785hXp4Lh/fPRndhm4mV6DY9I0b8jOy9EDum9lPhziXcw9m2jZR/QAqtwCleJuDpVD/cI7oXxqjykWI5kfvfKTTWcU8T+4USXXM85RU8roU+kMpjmHnQpxTVkrSQ8Blzh5PpT5+t4h83qG1xOFwOBwOh+NyxVWmPr4TwLeIyCcR6GNB0Jo8YZKLRWQOwDsBzMZ6f1tVf1REPgPA6wFch0BNf7Oq7kQfxl8D8IUAHgHwDap698StNTKNtOJirHFWnDnQF7wV76olQ0NjPEXLMpMc6/mL0TqP46Eli1hTO4b1r7IhxUvbXQ7bA/oCX4z31lkhR+DiCy06tJNzsKSvR/av5vuwsmwYjsTF/U4oOpEiS0rsQ05oz3XvRGsbW1jYoqUtAiELhmho3HmNaIk/aM4ZvmaM9XGqTDBmO/bfLxPVYwqvouO8EWcQyFYDjpHWKhBKzw7PPaXnabce2y5bD6kdPJ1Tm3j96LOFJ5Q/oswb3Z20plAfcRzE2M5kNQGAzUefAgDsLOd2LN2Tn9HuhWyZz5XTttU3lUCMxmKX7iNlSdk1Yihy0Wx1GxjCCe6bUbw3zrYxF/pr57p8v+f/OmVEiQax7fN539zZ0OZ5toYO2PoY205zhmMfYmU1/G9Yn3QrC0mwXc9UMuL7bbHGV/dOc0IWia255kTcSf21XbfAdbby/BhEq+HazXnurj06/H/Hl95X7XvwrXdU27f8ryjM2bDjXY5iTMItsj6e+8zQ5g7HM7yQj/eThoZZkvi7IErW+Fke69Dm4exSrpusk1s3RBHNIN/7fBrXjSPyervMTYXTvBQ+5yLr2gbwFaq6JiJ9AO8SkT8E8L0A/oOqvl5EXgHgJQB+Kf5/TlUfKyIvBPCTAL7hItvgcDgcDofDcSi4FK1/02BiM5qq3gPgFICvif9OxX2TXq+qmpwp+vGfAvgKAL8d9/8qgOfH7efFvxGPP0MuNuaIw+FwOBwOxyEhBLCe/F8bROTVIvKQiPxZw/EXichHRORPReTdIvL5dOzuuP/DIvL+Sdo/TUia7wHw7QB+J+76LyJyl6r+xynK6CJQxI8F8IsAPg7gvGplK74PwG1x+zYA9wKAqg5E5AICxXxmT5nfAeA7AGBOFut0sRWvqKC4mHOK+5tM+cnp16IcG9JUpTNtSokFGOPfd23K2KBLeR+LE1I8NHZIT2Z7dtrmuIpJWEEzt382U04ymIv/5/vtrkRn6g2io4oUXMNaOzuxnv5WQyou45qUYq/YX1CKLbTMQeFiy6/6th4/sEnAUbkITEOxJpFEW9zONkFLUbxBfVbz0P7e1HGpzw4QZmq8XerP6OzfaYp9mVL4FaKPamDyPh6jKsWj4e7QFHu0cvuwU15KpIp75NSf4twpCRqKlHZxPEaLWWxx7nHhGV2/jdxQRpnKS1HspEHwIKspJVld7CXsTcHxRRONWqTbMwQx7KLRj+0jurRMP1ifX4nqHczTPKTuXngwlDn/SL63uUfC/fTPcbq83PZEh7L4jYUbSexRPCHpeWkSxFVxP1sEhByTMMUhZJcWii84mo0ULaXok/Uo1iDavr+6nrdjWfP35tiFJ+4NdOyDK5kyvuav8n30zqyV97AXca5tnyKqN27OUr/Lbp2iL2L5ptR3DfNwsBzunceaBVHD2dB3HH8y/xYcPq+rOBRL4a8A+AUEdzoLnwTwNFU9JyLPAXAXgKfS8S9X1TP2pXVMQx+/BMBTVXUdAETkJwG8B8DEL4WqOgTwRBE5BeCNAD57ivqbyrwLoRNwsnv9Zc7mOxwOh8PhuCyhAA74pVBV3ykijxlz/N305x8DuP1i6pvmpVBQeowPsSdywKRQ1fMi8kcAvgTAKRHpRWvh7QBOx9NOA7gDwH0i0gNwEkFw0tLK8kuysIzQjZjtsiwBZh1GVH8OGWB95fIXYfogFdrHlpVqP30NT/iVow3O59W9cbL1nQbL3J7r+bzOw7n3+tvh67K7nR28O8mKQdeomRWCKwpftmyRLCwFxr0XngRt41WVMz47TWXRID/xwiKR+qMt48xFwsyswtbp6t7Hzw9pED9VKLIoxHu6WMtnm7CruqdDthgaVs5iHiYrG8/TIluL0b60plCGhkK4VT3r9QxBjU9v6i9rfABIdI4XsgRVQicWMRh1ciaJrRvC8eGt+ZrdhWxJHM3HECxkySmyfaSMF+vEAIzqli+11hy1j1Pjcz1pzhbWQxLuRSsXh59J1iPW/Jy4J9ezcH94oHskpqmyipC1lVmS7lYULOxka2oR0sQaN0M0wku8xvnBVuFKHFWwT/TcxvvlMDT8jHWiJVloXKwMUDrKlsLq+rPnq11zD4c1/PYHr811k+UUKzmMTnWc7l0WA2vUp4wnC58O/y/dn8vprVF/V5lG6LczbdBYsADI+hHvreexnn0kzO/uWp7nndXYN4PDXbcT9mGQvH4PtXtXNHbtBy8B8IfcHABvkxD76pWTlDvNS+F/BvBeEXlj/Pv5AF416cUicgOA3fhCOA/gKxHEI38E4AUICuQXIwTJBoA3xb/fE4//D73o4HQOh8PhcDgch4Tp31LOqOqTL7ZaEflyhJfCO2n3nap6WkRuBPB2Efmoqr5zXDkTvxSq6s+IyP8E8KVx17eq6oemaPMtAH41+hV2APymqv6+iPwFgNeLyI8D+BDyi+arALxGRD4G4CyAF05Rl8PhcDgcDscR4nhiD4rIEwD8MoDnqGrFqKrq6fj/Q9Gg9xSE0ICNmMZSCFX9AIJQZGqo6kcAfIGx/xMIDd27fwvA1+2nrgKWOKFw/iUzdcrQ0RaXjSm2ig5tom2N7CQJRUxBIxl7UWdD9pO94LqZ7kix3JrKTHUbQgR2BE7UBABIbHOH+9gQhRRlpvu0sj5wfK92xuBJAAAgAElEQVTCwX9Unrfn+oqiM2iqacayopKN7BBFWTz+F51ZxaCKExr6EEYfji2byxo1UKTTxCKsyjfabLWp6K+Li7c49pqm/rKQhCRMd1tZhSwq78Ryta8QHxjx4Sp6kudUkeEnOtsv5MwZRZmD5MJBVN5uyoJB9C63M97TcD6vIzunwv0sLGVabdTP9PEwxoLjZ7mg7dKzt0v0X1pf2mj3NvBakPqJ+otFFiljxu41ub9W74iiEGJYT9yd29n/9IWwQeK3HD/WnptVtp7G5yVsC8+f9PPCEQ1HNEaJBt81xEuEQngzG8eI93EGmLTObeS1M9HGlqgn1FnPiJOelyK+7NAYFwKvGEkQNXM+nzcT2emZT6/m81iIlDKRsLAq9Tf/LpMAsbsV3QdIXNJfIap4JboiFSKserzdQ8UR85ki8igEAfA3q+r/of2LADqquhq3nwXgZW3ltb4Uisi7VPVOEVnFnnkAQFX1xLQ34XA4HA6Hw3FFQQ9efSwirwPwdATfw/sA/ChCSD+o6isA/AuEyCwvjy/3g0hH3wTgjXFfD8Cvq+pb2uprfSlU1Tvj/8tt5zocDofD4XBctThgS6GqfmPL8W8D8G3G/k8A+Pz6FeMxTZzCrwPwlmiKfCmAJwH4sSn9Cg8XqnVzfJvJuIjrl+IQ2unlzCqTmbuI/0dlptRXhtLTpAS5TRyvqqA2xqTJG42nQ0rqO1Ik1AdFibF+5b2sWO5FZeQWKYWt+FJMSaWm83FL1btbp9uK46x47Bg0yX4UwlVat31QmNNgUhqjuEfaP2G8M9NVwKLt6fqJYxMCZmzNi9WCNcVmBMq2We1ofJ7GwVLLcnt4OypAh9dncmS4kJfQ7kqgrNjdIlFfhXKVxyBSo4NTWeXKabt6K4EW7HDsO4v67NTvvbOd72fxvpiGbCO3fXkz9+co0XGjXE6PlMhpfVOD+tSGmHLVuLBK1XiWy3kYaT8jdh0AdCIV2F3IFO0wUqyDOY59Wl+zLAqUo0YUEREi7cvuMubaxlR/vE/pUt3d+jzUIg5lvUgYrgCFgpup0fTcsoq6LZLAOFeVIq0juzfF7VHDuhrHpbdO8RKTMnqN+pDXh+gyMTiZXQE626E/u+dILU1zpbMR7pNfXDrrmT6uYnhSlI1qXeCIFoeKyzvHxjS/fv88vhDeCeCZCEKQVxxOsxwOh8PhcDguM+iU/y4xTCM0Sa/rfwshjs4fRMXwJYMQTTxav9IXqeUEzV9q/z977x5uW1bVB/7G3ud13/cWBSVWoWI3H+qnRknxSIuJb/ERIR1FTOxGoh/9RYlGEzsYjRAiBltbW6IhIKJWmhYNolS3hYRGDLER5RneaqUUqiqFUI/7Ove89+g/1hxz/eZZY+6113ndc+4Zv++7391nrb3WmmuuOddea/zG7zc4gTeFsTgnoLH3sQPY9pWKBgYn+uCKPjgSCPKUQkpodwojFHCSuvmtW/uc860d/PLHbRo55+u9wa+SX1oW3lQiAR4s6b+4Vt2216JYMmsOx4wihmnRqqYdvJ8ZRSc7SXLma+bZu/VdX17fEzmdFiEs+qOveol3Lbnfpecu6IhGckS7Mh+8SED2guP57USa3ehRDSkqtLXU3ja35ttzc5uX2qFKaynsa5HCrZNt260qAwCMV8y3z694ksFR5TQv5z/dess96oPN/tfPtu1YJFGApv4es0/hMosXUiSK53VP3zX2stvusbm9dJ/iG5AFufhaFdWgmu3GD7b9deqTTaRp42TbR+yH51WiyeIVjoaxr59FmipiizzmJvQTavOAr49XyYrhCcCK9Y6obOL0TYVFmYbiuqQoJ4ucyu/aOK5UvEn9ZJE8AJCV9LtAUTueoxs3NdHxTz2p9bm1INujPtRGDxcuUaWZuSSiogi9UER8nI4p3B/pPHXxgCKFh/BBbwiGRArvF5FXorGGuUtEFgduHwgEAoFAIHBjwiqaDPl3yDDkoe7ZAN4M4OtU9SKACwB+eF9aFQgEAoFAIHDEoDrs32HDUPp4CcC3ifECDf7j3jZplzBaKPEQvc/hTnJ64ctXPDYnTzHp0mlFwXJeX/OKAkohCFPW2SOt8szujKRM19U84WYefY5vH7r0DR9TvH0PEHrktle2cUUyxXoTCHWvdh8VvO3L3WXePokCLaj33ZRu8/wSK+v3bJ898MrtlekWTt96c4j4FM8L1BWNuGkdtI03B9nf0zwFaVlR1pFKxGX00W5p/XiFfNOutduMLya6lqk+80jj/qDPo9S+BRYPUFm3TGk6JbqqXoyJXhTyrjvxQJO4v3CZPPSoP9fPp+Vb1MdMp1oazE5+xQbMQTeNgWnqdEpyqaXGT97b0I86346Z8cPt+kwF05jSJHLgcnlWUhAA5KqlHzmCBYDGKc0ru26VPsrtmEYjA0XpPD3RiGiEfftYdGIfxlxar5sG5YLn2NhJU+B22vrCK5bWp985FlR55RixSGN/oxlTVoIRANYf3Wy/9FB7XTilIR+a0jZ0ka6rzfuiDGr6vEhjfz9xCB/0hmDIQ+EbAVwE8F4Azh01EAgEAoFA4BjjEFLCQzDkofA2VX3GvrUkEAgEAoFA4AijT0t32DHkofAdIvJFqvrBfWvNfoCpHM+7bK9IfQ6lj7uUdEEPGBPEtJznscZ0WKFUbqBeuaOh7R6Igt6ZpOPzMpdu7Ss55tDhfcra8svpP4fmrFFXHk3ltd1RTirR6ax8npminfF86uudtu9W3SwOBW/LiFIqKFqjyxyVs9ZUlz1ZBXmsePRwLSXBm2N2aKYeN7tef+ooW5uD2T6719T81wBANmh7o1s95X2hJHcUrUxtO8prV/XpqXoJSq4AowebUm+jy1Qyjq/r5qlml8tEY692CaGiZKUdv085y+2073K/FmkbPSp5S1mhcnujhy6n4xCluOKUzCzUts3nyUmmKenYNs4L5wT2mrWyf0Qvr4g1svs9bofjFVugb/6z76M3X6TbDs+pQhyVtCyTp6CTKsL3giKVYMNK61HKwYp5BtJ8oXKN479o9vnZb/rMvGz9bDM+TzxwKS8bXWxTAQzzpBqXTedew6kCppweH0AE75DazAzBkIfCpwN4nojcg4Y+tjJ3X7wvLQsEAoFAIBA4MjiciuIhGPJQ+A371oq9xPbqBl50kN+QnLepql+ebcKvAtp98xWnW703bC9ZHmijMcIO7Pzmk/dJb23ZR4yjHdzOKW/g0o0OAW2UzKv00Kzo+hzmyBm3rS+A5vkQDhFWOFGu/EbLfcjn4YgXDgwz+iXWKxI4N53CX9KJmPWJKLxoa67sU/HlzNEUJ9q2g4IyDD9Cy38458PnaJE3FttwErzn79aHdH+wKiVAGaXIUT9vHGtlbG/Y/WO6r2dxr7AI7bgSbbNrxBHLFMFhkYJQtGVk57TmldgAMN9E1GTi3PucKBTA0fquaKi43xVszvRofY5Uz5NowPqhdt+eMt9kq2de1Cr4pKhiIV7q8wLt82vNbSLRiI1Z7/oD0KV0XTboPjfn/Bawt6F3L0jf5eiyLC3SPsedYxcCQ5sHq+Rt6VRW0U1q05UmAjh/zyfzovkTyZ+QRU7emHQEjwDyWOO2S9qVOGKtfcERjxQOkSR+AsCXA3iuqn4czanfsi+tCgQCgUAgEDhqOOIVTYY8FP5bAH8DgBVnvgLgF/e8RYFAIBAIBAKBA8cQ+vipqvokEXkfAKjqIyJyQMY/s0HgiBoq1IaHHIaesUxQ8d0ahWLlg3iZ0VBMkRWlxOpJ7p3vzgov+Vi6VO9owaGsN/2yTZ6wwmjKlnoEMHGorSF97MGhS1kEIaeaEkqy0A5RpSRno0lYvJCT2L2k7Qp6adltbRyCId6CBcXm+VsaPdRHl3rehkw5eucrDo3J6RScOuEekvZvHxzBSylY6Zb60r65PqQU2PY0FNpemM6a0fvQLbfZrOgs82hG5dQIaweNbVmkW7nNgyk+kgCKkmZbpxq6bY7o1KKHzP9thehF6dLUhZ+iLa+VGty2b4CuP5ciXSQaM3nNccmyrUShjtaI1mcxj5OGIem7Ix6nq3RdnXuBEmUt7nXtihyY4hdxxqd3P6T+yNeIrxv7WNriVTpOOnchYUwhwrG+8crlFcKsrl9i1evP5sQK3YdS31VnmqVrsVjH9l+jqW2b9UoZRAMLXmz71QMKyx3C6N8QDHko3BCRMdIpi8ijsSu33kAgEAgEAoEbBIpjJTR5OYDfBvAYEXkpgG8F8GP70qodQuG8ZXvJ+rXEY3tr20kkjuFEagrxSZ+IwuwyaiKIlHzMdhteUq9/7j2J3JxcnN7QhewdJmz1sBM1wawRwh4xhhcZK5KLTzaRwvyGC0AuUxRkmt0G73vBeTOuRKy8qKFXFcRFT+WU3nFcJMSn5QOi5PmcChGWiUYcMQUAsciYc2590cHiu958Y+sbE2Zxc71oW48FR4EcofGvi2ejlCPJhaXMbNHHwsqDV3hRjiJam46pPdFriuBYtY4iapfGxORkOx+2TrURqdVHN8tP0LUYrbbXYPNss3683G4/WUjXhc6bLW1GV5K9SXFd0jYccWIRnQka2NaFhRVWMYej17kiEtv+cCRp0lmvW1eabel+VlzLdA0K9oHuL1nst+lE42r3j0l3PrkMDonjJtZPHIxncUyqrsMRXF1J/V7YpDnR/IrAsNM2IEcvt85QH9BYGS+n63Jlud3G7kO1+1Q6T2N1AGDjsRcAUIUdAPNX2qjf3JXmPM1iCQB0mY7pWbNZf++WnZoRx8anUFVfKyLvAfDVaO7Pz1LVj+5bywKBQCAQCASOEo7LQyEAqOrHAHxsn9oSCAQCgUAgELhOmPmhUERuB/CjAD47bXcIzasVrufdNhQiCK+qCAs8xk7ibK1ag4EpBfta4RnleJcxbH1FaKJeOHyG8+7Aq1ixtNTu8kxT5YCptIIu2ckxPapwYj6DXdpsFqhHHyVRSVE8njy0Ms3ANJTRlJzAT9RGS/UwDUXVTTw6PQsvulUqasjjjC//ANGJNz789AKvmoLjy8njncU6s3r8cTvssydooeOX46y7Tbn/Kf6iu6xo07cNe/3pxBF42JhiOpzFKZvdVJCSbu3eS/qg8+YpR21LwozN0yTQWCCBWfJLHJEH42i1PfZooWn/iBP8RzZOe8RYTF0mUQhXEjFqGgDWzzbHmVshrz6iS8erW512TlLbxuSB5/pcFiIK+7/SvzZvl9rrNjl3On8e2XV30lA49YEFMTntYLM73otrzmNqsXseXM3FaONMGYNSYwpPSqcSkQenOlHT5iRu4qov807bWBCTf0/p98P1WKVUkzQm1y5wSgFtn9o3erDd3P1t3ajMpwPAsaGPAbwWwA8D+CBCYBIIBAKBQCBQ4hgJTT6tqnfuW0sCgUAgEAgEjioOqSH1EAx5KHyRiLwawFvR1D4GAKjqG/a8VTuFDqQya2C6dNylkgsVZC5yzlSdE852/PDcclgzYOo5DikP523OJZa8skCOYq2X9vXoA6bGc8k5+h66qt5CpVoUlU/7YrrDirGTdxyXpMpKUk4PsBJLF87lZVsXWsrIruWYFbhcOm0nlOQUFAreITbzDkXrllubFcXYHuD1t/3YlX0y8WCl6FSIlht3FamFr9+0+TREID9hhXDa13rXu45R3B+sxBYvMyUp+64V1zX5IfJOyWPNGz+tCprmCNGYIytPye2wjJQ5oozXqQ9tWq7QsbmdaTsd0xxdS1QuXYusOAbyHGTq0pTERvkCwOpNLcV65bOato9X2r5euNp+XnqoaccCXYtJolhHG+zV6HjAsiLd0ke2KhPL7vV8zcd87+uqhlv/P76H8v3BUR87qn++4nY9lPrLVVn3pDQVaTJ550z/eilJtI3Rx0TlTxaY9k3tI1W52JivpZlY2sdyO2bm/1ujKj5/kVwjltu0H6PLJ5evtMde75bBc2nqg8IRfygc8lPzPABfAuAZAP52+vfN+9GoQCAQCAQCgaMG0WH/evcn8hoR+ZSIfKiyXkTk5SJyt4h8QESeROueKyJ/nv49d5b2D4kUPllVnzjg+4cWRQUFjnKlF5oiEsgbbjlRvw0nUdl7M+oThewywtd6Tw15zk+H5jdPFmPkaEuPOGFae7Dtrc2iPo6YRzz/ru3HN3jRR45sZPGJ395WVEKJ4KcbYc3mTW10cPNM++Y7d2W9PIft57FX1VqcfbtvvrXImRUA2djnV9adjNk+cYsFYDhi3bdPV7zSI+bp84+0OcpDEimKxpGv0fz0bcZOhNbrA89nstK+HHmrCQbSPUk46GdVLmpRGxtfdD+bnGtFVtce20RuFh9u27PwUIoEUiRHl6+1+7Qo/Xw3ejRab48zXiMhSYoQcnTwxINtmxcfbKJKo+U2MmqilUIE0TPO2vuD3x92NZhp4PPMTATfLx0o3ysmU45J11/53mn+g7XIl40V9lN0qq0Ufovkg5iPOem2qZiDju+nUtR5K30eef6TLD4pxCtpDFAfyiNpnF6kcU/XYGIRXhYI8T4dgVHrl3hA0cO9v+3+KoBfAHBHZf03AHhC+vdUAK8A8FQRuQnAiwDcnlr1HhG5U1UfmXawIU8Q7xCRLxjw/UAgEAgEAoHjAx34r293qm8H8PCUrzwTwB3a4J0AzovIYwF8PYC3qOrD6UHwLWiY3qkYEil8GoD3i8hfoMkpPISWNIFAIBAIBAIHj1kp4T3GrQDupb/vS8tqy6diyENh7xPmdYc4tFAPpVQuc7zcOEw94z45ud3a00sV99Gyrr8T0QwzChrc9vL5cNKu55fYUz7MbQfToOYByEnwmcpxirYDkJHx+tMpFHHKC3bKHuadOvRh+u74aktX8Ge55lBGfeXUevq7/R7T6U65PUfwVKQxcH95PoWbO6B6e8bcjujjWSmcGp1qmLWEH7dxSKnBab6QnLpAVFzubRYXrKXjszfhBs+xLtXnnVvhJZoo2IIG5H71BA32tc6S1E4TvNCY2TpBApDHNcffomMuXGzmhqyRgIvP07vf2nnQKS4+0vbHfCqXNv9wKz4YXSZK2mhbGu9jK+vH1OGmk4rC86l33jrXjUq4Ga3spQ8J0/pF6oyXApKOU5tXSUBUtLcos7jZ3d7GR6XMnSvM8qhtbsdaSrch2l8mVFpxWolYbjsf0xMA2fnwvYu9UXto/4zi3jnuLNtXDLekuVlE3k1/v0pVX7WHLRqEIWXuPr6fDQkEAoFAIBA40hgeKXxQVW/fxRHvB/A4+vu2tOx+AF+xbfkf9O2s96FQRP5QVZ8uIlfQnK7w/6p6dtaW7z+kFS1YVQjH5qQvaqfVl5Ah/hZ9+8Lsoo3t350Wwam4x2cbC8fqpRDecOzbTYimiEW7sHscflNbJHuBkye652BVHdiWQTjCM+UtFGiTrJ2kbpmQJQ1vk9pZJCynqgC1ZHx1KtEUUQHbJ4+TWUUnfG42hqm6jHACt9ltcHSQbEzyOV0je5AsghgwhnPFG/8N2x3bXuTD3XXlWjoVQOz4WpsvW7sQbtXa4S13rouePdW206pLcL/nqO0OxgS3g6+BzSceE55NCSONmcmZE/5xTJBFUZuN0+01WLvQrF98hOaoCTtqVUEsYnWm7aO1284DANbPtfseU/WSxYebPhxdvJqXFeIVjtzZeotyctWOQrQ26qzPV4CjVE60trg/8HVN860QczgRSbciFlgk0TmdMhKoKUq23o0uA8jjo4gap2utm5WoX7ax8Sx6WAjiWDDR5zmOkqZjypX2Wk3Wu300K9SzcKN29u/AiUjODSFGd47rQB/fCeAFIvI6NEKTS6r6gIi8GcBPisiF9L2vA/AjfTvr7SVVfXr6/8zO2xwIBAKBQCBwg2OPHwpF5NfRRPxuFpH70CiK5wFAVf8dgLsAfCOAuwFcQ2MfCFV9WET+FYB3pV29RFWnCVYAzBYp/KFp61X1Z/v2EQgEAoFAIHBDYx+EJqr6HT3rFcD3Vda9BsBrhhxvlniqRQifCODJaEKVQGNe/SdDDnaQ2EnI+lDDrSTiVF4hGqFITk//c+WDPv+/TJcVidM9QgPzQ2MqmGmu9Fm57abbKNrjiTEcSoBQ0OWYLYGfYUwNPF9F3v8JouC4j40uKfp4q9uOjS4FBq+yyvk2OL9FnnGTxXQ9qD9G5NFmVRBGD11st7EKALWKJN613JaKsf08RB0RlTM2izFjdBdTbEUFobR8oeulJkyr8fJM63c9R4egOE9nbhiVyPSwcOWMXNHC8SSsjV3rLz4OV8Tw0jGMBuNx2uODqEvNvNu44NPHc8tpTK45YxPA3LXmWHNE9cpKM2EKmpLndaLZN29ux/FDn98sW310u8mZj7ftXXgkzR2miQs6NfWHl0LjVbkB3QfH7KGXlrEoiKsT2fZMkfJnL+3IxjnNsaKiibW5csydIAv3WPC02HyWVRJosDhuqztfXHB/2j1tUrmPpXNXElGZQKR6jtZNhSDOEZr0UMa9IkubY/w7tJ844o8es9DH/xIAROTtAJ6kqlfS3y8G8Lv72rpAIBAIBAKBo4Ib/aGQcAsALjK4npYFAoFAIBAIHHtcB6HJnmLIQ+EdAP5ERH47/f0sNOVXDiVa9fEBXaGK2tILbbd02y5L2/WB1VZjR7EKR0Hn+TtRmSpXlcl0CRzfLNpn62fF67s+gzohKs9RwXH5OlMqKyuWTe05q58df9dTFAL5PIyKA4DJmZbWNYxIgWcUDiuamV5WT7lpFBlRaKNr9D6W2jSZpzJTS+21niw07ZxfaalCUyeLR5EBpJKd3XfR87wURy3rUp9MDxcUf08ZPNtPkSrgwCsP56VGzHXV48Vnpq7MxnSFVKgM279Hd1XmQ6b/PC9G3penAPf86gBXDWzjMNPEKD3nshcgjbmTa+36z1g7BwCYf4RoyEspJYHKkBWYb9rOP5LmnTe33F4LLmM3fqTxAuydI9yH1nc1P1UbK56inffp0ZwVitUf+45i2amCV6y3/fRQoC5dDrjzVhKdr2tE5dLnvA3v0/rOKwVI7SzK/vE4H3Wp8/y5h6YuPFS931HHa7SWnuKVPG3VxwfkU3jEMcSn8KUi8iYAX54WPU9V37c/zQoEAoFAIBA4YjhGkUKo6nsBvHef2rJrCLpeUaLdyIa90TXLhpR/Tsfx3lIq/oBuBCD7RNX88Hbg62TRpUqkJ79NczQuVRAR762awR5r7NbuRFNyRYPam21aX0QF7c25FvlwIy/cjhkTpz3wuVsfcTSNv2vRNtqmuLqWyMxRrKVucrN4QoDNbkI7+7OxyGJk259q/R8n82P3u3mZJaKzEImPb75rK91qLUXEYMY+9iKsnc/5OE7E0vXIrOzTzqmI8DqRHBJMiUUqyUOzOGaKrKjjD1f0hxfFciuS8HnTZxtzHMUoqv1Musvsu+Lfc3Q0Lrel7woLkqhSiJoQiaNlFDVcsuW0zMZKMXYd/9HR1XZMnb+n6W+hSP/iva0gCg83n7USfcyRXY7weqIkvgZpvZ5uo/qaqouYWKZpOvXxtaZv+itRdX9LPC/Y2jYZ/DtU+y1xkEUY3F9WbYXmsjr+jsVxPA8/r+3eXAXy3Cv8BWeM+rv38gr6mAg/om59tN5dt9fYB/XxQeNg3BwDgUAgEAgEbnTEQ2EgEAgEAoFAIB4KDxNEMpWUhSZFMqwlglc27/M7MniJ8yMn2RXIpZ6K45h3HVMxLNaw+HNBTTiUI5ensxJ+fBzefz4OizFmpFtrFIbRac4+teabZt5VvJ/s5VZJ6vaEBk5JO7fMHYtcvDJWTDnaMocWKbZZ52R9op+MxuT+Ml/Gk21pNJwkAYh9l1hbo+MKjzP2BLN+p/Fa+BReSTsjP728Ty6HxakNRq2wN5njZ9ZfSm7c2TenCmTUUgXs+N72LBRguit9Lo7jjAk5RV6PNzXeeRuPapeN1ts2zf3VpWabRy617bTUB76+nmDGE/MU1DdThU7fMI3plWhbaihYXaT+6PFgW3tsU42Uy8udvpvG+VWjkgf45lmKDi9jSjJR81un27E/mWvWL1ylObTSUp+5NFpxP3TuP9yfk+79g70TLXXGKGMA2Lipue6i7VycZzo+p6T4fnltydSe9CPPz5Dv257fam+6xaT7XUc0VswrZw4LnH17Ag3aJ6MoIWtt2kHqUy+l3DMfxPmNLTwnsxhn/5/WBMeAPqaax51VwGGrfRwIBAKBQCBwnXDEHwp7VRaqekZVzzr/zgx5IBSRx4nI20TkIyLyYRH5gbT8JhF5i4j8efr/QlouIvJyEblbRD4gIk/a+WkGAoFAIBAI7COS0GTIv8OGQfRxemB7AoDMB6jq22fcfBPAP1HV94rIGQDvEZG3APguAG9V1ZeJyAsBvBDAPwPwDelYTwDwVACvSP/PhEzb9Hig9SmJi+9aSJsVnBbGZkrI8yHj9UZtsN8Zq8NMCUoRe1ZMG/pUymVJsinfLag6ohQSNSas0GSKRpIPGSvOvP33lZfr85Ls8/JK9EHu62an6b9JZxnDVWvXSuM5ylguSaaOsjpTV9THSnRaHn9cKszKqbGnJFPWycNtxGpaVtZdvtpsv9I1SdPCB4xV4+udY7rlpfrUx7Z/pn+Y6rX1tB/ZYuVs17My05Q8Dvncrc28jR1/qd1m85Zz+fPyrQ1tePXWdryPV9vrfu5Us/+lj7frR9dSf5JSmNXl5gVYlMFzxm5Bfdt5FOUHu15vTAXmsVD0EY2vue67vtG22pciM6rQh9791NazI0GhCm/ObWuR+ssoXJ6KfaUomWK3uT7fVRwXfcjl1lJ/yrV2LMjZVILvdLuf8al2Xo6vpc+FCwKdm6VzcOrMTtwPrD18z/D8ZR0leYEeurTX0cLmnfiUsTrzttj/rCYeXtt34iU88n9v3Xu0o4zeVxzCB70hmPmhUES+B8APALgNwPsBPA3AHwH4qlm2V9UHADyQPl8RkY8CuBXAM0YJ1aoAACAASURBVAF8RfrarwH4AzQPhc8EcEcq9vxOETkvIo9N+wkEAoFAIBA4XDguD4VoHgifDOCdqvqVIvJ5AH5yJwcVkc8B8KUA/hjALfSg90m0pfNuBXAvbXZfWlY8FIrI8wE8HwCW5FS7whUNOG9y7IZub+21QvNOFQQ3wdt5W1Z+E7T9r1FEUehNz3GXL3ysduIVZz5lRdWQriiAE+flRBNNsQLrAAoPPItYcBH0/Mbp+f/V2mkfKgXt+9z+3e85CcnFW731g/cGzdePE7Q9135PiEK7Ei9Bmz0Fbcz1VIopxmQ6D6mJeTzhjYkxyKut8JxbHe7XOQ1uFRNuk/MmD1BkzYuc1MaRJ26yPqJznPvU5fz57JUm2nr6LzmKScKdFYsEUTsXze+uFSdsnmmjT+OrzTwYe/cP9hHkSKNF46mCR280JX236i/qJN4vXGyWjVe7XozN/j3vvO4x2bcxC66KaDp9Xm4ipvOfvpoXjVea/hpdpYolG10PvZrPpbEBRYR2ze5DNJ4LX74UwR+1+5k7mUQwS+2yCVUFGlsf8r2eKiblnlGuFNI5DRc+O1UZ22q/Yw5jAbiR1ZYl6/md8KLXNXFJFgNO91PkiKHkCLJfSWRfKnv1eSseAA4jJTwEQ34JVlV1FQBEZFFVPwbgiUMPKCKnAfwWgH+sqpd5XYoKDupSVX2Vqt6uqrcvyFL/BoFAIBAIBAL7AR3475BhSKTwPhE5D+B3ALxFRB4B8PEhBxOReTQPhK9V1TekxX9ltLCIPBbAp9Ly+wE8jja/LS0LBAKBQCAQOFw4pA96QzCk9vHfSR9fLCJvA3AOwO/Nur008eVfBvBRVf1ZWnUngOcCeFn6/420/AUi8jo0ApNLM+UTWjg9h7unJ9sKR7aNsqiE8jOlQWFzdY4DpkOcMljWDl0lIQDTVH0lvqycUlGuL3lPUey68NXSKZeaKQj2xjOaqvC7ov2bIMJLciYUZNi0PmaaqK8/PAEIizW8/S84AiHve1xyjI9jQgMqKdXXNqO0skgBgG4QJWUl7WjzTMXU/MpS+yYnFzrbAMBozcZfS23q2Sa1Yu3RbYrF/INURs/GokPleaW8iuVOEfvCI43HuZ1HpVxWLtdIPFTeV61MlYkxPKp+1UnbIBQt92g9prEdH8o59oyzkmlMXTr0cUH7OyXriv7M3qrUR0Y1M+VcCBG612N8Zbn5n9JdlMYkHH/AwkvSPjBF65RTLO9TicKnZePVxeJ4wDaq1xOD1UomGmx89N2HOM0lNX3tQjsXN0+T6Gi5SREYUR/rmK61ffDKuvX4y7p+uIU/KF8D5zhevzOMcq55ioqTOmP798qYzgInbUidayVOGozOSLs3x5Hufpz1pfhkD+npGXDU6eMdmVer6n/awWZfBuB/AvBBEXl/WvbP0TwM/qaIfDeayOOz07q7AHwjgLsBXAPwvJ20NRAIBAKBQOBAcKM/FIrIH6rq0x0T60Hm1ar6h9gWNCJ8tfN9BfB9s+x724bNf/nNZ/hbQlFcniNjFsXgovEW6XEc5XubWiQMe1HM6bJ717KmsJSg7ee6IhpL6tfKW6ggWWxM/ETh9u2y5+1eum0qxQeOsGajG3HwrgWANuowpsiH9ybp2O1wwrpnfSNrZAWTojrKbdvsuQPYWGGbEsdOo6hYkaxXhMcutz2d2+gaVVNZpuolSQxQ9HHqr9GGb3PjIvcDRXDZxmZaNYciWtqdLwW8CB83rUeo5B0TjiiocEHxqhw4ifNsP5XH5+X2OKNrLGRK85KFM7afItrF0VZn/PQJq7zIaM89J4+JVWovsyjeXHYEDZ5lkTgshtdeADmazxVH3KofThUkAMByim47opKyMk43Ssbj0O7hm0tte9dPt5ucnHfueftoadJnH9Zr27Xb41vfjSssiRMFLa611H9nq6Ihb17P+Htd9JfLrHUrIu13H+bj3egPhar69PT/mf1vTiAQCAQCgcARxRF/KJxZfSwiPzXLskAgEAgEAoFjh6HK40P4ADkkp/Br0ZhKM77BWXbdoKodWshNtnUSsWeC0Taen14tqXdWSDfcLadbUYB5BgJEBVHFCi/8L0tk0XOm2Rf7DOqV5B+25lcUsKVSodi8QvS535lZAH02KsGjxvvomcr6fI0nrXAi0weFxxlRgV7lBFu2VaHQvGvtbe/QIgUtTwnrLY19YvsmVdp0kqpCCLdz06ESefu0fnylHTNcBUUdb8N83bgaC1F54hmz2fio+q51x0yvYMFoSicNoQBTX976vgotRIfZ+BVP0MSb8zLzMeXKOl7FEkJOT2CRhEODFtTXdjFdZ70zPq2PuR1eH1WqD3nUW6aNPa9XtP1Q3IfMl5H3zbS9fWBNEY+V1DcFwZ7v67PR7gAgSWSzeLldtnmiPQ9LzVAWmhTXxfHBzc2Z/kvP63PaD4+9WQ0Pdwt1UgFqXrGOeKUQOk5pcu23wB1rs/421zw6TYji+PG6NPMeQ1DPkTsqmCWn8B8C+F4AnysiH6BVZwC8Y78aFggEAoFAIHCksA/RPxF5BoCfR5Pg/WpVfdm29T8H4CvTnycBPEZVz6d1WwA+mNZ9QlW/ZdqxZokU/l8A3gTgX6OpS2y4oqoPz7B9IBAIBAKBQGAgRGQM4BfRsLX3AXiXiNypqh+x76jqD9L3/xGainGGFVX9klmPN4vQ5BKASwC+Q0QuAHgCgKV0cKjq22c92P5DieKdsdRPsfkUqoY+q1MEveoJZegJixd+iUnxyPTx1qNanY+ViCrUpeSdl/e5RD515k/G3mQepeTQZX0vPl5/FMo0VoCa+tijDB1lI+BTVyVF49GCSSle7L9Lp/Ixc5sqZbtc9VqFbut+j85nk+gyp7SiziW13EJleibaWLYcJS9oXCw6NCY317kG4nkjOt5zgE+TuWpbpiln7q9KyoKHXMKxopJPKFrrUXweleyol4t0CqZL07ydXGhlrFunmzk49wh5Qnr+gOwP6fk29nn1FWkf9XMraL4+1wBWcOZ9870izWX2clxcpM9p/FHahpUKLFJKOK3DjsnKaIe2hUfbz3eV4ECF2kz9PbfcrpzMsauA3R+ml5TzwGrsPiqZvkjH6aYSFV/tY1jz9hW6NP9msYdnN+2nrzxcjUrevl7I+3BHQTTPFaCGcdf3M49dvg+1Zg17jn1QHz8FwN2qeg8AJO/mZwL4SOX73wHgRTs92Mw5hSLyPWjqH98G4P0AngbgjwB81U4PHggEAoFAIHDDYO8fCm8FcC/9fR+agh4diMhnA3g8gN+nxUsi8m4AmwBepqq/M+1gQ4QmPwDgyQDeqapfKSKfB+AnB2y//9AZI4S8Tv0oiLfMKzQ+c0SyZ33xNpuS+fXqcl405rd68/pinzmL+nDbVsgbL70ZK4sL0vpeh/xapGbauXM7qI9zIjNv47j2D3LT3wm8iNb2dbX1s+6bUUtyTtejiJzYubPAgyMGtv8iEbynv6y6BL/9F5VqduH671xrqUXbvWh837FTRKOasO4Je2z/HDHyKl5UK4HUo8/c14VHX4p4rd/cRvjXzze32FPr7f7GKxTV9/wSPfBxsueo73coSHO98By07znzjvZV9DFHWywax36aFsWkZXK2jZKqRe44Uuj4//GyHO0rKglRWCeLuZz+4NPhP+w+6czralTHKs1wVNaLrNL6HEUtIn3OvnuqzxTnlqP13ahtAb6/iPNb4FUi8tpU8R4dIp6Ztq4Qpznn7kVGC3hRYR5/Jmri9TbvORp/efphdoXhP103p4c2w6tU9VU7PPpzALxetXii+GxVvV9EPhfA74vIB1X1v9Z2MOShcFVVV0UEIrKoqh8TkSfusOGBQCAQCAQCNw50R/Txg6p6+5T19wN4HP19W1rm4TnYVvRDVe9P/98jIn+AJt+w+lA4xJvlPhE5D+B3ALxFRN6IpixdIBAIBAKBQGDvfQrfBeAJIvJ4EVlA8+B35/YvJfb2Apq0Plt2QUQW0+eb0ZQbruUiAhgQKVTVv5M+vlhE3gbgHIDfm3X7Q4WK6MOjnDxaZ+bk4Z3CvMlWHFEIwwu1c4I2U8X2mctDbfpChQyvn7xzlx5qwim8XuwlJ5d3RT2143iJzcVXsx8i8TdMfaXydnpiAR2wn9lmdyz0lkvySiMWzWVKM10PPo53Xbxk/rnpwopCRLPWLWlXpA04JQ/hiRyK9Y53mb0m8wn3lanrGz9535VyWQ59mFMwCsHB9NJqbrk1ZrsSNV7Mf26HUfR0/UcbqQ83ffGSS/tLVwBQLLPz5fNmIZN9j8/dSfXwhQKVMZXouKJEYzoPoXGoJ8mT0Pa/6cwnnt9MwSaqecRej+uOCIcpw3RMJZq6mLdGP/P1P9Fss3ah3c/yY9p2nPxkkwIwf/EKtaM7Dzyfwl70iQ5nLQvKYEGc3T+KFA7nnuLSy3St+gReM6LYD5979hTsmcsM29dcV+AFAHqiuTfqSRI8rSdvy1U2v9w/7LXQRFU3ReQFAN6MZoK+RlU/LCIvAfBuVbUHxOcAeJ2WP1CfD+CVIjJBEwR8GauWPQwRmiyh8St8Opr7zh9iWKQxEAgEAoFA4MbFPsSMVPUuAHdtW/bj2/5+sbPdOwB80ZBjDckpvAPAFQD/Jv399wD8ewDfNuSAgUAgEAgEAjci9sGS5kAx5KHwC1X1C+jvt4nI1DDkgUPaULVWVFTAtnA2h64d1ajn2+T5UFU90ixc3qew7AmrF4q0UVJgkQ9hVnWS4rigXUx9TNRkHw3ulWAq4NELU/q9aaZ57HXLslVp2RnpenFK5xXKSCoVODnV0EdbJ1rqYW4lKYFJpVoo1jbWi/Z22mxjoWhUGo+sHvS8AreI1s/KWKL3mFZJdInOE0XCY8Upc6dG8bGvXnEeiQokhkUdqp/Pd+Y0CmdeFe2lDmGlert5WkY0kZAHY76uTLtb2/tSJPj69SjN81zn8l5U9s/KRi7c257bgtGuV1qfQvYktHPj8ynSAqx9nPpwops+UNy7xOhShw6nse2lYHiKY6BVdeZjo0LHMVVs9x++Dznq8xGrwm18DkjRyOdJ431yqu3PUb43dv0hT/63dtl4rT230Wq6X1bKHFo/qnMfq8KjjftSFqwkZqFYdn62eTqlH63e2Vn0secz2ENzz0ovOyVcAfjUOHtWGngcj51tGGmfWyfp+iff19FOnCSGYvY8wUOLIfTve0XkafaHiDwVwLunfD8QCAQCgUDg+GDvhSYHiiGRwr8O4B0i8on092cB+FMR+SAAVdUv3vPWDYa0ESLPZ8zeWEb+23COGvLboRdpKN587H96vuaIhi1nAYi9ofFxRs7bFFcH4Dej9N0yqTtFeri9/AbePYsWFd8sLzJSYNLtTz962ONxlftjwAxx3j6Fk9NT38mpNjq4daGtCrN2y8nOLucudSMsRWS1Lzrgeo45b7ZeH/VUmuAIn55pkuDXP/Ncu2zc7nO03r1eWyeagbp+th3vSw+2fnoLDzTGXXKJEuuTOKkWbfMiBXnszjtv/IAvIOrzYLNoGkd9T7XXb3KuOQ/Z6Faf8CLSAEVjpJIEPwU13zVdTZWGHrlE7Wi+O6E+5GicJsEDlmjscn+YJ2nhy2f3Kd+nMvfTfE/kkwVV1scUTS8qKt1yHgCwca69Jy081MwXWaYIHEc5V2388HXp+jIW/Zm2522K8ZeFWd2ocHG2NO8zeC6nz/P3PtQ2/WI7pqzqjFKlKLu+AIm0KsKdvB9vrvduM100UjIRzphNy4px1v3WtjZ53+jxU+xrhxcF5fOwCmE8N6YfJd87tdYfdhy6H5rHq1WK2k8Ijhd9/Ix9a0UgEAgEAoHAUcdxeShU1fAkDAQCgUAgEKhA+vJhDzmGWNJ8G4DfU9UrIvJjAJ4E4CdU9b371rqBEJFMB3uXRbxi2SdaCtb8jjh5HMSMeDSaS7uca2nKnJhNVO7IErR5f14h+vnK5TF/MPIhtP0X3oQ1QUTnJHrEIRVa1xWieHRJT0FzyWKM7rJyP06pNyCXPOJrYD5kE6LYt862FN3miWZfY4dqdZPYeXmN5jbfPi7r533P821kastLWKdk/VH6LFvtfjZPtbTd5smu6GlroWnJ6gUWvJDI5lIzTsfLJFRa6/H1ctIxjDYu6PKCLpuxnJ43H0bOMiCXSdOF9pjj1br4pH7MHdBLXioKU6N2fPYH5UNaugunLPA4N2EW+xza/vl8PIq/SOB36HRuR0rwl/Nn87Ktm9vPlz+3oZLXzrXnax+XNir9an3D1y3PDeoFHvs2VrQ7R5rFzrnbMKXxKp5ggWH3y2utAEgmXdq2LI3I94KuR+euUClJZ+kJxVF4WjqCuuxj2OcPugPURJoZXn9USivmb/K8y2UMu6JBgH5vq0KT7h13lEpMysoB+BQe0jzBIRgyav5FeiB8OoCvAfDLAF6xP80KBAKBQCAQOFoQHfbvsGFITqE9438TmoLNvysiP7EPbdpTiFcEnW05SMxhUT3X3gOgSBG9+Vhk5GQbpdr8jPP58/JtzfK5a+02S59qojGjy06hd7RRA+UqFvyWavYyKxQdSNGjwiKj783W3uB2EiGhfZVClPTmWpP/2xsgr7doCH/Pc/UvlnUFAhyFkmQ/MaII2wJFweY/mSIJvM2V5WY/laovrVVMrSqEJ7Ixy5lK1NYihWyD0xOF0CQGmWdLkq02qrN+oYmIbi6119UihZtLbRvXT7frT5xo5sSYhQIm4NnyowOabgmFdUmyVimqDBS2Puk8+yKGHCmwvtugdlDS/+hqivBTdRqrbmFWKsWxt+/f2u5EH/qq13BEKgsz+LpdTWNqqyuCAdCe22ZX9FEs3+y2vWAu2PZlim3HkGo8jHGqzLL0SLt+4WIS1lxto23FuW90q+hYm3TctXIC4DMNTtUY9zzUieoD7b1kxJGt1Hc8L0lUkrev9IdXIaY9XlesByCLEnvhRA0LQRMfyrvPWn9xv/G83Zwy9yrCqxzRrggq4YhGPK1nr7AmRZKlUvEmf2YWjX/n7Dee+90qmqx3x+O+4BA+6A3BkKeB+0XklQC+HcBdqZ5eVDQJBAKBQCAQwNGPFA55qHs2mtp7X6+qFwHcBOCH96VVgUAgEAgEAkcNx8WnUFWvAXgD/f0AgAf2o1E7haq2NE0KHxfihT4qaNak4ZGTGFtJ4F47k6geisoboVUUbS/oQ6NT/cuTqRMKhxttPKRiSfazqhUsb3c0034AX8xTwEt+7vGuy83g6+cltzN13nNsj3aZeNfQqViya/D5ziq8YPFCOs8R0eHj5ZYmHZ/ojpvxWjpftrtbbfc52nAS/O26Mn3D/mBeOobRtUwzbXZTMHppzIJu9Xw9HYFHUS0hrWfBAYvKbP9MsbHPpc3B4vo7SfC0/63zp5vV6+S75lQSKuDQpexJmD95wouacMbEdlx9xNIC+J7hjT2msdfa785fbZazB+boYqLGr5EazwFT7IW3qq3n8ZFFZ9QHPO9s3vI4NLqcU4Ec30e+lnn/NZ9RM7LcSRWMmu9rn9Bp6i553vn+lO361GaaD+re46ffe6SYY6kPuYrWPPWx+U+yMDOv4xSb6R6N7u+25xvseUZSm+d4HGfPyYMRmhzG6N8QDMkpDAQCgUAgEAjUEA+FgUAgEAgEAscbx6KiiYj80LT1qvqze9ecPcAsFF9BxXWL01dpmSneeRzCHq22VNHcWnOsgqpbScekAu3qKfWUQ/VE0aV2TJgO2ZquWM3bOjRCQf+RYtEtx+eoaAsq1vWucujSHg9Fj96tUo593lh5p106pdcPsVhu44N36fSn57FXoWBdlaMpDlnVrd1roCstfTx6sG3zopUdYy9HK5c2V6GCrSTZ6mp3fcVnMvvpscrV1vM1mTjK27556tGqRYkspw8dpwE+34L6sk0XWwpsskRKYvOA5PuDUVI8nintY/xwUyqQy6FNrqVrxIr2Ig0itZlSH4ozn6a2ddwFgHYOb50m304bhrzNCqVTmEcrUc6Tk23frJ9p+nHhUvca6MSh+oH2GgrRjIlK5jJkYP84u6ewb+NkB7Rr0Y60H1aK2/5r18XyfbzyowTlpnn3nAqV3MEQBwjtST/x1MeOcwP7Ifa2yfbFpSaZnk5tEuc+p3zDrN07p8Fza+ih9YuUBKOcdzKOdoJjYF5tTsxPBPBkAHemv/82gD/Zj0YFAoFAIBAIHDXc8JFCVf2XACAibwfwJFW9kv5+MYDf3dfW7Qb2NjUpMlabVVyAm95W8rUs3sT4jbMukuAIizzwYP58wQQRnPh6+WqzzXLr76VOAr/ymx77Mo27XoDqRLF6YdEyfvs71RaFz2+hLF6hKIhbHcFbxpUCvKogXuF0/qNH/DJrVYHCJ8xJaM7f6xN/cHu8KJr3ht4j1imvpbXRf5P3hEbAcvvRolN0zMlW9/h8zIkTFRbPE6wQQVgkqEc81JdgP2vEYAjSfPNEDEAbNZqcbaNpk8X2PHMVhCL6mCrJcNUgjqxaFQwWc2wTvjU79/wsaf1mV3TmzpdatD1tz8KKrcXmfEck9BCKok7ONP2webZdv/IZbdTw0uOb756+v2370ie6rIArqOE+TAIQoQht8VU7z81K9NG+N3aiWLzeuwZ8/7Zz90QMQBux5DHD89ppu8547505QjYL7JxYzGN+u/Q1HpOtkHHAj4UnbvR8cGt+nIa+iKjH4DjeieyDytFLPZXmM4tP7MMuhD4z45AqiodgSE7hLSgL7KynZYFAIBAIBALHHjKjocRhxZCHwjsA/ImI/Hb6+1kAfnXPWxQIBAKBQCBwFHFcIoWq+lIReROAL0+Lnqeq79ufZu0U2oaxnRJs2XqKt+AwsyT6YNRNym3WT6FLODRNAhK51FDFBQVnYDqCt/dC6Ex9GPWyRonTlqjOdPhOfPW8JNlauTWX2uo5plMeql8c49DLOxCXzAqPyi8+jyvXxaH18/UohBfTfRlt6yJB2/X0oj7ccGg7z2OPV3PbpyVuV0pf5f4u0gvseERtUtvUE6944iRup0NzlaITa4fzvcK7sP08OdPQpKuPIfp4vm3T/JVmX/OeCIqpOD53KzXp0FRe+gfQ0qg1OtWlvLYcqs6jj9kvcckpeef0jdHmALD4SLv94rm0noeZJypy6EPuwVEqicfLihKeTspKAU/wYFQwj2cac7Ku3fUmgqiVCjRBQ+1+Zt6HvKynPGWmjQtfV+f+5PjgFlQtz53UDyyiyuIp8pksjmPpSd5cZmj3/sJjrlrK1Lbxfh+8/ffdowsBkNNOSoOwe1qRPmBeod49ch9ww+cUMlT1vQDeu09tCQQCgUAgEDiaUBwL9TEAINU6/rsAPoe3U9WX7H2zAoFAIBAIBI4WjlOk8I0ALgF4D4C1nu8eGhTlgaazVBXFMivWUqievd4SXVaMA6af03eL8k5JKSZEExQqRlvGFNmWr6LcFSYOhcLtsPWscuTvukrjdE5Vbzvb1mnPrJ5e2KYa9+gJr4RfpU1T4SnOmf4bO2OFaZctRynq0Yu1VIH9hPRQuEZ58roth7LmN+O1dGvwFOd8aKb/Fhzq1KMhmULj/kypE8Ll1myO8tjju3Xq460lmoPMklubt4bf4YtrmVSSo9On2uOcailrTbSfzhGleI0U/knpXJRom+zA383mCNN/TC+mvh3RNuOLbXrK+a1zzeaLHt3ptyf7mBZj3yhDVvXSufdFWazcGpcvtPnCY26NfqLsnuWN8S0/zQGOGt9Db7lGD3wfsrHPfcjttDat95Ro43tgGjPKZT8d94E+FL+dlsLDGQsVF4YOeF1RstBzLXBcIfheYL6eY/L15PuxzZfVdv1kvafU5F7jGD0U3qaqz9i3lgQCgUAgEAgcUexXRRMReQaAnwcwBvBqVX3ZtvXfBeCnAdyfFv2Cqr46rXsugB9Ly39CVX9t2rGGPBS+Q0S+SFU/OGCbg4XS242XxGqJwBQSKDzp7O2VhQ1OUrgWXl+pC8m/rxB7mB8aJXrLVhIkcIHuNXqb2pqSwA+KROzgzcd7+ysiV/xC6lVTmNUTsFLlJEdHi7c/S2Km7Z035yKaVfjgpc/afVvliJQbKWB4lTFYAOL4EJbbp/7a6EZTPU+vYlNOPvf27b2JF9UWHBFUIV7aQfTRiS7Bixr3+X85ifUcHZSzp9vvWuUVx/+vKpyx43NVIOsv7iP2Ck1VheYvt9dqRFHB+Uea43PUzqJUqI3tOUdEc6KJCm7denNetnGWRAFzzXfnrrZtn7vaVqqBF+XwIrROf3C0ZGwJ+KsVj8W8rS9oWLB7wSm696V7XtWbzsYPe3QkAZIUc4QifBbdokifKxDg/vDGviMaydcH8AVgPEd6xvTMEcJCUJeuATfX2lG7Tzn327LyivkHUuTMhBUcLeXr4ohk8m/iLr38XMaBI7h8G5r2W1ITN9p1X618186dhSbWNwfiU6h7nlMojcL1FwF8LYD7ALxLRO5U1Y9s++pvqOoLtm17E4AXAbgdTQzzPWnbR2rHG/JL8fS0wz8VkQ+IyAdF5AMDtg8EAoFAIBC4YSE67N8MeAqAu1X1HlVdB/A6AM+csTlfD+AtqvpwehB8C4CpjO+QSOE3DPhuIBAIBAKBwPHC8EDhzSLybvr7Var6Kvr7VgD30t/3AXiqs5+/KyJ/E8CfAfhBVb23su2t0xozxKfw4yLy19D6FP5nVf0vs25/3VBQdZ6PXF/ZHfJAOtOUgNt4TEt3jVaacPb4Ukv5sEfSZCklRDNLbf5hTB8zVeyVJKMQuXreVn1w6PTs5UjZwzvyNuwDU3jmobXl0PabvhDEPLhkicQ6BKPBCsrIUCkKP43+cb3DanDo1DJh3fEucwQ1JaWUllXEGvk8KjRm/h599sQt3tgvjqNOcrmTSuCeG1PG7BWaaKqCDOexnYvX93gscjtyfxOnlMYXX0ueV6NEJbdEbonRcprPRDlrKtFW9DvTtCJy4wAAIABJREFUftItG2mikq1TVIZsrpt4z/6ALADJ1Bd7Pdo4q9Fhdu48Dk18wBS7Vwqusk+7/4yWifp2/N+8eVXczyzNhvuQ730b3ZQE16OPx6nRwrX0Eqdt2XOWvCmlEEEkL7+aF6RTvrCTulTDpDuHesH30KIUpQnqegRxfe2w8+HrMkCc4gr3Zk0/8tJpal6P6f5R7TUvpcVSePbjt83BDnIKH1TV23d52P8bwK+r6pqI/C8Afg3AV+1kRzP/+onIDwB4LYDHpH//p4j8o50cNBAIBAKBQOCGgqJ58B3yrx/3A3gc/X0bWkFJc1jVh1TVkkhfDeCvz7rtdgyhj78bwFNVdRkAROSnAPwRgH8zYB/7j763NMAXDwDTZfVA+wa+Tm9qPddU1lJ1gS22mUhv2KuVZGpP8FCcV2o/vxnbORUyf+et330r86M6O6kG4qGI+lkh8yVqu73trjtCAQBy5gwAYOszLuRlWyTcmf/UleZ7Fy+323sRJz53x2rEFZK41Rp8exnNohKOLsz4tu1UKSjgiIq4SgZXNLCxwJFT2UgRJ45sqP95ZlibB+RvuxGFDadCyICkcFfwYuKlmnggJeELJ+hzJNmi+Hz9VlOkcM4fH/m68bUwcRrte7TBifdS/N98odtH6olKCpGEdNZzVNDOTQtGYoBoaGWls96NLvZEjXPUZmW1s6zZp4nGavOmazXkVjlx2une64tldBivGzwRzazzu/gu37e70WUv+lyA7xXJ6qiwPEvRbblC83vkCECo7SZ+5PEh4EjyjNY8tbHgHLNdNPu9J7Nb4t2XkX87i7F9QBHC9oB7vsd3AXiCiDwezQPdcwD8Pf6CiDxWVR9If34LgI+mz28G8JMiYj+eXwfgR6YdbMhDoaCcKluoRKUDgUAgEAgEjhv22pJGVTdF5AVoHvDGAF6jqh8WkZcAeLeq3gng+0XkWwBsAngYwHelbR8WkX+F5sESAF6iqg9PO96Qh8JfAfDHIvLb6e9nAXjNrBuLyGsAfDOAT6nqF6ZlNwH4DTRVUv4SwLNV9RFpXul+HsA3ArgG4LtSib1AIBAIBAKBw4l9KHOnqncBuGvbsh+nzz+CSgRQVV+DAc9qQ4QmPysif4DGmgYAnqeq75t1ewC/CuAXANxBy14I4K2q+jIReWH6+5+hUTo/If17KoBXwFfbDIM4tOv87M/FstJQTnMPOesKXyz2OUzUKNPDRuvUqIfsl+hXVjGqoaCU7Jx2UvTb8dJqDum0b0ZKWb2kbKCtWMBVDBKlXJtKRo0sP+5kXnb1se01PPuJZvuTn2iT+UdXEt1FYp7Ct2srOd8X1SfmivYA8P0Fiyo5XO0jnSf7VM7IgnrtKKk4p3fmW68/r0qGUHqCXL3WrKuIm6aiqDjBY9LGKVeXccYHjxnPU87x4BtUfcAEL+jpL0+8wt9j+jinH9D1t7k173vKGQVc0Cdp/+NVouUodWEyZ6Kiil/eyMRxRPs6PnNFSoyN42I/Hl3aTaOpzkHrJ74unpCgoL5T33DKwpbT77UUj9y4rh9n4XN5qrkv6ImWtperNM4sRYDTWOweWlTJ2Z3va2577aHAju9WPGLxSPe+XqSH8Jhb7FYDMi/KYq67QjMu4ZPGFM8B77s7oWIrv3P7SuseNGVMOOpl7oYITX4NwD2q+nJVfTmAv0zRv5mgqm9HE9ZkPBONSgbp/2fR8ju0wTsBnBeRx856rEAgEAgEAoEDhe7g3yHDECXBF6vqRfsjGSF+6S6PfwslR34SwC3p82BvnUAgEAgEAoHAzjEkp3AkIhesPErKBxyy/VSoqooMD7yKyPMBPB8AlnDS+UKXQmGlF9MQWfVVoT6NOpFlJxxe8/dyaJesCuwLcU8c6hIVJVhP4fZ2Y+eYFZWzRwX2Uso95diy/xcrZ83fjdWwrIJLtN381baP51bafU6S79vWSbqWaV/FGfA+Heoze1KeoFJe7FOXv0c0FJ+bndPyNWxH1acwN5coaccDzR1fE6LluVTYOLWPqSXzvmOaakB5OneZ440m7vV3lnnKV6AtU+WM06rPpEdt9cwt277wguQvGDVapA9o+T8AjKk/M41NbU7jZ8xKcPZL9DwxPb/NgupzVPIjh6Ln9UZDLvrOjLnNFVrXVebbPgvfvOnpAa63okcvFuUD6V6R5qaVDwQAPZ28IM+1y8Z8f7HSfl55OFZB873P84Lso7n7YMpY7lf7LajQtjLXVVZzOoeNU7nWnodevdr8z+4WjtejW4q05khgba44dHiuAjnTZCfV5aqpVaPO+mrZ2ryJd//ZQZtmQFP7+BCG/wZgyEPd/w7gnSLym+nvbwPw0l0e/69MSp3o4U+l5TN76yTn71cBwFm56WhfjUAgEAgEAkcXO3hfOEwYIjS5I5ViMZfs/9EpyDwUdwJ4LoCXpf/fSMtfICKvQyMwuUQ08yDwW4I4flbsKZYTlTkhebmtVKL2eYMK1lt0wKs4AbTRI8/1vxapyQnJ9NZG24tzTPfNVp0oxxB4PmM9EEck41aQofWaqgq4Yhwgv80v3X8lLxpfa6MClrg/XulGWNj/zU2i9grO85s4edKJs2xyhtphnpTsCXYtRQ05GuZc96KPvCiXV6GBI0rXqKKOtZ8FERYd4AofXvF6hlM9ovQhm3L3q40Zi5aQP2BNlNTZ19iZy9QO9QKbns8b0Ea5FrqJ+kX7OMKSI4EUoeVIo7Wdz81EIctU5YQP5AhAivXZs7QrtuhFca26/n4sqMrH4WvK2+f+om2c6KGcpAieiezYP9QicxwpdsYKnyOLLLKohKLgk1PN+rVHtd8bnSUhSro/jNaIabiylpa112pSXGvHC7JgUXbgU+jtxxNUcb+n8SmLHLWjvjFhFs1/ixBWxVpp9zz/XdagJ9ru3td5fJknZeVekKs49XjnDsFUv9U98t3tw1GPFA4RmgiAJwG4SVV/AcBVEXnKgO1/HY3Z9RNF5D4R+W40D4NfKyJ/DuBr0t9AI72+B8DdAH4JwPfOepxAIBAIBAKBA8cNIDQZQh//WzSB0a8C8BIAVwD8FoAnz7Kxqn5HZdVXO99VAN83oG2BQCAQCAQC1xG6M1buEGHIQ+FTVfVJIvI+oFEfi4jPvVxPbA8ROx5pTKEVtE3yDNP5Nqw+WmOaKoXDnULyBTXJ1Kkt8yiyPs+wSjF210NtQFmw3aBIkp5WFnBSoUhWG/rI21JXKVm68H1MffxQe+yFFUqiHnuUdBraXjI1f3aoC/aM47FgCd5KFNomJbdrErzwpMhHp3MrqPFZ28ZCAo+2ZS9Ir8Sbfeak/drxt+2zEArssjSeeiIaj5YjyIxsaS+YLjPBwikSp3F/JV9HNFU9G/SJuaZcF62JMdSZCZ5wqxBEOWPbEQUwRW+lz4oxxcfJQoIK1Wfeh0tUTs1K+JE/4MqtZ9ompead/DM6pqW5eKIPVAQtc44vpJMWsHmibfvqY0e0vPnuiYfadpz5i67QyBM/9XrpcR/mdJvKdXGQ9+8JmvgzXzdPzMMpC44Qcdb7dnldvPFemYyet24+XoWQ9FI77PhF2dfp9wcXRdnHUXfZPuKo+xQOeSjcEJExUsBTRB6NI59SGQgEAoFAILBHOEaRwpcD+G0AjxGRlwL4VgA/ti+t2gOI84adI3D8ZspWEddSMj5FggqrD3tL8QqjjysRKXvD5jccL0HbcaavVuPwKgm0jewuq8HasQ8JuFXxgNkkOJVXqtYVdt1YbMNu/SmSIHNOcvrESR5n8HVJfaxk9QISjdhy2WijJXMn2uu2ea45pi6202pk15X2qZ5tAotCLDLCljNz3QhdmfRP1zCN6WLM5ciHPz7aCI0TkSyiUJPONoNugU6CvmvX40RgatYTeax5UYSKOMUihFs3n83Ltk60/Tn/cKoKw/vaWK8fB5UIvglN+qooFfOBGQJnjjrWWsV8s3awuG2L7h/TUK3GkaLkVDlncrb5PKHxvnGqPc+FS147nLHvRPMLGxov0sSR8VQtZrzatn1rsd3nyi1JiLbO0VYnajSrrRdB+qr57HfcJM8nz2qMxUm02Oa4xw70VRJiFoUJN7seTpWtUpDi/E6yMM85fnHf9yzRCN5vfCuy2yvKYQoUkCMeKhuiPn6tiLwHbQ7gM1X1Y/vTrEAgEAgEAoEjhiMeKRyiPv42APer6i8CuAnAT4rIk/atZYFAIBAIBAJHCcdIffwvVPU/iMjT0SiQfwbAK9D4CB4OCIXznQLfGQ6tBgCylkLPtUThadUaWCgy51CBHBbXLrXthvLVpz7bovIDEnBrfm3oEYzMApeKmS4k0NFm97uV87FPQtuwEMXokMJ3y2jq2rmpQ8FbH9dEO54X1zrTHYk+XqDrnyhe2XTOl8F0WaLBdeJUW0F7vYQqr4Aqr2SquBAaGLVJx3aqJLD/W547BR1KIhnHQ8+FMxaqFV6mVFFxfdHQUsnq3GGLVJFin915q/P8uelvrjiim5awXqu24CTbe6ki5A/Y0qmV1Ak1+pmOM0rXiDwBmfa3Ch5c0SILnWpj26NOiyopzefJuVaYs3JLc3ytsHLzl1M6Bqd62HF4DrFXpM0X7x5K25snKNCe76l72nOYXz6dPy893Ox/8WJ77uOrqW8GCPSK+6SN08IH19rIY5vpZU9E5YgfGV51GqZb4YkWu/c88fqb0xhMnFahj63tBX1bZDmk9nN6gPUtt53bYR+cyk01v922Hb6vq+dVetA4Nj6FaIfANwH4JVX9XZRCy0AgEAgEAoHjC9Vh/w4ZhjwU3i8irwTw7QDuEpHFgdsHAoFAIBAI3JhQNNqiIf8OGYbQx88G8AwAP6OqF1Ot4h/en2btFDKVysqqzQ1S9XLJoKzGpdJ3nirUKw9Uo2czldf13YNMpxRLP0T2sZqxvNhOSjD1UYE9VJ+niC5pk63iv+q+vf0Unm6k5t1KFJtDLxe0DNF21fJnU2DbyGI7PjZPt5/XzzT7L3wKVxuKt+ipopxWOo9Rlxot1HKkrDYF6PqFlj6cu9z6II4eudp8YPrQKWhflLxLtPHW+ZYeHK1uOG2nC7fu+C0alVsZr26aA6skRw7daupyphm5v6xNhbeZUdt+iobO7UCJaOdRS9XwSsUZBet44DXLrb98T9IM7qOkrN96VOsJuHmqHdtjU+PymLjUjInCxYCRrmW1NFrqu83T7XGWPyNRn3S6i5dJnb5qKQus5k9je66bYgHQNa7QgzamC0/T1Idy9WrbjocvtZ8/nuYJX5dEaas3hoE2ZaFmyzdNwctenqySNgO7wn+07u/XbNMtg1imFU1RH1eQfwf7vuelffB9u7j/O6U70/262I83bz0PVp4vve2gFBHP99Pbzz5BoEeePh6iPr4G4A309wMAdlSPOBAIBAKBQOCGw3F5KDyq4IiFIL0Nc3SQk1TnnEoBc92IRVEpwvFnKt62vTcfe1PjKiieP9OAZFv7vKO3IY5CeB5qRRK680brJNbz+UhPsvXMEU2ebM6bc+3tMS8a0Rcs+sTRMueQRUTR+oYiG1sUoVHrui0aC0vNwsm4jeqNVijKYdEU9mi0Y3M0hcdKEkFsLbVjc+4qR4inRCR4nyQq0eS3uHmmXTZK/nPzdD7s2+mKqGw9V1hgUdCoKzQRR3BV+NQ5/V5EDW0ZVYrJ44/HjFMZQ8nHcMJCk4UuK9DOk+5cBuBXa3EigeLcHwpBDI85VyiXImMscqJxuH4uVRq5qY1iL1xqIsAjFmhsttdydDFF2S5dac/HEUeNV9plSxeTKISm1dKn20hkjk5uOPdDgnjCPmpbEc3b6Ipo7B7P81c4Sn7lKjpIxynusX1+mU40343wVarXaB43DjtV89DLFVw4muZUXuHzcMQzWkTjrTIXfcEbu33ouW+3vo009vm3wOa65zk64Djlb2Od6erzONwzxENhIBAIBAKBwDGH5RQeYcRDYSAQCAQCgcAe4NjkFB45OCFnEyrwReNw9SiF8idLTAm24ejxtUQ5MpVnH3rKqblhcU6m55Jlzn4Kum1KjjyHyItQuheC97y2SESRl9e8vGz7sUNdrtOyDRbZeB6Lo24bhwhBxNl+6LagRHBGQRklypEo9q1FooeySKLdZiOVvttaaI9z6spKu89Vxy/NvByZgqf1tqdFGh8j2mf2hXPo9prARpYbSnuBx7bnU8jXemyl4GjMbDpjhVMnTGPFVA7Pg1z6iuky7eynSNdYSlTyEnksJu+6gtpmT0JL4dj0x8xkoWnHeCeCFEYWp9CxJz2lxMYeTdlN0JeVlv8bU4m+zVPN9Vh+TDtOVx7VfB5vtP02Xms/n7ovnS9TvcvLnfMYP3ItLzptaQV8D71M43Cl+eyKaHhMsI+h3Ss4rYevYVrfJ7xTvq5Oab3ee0UWmjB9PJ0q9vfjl1nMMAqV7//cX+NuO0qhUpf2db38CHY9irWT7n3ZxQ5Korr+jqB7kec5ysfx7ss9x/LSlA5CaNIc6Gg/FIalTCAQCAQCgcCuMdCjcMYHSBF5hoj8qYjcLSIvdNb/kIh8REQ+ICJvFZHPpnVbIvL+9O/OvmPduJHCQCAQCAQCgYOCYs8jhSIyBvCLAL4WwH0A3iUid6rqR+hr7wNwu6peE5F/COB/Q+MpDQArqvolsx7vBnso1FaJOq0cjvjUVfa72qjQpVMutksP8zFHXRrB/MYAQE5QySqHYpm1HBMrcKtUcl6fKEVScsqp1qcuq209j0VUVNS2rPCZ4hJtqZya69+1A8qY4W1fUBfTS0Hl3bASlNmUpPoT6o+5q6SsnaT0go12o83kXXj1M9s+OPFA28dyJVF0NX84axOr6BPFJ9e4jBl99vZlDDtTabzNtYY+Hq0Slecp0be6VDJ7/tn1xQbRYVxuL/etQxkD7Xz0FImVOZbLHHJ7TV3K9B6lMdjV51E0t+CU42LK0MYMjTNhEi4rRbntPWPao7Qcj8aytFlaR7Tr+HK7fsFK0s1RO80Sjsbm3CrNwRWjbR0PPKC9B5D/35iUygamNnWlXlqvoEC98VpTpPaUxDQU932vtGIPcoqOV7KwaVTzf8/9sIDn0ZhKVRZqeu6PXOauko4zhfZ1/WEBSJp7im7KCqOknx3q21Nm70TB3ZMqxO3oo8Yz7T+aPj72FXsvNHkKgLtV9R4AEJHXAXgmgPxQqKpvo++/E8B37vRgQR8HAoFAIBAI7AFEddA/ADeLyLvp3/O37fJWAPfS3/elZTV8N4A30d9Lab/vFJFn9bX/xooUavetoFegMXESltlXjROvzQXfeTt035AYhYdeesuhfeuIi8YnHyle70RJ3DfSIjLK3lRThCZFO7tJ4Vw9oBQNdIvbt+sqkc1cAJ4uhpes3SfM4TdnE2awN569tReF5HvegbKwpvJmaUXjl9tk+vlPtpGTeYtUFdf1XLPrR7eRYOXk81zRwPOj89/0LTGf/e7U8+jz+tWrHgC01/paKyTI0QtPSATk6JWwGGOue0sproFTaURStKQ5VvoueznadeXoER/A9knRNDU/u41KBDb1EXukjdl/8kwTxVfv3NhDkfvTlnOkOc2DIkLL/e5UdRCvihJHS4zRoEghj565dPyTq3QfW0tR7opnoHhiDOeY4EoiOUrFkbxJdxuvCpJ3vO3fzYuGR3p6t+n1vnNEVixUsuvmRUH5DxZWOIeRVGVJWSS1wr8l5ttIx+H7y9bwKGg+99nIp9QoR5ToCGfK6GPP/db61hGA1a6PGyF0I5bd375DLDR5UFVv34tDi8h3ArgdwN+ixZ+tqveLyOcC+H0R+aCq/tfaPm6sh8JAIBAIBAKB6wHFMAPw2XA/gMfR37elZQVE5GsA/CiAv6WqOTdIVe9P/98jIn8A4EsBVB8Kgz4OBAKBQCAQ2DX2RX38LgBPEJHHi8gCgOcAKFTEIvKlAF4J4FtU9VO0/IKILKbPNwP4MlAuoofjFSnMIemK95RRjpxsz5v3iAEGN4dppg2iPo2mZIGHQ8Go90hfobH9ZOy0nqnH5Wud73m0LB9LmVLwEvTdxHlHAFSjdGx9IUjgUoNdGiLTgjvwO6z6QFo72D9whcQa6TOPk/l0/PPUjvHFtuxWvsbeuRdebdzv6TheuUVgundaH9Xn0TNV2j21na/FfLf8XHH97QP7Yd50rv2c6Fp56CK1rVtKsmh7nidcDi352VXKx+WlQmXZrtLYN39Sb3umyInqzcIxHnPmCbfG85vbudlpp1vSjK+/UdIgsIgm9cf4CtPpaT3fw4oSjo5PqnfdeEx61PiAkmTtogFU74w+eR7N2HucIR58du/rSxsSZz3Pp0THF965a3RPcWj23f4OzUqjVsUchgq17hyw/czZSdKdY3ls1/rVuUZFapTjeXvgQpM9Vh+r6qaIvADAm9Eofl6jqh8WkZcAeLeq3gngpwGcBvAf0n3qE6r6LQA+H8ArRWSC5sHnZdtUyx0cr4fCQCAQCAQCgf3CPphXq+pdAO7atuzH6fPXVLZ7B4AvGnKsY/lQWFqOsGVFemsHVZzw3lg4ImXJ+E7SfrGct7EoCUcctNuOQeiJtvUm6FoznLa7lhDFsRwxhxcdBNzEeS8CV8IiRf4bZ+vq37Wx6C05RFEua2cpCigO1NmmbGZazxHey01UcIESxfVya+WRo7A8PlIEp1bkvmp/tA2FEMmzfxg50dZJ9629gHNsXiKSrmFRCYKtPJINEldo8PrTa2clMpH7ayc342JMOXOHRR+LzVwvrG+8KhUsTkljQVjwxoe3Zdzv3F92T9rsCkSK+xiLjnj85f04kVNu+2I6d56rJNzJggjuIzeCO2O0rRZRnDXS6EaMdmdpVWxvfeNFUIH23PvEGl7lJrbjSteqGLl0/dwx7TABs97fuU27FacUVUc8UdGs8NrRNz56zu26YX9yCg8Ux/KhMBAIBAKBQGBvodf/wXSXiIfCQCAQCAQCgb3AEa99fGM9FEobRp9WEFuK5N9u4rTn1Zc2bP4fdSnHqpeb7YsS8OV0U9GCaSgWLBQF4vMXKnTcrPB8pqRb0aSo8GJebkWCfjchntfn/mCKragE4Hhk9XhTZSq4WE10amqneknZ7OTP7UjtFBY8pDYLU70sCjBfPr7WXMh+w/wnaRtrG4kYSgGRM06dcTgomd+uoVeNoeZTmD0a+Zj1NjLE8Q+UnlsL06FyqRXeZGqUq63Y9zz/PqAdh0T1t7QsefE52wvRg3qy9UvcON98Hq2368fz3X6VdaJ1jSrm9A8ntaE8p7T/Cq2vW8ud7d1xPvGOOV0EUdD+tg17MC629wXum7ze/l/rXiugQn0ajV3QrgMM83ZBG8/scYf2PuZVa+pF9XvdFA2b67IpnWXT95Xg+PLZMjd9hI/J99Apv5d1DDE67CILRDwquEIP52vY93vI6RqeR+/uml5H0MeBQCAQCAQCAQARKQwEAoFAIBAIIB4KDxekpZJ2UtrGPJJqalsLy7Nqb0YfvEJtaepEVin2USBM/3gKvxmTW8XzJqv4/8lWouJ5B147i+3HdiBqW4+i1aiAmgIz76ZyLacUhS/6ytue6SGjj3m1t82CTzlaGUSPPi5UzEwlThk/xfkO8N3K6RE8TDOl7Hj1VRtgdFeFqsk+lXScrLZn6opLGnYVq4Uv25RUgF4fOU5jsHHspAwA8FXDNDbnls0/ku8FnQ/bfCobz7lCKeyU9StKnyVvQz1BaQwMSzXglINaibjcvG46hutTKh6NSW3ne0FKqShSXoxe5hQKuqflMcdl2ayMIvuhegrdCqZRxUVJ05Hf3xl2Ly/U1l1Fe4HCC9RTzM5KL0/3JPWcBnppbK/8HDtAFOOvm2LlUqxFk3u8ZGfFlGvRIKXoML/rUMW165bvrW4azEEIQGY2pD60uMEeCgOBQCAQCASuAxTTiwccAdx4D4XbEm/73oBc1BK0s12e84Zdi/g4Tu9eZQSuGtL6f9Xe9IdnyVqVjsKnzKmMYNFBYFvCs7dPt3pJ16eweMN2BC85kjTqvs0CgMCibdTv6n/Oy0xUxAEhnqyOmCMLTDxxEZDPzfXVQ+s1V/Sb+cxVPAfpJLrt5PPtrZzgtMmL4HL0Z+x4UnoRkFp0xltu58H7YYWQLedtKfKVI4TFmEnfrflUwolO5nHmV0Pw5itH/cbZt9HxMeQI/2pXIOZ5ChbsAgterL94WeF56rSjD54PXa+/W/ouR1hYDGTLF7tRcl1ql21eOJE/b5xszmnhchvlnL//4WabitgqRy9rY26Kp10tOijOPclER7LUFdAANA43/OpWM8OLEI+daGrP+Wp/XJ+O41Rz8iLjRdS/WwnE3zczL853e9iYcpsUFXTmotainGl5IRpzjtX327WviEhhIBAIBAKBQCAeCgOBQCAQCASOPTQsaQ4TBG2oOSe/e1HkCk2ZQ+yFMMLZ3qOUe9rG4WzzMStC4F6h+drgmjVh1gv1UyK3efh5PnPADL5ciTYWp1QcKmIclUlnmzbxuUKhGJXDVODW8KTuwhvNqDGi/0xUMsgTkA9lIgmmFGct/8T9tcukbutb9pnLNNmcQyMBLYWvy3lRLwXjCRrsA4tHHOpK+koFMl3qUV9u39D3nHKK7EmY6Vqe/3y+lkqw0S05VpU6zHWFSp32ABC6Bnqm8SzdINp1vNwec+R5TnpCE48KHJJm4tHT3O8jS50gWs+5P43W2mMubDT7nLu0mpdpEuP0iTZqHntGjZZiQCdFh+9JScxTeMUa9Z08YwG01xyAXHNEQ56QqRj7486yksZu1o/IG1XOnG4+MG1f+FwOLx9n9zmvnGJxLO/3peoP6HljOr8vNYHhFBQpTead66W+AJAkairmMv++2Hz1vB5nLcG4GyigUdEkEAgEAoFAIHDUI4UH8OgcCAQCgUAgEDjsuPEjhV5ZpCIcTSXejIJZqag+PUxT+vExi02MdquoXG0Re8oVas4ZlWJ9cHyQZb7SAAAQ3ElEQVTmPNSpHKfk0PZ12z9bGUKPAiv83aaX9fLaN+j9zPOzsuPz8RzPMFc9DPjl6fo8BbNavo/KmZ0KzDRnT4lGLWj/Zk5on++mM86Lc7Rya9xHnpJQnHm3U9jxPWbcUzEzeBlTxTYGeEyOun0Ipui99JOJQ6s5GBPtOlolxWv2uZzRm5BQ3j9GnWVFvxsdx2Ufz55ud3+qoVsnC20njy82/TW62tLD/Dn7vl4j+jj5FBYUqTqpAg513ZxAohd5jnn3L6YX0zm5lCO1oyhPaP3ObeN25NSZcXcbAvvp2W+NnD+bl23d1PTx6CqlsVCZ0/ae1O5z5vJzRZqTpxQeoDR2f0dpV9O8ACu/c27Z2bF0vifkgyknmjQLXaL7B7dpJbWz8PU0l40DiuCF0CQQCAQCgUDgmEM1fAoPK3JEYuy8ofPbHb+FOG+P3gX2k5ynR3Jc93jeN73F2ttn4R8oXoSmxzPKb0h3WU8Crluxgtd7HoueOICP73kOFsnnPefj+D/6h6u59jvbOx55nr9gvbLKbG+IHK3JkQTvfCp90OvQbxFgErzk4znjDKAEbe/cKlHwaVUOeGwWY3c+HZNFVqOueEGdqEtv/3pennwtOXrgVczhaEquksNRDKtERG2n85gk0QhHaGW5iZIJRf94vki6RuOrK+0+6dwtotYv+nLuc3wNrNAQR4eZJbEI4YU2irX+mefaXS00242vtW2bS/2py37b83zh83E8WBlZaDBfqT7jjA+xsdtXkYTbYdG4FYpieg0qvA0pKmwRYvZLvZb6oSpuaj5PzrSioq0TzbLRCo3NncARt/RVLOlnMRzBTCWqLylMX4j54MyhYhzbeq7Wkq5/EZVlAVlPxay8jcNuHVQELyKFgUAgEAgEAgGNSGEgEAgEAoHAcUfUPj68mEIvFtQC05iJQOijaori5OkwwiHwPm9DC7UzzdRLl3Z9yDi831dIfipqNKSTXOz2DdMy6XNVnGLoo+W95lTFK075KKMPvXJXIOrsRFvmyigLJcGBbHYL0VevlVGjRZmybkH7IlXA0hcKvzyn1Nt6t9yWO85AFB1vog6lXHjfJapvw6Ft+1ArnZaP06XLi/Ji7Ns36dK+ue2e9xjQig+cOaIV0VB/WogzFp2SlkwPjuxa8rxOpfN0paVYCx9L+14l3cKl0dN5euW/mvXpejjnyJRx9u8DsmBm60x7XSZz7f7nrjZzYu7TV9q2XbzU/O/5chYnUSvXmdrhUZKFyIHnui3ie3DP+DP/UF621b0/FF6S1jenWh/Dydn288otzee51XZMzX/ySrlvAOqUY9MFOo71R0VMl0V0fB8bOf3pCUF2KeDyU56Y1q2Vr9vFcbxpwPtOXpKFiI78JTX5o3rjsFqKdi+hCEua/YSIPENE/lRE7haRF17v9gQCgUAgEAhUoZNh/w4ZDm2kUETGAH4RwNcCuA/Au0TkTlX9yJSNulEpr9g2v8l7Nii7LabtVRKhZa4U37OxqCHbmPhvj247PDht845TjWJMccYv5P+7DKfnNzyOsM05Q9dJci+sDeitPVsbUEUDs2MRFiSQPUSOxmw4NiVAKUCw41ib+E1/kRP8HWuFdMwimZ7XW9SwJwJTrLc2c9ROulHQXjgRi77oTxklTX1EAi+2xslJ5TyPN2ZLwtdCaGBVDBzxCCrn22Mr1UYf6f7AUWUTk/BxVlNlDI6medE/3iefuxftyyK6irWWV83FouCnWpHD5GQbKbTo1cZZqrZB3ZGrkly+2m6TzqkQkuxHlKSoMOWIvSZOlROCFx/KUX8uvETjUFPFk61zbX8tf1Z7r7hyW7PhiQfb63M+iXBG17pR/bJBFcbDUMwHRyTBLktm8VVE9aZYhTVfnt6+WTHrte6J0LkRTR73PL5WV7vfpahga+HTZQVmvsftAop9mgMHiMMcKXwKgLtV9R5VXQfwOgDPvM5tCgQCgUAgEOhCNSKF+4hbAdxLf98H4KnXqS2BQCAQCAQCU3HUI4WH+aFwJojI8wE8P/259h+X7/jQ9WzPIDBL3cM43EC4GcCDO9pypf8rM+ORPdzXYcXOsiB2fn1qx2b2167h7o/QxV6Oj2nguXq1+q39xN5co8MCb6wc1LWs4QFn2R/PvPX1vT67zH46sH0aOFi2S7vGAXjifuz0Ch558/87+c2bB252qObyYX4ovB/A4+jv29KyAqr6KgCvAgARebeq3n4wzQvsBHGNDjfi+hx+xDU63Ijrc/ghIu/ej/2q6jP2Y78HicOcU/guAE8QkceLyAKA5wC48zq3KRAIBAKBQOCGxKGNFKrqpoi8AMCb0Rj7vUZVP3ydmxUIBAKBQCBwQ+LQPhQCgKreBeCuAZu8ar/aEtgzxDU63Ijrc/gR1+hwI67P4UdcowrkILx7AoFAIBAIBAKHG4c5pzAQCAQCgUAgcEC4YR4KoyTe9YeIPE5E3iYiHxGRD4vID6TlN4nIW0Tkz9P/F9JyEZGXp2v2ARF50vU9g+MBERmLyPtE5P9Jfz9eRP44XYffSMIuiMhi+vvutP5zrme7jwtE5LyIvF5EPiYiHxWRvxFz6PBARH4w3d8+JCK/LiJLMYeuL0TkNSLyKRH5EC0bPGdE5Lnp+38uIs+9HudyvXFDPBRSSbxvAPAFAL5DRL7g+rbqWGITwD9R1S8A8DQA35euwwsBvFVVnwDgrelvoLleT0j/ng/gFQff5GOJHwDwUfr7pwD8nKr+92gcHL87Lf9uAI+k5T+XvhfYf/w8gN9T1c8D8NfQXKuYQ4cAInIrgO8HcLuqfiEaEeRzEHPoeuNXAWy3gxk0Z0TkJgAvQlMk4ykAXmQPkscJN8RDIaIk3qGAqj6gqu9Nn6+g+TG7Fc21+LX0tV8D8Kz0+ZkA7tAG7wRwXkQee8DNPlYQkdsAfBOAV6e/BcBXAXh9+sr262PX7fUAvlqkp5BpYFcQkXMA/iaAXwYAVV1X1YuIOXSYMAfghIjMATiJxuo65tB1hKq+HcDD2xYPnTNfD+Atqvqwqj4C4C3oPmje8LhRHgq9kni3Xqe2BAAkmuRL0dQBuEVVrUbAJwHckj7HdTt4/B8A/le0dQQeBeCiqlrVeb4G+fqk9ZfS9wP7h8cD+DSAX0kU/6tF5BRiDh0KqOr9AH4GwCfQPAxeAvAexBw6jBg6Z2Iu4cZ5KAwcIojIaQC/BeAfq+plXqeN3D0k79cBIvLNAD6lqu+53m0JVDEH4EkAXqGqXwpgGS3tBSDm0PVEohOfiebh/TMBnMIxjCYdNcScmR03ykPhTCXxAvsPEZlH80D4WlV9Q1r8V0Zppf8/lZbHdTtYfBmAbxGRv0STYvFVaPLXzicqDCivQb4+af05AA8dZIOPIe4DcJ+qWqXd16N5SIw5dDjwNQD+QlU/raobAN6AZl7FHDp8GDpnYi7hxnkojJJ4hwApV+aXAXxUVX+WVt0JwJRczwXwRlr+Pyc12NMAXKJwf2CPoao/oqq3qernoJkjv6+qfx/A2wB8a/ra9utj1+1b0/fjbXsfoaqfBHCviDwxLfpqAB9BzKHDgk8AeJqInEz3O7s+MYcOH4bOmTcD+DoRuZAiwl+Xlh0r3DDm1SLyjWjypawk3kuvc5OOHUTk6QD+M4APos1Z++do8gp/E8BnAfg4gGer6sPppvoLaOiXawCep6r7Uqg8UEJEvgLAP1XVbxaRz0UTObwJwPsAfKeqronIEoB/jyY39GEAz1HVe65Xm48LRORL0AiBFgDcA+B5aF7gYw4dAojIvwTw7WjcFt4H4HvQ5J7FHLpOEJFfB/AVAG4G8FdoVMS/g4FzRkT+AZrfLAB4qar+ykGex2HADfNQGAgEAoFAIBDYOW4U+jgQCAQCgUAgsAvEQ2EgEAgEAoFAIB4KA4FAIBAIBALxUBgIBAKBQCAQQDwUBgKBQCAQCAQQD4WBQCAQCAQCAcRDYSAQCAQCgUAA8VAYCBxKiMj3i8hHReS1IvKOAdudF5Hv3ee2dY4xSxtF5OoM33mxiPzTWfe5H9iv44rIbSLy7ZV1J0TkP4nIeA+Os2djQEQWROTtVMItEAjcwIiHwkDgcOJ7AXytqv59Vf0ftq9MJZq8+Xs+bbuf6BzDa+NusR/7vM7H/Wo0dYw9/AMAb1DVrT04TnUMTBk3LlR1HcBb0VTwCAQCNzjioTAQOGQQkX8H4HMBvElEftAibCLyOSLypyJyB4APAXiciPyuiPwXEflQikK9DMB/JyLvF5Gf3rbfU9u/n/b5sRSR/KiIvF5ETtI2vyMi7xGRD4vI89PizjE4CljZZtr5/qiI/JmI/CGAJ9JyPu+Picivpu+9VkS+RkT+PxH5cxF5Cm3znSLyJ6ltrxSRcdr+oyLyS6lN/3979xJaRxXHcfz7p1htay20wYWihqKokILUTYspKOpGEBVdWXXhQpSC1IKg4ErcSMGdulCKSje6qOIDSzAoPiBYWlsaay2CiiDFV6028ZE2PxdzLo6Tc+69ubkl3vb3gSEzc///mf85cxNOzn3MWJqZm9MfmbZsS49NRsTWWj1zjtehjaPAM8Bdqba1jZDNpHuzLrS9zetTeN7k+inbH1S3C9vc6Tqa2RlAkhcvXv5nC/ANMJTWT6Sfw1T3lN6Qtu8EXqjlrEoxk4VjluIFXJf27aC6J3IrZnX6uYxqQLEmd45WjaWcZkwt9lqqe2UvBy4Avmqdv9Huk8A6qn9k96Y6A7gNeCPFXQ28BZyTtp8D7qvlX5P2vwbck+uPxnlbta0Azgc+p7qHbfZ4XVzT3cBIZv9S4Ghtux/tnWwcr/68KeWV+mMJ8ONi/0548eLl9C+eKTQbLN9KmkjrB4GbI+LpiNgk6XiH3FL8d5I+Ses7gdFazsMRcQCYAC4BruiixvnkbAJelzQt6TfgzULc15IOSpqlGpyNS1Jq03CKuZFqILcnIvan7bW1/P1pfW/K6dR/o6m2KUkngF2p3tLxOrkSOJzZPwT82uf2NtWfN6W8bH+oekn774hY2UUbzWyA+c3DZoNlqrUi6UhErAduAZ6KiHHglVJim3g1QwEi4nrgJmCjpOmI+AA4r11xveR06a/a+mxte5Z//44F8LKkxxs1DTfyTwHLcv0h6cke6jlFNStaFBFDwHFJJzMP/8HcPlpoe5um6iG5vJRb6o9zgT8zxzWzM4hnCs0GVERcBExL2glsp/oQw+9AdkanEA9waURsTOt3Ax+n9VXAsTS4uwrYkPYXz9Emp+RD4Pb0Hr+VwK0d4tsZp3rP3oUAEbE6Ii4rBbfpj5aPUm3LI2IFcEfaVxQR4xFxceahYeD7XI6kY8CSiJjv4LnU3nbXp5hX6o+IWAP8JGlmnvWZ2YDxTKHZ4FoHbI+IWWAGeEjSz+kDCZPAu5IebRef9n8JbImIHcAh4Pm0fzfwYER8kWImADqcI5tTImlfRLwKHAB+APb01hUg6VBEPAGMRfUJ2xlgC3C0kFLqj3ptLwGfpl0vSvqsMBNHOuflwC+Zhw8DQ6nPHpDU/NqbMaqXq99r28j/1pdtr6SJ+vUBnu0mj2pAn+uPG4B3uq3LzAZXVG9TMbOzURrgvC1pZJFLGXgRMQLcL2lbD7nrgUck3dv/yhYmInYBj0k6sti1mNnp5ZePzcz6QNJkLwPClLsPeD/68OXV/RQRS6k+7ewBodlZwDOFZmZmZuaZQjMzMzPzoNDMzMzM8KDQzMzMzPCg0MzMzMzwoNDMzMzM8KDQzMzMzPCg0MzMzMzwoNDMzMzMgH8AEtsYBmfOtzYAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 720x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "link_fn = model.likelihood.link_fn\n", "plt.figure(2, figsize=(10, 5))\n", "# im = plt.imshow(mu.T, extent=[0, 1000, 0, 500], origin='lower')\n", "im = plt.imshow(link_fn(mu).T / scale, extent=[0, 1000, 0, 500], origin='lower')\n", "plt.colorbar(im, fraction=0.0235, pad=0.04)\n", "plt.xlim(0, 1000)\n", "plt.ylim(0, 500)\n", "# plt.title('2D log-Gaussian Cox process (rainforest tree data). Log-intensity shown.')\n", "plt.title('2D log-Gaussian Cox process (rainforest tree data). Tree intensity per $m^2$.')\n", "plt.xlabel('first spatial dimension, $t$ (metres)')\n", "plt.ylabel('second spatial dimension, $r$ (metres)');" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.7.4 64-bit", "language": "python", "name": "python37464bit113ddd5dfc1a43b9ae5272bebdfca0b2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 4 }
apache-2.0
4dsolutions/Python5
Comparing JavaScript with Python.ipynb
1
11516
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Python for Everyone!<br/>[Oregon Curriculum Network](http://4dsolutions.net/ocn/)\n", "\n", "## Python and JavaScript\n", "\n", "JavaScript has been moving [a lot closer to Python](http://worldgame.blogspot.com/2016/10/javascript-for-pythonistas.html), nowadays supporting classes, with a constructor like \\_\\_init\\_\\_ and *this* for *self* within that construct (ES has had *this* for awhile). \n", "\n", "Here in a Jupyter Notebook, we have a way to run both JavaScript and Python together.\n", "\n", "I'm using source code from [this article](https://medium.freecodecamp.com/a-gentle-introduction-to-data-structures-how-queues-work-f8b871938e64#.l2p002vqt), *A Gentle Introduction to Data Structures: How Queues Work* by Michael Olorunnisola, to show off the similarities between the two languages." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "\n", "class Queue {\n", " constructor(){\n", " this._storage = {};\n", " this._start = -1; //replicating 0 index used for arrays\n", " this._end = -1; //replicating 0 index used for arrays\n", " }\n", "\n", " enqueue(val){\n", " this._storage[++this._end] = val; \n", " }\n", "\n", " dequeue(){\n", " if(this.size()){ \n", " let nextUp = this._storage[++this._start];\n", " delete this._storage[this._start];\n", "\n", " if(!this.size()){ \n", " this._start = -1;\n", " this._end = -1; \n", " }\n", "\n", " return nextUp;\n", " }\n", " }\n", " \n", " size(){\n", " return this._end - this._start;\n", " }\n", "} //end Queue\n", "\n", "var microsoftQueue = new Queue();\n", "\n", "microsoftQueue.enqueue(\"{user: [email protected]}\");\n", "microsoftQueue.enqueue(\"{user: [email protected]}\");\n", "microsoftQueue.enqueue(\"{user: [email protected]}\");\n", "microsoftQueue.enqueue(\"{user: [email protected]}\");\n", "\n", "var sendTo = function(s){\n", " element.append(s + \" gets a Surface Studio<br />\");\n", "}\n", "\n", "//Function to send everyone their Surface Studio!\n", "let sendSurface = recepient => {\n", " sendTo(recepient);\n", "}\n", "\n", "//When your server is ready to handle this queue, execute this:\n", "while(microsoftQueue.size() > 0){\n", " sendSurface(microsoftQueue.dequeue());\n", "}" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%javascript\n", "\n", "class Queue {\n", " constructor(){\n", " this._storage = {};\n", " this._start = -1; //replicating 0 index used for arrays\n", " this._end = -1; //replicating 0 index used for arrays\n", " }\n", "\n", " enqueue(val){\n", " this._storage[++this._end] = val; \n", " }\n", "\n", " dequeue(){\n", " if(this.size()){ \n", " let nextUp = this._storage[++this._start];\n", " delete this._storage[this._start];\n", "\n", " if(!this.size()){ \n", " this._start = -1;\n", " this._end = -1; \n", " }\n", "\n", " return nextUp;\n", " }\n", " }\n", " \n", " size(){\n", " return this._end - this._start;\n", " }\n", "} //end Queue\n", "\n", "var microsoftQueue = new Queue();\n", "\n", "microsoftQueue.enqueue(\"{user: [email protected]}\");\n", "microsoftQueue.enqueue(\"{user: [email protected]}\");\n", "microsoftQueue.enqueue(\"{user: [email protected]}\");\n", "microsoftQueue.enqueue(\"{user: [email protected]}\");\n", "\n", "var sendTo = function(s){\n", " element.append(s + \" gets a Surface Studio<br />\");\n", "}\n", "\n", "//Function to send everyone their Surface Studio!\n", "let sendSurface = recepient => {\n", " sendTo(recepient);\n", "}\n", "\n", "//When your server is ready to handle this queue, execute this:\n", "while(microsoftQueue.size() > 0){\n", " sendSurface(microsoftQueue.dequeue());\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you don't see four lines of output above, you might be rendering this on Github. If you want to see the output, same as the Python output below, cut and paste the Github URL to nbviewer.jupyter.org, which will do a more thorough rendering job.\n", "\n", "Now lets do the same thing in Python. Yes, Python has it's own collections.deque or we could use a list object as a queue, but the point here is to show off similarities, so lets stick with a dict-based implementation, mirroring the JavaScript." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{user: [email protected]} gets a Surface Studio\n", "{user: [email protected]} gets a Surface Studio\n", "{user: [email protected]} gets a Surface Studio\n", "{user: [email protected]} gets a Surface Studio\n" ] } ], "source": [ "class Queue:\n", " \n", " def __init__(self):\n", " self._storage = {}\n", " self._start = -1 # replicating 0 index used for arrays\n", " self._end = -1 # replicating 0 index used for arrays\n", " \n", " def size(self):\n", " return self._end - self._start\n", "\n", " def enqueue(self, val):\n", " self._end += 1\n", " self._storage[self._end] = val\n", "\n", " def dequeue(self):\n", " if self.size():\n", " self._start += 1\n", " nextUp = self._storage[self._start]\n", " del self._storage[self._start]\n", " \n", " if not self.size(): \n", " self._start = -1\n", " self._end = -1\n", " return nextUp\n", " \n", "microsoftQueue = Queue()\n", "\n", "microsoftQueue.enqueue(\"{user: [email protected]}\")\n", "microsoftQueue.enqueue(\"{user: [email protected]}\")\n", "microsoftQueue.enqueue(\"{user: [email protected]}\")\n", "microsoftQueue.enqueue(\"{user: [email protected]}\") \n", "\n", "def sendTo(recipient):\n", " print(recipient, \"gets a Surface Studio\")\n", "\n", "# Function to send everyone their Surface Studio!\n", "def sendSurface(recepient):\n", " sendTo(recepient)\n", "\n", "# When your server is ready to handle this queue, execute this:\n", "\n", "while microsoftQueue.size() > 0:\n", " sendSurface(microsoftQueue.dequeue())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another example of features JavaScript is acquiring with ES6 (Sixth Edition we might call it), are rest and default parameters. A \"rest\" parameter has nothing to do with RESTful, and everything to do with \"the rest\" as in \"whatever is left over.\"\n", "\n", "For example, in the function below, we pass in more ingredients than some recipe requires, yet because of the rest argument, which has to be the last, the extra ingredients are kept. Pre ES6, JavaScript had no simple mechanism for allowing parameters to \"rise to the occasion.\" Instead they would match up, or stay undefined." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "application/javascript": [ "var sendTo = function(s){\n", " element.append(s + \"<br />\");\n", "}\n", "\n", "//Function to send everyone their Surface Studio!\n", "let sendSurface = recepient => {\n", " sendTo(recepient);\n", "}\n", "\n", "function recipe(ingredient0, ingre1, ing2, ...more){\n", " sendSurface(ingredient0 + \" is one ingredient.\");\n", " sendSurface(more[1] + \" is another.\");\n", "}\n", "recipe(\"shrimp\", \"avocado\", \"tomato\", \"potato\", \"squash\", \"peanuts\");" ], "text/plain": [ "<IPython.core.display.Javascript object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%javascript\n", "var sendTo = function(s){\n", " element.append(s + \"<br />\");\n", "}\n", "\n", "//Function to send everyone their Surface Studio!\n", "let sendSurface = recepient => {\n", " sendTo(recepient);\n", "}\n", "\n", "function recipe(ingredient0, ingre1, ing2, ...more){\n", " sendSurface(ingredient0 + \" is one ingredient.\");\n", " sendSurface(more[1] + \" is another.\");\n", "}\n", "recipe(\"shrimp\", \"avocado\", \"tomato\", \"potato\", \"squash\", \"peanuts\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In Python we have both sequence and dictionary parameters, which we could say are both rest parameters, one for scooping up positionals, the other for gathering the named. Here's how that looks:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('tomato', 'potato')\n", "{'dessert': 'peanuts'}\n" ] } ], "source": [ "def recipe(ingr0, *more, ingr1, meat=\"turkey\", **others):\n", " print(more)\n", " print(others)\n", " \n", "recipe(\"avocado\", \"tomato\", \"potato\", ingr1=\"squash\", dessert=\"peanuts\", meat = \"shrimp\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Thanks to **\\*more** being a sequence parameter, the parameter **ingr1** may only be reached with a named argument, yet need have no default value. **\\*\\*others** scoops up anything named that doesn't match anything explicitly required as such.\n", "\n", "You'll see the sequence parameter **\\*more** begets a tuple with its contents, whereas the dict parameter **\\*\\*others** begets a dict." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" }, "widgets": { "state": {}, "version": "1.1.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
WOnder93/pbkdf2-gpu
data/metacentrum/graphs.ipynb
1
680583
{ "metadata": { "name": "", "signature": "sha256:c97123e1d02797e16b0ef122721699efffa69f1c66333f77596b14d6dc9db5a8" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "%matplotlib inline\n", "\n", "from itertools import *\n", "from collections import defaultdict\n", "import numpy as np\n", "\n", "def groupby(seq, key):\n", " groups = defaultdict(list)\n", " for item in seq:\n", " groups[key(item)].append(item)\n", " return groups.iteritems()\n", "\n", "def read_means(fname, header_cols):\n", " with file(fname) as f:\n", " for l in f:\n", " values = map(int, l.split(','))\n", " yield values[:header_cols] + [np.mean(values[header_cols:], dtype=np.float64)]\n", "\n", "def get_dk_blocks(dk_length):\n", " return dk_length / 20 + (1 if dk_length % 20 != 0 else 0)\n", "\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits.mplot3d import Axes3D\n", "from matplotlib import cm\n", "\n", "def fig_init(size=10):\n", " fig = plt.figure()\n", " fig.set_size_inches(size, size)\n", " return fig\n", "\n", "def plot_3d(fig, data, label, xlabel, ylabel, zlabel, bot, top, azim, elev=10):\n", " ax = fig.gca(projection='3d')\n", " ax.plot_trisurf(*zip(*data), cmap=cm.coolwarm, edgecolor='none', label=label)\n", " \n", " ax.set_xlabel(xlabel)\n", " ax.set_ylabel(ylabel)\n", " ax.set_zlabel(zlabel)\n", " \n", " ax.azim = azim\n", " ax.elev = elev\n", " ax.set_zlim(bot, top)\n", "\n", "def plot_2d(fig, data, label, xlabel, ylabel, bot, top):\n", " ax = fig.gca()\n", " ax.plot(*zip(*sorted(data, key=lambda (x, y): x)), marker='o', markersize=4, markeredgewidth=1, label=label)\n", " \n", " ax.set_xlabel(xlabel)\n", " ax.set_ylabel(ylabel)\n", " \n", " ax.set_ylim(bot, top)\n", "\n", "def plot_bs_dl_to_ips(fig, data, label=None, azim=-120, elev=15):\n", " plot_3d(fig, data, label, 'Batch size', 'DK length', 'PBKDF2 iteration-blocks per second', 0, 500000000, azim, elev)\n", "\n", "def plot_dl_it_to_ips(fig, data, label=None, azim=190, elev=10):\n", " plot_3d(fig, data, label, 'DK length', 'Iterations', 'PBKDF2 iteration-blocks per second', 0, 500000000, azim, elev)\n", " \n", "def plot_dl_it_to_bestbs(fig, data, label=None, azim=110, elev=10):\n", " plot_3d(fig, data, label, 'DK length', 'Iterations', 'Best batch size', 0, 70000, azim, elev)\n", "\n", "def plot_it_to_ips(fig, data, label=None):\n", " plot_2d(fig, data, label, 'Iterations', 'PBKDF2 iteration-blocks per second', 0, 500000000)\n", "\n", "def plot_sl_to_ips(fig, data, label=None):\n", " plot_2d(fig, data, label, 'Salt length', 'PBKDF2 iteration-blocks per second', 0, 500000000)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "def read_dl_iter_bs(fname):\n", " return [(dl, iter, bs, get_dk_blocks(dl) * val) for (dl, iter, bs, val) in read_means(fname, 3)]\n", "\n", "def get_bs_dl_to_max_from_dl_iter_bs(data):\n", " return [(bs, dl, max(val for (_, _, _, val) in rows)) for (bs, dl), rows in groupby(data, lambda (dl, it, bs, val): (bs, dl))]\n", "\n", "def get_dl_it_to_max_from_dl_iter_bs(data):\n", " return [(dl, it, max(val for (_, _, _, val) in rows))\n", " for (dl, it), rows in groupby(data, lambda (dl, it, bs, val): (dl, it))]\n", " \n", "def get_dl_it_to_bestbs_from_dl_iter_bs(data):\n", " return [(dl, it, max(rows, key=lambda (dl, it, bs, val): val)[2])\n", " for (dl, it), rows in groupby(data, lambda (dl, it, bs, val): (dl, it))]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "def read_dl_bs(fname):\n", " return [(dl, bs, get_dk_blocks(dl) * val) for (dl, bs, val) in read_means(fname, 2)]\n", "\n", "def read_2d(fname):\n", " return list(read_means(fname, 1))\n", "\n", "def read_dl(fname):\n", " return [(dl, get_dk_blocks(dl) * val) for (dl, val) in list(read_means(fname, 1))]\n", "\n", "def get_bs_dl_to_ips_from_dl_bs(data):\n", " return [(bs, dl, val) for (dl, bs, val) in data]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "data_doom = read_dl_iter_bs('data-v1/benchmark-dl-iter-bs-gpu-doom.csv')\n", "data_konos = read_dl_iter_bs('data-v1/benchmark-dl-iter-bs-gpu-konos.csv')\n", "data_gram = read_dl_iter_bs('data-v1/benchmark-dl-iter-bs-gpu-gram.csv')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "#fig = fig_init()\n", "#plot_dl_it_to_ips(get_dl_it_to_max_from_dl_iter_bs(data_doom))\n", "#fig.show()\n", "\n", "#fig = fig_init()\n", "#plot_dl_it_to_ips(get_dl_it_to_max_from_dl_iter_bs(data_konos))\n", "#fig.show()\n", "\n", "#fig = fig_init()\n", "#plot_dl_it_to_ips(get_dl_it_to_max_from_dl_iter_bs(data_gram))\n", "#fig.show()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "fig = fig_init()\n", "plot_bs_dl_to_ips(fig, get_bs_dl_to_max_from_dl_iter_bs(data_doom))\n", "fig.show()\n", "\n", "fig = fig_init()\n", "plot_bs_dl_to_ips(fig, get_bs_dl_to_max_from_dl_iter_bs(data_konos))\n", "fig.show()\n", "\n", "fig = fig_init()\n", "plot_bs_dl_to_ips(fig, get_bs_dl_to_max_from_dl_iter_bs(data_gram))\n", "fig.show()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stderr", "text": [ "/usr/lib/python2.7/dist-packages/matplotlib/figure.py:387: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure\n", " \"matplotlib is currently using a non-GUI backend, \"\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAI8CAYAAAD1D3GaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlwnPd95/n3c/XdaKBxAwTvmxQp6j5MKrZkSZYsyZZp\nWxNfcuJUKtlUajKp2q2Jt+yKt7I1Zdc465nZZDITz0yOmZTjSWYTH3Hs2LElOdFhWaIoShQPkQRA\n3Gff3c+1fzS7CRAA0UCfaHxfVSwQDfTTD65+Pv37fX/fn+K6LkIIIYQQzUyt9wkIIYQQQlSbBB4h\nhBBCND0JPEIIIYRoehJ4hBBCCNH0JPAIIYQQoulJ4BFCCCFE09NX+bisWRdCCCHERqGs9AEZ4RFC\nCCFE05PAI4QQQoimJ4FHCCGEEE1PAo8QQgghmp4EHiGEEEI0PQk8QgghhGh6EniEEEII0fQk8Agh\nhBCi6UngEUIIIUTTk8AjhBBCiKYngUcIIYQQTU8CjxBCCCGangQeIYQQQjQ9CTxCCCGEaHoSeIQQ\nQgjR9CTwCCGEEKLpSeARQgghRNOTwCOEEEKIpieBRwghhBBNTwKPEEIIIZqeBB4hhBBCND0JPEII\nIYRoehJ4hBBCCNH0JPAIIYQQoulJ4BFCCCFE05PAI4QQQoimJ4FHCCGEEE1PAo8QQgghmp4EHiGE\nEEI0PQk8QgghhGh6EniEEEII0fQk8AghhBCi6UngEUIIIUTTk8AjhBBCiKYngUcIIYQQTU8CjxBC\nCCGangQeIYQQQjQ9CTxCCCGEaHoSeIQQQgjR9CTwCCGEEKLpSeARQgghRNOTwCOEEEKIpieBRwgh\nhBBNTwKPEEIIIZqeBB4hhBBCND0JPEIIIYRoehJ4hBBCCNH0JPAIIYQQoulJ4BFCCCFE05PAI4QQ\nQoimJ4FHCCGEEE1PAo8QQgghmp4EHiGEEEI0PQk8QgghhGh6EniEEEII0fQk8AghhBCi6UngEUII\nIUTTk8AjhBBCiKYngUcIIYQQTU8CjxBCCCGangQeIYQQQjQ9CTxCCCGEaHoSeIQQQgjR9CTwCCGE\nEKLpSeARQgghRNOTwCOEEEKIpieBRwghhBBNTwKPEEIIIZqeBB4hhBBCND0JPEIIIYRoehJ4hBBC\nCNH0JPAIIYQQoulJ4BFCCCFE09PrfQJCCNFsXNfFdV0cxym+tSwLAL/fj6IoKIpS57MUYnORwCOE\nEGtQCDM3BhrbtnEcpxhuXNdF1/VF91EUBVXND6wrioLH45HwI0SNSOARQohrFoaZQpAp/LNtu3jb\ncgqhpfDWdV00TSt+vHB/VVUxTZNUKkU4HEZRFDRNQ1VVVFWV8CNElUjgEUJsGgtHZVzXXTQqU/i3\nksJITCmhpNSPq6qK67rF6S4JP0JUjwQeIURTWG6a6cbRGdd1l9ynEGRKDTOVtnBKa2H4AdB1XcKP\nEBUigUcI0fBKqZsxTbMYDgr3WRgmFgabeill5Gel8KNpWnH0R8KPEGsngUcIUVeVqptxHKcYCupp\n4ddgmuaigFY411ICy43hx7ZtbNsGJPwIsR4SeIQQVVWruplauHGUabn/w/UgZtt2cdSpMPJkWRa5\nXA6ATCaDx+Mpfmwlq4UfVVXRNK0hvkdCNCoJPEKIdduodTPLWW6k6cZAs/DcC+ddCBoLl5xbloVt\n2/h8vuLxLctCURT8fj+5XI5UKoVlWaTTaTRNw+PxlBV+TNOU8CPETUjgEUIsa7W6GdM0lyy9bsS6\nmYKVRmYW3rZcECsUDq/la7kx5N2ocPxQKITrupimSS6Xk/AjRBVJ4BFiE6pE3Uzh4/WumYHrX8/C\nUaWVppoK4aUwzXRjoKmUUo9VaEDo8XgqGn6y2SyZTIZQKFQMPhJ+xGYmgUeIJlSLuhlFUVYdyaiE\nUqeaCp9buKgvN9XU6Bf7aoSfws/JNM3iSjYJP2IzqlvgKTxJrfaHK4RYrJnqZqByU02ZTAbDMIrb\nOWx0lQw/hbeF76eEH7EZVf2Z4WMf+xh/+Zd/ueT2l156id/7vd/jb//2b+UPTYhrblY3Y5rmivdp\n5LqZUlc11WqqaSOS8CNE+aoeeF544QVOnz5d3D+m8MSdTCb5yU9+gmVZGIZR7dMQou7KrZvJZrPF\nEYxGuCDdWDdTzqqmRvh6NopSwo9hGMXv/c2OU3gr4UdsBlUPPPF4nGeeeWbRrsCapqHrOvfcc0+1\nH16Imql23UytR25KmWqCfPFyuauaxPrcLPws7AW0WmG5hB+xGVQ98HR2dnLq1KmmmVcXm1Mz1s2U\nO9VUmGLzer31/FLENTeGn3Q6TTabJRaLoapq8WMSfsRmVfUU8qUvfYlUKkUikcA0TQKBANFotLhL\nsBQti3pbrm7Gtu3iPkaF2268T6PXzay2qqncqaZardJqRtX+vhVG2mzbJhQKFUd+qhF+FnaRFqKR\nVT3wvP/97+fkyZOcPXuW4eFh7rrrLr785S9z/Phx+SMRVbfeuhnLsnBdd9FUbCOEGahtAz1RGa5t\nk706Tu7qOPMTMySvDJOdncfj99L3iQ8R2Lm1ao+93LSXaZoVCz+5XA5d14vHkOd10aiUVV5plP0y\n5Omnn+axxx7jc5/7HCdOnOBP//RP+bVf+zX+23/7b3R3d5d7eLHJVaJupvD/hXK5HK7r1ny65mZT\nTYW9kwrnu3Cq6cZwU4swU6/v0UrS6XTdlqVb8STZoVEyw2Nkh8dIXblKdngMc3SS7PAYubFJXOv6\nz8+/dxtWLIY1PQeKQtuJu+j/7EfpfPy9qBU6/1wuRzabJRwOL/tx13WL+3rlcrk1hZ+FEolEMfAA\nxdHChSOGQtTQir9wVX9mGB0d5ZFHHgHyG+V1dHSQzWbJZrPVfmixwa2nbqagketm1jvV5LpuQ63S\n2ixc2yZ7Lbhkh8eKoWbh+3YsUfLxwscOkL40iJ1MXXsAl9mfvMTsT17C091B3yc+RN9nPoJ/a1+V\nvqI8RVEwDAPDMAgEAsXws9aRn8KxCmUKkB8hLewdJuFHNIqqBx7XdUkk8k8Guq7z3e9+l9bW1oZo\nRy/q52b9Zgqhpp51M4qi3HR0aDnrnWoyDGPR7St9PaZpykWjCqxYYkmQWfj/G0dnyhG++wjJ02/j\nmtayH8+NT3H5q3/M5f/nv9D+vvvo/+xH6XjkOEqVny8rFX5unPYCCT+icVQ98Hzyk59kZGSEAwcO\nsGPHDr7yla/w9a9/nf7+/mo/tKiTlcLMSnUzuVxuycqPRqszKXVV043TS5VsoCdFwmu36ujM0Ch2\nPFmTc2m5/xjxV05BKT9Dx2H6H15g+h9ewNvXTd+nn6bvUx/G11d6GcBqfXhWIuFHNKuq1/BAfpVL\nMpnE7/ej6zqmaTI/P19crSU2lpWmmdZbN5PJZNA0rW4NKJebaiqMNC0s0LxxZObGcLPwa6qGen+f\nbtQINTwLR2cS7w5ijU2RG5kgOzSaDzVjU2BXZnRm3RSFyHuOEXvxtfIOo2m0P3KC/mdP0v7gfSir\nPHdms1lM0yQUCpX1uAUr1fyYponX6y3596BwzSm8lfAjKmzFX6CqB56pqSm+8IUv8I//+I9s2bKF\n3//93+d73/sezz33HJ/5zGd48sknG+YJXFSmbqbw/1JV80K+sDneWqaaCh/zer0NM9q02QLPktGZ\nQohZMFJTq9GZ9VIMjfCdh4m/8kZFj+vb2kf/pz9C76c+jLerfdnPqXTgWWhh+Mlms6iqitfrXXPB\ns4QfUQX1Czyf+tSn2LVrF7/5m7/Jz372M/7lv/yXPPHEEzz88MP8zu/8Dn/0R3/ErbfeWu7DiBJU\nqm5m4dtKKOdCvt6pptVWNRW2QfH5fBX5Giuh2QJPcXRmmSDTMKMzZVACPoL7d5A8fbZ6j2HodD72\nXvo/+1HaTty16Pe4moFnoVgshq7ruK5b1movYNELKgk/Yp3qt0prenqa3/iN3yAajfLwww/T0tLC\nY489xgMPPEA0GiWVSlX7FDaFUupmCp1xb3wSavS6mfWuaqrVVJNYyrWs4ujMcquaNsLoTDn0aASj\nu62qYQfANS0m/uYHTPzND/Dv2kr/Z07S94mnMKKtVX3chQo9njweT0VWexX+VgujSFLzIyql6oEn\nFArx2muvccstt3DlyhWy2SzPPfccLS0t2LZd7N0gbq5SdTOO4zTE93zhVFPh3Cu9qklUjzUfJ3lp\niOzwGM74dNONzpTDO9ALmkvmwpWaPm764iAXvvBV3v29/0DnEw/R9cmnCNx+uKbnUOml7gvDTyaT\nIZfLEQwGJfyIdan6lNaVK1f45V/+Zd5++20UReHP//zP+dGPfsTXv/51vvSlL/Hss89u+iXqtaqb\nqeU0zVqmmgrBptBf5mZTTbWymae0bjo6MzRK9up4U4/OlMO/fwfW7BzWzFy9TwUA/97tDPzSx+h5\n5gmMSEtVHiMejxfrd1ZSiSaHhXqhUCgk017iZupXw1OQzWYbpiNrLTVS3UylLuLrnWpaaVVTo9Wm\nQHMHHms+vnyQGR4jMzxObnzzjs6UI3TrftKXB3GS6XqfyhKq30f3hx+m/9mPErnzSEWPHYvF8Pl8\nJY8crzf8LNc5Wmp+xDLqH3jg+oX8xgviRnbjxd5xHCzLWjRNs5xqFgGvpJSL+HpXNd0YaNbys81m\nsyiK0hBTbQUbNfAsGZ0pBplr4UZGZ6qi5Z6jJN54a8WGgo0kdHgf/c+epOdjj6OHg2UfLxaL4ff7\n173ooNTwU8pWGTeGn0IvrI1+nRFr0hiBp9m89dZb/PEf/zFf+MIXFt2ezWbRdb34BNAof2ymaWJZ\nFl6vt+KrmsrRiIHHsixM08Tv99f7VIoymQxuIoU9NrXsqiYZnamPyHtuI/by66U1FGwgWihA90c+\nQP9nP0rL0QPrPk45gWeh1cJPNpsll8utGHhuPJaEn02rfqu0mpmiKMRisSWvROpVf7LaVFMhzKTT\n6ZuuapInhPpYNDqzYKm2GjCY/fGrZGvYFViUoEINBevFTqQY+ZO/YuRP/orwsUNs+exJuj/yAbRA\nfUL+agXPa2lSu9xqr4JC53N5rtt8JPCUwTCM4lLvaitnqqmwqslxHEzTJBAI1OScxWLL1s5cm3a6\n2eiMf2sEo6MdZVc/ydfP1eHMxY0UQyd8x8ENG3ZuFH/tDG+/dobz/+dX6fnYY/Q/+1FCh/bU7XyW\nCz/pdBrLspifny97qXtBoeZHws/mIIGnDLquL/rjKcd6G+itZa+mQiASlVfVrsCKSubyEACtx28h\nMzxN5tJIBc9erIUaDBDYt5X4z07X+1QqzorFGf7jbzD8x98gctet9H/2JF0fehjNV78FJ4XwU9jq\nxefzVWypu23b2NdeZEj4aX4SeMpQ6ghPpRroyR9h/ay4o3Yt9mxaMJSfOnMWxdCJPnQnsZ+dxZqL\nV+cxxbKMzjaMjgjJ0+/U+1Sqbv7l15l/+XXO/c5X6H3mCfo/+1GCe7Yv+bxV6kArqpp9fm4MP6qq\nLtrQWGx8EnjKUAg8s7OzDA4OcvDgQeB6Mz3TNKWB3gawaHTm6hiZoTHSgyNkhkaxRifJDI9hxxJ1\nOz9FXfx74ZoWiZ+/jtHWQvjY7cw9/zquJYXK1ebd2guKS7rGDQXrzZqdZ+gP/5yhP/xzWu+/Iz/q\n88RDqJ7rRcq1eO66cYS6muEnm82SyWQIhUISfppI06/S2r59Oy0tLcXlvC+//PK6j/W9732PV155\nhaGhIQYHB7l8+TKDg4NomkZ/fz/f/va3iUQixaFXwzDq3kBvoUZceQT5VVpA1fo0WfFkfiTmamGE\nZnzRCE1ubLKhA0NgTxfW9OyKH/cO9KN4g8RePlPDs9pcAvt3Ys7OYM3M1/tUGoLR0UbfLz5F/2c/\nSq4tTDAYRNer+/o5k8lg2zbB4M2X0leiyaFpmqTTacLh8KIRrELwkfDT0DbvsvQdO3bw6quvEo1G\nyz7WH/zBH3D16lUGBgbYunUr7e3tfPGLX+Sb3/zmos9rxGXWALZtk81mG65ouZxNKF3HIXdtFGbh\nCM3CwmBrfmNP+wT3dmNOzaz6eYGD+8iOzZO+MFSDs9o8QscOkH73Ck6q8RoK1p2i0PKe29nySx+n\n+4PvQ61i6Ck18Cy0XPgxDAOPx3PTgFYIPC0tLYuOJeFnQ9jcy9IrNcf867/+64veL/wBiuqxk+li\nAXBuapb0hStkh0fJDo+TGR4jNzqxIZq9laXE5bipt94BTSP60B3Ef34eU0YjytZy760kXn+zoUcA\n68p1iT3/M956/mdc6Omk75Mfov/TH8E30FvvMwNWnvZKJBLFj60WfhYea+G0V2FDZtM0JfxsEE0/\nwrNz504ikQiapvGrv/qr/Mqv/ErFjm3bNg8++CDf+ta3Ft0uIzylcV2X3NgUictD+R4zY9NkrxZW\nOV0bnZmLLbpP4OBuXNMkfX7z1FEED/Rhjk+u6T5aKIh/925mXziFm6tN64RmEzl+W9MsO68pVaX9\nofvpf/YkHY+cQFlD/5ybWc8Iz0oWjvwUFp4snPYyTZNMJrNohOdmx1r4VsJP3W3eEZ6f/vSn9Pb2\nMjk5yfvf/37279/P8ePHK3JsTdOW3TqisH3GZmenMku3OLgWaLJDY2RHJ9Z8MU69dQFUlZZ7j5F8\n6wL2Bp+uKsV6Lhh2Ikni9VME9/aghlqJvdh8S6irRlWI3L9xGwrWneMw/f3nmf7+83j7e+j79Ifp\n/9TTeHu7yjpsJdtqLBz5WRh+Eon84oRCrU8pj7lweyAZ+WlsTT/Cs9Dv/u7vEgqF+O3f/u2KHfPE\niRN85zvfWXRbOTUp1VTJER7XdTEnpq/XzgxdCzZXr/ehqXaBp97WQmDfTmIvndpwbf3XInR4gNzI\nWFnHCOzfQ246SeqdzTMyth6KxyB82wHir0pArCRF1+l45Dj9n/0o0ffdt66LfzqdxnXdqo5QF5an\np9PpYmBZOPKzlvOWkZ+62ZwjPKlUCtu2CYfDJJNJvv/97/PFL36x3qe1IbimiTU9iT0zhT01mf//\n9CQ2Xiaff4vp77+Mm83V9Ryt2RixF1/Hv3cHiqqSOnuxrudTLZWYEkidPQ+qSvTB20mcfpfcxMqr\nvjYrNRQgsGdAwk4VuJbF5Hf+kcnv/CP+7Vvo+/TT9H3yQ3g62+t9aosoioKu63i93mK4Wjjys5bw\nIyM/jaepA8/4+Dgf/vCHgfyS7E984hM8/PDDdT6r+lk41WYn4vkAMzWJNTOFPTWBPT11LdhM4cTn\nlx01CRw5SqRPQX/fdpRQJ/OnLpM6d7XWX8oi6XOX8qtF7j5K6sIVrOm5up5PxVXq+dBxSLz2BmrA\nT/ShO5l74RROpr6htVEYXVGMaJjkm7J1R7WlLw9z8Uv/jnf/zR/S+fh786M+x++q92ktUQg/uq7j\n9/uxbVvCzwa3qaa0qmG5KS3TNLFtG5/PV5dzch0He27meqApvJ2awPF4sd46hZvJrO/ghofI7n7m\nxjPE38x3mzW2bMVRAsy9eI7s6OrLp6tJCwcJHt6bn+Zapr5qIwof20H2ynDFj2t0d6JHO5j/6RsV\nP/ZG4t3WCzjkRibqfSqbhre/G29fF3okjJM2MWdjdD5ygu6PfoDQgV3L3ieVSgHUZNFFNpvFNE1C\nodCSjxWmvQpL3WFt4efGY0G+DMK2bQKBwKKd3cW6bM4prc3AmbiKffEt3NlJ3LlpLNXD7A9+CPYK\nS7UNAzUYXn/gMXO44XYi5hj27u2kLlzGHB4EIDyg0n7/7ZhpjZkXzmDP135nbzueJPbPr+HftRXV\n7yX55vman0OlVetVnzk+iTk+SeTufVgJk+SZd6vyOI0scGAn5vQM1qws4a8GRdPwbevD29OB6tFx\nslkUjxcna5I4fWHR1iiJU2e59OX/RPDgbnpOPkr3yQ8Q2Dmw+HgNMAJSjZGfhVsNFVaNFULPwi2G\nRHlkhKdMx48f57vf/e6i22o5wuMMv0v2T/9t8X0lHCFrtBB/ceWO0p7d+8hdWP9eQEZ3N36PBYEQ\nUxemyQwt3chS8XjwDOwkM5Vh5oUzuNn6LI0O33kLmSsjmBPTdXn8Smi5fReZS4PVfRBFIXj0EMm3\nh8mNrm0J/EYVvu0gqQuXcNLrDP9iEdXvxb9jC572VlDAmouRGRxG9fsI7N6JncoSP3UOJ50t+Zgt\ntx2i++SjdH/kEZy2FhRFqUmn+JuN8KyknJGfG5fc31jwXNhbUcJPSTZvp+Vqq3fgAcj8l3+DO3a9\nu67v3gcY/ebf4lwbAl5CUdB6t2CPrL8jb+T2o7jjQygtbYy/MURuYmrFz1WDIfSeraQGZ5l78WzN\nV1SpQT+howeIvfIGbMAmhS137Cbzbm1WV6k+H4GD+5n759M4yeYNAtJQsDxaawuB7f3okRBWNoMz\nO0/m6lhxA11PTye+gS2YM3ESb5zHLbdBq6IQvusInR9+P1s+9jieruoWO2cyGSzLWlPgWWit4edm\nPYYk/KyZBJ5qeeCBB/j2t7+96LZaBx7r1Z9g/v1fFt83DhxB8QUZ/cZfr3gffcs2rOH1X0QDhw6h\nz48CoLR1MvLiO9jzsVXuBVq0Ha2th9iZERJvXlr346+Hb1sfemsLiVNna/q45Wq5ay+ZC7X9Xhmd\n7Rjdvcw9/3rTLfmXhoJr4+3twrulGy3ow81myY5OkFumEaZv+wCerk6yVydJvl2931dF02g7cSfd\nJx+l66mHMFpXbw64VpVucrha+Emn0ziOU9I+YQvfSvhZlgSealku8NR6k043FSPzh78L2WuvyFWV\n8B13MHHqIqnTb654P8/OveTeXeeqFE0jsmcAN3Et5HT0MvKPr+OkS99vyOjtw/W0Mvezi2SujK/v\nPNYhfPshsqOTG6ZINXLXXtI1DjwFvl3bcXKQOLXxa6FQFSL3HSP2koSd5eTrbXrxdnegeA2cRJLM\n8CjWSi9kFIXA3p3gD5C7Mk7mytKp7WpTPAbtD91Hz8lH6Xz8vWjByhQ0VzLwLLRS+Clch9e6T9jC\ntxJ+iiTwVEsjBB4A8+//AuvVF4rvB+49gYLF4H//G7CWn8bRoh3Y87PFYei1arnzDhhdUOjatYWr\n339p7VsZKAr6lq04to/ZfzqLOVX9AlLV5yV02yHir75Z935Cq4ncs5/0ufr2GAoeOUTywii54doF\n00pSPAbhY/uJ/3zlFwCbSbHeJtoKqoI1P09m8CpO5ub1NYrHILhvF4rhI/HWu5gT9V2VuZAa8NHx\nyAl6Tj5K+yPH0Xzrb/xarcCz0MLwk83mv+9er7ciTQ43efiRwFMtjRJ4nKFzZP/sa8X3td4Bgj1t\nJHMGE//r2yvez7PvILl33lrXY+rRKIGQunj5d/dWhr/zwvqXhOs6nq07yc1bzDx/BidVeoHjenj7\nu/H0dBB/9UxVH6cckXsPkH7nQr1PA8XjIXj4IPMvnsFOrFAf1oDUcJDArn6SZ5pglGodtEiYwI5+\n9EgY17Ywp2fzCw1KfKGjBf0E9u7GtV0Sb1zAiiWqfMbl01pCdD7+C/Sc/ADR992Dahhrun+pU0yV\nkkqlcBwHVVXLXuoOi3d234ThRwJPtTRK4MGxyf6Pf4czeP3CGLrvPSjZJGP/fIbM5eXrdRR/AFQV\nN7m+J7HIncdwRxcf2+nazsi3f7yu4y06N58fY8t20iMJZn/61rpHokoRuvUA5swc2cHRqj3GerXe\ndzDfKblB6NFWPP0D+fqeBu91ZHRF0dtCZN5df4H+RpIvFu5BD/iwMmlyE1OYY2tfdWdEW/Hv3Iad\nyBI/9Q5OnVZZVoIRbaXryQfpPvkobSfuLKlzeS22sVgolUoVV6BVss8PbMrwI4GnWh544AG+9a1v\nLfrFKWxEV+tdye3XniP3d98ovu+97W68bhrL18LQn/7PFYtPyxnl8e3bhye59AnV7tzG6Hd+sq5j\nLkeLRNA6tpA4P0Hs59W5+Cseg/AdtxB//S3cVOOsUGq9/xCptxuvA7B3+wCOa5B8bf0tDqrJu60f\nHJPcOi74DU9V8W3vx9vVjuYzsJMpMldHy+on5O3rxtvfhzkVI376fMOH2fXw9HTS/aH3033yUSJ3\nH13xgl/PwLNQNcOPbdvFDVSbLPxI4KmWhx56iG984xt4PJ7ibZXcpHMt3NgUma9/GdLXGv4Fw4T3\n70ZxbGJzDtN//4Pl76hpaG3t2FPrKOJVFCIHd+HOL53LN9sGGP/759d+zFXonV1V3dbC092Bd6CX\n+M8aY0+lRg08BcHDB0gPTpG5XPui1ZUED+4iNzGJNR9f/ZMbnOrz4N+xBaO9DUVTsOZj+XqbCvQP\n8u/chtHeTmZonNS5zbWxrG9rH91PP0z3yUdpufXgoo81SuBZqNLhJxaL4fV6i4HHMIziLvEbnASe\navnABz7Af/2v/3XRXG+9Ag+A9cNvYr704+L7wfsfQEvN4uoehr//Itbk8q92jZ27Md9dX51I6I7b\nUceWX0WUDfUx+aN/WtdxS2H0D+CoIeZeOkd2pLLNBf2HduOmMmQuVX5bh7VoPX4LqTONvZReMXSC\ntxwi9spZrPn61niEbj9I+ty7qxbgNiKtJYR/Rz9GaxgcB3NqhszwSOX6BakqwX270IIhUueHyAyN\nVea4G1xgzza6P/IoPSc/QHD/zppuYwGQTCbRNK3kViaVCD+xWAy/349hGLiuW+we3QQk8FTLk08+\nyR/8wR8QiUSKt9Uz8LhX3ibz3/9D8X1j3yH8gXxqNz0tDP/ZN1e8r7F1O+bg5TU/phoOE2oPgLXM\nPL+ikNI7mPnpK2s+7tpOQsWzdUfFt7VQdI3wXUdInD6HE6/9VhmwMQJPgRZpwbd9O3PPv16Xpn7h\ne4+SeO1MVeu9KsXoase/tRct5MfN5ciNTZAdrXyrBMXjIbR/N2gG8TcvYE3LNhoAnu52PB1RtJYQ\nmt8HioIVS+C6DtHH30vnyUdo3bG1Juey1sCz0HrDz/z8PMFgsBhydF2XEZ7Kn0tzefrpp/nqV79K\ne/v1zp/1DDzkMuT+13/GvnjtAqmohO+6EyWX748zOThH4p9fWvauem8/1ugI6/mxR+66HXdkhV4x\nqkbCDjGwwsLsAAAgAElEQVT3yqk1H3c9qrGthdHRhn/X1vympDXWduIIyTffrvnjlsM70A9GgPjP\n1lcbth7h+4+RePn1mj1eyVQV30APRnc7ms+Lm06XXW+zGi0cwrdzG67lkjx9HjtRen+sZqG3RfB2\nt6O3hFE8BjgOTjaH4jFQdQ3HssmNT5G+NLx8faOqEj1xJz3PfJCupx5CD1dvxVY5gWehtYSfzRh4\nmmL8qp4Mwyhu9lagKAqrBMnq8fjQ9x25HnhcB0vxYJB/wovu7Cb1ZhgnvrS2wRq9imf3fnIX1j6a\nkJmaZcWuF45NyJPGvmU/8dPVH6lwczmyF8+iAJ33dKP3biV1pbxtLcypWcypWQIHduFaNunzlyt6\nzje1AYsJs0P52qrW47eQHZkjfbGKq6QaqKGg4jXwb9+CFm1B1VTseILs0AjmxDjmRHV7GBkdUfzb\nt2LFUsTfOEf2au3DeS2poQDenk6M1jCqzwsuONks1myM7NgU1uw8WtCP3hIG18Wcj5O6OIhb6lSn\n4zDz45eY+fFLnP1Xv0fnY79A7zMfJPrQfagNOvWzlo1NNyMZ4SnTJz7xCT7/+c8zMHB9V1/HcUin\n0zXr4bDE9FXS//3fQyIfatSuPkL9HcUPZ9QQo3/xV8veVY205vfgMtfejC9ydD/u9E2G5L1+Zsay\npM7XZ1fuim1roaq03H2E5FsXsWtQFNv2C7eSfKNx+wStRtE1gkcOE//5ecyZyo5qKF4P4Vv31aWh\noBYO4t/ej9Yazr+wmJ4lW8l6mxJ4t/Ti7e0hNzFH4s0LTbUNiOIx8PZ2YUQjaH4ftuuAaeMkkmTH\np5eMkBnRCL5t/WhBP3YyTfrSMNbc6tvdrJWnM5qv93nmcSJ33FKRYyYSCQzDwOtdf7PEm1lu5KfQ\nZ8jj8RSDUpMEIZnSqpZnn32W3/qt32Lnzp3F2+oeeBwb+/m/IffTHxZvCt1/HDWVf4JwgamzoyRO\nvbHs3T37DpF7Z+0X2NCxY6iTq6z0CISYvjhLeqjyq6vWwujpw/W1MvfK+re10NtaCOzbmZ/mquKF\nZqMHngItHMK3a1e+vqcCm7hqkTC+7T2k3qp+U0ajqx3flh60kA/XNMmNT+aXu9chYAR270BvayV9\nZYz0hQ3cX0hV8fR24GlvQw8GQNNwTQs7kSQ3NUNuYmbF72++U/QARlsE17LIDI+RvVr7LuCBPdvp\n+fjj9D7zOP7tW9Z9nGoHnoUK4ScWi6Fe60lkGAbhcBhjjQ0aG5QEnmr5lV/5FX7t136NPXv2FG+r\ne+ABuPQG6b/4o+K73lvvxKtcH8p1vCGu/MXfgrm0vkXxesHrw42t7dW44vMR7otC7ubLZZVwK+Nv\nXl12A8KaUxQ8A9uxLM+6t7Xw79mOomuk3q7O9g9t7z1G8lTzbIng6etBDUWIvbj+r8no7kBv8ZO5\nXOEVdIqCb2sPnp5OVK8HJ5UiOzqONTNX2cdZC00juG83mj9A4p3L5EYa4O+mREZnFE9XO3ooiGLo\nuLaNnUxhzsyTG5vCXWHbm0VUNT+S1tGGqqmYU3Ok3x1quML0yL3H6P3443Q//QhGNLL6HRaoZeAp\nmJubK+4Gn8vliqM9TUACT7X8+q//Op/5zGc4ePB6H4eGCDzJOcy/+wusc9cuKv4A4YP7UJzrTxJJ\n08vEX//tsnf37NlP7vza621a7r4Drq4+ZaW0djD68nmsuQZaMVLc1sJm5oUzOMk19DlRFFruOkLq\n4iDW1GxFT6vZAk9BYP8ectNJUu+srf+Lb8cWXDNLbnyqrMdXPDr+7VswOvL9bex4gszQCE6q/gW+\nqs9LcN9uUDTipy9WtcC5HFokjNHZhqetFdXrAdfBTmXygWZ8al2tATw9HfgGelG9Xsy5GOlLQzjJ\n+v9MSqF4Pfi39hF98F6iv3A3HY8cL2lbi3g8XtxHq1ZmZ2eJRCKLRnnUErpQbwBStFwtDVe0XBBs\nRd9z8HrgSaewfS3oqesX44DHxLdrJ5mLSwNK7sI59O4+rPG1NZPLXB2jlHUG7twUvfceYOS5N7CT\nDbIvk2UVd49vP9aK1ruV7Hi6tG0tXJfYS6fQwkEi9x1j/qVTYFeoU+0GLFouRers+fxKmAdvJ/7G\nu5iTqwfFwKHd5MYn1lw7pYUC+Hb0Y0TCgJvfRmR4hOzQENmhxpgW0lrCBPbswMnYxE+dZfb5+hcd\nqwEf3p5O9LYWNJ8PFHAyOay5GNnxKez5OPZ8nAyD6zp+vu/QFvRwCDudITM4Qm5sitxYeWG2apab\nhrMsrHgSc3KG3OQMqfOXSZ2/zPB//As8nVF6f/EJ+j79NMF9O+p99puejPCU6bd/+7f54Ac/yB13\n3FG8zXVdkslkcbiwbsYukv7m1yGef3Vo7N6PP7z4FYTta2FwhW0njG07MK+svbg3ctth3IkSg1Ln\nFq7+YB07rNeQ1hJB6+oncX6S2KulbWvh27EFLRgg+Wb5HZLb3ncbydcbo+tztajBAIF9e5l74RRO\nZvmC+fAdh0idvYCzyu72RmcU70APeiiQr7eZmCI3Ot6QBb2erg58W7eQm02QPH2+9r2LDB1fbxdG\ntBUt4Mvvq5czsWJxchPTFS0yVzwGgZ0DGNFWXMchOzpB5krjdOcuMDqi6B2t6C1BNI8X17FxEmly\nM3OlT8MtI3LPrfR9+sP0fOQRtODiliUywlNRMqVVLf/6X/9rHnzwQe6+++7ibQ0TeMws9kvfI/fc\n96/doBC6+y7U3OLh4Xgcpr7798sewtixC/PS2mpTgkeOoM2UXlvhdm3l6nfL2GG9hta6rUX4jlvI\nDI1iljH9En3wdhKvLV9g3mw8PV1obR3M/3Tx6Ebk/mPEXj29eKRNUfAN9OLp6UD1GVjJFObYRH3r\nbUrg27YFvaOd3NgsqbOXqhvEFCW/dLujDS0UQLk2ImEnUuQmZ8hNTFfn8RUF39Y+vL2dKJpGbnqW\n9LtDDfHCRmsJ4e3uQI+EUX2e/HL2dAZzdp7s2CROurodurVwkO6PPEL/pz9M5K6jwOKux7UyMzND\nW1tbsTfPZgg8MqVVJl3Xl0xpNQzDi9azcOWAS85Wl0w5hVoNYj3d5MaWrnJwEglQ1TWFkeRbb9Oy\no+f6nl6rUCYG6Xn0fsb+7oWGfBW+kDU5AZMTBFog8tQtq25rEf/ZadSAn8j9tzH/8htQgdVJzSw3\nNgFjE0Tu2Y8Vz5E88y6R47cT//kb+Hdeq7fRNex4nOzwKObkOOZk7VfnrImi4N+9AzUUJjs4SuL0\nZeByxQ5vtLfh6Y6ihUP5ehHHxk6myU7NYk5Mkx2tTgfnRefQ0YZ/Wz+q34sdT5G6PEzmylUyV2q/\nGlPxefH1dKJfW86OAk42hzUfJzc+hTWfIBWr/vYnqt+Lry+KtyOC0RpED3nRfDqqDjBJ4tV/JrB3\nO0br2gqcxfpJ4CnTSjU8kB/pqfsOtO196PuPYJ3NjxDkLl3Au7V3UQRWbJOuhx9g+E//csnd7clx\nPHsPkDu3hk6/lglt3ZAuvd+OPjVE72MnKrrDerWZV/O1H+EtKu333b7ithZOKs38T3+Od2sfRjRC\n4vWN1TW5ZlQVvb0Vo6MNPRRA727Hs7ULUAjfeQhrPk763Us4NbhYlUvRdfx7d6J6fSTPDhJ/df1T\nm1pLKN+lORxE8RgoKLjZHPZcjOzYJOb0LOZ0ZQvlb3o+AT/+nQPorWGcbI70YH4E06xwsf7KJ6Dh\n7enAaG9DC/lRVA3XMrFiSXKTM5hTs6QvD0OlV/ABiqbh6W7D292Kpy2E0eJD83tQDVAUB6wcTiaF\nk4jjpFOABUxDeho3nX8vfN9xuj/zS3gHarNtxXLqXmNaJxJ4yrRc4GkokW6MXXuLgYfpSZx9+9HS\nNzTtys7T+sB7mPvJC0sOYY0Mg88PmdJXSqQuDRLwKWsasdEmr9D96HHGv1f5HdarynHIXc5P+0UP\nBTEGDpOdyi7Z1iI7OEJ2cITQbYfyhZkjpY5MNE/RshaN5PcvCgdRPTqu6+JkMtjz81jTM7iZBIqv\nl+xUnMz55afxtHAQT1cHWksY1WNcW+qcJjc1gzVZ2Q1k10L1+wjs3YXrKCROnyf2Ymnbaih+L76e\nLoy2FtSFIxJz8XxhcCyBXaeQp2hafmStsx1cl9zENOlLwyQqUJt2M0ZHFE/34uXsZiyBPRsjNzFN\n9up4RfvuGO1hvF1RvB1h9EgAxauh+3U0DXBM3FwGJ5nATsSvjXbPgzUPM2CT/7ea4NFjdH/2c/j3\n7l/ysXoFkIUvyOv+4rwGJPCUyTAMrHUWsdWEqqJEuyHSBvP5V2BmPIW2zE++daCdeEsLdmxxd1In\nEcez7yC5d0rfF8manEC541bcsbWt3jBmhuh88D4mf1i9Hdaryc3lyF1856bbWiR+fgbV5yFy323E\nfv4m7gpFukUb6HlIawlhdLWjt4RQvPl6BCeTwY7H84EmHSc3tHSFlRaN4t93kOS5SyReufkSfDue\nJL3CRq6Kx8DT04neGkHz5Xua2OlMfruB8YmKTynqrRF8O7dhp7Ik3zjP3HIrq3QNT08nRlsLWjCA\nquvY2Sx2PIk5mR+dSV8aIl1G8+9K8fZ34+3vRjUMrLkYyXcHSZ2/AufX1jpgNavV0ZhTM5hTM2U9\nhhrw4ettW35KybVxzQxuOokdj+GaJpDK/7v29FdqkFmNb/deup/9ZUK33XHTz9sMgaPepGi5TF/7\n2tfo6OjgySefXHR7IpEgGAw2xi9xah7ntefI/uR7+fc9XsJHDqHYS5/8s1qYkf/xP5ceQzdQwy04\ns6W/gvYfPIgRG1v7+SoKKU8nM8+/vPb7Nigt2o7a2k387VESp69f2Tx9XXh6O0m8unIn5ehDd5D4\nef2XKAOoAT9GVztGaxi8nnwYM03sRAJregZnjS0GfLt3geIh8cbb1V+hpKp4Otsx2ttQg34UVcXJ\nmVjzMXITUziJ0s7d09OJd0s/5nSMxJsXwXHyzfWuFQaruoadM3FSGazpuXxhcAMW5OutLfivrSZ0\nUmnSV65iTlem4LuUOpp10TS8PVF8XRGMaAijxY/m11F1FUWxl5lSqh9P/xa6Pv1LtLznxKrXgRs3\n8qw213WZnZ0lGo0WbytsMdEEpGi5Whq6aLkgEEHr6CD/e+BCLovtCaOnl865e+w4oduOkfj5DRsx\nWiZ6tJ3cGgJP+uxZPPu24cbXuLTVdQmYUzh33cpcI+5+vQ72zDT2zDQ+L4Q/eHDRtha5kQlCRw9g\nzs6RHRxd5t61exJSvAaerg70tkh+Q0ZdwTVNnEQSa2YWOxbHGh/BKmM2QfH58O/ZQ3Zkivhr1Z0a\nWcRx8ltCrNDhW2+N5EenwkEU3cC1r/VXmZpBCwbx9vfhOuCkstgpC1Dx9nWRG58q/mtUqu/aVgzR\na1sxjIyTHRoj/to6d7O/VkejR9tQfAa617u4jmZyZk11NEZHC76uNjwdYfSWAHrQg+ZRUVQ3P6WU\nzWAlYrip5PUpJXMepis3ElMpensHnb/4Kdoe/gBKg+5N1RD1pXUggadMK9XwFJoPNswvVVsP+qFb\nsc7kg0xudAS91b/k0xSg/fAOkmfexs0u7jScu3gOvX8r1tUSp6kcByfUjrLWwHPtviE9iXPkALE3\nmqvI1xwbAUYIdSlEb78Vy/Yx+9O3sWIpIvfdRvzU2zd0lq3cQKuiqxhdHehtrahBX36Zsm3ipNJY\ns7PYs/NYU+NYU5Vf+eTp7UFv7yJx+hzz/9RYQVZvDePri+LpbEEP+dA8Ktg53LSJfuwQ1tQUjq4w\n9dzb5MbKm2qpOkUpbsWgqCrm9CyZy1dJvr22PceW3xYijTk9S25satU6GjXgw98bxdO5YErJq6Ho\noLgWrpnFTSWxE0unlJwYNN6Y2M1poTAdH32G6JMfRl3jFhENda1oYhJ4yuTxeEinG7/tudvWh7Fj\nVzHwWJfO49xzL2p2aS2Emk3S9cSjjP/P/2+5I63pcVMXLhIMa+sb0rdMWiIa9r5dJN+pzj5VdeW6\n5AYvAxDZbeDZeozcvI2noxXj4G7irxSaDa7hiVBV86ucCitYdA3XcXDSaezZuWuhZgp7tjajEa6i\nENi3DzttkTxzDkroXVQNasCHb0sX3q7W/DSIR8tfdLMp7LlZnFQSmIXZWZzZ6xdbvaOT7KWLuOk0\nMEZ0vwfjoXtJjaaZ/vHphtjPydPdjm+gD9XnxYolSF0aIn1pGC7dfHRFawnj7WnP19F4PeC6+Xqn\nmWurv66N1CykaBqenigtR3ZgREPoYR94VDw+44YppRhOOg2YwBSkpnBT+VVKzUbx+mh/6sN0nHwG\nrd6910okq7TEuhiGQeyGIt+GZHhRQhGUtg7caxc7y1ZZqa+nX8/i37uX9LnFUw7W1SGMXXsxL5Y2\nFWHPzqLsuQ135PL6zjuboa03hJPZQvpK5ZeZNowF21qEB/wYW0L4B04QP7W0klWPtmJ0RvON5Dw6\nuA5OOoMdi+XraOKz5OK1W6a8HK2lBe+2HaTfHSL2SvV3elc8Bt6+Drw9bXgioXxxqmLj5tLYsTmc\nWAyIQSxW+uiBqqIGA1hTC6bALAvz8nkMoP/RHdDay9wrl0ieq83vphYK5JeEt4Rx0lkyQyPkxqfJ\njS+dalZ8Xrw9nXiikeurvzI5zPkYubEp7FicVCxfQG60t+Drzk8pBfr60O/evmRKyUnGsZOJxVNK\n1/JQg0/qV4Wi67Q+8hid/+JTGAtqYTaKzTiiJIGnTLquN/YqrQXcaD/6kdsxf5Lvqpy78A7G9n6U\nZUZtFNeh896jDJ6/AO7iy4MzMw2aDssUPS8nO5tYMViVJJWgY3cH45kcufHqNlBrBG4mTe5Cfhov\nvC2CZ0crvoH3YKdzZIfHyQ6OkBtszJDt2bYNLRAmfuptMld/XrkDaxrevg583W0YbSH0gCff98TM\n4CRi2PNz4KQhla7YSIL/4CHSb668pYc9Pwfzc4S7IHrbHeRSGpM/PLW2TWdvQjF0/DsG8HS24doO\nubEp0leuknjjnfwnaBre3k7CR/dfK8LWcE0TK54kNzGNnU6jag6ax8EIK9emlIIoehuK249rZnFS\nCex4DCyLjT6lVDOKQuTEe+n69Gfx9PZV5JAypVUbEnjKtNKy9IbYQPRGkU70SAumku+P48xO4Rw8\niJZafmWGlonR+fgjTH777xbdbs9O49l3iNw7pb1yz5w/h/fwXty59U+juPE5uo9uZfRnuYbfOqCS\nfDu2kj3zavF9L+DdHkKPtqOGWkD34JgOVixFdnwm31G31iuCDIPA3n3kZmIk3yy92eQiioKnqw1f\nXweeaAg96EXRXLByuMk41twsWFnIjcF49adGPNt3kD5T+g715vBlFKD73k70nm3MvT1OvMR91wp8\nA714+7tQNA1zZp7ku0NYczEUQ0cPB/Fu6cG7pQtFV9E0F0Vz0YNeNL+BqivXppRUnIyNMxDGSets\nhimlWgrdfiddz34O/67d9T6VsiwXsDZD4JLAU6aGbzy4kKLihNvRD92G9Wb+ImrOx9Fusn1LsEVl\nvq+X3Mji1UPm4CWUYAg3WdryUtsbQqW8uhF3boreu/cz8vxp7ERp21ZsZKFjR0mfWWaEwbKwJsZh\nYnHBqFcH344wWntHPgxpBk7OxppPkRm7toqogiFca2/H6Okj/c4l5l9cfdm8EW3B29+Jt70FPeRF\nNRQU28yPMszN4OZyYOe37rCWX0hVE2ogmO9FtY7vlZtJY14+S9APkadvwdZamH7uLXLji6cY9WgE\n37Zru7drGoprowcMtMLqpD1R2u8aQMG+NqWUxknOYCcS4Lj54RcTyDTeKqVm5D9wkO5nP0fwlqP1\nPhVRBgk8ZdpQgQcwI714tm0vBp7cO2fw3noExVq++Z1iW3Q9dHzJthNuOoVn70Fy50pb1pp85xzh\njmB+24kyuNNj9D5wK1f/4RXcVXbN3siCK4WdVbiWhTU+BuOL+x/5vODf3Yre3oEaDOOqBnbWwppL\nkBmbwpwovd2Ab/ceXDQSb5wlc/n6FKMaCuAf6MwXXYf9aB4FxbVxMgnsuTncdAqYhplp7JnGvUh7\ntm4lc7b8lYHWxCgwSvSAF88j92HmjGvde13sbBrMDG56Dicex7XMfMO7WON+XzYj77bt+V46995f\n71MRFSCBp0yGYWA3wEqNUrm+EKrHg9rehTM9AWYO2wiirxB4IL/tRNv7foHZH/140e25i++gdXZj\nl7B5o5tIoBzah3u1Au1kJ6/S//A9DH/3pw2xSqbSgrceJbOOsLMaN5fDHB1ZdJsC+P0Q2NuO3t6O\nEgiDqmFnLMy5OJnRKaypWRS/n8C+fbiWharY6JEAoa13gmujmBns+TmcRByYh/l5nPmNWQPiO3CI\nzNuVLbJWNI3Wra1k0xaxV16TaaUNQOvopOuTn6HtoUdQarCDeK1reBqu3KJGJPCUaUM0HryB3daL\ncfQOsj/6LgDZ4WH09uBN7xPpayHe2oo1t6B+xrZRQ+GSAg9Aemx6yU7t6zY+SP9j7+Hqt59r+B3W\n1yJ49AiZtyofdlbjZjOYI4uXjKtA6+4ewk/eQ3YmRvKN08XvtZtovnoQvbOLzKXKtj/QQiHab9uL\nO3oFvWdHRY8tKk+LtNL58V9Evf8ELdFoTcJOvWy2fbQg/5wmyrChipavsSM96EE/KPkfvz14Ecd3\n8/4Ripml+/GHltxuXrqAsa20J/Lclcso7T1rP+GVzmn8Cr2PP1Cx49Vb8MgtZM5Wfwl3KYIH9tFx\n/x0EvSYe3cEfDTZVsFxC11F8PshUZoUVgN4epf3ITtzxfJBUZbKqYan+AJ2/+Gn2fP3PaP/QR1CM\nmxQ2ig1LAk+ZNloNj6IouJoBoVaMI9c3s7PM1S9mHitO+K6lG+C5mQylNsezlbIWqC+hTVym65H3\nVPSY9RA4fIjMubfrGioUwyBy5zHa7ziEJzWJPfwuxsA27MGLqJmlG342E//+A5hDa9vo9mY8vd1E\nd3bhTl8f/VQyzV9ov9EohkH0qafZ81/+jK5PfgYtEKj5ORReGNd6SmuzjOosJIGnTBst8BQ40S0Y\nA1uL72fPncUt4Q8gum8A1bd4YsoaH8WzZ39Jj5t8623wLt3Sohye2WE6HryvosesJf/BA2Qvnqvb\nBpN6WyvR99xN295+1IkrOJPXVuSpKuq1Shx3ZhJvb3ddzq/avDt2rWkJ+mr8O7cT6QnhxhavzHJj\ns1CjzSHFKlSV1oceZvd/+hN6f/V/Q4+0LvrwZg0EzU4CT5k2WtFyUUsniuqidvUC+Sdjx9+6yp1A\nzaXoevIDS263xkfAs/r+MW4uCx29az/fVfgSo7SfuLvix602//69mJcv1qX42rdtG+3H7yYc9eIO\nncdNLG5m6N17AGfBnlrBndtqfYpVp4ZCWLMzFRtZCx7cRyjkQmqZdg2Og69JQ+NGEr7nPnb9v/+Z\n/n/1f+Dplp/HZiKBp0wrFS03cg0PAIqC29aH58jtxZtys6U19POpaQIHFo/oOLF5PDtKa8aVvFKF\n/ZRcF39ukta7j1X+2FXi27Mbc3gQt5aduhWF0NHDtN97K37iOIPnl20VoATDuJOLV3TpRgP/Pq+T\np68fe64y23C03HaEgJKE7Mp1QJ6Ojoo8lli7wOEj7Pi3/46tX/i/8G3bXu/TKarHaNJmHcGSwFOm\njTqlBfmtJjSfAZoGgHnuDK6++iiN4rp03HkYbljBkLt0Hloiq97fHhtF6dqyvpO+GcchpCVoOXqw\n8seuMN/OnVhjV/PN9mpA8flovedO2m/dgzE3gjNy83oV79Zt1/rmXOdOjqL41rYLdCPzHTxE5tw7\nFTlW6z23401PrtpnSg9VbJ2iKJFv5262/u7/zY4v/z6BA4fqfTqijiTwlGkjBp7iyJM/DN4AxtG7\n8u9bFrZeWn2Nlo3T/tgji2/M5TC6SluFZZZQJL0ulklLi0Nwf+O2fvds34Y1PY6bzVb9sYyuTqLH\n76ZtewfK6EWcmdW7Xeu9W7AHLyz9gGUSPrC3CmdZe0Z3D5kLa9v6YSXRE/dgzA6XVIOlaZvvVXW9\neHr72PK/f56d//4/Er5zbdPdm3UEpNlJBV2ZVlqW3qgURcFxnOI/NdKL3psp7nacvnKJcHdbSccK\nh1XiAwPkhoaKt5kXz6H39GON3XzaKvXW20R29eOmqrD6J5uhrTuIkx4gfWVo9c+vIe/AFpz5Wdx0\nuqqPE9i7G39XG87VS7iDa7iwKwqaz4Mzv3wg9bbevH3BRqDoen7z23JH1xSFjl+4F2Wk9N49Sq66\nP3cBerSdzn/xSdoeeSz/sxZL3BjoNku4k9+GMjXibumu6xb/FYLNwv8D2LaNoiio4Q4CY+dQuvtx\nx6/ijgzhbN+Kml49iCiORff77mXoTxaECtdF8ZTQw8K2cFs7oRqBByCdpGNXlPFsltxYY+yw7unr\nw0nFcUrcf2zNNI2WW2/B0Gyc8as4QzNrPoRnz36c4ZU3AFXipW9B0ah8+w6sa9uORTSNzhN3wRrC\nDoATq0y9kFhKDQbpOPkM7U89vWQlaSOT0aTakcBTppWmtKpZtHxjoFnuraIo+UCjqiiKgqZp6LqO\nbdu4rotvwROCG+nGe+Q2Mj/Ij8qYWZtSKzX0zDzR97+PmR/8qHibOXgZY8cezEs3H1lIvXuZgF+p\nWu8ZNzFP95EBxnIm5kx9LzRGdzeYGZx45QOe1hKm5fABlPgU7tTgurd0UHw+mL35rp1ufB7/zm2k\n372yzkepL++u3WWHHcXrpfPeo7gj69gZPpvB6GjHnNr4wbFRKF4v0Q8+RcfH/gV6uKXs4zX0YhNR\nlpoGnlgshmmaxYCQTqfJ5XLkcjkUReHw4cO1PJ2KqEYNz3oDzcL3V3rF4CxTZ+C296PFp0A3wDLJ\nvfMWnr07UdzSLp0tXSFi7VGs6esjCk58HlQNnJWXW1tTUyh33Io7VrmGbzdy56bpvmsvoy+8Wbcd\n1jP/VMkAACAASURBVPWOThTFwZ4vbRVcqbxb+gnt2IIzdgWuXqDcp2nvzj3Yl8+t+nmBgd4NGXjU\ncAvmVHnbsGuhIO237ccdXf/X7+vpksBTCZpGy/veT/cnn8XT2VnxwzfzqMtmHVWqaeDZtWsXpmmi\n6zozMzN0dHSg6zq6rjM8PEw2m8XYYC2911PDU81Asy7hDlBVPEfvIvfqT3ETMRx/BC1V2qiIYmXp\n/sCDXP3zbxZvs6cm8Ow7SO6dm++mnktmqfpPfGac3geOcvUfflbzHda1aBTNo2KVeaFdKHjoAL6I\nH2fkSn5ZeQVonT3Yg6VNz2hO9Yutq8Ho7iF7YfVAtxK9vY3ovgHc8eHyziMSLuv+m56i0HL/cVqf\n+SRuRydJ2yaXSOD1etF1fcNdyDdr+KiHmgaeycnrT/p33303L730UvH9+++/H9u2N1zgWa6GZ2Gg\nMU2z/oFmgULR8g034kb70V2F3Kv5m3LTM/j9pZ+Dx4wRufce5v/5xeJt5tAVCAQhtfLISvrsO3gO\n7FjSlbbiJkfof//dDP/dP9WsyZ/WGkEP+rDGx8o+luL1Ej5yCN1K4s6M41S4DEiPhHGSpf0M3MlR\n9EgEa36+sidRRb6Dh8m8tf5uyt6+HiJb2hZtFbFemkcqCdYreOx2up/9HP4911cLOo5DNpsllUrh\nui4ejwev14t2rd2GEAU1XZbuum6xK7Hrupw9e5Z4PM709DSxWKxqxb+2bXPs2DGeeOKJihzPdV3G\nx8d56aWX+MY3voHjOPzGb/wGTz31FBcvXiSZTGJZFrZtF2tmNE3DMAz8fj/BYJBgMEggEMDn8+H1\nejEMA13Xi4Gn1tzoFhQrg9qX76ZrnjuDa6yt8K91dy/qgr1o3FQSz8D2VR7YwQmu3uG5IiaG6H/s\nPVCD768WDmNEwmWHHaM9mt/2YWc32sRl3JnKjRQVeHbtXbUvzyKuS3DfroqfR7UYvX1kzq+/305x\nq4j5tReBL0exazvK2Ax8e/fT/jtfZPvvfXlR2AFQVRW/308kEiEUyq8ijMVizM/Pk8lklp3G3+w2\n66hSTV9qFEYwAE6ePMlv/uZvcvz4cd544w3uv//+qo3ufO1rX+PgwYPEK1Aw+sUvfpGvfOUrBINB\ntm/fzvbt20mn0xw+fJjHH3+crq4ugsFgcWTH690gjdp8QQi24jl8lMzIFXAcLNWLQem7R6u5FN1P\nPMroN/66eFvu4juo0Y6b9n9JnbtAsNVTk5EXZfwKfY8/wMi3f1y1x1CDQYzOKObw+pfE+3btINjX\nmV9WPlSZaatlGR5Ixlb/vBt4g5XdBLZaFI8nX9u0zjq74MF9BPQsbrKCxebr+H5vVp6BrXR/+pcI\n3Xs/8yWMKBZKJPx+P5Zlkc1mSafT6LqOx+PB4/GseqGvdRiQIunaUVb5Zlf1J/HDH/6Ql19+mZ07\nd/Lxj3+8Ko8xPDzMs88+y+c//3m++tWv8q1vfaus401PT+P1eouvJABOnDjBd77znUWfl8vlGjLw\nmKaJbduLVmkVKFNDKCNnSX7vO2CZaD39BHvb13R8F4WJt4ZJnb4+fWDs2ot58ea1E6E7bkWtYvHy\njaz2rYz93XMVP67q8+Hd0ktucB1FrapK+OhhPB5wxsqrEymV9+AtOCUUKi/h8zP55lBd9gBbC//B\nw6TXOZXVctsRvNmZVbsnr8f0cAw3XfqLic3G6Oyi8xc/RetDj6BoGrZtE4vFaGsrrUfYQq7rFhfH\nWJaFYRg3rfdxHIf5+fl1PdZ6mKZJOp2mpaX8FWalSiaTxZExoLiKt0msmFZr+hUmk0kymQymaZLL\n5Th06BAHDhwgnU7z+uuvc/jw4Yp/03/rt36Lr3zlK8RilXlV1d6+tgCwkbhtPSjDb/3/7L15lFxn\nea/7fHusuarnllpSS61ZsqzZ8hjb2Mg2BptAMLEDOMDhsCAGElYOOYSQQAZWwJdwk0A4uRznsHDg\nQHIJgXBz14F7SEggYYoxNp4kW7Isax66q7pr3MN3/6iuUg/VQ1Xt2jV0PWtpSeqq3vurql17v/sd\nfj+MvddS+PG/4pw9hTu2ASW7/PdOIOnft5WXnnkWpkuU1gtH0NaOYp9cOAgoXE7hp3KGduklBl95\nI+e//T3PtikMA3PdGgovVjeurIRDxHfvREmP415+ueax8mpRevpxXz5e2y/nsoS3bCT9TO1NwI3G\n3Lyl5mAnce0B9OSphjnYm6uGyR17sSHbbmfUWIz+++6n99WvRTFmZxFrzboIITBNE9M0cV2XQqFA\nJpPBdV1M08QwjE662C+bbkmrQTiOg6qqbNq0icuXLxOLxVAUhQsXLpBIJEgkErz44ou8+OKLrFu3\nzrP9fvOb32RwcJC9e/fyz//8z55tt2NRdWRiGE01KHUZWNnCsjV5ypvJTTH4mjs5/7VvXvnhEpmA\nwrFjBHdtRS6hA+MlRuoUfTcf4tJ3f7j0k5dA6BrBjevJv1DBkmGh/a8aJrppFHnuJPLUC74FOuX9\nD/Tj1BrwAIGhPtLPeLggD1HjCayzZ2r63d5fuBb1XO3vy3LQexJVFIs7HyUQoPe1v0T/L92HGgo3\nbj+KQiAQIBAIYNs2hUKBqakphBDlZucunYsvTculSHLr1q28/PLLXLhwgXPnznHbbbdx/Phxjh07\nxitf+UrPm8v+7d/+jW984xts2LCB+++/n+985zu85S1v8XQfC9GqbulLrUv2jqDYOZQ16wHIP/cU\nUql+2iEUcAmsHy3/3z79MvqmrYv+jr1MHy/PkJJg/gI919bpsK6pBLdsWnawE96+lb4b9hM2LdyX\njiIXcdduFPr6jXUFOwBqrkEq2fUiBFp/f/Uij0LQf+v1DQ92ALRge/RANRqhafS+5rVsfuRRht7y\n1oYGO3PRNI1QKEQ8HicUCuE4Dslkkqmp4gikX+fvldpA3Ax8ndJyXZfLl69MOpw/f54jR4op8fHx\ncfIemyl+7GMf4+TJkxw/fpwvf/nLvOIVr+ALX/iCp/voOKJ9SD2AsXN38f+ZNE6g+tqycB0Gbr5m\n1kSUc+lCUdxwATLPHSk20fqJ6xIWk8T21ih6qSiEt28jf3Tx0o7QdOIH99J3YCdG5kKxlNSsgFhV\nUez6v2ty/AL68JAHC/KW4I6dVWXagKJVxK3XVuWLVQ+q0no3Q76iKMRvvY1N/9fnWfWu96D19DZt\nKUIIdF0nEomQSCTQdR0pJRMTE0xNTZUHUDqJlRpk+VLSKh0s0WiUH/3oR/T393P06FFc1+VrX/sa\nx44dI5FINDyd2Ehtm45hWpNHvXACDBMKeazzF9Ai1R8qWi5F3+HbufS/vg2AO355UTFCmckgBncg\nT9Ug2V8Pjk0sbOFu38TUM1VcKBWF8FU7yD27sLii1pMgtnMrjJ9Dnj/he9mqEuaW7bgnvJn8Cm1Y\nS/Js/do0XqGPjJB99tmqfkeYBgPX7fH3uMs1R/W7FYgcPMTQr76dwIblSxv4dYEulbby+TyxWKzb\n79Nh+JLhKQlAfepTn+LTn/4027Zt44EHHuALX/gC4XCYz33uc3zoQx9i/fr1DVvDzTffzDe+8Y2G\nbLvjov++EXBtjH3XAmA9/wzSqK3cFO0PoM2QfbdOHENEFs4YZc80yeizkCcxaBLcsMweMiEIX33V\ngsFOYHSUvpuuIdprIk8eRU61xiiyEkvgnvXOQb6VdEKFYSJtB5zl63mpkTADh3bVZRVRE6kJUHxN\nsDed0I6rWP/w/8noRz9WVbDjN6XzeanfJx6PlyeopqamSCaTZLNZz1owmpFt6bRr1nLxNVTdsmUL\nP/zhD2d9wHv37uVDH/qQn8voshRmGMI9aFqg2LwsJTY6OtmqNyXsAsN33sLLjxZtJ2Quh7FlA4Uj\nlQOAwksvEdyzE3mxtobTusim6d/Qw/l8gfzpxQUDI7uvJvv0HBNKIYjs2oEZNqZtH1qvx8VYPYLz\nUpXlnkUQl84iAiYy13y7CX3DGIXnlt9F7ZVVRE04NubwEPnTTTjOfcZcv4GhB99O9NB1zV7Kspkb\ngKiqSigUKuv7FAoFkskkqqqWMz/tlulvt/V6ga8Bz7Fjx7h8+fIsH6l8Pk8+nyedTnPrrbeSSPik\nuushlQ6cdm1aLiH71qC89CTq6CacE8+TP/4C+khtBn16IUX8xutJfu/fACg8/xzq4DDO+cpBhS01\nmiUKL6eSDO5czdl8HutSZauF8N7dsxy3RSBAfM9VqPkU7uUzuC3quKCvGfU02AHAtohu30Lqp/U5\nkNdLYMtWclUEO15aRdSKMdDX0QGPPryKwTc9SPyW2xAdks0q9fvouk4oFMKyrLKtha7rGIaBrutt\nF0y023prxdex9D/6oz/iX/7lXxgcHOTcuXMcO3aMjRs3MjY2xpkzZ9i0aVNbBjydiEwMI19+GmP7\nVWRPPI97/gzu5k0omdqu5j0bBpn8WbQ4OeO6KMEQCw2qZ555hui6Qchlan8BdSCTlxk+uJnT338a\nZ3K2aVV4725y08GOPjhAdOsYXDiFPHOsJfpzFkSIonl9AzZtJiJLP6mBqD095E+fWvbzg2OjRBO6\nZ1YRtaJH/ZtI8hM1kWDg/jfTc+fdKK1U8/SYUr+PYRhlfZ9sNks6nZ7l59Vqys6lfa5EfO3heeSR\nRzh69Cjf//73ueOOOxgdHeW+++7j7/7u73jiiSfYtWuXH8tpCB13AKkaMjGMokoIFv2xrKnax6dF\nIcvQqw+X/2+dOIY+OlbxubJQgL5VNe/LC+Tl8wzfeBUicKWRvhTshDZvov/Gg0TCEvnSUWS2OYFZ\nNZhbduBeqN/EtBJi8lJDtrssFAW1pxc5tTw31fCOrUQiwluriBpRtc66q1ZCYQbe9KtsfuSv6XvN\naz0NdvwMCmo5l8/t9xFCMDU1RSqVIpvNlj0kW4mVktWZie95xomJCW6//XYsy+LYsWOkUikefPBB\nnnmmRRXMloGqqh1pUCd7RxCug7HnEAD5536OVGpPCpruFJHdV1/Zfi67oJFn9sRJX0w+F0NcOsvq\n2w6CphHesxsjoNJ3zS7MwmWcky80TIXXa0QojLx4umHbl5NJgmOjSz+xAQR37KRwbHmj5LF9VxMS\nachX34vWCITV/L4nLxC6Tt8v/hKb/+pRBh94M2rQZz2tBlBPMFDq9ynp+7iuSyqVIpVKkc/nO+/m\nuI3wNeC5ePEi9957L3v37uUzn/kMQgj+/M//nLGxMX7rt36LF17wRwPDazRNw5pjTtiqPTxVEelF\nGkG0/mk7jVwWJxCteXMC6Nu9uTzaY587g7F5W8XnWmfPIgbX1LwvrxAXXmbtG+8kbOZRL76Ee275\npZNWwRjd0PAsVGit/xk5Y+06ss8sLAkwk8S1BzCzFxrii1UrcnKi2UuoD0Uh+opXsubP/5Lhd7wL\nLRZv9opailK/TzgcJpFIEAgEKBQKZX2fkt9iM2j7a1ON+BLw2NOeSu95z3u48cYbefjhh2c5o3/i\nE59g165dHDvms/6KR+i6Pi/g6QimNXkUO4e6oaiSbJ2pryyi5KcYfM1d5f/bZ06BWdlFy8ovf7y4\nkYSjJvEt61Fi7ddfpq0awfW6UbkCqutvtkIEArj5/LLMS3tvuhZ9/GTLZeRkNo3Wpj2L0etvYtNn\nH2Hg196H1l/bMMNKotTvE41GicfjaJpGLpdjYmKinPXxOwhZiSUtX5qWS0JNv//7v084HCabzZLP\n53FdF8dxsCyLhx56iP7+fj+W4zntFPBUm3mSvSPIs89jbNtB9vhzWMeOELj2ECJfe8YgZFgENo6R\ne+EY7mQKY+tOCs89Ne95mWeeJb5pTVP7LUQ4ikheQJcuPdvWkTwdw37ZP1f3elGDAdxk40+k8sIZ\ntHgcO+nPiJq5YYzcMrI7/bdchzjTujdSgdXDTE20T6YnfPUeBt/6DkJbi5nZTMaf/jU/g4FG72um\nn5fjOKTTaSzLIplMlkfcS32vXbzFl4DHdV0UReHb3/42//iP/0h/f3856wNgGAbPPfccv/d7v8fh\nw4cX2VJrouv6rNfTUZghiPQWp7NCYciksVyNegwghHQZvHE/Lx0r2isUjh1BxHuQyTlj4I6DjA9A\nEwMeY8MYIlNsylWdAj3DYSZjV5Gr0YXbT4zN23BPNd4XCgApCW/dSPJHjzV8V4Gt25cOdhSFgVsO\ngd+q3VViJGovEftJYNNmhn71PxHZd2DeY35lCvzMSPi1L1VV0XUdVVUxDINCoUAqlSr/3zAMlAaM\n9M9tAl8p2R5fA54nn3yStWvX8ta3vpXx8XE0TUNKycjICO9///t56aX2uXOeiaZpnRvwMK3JM3UZ\nY++1FL7/vym8cAR93TD1fEXUXIr+uw5z8R//F1gWal8/9tyAB8i8cIxQWGlaOULXZ59shJTEgjba\ngYNMPfYfLVcmKSECAUj6Oz1lhhvvg6b29pE/ufh5oilWETWimq09tm2MrGHwzW8ldtPNK+ai6DdS\nShRFqajvk81m0TQN0zTbUt+n1fAl4Cl9SKZpsnPnTq655pp5z9m5c2fblIXm0rFNy9PIxDDy5FPo\nvT0UAPfSedxt21Az9aXiIwmd1PAQhbPnsI8/j7pqBOfM7KZg+9JlxNhe/6X/ARHvQSQvVHwsJCfR\nrjlA8omnkJnW80Uyxjbjvri4oanXyMtnQVWX1VdTE4qCGoviXF44kFPDYfr2b2vK8VILwm3Nc57W\n18fAA2+h5/BdiG55xVcq6fvkcrmq9X26zMeXpuWZF/7x8crqtaU6ZjtiGEbbrn1ZKCqyZxXCzqFu\n3gGAnVqe7sliCMdi8PDNxf9IueCJNZ9qjs6NsW500SyWYaXo2bUFdXDYtzUtB3VgCPdkEyYec1nC\nWzc1bPPBHTspvPjigo+rvQn6dm9sjlVErbSAHtBM1EiUobe+g83//VF673r1igx2WslJvNTvE4vF\niMViKIoyy8+rVn2fVnqNfuJLwFOqQd5www38/Oc/57vf/S6WZXH58mXS6TRf/OIXSaVSFTM/7UA7\n9fDUmnmSvSMA5THy/HNPIdX60/F6Pkni5hsBsF9+CWNs87zn5I4cQcR7695XtWjK0uUqzc7SM9qH\nsWmrDytaHloi3rgsyxIEhxrzORmj68k+Pb+xvYS5apjejcNNtYqoBTc1PkvcslkIM0D/G+5n81/9\nNf1v+GUUs/lrmkmnZMsrsdzXpqoqwWCQeDxOJBKZpe+Ty+U6UgvOa3wpaZUCnje84Q0cPXqUBx98\nkIMHDzI8PMypU6d46qmn+MAHPsC1117rx3I8p52mtGom0os0QyiFHESiMDWJY0TQspUzdtWQWNvH\nZCyGk0rhJCfml0WkxAnGUXy0AlD6B1Anl7c/xXWIxyC9dz+Zn/5Hg1e2OPrYFtxTzSvnKDnvMxZK\nMISbnlqwX6psFZGq/1j0HSkJrl5F5tiLzdm/qtJzx6sYeODN6L19Vf+6n5mCTs5IVPPahBBomoam\naeV+n5KtRbffZ3F8V1r+7d/+bX76059y//33s3v3bt72trfx85//nLe//e1+L8UzKjUtd1IPTwnZ\nO4KQLsbeYmBaqMK/aDGElWPgVbcD4Fy6UDFbkjlyFFT/vG7NtdUpBwshiChpYoeuAaPxzbsV0XVE\ntrklEnn5AuaqIU+3aYyOYl+8WPGxVrKKqBWjr8f/nQpB7OZb2fSX/4PVD/16TcHOlU11L6zNotTv\nE4lEiMfjGIZR1vcptYlUug6t1JKWr27plmWRSqWQUnLzzcWu/5LFRD6fZ2RkhL6+2r94zWJFZHiY\n1uQ5cxQ9EacA2C8+j7vqepRc/f08AZkmvG8P6ccexzp5omiHMKMZ2E2lENs2I0/7M2atObUJ6QXs\nFOq+XSSfO4477q85pbl5m++NypUIj42SP+NNaSmwbTu5ZyvbzsT27sIsjEO+vb97SsDfADmy/yCD\nv/qfCG5sXL9VO9OuwYCiKJimiWmaOI5DoVAgnS6eQ2c2O69kfHVL//znP89v/MZvsGbNGlzXJZ1O\n4zgO69at48knn+T9738/f/RHf+THkjylnXp46sIIQrQPMXkJbctV2Ed+jm1TlyZPCQH07dxA5qln\nkZk0xpYdFI7M1lrJXRzHj84CbXg1Yqr28ohupendPELybBzrJX8CNCXRi3vqRV/2tRSa7k1mU+sf\nIH/ixYqPJa7dj5483bKyANWgCH9eQ3Dbdobe+g7Cu3b7sr8uy6MRAVap36ckbpjP50mlUuWgaC7t\nGODVgq9u6W9729u4ePEijz/+OEeOHOGDH/wgb3rTm/jRj37EJz7xiZZ0lF0OKyXDAyB7i/5W+qYt\nAOSPPoesS5HnCmohw+Br7gSg8MJzqH2zJevzx44hegc92ddiGKtH6t6G4lgkBgIEr/Ln4qIPDYFV\n8GVfSyEvnKm/EVdVUUIhZHa+0WfRKuLljgh2AJQGm4ia60ZZ+zsfZexPPt22wU67Zl2aTanfp+Tn\nFQwGy9eqZvt5NQNfe3hUVSUQCJStJhRFKafcShLb7Ug7BTylk0atB7lMDCFVDQUbonHkxCXckHd+\nQEEtT3DLFnCcit5VjtZ4J2bV8uY4FEiiZp7owYPFRuwGoa/bgHuyhUT2bIvo9i11bSK4bQeFl+Y3\nX/ffch3qeZ/Uo33CTV6GBqjpqn39rP6N/8LGv/jvxK6/0fPtd2kvZvb7ALP6fdo12VAtvjctw5WL\n7uDgIENDQ+V/9/Q0oXnPAxZqWoYOHKdUVGRiFUK6mHsPAWBNeOefJKTLwHW7QShYx4+irV0/6/H0\nM8+C0bjClrZmFJFOebrNoDtJ4uA+RLgBNgKKiiJbr5xqJiI1/66xfozsXOsORWHg1tb2xaoZq4Ax\n6J0BpxpPMPSOdzH4yT+n55V3IhoQTJXouPMb/meTmpW9Mk2TWCxGPB5viH1FK9KUV6mqKlJKfumX\nfomPfOQjABw+fJh3vetdzVhO3ayYHp5pZF+x5KPFixfwwnNPITXvGi/VXIqBu+8o/seenTmT2SwM\n1F9yWghjqDElM8OapPeqjWjD3q7d3Lod99J5T7fpBWKyNlsLJRTGTk7AzAupYdB/4z443YHBzjQB\nDwIeJRhi4IG3sPmRR+m993UI3R/bim6pqb2YG2ApirJiPkNflZaffvppvvKVrwDFL0lJKCmTyfDU\nU09x+vRpP5bjOe1U0vKEcA/SDCPsPNr23WBbOHrY213EFIzVq7DPnCqLHZbInTrr6b7KCIHaAB2Z\nEqqdo2dNAnPLDk+2p0RiuGdPerItr5GTSYJj1Y32A2irR2ZNt6nhMIOHrkKca83X6RVarPaMmNB0\neu99HZv/6lEG3/Qgaijk4cq6dOkcfAl4SoHN008/zf3338+HP/xhCoUCiqIgpSQUCvHkk0/yp3/6\np34sx3NWXMDDlSyPPlYcbV3K0LFahGMzePtNANgXzsGMu9XCyy8jBlZ7uj8AfXQMka1/xH4xhHSI\nR13C+/ZDnXdVxpq1kM95tDLvCYxUZ7kR2L6DwvNXxuq1vp6iVcR5b/SeWhlNr+FUrChEbn4FA//H\nnxG+/804gWBHlpigs5uWO/Uza0V8CXhKB2osFuOOO+5A13Xuu+8+xsfHy4+NjY2RyTTHM6leVlpJ\nC6Y1eRAosoCI9+KcPI4b8LZHRc8n6XnFLbgT4/MsJ2zH+0PX6PPPviIs0sQPHUSYgZp+XxtZh9MM\nv6wq0OTyp4+0wSFyx668nna1iqgZu7pJrei117PxM59j9Lc+RP/mzQQCAfL5fFlwbqU0oTaCZgRX\nK6FnqBXwtYfHtm0SiQS/+7u/y549e3jta1/LT37yE06ePMnPfvYzhodby4RxuSwU8LSq2rIn69ID\nEOtHSImxt+iBZhe8P8nGV8fQEgmsF48horHyz9NPPwNBD8toiopSp/t7tZhWip49O1B7q+zfEAJV\nV2f3ubQiF8+ixeNLP0/TEIYB+eJFPzg2SnxVBOmjlUizkZPL030KXXU1Gz75Z6z73T8gMLoeuDJ9\nUzKYFEIwNTWFlJJ8Pt+S56AurcVKCYB8VVoOzagtf+QjH2HXrl08+OCDKIrChg0b+MxnPuPncjxj\nJZa0ANzeEdTUBbRomDyC/NFn0DetR3h4ghVWnqG7b+fUF/9vjHXrKUxOT1DZFvQMQdabRlZjbCMi\n73+GUbMz9GwcJhmLYb24vIyNsWV7c9zQq0VKwls3kvzRY4s+Lbh1O9mnngQgvH0LIb3Q1lYRtSDT\nU2ixKHaq8usOjG1k8MG3Ez14aNHtqKpKKBTCNE2SySSFQoFMJjNLadfLi9tKzhZ0aT98NQ89ePAg\n69evB4pflNe//vW8/vWvZ2pqqqwN0I6sxJIWAPFBpKoXm5d37sF+6qe4wQRqxlsTR8OeJHrNASZ/\n/Bja0Crsc2cAyJ54maAhPMl06PE4jDenpKq4Fok+nanYHrJPPL74k4NBaKMyjxlefHrPHNtYDnZi\ne3dhWu1vFVEr5urheQGPsWo1A2/6VeK3vKLqwEJRFKLRKK7rks/nmZqaQgiBaZoYhtFWo8idnKVa\nKWPwrYCvR3w4HC4HPDN1aiKRSFsf0Cs1w4OiIntWAWCs3whA4XJjHKt7t65FMQ1E4IrwoHXuLGJo\nTf0b1zSUqeaWTwQQ1XNEr7kGtIXHifV1G5CZxjZWe4m8fHZB0UUlEsW6XHzfE9fux8xdgpX4PZrG\n6LlS/tN6eln17vey6S//B4lbb6vrAqUoCsFgkHg8TigUwrZtkskkU1NTC5pLtiJ+XaRXckDQ6TQ9\nxC8dWO18gLVbD4+XyL5iwCHcPKKnH+u5p5C698KASiHD4D13YZ04hj4dXAEUsvVfIM2xLYgGy/sv\nl6CToufAHpTo/N4XZXAYXm4zleFclvDWyiaV+urVuBPj9N50CH3iFLgru9FWMw2UcJjBB99W1NJ5\n9b0IzbskvBACXdfLztqappHJZEgmk2Sz2fI0bZfOZu41qZ2vvdXiaw9Pp1JJabmV8TQQC8WRCzFX\nnAAAIABJREFUgQgiN4Wx5yD5f/p/cdQgWgMCiICSJbR9G/mL40Upftcl+8yzGFtGkVO1qz3r0TCM\ne6uuXA+6NUli2ygTL1/CPXNlJFsNh6AOU9NmERzqJT3bB5bAjqvIPf1z+m+9DtHBgoKzEAIlFEaJ\nRhHBIFokihoMopgmwtBxIwP0vuu/oM1ozm8UiqIQCATKztr5fJ5kMommaZimia7rK+pC2Ew6fSqs\nlfA94MlkMriui+u6OI6DZVmoqkpvby8XLlxgcLDx5pBes2JLWtPI3jWI08+iRYLkhSB/4kW0Ie/8\ntUoIKem/5ipeevTvMDZtpXDkGXBd3GgfotaAxzQRqYveLtQDNLdA70icyXiC/LNPYWzeimwRN/Rq\nUeaIOerDq8gfe4GBV1wHp9ow2FFVlEgUNRpDCYVQQyGEGUAxDRRdQ2gaEomqqSi44DoIxwa7gKDS\njYYFA6vg0N0IpXGea5UomUtqmkYoFCKfz5PNZuc1Onfp0gn4GvCcO3eOd77zncRiMRzHQQhBLpdj\n+/btfOADH+Czn/0sv/d7v+fnkjyhG/CsRp5+DmEX0Hbtx37iJ7jr16Fkvc+aqLlJBl59F5e+8y8Q\nCEIuS+b5Y4SjSk3u2ebYZkTe33H05aJIl3gY0oeuQ9gWtrMKN51GZjPQRhlFefkC5qoh8mfOIXQd\nYRoMXHs1stnBjhlAjcZQIxGUUAilnG0pBi6KqiIUgRASIV2E64BTKAYvFSmALEDpVLDcU0J8AA7e\n5XuwMxchBIFAgEAggG3b5PN5UqnUolkfv0r2fmZBOr2Hp9PbLBbD14AnFovx9re/nUgkgqIoaJpW\nDnyi0Sj33Xefn8vxjBU7pVVCNyE2AKnzGOvWYz/xE6ycRaMsPsNhSPYkIBSj8NxTOOOXEZv2Ic+8\nWPW29FAAWqN9Zx5izRhK3wAx3YALp1BWXRF2lIoKqoZUNBAKUihIWcwfSMed/uMgLQvXspCFAm4u\nV/yTzeJmM7jp9DyvskYRHhslf+YcwZ1XEYkpNX1WFRECJRJFiUyXicJhRDCIahTLRIqmIlSlGLgg\nEXI62+JYxQBmHi6QA4fin0YTisG19yA89KLzgplZn0KhQC6XI51OY5rmvKyPX8FBpwYhzQhAOvW9\nXApfA55gMMjdd99NKpUqBwjnz5/ny1/+MmvWrGH1au/tAvxgoR6eldC0XMLtG0FNnUc4eZS+QfLP\nPY2xdSNCet8IKVyboVdcx8kvfQ2lpw93/BL55BRVXzJCYUTygufrq4tQBGV0C4omEIUM5FI40XWI\nniE492L5acJ1iqWSxaI1ARiAISBsAiYwuxlaCgU0fXbghEC6EillMXCybaTlTAdOedx8HjeXw8lm\ncTNTyEwWrMKiL0vTJcGtW4mEXeS5Cp55mo4ai6FEIijBYplIMQOIUplIVVFUgRACUS4TWWBbC5eJ\nsMCm+KcFkUYAcd29iID33ldeZSlKY+wze31SqRSqqmKa5oo5vzWalRqA+I2vAU8ul+OjH/0oX//6\n1ykUCqiqiuM4HDt2jG9/+9u8973v5f777/dzSZ6w0ktaQFGTR9MRtoWx5yC5//3/4AbjnmvylNBy\nSXpvuYmp46cojF8id/Qo5s5NyInlu3Sb68cQudZoAhYjYyj9A4j8FMLNwsz4QYD0UlV65qalC1Z+\nmYETMwKn2Y21Uiig6khVBaFeCZykBFfiuILo1QJVKV6Ir5SJ7GLQ4laKSiSQBzdfTLx00FdMKiry\n4N0oEe973RpFSdQwGAxiWRb5fB7HccjlcuVeoC6tz0oOUn09QicnJ/nqV7/KM888g5QSTdO4cOEC\nd911F//+7//u51I8pd1KWg3JPAkF2bMaceEEatAEoVC4eJFgqHF9CbHBCKmfXkQbWYt96iSOGUVh\n+QGPZmrQTO/NUARldDOKppSzOXNxFRUKeVBb+2IipAt2HrHA10AZ3Y64eAYlXfs0XccgBOntNxHq\nGWr2SmqiZGVhGAbJZLJsZTEzG9TOGYtO7+GBlZtR8lWHxzRNdu3aVc7sQFGM8OqrrwbaN/LsZniK\nyN5pTR6ngL77ANaRZ5BGcInfqh1h5xm849ay0HL6uSOwzLtMJRpHadJ0lhjZgLr7ENq6UVQ3Vwx2\nFiLcA9KBQhZ3EUHCVsZVdKRhIkPtq6buKbtvxe5b0xEXnVKQE4/Hy5mfiYkJz0UNOzkIafZr69T3\ntRK+Ny1/9atf5cknn+Sxxx5DSsnBgwf5q7/6K6B93/iVLDw4i1AMGYwispPoa9dhPf4jbGGgk23Y\nLk17ktC6VWTNAPbxo7BjK5xeWpzP2DCGmPKxfycYRlm/ZdFsTiVkIASFTLFPpWcILrzc4IV6jxzZ\nALkpMBsX/LYLcstBlNGdMN4apdR6KV2sZ2Z9SlYW6XS6ba0sOplmB1jNxPcj8G/+5m+49957+dd/\n/Vfe85738F//63/lS1/6kt/L8BRN07oZnmnKWR47hzK4isLxxptc9m4eQeSzoGrkzy+vpKX7NAFc\nzuaMrl86m1MJKSn15MpQdPHntiCuUJDBSLHk1WKTSH5jrd4CW69p9jIaTqdYWXTpPHzN8FiWxcc+\n9jF+9rOfEY1GefLJJ/mHf/gHdu/ezQMPPODnUjyl3Xp4GklRk+dZhJQYu/aT+9/fxNk4htoATZ4S\nSiFD/03XcOnxZ8k/9zSB3duRixhsKj190MjprBqzOXNxhQIzA6Q2vEOWq8fK5q6yDdfvFe7gKIVt\n160oafuSlYWu67iuW3Zul1KWe31aMevjt+ZPF//w9funqiqu6xKNRmcJW+l6e/YmlFjJPTxSFseX\nS+rZUkqMcB/a1EWUgIZUVfKTWUINPtJMMhghEyscwVHMRVOX5uh6RMp7x3Gxej3KwND0pFVu9qRV\nLUQSCOkWJ6AArByuUFAaMOrfCFwE0jShrLS8Mk/ubmIQZ89tSLs9PrdG0LWyWJyuW7o/+BrwKIqC\naZokk0ni8TiWZfHxj3+c6667zs9leE67BTzV9hbNDWjm/i2EQFGU8t+ybwSmLqK4Nsbua7Ce+Rly\nx9YFhN48ek1Ieq8ew8papJ9+luiaXshXHsHSvBRmKWVzdAWRrz2bUwlphhH5qXKGREgXN96PMnHe\ns300ErlqA6g6ojDdw+W0z3fEK2Q4jrP/LlB1sP1TuGzVzMFcK4tCoUA2m11Q1LDESr5Id/EO3zOs\nn/zkJxkfHycej/PGN76RoaEh3vnOd/q9DE/Rdb08dTaTdmlanpmlmft3yUF5ZkCjquqsIGfeiahn\nGHnqGYRdQB8ZwXrs33ECMbQGafKUUHNTxLdv4NKl89C/uqJPkzo4hEgtf3R9IeZlcxpxLatwfnfD\ncWiXgCcQZNaLcCxcRUVZIa7o0gxhH7gbjEBT9t/qAcLMMfaZGf+SqKFhGC3/Grq0F74HPPv27cOy\nLM6dO8dDDz2ElJIXXniBjRs3+r0Uz2iHpuVKpSfbtmdlaUpBTOmPruvlGntVJ56yJs+Lxebl4RGs\nc+fRoo0vXYYCDukNY2RPniRYoa5ljKyF5NnaNh4IFbM5hup5NmcuLgIKFabb2mQ03RkaLWY0ZmQ1\nBEA4DpOXm7Yuv5Cqhn3gLmjDRvNq8CrzMjfrk8/nyWQy5YDITzrdt2slZ8t8D3gOHTpEJpMpN7Jl\nMhkcx+HEiRMEAs25E6qXUm9SMyllkuaWnkr/nll6Kv27VDcvZWo8XU/fGrjwYlGkd9c+cv/fNwlc\nc6j6KaUqEa5D7/Z1nD17DtHfizx/atbjmlO90qBYNYoyOFzM5si8P95bkcSMEuCVLKHiFnBpwnhl\nlchwFFQNMadZXQYjHR/wSKEwtf0XCMT6m72UtmMhKwugfBO2Ui/WjWIlvZ++BzyPPfZY+SJr2zb/\n8A//wPe///0V9abXSi2lJ03T5pWecrlc+bGGEYwigzFENoVqaqBq2Gj4kZ/Qcknie68ic/zErANc\nW7UGMbVMZ/RACEY3o+gqqpVtaDanEjIQKfbvzEFxHYj1gQdluUbh9I0gChlkMD7/wSaVd/xCAs6u\nm7Hjq5q9lLZnppVFMpnEtm0mJiYwDAPTNLtWFl2qxvcjZmZ6UlVV3vCGN/AXf/EX5fRlu7JQr061\nPTyLBTRelZ786i2SfWsQLz+NcCyMPdeQf+Eo2tqhSq0pnhOJQFrRIBSBTDFwMFatgokzi/5eOZtT\nSCPcQvP8mxb5HGWLBzwy3gtWdsZ01gzafCJzKdyth3BXb4Z0etHnreSyQrWUznfBYBBVVcnn87Os\nLNpZ1LBZJa12fb/qxfeAx3VdxsfHKRQK9Pf3o+s6H/jAB9o62FmISoFFNaWnUmamkaWnRiJ7ViFP\nPYuQLtqqVRR+8n3k1q2IzDKzLHUg7AJ9V28m9ZxaDnjUwvyMCTCjN0dD5NO+Z3PmMrd/Z94nbrSu\ngJ/TM4QopMvZvbmUR+w7EGf0KtyxPeWpui7eUwp8AoEAtm2Ty+XIZrPoul7O+tR7juwGo52L72ef\nRx99lAMHDrBnzx6+8IUvMDk5ybPPPtv2wn0zvyAzg5iSzHo2myWTyZBOp0mn02WnYSklqqpiGAbB\nYJBwOEw4HCYYDJbvXjRNK09GtRWagYwPAqDYOZTVo1hTje3hmYmen0Dr7wch0NeuR2RmZxzEqnVF\nFeQNY6gyXwx2WoFwfAH38GlaeLxb9gxO/2uhY7UztWjc4THc7dc3exkrhtKNYDQaJR6Po6oq6XSa\nZDJJNpttek9ll9bEt4CndAD+8R//Md/61rc4d+4cf/mXf0kgEODrX/86ly83rpExl8tx6NAh9uzZ\nw44dO/jgBz9Y9zbT6TRPPvkkX//61/mTP/kTJicnuffee9m9ezc/+MEPyGazOI6D67pl7QnTNAmH\nw0QiEUKhUFmIS9f1Wb02nYTsHSn/27hqD/lnnkT66Pwd6zERq0fRB6cvxGYAZdsetKsPoMXCKLlU\nQ/WBakEG5ptszswZCLuAG475t6Bl4kZ7oZAuZnEqlbOgpYO1WnF7V+Fc/YpFy5B+41eWohWyITOt\nLMLhMI7jtI2VRXdKy198L2lt2LCB8RnGeadPny43MDeKQCDAP/3TP5V9XW688Ua+973vceONN9a0\nvU996lP89m//NuvXr2fjxo1s3LgRTdP4z//5PzM2NsbY2BimaVIoFIrKwy1cgmg4sQGkbiKsPKpe\n/JI5RhQt6495orCyBNeuRTM11HWHpntz8pD3TwSuairW1wWzwp74AKSbW3qbizswUixnBSIVy1kA\nwrFxNR3F7ozAR0Z6cfbdARXE8mYyc6igS/Us5yLdrlYWXfzDt4CndLDecsstvPvd7+b+++/Htm3+\n4A/+gE2bNhGNNlavIhQKAVAoFHAch97e3pq39a53vYv3ve99s748v/ALv8Ddd98963lCiG5qVYii\nJs/54wjXxthzDYUzZ9AS/k3rGD1RiMZQJlu30XcW1tKj87LFnMfdcHyG79cSd4+hOKQuNnxNjUYG\nwkWtHb3z+g/bnZKVRanXpxori5WcAel0fAt3S2nFfD7Ptddey+nTp7n77ru57rrr+NSnPsXQ0FBD\n9++6Lnv27GFoaIhbb72VHTt21LytQCAw706hnb4gfitAy7415X9rQ0PYx48gzbBv+3eiveR71yDV\n1p8QcoMxRKWyz9zDS7ZYGW5wLQK5eDmr9Nygf599o5CagX3gVRCcX35ciHY6R3QSmqYRDodJJBIY\nhkEul2NiYqKsAddMmlFumxvQraTj0rcMTylA+PCHPwwUndNt20bXdb75zW+yadMm1q5dSzQabUja\nUVEUHn/8cZLJJHfccQf//M//zC233OL5frpUIBBBhuKITLLYvLxmA5ar4Fehzw1GcFwXa2A9xtmj\nPu21NmQwirAqNXbPLmkJK4drBFEqqTH7jBuIIO1cMSZbpJxVps21eKSi4uy/A6K1Z4m7+M9cUcNc\nLtcSVhYrKeBoNr738Dz++ON88Ytf5NSpU0gpCYfD/P3f/z1XXXUVv/Irv8Iv//IvN7S8FY/Hufvu\nu/nJT37SDXh8RPatQWSSABg7r6bwo++jrx9B+OCgLY0gCIEVjKImhlAnvHdK9wxVXb72T+8QnH2x\nkatZFnLV+hlB2jJO3m1ij1EJicC5+hXI3tXNXkpL0MoNwYuhqirhcHielYVhGN2SVgfjW0mrlDr8\n4Ac/iGmavPOd7+TBBx/koYceYuPGjbzuda/jzjvvbIgez8WLF5mYKGq/ZLNZvv3tb7N3717P99Nl\nYWTPqrIGi6oJ3MwUbqiCEm8DcKcVWV3bwor0FQOgVqUKR20ZaH5pyNFNpFNc83LKWcXnte/FxN1+\nPXLVWLOX0VK08zRYKesTi8WIxWLlfaRSKfL5fNsGdIuxkgM63zM8fX193HvvvRw8eLD8s4MHD3LD\nDTewdu3ahuzzzJkzPPjgg2VdnDe/+c3cdtttDdnXTNrFLd0XVB2ZGEKMnyk2L+89hJVK4ceEuixl\nHYTA0QJYPavQzx3zRfG5GtxABGEXKj8oBPOSYS3wApzh9ajudEpqOeUsANmejfzOht24669q9jK6\nNIiSlUUulyMQCJSnvEpWFo3QQlvJwUcz8C3gUafHNj/+8Y9jGAaTk5MUCsWT+0MPPcS6desYHx8n\nEAgQDHp7B75r1y4ee+wxT7dZiXY5eJs1PSZ7R2C8aO2gDQyQ+Y9/x9yzC9HAEWUXkDNeq+vYuHoA\np3cN2uWXG7bfmgjFipYMy6WQbeqIt6sZKMKdEYgt89h3FgjqWhh39WbcrYc82ZYvti5tci5qVUpB\nTkk4tlOsLKB9y5Be4FvA47ouiqLw5S9/me9973vEYrHyz86ePcvnPvc5vvOd77B79+62LDfpuo5l\nWStbc2cpov1IPYCwcih2DnVkFEePoNmN0+SR4QRzUyOOHgA9hxKMomSXLsH4hVQ1xIKxy/yLl0BC\nzxBcaE7g5q4aK/qNsfxyFhQd7V3dRLFaWAtpBm7fGpxdN3suLNgNSFqPucHAXCuLkmq+l1YWzaAd\n1+wFvuvw3HrrrWzfvr0cPYfDYTKZDD09Pdx8883E4/70dXhNN+BZBkIge0cQ514AwNi2k/wzT6L1\nNq4Xxa0wSeM6NqoRxIoNYuTSiFYpsSxUzloEGWqO4rKrqKBIKE31LrecVSIUg+SFhqzNS2SsH2ff\nK0FZXFiwS2PxOysxNyCoJGqYnjaIrUfUsJuJ8xff8nKlD3Xfvn3ccsstJBIJpJQEg0FuuOEGotEo\nGzZsqEsQsJmUAp6ZdHt45jPTakJRJc75M7gVrBS8wg1WnvhzNBOJxOlvTN9YtbhmCLFYw/JC58Qm\npdbl6o1z9IKqO2m3gxaPDEaLwoJadTcxK+U73+wgpFmURA3nWlmU2jRa/fOfu75WeV/9wLcMTymS\nPX78OO9+97s5deoUW7du5ac//SmHDx/mIx/5CIODg20b8Wqa1nQRq7YgEEaGexDpcYTrYOw5hG3l\nG6bJ45qhyj+fzvLY+QxKpBdlqnFebssiHF9CYXmB74SVxRUKio9ZKlcoSE1FTNvBVFPOKtPiWjxS\nD2AffBUscPwsRTuew2plJb3WmVTK+pRMoku9PuoSliPNYqV+Zr6bhz788MMcPnyYJ554gr/927/l\n+eefZ3Jykm984xuzntduVMrwdKmM7LuS5dH7+8gffbZho8pSXziUcjQThKAQ7mm6CnOt+xfSLfbx\n+IhctWF2NioQqb4s6KOBbLVIVcM5cCeEE81eShefqfWGe2bWJxKJ4LouqVSqbbI+KwXf8+GapqHr\nxZN7JlMUKyuN/LUzmqa1TcDT7FKbTKxCTvdECDuH0jeAG2xM75YrFj7EXccGIwhI7Bn2F02hDhdx\nGfGv780F5DytrOovEK2qxSOFwNlzOzLhbxDZpXOoxsqiWW7pK5WmNC0/8sgjTE5Osn//fr71rW8x\nMTHB7t27gfZ1E+5meKpA1ZDxIcT4aQCMrTsonDhOsAEejEt9uR3NRC1kcYRAiQ+hJv1XYXanJ9cW\nZ5GTouZftkQOr5+11prKWdByXmAlnJ03IQdHm72MumnX1oCFaMfXM9fKIp/Pz7OyaObaViK+RReK\noiCl5Bd/8Rf5xCc+QTKZ5Atf+AI9PT189rOfZd++fbiu27YfhGEY86L3ZmdSWpmZhqKK4mKdPI5b\nZXPoUrhGcEmRu2KWp9inYQXCzVFhXk7pZLGvhZXHr0KwDM1uNnaNUG1TbjVMpDUaZ9N+5NrtzV5G\nlw6kJGqYSCQIBALk83kmJiYoFApt28bRjvhaSBdCkMvlGB4e5kMf+hAAtm0zPj6Ooij09fX5uRxP\naaeSVksQ6UUaQUQhW2xevvoAlp3DxLsLoRNd3vHkaAZqoVhebYYKs9QNhFO7Jo1wbYj3Q/Kih6ua\njzO4FjHHrLTWcF5IF9cIoRQqGaX6j7t2G+7mA81eRlvRiTdzjc4kCSEwDKN8g5xOp7Esi2QyWc4G\nNfqmvx2zZV7hu5fWf/tv/43R0VEOHDjAvn37OHDgAFu2bOF//s//Oet57Ua3pFUl05o8JfTeHgon\nX/J0FzK8vN6WmVkeF3BmNFX7gmsv40mLn6CkD87dc3uFpFBQ8+natxdunElwNbgD63B23tTsZbQl\nK/XC6QWqqpYFDIPBIJZlMTExQTqdxrbtjgwom43v1hLvec97ePe7342qqqiqyvPPP8/f/u3fsm3b\nNqB9v0DtluFphS+T7B1Bnn0eQbF5mUAY10P1Y7cKc01bM9Cmsw22ZvqmwuxqBhSqsJNYiEWm0bzA\n6VuNmJuNqVZscC4tYH7qxgdx9t4OizS3V4uUEikltm2X/ftc10VKSTab7YqTdpnFzKxPM6ws2vWa\nWwu+dwiXolpFUbAsi02bNmHbNt/61reA9h1LNwwD2559p96qPTwtc4CbIYhcyUzom7di5b3L8LlV\naL1Ix56luWLFBsvu7g0l0rO88tlST3IbG2zL+PzyYN1HdoODtKWQ4Xhx/LwGSQApJa7rYts2hUKB\nXC5HNpslnU6TzRYDWMuykFKWz3mqqpbHlYF554sulSmdQ1vmvOUhC1lZxONxQqEQtm2TTCaZmpoq\nH09e7m+l4bsYxssvv8wTTzyBpmm4rsvly5f5j//4D175ylcC7XtQ67rePYHVgOwdQUyL/umqJHvy\nBMaaIU/sHqSigrv8AMpW9fIXQk6PqusXvS2zzUXqJmJZZpqLfy+EXcANx1HSSW8WNgM3PoAozC5d\nSaEgclP1bVhrnvaRNEPYB141LUuwwHOmMzUzMzQz/y2EQFGUeX+klORyuVkmyKXfCYfDmKZJKpUq\n38UHAgEMw2jbc18n0Yz+lkr7qyRqmMlkkFLWZWWx2D5XAr6bhz722GP8/u//PmvWFKd0TNPkgQce\n4L777gNoWz2editptQoyMYx8+WmE6yCki7ZlJ660UDP1G4pWGzJJxwEzDNN9KY6iIkIJtMxE3WtZ\nkCoCsiVJDEAjAp6+4XkBT93lLIpBZTOQqo69/y4IxWYFNTMDmrlBTenvUnZaCLHgRWOpLHXp9+Px\nOJZlkcvlyuq8naBJ1sVbSqKGM8fbk8kkmqZhmia6rq/YAKZafAt4StHoPffcwz333OPXbn2j27Rc\nI6qGTAwjLp8CQOuJUzh6hGCwvi+wq2o1BRMzszwIgR3pRc2n5/hGeYOr6uDhlJJsgF2DG+2FucEO\nUIvY4DyaYNoqhUJu161YRhiZyZSlMGZma0oXkFJg0ijmTuzkcjlSqRSaphEIBOpy4vYjU7GSp328\nopr3UAiBpmlomkYoFCo7t2cyGQzDWFawvNI/M997eEpTWI8++ijvfe97AToiUOiWtGpnliaPnUcK\ngdTru3jLZY6kz/s9xy5meUoIsPsbpMK83P6d5dIAMT93YPW8NdYsNjgXu+CbfhAUe45y267H7Rsp\n3x2Hw2HC4TChUKhcWtI0DVVVfb0wqKpaVufVdZ1MJkMqlSKXy634votOp5bjrFQKLVlZSClJpVKk\nUqmulcUiNE3WWFVVcrkZiq3TqeV2ZSG3dGi9RrGWa6aO9CKNKw3D+oZN2Gp9sstOHT5I9hyfJweB\nE/feaqCqjMwyTorCyuGa3k0+uaEYWBUmyGrxzqqAkC4EI3VvZ7m4Ww6hrd+JYRjlJuJWu9stXchi\nsRihUGjWqHK7SnbUi59ZiXbMgMy0sjBNc1Eri5WO703LpZTb1q1bywFPyVurndE0rZvhqQPZN4I4\ncxQABZv8+YvosdqPC7eOC+ncXh4oqjArmeVYQFS1I++2VaJnEM4e92RTcmgdwqpUcvPugiCDUcjW\n2fy8DJzRq3A37mn4frxiZtPqXFuCQCDQ7dvoMo/lWFm0Y0DnJb4HPI7jkEwmGRsbY/369Zw4cQKg\nrD2QSCQYGxvze1l10+3hqQ/ZO4I8c7SoySNd1DXrcK00So2NsfVaRNiqNu/LYfWOoJ97wZPLvato\nkPdAf2cOMhBa+knLwDXDSDvXuHJWaXtm46083OEx3O3XN3w/jaJkSxAMBikUCuW+DS+mdbo0l0YF\nIDOPGcuyyOfzZDIZdF2fl91fSQGQ71Na3/3udzl8+DBr1qwp371kMhni8Ti2bfPqV7+aP/3TP/Vr\nWZ5hGEZZf6NLDRhBnBkTUVosgnVqgloLW66mQR2aTtJxkGYYMSPL4yJxekfQphus6yLSg5ANyAgK\nb0qVctV6hL1AOavO6ayZuA0eTXd7VuFc/YpllQQbTb0Xlpl38LZtk8vlSCaT6LpebnLu0mUmlRrj\npZSzrCxWEr67pa9du5Zf+7Vf41WvehW33347J06c4Ctf+Qr9/f284x3v8Gs5nqPrellQrEttWPHh\ncsAj7DyOI5Gaiqhh2kp6kIdxlPlZHls3UAJRlDqzHNIMIqraxjJfTyGHqxkodZhzurqJdAsL7NHb\nwEFpYDlbRnpw9t8BHTjmrWkakUhkljKvoii+unD7VR7xs9+wk0s+pdKWZVkEg8HylNcENCibAAAg\nAElEQVTQ0FDHvua5+JYLLR20L730EkeOHOGOO+5AVVXGxsbYv38/X/nKV4D2ndhaaEqr5RqEWxg7\n0o9UroQY+pq1OIFY1dtxEUgPFLul6+Doc0suAivugQpzg0ayBRJ66muwlqvHKgaZUijgYXankchA\nuCgsqPt/B7vU993L88FMZd65LtyddN7p1Atys4QODcMgGo2SSCQ69r2thG8BT+lN7evrY2pqir//\n+7/n7Nmz/PjHP+ZrX/sae/funfW8dqOdmpZbNghTVNzElYu1IgvYU9Xr1MhIAg+MD4BpPZ+520fi\n9NU+qu4qavX+WVV8LWSodlNOV9ORCzRTu0aoGFB5iZfCi9NIzSgGOz5OgM1lqfOY1+e50kUsFosR\njRY//1LmxwtLgi6dyUrr//I94NmzZw+f+tSn+LM/+zMOHDjAgw8+yLp163j44YcB2rYO3W1a9ga3\n54pTuZAS0dNXdQOyG+nxbkFSQmD+hdNWVNxIjQ7l4Z4axrqruEAqtV9M7aH1iAXc2xWlAaUhp4Dr\n5dSXouLsuwN8cI9vVTRNm9XXk06nu5o+XYDOLtktB9+jCyklV199Nd/5znfKP7Ntm0uXLuG6Lqqq\n0tvbfierbsDjDTKcmNUsrEXD2Lk0OsvPiLh1ZDgqYQt1/hdFCArhHsxsCuFUl9mTZhCRb+AotpXD\nFQpKlUGVKxQUXQV7gXKWh9NZJYSUEIpCpv5SmURg77oF+lbXv7AOoKTpM7PJOZvNdi0sFmGlBwSd\nju8Bz/nz5/nDP/xDwuHwrFRrSYhwdHSU3/zN3/R7WXXT7eHxDtk7gjhzBJhuXpYK1bS2uqY3o9nl\n9bgOBKIVLvgSu28t+nlvdG+8QkgXNz6AMnGuqt+TIxsRCzU7ezydNWu/QW8CnuzG/ajDY81TU21R\nFtL0aRcvpk4OQjr5tbUivgc8pmmyYcOGchZHVVVUVcW2bVzXpb+/3+8leULXWsI7ipo8R8qFDq2/\nH3fCRckszxhTakaxFOUhtlAqflkcIVDiQ6jJ5QUXrlBq8s+Ssrq5MxHrhSoCHlcIpKYhKmR3prdY\nxd6rJFC/Fo+zYTeFkW00XtWnvVlI06dkq1FNT0f3Yt1+rPTPzPeAJ5FI8P73v5/x8XEuXboEFBuZ\ne3o87LtoAu3UtFyi1Q7+cjbMCEC0HyYvFn/uFrBssWxNHleo4LHGjXQdCEYhO7+sU5UKcyRRky1D\n1eGbVl25Qq4aQ9j5yo81qJxVRqtvjNpdvRl36yHIeGfE2umUNH0Mw8C27fKIcsmEsl17Kbt0WQzf\ns79SSr761a+yf/9+XvOa13DXXXdxzz338IMf/AAoChS2I+3Uw9NKQc5CzDQUFUiIxGaNrC/6uw0a\n+bYX+bpYvSPLCkpco7ZyW9XTFFZ+2c3ALiAXEyDzyDtrIWQdvSRu3wjOrptbQliwHSmVuyKRCPF4\nHEVRmJycXLEmlH7fBLbaTWen43sYf/bsWT72sY/xgx/8gMHBQQC++93v8r73vY8f/vCHfi/HM9op\n4GkHZHwQqWrlhmAtZODkomiZ8UV/zzVDDdO4WbiXZ/kqzNLrse4FEK4N8T5IXlzyuXJodInsVKNP\nyLW9JzLWj7PvMDRieqzNqeVCWtL0CQQCFAoFcrkc6XS63Pi80kaYO5GVHmD5fgSrqoqiKAwODpad\nXNesmXE336YfRrdp2WMUFdlzZdpG2AVcbemilhPta+SqsBcRHLQ0A2cRt3IXgbJA2agRyGWOZsvw\nwlNtDS9nASwwBr8YMhjFPnBX3eUwv2jGOaDWc2mp3FXS9HFdl2QyydTUFLZt+/5aVvpFupGstPfV\n9wxPOBxm/fr1fPjDH+aee+5hYmKCv/mbv+GWW24B2vcDaMcenlZH9o7AxZfK/1ciUWQ+hcgv3Ksh\nw/HGrsl1cIwQaoXGYyEEds8wyrljxXHruYQTNdlk1MwyLAacgTWIxZqoGzidVca2qhqjl3oA++Cr\nYM40XvfGwns0TUPTtLIVwdTUVHncvV3P1a1EM4LHlYzvGZ5wOMwjjzyC4zj85m/+Jp/85CfZs2cP\nH//4x/1eiqd0S1oNIJxAzhD9E24BW184gwLgBhZ/3AtkBfXl8mNS4vStrfxYsJ611XBxsZc+HmU0\n4f1+q0QgIbQ8CxGpaDj774Rw5XW3w0W4HS86My0sShNe6XQa13XLmfpOoFlWD528v1aiKa34sViM\n3/md3yGVSuE4DuFw4y9SjabdAp5Sqa3VD37ZO4I4/RxQvDDKYAQ5dWHBy7Drg3eSdF1kMIqoMLEF\nRRVmJdKDMjWn36he/60qEU4BN5xASU9UfNzpHV40u+NLOau0r1AEFljnlfUInD23Iev0CmsFWv17\ntxAz3bdzuRy5XK6s6VNSdm7X19al82lKF9qPf/xjrr/+em644QZuueUW7rzzzrZuWIZuD49XzH2v\nZO/ILOdz1VBxQwtnJRyfggpHChbMfgiBFe6ZlQlyAawq/bO8ILGwrpVMDCz+uw2ezpqFubSCjrPj\nRuTQ+savpcuyUBQFVVVJJBLouk4mkyGZTHpuYdE9f3rHSn8vfQ94XNflfe97H5/+9Kd54YUXOHr0\nKA8//DC//uu/7vdSPKUrPFg/Fe8MdRNiVy7awiks2hjsF1IWszwLPg7YM0tboXjVFhReII1AxZ+7\n8X4opJf4bR/v1JdoPnY27UOu2+HTYrpUQ6mnJxaLlRX0JyYmSKfTnpW7OjVrtBJKaK2E7wFPSefh\nxhtvxHVdXNflpptuIpVqcGNkg9E0ra1KWq2IlBIpJbZtUygUymJo2fCcLEUgWLGPxlW1ho2kV8KR\nsFhQ4AiBGy9KL8h6nbtrPUkt5Hzet2rRcMbPchaAXGTk2V2zDXfzQd/W0qU2Spo+0WiUeDyOEIJU\nKtVWmj7tUObvUjtNKWn19fWRzWZRFAVFUSgUCoyNjTVjKZ7Rbj08zUJKieu62LaNZVnloKZ0N1go\nFLAsC9d1r3gA9a9BqlfctFRZwAnPH7mWDR5Jn7e/JbI8AIVAFKkHPNCKqe1iIawc7pyMmBtJLG1v\n4Wc5C1jo9bkD63B23uTjOjqDZl+4FUUhFAqRSCQwTZNsNksymSSbzbatuGwn0A5BZyNpStPyl7/8\n5XJ2RwiBZVl8/vOfL5eE2lHWvFvSukIpU1MKbkp/Sv8XQiCEKAe8JfPCQqGApmno+nyrUNm7GnHh\nBFDMqchQDFLnZz3HWWByp5HYEvTiihZ4hqTQtwYtX2+2pI6LV88gnL1icOoOrkW0UjkLwJl/s+DG\nB3H23g5dwbuWZDlBVUnTZ6ZjezKZRNf1cpPzSqbZJa2Vls1qytH22GOPUSgUysGO4zjlu/p8Ps/b\n3vY21Drk5pvBQjo8rdq07MW6FgpoSndwpYBGURQ0TSv/e6Ev2WJfPtk7AtMBD4BQJW4ggpKbKv/M\nrbdsVAuyNLGVQgJSM5FGEKnqSASulEjHRjFjBKwp1MmLxTFsP5cYvKJX4wajYC2e3fG7nAWAY+Eq\nKsq0TpEMxXEO3Anq/OC3S3uiaRqRSKR8np+p6WMYxoLffz/Pn83OjHVpLE0JeL70pS9hWRbHjx/n\n2LFj3HbbbQSDwbJr+lve8pa2C3g69UtSCmIqBTdSyllBjKqq6Lq+aFBTM6E4MhBFTF+IhWPhRnpn\nBTzS8Ncr2xYGGbWHrGNixsCUaXQrhZDAnODXFYKMEUXpixCw0qiTFyqLEzaEK/uRw6OIJQIeX8QG\n5yAAwnGYvIw0gkVhQZ8/T69oxRucVmKmhYVlWeRyOTKZDKZpEggEKlpY+Hl+7dRzOVA+Z69UmhLw\n/PVf/zWXLl3iLW95C6Zp8sY3vpHXve51zVhKF1i0/FT6gpRKUKWgplSW8vrksNjFQvaNIE49e+UH\nZgCJKGdMXE2HBioZW8Igo/YyJSNM2QGylgIIFFyC2EgZQRWDhDSbkMhiOil0d/Youosgo0dQesPT\ngc/FxvfKFHK4mgGKhrRzyyhWNeeEL4NhZGayaBmxTCHCdqKTL6S1MFPTx3GcWeWukmN7J79n3cDY\nf5oS8Bw/fpzXve51fPSjH+Wee+7h8OHDnDt3jre//e3li2kXb6kU1OTz+fLPZ/bUzPzTiKBmIZba\nj+xZjTz9XDkzIpwcMtaPSF0oPu7xegpKgEniZEWMKdskZy2QdRQKmiKwnKI+z2RBZxIdiKGrkrBW\nIEgG055AlcXMTznw6QkTcDKoqQtLBD61fwYCCT1DyHAMYS+uBdSUclYJM4Sz95UQX0IfqA3onsOq\nQ1VVwuEwoVCIfD5POp0u9/90Ot1jxT98DXhc10VRFH7lV36FP/7jP+aOO+4A4Fvf+haHDx/m9a9/\nfdlBvZPwK5KfGdRUytiUgppSEFPyyfEzqKkL3YTYACSLzcoCcMNxlNQFXASyzumPghIirSRIywiT\ntkk+v8zUrwQpKzcuW45gwjGZwAQSBDRJSM0TkFOYVgqES0YLI3pDBOws2uSFhvhtyUgc6RSWDpt8\nLGdJoYAZBjOMNMMQSsAyDU/bme6d/cKUenpmNjlbloWiKDiO03atDq3GSu9R8jXgKdUOP/vZz7J1\n61YAcrkc4+PjfOlLX6K/f2FV2Hag0onM66blWieg5vbVzJQFaCfc3jWoySvTWUK4SM1ABsJUm+Mp\nBjg9TMkwk5ZJwar9vbAcgRBL7V+QswU5OwgEEfQT0lxCSpaAO8X/z96bR8tR1vn/71p673v73qw3\nCySaQDaS3AACcoCBCaCBYRlkVHBhMOiAIiIYFL+gwCEIX1cW/eoZGUTWUdEBfyjDiOA4qMiwJZCA\nYQlkJdtNr9Vd6++PzlP36brV3dXd1bV0P69zcuBu3VVdVU+967O9dYMDP3ww4moZYn5X28JHB2BE\nU9DjA9Ciceh8BDo4RLQyxLGt4Buej+4vhoYYPSBsklVhQ/5F4u3PFwo5vXDT6ebN0xxJcWCCs6Io\npoVFLBbrWiag3wVBr+Op4CEn01133YVzzz0Xxx13HO644w787ne/wxlnnIHVq1cjHrefDNtvuN0B\n1TNkpsIQo+BUGQDA6Sr0oenVGpUmVPg0ivwQCkYKBSXakcChMQAUZQHpWGsRJgMcioqAItIA0hC4\n6dX6n4iEeHQYA8pYNeKjqTC4iVJEB2DE0tBj6Rpho+saQESNAeDAtNsKRMiT5yGqlSGObQNvEYid\npLMMcEA0XhuxiaWAeIp1WvlAL924yRqXTCYhyzIkSTKLnGOxWOge2gi9dIzCgi+C5y9/+Qsuv/xy\njI2N4ZFHHsGtt96KSy65BCtXrsTChQtDeyK0us310k9WUdP1DqgwwfEwhmeC2715/HvRGPR4bUu6\nYQAVYaBG4ChKlz43A8iVBKRjnQ2enFD/I85GakoFA+o+DMi7wQ0moQqRakSL4+sKm4abqmuocBHI\nU+chqkgQ928bnz7qIJ1l8AIQTR4QNUmUISKemVz9XkhvPIxwQGp6rEXO0WjULHJmNMZ6b+23e4nn\nggcAYrEYCoUCfv3rX+P000/HihUrkEgkQj+4z+7koe0S/O6A6hWMybMBSvBwugw1PghJGESJy6Cg\np5BXolBVbz4/AxyyEo9Zk4wDtTzuUK3/iWM/ZiIen4GyyoGDDlHXEOF0iLwOkdMgQIfA6RCgg+c0\n8NDBGzo4QwMHvWq3Yeg1HWyGpqHCRyFPPQQxuQAhuwMcFUMaT0NR0ZpYsiYNZRgG1GIRiPsw/yiE\nsOvZHUj9IT3TJ5/PQxAEUxCxz5phh6eCh5yEJ598Mm644QY8++yzuOeeewAAM2fOtJ2w6xZbtmzB\nJz/5SezatQscx+Ezn/kMLrvsMldeW9M0vP322+A4Dt///vfx+uuv44ILLsAhhxxiijx6Zo0fHVA9\nRWIAcno6sshgvzgVWWQQFXjky/4UNBoGYGC8U6sbqNoBkQEeis5DAYA23ovnDoglTjsgmHQI8cng\nYnMwPVqAET2UpaG6BCtWdp96M31I4XOr6S4vswthzWSEGV+Klq+99lo888wzmDRpkikK7rvvPvP3\nunESRCIRfPe738Xo6CgKhQKOOOIInHLKKVi0aFFbr/fHP/4R3/zmN7Fp0ya89dZbmD59OgzDwGuv\nvYb58+djeHjYjFrpus5qkxzQSoH39slH4W+7ouZNP6Fr4JsWDXeH8XdtZDHRGbLKgRc6f23dEFAx\nBFQQqRFMUdHA9OHGvmAMBo2X3adOLCzITB9VVVGpVPpqpo9T+l1k+Zb0PProo83/Jze6bh6IkZER\njIyMAADS6TQWLVqE7du3ty14Zs6ciQsvvBCHHnoo5s2bh3g8jr/7u7/DbbfdVvN7QT25gmp54ZSR\njIpNuyNmCklSBExKKqh4lMaiIR+jrHFds40oK0CyiwGsOAvoMNogiOsbGbeRSCQgy7I506eZhQWj\n9wlMlZeXJ+HmzZvxwgsv1IiuVpk3bx7mzZvn4lYxWiEiAFPSGnbnx09hkQcqPmyLfkB0lSo8Ui12\najnB0A2UZQHJePemSMcDsxIwGO7A87yZ2lIUBZVKpaa7y26mj9e+XQxv6bu2ikKhgHPPPRe33nor\n0mn3iy3ZSewdMzO1Re5F2Z/TmRzybKk7qkE3gIrclZc2ibEIT0/B1qFxSLprYGAAg4NVy5JcLod8\nPg9FUSZ8Vr3s28VSWh6ydetW7Nu3DzzPo1wuQ5Zls8peURQcffTRGB4e7tr7K4qCD33oQ/j4xz+O\ns88+2/XXFwQBmqbVtEeGPXUUZCandEQFA/KBgt6i7E9aSyeCR+Ixa9iozqRxEU3nIHWrpf4ALKXV\nfby+0fTKjc3N9VMQBCSTSSQSCTPiYxiGGQnqN3rlHHGKp4Lnm9/8Jn79619jcHAQr732GiZPnoxp\n06bhnXfewdjYGJ544gmceOKJpgWFmxiGgdWrV2Px4sW4/PLLXX1tQiQSgaqqbB6ER3BctZbnnX3j\nd2s/0lrjo3B4iIL7nVqqxkFWqp5YboupKgZi7JT1DPYA1Dpu35itFhaVSgWSVPWZ0zStqx3DDP/w\nNAdw66234s0338THPvYx/PCHP8TWrVvx/PPPY8+ePfjiF7/YVbX59NNP495778WTTz6JFStWYMWK\nFXjsscdcfQ9RFKEonQ2f85JeWHhnBCCtpVOzd7ohSDSdA8B1ba5fVGQzA72mF56se2H9IBYW6XQa\nmUwGQNV2J5fLQZblru6jH+klltLyEBL9eOmll3DSSScBAIrFIlKpFN544w1s27ata+993HHHmROM\nu0UkEgmN4AniSc9xXMvHKB0zMBjXkDswg6coCxhOKGaaywt0ak2szstxd5FUDmg6rivRHbDojgf0\n6o2ml/aJzEdLJpPQdd2c6RN2CwvGOL4MHjzppJPwi1/8AtlsFocddhgef/xxAMCSJUtqfi9skJQW\nDavh6T4zMuOCB6h2cMnda2iagK6Pn6/FLnRqKWrVSKtbpxGr32EwxiEWFrRjO5npE4/HWclCiPH0\nyAmCYNbSLF++HPfffz/+/Oc/Y/ny5fjhD39oDu8Lq+AJW0qrV5g+qGLTrsh4e3iXC3ytaJQQyUki\nUjF3LVKUA9EqnQkeRh9CptT7gdXColAouDbTh6W0vMdzqUo+7CVLlmD16tXYt28fpkyZglQqVfPz\nMCKKYuj9wMJIRACmpjW8e2AmT6EiYiihmEKh29BZuP0lHjOH3C0urhwQcKrKQRDdVz2sJZ3BqFJP\nENSzsGg004cRPHyJzWWzWVx22WV46aWXkM1mkc/n8YUvfAGf/vSnMTIyEloVGo1GWYTHJ2ZkVFPw\nANVC3G75WlnRaoqW3e/UqiiAwAOyCiRcv2INNnTQZYKQwg7rGhp0aAsL4tiey+UgiqKZ7gry5x6E\nc9NPPI0Talr1LnD77bdj8uTJePHFF3HhhRfi+9//PoaHh3HvvfcCQNeLi7uFXQ1PUOm12qJJKR0x\ncfy8KXuY1pp4urr73hWlaljRjX2KCqxDqxsE+abnFv0uqgRBQCqVwtDQECKRCIrFInK5HMrlcqDX\nVvqY9dvx82Wpk2UZU6ZMAVCdfFwoFGAYRmjEQj3surR6TVgElepMnvGwSq7MI+KC2aYTNL120XA7\nlVZWqv1ZpYr7ixNLZzEYnUFqejKZDJLJJBRFwf79+1EsFs2HfDv6XTD6gS+CJxaLoVgsAgCGh4fx\n6KOPYsuWLXjve98LILyqk9XwdEan4rDWaoJH1KO0umaJ8JQq7l1WhmGgfEBDF8vuXxesYJkRdLwU\nBp28F5npQywsOI4zLSy6PdPHCX6/fxDwVPCQSvuzzjoL73//+wEARx11FDiOw6pVq/DhD3+4K1OW\nvSJMc3h6kWTUQCYx/kRV9sJiwphYoJyV3CuKMQyYjvB5yf3rgkV4uodhGNA0DYqimP/Cmq5ntAax\nsBgaGkI0GoUkSchms5AkyfdzIKwBBTfwZQ7PwoULMWfOHOzduxejo6O49957kcvlsHfvXkyePNnL\nTXKVMNXw9CozMiqyUjW0kyvzyMQ1qHr3LnC7V3azU4tOl+UkoDrU0L39YRGezjAMA4ZhQNd185+m\naWaKngyzI9HLbDbLOnr6iHozfUhLez+LDz/wVPBomgZBEPDwww/ja1/7GmbOnAlVVSHLMrZv344r\nrrgCn//8583fCxushsd/pg9o+Nu7xoGZPDxioga1m07jNuuVm51aGlUPZBg8eM7NeTysQ8spVlGj\n67r5PY7jTGEjCII5MTwej5s3NFVVzZtfsViEoijI5XKIx+OIRCLsxtcHWGf6lMtl8/udzvRxArsP\n+TB4EABWrlyJRYsWIRaLQRRFbNy4Eb/61a8wdepUAOENuYUppdWOjUMYEAVg2oCGnbnqqS13Pa1V\n7/XdsZhQLYeIczHCE2EdWjVYozXW/6ejNaIo1nxNoyhKw3ku0WgUAMxUhyRJrgyy85peLLr1Yp/I\nTB+geq4Q13ZiZtrNko5eO16t4svz3dDQEIaGhgBUT7A5c+Ygm83iz3/+Mz760Y+GVomylFYwmJFR\nTcGTLfMYiGsTOqncgqsjahSXPLVUS8eXm5dGv6aziJCxi9qQNAMRM5FIxBQ1bt4sSLQnGo1CVVVI\nkuTqTa+XxEgv7YsV0tpOHNuJhQUJBvTqfvtFYALay5Ytw7Rp0wAglOksgHVpBYXhpI64qKOs8jDA\nIy6qKMreLhylCo+kC55aiiVCpetwrdWg1wuW7QQNETrWNBQtbLyEdPaQhyW6xiMej4d2LWQ4g5xv\noihCFEUkEgnIsoxiseiahQXBTjj2m6DyXfCQGpdFixZh0aJFfm9OR4QppRVU3IjucVzVUPStvVVl\nIGtdzNvUWTCykoCkC55aVsGjahxEl3anF+p36DQUAFQqFVPYAOMO2N2M1rgFXeNBT/BNJBLMsLJP\n4HnejPLR6S5mYeEOgbiKgrj4tEO9omWgt8OybuHm5zMjo+KtvSIArprWimo1FhCuUUef7ZcEVzq1\nZItmkjVAdCkyE6aUljVaQ39NojVA9YZB6muCKmyawfM8kskkEomEaVhJboSswLl7kIctL2f+1MNq\nYVGpVEwBHIvF2HnQJr4IHl3XIcsy4vE4AGDfvn1QVdVMaYWVMEV4er17LBE1MJTQsV8SYBg84pHu\npLXqfYKG4U6nFim6JltekTkk4529JiFoKS06WmMncOgiYbs0VKFQCPSNoNXtIikN8rRvrfMJ6n66\nTS+vU06OIZnpQ9Jd9HkQjUYd13uxh26PBQ/5wF944QXcc889+N73vofXX38dV199NQYGBvAv//Iv\nOProo0N7YKLRqNlqyPCfGRkV+w/M5FH0LqW1Gq7FnRcuE/8s8iqSzGMYndcGRQQDgk8dWnaza7wu\nGg4T5GmfrvORJAmxWAzxeNy3Qa1ertP9euxprIXulUoFkiQhGo2aRc6tvl6/4Yvg2bdvH95++20A\nwKOPPorh4WGcfvrpuOGGG/Doo49C1/VQ5ipFUQxNhKcfmD6o4W+7DGg6h6zEIxXVDszncY9GcsaN\nTq2KZYZQySV7CS/SWWEoGg4TdIEzcepmBc79B30ekJk++XwegiCwtGcTfJm0TKrOd+zYgY0bN+Kz\nn/2sWWwYZhq1pYc1ahVmBL46k2dHVoR+IK1Vcj2tVf/13OjUkiwO6YUKD6DziYYxF6/8eqKGTkOx\naI27kHZmUudD6jvi8TgrcG4Tr9docn10ApnpE4/HIcsyyuVyTZEz/frsHuRTDc/BBx+MaDSK8847\nD9OmTcPo6Cj++Mc/4uCDDwYQ3lBbvRqesO5PLzAjo2JHtnqaa11IazUqL8h12KmlG8aEOTw5yZ8I\nT72iYQCQJKkmWhP2ouFu0K06FPqGV6lUzHbmsD88MlrDamFBz/RhIngcXyI873nPe/DjH/8Yf/nL\nX7Bo0SKUSiW8//3vx/HHHw8AvuWkO4UNHgwew0kdiYgOSeGRlXgkXU5rNbqNjUkCZnTQqaVTwxLJ\n/6kaD54zOt4Hu4JlJ0XDJBVFhE25XEYqlepoW/qNbjxpWwucC4WCaV1BW1yEERaZaA16pg/p8iNp\nsF4uAHeCb7KvUqngjTfewIMPPohIJIKzzjoLJ554otm5FUbCNHgwiF1a3dqmGRkVb+6JQjN4xCMa\nSi56azXa3E47tXTq7+i3cWPpjwo6VHViKgpwPrsmaOcPY7zAmeM4pFIpyLKM/fv3szkuAaTbQo6O\n/pEuP03TzJRXP0Z9fNnjbDaLa665Bnv27MHKlStx8803Y3h4GOvWrcNVV10VWkUfprb0fmJGRsOb\ne6oeVG7P4mkeaWm/cLlbLu8Cp0OuSKxouEsERQgSU0p6joubKY6wrtP16LX9IRARDADlchmGYSCX\nyyEajWLSpEk+b523eJo7IgvBzp078fzzz+PnP/85/v7v/x7Lly/HTTfdhIceeqjm98JGoxqesO5T\nLxCPGBhOVqMXWYmv63/VDs0Oq6K1v4Ba63cInZZnJKKcWfBKhpgRl2+GOwTps1UotJEAACAASURB\nVCRzXDKZDARBMNNdsiyzdanPIJG/oaEhxGIxvzfHczwVPGQRiETGCwgMw8CePXuwfv16pNNpLzfH\ndVgNT3CZmakeF03nkYi697p6k/uFJLd/ial1UmGq1tlNKkwTlhnuQVIcmUwGsVgMkiQhl8uhUqkw\n4dMH0BEsOurTT/hSHZxIJDBp0iQoioLJkydj9+7dWLt2LS6++OLqRrGiZYbLTB3QIPDVRd3VouUm\n94ms1H7NREUef3FNG1c/VruJVgnahGWGt5COnsHBQSSTSbPOR5KkQHZ39WqqqVf3K8j4UsMzMjKC\nn/zkJ5AkCYIg4LrrrsPxxx+Pgw46yI/NcQ02eDC4CDwwfUDD9qyIrMQjLmod+1wBzcXT/pKAGZn2\nOrXodBhdbCqrPBItv9o4LMLT+zi5mTKn9lqYAOl9fBE8HMdhaGgITz31FJ599lkkk0ls2rQJ06ZN\nC3VesdngwSDRj3VFMzIqtmdFqDqPRNSdIYTNUlq6wUPgAbWNB2dZs7/hlGUemQ7sJZjgYVip59RO\nJvfa0W/rR9hhgs6nlJaqqvjOd76DL3/5yxgYGECxWMSaNWtw5513+rE5rsEGD3ZGt0XYUFJHMloV\nCobhzqmvOeikaneX5DrBwmKl/fNJ9NFDixF8iFP70NAQIpEIisViwwJntra1DxMg3uNLhKdcLuOe\ne+7Bhg0bzO998YtfxPve9z589rOfDe2JwNrSg8+MjIo3dkeRLfOICho6nWqjajqAxqF/zRCANiIy\nZcV+2wod+GnF+2/0BqMNrIMMiWWBH07tLJLEcAtfnvXIFEgAZgpI13VzYmsYxQ7AipbDwMigBsCA\novFIRN1YSJtfQu12apXrpNxyUvuXLStYZrQC6eYZHBxEKpWCoijYv38/SqWSp0LEi3tCWB+0ndLr\n++cEXwRPJBLBcccdB0mSzAFYHMfhgx/8oB+b4xphmrTcr8QjBialqh1PhgsNKU4GGeba6NQyDAOV\nOsFCWeHBce3dbNys3+n3xbNdwhqxiEQiGBgYwODgoGk9IkkSW/PaJKznQZjxJcAtCAJuvfVWZLNZ\n7N69G4qiIJVK4cYbb/Rjc1wjTIMHg7hNbmP1gyKeUJNiCvYVM8iVBURFHZ2ktZx08Y6VBEzPGC29\nj66jYWeXwHFQ2zh83ShYZk+OrRPmz4s4tSuKAp7nkc/na5zaw7xvXuNnarAfj5NvGf2XX34ZV111\nFdavXw9BELBgwQJcc801poFoGGE1PN5DG15aTS+J4SX5R1y8Z8d4bN5vQNEFZCI6pA4OmZOiZd3g\nEWnRU0vvkq0ES2n5R6/dYMg8HzLLhzi1x+Nx08+LESz6/Zj4JnguvvhirFmzBmeddRYA4Mknn8Tl\nl1+Ov/71r6Gd/8BqeLpHPRdvXddNY0snhpeE6YMqtu2PdOzEqXVpTptVSFmDOe0E50TegMg6tHoe\n8iTf7ZsbiewR4RONRs0CZ0mSTMPSTgfJehVBZJHK3sc3wZPP5/GBD3zA/Pqkk06CoihQVTW0gofV\n8HQGWWxUVZ0gbMhi5Jbh5cyMhm37I8iXeYh8m2ktw/lAQUXj0UqnVrO5PVobm8zm7zC6CSlwjkaj\nbJChA7wWWEzQ+Sh4FixYgO9+97s455xzwPM8fvWrX2Hx4sWhPiCCIARyNHvQsKah6H8AIMtyS9Ga\ndhhM6EhFdRRlAQOpNtNaLWxOWeYRj7YgeFTLi1siOorGISK2FuZh6SyGV5BBht1yame0R5jvr27g\nW4D77rvvxvbt23HGGWdg1apV2LhxI3784x/3pKFZkAuEu7ldhmFA0zQoioJKpQJJklAqlVAsFiFJ\nEhRFgWEYEAQB0WgUyWQSQNVrjdQBkLqbblyoMw4Yirb70q38WaueWhNc1i1fynVm9DSCRXgYXkOc\n2oeGhphTO8N3fJPauq7jO9/5jjm2XNM07Nq1C6lUqu9VqBe49RnT0Rq7NBSJ1HAcZ4qXbgmYVhnJ\nqHhjdwT5Cg+hrTZv5/vQaqeW0iTCI8lAqkVDrRh7sGb4BMdx5oOMLMvmw48fgwzr0espJiYwfRA8\n5CBfddVV2LNnDwRBgGEYKBQKMAwD999/PwYHB73eLEYTGqWh2ikaDgIxEZic0rGnKGBySkZZaS3g\nyU0oJa6PbvAQBQ6qw06tSpNSsFIb9hIswsNwk3ZuoHSBM6nzkSTJFD7WAmevCrD7hX7/HD0XPOQD\nP/fcc1GpVMx87hNPPIF3332XqVCfqSdq3C4aDgozMir2FAXwHuxDK+/QLGVVKPMAnPe5i7wBkdWM\n+kavrmvtXvu0U7umaazA2QfCvG63i29B7pNOOqnm65NPPhnHHnss9u/fj0wm49NWdY8gLXgkWgMA\niqLUiBrr7JqwRGvaZcqAhohgoFDhwbea1mrx82ilU8vqo2XdslyptfdmBcve0cxkM0hrQRAggwwT\nicQEp/ZeFj69nkILIr4Jnr1790KSJMiyDE3TsGPHDsiy7NfmdBW/ipbtamroNBRQraUSBKGmONjv\ni8LLC5PnqjN5to5FMCmpoGKtnWlEi4e0rPCIR5wJnnq2EoRShQcH523x/ZLO8vvcbQS9bd3czrDe\n2IhTeyKRQKVSMQcZAt7sU1g/N4ZzPBc8mqZBEAScdtppeOWVVzA8PAye55FKpXD99ddj9uzZXm9S\nqGmlaNiahioUCohGox0PBnMTPxacmZmq4BFa/BhalbBZSUA84mxOk2QxDrX7VHje+eBDVrDsLezG\n2T60UzuZ4JzNZgNV4MwIJ54vgyRE+cwzz3j91p7QrYux2eyadtJQbOGoMhA3kI7pKMk8WpIxLSqe\n/UUB0webd2rputF00jIAcC1UBfVLhIfRO5A6H47jkE6nIUmSOcE5Ho8H6kGtVfyK+Pf7mu9rW/oj\njzyCJ554AsViEQcffDDOO+88LFiwwK9NCgT9VjQcFGZkVGzaFW0prdXqkqU57NSy9dGyebNW3r/X\nBQ+ri/EeL2+goihiYGCgpsDZ7UGGfpxDbO32Fs8lMolIfOMb38Add9yBpUuX4vzzz8fevXtxySWX\n4PXXXwfQWwuYtYaHiBpVVSHLMsrlsjmQr1gsolKpQNM08wknHo8jlUqZhX2xWAyRSASCILALxiVG\nBlVwaM1rymn9DI2Tv7BLU9ldDU6HegusQ4vRI5AC50wmA0EQkM/nkcvlzCGmncLW097Glzk8APDU\nU0/h5ptvxpFHHgmg2qV1+umnY/fu3Zg/f35PnHhE2GiaBl3XUS6Xa4qG7Zy8g1A03I9ERWBKWkOx\nlbRWG+ur6qBTy86B3e6UUFUOggN7iV6P7jD6D57nawYZlkolAGBO7Q1gKS0frSXmz5+PdevWYe/e\nvdi1axdeffVVxGIxjI2NYceOHeYJ7Daf+tSnMH36dCxdutSV1zMMA++++y7+8Ic/4Ec/+hHGxsZw\n9tlnY8mSJXjooYdQqVTMlJQgCIjFYhOiNd22UGA4Y0ZGQ1EWEHXoUdXOA6XkYLjhBFuJOu8lO/Sp\njbOCZUZIaRa1IYMMBwcHze6u/fv3Q5KkQPsaBkF8+P3+fuCb4Jk7dy6uvPJKnHnmmfjiF7+Ik08+\nGfv27cMvf/lLfPrTn8abb77Zlfe98MIL8dhjj7nyWk8++SQmTZqExYsX4//8n/+DZ599FhzH4aKL\nLsLDDz+Ms846C8lk0kw/BS0NFVSPL7+2aXK6OpMn4jD9085W5hx4ak0wDq2DdVZPPdgMHkaYcbJe\nEqf2wcFBs9Ynm82iWCxC05wN6AziWshwF8+f/Uhl/cknn4zR0VHE43Houo5LL73UVOSqqnatPf34\n44/H5s2bXXmto48+Gps2bcKUKVPM75188sk49dRTJ5igsovJGX6KQZ4DZgyq2OdwqJ9utL6tY0UB\n05p0aikOByiXKhyGB5r/Hktp9RdBiB74CXFqJ2UErTi19/Ln1u/nBeCjtcQRRxzh9Vu7TjKZNB2+\nCZFIBIqi1Aiefj/JwsSMjIp3xhIYSii2qSWadjSsZvAQeQ5qg2i7na2E3VsVyyzCw/CHMDzAWQcZ\nFgoF8DyPeDxutrv7RRg+v16EZfddRhRFKEqTMbmMwJKOGxiIa4iKzSMteptrVrN1VrZJadm5XuSl\n5hlpgXeeomN4Qy89aYdhP6yDDIPi1B6Gz67XYILHZaLRqOOcMSOYzMho2JltLibaSWkBzTu17Gwl\n7LRVTiI/qb8dLJ0VTNjNzhluisN6Tu1kkGEvCVE7en3/nBDeUZUBJWwRHhZancjIoIpChUdEaPzZ\ntPvRNevUsi1GtptFaPAQmqxfzFKCwaiFzDcbGBjA4OAgDMNANpt1bZYPI7j0neA577zzcOyxx+Jv\nf/sbDjroINx1112uvr6d4AlqN1S/q/16RARgSlpHtEkqqN2UVq7c+IVtBU+d92p2DFmEh8GoDz3I\nkOM4lMtl5PP5rosfFm3xh757/nvggQe6+vqkaJkRbmZkVLy1p/HlYTcg0An7CwKmDdinonTDcJzS\ncgIrWGYwmkOGv5KhhcSpvZcGGVpFVi/sU6v0XYSn25D8MKM9ghINm5zSUVE5iHz9bWk3wqMe8NSy\nw9AB+/xVnW1oMluNRXj6Dy+iB70YoTAMw+ziymQyZndXNptFuVwOxLrE6Iy+i/B0m0gkwgRPD8Bx\nwMigjpKsQ5XtU1DtRniA+mXGdV+zzrdVDeDrZMhYhxYj7PglrMggw3oFzp06tXu9X0ysVWERHpcJ\nW9Eyoz4zMioqan3F0Mnk+mqn1kTqCZ56y5VdCzuBFSwzGJ1DBhnSBc6FQiGUD7a9FpVrFSZ4XCZs\nRctB3K6gkIoZMAxA4OyVjdbBR1evU6vuRIM671VpYC/B0lnBgV1n4aeeU7ssy+z4hgT2DOgyrIan\ntxgZVDBW5CCpEwVKJymtfFlAPDLxPFGbTHe2UpI5ZOr8jAkef9B1HRzHQVEU6LoOXdehaRo0Tes4\nFcLoHk7TTFandkmSIElSSwXOTCD5AxM8LsO6tHqLaWkFu/Ix2591ktIaKwqYatOp1ShFZUcjewnW\nodVdDMMwBQ39j75x8jxv2hjwPI9CoQDDMCZ47THsCbIwsBtkSE9wbiZuva7h6fd0FsAEj+uIosgi\nPD2EKAAR3oABozaiYxgwGkw4boaq23tq1fPvqrfsF6QGKS12dbtCI2HD87z5LxKJgOd5VCoViKKI\nSCRS8xqRSASpVAr5fB6yLEPTtED4OrWDlzfQoH82ZJAhaVgpl8vIZrOIRqOIx+MQBNY5EBTYkugy\ndhEeVivjnKB9VhzHYWqqgr1SAkWZWnhdWIPt1nG5XnCwzkeSqyN4eM5AhF3dLdGqsOE4zvZm3OgG\nTSI9JPVB0iGJRCKUwodRi51TuyiKSCQSTZ3au4ndmtqP5xpbEl2GtaX3Hpm4gr1SsuZ7biwVqj7R\nU6vSYkpL1XjwnDHB14vV79THLWHTCXQ6RFGUtupA6sHSF+3h5ufWzKndj2PEzgkmeFwnTDU8QYum\nBBWOq3ZsSQptGNr54lGWecQiFsFTp+uq0VHiOW7CEERWvxMMYaMfKPQyDKPuU3Y0GjUflGjh46eT\nN8MdaKd2ImxLpRJEUWRrrw8wweMyLMLTm4xkNBQrgpnW4to2exgnVxYw1dKpVZbducH1U4THMAxo\nB/r5K5VKIIQN8WIi78NxHHRdr9vCTNeBKIpiDrpLJBJ9LXx6JVplFbalUgmapplFzt3u3mPiqgoT\nPC7TaPBgr1y8/UgyaiAqAkX5wDdcOIx2nVpSG8FBu26xXixYbhaxAcaFg1fChrSgEziOgyAIUBQF\nqqoiGo1CEASzNZ0UK9MCzApdAGuN+LC29nBDzk8S8SGDDL0ocO53Hy2ACR7XiUajkCSp5nv9enL1\nGgMJA1mJ1Mt0fkytnVq6bkCvN2nZqP9+mg5wlvtgmFNa7aSiAKBYLLrW7u1E2HAcB1EUa0SIpmmm\n6NE0DeVyGUB1aJ0gCDX1OZVKxTSttLvRiaKIgYEBaJoGSZKQzWZdszbolF58ePN6n3ieRyqVMut8\nSIFzPB6HKIo99/kGASZ4XCYSiSCXy/m9GYwuMC2tYW+BQ7HCtW9fboFe0+qJnWYoKododHyDeK4a\njQo6btbYtBuytwob8jrk5ldP2NDDBMl2k+0VBAGRSATxeBwcx0HTNFQqFaiqCkEQzJsZ+TtZlhsK\nH0EQkE6nTQFFIgKJRMJ34cPoHHqQYaVS6YpTO0tpVQnBshguwlS0DATvQghyIbUoAOmYgWLFNb0D\njerU0hoNMmzwhmWlVvAErX4niMXD1nOMvCfZFvrviKgh/7UKG0EQaiJNVoiYIYKlUqkgFoshEolA\nFEVb4UO2hYZYGyQSCTPiw2a9hJN6dVx0gbPVsLTTa4JFjJjgcZ1IJGIWUAadIIuLoDKUMLArZwAN\nUkytICk8YmL1ZtyqrQShLHMYTI1/7Vc6q5eFjSiKZg1NO9tMokTpdBqqqqJSqaBcLput6bTwIQ9M\n9IRmGjoVQma9RCIRJBIJCILQU9d0L6bOCPX2y86pff/+/YjFYojFYkzcdgATPC7DipZ7m6GkjnSc\nR77BhONWyJcFxNLVTq1GgqeRvipVar/udsEyLWwAoFwu+y5syNckSkLe14mwITU3bggbJ4iiaE5k\nr1QqZsSnnvAh6TQ74ZNMJs1UCKkBYfUf7RHE9ZmIZJIWJeKW1Pk4JYj75gdM8LhMvZQWO9nCiTUK\nxnHAUEJHTnLnKWusKGBKutqpVc9WAgAaPbTnJR7AeFTRrQiPk4gNALP2pBvCho7UNIrYEFFQqVSg\naZoZHbETNiRtRDqo/Lo2iTghN7N8Po9oNIpYLGYKH8MwzDEXjYQPXQNCmiYURamxt2CEF0EQasSt\ndZAhu784gwkel2FzeHqfSWkd7+x157UUbbxTS2lw2jRaznKlzqYsd5KKKhQKpojoFPKe9Yb00dtC\ntptsu6qq0DTNfJKVZdlsASapnqDeFMjNzCp8aEFGCx8SjbJ+5qQGhOM4lMtlFItFUwy5HfVhEYPO\naPfzc8OpHejfB3AmeFwmbEXLjNZJRICo4F6dBFl7GjmlN4rwVFQeHGfAMLiGHVrdqLFpZ+HsVNiQ\nqE2jiA0RCOVyGaqqhqLV1yp8CoWCObOFiBy6O6yR8OF5Hul0GrIsm10/zK+rd6CtSZw4tTOBWoUJ\nHpchIeowQEL+jNbh5BIiqgohnkBZ7Sy6QTq1GgmeZggcB9WoprOCUDwMdE/YkELiZiadpAuK3BAA\nhEr46Lo+QfiQz4sWPvTnQtNNvy6v8PJGHUZRQE/oZk7tzWGCx2Ua1fD0UvdENwnD5/TemTx+9LO9\nAAesOCyFWQelUdKiDQcE1oN0atXz0QKat8Ebhg6AhwgVxWLZU2FDrB0a+UXRkYhGwoaIGTKkr9NU\nVJiFD0lfxGIxU/iQwXRW4VOpVMyiayu0rQHd7sz8uvyDng7uFvWc2uPxuKvvE2aY4HEZltLqjLAI\nw6EBHgeNCHhnp4bn1xfx/PoihocEHL5sEImBJEqK8ycr0qlVlhv9VuPPhAitZLw6q8WriI1hGJBl\n2RQ0VmEDVKcPK4rSUNjYFeO6Sa8IH1mWTeFDUl1W4VMvaku3O5OIT7lcZsKnxyDde2SCc7FYNL8f\nxiiWmzDB4zKsaLl/WHZoBO/sHE9fju3X8MR/jwEYw+JDEpg3bwBlxKA1maBMOrXKDSI8utUO3fpz\ngwM4IBHl0Ol61iwVRSI25L+VSgWyLE+YIAzAc2HTDKvwIfNwwiJ8iDihIz5k9g4RPYZhQBRF85i0\n4tfldMBdGB5K+h16kGGxWISiKMhms4jH40gkEn5vni8wweMyTPD0D8sOieD/+++y7c82bJKwYZOE\nZILDkaODyExKoajYX26KxoOD0bCGh7OaZU14DQ4R0WipQ8tpjQ2JyBARo2ma2RVFCxsidOjOqKAS\nJuFDixn6v8D4sSCpS5LuIn9Dp7rshA/x67IOuHPi1+XFZ+SlsPK6XsgryNgGEuEjhfyTJ0/2bBuC\nAhM8LtNs8CCjd5gzQ0AmzSFbqH9cS5KB//5zFkAWc2dHsXBBGkYkAUWvFQO60VnUQ1Y4xCI6IjYa\noxNhQ/tFGYZR0xlkVxtE0irFYtEsmA2SeLBST/gQ6wcvt50uNm809ZmOlJEUsCzL5gwiMseHFqFO\nhI/VrysoRqVBPn86wetziy5w7tXPtBlM8LhMmAYPhqVeJqhwHIelh0TwPy80LL4x2bxVxuat+xAR\ngSOWD2DaSBoFRQTAQao0joY0O0ySDEweBHRds3X3BiYKGyKA6gkb2lbB6WBBurWa9o0Ko/ChPa/c\nnmFDPnerCWk7U5/turFIOoO8Di18SFdXPaPSVCqFeDzOOn56GL9FrF8wweMyLKXVW9Ci0K7de8HB\nOv7nhdZeU1GBvzyXB5DHyLQIlh82iHyTyc3NZGmxzCEmjLt20waUdgP6OhU2zSA3zn4WPvTnToua\nZjOEOtl2uhuLCB8S8alnVNpI+NTz62IwwggTPC7DurTCjzW1AADFYtF2js3yBVFExFzDKcmN2LlL\nwc7f78XC90bAZ6Y22qiGr1Oq8EjEeIgiN6Hdu5vCphnkxkmLhzCMw29V+NRLRQHeF27TwseuI60V\nh/ZGfl29BHmo6dWZP/3enUXorbM2ALAIT2d4OQzRyYA+skgkEglbgSCKwIK5Il5+vbNjLuXySDUS\nPA3NJYBsETBUCeUyfBE2zaANM+mIT9iET7lcRrlcrulIsxOV3Z591M62W+uTWnVoJ5YG5DMAuu/X\n1Y15NYz+hQkel6lXtMzqZfyjk8nDhmFAUZSGi+7yQ6MdCx5VVpGMaijJ9umCZmdOSRYwNJBEMh7s\nmwMpjg268KmXiiLnDHmooTujgrT9NM2iVa0IH2JRwXGcWZzeLb8uBsNtmOBxmbBFeHpJhPllqbDs\nkAju6/A1NE1HlFNQQnuCR+QNaEoJqhgPRbpBFEXbVJfXN816Ld+kFopEbew6o0h9UqlUCqRos2K1\nIaAjPtFo1Fb41HNoJzVIqVSK+XW1gR8pLRYpY4LHdchTVBgI66IUNK+ogaSB2dN4bN3VfiquVKhA\nkSSArzcGvvH2TxowEItFazp0gi58vJx+7LTlOxKJmCKnWWcUEW3Wwuww3PDpFCMd8aGFj1OH9rD7\ndQGsxqVfCPaKGEJY6so9giJsAJjpDLt272p7uoitu5y1p9shy4CUrwCZ9v5+8oBR06FTKpUgCEIo\n2onthA/dXdROZ1Sjlm9SpOuk5dvJtoclTWcHET60aItGo+ZnU8+h3Uo9v65EIhEq4cPobZjgYfgO\nLWxId1G9riiv3L3JDZKIVzKmnxQB00+6mqbhsHkCfvt0++8tlVWM7S0gU0fwNNPQkwfGu0zIjYek\nGmjfpSBDCx9y06wXrfK65dsJYRY+9BiBSqWCfD5v+m7ZObST7kUr1g4xOuLTjl9Xr0ZevH4otn6O\nvfiZOoEJni5gdzKxyI+ziA0w7gHTTWFD/lsvYkMLG+JLRKbVku4cOh0yZwaPwRSHXLG9Y1woqtj1\nbgGZ97a3T0Tw0PtAUg2kuDQSiZhP7kHGGi0olUpmJAWAry3fTrAKH2JZERbhQwZH0sKHRHroVGAj\nvy5rvVA7fl29DvsMvIcJHobrdJKKUlW1aVeUU8hNkaQ4mgkb+u/oqAFdwEr2g4gJ+u+WHarif16o\ntLWt+YKGzICGZFRHSW59362Ch0DEIxE+hUIhsMLHmoqiO6MAmDNjiBgKQrt9I8ImfGhBQ4tKWa6m\naslnT84dcry66dflFb0aSSL0+8M2gQmePqbTqFNQamxoYWM3w6eZsGm1gJUs3Iqi1BTYLj802pbg\niYk6NM1AJMIjxqsoITrhdxodJpE3MJRq/B6kdZh22iY3L68XervOKLrlm7ZWoOcI0Z5RqqqGoj4J\nqBU+tEmpX8KnXo0TMDFiRkc0SXGzruum6KFTXa34dUmSFCi/rn6glwWdU5jgYTQlTMKG9oqi/66R\nsGm1gJVuqabrTJbMi0IUANW+vKEusUh1XyIiB7VSBuwET4O/H04bcPpxE+FDIj75fL5rlg/Wziin\nLd/1oNN0pD4pLIXZwMTOKLolvBvXSyNh2erkbVowy7KMQqFQUxtGhA8RRo2EjyAIE4xK+82vq9cj\nSkGFCR4PCXpYMSjChmyHG8KGRHfaETaNsBbYlkoliKKIBXNFvPJGa2MJokL1vBAEDvmxEjA0OPGX\nGpw69dJZjbAz+Ww36uB2y3cz7IRPWAqzgcYt4e18LlYT2Hqfv1Nh2Qie580CZFIb1onwaebXxYSB\nOwT93uMVTPB0gaAXLdNGkoZhQJKkwERsyGIpy3LNzdGpsPG6M4cusK1UKlg4x8Arb7T2GiJfPS94\nDti5PYeRoZGW/r4dwUOw87qq11lk1/JdrzPKLWHZiH4UPnYRMz8+fxLVJBEfa7StFeHD8xP9usgE\na6/oB2HV6/vnBCZ4ephmERtyAQQpFUXC66RWQBTFmpusX8KmGeQG8L6lAh76fba1v4VG/gdvvZnF\nyOKJv9NIK3cieAhWr6tyuYxoNHrgvcejB+RY0Tcwvz9/u440URRDUxtiJ3zIeW2N3AD162z8oF6a\nkcxQsgofct3aCVKSNiN+Xfl8HgACP0CzHfpBYAWR3juT+pB2U1G6rpupGDewChu72Q/WiA3HceZi\nTjt8k78jkR4/bAfaYepwBLOnCdi6q4VCHvK56UAuJ9t2ajWSNJ0InnqpEMMwUKlUzNQdEQ9BFhB0\n1CHoHWkEa50NoVKpFr+T65ZErYLamUYLH5LiJekvIo7p6G0j4cNxnCl8stms2SDA/Lrax5pd6NfP\nkAmeEOF2jU27Jz0tbOymD7cqbOiIjTViQG68kiT51lXUKssXRLF1l+T497UDVc7kfmfXqVUvwiPw\nBobSzd+jUct3vQJWoOqGbe3MCTp0Kz4psPVb+LRTZ0M6n2RZbmvqtB9YU8laogAAIABJREFUZygR\nqxOy/fWEjzVtTV6L53nEYjEAMI1Ku9HhFpRyg24S9HPHC5jg8QgSUXFCUIqHnQgbkoZyImzaSYXQ\nNy8S5u5mZ4sbLDs0ikf/6FzwqAcEj6pXF12tTqeWHcNpAzz1MThp+SadUU4iBvTU5jDZVQDjBbZe\nzyByq87GzvYh6Oc+wSp8rD5prTi0k7WOCNhu+XV5+Zn2g8AKIkzwdAknOdqgCxuyD/WEDVnI6wkb\nN6ffksJGMsNDluXAprneO0vEQJJDvuRsUatUqoJHlqvHIb+/BGRqO7XqvdJwSke5XO645bsR9YqD\nw1IjYzeDyA3h0848m3agbR/CLHys7fiky9EqfBo5tNsZlYbVr8trgRW2z6cbMMHTBQRBgKZpZm0M\nLWxIeiAIwob44ZA6mWbCptmi7kWNB91VRGbg0G2sQYDnOSw9JIo/veRsCGFZqraxy0r1c925PYfp\nmdpOrXoPhEOJ8adjN1q+G2EtDg5CqqgV7ISPkzSpm/NsOiHswoc2iLV2BNo5tJOGBbvXctOvi9E/\n9KXgeeyxx3D55ZdD0zRcdNFF+PKXv+zK6+7ZswcbNmxAuVzGl770Jbz22mu4+OKLsXLlSvMiJBe+\nl8LGrmCNbAfpiDIMA5FIpGFXCC3K/LzB0YtnUCMOyxc4FzyFYnWBL5ern/ebb+zH9EXO3mdksoh4\n3FuxR6cZwy58SJqUGGUC8GSeTSf0ivAh228dwEgeCEulUo1Lu13Exy2/Li9TTCyd5R99J3g0TcOl\nl16K3/3ud5g1axbe97734cwzz8SiRQ7vMBZeffVVXHLJJabQWbJkCfbu3YuDDjoIq1atwpFHHmlG\nJFRVNRdVN3AqbKyLszViA4wv8kTUEPEQ1K4QwD7iEJTC5iXzIo6nLheK1V+SylXhk8spSER0SMr4\nAl9vjXSjJb1d2o2YBAFyUyWt38SyAhhPqXg1T6hdwix8AJgFyXSqCxi3giFRM3J8yPfsRLWdXxeJ\n+DgV4V5/Ziyl5T19J3j++te/Yv78+Zg7dy4A4KMf/SgefvjhtgXPyMgIrr76aixZsgQzZ84Ex3E4\n++yzceGFF2LSpEnm73VysrklbEjImA7D09EmwzBQLpchy7K56IThIgliYXMixuPQORFseFNp+HsC\nZ6BcqR5fSapaRBgGEONlSGg8eI3nDAw38dDyAiJ8vLCraBUndTZE2ADV9K6qqhBFMbAmn1aCLnyc\nHAMyZFCWZXP+Fr399N/SHZ1WmF8XoxF9J3i2bduGgw46yPx69uzZeOaZZ9p+vaGhIZx66qk13yMh\n1lbpRNiQrqh6wsZJfQHHcbaFwZFIpOV98QO6sJkINy8Km+u1fC84WMOGNxv/bTw6fowNVIWSVNah\nlMsAF6/5mZXhtIEgreFu2lW0ilt1NmHtigJqhY8fwtOJd1qzYxCNRmu2n3ZnJ0MMnRiVMr+uxoTh\nfO4GfSd4vDjQxF+pEUSU2AkbADXFzCT6QltCOJmj0mlXCAkPE+EQloWCbD9phyURoE4HLNrdVOt1\nRgmCgKOW6fjVU/sbvmZMrB1VkEwIkMo6SvkKYGOpReNnOqsR1vOnkV1Fq3jhGxX0iEkzaOFpFQ5u\nbX+z1vtOvNPqbT99TFsRPla/Ljvh42XKx4/0EktpVek7wTNr1ixs2bLF/HrLli2YPXu2q+9BR3iI\nsCGLAkkXEfwUNo2wKwwmtT1huXDszD2dhLadmmE2u6lOm8Rj5lQB23fXL+QR+VrBE4tVt23n9hym\nD06nfjLx9ScPNNwN3yGu8taIj9OIm1vzbNrFzmfMq4iVG7ghfGiRbzewspsWF2T7SXertTi+FeFD\nor/EtoL26+pF6wqGPX13pI888khs2rQJmzdvxsyZM/Hv//7veOCBB1x9j23btuHVV1/FzJkzze+R\nBVlRFPPpop6wcRr+9QJSGEzMMYNUn+EEuoWVXjRJzYCTaEEnN9Xlh0axfXf9IYQCZxE80epivfnN\n/Zi+sPFrTx5wNsjST8iYA+soAfpG49U8m3ax+oy5GbHyAifCp1nkrNWBlW7SbI4SET5EGDkRPiTi\nk8/n61pcMHqPvhM8oijijjvuwAc+8AFomobVq1e3XbBcj0svvRS33347/vSnP+Fzn/sctm7dig0b\nNmDVqlVIJBKQpOoN0O0Bcd2ELkwNW30PWczJTVOWZciyDAATogVu31SXL4jit083mLps1IqWSKT6\nvvv3y0hEdUiUpxYHAwYV6UlHy9D1SCiKMYnwSSQSZsSQvtl6Gb1sF1IQG3bhQ28/WW+s6aggdqjR\nwodYhpDtJOePU+FD5ncRh3ayJiuKEshhpp1ASiZ6aZ/ape8EDwCsWrUKq1atcv11t2zZgqeeegqv\nvPIKUqkU7rvvPtx+++2YN28elixZguOOOw7Dw8PgOA6qqppeMmFo4yUEvb7HLhVlnQBNPm9ZlmEY\nBqLRaNcWuXmzRaQTHAqSfb2NodWmu0RhfHGO8yok2mKCg1m9zHMGMkk9kK3gTupsYrGYOV1XEITA\nDY9sBB2xolNdQbtRNktHkWF/mqaZdS1B2v568Py4ZQg9h6uR8CH/rJBoo2EYUBSlq35dBFZP4x99\nKXi6xQsvvIBHH30US5YswYUXXohvfetbGBkZwS233IJnnnnGDMUCMKMJJKwaptqAevU9Xg6eq5cG\noWsLmg1KJCPq3SxstkKmLv95nf0QQlWtjfBQegeaXAHtqUXpHQylgHQqAV2P+dqK32mdDZmxEsTh\nkY2grwF6jowfwqfTdFQ3i5u7CREmJNVVLBZrvN5o4ePEoV0QBAwMDNT4dSUSidCsy4zmcE2mPgaz\nDSSEvP7667jyyisxMjKCa6+9tmZGD5kSSsKsYXnSJZAnKUVRXL/pNntKpRf0dtMg5OmuXC7XPCm6\nxbOvVPDDn+dtfzaIfXhlY9b8etmiNNZtLAAAPvgP82FQhcsCb0DTq/t2yAwdZx41PvqAFAZrmtY1\nN+lmdTZ0vU07x4A4g4dpajOBWCIQ8dwtd3M7YWMVmLTgb+X9ifAhA1LDInwI9ABJEsklDzC0VyER\nPiTqC8C8dlKplPlaxK/LMAxX/bo0TUM+n8fQ0FDHr+UEXdeRzWYxPDxsfi8sNZhtUnfHWITHI+bP\nn4+HH34Yjz76KM4991ycf/75uPDCC83QcjqdNkOqYVvw6foeOs3VSn1Pqy3fbtZ3WAub3T4Gh82L\nQOABzabGuFKpP69p1448ptZ0ao1jbUm3awVvp8bKL98oenhk2KY2AxMjPnTUsF0B6OQ4uGn14kU7\nezchQpOkukqlkhkFolN4dLdsvQcDek1w268rCCktv9/fL1iExwcqlQq+853v4De/+Q2uu+46vP/9\n7zd/RqYddyNa4gX0ky692NA/d9LyTRZ1P4omuxGx+tbdWWx8a+JsJm1sB7bvLJtfH7YwjZdfrUZ4\nhoejOGrV+8yfibwB9UCE5/QjVCycbd+lZY022KXqnM6z8es46HrVBT7M0QZFUVCpVBqmS+njYI2e\n+X0crBEf0lgRFqzHgI66kTWI3P/I/5MIjx0kCqyqalt+XQRVVVEsFpHJZNret1awi/CQyeI9St2D\nwgSPj2zbtg1r1qwBx3G44YYbMGPGDPNnZNoxCaeGbVYEeYoi4WV6kaG7QejoTdBuaG6mif7rzxIe\n/M/ihO9nt25BLj8e5Vl0SAobN43/3tn//H6zU0sUDKha9f0/eZKCqYONL08S4i+Xy+bnTUcO3EiD\ndBv6phvWBwByoyQ1ZUCtVULQj4NVfIZd+JDtt06nj0QiSCQSTSNmJOJDhE+rkWCvBY9dCq1fBU+4\n7qI9xqxZs3D//ffjD3/4Ay644AKcfvrpuOSSS8y0DUlRtDI0z2vsnlCtN1Tyc3pMfBigjwHdit+O\n+Fy+IDpR8BiG6ZROULVaEUN3apGrmOMMTEpPFDuN6mzI90hrflgKMek0i9d2Fe1il44CUCNwaIPe\noF8PZHYNET4k3Rh04WNdm3ieNx8kAZhpLvpcIgNjaeFphRiVktdq1a+LuaX7BxM8AeDv/u7v8NRT\nT+GHP/whTjvtNHzlK1/BySefXFMXEIS6hnqpKKD5gDhywyoWi4Fs4W0EXWNVKpVqOkGcMm2SgBlT\nBOzYM96GHo8a0C1ZKUWp/YZOd2od+LiGkgZgaJDlifUdjYZWklRduVyGruuhShPVq1Hy8zxymo6i\nZ2wBMCOfuq6bAzDDQJCFTyOxT3dskjQUiRwqilJTxExPxicPCPWEjyDY+3WRKFEj/LzuwnLNdwOW\n0goYe/bswVe/+lXs3r0ba9euxdwDru5AVXBIkmQulN1a7OtFbKwFk3To3el20OH9IM3vcQrdCdJq\nYfPPHy/isT+NDyHMJDS8/Pw7Nb8zY1oUO3bJ5tcf/Id5MAZHAAARwYCicZgzpYIPLCu0Xd9BpyjC\nmiYireCGYfhiEFtP7NPdgs1ej075hvFaoGvdvBI+TlrwranyRq9FxApZU+loDx2dI6Ko0euR66pS\nqTQ0KiXdX4ODTczyXMKaQiNpvR6G1fCEjeeeew5r1qzBMcccgyuuuALJZNL8mVuiwYuW73rv265o\nCArtFDa/tlnB//3JeAv6lLSCF57dWvM7QxkB+7PjUaDRFVMwfdECAEBUNCCrHI4+RMVxizu3laAX\n+zBNDCY4Kc5u5zXtZgvVu6F2ek3Q10I3RiJ4AX0tuHk9N2vBd7MGkAhoTdMmXM92AxudCh87vy5S\nV8cET9dgNTxh44gjjsDvfvc73HPPPTj99NPxhS98AWeddVbdoX+NOgZaafn2ohOEdEzQ/lZhizRY\nW/Gd1JYccrCIVIJD8cDUZR4TW9JLpdrJy29vzmH6AecT8rKTXVon3Wpl9wv6Wmgn3WgVNuS6oG+o\n7Tp+t7IP5NwnIxGCWq9XD9rywc7rqhmNRGa3WvCt0H5pZHo2OS7kPcn2tWJUStr7ia0KET5eD6Zk\nVGERnhCQy+Vw/fXX45VXXsHatWtrvL+s6Qm6SLheq3HQOqOsYeUw1fcQiGgAYN5w7eao3PMbBc+/\nWr2sRtJFPPvsrgmvJQgcNKp4+awLjkVZ4RCLGKgoHD5xooJpGXcvzWbjBMJAvWiJ2+mobu8DGcAY\nNuFDaBTx8TJq0wmNhjC2GvEhx5R0SxJhNTAw4Mm+WFNoLMLDCDSDg4P49re/jY0bN+LKK6/EvHnz\n8MlPfhKbN2/Ghg0b8KlPfcqMNADj3QdBNAC0g0QaaJuHsEycJjUFhmGYC1mxWO3Gohdx8qR45BIF\nzx+Ys4M6DxvJBI98YTzSkxAUlJUoOFQNRO06tDrFLnIYxhQLEcuKoqBQKJjfb1TMHSToAYzEIDNs\naV8imCORiGl7Qj5nO+sXv0WmHfWGMFojPrRfVyOjUtoCg3SJkaniQdv3XoYJnhCwbt06/P73v8cr\nr7yCsbEx3HnnnfjpT3+KxYsXY/ny5VBVFZlMBjzPm0/puq4HonuiFfz252qGE98o8pnT5rD0cVg6\nnzOnLut2o5cBxGNCjeAxO7U4IJMCxC7qD7sUS9COA9D8WJAUiKqqpgN20PahEUQ00JOng3gcgPrH\nggiDaDRqzryh2/HDABE+RNhYj0M7wgeAKXy88OtiKa1xmOAJAS+++CI2bdqEww8/HJ/4xCewZMkS\nJJNJ3HLLLXjqqaewbds2TJ9etSAgM1ZI22jYamPoG65f++DEmLRe+z2BmMNaxwkkEzzmHxzBa5sV\nKIpm8+5APFa7WOazJWBgABwmWkp0i6BYPTQrrG92LMjNNghjHdqh0/oYN2lmd9HsWNQTDWGg2XFo\nVfjQUW3atqJb61xYzvduw2p4Qs7mzZvxpS99CYODg/j617+OqVOnmj8L+7RmoLv1PY0WcDc7cqwT\nm5/8XxU/e7yElLoHr26aaCo6b24Sb2wumV8f8b4RTDlkHpJRA4fN0XH8Ynuh1E263cru1PGbHJN2\njkXY7SoA71rB6xV007WA7R6LbnV1eQm9D9bUL/nsyOdldWgnf5dOpwHUTuMm65yb5yapayM1Q/TE\n7x6F1fD0KnPnzsUvfvELPP744zjvvPNw7rnn4qKLLjIvMnpasyAIjoZiBQk36nuc+kZ1q0vN2g01\nf1ZVsEiSvXFoRKx9781v7seUQwBw3kV4rJDOEyLeZFluu5XdSTqqG/Vn9D6QuoywRUDpSAM9/K/d\nG2S9CBp5L3IsGkUzO9mHXoj42NW80REfktoma7LVPJQUEUejUXOdI6kuN4QPS2mNwyI8PYSiKLjt\nttvwy1/+El/72tdw/PHHmz+juz/C+nRr7cKxqwVwUmdjHZro9T6oqoprf5DD5o3vYN/YRNGzZEEa\nr7xWqPneWRccC4EH/vEYFdOH/L8siXhrFD10ko6yRm28xBp5C2MBaaNuIppmU6HdiKC1Sy9EfOj1\n1ToawRrxIZ87ifDY0alfF401otTPER4meHqQnTt34itf+QpKpRLWrl2LWbNmmT8j05o1TTNvVGFb\n5A3DgCRJZjiZXkSCcjNtxoOPFXDffa+iIk+8xJYuSmP9xlrB89HV74NiRPCpkxVEAtI0RcSbJEnm\nImpNE/p9M3UCLd7COhbBKnxEUWzahu9367eVXhE+9ARtEhnTNK3GqJREfTmOa7iPpCyBDDhtp+Cb\nCZ5xWEqrBxkZGcFPfvIT/OlPf8Lq1auxcuVKXHbZZeYCQhtiBn3mSrM6G7KQkPRKkBbwRoweGsG/\n2YgdwP5q1eUKBgZF38WOXWqQ/h5ZTMMwDoEgimJNypEUzgdd+FhTtQQyOI8+FkEUmlbCnuoiaxUZ\n8UBKCYBxawo6faooCgCYD212+ygI7ft10dsV5OPuJcE/izygXC7j6KOPxujoKBYvXoyrr74aALBv\n3z6ccsopOPTQQ3Hqqadi//795t984xvfwCGHHIKFCxfi8ccf92vTG3LsscfiySefxIwZM7Bq1Sr8\n9re/NX9GDDFFUUSxWDSLm/2CLBYkh10qlZDP55HL5VAqlczFIRqNIpVKYXBwEAMDAxgcHKzpdiBP\nskHnkDlRDKTs1YuuTzwOhayE4S7M36kHuZGSMfjFYhG5XA65XM5MAxGxPDAwgEwmg8HBQUQiEciy\nDFmWQ1U7QG5S6XTarI8pFoume7bfkGiaLMuQJAmFQgG5XA6FQsH8rIlwGxwcRDqdBs/zkGXZvAmH\n5aZHhA+JSBQKhcBd26TNvlKpTFirVFU1uxzT6bTZik5S68ShnUTYyHFVVbXuPpKIELGHyGazKBaL\nNUKX0RyW0jpAqVRCMpmEqqo47rjj8K1vfQuPPPIIpkyZgquuugq33HILxsbGcPPNN2PDhg04//zz\n8eyzz2Lbtm04+eST8be//S3QTyFjY2O49tpr8fbbb2Pt2rWYP3+++TO6e8WLWoZu1NnQnQ5hmVB7\n061v4Kk/7Zvw/YXzE3j1danme0ceNYIz/2EOjlng7qLv1PGbHAsnx8PaSRTWejFyPrViV+HG+9JR\nm3peXvTxaATtERXWOiVS+EsG9XkZ8XHait9sSjc5nyqVyoQIIknFE7FDv2Y9rH5djRo5yANKKpUC\nwFJaDMA055RlGZqmYXh4GI888gj+8Ic/AAAuuOACnHjiibj55pvx8MMP47zzzkMkEsHcuXMxf/58\n/PWvf8Uxxxzj5y40ZHh4GHfccQfWrVuHK6+8EqOjo1izZo35JEjEHunAccuIsdN5Nk4hnQ70DKKg\n32yPOWLIVvDYXa9vvbkfQ+mDO3q/ZmP9Sdi903SUtZMojN1Q9PnUrcnTTmwWOvXyqucRFSbhQw9h\nJNOnu/FQYyc06QGK1rWqlc+PPp+sNjQkpUXb0Wia1lD4kDWb+HXlcrkJfl30fjGqMMFzAF3Xcfjh\nh+ONN97AJZdcgiVLluDdd981B/pNnz4d7777LgBg+/btNeJm9uzZ2LZtmy/b3SrLli3D448/jgcf\nfBBnnHEGLrnkEvzTP/2TGWol6aFSqeR4UXE6z8aLkf6kbZ0MLszn84Etzn7faAY8D1ij2Io6cYHa\nu6eMlHBg4nITmj2VkmPSTTNGwN1Wdr9ww9zTzhyz3vHoVoE9LXxIZCBsx8It4dPseLj5IGaFtnAh\nIrRcLtfUIJKWdrourpFRaSKRmGBUajUBtrbB9ytM8ByA53m8+OKLyGaz+MAHPoAnn3yy5ufNbtJh\nOok4jsN5552HM844A2vXrsVZZ52FtWvXYunSpbaRErLgA/ZPpV7Ns2kFevaNJEmB9OcaSItYsmAA\n6zfWDh+UlYmCh+OAmFBCuaybUSun6Si/j4d1DlGlUgndIEyrH1K9glonM4b8PB7koYaI0EqlErrO\ntFaEj5Momh/Hw0740CLUKnxa9esqFoumGGIRnnHCs+J4RCaTwemnn47nnnsO06dPx86dOzEyMoId\nO3Zg2rRpAIBZs2Zhy5Yt5t9s3bq1pvU7LKTTaXzjG9/Apk2bcOWVV2LmzJm45pprMGnSJOzatQu5\nXA6zZ882n0KA8bHobqU/ug0pzlYUpa2n825z9OGZCYKnUplYpzNtchTDQ6maDhyykHVrQJzb0BHE\nMHQI2kFuLJFIxHyiJp+3V1GCTqGjuXSUIczChz4WJDVkV/vU7ahmqxDhQ1JddMTHalTaqvAhqVjD\nMMyREWE5tt0iGEfdZ/bs2WN2YEmShP/6r//CihUrcOaZZ+Luu+8GANx99904++yzAQBnnnkmHnzw\nQciyjLfeegubNm3CUUcd5dv2d0I+n8fevXtx5plnYvv27Vi+fDkOPvhgrFixAj/+8Y8BALFYzIwq\nkGnNJG0UtMXcDhK1GhgYAM/zKBQK5twVvznmiKEJ3ytJEzsvZo5UI248z5vRNqBaA5BKpczjEfQb\nFjkWdIdgqVQKVAeOFbuOnEKhAE3TIIqi2UEViUQwMDCAdDpt1jAF+XiQm20qlUI8Hjc70xRFCcS1\nUQ+6g1CSJLOLkxQAk661WCxmdnMmk0nzeARF7FghIpTUU+bzeVQqFbM0gESESFMA6cCzg6RiM5kM\nRFGEoijI5XLm6/UrLMIDYMeOHbjgggvMJ4JPfOITWLlyJVasWIEPf/jDuPPOOzF37lz87Gc/AwAs\nXrwYH/7wh7F48WKIoogf/OAHgV3UGpHL5TBjxgwsXLgQS5cuxQknnICLLroIzz33HJ544gmcc845\nSCQS5u/T4fygFwTbQZ5+otEoJElCPp/3tXNF13XMnB7BjOlR7HhXNr8v2QieeXPTphcOMN6mTGpj\ngpaua4a1NiYIM1ecTIauF0UjKaKwGvbS6ZUgzSKyq0WzRm1IbSA5b8jUY9r7LUzXBqm3oi1QyHpL\nR3xaMSolv0P8uoaGJj5o9QOsLb3PId0AVrZs2YI1a9YgEong+uuvx8jIiPkzr9vYuwVd3+NGV1o9\n6tXZANWw/F3/vgu/fnxvzd9EoxxkajDhlRfPxQdOmgorTuw2woCXrezdtFnoBbsKawt1N68N+j2b\neXq1M6qCRELc7rDzEusUbdowlk7d1RM+xWLRHK1AxHu/tqUzwcNoyJNPPolrrrnG7OiiL5QgFwQ7\nxc35PXbdH3Z1BPTMDo7j8ML6HL5842s1rzWUEbE/Oz707ra1i7Bwfn3vnV7wSgPcd2W33ki9slno\nBbuKbgmfRk7s3bAh6UXhY42GWoUP+QfUCh4ApjDqYZjgYbSPqqr4wQ9+gAceeABf/epXsXLlSvNn\ndITB75REJ7QqGJx049ALeKPXUlUd5170Yk3tzsi0GHbuqphfP3z34UjEmy/SbgsGvyCREl3XHbVP\nWwf22fl52YnNbkKnHYOSImoH6xBGsh9O/s6NoX1u7kcvCJ9GnmPWYm2SxmKC58APmOBhOGX37t24\n+uqrsXfvXtx0002YM2eO+TP6IgxrKB+YmK4jRamN6jqsT6TtcON3X8d//2XM/HrO7Dje3lrtjJs6\nOYr7frC8pdcjpoNhjjAAsB3S1ihF2O6k7m7iR4qoG1iNMekOOyft361M6+72fvSD8NG0qs8gefgh\nPyc1Tz0MEzwM9/jf//1frFmzBsceeyyuuOKKmsJm+kYbplkr1ggBcTYGxtt43Q610/zuv/fg/37/\nLfPrQ96TxKa3qsaDRy4fxE1fXdDya1ojDGG70ZJjoqoqFEWp8bVqx2bBb/yyq3ATErUhN1pyDViH\nKHb6AOAFvSJ8SMeaLMummCQT7a32MKQFvl9reIK9QoSYLVu24KSTTsKSJUtw2GGH4bbbbgMAXHfd\ndZg9ezZWrFiBFStW1Bh6hsGQFACOPPJIPPHEE5g/fz5OO+00PPzww2arIxkyF4vFUCqVAtlyTG6i\nlUqlrhEjMSklYWAA5kDGbjyhHrViCDz1kqI4/sWc2Qmbv2gO6b5Jp9OIRqOBPR5A42OiKIo5DoG0\n5BPBEPRWYxp6PALdkh9UA8h6hqVktgsZg0CMSxOJRE37d5DFDjDetUnGVQT9eAATW/ILhYJ5jZDP\nXNM0/Pa3v8XmzZsxMDCARCKBbdu24de//jWuv/56XHPNNYHex27CIjxdYufOndi5cydGR0dRKBRw\nxBFH4D/+4z/ws5/9DAMDA7jiiitqfj+MhqRA1bX3uuuuw8aNG3HTTTdh4cKF5s/oJyg/6kmctBnT\ndTb1PmuvCoK/+LWNeOW1AgDgsIVpvPxq9f+/+C9zservJ3ZotQq9H5FIBPF43PObUqPCbrt0lN0x\nse5HL9SN+bkfTuuf6h2TXomUWDse/d6PZsXd1mNCtv/VV1/Fvffei5///OeIxWIYHh7GYYcdhtHR\nUfPf1KlTAy9IO4CZh3rNyMiI2cqdTqexaNEi02/LTmSG0ZAUqE6m/u53v4sNGzbgyiuvxKGHHoqr\nr74ag4ODNVNpaVNSt8OpThZsMrCvnXQUPb+H+HN1o07p6MOHTMFDv2y7ER4rdvvRTSFaz4yx07H+\n9H70ylwoYpHQbeHTqGut3QnqdrYGYRyRQM+GIlOKvUg9Wtcvu+JwDqeTAAAgAElEQVRu6/wnwzAw\nNjaG9evXY926dVi3bh02b96MaDSKRYsWYXR0FB/5yEfw7LPP4nvf+x727duHlStX4ogjjujafoQB\nJng8YPPmzXjhhRdwzDHH4Omnn8btt9+On/70pzjyyCPx7W9/G0NDQ6E2JAWqwxh/85vf4KGHHsJZ\nZ52F1atX4/zzzzcFB7EUoIVPO4uIV47fdhAzTLdd5QnHHDGEf3tgKwCr4InX+Yv2sDP17KSw2Wk3\njtuTuYlXEG0tEMbONKtFglsCzkn7N4liuFGT5tRvLOh0U/jYCc5mDwG6ruOdd94xhc26deuwb98+\nDA0NYfny5RgdHcU//uM/Yt68eRO274QTTsCll16Kn/70p9i7d2+dreofWEqryxQKBZx44om45ppr\ncPbZZ2PXrl2YOrWanrj22muxY8cO3Hnnnfj85z+PY445Bh/72McAABdddBFOO+00nHPOOX5ufluU\nSiXcfPPN+OMf/4gbb7wRK1asMH9Gh40bLepOHb/9Klh1c34PzSc/vw47d1WwdFEa6zcWMGVSBPf/\nv1EXtrg+ZD+cFDbXa8e3Fkf60Y3Tait7UGl1tEDQ2r/p/ajXRRQmGnWnNaKTlNRLL72El19+GRs2\nbEC5XDbtflasWNEPKalOYSktP1AUBR/60Ifw8Y9/3PThIgakQFXUnHHGGQB6x5AUAJLJJG644Qa8\n9dZb+NKXvoTh4WF87Wtfw5QpU8ynJ5LmyuVyZi2JNXoTJMdvK6QAlZhIuvVUfvThGTz82C5oWvVZ\n42CX0lmNILYCiqKgVCqZETIATW0WvL6JNoJEEslATLcjcF5hjcARF21SsG2XJrReK17NGmq2H8RT\nrJcjPu2mpLLZLNatW2empd58802IomimpD7+8Y9j6dKlSCaTgbi+eoFwrQQhwjAMrF69GosXL8bl\nl19ufn/Hjh2YMWMGAOBXv/oVli5dCqBqSHr++efjiiuuwLZt20JtSEp4z3veg4ceegj/+Z//iY98\n5CM488wzcfjhh2Pjxo3I5XK4+OKLAcCcs0JuvGExJQXcr+85+vAhPPzYLqgHBM+cWd0XPLSYIX5K\niqIAgDmzIyg3USeIooh0Oh1qV3YSeY9Go+YMH3KddDNN2A3shI/VIiEMkIccQRDM/aB/1igltWXL\nFjMdtX79euzZsweZTAbLli0zjarnz58fqnM0jDDB0yWefvpp3HvvveYJDQA33XQTHnjgAbz44ovg\nOA7vec978KMf/QhA7xiSEgzDwM9//nPzAt+5cye+/vWvY86cOTjssMNwwgknmGkgjuNq0iphaGm1\n4lZ9z/IlA0gmeCgKifC4V7/jxK+ICE6O4yDLstnuGrZjQkfgyFN5UAtpnQztSyQSZjcUEaZhOyb1\nhE9Qi82bpaRisRh0XcfY2Bi+8pWv4Atf+AKWLVtmpqTWr1+PV155BZVKBbNnz8bo6CiOP/54XHrp\npRgZGQnkPvc6rIaH0TUuuugizJo1C0uXLsWyZcswb9487Nq1C1/+8pchyzJuvPFGzJw50/x9wzBQ\nLpehKEooi08Jndb33PDt1/HWOyVs21nBd69fiCULB5r/keX93bJZoOtiwjyxOQgt4HapDzuvtUZD\n+8I+TJKGrlXyU/g4SUlZrxfDMJDL5bBu3Tq8+OKLeO655/D73/8ehmHghBNOwCmnnIIVK1Zg6dKl\nSKVSobxmQgybtMwIFk8//TSuvvpqnHLKKbj00kvNmhEgvNOarbQ7v+fxp/bgrge3Yu+YgofuXIGB\ndP3998pmwStn+W7jlSt7s26cTo9Lr9hVALWmmN1+0HHSJWUtutd1Hdu2batJSe3evRsDAwNYtmwZ\nRkdHsWLFChx00EG46667cMstt2B0dBR33XWX2aDC8BQmeBjBQ9M0/Ou//ivuvvturFmzBh/84AfN\nn5EnWUmSApuKcIrVn6tZfc9YVsHqy9chGhXw4I+qHVqtRm268Vn1gjUCwa2bLH1crKLTi+PCjkl9\n2umSUlUVr732mpmSevnll1EulzFr1ixT2IyOjmLGjBl1t61cLuO+++7DBRdcEFoRGnKY4GEEl337\n9uGaa67B1q1bsXbtWsybN8/8mVdTjr2ApCKaRa4Mw8AXrtmAWIzHDWvmuh4d6JQgpIfcopVWdic1\nUH4dl6BNCe4Eckw0TXPclu8kJUUfF8MwkM/nzQ6p9evX4/XXXwfP81iwYIE5kXjZsmVIp9OhXXP6\nFCZ4GMHnpZdewpVXXonDDz8ca9asQSqVMn+m6zokSeqJWhL6iTwWi02I3Oi6jl/9dgwlScfq82f5\nNmuoGXR6KMw1V8DEWUQ8zzcd2kfX2gRlv3tRjNLCB0BbKant27fXpKR27tw5ISW1YMECFpHpDZjg\nYYQDwzBw//3347bbbsPnPvc5fOhDH6q5mZAbU9hajet14gAwp0PTi/Vb70h4/a0iTj0x+DUA9I2p\nG5Yb3cQatVFV1ayBoo9LkOYNOaEXhv4R8a8oChRFMVv1m6WkNm3aVJOSkiQJM2fOxPLly82U1MyZ\nM0NzLBktwwRPL7FlyxZ88pOfxK5du8BxHD7zmc/gsssuw759+/CRj3wEb7/9NubOnYuf/exnGBoa\nAlB1Yv+3f/s3CIKA2267DaeeeqrPe9GYfD6PG2+8Ec8//zzWrl2Lww47zPwZHb73ywSzHnbmmPUm\nRJOhZfXqe3buKmNkmru2Et2EpOwABLKI1om3FzlGiqKYZphhrx/zoki7E5ympMi18s///M8455xz\n8P+3d+9RUdZbA8e/AxigCCIq3lAUELSAwQumy6w0BfGSHFMzBfGSnspDHTXETNN4RSzrqJld3tQu\n5yR0PKbYxTqW2MWEQrl5t0TzhqXIfYBhnvcP1jwvg6igCMywP2ud1XKGwd/DcObZ/vZv7z1mzBiO\nHj2q7tqcPHkSjUZDr1691JSUv78/rVu3bnLXLO4qCXgsyY0msW/ZsoV27doRFRXF6tWryc3NJS4u\nzmwnsQOcOHGCBQsW4ObmxpIlS3B2dlafq+th4PpWn2MWanu+p6lrCodob3UDrR503uzMjqWkh+o6\nruJuud0qqUuXLpGRkUF6ejonTpwgLS2Nc+fO8eCDDzJx4kT69eunpqQkuGn2JOCxZOPHj2fevHnM\nmzePffv24erqyqVLl3jooYc4duwYq1atwsrKikWLFgEQHBzM8uXLm/wkdiNFUdi1axexsbGEh4cT\nHh5ucuO52zsLtZlVVP1Mx+3+PVWDBXt7e7O9wVbfhbtbwUJNFVLVb6BVz93czntjDrsktdWQ6cfb\nqZKqqKjgxIkT6q5NZmYmxcXFdOrUSR2UGRAQQOfOndmzZw/Lli2jpKSETz75BB8fn7tyHcLsSMBj\nqbKzs3nwwQfJysqiW7du5ObmApU3grZt25Kbm1vjYNJRo0YxYcKExlx6nel0OtasWcPXX39NTEwM\nAwYMUJ+rr2GeN/uQrmln4G71cKm6s9CUUnZ1VV/BQm3L8u/mAe+G7Bdzt+n1ekpLS+tl0OrtVkkV\nFRWRlZWlBjcnTpwAwMvLyyQl5ejoeNNduC+++IKhQ4fSunXdGnQKiyXDQy1RYWEhEyZMYN26ddf9\nn/1WN2Nz/KC2s7PjxRdfZPr06Tz//PNs2rSJFStW4OrqajJKQKfTUVhYeNOb0o1KjG828K+h1Pd8\nrsZkHCdQl2upKe1RvZmisfS6Icu/ra2tTYZ6Vh0fYm7vi3E0hXF3tLS0tFbXUpuUVPVZUoqikJOT\nQ3p6uhrcnD9/nlatWuHr64tWq+XZZ5/Fx8enzr/jGo2G0aNH18ePRDQDEvCYKeMk9rCwMHUSuzGV\n1bFjRy5evKhOZrekSewAbm5uxMfH8+233zJt2jQeffRR5s6dq35YGm+wJSUl6ge58SzAjUqMm+Jw\nzKpTs43XYq7ne6yt/3+SufEGa0zZ3appX9VKqabAeC3VS9nN8X2xsbExeV+qXkttUlItWrQw2VHT\n6/WcOnXKJCVVWFiIq6urumszY8YMunbt2mTeT9F8SErLDCmKwvTp03FxceEf//iH+nhUVBQuLi4s\nWrSIuLg4rl27ZnJoOSUlRT20fOrUqSZzY78Ter2eN998k4SEBBYuXEi7du3IzMzE1taWcePGqaXf\nxqGkVW+e5nT9VTtPm2NH3dqWf5vbe1N1xIO5tUowMqak9Ho95eXl6PV69bmbpaSKi4tNUlLHjx9H\nURQ8PT3V4Ear1eLk5GQ276ewCHKGx5L88MMPDB06FD8/P/WDZNWqVQQGBjJp0iTOnj17XVl6bGws\nmzdvxsbGhnXr1hEUFNSYl3DHioqK2Lt3r9pM7NChQ/z666/06NEDX19fgoODmTx5snrzKSsrs4hu\nzeZwvqem8xw1nYOqWv5t7lVQ1TsdN9VS9tqkpIxNF1NTU1m7di3Lli2jQ4cOJo37zp07h729Pffd\ndx8BAQEEBATg4+Nj1ueahMWQgEdYlnPnzjFr1iz8/Pzw9/fHz88PHx8f0tPTef7553nggQd47rnn\nsLe3V19j7NZcUVGhpobM9cO5KZQZ36rnUG2r1yypCqoplbLXtUoKKg9mG1NSGRkZnDx5kqSkJJyc\nnAgNDeXhhx8mICCAbt26NcmATggk4BHNicFg4P333+fdd9/l73//O2PGjDG5gRpTQ+aagqjKeL7n\nbvfvuVGn6Jv1T6mrqlVQ5npI26ghg7jaBJ41paRKSko4fPiwumtz7NgxKioq8PDwQKvV0rdvX/z9\n/bGysmLt2rWsX7+eadOmsXbtWrN9X0SzIAGPaH6uXbvG8uXLOXHiBCtXrsTb21t9ril3a64r4/mL\n+hi5UVOJsfFmWpemfXeiahNGY+Bjruq7lL22jfuqHsBXFIU//vhD3bXJyMjg3Llz2NnZcd9996m9\nbXr37n3TwOzPP//ku+++4y9/+cttr1/cPcePH+fxxx9X//zbb78RExPDtGnT6tyBPzU1lYiICHQ6\nHSEhIaxbtw6A0tJSwsPDOXjwIC4uLiQkJNC9e/eGv9ibk4BHNF+HDx9mwYIF9O7dm0WLFuHo6Kg+\n19jdmutTXYO4hmjadyfXUl9BXFNQPYirTTr1dlNSv/32m8l5m/z8fNq1a6c27uvbty/du3eXlJQF\nMxgMdOnShZSUFN54441ad+A3jucIDAxkw4YNBAYGEhISQmRkJMHBwWzcuJGsrCw2btxIQkICn376\nKfHx8Y19udVJwCOaN0VR2LZtG2vWrOHJJ59kypQp16W5mvIcqLqoPsXcuEPSmE37bpe5HAaujapB\nXNXy79tNSel0Oo4cOaIOyjx27Bh6vZ6ePXuquzZarRZnZ2ezDeLF7TE2Z/3+++/x8fGpUwf+7t27\nM2zYMI4ePQpAfHw8SUlJvP322wQHB7NixQoGDhyIXq+nU6dO/PHHH415qTWRxoOiedNoNEycOJHR\no0ezatUqxo4dS0xMDAEBAcD/9yMpLy+nuLjYbG+uxpRU1WGLxkCual+bhm7ad7s0Go2aCjI2lDTX\ng83G1gj29vaUlZVRVFRk8lzVxn3VU1JXrlwxSUmdPXsWW1tb7r33XrRaLXPnzqVPnz5m+XMR9S8+\nPp4pU6YAkJOTg6urK1DZqy0nJweACxcumIwX6tq1K+fPn6dFixZ07dpVfbxLly6cP38egPPnz+Pm\n5gZUfmY6OTlx9epV2rZt2yDXdack4BEmZs6cyeeff06HDh3IzMwEYPny5bz33nu0b98eqCxxHzVq\nFGB+U9hbtmxJTEwMv/32GwsXLsTFxYVly5bh4uJS527Nje1WKQ9jl2Nj5ZDx+swxNWRsKGlra2s2\n3adv9f7Y2tpiMBj4448/iI2NJTo6mm7dunH69GmTlFReXh4uLi5qSmry5Mn06NHD7IJx0TDKysrY\ntWsXq1evvu65ptRYtTFIwCNMzJgxg7/97W+Eh4erj2k0GubPn8/8+fNNvvbIkSMkJCRw5MgRs5vC\n3rNnT7Zv386XX37JpEmTmDx5MrNmzVL/ZV11HIJxhEBjHZ6tzfDSW43BuOeee9RdhcYul74Txu7T\ndR2JcDfVJiVVfVfNGIQeO3aMgwcPUlxczKBBg3BwcGDQoEHcf//9jBw5Um0m2pxvUqJuvvzyS/r1\n66f+A7UuHfi7du1Kly5dOHfu3HWPG19z9uxZOnfujF6vJy8vz2x2dwDM7xNP3FUPPPAAzs7O1z1e\n01mvnTt3MmXKFFq0aIG7uzuenp6kpKQ0xDLrzahRo9i3bx9lZWWEhITw448/qs8ZZyfZ2dmh0+ko\nKipSuwPfLcZzHqWlpRQXF1NYWEh+fj7FxcWUl5cDlcGLg4MDjo6OODg4qMHZzW76xtSQg4MDUDmH\nrbS0tMb31RwYU5DG96a4uFjtqn03GQ96l5WVUVJSor4/RUVFlJWVAde/P3Z2dhQUFPDdd9+xfv16\nZs2axYgRI5gwYQJbt27F3t6e6Oho0tLSGD9+vPr7OGzYMNq1ayfBjqiTrVu3quksgHHjxvHBBx8A\n8MEHH6ijiMaNG0d8fDxlZWWcPn2akydPEhgYSMeOHXF0dCQ5ORlFUfjoo4949NFHr/te27ZtY/jw\n4Q18dXdGDi2L62RnZzN27Fg1pbVixQq2bNmCk5MT/fv357XXXqNNmzYWM4Xd6MKFCyxatAi9Xk9M\nTAydO3dWn6vaUK4+zpDUV9O+21W1f4+5l37frYPNt1MlZTAYyM7ONklJ5ebm4uzsrKakAgIC8PDw\nuOEaT506xb///W8WL158x9cg7p5r164xe/ZsDh8+jEajYcuWLXh5eTVqCXhRURHdu3fn9OnT6kDp\nq1ev1rkDv3FNJSUlhISEsH79enVNYWFhHDp0CBcXF+Lj43F3d6/3n+0dkiotUXvVA57Lly+r26NL\nly7l4sWLbNq0qcaAJyQkxOz7dPzwww8sXryYoKAgnnnmGWxtbdXnbqeMvSGa9t0OSyv9vt2g9Har\npMrKyjh69KhaJXXkyBHKy8vp3r27SZWU7NJYpunTp/Pggw8yc+ZM9Ho9RUVFrFy5srmVgDdFUqUl\nbp8x5wuVQc3YsWMBy5vCbjRkyBCSkpJ49913CQkJISoqSv2XT9UzJCUlJZSVlWFvb69WRdUU3Nxq\nwnRj0Wg0tGjRAhsbG4s432Ms9TaevSooKLju0HltGvfVVCWVm5tLZmamunOTnZ1NixYt6N27N1qt\nlunTp+Pr64u9vb0EN81AXl4e33//vZreMVYsJSYmsm/fPqAyIHrooYeIi4urMf2fnJxM9+7dKSgo\nIDAwEIDw8HB27NhBcHAwiYmJrFixAoAJEyYwb968xrlYCyIBj7ilixcv0qlTJwA+/fRTfH19gcp8\n7hNPPMH8+fM5f/68mgO2BNbW1jz11FNMmjSJF198kS1bthAbG0vPnj0BKC8vx8bGBoPBQGFhoXpj\nNN44jRPAzaH823i+p0WLFpSWljb56rRbqR6UGieZG4OdmwWfBoOBs2fPkp6erqakrly5YpKSCg0N\nxcPDw6x3w8SdOX36NO3bt2fGjBmkp6fTr18/1q5dKyXgTZwEPMLElClT2LdvH3/++Sdubm6sWLGC\npKQk0tLS0Gg09OjRg3feeQeAPn36MGnSJPr06YONjQ0bN240yxvkzbi4uPDSSy/xn//8h/Hjx+Pq\n6sqVK1c4c+YM27dvZ8CAAdja2lJRUWH23ZqNZezVq9Oa+pDVW6WkrKysqKioIDMzEzs7O/r166em\npA4fPkx6ejpZWVkcOXIEnU5Ht27d0Gq1PPTQQzz77LO4uro26esXDU+v13Pw4EE2bNjAgAEDeO65\n54iLizP5muZeAt4UScAjTGzduvW6x2bOnHnDr3/hhRd44YUX7uaSGk10dDRbtmyhvLwcf39/Ro8e\nrU6TXrx4MUOHDjX5QDMeBC4tLb2rgzzvNmN1WlM831ObcRg1paTy8vL4+eefWbt2LZ07d8ba2hoH\nBwc1JTVt2jR8fX1p2bKl3KTELXXt2pWuXbsyYMAAAB577DFWrVpFx44dpQS8CZNDy03Yww8/zIwZ\nM0x64oiGc/ToURwcHOjatavJTbCgoICYmBjS09NZuXIlffr0UZ9TFIXy8nJ0Op3Zdmuuqvp8roY8\n33O7VVK///67SZXUn3/+iZOTE35+fvTp04cDBw7wySefMGfOHKKjo3FycmqQ6xGWZejQobz33nv0\n6tWL5cuXU1xcDFTuCi9atIi4uDiuXbtmcmg5JSVFPbR86tQpNBoNAwcOZP369QQGBjJ69GiTQ8uZ\nmZm89dZbxMfHs2PHDjm0XDtSpWVuYmNjWb9+PYMGDaK0tJTY2Fi0Wm1jL0tUcfz4cRYsWIC7uzsv\nvPCCWuoJphVD5nwexqj6fK76vJ7brZIqLy/n+PHjpKWlqVVSJSUluLm5ERAQQEBAAP7+/nTs2PG6\ntZ47d45ly5YxbNgwpk2bVi/XIe4ed3d3HB0d1XNXKSkpXL16tVFLwNPT05k9ezZlZWV4eHiwZcsW\nKioqmlsJeFMkAY85yc/Px83NjfT0dNzd3Xn77bfZvn0777zzDj169Gjs5YkqFEUhMTGRVatWMX36\ndMLCwkx2QCoqKtDpdBgMBrPvdwPXX09dz/fUJiVVtfeQMbjJz8832bX59ddfsba2xsfHB61Wi1ar\nxc/Pj1atWpl1YClq1qNHD1JTU01SOlFRUVICLmoiAY85mThxIvb29nz44Ydq5c+YMWOYM2cO48aN\no7S01KQ3jGh8Op2OV199lT179hATE0P//v1NnjemuZrSeZg7UZvrqW1KqmpjRYPBwPnz58nIyFD7\n21y+fBlHR0f8/PzUnRsvLy+zPSMl6q5Hjx788ssvuLi4qI81wyngonakD4+52L9/P3v27OHChQsA\n6qwgNzc3Dh06xLhx4/jxxx/ZuXMnMTExODg4mPUZEUthZ2fH0qVLmT59Os8//zz29vYsX75cPbRY\nvd+NuU78Nqp6PYWFhbRo0ULtRVTbWVJ6vZ5jx46pgU1WVhY6nY4uXbqg1WoZPHgwTz31FJ07dzbb\nn5OoHxqNhkceeQRra2vmzp3Lk08+KSXgos4k4Glinn76aWJjY7G3t6ekpAR7e3t0Oh3x8fF88cUX\nlJaWsmPHDlq1aoWjoyOA2lm2qatpEvvt5OGbsm7dupGQkMA333zD1KlTCQ0N5cknn1RL1Y39bsxl\n4nd1NaWkoHLHp7y8nLKyMlq1aoWDg4NJSqqgoEBt3JeZmake2PT29lYngK9cuVJ9nRBV/fjjj+qu\ny4gRI/Dx8TF5XkrARW1IwNOEbN26lYyMDJ566ikA7O3tgcogaOjQoQwaNIhPPvmE06dPs3z5cvbs\n2cOuXbv49ddf+etf/8qYMWMac/m3VNMk9ri4OEaMGKHm4ePi4tQ8vLlOYgcYPnw4Q4cO5c033yQk\nJIQXX3yRBx98ELh5t+ampDYpKePOjkajoaKigri4OD7++GPCw8MxGAxkZWVx6dIlWrdujZ+fH1qt\nluDgYLy9ve/KjDBhmYyNT9u3b09oaCgpKSkyBVzUmZzhaUJKSkpYuHAhaWlpTJs2jd69e/PVV1/x\n7rvvkpaWRkVFBc8++yyfffYZM2fO5OzZswwZMoTx48fTrl07OnXqpJ75aaqqz+mqax6+6la1ucjJ\nySE6OprCwkL+53/+R906B9My9sYa63C7VVJ6vZ6TJ0+qXYmzsrIoLi7G3d2dvXv34urqypo1a3jk\nkUea9O+kaNqKi4upqKigdevWFBUVMXLkSF566SX27NkjJeCiJnKGp6kzGAzY29vz5ptvkpGRwUsv\nvURycjJubm7s3LkTNzc3/vGPf3Dx4kUcHR1ZtWoV7dq1U19vvEEZbyx5eXlm0V+krnl4c+Tq6sqW\nLVtITk5mzpw5agdfOzs7NBoN99xzDzY2Ng0y1uF2G/cVFhaapKSMVS+9evVCq9Xy2GOPERMTQ+vW\nrdFoNOj1et555x2mTp3K22+/bfYDZZubiooK+vfvT9euXdm1a1ejloDn5OQQGhoKVHY4njp1KiNH\njqR///5MmjSJTZs2qWuCm3eA37hxo0kJeHBwMACzZs0iLCwMLy8vtQRcWB7Z4WlCDAYDgPov/MLC\nQhwcHAA4cOAAq1atYvHixWzYsIEFCxag1WpNborGdMPnn39OfHw8L7/8cpMrY6++w+Ps7Exubq76\nfNu2bbl69arFTmI3GAxs3ryZ9957jwULFhASElJjt2ZFUe64W3PV4aV1qZK6dOmSWgKekZHBhQsX\naN26Nb6+vmi1Wvr27Yu3t3etStJzc3OxsbGhdevWt30douG9/vrrpKamUlBQQGJiopSAC3MiOzzm\nwBjoVFRUqK3vobKz77Zt2+jQoQP3338/r776KhcuXCAgIEB9raIoWFlZUVpayhdffEFAQID6+qac\n5qpLHt4SJrFbWVkxe/ZsHnvsMZYtW8b7779PbGwsXl5eQOVYh1atWlFeXk5xcXGtujXXJiVVU5VU\nRUUFJ06cUHdtMjMzKS4uplOnTvj7+9O3b19mzZpFly5dbjvN5uzsfFuvE43n3LlzfPHFFyxZsoTX\nX38dQKaAC4sgAU8TVP3wauvWrXn++efVoKVPnz7s3LmT0aNHX/faf/3rX+j1eh566CHat28PoB4o\nbYpTu8eNG8cHH3zAokWL+OCDDxg/frz6uKVOYgdo06YN69evJzMzkwULFuDr60tUVJSaErrnnntM\nppcby9iB20pJFRUVkZWVpQY3J06cQFEUvLy80Gq1jB8/nuXLl+Po6NjkfkdEw/r73//Oq6++Sn5+\nvvqYlIALSyABjxkwGAy4urpiTD+OGzeOp59+mqKiIlq1aqWmKc6cOcPevXsJCgqib9++XLp0iQMH\nDjBs2DC1hL0xVZ/E/vLLLxMdHV3nPLwl8fX15auvvuKTTz5h3LhxzJ07l8mTJ6PRaLh8+TLl5eW0\na9dOnWcF3LBKCip3e3JyctSDxJmZmZw/f55WrVqpKalnn2YPpSQAABN4SURBVH0WHx8fsyqHFw3j\ns88+o0OHDgQEBJCUlFTj10gJuDBXEvCYAWM6wfghM2DAACIjI7Gzs1NTWQDvv/8+bm5uDBo0iH//\n+9+89957jBgxgpiYGJ555hlmzpypBkfG/zakmiaxA+zZs6fGxy15EntViqLQt29f5s2bx9tvv01M\nTAwlJSXodDqWLFnCzJkz1ff68uXLREdHs3TpUjw9PTl16pRJSqqgoICOHTvi7++PVqslIiICNzc3\nsynnF41r//79JCYm8sUXX6DT6cjPzycsLExKwIVFkEPLZqb6eRzjn5OSkti8eTNhYWF07tyZ6dOn\nc+3aNfbt28eVK1d45513ePPNN02+l8FgkH+tNbK33npLPRBqnAnl6urKt99+S5s2bVi6dClt27al\nuLiYrKws0tLSOHDgAF9++SWOjo4MHTqUwMBA9bVOTk7yfop6sW/fPtasWcOuXbuIioqSEnBhLm78\nAagoys3+J8zEypUrlRdffFExGAzK8uXLlVmzZin79u1TBg4cqIwdO1YJCgpSCgoKlI0bNypxcXFK\nQUGB+lqDwdCIK2/eLl++rOTm5tb43Oeff654enoqfn5+yrBhw5TIyEhl8+bNyqFDh5Ts7GwlIiJC\n6dy5s/Lhhx828KrFnSopKVECAwMVf39/pXfv3kp0dLSiKIpy5coV5ZFHHlG8vLyUESNGmPxuxMbG\nKp6enoq3t7fy1VdfqY//8ssvyn333ad4enoqkZGR6uM6nU6ZNGmS4unpqQwcOFDJzs6u0xqTkpKU\nsWPHqusaPnx4jetauXKl4uHhoXh7eyu7d+++bl0eHh7K3/72N5N1TZw4UV3X6dOn67QuIW7hhjGN\n7PBYEOPBwhUrVtC9e3ciIiIAeO2119DpdCxcuJDg4GC1csbf35+XXnqpEVcsbiUvL4+WLVvecMp6\ncnIy+/btIyoqqoFXJu5UcXGx2nF7yJAhrFmzhsTERCn/FuLOyA6PJauoqDD58549exQ/Pz9l06ZN\nJo8vXrxYmTFjhnLw4EHlzJkzyuDBg5VDhw4pivL/uzx6vV52fIRoQEVFRUr//v2VrKwsxdvbW7l0\n6ZKiKIpy8eJFxdvbW1GUyt2duLg49TVBQUHKTz/9pFy4cEHx8fFRH9+6dasyd+5c9WsOHDigKIqi\nlJeXK+3atWuoSxKiMd0wppGTjBag+oHU4cOHs2nTJj788EPmzJnD1atXSUlJISUlheeeew5fX1+6\ndetG+/bt1QOHRUVFXL582WQukhDi7jEYDOqZrYcffph77733puXfVcu8jeXf1R+vTfm3EM2VVGlZ\nGGMk279/f5KSkvj1119p27YtS5cuJSgoCC8vL2xsbNi1axfZ2dmMGTOGjz/+mC+//JLU1FTCwsJY\nvHhxkxtkKYSlsbKyIi0tjby8PIKCgti7d6/J81JQIET9kh0eC6PRaLCyslJ3aDw8PFAUhcmTJzNx\n4kTs7e3R6/XExMSwcuVKvv76axITExkzZgw//vgjOTk5BAcHk52dDcDevXtJSEhoxCu6M+7u7vj5\n+REQEKA2Lrx69SojRoygV69ejBw5kmvXrjXyKkVz5uTkxOjRo0lNTVXLv4F6K/8GpPxbCCTgsVhV\nd2g0Gg0zZ87E3d0dgJiYGKytrRk9ejQfffQRTzzxBKNHj8bZ2RlbW1uOHz9Ofn4+a9asYcyYMdx7\n773q9yooKGjoS7kjxpL9Q4cOkZKSAkBcXBwjRozgxIkTDB8+nLi4uEZepWhu/vzzTzXQLikp4b//\n/S8BAQFq53Hgus7j8fHxlJWVcfr0abXzeMeOHXF0dCQ5ORlFUfjoo4949NFH1dcYv9e2bdsYPnx4\nI1ypEE2HBDzNgFKtEm/w4MFs3LgRqAyM2rRpg4ODAyUlJfzwww8sXboUPz8/kpKSUBSFnTt3UlZW\nxu+//84DDzzA8ePHG+Myblv1609MTGT69OlA5VygHTt2NMayRDN28eJFhg0bhlarZeDAgYwdO5bh\nw4cTHR3Nf//7X3r16sW3335LdHQ0YNp5fNSoUddNAJ89ezZeXl54enqaTAC/cuUKXl5erF27VgJ7\n0exJWXozVlFRwaRJk/D09GT16tWEhYWh1+vZunUrJ06cYMCAAaSmpvLxxx8TFBTEN998w9GjR/no\no4/U+U1NvYNvz549cXJywtramrlz5/Lkk0+aTGhXFIW2bduaTGwXluH3338nPDycy5cvo9FomDNn\nDpGRkVy9epXJkydz5swZdZxJmzZtAFi1ahWbN2/G2tqa9evXM3LkSABSU1OJiIhAp9MREhLCunXr\nACgtLSU8PJyDBw/i4uJCQkIC3bt3b7RrFkJIWbqowc8//6zk5+crixcvVoKDg5X27dsrSUlJiqIo\nytChQ5WoqCj1a5OTkxV3d3dl/vz5yrFjxxpryXV24cIFRVEqG/z5+/sr3333ndKmTRuTr3F2dm6M\npYm77OLFi2rbhYKCAqVXr17KkSNHlOeff15ZvXq1oiiKEhcXpyxatEhRFEU5fPiw4u/vr5SVlSmn\nT59WPDw81BYNAwYMUJKTkxVFUZRRo0YpX375paIoivLmm28qTz31lKIoihIfH69Mnjy5Qa9RCHEd\nKUsXpq5cuUJkZCSRkZFMnTqVc+fO8eKLL/Lggw+SmJjIb7/9xurVq1EUhdLSUhYtWkTfvn0ZOXIk\nY8eOVVNiTV2nTp0AaN++PaGhoaSkpNzwYKiwLB07dkSr1QLg4OBA7969OX/+/A1Tmjt37mTKlCm0\naNECd3d3PD09SU5O5uLFixQUFKiH3sPDw9XXVP1eEyZM4JtvvmnoyxRC1JIEPM2Ui4sL+/fvx9fX\nlzVr1hAREUFkZCRQWekxePBgoPLQ77Zt29DpdPznP/8hKCiI0NBQioqKGnP5tVJcXKwesi4qKuLr\nr7/G19f3hgdDheXKzs7m0KFDDBw4UHrdCNFMSR+eZm7+/PnXDSQNCwvjwIEDPPPMMyxZsoSNGzey\ncOFCALKystDr9bi4uDTWkmstJyeH0NBQoLIsd+rUqYwcOZL+/fszadIkNm3apJ7hEJarsLCQCRMm\nsG7dOlq3bm3ynPS6EaL5kIBHmHzgGwwGWrduzYcffsi1a9fYvXs3VlZWTJgwAYD9+/ejKAr9+vVr\nrOXWWo8ePUhLS7vu8bZt27Jnz55GWJFoaOXl5UyYMIGwsDB1J8+Y0uzYsWO99brp3Lmz9LoRoomT\nlJYwYWVlhcFgAKBNmzY8/vjjJCYmAvDNN99w5MgR/Pz88Pf3b8xlCnFLiqIwa9Ys+vTpw3PPPac+\nLr1uhGieJOAR1zGWmhsDHycnJ/XP1tbWPPLII422NtG0zJw5E1dXV3x9fdXHbtbJetWqVXh5eeHj\n48PXX3+tPp6amoqvry9eXl48++yz6uOlpaVMnjwZLy8v7r//fs6cOVPrtf3444/885//ZO/evQQE\nBBAQEMDu3bul140QzZT04RF1UlBQcN05CNF8ff/99zg4OBAeHk5mZiYAUVFRtGvXjqioKFavXk1u\nbi5xcXEcOXKEJ554gp9//pnz58/zyCOPcPLkSTQaDYGBgWzYsIHAwEBCQkKIjIwkODiYjRs3kpWV\nxcaNG0lISODTTz8lPj6+ka9a1BeDwVBZLmxlJWepRH254S+S7PCIWjH2MZBgR1T1wAMP4OzsbPKY\nlH0L4z+kjf81GAzo9Xp1xp/xOSsrK6ytrdFoNJSXlzfKWkXzIQGPqBWpZhG1JWXfzZeiKOj1ejQa\nDRkZGUybNg2oTJPb2NioM/6uXbuGRqPhzJkzPP744wwePJiIiAj1fRfibpCARwhx10ig3LxoNBps\nbCqLf/38/PjXv/4FwOHDh4mOjmb06NFotVqCgoIoLy8nPj6eiIgIvvvuO4YMGcKSJUv4448/GvMS\nhAWTgEeIerR79258fHzw8vJi9erVjb2cRnGjTtZ3UvYNSNl3I8nOziYvL4+KigqTlFR1paWl/Pzz\nz2zYsIGff/4ZqAx6Dh48SH5+Ph06dODVV1+le/fuREREoCgK27Zt44033uCxxx7jjTfewGAwUFpa\n2lCXJpoZCXiEqCcVFRXMmzeP3bt3c+TIEbZu3crRo0cbe1kNTsq+zZsxsDFWaU6cOJFDhw5hbW2t\npqSqMp7TefLJJ3nhhRfIyMhQO5x369aNtLQ0Bg0axPz587G1tcXJyYkRI0Zw9epVvL298fHxYf36\n9aSnp/Phhx+apDeFqE/SeFCIepKSkoKnpyfu7u4APP744+zcuZPevXs37sLuoilTprBv3z7+/PNP\n3NzcePnll4mOjq6xk3XVsm8bG5vryr4jIiIoKSkhJCTEpOw7LCwMLy8vXFxcpEKrHlVUVHDs2DF6\n9uyJvb29+nj1oOa+++4jLS2N9PR0tm3bxvTp03niiSdo2bIlBoMBKysrvv/+e1xcXJgzZw5DhgxR\nX6vVavnll1+YOXMmiqLw1ltv0alTJzw9PSkuLsbb25szZ87QrVs3oLI9ga2tLffdd1/D/BBEsyJl\n6ULUk23btvHVV1/xv//7vwD885//JDk5mTfeeKPB17J7926ee+45KioqmD17NosWLWrwNYimw1j+\nDaYBTWRkJH/729/w8vJSd3USExP57LPPMBgMxMXFsX37drZv387IkSPp2bMnu3bton///kRGRlJe\nXk6LFi3Izc3llVdeISkpiSFDhtCqVSsWLlzI/v37iYmJ4fvvvyctLY1XXnmFjz/+GJ1OR2FhIaWl\npSxdupSTJ0+Sl5eHi4sLr7/+OgEBAY31oxLm74aHBmWHR4h60lQO5xpTa3v27KFLly4MGDCAcePG\nWfROk6gclnvw4EEyMjJITk4mNDSUkJAQ7rnnHrWZaFU5OTn89NNPfPvtt/j4+BAVFUV5eTlbtmzh\nsccew9PTk06dOuHh4YFOp2Ps2LH06dOH/Px8duzYQWRkpPo77+zszMqVKzEYDHz77bds3ryZN954\ng7/+9a/8/vvv6HQ6EhISSEhIICcnh6tXrzJs2DBee+01NmzYwLFjx/D29qZVq1YN/WMTzYgEPELU\nk+qHcn///fdGOY/QHFNrAp5++mni4+N54YUX6NOnD59++ikXLlzg6aef5tixY2zevJnU1FS6devG\n8uXLgcoD5vn5+Xz00Ufo9XpWrlxJv379iIiIUL+vh4cHLVu2VDuu9+vXjzVr1gCmu0UXL16krKwM\na2tr7O3tCQgIwNnZGUdHR/Lz8/H392f79u3quR2jli1b0rdv37v/AxLNngQ8QtST/v37c/LkSbKz\ns+ncuTMJCQls3bq1wddRtXcNVPa7SU5ObvB1iIal1WopLy9n2bJlAMTGxnL69GkAdDodbm5uzJ07\nl+PHj/OXv/yF1NRUli1bxsKFC7G3tycvL4+8vDxCQ0PVg8v33HMPHh4eGAwGLly4QJcuXfDy8kKn\n05Gbm4uzszOKoqDRaEhLS+O1116jbdu2DBw4UD3Lk5GRAVQG3kI0Jgl4hKgnNjY2bNiwgaCgICoq\nKpg1a1aj7Ko0ldSaaFhDhgwhNjaWHTt2sG3bNtLT09XBv1qtlvz8fF555RUyMjI4efIkFy9epH37\n9uTl5VFQUICTkxOdO3fms88+Y+TIkVhbW1NcXEzLli2xs7Pj8OHD9O3bl1atWtGhQwd+/fVX+vfv\nr/79o0aNYvTo0Y11+ULckgQ8QtSjUaNGMWrUqEZdQ1NJrYmGFRAQwJUrV/jss88IDAzk/vvvZ9Kk\nSXz99ddYW1uzYcMGhg8fzvr16wkMDCQjI4OgoCAMBgM5OTm0bt2aqVOnsnTpUmbMmMHVq1exs7Pj\n3XffJTQ0lI4dO6rBtHHH0Li7A9R4TkiIpkQCHiEsTFNJrYmGZW1tTceOHVmxYgVdunQBYMuWLezf\nvx97e3sURSEiIgJbW1uuXbvGTz/9RFBQEKNGjSI0NJQuXbqwdu1aNmzYwM6dO3FycmLw4ME4OTkx\ne/bsGv9O2U0U5kQCHiEsTFNJrYmGd++99/LNN98QHh4OVB5KPnv2LJMnT8bV1ZVhw4bRo0cPunXr\nhp2dHVA53f6JJ57Aw8NDHQ5c9dCyEJZC+vAIIYSFWLJkCbt27WLevHns3LkTW1tb1q1bh5ubG6dO\nneLAgQMMGDAAb2/vxl6qEHfLDbcdJeARQggLceDAAebPn8+YMWPw9fVl4MCB6iwzIZoJCXiEEEII\nYfFuGPDIsXohhBBCWDwJeIQQQghh8STgEUIIIYTFk4BHCCGEEBZPAh4hhBBCWDwJeIQQQghh8STg\nEUIIIYTFk4BHCCGEEBZPAh4hhBBCWDwJeIQQQghh8STgEUIIIYTFk4BHCCGEEBZPAh4hhBBCWDwJ\neIQQQghh8STgEUIIIYTFk4BHCCGEEBZPAh4hhBBCWDwJeIQQQghh8STgEUIIIYTFk4BHCCGEEBZP\nAh4hhBBCWDwJeIQQQghh8STgEUIIIYTFk4BHCCGEEBZPAh4hhBBCWDwJeIQQQghh8STgEUIIIYTF\nk4BHCCGEEBZPAh4hhBBCWDwJeIQQQghh8STgEUIIIYTFk4BHCCGEEBZPAh4hhBBCWDwJeIQQQghh\n8Wxu8bymQVYhhBBCCHEXyQ6PEEIIISyeBDxCCCGEsHgS8AghhBDC4knAI4QQQgiLJwGPEEIIISye\nBDxCCCGEsHj/BzDHnM2UAESIAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cc97d7910>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAI8CAYAAAD1D3GaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcHGWdP/BPd1XfcyUzTBIyCbkg5CIEAkEJl0BQo5wx\nHEHyE0SWcCkvxAUUFFdXza4sCx77c9l1A7rgscghP1+4oqjIDQnhJpmZ3PfMdE8f1XX+/hiq0tPp\nnqurq6uqP+/XK68kc3Q/3V1d9enn+T7PEzAMA0RERER+Fqx1A4iIiIiqjYGHiIiIfI+Bh4iIiHyP\ngYeIiIh8j4GHiIiIfI+Bh4iIiHxPHOb7nLNOREREXhEo9w328BAREZHvMfAQERGR7zHwEBERke8x\n8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHw\nEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQ\nERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAR\nEZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBER\nke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR\n7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHv\nMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x\n8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvMfAQERGR7zHw\nEBERke8x8BAREZHvMfAQERGR7zHwEBERke8x8BAREZHvibVuABGR3xiGAcMwoOu69beqqgCAWCyG\nQCCAQCBQ41YS1RcGHiKiUTDDTHGg0TQNuq5b4cYwDIiiOOh3AoEAgsGBjvVAIIBwOMzwQ+QQBh4i\nog8VhhkzyJh/NE2zvlaKGVrMvw3DgCAI1vfN3w8Gg1AUBdlsFo2NjQgEAhAEAcFgEMFgkOGHqEoY\neIiobhT2yhiGMahXxvxTjtkTM5JQMtLvB4NBGIZhDXcx/BBVDwMPEflCqWGm4t4ZwzAO+R0zyIw0\nzNitcEirMPwAgCiKDD9ENmHgISLXG0ndjKIoVjgwf6cwTBQGm1oZSc9PufAjCILV+8PwQzR6DDxE\nVFN21c3oum6FgloqfAyKogwKaGZbRxJYisOPpmnQNA0Aww/RWDDwEFFVOVU344TiXqZS/wYOBjFN\n06xeJ7PnSVVVyLIMAJAkCeFw2PpeOcOFn2AwCEEQXPEcEbkVAw8RjZlX62ZKKdXTVBxoCttuttsM\nGoVTzlVVhaZpiEaj1u2rqopAIIBYLAZZlpHNZqGqKnK5HARBQDgcrij8KIrC8EM0BAYeIippuLoZ\nRVEOmXrtxroZU7memcKvlQpiZuHwaB5LccgrZt5+Q0MDDMOAoiiQZZnhh6iKGHiI6pAddTPm92td\nMwMcfDyFvUrlhprM8GIOMxUHGruM9LbMBQjD4bCt4Sefz0OSJDQ0NFjBh+GH6hkDD5EPOVE3EwgE\nhu3JsMNIh5rMnzUv6qWGmtx+sa9G+DFfJ0VRrJlsDD9Uj2oWeMyT1HBvXCIazE91M4B9Q02SJCEU\nClnbOXidneHH/Nt8Phl+qB5V/cywcuVK/OIXvzjk6y+++CK+9a1v4fHHH+cbjehDQ9XNKIpS9nfc\nXDcz0llNTg01eRHDD1Hlqh54/vrXv2Ljxo3W/jHmiTuTyeDZZ5+FqqoIhULVbgZRzVVaN5PP560e\nDDdckIrrZiqZ1eSGx+MVIwk/oVDIeu6Huh3zb4YfqgdVDzz9/f245JJLBu0KLAgCRFHESSedVO27\nJ3JMtetmnO65GclQEzBQvFzprCYam6HCT+FaQMMVljP8UD2oeuA57LDDsGHDBt+Mq1N98mPdTKVD\nTeYQWyQSqeVDoQ8Vh59cLod8Po9UKoVgMGh9j+GH6lXVU8jdd9+NbDaLdDoNRVEQj8cxfvx4a5dg\nFi1TrZWqm9E0zdrHyPxa8e+4vW5muFlNlQ41OTVLy4+q/byZPW2apqGhocHq+alG+ClcRZrIzaoe\neM4++2ysWLEC7777LrZv344TTzwR3/ve93DKKafwTUJVN9a6GVVVYRjGoKFYN4QZwNkF9Kh6nHr+\nSw17KYpiW/iRZRmiKFq3wfM6uVXVA8+1116LlStX4vOf/zxOPfVUrFu3Dtdeey1mz56NCRMmVPvu\nyeeqVTdj7lPk9Ml7qKGmwv2TOKuJxqIw/MTjcWtfr0rCj9kTGgwGre0zCoe9eCySW1Q98OzatQvn\nnHMOgIGN8tra2pDP55HP56t91+RxY6mbMbm5bmasQ02GYbhqlhZ5WyAQQCgUQigUqij8mLdllikA\nAz2kDD/kNlUPPIZhIJ1OD9yZKOKpp55CS0uLK5ajp9oZar0ZM9TUsm4mEAgM2TtUyliHmkKh0KCv\nl3s8iqLwokFVYVf4KR72Ahh+yD2qHnguv/xy7Ny5E3PmzMH06dOxdu1aPPDAA5g8eXK175pqpFyY\nKVc3I8vyITM/3FZnMtJZTYVDSnYPNbFImEZjuHV4ymH4Ib8KDHMCteXsqus6MpkMYrEYRFGEoihI\nJpPWbC3ylnLDTKOpmzH/DQwMdQqCULMFKEsNNZk9TYUFmsU9M8XhpvAxVUOtn6disizDMAzXTEvP\n5XKu2Vqi1HNjXuhjsRhkWUY+n0djY2PV2pDP56EoChoaGmy5PcMwrPAjy7IVfhRFQSQSGfFxYF5z\nzL8ZfshmZQ+gqp8Z9u/fjzvvvBN//OMf0dHRgXvuuQe/+93v8Oc//xmrV6/Gueee65oTOPmzbgbA\nqIeagIHHE4lEXNfbRN7l5WOoXM+PqqrWOYI9P+RmVQ88X/rSlzBz5kw899xzeOWVV7By5Up8+tOf\nxk033YTbb78dM2fOxLHHHlvtZhDcXzczFtUaajK3QWGtGdGhCsOPpmkQRRG6rlc07AUc7EVi+KFq\nqHrgOXDgAK6//nqMHz8ey5YtQ1NTEz75yU/itNNOw/jx45HNZqvdhLowkroZc2Xc4pOQ28NMtRfQ\nI6KxM9d4qnSqu3lbDD9ULVUPPA0NDXj99dexYMECbNmyBfl8Hn/+85/R1NQETdMQDoer3QRfsKtu\nxux2rrXCoSaz7XbPaiJyk3ooOLd7qnth+JEkCbIsI5FIMPzQmFQ98KxduxZXXXUVvvnNbyIQCOCh\nhx7CM888g0996lO4++67sWjRomo3wfWcqptx8sQwmqEm8//mEBMX0COvq4dwMxy7ww9w8Hllzw+N\nhSOztICBGQNumc3hJLvqZgr/HiuzLiUajVZ0O2Mdaio3q8lts48A+54rO7nteeIsrfLMhVULnxtF\nUSAIAqLRqO0zqMq1odr3AQCpVArRaHTEPcflZnsNF35KzWwr/DDI8EMfqt0sLVMkErEugsUXRC8r\nvtjrum7NWjC/X4qb62aA0c9qqmSoievLkB/V+j091nV4xmI091PNYa/inh9zgkKtXwtyB0c/ChVf\n5L3u7bffxr//+7/jzjvvHPT1fD4PURQRCoVc92YrHDKr1QJ6XsAQRlR9owk/w70fS4Uf8+sMPwQ4\nHHj8JhAIIJVKHfJJpFahYLihJjPM5HK5IWc18YRAI8VQSHYZLvyMZpHacuEHgPXBjee6+sPAU4FQ\nKGRN9a42O4aadF2HoiiIx+OOtJn8jRcLqpZS4SeXy0FVVSSTyYqHvUxmzQ/DT31g4KmAKIqD3jyV\nqNYCesX3wTc1EXmJGX7MrV6i0ahtNT+apkHTNAAMP/WAgacCI+3hsWsBPb4JichtnBzWrGbBc3H4\nCQaDgzY0Ju9j4KmAGXh6e3uxdetWzJ07F8DBxfQUReECekTke06cu4p7qKsZfvL5PCRJQkNDA8OP\nj/g+8EybNg1NTU3W+iUvvfTSmG/rd7/7HV5++WVs27YNW7duRXd3N7Zu3Yp58+Zh8uTJePLJJ9Hc\n3Azg4JuxXmY1VYrFr0T2qqf3VLXCTyAQsHp+FEWxgg/Djzf5PvAEAgH86U9/wvjx4yu+rc7OTkiS\nhOOOOw7nn38+Wltbcdddd+GXv/zloJ/L5/MIBAKuWACtkFunWru1XW7E54lGox4vysOFn1AohHA4\nPKLzc3HPT2HvPcOP97jrilwldl0k1qxZM+j/kiRZY75E1caTKtHolAs/6XTa+t5Yw4+5ITPDj3eM\nfGEDjwoEAjjrrLOwePFi/OQnP7H1tp2clk5E/sEZk84zA04ikUBzczPi8TgMw0A6nUZfXx+y2SxU\nVR1y78LC2yqsxzTDjyRJyOfz1u2Qu/i+h+e5557DpEmTsG/fPpx99tk4+uijccopp9hy24IglNw6\ngkM0/sDXkGh4ToU3O++nsOencG+vdDoNAFatz0jus7Dehz0/7ub7Hp5JkyYBAA477DBccMEFFRUt\nU/3gyYmqgceV+xT3/JibrZqLHBb2/Izkttjz416+DjzZbBb9/f0AgEwmg6effhoLFiyocauIiMiN\nzMkmkUgEoiha4SedTjP8+ICvh7T27NmDCy64AMBAWl+1ahWWLVtW41bVDofaiIhGxgw/oigiFotB\n07RBw16FU9057OUNvg4806dPx/r16x2/X3PfKhoZPl9E9vNbYbSTH9ZKLXJYzfCTzWahaRri8fig\nnd3JXr4OPERE5B9uCHDVCD+FWw2ZM3/N0FO4xRBVhoGnQhwiIqJ65reepNGwO/yYf8yeH1VVoaqq\ntbciw09lGHiIiGxWzyHAD8byQbaaw14AGH5swMBTIS+Ns7Jomcg5xRcivve8pZIgMdrwM9SxwfBj\nHwaeKmCwIKJivBhVxqu9ZiMJPyO9XjD8VIaBh6gEhlaqhsIiVRo9r1/Ey4UfWZat73PYq3oYeKjm\nGC6oHlX7IuTVHhE3cOJ8VBh+AFhLc1Ra8wOABc9lMPAQEfmU1/a4chOnH5MgCIjFYhUXPAOH7uzO\n8DOAgccGpd7wbu6x8OsJqh64+bgiosrZOdvLvL1S4UfTNGsD1XoJPww8FQqFQlAUBeFw2PqaWw8c\nt7aLRoZDf1TP6vGDWjXDTzqdhq7r0HXd2kDV3CXerxh4KlQq8BCR8xgGyS5OH0uGYQy7xInd4Qc4\nuJqzudCh3zHwVCgUCkFV1Vo3g4iIbOTm3iQ7wk9hjxmHtGhERFFk4CGiulQPvQJuV42eH79i4KmQ\nOaRViLUWo8fni8i76v1C6hajCT/1iIGnQqIoHhJ43MwMY246QbmpLeRtPJYOctv7vFJOPp6R1NTY\nfX92P7bhwo+u69A0ra56fhh4KlSqh4e8j710VE08tshJpcJPKpVCLpdDLpdDKBRCY2Oj73t+GHgq\nFAqFoGlarZtBRC5gGIY11ReA9W/z64qiWP+vl0/V5C5m+AkGg2hoaAAAyLJcFyGcgadC7OEhqh/m\n9N3CEFP4b+DgsJqu69an6mAwCE3TEAwGoaoqZFlGMBiEIAgIh8MMP3WuFgHYHLYLBoODtrjwM/8/\nwipj0TKRf5QKNIV/mxemYDBo/W0GGnNqbyAQgCRJEAQBoVDIum0zAIXDYWQyGei6DlmWkc1mEQqF\nEIlEIIoiw08ZTp5T2QPnTww8FfJa0TJRPRtLoAkGg4OW37fjQmgOK8RisUHBR9d1RCIRhMNhT3zi\ndjoYMIRQJdz/jnK5cDjsqRoet/Y+ubFN5D2lhplqEWhGIxgMIhqNIhqNWsNd6XQagUAA4XAYkUjE\n0RlD5LxaDWnVW4Bk4KkQe3gqV29vOhq7oXpodF2HJEmuCDRjDfCFM2lUVUU+n0cymYQgCFbPD98v\nRGPDwFOhcjU8QH0maKJKVDLkJEmSVQfjBsXv/dGEIHMzx1AoBMMwIMvyqOt9eP4ZO78/d/Xao+6O\nM4OHcZYW0ciNNNAUhhqz+He4Hhq/7gcUCAQQiUQQiUTK1vvUw+Jxfg4htQoghc+nX5/bQgw8FeLm\noUQHmaGl3NTtcoGmeKYTlVZY76NpGvL5fE3rfeq1p6AaeNxXHwNPhbwYeHiSGjm3faqs9WtXGGg0\nTbPqZgoDDgNNaXY/bkEQEI/HrXofWZYH1fs4dazU6+tJ3sPAUyGvFS3z5DQybnyenCq2HW7YqTC0\nGIZhDafUe6AZDTuDdGG9Tzweh6IoyOfzUFUVkiQBgDUkSCPjtg86dvP74yuHgadC5Wp43LhJp5vV\nuueiXowm0BT20JQKNIqiQNO0QYvrUW2ZQ1vhcBipVArBYBC5XA6ZTMYa8qqHeh+v4bXCGQw8FQqH\nw8jlcrVuhqfxjW4fOwMNVVe1n+fC8FNY7wNgULGzVzAU2KdeP2Ay8FQoFAohlUrVuhlUJ4YKMrUI\nNPV64vSaUvU+qVTKqvcJhUJc3LDO1GN4ZOCpkCiKnitaJvcyA8RQqwVns9lD1qEx/zjZQ1OPJ0wv\nKdUjUq7ex1zfJxwOj6rex6+9Lk4/Lr8+j27DwFOhcrO03LqFg1vbVS8KA025XhoAJQONOSsqFovV\n8iFQBdx0USsc8jLX95EkifU+daBcGPY7Bp4KceFBKjSWQGN+6i78f7nbZlilaihe38fczwtwT70P\nj32qFANPhRh46s9wdTTA2AINkRsIgoBYLDZocUOz3sfsEapVvQ/fO1QJBp4KhUIhT+2WTsMrDC6K\nojDQkC281kMRCASszUwL631yuRxEUUQkEvHtse73Gh6vHYt2YeCpkNcWHnQjpzdbHWkPDTAwNFW4\n27b5db+e6IlKKVfvY37YU1WV9T4eU2/7aAEMPBXzWtFyPah0yAkYeP3M4k1O1yU6qLDex5zh5bZ6\nH6JSGHgq5LUaHj8EscKF9coFmsIwEwwGrb2c2ENDteL0MefE+zwYDEIQBDQ2Nla93sevU7fN18nP\nQ2huwcBTIa8FHi8YbqVg881aKtCY69DU45uZvMOpC46TazIV1/vIsjyo3sdL+3nVayDwOwaeCrFo\nefRKBRoAyOVyZQNNYR0NAw15VT0ct8X1PoqiDFrfJxwOQxTFunguyF0YeCpUrmjZD0NHYzWWHhoA\nVvc3Aw15Xb2+94sFg0FEIhFEIhFrfZ9MJgMAgxY3rGe16E2q1x4sBp4K1eOQ1lgCzXA9NLIsc5bH\nCPBCSl5Vbn0fMxRxggBVGwNPhbwYeIa7aFYj0AzH7BFj4CmPz4231MPrNZb37FjqfZwu7OW5yJ8Y\neCpUblq6WwUCAWt203CBpngvJ9bQEJGdCut9DMM4ZD8vs96H7FUc6OrlfM4jqUJu3C3dDC2lpm6b\nBcKapg3qpREE4ZCZTkRETgkEAla9j67r1ho/hmEgHA7XunlVw94k5zDwVKjckFY1i5aLA02pvwt7\naAoDjaZpMAwD0Wi0Km0jInfw8oU0GAweUu8DAMlksur1PqyT8y9HA08qlYKiKFZAyOVykGUZsiwj\nEAhg/vz5TjbHFtWo4RlroCn8f7kTndnDQ8Or55l2RG5g1vsIgoB8Po9YLDao3scc9qpGsPNqWBwJ\nL4fhSjgaeGbOnAlFUSCKInp6etDW1mYVr23fvh35fB6hUMjJJlVsLDU81Qw0RER+Y54Ti+t9zGGv\nUCiESCTiyfV96jV81IKjgWffvn3Wv5csWYIXX3zR+v/JJ58MTdM8F3hK1fAUBppSu23XMtCYRctE\nRJWq1cV6uHofru9DpTgaeMwLviAIMAwD7777LiZPngxZlpFKpapW/KtpGhYvXoyOjg488cQTFd+e\nYRjYu3cvuru70dXVBV3Xcf3112Pbtm34/ve/jwkTJgA42CXKHprhcfiI/K7w+OanevuY9T6xWAyq\nqlrXE67vU169Hn+OBp7CVXVXrFiBG2+8EaeccgreeOMNnHzyyVXr3bn33nsxd+5c9Pf3V3xbd911\nF9auXYtEIoFp06Zh2rRpyOVymD9/PpYvX4729nYkEgmrZycSidjwCIiIaDhmiYQZfvL5/KjrfZwO\nA/yg5xzHZ2mZB9Ktt96K448/Hi+99BJWrFiBiy++uCr3t337djz11FO444478P3vf7/i27vxxhvx\n5S9/GQ0NDdbXTj31VPzd3/1dxbdNRESHGm0oCAQCCIVCCIVCVr2PLMuurfep9dYSbnkeqs3RwJPJ\nZCBJkrWy5rx58zBnzhzkcjmsX78e8+fPt32RqS996UtYu3YtUqmULbfX2tpqy+0QEdHIjfWiXFzv\nYwYfXdetIa96XNywXkJOIUdeZU3TIAgCZs2ahZ6eHjQ1NSEYDGLfvn1oaWlBS0sLuru70d3djalT\np9p2v08++STa29uxaNEi/OlPf7LtdomI3K5e6zSGEgwGEY1GEY1GrXqfdDptzQBjCYK/OVLJZb7p\nZs+eje3bt2Pfvn3Ys2cPzjzzTHR1daGzsxNnn3227bOH/va3v+Hxxx/H9OnTcemll+KZZ57BFVdc\nYet9lOPWIly3touIvMfLocrcy6u5uRnxeByapiGZTCKdTgNwrrbGy8+h1zhauq7rOnp6eqz/7927\nF++//z4AoLe311pN0y7f/va3sW3bNnR1deHhhx/Gxz72Maxbt87W+yB/Yzgk8jez3qehoQEtLS1W\n3U9fXx/S6bQ1AcVP6jVkOTKkZR4sjY2NeOmll9DW1oYPPvgAuq7j0UcfRWdnJ1paWqrenVjNtW2o\ncm47qfB1JXIHpy7Q5tBWPp9HU1MT6318xpEeHnMBqHvuuQf3338/jj76aFx22WVYt24dEokEfvKT\nn+COO+7AtGnTqtaG0047DY8//nhVbtttF2ovYrggIjcwz+dmvU9zczOampoAAOl0GslkErlczrYS\njFr0ttTrNcvRqHrUUUfhxRdfHPQCL1q0CHfccYeTzSDyrHo9URE5qTiACIKAeDw+aHHDZDIJQRCs\nnh+vfWjzWnvt4Gjg6ezsRE9Pz6B9pPL5PPL5PDKZDM444wy0tLQ42SRblDpw3Foc7NZ20fDq8QTl\nN3wNva1wfZ94PA5FUQbt5xUOhxEKhTz3OnutvWPl6LT0b33rW/jzn/+M9vZ27NmzB52dnZg5cyZm\nzJiBXbt2YdasWZ4MPEREhYb7UOHEhw6n7qNeLpbFCjczNdf3yeVyyGQyg/bzctvKzuZ91iNHAo9Z\nw/PAAw9YX7vuuuvw1FNPYeXKlbj99tuRSCScaErV1PMbn4gONdz5wKkiXD9w8vw6ljBQuL6PpmnI\n5/OD1vcJh8Ou28zUL8fGaDi+o1pfXx/OOussKIqCzs5OpFIprF69Gu+8847TTbGNIAjcgZyIyCcq\nCQNmvY+5vo+u60ilUkilUsjn83Xbu+IGjgae/fv347zzzsOiRYvwgx/8AIFAAPfddx9mzJiBr3zl\nK9i8ebOTzbGNKIpQFGXQ11grQ0RUv8x6n0QigZaWFkSjUciybK3vI8tyza4R9XptciTwqKoKALjh\nhhuwdOlSrF27dtDO6N/73vewYMECdHZ2OtEc24VCoUMCD40OAyIR+ZU5tNXY2Ijm5maIoghJktDX\n12f1+jh9/qvHIS1HanjMhZruvvtuJBIJ5HI55PN56LoOTdOgKAquv/56tLW1OdEc23kp8DBYEJFd\nnNx+wSnVvq/iep9MJgNFUZBMJq0p7m6r9/ELRwKPrusIBoP4/e9/j6eeegptbW1Wrw8AhMNhvPfe\ne7jrrruwbNkyJ5pkq1AoNOjxkD8wHBINz6meAid7JJy6L0EQEAqFIAgCwuEwZFlGKpWy/h8OhxEM\n2j8QU1wEXi+9PY4Gno0bN2LKlCn43Oc+h97eXoiiCMMwMHnyZNx8883YunWrE82xnSiKDDxERDRq\nhmEgGAyWXN8nl8tBFEVEIhFPru/jNo4EHvNFikQimDdvHk488cRDfmbevHmeGRYqxqJlInITnnu8\nq9T6PpIkjXp9HzqUo5uHAgO7opdijmN6UTgc9mzbici/eFEcPTetqVZc7yPLMtLpNABUVO/jpsfo\nJEdmaZljkCeffDLefPNNPPvss1AUBT09PchkMvjZz36GVCpVsufHC7xUw8OeJyLyGj+fs0b62ARB\nQCwWQ3NzMxoaGgat7yNJEteCGwFHenjMwPOZz3wGH3zwAVavXo0TTjgBEydOxI4dO/DWW2/h1ltv\nxUknneREc2znpVlabsUgRn5i7hVo/m3OSJVlGdFo1DfHupM9BX7ukRjNYwsEAhBFEaIoWvU+5rYW\nrPcZmqObhwLA7bffjmuvvRZ//OMf0dPTg3POOQfnnHPOoHV5vKZU0TIv4FQP6vkYL9wEuTDcmM+J\nJEkIBoMIBoMIBAIIBAJQFAWSJAGA9bNevzB5vf1eVlzvYx5fZr1POByGKIqHvEZ+OO7GwtHAoygK\nUqkUDMPAaaedZp0AOjs7kc/nMXnyZLS2tjrZJFuwh4fIn8oFmsKwYgYac6ZNIBBALpdDPB4fNKVY\nlmXEYjEEAgEkk0lks1lIkmTVYlRj+jGNnlfDQDAYRCQSQSQSsXoTM5kMAAwqdq5nju6W/tOf/hRf\n+tKX0NHRAV3XkclkoGkapk6dio0bN+Lmm2/Gt771LSeaZCsv1fAQ0UFmL02pYGPWRBQGGnN2TGGv\nTSlDXTDNXp94PA4A1vTjUCiESCRS8hM5+Vc1ApZZ71O4mWkqlbJCUbF6Od4c3S39yiuvxGc/+1kA\nQDQaxf3334/u7m780z/9E+677z7s2LHDiebYjj085AS3DZN65SQ5VKAxLzZmiDH/mD01Q4WaSpm1\nGKFQyJp+bH4iNz+ps9dngFd7XWqtVL1PPp8HAKTTaavep144OqQlCAIEQbB6Q4LBoPUGN5fY9iIv\nBR7zpMETyPDcFjCoPDPUqKoKTdMGBZrCoSezZ8YMNOb/a82cfhyJRKCqKvL5PJLJ5JiLUPn+pmJm\nvU8oFEJ5CILHAAAgAElEQVRvby/C4bBV79PW1mZtAeVnNXmE5huxvb0dEyZMsP7d09NTi+ZUrFzR\nMsATD5EdCntpSs2AMpnD54IgQBTFYYee3MYMY4W9PrlcDtls1pW9Pn78QOD0ObtW1wjzeDJ3QqgH\nNQk8giDAMAysWLECK1asAAAsW7YMZ5xxRi2aUzHW8NjDjydPGrmxDj2ZJ+tcLuerwszCRefs6PWp\nFje0gUauOGC5pZfTCY6ttBwIBPD2229j48aNuPjiixEIBKxkmc1m8dZbb6GhoQGTJk1yokm28tKQ\nlltx+Mj/zNe3XKDxwtDTSNl9LBfWYRRuNWB+SvdLyCOqJsc2DxUEAW+//TYuvfRSvPnmm/ja176G\ncDgMwzAQj8exceNGvPTSS1i3bp0TTbIVAw/RgFJDT4X/BjAo0Ng59OS2wFyNgBYIBAZNPTZn3wiC\nYE1v91IwHCk/lwa47bj1M0cG7swDtampyVpkcOXKlejt7bW+N2PGDGSzWSeaYzsOaVE9MQwDmqZB\n0zQYhmFNq85kMshkMsjlcpBlGZqmWbNEIpEIEokEEokE4vG4VaAbCoUGBZ5K+fWiWIogCIjH42hp\naUE0GkU+n0dfX5+13AeNTS3CVT3UDLmBo5VKqqqipaUFd955J4499licf/75eOWVV7Bt2zZs2LAB\nEydOdLI5tikXeNw6TOPWdpE7mL00mqZZy9ZLkoRsNmuFGkmSoKqqdfIMhUKIxWKHhBpzVoi5fk29\nnmiL2fn+M2ffNDU1oampCYFAAOl02gqjfK/TcOrlfelo0bK50BYAfP3rX8eCBQuwevVqBINBTJ8+\nHT/4wQ+cbI5tOKRFXmPH0JM5pBIOh2v8aLyj8MJSjYuM2esTiUSQTCYhyzKy2eyglXbtvN967i0g\n73F089ATTjgB06ZNAzDwRrnoootw0UUXIZ1Oo6GhwYmmVAWHtMiNhprGXWrWkxlovFYgTKUFg0E0\nNjZC13Xk83mk02mrBshrW1n4uZeqXqbBu4GjPTxmdzcweJ2ahoYGT78I7OGxh59PatVQvC3CSGc9\neW1tGqpMMBi0thkwp7d7cSsLp9poGIanwiCNXM2XVjQPYi+84crxWg2PG7nx9XfD61cYaMwi4Vwu\nN+TQkxPbIpD3lFrUMJvNwjAMVy5qSNVRfE6rp3NEzQOPH5RaadnN3HAhp4OGqqUp7KUxceiJKlW4\nlYVZi+XGRQ3rgd9nhbmJ44Enm81aJ3VzFoggCBg/fjz27duH9vZ2p5tUMQ5p0VCG2pHb/HrhjtyF\nfwp7aXRdt4YiyHvc+CGjeHNJc7iruNCZyA8cDTx79uzBNddcg6amJmuNDkmSMGfOHNx666340Y9+\nhLvuusvJJtmCgYfGMuuJQ0/1xe2vcSAQOGQri1QqNWSvj1MhzsleEC/Xk46EG4O3UxwNPE1NTbjq\nqqvQ0NBgzQoxg09jYyNWrlzpZHNsw1la9WGkQ0/m317dFoFoNFtZOHVs+/U9VIsA4tfncjiOBp5Y\nLIbly5cjlUpZAWHv3r14+OGH0dHRgcMPP9zJ5timXA0Pa2W8pXjoyVxYzywWHunQU7XweKKRsquX\nYritLHg82qNeA4jTHA08kiThG9/4Bh577DHIsgxBEKBpGjo7O/H73/8eN954Iy699FInm2QLDmnZ\nw4mT51C1NLquD1qbBhgYhjL3J+LQE9Uzc1HDWCwGRVGQz+ehaRokSbJqgcj96jmkOnqE9vf349e/\n/jXeeecdGIYBURSxb98+fOITn8Dzzz/vZFNs5bUhLTf2FNi9+qsdQ0+yLMMwDBZtku3c9v4bDXMr\ni3A4jGQyaW1lUdgb5OUPBn6v4QHqt0fJ0cATiUSwYMECCIKAfD4PURSRSCRwzDHHAPDugcYeHmcN\nNeupsEDYDDHmcvpccI/cxA/HoRlyEomE1etTjUUNvXptGIlaPza/Pq+lOF60/Otf/xobN27Ea6+9\nBsMwcMIJJ+A//uM/AHj3iefCg/YbzdATZz0R1UbhFiVmr4+5lUUmk/HsVhZ+VuuAVUuOD7r+4he/\nwN///d/jYx/7GB555BGcfvrpuPTSS3HZZZc53RTbiKLIHp4xKAwxqqpa68y4ZdZTIBCweoyIaGT8\nspUF+Y+jgUdRFHz729/Ghg0b0NjYiI0bN+KJJ57AwoULPR14vFbD45TRDD2ZuNcTkT94dSsLp9f8\nIec4GngEQYCu62hsbBy0sJXXV46t5xqeoQJNqR25C3tqCkONqqpQFIUzPci36vnixq0shsbd0p3h\n6NUlGAwiEokgmUyiubkZiqLgu9/9Lj7ykY842QzbeS3wjLa2aKhaGjcMPRG5ifnequWx79ZwVbyV\nhSzLyOVyZRc1NNXzRZrs4/jH6X/+539Gb28vmpubcfHFF2PChAm45pprnG6GrUKhEDRNO+TrXila\nLrUtgtOznrzyXBF5hdsDQuE09sIef3NRQ3P9KyK7OB54jjvuOCiKgj179uD666+HYRjYvHkzZs6c\n6XRTbOOFouVSQ09mofBQQ0/mGDtPPERUzK6el+Jen3w+j2w2awUiJ/l936567i1zPPAsWbIE2WzW\nKmTLZrPQNA1btmxBNBp1ujm2MGuTasnsHSlXS1M49GT+m0NPROQm5bayADBouJzsU0/Pp+OB57XX\nXrMusqqq4oknnsBzzz1XV0/6WI1l6EkUxUOGniRJsr5HRORGhVtZJJNJqKqKvr4+hMNha3o70Wg4\nfsQUdk8KgoDPfOYz+OEPf2h1X3pVufqT0dalDBVo7Bp6Yr0MUW3V87DCaJnnu1gsZq3SX7iVhZcX\nNazVkJZXn69KOR54dF1Hb28vZFlGW1sbQqEQbr31Vk+HnXJKBYvRDD2ZPTMceiIiOnRRQ0mSbF/U\nkGHUvxyPeQ8++CAWL16MY489FuvWrUN/fz/effddzy/cV/gGKQwx5jLruVwO2WwWmUwGmUzG2mnY\n3JwyHA4jFoshkUggkUggFotZn15EUbRmRpFz2BNG5E7mB8HGxkY0NzdDEARkMhkkk0lrtXaiYo4F\nHvMA/M53voOnn34ae/bswb/9278hGo3iscceQ09PT9XuW5IkLFmyBMceeyzmzp2L2267reLbzGQy\n2LhxIx577DF8//vfR39/P8477zwsXLgQL7zwAnK5HDRNs/Z9MhfYSiQSaGhoQDwetxbiCoVCg2pt\n6hHDxfDMY4PPEw3HqV4KN/SGmL0+zc3NSCQS0DQNyWQS6XQaiqK4+v3CWVrOcnxIa/r06ejt7bX+\nv3PnTquAuVqi0Sj++Mc/Ih6PQ1VVLF26FH/961+xdOnSMd3ePffcg9tvvx3Tpk3DzJkzMXPmTIii\niC984QuYMWMGZsyYgUgkAlmWYRgGwuGwzY+IiLykcFIBjd5ILtJe3cqCnONY4DEP1tNPPx1r1qzB\npZdeClVV8c1vfhOzZs1CY2NjVe8/Ho8DAGRZhqZpGD9+/Jhv69prr8VNN9006M1z6qmnYvny5YN+\njptPEhE5z9zKonAD05FuZVHPPSB+51jgMQ+ifD6Pk046CTt37sTy5csxbdo0XHLJJUgkElW9f13X\ncdxxx2Hz5s249tprMXfu3DHfVqn1grz0BuHwEZHzvHSO8JPiRQ0lSRp2Kwun1OI8XBzo6um4dCzw\nmL0hX/va1wAM7JyuqipCoRCefPJJzJo1C1OmTEFjY2NVuh2DwSDWr1+PZDKJc845B3/6059w+umn\n234/RETkPsWLGkqS5IqtLOopcNSa4zU869evx89+9jPs2LEDhmEgkUjgN7/5DebPn49Vq1bhkksu\nqerwVnNzM5YvX45XXnmFgYeIqAJe7SkWBAGJROKQrSzC4TCHtHzMscCjaRoEQcBtt92G448/Htdc\ncw1yuRwmTpyIjRs34sILL8THP/7xqqzHs3//foiiiJaWFuRyOfz+97/HXXfdZfv9EBHVGy/PBiu1\nlQUApFIpRKNRX25gWs+BzvEentbWVpx33nk44YQTrK+dcMIJOPnkkzFlypSq3OeuXbuwevVqa12c\nz372szjzzDOrcl+FWCszcnyuiKiWzK0sJElCNBq1ZnmZW1lUYy20eg4fteBY4DELw7773e8iHA6j\nv78fsiwDAK6//npMnToVvb29iEajiMVitt73ggUL8Nprr9l6m6V45eDl7DGi2nEi2HvlXORWZsgx\nF471y1YWgHeHIe3gWODRdR3BYBAPP/ww/vrXv6Kpqcn62u7du/GTn/wEzzzzDBYuXIhFixY51Szb\nhEIhKIrCNXd8hL1OVE0MJO5T/H4v3srCXDXfzq0sasGLbbaD4+vwnHHGGZgzZ46VnhOJBLLZLMaN\nG4fTTjsNzc3NTjXJVgw8VI8YCMkJTh9nxYGg1KKGmUwGACpa1JA9cc5yPPAcd9xxyGazeOedd3Dg\nwAHEYjEsWrQIsVis6osPVpMZeAqxh4D8jCfq0urlPV/rEFIr5qKGkUhk1IsaukHx6+bmttrN8YUH\nu7q6sGbNGuzYsQOzZ8/G66+/jmXLluHrX/862tvbPZt4RVGEpmm1bgYRuYAXz2FjVU+PtVCpXh9z\nk2iz1qeWixoOpV5fM8c3D127di2WLVuGN954A7/85S+xadMm9Pf34/HHHx/0c15TqoeHiIi8Y6wf\nuM1en+bmZjQ0NEDXdaRSKWtyTr30+rmd49PSRVFEKBQCAGSzWcTj8Zov720HURQ9E3jcPNTm1R4+\nIiJgdFtZ1Gq39HpVk6LlBx54AP39/Tj++OPx9NNPo6+vDwsXLgTg3d2E2cNTGYYcIvv47YODFx9P\nqUUNi7eyqGXb6pGje2kZhoELLrgAs2fPxrp167Bu3TrMmTMHX/nKV3DYYYdZ09S9KBwOH1LD4+ae\nFCIicoa5qGEsFoOiKJAkCdlstiqLGVJ5jg5pBQIBSJKEiRMn4o477gAAqKqK3t5eBINBtLa2Otkc\nW3lpSIu8ywzRPElSrfnxw1y131uBQADhcNj6gJzJZKAoCpLJpNUbVO33dj2fPxzrTjF7P3784x/j\niCOOwOLFi3Hcccdh8eLFOOqoo/Df//3fg37OazikRUT1pl4vnHYQBMFawNDs+enr60Mmk4Gqqr4M\nlLXm+NYSN9xwA9asWQNBECAIAjZt2oRf/vKXOProowF49w3ktR4evpmGxyFJGgvDMGAYBlRVtfbv\n03UdhmEgl8txcVIapLDXpxZbWXj1mjsWjhfMmKk2GAxCURTMmjULqqri6aefBuDdaenhcBiqqg76\nmlsvmPV0gBNVg2EY0HUdqqpaM3FyuRwymQxyuRwAQFEUGIZhnfMEQbCmKwM45HxBpZnnUD+et8pt\nZdHc3Ix4PA5VVZFMJpFOp63jyc77qzeOT0vfvn073njjDYiiCF3X0dPTg1dffRVnn302AO8e1KFQ\niCcwIh8xe2oKe2gK/x0IBBAMBg/5YxgGJEkatAmy+TuJRAKRSASpVMr6FB+NRhEOhz177vOTWtS3\nlLq/UosaZrNZGIZR0VYWQ91nPXB889DXXnsNd999Nzo6OgAM7ENy2WWXYeXKlQDg2fV4vDak5UYs\nyCWnFYaawkBTHGrMv83e6UAgUPY4Ha6X2vz95ubmQTN2Sq3TQlS4lYU5vd1LW1m4iaPT0gHg3HPP\nxbnnnuvU3TqGRctE7mR24xeGmcKAY4YXs4fGvICYwaRaimfsSJKEVCoFURQRjUYr2onbiQ8O/HBS\nudE8h4FAYNCihubO7dlsFuFweERhud5fM8eHtDRNgyAIePDBB/Hyyy/jX//1X6EoirX6sldxSIuo\ntgzDgKZp0DTtkN4aAIOGnURRtP7thguAIAhIJBLWhSybzQKAY1OVqXbG8tqaQ6HRaNTawNRc1DAa\njbLXpwzHA49JEARIkmT93+uFaeV2Swfcl6rdWkxNNJyhhp8AQJZlazG3wgkSgDfOLeaFzNyJ2yyG\nDofDiEajdTnc5eT5023n6pEYzVYW9c7xwGM++bNnz7YCj9d7d4CBg449PESVKy4WLgw4hmEMqqkx\nQ00gEEA2m0UsFvPsau2FCotWi7cl4Cd4KmUkW1l4MdDZqSZDWslkEjNmzMC0adOwZcsWALDWHmhp\nacGMGTOcblbFWMNDNHJjnQE1VLGwX0/khdsSyLJs1W3YMVuHaqtaAaR4KwtzmDQUCh3Su+/X900p\njs/SevbZZ7Fs2TJ0dHRYn16y2Syam5uhqio+9alP4d5773WqWbYJh8PW+htEVJ0ZUF5W6WMq/ARv\nDnclk0mEQiGryJmoUKnCeMMwBm1lUU8c3y19ypQpuO666/DJT34SZ511FrZs2YJHHnkEbW1tuPrq\nq51qju1CoZC1oBiNjdtqi9zWHjcqNfzkhhlQfieKIhoaGgatzBsMBh3dhdup4REn34N+HvIxh7YU\nRUEsFrNmeU2YMMG3j7mYY32h5kG7detWvP/++zjnnHMgCAJmzJiB448/Ho888ggAeHZYqNwsLV40\nyQ/MGVCKoliFkWYNXiaTQT6fh6Zp1tTZSCSCRCJhzTwyF9cTRdH3O0QP936383xQuDJvNBpFPp9H\nX18fZFn21XnHr8dLrRY6DIfDaGxsREtLi2+f21Ic7+FpbW1FOp3Gb37zG5x00knYtm0bHn30USxa\ntGjQz3mNl4qWGcKolKGGn8xiYbNnxtwLL5/PI5FIePZ9Wy3DPR92P1+FQxeqqloh1FyZt5I1fci/\n6q3+y/HAc+yxx+Kee+7Brbfeiuuvvx5NTU347Gc/i9tuu22gQR4dh2bRMnnBWGdAlaqrKRyyIvcQ\nRdGa4RUMBpHJZAbV//D1ql9+HrIbCcfThWEYOOaYY/DMM89YX1NVFQcOHICu6xAEAePHj3e6WRVj\n4CEnjKR3rhozoMh7yq3pw/VZyqv3QOB3jgeevXv34h/+4R+QSCQG7f5qLkR4xBFH4JZbbnG6WRVj\nDQ85iTOgaKTKrenjlb2Y/BxC/PzY3MjxwBOJRDB9+nSrF8esBVBVFbquo62tzekm2YJbS5Ddyu0B\nZU4t5QwoGq1ya/qYReWjqengxdp76v01czzwtLS04Oabb0Zvby8OHDgAYKCQedy4cU43xVZeKlo2\nue3gr9fesHLDT6X2gDKLU1mESpUwa3rMImdzirK5CaVXaymJhlKTGp7/+Z//wZe//GVrbHnixIlY\nu3YtTjrpJGuBQq/xUg0PL5TOG+0MqHJ7QKmqyh4csk3hcJe5pk9/f3/dbmHh9IdAt33o9DvHA8/u\n3bvx7W9/Gy+88ALa29sBAM8++yxuuukmvPjii043xzZeCjxUHXbOgCKqxFgupOaaPtFodNAmlGbh\nsxc/iNJg9R6warJ5aDAYRHt7OzRNgyAI6OjosL7v1ReDRcv+VXiS4AwoGotanAPGerwVb2GRz+cH\nbWHh9MKR9X6RrqZ6e14dDzyJRALTpk3D1772NZx77rno6+vDL37xC5x++ukAvPsCeLGGh0orDDUA\nrAXcOAPK3fjBwn6iKEIURWsrgnQ6bU1357FeOaeP2Xp/j9Qk8DzwwAP4zne+g1tuuQWxWAyf/vSn\ncd111zndFFtxSMtbzFBTbgiqMLyY2yVwBpT7eeG18eJFp3C4y9x9W1VVBAIBq6feD2q11YOf789N\nalKK39TUhK9+9atIpVLQNA2JRKIWzbCV1wKPOdTm94O/XKApNQNKFMVBQ1AAkE6nEQ6Hff88UXVp\nOQnZTVuR3r4H/e91Ird7L3bIKiavvhAtJx1b6+aNWOEWFuZ+auaaPuaO7XyvkFvVJPC8/PLLuPrq\nq9Hf349gMIjW1lbce++9WLJkSS2aYwvW8NhjLM/VWGdA8cRMdjIMA/ntu5F+rxP973ZC27YL2Q+2\nILdpC/I79gAfHtuJebMg7dgLrS+FXQ/+Bk2L52PqmlVov2AZgqFQjR/FyJnF9w0NDcjn88hmszAM\nwypytuv9xfOnfer9uXQ88Oi6jptuugn3338/li5dCgD4y1/+gi9+8Yt4/vnnnW6ObbjwYOWGOkFy\nBhS5hZrsHwgym7cgu2kLch+GmlzXNui5/JC/27xkIVLr34GRl62vpV55E29eeRsid9yDjqtXYvKV\nn0G4zTvrkpXbwiIcDltFznbchx/VwxCamzgeeILBIPr7+7F06VJrWOGUU05BKpVyuim2EkXRU0Na\nbmSGGnPVbc6AolrRFRVS93bkNm2xemmym7Ygt3krlH09Y7rNpo8sQvKF9VZPT7H8rr3YfPf96Pre\nTzDx4k9i6prL0TDvyEoehqOK1/Qxh7u8tKZPPQzz17OaDGm1trYil8shFosBAGRZxowZM2rRFNt4\nrYanVobbA8osgOQMKHKCvGe/1UtjBprcpi2QtuyAoWr23IkQROPiY5B6/vUR/bgu5bHzvx7Fzv96\nFONPX4Ip112Oto+fOqrjv9YX7mAwWHILC3O6O9f0qQ0OadXAww8/bF3kAoEAFEXBT3/6U2tIyIvL\nmnNI66CRzoAq3gNKlmWIooiQh+oYyP20rDQw/PTBwUCT3TTQa6P1Z6p638FEHPFZU9H/4vox/X7P\nn15Ez59eRHzWEZjyd5dh0uXnQWyI29zKsRlJqCpe00eSpEFr+njxXG+nWg9p1duHyJocba+99hpk\nWbbCjqZpUBTFWtr8yiuv9Nw0x3Lr8Li1aNmOdlU6A6pUm4jGwtB15LfugrxrH3KbtlqBJrdpC/I7\n95YdRqqm0IQ2iA1xpDe8W/FtZTdtwXu3/CM2f/N+HH7FBZjyd5cidsRkG1rpHFEU0dDQYJ3nC9f0\nGWompJPnz1r3jFF11STw/PznP4eiKOjq6kJnZyfOPPNMxGIxa9f0K664wnOBx69vknqfAeXGx+HG\nAO0UpS91cPhp08HaGqlrO3Rp6IJhJ0VmTIWeziC3eautt6sm+7H1vnXY9sOfoW356Zi6ZhXGLV1s\n631UW/GaPpIkWcNd0Wi05HCXk+9DN77n7WKes+tVTQLPQw89hAMHDuCKK65AJBLBxRdfjAsvvLAW\nTSG4awaUGy/mbvrU55Z2VJMuK5C6tn8YarqR3bTVCjfKgb5aN29YiYVHI/fBFujZXNXuw9A07Hv8\nD9j3+B/QeOwcTFmzChNXfALBsHeGgwvX9NE0bdBwl7lju5+Pdzee6/yuJoGnq6sLF154Ib7xjW/g\n3HPPxbJly7Bnzx5cddVVnqjk96JSocbcMsEtM6D4uteX/K59Az00mw9O7c5u2gJp6y5As6lg2GFN\nH1mE1EtvONr+/vXv4O0vfBWbvvYv6LjqM+j4/EogHnHs/u0gCAISiQTi8Tjy+TwymYxV/+N3PO85\nx9HAo+s6gsEgVq1ahe985zs455xzAABPP/00li1bhosuusjaQd1PnEryw82AKtwawdwuwfwUxTcd\nVYOWyR0sGN5UOBNqK7R0dQuGndb80eOQ/NtrNbt/ec9+dH77R+j+5wfQev5Z6FizCpHjF9SsPWNR\nak0fRVEQDAZ9tYVFrbipt7oWHA085tjhj370I8yePRsAIEkSent78fOf/xxtbW1ONsd2pYKN3UXL\nY50BVVxXk8vlrJ8hGivDMGDoOqStOw+Z2p39YAvkXXtr3cSqC0TCaFgwu6Zhp5Cel7Hvkaew75Gn\n0LJ0MaZedzkOW346Aja/16t58Sxc0yebzUJRFGsLi0gkUrWRgHoPBH7naOAxD6b//M//xIoVK7B0\n6VLcf//9+N///V98+tOfxlVXXYVoNOpkk1zL7hlQRJVSevoGT+3+oBuZ97uR37pz0MrB9UQc14Tw\nxMPQ/8rGWjelpL6/voK+v76C2PQOdFxzKSZfcQHEpoZaN2tUzHNcPB731Zo+DFfOq0ngeeGFF/DF\nL34Rvb29ePzxx3Hvvffi2muvxZlnnomjjz7aswfCaNtcbvipONT4dQYUuY8uK8h1bjs4/FSwhYLa\nk6x181wlMnUSoBvIvrO51k0ZVq5rOz74+7Xo/NYPcfjl52HKtasQnzGl1s0aFbOmp7jIORwOW0XO\nNLTia2u9XUscDzwAEIlEkE6n8cQTT2D58uVYtGgRYrGY5xfuK3XwFG+XwD2gyA3yO/ceMrU7t2kL\npG27PVsw7KT43FmQd+6B2tdf66aMitafwbYf/Rzb/u1htH38FExdcznGn+6tTZvN+sPCNX36+/sh\nCIIViHjupFIcDTzmQXjWWWfh7rvvxssvv4wHH3wQAHD44YdXdYXdbdu24YorrsDevXsRCATwhS98\nATfeeKMtt61pGrZs2YJAIIAf/OAH2LRpE1avXo0jjzzSCnmFa9ZwDyhygpbOWkGmMNzkOrdBS2dr\n3TzPajzxGKQ3vOvtYTxdx/6nnsX+p55Fw/yjMGXNKky6eDmCkXCtWzYq5db0MQufRzvc5eTogldH\nMrwsMExBbdWmF7344osYP368FQqq/cLv3r0bu3fvxrHHHot0Oo3jjz8ev/nNbzBnzpwx3d5f/vIX\nrF27Fh988AG6urowYcIEGIaBM888E7NmzcJ5552HKVOmWD07bqtNyuVyCIVCruoGlmUZhmG4aipq\nJpNBLBZzTZ1A8etmaBqkLTtLzoSSd+2rcWv9p/nk45D82+s1Wbm52kJt49Bx5WfQ8YWLEZl42LA/\nn8vloOs6EolEVduVy+VgGAbi8ZFtqaGqKvL5PGRZHvWaPv39/VYvUbVpmob+/n60tLRU/b5MqVQK\nsVjM6lwQRdGPM9/KvtA1CzyH3JHDaff888/HDTfcgDPPPHNMv79582a88cYbOOqoozBz5kxEo1Gc\ndtppePLJJwf9nLl1htsCjyRJ1hCaW7gx8JjFkbU+KSgH+pD9oBvJdzZB7tqOfNf2gfqa7u0wZG5a\nW3VCEE0nHIPUC2PbE8tLAuEQJlx4DqZedzmaFs0t+3OjDSJjNdb70XUdsixDkqQRbWEBMPD4RNkX\n2DUf750MO93d3Xj99dexZMnYx65nzpyJmTNn2tgqqne6lEeuextynVshdW0dmA3VNfDv8MR2GHoQ\n/eoyokcAACAASURBVK+8Xetm1p1gQxzxmVPrIuwAgCEr2P3wk9j98JNo/sgiTF2zCu3nnomAxy6M\nwWDQGtpSFAX5fH7Q7K5SF3qn9+0iZ7km8DglnU5jxYoVuPfee9HQYP/0TI7L0lAMw0B+x+6BQNO5\nFbnOLZA6tyHXuQX5XXuBD2foFdPSGRiqhsQx0xGMN6D/pbfK/izZJzyhDYJNG4B6UfL517Hx+dcR\nnXo4Or5wMSb/n4sQammqdbNGpXgLi3w+b63pY+7YXquZS05fK+r9+uRo4Nm+fTt6enoQDAYhSRJk\nWbaq7BVFwZIlSzBu3Liq3b+iKLjoootw+eWX4/zzz7f99gVBgKZpg+pi3LpbOlWXmuxHrnPLwd4a\nM9x0j3GTy0AQgIZ89zYAQGL2ZITa2pB8cSMM2duzG90qduQRUJNp2zcA9SJp605s+uo96PrHH2PS\nZediyppVCHZMcOS+7Tx/CoKAeDyOWCxm9fgYhmH1BNWbegs/jgaetWvX4oknnkBTUxPee+89tLa2\nor29HVu3bkVvby/+8Ic/4PTTT7e2oLCTYRi46qqrMHfuXHzxi1+09bZNoVAIqqq6qhCYqkeXFUhb\ntyO3uSDUfPi3eqDX1vsKCEEYBaU6+R27kN+xC9GprYhM7kDq5TehZ92zW7jXNRw7B9kPuqFnqrcB\nqBdpmRy2/+QRbP/3X2Dcx07CpC9cgvjyM6p+v3ZfmIu3sMjn88jlBl5rTdNcVdtI9nH0ynzvvffi\n3nvvxdq1a9He3o7Vq1db37vllluqmjafe+45PPTQQzjmmGOwaNEiAMA//uM/4uMf/7ht9yGKIhRF\ncV2BcjnseRoZefc+yFu2f9hL82FdTedWSNsd3OSyzHtD2XsAyt4DCLc1IzpzAdKvvgs1lXamTT5V\niw1APccw0PuH59H7h+exZc5MTLl2FSZd+ikIMW+c+0yFW1jouo5kMolcLgdZlhGNRqu6mXUthpc4\npOUgs/djw4YNOOOMgU8FmUwGiUQCmzdvxo4dO6p230uXLrVWMK6WUCgERfHGjBk3HvSBQKDqr1E5\nWjqDXNdALc3BHpstyHVtg56t/af84QpG1b4k0q+uh9AQR+PixejfuBnqPnt7mepBrTcA9aLMO5vx\n7o13Y/PX/xWTP3cROq65BNHDnRnuspO5Plo8Hoeu69aaPl7fwoIOqsnCg2eccQZ+9atfIZlMYv78\n+Xj66acBAPPmzRv0c15jDmkVYg2PexiqCmnbzkOKhXNd26Ds3V/r5g1thCdbLZ1F/yvrEYiEMe6M\n45F5fxvkHf7fwLNSbtsA1IuUnj50//MD2HLvf6H9/LMw9brL0XzCMbVu1qiZW1gU7tieTCYRCoWs\nImfyJkdfOUEQrFqahQsX4uc//zmef/55LFy4ED/+8Y+txfu8GnjMIS2qLXnfgUOLhTu3Qdq2A4bi\nzQLfQHCU+7TlZfS/ugEBUUDLaYsgbd0Lqat6PaheJo5vRnhCm2s3APUaQ1Wx51e/w55f/Q5NJyzA\n1DWXo/2CsxEcY1AwV6mvheItLNLp9IjX9BkOh7Sc53hUNZ/sefPm4aqrrkJPTw/a2tqs1Tq9/GKI\nouj5/cC8QstJkAqKhHOdWyB1Daxho/X7sIZljCd8Q9WQfn0jEAyi+ZSFUPankH2ny+bGeZeXNgD1\notTLG/Hm576CyFe/j46rL0bHlZ9BaHxzrZtVVrlAUG4Li6HW9CH3qUnfXDKZxI033ogNGzYgmUyi\nv78fN910E66++mpMnDjRsyk0HA6zh8dGhq4jv32XVSxs1tWo/RkAQOaNd2rcQudU/H7QdWQ2vAUA\naPrIPOhZBekN79vQMu+KzzsS8o7dntsA1IvyO/Zg89f/FV3f+7+YdPGnMGXNKjTM8d7CrcVr+kiS\nNOSaPm5T7+UVjgYeTdMgCALuu+8+tLa2Yv369bj77rsxe/Zs7Nu3Dw899BBuueUW6LruycRcqobH\nrdxUW6T0JpHr3IL0+53IdW6FsnUHcl3bIHVvhyGX36AxMfco6IqC3Ad10GNhY5d+9q33AACNi2cD\nARH9L79l2217hS82APUgPSthx3/+CjvXPYoJnzkHh3/2Aow79URXh4RyBEFAIpFAPB5HPp9HJpMZ\nVP/j1sdUq0UW3aAmPTyyLKOtrQ3AwMrH6XQahmF4JiyUU2qWlpuCRS3peRm57m0Ht0ywhqC2QO1L\njek2M28P9FA0LJoPed9+yNt329lkdxllDc9I5N4fGMZpWDgDQqIRyRffrIup2H7eANRtgrEIolMn\nIdLegmA0DGgq9LwEcVwz0m++gTc/+3vEZk3D5Csvw4QVyyF4ZEmPQsVr+kiShFwuh3A4jGg0WvbD\nu1dHMrysJoEnEokgkxkYlhg3bhx++9vfYtasWVi8eDEA76bOeq/hMQwD8s49Vl2N1Hmwvia/c0/V\ntkJIv/4mAqKAxhMWVmXRPzcIVLFoU+oaWEk4cdQkhNoO8+/qzR9uAJp8jjOx7BYa34zolAkIjW9E\nICTAkCQoB3qQ37MP6r4dUPftQHTaFITb25B9bxuMdz6wfje3qRubbv82tvzTDzFx1UWYvHolwu1t\n1vedDAaV3Ffhmj7FW1hEIpGqrukzEvzg7XDgMSvtzzvvPHR3dwMATjzxRLzyyiv4xCc+gTPOOKMq\nqyw7xUvr8FRK3rUDyRffRG5z98Eam+5t0HNSTdpjqBr6X96AYCyKpiWLkH7zXX+tkuvAiTK/Yzfy\nO3YjOqUVkSkdSL38FvRMbV5Pu9XbBqBVEQgg0tGO6KQ2iE0J6LoKPZuFsnc/1L4k8tu6kN9W9DuC\ngMZF86HLMjJvvQ+pu/gHDlJ6+rDtvgew/d/W4bBPL0PH1ZejYe5R1X1MVVK4hYUsy8jlcq5Z08er\nHQp2CAyT+qoSCVVVtVazBIB4PG4l4dbW1mrcpSPuuOMOnHrqqfjoRz9qfU3XdeRyOWsWmlvIsgzD\nMEa9f4yyZTP6n/w18m+9DvHI+Ujv6IO0px+p9e9D689WqbWjJ7Y0I37UdKRefxPw6FT0QpGOSchv\n3+XofYotzYjNnI5+j6/ebG4Ayj2xRiYYCSE6dRLCE8ZDiIUBXYWaTCG/a8+IP9CIzU1IzDkSue6t\nkHfvG3Nbmj+6GG2XX4TWs051ZAX73t5eNDc3VyWQmMNdiqJYU9oNw3Ds2mAYBnp7ezF+/Hjra5VO\nrXepsg+oJkXLjz32GO68804cfvjhUFUVsixj586duPnmm3HDDTdYP+c1fq7hkTe/h/STv0L+rYOf\nkLXOt9HccQRijeNgHIgg3HEkdCOM1FtdkHfWdiE/tS+J1EvrEZ40AeFJ7Ui/5vE1VqpQwzMctS+J\n/lfXI5iIY9zixUi/uRnKXm8NF3ID0PLElgZEp0xEqLUZwbAAI5+H0tOL/O69UA/sgnpg9AE7NuMI\nhFrHof+Nt5F84dWK25j82ytI/u0V7Jg+FR2fvwwTVnwKQixW8e3WQvGaPpIkWV93Inj44TpUKccX\nHgSAM888E3PmzEEkEoEoinjnnXfw6KOP4rDDDgPg3S43Lw1pjXQbh/x7byH9219BfvfNQ75n5GXI\nu3Yh1NKECSfPR7JrH/LdmxCLA82nzwFiTch07UH23e4qPIKRkXftgbxrD6IzpkKIx5B5872ataUS\ntXxP6Jni1Zu3Q96xp2btGamGRXORfb/LX0ObYxCe1IZoRztCjQkEBEDLZiHv2Qelpxfyji2QK1yP\nMiAKaDhmLrSchOw7HyDXucWehheQurZi0x3fQffaH2HSqgtx+OqLEZl4mO3340S9kLmmDwAoimLt\n2m4WPldzuMur11a71KRouaWlBS0tLQAGDrAjjjgCyWQSzz//PC655BLPJlEvTUsfTv6t9ej/7a+h\nbHp3yJ8zsmlo4TCCIRmNDRoazvoo9j/7MuTtA5+oQwBaTzoCQusE5D8c+jJU52cCSZ0fFubOOwpa\nXoa0qdvxNlQkUPu6tkNWb962D1Ln9lo3q6R62wA0EBIRM4ehEhGoigxkMgPDUNkkpM1J2F2NJbQ0\nI37UDEjd29DvUA+q2pfEth/8J7b/3wdx2KfOxuTPr0LjgjmO3Hc1mFPbzR3bzS0szM6Aeg8odnPN\npiDHHHMM2tvbAcCTw1mAP2ZpSetfRvqpX0PpHvnKs1pfDwLtExEIh4EdmzDhxCORSeno3zgQltT9\n+6HuHxjiapnXitDkqVD6FaQ2bIKWylTlcZSTeet9IBAYmMq+dz/kHR6Zyu6iE5+1enMggMaPzofW\nm0X2nc5aN8vS9NHjkPLpnlhCYxyxIyYh3NqMQFiEocoDPTW79kDt3Q21t/rHc3zWdAgtTejf8Db6\nX3q96vdXiqGo2Pvo/8PeR/8fmk86HpM/fxlazzq1qrMZq8EMNKIoQhRFq8jZXNPHji0sTKV6r+ot\nUNWkaPmQO/HJegT33XcfmpubccEFF1hfMwwDmUwGDQ0NNWzZoRRFgaZpiEajMAwD0msvIP3bX0Pd\nPvbuaLFjKtC3H1AGitEDHTNx4MU3oaZKr2QbEEMIT50G3QjVpO4nEBLRsGg+cpu6ofb0OXrfoxWb\neQRym+0fKrBLYu5R0CQN6fU1HDKMhJGYdyQyr3l/IcVQ+3iED2+D2JyAEBJhSDnI+/ZD2XegJu0J\nhEQ0HjMXan8a2ffdE24LRadNweQrL8XEledCiI+tzqenpwfjxo1z5HqUy+VgGAbi8fgh3zMMwxru\nUlXVli0sNE1Df3+/NboCYNSTVjyi7IvnisDjFz/+8Y8RCoWwcuXKQV9Pp9NIJBKuCnWKokBVFGDj\nq0g/9T9Qd9kzNBGeMQv6rq3WmjuBRCPkUAt6nx++gDE0uQNGpAm5rfscrfsJxmNoWHC0q6eyx2ZN\nQ84Dw3Cxo2YAwRD6X37b0YX9hHFNCLW3QnrPO6tuBwQB0SMmIjxhPMSGGGDo0Pr7kd+9B1q/sz2f\n5YRaxyN+5HRkP+iCcqCn1s0ZEbG5CRMvvQCTP3cxIpMmjPj3Ss1iqqZsdmBWa6nAU8hc0yefz1e0\npg8DT40Cj67rkGXZmmbY09MDVVWtIS2veuCBB6AoClatWjXo624JPHpfD7S9O6Hv3Qll9w6ofb3I\nvfyC7RemyOw50Lo/GPS14OFHoPedbcjvHFmXu9jW5njdjzi+BbFZ0wbqEWpQZzSU2FEzkHPpJ+tS\notOmQGhocmT15oENQHXkt7uzkDqYiA7MhmprgRgLQ1dkKL29UHbvg+HSSQ7xo2ZAaGxA/xtve3ZZ\nh4AooG35Wej4/OVoXDh32J+vReAJBAJWAfNwDMOALMuQJAmGYVjDXSMtclZVFZlMBs3NBzdvZeAZ\nzNYroTl09eqrr+LBBx/Ev/zLv2DTpk247bbb0NjYiGuuuQZLlizx7BDXgw8+iFQqhSuuuGLQ12sV\neNTNb0J+9QVoe3ZA27cLyB9athic2AFpz35oPfZ2lUfmzIfWWVTwHApDb+3A/j+/PKqLYDCRcLTu\nJ3z4BEQmHob+1w6dmVYr8dkzkX3Pezt6hw+fiHB7O5IvvFGV1ZvdtAFoqK0FkY52iM0JQAgAsgzl\nQA+Uvfs9sY1FIBRC48K5UP8/e28aI0l+nnf+/v+4M7My677P7upzuqd7hkPSpEhJtkSLIi1T4to0\nx9YOTEk2ZArwarEUYQH8QhmCqRUEYmHDgATsfvAuyJXthc6RbGG1I4mHOBweM93T0zN9n3Xfecb5\n3w9RmZ11Z1VlZlV11wM0ujsyMyIyMzLiifd93udZzlK4eXTIdS1Iv/8yg7/0z+j4qR/fUudz2AlP\nGeUYJtd1K54+ZZHzdlhPeMpBqE8hDocPT5nILCwscP9+rEd49dVXaWtr45Of/CS/8Ru/wauvvnpk\nw0N1XT9UY+n6299A2gb5yNuU7ABEU48wLRvOX6D4Tv0u8O71t7HPXSCoJj2+h5y6Q++HnyM7kydf\n4wU8yudxb8TJ6C39BubfudxQ3Y83MY03MY1zcgQsk+I7N3d+UaNxBG8AALyJKbyJKazBdszBAXLf\nu05UqM+80IEEgEqJNdiF1duJ3pJAqZAon8ebmSVczuI9uMtRiyM1ujtInBghf+MOK99766B3pyFY\neeNN3nnjTezhAQY+91l6P/uzaMntW0mHFdURFmVPn2w2i6Zp2LZ94BEWhxlNJTzlL6GsOp+cnOT6\n9et8/vOfx3XdmnxhDjO2G0tvetXKc2F5Dg1I9bYTDI1SuPomqrBJdcQtweRdkheeo3j/IVF2b2Ge\n61F69xr26bME69pb0dwUSU2Q/NiHmfvWD4kKtetmVODj3onXF/v9nAUn0xC/n7JIOHH+NJHrUjpI\n0fARP4EFcwsEcwsYHWkSH7xA9gfvESzvvSrT6ABQaZvYI30YnRk0x0KFAcHSMt7UNCq3QOnW0dCz\nbIfk2VPIhE32rWsszxyMGLrZKD14zO0v/w73vvq79H32Z+n/3GexB/qA5p+jlVL79twpe/rYtl1p\nd20VYXFUOyf1xIGMpQ8PD2OaJi+//DLd3d1cvnyZb3zjGwwPDwNHd1RuK+PBA3k/8xOVup50C+il\nPKkXXsBbXMG9fnXTC0X0+B52OkXY2497c3v/nZqgFKXbN7FGRgkf3dvwGI9u0XVxiFJos/y9K3va\nhPfoIfAw9vv54AhaZy/u9EpddT+Fd1ZH2V+8iDc1gzfRfK3IUf1NrEe4vPLEvfnFl8hd26V7c50D\nQPX2NPZgD3pbC9KQKM/Fn1/Am54jmJ0gmJ2oy3YOC6Rlknr+PP7CIvl3D0Hl8oAQruR49Hv/F4//\nj6/T+fG/R/+//Hlant9Z53NYIYSokJz1nj62be/Y7npWcGBTWrlcju985zucO3eOtrY2TNM88l/K\nn/3Zn/H973+fX/3VX12zPJ/P4zhOcwPjrn4T8cPXNiyOnDSBtCg9ekw4sXWQnxwap3DjBqq0/6kl\nYVmYPb2E01tbusqBE8y/dbNuY7cV3U8uYOXNm3XT/QhDp+WFC+Rv3iVcXK7LOmtB8sKZI+sSvR2E\naZK6eI7Czce4j7YXtJcDQHNv7ZKMC4HZ34XV34WeshESwkI+Dr1s4nd4kDB7u3BGh8hdv0m4j8ra\n0wCztxN7oBu9NY1mGwTZFQq3b5N5/0u0/dI/p+f5i03Zj3w+X2lDNQLldpfrupU2mO/7z7SG58AI\nz/z8PP/1v/5X3njjDQzD4FOf+hQ//uM/3pSAuEbhL/7iL/jWt77FF77whTXLD4TwvPafEQ83v0BG\nQhCmuvALRbw7t1G5LXxyMu0E6Hj39j/qK1Mt6C0pooVtggQtGy/ZxdK3f1DXVsUTvx+dlWv36qL7\nkckEqQtnyF59F7WLltxe8bQSnjKErpG8eJ7So1lKtzdaJJg9ncikQ+nO1iRdmEY85t3VhpaI21Dh\nygre5AxR6elIfd8tnLPjYOgUr92oWEU8K5COhTMygNGZQRoakVtEmibC0PGmZ3EfbWLFoev0/uNP\nM/jLv4ReNc3UCORyuYqrciNR9vQpFosV77WyyPlZIzwHUlJZXl7mS1/6EnNzc/zET/wEX/nKV2hr\na+PKlSt88YtfPLK9xkOVpTW3TTVFKWR2BpFoRR8dJlQ6petXN5wQ1fICmhAkLl2mcO1t2IeLdJTL\nEhoGsiWDym5xV+2WMN2H9P7YCyzfn6N4tz6Bj43Q/UT5Aiuv/zAeZb9wpvGj7Efw97AbVLs3Zz7y\nPMFCjvw78aSQc2qUYGmlQna0dBJ7uA+jvSUOvfRW3YanZwjnpyjOHxH37AZBOjb2uXGihWWK7946\n6N1pPITA7O/G7u9CT9qo0MdfXMCbmoYoj2a1E/k+pQcPdtYLBgFTX//PzL763xj8F5+j57P/GGkY\nzXkfDUJ1Jac80r6ysoJpmk2bSDssOJCx9Pfee49XXnmF119/nRs3bvBrv/Zr/NEf/REf/OAHef31\n14miqLnVkDrhm9/8ZiUJvhplEVnTJs/yK4j/53+r6amRZhDaMQlx8y7Bg82rObKjB7fgEkzsL2lQ\n7+1HFLM7t8o0DXrGmP3m9xo6haN3dNZF92MN9GJ0d5L7YWNG2ZOXzpF/63pD1n1YkXrfRaRpQxSC\niogKBbzZOYL5o5XY3ixYfT3YwwNx22oLd/OjDi2VwBnpx2hPI3RBmMvhTU0R5uOWtdA0nJOxh5A/\nN0fp/tYVwVpgDQ0y/D/9Ch0/+ffqsftr0KwKTxme5+G6Li0tLSilCMOQZDLZlG03GYejwlOu2hhV\njFkpxdzcHFevXj108Qu7xaEJD92murMeMvSR+TnC1i4sbwrz0gsU795FrayNWojmpzE0HfP5SxSu\nXtlzyymYmsAYGoVgGoJtqmFhCBO36HnfOPkcsQFaAxDMzxHMr8v52oPux308hft4Cmd8FGmZcWZX\nHSG2/g0/FdDbMzgj/WiZBIQ+/uwsRouk8M5VnFPjeDPLlO4ezqDSg0bqwlmEppG98g7u5OE0X9w1\npMQe7MXq7URZGjIKCBbm8WZm8Sbv4U0+earR3o5z6iSEEYU7dyncqJ8Y2334iJtf+HWmXrzMyP/y\nq6SeO7pBpdWdk6dYv7MtDqSl5TgO7e3t+L5PR0cHs7Oz/OZv/ia//Mu/DHAkqztwmAjP7idLtJVZ\nREuSUJMk2pKEI6OU3rm61iAwDFAPb5E8e5rSzDzh/N60MP7De5gnTxM9vrsjcYoW53CAxMc+xPwb\n1wiW6jMyv+m2Nvj9XCIIdfLX7+PWqPspxz8kL5whLBQrKe37RaieHv2F0dGKPdof+9gELv7sLP7s\nHO79Jxeq1OXnyV15G6KIwvV3QdPIfOQy+RsPCGaO/kj4fiETDi0Xz+JOzpB7uw4TlQcIPZ3CHunH\naGtBSEWQy+JNThLlZijemtn4Ak0jcWIULZ3Gn5undP8B/kJjj4nsD97k7Z//HJ0//VMM/evPY/XW\nHlmxFY6qdOMo40BEy0opZmZmcByHMAz58z//cz760Y8yNDTUiM01DVeuXOE//sf/yG//9m+vWd70\nltZf/J+IqXt7fnmY6SF8fA+cFJ4b4d/dRAdg2dDety+zQuvMecJ7tVdCRCKFZ7Wx+O2dc7nqDXNw\nCJwMhbvT5GvV/QhBy4sXcCem8SY3OXHvAqnLz5F78+iFYprdHVjDvWgpG3wPb2aaYIdMptSLl8n9\n8K1NybC0bZyzZ8l9/x3CQ5p71khYA33Yg31k33mP6JDkbdUMTcMZ7sPs6UBzDCLPxZ+Lye5O0Ftb\nsUeHYwJ89z5R9uBadtK26Pv5f0r/L7yCtkMO1nbIZrNYltW0SkvZmbncSZFSrum2PEU4fFNaruvy\nV3/1V7zxxhskEgkuX77Mj/zIjxzpbI/r16/zO7/zO3z1q19ds7xQKDRv7F4p+L//V4S/P91LZKcI\n/Qg1N4nqGqR0/wHR0sYLlRwY3ZdZ4QY35hog+0ZYuvGI0qPJnZ/cAOxW9yMMg+Sl8xRv3tnzSHDq\nxQvkDlHUxWYw+zqxB3vQUg7KK+FNTRMs7k5vk3rfZXLff3PH5+mtGazBEVa+e6UpOWsHCiFIXTwL\nQO7K0dBxGe0Z7KE+9NYkQiiClWXcycna9XhS4oyNore14s7M4j3YnxanETA6Oxj8V/+S7p/7h1vG\nVWyHZhOeUqm0RrdzTHg2oiGEJwgCfvu3f5vf//3f53Of+xwrKyv84R/+Ib/4i7/I5z//+UZssim4\ndesW//bf/lv+w3/4D2uWF4tFDMNoDuFZmkH88e/WZVUREGV6iB7cBikJW3vjNte6tp1IpAgTbXs2\nK9wL6YlzuYaY+5vvNjyccjvIZBKjfxgv55N989a2KdcylSB5/jS5q++iirsbk069eJHcD67ud3fr\nBrOvC3uoBywdEfr4U1MES/vztKmV7KzZj/4+ZCpD7ntHr/q1E7RUktRzZyg9nsJ9dDgNEIWh44z0\nY3a3Iy2dyC3FVbyF3QvL9UwmruIAxbv3jozwOnF6nOH/+V/T+qEP7up1KysrOI7TNNJxTHgOiPDk\ncjk+8IEP8M4776xZ9v73v5/r168f2d7m/fv3+fVf/3V+93fXEo6mEp5bbyK+/Sd1XWWUbCXI5mB5\nHlpa8QOJd3tjK2rPZoVCYJ06Q3h/9yO0srOX7GyB/GEYv9V1jKERlDLJvXMfd2JzzyGjow37xHA8\nyh7Wps1ped9Fst8/GMJjDvZgD3SjJSyiUgFvcopwpb5aqtQLl+I21h7hjJ/Ey3m4N+7Vb6cOCPbw\nAFZfN9mr7+4qdqXR0DtasYZ6MVtToEK8hQWC6WnUXnWLQqxWcdrwFxcp3b13JEJWt0Lb3/0xhv/1\nv8IZG6vp+ceEp2E4HFNalY3qeiUhNggCdF0niqLKF3EUyQ4cEtHyHgTLO0Hml9B1jWj4FNGDWxgo\njOcvUXr8eI1wOXp4C6e3gwBjd2aFSuHeuYU1PEL4eHd5VdHcFEkZ53LNf/tNwnxhV6+vK4IA/24c\niGonIL3q97Ne9+PPL+LPL2IN9mF0ddQ2yt6M34QQWIM9WAPdscaiWMCbnCTMzlO62aCsJSlJPv/c\nvsgOQPFW/LmnP3QR9+Hsjq7Nhw5S0nLxHFEYkn/7XUoP9mf/sB8Iy8AZGcDsakOaWnwczEwTLC3j\nP7iFvw8dvpZuwRkbBaB47wHFO3eB/RubNhPScbD6ezFa0whdQ7ku/sIC2e98i2vf+RaZD/0dev7p\ny6Rfeumgd3UNjmohoZ44EMJjGAYf+chHKBaLFeIjhODjH//4QexO3aDr+iEgPI05UcooRGZnCIdP\nEM7Pwtxj7IRONPACxevXYFUzpJYXq8wKr20/el6NIMB7/Bi9sxc1t8uL1WouV+dzA5RUguU3Dkfi\ncznnS2ddztdbN1F+gPtoEvfRJM6pMYSuU7jexGwjIbCH+7D6O5G2QVTI405MEuXnKN2ofwL9ptB1\nkufOkH+zfpWrwrV3ELpO64++SO7KrYZO9dUDWkuK1HOnKT54TPat5rflzL5O7P4e9BYHFQUEIqap\nBgAAIABJREFUi4u4U1MEc48I5upgAyAE9sgwRmcHweISxbv3yL11eFqz20FLJrH6e9AzaYQmY2Iz\nN4c/P4//+AH+Fqfa5W//Lcvf/lsSp0/T8/JnafvYTyI3qe7v0F05RgNwYKJliB2Xl5eX8X2fZDJJ\nb29vIzfXcCwuLvLKK6/wta99bc3yUqmEpmmNLx+GAXzttxANHmGOdJPQTKEer96ZJdP4wsS7sVaH\nIzp68HZpVihSLRipBNHi3isKcmCM+Su38WeadOHeJbbK+UpePEuYzVO6t1Gg2fL+S2T3SuSkxB7p\nx+rriHUW+VxMbgoHVw0TlolzYozC9cbFZchkAmf8FNk33iYqNc68ci+whgewervJXr2+az3XXiAd\nC2d0AKMjjlkICzm8qWnCBkw7aakUzokxkILS/QcEi0s7v+gAobW0YPV1o7WkUIDwPYL5efz5+lQ1\nja4uuj/zj+n62U+ht7RUli8vL5NMJpuWIVlY/b0nVifLNE078vmVW+BwaXgA3n77bb74xS9y9epV\nNE3jzJkzfOlLX+KjH/1oozbZcORyOf7RP/pH/Jf/8l/WLG8W4VGLM/Bn/zsybE6VKcz0EE4+BHdV\nZ9DRT2lqhnC2qkKj6Yj+0V2ZFWodnUgiVG4fd+eWjZfqjnO5DnOGkK5jDY8SKZPsO/dwJ+dpeeEC\n7qNJvOknGqCaCY+m4Yz2Y/bEItIwl8WbmCBqwkW1VoiEgz04QPFGc3RXRmcHRk8fK69vjE9pKjSN\nlufPERRdio1KKhcCq78brbsdK5OMTRwXFvCmpxv63q2RIWRrK2E2h3fv/qH8zemZNGZvD3o6hZCC\nqFDAn5vb9SThXiETCXo++0/oe+UVpG0dCOERQlS6KseEZyMaRng+8pGP8Gu/9mt86lOfAuC1117j\nC1/4At/97neb51dTZ7iuyyc/+Un+4A/+YM3yplV4ALU0jZq+j7j/HnIfXjy1IrIShEpDTa+Wv6VG\n1DFA8fo74D25yMrewV2ZFeq9A4jCMsrd34Va9gyw/GCB4p3daYMOCmW/n+LDeWSyhfy7twiXs7R8\n4DLZ766dYBK6hj06EJMbUyPMruA+nkC57gHt/c6QLS2YXR2U7txr+rat4SHQbPK7TVvfJ7RMC86p\nE7gPJ/CntwnP3e16U4k4HLO9pRKz4E42p3KnJZMYw0PolknpwSOCBhv/7QZ6Wwarpwe9JQlSEOXz\n+LOzBMv7myKsBVomg97ehpHOYHR1Yvb0YvX1YQ0OYA8PY/b1VnQ0x4SnYTh8hOfSpUu8/vrra9LR\nn3/+ed54440j68UThiE/8RM/wZ/8ydopqWYSHgBVyhFNxnfPYnkRcfNNZDHXsO1FShG19hI9uvtE\ns5NIEehJ3HerdAmWDR19FK/V5iejD43C/FTcqtsPpAZ9Y8x+8/uo0uElA+uhd3Sid/UR+AJ/xSOY\nn0PvbEUYEpXLxuTGO1ytmu2gtbWit6RwHxxsRIRz5jT+Yp7Srfq4YG8Fe2wYvaON/NXr+8uDq4pZ\n0JIWyo+1JN7sbFOnmuzhIYyuToJsjuLt2zVPGDYKekc7Vk8XeioedonyObzZ2bpPEK7ZZnsbemsb\nWjKB0HWkYaC3tq1WEbuxh4ZwxsYwe3t3FAgvLS3R0tLStBv8fD6PlPKY8GyDhv2aPvOZz/DCCy/w\n6U9/Giklf/AHf8APfvAD/tN/+k9HOuPjR3/0R3n11VfXLGs24YE4ITyaugWlHAiBQCIm7sHdazQq\nuCNy0oQlD7VQlefT3ktpfpFw8omOZzdmhbVGUNQC2dpBviDIvtWYXK56Q8tksMdGEFFIsLiAyHSx\n+PqVQ13B2QpGVyfC0PEmDsn0lJQkLzxH4eYj/On6ab2ErpF47gxh0aV04/auX69nWuIk+HLMQnY1\nZqHU/JakTCRwTowhDZ3Sw0f4cw2a1NsBensbVl8PejIBKMJcDn92hjBb55s4KdDa2jHbWmMHZU2H\nKCIqFomCAD2Txh4cwh4bxRkbwzkxhtmz94iJgyA8mqZVigzHhGcjGkZ4isUiX/ziF/nv//2/E0UR\nH/3oR/n3//7fH/kA0c0Ij+u6BxLWplSEmn2AWqkqo0sdUSoibl1BLtWvvF5GJARRSzfRg1uwKp5W\nQhJ19FO6+R4UV/U+TpIw0Yp3a+doCevsecK79QvjFIMnmf/eOwSLjS9x7xZGTw/WYB+qkMd7+GCD\nFkKm09DRx8obbxMdkWqV2duLCoOaIgSaDWGaJM6fJ/fDd7c1jdwJeluGxOkTFO88wJ+tgRhoGs5w\nP2ZvO5ptEHmlOFPsgEhFGdbgAGZPN2EuR+HWneaZegoRt4C6O9ETDqAIs1m86en6teg0DbOzAy2d\nQSYchNRQYUhULBAsr+DPzyMdp0JmnLGxVXJzArO7qz77UIVjwtMwHD7Ck8/nMU2zUvUIw5CZmRl6\naygFHmYcJsJTRrQ8g5p9wPqvM0KiLc4gbrxZd6FzkGglXF5C5J6QCmUnCK103OZaPe7k0EkKN27u\naFZonbtAuFs35m0gEkl8u4OFb32vbuvc246sju12tBMuLeBP1uajpKUziM5+lr575VATH2tokDCf\n35PzbjOhpdPYo6OsvH4F5dd+kXfGR9Ey6Tjywd/cgkFvz2AN9KC3JpGaIFhaxJucQm3x/GZCOjbO\niRNIy6T08DH+bP1vgtZACIzuLvSONqRjI1GofD4mNsV9miyaBkZHJ0a6BWk7IAUqCIkKBYLlJfyF\nxcoNhJZOVxGamNzIwQFIp5t20724uEgmk2laWHYul0PX9WPCsw3qTnjK5ke/8iu/wtzcHJqmoZQi\nl8uhlOJrX/sa6XS63pttGg4j4QFQxWzc4tqM2EgNEYSx0HmyfiZgkaYTOq2oh+tK+23duEs5gsex\nhkJk2moyK7TPPUdwp75jzLJvmKUbE5SaaN0vdB375En0pIM/PUG4jykRLZ1BdPWz9PrVA2l7bAdr\nbIRgfrGhmop6w+ztQct0kH1ja68YYegkL54jzOYp3ryzZrk93I/emUFaOnhxEnyzpoBqhTXQj9nb\nQ5gvULh9Z0uiti9IidnbjdXZgXQsCEOCbBZ/enrPx6mwbYyODrSWFjTbAiFQfkBYyBMsLhEsLW1o\nfeutrTGpGY2rNmWCY3R0bFj/+nDNRuMgCI9hGBWN7DHh2YiGVXhee+01XNetfOB/+Zd/yfT0NF/9\n6lfJZDKN2mzDcVgJD4AKPKLJm+BuUyLWDMTyAuLmW3UTOofpLsKZSShWtQyEQHUNUbx5A5Vf1RkN\njVO49vaGrK4KpMQ+eYrgwe61EdtCN4i6hpn/mzf2bpO/A2QigX1yDKlL/IcP6j5Jc9iIj3Pq5KqR\n4QE6X+8D9okxIl9QuPZkfFzvaMM5OUrx9n2EBGugGz2dABURrizFVZuDNh7dBNKycE6eQFoW7sQE\n3vRM/VauaVi93Rgd7WiOHROb5SW86eldC+qF46C3t6O3tKCtViGU7+OtLBOtrBAub02c9ba2NRUb\ne2wMZ2wUo7295u0/a4RH1/UjOxG9Aw4f4dkMH/7wh/n617/OyMhIMzdbV2xFeIBDMX2mooho5i7k\nth8jVQhQIKfuI+5dR+5TNBwZFqHmoCbXjYdbDmGiLQ4lVQrauvBL/tZmhYaONThMOFH/CRvZ0UN2\nvkS+To7Hensb9vAwhB7u/XtbE7k64jAQn8S505TuPjgUxGu/SDx/gbAUYHW0olyXsJjDn5nZ9uJ7\nGKD3dOMMDhAWinEVZ5/TfELXsPp6MTrakJaFCnz8xUWC2dmaW3MylcLs6EAmk0jLBAWR7xFmswQL\ni4S5nW+w9Pb2WF8zukpuTsTkxmht3df7g+YTnoWFBdra2pom4Vifzv4sEp4Dq2fNz89TLBbxPI8w\nDJmcnMQ7QiO2u4EQ4kBsxJVSRFFU+VP5f6oHXRjo2ektjwyBAgGqbxg1cAJVKiJuv41cnN7iFdtD\n+i7SdwlHT8d5Wf6q7sQtorlFkufO4maLBA/vYWg65vOXNjcr9AO8yUmMrl6i2fpO/ETz0ySFIPWx\nDzP37bcI87sXsZqr7YIot4L/6CHujeZOhIUry7CyTPpEO7JroOnEJ3HhPMX3bh4KfcpuoKUSmL09\nGK1ppKGhogjNsfGmpwimJhCtZwlWlinda+wo+14hLJPEyRNI28admMKbmiK7h0qOMPRVYtOONA1U\n4BMuxRWbYHaKYJvfnJbJYLS3xyPbhgkqInI9wuwK/vwCUS5HqQZSA6B3dGAMD2GNjKAPDtJx4Tmc\nsRPomcbJHY6zpp5+NL3CE4YhmqbxwQ9+kGvXrtHW1oaUkmQyyZe//GU+/elPH2nWuVmFx/M8lFIN\nqfAopSpEZjOCI6VESokQovLv8v8L89NYy48h2sUkhjQQ81NxyyvYG0GN7CShD2pD0Kkg7OjHvX8P\ntbKM7BmkNLu5WaFMZ9Adi2ipMYZnoiVDSSVZfuPN7Z8oJfbYKEZrhmB+lmBmb4SwUZDpdNOIT/LS\nRfJvv9O8yZ49QEvHMQJ6OoXUNCK3SDA/XzHOs0ZH0VpaKNy4AZuM/ztnzhDkSxRv3dnwWLNh9vZg\n9fcRlVwKt2/vyutHmEYcgNnWirRMlOfFYurpmS2/vzUeNIZB4HrIICBYJTR7sUswuroqVRpndBTn\nxAnssVH0lhaUUnieV/GPsW0by7IaRkrWp4k3GscVnobhaLS0ngb82I/9GH/6p3+6Zlk9CE81sVn/\nB1hDZqpJzXY/pnw+j61LmL4N3i4nJIREhNGehc4REKV7iB7e3ki4DIuwpStuc+k6dA5QvLZRRKp1\ndiGjAJWvfx5QGaJ/lIWrd9bkcgnTwB4/iW5b+BOPjoQot9HEJ/XCJXJv1h4f0mjobRms3m60liRS\nCqJiHCMQbuK2KxMJ7PFxgsUFvIe1mSLa4+NEoaJwvX52CTtBmHH+mJZM4E5O4U1M7vgaaZuYfX2Y\nba0IQ18lNgt4M7NriY2UGB3t6K2taI4Duo4KQ1SxRLC8jL+wsK+qndnTU9HV2FVj39oO5CKKIpaX\nl2lpaaFYLBIEAZZlYdt23bUvzSQ8SikWFxebSnhWVlZwHKcyGX1MeDaiYWevKIr44z/+Y/7yL/+S\nfD7P8PAwL7/8MmfOnGnUJpuC/RKerUhNudy6FbHZC/L5PI7jIFBE03chv8dpEs1ArCzF4+3F3ZGP\nKJEhyBdgaROPlnQ7XinEv3d7S7NCvX8Qcoub3o3XDaZF2DZIaamAEArv3t19R14cFBpBfFIvXib3\ngx0qYQ2C0dmB2dOJlkqgohBKRYK5uZpCMcvVnOLNG3t24LZGR8GwyL99vSFkz+zuwhoYIPI8Crfv\noLb4zqRtYw30YWTSCEPDLxRQKyvxmHkUPfGgyWSQtoPQNVQQEBVLBEtL+AsL+6/MCfGE2Jwok5sT\nOKMjOxKbrVAmPG1tbUDcISiVSnieh2EY2LZdt0mjYrFIFEVNJTztuxBV7xfHhOcACE8URUgp+c3f\n/E1ee+01PvOZz3DixAn+6I/+iGvXrvF7v/d7jI+PH9l+6maEx/d9wjCs+B9sVa0pL9+M0OyH2GyF\nMuEp3ylFCxOohdqTzTeg7Og8+QDuvl2z0DkSkijVGZsVbnLIqa5BSvcfoDyPMNmKe2PtaLoxehI1\n86hhrRTZN4SmAqJ8jiDVhbtSJFhaRjoOwjQRmgZKxRcQt0SUyxOsLO9bKNpI1Iv4OJcvUnxz6xHu\nukAIzJ4uzK4OtIQDRET5WDy822k3mUjgnBrHX1zEe7AxlX6vMAcHkakWclfe2VdwpjCMuIqTSuJN\nT+Ous0vQEg5mfx9GpgWh6yi3hD8/j7+8jNHRgZFOIyyLUCk0iD1olpbwFxfrF+gpBGZfH/rAAC1n\nTq/62Ixij47GDsV1xHrCU73cdd2Ki73jOOi6vq9zZLFYRClVSRNvJI4JT0NxeAhPWcPzsY99jH/3\n7/4dL730UuWxT37yk3zpS1/iQx/6UL032zRUE54yqfF9v0L0yuSmulqz/t/NInrrCQ+Ayi8RTd/Z\nna5nM0gd4RYRt2oXOoctHQRzs4jCJnfnuknY2kPpnavIvpENZoXmqbNxe6yed9mahjF+NvYRWnex\nUE4a30xTePAYf2pzIad0EmjpNDKRRFhWTIwAFQZErkuUzxNmV1D7NVzbB/ZDfOpe2dE0zN6uuBLh\nWBCFhLnYu2W/cRrWyAhaOr2vak4tMHp7kW3tFK6+gwpq+w0ZnZ3YQwNEnk/hzl1UsYiWTGL196Jn\nWhCaRAUBKgzjc4VpgpQo3489aBYW42DMeleYpMTq78Mera7YjMXExrabokHZivCUUdb5lFaPXdu2\nMU1zT/v0tBOe9WGlzyLhObAprfHxca5cucLY2BhhGLKwsIBlWSwuLjI5OUkmk2nIgfcLv/ALvPrq\nq3R3d3P16v7vTJVSzMzM8O677/Luu++yuLjIz/7sz3Lz5k2+/OUv84lPfKLyvHKeViOqNfWCSLYi\nB8/F4aP+PloeUYAyDNS5F4ikgViYjlte2widtew8ImERtnaiJtbpggIPbe4hyZNj+IHA6e1YY1bo\n3XwX6+xzhHfrY0yodfeiWSbR/c1H1EVxBbO4gpmBaOgCbmRQvHknnpJaRVQsEBV3rkAIy46JUTKJ\ntGyErscTcmEYj0IXCoS5LKrGCZfdIFpZIVpZIT3WjuweYOm7b+/seCsEqcsX90x2hK5j9vdgtrch\nHRPCgHB5GX9mBrU8h7dcnwgKmUjgjMfVHPf+/Z1fUAf4U1MwNYXV04HR10/u6jWUu077omnYJ0Yx\n0hmCXBaBQhgaZksCs+tFiEKU76M8nzC3gr/QYPNGTcPq73+irylXbEZGkfbBWmnsNN0qhKgIcX3f\np1QqUSgUKgLnZnnc7BaHoYNx0Ns/CBxYhee3fuu3+MpXvsL58+cZHR3lr//6rxkfH2d8fJypqSm+\n8pWvcOHChXpvnm984xukUileeeWVfROe1157rRJ+eu7cOc6ePcsbb7zBv/k3/4azZ88yMjKCYRgb\nWlqHBYVCAcuyNmX5KgqJpm5DoY55U2Wh88MbyMfbT7mE6W7CqUfgbnHx7Ryg9HiCKNlK4dq1Skq7\nfe4CwX4iKITAPH0+DizdpW+OEpKwtRcv51O4caPuSebCMJAtMTHSnATC0GMDxzBCeR5RsUCYzdYU\nyroVZEt6e+KjSZLPnSd/ZefEe2EZ8YhzeyvSMiDw4/bKzNaTQPWANTqC1tL4ak4t0FpbsYaGKTyc\nwB7sx2hpIfQ9CAOE58Xuw/PzRHuwQNj9zmjYgwNxxWZsFLucFzU8jNzDQEUzKjxhGJLNZmndhc9O\nEASUSiV838c0TWzbrqmSUVhtjzajwrNT5aoRWF/hKd98P4U4PC2tMrP9/ve/z9zcHLZtE0VR5W+I\nD9hLly7t6iDfDe7du8fP/MzP7JvwFAoFCoUCnZ2dlWU/+ZM/ye///u+vcVX2fZ8gCHAcZ1/bqze2\nIzywqjVaeIxa3HkaZNfQDER2Vei8WQsLiMwEITpqeguthaYTtffhTk3jLhcIVhPZ7bPnCfYQNipb\n29Hb2ogm96/tiHSTsKWb0vwKpdsbW2INhaahpdNoqdVMIcNASBEnP/s+UbFImMsRLW+04i9jU+Jj\nGCTPjMcC3ernOjZWfw9GawZh6rA64lwRzDYB0nEwT5wgWlnBe1g/bc5uobVm0Ds6kIkkUgjCfB5/\ndhYVRTjjJynevk1U75TvDTuhYQz0kzp5slKxscfGsEeGkav6jXrgsBKeMqIoolQq4bpuTQLnQqGA\nEKIp5+mDIDzrw0qfRcLT9JZW+cfxvve9r9mbrjsSicSGu4FyRaea8BzV0qEQAtExiLIS8RSXquPF\nK/RRiSTq8keIhEROPYA7a4XO0iuAUkSjp4ke3a1UcZ6sI0DOPsRJp9FbW/G7OilcvULpxntYJ08S\nPqjdK8UYP4uanagL2QGQgYdcfIQhIfn8GIHVRvHRJN7jfYjCa0UYEi4u7pzRJWXcSku1PBFgS4mK\nFCrwUcUCbZdGUXYLy2+9hz00SFQskn7/pXjKZ1UwGy4sEE4/JpxuwntbhyfanJuUrl1r2na1tjaM\nzk60hBNr9XIxsQmXlgmXNq+K5t98C5lIkLj0PO69+5uOyO8GQtexhodiQrPqYeOMjWIMDJArFht2\nwwg7t5oOA6SUJBIJHMfBdV1yuVzFz8cwjAM9Lx+Fz+9pxFOZHHaQ0HUd/4i5zO4EkWpHGnas6wnq\n3SJQoEKingHoGyEs5NHuvYNciIXOUgjk8jRRdw9hyUctbCKAzq9gsILR2Y/20ksU7tzFvXcXa2CI\ncAcCI5IpzP5BwoeNM5KTxRxmMYeZguil83jKpnDn7r5CQ+uCKCJcXt5w4ZXJFmRbB8J2UBGE2RxO\nVxojbVOYuEdp8mDdhmXCwR4/Rbi01HBtjt7ZidHRjrCd+PPKrUZL1EIoN0FUKFB46wrCskhdvoz7\n6BH+3PaaJWEY2MNDVdWaUZyxE9hDg7Heax3CJho/HoWbOSFERdPjeR7FYnGNzueg3sNR+OyeNhwT\nnjrDNM2mnnCaBWElkEPnY11PsUECyihA2BbR2Y1C59jfRxCNnI7H1zerNs1NYEkN4/nzFGeXKN25\njdHZQzS3+ZSYMTYOK4sNJTvrIbPz2IDVbRKdvoRbUhTeu7Glv0ojIdKt6K1tYFqoUBFkc/gzs4SP\nZ+Hx7IbnexOTaOk09pmzFN57t+n6GGtkGC2ToXjjJoUrV+q6bqOrC72jHWnZqCgkXMniz8wQzM0R\n7EBI9gLluuTefBOh66QuXcKbnsZfWMAeHo6dh0fjEEznxBjW4GBlwu9ZQz3FvdUC57LOp1gsVowM\nD4OQuJF42t9fLTgmPHXGUavw7Ka0KjQd2X8aNf8QtdTgCIXIR7W2oz74k6goQjy8iXx0G7kyTTgw\nHFclspvcYUchcuY+yUQK6/0vkbt5G5lpI1p+8lxhWZij44RbTGA1AwLQlqZIAM6JDoJ0L+5ijuLN\nm3XVvShAa2tHptsQhkXkB4TZLN70DNGDKXiwuzyycGWF/FtvVYhP/r33oIFkTToO9qlxwqVl3Pv7\nrCwJgdHdjd62GoAZhoQrKzHZmJ2NNUf1hpSx2V8ygZZIolkWStcw2tuxe3ow+3qxBgawhoax+/ue\nWWLTTAghMAwDwzAqRobLy8sIIdZIEY7x9OGZIzwvv/wyf/3Xf838/DxDQ0P8xm/8Bp/73Ofqtv7N\nCM9BhYfuhL2wfSEEonOYyEqgZu41PkpARSgBavgU0dh5RHYZceNNdEsStY4TPby1+esKOfRCjsz4\nIMVChH/bQxXy6AMjiNA9ULKzHiIMMBYfYQDJC6P4TjvFyRm8B7Vf4JUQ6O2dyHQGNIPI8wmWV/Cn\nZ3DvTgDrc8v2hzLxkS0tOGfOUHjvvbpWqdZWc3Y5XCAlRk83emsb0jRRYUCwFI+9+9PT+NP7I+vC\ncdDTLbEw2Y5tBIQmY/NJPyAslYiKRZTvYXR0YI2MYAwNkTh5kpZTpwhaM+irItpjHCw0TSOZTOI4\nDtlsthIvURY4N6oiclxtORg8c4Tn61//ekPXXxYtP+2QLZ0owyGaugV7DBHdNUIflUigLv8ICImc\neggSopkpKG4++SLmJ0lIjejDH8HPZgnnZlElhejoiS9QSsWkTam4TbbJv1UUIZRCoeLqiyr/HW09\nDrBHCDeP6eYxHYjedw5PJijevV9pqyhNQ2vvRGvJgNSIXA9/aRl/ahp38SHQ3AmlKJuNKz4tLdj7\nJD5xNaeszamB7GkaRk8PRmsrwjQISiVUNtbY+JNT+JM1Vq+kiKfakilkwom9kDT5ZOTf94hKJcJc\nnjCbRRWL+FUj+9KxsYaHsUfH4pH4wQGskVGSw0OI1SkY3/cxDAPTNMk3YwT9GLuClBJd1yumhfl8\nvqL92auR4WHDepL1NLyn3eKZIzyNRrk//CxA2Enk4PmY9JQaPGq7BmWhcz/0DSOLBdR7V1CP7iI6\ne5DtXfHkkWkgiBB+CRGFRN2tYJZQIgOmjdItIiRRBKHnE5Y8wlyeYHmZYHGRYGnrse0KhAAhQcZ/\nCxlfKJEy/r8QlcdYfUwIGfe0Kq8rLxOV5cLQ0TMZ7IRD64leIqmRn1xm+c4ECohCEbvvRgppO5j9\n/fFFuViMPV2arCML90F8rOFhtNZWijdubK7NMXTMnl60TBppGHEA5uIS3swM/sQE/sQm1SvLwiib\nOdo2wjTi70YpVBgSldx4PD+bJczltp2uKkM6zqrT8AjW6t/26ChGb++ai4frunEl9IBGfptRPXga\nKxTlWB/LsrAsq2JkWCwWD1zgfIz64Jjw1BmGYTwzhAdA6AZy4Axq9gFqpQEaiJ0QBWCZ8Pz7Ee/7\nKM6D1faHKsG6gE8ZFAl7hhHTD8AtINwCay5JBtCmQVs7jLajhESZNpE0QBpEkSL0AsJikSBXIFxZ\nxp9fJFxeiuPf2WhctVPDT9g2Zk8velsrmm0iiRClPOSWIVuAVYsirX+UTDhNy6U+Zq9PsvS9t7Zf\nr2WhrV7spW2tZn7poGlxixXiKlUYEvlebFxYKhEWCkT5wp51RLUSn4o2Z3lVm/PgAZgm5tAQeiaN\n0HUi1yVYjI0KvcePkcvLaOkWNCeB1t5GorsbASgVoTyfoFCAUpzurVw31uTsQZcjE4mY1IyOYo88\nITdGT8/xBa/JOChiVdbzbCVw3q9/TbPf12GUVBwEjglPnXHURMv1gBAS0T1KZCVRs/dpgF/lzjBM\nfKEjhy9iPLjKVqcjIUGlWhG5pR1XKVS0kRQBmEC7Du0dMNqBklpcMdJMIjSiUBH6PmGhRJDPEy6v\n4C8to7e1YmQyaJaJVAEUs5DPAi5kpyvkZjvIpRl6+jS6Xvk4s28/ZOkHm3vPKNcl2Ef+lLRtZCKB\ndByktUqYyloVIeLCVxQReB4yDJ8QpmKRKJ9bQ3yss2covncDVSzG1Zz29rgKpeLpKKNb024XAAAg\nAElEQVS7BxUGqCCIK10QV6+CEKHraOk04coKUTZLlM1Sr1+XTCZjYjMyij02ukpyxjB7uuu0hWM8\nDdB1nVQqtUbgXO+k9mbhWSfsR+vbOgI4aqLleu6XzHTFFZGp2xA2l/Qp3YIIXAwYfg7jwTvITYiX\nJCJq60AVc4iwPpU4EYVQyiPIryVHFmAZ0N5BNPIRSn/z/8LKHoNC131PcnGKngGDzgs/zcybd1i5\nUp8MsTKiUmnvKepCxM7H3V0kTw5id2TovjxGFETM/fAm/uQkYXaFqNCc0FQtlYqrNeWqzego1ugI\nZnfziM1h/P0fY3eoFji7rks2m0XTtENhZHiM2nBMeOqMZ0nDsxmE0xL79UzeArd54kwlDYh8EOAK\nCzF0Dv3R9TXOzWXIwCXqPwEPdx8/sad9A7TIRTt5hvB2fYmJtjhJ34hD9+VPMP29m2Tfaf70md6a\nJnVymERfJ2bawdAV0s1DIQsUoFRAdJxAPb7H0Pk2CtEgE//tm3XfD5lKrVZqxp6Qm7FRjKrol2Yg\niiKEEPi+TxRFRFFEGIaEYfi0Wvk/Fai1zSSlxHEcbNuuGBmWdT61CpyPCfDB4Jjw1BnPypTWdhC6\niRw8i5q5j8rW37RtM6h1J5mSZmMPnkV/9B5yE5NCGRQIe0YQ001I0W7vQQQe5uAQxToTnjK0xQn6\nT6YIXvoE06+/S+69+pspGh2tpE4M4/R2YKUddC1CFLOx5giAJchubBWK7gFUOSy2VCBBgfFPvEAh\nSvL4z7+560qPlk5XqjT2WDwZZY2M4tkWqVRqn++ydiilKoSm+k/1hVNKWbn7l1KSy+VQSh37vdSI\nw0wMNjMy3E1Se7M1PMcVqGPCU3fouv5MV3jKEEIiesZiv565hzRa17PZedHTE4iB0zBxExltnFoS\nMkKl2hC5Bkc8ZDqgtILmZpH9w0QTezDQq+nEr9AXJxg4kyH4wCeY/PbbFG7vfltmVzupk8M43e2Y\nLTa6jJClLFSIzSKs1PiZ6QaqWNi4fJX4nPoHL5L3E0z8t28QFde20LRMBnu1SmONPCE3Rnv7htUp\npfAaNO69HbGRUlb+lMMYXddF13WMqqBOpRSGYZBMJslms3ieV/F7OYrtkGZeQA/7Z1NtZFgmPsvL\ny7tKaj9Gc3BMeOqMzSo8h1XD0wzI1h6U6cS6nqhxRFBtoseJlMIzk5h9J2HqHjJc6xckUUSt7at6\nnsZV5arP19b4aYp7ITy7gVLoSxMMPdeJ/+ELTP3NWxTubwz2tHo6SZ0Ywu5px0pZaCJcJTarBEUt\nwD5TRETvMOrR7a2fUMyTJM+pn3mJrD0AHX3xuPfYGHoDwy83w26JjRBi04vxdhfocqWn3Poot0Mc\nxzmSxOcYa1EWOJeT2ldWVtB1HcdxDlTgvNn151k81o4JT53xrI2l1wKRSD/R9Xib3O3vE0rTt0xy\nDyOFb7WgeobRZx8i/bWTSzJ0ifpH4WFjtC/KtGISUd6en0O0d6EWmjDCryKMpQmGLvfi/fiL+CtF\nzKSFLnxEMQtuEVAQzsP+grs3hejo3Z7sVEGeukDH3/8nTTkJ14vY7AfV7RDf9/ekA9kKx+2LvaGe\nn9tOSe0H8R0dHxPHhKfuOEoanmZWnoRhrep67qFyC3Vdt9KdbR8PIoWw04iuIZh7jPTWakZif54G\n6Xk6BxDqSWVJKIV17iKlb/1/u1zRPr6nKKTl9BjBxGPCB7URkH1D01A1Vs3kxb+D3gCycxiITbTq\nZ6TKrt7rUPZ7Kd8oVROfY6O7o4/qpPYysS0UCui6/sxW/Q8Sx4Snzjiu8GwNITVE70mixQRq/lH9\nVqwbsMNn7kcgrCR09MHiDHKdM7TQIlRLG2KzQNJ9QDgJKKxtpWmqBMmWVQ+eGrGfc2Mqja6F0Nff\nNMIj+kdRD3felrzwAfSf2h/ZUUoRrjpLu657KIiN7/tr7uKFEERRhOd5WxKfsg6k2uHXcZxnmvg8\nLdWq9cS2UCgQhmFF5Nzo6b1jchXjmPDUGdsZDz4tP979Qrb1ocwE0fRt2ERMvFsoUdvJwlMalpmE\n1i5Y0ZCFJ30cqRRRZlXPE9SvQieCjeZ/IgqxLr6A+52/qXk9+zlh2ZfehwgLaHbLntexK7R1oR7d\n3fFp8sIH0D/+2Zp/EztVbOAJcWgWsSmPoJchhEDTNHzfJwgCTNNE07TKaHpZrFxNwNajWgC7vuJz\nPNZ+tFE+PssVH6VU0wTOz3qOFhwTnrrDNE2KxbUtk2f14NoOIplZzeG6Cd7+UrZ3wwVcdGzTIUy3\nxwGk+ScVHRm6RH2jddPzqEznhvZZGbqucA0T/MYGr4rOHrQo/nyFlwfTAm/vDsw7b3A1M2wLTVUZ\n8rn3r5KdjRfwvbSiAPL5fN3GvWshNkIIdF1fQ0LCMKyQnrIzL8SmdZqmrdHnuK5bCa3c7EKn6zot\nLS2EYUixWGR5eblu0Qb7xdN489bs9ySlXGNkWBY4Nzqp/VnGMeGpMwzDYGVln6MtzwiEacekZ/oO\n5HeOetgK0W6qREJQEja2HhKm0iipoVV5BcmgSNg7ipi6t+f9qaCtE9wtUtwDD/Pii3g/+E6NK9tb\nhcc+fxHhxa0zoSL00VMEN97e07pqgRgY21GoLM+/hP7TLwOCMAzrorHZawVsPbEpr6d88duK2FSb\nCZb3u7y/mqZVogeEiN+j67oEQYCmaZWLWfl1nudtS3w0TdsQbWCaJo7jHDjxOcb+UW1k6LpuQ5La\nj1taMY4JT51xlETLcPA/BCE1ZO84amECtbhJ6vUOUELuqS1W0pPYUUiUSIKUaMszVfsUoVraEdn9\niavFDuVpI2XjiZ2rIXuFNjiG9NbqhLSuLoJGGUyn21CTOwi/z7xA8Hd/Dq9QPFCNzfrjvrzN8r5U\nv65Masp/ryc2mqatqTStR5nMlAmL67pYloVhGOi6vinxKe9LNaqjDcoVn2Ovl6OJrXRc1QLn9YGl\n+/1NHFeMjglP3WEYRkVAedhxWPyBhBCIjgGUlSCcvoPYBQFQpr3n7XpWBrO4QGTZ0NaHtjgJgFQR\nUaYVVczuWc+jNH3NOPpmEF4R47nL+G//oIYV7v57sk6eRLjrCI/eqJOeAMvZ1pBQnbmM+Kl/gqHp\nR47Y6Lpe0dDsZZ/LVaJUKkUQBLiuS6lUqoymVxOf8g1TtUNzNapbIWWvF8MwcBwHTdMOxW+6Xnga\nW2dlbPW+NktqX1pawrIsLMs6Jrf7wDHhqTOORct7h0i1ETKONncPEdSobdFMCPdWIYmUwnPaMfOz\nRIYOHQNo87FBnww9or6xvedtdQ3EoaI7wOhoq1v6dzW0U+eR7kbCJdw8oiWDytbXeCfqG0ZuU92R\n515E/8TPI+rUgtlMYwNUqiRlYlILsSlrbupBbGqBrusVR3bXdSsVn62IT7mdthnxSSQSlVZIWQNy\nrP/YGw7j+bk6qb38He8lqf0wvreDwHEDuM7YqqV1fLDVCMMm6j0NiXRNT1dyf5w9Ugo/1YVSEElJ\n0DVUeUwGBaLe0T2tVyRqm4iSbg5t/FwNz9zNXbvA6u/d4hHQR8d3sa4akGhBzk1t+bA8+8KeyU6Z\nzIRhSBAE+L6P7/sV/Uz5RF4We4ZhuCa00/d9CoUCuVyOfD5fGQsvu9+m02nS6TTJZLKimdA0rSm/\nV13XSSaTJJNJwjAkm81SKpUq76fcKguCAM/zCIKgQuyqUdaAtLa2YhgGpVKp8lkd4+mApmkkEgky\nmQyappHL5VhZWdnS5uAYm+O4wlNnHPvw1AFSQ/adRs0/Qi1tfSGF+iR0hZFCtnShZ2dQQNA9ij5z\nL94VGRGm2tB2mbclotovNtbAAIVb17d/0i7eqPH8++K08i2gtbXWt6rU0grTDzd9SJ65jP7J/7Em\nslMWLG9l0let94G11Z0gCNYQIM/zKiPA5VbPYb3pKF/Mynfx2Wy20tIo77dSqnJeKVej1ld8yhoQ\nIQSlUol8Pl8hQ/Wu+hxXDPaHvX5+9Uhqh2f3BvyY8NQZR020fFghhEB0DsXhozP3thT2qk3uePcC\nPwKR6kLLzaJUQNB7An3qDlJFqEwrqpSvuc2mUq3bEo71kG4WbXCU8NG97dZa28p0HTOTAn/rBHK5\nCzK2E6KeYeT05tlg8sxl9H+wkezsl9iUKz7lVlRZ6LsZQShXO47CqO964pPL5SqeLWWSUz0dth3x\nkVKSSqXwPK8y9XOc1/X0YLdJ7ccENcYx4akzytMYRwHl0djDDNnSgTLtOIdrHeFQgKrjZ+0pgZVs\nR+YXUKFH0HcSffI2WuSv+vPUqOdp7wF/d8nd5olxitsRnhr5jvnCBxDbkB0AGbiIrj7U7GTtO7gZ\nnCRiafNMMHn6EvIT/4xIgQqCuhKbspB4p5DO8hRU+YIAHCniE0XRBuJT/ryqiU/151KNRuZ1NQvN\nvFAfRVJwnNS+OxwTnjpjOw3Pca+1NmyYrLGScfjo1G0oVglxDZv6NLWewFUatpNBFJdRgYvfN44x\neQsZFGr25xGGwW57RtLPITq7UXMzWzxj5/epbAfdlFADCTSGR/H2SXhEWydMbCJUHr+A+vjLRApQ\n0RrCAtsTmzKZKZv07bcVdZSJT7l9YVlWhfiUtUrriY/ruhXR9XpUxxpUjzsf53UdHKrdweuFrZLa\nbXvvk6xPG44JT51x3NLaH7YihkIzkP1nUHMPUKueOUo3od4FKiEoCQvbSiHcHAQlSr0nMaduI0SI\nSncgVua3fLmSErmF2eC2m1UK6+wFSt/cIlS0BrJsXf4AMqzNtVpLJXezexvRM4TahOyI8YsY//Cf\nI6rGo6uFxFsRm82mkOqJp4X4eJ5XIT7lVtd64rNV1bZ63Llc8SmVSsfE5ynD+qT2fD5fWX4Uq1j1\nxDHhqTOORcuNgxAC0TUS63pm76OkAXXUo1SjZCSwoxDhF9FCl3DgNNrjm4h0BlXIbq3n6ehHhHv7\n/rVo61BRFUVsd5oSrR0Y0q+ZAMqgGMdA7MX00LQhu9EZW504Dz/1MiXPq1x0m01sdsJ64lP2wzkq\nxKdMTqorPmXvnTLpKU+heZ63aasLts7rqtXg7rhaffhRbWSYz+fxfZ/l5WVs28ZxnIPevQPB8Vh6\nnXFMeBoPme5CDpwFrYF8XYFrpVGaEf/fKxAOnIIoQPSPbvky0ZLZ8yZFFKI/d2nzx3YISLUuXq7J\n96eyvjBAGx7b1f5V0NkHhbWkTI2dI/r7L+OvGvYlk0nS6TSpVKpSndjq4nsQKBOf8jh6mUCUAx0P\nE8pp8J7nVcSp5Sry+tiK8ufuOA5KKVzXxasioOtRzusqZ3YtLS1RKBRq0vY1gxw287totl6oWSjb\nHJimSTKZxPd9stntTVGfVhxXeOqMnYwHj1EfCDuFaaeIAp/IKxK5RSKvhNpnEGk1VJUxoVBRTHr6\nx9Emb6P6RhGT9zbul9qfiNoyBcGmAZ9bHzuyZwBtlyLp+HX9hPe3z71aD9XZh5hYm4Quxy9g/dwv\nIVYDM8tl9LJg9jBXTbaq+JSjH5q579Whqdu5PldXysotYM/zcF2XMAzXkMvy+qo1PpuRzmqDu7Lw\n9bAElR7m42c/aPaxVS1wflo/051wTHjqjKNkPPg0CKmlbiB1o2JUqKKIyC9VCFDkFveUtVVGpBRu\nogOrMIdQKiY9fSeQUw826HmUnUSUdq/fqUYlVPT7f7v2gW2+J+vsuQ0RErXAcKzdaat1A+GuJZTy\n5AWsn/vFSm5Y9Wh1dW7UUSQ+1ZlX9fawKVdt1oeQ7sX1ebNprHI7o7yeauKzU1Bpuep1PPHz9OKg\nSexB4Zjw1BnHLa2DhZASzUqgWYnKsijwYgLkloi8IspfXz3ZHgpBkOpGz07HOhqvSNA9iKbpUKXn\nidp70dTu1r0ZjIS1Sajo5oRHjo6j7YHsAAgvh7LsDSRmK8i+YaKHTypC8uRzWJ/+RcQmrcXyhfNZ\nJj7V02jVpGYnD6H97Hv1NFaZ+JQrPlsFlW5HfLbK6zrGMY4ijglPnXE8pXX4IHUTqZuQjPU1KopW\n22AxAYq8IuygWQgiRZRoxyrECeoycIk6epGajrhzDQDNcaCwf8Ij/CLGhRfwr37/ycItCjzWyAjs\nYSoM4skwY+wUwbtXd35uZy/RwzuV/8uT51crO9ufQsoXzmryYNv2oS+r75b4bNWKguYLt6uJz2YT\nabtJaN8ur+tpQrnS/bR6/jzr01llPF1H7SHAcYVnf2iGGaKQEs1OIq3Ek4uT76K8Ulz98d1YnLzu\ndZHQCZMdaPm4jSUCF9XaSTR0BvHoBtIr1G0f9bb0unbTJsZ9Zy+i7ZHsVLbT2cWOR6umoYKgsg/y\nxLlYs6MbtW+nKjCzuuJz1IhPqVSiVCpVCEL1ZFS5YqNpGoZhNCwRfq/7vl6ftNuE9nKkQfkzAPB9\nH8Oo/TjYLRrhV3OMZxfHhKfO2Eq0/DToZY4qqsWg1X/KJ1MpJdKwkJbzRC+hIiK3ROgWCIp5ROiD\nivCUxEq0IgurY9mBi+rqAU1DuCt122fNK6Cfeo7gZlw9Wl+BUkJidXVsGyFR03Zq6E7I/jGih7fi\nf4+dw/r0v9gV2alGWRx72InPVq2o8jFTvqkpJ1c3Ml19v9ipWrUb4lOOqBBCVMTpjcrrOsYx6o1j\nwlNnHLUKz9NEwmoiNlLWdvctNDQnibQTeLpDMplE+R6RVyRwi0gkSmqEhk0kNMJUH4aK0PMLmPMP\n0Lz9EREArbf7CeFZV2+yXvgA2j7JDoBw84hMK2p5o68OgGjrInoUt7Lk2Fms/2HvZKca5aTw9a2u\nZl80q4lN9d/lyahy1WazyaiyPqlQKBxK0rYe62MIqis+pmluSnzKU12bEZ9yu/I4r2v3OIiW1nGl\n7Jjw1B3lu6ijgKN6UqorsakRQgiE+f+zd+bxTdT5/3/lbtr0ooWWHlBoC+Vom3LjQ/FA7kMQhUW5\nwYOVBZcbBQWxUH6Liqis+hUR3ZXDYwVWVBYF1sUVXATaUk6hQEvL1dLmPuf3R/0Mk2mSJmmOmXSe\nj4ePXZI2nckkn89r3tdLAbFcAajiUKtMRWmFDCnKWrSS3IJEZIcZgFmVCENsEkQ2K+QmHeS1FZBp\nXE9mdofMooc1vSNsjNoZAIBcAVmUArD4pwVf1j4b5uJfGj8hEgPihuJpcUYOFOOe9ovYoV8+iNOP\nPW35lslktMhpqjOKiDZ2YTYfNnxmipEZ8WEKH08d2vnu1wUINS4tBUHw+BkhdeU/QiFsXEHSGaR1\nWCUDjFYFymraQCpORLJKj2TFLURBC8pqByRSmCJjYZRHQpQsgsRigrz+BhS1lRB7Md1Y3rEjDFcv\nglnDo+jRFyI/iR0AkMQ5H5YoTusI+9ULEGd09ltkxxnOhA+zu8iXzih3Ld+kSNeTlm9Pjp0vaTpn\nEOHDFG1yuZx+b1w5tLNx5delVCp5JXwEwhtB8AiEHKawIWaSOp0u6MKGiCmmsCHilYzpJ63DYrEY\nKXE2XLwpgdUuRkW9ChVQIVpuRnLkHbSR3oZUbIVIIgNAwSqVw9oqDYaEdEhFgFxXC9nNy5A0Uegs\nNmkhbp0Mu+H39JUqBlKJHfCfSTzElJOas5h42K+VQ9y+U0NkRyb33x90AVP4kE2TzJNhdwUFu+Xb\nE/gsfJhjBEwmEzQaDe275cyh3ebCoJbdIcaM+Pji1xWukZdg3xSz38dwfE89QRA8AcDZh0mI/HgW\nsQHuesAEUtiQ/yXChgnZMImwIb5EZFot6c6Jl5sAJDj8rsYsh8bcBhfFrZGsMiJZcQsqUR0kMgXs\ndhsomxUWCrAo44B2cZCIJZCbdZDVVEJW39gpXQQKipxuMBz/HwAgQt0LIqv3U5XdIbIYIU5Og726\ngv6riIiEOC4RiseeCYrYcTgeVrRAr9fTkRQAIW359gS28CFeXXwRPmRwJFP4kEgPMxXozq+LXS/k\ni19XuCO8B8FHEDwCfqc5qSir1QqLxeKXTYtsiiTF0ZSwYf4eM2rALGAl56FQKJDaWo6ym3YYzI2P\n1WYXobJeiUqkI1qRghRVPRIl1xEhj4DNagb1+7HZ7DYYpBEwtMmEODkbMrsF8vqbkN68AvHvNhVi\nmwGIVEEcoYDE1vxCZWfI0trD9LvgEad1BMRiKB5/Nqhih52KYnZGAaBnxhAxFMqWb0/gm/BhChqm\nqDSbGwZrkveepLvI9fLEtiI6Opp+H+7cucMZ2wpCuEaSCC39ZpsgCJ4WTHOjTlypsWEKG2czfJoS\nNt4WsJKF22KxoG2MFBdvKdwen8YkwVlTPM6L4pAUbULbiNuIkxtgs5gcLCPsdjtMkMAUkwzEtoVM\nBMh1dyC7dRkRmdkQyaU+WUh4gkT1+2TqqBhArmgYKhggseOsM4rZ8s20ViDXje0ZZbVaeWN3wBQ+\nTHf2UAkfVzVOQOOIGTOiSYqb7XY7LXqYqS5v/LoMBgOn/LpaAuEs6DxFEDwCTcInYUP+vjfCxtsC\nVmZLdSulDhfhXvDQx0GJUFUfgar6VETJbUiPrkeyshaUszoeioLRLkFtRDvoU7rAYBahlUSDRFkN\nxHYbRDYLRFYLRDYzxBYzRBYjRGYjRGYDHRnyBpFFD4jFkHTsCvmgx/widtidUZ62fLs8RkZHEGmF\nlkgkvBI+zoYABqqo152wZA5JZAtLZ5BZOwqFAmazGVqtlv7ekNdi+nW5Ez4SiaSRUWlL8+sK94gS\nVxEETxDheliRK8KGHIc/hA2J7vgibNxBahRSE6U4VW2HweLdHarOLMGZ2/E4izikxeqRrrwFrTUC\nOpsSWqsCGpMMerMIZP6OXEKh3BaPOGUKOqqqES25A7jSJL9fFxFEEAMQwQ4RRUFkt0Fst0Jks/4u\nmMwQWUyA2QixxQBx34cg6zcEIrlnAo7g75bvpnAmfJibL9dx1xLuy/vC7EzzxmXdF8RiMV2ATAYP\nNkf4NOXXJQgD/8D1vSdYCIInAHC9aJlsUFarFRRFwWAwcCZiQxZLs9nssDl6KmyC3ZkjEomQGm/D\nhRu+heQpiHC1LgqXr9kgjopx83MN3DFI8ashDW1UrZGhvAalyEkB8+8bIAXAQS6KJA2jlSUKSGTy\nu/9J5bCKJbBZbdCZLVCIxE7TLc5avl11RvlLWLqjJQofZxGzULz/pLGARHzY0TZvhI8zvy4ywTpY\ntARhFe7n5wmC4AljmorYkC8Al1JRJLxOagWkUqnDJhsqYeOOBsHTvBk1tbd0iJMqIFF4Fl25oVXg\npjYDabEGpMkrIBeZnf6cWCJ1FDcyBcRS57UjcgUcCmzl8oYQEjN6QK4VcwML9fvPFD7MqANfakOc\nCR/yuWZHbgDXdTahwFWakcxQYgsf8r11JkhJ2oz4dWk0DfVq4WZUCrQMgcVFwu+T1ALxNRVlt9uh\n1+v9tqCwhY2z2Q/siI1IJKIXczKDh9lRRSI9obAd8JT4KAqRcjv0Trq1PMWgM0FWq0FMsnPB4yw4\n2BAdisQ1cTbax2rQPvIGZPK7wkYik0PUxIbvKhVCURRMJhOduiPigcsCghl1MJlM0Gq1kMlkdLSD\ni7DrbAgmkwkA6O8tiVpxtTONKXzIKAGS/iLimBm9dSd8RCIRLXzq6uroBgHBr8t32NmFlvoeCoKH\nR/i7xsbXDz1T2DCH9DFf1xthw4zYsCMGZOM1GAx0SywXv6wpcb6ntQBAU28GRDrEJCd6/bs2uwjl\nd6LRPUMGsYu3xl3Lt6sCVqDBDZvdmcN1iPAhUQcuCB9f6mxI55PZbPZp6nQoYM9QMhgMtBgikSxn\nwoedtiavJRaLofg96kmMSgPR4caVcoNAwvXPTjAQBE+QIBEVT+BK8bAnwoakoTwRNr6kQpibFwlz\nB7KzxVeam9bSas1uF92mluMYJQWxyLOWb9IZ5UnEgGxeZrMZer2eV11RZHMkqa5gCR9/1dk4s33g\n4mffGWzhw/ZJ88ahnax1RMAGyq8rmO9pSxBYXEQQPAHCkxwt14UNOQdXwoYs5K6EjT+n35LCRjLD\nw2w2cyrN1dy0lkZjgdnkpp28ifUxSmaGRqPxueXbHa6Kg/lSI8Nsqfan8PFlno0vMG0f+Cx82O34\nxEaELXzcObQ7Myrlq19XsAUW396fQCAIngAgkUhgs9no2himsCHpAS4IG+KHQ+pkmhI2TS3qwajx\nIIs/02SS2cYaSpqT1qqvtyBCLoLdZoPYybk0dT8YG0khMjIy4J05zOJgLqSKvMGZ8PEkTerPeTbN\nge/Ch2kQy+xKYwofpkM7aVhw9lr+9OsSaDm0SMHz7bff4vnnn4fNZsOsWbOwZMkSv7zurVu3UFZW\nBqPRiIULF+Ls2bN49tlnMXDgQPpLSL74wRQ2zgrWyHGQjiiKoiCTydx2hTBFWSg3OObiyaWIQ3PS\nWrV1ZqQlK2Co0yCqVVzjH2hC8SREixEszcdMM/Jd+JA0KTHKBBCUeTbNIVyEDzl+9gBGckOo1+sd\nXNqdRXz85dcVzBSTkM4KHS1O8NhsNsyZMwf79+9HamoqevfujdGjR6NLly4+vd6ZM2cwe/ZsWuh0\n69YNt2/fRnp6OoYNG4ZevXrREQmr1Uovqv7AU2HDXpzZERvg7iJPRA0RD1ztCgGcRxxCWdjsa1rL\nbrPBYLBDLKZw52adc8HjFgqxSs/qw/yJrxETLkA2VdL6TSwrgLsplWDNE/IVPgsfAHRBMjPVBdy1\ngiFRM3J9yGPORLUzvy4S8fFUhAf7PRNSWsGnxQmeo0ePIisrCxkZGQCAP/zhD9i1a5fPgic5ORnL\nli1Dt27dkJKSApFIhDFjxmD69Olo1aoV/XPN+bD5S9iQkDEzDM+MNlEUBaPRCLPZTC86fPiScKmw\n2Ze0ltXYsNHKZVLU3NQjtXPjn3F3T6hSUJCGMKNHhA8RnlwqLPekzoYIG6AhvWu1WiGVSjlr8smG\n68LHk2tAhgyazWZ6/hbz+Jm/y+zoZCP4dQm4o8UJnsrKSqSnp9P/TktLw5EjR0O+n5wAACAASURB\nVHx+vbi4OAwePNjhMRJi9ZbmCBvSFeVK2HhSXyASiZwWBstkzRuqFyyYhc1EuAWjsJm5oCdGmnEB\nsV79vtXYMDRQJBbhxnXv3dBDEd1xhkQicXj/TSZT0Ewy/VVnw9euKMBR+IRCeHrindbUNZDL5Q7H\nz3RnJ0MMPTEqFfy63MOHz3MgaHGCJxgXWiqV0h0HriCixJmwAeBQzEyiL0xLCE/mqDS3K4SEh4lw\n4MtCQY6ftMOSCFBzByw621TZC3pcpBhKmXfeWqbfBQ9FUbhSqQdF2SESOf6+uwhPbCS3agLYnx9m\ncWpzv3/B8I3iesSkKZjCky0c/HX8TbXeN8c7zdXxM6+pN8KH7dflTPgEM+UTivSSkNJqoMUJntTU\nVFy9epX+99WrV5GWlubXv8GM8BBhQxYFki4ihFLYuMNZYTCp7eHLF4ccP5n86mlhs6dmmK42VW+9\ntUz6BsFjt1MwGOyw6A2QR0V5/PtcifCwIa7y7IiPpxE3f82z8RWmcCNdRcGKWPkDfwgfpsh3NrAy\nkBYX5PhJdyu7ON4b4UOiv8S2gunXFY7WFQLOaXFXulevXjh//jzKy8uRkpKCHTt2YNu2bX79G5WV\nlThz5gxSUlLox8iCbLFY6LsLV8LG0/BvMCCFwTKZjHP1GZ7AbGFlLpqkZsCTaIG3m6q33Vp6XYPg\nsf4+hkdbo0UrbwRPJDcFDwB6zAF7lABzownWPBtfYXpd+TtiFQw8ET5NRc68HVjpT5qao0SEDxFG\nnggfEvHRaDQuLS4Ewo8WJ3ikUinefvttDBkyBDabDTNnzvS5YNkVc+bMwVtvvYWffvoJzz33HCoq\nKlBWVoZhw4ZBqVTCYGio0/D3gLhAwixM5Vt9D1nMyaZpNpthNv9eNyPyvxmpt91aRPCYzQ2bfO0t\nLVqlJ7F+yvnxKKR2RHD/EtDCR6lU0hFD5mYbzOilr5CCWL4LH+bxk/WGnY7iYocaU/gQyxBynOTz\n46nwIfO7iEM7WZMtFgtnhpn6C1IyEU7n5CstTvAAwLBhwzBs2DC/v+7Vq1dx8OBBnDp1ClFRUfj7\n3/+Ot956C5mZmejWrRvuvfdexMfHQyQSwWq10l4yfGjjJXC9vsdZKoo9AZq832Zzg52DXC73+yLn\nTbeWVttQ72U0NQie61U6ZBZ49nei5BZ6jglXPkOe1NkoFAp6uq5EIuHM8EhPYEasmKkurm2UTaWj\nyLA/m81G17Vw6fhdIRbftQxhzuFyJ3zIf2xItJGiKFgsloD6dRGEeprQ0SIFT6A4fvw4vv76a3Tr\n1g3Tp0/H+vXrkZycjHXr1uHIkSN0KBYAHU0gYVU+1Qa4qu8J5uA5V2kQZm1BU4MSyYh6fxY2E7xJ\na2k0vwseY0NO62ql3sVPUmBHehJUDYPaQpVqbG6dDZmxwpXhkZ7C/A4w58iEQvg0Nx0VyOLmQEKE\nCUl16XQ6B683pvDxxKFdIpEgOjrawa9LqVTyZl0WaBpRE1MfudX+wWMuXLiABQsWIDk5GStWrHCY\n0UOmhJIwK1/udAnkTspisfh9023qLpW5oPuaBiF3d0aj0eFOsbnsK1V4lNb64sMjuH7TBLlMBLOl\n4Sv3zPP9IFE4DqkUgQLFEjy9O5iRGm+jC4NtNlvA3KSbqrNh1tv4cg2IMzifpjYTiCUCEc+Bcjd3\nJmzYApMp+L35+0T4kAGpfBE+BOYASRLJJTcwTK9CInxI1BcA/d2J+r12jqwJBoMBFEX51a/LZrNB\no9EgLs7bAaO+YbfbUVdXh/j4ePoxvtRg+ojLExMiPEEiKysLu3btwtdff43HHnsMTzzxBKZPn06H\nllUqFR1S5duCz6zvYaa5vKnv8aTlO1BFk+zCZn9dA0/TWnfqGyI8ZgtFix5dnQYxbRKa/F3SoeWs\nFdyXGqtQ+UYxh0fybWoz0Djiw4wa+ioAPbkO/rR6CUY7eyAhQpOkuvR6PR0FYqbwmN2yrm4MmGuC\nv/26uJDSCvXfDxVChCcEmEwmvP7669i7dy9WrlyJ/v3708+RaceBiJYEA+adLnOxYT7vScs3WdRD\nUTTpr4hVrU6EQ2cj3P6MzWLBe6//l/53XKwUd+qsGDWqPdK7tnf4WbGIgp26exxSMYUR+UawD40d\nbXCWqvN0nk2oroPdbofRaOR1tMFiscBkMrlNlzKvAzt6FurrwI74kMYKvsC+BsyoG1mDyP5H/n+U\nm+5IEgW2Wq0++XURrFYrdDodYmO9G1DqK84iPGSyeJji8qIIgieEVFZWYtGiRRCJRHjllVfQtm1b\n+jky7ZiEU/k2K4LcRZHwMnORYXaDMKM3XNvQ/JEmaiqtZdbq8ME7x+h/t01SoOq6Cf37JKLgwa4O\nP8sWPK2ibBjQ2ezytUmI32g00u83M3LgjzRIoGFuuny9ASAbJakpAxytErh+Hdjik+/Chxw/ezq9\nTCaDUqlsMmJGIj5E+HgbCQ624HGWQmupgodfu2iYkZqaik8//RSHDh3C1KlTMWLECMyePZtO25AU\nhTdD84KNsztU9oZKnmeOiecDzGvAbMX3Rnw2ldayGEwO/45QNPxs5TUdmmrUYk9YdldnQx4jrfl8\nKcRkplmCbVfhK87SUQAcBA7ToJfr3wcyu4YIH5Ju5LrwYa9NYrGYvpEEQKe5mJ8lMjCWKTzZEKNS\n8lre+nUJbumhQxA8HOD+++/HwYMH8e6772L48OFYunQpHn74YYe6AC7UNbhKRQFND4gjG5ZOp+Nk\nC687mDVWer3eoROkKZrq1jIZHS1IZLKGBfNalRGUzQYR42+IRHCIuapkZhiNJof6DndDK0mqzmg0\nwm638ypN5KpGKZSfI0/TUcwZWwDoyKfdbqcHYPIBLgsfd2Kf2bFJ0lAkcmixWByKmJmT8ckNgivh\nI5E49+siUSJ3hPJ7x5fvfCAQUloc49atW3jhhRdw8+ZNFBYWIuN3V3egQXAYDAZ6oQzUYu8qYsMu\nmGSG3j09DmZ4n0vzezyF2QniaWGzu7RW5dmr2PXVJfrf3TqrcOqsFgAw/Wk1lPEx9HMSEQUbI6XV\np/0dtIq6e008TYMwUxR8TRORVnCKooJuEOtuGjSzW7Cp12OmfPn4XWDWugVL+HjSgs9Olbt7LSJW\nyJrKjPYwo3NEFLl7PfK9MplMbo1KSfdXTEyMk1fxP+wUGknrhTFCSosvJCYm4v3338exY8cwZ84c\n9OvXD/Pnz0dkZCTEYrGDKWZzRYOnLd/+7MgJ9fye5kKKH5lWFU2JhtR4G85fd35+Rp1jDY6IcY9R\ne/OOg+ABI8IjAoWkeAUkPrxt5E6dLPZms5lXE4PddUT5yyCW/b1gb6jN/U6wO4rYw/P4QFOWD82l\nqRb85k6EJtO/yfRsEv0k14VpW+FPvy4hpRU6BMHDUXr27In9+/fjk08+wYgRIzBv3jw88sgjLof+\nuesY8KblOxidIL6IBq7BbsV3V1uSEmfD+evO01r19UbWI3cXwzs1RqQwnmG+anQE5ZPYYeKvVvZQ\nwfwu+JJuZAsb8r1gbqi+On57cw7ks09GInC1Xs8VzRU+7kRmoFrw2TD90sj0bH8IH9LeT2xViPAJ\n9mBKgQaElBYPqK+vx6pVq3Dq1CkUFhY6eH+x0xPMImFXrcZc64xih5X5VN9DIKIBAL3hMt//Q+dj\nYLA03oT/8/VJFJfW0f/unqNC6ZmGlFZOp2g8NPZu6bJUQsFqa3hf0ltZ0TPDsf6nOTQ1ToAPMNNE\nzGiJv9NRgT4HMoCRb8KHwEx1sYWPJ1EbLqxP7oYwOrPoaCp1RqJH5OetViuio6ODci7sFJqQ0hLg\nNDExMXjttddw+vRpLFiwAJmZmZgyZQrKy8tRVlaGGTNm0JEG4G73ARcNAJ1BIg1Mmwe+TJwmNQUU\nRdELmU6nAwCHRbxtrBUXbzU+H63GUbTYGbcYVyscLSaYVzBW6d97EWeRQ76lWADQYtlisUCr1dKP\n+zMdFUiYAxiJQSbf0r5EMMtkMto6h7zPzqxfQi0yneFqCCM74sP063JnVMq0wCBdYmSqONfOPZwR\nBA8PKC4uxg8//IBTp06htrYWmzdvxscff4yuXbsiPz8fVqsVsbGxEIvF9F263W7nRPeEN3C9vscT\n3yjynjPNYeVyOdITKFy81fg161iCx2q10/9fp7fBrNNDHhXZ6PdiI+2NHvMHzlIsXLsOQNPXgqRA\nrFYr7YDNtXNwBxENzMnTXLwOgOtrQYSBXC6nZ94w2/H5ABE+RNiwr4MvwgcALXyC4dclpLTuIgge\nHnDixAmcP38ePXr0wOTJk9GtWzdERkZi3bp1OHjwICorK5GUlAQA9IwV0jbKt9oY5oYbqnPwxJjU\nVfs9gZjDkkVSKZcjUi536NaiKDvq660Ov2c2Oy5OulotLXgcIzyBETwErlg9NFVY39S1IJstF8Y6\n+EKgC4O9oSm7i6auhSvRwAeaug7eCh9mVJtpWxGodY4vn/dAI9Tw8Jzy8nIsXLgQMTExePnll9G6\ndWv6Ob5PawYCW9/jbgF3Vdvhy98m53D2uhJX7twdXW81mfH+hp8dfja5tRzVN+92bg0dkoaO6o4A\nALmUgtkqglJux5DujgMLA02gW9k9dfwm18SXa8F3uwogeK3grgq6mbWAvl4LdzU+fIF5DuzUL3nv\nyPvFdmgnv6dSqQA4TuMm65w/P5ukro3UDDEnfocpQg1PuJKRkYHPP/8c+/btw8SJE/HYY49h1qxZ\n9JeMOa1ZIpF4NBSLS/ijvsdT36hAdamRc2iXaMeVO3cft5oaixaD0ebw7xvVOnT8/f+TI/J3/Y4n\n+LOV3ZN0VCDqz5jnQOoy+BYBZUYamMP/fN0gXUXQyN8i18JdNLM55xAOER9nNW/MiA9JbZM1mW0e\nSoqI5XI5vc6RVJc/hI+Q0rqLEOEJIywWCzZu3Igvv/wSL730Eu677z76OWb3B1/vbtldOM5qATyp\ns2EPTQwmzCGEddU38fetpx2el0oAK0PztE6U4/GZ/QAACikFk1WEzskWdElxTIUFG1Ir5i566Ek6\nih21CSZEvNlsvnulhRp33URMmpoK7Y8Imq+EQ8SHub6yRyOwIz7kfScRHmc016+LCTui1JIjPILg\nCUOqq6uxdOlS6PV6FBYWIjU1lX6OTGu22Wz0RsW3RZ6iKBgMBjqczFxEuLKZuuJUpZSeyXPj0jV8\nvvNCo59RyMUwme/W6Dw7vz/EMhktePp2NKFtXGBreDyBtLIbDAZ6EWWnCUO9mXoCU7zxdSwCW/hI\npdIm2/BD3frNJlyED3OCNomM2Ww2B6NSEvUViURuz5GUJVgsFq/8upgIgucuQkorDElOTsZHH32E\nn376CTNnzsTAgQMxd+5cegFhGmJyfeZKU3U2ZCEh6RUuLeDOaJi63LDYmI3OozSRkRIHwaO7o0F0\n61b0v0OR0iI4Sw0yHyOLKR/GIRCkUqnDAEZSOM914cNO1RLI4DzmteCi0GTD91QXWavIiAdSSgDc\ntaZgpk8tloYOTXLT5uwcJRLf/bqYx8Xl6x5MuP8pCgJGoxF9+/aFWq1G165dsWzZMgBATU0NBg0a\nhE6dOmHw4MG4c+duAcbatWuRnZ2NnJwc7Nu3L1SH7pZ77rkHBw4cQNu2bTFs2DB888039HNkpLpU\nKoVOp6OLm0MFWSxIDluv10Oj0aC+vh56vZ5eHORyOaKiohATE4Po6GjExMQ4dDuQO1muEhdJIVLe\ncIx6rdnpzygjHBenulsN82REIkAmoRCpCPx1Ihup2WymTV/r6+tRX19Pp4GIWI6OjkZsbCxiYmIg\nk8lgNpthNpt5VTtANimVSkXXx+h0Oto9O9SQaJrZbIbBYIBWq0V9fT20Wi39XhPhFhMTA5VKBbFY\nDLPZTG/CfNn0iPAhEQmtVsu57zZpszeZTI3WKqvVSnc5qlQquhWdpNaJQzuJsJHrarVaXZ4jiQgR\nP6y6ujrodDoHoSvQNEJK63f0ej0iIyNhtVpx7733Yv369di9ezcSExOxePFirFu3DrW1tSgqKkJZ\nWRmeeOIJ/PLLL6isrMTDDz+Mc+fOcfoupLa2FitWrMDly5dRWFiIrKws+jlm90owahkCUWfD7HTg\n+oRaktY6frAM/z3SeDhPRpoC5RV3C5rv6dca6vu7IEJGQaWw495OzoWSL3jq+E2uhSfXg91JxNd6\nMfJ58sauwh9/lxm1ceXlxbwe7iCbMp/rlEjhLxnUF8yIj6et+E1N6SafJ5PJ1CiCSFLxROwwX9MV\nTKNSmUzmtpGD3KBERTV0iAopLQFERjbMOjGbzbDZbIiPj8fu3btx6NAhAMDUqVPxwAMPoKioCLt2\n7cLEiRMhk8mQkZGBrKwsHD16FP369QvlKbglPj4eb7/9NoqLi7FgwQKo1WosWrSIvhMkYo904PjL\niLG582w8hXQ6MGcQcXWzJWkt9pRlgiLCceG6VqmFGg2GobGRvt+DNDXWn4Tdm5uOYncS8bEbivl5\nCtTkaU9sFprr5eXKI4pPwoc5hJFMnw7ETY0zockcoMheq7x5/5ifJ7YNDUlpMe1obDabW+FD1mzi\n11VfX9/Ir4t5XgINCILnd+x2O3r06IHffvsNs2fPRrdu3XD9+nV6oF9SUhKuX78OALh27ZqDuElL\nS0NlZWVIjttb8vLysG/fPmzfvh2jRo3C7Nmz8fjjj9OhVpIe0uv1Hi8qns6zCcZIf9K2TgYXajQa\nzhVnk7RWvcZ5pEbKcgWtqDLCbrMBMpFHAwebuisl1ySQZowA/13ZAf+Yezozx3R1PQJVYM8UPiQy\nwLdr4S/h09T18OeNGBumhQvboZ35fWQeG7kRcSV8lEplI6NStgkwuw2+pSIInt8Ri8U4ceIE6urq\nMGTIEBw4cMDh+aY2aT59iEQiESZOnIhRo0ahsLAQjzzyCAoLC5Gbm+s0UkIWfMD5XWmw5tl4A3MG\nkcFg4Jw/V2q8DXfqnEd42Oua1UrBVK9FpEIFpcQAimrYpDxNR4X6ejCvBdls+TYIk+2H5Kqg1pMZ\nQ6G8HuSmhohQk8nEu840b4SPJ1G0UFwPZ8KHKULZwsdbvy6dTkeLISHCcxf+rDhBIjY2FiNGjMCx\nY8eQlJSE6upqJCcno6qqCm3atAEApKam4urVq/TvVFRUOLR+8wWVSoW1a9fi/PnzWLBgAVJSUrB8\n+XK0atUKN27cQH19PdLS0ui7EODuWHR/pT8CDSnOtlgsPt2dB4qUWCs0GucFsc7eSs0dHRKTVFBI\nzKivb+iuIwtZoAbE+RtmBJEPHYLOIBuLTCaj76jJ+x2sKEFzYUZzmVEGPgsf5rUgqSFntU+Bjmp6\nCxE+JNXFjPiwjUq9FT4kFUtRFD0ygi/XNlBw46qHmFu3btEdWAaDAf/6179QUFCA0aNHY+vWrQCA\nrVu3YsyYMQCA0aNHY/v27TCbzbh06RLOnz+PPn36hOz4m4NGo8Ht27cxevRoXLt2Dfn5+WjXrh0K\nCgrwwQcfAAAUCgVdC0OmNZO0EdcWc2eQqFV0dDTEYjG0Wi09dyVUxKuApDYKp885a9S4ca0OEVIr\npBIxHW0DGmoAoqKi6OvB9Q2LXAtmh6Ber+dUBw4bZx05Wq0WNpsNUqmU7qCSyWSIjo6GSqWia5i4\nfD3IZhsVFYWIiAi6M81isXA6KsDsIDQYDHQXJykAJl1rCoWC7uaMjIykrwdXxA4bIkJJPaVGo4HJ\nZKJLA0hEiDQFkA48Z5BUbGxsLKRSKSwWC+rr6+nXa6kIER4AVVVVmDp1Kn1HMHnyZAwcOBAFBQUY\nP348Nm/ejIyMDOzcuRMA0LVrV4wfPx5du3aFVCrFpk2bOLuouaO+vh5t27ZFTk4OcnNzMWDAAMya\nNQvHjh3D999/j0cffRRKpZL+eWY4n6sFwe4gdz9yuRwGgwEajSaknSv39Y3Dzt3XGz1uNjeO/Ny6\naUS8SkwX15NNltTGcCld5wns2hguzFzxZDK0qygaSRHx1bCXmV7h0iwiZ7Vo7KgNqQ0knxsy9Zjp\n/can7wapt2JaoJD1lhnx8caolPwM8euKi4sLwZmFHqEtvYVDugHYXL16FYsWLYJMJsOqVauQnJxM\nPxfsNvZAwazv8UdXmitc1dn8dtmIJa9ebvTz2R0jcf6i3uGxaJUEr6/rjfaJjnM3PLHb4APBbGUP\npM1CONhVsFuoA/ndYP7Npjy9fBlVQSIh/u6wCybsKdpMw1hm6s6V8NHpdPRoBSLeW2pbuiB4BNxy\n4MABLF++nO7oYn5RuFoQ7A3+nN/jrPvDWR0Bc2bHtHklqLruaCLaPi0ClyuMjV5/85v5SE+WN3qc\n/G2+e6UB/ndlZ2+kwbJZCAe7ikAJH3dO7IGwIQlH4cOOhrKFD/kPcBQ8AGhhFMYIgkfAd6xWKzZt\n2oRt27bhhRdewMCBA+nnmBGGUKckmoO3gsGTbhzmAu7qtTZ/ehU7dlU7PJbUWo7rNx1b1sUi4B8f\n9YAywv1C7W/BECpIpMRut3vUPs0e2OfMz4stNgP9vjDTjlxJEfkCewgjOQ9Pfs8fQ/v8eR7hIHzc\neY6xi7VJGksQPL8/IQgeAU+5efMmli1bhtu3b2PNmjVo3749/RzzS8jXUD7QOF1HilLd1XWw70i9\n4fxFHZ5bVubwWHSUBBqdY+oqta0CWzbkefy6xHSQzxEGAE6HtLlKRwHweVJ3IAlFiigQsI0xmR12\nnrR/ezOtO9Dn0RKEj83W4DNIbn7I86TmKYwRBI+A//jf//6HRYsW4Z577sH8+fMdCpuZGy2fZq2w\nIwTE2Ri428br71A7YdrcYlxjpLXE4sadWvf3j8eLz2fBG9gRBr5ttOSaWK1WWCwWB18rX2wWQk2o\n7Cr8CYnakI2WfAfYQxR9vQEIJuEifEjHmtlspsUkmWjPtochLfAttYaH2ysEj7l69SoefPBBdOvW\nDd27d8fGjRsBACtXrkRaWhoKCgpQUFDgYOjJB0NSAOjVqxe+//57ZGVlYfjw4di1axfd6kiGzCkU\nCuj1ek62HJNN1GQyuTRiJCalJAwMgB7I6O871Pv6xTv8224HlBGOX82O7SO9fl3SfaNSqSCXyzl7\nPQD318RisdDjEEhLPhEMXG81ZsIcj8BsyeeqAaQrw1Iy24WMQSDGpUql0qH9m8tiB7jbtUnGVXD9\negCNW/K1Wi39HSHvuc1mwzfffIPy8nJER0dDqVSisrISe/bswapVq7B8+XJOn2MgESI8AaK6uhrV\n1dVQq9XQarXo2bMnvvrqK+zcuRPR0dGYP3++w8/z0ZAUaHDtXblyJU6fPo01a9YgJyeHfo55BxWK\nehJP2oyZdTau3utAFwQ7S2slxMtwu/buJObCZZ3QWx3brL/DPA+ZTIaIiIigb0ruCrudpaOcXRP2\neYRD3Vgoz8PT+idX1yRcIiXsjsdQn0dTxd3sa0KO/8yZM/jb3/6Gzz77DAqFAvHx8ejevTvUajX9\nX+vWrTkvSJuBYB4abJKTk+lWbpVKhS5dutB+W85EJh8NSYGGydRvvPEGysrKsGDBAnTq1AnLli1D\nTEyMw1Rapimpv8OpnizYYrG4WcZ/ZH4P8efyZ51SdscopCQpHNJaDcXJdwVPZob3ER42zs4jkELU\nlRljc8f6M88jXOZCEYuEQAsfd11rvk5Qd2ZrwMcRCczZUGRKcTBSj+z1y1lxN3v+E0VRqK2tRUlJ\nCYqLi1FcXIzy8nLI5XJ06dIFarUaEyZMwC+//IINGzagpqYGAwcORM+ePQN2HnxAEDxBoLy8HMeP\nH0e/fv1w+PBhvPXWW/j444/Rq1cvvPbaa4iLi+O1ISnQMIxx7969+OKLL/DII49g5syZeOKJJ2jB\nQSwFmMLHl0UkWI7fziBmmP52lQca0lrMbi2F4u5G0SpOhlZx/hOJzkw9m1PY7Gk3jr8ncxOvIKa1\nAB8709gWCf4ScJ60f5Mohj9q0jz1G+M6gRQ+zgRnUzcBdrsdV65coYVNcXExampqEBcXh/z8fKjV\naowdOxaZmZmNjm/AgAGYM2cOPv74Y9y+fbtZxx4OCCmtAKPVavHAAw9g+fLlGDNmDG7cuIHWrVsD\nAFasWIGqqips3rwZf/rTn9CvXz88+eSTAIBZs2Zh+PDhePTRR0N5+D6h1+tRVFSEH3/8Ea+++ioK\nCgro55hhY3eLuqeO36EqWPXn/B4AuHBJhz8uvZvWysmKwpkLOgBAL3Us1izr1OxjdgU5D08Km121\n47OLI0PRjeNtKztX8Xa0ANfav5nn4aqLiE+4605zR3NSUidPnkRpaSnKyspgNBppu5+CgoKWkJJq\nLkJKKxRYLBaMGzcOkyZNon24iAEp0CBqRo0aBSB8DEkBIDIyEq+88gouXbqEhQsXIj4+Hi+99BIS\nExPpuyeS5qqvr6drSdjRGy45frMhBajERLK5d+VZHRzTWlLJ3dfI8kM6yx3EVsBisUCv19MRMgBN\n2iwEexN1B4kkkoGY/ozABRN2BI64aJOCbWdpQvZ3JVizhpo6D+IpFs4RH19TUnV1dSguLqbTUhcv\nXoRUKqVTUpMmTUJubi4iIyM58f0KB/i1EvAIiqIwc+ZMdO3aFc8//zz9eFVVFdq2bQsA+Mc//oHc\n3FwADYakTzzxBObPn4/KykpeG5ISOnTogC+++ALfffcdJkyYgNGjR6NHjx44ffo06uvr8eyzzwIA\nPWeFbLx8MSUF/Fvfw0xriRj7gT/qd9zBFDPET8liaagfIjM7uLKJeoJUKoVKpeK1KzuJvMvlcnqG\nD/meBDJNGAicCR+2RQIfIDc5EomEPg/mc+5SUlevXqXTUSUlJbh16xZiY2ORl5dHG1VnZWXx6jPK\nRwTBEyAOHz6Mv/3tb/QHGgDWrFmDbdu24cSJExCJROjQoQPee+89AOFjSEqgKAqfffYZ/QWvrq7G\nyy+/jPbt26N79+4YMGAAnQYSiUQOaRU+tLSy8Ud9z/39W90VPCL/R3g8JDPfvwAAIABJREFU8Ssi\nglMkEsFsNtPtrny7JswIHLkr52ohrSdD+5RKJd0NRYQp366JK+HD1WLzplJSCoUCdrsdtbW1WLp0\nKebNm4e8vDw6JVVSUoJTp07BZDIhLS0NarUa9913H+bMmYPk5GROnnO4I9TwCASMWbNmITU1Fbm5\nucjLy0NmZiZu3LiBJUuWwGw249VXX0VKSgr98xRFwWg0wmKx8LL4lNCc+p5p84pxrdqE3BwVSs5o\noYwQ46uPenj1PvjTZoFZF8Pnic1caAF3lvpw5rXmbmgf34dJMmHWKoVS+HiSkmJ/XyiKQn19PYqL\ni3HixAkcO3YMP/zwAyiKwoABAzBo0CAUFBQgNzcXUVFRvPzO8Bhh0rIAtzh8+DCWLVuGQYMGYc6c\nOXTNCMDfac1sfJnf8+G2Cmz/qgpdsqNw+rwO3Tqr8MYrXdz+jWDYLATLWT7QBMuVvalunOZel3Cx\nqwAcTTEDfaPjSZcUu+jebrejsrLSISV18+ZNREdHIy8vD2q1GgUFBUhPT8eWLVuwbt06qNVqbNmy\nhW5QEQgqguAR4B42mw3/93//h61bt2LRokUYOnQo/Ry5kzUYDJxNRXgK25/LXX0P6dbK6hCJC5f0\nGD2kDebMaO911CYQ71U4WCMQ/LXJMq8LW3QG47oI18Q1vnRJWa1WnD17lk5JlZaWwmg0IjU1lRY2\narUabdu2dXlsRqMRf//73zF16lTeilCeIwgeAe5SU1OD5cuXo6KiAoWFhcjMzKSfC/SU42BCUhFN\nRa6mzSuGRAJcrTRhzvQUPHRvrF+jA82FC+khf+FNK7snNVChui5cmxLcHMg1sdlsHrfle5KSYl4X\niqKg0WjoDqmSkhJcuHABYrEYnTt3picS5+XlQaVS8XbNaaEIgkeA+5w8eRILFixAjx49sGjRIkRF\nRdHP2e12GAyGsKglYd6RKxSKRpGbv31xAz8eqcetGiveWJWFzlnRnDTHZKaH+FxzBTSeRSQWi5sc\n2sesteHKeYejGGUKHwA+paSuXbvmkJKqrq5ulJLq3LmzEJEJDwTBI8APKIrCp59+io0bN+K5557D\nuHHjHDYTsjHxrdXYVScOAHo6NFmsL10xYvErZ2AwUdi1tQfkMm5vWMyNyZ+WG8GAHbWxWq10DRTz\nunBp3pAnhMPQP5KSslgssFgsdKt+Uymp8+fPO6SkDAYDUlJSkJ+fT6ekUlJSeHMtBbxGEDzhxNWr\nVzFlyhTcuHEDIpEITz/9NObOnYuamhpMmDABly9fRkZGBnbu3Im4uDgADU7sH374ISQSCTZu3IjB\ngweH+Czco9Fo8Oqrr+LXX39FYWEhunfvTj/HDN+HygTTFc7MMV1NiCZDy5zV90x/vhgKuRjv/r/u\nTf9RjkBSdgA4WUTribcXuUYWi4U2w+R7/VgwirSbg6cpKfJdmTZtGh599FGMHDkSp0+fpqM258+f\nh0gkQqdOneiUVH5+PqKjozl3zgIBRRA84YQrJ/YtW7YgMTERixcvxrp161BbW4uioiLeOrEDwLlz\n57BgwQKkp6fjxRdfRHx8PP2cN8XAgcCfNgvs+p5PPq9GvcaKeU9lBO18/AEXimib2kDZotNdzU64\npIe8tasIFL52SVVXV6O4uBgnT57EuXPncOLECVRUVOD+++/H448/jp49e9IpKUHctHgEwRPOjBkz\nBnPmzMGcOXNw6NAhJCUlobq6Gg888ADOnDmDtWvXQiwWY8mSJQCAoUOHYuXKlZx3YidQFIU9e/Zg\nzZo1mDJlCqZMmeKw8QQ6suCJVxG7psPXv0PEwpVKC8orrBg5KMmv5xIs2FG4QIkFZx1S7A2UWXfj\ny7XhQ5TEU4KZfvSlS8pms+HcuXN01KakpAR6vR5t27aljTILCgqQkpKC/fv346WXXoLBYMDOnTuR\nk5MTkPMQ4B2C4AlXysvLcf/996O0tBTt2rVDbW0tgIaNoFWrVqitrXVqTDps2DCMGzculIfuNUaj\nEevXr8e+ffuwevVq9O7dm37OX2ae7hZpZ5GBQM1wMZlMqLimRWrbKE6l7LzFX2LB07Z85gbqb4I5\nLybQWK1WmEwmvxit+tolpdPpUFpaSoubc+fOAQCys7MdUlIxMTFuo3B79+7FgAEDEB0d7fP7IRBW\nCOah4YhWq8W4cePw5ptvNvqyN7UZ83GhjoiIwPLlyzF16lQsWrQImzdvxqpVq5CUlORgJWA0GqHV\nat1uSq5ajN0Z/gUL0inUMaP5/lyhhtgJeOM15iztwR6mSFqvg9n+LZFIHEw9mfYhfLsuxJqCREdN\nJpNH5+JJSortJUVRFK5fv46TJ0/S4qayshJRUVHIzc2FWq3GvHnzkJOT4/VnXCQSYcSIEf54SwRa\nAILg4SnEiX3y5Mm0EztJZSUnJ6Oqqop2Zg8nJ3YASE9Px/bt2/HDDz9g0qRJeOSRR/DMM8/QiyXZ\nYA0GA72Qk1oAVy3GXDTHZLpmk3Ph6+RpieSukznZYJVKJcRicZND+5idUlyAnAu7lZ2P10UqlTpc\nF+a5eJKSkslkDhE1q9WKCxcuOKSktFotkpKS6KjN9OnTkZaWxpnrKdByEFJaPISiKEydOhUJCQl4\n44036McXL16MhIQELFmyBEVFRbhz545D0fLRo0fpouULFy5wZmNvDlarFe+88w527NiBhQsXIjEx\nESUlJVAoFBg9ejTd+k1MSZmbJ5/Onzl5mo8TdT1t/+bbtWFaPPBtVAKBpKSsVissFgusViv9nLuU\nlF6vd0hJnT17FhRFISsrixY3arUasbGxvLmeAmGBUMMTTvznP//BgAEDkJeXRy8ka9euRZ8+fTB+\n/HhcuXKlUVv6mjVr8OGHH0IqleLNN9/EkCFDQnkKzUan0+HAgQP0MLHjx4/jt99+Q4cOHZCbm4uh\nQ4diwoQJ9OZjNpvDYlozu3OIi/U9zuo5nNVBMdu/+d4FxZ50zNVWdk9SUmTo4rFjx7Bhwwa89NJL\naNOmjcPgvoqKCiiVSnTv3h0FBQUoKChATk4Or+uaBMIGQfAIhBcVFRWYOXMm8vLykJ+fj7y8POTk\n5ODkyZNYtGgR7rvvPjz//PNQKpX075BpzTabjU4N8XVx5kKbcVMzhzztXgunLigutbJ72yUFNBRm\nk5RUcXExzp8/j4MHDyI2NhZjx47Fgw8+iIKCArRr146Tgk5AAILgEWhJ2O12fPTRR3j//ffx5z//\nGSNHjnTYQElqiK8pCCakvifQzvKuJkW7m5/iLcwuKL4WaROCKeI8EZ7OUlIGgwGnTp2iozZnzpyB\nzWZDZmYm1Go1evTogfz8fIjFYmzYsAEbN27EpEmTsGHDBt5eF4EWgSB4BFoed+7cwcqVK3Hu3DkU\nFhaic+fO9HNcntbsLaT+wh+WG85ajMlm6s3QvubAHMJIhA9f8Xcru6eD+5gF+BRF4ebNm3TUpri4\nGBUVFYiIiED37t3p2TZdunRxK8xu3bqFf//733j00Ud9Pn6BwHH27Fn84Q9/oP998eJFrF69GpMm\nTfJ6Av+xY8cwbdo0GI1GDB8+HG+++SYAwGQyYcqUKfj111+RkJCAHTt2oH379sE/WfcIgkeg5XLq\n1CksWLAAXbp0wZIlSxATE0M/F+ppzf7EWxEXjKF9zTkXf4k4LsAWcZ6kU31NSV28eNGh3qa+vh6J\niYn04L4ePXqgffv2QkoqjLHb7UhNTcXRo0fx1ltveTyBn9hz9OnTB2+//Tb69OmD4cOHY+7cuRg6\ndCg2bdqE0tJSbNq0CTt27MA//vEPbN++PdSny0YQPAItG4qi8Pnnn2P9+vV46qmnMHHixEZpLi77\nQHkD28WcREhCObTPV/hSDOwJTBHHbP/2NSVlNBpRVlZGG2WeOXMGVqsVHTt2pKM2arUa8fHxvBXx\nAr5BhrP++OOPyMnJ8WoCf/v27fHQQw/h9OnTAIDt27fj4MGDePfddzF06FCsWrUKffv2hdVqRdu2\nbXHz5s1QnqozhMGDAi0bkUiExx9/HCNGjMDatWsxatQorF69GgUFBQDuziOxWCzQ6/W83VxJSopp\ntkiEHHOuTbCH9vmKSCSiU0FkoCRfC5vJaASlUgmz2QydTufwHHNwHzsldfv2bYeU1JUrV6BQKNCt\nWzeo1Wo888wz6Nq1Ky/fFwH/s337dkycOBEAcP36dSQlNVjUJCUl4fr16wCAa9euOdgLpaWlobKy\nEjKZDGlpafTjqampqKysBABUVlYiPT0dQMOaGRsbi5qaGrRq1Soo59VcBMEj4MCMGTPw9ddfo02b\nNigpKQEArFy5Eh988AFat24NoKHFfdiwYQD458IeGRmJ1atX4+LFi1i4cCESEhLw0ksvISEhwetp\nzaGmqZQHmXJMOofI+fExNUQGSioUCt5Mn27q+igUCtjtdty8eRNr1qzB0qVL0a5dO1y6dMkhJVVX\nV4eEhAQ6JTVhwgR06NCBd2JcIDiYzWbs2bMH69ata/QclwarhgJB8Ag4MH36dPzpT3/ClClT6MdE\nIhHmz5+P+fPnO/xsWVkZduzYgbKyMt65sHfs2BFffvklvvnmG4wfPx4TJkzAzJkz6Ttrph0CsRAI\nVfGsJ+alTdlgyOVyOqoQ6nbp5kCmT3triRBIPElJsaNqRISeOXMGv/76K/R6Pfr37w+VSoX+/fuj\nX79+GDx4MD1MtCVvUgLe8c0336Bnz570Dao3E/jT0tKQmpqKioqKRo+T37ly5QpSUlJgtVpRV1fH\nm+gOAPBvxRMIKPfddx/i4+MbPe6s1mvXrl2YOHEiZDIZMjIykJWVhaNHjwbjMP3GsGHDcOjQIZjN\nZgwfPhyHDx+mnyPeSRERETAajdDpdPR04EBB6jxMJhP0ej20Wi3q6+uh1+thsVgANIgXlUqFmJgY\nqFQqWpy52/RJakilUgFo8GEzmUxOrysfIClIcm30ej09VTuQkEJvs9kMg8FAXx+dTgez2Qyg8fWJ\niIiARqPBv//9b2zcuBEzZ87EoEGDMG7cOGzbtg1KpRJLly7FiRMnMGbMGPrz+NBDDyExMVEQOwJe\nsW3bNjqdBQCjR4/G1q1bAQBbt26lrYhGjx6N7du3w2w249KlSzh//jz69OmD5ORkxMTE4MiRI6Ao\nCp988gkeeeSRRq/1+eefY+DAgUE+u+YhFC0LNKK8vByjRo2iU1qrVq3Cli1bEBsbi169euG1115D\nXFxc2LiwE65du4YlS5bAarVi9erVSElJoZ9jDpTzRw2Jv4b2+Qpzfg/fW78DVdjsS5eU3W5HeXm5\nQ0qqtrYW8fHxdEqqoKAAmZmZLo/xwoUL+Oyzz7Bs2bJmn4NA4Lhz5w5mzZqFU6dOQSQSYcuWLcjO\nzg5pC7hOp0P79u1x6dIl2lC6pqbG6wn85JgMBgOGDx+OjRs30sc0efJkHD9+HAkJCdi+fTsyMjL8\n/t42E6FLS8Bz2ILnxo0bdHh0xYoVqKqqwubNm50KnuHDh/N+Tsd//vMfLFu2DEOGDMFzzz0HhUJB\nP+dLG3swhvb5Qri1fvsqSn3tkjKbzTh9+jTdJVVWVgaLxYL27ds7dEkJUZrwZOrUqbj//vsxY8YM\nWK1W6HQ6FBYWtrQWcC4idGkJ+A7J+QINombUqFEAws+FnXDvvffi4MGDeP/99zF8+HAsXryYvvNh\n1pAYDAaYzWYolUq6K8qZuGnKYTpUiEQiyGQySKXSsKjvIa3epPZKo9E0Kjr3ZHCfsy6p2tpalJSU\n0JGb8vJyyGQydOnSBWq1GlOnTkVubi6USqUgbloAdXV1+PHHH+n0DulY2r17Nw4dOgSgQRA98MAD\nKCoqcpr+P3LkCNq3bw+NRoM+ffoAAKZMmYKvvvoKQ4cOxe7du7Fq1SoAwLhx4zBnzpzQnGwYIQge\ngSapqqpC27ZtAQD/+Mc/kJubC6Ahn/vEE09g/vz5qKyspHPA4YBEIsHs2bMxfvx4LF++HFu2bMGa\nNWvQsWNHAIDFYoFUKoXdbodWq6U3RrJxEgdwPrR/k/oemUwGk8nE+e60pmCLUuJkTsSOO/Fpt9tx\n5coVnDx5kk5J3b592yElNXbsWGRmZvI6GibQPC5duoTWrVtj+vTpOHnyJHr27IkNGzYILeAcRxA8\nAg5MnDgRhw4dwq1bt5Ceno5Vq1bh4MGDOHHiBEQiETp06ID33nsPANC1a1eMHz8eXbt2hVQqxaZN\nm3i5QbojISEBL7/8Mr744guMGTMGSUlJuH37Ni5fvowvv/wSvXv3hkKhgM1m4/20ZtLGzu5O47rJ\nalMpKbFYDJvNhpKSEkRERKBnz550SurUqVM4efIkSktLUVZWBqPRiHbt2kGtVuOBBx7AvHnzkJSU\nxOnzFwg+VqsVv/76K95++2307t0bzz//PIqKihx+pqW3gHMRQfAIOLBt27ZGj82YMcPlz7/wwgt4\n4YUXAnlIIWPp0qXYsmULLBYL8vPzMWLECNpNetmyZRgwYIDDgkYKgU0mU0CNPAMN6U7jYn2PJ3YY\nzlJSdXV1+OWXX7BhwwakpKRAIpFApVLRKalJkyYhNzcXkZGRwiYl0CRpaWlIS0tD7969AQCPPfYY\n1q5di+TkZKEFnMMIRcsc5sEHH8T06dMdZuIIBI/Tp09DpVIhLS3NYRPUaDRYvXo1Tp48icLCQnTt\n2pV+jqIoWCwWGI1G3k5rZsL25wpmfY+vXVJXr1516JK6desWYmNjkZeXh65du+Lnn3/Gzp078fTT\nT2Pp0qWIjY0NyvkIhBcDBgzABx98gE6dOmHlypXQ6/UAGqLCS5YsQVFREe7cueNQtHz06FG6aPnC\nhQsQiUTo27cvNm7ciD59+mDEiBEORcslJSX461//iu3bt+Orr74SipY9Q+jS4htr1qzBxo0b0b9/\nf5hMJqxZswZqtTrUhyXA4OzZs1iwYAEyMjLwwgsv0K2egGPHEJ/rYQhsfy5/no+vXVIWiwVnz57F\niRMn6C4pg8GA9PR0FBQUoKCgAPn5+UhOTm50rBUVFXjppZfw0EMPYdKkSX45D4HAkZGRgZiYGLru\n6ujRo6ipqQlpC/jJkycxa9YsmM1mZGZmYsuWLbDZbC2tBZyLCIKHT9TX1yM9PR0nT55ERkYG3n33\nXXz55Zd477330KFDh1AfngADiqKwe/durF27FlOnTsXkyZMdIiA2mw1GoxF2u533826AxufjbX2P\nJykp5uwhIm7q6+sdoja//fYbJBIJcnJyoFaroVarkZeXh6ioKF4LSwHndOjQAceOHXNI6SxevFho\nARdwhiB4+MTjjz8OpVKJjz/+mO78GTlyJJ5++mmMHj0aJpPJYTaMQOgxGo34y1/+gv3792P16tXo\n1auXw/MkzcWlepjm4Mn5eJqSYg5WtNvtqKysRHFxMT3f5saNG4iJiUFeXh4ducnOzuZtjZSA93To\n0AH/+9//kJCQQD/WAl3ABTxDmMPDF3766Sfs378f165dAwDaKyg9PR3Hjx/H6NGjcfjwYezatQur\nV6+GSqXidY1IuBAREYEVK1Zg6tSpWLRoEZRKJVauXEkXLbLn3fDV8ZvAPB+tVguZTEbPIvLUS8pq\nteLMmTO0sCktLYXRaERqairUajXuuecezJ49GykpKbx9nwT8g0gkwsMPPwyJRIJnnnkGTz31lNAC\nLuA1guDhGH/84x+xZs0aKJVKGAwGKJVKGI1GbN++HXv37oXJZMJXX32FqKgoxMTEAAA9WZbrOHNi\n9yUPz2XatWuHHTt24Pvvv8eTTz6JsWPH4qmnnqJb1cm8G744frNxlpICGiI+FosFZrMZUVFRUKlU\nDikpjUZDD+4rKSmhCzY7d+5MO4AXFhbSvycgwOTw4cN01GXQoEHIyclxeF5oARfwBEHwcIht27ah\nuLgYs2fPBgAolUoADSJowIAB6N+/P3bu3IlLly5h5cqV2L9/P/bs2YPffvsNzz77LEaOHBnKw28S\nZ07sRUVFGDRoEJ2HLyoqovPwfHViB4CBAwdiwIABeOeddzB8+HAsX74c999/PwD305q5hCcpKRLZ\nEYlEsNlsKCoqwqeffoopU6bAbrejtLQU1dXViI6ORl5eHtRqNYYOHYrOnTsHxCNMIDwhg09bt26N\nsWPH4ujRo4ILuIDXCDU8HMJgMGDhwoU4ceIEJk2ahC5duuC7777D+++/jxMnTsBms2HevHn45z//\niRkzZuDKlSu49957MWbMGCQmJqJt27Z0zQ9XYft0eZuHZ4aq+cL169exdOlSaLVavPrqq3ToHHBs\nYw+VrYOvXVJWqxXnz5+npxKXlpZCr9cjIyMDBw4cQFJSEtavX4+HH36Y059JAW6j1+ths9kQHR0N\nnU6HwYMH4+WXX8b+/fuFFnABZwg1PFzHbrdDqVTinXfeQXFxMV5++WUcOXIE6enp2LVrF9LT0/HG\nG2+gqqoKMTExWLt2LRITE+nfJxsU2Vjq6up4MV/E2zw8H0lKSsKWLVtw5MgRPP300/QE34iICIhE\nIsjlckil0qDYOvg6uE+r1TqkpEjXS6dOnaBWq/HYY49h9erViI6OhkgkgtVqxXvvvYcnn3wS7777\nLu8NZVsaNpsNvXr1QlpaGvbs2RPSFvDr169j7NixABomHD/55JMYPHgwevXqhfHjx2Pz5s30MQHu\nJ8Bv2rTJoQV86NChAICZM2di8uTJyM7OplvABcIPIcLDIex2OwDQd/harRYqlQoA8PPPP2Pt2rVY\ntmwZ3n77bSxYsABqtdphUyTphq+//hrbt2/HK6+8wrk2dnaEJz4+HrW1tfTzrVq1Qk1NTdg6sdvt\ndnz44Yf44IMPsGDBAgwfPtzptGaKopo9rZlpXupNl1R1dTXdAl5cXIxr164hOjoaubm5UKvV6NGj\nBzp37uxRS3ptbS2kUimio6N9Pg+B4PP666/j2LFj0Gg02L17t9ACLsAnhAgPHyBCx2az0aPvgYbJ\nvp9//jnatGmDfv364S9/+QuuXbuGgoIC+ncpioJYLIbJZMLevXtRUFBA/z6X01ze5OHDwYldLBZj\n1qxZeOyxx/DSSy/ho48+wpo1a5CdnQ2gwdYhKioKFosFer3eo2nNnqSknHVJ2Ww2nDt3jo7alJSU\nQK/Xo23btsjPz0ePHj0wc+ZMpKam+pxmi4+P9+n3BEJHRUUF9u7dixdffBGvv/46AAgu4AJhgSB4\nOAi7eDU6OhqLFi2iRUvXrl2xa9cujBgxotHv/v3vf4fVasUDDzyA1q1bAwBdUMpF1+7Ro0dj69at\nWLJkCbZu3YoxY8bQj4erEzsAxMXFYePGjSgpKcGCBQuQm5uLxYsX0ykhuVzu4F5O2tgB+JSS0ul0\nKC0tpcXNuXPnQFEUsrOzoVarMWbMGKxcuRIxMTGc+4wIBJc///nP+Mtf/oL6+nr6MaEFXCAcEAQP\nD7Db7UhKSgJJP44ePRp//OMfodPpEBUVRacpLl++jAMHDmDIkCHo0aMHqqur8fPPP+Ohhx6iW9hD\nCduJ/ZVXXsHSpUu9zsOHE7m5ufjuu++wc+dOjB49Gs888wwmTJgAkUiEGzduwGKxIDExkfazAuCy\nSwpoiPZcv36dLiQuKSlBZWUloqKi6JTUvHnzkJOTw6t2eIHg8M9//hNt2rRBQUEBDh486PRnhBZw\nAb4iCB4eQNIJZJHp3bs35s6di4iICDqVBQAfffQR0tPT0b9/f3z22Wf44IMPMGjQIKxevRrPPfcc\nZsyYQYsj8r/BxJkTOwDs37/f6ePh7MTOhKIo9OjRA3PmzMG7776L1atXw2AwwGg04sUXX8SMGTPo\na33jxg0sXboUK1asQFZWFi5cuOCQktJoNEhOTkZ+fj7UajWmTZuG9PR03rTzC4SWn376Cbt378be\nvXthNBpRX1+PyZMnCy3gAmGBULTMM9j1OOTfBw8exIcffojJkycjJSUFU6dOxZ07d3Do0CHcvn0b\n7733Ht555x2H17Lb7cLdWoj561//SheEEk+opKQk/PDDD4iLi8OKFSvQqlUr6PV6lJaW4sSJE/j5\n55/xzTffICYmBgMGDECfPn3o342NjRWup4BfOHToENavX489e/Zg8eLFQgu4AF9wvQBSFOXuPwGe\nUFhYSC1fvpyy2+3UypUrqZkzZ1KHDh2i+vbtS40aNYoaMmQIpdFoqE2bNlFFRUWURqOhf9dut4fw\nyFs2N27coGpra50+9/XXX1NZWVlUXl4e9dBDD1Fz586lPvzwQ+r48eNUeXk5NW3aNColJYX6+OOP\ng3zUAs3FYDBQffr0ofLz86kuXbpQS5cupSiKom7fvk09/PDDVHZ2NjVo0CCHz8aaNWuorKwsqnPn\nztR3331HP/6///2P6t69O5WVlUXNnTuXftxoNFLjx4+nsrKyqL59+1Ll5eVeHePBgwepUaNG0cc1\ncOBAp8dVWFhIZWZmUp07d6a+/fbbRseVmZlJ/elPf3I4rscff5w+rkuXLnl1XAICTeBS0wgRnjCC\nFBauWrUK7du3x7Rp0wAAr732GoxGIxYuXIihQ4fSnTP5+fl4+eWXQ3jEAk1RV1eHyMhIly7rR44c\nwaFDh7B48eIgH5lAc9Hr9fTE7XvvvRfr16/H7t27hfZvAYHmIUR4whmbzebw7/3791N5eXnU5s2b\nHR5ftmwZNX36dOrXX3+lLl++TN1zzz3U8ePHKYq6G+WxWq1CxEdAIIjodDqqV69eVGlpKdW5c2eq\nurqaoiiKqqqqojp37kxRVEN0p6ioiP6dIUOGUP/973+pa9euUTk5OfTj27Zto5555hn6Z37++WeK\noijKYrFQiYmJwTolAYFQ4lLTCJWMYQC7IHXgwIHYvHkzPv74Yzz99NOoqanB0aNHcfToUTz//PPI\nzc1Fu3bt0Lp1a7rgUKfT4caNGw6+SAICAoHDbrfTNVsPPvggunXr5rb9m9nmTdq/2Y970v4tINBS\nEbq0wgyiZHv16oWDBw/it99+Q6tWrbBixQoMGTIE2dnZkEql2LP3fYdXAAAPuklEQVRnD8rLyzFy\n5Eh8+umn+Oabb3Ds2DFMnjwZy5Yt45yRpYBAuCEWi3HixAnU1dVhyJAhOHDggMPzQkOBgIB/ESI8\nYYZIJIJYLKYjNJmZmaAoChMmTMDjjz8OpVIJq9WK1atXo7CwEPv27cPu3bsxcuRIHD58GNevX8fQ\noUNRXl4OADhw4AB27NgRwjNqHhkZGcjLy0NBQQE9uLCmpgaDBg1Cp06dMHjwYNy5cyfERynQkomN\njcWIESNw7Ngxuv0bgN/avwEI7d8CAhAET9jCjNCIRCLMmDEDGRkZAIDVq1dDIpFgxIgR+OSTT/DE\nE09gxIgRiI+Ph0KhwNmzZ1FfX4/169dj5MiR6NatG/1aGo0m2KfSLEjL/vHjx3H06FEAQFFREQYN\nGoRz585h4MCBKCoqCvFRCrQ0bt26RQttg8GAf/3rXygoKKAnjwNoNHl8+/btMJvNuHTpEj15PDk5\nGTExMThy5AgoisInn3yCRx55hP4d8lqff/45Bg4cGIIzFRDgDoLgaQFQrE68e+65B5s2bQLQIIzi\n4uKgUqlgMBjwn//8BytWrEBeXh4OHjwIiqKwa9cumM1mXL16Fffddx/Onj0bitPwGfb57969G1On\nTgXQ4Av01VdfheKwBFowVVVVeOihh6BWq9G3b1+MGjUKAwcOxNKlS/Gvf/0LnTp1wg8//IClS5cC\ncJw8PmzYsEYO4LNmzUJ2djaysrIcHMBv376N7OxsbNiwQRD2Ai0eoS29BWOz2TB+/HhkZWVh3bp1\nmDx5MqxWK7Zt24Zz586hd+/eOHbsGD799FMMGTIE33//PU6fPo1PPvmE9m/i+gTfjh07IjY2FhKJ\nBM888wyeeuopB4d2iqLQqlUrB8d2gfDg6tWrmDJlCm7cuAGRSISnn34ac+fORU1NDSZMmIDLly/T\ndiZxcXEAgLVr1+LDDz+ERCLBxo0bMXjwYADAsWPHMG3aNBiNRgwfPhxvvvkmAMBkMmHKlCn49ddf\nkZCQgB07dqB9+/YhO2cBAQGhLV3ACb/88gtVX19PLVu2jBo6dCjVunVr6uDBgxRFUdSAAQOoxYsX\n0z975MgRKiMjg5o/fz515syZUB2y11y7do2iqIYBf/n5+dS///1vKi4uzuFn4uPjQ3FoAgGmqqqK\nHrug0WioTp06UWVlZdSiRYuodevWURRFUUVFRdSSJUsoiqKoU6dOUfn5+ZTZbKYuXbpEZWZm0iMa\nevfuTR05coSiKIoaNmwY9c0331AURVHvvPMONXv2bIqiKGr79u3UhAkTgnqOAgICjRDa0gUcuX37\nNubOnYu5c+fiySefREVFBZYvX477778fu3fvxsWLF7Fu3TpQFAWTyYQlS5agR48eGDx4MEaNGkWn\nxLhO27ZtAQCtW7fG2LFjcfToUZeFoQLhRXJyMtRqNQBApVKhS5cuqKysdJnS3LVrFyZOnAiZTIaM\njAxkZWXhyJEjqKqqgkajoYvep0yZQv8O87XGjRuH77//PtinKSAg4CGC4GmhJCQk4KeffkJubi7W\nr1+PadOmYe7cuQAaOj3uueceAA1Fv59//jmMRiO++OILDBkyBGPHjoVOpwvl4XuEXq+ni6x1Oh32\n7duH3Nxcl4WhAuFLeXk5jh8/jr59+wqzbgQEWijCHJ4Wzvz58xsZkk6ePBk///wznnvuObz44ovY\ntGkTFi5cCAAoLS2F1WpFQkJCqA7ZY65fv46xY8cCaGjLffLJJzF48GD06tUL48ePx+bNm+kaDoHw\nRavVYty4cXjzzTcRHR3t8Jww60ZAoOUgCB4BhwXfbrcjOjoaH3/8Me7cuYNvv/0WYrEY48aNAwD8\n9NNPoCgKPXv2DNXhekyHDh1w4sSJRo+3atUK+/fvD8ERCQQbi8WCcePGYfLkyXQkj6Q0k5OT/Tbr\nJiUlRZh1IyDAcYSUloADYrEYdrsdABAXF4c//OEP2L17NwDg+++/R1lZGfLy8pCfnx/KwxQQaBKK\nojBz5kx07doVzz//PP24MOtGQKBlIggegUaQVnMifGJjY+l/SyQSPPzwwyE7NgFuMWPGDCQlJSE3\nN5d+zN0k67Vr1yI7Oxs5OTnYt28f/fixY8eQm5uL7OxszJs3j37cZDJhwoQJyM7ORr9+/XD58mWP\nj+3w4cP429/+hgMHDqCgoAAFBQX49ttvhVk3AgItFGEOj4BXaDSaRnUQAi2XH3/8ESqVClOmTEFJ\nSQkAYPHixUhMTMTixYuxbt061NbWoqioCGVlZXjiif/f3r3GVF03ABz/HiG5rRixTGVQCQwyK1DE\ncvTGSgKrjWZldqOyy5yx5lw5na7LdEXZSs5sq023bsLGUJIX1MpVbiqRBiyLRi3NpWMVCjWDgMPz\ngnGmPbWn7UGwP9/PGzYY8jsHXnz93f5LaW5u5scff+SGG26go6ODUChEYWEh4XCYwsJCSktLqaio\n4KabbmLLli18+eWXbNmyhZqaGnbs2EF1dfU4v2qNlkgkMnxceNIk91JptPztH5IzPPpHRu4xMHZ0\nuuuuu46UlJQzPuexb438R3rkYyQSYWBgIPqMv5GvTZo0iZiYGEKhEP39/eMyVk0cBo/+EU+z6J/y\n2PfENTQ0xMDAAKFQiLa2Nu655x5geJk8NjY2+oy/kydPEgqFOHLkCEuWLGH+/PmUl5dHf+/S2WDw\nSDprDOWJJRQKERs7fPj3qquu4p133gHg0KFDrF69mkWLFpGXl0dxcTH9/f1UV1dTXl7Op59+SlFR\nEWvXruWnn34az5egADN4pFHU2NhIbm4u2dnZvPDCC+M9nHHxdzdZ/z/HvgGPfY+Tw4cP093dzeDg\n4BlLUn/W19dHc3Mz4XCY5uZmYDh6Dh48SE9PD1OmTOHFF1/kkksuoby8nKGhIWpra6mqqmLx4sVU\nVVURiUTo6+sbq5emCcbgkUbJ4OAgK1asoLGxka+++ort27fz9ddfj/ewxpzHvv/dRsJm5JTm7bff\nzhdffEFMTEx0Sep0I/t0Hn74YdasWUNbW1v0hvOMjAxaWlq49tprWblyJXFxcSQnJ3PjjTfS1dVF\nTk4Oubm5bN68mdbWVt58880zljel0eTFg9Io+eyzz8jKyuLSSy8FYMmSJdTX13P55ZeP78DOorvu\nuotPPvmEn3/+mfT0dJ599llWr179lzdZn37sOzY29r+OfZeXl/P7779TWlp6xrHve++9l+zsbFJT\nUz2hNYoGBwdpb29nxowZJCQkRD//56iZNWsWLS0ttLa2Ultby/3338/SpUtJTEwkEokwadIk9uzZ\nQ2pqKo888ghFRUXR783Ly+Pzzz/nwQcfZGhoiNdee41p06aRlZXFqVOnyMnJ4ciRI2RkZADD1xPE\nxcUxa9assXkTNKF4LF0aJbW1tbz//vu88cYbALz99ts0NTVRVVU15mNpbGzkiSeeYHBwkGXLlvHU\nU0+N+Rh07hg5/g1nBk1FRQWPP/442dnZ0Vmd9957j4aGBiKRCM8//zx1dXXU1dWxcOFCZsyYwa5d\nuygoKKCiooL+/n7OO+88Tpw4QWVlJR9//DFFRUUkJSWxatUq9u7dy3PPPceePXtoaWmhsrKSd999\nl97eXn777Tf6+vpYt24dHR0ddHd3k5qayssvv0x+fv54vVX69/vbTYPO8Eij5FzZnDuytPbhhx+S\nlpbG3LlzufXWWwM906Thh+UePHiQtrY2mpqaKCsro7S0lMmTJ0cvEz1dZ2cn+/btY/fu3eTm5vLk\nk0/S39/Ptm3bWLx4MVlZWUybNo3MzEx6e3u55ZZbmDlzJj09PezcuZOKioro33xKSgobNmwgEomw\ne/dutm7dSlVVFY899hhHjx6lt7eXmpoaampq6OzspKuriwULFrBp0ybC4TDt7e3k5OSQlJQ01m+b\nJhCDRxolf96Ue/To0XHZjzARl9YEy5cvp7q6mjVr1jBz5kx27NjBsWPHWL58Oe3t7WzdupUDBw6Q\nkZHB008/DQxvMO/p6eGtt95iYGCADRs2MGfOHMrLy6P/bmZmJomJidEb1+fMmcNLL70EnDlbdPz4\ncf744w9iYmJISEggPz+flJQULrjgAnp6erj66qupq6uL7tsZkZiYyOzZs8/+G6QJz+CRRklBQQEd\nHR0cPnyY6dOnU1NTw/bt28d8HKffXQPD9900NTWN+Tg0tvLy8ujv72f9+vUAbNy4ke+//x6A3t5e\n0tPTefTRR/nmm2+47bbbOHDgAOvXr2fVqlUkJCTQ3d1Nd3c3ZWVl0Y3LkydPJjMzk0gkwrFjx0hL\nSyM7O5ve3l5OnDhBSkoKQ0NDhEIhWlpa2LRpExdeeCHz5s2L7uVpa2sDhsNbGk8GjzRKYmNjCYfD\nFBcXMzg4yEMPPTQusyrnytKaxlZRUREbN25k586d1NbW0traGn3wb15eHj09PVRWVtLW1kZHRwfH\njx/noosuoru7m19//ZXk5GSmT59OQ0MDCxcuJCYmhlOnTpGYmEh8fDyHDh1i9uzZJCUlMWXKFL77\n7jsKCgqiP7+kpIRFixaN18uX/ieDRxpFJSUllJSUjOsYzpWlNY2t/Px8fvnlFxoaGigsLOSaa67h\njjvu4IMPPiAmJoZwOMz111/P5s2bKSwspK2tjeLiYiKRCJ2dnZx//vncfffdrFu3jgceeICuri7i\n4+N5/fXXKSsrY+rUqdGYHpkxHJndAf5yn5B0LjF4pIA5V5bWNLZiYmKYOnUqzzzzDGlpaQBs27aN\nvXv3kpCQwNDQEOXl5cTFxXHy5En27dtHcXExJSUllJWVkZaWxiuvvEI4HKa+vp7k5GTmz59PcnIy\ny5Yt+8uf6Wyi/k0MHilgzpWlNY29K664go8++oj77rsPGN6U/MMPP3DnnXdy8cUXs2DBAi677DIy\nMjKIj48Hhp9uv3TpUjIzM6MPBz5907IUFN7DI0kBsXbtWnbt2sWKFSuor68nLi6OV199lfT0dL79\n9lv279/P3LlzycnJGe+hSmfL3047GjySFBD79+9n5cqV3HzzzVx55ZXMmzcv+iwzaYIweCRJUuD9\nbfC4rV6SJAWewSNJkgLP4JEkSYFn8EiSpMAzeCRJUuAZPJIkKfAMHkmSFHgGjyRJCjyDR5IkBZ7B\nI0mSAs/gkSRJgWfwSJKkwDN4JElS4Bk8kiQp8AweSZIUeAaPJEkKPINHkiQFnsEjSZICz+CRJEmB\nZ/BIkqTAM3gkSVLgGTySJCnwDB5JkhR4Bo8kSQo8g0eSJAWewSNJkgLP4JEkSYFn8EiSpMAzeCRJ\nUuAZPJIkKfAMHkmSFHgGjyRJCjyDR5IkBZ7BI0mSAi/2f3w9NCajkCRJOouc4ZEkSYFn8EiSpMAz\neCRJUuAZPJIkKfAMHkmSFHgGjyRJCrz/AIDmJc03OAtXAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cafcf8750>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAI8CAYAAAD1D3GaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcHGWdP/BPVXVVn3NfycwkmZzkIIQAEZQjIBAUEFCS\ncCgiwVVhWXyhK674U1hcdTWuJ+6667I/f7j+1mM9lrAsooDyAxREIARCSMhkMkeSuad7+qi7fn90\nqtIz6Tm7qrqq+vt+vfJK0jPT9XRPd9Wnn+f7PA9jGAYIIYQQQoKMLXcDCCGEEEKcRoGHEEIIIYFH\ngYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgRea4es0Z50QQgghfsFM9QXq4SGEEEJI4FHg\nIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAh\nhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGE\nEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQ\nQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBC\nSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI\n4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjg\nUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR\n4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHg\nIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAh\nhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGEEEJI4FHgIYQQQkjgUeAhhBBCSOBR4CGE\nEEJI4IXK3QBCCAkawzBgGAZ0Xbf+VlUVABCNRsEwDBiGKXMrCaksFHgIIWQOzDAzOdBomgZd161w\nYxgGQqHQhJ9hGAYsm+9YZxgGgiBQ+CHEJRR4CCHkuMIwYwYZ84+madZtxZihxfzbMAxwHGd93fx5\nlmWhKAqy2SyqqqrAMAw4jgPLsmBZlsIPIQ6hwEMIqRiFvTKGYUzolTH/TMXsiZlNKJnt11mWhWEY\n1nAXhR9CnEOBhxASCMWGmSb3zhiGcdLPmEFmtmHGboVDWoXhBwBCoRCFH0JsQoGHEOJ5s6mbURTF\nCgfmzxSGicJgUy6z6fmZKvxwHGf1/lD4IWTuKPAQQsrKrroZXdetUFBOhY9BUZQJAc1s62wCy+Tw\no2kaNE0DQOGHkPmgwEMIcZRbdTNumNzLVOzfwIkgpmma1etk9jypqgpZlgEAoihCEATra1OZKfyw\nLAuO4zzxHBHiVRR4CCHz5te6mWKK9TRNDjSFbTfbbQaNwinnqqpC0zREIhHr/lVVBcMwiEajkGUZ\n2WwWqqoil8uB4zgIglBS+FEUhcIPIdOgwEMIKWqmuhlFUU6aeu3FuhnTVD0zhbcVC2Jm4fBcHsvk\nkDeZef+JRAKGYUBRFMiyTOGHEAdR4CGkAtlRN2N+vdw1M8CJx1PYqzTVUJMZXsxhpsmBxi6zvS9z\nAUJBEGwNP5IkQRRFJBIJK/hQ+CGVjAIPIQHkRt0MwzAz9mTYYbZDTeb3mhf1YkNNXr/YOxF+zN+T\noijWTDYKP6QSlS3wmCepmd64hJCJglQ3A9g31CSKIniet7Zz8Ds7w4/5t/l8UvghlcjxM8P27dvx\n05/+9KTbn3/+eXzxi1/Eww8/TG80Qo6brm5GUZQpf8bLdTOzndXk1lCTH1H4IaR0jgeeZ555Bnv2\n7LH2jzFP3JlMBr///e+hqip4nne6GYSUXal1M5IkWT0YXrggTa6bKWVWkxcej1/MJvzwPG8999Pd\nj/k3hR9SCRwPPOPj47j++usn7ArMcRxCoRDOOeccpw9PiGucrptxu+dmNkNNQL54udRZTWR+pgs/\nhWsBzVRYTuGHVALHA09TUxN2794dmHF1UpmCWDdT6lCTOcQWDofL+VDIcZPDTy6XgyRJSKVSYFnW\n+hqFH1KpHE8h999/P7LZLNLpNBRFQSwWQ319vbVLMBUtk3IrVjejaZq1j5F52+Sf8XrdzEyzmkod\nanJrllYQOf28mT1tmqYhkUhYPT9OhJ/CVaQJ8TLHA8+ll16KrVu3Yt++fejt7cXb3vY2fPWrX8X5\n559PbxLiuPnWzaiqCsMwJgzFeiHMAO4uoEec49bzX2zYS1EU28KPLMsIhULWfdB5nXiV44Hntttu\nw/bt2/HhD38YF1xwAR566CHcdtttOOWUU9DS0uL04UnAOVU3Y+5T5PbJe7qhpsL9k2hWE5mPwvAT\ni8Wsfb1KCT9mTyjLstb2GYXDXvRaJF7heOA5evQoLrvsMgD5jfIaGxshSRIkSXL60MTn5lM3Y/Jy\n3cx8h5oMw/DULC3ibwzDgOd58DxfUvgx78ssUwDyPaQUfojXOB54DMNAOp3OHywUwqOPPora2lpP\nLEdPyme69WbMUFPOuhmGYabtHSpmvkNNPM9PuH2qx6MoCl00iCPsCj+Th70ACj/EOxwPPB/4wAdw\n5MgRrFmzBkuXLsXOnTvx4IMPoq2tzelDkzKZKsxMVTcjy/JJMz+8Vmcy21lNhUNKdg81UZEwmYuZ\n1uGZCoUfElTMDCdQW86uuq4jk8kgGo0iFApBURQkk0lrthbxl6mGmeZSN2P+G8gPdXIcV7YFKIsN\nNZk9TYUFmpN7ZiaHm8LH5IRyP0+TybIMwzA8My09l8t5ZmuJYs+NeaGPRqOQZRmSJKGqqsqxNkiS\nBEVRkEgkbLk/wzCs8CPLshV+FEVBOBye9evAvOaYf1P4ITab8gXk+JlhaGgIn//85/HUU0+hvb0d\n3/jGN/DYY4/h6aefxs0334yrrrrKMydwEsy6GQBzHmoC8o8nHA57rreJ+JefX0NT9fyoqmqdI6jn\nh3iZ44HnrrvuwvLly/Hss8/ixRdfxPbt2/Ge97wHH//4x3HPPfdg+fLlOP30051uBoH362bmw6mh\nJnMbFKo1I+RkheFH0zSEQiHoul7SsBdwoheJwg9xguOBZ3h4GHfccQfq6+uxZcsWVFdX4/LLL8fm\nzZtRX1+PbDbrdBMqwmzqZsyVcSefhLweZpxeQI8QMn/mGk+lTnU374vCD3GK44EnkUjg5Zdfxvr1\n63H48GFIkoSnn34a1dXV0DQNgiA43YRAsKtuxux2LrfCoSaz7XbPaiLESyqh4Nzuqe6F4UcURciy\njHg8TuGHzIvjgWfnzp249dZb8YUvfAEMw+Df//3f8eSTT+LKK6/E/fffj40bNzrdBM9zq27GzRPD\nXIaazP+bQ0y0gB7xu0oINzOxO/wAJ55X6vkh8+HKLC0gP2PAK7M53GRX3Uzh3/Nl1qVEIpGS7me+\nQ01TzWry2uwjwL7nyk5ee55oltbUzIVVC58bRVHAcRwikYjtM6imaoPTxwCAVCqFSCQy657jqWZ7\nzRR+is1sK/wwSOGHHFe+WVqmcDhsXQQnXxD9bPLFXtd1a9aC+fVivFw3A8x9VlMpQ020vgwJonK/\np+e7Ds98zOU4Tg57Te75MScolPt3QbzB1Y9Cky/yfrd3717867/+Kz7/+c9PuF2SJIRCIfA877k3\nW+GQWbkW0PMDCmGEOG8u4Wem92Ox8GPeTuGHAC4HnqBhGAapVOqkTyLlCgUzDTWZYSaXy007q4lO\nCGS2KBQSu8wUfuaySO1U4QeA9cGNznWVhwJPCXiet6Z6O82OoSZd16EoCmKxmCttJsFGFwvilGLh\nJ5fLQVVVJJPJkoe9TGbND4WfykCBpwShUGjCm6cUTi2gN/kY9KYmhPiJGX7MrV4ikYhtNT+apkHT\nNAAUfioBBZ4SzLaHx64F9OhNSAjxGjeHNZ0seJ4cfliWnbChMfE/CjwlMAPP6Ogouru7sXbtWgAn\nFtNTFIUW0COEBJ4b567JPdROhh9JkiCKIhKJBIWfAAl84Ono6EB1dbW1fskLL7ww7/t67LHH8Kc/\n/Qk9PT3o7u5GV1cXuru7sW7dOrS1teGRRx5BTU0NgBNvxkqZ1VQqKn4lxF6V9J5yKvwwDGP1/CiK\nYgUfCj/+FPjAwzAMfve736G+vr7k++rs7IQoijjjjDNwzTXXoKGhAffeey9+9rOfTfg+SZLAMIwn\nFkAr5NWp1l5tlxfR80TmohIvyjOFH57nIQjCrM7Pk3t+CnvvKfz4j7euyA6x6yJx++23T/i/KIrW\nmC8hTqOTKiFzM1X4SafT1tfmG37MDZkp/PjH7Bc28CmGYXDJJZfgrLPOwve//31b79vNaemEkOCg\nGZPuMwNOPB5HTU0NYrEYDMNAOp3G2NgYstksVFWddu/CwvsqrMc0w48oipAkybof4i2B7+F59tln\nsXDhQgwODuLSSy/F6tWrcf7559ty3xzHFd06goZogoF+h4TMzK3wZudxCnt+Cvf2SqfTAGDV+szm\nmIX1PtTz422B7+FZuHAhAKCpqQnvfe97SypaJpWDTk7ECfS68p7JPT/mZqvmIoeFPT+zuS/q+fGu\nQAeebDaL8fFxAEAmk8Hjjz+O9evXl7lVhBBCvMicbBIOhxEKhazwk06nKfwEQKCHtPr7+/He974X\nQD6tv//978eWLVvK3KryoaE2QgiZHTP8hEIhRKNRaJo2YdircKo7DXv5Q6ADz9KlS/HKK6+4flxz\n3yoyO/R8EWK/oBVGu/lhrdgih06Gn2w2C03TEIvFJuzsTuwV6MBDCCEkOLwQ4JwIP4VbDZkzf83Q\nU7jFECkNBZ4S0RARIaSSBa0naS7sDj/mH7PnR1VVqKpq7a1I4ac0FHgIIcRmlRwCgmA+H2SdHPYC\nQOHHBhR4SuSncVYqWibEPZMvRPTe85dSgsRcw890rw0KP/ahwOMAChaEkMnoYlQav/aazSb8zPZ6\nQeGnNBR4CCmCQitxQmGRKpk7v1/Epwo/sixbX6dhL+dQ4CFlR+GCVCKnL0J+7RHxAjfOR4XhB4C1\nNEepNT8AqOB5ChR4CCEkoPy2x5WXuP2YOI5DNBotueAZOHlndwo/eRR4bFDsDe/lHougnqAqgZdf\nV4SQ0tk528u8v2LhR9M0awPVSgk/FHhKxPM8FEWBIAjWbV594Xi1XWR2aOiPVLJK/KDmZPhJp9PQ\ndR26rlsbqJq7xAcVBZ4SFQs8hBD3URgkdnH7tWQYxoxLnNgdfoATqzmbCx0GHQWeEvE8D1VVy90M\nQgghNvJyb5Id4aewx4yGtMishEIhCjyEkIpUCb0CXudEz09QUeApkTmkVYhqLeaOni9C/KvSL6Re\nMZfwU4ko8JQoFAqdFHi8zAxjXjpBeaktxN/otXSC197npXLz8cympsbu49n92GYKP7quQ9O0iur5\nocBTomI9PMT/qJeOOIleW8RNxcJPKpVCLpdDLpcDz/OoqqoKfM8PBZ4S8TwPTdPK3QxCiAcYhmFN\n9QVg/du8XVEU6/+V8qmaeIsZfliWRSKRAADIslwRIZwCT4moh4eQymFO3y0MMYX/Bk4Mq+m6bn2q\nZlkWmqaBZVmoqgpZlsGyLDiOgyAIFH4qXDkCsDlsx7LshC0ugiz4j9BhVLRMSHAUCzSFf5sXJpZl\nrb/NQGNO7WUYBqIoguM48Dxv3bcZgARBQCaTga7rkGUZ2WwWPM8jHA4jFApR+JmCm+dU6oELJgo8\nJfJb0TIhlWw+gYZl2QnL79txITSHFaLR6ITgo+s6wuEwBEHwxSdut4MBhRBSCu+/ozxOEARf1fB4\ntffJi20i/lNsmKkcgWYuWJZFJBJBJBKxhrvS6TQYhoEgCAiHw67OGCLuK9eQVqUFSAo8JaIentJV\n2puOzN90PTS6rkMURU8EmvkG+MKZNKqqQpIkJJNJcBxn9fzQ+4WQ+aHAU6KpaniAykzQhJSilCEn\nURStOhgvmPzen0sIMjdz5HkehmFAluU51/vQ+Wf+gv7cVWqPujfODD5Gs7QImb3ZBprCUGMW/87U\nQxPU/YAYhkE4HEY4HJ6y3qcSFo8LcggpVwApfD6D+twWosBTIto8lJATzNAy1dTtqQLN5JlOpLjC\neh9N0yBJUlnrfSq1p8AJ9Lp3HgWeEvkx8NBJava89qmy3L+7wkCjaZpVN1MYcCjQFGf34+Y4DrFY\nzKr3kWV5Qr2PW6+VSv19Ev+hwFMivxUt08lpdrz4PLlVbDvTsFNhaDEMwxpOqfRAMxd2BunCep9Y\nLAZFUSBJElRVhSiKAGANCZLZ8doHHbsF/fFNhQJPiaaq4fHiJp1eVu6ei0oxl0BT2ENTLNAoigJN\n0yYsrkfKyxzaEgQBqVQKLMsil8shk8lYQ16VUO/jN3StcAcFnhIJgoBcLlfuZvgavdHtY2egIc5y\n+nkuDD+F9T4AJhQ7+wWFAvtU6gdMCjwl4nkeqVSq3M0gFWK6IFOOQFOpJ06/KVbvk0qlrHofnudp\nccMKU4nhkQJPiUKhkO+Klol3mQFiutWCs9nsSevQmH/c7KGpxBOmnxTrEZmq3sdc30cQhDnV+wS1\n18XtxxXU59FrKPCUaKpZWl7dwsGr7aoUhYFmql4aAEUDjTkrKhqNlvMhkBJ46aJWOORlru8jiiLV\n+1SAqcJw0FHgKREtPEgKzSfQmJ+6C/8/1X1TWCVOmLy+j7mfF+Cdeh967ZNSUeApEQWeyjNTHQ0w\nv0BDiBdwHIdoNDphcUOz3sfsESpXvQ+9d0gpKPCUiOd5X+2WTmZWGFwURaFAQ2zhtx4KhmGszUwL\n631yuRxCoRDC4XBgX+tBr+Hx22vRLhR4SuS3hQe9yO3NVmfbQwPkh6YKd9s2bw/qiZ6QYqaq9zE/\n7KmqSvU+PlNp+2gBFHhK5rei5UpQ6pATkP/9mcWbNF2XkBMK633MGV5eq/chpBgKPCXyWw1PEIJY\n4cJ6UwWawjDDsqy1lxP10JBycfs158b7nGVZcByHqqoqx+t9gjp12/w9BXkIzSso8JTIb4HHD2Za\nKdh8sxYLNOY6NJX4Zib+4dYFx801mSbX+8iyPKHex0/7eVVqIAg6CjwloqLluSsWaAAgl8tNGWgK\n62go0BC/qoTX7eR6H0VRJqzvIwgCQqFQRTwXxFso8JRoqqLlIAwdzdd8emgAWN3fFGiI31Xqe38y\nlmURDocRDoet9X0ymQwATFjcsJKVozepUnuwKPCUqBKHtOYTaGbqoZFlmWZ5zAJdSIlfTbW+jxmK\naIIAcRoFnhL5MfDMdNF0ItDMxOwRo8AzNXpu/KUSfl/zec/Op97H7cJeOhcFEwWeEk01Ld2rGIax\nZjfNFGgm7+VENTSEEDsV1vsYhnHSfl5mvQ+x1+RAVynnc3ollciLu6WboaXY1G2zQFjTtAm9NBzH\nnTTTiRBC3MIwjFXvo+u6tcaPYRgQBKHczXMM9Sa5hwJPiaYa0nKyaHlyoCn2d2EPTWGg0TQNhmEg\nEok40jZCiDf4+ULKsuxJ9T4AkEwmHa/3oTq54HI18KRSKSiKYgWEXC4HWZYhyzIYhsGpp57qZnNs\n4UQNz3wDTeH/pzrRmT08ZGaVPNOOEC8w6304joMkSYhGoxPqfcxhLyeCnV/D4mz4OQyXwtXAs3z5\nciiKglAohJGRETQ2NlrFa729vZAkCTzPu9mkks2nhsfJQEMIIUFjnhMn1/uYw148zyMcDvtyfZ9K\nDR/l4GrgGRwctP599tln4/nnn7f+f+6550LTNN8FnmI1PIWBpthu2+UMNGbRMiGElKpcF+uZ6n1o\nfR9SjKuBx7zgcxwHwzCwb98+tLW1QZZlpFIpx4p/NU3DWWedhfb2duzatavk+zMMAwMDA+jq6sKh\nQ4eg6zruuOMO9PT04Otf/zpaWloAnOgSpR6amdHwEQm6wtc3faq3j1nvE41GoaqqdT2h9X2mVqmv\nP1cDT+Gqulu3bsWdd96J888/H6+++irOPfdcx3p3vvWtb2Ht2rUYHx8v+b7uvfde7Ny5E/F4HB0d\nHejo6EAul8Opp56KK664As3NzYjH41bPTjgctuEREEIImYlZImGGH0mS5lzv43YYoA967nF9lpb5\nQrr77rtx5pln4oUXXsDWrVtx3XXXOXK83t5ePProo/jsZz+Lr3/96yXf35133olPfepTSCQS1m0X\nXHABPvaxj5V834QQQk4211DAMAx4ngfP81a9jyzLnq33KffWEl55HpzmauDJZDIQRdFaWXPdunVY\ns2YNcrkcXnnlFZx66qm2LzJ11113YefOnUilUrbcX0NDgy33QwghZPbme1GeXO9jBh9d160hr0pc\n3LBSQk4hV37LmqaB4zisWLECIyMjqK6uBsuyGBwcRG1tLWpra9HV1YWuri4sXrzYtuM+8sgjaG5u\nxsaNG/G73/3OtvslhBCvq9Q6jemwLItIJIJIJGLV+6TTaWsGGJUgBJsrlVzmm+6UU05Bb28vBgcH\n0d/fj4svvhiHDh1CZ2cnLr30UttnDz333HN4+OGHsXTpUtxwww148skn8cEPftDWY0zFq0W4Xm0X\nIcR//ByqzL28ampqEIvFoGkakskk0uk0APdqa/z8HPqNq6Xruq5jZGTE+v/AwAD2798PABgdHbVW\n07TLl770JfT09ODQoUP48Y9/jHe+85146KGHbD0GCTYKh4QEm1nvk0gkUFtba9X9jI2NIZ1OWxNQ\ngqRSQ5YrQ1rmi6WqqgovvPACGhsbceDAAei6jl/+8pfo7OxEbW2t492JTq5tQ0rntZMK/V4J8Qa3\nLtDm0JYkSaiurqZ6n4BxpYfHXADqG9/4Bh544AGsXr0aN954Ix566CHE43F8//vfx2c/+1l0dHQ4\n1obNmzfj4YcfduS+vXah9iMKF4QQLzDP52a9T01NDaqrqwEA6XQayWQSuVzOthKMcvS2VOo1y9Wo\numrVKjz//PMTfsEbN27EZz/7WTebQYhvVeqJihA3TQ4gHMchFotNWNwwmUyC4zir58dvH9r81l47\nuBp4Ojs7MTIyMmEfKUmSIEkSMpkMLrroItTW1rrZJFsUe+F4tTjYq+0iM6vEE1TQ0O/Q3wrX94nF\nYlAUZcJ+XoIggOd53/2e/dbe+XJ1WvoXv/hFPP3002hubkZ/fz86OzuxfPlyLFu2DEePHsWKFSt8\nGXgIIaTQTB8q3PjQ4dYxKuViOVnhZqbm+j65XA6ZTGbCfl5eW9nZPGYlciXwmDU8Dz74oHXbX/7l\nX+LRRx/F9u3bcc899yAej7vRFMdU8hufEHKymc4HbhXhBoGb59f5hIHC9X00TYMkSRPW9xEEwXOb\nmQbltTEXru+oNjY2hksuuQSKoqCzsxOpVAo333wz3njjDbebYhuO42gHckIICYhSwoBZ72Ou76Pr\nOlKpFFKpFCRJqtjeFS9wNfAMDQ3h6quvxsaNG/Hd734XDMPgO9/5DpYtW4ZPf/rTOHjwoJvNsU0o\nFIKiKBNuo1oZQgipXGa9TzweR21tLSKRCGRZttb3kWW5bNeISr02uRJ4VFUFAPzVX/0VzjvvPOzc\nuXPCzuhf/epXsX79enR2drrRHNvxPH9S4CFzQwGREBJU5tBWVVUVampqEAqFIIoixsbGrF4ft89/\nlTik5UoNj7lQ0/333494PI5cLgdJkqDrOjRNg6IouOOOO9DY2OhGc2znp8BDwYIQYhc3t19wi9PH\nmlzvk8lkoCgKksmkNcXda/U+QeFK4NF1HSzL4je/+Q0effRRNDY2Wr0+ACAIAt58803ce++92LJl\nixtNshXP8xMeDwkGCoeEzMytngI3eyTcOhbHceB5HhzHQRAEyLKMVCpl/V8QBLCs/QMxk4vAK6W3\nx9XAs2fPHixatAi33HILRkdHEQqFYBgG2tra8IlPfALd3d1uNMd2oVCIAg8hhJA5MwwDLMsWXd8n\nl8shFAohHA77cn0fr3El8Ji/pHA4jHXr1uFtb3vbSd+zbt063wwLTUZFy4QQL6Fzj38VW99HFMU5\nr+9DTubq5qFAflf0YsxxTD8SBMG3bSeEBBddFOfOS2uqTa73kWUZ6XQaAEqq9/HSY3STK7O0zDHI\nc889F6+99hp+//vfQ1EUjIyMIJPJ4Ec/+hFSqVTRnh8/8FMND/U8EUL8JsjnrNk+No7jEI1GUVNT\ng0QiMWF9H1EUaS24WXClh8cMPNu2bcOBAwdw8803Y9OmTViwYAH6+vrw+uuv4+6778Y555zjRnNs\n56dZWl5FQYwEiblXoPm3OSNVlmVEIpHAvNbd7CkIco/EXB4bwzAIhUIIhUJWvY+5rQXV+0zP1c1D\nAeCee+7BbbfdhqeeegojIyO47LLLcNlll01Yl8dvihUt0wWcVIJKfo0XboJcGG7M50QURbAsC5Zl\nwTAMGIaBoigQRREArO/1+4XJ7+33s8n1Pubry6z3EQQBoVDopN9REF538+Fq4FEUBalUCoZhYPPm\nzdYJoLOzE5Ikoa2tDQ0NDW42yRbUw0NIME0VaArDihlozJk2DMMgl8shFotNmFIsyzKi0SgYhkEy\nmUQ2m4UoilYthhPTj8nc+TUMsCyLcDiMcDhs9SZmMhkAmFDsXMlc3S39Bz/4Ae666y60t7dD13Vk\nMhlomobFixdjz549+MQnPoEvfvGLbjTJVn6q4SGEnGD20hQLNmZNRGGgMWfHFPbaFDPdBdPs9YnF\nYgBgTT/meR7hcLjoJ3ISXE4ELLPep3Az01QqZYWiySrl9ebqbuk7duzATTfdBACIRCJ44IEH0NXV\nha997Wv4zne+g76+PjeaYzvq4SFu8NowqV9OktMFGvNiY4YY84/ZUzNdqCmVWYvB87w1/dj8RG5+\nUqdenzw0i8WDAAAgAElEQVS/9rqUW7F6H0mSAADpdNqq96kUrg5pcRwHjuOs3hCWZa03uLnEth/5\nKfCYJw06gczMawGDTM0MNaqqQtO0CYGmcOjJ7JkxA435/3Izpx+Hw2GoqgpJkpBMJuddhErvbzKZ\nWe/D8zxGR0chCIJV79PY2GhtARVkZXmE5huxubkZLS0t1r9HRkbK0ZySTVW0DNCJhxA7FPbSFJsB\nZTKHzzmOQygUmnHoyWvMMFbY65PL5ZDNZj3Z6xPEDwRun7PLdY0wX0/mTgiVoCyBh+M4GIaBrVu3\nYuvWrQCALVu24KKLLipHc0pGNTz2COLJk8zefIeezJN1LpcLVGFm4aJzdvT6OMULbSCzNzlgeaWX\n0w2urbTMMAz27t2LPXv24LrrrgPDMFayzGazeP3115FIJLBw4UI3mmQrPw1peRUNHwWf+fudKtD4\nYehptux+LRfWYRRuNWB+Sg9KyCPESa5tHspxHPbu3YsbbrgBr732Gj73uc9BEAQYhoFYLIY9e/bg\nhRdewEMPPeRGk2xFgYeQvGJDT4X/BjAh0Ng59OS1wOxEQGMYZsLUY3P2Dcdx1vR2PwXD2QpyaYDX\nXrdB5srAnflCra6uthYZ3L59O0ZHR62vLVu2DNls1o3m2I6GtEglMQwDmqZB0zQYhmFNq85kMshk\nMsjlcpBlGZqmWbNEwuEw4vE44vE4YrGYVaDL8/yEwFOqoF4Ui+E4DrFYDLW1tYhEIpAkCWNjY9Zy\nH2R+yhGuKqFmyAtcrVRSVRW1tbX4/Oc/j9NPPx3XXHMNXnzxRfT09GD37t1YsGCBm82xzVSBx6vD\nNF5tF/EGs5dG0zRr2XpRFJHNZq1QI4oiVFW1Tp48zyMajZ4UasxZIeb6NZV6op3MzvefOfumuroa\n1dXVYBgG6XTaCqP0XiczqZT3patFy+ZCWwBw3333Yf369bj55pvBsiyWLl2K7373u242xzY0pEX8\nxo6hJ3NIRRCEMj8a/yi8sDhxkTF7fcLhMJLJJGRZRjabnbDSrp3HreTeAuI/rm4eumnTJnR0dADI\nv1GuvfZaXHvttUin00gkEm40xRE0pEW8aLpp3MVmPZmBxm8FwqQ4lmVRVVUFXdchSRLS6bRVA+S3\nrSyC3EtVKdPgvcDVHh6zuxuYuE5NIpHw9S+BenjsEeSTmhMmb4sw21lPflubhpSGZVlrmwFzersf\nt7Jwq42GYfgqDJLZK/vSiuaL2A9vuKn4rYbHi7z4+/fC768w0JhFwrlcbtqhJze2RSD+U2xRw2w2\nC8MwPLmoIXHG5HNaJZ0jyh54gqDYSste5oULOTlhulqawl4aEw09kVIVbmVh1mJ5cVHDShD0WWFe\n4nrgyWaz1kndnAXCcRzq6+sxODiI5uZmt5tUMhrSItOZbkdu8/bCHbkL/xT20ui6bg1FEP/x4oeM\nyZtLmsNdkwudCQkCVwNPf38/PvrRj6K6utpao0MURaxZswZ33303/umf/gn33nuvm02yBQUeMp9Z\nTzT0VFm8/jtmGOakrSxSqdS0vT5uhTg3e0H8XE86G14M3m5xNfBUV1fj1ltvRSKRsGaFmMGnqqoK\n27dvd7M5tqFZWpVhtkNP5t9+3RaBkLlsZeHWazuo76FyBJCgPpczcTXwRKNRXHHFFUilUlZAGBgY\nwI9//GO0t7ejtbXVzebYZqoaHqqV8ZfJQ0/mwnpmsfBsh56cQq+nYNBVFWJnDzRJQd1Z68E6MERp\nVy/FTFtZ0OvRHpUaQNzmauARRRF/+7d/i//6r/+CLMvgOA6apqGzsxO/+c1vcOedd+KGG25ws0m2\noCEte7hx8pyulkbX9Qlr0wD5YShzfyIaeiKzpUsyMj39kLp6kevsQa6rD9mDhyF1HYHUewzxM9ch\n8+fXwDfUofWmq9H2oWsR7Wgvd7OnZS5qGI1GoSgKJEmCpmkQRdGqBSLeV8kh1dVX6Pj4OH7+85/j\njTfegGEYCIVCGBwcxLvf/W784Q9/cLMptvLbkJYXewrsXv3VjqEnWZZhGAYVbZKitEwOuUM9yHX2\nQDzUg1xnL3KHeiAe6oV0dBA4XrtViAkLqN60Hsk/vAwAkPuH0PW1B9H19f+Nhneeg7Yd29B4+Waw\nHg4P5lYWgiAgmUxaW1kU9gb5+YNB0Gt4gMrtUXL1XRUOh7F+/XpwHAdJkhAKhRCPx3HaaacB8O8L\njXp43DXdrKfCAmEzxJjL6dOCe2Su1OQ4cge7kTt0IszkOnuQO9QLZWB4TvfFtzSAr62xws4Euo7h\n3z6H4d8+h/DCZrR+8L1o+9D7EFm00KZH4gwz5MTjcavXx4lFDf16bZiNcj+2oD6vxbhetPzzn/8c\ne/bswUsvvQTDMLBp0yb827/9GwD/PvG08KD95jL0RLOeSCnkwZGJvTRdvRCPhxp1NGnLMeLrVkI6\nOojsm50zfq90dACHvvLPOLTz+2jcch7admxF42Xng/FgT2PhFiVmr4+5lUUmk/HtVhZBVu6AVU6u\n95v+9Kc/xd/8zd/gne98J37yk5/gwgsvxA033IAbb7zR7abYJhQKUQ/PPBSGGFVVrXVmvDLriWEY\nq8eI+JdhGJCPDhYMP+V7acSuXuQO9UIbzzh6/Op3bMT4C6/CULW5/aCuY+ixpzH02NMIty9A2wff\ni9YPvQ+R1hZnGmqToGxlQYLH1cCjKAq+9KUvYffu3aiqqsKePXuwa9cubNiwwdeBx281PG6Zy9CT\nifZ6IvNhaBqk7qMQjw5COtwH8Xg9Ta6zB+LhPug5yfU2MWEBVaevQeq5IkNYcyT1HkPnl/4Jh77y\nL2h41/lo37ENDZeeC8bDvSZ+3crC7TV/iHtcDTwcx0HXdVRVVU1Y2MrvK8dWcg3PdIGm2I7chT01\nhaFGVVUoikIzPciUdEWFeLivoEC4N//vQz0Qu4/CkL3zHgw114OvrUHq+d223q+haRj6799h6L9/\nh8jiVrTe/D603fxehBc02Xocu9FWFtOj3dLd4erVhWVZhMNhJJNJ1NTUQFEUfOUrX8Hb3/52N5th\nO78FnrnWFk1XS+OFoScSHFpOhNjVlw8xhb00XX0Qe48B2hyHhcogtm4l5KMDyO0/5OhxxO4j6PzC\nAzj05e+h8d2b0f7hbah/59s9XTs4eSsLWZaRy+WmXNTQVMkXaWIf1z9O/8M//ANGR0dRU1OD6667\nDi0tLfjoRz/qdjNsxfM8tCInYi+feAoV2xbB7VlPfnmuSOnU8czxnpnjvTSdPceDTS/kY4OAj18H\n867XKYGhqhjc9QQGdz2B6NJ2tH3oWjRdfwWYqphrbZiPwmnshT3+5qKG5vpXhNiFmeEiY/uZJ51O\nQ1EUyLIMnudhGAbGxsawfPlyuw/lGk3TcPHFF2PXrl0TbpckyZq9UG6FoUaW5QkbUhYbeir8N+B8\nl6vZzR2LeeckrSgKNE1DJBIpd1MA5H+HmUwGiUSi3E0BMP3vTBlLIXew+8Q07oKZT8rgSBla6zCB\nR/XGdUg9/0q5WwIAYPgQ6t51Pjo+cgPqLjzbsffv2NgYqqqqbFuryjAMyLJsLWpoBqJsNmuFIKcl\nk0nE43FXhtd1XUcymURdXZ3jxzJls1kwDINoNAoAVq98gEz5Yne9h+fss89GNpu1Ctmy2Sw0TcPh\nw4c9c2GZK7M2qZzM4DpVLU3h0JP5bxp6IqWQB4Yxvv8QUkcGT/TSHOqFeKgX6liq3M1zDd/SCL62\nyjNhBwAMRcXIrqcwsuspRJcvRtst16L1/VdDaKovd9OmNdVWFgAmDJcT+1TS8+l64HnppZesi6yq\nqti1axeeffbZinrS52s+Q0+hUOikoSdRFK2vETIVwzAg9fXne2nMAuHjvTRiVy+0dLbcTSy7+LqV\nkI8NIvums/U6pcgd7MZb/+sbOHj/A2i+6mK07diG+gs2lbtZMyrcyiKZTEJVVYyNjUEQBGt6OyFz\n4forJhwOW//mOA7btm3DP/7jP1pdln411dDgXOtSpgs00816msvQE9XLEJOhaRB7jiLXeSLQiF29\n+f8f7oMuuj+d2y9q3rERqT/tgaH4Y0kKQ1bQ/5+Pof8/H0NsZQfadmzFwhuvgtBQW+6mTcs830Wj\nUWuV/sKtLPy8qGE5irHNTZArkeuBR9d1jI6OQpZlNDY2gud53H333b4OO1MpFizmMvRk9szQ0BMp\nhS4rEA/3nVQgLHb1Quw+4psLtmccr9dJ2rC+TrlkD3ThwGe+hoP3fRvN11yKth1bUXfumeVu1owm\nL2ooiqLtixrSjLDgcj3w/PCHP8R9992HbDaLL33pS9i+fTv27duHc8891+2m2KrwDTJ56EmSpAnh\nBsCEQDPV0BMpLz/1hGk5ccI+T9YsqM4eSH39RTeyJHPnxXqdUuiSjGM/+W8c+8l/I756OdpuuRYL\n338V+NrqcjdtWpMXNTS3sgDg6UUNSXm5NktL13WwLIs1a9bg4YcfxsqVK/G2t70Nzz77LC699FL8\n4Ac/QEdHh12Hm0AURWzevBmSJEGWZVx99dX48pe/XNJ9ZjIZdHZ2orOzEwcPHsQPf/hD1NXVoaur\nC9/73vesDVEBTOih8UIvjZdmj5nMbSXi8Xi5m2IxF0M0ZzOUm5pKY+T1/cCxoYLtEfJr1sjHhnw9\nndsPzHodZXis3E1xFBuNoOV9W9C2Yxtqz94w7feaS4w4HS5SqRSi0ei0s4nMLWokSYKiKPPu9bF7\n5tl0VFVFJpNBTU2N48cypdNp67kBEMR6Tu/M0lq6dClGR0et/x85csQqYHZKJBLBU089hVgsBlVV\ncd555+GZZ57BeeedN6/7+8Y3voF77rkHHR0dWL58OZYvX45QKISPfOQjWLZsGZYtW4ZwOAxZlmEY\nhqeCBfE2ZWTs+CrCPdbwk6EDajKF5B9fge7wvk+kOL/V65RCz4k4+qOHcfRHDyOxbiXadmzDwuuv\nQKimqmxtms0wk1+3siDucS3wmC/WCy+8ELfffjtuuOEGqKqKL3zhC1ixYgWqqpx9M5lrhciyDE3T\nUF8//+mZt912Gz7+8Y9PePNccMEFuOKKKyZ8H20+SYqRjg0dLwzuKQg2x6dzJ8dP+v7ExrVIv7wX\nXCKGxNkbIPf1Q+49VoaWV6AA1OuUIv36Abz5yS/hwOe+jgVb3422HVtRc9b6cjdrRuZWFoUbmM52\nKwuq4Qku1wKP+SKSJAnnnHMOjhw5giuuuAIdHR24/vrrHR/K0HUdZ5xxBg4ePIjbbrsNa9eunfd9\nFVsvyE9vED/VpviROZ3b2pm7INTkunqhZ3JzvUMAgJbOIv38boBlUXXmOuiSjMxrBxx4BAQIXr1O\nKfSsiCMP/RJHHvolEqetRvuOrVhw3RUz/6AHTN7KQhTFGbeycEs5zsOTA52frl2lcn2lZZOiKFBV\nFTzP45FHHsGKFSuwaNEiVFVVOdrtmEwmcdlll+Hv//7vceGFF9p2v5s3b8Yjjzwy4TavrdRrMofa\nvDQzzm81PIamQew+ejzUmNsk5Pd/EruP2DqdO7FhNdK79xX9WnTlEoTqazH+0utABQy3uKVS6nVK\nwSViqLvqnej46I2oPfNUR49l9+rHmqZBFEXIsnzSVhZu1SUB+WtELpdDdbV7ReLj4+MTVq0OhUJl\nDX0O8E4NzyuvvIIf/ehH6Ovrg2EYiMfj+NWvfoVTTz0V73//+3H99dc7OrxVU1ODK664Ai+++KKt\ngYcEjy4ryB08jOyRwYJgky8SlnqOulbPMd2HktyBwwAOg2+sQ2zVUmT2HYQ6knSlXUFVSfU6pdDS\nWQz930cw9H8fQdXGtflen+2Xg4t7Z3uYqXAch3g8bvX6SJKEbDYLQRBoSCvAXAs8mqaB4zh85jOf\nwZlnnomPfvSjyOVyWLBgAfbs2YP3ve99eNe73uVIr8PQ0BBCoRBqa2uRy+Xwm9/8Bvfee6/txyH+\no2XFE/U0Zk3N8ZWFPTOdW5+5o1UZGkVyaBRsRED12RugDI4g19njQuMCpMLrdUox/vJevPFX92P/\nPf+ABdsvR/ut21B12mrb7t+pEFJsKwsgPyssEokEcgPTSg50rvfwNDQ04Oqrr8amTSeWNt+0aRPO\nPfdcLFq0yJFjHj16FDfffLO1wN9NN92Eiy++2JFjFaJamdlz8rlSU+lJi+6d2B7BF9O559A+XZSR\nen43ACB+2ilgOA7pl/c61bLAoHode2jjGfQ9+DP0PfgzVG9aj/Yd29By7WXgYt5Y2mE65lYWoigi\nEolYs7zMrSw4jrM9KFRy+CgH12t4+vr6IAiC9YICgMHBQSxevBiSJCESiXhm3ZO52Lx5M3bt2jXh\nxeu1dVxMXqwtKnUncGV4rKCOpmA14UM9vq/DiK1dgezet+b98+HFrQi3tWB89xswsqKNLQuG2LqV\nUKhexzGhmiosuP5KtO/YisS6lfO6DzfXxhkZGUFdXZ01y1aSJGvtMru3sjCH05yepVwomUwiFotZ\naxpRDY8DzIUHf/zjH+OZZ55BdXW1dduxY8fw/e9/H08++SQ2bNiAjRs3utUs2/A8D0VRaM0dB0nH\nhiAe7kWuqw+5tw7POJ07MGYxpDUdqfsIpO4j4GqqkHjHWuQOdkPuH7Kpcf5G9TrOU5Pj6P3n/0Dv\nP/8Has45HW07tqLlfZeBi3hn0oRpcgfA5K0sJEmyfSuLcvBjm+3g+jo8F110EdasWYNwOAxd1xGP\nx5HNZlFXV4fNmze7uuKknSjwlM4wDIi9x2aczs031iF2ylKk9xyAlgpw0DEZ9tQRaclxJJ97CUyI\nQ9VZ66Gls8juO2jLffuOwKP6DKrXcVvyj68g+cdXsP/TX8XCG96D9h3bEF+9bMafc7s0YHIgKLao\noR1bWdCQlrtcDzxnnHEGstks3njjDQwPDyMajWLjxo2IRqOuduvZzQw8haiG52RTTec2d+c2JHnG\n+7AKdONRVL9jI8TOXsjHBl1ofXnY/RoyVA3jL+4BAMRWLwNXFc9Pa9c8UKDtAqte549Ur+OmUG01\nwq3NCFUnwAo8sge7sfcv7wPDh9B2y7VoueZSsOGpPzB6JRiYixqGw+E5L2roBZPPJ15uq91cX3jw\n0KFDuP3229HX14dTTjkFL7/8MrZs2YL77rsPzc3Nvk28oVAImqaVuxmeoMuKtceTk9O59UwOqede\nzvdYvO00qMNjyB3stuW+vcRwcKZYdl8nAEBY0ITIskXIvBbsXrPYupVQ+oeQffNQuZsSSGwihkhr\nM/jaGjACD0NVoY6NQzo6AHUsBaG5Pl9I//qBCTVTY8+8iP2f+goWfuAqtN2yFfGVHeV7ELNUrNcn\nl8shm81atT5erY3x4zXWDq7W8HAch507d2LLli246667rK/ddNNNePjhh/HhD3/Y+j6/KdbDE2Re\nms5tqBrGX3gVQH6RPkPXkdmz37XjO40psYZnNuRjg5CPDYKNRVH99o2Q+o5B6j7q+HHdRPU69mDC\nQj7UNNRB51hwHAstlYHUPwRlcATZ/V0Tvl9obkBi/SpIRwaQ3d910tdNysgYur/9ELq//RDqLtiE\nth3b0HzVxWCFqTcMtdt8P3AX28oilUr5ptenUrg+LT0UClnV4dlsFrFYrOzLe9shFAr5JvCUMtRm\nqAoGv/8Ast3DyHankO0eRHb/Ic+s8muuSBxdtRSh6kR+qMYLa+mUwHAh8Jj0bA6pP7wMMAwSG9fC\n0DRkXn3TteM7gup15o7jEG5thtBUDy4aAWBAS+cgDw5DOjZ0fCi6d8ofZ6NhVJ22GrokY/zVNyEP\nDM/p8KNP/wmjT/8JQlM9Ft50Daredylwmj/qO+eylUU5RjQqucyiLEXLDz74IMbHx3HmmWfi8ccf\nx9jYGDZs2AAAvt3NthJ6ePRcFkPf+nuIr+0GG09ACAGR0xrAJ0LQRANsPAZlaBS5A11lX9smtz8/\nZBFub0F4USvGX34dhjhzfZAXGTYVLc/xoNb6PZFliyA0NWD8lb2zqrHyEqrXmZ6woAnh5gZwiRjA\nMNBzIuShUUhHByD1HIXUM4dePoZBYt3KfE3Ya/uRPL4eVCnkwREc/vq/Ad/436i/6Gy07diGpisv\nAmvTFhNOKraoYSqVmrCVRTnbVolcXYfHTLN79+7FQw89hN7eXqxZswYf+chH0NTUZE1T96OPfOQj\n+NjHPoaVK0+sM+HF/aGA+a0PpCXHMLDzfihdJ2b1sA3NyPYOQM9mIXSsQLong7Hn9oKrTiC2cgmY\nsAD56CDEaT4JuiVUV4PYmuXI7D0AbcxfNSrhRQvnduFxSKi+FvE1y5F9sxPK0Gi5mzMjs17HD211\nEt9Yh3BLI0LVCYBjoUsylJEkpCP90HOl7/kWWbwQkcVt+Rq9vn4bWjw9YUETWm+6Bm23XIvo4lZb\n71vXdSSTSdTV1dl6vybDMKAoCkRRtHYfYBjG1Qk7k/cK43net9fdKUyZ5lxfeFAURWSzWWtYS1VV\n6xfQ0NBg9+Fcc/vtt+Pmm2+esAt7UAKP0n8Ug1+5D+rAsZO+xrUtwfjr+4HjBdt8+xKISWD4id1W\nLw/fWIfI0kVgOBZiz1HILpwUp8JGI0icvgbi4SOQj5SvHXMhtLWU9TmbjBF4VG1cC3l4DOJbh8vd\nnKIqrV6Hq04g0tqMUE0VGJ6HJklQx8YhHxuENp6x/XihmgTia1dCGhmDWK4CcJZFwyXvyPf6vPsC\nMDaURWiahvHxcdTW1trQwJmPlclkoKqq1esTDocd730pXFgRqKzA4/peWt/73vfwuc99Dq2trdZW\nD4cPH8Y3v/lN3HHHHdb3+U1Qh7Tkrk4M7Pxb6Mniq9BqfYeR2LAe6ZfyQwZK72FwAFrfswaqFsfg\nr1+CMjQ64VO20NqMyOJWQNeR6+qFMjDixkMBAOg5MV+jwnGo2rQe6th4fgjOyzxWg2TIirV9RXTN\ncoRiEYy/tLfsw5gAAl2vw0TDiLQtAF9XAzYswFA1qONpyEcHoIwkkUmlnT1+KITE8e1Kxl/dh+Qf\nyvwc6zqGH38Gw48/g3BrM1o/+F60fehaRNoXlLdds8RxHHiet/42FzV0ciuLSud6D4+maVao4TgO\nb731Fn72s59h06ZNuOSSS3w7rPXJT34SV155Jc466yzrNi/38MiyjFhs+l2Nxdd2Y/CbX4Yh5ma8\nT2bxKmRePrlOgmtohBFuwMCvX4aeLd59HlnShnBrMxRRhNTZC83lVZPjp50ChmGsgmevEVoaPb8y\ncri9BZHFbRjfvQ96JluWNoSa68HX1SDn5ynnfAiRthbwDbX5YmHdgDqegTwwnC/8LUOojK3sgNDc\ngIwPhjIZjkPDZeehfcc2NGw5D8wcryVu9vAAQC6Xg2EY1rnY6a0sgJN7eAK4QWr5e3hMHMdZvzxF\nUbBixQqoqorHH3/c14FHEASo6sTuc68uPDibF3fmj/8Pw9/7JqDObkhA796P6Nq1yO2duFGlNjwE\nYAgt5y4Ealsx9Ns9UEYnBhrxcB/Ew335/7AsoiuXgG9qgJ7NIXugy1ph2SnmLKToiiUI1ddg/M+v\neWoRvrIULc+R1NsPqbcfXFUcNe84A7muXshHBlw7fmzdSsjHBv0RdhgG/ILGfF1NPH+h07I5yIMj\n+Zq3rj6IXX1lbSLfVI/4KUshHRtC9kAXsl7vBT3O0DQMPfp7DD36e0QWLUTrze9D24feh/CCpnI3\nrSi3t7Lw4vXITa4Hnt7eXrz66qsIhULQdR0jIyP485//jEsvvRSAf6vHeZ4/KfD41fivd2H03x+c\n06dJBgBG+iAsWQL58Ml1HVoqCaSSaNhQDW7BaRh6+g1IR4oMZek6cgcOI3cgfx9MiENszXLw9TVQ\nk2lk9h8CZGeGDnPH61GE1mZEO9qRemWvJzbbdHNaeqm08QySz72UHzI861RoWbGkjU9nw6v1Onxz\nPYTmRmsGlCZK0EdTEI/0Qzk6COWot1YHZyNhVG1YDV1WML57H8ae+XO5m1QSsecoOv/uuzj09/+M\nxndvRvutW1F/8TumvcaUY5p4seMVW9Qwm83CMIyStrKY7piVwPXNQ1966SXcf//9aG9vB5Dfh+TG\nG2/E9u3bAcCX9TuAv9bhmc7YTx5CatfP5/fDioKQIEFvaIQ6XHwIRs9loR/ai9plPEIXnouR5zuR\nOzj1DCRD1ZB9o2BmWERAdP0pCFXHoQyN5T952lzjIh8ZgHxkAKHaKkROOwXigcNQy7mTth9X8NY0\njL/4GoD8mkh8bRVSL70OqDY+Fg/U64TqqiG0NCFUkwDDcdBlBcpoMl9XMzDian3avBRMJU+/fsCW\nqeReY6gqBnc9gcFdTyDa0YbWD12L1pvei3CLPybJFG5lYU5v99NWFl7ieg1PUH35y1/GqlWrsGXL\nFus2wzCQyWSQSCTK2LKTmW+awhoeQ9Mw8uB3kXn6iZLvn21oQba3H3p2FrUcLAth6SqM7TmG9J65\nD0dwVXFEVy4BFw5DGhiG6MDWEmxEQGLjWoi9xyD3nDxTzWlcTZXrdU1O4JvqEVvVgfTrpS8NwDc3\ngK+vsbbGcBIbj+X3gKqtAsvzMDQtv13CsUHf/l4iixYisqQVua4+SL3uv6bLjeFDaLriIrTfug11\nF55tBQZVVZHJZFzbxDqTyVjDWHNhGIZV62MYxoRC5+kUm3ZfSTU8ZSla5jgOP/zhD/GnP/0J3/72\nt6EoijVN3a++9rWvYdGiRbj88sut2/wSeHRZwtB3dkJ8+U+2HYNt60D69Tfn1DsRWrwMme40ks/P\nf2XfUF0NossXgwlxkPr67V2/hmVRdcZaaOMZV/diYqvi0B2YWlwubCSMxOlrIB8bgtg19zWaYmtX\nQBkYtrWAlgkL+VBTXwsukp8BpaWzkAO0jg9XnUDVqaugJMeRef1AuZvjGdHli9F2y7Vo/cA1YGur\nXA88HMchEonM+z7MWh9Zlq37mqrXp9IDT9mWq+Q4DqJ4oj7CDF5+feKn2i0dKM+48HQKi6m19DgG\n/wLkMToAACAASURBVOELkA/Yu32A3teFqg3rMf7S7Fe4Vbs7EQbQtu0MiIMqhn/36pyPq44mrZ3A\ngfwMp0hHGwwAYlcflFJmO+m6NUwTP3UVmBCH9CtvzP/+5nDcINFFyVr5OLFhNQAG6d2zex6r374R\n4y/Os16HYxFuPT4DKhaBYeQ3oJUHh/Ph61Av4IFFMu3EcByqNqwGE+KQ2r0PY8+9VO4mlR2biOVn\nwtXVWPVVAw8/gcPf+j+oPX8TGt5/JWou21zuZs7aXLayqHRlmaUFAKeccooVePzeuwPkX3R+K1pW\nhwcx8JX7oB5x5iSvHd6P+OmnI/PK3Jb1V7oPgQPQds2pkKUIBh9/ed51LHL/0IQp3eFFCxFuXwBD\nUZHr7IY6kpzX/WZey29OGlm2CHxTfX5ml531KQUMP9bwzJK5FECkow3CgiaM734DRrHVfwUe8Q2r\n82sozUBY0AS+uR5c/MR2CcrwKOQj89guwaciyxeDb66HeOBwvnaq0nAcIu0t4BvrrOn9WiYHRuDB\nhnnoWRHpvW9Bm7R20eAvfo3BX/waPacsQ9uOrVj4/qvA11aX6UHMzWy2svDah2+3lWVIK5lMgmEY\n6LqOdDr/gpMkCel0GrW1tVi2bJndh3Xcv/zLv4BhGFx//fUTbk+n04jH4556kem6jvGDB5D+9leg\njc5tU7+5MsAAzYuRe2P+PSGhxiZooXoM/Pole/fDYhhElrZDWNAEPSfmp8Cn57eGjNDSiOjyxc6s\nQyPwjs1M8xqupgrRNcsgHuyBOpgv+OWb6xGatL5OqKEOwoJGhBIxMCEOuihDHh6FcmwIulj6dgl+\nZE0lPzqE3EFvroBtN76pHkJLI/jqBMAy0HMS5MERSEcGACa/hhBfXwMtk0Vm/9yXuGCjEbRcexna\nb92Gmk2n2d7+dDptTTl3grmVhSRJUFXVGokoHNJy6thlVP4aHnOW1pNPPoktW7agvb0dPM9D0zRk\ns1nU1NRAVVVceeWV+Na3vmXXYV3zgx/8ALlcDh/4wAcm3O7VwCP+x3eR7T6C7Ot7Z/6BUvECVKEa\ncndpBcVcTS1QvRADj++GlnKgpoXjEFuxBHxjLdTxDLL7D805YHFVccTXn4Lc/kP21X5wrKfWBXID\nE+JQdfbpMAw9v1GkqkFXVKhjKchHB6DNM5gGDRMWEF+/ClA1pF99M3DDnwDAxqMQFjZBaKgDy4dg\nKCqUsXFIfccmvA4YgUd81VKEaquhjWeQ3t9ZvLdwnqo2rEbbjm1YcN0VCCWmX7R1tpwOPIU0TYMo\nipAkacJWFqXUD3lU+QOP2ZV24MABPPDAA7j88stxySWX4PDhw/jJT36CxsZG/MVf/IVdh3Pdj370\nIwwPD+OWW26ZcLsXA496rBfq//kqAEBvWoTRF1+Flko5ekwmUQ0prUAdLr1HiY3HwTYtwdBTeyEP\nOFdQyoQFRJYvglBXC2Xk+BT4WQ5bMWEBVRvX5nedPnzEsTb6HRMN5+tq6mrAhvn8dgmpNORjQ4it\nXobxF/cgumIJuHg0v31FAC/o85E4dRW46jjSr+13Jvy7jeMQaWuB0FgHNhYFdB1qOgP52FB+heki\n2EgYsVVLEapOQE2OI7P/EAzJxh7gqZpaFceC7Zej/S+uQ9Wpq0q6LzcDD5AvcE6n04jFYlavT0tL\ni6euTzYof+Axe3ieeOIJfO1rX8P//M//WF97/PHH8dWvfhW//e1vfTtj66c//Sl6e3tPCm2ZTAbR\naNRTq0fLT/wC+ou/O3FDNA5RjyL1orMLjbGNLch2H4Oes2flZEYQEGpfgeE/HITY5fzUWjYeRWxl\nB7hYFPLAMHIHu2denJFh8jO7suKE9YQqCh9CuLU5/wk9Eoah6/kZUIPD+XVqJj+Hx9fXMQubrZuP\nLwg5vufNQM1am61w+wJEO9p8PZWcb6xHeMHxndvNIajhUUh9/TMWorOxCOKrloJLxKGOpfIBp8xD\nvTVvOw1tt25Dy7XvAheZe2gZHx+36mvcMHnavWEYFdXD41rRspkgGxoakE6n8atf/QrnnHMOenp6\n8Mtf/hIbN26c8H1+45eiZUPXob8xaaZGLoMIMghf9A6M7T0Ipd+Znbn1oX7EVi1Des8btnxSN2QZ\nSudeVLdyaHzHOzD6ch8ybzhXu6BnchNmZYVqqxBdvgRsmIfY11+8J8cwMP7nfNFobM1ycNFwvqdi\nrjjO2wsQMgyEhc0QmurBxiJgGEDL5KAMjUI6NgTp8JFZ9XSZ6+tMDjvAiQUh2XgUNe/YiFz3Ucg+\nvfDPFlcVR9X6VVCTaaRfP+CLoMPGItYmp4zAw1AUqMlxiH39UIZGoAzNbjFGLhFDbGUH2FgU0tAI\nxIPdGHdjVuQcJF94FckXXsX+v9mJhTdehfZbtyG+amm5mzVrXvog7oayLDz44osv4u6778b+/ftR\nXV2Nm266CZ/5zGecOJRrdu3ahVdffRV33nnnhNu91sOjHXwdyn/+89TfwAuQYw0Ye/YFwKE9nNgl\nq6zd1W3FMBA6ViJ1YBSpP++3//5nwDfVI7K0HQzDQOw+AnmKrQMiS9ogLGxC6s+vAbOcXs0IfNk/\nzQInb5eg5kTooylIRwdKbt+c19dhWVSdvga6rFiz5oKA4TgkNpwCNsQj9eo+GF4swmZZCK3NCNXX\nQKhKAIaRH4LqH573RrdcdQLxFUvAxqJQhkaQ2d/l+SFMJhJGpH0B+PoasIIAQ1URqqlC6weuRtN7\n3pmvP5uG2z08iqIgl8uhujo/84xhGNeO7aLyD2lZd3i8arzwSVZVFclkErqug+M41NfX231Yxz32\n2GP44x//iE9+8pMTbvda4JH/6wfQ981iLY66ZqS6ByB2OdNjwixaNefp6nMhLFmG7DEZI0/vmfmb\nHRJua0F40UIYmobcoV6oky7kfFM9Yis7ZjVEw0bCrs0+4mqrEF7YDK46Afb4dgnqWBLSkUHoWWc2\ncq1+++kYf/G1ee+HFV2xBGxtNTK735h1iPSa2PLFEBY2IbPv0Kx7QZzGN9TmXwtVcTAcCz0nQRke\ng9h3rOS9y0I1VfkenIgAeWAY2QOHy7Ib/GyEFzZDaK4Hl4gDyPdeygNDkI4OTtnmcGsz2m7ZirYd\nWxFuaSz6PRR4HOGdwNPf34+/+7u/Qzweh6Io1gJ45kKES5YswV//9V/bfVjHPfHEE3jqqafw6U9/\nesLt2WzWM4s/GWIW0nc/B6iz/CTOslDr2jD63AswZHuLAQ0wQNMi5Pbts/V+J+PbFkFKhzD021fK\n/mkx0tGOcGsTdFFG9q3D1hogXCKG+GmrkXvrMJSpCjRjUVvDhme2S+BDqD7z1KJDWPO6u4Y6xFYv\nQ+aNt+a9xpKb+MY6xFcvg3RsyNq81m1MNIxI2wII9bX5nkQ1PxtOPDJw0jo1peDr86ugs4IAqb98\nj3cqbCL/nuBqqhAKh2HICpTRMYh9/dBL2ESY4UNovuoStH/kOtSde+aEr6VSKUSjUdfqVis98Li+\n8GA4HMbSpUutXhyO48BxHFRVha7raGwsnoS9zg+7pWv7Xp592AEAXUdouAdNZ61FekxGdq99U9gZ\nGMBYP4RFiyH32L//lUnp6wELoPWKVdBQjYHHX4YhlWdoSOzqPbGVAssiuqoDQlM9tPEsxl/Ob6xZ\nffYGyAPD+VV/CzDs3GvbCrdLYMMCoOvQxjPWdgm5A102PKr545vrwTfU2RZ2AEAZHkXy2T+DjQhT\nPpflxoQFxE5dCdaAe7uSs2y+cLypHlwsCsCAkkpD7h+GMjiC3FuHkYO9AYRvrENs2WIwPAfp6CBy\nnT1QRsrX4wog/zy0tRx/HvILEhbOBsvt77L9kIaiov/nj6H/548hceoqtP/FdVh4w5XHfw/uooUH\ny7R56OjoKIaPT1FuaGiYsBCSHz333HP4xS9+gXvvvXfC7V7q4ZH+/Zsw+ua/2aITU9iZqhpIKQnq\niDtd+FxdHYxYCwYefwV62pnhmflgBB7RFYvB1VRDTY3nP2mLMnLHZ3Zx1Ynin7a5fC2F0HB8RVkA\nWiYLeXAEcv9w2Xu1phJbsxzK0CiUQed/7/HTTgHDcUi/7MKaU9OIrlmGcF0txl/bb2vPSaFQfQ3C\nC5vBJmJgWBZQVCjDoxD7+h2vARNaGhDtaAfDcRD7+iEe7nP0eNMJ1VYh3NqCUE1Vfhd7SYIydHwo\nzulauBCHcEsj+LoaCM0NCLc2I9zWguiSVkQ72hFdvgTRthYA7vfwyLIMSZJQVVUFgHp4HGcYBn7x\ni1/gU5/6FMLhMFRVxYIFC7Bz506cc8451vR1vym2l5aX6KODJYUdAGAHe9Cwuh2iHkHqRXv25DHG\nk4g0LUQmm4MhOh9AtNFRYHQUzWc3gm1YjMEnX4MyVP6hD0NWkN17Yto6G40gurIDdRe/HUoyDTWZ\nQqSjDUwknK+rESUoQ6OQjw1C7inPLu7zVf320zH+59ddK8LOvJrfJy68uBXhtpb89hUlDFHMRbit\nBZGONuQOH0HujU7Y8QpnIvkhKL6hBqxwfO2isXFIRwegjiRdG8oTFjZBaF8Ajg9B7D0GqftoPmS7\nJcQh0r4gv3ZPJAJD06Cl0pCODkAZSUIdc2BolmEgNNfn92NLxMEKAtgwD76hLh9uFvx/9s48RpK7\nPP/Pt+6qvqfn2tmdmb3X63NtMI4d29jY4ohljAiKQoRAwSEBEsAkQJBCQkD5ARISkRUnSgIRiUAk\nSkIIEKMoCQJEwDYONt5de23vfc3OPX3XXd/fHzVV293b3dNH9Tn1kUa729tTVV1dx1Pv8bwTkOZ2\nIHJgN5R9c1tGcbZ7xKXX9FzwLC4u4nOf+xyefvppTE5OAgB+9KMf4SMf+QieeeaZXm9OYAy64LGP\nBzQJvbyF/cVTMJeXO16ks3oFkUPBtas3tc5CAU7hJYzdoICbuRGr/3sS+sXOP0sncOkkhKlxcLEI\nwLKghgH17CUYC8vubKh0yp2LNADdWm3h1es81b1i9UboFxagX1gAm4gh+svXo3TqQmfDZOvARiOQ\nr98Lp6ih9OJJ6JfbsHkg5GoKKqIAlMIuqTCWVt16n9PnofbY1kncNQ15dgcoKNQLCzAuL9ftRAwS\nfnwM3OQYxEQM2Cyc9sZHaOcuQzsXXCSJSyfBjSUhJGJuGpi4KSm7pIIRRfDpBJS9c4gc3APlwG4o\nB3dDmpkKbP3dZrsLrL4MD2UYBpOTk7BtGyzLYteuXf7/D+uXUa+Gp3wyeb+glMJ5MSDBswlZvYzU\nrgSMA/uQ+ekzHbewO5fOQrn5JpR+8UJAW9gcVNNgnnkJyTkO/D13Yf3/LqD0avdqPphYBOIOr1jY\ntcm3snnoC8uw1jKw1jI1f0+/cAX6hSvg0kkoh/agePwU7FwPi4s7hJ8YAz8ebL1Ou9jZPLI/ec4d\nX3H7TbDzRZRe7iz6CZZF9MYDIKKAwtGXUfhZc7UqXCoBcWYCXDwKwnJu5G49A/3ykv/TL6S5GQg7\np+BYFrTzrtlht3yAarV3e4XTnndPp9ExNhGDMDEGPh4FI4kAw4BarpixNnIwltdAdRNsRIayfx7K\ngd1upObgbij759syFhx0hvV+2y49FzyRSAS7d+/GH//xH+Otb30rMpkM/vmf/xn33XcfgOH9AgbZ\neJBeOg2a7UKo2TQgmAuYvOe1yF1Y6ryF/eJJKLfcjNILR4PZvhaglgXj9AlE0wxS77wDuROryP+i\nvUdoIgmQZqbApRJgRMHtgMoXYSyuwFrPQs2f3XohdbDWMsj99HkwERnxu26DdvpC274nvcKr1xk0\np2lq2cg/6woT5bp9YGOKaxLZQpRR2jsLcXoCpZPn/Mnv1RBRgLhzClwyDk6R4ZgmjEwO1tIarI0s\nrI3+p1QBQN6zC+KOSVDbRunMRWgXFqBdCHYsijA9AXFq08cJle3dbuF0ezARGeJEGlwyDkYRQRgW\n1LbhqBqsTB7G8hrsbB5qNg+VYSDPz7gRGl/U7EHk4G7QZAy2bSMSiQT3oRvQ64fhfj9895u+FC3n\ncjl84QtfwE9+8hPIsoyHH34Yv/u7v9uNVfWMM2fO4NOf/jT+6q/+quJ1VVXB8zy4LQyouon5vW/A\nPvZ0d1cSUAs7JQRI74L6yisBblx7cHN7ULhUQu6pGjcyjoU4Mwk+nQIjiwAF7EIJ5vKaO/unRxcW\nwrGI3XaD23V15mJP1tkK8V86gvxzvavX6RRhxwTkPbObM6pqFxbz6STkQ3thLK9CO7XZYUiIW9My\n7jpNO5SCqjrM1XU37TNoNxpCIO+dhTg1Dse0oJ65ALNOdLFVmIjsRmuScRCe32zvzkK7vNhWezcR\nBXcq+lgCrCKDcBzgOHA0HVY2D2N1HVb22u/K9fnZjNRspqAiB3ZD3jdXN1qjqioopVCUYIaDbkUm\nk0EsFutZU4umaRWCjmGYoRzltAWD48PjUSqVkMvl/J2fTCa7taqecPHiRXz84x/Hl7/85YrX+y14\nqGlAf+JTgNGbIk3EUyhs6Ci91IEFvCDC4qIwLg7GDZzfNQfTjsHI27DzBRhXVmFcWQZtcpBor4ge\nOQxq2YPhOhywv06vYSIyojdf56ZxLl4BEQVEbzoEcCzsQglcRAbhWDiaAXMjC2NhCY7W/cGVbcMw\nrrHhZBqO7vpAWZkOui0JgTAzCTadBCtLIACckgZzqf6wz5qwLMSptDs8NqqA4XmAUji6AStXgLm2\n0VCIEZaFND9ztaamLGIjTqVb/lih4BkJBqdLCwCeffZZvO9970M+nwfDMEin03j88cdxxx139GNz\nAmFQa3ick0d7J3YAILeBKAsob7gHG8/+Ana+jToTQwcvSrBTKberqs8wogCceQliYhKGrMCgFJEb\nDoCNKJuDMIvQr6zUrb/pFd6cL+XQHrCxiJue6cOxx4+nwE+mh1bsQOAhTKZBDRPygXnIB+ZBAOSf\nfwnWRnCWDF2FZTcjOGnYqobSyfMonTyHUoveS9e0d5fVGBmXl4BGNUaEQJgYcwuBoxEwontjdXQT\ndqEIcz0DY2UD+sIy9IXGDQNsMoZouajx/r5vDowwcjfsrrHdU1o9FzyO4+AjH/kInnjiCdx9990A\ngB//+Md47LHH8NRTT/V6cwJjUI0H7WM/68t6mZULSB+eg+aIbbWw03wW8vQMiqoKqvVQsFUjirAz\nGYBS0MwSeACJQ2OwEcXGT45VjHvgkjEIM1Obk6AZOCUVxvIajC0u5kFTesWtERJ3TUOcnUb+uZdA\n9d5EH5Tr9sFcz6D00qmerK8ThOkJ8BNj4GKKm5IsaTBW3OiEODMJ7eIV6D8/7r9f3j8P+cBu5J9z\nTSIHCcJxUA7Mg08nYZc0FF89C/XkuebMJdts7+ZScXBjSfCpOFjRTRE5pgkzX4S1kYO1tuEe/01G\nfAjHQd69E8rBzSjN5g+/eydoPOJ7x4wS/eiaGtY62SDoueBhGAb5fB533303nM3iwHvuuQe5AM3s\n+gHHcQPXlk7zWTjn+1gLoxYgoeC2sB8/CXOltRZWZ3kByoG9KB5/uWuDTLdC2LsPxokqw7rCOlis\nY/yXpuCI09h46iXYuQKsTL7mzYGRJYi7ptzp0TznpkHWMtAuXenqjdPrquHTSSivuRGFF092dWzE\nINbrsPGoOy4gHgXDc3B0E9ZG1o1QLK7AWHSPSUaREb3pIPh0EsVjr9YUqd4oBH5iDMrB3e7+7IbX\nSxMQgUfkwG5wqQTsQgnFk2dR3KIonB9PQZye2BTkpGF7NxuPQhhPQZrf6RpaMoxbBFxUYWZyMFbW\nXFGzkUOrjyP8WNLtfCovGD6wG/LeXW5KqwrPLK8XbPe27VGnLymtdDoNVVUhy64pk2EY2Lt3bz82\nJTAG0YfHfunZgSiWJKuXkZpNwji4D5mftjaFnS6cQ/TIzSg83/v0iLhvP/SXG9QiqXkwah7pW2Kg\nsRuQefZkTedgR9Wgnry2A4VwLMT5Gb/w2bFs2JkctEuLcIrBmTCaaxlkf/ocGEVG4s5boZ67FKx/\nCscifvvNyD31fHDLbAWegzQzBSbldkHBcWDlCjAWV2GtZ1Cq52pMCCI3HgSjSCgcewW5Z5qzRDBX\n1pFdWQcjiYjfecRNyZwPtpupGkYUoBzcDW7Tibv46jkUXjx5zfuIKEDaNQ02EQMri4DtwMrmoV1e\ncp2tVzdAZBHi5Dj4ZNw1RpybARwbtqq7HU0ra7BzBagduEETjoO8ZxeUA7sh7ZsDt3sG4t5ZJA7v\nR3RmaijNZUeB7Z7S6kvR8uLiImKxGGRZBiEEpVIJmqYhkUgAQF87mtrFNE286U1vwre//e2K1zVN\nA8uyfSkM0//u86CrV3q+3kY4yQnkzi/BuNBaQTLZdQDFF3rn0UMkCWwkCmuthZZvjgdSe5B94Tz0\nDp2PhalxCNPjbp0QpbDzhcDqhAjHInrbDTDXstBOd2YlwKaTEKfGe5LC4qfGIUym3ZZmslkku7IO\nfXEVsJuPlIlzM5Bmp6GevuhHeDqCELdg3LZ9V+dOYWQRkQN7wMajsLJ5FF89W5GWFKbHy9q7iWtK\nuLwGY3UDwsQYmHgUfFTxZ6g5mgErl4exstFZsXIV3FgS0UN7ronYyHt2gam6jluWBU3TYJomeJ6H\nJElNXeurxyF0k1KpBEKI/zDebdbX15FKpXoWVar+fCzLDuX9dgsGq0vre9/7HgzDACEEpmnCtm2Y\npgnHcaDrOt773vcOxOypVqCU4vWvfz2efPLJitd1Xe/dvBLbBrIrQGYZWF+CdeEM7NUl0I0B82lh\nWFipmZZa2Hvdri7feBPU4+0NOqSEgJnYh9yJJaingh2MyiZiEHdOgovHAqkTit5yHahDUTzW+n5V\nrtsLYz0Dazm4eVhMVIG0c7NIlufdbp1MDvrCckfT4tl4FJEbDsDayHZuMtgAed8cuHQS+edfAszm\na/pYRYZycDfYaATmRhbFV8+CEfiK9m7HsgDbBjUtMIIAInAABRzDcIfCrm52NAX8FE8EHsqeWd9Z\n2CsY5uZ3AFEF0Wi0peV513nv2ihJEgRBqHvT13UdhmH0RPAUi0UwDBMKnuFmsATPu971LpimibNn\nz+LMmTN44IEHIMuyPzX9b//2byGKw+dqee+99/ZV8NArZ4ELLwOXT4EpuJEABwRITMDhBNiFApyV\nK0CxO4MLWyaeQmFDQ+ml2oZt1yBIsFgFxqXuTr8W9+2HfuZ0xzcOCoCZ2IPi+TwKx65NPwQJI4kQ\nN51qXaGgb9YJLTZ145UP7gEXj7oFuU0Y78V/6Qjyz7dZDM2x7sTqdAqMJLqdbmVT3IOCcCwiN7mD\nQ/NHX+7pSA5uPIXIwT0onjhVs7OLiSiIHNrtRvAsG7Zpgo8oYAQBIATUsuCYJqhuwtrsaDJXNkBb\niGS1ijAx5tfTlEds5D3uQNBqdF2HaZotCx4PSilM0/RbpUVRhCRJ16S7Ol1PKxSLRbAsC0mSur4u\noPeCp/rzhYKnkq4l/NbW1vDud78buVwOH/3oR/H2t7+9W6vqGf0WPB7UcYDli8Dl08DiOWD9Chjq\nwAGAWBqOoMDSNEAtga5cAYzeFATWhrhT2JtsYSfxJLQNFXamO+3qbaWymlnu+BzUZQu5Z18MdLlb\nrpdjIcxMQZhwxcXVOqElOMXSNe8Xd01BnJ1B/vkXQWv5ynAsErffjGwT9Tr8RArC1ATYzcndtqrB\nXNuAsdBdDyN53xz4qXGUXj0LK0AB1Q6MJCJ65DD01XXw8RjE8RQoITBVFazlwMoXXR+f5bWeFHsz\nogB57+xma/fVgmHlwG7wyXhLywpSiNi2DU3TYBgGeJ6HKIrgOA6EkJEVPJRSbGxshIIneAbLh+fs\n2bN4+9vfjs985jN461vfije+8Y1YWlrCo48+Cp7nwyr5DiEMA0zPA9PzbpHa8iXYC2eBpfMg2WVw\n+TVwACwlAWf3fjdU7jigpRKwugg4vWy5pX4Le8niUXiucXEyzWUg75hBUS2BdqFzQ9p/oO1UViPo\n6gVIDCC/+XroBQGZnx7tyaBUatn+0MxqatYJLa4i99Tz4FIJRG67EYWXrnYiceMpiFPjFWKHKBKk\nndPgUnHXAdeyYG7kYFxZhrmyAXOlN4KDTych7J+HvboB9fQFqKeDTSU2BctA3DUNLp10U06AO6fr\n1XOwNrLgbrkO+pUVFNpIH7YKP5mGcmAe0UP7Ktq85fmZmtGafsOyLCKRCBRFga7rKBaLIIQMZaS/\nVcL7Xe/oaYTHcRwwDIO77roLn/70p/GmN73J/783vvGN+PrXv+5PUB9G6kV4APTkxKWUuoNCHcf/\n0/vx2i2ZzDKYK+dAVhfAlTIghXUwABwlASrIcIpFtwWVsHByG6BrK+hioO8anPQMsi+e2rKFnZ3d\ni/zRlwIVDUGlspqBxNMwrQQ2fnJ0oNq4gUo/IcLzYEQBZiYDVpJAHQo4DuxiCcbias2utF7huR9T\n20bh6MuA3RvrAm4sAWGzvZswDBxNh7G6AWNhqanIlXJoL0hERvEXJzo6fhlJhLJvrsyMbzNis38e\nGkv8SEm36GbkhVJaUeTMMExPHIn7EeEZGxvr+ro8CoVCxXGx3SI8fUlpvfDCCzh06BAkSYKmadjY\n2ADP8xgfH+/G6nrGPffcg+9973sVrxmGAUppYBceT9TUEjSO44AQ4gobhvF/vH+XP0moqgq+mAFz\n6RSwdgUoZkGKG2BMHY4cAxWjcAo5oFQA4mOgDoW9vgLke+AmzIsw5LEtW9iZ+UMoPBdMK3S3Ullb\nrjeSgMVNIPOT47ADbEVvBy6dgjg9DjYW2byRazDXMtAXlkEdivhrboC5lulP9KQM5bq94FIJFF/s\n4sR4gYe0cwr8WNKtM7IsWLkC9IXlwLyMxF3TkOd3IvvccVC1frRS3DFZORNqM2Ijzc240dwaVN/Y\nukH1mIJuUSqV/KYWjuMgimLXMgG92G8eoeDpGoOR0vKiDF/96lfxjne8A3fffTeeeOIJ/M//o2oD\nbwAAIABJREFU/A8efvhhPProoz0rFht06gkaz6yxXNBwHFchbpomOQFmfIe7vtwG6JkXYa1eBlHz\nIIYG3irCiUVBJQlOqQiOmsDUDiCSgGMabgG01oWbtKlDMK9g8t7XInt2CfqF2q3TzvlXELnlZhQD\nmK7erVTWVtBiFiyySL92DI6yC5mnT3R1fAGRRYg7p8An3UnujmnCzuahLyzDWtuAtVY/BZX7mbuf\n+zGzS5iegLx3FtrlxUC7rPiJFITpCbDRCEAInJIKc3Ud+sIKtLOXoJ3tXoG8ZwzJpZOI33UbzI0c\nlN27rnZDbUZuuFjrgmKUDPS8a5yiKDAMA6qqolQqQRRFiKI4tJ4+o/QdDQt9ETxPP/00HnvsMWxs\nbOA73/kOHn/8cXzgAx/AAw88gOuuu25oD4RWt7le+qla1BBCfC+flkVNs9seT4EccUd90GLOFT+X\nTwO6CkJtsLYKpMdAlSSorrmpMY4Au+YAUYFTKrkCyAowPbO+hESKhbX3bqz/9JmaXTbOwhlIBw9C\ne7X9m6+4bz/UF49v/cZuopXAaK9i7HoFSB5G5uenYSy2GW1iGHdy98QYWFkCReUkd+3UhZbdccu5\nOrNrLyCLKL3wclfSgJ77sa1qrvtxm545RBIg7twBfiwORigTeZeXulJnRBQZfDIKLhYFI0sgouBG\nYgiBkIiCGx8DM55EYt88pPmdUPbNQZrdMZTXvF7i1fQIguAXOWezWQiC4Bc5hzSm+t663Y65ngse\nwK1nKRQK+O53v4uHHnoIt956K2RZHshZVK1Q6+Dx0k+WZV0TraGUVqScPFHjpaX6dTCSSBzkpjuB\nm+4EVYugZ1+Cc+4EUMqDgICBDSQToNExUMMAXV0AY5lgFAlIzYKyApxCFnRlsfMboWODW7uIydtv\nRGFdRelEZQs7cRyQwir4mZ0wFy7XWUiDzypJ/qysgcDSgdVXkdjDgrz2dcgdr7T8L4dLxSHsmAQX\ni2xO7tZhrmehLyzD8IY7dpHSK26kRZqfgbBjErmfH2/Je6YmhCBy4wGwioLC8ebdj4FNY8KpcXBR\nGRSAU9z0KFpchXb6PLTGkxdqwzLgkglw8QjYiAJGEkF4bvPcpHBMC1Q3YZdKsHJFWNk8CHXAJuJQ\nNv1q5APzkPbNQto3h9jEOEzThKqqiMdb64oKcSGEgOM4RKNR39Mnn8+DZVlfEG23G3lIc/RU8HgH\n4YMPPojPfvazePbZZ/G1r30NADAzM9NVN+KLFy/i3e9+N5aXl0EIwW//9m/jwx/+cCDLtm0b58+f\nByEEf/mXf4lTp07hPe95Dw4cOOCLPE/cVNfWDPqJSeQIyPW3A9ffDmrooOdOwDl9HHR9CYRSEI4F\niceBaBLUskFXroCYOlgASCaB5DgoCJyNddBMB/UxuXVEOQLlDXdj/We/gFMo8xLSNQhxGU4y6YqX\nFuhXKmsriGMDKycRnSKI3XwntBUVrCTCoRROQYV+6QrMxdWBmN6tnV+Adn7B7wzK/+Llmi3vjRBn\nd0Cam4F69iKKx+pH65iI4hovJuNgOA6OacLayLnRmqVVmEuNjzEmqoBLxMDFImBkye2mYt2UCHUc\nUMOAreqwCyVY2TzsfLFuqk/YMeEKmpsOQdkcLKocmAe7YwKWZVWY19m2ve1t/buBZxIoSZLv6VMq\nlSBJUlvprl5mF4Y1kzHM9M2H55lnnsHY2JgvCrr9xS8uLmJxcRFHjhxBoVDAa17zGvz7v/87Dh8+\n3NbyfvzjH+OLX/wiTp48ibNnz2JqagqUUjzwwAPYv38/HnnkEczOzvqRnUGrTVJVFTzPtx0GppYJ\neuFV0NPHQC+dBoklQQQB0IqAKIM6FHR1EdDLanyUOBBLwrFsOGtLQLHN4k8lCtUSkP95ZcEyM7kT\nxTMXmm5X72VX1lbYugObciBiDA7lYZcsGGs5GMsbgOMgdtsNoLYD2zCgekMiWRZcTHEjD7IERhLA\niAIIx23exN1zijqOK0ZNE46mw9Z0OEUVVqFY22unQ9hYBNGbDqG4hQ8OG4u47sfZPErlgy8JgTAz\n6abkFAmUuik5Y2kVZvnkbY4Fn0q44iWigPIsOFEECHGn21sWHM2AU1Jh5QqwsvmWO+IYSYS8bw7y\n/nlX1Bzc7f65f75ubY1lWTBNs6bgURSlJxGefD7vRzu6haqqcByn60XLqqr6+64ZLMvy3ZmrPX22\nohf7zcO2beTzeSSTya6vyyOXy0GWZT+4wHHc0E01aILB6tKquaIeq923ve1t+NCHPoQHHnigrd8/\nffo0jh49ioMHD2Lfvn2QJAmvf/3r8R//8R8V7/NGZwya4Alyxhe1bdBLp1zxc/YEIMog8QSIbbkj\nIcCAri0BapXDczwNKFE4mubW/7RogEjHdyJz7FWYq1ef6pnZfSi8cHxLEdOPrixqU1iaDVuncCDA\nsVnYJQvmRgGO3vhGHHvNjcj/3K0zUq7fD4bnUXihwWDTJiECDzYaARuRXdEkCmBE3vXU2Xw6JqCg\ntiuaHMOEo+uwVc0VTblC3YnvjCQgeusN0C5egXFpc7YYyyJ600EQnoN67hKE9Bi4RBSE40CpA8cw\nQXUDhOfA8DwIxwLUPcYc04RT0iqiL0Eh7JhwRc2Bq4JGObgb4q7pup1Q9dhOgqcVIdLr9TiOA8Mw\noGlaUyMsgFDwjAiD0aXViF6KnXPnzuH555/HHXfc0fYy9u3bh3379gW4VcMLYVmQ+UPA/CE3mrBw\nFvT0cThnjgOWCZKeApmYBqEUFABdXwWKWSC3BuTWwABgRA50chqUF0FLmw7QWxggktXLSM2NwTi4\nH5mn3BZ25+JpRG89smW7etcMBimFY1BYqg1bs2EbBLZFwAgCrIIJK9vmTbrs9PAGdcoHdl8dB9Fm\nlIoaJqz1DKz19u0GGEkEG1Vc0SS5kSbiiRWGgXJgN2I3XwfHskAtC9S0QHUD4vQk7GIJ6ukLbvSl\n0/qfJrZT3jvrpp6ajNaEDC8Mw/ipLdM0oet6RXdXrRt9L9OOYYqz9wyM4OkVhUIB73jHO/D44493\nzTBrO+dlCcOA7NoH7NoHeu9bgaULcE6/6EZ/8hlgbBJMehKYmHLFUWYdyK0DjgOysXz1vh6LAqkJ\nUIaFk21ggFijhd05/woiN9+M4tHa7epBdWUxEg8hHgUXjYAYJlaOrSB/egO0pgFeEWBZxF93M4zl\ndWjnWm13vvaYUk+eAwBI8zvBT48j/3/Hema+V46j6SCSAF6RXTO+zQJqK6eCTyWgLyxBfeUsALel\n3dGNyhRWwPjRms2ITSfRmmElvJlexRvt43V36bqOXC4HjuP8ie396lzq9b1iu9+feip4Ll26hPX1\ndTAM489N8arsTdPEHXfcgVQq1bX1m6aJX/3VX8W73vUuvO1tbwt8+SzLwrbtiroYQsi2vfgQQoDp\nebDT88Av/wroygKcM8fhnD4GrC8DSgwkNQGSngS1HTjZdZDsZorJMoCVyyCAWwCdTrsGiJTCXqth\ngFjVwu5cOQPpwAFoJyuHdrbblcVFRAiJKIR4BMJYwv17VII0noATTQLrK9h1Tx6OFEOpxGLt6GUs\nPPksjJXs1YXYtutlQwhir70RZiYHrdlp6g0uUtr5y9DOX4YwMwlpfifyz73Y3lDPrfCGfo5vDv20\nHRgbWVjLa7A2cihl8gDDuCkrgUfp1PlrrAS8lvbITQcBQlA82t6YBT9a44maA/PAzkmM3XQd+Hj3\nZy61Q69vNKNyYwvy+smyLBRFgSzLfsSHUupHgrYbo3KMNEtPBc8Xv/hFfPe730U8Hscrr7yCdDqN\nyclJXLhwARsbG/j+97+P++67zx9BESSUUjz66KO4/vrr8dhjjwW6bA+e52FZVugHUQcyMQN2Yga4\n442gGyugp4+5HV+XzwAMC6SngLmDIIQBLWSAtSX4UR2tCGhFEGwetFM7gGjCrSlZWXANEKtb2M+e\nBz8zA3Ph6hypZlJZXEyCmIxDTMchjqcgxiPgRA7iWBwMVyMMLkfhJABSyoPR8ogyQPRIBHO3vgG2\nmEB+2cDyUyex+N/PufUulCL/f26EKXrb9XCKKkqbEZD6O2/r/WssLMNYWAY/noLymhuRf+EEnDbc\nmxuNTtDPL0A/f+1cLnFuB6TZGZROnkPhhZdrLLUSrxNLuW4vGEVC4bmXar5PmB6/moIqEzfS7I5r\nojWFQgFclwtog2C7PgB1QtA3Zq+mRxRFv8hZVd1zxbbtrnYMh/SPvhQtf/GLX8Tk5CTe8573+K99\n7GMfw8MPP4zXv/71XRE8//u//4t7770XN998s3/yfP7zn8eb3/zmwNbx0EMP4ctf/jJisZj/Wq0C\nxkFA0zQwDNPTKe71oLl10NPHYZ86BixdBAEFYimQZBrgeNB8FlhbrD9mghAgMQ5IEThqEc7yFcCy\n3CnsL51G6dIK7Gy2ZleWEFcgjicgT49DnEhBjMpgOAZCTPHblbfCTO+CbQPcqz9v/Dl5EQYiyJzZ\nwJX/egHZY1dFTvSW6+BYNkovnqz5u/E7bmnJkwZwZ2Ip1x9A8cWT145D4DlIM1PgxpNgJRHUcmDl\n8jCuLMPKNNc9x0YVSIf3gRZVv66oHYgoIHnv7eAn0hB3jFcUDnMtRGsKhQIikUjfn1rrFS0DgCzL\nMAwDuq5XXCeCpro4tRuUSq71QLeLlkulEgghXb+GOo6DbNaNyHrztLo5zLoffkyZTKZiJplnZjti\nDEbRshf9eOGFF3D//fcDcIe1RSIRnD59Gpcvt24c1yx3332372DcLXieh2kO1iDIevT7plAOiY+B\n3Hov7BvvhJ3PQLh8CtSL/DgOwAvA1CyIKIOqBWC1qqCZUiCzAmDFLYBWJCA5AcoLGD9yEIW5Waz9\n5OdgLRXJw/OQd+2APJ4ArwhgCMBKAgjT/v6gHA9Limx5MhFThwgdU7PA1KM3w5F+GaWil/76GYzV\nHCI3HgAY5tpUTxvfl5XJo3TiFOS9u8CnU6CmOw/KXN2AvrAM7fxl4HyL5xwhiNx4EIwsonDsFRSf\nbb7wm59Mb/rVbHZDHXC9axrNhBoVRrV2YpQ+k+ePpigKHMfxPX2GfYRFyFX6Yjx4//3341//9V+R\nzWZx44034r/+678AADfccEPF+4YNL6VVznau4WkLJQamyuWZnj4OevEkqCdyUhNANAmYOrCyANiV\n+5xaJuj6CthkClwsgvF0HBP73wQGDtAFs0fK8rAjrT+tM1oeURaI3hrB3G0PuOmvJR1LT50EnAMg\nPI/C87VTPZULYiDsnIQwvjlKwrZh5QowFldgbeRQ2DQnZGQJsVsPQ1c1wN56qnc5wswk5D27oJ69\njOKx+nU3hOcg75m92gG1Ga1RDu4Gl+heRCMkJCi8ERZeussbYcHzvF/kHDKc9PSbY1nWr6W55ZZb\n8I1vfANPPfUUbrnlFvz1X/+1b943rIKH47ihifAMA5UuzxrouZfdbq8LrwIbm3OVInEws/tBQcEx\nACEOGFMDccpFkL0Z5OzOExplOFhiBJRhQNqMIhLqgNM2kEoAqTfvBOX3QkcE+aVbsPLMGeg5A0xE\ngTAzAS4ZB8vzcHRjc5r5EoyLizAuLjZch6NqyP70eTCSiMRdt6F08hzMlfW672dkCdGbD8Euqe4s\nq4Vl//+4sQSUA7vB79mJ+HX7oRx0B11K8zOuh09ISEB4LvX9oHqERaFQaNrTZyv6ca8b5vtrEPT8\nyuTt7BtuuAGPPvoo1tfXMT4+7rt1DvOXwXHc0M8DG1SIIIEcPAIcPAJqmcD5F8EVlgFTd43xWBHM\nUu2p6l2H3TTpi40B2WCMDImpQ4IOaQyYeMs0tPG9MM/uhaHZsA0K26CwVAuWugOWuh9WUYdV1Nyf\nXAlWvggrV4RTurZo2dF0ZH/6HBhJQPzOW6GevlDhYKxcvx9cPIriy2dgrm5APjCP1H13XDXmO7gb\n/FgSlFIUi8Wu2DuEhPSDeoKg3giLRp4+IYNHXx7FstksPvzhD+OFF15ANptFPp/HRz7yEbzvfe/D\n9PT00KpQQRDCCE8PIBwPzB0Gjl5yC5wBEFsHlaIgWmGL3w4eyrqnkRNPgw1I8FRD4inEYmcAPytE\nAPCbP/WxKWCZDGyLwDTcbn/bcGBqFmzVgqVZiO5KQpqIQzMFyPt3Q9wx6UZr9s6C4cNoTasMQgp7\nWK+hg061p4+maQ09fQaNQTg2+0lPr2a2bYNlWfzFX/wF0uk0fvGLX+Czn/0sDh06hJWVFXz961/H\nxz72MTiOM5SKuVYNz6Ay9LVFvAia2gGyfrXolsbH+iR43GPViaXQraPWUFJoxyWEJQArOIAAoKKZ\nht38cZdKJQX4tT/oeDtDXAb5phcU/Uw1DQIsyyISiUBRFOi6jmKxWFH/M6jHQL9MFgeBvhythmFg\nfHwcgNtKWigUQCkdGrFQj1pdWkMvLAYYOj5f+UKfzl1KXJljRxJdW4chdXneTnKyu8sPCRlRvJqe\nRCLhz0rLZDIoFou+HUEtwihc7+mL4BFFEcWiO1MolUrhySefxMWLF7F3714Aw6s6wxqezmhVHNJY\nGlS8ajRHbANU6Z7oqAvjCh5T6V4Xkt5twZMKBU/IYNJLYdDJuggh4HkesVgM8XgchBDkcjnk83kY\nhtH3B99+r38Q6Kng8cKfjzzyCO68804AwOte9zoQQvCWt7wFv/Zrv9YV08FeMUw+PCMBIXDG5ype\norHeTR7217kpeBxBBuWDt6e3pCgMocvmZGGEJ3AopbBtG6Zp+j/d9gILGQy8ERbJZBKCIEBVVWSz\nWaiq2vdjYFgDCkHQFx+e6667DvPz81hbW8ORI0fw9a9/HblcDmtra0in073cpEAZphqeUYGOz4Eu\nvAziP730/imGlgl0mkiDrF47eqETrOg4LF4BJQxIPbfpTgkjPG1BKQWlFI7j+D+2bfspes/Mzote\nZrPZoaxPDGmPep4+Xkv7dhYf/aAvRcvf/va38Sd/8ieYmZmBZVkwDAMLCwv4/d//fXzoQx/y3zds\nhDU8fYAXQZPTIBtXALhpLSeaAlPY6NkmUFImeGJpIGjBo4wBIIAUAdTmxj60AiUkjPBsQbWocRzH\nf40Q4gsblmVBCIHjOJAkyb+hWZbl3/yKxSJM00Qul+v6+IKQwaHa00fTNP/1Tj19miG8D/XBeBAA\nHnjgARw+fBiiKILjOJw4cQLf+ta3MDExAWB4Q27DlNLyLsqjAB2fBzYFDwAgkgB6KHhQJnjsaDLw\nTi1LcdN0jhQB2wXBg2gK4MJhidXRmuq/l0drOI6r+Hc5pmk29HPx5td5qQ5VVQMxsus1o1h024vP\n5Hn6AO6x4k1t94aZdrOkY9S+r1bpi8lGMplEMulexCmlmJ+fRzabxVNPPYVf//VfH1olGqa0+gON\nT4AKCohR2nzFBkXvmrbKIzxWJI6gx7Faklu/44jR7rS9pya6sdSBxRMytaI2XprBEzPecMWg0w9e\ntEcQBFiWBVVVA73pjZIYGaXPUo3X2u5NbPdGWHjBgFH93P1iYFzFbr75ZkxOumH1YUxnAWGXVt8g\nBM7EHNjLL7v/tE3QWBokv7bFLwa3fm8CuykH36llCa6TsS1Gt7AZbJMRTWfVEjSe0KlOQ5ULm17i\ndfZ4D0vlNR6SJA3ttTCkObzjjeM4cBwHWZZhGIbv6RNk5K+WcNxugqrvgsercTl8+DAOHz7c783p\niGFKaQ0q7Ub3aHoOdOGVq8XLSgzokeCp2GKOB5VjIAGmnixeAQhgiV0a4ZCa6s5ye0B5GgoAdF33\nhQ1wdQJ2N6M1QVFe41Hu4CvLcjiwcpvAMIwf5StPd4UjLIJhIM6iQbz4tEO9omVgtMOyQdHR/hEk\n0MQUSGZzgKZjghJS1r3VPWhZhAfY7NQKUvBwm/l+oVuCZ/AjPNXRmvJ/e9EawL1hePU1gypstoJh\nGCiKAlmW/YGV3o0wLHDuHt7DVi89f+pRPcJC13VfAIuiGB4HbdIXweM4DgzDgCRJAID19XVYluWn\ntIaVYYrwjGL3GB2fBzYFD6E2aHwcJLvSgxVX/tOJjYFZPBfY4i3WrQoy+cgW72wdynLu0NMBoDxa\nU0vglBcJ10pDFQqFgb4RtLpdXkrDe9qvrvMZ1M8ZNKN2nSqnme/Q8/Tx0l3lx4EgCE3Xe4UP3T02\nHvQO3Oeffx6f/OQnAQCnTp3C7/zO7+CTn/wknnnmmYr3DRueGg/pDzQxCSrIV1+QezPFu/potaPB\nmh9ahAcooPNd+DzJCbcGqYd4YsazpPAmTxeLRaiqCsMwYNu2X98iy7I/s8i72fM877eAjzre0348\nHkckEvFHF5RKpb52WvbyBrodvuet8ArdvePAsixks1kUi8W2ake34z7taYTHO0HW19dx/vx5AMCT\nTz6JVCqFhx56CJ/97Gfx5JNPDu3wUI7jhibCM5JsOi+zC6+4/7aN7pr1+VRKHkuJtzXosx4WZcGh\nW4Kne1HVYSgaHibKC5y9Sd1hgfP2o/w48Dx98vk8WJYN055b0BenZa/q/MqVKzhx4gQ++MEP+sWG\nw0yjtvQwnNgbXOflV0FA3bRWYgIks9TddVaFeCwpOFdkhzCwN5evcV0QPAHU79QTNeVpqGEoGh4m\nvHZmr87Hq++QJCkscG6TXl+jg5g273n6SJJUES31ipzLlx/eg/pUwzM3NwdBEPDOd74Tk5OTOHLk\nCH784x9jbs6dizSsX0q9Gp5h/TxDiSCDJiZBspsiR5Ibv79DXElTpXgYFoilgFznXWJWNA2AAITC\nZkRQjgexAowiNhnhqVc0DACqqlZEa4a9aLgbdCtNX37D03Xdb2ce9ofHkNaoHmFR7ukTiuCr9CXC\ns2fPHnzlK1/B008/jcOHD6NUKuHOO+/EPffcAwAdq95+ERoPDgZ0Yh7wBI+lgzIsiNOl2iq2tjOO\nE0+DDULwRCpnyzliFKwVoIt0WYSnmaJhLxXlCRtN0xCJBF9MPcp040m7usC5UCj4oyvKR1wMI2Fk\nojXKPX28Lj8vDTas9bFB0TfZp+s6Tp8+jX/6p38Cz/N45JFHcN999/mdW8PIMBkPDmKXVlDbRBNT\noLwEYmogoG7Ep3z0RIBQvravshNLBeKKbCmpyuVKEbDFYAQPlRQYrABH09ryrhm04yfkaoEzIQSR\nSASGYSCTyYQ+LgNIt4VcefTP6/KzbdtPeW3HqE9fPnE2m8WnPvUprK6u4oEHHsAXvvAFpFIpHD16\nFJ/4xCeGVtEPU1v6SEMI6PgcyJVXAQBU7J6IplxtwWNHEoG4IltyYnNF7h+OGFw0xYmPg1IaFg0H\nzKAIQW8oZbmPS5ApjmG9Ttdj1D6PhyeCAUDTNFBKkcvlIAgCxsYGw5KiV/SlLX1xcRHPPfcc/uVf\n/gVveMMbcMstt+Bzn/scvvnNb1a8b9hoVMMzrJ9pWHHG5/zKGmJpoN0ajllH8JhKPJDFW1LlqAor\nQPNBJr1j27V494pB2peej0sikQDLsn66yzCM8Lq0zfAif8lkEqIYZC/pcNBTweNdBHj+6s2HUorV\n1VUcO3YM0WhvfFO6RVjDM0CICmjcrU9x01rdGZBZT0g5glQ3+tMKllAZ0QnUbXlEZ2iF1MZLcSQS\nCYiiCFVVkcvloOt6KHy2AeURrPKoz3aiL9XBsixjbGwMpmkinU5jZWUF/+///T+8//3vdzcqLFoO\nCQA6MXf173VqbTpeB1tnuYSAJtK1/68FDMZNx3mGloG6LQ/BSImQ4Ck3sFMUxa/zUVV1ILu7RjXV\nNKqfa5DpSw3P9PQ0/v7v/x6qqoJlWfzpn/4p7rnnHszOzvZjcwIjNB4cLGhyGpQXQUzdTWtt/j3Q\ndbD1TyEaTwNrnRVLO7zbVs+wLGADphjMNHZKiOuyHDKSNHMzDSe1VxIKkNGnL4KHEIJkMokf/vCH\nePbZZ6EoCk6ePInJycmhzituZTw4SGyLuiLCgKZnQRZPgQCgiXGQ1cuBroLWaUsHADuS7LhTy2YE\nt2B58zocmNtyNAV0q64pZOioN6ndc+6txchfP0aMUND1KaVlWRa+9KUv4Q//8A8Ri8VQLBbx8Y9/\nHH/3d3/Xj80JjNB4sDO6IcKciXm/eLkbhcuNIjyG3Hk0xiLu8snmh9D5YCI8YTorpBbepPZkMgme\n51EsFhsWOIfXtvYJBUjv6UuER9M0fO1rX8NLL73kv/bRj34Ut99+Oz74wQ8O7YEQtqUPIGIENDYO\nkl8FMVVQQQYx1MAWb6P+cUojnXdqWbTymURnI6CEgHQqDEPBE9KAaiNDb2RBPya1h5GkkKDoS4TH\nc4EE4KeAHMfxHVuHUewAYdHyoEIn5gFsRpAS44Eum2lQDO3wAqjUfpGxLchwaNW5wLCAEMC4jLBD\nK6QJGk1q76UQ6cU9YVgftJtl1D9fM/RF8PA8j7vvvhuqqvoGWIQQvPnNb+7H5gTGMDktbydocsfV\nFnE22EOeMo2rdDoRWFb06u+W31qcDkSUTwARnu1+8WyXYY1Y8DyPWCyGeDzujx5RVTW85rXJsB4H\nw0xfBA/Lsnj88cdhGAYuXLiA06dPo1gs4s/+7M/6sTmBMUzGg4O4TUFDKYVt2zBtG2ZyBgBALB2O\noAS3ji0EjxNr38nUitT+XVvsrHCZcjzQwXZds7wRP466wTCLRW9Suzd+JJ/PI5/PwzTN8FhokX6m\nBof5GGyXvg3TOH78OD7xiU/g2LFjYFkWhw4dwqc+9Sl/gOgwEtbw9J7ygZfVQy+9gZcMwwDpWWD1\nnPtLiXFg5UIwG7CF4LGjybZPMktJ+n8vvzTZQocRnsQEsA0vdv1m1G4wnp+P5+XjTWqXJMmf5xUy\nWGz376Rvguf9738/Pv7xj+ORRx4BAPzgBz/AY489hp/97GdD6/8Q1vB0j3pTvB3H8QdbNhx4KUmg\n0TRIYS3QuCYljRdmReJo12jBkhK1X+8wwhMWLI823pN8t29uXk2IJ3wEQfALnFVV9QdnO1lqAAAg\nAElEQVSWdmok26vak7DGZfTpm+DJ5/N405ve5P/7/vvvh2masCxraAVPWMPTGd7FxrKsa4SNdzHy\nRE07Ay+diXmwhTUQ2wCV4yBqruNt3lLwiO13VZXPzaJ1Xm+LsGA5pAt4Bc6CIIRGhk3Qa4EVCro+\nCp5Dhw7hz//8z/H2t78dDMPgW9/6Fq6//vqh/kJYlh1Ia/ZBozoNVf4DAIZhNI7WtLve1A7QiwKI\nZYDGUoEIHjBbbBPLuiZ/+fWWF23VqTUyOhU8YYQnpMt4RobdmtQe0h7DfH8Ngr4NrfqHf/gHLCws\n4OGHH8Zb3vIWnDhxAl/5yldGcqDZIBcId3O7/KJh04Su61BVFaVSCcViEaqq+kWOLMtCEAQoinuD\nl2XZrwPgOK6lKE5DGBZ0bJf7dxLM56ZNnEI03t5MLYur3X5udOq2HAqekB7hTWpPJpPhpPaQvtM3\nqe04Dr70pS/5tuW2bWN5eRmRSGTbq9BeENQ+Lo/W1EpDeZEaQogvXgITMG3gTMyDWT7jprUiCZBi\ntqPlUUKALS7cdizV1pOFxdSu/ulE8FApAgTR1h4S0gKEEP9BxjAM/+GnH0aG9Rj1FFMoMPsgeLwv\n+ROf+ARWV1fBsiwopSgUCqCU4hvf+Abi8c4dakOCpVEaqqmi4UFBjoFGx0AK66DRZMeCpxnsaALt\nDLWwGB6okSHVuA7GS4TRnZCAaOcGWl7g7NX5qKrqC5/qAudeFWBvF7b7fuy54PF2+Dve8Q7ouu7n\nc7///e9jaWkpVKF9pp6oCaJoeFBwxufBFtYB2nm9VTMRHqvNmVoWrV3kaXEyKMuB2G0UyKem2tqW\nkM4Y1etau+d++aR227bDAuc+MGzX7SDoW0rr/vvvr/j3gw8+iLvuuguZTAaJRO123GFmkC54XrQG\nAEzTrBA15WmogY/WtAkdmwG9eBzENuHExsC0UVDcCraogLI8iN28R5MDwKoeK1GOFAWKmdY3JuzQ\n6jpbDdkcpGvBIOAZGcqyfM2k9lEWPqOeQhtE+iZ41tbWoKoqDMOAbdu4cuUKDMPo1+Z0lX4VLdeq\nqSlPQwFuLRXLshXFwf0+Kbp+YjIsaHoXyPJZQIm31UHl0dTXSgiQSAPri00v146kgAaDSR0pArYd\nwTPiKa1+H7uNKN+2bm7nsN7YvEntsixD13XfyBDozWca1v0W0jw9Fzy2bYNlWfzKr/wKXnzxRaRS\nKTAMg0gkgs985jPYtWtXrzdpqGmlaLg6DVUoFCAIQsfGYEHSqwuOMz4PZvksQC1QEBC0J0hpk7/n\nxMfAtiB4yudo1cIWo2j12ZcS4rpMh3Sd8MbZPuWT2j0H52w2O1AFziHDSc8FjxeifOaZZ3q96p7Q\nrZNxK++adtJQ2/rCocRBIymQ4gYQTwO51faW02Tkzo6mWhIolpJqvLx23JZjYwDXTvl0SEjv8ep8\nCCGIRqNQVdV3cJYkaaAe1FqlXxH/bX3NR5/b0r/zne/g+9//PorFIubm5vDOd74Thw4d6tcmDQTb\noWh4UHAm5sEWN0CVKEgbgsdpkHKqxo60VpdmyY3fb7UzT2uE01lhXUzv6eUNlOM4xGKxigLnoI0M\n+3EMhdfu3tJziexFJD7/+c/jiSeewE033YTf+I3fwNraGj7wgQ/g1KlTAEbrAlZdw+OJGsuyYBgG\nNE3zDfmKxSJ0XYdt2/4TjiRJiEQifmGfKIrgeR4sy4YnTAfQ1AwoywGO6aZ7WoVv3iTTkluLyFhi\npTVD9dlgtuO2HBYshww5XoFzIpEAy7LI5/PI5XKBTWoPr6ejTV98eADghz/8Ib7whS/gta99LQC3\nS+uhhx7CysoK9u/fPxIHnidsbNuG4zjQNK2iaLg8DTVIRcPbBpYDHdsJZuU8aHwCJLvc0q9TrnnB\n4/AiqKiA6KWm3n/NgNCqa7nZjvngCEd4QrYXDMNUGBmWSu55FU5qr0+Y0urjaIn9+/fj6NGjWFtb\nw/LyMl5++WWIooiNjQ1cuXLFP4CD5r3vfS+mpqZw0003BbI8SimWlpbwox/9CH/zN3+DjY0NvO1t\nb8MNN9yAb37zm9B13U9JsSwLURSvidYEPkIhpGmcid3uX+TWU0SUbW0MCm2hYLjeWAkPPRQ8IduA\nraI2npFhPB73u7symQxUVR3ouYaDID76vf5+0DfBs3v3bvzBH/wB3vrWt+KjH/0oHnzwQayvr+Pf\n/u3f8L73vQ9nzpzpynp/8zd/E//5n/8ZyLJ+8IMfYGxsDNdffz3+6I/+CM8++ywIIfit3/otfPvb\n38YjjzwCRVH89NOgpaEGdcZXT7dJSYAqCcDWQZkW+55aLAB24mNNv9fipIp/Vx8yWouCh3K8O8Q0\nJGTIaOZ66U1qj8fjfq1PNptFsViEbdtNrWcQr4UhwdLzlJZXWf/ggw/iyJEjkCQJjuPg937v93xF\nbllW19rT77nnHpw7dy6QZd1xxx04efIkxsevPrk/+OCDeOMb33jNENTwZGqOfohBZ2Ie7PmjoIkJ\nkI3mW8edFlJaAGBHkk2fcBYjXFu4U4bOthjhSU5cq5pCRpJBiB70E29Su1dG0Mqk9lHeb9v9uAD6\nOFriNa95Ta9XHTiKovgTvj14nodpmhWCZ7sfZIMOHdsFevHFliM2tMX3W5E4ao8DrfFewlcInmrt\n4zAcqCCBGFpzC0yGIyVCgmMYHuCqjQwLhQIYhoEkSX67e78Yhv03igyvkcGAwnEcTLP5EQIhA8Bm\n8TJs3e3aauH3WsGSIk3bG1p061OTSi1EecL6nYFhlG52w/Aw5xkZJhIJiKIIVVWRzWahaVpfv4th\n2HejRih4AkYQhKZzxiGDgzM+D0IpaGKi6d+hbIsmfiwHRJNbvs1meTiN5mht4oSCZ2gJb3bNEWQa\nprzAORKJwDRNZDIZlEolv7FklAlTWn00HhxVhi3CM+onedNEU6ByHLSF744yrZ8+NJEGKTSegWXF\naoiuGl+TLUabP4FDD56QEAD1J7V7hc8ho8u2i/C8853vxF133YVXX30Vs7Oz+OpXvxro8msJnkHt\nhtruar8aZ2IexNKa99dpY5KzE926U8uKNNfNZTdpPkjlKCApW78xJGSbUW5kSAiBpmnI5/OBGRnW\nI4y29IdtF+H5x3/8x64u3ytaDhk+6Ngu4NJLbrfW2uUt3++0WMMDAFY0seVJt9UcLQ9TbNI7KIzu\nhIQ0xDN/9UwLvUnto2RkWC2yRuEztcq2EzzdRhAEWJbV780YWvoaDeN40NQMkF1p7v2t+vYAsOX4\nlu+xpK3fA7TgthzW72wrehE9GMUIBaUUDMNAFEWIogjTNKFpGlRVDSe1jwjbLqXVbXieDwXPEOOn\ntXhpy/dS0rrgsSR5y04wS4w1tSwjFDwhI06/hFW5kWE0GoVlWRUFzp3S6881iCUV/SAUPAEzbEXL\nIVVExwA51twYCKaN04cwwBaOy7Umode6XDU9XiJMaYWEtI1nZBiPx0EpRTabRaFQGMoH2+0eoQoF\nT8AMW9HyIG5Xv3HG5wFu6+gNJe2dPk483fD/7S3maHlo3NaChxLiuiyH9JXwPBt+6k1qNwwj/H6H\nhLCGJ2DCGp7hh6Y3i5e3mG5O24nwAHCiKTSSUxbbnB+zwcqgDAPSKMQeH2vZIDGkMxzHASEEpmnC\ncRw4jgPbtmHbtj9aJ2TwaDbNVD2pXVVVv86n2QLnUCD1h/BKGDBhl9YIwAlu8TJYkJUGgqfNCI8V\niaORZWH1WIm6EAYQI4Car/+eMJ3VNSilvqAp/ym/cTIM448xYBgGhUIBlNLQ76VJBlkYeEaG3kOu\npmkolUp+gfNW4rbXNTzbPZ0FhIIncDiOCyM8I4AzMQ92y26t9i4g1hadWhbhmhM8cN2W2UaCJxXO\n0OqURsKGYRj/h+d5MAwDXdfBcRx4nq9YBs/ziEQiyOfzMAwDtm0PxFyndujlDXTQ9025kaEnfLLZ\nLARBgCRJYNvw6wrpDqHgCZhaEZ6wVqZ5BmZfxdIAz8ORomC0Qs23UEKANrbVEURQQQYx1Jr/bznN\nX+AdKdowPRZGeJqnVWFDCKl5M250g/YiPV7qw0uHyLI8lMInpJJak9o5joMsy1tOau8mta6p2/FY\nCwVPwIRt6aODMz4HoutAHcHjRnjaE2c0MQ6ycvGa1y0pBtpC5MgWow3TY2FL+rUEJWw6oTwdYppm\nW3Ug9QjTF+0R5H7balJ7P76j8JgIBU/gDFMNz8BEUwYUmp4FWTxd///b1zug8TGgluCJ1u6oqvc1\n1Wph93+HE5oaVjqqDIKw8TxbKKV1n7IFQfAflMqFT2h0N/x4bs2ekaGqqiiVSuA4Lrz29oFQ8ARM\nGOEZIXgRNJqGLa/XrJPp5HJlRZM1U1FWpLmxEh5mo3layQlgG9wwKaWwbRsAoOv6QAgbbxaTtx5C\nCBzHqdvCXF4HUu7wK8vythY+oxKtqha2pVIJtm37Rc7d7t4LxZVLKHgCppHx4KicvNsJe3wWTGal\ndmFwB9cQW6lduGwpiZaW09BtecTSWVtFbICrwqFXwsZrQfcghIBlWZimCcuyIAgCWJb1W9O9YuVy\nAVZNeQFsdcQnbGsfbrzj04v4eEaGvShw3u5ztIBQ8ASOIAhQ1cpi1O16cI0CNJoGFWv74tAOFI8p\nR0FxbZ+XJTY3R8ujoeAZ0oLldlJRAFAsFgNr925G2BBCwHFchQixbdsXPbZtQ9M0AK5pHcuyFfU5\nuq77Qytr3eg4jkMsFoNt21BVFdlsFqIo9iQisBWj+PDW68/EMAwikYhf5+MVOEuSBI7jRm7/DgKh\n4AkYnueRy+X6vRkhQUEI7MQ0aHYNpLBR+X+dhIlZDogkgGK24uVm52h56I3clgc8whNkjU27Iftq\nYeMtx7v51RM25WaC3nZ728uyLHiehyRJIITAtm3oug7LssCyrH8z837PMIyGwodlWUSjUV9AeREB\nWZb7LnxCOqfcyFDX9a5Mag9TWi6h4AmYYSpaBgbvRBjEQmozOQNx7XKF4HHaNB0shybSINWCh1da\nWobaMKU1GB48g1g8XH2Meev0tqX89zxR4/1ZLWxYlq2INFXjiRlPsOi6DlEUwfM8OI6rKXy8bSnH\nG20gy7If8Qm9XoaTenVc5QXOXh2XF9Xr9JwII0ah4Akcnuf9AspBZxDFxSBCOQE0Pga6dPZqCorr\nPHXixMbA4EzFaxZbZ0p7na/JYQRQXgAxjcq3yzFAbG4mV1CMsrDhOM6voWlnm70okTd5W9d1aJrm\nt6aXCx/vgancobmc8lSI5/XC8zxkWQbLsiN1To9i6syj3ufyCpzLHZwzmQxEUYQoiqG47YBQ8ARM\nWLQ8mtDxWdDFcyD5NfffAQgeK5K85gS0WKG2uGlw2FApCmKuV77YxXRWubABAE3T+i5svH97URJv\nvc0IG6/mJghh0wwcx/mO7Lqu+xGfesLHS6fVEj6KovipEK8GJKz/aI9BvD57ItlLi3ri1qvzaZZB\n/Gz9IBQ8AVMvpRUebMOJFwWj8QnQeBrwBA/fueCxlWvrderN0Wr0zO6IUTD54AVPMxEbAH7tSTeE\nTXmkplHExhMFuq7Dtm0/OlJL2HhpI6+Dql/npidOvJtZPp+HIAgQRdEXPpRS3+aikfAprwHxmiZM\n06wYbxEyvLAsWyFuq40Mw/tLc4SCJ2BCH54RhRDQ9AzowkkQSoOJ8IgKKMOCOFdToBZtPVztSDXM\nB1vo0OokFVUoFHwR0SneOuuZ9JVvi7fd3rZblgXbtv0nWcMw/BZgL9UzqDcF72ZWLXzKBVm58PGi\nUdX73KsBIYRA0zQUi0VfDAUd9QkjBp3R7v4LYlI7sH0fwEPBEzDDVrQc0jx0fA40Pg6SXQFlA3hy\nZhggPgZk3CGlDsPCbqP8whJjuEZ+1YjwdKPGpp0LZ6fCxovaNIrYeAJB0zRYljUUrb7VwqdQKPie\nLZ7IKe8OayR8GIZBNBqFYRh+1084r2t0aHVSeyhQXULBEzBeiHoY8EL+IU0iSKDpGSAowQPAiafB\nbgoeKzqOdiawV4+XoISBHU3BMc2+FQ8D3RM2XiHxVkM6vS4o74YAYKiEj+M41wgfb3+VC5/y/VJO\nN+d19Ype3qiHURSUO3SHk9q3JhQ8AdOohmeUuie6ySDvJ2dyHszZY66PThDLi6b8ERNWZKytZRhc\npeBxoknolg2GoT0RNt5oh0bzosojEY2EjSdmPJO+TlNRwyx8vPSFKIq+8PGM6aqFj67rftF1NeVj\nDcrbncN5Xf2j3B08KOpNapekOp2f25BQ8ARMmNLqjIEXhokp0NR0YBEeO5Lwp51bSv05Wo12iV4l\neJixaShKa34+zVArYkMphWEYvqCpFjaA6z5sbkab6gmbWsW4QTIqwscwDF/4eKmuauFTL2pb3u7s\nRXw0TQuFz4hRPam9WCz6rw9jFCtIQsETMGHR8ohDCJzJ3aC6uvV7m8CUY/Cevyyp/lgJVzzUvlCZ\n1e7MHXZobZWK8iI23p+6rsMwjGschAH0XNhsRbXw8fxwhkX4eOKkPOLjee94oodSCo7j/O+klXld\nzRrcDfRDSQiASiPDYrEI0zSRzWYhSRJkubceXYNCKHgCJhQ8ow+d3gt6+dVAluWIEigvgpg6dL5G\nt9UmjW5C14yXaFLwNFtj40VkPBFj27bfFVUubDyhU94ZNagMk/ApFzPlfwJXvwsvdemlu7zfKU91\n1RI+3ryuaoO7ZuZ19WIf9VJY9bpeqFd4tg1ehM8r5E+n0z3bhkEhFDwBs5XxYMgIICmgsTQQUHE6\nTYyDrF4GbRDhaYTGRUAJAfGOr6qREp0Im/J5UZTSis6gWrVBXlqlWCz6BbODJB6qqSd8vNEPvdz2\n8i66Rq7P5ZEyLwVsGIbvQeT5+JSL0GaET/W8rkEZVDrIx08n9PrYKi9wHtV9uhWh4AmYYTIeHPh6\nmQHmij2DQr6AXfE8CO0sokfjY8DqZVh8m2FmwgKiAmhFUE6AJUbgbPrQlFMtbDwBVE/YlI9VaNZY\nsLy1unxu1DAKn/KZV0F72Hj7vXoIaTuuz7W6sbx0hreccuGz1aDSSCQCSZLCjp8Rpt8itl+Egidg\nwpTWaFEuCsufwFMxB1/7QQq2k8Rtu4u4bS6PGN9eXY+92allce13UzhiBKxWBE1OgDAMuLKZUbUM\n+joVNlvh3Ti3s/Ap3+/lomYrD6FOtr28G8sTPl7Ep96g0kbCp968rpCQYSQUPAETdmkNP9WpBQAo\nFosVPjaSwGD3lIPTV1g8dy6G587FkFQs3Hc4j/lUHgxt/hiwlDgEABapM0cLjbu0gM1hodllkM36\nnfJ2724Km63wbpzl4mEY7PBbFT71UlFA7wu3y4VPrY60Via0N5rXNUp4DzWj6vmz3buzPEbrqB0A\nwghPZ/TSDLEZ52HvIiHL8jUC4fo5gtNXri4vU+Lw7z9PAUjh5jkVt+/OIc4X0XgSFmDKbtGxhfaf\nnA1OBgfAjI7BsayeC5utKB+YWR7xGTbho2kaNE2r6EirJSq77X3UzrZX1ye1OqHdG2ng7QOg+/O6\nuuFXE7J9CQVPwNQrWg7rZfpHJyMVKKUwTbPmRffQLMV//IyC0mtvaEcvyDh6QUZEsnHfdXnsG8+D\npUbtDeR4UCUGi9a/sG916DibBc/i9CxIFzx4gsIrjh104VMvFeUdM95DTXln1CBtfzlbRataET7e\niApCiF+c3q15XSEhQRMKnoAZtgjPKImwbsyKakREAmYngAvL9d9T1Fg8+YskgCQO7VBxx94c0nLx\nGgVjjs+CtjFWwkPnFUQB2LH0UJzUHMfVTHX1+qZZr+Xb64zyoja1OqO8+qRSqTSQoq2a6jEE5REf\nQRBqCp96E9q9GqRIJBLO62qDfqS0wkhZKHgCx3uKGgaG9aLUa2FTD8dxcGgnxYXl5k6jV67IeOWK\nDJG3ce+hAg5O5iAQN+qjje1q+LuEkIaZMUdKgMoxqA5ACgVfPAwyvXQ/brblm+d5X+Rs1Rnlibbq\nwuxhuOGXpxjLIz7lwqfZCe3DPq8LCGtctguDfUUcQsLUVXAMirAB4KczvNZhjwM7Cf77+dZOI91k\n8d/HE/hvJLBnUscvH8gjmRI72j6Dj4CMTSEajcI0TZRKJbAsOxTtxLWET3l3UTudUY1avr0i3WZa\nvpvZ9mFJ09XCEz7lok0QBH/f1JvQXk29eV2yLA+V8AkZbULBE9J3yoWN111U3RXV6+ne3g3SE6+e\nTb9XBOw96U4kgamkg6VMe+His8sizi6L2D+t46ZD9d+3lYTWuSiQmqq48XiphvK5S4NMufDxbpqe\nn0x1tKrXLd/NMMzCp9xGQNd15PN5f+5WrQntXvdiNdUdYuURn3bmdY1q5KXXD8XV+3EU92kzhIKn\nC9Q6mMLIT3MRG+DqDJhuChvvz+qIjbf+cmHjzSXy3Gq97hwvHbJ/RsRSRuhom1YWi8ChZNu/r3JR\nkLGrIyXKUw1ecSnP8/6T+yBTHS0olUp+JAVAX1u+m6Fa+HgjK4ZF+HjGkeXCx4v0lKcC/z975x0f\nRZ3//9fupm16CJBCAoEkEEqSDR1+ioUeBEGaIB3U40TgqEEBwRgIJyqiYjmREz0JiJ7AKeihgB58\nKQJphCqEEggtIW377vz+iJ9hdrM9W2Y2n+fj4cMH2zKzs/OZ17zby5Jfl3G9kCN+Xd4O/Q7cDxU8\nFKfTmFSUVqs12xVlL+SiSFIc1oQN933cqAG3gJXsBxETYrEY6YnA4ZLGbataqYYYeuhhZr+taGWt\nJABMeKsGZc9EPBLhU1tby1vhY5yK4nZGAWBnxhAxxId2e0sITfhwBQ1XVKrV9XVm5Lsnvx1yvFzp\n1+UuvDWSRGjqN9sEKniaMI2NOvGlxoYrbEzN8LEmbOwtYCULt0ajQUBAAKIifBARLEJlreP7oFKo\noZRr4RfYiEhRmHkzQNI6zHXaJhcvdy/0pjqjuC3fXGsF7hwhrmeUVqsVRH0SYCh8uCalnhI+5mqc\ngIYRM25EkxQ36/V6VvRwU132+HUpFApe+XU1BbxZ0NkKFTwUqwhJ2HC9orjvsyRs7C1g5bZUkzqT\nDvGBOHrW8UVbIdfg/n0lYhwUPAG+gNiGbSfCh0R8ampqXGb5YNwZZWvLtzm4aTpSnySUwmygYWcU\ntyXcFeeLJWFp7+RtrmBWq9Wora01qA2zx6hUIpE0MCptan5d3h5R4itU8LgRvocV+SJsyHY4Q9iQ\n6I4jwsYSxgW2bVsocPRskMOfJ5drcfOmHDHxph3Trf1yAuzUSaZMPh2NOji75dsapoSPUAqzAcst\n4Y58L8YmsOa+f1uFpSXEYjFbgExqwxojfKz5dVFh4Bz4fu1xF1TwuAC+Fy1zjSQZhoFCoeBNxIYs\nlmq12uDiaKuwcXdnDimwbd/GF0EBDOqUjv09uVyD0tI6dOvl2HZIfR37u6a8rsx1Fplq+TbXGeUs\nYWmJpih8TEXMPPH9k9owEvExjrbZI3zE4oZ+XWSCtbtoCsLK2/fPFqjg8WKsRWzICcCnVBQJr5Na\nAR8fH4OLrKeEjTUkYhFS4oGTFx17f3WNBmIRA7GIgd6EVYW1EI+0cU1iDbyulEol/PzqP5QbPSDH\ninsB8/T3b6ojzcfHRzC1IaaED/ldG0duAPN1Np7AXJqRzFAyFj7kvDUlSEnajPh11dTUAADvB2g6\nQlMQWHzE+35JTRBHU1F6vR5yudxpC4qxsDE1+8E4YiMSidjFnOvwTd5HIj2esB2wl46tHRU8DGpq\ntWgZ6QdGpwfEDS8G1mKDjgoec6kQhmGgUqnY1B0RD3wWENyoA9870gjGdTYElUoFAOx5S6JWfO1M\n4wofMkqApL+IOOZGby0JH5FIxAqfqqoqtkGA+nU5jnF2oal+h1TwCAhn19g4+qPnChtT04ftFTbc\niI1xxIBceBUKhce6imylXQzg7wuoGnrHWsQHWuj1gI+PCLU1agSFSe16v1gE+PlY/k4stXybK2AF\n6t2wjTtz+A63FZ8U2Hpa+DhSZ0M6n9RqtUNTpz2B8QwlhULBiiESyTIlfIzT1uSzxGIx/P3rp5AT\no1JXdLjxpdzAlfD9t+MOqOBxEySiYgt8KR62RdiQNJQtwsaRVAj34kXC3K7sbGkMPhKgfSugqNTO\n94H4FYlQXq5Eop2ChxvdsaXlm3RG2RIx4E5tFpJdBfCwwNbdM4icVWdjyvaBr799Y4yFj7FPmj0O\n7WStIwLWVX5d7vxOm4LA4iNU8LgIW3K0fBc2ZB/MCRuykJsTNs6cfksKG8kMD7Vazcs0V8c29gse\nEVO/4ItEwB+Xa5HYIcKu9/uKdairUzSq5dvi9pkpDhZKjYypGUTOED6OzLNxBK7tg5CFj3E7Puly\nNBY+lhzaTRmVCtWvy90CS2jfjyuggscFSCQS6HQ6tjaGK2xIeoAPwob44ZA6GWvCxtqi7o4aD25X\nEZmBw21j9TTJrQAfMaC1LZhXj7Z+kq0IQGHRAwwaGt/gJQyYP1/REH9fxmkt35YwLg7mQ6rIHkwJ\nH1vSpM6cZ9MYhC58uAaxxh2BphzaScOCqc9ypl8XpenQJAXPvn37MH/+fOh0OsyaNQtLly51yufe\nu3cPJSUlUCqVWLRoEc6fP4+//OUv6N+/P3sSkhPfncLGVMEa2Q7SEcUw9RdNS10hXFHmyQscd/Hk\nW8TB3xdoGwNcLLP9PRplfYGqTs/g7n0rFhMmCA30hZ+f+xZ5bppR6MKHpEmJUSYAt8yzaQzeInzI\n9hsPYCQ3hHK53MCl3VTEx1l+Xe5MMdF0ludocoJHp9Nhzpw52L9/P1q1aoUePXpgxIgR6Nixo0Of\nd+7cOcyePZsVOp07d8b9+/cRHx+PoUOHonv37mxEQqvVsouqM7BV2BgvzsYRG+DhIk9EDREPfO0K\nAUxHHPhQ2NyptX2CR6upv6PVaOqPhUalhcTf+Hdifn8CfO3dQufgaMSED5CLKnQYBL8AACAASURB\nVGn9JpYVwMOUirvmCTmKkIUPALYgmZvqAh5awZCoGTk+5DFTotqUXxeJ+Ngqwt39ndGUlvtpcoLn\n+PHjSEpKQkJCAgDg2Wefxa5duxwWPNHR0Vi2bBk6d+6M2NhYiEQijBw5EtOnT0ezZs3Y1zXmx+Ys\nYUNCxtwwPDfaxDAMlEol1Go1u+gI4SThW2Fzh3hAdBSw9UZOq/lz6CJTvzBXVCjRIsY2YewrAXwk\nnj1GRPi4w67CXmypsyHCBqhP72q1Wvj4+PDW5NMYvgsfW44BGTKoVqvZ+Vvc7ee+l9vRaQz166JY\noskJnrKyMsTHP6yRiIuLw7Fjxxz+vPDwcAwaNMjgMRJitZfGCBvSFWVO2NhSXyASiUwWBvv6eiiE\nYCfcwmYi3NxR2Gy8oIv0erRq5o8b9207vVTK+t+K+k/hU16uQosY2/52YwcOOhNn2lXYi7PqbITa\nFQUYCh9PCE9bvNOsHQM/Pz+D7ee6s5MhhrYYlVK/LssI4ffsCpqc4HHHgSb+SpYgosSUsAFgUMxM\noi9cSwhb5qg0tiuEhIeJcBDKQkG2n7TDkghQYwcsmrqomuuM6pwgxo37tn2uXF7/W1Gp6gXPhYs1\nSM1oYfzXYSqtxSfBQzD+/Viyq7AXd/hG8T1iYg2u8DQWDs7afmut943xTjO3/dxjao/wMfbrMiV8\n3Jny8UR6iaa06mlygqdVq1a4fv06++/r168jLi7OqX+DG+EhwoYsCiRdRPCksLGEqcJgUtsjlBOH\na+5JJkrbEtq21QzT0kW1Uxvgx5O2bWdtbf1vRaGsr+EpPFOF0Q1eZfo7D3DQQ8sdEFd544iPrRE3\nZ82zcRRTPmPuilg5A2cIH67INzWw0pUWF2T7SXercXG8PcKHRH+JbQXXr8sbrSsopmlyR7p79+64\nePEiSktLERsbi+3bt2Pbtm1O/RtlZWU4d+4cYmNj2cfIgqzRaNi7C3PCxtbwrzsghcG+vr68q8+w\nBW4LK3fRJDUDtkQLHLmoRoQA0RFAeaX111bX1Ed45PJ6waNU6m3u1OJjhIcLGXNgPEqAe6Fx1zwb\nRzH2GXNmxMod2CJ8rEXO7B1Y6UyszVEiwocII1uED4n41NTUmLW4oHgfTU7w+Pj44P3338fgwYOh\n0+kwc+ZMhwuWzTFnzhy89957OHLkCF566SXcuHEDJSUlGDp0KKRSKRQKBQA0WEg82epqDW5hqtDq\ne8hiTi6aarUaavWfs29ErjMj7djauuARQw+Fsv7irtUBfn4iqNUMlAot/KyqGQZ+EsBSBxdfIMJH\nKpWyEUPuxdad0UtHIQWxQhc+3O0n641xOoqPHWpc4UMsQ8h2kt+PrcKHzO8iDu1kTdZoNLwbZtpY\nSMmEN+2To4iszASgAwPs4Pr16zh48CDOnDmDM2fO4Pjx46ioqEBiYiI6d+6MVatWoXXr1hCJRNBq\ntVCr1YJp4+VChoMplUqIxWJe1feYSkUZT4Ami7harQbDMC4rbC6vADbtsfwaP5EKv35fyP47PMwH\nD6q0mP9SMmJah1p8r7+PHnGhct79hmytsyHTdSUSCa+GR9oCOQfIDCs+Tv22lo7izrwhdS182n5r\nkBIBtVptIHzIc9zRA+Q/cygUCmg0GvY36srUpU6nQ01NDcLDw53+2aZgGAaVlZUGXcNCidA7iNkd\na3IRHldy+vRpfP/99+jcuTOmT5+O9evXIzo6GuvWrcOxY8fYUCwANppAwqpCqg0wV9/jzsFz5tIg\n3NoCa4MSyYh6ZxY2c4luBkQEA5W15l8jYQy7+aQBEjyo0uLqtTqrgifQX4zg4GCPtuI3ts6GzFjh\n0/BIW+CeA9w5Mp4QPo1NR7myuNmVEGFCUl11dXUGXm/ciI8tDu0SiQQhISEGfl1SqVQw6zLFOjTC\n4yYuXbqEhQsXIjo6GitWrDBQ22RKKAmzCulOFwAbQtZoNE6/6Fq7S+Uu6I6mQRiGYYWP8Z1iY9l3\nAjhSYv75QN0D/PLjRfbfCfFSlF5XoH1SMGY+38HgtSIYnpAx4SJEh9fvKykM1ul0LnOTtlZnw623\nceQYEGdwIU1tJnCjnqTuzRXCx5SwMRaYXMFvz98nwocMSBWK8CFwB0hKJBL2GACGER8ifEjUFwB7\n7gQFBbGfRfy6GIZxql+XuyM8er0eVVVViIh46NFHIzwUl5KUlIRdu3bh+++/x5gxYzBx4kRMnz6d\nzTMHBwdDo9F4JFrSWLj1Pdw2dnvqe+xp+XZ2fYdxYbMzj0HH1pYFD6MzjPD4/dl1dfGPWohFDPSM\n+X3klviYagV3pMbKU75R3OGRQpvaDDSM+HCjho4KQFuOgzOtXtzRzu5KiNAkdXpyudwg5c41KiXd\nsuZuDLhrgrP9uvjQIu7pv+8pqOBxM8OGDcOAAQPw9ttvIzMzE6tWrUKfPn0MTjClUona2lpBdUMB\nDYsiTc3vcUbLt6swddFt7DGIbwkEBQB1StPPa43mNfn41F+4GAZgdHpAzIk0GYV4TNU0G3dEcVvB\nubhjno0jcAtTuT5XQrrocschkMituXQp9zgYR888dRyszcHhO1zhwz0GJOJjyqGdRCtNfRbx6yJR\nYEf9uiieh6a0PEhZWRkWL14MkUiE119/HTExD8frkmnHJJwqtFkR5C6KhJe5BZLcbhDjQmI+4aw0\n0a4jwMmLZp6suIajR2+z/0ztGIyis/VFP6+92hmBoQHsc2IRoP/zjJSIgbTW1ucJqdVqKJVK9vvm\nRg6ckQZxNdw0i9BuAADDdCmpKQPg9HSUK9Hr9VAqlWyqSyjCh0COgUqlYm8sSX0Pdzq9r68vpFKp\n1YgZifhotVq7/brI++vq6hAWFuaM3bOKqRQasVLxUmhKi4+0atUKX331FQ4dOoSpU6di2LBhmD17\nNpu2IXfq9gzNczem7lCNL6jkee6YeCHAPQbcVnx7xWfH1uYFj1ppbEHy8FwtL1egHUfwcDFlGGqp\nzoY8RqIFQinE5EYb3G1X4Sim0lEADAQO16CX7+cDmV1DhA9JN/Jd+BivTWKxmL2RBMCmubi/JTIw\nlis8jSFGpeSz7PXrom7pnoMKHh7w2GOP4eDBg/joo4+QmZmJrKwsDBgwwCA8zoe6BnOpKMD6gDhy\nwaqrq+NlC68luDVWcrncoBPEFtrFAP6+gMqE24hCYfzgw8Xw8uVatGsfAVME+DKs0SK3vsPS0EpS\nXK5UKqHX6wWTJgLM1yh58nfkSDoKABv51Ov17ABMIcBn4WNJ7HM7NkkaikQONRqNQREzdzI+uUEw\nJ3wkEtN+XSRKZAlPnndCOeddAU1p8Yx79+7hlVdewd27d5GTk4OEP13dgXrBoVAo2IXSVYu9uYiN\nccEkN/Ru63Zww/t8mt9jK9xOEHsKm78+BBSVNnz8ZuEZXLshZ//dpUMwis/Xp7SiWvpjwcIu7HPc\nIuYWQSpEBOoNjoOtaRBuikKoaSJ3z8CxdRo0t1vQ2udxU75CPBe43ZnuEj62tOAbp8otfRYRK2RN\n5UZ7uNE5IoosfR45r1QqlUWjUlJXFBpqeeyEszBOoZG0nhdj9uSjgoennDx5EosXL0bv3r2xYMEC\nBAYGss85SzS4o+Xb3N91RDTwCXtb8YuuAF//2vDxC0fyUfHgYZSnfaIUF/5QsP/++7oMMH9aTHAF\nT3K0CMEBjTsW3MVeSBODCcat4M40iDU+L8xdUBt7TnDPBWePRHAX3HPBmeeztRZ8Z9YAEgGt0+ka\nnM/G66I9wseUXxepq6OCx2XQGh6h0a1bN+zfvx9ffPEFhg0bhnnz5uHpp582O/TPUseAPS3f7ugE\nIR0TXH8roUUajFvxrdWWtI8DfMSA1qgZpKrGMKWl0RjeY+g1eoh86xdXkUjE3oI4w0PLWa3snsK4\nI8redKOxsCHnBfeC6qjjtz37QH77ZCQCX+v1zMHtrDPldWUNSyLTVS34xnD90ohRLDku5G+S7bPH\nqJR0uRFbFSJ83D2YklIPjfAIgOrqaqxevRpnzpxBTk6OgfeXcXqCWyRsrtWYb51RxmFlIdX3EIho\nAMBecI1F5o7f/HDl9kMxIWE0OLw33+Bz4mIDcOPmwx72ZYs6IrxFfXRPIgZ0esBPAnSOd+6iz2e7\nEFsxFy1xdjrK1ftABjAKTfgQLEV83Bm1aQyWhjDaG/Ehx5R0SxJhFRIS4pZ9MU6hNeUIDxU8AuLs\n2bNYuHAhEhMTMWXKFJSWlqKkpAQzZsyAn5+fQZEeOQk9vXDYA9fmQSgTp41rCkibKwCDRVwikSD/\nDwn2HHu4MAZAgYM/FBt8XvNIP9y7r2b/PWVia3RObwHgoeAJlQKJUa65CAo5xcKNZGo0GrbjBjAv\nbPh6XnB9ooSY9uXWxxBBQx43Pg6eFpmWMBY+3DolY78uW4UP6RILCgpySxqZCp6H0JSWACgsLMQv\nv/yCM2fOoLKyEps3b8bWrVvRqVMnpKenQ6vVIiwsDGKxmL1L1+v1vOiesAdP+3NZwxbfKPKdE3NY\n7mMd2wD/OV4/VBAARHrjlnRAqTB87PyFWlbwEJyRzjKHqRQL344DYP1YkBSIVqtlHbD5tg+WIFE2\n7hBMPh4HwPyxIFFlcjOm1WoN2vGFABmLQKJWxseBpLrI85aED6kzA8AKH3f4ddGU1kOo4BEA+fn5\nuHjxIrp27YrJkyejc+fOCAwMxLp163Dw4EGUlZUhKioKAAQ/rZl7wfXUPthiTGqu/Z5AzGG54wSC\nAvzRuoUIV+/8+SJ9wz71OoUeItFDUVR05gGeGWv4Gqmv678Hvlg9WCust3YsyMWWD2MdHKGx9THO\nxJrdhbVjYU40CAFrx8Fe4UPq50j0hUxvdtU6J5Tfu6uhKS2BU1paikWLFiE0NBSvvfYaWrR4GA0Q\n+rRmwLX1PZYWcGemQLih/fzSQOw/XX8c/JV3cOiXqw1eHygVQ654WN28fl0GdBCzRc8psSJI/dy7\ngLm6ld1Wx29uCsTev288MVhIwofgrlZwcwXd3FpAR4+Fq7q63Al3H4xTv9xUF2ln56aFyfuCg4MB\nGE7jJuucM3+bJEVNaoa4E7+9FJrS8lYSEhKwc+dO/PTTT5gwYQLGjBmDWbNmsScZd1qzRCKxaSgW\nn+DeCTla3+Np3yjucWgXpQI57bRqE5MIAUgDJAaCR6nQwvfPPJYIpqcsuxrSeULEm1qtdriV3ZZ0\nFDcF5axjwd0H0j0jtAgoN9LAHf7n6AXSXASN/C1yLCxFMxuzD94Q8SEpeK7w4UZ8SGqbrMnG5qGk\npoZ4fxG/LvL5jf3OaUrrITTC40VoNBps3LgR3377LVauXIlHH32UfY7b/SHUu1vjglpTtQC21NkY\nD0109z5s2g3cfiCCpvwyTp663+A1rWL8UXZLxf77by+3R3RcCHwkgK8YSGnl+YsCqRWzFD20JR3l\nycJVbuSN73YV5rDUTcTF2lRoZ0TQHMUbIj7c9dV4NIJxxId87yTCY4rG+nVxMY4oNeUIDxU8Xkh5\neTmysrIgl8uRk5ODVq1asc+Rac06nY69UAltkWcYBgqFgg0ncxcRvlxMLXEgHzhQANRdvYCiM1UN\nnm/XRorLVx8OH3zm6Vj06hsDHwkQEgAktODHxYC0sisUCnYRNU4Tevpiagtc8SbUsQjGwoc4gltq\nw+dbB6e3CB/uBG0SGeN2cJKurqCgIIhEIov7SMoSyIBTRwq+qeDhPEEFj/dy5MgRZGVloX///pg7\nd66BQy73QsXnmSvW6mzInStJr/BpATdHeQWwaQ9w//xZXPyjtsHzHZKCcP5SHfvvju1DMG1me/hK\ngBahIkSFeXZOjKk5KgSymArlWBCMpzb7+/vzXviYStVqtVo2hUGOBV+FpjmEKnyMI5pardZAaHK9\n7biQmzZrwoekkm316yKQKGZQUBC7LU1V8PD/V+QGlEolevXqBZlMhk6dOmHZsmUAgIqKCgwcOBDt\n27fHoEGD8ODBA/Y9a9euRXJyMlJSUvDTTz95atMt0rdvXxw4cAAxMTEYOnQo9u7dyz5HDDF9fHxQ\nV1fHFjd7CrJYkBy2XC5HTU0NqqurIZfLodHU17v4+fkhKCgIoaGhCAkJQWhoqEG3A1lg+Ex0MyAi\nGKitbdiWDtRbSHA5d7EGoj8fk7ppnSIXUjIGv66uDtXV1aiurmYXUCKWQ0JCEBYWhtDQUPj6+rLz\nY4RUO0CmNgcHB7P1MXV1dQazfDwJEWRqtRoKhQK1tbWorq5GbW0t+137+Piw50ZwcDDEYjFrMCsU\nsQM8rI8hEYna2lrendtEXKpUqgZrlVarZbscg4OD2VZ0klonDu0kwkaOK1cgGUMiQsQeoqqqCnV1\ndQY3GxTr0AjPn8jlcgQGBkKr1eKRRx7B+vXrsXv3bjRv3hxLlizBunXrUFlZidzcXJSUlGDixIk4\nceIEysrKMGDAAFy4cIHXdyGVlZVYsWIFrl69ipycHCQlJbHPcbtX3FHL4Io6G26ngxAm1O47AXzy\n4SnU1jVcsDq1D0TJBbnBY3/PlcHHR4L2MSL4+bimO8pUbYfxsbDleBh3Egm1Xoz8nuyxq3DG3+VG\nbcx5eXGPhyW4HlFCrVPy5BBGW1vxrU3pJr8nlUrVIIJIUvHcwbHkM81h7NdlqZGDRngeQru0/oSY\nc6rVauh0OkRERGD37t04dOgQAGDq1Kl4/PHHkZubi127dmHChAnw9fVFQkICkpKScPz4cfTu3duT\nu2CRiIgIvP/++ygsLMTChQshk8mwePFi9k6QiD0SNnWWEWNj59nYCul04M4g4vPFNiVeb1LsAICP\npOFCV1ejQbNISaPEjrWx/iTs3tjuKONOIiF2Q3F/T6a6cJyBLTYLjfXyMucRJSThwx3CqFarUVtb\n65KbGlNCkztA0Xitsuf74/6ejG1ouFPxub8DS8KHrNnEr6u6urqBXxd3vyj1UMHzJ3q9Hl27dsUf\nf/yB2bNno3Pnzrh9+zY70C8qKgq3b98GANy8edNA3MTFxaGsrMwj220vaWlp+Omnn5CXl4fhw4dj\n9uzZGDt2LBtqJekhuVxu86Ji6zwbbg7bVYstaVsngwtramp4WZzduqUIEWE+qKxqmDIxtTzdulWH\nmKgAmz7b2l0pOSauNGMEnNvK7imcYe5pyhzT3PFwVYE9V/iQyIDQjoWzhI+14+HMGzFjuIa3RIQq\nlUqDGkTS0k62i9yImBM+Uqm0gVGpsQmwcRt8U4UKnj8Ri8XIz89HVVUVBg8ejAMHDhg8b+0iLaQf\nkUgkwoQJEzB8+HDk5OTg6aefRk5ODlJTU01GSsiCD5i+K3XXPBt74M6+USgUvPPnEotF6N09Ant/\nvtvgOZ2uoeS5UlqHbunBUCpFbNTK1nSUp48H91iQi63QBmGSmgxrs2NsmTHkyeNBbmqICFWpVILr\nTLNH+NgSRfPE8TAlfLgi1Fj42GpbQX6fdXV1rBiiEZ6HCGfFcRNhYWEYNmwYTp48iaioKJSXlyM6\nOhq3bt1Cy5YtAQCtWrXC9evX2ffcuHHDoPVbKAQHB2Pt2rW4ePEiFi5ciNjYWCxfvhzNmjXDnTt3\nUF1djbi4OPYuBHg4Ft1Z6Q9XQ4qzNRqNQ3fnruT/9Qg3LXhM1C0Wl1Rj6vhW0GrrF0bSoQa4bkCc\ns+FGEIXQIWgKcmHx9fVl76jJ9+2uKEFj4UZzuVEGIQsf7rEgqSFTtU+ujmraCxE+JNXFjfhwhZgj\nwoekYhmGYUdGCOXYugp+HHUPc+/ePbYDS6FQ4L///S8yMjIwYsQIfP755wCAzz//HCNHjgQAjBgx\nAnl5eVCr1bhy5QouXryInj17emz7G0NNTQ3u37+PESNG4ObNm0hPT0fr1q2RkZGBTz/9FADg7+/P\nRhXItGaSNuLbYm4KErUKCQmBWCxGbW0tO3fFk2SkhiJQ2vAUVKsbKp5b5SrUVddCLBYbOB0HBAQg\nKCiIPR58v2CRY8HtEJTL5bzqwDHGVEdObW0tdDodfHx82A4qX19fhISEIDg4mK1h4vPxIBfboKAg\nBAQEsJ1pGo3G4+eGJbgdhAqFgu3iJAXApGvN39+f7eYMDAxkjwdfxI4xRISSesqamhqoVCq2NIBE\nhEhTAOnAMwVJxYaFhcHHxwcajQbV1dXs5zVVaIQHwK1btzB16lT2jmDy5Mno378/MjIyMG7cOGze\nvBkJCQnYsWMHAKBTp04YN24cOnXqBB8fH2zatIm3i5olqqurERMTg5SUFKSmpqJfv36YNWsWTp48\niZ9//hnPPPMMpFIp+3puOJ/PBcHmIHc/fn5+UCgUqKmp8WjnikQMdE8Pxa9HHxg8rlA2tJwQiYDo\nlqGQBtRHQ7hzY9RqNa/SdbZgXBvDB3sBWyZDm4uikRSRUA17uekVPs0iMlWLZhy1IbWB5HdDph5z\nvd+EdG6QeiuuBQpZb7kRH3uMSslriF9XeHi4B/bM89C29CYO6QYw5vr161i8eDF8fX2xevVqREdH\ns8+5u43dVXDre5zRlWYOc3U2AHDk91q8/bFhwXuzcF9UPDAUPdEt/bH1vTSTn23NbkMIuLOV3ZU2\nC95gV2HcQu3Kc4P7N615ejkyqoJEQpzdYedOjKdocw1juak7c8Knrq6OHa1AxHtTbUungodikQMH\nDmD58uVsRxf3ROFrQbA9OHN+j6nuD1N1BNyZHQqlHmNnnYZG+/BUkwaIoFAannp9uodj9eJki39b\n6F5pgPNd2Y0vpO6yWfAGuwpXCR9LTuyusCHxRuFjHA01Fj7kP8BQ8ABghZEXQwUPxXG0Wi02bdqE\nbdu24ZVXXkH//v3Z57gRBk+nJBqDvYLBlm4c7gJu6bNeXXsBJ/INPbXEYoCbnp8wKgbTn42zuh/O\nFgyegkRK9Hq9Te3TpmwWTKU/uGLT1d+LEO0qTGE8hJHshy3vc8bQPmfuhzcIH0vWG8bF2iSNRQXP\nn09QwUOxlbt372LZsmW4f/8+1qxZgzZt2rDPcU9CoYbygYbpOlKUaqmuw/iO1F5++PkuNnxSavBY\ncJDEYDDhK/Pa4fG+kTZ/JjEdFHKEAYDJIW2WUoSOTup2JZ5IEbkCY2NMboedLe3f9kzrdvV+NAXh\nQ/y8yM0PeZ7UPHkxVPBQnMfvv/+OxYsXo2/fvliwYIFBYTP3QiukWSvGEQLibAw8bON1dqidUFml\nwYQX86HnnG0tm/vhzj01++9/vNUFbeKkJt5teZ+4EQahXWjJMdFqtdBoNAa+Vo7YLHgaT9lVOBMS\ntSEXWnIOGA9RbMwNgLvwFuFDOtbUajUrJslEe2N7GNIC31RrePi9QgiY69ev44knnkDnzp3RpUsX\nbNy4EQCwatUqxMXFISMjAxkZGQaGnkIwJAWA7t274+eff0ZSUhIyMzOxa9cuttWRDJnz9/eHXC7n\nZcsxuYiqVCqzRozEpJSEgQGwAxmdfYcaEeaLju2DDR7z9394avr6ihAXY9uUZS6k+yY4OBh+fn68\nPR6A5WOi0WjYcQikJZ8IBr63GnPhjkfgtuTz1QDSnGEpme1CxiAQ41KpVGrQ/s1nsQM87Nok4yr4\nfjyAhi35tbW17DlCvnOdToe9e/eitLQUISEhkEqlKCsrw549e7B69WosX76c1/voSmiEx0WUl5ej\nvLwcMpkMtbW16NatG7777jvs2LEDISEhWLBggcHrhWhICtS79q5atQpnz57FmjVrkJKSwj7HvYPy\nRD2JLW3G3Dobc9+1OwqCd+4pxydfPhxmmZQQiEul9QaiiQmB+HBd50b/De5++Pr6IiAgwO0XJUuF\n3abSUaaOifF+eEPdmCf3w9b6J3PHxFsiJcYdj57eD2vF3cbHhGz/uXPn8OWXX+Lrr7+Gv78/IiIi\n0KVLF8hkMva/Fi1a8F6QNgJqHupuoqOj2Vbu4OBgdOzYkfXbMiUyhWhICtRPpn7nnXdQUlKChQsX\non379li2bBlCQ0MNptJyTUmdHU61ZcEmA/scSUdx5/cQfy5n1yn9v57hBoLHh2MS2jbevlSWOUzt\nhyuFqDkzxsaO9efuh7fMhSIWCa4WPpa61hydoG7K1kCIIxK4s6HIlGJ3pB6N1y9Txd3G858YhkFl\nZSWKiopQWFiIwsJClJaWws/PDx07doRMJsP48eNx4sQJbNiwARUVFejfvz+6devmsv0QAlTwuIHS\n0lKcPn0avXv3xuHDh/Hee+9h69at6N69O9566y2Eh4cL2pAUqB/G+MMPP+Cbb77B008/jZkzZ2Li\nxIms4CCWAlzh48gi4i7Hb1MQM0xnu8oDQExUANq2luLKNQUAQ8GT0No5godgytSzMYXNtnbjOHsy\nN/EK4loLCLEzzdgiwVkCzpb2bxLFcEZNmq1+Y3zHlcLHlOC0dhOg1+tx7do1VtgUFhaioqIC4eHh\nSE9Ph0wmw6hRo5CYmNhg+/r164c5c+Zg69atuH//fqO23RuggsfF1NbWYsyYMXj33XcRHByM2bNn\nY+XKlQCAFStWYOHChdi8ebPJ9wpp0Qbqt3fMmDHIzMxEbm4uhg8fjjfeeAMZGRkAwE5zJYuIpUWd\nL47fpnDUVd4a/69HBCt4uF9J29aBjfpccxgLUVsKm82143vSrFQikQjelR14KOD8/f3tisDZIjjd\n6bNmKgLXFIWPLSkp7vpFUlIlJSUoKChAcXExSkpKoFQqWbufxx9/HPPnz7crJeXv74/nn3++sV+H\nV0AFjwvRaDQYPXo0Jk2axPpwEQNSAJg1axaGDx8OwHsMSQEgMDAQr7/+Oq5cuYJFixYhIiICK1eu\nRPPmzdlFhKS5qqur2VoS4+gNnxy/jSEFqMRE0hl35f+vZwS+/Obmn5//8PG2To7wGEOEKFfA+fv7\nA4BVmwV3zVCxBSLgyEBMZ0bg3IlxBI64aJOCbVNpQuNzxV2zhqztBxFw3ix8HE1JVVVVobCwkE1L\nXb58GT4+PmxKatKkSUhNTUVgYCAvzi9vgBYtuwiGYTB16lRERkbinXfeQNmMXwAAIABJREFUYR+/\ndesWYmJiAADvvPMOTpw4ga+++ootWj5+/DhbtHzp0iWv+KH/+OOPWLVqFUaMGIGuXbvi7NmzqK6u\nxl/+8heDbgFy4eXTRdRWnGW3MXlOAW7fVSM1JRhF52oREizBN5u7umCLH2IcHdBqtWydGZnZ4Yp2\nfFfCnX0jRFd2bnE3acnndkI6Y/6TuzG2D+FaJAgFImzIxGOCpXlDer0e169fZ9NRRUVFuHfvHsLC\nwpCWlsZ27CYlJQnqN8pjaNGyuzl8+DC+/PJL9gcNAGvWrMG2bduQn58PkUiEtm3b4uOPPwbgPYak\nBIZh8PXXX7MneHl5OV577TW0adMGXbp0Qb9+/dg0kEgkMkirCKGl1Rhn1ff07RGBf/9wG7o/h/I4\nM51li18RuRMViURQq9Vsu6vQjgk3AkfuyvlaSGvL0D6pVMp2Q5E2cKEdE1MRHz4Xm1tLSfn7+0Ov\n16OyshJZWVmYN28e0tLScO7cORQUFKCoqAhnzpyBSqVCXFwcZDIZHn30UcyZMwfR0dG83Gdvh0Z4\nKC5j1qxZaNWqFVJTU5GWlobExETcuXMHS5cuhVqtxhtvvIHY2Fj29QzDQKlUQqPRCLL4lNAYf67C\nkhosWn0Oye0CcfGyHE8PbomXZrSx/kajv+8smwWuxYOQJzbzoQXcVOrDlNeapaiN0IdJcuFGRT0p\nfGxJSRmfLwzDoLq6GoWFhcjPz8fJkyfxyy+/gGEY9OvXDwMHDkRGRgZSU1MRFBQkyHNGwNBJyxR+\ncfjwYSxbtgwDBw7EnDlz2JoRQLjTmo1xZH6PXs9g/Iv5iAjzQel1JeY93wbDBrQ0+3p32Sy4y1ne\n1bjLld1aN05jj4u32FUAhqaYrr7RsaVLylRKqqyszCAldffuXYSEhCAtLQ0ymQwZGRmIj4/Hli1b\nsG7dOshkMmzZsgUtWrRwyX5QLEIFD4V/6HQ6/OMf/8Dnn3+OxYsXY8iQIexz5E5WoVDwNhVhK/bW\n97z10RUUnqnGrTtqbMjuiE7tg+2O2rjiu/IGawSCsy6y3ONiLDrdcVzoMTGPI4P7tFotzp8/z6ak\niouLoVQq0apVK1bYyGQyxMTEmN02pVKJf/3rX5g6dapgRajAoYKHwl8qKiqwfPly3LhxAzk5OUhM\nTGSfc8eUY3dBUhHWIlf/93sl3v74CqprdNj2YUf4+cKp0YHGwof0kLPgpuystbLbUgPlqePCtynB\njYEcE51OZ3Nbvi0pKe5xYRgGNTU1bIdUUVERLl26BLFYjA4dOrATidPS0hAcHCzYNaeJQgUPhf8U\nFBRg4cKF6Nq1KxYvXoygoCD2Ob1eD4VC4RW1JNw7cn9//waRG5VKixeXXkagVIJP3+po1frCU3DT\nQ0KuuQLQYBaRWCy2OrSPj51r3ihGucIHgEMpqZs3bxqkpMrLyxukpDp06EAjMt4BFTwUYcAwDL76\n6its3LgRL730EkaPHm1wMSEXJqG1GpvrxAHATofmLtY5G/4AwwArFiR5eMutw70wOdtyw9UYR220\nWi1bA8U9LkIblcAVo0IVPty2fI1Gw7blW0tJXbx40SAlpVAoEBsbi/T0dDYlFRsbK5hjSbEbKni8\nievXr2PKlCm4c+cORCIRXnjhBcydOxcVFRUYP348rl69ioSEBOzYsQPh4eEA6p3YP/vsM0gkEmzc\nuBGDBg3y8F5YpqamBm+88QZOnTqFnJwcdOnShX2OG773lAmmOUyZY5qaEE3+I51pxvU9v/zvPsrv\nqjBxVKz1P8oTSMoOAC+LaG3x9iLHSKPRsGaYQq8fc0eRdmOwNSVFzpVp06bhmWeewVNPPYWzZ8+y\nUZuLFy9CJBKhffv2bEoqPT0dISEhvNtnikuhgsebMOfEvmXLFjRv3hxLlizBunXrUFlZidzcXME6\nsQPAhQsXsHDhQsTHx+PVV19FREQE+5yzhv05ii02C8bhdXMY1/eo1EDxuRr06hph9j18hA9FtNYu\noMai01LNjrekh7jniifTj452SZWXl6OwsBAFBQW4cOEC8vPzcePGDTz22GMYO3YsunXrxqakqLhp\n8lDB482MHDkSc+bMwZw5c3Do0CFERUWhvLwcjz/+OM6dO4e1a9dCLBZj6dKlAIAhQ4Zg1apVvHdi\nJzAMgz179mDNmjWYMmUKpkyZYnDhcXVkwRavImdMvTUWC76+/vDz41eUxFaMo3CuEgumOqSML6Dc\nuhtHjo0QoiS24s70oyNdUjqdDhcuXGCjNkVFRZDL5YiJiWGNMjMyMhAbG4v9+/dj5cqVUCgU2LFj\nB1JSUlyyHxTBQQWPt1JaWorHHnsMxcXFaN26NSorKwHUXwiaNWuGyspKvPzyy+jduzeee+45APUD\nAYcOHYrRo0d7ctPtRqlUYv369fjpp5+QnZ2NHj16sM81ZtgfF0uLtKnIgKtmuHAjC3xK2dmLs8SC\nrW35rizwdue8GFej1WqhUqls6k6zhqNdUnV1dSguLmbFzYULFwAAycnJBimp0NBQi1G4H374Af36\n9UNISIjD3wfFq6DWEt5IbW0tRo8ejXfffbfByW7tYizEhTogIADLly/H1KlTsXjxYmzevBmrV69G\nVFSUgZWAUqlEbW2txYuSuRZjTzlMc+G6TRPXbKEVAxOInYA9+2Iq7WE8TJG0Xruz/VsiaejKLtSO\nQWJNQaKjKpXKpn2xJSVlbPTLMAxu376NgoICVtyUlZUhKCgIqampkMlkmDdvHlJSUuz+jYtEIgwb\nNswZXwmlCUAFj0AhTuyTJ09mndhJKis6Ohq3bt1indm9yYkdAOLj45GXl4dffvkFkyZNwtNPP40X\nX3yRXSzJBVahULALOakFMNdizBeHaS5c12yyL0KdPC2RPHQyJxdYqVQKsVhsdWgft1OKD5B9MW5l\nF+Jx8fHxMTgu3H2xJSXl6+trEFHTarW4dOmSQUqqtrYWUVFRbNRm+vTpiIuL483xpDQdaEpLgJhz\nYl+yZAkiIyOxdOlS5Obm4sGDBwZFy97oxK7VavHBBx9g+/btWLRoEZo3b46ioiL4+/tjxIgRbOs3\nMSXlXjyFtP/cydNCnKhra/u30I6N0F3ZgYcpKa1WyzqzEyylpORyuUFK6vz582AYBklJSay4kclk\nCAsLE8zxpHgFtIbHm/jf//6Hfv36IS0tjV1I1q5di549e2LcuHG4du1ag7b0NWvW4LPPPoOPjw/e\nffddDB482JO70Gjq6upw4MABdpjY6dOn8ccff6Bt27ZITU3FkCFDMH78ePbio1arvWJasxDqe0zV\nc5iqg+K2fwu9C8p40jFfW9ltSUmRoYsnT57Ehg0bsHLlSrRs2dJgcN+NGzcglUrRpUsXZGRkICMj\nAykpKYKua6J4DVTwULyLGzduYObMmUhLS0N6ejrS0tKQkpKCgoICLF68GI8++ijmz58PqVTKvodM\na9bpdGxqSKiLMx/ajK3NHLK1e82buqD41Mpub5cUUF+YTVJShYWFuHjxIg4ePIiwsDCMGjUKTzzx\nBDIyMtC6dWteCjoKBVTwUJoSer0e//znP/HJJ5/gb3/7G5566imDCyhJDQk1BcGF1Pe42lne3KRo\nS/NT7IXbBSXUIm2CO0WcLcLTVEpKoVDgzJkzbNTm3Llz0Ol0SExMhEwmQ9euXZGeng6xWIwNGzZg\n48aNmDRpEjZs2CDY40JpElDBQ2l6PHjwAKtWrcKFCxeQk5ODDh06sM/xeVqzvZD6C2dYbphqMSYX\nU3uG9jUG7hBGInyEirNb2W0d3MctwGcYBnfv3mWjNoWFhbhx4wYCAgLQpUsXdrZNx44dLQqze/fu\n4ddff8Uzzzzj8PZTXMf58+fx7LPPsv++fPkysrOzMWnSJLsn8J88eRLTpk2DUqlEZmYm3n33XQCA\nSqXClClTcOrUKURGRmL79u1o06aN+3fWMlTwUJouZ86cwcKFC9GxY0csXboUoaGh7HOentbsTOwV\nce4Y2teYfXGWiOMDxiLOlnSqoympy5cvG9TbVFdXo3nz5uzgvq5du6JNmzY0JeXF6PV6tGrVCseP\nH8d7771n8wR+Ys/Rs2dPvP/+++jZsycyMzMxd+5cDBkyBJs2bUJxcTE2bdqE7du349///jfy8vI8\nvbvGUMFDadowDIOdO3di/fr1eP755zFhwoQGaS4++0DZg7GLOYmQeHJon6MIpRjYFrgijtv+7WhK\nSqlUoqSkhDXKPHfuHLRaLdq1a8dGbWQyGSIiIgQr4imOQYaz/vbbb0hJSbFrAn+bNm3w5JNP4uzZ\nswCAvLw8HDx4EB999BGGDBmC1atXo1evXtBqtYiJicHdu3c9uaumoIMHKU0bkUiEsWPHYtiwYVi7\ndi2GDx+O7OxsZGRkAHg4j0Sj0UAulwv24kpSUlyzRSLkuHNt3D20z1FEIhGbCiIDJYVa2ExGI0il\nUqjVatTV1Rk8xx3cZ5ySun//vkFK6tq1a/D390fnzp0hk8nw4osvolOnToL8XijOJy8vDxMmTAAA\n3L59G1FRUQDqZ7Xdvn0bAHDz5k0De6G4uDiUlZXB19cXcXFx7OOtWrVCWVkZAKCsrAzx8fEA6tfM\nsLAwVFRUoFmzZm7Zr8ZCBQ/FgBkzZuD7779Hy5YtUVRUBABYtWoVPv30U7Ro0QJAfYv70KFDAQjP\nhT0wMBDZ2dm4fPkyFi1ahMjISKxcuRKRkZF2T2v2NNZSHmTKMekcIvsnxNQQGSjp7+8vmOnT1o6P\nv78/9Ho97t69izVr1iArKwutW7fGlStXDFJSVVVViIyMZFNS48ePR9u2bQUnxinuQa1WY8+ePVi3\nbl2D5/g0WNUTUMFDMWD69Ol4+eWXMWXKFPYxkUiEBQsWYMGCBQavLSkpwfbt21FSUiI4F/Z27drh\n22+/xd69ezFu3DiMHz8eM2fOZO+suXYIxELAU8WztpiXWrPB8PPzY6MKnm6Xbgxk+rS9lgiuxJaU\nlHFUjYjQc+fO4dSpU5DL5ejTpw+Cg4PRp08f9O7dG4MGDWKHiTblixTFPvbu3Ytu3bqxN6j2TOCP\ni4tDq1atcOPGjQaPk/dcu3YNsbGx0Gq1qKqqEkx0BwCEt+JRXMqjjz6KiIiIBo+bqvXatWsXJkyY\nAF9fXyQkJCApKQnHjx93x2Y6jaFDh+LQoUNQq9XIzMzE4cOH2eeId1JAQACUSiXq6urY6cCugtR5\nqFQqyOVy1NbWorq6GnK5HBqNBkC9eAkODkZoaCiCg4NZcWbpok9SQ8HBwQDqfdhUKpXJ4yoESAqS\nHBu5XM5O1XYlpNBbrVZDoVCwx6eurg5qtRpAw+MTEBCAmpoa/Prrr9i4cSNmzpyJgQMHYvTo0di2\nbRukUimysrKQn5+PkSNHsr/HJ598Es2bN6dih2IX27ZtY9NZADBixAh8/vnnAIDPP/+ctSIaMWIE\n8vLyoFarceXKFVy8eBE9e/ZEdHQ0QkNDcezYMTAMgy+++AJPP/10g8/auXMn+vfv7+a9axy0aJnS\ngNLSUgwfPpxNaa1evRpbtmxBWFgYunfvjrfeegvh4eFe48JOuHnzJpYuXQqtVovs7GzExsayz3EH\nyjmjhsRZQ/schTu/R+it364qbHakS0qv16O0tNQgJVVZWYmIiAg2JZWRkYHExESz23jp0iV8/fXX\nWLZsWaP3geI6Hjx4gFmzZuHMmTMQiUTYsmULkpOTPdoCXldXhzZt2uDKlSusoXRFRYXdE/jJNikU\nCmRmZmLjxo3sNk2ePBmnT59GZGQk8vLykJCQ4PTvtpHQLi2K7RgLnjt37rDh0RUrVuDWrVvYvHmz\nScGTmZkp+Dkd//vf/7Bs2TIMHjwYL730Evz9/dnnHGljd8fQPkfwttZvR0Wpo11SarUaZ8+eZbuk\nSkpKoNFo0KZNG4MuKRql8U6mTp2Kxx57DDNmzIBWq0VdXR1ycnKaWgs4H6FdWhTHITlfoF7UDB8+\nHID3ubATHnnkERw8eBCffPIJMjMzsWTJEvbOh1tDolAooFarIZVK2a4oU+LGmsO0pxCJRPD19YWP\nj49X1PeQVm9Se1VTU9Og6NyWwX2muqQqKytRVFTERm5KS0vh6+uLjh07QiaTYerUqUhNTYVUKqXi\npglQVVWF3377jU3vkI6l3bt349ChQwDqBdHjjz+O3Nxck+n/Y8eOoU2bNqipqUHPnj0BAFOmTMF3\n332HIUOGYPfu3Vi9ejUAYPTo0ZgzZ45ndtaLoIKHYpVbt24hJiYGAPDvf/8bqampAOrzuRMnTsSC\nBQtQVlbG5oC9AYlEgtmzZ2PcuHFYvnw5tmzZgjVr1qBdu3YAAI1GAx8fH+j1etTW1rIXRnLhJA7g\nQmj/JvU9vr6+UKlUvO9Os4axKCVO5kTsWBKfer0e165dQ0FBAZuSun//vkFKatSoUUhMTBR0NIzS\nOK5cuYIWLVpg+vTpKCgoQLdu3bBhwwbaAs5zqOChGDBhwgQcOnQI9+7dQ3x8PFavXo2DBw8iPz8f\nIpEIbdu2xccffwwA6NSpE8aNG4dOnTrBx8cHmzZtEuQF0hKRkZF47bXX8M0332DkyJGIiorC/fv3\ncfXqVXz77bfo0aMH/P39odPpBD+tmbSxG3en8d1k1VpKSiwWQ6fToaioCAEBAejWrRubkjpz5gwK\nCgpQXFyMkpISKJVKtG7dGjKZDI8//jjmzZuHqKgoXu8/xf1otVqcOnUK77//Pnr06IH58+cjNzfX\n4DVNvQWcj1DBQzFg27ZtDR6bMWOG2de/8soreOWVV1y5SR4jKysLW7ZsgUajQXp6OoYNG8a6SS9b\ntgz9+vUzWNBIIbBKpXKpkaerId1pfKzvscUOw1RKqqqqCidOnMCGDRsQGxsLiUSC4OBgNiU1adIk\npKamIjAwkF6kKFaJi4tDXFwcevToAQAYM2YM1q5di+joaNoCzmNo0TKPeeKJJzB9+nSDmTgU93H2\n7FkEBwcjLi7O4CJYU1OD7OxsFBQUICcnB506dWKfYxgGGo0GSqVSsNOauRj7c7mzvsfRLqnr168b\ndEndu3cPYWFhSEtLQ6dOnXD06FHs2LEDL7zwArKyshAWFuaW/aF4F/369cOnn36K9u3bY9WqVZDL\n5QDqo8JLly5Fbm4uHjx4YFC0fPz4cbZo+dKlSxCJROjVqxc2btyInj17YtiwYQZFy0VFRfjwww+R\nl5eH7777jhYt2wbt0hIaa9aswcaNG9GnTx+oVCqsWbMGMpnM05tF4XD+/HksXLgQCQkJeOWVV9hW\nT8CwY0jI9TAEY38uZ+6Po11SGo0G58+fR35+PtslpVAoEB8fj4yMDGRkZCA9PR3R0dENtvXGjRtY\nuXIlnnzySUyaNMkp+0FxHQkJCQgNDWXrro4fP46KigqPtoAXFBRg1qxZUKvVSExMxJYtW6DT6Zpa\nCzgfoYJHSFRXVyM+Ph4FBQVISEjARx99hG+//RYff/wx2rZt6+nNo3BgGAa7d+/G2rVrMXXqVEye\nPNkgAqLT6aBUKqHX6wU/7wZouD/21vfYkpLizh4i4qa6utogavPHH39AIpEgJSUFMpkMMpkMaWlp\nCAoKErSwpJimbdu2OHnypEFKZ8mSJbQFnGIKKniExNixYyGVSrF161a28+epp57CCy+8gBEjRkCl\nUhnMhqF4HqVSiTfffBP79+9HdnY2unfvbvA8SXPxqR6mMdiyP7ampLiDFfV6PcrKylBYWMjOt7lz\n5w5CQ0ORlpbGRm6Sk5MFWyNFsZ+2bdvi999/R2RkJPtYE3QBp9gGncMjFI4cOYL9+/fj5s2bAMB6\nBcXHx+P06dMYMWIEDh8+jF27diE7OxvBwcGCrhHxFgICArBixQpMnToVixcvhlQqxapVq9iiReN5\nN0J1/CZw96e2tha+vr7sLCJbvaS0Wi3OnTvHCpvi4mIolUq0atUKMpkMffv2xezZsxEbGyvY74ni\nHEQiEQYMGACJRIIXX3wRzz//PG0Bp9gNFTw8469//SvWrFkDqVQKhUIBqVQKpVKJvLw8/PDDD1Cp\nVPjuu+8QFBSE0NBQAGAny/IdU07sjuTh+Uzr1q2xfft2/Pzzz3juuecwatQoPP/882yrOpl3IxTH\nb2NMpaSA+oiPRqOBWq1GUFAQgoODDVJSNTU17OC+oqIitmCzQ4cOrAN4Tk4O+z4Khcvhw4fZqMvA\ngQORkpJi8DxtAafYAhU8PGLbtm0oLCzE7NmzAQBSqRRAvQjq168f+vTpgx07duDKlStYtWoV9u/f\njz179uCPP/7AX/7yFzz11FOe3HyrmHJiz83NxcCBA9k8fG5uLpuHF6oTOwD0798f/fr1wwcffIDM\nzEwsX74cjz32GADL05r5hC0pKRLZEYlE0Ol0yM3NxVdffYUpU6ZAr9ejuLgY5eXlCAkJQVpaGmQy\nGYYMGYIOHTq4xCOM4p2QwactWrTAqFGjcPz4ceoCTrEbWsPDIxQKBRYtWoT8/HxMmjQJHTt2xI8/\n/ohPPvkE+fn50Ol0mDdvHv7zn/9gxowZuHbtGh555BGMHDkSzZs3R0xMDFvzw1eMfbrszcNzQ9VC\n4fbt28jKykJtbS3eeOMNNnQOGLaxe8rWwdEuKa1Wi4sXL7JTiYuLiyGXy5GQkIADBw4gKioK69ev\nx4ABA3j9m6TwG7lcDp1Oh5CQENTV1WHQoEF47bXXsH//ftoCTjEFreHhO3q9HlKpFB988AEKCwvx\n2muv4dixY4iPj8euXbsQHx+Pd955B7du3UJoaCjWrl2L5s2bs+8nFyhyYamqqhLEfBF78/BCJCoq\nClu2bMGxY8fwwgsvsBN8AwICIBKJ4OfnBx8fH7fYOjg6uK+2ttYgJUW6Xtq3bw+ZTIYxY8YgOzsb\nISEhEIlE0Gq1+Pjjj/Hcc8/ho48+EryhbFNDp9Ohe/fuiIuLw549ezzaAn779m2MGjUKQP2E4+ee\new6DBg1C9+7dMW7cOGzevJndJsDyBPhNmzYZtIAPGTIEADBz5kxMnjwZycnJbAs4xfugER4eodfr\nAYC9w6+trUVwcDAA4OjRo1i7di2WLVuG999/HwsXLoRMJjO4KJJ0w/fff4+8vDy8/vrrvGtjN47w\nREREoLKykn2+WbNmqKio8Fondr1ej88++wyffvopFi5ciMzMTJPTmhmGafS0Zq55qT1dUuXl5WwL\neGFhIW7evImQkBCkpqZCJpOha9eu6NChg00t6ZWVlfDx8UFISIjD+0FxP2+//TZOnjyJmpoa7N69\nm7aAU4QEjfAIASJ0dDodO/oeqJ/su3PnTrRs2RK9e/fGm2++iZs3byIjI4N9L8MwEIvFUKlU+OGH\nH5CRkcG+n89pLnvy8N7gxC4WizFr1iyMGTMGK1euxD//+U+sWbMGycnJAOptHYKCgqDRaCCXy22a\n1mxLSspUl5ROp8OFCxfYqE1RURHkcjliYmKQnp6Orl27YubMmWjVqpXDabaIiAiH3kfxHDdu3MAP\nP/yAV199FW+//TYAUBdwildABQ8PMS5eDQkJweLFi1nR0qlTJ+zatQvDhg1r8N5//etf0Gq1ePzx\nx9GiRQsAYAtK+ejaPWLECHz++edYunQpPv/8c4wcOZJ93Fud2AEgPDwcGzduRFFRERYuXIjU1FQs\nWbKETQn5+fkZuJeTNnYADqWk6urqUFxczIqbCxcugGEYJCcnQyaTYeTIkVi1ahVCQ0N59xuhuJe/\n/e1vePPNN1FdXc0+RlvAKd4AFTwCQK/XIyoqCiT9OGLECPz1r39FXV0dgoKC2DTF1atXceDAAQwe\nPBhdu3ZFeXk5jh49iieffJJtYfckxk7sr7/+OrKysuzOw3sTqamp+PHHH7Fjxw6MGDECL774IsaP\nHw+RSIQ7d+5Ao9GgefPmrJ8VALNdUkB9tOf27dtsIXFRURHKysoQFBTEpqTmzZuHlJQUQbXDU9zD\nf/7zH7Rs2RIZGRk4ePCgydfQFnCKUKGCRwCQdAJZZHr06IG5c+ciICCATWUBwD//+U/Ex8ejT58+\n+Prrr/Hpp59i4MCByM7OxksvvYQZM2aw4oj8352YcmIHgP3795t83Jud2LkwDIOuXbtizpw5+Oij\nj5CdnQ2FQgGlUolXX30VM2bMYI/1nTt3kJWVhRUrViApKQmXLl0ySEnV1NQgOjoa6enpkMlkmDZt\nGuLj4wXTzk/xLEeOHMHu3bvxww8/QKlUorq6GpMnT6Yt4BSvgBYtCwzjehzy74MHD+Kzzz7D5MmT\nERsbi6lTp+LBgwc4dOgQ7t+/j48//hgffPCBwWfp9Xp6t+ZhPvzwQ7YglHhCRUVF4ZdffkF4eDhW\nrFiBZs2aQS6Xo7i4GPn5+Th69Cj27t2L0NBQ9OvXDz179mTfGxYWRo8nxSkcOnQI69evx549e7Bk\nyRLaAk4RCuYXQIZhLP1HEQg5OTnM8uXLGb1ez6xatYqZOXMmc+jQIaZXr17M8OHDmcGDBzM1NTXM\npk2bmNzcXKampoZ9r16v9+CWN23u3LnDVFZWmnzu+++/Z5KSkpi0tDTmySefZObOnct89tlnzOnT\np5nS0lJm2rRpTGxsLLN161Y3bzWlsSgUCqZnz55Meno607FjRyYrK4thGIa5f/8+M2DAACY5OZkZ\nOHCgwW9jzZo1TFJSEtOhQwfmxx9/ZB///fffmS5dujBJSUnM3Llz2ceVSiUzbtw4JikpienVqxdT\nWlpq1zYePHiQGT58OLtd/fv3N7ldOTk5TGJiItOhQwdm3759DbYrMTGRefnllw22a+zYsex2Xbly\nxa7tolCsYFbT0AiPF0EKC1evXo02bdpg2rRpAIC33noLSqUSixYtwpAhQ9jOmfT0dLz22mse3GKK\nNaqqqhAYGGjWZf3YsWM4dOgQlixZ4uYtozQWuVzOTtx+5JFHsH79euzevZu2f1MojYNGeLwZnU5n\n8O/9+/czaWlpzObNmw0eX7ZsGTN9+nTm1KlTzNWrV5m+ffsyp09PyphdAAAQhUlEQVSfZhjmYZRH\nq9XSiA+F4kbq6uqY7t27M8XFxUyHDh2Y8vJyhmEY5tatW0yHDh0YhqmP7uTm5rLvGTx4MPN///d/\nzM2bN5mUlBT28W3btjEvvvgi+5qjR48yDMMwGo2Gad68ubt2iULxJGY1Da1k9AKMC1L79++PzZs3\nY+vWrXjhhRdQUVGB48eP4/jx45g/fz5SU1PRunVrtGjRgi04rKurw507dwx8kSgUiuvQ6/VszdYT\nTzyBzp07W2z/5rZ5k/Zv48dtaf+mUJoqtEvLyyBKtnv37jh48CD++OMPNGvWDCtWrMDgwYORnJwM\nHx8f7NmzB6WlpXjqqafw1VdfYe/evTh58iQmT56MZcuW8c7IkkLxNsRiMfLz81FVVYXBgwfjwIED\nBs/ThgIKxbnQCI+XIRKJIBaL2QhNYmIiGIbB+PHjMXbsWEilUmi1WmRnZyMnJwc//fQTdu/ejaee\negqHDx/G7du3MWTIEJSWlgIADhw4gO3bt3twjxpHQkIC0tLSkJGRwQ4urKiowMCBA9G+fXsMGjQI\nDx488PBWUpoyYWFhGDZsGE6ePMm2fwNwWvs3ANr+TaGACh6vhRuhEYlEmDFjBhISEgAA2dnZkEgk\nGDZsGL744gtMnDgRw4YNQ0REBPz9/XH+/HlUV1dj/fr1eOqpp9C5c2f2s2pqaty9K42CtOyfPn0a\nx48fBwDk5uZi4MCBuHDhAvr374/c3FwPbyWlqXHv3j1WaCsUCvz3v/9FRkYGO3kcQIPJ43l5eVCr\n1bhy5Qo7eTw6OhqhoaE4duwYGIbBF198gaeffpp9D/msnTt3on///h7YUwqFP1DB0wRgjDrx+vbt\ni02bNgGoF0bh4eEIDg6GQqHA//73P6xYsQJpaWk4ePAgGIbBrl27oFarcf36dTz66KM4f/68J3bD\nYYz3f/fu3Zg6dSqAel+g7777zhObRWnC3Lp1C08++SRkMhl69eqF4cOHo3///sjKysJ///tftG/f\nHr/88guysrIAGE4eHzp0aAMH8FmzZiE5ORlJSUkGDuD3799HcnIyNmzYQIU9pclD29KbMDqdDuPG\njUNSUhLWrVuHyZMnQ6vVYtu2bbhw4QJ69OiBkydP4quvvsLgwYPx888/4+zZs/jiiy9Y/ya+T/Bt\n164dwsLCIJFI8OKLL+L55583cGhnGAbNmjUzcGyneAfXr1/HlClTcOfOHYhEIrzwwguYO3cuKioq\nMH78eFy9epW1MwkPDwcArF27Fp999hkkEgk2btyIQYMGAQBOnjyJadOmQalUIjMzE++++y4AQKVS\nYcqUKTh16hQiIyOxfft2tGnTxmP7TKFQaFs6xQQnTpxgqqurmWXLljFDhgxhWrRowRw8eJBhGIbp\n168fs2TJEva1x44dYxISEpgFCxYw586d89Qm283NmzcZhqkf8Jeens78+uuvTHh4uMFrIiIiPLFp\nFBdz69YtduxCTU0N0759e6akpIRZvHgxs27dOoZhGCY3N5dZunQpwzAMc+bMGSY9PZ1Rq9XMlStX\nmMTERHZEQ48ePZhjx44xDMMwQ4cOZfbu3cswDMN88MEHzOzZsxmGYZi8vDxm/Pjxbt1HCoXSANqW\nTjHk/v37mDt3LubOnYvnnnsON27cwPLly/HYY49h9+7duHz5MtatWweGYaBSqbB06VJ07doVgwYN\nwvDhw9mUGN+JiYkBALRo0QKjRo3C8ePHzRaGUryL6OhoyGQyAEBwcDA6duyIsrIysynNXbt2YcKE\nCfD19UVCQgKSkpJw7Ngx3Lp1CzU1NWzR+5QpU9j3cD9r9OjR+Pnnn929mxQKxUao4GmiREZG4siR\nI0hNTcX69esxbdo0zJ07F0B9p0ffvn0B1Bf97ty5E0qlEt988w0GDx6MUaNGoa6uzpObbxNyuZwt\nsq6rq8NPP/2E1NRUs4WhFO+ltLQUp0+fRq9eveisGwqliULn8DRxFixY0MCQdPLkyTh69Cheeukl\nvPrqq9i0aRMWLVoEACguLoZWq0VkZKSnNtlmbt++jVGjRgGob8t97rnnMGjQIHTv3h3jxo3D5s2b\n2RoOivdSW1uL0aNH491330VISIjBc3TWDYXSdKCCh2Kw4Ov1eoSEhGDr1q148OAB9u3bB7FYjNGj\nRwMAjhw5AoZh0K1bN09trs20bdsW+fn5DR5v1qwZ9u/f74EtorgbjUaD0aNHY/LkyWwkj6Q0o6Oj\nnTbrJjY2ls66oVB4Dk1pUQwQi8XQ6/UAgPDwcDz77LPYvXs3AODnn39GSUkJ0tLSkJ6e7snNpFCs\nwjAMZs6ciU6dOmH+/Pns43TWDYXSNKGCh9IA0mpOhE9YWBj7b4lEggEDBnhs2yj8YsaMGYiKikJq\nair7mKVJ1mvXrkVycjJSUlLw008/sY+fPHkSqampSE5Oxrx589jHVSoVxo8fj+TkZPTu3RtXr161\nedsOHz6ML7/8EgcOHEBGRgYyMjKwb98+OuuGQmmi0Dk8FLuoqalpUAdBabr89ttvCA4OxpQpU1BU\nVAQAWLJkCZo3b44lS5Zg3bp1qKysRG5uLkpKSjBx4kScOHECZWVlGDBgAC5evAiRSISePXvi/fff\nR8+ePZGZmYm5c+diyJAh2LRpE4qLi7Fp0yZs374d//73v5GXl+fhvaY4C71eX98uLBbTWiqKszD7\nQ6IRHopNkDkGVOxQuDz66KOIiIgweIy2fVPIjTT5v16vh1arZT3+yHNisRgSiQQikQgajcYj20pp\nOlDBQ7EJ2s1CsRXa9t10YRgGWq0WIpEIhYWFmDRpEoD6NLmPjw/r8ffgwQOIRCJcvXoVzz77LPr2\n7Ytp06axx51CcQVU8FAoFJdBhXLTQiQSwcenvvk3LS0N//rXvwAAZ86cQVZWFoYNGwaZTIbBgwdD\no9EgLy8P06ZNw6+//opHHnkEr776Ku7evevJXaB4MVTwUChOZN++fUhJSUFycjLWrVvn6c3xCOYm\nWTem7RsAbfv2EKWlpaiqqoJOpzNISRmjUqlw4sQJvP/++zhx4gSAetFz6tQpVFdXo2XLlnjzzTfR\npk0bTJs2DQzDYOfOnXjvvfcwZswYvPfee9Dr9VCpVO7aNUoTgwoeCsVJ6HQ6zJkzB/v27UNJSQm2\nbduGs2fPenqz3A5t+xY2RNiQLs2xY8fi9OnTkEgkbEqKC6nTef755/HKK6+gsLCQnXDeunVr5Ofn\no0+fPliwYAH8/f0RFhaGgQMHoqKiAh06dEBKSgo2btyIgoICbN261SC9SaE4Ezp4kEJxEsePH0dS\nUhISEhIAAM8++yx27dqFjh07enbDXMiECRNw6NAh3Lt3D/Hx8Xj99deRlZVlcpI1t+3bx8enQdv3\ntGnToFAokJmZadD2PXnyZCQnJyMyMpJ2aDkRnU6Hc+fOoV27dpBKpezjxqKmS5cuyM/PR0FBAXbu\n3ImpU6di4sSJCAwMhF6vh1gsxm+//YbIyEi88MILeOSRR9j3ymQy/P7775gxYwYYhsGHH36ImJgY\nJCUlQS6Xo0OHDrh69Spat24NoH48gb+/P7p06eKeL4HSpKBt6RSKk9i5cyd+/PFH/OMf/wAAfPnl\nlzh27Bjee+89t2/Lvn37MH/+fOh0OsyaNQtLly51+zZQ+ANp/wYMBc3cuXPx8ssvIzk5mY3q7N69\nG//5z3+g1+uRm5uLb7/9Ft9++y0GDRqEdu3aYc+ePejevTvmzp0LjUYDX19fVFZW4u9//zsOHjyI\nRx55BEFBQVi0aBGOHDmC7Oxs/Pbbb8jPz8ff//53fPXVV1AqlaitrYVKpcKKFStw8eJFVFVVITIy\nEm+//TYyMjL+f3v3E9L0H8dx/CUT3SY2FmTqUIglhhL53whPBo5lBZMoKBBFoZDwENKhSPSgh0io\n3MmDHjroQErJk5TH1INRg8CwKBSUHbS2QEbm7CAOfz+KLrbZx+fjKmyfffHw5PN58/km61Hh3/fb\noUF2eIA9sl+Gc3eO1l68eCGXy6XKykpdvHjR6J0mbL8s9/Xr1woGg5qdnZXP59O5c+eUlpYWv0x0\nt1AopOnpaU1NTenEiRO6ffu2NjY2NDQ0pEuXLun48ePKycmR2+1WNBrVhQsXVFRUpEgkorGxMbW3\nt8f/551Op3p6ehSLxTQ1NaXBwUH19/frxo0bWlpaUjQaVSAQUCAQUCgU0trammpra9XX1ye/36/5\n+XkVFhYqIyMj0Y8NBwjBA+yR/w/lLi0tJWUe4SAerUFqa2vTyMiI7ty5o6KiIj179kzLy8tqa2vT\n/Py8BgcHNTc3p/z8fHV1dUnaHjCPRCJ68uSJfvz4oZ6eHpWXl6upqSn+uW63W3a7PX7jenl5uR48\neCDpv7tFKysr+v79uywWi2w2m0pLS+V0OnXo0CFFIhGdOnVKT58+jc/t7LDb7SorK/v7DwgHHsED\n7JGKigotLCzo8+fPys3NVSAQ0PDwcMLXsfvuGmn7vpvZ2dmErwOJVVJSoo2NDXV2dkqSent79enT\nJ0lSNBpVXl6erl+/rvfv36uhoUFzc3Pq7OxUR0eHbDabwuGwwuGwfD5ffHA5LS1NbrdbsVhMy8vL\ncrlcKigoUDQa1ZcvX+R0OrW1taWUlBS9efNGfX19Onz4sKqrq+OzPMFgUNJ2eAPJRPAAeyQ1NVV+\nv18ej0ebm5tqaWlJyq7KfjlaQ2LV1NSot7dXY2NjGh0d1du3b+Mv/i0pKVEkEtH9+/cVDAa1sLCg\nlZUVHTlyROFwWN++fZPD4VBubq4mJiZUV1cni8Wi9fV12e12Wa1WvXv3TmVlZcrIyFBWVpY+fvyo\nioqK+Pd7vV7V19cn6+cDf0TwAHvI6/XK6/UmdQ375WgNiVVaWqrV1VVNTEyoqqpKp0+f1uXLlzU5\nOSmLxSK/36+zZ8/q8ePHqqqqUjAYlMfjUSwWUygUUmZmpq5du6Z79+6publZa2trslqtGhgYkM/n\nU3Z2djymd3YMd3Z3JP1yTgjYTwgewDD75WgNiWWxWJSdna3u7m65XC5J0tDQkF69eiWbzaatrS01\nNTUpPT1dX79+1fT0tDwej7xer3w+n1wulx4+fCi/36/x8XE5HA6dOXNGDodDra2tv/xOdhPxLyF4\nAMPsl6M1JF5xcbFevnypxsZGSdtDyYuLi7py5YqOHj2q2tpaHTt2TPn5+bJarZK2325/9epVud3u\n+MuBdw8tA6bgHh4AMMTdu3f1/Plz3bx5U+Pj40pPT9ejR4+Ul5enDx8+aGZmRpWVlSosLEz2UoG/\n5bfbjgQPABhiZmZGt27d0vnz53Xy5ElVV1fH32UGHBAEDwAAMN5vg4exegAAYDyCBwAAGI/gAQAA\nxiN4AACA8QgeAABgPIIHAAAYj+ABAADGI3gAAIDxCB4AAGA8ggcAABiP4AEAAMYjeAAAgPEIHgAA\nYDyCBwAAGI/gAQAAxiN4AACA8QgeAABgPIIHAAAYj+ABAADGI3gAAIDxCB4AAGA8ggcAABiP4AEA\nAMYjeAAAgPEIHgAAYDyCBwAAGI/gAQAAxiN4AACA8QgeAABgPIIHAAAYj+ABAADGI3gAAIDxCB4A\nAGA8ggcAABgv9Q9/T0nIKgAAAP4idngAAIDxCB4AAGA8ggcAABiP4AEAAMYjeAAAgPEIHgAAYLyf\ncPhF5ai7XJcAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cafc87c10>" ] } ], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "data_doom = read_dl_bs('data-v2/benchmark-dl-bs-gpu-doom.csv')\n", "data_konos = read_dl_bs('data-v2/benchmark-dl-bs-gpu-konos.csv')\n", "data_gram = read_dl_bs('data-v2/benchmark-dl-bs-gpu-gram.csv')\n", "\n", "fig = fig_init()\n", "plot_bs_dl_to_ips(fig, get_bs_dl_to_ips_from_dl_bs(data_doom))\n", "fig.show()\n", "\n", "fig = fig_init()\n", "plot_bs_dl_to_ips(fig, get_bs_dl_to_ips_from_dl_bs(data_konos))\n", "fig.show()\n", "\n", "fig = fig_init()\n", "plot_bs_dl_to_ips(fig, get_bs_dl_to_ips_from_dl_bs(data_gram))\n", "fig.show()\n" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAI8CAYAAAD1D3GaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xlw5Pd53/n37+4bQOMeHHNxTs5QNElJtCKSkiiSoiTS\nlklJTqlcUpWtTcmbTZzVP3FSsSvauLSVrdjllK2yK1G5kvKuYztrr60zjk9akiWREjmc4dwnBhjc\nV6Ov371//NA9jRlgcHXjaDyv4hRmMED3Dxyg+9Pf7/M8XyUMQ4QQQgghmpm63RcghBBCCNFoEniE\nEEII0fQk8AghhBCi6UngEUIIIUTTk8AjhBBCiKYngUcIIYQQTU9f5e+lZ10IIYQQu4Wy0l/ICo8Q\nQgghmp4EHiGEEEI0PQk8QgghhGh6EniEEEII0fQk8AghhBCi6UngEUIIIUTTk8AjhBBCiKYngUcI\nIYQQTU8CjxBCCCGangQeIYQQQjQ9CTxCCCGEaHoSeIQQQgjR9CTwCCGEEKLpSeARQgghRNOTwCOE\nEEKIpieBRwghhBBNTwKPEEIIIZqeBB4hhBBCND0JPEIIIYRoehJ4hBBCCNH0JPAIIYQQoulJ4BFC\nCCFE05PAI4QQQoimJ4FHCCGEEE1PAo8QQgghmp4EHiGEEEI0PQk8QgghhGh6EniEEEII0fQk8Agh\nhBCi6UngEUIIIUTTk8AjhBBCiKYngUcIIYQQTU8CjxBCCCGangQeIYQQQjQ9CTxCCCGEaHoSeIQQ\nQgjR9CTwCCGEEKLpSeARQgghRNOTwCOEEEKIpieBRwghhBBNTwKPEEIIIZqeBB4hhBBCND0JPEII\nIYRoehJ4hBBCCNH0JPAIIYQQoulJ4BFCCCFE05PAI4QQQoimJ4FHCCGEEE1PAo8QQgghmp4EHiGE\nEEI0PQk8QgghhGh6EniEEEII0fQk8AghhBCi6UngEUIIIUTTk8AjhBBCiKYngUcIIYQQTU8CjxBC\nCCGangQeIYQQQjQ9CTxCCCGEaHoSeIQQQgjR9CTwCCGEEKLpSeARQgghRNOTwCOEEEKIpieBRwgh\nhBBNTwKPEEIIIZqeBB4hhBBCND0JPEIIIYRoehJ4hBBCCNH0JPAIIYQQoulJ4BFCCCFE05PAI4QQ\nQoimJ4FHCCGEEE1PAo8QQgghmp6+3RcghBDNJgxDwjAkCILqW8/zAIjH4yiKgqIo23yVQuwtEniE\nEGIdKmHm3kDj+z5BEFTDTRiG6Lq+5HMURUFVo4V1RVEwTVPCjxBbRAKPEEIsqg0zlSBT+eX7fvV9\ny6mElsrbMAzRNK3695XPV1UV13UpFouk02kURUHTNFRVRVVVCT9CNIgEHiHEnlG7KhOG4ZJVmcqv\nlVRWYtYSStb696qqEoZhdbtLwo8QjSOBRwjRFJbbZrp3dSYMw/s+pxJk1hpm6q12S6s2/ADoui7h\nR4g6kcAjhNjx1lI386AwAywJNttlLSs/K4UfTdOqqz8SfoRYPwk8Qohttd66Gdd1URQFXdd3VJip\nqP0aXNddEtCANV/nveHH93183wck/AixEcq9r4ru8cC/FEKI1dSjbqbye4ByuYymaRiGsSXXX+ve\nVablfl97rbWhpPax1nEcABKJBKZpVju31nMNFZX70DRNwo8QsOIPgQQeIcSG1aNuBlbf6qnVqMCz\n3ErTvYGm9torQabytrbl3PM8fN8nFotVb9/zPBRFIR6P4zgOxWIRXddxXRdN0zBNU8KPEJu34je+\nbGkJIZbVLHUzFSutzNS+b7kC5krh8Hq+llVeSFZvP5VKEYYhruviOA6lUmld4Welba9KiJLwI8Rd\nEniE2IOWW824N8isZd7MTgoza91qql2ZUVX1vkBTL2u9rcoAQtM06xp+bNumXC6TSqWqwUfCj9jL\nJPAI0YQ2Ujfjui5AdfrvTimIXWmrqTLNeKWtpsqT+73TjXeyRoSfSv2Q67q4rivhR+xZ2xZ4Kg9S\n69mvFkI0bt5M7STgrbTerabKnzey1bSb1DP8VN5W/n9K+BF7UcMDz6c+9Sn+6I/+6L73/+AHP+DX\nfu3X+PM//3P5QRNiUTPWzdR7q2k7u7S2i4QfITav4YHnO9/5DmfPnq2eH1MpqCsUCvzd3/0dnuft\nqQcusXetd95MrZ0cZtbb1bQbt5p2krWEH8Mwqv/vH3Q7lbcSfsRe0PDAs7CwwM/+7M8uORVY0zR0\nXefJJ59s9N0LsWWWq5upBHxVVet2TtNW2cquJrExDwo/lf/vvu8vOcR0pdupvJXwI5pVwwNPZ2cn\nZ86cQdelPlrsXhutm4FoCyaZTO64MHNveKkUAVe2z2Bru5rE5twbfkqlErZtk8vlUFW1+ncSfsRe\n1fAU8qUvfYlisUg+n8d1XRKJBNlstnpKsBQti+3WyLqZyudt5ZPDRreaKr9qa0HkSa0xVpvTs1mV\nlTbf90mlUtWVn0aEn0oQFmKna3jgee6553j11Ve5ePEiw8PDvOc97+Hf//t/z1NPPSU/JKLhtrtu\npnYuSr3CQ6O2mhzHIQzDVZ8ERX1sVZhcbtvLdd26hR/HcdB1vXob8rgudqqGB54vfOELfOpTn+IX\nfuEXePrpp/mv//W/8oUvfIFjx47R3d3d6LsXTW4j82YqdmrdTL27moSoqA0/iUQCz/M2vfJTOdFd\nVdXq8Rm1217yvSh2ioYHntHRUV544QUgqmXo6OjAtm1s2270XYtdbqW6mdpC4JW2BnZymJGupt0l\nKNuUh8ewb49Gb4fHsYfHsEfGcKfnaH3/E3R+4jky73lkuy91XRRFwTAMDMPYVPip3Fbtz6PneRJ+\nxI7T8MAThiH5fD66M13nm9/8Jq2trbJsvsdtpm4mCAJc1yUej++oB9GVVmYAisXiiltNhmEsef9O\n+Xr2gjAMcSdnsIfHKN8ejYLM8DjlkbHF34/hTs0+8DYK71xh5Hf/AGtwH50//WE6P/E81olDW/QV\n1Ee9ws+9214g4UfsHA0/Lf23fuu3OHHiBM8++yyf+cxnuHz5Ml/96ld55JHd9WpIrN1KYWa9dTO1\nb2v5vo9t2yQSicZ9EfdY61bTvSdnK4qCbdvE4/Edtdq0nEoNj2VZ230pD7SewYPV1ZlqoLm7OlMe\nHsO5M0FQrv9qc+zwIO0vf4ieT36U5PEo/Nx7Wrpt26TT6brfd4Vt27iuSyqV2vBtVLr3HMfBcZxl\nw08+n8cwjAd+31SeZ2qL+CX8iAZZ8Zup4YEHIAgCCoUC8XgcXddxXZf5+flqt5bYXVZqz15P3Uzl\n9xtR78Cz0a2me8PNSl9TPp8nmUzu+Af13RZ4dF2/uzqzuOW03tWZrZA4cZjOTzxH9uVnSRwe3FWB\np9ZK4cd1XSzLWvP3jYQf0WDbF3impqb4lV/5Ff7mb/6G/v5+fuM3foNvf/vbvPbaa3z2s5/l5Zdf\nlknLO8hG5s1U1CPMrMV6Ak/lWjfS1XRvR9NGvyYJPBtTuzpzN9SMUbp9B2dkHGd0siGrM42Uetdx\nej75ItmXn0XpbNtVgadWbfixbRtVVbEsa801P7W3U/tWwo+og+0LPD/3cz/H4cOH+Wf/7J/xxhtv\n8Eu/9Eu89NJLPP/88/yrf/Wv+N3f/V0effTRzd6NWIOVVjE8z1uxCHi5eTO1b7dDEASUSiWSyeSm\ntpru/X2jSOC535LamXtDzQ5anWkYRSH1xCn2ffKjdL/yAlZ3R93vopGBp1Yul0PXdcIwXHHba61q\nX1BJ+BEbtOI3SsOLlqenp/mn//Sfks1mef7558lkMnz0ox/lmWeeIZvNUiwWG30Je8Jm6mbg7jTg\nnfTAstpWU6FQkK6mHWql1ZlG187sGmFI/vWzXH79LJf/5f9F2/sfp/uVj9D1089htrdu99WtS2XG\n02Zb3Su3VTu7SgqeRT01PPCkUinefPNNTp8+za1bt7Btm9dee41MJoPv+5im2ehLaAr1qJtZqWi2\n9hXVVtnMVpOmafi+v+O6tPYSZ2L6vhWZ2j839epMvQUBs6+9zuxrr3Ppi18m+8H3RuHnpQ+htzRu\ny6sR6t3qXht+yuUyjuOQTCYl/IgNafiW1q1bt/j5n/95Lly4gKIo/P7v/z5//dd/zVe/+lW+9KUv\n8bnPfW7Pt6hvd91MZbWknkvfjdxqqt3S2g1225aWEbL8NtPIOOXbo7I6s0VUyyT74ffR88pH6PzY\nB9CS6yvS36otrYWFhWr9zkrW0u21mkq9UCqVkm0v8SDb26UF0Q/fTimG3EqbmTezVXUz6w08je5q\nWo0Ens1ZaXWmtDiHxpue2+5LFPdQEzE6Xnianlc/QvsLT6HFVn8s3coanlgstubV+o2Gn+U626Tm\nRyxj+wMP3H0iv/cJcTe798m+UgRcWcHYzLyZrVIbeHZCV9NqdmPgSSQSWzKCYdnamcXVmcpbWZ3Z\n3bR0ks6PfZCeVz9C9tmfRF2hy7VcLuP7fsN/TnK5HPF4fEPdtusJP6u18i8XfirHruz25xmxLjsj\n8DSb8+fP85//83/mV37lV5a837ZtdF2vPgDspB+2lbaXPM9DVdUd0dW0mt0WeCozqOoReFasnVkM\nNO7ULDz4Z1o0ESPbQudLH6L71RfJPv1ulJqQsBsCT63Vwo9t2ziOs6ZWfgk/e9r2dWk1M0VRyOVy\n970S2a5QsJmtJgDLsuQBYRvJ6oxYL3dmnjv/5U+581/+FLMzS9dPP0f3Ky/Q+o8e3+5LW7fVCp7X\n84JhuW6visohu/JYt/dI4NkEwzBwXXdL7mszW01rOaup8opqNzwAVLZFdxtncqbmAMq7YUaJWfiF\nIt5cDgUFlMV/bz8g9HwCx0XRNczuDvxSGb9YIiiUZCVHLOFMzjD8n/6Q4f/0h1h93bS/9CGyLz9L\n8un3bPelrdty4adUKuF5HvPz85tuda+o1Pzslsc+sTkSeDZB1/UlPzybsdGuJlVVq69YtnuraS8L\nyna1i+ne1ZnS0B3cNUwFTpx8CD2TovDOFfyFwoPvUFFQk3G0RBwtEUONWSimiWoaKJoKmoaiKoub\n0iGB54PvEzgege0Q2DZBsYRfLEfhSTQVe2ScO7/zB9z5nT/g2oE+ul/5CN2vvED6kePbfWnrVgk/\nQRCgKAqxWKxure6+7+P7PiDhZy+QwLMJa13h2ehW070D9OSHcPtsRe1M8fxVAJSYSfo9jxDaDvmz\nl2G5wvcwJChEKz2bXmNUVbRkHHUxOGnxWBScTANF01BUFVQl+vLCMApOnkdYCU9lG79Yxi8WCUuy\n5bbTlG6OcPM/fJWb/+GrJI4epPuVF+h59UWSxw7W5fa3crW1kXN+7g0/qqpWH4NFc5DAswmVwDM7\nO8vQ0BAnT54EqLabu6676a0m0Xg7rXYmLDss/PBtAIyudhIP7Y9Wj26NNOYOgwB/obD6qtJaaBpa\nMh4FqJgV/TINFMNA0TVQFRRFhTAkDILol+sROi6+bROUHYJiCS9fBGdrtov3kuLlG9z48u9w48u/\nQ+rUUbpf/Qjdr3yExMH+Td3uVjx2VR5Ha++zUeHHtm3K5TKpVErCTxNp+i6tAwcOkMlk0DQNwzD4\n4Q9/uOHb+va3v83rr7/O7du3GRoa4ubNmwwNDaFpGn19fXz961+npaWluvRqGMau2WraabNiHmS9\nc4OapbMpcewgRraVwoWreHML2305DacY+uLK09LwFGoqqq6jaiooiytPQUDo+4SuR+C40crTYr2T\nny+C52/3l7OjZR4/RfcrL9D9ygvE+nrW9bnz8/Mkk0l0vbGvn9fadVaPIYeu61IqlUin00tWsCrB\nR8LPjrZ329IPHjzIj370I7LZ7KZv6ytf+QojIyMMDAwwODhIe3s7v/qrv8of//EfL/k427ZRFGVX\nHZtRz9bpRqsNPDttdWZLGDrpR44ThgGFty8RypP5qhTLjOqdktG2nWpZ0ZadrkWt3Kq6+CgZEvpB\n9Mt1o/BUtglKi9t2hQL4Kx/jsuspCq1PPhodbfGJ57G621f9lJ0WeGotF34Mw8A0zQdebyXwZDKZ\nJbcl4WdX2NuB54033qC9ffUf3PUql8u89NJL/Mmf/MmS90vgqZ/lVmfKw2PVQuDdsjrTKHpHG8mj\nB3EmpildvbXdl7MnqDFr6cqTZaCaJiyGJ0VRCMIAQlDCMOq0c6NVp9B2CEo2XrFEkC/u6O9dRdNo\nff/j9Lz6Ebp+6jmMbMuyH7eTA0+t2vDjum51FX658LNc4Ln3tmrfSvjZUfZu4Dl06BAtLS1omsY/\n+Sf/hM9//vN1u23f93n22Wf52te+tuT9EnjWJrCdmpO0R+9bnQl9n9ihQahsVfg+/nweZ3Jajj9Y\nRuzwIGZ3B6VL13Hl/8+uoCXii912MbR4DMWMwpOiV4rFVSCM/vN9Qs8ndFwCx8Ev2wTF8t3w1ECK\noZP94JN0v/oRuj7+IfTM3e3k3RJ4at0bfoAl216u61Iul1cMPPfeVu1bCT/bbu8OHvzud79Lb28v\nk5OTPPfccxw/fpynnnqqLretadqyR0fs1jkx9eZMzty/1XR7dF21M+WbI6CqpN51HEVRKF29Sej5\nqMk4Vm8Xemsa1TIJ/QC/UMSdmMGZmN7Rr5wbpXxtiPK1IdBUUo+dRFFV8m9fIpTi3x3LL5bwi3Xo\ntFOUxWLxRNRlF7eiFSfDQKuMKlAq4Skk9IKo025x5Sko2/iFMl6hsGynXeh6TP/Fd5j+i+9w0TJp\nf+79dL/6ETo/+sx9xcSNUs/7qS14rg0/+XweoFrrs5b7rD0eqLLt5bourutK+Nlhmn6Fp9a//bf/\nllQqxRe/+MW63ebTTz/NN77xjSXvq5w6vZsOS13vCk9gO1Hn0GKIWVo/s1g704AWZaOjjcSxg5SG\n7uDcHlv2YxTLxOrpRG9viebTAH6xjDs9hz06sacKWLWWNMmTD+HNzFG8dGO7L0fsAoqmoSbj6Mk4\naiwKT1GnnY6q69Gqk6IAIappYpw4RNcHn6TzQ+9DNTd3vMSDlEolwjAkkVjfqfHrUWlPL5VK1cBS\nu/KzntAiKz/bZm9uaRWLRXzfJ51OUygUeP755/nVX/1Vnn/++brdR7MGHmdqdklHk1+2Kd8eI3/m\nQrQ6Mzmz7asoiYePoKcS5N++RFAqr+2TNA2zux2zI4uajKEoKr5t48/mKI9ONPUcmdj+Pqz+bopX\nbuFOTG/35YhdQMukMDvb0dvSaJYFSvRixy+U0FsyQMjCO1cIcnn01jRdP/Vhej75Udqefne0JVdH\nWxF4KhzHoVwuk0gkqgXPgISf3WFvBp4bN27wiU98AgDP8/jMZz7DL//yL9f1PnZj4Akct1onU5kM\nXLg5jDc2WX3/cqszRmeWxInDEIQQBHgLBUrXh7Z9Uq+aTpI6dRR3epbS5Zubui2jM4vZlUVLpUBX\nCR0Xbz6PMzaFn2uSVnBVJXX6GKplRGGx2brYxJrpreko0LSkUWMmhFGg8eZz2OPT+Ll89WMVQyd1\n6ihqzCJ//ir+/Mo/D9a+Lrpf+Qg9n/4omUdP1uVatzrw1J7MXln5kfCzK+zNwLMVlgs8ruvi+z6x\nWGxbrsmdy92tl7k9ij0cHXkQlGzQVXJvnMPb5Cv81CPHUQydwjuXsfp7MTqz4PuUh8dx7ozX6StZ\nv9jh/ZhdWQqrPCBvhNaSxurpQMukonkwXoC3kMednIlWvHYhNZUgdeooXi5fnfQsmoeebcHqakdL\np1AtA0LwS2W8+QWc8aloRtEDKIZO+vQxFMtcNeSsJHH0ID2ffJGeT32UxOHBjX4pFIvRtW5F4LFt\nG9d1l5311Yjw4zgOvu+TSCSWnOwuNkQCT6NsR+AJw5DixesUr9zEnZ6ncPEa9tAd7OEx9LYW/HKZ\n/NuXVpxUa/b3kDx2kNDzccYmN1XbUWmLLi/eP0R1NrH9faiWiTszT/H60JZPzVUsk9QjxwjKNoVz\nVxq+/aYm4li9nYtF1BZhEETFqFOzOGNTyx8PscOY/T1YA73Yt0Zw7kxs9+WINTA6s5gdbeiZFIqh\nQxBGgWY2hz0+tfat3hqKaZA+dRTFMsi/c3XJKs9mZZ44Rc8nP0r3qy+uacZPrWKxiKIoxOPxul3P\nSh4UeGrVK/yUy2U8zyOZTC5Z+amd8CyrP2smgadRnnrqKb75zW8ueV+jA0956A7DX/m/yZ+/SlCy\nscenSBwaiFZ0bgwDUYty/GA/7uQs+XOXlh+WZuikHz2BomkEgQ9eQPHS9Q1vUSUfOYZqmuTfvrik\nM0gxDeKHBjGyLQS2TfnWnahDa4uYfd3E9/dRvLo9tSuKoWP2dGK0t6LGYyiKgl8q487MYY9O7sgj\nFJKnjqIl4+TPXd72Lcs9S1Ewu9oxO9rQUgkUwwDfX/zemccZnyKwnfrclWlE21WmEa3k1DHkLHt/\nmkbb0++m59Mfo+vlZ5e0ua9kJwaeWpsJP/e23N+77VU5W1HCz5pI4GmU7Qg8FX6+yPh//xbT3/57\nQseldGsEs6s9etB6+zL+fA41GSf96EnUuIU9OknxnSvL3pbR3018cB+la0NYPZ2oiTjlDb7S17Mt\nJI8fpjw8ij00uuzHmPu6sPp7UDQNZ3Ka8vXhxq+CVNrbVZX8mQs7Y0KxqmJ2t2N0ZNGScRRNJSg7\nuPM5nNEpgkJj56usRknESJ0+RlAsUzh3edsL1ZuKpmJ2d2BkW9HTiWjisx/gFYrVQBO6XsPuXjGN\naLvK0Lck5KxEjVl0vPAUPZ/+GB0vPIVqLT+/bCsDT2XFZT2Bp9Z6w8+DZgxJ+Fk3CTyN8swzz/D1\nr399yfu2o4Yn9/pZxv7b1ygPjUavAKdmiA/24c7Mk3/rAgQBiWMHMXs7Cb0AZ2Jq+QJf0yD96AmC\nYonCuSvEDvRj9XXhzs5TvHhj3aEkeeooatyK5sE84NWomowTPzSAlk4RFEuUrg83tEhY72gjeewg\n5dtj2EN3GnY/m2W0t2J0tUdbFppG6HlREfXEFN5sbkuvxezpJH54IKoLWyHIihqGHgWatha0ZJxQ\nUaIhmqUyzuQszuQM+FsbulXLJHXq6LaHnJXorWm6Xv4wPZ+6v9NrqwNPPYccrhZ+SqUSQRCs6Zyw\n2rcSfpYlgadRlgs8nufhuu6W/GDey53LMf4HX2fuuz8i9KIiYrM1hRKPUb5+m/KNYbRMiuSpI4SO\nh2qZUbfWMidxx/b3YfZ1U3jnCv78AnpbhviRAxCGFC/dWNeDpd6WIXHiIZy1nvqtKMT278Ps6YQw\nxB6bxL7VmGCyofb2HUBLJzF7OqMOG8sg9Hz8QhFnYqbhW3eJE4fRW9LR90Y9TlnfhRTLjFbn2lqi\nrUpNJXA9/IUC7vRctG27A2q3akPOwjtXCHbJv5fV20X3Ky/Q8+mPkfmJkxQKBVRV3XWBp9ZK4afy\nPLzec8Jq30r4qZLA0yg7LfDUmn3tdSb/32/jTMzglcr4M/OYPR0EpTL5c1GISZx8CC2VwJ3LYba3\nUb51574uK8UyST16An+hUO3kUXSNxPFD6Jn0A7eulpN4+AhaMk7h7YsE5bXXIOitaWIHB9ASMezZ\neeybI4TF+gWUera3bzc1ZkV1Q9kW1JhJGEJQLONMz+KMTtTtAMxKcXjoeuTPXt7yFYtGUhIxrK6O\nqBB9sfYqcN0o0EzNRsd37NAtPtUySZx8KOqkvHBt14SclSSOHCD70x+m+5Mv0nbySMPvr1GBp1Zt\n+LHtaDSEZVl1aXXf4+FHAk+j7OTAU2GPTTH+/3yNhbfOE/o+zvh0dOhhzMSbzZF/+yJaKkny5EPY\nI2NoyQR6a4bS1Vv3tVvHDvZj9XZGgalmhcca7MXq78FfKFK4cHVN04y1TJrkww/hjE1Wi63XQ9E1\nYgcHMDraCD0Pe3gMZ3Ry3beznEa2t283RdeirZaONtREHBSFsFzGmcnhjE48cOvxQYzOLImjB7Dv\nTGzo33OrqckEVnc7Wks6msitKNEZVQuF6EXC7Px2X+K6qJZJ6vQxFE1j4fzuWclZr8zjp+j51IuL\nnV4dDbmPtW4x1UuxWCQIAlRV3XSrOyw92X0Phh8JPI2yGwJPRej7zPzP7zL9rddwpmajU5vzefRk\nHN/1cUejJ6qo28ogf/YyiaMH0JIJCheuLXniV+IW6UdO4OUWKF64tuR+tHSSxLFDoKmULt9YU61J\n4sRh9EyK/JmLmxqEZ3S1ExvsRTENvOnFlvhNFH5udXv7tlMUjK4sZkcWLZ2MtmkcF29uAXtscs1P\novGjBzDa2yhevLbltUYVWiaN0dWG0ZJGNU1CBULbjWbQTM40RZBVY1a0XaWp0XZVgw8R3UmqnV6f\n+ihdP/XhNXV6rdVWDjmEpfVJ9ZzzA3sy/EjgaZRnnnmGr33ta0u+cSoH0W3VD8tGlG6NMPGH3yL/\nzuVodWR6FlU3UIIAFIXChauouh6dW3VjGHdyJipANnTy71xZ0qpcXQ05d/n+eg5VJXHsIEa2BWd0\nktL12w+8Li2TInXqCM74NKVrQ5v+OtWYSezQIEZrhqBsU7o1suGT1s2+buIHFtvbx/fm0Qx6Wwaz\ne3H4oqETeD5+Lo8zOYO33KgBQ4+GVBJGhet17DrS2zJRQXcqGR0gG4bRIZi5PM7EdNPWFlVCDpoa\n/SzuoZCzEjVm0f78++n99Mdof/FpNHP5Tq+12s7AU6uR4cf3/eoBqk0WfiTwNMqHP/xh/vAP/xCz\n5gfM931s297RgacicFymvv43TP7V9/Bn5wltl9C2wQ+iHw7XI3/2UvQqUlVZOHMR1dBJnjpKGIYU\nzl2uboEoiRjpR47jzc6vOMzQ7O0kfqAfv1gmf+HqA2fQJI4dQm9N172Y2OrvwdrXBZqKMzFD+frt\n9a3c7MT29h2geoL94jEF0Qn2JdzJGZzxqahw/dgh3KkZSldurXp7entbNIMmk4xm0IQhQamMO5fD\nnZgmqGP91k6nxixSp4+CKiFHTcaxejoW69MsFNNAi5kEto09MoY3n6Prp5+n92dfJvPY6Q3dx04J\nPLXqHX5yuRyWZVUDj2EY1VPidzkJPI3y4osv8nu/93tL9np3U+CpKJfL2NduM/Pnf0Xx/DUCz8Uv\n2hAGeNOjPb7XAAAgAElEQVRzGG0t2KMTBMUy8cOD1SF+Wjqq/Qlsh/zZuwMO40cOYLS3kj97acXB\ndWoiTuL4IVTToHRtaMXjGdRUgtTpo7iTs5Surv5EuV5aKhG1xKeS+IUSxetDa9662S3t7dstOsG+\nAz3bihazUBJx8AOcyWm0ZBzV0An9IAo0szncial1FbQ3IzVu3X2hsYcGQCoxi1hvJ3o2g1apMXNc\nnPkc3tQMoeeROHIAPZnAmZyieH0IZYXnseTxw/R8+iW6P/nxddX7bOUxFhAd3qxp2ppHmdQj/ORy\nOeLxOIZhEIYhuq6j6/qmvo4dQgJPo7z88st85StfoaWlpfq+3Rp4NE3DMAz8YpnJP/tL5r/7I9yp\nWQLHIwwDgnwhOiW5rYXC5RvED/SD50XHWIQhelsLieOH8HN5CosDDtVkgtQjR3GnZh/8ql5RiD8U\nbY05kzMrdknFj0bbY/m3LxEUG/QEoKpRS3x3R9QSf2cC+/bqXWi7tb29IVQVs6sdvb11MdAYhJ4X\nHXswM48zMU3ouCi6RnJxy2vhzMW6dY/tVtWQo6gsvNOcIUcxDax9nRhtrWiJGIoe1Yn5+QLO5Azu\n9NKtUTVmkTx2CCURw5vPUb52a93dgIquk/3gT9Lzj3+KjheeQTWNB378Vs78gfUHnlobDT/z8/Mk\nk8lqyNF1XVZ46n8tzeVnfuZn+PVf/3Xa2++eC7PbA0+thbcuMPm1v46OnLAdQj8A348mMvd2EQYB\nzvQs8f5eChev481E9TFGdzuJw4O403PV7a3EsYPobS1RYfIqgcDozBI/PEjouOQvXruv/VxJxkmd\nPoY3M7clLeR6Wwvxg32osRje/ALFa7cIV1iBqBzI6W7RtW0LTcXsjtretWQCNDU69qBYimbQTEyv\ne6vP6GgjcfQg5ZGxhs1c2omikHMMRVFYOHdp12/VKYaG2dOJuRh2FV2L5hPlC7jTiwMXH/C8o5gG\nySMH0dsy0c/a1eubajy4l5FtpetnXqT3Z18m/a4Ty37Mbgo8tdYTfiTw3E8Czyo+/elP8+/+3b+j\np6en+r4gCCiVSlvW0lgPKwWeCi+XZ+JP/4LcP7yFOzVD4AeouoY7NYs9Mk7i6EGcyRn01jRBqRx1\nNC2y+nuI7d9XbVdW00nSp4+uuTBZsUySxw+hJeOUbgzf13oeP3IAo6OVwtnLq57+XC+KoRM/OIDR\n3krgepRvj+KOT933cbHD+9E7WylduL67uoIqU4KzLWiJOIqqRis0hSjQNHpKcOL44ah+6+zlbT9e\noxHUeCyagaVpuy7kKJUjMRbP+PIJ0VUlWqGZnsOdnCFcx/eGomkkFrfA/UKB4rWbhKWNd2quR/Lh\no/T+7Et0v/oxzI5s9f27NfDUWi385HI5CTz3kMCzis985jP863/9rxkYGKi+rxkDT6357/2Y6f/x\n9xQv38QvlVEXX8EVzl3B6GjF6MzizefRW1IU3lk6xyZ2aACrt5PSzRGckfENtaPHDg2gd7Xjzy1Q\nunS9+mpRScRInz6ON5+jePH6xv5HbILZ3YE10ItqGrjTsxSvDVXnEd1tb3d2xJlU1SnBrS2oyRiK\nouI7Dn6+iDczv3OmBCfipE4fxcsXVzwHbrdQ4zGSDx9BURUWzl4m3KnbnmrNoaWZJKquEwZ3V++c\nianNFeorConD+zG72wnKZYrXbhHkt7ejTjF02j/8fnr+8U/R/txTlGy77gHkQfL5PIZhYFlWQ25/\nufBTmTNkmiaKokjgQQLPqj73uc/xL/7Fv+DQoUPV9+3WwKOq6pJus9U4kzNM/flfMve9t3CnZwn9\nADUew7kzTunqLVKnj4GmoKga3twCxYtL5/Ukjh/CaGuJHvDKLslTR3BG1ze0Tm9rIXH0AKEfULh0\nvVpsHDu8H6srS365VvktosYs4ocHUdPJqIPk5gjebG5L2tuVuBVNCW7L7LopwSuxBnuJDfRSuHwD\nb3KZFvgdqBJyAPLnLhNuYsZU3SgKRkcbZlcWPZ1ENQ3CIMAvlfBm57HHpwgf0D25EfGD/Vj7ugkc\nh9L1Wzt6tdMc6KXz0x+n+1Mv0XJwcEvus9GBp1Yl/ORyOdTFs8oMwyCdTq/pBe8uIIGnUT7/+c/z\nhS98gSNH7o47342Bx7ZtFEVZV+CpCIOAub/7IdP/4zsUr94iKJTQkjEC1yP/1gVU0yBx7GD1+bVw\n9tLSrSdVJXnyMFo6SeHCNax93WipBPkzF9c19VcxdBLHD6Glk9i3x7Bvjz5wQOJ2sAZ6o5Z4VcGZ\nnEFLp1BVJfpa1/GqWU0moies1gxazCJc7GSpzsTZZVOC10XTSJ46gqrrLLx9sa71HfWgJmLETxyO\nzpw7f21bQo6ebUHvzGK0pNBjVjSjqFTCncvhjE9tarjnWlj9vcQHegiDgPKN27gzOy+g6u2tmD1d\nmIvt7aHn4c7MUrxxm7BURm/NcOI//h+0f/iphl/LVgaeirm5uepp8I7jVFd7moAEnkb5xV/8RT77\n2c9y8uTJ6vv2WuCpVR4eY/LP/pLc98/gzs4R+gF6JkX51h1Kl28QP7I/OhBUUaJBhFduLvl8xdCj\nZX/LpDw0SvxgP87IGOUNFLFag/uI9ffg5fIULlwlNrgPq6eT/DtXdswp0Vo6SfzQAHprBkXXKF65\niT00ippOYna1Y7SmUUwTKlOCcws4E80xJbge9LYWEicO4Yxu7HiSelETMeLHDxMGAaWL1xsecvS2\nNGZXB0ZLGiUWvSoPSmW8uRz2xHTjOhhXYPZE87UUQkq37+CO1+eIl01TVazeTsyujqiA2jRQdI3Q\ncXHnc5SHRh78WKAoDPziZzn0L/9XlAZu9ywsLFTP0doqs7OztLS0LFnlUWtOp9/FJPA0yj//5/+c\nT37yk7zrXe+qvi8MQwqFQjU97wb1CjwVoecx/ZffY+Zbr1EeuoM7t4CRzRA6LgtvXiD0PFKnj6G1\npAiK5WU7t9SYSfLUUQACz0c1jGjQ3waW26vHXagKpVt3iO/fR1AoVdvnt5qezSzW0KRQ4xaKCqHr\n4C/ksQb7cOeKeLML0QO0oaOoKqgqhCFhEILrEbgeQdkhKJXxiyW8hcKWFXvuRImjB9HbW8if25pz\npNREVHhMGFJ458qKXXsboWVSi98fiweXEhLYTrRCM7n9U6SNjjYShwajkH57BG90YluvRzENYgO9\nGNnWaOil6xF6XvSzYxj4hSLl4dFqF+l6tTz5GCe/8mWsns46X3lEAk9dSeBplC9+8Yt8/OMf54kn\nnqi+TwLPUsVrQ0z9f/+T+R+cwV8oEDgORnsbpWu3Kd+4jdHeSuLEYVTTpHTj9rKv1LVUIqqFUBXQ\nNMo3R3CGxzZ2QTXHXQSuHz1on7+CN1e/VROjoxWzO4vemgZDQ9UUQicKNO7Ug1+BJ08fpXjpKsnT\nD1O8Prauk+gVQ0dLJtBSCdRYDDVmohg1oQklCk1+QOh50TZYJTTli/j5Yt3rN7aaGrNIPnIs6hY8\ne7m+t52Mkzx5BIIgOpZlgyFHSUTTgs1sVGMVhgFe2cZfyONNze6YFcgKvTVD4qH9qKaBMz5J+db2\nrKap6STx/l701nTU7l6ycaam8YtlYv09aKkkQdmmPDKKO1Hf+jijI8uJ3/o1sk+/t663CxJ46kwC\nT6P88i//Ms8++yzvfe/dHwIJPMsLyjZT336N6W/8Lc74NM7kNGZ3B6HnsfCjdwhth/iR/cT29+Et\nFMm/dX7ZGh69LUPsSHSoqb+Qp3Dm4qbOaDL3dRE70I+WjGOPTlA8t8qqj6JgdmcxO9vQWpJoMRPC\ngMC28XMLUaDZxJZG6onTFM6ci+5K10iePkX+3A2cLTq/S7HM6HyqRBwtbqFYJqoRbQWwTGgKyg6B\nbRMUy3iFIsFCgdDb/g4viP5trcF9lG8MLzs2YC0qIScMAgprDDmKZWL2VNr6Y6Cq0fdHvog7Nb1t\nB6qulZZORtOME3GciSmK12+t/CzSAGZXO2ZvJ1oqiQLRCs3oON7MHFoyQWx/P3pLmsB2sMcmce5s\n8MXPeqkq+3/pFzjwv/8viy8g6qN26vFWmZmZoa2trTqbRwKPBJ5V/Zt/82943/vex/vf//7q+3Zr\n4AG2rGgu/84VJv74Wyy8dYGgUMIvlTC7OyldvRUVG5sGqXcdR29JU7h0A2eFScdGV3t0PIWhU7x4\nHXtkfFPXpSbiJB9+CC2VwJ2ewWhJLk5lDQjKZbz5HO7UDKHTuGMPMk8+ysKPziy9rphF4sQJcj+6\nWNeVqEZRE/FopSkRQ41ZqJYVrTJpWrRKhwJhQOgFBK5LYLuEZRu/WMZbKESzd4I6PvyoalTobJnR\nROdVVrHUZJzUw0cI/GDJeXEVimlUA42aiKFoi3OKql1wO69I90HUeIzk0YNo6STuzCylqzcbPpZA\n0TWsvh7MjrZolcv38XIL2CNj+Iuzl9SYRfxAP3pLC57r4E3OYA+PbnuHYdvTT3Lit38Ns72tLrcn\ngaeuJPA0ype+9CUeffRRPvjBDy55fz6fJ5lM7poTaB3HIQzDLe0SAPAWCkz+2V8x/Y2/wc8XsYdH\nMfu6CV2f/JvvEHo+ensryYePEpTL5N88v+JqjtXfQ/zIAfx8Ifq4lbqeVDVaoenKomcSUaAJ/SjQ\nzM3jTs8Quh6tT7+b8tAdyjdHGvh/4H7pJ3+C/I/eWvbvtHSK+OGHmPv+2V01rG7dFCU6kiKZQI3f\n3ZpD11G0qJ5JQYEgjP6dvSg0BWUbP1/CLxRXPJZBa0mTPPnQfYeYaqkEyZMPEfo++QvXMbMZjMVp\nwWgqoe9HgWZ6DnfqwdOCdzrFNEgePYjRmsadX6B49UbDut3UeAyrvxcz24Ji6lEt0swc9uj4ku1T\nxdCJ7+/HaG8jDEOcqdlo66yBAy7XS9GjKdJGtpVYXzfdr36cjuc/sOmC5q0OPGEYMjs7K4HnHrv3\nJ3qLfPnLX+bo0aM8//zzS94vgWf95t84y8QffJ3CxevRIZLzC8QGeildvokzFnV9xI/sx9rXTeHy\nDdzRFTpBVJXMu09i9bbhzRWiB6NlAs2qNI3M4w8RhjoLr79Tx6/0wdLvfZT8j8888GP0bCtm/yDz\n3z2zqe28pqZpaKkEWiKOlohHock0UXQNRdMIFQUjkyJwHMIQwmIp2nKansWZmt1RT7SbpeiVacZt\n+PkCxas36t5JpmdbsPb1oGeSKKqKXyzhTE7hjE/dHw41jfjgPoyOdhRVwZ2Zo3hreNWVt62gt7di\ntLdhtKTRYgaEIX6xiDs7hzM5fd/3RWygj32f+8f0fPLl6JiVDZifnyeRSGx54Mlm706XrgwgbAIr\nfhFNcTTqdjIMA8+TJ5x6aHniNC1PnMadnWf8v32D6W+9Bp5PGIaknzgdvfJ+6wKlK7ewBrvo/tQH\nwHFR9BBVBzyboLCAPztD6A0TDg/T8p53M/vGVUpXN1Bk6ft4Cx7e1E1an3mcub9/c0umD68lwHgz\nc3gzcySPdKO3dTL3D2/viMnIO4rv488v4M8voBgasf19mJkkiqHizS1gD9+huNgZGDs4SBiqO2JW\nU12oKrGD/VjdHYS2TfHqTUpXrlPabFOiokRt3t0daMlEdJbe3Dze5DTeXI7ipWW2WxUFq78Xq6cL\nRdeiSeg3hynduE3pxu1NXtD6qfEYVm9X1AGXiKEoENg2Xi6HMzFNUMzhFHM4a7w0r1Bk/L//Ofmz\n5xn43z5P4sDA6p+0jCYJGzuarPBs0m/+5m/S0dHByy+/vOT9ssJTH7N/+wMm/ujrtB9pIZ7wCcwY\nhTd/BE706tQ8coLxv32d0F7+1ao1OEhYmMczOpj73tsbuobWZ36C4tmzxI8fJ3/2RsNbghOnjlK6\ntL5nJmuwH8VMkvvhuQZd1e6hmHfPOVM0BW9unvLQndXrrhSF9OOPsHDm8o7rkloL60A/Rlc7uC72\nzWH8hY3XeimGTmxgH0Z7K6plRkP55uaxR8ZWLcg3e7uwertRLRNvIb/6rJt601SsyllfyQSqvrgd\nmc/jTM3gza6xNV1VMdqzGG0tGNlWjI52zM4OzO5OrN4urN4erH09WN2dmy5gvvcgz0bbqys8Eng2\n6bd/+7dJJpO88sorS94vgad+wuIC7u/9n1AuQUsrc1dHCOaiBy0lmcQcPMzoN/5mxc9PnjiCc3sI\nfeAY49/8/rprL/TWNEabgT+fw+ztwSvS0CF3sYMD2MMbu/34Q4fwnZD8W/Vtx96p1JhJ7OAARjaD\nooA7O499e2RT23x6thVroJ/c9x+8rbjdYoP7iPX1EAb+hqcZa+kksb6eaPCloRGUbZypGezRiTVt\n6RntbRj7ujGSSfxSifLQyJZM+dbbMphdHegtKTTLJAwDglIJb3YOZ3INZ30ZOmZ7Fr0lE213xuMY\nrS3R19OeJUglSPb3ktw/SGygDy3e2DO1tjrwBEHA/Pw8bW13i673QuCRLa1NMgwD171/31lRFMIw\n3DXfQIqiEOzQLRElkQbTAjMG8zOkTj9C7u9fAyAsFLDiCmZPZ7XO516hakAQ4N26QM9L72bir86u\nWNC6HG9ugeTJd1GafwdndAw1kSD97lMsvN6Y1RQvv/FXw6Wr0aGprf/oFM5UnuKlm3W6qu2nxmPE\nD/ajtqZQCPFn57GH72DfvIl9s373U9kuTD9+AndqjvKttc9BaiSrt4vY/j4gxB4awbkzinNnbdem\nd2QxezrQMylURcEvFrHHJnGnZiheu7G222jJEBvcF826KZUp3xnDnZhuSEeaGrMwezsx2qJAoijg\nlkqEhQLu5DR+IY89lGe5tSYlZmF1d6FnoqGNqq4TAloijp5Jo7e2YHZkifXvIzbQR2ywD7Ojfclt\nbEcR8W55rtjNJPBskmmalEpbO8Z9L1J79hMW5glzM5hdHUv+LkCn532PMPQnf7Xs5xYvXCTW14U/\nPY17/TKdP3mQ+cszlIfWPrtj/h/eJvPEEcrXrhMUi9jXL9H6gceZe63+dT1+HdrOixcugaLQ+vS7\nKN2awN4hT9prpaUSxA72YbRmCAMfdypqRy7fWNuTcz0Uz19GMU1an36C+R+cIbS3tqDW6MySODiA\noqmU74zhjIzhTq58ZIOiqZh9PVidWdR4DM91CBYKOKMT+PNzlObXPmVYSyaIHehHT6cIXBd7dALn\nzjj5s3WaH6Sq0dEpHW0Y6WR03IPv4ecLuDMzuNOzuGN3cMeWHimjJhOY7VliBwfRYhaKqhEG0Qws\nghA1mYg6qPqjIBMf6CM20IfV17s4XkJAFLD2Igk8m2QYBrnczh4i1gyU3kHCGxcB0A0FJZUiXFwJ\nsScmiFMk88gJcm9fuP+TgwC9swd/Ohrc543dIb0vjdV9gvnXl/n45YQh7kwJNC1a6g9Dim+foeXJ\nk3Wv6wldD601Gc2i2dQNhRTPnQddo+2Dj1G4cAtnbGuGF66HlkkRO9CH0ZIi9H3ciSnsO2OUr15n\nuxvvQ8dh4fU3iQ/2oiZS5M9cbNh96W0tJA4PoloGzugE5aERFmbvXz1R4haxapu3SeA4uNOz2KPj\nOKNjOKPrG8Knxixi+/sx2loIPR9nYpLy0B0K72xuW1RrzWBVz4MzolW5Uhlvfh5nYgp/fhp/frr6\nb6y1pDGybVj7eokf2o+iqAR+1F3p5/K48zmM1hZiA3dXZmID/dFKzWAfRmvLpq53r9mLK0oSeDZJ\n13Xp0toCSs9+wos/BiDI50k99hMsvPb3ALgjw8SP7CfbFid3Vlm2Rqd46Qq6FSO0y4u3sYCuFel8\n8b1MfusHa7qG0rXbtD7zOMWzd2s7ShcvEh/swSu21bWuR0unNh94KjyfwpmzKJZJ9tknyP348rZN\n+tXaMsT396GnE4SehzM+ET25X7m67eHmQezhaIWs5X2PUrh0E296Y2cy1dLSSZJHD6LGLNzJKYrX\nh8i/dXebVG9rwdrXjdGSAlXBL5VxJqdxxiYp3xyifHP996kYOvEDA+jZVghDnIlpyrdHKF5af3ea\nGjMxuztRW1KYqSSKphI40fEYzuQUfj6PfTuPfRv09jaM1hb0ZDIq9O3rjaZ0l0p48wu409GBuIqm\nYWTSWN1dd0PN4mpNKW6RaW1Fa+AhnhVbvcUkW1pbQwLPJq3Ull6p4RH1oXT3w/wMaDr+2B3ih49S\n3fgJQ8i0w9hNuj70k0z81ffu+/ygUMA89ij2xZp5Or5PcPsSPT/1JOPf/vGyx1jcK/fGeWL7snjT\nM9X3OaNjqPE4mXefIlenuh41Hq/L7dQKbYf8m2cw0knSP/EE898/19DhhXp7K7H9+9BT8WgVYmwS\nZ3yS0qXdW1Cdf/MsWjpFyz96jPl/eGtd25lqPEbi6AGMdAp7aprS9SHyb5+vnubd9v4nIAzwFgrY\no+NRm/flTWxvaiqxgX2YXR0oioI7O0/x5m2KV9a4LaiqmJ1ZzI42tEwKVdcIAy+aVTQzizs9gzs1\njh7Y+IqPlkigxkzUWDt6awa/UIwmk8/M4k1Hv1TLwurvjcLMQN/iak0/8cHozw+aY1Oe23zIFJHl\nAtZeCFwSeDZppaJlUV+KYaKk2wgVCCdGMBQfJR4nXKyfcotlDCChl9FSSfz8/VtM9ug4KPevALnX\nLtL9gWPMvH0HZ/TBWz5BoYTednhJ4AEISiXK1y/VbV6PnowvW5BZD36+QOGtM8R6W7EGHmbue29v\n+sBQo7s9OrwxGScol3HGxnEnZyhduFSnq945/IU8+R+fIXXqMH7JWTKtuZZimiSOHkDPpPALBfyS\njRY3UQwVPZsmoQ3ijE5Ew/kmN3bO1907U6Jtru4OFF3HnctRunWb8s1hyjdXXnnUMims7g701jSa\nZYICfrGEOz+POzuHElejZwklQFE1ULTobLAw2j5yZ+fwpmbwpmaq12F2dRAb6CN18tjitlMfscFo\n68ns7tzwE6u8gBSbJYFnk5ol8OyGFSmldxByM4RAoBmkHn+Mhe98F4DyrZsY2QSU8vQ8+15G/uyv\n7/t8d3SU5OmTONfun3Hjjtym9VArpa4sC2cePAMn98NzZJ48SfnyPSsVYUjx7BnS7z5G4fwtgoWN\nb0kpW9Ad4s3O4c3OkTzchd7eGc0pWkNQM/d1YfV1ocVjBKUS9p0xvJk5iuf31ivw0pXroGm0Pv04\nC2+cJ3Ac4kcOYPV2EaqAF50P5k5OVNu81zrMbjXVWTemgZcvULo1TPn2Hcq3lxb5KqaO1dMVHWKa\njKOoKoEbHfaK76MYRtTJpGmEYRgdAlsuERSLhKUyXrGEd8+hq2oyQax/H5lHT2H296J0ddJ29HB1\nxUZt4GiLvbAKIRpHAs8mGYaB30Qj6HcypWc/4UJUxOm7Pom+nuq2VlgowJGDMDWKkRslfqCf0jKv\nbANn5Xorf34OU9fpeO7dTP3P1x94LeXhaRTTXHaYnX3lConBHrxiduN1PWrj6xQqnPEJnPEJ0qcH\nCc0k+ZpjNKy+bqz+blTLICiWsEdG8WanKc7WqfhZU1FULTqJXdNQNBVl8S2ahqKqd8/OWvx9CCia\nhqpqhKqCoiqgVN6q0VuiP4csPkkqyuJ0DoW7z5mV34SLvw8XJ4+Fi4uAd/9MEBIu/lkxTVTLRNFV\n8KOQkHrXYfRMmvy5y+Ru3qzP/5tFRkeWWH8vajwWnRp++060MjQ6AYqC0ZklPrAPPZNENfTocFZV\nwXMdVEVBq3QylW3chTzuzCz+wgNGH2gaVk8XyWNH7q7Q9O9D7+1G6eqATApd17EsC0VRKBaLtLQ0\nV8Fws9fw7PQXt40igWeTdF1vihWe3UDpHYQz0YpOkM8RS1pgWbA4ZTnQLFQA36frsaPcWibwlC5d\nJn5wAG98hU4WzyMcvULnx9/L5LffgBUGmDnD4/cVMC/5+03W9WzH61j79ghatoXOT3yA0Ac/nwfX\ni57ofRfV0ogf6CMM90EQEAYhhMHi74MoFASLf/YDwsAHv/b3PqEXfWzo+4uD7UIIvejgSjfKF9v9\nUKzEY4tD7TKoi9s8QcnGyy3gTkwRlFaue1IMg8y7T+MuFCldXH8hsN6aITYY1bIEZZvy8J3ovhfy\nGLqK3paipfsUaAoEAYHrgevil8q401O4M7MExdXHZOgtmZqi4KVdT9a+nig4rSAIAhzHoVwuV1/s\neZ6HpmmyArOL1P5b7ZV/Nwk8myRFy1tHae8mXJiDRIpgYgxlfx/pxx9j4Xv/AIA9Pk6l1FeZGqb1\nPY8y98NlTh1PtcBKgWdRcPMSPc8/wvQPb+BOLb9VM//9t0ke7sYZG1/+Nhbrelqe/gnmv3NmXXU9\nob+FQyAVheTJIyiJGKEHc3/5HSB68o0fPYRzZxxneHfN8XmgxRkwerYVNR6PDhJ13agYd2oab3Ye\n+9bwhmqoQtcl/2YUcOMH+zG6O8ifu0KwTE2ZlkoQ29+PnkmjGFpUW6ZQraUJkyZ6cj9+sYQ3n6N0\n9QrBGgrrIToN3ejpJj7QR3x/fzSPpqbjSc+kN/DVRVRVJRaLEYvFsG2bYrFIfnFEhGVZmKa5JZ1U\nQqyXBJ5NapYant1AUdQo9AQBjFwn0A8R7++tbmu5w8PEju5HKUYPvi2dFnOGHq0e1ChfvoKZSREU\nHjzR2B26QdvJdgqTbRQu3N/ZEtouWBlg+cATfVBI6dxZMu85TuH80JrPFAq24HtKa8mQPHkYd3wc\nb2YKpdRKqaY92ZvLsbAYGBMnjqDGLPLnLsEu+H7XWjIYXe3oqSSKYRD6d48ecBdbu1eazF0v9u0R\n7PGJaKrvE6coz85jZVLoMQvPcwjLDmGphDM6jDszu+7jMIz27N0tp9rVmsF+rJ4ucgsLDT+BW1VV\nNE0jnU7j+z62bZPL5dA0DdM0MU0TdZPnTFU0a+t25YVxM2+h7RQSeDZJAk/9hWEYFVAGwX1vlfZe\nlLkpVMDXLEyvCLoB3uK/QaYDFgOPsjBLz7PvY+zbry29fdvGGDyJfWH1rSZ/Zpp4wiL2gceY/tsf\n331VAf0AACAASURBVPf3+Tcv0Pr+RyieP//A2ylfvky8vxuv1Lqmup5wlQMaNyNx/CH0TILipUtR\nt9bBwzhTRbyhlbdgiheiQm69NUP8yMPRkLttXPVRrGgGjN6SRo1F5xwFjoM/v7A41C6HP1+HWUOm\ngZ5KoSbjaLEYimWgGgbole2baGspBFRTRzEMFF3DDwIU3ycoFnHGJ1j4QVQTZp46gT07Q+nazVXv\nWo1ZNe3bfXcH7i3+0hKrjy7Yqic1RVHQdR1d10kkEriui+M4lEqlar2PYRi75kl2rwaCZieBZ5Oa\npWh5K7fgHhRoKn+nKAqqqlbfqqqKYRiE/YcIc1NRrYfvo/hetK31g2h4oLfYnl4R8+cxsm33HaxY\nvjmEUpmavNr12jbY1+l++X2Mf/37921NFS+PoMbjBKscMeKMja+5rsfL12no4CItnSL58EN409PY\nt65Xt2sSDz/Cwutvr37YYuW65nIsvL646nP8IdREnPzZi/Vf9VEUjM4O9GwLeioBqkboLR49MDWD\nNzOHPTSy+raTYaCnk6iJSmAxUU0j+revrDws1hSFjktgO9Fk30IJv1AkdBy8mVmYnUNvb8PsaEOJ\nmVGxtaKgLNa6BI6DNzdHeWSU8AE1NIVz0WTvxKnjBKUyQaFUszJz9yiE2GAfZmfHirezkymKUl3d\nCYIA13Upl8sUCoXq+3Vdl0AhtpwEnk1aqWh5L9fwbCbQKIpS/bXsbe87gPtGdGZWsJCDuEZif381\n8JRv3sDoSN4NJXaJnmce4/afLj1ny5ueJvXoaezLaz8qwLt+np6PPsbU31/Cm787EM6ZmKb1qcco\nvvP2qrdRqetp+8DjzD7gHK4HdtGsQ/zoQYxshtKlKxTO3L0+JRYjNnCI3D+8ueHbLl68CkTbR4mj\nD2OPTeDc0xb9IFomhdHZgZZOopomBEF09MDcPO7EFO7EJO7s3H2BxRzYR+zgYBRa4G5gcRcDS8nG\nLxbx8wVCx8WbmYOZ1VvmlZiF2d2J0d6K2d8NKIR2GW9xG1JvzaBaFoHt4N6JOqVWoyYT1bOcjL4e\nkgcGSewfIOhoI7l/gHh647U0u4GqqliWhWVZ+L6P4zgUClE9k2maWJa15+t9tmM1aa+uYEng2aS9\nuKXVyECzGiXdCoUCYbaLYHwUDvRjKA5oOvgeYbEI7Ydh8u4TrzYzTOr4YfL3dM14a6ynqeXevEr7\nY/8/e28eJMlZ33l/nrzrrj6mu2em5x7dEprRYUmvBJIMkoxlJBuEWEkLWvDarFkBa8IhL2ZZbHbN\nGmttBWtY2HCw64CFRRCYQw4iFt5XgAEjLCwLDUJCxxya++ru6q47K/N5/6jO6qrqOrurs7uq8hMx\nUldVHk9VZj75zd+5hfmjGXIvL7mmUj/+GdHLtlE42kEaupRknv0ZiesvIf3zIw3jepyFNMLozAJV\njxIKEX3NRZRScxSOHFlW+0WfmkIWBAv/dKDrbTfCSdVZfUIh0s+VhaQ+uQk9GUeNRMrNGxWlnK1l\nl8qxWFAWLLZd/lcsIoSCGot2LVjaIkS5WeX4KEo0XK4cXHJwMhns82WrUWluBjViooZMQOIWihTP\nnUdmcxRebbBNVcWY3IS1bQvm9FbMbVuwprcgN40R3bUdq8pKY9s2pmmiaRrpdLrsGhsiVFUlFAph\nWVZNvI8ninoZ7xMQ0IhA8KySQRQ86yloOkFMTpeLuh1+AanvQdgFovv2kf6nnwLgCp2aaVNKxi6Z\nXiZ48gcPEb5oD/bRRney5pTOniYyEsb8f15TLtYHyJKDW9IaVnJuRu6FXzaP63ElWixKaS7V8bis\n3dsxJsfIvfgSmWcbW5tCF19M9heHcHrkMtNGk+hjo6ixKEJTUSwDkFg7NmNs2kTupcNkD6xdw816\nRDiEOTGGumiNEUicQgFnsWFlaW6W0txsuSLw5Cb0iXG0ZKJcfM80KZ48XS4oWIUaj2FeetGiqNmC\nuViXxty2BWNz4xTubDaLvoYF+DYKK7EUrCTex+/A3mG1gAw6geBZJc3S0jcyjQSN9y+TyVQu9mox\n46egaYcytR33zNFyxWU9hGoXCO/eXhE8hdNnCNUNT5w/yfjrfoVzf/+PtR8YK+tZJXNZ1MIxJu+8\ngdPferJstXnuZZI37yd7oHPLyVJczxXMP1W7nhqLtBU8SsgkesXFOJkF8gcPY59sbGGSikLkksuZ\nf/KZjgUZAIZeFgbJeDk4WICbL5QbPp45R2lmDsU00EYT2GfPUjh6vLJq4fBRhKYSu+YKSgsZcr88\n2GJHHaIItLFR9LERtFgYodXF9sylKBw/DseXxqGEQ5hbNxO54lIAnPkF8sdPUjx1huKpMwhdw9g8\nibVrO8nX3bAoasqWGnN6C1oivvpxBzSkOt5HSlmp71Mf7xPQW+oF3bCIu+BMWiUbsVu6J2iqxUwj\nC029lcZ1XUKh0LoLmnaIzTvgZPnmKe2yy8dQSxXrin38GKGLdkGmNksnGpXMWBZufqlwXPb5F7Am\nRnHmaoOaO8J1KR15nqk3XcuZ/+8AbiZH+tmD6PEYzkLnTR/dXI78K88v68PVqoGotX0r5tYJci+/\nQqaNwFJjcbTkpqbxOp6VRomGy8G4EtxMFvvcDPb5WYpHTyyLzdHGRohccTHO/Dy5Vw5hn2uc4i1L\nDumflQO0wxfvQo3ESD/7XOW4NUIJhzCmNqEmyv2dpJS4+cXYnrPnceZmcOZmlq8oBMbUBPrE+FKs\nzdlzFE+dwT43gxKyMLduxrr6yiVRs20rxtTEUjxQwLohhKjE+7iuW6nxI6XEMIz1Ht6aEViT/CMQ\nPKukmUtrLYOW6wVNo//XCxpVVdE0rfK6/gJzXZdSqdQXPnQxtQ2ZnkeqGs7CPJolEHaB8JVXkn1m\nsdBgfHSZ4CGdYvK2Gzj5+HeX3iuV0Ka2rkzwLGIffJFNN+wi9eIM+VdPEbl0P7nnu4+PyR6ojevx\n0q09hKETfc3FyEKe3MuvYJ9tnxZu7tiBPZPDTi0QueISFKvsZnELRZzUfNnNMzNXjpNpgxqLEr5o\nD24+T+all0n/c+Mq083wUrG1TWOE9uzCnk2hhULldhGlEk46TfHcDE5qnsLRo9Ci75QSDmFumUJd\ntL64+TxIiT42ijm9pTamZtsW1Eikq7EOAv18I1UUZVm8D0AqlVrzeJ9hTTYZBnwVPPPz89i2XREI\nuVyOYrFIsVhECMHll1/u53B6wlrE8KxU0FS/7teJrhOEYUHJQUxuxTl9AnZsBSC6d1dF8NiZHI1C\nQs3MGczNE+VmjovkXn4FVTeQdmdVbBtROnWC2JYY5uQlpP7hGeJX7SV/aHmxwnZUx/UIrWx1MLdu\nxto+Re7gIbLPLfW5UiJh1HgMLRJBi0XQYiE0y0DRBAIHWcgjjBCpF06y8LOXVlQ3RwlZhC/ZC9Il\n88JLpBczvdqdXWoijj4+ihqNloOVXaecgTWbwj57joUnf4oSCaNfeiGZX76M2yyAvCrWRh9JoiXj\nyFAIPRknvH26ElNjTIwj+kCsB3SHF++jqiqFQoFQKFQT7+O5vdZivhvkObSfxfBq8FXw7NmzB9u2\n0TSNmZkZxsfHK8Frx44do1AorGlV0LVgJTE8gaDpARPTUCoiTxxZDFzOY2huxa2VP3QIfVMM3DrX\nSclm8oYrePVvl9LUnfl5QlddSeGF1sUD2+GmF9DULJt+7VdIv3wKVAVW0CLCWUhjbt2MNjHKyOtv\nxC3kEaogvv9SVFND0RQUnPL3z6ZxU7PI7Bxky32ovG+sJEdw5g4TMSBx91Xk04Lz33+mbc0doWuE\nL7kAYWhkX3yFzIHnli9jGmURkogvFf4rFHEWFiiePd9R4T83k2XhqWdQoxFi1+4nd/AI5pZJrJ3b\nMbdtxdwyiT4+hrl5EnPbVtRQeT+5XA5d14PYjiHCmxPr4308t5eu65UMuH6bG4dVfKwHvs4YZ88u\n+fmvu+46frJYOwXgxhtvxHGcvhM8jWJ4qgWNbduBoFkLJrfBqcMAuLqFaucRdp7wZZeT/fkBZC4H\nYxfA2ePLVlXOHSWx7zJSzyzdyItnetT923Fwj/6SxKUXU1gYJ/NMA7ePqAq8jUZQI6GykFEEAhch\nZDnLTBZQpscoPP8cbmoBFuOX3cV/7VBjMdxFV13pxFE0YPOte5DhTZz74XPY56vcWIpC6KLdiHCI\n4qHDZF/4JfqmscVGliGEqpXdTouxPaXZOYpHT2CfPVe2LkVCqGELcyxKeMsIiqmj6BqKroIiyjX+\nBAjplkWoW0LaNthFZLGAtM9wwZc/g75lelU/f4C/rNfNul28T1DfJ6ARvgoe74avqipSSl544QW2\nbt1KsVhkfn5+zYJ/HcfhmmuuYXp6mscff3zV25NScubMGQ4fPsyhQ4dwXZeHHnqIo0eP8pd/+ZdM\nTk4CSybRQNCsAVPb4OiLADU9iCIX7SH783L8jCs0mjk5RnaMkHpWqQQIF48dI3LZRRQP9SCTCLBf\neQFzejva9fvRLB3F1FE1BeGWoFhA5rO4mQVkZhaq+kp63cI9QZPcs4NcuvMA6GoUK7zsPXduFuZm\nGb8ojLLlMtIn5jHGR1H08vkohUTbMw5uCYEEIRFSgnSgJJClMGxRcYtxZCFfVSeoWP7nANnFfyx1\nPm9XTSh2268PvNipjg0Jnup7hxfvEwqFKJVKlftJUN+nOcN6/vkqeLwbPsA999zD+973Pl772tfy\n7LPPcuONN66ZdecTn/gEl156KQtdZM404yMf+QiPPPIIkUiEnTt3snPnTnK5HJdffjl33nknExMT\nRCKRimXH7KNaHH0VrDc2Bek5CEdw5ufRQuXzqjqZo3DqNKFm89zsGSZ+9QbO/L8/qrzlyt5OiqXT\nJ4lfeWmlmvNKGpBYo3HosAXGMlq4fKRt4xx5kYnrr2fhyScr7ws6sx71EhEKk7znPp/3GjCIeCES\nnvgpFApdx/v4LQb6at7tc3yXvd6J9PDDD/OHf/iHaJrGPffcw2c+85k1EQfHjh3jW9/6Fv/6X//r\nnpxY73vf+zhz5gxnz57lqaee4itf+QqRSIR/82/+DW984xuJxWJ9qZz7bcxC1ZCKhpjahnNmKRhX\nKeYIXXwJAPaJ4xBtXkMlrGZRY9HK69wLv0TbNNGzMYb37qrEnawUTVfQxlbYU0m2li7CstgIHuTE\nXW9BjSfWexgBG5hu524hBLquE41GSSaTGIZBsVhkbm6OdDpdeSDdKKxHa4n13P964avgyWQynD9/\nnlOnTvHqq69y2WWX8eCDD3LNNdfwzDPPrIlL6/d///d55JFHembSHBsbIxqNtl8wYO2ZmEaEo8jU\nDFJfEhaRSy5cWiY22nz9XIbNr79u6bXroo5u6tnwrIkxlNXYS4SCkA762NiKVpfF1lln4Qv2IuqD\nun1GHRsn/ut3r+sYAvqDFbejWYz3icViJBIJNE0jm80yNzdHNpvdcHXU/GJYRE41vri0HMdBVVX2\n7t3LzMwM8XgcRVE4e/YsyWSSZDLJ4cOHOXz4MNu3b+/Zfv/u7/6OiYkJ9u/fz/e+972ebTdgYyAn\ntyNOlhtYeoHLAKa1JG7thcbp6R7a3AnCu3eQPXgEgOwvf4kWCiNzq2+9oAkHN7/yJqDG1ARIFz0R\no3Uf9sa4mUzLz81EBEpt+42vKSNve3u5cWhAzxnWOI1WKIqCZVlYllWJ90mn05UMsH4KQQjoHl8s\nPN5Fd9FFF3Hs2DHOnj3L6dOnef3rX8+hQ4c4ePAgt912G26TztEr5R/+4R/45je/ya5du7jvvvt4\n4okneMc73tHTfTRjmLul+8bkNHKxanJ14LJSzGJdcAEA+SOHQGmRreE6bNq3e+llNoexY9fqx6aq\nyNkzkJ5DrHASNScnAYkeXtn6Tqp1MUGRnoXi+gkeY9ceIjfdsm77D1g9/SyqvF5eiUSCcDiM4zik\nUinS6fJDil/zdz//hv2Gry4t13WZmVkqCX/mzBlefLGcaTM7O1upptkrPvaxj3H06FEOHTrEl770\nJX71V3+Vz33ucz3dR8A6Eh9FLszB2CTOfG3PqehlFwMspqdPtdyMOHeckRuuqrwuHDte7uq9CsK7\nd0KxgADU8ZXFBemjSUCgr8AAIsIRZL65Xcic3opcmEMWetNEdCWMPPDOYKIPWHfq4310XUdKuWHj\nfXrBsIosXwSPd7LEYjH+8R//kfPnz/Pkk0/iui5f+9rXeOyxx0gmk2tuTlyrAzxIJ07fXdjhGGLT\nZpzTtVWEzfCSI8sR7T23iTEDFrte22fOYu7eu6phWZuXYoHU+MqaT+oRq+zSEt1XgFYTrYOArekt\n5T/yOVD9L+AXuupaQpe9xvf9BvQnft2gPdeWoihBvM8A4ovg8QpAPfroo3zyk5/k4osv5v777+dz\nn/sckUiEv/7rv+ZDH/oQO3fuXLMx3HzzzXzzm99ck233nUhoQL+KNmVqB4plIednawKXlUIGc1fZ\nVVU8dar9huZnmLrtxsrLUm511kZNXTonFH1lgkLVysdEw0HpUjQp4da9ozRlKVhZW6EgWzGqysj9\n7/R3nwEBHeLN5168TyKRIL54jaTTaVKpFLlcrmchGOthbRmEe9ZK8PXR7sILL+QnP/lJzQHev38/\nH/rQh/wcRsAAITZvx3257CatDlwGiF5xKYVDB7FPnCB08W5Ip5ptBgCrOIu+aRT77Az5l14mvHdn\nObW9WxQF5paqiivuynp0qU4RtHLHdH3TBIX51q0aqhEt/GAiFEKeWxKBaixKabZB9/E1InbrbRhb\nB7vIYEB/Uy9AVFUlHA7XFDdMpVKoqlopbthvD439Nt5e4KvgOXjwIDMzMzV9pAqFAoVCgUwmw623\n3koymfRzSD2h0YkTBC2vLd7vK6a2w7M/AqHg2g7V4clWtMpFGhtpK3go5pm6aT9Hv1busyUisRWN\nzdqxvewq8saabbPfRggF8mkwy1YrPRmnK5tTi7ksfMEeyCw1T1UjyysyrxUiFCJ5z/2+7W+jMYw3\nmUHCi/fRdZ1wOIxt2zX9vAzDQNf1vjvO/TbeleJrWvqf/umf8vd///dMTExw+vRpDh48yJ49e9i9\nezcnT55k7969fSl4AtYPYYWRmTRiegfO/Bx6aEnyKIU0xrZtFI8exU5nW6ane6gzx4heciHp518k\n+4sXMEbjuAudW1YAwlsn4fyrVePIo8QTuPOdCx9jcgLhOsjF5gx6rDtRUp21Vo8Zj9S0s1Ct1RVH\n7IbEm96Cmhj8a7zdw44fD0N+7WNYbpb1VDczdV230sU9k8nU9PPaaJWdvX0OI77G8Hz2s5/lpZde\n4kc/+hF33HEHO3bs4N577+Vv//ZvefbZZ7niiiv8GM6aMKwn0EZAJMYQI+O4dYHLALEry+dU/uCh\ncouGdkjJ+EXlrC5p2+jT3deF0ozlk5faZbVkc2oxs2vxtNLN7hohynzz7CuRnq15rZj+lFtWR8eJ\n3zk8RQbb3cT8CsIdBPwUBSuZy+vjfYQQpNNp5ufnyeVyOCtpDbPGDMq50Q2+t5aYm5vjDW94A7Zt\nc/DgQebn53nwwQd5/vnn/R5Kz1BVtec1hNaDfnXDiantoJvLApcBzHjZMiIL+bbp6RVmTjF+8/XA\nolBq0ZOqIanlndeVcHcWmnJKOniKR1e6yw5xmsT7eOnoNWNT/ZkGRu59AMUICrsFbHxWIwa8eB+v\nvo/ruszPzzM/P0+hUOjLOXZQ8FXwnDt3jrvvvpv9+/fzqU99CiEEf/VXf8Xu3bv5wz/8Q1555RU/\nh9MzNE3Dtu2a9/pVPPQjYvOOSnNNt07wqIUF9M2bAXBk51aSaLiEEg5Rmp3D3HNBx+uZ26chu7y6\ncifGpWr0SDlYmcVzSJMFRKcViTW9qRuuko5ehR9PesbO3URee+ua7ycgYKPgxftEIhGSySSWZdX0\n8yoWi+t2jxjWe5MvgserXfDe976Xm266iUceeaSmM/qf//mfc8UVV3Dw4EE/htNzdF1fJngC/ENM\nbIXMAlhh3AaxK7F9VwJQONlBerpHZp6p198AgD3TeexNeHpzw/eVYr7h+83wUtI9C48iRMeNTdXk\nSEUo1aOJRqb1tTe3jzzwTkSP+tkFBPQbXrxPdT+vfD7P3NxcxerjtwgZRpeWL0HL2qJL4KMf/SiR\nSIRcLkehUMB1XRzHwbZtHnroIcbHV9gVep0JBM/6IlQNWSggtu3CmU/VBC4DWCPlZq+lUyfhkj2w\n0LrlgoeROY21dTP5I0eIXHwBxVcPt11HtxpfUiIzVzbzdOjLr6SyV82Bxtgo9vFj7deNRnHOnVn2\nvgiFkOeXiz7hrG0xtdC+awhdfuWa7iNgffCz/YJfrPW+qvt5OY5DJpPBtm1SqVQlxV3t1iQc0BG+\nCB7XdVEUhe985zt861vfYnx8vKZipWEY/PKXv+QjH/kIt99+ux9D6im6rgcVONcZMTqJUCTuy8/B\nzm01nymFBbRNE5TOnoFIsmPBQ8lm4rpLePVvTyK1ztxJYmGWRtOlcB208QlKDQKrly8sEPnFNCq5\nFBumx1oXE/RQmlQsr09Hr7CW/bQUhZEH/tXabT9g3fHLUuCnRcKvfamqiq7rqKqKYRgUi0Xm5+cr\nr72qz72mPgh8WKw9vgqeAwcOsG3bNt75zncyOzuLpmlIKdm6dSsf+MAHePXVV9tvbAOiaVogeHym\nPkZKbN4B548h5+eQ+gWIqgKEAohdtZ/Z//t/O05P91DOHSNx1eWknvkF1pYJnJnlAckexuYpZIta\nP1pypCPBY0xMNLS66KEOR96kWaoZjzYUPLKwkl7snRG99TaMFWS6BQQMC1JKFEVpWN8nl8uhaRqm\nafZlfZ+Nhi+CxztIpmly2WWX8Su/8ivLlrnsssv61i00KEHL/ThmD2VqO+6pcgxYfcVlAGusXEQw\nf+gg+lQSunDjjEwnSD0D2sRUS8ET3r4V5k80/Vy1OrMSGVOTSy+qjoeud3hsmrjNRHqmofWJfLZc\nHbrHmYbCCjEyxEUG15N+vY4DGtf3yefzXdf3CViOr81DodwVvRGeH7MfMQyjb8c+MIxsQmbSMLKp\nYeCyWkyjjY4iCwUYm2ywgRbMnWXyDf8P2V++hDCbF+kzIq1TroXsLH7HGKsqzFd17WgUyhWY2+AW\nlgdIm9uml6WjV+9Dja2sqnQrEm/6rXIAdcC6EdwUu2cjFVP04n3i8TjxeBxFUWr6ea20vs9G+o5+\n4ovg8XyQN954Iz//+c/5/ve/j23bzMzMkMlk+MIXvsD8/HxDy08/EMTwrD9CCGTJRZnejpNa7lYS\nUhK9+ioAHNm9YTNEGqGrGIsNSRuOIdM6NkjkOqvYrIdDDd9XkWijo23Xd9MLy95rlI5ejZbobQNR\ndXSM+J2/1dNtBgwvg2yx6vS7qapKKBQikUgQjUZr6vvk8/mBqAW31vji0vIEz1vf+lZeeuklHnzw\nQa699lqmpqY4fvw4zz33HA8//DDXX3+9H8PpOUGW1sZATGxBuEWcwy/DruVxI6FNI8wBhZMnCHd7\n5uezbL7lWk7/5BcgxLK0b33TGHK+sfWyMr7sAiIcRmabV0EGUHUBnpFG1k5i+qZxSufPtdoLztxy\n4aVRauzO8vbZZWHEdiTf+kDT4OlhwOsV6P3fy0gtFotYljUwN3A/LQWDbJHo5rsJIdA0DU3TKvE+\nXluLIN6nNb42DwX4oz/6I37v936P7373u8zMzHDHHXdwxx131NTl6TcaBS33czxMv6JM7UCefAUW\nUkjDQtTVvlGLCyjJJKVTp7pKT/fQ5o5jRCwY20Px4Ms1n4V37YCF9gHJ2vgEdpv0dsWtEs91p5Ce\niNMqxFhJJHBTtd+rWTp6zXo97Kel79hF9HW/2rPtbVSqmyBXixvvus/n8yiKgqIoCCEQQmDbNvl8\n+bz0lu33G1O/j7+fqY/38c4vL97HMAw0TVt2jAbhvFsJvgoe27aZn59HSsnNN99cmQAOHjxIoVBg\n69atjI2N+TmknhBYeDYGYvN25KtlC4yrWah1gkdISfyqq5h74gmIdpGe7uG6jF+xgzPPLw9MNqIW\nLPckLUOLxWh5pgiByFdVaq63JLWJE1JjywVP03T06vV62E9rdICKDDYTNNVixRM0XqaNEIJcLkc4\nHK5JKS4Wi4RCIYQQpFIpstks+Xy+UntlLdKPA7qnX8WAoiiYpolpmhVrYiZTLm9RHew8zPjaLf1v\n/uZv+P3f/32mp6dxXZdMJoPjOGzfvp0DBw7wgQ98gD/90z/1Y0g9ZVBiePrdKiXCMWQ2g7JlB65d\notGlHZocZQ6w5zNdpadX9nH+BKHRGLnCFKXTS1YTJb/Q0mVUWU5vPeEYE5vqUtLrBI/eeiJWQsst\nNWaitjt6w/V6NBGGrryK0BX7erItP/CsNI2EjRcTUS1ovOyYaqtNI1rdMD2rT3jRjeilH+u6jmma\nDZ/IAwaXtRBYXryPV9ywUCgwPz9fEUX1DMv55ovg8VTlu971Lt7+9rcDYFkWn/zkJzl8+DD/9b/+\nV/7qr/6K48eP+zGcnhNYePynuThTEZNbcFJz6OHlN3HVzqBEo+QPHULf3F16ukd8RKNYGK8IHm0k\ngZxtFVezhFJq3WLCmKprcFpv4VHbnGcNGp2KhSbp6NXLKD2Y8BSFkQfetfrt9JhWgsa72Xgixvvn\nWWpaiZrV4sVi6LpeST/2nsi9J/XA6lOmX60u602jeJ9CoVxoNJ1OV+J9hgVfryZVVbEsq9JqQlGU\nygXuldjuRwLBs3EQk9sQZgjndOMWDEK6xK6+GlksdN49vZ6FWWJTSZRIufJxePeuztdNz5WDnptg\njCZq36gTPJosoUSizbdfp2zK6ejte4EJVp/hEb35DRjb1qfIoJSy0qbGq1uSzWbJZDJkMhlyuRy2\nbVdunLquY1kWkUiESCRCOBzGsiwMw6hUvvWsOH7gpR8nEgkikQiO45BKpVhYWFhRk8lAIATUQXRA\nMAAAIABJREFU48X7RKPl+cMwjEo/r5Wmt/cbvgctw5L5bGJigsnJycrfMzMz6zGcVdMsaBmCicdv\nxNR2ePU5WJhHGiFEcXmIb2jLJlKAI5WGbq9OMPPnMPdeSO5n/4yZCEPrxKul8dlF1JHRpgUM9Uio\nXAjQo8GNTp+YoHBoeUd2AFks1ry2pjfDmSPtB7bKflrCtEje+8CqttGKeiuNbduUSqWWridN09q6\nnjYanhirtvrkcjmy2eyGtPr0swu8GX7P2et1j/DOJ68TwjCwLoJHVVWklNxzzz3cc889ANx+++3c\neuut6zGcVTMoMTyDgJicxn3xp2CYuKqJ2iCnSStlUcIhCidOEl6pNdcuEJ+cIKeqKMVsR/E7lf2P\njjcVPKquLqWkw7K0dAB9JEHhUONtu9laIaThdDY2e3X9tBK/8Vtoqywy2KnrCcrCwOtD5E3W/SJq\nOqW6yWSpVKJQKJBKpTZc6vFGGENA59QLLD8tmeuNr5WWf/GLX/DYY48B5YvEezLLZrM899xznDjR\nvCz/RiZwaW0chG7gFgooO/bgNhGhwnWIXnV1OQYnvvKbtDZzjOi+fciZ1hlQ9ajh5inglS7pFRpY\neKLNa+Y4VRlaIhxCnuugWSkgCx2aqBqgjowSf9Ob2+9jUdCs1vWkKEol9sULIt5oE3avLR+aphGJ\nREgmkzWuiGw2OzTuiICA1eKL4PGEzS9+8Qvuu+8+PvzhD1MsFlEUBSkl4XCYAwcO8IlPfMKP4fSc\nQRE8/Z6l5SF0CzE60bDiskd4uhy/I8OJpsu0R5LYMdYwULgVTeOD61PSobFLy2rsiBPhMDK3ZNGK\n7N0Lboc3w1y2o7YVjUi+9f5KkUHPKlMqlWoaIFaLmkKhgOM4SCkrXaFDoVBF1IRCoUqqtqZpfds3\naC3GLITANM1KqwGgUm23UCgMxPXbiEEODRjUY7YR8UXweCdqPB6vFBm89957mZ2drXy2e/dusm0q\n0G5UApfWxkJMbkfoRtPAZQDNzYFpUlpYXaC8MZokcfMt3Y2v0Hif+qb6lHQaNvTU1cYBxmo8WfPa\niHdRPVlK1FiLYOgmaNPb0a9/LblcrsZKUywWcRynkiVimuayAGHPLVMdaxPQOaqqEg6HSSaTWJZF\noVBgbm6uUu4jYGWsh7gahpihjYCvkUqlUolkMsl//I//kX379vGbv/mb/PSnP+Xo0aP87Gc/Y6o+\nJbdPaCZ4BsVi0m+IzdvLsS+LgcsNl3FKxK6+itzBg6CtPC1TCYXQ7DTRm17X+UrpWWiQCmpubtTU\ndPn5o1FouL4SjtS8FgvdJQGspIFo/G1vR1mMpam20jTKetqIrqf1opfzgpd941l9hBCk02mklANt\n9QnoHcNyXfoatByu6tfzx3/8x1xxxRU8+OCDKIrCrl27+NSnPuXncHrGoLi0+olWYlKMTeIeyEJi\nBFczURtkagGEt21l4R9+XE5PP310ReNQDAO0GObCLKXLryT/85+1H7uU6JsmsU/UWqCMkSTL0r0a\nfEcF0Mc3YZ+sjXkThlH529y+DZlun45es90mTUubYb1mP/FrrutqnWGn+sayFjcZz+pjmiapVIpi\nsUg2m62ptNvL/Q6ztSCg//C1eei1117Lzp07gfKF8pa3vIW3vOUtpNPpSm2AfiRwaW0shFCQRRt1\n227cYuOKywC6zIOu47hixenpaBoSBQVJZDRMaXo7pWOvtl1NTSSWCR49WpeSDjS7lehjo8sET/XC\n1tapztLRq8fUoEpzU4TC6APv7Gr7Af6iKAqxWAzXdSkUCqTT6UoMUL+1shhkK9WwpMFvBHy18Hjm\nbqitUxONRvv6IAyShWdgJpZwHGEInJPH0SONT3Ph2ET37yd/+Ahho+EibVEUAUKrbC9+4S7m5mZx\n060baynGcpeUqiu1KemLSCEQ9RWX48sfENzi0jm4PNurPWoX3c2jt7weY/vOrvcR4D+KolTaDHjp\n7f3YysKvMUop+0oMBnTOuh/V6roa/cqgxPD08zGoR5naDoqGc7p1u5LIzm2UzpyG+OjKdiQq/ynv\nt5AhccN1oLS2GanucoGsNHivaie165vLRZzMl113IhRCdJkqDyDa9PmqLGdaJN+6dkUGA9YGL80/\nGo2SSCTQNI1sNksqlSKXy1WyaQMGm/p70iDN++1Yd8EzCDSqtBywvoip7eXqwemFpoHLALoogqoh\nIytLTxfSRdQJFTU7R/yWNkU0s/N1G2qQkl71WT2mufw9d6G8zciFXaSjV6F02E8r/hu/iTayQoEY\nsCHwihrG43Gi0Siu666qlUXAyhn0rLCNhO+CJ5vNkk6nmZ+fZ3Z2ljNnznD+/HmklJw50/1T6UZg\nkFxag4KIJZH5PGLzNK7W3FUjSkWi+67ETrV2QTVd33XAziPrJhCjMEfk+hubr5fPIKJLWVHa2Njy\nlPTKwssnJ13Yte9rWkXwGLEu0tGrd9NBTWY1OUriN9oXGQxYzkYUEV7ZAK+ooa7r5HI5UqlUUNQw\nYODwNYbn9OnTvPvd7yYej1dqdOTzeS655BIefvhhPv3pT/ORj3zEzyH1hEDwbEyk7aBu3dEycBkg\nvHsHZ77+OMbWMSh1eRwdG4FEWhHI1VpoLM2meMFF2C/9suGq2vgm7MVYH2tLi5IMDQoCqjioyRGc\n2XLquZocwTl3trx4B93RG+7Gaf/dk2+9H8XqIrg5oMJGf6oWQixrZTE/P9+ylYVfIs5PK0g/x5N2\nwkYU3n7hq+CJx+P89m//NtFotFIe3hM+sViMe++918/h9IwgS2v9aDU5icQYiBLO8SNNA5cBDLUE\npVL36emhCGKx15WjW2h1gkdIl/iWceZSKZwzp5atrkWjeBLDGB2haQfSJt9PHx+vCB4lEsU5d3ZF\n6egV7NaBzvq2HURvecPKth3QV2iahqZphMPhSguQTCZTaTipqkuPEH6Jg0EVIeshQAb1t2yHr4In\nFApx5513Mj8/XxEIZ86c4Utf+hLT09Ns2bLFz+H0jGYxPP0WtAz9o/47uWDF1HY4exjn1DHYs7P5\ncnaB8JVX4jh0lZ6uVBXqU8wmBQ5LBRJXXMLsj+aRdSnnirZkudGi4WUp6UsbaSJ4kvFKUpdndbG2\nboYzhzv7AnXIYoMUsSpG7v9XiCB7pS/olZXCS2M3TRPHcSpWH1VVMU2zb+aLjc6wChC/8VXw5PN5\n/uRP/oRvfOMbFItFVFXFcRwOHjzId77zHd73vvdx3333+TmknjAoLq1+FGitEFPbkCdehEIeaYQQ\nTQoQAoR27WD2B/9AtAtvjRKJV71oLgSU/AKxG29g/oknagoJKlXj0XTRMCUdaC54olUiazErTKO0\nIncWALlMeV8NzgHrNfsJ77t6pVsOGAC8ooahUKjSJ81xHPL5fCUWKGDjM0hzfLf4eoYuLCzw1a9+\nleeffx4pJZqmcfbsWd74xjfy4x//2M+h9JTApbWx8BpYSkWDQhG27aIkdHSaCx7LBPf8ObhkL8x3\n1pJBVFUOb5cVZeRTxG6+lYXvPbH0ZnquHJ8jXRS31fnTRPAYVe87Trl5aIfd0RviuijhMG6mrteX\nUBi9/1+tfLsBy+jnm47XysIwDFKpVKWVRbU1qJ8tFoMewwPDa1Hy1T5tmiZXXHFFxbID5WKEr3nN\na4D+nQQGxcLTL3iCBqg8aebz+UoGoNeR27ZtnJKDOrkF2UaQKnae8GWXddU9XbGWLCzCKbRd3rTn\nCV99bdU6Nur4ePnvZinp0NzCoyyJLFksELlgz4rS0atp1E8r+rpbMXbsWtV2A5YzCDcdT+QkEomK\n5Wdubo50Oo1t2z2b0wdZhKz3dxvU37URvgctf/WrX+XAgQM8/fTTSCm59tpr+Z//838C/fvDD0rh\nwY2ElLIibFzXXbLaLP7fO1ccx0FRFNTFBpZeg8rK5+NbEE4W9+xpaBG4DBC5aC8LB56n06LLwjSB\nssAQTgmpmYhSa+ETCiuUdu2leOhlALSRUQRu6wypZoKHIiIUQuZyOOkFjOlN0EI3dYISqWtAapok\n7/2Xq9towMDi3ayrrT5eK4tMJtO3rSwGmfUWWOuJ72fgl7/8Ze6++25+8IMf8N73vpd//+//PV/8\n4hf9HkZP0TQtsPCsACkljuNQKpUqmSC5XI5MJkMmkyGXy2HbdkXgeKXwq1uUWJZVSZlVVRVFUWob\nNG7egYBy4HIbDAPyhw6C3pnkUeo7lofa94MTrkNs52aUxcJ9asjC2twiJb28VtNP9E0TADipOcTC\n+bb7b4cSqq1ZFL/zN9FGx1a93YDhwWtlkUgkCIfDlEolUqlUz60+AQHd4quFx7ZtPvaxj/Gzn/2M\nWCzGgQMHePzxx7nyyiu5//77/RxKTxmUGB4hRE/Ly3tWmkaWGm8/nkDxrDTe39VWmtUgxqeQh34G\nQmkbuKwUc1h79kLE7Cg9XWgqVB12aVqIDuoXimKO5DX7mfneD1BwMUaT0CK+qJmFB0AfTVKaS6En\nY8j0fNPlOkUxl8Semhwh8aagyGDAyvAeUnRdx3XdSud2KWUl1mcjWn38rvkT4B++Ch5VVXFdl1gs\nVlPYSq9/Uu4zhjmGp5WgqTZ3K4pS+dfI9bRWCEXFtR3U7btxNRO1heABiF5yIblDr3aUni7qWzG0\n6Z9Vs2g2RfLmm5l98h/RolOQbyV4mn+kxyIU4/HF7uiHO95/03FVZdok77mvJk4pYHUM883Na2VR\nnd6eSqVaFjUcJoJu6f7gq+BRFAXTNEmlUiQSCWzb5uMf/zg33HCDn8PoOYMueFrF0ngXT7Wlxpu8\n6t1LvcaLkWq3D4mKMj6Bm55vK2RMS2Hu+HHCHTQOX7bbLr+qlpsltm8f2PnmKenQsNKyhx7SEFYI\nDXvl6eg1uyp/CX16O9Fbb+vBFocPT9is501lo4orL329uqih58ZuVNTQY5hv0gG9w/fCCX/xF3/B\n7OwsiUSCt73tbUxOTvLud7/b72H0FF3XG/ac6Zeg5XorTaFQ8N31tJaITZsR+Vmc1Cx6pLU1USlm\n0ZIJMASk2sTEyFr3X9NeWC0wZZZSgwm+lhYuLdVFsczVpaNXoYjy+VouMthNGcaAjcaGvy6r0tir\nLf5eUUPDMDb8dwjoL3wXPFdddRW2bXP69GkeeughpJS88sor7Nmzx++h9Ix+CFruxPXkUW2p8Xzs\n/TzxKFM74NAMzqnjLSsue0Qvu5jCsZOINoJH1NfOsfNIoVTaTXSCQEIoArMtF2qKTgEzGYOTy1tX\nrAi3hHX5lYT3X9Ob7QUMNL2yvNRbfQqFAtlstiKI/GTQ+3YNs7XMd8Fz3XXXkc1mK4FsXkfeI0eO\nYPVpU0IvNmk98SxJzQRNtevJs8zUu55s28ZxHAyj08Ts/kAkRnELRUQ03jZwGcAM66RT823S08Wy\nRqMCiQxFINtl53WrTXfzFpOTQrkAYa/OPlGyGf2Xv9ujrQUEdEezVhZAjbs8oHcM0+/pu+B5+umn\nKzfZUqnE448/zo9+9KOh+tFXSrWVpv7/zVxPmqZ17HrqFxfcSpCuLHdO19S2gctKIYN03XJ6epOG\nmiISLVtn6vdjRhC9FjxtgoPil1+I2DFeu6yA8vBkzXuSBq0jhMD7KqXoKEpQZDBgA1DdyiKVSlEq\nlZibm8MwDEzTDFpZBHSN72dMtXlSVVXe+ta38t//+3+vmC/7lWZCoVsB0UrQtMp6GgTX05qi6Ijk\nCO7cTEcZWNFLL8Y+caxperoSizd8H627jENXKGC0Oe/bCVXdYClhrOp8a/QesoF+WnqvmBj3vzjX\nEDLMboVu8ea7UCiEqqoUCoWaVhb9XNRwvVxa/fp7rRbfBY/ruszOzlIsFhkfH0fXdR5++OG+FjvN\naGQx6YXrKaB7xOQ2mD+Fk5pBj7R32Vkxk3yL7uki0qTIYH2qejsMs+NCh42Qmo5Ue3cZO/Fx/yeF\ngIAO8YSPZVmUSqVKsVKvKKmmaaueIwMxOrj4LvM+//nPc80117Bv3z4+97nPsbCwwAsvvND3hfuq\nL5BqEeNlPeVyObLZbKWKsNdpWEqJqqoYhkEoFKpUEQ6FQpWnF03TKplRAStDTG0H18E5e7qj5ZVC\nGrfYPBBdCTVxQ3URsAyAXhY8stWxbfVZKNZV/Z9WSKAUDaoqB2x8vAfBWCxGIpFAVVUymQypVIpc\nLrfuMZUBGxPfBI93Av7Zn/0Z3/72tzl9+jT/43/8DyzL4hvf+AYzM511qF4J+Xye6667jn379nHp\npZfywQ9+cNXbzGQyHDhwgG984xv85V/+JQsLC9x9991ceeWVPPnkk+RyORzHqbRF8ApsRSIRotEo\n4XC4pi1CdaxNQGd0E3MkrDCy5KCMTiCNdjEzZcK7dkCisQAQocYF+YTdvoloDZpRdie1bEvRSvBE\noFfm6UgCqQ+epXUY8ctKsRGsIdWtLCKRCI7j9E0riyBLy198t17v2rWL2dmlHNwTJ05UApjXCsuy\n+O53v1vp63LTTTfxwx/+kJtuumlF23v00Uf5oz/6I3bu3MmePXvYs2cPmqbxu7/7u+zevZvdu3dj\nmibFYhEp5cBlPfUr0hUoU1txKaEWs22XNxNhiuF4w/R0xTDwGodWI9wSUrcQdqtKglVj0vRyh/NQ\ntHl2V6u5yQwhWxQm7AY3MdmT7QQspzqpIKB7OrlJ92sriwD/8E3weCfrLbfcwnve8x7uu+8+SqUS\n/+k//Sf27t1LLBZb0/2Hw+Wn+mKxiOM4jI6Ornhbv/d7v8f73//+movnda97HXfeeWfNcr3uTbXW\nDHKWFgCGhbA03PNnOgpcVgsLuG7jOB6h6yCXCx6gbHXpUPCgGWU3WCjSYqEWE71htg1q7hSZnOjJ\ndgIC1huvlYUX69NNK4thtoAMOr7JXe9GWigUuP766zlx4gR33nknN9xwA48++iiTk2v7dOm6Lvv2\n7WNycpJbb72VSy+9dMXbsixr2ZNCcIFsfMTkdhAKTqpVlb9ajMlNDYOKRYvqyNLoop6UpoFTArNF\nz6pW55Zhdt3SohluIHjWlGCOWB80TSMSiZBMJjEMg3w+z9zcXKUG3HqyHg+YjQrNDgu+WXg8gfDh\nD38YKHdOL5VK6LrO3/3d37F37162bdtGLBZbE7Ojoig888wzpFIp7rjjDr73ve9xyy239Hw/ARsX\nMbEVTr+MMzcHkc5u7qFkhPToFJx+tXZbrc5RpYvLStXALbVPTW+GpvWkh5Y0LAgnIJPpwdYCAjYe\n9UUN8/n8hmhlMUyCY73xPYbnmWee4Qtf+ALHjx9HSkkkEuHrX/86l19+OQ888AD/4l/8izV1byUS\nCe68805++tOfBoJnyBCqhuuCMjGFNC1EoX0cj1JYQBrmMiOKEC1kRqvP6pCKisBBtkpNbzUhqir0\nQPLIRGDdCeiefnWBq6pKJBJZ1srCMIzApTXA+CZ4HMdBVVU++MEPcvXVV/Pud7+bXC7H1NQUBw4c\n4M1vfjO/9mu/tib1eM6dO4emaSSTSXK5HN/5znf4yEc+0vP9BGx8pKugbJrCLWZRaS94BKCPjFKq\nrz/YLH4HEKXG1ZkboijloOWV1uJRGlROXgEyGQQsB6yMfs4Ga9TKAmB+fh7LsgaygekwCzrfLTxj\nY2PcfffdXHvttZX3rr32Wm688Ua2bdu2Jvs8efIkDz74YKUuztvf/nZe//rXr8m+qhn4IOANQNe/\nbySO4qRxF1IdBS4DmMkwTnIcOXeu8l7Lzuh2AakoiE4C1r0MK0Nv0Xi0SXClYS0afyRSCMQqzrVA\n8AQMO14ri3w+j2VZlSwvr5XFWtRCG2bxsR74JnjUxSDPj3/84xiGwcLCAsVi+Un4oYceYvv27czO\nzmJZFqEmNU5WyhVXXMHTTz/d0202ot9P3n4TaCv5rZWp7XD8FzipWfRoZ1YVtZhGxkbAEzxCAad5\nUUIhQFpRyM53MCBRzm5XVAjHIJNqsMEm61bX7tEM6LYG0CJSUZHxoOCgX/hxjfX7XLTeeCLHKxw7\nKK0soH/dkL3AN8Hjui6KovClL32JH/7wh8Tj8cp7p06d4q//+q954oknuPLKK9m/f79fw+oZuq5j\n23ZQc2eDI0Y2IV91cYsFaNMPvbKOlGijS24tEYu3TYySZhjRieCpNPZUmgueZnuzqlLZVyN44uNl\nwTXEE+F6EAiSjUe9GKhvZeFVze9lK4v1oB/H3At8r8Nz6623cskll1TUcyQSIZvNMjIyws0330wi\nkfBrSD0lEDz9g5QK6vgUUpcdBS4DGPEwJd0Eu9C8cWg1endNRBECmrWraIa1ZAmVqr7i7PSg/k7A\nRsdvq0S9IGhU1DCzmNG4mqKGgSXOX3wXPFdddRXZbJbnn3+e8+fPEwqF2L9/P6FQaM2LD64lnuCp\npt9cRMOCREUZHcPNzncUuAyg2RnEps3IE4dRwq3aQCzS9SQmwOjSlVudyq6t/FKWQYXlnjIs1/x6\ni5D1witqaJpm10UNNwL1x20jj7XX+CZ4PCV76NAh3vOe93D8+HEuuugi/vmf/5nbb7+dP/7jP2Zi\nYqJvFa+maetexCqgM0R8BJE7jztrdxy4LKSLOraJ0onDTfto1dBhhW0p3UXLjIRm1sFm10N1Zlc3\ntX/qxxBYeHpOP85hK2WYvms1jaw+XpNoL9ZHbVGgdD0Z1mPme/PQRx55hNtvv51nn32Wr3zlK7z8\n8sssLCzwzW9+s2a5fqORhacfGYanUzG1AyQ4843iZZpjxMtCR1jtKyl32kurEjcj6d5Koy4tL1c4\nscpwArqpDB0QMMCs9IHbs/okEgmi0Siu6zI/P19JzhmGebUf8D3UXNM09MX4hmy27E7wUv76GU3T\n+l7wDIvqF+Eo0pVdN93UnDxidGKxcWibfUgH2YmLyqvnI11Qm42nyXFRq95XVih4AutOQEBP6aaV\nxXp1Sx9W1iVo+bOf/SwLCwtcffXVfPvb32Zubo4rr7wS6N9uwoNi4RkWpNBQxsaRbr7jwGUhXdSJ\nzeXGoW6LOjweVgSKudbLuFWCR4BUtdY1fhaRUE5prwxuZdeNG9TfGUj6NTSgGf34fRoVNaxvZbGe\nYxtGfFMXiqIgpeS3fuu3+PM//3NSqRSf+9znGBkZ4dOf/jRXXXUVruv27YEwDGOZeg+ClteW1fy+\nEg0lkcRVu5t0tHikZePQmn20cRW5WlVmlXfuhxtkgDW6JKxIzbUilZVdN0HBwYCAtccraphMJrEs\ni0KhwNzcHMVisW/DOPoRXystCyHI5/NMTU3xoQ99CIBSqcTs7CyKojA21r/FzwbBpTVMiNFNkDqO\nW+g8cBlAF3bn4qKdm0mvEkSexSgchYWZ9tsO1WWKreBBQeoWRPqzDETA+jOID3NrbUkSQmAYRuUB\nOZPJYNs2qVSqYg1a64f+frSW9QrfLDye9eMzn/kMO3bs4JprruGqq67immuu4cILL+T//J//U7Nc\nvxG4tPoLMTENUuJku+sOriCRVqf1cto8uVVnWXlurIbbbjA5dTyG5gTxOwGrZVhvnL1AVdVKAcNQ\nKIRt28zNzZHJZCiVSgMpKNcb31tLvPe97+U973kPqqqiqiovv/wyX/nKV7j44ouB/r2ABsnCMwxP\nAEI3kChIwwS6q1BcTEygpU6330eL9hMAUlsSPILFIOpOM6bM2uVWMjUGgmdtkFIipaRUKlX697mu\ni5SSXC4XFCcNqKHa6rMerSwGfa6vxvcIYU/VKoqCbdvs3buXUqnEt7/9baB/09INw6BUqg027bcY\nnmE68WExcDkxgjS7s5aU9DBOtAP3q11AtnJraXXVmBWtcS2eRoeluuggrKgtRBC/s3KklLiuS6lU\nolgsks/nyeVyZDIZcrlyoLpt20gpK3OeqqqVdGVg2XwR0BhvDh3E+alZK4tEIkE4HKZUKpFKpUin\n05XzqZf7GzZ875Z+7Ngxnn32WTRNw3VdZmZm+Kd/+iduu+02oH9Pal3Xgwms31BMlGgEt5TvuOIy\ngBQCe2Qzavp8y+WEABmKQWau8QL1gkdVO6/Fo9cLo+4eFMoNQ8e7WmfY8Cw11Raa6r+FECiKsuyf\nlJJ8Pl/TBNlbJxKJYJom8/Pzlad4y7IwDKNv575BYj2s243216ioYTabRUq5qlYWrfY5DPjePPTp\np5/mox/9KNPT00C5Bs/999/PvffeC9C39XgGyaU1LIhNm+F0GrdQ7CpwGSRFI4yhWyhtCgxKM4Ro\nJnjUustPqLWp5ksfNFhXXbaEVFSE21kMnIyNrbh2zyBRLWqqBU29qPH+71mnhRBNbxrtrNTe+olE\nAtu2yefzleq8g1CTLKC3VLey8NLb+6mVxUbCN8HjqdG77rqLu+66y6/d+kYQtNyHjE7A6Zdw7VJ3\nzl0JrpSUxrdjnHyx9bL1VpzqzSgqNdE3ikAoAqkZiFKxdof1NHq604z2dX+8LTZwZ3mT5qDFcHlm\n/GoxUy1wPPHiWWi8G4gnTNaK+oydfD7P/Pw8mqZhWdaqOnH7cQwH7TxZD7r5DYUQaJqGpmmEw+FK\n5/ZsNothGB2J5WE/Zr67tBzHQVVVPv/5z/PUU0/x3/7bf8O27Ur15X4lcGn5z2pjpIRQkEJDmhbY\nxfYrLOLtsRRJoCFQWoUMt5pbVBVk9TmzKGIicUida75/oTQWaJreheAZvIDlZu4nz+JS7XbSNK3y\n90a4AaiqSiQSqdzIqqvQ+5GqHLB+rOTYeq5Qy7IqDUy9ooaWZQVWnyb4Lng8VFUln19yB/R7YFqz\nbunQX6raExH9Mt7VIhUDJZ5ApksdV1z2JI8tBfr4NpRzrzZftJWLSVGX0tFhSRyFonWCp+5YhKIN\nj49U9Zb6qmbZPhU8ngvKcZxl1hopZY2IqU6QgP6YW7wbmdeJ2wuGNgwDy7KG0t3l53zUj3NftdXH\nC6DPZDKBi7QBvgse78e/6KKLKoKn3607UD7pAgtPH6JZCMvCzRqdBy4vinMpJaXYGHqm6sFNAAAg\nAElEQVQLwSNKLVLem02sVn0PrjoLUijSeL36mKAmyHAcOunztU7UBwtXW2yqLXpeaQvvabZVXE2/\nUR20Wt+WIHiCD2hEJ60s+lHQ9ZJ1cWmlUil2797Nzp07OXLkCECl9kAymWT37t1+D2vVBDE8/YmY\nnIajM7h2ZxWX3TobiqMZOJER1Mxs4+27DtIMN7YeNZt4zDa1eJoVHexU8GyAdPSVZkB51dp1XUfr\ntrt8n+K1JQiFQhSLxUrcRi+ydQLWl7USINXnjG3bFTepruvLwgCGSQD5nqX1/e9/n9tvv53p6enK\n00s2myWRSFAqlfiN3/gNPvGJT/g1rJ5hGEal/kZA/yCiCcr1kzu8adSJipLjYo9tbSp4AKQV6cxd\nJheze5alnNdNSE0EUcuaP1X41TB0LTKg+pnVfqfqJ3jP3ZVKpdB1vRLkHBBQTaPAeCllTSuLYcL3\nbunbtm3j3/7bf8uv//qv84Y3vIEjR47w2GOPMT4+zu/8zu/4NZyeo+t6paBYQH8hFQNpmsjSQvsY\nmAZWFNcI4ao6SrPKynqHk4r35LXM517n0lomiLyxdSbaehm/s1EzoAYdTdOIRqM1lXkVRfG1C7df\n7hE/i+UNssvHc23Ztk0oFKpkeU1OTg7sd67HN1uod9K++uqrvPjii9xxxx2oqsru3bu5+uqreeyx\nxwD61i3ULEur36otDyNSNRHRGJhNYmNqll0ueByhUprY1XylJkGDsl7IeAHOapvJp1mqu2h/OUvd\nhHD3DUO9QGHbtiuBkdlslkwmQyaToVAo4DhOJXXWNE0ikUgl88grrqdpGqqqDvQE2+567+V8UF2Z\nt74L9yDNO4N6vqxXoUPDMIjFYiSTyYH9bRvhu4VnbGyMdDrN17/+da6//nqOHj3K1772Nfbv31+z\nXL8xKEHL/SbQejJWM4ywU7iK3j6Op4HbyCmVcKwWYkk2KURXP/ZFwSOEKBcsLCy6SOu/otZEQHUi\neBITTWOHvN/Sa1w4aBlQftLu9+j171XtuiiVShUR6lXmXU1Nn4DBZdjiv3wXPPv27ePRRx/l4Ycf\n5qGHHiIej/P2t7+dD37wg+UB9akfOgha9p9eiTMxuQ3SJ3Edt63gaWThQQhc1aA0shlt9uTyj50m\nNX7qhVB1ino4BoUmMWHNJqkO7mducqKp+6la8CiKMrAZUIOOpmmVDC9FUchkMjXxP8FxHF4G2WXX\nCb6rCyklr3nNa3jiiScq75VKJc6fP4/ruqiqyujoqN/DWjWB4OlfhGGCojcWM/U0WaYkQU1MNBQ8\nXhPRZW0f6l4L6SIRCGS5Fs/smWWbkqqGaNh+ojOyZhw3l2uaAZXJZLAsa6gnxUGhWU2foD5Lc4Zd\nEAw6vgueM2fO8J//838mEonUdH/1ChHu2LGDP/iDP/B7WKsmiOHpb6Rqgmkhc20MJaKJO8l1cYWC\na0VR8unaVYTAsaKo2VTlPVcoiEauLlUDx25Qi2eRULTp0NxmrjNvjELBmphGtGh3ETB4NKvp0y+9\nmAZZhAzyd9uI+C54TNNk165dFSuOVzysVCrhui7j4/3ZwTloLdHfSNVECYchF4FCpulybounYlcz\nsce3Yx77xfLtGxZUCZ6mmVuKWhY8xtLnUsqKCHPNUFO3W7tpU8bHA7Ez5DSr6eMFlXcT0xHcrPuP\nYT9mvgueZDLJBz7wAWZnZzl//jxQDmQeGRnxeyg9ZVCCloeWSAKRP4+rtglcblHrpuQ6KKqKKxSU\nemtLvSusSWq5FAqCsrDy9iSrum+LZkUHYXkQdP3HfdpOIqD3eDE9XpCzl6LsNaHs11jKgIBW+B6i\nLaXkq1/9KldffTVvetObeOMb38hdd93Fk08+CVBp9NdvDEoMz7C64MT4ZqQQuG6bp59Wxf0koJk4\nEzsb7KB2u67apFbK4nJKVbuV6qdu0czVtbiqVFt0Z98AFZYDNhaeuysajZJIJFAUhYWFBebn5wcu\ntb0T/LaADLvFxW98l/GnTp3iYx/7GE8++SQTE+Unzu9///u8//3v5yc/+Ynfw+kZgyJ4hhWhKKCa\nSMOAfPPl2lUzdhQNrCjLZIesC1huYuERyuIlqZR7sC+2n61ar00RQ00vu8QaEFh4hoeV3Ei9mj6W\nZdU0ofQCn4cthXkQGXaB5fsZrKoqiqIwMTGB45RvAtPT05XP+/VgBEHL/Y/ULDDMZWVvapZpU+vG\nKZWQroMdG6t5X3WKNdsVzaolL57+QtC4SWg7V0OTGJ2N3jB00FmPOWClc6nn7orH48RiMVzXJZVK\nkU6nKzWa/GTYb9JrybD9rr5beCKRCDt37uTDH/4wd911F3Nzc3z5y1/mlltuAfr3AAQxPP4jhOip\nC1RqFoppIs0IokngstNurhcCYUZwRreiL5xfelu6SLMqILqTFPhwHHJ142iTSixVvWHwcuDOClgJ\nmqahaVqlFUE6na6ku/frXL2RWA/xOMz4buGJRCJ89rOfxXEc/uAP/oC/+Iu/YN++fXz84x/3eyg9\nJXBp9RdesT2vXUKhUKBgRkC6lFqELat6+yynklBw3RKuXtvkU1YHHHcieLzqzdWTVDu3QpPtuonB\ncWf1+6Tdj+OvbmHhZXhlMpnKNTQorFerh0He30ZiXULx4/E4/+E//Afm5+dxHIdIpH0Po41OIHg2\nJo26dHt/AzWF97SRTTBzCKGbUGiyvSZ1eKpxHQdUHXtiJ+bxF5bWrXJjSVUFGtwoqm+G1qJgWpyf\npGa0b5fVRPAEFp6NRb/edKpbWOTzefL5fKWmj9exvV+/W8Dgsy6C56mnnuJ3fud3WFhYQFEUxsbG\n+MQnPsF11123HsPpCYMSw9Nv44UlUdNI3LTqAdVoYpZGGIx0g70s0mHgptQtHOniIlC86J3qgGeh\nLA9khtp2E8ai4PEORzjWfr8NgqqlbkKk+4ahAQGt8NqPRKNRCoUC2WwWKWUlyLlXwqff5qONzLD/\nlr4LHtd1ef/7388nP/lJbrrpJgB+8IMf8O/+3b/jxz/+sd/D6RlB4cG1xRMv1YLGcRyklJXeT0KI\n1feA0kKgm1UZUnXj6HBbJVeiOyWc8W0o515dfLdKzChKQwNPjeCpD1BuVYOnerv1m2zRMDQgYLU0\na2FhGAaWZfWkhcWgWo2GwYW2kfBd8Hh1Hm666aaKW+G1r30t8/Pzfg+lp2iaFri0Vkm9qKn/2xM0\n1RYb13V7GkApjRCqroLZpOJyBx3Jve+CEaKkGeiLgkcpVZ0fzQRPdX+tyo1i8amsE8HTYHxBOnqA\nH1S3sHBdt+LuUlUVy7I2fAsLCDLCBp11cWmNjY2Ry+UIhcppssVikd27d6/HUHpGEMPTGdWippEL\nyhM13v+r3U/1E5HXi62XE5RITsDsEVzVRGXlggfKxQWVYgonnETNziGcYjmLqkmdHKC2Y7oiyhYl\nzwxttKnBA8gGP0UQvzN8rPeNW1GUhi0svMalQU2f9SFwaa0DX/rSlyo3OSEEtm3zN3/zNxWXUD+W\nNQ9cWkt4oqZZwLAnXjxLjffk1yyupt2+eomwQuVGooYB2Qb762J8JcfFEILS+DTqq3PlN8NRWJht\nvpLrVNxpQoAMVcXtNKvdU/MFascnhYKM92d/ulYET+HrTyeiyqvpU+3uSqVS6LpeCXIeZtbbpTVs\n19G6nG1PP/00xWKxIna81GDXdSkUCrzrXe/qid/XT5rV4enXIOBOl+s4A0rTalxRvWCtLlZphJqL\niy4sPCDBCOMUc7iqhuKUkEYIQXPBIwCpaOAunkuRGDiLcT0d3Bzqj5yMj3WWAh8QsMZomkY0Gq3M\n89U1fQzDaHo9+zl/rrdlLGBtWZeZ8Itf/CK2bXPo0CEOHjzI61//ekKhUKVr+jve8Y6+EzyDcpHU\nf49eZkD1DUYENKNh4HI3Fh4ot5pQpUtxfDvW6YMV8SGRzbubq+qS4LEikFmMb1M7EFt1N4fAneU/\n/faA4zfVLSxs2yafz1fcXZZlNXR3+Tmf9PXc1QZvzh5W1kXw/O///b85f/4873jHOzBNk7e97W28\n+c1vXo+hBFAbV+MVEXMcpyJsepYB1S+YEYQqGwcudyt4SiVURcUxF2tNeavXd1Ov2UeV2DctSKfK\nfyud7Lte8AQByxuFgbxWVkF1TR/HcWrcXV7H9kH+zQJh7D/rIngOHTrEm9/8Zv7kT/6Eu+66i9tv\nv53Tp0/z27/9230Ryd+PdJoBBUvZFs2ChQee5DiceQlXt1AbCZ5u5ikhwAwjcguUkptRM4uxPG6L\n6rTVT2CLrjVphjo7DtJFIhCLg1yJhScw66+e4PfrDlVViUQihMNhCoUCmUymEv8z6ATnin/4Knhc\n10VRFB544AH+7M/+jDvuuAOAb3/729x+++285S1vqXRQHyT8UvK9yIAqFAoIIYY6mFCoWjmOx7CW\nfVZ2RHV3PEtSQQPsxCbU1OnyNlr1AKuOE9L1spsqFO1s7EKUG4iWishQ9w1Dg8l37Qme7JvTqKaP\nbdsoioLjOH0X6rDRGPaHGV/vap4F4dOf/jQXXXQRAPl8ntnZWb74xS8yPt7f2SSNJrJeBy37mQE1\n1Bhh0BtVXO5e8Liug1R1cGykGYaIU7HANKT6OKlKeX9WF+1XNKMseAJ31oZlEK7Ftbx5Vtf0yWaz\n2LZdaWFhmuaaeQKGXRAMOr5GL3k3/v/1v/4XP/3pTwH45Cc/yTvf+U4ee+wx8vm8n8PZ0Egpaxpb\neoF9mUyGbDZLoVDAcZyKNcY0TSKRSMUs7GU+aJqGqqpdXcTBEyhIM4rUlOWhxSucCx2tbJq3x7cj\nI/E2S4vaP4VSjuXpEKmVG5y6QcDy0DJIN24vyzOZTGIYBrlcjlQqRS6Xq2SE9iODdIz6hXURPE8+\n+STT09PMzs7yzW9+k//yX/4Ln//85zl8+HDNcv3GSmrIOI5DqVSiWCxWRE06nSaTyVREDZR93J6o\niUajNaJG1/WuRU2vvsN6s2bnihVD4CyzrKx0b+7iio6ilN1lLVnaixACzMbutaaoZcETWHgCBgkv\npicejxONRnEch1QqRSaTCWqgdUi9yOq3+X61+OrS8m5OpmmSTqd5/PHHufPOO9m/fz+hUKjvT9qG\nzSgX3U+lUmmZ+2koM6B6yFr+PiI+AoqOa4RQ89WurZXvU+ohhJ3DjSZQCgstFqx7bVjlWJ5OUVWk\nZkAkuaJxBqwNwfXcGzyrdnVNn4WFhcpDYauaPgHDja+CxzsJ3/CGN/DRj36Up556is9//vMAbNmy\nBb2bSb1Ljh49yjve8Q7OnDmDEILf/d3f5X3ve19Ptu04DkeOHEEIwac+9SlefvllHnzwQS644IKK\nyKuuWVNduya4MDcu0oyA0Ts3q6vq2NKgYEQYk4dQig1KOcPylHXD7KjoYGV1RYPkZNAwdIPRr5br\njUyzmj5e4HO3NWf8dDMFLi3/WZeg5Q9/+MP85Cc/YXR0tCIKvvCFL1SWW4uTQNd1Hn30Ufbt20c6\nnebqq6/mtttu45JLLlnR9n7wgx/wyCOP8NJLL3Ho0CH+f/bePEyK8l77v6uq1+meGYZ1YIbFgMoi\nm6Im/lyPiIgRNCEaTKIh6qUmJMEgoolRTETIiTHRGN+cHD2JiZfRN4sRYzReGuQ9x+SAwQgIoiCi\n7MsMzPT0Vl3L74/mKZ6uqe6u7q6urZ/PdSEyPdPTtT1113e5v8OGDYOqqnjvvfcwbtw4tLW1aVEr\nMuCS4THCcSBYONS2llvWQXUYutVmhDgVu0NDMTJ6AINSH4LP6USVvmU9EDScgl4UgYfa7O0GAIb7\nsbP71MwIC+LpI0kSstlsQ3n6mKXRRZZjvcdnn3229v+kk6meB6K9vR3t7e0AgHg8jgkTJmDfvn1V\nC54RI0Zg4cKFOOWUUzB27FhEIhFccMEFeOSRRwq+r5FPLq+jRuLgeK7A16ZayXNAHYHD2VaEA3K+\nI53jsVsZgT3hYRgd3Y+21C5wUvb4r9BFeAIBk6aDx+F45rDMsAU3rm+BQACBQEAbXEo8fcqNsGD4\nH9eYrdh5Eu7atQv/+te/CkRXpYwdOxZjx4618FO5A47jPN35YClNLYAq5QuXM0Yt6mbgsB+dOJht\nAa8q4DlVG40FAConYJfaiY+j7RjN7cWA5EeFE9MBKOEoeJSYsK5D5QO+HBjKYFQCz/Naaot0u9IT\n2408feye28WwF9cIHrvo6+vD/Pnz8fDDDyMeN2fmVgmNHjL0E1wkBgSjUCIxrXC5ojWK47BHHokj\n4omJ5wIP5OR8xIhueVcQwIfqaASaOjAauxHh0lBCUcgcD1lWIASCUOUcOEUGD4CHAk5VwEMFp8jg\nVBmcIufTYYEwODYwtKFhN9MT6EdYZLNZzdOHTGx3qnPJ7ntFo9+fbF0V9+zZg+7ubvA8j0wmA1EU\ntSr7XC6Hs88+G21tbXX7/blcDp/97GfxxS9+EVdeeaXl7y8IAmRZLnAp9uK0dMYJ1HAcXChNf8Xc\nD3I8PpJG4miuUFRzx0WOwAOSQSBNQgAfYAw4FQjmZLQGM4gGM4CSBcBBCEWRy2UB8FrDmBAOQQhF\nIATDEEJh8EzsuBK7bzR+ubFZuX4KgoCmpiZEo1Et4qOqqhYJajT8co6YxdaV8Yc//CFeeOEFtLS0\n4L333sOgQYMwdOhQfPzxxzh69Chee+01XHjhhdoICitRVRU33HADJk6ciMWLF1v63oRgMAhJkhp6\nLIPviMShCt0n/m1m8eV4fJgbhR5J5+FDrS08D6BI5pA7/rqoBHA4GwcQP/51BS1qFrGAiAFRBUIo\nDCEYAsc17vRjL8IegCrH6huzfoRFNptFOp1/sJFlua4dwwznsHWlfPjhh7Fz50584QtfwM9//nPs\n2bMHb731Fo4cOYLbbrutrmrzjTfewFNPPYU1a9Zg+vTpmD59Ol5++WVLf0cgEEAuZ77WglEbdkTP\n1EgLwOdnaJmqbOIEfCCO6Sd2CMpx1VOyBpkzdvtRwaMnF8X+dAvC8VYEQhEmdjyKH56s/SDcyAiL\neDyO1tZWAEA6nUZvby9EUazrNjqRXmIpLRsh0Y+NGzfioosuAgAkk0nEYjF88MEH2Lt3b91+97nn\nnlv3YtxgMMgEj9+ItQCqDETiQDHfnOOonIAd2TFIKsUtCEjBcinBw6H0DbGB1yvP4tcbjZ+2ifij\nNTU1QVEUzdOHFDlbnXVg2I8jxoMXXXQRfv/736OnpwennXYaXnnlFQDApEmTCr7Pa5CUFo3Xani8\n9nnrDRcIAuE4lGgWnCQW/T6VD+C9zBhklOJ1ABwASeYgCP0mdBl+bzEq6VBnMBiVQUZY0BPbiacP\nKXJmeBNbj5wgCFotzdSpU/H000/jH//4B6ZOnYqf//znmnmfVwUPS2n5EzXaDC7Vl594boDCB/Fe\negyyaqjMGwGixCMqKCUVTbnTnwkeRiNBXOqdQD/Coq+vzzJPH5bSsh/bpSrZ2ZMmTcINN9yA7u5u\nDB48GLFYrOB1LxIIBDw/D4xhQKQZqnAInIFvh8KH8G56DHJq+SJHFUAmxyFaYzMIi6wzGPWhmCAo\nNsKilKcPw304Epvr6enBN77xDWzcuBE9PT1IJBL45je/iZtuugnt7e2eVaGhUIhFeHyIGm0Fp8r5\nEQ8UMh/Gu6nRkGC+oyMjllcrHEo3g3nw0mgo3JAS9uoa6nb0nj6ZTKakp4/bcMO56SS2PivKcn5G\n0E9/+lMMGjQIb7/9NhYuXIif/exnaGtrw1NPPQUAnnX6NarhYfiAaBzgeSjhE546EhfB1tSYisQO\nAKSOC55y606pKh+W0nI/br7pWUWjiypBEBCLxTBgwAAEg0Ekk0n09vYik8m4Wlg4ZbLoBhyJ8Iii\niMGD89b3fX196Ovrg6qqnhcLRl1arAi4vtixbzmOA6LNUIX8+SlyUWxLj4aCysPYWYnPuyyXieDI\ncvHXmeBhMNyD3tMnk8kgnU4jFAohEokUTXc1umB0AkeqAcLhMJLJJACgra0NL774Inbv3o1PfOIT\nALyrOv1Qw+MlgWbneaJGWqAEgshyTXg3PaYqsUO7LCsldzEHhUV4GAwA9gqDWn4X8fRpbm5GS0sL\nOI5Db28vEolE3T19zOD073cDtkZ4SKX9vHnzsGvXLgDAWWedhX/+85+47LLLcNFFF9XFZdkumA+P\nf5EjrdiVbcfB9ECoNT4n8BwHpczioyjFi5M9+jzQcKiqCkVRoCgKJEnS2p0Z/oceYSGKItLptGs8\nfbwaULACR3x4xo8fj9GjR6OrqwvTpk3DU089hd7eXnR1dWHQoEF2fiRLYTU8/kWKDcaB7mhN70GP\nlpDLlKnJCldU8LAIj3tQVbVA2CiKAlmWtRQ9MbMjkdOenh7W0dNAFPP0IS3tjSw+nMBWwSPLMgRB\nwPPPP4977rkHI0aMgCRJEEUR+/btw7e+9S18/etf177Pa7AaHv8SDvEICSpEuYYF6vhpoKokwqPC\nyJCHQ14QFSuHZoLHfvSiRlEU7Wscx2nCRhAEcBwHRVEQiUS0Gxod4Ukmk8jlcujt7UUkEkEwGGQ3\nvgZA7+mTyWS0r9fq6WMGdh9ywHgQAC6++GJMmDAB4XAYgUAA7777Lp577jkMGTIEgHdDbiyl5W+a\nIwq6ktULcXJW56M7HAROhVxkDZJKCCuPXh6uRx+t0f8/Ha0JBAIF/6bJ5XIl/VxCobxBZSgUQjqd\nRjqdtsTIzm78WHRrxzYRTx8gf66Qqe2k8Lme6S6/Ha9KcaRLa8CAARgwYACA/Ak2evRo9PT04B//\n+Ac+//nPe1aJspSWv4mHVXQla3mH/HktKRx4XgXPF+/GkhRWtFwviJAxitqQNAMRM8FgUBM1Vt4s\nSLQnFApBkiStxsOqm56fxIiftkUPaW0nE9vJCAsSDPDrdjuFa4aCTJkyBUOHDgUAT6azANal5Xea\nI7X5Q5G9KkocIqHSwiVXIsLDc+z4mMFI0BCho09D0cLGTkhnD3lYoms8SrU0M/wBOd8CgQACgYBW\n5JxMJi0bYUEwEo6NJqgcFzzkBjthwgRMmDDB6Y9TEyyl5Qx2PQHGw8Xrbiohm+MRCcklBY8kORfh\n8ZLgNSoaJn+AExOw6xmtsQq6xoN28I1Go2xgZYPA87wW5aPTXWyEhTW44ipy4+JTDcWKlgF/h2Wd\nwu79KfBAU0hFSqzt96ZzHFpRuhanVISnnpvt1nNUL2qIr4lR0TCpr3GrsCkHz/NaSzMZWEluhKzA\nuX4QoW+n508x9CMsstmsJoDD4TA7D6rEEcFDFqxIJAIA6O7uhiRJWkrLq7AIj/9pDqtIibW9Ryqb\nf0ortV5lHYzwOAUdrdELHLpoGMiLAlrYeIFKPyft4JvL5frV+Xhlu2vFSxHHSjFzDIt5+pB0l9l6\nL/bQbbPTMjlx//Wvf+HOO+8EAOzYsQM333wz7rzzTqxbt67g+7wGUeMM/xKvsY4HADI5oPS0LECS\n899jhNcFDxEzxJKCTJ5OJpNIp9MQRRGyLGv1LdFoFLFYDE1NTYhEIprYIS3gfoc87be0tCAWiyGX\ny+HYsWNIpVKOzh208wbaCMe5HKTQnZwHkiShp6cHyWSyqtrRRtyntkZ4yAXS3d2Njz76CADw4osv\noq2tDZdffjm+973v4cUXX4SiKJ7MVQYCAc9HeFjRcmmaw1bsGx4BvpicyaOCB88Zj6DwiuDxQtGw\nl6ALnMmkblbg3HjQ5wHx9EkkEhAEgaU9y+CI0zKpOt+/fz/effddfPWrX0U2m/XslHRCqbZ0Fk70\nB00hFTynQlFrO5Y8x5Udmc5xMFRFnIsmrxQrGiZf91LRsJcg7cykzofUd0QiEVbgXCV2r9Hk+qgF\n4ukTiUQKoqVGIyzYPcihGp5Ro0YhFAphwYIFGDp0KKZNm4b//u//xqhRowB4N9RWrIbHq9vD6A/H\n5bu1ejNVHFOdeCkm78m38QCMEqRORHiMampo7xo/FQ3Xg3pFTekbXjab1dqZvf7wyKgM/QgL2tOH\nieATOBLhOemkk/D444/jf//3fzFhwgSkUil86lOfwnnnnQcANatep2DGg41Bc0RBb6aKc5S696tq\niQAP+XoRsVAvwUOiMrIsG0ZsiIhhaajaqMeTtr7Aua+vTxtdQY+48CIsMlEZtKcP6fIjabBGL1dw\nTPZls1l88MEHeOaZZxAMBjFv3jxceOGFWueWF/GD8aAXsXtBjFtQxyOrHDijAh1AE0bFtqhWwVPO\nu4YeesnSUN6CFDhzHIdYLAZRFHHs2DHm4+JC6r1u0dE/0uUny7KW8mrEqI8jW9zT04O7774bR44c\nwcUXX4xVq1ahra0NmzZtwh133OFZRc/a0u3HifOkVsdlID8rq+gnL1MfZHaTqykaTqfT7MZYI255\niiZDKWkfFytTHF5dp4vht+0hEBEMAJlMBqqqore3F6FQCAMHDnT409mLI11aBw4cwFtvvYV169bh\n/fffx0svvYQHHngAZ599ti8Fjxc7n7x6DOwgHACCglrSHLAcOYlDscxtuTOFL0iN9Y/W0F42+qJh\nInTYsa0vbtq/xMeF1PkwI8PGhUT+mpqaGtJCxZEanmAwqH1NVVUcOXIEmzdvRjwet/PjWI4fanjY\n4meO5rCC7lT1UZCsxCMc4sBxKtQiEZ1iGlnKiZBzimHRMP2HpaEYNPqOHi9PamdUDv0QS0d9GglH\nUlrRaBQDBw5ELpfDoEGDcPjwYaxYsQK33HILAFa0zHA/zREV3akKf4gSMJkchxYAAgdIOmFDooGy\nYjy3i4PKioYZVaOf1E5ama2a1G41fo02+3W73Iwjgqe9vR2/+tWvkE6nIQgCli9fjvPOOw8jR450\n4uNYhh+MBxnmiIdrq+NJi8dHJHD9RY18vJhZUTkDvaMiEgnX9LsZ/sfMzZRNai+ECRD/44jg4TgO\nAwYMwOuvv44333wTTU1N2L59O4YOHYpw2LuLeTnjQYZ/iEcqn5yuUiGeVDbvKoS1y4wAACAASURB\nVGi0vvKasyAPvVuPV1yWGd6i2KR2UudjBFvTvAUTdDbP0iJIkoSHHnoIy5YtQ3NzM5LJJJYuXYon\nnnjCiY9jGcx4sHEI8EA0WOGCT9XqqOAh8IBQQsHIBkEkJngY9YRMah8wYACCwSCSySR6e3u16fR6\n2NpWPUyA2I8jEZ5MJoPf/OY32Lp1q/a12267DWeeeSa++tWvevZE8EtbOukq88oxsONJ02iKdzQA\npHPmI5L63clz+aLlfr/r+N+KwkGfVWCCh2EHeiNDfZ2P3SMYGAwrcETwEBdIIB/tCQQCUBQFsVgM\ngHefGljRsv1Yea6QhdWsd01rlEN3uvrfV/yT51+RFA76ZIJHLw2GRyHdPKFQSBM+xKvJTiFixz3B\nSw951eD37TODI4InGAzi3HPPRTqd1oQPx3GYPXu2Ex/HMpjTsjco5zRsduBlSxOA7gp+r8G/jZYf\nch+RlP6vsgiP9/FqxEI/qV1RFG0Nb0TX3lrx6nngZRw5SwVBwMMPP4yenh4cPnwYuVwOsVgM999/\nvxMfxzL8ZDzoB4pN8TYaeEkM2CrxronVODldUbiCQuYTnzv/t2TgC8YEjz/w8pM2mdSey+XA8zwS\niUTBpHYvb5vdOJkabMTj5Jgsf+edd3DHHXdg8+bNEAQBp556Ku6++25tgKgX8UsNj5cg0RpJkvrV\n2OidhskUb6u8azgOiIVVJKqZnA5AljlDc0HyJSMn5wZco3yD324wxM+nqakJoihqk9qZkaF7afRj\n4pjgueWWW7B06VLMmzcPALBmzRosXrwY69ev96z/A6vhqR9GRcPk35lMxnQaymqawwoSJien6z9J\nTuZQbH4oAEgSS2kxKoc8ydf73Cc1IbSRob7OxwojQ7tqT1iNi/9xTPAkEglceuml2r8vuugi5HI5\nSJLkWcHjlxoeJ1NwlQ68zGQyjpqkxSMq0GPue/V7NCtxiBtFeI5/TTSI8LjMBJfB0KALnJmRYXns\nFlhM0DkoeE499VT8+Mc/xmc+8xnwPI/nnnsOEydO9PQBEQRBK3xlFMeqomHA+RBtcw2Oy5kcD6PT\nhWggQ8Hj3cuD0UAQI8N6TWpnVIfT66XTOHbmPfnkk7jjjjtwxRVXQFEUnHfeeXj88cd9OdCsUYuW\nKykaJvU11aShnNy3kWD1k9NTIg/JSPAcL4KWZB76Xq4GX68YHoNMao9Go8hkMmxSO8NRHBM8iqLg\noYce0mzLZVnGoUOHEIvF2EXgIehojVF9DV0kbHXRMOCOJ5Z4WMHRKianp7Lc8WiOrkGd0m88h4I6\nHxbhYXgRjuP6TWp3ysiwGH5PMTXiQ7ce2wUPOch33HEHjhw5AkEQoKoq+vr6oKoqnn76abS0tNj9\nsRhlKJWGIlEZJ4qG3UBzWMXRSienA1BUHgIHgCscI6EXOEzwMNxINTdQo0nt6XS66KR2uwqwG4VG\n34+2Cx6yw+fPn49sNqvlc1977TUcPHiQqVCHodu8Sat3qaJhK6M1XiUeMVnHY3Bq8zwHDirkIt/W\nfxwFuz68iF/XtWqvfXpSOzEyZAXO9tKI67ZjKa2LLrqo4N8zZ87EOeecg2PHjqG1tdWhT1U/3LTg\nFYvWkK8D+RRjIBBouGhNNTSHzU1ONzoDOBzvvKIUj1pgZFj4nnYcAjedq16k3JBNtn8LIUaGpM6H\nntTuZ+Hj9xSaG3FM8HR1dSGdTkMURciyjP3790MURac+Tl1xqmjZqKaGTkMVKxrOZDIIBoOsm8Ik\nAQGIBFVkcqUXE8MxEugvYgoiPLrvZykt70LfbOp54/HqjY1Mao9Go8hms5qRIWDPNnl1vzHMY/sd\nTZZlCIKAOXPmYMuWLWhrawPP84jFYrjvvvvQ2dlp90fyNJUUDbM0VP1oDqvIVGGyraoceF3sp5Q2\nZoLHG7Drq3roSe3Ewbmnp8dVBc4Mb2K74CEhynXr1tn9q22hXhejld41DOtpjig43Fc6/G6kYySF\nQ1j/fdQ36n+m3oKHnS8Mt0DqfDiOQzweRzqd1hycI5FIzQ7OTuJUxL/Rr29H29JXr16N1157Dclk\nEqNGjcKCBQtw6qmnOvWRXEGlTsMsWuOOmoh4uLrPkJM4cDrFUzCMVOVAy54GP9QMF2HnDTQQCKC5\nubmgwNlqI0Mn1pFGX7vtxnaJTCISK1euxKOPPorJkyfj2muvRVdXF2699Vbs2LEDgDtuYlahr+Eh\nokaSJIiiiEwmg1QqhWQyiWQyiWw2C1mWtSecSCSCWCymFfaFw2EEg0EIgtDwF4xbtj8WVsFV0UEl\nSv0HiNL/1s/aYiktRiNDCpxbW1shCAISiQR6e3uRy+UsuWe4ZT1h1AdHfHgA4PXXX8eqVaswY8YM\nAPkurcsvvxyHDx/GuHHjfHHiEWEjyzIURUEmkzEsGqYnebshDdWoztC1wHNALKSiL1v82Bm9ksnp\nK3gK01hM8DAY/eF5vsDIMJXKG2GxSe3FYSktByI8hHHjxmHTpk3o6urCoUOHsG3bNoTDYRw9ehT7\n9+/XTmCr+cpXvoJhw4Zh8uTJlryfqqo4ePAg1q5di//4j//A0aNHceWVV2LSpEn4wx/+gGw2q6Wk\nBEFAOBzuF60JhUIFgofhTZrL+PEYSci0aBThoVqYlcLzgQkeRiNR7sGLGBm2tLRo3V3Hjh1DOp12\n9VxDN4gPp3+/EzgmeMaMGYMlS5Zg7ty5uO222zBz5kx0d3fjj3/8I2666Sbs3LmzLr934cKFePnl\nly15rzVr1mDgwIGYOHEivvOd7+DNN98Ex3G48cYb8fzzz2PevHloamrS0k8sDeVvytbxGCzeqSzf\nL4pD/1vWvcZOHUajYWa9JJPaW1patFqfnp4eJJNJyLJc9ucBf5VRMIyxPaVFKutnzpyJadOmIRKJ\nQFEULFq0SFPkkiTVrT39vPPOw65duyx5r7PPPhvbt2/H4MGDta/NnDkTs2bN6jcElV1M/qdchMcI\nSen/zEGfKrLCgfZe83BjCsMm3BA9cBIyqZ2UEVQyqd3P+63RzwvAwdESZ5xxht2/2nKamprQ1NRU\n8LVgMIhcLlcgeBr9JGsUokEgwKuQlCLHu8iXSxUtyyylxXAhXniA0xsZumlSuxf2nx9hz4sWEwgE\nkMtV4UDnIljRcvWUTmsZL7CqrvWcTmnlZPtHSzDqi5+uLS88zBEjw9bWVoTDYaTTafT09CCTyTh6\nLLyw7/wGmx1gMaFQyHTOmFE7bhNnzREFx9KVPUdwXOFUdHpzJJlFePwIu9mZw8o0TLFJ7cTI0O8p\nH79vnxmY4LEYP0R4GNVTKsJTTJcpKgeBV6HIJ/5NyBWUBalM8DAYNVJsUjspfGb4l4ZLaS1YsADn\nnHMO3n//fYwcORK//OUvLX1/I8HjtigEo36UKlwuplVkhSsQMgUpLenEC0zsMBjWQhsZksHJiUTC\nMiPDYrBoizM0XITnt7/9bV3fnxQtMxqToABEAioykvnFTJKBSPDEv9UigoetjwxGfSDmr8S0kExq\n95ORoV5k+WGbKqXhBE+9IflhRuMSjyjIGAwSLfa8KEo8OO5E3Red0hJZhIdRIXZED/wYoVBVFTzP\nIxwOIxwOI5fLaXU+bFK7P2CCx2KCwaDnBQ9LwdVGc1jFkT7z35/O8QXpLtogVlZ5cFChgmOCh9Fw\nOCWsSD1PsQLnWie1271dbD3PwwSPxbCiZUa8QgPCjMgVFPioumofjsunuZjgYTDshxgZ1nNSu100\neoTKW0fLA7CiZUY8pGpRGTMks4VPi0YDQxWV1fB4GXb9ex9S4EyMDBOJBARBcIWRIcMcTPBYDKvh\nsR+33Ux4HmgKq0j2m5xu/DlzMl/wkl7wkIWURXi8gaIo4DgOuVwOiqJAURTIsgxZlmtOhTDqh9k0\nk35Sezqd1up8zBY4u23NahSY4LEY1qVlL26NnjWHVSSz5r+f3gL9kGeyfDLB4y5UVdUEDf2HvnHy\nPK89/fM8j76+PqiqyvxeTOLGa5tgZGSYSqW0Audy4tbuGh4WgWKCx3ICgQCL8DDQHFFwoFfXqVVi\n7VapzqxiazwTPM5QStjwPK/9CQaD4Hke2WwWgUAAwWCw4D2CwSBisRgSiQREUYQsy55Nh9h5A3X7\nvqGNDInw6enpQSgUQiQSgSD079hkOAMTPBZjFOFxaxSiGBzHaZPrGdVh7LhcfOE+cXqoUIv4gbp8\n3fc8lQobjuMMb8albtAk0kNSHyQdEo1GPSl8GIUYTWoPBAKIRqOOFjgb3X8a8Vxjgsdi/NCWzqid\naFCFwKsF085LSV65hL4kP8ciPNZglbCpBTodksvlqqoDKQZLX1SHlfut3KR2J44ROyeY4LEcVsPD\nAPLRmHhYRU+aWmRKrDeSkp+YbvQtZJo6EzyV4QZhQyKlqqoWfcoOhULagxItfJjRnfchbs3EyDCd\nTiOVSiEQCHgq6u8XmOCxGBbhYRCawwp66MnpJdY3SeYQCChFBE/+b441+BjiRmFDZjGR30PSxKIo\nFhU+pA6EdviNRqMNLXz8Eq3SC9tUKgVZlrUi53p37zFxlYcJHospZTzol4uXYY7miPlFRpR4hINy\nv5Z04ESbOs819qJFhA0RFKIoOi5sSAs6geM4CIKAXC4HSZIQCoUgCILWmk6KlenPqYcugNVHfFhb\nu7chwpZEfFRVta3AudHnaAFM8FhOKBRCOp0u+Fqjnlx24danl3jYfOF3VuLQygOq3P81ReHA8Y2T\n0ioXsSHH22lhw3EcAoFAgQiRZVkTPcSZF8ib1gmCUFCfk81mtaGVRje6QCCA5uZmyLKMdDqNnp4e\ny0Yb1IofH97s3iae5wuMDEmBM3Fw9tv+dQNM8FhMMBhEb2+v0x+jJrzUVebmRSEUAMIBFVkTk9Mz\nYn5WlmzwrbKav1DtEjx2HftqU1GpVArBYNCSp2G9sCHbTm5+xYQNbSZIPjf5vIIgaKMHOI6DLMvI\nZrOQJAmCIGg3M/JzoiiWFD6CIPQbbRAKhRCNRh0XPozaoY0Ms9lsXSa1e2U9rzdM8FgMK1pm0MTD\nCrJS+RtzShTAc8Z1zbLMISDY05ZeDwHpxhob/Q2A/E7yWeifI6KG/K0XNoIgaJ/bCCJmiGDJZrMI\nh8MIBoMIBAKGwod8Fhp6tAGJ+DCvF29SrI6LLnDWDyyt9Zpw88OhXTDBYzHBYBCybJCXYDQkzREV\nXcny35fJFX9SJ63tbk9p+VnYBAIBrYamms9MokTxeBySJCGbzSKTyWit6bTwIQ9MtEMzDZ0KIV4v\nwWAQ0WgUgiD46mnej6kzQrHtMprUfuzYMYTDYYTDYSZua4AJHothRcsMmuYK6niKnRk5lwkeNwgb\nuoC5VmFDam6sEDZmCAQCmiN7NpvVIj7FhA9JpxkJn6amJi0VQmpAWP1HdbhxfaYntZNjXM2kdjdu\nmxMwwWMxxVJa7GRrTGLhE5PT1ZLWg3kXHs6gE0uSnRE8bhE2Rn9yuVxBKqkSYUPSRqSDyqlrk4gT\ncjNLJBIIhUIIh8Oa8FFVVbO5KCV86BoQ0jSRy+UKxlswvIsgCAXiVm9kyO4v5mCCx2KYDw+DRuCB\nppCKpMihpPMgSPt5/+/JHc+Q1mtNo4UNEQfEL8YuYQOgZMQGgPY5yJRqURS1z+RmYVMOcjPTCx/6\nc9PCh0Sj9MKH1IBwHIdMJoNkMqmJIaujPixiUBvV7j8rJrUDjfsAzgSPxfihaNlLXVpeIB5RkRRR\nerYE+k9JJ+QkayI8ZiI2+llPTgobckOnW8MlSdLEDcdxkCQJqqr6op1XL3z6+vo0zxYicujusFLC\nh+d5xONxiKKodf2weV3+odJJ7Uyg5mGCx2JIiJphD14QZ81hBQdRvtBQkjkEhP7bkpPyi5dZwVNL\nKiqTyRjeRKvBSmFDR2xIITH5zKT7iXS0WNXK6xRE+CiK0k/4kP1FCx96v9DUc16XXdh5o/aiKKAd\nutmk9vIwwWMxpWp43H5jZtQHs47LxQSPeFw/6wWPG2psgPLChhYs5HMXEzZEzBCTPjOpKNKurW/7\n9spNvRgkfREOhzXhQyJZeuGTzWa1oms99FgDut2ZzetyDnKNWkmxSe2RSMTS3+NlmOCxGD+ktBjW\nEg2qEDgV5Sq7chKHSKj/1xWVBwcVspxD1mPCBshHYHK5XElhY1SMWymNIHxEUdSED0l16YUPac3X\nQ7c7k4hPJpNhwsdnkO494uCcTCa1r3sximUlTPBYDCtaZujhOCAWVpDNll5oMhKHeJFCH44DVEUG\nF6i/sFFVFbIslxU25PfTwkaSJK14GEBdhE05/Cx8iDihIz7Ee4eIHlLTJIqiYaoLKD6vy6zBHYtW\nux/ayDCZTCKXy6GnpweRSATRaNTpj+cITPBYDBM8DCPiYQVdZep4UiKgGk0PRT6dFY1EYKVWMIrY\n6G+adCEzETGlhA0daXJ67IFfhA8tZui/gRPHgux3ku4iP0OnuoyOB5nXpTe4MzOvy459aKewsrte\nyC6I6SWJ8GUyGUiShEGDBtn2GdwCEzwWU8540AuweiNroGtsIgIHoHQuPSMGIAjGYjkfTanumJgt\nHiYFkKTlm3QC0Sk0ujOo3pEmq/CK8DGyBzByfaYjZeRaFUUR2WwWsixrPj5EpJoVPvp5XW4ZVOqm\nY2Qldm4XEXMksufXfVoOJngshhkPNh5miofj4fI3jUyu+DnCc+V9eGhho5/uDRQKGxIFIOkrehAm\nETa0wV9TU5OrvWzM4BbhQ+93/RDSalyfjbqxSDqDvA8tfEhXV7FBpbFYDJFIhHX8+BinRaxTMMFj\nMSyl5V9q6YoKKQqEMvdUFTxUtch8Her/zQgbegClvitKL2zoeVF0bQ7Z5mw2q00oN/L48Bp2CR96\nv9OixqjV3gpzRH03FhE+JOJTbFBpKeFTbF4Xg+FFmOCxGNalZT9Wp9/q1e4d5MvP1ZKLfIui5KMt\ndJ1BOWFD1+OUEzbFIJGCUChk6AnjZawUPsVSUYD9hdu08CG1OQA0Y8ZKJrSXmtflJ8ga4lfPn0bv\nziL466x1ASzCYy+1XMR2+thwHAcpnURzKISEWHy+kSgV69LitPqLegibchh5wpAW50YSPvpUVLF9\n74b6JlKzQQ8qJRPaydf1g0pLTWgnIw0ymYwmouo9r6sefjWMxoUJHospVrTspUJgL31WM7jFoE9Q\nc1j94j58YlQYEya0IqNGoOhSWIpivLjLiqoVpZLPTdd6WCVsylFM+PjBx4UWPsSjhggAWtg4te+r\nxUj4EFFXqfAhIyo4jtM8Xuo1r4vBsBomeCyGRXicwy3CxqjGRlVVtA/K/66dH2ex8+NDGDwwgDOn\nD4AcjCIn528sYpFTR1G5ft05TkILn0wmUzDp2+nPVgnFWr5JZxSZ1RUMBhGLxVyx76tFP4aAjviE\nQiFD4VNsQjupQYrFYmxeVxU4kdJikTImeCyHPEUx6gctbEhKJ5lMukLY0NAzn3iex8gRAoKBHuSO\nnx5HuiW89NoRREIczjq9GfG2ZohSsaLlAIJB991ESI0HPenbyy3fwWBQS03pZ3Ulk0lXbls1kDoc\nfcSHFj5mJ7R7fV4XwGpcGgUmeCzGb+kgJzE73ZsOszshbGjnYfqGYBQ1GDqQw95DhedHRlTx//63\nFxzXi/NmxDBgCIeUHIKsnPg9kuLuxZie9O32lm9SpGum5RtwTzt7PSDCh942EqkjIpDej0T46Ck2\nrysajfpiPzH8ARM8DMepJRVFP6XXipXChnYeplNRI9sT2HsoW2Q/APv3p/H/3kwiEuYwfXILhgxr\nQioXRM7lgodAxAEdOYhEIpanOexu+Qb8LXzobSOROroonZ7XRf4Yoe8QoyM+1aQ7/Rp5sfuhWL8f\n/bhPzcAETx0wOplY5MddNTbkbyuETal0iJ6OIaU9TBRZAsAjk1Xxj3/2AOhBUxOPlnPjwMnhmrbb\nTuiUCS0OqhE+bmr5BvwvfPQpSiIY9ceh1Lwufb1QNfO6/A7bB/bDBA+jKNU+Xdnd7l1MSJKbIklx\nmBU2+qhBNcKmGCOGlr7kJFGEfgRFKqXg8BERgHcEDyEQCPQTB8QPxsst34D/hA8taGhRKYoiAGjR\nSpLuIsernvO67MKvkSRCoz9sE5jgYfTD7IXvlogNcCIdRRZpmnLCppIC1loZMbR0hEdV867K+uUp\nVD+rk7pDPIRIqiudTgOA5t/i5ZZvwHvCp1iNE9A/Ykb2v6IoWopSURRN9NCprkrmdaXTaVfN62oE\n3Hgu2g0TPIyyuEXY0BEb+v/J8ERanFQibCopYK2VoW0CggFonVr9UdEU5ZBMF0qeoAfd/PWdUfRI\nC47jIIqiVvNBbnpeXpTdJnyMWu6rNaikbQhEUURfX5923ZD3Ise6nPARBKHfoNJGm9fl94iSW2GC\nx0bcHlakb1AAkE6nNUHhtLChIYKG/C0IgmbKFwgECraDRHfsFjbF4HkO7YMF7D5gXPSpKkBTpL/g\nUdWc5pnitoWy2pZvMpw0m81CkiQt1eV17BY++iGwxfa/FT5OPM9rBcjEeLAW4VNuXhcTBtbg9nuP\nXXh/dXEhbi9aNhOxAaDdoNwibOif0y/s5DPmcrkCbxA3LpYjhgSKCh5FURCO9D9P4k1hKIriqM+N\nUct3sc4os1O+6VbmVCoFQRC0YZdepx7CxyhiVu3+rwWO4zThQ4wHBUHQojSVCB/i5UTP6woGg4hE\nIga/uT40grDy+/aZwfurCqMotaSiSMjaioukGmHDcZy2oNMTvsu1HJOoQSaTgSzLrqwP6ChRx6Mq\nQMjg5VCIs9XgzyhiQ26sdCqENlesFlr4iKKoCR+/pDiqET7V1Nk4Af1wQQsfIlr1wodct0bHlaTN\nyLyuRCIBAL4Qv3oaQWC5Ef+dSQ1IPWpsSESqkotSL2yMvB/KCZtavVTom6dbp3uPGFL8slOhgucU\n5EuXTxA67rJM2oaJz40oilW3ewMomgoBTtxY6XOnnvvQ6OZJp0u8jpHw0Y90qKXOxknoY0eidST9\nRT4/2UZ6QnsxE0MifHp6epDJZJDL5di8rhrQZxcadR8yweMh3Fg8bGTSV4uwsSJiQH4fsbcnwsct\naa6SER4V4FQFQOH3hAKFn9nI56ZYu3f+fc21fLvhxkrfPOk6ETdG68yir7Mh+5d0PpHr1k3z0qpB\nn6ZMp9Pa8STnrJHw0aetyXvxPI9wOG/HQAaV1svI0u948XyyGiZ4bIK0dprBS8KGtBybETZWp0LM\nQMLkoVCoQBg4OeBw6EABgQBgOHJNVaEq/QVPsTladLt3JpMBAE3U6SMGdMSGjpi5dSGk60TcGq0z\notI6G0VRkMlktGidH6IYeuFDzk0iyiuZ0E6LQVEU6zavy8593ggCy40wwVMnzKSD3CxsACCXyxV0\n1eiFDVnIiwkbO91vy0GPPCDCh4TI7YbnObQPErDnYJHCZUkCUGi8E9J9TKOWbwDazZPjOF9EDIDC\naB1piXaD8LGqzsZorINbopG1Qgsf/YT2YDBY8YR2o0GlXp3XZbfA8tr+qQdM8NQBQRC0Fmmg8OZE\njLvcImzoWh06YiMIAjKZTL5rKBzuV+sBOGPrXyt6Azy6zsBOOoYGDAVPfkJ1/6/znKwdj3It30De\nHTebzUJVVd9Y+ZNjRacp7RA+VvrZlMJorIOfhA8ROPoJ7bTwoSe0E4sJo/eycl4Xo3FoSMHz8ssv\nY/HixZBlGTfeeCOWLVtmyfseOXIEW7duRSaTwe2334733nsPt9xyCy6++GLtIiQXvp3CxqhgjY7Y\nkM9AL+YkYqCqakHEgNRRuF3YlIJefOniWDtrREYUmamlKAqyGaPIjwRVDZpuOaZrYNwSEbEK2gSP\nbB8ZeVDL9WSnn00pGkX4kOJtEvGhU7GKoiCVShVMaTeK+Fg1r8vOFBNLZzlHwwkeWZaxaNEivPrq\nq+jo6MCZZ56JuXPnYsKECVW937Zt23DrrbdqQmfSpEno6urCyJEjcdlll2HGjBlaREGSJIRCIcu2\nxayw0S/OemFDnqxItEYfbQKgdQQBsNUfo57oi2OtunGWQ1EUtA8yfn9ZVo6ntAppbW5CNFrZ5WpU\nuG3H9tkFLXxIG7PZ7XOLn00p/Cx8AGgFyXSqCzgxCoZEzWgndSPhAxjP6yIRH7Mi3+59ylJa9tNw\ngmf9+vUYN24cxowZAwD4/Oc/j+eff75qwdPe3o677roLkyZNwogRI8BxHK688kosXLgQAwcO1L6v\nlpOtHsKGToWYiTaRGye5sfhp4aWFgZXbV6zGQ1VVDGwpbuEPjkc0xCGdPXGcgzXM0jISBn46fsS4\nzkgYADA8BuTn3OJnUwqvCx8ztU7kIUoURSiKollRGK1ldEenHjavi1GKhhM8e/fuxciRI7V/d3Z2\nYt26dVW/34ABAzBr1qyCr5EQa6XUImz0Bn31aDembyzpdBqiKGodT36A3j7SNVOq1ZtQTct3PA4E\nhCz05TqqCoADmiJAOnvi66EiXVq1bJ8bOtasglwrpG6OjhjQwsYNbffV4nbhU2x2GkkJmjkGoVCo\nYPvo6eyko83MoFI2r6s0bjhfnKDhBI8dBzoQCGgdB8UgosRI2AAoKGYmhcVkQaG7opzwUdF3PBFh\n4JeFhGwfaaclESBBEPqJGv2CbrblWxCAYYME7D1UqHhI6Dmiy3zqfXis2D6zHj5uwmydTTQa1VIh\nJGLgB2EHuEP4lEsJGs1OM4vR9oVCoYLaqUqEj35el5HwsTPl40R6iaW08jSc4Ono6MDu3bu1f+/e\nvRudnZ2W/g46wkOEDVkUyIRogpuFTSmMCn/9UhhLt+aTY5lMJgEU1hfUWrzaMTRgIHjy/wkKhSLY\nigiPHr2HDxF2brHyt6LOJhQKFQi7Wlyp3YYdwofuUDOKXtYzJUi2j3S36ovvKxE+JLpJxlbQ87rc\ncr4z6k/DHekZM2Zg+/bt2LVrF0aMGIFnn30Wv/3tby39HXv37sW2bdswRzRZsgAAIABJREFUYsQI\n7WtkQc7lctrTRTFh46UQPCn8pUc5uCnMXopKu3IkSdLcYcnXasGoUysveAAex3NbxwnW6UqlhSs9\nwNPOiF2950aRug4vRrTMYIXwKXctOGlYadSVZyR8iDAyI3xIxCeRSBQdccHwHw0neAKBAB599FFc\neumlkGUZN9xwQ9UFy8VYtGgRfvrTn+Lvf/87vva1r2HPnj3YunUrLrvsMkSjUaTTaQDot5B42SBO\n72hstv7FDiqZ8l3qpkpet6rjqWNo/8tPVVQoigpFkUEuz4CQNyusJ7S3Sb3mWNnlZ1MMI1dqt5yj\nVmBW+JhJRzndoWYELXyIASV9jlYifDjuxLyubDarrcm5XM435wOBlEz4aZuqhSvjCcAMAypg9+7d\neP3117FlyxZs2bIF69evR3d3N8aOHYtJkyZh+fLlGDVqFDiO06IFfmoTpqHrX6LRqG1PUPRiTi/q\npNibvrHWEoInNxVJkqou/N13WMJ3fnq04GvNahcUWUbb4FbsOZafIRSNcHjs24Or+pzVoqqqZkVQ\naarSbOSMHAsnbqrE4E5fo+Wn65C0e0uSpF1/RhYUtV4LTkFKBERR7CfOaed6OvVWjHQ6jVwup52j\n9Szml2UZiUQCAwYMsPy9jVBVFUePHi3oGvZCBL4Gim5Yw0V46sm//vUvvPjii5g0aRIWLlyIBx98\nEO3t7fjBD36AdevWaaFY4ES0gIRV/dItQ6i3sV+plm8jPyGr64rI03QtaZJhAwUEBBR2aqmAJKnI\nZHIA8oLHyoJls5j18PGCn40R+lQeGXLpxZqOcgKTHt9Adz15HSJMSKormUwWpGPpiI+ZCe2CIKC5\nublgXlc0GvXVutzosAiPTezYsQNLlixBe3s7vvvd7xaobeISanc0xC6IW3Mul6s4olWuaFIftXGi\n1kkfLajkGN79aHdB4XJMOoJUSkI0HkaKbwMADGnj8e+3DarLZzcLsSIgrrfACRsFKyNnTqGqqhaV\nFARBG+LpNoyEjV5g0oKfPg50VNIrdXaVQLrySDqLPoZ0xIcIHxL1BYBMJgNZlhGLxbT3IkJYVVVL\n53XZHeFRFAU9PT1oa2vTvua3Y6+DRXicZty4cXj++efx4osvYv78+bj22muxcOFCLc8cj8eRy+V8\n1e1EICKAjmiRwZ3kojOq76i25dtujDrWzEa0Rug6tRRVRU6SISVyEFrzXwvaGOEpV2dDRwvITdMP\n56m+hsmJ4m0as/VOlUQw3dDOXk9IAwUZMptKpbQokP7cJd2yxaI39Plg9bwuN7SIO/37nYIJHpu5\n/PLLMXPmTDz00EOYM2cOli9fjk996lMFF1gmk/FUt5NZyIJLnpyAfHSALO52ziuqB/SCS3eTlJrr\no+/UUlUgm1WRFrMYfFzw1KMlvda5UaQ+JJlM+qrVW3/TrEfxNo1RQX0lx6EaGkn40OlKEvExmtBO\nopVG70XmdZEIYLXzuhjOw1JaDrJ3714sXboUHMfhe9/7HoYPH669RlIIJJzqxvB6KUot5CT8DuRv\nnCQa4rdUHukWyeVyRW8ob27J4rFne7V/hzKHsP9AGpmsik9MHoOsCJw8KoBv39imf/uKPke5Opti\naZBykFQemcruxw4XkiapVfjUko6qJ42Q6srlcshms9qDJanvod3pg8EgotFo2YgZifiQhoVKo/HE\n16u1tdWKzSuLUQotHA7b8rsdgqW03EhHRweefvpprF27Ftdffz0uv/xy3HrrrVrahrTQplIp26d5\nm6XWlm/SDZRMJn3XsaZv1Tca5aCP8CgKkMmq4DggFuGQFVXTEZ56+9kY4XbzwlrRR+3MpCvrkY6q\nJ36N+OjXJp7ntQdJAFqai74eiWEsLTz1kEGl5L0qndfFpqU7hz9WJY9zwQUX4PXXX8fPf/5zzJkz\nB3feeSdmzpxZUBvihmnXRi3ftd5Q6W4gv3as6Uc50B5FwwYJEARAPl7Goyj5xTAc5hEJcQBUBHWC\np9QN1QnTSjeYF9Yb+jylPWBCoZBhYb0X07NeFj6lxD7dsUnSUGQbc7lcQREz7YxPCvSLCR9BMJ7X\nRaJEpXByf7r9WNYTltJyGUeOHMG3v/1tHD58GCtWrMCY41PdgbzgSKfTUBSlrukDs8Mw6dC7VZ/D\nyBTOT+i7gSKRCO55rAf7DucVD5c4gD37MhjQGsDEqZ346CAwY2IQN1wZcaWfjRH6NJAbI5OVYnRD\nlY+rVI7jtNoQulvQ67gx1WXGEVrfvVnqvYhYIWsq/aBF3huAJopKvZ+iKFokt9SgUlJX1NLSUuPe\nMIc+hUbSej6GpbS8wuDBg/GLX/wCGzZswKJFi/DJT34S3/rWt9DU1ASe5wuGWtIdCNVgtuXbzvEW\nJEVCIgV+uWESjByNhw0C9h3Ovy7L+WeMYICDquQABCHw+adON/rZGFGseNsLnYeVTvwm4o5ECvwW\nmTQa4mlXhLlczVOtjtBEqJKxI9lsFplMpqD7kNT6kH1gZmxFuXldLKXlHEzwuJQzzjgDr776Kn7z\nm9/g8ssvxze/+U3MmzfPsAW6XCdQJS3fbogU0KLADak8K6EjBWT/D207sQDSKS2eyy+qTdF8MaXX\nMGte6BR6YaMvqid1NuWKiMm4A5KSddM2WkG9hU8pkWlXzROJ0BHhQwbN1ip8yP4KBAIFzSd2nhtM\nYJ2ApbQ8QG9vL+677z5s2bIFK1asKJj9RcKoJOxMnjpLtRrTf3thUaa30Sv1PWbrbHiex1vbJPz8\nd30AAPHIXhzuyuETo6IY2tGG3d0hXHpOFJ+fHXd4i2pHf67alSIxW8xtRTrKjWkgq6G3sRoj0XJR\nGzesT6W2UR8JL5fqIo0ZJI1NhFVzc7Mt26JPobGUFsPVtLS04Ec/+hHeffddLFmyBGPHjsV1112H\nXbt2YevWrfjKV76iFf0CJ7oPvJICKQd5YqLHOLilVb9WPxsA6BxGd63l/+Z5FZm0CCBkq/FgPSHH\nkdRNGHWt1UKl6ah6pGjpaAjZRr8JHzMRn3KdanQhsRtrnoptoz7iQ6wnSgkfEukkIzBIlxiZU+e2\nbfczzt8xGGXZtGkT/va3v2HLli04evQonnjiCfz617/GxIkTMXXqVEiShNbWVvA8r4kCMjfH7TUT\nlUC3QDvRCVSvuVF0pxbxPwsEeCSTIsADAcHYFM2r6LvWqplDVu5YmE1H1QuyjfUSd26AiAL6OJL1\nxqudanrINhJho69Hq0b4ANCEjx3zulhK6wRM8HiAt99+G9u3b8fpp5+OL33pS5g0aRKamprwgx/8\nAK+//jr27t2LYcOGAYDv3ZqrqWGqFDODSa30swkIHIYNFLDvsAz5eA1PIMAj0SsBzQDU/MgRP7V5\nA+Y8fMoV1tfDW8hKjMSdV52py0VtgsGg9hrpUvLaNhaDeGqRKE2twoecFyTdRNyb67VW++U41Aqr\n4fE4u3btwu23346Wlhbce++9GDJkiPaa192azVBLXUgldTb17lL72bM9+OcWEYm9e9DbJ2HyhDg+\n+CiDtpGd+NKnYzhnCq+FwL3Q7VQpZL4RiRLQNxB97ZldHYP1wCvO1MUKuvV2CEbHopYaH69Au6jr\nHbjJviP7Sz+hnfxcPJ6vy6OtKkh7vJX7jFxXpGaIpBJ9DKvh8StjxozB73//e7zyyitYsGAB5s+f\njxtvvFG7yPQpIDOmWF6CrgtJp9OaqR99QVtRZ1NvRgwJABC1CA8HIJWSMDQAhIK8q7udKqVUOioQ\nCGjT5/WdLX6AjmqRQlYnhU+xCBpwoqC7mEt6MZxuZ7cDOuJjNHONFuyiKBYIH/3wUFJETGZ/kXld\n5P1r3WcspXUC/6wkDc6sWbNw0UUX4ZFHHsFll12Ge+65B+edd57r3JrrhT5ETHyKiNCptc6m3nQM\nzT8BEsFDHlJiUQ6h49pNP6rC7a7UtaSjSGdLKpXyXVSLvibpdB4ZblkvM9FSQ0ppawqrImiNInzo\nguRkMllQW2gkfEh63AgyqNRoQnst579f9netsJSWDzlw4ADuvPNOpFIprFixAh0dHdprxK1ZlmXt\n6dmLF0O5OhsgH1r3ymDSPQclfPdnR3Hkw4+RFRWcNj6Od7b1YcY5J+HqS5sxbXz/YX/69IhTYWoz\n7rfVpqPo1IHfbpYE/XDLWh3G9UKzWBu+3QXdjZDqol3GaTEvy3LBoFLygMZxXEkhQyLXZABxNSas\n+hQaS2kxfEV7ezt+9atf4e9//ztuuOEGXHzxxfjGN76hPSWQkHo6na7Zrbne1DI3itwsk8mk64u3\n2wcJEPgTTssk0BMMoN8sLYK+6Jek8+p5LM1M/LYygkanDkhUy+3HslJoo016FhmJ+BTD7JgFO53S\nS+H3iA9Zq0gEj5QSACdGU9DnbS6XAwCtuNlIyAhC9fO66M/lh/1rBf6IEVvAsWPHMH/+fEyYMAET\nJ07EunXr0N3djUsuuQSnnHIKZs2ahWPHjmnfv3LlSpx88skYP348XnnlFQc/eXHOOeccrFmzBsOH\nD8dll12Gl156SXuNWKoHAgEkk0mtuNkpyGJBctipVAqJRAK9vb1IpVLa4hAKhRCLxdDS0oLm5mY0\nNTVpXS/6Gyy5WRJR0NfXh1wu58qcdiDAYehAQUtpydLxwYecilAJHx6yuNLHMpVKaU/01UJupKIo\nIpPJIJlMore3F729vchkMpBlWRPLzc3NaGlpQSwW01JuVndMkVotciwTiQREUXTlsawWInyam5sR\nDAaRSqWQTCY1gS9JEkRRRDqdRl9fH3p7e9HX16fth0AggKamJlPXhpMQ4ROLxaAoChKJhBap9AqK\nomh1WPq1SpIkLVIXj8e1VnS6To22TCDHVZKkotctiQiReVg9PT3aucEwD0tpHef666/HBRdcgK98\n5SvasLUVK1Zg8ODBuOOOO/CDH/wAR48exapVq7B161Zce+21ePPNN7F3717MnDkT77//vqtrDI4e\nPYrvfve7+Oijj7BixQqMGzdOe81uJ2Mzfjb1CLkTMcVxHKLRqOuiWj97pgfPP/c+AGDcmCbs2JXC\nueePxHVXDcKYEeZC0KT2hXR0lWsNLlfboT8Wbrlx0uk8r7Z5G6GP2uRyuZLpKDevOWZxc6rLjIGi\nGZdufdqSrtciqXhynOn3LAY9qDQYDJZcz8gDSiwWA9DYKS0meJBXy9OnT8fOnTsLvj5+/HisXbsW\nw4YNw4EDB3DhhRdi27ZtWLlyJXiex7JlywAAs2fPxvLly/HJT37SiY9fEZs2bcKSJUswbdo0LF26\nVMvrAtZPKjfjZ6Ov7ag3bp7k/dxrffg/v3gXADCqM4KP92TwqXNG4OZrhx3v4jKPUbs+gLLpKCdq\nO2rBK23eRpgds0BHAfQt0H7CaeFDHw/6mJhpxa/kdxits/qxFYB54UO6/Yp1NabTaSiKwgQPWA0P\nAODDDz/EkCFDsHDhQmzcuBFnnHEGfvKTn+DgwYOaod+wYcNw8OBBAMC+ffsKxE1nZyf27t3ryGev\nlClTpuCVV17BM888gyuuuAK33norPve5z2mh1momlddSZ2M35OmKdDq5qWuNdGoBQE7MP+1lM1LJ\nlJYRJEpAFj6yIAKFUYJ6DmO0CzPmhU5jNPKCjhKQY1JqzAIROqQmzW1i3QrsqvEpdzzqaWap79Cj\nJ7TT1yP92Uj9j9GxJml7/aBSfRODvg2+UXHPquAgkiThrbfewqOPPoozzzwTixcvxqpVqwq+p9xN\n2ksnEcdxWLBgAa644gqsWLEC8+bNw4oVKzB58uSCAkq9WzNg/FTqJj8bs5C0lptavIcPpszJxHxw\nNZ3OFS1aNpuOikajUFVVEwShUMhVgqBW6JsIXfTrRDG+mZEX1V4fRMyFQiGIotjP7dcvWCl8zETR\nnFivjIQP7cKtFz6VzutKJpOaGPJSbVS98c+qVwOdnZ3o7OzEmWeeCQCYP38+Vq5cifb2dhw4cADt\n7e3Yv38/hg4dCgDo6OjA7t27tZ/fs2dPQeu3V4jH41i5ciW2b9+OJUuWYMSIEbj77rsxcOBAHDp0\nCL29vejs7CyIELjdz6ZSaHNG2rjQCUEwfEgAgsBBllVkxXxYuy8hIhQwN/G7nEGcvgvIzd151UCL\nddoMrh6RELO1HfUq4NYbUTa68NHXPpHjou9Yc1tUkwgf0tVFR3z0g0orFT7kGlBVFcFgkHVrgXVp\nAci3cY8cORLvv58vGH311VcxadIkXHHFFXjyyScBAE8++SSuvPJKAMDcuXPxzDPPQBRFfPjhh9i+\nfTvOOussxz5/LSQSCXR1dWHu3LnYt28fpk6dilGjRmH69Ol4/PHHAQDhcFhbZEjEoF7dOE5ButZC\noRBSqZQlnU6VfwYew4fl/XbSmfzvPnZMRDaT78hJp9OQJAk8zyMcDiMej6O5uRnxeFw7HqVqWOgu\nILo7z+7trDckbdnc3Aye59HX11fTdpbqyKG7B+PxOFpaWrTjUU8jQeBEOoPU4fX19Xmu28kM+q4u\nsu/JAM6+vj4kEomCjrVgMGjYsVZMKLgBkp4lA1kTiQSy2axWGkAiQqRuRxTFouc0uQZaW1u1yGdv\nb6/2fo0Ki/Ac56c//Sm+8IUvQBRFjB07Fr/85S8hyzKuvvpqPPHEExgzZgz+7//9vwCAiRMn4uqr\nr8bEiRMRCATw2GOPefKm39vbi+HDh2P8+PGYPHkyzj//fNx4443YsGEDXnvtNXzmM59BNBrVvp8e\nnOeWuhcroSMEdmynUfqjY1gAe/blp6YHAxxS6Ryam2OWRtHIYmjXdjoFnQIys51mnKErHbNgB0Ze\nRX45nkZRNCDfcZnL5TS/onLFvV4iEAggEAgYRrb0c+bMDiol30PmdQ0YMMCBLXMe1qXV4MiybJjW\n2L17N5YuXYpgMIj77rsP7e3t2mt2t7E7hVXbaSYdRRbsp35/AE8/tx8A0BwXIEkqnn/yDEu3S08t\nA1i9BLmBENdaQRBKjlmotSPHKehuJ68cTzMzvfQdhE53ddmFfjtJqgsoHFRaTPjQ4y7oyfY+hnVp\nMYwpVsMxcuRIPPPMM1izZg2+9KUvaR1dJAdOwq6k7sWNvja1Qm8n7WRcrL7HqPvDqI6gVLfa6JEn\nImqRsACRr3+6qdR2ev0GYnQjBfKdawC0xd/rtWg0dO0L8Wpxk/ApNYmdCBozM7387txM0G+nvmbL\nKOJD/ujxmni3GhbhYZRFkiQ89thj+O1vf4tvf/vbuPjii7XXaF8bPxZOEohxWCaT0cLoQH9fG72H\nSqWeNjs/SuGWO7YAADraw8hJKp762dS6bZce2ifEjS3exTA7ZoE2iCOCwIsePpVAtlOWZVsjslaZ\n9pmlUSI+9Hw5/ZpLR3xIYwlZs4jjM3no8jHMeJBRO4cPH8Zdd92Frq4uPPDAAxg9erT2Gn0R+inN\nZTSIkYTaiXeR3pCsFsScgrnXbYCiAGNGRiHJKv7rx5Ot2JSKoAWe2zxfSqUIKzVQ9KrAqwZSeK0o\niuXu1Gbav+1y62bC50TtkyRJWmqTvE7WLB/DBA/DOv75z39i6dKlOOecc/Ctb32roLBZlmVtLpeR\n66dbqXTiNxnhUI86pq8s3ow9+zM4+aQmKCrwf34wyZL3rQb9qAo7I3hmW42tGLOgj+D5rWWfppax\nHKWOif4acbqwu1GEjyznZ96JoqiJSeJor3eJJi3wrIaHYTljxoxBS0uLdqKtX78e3d3duOaaa/DR\nRx9pnV+kYn7lypX4r//6LwiCgEceeQSzZs1yeAuMmTFjBl577TU8+eSTmDNnDhYvXoy5c+dqT3PV\nuDXbiVUTv0lePZ1OI5vNWibwRndGsGd/BkKAQxHPQdsw6nSqRz2ImQgBPXDR6htXMQ8fP45xoN2p\nieGdUUrPKJJm5zGpFT/W+BSLOJNoMzlmL7/8MsaPH4+pU6dCURR8+OGH2LhxIzZv3gwAeOCBB3x3\nXpuBRXjqyEknnYQNGzZg4MCB2tfuuOMO3wwkBfJzyJYvX453330XDzzwAMaPH6+9RkcHnCiaNNNm\nTEdvqt3XdFqEmMLVspj88pk9+O1z+zHp1DiCQQ7//t3x5X/IJmqtBylV2G2UjnLq/HcysmUndGSL\nCBn6GPlpYKnXIj7lirv1x4TUU27btg1PPfUUfve73yEcDqOtrQ2nnXYapk2bpv0ZMmSIq7e9RliE\nxyn0gnL16tVYu3YtgPyE9gsvvBCrVq3C888/jwULFiAYDGLMmDEYN24c1q9f7/qBpK2trfjxj3+M\nrVu3YsmSJTjllFNw1113oaWlRYsOkDEVpPvH6nCq2XSUmc6PaqBt4kl0wMyk8mKMOd6pxfNAOOSu\nmwvtTE06gIpFtooNY3Ta1t8MlXr4eAWjCAFtXpfL5QquWy9vqx63RnyM0oTl/J9UVcXRo0exefNm\nbNq0CZs2bcKuXbsQCoUwYcIETJs2Dddccw3efPNN/OQnP0F3dzcuvvhinHFGfS0u3A4TPHWE4zjM\nnDkTgiDg5ptvxk033eTLgaRA3ozxL3/5C/7whz9g3rx5uOGGG3DttddqgoOkuWjhU00UxKp0VD3Q\nG/olEomqIlujOvKChwMQCrpL8BDotEgqldL2OwDDBbteYxbqjZGpn5tavEthpv2bpOzIQwCJ+JDo\nlh+LuJ0UPqVSUsUeAhRFwccff6wJm02bNqG7uxsDBgzA1KlTMW3aNFx11VUYO3ZsvzX1/PPPx6JF\ni/DrX/8aXV1ddd02L+CvM9llvPHGGxg+fDgOHz6MSy65pCDdA/hrICmQ/7zz58/HnDlzsGrVKlxx\nxRW4//77MX36dADoFwUx63pr1NJKT5h2W5id3CTJYNJKfW1GdkTA84AKznURHqN0FDlW2WxWi6SR\nui2vncPFIF5FtLeNW6IgZtq/zTpE07VMfp67BtRf+JhJSdHrF0lJbd26FRs3bsQ777yDrVu3IpPJ\naON+LrzwQixevLiilFQ4HMZNN91U8/b4ASZ46sjw4cMBAEOGDMFVV12F9evXY9iwYb4eSArki3m/\n973v4cMPP8Ttt9+OtrY23HPPPRg8eHBBFCSTyaC3t1dL/eijN16bwK6HLKiV1veEgmSmloqQQ4LH\n7JgF2kOF1L2QeT3Eq8hPGKX07PTwKZYm1F8rtaZujYq4mfAxptqUVE9PDzZt2qSlpXbu3IlAIKCl\npL74xS9i8uTJaGpq8sya53ZY0XKdSKVSkGUZzc3NSCaTmDVrFu699168+uqrGDRoEJYtW4ZVq1bh\n2LFjBUXL69ev14qWd+zY4YsT/a9//SuWL1+OuXPn4vTTT8e7776L3t5e3HLLLZqnDXAiAmSVEZmb\nqNSgcfmD29HTK+GUT8Rw65dH1fWzGUUHahmz0CijKkixOhF4Vgofo+LuYgX3dlwr9Pnr1+41Qqni\nZjMpKb3fkKIo2L17t5aO2rx5M44cOYLW1lZMmTIF06dPx/Tp0zFu3Djf7lObYUXLdnPw4EFcddVV\nAPK+F1/4whcwa9YszJgxw9cDSQmqquJ3v/uddoEfOHAA9957L0aPHo3TTjsN559/fkHag+4U8aPj\nrdHAzlJiYHRnFP/a3ItQyNrW73LziqwYjqlP//hpVAUNXaxei3mhmZZ8pyOc5PwlRdykbd9tlhNW\noI/MklQtgLIpqVwuh23btmkt4Fu2bEE2m0VnZyemTZuG8847D4sWLUJ7e7uvrgWvwCI8jLpx4403\noqOjA5MnT8aUKVMwduxYHDp0CMuWLYMoirj//vsxYsQI7ftVVUUmk9GGO/o1MgCcaO9WFMVQDPzt\nf7rwhz8fwKdmDMAX51eW2qxmzEI99zMtZv1YBEsoZ15YiZGi2yOcfmrbL5eSIrOqenp68Otf/xq3\n3HILBgwYgN7e3oKozQcffABBEDB+/HhMmzYN06dPx+TJkxGLxVx9LH0Ic1pmuIs33ngDd911Fy65\n5BIsWrSooN6DmPl5za25GsgAVo7jCgawfrArhX9/dCcuPn8Qrp47vOjPWzlmoZ40kpMxXctE3zD1\n3YRuOC61Umq8gRupNiW1d+9erFu3Dk8//TT+8Y9/oLW1FSeffDLOOOMMTdycfPLJvl6rPAQTPAz3\nIcsy/vM//xNPPvkkli5ditmzZ2uvkfqIdDrt29A5QV8fEYlEIEnArcu2YO6lQzFv9rCKozZu3Vd+\nGzZLHxejGiggLwpI3Ytfb4i08AmFQloKzunPVKlxnyRJeO+997SU1DvvvINMJoOOjg5N2LS0tODx\nxx/Hn//8Z3z961/HsmXLtMGcDFfABA/DvXR3d+Puu+/Gnj17sGLFCowdO1Z7jQ6du8EkrJ6QlB5J\nE3x75Yf4t/9vAP7t3FbfRQf0N0gvHFczNVBGx8WL21otdMG6nd425bqk9MdFVVUkEgmtQ2rz5s3Y\nsWMHeJ7HqaeeqjkST5kyBfF43HAbduzYgSeeeAIrVqxwXNwxCmCCh+F+Nm7ciCVLluD000/H0qVL\nEYvFtNcURUE6nS5a8+JFSo1ZAIBHntiHGVNbMfP8Ia6O2tQC3RHjFl8bwJxpXyWda0DhtjZCjVo9\ntrXalNS+ffsK6m0OHDiA5uZmTJkyRYvcnHrqqb6NwDUYTPAwvIGqqnj66afxyCOP4Gtf+xo++9nP\nFiyUpA7EiplVdmKmE4e+mXIch/96ZjdGDRfwyTNafF3sCxRO8Lbb16acaZ++wLtWSMG6LFc3j8xL\n1CJ8qk1Jbd++vSAllU6nMWLECEydOhXTp0/HtGnTMGLECN/ucwYTPL5ElmXMmDEDnZ2deOGFF3wx\niZ2QSCRw//3346233sKKFStw2mmnaa/p60CqnVlVD8r5p+gX61Kf+7X/7kJLs4CpE5uQyWQaopaJ\nbu+mi7iten8j0z59dMCOzjXAOZHnBLTI0wufalNSfX19BSmp7du3g+M4nHLKKVpKaurUqWhubvbt\nfmUYwgSPH3nooYewYcMGJBIJrF692neT2AHg/fffx5IlSzBy5EhT4sKFAAAgAElEQVR85zvfQVtb\nm/YaXS/gxJOyUTpK73qrD69Xwo4Pk0hnZEye0NJwtUz6Iu5KzlUzbcZuaf/Wizy/R/LInC5ZljUx\nayYldeDAgYKU1P79+xGPxzF58uR+KSm/XhcM0zDB4zf27NmDL3/5y/jOd76Dhx56CC+88ALGjx+P\ntWvXauMrLrzwQmzbtg0rV64Ez/NYtmwZAGD27NlYvny56yexE1RVxQsvvIAHHngA1113Ha677rqC\nGyC5YQCoyw3DTNqjHq63WVHBx3vTOPmkwlomJ0WenZjxejHqkCqXKnQjfmzbL5WSIkKmu7sb//zn\nP3HVVVeB53nIsoz3339fEzabN29GKpXC8OHDtUGZ06dPR0dHhyce2BiOwJyW/cZtt92GH/7wh+jt\n7dW+5tdJ7BzHYe7cuZg1axYefPBBzJkzB9///vdx5plnAjgxuZsMO6wl9VNqkbZyVpEZwiEencML\n212JizHtAutXryIS8SBDWBOJhOZsW6wt343DZM1gNLvKKyMczM6SIoKVTkm9/fbb+NGPfoR77rkH\nTU1NGDhwoJaSuuqqq7B8+XK0tLS4VqgyvIX/VskG4M9//jOGDh2K6dOn4/XXXzf8Hr9NYgfy0Zu7\n774b119/PZYuXYonnngC9913H4YNG1Zww8hkMmVHN5gdjlnrmIVaiUaMb3Z6kScIAqLRqOdu9EYY\ndeIoigKO4yBJElRVRTAY1Gp8vHguF8NohIOb/IrMdEnpx2CoqoqDBw9i48aNWuRm7969iMVimDx5\nMm677Tb09fXh8ccfRzabxdVXX13gycVgWAUTPB7k73//O1avXo2//OUv2sTxL33pSw0xiR0ARo4c\niWeeeQZ/+9vf8MUvfhHz5s3DzTffrKV3otEoQqEQ0um0Ns2ahNCLtRjbFbWxElrkkflcbiviLke5\nwaVEeNJt+SS6lclkfFvzQke3yLG1u3bLTJeUPqImSRJ27NhRkJLq6+vDsGHDtELihQsXorOzs5+A\n++pXv4rnnnsOq1evZoKHURdYDY/HWbt2LR588EG88MILuOOOOxpuErskSfjZz36GZ599FrfffjsG\nDx6MzZs3IxwOY+7cuZoxHBlKSt88/bD9NG6eUm4molaJmaIfa15KUc9jW22XVCqVwjvvvKOJm/fe\new+qqmLcuHGauJk2bRpaW1tdcx4yGgJWw+NnyGJy5513NsQkdgBIJpNYs2aN1rnR1dWFq6++Gied\ndBImT56M2bNnF9Q/iKIIURTB87xvC33pKeXpdFqbUh4MBm39HEY3T6vroIrVvPi1bV8/gZ5ELis9\nl82mpOhjo6oqDh06VNAltWfPHkSjUZx22mmYPn06vv71r2P8+PGuEtkMhh4W4WF4kj179uCGG27A\nlClTMHXqVEyZMgXjx4/Hxo0bsXTpUpx33nlYvHgxotGo9jPErVmWZa3Q16+LM93uXC+TxnKeQ/Xq\nXiv2WTKZTEOMbwDMefhUatwH5FvE9SmpRCKBoUOHFnRJjRo1ypfCkuELWFs6o3FQFAW/+tWv8Itf\n/AK33XYbPv3pTxfcDMhQUq+5NVeDVcM6zThF1+I5ZBVuTutZDT1gl6RsAZhKF6qqinQ6jS1btmji\nZtu2bZBlGWPHjsW0adNw+umnY+rUqRgwYIBv9yHDlzDBw2g8jh07huXLl+P999/HihUrcOqpp2qv\nudmtuR7QAyzLda8ZORIriuI6075SkLSe31yMS6WkyFp+6NAhjB07tiAldfjwYS0ltWnTJuzZsweR\nSASnnXaaFrWZMGGC7yNjfiKTyeCCCy7QvKrmzZuHlStXVuW4v2HDBnz5y19GJpPBnDlz8PDDDwMA\nstksrrvuOrz11lsYNGgQnn32WYwePRoA8OSTT2LFihUAgLvvvhvXXXedA3vBECZ4GI3Lli1bsGTJ\nEkyYMAHLli1DS0uL9lojGfkBJyz+FUXRoj1eN+0rhtddjKuZJbVz507MmjULEyZMwJgxY7Bv3z70\n9vZi8ODBWkrq9NNPx+jRo1lKygekUinNl+vcc8/Fgw8+iNWrV5t23CfjOM466yw8+uijOOusszBn\nzhx84xvfwOzZs/HYY4/hnXfewWOPPYZnn30Wzz33HJ555hl0d3fjzDPPxIYNGwAAZ5xxBjZs2KAJ\nK4dhRcuMxmXSpEl46aWX8Pvf/x7z5s3DTTfdhAULFoDjuH5GfqTQ10s3xnLoozZ0SgOA1r3mVdO+\nYnAch2AwiEAgUOBX5LY0pplaKCPjvkwmg3feeUcblLlt2zZIkoSZM2dCFEX88Y9/xKc//Wn84he/\nwKhRo5zeTEYdaGpqApBvypBlGW1tbVi9ejXWrl0LALj++utx4YUXYtWqVXj++eexYMECBINBjBkz\nBuPGjcO6deswevRoJBIJnHXWWQCA6667Dn/6058we/ZsrF69Gvfddx8A4LOf/SwWLVoEAPjrX/+K\nWbNmaQLnkksuwcsvv4zPf/7zdu+CivDPqs5glIDjOHzuc5/D5ZdfjpUrV+KKK67A97//fUyfPh2A\ntW7NTlLMtA+AFhkgN0+O47TZRqR7zWvbawa9X5GTZn7Vdkl1dXUVpKQ+/vhjhMNhTJo0CdOmTcPN\nN9+MiRMnFqSkjh07hh/+8Ie45JJLsGXLFl+JeEYeRVFw+umn44MPPsCtt96KSZMmVey4HwwG0dnZ\nqX29o6NDc+Lfu3cvRo4cCSC/Rra2tqKrqwv79u0r+BmvuPezK4BRgJV5YTfS1NSE73//+9i5cydu\nv/12DBo0CPfccw8GDRpUsVuz05RLefA8r7XmF2v/Jtvnhe2tFbvN/Kox7pNlGR9++GFBC3hPTw8G\nDRqkpaSuueYanHTSSWXF2oABA7BixQrce++9TOz4FJ7n8fbbb6OnpweXXnop1qxZU/C6l4xU7YBd\nBYwCIpEI1qxZU5AX/p//+R+sXr0al1xyiZYXXrVqlZYXfvbZZ7F161ZPTWL/xCc+gT/+8Y946aWX\ncPXVV+Oaa67BDTfcoIkD4tZMp7ns9rMhmBleWssYjGLb65dCXz08zxdsbyKRqKl+q9qUVDabLRA2\n7777LnK5HMaMGYNp06Zh1qxZmploLcchFApV/bMMb9Da2orLL78cGzZsqMhxv7OzEx0dHdizZ0+/\nr5Of+fjjjzFixAhIkqSJ746OjoKxRrt378a//du/2bOxNeDuuxLDEYrlha+//noA+bzwn/70JwAw\nzAuvX7/esc9eKZdddhnWrl0LURQxZ84cvPHGG9prgiCgqakJkUgEmUwGyWRSSw/VC1Jom81mkUql\n0NfXh97eXqRSKeRyOQD5G1g8HkdLSwvi8bh2865VoAiCgFgshmg0qm0vcar2I2R7m5qaIIoi/v/2\n7jwu6mr/4/hrBBcQcMEFI1yCCTWBQVHMzCwEEpcyzR1xS0VLvZp7uOQVNfPRTc3SAi1viV1TUVNz\ny9wSvW64XJdU1CuoJSCbrHN+f/Cb7wXFcmVg+DwfDx/qDEPni9PMZ845n/dJS0sjJyeHP2vkMO2F\nys7O5s6dO9q/T3p6OtnZ2cC9/z6VKlUiNTWV3bt3s2DBAgYNGoS/vz9du3Zl5cqVlC9fnoEDB7J5\n82b27t3Lt99+y7hx42jXrh01atSwyKJTPL4//viD5ORkAO7cucO2bdvw9vamc+fOfP3110B+J9Wb\nb74JQOfOnYmKiiI7O5tLly5x/vx5WrRogZOTEw4ODsTExKCUYsWKFbzxxhvaY0zfa/Xq1fj5+QEQ\nEBDA1q1bSU5OJikpiW3bthEYGFjcP4KHJjM84h5PYl24NKlQoQLjx4+nb9++TJgwgcjISGbOnMkz\nzzxTaOPrk1wGeZBZgbv3cxQXa2tr7OzsyMnJsfgEY/jf/q2CHV02Njb3nL/2IEtSRqORuLi4QjM3\nSUlJVKtWTVuS6tatG66urhb78xTFIyEhgZCQEO11JDg4GD8/P7y9vR86cX/x4sX079+fO3fuEBQU\npJ1lNmjQIIKDg9Hr9Tg6OhIVFQVA9erVCQsLo3nz5gBMmzatpHRo/SlpSxf3ZVoXnj17Nm+99RZJ\nSUnafdWrVycxMZH33nuPli1b0qdPHwAGDx5MUFAQb731lrmG/dj27t3LpEmTCAwMZMSIEVSsWFG7\n71Ha2EtLaF9RTEsv2dnZFptgXLD4zM3NJTc3t9BGb9P5a3cH92VnZ/Of//xH65I6ffo0OTk51KtX\nT8u2MRgMMktTyly9epV+/fpx8+ZNdDodQ4YMYeTIkUyfPp2vvvqKmjVrAhAeHk779u2BMpNvU1pI\nW7p4eI+6LlyaT2IHaN26Nbt27WLp0qUEBQUxfvx4bbq2YBu76bwqGxsbrKys7mn/Lrjv5s9mBUqy\nght9n8R+F3N7kC4p02xWdnY2I0aMoFatWgwdOpQrV65oMzdxcXGUL1+eRo0aYTAYCAkJwcPDQ5sZ\nEqVX+fLl+eSTTzAYDKSlpdGsWTP8/f3R6XSMGTOGMWPGFPr6ovYxmvJtQkNDiYiI0PJttmzZwuuv\nv05ERASOjo6cP3+eVatWMWHCBC3f5sMPPyyUb9O5c+dSMXtSGpT8V1xRrJ7UunBpZ2VlRWhoKBs3\nbmTr1q307NmTixcvavfn5ORoe2ZM+zhSUlJIS0sjOzsbpRTW1tbY2tri4OCAvb09tra2VKxYEWtr\n61JR7BRkKvRM+13S09PJzc0197D+lGnGxrQfKjU1VdsPlZubqx0tYm9vj4ODA5UrV6ZChQpcu3aN\njRs38vHHH5Odnc3x48fx8fFh/vz5PPvss0ybNo3du3eza9cuPv/8c4YOHYqvry+2trZS7FgAJycn\nDAYDAHZ2djRq1Ehbpi9qReR++TYJCQlF5tsAhfZEdu3alR07dgCF822qVq2q5duIJ0NmeEQhT3Jd\n2BI4Ojoybdo0fvjhB958801q167NrVu3uHz5MmvWrKF58+ZUrFiRvLy8MpHWXBLzih61Syo7O5tT\np05x/PhxTp48yenTp8nMzKRu3boYDAbatm3LqFGjqF27NqdOnWLixIlMnTqVVatWlajgQvH0xMXF\ncfToUVq2bMm+fftYuHAh33zzjVYAV61aVfJtShEpeEQhHh4eHDly5J7bq1evzvbt24t8zOTJk5k8\nefLTHlqxmzhxIsuWLSMnJwcvLy86dOignSY9adIk2rRpU6iwMZ3flJWVpZ3GbonuDvJ72nk2BZmW\nDP/sOIyigvtu375dKLjv4sWLhZak+vbti4eHx31naZo0acLGjRv5+eeftb0WwrKlpaXRrVs3Pv30\nU+zs7AgNDWXq1KkAhIWFMXbsWCIiIsw8SvEwLPMV2UK8+uqrDBgwQDatmUlISAgjRozg2WefLfQm\nmJqaysyZM/nuu++YNWsWjRs3Bv7X5lySZj+epqe9v+dRgvuMRiNXr14t1CX1xx9/UKVKFTw9PTEY\nDHTu3Bm9Xv9IszSvvvrqY1+XKPlycnLo2rUrffv21ZbvTfsWIb85o1OnToDk25Qm0qVVQoWHh7Ng\nwQJefPFFsrKyCA8P19aVRclw9uxZxo4dS/369Zk8eXKhjYUFu5ssOb24IFNbt1LqoWa4HrRF/+4u\nqZycHM6ePcuxY8e0Lqk7d+7g4uKCt7c33t7eeHl54eTkZPE/e/HkKKUICQnB0dGRTz75RLs9ISGB\nOnXqAPDJJ59w6NAhvvvuO+1QzoMHD2qbln/77Td0Oh2+vr4sWLCAFi1a0KFDh0KHcp44cYLPP/+c\nqKgo1q1bp21a9vHx4ciRIyilaNasGUeOHJFNyw9HTksvTVJSUnBxceH48ePUr1+fL774gjVr1rBk\nyRIaNGhg7uGJApRSrF+/ntmzZxMSEkJwcHChGZ2Cp5ObM625uJgKkczMzCIP6nyQJSnTr4JLUikp\nKYVmbS5cuICVlRUNGzbEYDBgMBjw9PSkcuXKUtyIx7J3717atGmDp6en9lwKDw9n5cqVHDt2DJ1O\nR4MGDViyZImWTRYeHk5kZCTW1tZ8+umnWlenqS3dlG+zYMECIL8tPTg4mKNHj2r5NvXr1wdg2bJl\nhIeHA/lt6abNzeKBScFTmrz99tvY2NjwzTffoJRCp9PRsWNHhgwZQufOncnKyiqUDSPMLzMzk3nz\n5rF9+3ZmzpyJj49PoftNRYCpM8jSN72aTvPOzs7WZmaKWpIqWNxA/pLUtWvXiI2N1fJtbt68iYOD\nA56entrMjV6vt9g9Upboftk2j3JGn2TbiL8gBU9psX//fjp06EB8fLwW8V+pUiVCQ0NxcnJi2rRp\n7Ny5k+joaGbOnImdnZ3F7hEpja5cucK4ceOwsbFh+vTphdb9TZ1BWVlZFhXi91dLUqb7Dx06RJs2\nbahQoYJ2hMbZs2e1wubkyZNkZmbi7OysBfd5eXlpidei9Lp+/TrXr18vlG2zbt06li1bRo0aNbQz\n+pKSkrQz+nr37s2hQ4fuybZp0aIFixYt0rJtCi4TnTx5ksWLF7Nq1SrWrl2rLRM1b968ULbN4cOH\nZZnIct33xULeKUuY4cOHEx4ejo2NDXfu3NHOcYqKiiIgIICsrCzWrVun5buYAtJKg6tXr/Lqq6/y\nwgsv0KRJE216NzExEX9/f55//nkCAgK0HCDI/5Sn1+tp2LAhW7duNdfQH1jdunVZtWoVwcHB9OnT\nh8WLF2tnYOl0OipWrIidnR1Go5HU1FQts6e0MBUqD3OWlJ2dHRkZGcyePRsfHx/eeOMNAgMD6dix\nI0uXLiUrK4sePXoQHR3Nvn37+Ne//sWUKVMICgrC2dlZih0LcL9sm4c5o0+ybcTjkjnhEmTlypXE\nxsYSGhoKgI2NDZBfBLVp04YXX3yR77//nkuXLjF9+nS2b9/Ohg0buHDhAsOGDaNjx47mHP5ful+C\n6bJlyyzqJHYAPz8/2rRpw2effUZQUBAffPABr7zyCvDnac0lyYN2Sd29JBUfH19ov83169ext7en\nVatWWFtbExUVRePGjZk/f77W4SbKDlO2ja+v70Of0SfZNuJxSMFTgrz55puEhoby0ksv0bdvXxo1\nasRPP/1EdHQ0x44dIy4ujm+//ZZNmzbh5OTElStXaN26NYMHD6ZGjRoA2p6fksjJyQknJyfg3k95\nv/zyC5D/Ka9t27bMmTPnviexF3whLMnKly/P6NGj6dWrFxMnTiQyMpK///3vhV6UCx7SWb58eS0c\nrzg9anBfbm4u586d4/jx48TGxnLy5EkyMjJwdnbGy8sLX19fhg4des+S1MyZM1m0aBG9evXi8OHD\nshenDElLS6Nr1658+umn2NvbF7rPtEldiKdFXmlKCKPRiI2NDZ999hmxsbFMmzaNmJgYXFxciI6O\nxsXFhU8++YSEhAQcHByYPXu2VuQA2huU6QXj9u3bVKlSxVyX85ce51NeaVO7dm2WLVtGTEwMQ4YM\n0RJ8K1WqpIX4FTyN/Wm2sT9qcF9aWhonTpzQZm1M+ymef/557QTwmTNnYm9v/5fjrlChAmPGjGH0\n6NGlYrZOPBmmbJvg4GAt2+ZhzuiTbBvxuKTgKSHKlSunndDs6enJ2rVrSUtLw87ODoADBw6wa9cu\nFixYwKJFi7h69SqOjo7am4uVlRVGoxGdTsePP/5IVFQUH374YYlsY3+cT3ml+ROgr68vP//8M5GR\nkQQFBTF27FiCgoLQ6XSUK1cOGxsbKlSoUGiZ63FmPwoeXvowS1LXr18vlEocHx+Pvb09Hh4eGAwG\nxo4di7u7u3aW2KOSYqfsUEoxaNAgGjduzOjRo7XbTWf0TZgw4Z4z+nr37s2YMWO4du2adkafTqfD\nwcGBmJgYWrRowYoVKxg5cmSh79WyZUtWr16Nn58fAAEBAUyePJnk5GSUUmzbto25c+cW/w9BmJ0U\nPCWI6Q0gLy8PKysrrdhJTU1l9erV1KpVi5YtWzJv3jzi4+Px9vbWHquUoly5cmRlZbFp0ya8vb21\nx5ekZa7H/ZRX2k9iL1euHIMHD6Zbt25MnTqV5cuXEx4ejl6vBx4trflRl6Ty8vI4d+6cNmtz4sQJ\nMjIyqFOnDl5eXjRt2pRBgwbh7OwsxYl4LPv27eOf//ynFi0A+Q0JEydOfOgz+hYvXlwo2+b1118H\nYNCgQQQHB6PX67VsG8g/FicsLIzmzZsDMG3aNOnQKqOkLb2UuHHjBjqdjlq1ahEWFsaNGzdYunSp\ndr+pqImMjCQmJoahQ4fStGlT7f68vDztzc5c7pdgOn78eBwdHZkwYQJz5swhOTm5UGtqUQmmluLE\niROMHTsWDw8Pxo8fX2jGq2Bas6mNHXik4L709HROnjypFTfnzp1DKYVer9eC+wwGAw4ODhb18xVC\nlDn3fwFTSv3ZL1EC5OXlKaWUMhqNSimlDh48qHx8fFRaWlqh++Pi4lTfvn3VihUrlFJKJSQkqLVr\n16rbt2+bYdT32rNnj9LpdMrLy0sZDAZlMBjU5s2b1a1bt5Sfn5/S6/XK399fJSUlaY+ZNWuWcnV1\nVe7u7mrLli1mHP3TYzQaVVRUlGrRooWKiIhQaWlpKj09XV28eFGdPXtW3bp1SyUkJKj4+HgVHx+v\nrl+/rn7//XeVmJiobt++rX19enq6SktLUxcuXFBr1qxR06dPV127dlUtW7ZUfn5+avTo0Wr58uXq\n+PHjKisrS3s+idJnwIABqlatWqpJkybabdOmTVPOzs7a/1ubNm3S7gsPD1dubm7K3d1d/fTTT9rt\n//73v1WTJk2Um5ubGjlypHZ7Zmam6t69u3Jzc1O+vr4qLi5Ou2/58uVKr9crvV6vvv7666d8pUI8\ntPvWNDLDU0qtWLGC3r17F5q1mTFjBllZWQwaNIgjR47w1Vdf4e/vz8qVKxkxYgQDBw7U9nCYfhfm\nZzQauXDhAgcOHOCLL74gPj6eO3fukJmZyZQpUxg4cKAW4Hfz5k0mTpxIWFgYbm5u/Pbbb4WWpFJT\nU3FycsLLy0sL73NxcZF/awuzZ88e7Ozs6NevHydOnADy//+3t7dnzJgxhb5WQvxEGXPfGR7Zw1PK\nqP9fugoODtb+DrBr1y4uXLhAcHAwmZmZzJ07l+TkZCIjIwkICGDJkiUMHDhQe+MzFT3SCmpen3/+\nOePHj6dGjRoYDAYCAgKoXbs2O3fupGrVqvTs2ZNKlSqRkZHByZMnOXbsGBUqVKBt27Y4ODjQpk0b\nWrRoQadOnQgLC6NKlSry71kGvPzyy8TFxd1ze1EfYO8X4levXr0iQ/xef/111q9fz4wZM4D8EL93\n330XKBziB2ghfj179nxKVyrEkyMFTylz95uZ6e/79++nXr16tGvXjg8//BCDwUC/fv3o2rUrtWrV\nIjs7m7S0NFasWEFKSgojRowokZuay5pu3brRq1evez4hDxs2jE2bNvHaa69ha2tLjRo1aNKkCQaD\ngUmTJvHRRx8xffp0tm7dSvv27Wnbtq15LkCUKAsXLuSbb77Bx8eH+fPnU7VqVQnxE+L/ScFjISZP\nnqxtbAZo3bo1bdq04cCBA8yfP5/MzEzKly/P999/T7Vq1YiJicHLy4tp06ZJsWNGNWvWvO99QUFB\nvPTSS9ja2hZ5yrop28cU2ijKttDQUKZOnQpAWFgYY8eOJSIiwsyjEqLkkILHApj245jC+1q3bs2Y\nMWMwGo0MHDiQsWPHAvlFUYMGDXjvvfdwdHSkV69evPHGGxgMBm2WpyR0c4n/+avwSF9fX3x9fYtp\nNKIkK3hQ7eDBg+nUqRMgIX5CmMhORgtw94ZUPz8/IiIi+OabbxgyZAiJiYkcPHiQgwcPMnr0aDw8\nPKhbty41a9bUXgjT09O5efOm1s6cl5dnjksRQjyihIQE7c9r167Fw8MDyA/ki4qKIjs7m0uXLmkh\nfk5OTlqIn1KKFStW8MYbb2iP+frrrwHuCfHbunUrycnJJCUlsW3bNgIDA4v5SoV4NDLDY2FM7Xc+\nPj7aRmZT8FZgYCB6vR5ra2s2bNhAXFwcHTt25LvvvmPz5s0cPnyY4OBgJk2aVOIOshRC/E+vXr34\n5Zdf+OOPP3BxcWHGjBns2rWLY8eOodPpaNCgAUuWLAEkxE8IzZ/1rBdj37x4wnJzc7U/G41GFRER\noS5duqSUUionJ0c1b95cbdy4UW3ZskX16NFDRUVFqcTERDVq1CgVGBiofe3OnTtVVFSUGa7g0RSV\nT3Lr1i3Vrl27InN+7pdPIsqOJ/WckUwbIUqE+9Y0UvCUQVOnTlUtW7ZUSinVp08fFR0drVJTU5VS\nSo0fP17Vr19fHT9+XM2bN0/Z2tqqEydOaI9NSUkxy5gf1O7du9WRI0cKvXmNGzdOzZ07Vyml1Jw5\nc9SECROUUkqdOnVKeXl5qezsbHXp0iXl6uqqhTiKsuNxnzOmAMfmzZurmJgYpZRS7du3V5s3b1ZK\nKfXZZ5+p0NBQpZRSUVFRqkePHkqp/KLqueeeU0lJSSopKUn7sxDisdy3ppE9PGWAuiubo1WrVixe\nvBjIP7upatWq2NnZcefOHfbu3UtYWBienp7s2rULpRTR0dFkZ2dz9epVXn75Zc6ePWuOy3ggL7/8\nMtWqVSt02/r16wkJCQEgJCSEdevWAUXnkxw8eLDYxyzM63GfMzExMSQkJBSZaXP39+ratSs7duwA\nCmfaVK1aVcu0EUI8HVLwlAF3d1wFBgbi7e1NXl4eaWlp/PjjjwAMGTKEunXrMnDgQM6dO8eePXuI\njY0lLy+Po0ePsmLFCjw8PHB3d9fOcyoNbty4oXWw1a5dmxs3bgBIpoi4r4d9ztx9u2TaCFHySMFT\nhh09epTly5djZWVF+/bt+emnnxg2bBgA77zzDsOGDcPNzY2pU6ei0+n48ssvqVWrFmfPnsXKyqpU\nHlfwV8nS0o4v7iZp5EJYhtL3jiWeiFu3bjFy5EhGjhxJnz59+O9//8sHH3zAK6+8wvr167l48SJz\n587VTuyeMGECTZs2JSAggE6dOmlLYqVB7dq1uX79OpDfuqx76D0AAAtmSURBVGvKKykqn8TZ2dks\nYxQly8M8Zx400wa4J9Om4Pe6evVqoRkfIcSTJQVPGeXo6Mj+/fvx8PDg448/pn///owcORLIf7Fu\n1aoVkP/pdvXq1WRmZvLDDz8QGBhIly5dSE9PN+fwH0rBTJGvv/6aN998U7u9qHwSIR72OSOZNkKU\nAn+2o7nY91YLszB1mZikpKSo4OBgNXz4cHXt2jXVqlUrtXr1aqWUUidOnFBjxoxRERER5hjqX+rZ\ns6eqU6eOKl++vHr22WdVZGSkunXrlvLz8yuyxXjWrFnK1dVVubu7qy1btphx5MJcntRzxtSW7urq\nqt577z3t9szMTPX2229rbemmyAellIqMjFRubm7Kzc1NLV++vFiuVwgLd9+aRqeKOF23YD1UXIWX\nKBlMx1QAJCcns2XLFj777DP27NkDwNKlSzlz5gwhISF4eXmZc6hCCCHE3e674U6WtEQh5cqV07qv\nqlatSs+ePVm/fj0AO3bs4PTp03h6ekqxIx5I/fr18fT0xNvbW1suTExMxN/fn+eff56AgACSk5O1\nr589ezZ6vZ6GDRuydetW7fbDhw/j4eGBXq9n1KhR2u1ZWVn06NEDvV5Py5YtuXz5cvFdnBCiVJGC\nR9zDNMNjKnxMB1gajUasrKxo166d2cYmShedTseuXbs4evSolnE0Z84c/P39OXfuHH5+fsyZMweA\n06dPs2rVKk6fPs2WLVsYPny4liEVGhpKREQE58+f5/z581peTUREBI6Ojpw/f56//e1vTJgwwTwX\nKoQo8aTgEfdlKnxMv/v7+zN9+nTpJBEP5e5l8+II9ROlg9FoJC8v757niBBPgxQ84oGYNn3Z29ub\neyiiFNHpdLRr1w4fHx++/PJL4OmH+iUmJhbLtYn7MxUwpt+NRiO5ubnk5eUV+ppy5cphZWWFTqcj\nJyfHLGMVZYcUPOKBSPiaeBT79u3j6NGjbN68udDmdxN5XlkWpRS5ubnodDpiY2Pp27cvkD9LbG1t\njZWVFZDfEKHT6bh8+TI9e/akVatW9O/fX5KmxVMlBY8Q4qmpU6cOADVr1qRLly4cPHjwqYf6Va9e\nvViuTdxLp9NhbW0NgKenJ99++y0Ap06dYuLEiXTo0AGDwUBgYCA5OTlERUXRv39/du/eTevWrZky\nZQq///67OS9BWDApeIR4grZs2ULDhg3R6/XMnTvX3MMxq4yMDFJTUwFIT09n69ateHh4FEuon3hy\n4uLiuH37Nnl5eYWWpO6WlZXFoUOHWLRoEYcOHQLyi54jR46QkpJCrVq1mDdvHvXq1aN///4opVi9\nejULFy6kW7duLFy4EKPRSFZWVnFdmihjrM09ACEsRV5eHu+++y7bt2/H2dmZ5s2b07lzZxo1amTu\noZnFjRs36NKlC5A/+9KnTx8CAgLw8fGhe/fuREREUL9+fb7//nsAGjduTPfu3WncuDHW1tYsXrxY\nW+5avHgx/fv3586dOwQFBfH6668DMGjQIIKDg9Hr9Tg6OhIVFWWei7UgpqJGp9NRrlw53n77bebN\nm0fbtm2L/HqlFDqdjnfeeYeEhAQaNGhA48aNAahbty7Hjh1j4MCBvPjii1y4cIEqVarg7+9PYmIi\n7u7u1K5dm1GjRlGnTh3Kly9fXJcpyiAJHhTiCfn111+ZMWOG1jJtareeOHGiOYclRJHy8vI4c+YM\nzz33HDY2Nvf9ugEDBuDl5aUdMxMSEkLv3r2xtbXVgkr37NnDmjVr6Nq1K61bt9Ye+8EHH5CYmMji\nxYtRSjFu3DisrKyYO3cuGRkZzJ8/n8uXL/PVV18B+XlLFStWpEmTJk/9+oXFkuBBIZ62gh1D8L8u\nI3OQpTVRkKn9u+CSlJWVFUuWLNH2R+Xl5ZGTk8MPP/zAgAEDCAkJISEhAR8fHzZs2EBmZiYjR45k\n9+7dWoFi+n5NmjShUqVKjBs3jnHjxjF9+nTS0tJo06YNJ06cAOD48ePEx8czd+5cMjMzycjIYODA\ngRiNRl5++WU8PT15//33pVtLPDWypCXEE1JSuo1kaa1sysjI4MiRI8TGxhITE0OXLl0ICgqiQoUK\nWpZWQTdu3ODXX39l586dNGzYkPHjx5OTk8OyZcvo1q0bbm5u1KlTB1dXVzIzM+nUqRONGzcmJSWF\ndevWMXLkSO05X61aNWbNmoXRaGTnzp1ERkaycOFChg0bxtWrV8nMzGTVqlWsWrWKGzdukJiYyGuv\nvcb8+fNZtGgRZ86cwd3dncqVKxf3j02UIVLwCPGE3N1ldPXqVbOENB48eBA3Nzfq168PQM+ePYmO\njpaCx8INHz6cqKgoJk+eTOPGjVm7di3x8fEMHz6cM2fOEBkZyeHDh6lbty7Tp08H8nOQUlJSWLFi\nBbm5ucyaNYtmzZrRv39/7fu6urpia2urJa43a9aMjz/+GEBrM4f8jrvs7GysrKywsbHB29ubatWq\n4eDgQEpKCl5eXqxZswZ3d3caNmyoPc7W1pamTZs+/R+QKPOk4BHiCfHx8eH8+fPExcXxzDPPsGrV\nKlauXFns4yhqaS0mJqbYxyGKl8FgICcnh6lTpwIQHh7OpUuXAMjMzMTFxYWhQ4dy9uxZ3nrrLQ4f\nPszUqVN5//33sbGx4fbt29y+fZsuXbpoy18VKlTA1dUVo9FIfHw8zs7O6PV6MjMzSUpKolq1atqm\n5WPHjjF//nyqV6+Or6+vtpcnNjYWyC+8hTAnKXiEeEKsra1ZtGgRgYGB5OXlMWjQILPMqpSUpTVR\nvFq3bk14eDjr1q1j9erVHD9+XDv412AwkJKSwkcffURsbCznz58nISGBmjVrcvv2bVJTU6lSpQrP\nPPMMGzduJCAgACsrKzIyMrC1taVSpUqcOnWKpk2bUrlyZWrVqsWFCxfw8fHR/vvt27enQ4cO5rp8\nIf6SFDxCPEHt27enffv2Zh1DSVlaE8XL29ubW7dusXHjRlq0aEHLli3p3r07W7duxcrKikWLFuHn\n58eCBQto0aIFsbGxBAYGYjQauXHjBvb29vTp04ewsDAGDBhAYmIilSpVYunSpXTp0gUnJyetmDbN\nGJpmd4Ai9wkJUZJIwSOEhSkpS2uieFlZWeHk5MSMGTNwdnYGYNmyZezfvx8bGxuUUvTv35+KFSuS\nnJzMr7/+SmBgIO3bt6dLly44Ozvzj3/8g0WLFhEdHU2VKlVo1aoVVapUYfDgwUX+N2U2UZQmUvAI\nYWFKytKaKH4vvPACO3bsoF+/fkD+puQrV67Qo0cPateuzWuvvUaDBg2oW7culSpVAmD8+PH07t0b\nV1dX7XDggpuWhbAUEjwohBAWYsqUKWzYsIF3332X6OhoKlasyKeffoqLiwu//fYbBw4coHnz5ri7\nu5t7qEI8LfeddpSCRwghLMSBAwcYM2YMHTt2xMPDA19fX+1wViHKCCl4hBBCCGHx5GgJIYQQQpRd\nUvAIIYQQwuJJwSOEEEIIiycFjxBCCCEsnhQ8QgghhLB4UvAIIYQQwuJJwSOEEEIIiycFjxBCCCEs\nnhQ8QgghhLB4UvAIIYQQwuJJwSOEEEIIiycFjxBCCCEsnhQ8QgghhLB4UvAIIYQQwuJJwSOEEEII\niycFjxBCCCEsnhQ8QgghhLB4UvAIIYQQwuJJwSOEEEIIiycFjxBCCCEsnhQ8QgghhLB4UvAIIYQQ\nwuJJwSOEEEIIiycFjxBCCCEsnhQ8QgghhLB4UvAIIYQQwuJJwSOEEEIIiycFjxBCCCEsnhQ8Qggh\nhLB4UvAIIYQQwuJJwSOEEEIIiycFjxBCCCEsnhQ8QgghhLB4UvAIIYQQwuJZ/8X9umIZhRBCCCHE\nUyQzPEIIIYSweFLwCCGEEMLiScEjhBBCCIsnBY8QQgghLJ4UPEIIIYSweFLwCCGEEMLi/R8CHf5L\n0PLf6gAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cafb28190>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAI8CAYAAAD1D3GaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmYXGWdN/zvWWrvLemms4dsEpIQIOwzBEIEghpWwbDD\no6hMAEF5EUcYQXFwy4y8CI68D8PoixvqOCo4jA/MoCiIbAEMe5JOOvva3VVd29mfPzrnpLpSvVbV\nOXXO+X6uK1cnnaTqVHXVOd/63b/7vgXLskBEREQUZKLXB0BERERUbww8REREFHgMPERERBR4DDxE\nREQUeAw8REREFHgMPERERBR48gh/zznrRERE5BfCUH/BCg8REREFHgMPERERBR4DDxEREQUeAw8R\nEREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxER\nEQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERER\nBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREF\nHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUe\nAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4D\nDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMP\nERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8R\nEREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFHgMPERERBR4DDxER\nEQUeAw8REREFHgMPERERBR4DDxEREQUeAw8REREFnuz1ARARBY1lWbAsC6ZpOl91XQcAJBIJCIIA\nQRA8PkqicGHgISIaAzvMlAcawzBgmqYTbizLgizLg/6PIAgQxYHCuiAIiEajDD9ELmHgISI6oDTM\n2EHG/mUYhvO9SuzQYn+1LAuSJDl/b/9/URShaRry+Tyam5shCAIkSYIoihBFkeGHqE4YeIgoNEqr\nMpZlDarK2L+GYldiRhNKRvv3oijCsixnuIvhh6h+GHiIKBAqDTOVV2csyzrk/9hBZrRhptZKh7RK\nww8AyLLM8ENUIww8RNTwRtM3M1yYATAo2HhlNJWfocKPJElO9Yfhh2jsGHiIyFNj7ZvRNA2CIECW\n5YYKM7bSx6Bp2qCABmDUx1kefgzDgGEYABh+iMZDKP9UVGbYvyQiGkkt+mbs3wNAsViEJEmIRCKu\nHH+p8ipTpd+XHmtpKCk916qqCgBIJpOIRqPOzK2xHIPNvg9Jkhh+iIAh3wQMPEQ0brXomwFGHuop\nVa/AU6nSVB5oSo/dDjL219Ip57quwzAMxONx5/Z1XYcgCEgkElBVFfl8HrIsQ9M0SJKEaDTK8ENU\nvSFf+BzSIqKKgtI3YxuqMlP6vUoNzHbj8FgeywgfJJ3bb2pqgmVZ0DQNqqqiUCiMKfwMNexlhyiG\nH6KDGHiIQqhSNaM8yIxmvZlGCjOjHWoqrcyIonhIoKmV0d6WvQBhNBqtafhRFAXFYhFNTU1O8GH4\noTBj4CEKoPH0zWiaBgDO6r+N0hA71FCTvZrxUENN9sW9fHXjRlaP8GP3D2maBk3TGH4otDwLPPZJ\naizj1URUv/VmSlcCdtNYh5rsP49nqMlPahl+7K/288nwQ2FU98CzatUq/PznPz/k+y+++CLuvfde\nPP7443yjER0QxL6ZWg81eTlLyysMP0TVq3vgee6557Bu3Tpn/xi7oS6Xy+HZZ5+FruuhOnFReI11\nvZlSjRxmxjqryY9DTY1kNOEnEok4z/1wt2N/ZfihMKh74Onv78dll102aFdgSZIgyzJOOeWUet89\nkWsq9c3YAV8UxZrt0+QWN2c10fgMF37s590wjEGbmA51O/ZXhh8KqroHnsMOOwxvvPEGZJn90eRf\n4+2bAQaGYFKpVMOFmfLwYjcB28NngLuzmqg65eGnUChAURRkMhmIouj8HcMPhVXdU8g999yDfD6P\nbDYLTdOQTCYxceJEZ5dgNi2T1+rZN2P/PzcvDuMdarJ/lfaC8KJWHyOt01Mtu9JmGAaampqcyk89\nwo8dhIkaXd0Dz9lnn41LLrkE7777LrZt24aTTjoJ3/rWt3DaaafxTUJ153XfTOm6KLUKD/UaalJV\nFZZljXgRpNpwK0xWGvbSNK1m4UdVVciy7NwGz+vUqOoeeFavXo1Vq1bhk5/8JE4//XQ8+uijWL16\nNebPn49JkybV++4p4Maz3oytUftmaj2richWGn6SySR0Xa+68mPv6C6KorN9RumwF1+L1CjqHnh2\n7tyJc845B8BAL0NHRwcURYGiKPW+a/K5ofpmShuBhxoaaOQww1lN1AgEQUAkEkEkEqkq/Ni3Vfp+\n1HWd4YcaTt0Dj2VZyGazA3cmy3jyySfR1tbGsnnIVdM3Y5omNE1DIpFoqJPoUJUZAMjn80MONUUi\nkUHfb5THQ+FRq/BTPuwFMPxQ46h74LnqqquwY8cOLFiwALNnz8aaNWvwyCOPYNq0afW+a/LIUGGm\n1n0zXjQCjzTUVL5ztl3mj8fjDVVtouAbb98Yww8FlTDCbIGaTCUwTRO5XA6JRAKyLEPTNKTTaWe2\nFvnLUNOzx9I3Y/9+PAzDgKIoSCaT4/r/5cY71FQeboZ6TNlsFqlUquFP6nbTciwW8/pQhuWHlZYr\nPZf2hT6RSEBVVSiKgubm5rodg6Io0DQNTU1NNbk9e+kCVVWhqqoTfjRNQywWG/Xrxr7mlM5gZPih\nGhryBVT3Cs++fftw11134fe//z2mT5+O++67D7/73e/wxz/+Eddeey3OP//8hj5xhc141puxNWrf\nDIBxzWriUBPVmp9fQ0NVfnRdd84RrPxQI6t74Pnc5z6HuXPn4vnnn8crr7yCVatW4bzzzsMtt9yC\nO+64A3PnzsWxxx5b78MgDD3UpOv6kE3Ao11vxk2lJ8pqhpo4q4lofErDj2EYkGUZpmlWNewFHKwi\nMfxQPdQ98Ozfvx833XQTJk6ciBUrVqClpQUf+chHsGzZMkycOBH5fL7ehxAK1fTNAAdXA26kE8tI\nQ025XI6zmog8Zq/xVO1Ud/u2GH6oXuoeeJqamvDaa69h8eLF6O7uhqIo+OMf/4iWlhYYhoFoNFrv\nQwiEWvTNDDXUVDqW7pZqhpokSYJhGA03S4toOCP0SwZCrae6l4afYrEIVVWRSqUYfmhc6h541qxZ\ng+uuuw5f/epXIQgCfvSjH+GZZ57Bueeei3vuuQdLliyp9yE0vKD1zQD1HWqyp6Wz4Z0aVRjCzUhq\nHX6Ag88rKz80Hq7M0gIGZgw0+uyPeqhmvZny8e16vZnt4aHRzuao96ymkZimiUKhgFQqNeb/6wXO\n0qotP8zSshdWLX0uNU2DJEmIx+M1n0E11DHU+z4AIJPJIB6Pj7paP9Rsr5HCT6WZbaUfBhl+6ADv\nZmnZYrGYcxEsvyD6WfnF3m4CtisY9dynqR44q6k+xrsmCvmX1z9vN19zY7mfeg57lVd+7Kqx1z8L\nagyuBR7g0Iu837399tv413/9V9x1112Dvq8oCmRZRiQSabg323DDS/l8nrOa6oDPFVFlYwk/Iw0T\nVgo/9vcZfghwOfAEjSAIyGQyh3wS8SoUVDPUBAxU4XhCICIvjBR+xtKzN1T4AeB8cOO5LnwYeKoQ\niUSgaZor91XvoSZ7LN0PJ4DSdXiIKHgqhZ9CoQBd15FOp6se9rLZPT9+OfdRdRh4qiDL8qA3TzW4\ngB41AgZJajR2+DFNE4IgIB6P16znxzAMGIYBgOEnDBh4qjDaCs94h5rKF9Djm5Dqia8vGg83Q3I9\nG57Lw48ois45mIKBgacKduDp7e3Fli1bsHDhQgBwpptrmsZZTUQUeG6cu8pnndUz/CiKgmKxiKam\nJoafAAl84Jk1axZaWlqcdTteeumlcd/W7373O7z88svYunUrtmzZgs2bN2PLli1YtGgRpk2bht/+\n9rdobW0FcPDNyKEmIvJCmIYn6xV+BEFwKj/2Yqela/2QvwQ+8AiCgD/84Q+YOHFi1bfV1dWFYrGI\n4447DhdeeCHa29tx99134xe/+MWgf6coCgRhYH8Zv7AbgfkmJgqOML6fRwo/kUgE0Wh0VOfn8spP\nafWe4cd//HNFrkKtPunccMMNg/5cLBadMV8iImosQ4WfbDbr/N14w49lWdA0jeHHRwK/GZEgCDjr\nrLNwwgkn4OGHH67pbbs5LZ2IgoPVVPfZASeVSqG1tRXJZBKWZSGbzaKvrw/5fB66rg+7d2HpbZX2\nY9rhp1gsQlEU53aosQS+wvP8889jypQp2Lt3L84++2wceeSROO2002py25IkVdw6guvE1Ffppyxe\nNIi85db7sJb3U1r5Kd3bK5vNAoDT6zOa+yzt92Hlp7EFvsIzZcoUAMBhhx2Giy66qKqmZSKiavCi\n13jKKz/2Zqv2IoellZ/R3BYrP40r0IEnn8+jv78fAJDL5fDUU09h8eLFHh8VhQ0rfkT+YE82icVi\nkGXZCT/ZbJbhJwACPaS1e/duXHTRRQAG0vqVV16JFStWeHxUjYkXZSKig+zwI8syEokEDMMYNOxV\nOtWdw17+EOjAM3v2bLz++uuu368gCBV7e4iI3BK0Hjc3P5BVWuSwnuEnn8/DMAwkk8lBO7tTbQU6\n8BARUXA0QoCrR/gp3WrInvlrh57SLYaoOgw8VeIwEBGFWdAqSWNR6/Bj/7IrP7quQ9d1Z29Fhp/q\nMPAQEdVYmENAEIzng2w9h70AMPzUAANPlTjO6g1uhUGNrvy1yWqwv1Rzbhlr+BnutcHwUzsMPHXg\nxxlPfjxmIj/hxag6fv2AM5rwM9pzL8NPdRh4iIhcUtqkSmPn94v4UOFHVVXn7znsVT8MPEREHqj3\nRcivFZFG4EYgLQ0/AJylTKrt+QHAhuchMPAQEQWU3/a4aiRuPyZJkpBIJKpueAYO3dmd4WcAA08N\nVHrDs2RNRERjVcvZXvbtVQo/hmE4G6iGJfww8FQpEolA0zREo1Hne2F44dDYMAATVSeolaTh1DP8\nZLNZmKYJ0zSdDVTtXeKDioGnSpUCjx9xllb9hO0kTeR3bp8LLcsacYmTWocf4OBqzvZCh0HHwFOl\nSCQCXde9PozQYUAjonpq5A8qtQg/pRUzDmnRqMiyzMBDRKHEDx3eq0flJ6gYeKpkD2mVYvWBiMIk\n7BfSRjGW8BNGDDxVkmX5kMBDROS1oDX5uvl4RtNTU+v7q/VjGyn8mKYJwzBCVflh4KlSpQqPX7Eq\nReQOvtfITZXCTyaTQaFQQKFQQCQSQXNzc+ArPww8VYpEIjAMw+vDqFpYEj4Njxfi6liW5Uz1BeD8\n3v6+pmnOn/meIy/Y4UcURTQ1NQEAVFUNxXufgadKQarwULjxAjwye/puaYgp/T1w8Hk0TdP5VC2K\nIgzDgCiK0HUdqqpCFEVIkoRoNMrnPuS8CMD2sJ0oioO2uAiy4D/COmPTMlFwVAo0pV/tC5Mois5X\nO9DYU3sFQUCxWIQkSYhEIs5t2wEoGo0il8vBNE2oqop8Po9IJIJYLAZZlhl+huDmOZUVuGBi4KkS\nm5a9wVBJ4zGeQCOK4qDl92txIbSHFRKJxKDgY5omYrEYotGoLz5xux0MGEKoGo3/jmpw0Wg0ED08\nREHQKIFmLERRRDweRzwed4a7stksBEFANBpFLBZzdcYQuc+rIa2wBUgGnioFqcLDigk1utJAU9oA\n3GiBZrzvpdKZNLquQ1EUpNNpSJLkVH7CdpEiqhUGnioN1cMD+CtBc4iofvjcjt5oKjTAQD+MJEkN\nUaEZSvlxjOU1YG/mGIlEYFkWVFUdc7+Pn84/jSboz11Yz0cMPFXiLC2i0RvtkFNplcZu/rW/ryjK\nIQ3BQSYIAmKxGGKx2JD9PmFYPC7IIcSrAFL6fAb1uS3FwFMlbh5KdJAdWoaauj1UoCmf6USVlfb7\nGIYBRVE87fcJa6WgHvi6rz8Gniox8FCYDBVoSr8y0FRW68ctSRKSyaTT76Oq6qB+H7fCSFh/nuQ/\nDDxVClLTMtFwQWa4QFP6Z14AR1bL4ZnSfp9kMglN06AoCnRdR7FYBABnSJBGJ8jDZ0DwH99QGHiq\nNFQPj92o6pcXlSAIzkqxfsBG4PEZTYWmUCgw0PiUPbQVjUaRyWQgiiIKhQJyuZwz5BWGfh+/8dO1\nws8YeKoUjUZRKBS8PgwiAOMfcrIDr67rSCaTXj+MUKj3Ba40/JT2+wAY1OzsFwwFtRPWD4sMPFWK\nRCLIZDJeHwaFRDWBZqQKja7rvKAEVKV+n0wm4/T7RCIRLm4YMmF8rzPwVEmWZTYtU82UrjMzVKAB\ncMjCevYvDjmRrVJFZKh+H3t9n2g0OqZ+n6BWXdx+XEF9HhsNA0+VhpqlxR4TqqQ00AxVpQEqB5rS\nKg35UyP97EqHvOz1fYrFIvt9QmCoMBx0DDxV4sKDVKpSoDEMY9BWCAAOCTD2p2oGmpHx03Dtla/v\nY+/nBTROvw8/QFK1GHiqFJTAw4rU6I00dRs4NNDY2x8w0FCjkyQJiURi0OKGdr+PXRHyqt+H7x2q\nBgNPlSKRCHdLD5jxBJrhKjSKojjNwxRefvtAIQiCs5lpab9PoVCALMuIxWKBDSBB7+Hx22uxVhh4\nqsSFB71RTUWq2kBj3z9RWAzV72N/2NN1nf0+PhO2fbQABp6qsWm58TDQENVPab+PPcOr0fp9iCph\n4KlSUHp4/KR0LRpVVSsGmvL+GXsvJwYa8orbrzk3PnCJoghJktDc3Fz3fp+gNqvbP6cgD6E1Cgae\nKjHw1N5IC+uVnyBKA429Dk0Y38zkH25dcNx6H1Tq91FVdVC/j5/28wprIAg6Bp4qBaVp2c0huNEE\nmvIKjT3LyQ4zqqo6fQVEfhGGi2h5v4+maYPW94lGo5BlORTPBTUWBp4qDdW0HOYenloEGp4Myc/C\n+t4vJ4oiYrEYYrGYs75PLpcDgEGLG4aZF9WksFawGHiqFMYhLQYaIhqrodb3sUORl+v7UDgw8FQp\niIGHgYaoemF4D4ynUjCefh+3G3vDWgEJOgaeKg01Lb2RVQo09q9cLnfIjtuNGGjCPGRIFBSl/T72\nrMtK/T5UW+WBzuvzuVv4SqpSI+6WXjptu9Ku2+WBxv5qmiYSiURDBBryBkMkeUUQBKffxzRNZ40f\ny7ICPTmB1ST3MPBUaaghrXpWIMoDTaWv5YFGkqRDpm6XMk0Tuq5zDJ0oIPx8IRVF8ZB+HwBIp9N1\n7/dh6A8uVwNPJpOBpmlOQCgUClBV1ZlifNRRR7l5ODVRjx6e8Qaa0j/79UQXVH44ifI1Q43G7veR\nJAmKoiCRSAzq97GHverx2g3y+8HPYbgargaeuXPnQtM0yLKMnp4edHR0OM1r27Ztg6IoiEQibh5S\n1cbTw8NAEy7sNyKqjn1OLO/3sYe9IpEIYrGYL9f3CWv48IKrgWfv3r3O708++WS8+OKLzp9PPfVU\nGIbhu8BTqYenNNBomsZAQ0SB5NXFeqR+H67vQ5W4GnjsC74kSbAsC++++y6mTZsGVVWRyWTq1vxr\nGAZOOOEETJ8+HU888UTVt2dZFvbs2YPNmzdj06ZNME0TN910E7Zu3Ypvf/vbmDRpEoCDJVEGGiIq\nrfLxU33t2P0+iUQCuq471xOu7zO0sL7+XA08pbtRX3LJJbj55ptx2mmn4a9//StOPfXUulV37r//\nfixcuBD9/f1V39bdd9+NNWvWIJVKYdasWZg1axYKhQKOOuoorFy5Ep2dnUilUk5lJxaL1eARuIPD\nLkTkZ3aLhB1+FEUZc7+P22GA5133uD5Ly34h3X777Tj++OPx0ksv4ZJLLsGll15al/vbtm0bnnzy\nSdx555349re/XfXt3Xzzzfj85z+PpqYm53unn346/u7v/q7q2/aS39K+IAjOzuhEFGxjDQWCICAS\niSASiTj9PqqqNmy/j9dbSzTK81BvrgaeXC6HYrHorKy5aNEiLFiwAIVCAa+//jqOOuqomi8y9bnP\nfQ5r1qxBJpOpye21t7fX5HaIiGj0xntRLu/3sYOPaZrOkFcYFzcMS8gp5cpP2TAMSJKEefPmoaen\nBy0tLRBFEXv37kVbWxva2tqwefNmbN68GTNnzqzZ/f72t79FZ2cnlixZgj/84Q81u10iokYX1j6N\n4YiiiHg8jng87vT7ZLNZZwaYn1oQaOxc6eSy33Tz58/Htm3bsHfvXuzevRtnnnkmNm3ahK6uLpx9\n9tk1H6L485//jMcffxyzZ8/G5ZdfjmeeeQbXXHNNTe9jKJyKTERB5+dQZe/l1draimQyCcMwkE6n\nkc1mAbjXW+Pn59BvXG1dN00TPT09zp/37NmD999/HwDQ29vrrKZZK1/72tewdetWbNq0CY899hg+\n+MEP4tFHH63pfRARkX/Z/T5NTU1oa2tz+n76+vqQzWadCShBEtaQ5cqQlv1iaW5uxksvvYSOjg6s\nX78epmniV7/6Fbq6utDW1lb3cmK9fsBBeuGE9Y1ARI3LrfOSPbSlKApaWlrY7xMwrlR47AWg7rvv\nPjz44IM48sgjccUVV+DRRx9FKpXCww8/jDvvvBOzZs2q2zEsW7YMjz/+eF1uOwjpnyGHiOjg+dzu\n92ltbUVLSwsAIJvNIp1Oo1Ao1KwFw4sPmUG4Zo2Hq1H1iCOOwIsvvjjoB7xkyRLceeedbh4GERHR\nkMoDiCRJSCaTgxY3TKfTkCTJqfz47UOj3463FlwNPF1dXejp6Rm0j5SiKFAUBblcDsuXL0dbW5ub\nh1QTlV44bFquLz89v1wziGxhvMgESen6PslkEpqmDdrPKxqNIhKJ+O7n7LfjHS9Xp6Xfe++9+OMf\n/4jOzk7s3r0bXV1dmDt3LubMmYOdO3di3rx5vgw8RESlRgrjboR1t+4jLBfLcqWbmdrr+xQKBeRy\nuUH7eTXays72fYaRK4HH7uF55JFHnO/deOONePLJJ7Fq1SrccccdSKVSbhxK3YT5jU9EhxrpfOBW\nE24QuHl+HU8YKF3fxzAMKIoyaH2faDTacJuZBuW1MRau76jW19eHs846C5qmoaurC5lMBtdeey3e\neecdtw+lZiRJCsSQhZ+GiYiI6qWaMGD3+9jr+5imiUwmg0wmA0VReI71kKuBZ9++fbjggguwZMkS\nfPe734UgCHjggQcwZ84cfOELX8DGjRvdPJyakWUZmqYN+h7DAxFReNn9PqlUCm1tbYjH41BV1Vnf\nR1VVz64RYb02uRJ4dF0HAHzmM5/B0qVLsWbNmkE7o3/rW9/C4sWL0dXV5cbh1FwkEjkk8BAREQEH\n+32am5vR2toKWZZRLBbR19fnVH3cDiFhHNJypYfHXqjpnnvuQSqVQqFQgKIoME0ThmFA0zTcdNNN\n6OjocONwao6Bh4jCyM3tF9xS7/sq7/fJ5XLQNA3pdNqZ4t5o/T5B4UrgMU0Toiji6aefxpNPPomO\njg6n6gMA0WgU7733Hu6++26sWLHCjUOqqUgkMujxEBGFhVuVAjcrEm7dlyRJiEQikCQJ0WgUqqoi\nk8k4f45GoxDF2g/ElDeBh6Xa42rgWbduHWbMmIGPf/zj6O3thSzLsCwL06ZNw6233ootW7a4cTg1\nJ8syA4/L2CNFREFgWRZEUay4vk+hUIAsy4jFYr5c36fRuBJ47B9SLBbDokWLcNJJJx3ybxYtWuTb\nYaGgNC378ZiJ6FB8H/tXpfV9isXimNf3oUO5unkoMLAreiX2OKYfRaNR3x47EQUXL4pj10hrqpX3\n+6iqimw2CwBV9fs00mN0kyuztOwxyFNPPRVvvvkmnn32WWiahp6eHuRyOfz4xz9GJpOpWPnxA/bw\nEBHVT5ArVqN9bJIkIZFIoLW1FU1NTYPW9ykWi4FYC67eXKnw2IHnYx/7GNavX49rr70WJ554IiZP\nnozt27fjrbfewu23345TTjnFjcOpOc7SIqJS9l6B9ld7RqqqqojH44G5gLtZKQhyRWIsj00QBMiy\nDFmWnX4fe1sL9vsMz9XNQwHgjjvuwOrVq/H73/8ePT09OOecc3DOOecMWpfHbyo1LbMfhmx8LQRT\n6SbIpeHG/lkXi0WIoghRFCEIAgRBgKZpKBaLAOD8W79fmPx+/H5W3u9jv77sfp9oNApZlg/5GQXh\ndTcergYeTdOQyWRgWRaWLVvmnAC6urqgKAqmTZuG9vZ2Nw+pJljhoaBgMBtsqEBTGlbsQGPPtBEE\nAYVCAclkctCUYlVVkUgkIAgC0uk08vk8isWi04tRj+nHNHZ+DQOiKCIWiyEWiznVxFwuBwCDmp3D\nzNXd0n/wgx/gc5/7HKZPnw7TNJHL5WAYBmbOnIl169bh1ltvxb333uvGIdVUUHp4WIkINz+e5Ktl\nV2kqBRu7J6I00NizY0qrNpUM91zaVZ9kMgkAzvTjSCSCWCxW8RM5BVc9Apbd71O6mWkmk3FCUbmw\nvN5c3S39E5/4BK6++moAQDwex4MPPojNmzfjn/7pn/DAAw9g+/btbhxOzbHC4z6GMxqt4QKNfbGx\nQ4z9y67UDBdqqmX3YkQiEWf6sf2J3P6kzqrPAL9WXbxWqd9HURQAQDabdfp9wsLVIS1JkiBJklMN\nEUXReYPbS2z7EQMPkbeGCzSlQ092ZcYONPafvWZPP47FYtB1HYqiIJ1Oj7sJlQGBytn9PpFIBL29\nvYhGo06/T0dHh7MFVJB58gjtN2JnZycmTZrk/L6np8eLw6naUE3LAE88RLVQXqXRNA26rg879CTL\n8ohDT43GDmOlVZ9CoYB8Pt+QVZ8gVlndPmd7dY2wX0/2Tghh4EngkSQJlmXhkksuwSWXXAIAWLFi\nBZYvX+43w/ebAAAgAElEQVTF4VQtKD08RF4a7dATMBAM7H2I7JO1X0LNaJUuOleLqk+9NMIx0OiV\nB6xGqXK6wbWVlgVBwNtvv41169bh0ksvhSAITrLM5/N466230NTUhClTprhxSDXFIS2ikdnVgGqH\nnuz1Rhq5BF/rykdpH0bpVgP2p/Swz74hGg3XNg+VJAlvv/02Lr/8crz55pv40pe+hGg0CsuykEwm\nsW7dOrz00kt49NFH3TikmgpK4GEjMFWrtEpTqVoDYFCg8evQ02jU47EIgjBo6rE9+0aSJGd6e5Ce\nQ1uQWwN4znWPKwN39gu1paXFWWRw1apV6O3tdf5uzpw5yOfzbhxOzXFIi8LEsiwYhgFd16GqqjOt\nOpfLIZfLoVAoQFVVGIbhzBKJxWJIpVJIpVJIJpNOg24kEhkUeGj0JElCMplEW1sb4vE4FEVBX1+f\ns9wHjY8X4SoMPUONwNVOJV3X0dbWhrvuugvHHnssLrzwQrzyyivYunUr3njjDUyePNnNw6mZoQIP\nKybkR3aVxjAMZ9n6YrGIfD7vhJpisQhN05yTZyQSQSKROCTU2LNC7PVrwnqiLVfL84I9+6alpQUt\nLS0QBAHZbBaWZUFRFJ6DaERheV+6OghuL7QFAF/+8pexePFiXHvttRBFEbNnz8Z3v/tdNw+nZoIy\npOUnDJPVGW7oyV4eIixDT24qfd7q8RzaVZ9YLIZ0Og1VVZHP5wettFvL+w1ztYD8x9XNQ0888UTM\nmjULwMAb5eKLL8bFF1+MbDaLpqYmNw6lLjikRSPxIpxV2gphuAX3JEmCYRhIpVK8iAWAKIpobm6G\naZpQFAXZbNbpAfLbVhZB/nATlmnwjcDVCo9d7gYGr1PT1NTk6x9CkCo8QT6xeKVer+vybRFGO+tp\nqCqNvb6NX9+HVJkois42A/b0dj9uZeHWMVqW5aswSKPn+bzO0nU1/CooPTx+/hkE1XhmPbmxLQL5\nT6VFDfP5PCzLashFDak+yq9JYTpHeB54gqDSSstEozVcoKm0I7fdS8OZTTRepVtZ2NPbG3FRwzAI\n+qywRuJ64Mnn885J3Z4FIkkSJk6ciL1796Kzs9PtQ6pakIa0qPZKZz1VCjR2Cb18A0s2CAdLI1Z7\nyzeXtIe7yhudiYLA1cCze/duXH/99WhpaXHW6CgWi1iwYAFuv/12fO9738Pdd9/t5iHVBAMPjWbo\nSVEUDj2FWKP/jAVBOGQri0wmM2zVx60Q52YVxM/9pKPRiMHbLa4GnpaWFlx33XVoampySvN28Glu\nbsaqVavcPJya4Swt77h9IhzL0JN9gbAsC6qqDlqWgaiRjWUrC7fef0ENIV4EkKA+lyNxNfAkEgms\nXLkSmUzGCQh79uzBY489hunTp2Pq1KluHk7NDNXD47emZcA/6b8eb9jyWU+1Gnriqrfktlp9EBhp\nKwu/nC8aXVgDiNtcDTzFYhFf+cpX8Jvf/AaqqjrrfnR1deHpp5/GzTffjMsvv9zNQ6qJoAxp+TGg\njdVwgcY0zUFr03Doiegge1HDRCIBTdOgKAoMw0CxWHR6gajxBf0cPxxXX6H9/f345S9/iXfeeQeW\nZUGWZezduxcf/vCH8cILL7h5KDXFIa3GMt6hJ856Irf4+aJjb2URjUaRTqedrSxKq0F+fh8FvYcH\nCG9FydXAE4vFsHjxYkiSBEVRIMsyUqkUjj76aAD+faEFpcLjF3aVBoCzn1NpuAEwKNDYy+lz1hM1\nkiC8Du2Qk0qlnKpPPRY19Ou1YTS8fmxBfV4rcb1p+Ze//CXWrVuHtWvXwrIsnHjiifi3f/s3AP59\n4oOy8GAjGc3QEzDQH2OHGg49EbmrdIsSu+pjb2WRy+V8u5VFkHkdsLzk+qDrz3/+c/z93/89PvjB\nD+JnP/sZzjjjDFx++eW44oor3D6UmpFlmRWecah26CmbzSIej4f2zUvUiIKylQUFj6uBR9M0fO1r\nX8Mbb7yB5uZmrFu3Dk888QSOOeYYXweeoPTwCILgDAnVwnCznsI09MRKH4WRX7eycHupC3KPq4FH\nkiSYponm5uZBC1tFIhE3D6PmwtzDM1ygqbQjd2mlJkihhmgkYb64cSuL4XG3dHe4GnhEUUQsFkM6\nnUZrays0TcM3v/lN/M3f/I2bh1FzQQ88w/XSeDnrya6chPXNS43JDjZevi4bNVyVb2WhqioKhcKQ\nixra+D6nWnC9h+ef//mf0dvbi9bWVlx66aWYNGkSrr/+ercPo6YikUjFxeX8MpRRXqVRFCWUQ09E\nQdLo78vSaeylFX97UcNoNNrwj4H8xfXAc9xxx0HTNOzevRs33XQTLMvCxo0bMXfuXLcPpWb80LQ8\nmqEnW2mlxh5j54knHPwQ0Klx1KryUl71URQF+XzeCURuCvq+XWGulrkeeE4++WTk83mnkS2fz8Mw\nDHR3dyMej7t9ODVh9yZ5yb5QDRVoSoee7MpM+dCTpmkwDAPRaNTTx0LeCOtJkBrHUFtZABg0XE61\nE6bn0/XAs3btWuciq+s6nnjiCTz//POhetLHq9KO3CMNPcmyPOqhJ78MwRFR8JVuZZFOp6HrOvr6\n+hCNRp3p7URj4forprQ8KUkSPvaxj+Ff/uVfnPKlXw0VFMYaIIYLNMPNeuLQE5F/hHlYYazs810i\nkXBW6S/dysLPixp6NaTl1+erWq4HHtM00dvbC1VV0dHRgUgkgttvv93XYWcolSomtRh6IiIKo/JF\nDYvFYs0XNWQYDS7XY94Pf/hDnHDCCTj22GPx6KOPor+/H++++67vF+4rfYOUhhh71lOhUEA+n0cu\nl0Mul3N2GrYsC5IkIRqNIpFIIJVKIZVKIZFIOJ9eZFl2ZkYREYWd/UGwubkZra2tkCQJuVwO6XQa\nhULB855KakyuVXhM04QoivjGN76Bp556Ch/4wAdw0kkn4ZprrsFvfvMbXHTRRWhpaanLfReLRSxb\ntgyKokBVVVxwwQX4+te/XtVt5nI5dHV1oaurCxs3bkR/fz8uuOACbN68GQ899JCzISqAQb00rNLU\nDnuOiCpzq0rRCNWQSltZpNNpX2xlwVla7nJ9SGv27Nno7e11/rxjxw6ngble4vE4fv/73yOZTELX\ndSxduhTPPfccli5dOq7bu++++3DHHXdg1qxZmDt3LubOnQtZlvHpT38ac+bMwZw5cxCLxaCqKizL\n4qwnopArnVRAYzeai7Rft7Ig97gWeOwX6xlnnIEbbrgBl19+OXRdx1e/+lXMmzcPzc3Ndb3/ZDIJ\nAFBVFYZhYOLEieO+rdWrV+OWW24Z9OY5/fTTsXLlykH/rtZ7U9UbKyb1weeVyF32VhblVZ/RbGUR\n5gpI0LkWeOwXkaIoOOWUU7Bjxw6sXLkSs2bNwmWXXYZUKlXX+zdNE8cddxw2btyI1atXY+HCheO+\nrUrrBfENQkTD4TnCG+WLGhaLxRG3snCLFx+EKi00GxauBR67GvKlL30JwMDO6bquIxKJ4Le//S3m\nzZuHGTNmoLm5uS5lR1EU8frrryOdTuOcc87BH/7wB5xxxhk1vx8iImo85YsaFovFhtjKIkyBw2uu\n9/C8/vrr+PGPf4zt27fDsiykUin8+te/xlFHHYUrr7wSl112WV2Ht1pbW7Fy5Uq88sorDDxERFXw\n61CtJElIpVKHbGURjUY5pBVgrgUewzAgSRK++MUv4vjjj8f111+PQqGAyZMnY926dfjoRz+KD33o\nQ3VZj2ffvn2QZRltbW0oFAp4+umncffdd9f8foiIwsbPs8EqbWUBAJlMBvF4PJAbmIY50Lle4Wlv\nb8cFF1yAE0880fneiSeeiFNPPRUzZsyoy33u3LkT1157rbMuztVXX40zzzyzLvdVis2q9cfnl4hq\nwd7KolgsIh6PO7O87K0s6rEWWpjDhxdcCzx2Y9g3v/lNRKNR9Pf3Q1VVAMBNN92EmTNnore3F/F4\nHIlEoqb3vXjxYqxdu7amt1mJ31+8fgtofn6uKbzceI/5/VzkNTvk2AvHBmUrCyDcHxJdX3jwscce\nw3PPPYeWlhbne7t27cLDDz+MZ555BscccwyWLFni1mHVTCQSgaZpXHOHiEaFgaTxlIeBSosa1nor\nCy/48ZhrwfV1eJYvX44FCxY46TmVSiGfz2PChAlYtmwZWltb3TqkmmLgISKqD7erEuWBoNKihrlc\nDgCqWtSQlTh3uR54jjvuOOTzebzzzjvYv38/EokElixZgkQiUffFB+vJDjyl/DZERETVC8t73usQ\n4hV7UcNYLDbmRQ0bQfnPrZGPtdZcX3hw06ZNuOGGG7B9+3bMnz8fr732GlasWIEvf/nL6Ozs9G3i\nlWUZhmF4fRhE1AD8eA4brzA91lKVqj72JtF2r4+XixoOJ6w/M9c6r+wtFtasWYMVK1bgr3/9K37x\ni19gw4YN6O/vx+OPPz7o3/lNpQqPH4Xl0ykRUbnxfuC2qz6tra1oamqCaZrIZDLO5ByeVxuD69PS\nZVlGJBIBAOTzeSSTSc+X964FWZZ9H3jCmvqJiGplLFtZeLVbelh50rT8yCOPoL+/H8cffzyeeuop\n9PX14ZhjjgHg392Eg1LhodqzX/t+Ha4l/wnaa82Pj6fSooblW1l4eWxh5OpeWpZl4aKLLsL8+fPx\n6KOP4tFHH8WCBQvwhS98AYcddpgzTd2PotHoIT08bFquLz6/ROQH9qKGiUQCmqahWCwin8/XZTFD\nGpqrQ1qCIKBYLGLy5Mm48847AQC6rqO3txeiKKK9vd3Nw6mpIAxpERGNVhA/bNS7kiQIAqLRqPMB\nOZfLQdM0pNNppxpU7wDkx2pZrbhWTrGrHw899BAOP/xwnHDCCTjuuONwwgkn4IgjjsBPf/rTQf/O\nbzikRURhE9YLZy1IkuQsYGhXfvr6+pDL5aDreiADpddc31riM5/5DG644QZIkgRJkrBhwwb84he/\nwJFHHgnAv2+gIFV4wvwJgKhalmXBsizouu7s32eaJizLQqFQ4OKkNEhp1ceLrSzCdK53vWHGTrWi\nKELTNMybNw+6ruOpp54C4N9p6dFoFLquD/qe33pMwvTCJ6qGZVkwTRO6rjszcQqFAnK5HAqFAgBA\n0zRYluWc8yRJcqYrAzjkfEGV2efQIJ6fhtrKorW1FclkErquI51OI5vNOq+nWt5f2Lg+LX3btm34\n61//ClmWYZomenp68Oqrr+Lss88G4N8XdSQS4QmMKEDsSk1phab094IgQBTFQ35ZloVisThoE2T7\n/6RSKcRiMWQyGedTfDweRzQa9e25L0i8qG5Xur9Kixrm83lYllXVVhbD3WcYuL556Nq1a3HPPfdg\n+vTpAAb2IbniiiuwatUqAPDtejxBGtIiCovSUFMaaMpDjf3Vrk4LgjDkRWOkKrX9/1tbWwfN2Km0\nTgtR6VYW9vR2P21l0UhcnZYOAOeffz7OP/98t+7WNWxaJr8L6npBdhm/NMyUBhw7vNgVGvsCYgeT\neimfsVMsFpHJZCDLMuLxeFU7cbvxMwza68QLY3kOBUEYtKihvXN7Pp9HNBodVVgO+8/M9SEtwzAg\nSRJ++MMf4uWXX8Z3vvMdaJrmrL7sVxzScp/feqSovoYafrIrLqXDTrIsO79vhAuAJElIpVLOhSyf\nzwOAa1OVyTvj+dnaQ6HxeNzZwNRe1DAej7PqMwTXA49NkiQUi0Xnz35vTBtqt3TAX6naDhF+OV4K\nF3sIyjCMQ6o1lmUNCjGlEyQAf5xb7AuZvRO33QwdjUYRj8dDOdzl5vnIj+e+sWxlEXauBx77yZ8/\nf74TePxe3QEGXnSs8BBVr7xZuLRiU1rRs5e2sD/NDtdX4zelTavl2xLwEzxVMpqtLPwY6GrJkyGt\ndDqNOXPmYNasWeju7gYAZ+2BtrY2zJkzx+3Dqhp7eGg4rJwNNt4ZUPZq7ZFIBLLsWYHaVaXbEqiq\n6vRt1GK2DnmrXueE8q0s7GHSSCRySBtAmM5Jrs/SevbZZ7FixQpMnz7d+fSSz+fR2toKXddx7rnn\n4v7773frsGomGo06628QUX1mQPlZtY+p9BO8PdyVTqcRiUScJmeiUpUa4y3LGrSVRZi4vlv6jBkz\ncOONN+IjH/kIzjrrLHR3d+NnP/sZOjo68KlPfcqtw6m5SCTiLChGFBaNOgMq6GRZRlNT06CVeUVR\ndHUXbrcqlm5OTAhyFdYe2tI0DYlEwpnlNWnSpMA+5nKu1ULtF+2WLVvw/vvv45xzzoEkSZgzZw6O\nP/54/OxnPwMA3w4LDTVLizOJKAjsRmFN05zGyHw+j1wuh1wuB0VRYBiGM3U2FoshlUo5M4/sxfVk\nWQ78DtEjvd9reT4oXZk3Ho9DURT09fVBVdVAnXeC+nrxaqHDaDSK5uZmtLW1Bfa5rcT1Ck97ezuy\n2Sx+/etf45RTTsHWrVvxq1/9CkuWLBn07/wmKE3LfgtofjrWRmc/l/bGhUGbAeWmkZ6PWj9fpUMX\nuq47IdRembeaNX0ouMLW/+V64Dn22GNx33334fbbb8dNN92ElpYWXH311fjiF784cEA+HYdm07L7\n/BbOGsFoZkDpug5RFAM7AyroZFl2ZniJoohcLjeo/4c/x/AK8pDdaLieLizLwtFHH41nnnnG+Z6u\n69i/fz9M04QkSZg4caLbh1U1Bh5qFNXMgMrlcojH46E+KQbFUGv6cH2WoYU9EASd64Fnz549+Md/\n/EekUqlBu7/aCxEefvjhuO2229w+rKqxh4fcxBlQNFpDrenjl72YghxCgvzYGpHrgScWi2H27NlO\nFcdePEzXdZimiY6ODrcPqSa4tQTVGmdAUa0NtaaP3VQ+lp4OXqz9J+w/M9cDT1tbG2699Vb09vZi\n//79AAYamSdMmOD2odRUUJqWyX1+3gOK/Mnu6bGbnO0pyvYmlH7tpSQajic9PP/xH/+Bz3/+887Y\n8uTJk7FmzRqccsopzgKFfhOUHh4OwdVHeZDhDChqBKXDXfaaPv39/aHdwsLtCkjYKy5ucz3w7Nq1\nC1/72tfwl7/8BZ2dnQCAZ599FrfccgtefPFFtw+nZoISeGj8hpsBBQxsn2IHG86Aonoaz4XUXtMn\nHo8P2oTSbnz24wdRGizsAcuTzUNFUURnZycMw4AkSZg+fbrz9379YbBpORzGOwMqn88jkUjwohFS\nXpwDxnsuLd/CQlGUQVtYuL1wZNgv0vUUtufV9cCTSqUwa9YsfOlLX8L555+Pvr4+/PznP8cZZ5wB\nwL8/APbwuE8QBKd6Ukv1mAEliiKDL/mOLMuQZdnZiiCbzTrT3f16rm4kbp8Twn4O8iTwPPLII/jG\nN76B2267DYlEAueddx5uvPFGtw+lpjik5S92qBlqCIozoBqX30/afjz+0uEue/dtXdchCIJTqQ8C\nr7Z6CPL9NRJPWvFbWlrwD//wD8hkMjAMA6lUyovDqCkGnsY0VKDhDCjykl9fX6VbWBSLRRSLRWdN\nH3vHdr8+Ngo+TwLPyy+/jE996lPo7++HKIpob2/H/fffj5NPPtmLw6mJoPTw+O14AQw7/DTcDCie\nmInGz26+b2pqgqIoyOfzsCzLaXKu1fvLb+ejRhb259L1wGOaJm655RY8+OCDWLp0KQDgT3/6Ez77\n2c/ihRdecPtwaoYLD9ZXpeEnwzBgWZaz95M95MQZUFRrRqGIwsYtKKzvRn5jNwobulHYsAXJBXMx\nffUVSC2c5/UhemaoLSyi0ajT5FyL+wiiMAyhNRLXA48oiujv78fSpUudYYXTTjsNmUzG7UOpKVmW\nOaRVpbHOgLKbltlASbVgmSaUbbuQX9+NwoFQk18/8FXZsQeo8Om4f+1b2P3jx9G27CRMW30FJp59\nqgdH3hjK1/Sxh7v8tKYPZ4QFmydDWu3t7SgUCkgkEgAAVVUxZ84cLw6lZtjDMzq1nAFl78XGExSN\nhdaXQeFAqMlv6D7w+y0odG2FWVTGdZt9z76EvmdfQmLeTEz55Cq0fvRsIJms8ZGPntfvC1EUK25h\nYU935/IM3uCQlgcee+wx5yInCAI0TcMPfvADZ0jIj8uac0jrIDdnQIX9DRxWI71OTE1HsWurM/yU\nt0PNhm5o+3rrdlyFDVvQ9ff/BOnr/x+mXHMhpn7qUsSnT67b/XlpNKGqfE2fYrE4aE0fP57ra8nr\nIa2wfVj05NW2du1aqKrqhB3DMKBpmrO0+Sc+8QnfTXMcah0evzYBj/bfeTkDKmxvVjqUsmsfChs2\nD6rU5Dd0o9i9AzAMz47LSPdj2wM/xPbv/QQd534QU66/FKnjFnl2PI1AlmU0NTU55/nSNX2i0eiQ\n72c3z59eV8aovjwJPD/5yU+gaRo2bdqErq4unHnmmUgkEs6u6ddcc43vAk9Q3iTlj4MzoMhrRq4w\nMPx0IND0v7sRyqZtKG7cCiOb8/rwhmXpBvb++mns/fXTaDpuEWZ95hpMPG+514flqfI1fYrFojPc\nFY/HKw53uXk+CfK5yz5nh5UngedHP/oR9u/fj2uuuQaxWAyXXnopPvrRj3pxKITBfTXGgU/FhmE4\nwYYzoKjeLNNEccuOQVUaeyhK3bW3YsOw32TXvoU3P/4FxKZPxmHXXIjk6qsQmdDi9WF5pnRNH8Mw\nBg132Tu2B/n84rfKfxB4Eng2bdqEj370o/jKV76C888/HytWrMDu3btx3XXX+aKT349GOwMKODjb\nYqTtEiiY6lnW13r6BvXT2MGmsGkbLEWty302GmXbLmz72kPYef//jymXn4cZN1yJ1BGzvT4sT0mS\nhFQqhWQyCUVRkMvlnP6foOP51T2uBh7TNCGKIq688kp84xvfwDnnnAMAeOqpp7BixQpcfPHFzg7q\nQeJWkq/FDChFUSAIQuibCevBD5/oanHyNVUNha6tBwNNyYwovSddg6MMBiNXwLZ//Tm2PfILtK9Y\nipk3XY325ad4fVieqrSmj6ZpEEUxUFtYeCXsPUquXtXsCsL3vvc9zJ8/HwBQLBbR29uLn/zkJ+jo\n6HDzcGqu0gWt1k3L3APKn4L43Cs79hys0JQsyFfcusvThmHfsSzs/z9/wv7/8yekFs7DzBuuxOTL\nzoUUb+zqRj0vnqVr+uTzeWia5mxhEYvF6jYSEPZAEHSuBh77xfT9738fl1xyCZYuXYoHH3wQ//3f\n/43zzjsP1113HeLxuJuH1LC8nAHlh0oEuUPvzx06/LShG/mNW2DmCl4fXuDk3t6Ad276CjZ8+TuY\n/omPYfr1lyE2aewfBIN04bbPcclkMlBr+gTpZ+QXngSev/zlL/jsZz+L3t5ePP7447j//vuxevVq\nnHnmmTjyyCN9+0IYzxoylYafykONmzOg/DaN3k/H2qgsw0CxewfyG7qRfns99O4dTshRd+3z+vBC\nSdvXi03f+t/Y/P9+H5MuPgczb7oaLccs8PqwPGX39JQ3OUejUafJmYZXfm3143W2Gq4HHgCIxWLI\nZrN44oknsHLlSixZsgSJRML3C/dVevHYw0+6rh9SreEMqOrw+RkbdV/vwQrNhoP7QRU2b4OlcpXw\nRmSpGnb99LfY9dPfou3U4zHzxqtw2LnLIfi0qlELdo9h6Zo+/f39kCTJCUQ8N1AlrgYe+0V41lln\n4Z577sHLL7+MH/7whwCAqVOnIhKJ1O2+t27dimuuuQZ79uyBIAj49Kc/jZtvvrkmt20YBrq7uyEI\nAr773e9iw4YNuPbaa/GBD3zACXmla9aUVm74xqRaMosKCl1bD07rtkPNhm7off7ery7s+p5/FX3P\nv4rE7OmY8XeXY+o1H4XcnPL6sDw11Jo+duPzWIe73Bxd8OtIhp8JIwwJ1G284MUXX8TEiROdUFDv\nH/yuXbuwa9cuHHvsschmszj++OPx61//GgsWjK9M/Kc//Qlr1qzB+vXrsWnTJkyaNAmWZeHMM8/E\nvHnzcMEFF2DGjBlOZccvvUmqqsKyLF9MBzUMA4qiIOnhnkWjVSgUEIlEalJ2tywLyvbdZdWagbVr\nlG27gANDohRsUksTpl59IWauvgKJWdMH/V1/f79T7aiXQqEA0zSRStU3dBUKBViWNer3ua7rUBQF\nqqqOeU0fN543m2EY6O/vR1tbW93vy5bJZJBIJJzigizLQZz5NuQP2rNBz5NPPtn5vd03Us/QM3ny\nZEyePLCnTVNTExYsWIAdO3aMO/BMnToVH//4x3HEEUdg7ty5iMfjWLZsGb7zne8M+ndM8DReeiZ7\nSJUmv6Ebha4tMPNFrw+PPGZkstj63R9h6/d+gsNWLsfMG6/EhKUnuHoMjXh+k2UZsiw7G5faa/qM\ntIUFBV/DdHm5+SLcvHkzXnvttUGha6zmzp2LuXPn1vCoGoMgCE7TNNWfpesobN6O4pYdKG7ahvz7\nm5B7e8NAw/Du/V4fHvmBaWLvE/+DvU/8D5qPXYCZN16F5DlLAR9UaetJFEVnaEvTNCiKMmh2V6XK\nhtv7dpG7GibwuCWbzeKSSy7B/fffj6ampprfPsdlqRJtz37kt+yE2rXtwNYJmwfWrOneAUvTIbU0\no2nxEci9vR5Gfw5ScxNiM6ZASiUgxmMQoxEIsgTYs+gMC5amwlA0mPkCjFweeiYLqxiO1Yqpsv7X\n38Fbn7oTkUntmHrdx3D4py9HtGOC14flqfItLBRFcdb0sXds92rmktvXirBfn1wNPNu2bUNPTw9E\nUUSxWISqqk6XvaZpOPnkkzFhQv3enJqm4eKLL8ZVV12FCy+8sOa3L0kSDMMY1Kfht2neNH5GvojC\nxoP9NIUN9grDW2BkssP/30w/0s+/CiEZR8uJRyPftQXK1p1jPgYhFoXcnILUnIKYiEOMRQfC0oFP\nsxYsQDdgqhpMRYWRL8DI5qGn+wGdiwUGhbZ7P7q/9hC2fvv7mHzZSsy84So0LZzn9WGNSy3Pn5Ik\nIZlMIpFIOBUfy7KcSlDYhC38uBp41qxZgyeeeAItLS1477330N7ejs7OTmzZsgW9vb34n//5H5xx\nxuT3mvcAACAASURBVBnOFhS1ZFkWrrvuOixcuBCf/exna3rbtkgkAl3XuR5EgDmbXNo9NfaifOu7\noe7cU/Uml1a+iPQLrwERGS0nHwtlx+4xBR9LUaEpKrR9vWO+bzGZgNSchNSUgpSIQYzFIERkQBQh\nCAOP3dINWKoGo6AMhKX+3ECYY6hvSGZRwY4f/Ad2/OA/MPGDf4OZN16F9hVLfXehq/Xxlm9hoSgK\nCoWBhTQNw6jrjGHyjieztNasWYPOzk5ce+21zvduu+02nHfeeVi2bFldAs9zzz2H008/HUcffbTz\n5vn617+OD33oQzW7j5UrV+Lhhx9Gc3Oz8z1d16FpGhKJRM3up540TYNhGL6YVWaaJgqFQl1miTTM\nJpeiiObjF0HvSaOwcYt79zsWggCpOQW5OTUQmhJxCAeG4ARp4H1sGSYsTYepqjAKRZi5AvRMDmYu\n7/HBh0/yiNmYufoKTLnyfEjJ8Z+X8vmBn129Z0nm83kIglD3c6hpmkinB/Z6kyQJ8Xi8rptZa5qG\nQqGAlpaWutx+JX19fWhubnb6l+zFbAOmMWZp2dWPN954A8uXLwcA5HI5pFIpbNy4Edu3b6/bfS9d\nurTuzbiRSASaxgXc/MJU1MGbXJbMhNJ7G2STS9NE/8vrAABNSxbCVFTk397g8UGVsSwYmeyIw3aV\nCLIEqbkJUlNy1P1Ken8ORjbHfqVxyr+/Ce9+7l5s/OqDmPq/LsaM6y9DfNrkcd2W3ypFw7HXR0sm\nkzBN01nTx+9bWNBBniw8uHz5cvz7v/870uk0jjrqKDz11FMAgEWLFg36d35jD2mV8lsPj9+OdySD\n1qzZuGWganPg98WtO321Zk32tbcBAKlFH4AgS8i+8a7HR1Q9Szeg96bHFTDZr1QdrSeN7m//G7Z8\n51F0XngWZt50NVpPWOz1YXnO3sKidMf2dDqNSCTiNDmTP7n6k5MkyemlOeaYY/CTn/wEL7zwAo45\n5hg89NBDzuJ9fg08siyzwuORQWvWHBiKCuqaNbm31gMAEh+YBbm1Cf1r3/ZVcKuVavuV5JamgaqS\n3a8kSwNhKWT9SpauY/e//w67//13aD35GMy84Sp0XniWExy9Zq9S74XyLSyy2WzN1vTx4lrn5+tr\nLbgeVe0ne9GiRbjuuuvQ09ODjo4Opw/Dzz8MWZZ9vx9YIzM1HcXN2w4Emy3Ir9+M3PuboGzeDm1P\n+NasKazfDACIHT4VscmHof/VN2GxcjEqZr4ANT+O3d4FAVJL09D9ShZgGgNVJeh6Sb9S1he7y6df\nfAPrXnwD8RlTMP36yzDtf12MSJt7PSZeGyoQDLWFxXBr+lDj8aQ2l06ncfPNN+ONN95AOp1Gf38/\nbrnlFnzqU5/C5MmTfZtCo9EoKzw1oGdzyL+3Cfn3u1BYvxlaTx+MXBHF7h0obtkZynAzHKV7B5Tu\nHYhOPgzx2dORfe1tmEXF68MKpir7leSWJoipJMRkHHIycaBfSQYEAYAFyzBhqhqskiE4LZOF5fLP\ns7h1Jzb8w33Y9PWHMOXKCzDzhiuRnHe4q8fQiMrX9CkWi8Ou6dNogtSuMB6uBh7DMCBJEh544AG0\nt7fj9ddfxz333IP58+dj7969+NGPfoTbbrsNpmn6MjFX6uGhoWk9fci/14X8+s0Hv76/aWB6d7lo\nBC3HLgIEQGptRnzGZEjNKZiGCbM/h+KWnaGf8aPu2gt1117I7W1oPm4Rsuveg9Gf8/qw6ABLN6D1\npIGesfcribHoQGWpKQUpOdCvJMQiEMSB5m5YFixdh6npMIsKtP7cQIN3lf1KRq6Abf/7MWx7+Gfo\n+NBpmHnDVZi4/JSBx+PhUFMjkCQJqVQKyWQSiqI4W1jYVZ9GDT5eLbLYCDyp8Kiqio6ODgADKx9n\ns1lYluX7sFBpllbQmoDHQ9m1dyDQvL/pQKjpQuH9zdD2j6H3QtWQeen1A8HnKOTXd0N7c/3BvxcE\nRKd2Ijb5MAjxGCxNg7anx3eNybWg7+9D+s9rITan0Hrqcci90wW9p8/rw6IqmIoKc28PtL09Y/6/\nYjKBSGsTpFRyoLk7HoUgyweWDBBgmebB5u5CEXq+AKM/Cz1d0q9kWdj3X3/Evv/6I5oWfQAzbrwK\nLeeeUdW09qAoX9OnWCyiUCggGo0iHo8P+eHdryMZfuZJ4InFYsjlBj55TpgwAf/5n/+JefPm4YQT\nBja+8+uLIAg9POMNaJZlQdmywwk0+fcOhJv1m8ZV/h+SqiHz0msQYlG0nHoc8u9tgr6vF7AsqDv2\nQN0xuDokxqOIzZiCyMQ2CJIEI5eHsmPPuC4cfmP255B+fi2EeBQtf7sExa5tUHft9fqwyGVmvgBl\nnP1KcmvTwLIBycRAZenAENzOnz6BXf/5DNpOOxHTP7YSsUnttT/wA9wMBtXclyAIiEQiiEQih2xh\nEYvF6rqmz2iE/YM34HLgscufF1xwATZv3gwAOOmkk/DKK6/gwx/+MJYvX16XRQfdEoZ1eAY2uxzY\n5DL//oFw8/4mFDZ0wyy4NxvKUlT0v/QaEI2g9dTjkH9/E7S9h1aMzKI6MGsL3YO+L09oRWz6ZMjN\nKViGCb0vjcLWnbACNqMLAKyiisyfXwNkCS0nHwN1114Uu3d4fVjU6CwLlgVIzSlE2logSOLAcNm+\nXkQ7JyL/9kb0/uez2HzX/Zh8yYcGqj7HLPD6qBtC6RYWqqqiUCg0zJo+fi0o1IInKy3ruo5CoQBV\nHVg4LJlMOkm4vb1+nxTq7c4778Tpp5+Ov/3bv3W+V8/VgOvB/mQSNUwU1ncPbHK5fjPyGzYjv6Eb\n6t4eNB9zJCxVR2HLdqjbdnl9yAAAIR5F8zGLkH+vcvAZFVFEbGonopM6IMaiMBUV6t79ULbuCtZU\nZEEYWL053Y/C+u6R/z0FXnRSB2JTDoOUSgKwoGdyUHbtHVQJjc+ahvi0ycj89V2YQ/SGtZ16PGbe\neBUOO3c5hBpd1LPZLCKRiCt7XfX29qK1tbUugcQe7tI0zZnSblmWa9cGy7LQ29uLiRMnOt+rdmp9\ng2qMlZbtpuXf/OY3uOuuuzB16lToug5VVbFjxw7ceuut+MxnPuP8O7/xWw/PwUX5NiO/fjMKGzYj\nt34g4Aw3E6rvDy9CamlCatERkJIJRCa2wcgXkHt3I6B6U+GyiioyL74GIR4dqPi8t2ns67OYJpRt\nu6CUhTgxHkP88KmQJ7RCEATouTyU7buh7/dpX4xlof+VNwEATcccCUs3nLV9KMBkCYkZUxFpb4MY\nj8HSdGh9aSjbdkPdvQ/q7n2H/BdBktC8ZAEszUD/G++guHn41fD7nn8Vfc+/isTs6Zh+/eWYds1F\nkFua6vWIfKV8TZ9iseh8343g0ajXITd5UuHp6+vDjh07EIvFIMsy3nnnHfzqV7/C8uXLcdlll/l2\nWOvee+/FwoULcdZZZznfsywLuVwOTU3even1bG5gT6iNWwZ28964BZYgIP/uhqq3KZBam9G0cB76\nD6z6mzxiNsRYFMXu7Z72iwjxGJqPXoj8u13Q6hRMIu1tiE2bDKkpCcswoPWmUdyyw5dbHiQXzoMY\nizqrOZN/SS1NiEzuQHRCG8SIDLNQhLqvF8r23bBG2WMYaW9DasE8FDZugVJp1uRoj6U5halXX4gZ\nq69Ecvb0cd2GmxWenp4eTJgwwZWqR6FQcD4g2/sX1nO4y94rbMKECc73WOFxQVtbG9ra2gAMBILD\nDz8c6XQaL7zwAi677DLfJlGvp6UXurcj/14XCl1bUNy0Faaqo+eZP0MbInhIrc1oW/43MIsKcm+t\nh5HpH/N9Gul+pF94DfKEVqSOnIv+195y1oCJz5qO2JRO6Jkscu9tdHU5f6uoDDQ3x2NoXXoccm/X\nfqaStr/v0DAliojNnIpoZzvEWBRGsQh19/6GGfobih18Y3NmIDqxDf1r3wrd7Da/iU7qQGxyB6Sm\nFGBZ0LN5KDsHGvKNTBbj6UZLLZgLuaUZmdfeQt9zr1R9jEZ/Dlv/5cfY+tBPcdhHlmHGDVdh4ukn\njuk2gjybyZ7abu/Ybm9hYRcDgvq4veJJhWfQHRx4Mb/zzjvYtWuXs6moH33729/GlClTcO655zrf\nc6vCo6f70P3/fA4amrH/6bVO6Egtng+5rQX9r74Jc4iZGvLENqQWzIWl6zAKCnLr3ht3z4rcPgHJ\nI2Yhu/YtmCW7iktNKSSPmA1BllDo2gptn7uzpIREHM1HL6hL8BkNMRlHbPoURCa2AqIAI5NDcdtO\nGH1jD5luiM2Ygti0Sehf+xYsj4YpCQPDUNOnINIxAWI8OrCWT+/AMJRRo3WnxHgMLUsWQu3pQ/69\nTTW5zeE0HX0kZt5wJSav+gjEaGTEf9/f349YLIZoNFr3Y3O7wmNZ1qDd5k3ThKqqKBaLNdvCwmYY\nBvr7+51iAwBXqmYeGPLJ8jzwAMFJ8A888ABaW1tx0UUXOd9zK/D0PfVf2P2d+wAAkXkLoGYt9Pzh\nDRj9AyfFpiWLIE9oQf7tDUMONUU625GYPQOFrTuRmDUNxe4dULePrzIR6WxHYs6MyhdMQUBizkxE\nOtuh96aRf3+Ta9WEgeCzELm3NjTEjuiRwyYiNnUSpFQCpq5D6+lDcctOz3qhykUmdSAxdwayr73j\n6iy8sJFamhCbNgmR1mYIsgQ9V4C6rwfazr112y4kNn0yErOmI/vm+9D7MnW5j+FEO9sx/ZOrMP2T\nqxDtHHqySpgCj82yLGiaBkVRoOt6TbawYOBpkMATFA899BAikQhWrVo16PvZbBapVKqub6JtX/kS\nci+/6PxZSCQgTZsLrV9F7wvvQN8/cEJrPv4oSM1NUHfuRf69jRVvKzK5A4nDp6N/7ZtIHjEbUiqJ\n/nXvwRrHBS86+TDED5+G/rVvwtIqD/fJrc1IfGAWIAgobOh2JYg4FZ+3NkDvdf9kPxxBlhCbPhmR\nwyZCjEZgFIpQd+07ZI0hN8kTWpBaOA/Zde/Xdl2lkIlO7kDksHaIqQQkUYSezQ38bN3aLkUQ0Hzs\nAgiCgMxrbzfE7EMxFsWkj30YM2+8Cs2L5x/y924FnkqzmOopnx/4MFop8JSyZ84qilLVmj4MPB4F\nHrtsF4/HAQykal3X0dnZWY+7c80jjzwCTdNw5ZVXDvp+vQOPmc9jw5Ufg1VhDSBp8jTougRIcaRf\n3QB15/6Bk94JiyGIIizdQP9rlfs1YjOmIHpgU0oxEUPToiOg9+eQf2fsjc7RqZ2ITZ+C/lf/L3vv\nGWRJfpb5/v7p89jy3ne59j09oxlJMyMJBAtoVkirRdoVSwxIWsOKu1wtAQoUwRfYZVdagoAICCIg\ngiCAe8XVhb1ahEYsEmI0GpmZ6WnvfXVXl7fHp8/7Iauqq7p8ddmeeiI6qjrrnJMnj8l8/u/7vM9z\nCfwVVqySRKyzDbWyDGdiktKNvnXvaz2QYiaJo727kvg8CjkRQ2+uRylLIQS4mTx2/9C2EhApHiNx\nvJfSjQ1Mwb1ToMhoDbVo1RXIhjYzDZXFHhjZsQBRJZ0kcbSb0v1B7PtDO/Ic1oLyF99F8y/9HNUf\nev/cWHs2m51r7WwldoLwCCEwzbW5VYdhONfuCsNw7jVZq8jZ8zwKhQLpdHpu2z7hWYhNJTyzravT\np0/zl3/5l/z+7/8+t27d4gtf+ALJZJL/8B/+A88999yebXH95V/+JdlslpdffnnB9q0mPNnvfoeh\n//Hflv17KARqRw/FW/dQ65rIXbiHdX8EZInUM8fwcgWUdJL8petL+msYbY2oleWRkDUM0ZvrMZrq\nKd6+t+4gT725Hr2umuzpS2tqYykVZcQ6Wwl9n+LNvi27uEvxGIkjPRQu3cTbpbqa5aDVVqHVVyPH\nzejiOj5F6f7glorEha6RPHk4msbbwcrTTkJKxDAaa1HKUiDLhLaNMzaFMziya1LrY11tqFXlZM9d\nISztnUBZs6OZ5l/8WRpe/hcUAw/TNFHV1fU+j4PdTnhmMRvDZNv2nKfPrMh5JTxKeGaDUJ9A7I4p\nrVkiMzk5yb17keHZK6+8Qnl5OS+99BK/9Vu/xSuvvLJnw0MVRdl2p+VgcpSw7ypKeXrZVpAIQ7zb\n19ATSYQuUI0iyZeeoXBzhOybM/lUJ4+gplPoR7op3RvAnXcRs/oGsPoGMA60oKQS5M9ewe4fAkki\ncfwgQlHIXby2Jt2J3T+E3T+E3tqAVl0ZVXxWIN3e5DTZt2ZExrJM7FAnSjqFMzKOdef++l6sFRAU\nimTfPIsUj5F+4emodZPZG8RnKQ8VoSrRxFVVOUJV8AslnKGxJb1WNoLQdsj+8CzIEslnj+GOTqzq\n0bJXodZUotVVIcdjCJhrQ7ljk9si8l0vhKYSO9ZDWLSi6bubfTv9lNaN0p1+bnz+S9z57T+i8l99\niLZf+jnUA/tp7bAwwmLW0yeXyyHLMoZh7HiExW7GthKe2TdhVnU+NDTE1atX+exnP4tt2wR7fAx2\npbH0rapaSRU1xHt70IWFXXQZf/0U3vTSxCcs5AgLOZKHDmBPZ5H8Cap/6iSlB9Nk34hGuPXmeoKS\nReLkYQLboTjPkM66HRGMWHc7kqGTv3CN/PmrQFQyj508ElUXbvWt+rzte4PY9wYx2ptQy8uittpq\negLfX+AbpNZUorU0IPyA4o27m5KWHhGfM0iJGOkXTpK/eHPPEJ/5CF0P604/1p3+BdvlVAKjuQ4l\nlSQEvOksVv8QQX6Dr50fkHvrAgDxk4fxcwWsPXiBRZExGutQqsrn2lDedA57cAR3dGLdlcydgFpb\nSayzleL1uxRmjCX3OrxMjpE/+Qojf/o3VH/oA7T80r+h/IVntmRf291Z2Iy0eUmSME0TwzDm2l3L\nRVjs1c7JZmJHfHhaWlrQNI1PfvKT1NTUcOLECV5//XVaWlqAvZv1sVyW1lYfj/LsjyJVNyC+9wqN\n7zuB5SuMf+8UfmZpTYo3cA9Jkki/6wS5S9ehWKTqJ45jj1tkf3gGEY8h6TqlG32YXW2oZSmyZy/P\ntUiKN6JVbexQF0JA4fJNvEyO7BtnAeYmsArXb+Ovooux7j7AuvtgpnqUJH/28pqPe/6FSGgq8SPd\nyMkE9uAI9r3HqzYE+ZmKT2Km4nPh+hMh1vWzeQqXF2uwtJlIDQwN4fm4Y1NY/YPgr30RUjgTvXex\no92IMKRwafe5N8+2oeSyFJIiE5Rs3InIlM+6NwCP+bnZCSSO9SJpKtmzl8mM7H5itiH4PmN/923G\n/u7bJE8cpPmz/4a6n/mpNY21vxMghJgjOY96+hiGsWq7652CHZvSyufzvPHGGxw8eJDy8nI0Tdvz\nb8o3vvENTp8+zec+97kF2wuFAqZpbrl7dDg1jvP3/zfCtvDzWSwpycT338bPLk86pFQZJKvIX4hW\nhHp7B04uIPfWVeR0kvjhLvJnr0Q+Op2t5K8srnjEj3QTej7FawunvoSmkjjaQ+gF5C9eW5Nmx+xu\nQzbNucrRRqE11GC0NBCUHArXbxNaj6dfkBJxEod7nhjisxYITUVvqkOuSEcalaKFMzyKt8asstjB\nA8imQW4HpoFm21BKIgYhePkiziPZUHsZciJG8vhB7MFRSnf7V7/DEwittoqmf/evaPrMx9GqH193\ns5QT8VaiUCjMtaG2ArPtLtu259pgruu+ozU8O0Z4JiYm+Ju/+RtOnTqFqqp85CMf4QMf+MCWvfnb\ngW9+85t8//vf51d/9VcXbN8uwgMQOjbu338ZClnCgbv4ZgorMJl84+0VnZSVlnaskWmcwWiCQ29u\nIQgNpr53EaU8Ray7ndyZy4gZ3Y49OIJ9f2HiduLEQfxCidISLQ21ugKzsw17cBh7DUndsd4OhKpG\nJoiPCUnXiPV0IMVMrP6hDXsLwSzx6SZ//jr+MgGKTzqUsiR6Uz1ycsbhdypLqX9w2aR5s6M5Es6e\nvrzyhN66n4gceddUzUxDeT7eVBZ7cAR/oy26XQ6zvQm9oZbs+asbb0M+QRCqgtnZQu2/+HFq/8VP\nkDjYueHH2m7Cs12RGbOePqVSaUGExWyG1xOI3UV4MpkMv/7rv874+Dgf/OAH+eIXv8jP/uzPUlZW\nxuc///k922t89dVX+da3vsUXvvCFBdu3k/BA9AH3f/APBPdvEQ7cji5KsTJKrsr0W2eWJz6ygtLW\nTe78JcIZl2Stvh6MMqZeO49aWY7R1kTu9EVCPyBx/CCh7y8iJYmTh/GmsljLrDxjPR0oZSnyl2+s\netKOHe5CwKaGW0YuwnX4hSKF63c2ZPInJxPED3W9o4nPAgiB3liDVlOFZBoLk+ZnKntaUx1GUx25\ns1fmPl9rwaNtKLdQwp/M7KppqK2EkGWSJw8R2A75C4+/ANiLEKaO2dKAWplGUhWEqiJkCXcyQ/76\nrWgCTQgqf+wFWn/55yl/YX3xFbC0T81WYjszwoA5jY8syziOg6Zp2zaRts3YHYRnlshcv36dl19+\nmTfffJMbN27wa7/2a/zt3/4tzz33HG+++eaeDQ/93ve+N5cEPx+zIrLtnjzzb17Af/s7hKMD4EQt\nHS9eSckWTJ86uyzxEekKQjNN8fLDtpJaXY2UrmHquxdRKsvRG2qiCasgwOhoRquqJHvu8kPyIATJ\np4/ijI4vqgTNQjIN4ke6CYoWhcs3VjyW+OFuwiDYkAfQSpBi5mMFnsqpJPGDnfvEZxlIhobe3BBF\nasgyfr5IYJXQqirJnbu6IO5krg0Vj4EAL1fEGRnfE4LhrYBaVU689wDFW304w5szXbfbIZclMZrq\nUNMJhCLjF0tYw2P4uTzx7g4kQ8fqH8J+sLKXUPKpw7T+p5+n5qd/DLHG8+47gfDYtk0ymYwWxb5P\nPB7fln1vM3bHWPps1Wa+n0IYhoyPj3Px4sUdTRTfDOx0eOijkLuOIcpr8P7xbwgzE5CdQilMkASM\nF05SLAZkTp8lyC3UpISZSchMkn76KMX+YdzRMdyxMRgbI3W4AqWmmanvXcJoqZ/z57Hu9EeeOb0d\nFK9FeVW5ty+AFI0tOw9GsAdHFuwnKFnkTkUTPnpDLUZrI6W+fpyhxaRjlhDFj/US2g7F63c25TUK\niiXy5x4mhBttTWj1NfjZHIVrt1cV7frZHNk3zyKnkpG4+dzVJ7adshEElkPpZh9ztEYItKZaEJB+\n/iRhEOBNTFO6dW/PTENtNeKHu5ATMbJnNifAczciilSpRklF53y/UMCe0VgVr0eLGrO9Gb2+BqWy\nDHdiKprkXCNyZy9z6dOfx2xrovk//hwNP/dR5Nj6/G6eNMzvnDzB+p0VsSMtraGhIT796U/zta99\njUwmw3vf+15OnjzJv/yX/5KPf/zjW7HLbcGZM2f4sz/7M/7bf1toArhTFZ5ZhFYR9x/+H5ieJBx9\nsOBvTqKGUs4lc/b8IuIDgKqhNB8gd+7SAidnOZFAbe5g+odXUSrKURLxOeIgdI3k8YM4Y5MP21qK\nTOqZo1h3H6zsBSME8SPd0dj7xWuE1tKtj8TxQ/jF4pJ6oc2CnJwJPJXXHngqp5PEe7v2iY8soTfV\noVWVI+k6geviTWawB4YJHnlPpbhJ4vhBSjf7nhhR8XohxQxSJw5ij01t6Wd6WyEEekM1Wl1kikkY\n4GVy2APDeEsI/+VkgnhPO0JVKN3p3zTPKAC1oozGz3yC5n//SbSqpds4213h2c6MMGDOqHC2sCBJ\n0pabOe4QdkdLa+5Bw5DR0VFM08T3ff7+7/+eF198kebm5q3Y3bbhwoUL/NEf/RG/8zu/s2D7ThMe\nIFpJv/51wsE+wgcLqyMh4CRqKWUssucuEuSXOBlV1eBjULy+sPUkmSZ6exfTp26ilpchFJXCpYc6\ng/jRHoQskT830x6bMTks3epbNZpATsaJH+6OAkaXqejEThwkyBY21YRwSQiBeaAFtboSb2omVXqF\n7847hvioStSCqCxH0lQCx8Udn8IeGF42O205CF0j+dShGWH5yOp3eAJgNNdHWXMXr+9JvyeYyX5r\nrEOrrYzE476HO5XFejC0cuCsEMS62tCqKnCns5GebjNF7UtAMnTq//WHafk/Xib2iJHhUtELW4l9\nwrNl2F2EB6IX/zvf+Q6nTp0iFotx4sQJnn/++T2d7XH16lV+93d/l9/7vd9bsL1YLO6asXv/ymn8\ni29EpCdYeHIJhYQdqyY3kad0+QpBfrEmRWnvpninH29yIVkRqorR1Uv2/D2UVDqKgpg3pm60NqLV\n15A7d4XQshGGTuqpwxSu3lpTUnPUaqqmeOMu3sT0or8nnz6COzGN1fdgiXtvPpSyFGZnKwhB8Vbf\nsn5DcjpJrOcA+bPXFuhV9hqEoWE016OUp5EUhWAmRsEeGNn8i5Qsk3r6cGRieecJHLmWJOLHepCE\niEb29wiErmG0NKBVppE0Fdcq4c9MxYVrFP4r5WniXW2AoHjn3s7lsUkS1R/6AK3/6RdIP3scePIJ\nj2VZC3Q7+4RnMbaE8Hiex+/8zu/wla98hU996lNks1n+1//6X3zmM5/hs5/97Fbscltw69Yt/st/\n+S/84R/+4YLtpVIJVVV3BeEBCEb68V77OuFIP1iLqw+BJGMblZSmiuQvXVlU8RGGiVTfSu7shcUa\nF1nG7O4lf2MEOZ7Azxcp3bo392dlxtunONO+mA2jLFxaWwq3UGTiR3sAEXn7zJ/SWYNQeksgSZid\nrSgVadzxKax5xzsLuSyJ2dlB4cL1HQuQXAtEzMBoqkctTyFkGb9k4Y5OYA+NrclHaXOfjCD51CH8\norXI42kvQilLkjgSLRh2c/6YlIhhNtchlyUJJUFg2fiT09iDo+v/DEgS8Z521IoynImpVSujO4H0\ncydo/eVfoOzHX6BYLG4b4clms9uSETaLfcKzQ4Qnn8/z7LPPcuXKlQXb3vWud3H16tU9O5Z+7949\nvvCFL/DHf/zHC7bvNsIDUcyE+62/JhwbhOmle+WBrGKp5VjThYj4FBZWfOTaBjwbSreXaDdJr3Il\naAAAIABJREFUEmZXD8X7Uwg9hjeVwbr7sPoiVIXEiUN401lKN/uQU4nI3+bitTW3gJSKNHpnG/7Y\nxILHRpJIPnMUZ3AE+8HGPXc2CqWyDLOjBYJgUeCpXJ4i3nWA3NmrO1rxkVMJ9IZalHQSIYsoa2tk\nItJN7LILEkD8aDcIQWEPjmWb3e0oZUny56+taxx/q6GUpzGaalHSCYQk4ReL2MOPn7emVlcQ62gh\nDAIKN+7uiVadHDdJP3+S1Es/QvsnP4q0DURgn/BsGXYX4bEsi+eff57Tp0/jeR6KopDNZvnRH/1R\n3n57704lDA4O8rnPfY4//dM/XbB9NxIegND38V77GuHAXcLh5TUwgaJTklLYmQL5y1cXEJ8Q0Dp6\nyd+4s2yUhdHVjT1ugaTjDI0tGimNH+pC6Br5c1eQy5IkejvJnb1MsA53ZLOrDbWynMKVWw/H7WWJ\n1NNHsR4M7diKWihyNPaeSuAMj2PPtNyU8jSx7gPkTl9eWefwmJDLkuiNdSjJOEIIvEIRZ2jvOg7H\netohZlLc5a0goakkTxzEy+YpXtucicKNQqurQq+vRk5GrtN+Loc1OLps2PB6IRSZeO8BlHQSe3ic\n0u3FFc7dAsnUo/Z6VTlyIhZ5lE1nKPXdn1uYGC2NtP7yZ6j9xD9H2sJz9nYTnlKpRBiGxGIxYJ/w\nLIUtITy+7/Mrv/IrfPGLX8Q0o1HBXC7Hl770Jf7rf/2vW7HLbcHo6Ci/+Iu/yJ//+Z8v2L5bCc8s\nvPM/JLh2hvD+yuZ+vmpSCk2cbIn8lWsLiI+IxZGqm6I21zKfKaO9A7coCAMF696DRd4ielMdelM9\n+QvXkEyDWFcbubOX17UqFrpG4mgPgeNGhohhGE2IPX0Uq2+VCbFtgFZbhdHWROC4FK/fQdL1yMX6\n9JXHIj5qVTlafQ1KMkYYgp/LYw+O4k1uzkVtt8Foa0SrrSL79sV15X1tNbT6avS2JorXVs+R21RI\nAr2xDr2uEtk0cG2bsFCMXKe3wB9KratCa6oHz6N0696uc32WjBm9UVU5QlOQNBUhCfySjTMyGuWm\nrQKjrYnW//PfUvczL63Zy2c9yGQyxGKxfcKz+dhdhGcWmUyGTCaD67rE43Hq6uq2cndbjqmpKV5+\n+WW+/OUvL9g+6265mz9cwcBdvB9+MyI9/srTNb6eoGjLuAWb/NVrC1LKlYZm7KyNfW/5ipHe0kJA\nDM8KsW4tFi7KyTjxIz1Yff0QhJG785lL65760WqrMDqase4N4gyOgKqSOHEQ624/3k6JJedBaCqx\n7nbkZBwvm0dJJFYlPmptFXptFXLcJAzDaMx3cHRPtA22AlpDDWZbI9kzl5e1MNhyCEHiaA9Ckcmd\nu7qlWiehKhjN9WjV5UiGFk3FTc2O+z9eXtxKkHSNeO8B5LiJNTi6bcMBq0FoCmZLVLERhkpoO/il\nErJpIJkGfq5Asa9/yQGMtcJsb6b1c/+O2o/91KYSn0wmQzwe37aFcLEYnadnCY8sy7t2Ef6Y2H2E\n59KlS3z+85/n4sWLyLJMT08Pv/Ebv8GLL764VbvccuTzeX7mZ36Gv/7rv16wfS8QHoAwN437T18l\n6L+NKK0uIPaMFMVCgGd5C4hPKARqR28UHVFY/kSjNTRArAIvH1C8cnPxtJYskzxxCL9QwMvmMZrq\nyZ6+tP6pICGI9R5ATsTIX7oBQUDq5BEK1yODxN0CvaEWo72JEInCrfvoVeUoMTNqPU7ntmy1/iRA\nrSwj1tNB7sK1bas2yMk4iaM9WANry4dbDx6NUghsB2d8Mhr336Y4DaO5HqO5Hr9oP4xv2CEIRUZv\nqUevqUQyNELXxR2fxB4ew2iqQ6uuJAxD7MFR7AdbM7BgdrTS9iv/jpqP/iRiE5IAdoLwCCHmuir7\nhGcxtozwvPDCC/zar/0aH/nIR4Aoh+pXf/VXeeutt3bUr+ZxYNs2L730El/96lcXbN8rhAcg9Fys\nb/1PpMG7MLk2LxTXLKM4beN74QLiI5JpRFkN+XMXV7y/Wl2NXFmPm/XIn7uGv8RqLNbTgZSI4UxM\noVWUkz97eUPiWilukjjSg5fLU7r7gNRThyhcWdto/GZDKDJ684yHjaGB6+NNZ7AHR0gcO0gIFG70\nIWsqUsxEMnQkTUMoMkgShBD6AaHrEToOfsnCz5fwcoXoor8LxcdbjVkSUrh2e8vaeUZHM1ptFfkL\n1x574m6pKAVndDyaitvm908yjaiKY+iU+gd3RPAvZBm9qRa9thIpZoDrYo1P4g6PEjouSnkas7UJ\nyTTwsjlKd/u3VPyvVlag1VdHcSeAlytAGNLw8x+n7hMfRjY2bqOyT3i2DLuP8Bw/fpw333xzQTr6\nsWPHOHXq1J714vF9nw9+8IP83d/93YLte4nwQPTFUK6cghvnCAfurvl+jllJcTxLgEz+ysMpJKWp\nHWs8gzOw8spLKS9HaWjFmXLILyPmVWc0MF42h2wYEfHZIPTmeoymeqzBYYyGOvJXbm5Ja0iKmeiN\ntchlSRRdJbAc3MmpFcMvk88eJ/fWedSqCoyOlkjcvJ4JH1lGScSQE3HkuIkwdCRVnUeWQkIvIPQ8\nAtslKFn4hRJeNr/r9BgbgWToJJ46FDl7rzMfbSkIRSZx4hBBydpQkK1SVY5eX41aliQIfPxCCXd0\nfMfF47Pp616uQOHa7TX76Tw2JAmjsRatrgo5ZoDvzbTmhh5+zmUZs70ZkU6iCAl7eOumLtXqCtTa\naiTDQJYEXjaPPTSKt8wgBoBaWU7Dz3+cxk/9K7TK9SesT09Pk0wmt22BXygUkCRpn/CsgC0jPJ/4\nxCd46qmn+NjHPoYkSXz1q1/lzJkz/MVf/MWezvh43/vexyuvvLJg214kPLquIx7cxjv1KuHda6zn\no+CYlRSGJwkVfY74hLKM2tZD/sIVAmtlca6USKC1HsCecsm/dZHQWXyhl+ImiWO9+I4Lnk/h/NUl\nHmmNkGUSR7qjFaUkUbhwbUOtI7k8hdFYi5JMgCQIitFFzRmdWPdqPfWek2R/eGbu/2p1JUZ7C9m3\nL279RUmWUZJx5GQc2TSRDA2hqQhZAUlAEEaVJc8jsB2Coo1fKOJlCwv0XLsBQlVInjyCPTy6obaT\nWl1BrLst8o0aXYWcCIFWX41aU4EUM5AE0YVzcGRNHlPbATkZJ97dgdDUmfiGxyeDK0KIKBC2thIl\nEUMixM/ksAYWuzCrFWUYLY1R9SaTo3j3PuEmTzBqNdWRI3Q8BkGIm8nOtIrX8P7MHIvRUI3R3IjZ\n1oLZ2U7y6EHiXe3rfi47QXhkWZ4rMuwTnsXYMsJTKpX4/Oc/zz/8wz8QBAEvvvgif/AHf7DnA0SX\nIjy2be+psLb5URjh9ATed/+O4M4VcNdeYQgB26yi0D9MaMQpXL1GWCwh0uX4RhrryrVVH0OKmRgH\nerEnbbJvnF9atCxJJI73IqeTeBPT0WTWY0BJJ4kf6UaoCrm3Ly72BJo56c2dNMMQP5fHGR7btDFf\neFjheRRqTSVGWzPZty9t32p8HRCKjJxKIMfjyDEDSdcRmhKJPSVpIVmybIKSjZcr4uXyhMWtG89H\nkkiePISXya8pqyp+uAvJNMidu7LQ3BIQioTWWIdWU4Fk6ISehzedjYTDW2gxsCEIQayzFa26Ei+T\nJX9t6+IbtLoq9IYalEQMCPEyWeyBIfwl2n5CkTHbWlCrygk9D2twFGdw86o3Wl01Wm01smkQ+sHM\ncxnGX42QSxJabSV6bSVKOo5aUY7RUIve1IDZ2ky8pxO9fnOGa/YJz5Zh9xGeQqGApmlzVQ/f9xkd\nHaWurm5Pmg7O4kkjPAChY+O99jWC25chtz6RbyAkLLWc4v0BiKcj4lMqobR2UhoYwx1ZXSckNA2z\n5xD2hE3mB+eWnYIxO1sx2pqwB0cpXll/22HBPlWF5LuOICdihJZL6DjRRW1wZFsMAxPHD5JfoWql\n1kStveypi+ueXtutEKqCnEwgJ2IPK0uzbThE1IbzA3zbJnQ8gqKFn58hS+sQ1CaO9xJ6/qLWlBQz\nSRzvxR2doHT7fhSl0FyPWplGaCqh4+BOTq8rSmEnoJSn0NqaUDWN4u37awq9XQ/UmkrMxhpCMzpH\n+LncqlUStaoCo6UBSdNwprOU7t6HxzVhFAKtvha9ugIpZs4RT2tgeOXvqCyj11Wh11YgJ2MIWSAI\nkdJJ5KoK0r09xHu6ifd0Is+Y9G0FpqamSKfTSJsggF4L8vk8iqLsE54VsOmEZ9ZF+Zd+6ZcYHx+P\nqghhSD6fJwxDvvzlL5NKpTZ7t9uGJ5HwAARBgP/2dwiuvA1j628NhJKMpZZTuHsfka6gcPkqgeeh\ntHSRO7e2No1QFMzeQ9jjFpkfLu/3o1ZXkDgSTc+UbqysQZKTMYzmOtSKFJKuEjg2/vQ0zsjonL4m\n9Z5n8Esu2TcvENrbc6Ez2psfJs2vAK2uGr25MWp1PSHEZyMQmooyQ5Yk00DSZ9twC8lS4DgzbTgL\ntbqC0PFwJ6eJdbfNaEdCgpIVTQBtJEphJyBJxLvbUSvLcCamo6DdTRA8K5XpGUF1EsSst9PIiroW\niIir2d6CWlFG6HpYA0OPp6Oa8RjSKh9W1NzpLPaDoeVH8WU5SmqvqUBJmAhZRAu3TIYwCIgdaJ8h\nNV3EersxW5txPG9BuOZWYycIj6qqcxrZfcKzGFtW4Xn11VexbXvuBf/2t7/NyMgIv/d7v7dtWSZb\ngb1OeMIwjETLM+9LEAQEQTBHVKV7N5DOfw8ebCzbKJAVSlKK0p17iIpqCpevgpkgUGIUr66xHSVJ\nmL0HccYtMm9cWv5mhk7y5GGc0Qn8XB69oRo5HUeSBX6xiDcxsbbVr6ZiNDXg5/Jo9Q1k39x6ciGn\nkg8do9eAOeJz6sK2jS3vNUiGhtHcgFKRRlKinDBnZAwllUSoGvkLq7dZdwvUqnJiB1oJZ+JLHmfK\nUC5LYTbXoZYlQQj8YiEyrZxaWzVXq6lCb6pH0jTc6Qylu/c3FqEhS2j1tWhVFVErynFxp6axBoaX\nfDyhKBGpqS6P2mgyhLaFl8ngjI4BIUZb6xyxifd2E+vpQqusWHL3j6aJbzV2mvAoirJnJ6JXwe4j\nPEvhve99L3/1V39Fa2vrdu52U7Ec4QF2zfRZGIaEYThHZuaTmtnPgyRJKIqCJElIkoQQYq7VGEyM\n4H/vGwQ3L0K4sRVwoOgUgxilu3eRquooXL6KVNdMsW8Ab3xizY+jd3XjTNjk3r4GskysrQ69sQo1\nbSLJIYFVwJsYJ3boCJPfP7fhUWW1pprAtvEzWbS6GtSqGjJvXtwyPQRErtHrvXBo9TXojfVk375A\n6O2B6sQWQCgSenM9amUFsjEzFTc+sWrFJn64G9+KHLB3G4QiE+85gFKWwh4ZWxDIu1bIyQRmSz1K\neQqhSAT5AvbI2LpaXkLTMNubUcvTuCULd2gUd3Sd7uWKjNFYj1ZZHrUKXQ9nYgp7cHhRpVeoCmpd\nFUZtJXLCRIiQwLHxpqdxx8bmyL2cTESkpiciNfGeLmJdB5DWscjcbsIzOTlJeXn5tkk4Hk1nfycS\nnh2rZ01MTFAqlXAcB9/3GRoawlliGudJgBCCVYjlluBRUjP//0KIOTIzW9qcJTaWZa0YhSFV1iJ+\n8l/jmXGCa2fAXr9QU/JsEtiYnfUUXZWgOo1UmSCYUpDaniJ79sKayIR98wbIEj2f/yiTb57DHZsg\nHM/iPHIOzp95m8p3H8Er+kx898y6WxXu6BixQz0Uc3mc4VGc4VHi3Y3I6TKyb17cEs8UraoCe2B9\nQk5naBRnaBS9oRatoY7ck0x8JBEdZ00lcswgcFy8yWnswWGc/kGc/vW1XguXbwCQeuYIzsQU1t3V\n4we2ElpdNWZ7M6HjkL9+l/zM81sNcsxEbarFqC5HUpXI22dkDGd0nNKd9ZE5rbYao6keoSq4UxmK\nd+9TvL7G6q6qYDbWo1SWI6kqgePgzhAb694DrHuRW7PQVYyGGlLHupETJogQv1TEnZ7Gm5iAwjjW\nnZkvtBDojfUkDvUS7/nwXNXGaGxY13Ethb0aWr2PtWPbKzy+7yPLMs899xyXL1+mvLwcSZKIx+P8\n5m/+Jh/72Mf2NOtcqsLjOA5hGG5JhWd+tWYpgjO/QjP7++z/l8Nas7/CMMB/85/wL/wAMo8njPT0\nBMVCiH3/PlJNI6XhcdyST+nm6ifXmh97D+rkPdSDx8hcv0/u0tIXBqEqxLs7CWyL0pRL4fL623LJ\ndz1F7tTZBdv01mYkI07u1PLttY0gdqjrscXXWkMtekPdnq/4qDWVUQBmIobvugTZHM7AyNZNRcky\nyZNHKPUN4Axt8ej2DCRdI9bTgZKIYw+NULq7cnyDZOqYrY2oFZEbs29ZOKPj0aj5Rkw5dQ2zowUl\nnSJwXKz+gTX5BAldizQ25WUITSWwbNzxSazBkblFi9BVjMY61Mo0StwACYJSEW9qCmd8YskFiNB1\nzAPtqO2tmN2dpA71kj5yCDWZXPexrQWPpolvNfYrPFuGvdHSehLw/ve/n69//esLtm0G4VmuDRXM\nnCjmk5ml2lDrwXrDTv0b5/Df+ifCoeXzs9YKz0hRmLZxBgaQ6pqwsw75qzfxppduRWk1lVQfSEdV\nJiHQOnuwCx6j//iDJW8vDJ14ewt23130roNMnrqOt86Qx/jRQxQuLk7rNjpaEZJO7szmJHknnzlG\n7u0Lm/JYemMdan0N2VO7K2zzUUReRnUoqeii42dzO+pjIzSNxFOHKFy5s6m2A7PQm6L4hsCyKFy/\nQ7DEaP5cEGZlWSSst22c0Qns4ccTVev1tegNtVH1ZmKK4t37i0bw50PoejS1VpZGqDJOvkgwmYme\nh+8jGTpGUy1qRRo5poMUEpRKuJOTuBOTKz5XtbJirlozq7cx21oJhSCTyZBMJimVSnieh67rGIax\n6dqX7SQ8YRgyNTW1rYTn0XT2fcKzGFtGeIIg4Gtf+xrf/va3KRQKtLS08MlPfpKenp6t2uW24HEJ\nz3KkZk40vAyx2UxsJN3dHxnA//43CG9v3Pl4PlyzjMJoDnd0BKmhldJ4nuzp84tOmg0vvRcx1Pdw\ng6ah1tQRKhrDr59f0kBQMk3M5nqc+/eQEgmkqiYmvnt2zRcPKRFHSadwBoaW/LvZ1UHoQv7C2loQ\ny+FR88HNgN5Uj1pbveMp41I8NnPxTIIk8AtFnKHRXZVtNh9SPEb8SC+5c1cfy1xRMg3M7jYkw8AZ\nHMHuf/gZEpqC0dyAVl2ObGhRC+iRSsmG92voD6s3lo11fzAiIUtAmAZmUz1KWQqhKATFEs7YBPbw\nGJKuRpNbFSlCVUZRZYJS8SGpWa2yJEf+O/NFxPGebrSqyiVvHgQBmUyG8vLIydj3fSzLwnEcVFXF\nMIxNmzQqlUoEQbCthKeiYmkB9VZgn/DsAOEJggBJkvjt3/5tXn31VT7xiU/Q0dHB3/7t33L58mX+\n5E/+hM7Ozj3bT12K8Liui+/7c/4Hq4mGlyI0W0FslsNGCA9AWMzjfffrBFdObZqY14lVUBiYwJuc\nQGrqIHOtD+t2HwDlzx4j5i0WTEqpqMSPJDM9XKSwhAhVTiTQaytxB6K2gdrcQmnconB1bVEaeksT\n7tj4ii2VWG8XXsGlePnWmh7zUaSeO0H2zXMbuu9q0JvrUaurIuITbF0hV9K1KC+sogyhKtHI9+j4\npsQ97ASU8jRmV8e6HK+N1kbU+mqCQikSRAcBelNdlHpvziSeT05hDwxt2oSdWl+D2VSPkCSciSlK\nd/sXfSeleAyjqQ4llULIEn7RwhkbjyYa66vRKtNIpkY0ql/EnZhYliQtBTkRJ9bdSby3m3j3DMHp\nOoC0jkr3o4Rn/nbbtudc7E3TRFGUxzpHlkolwjCcSxPfSuwTni3F7iE8sxqeH//xH+e///f/zjPP\nPDP3t5deeonf+I3f4D3vec9m73bbMJ/wzJIa13XniN5SouFHf99povc4URhh4OO/8S38M69DafOS\nvR2zkvy9IfxcFlHXytSZy9QebSCcXvoELNc3QXYSwgA32cDYq28svk06hV6ewh2eWWVLElpnL1Nv\nXcObXn0kPHHiCPlzq+t2Yod6cCYLWDf6Vr3tgsc/eYT8mc3VBT0KvaUBtarysYmPUCS0pnq06gqk\nWZO+sUnsodEtnWTbKWi1VWgzNgCPVsqkeCyq4ugaYclCaEoUDusH+LNj1u7m+TlJMROzvRkllSAo\n2ZTuDyyolMmpBHp9LWo6NVdN83J5JF2J2k+GCmEQCYXHJ/Cmptb9HPTG+mgyanYEvKcbvanhsc9l\nyxGeWYRhiOM4WDNxNYZhoGnahlv5TzLheTSs9J1IeHZsSquzs5MLFy7Q3t6O7/tMTk6i6zpTU1MM\nDQ2RTqe35IP36U9/mldeeYWamhouXlw5xXstCMOQ0dFRrl27xrVr15iamuKjH/0oN2/e5Dd/8zf5\n0Ic+NHe7WRKxndWa7YaQZJT3/iSirBrvh99cc+L6atBKE5TXaDi9JyHwSZYfwytaeMsQHn/oAWpH\nF8FAH+rUfRo/9ALD3zmNP8+B1c9kcWQZtboGbyzSQzg3rpBsSiJOdDP52pkVS/T5c5dIPnOC3Nsr\nV2GKVyJ/oeS7j+COZ7FurU3rtFRq/GbDvj+IfX+QWHsjSkUF2dOrEB8hotV/bRT6GHheNBk1MIz7\nYBD3wfpNKfcinJFxnPFJYp0tSMkE/nQOvaUeSZHw8gW86Qylu3c35kezCvSmBvT6aoQk44xNUOrr\np3D5BnI6idFQS6yzLVpYCglEgKRIUaUm8PGLBYLiBEF2mgDwxlYWRj8KoWnEOjuI93RBcyPVT50g\n3tOFktoaIfFq061CiDkhruu6WJZFsVjEMAx0Xd82j5v1Yjd0MHZ6/zuBHavwfOlLX+KLX/wihw4d\noq2tjddee43Ozk46OzsZHh7mi1/8IkeOHNns3fP666+TSCR4+eWXH5vwvPrqq3PhpwcPHqS3t5dT\np07x67/+6/T29tLa2oqqqotaWrsdmxV26g/24X/364T9G2vpLAWpoxv1QA/5734Hf3qKIFWFe3N5\nwzit9zD+nYhwiIpqpu5NU7y90MNEra5C0aRoBHb+9uZWSmMWhWsrjPLKEuaBdko31jjxJQTxo4ew\n+8ewVgmzVKsrccfW7km0GdBaGlArysmduYxaWY7eUIMcNyEMZ6I1hgksO3IwlmWEIiNkCSHLCGnm\npywRSlK0fWYbsyRfEghJiv4vCRDi4d+EAARCYu73ubWaJDF7Ogr8YN6iISQMo5vNncvCMHJWnvkZ\n/YumCgnChz+D6CdhEP3uRz/nfvf9mdvM/B6GaFUVKGXpqHoz4/jrDI6g1deglKXIn728qRYFcjyG\n2d6MnEzgF0tzo9x6Qy1KMolQZYQmI8IARAiBh18o4IyNrcu4cimoFRULRMSxni5i7a2ImQrBdkwZ\n+b5PLpejrKxszffxPA/LsnBdF03TMAxjTZWMYjHSZm1HhWe1ytVW4NEKz+zi+wnE7mlpzTLb06dP\nMz4+jmEYBEEw9xOiD+zx48fX9SFfD/r6+vjwhz/82ISnWCxSLBapqqqa2/ZjP/ZjfOUrX1ngquy6\nLp7nYZrmY+1vu7CZ6e5BLoP/2tcIrp7ehGcGcs9RtNYmhOuSv3gVp+8OorED6/zyj691H8Tvmxnv\nVjVss4aJ77614DZqfR1y6OJPPyKanWlzTb51FX966UkhpaIchMBbh74BWSZ+5BClO4M4A8tUwSQp\nuvBvcUtIq62KXKhTMUL86ALmeSBr5C/eIPT8KPDT95/I9tQiKDJ6Qy1qRXlEbFwXdzIzk6G1csVG\nb6pHqa2icH5x6OiqEAKjuR6trgaEICiVCIMQNZVEThgIGULfI3Rs/HweZ3z8sUkNEDmXt7Y8FBH3\nRm0prbpqxbvtVsIziyAIsCwL27bXJHAuFosIIbblPL0ThOfRsNJ3IuHZ9pbW7Jfj6aef3u5dbzpi\nsdii1cBsRWc+4Xknlg5nISXTiJ/8JH6qHP/0a+A9nnZBqBoiCAhjKZK97eRTKexzZ4i/+3kKb/1w\nyUkr585NtMYm/KEH4Dro7gMaPvQCQ/90inAmi8cdGkY0NiIlUwS5eWPqM22uVHMScbyHye8ubnN5\nk1OY3QfwM1lCb42RE75P4fxFhKJQ9v6nKVy7hzvyiAA7CFBrKnFHN6HKIwRafTV6Q1XkWEsYXTRH\nRggKGex70ci1MHS0ulrsvqjtFutoIxQa+XPLB5nuWagqRmMtSnkZkjZrjDeNMzQy1+pbL+wHQ9gP\nhqJU+/Zm8ueuLNvWkhPxSHtTlkboKpIIEbIAERJYJXzPwxmfoDi4sRiXJfcZnxESz6/adB1AXmf1\neSeMVNcLSZKIxWKYpolt2+TzeSRJwjAMVFXd0fPyXnj9nkQ8kclhOwlFUXA3UZC4E9hsZ2ihKCjv\n++eIsiq8730DChvP/WG26mTlCc0kiTof5X0foPCdb5N87/PkT50ifNT52fNwJyaR0+WEmRlB5uAd\nGp4/xMStUax7kaOuMzAQmQgGPkFhoX4myOUgd42qFw5SHCtRvLZwmqt04zbJZ46Te/v8ug4n9Dzy\nZ88jNJWy9z9N/vJtvPGHVSalLLU+wiNJ6E01aLWVKAkTQh8/l8MZHiEoTWHfWUGQKgRGRxulKw8z\nzaw7fQCkTnbjOyGFS49nhLgTmDXGU8rTSIoSGeNNTGEPjWL1PYC+9elY1gJ3dAJ3dAKloozYicPk\nL99ArSrDbK5HmBpChODYeNks9r1rW6LX0urr5qo1s3lSenPjpl7o98JiTggxp+lxHIdSqbRA57NT\nx7AXXrsnDfuEZ5OhaRr+O6HsvwHIx94N5dX4//T/EY5uzLZfKBHhEUIQyhoCgRmTUF76aTLf+DrJ\nd72LwuXL+FML20thPksYqwPdmIvCCCdGqKgzsBqfZvIHUUvMvteP0dGO8ANCq8SjcPsizt+UAAAg\nAElEQVTvoUoSNf/sXUw80ubKvX2exFNHyZ9df6s0dFzyZ88jGQZlH3iG/LkbeNNZ5MTSniBCkdGb\natFqKyOTt8DDy2ZxhkcI8xPY+QmWyZFeFomTx8mfXlqAPet4nX7XQdysRfH62sb3txMiZs6YFiYR\nM+Gg7tgEzsg41p3HN8V8FJKpo5SlUFIJpJiJrKsIVSEMAyRTQ44ZUfZTIUfyUA1ezqZ4efNtBoSq\nEuvsmPO0MbsOEDTUUdnSvOn72m5sprh3vsB5VudTKpXmjAx3g5B4K/GkH99asE94NhlPQoVnKyE3\nH0B89DN43/6fGzMpnNeDF56Fn6pGyY6ihiXKf/qnmfqH/0380EGs+/04/Qsvcv7oMGrbAYKh+w/b\nUraFwRANH3qRoX98g9Bxse7cxezqxB8ZJHSWoA1BgH3jCqmWFOJYN5Ovn517vMLVGxitzVj3+td/\nbEBgWeTPnEOKxyg78QyBD0ZHE1pNObKpE/oefiYTVWyyY1jZzfGzSTy9PNmZj+K1yEwx/e6jOGPT\nlG5v7DgfB1Iyjl5Xi5JORP4xhcg/xh0Zp3Rz40RMipso6RRKMoYcN5F0DaHM6KgCn9B1CSwLP1/A\nz+YILIswPwkxgZpMoqTiCE3BL+RxB/twHkkbV6uroaZq/WGb86CUly0Myeztxmxvi3ynZjCre9nH\n0hBCoKoqqqrOGRlmMhmEEAukCPt48vCOIzyf/OQnee2115iYmKC5uZnf+q3f4lOf+tSmPf5ShGen\nwkN3K6R0BeqHfz4yKTz7+rqmWoSycNpC+A6BoiN5NrJboOInf4LM6z/AaGxATsQpXV2oPXH7bqP1\nHMa/e33BdgZv0/D+Y4xfGcAeGKZ08xax3h68B33L6nKCbBayWapfPERhpEDxeh+hZRM4LnIivuE2\nhRQziB86gKwGSIkYil5F/szmOFgvhdjh3jX5Cc1H8fIVEIKy549T6h/Fvr+06/TjQC5LodfVICcT\nkXa7UMQZGccdn6SUWz0EU07GUNIp5GQcOaYjaVo0VSaiCa3QcQhKFn6hgJfNEtoOYW4cNwfLLVmU\nijKMlnrkrmaEJBCKFE1rDY9QvHN9mXtFcMfG0OpqCf2K1QXukoTZ2kys+6GION7bjVZTvepx72Pt\nkGWZeDyOaZrkcrm5eIlZgfNWVUT2qy07g/0srU3GL/zCL/Cf//N/pqOjY26b7/vYtr0t446bAdu2\nt2214515Hf/1r8NSlZQloH3gJ1GUhR/LQIuhTD9MFQ8VnezFqwhZJQihcPrtxY/Tcwj/7uLoB2HE\nKAQJpt+Kqh3xwwdx+m6vPp0kSWidB5l88wp+Jk/8yEEKl6+tmcxJMZPEkU4kWVC6c5vQjl6P+LGj\nFC5cJHb4EMXr9/CmH0P/tASMthac0TGC4uL23Zohy8SPHKZ4+8GGgjaVinL0umqkRAzCED9fiGIm\nHjlWORlHKUtGlZhYDMlQo5F3wrkKjF8qEeRnCMwanZCXfV7pFHprA0oyDp6Nn8sip6KRdHd8HOfB\nxtqyal0dznRhzhxQisWIdx0gNo/YxLo6kc2N2Vg8zmTTWrFdxnme51EoFEin01u6H4BCoTBnd2BZ\n1pz2Z6NGhithO49rFo9O1W3Fce0S7J4prScds/3hfawNyskXkSqqcb/5/64tcV2SgEcs8p0iQbwc\nqRAJcoVnkzrcReHBGOH0NMnnnyf3gx8sIB/OretozW34gws9eUKrSIwi5k+9yNA3f0Dh8lXiR4/g\n3L6+ctZWEODcuEy6NQ1lUZsr+cyJRcnqC553zCRxpAshh1i3b2PdWDwJFcxctIuXryCXpTE6Ns99\nWamswM8XHo/swMzE2QWEqlL2vpMUrvYtmbKt1lSi1VQhxWKR943rEsyQa8lUkRSBUGRkM41WESdw\nHIJSaa6FFLoWwbRFMA2b/Q2Tk3GM1kaUVCLSQ42P4WWzKJpAUsDLWzhDwzDwGMaKsozR3ITa3EzF\n4cPEmpqJ93RhtDRv6oVnO6oHT2KFYjbWR9d1dF2fMzIslUo7LnDex+Zgn/BsMlRV3fOEZ7tbcFJb\nL+rH/yPeN75MOLiyBkNIMo8SHoBQkQmFQMw8bxH4xBsqsVJp7Du3KHvheabffBNmV/2+jzsyhFJe\nRTC1WFMhhm7T+MGnGTt3h8LFSyROHMO+fmXVio2fzUA2M9PmmiZ+uDeq9Mwea9wkcXg+yVk5WT2Y\nJ5z2pzP40xlSzx6lePPeulPeFxyfaaCkElh3N0/MG7ouhbPnUdIp0i+9iFewEbIUkRvHIbBtglIJ\nb2QCP5vdtNyo9UKKGRitTajlSQgDvMkJ3JER3MF7yGoLciqNnE7hTk9TurmBqTRZRmtswGxvx2hv\nQ29vR2lqJN7RgRGPUygUkGV5zxiR7iR2iljNVriXEzg/rn/Ndh/XvqQiwj7h2WTsi5Y3Bqm8GuVn\n/j3+P/5PgiuLW1APbyhgiUKLcB3CdC1iXmtLEGImZOSjxyicPUP5c8+SuXCZIBO1EsJSkSAWR5gx\nwtLiBOxw9AHVnRXkm+rInLlA8uRxrCtrq6449/tQJQm94zB+qRm1sgykAOfu3VVJznz4hcU6oOKV\nK8jpNEb7UfJnNmCeKUXu0MVLm+OtI6cSmAdaUOIGhAEIQfHCKbSGBtycsyARfLshGRp6axNaRRpE\niD81iTM8jDfYhzck0Jua0OpqUcrSWPfuY91Zh+hZltGbGjHa2uaIjdHWiqitRZq5WM7CdV2kTTDy\n3Mf2Q1EUEonEAoHzZie1bxfe6RWqvfVu7QHsi5Y3Dkk3ER/6WfzKWvzv//2SLaSVvrChaxFqJsJZ\n2KLRhI303LPk3nyL9NFe8rfv4w5FrQl/YgylpR1sG4IlKkfFPHEhMH/iBYa/9QOSTx3DurxGkhEE\nCM+ivKcKJ9DIn7u4qlPvo/CmM0tu9zMZ/MzGqj2Jp46taSJrOajVFRitjci6gjc9hTMwgD8xgpps\no3DlOsx8/p2BAaRYjOTJI+S2OAQVQKgKRlsTamUZkgReZhpnaAh/+D6lGR6s1tURP3qE0PWwHvRj\n90f/VoQsozc2YrTPEJtZgtPSsiSJse3FerT97//ex3yBs23b5HK5uUrdThsZ7mNt2Cc8m4x9Dc/j\nQQgJ5d0/jqisw/vffwVW8dEbLH/fMCCIp5GdxZoUxS2QfvezZN4+Q6KjiVIyiXUjmqrx7t9F7T5E\n0LdYxAxAGCKN3KHxn72L0VM3MA4fXRPpiZ84jnP7Or7vozS2YtRVolbXkjt3ae2OzK6LFIsRFBdX\noGCm2pNKYbSvTduz1vHz+dAaazGa6hEyeONjuCMj2DcjgiXFTOLHj1O8fp3C+cWmi0GxiH37GmUv\nnCTzxvnNa2MpMkZLQ5TOrkj42UxEbkYf4I8+NBJUKivQGhoAcAYHcYeHcYeHl37MdRKb5RAEAUII\nXNclCAKCIMD3fXzff1Kt/J8IrLXNJEkSpmliGMackeGszmetQuB9Arwz2Cc8m4zZaIl9PB7krqOI\nskq8r/054ToS14VdJEhUIOUXi2Ylp0DZ08fJXrmBWV2GHD9J4ewZANwbVxYEjS6FcLifmoO15HL2\niqRHKGoUEHr9YevKH7iH3nqA4sUrmE01yOVV5M5fWlkIPQM5lVyW8AD42Sx+NjtT7bmPN7V0VSh+\n5ODqpohCoLc1YtRVAz7u0BDe1ATWtYVuz0JViR0+ROnOHQrn1uDfc/ECyWOdlO6P4o6v4Pa8FCQJ\nvbkevbYSSZVxc1m8oSGCiSGsiYXtMjmVRG9uRigyzsgY7vDw4hHwecRmltRshNiEYThHaOb/m3/h\nlCRpbvUvSRL5fD4KId33e1kTdjMxWMrIcD1J7dut4dmvQO0Tnk2Hoij7FZ5NglTdgPKzv4z3yv9F\neDfSm4g1OCWEkkQopChB+hEI1yLV20Hh/gh6XCC/5z1kf/hDAJwbV9HaDuA/WF7HEeazJGQJv7IC\nDh1ZpOmRy9LoddULyM4sgnu3STx1nPyZc3hjY8Q7mhDxJPkLK4uh5Xh8WV+Y+Zit9pgdR8idXvi8\njPYWSrfvLiJYQlEwDjSjVZWDa2MPPCCYHKY0uVwVRCJ26BDO0DCFc+uL0bBu30YtL0Or6aJwZRkx\nsBBojXXo9dXImkJQzOMMDhJMj2BNLya+kmmit7Yi6Tru1CTO/f7IIwgiYtPSsqXERpKkuX+zYYy2\nbaMoyoLw3TAMUVWVeDxOLpfDcZw5v5e92A7Zzgvobn9t5hsZzhKfTCazrqT2fWwP9gnPJmOpCs9e\n0/AIIeaS63cakhlH+di/xX/t6wRvv8parKGE5xCmaxYImBf83feIN1VhTdvI2SnKXngv02+8FWVu\nDfSjVNUSjK9QVQoC5NG7pOpbEcoxShcuAKC3tiA8G/f+vWXv6t2+Svyp4xTOnscdGgKGSPS0E8ga\nxXnTXAteA0Nf9Zhn4WezlGarPbf68SanUaoq8bJ5gpKFZGiYB9pQy5MEpQL2g3784X5Kw6s7JscO\nHsTNZChe3Lgex5uahmyO9HtPkvnhWbS6GvSGGmRTJSgVcYaGCHJj2Lml/XyEqqK2NKMkE/jZPHZf\nH6WbN9EbGzHb2ij7kR+JiE1bG3pLM9I6KinrJTZCiCUvxitdoGcrPbOtj9l2iGmae5L47GMhZgXO\ns0nt2WwWRVEwTXNHBc5LXX/eiZ+1fcKzyXgSxtJ3GyRJRvqRj+DV1EOwNsv80CktKWCehQhDzLSG\nnWjCHxqk/NmTZC5cIcjn8UslpHiCsJBf8r5z+xi6RzJVjnLyOL7j4z24S7AGUbJ35xqxI4cpXorc\nk50Z0WzySDe+G1C8fmvhc1XW3/6Iqj1J9OeeQjE0hO/h5ypxHvTjPriDu468TKOzk9DzKF7d+FSX\nnEqh1dUgJxIISRAUC1Q8fxSvUMK6tcLjyhJ6cwtKWZrAsghcF6WujtiBDsyOjh0lNo+D+e0Q13U3\npANZDvvti41hM1+31ZLad+I92v9M7BOeTce+hmfroBx+lmB6BOnu2VVbW4KQIF62pIB5PnTZxWtr\nw753n7JDnWT7hvBGR5AaW6KQ0VXIa5idItHUSqhouHVPY49P4g4NEeSWn5oSQDDUh9F5AOvW7bnt\n9t2olZY6fgg3V6Q0k1SOtAYhZTyGXl+Hkk4hKVJk2JfNIAsbrBJBAHbf+nKm9NYWhG5g3VhGzL0E\n5Hgctb4OJZVASNHz8MbH8DMZ3Pt9S7bmEscP405ksB9ELExrasJoa0Wrq0NOp6PR7/b2OWJTLBbR\ndX3VVsFuIDazldIwDJddZWuaNrdQmk989o3u9j7mJ7XPEttisYiiKHuq6v+kYJ/wbDL2KzxbjLJa\nwpajcP/C8v7hMxB2gSBZiZSbWPF2ildAtLdg3XtAqtGmkEhg37mN1tmLf//WivcFkMwYQf9tNECV\nVfxDXbgu+JYFocDLTuMNDS7Uz3geIj+J1tiIM7AwosC6FelbUiePYo/9/+y9e3wU9f39/5yZvWQ3\nmwvXBBIgyEXuJAJqb1SrIIKCVqvVqtRqq1TbWhFRa4XWcumvtrbW2tZP1Wo/VejFCtpqra3Sn9oP\nKFaQq6AgEEAugdz2vjPfP5b3ZHaym2ySvWfO48ED2M1uZnZm33Pm9TqvcxpiXicXOXEMHoS9vAzZ\npqAG/UQaGggfP07k0H4ipzS8ksuFo7KSwJ62zCnPhDGEvH4CgkglgL2yAlu/fvi2JvYLkt1uHIMq\nsJWWIikymt9P6PgxIidOED7wUUInZNnjQSkuRna5kV1FKGVl2Pr1p/RTA7FXVeEcMhRndXXeVWzM\nxCYUCsXcxYs2cTAYTEh8hA7E6PDrcrl6NfEplGqVmdh6vV4ikYguck739J5FrqKwCE+K0ZHxYKF8\nebMNrV8VqGGkA50b+GlICQXMRijBVlxDB+Oz2SgOf4QyaTLezZs6ndySXMXR9HXx/0gI24l6bIBq\ndxLx9IeQi4jTiTJgILaSUtRAgPDHh1Gbm1DKnNj69SN83ETKHA7U1laKBg1AKSvH9slphA8dJHTs\nGOrH9QQ+TpzjJLncOCoG6hUjAf/uKHnzTJ5A6PhJvaIiYOvbF9vgQfi3bSd0OKphkouKsA+uxF5a\nimSzoQX8hBuOEz5+nHD9ftRGD4rHg+xyYa+oxFldDdIpd+VIRHdYVoo92Ab0xzlkCM5hUY2NY0j3\nWlGCUASDwawTGzGCLiBJEoqiEAqFCIfDOBwOFEXRR9OFWNm4nWYYBbDmio811p7fEMRWVHw0TcuY\nwNl8nvZGWIQnxXA4HPh8sW2U3npypRPagGGokRDyoY6t/6VIELW8AuVE526/csiHu7IvPpuDov07\nUc4+i+b1G3CMGE1k3wdxX2MfMgw1QRVIDgWQT9Zjl6F4RCWBonJCxxsJ7t0DmobSrz/2ykpK+vXF\ne+gYajCCGggQOXHiVDjlfjgAzmE1BOoP4B4zFjUUInIi8Vi3Tnb27k34M/6dO0CWKTljEv4Dh1G9\nXopGjyLc1IisyJScNRVZUdAi4WhLT5JAI/p/TUUuilZmIi0tqKf+RHdYxlFZiXPYMJzDanDWnPp7\n6FBkZ/LC684qNuJuNdvERpIkbDZbDAmJRCI66RHOvBA1rVMUJUafEwgEkGUZm80W90Jns9koKSkh\nEong8/lobGxMWbRBT1GIN2+Z3idZlmOMDIXAOd1J7b0ZFuFJMex2O01NqU20zjTyZapMqxxJOBTE\ndizxVBQAAS+a040USOxlIyBFQrj6uvA7J2L/YAtln/oETW+9g23gYNQj7YMjteaTSW2rFPRRFPTh\nHtAH+9nzUFUVW+NRaG0E9ShlYysIBCQO/eM/hEw+OuHmJgiH8W55D8nhwD1pEv49e1CbYwXcktuN\nY2DHZAeHA0dFBUppKZKiUDR4IJLLTfjoESIHDxJJZjpPkrBXVOIaO5aiYdGRb2fNMJxDhiJ3IR+q\nu60or9eL3W5Pyd2wmdiI815c/BIRG6OZoNhusb2KoujRA5IkEYlECAQChMNhFEXRL2bidcFgsEPi\noyhKu2gDh8OBy+XKOvGx0HMYjQwDgQCtra0pT2rPh/U8E7AIT4phiZYzi3DlKLRwCPvJxCnWEhqq\nqxQlCcIDUcfmIrdEcGwd7NxM+dRamnbtRSopQ2tuIyO26hq0Y52nZ9uqhuAcOhTFBoqvEYkWgv2r\nidS3VackhxNnwz5qzhmLTy7l0Iv/P5FTKeaRkyejKfFqNITTu3kzssuFe9IkfLt3o3m9UbIzYEAb\n2TERGzUYJNLQEK0cxYlSkJxO3BMm6O8XfVDCPnCgXq0pqqlpq9i4XEl9lpCbGhvzBUD8TrEtxtcJ\nUiP+NhMbRVH07Y4HQWYEYQkEAjidTux2OzabLS7xEdtihDHaQFR8LK+X/EQiHZdR4GwOLO3pd8Kq\nGFmEJ+Ww2+1EItlJge6tCFaORkFDPpm4bSUFvagl/ZGb2yejx/15wGkLExpfR3jHZsqGD6b1hI+w\n3weh6Oi57CqKl2Mabe2MGIWzshKbFkDyt0CoEeOIklJSEpv5Ljw6gn5c+DntwjNoDTk59NLraMEg\nSp8+Ma0s1efDu3kzSp8+FI0dG9XXRFRslZVooRCa339qL0BTVWSbDbmiAntlpWEPNf1nFE8xSt++\nOGtrsfcfgOe003AMG4ZiERu9KiM0NN3ZZlEl8ng8hMNhAoEAfr9fH003Eh9xw2R0aDbC2AoRXi92\nux2Xy4WiKAV1N1+IrTOBRPsVL6n95MmTOJ3OpKYTLSSGRXhSDEu0nAVIElrNJLQPw0hN8Q3rADQ0\nNFlBihMSmgh2AsjjJhPcuZVij4xvzASCW/6L5PagHmwTK+NwUnT6WBx9y1GCLUghP/gST4cpcgRK\nykBUjFTTRcrfSjGtjLzkbJoaNU7uigZx2srKkGx2tGCA8IkThI4epXXjRpQ+fXBWV+PdurXDuAr7\ngIHR9lNNDc6hp/4eNgzF7Y7+Wr9fr1wkQi4QG6OAuafERmhuUkFskoHNZtMd2QOBgF7xSUR8RDst\nHvFxu916K0RoQCz9R/eQi+uzMaldHOPuJLXn4r5lAxbhSTEStbSsky3NkGTU4XXIH7yNFCdHC6L6\nHLVsYFICZiMU1Y9j9BiCH+zG1XoCpXYqkVYvNB6laNRo7B4XsvckkhqG1s4rSJokIQe82KqHE94e\nzaHSQu0TtgFobaLUBqUzp0DDETSbHVW2oakykYiKGooQ9gUJ+/yEm1uxT5lEJBjBX3/o1DSUIDWn\niE1xcdL7nSvEJt6fUCgU00rqCrERbSMxQZWt76YgJ+Ji1tzcjMPhwOl06sRH0zTd5qIj4mPUgIih\niVAo1CFxtZA/UBQlhtyajQyt60tysAhPimH58GQRsoJ62hTk3RuQvPEDNAm0ohUVI/lbu/TWihbC\nedpwQiGJYldRdNT6aBESXmhJThukw1GEBMjlfdoe83bs6qwUu4nsb0QCREFb//LKQDFQfOqR4j44\nfvzTpDfHSGwEORB+MZkiNkCHFRtA3w6RUh0MBvVtymVi0xnExcxMfIzbbSQ+ohplJj5CAyJJEn6/\nn9bWVp0MpbrqY1UMeobufn6pSGqH3nsDbhGeFKMQRMv5MqUVF4oNdcRU5F3ro9oZEyRALSpB6SLh\nAZBRiYyYhKN+G7JdQrPZIdx5lEQ72KMj2rLLMNHU2gSKDSJxyLLLjex0kmwjTh4yMu7jyVRszFlP\n2SQ24oJuHA0Ph8M6uZEkiXA4jKZpBTHOayY+LS0tumeLIDnG6bCOiI8sy3g8HoLBoD71Y+V1FQ66\nmtRuEdQoLMKTYogStYXMIC45szlQR05Dfv//4mZpSUEvaukA5A70PokQsTkIVIyk6OAOIpVD4UDn\nTsztcIrwSGhIAwahHT3VYvOUQWN73Y/cdwCSPXmhojRkVMy4dFdaUULDk4px51QSG2PFRgiJxTaL\n6Scx0ZKqUd5sQRAfVVXbER/xeRmJj/FzMSKdeV2ZQiYv1PlICowO3VZSe+ewCE+K0ZGGJ2+rJvkI\nexHqyDORd/0fUhx9jKZF0BQbUryKSoeQCNhd2PpWIx/fj1Y+EOnkkS5uW1RXIQV92KqHETpFeKQi\nN1o8wlPWB0VO/tzx9a9CPmVqlwutKCNhgY6JjSAzwqQvmVaUGNc2j33ny0U9EUT7wul06sRHVLLM\nxCcQCOiiazOMsQbGcWcrryt7EDcfqUSipPaiLnhjFToswpNiFEJLq2DgdKOOmBZtb0Vij4kUCaOW\nDuiygFk7FVra6ulPibcRyRZEazrepckvFDsQQgr5UUpK26bVbfEFprK7GFkKg6MIgv6O37t8AMUV\ng3OG2EC0AhMKhTokNvHEuF1FbyA+wWBQJz6i1WUmPmI03wzjuLOo+Pj9fov4FBjMSe2tra364/lY\nxUolLMKTYlii5RyDqyTa3tq1vj0p8beiFXnian0SQlznJQnvgBqK67eiVdbAwfjRE3Fhs0E4SnMk\nu/1UdINmePNYqDYbaGEoKYfjhzt8a3noqB4vaJqmEYlEOiU2omJkJDbhcFhvpwFpITadoZCJjyAn\nxoqP8N4RpEdomoLBYNxWFyTO60rW4M6qVuc+jEaGra2thEIhGhsbKSoqwtUFf61CgkV4UgyL8OQg\n3GXR6a0P3o4JEZUkUJ3FKF0hPAZEZBvBgSOwH96N5ilHakkuZgK5ra+uAtLgoWj1HxHx+4hHBWwO\nGwRALilFTYLwJIt4FRvzRdMoZBYkpiNiY2yhZTv2oFCIj5HMGP+GtmMhPnfR7hKvMba64h0Pkddl\nNrhLJq8rE59hJolVpvVCmYIwvRQVPr/fTzgcpl+/fhnbhlyBRXhSjM6MB/MBBak3KukX9enZ8w6S\nYd+koA+1bAByY3ICZvPn4nd6sJVXINmcaC2NSAmqNEaomqaPlktqBNugakL1HyEniL6QtWhlSnK5\nO35jSUKKM6GVrHhYCCDFyLeYBDKKno2TQenWBqUK+UJ84tkDxHN9NlbKxHc1GAwSCASIRCK6j48g\nqckSH3NeV64ElebSMUolMrlfgsyJyl6hfqadwSI8KYZlPJjDKBuINmwy7H0X49HQIhE0xd5O5xMf\n7QlDS0kFJd5GtIqhSB93EmQKyDabHjMhB31I7qLof1uao9UfY+tNkuCU6Fp2OjoeTR9QhWp3op0S\nApvPOfPouSBAYtpHXFwFsTEa/Lnd7pz2skkGuUJ8jJ+7OYS0O67P8aaxRDtDvI+R+IiprkRBpcXF\nxRQVFVkTPwWMbJPYbMEiPCmG1dLKbWh9BkEkjLR/i/6YpIZRS/snJ2COV/mSZbwDhuM+uDMpU0Pj\ntUsKB6LBoDZ7VNfjKYOmNqdoqayv3oaTbZ1ccKpH6NUAYwCleSrKTGyMeVFGbU50dzUCgYCeUB7P\n4yPfkCniY/zcjaQm3qh9KswRzdNYgviIik+ioNKOiE+ivC4LFvIRFuFJMawprcyjq+03rf8Q1EgI\n+eDOtgf9rWiuUiRfU8LXJU6ogojNSXhADTbFCQd2dfCTtCsSaY4ilGEjiXywHcnlRjMSnj5tfXa5\nk9F0W80YpFMXNeO4dzLEJhFEpcDhcMT1hMlnpJL4JGpFQeaF20biI7Q5gG7M2JWE9o7yugoJYg0p\nVM+f3j6dJVBYZ20OwKrwZBbd/RJrFadFSc/HH556nyhpUXyQ8B2Vjr8uvqISPK5GGFCNdPRAB788\nljppkoIyYCCRD7ajybG/Q/aUtv1b0qDIDf72Wh9NseEtG4Di93eL2HSGeJ4wYsS5NxEfcysqEanM\nBX2T0GwYg0pFQrt4vCsJ7SLSwO/36yQq3Xld6fCrsdB7YRGeFCORaDmfhMD5tK3JIGGkQmkVroAf\nx8mDAMjhAGrpQJSmBEaCcicLuyTRWl6FJ+BDszvjGh4CsRodgEgY2S7r7xHzK91uoO19NE8ZUhzC\nIw8eTmnffmm/uCYiPoXg42IkPsKjRhAAI7ExVmxSSSrThXjER5C6rhIfEVEhScqfKZkAACAASURB\nVJLu8ZKuvC4LFlINi/CkGFaFJ3voVrp38STUfRJyQ330TdQQms2OFG5PWrVOKjwAmizjHzAMRySC\nVB/fm8fsByQHfRAOgNsDodhsLk1RMCqVlZJS1GPttUZKzeiMXmyMxMfv98ckfefTRS/RyLfQQoms\nLrvdTnFxcacC4lyGOYbAWPFxOBxxiU+ihHahQSouLrbyurqBbLS0rEqZRXhSDnEXZSF9MBIboVVp\nbW3tdrq3NnQiWiSM1PgxkhpBLUkgYE5SrBmyOVHKBkBrM3K82Amz63M4gGpzIg89DfXAvpjnbDY5\nlvC4iuNqiZSho5PatlRDaDyMSd/5PPJtt9v11pQ5q6u1tTUn9607EDocc8XHSHySTWjP97wusDQu\nvQUW4UkxCq0dlE0km+5tLLN3a9GSJNSaycgfbkRqPg7+FlR3KbI3VsCsSslPp/g9/Sju520XO6FJ\nMrLWnrJIRR4c/W34d74Xndo6JXhtF4nhjNNWc7qQKockvW3pgDHpO9dHvoVIN5mRb8idcfZ0QBAf\n476JSp0ggfES2s1IlNflcrkK4nOyUBiwCI+FrKNbrSjD3be4S+8RZIXwsFqUD99G9jai2pxImATM\nchfGcSUJb58qXD4vysG2RHXJGT/IT5UkZEmNjr17yqH5BNgd0bF14ybY2u+nPGQkkpQb5WpBDoyV\ng6KiopS3OTI98g2FTXyM+yYqdUZRujmhPRKJ7whlnhAzVny60+4s1MpLpm+KzZ9jIX6mycAiPGlA\nvJPJqvz0jNikEmJcWPz+tt8hERlWi2PPRmR/C2rZQJTGtpaU1kX/EU1RiFQOQ2lugOZTo+Z2Z/yf\nDYeQgj6kvgPA7kRrPoHcv6Ldz0ly++qQMiw77ayOYGyZGMlBd4hPLo18Q+ETH3OLUhBG83HoKK/L\nrBfqTl5XocP6DDIPi/BYSIju3l1lkth0RCTFRVG0OMy/wxiCqS/YdjuR06bC7g1IIT+q4kCORIXE\nWtykq44RsLtQqkehbN8AaOCIT3iUkA8AuWoo4WPHkAC5rE+7n5MhKm72tuV/yVnS7yQDm83WjhwI\nP5h8HvmGwiM+RkJjJJXBYPT8l2U5pt0ljlc687oyhUKtJAn09pttAYvwWGiHZL/4uVKxgba8KLFI\nGxGX2EDcqoEuYK05A+eet9FKXXBKwCzZuuc34i3pj6dqJFL9LrA5iGdhKIWDaA4XdoeNyPFT1SCX\nm3hRFnJJH1RBeDxlyP3aV4JyCSK8ULS6fL4ouRP+Lfk88g35R3wSaZygfcVMfP4iliIQCKCqqk56\njK2uruR1+Xy+nMrr6g3IxXMx07AIj4VOkSvExlixMf5bhCcap2uSJjYdZRadfjZsfxOtuByp9WTX\nNDxGSBK+QafhajiMpNhBS+DP43Qj+5qR1AgaIBcVgepr/3aeEvg4+u9sTWclA/NklDHSQpIkgsGg\nrvkQF718XpRzjfjEG7nvrvO20YYgGAzS0tKif2/EeyUbVKooSrug0t6W11XoFaVchUV4MohcLysa\nL1AAPp9PJxTZJjZGCEIj/lYURU+KttlsMfvRnTBGHUUeOP0stA//C62NaN0lPEBEsRM+bRL25qN6\ncGg7yDJSOIjsLiYCKHab0XOw7cdcLn1SXc4B/U53R75FOGkgECAcDuutrnxHpomPOQQ20edvTlnv\nDmRZ1gXIwniwJ8Sns7wuixikBrl+7ckU8n91yUHkumg5mYoNoF+gcoXYGF9nXtjFNoZCoRhvkB5v\nt7sMaiZFp6d6MAmlSRKtZZWUyBLysb3xf0h4nvTtS2SPjKQlyEY3kIJMCpbjjXwnmoxKNuXbOMrs\n9XpRFEUPu8x3pIP4xKuYdffz7wkkSdKJjzAeVBRFr9J0hfjEy+uy2+0UFcWfaEwHegOxKvT9Swb5\nv6pYSIietKJEyToVX5LuEBtJkvQF3Zjw3dnIsaga+P1+IpFIavQBnr5oQ8ejnfg45mENCRQbkmJD\nkpXo34qCJNlAUZDkU/+Xo9t7pFlhb3AYI6vKKTm+G8nfEvt7Tv1fcbvAUxp1X44DyXbqmPQZCMWl\ncX+mp4hXsREXVmMrRPy7J+eJkfgEg0Gd+BRKi6M7xKc7OptswHhzYSQ+grSaiY/43sY7rua8rubm\nZoCCIL9m9AaClYsovDOpFyIdGhtRkerKl9JMbOJ5P3RGbHrqpWK8eKY03btsIDaHG0kDSbEh6+Qm\n+c/HUyTxfyc87JXqqO4zmrHaNjzHduleO1IkhOZwIYW8yP0GtougEFBkDZDQqkfQ0tLS7XFvIGEr\nBNourMZzJ53i0ngXT2O7JN8Rj/iYIx16orPJJozHTlTrRPtLbL/YR2NCeyITQ0F8Ghsb8fv9hEIh\nK6+rBzB3F3rrZ2gRnjxCLoqHxTalitikomIgfp+wtxfEp6ftBNnl6cZgehtKijQUWSOiSuxr9LCP\naVT3HccEbRPFx3dHCY7TjRT0oQysJK6AB5AloLgE54hxaKf0Dx2Ne0PyI9+5cGE1XjyNOpF8nuYx\n62zE5ysmn8T3NhU6m2zC3Kb0+Xz68RTeTPGIj7ltLd5LlmWczqiVgwgqTZeRZaEjH8+nVMMiPBmC\nGO1MBvlEbMTIcTLEJtWtkGQgyuQOhyOGGGQj4FCSoLRI44S3zejwQIuHA3yKqj4TmBzZSJHqjTo8\nl/VBbfoYOc5YOoBc1jfqsGwY9/b7/QA6qTNXDIwVG2PFLFcXQqNOJKXVujSjqzobVVXx+/0Eg0Gd\nGOTqMUkWZuIjzk1ByruS0G4kg8FgMG15XZn8zHsDwcpFWIQnTUimHZTLxAYgFArFTNWYiY1YyBMR\nm0y633YGY+SBID6iRJ5JlLlVTnjbfxb1vjLq+RxVrgYGDQ/gkZuwVY5CUiPIkRC2QDO25uMozceQ\n0VCGnoZqc6CGQjFW/+LiKUlSQVQMILZaJ0aic4H4pEpnEy/WIZd9fLoCI/ExJ7Tb7fYuJ7THCyrN\n17yuTBOsfPt80gGL8KQBiqLoI9IQS2yEcVeuEBujVsdYsVEUBb/fj6pGTcbMWg/Ijq1/T2E2wDPq\nDDKBcnfHVb6jzUXU+/oCgxjo9lFd0kSp3UcABZxlSBWjUdRItP11SidhHvmGqDtuIBBA07SCsfIX\nx8rYpswE8Umln01HiBfrUEjERxAcc0K7kfgYE9qFxUS890plXpeF3oNeSXheeuklbrvtNiKRCDfe\neCOLFy9OyfseO3aMbdu24ff7ueOOO9i5cyc333wz5513nv4lFF/8TBKbeII1Y8VGbINxMRcVA03T\nYioGQkeR68SmIxgXX6M4NhMakTJXx6Xs5mYfzj5uAI54XRzxugCoKm1hYpUfmy3WyyYRjBqYXKmI\npApGEzyxfyLyoCffp0z62XSE3kJ8hHhbVHyMrVhVVfF6vTEp7fEqPqnK68pki8lqZ2UPvY7wRCIR\nbr31Vl555RWqqqqYNm0ac+fOZezYsd16vx07drBgwQKd6IwfP57jx48zZMgQLrzwQqZOnapXFMLh\nMA6HI2X7kiyxMS/OZmIj7qxEtcZcbQIIBAJ6pk4m/THSCbM4NlUXzo5Q5lKJxkXEf/+WJj9FfbTo\nyLtxW5Ui3O6uVaHiCbfTvX+ZhJH4iDHmZPcvV/xsOkIhEx9AFyQbW13QFgUjqmZGJ/V4xAfi53WJ\nik+yJD/zmj6rpZVp9DrCs2HDBkaOHElNTQ0AX/ziF1mzZk23CU9lZSV3330348ePZ/DgwUiSxCWX\nXML1119P37599Z/rycmWDmJjbIUkU20SF05xYSmkhddIDFK5f4k0Hi67HV8o0VdPwqFoBCKxv1fp\nQWEmHjEopOMnjOviEQMgL/xsOkK+E59ktE7iJioYDKKqqm5FEW8tM050mmHldVnoCL2O8NTX1zNk\nyBD9/9XV1axfv77b71deXs7MmTNjHhMl1q6iJ8TGbNCXjnFj44XF5/MRDAb1iadCgHH/xNRMR6Pe\nAl0d+e5bDPUn479XJKwhEQHTAHxPCE+i/cvmxFqqIb4rQjdnrBgYiU0ujN13F7lOfBJlp4mWYDLH\nwOFwxOyfMZ1dTLQlE1Rq5XV1jFw4X7KBXkd4MnGgbTabPnGQCIKUxCM2QIyYWQiLxYJinIrKho+K\neeJJEINCWUjE/olxWlEBUhSlHakxL+jJjHyXubWEhEeNqGjhMEixJNImp67vH29iLRlilwtIVmfj\ncrn0VoioGBQCsYPcID6dtQTjZacli3j753A4YrRTXSE+5ryueMQnky2fbLSXrJZWFL2O8FRVVbF/\n/379//v376e6ujqlv8NY4RHERiwKIiFaIJeJTUeIJ/wtFGGscTRfHMvW1lYgVl/QXfFqWQeTWqqq\nEQ6GwRn7eCoqPGYYJ9aMxC5XrPxTobNxOBwxxK4nrtS5hkwQH+OEWrzqZTpbgmL/xHSrWXzfFeIj\nqpsitsKY15Ur57uF9KPXHempU6eya9cu9u7dy+DBg1m9ejXPPPNMSn9HfX09O3bsYPDgwfpjYkEO\nhUL63UUiYpNPJXgh/DVGOeRSmb0jdHUqJxwO6+6w4rHuoNzVMeEJ+kIoGSA8EEtcjQGemazYpTs3\nSug68rGilQxSQXw6+y5k07Ay3lRePOIjiFEyxEdUfJqbmxNGXFgoPPQ6wmOz2Xj44Ye54IILiEQi\n3HDDDd0WLCfCrbfeys9//nPefPNNbrnlFg4cOMC2bdu48MILcblc+Hw+gHYLST4bxJkdjZPVv2QC\nXUn57uiiKp7v6cSTywFOm0Yg3P51qqrh8wbxlJt+t5LeUVajt0m6cqwy5WeTCOaKFpAz52gqkCzx\nSaYdle0JtXgwEh9hQGk8R7tCfCSpLa8rEAjoa3IoFCqY80FASCYKaZ+6C6kTTwDLMKAL2L9/P6+9\n9hpbt25l69atbNiwgYaGBkaMGMH48eNZunQpQ4cORZIkvVpQSGPCRhj1Ly6XK2N3UMbF3LioC7G3\n8cLakxK8uKiEw+FuCX9ff9/Bkeb2n8lH7+2hyClTMXpYzONTaoIM6xc/TDQd0DRNtyLoaqsy2cqZ\nOBbZuKgKgzuzRquQvodi3DscDuvfv3gWFD39LmQLQiIQDAbbkXOjc72x9ZYIPp+PUCikn6PpFPNH\nIhGam5spLy/v/IdTAE3TOHHiRMzUcD5U4HuAhDvW6yo86cR///tf/vrXvzJ+/Hiuv/56HnjgASor\nK/nhD3/I+vXr9VIstFULRFm1UKZlBNJt7JeoDZLITyjVuiJxN93dNkmZW41LeNSISktTiArT46kU\nLSeDZD188sHPJh7MrTwRcpmPmo7OCKYxvsE49ZTvEMREtLpaW1tj2rHGik8yCe2KolBSUhKT1+Vy\nuQpqXe7tsCo8GcLu3btZuHAhlZWVfPe7341h28IlNNPVkExBuDWHQqEuV7Q6E02aqzbZ0DqZqwXJ\nHMN9xxXe3tvehPKDdz6g6aSXus9NjHn8kyMDVJYlFz6bDggrAuF6C202CqmsnGULmqbpVUlFUfQQ\nz1xDPGJjJphGwm88DsaqZL7o7LoCMZUn2lnGY2is+AjiI6q+AH6/n0gkQnFxsf5egghrmpbSvK5M\nV3hUVaWxsZE+ffrojxXasTfBqvBkGyNHjmTNmjX89a9/5fLLL+fqq6/m+uuv1/vMHo+HUChUUNNO\nAoIEGCtaIrhTfOni6Tu6M/KdDcSbWOusopVoUktVVbytIWRJQ9Xa9i9domUzOtPZGKsF4qJZCOep\nWcOUDfG2EcnqnbpSwcyFcfZ0QgxQiJBZ76msOXEMjeeumJZNVL0xng+pzuvKhRHxbP/+bMEiPBnG\nnDlzOP/88/nJT37C7NmzWbp0KZ/4xCdivmB+vz+vpp2ShVhwxZ0TRKsDYnHPZF5ROmBccI3TJPFy\nfUqKtHakBkBTo0VVuxzrtqykuKXV09wooQ9pbW0tqFFv80UzHeJtI+IJ6rtyHLqD3kR8jO1KUfGJ\nl9AuqpXx3kvkdYkKYHfzuixkH1ZLK4uor69n0aJFSJLE97//fQYNGqQ/J1oIopyai+X1jtDRQi7K\n7xC9cIpqSKG18sS0SCgUintB+dd2Jye9sXfm2/+zkxPHWvncvIn41TbzwfPH+SntJHi0o+3oTGeT\nqA3SGUQrT6SyF+KEi2iT9JT49KQdlU70hlZXKBQiEAjoN5ZC32N0p7fb7bhcrk4rZqLiIwYWulqN\nF75eZWVlqdi9ThGvheZ0Ojt4Rd7DamnlIqqqqnj66adZt24d8+fPZ86cOSxYsEBv24gRWq/Xm7E0\n766ipyPfYhqotbW14CbWzKP65iiHMpfajvCoqoaqgRoOg9xGeJJpaaXbzyYect28sKcwV+2SaVem\nox2VThRqxce8NsmyrN9IAnqby1idFIaxRuJphggqFe/V1bwuKy09e7AqPDmCcDjMr371K55++mnu\nuusuzj//fP0544hwNklBvJHvVAlXVVXF7/d3e8w7H2D2f/mowcmm/bHC5S2vb6fhmJfpM0eBu1R/\nfM4kH85T/KejC6q5SpBJvZNZ+FuoVTvjKLTD4YgrrM+V8fvuIB8rPh2R/XjrkthHTdNiWrJi0tP4\n2kTERyASacveczgcepUoEUSbrbS0NOHPpBLmCo+ochUwEp6sFuHJMRw7dox77rmHo0ePsmzZMmpO\npbpDdLH1+XyoqprW9kGyYZjG0nuqtiOeKVwhwUgKmgJONuyLndTYtG4bx4/5OHv6UNwDBuiPXzD2\nBBK552cTD+Y2UC5WJruKeBfUSCTqiyRJkq4NMZLMfEcuEp9kHKHN05sdvZcgK2JNNd5oifcG9Cp1\nR+8nbtoCgUCHQaWZJjzmFlpvJjyFdTUpAPTv359HH32UjRs3cuutt3L22Wdz++2343a7kWU5JtTS\nOIHQHSQ78p3JeAvRIhExB4VywRQwitNlW5DoPYVRDKwSDIY5ecKHW+c7GhJaTvrZxEMi8XY+TB52\nNfFbkLtQKKT7PuXysekK4rW6Mllh7kzz1FNHaEFURexIIBDA7/fHTB8KrY/4DJKJregsr8tqaWUP\nFuHJUUyZMoVXXnmF3/3ud8yZM4dvfetbzJs3L+4IdKJJIIGujHznQqXASAp6GuOQazBWChRJxWVX\n8YXaCGskohIKaTSeDCKS2BQZ3G5Xdja4B0jWvDBbMBMbs6he6Gw6ExGLuANhuZBL+5gKpJv4dEQy\nM6V5EhU6QXxE0GxPiY/4vGw2W8zwSSbPDYtgtcFqaeUBmpqa+N73vsfWrVtZtmxZTPaXUfsiJkji\ntaSMLRDj3/mwKOejvidZnc3GfcUcbmoTJ//nxXc5WO9jwCAP0+dEzQcdNo2LJvuztSspg/lczVSL\nJFkxdyraUbnYBko1jPvYHSPRzqo2ubA+dbSP5kp4Z60uocEU2jZBrEpKSjKyL+YWWm9uaVmEJ4+w\nfft2Fi5cyIgRI7juuuvYu3cv27Zt4ytf+QoOhyNGaGfUE+QLsekMxhHoXBnV72lu1PaDNrYfMhKe\nTXzwYTN2h8KVX/0EAG6HyqyJgYzvW7ogdBORSCSlBDbZdlQmxNzGfeyNxKezSbV8ceY276PRaNOc\n15Us8RFTYsXFxRm5ebMITxuyf8Ww0Ck2b97Mv/71L7Zu3cqJEyd47LHHeOqppxg3bhyTJ08mHA5T\nVlaGLMs6KRC5ObmumegKjCPQ2XDCTUdulNlxWVPB71dpaVV1Y0JZKqz7DqPlQndyyCC5xO9k2lHp\ngthHQXzMlgSFANHqMh5HIxnIdyNRaNtH4all1qOJVpd4viPiI1q8gE58MpHXZbW02mARnjzAu+++\ny65duzjjjDO49tprGT9+PG63mx/+8Ie89tpr1NfXU1ERjZssdLfm7miYuopkgklT5WdTbjITjKga\n4QjYbBJ2WSUQUZBRaW1tLbgx72Q8fDoT1qfDWyiViEfu8tWZurOqjd1u158TU0r5to+JIDy1RFBp\nT4mPOC9E9UW4N6drrS6U49BTWC2tPMfevXu54447KC0tZcmSJQwwjDLnu1tzMuiJLiRX/Gyef7eI\n0KkYiXXP/Zft7zdT4lG48dZp+FQH/TwRzhrWRDAYzJtpp65C+NuIKoHxApLI4ykfF/F8caZOJOg2\nt2njHYueaHzyBUYXdbMDt7HVJaq+xhsV8TqPxwPEWlWI8fhUfmbieyU0Q2KasIBhtbQKFTU1Nfzp\nT3/i5Zdf5qqrruLyyy/nxhtv1L9k5hZQZ6ZY+QYxESHIXTAY1FsHAj3NjUo3ylwqx1qiC2LkVJZW\nkVMhEgqD4sAmk9PTTl1FR+0om82mp8+bJ1sKAcaqlhCyZpP4JKqgQZugO5FLeiJke5w9EzBWfOJl\nrhkJezAYjCE+5vBQoakR2V8ir0u8f08/M6ul1YbCWUl6OWbOnMm5557LQw89xIUXXsh9993HZz7z\nmZgWUCFcLBPBXCIWPkWC6PREZ5NulLs1jrVE/x2JRBcnp0Mm6A9BcVushDmqorm5Oad1IT1pRwmB\np9frLbiqlvE7aWzniXDLdJmJdhRSarSmSFUFrbcQH1GREdEjRm1hPOIj2uPxIIJK4yW09+T8L5TP\nu6ewWloFiMOHD3PXXXfh9XpZtmwZVVVV+nPCrTkSieh3z/n4ZehMZwPR0no+BJN+dFxh497o1MRL\nq95m7z4vpw1z8alzaiiuGMDQvmGmDg+1e525PZKtMnUy7rfdbUcZWweFdrEUMIdb9tRh3Ew0E43h\nZ1rQ3RtaXUaXcSOZj0QiMUGl4gZNkqROYyt8Pp8eQNwdE1ZzC81qaVkoKFRWVvLb3/6WN998kxtu\nuIHzzjuPb37zm/pdgiip+3y+Hrs1pxvJ6mziuUGLi2Vra2tOi7fLXG2TWuqplpbNJtPU6Ke4InFw\nqFn0K9p56TyWySR+p7KCZmwdiKpWLh/L7sBotCkcxhVF0Ss+iZBszEImndI7QqFXfMRaJSp4QkoA\nbdEUxvM2FIrexAhxczwioygKHo9Hn/ZrbGxMKq/LvF2F8PmmAoVRI04BTp48yeWXX87YsWMZN24c\n69evp6GhgRkzZjB69GhmzpzJyZMn9Z9fsWIFo0aNYsyYMbz88stZ3PLE+OQnP8mrr77KoEGDuPDC\nC3nxxRf154Slus1mo7W1VRc3ZwtisRA9bK/XS3NzM01NTXi9Xn1xcDgcFBcXU1paSklJCW63W596\nMV9gxcVSkIKWlhZCoVDO9bRLizSkU6PnoqVlUyQaGvyn/p14e8XiajyWXq9Xv6PvLsSFNBgM4vf7\naW1tpampiaamJt1fRpDlkpISSktLKS4u1ltuqZ6YElotcSybm5sJBoM5dyx7AkF8SkpKsNvteL1e\nWltbdYIfDocJBoP4fD5aWlpoamqipaVF/xxsNhtutzup70Y2IYhPcXExqqrS3NysVyrzBaqq6jos\n81oVDof1Sp3H49FH0Y06NaNlgjiu4XA44fdWVIREHlZjY6N+blhIHlZL6xTmz5/PZz/7Wb7yla/o\nYWvLli2jf//+3Hnnnfzwhz/kxIkTrFy5km3btnH11Vfz1ltvUV9fz/nnn8/777+f0xqDEydO8N3v\nfpePPvqIZcuWMXLkSP25TDsZJ+Nnk46SuyBTkiThcrlyqqr1z21OGn0ya55cz6GPA0wY4yGEjXPn\nTmLMoBDjBoeTeh+hfRETXZ2NBnem7ejMODFbMLbz8nXMOx7MVZtQKNRhOyqX15xkkcutrmQMFJNx\n6Ta3LY16LdGKNxrHivdMBGNQqd1u73A9EzcoxcXFQO9uaVmEhyhbrqur48MPP4x5fMyYMaxbt46K\nigoOHz7MOeecw44dO1ixYgWyLLN48WIAZs2axdKlSzn77LOzsfldwubNm1m4cCG1tbUsWrRI7+tC\n6pPKk/GzybTbaq4meb+9186+4zb+/Pj/cfRYkIljS9hXH+Cqm89mfFWI0yuTIzwC8cb1gU7bUdnQ\ndvQE+TLmHQ/JxiwYqwDmEehCQraJj/F4GI9JMqP4Xfkd8dZZc2wFJE98xLRfoqlGn8+HqqoW4cHS\n8ACwZ88eBgwYwPXXX8+mTZuYMmUKP/3pT/n44491Q7+Kigo+/vhjAA4ePBhDbqqrq6mvr8/KtncV\nkyZN4uWXX2bVqlVcfPHFLFiwgC984Qt6qbU7SeU90dlkGuLuSkw65crUWrlLZR+gRtruMRqbgiiy\nhk3u2n2HqBKIhU8siBBbJUhnGGOmkIx5YbYRL/LCWCUQx0S0OeKdh4LoCE1aLpH1VCFTGp/Ojkc6\nzSzNE3rGhHbj99G4bUL/E+9Yi7a9OajUPMRgHoPvrcidVSGLCIfDvPPOOzz88MNMmzaN2267jZUr\nV8b8TGcX6Xw6iSRJ4qqrruLiiy9m2bJlzJs3j2XLljFx4sQYAaXZrRni35Xmip9NVyDaWrky4l3m\njpKasCA8pyqvNklNKFpOth3lcrnQNE0nBA6HI6cIQU9hvIgYRb/ZEOMnE3nR3e+HIHMOh4NgMNjO\n7bdQkErik0wVLRvrVTziY3ThNhOfZGMrjKRYkKF80kalG4Wz6vUA1dXVVFdXM23aNAAuv/xyVqxY\nQWVlJYcPH6ayspJDhw4xcOBAAKqqqti/f7/++gMHDsSMfucLPB4PK1asYNeuXSxcuJDBgwdz7733\n0rdvX44cOUJTUxPV1dUxFYJc9rPpDozmjEbjwkwTAjGpJaa0Iqe0i5IWwSYnl/jdmUGceQool6fz\nugMjWTeawaWjEpKstiNdAm6zEWVvJz5m7ZM4LuaJtVyragriI6a6jBUfIxHrDvER3wFN07Db7da0\nFtaUFhAd4x4yZAjvv/8+AK+88grjx4/n4osv5sknnwTgySef5JJLLgFg7ty5rFq1imAwyJ49e9i1\naxdnnnlm1ra/J2hubub48ePMnTuXgwcPMnnyZIYOHUpdXR2/+c1vAHA6nfoiIyoG6ZrGyRbE1JrD\n4cDr9aZk0qkrcNjA5VAJh0WlJ9rHD/kDBANempqa8Pl8hMNhZFnG6XTiM8kDDQAAIABJREFU8Xgo\nKSnB4/Hox6MjDYtxCsg4nZfJ/cwERNuypKQEWZZpaWnp0X52NJFjnB70eDyUlpbqxyOdRoLQ1s4Q\nOryWlpa8m3ZKBuapLvHZiwDOlpYWmpubYybW7HZ73Im1zhLNswnRnhWBrM3NzQQCAV0aICpCQrcT\nDAYTntPiO1BWVqZXPpuamvT3662wKjyn8POf/5wvfelLBINBRowYwRNPPEEkEuGKK67gscceo6am\nhj/84Q8AjBs3jiuuuIJx48Zhs9l45JFH8vKi39TUxKBBgxgzZgwTJ05k+vTp3HjjjWzcuJF//vOf\nfP7zn8flcuk/bwzOywXdS6phrBBkYj/N7Q+PQ9bH0oPB6EIWDIRxu4ooLU2d74xYDDO1n9mCsQWU\nzH4m4wzd1ZiFTCCeV1GhHM94VTSITlyGQiHdr6gzcW8+wWazYbPZ4la2zDlzyQaVip8ReV3l5eVZ\n2LPsw5rS6uWIRCJx2xr79+9n0aJF2O12vve971FZWak/l+kx9mwhVfuZTDtKURTeP1LEojs3EIlo\nVA8u4sBBP9dcN4aLPltKX0/6voo9CWDNJ4gLiHCtVRSlw5iFnk7kZAvGaad8OZ7JZHqZJwizPdWV\nKZj3U7S6IDaoNBHxMcZdGJPtCxjWlJaF+Eik4RgyZAirVq3i1Vdf5dprr9UnukQPXJRdhe4l13xt\nUgHjfhqdjBPpe+JNf8TTESSaVutTjKHCE13smxoDpPtj7Wg/8/0CEu9CCtHJNUBf/PNdi2aEUfsi\nvFpyifh0lMQuCE0ymV6F7twsYN5Ps2YrXsVH/DEj38h7qmERHgsd4txzz2XdunU88sgjzJo1i3vu\nuYfzzjsPaNO9CHFcIQonoa23brb9h/a+NsYSstFNNZlFprSorR/vD0T/3dDgTzillWrkw4h3InQn\nZkEQAhHqWGjnrRDkG4lPJiuyyQi7U9Ei7G3ERxCbjoiPMaHdQhuslpaFpHH06FHuvvtujh8/zvLl\nyxk2bJj+nDHksZDaXPGCGEWpXXgXmQ3JeoJLr3+HVm8Euw1CYRg9uowH7htNUYYr0MIZVhia5ZLn\nS0ctwq4aKBqN4PKJ4HUHQnitqmrK3amTGf/OlFt3b2l1Gddc882mOAbhcFhvbYrnxZpVwLCcli2k\nDm+//TaLFi3ik5/8JLfffnuMsDkSiei5XPFcP3MVXU38FhEOqdYx3b5kO1t2tADRPC2XW2HVr+uw\nZ2l9MkdVZLKCl+yocSpiFowErxBH9o3oSSxHR8fE/B3JtrC7txCfSCSaeSeqOsa4CrNLtBiB760a\nHovwpBE1NTWUlpbqJ9qGDRtoaGjgyiuv5KOPPtInv4RifsWKFTz++OMoisJDDz3EzJkzs7wHiaGq\nKk8++SS/+tWvuO2225g7d66+mORydQCSS/xOtkKQaoL3i8c/Ys3fjwDgKVZoaY3w0jNTkeXsLtTG\nu8l06EGSjVlId+yFOXqkUGMcRGVLjCnH02zFq6Rl45j0FIVEfBJVnMUxEcfspZdeYsyYMUyePBlV\nVdmzZw+bNm3ivffeA2D58uUFeV6fgkV4soHhw4ezceNG+vbtqz925513FkwgKURzyJYuXcr27dtZ\nvnw5Y8aM0Z8zVgeyIZpMZszYuGB397M2tkWEKVx3F5MX/3WUB3+9F4D+fe00NoX56++nduu90gGh\nB4lEIt2qbHUk7I5HNrN1/mezspVJGG9OjBfNdFXSsol8Iz6dibvNx0SQ9R07dvC///u//PGPf8Tp\ndNKnTx8mTJhAbW2t/mfAgAE5ve89hDWllS2YCeXatWtZt24dEE1oP+ecc1i5ciVr1qzhqquuwm63\nU1NTw8iRI9mwYUPOB5KWlZXx4IMPsm3bNhYuXMjo0aO5++67KS0t1TURIqZCTP+kupyabDsqmcmP\n7sBoE28UcHeWVB4PI2rc+r+LnAoBZ26ZAhqdqYUQNlFlK1EYY7Zt/ZNBVz188gXxKgRG87pQKBTz\nvc3nfTUjV8XN8dqEnYm7NU3jxIkTvPfee2zevJnNmzezd+9eHA4HY8eOpba2liuvvJK33nqLn/70\npzQ0NHDeeecxZcqUrO1nLsAiPGmEJEmcf/75KIrCTTfdxFe/+tWCDCSFqBnj3/72N/785z8zb948\nbrjhBq6++mqdcIgpJyPx6U4VJJl2VLYiL8yGfs3NzV2ubNUMcaEoEpGIht0u4XTm5t20caLL6/XG\nTIRkMmYh3Yhn6pdLI94dIZnxb9GyEzcBouIjqluFKOLOJvHprCUV7yZAVVX27dunE5vNmzfT0NBA\neXk5kydPpra2lksvvZQRI0a0W1OnT5/OrbfeylNPPcXx48fTum/5gMI6k3MMb7zxBoMGDeLo0aPM\nmDEjpt0DhRVICtHtvfzyy5k9ezYrV67k4osv5gc/+AF1dXUA7aogybrexhtpNSZM51qZXVwkRTBp\nV3xtHHaZIYOL2Lvfh90mUeTMrT57vHaUOFaBQECvpAndVr6dw4kgvIqyNeLdEVI5/m10Gy/k3DVI\nP/FJpiVlXL9ES2rbtm1s2rSJLVu2sG3bNvx+vx73c84553Dbbbd1qSXldDr56le/2uP9KQRYhCeN\nGDRoEAADBgzg0ksvZcOGDVRUVBR0ICmA2+3m+9//Pnv27OGOO+6gT58+3HffffTv3z+mCuL3+2lq\natJbP+bqTb4lsJshFtSu6ntG1LjZu9+HzZa9Ck+yMQvi+IjjJ1KfxQRQoSFeSy+TJo2J2oTm70pP\nW7fxglgt4hMf3W1JNTY2snnzZr0t9eGHH2Kz2fSW1DXXXMPEiRNxu915s+blOizRcprg9XqJRCKU\nlJTQ2trKzJkzWbJkCa+88gr9+vVj8eLFrFy5kpMnT8aIljds2KCLlnfv3l0QJ/rf//53li5dyty5\ncznjjDPYvn07TU1N3HzzzbqnDbRVgIwX0UKBcfqnMxHsH58/xP/87wEmjPGgafDg98emddviVQd6\nErPQW6Iqkpl06sl7x6sQxBPcZ+K70lum16BjcXMyLSmz35Cqquzfv19vR7333nscO3aMsrIyJk2a\nRF1dHXV1dYwcObJgP9MMwxItZxoff/wxl156KRD1vfjSl77EzJkzmTp1akEHkgpomsYf//hH/Qt+\n+PBhlixZwrBhw5gwYQLTp0+PaXsYJ0UKIdLAjHiBnYnIwIhh7lOvAacjdRWeZPKKUuF8a27/FFJU\nhRFGsXpPzAuTGcnPdoVTnL9CxN3a2pqTlhOpgLkyK1q1QKctqVAoxI4dO/QR8K1btxIIBKiurqa2\ntpbPfOYz3HrrrVRWVhbUdyFfYFV4LKQNN954I1VVVUycOJFJkyYxYsQIjhw5wuLFiwkGg/zgBz9g\n8ODB+s9rmobf70+b10suQZABVVXbkYHGphBf+Oq7TBzrocRjY+kdo7r03snGLBgraen8nI1kthBF\nsAKdmRd2xUgx1yuchTS231lLSkQ2NDY28tRTT3HzzTdTXl5OU1NTTNXmgw8+QFEUxowZQ21tLXV1\ndUycOJHi4uKcPpYFCMuHx0Ju4Y033uDuu+9mxowZ3HrrrTF6j1Sb+eUyRACrJEkxAaxXL3iXQRVO\nBvRzcNc3RiR8fSpjFtKJ3uRkbNQyGS+Y3TW3zGV0FG+Qi+huS6q+vp7169fz9NNP85///IeysjJG\njRrFlClTdHIzatSogl6r8ggW4bGQe4hEIvzP//wPTz75JIsWLWLWrFn6c0If4fP5CrZ0LmDWRxQV\nFbHkR7tpbgkzbIibb3+tpstVm1z9rLqiZcoHGI9LPA0UREmB0L0U6gXRSHwcDofegsv2NnXVuC8c\nDrNz5069JbVlyxb8fj9VVVU6sSktLeU3v/kNL7zwAt/4xjdYvHgxRUVFWd1XCzGwCI+F3EVDQwP3\n3nsvBw4cYNmyZYwY0VbRMJbOc8EkLJ0QLb1gMMgf1jawaVsrp490c/2VAwuuOmC+QObDcU1GAxXv\nuOTjvnYXRsF6Jr1tOpuSMh8XTdNobm7WJ6Tee+89du/ejSzLnH766boj8aRJk/B4PHH3Yffu3Tz2\n2GMsW7Ys6+TOQgwswmMh97Fp0yYWLlzIGWecwaJFiyguLtafU1UVn88XV/OSr+goZuE/bzfz7IvH\nmTq5lOu/WJ3TVZuewDgRkyu+NpCcaV9XJtcgdl97g0YtHfva3ZbUwYMHY/Q2hw8fpqSkhEmTJumV\nm9NPP71gK3C9DBbhsZAf0DSNp59+moceeohbbrmFyy67LGahFDqQnmZWZRpdDcc8eDjAff/f+3zm\nrBIuv2hAQYt9ITbBO9O+Np2Z9pkF3j2FEKxHIt3LI8sn9IT4dLcltWvXrpiWlM/nY/DgwUyePJm6\nujpqa2sZPHhwwX7mFizCU5CIRCJMnTqV6upqnn/++YJJYgdobm7mBz/4Ae+88w7Lli1jwoQJ+nNm\nHUh3MqvShc78U8yLdaLt1jSNr92xhVmfG8DFM/rmbPJ8KmEMYTWLuFP1/vFM+8zVgUxMrkH2SF42\nYCR5ZuLT3ZZUS0tLTEtq165dSJLE6NGj9ZbU5MmTKSkpKdjP1UJcWISnEPGTn/yEjRs30tzczNq1\nawsuiR3g/fffZ+HChQwZMoTvfOc79OnTR3/OqBfIxp1yvHaU2fXWXF7vCu5d+T6fnNaH2ecN6HVa\nJrOIuyvnajJjxrky/m0meYVeyRM5XZFIRCezybSkDh8+HNOSOnToEB6Ph4kTJ7ZrSRXq98JC0rAI\nT6HhwIEDfPnLX+Y73/kOP/nJT3j++ecZM2YM69at0+MrzjnnHHbs2MGKFSuQZZnFixcDMGvWLJYu\nXZrzSewCmqbx/PPPs3z5cq677jquu+66mAuguGAAablgJNP2SIfr7S9/+xGjR3g47zP99MeyTfIy\niWS8XuJNSHXUKszVz6oQx/Y7akkJItPQ0MDbb7/NpZdeiizLRCIR3n//fZ3YvPfee3i9XgYNGqQH\nZdbV1VFVVZUXN2wWsgLLabnQ8O1vf5sf/ehHNDU16Y8VahK7JEnMnTuXmTNn8sADDzB79mzuv/9+\npk2bBrQld4uww560fjpapFOZVZQMaoa4cRXF7oNwMTa6wBaqV5GoeIgQ1ubmZt3ZNtFYfi6GySaD\neNlV+RLhkGyWlCCsxpbUu+++y49//GPuu+8+3G43ffv21VtSl156KUuXLqW0tDRniaqF/ELhrZK9\nAC+88AIDBw6krq6O1157Le7PFFoSO0SrN/feey/z589n0aJFPPbYY3zve9+joqIi5oLh9/s7jG6A\n5MMxexqz0BMMH+bC61fjPmcmeYqi4HK58u5CHw/xJnFUVUWSJMLhMJqmYbfbdY1PPp7LiRAvwiGX\n/IqSmZIyx2BomsbHH3/Mpk2b9MpNfX09xcXFTJw4kW9/+9u0tLTwm9/8hkAgwBVXXBHjyWXBQqpg\nEZ48xJtvvsnatWv529/+pieOX3vttb0iiR1gyJAhrFq1in/9619cc801zJs3j5tuuklv77hcLhwO\nBz6fT0+zFiX0RCPGmaradAXDh0ZT0xPBSPJEPleuibg7Q2fBpYJ4GsfyRXXL7/cXrObFWN0SxzbT\n2q1kpqTMFbVwOMzu3btjWlItLS1UVFToQuLrr7+e6urqdgTu61//On/5y19Yu3atRXgspAWWhifP\nsW7dOh544AGef/557rzzzl6XxB4Oh/nFL37B6tWrueOOO+jfvz/vvfceTqeTuXPn6sZwIpTUePHM\nh/33ByIUOZNraeRySnkyFbWumCkWoualI6Tz2HZ3Ssrr9bJlyxad3OzcuRNN0xg5cqRObmpraykr\nK8uZ89BCr4Cl4SlkiMXkrrvu6hVJ7ACtra28+uqr+uTG8ePHueKKKxg+fDgTJ05k1qxZMfqHYDBI\nMBhEluW8EvomS3YgNqXc5/PpKeV2uz2NW9ge8S6eqdZBJdK8FOrYvjmBXlQuu3ouJ9uSMh4bTdM4\ncuRIzJTUgQMHcLlcTJgwgbq6Or7xjW8wZsyYnCLZFiyYYVV4LOQlDhw4wA033MCkSZOYPHkykyZN\nYsyYMWzatIlFixbxmc98httuuw2Xy6W/Rrg1RyIRXehbqIuzcdw5XSaNnXkOpWt6LdG2+P3+XhHf\nAMl5+HTVuA+iI+LmllRzczMDBw6MmZIaOnRoQRJLCwUBayzdQu+Bqqr89re/5dFHH+Xb3/42F110\nUczFQISS5ptbc3eQqrDOZJyie+I5lCrkclsv1TAG7IqWLZBUu1DTNHw+H1u3btXJzY4dO4hEIowY\nMYLa2lrOOOMMJk+eTHl5ecF+hhYKEhbhsdD7cPLkSZYuXcr777/PsmXLOP300/XnctmtOR0wBlh2\nNr0Wz5FYVdWcM+3rCKKtV2guxh21pMRafuTIEUaMGBHTkjp69Kjektq8eTMHDhygqKiICRMm6FWb\nsWPHFnxlrJDg9/v57Gc/q3tVzZs3jxUrVnTLcX/jxo18+ctfxu/3M3v2bH72s58BEAgEuO6663jn\nnXfo168fq1evZtiwYQA8+eSTLFu2DIB7772X6667LgufQlxYhMdC78XWrVtZuHAhY8eOZfHixZSW\nlurP9SYjP2iz+FdVVa/25LtpXyLku4txd7KkPvzwQ2bOnMnYsWOpqanh4MGDNDU10b9/f70ldcYZ\nZzBs2DCrJVUA8Hq9ui/Xpz/9aR544AHWrl2btOO+iOM488wzefjhhznzzDOZPXs23/zmN5k1axaP\nPPIIW7Zs4ZFHHmH16tX85S9/YdWqVTQ0NDBt2jQ2btwIwJQpU9i4caNOrLIMS7Rsofdi/PjxvPji\ni/zpT39i3rx5fPWrX+Wqq65CkqR2Rn5C6JtPF8bOYK7aGFsagD69lq+mfYkgSRJ2ux2bzRbjV5Rr\nbcxktFDxjPv8fj9btmzRgzJ37NhBOBzm/PPPJxgM8uyzz3LRRRfx6KOPMnTo0GzvpoU0wO12A9Gh\njEgkQp8+fVi7di3r1q0DYP78+ZxzzjmsXLmSNWvWcNVVV2G326mpqWHkyJGsX7+eYcOG0dzczJln\nngnAddddx3PPPcesWbNYu3Yt3/ve9wC47LLLuPXWWwH4+9//zsyZM3WCM2PGDF566SW++MUvZvoj\n6BIKZ1W3YKEDSJLEF77wBebMmcOKFSu4+OKLuf/++6mrqwNS69acTSQy7QP0yoC4eEqSpGcbiem1\nfNvfZGD2K8qmmV93p6SOHz8e05Lat28fTqeT8ePHU1tby0033cS4ceNiWlInT57kRz/6ETNmzGDr\n1q0FReItRKGqKmeccQYffPABCxYsYPz48V123Lfb7VRXV+uPV1VV6U789fX1DBkyBIiukWVlZRw/\nfpyDBw/GvCZf3Putb4CFGKSyL5yLcLvd3H///Xz44Yfccccd9OvXj/vuu49+/fp12a052+is5SHL\nsj6an2j8W+xfPuxvT5FpM7/uGPdFIhH27NkTMwLe2NhIv3799JbUlVdeyfDhwzsla+Xl5Sxbtowl\nS5ZYZKdAIcsy7777Lo2NjVxwwQW8+uqrMc/nkpFqLsD6FliIQVFREa+++mpMX/j1119n7dq1zJgx\nQ+8Lr1y5Uu8Lr169mm3btuVVEvtpp53Gs88+y4svvsgVV1zBlVdeyQ033KCTA+HWbGxzZdrPRiCZ\n8NKexGAk2t9CEfqaIctyzP42Nzf3SL/V3ZZUIBCIITbbt28nFApRU1NDbW0tM2fO1M1Ee3IcHA5H\nt19rIT9QVlbGnDlz2LhxY5cc96urq6mqquLAgQPtHhev2bdvH4MHDyYcDuvku6qqKibWaP/+/Xzu\nc5/LzM72ALl9VbKQFSTqC8+fPx+I9oWfe+45gLh94Q0bNmRt27uKCy+8kHXr1hEMBpk9ezZvvPGG\n/pyiKLjdboqKivD7/bS2turtoXRBCG0DgQBer5eWlhaamprwer2EQiEgegHzeDyUlpbi8Xj0i3dP\nCYqiKBQXF+NyufT9FU7VhQixv263m2AwSEtLC6FQiI4GOYQWKhgM4vP59OPT2tpKMBgE2h+foqIi\nmpub+fe//81DDz3EDTfcwIwZM7jssst45plnsNvtfOUrX+HFF1/k9ddf5/e//z2LFi3i/PPPp3//\n/gVJOi30HMeOHePkyZMA+Hw+/vGPf1BXV8fcuXN58skngegk1SWXXALA3LlzWbVqFcFgkD179rBr\n1y7OPPNMKisrKS0tZf369Wiaxu9+9zvmzZunv0a815/+9CfOO+88AGbOnMnLL7/MyZMnOXHiBP/4\nxz+44IILMv0RdBlWhcdCO6SiL5xPcDgc3HnnnVxzzTUsXryYxx9/nPvvv5/BgwfHCF9T2QZJpipg\n1nNkCjabDY/HQygUKngHY2jTbxknulwuV7v8tWRaUqqqsnfv3pjKzYkTJ+jTp4/ekrr88ssZMWJE\nwX6eFjKDQ4cOMX/+fH0dufbaaznvvPOoq6vrsuP+I488wpe//GV8Ph+zZ8/Ws8xuuOEGrr32WkaN\nGkW/fv1YtWoVAH379uW73/0u06ZNA2DJkiW5MqHVIayxdAsJIfrCK1as4POf/zwnTpzQn+vbty8N\nDQ184xvf4Oyzz+ZLX/oSADfeeCOzZ8/m85//fLY2u8d4/fXXufvuu7ngggu45ZZbcDqd+nPdGWPP\nF9O+eBCtl2AwWLAOxkbyGQ6HCYfDMUJvkb9mNu4LBoNs375dn5Latm0boVCIYcOG6d42tbW1VpUm\nz7B//36uu+46jhw5giRJfO1rX+Ob3/wmS5cu5Te/+Q0DBgwAYPny5Vx44YVAr/G3yRdYY+kWuo7u\n9oXzOYkd4NOf/jSvvfYajz76KLNnz+bOO+/Uy7XGMXaRV+VyuVAUpd34t1F301FVIJdhFPqmQu+S\nbSQzJSWqWcFgkFtuuYWBAwdy0003sW/fPr1ys3fvXux2O2PHjqW2tpb58+czceJEvTJkIX9ht9t5\n8MEHqa2tpaWlhSlTpjBjxgwkSeL222/n9ttvj/n5eDpG4W+zYMECHnvsMd3f5qWXXmLWrFk89thj\n9OvXj127drF69WoWL16s+9t8//vfj/G3mTt3bl5UT/IBub/iWsgoUtUXzncoisKCBQt44YUXePnl\nl/niF7/Ihx9+qD8fCoV0zYzQcTQ1NdHS0kIwGETTNGw2G263m9LSUkpKSnC73TidTmw2W16QHSME\n0RN6l9bWVsLhcLY3q0OIio3QQzU3N+t6qHA4rEeLlJSUUFpaSnFxMQ6Hg/r6el544QUeeOABgsEg\nmzZtYurUqfz4xz+murqaJUuW8O9//5vXXnuNX/7yl9x0002cddZZuN1ui+wUACorK6mtrQXA4/Ew\nduxYvU0fryOSyN/m0KFDcf1tgBhN5GWXXcY///lPINbfpry8XPe3sZAaWBUeCzFIZV+4ENCvXz+W\nLFnCn//8Zy655BIqKio4fvw4H330Ec8++yzTpk3D6XQSiUR6hVtzLvoVdXdKKhgMsnXrVjZt2sSW\nLVvYtm0bfr+foUOHUltbyznnnMO3vvUtKioq2Lp1K3fddRf33Xcfq1evzinjQgvpw969e/nvf//L\n2WefzRtvvMHPf/5znnrqKZ0Al5eXW/42eQSL8FiIwcSJE3nnnXfaPd63b19eeeWVuK+55557uOee\ne9K9aRnHXXfdxRNPPEEoFGLy5MnMmTNHT5O+++67mT59egyxEflNgUBAT2MvRJiN/NLtZ2OEaBl2\nFIcRz7ivsbExxrjvww8/jGlJXXPNNUycODFhlWbChAm88MILvPrqq7rWwkJho6Wlhcsvv5yf/exn\neDweFixYwH333QfAd7/7XRYuXMhjjz2W5a200BUU5opcIDj33HO5/vrrLdFaljB//nxuueUWqqur\nYy6Czc3N3H///Tz99NMsW7aMcePGAW1jzrlU/Ugn0q3v6Y5xn6qq7N+/P2ZK6tixY5SVlTFp0iRq\na2uZO3cuo0aN6laV5txzz+3xflnIfYRCIS677DKuueYavX0vdIsQHc64+OKLAcvfJp9gTWnlKJYv\nX85DDz3EJz7xCQKBAMuXL9f7yhZyAzt37mThwoXU1NRwzz33xAgLjdNNhexebIQY69Y0rUsVrmRH\n9M1TUqFQiJ07d/Luu+/qU1I+n48hQ4ZQV1dHXV0dkydPprKysuA/ewupg6ZpzJ8/n379+vHggw/q\njx86dIhBgwYB8OCDD/LWW2/x9NNP66GcGzZs0EXLu3fvRpIkzjrrLB566CHOPPNM5syZExPK+d57\n7/HLX/6SVatW8dxzz+mi5alTp/LOO++gaRpTpkzhnXfesUTLXYOVlp5PaGpqYsiQIWzatImamhp+\n9atf8eyzz/LrX/+a4cOHZ3vzLBigaRpr165lxYoVzJ8/n2uvvTamomNMJ8+mW3OmIIiI3++PG9SZ\nTEtK/DG2pJqammKqNh988AGKojBmzBhqa2upra1l0qRJFBcXW+TGQo/w+uuvM336dCZNmqSfS8uX\nL+eZZ57h3XffRZIkhg8fzq9//Wvdm2z58uU8/vjj2Gw2fvazn+lTnWIsXfjbPPTQQ0B0LP3aa6/l\nv//9r+5vU1NTA8ATTzzB8uXLgehYuhA3W0gaFuHJJ3zhC1/A5XLx1FNPoWkakiRx0UUX8bWvfY25\nc+cSCARivGEsZB9+v58f/ehHvPLKK9x///1MnTo15nlBAsRkUKGLXkWadzAY1Csz8VpSRnID0ZZU\nfX09mzdv1v1tjhw5QmlpKZMmTdIrN6NGjSpYjVQhIpG3TXcy+ixvGwudwCI8+YI333yTOXPmcPDg\nQd3iv6ioiAULFlBZWcmSJUv417/+xZo1a7j//vvxeDwFqxHJR+zbt49FixbhcrlYunRpTN9fTAYF\nAoGCMvHrrCUlnn/rrbeYPn06DodDj9DYuXOnTmy2bNmC3++nqqpKN+6bPHmy7nhtIX9x+PBhDh8+\nHONt89xzz/HEE0/Qv39/PaPvxIkTekbf1VdfzVtvvdXO2+bMM8/qYoC1AAAY6klEQVTk4Ycf1r1t\njG2iLVu28Mgjj7B69Wr+8pe/6G2iadOmxXjbbNy40WoTFS4SLhbWlTLH8PWvf53ly5fjcrnw+Xx6\njtOqVauYOXMmgUCA5557Tvd3EQZp+YD9+/dz7rnnMn78eCZMmKCXdxsaGpgxYwajR49m5syZug8Q\nRO/yRo0axZgxY3j55ZeztelJY+jQoaxevZprr72WL33pSzzyyCN6BpYkSTidTjweD6qq0tzcrHv2\n5AsEUelKlpTH48Hr9bJixQqmTp3KvHnzuOCCC7jooot49NFHCQQCXHnllaxZs4Y33niDP/7xj3zn\nO99h9uzZVFVVWWSnAJDI26YrGX2Wt42FnsKqCecQnnnmGTZv3syCBQsAcLlcQJQETZ8+nU984hP8\n4Q9/YM+ePSxdupRXXnmF559/ng8++ICbb76Ziy66KJub3ykSOZg+8cQTBZXEDnDeeecxffp0fvGL\nXzB79mzuvfdePvvZzwIduzXnEpKdkjK3pA4ePBijtzl8+DAlJSV88pOfxGazsWrVKsaNG8ePf/xj\nfcLNQu+B8LY566yzupzRZ3nbWOgJLMKTQ7jkkktYsGABn/rUp7jmmmsYO3Ysf//731mzZg3vvvsu\ne/fu5fe//z1/+9vfqKysZN++fXz605/mxhtvpH///gC65icXUVlZSWVlJdD+Lm/dunVA9C7vnHPO\nYeXKlQmT2I0LYS7Dbrdz2223cdVVV3HXXXfx+OOP84Mf/CBmUTaGdNrtdt0cL5PornFfOBzm/fff\nZ9OmTWzevJktW7bg9Xqpqqpi8uTJnHXWWdx0003tWlL3338/Dz/8MFdddRUbN260tDi9CC0tLVx2\n2WX87Gc/o6SkJOY5IVK3YCFdsFaaHIGqqrhcLn7xi1+wefNmlixZwvr16xkyZAhr1qxhyJAhPPjg\ngxw6dIjS0lJWrFihkxxAv0CJBaOxsZGysrJs7U6n6MldXr6hoqKCJ554gvXr1/O1r31Nd/AtKirS\nTfz+X3v3H1V1ff8B/Hm5iEAiEAkSEzW44Rg/LsSvMXQeERDKNaYpagiClZqhg0TTQGhHJxnnbEls\nWhDGtrBDKmpKNB2TpUDzF6RHJRLHAqmB/PYC3vv+/sH3fiYKKxW4cHk+zvEAn/uD9wc/cJ/3/eP1\nvnM39qFcxv6ghfva29tRWVkp9dpo51M8+eST0g7gv/nNb2BmZva97TYyMkJ8fDzWr18/KnrraHBo\na9tERkZKtW3uZ48+1rahh8XAM0IYGBhIOzS7ubnhwIEDaG9vx4QJEwAApaWlKC4uxttvv42MjAzU\n1tbCyspKenGRy+XQaDSQyWT45JNPkJeXhzfeeGNELmN/mHd5o/kdoK+vL/72t78hOzsbYWFhSEhI\nQFhYGGQyGQwMDGBiYgIjI6M+w1wP0/tx5+al9zMkdePGjT5Vievq6mBmZgZXV1colUokJCTAyclJ\n2kvsQTHsjB1CCMTGxsLZ2Rnr16+Xjmv36Nu4ceM9e/QtXboU8fHx+Oabb6Q9+mQyGSZOnIiysjL4\n+PggNzcXcXFxfZ7Lz88P+fn5CAwMBAAEBwdj8+bNaG5uhhACn332GdLS0ob/h0A6x8AzgmhfANRq\nNeRyuRR22trakJ+fD2tra/j5+WHnzp2oq6uDh4eH9FghBAwMDNDV1YWjR4/Cw8NDevxIGuZ62Hd5\no30ndgMDA6xcuRILFy5EcnIycnJysH37digUCgAPVq35QYek1Go1rl69KvXaVFZWorOzE7a2tnB3\nd4enpydiY2NhZ2fHcEIP5fPPP8ef/vQnqbQA0LsgYdOmTfe9R19mZmaf2jbz5s0DAMTGxiIyMhIK\nhUKqbQP0bouTlJQEb29vAMDWrVu5QmuM4rL0UaKhoQEymQzW1tZISkpCQ0MD9uzZI92uDTXZ2dko\nKyvDSy+9BE9PT+l2tVotvdjpykAVTBMTE2FlZYWNGzdix44daG5u7rM0tb8KpvqisrISCQkJcHV1\nRWJiYp8erzurNWuXsQN4oMJ9HR0d+PLLL6Vwc/XqVQghoFAopMJ9SqUSEydO1KufLxGNOQP/ARNC\n/K9/NAKo1WohhBAajUYIIUR5ebnw8vIS7e3tfW6vqakRzz//vMjNzRVCCFFfXy8OHDggWlpadNDq\ne5WUlAiZTCbc3d2FUqkUSqVSHDt2TDQ2NorAwEChUChEUFCQuHnzpvSYbdu2CQcHB+Hk5CQKCwt1\n2Pqho9FoRF5envDx8RFZWVmivb1ddHR0iK+//lpcuXJFNDY2ivr6elFXVyfq6urEjRs3xHfffSea\nmppES0uLdP+Ojg7R3t4uqqurxf79+0VKSopYsGCB8PPzE4GBgWL9+vUiJydHXLhwQXR1dUnXE40+\nK1asENbW1sLFxUU6tnXrVmFnZyf9bh09elS6bfv27cLR0VE4OTmJTz/9VDr+z3/+U7i4uAhHR0cR\nFxcnHVepVGLRokXC0dFR+Pr6ipqaGum2nJwcoVAohEKhEHv37h3iMyW6bwNmGvbwjFK5ublYunRp\nn16b1NRUdHV1ITY2FmfPnsV7772HoKAgfPjhh3j55ZcRExMjzeHQfiTd02g0qK6uRmlpKf74xz+i\nrq4Ot27dgkqlwpYtWxATEyMV8Pv222+xadMmJCUlwdHREV999VWfIam2tjZMnjwZ7u7uUvG+KVOm\n8P9az5SUlGDChAlYvnw5KisrAfT+/puZmSE+Pr7PfVnEj8aYAXt4OIdnlBH/P3QVGRkpfQ0AxcXF\nqK6uRmRkJFQqFdLS0tDc3Izs7GwEBwdj9+7diImJkV74tKGHS0F16w9/+AMSExPx2GOPQalUIjg4\nGDY2Njhx4gQsLCwQEREBY2NjdHZ24ssvv8T58+dhZGSE2bNnY+LEiZg1axZ8fHwwf/58JCUlwdzc\nnP+fY8DMmTNRU1Nzz/H+3sAOVMRv6tSp/RbxmzdvHg4dOoTU1FQAvUX81q5dC6BvET8AUhG/iIiI\nITpTosHDwDPK3P1ipv361KlTmDp1KubOnYs33ngDSqUSy5cvx4IFC2BtbY3u7m60t7cjNzcXra2t\nePnll0fkpOaxZuHChViyZMk975BXrVqFo0ePYs6cOTA1NcVjjz0GFxcXKJVKvPbaa3jzzTeRkpKC\noqIihIaGYvbs2bo5ARpRdu3ahQ8++ABeXl5IT0+HhYUFi/gR/T8GHj2xefNmaWIzAAQEBGDWrFko\nLS1Feno6VCoVxo0bh48++giWlpYoKyuDu7s7tm7dyrCjQ5MmTRrwtrCwMPzsZz+Dqalpv7usa2v7\naIs20ti2evVqJCcnAwCSkpKQkJCArKwsHbeKaORg4NED2vk42uJ9AQEBiI+Ph0ajQUxMDBISEgD0\nhqLp06fjlVdegZWVFZYsWYJnn30WSqVS6uUZCau56L++r3ikr68vfH19h6k1NJLduVHtypUrMX/+\nfAAs4kekxZmMeuDuCamBgYHIysrCBx98gBdffBFNTU0oLy9HeXk51q9fD1dXV9jb22PSpEnSH8KO\njg58++230nJmtVqti1MhogdUX18vfX7gwAG4uroC6C3Il5eXh+7ubly7dk0q4jd58mSpiJ8QArm5\nuXj22Welx+zduxcA7iniV1RUhObmZty8eROfffYZQkJChvlMiR4Me3j0jHb5nZeXlzSRWVt4KyQk\nBAqFAoaGhjh8+DBqamrwzDPP4C9/+QuOHTuGM2fOIDIyEq+99tqI28iSiP5ryZIl+Pvf/47//Oc/\nmDJlClJTU1FcXIzz589DJpNh+vTp2L17NwAW8SOS/K8168O4bp4G2e3bt6XPNRqNyMrKEteuXRNC\nCNHT0yO8vb3FkSNHRGFhoVi8eLHIy8sTTU1NYt26dSIkJES674kTJ0ReXp4OzuDB9FefpLGxUcyd\nO7ffOj8D1SehsWOwrhnWtCEaEQbMNAw8Y1BycrLw8/MTQgixbNkyUVBQINra2oQQQiQmJopp06aJ\nCxcuiJ07dwpTU1NRWVkpPba1tVUnbf6hTp48Kc6ePdvnxWvDhg0iLS1NCCHEjh07xMaNG4UQQly8\neFG4u7uL7u5uce3aNeHg4CAVcaSx42GvGW0BR29vb1FWViaEECI0NFQcO3ZMCCHEO++8I1avXi2E\nECIvL08sXrxYCNEbqp544glx8+ZNcfPmTelzInooA2YazuEZA8RdtTn8/f2RmZkJoHfvJgsLC0yY\nMAG3bt3CP/7xDyQlJcHNzQ3FxcUQQqCgoADd3d2ora3FzJkzceXKFV2cxg8yc+ZMWFpa9jl26NAh\nREVFAQCioqJw8OBBAP3XJykvLx/2NpNuPew1U1ZWhvr6+n5r2tz9XAsWLMDx48cB9K1pY2FhIdW0\nIaKhwcAzBty94iokJAQeHh5Qq9Vob2/HJ598AgB48cUXYW9vj5iYGFy9ehUlJSWoqKiAWq3GuXPn\nkJubC1dXVzg5OUn7OY0GDQ0N0go2GxsbNDQ0AABritCA7veaufs4a9oQjTwMPGPYuXPnkJOTA7lc\njtDQUHz66adYtWoVAOCFF17AqlWr4OjoiOTkZMhkMrz77ruwtrbGlStXIJfLR+V2Bd9XWZrL8elu\nrEZOpB9G3ysWDYrGxkbExcUhLi4Oy5Ytw7///W+8/vrr+PnPf45Dhw7h66+/RlpamrRj98aNG+Hp\n6Yng4GDMnz9fGhIbDWxsbHDjxg0AvUt3tfVK+qtPYmdnp5M20shyP9fMD61pA+CemjZ3PldtbW2f\nHh8iGlwMPGOUlZUVTp06BVdXV7z11luIjo5GXFwcgN4/1v7+/gB6393m5+dDpVLh448/RkhICMLD\nw9HR0aHL5t+XO2uK7N27F7/85S+l4/3VJyG632uGNW2IRoH/NaN52OdWk05oV5lotba2isjISLFm\nzRrxzTffCH9/f5Gfny+EEKKyslLEx8eLrKwsXTT1e0VERAhbW1sxbtw48aMf/UhkZ2eLxsZGERgY\n2O8S423btgkHBwfh5OQkCgsLddhy0pXBuma0y9IdHBzEK6+8Ih1XqVTiueeek5ala0s+CCFEdna2\ncHR0FI6OjiInJ2dYzpdIzw2YaWSin91178xDwxW8aGTQblMBAM3NzSgsLMQ777yDkpISAMCePXtw\n+fJlREVFwd3dXZdNJSIiutuAE+44pEV9GBgYSKuvLCwsEBERgUOHDgEAjh8/jkuXLsHNzY1hh36Q\nadOmwc3NDR4eHtJwYVNTE4KCgvDkk08iODgYzc3N0v1/+9vfQqFQYMaMGSgqKpKOnzlzBq6urlAo\nFFi3bp10vKurC4sXL4ZCoYCfnx+uX78+fCdHRKMKAw/dQ9vDow0+2g0sNRoN5HI55s6dq7O20egi\nk8lQXFyMc+fOSTWOduzYgaCgIFy9ehWBgYHYsWMHAODSpUvYt28fLl26hMLCQqxZs0aqIbV69Wpk\nZWWhqqoKVVVVUr2arKwsWFlZoaqqCr/+9a+xceNG3ZwoEY14DDw0IG3w0X4MCgpCSkoKV5LQfbl7\n2Hw4ivrR6KDRaKBWq++5RoiGAgMP/SDaSV9mZma6bgqNIjKZDHPnzoWXlxfeffddAENf1K+pqWlY\nzo0Gpg0w2o8ajQa3b9+GWq3ucx8DAwPI5XLIZDL09PTopK00djDw0A/C4mv0ID7//HOcO3cOx44d\n6zP5XYvXlX4RQuD27duQyWSoqKjA888/D6C3l9jQ0BByuRxA74IImUyG69evIyIiAv7+/oiOjmal\naRpSDDxENGRsbW0BAJMmTUJ4eDjKy8uHvKjfo48+OiznRveSyWQwNDQEALi5ueHPf/4zAODixYvY\ntGkTnn76aSiVSoSEhKCnpwd5eXmIjo7GyZMnERAQgC1btuC7777T5SmQHmPgIRpEhYWFmDFjBhQK\nBdLS0nTdHJ3q7OxEW1sbAKCjowNFRUVwdXUdlqJ+NHhqamrQ0tICtVrdZ0jqbl1dXfjiiy+QkZGB\nL774AkBv6Dl79ixaW1thbW2NnTt3YurUqYiOjoYQAvn5+di1axcWLlyIXbt2QaPRoKura7hOjcYY\nQ103gEhfqNVqrF27Fn/9619hZ2cHb29v/OIXv8CPf/xjXTdNJxoaGhAeHg6gt/dl2bJlCA4OhpeX\nFxYtWoSsrCxMmzYNH330EQDA2dkZixYtgrOzMwwNDZGZmSkNd2VmZiI6Ohq3bt1CWFgY5s2bBwCI\njY1FZGQkFAoFrKyskJeXp5uT1SPaUCOTyWBgYIDnnnsOO3fuxOzZs/u9vxACMpkML7zwAurr6zF9\n+nQ4OzsDAOzt7XH+/HnExMTgpz/9Kaqrq2Fubo6goCA0NTXByckJNjY2WLduHWxtbTFu3LjhOk0a\ng1h4kGiQnD59GqmpqdKSae1y602bNumyWUT9UqvVuHz5Mp544gmYmJgMeL8VK1bA3d1d2mYmKioK\nS5cuhampqVSotKSkBPv378eCBQsQEBAgPfb1119HU1MTMjMzIYTAhg0bIJfLkZaWhs7OTqSnp+P6\n9et47733APTWWxo/fjxcXFyG/PxJb7HwINFQu3PFEPDfVUa6wKE1upN2+fedQ1JyuRy7d++W5kep\n1Wr09PTg448/xooVKxAVFYX6+np4eXnh8OHDUKlUiIuLw8mTJ6WAon0+FxcXGBsbY8OGDdiwYQNS\nUlLQ3t6OWbNmobKyEgBw4cIF1NXVIS0tDSqVCp2dnYiJiYFGo8HMmTPh5uaGV199lau1aMhwSIto\nkIyU1UYcWhubOjs7cfbsWVRUVKCsrAzh4eEICwuDkZGRVEvrTg0NDTh9+jROnDiBGTNmIDExET09\nPXj//fexcOFCODo6wtbWFg4ODlCpVJg/fz6cnZ3R2tqKgwcPIi4uTrrmLS0tsW3bNmg0Gpw4cQLZ\n2dnYtWsXVq1ahdraWqhUKuzbtw/79u1DQ0MDmpqaMGfOHKSnpyMjIwOXL1+Gk5MTHnnkkeH+sdEY\nwsBDNEjuXmVUW1urkyKN5eXlcHR0xLRp0wAAERERKCgoYODRc2vWrEFeXh42b94MZ2dnHDhwAHV1\ndVizZg0uX76M7OxsnDlzBvb29khJSQHQWweptbUVubm5uH37NrZt24annnoK0dHR0vM6ODjA1NRU\nqrj+1FNP4a233gIAaZk50Lvirru7G3K5HCYmJvDw8IClpSUmTpyI1tZWuLu7Y//+/XBycsKMGTOk\nx5mamsLT03Pof0A05jHwEA0SLy8vVFVVoaamBo8//jj27duHDz/8cNjb0d/QWllZ2bC3g4aXUqlE\nT08PkpOTAQDbt2/HtWvXAAAqlQpTpkzBSy+9hCtXruBXv/oVzpw5g+TkZLz66qswMTFBS0sLWlpa\nEB4eLg1/GRkZwcHBARqNBnV1dbCzs4NCoYBKpcLNmzdhaWkpTVo+f/480tPT8eijj8LX11eay1NR\nUQGgN3gT6RIDD9EgMTQ0REZGBkJCQqBWqxEbG6uTXpWRMrRGwysgIADbt2/HwYMHkZ+fjwsXLkgb\n/yqVSrS2tuLNN99ERUUFqqqqUF9fj0mTJqGlpQVtbW0wNzfH448/jiNHjiA4OBhyuRydnZ0wNTWF\nsbExLl68CE9PTzzyyCOwtrZGdXU1vLy8pO8fGhqKp59+WlenT/S9GHiIBlFoaChCQ0N12oaRMrRG\nw8vDwwONjY04cuQIfHx84Ofnh0WLFqGoqAhyuRwZGRkIDAzE22+/DR8fH1RUVCAkJAQajQYNDQ0w\nMzPDsmXLkJSUhBUrVqCpqQnGxsbYs2cPwsPDMXnyZClMa3sMtb07APqdJ0Q0kjDwEOmZkTK0RsNL\nLpdj8uTJSE1NhZ2dHQDg/fffx6lTp2BiYgIhBKKjozF+/Hg0Nzfj9OnTCAkJQWhoKMLDw2FnZ4ff\n/e53yMjIQEFBAczNzeHv7w9zc3OsXLmy3+/J3kQaTRh4iPTMSBlao+H3k5/8BMePH8fy5csB9E5K\n/te//oXFixfDxsYGc+bMwfTp02Fvbw9jY2MAQGJiIpYuXQoHBwdpc+A7Jy0T6QsWHiQi0hNbtmzB\n4cOHsXbtWhQUFGD8+PH4/e9/jylTpuCrr75CaWkpvL294eTkpOumEg2VAbsdGXiIiPREaWkp4uPj\n8cwzz8DV1RW+vr7S5qxEYwQDDxEREek9bi1BREREYxcDDxEREek9Bh4iIiLSeww8REREpPcYeIiI\niEjvMfAQERGR3mPgISIiIr3HwENERER6j4GHiIiI9B4DDxEREek9Bh4iIiLSeww8REREpPcYeIiI\niEjvMfAQERGR3mPgISIiIr3HwENERER6j4GHiIiI9B4DDxEREek9Bh4iIiLSeww8REREpPcYeIiI\niEjvMfAQERGR3mPgISIiIr3HwENERER6j4GHiIiI9B4DDxEREek9Bh4iIiLSeww8REREpPcYeIiI\niEjvMfAQERGR3mPgISIiIr3HwENERER6j4GHiIiI9B4DDxEREek9w++5XTYsrSAiIiIaQuzhISIi\nIr3HwENERER6j4GHiIiI9B4DDxEREek9Bh4iIiLSeww8REREpPf+D+WsukItWNmAAAAAAElFTkSu\nQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cafb8d350>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAI8CAYAAAD1D3GaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmUXGWdP/733WvtLZ3udLoTsoeQxBAgiD822YICDigk\ngIoMiwsM4kFncMRBGBj1O8QRHcFZXI4D8vsqHscZcBh+MgJyQIc9ISF7urP0kl7S3VVdVXe/9/dH\n5d5Ud6q3qrq3qm59XufkJKmkq25XV937ruf5PJ+HsW0bhBBCCCFBxpb7AAghhBBCvEaBhxBCCCGB\nR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYHHT/PvtGadEEIIIdWCmewfaISHEEIIIYFH\ngYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeB\nhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GH\nEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQ\nQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBC\nCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEII\nIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQggh\ngUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGB\nR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFH\ngYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeB\nhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GHEEIIIYFHgYcQQgghgUeBhxBCCCGBR4GH\nEEIIIYHHl/sACCEkaGzbhm3bsCzL/d0wDABAOBwGwzBgGKbMR0lIbaHAQwghs+CEmYmBxjRNWJbl\nhhvbtsHz/LivYRgGLJsdWGcYBqIoUvghxCcUeAgh5LjcMOMEGeeXaZrubfk4ocX53bZtcBzn/rvz\n9SzLQtd1ZDIZxONxMAwDjuPAsixYlqXwQ4hHKPAQQmpG7qiMbdvjRmWcX5NxRmJmEkpm+u8sy8K2\nbXe6i8IPId6hwEMICYR800wTR2ds2z7pa5wgM9MwU2q5U1q54QcAeJ6n8ENIiVDgIYRUvJnUzUwV\nZgCMCzblMpORn8nCD8dx7ugPhR9CZo8CDyGkrGZbN6PrOhiGAc/zFRVmHLnfg67r4wIagBkf58Tw\nY5omTNMEQOGHkEIwEz8VTTDlPxJCyHRKUTfj/BkAFEUBx3EQBMGX4881cZQp359zjzU3lOSeazVN\nAwBEIhGIouiu3JrNMTicx+A4jsIPIcCkbwIKPISQgpWibgaYfqonl1eBJ99I08RAk3vsTpBxfs9d\ncm4YBkzTRCgUcu/fMAwwDINwOAxN05DJZMDzPHRdB8dxEEWRwg8hxZv0hU9TWoSQvIJSN+OYbGQm\n97Z8BcxO4fBsvpdpPki69x+LxWDbNnRdh6ZpkGV5VuFnsmkvJ0RR+CHkBAo8hNSgfKMZE4PMTPrN\nVFKYmelUU+7IDMuyJwWaUpnpfTkNCEVRLGn4UVUViqIgFou5wYfCD6llFHgICaBC6mZ0XQcAt/tv\npRTETjbV5HQznmyqybm4T+xuXMm8CD9O/ZCu69B1ncIPqVllCzzOSWo289WEEO/6zeR2AvbTbKea\nnL8XMtVUTUoZfpzfneeTwg+pRZ4Hns2bN+Ppp58+6fbXX38d3/zmN/HMM8/QG42Q44JYN1PqqaZy\nrtIqFwo/hBTP88Dz6quvYvv27e7+MU5BXTqdxh/+8AcYhlFTJy5Su2bbbyZXJYeZ2a5qqsappkoy\nk/AjCIL73E91P87vFH5ILfA88IyNjeGGG24Ytyswx3HgeR7nnHOO1w9PiG/y1c04AZ9l2ZLt0+QX\nP1c1kcJMFX6c5900zXGbmE52P87vFH5IUHkeeObOnYtt27aB56k+mlSvQutmgOwUTDQarbgwMzG8\nOEXAzvQZ4O+qJlKcieFHlmWoqopkMgmWZd1/o/BDapXnKeShhx5CJpNBKpWCruuIRCJoampydwmm\nomVSbl7WzThf5+fFodCpJudXbi0IXdS8MV2fnmI5I22maSIWi7kjP16EHycIE1LpPA88l112Ga67\n7jrs3r0b3d3dOPvss/HII4/g/PPPpzcJ8Vy562Zy+6KUKjx4NdWkaRps2572IkhKw68wmW/aS9f1\nkoUfTdPA87x7H3ReJ5XK88Bzxx13YPPmzbj99ttxwQUX4IknnsAdd9yBlStXorW11euHJwFXSL8Z\nR6XWzZR6VRMhjtzwE4lEYBhG0SM/zo7uLMu622fkTnvRa5FUCs8DT19fHy6//HIA2VqG5uZmqKoK\nVVW9fmhS5Sarm8ktBJ5saqCSwwytaiKVgGEYCIIAQRCKCj/OfeW+Hw3DoPBDKo7ngce2baRSqeyD\n8Tyee+45NDQ00LB5jSumbsayLOi6jnA4XFEn0clGZgAgk8lMOtUkCMK42yvl+yG1o1ThZ+K0F0Dh\nh1QOzwPPpz/9afT29mLVqlVYvHgxtmzZgp/85Cdob2/3+qFJmUwWZkpdN1OOQuDpppom7pztDPOH\nQqGKGm0iwVdo3RiFHxJUzDSrBUqylMCyLKTTaYTDYfA8D13XkUgk3NVapLpMtjx7NnUzzp8LYZom\nVFVFJBIp6OsnKnSqaWK4mex7SqVSiEajFX9Sd4qWJUkq96FMqRo6Led7Lp0LfTgchqZpUFUV8Xjc\ns2NQVRW6riMWi5Xk/pzWBZqmQdM0N/zoug5Jkmb8unGuObkrGCn8kBKa9AXk+QjP0NAQvvGNb+Cl\nl15CR0cHHn30UTz//PN45ZVXcPPNN+PP/uzPKvrEVWsK6TfjqNS6GQAFrWqiqSZSatX8Gpps5Mcw\nDPccQSM/pJJ5HnjuueceLF26FK+99hreeustbN68GR/72MfwpS99Cffddx+WLl2K008/3evDIJh8\nqskwjEmLgGfab8ZPuSfKYqaaaFUTIYXJDT+maYLneViWVdS0F3BiFInCD/GC54Hn2LFjuOuuu9DU\n1ISNGzeirq4OV1xxBS688EI0NTUhk8l4fQg1oZi6GeBEN+BKOrFMN9WUTqdpVRMhZeb0eCp2qbtz\nXxR+iFc8DzyxWAzvvvsu1q5di0OHDkFVVbzyyiuoq6uDaZoQRdHrQwiEUtTNTDbVlDuX7pdippo4\njoNpmhW3SouQqUxTLxkIpV7qnht+FEWBpmmIRqMUfkhBPA88W7ZswW233YaHH34YDMPg5z//OV58\n8UVcddVVeOihh7B+/XqvD6HiBa1uBvB2qslZlk4F76RS1UK4mU6pww9w4nmlkR9SCF9WaQHZFQOV\nvvrDC8X0m5k4v+3Vm9mZHprpag6vVzVNx7IsyLKMaDQ6668tB1qlVVrVsErLaaya+1zqug6O4xAK\nhUq+gmqyY/D6MQAgmUwiFArNeLR+stVe04WffCvbcj8MUvghx5VvlZZDkiT3IjjxgljNJl7snSJg\nZwTDy32avECrmrxRaE8UUr3K/fP28zU3m8fxctpr4siPM2pc7p8FqQy+BR7g5It8tdu5cyd+/OMf\n4xvf+Ma421VVBc/zEASh4t5sU00vZTIZWtXkAXquCMlvNuFnumnCfOHHuZ3CDwF8DjxBwzAMksnk\nSZ9EyhUKiplqArKjcHRCIISUw3ThZzY1e5OFHwDuBzc619UeCjxFEAQBuq778lheTzU5c+nVcALI\n7cNDCAmefOFHlmUYhoFEIlH0tJfDqfmplnMfKQ4FniLwPD/uzVMMaqBHKgEFSVJpnPBjWRYYhkEo\nFCpZzY9pmjBNEwCFn1pAgacIMx3hKXSqaWIDPXoTEi/R64sUws+Q7GXB88Tww7Ksew4mwUCBpwhO\n4BkZGcHhw4dx2mmnAYC73FzXdVrVRAgJPD/OXRNXnXkZflRVhaIoiMViFH4CJPCBZ9GiRairq3P7\ndrzxxhsF39fzzz+PN998E0eOHMHhw4dx8OBBHD58GKtXr0Z7ezt++9vfor6+HsCJNyNNNRFCyqGW\npie9Cj8Mw7gjP06z09xeP6S6BD7wMAyDl19+GU1NTUXfV2dnJxRFwRlnnIFrrrkGc+bMwQMPPIBf\n/epX4/6fqqpgmOz+MtXCKQSmNzEhwVGL7+fpwo8gCBBFcUbn54kjP7mj9xR+qk/1XJGLUKpPOnfe\neee4vyuK4s75EkIIqSyThZ9UKuX+W6Hhx7Zt6LpO4aeKBH4zIoZhcOmll+Kss87Cj370o5Let5/L\n0gkhwUGjqf5zAk40GkV9fT0ikQhs20YqlcLo6CgymQwMw5hy78Lc+8qtx3TCj6IoUFXVvR9SWQI/\nwvPaa6+hra0Ng4ODuOyyy3Dqqafi/PPPL8l9cxyXd+sI6hPjrdxPWXTRIKS8/HoflvJxckd+cvf2\nSqVSAODW+szkMXPrfWjkp7IFfoSnra0NADB37lx8/OMfL6pomRBCikEXvcozceTH2WzVaXKYO/Iz\nk/uikZ/KFejAk8lkMDY2BgBIp9P43e9+h7Vr15b5qEitoRE/QqqDs9hEkiTwPO+Gn1QqReEnAAI9\npdXf34+Pf/zjALJp/VOf+hQ2btxY5qOqTHRRJoSQE5zww/M8wuEwTNMcN+2Vu9Sdpr2qQ6ADz+LF\ni7F161bfH5dhmLy1PYQQ4peg1bj5+YEsX5NDL8NPJpOBaZqIRCLjdnYnpRXowEMIISQ4KiHAeRF+\ncrcaclb+OqEnd4shUhwKPEWiaSBCSC0L2kjSbJQ6/Di/nJEfwzBgGIa7tyKFn+JQ4CGEkBKr5RAQ\nBIV8kPVy2gsAhZ8SoMBTJJpnLQ/aCoNUuomvTRoNri7FnFtmG36mem1Q+CkdCjweqMYVT9V4zIRU\nE7oYFadaP+DMJPzM9NxL4ac4FHgIIcQnuUWqZPaq/SI+WfjRNM39d5r28g4FHkIIKQOvL0LVOiJS\nCfwIpLnhB4DbyqTYmh8AVPA8CQo8hBASUNW2x1Ul8ft74jgO4XC46IJn4OSd3Sn8ZFHgKYF8b3ga\nsiaEEDJbpVzt5dxfvvBjmqa7gWqthB8KPEUSBAG6rkMURfe2WnjhkNmhAExIcYI6kjQVL8NPKpWC\nZVmwLMvdQNXZJT6oKPAUKV/gqUa0Sss7tXaSJqTa+X0utG172hYnpQ4/wIluzk6jw6CjwFMkQRBg\nGEa5D6PmUEAjhHipkj+olCL85I6Y0ZQWmRGe5ynwEEJqEn3oKD8vRn6CigJPkZwprVw0+kAIqSW1\nfiGtFLMJP7WIAk+ReJ4/KfAQQki5Ba3I18/vZyY1NaV+vFJ/b9OFH8uyYJpmTY38UOApUr4RnmpF\no1KE+IPea8RP+cJPMpmELMuQZRmCICAejwd+5IcCT5EEQYBpmuU+jKLVSsInU6MLcXFs23aX+gJw\n/+zcruu6+3d6z5FycMIPy7KIxWIAAE3TauK9T4GnSEEa4SG1jS7A03OW7+aGmNw/AyeeR8uy3E/V\nLMvCNE2wLAvDMKBpGliWBcdxEEWRnvsaV44A7EzbsSw7bouLIAv+d+gxKlomJDjyBZrc350LE8uy\n7u9OoHGW9jIMA0VRwHEcBEFw79sJQKIoIp1Ow7IsaJqGTCYDQRAgSRJ4nqfwMwk/z6k0AhdMFHiK\nREXL5UGhkhSikEDDsuy49vuluBA60wrhcHhc8LEsC5IkQRTFqvjE7XcwoBBCilH576gKJ4piIGp4\nCAmCSgk0s8GyLEKhEEKhkDvdlUqlwDAMRFGEJEm+rhgi/ivXlFatBUgKPEUK0ggPjZiQSpcbaHIL\ngCst0BT6XspdSWMYBlRVRSKRAMdx7shPrV2kCCkVCjxFmqyGB6iuBE1TRN6h53bmZjJCA2TrYTiO\nq4gRmslMPI7ZvAaczRwFQYBt29A0bdb1PtV0/qk0QX/uavV8RIGnSLRKi5CZm+mUU+4ojVP869yu\nqupJBcFBxjAMJEmCJEmT1vvUQvO4IIeQcgWQ3OczqM9tLgo8RaLNQwk5wQktky3dnizQTFzpRPLL\nrfcxTROqqpa13qdWRwq8QK9771HgKRIFHlJLJgs0ub9ToMmv1N83x3GIRCJuvY+maePqffwKI7X6\n8yTVhwJPkYJUtEzIVEFmqkCT+3e6AE6vlNMzufU+kUgEuq5DVVUYhgFFUQDAnRIkMxPk6TMg+N/f\nZCjwFGmyGh6nULVaXlQMw7idYqsBFQIXZiYjNLIsU6CpUs7UliiKSCaTYFkWsiwjnU67U161UO9T\nbarpWlHNKPAUSRRFyLJc7sMgBEDhU05O4DUMA5FIpNzfRk3w+gKXG35y630AjCt2rhYUCkqnVj8s\nUuApkiAISCaT5T4MUiOKCTTTjdAYhkEXlIDKV++TTCbdeh9BEKi5YY2pxfc6BZ4i8TxPRcukZHL7\nzEwWaACc1FjP+UVTTsSRb0Rksnofp7+PKIqzqvcJ6qiL399XUJ/HSkOBp0iTrdKiGhOST26gmWyU\nBsgfaHJHaUh1qqSfXe6Ul9PfR1EUqvepAZOF4aCjwFMkajxIcuULNKZpjtsKAcBJAcb5VE2BZnr0\nabj0Jvb3cfbzAiqn3oc+QJJiUeApUlACD41Izdx0S7eBkwONs/0BBRpS6TiOQzgcHtfc0Kn3cUaE\nylXvQ+8dUgwKPEUSBIF2Sw+YQgLNVCM0qqq6xcOkdlXbBwqGYdzNTHPrfWRZBs/zkCQpsAEk6DU8\n1fZaLBUKPEWixoPlUcyIVLGBxnl8QmrFZPU+zoc9wzCo3qfK1No+WgAFnqJR0XLloUBDiHdy632c\nFV6VVu9DSD4UeIoUlBqeapLbi0bTtLyBZmL9jLOXEwUaUi5+v+b8+MDFsiw4jkM8Hve83ieoxerO\nzynIU2iVggJPkSjwlN50jfUmniByA43Th6YW38ykevh1wfHrfZCv3kfTtHH1PtW0n1etBoKgo8BT\npKAULfs5BTeTQDNxhMZZ5eSEGU3T3LoCQqpFLVxEJ9b76Lo+rr+PKIrgeb4mngtSWSjwFGmyouVa\nruEpRaChkyGpZrX63p+IZVlIkgRJktz+Pul0GgDGNTesZeUYTarVESwKPEWqxSktCjSEkNmarL+P\nE4rK2d+H1AYKPEUKYuChQENI8WrhPVDISEEh9T5+F/bW6ghI0FHgKdJky9IrWb5A4/xKp9Mn7bhd\niYGmlqcMCQmK3HofZ9VlvnofUloTA125z+d+oVdSkSpxt/TcZdv5dt2eGGic3y3LQjgcrohAQ8qD\nQiQpF4Zh3Hofy7LcHj+2bQd6cQKNJvmHAk+RJpvS8nIEYmKgyff7xEDDcdxJS7dzWZYFwzBoDp2Q\ngKjmCynLsifV+wBAIpHwvN6HQn9w+Rp4kskkdF13A4Isy9A0zV1ivGbNGj8PpyS8qOEpNNDk/r1a\nT3RBVQ0nUXrNkErj1PtwHAdVVREOh8fV+zjTXl68doP8fqjmMFwMXwPP0qVLoes6eJ7H8PAwmpub\n3eK17u5uqKoKQRD8PKSiFVLDQ4GmtlC9ESHFcc6JE+t9nGkvQRAgSVJV9vep1fBRDr4GnsHBQffP\nH/zgB/H666+7fz/33HNhmmbVBZ58NTy5gUbXdQo0hJBAKtfFerp6H+rvQ/LxNfA4F3yO42DbNnbv\n3o329nZomoZkMulZ8a9pmjjrrLPQ0dGBZ599tuj7s20bAwMDOHjwILq6umBZFu666y4cOXIE3/3u\nd9Ha2grgxJAoBRpCSO4oH32qLx2n3iccDsMwDPd6Qv19Jlerrz9fA0/ubtTXXXcd7r77bpx//vl4\n7733cO6553o2uvP9738fp512GsbGxoq+rwceeABbtmxBNBrFokWLsGjRIsiyjDVr1uDKK69ES0sL\notGoO7IjSVIJvgN/0LQLIaSaOSUSTvhRVXXW9T5+hwE67/rH91Vazgvp3nvvxZlnnok33ngD1113\nHa6//npPHq+7uxvPPfccvv71r+O73/1u0fd3991346/+6q8Qi8Xc2y644AJ84QtfKPq+y6na0j7D\nMO7O6ISQYJttKGAYBoIgQBAEt95H07SKrfcp99YSlfI8eM3XwJNOp6EoittZc/Xq1Vi1ahVkWcbW\nrVuxZs2akjeZuueee7BlyxYkk8mS3N+cOXNKcj+EEEJmrtCL8sR6Hyf4WJblTnnVYnPDWgk5uXz5\nKZumCY7jsGzZMgwPD6Ourg4sy2JwcBANDQ1oaGjAwYMHcfDgQSxcuLBkj/vb3/4WLS0tWL9+PV5+\n+eWS3S8hhFS6Wq3TmArLsgiFQgiFQm69TyqVcleAVVMJApk9Xyq5nDfdypUr0d3djcHBQfT39+OS\nSy5BV1cXOjs7cdlll5V8iuKPf/wjnnnmGSxevBg33ngjXnzxRXzmM58p6WNMhpYiE0KCrppDlbOX\nV319PSKRCEzTRCKRQCqVAuBfbU01P4fVxtfSdcuyMDw87P59YGAAe/fuBQCMjIy43TRL5Vvf+haO\nHDmCrq4u/OIXv8DFF1+MJ554oqSPQQghpHo59T6xWAwNDQ1u3c/o6ChSqZS7ACVIajVk+TKl5bxY\n4vE43njjDTQ3N2Pfvn2wLAu/+c1v0NnZiYaGBs+HE736AQfphVOrbwRCSOXy67zkTG2pqoq6ujqq\n9wkYX0Z4nAZQjz76KB577DGceuqp+OQnP4knnngC0WgUP/rRj/D1r38dixYt8uwYLrzwQjzzzDOe\n3HcQ0j+FHEIIOXE+d+p96uvrUVdXBwBIpVJIJBKQZblkJRjl+JAZhGtWIXyNqitWrMDrr78+7ge8\nfv16fP3rX/fzMAghhJBJTQwgHMchEomMa26YSCTAcZw78lNtHxqr7XhLwdfA09nZieHh4XH7SKmq\nClVVkU6ncdFFF6GhocHPQyqJfC8cKlr2VjU9v9QziDhq8SITJLn9fSKRCHRdH7eflyiKEASh6n7O\n1Xa8hfJ1Wfo3v/lNvPLKK2hpaUF/fz86OzuxdOlSLFmyBH19fVi2bFlVBh5CCMk1XRj3I6z79Ri1\ncrGcKHczU6e/jyzLSKfT4/bzqrTOzs5j1iJfAo9Tw/OTn/zEve0v/uIv8Nxzz2Hz5s247777EI1G\n/TgUz9TyG58QcrLpzgd+FeEGgZ/n10LCQG5/H9M0oarquP4+oihW3GamQXltzIbvO6qNjo7i0ksv\nha7r6OzsRDKZxM0334xdu3b5fSglw3FcIKYsqmmaiBBCvFJMGHDqfZz+PpZlIZlMIplMQlVVOseW\nka+BZ2hoCFdffTXWr1+Pxx9/HAzD4Ac/+AGWLFmCr371qzhw4ICfh1MyPM9D1/Vxt1F4IISQ2uXU\n+0SjUTQ0NCAUCkHTNLe/j6ZpZbtG1Oq1yZfAYxgGAOCLX/wizjvvPGzZsmXczuiPPPII1q5di87O\nTj8Op+QEQTgp8BBCCCHAiXqfeDyO+vp68DwPRVEwOjrqjvr4HUJqcUrLlxoep1HTQw89hGg0ClmW\noaoqLMuCaZrQdR133XUXmpub/TickqPAQwipRX5uv+AXrx9rYr1POp2GrutIJBLuEvdKq/cJCl8C\nj2VZYFkWL7zwAp577jk0Nze7oz4AIIoi9uzZgwceeAAbN27045BKShCEcd8PIYTUCr9GCvwckfDr\nsTiOgyAI4DgOoihC0zQkk0n376IogmVLPxEzsQi8VkZ7fA0827dvx4IFC3DLLbdgZGQEPM/Dtm20\nt7fjy1/+Mg4fPuzH4ZQcz/MUeHxGNVKEkCCwbRssy+bt7yPLMniehyRJVdnfp9L4EnicH5IkSVi9\nejXOPvvsk/7P6tWrq3ZaKChFy9V4zISQk9H7uHrl6++jKMqs+/uQk/m6eSiQ3RU9H2cesxqJoli1\nx04ICS66KM5eJfVUm1jvo2kaUqkUABRV71NJ36OffFml5cxBnnvuudixYwf+8Ic/QNd1DA8PI51O\n46mnnkIymcw78lMNqIaHEEK8E+QRq5l+bxzHIRwOo76+HrFYbFx/H0VRAtELzmu+jPA4gWfTpk3Y\nt28fbr75ZmzYsAHz5s1DT08P3n//fdx7770455xz/DickqNVWoSQXM5egc7vzopUTdMQCoUCcwH3\nc6QgyCMSs/neGIYBz/Pged6t93G2taB6n6n5unkoANx3332444478NJLL2F4eBiXX345Lr/88nF9\neapNvqJlqochDnotBFPuJsi54cb5WSuKApZlwbIsGIYBwzDQdR2KogCA+3+r/cJU7cdfzSbW+ziv\nL6feRxRF8Dx/0s8oCK+7QvgaeHRdRzKZhG3buPDCC90TQGdnJ1RVRXt7O+bMmePnIZUEjfCQoKBg\nNt5kgSY3rDiBxllpwzAMZFlGJBIZt6RY0zSEw2EwDINEIoFMJgNFUdxaDC+WH5PZq9YwwLIsJEmC\nJEnuaGI6nQaAccXOtczX3dJ/9rOf4Z577kFHRwcsy0I6nYZpmli4cCG2b9+OL3/5y/jmN7/pxyGV\nVFBqeGgkorZV40m+WM4oTb5g49RE5AYaZ3VM7qhNPlM9l86oTyQSAQB3+bEgCJAkKe8nchJcXgQs\np94ndzPTZDLphqKJauX15utu6bfeeituuukmAEAoFMJjjz2GgwcP4jvf+Q5+8IMfoKenx4/DKTka\n4fEfhTMyU1MFGudi44QY55czUjNVqCmWU4shCIK7/Nj5RO58UqdRn6xqHXUpt3z1PqqqAgBSqZRb\n71MrfJ3S4jgOHMe5oyEsy7pvcKfFdjWiwENIeU0VaHKnnpyRGSfQOH8vN2f5sSRJMAwDqqoikUgU\nXIRKAYFpQPusAAAgAElEQVRM5NT7CIKAkZERiKLo1vs0Nze7W0AFWVm+Q+eN2NLSgtbWVvfPw8PD\n5Ticok1WtAzQiYeQUpg4SqPrOgzDmHLqief5aaeeKo0TxnJHfWRZRiaTqchRnyCOsvp9zi7XNcJ5\nPTk7IdSCsgQejuNg2zauu+46XHfddQCAjRs34qKLLirH4RQtKDU8hJTTTKeegGwwcPYhck7W1RJq\nZiq36VwpRn28UgnHQGZuYsCqlFFOP/jWaZlhGOzcuRPbt2/H9ddfD4Zh3GSZyWTw/vvvIxaLoa2t\nzY9DKima0iJkes5oQLFTT06/kUoegi/1yEduHUbuVgPOp/RaX31DyEz4tnkox3HYuXMnbrzxRuzY\nsQP3338/RFGEbduIRCLYvn073njjDTzxxBN+HFJJBSXwUCEwKVbuKE2+0RoA4wJNtU49zYQX3wvD\nMOOWHjurbziOc5e3B+k5dAS5NIDOuf7xZeLOeaHW1dW5TQY3b96MkZER99+WLFmCTCbjx+GUHE1p\nkVpi2zZM04RhGNA0zV1WnU6nkU6nIcsyNE2DaZruKhFJkhCNRhGNRhGJRNwCXUEQxgUeMnMcxyES\niaChoQGhUAiqqmJ0dNRt90EKU45wVQs1Q5XA10olwzDQ0NCAb3zjGzj99NNxzTXX4K233sKRI0ew\nbds2zJs3z8/DKZnJAg+NmJBq5IzSmKbptq1XFAWZTMYNNYqiQNd19+QpCALC4fBJocZZFeL0r6nV\nE+1EpTwvOKtv6urqUFdXB4ZhkEqlYNs2VFWlcxCZVq28L32dBHcabQHAgw8+iLVr1+Lmm28Gy7JY\nvHgxHn/8cT8Pp2SCMqVVTShMFmeqqSenPUStTD35Kfd58+I5dEZ9JElCIpGApmnIZDLjOu2W8nFr\nebSAVB9fNw/dsGEDFi1aBCD7Rrn22mtx7bXXIpVKIRaL+XEonqApLTKdcoSzfFshTNVwj+M4mKaJ\naDRKF7EAYFkW8XgclmVBVVWkUim3BqjatrII8oebWlkGXwl8HeFxhruB8X1qYrFYVf8QgjTCE+QT\nS7l49bqeuC3CTFc9TTZK4/S3qdb3IcmPZVl3mwFneXs1bmXh1zHatl1VYZDMXNnXdeb21ahWQanh\nqeafQVAVsurJj20RSPXJ19Qwk8nAtu2KbGpIvDHxmlRL54iyB54gyNdpmZCZmirQ5NuR26mloZVN\npFC5W1k4y9srsalhLQj6qrBK4nvgyWQy7kndWQXCcRyampowODiIlpYWvw+paEGa0iKll7vqKV+g\ncYbQJ25gSQXCwVKJo70TN5d0prsmFjoTEgS+Bp7+/n58/vOfR11dndujQ1EUrFq1Cvfeey/+6Z/+\nCQ888ICfh1QSFHjITKaeVFWlqacaVuk/Y4ZhTtrKIplMTjnq41eI83MUpJrrSWeiEoO3X3wNPHV1\ndbjtttsQi8XcoXkn+MTjcWzevNnPwykZWqVVPn6fCGcz9eRcIGzbhqZp49oyEFLJZrOVhV/vv6CG\nkHIEkKA+l9PxNfCEw2FceeWVSCaTbkAYGBjAL37xC3R0dGD+/Pl+Hk7JTFbDU21Fy0D1pH8v3rAT\nVz2VauqJut4Sv5Xqg8B0W1lUy/mi0tVqAPGbr4FHURT87d/+Lf7zP/8Tmqa5fT86Ozvxwgsv4O67\n78aNN97o5yGVRFCmtKoxoM3WVIHGsqxxvWlo6omQE5ymhuFwGLquQ1VVmKYJRVHcWiBS+YJ+jp+K\nr6/QsbEx/PrXv8auXbtg2zZ4nsfg4CA++tGP4k9/+pOfh1JSNKVVWQqdeqJVT2Q2jLE0GJYFFw3P\n+mur+aLjbGUhiiISiYS7lUXuaFA1v4+CXsMD1O6Ikq+BR5IkrF27FhzHQVVV8DyPaDSKD3zgAwCq\n94UWlBGeauGM0gBw93PKDTcAxgUap50+rXois6WPJiEfOAylqxty5xHIB7uhdB6B3NUNfXAYXCyC\nuddejvm3XofY2pWzuu8gvA6dkBONRt1RHy+aGlbrtWEmyv29BfV5zcf3ouVf//rX2L59O9555x3Y\nto0NGzbgpz/9KYDqfeKD0niwksxk6gnI1sc4oYamnkghtIFj2TDT5YSZ43/u6oYxmpzya81UBkf/\n7Tc4+m+/QfzMNWi75VrM/fhlPh15+eVuUeKM+jhbWaTT6ardyiLIyh2wysn3Sdenn34af/3Xf42L\nL74Yv/zlL/HhD38YN954Iz75yU/6fSglw/M8jfAUoNipp1QqhVAoVLNvXjIztm1D7emHcrAbcmc3\nlK4jJwLOwW6YqUxJHmfs7R0Ye3sHOv/mUTR+4jIs/OwNiK5cXJL7riZB2cqCBI+vgUfXdXzrW9/C\ntm3bEI/HsX37djz77LNYt25dVQeeoNTwMAzjTgmVwlSrnmpp6olG+rxnmyaUI30nAk2XE2y6oRzq\ngaWovh2LMZrE4E9/jcGf/hr1552Jtj+/Fs0fu9i3x68U1bqVhd+tLoh/fA08HMfBsizE4/Fxja0E\nQfDzMEqulmt4pgo0+Xbkzh2pCVKoId6zNB3KoR4kdh+AfuQotEM92UBzsBvK4V7YeuV96Ei8+jYS\nr74NoWUOmjd/FIs+fyOiixeU+7B8R1tZTI12S/eHr4GHZVlIkoREIoH6+nrouo6///u/x4c+9CE/\nD6Pkgh54pqqlKeeqJ2fkpFbfvEFkykq2QPh4kbAzWiN3HoHa0w+UcATST/rAMfQ99nP0/fD/xZxL\nPoSG669A3bUfATwa4ajUkYOJW1lomgZZlidtauig9zkpBd9reP7hH/4BIyMjqK+vx/XXX4/W1lZ8\n/vOf9/swSkoQhLzN5aplKmPiKI2qqjU59UT8YSRTeQuE5a4j0I4OAVXwnimYZeHYC6/h2AuvofvB\nH6D95k+g/c8/Aamt9HsIVvr7MncZe+6Iv9PUUBTFiv8eSHVhprkgl/zMk0qloOs6NE2DIAiwbRuj\no6NYunRpqR/KN6Zp4pJLLsGzzz477nZVVd3VC+U2k6knR+4IjTPHXoknnnQ6jXA4XJF1ALksy4Is\ny4hGo+U+lClZloVMJoNYLFb0fenDo5A7syHGCTZKVw/kriPQh0ZKcLTBwfA8mj96ITpu34Smiz9U\nkvearuuQZRl1dXUlOMLJjY6OIh6Pl2yDUWcbFqepoROIMpmMG4K8lkgkEI1GfWmkaFkWEokEGhsb\nPX8sRyaTAcMwCIez/aOcUfkAmfQN5PsIzwc/+EFkMhm3kC2TycA0TRw6dAihUMjvwykJpzapnJzg\nOlmgyZ16ckZmJk496boO0zQrIqAR/832QqseHTq+8ulITrA5vpw7MebRUQaPbRgYfPb3GHz29wgv\nXYj2W67F/E9fA7HZv4tgpZhsKwsA46bLSenU0vPpe+B555133IusYRh49tln8dprr9XUk16ofDty\nTzf1xPP8jKeeqmUKjvjDWc4tdx4PMzlN9+SD3bDScrkPMXDkA4ex/28eRefDj6Pl6kvRftsmNJ57\nZrkPqyxyt7JIJBIwDAOjo6MQRdFd3k7IbPj+ipEkyf0zx3HYtGkTfvjDH7pDltVqsqAw2wAxVaCZ\natVTJU89kcplGwaUI0ezozSdhzG2twtGTz+UzuzKJz+Xc5MTLFXD0aefw9Gnn0P0tGXouHUT2j75\nMfB1xU83VhvnfBcOh90u/blbWVRzU8NyFGM7myDXIt8Dj2VZGBkZgaZpaG5uhiAIuPfee6s67Ewm\n34hJKaaeCJkNS9WgHOyBfDBn5dPx+hr1SB9sg3Zzr2Tpnfux5y+/jf0PfA+t130EHbdfj7r1p5X7\nsMpiYlNDRVFK3tSQVoQFl++B58knn8SDDz6ITCaDb33rW9i8eTN2796Nc8891+9DKancN8jEqSdV\nVceFGwDjAs1sp54ImcjMKOPqaLJFwseXc/cOVO1ybnKCmZbR+2+/Qe+//QZ1Z6xG+22bMG/TR8FF\nZr95abWb2NTQ2coCQEU3NSTl5dsqLcuywLIsVq1ahWeeeQbLly/H2Wefjddeew2XXXYZfvazn2HR\nokWlerhxFEXBhRdeCFVVoWkarr76anz7298u6j7T6TQ6OzvR2dmJAwcO4Mknn0RjYyMOHjyIf/7n\nf3Y3RAVOXvVUqYHGMAzouu5W71c6Zxq0VCtEvFKqVVpGMnV86ilnlOZgtqOwdnSoREdLqglfH8e8\nG65Cx22bEDttmXu7s9IpHo97+vhOixGvw0UymUQ4HJ5yNZFt2+7ydl3XCx71KfXKs6kYhoF0Oo36\n+nrPH8uRSqXc5waA+4E7QCpnldbixYsxMnJiWWpvb69bwOyVUCiEl156CZFIBIZh4LzzzsOrr76K\n8847r6D7e/TRR3Hfffdh0aJFWLp0KZYuXQqe5/G5z30OS5YswZIlSyBJEjRNg23btOqJzJg2NOL2\npMkGmxOroIzhRLkPj1QYIzGG7n/5v+j+l/+Lhg+tR8dnN6Plmo3lPqySm8k0U7VuZUH841vgcV6s\nH/7wh3HnnXfixhtvhGEYePjhh7Fs2TLPP4lEIhEA2U8+pmmiqamp4Pu644478KUvfWncm+eCCy7A\nlVdeOe7/lXpvKq/RKi1vTHxe1b7BE1NOXUegdh8FIwhQe/thazpg2bAtC7ZuwNI0mLIKVhLBxqOw\nxtJl/E5IJRv907sY/dO7EO59BK03XoU5n7wK8bWryn1YZeFsZZG7gelMt7KgGp7g8i3wOC8iVVVx\nzjnnoLe3F1deeSUWLVqEG264wfOmbJZl4YwzzsCBAwdwxx134LTTCi/6y9cviN4gxGFblruc2xmp\nSe0/BONwH+RDPZMu55YWtCG0YB7Gtu2GlZlkyTfLgotFsr8iYbAhCawkgBEEMCwDgIENG7ZhwjYM\nWKoOW1ZgpmUYqTQtJa8B+tAIun/wJLof+zmaLjoHHbdvRvMVF4IN1rTFjE3cykJRlGm3svBLOT5g\nTgx0tXTt8u0d4IyG3H///QCynUANw4AgCPjtb3+LZcuWYcGCBYjH454MO7Isi61btyKRSODyyy/H\nyy+/jA9/+MMlfxxSG2zDgHK4L6fp3vFpqK4jUA73wVa1Wd+neqQP6pE+cHVx1J97BuT9h6H1T6jN\nsSyYyRTMZKqwA+c48PEIuGgErBOYRAGMwANsdkSSY1jYpglLN2CpKixZhZnOwBhLw5ZpmXrVsG0M\nv/gnDL/4J0jzWzD/Mx9H+y3XItQ+r9xHVhYTmxoqilIRW1nUUuAoN98j/9atW/HUU0+hp6cHtm0j\nGo3iP/7jP7BmzRp86lOfwg033ODp9FZ9fT2uvPJKvPXWWxR4yJQsVct2Dna7CZ/Y/0ntPurZcm4z\nOYbEa+8AHIv4hrUwkylk9nSV6M5NGKNjMEYL64TMCDy4WDQ7whQOgQ2JYEQRDM+BYVmAAWzLhm0Y\n2Sk5VYOZkWGl5WxgKiAIkuKpvQPo+j//goNbfow5HzkfHbdtwpxLz83+zIpQrVPgHMchGo26oz6q\nqiKTyUAURZrSCjDfAo9pmuA4Dl/72tdw5pln4vOf/zxkWca8efOwfft2fOITn8BHPvIRT/rxDA0N\nged5NDQ0QJZlvPDCC3jggQdK/jik+phpOadA+Ajk4/s9KZ1HoPYNlnc5t2lh7M3tAIDIacvARUIY\ne3cXkGejWr/YugFjJAFjpLACakYSwcciYKNOYJLAiDwYngMYFgyyU4K2acLWDFiKAtOZkkumAN27\nxQ21wDZNDP3Xyxj6r5cRXtSO9luuw/ybroHYMqfg+/QjHHgVQvJtZQFkV4WFQqFAbmBay4HO9xGe\nOXPm4Oqrr8aGDRvc2zZs2IBzzz0XCxYs8OQx+/r6cPPNN7sN/m666SZccsklnjxWLioC9t5Mnl8j\nMeYu587tT6Mc7IbWf8yHoyxeZud+AIA4vwXhRR1Ibd8DswoLmG1Vg65qwLHRgr6eDYlgY1Fw0XC2\nhkkSwYoCwHHuSdy2LNiGCUvVsiNMsgwrlZ2SAzVZdMkHe7D/ge/jwDd/iJaPXYL22zah6YIN039h\nQDlbWSiKglAo5K7ycray4HJeY6VSy+GjHHzfLb2npweiKLovKAAYHBzEwoULoaoqQqFQ1fSByXXh\nhRfi2WefHffirba+NtWyq7fD6bDK8zy0weGc5dzd45rwFToaUcnYaATxdSuhHOqF2tNf7sOpGmw4\nBC6eDUxsOARWEsEIPBiOAxjmxAiTrsPSDFiKCjMjw0xlsgGzilZdFiKyYjE6brsObZ+6GkLD9Dut\nDw8Po7Gx0fOLtp+9cXK/J6epoaqqnmxl4Ve/pFyJRAKRSMTtacTzfMX3Mpul8vfhcRoP/uIXv8Cr\nr76Kuro697ajR4/iRz/6EV588UWsW7cO69ev9+uwSkYQBOi6Tj13PGLbNrTjy7mzozM9SO07CO1Q\nD5SDPVU52lEMK51B4o/vAiyL+JlrYCkq0u/vK/dhVTxLVmDJCvQCv56NhsHHY2AjoeyUnCSA4U8E\nJiA7bWSoKhjDgqkosDIKjFQm21Kgwkd8M3u7sPerW7D/wR+g9drL0XHbJtRv+MD0XxgQEwcAJm5l\noapqybeyKIdqPOZS8L0Pz0UXXYRVq1ZBkiRYloVoNIpMJoPGxkZceOGFvnacLCUKPMWzLQtq99Fx\nK5+UnqPgIiEoPQPQh0ag9hyFWWDBbSBZFsbe3gEAiKxcDL4+jrF33qf9sTxipWVohS7tZxhwdTHw\nsQgQEiFEo8cDkwCGY7OBybZgmxYs3YCtZnswWZkMdCcw+cSSFfT9/D/R9/P/RHzdqWi/dRPmXX9l\n9tjLwO/SgImBIF9Tw1JsZUFTWv7yPfCcccYZyGQy2LVrF44dO4ZwOIz169cjHA77OqxXak7gyUU1\nPCezdAPq4d6cHjXdx4uFjy/n1vJ/9pYWtEFqb4Usq+Cb6iHNbwETjWSHnVMZqH0DMAqsCwkKZyWX\n0NqMyLKFSO3YBzNB4bBi2Pa4lgKzXeDPcNzxHkxRcNHQ8ZYCzpQci+wSuWwPJlNTYSoacHyVnJFM\nwcooBR322Lbd2P2lh7Hv/kfRtvkKdNy+GbE1K8oeQsrFaWooSdKsmxpWgok/t0o+1lLzvfFgV1cX\n7rzzTvT09GDlypV49913sXHjRjz44INoaWmp2sTL8zzMMq6eqSSWokI+2HN8v6fjm1ke3yZB6T5a\n0Cojp0cN39yI6IrFSO3Ye1IvGr6xDtL8FnB1cYABzFQGWt8A9MGRSe41mPT+IST6h8BEQqj70Hqo\nPUehHu4r92GRItmmCSMxBqPAEMvwPLh4NLtKLhJyezCxAg84oxOWPb4HU0aFkUrDGEvDTKbQ/eOn\n0f3jp1H/wXVov3UTxIs2VOX5uhTyjfrIsuzu8SeKYsXWxtTqz8zXGh6O47BlyxZs3LgR99xzj/tv\nN910E5555hncfvvt7v+rNvlGeKrRTD+1manM8UZ73Sc2sjz+u9Y34FmtgjE0gsTQCNhoGLEProN6\nqAf68Y0zjZEkjJHkSV/D1cUgtbeCr4+DYVmYqQzU/iHoE5v6BYydUZD807sAgNj602AbBtLb95b5\nqEi52EaRLQVEAXw8CmFOA1hRwNF/fx7Wf/0eIyuWoP3T1yCy7JQSH7H/Cv3AnW8ri2QyWTWjPrXC\n92XpPM+71eGZTAaRSKTs7b1Lgef5qg88E9+QRmIM8oHD2RGariNQDveC4Xlk3t+P5Jvvlekos6y0\njNTr2wCeQ/zsD0AfGoHSeSTv/zWTKWTydCbmYhFI7fPAN8TBcBzMjAytfwha36DXh++71Ls7AQCh\npadAbG7A2Ls7J50+JAQCj9D8VghzG8GFJMCyYYylofUPwRxLw25pRnrHXmg9AxjFSzj0Dz9F4wUb\n0HH7Zsz92MU1u40FMLutLMoxo1HLZRZlKVr+yU9+grGxMZx55pn43e9+h9HRUaxbtw4AqnY322od\n4dEGh92eNHLnEYztO5jd82mK5dzhpQtRf/5Zxy+YDOSuI9AHytTPxjAx9kY2fMVOXwVbN2a8WslM\nZZDZ03nS7WwkDKmjFUJDHRieh6ko0PqPQev1buTKL8qBQ1AOHILQ3IjIyiVI79wfyGX7ZAYYBtL8\nFohzm8BFIwBsmBkF2sAwtKODUA71QDnUk/2vAo/46asgtbdibOuubFPOXLaNkT+8gZE/vAFx3lzM\nv+kadNx6HUIL2kpyqNVY6pCvqeHErSzKeWy1yNc+PM6LdufOnXjiiSfQ3d2NVatW4XOf+xzmzp3r\nLlOvRp/73OfwhS98AcuXL3dvq5S+Nu7u3MfraUxFgbzvMJKvby1qObfYMQ+hBW0Ye+d9SPPmQmpv\ngamoyOw5CCudKeF3MDuRU5eAi0Yw9u7OkvZNYUMSpI554JvqwQo8LEWFNjCc7YNTpf1ZGElEfP1p\n0PqHoHR1l/twiAfE1jkQW5rBx6PZ/dIUFfrQKJTe/mlH+UKL2hHqmIf0rgPQZ7sogGXRfPl56Lht\nM+ZsPK+obSz86vdjWRYSiQQaGxs9uX/btqHrOhRFcXcfYBjG1wU7IyMjqK+vd6+1giBU7XV3EpO+\nSHxvPKgoCjKZjDutZRiG+wOYM6fw9ublduedd+Lmm28etwu7n4FH7RtEZt/BbKg51ANL1ZB47W3I\nnUfy7pDNNcQRP2MNbE1HevcBGEOFF/ZmRwsWI7VtN8xUBgzPIbxiMYTGOujDCWT2dgGm/4HAWdk1\n9u5OT/dwYiQRUntrtrZBEGCpWnaKrbuvLN93oaLrToVlW5C376v6kaxawzfWQ2qbC74+lp2elVXo\no0nofYMwM7NbRs9GQoh/YBWMsVTJejuFFs5H+y3XYv5nPgGpdfbneb8Cj2maGBsbQ0NDg6eP4zxW\nOp2GYRjuqI8kSZ5/jxOfSwo8J5TsrOek2e9973u4//77MX/+fHerh0OHDuF73/se7rrrLvf/VZsv\nfelL2LRpkzs1B/gbeDq/eBfUFIeRV96DMZJdxRFetRSh1rlI7dgDfZJAw0YjiJ++6vj+RRZS7++F\nXWCfEa4uhtjaFUjv6oQxfOLTIBePIrJ8EdiQCKWnH+qh3oLuv1BTrezyEiPwkNrnQWhuhM2xYEwT\n+rHR7Eq1Ct4TKrSoA+K8ZqS27oSl0GaflYKNRRCa3wK+oQ6sKGb3NUuOQe0dKHjlVq7IyiUQ5zQg\nuX2PZz1/GIHH3KsuRsdtm9D04Q/O+OuCGHiAbLd4y7IgCAJUVYVhGJ5uZQFQ4JnqC0v+Mc80TTfU\ncByH/fv341e/+hU2bNiASy+9tGqntb7yla/gqquuwllnneXe5lfgMTNpHLjhWoDjwS1cDi2pIbXj\nCOQD2WARXroQ4SULoRwdQGaSVTqMJCJ+xmooPf2QWpoA28bYe3sKujAzYQnx9adB6erOWwAszpuL\n0KJ22JYFef8hGMP+1JCw0TBi606F0tkN7Wj5CpMZnsuOCDU3gZFE2LoOfTiR3YG9gnYT5xvrED1t\nGTJ7uiYNzKS0GElEqL0VQlMD2JAE2zRhjqWhHh305GfA18cRW7Mcav8xyPsPlfz+pxJZvgjtt23C\n/E9dDaFx6m0sghx4bNtGJJJt6Oj1VhbAyc9lADdIrZzAA5yoEjcMA4Ig4OGHH8bY2BgeeeQRGIYB\nvgor/L/2ta/h4osvxjnnnOPeZts20uk0YrGYp4+tHNiPw/fc5f6da1sAuT8BLl4PdSCD5Jt7AADS\nwjZEli+CJauTj3bwHOJnrIbePwR9dAzRVUthpjJI7yhgOTPPoe7MNdn6kIM9+f8PwyC8dCHEljkw\n0xmk93TC9npUwfkep1jZVRYcB2l+C4S5TeBCEizDgDGShNLdB1uebZu6EhJ4xM9YDePYqO8XxUDi\nWAhtcyHNnQM+EgZgw0hloA8MQz066P10IsMgtnYF2HAIY1t3lT1ks+EQWj+xMbuNxdnrTvp327Yx\nMjKCpqYmz4/F78CTyWRrHZ3A47Bt213erut6ybaycJ7LWg08vieL7u5uvPfee+B5HpZlYXh4GG+/\n/TYuu+wyANVbPS4IAgyjPNMUev/RcX83+45AFCWw8RDkPbsx5+KVsJkIRl7ZDvVwH8S2uYh9YCVs\ny4Y+NAx578ETX+ysemIYxM9cDf3YCOR9hyC2NiO8dCHUgSEo+w/P7MAME8nXtwEAYmeuhpWWkdk9\nYVWUbUPef8i9kDKSiOjaleDrotkVZPsOlf4CUMTKLk+ZpttgcRyWzY4ItcwBFw5lG9CNJqF0H81b\nn1VyuoGx4z/H6JoVYEUBY1t3VW2htl/EeXMhtBxfAcUAZlqGOZKE2tsPvTv7y9fjaZ2DyPLFkA/1\nIPXeHl8feyqWrKDvqWfQ99QziH3gVHTcVr5tLMqxGizf4+VrapjJZGDbdlFbWUz1mLXAtxEeZ6rq\nmWeewUMPPYSOjg4A2X1Irr32WmzevLlUD1UWDz30EE4//XRcdNFF7m1+jfAM//pXGPq3n+T9N65j\nMdJdfTCOHQM/pwnC3A6MvLYTxshYtth4xWIYqTS4cAhj23blHV2JrVuVbVp3PBSEFrVnt3k42ANt\nljt1R9euBMMwSL23e0b/n2+sQ3jpKWB4Dsrh3uzScA94tbLLUwwDcV4zxNZmcJGw24lX6en3fN8l\nccE8hDrakNq2G9Ysi2KDhJ/TCHFeM/hYBAzPwVI06MOjUHsHyj5yAmS7Kzs1etUUUrl4FPM2X4GO\nz16P2Orlvo3wGIaBdDrt256OmUwGDMMgHA5P+39t23aXt2uaVlBTw3yjZbU0wlOWKa0g+va3v40V\nK1Zg48aN7m1+BZ7+x7+PxP/335P+OxOKAI1tGHs3O6rBhkIILVmOsfe7IR/oBXd8Hl851AuhvRV6\n3yDUwycXFkdWLwfLc0htOxFWIquWgm+oQ2Zv16z2sgqvXAw+HsXY2+/PagRH6pgHaUEbbE1Det8h\nWCUuQvZrZZfXhJY5kNrmgo2Gs03jkmNQuwdgJku7txZXF0ds7XLI+w9DC2jnaq4udnwFVBwMz8PS\nDenWdP0AACAASURBVBijSWh9AzBT5Wu/MBXnfSLvOwR9aLjch1OU+rPXoeGGK7DkM5/INkH0kN+B\nJ51Ouzuyz4Zt226tj23b4wqdp5Jv2T0FnhM8KVrmOA5PPvkk3nzzTfzjP/6jO0dZzb7zne9gwYIF\nuOKKK9zb/Ao83ff/NTLbtk77//hTlmFsdxfMxPHtF1gW4eUr3DofNhpBZO1yqPsPQ2xrASsJ2RGP\nCUurw8sXga+PjQsrDM8huno5GElE+v39M+7DI50yH9K8Foy9swP2bAukOS5b/zO3EUZiDOk9XSVb\n/VSulV1eE5obIba1gIsdbzSXTEPt7c+7JcescCziZ6yGOZY+edqyCjCREKS2FgiN9WAlAbZhwkim\noB0dqprGjGxYQnzdKphpGantlTNlVSpCUz3aPnU1Om7b5Nk2FuUIPBzHIRQKFXwfTq2PpmnufU02\n6lPrgads1cEcx0FRTuze6wSvan3iJ9stHfB+Xljrm9nGkMah/YjMrYO1sAPp7dmpG3lPdrQmt84H\nHItwLAKlqxtCUwMiKxYjs/+Qu/eUvO8gACB0SjvEec0Ye3sHbMN0R37YkIT4WWsBy8LYe7sBY/LN\nQtVDvVAP9WZrhJYswNjWXbDkGe7qbJqQ93ZB3pvdJZyNhBFZvRxcJAy1b6CoRnq5e3bV/T/roRw4\nEogRDH1oJO9qH74xuwM9omFwHAczlYbaOwjj2AxXBpkWxt7cDiA76sdFwxh7d1dBG8V6RuCznYXn\nNGZXQFlWdoPZgWPQB45BOXAYhe0nXl6RFYsgNjdhbMdeJP53+g8+1UofTuDwD57A4cee9Gwbi2rs\n6DybrSxqXdmmtN5++21s27YNt956q1cP4avHH38c0WgU11577bjbU6kUotGoZ28i2zCw77o/m/Xc\nPL9oRbbfxoSRGK6pEcLcDoz+cReMsQzqzloLtbcfas8A4qefCtuwkNq2a9zXiG1zEV7UgbF33z+p\nbwvfEEfk1KUwU2mkd0xfGJxdCr08O7JSZG8RobkR4aULYQNQuo5AHyhiaJ/nED9zDfTB4cpa2eUx\nviEOcX4r+LoYGJY9vp/S4IyeS3F+C8KLOpDavqeojt6zwjAQ21ogzm3MTufZgJVRoA8NQz06VFkB\nrAhcXQzxNSugDQ4jc/wDSC0q9TYWuq5DlmXU1U29TL5USjHCk49T66Oq6ritLCzLOmkVWi2N8JRl\nSiuRSIBhGFiWhVQqO12gqipSqRQaGhqwZMmSUj+s5/71X/8VDMPghhtuGHe714FH6+3BwS/cVtDX\nsvVNMJgwMrtPXnI+rs6n6yjiZ66GMZyAfOAwpAVtCC1oQ2rnPpijJ0KJUwSdem933toGd6VX/xCU\nA1Ov9GKjEcTXnYrMvoPQB0tTgxBa3AGprQWmrCCzt6vgFU4VtbKrTLh4NLvxan0M4DhY6Qy0o0N5\nR8GyP8uVUA71ZrfhKAGhpQliSzO4eARgWNiKCv3YKNS+gUBvihpdvRxMOIT09j1VXWNWKtL8Fogt\nc8A31CF8SjtaPnZxUdtY+B14UqmUu+TcC85WFk5TQ2cmIndKy6vHLqPyBx5nldaLL76IjRs3oqOj\nA4IgwDRNZDIZ1NfXwzAMXHXVVfj+979fqof1zc9+9jPIsoxPf/rT4273OvCk334LPX/7NwV/vQ1A\nWHwqEu/sgK3m6fUyoc4nfsZqmJns8nI2JCK2bhWMZAqZXQfcL8kWsq5A+v29MEbzj9KEFndAmt8C\nuasHWu8UF0FRQN0Zq6H29J+8XLsIjMAjsmIx+IY66MdGkNl7cNajZFW5sstj2R3oW8E31IHhOZhp\nGdrAELTeQYBlET39VFiyAnnX9HU+fGMdxNYT2yVYmg5jNAG1dwBWphonnwojzG1CdOUSKEd6ofjc\npbwScHVxCG1zIDU2gOF52JYFThJhmya0gWNIT3jvhk6Zj/Y/L2wbi6AFnlymaUJRlHGjPpIklXx0\nqQKUP/A4c6P79u3DY489hiuuuAKXXnopDh06hF/+8pdobm7GZz/72VI9nO+eeuopHDt2DLfccsu4\n270OPKP/9QwG/uWHRd8PO6cFmgIoB7om/T/SwoVunU9k1VLAtpE+3rk5vOwUCHMbkXpvjztyku1s\nvAryNKM0kVVLITTUIb2nc/KuyyybHWUaSXrS/I6LRxFZsRiMKEDtOQr18MzDlbSwDdL86l/Z5SU2\nHILY3gqhsR4Mz4ENh2BlZKR27YfU0gy+IZ7dh8wwYCZTUPsGi57SrGYMxyF++iqAAZKVVgvlAUYU\nEOqYd7zDtAiYFvTEGLSjgzBlBdLShZAa6qEPj2YXJ8zg+WAEHi0fuwTtt29G0wUbZnQcmqZBVVXf\nNvP0M/AA2QLnVCqFSCTijvq0trbSlNZxJR/h+f3vf4/vfOc7+O//PrGM+ne/+x0eeeQR/M///E/V\nrth6+umn0d3dfVJoS6fTCIfDnm2Xob/+IsbefAOjb78H41hxUz82w4DpWIb0uztgT9FEkZ/TBKG5\nHSN/3AVxXgvYkITUuzsBZINDbM0KqEcHTxQNiwLqzlwN9XDflFMaDM9lG9tJAlI79k065eTHlJLY\nNhehU9phm2Z2+4sZrGIK6squYjGSCGl+C/imBnAhEbZhZouF+4fAcBzCyxYitX1fyZfMVyOpYx7C\ni9qR2XsQ2sCxch9OyYnz5kJqbQYXDQMMAzMjQxschto74I7SsJKIyMrF4OviMEaTSO3pLHr1ZWTF\nYnTctgltn/ozCA2Tj974HXjGxsbc+ho/TFyFZts2jfDkKPkIz9atW/HFL34RX/nKV3DOOefgyJEj\n+OlPf4pYLIYtW7ZU7dYS//7v/479+/fjjjvuGHe714HH+tPzsLa9Ck1qhJ6WMfr+Aag9xU39sC1t\nUEdVqIenLs516nySO7rBcAL4+jqMvfO+e+KKrl4ONhrOTvnoBsCyqDtrDbTB4WlXULHhEKJrlsM2\nzWxX2DwrvcKnLgUrCUhvm1kTw4IxDMLLFkKcOwdGKoPMns4pR3LcPbsCsrJrRjgW0vxWCM2N4EIS\nbABmOgN9cBja0aFpey2xkTDi606F0n20pFOX1YCVRMRPXwVTVmfckLOScXWx7BYpDXXZKShNgz6c\ngNLbn3cqkhEFRI9PLxvJbHsJr0ZK2XAIrdd9JLuNxVlrT/r3Wgs8DMP49tg+Kn/gyfXWW2/h3nvv\nxd69e1FXV4ebbroJX/va17x4KN88++yzeO+993D33XePu93zwPPqs7Df+yMABnr9PGh7dwJz25E8\n0IvMFNNT0+J4sB1LkXxz6/T1KU6dT38G6uAYpHlz3aXqACDMaUDk1CWQu7rdTsmxM1fDSmWQ2TP9\nMfINcURWLcvWCuUZ1QkvWQChuRHJt9/3ZeifDYmIrFgCNhaBPjjsLtM/SQBXdo3fLoGBJSvQj41A\n6x1wf95FYRjE158GS9fd6dKgiiw7BWJrM1JT1LpVLIFHqL0VbGMdxGgEtmllpyKPDkKfpgEpw/OI\nrFgEoakB5lgKqb1dZdkrLn76quw2FpuvyL6eEfzAM7FGiQLPeCUPPE7VeO6TbBgGEokELMsCx3G+\ntBAvteeffx7/+7//i6985Svjbvc88Lz8G9g733D/bjTMg3pgP6DKQMsCpI6OILWj8E+NXNsCyEdH\nofUdnf4/A5BOOQU2Ikjv74M0fx7G3nn/xKc1lkVs3akAgNTWXYBtI7p2JQB7xhc3sW0uwosX5F3p\nJba3IrRw/vjH9AHfWI/w0oXZ7S8O9eTdIT78gZVgTasqVnbxzY0QW5vBx6NgWBaWmt0uQesbOKnt\ngJfCy06BMKcByXfeL1lDyXLjYhHE1q6EMjQMdV/lb8QqtjZDbJ0DPhbNTkHJMrSBYWh9g7Bn+OGC\n4ThElp8CobkRZlpGuogVkl7g6+OYd/2V6Lh9M4SlC6DruufNYh0UeDxROYGnv78ff/d3f4doNApd\n192Gg04jwlNOOQV/+Zd/WeqH9dzvf/97vPTSS/jqV7867vZMJuNp8yfr97+Cveed8bfFmqAMHoM9\nkp1OYZrbkEloSLzzXmEbcYoS2JaFSL4186ZmTp3P2O5eSK0t2YaCOXsuifNbEF7cgfSeLhhDI4is\nWjquFmgmpEUdEOc1Q52wx5bQ3IjIysVIbcu/PN5r0sI2SO3zYGl6dvl7Tg+aSlnZxdXFIbVli4UZ\njoel6zBGx6D29lfUxQg48fNM79xffEfoMomcthRcLIr0jr0Vt8KMq4shNL/l+Mo6HramQx8Zhdoz\nALOQfdJYFpFlCyG2zIElK0jvO/T/s/fmUZLd9Xn35+631q7e921munt2zUhCmyWEIkUQCyGMyRs7\nLzEJCo4X7EBilJNjHxM4dgwhh4Q3y0kwtsmBw+s3J8YmBMixUQBjEJJG0qyafV96X2qvW3d7/7hV\nNb1Ud1d319LVU885AzOlqntvVd26v+d+v8/3eepC06Z2dRB514OE/9ajDHzwZxHVymtJY7EYPp+v\narrVBuGpMuFZWFjgj//4jwtVHEmSkCQJy7JwHIe2tjbe+973lnu3Fcdf//Vf853vfIff/u3fXvJ4\nxQnPX/6/uJdOrnjc1QMYpoB9827LSGhuJ2NKzL/61qZaP4uDSEtFXueTujaHFAqTOLVU0CsoMsEj\n+7wL4+mL6LsHUVrCXmxFqYRAEPDv3eVlep27XFgUpXDQG48/ewVrrvScr7JCkvCPDiE2BXHinv4H\ny67KZJfg13NaiuVxCdN1SRxEXSN4ZB+Z8SmydTCerbRG8I/tInN7AqPWxytL3hRUazOST/eCZmMJ\njPGp1ScjS4Ug4N89gNrZhmNkSV68tm0n7MSgH19vF3JzE1LQjyB6wmljfJr01VuFa47a3kLPh3+O\n3o/8XXwDPRU7nmoTnuUtuwbhWYqKOS3Pz88zm1s4W1tblxgh1SN+8pOf8I1vfINPfepTSx6vNOGx\nv/tVuFq8KuKKMmagDfP8qSWPC6EIWTnI3E/fKu69swaWB5GWjJzOJxu1wFVJnr28goTow32o3e0k\nTl1AiYTRejq89tQG2hmFSS9VIX76Am4qg6CrhO4/QObqraLtpmpCDPjwjw4j6RrGxDR2PIlvdJjk\nZie7FBm9pxOlLYKo5eMSkmSn5jB34JQPAIJA4PAYAiwJst0WEEUCh0ZxRYHUqQtrxqpUAmpnK2pH\nG0LA540aG1myM3MYt6dKbkGVAt9wP2p3O1bGwLh6a3vljYkiWm8nansLkl8HQUBUFHBd7IxBdmp2\nCblZb1tt736cvo/+PVr/9uNlH99uEJ6KYPsQHtd1+cY3vsEnP/lJNE3Dsiy6urr4/Oc/zyOPPFIY\nX683vP7663zta1/j937v95Y8XnHC860/hptr60LM1n6yZ0/C8lFzfwDL38b8sZMbHgleEUS6AWiD\ngyCFMJMOmUvXV0wyiX4fwcNjmLPz2LGkl7H11ts4mY2RM9GnEzw0imNaXpii6xJ68JCXm7SFnK1y\nQm5vQRvsQVBkREUmff4q5uQyoiKKqN3tqO0tiH5vhNRJeuO82YmZe9r0UB/uQ+1sq7kHUj5GI325\n8qnxYiiAr6fTa0cqijcFtRDzWlAlhvZuFPpgL3pvJ65lk7pyo2geW7UhR8KeyWU4Z0yZMbDiCURF\nQQ4HcV2X7PScR27KQPZ8u/rpe/Hv0vMPfg6lpTzhotFolEAgULXJ5AbhqTLhGR8f573vfS/f/e53\n6ejoAOCHP/whL730Eq+++mrdEp7jx4/zpS99ic997nNLHq844fmLL8Gd9Sed7NZejCuXcZNFiI2q\n4TR3M//WWcyZ0qsCQiCE428leerMRg65ALm1BaWjHzNukb50C+PWSmG0f+8u5KYQ6et38O/q33Qu\nk9wcxr93N1Y0TursZUL378dOprdVsrfS2YZ/bBjJ78O1HQTBxc5kMWcXsBNJ7EQKKxqvetWgHiC3\nRAjs3UXygqcJqwYEVSF4316vjXPqwub0catBltB7u1DaIkg+HWwHK57EmJwpW9TKWtB6O1F6O3Ed\nh+z1O1XZZ1EsmQYLgG1jxhKe23Y6g2+4D6W5CVwXY2qO9LXykJvlWOwfJCgy/uF++n757xE6vHdL\n26024TEMY4ko+14jPFU3vJEkCVEU6ejowLZtJEmir6+v8N/r1fFRURSsImZ9giCwDqncGuzS2j3S\n7G30gX6M2QWcqWV6gqyBOHmN1v4Q9pExYueuYdxaX3PgJuMIyTiRR44WDSJdD9bsHNbsHKKuE35g\nBHvfMKlLN5dUX/KERI54dyRabwdKa/OGdTnWfIzYK28B3t24oGm48zECh8YQBDyvnypAbg6jdrUj\nh0MIkujFJcx7cQnm5AzRyRlQZHBcgofHcLPmilF80e9DDgWQgn5En4aoqQiygiCJIAjgOriWjZM1\ncYwsTirjeeLEErBDc6asuQWiP3kTQVMJP3wEc2aO9Dp5bZuFPtyH1tVO8tzlQkL8ZqG0t6B1tXtT\nUJKAncpgzsxj3Jkic/02meu3y3TUa0Pr6UAf7AXXLWSelSv3rBQobS1o3e3IoQCIAk4qU2jFZa7d\nRrgzhbCrH6UlgtwUxDGypK/eIrko0marEAM+1O5O5EgQWddwsxbmfJTM7QmyE9NkJ+62w+d/+Bq3\nv/JnRH7mAQZ+/UO0v/epTed31RL1ut5uFlWv8CSTSf7hP/yH7N27l/e9730sLCzw3//7f6elpWVF\ndaSecP78eT73uc+tyAFLp9MoilIxBm//f/8PzJZu1Ob6Q2RtGevqGmPgggAdA8SujZO6WFoFZK0g\n0pIhivhGx3AFP6kLt4t79AgCwUNjiD4NVxLJXL6xsgW0Aei7+tG62nFME1yX+Jtbn54Sg37PWTgS\nRpRlHMu7cJqTsyXrdJT2lsJdtX/vLsSAn8SbZ7ZcRRB1DSkcRAr4kPw+jywpMoIkgQCWZSO64Jo5\nspT2yJIVS+BWcSS9HAgcGkOQpQ1N/q0GMeAjeGgMayFO6tzGFlkx4Eft6UBu8hZSxzTJzi5gTszU\nZIoQckG+w30IgkD6RvlCXdeCoGvofV2oLREEVcG1LKyFGJnbk0uqtqKmog/1obZGcHHJ5is3ZfJ5\nUnva0Tpakfx+wMWOpzAmiwffFoMY8KH3dqEP9uAb6sM33Efrux7eVLVnYWGBYDBYtQpPJpPBsqxC\nhUcUxbpMNlgH26elBZ5Q67Of/Sw//vGP8fl8PP/88/z6r/96JXZVNVy5coVPfepT/Of/vDTXquKE\n5+tfgIUNCnEVFTPYTvbtE+svoB19JCZjJE6tv2isG0S6AWiDg0hNHSQvjJM8XVyjpHS0ou8ZQFIU\n0ldubs2hVxDwjQ2jdLZhpw1Sb60tll4Sl6Cpnlg4niA7OVsWfYN/764V7TZtoAetp8PzpalBpUbQ\n1LuVpRxZEtXFlSUX13ZyZMnESWewkmmseAK3hqPY+mAPak8n8eNvb9jgzr93N3IkROLU+bXH9Rc5\nTYu6hmPbuKm0dz7Uqh20CEp7C/5d/QiSRObWBJkblZsa07o7UDtbC2Z+djJFdnIWY2J6xfVGUBV8\nw32ord7QSnZ6jtTVm1smN3ensZa5Pd+ewFnvHBBF1K421PZWtJ529N5O9P4efAM9+AZ78e8ZLJuG\nZ2FhgVAoVDHJw3JkMhls2yYQCAANwrMcFevFpFIpYrFY4cOPRCKV2lVVcPPmTT75yU/yh3/4h0se\nrzjh+ernIL6ZkWsBq30Q4+wpyK6/GAlt3aRiJtE31idJpQSRlgq5tRV1YBepyzMk3ixOugRZInhk\nH3JzE+nLN7bsaiwosldFCvpJXb2F1urpKDYal7AVhB48RPxY8XaJ0taMv84yuwRVKU6WZAkEwfso\nbRvHsnANEztt4CRTWPHkhlulq0GOhAgcGCF18fqaE2xycxOBfbsxxqdWiNuVtmbUrjakYABEETdj\nkJ2ZJzs+taFpwkpDbmnCt6sfSVUx7kx5FZIyIl/FFMNBBFkG08KOxjFuT+Kki19PBFXBN9SH2pYj\nNzNzpK7e2ryppCAsmsbygetiJZJkJ2bWzSGTm5vQOluRwyHkSAi1oxWtux2xrQW1t53mA2P4hvsQ\nK1x5aRCeimB7EZ7XX3+dj370o8TjcURRpLW1lS9+8Ys8/PDDldhdVTAxMcHHPvYx/uRP/mTJ45lM\nBkmSKnZS2X/y+5De/KLntA+QuX4Vd6G0u1Ah0kbGVjwvnzUCRl1BQB4cI3bsxJpBpKVC1HX0sX0Y\nE0miP1ndQFHt70YfGSB7e4pMCbEVsDwuAZy0UYhL8O/djdwcJnHifFXDLZseu5/oT95c8zlS0E/w\n8F5Sl9ZewOsdgiwhhYJIIb+3sCkKkq4iyDKCKIALrpOrLGUtnEwGO5n2yFIRgbugyASP7sdaiJG+\ncC33oEDg0BiiqpC8eA2tvQW5OYyoeK0XcyFGdnx6U4L5akCOhPGPDCKqKsb4FOlyRJmIIlpfJ1pb\nC6LfB45TMqEQFNmr3LS1gAvZuXlSV25uitxI4SBKdxtacwRBlnEMA3N2wSNXq0zmCbqG3tWO0tKE\n6NMRZAk5EkZta0Ztb8E31Id/ZIjAyNCSak06ncZ1Xfx+/4aPczOoNuFJp9M4jtMgPKug7ITHcRwe\nf/xx/s2/+Tc8/vjjAPzoRz/ipZde4pVXXin37qqG2dlZXnzxRb761a8uebzihOfLny6pQrMW3JYu\njLkY9p3Sre6FYBNZJczca2/hrnJHByB19JBZyKwbRFoyRBF9dAwz7hD9m5NgF9fbCJrnvWMn0yRP\nnvPiEjpakcNB7848V+LO3plad9w9eN9eMjfGCezbTeritaq0KMKPHi2IrNeDoMiE7j9AdhuN228b\nSBJyyI8UDCAFfIi6hqAqng2AriHpKnbWwjGy2AtxspMzdUEepXCQwMgQok/DmJwlfen6piuOxca7\nzdl5MrcncUtonQqKjG+oD6WtGdeF7Owcmet3NtZ2zXnnaB0tiD4dHBcrnsC4M405W6RFLAhe7EVb\nM1IogCBJuJaFIEnITV7FJjAyiH90mMDIEPpQb0nVmmoTnvn5eZqamqo2mbz8/d1rhKfqU1qiKBKP\nx3n88cdxcuLQJ554glis/pxfF0OWZUyzBhMwJU5prQVhbgItGMEcOYB5sbQRczcRRSFK5+FBrGAb\n88dOFfXksafuoEgy2sP3lxZEuh4ch8y5swC0PDmCKwZY+OtTuFkTMRRA7+lAagohyjKu5d3tB+/f\nD6JI4tjpTe0yceIcwfv3E3v9pJf4/sgRb3LjZmn5YpuBky1dIOyaFrFXT3iC7qP7vUiLOsjsqgbk\n5vDSXLCMgTk1i3FnaQtK6+tCG+jBvlKZya6tQgr68Y8MIQW8wNrkxWvE3tjA+azI+Hq7ChqjxePd\n1nwUa6G0668ge5Ubpb3Z87mZXcC4dpvUxWuwWojuIsiREFpPJ3JTaAW5Mm6OL9HhSeEgWlcb+lAv\nqDKSIGKnvMqd5PfhG+ojMDrkVWpGh/CPDKM0h0v/TIrAdd17bnLpXkLVCQ94zsrpdBqfzwd4Zki7\ndu2qxaGUDYqiVJ3wuK5bFsIDICQWUFUd9+BRrLdPglOiaDCdRE4nad/ThtNymIXj58hOL5t2sC2c\n6+dpum90Q0Gk6yF7w1ucen7hEZysxOS3frpq+roY9NP8tx7FSiSJHzu9YeKVePNtQg8eJP7WWWI/\nPQ6SROgdhzDnYmQulz8E0o5tonXiuoWJJP++3Yh+ncQbm/NIqicUIjSamxAVBcfK6UnuTGHNzJfk\ny2PcmsC4NYEUCtD02P2kr9xcMoZcbYh+ncDoLqSgn+zsPKkL17z8tXWQH3MX/Lo3eZcxCuPd6Wu3\nNqTl8chNL0pbC4IgYM4tkLp6a31yI+ViLNqbkTRPwG1GY2QnZrDmY3eT4RUZPfe9NXV3eOPohokV\njZGdnEFUVdS2FvQ9g6jDvTQfHCMwOoxvqNd7bw1sGBW1SKkD1ETDMzExQSgUwufz7M9TqRSZTIam\nJq+XWq0RvXLCNE3e/e53881vfnPJ45VsabmWifOl3y3vNhGwOgYxL7yNm9rEoivJuO19LJy9hnGz\nyMVV0XDb+khuNJpiDXQ9+wiOaZK6dgsh0sv0Xx7HihY/9uDR/bimhRT0e3fIG9QUhB86TGwZYQoe\n2edVVd6+tKX3sRhyc7gseVf6YA9qVwext2oz2VU2iCJqT4cneNVVBATPbTpvxFfmC7kgSwSP7seO\nJVYl0eWEqGsERoeRwkHM+SjJXOZa0WMrcbx7IxBkGd9QL2p7CwgC2fko6Ss313SvlluaULraUCNh\nr3qW9gTcxu3Jgm5PaW/xWsnBAMgSdtbETiSx5hYwp+cRZAn/rgGvSjM2VNDV+EeHUSJetWa5O3Al\nkUqlEAShcDNeaczNzdHc3Fy1qtLy9ydJUl2ut+tg+2h4AL7zne+QzWa9uwbTxLZtTNPEcRwMw+Aj\nH/lI1URc5YLrujz55JN8+9vfXvK4YRgVc7N0jTTOH32m7NsFcDqHMG7ewJnZpD+HIOC09RK/MUW6\niJfPZoJIV9tPx/2DOPEYwsAoybeOIwYCiO2DTL98GnNmZcaP1BQiMDZM+vpt/LsGiG1wXDn8yBGv\nhbTst+PfvwdRU8vi+wLeIrjROI3VoLS34B8ZIn7qfFEh73aB3BrxWlDhoLeIGgbmzALG+FRJepJK\nwL9/D5JfL4tHUx6CqhAYG0ZuCmNF4yTPX1nx/jYy3r2hfUsSvqFelI5W7xq8ECV15RZusXNNkfH1\ndaO0RhB1zQsdXYhj3JnEisYRAz60rg6U5jCipoLrem2quSjGxHTh/FU7WnOtp2F8I4Mogz1IA92e\nl00ggKqqqy76hmGQzWarQniSySSiKDYIT31jexGeD33oQ5imydWrV7ly5QpPP/00Pp+vkJr+pS99\nCU3TKrHriuKd73xndQmPZeJ896vrZmltevutPRixJPb1rVUuhI4+ElMx4ieXEoFNB5Eugn90z+TO\ngwAAIABJREFUCD9eJcQVRZxAO8a1q7nt68jdu5j50TmM2yuJVeiBg17OjusS2L97RZL7WlhLVOzb\nPYDcGtlU62wxtP7urXkLFYEUChA8NEbq0jXMqdr4wwg+Da2nK7dIKrim5SV335na1mP2+bys+Mlz\nOBs0DBQUGd+eQdTWZsxonNSFq7hGdlEuVhhBkXGzJub8Apnbkzhl8C4SJAl9qBe1vRVBEjHno6Su\n3FxBbpS2Zs/xORxc6nQ8OYva3oLa2uwFcUoSTjaLHUtgTMws0f6ImopvV3+B2PhHvWpNYHQYuWkl\nWXFdF9M0C6PSmqah6/oKAe/yOIRKIplMIkkSuq5XfF9QfcKz/P01CM9SVKzhNzs7yy/90i8Ri8X4\nxCc+wQc+8IFK7apqqDbhycMdv4bz+stwq3wtlTzsYIQsGs6FM2z1dBBau0glbaLHTiwhAvLAHuLn\nNxdE2vq3HkJY9L6FphbSUws4ibsLp6AoyAMjzP7kMplrS/VDeb+S+LHTHhk4PEby3BWs2fW9jcKP\n3U9sjdFxra8Lrb+L2BubaycFDo+RrFDkhaAq3mTX+HRl4gsEIdeCakEK+HBd1/Mwmpz1RprrWEuQ\nJ43pa7fI3pla5Uki/pEhlNaIJ7SNJZFDAeRgANe2yUbjWNNzZZ34EyTJa2F2tOIAdjRO+tqtQvVS\nUBVPW9MaQdRUXMvGisaxU2kvriQcRFRkz0QzkcKcmSc7ObsiZV3tbMM/MoS+ux9tVz/NB8fwjwzh\nG+zZtLbGtm0ymQzZbBZFUdA0DVmWEQRhxxIe13WZn59vEJ7yY3sRnqtXr/KBD3yAT3/607zvfe/j\n2Wef5ed+7ud48cUXURSlblXytSI8ebh3rnrE53b58mUA0P3Y4XYyZ06CufV4ASHSSsZWWXj1OK7l\nEYHNBpF2PHkYZ3ypVkjq30X8eJEJFklCHRpl7tgNUheWvib00GFS569iR+OIukbw6H4yV26uazff\n9DP3E/3x2n45SnsL2u4BUuu59S5D+OH7vNZZJSEIhI7uw84YpN7e+HkjtzShdrUhh4IIsnS3nXFn\nqqbp5VWBJBE6uh87kSJ14Sq+PYNoPe0gy9jpDGSymLNeLlbZ23GiiG+wF7WzFUGScm2pm7hpw9PM\ntLcgh4KIsohjmF6+GiDlKudOxrjrLZRaeU6Kmopv94CnpxkZIjA2XNDX5Ks1lSAirutiGAaZTAZB\nEAqV/sVxCJVELQhPS0tLxfeVR4PwVJHw5JPQH3vsMT71qU/x7ne/u/Dfnn32Wb72ta8VEtTrEasR\nHqAqLTrXdXFdF+fWZXjj/yCMXyvfxgURu2sI4+J53NhmnJ2LIBjGUpuYe+04Tu6iKw+NlhxEKoeD\nRHr0om0joX+E5PFVyIIoog6NsHB6ksSpu4JUpb0Fra+roMHJ+9sY41MYN1ZvLZVCesDTDgUPjpB8\n+1JJguT1Kkjlhn//HlAVUsfPLnlc0FX0nE2/qKl3W1Dj09jRMpgxSmIuz0tGkCXv76LouTBLIqIo\nefEVkvf/Lp6oWBBE73FRQBC8eAtBFEAQvUueIOQufd71r3Af5eYeyl37XDf3P7nfD64LTu7fjgOO\ni+vYuI73QrkpgKTrnk7NMLzvUhQQdZ34m2fKpvMpQBTxDfagdrblyE2MzJ0p1JYIamsEQVM8t2MB\nsLzjtAwDJ57EnJlfM+pE7Wzz2k8jQ14LKjfe7RvsWTcMs5KVF9d1sSyLTCaDaZqIolgVg76dTngS\niUShggYNwrMcFanwnDhxgrGxMXRdJ5PJMD8/j6IotLW1VWJ3VcMTTzzBd77znSWPZbNZXNctG+HJ\nkxrXdXEcp/An/29BEBAEAVEUESeuI775fYSJ8o1Nu93DZO7cWVFV2RJ0P3aonfk3zmAtLJQcRBp5\n5AjyXHHfFFeSsPXmwuh6UQgC6tAeYhcXiL1xd1/hR46QPHPx7sSLKBK6/wDm/Ooj6KU4I+ch+nRC\nR/eTvnxjzQpSVSo8eQgCane7JxruagdcMG0vG8u2CgTAIwGLyMASUuCAbXuux7YDtoOb/7dl56Ij\nbG+Cx7ZxTO+x7QilvQW1sw0p5EcQROz03RTztY5Z6+1EG+ghfuLs5vLDRBHfQA9qV5uXAWVbuJaF\nqOtIuuaZZloWTtrATqU9x+GJ6TVjLQrVmhyxCYwOFQz55PDmycrymIJKIZVKFYZaZFlG07SKdQKW\nE4JKokF4KobtQXjypk4f//jH+eAHP8jjjz/Ov/23/5bvfe97PP/887z44otVE4tVAuUkPKsRmrxZ\noyiKhT8FgpP7+4pt3bqE89r3oEzEx23vJZswsC6fXf/JG4Gi4rT0sHDiPMbU9LpBpJ3PPoJ9bXVS\nJDS1kJ6Yw0mtXy1SB3eRuJVm4SdedScfN7FcQxM8uh8nY5A6u7L90/TYUaI/Kc0dGfIVpIMYE1MY\n11eGOVZCwyNFQmhdHTnjNxEnm/UWzVwLSulsQ9Q1jOu3UTpa8Y8MEj+xcZFuPUDQVbTebpSWMKKq\n4phmwb9nqxESUjhI8NDo2rldgoA+0IPW3YEc9ntuwY7jRWVYFnY8hbkQxZiYKel41K723Ej3ENJA\nN+G9u2k6MII+sH61ZjOoFuHJ78fv95PNZslkMoVrqqZpZXUpribhcRyHaDRKc3NzxfeVR4Pw1KCl\n9cgjj/Cnf/qnNDU18cILL/DFL36RX/3VX+UrX/kKe/furVu3y2ItrbUIT57ELCc3y0nNYkKzGqkp\nBe7Nix7xmSyDm2ykDVPQyJ49WYESvoTb0U/0/HWyiQzZjLAyiFQQ6HhgCCe2cux8yab6d5M4XjyE\nsxiU/iEyMzazP/Amx8KPHiVx4lyh5ZZH4NAoIJA8tZSQhB854hkTbgSiSOj+/VjxJOlFni/aQPea\nrbTVkE9yV1qaEHXd82mJJciOT901fSsC365+zHgSa5mQNi/mTp2/WpYk+GrDI6+tyEEfLnj+PVOz\nFQ+Ahbu5XeZ8FDeTRe/rQgz4sG0bMWthReNkp2fJTpXmJSTqGv7dA0snoUaH8e8ZXFKticfjaJpW\nUe1gtQlPfj+u6xZEzqZpoqpqQeS8Vex0wrP8vJBlue4sYErA9oiWyJMrTdNIJBJ861vf4rnnnuPo\n0aP4fD6sMoRM1hJFqyu59pNlWSuqNa7rLiE0eYPCfFuq3KRP6B9B6h/BvXEB5/XvweQW8q0WZlB8\nAcRDR8mcPwuZMlYAHBth4hqRiACjI8RuTaO1P7AkiDQwsj7ZAXBuXiZw330kT5TWGjJvXkMCej9w\nGCMuM/O9t1B7O1GG+0guimtInvIqS/69u5D8Pk+7AcRePUHoocPEX9vAqL3jeCPsQPCwR/iTp86v\nG9BYWMgDPhDATqbJ5pLcM1dvbShXK3BghMzN8aJj4XY8SfTHbyJoKuFHjmDcmdwUEaskvPTuTpRI\nCEFRcLJZrPkYxu1JshPT5XVNFkXkpiBSOIgU8CH5dC/IVJZAFBFUGUeSkCUJO2NgzSxgjE/j39WP\nnUwRLSEjTevuwD8yuExfM4ze312Rak09QRAEZFkmGAwWvNvi8TiSJBUW83q8YW6g8qgq4cmfhM88\n8wyf+cxneP311wthmz09PRUNMbt58ya/9Eu/xNTUFIIg8Mu//Mv85m/+Zlm2bds2169fRxAE/tN/\n+k9cunSJD3/4w4yMjBRIXp7cLK/U1OKHKQyMIg2M4l4/7xGfqU3qcdJJpKyBb/9BjGtXcebKbMXv\nujB5g7ACQk8vvvbHmT9xGePGTfwDnbg31ic8AM7EVdT+frI3Syd45u2biEDP8/uwLD9Tf3Wc8GP3\nk3jzNE7m7vRR6pxnqqjv6kdpayZ+7DTxY6cJPXiI+LHSK0t5JE6eA3JEKuDDmJpD9vuQIiFEScLJ\nmphzC2TvTJVtIQ8+cJDUmQtL3lcxuEbWq16JIqEHDmInU4X3XxWIImpvB3JLxCN5joudSJGdmMac\nmSd94Sqlz8DlIInIzU3IuXBRQdcQc6JpANe2cUwTJ2Vgp1JY0QR2Iono86E0NyH5fZ7hnizhGibm\nQpTMtTvYsZWVtHx70r93F4JPI3XuCoHdgyt8a/wjQ8ihylZNdgryJoG6rhc8fVKpFLqub6rdVc3u\nQr12MuoZNfPhefXVV2lpaSmQgkp/8RMTE0xMTHDkyBESiQQPPPAAf/EXf8G+ffs2tb0f/ehHfP7z\nn+fixYtcvXqVzs5OXNfl6aefZs+ePbzwwgv09/cXKjvbWZvkXjvnEZ/pzfuxuN3DGFMz2DcrvAA2\ndzA/ZaMIaaxbpWuSxOY2UrencdIbXhIBkNvaseVmYm9PIEjSqgu91teF1tdF/OQ5gnt3Fyo/a0KR\n0Xs6UdoiCJoGjuO1oCZmCOwdxrEdjzytkgy/FYQfPeoJozfZlgwcHEWQJRLHy6fnkiKhnK4lP+pe\n4ni3IqNEQt44tt+HqKte5UUSc7lzDo6RxckY2PEkViyxpjamEEYbCSPKEo5h4tq2R4gUGTuRJnPj\n9roTd2p3O749g+i7B2jatwdtdz9ifxdt+0crdt2rRksrnU7jOE7FW1obTTC3LKvgzrzc02c9VONz\ny8O2beLxOJFIpOL7yiMWi+Hz+QrFhXutpVUzwrNiR1Vmu+9///v5jd/4DZ5++ulNvf7y5cucPHmS\n0dFRdu/eja7rPPnkk/yv//W/ljwvH52xnQlPHu7Vt7Ff+x7C7ObaFW5nP2Yyi3lhc6nkG0LfbmLH\nz+AkSh+Llgb2bMnVGUBqbsYNdJKZMYm+cmLVBVjp9Kz0rUSKZI4MKB25yZ9gwBtpTqW9yZ/x6VUn\nf0IPHCT+xmnP5Xewl9hbZ3DXqcSUilLH6UuBb/cASlvEyxkrhZgtInleZIFzV2c0H0PQVORIGCno\nRwr4EFXVG1cXBGzbRnAc3KyFnU5jJ1JY0fiGPI4KWJTRJfp9kDPdy05MgyCg9XUh+XTsVJrMrYlV\ng0hFn4Zv10CB2KjDvTTtH8G3ZxA5FMC27cKibZom6XSacHhryd5roVqEZyNEpNr7cRynIHIWBAFd\n19dtdzUIz47A9ic81cS1a9d48sknOXPmTFk9JOqd8ACY2SzO1beRj/81bIb4NHdgCQrGuTNgVSj7\nSJJQ/RpWoJnY7Tmsm6WLsIXePSRPbj24VAyFkbp2MffaVdIXrt3dvl9H7/WiAkRVwbUc5NYmYsdO\nYW0iyqHp0aNLNB9KawT/3t1evMFmJ4lE0QtB3ai4ugSo3e34hvu9fLJUBqW9BaWzDbkpiKhrCILg\ntYmypmeF47i4lo1rGNjpDHY8R17SW49VWAwpHELr6UBuCiJIEo6RxZxb8IIusyZySwR9oBvJ78PJ\nGGRujReN3lC72z1X4T2D+PcM4hsZwj8yiNbfXVhILcvCNM0leUwNwlO7/eQjLAzDwLKswnRXsYU+\nFosViFGlYVkWiUSiQXjKj+0hWt4OSCQSfPCDH+SLX/xixQyz6rovKwi4g3sRR++DK2c85+a5ifVf\nl8f8FLI/hHDgEMblS7iJrSd+rzhEfwCwkJPzNHX4SbfdT+qt0ioV7tR11N5esre3FqfgxGM48eM0\n9QVoeeRvEz83Reb6bbJTs6QvLm21iQEfem6BTJ27gjVXmvYIWOSW58GcXSD64zeQQgGafub+kmMw\nCpvTVIIHR8tKdpaMd2saol8jsHc3cihA8twVUqfX9lMqGyQRrbcTpa0ZSde9iIR4AmN8BmtugVRO\nVyNHQmgDvV7brCVC9tYE2ckZEnPe55iv1jQ9er9HbkY8nY1v90DdaGvWuZG9p5B3uldVFdu2MQyD\nWCyGLMvour6i3VXN63e114q6X5+2iKoSnlu3bjE3N4coioXclLzK3jRNHn744YqO6Jmmyc///M/z\noQ99iPe///1l374kSdi2vWQ8UhCEurz4CIIAuw8i7joAV07niE+JyempOJKRQR8dxbg9jjNZ3qwm\nweeHtEekpGyagGyhvPMJoq/8FMx1qkqmiRJSMHUdN7P1KoKTTCKnp/G3Oygto8SOnV0xuu0k02Su\n3ETrasNJZWh67H5Sl29grhNbAeCs0jLLT06JukrTo0e9XKfxtQXMUjiE3t9F/I3NtRzXHO+2TERF\nIfn2xSWETvTp3vFdvVW2SSmpKafxaVoUZzGzUJgeWzxBJoUC6EN9BPbuwslmMe5Mk70zibVwrlCt\nCT33rrtVm2XVmnKi2gvNTlnYynn9lCQJv9+Pz+fDMAxSqRSu6xZEzvcadso5UiqqSng+//nP861v\nfYtwOMz58+dpbW2lo6ODGzduMD8/z8svv8y73vWugl9POeG6Li+++CL79+/n4x//eFm3nYeiKFiW\ntaOMnDzicwhx10Hcy6dwX38Z5lcJTFwM20ScuI7eN0zWH8C6Wr67fEHVC4QHQLBM1LkbtLzzZ4id\nOI01szaRcOemCO4bI/5WeVyMrZlpnFQKSVZoenCMbCxLZpmLshNPkpVE1O52oj95E0FVCD9yhMyt\nCbK3Vq+g2esY/jmZLNFX3kKQJcIP30d2cpbMtZVTd0pnG5JfXzJaXwxC0O9pa5pDCLKMY5hY89Gi\n492irhG8by9yS4TUmYtkipgnOumMd3yKvObxrYAsofV2etoaXfOCLuPJgsYnVSTSQgr60XPJ3I5p\nYuSmt3AclPaWbVOtqccboFqj7BYdOU2PpmkFkXM6N9Bg23ZFJ4YbqB1qouH5/Oc/T0dHBx/+8IcL\nj/3Wb/0Wzz//PE8++WRFCM/f/M3f8M53vpPDhw8Xfjx/8Ad/wHve856y7eO5557jD//wDwmFQoXH\nivXztzPW0xy5roN7KUd8Fkq8Y+8aJJsyMM+fLovRmzw8ijhTfNG02/tJ3p4mc74Eh+Ke3aRObXx0\nfDGkSDP2wtKKjtDaT/TtWdTONjJ3JsnevEtolJw41riRIweSRPiBA2Sn54r65igdLUW1JKtCELxA\ny2SKVM7EUB/sxTGyd8lKbrxbbWtB9OlLhLqlGAv69gyidrSQOH2xqG/PescXPLofJ5Uhde6yFz7a\n3YEcCiCIIk7G8LyExqe8OIpVIPp09OE+5EgoF2fhIvp0/HsGq1KtWQuraXgAfD4f2WwWwzCWXCfK\njeVajUoglXMwr7SGJ5VKIQhCxa+heSNAoJCnVckw62pouZZjYWFhSSaZoihlX2u3AbaHhidf/Thx\n4gRPPfUU4IW1BQIBLl++zO0t6irWwuOPP15wMK4UFEXBXK+lUucQBBFh5D7cPYdwL57EPfZ/1ic+\nE9dRW7sQ9x/GuHQejK21ksQ1KmjS9E1CXV0oTQ8Rf+21tTc0fROluxtzfPMmenJr6wrC487eJNyn\nYaky5vg04YcOY0zNYly7jTkzj9IpofZ0kM3lMsVeO+kRlQcOeMnbi9yWzel5BEVeMytp6c7dwih8\n6KH7QFeQANd20Ho7vNbP+BTZmxNLiNh6kIJ+AgdHMeeint/NpQ3ElOQmsuS2ZiRdxbVsHAGC9+3F\ntR2S62h8RF1FH+rz8q3aWyAUQGtvKXjW1IO2ZqdqJ3bSe8r7o/n9fhzHKXj6VCLCooHaoCbGg089\n9RT/43/8D6LRKAcPHuQv//IvAThw4MCS59Ub8i2txag3DU+pxysIIsLoEdw9h3EvnsA99jJE13AG\nnp1ADoYRx/aSuXETd2FtF+E1Ia59fghzE+ihZqR3Pk709TdwV/PeMbNorc1Ysxputnhe17qHstpd\np2kgm1foeM9h5o/dJDs5S/D+A9iJJOkL11B7OlE6WzEnc5+D6xJ/wyMqwcNjuI7rEQHXRWlv8chR\nMazR+nGzWVKnzqMP9iD6dRJvvr3h9+fftxu5KUT85Ll1hc754NF8tWZx4Gbm+m24XvyGJnBwBASR\n5KnzCKriOQuPDePb1Y820I3W24V/90ChWpNfhHbgdEkD2wCCIBRITj6xPRqNoihKQeTcQH2iqt+c\nJEkFLc19993H17/+dV555RXuu+8+/st/+S8F8756JTyyLO/4Cs9yCKKIMHYUd+Q+3AvHcd/4P6sT\nn0QM0cjgGxrCmA5h375WueOKz6NoGZofup/4xauYd1bqSwCc2UkCB/eSeHOTep51yKE7fY3IqB9j\nz2Gif+PtI3hkH07WxE6mUNqaV7SREnlH3v17cqPtNk4647V+wsG7rZ+ZebJ3JjGu31kRPhp++DDx\nN87gWnbBJNG3ewC5pcmLsVjjuOVIiMD+EYzxqZUhqYqM3tuF3BpB0jUvpysXuGnNLhSdGBMDfi+K\nIej3Yhg0FVFTUVojqF1taN2daP3d+Hb14Rvu3/bVmgaqi7xLfS2wPMIikUiU7OmzHmqx1tXz+loO\nVJ2q5j/sAwcO8OKLLzI3N0dbW1vBrbOevwxZlus+D2yzEEQRYe/9uKP34Z5/C/eN70OsiPbEzCJM\n3UTrHsL0+zAvbsKht8TWpGCkkcw7hEd3kW5tXVWv41y/iP/gQVKnNz695KRK8MIxUmjcoOO5B5j/\n6eWCK3Hg4AjKUB+JE2e9UE8xN1bdnhurtm2sWAKtrxNRU0uermp67CjRV46vIDXpyzfgMuiDPahd\nHcSOnbxrEigIBA6OgiqTOn2R5IWraJ1thB85crdaM7eAk8qA6+KkMwi4CIqC0hpBaY3g2g6uaeEY\nBnYyjR1PIuoa+lDvIl2NJxxuZEI1sB2xGiFYLcJiLU+fBrYfalKbi0aj/OZv/iYnTpwgGo0Sj8f5\np//0n/LRj36Urq6uumWhqqrecxWe5RBECWHfg7hjR3HPvekRn/hyIayLMH4VtXsIYd8hshfOgr0B\nomiX/hkLjoM0exN/xyDKIw8Rfe1YccI0exulswtzcgOeQ4C5zkTYEsxcoflQmKw9SHYqhuj34ZoW\ngUNjCLJE9MdvYtwcx7i5VFOktDQRf+O0l9fVGlmzQlOKe3Lm+h0y1++gDfSgD/WAJCGqKtg2tmkS\nfsch3KxZmNCyE6klMQzLP31BU/EN93lkZnRoiXB4cYL3vYLt0MKu12vodsdyT59MJrOmp892w3Y4\nN2uJqhIe27aRJIn/8B/+A62trRw/fpzPfOYzjI2NMT09zde+9jV+67d+C8dx6pIxF9Pw3KsQRAlh\n/ztwx+7HPf9Gjvgsa3eMX0Np60Yc24dx7SpuqsSJn03obcSp66jtfUQeOkr87YvYsWWGiFkDra0F\na17FzZYW3SCGwjjx0o0VfX3t9BwZQmpqIj7jcP2vLrLwE4+cBA6M4B8Z8io5y/K3XMe7SGWu3CRz\n5Sb6YA9KV/vSfK2ce3IxsrN8EspOZzCn5zBuT2LcuIPa2Ya+q8+LhVhDHK10tObchT0TRf/oEL49\nQ+iDPY1qzTJs50WvXKhlq2k7QJIkAoEAfr8fwzBIJpNL9D/b9RyolcnidkBNKjzZbJa2tjbAcz5O\nJBK4rlv3ZKHYlFa9iZbLDUGSEPY/hDv2AO65Yx7xSSxyGp4ZRwo1ow8PY0xN40yXUGExNhcAKkzf\nQol0EB4dIjUbx7h6dcl/d2bGCR7cT/zN0lyI5bY2sqUQHgHCu/swMhZKOAAiRFosIn9vmOi7R7j+\nlxeZ/8lJgkf2kTh13quMREJeJQdwMksJXqFC09eJ1tdN/OR5gjnNTej+A4i+nHg5n001F13p7iyJ\nIEkImoKVTJE8cxnfcD9SaxPOXDQXmXC3DeUfGURuqtwYdQMN1CuWe/pkMhnS6TSqqqLr+qo3740q\nXPVRE8KjaRrJpFceb25u5tvf/jZ79uzhwQcfBOqXde4EDU+lCJogSQgHHsbd+wDu2WO4b/wAkrlF\nOD6PqOroPd1kA0Gsa5fWOsBNEx4AYWEK2R/G3xpCaT5K4s23lvx3+/oFfAcOkD6zfsq55F9fXCuq\nMk2j/WQXEgz8/LshsYCQiuGKIoLj0BSxOPx/DRN9dg/X/+oywSP7vGktx0Ef7vNEzQt3SZWX4N3p\n+c9IEq5h4OvvRgr5cO9YZG5NgON4ehrbBsdB9HkxC9g2ru2A6yIHAx6pGc39GRnCNzKE0x7BHwrd\n03fuDWwvVJMYbGVfgiCgKAqKoqyIsNA0raKePqXgXr7xzqOqhCd/EX3hhRe4du0aAA899BDHjh3j\n7/ydv8NTTz1VEdPBauFe8OHZKgRJRjj4CO6+B3Hffh33zR9AMgbZDMLMbdTOQUTtINkLZ4rqVAR/\nANyt+SkJqRiyrCL4IkQeeQcLbxxfEkkhzI8jd3RgTa3jKL3OtUsO+QkPd+NkLYZeeAIn4MOxTIRU\nDBQdjLsuyk0Rm8N/d4jogszkri6m/+o1pIAPQZbRujvw7xnCTqXBtHAsC8fIYqfS2LEk5kKU1Pkr\n3gh3Xxfx13LhqLm0b3++WjM6iH90GP/IEGpHa9Fjzt+INLB1uK6L4zg4joNlWYV2RwM7H4sjLLLZ\nLOl0ett4+tRrQaEcqIkPz969exkcHGR2dpYjR47wta99jVgsxuzsLK2txS/E9YCGhqd0CJKMcOhR\n3P3vwD3zmkd8UnGEiWsoPUMIYwcwLl8Ec2k7R/AFwFgZK7Dh/VtZpPg0QlsfkUNjJG5M3I2kMDLo\nHT0k5+Zw1/g+ndTqsQ++7lb8HZ7RXse7jiIIAg6AnnOlVbUlhCePpohF06N+hh57jvhkhsREisSN\nWRKnzyP4fYiaSvLkUhdpQZYIHBoleN8+/KND9H3sH+Ab6Ma3ZwjJX9wxu4HywHXdJcTGcZxCMrpl\nWQUzu3zlNBqN1qU+sYHNYTVPn/xI+71MPmqBmoiWv/nNb/K7v/u79PT0YFkW2WyWO3fu8M/+2T/j\nN37jNwrPqzc0NDwbhyDJCIcfu0t83voh3LmG3N6LuHsXmfEJ3OjdKS9B08tCeAAEXKSZmwgdAwTT\nSYy2VtLnPDLhTN0hcPggiTX0PNZccb+hyL5BJE3B195M8/6hpXvUckaF8tqW/0pAobUjSWuHBod7\n4L09ZC2RxLxA+l17yapt+PfuJrB3F749g4hqI/unklhOahzHKTwmCEKB2EiS5JFbx0G0Wf8RAAAg\nAElEQVTX9cKCtrjCk0wmMU2TWCxW8fiCBrYPlnv6ZHLhxbIsb9nTpxQ01qEaGA8CPP300+zbtw9N\n05BlmbNnz/Lnf/7ntLe3A/Vbcmu0tDYPQVYQ7vsZ3AMP4Z55FffNHyIqGr6eboxACPvODe95qlr2\nfYtTN1A6e3Dv3EJ56B3EXnsdAOf6BXz79pE+u9IrSAgEsBdWmux1/swh7LRBaKibYH/HsheBo/qQ\nAKR1fnryyvepyg4t7UA7uP/3R9ffRgMbwvJqzfK/L67WyLK85N+LYZrmmn4uau4cVlWVdDpNOp0u\ni5FdtbETRbfVeE95Tx/wzpV8ante+FzJdtdO+742ippcMSORCJFIBPBOsMHBQaLRKK+88gq/8Au/\nULdMtNHS2jo84vM47n6P+HDmNbS2CFm/H+vSOYQK2boLs3dQ29sxo/NEHn6A6Mm3cdNphNgUcls7\n1szSvDClrZ3sIr2LqMj0PfsO0pPzNB8YRm9ZGQjoLq7wiGtXMF1FXVUi5EKD7GwBeSJTrGqTbzPk\nyUw+XLHc7Yd8tUdVVSzLKmg8yrXo7SQyspPey3LkR9vzie35CIt8MWCnvu9aYdtcNQ8fPkxHh3dH\nXI/tLGhMaZX1OBQV4cgTuAcexjn9KtqN80h7D5YjbH31fcZmUXwBLMekaWSQ5EwM884d9M5eEgvz\nsOi7lYJ3J7SUkJ+B5x4lcWOS1iMjKIHVdDMCjqIX/r4aXCha4SlgnXZYAx6KEZo80VnehlpMbKqJ\nxZM9yzUea400N7AzkD/fZFlGluWCyDnv6VPOyl8x4nivEaqaE578Artv3z727dtX68PZEhotrfJD\nUFSko0/gHnwY5eIJSMzhdHbjJqK46SR2LIqQWCg5bmLd/WWSyJKM3dSGPxXHPHyI1MlTBO87ROKN\nRSPsuQqNv7uV/vc8RPz6JG1HRhCVNX5SAthqCVM6ooi7FqmRKkt4tgPhLRXFRMP5P3A3AbuS1Zpy\nYbHGY7GDr8/nawRW3iMQRbFQ5Vvc7mpEWJQH2+JXtB0vPpvBaqJl2Nll2WpAUFSE/e8AoFDsT8ZI\nT9xEyaYgEcVNxCARxUkmcJNx3OgcmKW5Ji/Zl20hzU8gDuyCy+doeuQhFl47hm/vXtLnzgHgpNNE\n9g7S9cRh0hNztBzYhbBOirtX4ckRnrVIhSCuXcWpYIVnu56jy0lNNptdVTSc19dsV2KzHkRRLIw0\n5wMr8wthQ+BcOeSJfjU9f1bD8giL7ebpU6+oCeHJX7B03Svvz83NYVlWoaVVr2hUeKqMQBi7cxAx\nEFj64zfSEJvFic5CPIoTj3qEKBnzyFBsDtKrj5SD528oTN9A3b2X7NWLND9wmPj1CeTWVqzZWVr6\nQjTvHcBYiBPe1VPa8Qrg5FtVrr3680QRd60qzg7V7yyu1iwnOItFw+CRgsXEph6w0eNc7OBrmuYK\nnU+9vO+top4qjhtFKd/hap4++XZXqXqvxk13lQlP/gN/6623+OpXv8q///f/nkuXLvEv/+W/JBQK\n8U/+yT/h4YcfrtsvRlXVwqhhAzWE5oP2PsT2PmBRRcgycWOzEJ3Djc/jxqNeaywRw00ncGJRiEfJ\nqWiAHOkZGMScGCfUFkDp6KSpVcHf1YqdyeLvbNnAgQkgSriqvnZYag0rPNXAWm2oUkTDqVQKWZbv\nmfJ+/m5/sc4nnU6jaRq6rtfMxK6a1+l6XA/KjeVCd8MwChEWeZHzRrd3r6EmhGdubo7r168D8O1v\nf5vm5maee+45PvOZz/Dtb3+7bsNDZVmu+wrPdhEtVwSygtDSBS1dSyXDjoObmIeFGdzoHG58ATcZ\nyxGhJG48htLaipVK0TEQQQ4FcG0HJeTf4AHk9qoHwFrjPBFE3LWqOBXW8JQL9SAaricsjy5oCJzv\nTSw+D/KePvF4HEmSGm3PdVATp+W86nx8fJyzZ8/ya7/2axiGURAa1ivWGkuv16rVPQFRRAi3Qrh1\nxeyUm4rD3CT27ATBifOIuVaUIG9icclt3NUDCLGZNY/HqZMKz2rVmvzj9SQarifkx5nzOp+8vkPX\n9YbAeZOo9jW6HGnzeU8fXdfJZrNkMplVIywaa1CNNDwDAwOoqsov/uIv0tHRwZEjR/jRj37EwMAA\nUL+lttU0PPX6fhoAwR8Cfwi5bw/C/A3IJLayNQBc3Y8wvUYAqrD9NDzFNDWL21A7STRcCVSqarp4\nwTMMozDOXO83jw1sDMsjLBZ7+jRI8F3UpMIzPDzMl7/8ZX7605+yb98+UqkUjz76KE888QRAzXrS\nW0XDeHBnw23uRBjfCuHJbUf1IbgurqwgFGttieLapKZCFZ58Vca27aIVmzyJabShtoZK3GkvFzgn\nEolCdMXiiIt6RKMysTEs9vTJT/nl22A7Vq5QImpG+wzD4PLly/zpn/4piqLwwgsv8K53vaswuVWP\n2AnGg/WIal0Q3UgnjF/e/AbyFgVa7hxX9eJaHkHEWUuPsUXCs553zeLQy0Ybqr6QFzgLgkAgECCb\nzbKwsNDwcdmGqPR1a3H1Lz/lZ9t2oeV1L1Z9avKOo9Eov/M7v8PMzAxPP/00n/3sZ2lububkyZO8\n9NJLdcvoG2Pp1Uc1zxMn0sWWlovcsTpqPkB0FTdlQcAVty5a3oxoOD/901gYN4/tchedD6Vc7ONS\nzhZHvV6nV8NOez955EkwQCaTwXVdYrEYqqrS0rKRKdP6R02mtCYmJnjzzTd59dVXuXDhAt/97nf5\n1//6X/Pwww/vSMJTj5NP9fodVBShFlxJRlhrpLwEOGquwrNapUZcZ0pr0WJVrFqz2MtmuWg4T3Qa\n321lsZ0+37yPS17n0zAyvHeRr/z5/X5sew0vsB2Kmmh4FOXuhd51XWZmZjh16hTBYLCah1N27AQN\nT+PitwZEEbepHWFufFMvd3Oi5YLb8mqkRhBx16iw2IiYmUxR0fDiP402VAOLsXyip56T2hvYOBbf\nxC6u+txLqElLy+fz0dLSgmmatLa2Mj09ze///u/zK7/yK0BDtNzA9oUb6YRNEp48Cm7LQvHz3BUE\nnDVaWq4kN0TDDWwayw3s8qPM5UpqLzd2arV5p76v7YyaEJ6uri6+8pWvkE6nkSSJf/Wv/hVPPPEE\n/f39tTicsmEnGA82sDbcSOfmX5y7tjmygitKuHcfWroPBJAkXEFAKNIKlXUfKNvHi6eB7YdSFtNG\nUvtSNAjIzkdNCI8gCEQiEX7wgx/w+uuv4/f7uXjxIh0dHWhaCWnS2xTrGQ82UP9wI52rEpV1X5s/\nBQQBV/PhruKVIuQXGlkF01j5hB2apdVA7bBaUnte51MMjWtafaFB6BbFDFUTlmXxhS98gX/xL/4F\noVCIZDLJJz/5Sf7oj/6oFodTNjSMB+8BqDoEmjb32kXngeALsmq4er7VpazSY99GTssN7Czkk9oj\nkQiKopBMJonFYoV0+uVoXNs2jwYBqT5qcquYyWT46le/yttvv1147BOf+ATveMc7+LVf+7W6PRF2\nylh6fqqsXr6DatxpLp58ItyOkoxuYit3P09X9yNkVklsz2soVhtbr5MsrQbqF8uNDJfrfKodwdBA\nA+VATQhP3gUSvGqPLMs4jkMgEADq966hIVquPsp5ruQvrOt51wjhdpTxS5s52Lv70vwIydiaz3MV\ntXjrrFHhaaBKyE/zqKpaID55r6ZqEpGqGIvW0U3eZrDT318pqAnhURSFxx9/nHQ6XSA+giDwnve8\npxaHUzY0nJbrA+s5Da8beNnWC+c3seNF1xpX9YGVXeV561R4GoSnrlGvFYvlSe2O4xSu4feia+9W\nUa/nQT2jJmepJEl88YtfJBqNMj09jWmaBAIBfu/3fq8Wh1M27CTjwZ2A1VK8iwVe5g3YSvKuCTbj\nyirCaoRlVdzdrqP5kLJFBMmwiPCsQmwaouW6Rz3faeeT2k3TRBRF4vH4kqT2en5v1UYtW4P34vdU\nsyvn6dOneemllzh16hSSJDE2Nsbv/M7vFAJE6xE7RcNTT8hXayzLWpHivdxpOJ/ivWXvGkHAjXQi\nzNzc4Ovu/tVRdDCNoqPnbk7N7K5GeBoVnrrETltg8n4+fr+fbDZbSGpvGBluX9zr30nNCM+v/Mqv\n8MlPfpIXXngBgO9///t8/OMf57XXXqtb/4eGhqdyWCwaXl6xyWQy67ehyn08kQ7YKOFZXOFRNQTA\nVXUw0suelqvwrCZOboiWG1gD+Tv5Si9ueU3IYiPD5TqfchgZVi0cuKFx2fGoGeGJx+O8+93vLvz7\nqaeewjRNLMuqW8KzUzQ8tWzBbTTwMpPJ1MQkbUsGhICdj5dQtCKEp1HhaaD+sFjg3DAyXB/VJlgN\nQldDwjM2Nsa/+3f/jg984AOIosif//mfs3///rr+QiRJKghfG1gdWxYNL0Ktzhc30rGqE/LqWFTh\nkXOEp5gwOVfhcVet8DQ0PA1sb+SNDCuV1N7A5lDP62s5ULMz77/9t//GSy+9xPPPP4/jODzxxBN8\n+ctf3pGBZveqaHkjouG8vmYzbaiafLayCsEWiM+W/JIlRymJuIq2JPm8gEKFZ5WfZ6PC00CdIJ/U\n7vP5yGQyjaT2BmqKmhEex3H4whe+ULAtt22bqakpAoFA40dQR1hcrSmmr1ksEi6baHgRanmuOJEO\npA0QHpYfqy8AQpEyf6HCs/Ln6Uryyu000MA2hyAIK5Laa2VkuBp2eovpXrzpXo6qE578l/zSSy8x\nMzODJEm4rksikcB1Xb7+9a8TDoerfVgNrIO12lD5qkw1RcPbAW6kE26e3fzr9eLk3s2JPItqeBqC\n5Qa2CTazgBZLak+n06smtVdLgH2v4F7/HKtOePIf+Ac/+EEMwyj0c19++WUmJycbLLTGWDzmnR/1\nXks0XM5qTb3Bbe7a4CuWfk6u5kfIZoo8LdfSEov8PBv6h7rETr2ubfa3vzipPW9k2BA4Vxf34nW7\nZlfPp556asm/n3nmGR577DEWFhZoatpkOOM2xna64K1Wrck/Dl6LUZble6Zasyn4w7iqDyGbXv+5\nsCJi3dV8Kye04C7hKVbNqUKFZzudq/WI9UI2G5/vUuSNDPM6n8VJ7TuZ+Oz0Ftp2RM0Iz+zsLOl0\nmmw2i23bjI+Pk81u1Lm2PlAr0XIxTc3iNtRqouFMJoOiKI1pihLgRjoQpq6X+OxlFR7VB04RG4OC\nhqfIxb4hWK5bLF5sKrnw1OvClk9q9/l8GIZRMDKE6rynev3cGigdVV/RbNtGkiR+9md/ljNnztDc\n3IwoigQCAT796U/T19dX7UOqa2xENNxoQ5UfbqQTSiU8yz5yR9PBtlduM/fdOA3CU7do/L42j8VJ\n7XkH52g0uq0Ezg3UJ6pOePIlyldffbXau64KKubsW0bvmgbKh43peJZ+F46ig1UkikT0fiNOMQ1P\nhT14GudLA9sFeZ2PIAgEg0HS6XTBwVnX9S07ONcStar43+u/75qOpf/P//k/efnll0kmkwwMDPCL\nv/iLjI2N1eqQtgU26jTcqNbUVhPhhttwBRHB3bjhpKNoYBYLEM19n2KjwtPA9kU1F1BZlgmFQksE\nzuU2MqzFdeRev3ZXG1WnyPmKxB/8wR/wH//jf+TQoUP8/b//95mdneVXf/VXuXTpErCzhH3LNTx5\nUmNZFtlslkwmQyqVIplMkkwmMQwD27YLdzi6rhMIBArCPk3TUBQFSZLu+R9Mzd+/JOOGW0t6qrvs\nWB21SKwE3PXZEcWVXjyNsfQG7mHkBc5NTU1IkkQ8HicWi2GaZlnWjJpfTxqoKGriwwPwgx/8gM9+\n9rM8+OCDgDel9dxzzzE9Pc2ePXt2xImXJza2beM4DplMpqhoeHGS93ZoQ92rztCbhRvphOj0hl/n\n5MiLKykI9t3W1hJiJKtgLxI2Nyo8DTSAKIpLjAxTqRRAI6l9DTRaWjWo8OSxZ88eTp48yezsLFNT\nU5w7dw5N05ifn2d8fLxwApcbH/nIR+js7OTQoUNl2Z7rukxOTvLDH/6Q//pf/yvz8/O8//3v58CB\nA/zZn/0ZhmEUWlKSJKFp2opqjaqqSwhPA/WF0nU8y75bQQDdD6q27PFFP0tlWdRKI0ergXsI6914\n5Y0Mw+FwYbprYWGBdDq9rXMNtwP5qPX+a4GaEZ6hoSH++T//57zvfe/jE5/4BM888wxzc3N84xvf\n4KMf/ShXrlypyH7/0T/6R/zv//2/y7Kt73//+7S0tLB//35++7d/m9dffx1BEPjH//gf881vfpMX\nXngBv99faD812lA7E1tKTtcDXmL6YojLKjyL0ajwNHCPoZTrZT6pPRwOF7Q+0WiUZDKJXWQSshga\nVe2dj6rfLuaV9c888wxHjhxB13Ucx+FjH/tYgZFbllWx8fQnnniCa9eulWVbDz/8MBcvXqStra3w\n2DPPPMOzzz67IgS18WPawdADXkxEJrnm09wi121XDyAYS6uZ7qL7EFdRl9aFGoSngXWwHaoHtUQ+\nqT0vI9hIUvtO/tzu9fMCahgt8cADD1R712WH3+/H7/cveUxRFEzTXEJ47vWT7F6AG+lEmFivKlkk\nN0vzIVjLJrWWaHiWEZyGaLmBbYB6uIFbbmS4nZLa6+Hz24moXyODbQpZljHNIt4qdYSGaHnjcCMb\nzdXKvU7zrUhMXyxadle0tBoannrHTvpt1cPN3P/P3nmHSVXe7f8+U3d2ZxsL7MJSAyht2V16jCIG\nWBAENBAVpUQhIq9oCCtVaeICvmqMaLD8BEUTijEqaCxIFBL1DShIF+nSRdru9Hp+fwzPs2fOnunt\nzJnnc11eyDROmXnOfb7l/hIjw/z8fOj1ethsNtTW1sJut6f0XKTDsVMabPWMMzqdLuycMSN25CLO\n+MIw6ngkFjivzgC1+HEW4VE87GIXHvFMwwSa1E6MDJWe8lH6/oUDEzxxRgkRHkbk8LlF4NUacB6J\n2VhB8OqyAIgEm6BLq4EPD6vhYTBiItCkdlL4zFAuGZfSGjNmDG644QYcOnQILVu2xOuvvx7Xz5cS\nPHKJQjASiEoFPq9JxG/zavWAuH02WISHCR4GI24IjQzJ4GSTyRQ3I8NAsGhLasi4CM/atWsT+vmk\naJmRefAFxcCVc0Fe0XCB8+ikBI8wwiNOaWXcT5bBSDjE/JWYFpJJ7UoyMhSLLCXsU6RkXIQn0ZD8\nMCPzCFnHI1XDo9U3GCDqX7TMUlqMyEhG9ECJEQqe52kXV35+Pu3ukkOBMyM+sNvFOKPVatNe8LAU\nXHREZUCoUqNhDU/9hcSrYkXLjMwlVcKK1PMEKnCOdVJ7sveLrec+WIQnzrCi5QxGlwU+Oz/ICwIs\ncCr/+w7/WVoswsNgpBJiZJiXlwee51FbWwuz2ZyWN7ZKi8pFChM8cYYVLWc20UR5eI3GX+QIani8\nDaals6BsOsJ+/+lPoEntTqeTnd80ga2ecYbV8CQfOS02fEFT4Owh6ecC3Fzx+mxwWj3gtF97naCG\nR8UiPOmG1+sFx3FwuVzwer3wer3weDzweDwxp0IYiSPcNJN4UrvNZoPNZouowFlOa1YmwQRPnGFd\nWslFbtEzb2EJ1AGflV4IeX02oMuigkf4Ol4t+jQmeGQDz/NU0Aj/E144VSoVHWOgUqlgNpvB8zzz\newkTOf22xUgZGVqtVmRlZUGv14cUt8mu4cn0dBbABE/c0Wg0LMKTyRgLwWt04NzOsN/C67P8hYww\nwtMgpcUET7IJJmxUKhX9T6vVQqVSweFwQKPRQKvV+n2GVqtFTk4OTCYTnE4nPB6PLOY6RUMyL6By\nPzZCI0MifGpra6HT6ZCVlQW1+KaFkTKY4IkzUhEeuUUhQsFxHJ1cz4gQjgOf3xTcpdOSz0nh1Rn8\na3P8urTqF0tepQJYSiRhRCpsOI6TvBgHu0CTSA9JfZB0iMFgSEvhw/BHalK7RqOBwWAIOak9kUhd\nfzLxu8YET5xRQls6Izb4gqaAlOAJgFenv9aefu39woVI7Sto5nieRXfiRLyETSwI0yEulyuqOpBA\nsPRFdMTzuIWa1J6Kc8S+E0zwxB1Ww8PgCyObnO7V6v0iNzwniuJodIDLwep3IkQOwoZESnmeD3iX\nrdPp6I2SUPjo9Xp2kUpziFuzXq+nwtZqtUKj0aRV1F8pMMETZ1iEh8EXNAUPDlwQQ0EhXq0eAT16\nACZ4QiBHYUNmMZF/h6SJA7UwC+tAXC4XNbozGAwZLXyUEq0SC1ur1QqPx0OLnBPdvcfElQ8meOJM\nMONBpfx4GSHQ6ABjIWC+HNbLvRod/NyWxREerRawIeNTWkTYEEHhdDpTLmxICzqB4zio1Wq4XC64\n3W7odDqo1Wramk6KlYXbKUZYACuO+LC29vSGCFsS8SFGhskocM70OVoAEzxxR6fTwWaz+T2WqV+u\nZCHHuxdvQVOoGwieAN8DjgOv1tQ/qxK9TnOthTmFRY/JJFTEhpzvVAsbjuOg0Wj8RIjH46Gix+Px\nwG73WQ2o1Wqo1Wq/+hyHw0GHVkpd6DQaDXJzc+HxeGCz2VBbWxu30QaxosSbt2Tvk0qlQk5ODq3z\nIQXOWVlZ0Gg0iju+ciAzVtAkotVqUVdXl+rNiIl06iqT66LAF5YApw+G/wZB9MYrEka8Rud7JEkR\nnmSd+2hTUVarFVqtNi53w2JhQ/adXPwCCRuhmSDZbrK9arUaWq0WWVlZ4DgOHo8HDocDbrcbarWa\nXszI+5xOZ1Dho1arYTQaqYAiEQGDwZBy4cOIHaGRocPhSMik9nRZzxMNEzxxhhUtM4AAIyaCrFu8\nWtqHB4AvpQUkpYYnEQJSjjU24gsA+TfJtgjfR0QN+VMsbNRqNd1uKYiYIYLF4XBAr9dDq9VCo9FI\nCh+yLULIaAODwUAjPszrJT0JVMclLHAWDyyN9Tch15vDZMIET5zRarXweDyp3gxGqsnJB6/LAkfd\nk4Fgiof3S1eJIjxqktKSdw2PkoWNRqOhNTTRbDOJEhmNRrjdbjgcDtjtdtqaLhQ+5IZJ6NAsRJgK\nIV4vWq0WBoMBarVaUXfzSkydEQLtl9Sk9qtXr0Kv10Ov1zNxGwNM8MQZVrTMIPD5TcH9fLL+78Fe\nG8BpGUC90JHJ4FA5CBthAXOswobU3MRD2ISDRqOhjuwOh4NGfAIJH5JOkxI+2dnZNBVCakBY/Ud0\nyHF9JiKZpEWJuCV1PuEix31LBfJYQRVEoJQW+7JlHnxhCSAQPEFTWlq9r3DZ424geKgYSnKERy7C\nRuo/l8vll0qKRNiQtBHpoErVb5OIE3IxM5lM0Ol00Ov1VPjwPE9tLoIJH2ENCGmacLlcfuMtGOmL\nWq32E7diI0N2fQkPJnjiDPPhYRAa1vEEXpS8uixAlwXebgkseBJUtCwUNkQcEL+YZAkbAEEjNgDo\ndpAp1U6nk26TnIVNKMjFTCx8hNstFD4kGiUWPqQGhOM42O12WCwWKobiHfVhEYPYiPb4xWNSO5C5\nN+BM8MQZJRQtp1OXlpzh85uA51Tg+NBzybzaLECrAxy2Bs/xqms/0xgjPOFEbMSznlIpbMgFXdga\n7na7qbjhOA5utxs8zyuinVcsfMxmM/VsISJH2B0WTPioVCoYjUY4nU7a9cPmdSmHSCe1M4Hqgwme\nOENC1IzkIGtxptaAzy0CV/dzyJd6tTpfBEdsOghhhCe8n2ssqSi73S55EY2GeAobYcSGFBKTbSbd\nT6SjJV6tvKmCCB+v19tA+JDjJRQ+wuMiJJHzupJFMi/U6SgKhA7dbFJ7aJjgiTPBanhke2FmJAy+\nsBiggifwYurR6n2CRkJo8GrpCI8camyA0MJGKFjIdgcSNkTMEJO+cFJRpF1b3PadLhf1QJD0hV6v\np8KHRLLEwsfhcNCiazHCsQbCdmc2ryt1kN9oPAk0qT0rKyuu/046wwRPnFFCSosRP/iCYuDHfb6/\nBLuuqDWBIzzX7tI8nApuhyOthA3gi8C4XK6gwkaqGDdSMkH4OJ1OKnxIqkssfEhrvhhhuzOJ+Njt\ndiZ8FAbp3iMOzhaLhT6ejlGseMIET5xhRcsMIZIGhIFeG6C+wgOfEPByahrCTqSw4XkeHo8npLAh\n/75Q2Ljdblo8DCAhwiYUShY+RJwIIz7Ee4eIHlLT5HQ6JVNdQOB5XeEa3LFotfwRGhlaLBa4XC7U\n1tYiKysLBoMh1ZuXEpjgiTNM8DD8MBjBZ+WAs1vABw3xAG5ODY1EhIfT+YwHtQYDcO3/44FUxEZ8\n0RQWMhMRE0zYCCNNqR57oBThIxQzwj+B+nNBjjtJd5H3CFNdUueDzOsSG9yFM68rGccwmcIq2fVC\nyYKYXpIIn91uh9vtRlFRUdK2QS4wwRNnQhkPpgOs3ig+0KGTeU2gsVtCvl6VZQCnbniR8ZIanijb\n0sMtHibRI9LyTTqBhCk0YWdQoiNN8SJdhI+UPYCU67MwUkZ+q06nEw6HAx6Ph/r4EJEarvARz+uS\ny6BSOZ2jeJLM/SJijkT2lHpMQ8EET5xhxoOZR6jiYeQ2hubCidCfo9FJ1/CE2ZYuFDbi6d6Av7Ah\nUQCSvhIOwiTCRmjwl52dLWsvm3CQi/ARHnfxENJoXJ+lurFIOoN8jlD4kK6uQINKc3JykJWVxTp+\nFEyqRWyqYIInzrCUlnKJtiuKa9ICOPptw5ER4s/X6KS7tFTXLjTXBE84wkY4gFLcFSUWNsJ5UcLa\nHLLPDoeDTiiX8vhIN5IlfITHXShqpFrt42GOKO7GIsKHRHwCDSoNJnwCzetiMNIRJnjiDOvSSj7x\nTr/Fu92bz2t8TbSEIXgkIjxQqcCr1HDzgNfppP9WKGEjrMcJJWwCQSIFOp1O0hMmnYmn8AmUigKS\nX7gtFD6kNgcANWaMZEJ7sHldSoKsIUr1/Mn07iyCsr61MoBFeJJLLD/ipPnYqFTg8xoj+PhQwK3V\nQRtIFGl1UOuzoNXrEyJsQu9CQ08Y0uKcScJHnIoKdOzlUN9EajaEg0rJhHbyuIq1llwAACAASURB\nVHhQabAJ7WSkgd1upyIq0fO6EuFXw8hcmOCJM4GKltOpEDidtjUc5GDQ52tPD/GZGh0QIF3Aa3Rw\neHh4zGa63cJaj3gJm1AEEj5K8HERCh/iUUMEgFDYpOrYR4uU8CGiLlLhQ0ZUcBxHPV4SNa+LwYg3\nTPDEGRbhSR1yEDaAdI2NKrcxYDMFf59W50trSaHRQWfIhiorO2QRazIQCh+73e436TvV2xYJgVq+\nSWcUmdWl1WqRk5Mji2MfLeIxBMKIj06nkxQ+gSa0kxqknJwcNq8rClKR0mKRMiZ44g65i2IkDqGw\nISkdi8UiC2EjRDjzSdW4FJ4zh4N/nlYHXquXfI7T6aDOMoCTWcEoqfEQTvpO55ZvrVZLU1PiWV0W\ni0WW+xYNpA5HHPERCp9wJ7Sn+7wugNW4ZApM8MQZpaWDUkm4072FYfZUCBuh87DwguB/YeVD++hw\nKqgMOdLPabPAhTk8NBUIJ33LveWbFOmG0/INyKedPREQ4SPcNxKpIyJQeByJ8BETaF6XwWBQxHFi\nKAP5rqCMjCGWVJTwLj1W4iNs6tMh5OJKCnuduYVwO+zBt0EnbfnO67Nj3r9kQMSBMHKQlZUV9zRH\nslu+AWULH+G+kUidsChdOK+L/CeFuENMGPGJJt2p1MhLsm+KxcdRicc0HJjgSQBSXyYW+ZFXjQ35\nMx7CJlg6RMgFV2Po+CvI4gK7Lnt10pON+az0mn0jTJkIxUE0wkdOLd+A8oWPOEVJBKP4PASb1yWu\nF4pmXpfSYccg+TDBwwhItHdXyRQ2wYQkuSiSFEe4wkYcNYhU2ASCV+nx0mcl+EVTJ27pdBV5moZF\nzK4ARct8gMiP3NFoNA3EAfGDSeeWb0B5wkcoaISi0ul0AgCNVpJ0FzlfiZzXlSyUGkkiZPrNNoEJ\nHkYDwv3hyyViA9Sno8giLSSUsImkgDUWigt9fx67oMOxC03RNK8Rqspq0cRQB/DXIhYGo+R7eX16\nCh6gfnghSXXZbDYAoP4t6dzyDaSf8AlU4wQ0jJiR4+/1emmK0uv1UtEjTHVFMq/LZrPJal5XJiDH\n72KyYYKHERK5CBthxEb4/2R4olCcRCJsIilgjQWDHsjLBuqsvr9fqNPgr18VwZhViMFltWiVXwtv\nAGHj1UqnuuSMuDNKONKC4zg4r7lGk1lN6dzyDchP+Ei13EdrUCm0IXA6nTCbzfR3Qz6LnOtQwket\nVjcYVJpp87qUHlGSK0zwJBG5hxWFFygAsNlsVFCkWtgIIYKG/KlWq+mkaI1G47cfJLqTTGETjKaF\n9YKHYLar8I9vCqFVF2BAFxPaNTFDB5vfa1wqDbhrnilyWyijbfkmw0kdDgfcbjdNdaU7yRY+4iGw\ngY6/eMp6NKhUKlqATIwHYxE+oeZ1MWEQH+R+7UkW6b+6yBC5Fy2HE7EBQC9QchE2wveJF3ayjS6X\ny88bRG6LZXEBcOSM9HMuD4fdP2bhkz15MGZ50aedFe2aWJCjsUKVY4TX602pz41Uy3egzqhwp3wL\nW5mtVivUajUddpnuJEL4SEXMoj3+scBxHBU+xHhQrVbTKE0kwod4OQnndWm1WmRlJS+qmQnCSun7\nFw7pv6owAhJLKoqErOPxI4lG2HAcRxd04YTvUC3HJGpgt9vh8XhkVx9A6ngC4XG6AOhgtqvwr/1G\n/AtGaNU8+nd14qZm+qQZ/ElFbMiFVZgKEZorRotQ+DidTip8lJLiiEb4RFNnkwqENxdC4UNEq1j4\nkN+t1HklaTMyr8tk8hX1K0H8iskEgSVHlPdNykASUWNDIlKR/CjFwkbK+yGUsInVS0V48ZTjdO9Q\ngsdpcwDwNx90eTj8ZPI5MJO2YeJz43Q6o273BhAwFQLUX1iF351EHkOpi6cwXZLuSAkf8UiHWOps\nUonw3JFoHUl/ke0n+yic0B7IxJAIn9raWtjtdrhcLjavKwbE2YVMPYZM8KQRciweljLpi0XYxCNi\nQP49Ym9PhI8c0lxN8gEVB3gDZDfdbg+0eh4uj/82akXXBSmfm0Dt3kD4Ld9yuLAKL57COhG5Resi\nQVxnQ44v6Xwiv9t41NmkEnGa0maz0fNJvrNSwkectiafpVKpoNf7xD4ZVJooI0ulk47fp3jDBE+S\nIK2d4ZBOwoa0HIcjbOKdCgkHEibX6XR+wiBVAw41aqAoD/i5Vvp5r5eHQcfDZRMJngC/VGG7t93u\nc3Emok4cMRBGbIQRM7kuhMI6ETlG6wIRaZ2N1+uF3W6n0TolRDHEwod8N4koj2RCu1AMOp3OhM3r\nSuYxzwSBJUeY4EkQ4aSD5CxsAMDlcvl11YiFDVnIAwmbZLrfhkI48oAIHxIiTzbFhYEFj8fNw6Bu\nuBiKIzxSLd8A6MWT4zhFRAwA/2gdaYmWg/CJV52N1FgHOUQj44FQ+IgntGu12ogntEsNKk3XeV3J\nFljpdnwSARM8CUCtVtMWacD/4kSMu+QibIS1OsKIjVqtht1uh9frMxkT13oAqbH1jxWxAZ6wziBZ\nNC0I/BzPe6HmPAD8t0fFeWC3u8Jq+QZ87rgOhwM8zyvGyp+cK2GaMhnCJ55+NsGQGuugJOFDBI54\nQrtQ+AgntBOLCanPiue8LkbmkJGC55NPPsG0adPg8XgwadIkzJo1Ky6fe/HiRRw4cAB2ux2PPvoo\nfvjhBzz44IMYMGAA/RGSH34yhY1UwZowYkO2QbiYk4gBz/N+EQNSRyF3YRMM4eIrLI5NVo1IsMJl\nr9cL3u3r1BKi4tzgeT7slmNhDYxcIiLxQmiCR/aPjDyI5feUTD+bYGSK8CHF2yTiI0zFer1eWK1W\nvyntUhGfeM3rSmaKiaWzUkfGCR6Px4OpU6di8+bNKC0tRa9evTBixAh06tQpqs87ePAgpkyZQoVO\nly5dcOnSJbRs2RK33norevbsSSMKbrcbOp30rKRoCFfYiBdnsbAhd1YkWiOONgGgHUEAkuqPkUjE\nxbHxunCGokm+F4C08PB4vPC6XQ0ezzHoYYhwuoRU4XYy9i9ZCIUPaWMOd//k4mcTDCULHwC0IFmY\n6gLqR8GQqJnQSV1K+ADS87pIxCdckZ/sY8pSWskn4wTP9u3b0b59e7Rp0wYAcPfdd2PDhg1RC56S\nkhLMmTMHXbp0QfPmzcFxHG6//Xbcd999aNSoEX1dLF+2RAgbYSoknGgTuXCSC4uSFl6hMIjn/gWq\n8dDwPLSaPLjcDT9bxanASxS3BypaDgcpYaCk80eM66SEAQDJc0DeJxc/m2Cku/AJp9aJ3EQ5nU7f\nb+SaFYXUWibs6BTD5nUxgpFxgufMmTNo2bIl/XuLFi2wbdu2qD+voKAAVVVVfo+REGukxCJsxAZ9\niWg3Fl5YbDYbnE4n7XhSAsL9I10zwVq9CdG0fBcXcDh9UfqznHYnIDqksQieQPuX6o61eEJ+K6Ru\nThgxEAobObTdR4vchU+g2WkkJRjOOdDpdH77J5zOTjrawhlUyuZ1BUcO35dUkHGCJxknWqPR0I6D\nQBBRIiVsAPgVM5PCYrKgCLuiUuGjIu54IsJAKQsJ2T/STksiQGq1uoGoES/o4bZ8FxcioOBx2F0N\nBU8cD61Ux1o4wk4OhFtnYzAYaCqERAyUIOwAeQifUClBqdlp4SK1fzqdzq92KhLhI57XJSV8kpny\nSUV6iaW0fGSc4CktLcWpU6fo30+dOoUWLVrE9d8QRniIsCGLApkQTZCzsAmGVOGvUgpjha355Fxa\nLBYA/vUFsRSvBipc5r08HFY3VLn+j8cjwiNG7OFDhJ1crPzjUWej0+n8hF0srtRyIxnCR9ihJhW9\nTGRKkOwf6W4VF99HInxIdJOMrRDO65LL952ReDLuTPfs2ROHDx/GiRMn0Lx5c6xfvx5r166N679x\n5swZHDx4EM2bN6ePkQXZ5XLRu4tAwiadQvCk8Fc4ykFOYfZgRNqV43a7qTsseSxaArWm8zwPm9UB\nI8eD5+uPnyZBwTOhcBUO8ExmxC7Rc6NIXUc6RrTCIR7CJ9RvIZWGlVJdeVLChwijcIQPifiYTKaA\nIy4YyiPjBI9Go8GLL76IwYMHw+PxYOLEiVEXLAdi6tSpeOGFF/D111/joYcewunTp3HgwAHceuut\nMBgMsNlsANBgIUlngzixo3G49S/JIJIp38EuquT5eHQ8BYzwXEtvZmkBm7P+cV2Cf6lCb5NEzbFK\nlp9NIKRcqeXyHY0H4QqfcNJRqe5Qk0IofIgBpfA7Gonw4bj6eV0Oh4OuyS6XSzHfBwJZU5S0T9HC\nhfAEYIYBEXDq1Cls2bIF+/fvx/79+7F9+3ZcvnwZ7dq1Q5cuXbBw4UK0atUKHMfRaIGS2oSFCOtf\nDAZD0u6ghIu5cFEnxd7CC2ssIXhyUXG73VEX/v7v24DZJvrcCyfgsNpR2uU6XLHUL9R/uMM3kiJZ\n8DxPrQgiTVWGGzkj5yIVF1VicCeu0VLS75C0e7vdbvr7k7KgiPW3kCpIiYDT6WwgzoXO9cLUWyBs\nNhtcLhf9jiaymN/j8cBkMqGgIIgDaRzheR5Xrlzx6xpOhwh8DATcsYyL8CSS7777Dv/85z/RpUsX\n3HfffXjmmWdQUlKCp556Ctu2baOhWKA+WkDCqkrpliEk2tgvUBokkJ9QvOuKyN10LGmS4sKGgsfr\n5QEe0Kg8EHr1xLNoORzC9fBJBz8bKcSpPDLkMh1rOkIJTOH4BmHXU7pDhAlJdVksFr90rDDiE86E\ndrVajdzcXL95XQaDQVHrcqbDIjxJ4siRI6iurkZJSQnmzZvnp7aJS2iyoyHJgrg1u1yuiCNaoYom\nxVGbVNQ6iaMF4Z7DT74Bvj7g/5jz3DE4bQ78oqwtLljqDR5n3w1k6+O95eFDrAiI6y1Qb6MQz8hZ\nquB5nkYl1Wo1HeIpN6SEjVhgCgW/8DwIo5LpUmcXCaQrj6SzhOdQGPEhwodEfQHAbrfD4/EgJyeH\nfhYRwjzPx3VeV7IjPF6vF7W1tSgsrM+jK+3ci2ARnlTTvn17bNiwAf/85z8xevRo3HPPPbjvvvto\nntloNMLlcimq24lARIAwokUGd5IfnVR9R7Qt38lGqmMtnIiWVB0P7+Xh9fLwiHycEtGlJUWoOhth\ntIBcNJXwPRXXMKWieFtIuPVOkUQw5dDOnkhIAwUZMmu1WmkUSPzdJd2ygaI3wu9DvOd1yaFFPNX/\nfqpggifJDBs2DAMHDsSf/vQnDB06FAsXLsQvf/lLvx+Y3W5Pq26ncCELLrlzAnzRAbK4J3NeUSIQ\nLrjCbpJAc32kBI/Xy8PjAVyOeh8njot/SivWuVGkPsRisSiq1Vt80UxE8bYQqYL6SM5DNGSS8BGm\nK0nER2pCO4lWSn0WmddFIoDRzutipB6W0kohZ86cwYwZM8BxHJ544gk0a9aMPkdSCCScKsfwejCC\nLeQk/A74LpwkGqK0VB7pFnG5XJIXFJcHqPkb4BX8yqwnD8NscqB56yZwG4sB+Dq0Hr83tu0IVWcT\nKA0SCpLKI1PZldjhQtIksQqfWNJRiSQTUl0ulwsOh4PeWJL6HqE7vVarhcFgCBkxIxEf0rAQaTSe\n+Hrl5+fHY/dCIpVC0+tTmB9PPCylJUdKS0uxZs0abN26FRMmTMCwYcMwZcoUmrYhLbRWqzWp07wj\nIdaWb9INZLFYFNexJm7VF49y0KqBRrnAxbr693i9gNPFw2x2IMvoeyzcdFai/WykkLt5YayIo3bh\npCsTkY5KJEqN+IjXJpVKRW8kAdA0lzA6SQxjhcJTDBlUSj4r0nldbFp66mARHpngdrvx8ssvY82a\nNZg9ezYGDhxInxO2CKdSFEi1fMercNXr9cJut8fU5i13pPxf1m8B9v9Y/5q6Y4dw6ZIVBqMBJZ2u\nBwDk5wDVo+tfE+yCKo4SJLPeSVz4q9SonbAVWqfTSRbWy6X9PhrSMeITTOxLrUtkH3me90vJkk5P\n4XsDCR+Cx1M/e0+n09EoUSBImi0vLzk+E+IID4lyKZiAX1YmeGTGxYsXMXfuXPz888+oqalBm2tT\n3QHfYmuz2eD1ehOaPgh3GKYw9B6v7ZASBUpCLAq2HTJgy576xfHqkR9w/rwVbi+Hrv0qAABFeTwm\n3+qQpZ+NFOI0kBwjk5EidUH1eDwAfBcQUhsiFJnpjhyFTziO0OLuzWCfRcQKWVOFN1rkswHQKHWw\nzyM3bQ6HI+ig0mQLHnEKLZMFj7KuJgqgcePGePXVV7Fjxw5MnToVffv2xfTp05GdnQ2VSuU31FLY\ngRAN4bZ8J3O8BUmRkDEHSrlgEsTdQPkGO4Bs+rzH44HV5obTBWhUPNxeDhqV765Tjn42UgQq3k6H\nzsNIJ34Tcedyuajvk5zPTSRIpbqSGWEOVfMUqyM0Eapk7IjD4YDdbvfrPiS1PuQYhDO2ItS8LpbS\nSh1M8MiUHj16YPPmzXjrrbcwbNgw/OEPf8DIkSMlW6CDdQIBkbV8yyFSIBQF8RjjICeEkQKv14um\nBf6Ln8fDw+kCVCrAoOdhsnHQ63zTv9ONcM0LU4VY2IiL6kmdTagiYjLugFguyGkf40GihU8wkZms\nmicSoSPChwyajVX4kOOl0Wj8mk+S+d1gAqseltJKA+rq6rBo0SLs378fNTU1frO/hLUvpINEKiUl\nTIEI/0yHRTkd63vCrbPhOBWeelsDl8e3P+f37cOJkzZkG1S4ZXgFLpnVaNcMmFCV4h2KA+LvarJS\nJOEWc8cjHSXHNFC8Ee5jNEaioaI2clifgu2jOBIeKtVFajBJGpsIq9zc3KTsiziFxlJaDFmTl5eH\nZ599Ft9//z2qq6vRrl07jB8/HidOnMCBAwdw//33004goL77IF1SIKEgd0zCMQ5yadWP1c8G8E1O\nP3OJ/M33nF7HQcW7AaiTZjqYaMh5JHUT4q61WIk0HZWIFK0wGkL2UWnCJ5yIT6hONeHoFznWPAXa\nR3HEh1hPBBM+JNJJRmCQLjEyp05u+65kFLKUKps9e/bg888/x/79+3HlyhWsXLkSb775Jjp37ozy\n8nK43W7k5+dDpVJRUUDm5si9ZiIShC3QqXDCTdTcqOLCesFD/M+y9Gp43E4AemhUXgjnaqU7QsuF\naOeQhToX4aajEgXZx0SJOzlARIHwPJL1RglGokD9PhJhI65Hi0b4AKDCJxnzulhKqx4meNKAXbt2\n4fDhw+jevTvGjRuHLl26IDs7G0899RS2bNmCM2fOoLj4mkmdwt2ao6lhipRwBpPG08+mqcBx2XvN\nhVCnU4F3+9QPBzcsFpfi2rzD8fAJVVifCG+heCIl7tLVmTpU1Ear1dLnSJdSuu1jIIinFonSxCp8\nyPeCpJuIe3Oi1mqlnIdYYTU8ac6JEyfw6KOPIi8vDwsWLECTJk3oc+nu1hwOsdSFyMXP5ug5YPUm\n3/+f3LkXZ8/b0b5tNlq1L4ZV2xi9r+cxsMJBQ+Dp0O0UKcTfhkQJhBeQQB5P6biIp4szdaCCbrEd\ngtS5iKXGJ10QuqiLHbjJsSPHSzyhnbzPaPQ5iwqtKkh7fDyPGfldkZohkkpUMKyGR6m0adMG77zz\nDjZt2oQxY8Zg9OjRmDRpEv2RiVNAoUyx0g1hXYjNZoPT6aSpA0I86mwSSbFgaDKJ8GjUHCxmB7hC\nQKeVd7dTpARLR2k0Gjp9XtzZogSEUS1SyJpK4RMoggbUF3QHckkPRKrb2ZOBMOIjNXNNKNidTqef\n8BEPDyVFxGT2F5nXRT4/1mPGUlr1sAiPgnC5XFi+fDneffddzJ8/HzfddBN9Ti5uzYlEeKfEcRxU\nKhUVOqmeVxSKp9YDFjtwdPtu/HzRiS7XG+FR61DQph1uKQduqah/LakL8Xg8sq4LCScdFciZW/h9\nVWpUiwg78n0lwy0TZSYabEhpIiNomRDxEX5fxbWF4ogPOe4kwiNFrPO6hIgjSpkc4WGCR4GcP38e\ns2fPhtVqRU1NDUpLS+lzxK3Z4/HQu+d0XHxC1dkAvoU2XQaTvrEJOHYOOPx/u3DpigtlHY24cNWL\ntt27oKoHcGPXhu8Rp0dStYiF434b7cVUmDpQ8sVSONwyVodxsdAM1IafbNGfKcKHpJCEtWUej8dv\nUCmJvpMbs0CQyDUZQByNCSsTPPUoJ1bMoJSUlOCNN97A119/jYkTJ2LAgAF45JFH6F0CCanbbLaY\n3ZoTTbh1NlKtxuRiabFYZF+8XVzgEzyea11anAq4fNGOX4CHViO9zeKiX5LOS+S5DGfidzztEISp\nA2LsJ/dzGSlCo03iMK5Wq2nEJxDhjllIplN6MJSe6iJrFWmsIKUEQP1oCuH31uVyAQAtbpYSMmq1\nGkajkUZ1a2trw5rXJd4uJRzfeKCsGHEMXL16FaNHj0anTp3QuXNnbNu2DZcvX8agQYNw3XXXoaqq\nClevXqWvX7p0KTp06ICOHTti06ZNKdzywNxwww344osv0KxZM9x66634+OOP6XPEUl2j0cBisdDi\n5lRBFguSkrJarTCZTKirq4PVaqWLg06nQ05ODvLy8pCbm4vs7Gza9SK+wJKLJREFZrMZLpdLljnt\n4mudWqSGBzzgcnuRpQO0QfQLWVyF59JqtdI7+mghF1Kn0wm73Q6LxYK6ujrU1dXRdBoRy7m5ucjL\ny0NOTg6dDh/vjilSq0XOpclkgtPplOW5jBYifHJzc6HVamG1WmGxWKjAd7vdcDqdsNlsMJvNqKur\ng9lspsdBo9EgOzs7rN9GKiHCJycnB16vFyaTiUYq0wWv10vrsMRrldvtppE6o9FIW9GFdWpCywRy\nXt1ud8DfLYkIkXlYtbW19LvBCB+W0rrGhAkTcPPNN+P++++nw9ZqamrQuHFjzJw5E0899RSuXLmC\nZcuW4cCBA7jnnnvwzTff4MyZMxg4cCAOHTok6xqDK1euYN68efjxxx9RU1OD9u3b0+eS7WQcjp9N\nIkLuwvoeg8Egq6jWmYvAK/8E9m7ZCYvVg64djdh30Iwhv+2BQT1UKGsb3ueIa19CtQaHqu0Qnwu5\nXDiF6bx0bfOWQhy1cblcQdNRcl5zwkXOqa5wDBTDcekWpy2F9VokFU/Os/AzAyEcVKrVaoOuZ+QG\nJScnB0Bmp7SY4IFPLVdWVuLYsWN+j3fs2BFbt25FcXExzp8/j/79++PgwYNYunQpVCoVZs2aBQAY\nMmQIFi5ciL59+6Zi8yNiz549qK6uRkVFBWbMmOFXOBfvSeXh+NkEKlpNFHKd5O10AzVrgO8274Dd\n4UWX64zYf8iM4XdVYFBPLTq2iuzzpNr1AYRMR8mxoDsY6dLmLUW4YxaEUQBxC7SSSLXwEZ4P4TkJ\npxU/kn9Dap0Vj60Awhc+pNsvUFejzWaD1+tlggeshgcAcPz4cTRp0gT33Xcfdu/ejR49euDPf/4z\nfvrpJ2roV1xcjJ9++gkAcPbsWT9x06JFC5w5cyYl2x4p3bp1w6ZNm7Bu3ToMHz4cU6ZMwW9/+1sa\nao1mUnksdTbJhtxdkVEccmnx1mmAQiPguZbScl+72+O8Hmg1kS1OJEpAFj6yIAL+UYJEDmNMFuGY\nF6YaqZEXwigBOSfBxiwQoUNq0uQk1uNFsmp8Qp2PRJpZCo1TxRPahb9H4baR+h+pc03S9uJBpeIm\nBnEbfKYin1UhhbjdbuzcuRMvvvgievXqhWnTpmHZsmV+rwl1kU6nLxHHcRgzZgyGDx+OmpoajBw5\nEjU1NSgrK/MroBS7NQPSd6Vy8bOJBJLWIsLHZDKlvMW7pNA3LR0A3G7fn163G4Gu3eGmowwGA3ie\np4JAp9PJShDEivAiIiz6TUUxfjgjL6L9fRAxp9Pp4HQ6G7j9KoV4Cp9womipWK+khI/QhVssfCKd\n12WxWKgYSqfaqESjnFUvBlq0aIEWLVqgV69eAIDRo0dj6dKlKCkpwfnz51FSUoJz586hadOmAIDS\n0lKcOnWKvv/06dN+rd/pgtFoxNKlS3H48GFUV1ejefPmePzxx9GoUSNcuHABdXV1aNGihV+EIFHd\nOKlCaM4oNC5MhSBoWlg/S8vl8i1STocLOnV4E79DGcSJu4Dk3J0XDUKxLjSDS0QkJNzajkQVcIuN\nKDNd+Ihrn8h5EXesyS2qSYQP6eoSRnzEg0ojFT7kN8DzPLRaLevWAuvSAuBr427ZsiUOHToEANi8\neTO6dOmC4cOHY/Xq1QCA1atX4/bbbwcAjBgxAuvWrYPT6cTx48dx+PBh9O7dO2XbHwsmkwmXLl3C\niBEjcPbsWZSXl6NVq1aorKzEa6+9BgDQ6/V0kSERg0R146QK0rWm0+lgtVrj0ukUKU3z6+/EHE5f\nHt9cZ4PT4evIIUZkKpUKer0eRqMRubm5MBqN9HwEq2ERdgEJu/OSvZ+JhqQtc3NzoVKpYDabY9rP\nYB05wu5Bo9GIvLw8ej4SaSQI1KczSB2e2WxOu26ncBB3dZFjTwZwms1mmEwmv441rVYr2bEWSCjI\nAZKeJQNZTSYTHA4HLQ0gESFSt+N0OgN+p8lvID8/n0Y+6+rq6OdlKizCc40XXngB9957L5xOJ9q1\na4fXX38dHo8Hd955J1auXIk2bdrg7bffBgB07twZd955Jzp37gyNRoMVK1ak5UW/rq4OzZo1Q8eO\nHVFWVoZ+/fph0qRJ2LFjB/71r3/hN7/5DQwGA329cHCeHOpe4o0wQpCM/RSnP4y6+hZTh8O3kFks\nTuQaDcjLjV8UjSyGydrPVCFMAYWzn+E4Q0c6ZiEZSHkVKeV8SkXRAF/Hpcvlon5FoYp70wmNRgON\nRiMZ2Yp2UCl5DZnXVVBQIPEvKx/WpZXheDweybTGqVOnMGPGDGi1WixatAglJSX0uWS3saeKeO1n\nOOko3zngMGriHjicXhiyONjsPNq2zcefFl6HnKw475yAWAawphPkAkJca9VqddLHLCQDYbdTupzP\ncGZ6iTsIU93VlSzE+0lSXYD/2IpAwsdisdAUtnCyvYJhbemM6Pjiiy/wM9SxPwAAIABJREFU+OOP\n044u4Q+F1L3I0dcmnoTbri/V/SFVRyD07BAv0A/N2Y/Dx3zurBwHGHN1WPtSOXRJiMWmc4t3IKTG\nLAjN2sjiTy4U6b6/Qog7r8fjkZXwCTaJPRqxmYnCR1yzJRY+9TdR/oIHABVGCoYJHkb0uN1urFix\nAmvXrsXcuXMxYMAA+pzQ10aJhZME4WBSEkYHGvraiD1UIvW0eXrFMXy29RIAICtLBYfDi0/X9UrY\nfokRD7SUW4t3IMIdsyAUm0QQKEngSSEUPsmMyMbLtC9cMkX4COfLBRM+pLGErFlM8DDBw4iAn3/+\nGXPmzMGlS5ewZMkStG7dmj4n/BEqKc0VLEJAvIvEhmSx8M4H5/HqX30dgIX5GlhtXnzwVo+Y9yNS\nhAJPbp4vwVKEkRoopqvAiwZSeO31euPuTh1O+3ey3LqZ8KmvfXK73TS1SZ4na5aCYYKHET++/fZb\nzJgxAzfccAOmT5/uV9js8XjoXC4p10+5EunEbzLCId51TN/ursXcJb5uwZKmOlisHvxjZfeYPzda\nxKMqkhnBC7fVOB5jFsQRPKW17AuJZSxHsHMi/o2kurA7U4SPx+Obeed0OqmYJI72Ypdo0gLPanik\nYYInBtq0aYO8vDz6Rdu+fTsuX76Mu+66Cz/++CPt/CIV80uXLsWqVaugVquxfPlyVFVVpXgPAuP1\nerF69Wq8/PLLmDZtGkaMGEEXEzlHB4DwJn6HGyGIt8C7dMWJMQ/uBgC0Ks2C1e7BmhUVMX1mPBDe\nTSaiHiTcMQuJHnshHj2i1DEOJLJF2pSlUnpSkbRUnJNYUZLwCRRxJueEnLNPPvkEHTt2RHl5Obxe\nL44fP47du3dj7969AIAlS5Yo8nt9DSZ4UkHbtm2xY8cONGrUiD42c+ZMxQwkBXxzyBYuXIjvv/8e\nS5YsQceOHelzwuhAKoomw2kzFi7Y0R5rYVqEmMLFspiMnvQd6kxutGuTDYfDi1V/Lov6s+JNrPUg\nwQq7pcRmqr7/qYxsJRPhzYnwopmoSFoqSTfhE6q4W3xOiFg/ePAg/vrXv+Lvf/879Ho9CgsL0bVr\nV1RUVND/mjRpIut9jxE2SytViAXlxo0bsXXrVgC+Ce39+/fHsmXLsGHDBowZMwZarRZt2rRB+/bt\nsX37dtkPJM3Pz8dzzz2HAwcOoLq6Gtdddx3mzJmDvLw8WhNBxlQQF+N4h1PDTUcJ/VMSNR+HuJuG\nM6k8EG1bGrD7gAkaDQe5eYMKnanJtOZAka1AwxhTbesfDpF6+KQLUhECoXmdy+Xy+92m876KiefI\ningilSYM5f/E8zyuXLmCvXv3Ys+ePdizZw9OnDgBnU6HTp06oaKiAnfddRe++eYb/PnPf8bly5cx\nYMAA9OiR/HpAOcEETwLhOA4DBw6EWq3G5MmT8fvf/16RA0kBnxnjRx99hH/84x8YOXIkJk6ciHvu\nuYcKDjKUVCh8oomChJOOStXIC7Ghn8lkiiqy1aaVT/Co1YBaJc8LjnBop9VqpccdgOSCnagxC4lG\nytRPTi3ewQin/Zuk7MhNAIn4kOiWEou4Uyl8QqWkpG4CvF4vTp48SYXNnj17cPnyZRQUFKC8vBwV\nFRW444470K5duwZrar9+/TB16lS8+eabuHTpUkL3LR1Q1jdZZnz11Vdo1qwZfv75ZwwaNMgv3QMo\nayAp4Nve0aNHY+jQoVi2bBmGDx+OJ598EpWVlQDQIAoSruutVEurcMK03MLs5CJJBpMKLxzhnNO2\nrbJ9n8Nx0Grls1+A9HBMcq4cDgeNpJG6rXT7DgdCpVLRiySJbMklChJO+3e4DtFCt3Elz10DEi98\nwklJCdcvkpI6cOAAdu/ejX379uHAgQOw2+103E///v0xbdq0iFJSer0ev//972PeHyXABE8Cadas\nGQCgSZMmuOOOO7B9+3YUFxcreiApAGRnZ+OJJ57A8ePH8eijj6KwsBDz589H48aN/aIgdrsddXV1\nNPUjjt6k2wR2MWRBjbS+p21LX9ebSsVBr09dDUs4YxaEHiqk7oUUwhKvIiUhldJLpodPoDSh+LcS\na+pWahArEz7SRJuSqq2txZ49e2ha6tixY9BoNDQlNXbsWJSVlSE7Oztt1jy5w4qWE4TVaoXH40Fu\nbi4sFguqqqqwYMECbN68GUVFRZg1axaWLVuGq1ev+hUtb9++nRYtHzlyRBFf9E8//RQLFy7EiBEj\n0L17d3z//feoq6vDgw8+SD1tAPg53qZb6iMUkRg02uwe3P67nSjrZERhvhaPTWuf0G2Tig7E4nyb\nKaMqwul0iuWzpSIEUgX3yfitZEr3GhC8uDmclJTYb8jr9eLUqVM0HbV3715cvHgR+fn56NatGyor\nK1FZWYn27dsr9pgmGVa0nGx++ukn3HHHHQB8vhf33nsvqqqq0LNnT0UPJCXwPI+///3v9Ad+/vx5\nLFiwAK1bt0bXrl3Rr18/v7SHsFNEiY63UgM7A4kBQ5YaxU308HoBvS5+C2A484riMRxTnP6JNKWX\nLgiL1WMxLwynJT/VEU7y/SVF3BaLRZaWE/FAHJklqVoAIVNSLpcLBw8epC3g+/fvh8PhQIsWLVBR\nUYGbbroJU6dORUlJiaJ+C+kCi/AwEsakSZNQWlqKsrIydOvWDe3atcOFCxcwa9YsOJ1OPPnkk2je\nvDl9Pc/zsNvtCfN6kRNEDHi9XkkxsODpw6gzufGL1tl4eGLrIJ/UkGjGLCTyOAvFrBKLYAmhzAsj\nMVKUe4RTSW37oVJSZDp5bW0t3nzzTTz44IMoKChAXV2dX9Tm6NGjUKvV6NixIyoqKlBZWYmysjLk\n5OTI+lwqEObDw5AXX331FebMmYNBgwZh6tSpfvUe8TbzkzOBBrC+vu40vttXh64dc/HA2JYB3x/P\nMQuJJJOcjIW1TMILZrTmlnIm2HgDORJtSurMmTPYtm0b1qxZg//7v/9Dfn4+OnTogB49elBx06FD\nB0WvVWkEEzwM+eHxePD//t//w+rVqzFjxgwMGTKEPkfqI2w2m2JD5wRxfURWVhb+/d8reHvjefTp\nXoAJd5ZGHLWR67FS2rBZ4XmRqoECfKKA1L0o9YIoFD46nY6m4FK9TZEa97ndbvzwww80JbVv3z7Y\n7XaUlpZSYZOXl4fXXnsNH374IR5++GHMmjWLDuZkyAImeBjy5fLly3j88cdx+vRp1NTUoF27dvQ5\nYehcDiZhiYSk9JxOJ85d8OCZl07j5l8W4I5bGykuOiC+QKbDeQ2nBkrqvKTjvkaLsGA9md42obqk\nxOeF53mYTCbaIbV3714cOXIEKpUK119/PXUk7tatG4xGo+Q+HDlyBCtXrkRNTU3KxR3DDyZ4GPJn\n9+7dqK6uRvfu3TFjxgzk5OTQ57xeL2w2W8Cal3Qk2JgFj4dH9aITuPXXRbhjaImsozaxIOyIkYuv\nDRCeaV8knWuA/75mQo1aIvY12pTU2bNn/eptzp8/j9zcXHTr1o1Gbq6//nrFRuAyDCZ4GOkBz/NY\ns2YNli9fjoceegijRo3yWyhJHUg8ZlYlk2iGY8544nvc0MOIQTcXKrrYF/Cf4J1sX5tQpn3iAu9Y\nIQXrHk9088jSiViET7QpqcOHD/ulpGw2G5o3b47y8nJUVlaioqICzZs3V+wxZzDBo0g8Hg969uyJ\nFi1a4IMPPlDMJHYAMJlMePLJJ7Fz507U1NSga9eu9DlxHUi0M6sSQSj/FPFiHWy7n3vlOLp1zsVN\nffJkO3k+ngiHsIqLuOP1+VKmfeLoQDI614DUibxUIBR5YuETbUrKbDb7paQOHz4MjuNw3XXX0ZRU\neXk5cnNzFXtcGZIwwaNE/vSnP2HHjh0wmUzYuHGj4iaxA8ChQ4dQXV2Nli1b4rHHHkNhYSF9Tlgv\nkIo7Zal0lNj1Vhxej4S3N5xDafMs/KpXYcbVMomLuCP5robTZiyX9m+xyFN6JI/M6fJ4PFTMhpOS\nOn/+vF9K6ty5czAajSgrK2uQklLq74IRNkzwKI3Tp0/jd7/7HR577DH86U9/wgcffICOHTti69at\ndHxF//79cfDgQSxduhQqlQqzZs0CAAwZMgQLFy6U/SR2As/z+OCDD7BkyRKMHz8e48eP97sAkgsG\ngIRcMMJJeyTC9Xb7d1ehVnPo0S2fPpZqkZdMwvF6keqQCpUqlCNKbNsPlpIiQuby5cv49ttvcccd\nd0ClUsHj8eDQoUNU2OzduxdWqxXNmjWjgzIrKytRWlqaFjdsjJTAnJaVxh//+Ec8/fTTqKuro48p\ndRI7x3EYMWIEqqqq8Mwzz2Do0KFYvHgxevXqBaB+cjcZdhhL6ifYIh3PWUXh0KalAT9fcvo9RlyM\nhS6wSvUqIhEPMoTVZDJRZ9tAbflyHCYbDlKzq9JlhEO4s6SIYBWmpHbt2oVnn30W8+fPR3Z2Nho1\nakRTUnfccQcWLlyIvLw82QpVRnqhvFUyA/jwww/RtGlTVFZWYsuWLZKvUdokdsAXvXn88ccxYcIE\nzJgxAytXrsSiRYtQXFzsd8Gw2+1BRzcA4Q/HjHXMQiw0bayH2y0dZBWLPLVaDYPBkHYXeimkOnG8\nXi84joPb7QbP89BqtbTGJx2/y4GQGuEgJ7+icLqkxGMweJ7HTz/9hN27d9PIzZkzZ5CTk4OysjL8\n8Y9/hNlsxmuvvQaHw4E777zTz5OLwYgXTPCkIV9//TU2btyIjz76iE4cHzduXEZMYgeAli1bYt26\ndfj8888xduxYjBw5EpMnT6bpHYPBAJ1OB5vNRqdZkxB6oBbjZEVtIqV5SWBDM6HII/O55FbEHYpQ\ng0uJ8BS25ZPolt1uV2zNizC6Rc5tsmu3wumSEkfU3G43jhw54peSMpvNKC4upoXE9913H1q0aNFA\nwP3P//wP3nvvPWzcuJEJHkZCYDU8ac7WrVvxzDPP4IMPPsDMmTMzbhK72+3GX/7yF6xfvx6PPvoo\nGjdujL1790Kv12PEiBHUGI4MJRVePJWw/0LkPKU8nIhaJGaKSqx5CUYiz220XVJWqxX79u2j4uaH\nH34Az/No3749FTcVFRXIz8+XzfeQkRGwGh4lQxaT2bNnZ8QkdgCwWCz44osvaOfGpUuXcOedd6Jt\n27YoKyvDkCFD/OofnE4nnE4nVCqVYgt9hVPKbTYbnVKu1WqTuh1SF89410EFqnlRatu+eAI9iVxG\n+l0ONyUlPDc8z+PChQt+XVKnT5+GwWBA165dUVlZiYcffhgdO3aUlchmMMSwCA8jLTl9+jQmTpyI\nbt26oby8HN26dUPHjh2xe/duzJgxAzfddBOmTZsGg8FA30Pcmj0eDy30VeriLGx3TpRJYyjPoUR1\nrwXaFrvdnhHjG4DwPHwiNe4DfC3i4pSUyWRC06ZN/bqkWrVqpUhhyVAErC2dkTl4vV688cYbePXV\nV/HHP/4Rt912m9/FgAwlTTe35miI17DOcJyiY/EcihdyTuvFG+GAXZKyBRBWupDnedhsNuzfv5+K\nm4MHD8Lj8aBdu3aoqKhA9+7dUV5ejoKCAsUeQ4YiYYKHkXlcvXoVCxcuxKFDh1BTU4Prr7+ePidn\nt+ZEIBxgGap7TcqR2Ov1ys60Lxgkrac0F+NgKSmyll+4cAHt2rXzS0n9/PPPNCW1Z88enD59GllZ\nWejatSuN2nTq1EnxkTElYbfbcfPNN1OvqpEjR2Lp0qVROe7v2LEDv/vd72C32zF06FA8//zzAACH\nw4Hx48dj586dKCoqwvr169G6dWsAwOrVq1FTUwMAePzxxzF+/PgUHAVJmOBhZC779+9HdXU1OnXq\nhFmzZiEvL48+l0lGfkC9xb/X66XRnnQ37QtEursYRzNL6tixY6iqqkKnTp3Qpk0bnD17FnV1dWjc\nuDFNSXXv3h2tW7dmKSkFYLVaqS/XjTfeiGeeeQYbN24M23GfjOPo3bs3XnzxRfTu3RtDhw7FI488\ngiFDhmDFihXYt28fVqxYgfXr1+O9997DunXrcPnyZfTq1Qs7duwAAPTo0QM7duygwirFsKJlRubS\npUsXfPzxx3jnnXcwcuRI/P73v8eYMWPAcVwDIz9S6JtOF8ZQiKM2wpQGANq9lq6mfYHgOA5arRYa\njcbPr0huacxwaqGkjPvsdjv27dtHB2UePHgQbrcbAwcOhNPpxLvvvovbbrsNr776Klq1apXq3WQk\ngOzsbAC+pgyPx4PCwkJs3LgRW7duBQBMmDAB/fv3x7Jly7BhwwaMGTMGWq0Wbdq0Qfv27bFt2za0\nbt0aJpMJvXv3BgCMHz8e77//PoYMGYKNGzdi0aJFAIBRo0Zh6tSpAIBPP/0UVVVVVOAMGjQIn3zy\nCe6+++5kH4KIUM6qzmAEgeM4/Pa3v8WwYcOwdOlSDB8+HIsXL0ZlZSWA+Lo1p5JApn0AaGSAXDw5\njqOzjUj3WrrtbziI/YpSaeYXbZfUpUuX/FJSJ0+ehF6vR5cuXVBRUYHJkyejc+fOfimpq1ev4umn\nn8agQYOwf/9+RYl4hg+v14vu3bvj6NGjmDJlCrp06RKx475Wq0WLFi3o46WlpdSJ/8yZM2jZsiUA\n3xqZn5+PS5cu4ezZs37vSRf3fvYLYPgRz7ywHMnOzsbixYtx7NgxPProoygqKsL8+fNRVFQUsVtz\nqgmV8lCpVLQ1P1D7N9m/dNjfWEm2mV80xn0ejwfHjx/3awGvra1FUVERTUndddddaNu2bUixVlBQ\ngJqaGixYsICJHYWiUqmwa9cu1NbWYvDgwfjiiy/8npebkWqqYb8Chh9ZWVn44osv/PLCX375JTZu\n3IhBgwbRvPCyZctoXnj9+vU4cOBAWk1i/8UvfoF3330XH3/8Me68807cddddmDhxIhUHxK1ZmOZK\ntp8NIZzhpbGMwQi0v0op9BWjUqn89tdkMsVUvxVtSsrhcPgJm++//x4ulwtt2rRBRUUFqqqqqJlo\nLOdBp9NF/V5GepCfn49hw4Zhx44dETnut2jRAqWlpTh9+nSDx8l7Tp48iebNm8PtdlPxXVpa6jfW\n6NSpU/j1r3+dnJ2NAXlflRgpIVBeeMKECQB8eeH3338fACTzwtu3b0/ZtkfKrbfeiq1bt8LpdGLo\n0KH46quv6HNqtRrZ2dnIysqC3W6HxWKh6aFEQQptHQ4HrFYrzGYz6urqYLVa4XK5APguYEajEXl5\neTAajfTiHatAUavVyMnJgcFgoPtLnKqVCNnf7OxsOJ1OmM1muFwuBGvkILVQTqcTNpuNnh+LxQKn\n0zfoVXx+srKyYDKZ8O9//xvLly/HxIkTMWjQIIwaNQpr166FVqvF/fffj48//hhffvkl/va3v2HG\njBkYOHAgGjdurEjRyYidixcv4urVqwAAm82Gzz77DJWVlRgxYgRWr14NwNdJdfvttwMARowYgXXr\n1sHpdOL48eM4fPgwevfujZKSEuTl5WHbtm3geR5vvfUWRo4cSd9DPuudd97BgAEDAABVVVXYtGkT\nrl69iitXruCzzz7D4MGDk30IIoZFeBgNiEdeOJ3Q6XSYOXMmxo4di1mzZmHVqlVYvHgxmjdv7lf4\nGs80SDhRAXE9R7LQaDQwGo1wuVyKdzAG6uu3hB1dBoOhwfy1cFJSXq8XJ06c8IvcXLlyBYWFhTQl\nNXr0aLRr106xx5ORHM6dO4cJEybQdWTcuHEYMGAAKisrI3bcX7FiBX73u9/BZrNh6NChdJbZxIkT\nMW7cOHTo0AFFRUVYt24dAKBRo0aYN28eevXqBQBYsGCBXDq0gsLa0hkBIXnhpUuX4je/+Q2uXLlC\nn2vUqBEuX76Mhx9+GH379sW9994LAJg0aRKGDh2K3/zmN6na7Jj58ssvMWfOHAwePBgPPfQQ9Ho9\nfS6aNvZ0Me2TgqRenE6nYh2MheLT7XbD7Xb7FXqT+Wti4z6n04nvv/+edkkdOHAALpcLrVu3pt42\nFRUVLEqTZpw6dQrjx4/HhQsXwHEcHnjgATzyyCNYuHAhXnvtNTRp0gQAsGTJEtx6660AMsbfJl1g\nbemMyIk2L5zOk9gB4MYbb8SWLVvw6quvYujQoZg5cyYN1wrb2Mm8KoPBALVa3aD9W1h3EywqIGeE\nhb7xqHdJNeF0SZFoltPpxEMPPYSmTZti8uTJOHnyJI3cnDhxAlqtFp06dUJFRQUmTJiAsrIyGhli\npC9arRbPPfccKioqYDab0aNHDwwaNAgcx2H69OmYPn263+ul6hiJv82UKVOwcuVK6m/zySefYMiQ\nIVi5ciWKiopw+PBhrF+/HrNmzaL+Nk888YSfv82IESPSInqSDsh/xWUklXjlhdMdtVqNKVOm4MMP\nP8SmTZtw991349ixY/R5l8tFa2ZIHUddXR3MZjOcTid4nodGo0F2djby8vKQm5uL7Oxs6PV6aDSa\ntBA7QojQI/UuFosFbrc71ZsVFBKxIfVQJpOJ1kO53W46WiQ3Nxd5eXnIycmBTqfDmTNn8OGHH+KZ\nZ56B0+nE7t270bNnTzz77LNo0aIFFixYgH//+9/YsmULXnrpJUyePBl9+vRBdnY2EzsKoKSkBBUV\nFQAAo9GITp060TS9VEYkkL/NuXPnJP1tAPjVRI4aNQr/+te/APj72xQUFFB/G0Z8YBEehh/xzAsr\ngaKiIixYsAD/+Mc/cPvtt6O4uBiXLl3Cjz/+iHfffRe9evWCXq+Hx+PJCLdmOfoVRdsl5XQ6sX//\nfuzevRv79u3DgQMHYLfb0apVK1RUVKB///74wx/+gOLiYuzfvx+zZ8/G/PnzsX79elkZFzISx4kT\nJ/Ddd9+hb9+++Oqrr/DCCy/gzTffpAK4oKCA+dukEUzwMPwoKyvDzp07GzzeqFEjbN68WfI9c+fO\nxdy5cxO9aUln9uzZeP311+FyuVBeXo5hw4bRadJz5sxBv379/IQNmd/kcDjoNHYlIjbyS7SfjRCS\nMgw2DkPKuK+2ttbPuO/YsWN+KamxY8eirKwsYJSma9eu+PDDD/HFF1/QWguGsjGbzRg9ejSef/55\nGI1GTJkyBfPnzwcAzJs3D9XV1Vi5cmWKt5IRCcpckRXCLbfcgvvuu48VraWICRMm4KGHHkKLFi38\nLoImkwmLFy/GmjVrUFNTg86dOwOob3OWU/QjkSS6vica4z6v14tTp075dUldvHgR+fn56NatGyoq\nKjBixAh06NAhqijNLbfcEvN+MeSPy+XCqFGjMHbsWJq+J3WLgK85Y/jw4QCYv006wbq0ZMqSJUuw\nfPly/PKXv4TD4cCSJUtoXpkhD3744QdUV1ejTZs2mDt3rl9hobC7ScnuxUJIWzfP8xFFuMJt0Rd3\nSblcLvzwww/YtWsX7ZKy2Wxo2bIlKisrUVlZifLycpSUlCj+2DPiB8/zmDBhAoqKivDcc8/Rx8+d\nO4dmzZoBAJ577jl88803WLNmDR3KuX37dlq0fOTIEXAchz59+mD58uXo3bs3hg0b5jeUc+/evXjp\npZewbt06vP/++7RouWfPnti5cyd4nkePHj2wc+dOVrQcGWxaejpRV1eHli1bYvfu3WjTpg1efvll\nvPvuu3jllVfQtm3bVG8eQwDP89i4cSOWLl2KCRMmYNy4cX4RHeF08lS6NScLIkTsdrvkoM5wUlLk\nP2FKqq6uzi9qc/ToUajVanTs2BEVFRWoqKhAt27dkJOTw8QNIya+/PJL9OvXD926daPfpSVLlmDt\n2rXYtWsXOI5D27Zt8corr1BvsiVLlmDVqlXQaDR4/vnnaVcnaUsn/jbLly8H4GtLHzduHL777jvq\nb9OmTRsAwOuvv44lS5YA8LWlk+JmRtgwwZNO/Pa3v4XBYMCbb74JnufBcRxuu+02PPDAAxgxYgQc\nDoefNwwj9djtdjz99NPYvHkzFi9ejJ49e/o9T0QA6QxSetErmebtdDppZEYqJSUUN4AvJXXmzBns\n2bOH+ttcuHABeXl56NatG43cdOjQQbE1UkokkLdNNDP6mLcNIwRM8KQLX3/9NYYNG4azZ89Si/+s\nrCxMmTIFJSUlWLBgAT7//HNs2LABixcvhtFoVGyNSDpy8uRJzJgxAwaDAQsXLvTL+5POIIfDoSgT\nv1ApKfL8N998g379+kGn09ERGj/88AMVNvv27YPdbkdpaSk17isvL6eO14z05fz58zh//ryft837\n77+P119/HY0bN6Yz+q5cuUJn9N1zzz345ptvGnjb9O7dGy+++CL1thGmifbt24cVK1Zg/fr1eO+9\n92iaqFevXn7eNjt27GBpIuUScLFgV0qZ8T//8z9YsmQJDAYDbDYbneO0bt06VFVVweFw4P3336f+\nLsQgLR04deoUbrnlFnTp0gVdu3al4d3Lly9j0KBBuO6661BVVUV9gADfXV6HDh3QsWNHbNq0KVWb\nHjatWrXC+vXrMW7cONx7771YsWIFnYHFcRz0ej2MRiO8Xi9MJhP17EkXiFCJZJaU0WiE1WrF0qVL\n0bNnT4wcORKDBw/GbbfdhldffRUOhwN33XUXNmzYgK+++gp///vf8dhjj2Ho0KEoLS1lYkcBBPK2\niWRGH/O2YcQKiwnLiLVr12LPnj2YMmUKAMBgMADwiaB+/frhl7/8Jd5++20cP34cCxcuxObNm/HB\nBx/g6NGjePDBB3HbbbelcvNDEsjB9PXXX1fUJHYAGDBgAPr164e//OUvGDp0KB5//HHcfPPNAIK7\nNcuJcLukxCmps2fP+tXbnD9/Hrm5ubjhhhug0Wiwbt06dO7cGc8++yztcGNkDsTbpk+fPhHP6GPe\nNoxYYIJHRtx+++2YMmUKfvWrX2Hs2LHo1KkTPv30U2zYsAG7du3CiRMn8Le//Q0fffQRSkpKcPLk\nSdx4442YNGkSGjduDAC05keOlJSUoKSkBEDDu7ytW7cC8N3l9e/fH8uWLQs4iV24EMoZrVaLadOm\nYcyYMZg9ezZWrVqFJ5980m9RFg7p1Gq11BwvmURr3Od2u3Ho0CGDTE75AAAWwUlEQVTs3r0be/bs\nwb59+2C1WlFaWory8nL06dMHkydPbpCSWrx4MV588UWMGTMGO3bsYLU4GYTZbMaoUaPw/PPPIzc3\n1+85UqTOYCQKttLIBK/XC4PBgL/85S/Ys2cPFixYgG3btqFly5bYsGEDWrZsieeeew7nzp1DXl4e\nli5dSkUOAHqBIgtGbW0t8vPzU7U7IYnlLi/dKC4uxuuvv45t27bhgQceoA6+WVlZ1MRPOI09kW3s\n0Rr3mc1m7N27l0ZtSD3FddddRyeAL168GLm5uSG3W6fTYfr06Zg2bVpaROsY8YF424wbN45620Qy\no4952zBihQkemaBSqeiE5m7duuG9996D2WyG0WgEAPz3v//Fli1bsHz5crz44os4deoUioqK6MVF\nrVbD6/WC4zj885//xLp16/DEE0/Iso09lru8dL4D7NOnD7744gusWrUKQ4cORXV1NYYOHQqO46BS\nqWAwGKDT6fzSXLFEP4TDSyNJSZ0/f97Plfjs2bPIzc1FWVkZKioqUF1djeuvv57OEosWJnYyB57n\nMXHiRHTu3BnTpk2jj5MZfbNmzWowo++ee+7B9OnTcebMGTqjj+M45OXlYdu2bejduzfeeustPPLI\nI36f1bdvX7zzzjsYMGAAAKCqqgpz587F1atXwfM8PvvsMzz11FPJPwiMlMMEj4wgFwCPxwO1Wk3F\njslkwjvvvIOmTZuib9++ePrpp3H27FlUVlbS9/I8D5VKBYfDgY8++giVlZX0/XJKc8V6l5fuk9hV\nKhUmTZqE0aNHY/78+XjjjTewZMkSdOjQAUB0bs3RpqQ8Hg8OHTpEozZ79+6F1WpFs2bNUF5eju7d\nu2PixIkoLS1l4oQRE1999RX++te/UmsBwNeQMHv27Ihn9K1YscLP22bIkCEAgIkTJ2LcuHHo0KED\n9bYBfGNx5s2bh169egEAFixYwDq0MhTWlp4m/PTTT+A4Dk2bNsW8efPw008/4dVXX6XPE1GzatUq\nbNu2DZMnT0b37t3p8x6Ph17sUkUgB9OZM2eiqKgIs2bNwrJly3D16lW/1lQpB1OlsHfvXlRXV6Os\nrAwzZ870i3gJ3ZpJGzuAqIz7LBYL9u3bR8XNoUOHwPM8OnToQI37KioqkJeXp6jjy2AwMo7ACxjP\n88H+Y8gAj8fD8zzPe71enud5fvv27XzPnj15s9ns9/yJEyf4sWPH8m+99RbP8zx/7tw5/r333uNr\na2tTsNUN+c9//sNzHMeXl5fzFRUVfEVFBf/xxx/zly5d4gcMGMB36NCBHzRoEH/lyhX6npqaGr5d\nu3b89ddfz3/yyScp3PrE4fV6+XXr1vG9e/fmV65cyZvNZt5isfDHjh3jf/jhB/7SpUv8uXPn+LNn\nz/Jnz57lz58/z//888/85cuX+draWvp6i8XCm81m/ujRo/y7777LL1y4kB81ahTft29ffsCAAfy0\nadP4N954g9+9ezfvcDjo94mRftx3331806ZN+a5du9LHFixYwJeWltLf1kcffUSfW7JkCd++fXv+\n+uuv5z/99FP6+Lfffst37dqVb9++Pf/II4/Qx+12O3/nnXfy7du35/v06cOfOHGCPvfGG2/wHTp0\n4Dt06MCvXr06wXvKYERMQE3DIjxpyltvvYV77rnHL2qzaNEiOBwOTJw4ETt37sRrr72GQYMGYe3a\ntXjooYdw//330xoO8icj9Xi9Xhw9ehT//e9/8fLLL+Ps2bOw2Wyw2+147LHHcP/991MDvwsXLmD2\n7NmYN28e2rdvjyNHjvilpEwmE0pKSlBeXk7N+1q2bMnOtcL4z3/+A6PRiPHjx2Pv3r0AfL//3Nxc\nTJ8+3e+1zMSPkWEEjPCwGp40g7+Wuho3bhz9OwBs2bIFR48exbhx42C32/HUU0/h6tWrWLVqFaqq\nqvDKK6/g/vvvpxc+InpYK2hqeemllzBz5kw0btwYFRUVqKqqQnFxMT7//HMUFBTg7rvvRlZWFqxW\nK/bt24ddu3ZBp9Ohf//+yMvLQ79+/dC7d28MHz4c8+bNQ35+PjufGcBNN92EEydONHhc6gY2kIlf\n69atJU38hgwZgo0bN2LRokUAfCZ+U6dOBeBv4geAmvjdfffdCdpTBiN+MMGTZogvZuTvX3/9NVq3\nbo2BAwfiiSeeQEVFBcaPH49Ro0ahadOmcDqdMJvNeOutt1BXV4eHHnpIlkXNmcbo0aMxZsyYBnfI\nDz74ID766CP8+te/RnZ2Nho3boyuXbuioqICc+bMwf/+7/9i4cKF2LRpE2699Vb0798/NTvAkBUv\nvPAC3nzzTfTs2RPPPvssCgoKmIkfg3ENJngUwty5c2lhMwDceOON6NevH/773//i2Wefhd1uh1ar\nxdtvv43CwkJs27YN5eXlWLBgARM7KaRJkyYBnxs6dCh+9atfITs7W3LKOvH2IaaNjMxmypQpmD9/\nPgBg3rx5qK6uxsqVK1O8VQyGfGCCRwGQehxi3nfjjTdi+vTp8Hq9uP/++1FdXQ3AJ4ratm2Lhx9+\nGEVFRRgzZgxGjhyJiooKGuWRQzcXo55Q5pF9+vRBnz59krQ1DDkjHFQ7adIkDB8+HAAz8WMwCKyS\nUQGIC1IHDBiAlStX4s0338QDDzyAy5cvY/v27di+fTumTZuGsrIytGrVCk2aNKELocViwYULF2g7\ns8fjScWuMBiMKDl37hz9//feew9lZWUAfIZ869atg9PpxPHjx6mJX0lJCTXx43keb731FkaOHEnf\ns3r1agBoYOK3adMmXL16FVeuXMFnn32GwYMHJ3lPGYzoYBEehUHa73r27EkLmYnx1uDBg9GhQwdo\nNBp88MEHOHHiBG677TasWbMGH3/8MXbs2IFx48Zhzpw5shtkyWAw6hkzZgy2bt2KixcvomXLlli0\naBG2bNmCXbt2geM4tG3bFq+88goAZuLHYFCC9awnsW+eEWfcbjf9f6/Xy69cuZI/fvw4z/M873K5\n+F69evEffvgh/8knn/B33XUXv27dOv7y5cv8H/7wB37w4MH0tZ9//jm/bt26FOxBdEj5k1y6dIkf\nOHCgpM9PIH8SRuYQr+8M87RhMGRBQE3DBE8GMn/+fL5v3748z/P8vffey2/YsIE3mUw8z/P8zJkz\n+TZt2vC7d+/mn376aT47O5vfu3cvfW9dXV1Ktjlc/v3vf/M7d+70u3jNmDGDf+qpp3ie5/lly5bx\ns2bN4nme5/fv38+Xl5fzTqeTP378ON+uXbv/397dx1RZxn8cfx8PKmCG6BSRJBUIIkFRfIhpNRUI\nzdbJJ6YZqFnKDJfzafkw/UOT1K0S2dJAm2tBQxO1SS6d01LRKYrToWRplMSaKKh4FM+5f3+wc35q\n+Mt+AUdvPq9/cDeHw3Wxe/jhvq7v93I3cZSW47/eM64GjgMGDDCKiooMwzCMpKQkY/fu3YZhGMb6\n9euNmTNnGoZhGLm5ucaECRMMw6gPVb169TKuXr1qXL161f1vEflPHppptIenBTAe6M0RFxdHVlYW\nUH92U4cOHXjqqae4desWP/74I0uWLCE6Opr9+/djGAYFBQXcuXOH8vJyhg4dyrlz5zwxjUcydOhQ\n/P3977u2Y8cOUlJSAEhJSWH79u1Aw/1Jjh492uxjFs/6r/dMUVERFRUVDfa0efC9xowZw969e4H7\ne9p06NDB3dNGRJqGAk8L8GDFVWJiIjExMTgcDm7cuMF3330HwLvvvktwcDBTp07l/PnzHDx4kJKS\nEhwOB8XFxWzZsoWoqCjCw8Pd5zk9CSorK90VbAEBAVRWVgKop4g81L+9Zx68rp42Io8fBZ4WrLi4\nmM2bN2O1WklKSuL7779nxowZAEyfPp0ZM2YQGhrK0qVLsVgsbNy4kS5dunDu3DmsVusTeVzBP3WW\nVjm+PEjdyEXM4cn7H0saxZUrV0hPTyc9PZ1Jkybx+++/s3jxYl5++WV27NjBL7/8QkZGhvvE7gUL\nFtCvXz8SEhIYPXq0e0nsSRAQEMCff/4J1JfuuvqVNNSfJCgoyCNjlMfLv7lnHrWnDfC3njb3vld5\nefl9T3xEpHEp8LRQnTp14tChQ0RFRbFmzRpSU1NJT08H6n9Zx8XFAfV/3ebn52O329m6dSuJiYnY\nbDZu3rzpyeH/K/f2FPnyyy9544033Ncb6k8i8m/vGfW0EXkC/F87mpt9b7V4hKvKxKWmpsaYPHmy\nkZaWZvzxxx9GXFyckZ+fbxiGYZw+fdqYM2eOkZ2d7Ymh/qPk5GQjMDDQaN26tfHMM88YOTk5xpUr\nV4zhw4c3WGK8YsUKIyQkxAgPDzcKCws9OHLxlMa6Z1xl6SEhIcb777/vvm63241x48a5y9JdLR8M\nwzBycnKM0NBQIzQ01Ni8eXOzzFfE5B6aaSxGA6fr3puHmit4yePBdUwFwLVr1ygsLGT9+vUcPHgQ\ngA0bNlBaWkpKSgp9+vTx5FBFREQe9NANd1rSkvu0atXKXX3VoUMHkpOT2bFjBwB79+7l7NmzREdH\nK+zII+nRowfR0dHExMS4lwurqqqIj4/nueeeIyEhgWvXrrlf/9FHHxEWFkZERAR79uxxXz9+/DhR\nUVGEhYUxe/Zs9/Xbt28zYcIEwsLCGDx4MJcuXWq+yYnIE0WBR/7G9YTHFXxcB1g6nU6sVisjRozw\n2NjkyWKxWNi/fz/FxcXuHkerVq0iPj6e8+fPM3z4cFatWgXA2bNnycvL4+zZsxQWFpKWlubuITVz\n5kyys7MpKyujrKzM3a8mOzubTp06UVZWxgcffMCCBQs8M1EReewp8MhDuYKP62N8fDzLli1TJYn8\nKw8umzdHUz95MjidThwOx9/uEZGmoMAjj8S16at9+/aeHoo8QSwWCyNGjCA2NpaNGzcCTd/Ur6qq\nqlnmJg/nCjCuj06nk7t37+JwOO57TatWrbBarVgsFurq6jwyVmk5FHjkkaj5mvx//PTTTxQXF7N7\n9+77Nr+76L4yF8MwuHv3LhaLhZKSEt566y2g/imxl5cXVqsVqC+IsFgsXLp0ieTkZOLi4khNTVWn\naWlSCjwi0mQCAwMB6Ny5MzabjaNHjzZ5U7+OHTs2y9zk7ywWC15eXgBER0fz1VdfAXDmzBkWLlzI\nqFGj6Nu3L4mJidTV1ZGbm0tqaioHDhxgyJAhLFq0iL/++suTUxATU+ARaUSFhYVEREQQFhZGRkaG\np4fjUbW1tVy/fh2AmzdvsmfPHqKiopqlqZ80nosXL1JdXY3D4bhvSepBt2/f5tixY2RmZnLs2DGg\nPvScOHGCmpoaunTpwurVq3n22WdJTU3FMAzy8/NZt24dY8eOZd26dTidTm7fvt1cU5MWxsvTAxAx\nC4fDwaxZs/jhhx8ICgpiwIABvP766zz//POeHppHVFZWYrPZgPqnL5MmTSIhIYHY2FjGjx9PdnY2\nPXr04JtvvgEgMjKS8ePHExkZiZeXF1lZWe7lrqysLFJTU7l16xYjR47k1VdfBWDatGlMnjyZsLAw\nOnXqRG5urmcmayKuUGOxWGjVqhXjxo1j9erVvPLKKw2+3jAMLBYL06dPp6Kigp49exIZGQlAcHAw\nJ0+eZOrUqbz44otcuHABPz8/4uPjqaqqIjw8nICAAGbPnk1gYCCtW7durmlKC6TGgyKN5PDhwyxf\nvtxdMu0qt164cKEnhyXSIIfDQWlpKb169cLHx+ehr5syZQp9+vRxHzOTkpLCxIkT8fX1dTcqPXjw\nINu2bWPMmDEMGTLE/bWLFy+mqqqKrKwsDMNg3rx5WK1WMjIyqK2tZe3atVy6dIkvvvgCqO+31LZt\nW3r37t3k8xfTUuNBkaZ2b8UQ/G+VkSdoaU3u5Sr/vndJymq18vnnn7v3RzkcDurq6ti6dStTpkwh\nJSWFiooKYmNj2blzJ3a7nfT0dA4cOOAOKK736927N97e3sybN4958+axbNkybty4wUsvvcTp06cB\nOHXqFJcvXyYjIwO73U5tbS1Tp07F6XQydOhQoqOjmTt3rqq1pMloSUukkTwu1UZaWmuZamtrOXHi\nBCUlJRQVFWGz2Rg5ciRt2rRx99K6V2VlJYcPH2bfvn1EREQwf/586urq2LRpE2PHjiU0NJTAwEBC\nQkKw2+2MHj2ayMhIampq2L59O+np6e573t/fnxUrVuB0Otm3bx85OTmsW7eOGTNmUF5ejt1uJy8v\nj7y8PCorK6mqqmLYsGGsXbuWzMxMSktLCQ8Pp127ds39Y5MWRIFHpJE8WGVUXl7ukSaNR48eJTQ0\nlB49egCQnJxMQUGBAo/JpaWlkZuby4cffkhkZCTffvstly9fJi0tjdLSUnJycjh+/DjBwcEsW7YM\nqO+DVFNTw5YtW7h79y4rVqygf//+pKamut83JCQEX19fd8f1/v37s2bNGgB3mTnUV9zduXMHq9WK\nj48PMTEx+Pv78/TTT1NTU0OfPn3Ytm0b4eHhREREuL/O19eXfv36Nf0PSFo8BR6RRhIbG0tZWRkX\nL16kW7du5OXl8fXXXzf7OBpaWisqKmr2cUjz6tu3L3V1dSxduhSAlStX8uuvvwJgt9vp3r077733\nHufOnePNN9/k+PHjLF26lLlz5+Lj40N1dTXV1dXYbDb38lebNm0ICQnB6XRy+fJlgoKCCAsLw263\nc/XqVfz9/d2blk+ePMnatWvp2LEjgwYNcu/lKSkpAeqDt4gnKfCINBIvLy8yMzNJTEzE4XAwbdo0\njzxVeVyW1qR5DRkyhJUrV7J9+3by8/M5deqU++Dfvn37UlNTw8cff0xJSQllZWVUVFTQuXNnqqur\nuX79On5+fnTr1o1du3aRkJCA1WqltrYWX19fvL29OXPmDP369aNdu3Z06dKFCxcuEBsb6/7+SUlJ\njBo1ylPTF/lHCjwijSgpKYmkpCSPjuFxWVqT5hUTE8OVK1fYtWsXAwcOZPDgwYwfP549e/ZgtVrJ\nzMxk+PDhfPbZZwwcOJCSkhISExNxOp1UVlbSvn17Jk2axJIlS5gyZQpVVVV4e3uzYcMGbDYbXbt2\ndYdp1xND19MdoMF9QiKPEwUeEZN5XJbWpHlZrVa6du3K8uXLCQoKAmDTpk0cOnQIHx8fDMMgNTWV\ntm3bcu3aNQ4fPkxiYiJJSUnYbDaCgoL45JNPyMzMpKCgAD8/P+Li4vDz8+Odd95p8HvqaaI8SRR4\nREzmcVlak+b3wgsvsHfvXt5++22gflPyb7/9xoQJEwgICGDYsGH07NmT4OBgvL29AZg/fz4TJ04k\nJCTEfTjwvZuWRcxCjQdFRExi0aJF7Ny5k1mzZlFQUEDbtm359NNP6d69Oz///DNHjhxhwIABhIeH\ne3qoIk3loY8dFXhEREziyJEjzJkzh9dee42oqCgGDRrkPpxVpIVQ4BERERHT09ESIiIi0nIp8IiI\niIjpKfCIiIiI6SnwiIiIiOkp8IiIiIjpKfCIiIiI6SnwiIiIiOkp8IiIiIjpKfCIiIiI6SnwiIiI\niOkp8IiIiIjpKfCIiIiI6SnwiIiIiOkp8IiIiIjpKfCIiIiI6SnwiIiIiOkp8IiIiIjpKfCIiIiI\n6SnwiIiIiOkp8IiIiIjpKfCIiIiI6SnwiIiIiOkp8IiIiIjpKfCIiIiI6SnwiIiIiOkp8IiIiIjp\nKfCIiIiI6SnwiIiIiOkp8IiIiIjpKfCIiIiI6SnwiIiIiOkp8IiIiIjpKfCIiIiI6SnwiIiIiOl5\n/cPnLc0yChEREZEmpCc8IiIiYnoKPCIiImJ6CjwiIiJiego8IiIiYnoKPCIiImJ6CjwiIiJiev8D\ntcsTvr4eJAMAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cafad8ed0>" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "data_doom = read_2d('data-v2/benchmark-iterations-gpu-doom.csv')\n", "data_konos = read_2d('data-v2/benchmark-iterations-gpu-konos.csv')\n", "data_gram = read_2d('data-v2/benchmark-iterations-gpu-gram.csv')\n", "fig = fig_init()\n", "plot_it_to_ips(fig, data_doom, 'doom')\n", "plot_it_to_ips(fig, data_konos, 'konos')\n", "plot_it_to_ips(fig, data_gram, 'gram')\n", "plt.legend(loc='lower right')\n", "fig.show()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAJkCAYAAABdzSbFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXXV97//XJ/dALpDghHANt2CwweAlcrF0gB6bIJci\nBcMg5ZJ6qmhLoPUUcoqFqgfaPqz5WY6WUkUqjiCKAvorqOCgrdCABIgXvFVAQsgICYGABJJ8zh97\nzzAJyWQns/d8Z2e/no/Hfsxea+29vp/9zc7knbW+67siM5EkSVIZw0oXIEmS1MoMY5IkSQUZxiRJ\nkgoyjEmSJBVkGJMkSSrIMCZJklRQ0TAWEZ+NiBURsbSG1x4YEd+LiCUR8VBEzB2MGiVJkhqp9JGx\na4E5Nb72r4HrM/MwYB7wqYZVJUmSNEiKhrHM/B6wqu+6iDggIv49Iu6PiO9GxMHVTcuBidXnuwDL\nBrFUSZKkhojSM/BHxDTgtsycWV2+E/jTzPxFRLwN+D+ZeVxETADuASYAOwPHZeaSQmVLkiTVxYjS\nBfQVEeOAI4CbIqJn9ajqz38E/jUzPxERhwPXA28Y/ColSZLqZ0iFMSqnTZ+tjgvb1JHA3wBk5r0R\nMSYidsvMpwe1QkmSpDpq+JixiHg0Ih6uXgW5uL/XZuZzwK8i4o+q742IOLS6+RHg96vrZwBjDGKS\nJKnZNXzMWET8CnhzZq7czLYvAr8H7AasAD4MfAf4NDAVGAl8MTM/GhEHAJ+hMng/gQ9l5rcbWrwk\nSVKDDVYYe0tmPtPQhiRJkprQYExtkcC3q1NVvHcQ2pMkSWoagzGA/6jMXB4RrwO+FRGPVOcXkyRJ\nankND2OZubz68zcR8VVgNvA9gIgoO8mZJEnSNsjM2Pqrtk1DT1NGxE4RMb76fGfgHcBG96HMTB/b\n+fibv/mb4jU088P+s//su+Z82H/2X6lHozT6yNgU4KvVCVxHAF/IzG82uE1JkqSm0dAwlpm/AmY1\nsg1JkqRmVvRG4RqY9vb20iU0NftvYOy/7WffDYz9NzD239BT9EbhEZEl25ckSapVRJDNNoBfkiRJ\n/TOMSZIkFVQ8jC1atIju7u7SZUiSJBVRfMwYwLBhIzj//PfR1tbG+PHj6ejoAKCzsxOAjo4O2tra\nNnpvd3d3v9u3ZqDvr4ehUENp9oF6+F2Q1NdQ/J3QqDFjQyCM7QocA3wH+ANGjx7F+PF3AcHzzx8L\nwMSJXSxdurj3D6K7u5uZM2ezenX7ZrdvzUDfXw9DoYbS7AP18Lsgqa+h+jthBw5jZ1OZiuxB4HPV\nLbOB6cD11eVzGDNmFqNHLyAT1q5dxNq1fV9/DqNGzWLUqAXEJl206TLAyy8v4qWXNn7/mDGzGDNm\nwRbq3Nrn2Pbtv/3tIl58ceMadtppFmPHbr6GWv6Y6vWawWrv5Ze3/Oc4lDXbBcDNUO8rryzilVc2\n/i6MHDmLkSPr913Y2t/TVthvM9Xqfhu3z2bY74svLuKFF179nTB69DlceeUsFiwo++9Do8LYYNwo\nfJsNH175uX595efo0XDppfD+91f+oD/9abj8cli79tXtl10G55+/8X42949Q5ubf37P/zb2+P9u7\n/Z//GT760Y1ruOQSeN/7tryvWr7k9XrNYLT3qU9V/tw2/XP8wAdqq6+kRv0ia5ShXu///b/w4Q9v\n/F3427+t33ehUYG0mfbbTLW638bts1n2e/XV8LGPvfo7YUc3BI6M7Qq0A13AOxg9erSnKVuEfaAe\nfhck9TVUfyfssKcphw0bxhve8Abmzp3LuHHjHMDfYuwD9fC7IKmvofg7YYcNY87AL0mSmoEz8EuS\nJO2ADGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJ\nBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoy\njEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiT\nJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmS\nVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkg\nw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYx\nSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5Ik\nSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIK\nMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQY\nkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgpqeBiLiOERsSQibmt0W5Ik\nSc1mMI6MXQD8GMhBaEuSJKmpNDSMRcRewPHAvwLRyLYkSZKaUaOPjH0C+BCwocHtSJIkNaURjdpx\nRJwAdGfmkoho39LrLrvsst7n7e3ttLdv8aWSJEmDpquri66uroa3E5mNGcoVEf8HOAtYB4wBJgBf\nycw/7vOabFT7kiRJ9RQRZGbdh101LIxt1EjE7wF/mZknbrLeMCZJkppCo8LYYM4zZuqSJEnaxKAc\nGdti4x4ZkyRJTWJHODImSZKkTRjGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGG\nMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOS\nJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmS\nCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVk\nGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAm\nSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIk\nqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJB\nhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxj\nkiRJBRnGJEmSCjKMSZIkFTRiSxsi4lQggaj+3Ehm3tzAuiRJklrCFsMYcCKVENYGHAncVV1/DPB9\nwDAmSZI0QFsMY5l5DkBEfAs4JDOXV5enAtcNSnWSJEk7uFrGjO0NPNVneQWwT2PKkSRJai39nabs\n8W3gjojopDJ+7N3AtxpalSRJUouIzNeMzd/4BREBnAIcTWUM2Xcz86t1aTwit9a+JEnSUBARZGbU\nfb8lw5BhTJIkNYtGhbGtjhmLiFMj4ucR8VxEPF99PFfvQiRJklpRLacpfwmckJk/qXvjHhmTJElN\notiRMeCpRgQxSZIk1XY15f0RcSPwNeDl6rp0Bn5JkqSBqyWMTQR+C7xjk/WGMUmSpAHyakpJkqQa\nlLyacu+I+GpE/Kb6+EpE7FXvQiRJklpRLQP4rwVuBfaoPm6rrpMkSdIA1TK1xUOZ+catrduuxj1N\nKUmSmkTJqS2eiYizImJ4RIyIiPcAT9e7EEmSpFZUSxg7DzgdeApYDpwGnNvIoiRJklqFV1NKkiTV\noOTVlP8WEbv0Wd41Ij5b70IkSZJaUS2nKQ/NzGd7FjJzFfCmxpUkSZLUOmoJYxERk/osTAKGN64k\nSZKk1lHL7ZA+DtwTEV8CgsoA/o81tCpJkqQWUdMA/oh4A3BMdfGuzPxxXRp3AL8kSWoSJecZA5gE\nvJCZVwG/iYj96l2IJElSK6plBv7LgDcDB2fm9IjYE/hSZh414MY9MiZJkppEySNjpwAnAy8AZOYy\nYHy9C5EkSWpFtYSxtZm5oWchInaudecRMSYi/isiHoyIH0fEFdtVpSRJ0g6qljB2U0RcDewSEf8T\nuBP411p2npkvAcdk5izgUOCYiHj7dlcrSZK0g9nq1BaZ+Q8R8Q7geWA6cGlmfqvWBjLzxerTUVTm\nJ1u5PYVKkiTtiLYaxqqnJe/MzG9GxMHAwRExMjNfqaWBiBgGPAAcAHy6XtNiSJIk7QhqOU35PWB0\n9SrKO4CzgM/V2kBmbqieptwLODoi2rejTkmSpB1SLTPwR2a+GBHzgU9l5t9HxEPb2lBmro6IbwBv\nAbp61l922WW9r2lvb6e9vX1bdy1JklR3XV1ddHV1NbydWuYZWwKcD3wCmJ+ZP4qIpZk5c6s7j9gN\nWJeZz0bEWCpH1i7PzDur251nTJIkNYVGzTNWy5GxBcAlwFerQewA4Ds17n8qcF113Ngw4PM9QUyS\nJEk13puyYY17ZEySJDWJ0vemlCRJUgMYxiRJkgrqN4xFxPCIuHCwipEkSWo1/YaxzFwPdAxSLZIk\nSS2nlqktPgGMBG4EXuhZn5kPDLhxB/BLkqQm0agB/LWEsS7gNS/KzGMG3LhhTJIkNYliYayRDGOS\nJKlZFJvaIiJ2j4jPRMTt1eVDqrdGkiRJ0gDVcpryduBa4H9n5qERMRJYkpm/M+DGIxJgxowZnHji\niYwbN47x48fT0VG5ZqCzsxOAjo4O2traNnpvd3d3v9u3ZqDvr4ehUENp9oF6+F2Q1NdQ/J1QcszY\n/Zn5lohYkpmHVdc9mJmzBtx4RO4KHEPl/kp/AIwaPZq7xo8ngGOffx6ArokTWbx0ae8fRHd3N7Nn\nzqR99erNbt+agb6/HoZCDaXZB+rhd0FSX0P1d0LJe1OuiYjJfQo5HFhdrwJOAmYB44HPAaxdy+yX\nX2Y68LlqUDznmWfo/OM/ZsERRwDQec89tD/zDJ9bv36z2zcSr+2z17x/5Uo6zz6bBUceWa+PtVWd\n3/9+8RpK22IfbO7PsRW08PjJbfo7LWmH95rfCatX09nZyYIFCwpX1hi1hLG/AG4D9o+I7wOvA/6o\noVVtTiZs2PDq8/629123OZt73fr18PLLA6+zVtUvWNEaSttcH2zYAOvWlalnKNjMfx5aQq1/pyW1\nhhb7z2lNV1NGxAjgYCCAn2bmK3VpvHqash3oAt4BjPY05aDVUJp9oB5+FyT1NVR/J5QcMzYWOB94\nO5X5xr4HfDozXxpw4w7gL15DafaBevhdkNTXUPydUDKM3QQ8B1xP5chYBzAxM08bcOPOMyZJkppE\nyTD248w8ZGvrtqtxw5gkSWoSxSZ9BR6IiN5LmqpXU/6g3oVIkiS1olqOjD0CTAd+TWXM2D7AT4F1\nQGbmodvduEfGJElSkyg5z9icejcqSZKkCm8ULkmSVIOSY8YkSZLUIIYxSZKkgrYaxiJiXEQMrz4/\nOCJOioiRjS9NkiRpx1fL1ZQPUJl9f1fgP4H7gJcz88wBN+6YMUmS1CRKjhmLzHwReBfwqerM+79T\n70IkSZJaUU1jxqqTvp4JfGNb3idJkqT+1RKqFgCXAF/NzB9FxAHAdxpbliRJUmuoZczYfpn5q03W\nzc7MxQNu3DFjkiSpSZQcM/aViNirTyG/B3y23oVIkiS1olrC2J8CX4uI3SPieOCTwNzGliVJktQa\narodUkQcCVwN/BY4ITO769K4pyklSVKTaNRpyi2GsYi4bZNVM4DlwLNAZuZJA27cMCZJkppEo8LY\niH62fXwz6xKI6k9JkiQNUC1XU+4PLM/M31aXxwK7b3qF5XY17pExSZLUJEpeTXkTsL7P8gbgS/Uu\nRJIkqRXVEsaGZ+bLPQuZuRYY1biSJEmSWkctYezpiDi5Z6H6/OnGlSRJktQ6ahkzdiDwBWCP6qon\ngLMy8xcDbtwxY5IkqUkM+tQWmylgHEBmrqlb44YxSZLUJIoN4I+IXSLiE8DdwN0R8fGImFjvQiRJ\nklpRLWPGPgs8B5wGnA48D1zbyKIkSZJaRS1jxh7KzDdubd12Ne5pSkmS1CRKzjP224j43T6FvB14\nsd6FSJIktaL+bofU433Av/UZJ7YKOLtxJUmSJLWObbmacgJAZj5Xt8Y9TSlJkprEoN8oPCL+os9i\n9lkfQGbmP9a7GEmSpFbT32nK8fQJYX3EFtZLkiRpG9V8mrIhjXuaUpIkNYmSk74eEBG3RcTTEfGb\niLglIvavdyGSJEmtqJapLTqBLwFTqdyf8ibgi40sSpIkqVXUMunrw5l56CbrnPRVkiS1lBJXU06i\nMlj/3yPiEl49GvZu4N/rXYgkSVIr2uKRsYh4lH6upszM/QbcuEfGJElSk2jUkTGvppQkSapByXtT\n9i3iX+pdgCRJUivbpjAGvLUhVUiSJLWobQ1j3Q2pQpIkqUU5ZkySJKkGgz61RZ+GDwb+EpjW5/WZ\nmcfWuxhJkqRWU9Okr8CngQeA9dXVmZk/GHDjHhmTJElNotiRMeCVzPx0vRuWJElSbQP4b4uID0TE\n1IiY1PNoeGWSJEktoJbTlI/y2pn4MzP3H3DjnqaUJElNwhn4JUmSCip5NeUo4P3A0VSOkN0N/HNm\nvlLvYiRJklpNLacpP0MltF1H5SbhZwHrMvNPBty4R8YkSVKTKHaaMiIezsxDt7Zuuxo3jEmSpCZR\n8kbh6yLiwD6FHACsq3chkiRJraiWecY+BNwVEb+qLk8Dzm1YRZIkSS2kpqspI2IMcDCVAfw/zcy1\ndWnc05SSJKlJDPqYsYg4LjPvjIhTqYSwnsYTIDNvHnDjhjFJktQkSkxtcTRwJ3Air530FWDAYUyS\nJKnV1XI15f6Z+d9bW7ddjXtkTJIkNYmSV1N+eTPrbqp3IZIkSa1oi6cpI2IGcAiwS0S8i8qYsQQm\nAGMGpzxJkqQdW39jxqZTGS82sfqzx/PAextZlCRJUquoZczYkZn5/YY07pgxSZLUJEreDmksMJ/K\nKcuxvDq1xXkDbtwwJkmSmkTJAfyfB6YAc4AuYG9gTb0LkSRJakW1HBl7MDNn9dwcPCJGAv+RmW8b\ncOMeGZMkSU2i5JGxl6s/V0fETGAX4HX1LkSSJKkV1XKj8H+JiEnAXwO3AuOASxtalSRJUovoN4xF\nxDDg+cxcCdwN7DcoVUmSJLWIfk9TZuYG4H8NUi2SJEktp5YB/FcCTwM3Ai/0rK8eLRtY4w7glyRJ\nTaLkPGOPUp1brK/MHPApS8OYJElqFsXCWCMZxiRJUrMoNrVFROwcEZdGxDXV5YMi4oR6FyJJktSK\napln7Foqc40dWV1+EvhYwyqSJElqIbWEsQMy8++oTv6amS9s5fWSJEmqUS1hbG31ZuEARMQBwNrG\nlSRJktQ6apmB/zLgdmCviOgEjgLOaWBNkiRJLaOmqykjYjfg8Orif2Xmb+rSuFdTSpKkJlFynrE7\nM/O4ra3brsYNY5IkqUk0Koxt8TRldZzYTsDrqjcK7zEB2LPehUiSJLWi/saM/SlwAbAH8IM+658H\nrmpkUZIkSa2iltOUf5aZ/9SQxj1NKUmSmsSgjxmLiGMz866IOJXN35vy5gE3bhiTJElNYtDHjAG/\nB9wFnMhmwhgw4DAmSZLU6rxRuCRJUg2K3ShckiRJjWMYkyRJKsgwJkmSVFC/YSwiJlRvDL7p+kNr\n2XlE7B0R34mIH0XEDyPiz7e3UEmSpB3RFsNYRJwOPAJ8pRqmZvfZfF2N+38FuDAz30Dl3pYfiIgZ\n212tJEnSDqa/I2P/G3hzZs4CzgX+LSLetS07z8ynMvPB6vM1wE+ozOgvSZIk+p9nbHhmLgfIzMUR\ncQzw9YjYe3saiohpwGHAf23P+yVJknZE/R0Ze67veLFqMDsGOAl4w7Y0EhHjgC8DF1SPkEmSJIn+\nj4ydzyZhLTOfi4i5wOm1NhARI4GvANdn5tc23X7ZZZf1Pm9vb6e9vb3WXUuSJDVMV1cXXV1dDW+n\nv3tTHpGZ9wxo5xFBZbD/M5l54Wa2OwO/JElqCiVm4P9Un8a3N5QdBbwHOCYillQfc7ZzX5IkSTuc\n/k5T9jVme3aemf+BE8tKkiRtUb9XU0bEJCD6PO+VmSsbWpkkSVIL6G/M2KNAz8bo8xwgM3P/ATfu\nmDFJktQkGjVmbIthbDAYxiRJUrNoVBjrd8xYRIwAjgcOrq76CXB7Zq6rdyGSJEmtqL/TlHsCdwFP\nAQ9QOVX5JmAKcExmPjngxj0yJkmSmsSgn6aMiOuAJZm5aJP1f07lnpVnD7hxw5gkSWoSJcLYTzPz\n4M2sD+CnmTl9wI0bxiRJUpMoMenrbze3spqeXqx3IZIkSa2ovwH8EyLiXVTGivXI6vKEhlYlSZLU\nIvoLY98FTtzCtrsbUIskSVLL6W/M2C6Z+ewWtr01M+8bcOOOGZMkSU2ixJixb296C6RqIe8Avlrv\nQiRJklpRf2HsauA7EdHWsyIiOoB/oTIRrCRJkgZoi2PGMvOaiHgJuCsi/gfwbuB9QHtmPjpI9UmS\nJO3Q+r0dUmZ+PiLWAg8CjwG/m5m/GZTKJEmSWkB/A/iX9lmcBnTz6vximZmHDrhxB/BLkqQmUeJG\n4Vua1kKSJEl1ssUjY5t9ccRuwDP1OpwVEQkwY8YMTjzxRMaNG8f48ePp6OgAoLOzE4COjg7a2to2\nem93d3e/27dmoO+vh6FQQ2n2gXr4XZDU11D8nVDi3pRHAFcAK4GPAv8G7AYMB/44M/99wI1HJGOA\n/YBfAQfC6FGjGb9sPAyD5/d4HoCJyyeydMnS3j+I7u5uZh42k9VTV292+9YM9P31MBRqKM0+UA+/\nC5L6Gqq/E0qEsR8AlwATgWuAOZl5b0S8HrghM2cNuPGI5I3A7sBTwCnV9dcEOTnhXdXlrwX7z9if\nA48/kDEjxvDYHY/x8EMPs+HkDQAMu2UYbz7szUx/53TWbVj3msf6XL/R8rJvLuOJnz1B/mH27n/3\nA3dnyu9PYVgM630EsdHylh4RW3/dpvv68W0/5r4H7tvoMxz+5sM59OQBD8VrGg/f8jD3/uDejfvg\nLYfzxpPfWLiycoK6/x1vCg/d8hD33H9P73dh+C3DW/670OoSxxO3sodueYh773/134fRt43myvdc\nyYIFC4rWVWLM2PDM/Ga18b/NzHsBMvORntOLjRIRRAQbqPwhjBw2kjkHzuGEw0/gpXUvcfOSm/lh\n/LB3+7AYxoGTDmTOgXMYMWzERo/hMfw162564iau+sVVvMIrvfs/c+aZdJzUwYbcsNEjydes29wj\nc+uv67uvF3d5kR/EDzb6DHuM34NDp7ROGHt6/NMMi2Eb9cHUcVP5nbbfKVxZGa18McuKnVcwjFe/\nCxHB7jvvziGvO6RwZSopojX/cyLoHte90b8PO7r+jowtyczDNn2+ueXtbrznNOU04FE8TTkEDsEO\nJvtAPfwuSOprqP5OKHGacj2vTmWxU5/nAGMzs985ympq3AH8xWsozT5QD78Lkvoair8TBj2MDQbn\nGZMkSc1i0MeMRcRYKrc/OgBYCnwmM9fVuwBJkqRW1t+Nwq8D3gz8kMqNwT8+KBVJkiS1kH5vh5SZ\nM6vPRwD31WPQ/iZteJpSkiQ1hUadpuzvyFjvKUlPT0qSJDVGrVdTAowFflt9npk5YcCNe2RMkiQ1\niUEfwJ+Zw+vdmCRJkjbW32lKSZIkNZhhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmS\nJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkq\nyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBh\nTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gk\nSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKk\nggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZ\nxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJ\nkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJ\nKsgwJkmSVFBDw1hEfDYiVkTE0ka2I0mS1KwafWTsWmBOg9uQJElqWg0NY5n5PWBVI9uQJElqZo4Z\nkyRJKmhE6QIuu+yy3uft7e20t7cXq0WSJKlHV1cXXV1dDW8nMrOxDURMA27LzJmb2ZaNbl+SJKke\nIoLMjHrv19OUkiRJBTV6aosvAt8HpkfEryPi3Ea2J0mS1Gwafpqy38Y9TSlJkpqEpyklSZJ2QIYx\nSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5Ik\nSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIK\nMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQY\nkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJ\nklSQYUySJKmgEaULkCRJjRURpUtoOpk5aG0ZxiRJagGDGS6a3WCHV09TSpIkFWQYkyRJKsgwJkmS\nVJBhTJIugp8LAAATWUlEQVQkDRnnnHMOl156aekyBpVhTJIkDRkR0XJXfxrGJEnSkNJqV34axiRJ\nalHd3d0sWrSIRYsW0d3dXWQfS5Ys4U1vehMTJkxg3rx5vPTSS73brrnmGg466CAmT57MySefzPLl\ny3u3ff/73+etb30ru+yyC7Nnz+aee+7p3dbe3s6ll17KUUcdxfjx4znppJN4+umnOfPMM5k4cSKz\nZ8/mscce267P2wiGMUmSWlB3dzczZ87m4osf5OKLH2TmzNnbHKYGuo+XX36ZP/zDP+Tss89m1apV\nnHbaaXzlK18hIrjrrrtYuHAhN910E8uXL2ffffdl3rx5AKxcuZJ3vvOdLFiwgJUrV3LRRRfxzne+\nk1WrVvXu+8Ybb+T6669n2bJl/PKXv+SII45g/vz5rFy5khkzZnD55Zdv02dtJMOYJEktqLOzk9Wr\n21m79nOsXfs5Vq9up7Ozc1D3ce+997Ju3TouuOAChg8fzqmnnspb3/pWMpPOzk7mz5/PrFmzGDVq\nFFdccQX33HMPjz32GN/4xjc4+OCDOfPMMxk2bBjz5s3j9a9/PbfeeitQGXd27rnnst9++zFhwgTm\nzp3L9OnTOfbYYxk+fDinnXYaS5Ys2abP2kiGMUmSxNq1cOGFEFH748ILK+/bXk8++SR77rnnRuv2\n3Xff3m09zwF23nlnJk+ezLJly1i+fDn77LPPa9735JNP9i5PmTKl9/mYMWNoa2vbaHnNmjXbX3id\nGcYkSWpBHR0dTJzYxejR5zB69Dm0tXWxYkUHmdT8WLGig7a2V/cxcWIXHR0dNdcwdepUli1bttG6\nnrFce+yxB48++mjv+hdeeIFnnnmGvfbaiz322OM1Y74ee+yx1wS7HkP96kzDmCRJLaitrY2lSxdz\n5ZWzuPLKWSxdunijo0eDsY8jjzySESNG8MlPfpJXXnmFm2++mfvuu4+I4IwzzuDaa6/loYceYu3a\ntSxcuJDDDz+cffbZh7lz5/Kzn/2ML37xi6xbt44bb7yRRx55hBNOOKF3332vyBzqV2d6o3BJklpU\nW1sbCxYsKLaPkSNHcvPNN/Pe976Xv/7rv+b444/n1FNPBeC4447jIx/5CKeeeiqrVq3iqKOO4oYb\nbgBg8uTJfP3rX+eCCy7g/e9/PwcddBBf//rXmTRpUu+++x4N29zcZUPpaFmUTIsRkUM9rUqS1Owi\nYsgfHRpKttRf1fV1T3GeppQkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIK\nMoxJkiQVZBiTJElFTJs2jTvvvLN0GcUZxiRJUhGbu01RKzKMSZIkFWQYkySpRXV3d7No0SIWLVpE\nd3d3sX0A/OQnP2H//ffnhhtu4JprruGggw5i8uTJnHzyySxfvrz3dcOGDePqq69m+vTp7Lrrrnzw\ngx/s3ZaZfPSjH2XatGlMmTKFs88+m+eeew6Al156ife85z3stttu7LrrrsyePXtA9daTYUySpBbU\n3d3NzMNmcvH1F3Px9Rcz87CZ2xxO6rEPgAceeIA5c+Zw1VVX0dbWxsKFC7nppptYvnw5++67L/Pm\nzdvo9d/4xje4//77efjhh/nSl77EHXfcAcC1117LddddR1dXF//93//NmjVresPaddddx3PPPccT\nTzzBypUrufrqqxk7duw219oIhjFJklpQZ2cnq6euZu2Ja1l74lpWT11NZ2fnoO/j7rvv5uSTT+bz\nn/88xx9/PF/4wheYP38+s2bNYtSoUVxxxRXcc889PP74473vufjii5kwYQJ77703xxxzDA899BAA\nX/jCF/iLv/gLpk2bxs4778wVV1zBDTfcwPr16xk1ahTPPPMMP//5z4kIDjvsMMaPH79NtTbKiNIF\nSJKk8tauW8uFt1/IhasvrP1N9wDrtr/NzOTqq6+mvb2do48+GoDly5fzlre8pfc1O++8M5MnT2bZ\nsmXss88+AOy+++6923faaSfWrFnT+9599923d9s+++zDunXr6O7u5qyzzuLXv/418+bN49lnn+U9\n73kPH/vYxxgxonwUKl+BJEkadB0dHVzxD1ew+rbVAEz8zUSWfnMpbW1tNe+j5zRl7z6WT6Sjo6Pm\n90cEV199NVdeeSUXXXQR//iP/8gee+zBo48+2vuaF154gWeeeYY999xzq/vb9L2PP/44I0aMYMqU\nKQwbNowPf/jDfPjDH+axxx7j+OOP5+CDD+a8886rud5GMYxJktSC2traWLpkae9pxY6Ojm0KYvXa\nx/jx47n99ts57rjjuOSSSzjjjDM444wz6Ojo4PWvfz0LFy7k8MMP7z0qtqnMJDMBOOOMM/i7v/s7\n5s6dy2677cbChQuZN28ew4YNo6uri8mTJ3PIIYcwfvx4Ro4cyfDhw7ep1kYxjEmS1KLa2tpYsGBB\n8X1MnDiRb33rWxxzzDGMGjWKj3zkI5x66qmsWrWKo446ihtuuKH3tZvOS9Z3rrLzzjuPJ598kqOP\nPpqXXnqJOXPm8E//9E8APPXUU7zvfe/jiSeeYNy4ccybN4+zzjprQHXXS/SkySKNR2TJ9iVJagUR\ngf/e1m5L/VVdX/dZar2aUpIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrI\nMCZJklSQYUySJKkgw5gkSVJBhjFJkjTkrVu3rnQJDWMYkySpRXV3d7No0SIWLVpEd3d3kX088MAD\nHHbYYUyYMIHTTz+dd7/73Vx66aV0dXWx11578fd///dMnTqV+fPn8+yzz3LCCSfQ1tbGpEmTOPHE\nE1m2bFnvvtrb27n00ks56qijGD9+PCeddBJPP/00Z555JhMnTmT27Nk89thj2/U5G8kwJklSC+ru\n7mb2zJk8ePHFPHjxxcyeOXObw9RA9/Hyyy9zyimncN5557Fq1SrOOOMMvva1rxERRAQrVqxg1apV\nPP7441x99dVs2LCB+fPn8/jjj/P4448zduxYPvjBD260zxtvvJHrr7+eZcuW8ctf/pIjjjiC+fPn\ns3LlSmbMmMHll1++TZ9xMBjGJElqQZ2dnbSvXs3n1q7lc2vX0r56NZ2dnYO6j3vvvZf169fzZ3/2\nZwwfPpxTTjmF2bNn924fNmwYl19+OSNHjmTMmDFMmjSJU045hTFjxjBu3DgWLlzI3Xff3fv6iODc\nc89lv/32Y8KECcydO5fp06dz7LHHMnz4cE477TSWLFmyTZ9xMIwoXYAkSRoC1q6FCy+sPAbJk08+\nyZ577rnRur333pvMBOB1r3sdo0aN6t324osvcuGFF3LHHXewatUqANasWUNmEhEATJkypff1Y8aM\noa2tbaPlNWvWNOzzbC+PjEmS1II6OjromjiRc0aP5pzRo+lqa6NjxQrIrPnRsWIFXW1tr+5j4kQ6\nOjpqrmHq1KkbjfkCePzxx3uDVc/PHh//+Mf52c9+xuLFi1m9ejV33303mdkb3ja16fuHKsOYJEkt\nqK2tjcVLlzLryiuZdeWVLF66dKOjSIOxjyOPPJLhw4dz1VVXsW7dOm655Rbuu+8+gM0GrDVr1jB2\n7FgmTpzIypUrNzv+q+/7thTShhpPU0qS1KLa2tpYsGBBsX2MHDmSm2++mT/5kz/hkksuYe7cuZxw\nwgmMGjWqdxB/XwsWLKCjo4PddtuNPffck4suuohbb711o9f0fc/m9jEUj5ZFydQYEdksqVWSpGYV\nEU1zlOhtb3sb559/PmeffXaxGrbUX9X1dU9znqaUJEnFfPe73+Wpp55i3bp1XHfddfzwhz9kzpw5\npcsaVJ6mlCRJxfz0pz/l9NNP54UXXuCAAw7gy1/+8kZXRLYCT1NKkrSDa6bTlEOBpyklSZJaiGFM\nkiSpIMOYJElSQYYxSZKkgryaUpKkFjAUJztVRUPDWETMARYBw4F/zcy/a2R7kiTptbyScmhr2GnK\niBgOXAXMAQ4BzoiIGY1qrxV1dXWVLqGp2X8DY/9tP/tuYOy/gbH/hp5GjhmbDfwiMx/NzFeAG4CT\nG9hey/Ev1MDYfwNj/20/+25g7L+Bsf+GnkaGsT2BX/dZfqK6TpIkSVWNDGOeoJYkSdqKht0OKSIO\nBy7LzDnV5UuADX0H8UeEgU2SJDWNRtwOqZFhbATwU+A44ElgMXBGZv6kIQ1KkiQ1oYZNbZGZ6yLi\ng8AdVKa2+IxBTJIkaWMNOzImSZKkrSt2O6SImBMRj0TEzyPir0rVUVpEfDYiVkTE0j7rJkXEtyLi\nZxHxzYjYpc+2S6p99khEvKPP+jdHxNLqtv+vz/rREXFjdf29EbHv4H26xouIvSPiOxHxo4j4YUT8\neXW9fbgVETEmIv4rIh6MiB9HxBXV9fbdNoiI4RGxJCJuqy7bfzWKiEcj4uFq/y2urrP/ahQRu0TE\nlyPiJ9W/w2+z/7YuIg6ufud6Hqsj4s+L9l1mDvqDymnLXwDTgJHAg8CMErWUfgC/CxwGLO2z7u+B\n/1V9/lfAldXnh1T7amS1737Bq0c3FwOzq8//f2BO9fn5wKeqz98N3FD6M9e5/3YHZlWfj6MyTnGG\nfVhz/+1U/TkCuBd4u323zX14EfAF4Nbqsv1Xe9/9Cpi0yTr7r/b+uw44r/p8BDDR/tvmPhwGLAf2\nLtl3pT78EcDtfZYvBi4u/YdS8MswjY3D2CPAlOrz3YFHqs8vAf6qz+tuBw4HpgI/6bN+HvDPfV7z\nturzEcBvSn/eBvfl14Dftw+3ud92Au4D3mDfbVO/7QV8GzgGuK26zv6rvf9+BUzeZJ39V1vfTQT+\nezPr7b9t68d3AN8r3XelTlM6IWz/pmTmiurzFcCU6vM9qPRVj55+23T9Ml7tz96+zsx1wOqImNSg\nuouKiGlUjjL+F/ZhTSJiWEQ8SKWPvpOZP8K+2xafAD4EbOizzv6rXQLfjoj7I+K91XX2X232A34T\nEddGxAMRcU1E7Iz9t63mAV+sPi/Wd6XCmFcN1Cgrsdr+2oqIGAd8BbggM5/vu80+3LLM3JCZs6gc\n4Tk6Io7ZZLt9twURcQLQnZlLgM3OO2T/bdVRmXkYMBf4QET8bt+N9l+/RgBvonIq7E3AC1TOMvWy\n//oXEaOAE4GbNt022H1XKowto3J+tsfebJwuW92KiNgdICKmAt3V9Zv2215U+m1Z9fmm63ves091\nXyOAiZm5snGlD76IGEkliH0+M79WXW0fboPMXA18A3gz9l2tjgROiohfUfmf9bER8Xnsv5pl5vLq\nz98AX6VyT2P7rzZPAE9k5n3V5S9TCWdP2X81mwv8oPr9g4LfvVJh7H7goIiYVk2m7wZuLVTLUHQr\ncHb1+dlUxkH1rJ8XEaMiYj/gIGBxZj4FPFe9kiaAs4BbNrOvPwLuHIwPMFiqn/czwI8zc1GfTfbh\nVkTEbj1XC0XEWOB/AEuw72qSmQszc+/M3I/KqY67MvMs7L+aRMROETG++nxnKmN3lmL/1aT6uX8d\nEdOrq34f+BFwG/Zfrc7g1VOUUPK7V3DQ3FwqV779ArikVB2lH9UvwpPAy1TOL58LTKIyKPhnwDeB\nXfq8fmG1zx4B/qDP+jdT+UX2C+CTfdaPBr4E/JzK1XLTSn/mOvff26mM13mQSpBYAsyxD2vqu5nA\nA9W+exj4UHW9fbftffl7vHo1pf1XW5/tV/3uPQj8sOffAftvm/rwjVQuvHkIuJnKoH77r7a+2xl4\nGhjfZ12xvnPSV0mSpIKKTfoqSZIkw5gkSVJRhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTVERE\nrKn+3Dcizqjzvhdusvyf9dy/JNWTYUxSKT2THO4HdGzLG6u3F+nPJRs1lHnUtuxfkgaTYUxSaVcC\nvxsRSyLigogYFhH/EBGLI+KhiPifABHRHhHfi4hbqMzYTkR8LSLuj4gfRsR7q+uuBMZW9/f56rqe\no3BR3ffSiHg4Ik7vs++uiLgpIn4SEdf3FBcRV0bEj6q1/MOg9oyklrC1/11KUqP9FfCXmXkiQDV8\nPZuZsyNiNPAfEfHN6msPA96QmY9Vl8/NzFXVe2sujogvZ+bFEfGBzDysTxs9R+HeReUWMocCrwPu\ni4jvVrfNAg4BlgP/GRFHUbn1yR9m5uurtU1owOeX1OI8MiaptNhk+R3AH0fEEir3dJsEHFjdtrhP\nEAO4ICIeBO4B9qZyA9/+vB3ozIpu4G7grVTC2uLMfDIr94h7ENgXeBZ4KSI+ExGnAL/d7k8pSVtg\nGJM0FH0wMw+rPg7IzG9X17/Q84KIaAeOAw7PzFlUbhI/Ziv7TV4b/nqOmq3ts249MDIz1wOzgS8D\nJwC3b8+HkaT+GMYklfY8ML7P8h3A+T2D9CNiekTstJn3TQBWZeZLEfF64PA+217ZwiD/7wHvro5L\nex1wNLCY1wY0qm3vDOySmf8OXETlFKck1ZVjxiSV0nNE6iFgffV047XAJ4FpwAMREUA3cEr19dnn\n/bcD74uIHwM/pXKqsse/AA9HxA8y86ye92XmVyPiiGqbCXwoM7sjYsYm++6pbzxwS0SMoRLYLqzL\nJ5ekPqIyPEKSJEkleJpSkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgw\nJkmSVND/A05dcjkBgdRoAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cadf2c450>" ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "data_doom = read_2d('data-v2/benchmark-salt-len-gpu-doom.csv')\n", "data_konos = read_2d('data-v2/benchmark-salt-len-gpu-konos.csv')\n", "data_gram = read_2d('data-v2/benchmark-salt-len-gpu-gram.csv')\n", "fig = fig_init()\n", "plot_sl_to_ips(fig, data_doom, 'doom')\n", "plot_sl_to_ips(fig, data_konos, 'konos')\n", "plot_sl_to_ips(fig, data_gram, 'gram')\n", "plt.legend(loc='lower right')\n", "fig.show()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAJkCAYAAABdzSbFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucnVV97/HPL5Mr5AIEhzsEERBtMHiJXFo6QGsJgkgp\nGkYpAaq1ViXQegRaFKoe0HOUHPXUg1QBhchNUNBWvOCgFhCVBKICigpICAyQEC5Ckkl+54+9J5kM\nk8memb1nzWR/3q/Xfu1nP8+zn7X2Mphv1lrPeiIzkSRJUhljSldAkiSpmRnGJEmSCjKMSZIkFWQY\nkyRJKsgwJkmSVJBhTJIkqaCiYSwivhQRj0fEkhrOfUVE/CgiFkXE3RExZzjqKEmS1Eile8YuBY6s\n8dx/Ba7IzAOAucC/N6xWkiRJw6RoGMvMHwEreu6LiL0i4r8i4mcR8cOI2Ld6aBkwrbq9DbB0GKsq\nSZLUEFF6Bf6ImAHclJkzq5+/D/x9Zj4QEW8E/mdmHhERU4HbganA1sARmbmoULUlSZLqYmzpCvQU\nEZOBg4BrI6J79/jq+6eB/8jMiyLiQOAK4NXDX0tJkqT6GVFhjMqw6dPVeWG9HQx8BCAz74iIiRGx\nfWY+Oaw1lCRJqqOGzxmLiAcj4p7qXZB39nduZj4D/D4i/qb63YiI/auH7wP+orp/P2CiQUySJI12\nDZ8zFhG/B16Xmcv7OPZV4M+B7YHHgQ8DPwA+D+wEjAO+mpkfi4i9gC9SmbyfwAcz83sNrbwkSVKD\nDVcYe31mPtXQgiRJkkah4VjaIoHvVZeqeNcwlCdJkjRqDMcE/kMyc1lEvAz4bkTcV11fTJIkqek1\nPIxl5rLq+xMRcQMwG/gRQESUXeRMkiRpADIzNn/WwDR0mDIitoqIKdXtrYE3ARs9hzIzfQ3y9ZGP\nfKR4HUbzy/az/Wy70fmy/Wy/Uq9GaXTP2A7ADdUFXMcCV2bmdxpcpiRJ0qjR0DCWmb8HZjWyDEmS\npNGs6IPCARYsWEBnZ2fpaoxKbW1tpaswqtl+Q2P7DZ5tNzS239DYfiNP0QeFR0ROmHAy06Z1sGTJ\nnbS2thariyRJUn8igmzABP7iYQz+jYhLaGt7BYcddhhTpkyhvb0dgIULFwLQ3t7+kqDW2dnZ73FJ\nkqR62oLD2LbAYVSegvRXTJgwnilTbgGCZ589HOAlPWednZ3MnDmblSvb+jxeC8OcJEkaiC04jJ1M\nZY7/YuAyAMaMmQ3sw7p1VwAwbtw83vWuWbzznfOZNAmuuWYBn/rUYlavrpw/YcI8LrxwFvPnz6+p\n3HqEuXowEEqSNHo0KowNxwr8A9Y7H65dCzffDD//Ofzxj7BsGaxeveH4qlXwwQ/Cv/0bTJoEW23V\n//t99y3kqafaWLv2MgCWL5/H/PkLeetb52/2+xMnwpg63PbQOxBecMEC581JktSERkAYuxF4BugA\n5jJhwgSmTFkGPMazz84DKj1Xt932SbpzSmdnOzNnLmDlyg3H77zzk0yeDC+8UAlsL7yw8XbP98cf\n37gG69bBAw/Adddt+jvd7y++COPHbz7w9X7vve8HP1jIihVtrFlzGQBPPz2PBQsW8p73zGerreob\n/CRJ0sg1AoYph38C/1CGKTMrgWxzoW1z73ffvYAlSxazbt1l1baYx/Tps5g4cf768158ESZMqD30\nDTQg9vzOxIkQde943TyHaiVJo8UWPGcsBzznqx5Kh4BaAuG6dZUh2J4hbjDBr5ZzVq+uBLJGhb2e\n7+PHV4LfSJm7J0lSLbbYMNbM64yVDoQ9rV1b6YlrVNjreW5XVyWUwQKef37DjRsR83jFK2bxylfO\nXz+0u6mh3oEcc6hXklQPW+wE/gsvnEV7+yebLogBtLa2DmtvYH9aWmDrrSuvRuvqqoSzBQvgYx/b\ncDPG2LFwxBFw5JEb5vz1DHPPPw9PPNH3sd7bPef4jRs3uBA3mPO6e/0kSapV8Z6xkuWrrOEYpsys\nDPXWEtyGeuyFFypBs+dw72B782o91tJSt6YqbiT1FEtSX7bYYUrDWHPb0v4CXru28YGv5+eWlvoH\nvE0dmzChcb1+zh+UNBoYxiRtJLMyxNvowNe93X2TRyPC33XXLeDTnx78Qs6SNBy22DljkgYnotJb\nNWECbLNN48tbt27jmzwGEupWruz/3EceeelCzmeeCeeeu3GYa+Sr1PIukmTPmKTi+hqmXLToTqZM\nad0owPUX/Ib6Wr16w7p+ffXqNeK1Jc35k5qBw5SStmil5w929/zVM+Bt7tU952+4Xt7tKw2NYUyS\ntiCZsGZN/2Gt3r1/a9dumPdXj9fmeg99pJu2NIYxSdKQ9Lzbdzhe3c/yHc7ev3HjSreytmSGMUnS\nqNJznb/h6Pl74YVKucMZ/rzxo7kYxiRJ2ozNDf3W+9X7xo9ah3CH8vLGj3IMY5IkjTCbuvGjEb1+\n3a+xY4e396/UjR+lb+rpi2FMkqQm19diz41+lbjx48knR+ZTOQxjkiRp2HV1DW/v36pVMGbMAtau\nXQxcBoycp3K4Ar8kSRp2Y8fC5MmV13DIhP/9vytP4Fi1anjKLM2eMUmSNKL09VQOhykbxDAmSZL6\n4gT+YWIYkyRJo0WjwpgPqpAkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIK\nMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQY\nkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJ\nklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSp\nIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGG\nMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOS\nJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmS\nCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVk\nGJMkSSrIMCZJklSQYUySJKmghoexiGiJiEURcVOjy5IkSRpthqNn7HTgV0AOQ1mSJEmjSkPDWETs\nChwF/AcQjSxLkiRpNGp0z9hFwAeBdQ0uR5IkaVQa26gLR8TRQGdmLoqItk2dd955563fbmtro61t\nk6dKkiQNm46ODjo6OhpeTmQ2ZipXRPxP4CSgC5gITAW+lpl/2+OcbFT5kiRJ9RQRZGbdp101LIxt\nVEjEnwP/nJnH9NpvGJMkSaNCo8LYcK4zZuqSJEnqZVh6xjZZuD1jkiRplNgSesYkSZLUi2FMkiSp\nIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGG\nMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOS\nJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmS\nCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVk\nGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAm\nSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIk\nqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJB\nhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQWM3dSAijgcS\niOr7RjLz+gbWS5IkqSlsMowBx1AJYa3AwcAt1f2HAbcBhjFJkqQh2mQYy8x5ABHxXeBVmbms+nkn\n4PJhqZ0kSdIWrpY5Y7sBj/X4/Diwe2OqI0mS1Fz6G6bs9j3g5ohYSGX+2NuB7za0VpIkSU0iMl8y\nN3/jEyICOA44lMocsh9m5g11KTwiN1e+JEnSSBARZGbU/bolw5BhTJIkjRaNCmObnTMWEcdHxG8i\n4pmIeLb6eqbeFZEkSWpGtQxT/hY4OjPvrXvh9oxJkqRRoljPGPBYI4KYJEmSarub8mcRcTXwdWB1\ndV+6Ar8kSdLQ1RLGpgEvAG/qtd8wJkmSNETeTSlJklSDkndT7hYRN0TEE9XX1yJi13pXRJIkqRnV\nMoH/UuBGYOfq66bqPkmSJA1RLUtb3J2Zr9ncvkEV7jClJEkaJUoubfFURJwUES0RMTYi3gk8We+K\nSJIkNaNawtipwNuAx4BlwAnAKY2slCRJUrPwbkpJkqQalLyb8ssRsU2Pz9tGxJfqXRFJkqRmVMsw\n5f6Z+XT3h8xcAby2cVWSJElqHrWEsYiI7Xp82A5oaVyVJEmSmkctj0P6FHB7RFwDBJUJ/B9vaK0k\nSZKaRE0T+CPi1cBh1Y+3ZOav6lK4E/glSdIoUXKdMYDtgOcz83PAExGxZ70rIkmS1IxqWYH/POB1\nwL6ZuU9E7AJck5mHDLlwe8YkSdIoUbJn7DjgWOB5gMxcCkypd0UkSZKaUS1hbFVmruv+EBFb13rx\niJgYET+JiMUR8auIuGBQtZQkSdpC1RLGro2Ii4FtIuLdwPeB/6jl4pn5InBYZs4C9gcOi4g/HXRt\nJUmStjCbXdoiM/9XRLwJeBbYBzg3M79bawGZ+cfq5ngq65MtH0xFJUmStkSbDWPVYcnvZ+Z3ImJf\nYN+IGJeZa2opICLGAHcBewGfr9eyGJIkSVuCWoYpfwRMqN5FeTNwEnBZrQVk5rrqMOWuwKER0TaI\nekqSJG2RalmBPzLzjxFxGvDvmfnJiLh7oAVl5sqI+BbweqCje/955523/py2tjba2toGemlJkqS6\n6+jooKOjo+Hl1LLO2CLgvcBFwGmZ+cuIWJKZMzd78Yjtga7MfDoiJlHpWTs/M79fPe46Y5IkaVRo\n1DpjtfSMzQfOBm6oBrG9gB/UeP2dgMur88bGAF/pDmKSJEmq8dmUDSvcnjFJkjRKlH42pSRJkhrA\nMCZJklRQv2EsIloi4ozhqowkSVKz6TeMZeZaoH2Y6iJJktR0alna4iJgHHA18Hz3/sy8a8iFO4Ff\nkiSNEo2awF9LGOsAXnJSZh425MINY5IkaZQoFsYayTAmSZJGi2KLvkbEjsDHgV0y88iIeBVwUGZ+\nsR4VOOqoo8hM9t9/fyZPnsyUKVNob69MU1u4cCEA7e3ttLa21qM4SZKkEaWWYcpvA5cC/5KZ+0fE\nOGBRZv7JkAuPyG2Bw6gs6f9XwPgJE7hlyhQCOPzZZwHomDaNO5cs2SiQdXZ2DimsDfX7kiSpuZSc\nM/azzHx9RCzKzAOq+xZn5qwhFx6RJwOzgMXAZdX9s1ta2CeCK7q6AJg3YQKzLryQ+fPnA5UgNXvm\nTNpWrgT6Dmv9Ger368VAKEnS6FHy2ZTPRcT0HhU5EFhZ74psZO3ajT+vWgUf+hB89KMwYQILX3yR\ntqef5rJqkJz3xBMsPPBA5s+YAePHV17jxvW9PX48Cxctou2pp7isWs685ctZ+I//yPw5czY6r89X\nr2u95NXSUtNP7B0IF1xwQZFAWJqBVJLU7GoJY/8E3AS8PCJuA14G/E29KnAj8AzQAcwFJkyYwLIp\nU3gMmNc9TDl1Kp+84w6YNg1Wr4bPfx4+8YnKNlQC0pvfDG99K6xZU9m/evXG2z0/jxu3cSUyYelS\n+PGPNz6/v1fva69eXQmNETUFt4VPPEHbE09sCJRPPsnCOXOYv//+L/1ef58Hcm5fn1taKnUuwEAq\nSVKNd1NGxFhgXyCA+zNzTV0Kj8j9I/j1uHH83bvfTWtra00T+Ef0MOXatTUFtwVXXsniiy/msjWV\nppw3bhyz3v525h9+eP9Bst6f164dfJgbYhBc8J//yeIvf3lDG4wfz6wPfID5p5yy6XLGjau591GS\npHoqOWdsEvBe4E+prDf2I+DzmfnikAuPyIsuuqjIBPzSw2MjZd4a69YNX/Dr9XnB/fez+N57N/QO\nRjBrp52Y390Duqlezu7ex/4CWyO3B/MdA+Rmlf5vUpI2p2QYu5bKSOIVVHrG2oFpmXnCkAtv8nXG\nmv0vn0EH0p69j5sKbLUMVw/X9qpVlXqXCI5DCZHDOIQ9Yv5xIkn9KBnGfpWZr9rcvkEV3uRhTE0U\nSNeurV/AG64QuW7dsIXFBT/8IYuvv57Luu+gHjeOWaecwvwTTtj4O7W8j+n3kbuSNGgl76a8KyIO\nyszbqxU5EPh5vSui5tTa2rp+yZItWktL5TVxYuma1K47QDYi7L3wAjzzzIbPDz9cCX89y/7hD+GB\nBzZ8r9b3lpa+w1+93+t9zYI300gqq5aesfuAfYA/UJkztjtwP9AFZGbuP+jC7RmTRB2HKTOhq2vg\nAa7W90Zcs+dQ9nCEyHqXMW6cIVJNo+Qw5Yz+jmfmg4Mu3DAmqapphqw3pedQ9mgJkatXV8Lv2LGN\n7TVs1LUd0tYA+aBwSdLIkzk6Q+Tq1ZUwNhpDZJMMaY/Ef6AZxiRJqpfMDXdmj7Yw2b0+5GgLkQMY\n0h6pd1iXnMAvSdKWJaIyvDp2FP412Pvmmnq/P/tsY669Zk2lvWsIfC95Ss3KlSxcuHCLveFrs38K\nI2Iy8EJmro2IfamsxP9f9VqFX5IkDcBovDsbNgxp1xLcrrgCLr64st0EapnAfxeV1fe3Bf4b+Cmw\nOjPfMeTCHaaUJEm9NNswZS1hbFFmHhAR7wcmZeYnI+LuzHzNkAs3jEmSpD44gX/jghdReTblRcBp\nmfnLiFiSmTOHXLhhTJIkjRKNCmO1LLIyHzgbuKEaxPYCflDvikiSJDWjWnrG9szM3/faNzsz7xxy\n4faMSZKkUaJkz9jXImLXHhX5c+BL9a6IJElSM6oljP098PWI2DEijgI+A8xpbLUkSZKaQ00r8EfE\nwcDFwAvA0ZnZWZfCHaaUJEmjxLDfTRkRN/XatR+wDHgayMx8y5ALN4xJkqRRosTjkD7Vx74Eovou\nSZKkIarlbsqXA8sy84Xq50nAjr3vsBxU4faMSZKkUaLk3ZTXAmt7fF4HXFPvikiSJDWjWsJYS2au\n7v6QmauA8Y2rkiRJUvOoJYw9GRHHdn+obj/ZuCpJkiQ1j1rmjL0CuBLYubrrEeCkzHxgyIU7Z0yS\nJI0SxR4U3qMCkwEy87m6FW4YkyRJo0SxCfwRsU1EXATcCtwaEZ+KiGn1rogkSVIzqmXO2JeAZ4AT\ngLcBzwKXNrJSkiRJzaKWOWN3Z+ZrNrdvUIU7TClJkkaJkuuMvRARf9ajIn8K/LHeFZEkSWpG/T0O\nqdt7gC/3mCe2Aji5cVWSJElqHgO5m3IqQGY+U7fCHaaUJEmjxLA/KDwi/qnHx+yxP4DMzE/XuzKS\nJEnNpr9hyin0CGE9xCb2S5IkaYBqHqZsSOEOU0qSpFGi5KKve0XETRHxZEQ8ERHfiIiX17sikiRJ\nzaiWpS0WAtcAO1F5PuW1wFcbWSlJkqRmUcuir/dk5v699rnoqyRJaiol7qbcjspk/f+KiLPZ0Bv2\nduC/6l0RSZKkZrTJnrGIeJB+7qbMzD2HXLg9Y5IkaZRoVM+Yd1NKkiTVoOSzKXtW4gv1roAkSVIz\nG1AYA97QkFpIkiQ1qYGGsc6G1EKSJKlJOWdMkiSpBsO+tEWPgvcF/hmY0eP8zMzD610ZSZKkZlPT\noq/A54G7gLXV3ZmZPx9y4faMSZKkUaJYzxiwJjM/X++CJUmSVNsE/psi4h8jYqeI2K771fCaSZIk\nNYFahikf5KUr8WdmvnzIhTtMKUmSRglX4JckSSqo5N2U44F/AA6l0kN2K/D/MnNNvSsjSZLUbGoZ\npvwildB2OZWHhJ8EdGXm3w25cHvGJEnSKFFsmDIi7snM/Te3b1CFG8YkSdIoUfJB4V0R8YoeFdkL\n6Kp3RSRJkppRLeuMfRC4JSJ+X/08AzilYTWSJElqIjXdTRkRE4F9qUzgvz8zV9WlcIcpJUnSKDHs\nc8Yi4ojM/H5EHE8lhHUXngCZef2QCzeMSZKkUaLE0haHAt8HjuGli74CDDmMSZIkNbta7qZ8eWb+\nbnP7BlW4PWOSJGmUKHk35XV97Lu23hWRJElqRpscpoyI/YBXAdtExF9TmTOWwFRg4vBUT5IkacvW\n35yxfajMF5tWfe/2LPCuRlZKkiSpWdQyZ+zgzLytIYU7Z0ySJI0SJR+HNAk4jcqQ5SQ2LG1x6pAL\nN4xJkqRRouQE/q8AOwBHAh3AbsBz9a6IJElSM6qlZ2xxZs7qfjh4RIwDfpyZbxxy4faMSZKkUaJk\nz9jq6vvKiJgJbAO8rN4VkSRJaka1PCj8CxGxHfCvwI3AZODchtZKkiSpSfQbxiJiDPBsZi4HbgX2\nHJZaSZIkNYl+hykzcx3wP4apLpIkSU2nlgn8FwJPAlcDz3fvr/aWDa1wJ/BLkqRRouQ6Yw9SXVus\np8wc8pClYUySJI0WxcJYIxnGJEnSaFFsaYuI2Doizo2IS6qf946Io+tdEUmSpGZUyzpjl1JZa+zg\n6udHgY83rEaSJElNpJYwtldmfoLq4q+Z+fxmzpckSVKNagljq6oPCwcgIvYCVjWuSpIkSc2jlhX4\nzwO+DewaEQuBQ4B5DayTJElS06jpbsqI2B44sPrxJ5n5RF0K925KSZI0SpRcZ+z7mXnE5vYNqnDD\nmCRJGiUaFcY2OUxZnSe2FfCy6oPCu00Fdql3RSRJkppRf3PG/h44HdgZ+HmP/c8Cn2tkpSRJkppF\nLcOU78/MzzakcIcpJUnSKDHsc8Yi4vDMvCUijqfvZ1NeP+TCDWOSJGmUGPY5Y8CfA7cAx9BHGAOG\nHMYkSZKanQ8KlyRJqkGxB4VLkiSpcQxjkiRJBRnGJEmSCuo3jEXE1OqDwXvv37+Wi0fEbhHxg4j4\nZUT8IiI+MNiKSpIkbYk2GcYi4m3AfcDXqmFqdo/Dl9d4/TXAGZn5airPtvzHiNhv0LWVJEnawvTX\nM/YvwOsycxZwCvDliPjrgVw8Mx/LzMXV7eeAe6ms6C9JkiT6X2esJTOXAWTmnRFxGPDNiNhtMAVF\nxAzgAOAng/m+JEnSlqi/nrFnes4Xqwazw4C3AK8eSCERMRm4Dji92kMmSZIk+u8Zey+9wlpmPhMR\nc4C31VpARIwDvgZckZlf7338vPPOW7/d1tZGW1tbrZeWJElqmI6ODjo6OhpeTn/PpjwoM28f0sUj\ngspk/6cy84w+jrsCvyRJGhVKrMD/7z0KH2woOwR4J3BYRCyqvo4c5LUkSZK2OP0NU/Y0cTAXz8wf\n48KykiRJm9Tv3ZQRsR0QPbbXy8zlDa2ZJElSE+hvztiDQPfB6LENkJn58iEX7pwxSZI0SjRqztgm\nw9hwMIxJkqTRolFhrN85YxExFjgK2Le6617g25nZVe+KSJIkNaP+hil3AW4BHgPuojJU+VpgB+Cw\nzHx0yIXbMyZJkkaJYR+mjIjLgUWZuaDX/g9QeWblyUMu3DAmSZJGiRJh7P7M3LeP/QHcn5n7DLlw\nw5gkSRolSiz6+kJfO6vp6Y/1rogkSVIz6m8C/9SI+Gsqc8W6ZfXz1IbWSpIkqUn0F8Z+CByziWO3\nNqAukiRJTae/OWPbZObTmzj2hsz86ZALd86YJEkaJUrMGfte70cgVSvyJuCGeldEkiSpGfUXxi4G\nfhARrd07IqId+AKVhWAlSZI0RJucM5aZl0TEi8AtEfGXwNuB9wBtmfngMNVPkiRpi9bv45Ay8ysR\nsQpYDDwE/FlmPjEsNZMkSWoC/U3gX9Lj4wygkw3ri2Vm7j/kwp3AL0mSRokSDwrf1LIWdXXUUUeR\nmey///5MnjyZKVOm0N7eDsDChQsBaG9vp7W1tb/LSJIkjUqb7Bnr8+SI7YGn6tWdFRHJRGBP4PfA\nK2DC+AlMWToFxsCzOz8LwLRl01iyaMlGgayzs3NIYW2o36+HkVAHSZJUmxLPpjwIuABYDnwM+DKw\nPdAC/G1m/teQC49IXgPsCDwGHFfZ3/IfLcT0oOu4LgAm3DSBC995IfPnzwcqIWbmATNZudNKoO+w\n1p+hfr8eRkIdRgIDqSRptCgRxn4OnA1MAy4BjszMOyLilcBVmTlryIVvIozxBSqx76+rn2+A2CkY\ne/BYWsa0sO62daxeunrD+V+HbfbYhm0P25axYyrnjB0ztrIdPbar+5d+Zym//uWvybdWfvuYb4zh\nNa95Da9+y6s3On9T39/csZdco49jN1x2A1/41hdY85Y1AIy/cTynv/V0TnnPKevP7z63r+937xsT\n/a1OMrIZSCVJo0mJOWMtmfmdauH/lpl3AGTmfRFRv1n39wOrgAeB66rDlGunwBPw7E3VYconprH4\n24vZbvvtWJtr+cz/+QznXXUeq1gFwISWCbz/je9n3t/Oo2tdF13ruli7bu2G7Vy70f5r77+W3937\nO9ZQCUIt0cKfvOxP+MuX/+Umv9N7/4tdL/Zbzuau8eADD9K1rmt9M6xZt4av3PMVbrrmpo3O777G\npsoJYkDhra99fYXK/vYN+PxNlH3zlTezYscVrDmm8r/DihtXcN5nz+OEU08Y0HX6+xxR9/9m1CD2\nkkpqVv31jC3KzAN6b/f1edCFR2TsEIx7ehzvfte7aW1trWkCv8OUG6zLdX2Gt1oDXX/7+rvWQK+/\n0feq2/fedC9L7lnCumPXARBfD17xqlew81/uPKC69Pc5iM2GxIGE05q+U+O5gwmXQ/lOX79rpPSs\njoT/JiVQv2ShAAAY/0lEQVRpc0oMU65lw1IWW/XYBpiUmf2uUVZT4RF50UUXFZmAPxL+FT4S6lBS\no/8CzswNYbWG4FZroKznd14SMnP46tjdM1skMPbaf9cNd9FxRwdrj11bqdM3xjLnz+bQNrftJef3\nV26jjtnDKgkKhLHh4DpjavZAWtq6XFd7UBxMuKzxO7dedSs3//fN68NYyzdaOHT2obzmra/p8/z+\nrlnvY+tyHWNiTJ+Brb9gWkto7S+sDvbaw32s528ZE2MMrtqilegZm0Tl8Ud7AUuAL2ZmV58nD7Zw\nw5gkRvYwZa09rCPyWF9BtoaQPNhjSZYLiHXoBR3O+hpaN28k/mO9RBi7BlgN/BiYAzyYmafXtXDD\nmKSqkfh/vBqY7p7WgYbARhxrZGitx7Hu+ayNGl5vZGgdjmNPPfEUr3vD63hmp2eAkfMPtBJhbElm\nzqxujwV+Wo9J+73KMIxJkppKd29rraGxVKDt81gOrfe01nJX/XgV65atW7+EVe/1RkspsbTF+iHJ\nzOyyS1WSpKGLiEqvFS2Mbxlfujoj0oIFCzjrirPWL2G1pav1bkqAScAL1e3MzKlDLtyeMUmS1MtI\nnUfq3ZSSJKlpjMR5pIYxSZKkghoVxkbG8tuSJElNyjAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxj\nkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJ\nkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQV\nZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgw\nJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUyS\nJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElS\nQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIM\nY5IkSQUZxiRJkgoyjEmSJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYk\nSZIKMoxJkiQV1NAwFhFfiojHI2JJI8uRJEkarRrdM3YpcGSDy5AkSRq1GhrGMvNHwIpGliFJkjSa\nOWdMkiSpoLGlK3Deeeet325ra6Otra1YXSRJkrp1dHTQ0dHR8HIiMxtbQMQM4KbMnNnHsWx0+ZIk\nSfUQEWRm1Pu6DlNKkiQV1OilLb4K3AbsExF/iIhTGlmeJEnSaNPwYcp+C3eYUpIkjRIOU0qSJG2B\nDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnG\nJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBhTJIkqSDDmCRJUkGGMUmSpIIMY5IkSQUZxiRJkgoyjEmS\nJBVkGJMkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkq\nyDAmSZJUkGFMkiSpIMOYJElSQYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKsgwJkmSVJBh\nTJIkqSDDmCRJUkFjS1dAkiQ1VkSUrsKok5nDVpZhTJKkJjCc4WK0G+7w6jClJElSQYYxSZKkggxj\nkiRJBRnGJEnSiDFv3jzOPffc0tUYVoYxSZI0YkRE0939aRiTJEkjSrPd+WkYkySpSXV2drJgwQIW\nLFhAZ2dnkWssWrSI1772tUydOpW5c+fy4osvrj92ySWXsPfeezN9+nSOPfZYli1btv7Ybbfdxhve\n8Aa22WYbZs+eze23377+WFtbG+eeey6HHHIIU6ZM4S1veQtPPvkk73jHO5g2bRqzZ8/moYceGtTv\nbQTDmCRJTaizs5OZM2dz1lmLOeusxcycOXvAYWqo11i9ejVvfetbOfnkk1mxYgUnnHACX/va14gI\nbrnlFs455xyuvfZali1bxh577MHcuXMBWL58OW9+85uZP38+y5cv58wzz+TNb34zK1asWH/tq6++\nmiuuuIKlS5fy29/+loMOOojTTjuN5cuXs99++3H++ecP6Lc2kmFMkqQmtHDhQlaubGPVqstYteoy\nVq5sY+HChcN6jTvuuIOuri5OP/10WlpaOP7443nDG95AZrJw4UJOO+00Zs2axfjx47ngggu4/fbb\neeihh/jWt77Fvvvuyzve8Q7GjBnD3LlzeeUrX8mNN94IVOadnXLKKey5555MnTqVOXPmsM8++3D4\n4YfT0tLCCSecwKJFiwb0WxvJMCZJkli1Cs44AyJqf51xRuV7g/Xoo4+yyy67bLRvjz32WH+sextg\n6623Zvr06SxdupRly5ax++67v+R7jz766PrPO+yww/rtiRMn0trautHn5557bvAVrzPDmCRJTai9\nvZ1p0zqYMGEeEybMo7W1g8cfbyeTml+PP95Oa+uGa0yb1kF7e3vNddhpp51YunTpRvu653LtvPPO\nPPjgg+v3P//88zz11FPsuuuu7Lzzzi+Z8/XQQw+9JNh1G+l3ZxrGJElqQq2trSxZcicXXjiLCy+c\nxZIld27UezQc1zj44IMZO3Ysn/nMZ1izZg3XX389P/3pT4kITjzxRC699FLuvvtuVq1axTnnnMOB\nBx7I7rvvzpw5c/j1r3/NV7/6Vbq6urj66qu57777OProo9dfu+cdmSP97kwfFC5JUpNqbW1l/vz5\nxa4xbtw4rr/+et71rnfxr//6rxx11FEcf/zxABxxxBF89KMf5fjjj2fFihUccsghXHXVVQBMnz6d\nb37zm5x++un8wz/8A3vvvTff/OY32W677dZfu2dvWF9rl42k3rIomRYjIkd6WpUkabSLiBHfOzSS\nbKq9qvvrnuIcppQkSSrIMCZJklSQYUySJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQV\nZBiTJElFzJgxg+9///ulq1GcYUySJBXR12OKmpFhTJIkqSDDmCRJTaqzs5MFCxawYMECOjs7i10D\n4N577+XlL385V111FZdccgl7770306dP59hjj2XZsmXrzxszZgwXX3wx++yzD9tuuy3ve9/71h/L\nTD72sY8xY8YMdthhB04++WSeeeYZAF588UXe+c53sv3227Ptttsye/bsIdW3ngxjkiQ1oc7OTmYe\nMJOzrjiLs644i5kHzBxwOKnHNQDuuusujjzySD73uc/R2trKOeecw7XXXsuyZcvYY489mDt37kbn\nf+tb3+JnP/sZ99xzD9dccw0333wzAJdeeimXX345HR0d/O53v+O5555bH9Yuv/xynnnmGR555BGW\nL1/OxRdfzKRJkwZc10YwjEmS1IQWLlzIyp1WsuqYVaw6ZhUrd1rJwoULh/0at956K8ceeyxf+cpX\nOOqoo7jyyis57bTTmDVrFuPHj+eCCy7g9ttv5+GHH17/nbPOOoupU6ey2267cdhhh3H33XcDcOWV\nV/JP//RPzJgxg6233poLLriAq666irVr1zJ+/HieeuopfvOb3xARHHDAAUyZMmVAdW2UsaUrIEmS\nylvVtYozvn0GZ6w8o/Yv3Q50Db7MzOTiiy+mra2NQw89FIBly5bx+te/fv05W2+9NdOnT2fp0qXs\nvvvuAOy4447rj2+11VY899xz67+7xx57rD+2++6709XVRWdnJyeddBJ/+MMfmDt3Lk8//TTvfOc7\n+fjHP87YseWjUPkaSJKkYdfe3s4F/+sCVt60EoBpT0xjyXeW0NraWvM1uocp119j2TTa29tr/n5E\ncPHFF3PhhRdy5pln8ulPf5qdd96ZBx98cP05zz//PE899RS77LLLZq/X+7sPP/wwY8eOZYcddmDM\nmDF8+MMf5sMf/jAPPfQQRx11FPvuuy+nnnpqzfVtFMOYJElNqLW1lSWLlqwfVmxvbx9QEKvXNaZM\nmcK3v/1tjjjiCM4++2xOPPFETjzxRNrb23nlK1/JOeecw4EHHri+V6y3zCQzATjxxBP5xCc+wZw5\nc9h+++0555xzmDt3LmPGjKGjo4Pp06fzqle9iilTpjBu3DhaWloGVNdGMYxJktSkWltbmT9/fvFr\nTJs2je9+97scdthhjB8/no9+9KMcf/zxrFixgkMOOYSrrrpq/bm91yXruVbZqaeeyqOPPsqhhx7K\niy++yJFHHslnP/tZAB577DHe85738MgjjzB58mTmzp3LSSedNKR610t0p8kihUdkyfIlSWoGEYF/\n39ZuU+1V3V/3VWq9m1KSJKkgw5gkSVJBhjFJkqSCDGOSJEkFGcYkSZIKMoxJkiQVZBiTJEkqyDAm\nSZJUkGFMkiSpIMOYJElSQYYxSZI04nV1dZWuQsMYxiRJalKdnZ0sWLCABQsW0NnZWeQad911Fwcc\ncABTp07lbW97G29/+9s599xz6ejoYNddd+WTn/wkO+20E6eddhpPP/00Rx99NK2trWy33XYcc8wx\nLF26dP212traOPfccznkkEOYMmUKb3nLW3jyySd5xzvewbRp05g9ezYPPfTQoH5nIxnGJElqQp2d\nncyeOZPFZ53F4rPOYvbMmQMOU0O9xurVqznuuOM49dRTWbFiBSeeeCJf//rXiQgigscff5wVK1bw\n8MMPc/HFF7Nu3TpOO+00Hn74YR5++GEmTZrE+973vo2uefXVV3PFFVewdOlSfvvb33LQQQdx2mmn\nsXz5cvbbbz/OP//8Af3G4WAYkySpCS1cuJC2lSu5bNUqLlu1iraVK1m4cOGwXuOOO+5g7dq1vP/9\n76elpYXjjjuO2bNnrz8+ZswYzj//fMaNG8fEiRPZbrvtOO6445g4cSKTJ0/mnHPO4dZbb11/fkRw\nyimnsOeeezJ16lTmzJnDPvvsw+GHH05LSwsnnHACixYtGtBvHA5jS1dAkiSNAKtWwRlnVF7D5NFH\nH2WXXXbZaN9uu+1GZgLwspe9jPHjx68/9sc//pEzzjiDm2++mRUrVgDw3HPPkZlEBAA77LDD+vMn\nTpxIa2vrRp+fe+65hv2ewbJnTJKkJtTe3k7HtGnMmzCBeRMm0NHaSvvjj0Nmza/2xx+no7V1wzWm\nTaO9vb3mOuy0004bzfkCePjhh9cHq+73bp/61Kf49a9/zZ133snKlSu59dZbycz14a233t8fqQxj\nkiQ1odbWVu5csoRZF17IrAsv5M4lSzbqRRqOaxx88MG0tLTwuc99jq6uLr7xjW/w05/+FKDPgPXc\nc88xadIkpk2bxvLly/uc/9Xze5sKaSONw5SSJDWp1tZW5s+fX+wa48aN4/rrr+fv/u7vOPvss5kz\nZw5HH30048ePXz+Jv6f58+fT3t7O9ttvzy677MKZZ57JjTfeuNE5Pb/T1zVGYm9ZlEyNEZGjJbVK\nkjRaRcSo6SV64xvfyHvf+15OPvnkYnXYVHtV99c9zTlMKUmSivnhD3/IY489RldXF5dffjm/+MUv\nOPLII0tXa1g5TClJkoq5//77edvb3sbzzz/PXnvtxXXXXbfRHZHNwGFKSZK2cKNpmHIkcJhSkiSp\niRjGJEmSCjKMSZIkFWQYkyRJKsi7KSVJagIjcbFTVTQ0jEXEkcACoAX4j8z8RCPLkyRJL+WdlCNb\nw4YpI6IF+BxwJPAq4MSI2K9R5TWjjo6O0lUY1Wy/obH9Bs+2Gxrbb2hsv5GnkXPGZgMPZOaDmbkG\nuAo4toHlNR3/gxoa229obL/Bs+2GxvYbGttv5GlkGNsF+EOPz49U90mSJKmqkWHMAWpJkqTNaNjj\nkCLiQOC8zDyy+vlsYF3PSfwRYWCTJEmjRiMeh9TIMDYWuB84AngUuBM4MTPvbUiBkiRJo1DDlrbI\nzK6IeB9wM5WlLb5oEJMkSdpYw3rGJEmStHnFHocUEUdGxH0R8ZuI+FCpepQWEV+KiMcjYkmPfdtF\nxHcj4tcR8Z2I2KbHsbOrbXZfRLypx/7XRcSS6rH/02P/hIi4urr/jojYY/h+XeNFxG4R8YOI+GVE\n/CIiPlDdbxtuRkRMjIifRMTiiPhVRFxQ3W/bDUBEtETEooi4qfrZ9qtRRDwYEfdU2+/O6j7br0YR\nsU1EXBcR91b/G36j7bd5EbFv9c9c92tlRHygaNtl5rC/qAxbPgDMAMYBi4H9StSl9Av4M+AAYEmP\nfZ8E/kd1+0PAhdXtV1Xbaly17R5gQ+/mncDs6vZ/AkdWt98L/Ht1++3AVaV/c53bb0dgVnV7MpV5\nivvZhjW331bV97HAHcCf2nYDbsMzgSuBG6ufbb/a2+73wHa99tl+tbff5cCp1e2xwDTbb8BtOAZY\nBuxWsu1K/fiDgG/3+HwWcFbp/1EK/mGYwcZh7D5gh+r2jsB91e2zgQ/1OO/bwIHATsC9PfbPBf5f\nj3PeWN0eCzxR+vc2uC2/DvyFbTjgdtsK+CnwattuQO22K/A94DDgpuo+26/29vs9ML3XPtuvtrab\nBvyuj/2238Da8U3Aj0q3XalhSheE7d8Omfl4dftxYIfq9s5U2qpbd7v13r+UDe25vq0zswtYGRHb\nNajeRUXEDCq9jD/BNqxJRIyJiMVU2ugHmflLbLuBuAj4ILCuxz7br3YJfC8ifhYR76rus/1qsyfw\nRERcGhF3RcQlEbE1tt9AzQW+Wt0u1nalwph3DdQoK7Ha9tqMiJgMfA04PTOf7XnMNty0zFyXmbOo\n9PAcGhGH9Tpu221CRBwNdGbmIqDPdYdsv806JDMPAOYA/xgRf9bzoO3Xr7HAa6kMhb0WeJ7KKNN6\ntl//ImI8cAxwbe9jw912pcLYUirjs912Y+N02ewej4gdASJiJ6Czur93u+1Kpd2WVrd77+/+zu7V\na40FpmXm8sZVffhFxDgqQewrmfn16m7bcAAycyXwLeB12Ha1Ohh4S0T8nsq/rA+PiK9g+9UsM5dV\n358AbqDyTGPbrzaPAI9k5k+rn6+jEs4es/1qNgf4efXPHxT8s1cqjP0M2DsiZlST6duBGwvVZSS6\nETi5un0ylXlQ3fvnRsT4iNgT2Bu4MzMfA56p3kkTwEnAN/q41t8A3x+OHzBcqr/3i8CvMnNBj0O2\n4WZExPbddwtFxCTgL4FF2HY1ycxzMnO3zNyTylDHLZl5ErZfTSJiq4iYUt3emsrcnSXYfjWp/u4/\nRMQ+1V1/AfwSuAnbr1YnsmGIEkr+2Ss4aW4OlTvfHgDOLlWP0q/qH4RHgdVUxpdPAbajMin418B3\ngG16nH9Otc3uA/6qx/7XUfk/sgeAz/TYPwG4BvgNlbvlZpT+zXVuvz+lMl9nMZUgsQg40jasqe1m\nAndV2+4e4IPV/bbdwNvyz9lwN6XtV1ub7Vn9s7cY+EX33wO234Da8DVUbry5G7ieyqR+26+2ttsa\neBKY0mNfsbZz0VdJkqSCii36KkmSJMOYJElSUYYxSZKkggxjkiRJBRnGJEmSCjKMSZIkFWQYkzSs\nIuJfIuIXEXF3RCyKiNmbOf+yiDi+uj2/ukBtX+d1RMTr6lzXaRHxDz0+t0XETfUsQ5IMY5KGTUQc\nBLwZOCAzXwMcQfVhuv3o+Yy404GtajivXrYF3lvna0rSRgxjkobTjsCTmbkGIDOXZ/X5hBFxbkTc\nGRFLIuLiXt+LiHg/sDPwg4jo99EiEfGmiLgtIn4eEddUH7dDRDwYEedV998TEftW978sIr5b7bG7\npHredOBCYK9qD94nqYS9yRFxbUTcGxFX1LNxJDUnw5ik4fQdYLeIuD8i/m9EHNrj2Ocyc3ZmzgQm\nRcTRPY5lZn6WyqPD2jLziE0VEBHbA/8CHJGZrwN+DpzZfR3gier+zwP/XN3/EeB7mfknVB64vHv1\n3A8Bv83MAzLzfwABHEClh+5VwMsj4pDBN4ckGcYkDaPMfJ7Ks9zeDTwBXB0R3Q/TPTwi7oiIe4DD\nqYSdgQrgwOp3b4uIRcDfUglX3a6vvt8FzKhuHwJcVa3jzcCKHtfr7c7MfDQrz5Jb3OMakjQoY0tX\nQFJzycx1wK3ArRGxBDg5Iq4C/h14bWYujYiPABOHUMx3M7N9E8dWVd/XsvH/B/YVvPr7fl/XkKQB\ns2dM0rCJiH0iYu8euw4AHqQSvBJ4KiImAyds4hLPAlP7KSKBO4BDImKvaplb9yqzL/8NvK16/puo\nTNzvLm/KZr4rSUPiv+gkDafJwGcjYhugC/gN8O7MXBkRlwC/AB4DfrKJ738B+HZELN3UvLHMfDIi\n5gFfjYgJ1d3/Ui1ro1PZcPfl+dXzTwJur9bh2cxcExH/Xe3B+8/qq/cdm/W+g1NSk4nKtAdJal4R\nMR5Ym5lrq8tv/N/MfG3peklqDvaMSVJlgv81ETEGWA28q3B9JDURe8YkSZIKcgK/JElSQYYxSZKk\nggxjkiRJBRnGJEmSCjKMSZIkFWQYkyRJKuj/A94sYZOBGVh3AAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cade7a210>" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "data = read_2d('data-v2/benchmark-iterations-cpu-manegrot.csv')\n", "\n", "fig = fig_init()\n", "plot_2d(fig, data, 'manegrot', 'Iterations', 'PBKDF2 iteration-blocks per second', 0, 2000000)\n", "fig.show()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAJeCAYAAAAp58Q7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu4rmVdL/rvDyYgKILkWVDR8EBpIi3UzJxoEbryEOYh\ny8DYVsvWUqpViWuvxG2ttHW5tHaXloWKFIqHPG1TQHGqZTpVQFHEw17SFhSmooBnTr/9x3sPeJnM\nOeZAx3jH4f18ruu9xvPcz+m+x4A5vuN+7vt5qrsDAAC7rXYFAABYGwRDAACSCIYAAAyCIQAASQRD\nAAAGwRAAgCQrGAyr6qCqen9VfaaqPl1VzxnlB1TVWVX1+ao6s6r2nzrmxKr6QlVdWFVHTZUfXlXn\nj21/OVW+V1WdPso/UlX3mNp27LjG56vqN6bKD66qj45j3lBVe6zU9wAAYD1ZyR7Da5L8Xnf/RJKH\nJvndqrp/kuclOau775PkfWM9VXVokqcmOTTJ0UleUVU1zvXKJMd39yFJDqmqo0f58UkuH+UvS/KS\nca4DkvxJkiPG5wVVtd845iVJXjqO+eY4BwDA3FuxYNjdl3b3eWP520k+m+RuSR6f5JSx2ylJnjiW\nn5Dk9d19TXdflOSLSR5SVXdJsm93bx37vW7qmOlzvSXJo8fyLyY5s7uv6O4rkpyV5DEjaB6Z5M07\nuD4AwFybyRjDqrpnksOSfDTJnbr7srHpsiR3Gst3TXLx1GEXZxIkty+/ZJRnfP1yknT3tUmurKof\nW+RcByS5oruv38G5AADm2ooHw6q6TSa9ec/t7m9Nb+vJ+/hm9U4+7/4DAFjEppU8+ZjY8ZYkp3b3\n20bxZVV15+6+dNwm3jbKL0ly0NThB2bS03fJWN6+fOGYuyf5SlVtSrJfd19eVZck2Tx1zEFJzk7y\njST7V9Vuo9fwwHGO7estRAIA60Z316732rWVnJVcSU5OckF3v3xq0zuSHDuWj03ytqnyp1XVnlV1\ncJJDkmzt7kuTXFVVDxnnfEaSt+/gXL+SyWSWJDkzyVFVtX9V3S7JLyQ5Y/RQvj/Jk3dw/Zvo7rn7\nvOAFL1j1Omi3dmu3dmu3dmv3Lfssp5XsMXx4kl9P8qmqOneUnZjkxUneWFXHJ7koyVOSpLsvqKo3\nJrkgybVJnt03tvbZSV6bZO8k/9zd7xnlJyc5taq+kOTyJE8b5/pGVb0oycfGfi/sySSUJPnjJG+o\nqj9Ncs44BwDA3FuxYNjd/5Kd90j+/E6O+R9J/scOyj+R5AE7KP9BRrDcwbbXJHnNDsq/lOQhO604\nAMCc8uYTbrB58+bVrsKq0O75ot3zRbvny7y2eznVct+b3giqqn1fAID1oKrSa33yCQAA64tgCABA\nEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIh\nAABJBEMAAAbBEACAJIIhAACDYAgAQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAw\nCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAI\nAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAk\ngiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMA\nAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAACDYAgAQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQ\nDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAA\ngEEwBAAgiWAIAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkE\nQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAA\nJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAADDptWuwFr1ohe9KMccc0zOOuusJMnT\nn/703PGOd1zlWq2sbdu25bTTTksyH+2dNs9tn3d+9gA3qu5e7TqsOVXVyb5Jrsueez4pVbtlv/22\n5Oyz37VoUPxRf8Gs5i+obdu25QEPOCJXXrk5SbLfflty/vlb5+KX5Dy3fd752cN82mh/EFZVuruW\n5VyC4c1NguGDk9wvyT8mSfbc86nZc8/355prHpvk5r9AftRfMDs6/lOf2po73OGOuf763PC57rrc\nZH2p23a1/bTTXp5XvvK8XHPNa5Mke+xxXJ71rAflSU86Id254ZPkJusbofwDH3h53vWu83LttZO2\nb9p0XB772AflEY844Yb9d2RH5ett37Vct1ns+/GPvzwf/OB5ue661yZJdt/9uDzykQ/KT//0CalK\navwzu/3yjspu6fJynGMt1mmjtkudfvhzrDUb8Q/C5QyGbiXv1DOSnHfD2tVXfylXX31UktcmSb7+\n9ePypCedlsMPPyGbNiXnnXdaLr988w2/YC6//Lg85Smn5dBDT8j3v59dfi6//LRcddXmG86/bdtx\nufOdT0vVCdltt9zss/vuNy/7UbZddlly7bU3tv7aa5MzzkguuODG/8m3/59++8/Otq318m9+86Zh\noTu56qrk0ktvLNvZP247Kl9v+96Sc0x/D2dRt5Xe99a3vun2qmSffZLb3e7mf0gsLO+obHr5+ut3\nvc+utt/S5Y10DnVav3Xavmx7ayWsfve7p+Xb396chd+3V155XE477bSccMIJO674nBEMd+rpSV6e\n5OnZtGm37LXXF3P11ffPNddMtu62W3LHOyb3uMckRN3qVjc9uirZf//kJ39ysm1Xn1NPTf78z5Mf\n/GBy/F57TdZ/7/dm09pt256eBzzg5bnyyuOSTP6C+vCH/yLr+A+oJdtR208/fT7aPu+OO+7mP/uT\nT/azh+Wy1sJqd/KqVyV/9mfJ1Vcvb1s3CreSd2ByK/lXk3w3++yzJc973h/kmGOOyaMe9R932vW8\nEreSZ921vdHGXNwS89z2eednD/NlLfy+XW7GGK6wqur73e9+ecITnpDf//3fv0n4W+wXyHqefAIA\n82Kj/b4VDFdYVbXvCwCwHixnMPSAawAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQ\nAIBhRYNhVb26qi6rqvOnyk6qqour6tzxeczUthOr6gtVdWFVHTVVfnhVnT+2/eVU+V5Vdfoo/0hV\n3WNq27FV9fnx+Y2p8oOr6qPjmDdU1R4r+T0AAFgvVrrH8DVJjt6urJP8r+4+bHzenSRVdWiSpyY5\ndBzziqpaeIr3K5Mc392HJDmkqhbOeXySy0f5y5K8ZJzrgCR/kuSI8XlBVe03jnlJkpeOY745zgEA\nMPdWNBh294cyCV/b29FrW56Q5PXdfU13X5Tki0keUlV3SbJvd28d+70uyRPH8uOTnDKW35Lk0WP5\nF5Oc2d1XdPcVSc5K8pgRNI9M8uax3ylT5wIAmGurNcbwv1TVJ6vq5Kraf5TdNcnFU/tcnORuOyi/\nZJRnfP1yknT3tUmurKofW+RcByS5oruv38G5AADm2qZVuOYrk/xfY/lFSV6a2dzO7Vuy80knnXTD\n8ubNm7N58+Zlrg4AwC23ZcuWbNmyZUXOPfNg2N3bFpar6u+TvHOsXpLkoKldD8ykp++Ssbx9+cIx\nd0/ylaralGS/7r68qi5JsnnqmIOSnJ3kG0n2r6rdRq/hgeMcNzMdDAEA1ortO6xe+MIXLtu5Z34r\neYwZXPDLSRZmLL8jydOqas+qOjjJIUm2dvelSa6qqoeMMYLPSPL2qWOOHcu/kuR9Y/nMJEdV1f5V\ndbskv5DkjO7uJO9P8uSx37FJ3rbsjQQAWIdqkpVW6ORVr0/yyCS3T3JZkhdk0pP3oExu7X4pyW93\n92Vj/+cn+c0k1yZ5bnefMcoPT/LaJHsn+efufs4o3yvJqUkOS3J5kqeNiSupqmcmef6oyp929ymj\n/OAkb8hkvOE5SX69u6/Zrt69kt8XAIDlUlXp7h1N7L3l5xKAbk4wBADWi+UMht58AgBAEsEQAIBB\nMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMA\nAAbBEACAJIIhAACDYAgAQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQR\nDAEAGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAgGAIA\nkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkyaadbaiq\nJyXpJDW+3kR3/9MK1gsAgBnbaTBM8rhMAuEdk/xMkrNH+ZFJPpxEMAQA2EB2Ggy7+7gkqaqzkhza\n3V8d63dJcspMagcAwMwsZYzhQUkunVq/LMndV6Y6AACslsVuJS94b5Izquq0TMYbPjXJWStaKwAA\nZq66bzav5KY7VFWSX07yc5mMOfxgd791BnVbNVXVu/q+AACsBVWV7q5lOZcAdHOCIQCwXixnMNzl\nGMOqelJVfaGqrqqqb43PVctxcQAA1o6l3Er+f5P8Und/djZVWn16DAGA9WKmPYZJLp2nUAgAMK+W\nMiv541V1epK3Jbl6lLU3nwAAbCxLCYb7JflekqO2KxcMAQA2ELOSd8AYQwBgvZj1rOSDquqtVfW1\n8XlLVR24HBcHAGDtWMrkk9ckeUeSu47PO0cZAAAbyFIeV/PJ7v6pXZVtJG4lAwDrxawfV3N5VT2j\nqnavqk1V9etJvr4cFwcAYO1YSjD8zSRPSXJpkq8meXKSZ65kpQAAmD2zknfArWQAYL2Y9azk11XV\n/lPrt6uqVy/HxQEAWDuWciv5gd19xcJKd38zyYNXrkoAAKyGpQTDqqoDplYOSLL7ylUJAIDVsJRX\n4r00yb9V1RuTVCaTT/5sRWsFAMDMLWnySVX9RJIjx+rZ3X3BitZqlZl8AgCsF7N+jmGSHJDkO939\n10m+VlUHL8fFAQBYO5by5pOTkhye5L7dfZ+quluSN3b3w2dQv1WhxxAAWC9m3WP4y0mekOQ7SdLd\nlyTZdzkuDgDA2rGUYPiD7r5+YaWqbr2C9QEAYJUsJRi+qar+Nsn+VfVbSd6X5O9XtloAAMzaUmcl\nH5XkqLF6RneftaK1WmXGGAIA68VyjjFcyuSTWyf5fndfV1X3TXLfJO/u7muWowJrkWAIAKwXs558\n8qEke43ZyGckeUaS1y7HxQEAWDuW9Eq87v5ukmOSvKK7n5zkJ1e2WgAAzNqSHnBdVQ9L8mtJ3nVL\njgMAYP1YSsA7IcmJSd7a3Z+pqnsnef/KVgsAgFlb0qzkeWPyCQCwXqzGu5IBANjgBEMAAJLsIhhW\n1e5V9XuzqgwAAKtn0WDY3dclefqM6gIAwCpayptPXpZkjySnJ/nOQnl3n7OyVVs9Jp8AAOvFrF+J\ntyXJzXbq7iOXowJrkWAIAKwXMw2G80gwBADWi5k+rqaq7lxVJ1fVe8b6oVV1/HJcHACAtWMpj6t5\nbZIzk9x1rH8hiZnKAAAbzFKC4e27+/Qk1yVJd1+T5NoVrRUAADO3lGD47ar6sYWVqnpokitXrkoA\nAKyGTUvY5w+SvDPJvarqw0nukORXVrRWAADM3JJmJVfVpiT3TVJJPjduJ29YZiUDAOvFcs5K3mWP\nYVXtneTZSX42k+cZfqiqXtnd31+OCgAAsDYs5QHXb0pyVZJ/yKTH8OlJ9uvuJ6989VaHHkMAYL2Y\n9ZtPLujuQ3dVtpEIhgDAejHTB1wnOaeqHjZ18Ycm+cRyXBwAgLVjKT2GFya5T5IvZzLG8O5JPpfJ\nswy7ux+40pWcNT2GAMB6MdPJJ0mOXo4LAQCwti3pcTXzRo8hALBezHqMIQAAc0AwBAAgyRKCYVXd\npqp2H8v3rarHV9UeK181AABmaSmzks/J5K0nt0vyr0k+luTq7v61la/e6jDGEABYL2Y9xrC6+7tJ\njknyivHGk59cjosDALB2LGmM4XjA9a8ledctOQ4AgPVjKQHvhCQnJnlrd3+mqu6d5P0rWy0AAGZt\nKWMMD+7uL21XdkR3b13Rmq0iYwwBgPVi1mMM31JVB05d/JFJXr0cFwcAYO1YSjD87SRvq6o7V9Vj\nk/xVksesbLUAAJi1Jb0Sr6p+JsnfJvlekl/q7m0rXbHV5FYyALBeLOet5J0Gw6p653ZF90/y1SRX\nJOnufvxyVGAtEgwBgPViOYPhpkW2vXQHZZ2kxlcAADaQpcxKvleSr3b398b63knuvP1M5Y1EjyEA\nsF7Melbym5JcN7V+fZI3LsfFAQBYO5YSDHfv7qsXVrr7B0n2XLkqAQCwGpYSDL9eVU9YWBnLX1+5\nKgEAsBqWMsbwx5P8Y5K7jqKLkzyju7+4wnVbNcYYAgDrxUweV7ODi94mSbr728tx4bVMMAQA1ouZ\nTj6pqv2r6mVJPpDkA1X10qrabzkuDgDA2rGUMYavTnJVkicneUqSbyV5zUpWCgCA2VvKGMNPdvdP\n7apsI3ErGQBYL2b9HMPvVdUjpi7+s0m+uxwXBwBg7VjslXgLfifJ66bGFX4zybErVyUAAFbDLZmV\nfNsk6e6rVrRGa4BbyQDAerGct5J32mNYVX8wtdpT5ZWku/t/LUcFAABYGxa7lbxvpgLhlNpJOQAA\n69iSbyX/UCevenWS/5hkW3c/YJQdkOT0JPdIclGSp3T3FWPbiUl+M8l1SZ7T3WeO8sOTvDbJrZL8\nc3c/d5TvleR1SR6c5PIkT+3ufx/bjk3y30ZV/rS7XzfKD07yhiQHJPlEJm9xuWa7eruVDACsC7N+\nwPW9q+qdVfX1qvpaVb29qu61xPO/JsnR25U9L8lZ3X2fJO8b66mqQ5M8Ncmh45hXjNvWSfLKJMd3\n9yFJDqmqhXMen+TyUf6yJC8Z5zogyZ8kOWJ8XjA1eeYlSV46jvnmOAcAwNxbyuNqTkvyxiR3yeR9\nyW9K8vqlnLy7P5RJ+Jr2+CSnjOVTkjxxLD8hyeu7+5ruvijJF5M8pKrukmTf7t469nvd1DHT53pL\nkkeP5V9McmZ3XzF6I89K8pgRNI9M8uYdXB8AYK4tJRju3d2njsB2TXf/Qya3dH9Yd+ruy8byZUnu\nNJbvmuTiqf0uTnK3HZRfMsozvn45Sbr72iRXVtWPLXKuA5Jc0d3X7+BcAABzbbFZyQdkMtHk3WPs\n30Iv4VOTvHs5Lt7dXVWzGsxn0CAAwCIWm5V8Tm4apn5rfF2Ylfy8H/Kal1XVnbv70nGbeNsovyTJ\nQVP7HZhJT98lY3n78oVj7p7kK1W1Kcl+3X15VV2SZPPUMQclOTvJN5LsX1W7jV7DA8c5buakk066\nYXnz5s3ZvHnzjnYDAJipLVu2ZMuWLSty7hWdlZwkVXXPJO+cmpX8F5lMGHlJVT0vyf7d/bwx+eS0\nTCaL3C3Je5P8+OhV/GiS5yTZmuRdSf6qu99TVc9O8oDu/k9V9bQkT+zup43ezo9nMlu5Mpl9/ODu\nvqKq3pjkLd19elX9TZLzuvtvtquzWckAwLqwnLOSb1EwrKpXdfdv7XrPG/Z/fZJHJrl9JuMJ/yTJ\n2zOZzHL33PxxNc/P5HE11yZ5bnefMcoXHlezdyaPq3nOKN8ryalJDsvkcTVPGxNXUlXPTPL8UZU/\n7e5TRvn042rOSfLrHlcDAKxXqxkMz+3uw5bjwmuZYAgArBczfY7hdrbtehcAANajFR9juB7pMQQA\n1ovl7DFcbFbywsXum+S/Jrnn1P7d3Y9ajgoAALA27LLHsKo+lckr6c7J5B3GySQYfmKF67Zq9BgC\nAOvFTHsMk1zT3a9cjosBALB2LWXyyTur6ner6i5VdcDCZ8VrBgDATC3lVvJFufnr5Lq777VSlVpt\nbiUDAOvFqj3HcF4IhgDAejHrWcl7JvlPSX4uk57DDyT5m+3fFgIAwPq2lFvJJ2cSIE/J5L3Dz0hy\nbXf/HytfvdWhxxAAWC9meiu5qj7V3Q/cVdlGIhgCAOvFrF+Jd21V/fjUxe+d5NrluDgAAGvHUp5j\n+IdJzq6qL431eyZ55orVCACAVbGkWclVdask981k8snnuvsHK12x1eRWMgCwXsxkjGFVPbq731dV\nT8okEC5csJOku/9pOSqwFgmGAMB6MavH1fxckvcleVxu/oDrJNmwwRAAYB4tZVbyvbr7f++qbCPR\nYwgArBeznpX85h2UvWk5Lg4AwNqx01vJVXX/JIcm2b+qjslkjGEnuW2SW82megAAzMpiYwzvk8n4\nwv3G1wXfSvKslawUAACzt5Qxhj/T3R+eUX3WBGMMAYD1YtavxNs7yfGZ3FbeOzc+ruY3l6MCa5Fg\nCACsF7OefHJqkjslOTrJliQHJfn2clwcAIC1Yyk9hud194Oq6lPd/cCq2iPJv3T3Q2ZTxdnTYwgA\nrBez7jG8eny9sqoekGT/JHdYjosDALB2LDYrecGrquqAJP9nknckuU2S/76itQIAYOYWDYZVtVuS\nb3X3N5J8IMnBM6kVAAAzt+it5O6+PskfzaguAACsoqVMPnlxkq8nOT3JdxbKRy/ihmTyCQCwXsz6\nOYYXZTy7cFp3b9jbyoIhALBezDQYziPBEABYL2b6uJqqunVV/feq+ruxfkhV/dJyXBwAgLVjKc8x\nfE0mzzL8mbH+lSR/tmI1AgBgVSwlGN67u1+S8aDr7v7OLvYHAGAdWkow/EFV7b2wUlX3TvKDlasS\nAACrYSlvPjkpyXuSHFhVpyV5eJLjVrBOAACsgiXNSq6q2yd56Fj9aHd/bUVrtcrMSgYA1otZP8fw\nfd396F2VbSSCIQCwXixnMNzpreQxrnCfJHeoqgOmNt02yd2W4+IAAKwdi40x/O0kz01y1ySfmCr/\nVpK/XslKAQAwe0u5lfxfuvv/nlF91gS3kgGA9WImYwyr6lHdfXZVPSk7flfyPy1HBdYiwRAAWC9m\nMsYwySOTnJ3kcdlBMEyyYYMhAMA8WtLjauaNHkMAYL1Yzh7Dpbz5BACAOSAYAgCQRDAEAGBYNBhW\n1W2r6t47KH/gylUJAIDVsNNgWFVPSXJhkrdU1Weq6oipzaeseM0AAJipxXoM/1uSw7v7QUmemeR1\nVXXMbKoFAMCsLfYcw927+6tJ0t1bq+rIJP9PVR00m6oBADBLi/UYXjU9vnCExCOTPD7JT6x0xQAA\nmK3Fegyfne2CY3dfVVWPSfKUFa0VAAAzt9i7kh/W3f824/qsCd58AgCsF7N688krpi44lwERAGCe\nLPUB17da0VoAALDqFp2VXFUHJKmp5Rt09zdWtGYAAMzUYmMML0qysLGmlpOku/teK1u11WOMIQCw\nXiznGMOdBsN5JhgCAOvFcgbDxW4lp6o2JXlskvuOos8meU93X7scFwcAYO1Y7Fby3ZKcneTSJOdk\ncjv5wUnulOTI7v7KrCo5a3oMAYD1Yia3kqvqlCTndvfLtyt/TibvUD52OSqwFgmGAMB6Matg+Lnu\nvu8OyivJ57r7PstRgbVIMAQA1otZPeD6ezsqHInpu8txcQAA1o7FJp/ctqqOyWRs4YIe67dd0VoB\nADBziwXDDyZ53E62fWAF6gIAwCpabIzh/t19xU62/Yfu/tiK1mwVGWMIAKwXsxpj+N7tX4M3Ln5U\nkrcux8UBAFg7FguGf5vk/VV1x4WCqnp6kldl8tBrAAA2kJ2OMezuv6uq7yc5u6p+IclTk/xOks3d\nfdGM6gcAwIws+kq87j61qn6Q5Lwk/57kEd39tZnUDACAmVps8sn5U6v3TLItNz6/sLv7gStbtdVj\n8gkAsF4s5+STxXoMd/aoGgAANqCd9hjucOeq2ye5fKN3p+kxBADWi5k8rqaqHlZVW6rqn6rqwVX1\n6SSfTrKtqh6zHBcHAGDtWGyM4SeSnJhkvyR/l+To7v5IVd0vyRu6+0Gzq+Zs6TEEANaLWT3gevfu\nPrO735Tkq939kSTp7gszeWcyAAAbyGLBcDr8fX+lKwIAwOpa7Fbydbnx8TT7TC0nyd7dvegzENcz\nt5IBgPViJo+r6e7dl+MCAACsDzsNhlW1dyavwLt3kvOTnNzd186qYgAAzNZiYwxPSXJ4Jo+oeWyS\nl86kRgAArIpFX4nX3Q8Yy5uSfKy7D5tl5VaLMYYAwHoxq8fV3HDb2C1kAICNb6mzkpNk7yTfG8vd\n3bdd4bqtGj2GAMB6YVYyAADLbrFbyQAAzBHBEACAJIIhAACDYAgAQBLBEACAQTAEACCJYAgAwCAY\nAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAA\ng2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiG\nAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBI\nIhgCADAIhgAAJBEMAQAYVi0YVtVFVfWpqjq3qraOsgOq6qyq+nxVnVlV+0/tf2JVfaGqLqyqo6bK\nD6+q88e2v5wq36uqTh/lH6mqe0xtO3Zc4/NV9RuzajMAwFq2mj2GnWRzdx/W3UeMsuclOau775Pk\nfWM9VXVokqcmOTTJ0UleUVU1jnllkuO7+5Akh1TV0aP8+CSXj/KXJXnJONcBSf4kyRHj84LpAAoA\nMK9W+1Zybbf++CSnjOVTkjxxLD8hyeu7+5ruvijJF5M8pKrukmTf7t469nvd1DHT53pLkkeP5V9M\ncmZ3X9HdVyQ5K5OwCQAw11a7x/C9VfXxqnrWKLtTd182li9LcqexfNckF08de3GSu+2g/JJRnvH1\ny0nS3dcVrr2TAAAMy0lEQVQmubKqfmyRcwEAzLVNq3jth3f3V6vqDknOqqoLpzd2d1dVr1LdctJJ\nJ92wvHnz5mzevHm1qgIAcIMtW7Zky5YtK3LuVQuG3f3V8fVrVfXWTMb7XVZVd+7uS8dt4m1j90uS\nHDR1+IGZ9PRdMpa3L1845u5JvlJVm5Ls192XV9UlSTZPHXNQkrO3r990MAQAWCu277B64QtfuGzn\nXpVbyVW1T1XtO5ZvneSoJOcneUeSY8duxyZ521h+R5KnVdWeVXVwkkOSbO3uS5NcVVUPGZNRnpHk\n7VPHLJzrVzKZzJIkZyY5qqr2r6rbJfmFJGesUFMBANaN1eoxvFOSt46JxZuS/GN3n1lVH0/yxqo6\nPslFSZ6SJN19QVW9MckFSa5N8uzuXrjN/Owkr02yd5J/7u73jPKTk5xaVV9IcnmSp41zfaOqXpTk\nY2O/F45JKAAAc61uzFcsqKr2fQEA1oOqSndv/6SXH8pqP64GAIA1QjAEACCJYAgAwCAYAgCQRDAE\nAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAAg2AIAEAS\nwRAAgEEwBAAgiWAIAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEA\nAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAI\nhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAACDYAgAQBLBEACAQTAEACCJYAgA\nwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSC\nIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAA\nkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAM\nAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAACDYAgAQBLBEACA\nQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRD\nAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAk\nEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIMmcBsOqOrqq\nLqyqL1TVH692fQAA1oK5C4ZVtXuSv05ydJJDk/xqVd1/dWu1NmzZsmW1q7AqtHu+aPd80e75Mq/t\nXk5zFwyTHJHki919UXdfk+QNSZ6wynVaE+b1fyjtni/aPV+0e77Ma7uX0zwGw7sl+fLU+sWjDABg\nrs1jMOzVrgAAwFpU3fOVk6rqoUlO6u6jx/qJSa7v7pdM7TNf3xQAYF3r7lqO88xjMNyU5HNJHp3k\nK0m2JvnV7v7sqlYMAGCVbVrtCsxad19bVf85yRlJdk9yslAIADCHPYYAAOzYPE4+WdRGe/h1Vb26\nqi6rqvOnyg6oqrOq6vNVdWZV7T+17cTR9gur6qip8sOr6vyx7S9n3Y5boqoOqqr3V9VnqurTVfWc\nUb7R232rqvpoVZ1XVRdU1Z+P8g3d7gVVtXtVnVtV7xzrG77dVXVRVX1qtHvrKJuHdu9fVW+uqs+O\n/9YfstHbXVX3HT/nhc+VVfWcjd7u5IZ2fGbU+bSq2mtO2v3cUd9PV9VzR9nKt7u7fcYnk1vLX0xy\nzyR7JDkvyf1Xu14/YpsekeSwJOdPlf1Fkj8ay3+c5MVj+dDR5j3G9+CLubFXeWuSI8byPyc5erXb\ntkib75zkQWP5NpmMKb3/Rm/3qOM+4+umJB9J8rPz0O5Rz99P8o9J3jHWN3y7k3wpyQHblc1Du09J\n8ptjeVOS/eah3VPt3y3JV5MctNHbPer+v5PsNdZPT3LsHLT7J5Ocn+RWmWSTs5Lcexbt1mN4Uxvu\n4dfd/aEk39yu+PGZ/MOa8fWJY/kJSV7f3dd090WZ/If1kKq6S5J9u3vr2O91U8esOd19aXefN5a/\nneSzmTyrckO3O0m6+7tjcc9M/jH5Zuag3VV1YJLHJvn7JAsz8zZ8u4ftZyJu6HZX1X5JHtHdr04m\n48a7+8ps8HZv5+cz+V315Wz8dl+V5Jok+9Rk8ug+mUwc3ejtvl+Sj3b397v7uiQfSPKkzKDdguFN\nzcvDr+/U3ZeN5cuS3Gks3zWTNi9YaP/25ZdknXxfquqemfSYfjRz0O6q2q2qzsukfe/v7s9kDtqd\n5GVJ/jDJ9VNl89DuTvLeqvp4VT1rlG30dh+c5GtV9ZqqOqeq/q6qbp2N3+5pT0vy+rG8odvd3d9I\n8tIk/18mgfCK7j4rG7zdST6d5BHj1vE+mfzhe2Bm0G7B8KbmbiZOT/qWN2S7q+o2Sd6S5Lnd/a3p\nbRu13d19fXc/KJN/QH6uqo7cbvuGa3dV/VKSbd19bm7ee5ZkY7Z7eHh3H5bkMUl+t6oeMb1xg7Z7\nU5IHJ3lFdz84yXeSPG96hw3a7iRJVe2Z5HFJ3rT9to3Y7qq6d5ITMrk9etckt6mqX5/eZyO2u7sv\nTPKSJGcmeXcmt4mv226fFWm3YHhTl2QyZmPBQblp0t4oLquqOyfJ6GbeNsq3b/+BmbT/krE8XX7J\nDOr5Q6uqPTIJhad299tG8YZv94Jxa+1dSQ7Pxm/3zyR5fFV9KZNelEdV1anZ+O1Od391fP1akrdm\nMhxmo7f74iQXd/fHxvqbMwmKl27wdi94TJJPjJ95svF/3j+d5MPdfXl3X5vkn5I8LHPw8+7uV3f3\nT3f3IzMZFvT5zODnLRje1MeTHFJV9xx/lT01yTtWuU4r4R2ZDN7N+Pq2qfKnVdWeVXVwkkOSbO3u\nS5NcNWb+VZJnTB2z5ow6npzkgu5++dSmjd7u2y/MUKuqvZP8QpJzs8Hb3d3P7+6DuvvgTG6xnd3d\nz8gGb3dV7VNV+47lWyc5KpPB6hu63aO+X66q+4yin0/ymSTvzAZu95RfzY23kZMN/vNOcmGSh1bV\n3qO+P5/kgszBz7uq7ji+3j3JMUlOyyx+3j/MbJmN/Mnkr7HPZTJw88TVrs8ytOf1mYzLuDqT8ZPP\nTHJAkvdm8tfHmUn2n9r/+aPtFyb5xanywzP5pfPFJH+12u3aRZt/NpOxZudlEozOTXL0HLT7AUnO\nGe3+VJI/HOUbut3bfQ8emRtnJW/odmcy1u688fn0wr9XG73do74/leRjST6ZSQ/SfnPS7lsn+Xom\nkwkWyuah3X+USfg/P5MJF3vMSbs/ONp9XpIjZ/Xz9oBrAACSuJUMAMAgGAIAkEQwBABgEAwBAEgi\nGAIAMAiGAAAkEQwBbqKqvj2+3qOqfnWZz/387db/dTnPD/CjEgwBbmrh4a4HJ3n6LTmwqjbtYpcT\nb3Kh7offkvMDrDTBEGDHXpzkEVV1blU9t6p2q6r/WVVbq+qTVfVbSVJVm6vqQ1X19kzeQJKqeltV\nfbyqPl1VzxplL06y9zjfqaNsoXeyxrnPr6pPVdVTps69pareVFWfrap/WKhcVb24qj4z6vI/Z/qd\nATasXf11CzCv/jjJf+3uxyXJCIJXdPcRVbVXkn+pqjPHvocl+Ynu/vex/szu/uZ4Z/XWqnpzdz+v\nqn63uw+busZC7+Qxmbzm7YFJ7pDkY1X1wbHtQUkOTfLVJP9aVQ/P5JVXT+zu+4263XYF2g/MIT2G\nADtW260fleQ3qurcJB/J5J2lPz62bZ0KhUny3Ko6L8m/JTkokxfaL+Znk5zWE9uSfCDJf8gkOG7t\n7q/05P2l5yW5R5Irkny/qk6uql9O8r0fupUAUwRDgKX7z9192Pjcu7vfO8q/s7BDVW1O8ugkD+3u\nByU5N8mtdnHezs2D6EJv4g+myq5Lskd3X5fkiCRvTvJLSd7zwzQGYHuCIcCOfSvJvlPrZyR59sIE\nk6q6T1Xts4Pjbpvkm939/aq6X5KHTm27ZicTVD6U5KljHOMdkvxckq25eVjMuPatk+zf3e9O8vuZ\n3IYG+JEZYwhwUws9dZ9Mct24JfyaJH+V5J5JzqmqSrItyS+P/Xvq+Pck+Z2quiDJ5zK5nbzgVUk+\nVVWf6O5nLBzX3W+tqoeNa3aSP+zubVV1/+3OvVC/fZO8vapulUl4/L1laTkw92oybAUAgHnnVjIA\nAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADA8P8DCyj7quQ0MyAAAAAASUVORK5C\nYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cadf35090>" ] } ], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "data = read_2d('data-v2/benchmark-batch-size-cpu-manegrot.csv')\n", "\n", "fig = fig_init()\n", "plot_2d(fig, [(x, y) for (x, y) in data if 0 <= x <= 1024], 'manegrot', 'Batch size', 'PBKDF2 iteration-blocks per second', 0, 2000000)\n", "fig.show()\n", "\n", "fig = fig_init()\n", "plot_2d(fig, data, 'manegrot', 'Batch size', 'PBKDF2 iteration-blocks per second', 0, 2000000)\n", "fig.show()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAJeCAYAAAAp58Q7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuUbVV9J/rvT44gKoJoVBRUNGiHRKNyr48Yk2NMEBOD\n5uGjjQYNNy9zo6ZzcyOxo9imbckdRvMYmhgfgAkIPiPRKEQ8id1GURElPrGv9BUUMCigRhHwd//Y\ns2BzrFPUwb131T71+Yyxx15r7vWYNeucqm/NNeda1d0BAIBbbHQFAADYHARDAACSCIYAAAyCIQAA\nSQRDAAAGwRAAgCRzDIZVdUhVvbeqPlFV/1pVzxrlB1bVWVX12ao6s6oOmNrnuKq6oKo+XVVHTpUf\nUVXnj8/+dKp8n6o6bZR/oKruMfXZMeMcn62qX54qP7SqPjj2eUNV3XJebQAAsEzm2WN4TZLf6e4f\nTPLQJL9VVT+Q5LlJzuru+yR5z1hPVR2e5ElJDk9yVJJXVFWNY70yybHdfViSw6rqqFF+bJLLR/nL\nkpwwjnVgkucnefB4vaCq9h/7nJDkpWOfr45jAABseXMLht19SXefN5a/nuRTSe6W5OgkJ43NTkry\n+LH8uCSndvc13X1hks8leUhVHZRkv+4+Z2x38tQ+08d6c5JHjeVHJzmzu6/o7iuSnJXkMSNoPjLJ\nm1Y5PwDAlraQMYZVdc8kD0zywSR37u5Lx0eXJrnzWL5rkoumdrsokyC5c/nFozzj/QtJ0t3XJrmy\nqu6wxrEOTHJFd39nlWMBAGxpcw+GVXXbTHrznt3dX5v+rCfP41vUM/k8+w8AYA3b5nnwMbHjzUle\n391vG8WXVtVduvuScZn4slF+cZJDpnY/OJOevovH8s7lK/vcPckXq2pbkv27+/KqujjJ9ql9Dkly\ndpKvJDmgqm4xeg0PHsfYud5CJACwNLq7bnqrmzbPWcmV5DVJPtndL5/66O1JjhnLxyR521T5k6tq\n76o6NMlhSc7p7kuSXFVVDxnHfFqSv1vlWL+YyWSWJDkzyZFVdUBV3T7JTyV59+ihfG+SJ6xy/hvp\nbq8Fvl7wghdseB222kuba/Ot8NLm2nwrvGZpnj2GD0/y1CQfr6qPjrLjkrwkyelVdWySC5M8MUm6\n+5NVdXqSTya5Nskz+4av9plJTkyyb5J3dve7Rvlrkry+qi5IcnmSJ49jfaWqXpTkQ2O7F/ZkEkqS\n/H6SN1TVHyU5dxwDAGDLm1sw7O7/nl33SP7kLvZ5cZIXr1L+kST3W6X86oxgucpnr0vyulXKP5/k\nIbusOADAFuXJJ2wK27dv3+gqbDnafPG0+eJp88XT5sutZn1tek9QVa1dAIBlUFXpzT75BACA5SIY\nAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAA\ng2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiG\nAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBI\nIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAACDYAgAQBLBEACAQTAE\nACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAG\nwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwB\nABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBE\nMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAACDYAgA\nQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyC\nIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMCwbaMrAPC9uOyyy3LKKackSZ7y\nlKfkTne60wbXCGB5VXdvdB02narqrdAuW+kX6lb6WreSyy67LPe734Nz5ZXbkyT7778j559/ju8v\nbHJ+Js9WVaW7aybH2goBaHfdnGD4vfwj34j/IFvpF+pW+lqX1cp/t+4bL69VliR//ucvzx/+4Xm5\n+uoTkyT77PP0vOhFD8hv//ZzkiRVN7x2Xp8uAxbHz+TZEwznbHeD4ffyj3we/0G6k299K/na15Kv\nf33y2nn5jDNenre//bxce+2JSZK99np6HvGIB+RBD3rO9b+I95TXRRe9PJ///HnpnnytVU/PPe7x\ngNzlLs+5vr1W3ncnlOzO9o6xetlqVgttuyq79tqX57rrzkty4tj76dlrrwdk27Yb/zuePu+uzr+e\nALk728xyP3XYM+uwp309693v7//+5fmbvzkv11xzYpLJH3QveckD8pznTH4ms/tmGQyNMZyBU045\nJVdeuf36XouvfOXp+c3fPCWPfvRzss8+yd5750bv08unnXZKrrhie7797cm+V1zx9Lz4xafksY99\nzqqBbr3Lt7xlst9+yW1vO3ntvHzppTf+5Vg1KT/ooO/+T7zsrze9KXnVq5Jrrpl8rdu2JUcfnTzp\nSTf+wbXyvt6y3d3eMdYuuzkuu+wpud/9Xp4rr3x6kpU/rP44u/N31XoC5O5uM8v91GFzH2uWdVjt\ntSe2wwUXJNddFzYpwXAOupPLLks+9KHk6quTb3978j69vPL+pS9Nlldcc03ylrckH//4DWFuOtTd\n7W67Dnsr77e5zSQYrmW1X6ivfvXu/UJdFocf/pS88Y03/lqf97w982vdau50pzvl/PPPmRqK8ce7\n3ds+HVKB+Vvt989TnvLHG1sprudS8iqW/VLyem2lwb9b6WsF2Oz8TJ4tYwznbCtMPgEA9gyC4Zxt\nldvVAADLb5bB0JNPAABIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJ5hwMq+q1VXVpVZ0/\nVXZ8VV1UVR8dr8dMfXZcVV1QVZ+uqiOnyo+oqvPHZ386Vb5PVZ02yj9QVfeY+uyYqvrseP3yVPmh\nVfXBsc8bquomHh4HALA1zLvH8HVJjtqprJP8SXc/cLz+IUmq6vAkT0py+NjnFVXXP8H0lUmO7e7D\nkhxWVSvHPDbJ5aP8ZUlOGMc6MMnzkzx4vF5QVfuPfU5I8tKxz1fHMQAAtry5BsPufl8m4Wtnq92d\n+3FJTu3ua7r7wiSfS/KQqjooyX7dfc7Y7uQkjx/LRyc5aSy/OcmjxvKjk5zZ3Vd09xVJzkrymBE0\nH5nkTWO7k6aOBQCwpW3UGMPfrqqPVdVrquqAUXbXJBdNbXNRkrutUn7xKM94/0KSdPe1Sa6sqjus\ncawDk1zR3d9Z5VgAAFvatg045yuT/Jex/KIkL81iLufu1sOPjz/++OuXt2/fnu3bt8+4OgAAu2/H\njh3ZsWPHXI698GDY3ZetLFfVq5OcMVYvTnLI1KYHZ9LTd/FY3rl8ZZ+7J/liVW1Lsn93X15VFyfZ\nPrXPIUnOTvKVJAdU1S1Gr+HB4xjfZToYAgBsFjt3WL3whS+c2bEXfil5jBlc8XNJVmYsvz3Jk6tq\n76o6NMlhSc7p7kuSXFVVDxljBJ+W5O+m9jlmLP9ikveM5TOTHFlVB1TV7ZP8VJJ3d3cneW+SJ4zt\njknytpl/kQAAS6gmWWlOB686NcmPJ7ljkkuTvCCTnrwHZHJp9/NJfr27Lx3b/0GSX0lybZJnd/e7\nR/kRSU5Msm+Sd3b3s0b5Pklen+SBSS5P8uQxcSVV9YwkfzCq8kfdfdIoPzTJGzIZb3hukqd29zU7\n1bvn2S4AALNSVenu1Sb27v6xBKDvJhgCAMtilsHQk08AAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiG\nAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBI\nIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAACDYAgAQBLBEACAQTAE\nACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAG\nwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkCTZtqsPquoXknSSGu830t1vmWO9AABY\nsF0GwyQ/m0kgvFOSH0ly9ih/ZJL3JxEMAQD2ILsMht399CSpqrOSHN7dXxrrByU5aSG1AwBgYdYz\nxvCQJJdMrV+a5O7zqQ4AABtlrUvJK/4xybur6pRMxhs+KclZc60VAAALV93fNa/kxhtUVZKfS/Jj\nmYw5/OfufusC6rZhqqpvql0AADaDqkp310yOJQB9N8EQAFgWswyGNznGsKp+oaouqKqrqupr43XV\nLE4OAMDmsZ5Lyf8zyWO7+1OLqdLG02MIACyLhfYYJrlkK4VCAICtaj2zkj9cVacleVuSb4+y9uQT\nAIA9y3qC4f5JvpnkyJ3KBUMAgD2IWcmrMMYQAFgWi56VfEhVvbWqvjxeb66qg2dxcgAANo/1TD55\nXZK3J7nreJ0xygAA2IOs53Y1H+vuH76psj2JS8kAwLJY9O1qLq+qp1XVXlW1raqemuTfZnFyAAA2\nj/UEw19J8sQklyT5UpInJHnGPCsFAMDimZW8CpeSAYBlsehZySdX1QFT67evqtfO4uQAAGwe67mU\nfP/uvmJlpbu/muRB86sSAAAbYT3BsKrqwKmVA5PsNb8qAQCwEdbzSLyXJvmXqjo9SWUy+eS/zrVW\nAAAs3Lomn1TVDyZ55Fg9u7s/OddabTCTTwCAZbHo+xgmyYFJvtHdf5Hky1V16CxODgDA5rGeJ58c\nn+SIJPft7vtU1d2SnN7dD19A/TaEHkMAYFksusfw55I8Lsk3kqS7L06y3yxODgDA5rGeYHh1d39n\nZaWqbjPH+gAAsEHWEwzfWFV/leSAqvq1JO9J8ur5VgsAgEVb76zkI5McOVbf3d1nzbVWG8wYQwBg\nWcxyjOF6Jp/cJsm3uvu6qrpvkvsm+YfuvmYWFdiMBEMAYFksevLJ+5LsM2YjvzvJ05KcOIuTAwCw\neazrkXjd/e9Jfj7JK7r7CUl+aL7VAgBg0dZ1g+uqeliSX0ryjt3ZDwCA5bGegPecJMcleWt3f6Kq\n7p3kvfOtFgAAi7auWclbjcknAMCy2IhnJQMAsIcTDAEASHITwbCq9qqq31lUZQAA2DhrBsPuvi7J\nUxZUFwAANtB6nnzysiS3THJakm+slHf3ufOt2sYx+QQAWBaLfiTejiTftVF3P3IWFdiMBEMAYFks\nNBhuRYIhALAsFnq7mqq6S1W9pqreNdYPr6pjZ3FyAAA2j/XcrubEJGcmuetYvyCJmcoAAHuY9QTD\nO3b3aUmuS5LuvibJtXOtFQAAC7eeYPj1qrrDykpVPTTJlfOrEgAAG2HbOrb53SRnJLlXVb0/yfcl\n+cW51goAgIVb16zkqtqW5L5JKslnxuXkPZZZyQDAspjlrOSb7DGsqn2TPDPJj2ZyP8P3VdUru/tb\ns6gAAACbw3pucP3GJFcl+ZtMegyfkmT/7n7C/Ku3MfQYAgDLYtFPPvlkdx9+U2V7EsEQAFgWC73B\ndZJzq+phUyd/aJKPzOLkAABsHuvpMfx0kvsk+UImYwzvnuQzmdzLsLv7/vOu5KLpMQQAlsVCJ58k\nOWoWJwIAYHNb1+1qtho9hgDAslj0GEMAALYAwRAAgCTrCIZVdduq2mss37eqjq6qW86/agAALNJ6\nZiWfm8lTT26f5H8k+VCSb3f3L82/ehvDGEMAYFkseoxhdfe/J/n5JK8YTzz5oVmcHACAzWNdYwzH\nDa5/Kck7dmc/AACWx3oC3nOSHJfkrd39iaq6d5L3zrdaAAAs2nrGGB7a3Z/fqezB3X3OXGu2gYwx\nBACWxaLHGL65qg6eOvmPJ3ntLE4OAMDmsZ5g+OtJ3lZVd6mqn07yZ0keM99qAQCwaOt6JF5V/UiS\nv0ryzSSP7e7L5l2xjeRSMgCwLGZ5KXmXwbCqztip6AeSfCnJFUm6u4+eRQU2I8EQAFgWswyG29b4\n7KWrlHWSGu8AAOxB1jMr+V5JvtTd3xzr+ya5y84zlfckegwBgGWx6FnJb0xy3dT6d5KcPouTAwCw\neawnGO7V3d9eWenuq5PsPb8qAQCwEdYTDP+tqh63sjKW/21+VQIAYCOsZ4zh9yf52yR3HUUXJXla\nd39uznXbMMYYAgDLYiG3q1nlpLdNku7++ixOvJkJhgDAsljo5JOqOqCqXpbkn5L8U1W9tKr2n8XJ\nAQDYPNYzxvC1Sa5K8oQkT0zytSSvm2elAABYvPWMMfxYd//wTZXtSVxKBgCWxaLvY/jNqnrE1Ml/\nNMm/z+LkAABsHms9Em/FbyQ5eWpc4VeTHDO/KgEAsBF2Z1by7ZKku6+aa402AZeSAYBlMctLybvs\nMayq351a7anyStLd/SezqAAAAJvDWpeS98tUIJxSuygHAGCJrftS8s06eNVrk/xMksu6+36j7MAk\npyW5R5ILkzyxu68Ynx2X5FeSXJfkWd195ig/IsmJSW6V5J3d/exRvk+Sk5M8KMnlSZ7U3f9rfHZM\nkueNqvxRd588yg9N8oYkByb5SCZPcblmp3q7lAwALIVF3+D63lV1RlX9W1V9uar+rqrutc7jvy7J\nUTuVPTfJWd19nyTvGeupqsOTPCnJ4WOfV4zL1knyyiTHdvdhSQ6rqpVjHpvk8lH+siQnjGMdmOT5\nSR48Xi+YmjxzQpKXjn2+Oo4BALDlred2NackOT3JQZk8L/mNSU5dz8G7+32ZhK9pRyc5aSyflOTx\nY/lxSU7t7mu6+8Ikn0vykKo6KMl+3X3O2O7kqX2mj/XmJI8ay49OcmZ3XzF6I89K8pgRNB+Z5E2r\nnB8AYEtbTzDct7tfPwLbNd39N5lc0r257tzdl47lS5PceSzfNclFU9tdlORuq5RfPMoz3r+QJN19\nbZIrq+oOaxzrwCRXdPd3VjkWAMCWttas5AMzmWjyD2Ps30ov4ZOS/MMsTt7dXVWLGsxn0CAAwBrW\nmpV8bm4cpn5tvK/MSn7uzTznpVV1l+6+ZFwmvmyUX5zkkKntDs6kp+/isbxz+co+d0/yxaralmT/\n7r68qi5Osn1qn0OSnJ3kK0kOqKpbjF7Dg8cxvsvxxx9//fL27duzffv21TYDAFioHTt2ZMeOHXM5\n9lxnJSdJVd0zyRlTs5L/OJMJIydU1XOTHNDdzx2TT07JZLLI3ZL8Y5LvH72KH0zyrCTnJHlHkj/r\n7ndV1TOT3K+7f7Oqnpzk8d395NHb+eFMZitXJrOPH9TdV1TV6Une3N2nVdVfJjmvu/9ypzqblQwA\nLIVZzkrerWBYVa/q7l+76S2v3/7UJD+e5I6ZjCd8fpK/y2Qyy93z3ber+YNMbldzbZJnd/e7R/nK\n7Wr2zeR2Nc8a5fskeX2SB2Zyu5onj4krqapnJPmDUZU/6u6TRvn07WrOTfJUt6sBAJbVRgbDj3b3\nA2dx4s1MMAQAlsVC72O4k8tuehMAAJbR3McYLiM9hgDAsphlj+Fas5JXTnbfJP9XkntObd/d/ROz\nqAAAAJvDTfYYVtXHM3kk3bmZPMM4mQTDj8y5bhtGjyEAsCwW2mOY5JrufuUsTgYAwOa1nsknZ1TV\nb1XVQVV14Mpr7jUDAGCh1nMp+cJ89+PkurvvNa9KbTSXkgGAZbFh9zHcKgRDAGBZLHpW8t5JfjPJ\nj2XSc/hPSf5y56eFAACw3NZzKfk1mQTIkzJ57vDTklzb3f/H/Ku3MfQYAgDLYqGXkqvq4919/5sq\n25MIhgDAslj0I/Gurarvnzr5vZNcO4uTAwCweaznPoa/l+Tsqvr8WL9nkmfMrUYAAGyIdc1Krqpb\nJblvJpNPPtPdV8+7YhvJpWQAYFksZIxhVT2qu99TVb+QSSBcOWEnSXe/ZRYV2IwEQwBgWSzqdjU/\nluQ9SX42332D6yTZY4MhAMBWtJ5Zyffq7v/3psr2JHoMAYBlsehZyW9apeyNszg5AACbxy4vJVfV\nDyQ5PMkBVfXzmYwx7CS3S3KrxVQPAIBFWWuM4X0yGV+4/3hf8bUkvzrPSgEAsHjrGWP4I939/gXV\nZ1MwxhAAWBaLfiTevkmOzeSy8r654XY1vzKLCmxGgiEAsCwWPfnk9UnunOSoJDuSHJLk67M4OQAA\nm8d6egzP6+4HVNXHu/v+VXXLJP+9ux+ymCounh5DAGBZLLrH8Nvj/cqqul+SA5J83yxODgDA5rHW\nrOQVr6qqA5P85yRvT3LbJH8411oBALBwawbDqrpFkq9191eS/FOSQxdSKwAAFm7NS8nd/Z0k//eC\n6gIAwAZaz+STlyT5tySnJfnGSvnoRdwjmXwCACyLRd/H8MKMexdO6+499rKyYAgALIuFBsOtSDAE\nAJbFQm9XU1W3qao/rKq/HuuHVdVjZ3FyAAA2j/Xcx/B1mdzL8EfG+heT/Ne51QgAgA2xnmB47+4+\nIeNG1939jZvYHgCAJbSeYHh1Ve27slJV905y9fyqBADARljPk0+OT/KuJAdX1SlJHp7k6XOsEwAA\nG2Bds5Kr6o5JHjpWP9jdX55rrTaYWckAwLJY9H0M39Pdj7qpsj2JYAgALItZBsNdXkoe4wpvneT7\nqurAqY9ul+Ruszg5AACbx1pjDH89ybOT3DXJR6bKv5bkL+ZZKQAAFm89l5J/u7v/fEH12RRcSgYA\nlsVCxhhW1U9099lV9QtZ/VnJb5lFBTYjwRAAWBYLGWOY5MeTnJ3kZ7NKMEyyxwZDAICtaF23q9lq\n9BgCAMtilj2G63nyCQAAW4BgCABAEsEQAIBhzWBYVberqnuvUn7/+VUJAICNsMtgWFVPTPLpJG+u\nqk9U1YOnPj5p7jUDAGCh1uoxfF6SI7r7AUmekeTkqvr5xVQLAIBFW+s+hnt195eSpLvPqapHJvn7\nqjpkMVUDAGCR1uoxvGp6fOEIiY9McnSSH5x3xQAAWKy1egyfmZ2CY3dfVVWPSfLEudYKAICFW+tZ\nyQ/r7n9ZcH02BU8+AQCWxaKefPKKqRNuyYAIALCVrPcG17eaay0AANhwa85KrqoDk9TU8vW6+ytz\nrRkAAAu11hjDC5OsfFhTy0nS3X2v+VZt4xhjCAAsi1mOMdxlMNzKBEMAYFnMMhiudSk5VbUtyU8n\nue8o+lSSd3X3tbM4OQAAm8dal5LvluTsJJckOTeTy8kPSnLnJI/s7i8uqpKLpscQAFgWC7mUXFUn\nJflod798p/JnZfIM5WNmUYHNSDAEAJbFooLhZ7r7vquUV5LPdPd9ZlGBzUgwBACWxaJucP3N1QpH\nYvr3WZwcAIDNY63JJ7erqp/PZGzhih7rt5trrQAAWLi1guE/J/nZXXz2T3OoCwAAG2itMYYHdPcV\nu/jsf+/uD821ZhvIGEMAYFksaozhP+78GLxx8iOTvHUWJwcAYPNYKxj+VZL3VtWdVgqq6ilJXpXJ\nTa8BANiD7HKMYXf/dVV9K8nZVfVTSZ6U5DeSbO/uCxdUPwAAFmTNR+J19+ur6uok5yX5X0ke0d1f\nXkjNAABYqLUmn5w/tXrPJJflhvsXdnfff75V2zgmnwAAy2KWk0/W6jHc1a1qAADYA+2yx3DVjavu\nmOTyPb07TY8hALAsFnK7mqp6WFXtqKq3VNWDqupfk/xrksuq6jGzODkAAJvHWmMMP5LkuCT7J/nr\nJEd19weq6j8keUN3P2Bx1VwsPYYAwLJY1A2u9+ruM7v7jUm+1N0fSJLu/nQmz0wGAGAPslYwnA5/\n35p3RQAA2FhrXUq+LjfcnubWU8tJsm93r3kPxGXmUjIAsCwWcrua7t5rFicAAGA57DIYVtW+mTwC\n795Jzk/ymu6+dlEVAwBgsdYaY3hSkiMyuUXNTyd56UJqBADAhljzkXjdfb+xvC3Jh7r7gYus3EYx\nxhAAWBaLul3N9ZeNXUIGANjzrXdWcpLsm+SbY7m7+3ZzrtuG0WMIACwLs5IBAJi5tS4lAwCwhQiG\nAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADA\nIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACAJIIh\nAACDYAgAQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACS\nCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMCwYcGwqi6sqo9X1Uer\n6pxRdmBVnVVVn62qM6vqgKntj6uqC6rq01V15FT5EVV1/vjsT6fK96mq00b5B6rqHlOfHTPO8dmq\n+uVFfc0AAJvZRvYYdpLt3f3A7n7wKHtukrO6+z5J3jPWU1WHJ3lSksOTHJXkFVVVY59XJjm2uw9L\nclhVHTXKj01y+Sh/WZITxrEOTPL8JA8erxdMB1AAgK1qoy8l107rRyc5aSyflOTxY/lxSU7t7mu6\n+8Ikn0vykKo6KMl+3X3O2O7kqX2mj/XmJI8ay49OcmZ3X9HdVyQ5K5OwCQCwpW10j+E/VtWHq+pX\nR9mdu/vSsXxpkjuP5bsmuWhq34uS3G2V8otHecb7F5Kku69NcmVV3WGNYwEAbGnbNvDcD+/uL1XV\n9yU5q6o+Pf1hd3dV9QbVLccff/z1y9u3b8/27ds3qioAANfbsWNHduzYMZdjb1gw7O4vjfcvV9Vb\nMxnvd2lV3aW7LxmXiS8bm1+c5JCp3Q/OpKfv4rG8c/nKPndP8sWq2pZk/+6+vKouTrJ9ap9Dkpy9\nc/2mgyF3ObPAAAALaklEQVQAwGaxc4fVC1/4wpkde0MuJVfVratqv7F8myRHJjk/yduTHDM2OybJ\n28by25M8uar2rqpDkxyW5JzuviTJVVX1kDEZ5WlJ/m5qn5Vj/WImk1mS5MwkR1bVAVV1+yQ/leTd\nc/pSAQCWxkb1GN45yVvHxOJtSf62u8+sqg8nOb2qjk1yYZInJkl3f7KqTk/yySTXJnlmd69cZn5m\nkhOT7Jvknd39rlH+miSvr6oLklye5MnjWF+pqhcl+dDY7oVjEgoAwJZWN+QrVlRVaxcAYBlUVbp7\n5zu93CwbfbsaAAA2CcEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBI\nIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAACDYAgAQBLBEACAQTAE\nACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAG\nwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwB\nABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBE\nMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAACDYAgA\nQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyC\nIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkEQwBABgEAwBAEgiGAIA\nMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlg\nCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACA\nJIIhAACDYAgAQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARD\nAACSCIYAAAyCIQAASQRDAAAGwRAAgCRbNBhW1VFV9emquqCqfn+j6wMAsBlsuWBYVXsl+YskRyU5\nPMl/rKof2NhasWPHjo2uwpajzRdPmy+eNl88bb7ctlwwTPLgJJ/r7gu7+5okb0jyuA2u05bnB8ni\nafPF0+aLp80XT5svt60YDO+W5AtT6xeNMgCALW0rBsPe6AoAAGxG1b21clJVPTTJ8d191Fg/Lsl3\nuvuEqW22VqMAAEutu2sWx9mKwXBbks8keVSSLyY5J8l/7O5PbWjFAAA22LaNrsCidfe1VfV/Jnl3\nkr2SvEYoBADYgj2GAACsbitOPlmTm1/PR1UdUlXvrapPVNW/VtWzRvmBVXVWVX22qs6sqgOm9jlu\nfB8+XVVHblztl1dV7VVVH62qM8a69p6zqjqgqt5UVZ+qqk9W1UO0+/yM9vtEVZ1fVadU1T7ae/aq\n6rVVdWlVnT9VttvtXFVHjO/VBVX1p4v+OpbJLtr8/xk/Wz5WVW+pqv2nPptJmwuGU9z8eq6uSfI7\n3f2DSR6a5LdG2z43yVndfZ8k7xnrqarDkzwpk+/DUUleUVX+ve6+Zyf5ZG6Yja+95+9Pk7yzu38g\nyf2TfDrafS6q6p5JfjXJg7r7fpkMD3pytPc8vC6TNpu2O+28MjHilUmO7e7DkhxWVTsfkxus1uZn\nJvnB7v7hJJ9Nclwy2zb3H+LG3Px6Trr7ku4+byx/PcmnMrl/5NFJThqbnZTk8WP5cUlO7e5ruvvC\nJJ/L5PvDOlXVwUl+Osmrk6z8gNDeczT+en9Ed782mYxp7u4ro93n5apM/ui89ZhYeOtMJhVq7xnr\n7vcl+epOxbvTzg+pqoOS7Nfd54ztTp7ah52s1ubdfVZ3f2esfjDJwWN5Zm0uGN6Ym18vwPgr/4GZ\n/KO+c3dfOj66NMmdx/JdM2n/Fb4Xu+9lSX4vyXemyrT3fB2a5MtV9bqqOreq/rqqbhPtPhfd/ZUk\nL03y/2USCK/o7rOivRdld9t55/KLo/2/F7+S5J1jeWZtLhjemJk4c1ZVt03y5iTP7u6vTX/Wk5lQ\na30PfH/Wqaoem+Sy7v5obugtvBHtPRfbkjwoySu6+0FJvpFxeW2Fdp+dqrp3kuckuWcmvwBvW1VP\nnd5Gey/GOtqZGaqq5yX5dnefMutjC4Y3dnGSQ6bWD8mNkzbfg6q6ZSah8PXd/bZRfGlV3WV8flCS\ny0b5zt+Lg0cZ6/MjSY6uqs8nOTXJT1TV66O95+2iJBd194fG+psyCYqXaPe5+N+SvL+7L+/ua5O8\nJcnDor0XZXd+nlw0yg/eqVz776aqenomw4R+aap4Zm0uGN7YhzMZmHnPqto7k4Gcb9/gOu0RxiDY\n1yT5ZHe/fOqjtyc5Ziwfk+RtU+VPrqq9q+rQJIdlcjNy1qG7/6C7D+nuQzMZjH92dz8t2nuuuvuS\nJF+oqvuMop9M8okkZ0S7z8Onkzy0qvYdP2N+MpPJVtp7MXbr58n4/3HVmKlfSZ42tQ/rMCaO/F6S\nx3X3t6Y+mlmbb7kbXK/Fza/n6uFJnprk41X10VF2XJKXJDm9qo5NcmGSJyZJd3+yqk7P5If8tUme\n2W66+b1YaTvtPX+/neRvxx+X/zPJMzL5eaLdZ6y7P1ZVJ2fyR/13kpyb5FVJ9ov2nqmqOjXJjye5\nY1V9Icnzc/N+njwzyYlJ9s1k9v67Fvl1LJNV2vwFmfze3DvJWWPS8b909zNn2eZucA0AQBKXkgEA\nGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIcD1quq6qvpoVZ1XVR+pqofdxPb7V9VvruO4O6rq\niJtZp3dU1e1uzr4Au0swBLjBv3f3A7v7AZncSPa/3cT2t8/k5rE35WbfMLa7f6a7r7q5+wPsDsEQ\nYHX7J/lKklTVbavqH0cv4ser6uixzUuS3Hv0Mp4wtv39sc15VfXiqeM9oao+WFWfqaof3flkVXVQ\nVf3zONb5VfXwUX5hVd2hqn5jfPbRqvp8VZ09Pj+yqt4/6nZ6Vd1mno0C7Nk8+QRgqKprk5yf5FZJ\nDkryE919blXtleTW3f21qrpjJo+hOqyq7pHk77v7fmP/xyT5z0ke1d3fqqoDuvuKqnpvkg939++N\nbf5Td//UTuf+T0lu1d0vrqpbjPN9vao+n+SI7l4JqduSnJ3khCQfTPLmJEd19zer6veT7N3dL5p3\nWwF7Js9KBrjBN7v7gUlSVQ9NcnKSH8rk6sp/q6pHZPJM3rtW1Z2S1E77PyrJa1cebt/dV0x99pbx\nfm6Se65y7g8leW1V3TLJ27r7Y7uo458leU93v6OqHpvk8CTvH89N3TvJ+3fj6wW4EcEQYBXd/YGq\numNVfV+Sn0lyxyQP6u7rRi/erXax685hccXV4/26rPKzt7vfN4LnY5OcWFV/0t2vv9GBq56e5JDu\nnh7XeFZ3P2XdXxjAGowxBFhFVf2HTH5GXp7kdkkuG6HwkUnuMTb7WpL9pnY7K8kzqmrfcYzb78b5\n7p7ky9396iSvSfLAnT4/IsnvJnnaVPEHkjy8qu49trlNVR22/q8S4Mb0GALcYN+q+uhYriTHdPd3\nqupvk5xRVR9P8uEkn0qS7r68qv5HVZ2f5J3d/ftV9YAkH66qbyd5RyZjDne22uDu7Ul+r6quySRw\n/vLUtpXktzKZBf3ecdn4Q939a6MX8dSq2mds/7wkF9z8JgC2MpNPAABI4lIyAACDYAgAQBLBEACA\nQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASJL8/9oEH6xTOWSDAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cadd47dd0>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAJeCAYAAAAp58Q7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu0pFV95//3BxqaVrDbVkGQVpAAkQQFmR94jY0GBKNg\nvIFGAspEEzOjjIlRzERxkoniWgSTyUhuIJcJCIo3xgu0QBtnUFABARHU38j8pAUaG7l4Abrh+/uj\n9oHicPp0gXU5VfV+rVWrntrPbe860Odz9rP386SqkCRJkjYbdQUkSZK0MBgMJUmSBBgMJUmS1BgM\nJUmSBBgMJUmS1BgMJUmSBAwwGCZZkeTiJN9Jck2St7fy5UlWJflekguSLOva59gk309yXZIDu8r3\nSXJ1W/e3XeWLk5zdyr+e5Gld645s5/hekt/vKt85yaVtn48n2WJQ34EkSdI4GWSP4XrgP1XVbwDP\nAf44yTOA9wCrqmo34ML2mSR7AIcBewAHAR9Nknask4Cjq2pXYNckB7Xyo4F1rfxE4Ph2rOXA+4B9\n2+v9SZa2fY4HTmj7/LQdQ5IkaeoNLBhW1c1VdWVb/hnwXeApwCHAaW2z04BXtuVDgbOqan1V3QD8\nANgvyfbANlV1Wdvu9K59uo91LvCStvxS4IKqur2qbgdWAQe3oLk/8Mk5zi9JkjTVhjLGMMlOwN7A\npcB2VXVLW3ULsF1b3gG4sWu3G+kEydnla1o57f1HAFW1AbgjyRPmOdZy4Paqun+OY0mSJE21gQfD\nJFvT6c17R1Xd1b2uOs/jG9Yz+Xz2nyRJ0jwWDfLgbWLHucAZVfWZVnxLkidX1c3tMvHaVr4GWNG1\n+450evrWtOXZ5TP7PBX4cZJFwNKqWpdkDbCya58VwEXAbcCyJJu1XsMd2zFm19sQKUmSxkZVZdNb\nbdogZyUHOBm4tqo+0rXqc8CRbflI4DNd5Ycn2TLJzsCuwGVVdTNwZ5L92jGPAD47x7FeQ2cyC8AF\nwIFJliV5PHAAcH7robwYeO0c53+Iqpq61/vf//6R18F2227bbbttt+223Y/s1U+D7DF8PvBG4Kok\nV7SyY4EPAeckORq4AXgdQFVdm+Qc4FpgA/C2erC1bwNOBZYAX6iqL7Xyk4EzknwfWAcc3o51W5K/\nBL7RtvtAdSahALwb+HiSvwIub8eQJEmaegMLhlX1v9h4j+Rvb2Sfvwb+eo7ybwF7zlF+Dy1YzrHu\nY8DH5ij/IbDfRisuSZI0pXzyiR6wcuXKUVdhJGz3dLHd08V2T5dpbXc/pd/XpidBkvJ7kSRJ4yAJ\ntdAnn0iSJGm8GAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLU\nGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwl\nSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIE\nGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwl\nSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLU\nGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwl\nSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIE\nGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwl\nSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLU\nGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwl\nSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIE\nGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLUGAwlSZIEGAwlSZLULBp1BSRJkoZp7dq1nHnm\nmQC84Q1vYNtttx1xjRaOVNWo67DgJCm/F0mSJs/atWvZc899ueOOlQAsXbqaq6++bKzDYRKqKv04\nlj2GC4h/wYyO3/308mcvTa6qzuv++x98nXrqmdxxx0ruuedUAO644yjOPPNMjjnmmNFWdoEwGD4C\nm/oF8qv8gpn9F8wHP/iRof8FM62/IBfCd6/R8Gc/vmb/su9+bWzdo9mn38dzn+HWASCBzTZ78HXf\nfbBhw2j/+13IvJQ8hyR14oknctdddwGwzTbbcMABB/DiF//ORruef9Wu6RNP/AjHHnvlA3/BLF58\nFB/60F5D+wtmErrWqx78H777tamyM874CP/9v1/J+vWnArDFFkfxlrfsxWte86t99+lLp77HGeSx\nzj77I5x00kN/9m996168+tXHjPyX50L/hTvKfWZ+bXX/sp95zQ4Bmyp/tOvcZ3j7/CrHm3l1m4Tf\nd7N5KXkI3v3ur3HvvauAl7J48Zb8xV/8F+699xXce++pAKxbdxSHHnomu+12DHffDddeeya33rqS\nqs76W289ir33PpPly49h/fpOAJl5717uLut2zz3wznfCe98LW2754GuLLR76uZdXL/tcdNGZ3Hbb\nSjZs6NT/pz89ij/90zM54IBj5gxWvQSu+coGsf/998Pmm8OiRQ++Zn+eq+wnP3no979hA3zpS3DN\nNY/+v59+/b3lcQZ7rJtuevjP/gtfgKuuWli/PBctWni/cEe9Tz//sNB02Xbbbbn66su6rpB9eKxD\nYb8ZDDfi3nufCywBTuWee+Dee/el6r4H1iewYgW8+MWweDFsvTVcf30n6EEnjL3+9XDkkZ1/1LfY\n4sEgMrPc/b5u3Rt41rM+wh13HAV0/oK54ooPs2wZ3HvvQ1/r1z+8bFOv7n1+9rOHr7/uuge73aET\nuq65plM2O1jNFa623BKWLNn0do8ksD2SsplfnI/ml8XatW9gzz0f+t1fcsmH8d+JyTfXz/5rX/Nn\nL026bbfd1jGFG+Gl5DkkKTgRuBI4FYDNNjuMrba6mPvuexnQ/0vJM8cY1Ri/SexafySmdXyl/NlL\nGn/9vJRsMJxDktpyy9e1S8kHsnjxYpYu/QoXXfR5Vq1aBfR/8slCMO71lyRpGhkMB2yuyScGJUmS\ntBAZDAfMG1xLkqRx0c9guFk/DiJJkqTxZzCUJEkSYDCUJElSYzCUJEkSYDCUJElSYzCUJEkSYDCU\nJElSM9BgmOSUJLckubqr7LgkNya5or0O7lp3bJLvJ7kuyYFd5fskubqt+9uu8sVJzm7lX0/ytK51\nRyb5Xnv9flf5zkkubft8PMkWg/wOJEmSxsWgeww/Bhw0q6yAv6mqvdvriwBJ9gAOA/Zo+3w0yczN\nGk8Cjq6qXYFdk8wc82hgXSs/ETi+HWs58D5g3/Z6f5KlbZ/jgRPaPj9tx5AkSZp6Aw2GVfVVOuFr\ntrnuzn0ocFZVra+qG4AfAPsl2R7Ypqoua9udDryyLR8CnNaWzwVe0pZfClxQVbdX1e3AKuDgFjT3\nBz7Ztjut61iSJElTbVRjDP9jkm8nOTnJsla2A3Bj1zY3Ak+Zo3xNK6e9/wigqjYAdyR5wjzHWg7c\nXlX3z3EsSZKkqbZoBOc8CfgvbfkvgRMYzuXcR/Tw4+OOO+6B5ZUrV7Jy5co+V0eSJOmRW716NatX\nrx7IsYceDKtq7cxykn8Bzmsf1wArujbdkU5P35q2PLt8Zp+nAj9OsghYWlXrkqwBVnbtswK4CLgN\nWJZks9ZruGM7xsN0B0NJkqSFYnaH1Qc+8IG+HXvol5LbmMEZvwvMzFj+HHB4ki2T7AzsClxWVTcD\ndybZr40RPAL4bNc+R7bl1wAXtuULgAOTLEvyeOAA4PyqKuBi4LVtuyOBz/S9kZIkSWMonaw0oIMn\nZwEvAp4I3AK8n05P3l50Lu3+EHhrVd3Stn8v8GZgA/COqjq/le8DnAosAb5QVW9v5YuBM4C9gXXA\n4W3iCkneBLy3VeWvquq0Vr4z8HE64w0vB95YVetn1bsG+b1IkiT1SxKqaq6JvY/8WAaghzMYSpKk\ncdHPYOiTTyRJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJ\nkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQY\nDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJ\nktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQY\nDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJkgQYDCVJktQYDCVJ\nkgTAoo2tSPJqoIC094eoqk8NsF6SJEkaso0GQ+AVdALhtsDzgIta+f7AJYDBUJIkaYJsNBhW1VEA\nSVYBe1TVTe3z9sBpQ6mdJEmShqaXMYYrgJu7Pt8CPHUw1ZEkSdKozHcpecaXgfOTnElnvOFhwKqB\n1kqSJElDl6qHzSt56AZJgN8FfovOmMN/q6pPD6FuI5OkNvW9SJIkLQRJqKr05VgGoIczGEqSpHHR\nz2C4yTGGSV6d5PtJ7kxyV3vd2Y+TS5IkaeHo5VLy/wu8vKq+O5wqjZ49hpIkaVwMtccQuHmaQqEk\nSdK06mVW8jeTnA18Bri3lZVPPpEkSZosvQTDpcAvgQNnlRsMJUmSJoizkufgGENJkjQuhj0reUWS\nTye5tb3OTbJjP04uSZKkhaOXyScfAz4H7NBe57UySZIkTZBeblfz7ap61qbKJomXkiVJ0rgY9u1q\n1iU5IsnmSRYleSPwk36cXJIkSQtHL8HwzcDrgJuBm4DXAm8aZKUkSZI0fM5KnoOXkiVJ0rgY9qzk\n05Ms6/r8+CSn9OPkkiRJWjh6uZT8zKq6feZDVf0UePbgqiRJkqRR6CUYJsnyrg/Lgc0HVyVJkiSN\nQi+PxDsB+FqSc4DQmXzyXwdaK0mSJA1dT5NPkvwGsH/7eFFVXTvQWo2Yk08kSdK4GPZ9DAGWAz+v\nqr8Hbk2ycz9OLkmSpIWjlyefHAfsA+xeVbsleQpwTlU9fwj1Gwl7DCVJ0rgYdo/h7wKHAj8HqKo1\nwDb9OLkkSZIWjl6C4T1Vdf/MhySPHWB9JEmSNCK9BMNPJPlHYFmStwAXAv8y2GpJkiRp2HqdlXwg\ncGD7eH5VrRporUbMMYaSJGlc9HOMYS+TTx4L3F1V9yXZHdgd+GJVre9HBRYig6EkSRoXw5588lVg\ncZuNfD5wBHBqP04uSZKkhaOnR+JV1S+AVwEfrarXAr852GpJkiRp2Hq6wXWS5wK/B3z+kewnSZKk\n8dFLwDsGOBb4dFV9J8kuwMWDrZYkSZKGradZydPGySeSJGlcjOJZyZIkSZpwBkNJkiQBmwiGSTZP\n8p+GVRlJkiSNzrzBsKruA94wpLpIkiRphHp58smJwBbA2cDPZ8qr6vLBVm10nHwiSZLGxbAfibca\neNhGVbV/PyqwEBkMJUnSuBhqMJxGBkNJkjQuhnq7miRPTnJyki+1z3skObofJ5ckSdLC0cvtak4F\nLgB2aJ+/DzhTWZIkacL0EgyfWFVnA/cBVNV6YMNAayVJkqSh6yUY/izJE2Y+JHkOcMfgqiRJkqRR\nWNTDNn8CnAc8PcklwJOA1wy0VpIkSRq6nmYlJ1kE7A4EuL5dTp5YzkqWJEnjop+zkjfZY5hkCfA2\n4AV07mf41SQnVdXd/aiAJEmSFoZebnD9CeBO4H/Q6TF8A7C0ql47+OqNhj2GkiRpXAz7ySfXVtUe\nmyqbJAZDSZI0LoZ6g2vg8iTP7Tr5c4Bv9ePkkiRJWjh66TG8DtgN+BGdMYZPBa6ncy/DqqpnDrqS\nw2aPoSRJGhdDnXwCHNSPE0mSJGlh6+l2NdPGHkNJkjQuhj3GUJIkSVPAYChJkiSgh2CYZOskm7fl\n3ZMckmSLwVdNkiRJw9TLrOTL6Tz15PHA/wa+AdxbVb83+OqNhmMMJUnSuBj2GMNU1S+AVwEfbU88\n+c1+nFySJEkLR09jDNsNrn8P+Pwj2U+SJEnjo5eAdwxwLPDpqvpOkl2AiwdbLUmSJA1bL2MMd66q\nH84q27eqLhtozUbIMYaSJGlcDHuM4blJduw6+YuAU/pxckmSJC0cvQTDtwKfSfLkJC8D/g44eLDV\nkiRJ0rD19Ei8JM8D/hH4JfDyqlo76IqNkpeSJUnSuOjnpeSNBsMk580qegZwE3A7UFV1SD8qsBAZ\nDCVJ0rjoZzBcNM+6E+YoKyDtXZIkSROkl1nJTwduqqpfts9LgCfPnqk8SewxlCRJ42LYs5I/AdzX\n9fl+4Jx+nFySJEkLRy/BcPOqunfmQ1XdA2w5uCpJkiRpFHoJhj9JcujMh7b8k8FVSZIkSaPQyxjD\nXwP+FdihFd0IHFFVPxhw3UbGMYaSJGlcDOV2NXOcdGuAqvpZP068kBkMJUnSuBjq5JMky5KcCHwF\n+EqSE5Is7cfJJUmStHD0MsbwFOBO4LXA64C7gI8NslKSJEkavl7GGH67qp61qbJJ4qVkSZI0LoZ9\nH8NfJnlh18lfAPyiHyeXJEnSwjHfI/Fm/CFwete4wp8CRw6uSpIkSRqFRzIr+XEAVXXnQGu0AHgp\nWZIkjYt+XkreaI9hkj/p+lhd5QGqqv6mHxWQJEnSwjDfpeRt6AqEXbKRckmSJI2xni8lP6qDJ6cA\nvwOsrao9W9ly4GzgacANwOuq6va27ljgzcB9wNur6oJWvg9wKrAV8IWqekcrXwycDjwbWAccVlX/\nt607EvjzVpW/qqrTW/nOwMeB5cC36DzFZf2senspWZIkjYVh3+B6lyTnJflJkluTfDbJ03s8/seA\ng2aVvQdYVVW7ARe2zyTZAzgM2KPt89F22RrgJODoqtoV2DXJzDGPBta18hOB49uxlgPvA/Ztr/d3\nTZ45Hjih7fPTdgxJkqSp18vtas4EzgG2p/O85E8AZ/Vy8Kr6Kp3w1e0Q4LS2fBrwyrZ8KHBWVa2v\nqhuAHwD7Jdke2KaqLmvbnd61T/exzgVe0pZfClxQVbe33shVwMEtaO4PfHKO80uSJE21XoLhkqo6\nowW29VX1P+hc0n20tquqW9ryLcB2bXkH4Mau7W4EnjJH+ZpWTnv/EUBVbQDuSPKEeY61HLi9qu6f\n41iSJElTbb5ZycvpTDT5Yhv7N9NLeBjwxX6cvKoqybAG8zloUJIkaR7zzUq+nIeGqbe095lZye95\nlOe8JcmTq+rmdpl4bStfA6zo2m5HOj19a9ry7PKZfZ4K/DjJImBpVa1LsgZY2bXPCuAi4DZgWZLN\nWq/hju0YD3Pcccc9sLxy5UpWrlw512aSJElDtXr1alavXj2QYw90VjJAkp2A87pmJX+YzoSR45O8\nB1hWVe9pk0/OpDNZ5CnAl4Ffa72KlwJvBy4DPg/8XVV9KcnbgD2r6o+SHA68sqoOb72d36QzWzl0\nZh8/u6puT3IOcG5VnZ3kH4Arq+ofZtXZWcmSJGks9HNW8iMKhkn+qaresuktH9j+LOBFwBPpjCd8\nH/BZOpNZnsrDb1fzXjq3q9kAvKOqzm/lM7erWULndjVvb+WLgTOAvencrubwNnGFJG8C3tuq8ldV\ndVor775dzeXAG71djSRJGlejDIZXVNXe/TjxQmYwlCRJ42Ko9zGcZe2mN5EkSdI4GvgYw3Fkj6Ek\nSRoX/ewxnG9W8szJdgf+FNipa/uqqhf3owKSJElaGDbZY5jkKjqPpLuczjOMoRMMvzXguo2MPYaS\nJGlcDLXHEFhfVSf142SSJElauHqZfHJekj9Osn2S5TOvgddMkiRJQ9XLpeQbePjj5Kqqnj6oSo2a\nl5IlSdK4GNl9DKeFwVCSJI2LYc9K3hL4I+C36PQcfgX4h9lPC5EkSdJ46+VS8sl0AuRpdJ47fASw\noar+/eCrNxr2GEqSpHEx1EvJSa6qqmduqmySGAwlSdK4GPYj8TYk+bWuk+8CbOjHySVJkrRw9HIf\nw3cBFyX5Yfu8E/CmgdVIkiRJI9HTrOQkWwG705l8cn1V3TPoio2Sl5IlSdK4GMoYwyQvqaoLk7ya\nTiCcOWEBVNWn+lGBhchgKEmSxsWwblfzW8CFwCt4+A2uASY2GEqSJE2jXmYlP72q/s+myiaJPYaS\nJGlcDHtW8ifnKPtEP04uSZKkhWOjl5KTPAPYA1iW5FV0xhgW8Dhgq+FUT5IkScMy3xjD3eiML1za\n3mfcBfzBICslSZKk4etljOHzquqSIdVnQXCMoSRJGhfDfiTeEuBoOpeVl/Dg7Wre3I8KLEQGQ0mS\nNC6GPfnkDGA74CBgNbAC+Fk/Ti5JkqSFo5cewyuraq8kV1XVM5NsAfyvqtpvOFUcPnsMJUnSuBh2\nj+G97f2OJHsCy4An9ePkkiRJWjjmm5U845+SLAf+M/A5YGvgLwZaK0mSJA3dvMEwyWbAXVV1G/AV\nYOeh1EqSJElDN++l5Kq6H/izIdVFkiRJI9TL5JMPAT8BzgZ+PlPeehEnkpNPJEnSuBj2fQxvoN27\nsFtVTexlZYOhJEkaF0MNhtPIYChJksbFUG9Xk+SxSf4iyT+3z7smeXk/Ti5JkqSFo5f7GH6Mzr0M\nn9c+/xj4rwOrkSRJkkail2C4S1UdT7vRdVX9fBPbS5IkaQz1EgzvSbJk5kOSXYB7BlclSZIkjUIv\nTz45DvgSsGOSM4HnA0cNsE6SJEkagZ5mJSd5IvCc9vHSqrp1oLUaMWclS5KkcTHs+xheWFUv2VTZ\nJDEYSpKkcdHPYLjRS8ltXOFjgCclWd616nHAU/pxckmSJC0c840xfCvwDmAH4Ftd5XcBfz/ISkmS\nJGn4ermU/B+r6r8NqT4LgpeSJUnSuBjKGMMkL66qi5K8mrmflfypflRgITIYSpKkcTGUMYbAi4CL\ngFcwRzAEJjYYSpIkTaOeblczbewxlCRJ46KfPYa9PPlEkiRJU8BgKEmSJMBgKEmSpGbeYJjkcUl2\nmaP8mYOrkiRJkkZho8EwyeuA64Bzk3wnyb5dq08beM0kSZI0VPP1GP45sE9V7QW8CTg9yauGUy1J\nkiQN23z3Mdy8qm4CqKrLkuwP/M8kK4ZTNUmSJA3TfD2Gd3aPL2whcX/gEOA3Bl0xSZIkDdd8PYZv\nY1ZwrKo7kxwMvG6gtZIkSdLQzfes5OdW1deGXJ8FwSefSJKkcTGsJ598tOuEUxkQJUmSpkmvN7je\naqC1kCRJ0sjNOys5yXIgXcsPqKrbBlozSZIkDdV8YwxvAGZWpmsZoKrq6YOt2ug4xlCSJI2Lfo4x\n3GgwnGYGQ0mSNC76GQznu5RMkkXAy4DdW9F3gS9V1YZ+nFySJEkLx3yXkp8CXATcDFxO53Lys4Ht\ngP2r6sfDquSw2WMoSZLGxVAuJSc5Dbiiqj4yq/ztdJ6hfGQ/KrAQGQwlSdK4GFYwvL6qdp+jPMD1\nVbVbPyqwEBkMJUnSuBjWDa5/OVdhS0y/6MfJJUmStHDMN/nkcUleRWds4Yxqnx830FpJkiRp6OYL\nhv8GvGIj674ygLpIkiRphOYbY7isqm7fyLr/p6q+MdCajZBjDCVJ0rgY1hjDL89+DF47+YHAp/tx\nckmSJC0c8wXDfwQuTrLtTEGSNwD/ROem15IkSZogGx1jWFX/nORu4KIkBwCHAX8IrKyqG4ZUP0mS\nJA3JvI/Eq6ozktwDXAn8X+CFVXXrUGomSZKkoZpv8snVXR93Atby4P0Lq6qeOdiqjY6TTyRJ0rjo\n5+ST+XoMN3arGkmSJE2gjfYYzrlx8kRg3aR3p9ljKEmSxsVQbleT5LlJVif5VJJnJ7kGuAZYm+Tg\nfpxckiRJC8d8Ywy/BRwLLAX+GTioqr6e5NeBj1fVXsOr5nDZYyhJksbFsG5wvXlVXVBVnwBuqqqv\nA1TVdXSemSxJkqQJMl8w7A5/dw+6IpIkSRqt+S4l38eDt6d5TNcywJKqmvceiOPMS8mSJGlcDOV2\nNVW1eT9OIEmSpPGw0WCYZAmdR+DtAlwNnFxVG4ZVMUmSJA3XfGMMTwP2oXOLmpcBJwylRpIkSRqJ\neR+JV1V7tuVFwDeqau9hVm5UHGMoSZLGxbBuV/PAZWMvIUuSJE2+XmclAywBftmWq6oeN+C6jYw9\nhpIkaVw4K1mSJEl9N9+lZEmSJE0Rg6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIa\ng6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6Ek\nSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIA\ng6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6Ek\nSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZIag6EkSZIAg6EkSZKa\nkQXDJDckuSrJFUkua2XLk6xK8r0kFyRZ1rX9sUm+n+S6JAd2le+T5Oq27m+7yhcnObuVfz3J07rW\nHdnO8b0kvz+sNkuSJC1ko+wxLGBlVe1dVfu2svcAq6pqN+DC9pkkewCHAXsABwEfTZK2z0nA0VW1\nK7BrkoNa+dHAulZ+InB8O9Zy4H3Avu31/u4AKkmSNK1GfSk5sz4fApzWlk8DXtmWDwXOqqr1VXUD\n8ANgvyTxTb+cAAANYUlEQVTbA9tU1WVtu9O79uk+1rnAS9ryS4ELqur2qrodWEUnbEqSJE21UfcY\nfjnJN5P8QSvbrqpuacu3ANu15R2AG7v2vRF4yhzla1o57f1HAFW1AbgjyRPmOZYkSdJUWzTCcz+/\nqm5K8iRgVZLruldWVSWpEdWN44477oHllStXsnLlylFVRZIk6QGrV69m9erVAzn2yIJhVd3U3m9N\n8mk64/1uSfLkqrq5XSZe2zZfA6zo2n1HOj19a9ry7PKZfZ4K/DjJImBpVa1LsgZY2bXPCuCi2fXr\nDoaSJEkLxewOqw984AN9O/ZILiUneUySbdryY4EDgauBzwFHts2OBD7Tlj8HHJ5kyyQ7A7sCl1XV\nzcCdSfZrk1GOAD7btc/MsV5DZzILwAXAgUmWJXk8cABw/oCaKkmSNDZG1WO4HfDpNrF4EfCvVXVB\nkm8C5yQ5GrgBeB1AVV2b5BzgWmAD8LaqmrnM/DbgVGAJ8IWq+lIrPxk4I8n3gXXA4e1YtyX5S+Ab\nbbsPtEkokiRJUy0P5ivNSFJ+L5IkaRwkoapm3+nlURn17WokSZK0QBgMJUmSBBgMJUmS1BgMJUmS\nBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgM\nJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS\n1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgM\nJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmS\nBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgM\nJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS\n1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgM\nJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmS\nBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgM\nJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS\n1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgM\nJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmS\nBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgMJUmSBBgMJUmS1BgM\nJUmSBBgMJUmS1BgMJUmSBExpMExyUJLrknw/ybtHXR9JkqSFYOqCYZLNgb8HDgL2AF6f5BmjrdXC\nsHr16lFXYSRs93Sx3dPFdk+XaW13P01dMAT2BX5QVTdU1Xrg48ChI67TgjCt/0PZ7uliu6eL7Z4u\n09rufprGYPgU4Eddn29sZZIkSVNtGoNhjboCkiRJC1GqpisnJXkOcFxVHdQ+HwvcX1XHd20zXV+K\nJEkaa1WVfhxnGoPhIuB64CXAj4HLgNdX1XdHWjFJkqQRWzTqCgxbVW1I8h+A84HNgZMNhZIkSVPY\nYyhJkqS5TePkk3lN2s2vk5yS5JYkV3eVLU+yKsn3klyQZFnXumNb269LcmBX+T5Jrm7r/nbY7Xgk\nkqxIcnGS7yS5JsnbW/mkt3urJJcmuTLJtUk+2Monut0zkmye5Iok57XPE9/uJDckuaq1+7JWNg3t\nXpbkk0m+2/5b32/S251k9/ZznnndkeTtk95ueKAd32l1PjPJ4ilp9ztafa9J8o5WNvh2V5Wv9qJz\nafkHwE7AFsCVwDNGXa9fsU0vBPYGru4q+zDwZ2353cCH2vIerc1btO/gBzzYq3wZsG9b/gJw0Kjb\nNk+bnwzs1Za3pjOm9BmT3u5Wx8e090XA14EXTEO7Wz3fCfwr8Ln2eeLbDfwQWD6rbBrafRrw5ra8\nCFg6De3uav9mwE3Aiklvd6v7/wEWt89nA0dOQbt/E7ga2IpONlkF7DKMdttj+FATd/Prqvoq8NNZ\nxYfQ+YeV9v7KtnwocFZVra+qG+j8h7Vfku2Bbarqsrbd6V37LDhVdXNVXdmWfwZ8l869Kie63QBV\n9Yu2uCWdf0x+yhS0O8mOwMuAfwFmZuZNfLub2TMRJ7rdSZYCL6yqU6Azbryq7mDC2z3Lb9P5XfUj\nJr/ddwLrgcekM3n0MXQmjk56u38duLSq7q6q+4CvAK9mCO02GD7UtNz8eruquqUt3wJs15Z3oNPm\nGTPtn12+hjH5XpLsRKfH9FKmoN1JNktyJZ32XVxV32EK2g2cCLwLuL+rbBraXcCXk3wzyR+0sklv\n987ArUk+luTyJP+c5LFMfru7HQ6c1ZYnut1VdRtwAvD/0QmEt1fVKia83cA1wAvbpePH0PnDd0eG\n0G6D4UNN3Uyc6vQtT2S7k2wNnAu8o6ru6l43qe2uqvurai86/4D8VpL9Z62fuHYneTmwtqqu4OG9\nZ8Bktrt5flXtDRwM/HGSF3avnNB2LwKeDXy0qp4N/Bx4T/cGE9puAJJsCbwC+MTsdZPY7iS7AMfQ\nuTy6A7B1kjd2bzOJ7a6q64DjgQuAL9K5THzfrG0G0m6D4UOtoTNmY8YKHpq0J8UtSZ4M0LqZ17by\n2e3fkU7717Tl7vI1Q6jno5ZkCzqh8Iyq+kwrnvh2z2iX1j4P7MPkt/t5wCFJfkinF+XFSc5g8ttN\nVd3U3m8FPk1nOMykt/tG4Maq+kb7/Ek6QfHmCW/3jIOBb7WfOUz+z/vfAZdU1bqq2gB8CnguU/Dz\nrqpTqurfVdWL6AwL+h5D+HkbDB/qm8CuSXZqf5UdBnxuxHUahM/RGbxLe/9MV/nhSbZMsjOwK3BZ\nVd0M3Nlm/gU4omufBafV8WTg2qr6SNeqSW/3E2dmqCVZAhwAXMGEt7uq3ltVK6pqZzqX2C6qqiOY\n8HYneUySbdryY4ED6QxWn+h2t/r+KMlurei3ge8A5zHB7e7yeh68jAwT/vMGrgOek2RJq+9vA9cy\nBT/vJNu296cCrwLOZBg/70czW2aSX3T+GruezsDNY0ddnz605yw64zLupTN+8k3AcuDLdP76uABY\n1rX9e1vbrwNe2lW+D51fOj8A/m7U7dpEm19AZ6zZlXSC0RXAQVPQ7j2By1u7rwLe1conut2zvoMX\n8eCs5IluN52xdle21zUz/15NertbfZ8FfAP4Np0epKVT0u7HAj+hM5lgpmwa2v1ndML/1XQmXGwx\nJe3+t9buK4H9h/Xz9gbXkiRJAryULEmSpMZgKEmSJMBgKEmSpMZgKEmSJMBgKEmSpMZgKEmSJMBg\nKEkPSHJfkiuSXJnkW0meu4ntlyb5ox6OuzrJPo+yTp9P8rhHs68kPVIGQ0l60C+qau/qPG/6WOCD\nm9j+8cDbejjuo75hbFX9TlXd+Wj3l6RHwmAoSXNbCtwGkGTrJF9uvYhXJTmkbfMhYJfWy3h82/bd\nbZsrk/x11/Fem+TSJNcnecHskyXZPsm/tWNdneT5rfyGJE9I8odt3RVJfpjkorb+wCSXtLqd0x6P\nJ0mPik8+kaQmyQY6j47aCtgeeHFVXZ5kc+AxVXVXkicCX6uqXZM8DfifVbVn2/9g4D8DL6mqu5Ms\nq6rbk1wMfLOq3tW2eWdVHTDr3O8Etqqqv06yWTvfz5L8ENinqmZC6iLgIuB44FLgXOCgqvplkncD\nW1bVXw76u5I0mRaNugKStID8sqr2BkjyHOB04DfpXF35YJIX0nkO9w7tAfeZtf9LgFOq6m6Aqrq9\na92n2vvlwE5znPsbwClJtgA+U1Xf3kgd/w64sKo+n+TlwB7AJUkAtgQueQTtlaSHMBhK0hyq6utJ\nnpjkScDvAE8Enl1V97VevK02suvssDjjnvZ+H3P821tVX23B8+XAqUn+pqrOeMiBk6OAFVXVPa5x\nVVW9oeeGSdI8HGMoSXNI8ut0/o1cBzwOWNtC4f7A09pmdwHbdO22CnhTkiXtGI9/BOd7KnBrVf0L\ncDKw96z1+wB/AhzRVfx14PlJdmnbPDbJrr23UpIeyh5DSXrQkiRXtOUAR1bV/Un+FTgvyVXAN4Hv\nAlTVuiT/O8nVwBeq6t1J9gK+meRe4PN0xhzONtfg7pXAu5KspxM4f79r2wB/TGcW9MXtsvE3quot\nrRfxrCSL2/Z/Dnz/0X8FkqaZk08kSZIEeClZkiRJjcFQkiRJgMFQkiRJjcFQkiRJgMFQkiRJjcFQ\nkiRJgMFQkiRJjcFQkiRJAPz/5SDvkWah7+oAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cadce3b90>" ] } ], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "data = read_2d('data-v2/benchmark-salt-len-cpu-manegrot.csv')\n", "\n", "fig = fig_init()\n", "plot_2d(fig, [(x, y) for (x, y) in data if 0 <= x <= 4096], 'manegrot', 'Salt length', 'PBKDF2 iteration-blocks per second', 0, 2000000)\n", "fig.show()\n", "\n", "fig = fig_init()\n", "plot_2d(fig, data, 'manegrot', 'Salt length', 'PBKDF2 iteration-blocks per second', 0, 2000000)\n", "fig.show()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAJeCAYAAAAp58Q7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYbWV9J/rvDw4gCoI44AAqGjSSaEBu0GiGo94QTCdq\nEqc2UTBeM5gbpZNOIuZG8Sadq+nHhpi0ZlIBE5yj0RsHcDh2OokSFSLO2pFuQeEgimA0yPDrP/Zb\nsjnUqVNg7V21qz6f59lPrfWu6X33OsO33rXetaq7AwAAe613BQAA2BgEQwAAkgiGAAAMgiEAAEkE\nQwAABsEQAIAkMwyGVXV4Vb2vqj5eVR+rqmeP8kOq6tyq+kxVnVNVB09tc0pVfbaqPlVVx0+VH1tV\nF45lfzhVvl9VvW6Uf6Cq7jW17MRxjM9U1dOmyo+oqg+ObV5bVfvM6jsAAFgks+wxvDbJf+ju70ny\n0CS/UlUPSPLcJOd29/2SvGfMp6qOSvKkJEclOSHJy6qqxr5enuQZ3X1kkiOr6oRR/owkV4zy05K8\neOzrkCTPT3Lc+Lygqg4a27w4yUvGNl8d+wAA2PJmFgy7+9LuvmBMfz3JJ5PcI8ljkpw5VjszyePG\n9GOTvKa7r+3ui5J8LslDqupuSQ7s7vPGemdNbTO9rzcledSY/rEk53T3ld19ZZJzkzx6BM1HJHnj\nMscHANjS5nKPYVXdO8kxST6Y5NDuvmwsuizJoWP67kkuntrs4kyC5K7ll4zyjJ9fSJLuvi7J16rq\njivs65AkV3b3DcvsCwBgS5t5MKyqAzLpzXtOd189vawn7+Ob1zv5vPsPAGAF22a58zGw401JXt3d\nbxnFl1XVXbv70nGZeOcovyTJ4VObH5ZJT98lY3rX8qVt7pnki1W1LclB3X1FVV2SZPvUNocneW+S\nryQ5uKr2Gr2Gh4197FpvIRIAWBjdXXtea89mOSq5krwiySe6+/SpRW9NcuKYPjHJW6bKn1xV+1bV\nEUmOTHJed1+a5KqqesjY51OT/M0y+3p8JoNZkuScJMdX1cFVdYckP5rkXaOH8n1JnrDM8W+iu7fc\n5wUveMG610G7tVu7tVu7tVu7b9lnLc2yx/DhSX4uyUer6vxRdkqSFyV5fVU9I8lFSZ6YJN39iap6\nfZJPJLkuybP6xtY+K8kZSfZP8vbufucof0WSV1fVZ5NckeTJY19fqarfTfJPY70X9mQQSpL8VpLX\nVtXvJfnI2AcAwJY3s2DY3f89u++R/D93s83vJ/n9Zco/nOSBy5RfkxEsl1n2qiSvWqb880kestuK\nAwBsUd58wrdt3759vauwLrR7a9HurUW7t5at2u61VGt9bXozqKr2vQAAi6Cq0ht98AkAAItFMAQA\nIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbB\nEACAJIIhAACDYAgAQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEA\nGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkEQw\nBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABA\nEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIh\nAABJBEMAAAbBEACAJIIhAACDYAgAQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAw\nCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAI\nAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAk\ngiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMA\nAJIIhgAADIIhAABJBEMAAAbBEACAJMm29a4AN9q5c2fOPvvsJMlTnvKU3OUud1nnGgEAW0l193rX\nYcOpqu7umwW1JDMLbjt37swDH3hcvva17UmSgw7akQsvPG+u4VAwBYDFU1Xp7lqTfQmGN1dVfdll\nl90kqB144HuSVK6++pFJlg9u30mwOv300/Pc516Qa645I0my334n5XnPOzq/9EsnZ++98+3PXnvd\ndHqvvZJagz8KGyGYwnrwCxGw6ATDGauqPu20024S1Pba67gk98sNN/xlkmTvvU/K4x9/dJ7+9JNz\nz3smt7nNzjz0oTcPVgcffJfs3Jns3Jlcdll2O/0v/3J6rrrqgiRnjFqclAMOODq3uc3Juf765IYb\nkuuvz82mu28Mi7uGxuWmd7fsiitOz5e+dEG6l9p7Ur7/+4/OD/7gybnDHZI73CE5+OAsO73vvvM7\nN7CW/EIEbAZrGQzdY7hKN9xw8565f/mX5D//5+R//a/k858/O9ddtz1Lwe7yy0/Kve51dq677uTc\n+c7JXe6SHHroTX8+8IE3zu+111Ny/PGn56qrTkqy9B/UH2RP/z913xgUpwPjSmFyuemzzkpe+tLk\n2msn+9177+Te957U7cork0suSb761cn0V7960+lt224MiSsFyOWmb3e7tenxZPF1T/78fetbyTXX\nTH7Oanpp/jOfOTuXX779278QXX75SXnYw87OEUecnG3bsuJnn31WXn5r1v1O97lWVxCArUuP4TJu\nzaXk0047PaeccmMP4777npTnP//onHLKydlrlWO/1/OS1q3tOelOvvGN3YfGPU1fc83uw+OeguVB\nB00C7Fq1f7NfTrz++tmGreWC1y3dZp99Jj3Q++6b7Lff2k/vOv+Od5yeV73qglx77RlJkn32OSnP\nfObRedzjTs5112W3n2uv3f2yW7vuWuzzhhsWI8DOYp8CMVuZS8kzdmsGn2yGS1LrEY6+9a1JQJwO\njKsNlldfnRxwwC3roZye32+/G9v9nZ676d6ujRq8brhhNmFrtSFsT9P77JNV/xK1VjbD39tpS1cA\nNnqAncU+99pr84Xd1aynl/jW2WydAYLhjC0Fw1tqs/1B2+huuCG56qqVw+NKy7Ztm4TE668/PTt3\n3vT+yu/+7qNzj3ucfIuC17ZtGzt47b23/0CW4+/t4lu6pWYRAuxa73O5XuKNGGBnse6t/fdss/1C\nmAiGM3drgyGLozv55jcnAfGlLz09p51208uJT3va0XnCE05edfBaj94ugF17iTdqgJ3F8XfXS7yn\nsLlz5+m56KIbOwP22++kvOhFR+fkk09e35P5HTD4BL5DVcltbzv5/PqvPyVnnHF6vva1k5JMfnv8\n/d/f88AfgPW29NiyffZZ75rM13K9xKsNm2efnfzJn9w42JKb0mO4DD2GW4/LiQBbg0vJe9iXAHRz\ngiEAbF6brTNAMJwxwRAAWBRrGQzdLg8AQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGCYaTCsqldW\n1WVVdeFU2alVdXFVnT8+j55adkpVfbaqPlVVx0+VH1tVF45lfzhVvl9VvW6Uf6Cq7jW17MSq+sz4\nPG2q/Iiq+uDY5rVVtcWeFw8AsLxZ9xi+KskJu5R1kv/S3ceMzzuSpKqOSvKkJEeNbV5W9e1XZL88\nyTO6+8gkR1bV0j6fkeSKUX5akhePfR2S5PlJjhufF1TVQWObFyd5ydjmq2MfAABb3kyDYXf/XSbh\na1fLPYTxsUle093XdvdFST6X5CFVdbckB3b3eWO9s5I8bkw/JsmZY/pNSR41pn8syTndfWV3X5nk\n3CSPHkHzEUneONY7c2pfAABb2nrdY/irVfXPVfWKqjp4lN09ycVT61yc5B7LlF8yyjN+fiFJuvu6\nJF+rqjuusK9DklzZ3Tcssy8AgC1t2zoc8+VJ/t8x/btJXpL5XM69Re+4O/XUU789vX379mzfvn2N\nqwMAcMvt2LEjO3bsmMm+5x4Mu3vn0nRV/UWSt43ZS5IcPrXqYZn09F0ypnctX9rmnkm+WFXbkhzU\n3VdU1SVJtk9tc3iS9yb5SpKDq2qv0Wt42NjHzUwHQwCAjWLXDqsXvvCFa7bvuV9KHvcMLvmpJEsj\nlt+a5MlVtW9VHZHkyCTndfelSa6qqoeMewSfmuRvprY5cUw/Psl7xvQ5SY6vqoOr6g5JfjTJu7q7\nk7wvyRPGeicmecuaNxIAYAHVJCvNaOdVr0nyI0nulOSyJC/IpCfv6Ewu7X4+yS9292Vj/ecl+fkk\n1yV5Tne/a5Qfm+SMJPsneXt3P3uU75fk1UmOSXJFkiePgSupqqcned6oyu9195mj/Igkr83kfsOP\nJPm57r52l3r3LL8XAIC1UlXp7uUG9t7yfQlANycYAgCLYi2DoTefAACQRDAEAGAQDAEASCIYAgAw\nCIYAACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAI\nAMAgGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAk\ngiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMA\nAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAACDYAgAQBLBEACAQTAEACBJsm13C6rqZ5J0kho/b6K7\n/3qG9QIAYM52GwyT/GQmgfAuSR6W5L2j/BFJ/iGJYAgAsInsNhh290lJUlXnJjmqu7805u+W5My5\n1A4AgLlZzT2Ghye5dGr+siT3nE11AABYLytdSl7y7iTvqqqzM7nf8ElJzp1prQAAmLvqvtm4kpuu\nUFVJfirJD2dyz+F/6+43z6Fu66aqek/fCwDARlBV6e5ak30JQDcnGAIAi2Itg+Ee7zGsqp+pqs9W\n1VVVdfX4XLUWBwcAYONYzaXk/5HkJ7r7k/Op0vrTYwgALIq59hgmuXQrhUIAgK1qNaOSP1RVr0vy\nliTfGmXtzScAAJvLaoLhQUm+meT4XcoFQwCATcSo5GW4xxAAWBTzHpV8eFW9uaouH583VdVha3Fw\nAAA2jtUMPnlVkrcmufv4vG2UAQCwiazmcTX/3N3ft6eyzcSlZABgUcz7cTVXVNVTq2rvqtpWVT+X\n5MtrcXAAADaO1QTDn0/yxCSXJvlSkickefosKwUAwPwZlbwMl5IBgEUx71HJZ1XVwVPzd6iqV67F\nwQEA2DhWcyn5Qd195dJMd381yYNnVyUAANbDaoJhVdUhUzOHJNl7dlUCAGA9rOaVeC9J8o9V9fok\nlcngk/8001oBADB3qxp8UlXfk+QRY/a93f2JmdZqnRl8AgAsink/xzBJDknyr939x0kur6oj1uLg\nAABsHKt588mpSY5Ncv/uvl9V3SPJ67v74XOo37rQYwgALIp59xj+VJLHJvnXJOnuS5IcuBYHBwBg\n41hNMLymu29Ymqmq282wPgAArJPVBMM3VNWfJjm4qn4hyXuS/MVsqwUAwLytdlTy8UmOH7Pv6u5z\nZ1qrdeYeQwBgUazlPYarGXxyuyT/1t3XV9X9k9w/yTu6+9q1qMBGJBgCAIti3oNP/i7JfmM08ruS\nPDXJGWtxcAAANo5VvRKvu7+R5KeTvKy7n5Dke2dbLQAA5m1VD7iuqh9I8rNJ/vaWbAcAwOJYTcA7\nOckpSd7c3R+vqvsmed9sqwUAwLytalTyVmPwCQCwKNbjXckAAGxygiEAAEn2EAyrau+q+g/zqgwA\nAOtnxWDY3dcnecqc6gIAwDpazZtPTkuyT5LXJfnXpfLu/shsq7Z+DD4BABbFvF+JtyPJzVbq7kes\nRQU2IsEQAFgUcw2GW5FgCAAsirk+rqaq7lpVr6iqd475o6rqGWtxcAAANo7VPK7mjCTnJLn7mP9s\nEiOVAQA2mdUEwzt19+uSXJ8k3X1tkutmWisAAOZuNcHw61V1x6WZqnpokq/NrkoAAKyHbatY59eT\nvC3JfarqH5LcOcnjZ1orAADmblWjkqtqW5L7J6kknx6Xkzcto5IBgEWxlqOS99hjWFX7J3lWkh/M\n5HmGf1dVL+/uf1uLCgAAsDGs5gHXb0hyVZK/zKTH8ClJDuruJ8y+eutDjyEAsCjm/eaTT3T3UXsq\n20wEQwBgUcz1AddJPlJVPzB18Icm+fBaHBwAgI1jNT2Gn0pyvyRfyOQew3sm+XQmzzLs7n7QrCs5\nb3oMAYBFMdfBJ0lOWIsDAQCwsa3qcTVbjR5DAGBRzPseQwAAtgDBEACAJKsIhlV1QFXtPabvX1WP\nqap9Zl81AADmaTWjkj+SyVtP7pDk75P8U5JvdffPzr5668M9hgDAopj3PYbV3d9I8tNJXjbeePK9\na3FwAAA2jlXdYzgecP2zSf72lmwHAMDiWE3AOznJKUne3N0fr6r7JnnfbKsFAMC8reYewyO6+/O7\nlB3X3efNtGbryD2GAMCimPc9hm+qqsOmDv4jSV65FgcHAGDjWE0w/MUkb6mqu1bVjyd5aZJHz7Za\nAADM26peiVdVD0vyp0m+meQnunvnrCu2nlxKBgAWxVpeSt5tMKyqt+1S9IAkX0pyZZLu7sesRQU2\nIsEQAFgUaxkMt62w7CXLlHWSGj8BANhEVjMq+T5JvtTd3xzz+ye5664jlTcTPYYAwKKY96jkNyS5\nfmr+hiSvX4uDAwCwcawmGO7d3d9amunua5LsO7sqAQCwHlYTDL9cVY9dmhnTX55dlQAAWA+rucfw\nu5L8VZK7j6KLkzy1uz8347qtG/cYAgCLYi6Pq1nmoAckSXd/fS0OvJEJhgDAopjr4JOqOriqTkvy\n/iTvr6qXVNVBa3FwAAA2jtXcY/jKJFcleUKSJya5OsmrZlkpAADmbzX3GP5zd3/fnso2E5eSAYBF\nMe/nGH6zqn5o6uA/mOQba3FwAAA2jpVeibfkl5KcNXVf4VeTnDi7KgEAsB5uyajk2ydJd1810xpt\nAC4lAwCLYi0vJe+2x7Cqfn1qtqfKK0l3939ZiwoAALAxrHQp+cBMBcIptZtyAAAW2KovJd+qnVe9\nMsm/S7Kzux84yg5J8rok90pyUZIndveVY9kpSX4+yfVJnt3d54zyY5OckeQ2Sd7e3c8Z5fslOSvJ\ng5NckeRJ3f0/x7ITk/z2qMrvdfdZo/yIJK9NckiSD2fyFpdrd6m3S8kAwEKY9wOu71tVb6uqL1fV\n5VX1N1V1n1Xu/1VJTtil7LlJzu3u+yV5z5hPVR2V5ElJjhrbvGxctk6Slyd5RncfmeTIqlra5zOS\nXDHKT0vy4rGvQ5I8P8lx4/OCqcEzL07ykrHNV8c+AAC2vNU8rubsJK9PcrdM3pf8hiSvWc3Ou/vv\nMglf0x6T5MwxfWaSx43pxyZ5TXdf290XJflckodU1d2SHNjd5431zpraZnpfb0ryqDH9Y0nO6e4r\nR2/kuUkePYLmI5K8cZnjAwBsaasJhvt396tHYLu2u/8yk0u6t9ah3X3ZmL4syaFj+u5JLp5a7+Ik\n91im/JJRnvHzC0nS3dcl+VpV3XGFfR2S5MruvmGZfQEAbGkrjUo+JJOBJu8Y9/4t9RI+Kck71uLg\n3d1VNa+b+dw0CACwgpVGJX8kNw1TvzB+Lo1Kfu6tPOZlVXXX7r50XCbeOcovSXL41HqHZdLTd8mY\n3rV8aZt7JvliVW1LclB3X1FVlyTZPrXN4Unem+QrSQ6uqr1Gr+FhYx83c+qpp357evv27dm+ffty\nqwEAzNWOHTuyY8eOmex7pqOSk6Sq7p3kbVOjkv8gkwEjL66q5yY5uLufOwafnJ3JYJF7JHl3ku8a\nvYofTPLsJOcl+dskL+3ud1bVs5I8sLt/uaqenORx3f3k0dv5oUxGK1cmo48f3N1XVtXrk7ypu19X\nVX+S5ILu/pNd6mxUMgCwENZyVPItCoZV9Wfd/Qt7XvPb678myY8kuVMm9xM+P8nfZDKY5Z65+eNq\nnpfJ42quS/Kc7n7XKF96XM3+mTyu5tmjfL8kr05yTCaPq3nyGLiSqnp6kueNqvxed585yqcfV/OR\nJD/ncTUAwKJaz2B4fncfsxYH3sgEQwBgUcz1OYa72LnnVQAAWEQzv8dwEekxBAAWxVr2GK40Knnp\nYPdP8h+T3Htq/e7uR65FBQAA2Bj22GNYVR/N5JV0H8nkHcbJJBh+eMZ1Wzd6DAGARTHXHsMk13b3\ny9fiYAAAbFyrGXzytqr6laq6W1UdsvSZec0AAJir1VxKvig3f51cd/d9ZlWp9eZSMgCwKNbtOYZb\nhWAIACyKeY9K3jfJLyf54Ux6Dt+f5E92fVsIAACLbTWXkl+RSYA8M5P3Dj81yXXd/X/NvnrrQ48h\nALAo5nopuao+2t0P2lPZZiIYAgCLYt6vxLuuqr5r6uD3TXLdWhwcAICNYzXPMfyNJO+tqs+P+Xsn\nefrMagQAwLpY1ajkqrpNkvtnMvjk0919zawrtp5cSgYAFsVc7jGsqkd193uq6mcyCYRLB+wk6e6/\nXosKbESCIQCwKOb1uJofTvKeJD+Zmz/gOkk2bTAEANiKVjMq+T7d/S97KttM9BgCAIti3qOS37hM\n2RvW4uAAAGwcu72UXFUPSHJUkoOr6qczucewk9w+yW3mUz0AAOZlpXsM75fJ/YUHjZ9Lrk7yzFlW\nCgCA+VvNPYYP6+5/mFN9NgT3GAIAi2Ler8TbP8kzMrmsvH9ufFzNz69FBTYiwRAAWBTzHnzy6iSH\nJjkhyY4khyf5+locHACAjWM1PYYXdPfRVfXR7n5QVe2T5L9390PmU8X502MIACyKefcYfmv8/FpV\nPTDJwUnuvBYHBwBg41hpVPKSP6uqQ5L8P0nemuSAJL8z01oBADB3KwbDqtorydXd/ZUk709yxFxq\nBQDA3K14Kbm7b0jym3OqCwAA62g1g09elOTLSV6X5F+Xykcv4qZk8AkAsCjm/RzDizKeXTituzft\nZWXBEABYFHMNhluRYAgALIq5Pq6mqm5XVb9TVX8+5o+sqp9Yi4MDALBxrOY5hq/K5FmGDxvzX0zy\nn2ZWIwAA1sVqguF9u/vFGQ+67u5/3cP6AAAsoNUEw2uqav+lmaq6b5JrZlclAADWw2refHJqkncm\nOayqzk7y8CQnzbBOAACsg1WNSq6qOyV56Jj9YHdfPtNarTOjkgGARTHv5xi+p7sftaeyzUQwBAAW\nxVoGw91eSh73Fd42yZ2r6pCpRbdPco+1ODgAABvHSvcY/mKS5yS5e5IPT5VfneSPZ1kpAADmbzWX\nkn+1u/9oTvXZEFxKBgAWxVzuMayqR3b3e6vqZ7L8u5L/ei0qsBEJhgDAopjLPYZJfiTJe5P8ZJYJ\nhkk2bTAEANiKVvW4mq1GjyEAsCjWssdwNW8+AQBgCxAMAQBIIhgCADCsGAyr6vZVdd9lyh80uyoB\nALAedhsMq+qJST6V5E1V9fGqOm5q8ZkzrxkAAHO1Uo/hbyc5truPTvL0JGdV1U/Pp1oAAMzbSs8x\n3Lu7v5Qk3X1eVT0iyf9fVYfPp2oAAMzTSj2GV03fXzhC4iOSPCbJ98y6YgAAzNdKPYbPyi7Bsbuv\nqqpHJ3niTGsFAMDcrfSu5B/o7n+cc302BG8+AQAWxbzefPKyqQNuyYAIALCVrPYB17eZaS0AAFh3\nK45KrqpDktTU9Ld191dmWjMAAOZqpXsML0qytLCmppOku/s+s63a+nGPIQCwKNbyHsPdBsOtTDAE\nABbFWgbDlS4lp6q2JfnxJPcfRZ9M8s7uvm4tDg4AwMax0qXkeyR5b5JLk3wkk8vJD05yaJJHdPcX\n51XJedNjCAAsirlcSq6qM5Oc392n71L+7EzeoXziWlRgIxIMAYBFMa9g+Onuvv8y5ZXk0919v7Wo\nwEYkGAIAi2JeD7j+5nKFIzF9Yy0ODgDAxrHS4JPbV9VPZ3Jv4ZIe87efaa0AAJi7lYLhf0vyk7tZ\n9v4Z1AUAgHW00j2GB3f3lbtZ9v3d/U8zrdk6co8hALAo5nWP4bt3fQ3eOPjxSd68FgcHAGDjWCkY\n/mmS91XVXZYKquopSf4sk4deAwCwiez2HsPu/vOq+rck762qH03ypCS/lGR7d180p/oBADAnK74S\nr7tfXVXXJLkgyf9M8kPdfflcagYAwFytNPjkwqnZeyfZmRufX9jd/aDZVm39GHwCACyKtRx8slKP\n4e4eVQMAwCa02x7DZVeuulOSKzZ7d5oeQwBgUczlcTVV9QNVtaOq/rqqHlxVH0vysSQ7q+rRa3Fw\nAAA2jpXuMfxwklOSHJTkz5Oc0N0fqKrvTvLa7j56ftWcLz2GAMCimNcDrvfu7nO6+w1JvtTdH0iS\n7v5UJu9MBgBgE1kpGE6Hv3+bdUUAAFhfK11Kvj43Pp7mtlPTSbJ/d6/4DMRF5lIyALAo5vK4mu7e\ney0OAADAYthtMKyq/TN5Bd59k1yY5BXdfd28KgYAwHytdI/hmUmOzeQRNT+e5CVzqREAAOtixVfi\ndfcDx/S2JP/U3cfMs3LrxT2GAMCimNfjar592dglZACAzW+1o5KTZP8k3xzT3d23n3Hd1o0eQwBg\nURiVDADAmlvpUjIAAFuIYAgAQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYA\nACQRDAEAGARDAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAg\nGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEA\nAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJII\nhgAADOsWDKvqoqr6aFWdX1XnjbJDqurcqvpMVZ1TVQdPrX9KVX22qj5VVcdPlR9bVReOZX84Vb5f\nVb1ulH+sGr5JAAANVklEQVSgqu41tezEcYzPVNXT5tVmAICNbD17DDvJ9u4+pruPG2XPTXJud98v\nyXvGfKrqqCRPSnJUkhOSvKyqamzz8iTP6O4jkxxZVSeM8mckuWKUn5bkxWNfhyR5fpLjxucF0wEU\nAGCrWu9LybXL/GOSnDmmz0zyuDH92CSv6e5ru/uiJJ9L8pCquluSA7v7vLHeWVPbTO/rTUkeNaZ/\nLMk53X1ld1+Z5NxMwiYAwJa23j2G766qD1XVM0fZod192Zi+LMmhY/ruSS6e2vbiJPdYpvySUZ7x\n8wtJ0t3XJflaVd1xhX0BAGxp29bx2A/v7i9V1Z2TnFtVn5pe2N1dVb1Odcupp5767ent27dn+/bt\n61UVAIBv27FjR3bs2DGTfa9bMOzuL42fl1fVmzO53++yqrprd186LhPvHKtfkuTwqc0Py6Sn75Ix\nvWv50jb3TPLFqtqW5KDuvqKqLkmyfWqbw5O8d9f6TQdDAICNYtcOqxe+8IVrtu91uZRcVbetqgPH\n9O2SHJ/kwiRvTXLiWO3EJG8Z029N8uSq2reqjkhyZJLzuvvSJFdV1UPGYJSnJvmbqW2W9vX4TAaz\nJMk5SY6vqoOr6g5JfjTJu2bUVACAhbFePYaHJnnzGFi8Lclfdfc5VfWhJK+vqmckuSjJE5Okuz9R\nVa9P8okk1yV5VncvXWZ+VpIzkuyf5O3d/c5R/ookr66qzya5IsmTx76+UlW/m+SfxnovHINQAAC2\ntLoxX7Gkqtr3AgAsgqpKd+/6pJdbZb0fVwMAwAYhGAIAkEQwBABgEAwBAEgiGAIAMAiGAAAkEQwB\nABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlgCADAIBgCAJBE\nMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACAJIIhAACDYAgA\nQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARDAACSCIYAAAyC\nIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkEQwBABgEAwBAEgiGAIA\nMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQAIBBMAQAIIlg\nCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJBEMAAAbBEACA\nJIIhAACDYAgAQBLBEACAQTAEACCJYAgAwCAYAgCQRDAEAGAQDAEASCIYAgAwCIYAACQRDAEAGARD\nAACSCIYAAAyCIQAASQRDAAAGwRAAgCSCIQAAg2AIAEASwRAAgEEwBAAgiWAIAMAgGAIAkEQwBABg\nEAwBAEgiGAIAMAiGAAAkEQwBABgEQwAAkgiGAAAMgiEAAEkEQwAABsEQAIAkgiEAAINgCABAEsEQ\nAIBBMAQAIIlgCADAIBgCAJBEMAQAYBAMAQBIIhgCADAIhgAAJBEMAQAYBEMAAJIIhgAADIIhAABJ\nBEMAAAbBEACAJIIhAACDYAgAQBLBEACAQTAEACCJYAgAwCAYAgCQZIsGw6o6oao+VVWfrarfWu/6\nAABsBFsuGFbV3kn+OMkJSY5K8u+r6gHrW6uNYceOHetdhXWh3VuLdm8t2r21bNV2r6UtFwyTHJfk\nc919UXdfm+S1SR67znXaELbqXyjt3lq0e2vR7q1lq7Z7LW3FYHiPJF+Ymr94lAEAbGlbMRj2elcA\nAGAjqu6tlZOq6qFJTu3uE8b8KUlu6O4XT62ztb4UAGChdXetxX62YjDcluTTSR6V5ItJzkvy77v7\nk+taMQCAdbZtvSswb919XVX930nelWTvJK8QCgEAtmCPIQAAy9uKg09WtNkffl1VF1XVR6vq/Ko6\nb5QdUlXnVtVnquqcqjp4av1Txnfxqao6fv1qfstU1Sur6rKqunCq7Ba3s6qOraoLx7I/nHc7bqnd\ntPvUqrp4nPPzq+rRU8sWvt1VdXhVva+qPl5VH6uqZ4/yTX2+V2j3Zj/ft6mqD1bVBVX1iar6/0b5\nZj/fu2v3pj7fS6pq79G+t435TX2+lyzT7tmf7+72GZ9MLi1/Lsm9k+yT5IIkD1jveq1xGz+f5JBd\nyv4gyW+O6d9K8qIxfdT4DvYZ38nnkuy13m1YZTt/KMkxSS68le1c6k0/L8lxY/rtSU5Y77bdina/\nIMmvLbPupmh3krsmOXpMH5DJPcQP2Ozne4V2b+rzPep42/FzW5IPJPnBzX6+V2j3pj/fo56/luSv\nkrx1zG/6872bds/8fOsxvKmt8vDrXUcuPSbJmWP6zCSPG9OPTfKa7r62uy/K5A/acXOp4Xeou/8u\nyVd3Kb4l7XxIVd0tyYHdfd5Y76ypbTak3bQ7ufk5TzZJu7v70u6+YEx/PcknM3k26aY+3yu0O9nE\n5ztJuvsbY3LfTH6h/2o2+flOdtvuZJOf76o6LMmPJ/mL3NjWTX++d9PuyozPt2B4U1vh4ded5N1V\n9aGqeuYoO7S7LxvTlyU5dEzfPZPvYMmifx+3tJ27ll+SxW3/r1bVP1fVK6YuuWy6dlfVvTPpMf1g\nttD5nmr3B0bRpj7fVbVXVV2QyXl9X3d/PFvgfO+m3ckmP99JTkvyG0lumCrb9Oc7y7e7M+PzLRje\n1FYYifPw7j4myaOT/EpV/dD0wp70Na/0PWyK72gV7dxMXp7kiCRHJ/lSkpesb3Vmo6oOSPKmJM/p\n7qunl23m8z3a/cZM2v31bIHz3d03dPfRSQ5L8sNV9Yhdlm/K871Mu7dnk5/vqvqJJDu7+/ws31O2\nKc/3Cu2e+fkWDG/qkiSHT80fnpsm7YXX3V8aPy9P8uZMLg1fVlV3TZLR7bxzrL7r93HYKFtUt6Sd\nF4/yw3YpX7j2d/fOHjK5JLF0O8CmaXdV7ZNJKHx1d79lFG/68z3V7r9cavdWON9LuvtrSf42ybHZ\nAud7yVS7/48tcL4fluQxVfX5JK9J8siqenU2//lert1nzeN8C4Y39aEkR1bVvatq3yRPSvLWda7T\nmqmq21bVgWP6dkmOT3JhJm08cax2YpKl/1jfmuTJVbVvVR2R5MhMbmJdVLeond19aZKrquohVVVJ\nnjq1zcIY/2gu+alMznmySdo96viKJJ/o7tOnFm3q8727dm+B832npctnVbV/kh9Ncn42//lett1L\n4WjYdOe7u5/X3Yd39xFJnpzkvd391Gzy872bdj9tLn+/VxqZshU/mVxi/XQmN26est71WeO2HZHJ\nqKULknxsqX1JDkny7iSfSXJOkoOntnne+C4+leTH1rsNt6Ctr8nkzTbfyuS+0affmnZm0hNx4Vj2\n0vVu161o989ncrPxR5P88/gH4dDN1O5MRmbeMP5cnz8+J2z2872bdj96C5zvByb5yGj3R5P8xijf\n7Od7d+3e1Od7l+/gR3Lj6NxNfb53aff2qXa/etbn2wOuAQBI4lIyAACDYAgAQBLBEACAQTAEACCJ\nYAgAwCAYAgCQRDAESJJU1W9X1cfGO0jPr6rj9rD+GVX1M2P65PHQ4eXW21FVx65xXQ+qql+emt9e\nVW9by2MAW5NgCGx5VfUDSf5dkmO6+/uSPCqTB4SvZPr9rM9JcttVrLdW7pDkWWu8TwDBECDJXZN8\nubuvTZLu/kqP94pX1e9U1XlVdWFV/eku21VV/WqSuyd5X1W9Z6WDVNXxVfUPVfXhqnr9eDVlquqi\nqjp1lH+0qu4/yu9cVeeOnsw/H+vdMcmLktx39Gz+QSbB84CqekNVfbKq/nItvxxg6xAMASav1Dq8\nqj5dVf+1qn54atkfd/dx3f3AJPtX1U9MLevu/qNMXkO4vbsftbsDVNWdkvx2kkd197FJPpzk15b2\nk+TyUf7yJP9xlL8gybu7+3uTvDHJPce6v5Xkf3T3Md39m0kqyTGZ9FweleQ+VfXwW/91AFuVYAhs\ned39r5m8T/QXklye5HVVdeJY/Miq+kBVfTTJIzMJXrdUJXno2PYfqur8JE/LJOgt+evx8yNJ7j2m\nH57ktaOO70ry1an97eq87v5iT95zesHUPgBWbdt6VwBgI+juG5K8P8n7q+rCJCdW1WuTvCzJg7v7\nkqp6QZLbfAeHObe7n7KbZdeMn9fnpv82LxcCV9p+uX0ArIoeQ2DLq6r7VdWRU0XHJLkokxDYSa6o\nqgOSPGE3u7g6ye1XOEQn+UCSh1fVfccxb7fLMZfz90meONY/PpNBJ0vHO3AP2wLcYn6jBEgOSPJH\nVXVwkuuSfDbJL3T316rqz5N8LMmlST64m+3/LMk7q+qS3d1n2N1frqqTkrymqvYbxb89jnWTVXPj\nKOYXjvWfmuQfRx2u7u5rq+rvR8/m28dn15HPaz0SGtgCanI7CgAbTVXtm+T67r5+PFLnv3b3g9e7\nXsDmpccQYOO6Z5LXV9VeSb6V5JnrXB9gk9NjCABAEoNPAAAYBEMAAJIIhgAADIIhAABJBEMAAAbB\nEACAJMn/BsuNDIPhV0AuAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cadbaa890>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAokAAAJeCAYAAADY7J+2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu0JWV5L+rfSzcgKoKtQUQwoEGPJBqQccBLEtuoiEnU\n3FRComDYiTvkRE2yTUBPIp5kJ+oZRnLZGuNWQRIUFK8nXsBLm6u2ikS84GVvyVCUiyjgFYF+zx+z\nFky6ulcvYM011+p+njFqzKpvVtV81xckP76qr6q6OwAAMG23eRcAAMDqIyQCADAiJAIAMCIkAgAw\nIiQCADAiJAIAMDKzkFhVB1XVB6vq01X1qap69tC+oaouqKrPV9X5VbXv1DGnVtUXquqSqjpmqv3I\nqrp4+O4vp9r3rKpzhvYPV9UPT313wvAbn6+qZ0y1H1JVHxmOeWNV7T6rPgAAWKtmOZJ4Q5Lf7e4f\nTfKwJL9dVQ9KckqSC7r7AUneP2ynqg5L8rQkhyU5NskrqqqGc70yyUndfWiSQ6vq2KH9pCRXD+0v\nT/KS4VwbkvxxkqOG5YVVtc9wzEuSvGw45pvDOQAAmDKzkNjdl3f3RcP6t5N8Nsl9kjwpyZnDbmcm\n+flh/clJ3tDdN3T3pUm+mOToqrp3kr27e/Ow3+unjpk+13lJHjOsPz7J+d19TXdfk+SCJE8YQuej\nk7x5G78PAMBgRe5JrKqDkxyR5CNJ7tXdVwxfXZHkXsP6AUm+MnXYVzIJlVu3Xza0Z/j8cpJ0941J\nrq2qeyxyrg1JrunuLds4FwAAg5mHxKq6ayajfM/p7m9Nf9eTdwKu1HsBvX8QAGCJ1s/y5MOkkPOS\nnNXdbxuar6iq/bv78uFS8pVD+2VJDpo6/MBMRgAvG9a3bl845r5JvlpV65Ps091XV9VlSTZOHXNQ\nkg8k+UaSfatqt2E08cDhHFvXLVACAGtGd9eO97ptZjm7uZK8Jslnuvv0qa/ekeSEYf2EJG+baj+u\nqvaoqkOSHJpkc3dfnuS6qjp6OOfTk7x9G+f65UwmwiTJ+UmOqap9q+ruSR6X5L3DyOUHkzxlG79/\nK91tuZ3LC1/4wrnXsJYX/afv9N/aXPSf/pvXMiuzHEl8ZJJfS/LJqvrE0HZqkhcnObeqTkpyaZKn\nJkl3f6aqzk3ymSQ3Jjm5b/nLT05yRpK9kryru98ztL8myVlV9YUkVyc5bjjXN6rqT5J8dNjvRT2Z\nwJIkf5jkjVX1p0kuHM4BAMCUmYXE7v6XbH+k8rHbOebPkvzZNto/nuTB22i/PkPI3MZ3r0vyum20\nfynJ0dstHAAAb1xh+W3cuHHeJaxp+u/203d3jP67Y/TfHaP/Vp+a5bXstaqqWr8AAGtBVaXX0sQV\nAADWLiERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREA\ngBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIAR\nIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESER\nAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCA\nESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEh\nEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREA\ngBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIAR\nIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESER\nAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCA\nESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAICR9fMuYLU6/fTTkyTHH3989ttvvzlX\nAwCwsqq7513DqlNVvdtuv5J1627Innu+P3/wB7+bZz3rWcIiALDqVFW6u5b9vELiWFV1ckWSo5I8\nMuvXVzZs+JdcfPHmHQbFK6+8MmeffXYSo5AAwOwJiStoEhJfnuSiJGckSfbc88S8+MWH57nPfe52\nj7vyyivz4AcflWuv3Zgk2WefTUsKlgAAt9esQqKJK9t1dpIbbt76wQ+S73538SNe97qz841vbMz1\n15+R668/I9/85sa86lVnz7ZMAIAZMHFlu56Y5P/NunW/mvXrd8+6dZty1lnPS3J67nznWy4ldycf\n/nDymtck//APyZYtt5zhppuSP/uz5Oyzk40bk0c9arLc+95z+pMAAJbI5eZtWJi4cre7fTC/93sn\nZ++9985jH/u4HHXUz+b739+YPfZI9t57U04+eXPOPXe/bNmSnHRS8oQnXJnHPvbWl5svumhzLr98\nv2zalHzoQ8k//VOy336TsLgQHA844JbfXg33NK6GGgCApXFP4gqqqn75y19+q4B0+umn55RTLsr1\n158x7HVijj768LzsZc/NIx6R1PB/mh0FrJtuSi6+eBIYN22ahMZ73GMSGI844sr80R8dlW9/e2OS\n+dzT6L5KAFhbZhUSXW7ejsUmqCTJnnsmxx2XPPKRt27fb7/9Fj123brk8MMny3OeM7k8/alPTQLj\nK195dq6+emMWJst8/esn5rGPPTsPetBzs359svvuk2Vhfamft2Xfc845O9dcszE/+MGkhmuvPTFn\nnXV2fv/3F+8PAGDnIiQu0fHHH58///PTc+21JyaZjLAdf/xL7/B5d9stechDJsuWLckppyTXXz/5\nbt265Mgjk8c/PrnxxuSGG8af0+vf+15y3XXb33exYxc+L7988rng+uuT5z0vOfXU5K53Te5yl1uW\nrbe31baUfdatu8PduOxccgdgV+dy8zZUVW+rX2YdHFbDpd5t1fDJT27Ovvvul29/O/nOd25Ztt6+\nPW3f/W6yxx6zCZ93vvMkhC9HH7jkDsBq5Z7EFbS9kLgSVsMI1krW0J18//vLEzi33v7+95M73em2\nh81///fTc955F+XGG89Ikuy++4k5+eTD84xnPDd77DEJtbvvnpvXp5fVOCoKwM5NSFxB8wyJLJ8t\nWyaX4G9r4Ny8+fR89KMXZcuWM5IkVSfmvvc9PPe4x3Pzgx9k0SXZdnjc0bK90Hl7l6WcT6BdmtXw\nH24AixESV5CQuGu7I5ebb7ppck/njsLk7V2W69zXXz+ZkT+PEHt7zjWvQOvWA2AtEBJXkJDIrjB6\ndNNNswmgyx1udxRoZzkK++53n54zzrgoN9xwRpJkjz1OzLOffXhOPPG5Nz85YGFZOHZhuT33wwLc\nHkLiChISYXXZOtCuVLj9/OdPzyWXXJTuM5JMbj3Yf//Ds+++z735CQELy0ItC8tuu2UUJBcLlTta\n5rX/unW3PAcWWJ2ExBUkJALJ7b/c3H3LrQfbW7YOlTta5rX/li2rL7je3v2FXXZWQuIKEhKBBbvC\nrQeL2bJleULovIPxjTdORkXvSAhdDUF3YXSX+VmN/04QEleQkAiwc+m+9YsEViK0zuo3kpULrbP8\njfXr197o7mqdzLYmX8tXVa9N8rNJruzuBw9tpyX5L0muGnZ7fne/e/ju1CS/nuSmJM/u7vOH9iMz\neVfdnZK8q7ufM7TvmeT1SR6a5OokT+vu/xy+OyHJC4bf+NPufv3QfkiSNybZkOTjSZ7e3TfMqAsA\nWAWqbgkna930rQyzDLrf//5sz3/TTZOguBpGZ5d6zJlnnp1rr92Y668/I8nk1bVnn332Dl/lu1bN\n+rV8r0vy15kEuQWd5C+6+y+md6yqw5I8LclhSe6T5H1VdegwpPfKJCd19+aqeldVHdvd70lyUpKr\nu/vQqnpakpckOa6qNiT54yRHDqf/eFW9vbuvHfZ5WXefW1WvHM7xtzP6+wFgWa1bN1nudKd5V3LH\nbNkyGd2d9Yjud76zfOe/5ppbXp27K5hpSOzuf66qg7fx1baGRJ+c5A3DqN6lVfXFJEdX1X8m2bu7\nNw/7vT7Jzyd5T5InJXnh0H5ekr8Z1h+f5PzuviZJquqCJE+oqnOSPDrJccN+ZyY5LUIiAKyo3Xa7\n5XFTa8WVVx6fBz/49Fx77YlJJpebjz/+pfMtaoZmPZK4Pb9TVc9I8rEkvz+EuQOSfHhqn69kMqJ4\nw7C+4LKhPcPnl5Oku2+sqmur6h7Dub6yjXNtSHJNd2/ZxrkAALZrv/32y8UXb56auPLSud+POEvz\nCImvTPL/DOt/kuRlmVzynbXbNBPltNNOu3l948aN2bhx4zKXAwCsNfvtt9/c70HctGlTNm3aNPPf\nWfGQ2N1XLqxX1f9M8s5h87IkB03temAmI4CXDetbty8cc98kX62q9Un26e6rq+qyJBunjjkoyQeS\nfCPJvlW12zCaeOBwjpHpkAgAsFpsPXj1ohe9aCa/s+Ivjqqqe09t/kKSi4f1d2Qy6WSPYQbyoUk2\nd/flSa6rqqOrqpI8Pcnbp445YVj/5STvH9bPT3JMVe1bVXdP8rgk7x0mwXwwyVOG/U5I8rZl/yMB\nANa4mT4nsarekORRSe6Z5IpMJplsTHJ4Jpd/v5TkWd19xbD/8zN5BM6NSZ7T3e8d2hcegbNXJo/A\nefbQvmeSs5IckckjcI7r7kuH756Z5PlDKX/a3WcO7dOPwLkwya9t/Qgcz0kEANYKD9NeQUIiALBW\nzCokrvjlZgAAVj8hEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEh\nEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREA\ngBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIAR\nIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAESER\nAIARIREAgBEhEQCAkfXb+6KqfilJJ6nh81a6+y0zrAsAgDnabkhM8sRMwuF+SR6R5AND+6OT/FsS\nIREAYCe13ZDY3ScmSVVdkOSw7v7asH3vJGeuSHUAAMzFUu5JPCjJ5VPbVyS572zKAQBgNVjscvOC\n9yV5b1Wdncn9iU9LcsFMqwIAYK6qezQn5dY7VFWSX0jyU5nco/hP3f3WFahtbqqqd9QvAACrQVWl\nu2vZzysMjQmJAMBaMauQuMN7Eqvql6rqC1V1XVV9a1iuW+5CAABYPZZyufl/Jfm57v7sypQ0f0YS\nAYC1Ym4jiUku35UCIgAAS5vd/LGqOifJ25L8YGhrb1wBANh5LSUk7pPke0mO2apdSAQA2EmZ3bwN\n7kkEANaKec5uPqiq3lpVVw3LeVV14HIXAgDA6rGUiSuvS/KOJAcMyzuHNgAAdlJLeQTOf3T3j++o\nbWficjMAsFbM8xE4V1fV06tqXVWtr6pfS/L15S4EAIDVYykh8deTPDXJ5Um+luQpSZ45y6IAAJgv\ns5u3weVmAGCtmOfs5tdX1b5T23evqtcudyEAAKweS7nc/JDuvmZho7u/meShsysJAIB5W0pIrKra\nMLWxIcm62ZUEAMC8LeW1fC9L8u9VdW6SymTiyn+faVUAAMzVkiauVNWPJnn0sPmB7v7MTKuaMxNX\nAIC1Yp7PSUySDUm+091/k+SqqjpkuQsBAGD1WMobV05LcmSSB3b3A6rqPknO7e5HrkB9c2EkEQBY\nK+Y5kvgLSZ6c5DtJ0t2XJdl7uQsBAGD1WEpIvL67tyxsVNVdZlgPAACrwFJC4puq6lVJ9q2q30zy\n/iT/c7ZlAQAwT0ud3XxMkmOGzfd29wUzrWrO3JMIAKwVs7oncSkTV+6S5PvdfVNVPTDJA5O8u7tv\nWO5iVgshEQBYK+Y5ceWfk+w5zGp+b5KnJzljuQsBAGD1WNJr+br7u0l+MckruvspSX5stmUBADBP\nS3qYdlU9PMmvJvnH23IcAABr01LC3nOTnJrkrd396aq6f5IPzrYsAADmaUmzm3c1Jq4AAGvFvN/d\nDADALkRIBABgZNGQWFXrqup3V6oYAABWh0VDYnfflOT4FaoFAIBVYilvXHl5kt2TnJPkOwvt3X3h\nbEubHxNXAIC1Yp6v5duUZLRTdz96uYtZLYREAGCtmFtI3BUJiQDAWjG3R+BU1f5V9Zqqes+wfVhV\nnbTchQAAsHos5RE4ZyQ5P8kBw/YXkpjxDACwE1tKSLxnd5+T5KYk6e4bktw406oAAJirpYTEb1fV\nPRY2quphSa6dXUkAAMzb+iXs8/tJ3pnkflX1b0l+KMkvz7QqAADmakmzm6tqfZIHJqkknxsuOe+0\nzG4GANaKWc1u3uFIYlXtleTkJD+RyfMS/7mqXtnd31/uYgAAWB2W8jDtNyW5LsnfZzKSeHySfbr7\nKbMvbz6MJAIAa8U837jyme4+bEdtOxMhEQBYK+b2MO0kF1bVw6cKeViSjy93IQAArB5LGUm8JMkD\nknw5k3sS75vkc5k8K7G7+yGzLnKlGUkEANaKuU1cSXLscv8oAACr25IegbOrMZIIAKwV87wnEQCA\nXYyQCADAyA5DYlXdtarWDesPrKonVdXusy8NAIB5Wcrs5gszedvK3ZP8a5KPJvlBd//q7MubD/ck\nAgBrxTzvSazu/m6SX0zyiuFNKz+23IUAALB6LOmexOFh2r+a5B9vy3EAAKxNSwl7z01yapK3dven\nq+r+ST4427IAAJinpdyTeEh3f2mrtqO6e/NMK5sj9yQCAGvFPO9JPK+qDpwq5FFJXrvchQAAsHos\nJSQ+K8nbqmr/qvqZJH+V5AmzLQsAgHla0mv5quoRSV6V5HtJfq67r5x1YfPkcjMAsFbM6nLzdkNi\nVb1zq6YHJflakmuSdHc/abmLWS2ERABgrZhVSFy/yHcv20ZbJ6nhEwCAndRSZjffL8nXuvt7w/Ze\nSfbfesbzzsRIIgCwVsxzdvObktw0tb0lybnLXQgAAKvHUkLiuu7+wcJGd1+fZI/ZlQQAwLwtJSR+\nvaqevLAxrH99diUBADBvS7kn8UeS/EOSA4amryR5end/cca1zY17EgGAtWLFH4GzjQLumiTd/e3l\nLmK1ERIBgLVibhNXqmrfqnp5kg8l+VBVvayq9lnuQgAAWD2Wck/ia5Ncl+QpSZ6a5FtJXjfLogAA\nmK+l3JP4H9394ztq25m43AwArBXzfE7i96rqJ6cK+Ykk313uQgAAWD0Wey3fgv+a5PVT9yF+M8kJ\nsysJAIB5uy2zm++WJN193UwrWgVcbgYA1opZXW7e7khiVf3+1GZPtVeS7u6/WO5iAABYHRa73Lx3\npsLhlNpOOwAAO4klX26+XSevem2Sn01yZXc/eGjbkOScJD+c5NIkT+3ua4bvTk3y60luSvLs7j5/\naD8yyRlJ7pTkXd39nKF9zySvT/LQJFcneVp3/+fw3QlJXjCU8qfd/fqh/ZAkb0yyIcnHM3l7zA1b\n1e1yMwCwJszzYdr3r6p3VtXXq+qqqnp7Vd1vied/XZJjt2o7JckF3f2AJO8ftlNVhyV5WpLDhmNe\nMVzaTpJXJjmpuw9NcmhVLZzzpCRXD+0vT/KS4VwbkvxxkqOG5YVTE29ekuRlwzHfHM4BAMCUpTwC\n5+wk5ya5dybvb35Tkjcs5eTd/c+ZBLFpT0py5rB+ZpKfH9afnOQN3X1Dd1+a5ItJjq6qeyfZu7s3\nD/u9fuqY6XOdl+Qxw/rjk5zf3dcMo5QXJHnCEDofneTN2/h9AAAGSwmJe3X3WUN4u6G7/z6Ty763\n1726+4ph/Yok9xrWD0jylan9vpLkPttov2xoz/D55STp7huTXFtV91jkXBuSXNPdW7ZxLgAABovN\nbt6QySSVdw/3Ci6MHj4tybuX48e7u6tqpW7+c5MhAMASLTa7+cLcOlj95vC5MLv5lNv5m1dU1f7d\nfflwKfnKof2yJAdN7XdgJiOAlw3rW7cvHHPfJF+tqvVJ9unuq6vqsiQbp445KMkHknwjyb5Vtdsw\nmnjgcI6R00477eb1jRs3ZuPGjdvaDQBgRW3atCmbNm2a+e/MdHZzklTVwUneOTW7+aWZTDZ5SVWd\nkmTf7j5lmLhydiYTTe6T5H1JfmQYbfxIkmcn2ZzkH5P8VXe/p6pOTvLg7v6tqjouyc9393HDKOjH\nMpn1XJnMYn5od19TVecmOa+7z6mqv01yUXf/7VY1m90MAKwJs5rdfJtCYlX9XXf/5o73vHn/NyR5\nVJJ7ZnL/4R8neXsmE2Hum/EjcJ6fySNwbkzynO5+79C+8AicvTJ5BM6zh/Y9k5yV5IhMHoFz3DDp\nJVX1zCTPH0r50+4+c2iffgTOhUl+zSNwAIC1arWExE909xHLXcRqIyQCAGvF3J6TuJUrd7wLAABr\n3czvSVyLjCQCAGvFrEYSF5vdvPDDD0zy35IcPLV/d/dPL3cxAACsDjscSayqT2byWrwLM3mncjIJ\niR+fcW1zYyQRAFgr5jaSmOSG7n7lcv8wAACr11Imrryzqn67qu5dVRsWlplXBgDA3CzlcvOlGb/S\nrrv7frMqat5cbgYA1opV8ZzEXYWQCACsFfOc3bxHkt9K8lOZjCh+KMnfbv2WEgAAdh5Ludz8mkzC\n5JmZvAf56Ulu7O7/Mvvy5sNIIgCwVsztcnNVfbK7H7Kjtp2JkAgArBXzfC3fjVX1I1OF3D/Jjctd\nCAAAq8dSnpP4vCQfqKovDdsHJ3nmzCoCAGDuljS7uarulOSBmUxc+Vx3Xz/rwubJ5WYAYK1Y8XsS\nq+ox3f3+qvqlTMLhwo93knT3W5a7mNVCSAQA1op5PALnp5K8P8kTM36YdpLstCERAGBXt5TZzffr\n7v+9o7adiZFEAGCtmOfs5jdvo+1Ny10IAACrx3YvN1fVg5IclmTfqvrFTO5J7CR3S3KnlSkPAIB5\nWOyexAdkcj/iPsPngm8l+Y1ZFgUAwHwt5Z7ER3T3v61QPauCexIBgLVinq/l2yvJSZlcet4rtzwC\n59eXu5jVQkgEANaKeU5cOSvJvZIcm2RTkoOSfHu5CwEAYPVYykjiRd19eFV9srsfUlW7J/mX7j56\nZUpceUYSAYC1Yp4jiT8YPq+tqgcn2TfJDy13IQAArB6LzW5e8HdVtSHJ/53kHUnumuSPZloVAABz\ntWhIrKrdknyru7+R5ENJDlmRqgAAmKtFLzd395Ykf7BCtQAAsEosZeLKi5N8Pck5Sb6z0D6MLu6U\nTFwBANaKeT4n8dIMz0ac1t077aVnIREAWCvmFhJ3RUIiALBWzO0ROFV1l6r6o6p69bB9aFX93HIX\nAgDA6rGU5yS+LpNnJT5i2P5qkv8+s4oAAJi7pYTE+3f3SzI8VLu7v7OD/QEAWOOWEhKvr6q9Fjaq\n6v5Jrp9dSQAAzNtS3rhyWpL3JDmwqs5O8sgkJ86wJgAA5mxJs5ur6p5JHjZsfqS7r5ppVXNmdjMA\nsFbM8zmJ7+/ux+yobWciJAIAa8WsQuJ2LzcP9yHeOckPVdWGqa/uluQ+y10IAACrx2L3JD4ryXOS\nHJDk41Pt30ryN7MsCgCA+VrK5ebf6e6/XqF6VgWXmwGAtWLF70msqp/u7g9U1S9l2+9ufstyF7Na\nCIkAwFqx4vckJnlUkg8keWK2ERKT7LQhEQBgV7ekR+DsaowkAgBrxaxGEpfyxhUAAHYxQiIAACNC\nIgAAI4uGxKq6W1XdfxvtD5ldSQAAzNt2Q2JVPTXJJUnOq6pPV9VRU1+fOfPKAACYm8VGEl+Q5Mju\nPjzJM5O8vqp+cWXKAgBgnhZ7TuK67v5aknT35qp6dJL/r6oOWpnSAACYl8VGEq+bvh9xCIyPTvKk\nJD8668IAAJifxUYST85WIbK7r6uqJyR56kyrAgBgrhZ7d/PDu/vfV7ieVcEbVwCAtWIeb1x5xdSP\n75JhEQBgV7XUh2nfaaZVAACwqiw6u7mqNiSpqfWbdfc3ZloZAABzs9g9iZcmWfiyptaTpLv7frMt\nbX7ckwgArBWzuidxuyFxVyYkAgBrxaxC4mKXm1NV65P8TJIHDk2fTfKe7r5xuQsBAGD1WOxy832S\nfCDJ5UkuzOSS80OT3CvJo7v7qytV5EozkggArBUrfrm5qs5M8onuPn2r9mdn8k7nE5a7mNVCSAQA\n1op5hMTPdfcDt9FeST7X3Q9Y7mJWCyERAFgr5vEw7e9tq3FIT99d7kIAAFg9Fpu4creq+sVM7kVc\n0MP23WZaFQAAc7VYSPynJE/czncfmkEtAACsEovdk7hvd1+zne/+z+7+6EwrmyP3JAIAa8U87kl8\n39av4hsKOSbJW5e7EAAAVo/FQuKrknywqvZbaKiq45P8XSYP2AYAYCe13XsSu/vVVfX9JB+oqscl\neVqS/5pkY3dfukL1AQAwB4u+lq+7z6qq65NclOQ/k/xkd1+1IpUBADA3i01cuXhq8+AkV+aW5yN2\ndz9ktqXNj4krAMBaMauJK4uNJG7v8TcAAOzktjuSuM2dq+6Z5OqdfZjNSCIAsFas+CNwqurhVbWp\nqt5SVQ+tqk8l+VSSK6vqCctdCAAAq8di9yR+PMmpSfZJ8uokx3b3h6vq/0jyxu4+fOXKXFlGEgGA\ntWIeD9Ne193nd/ebknytuz+cJN19SSbvcAYAYCe1WEicDoLfn3UhAACsHotdbr4ptzzy5s5T60my\nV3cv+ozFtczlZgBgrVjxR+B097rl/jEAANaG7YbEqtork9fw3T/JxUle0903rlRhAADMz2L3JJ6Z\n5MhMHnvzM0letiIVAQAwd4u+lq+7Hzysr0/y0e4+YiWLmxf3JAIAa8U8HoFz86Vll5kBAHYtS53d\nnCR7JfkxBMWEAAAOiklEQVTesN7dfbcZ1zY3RhIBgLXC7GYAAFbMYpebAQDYRQmJAACMCIkAAIwI\niQAAjAiJAACMCIkAAIwIiQAAjAiJAACMCIkAAIwIiQAAjAiJAACMCIkAAIwIiQAAjAiJAACMCIkA\nAIwIiQAAjAiJAACMCIkAAIwIiQAAjAiJAACMCIkAAIwIiQAAjAiJAACMCIkAAIwIiQAAjAiJAACM\nCIkAAIwIiQAAjAiJAACMCIkAAIwIiQAAjAiJAACMCIkAAIwIiQAAjAiJAACMCIkAAIwIiQAAjAiJ\nAACMCIkAAIwIiQAAjAiJAACMCIkAAIwIiQAAjAiJAACMCIkAAIzMLSRW1aVV9cmq+kRVbR7aNlTV\nBVX1+ao6v6r2ndr/1Kr6QlVdUlXHTLUfWVUXD9/95VT7nlV1ztD+4ar64anvThh+4/NV9YyV+psB\nANaKeY4kdpKN3X1Edx81tJ2S5ILufkCS9w/bqarDkjwtyWFJjk3yiqqq4ZhXJjmpuw9NcmhVHTu0\nn5Tk6qH95UleMpxrQ5I/TnLUsLxwOowCADD/y8211faTkpw5rJ+Z5OeH9ScneUN339Ddlyb5YpKj\nq+reSfbu7s3Dfq+fOmb6XOclecyw/vgk53f3Nd19TZILMgmeAAAM5j2S+L6q+lhV/cbQdq/uvmJY\nvyLJvYb1A5J8ZerYryS5zzbaLxvaM3x+OUm6+8Yk11bVPRY5FwAAg/Vz/O1HdvfXquqHklxQVZdM\nf9ndXVU9p9py2mmn3by+cePGbNy4cV6lAADcbNOmTdm0adPMf2duIbG7vzZ8XlVVb83k/sArqmr/\n7r58uJR85bD7ZUkOmjr8wExGAC8b1rduXzjmvkm+WlXrk+zT3VdX1WVJNk4dc1CSD2xd33RIBABY\nLbYevHrRi140k9+Zy+XmqrpzVe09rN8lyTFJLk7yjiQnDLudkORtw/o7khxXVXtU1SFJDk2yubsv\nT3JdVR09TGR5epK3Tx2zcK5fzmQiTJKcn+SYqtq3qu6e5HFJ3jujPxUAYE2a10jivZK8dZigvD7J\nP3T3+VX1sSTnVtVJSS5N8tQk6e7PVNW5ST6T5MYkJ3f3wqXok5OckWSvJO/q7vcM7a9JclZVfSHJ\n1UmOG871jar6kyQfHfZ70TCBBQCAQd2StVhQVa1fAIC1oKrS3Vs/MeYOm/cjcAAAWIWERAAARoRE\nAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAA\nRoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaE\nRAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQA\nAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABG\nhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoRE\nAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAA\nRoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaE\nRAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQA\nAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABG\nhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoRE\nAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAARoREAABGhEQAAEaERAAA\nRoREAABGhEQAAEZ2yZBYVcdW1SVV9YWq+sN51wMAsNrsciGxqtYl+ZskxyY5LMmvVNWD5lvVzmXT\npk3zLmFN03+3n767Y/TfHaP/7hj9t/rsciExyVFJvtjdl3b3DUnemOTJc65pp+J/6HeM/rv99N0d\no//uGP13x+i/1WdXDIn3SfLlqe2vDG0AAAx2xZDY8y4AAGC1q+5dKzNV1cOSnNbdxw7bpybZ0t0v\nmdpn1+oUAGBN6+5a7nPuiiFxfZLPJXlMkq8m2ZzkV7r7s3MtDABgFVk/7wJWWnffWFX/V5L3JlmX\n5DUCIgDAre1yI4kAAOzYrjhxZVEetD1RVa+tqiuq6uKptg1VdUFVfb6qzq+qfae+O3Xos0uq6pip\n9iOr6uLhu7+cat+zqs4Z2j9cVT+8cn/d7FXVQVX1war6dFV9qqqePbTrwx2oqjtV1Ueq6qKq+kxV\n/fnQru9ug6paV1WfqKp3Dtv6b4mq6tKq+uTQf5uHNv23BFW1b1W9uao+O/zv92h9tzRV9cDhn7mF\n5dqqevZc+6+7LcOSyeXnLyY5OMnuSS5K8qB51zWnvvjJJEckuXiq7aVJ/mBY/8MkLx7WDxv6aveh\n776YW0apNyc5alh/V5Jjh/WTk7xiWH9akjfO+29e5v7bP8nhw/pdM7kP9kH6cMn9d+fhc32SDyf5\nCX13m/vw95L8Q5J3DNv6b+l996UkG7Zq039L67szk/z6sL4+yT767nb1425JvpbkoHn239w7YjUt\nSR6e5D1T26ckOWXedc2xPw7OrUPiJUnuNazvn+SSYf3UJH84td97kjwsyb2TfHaq/bgkfzu1z9HD\n+vokV837751xX74tyWP14W3utzsn+WiSH9V3t6nfDkzyviSPTvLOoU3/Lb3/vpTkHlu16b8d99s+\nSf73Ntr13W3vy2OS/PO8+8/l5lvzoO3F3au7rxjWr0hyr2H9gEz6asFCv23dfllu6c+b+7q7b0xy\nbVVtmFHdc1VVB2cyKvuR6MMlqardquqiTProg9396ei72+LlSZ6XZMtUm/5buk7yvqr6WFX9xtCm\n/3bskCRXVdXrqurCqnp1Vd0l+u72OC7JG4b1ufWfkHhrZvEsUU/+M0R/7UBV3TXJeUme093fmv5O\nH25fd2/p7sMzGRH7qap69Fbf67vtqKqfS3Jld38iyTafm6b/duiR3X1Ekick+e2q+snpL/Xfdq1P\n8tBMLmc+NMl3MrkidzN9t2NVtUeSJyZ509bfrXT/CYm3dlkm1/8XHJRbp/Fd3RVVtX+SVNW9k1w5\ntG/dbwdm0m+XDetbty8cc9/hXOuT7NPd35hd6SuvqnbPJCCe1d1vG5r14W3Q3dcm+cckR0bfLdUj\nkjypqr6UyUjET1fVWdF/S9bdXxs+r0ry1iRHRf8txVeSfKW7PzpsvzmT0Hi5vrtNnpDk48M/f8kc\n/9kTEm/tY0kOraqDhyT/tCTvmHNNq8k7kpwwrJ+QyX12C+3HVdUeVXVIkkOTbO7uy5NcN8xuqyRP\nT/L2bZzrl5O8fyX+gJUy/L2vSfKZ7j596it9uANVdc+F2XtVtVeSxyX5RPTdknT387v7oO4+JJNL\nVh/o7qdH/y1JVd25qvYe1u+Syb1hF0f/7dDwN3+5qh4wND02yaeTvDP67rb4ldxyqTmZ5z978745\nc7UtmST4z2UyS+jUedczx354QyZvpPlBJvcvPDPJhkxuhv98kvOT7Du1//OHPrskyeOn2o/M5F+w\nX0zyV1PteyY5N8kXMpm9evC8/+Zl7r+fyOR+sIsyCTifSHKsPlxS3z04yYVD330yyfOGdn132/vy\nUblldrP+W1qfHTL8s3dRkk8t/P8B/bfk/vvxTCab/UeSt2QymUXfLb3/7pLk60n2nmqbW/95mDYA\nACMuNwMAMCIkAgAwIiQCADAiJAIAMCIkAgAwIiQCADAiJAIkqaoXVNWnquo/quoTVXXUDvY/o6p+\naVh/7vDg723tt6mqjlzmWvepqt+a2t5YVe9czt8AEBKBXV5VPTzJzyY5ort/PMljMnmI/GKm36H6\nnCR3XsJ+y+XuSU5e5nMC3IqQCJDsn+Tr3X1DknT3N3p4f29V/VFVba6qi6vqVVsdV1X1O0kOSPLB\nqlr0FVdVdUxV/VtVfbyqzh1e+5aqurSqThvaP1lVDxzaf6iqLhhGOF897HePJC9Ocv9hxPOlmYTQ\nu1bVm6rqs1X198vZOcCuSUgEmLzq6qCq+lxV/Y+q+qmp7/6mu4/q7gcn2auqfm7qu+7uv87kFZYb\nu/sx2/uBqrpnkhckeUx3H5nk40l+b+E8Sa4a2l+Z5L8N7S9M8r7u/rEkb05y32HfP0zyv7r7iO7+\ngySV5IhMRjQPS3K/qnrk7e8OACERIN39nUzedfqbSa5Kck5VnTB8/dNV9eGq+mSSn84khN1WleRh\nw7H/VlWfSPKMTELfgrcMnxcmOXhYf2SSNw41vjfJN6fOt7XN3f3Vnrxr9aKpcwDcLuvnXQDAatDd\nW5J8KMmHquriJCdU1RuTvCLJQ7v7sqp6YZI73YGfuaC7j9/Od9cPnzfl1v9u3lYgXOz4bZ0D4DYz\nkgjs8qrqAVV16FTTEUkuzSQQdpKrq+quSZ6ynVN8K8ndFvmJTvLhJI+sqvsPv3mXrX5zW/41yVOH\n/Y/JZMLKwu/tvYNjAe4Q/6UJkNw1yV9X1b5JbkzyhSS/2d3XVtWrk3wqyeVJPrKd4/8uyXuq6rLt\n3ZfY3V+vqhOTvKGq9hyaXzD81q12zS2zoV807P/0JP8+1PCt7r6hqv51GPF817BsPYN6uWdUA7uY\nmty+AsBqU1V7JLmpu28aHtPzP7r7ofOuC9g1GEkEWL3um+TcqtotyQ+S/Mac6wF2IUYSAQAYMXEF\nAIARIREAgBEhEQCAESERAIARIREAgBEhEQCAkf8fhHHn8xPRWO4AAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cadc6f350>" ] } ], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ "data = read_dl('data-v2/benchmark-dk-length-cpu-manegrot.csv')\n", "\n", "fig = fig_init()\n", "plot_2d(fig, data, 'manegrot', 'DK length', 'PBKDF2 iteration-blocks per second', 0, 2000000)\n", "fig.show()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAoMAAAJeCAYAAADPzg9/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu0ZVddJ/rvLykIASExAuGRIAED1yDI415AUKxIG4MP\nQJBHoxgwV21RAa+3bxO6W0KrrfQYNLHbAb54hGiA8BSuCgmEsu1WCK9ICO++pAcJJIFAEgQMefzu\nH3udsFOpOjk5VXufs2t+PmPssdea6zVrnhqnvjXXmnNVdwcAgDEdtNUVAABg6wiDAAADEwYBAAYm\nDAIADEwYBAAYmDAIADCwhYXBqjq6qt5bVRdW1ceq6rlT+RFVdU5Vfbqqzq6qw+eOOaWqPlNVn6yq\nE+bKH1ZVF0zb/mCu/JCqesNU/r6q+u65bSdN1/h0Vf38XPkxVfX+6ZjXV9VtFtUGAADb3SJ7Bq9N\n8hvd/YAkj0zyq1X1vUlekOSc7r5fkvdM66mq45I8LclxSU5M8vKqqulcr0hycncfm+TYqjpxKj85\nyRVT+cuSvGQ61xFJfivJw6fPi6rqsOmYlyR56XTMV6dzAAAMaWFhsLsv7e7zp+V/SvKJJPdM8vgk\np0+7nZ7kidPyE5K8rruv7e6Lknw2ySOq6u5J7tjd5037vXbumPlzvTnJY6flH0tydndf2d1XJjkn\nyeOmcHl8kjft4foAAMNZyjODVXXvJA9J8v4kR3b3ZdOmy5IcOS3fI8nFc4ddnFl43L38kqk80/fn\nk6S7r0tyVVV91zrnOiLJld19wx7OBQAwnIWHwar6jsx67Z7X3V+b39azd+Et63143rsHALCbHYs8\n+TQ4481Jzujut03Fl1XV3br70ukW8OVT+SVJjp47/KjMevQumZZ3L1875l5JvlBVO5Ic1t1XVNUl\nSXbOHXN0knOTfCXJ4VV10NQ7eNR0jt3rLTgCACuju+uW99qzRY4mriSvTPLx7j5tbtPbk5w0LZ+U\n5G1z5U+vqttW1TFJjk1yXndfmuTqqnrEdM5nJvnLPZzrZzIbkJIkZyc5oaoOr6rvTPKjSd419US+\nN8lT9nD9m+hunyV+XvSiF215HUb7aHNtPsJHm2vzET77apE9g49O8nNJPlpVH5nKTkny+0nOqqqT\nk1yU5KlJ0t0fr6qzknw8yXVJntPf/hM+J8lrkhya5K+7+51T+SuTnFFVn0lyRZKnT+f6SlX9dpIP\nTPu9uGcDSZLk3yR5fVX9TpIPT+cAABjSwsJgd//37L3n8V/s5Zj/mOQ/7qH8Q0keuIfyazKFyT1s\ne3WSV++h/HNJHrHXigMADMQbSNgWdu7cudVVGI42Xz5tvnzafPm0+eqp/XGv+UBTVa1dAIBVUFXp\n7TiABACA7U8YBAAYmDAIADAwYRAAYGDCIADAwIRBAICBCYMAAAMTBgEABiYMAgAMTBgEABiYMAgA\nMDBhEABgYMIgAMDAhEEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgwCAAwMGEQAGBgwiAAwMCEQQCA\ngQmDAAADEwYBAAYmDAIADEwYBAAYmDAIADAwYRAAYGDCIADAwIRBAICBCYMAAAMTBgEABiYMAgAM\nTBgEABiYMAgAMDBhEABgYMIgAMDAhEEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgwCAAwMGEQAGBg\nwiAAwMCEQQCAgQmDAAADEwYBAAYmDAIADEwYBAAYmDAIADAwYRAAYGDCIADAwIRBAICBCYMAAAMT\nBgEABiYMAgAMTBgEABiYMAgAMDBhEABgYMIgAMDAhEEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgw\nCAAwMGEQAGBgwiAAwMCEQQCAgQmDAAADEwYBAAYmDAIADEwYBAAYmDAIADAwYRAAYGDCIADAwIRB\nAICBCYMAAAMTBgEABiYMAgAMTBgEABiYMAgAMDBhEABgYMIgAMDAhEEAgIEJgwAAAxMGAQAGJgwC\nAAxMGAQAGJgwCAAwMGEQAGBgwiAAwMCEQQCAgQmDAAADEwYBAAYmDAIADEwYBAAYmDAIADAwYRAA\nYGDCIADAwIRBAICBCYMAAAMTBgEABiYMAgAMTBgEABiYMAgAMDBhEABgYMIgAMDAhEEAgIEJgwAA\nAxMGAQAGJgwCAAxsx1ZXgOTyyy/PmWeemSR5xjOekbve9a4H9HUBgO2junur67DtVFXf2nbZbLC6\n/PLL88AHPjxXXbUzSXLYYbtywQXnLTyYbdV1AUBnxP5VVenu2vTxwuDN3dowuLdgdZe73DXXXpt8\n85vJN74x+959+Q1vOC1nnHF+rrvuNUmSHTuelSc84cHZufP5WatC954/e9u2kfJ/+IfT8u53n5/r\nr//2dX/iJx6cE054fm572+SQQ7Kh7z2VHXzwPv4AFsAvngOXny2sFp0R+9++hkG3ifeDM888M1dd\ntTPXXPOaJMnllz8rRx99Zq677vk56KDk0EOT299+9j2/fPvbJ1/4QnLDDd8+1w03JF/8YvKJTyRV\ns0/y7eXdP3vbdkvlu2fd7uSrX00+9rHkmmuSb33r1n+vLR900MaC5HqBcn8ee/XVl+cxj3l4rr56\nZ5Lk937vNL94DhC7/6PiZ8ut1T37vbv2uaV1Zfte9slPnpkvf3lnbrjhNUmSq656Vs4888w8//nP\n39q/DAMTBhfgkEOSU09NfvM3k9vcZv19L7/8GXngA0/LVVc9K8nsf0hvfet/yqL/LdvTdd/4xn2/\nbndy/fWbD5J7+v7612dBdbPnuPrqM/ONb+xM8prpz/6s3O1uZ2bHjllYP+igWW/m2vLuH9v277b9\ned7TT7/pf8SuuupZOeOMM/Nrv/b8bfGPnmCx/cuSPf9dq1J20EHJjh3793xVs/+kf+xjs58B24Pb\nxHuwv24T35rnBg0gWZzTTjstL3jB+TcGhkMOeVZ+93cfnF//9VlguP76m/8jsfaxbXts29v2b33r\ntFx//flZC/rJs3LQQQ++SdDfTv+4LuIf6+1Un1Urm79jwvK4Tbz/eWZwAZY5gITF84vnwOVnC6vJ\nv5n7lzC4AJsJg2xvfvEcuPxsgdEJgwsgDAIAq2Jfw+BB+7MyAACsFmEQAGBgwiAAwMCEQQCAgQmD\nAAADEwYBAAYmDAIADGyhYbCqXlVVl1XVBXNlp1bVxVX1kenzuLltp1TVZ6rqk1V1wlz5w6rqgmnb\nH8yVH1JVb5jK31dV3z237aSq+vT0+fm58mOq6v3TMa+vqlt4ezAAwIFr0T2Dr05y4m5lneQ/d/dD\nps/fJElVHZfkaUmOm455edWNb418RZKTu/vYJMdW1do5T05yxVT+siQvmc51RJLfSvLw6fOiqjps\nOuYlSV46HfPV6RwAAENaaBjs7r/LLHDtbk+zZD8hyeu6+9ruvijJZ5M8oqrunuSO3X3etN9rkzxx\nWn58ktOn5Tcneey0/GNJzu7uK7v7yiTnJHncFC6PT/Kmab/T584FADCcrXpm8Ner6h+r6pVVdfhU\ndo8kF8/tc3GSe+6h/JKpPNP355Oku69LclVVfdc65zoiyZXdfcMezgUAMJwdW3DNVyT5D9Pybyd5\naZZzq/ZWvWz41FNPvXF5586d2blz536uDgDArbdr167s2rVrv51v6WGwuy9fW66qP0vyjmn1kiRH\nz+16VGY9epdMy7uXrx1zryRfqKodSQ7r7iuq6pIkO+eOOTrJuUm+kuTwqjpo6h08ajrHzcyHQQCA\n7WL3TqoXv/jF+3S+pd8mnp4BXPPTSdZGGr89ydOr6rZVdUySY5Oc192XJrm6qh4xPfP3zCR/OXfM\nSdPyzyR5z7R8dpITqurwqvrOJD+a5F3d3Unem+Qp034nJXnbfv9DAgCsiJrlowWdvOp1SX44yZ2T\nXJbkRZn12D04s9u2n0vyy9192bT/C5P8QpLrkjyvu981lT8syWuSHJrkr7v7uVP5IUnOSPKQJFck\nefo0+CRV9ewkL5yq8jvdffpUfkyS12f2/OCHk/xcd1+7W717ke0CALC/VFW6e0+Dczd2vNBzc8Ig\nALAq9jUMegMJAMDAhEEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgwCAAwMGEQAGBgwiAAwMCEQQCA\ngQmDAAADEwYBAAYmDAIADEwYBAAYmDAIADAwYRAAYGDCIADAwIRBAICBCYMAAAMTBgEABiYMAgAM\nTBgEABiYMAgAMDBhEABgYMIgAMDAhEEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgwCAAwMGEQAGBg\nwiAAwMCEQQCAgQmDAAADEwYBAAYmDAIADEwYBAAYmDAIADAwYRAAYGDCIADAwIRBAICBCYMAAAMT\nBgEABiYMAgAMTBgEABiYMAgAMLAde9tQVU9O0klq+r6J7n7LAusFAMAS7DUMJvmpzELgXZM8Ksm5\nU/nxSf4+iTAIALDi9hoGu/tZSVJV5yQ5rru/OK3fPcnpS6kdAAALtZFnBo9Ocunc+mVJ7rWY6gAA\nsEzr3SZe8+4k76qqMzN7fvBpSc5ZaK0AAFiK6r7Z2JCb7lBVSX46yWMye4bwv3X3W5dQty1TVX1L\n7QIAsB1UVbq7Nn280HNzwiAAsCr2NQze4jODVfXkqvpMVV1dVV+bPldv9oIAAGwfG7lN/D+T/GR3\nf2I5Vdp6egYBgFWx8J7BJJeOFAQBAEaykdHEH6yqNyR5W5JvTWXtDSQAAKtvI2HwsCTfTHLCbuXC\nIADAijOaeA88MwgArIpljCY+uqreWlVfmj5vrqqjNntBAAC2j40MIHl1krcnucf0ecdUBgDAitvI\n1DL/2N3ff0tlBxK3iQGAVbGMqWWuqKpnVtXBVbWjqn4uyZc3e0EAALaPjYTBX0jy1CSXJvlikqck\nefYiKwUAwHIYTbwHbhMDAKtiGaOJX1tVh8+tf2dVvWqzFwQAYPvYyG3iB3X3lWsr3f3VJA9dXJUA\nAFiWjYTBqqoj5laOSHLw4qoEAMCybOR1dC9N8g9VdVaSymwAye8utFYAACzFhgaQVNUDkhw/rZ7b\n3R9faK22mAEkAMCqWMY8g0lyRJKvd/cfJvlSVR2z2QsCALB9bOQNJKcmeViS+3f3/arqnknO6u5H\nL6F+W0LPIACwKpbRM/jTSZ6Q5OtJ0t2XJLnjZi8IAMD2sZEweE1337C2UlV3WGB9AABYoo2EwTdW\n1R8nObyqfinJe5L82WKrBQDAMmx0NPEJSU6YVt/V3ecstFZbzDODAMCq2NdnBjcygOQOSf65u6+v\nqvsnuX+Sv+nuazd70e1OGAQAVsUyBpD8XZJDplHE70ryzCSv2ewFAQDYPjb0Orru/kaSJyV5eXc/\nJcn3LbZaAAAsw4Ymna6qH0jys0n+6tYcBwDA9raRUPf8JKckeWt3X1hV903y3sVWCwCAZdjQaOLR\nGEACAKyKZb2bGACAA5AwCAAwsHXDYFUdXFW/sazKAACwXOuGwe6+PskzllQXAACWbCNvIHlZktsk\neUOSr6+Vd/eHF1u1rWMACQCwKpbxOrpdSW62U3cfv9mLbnfCIACwKhYeBkckDAIAq2LhU8tU1d2q\n6pVV9c5p/biqOnmzFwQAYPvYyNQyr0lydpJ7TOufSWKEMQDAAWAjYfDO3f2GJNcnSXdfm+S6hdYK\nAICl2EgY/Keq+q61lap6ZJKrFlclAACWZccG9vnNJO9Icp+q+vskd0nyMwutFQAAS7Gh0cRVtSPJ\n/ZNUkk9Nt4oPWEYTAwCrYl9HE99iz2BVHZrkOUl+MLP5Bv+uql7R3f+82YsCALA9bGTS6TcmuTrJ\nn2fWM/iMJId191MWX72toWcQAFgVy3gDyce7+7hbKjuQCIMAwKpY+KTTST5cVT8wd8FHJvnQZi8I\nAMD2sZGewU8muV+Sz2f2zOC9knwqs7kGu7sftOhKLpueQQBgVSx8AEmSEzd7cgAAtrcNTS0zGj2D\nAMCqWMYzgwAAHKCEQQCAgd1iGKyq76iqg6fl+1fV46vqNouvGgAAi7aR0cQfzuztI9+Z5H8k+UCS\nb3X3zy6+elvDM4MAwKpYxjOD1d3fSPKkJC+f3jzyfZu9IAAA28eGnhmcJp3+2SR/dWuOAwBge9tI\nqHt+klOSvLW7L6yq+yZ572KrBQDAMmzkmcFjuvtzu5U9vLvPW2jNtpBnBgGAVbGMZwbfXFVHzV3w\nh5O8arMXBABg+9hIGPzlJG+rqrtV1Y8n+S9JHrfYagEAsAwbeh1dVT0qyR8n+WaSn+zuyxddsa3k\nNjEAsCr29TbxXsNgVb1jt6LvTfLFJFcm6e5+/GYvut0JgwDAqtjXMLhjnW0v3UNZJ6npGwCAFbeR\n0cT3SfLF7v7mtH5okrvtPsL4QKJnEABYFcsYTfzGJNfPrd+Q5KzNXhAAgO1jI2Hw4O7+1tpKd1+T\n5LaLqxIAAMuykTD45ap6wtrKtPzlxVUJAIBl2cgzg9+T5C+S3GMqujjJM7v7swuu25bxzCAAsCoW\nNrXMHi70HUnS3f+02YutCmEQAFgVCx9AUlWHV9XLkvxtkr+tqpdW1WGbvSAAANvHRp4ZfFWSq5M8\nJclTk3wtyasXWSkAAJZjI88M/mN3f/8tlR1I3CYGAFbFMuYZ/GZV/dDcBX8wyTc2e0EAALaP9V5H\nt+ZfJXnt3HOCX01y0uKqBADAstya0cR3SpLuvnqhNdoG3CYGAFbFvt4m3mvPYFX95txqz5VXku7u\n/7zZiwIAsD2sd5v4jpkLgXNqL+UAAKyYDd8m3tTJq16V5CeSXN7dD5zKjkjyhiTfneSiJE/t7iun\nback+YUk1yd5bnefPZU/LMlrktwuyV939/Om8kOSvDbJQ5NckeRp3f2/pm0nJfm3U1V+p7tfO5Uf\nk+T1SY5I8qHM3qZy7W71dpsYAFgJy5h0+r5V9Y6q+nJVfamq/rKq7rPB8786yYm7lb0gyTndfb8k\n75nWU1XHJXlakuOmY14+3ZJOklckObm7j01ybFWtnfPkJFdM5S9L8pLpXEck+a0kD58+L5obAPOS\nJC+djvnqdA4AgCFtZGqZM5OcleTumb2f+I1JXreRk3f332UWuOY9Psnp0/LpSZ44LT8hyeu6+9ru\nvijJZ5M8oqrunuSO3X3etN9r546ZP9ebkzx2Wv6xJGd395VTr+M5SR43hcvjk7xpD9cHABjORsLg\nod19xhTSru3uP8/sdu1mHdndl03LlyU5clq+R5KL5/a7OMk991B+yVSe6fvzSdLd1yW5qqq+a51z\nHZHkyu6+YQ/nAgAYznqjiY/IbLDI30zP8q31Bj4tyd/sj4t3d1fVsh7O8xAgAMBu1htN/OHcNED9\n0vS9Npr4BZu85mVVdbfuvnS6BXz5VH5JkqPn9jsqsx69S6bl3cvXjrlXki9U1Y4kh3X3FVV1SZKd\nc8ccneTcJF9JcnhVHTT1Dh41neNmTj311BuXd+7cmZ07d+5pNwCApdq1a1d27dq138630NHESVJV\n907yjrnRxP8ps0EfL6mqFyQ5vLtfMA0gOTOzAR/3TPLuJN8z9R6+P8lzk5yX5K+S/JfufmdVPSfJ\nA7v7V6rq6Ume2N1Pn3o1P5jZKOPKbNTwQ7v7yqo6K8mbu/sNVfVHSc7v7j/arc5GEwMAK2FfRxPf\nqjBYVX/S3b90y3veuP/rkvxwkjtn9nzgbyX5y8wGpNwrN59a5oWZTS1zXZLndfe7pvK1qWUOzWxq\nmedO5YckOSPJQzKbWubp0+CTVNWzk7xwqsrvdPfpU/n81DIfTvJzppYBAFbVssPgR7r7IZu92KoQ\nBgGAVbHweQZ3c/kt7wIAwKpY+DODq0jPIACwKva1Z3C90cRrF7h/kv87yb3n9u/u/pHNXhQAgO3h\nFnsGq+qjmb0O7sOZvTM4mYXBDy24bltGzyAAsCoW3jOY5NrufsVmLwAAwPa1kQEk76iqX62qu1fV\nEWufhdcMAICF28ht4oty81e5dXffZ1GV2mpuEwMAq2Kp8wyOQhgEAFbFMkYT3zbJryR5TGY9hH+b\n5I92f2sHAACrZyO3iV+ZWWg8PbP3/D4zyXXd/X8uvnpbQ88gALAqFn6buKo+2t0PuqWyA4kwCACs\nimW8ju66qvqeuQveN8l1m70gAADbx0bmGfzXSc6tqs9N6/dO8uyF1QgAgKXZ0GjiqrpdkvtnNoDk\nU919zaIrtpXcJgYAVsXCnhmsqsd293uq6smZhcC1i3SSdPdbNnvR7U4YBABWxSKnlnlMkvck+anc\nfNLpJDlgwyAAwCg2Mpr4Pt39/91S2YFEzyAAsCqWMZr4TXsoe+NmLwgAwPax19vEVfW9SY5LcnhV\nPSmzZwY7yZ2S3G451QMAYJHWe2bwfpk9L3jY9L3ma0l+cZGVAgBgOTbyzOCjuvvvl1SfbcEzgwDA\nqljG6+gOTXJyZreMD823p5b5hc1edLsTBgGAVbGMASRnJDkyyYlJdiU5Osk/bfaCAABsHxvpGTy/\nux9cVR/t7gdV1W2S/PfufsRyqrh8egYBgFWxjJ7Bb03fV1XVA5McnuQum70gAADbx3qjidf8SVUd\nkeTfJXl7ku9I8u8XWisAAJZi3TBYVQcl+Vp3fyXJ3yY5Zim1AgBgKda9TdzdNyT5f5ZUFwAAlmwj\nA0h+P8mXk7whydfXyqfewgOSASQAwKpYxjyDF2WaW3Bedx+wt4yFQQBgVSw8DI5IGAQAVsXCp5ap\nqjtU1b+vqj+d1o+tqp/c7AUBANg+NjLP4Kszm2vwUdP6F5L87sJqBADA0mwkDN63u1+SafLp7v76\nLewPAMCK2EgYvKaqDl1bqar7JrlmcVUCAGBZNvIGklOTvDPJUVV1ZpJHJ3nWAusEAMCSbGg0cVXd\nOckjp9X3d/eXFlqrLWY0MQCwKpYxz+B7uvuxt1R2IBEGAYBVsa9hcK+3iafnBG+f5C5VdcTcpjsl\nuedmLwgAwPax3jODv5zkeUnukeRDc+VfS/KHi6wUAADLsZHbxL/e3f91SfXZFtwmBgBWxcKeGayq\nH+nuc6vqydnzu4nfstmLbnfCIACwKhb2zGCSH05ybpKfyh7CYJIDNgwCAIxiQ1PLjEbPIACwKva1\nZ3AjbyABAOAAJQwCAAxMGAQAGNi6YbCq7lRV991D+YMWVyUAAJZlr2Gwqp6a5JNJ3lxVF1bVw+c2\nn77wmgEAsHDr9Qz+2yQP6+4HJ3l2ktdW1ZOWUy0AAJZhvXkGD+7uLyZJd59XVccn+X+r6ujlVA0A\ngEVbr2fw6vnnBadgeHySxyd5wKIrBgDA4q3XM/ic7BYWu/vqqnpckqcutFYAACzFeu8m/oHu/ocl\n12db8AYSAGBVLPINJC+fu8iQoRAA4EC30Umnb7fQWgAAsCXWHU1cVUckqbnlG3X3VxZaMwAAFm69\nZwYvSrK2seaWk6S7+z6LrdrW8cwgALAq9vWZwb2GwZEJgwDAqtjXMLjebeJU1Y4kP57k/lPRJ5K8\ns7uv2+wFAQDYPta7TXzPJOcmuTTJhzO7VfzQJEcmOb67v7CsSi6bnkEAYFUs7DZxVZ2e5CPdfdpu\n5c/N7J3FJ232otudMAgArIpFhsFPdff991BeST7V3ffb7EW3O2EQAFgVi5x0+pt7KpxS0jc2e0EA\nALaP9QaQ3KmqnpTZs4Jrelq/00JrBQDAUqwXBv9bkp/ay7a/XUBdAABYsvWeGTy8u6/cy7b/o7s/\nsNCabSHPDAIAq2KRzwy+e/dX0E0XPCHJWzd7QQAAto/1wuAfJ3lvVd11raCqnpHkTzKbiBoAgBW3\n12cGu/tPq+qfk5xbVT+a5GlJ/lWSnd190ZLqBwDAAq37OrruPqOqrklyfpL/leSHuvtLS6kZAAAL\nt94AkgvmVu+d5PJ8e37B7u4HLbZqW8cAEgBgVezrAJL1egb3Nq0MAAAHiL32DO5x56o7J7niQO82\n0zMIAKyKhU0tU1U/UFW7quotVfXQqvpYko8lubyqHrfZCwIAsH2s98zgh5KckuSwJH+a5MTufl9V\n/W9JXt/dD15eNZdLzyAAsCoWOen0wd19dne/MckXu/t9SdLdn8zsHcUAAKy49cLgfOD750VXBACA\n5VvvNvH1+fZUMrefW06SQ7t73TkKV5nbxADAqljY1DLdffBmTwoAwGrYaxisqkMze/3cfZNckOSV\n3X3dsioGAMDirffM4OlJHpbZdDI/nuSlS6kRAABLs+7r6Lr7gdPyjiQf6O6HLLNyW8UzgwDAqljk\n1DI33hJ2exgA4MC00dHESXJokm9Oy93dd1pw3baMnkEAYFUYTQwAwKatd5sYAIADnDAIADAwYRAA\nYGDCIADAwIRBAICBCYMAAAMTBgEABiYMAgAMTBgEABiYMAgAMDBhEABgYMIgAMDAhEEAgIEJgwAA\nAxMGAQAGJgwCAAxMGAQAGJgwCAAwMGEQAGBgwiAAwMCEQQCAgQmDAAADEwYBAAYmDAIADEwYBAAY\nmDAIADAwYRAAYGDCIADAwIRBAICBCYMAAAMTBgEABiYMAgAMTBgEABiYMAgAMDBhEABgYMIgAMDA\nhEEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgwCAAwMGEQAGBgwiAAwMCEQQCAgW1ZGKyqi6rqo1X1\nkao6byo7oqrOqapPV9XZVXX43P6nVNVnquqTVXXCXPnDquqCadsfzJUfUlVvmMrfV1XfPbftpOka\nn66qn1/WnxkAYLvZyp7BTrKzux/S3Q+fyl6Q5Jzuvl+S90zrqarjkjwtyXFJTkzy8qqq6ZhXJDm5\nu49NcmxVnTiVn5zkiqn8ZUleMp3riCS/leTh0+dF86ETAGAkW32buHZbf3yS06fl05M8cVp+QpLX\ndfe13X1Rks8meURV3T3JHbv7vGm/184dM3+uNyd57LT8Y0nO7u4ru/vKJOdkFjABAIaz1T2D766q\nD1bVL05lR3b3ZdPyZUmOnJbvkeTiuWMvTnLPPZRfMpVn+v58knT3dUmuqqrvWudcAADD2bGF1350\nd3+xqu6S5Jyq+uT8xu7uquotqltOPfXUG5d37tyZnTt3blVVAAButGvXruzatWu/nW/LwmB3f3H6\n/lJVvTV5coC5AAALAElEQVSz5/cuq6q7dfel0y3gy6fdL0ly9NzhR2XWo3fJtLx7+dox90ryhara\nkeSw7r6iqi5JsnPumKOTnLt7/ebDIADAdrF7J9WLX/zifTrfltwmrqrbV9Udp+U7JDkhyQVJ3p7k\npGm3k5K8bVp+e5KnV9Vtq+qYJMcmOa+7L01ydVU9YhpQ8swkfzl3zNq5fiazASlJcnaSE6rq8Kr6\nziQ/muRdC/qjAgBsa1vVM3hkkrdOA4J3JPmL7j67qj6Y5KyqOjnJRUmemiTd/fGqOivJx5Ncl+Q5\n3b12C/k5SV6T5NAkf93d75zKX5nkjKr6TJIrkjx9OtdXquq3k3xg2u/F00ASAIDh1LczFWuqqrUL\nALAKqirdvfsMLRu21VPLAACwhYRBAICBCYMAAAMTBgEABiYMAgAMTBgEABiYMAgAMDBhEABgYMIg\nAMDAhEEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgwCAAwMGEQAGBgwiAAwMCEQQCAgQmDAAADEwYB\nAAYmDAIADEwYBAAYmDAIADAwYRAAYGDCIADAwIRBAICBCYMAAAMTBgEABiYMAgAMTBgEABiYMAgA\nMDBhEABgYMIgAMDAhEEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgwCAAwMGEQAGBgwiAAwMCEQQCA\ngQmDAAADEwYBAAYmDAIADEwYBAAYmDAIADAwYRAAYGDCIADAwIRBAICBCYMAAAMTBgEABiYMAgAM\nTBgEABiYMAgAMDBhEABgYMIgAMDAhEEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgwCAAwMGEQAGBg\nwiAAwMCEQQCAgQmDAAADEwYBAAYmDAIADEwYBAAYmDAIADAwYRAAYGDCIADAwIRBAICBCYMAAAMT\nBgEABiYMAgAMTBgEABiYMAgAMDBhEABgYMIgAMDAhEEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgw\nCAAwMGEQAGBgwiAAwMCEQQCAgQmDAAADEwYBAAYmDAIADEwYBAAYmDAIADAwYRAAYGDCIADAwIRB\nAICBCYMAAAMTBgEABiYMAgAMTBgEABiYMAgAMDBhEABgYMIgAMDAhEEAgIEJgwAAAxMGAQAGJgwC\nAAxMGAQAGJgwCAAwMGEQAGBgwiAAwMCEQQCAgQmDAAADEwYBAAYmDAIADEwYBAAYmDAIADAwYRAA\nYGDCIADAwIRBAICBCYMAAAMTBgEABiYMAgAMTBgEABiYMAgAMDBhEABgYMIgAMDAhEEAgIENGQar\n6sSq+mRVfaaq/s1W1wcAYKsMFwar6uAkf5jkxCTHJfmXVfW9W1srdu3atdVVGI42Xz5tvnzafPm0\n+eoZLgwmeXiSz3b3Rd19bZLXJ3nCFtdpeH55LJ82Xz5tvnzafPm0+eoZMQzeM8nn59YvnsoAAIYz\nYhjsra4AAMB2Ud1jZaOqemSSU7v7xGn9lCQ3dPdL5vYZq1EAgJXW3bXZY0cMgzuSfCrJY5N8Icl5\nSf5ld39iSysGALAFdmx1BZatu6+rql9L8q4kByd5pSAIAIxquJ5BAAC+bcQBJOsyIfViVNWrquqy\nqrpgruyIqjqnqj5dVWdX1eFz206ZfgafrKoTtqbWq62qjq6q91bVhVX1sap67lSu3Rekqm5XVe+v\nqvOr6uNV9XtTuTZfoKo6uKo+UlXvmNa194JV1UVV9dGp3c+byrT7AlXV4VX1pqr6xPT75RH7q82F\nwTkmpF6oV2fWrvNekOSc7r5fkvdM66mq45I8LbOfwYlJXl5V/q7eetcm+Y3ufkCSRyb51envs3Zf\nkO7+5yTHd/eDkzwoyfFV9YPR5ov2vCQfz7dni9Dei9dJdnb3Q7r74VOZdl+sP0jy1939vZn9fvlk\n9lOb+2HclAmpF6S7/y7JV3crfnyS06fl05M8cVp+QpLXdfe13X1Rks9m9rPhVujuS7v7/Gn5n5J8\nIrM5NbX7AnX3N6bF22b2XPJXo80XpqqOSvLjSf4sydpoSu29HLuPXtXuC1JVhyX5oe5+VTIb/9Dd\nV2U/tbkweFMmpF6uI7v7smn5siRHTsv3yKzt1/g57KOquneShyR5f7T7QlXVQVV1fmZt+97uvjDa\nfJFeluRfJ7lhrkx7L14neXdVfbCqfnEq0+6Lc0ySL1XVq6vqw1X1p1V1h+ynNhcGb8pomi3Ss5FM\n67W/n80mVdV3JHlzkud199fmt2n3/a+7b5huEx+V5DFVdfxu27X5flJVP5nk8u7+SG7eS5VEey/Q\no7v7IUkel9kjKD80v1G773c7kjw0ycu7+6FJvp7plvCafWlzYfCmLkly9Nz60blpsmb/uqyq7pYk\nVXX3JJdP5bv/HI6ayriVquo2mQXBM7r7bVOxdl+C6RbOXyV5WLT5ojwqyeOr6nNJXpfkR6rqjGjv\nhevuL07fX0ry1sxuQWr3xbk4ycXd/YFp/U2ZhcNL90ebC4M39cEkx1bVvavqtpk9fPn2La7Tgezt\nSU6alk9K8ra58qdX1W2r6pgkx2Y2OTi3QlVVklcm+Xh3nza3SbsvSFXdeW00X1UdmuRHk3wk2nwh\nuvuF3X10dx+T5OlJzu3uZ0Z7L1RV3b6q7jgt3yHJCUkuiHZfmO6+NMnnq+p+U9G/SHJhkndkP7T5\ncJNOr8eE1ItTVa9L8sNJ7lxVn0/yW0l+P8lZVXVykouSPDVJuvvjVXVWZqMDr0vynDYh5mY8OsnP\nJfloVX1kKjsl2n2R7p7k9GnU3kGZ9ci+Z2p/bb54a23n7/hiHZnkrbP/b2ZHkr/o7rOr6oPR7ov0\n60n+Yuqs+p9Jnp1ZVtnnNjfpNADAwNwmBgAYmDAIADAwYRAAYGDCIADAwIRBAICBCYMAAAMTBgHm\nVNX1VfWRqvpYVZ1fVf/XNIF3qmpnVb1jbt/fqaq/meb9mj/Ha6rqyQuo2wvnlu9dVRfs72sA4xEG\nAW7qG939kO7+vszeIPK4JC/afaeq+ndJfiDJE7v7W7ttvqV3hG7WKQs4JzA4YRBgL6b3rv5Skl+b\nL6+q30zyY0l+qruv2cvha72JD6uqXVX1wap659x7RHdV1e9X1fur6lNV9YNT+e2r6qyqurCq3lJV\n75vO8ftJDp16Lc/ILGweXFV/MvVivquqbreYlgAOZMIgwDq6+3OZha67TEU/mOSXkzyuu7+x3qFV\ndZsk/zXJk7v7f0/y6iS/u7Y9ycHd/Ygkz8+3ex+fk+SK7n5Akn+f5GGzavQLknxz6rV8ZmZh89gk\nfzj1Yl6ZZL/fmgYOfN5NDHDrfCbJ4UlOSPKWdfarJPdP8oAk754eOzw4yRfm9lk7/sNJ7j0tPzrJ\naUnS3RdW1UfXucbnuntt+4fmzgGwYcIgwDqq6j5Jru/uL02B7rIkP5vkPVX1le7edQunuLC7H7WX\nbWu3mK/PTX8f1warN3+L+vokh27wOIAbuU0MsBfTreE/yuxW7426+zNJnpTkz6vq+/dyeCf5VJK7\nVNUjp/PdpqqOu4XL/o8kT532Py7JA+e2XVtV/hMP7FfCIMBNrQ3S+FiSc5K8s7tfPG27cZRwd38w\nybOTvL2qjtnTibr72iQ/k+QlVXV+ko9kNgJ5j7tP3y/PLEBemOS3k1yY5Kpp258k+ejcAJLdRywv\nYgQzcICrbr87ALaLqjooyW26+5qqum9mgfR+3X3dFlcNOEC53QCwvdwhybnTSORK8iuCILBIegYB\nAAbmmUEAgIEJgwAAAxMGAQAGJgwCAAxMGAQAGJgwCAAwsP8fqQyhcqvVkuIAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f2cadd88f90>" ] } ], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 } ], "metadata": {} } ] }
gpl-2.0
alepoydes/introduction-to-numerical-simulation
practice/What does mean mean mean.ipynb
1
365364
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Вычисление сумм" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "В статистике часто приходится считать выборочное среднее, т.е. по данной выборке значений $x_k$, $k=1..N$, нужно вычислить\n", "$$\\bar x=\\frac1N\\sum_{k=1}^N x_k.$$\n", "С точки зрения математики не имеет значения, как считать указанную сумму, так как результат сложения всегда будет один и тот же.\n", "Однако при вычислениях с плавающей запятой ответ будет зависеть от порядка выполнения операций, хотя бы потому, что сложения чисел с плавающей запятой не ассоциативно.\n", "Но будет ли зависеть точность вычислений от порядка операций?\n", "Давайте это проверим.\n", "\n", "Сконструируем выборку таким образом, что сумма всех элементов равна $1$, и порядок элементов меняется в широком диапазоне.\n", "Для этого разобьем единицу на $K$ частей, и $k$-ую часть разобьем на $7^k$ равных значений.\n", "Полученные элементы перемешаем." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "base=10 # параметр, может принимать любые целые значения > 1\n", "\n", "def exact_sum(K):\n", " \"\"\"Точное значение суммы всех элементов.\"\"\"\n", " return 1.\n", "\n", "def samples(K):\n", " \"\"\"\"Элементы выборки\".\"\"\"\n", " # создаем K частей из base^k одинаковых значений\n", " parts=[np.full((base**k,), float(base)**(-k)/K) for k in range(0, K)] \n", " # создаем выборку объединяя части\n", " samples=np.concatenate(parts) \n", " # перемешиваем элементы выборки и возвращаем\n", " return np.random.permutation(samples)\n", "\n", "def direct_sum(x):\n", " \"\"\"Последовательная сумма всех элементов вектора x\"\"\"\n", " s=0.\n", " for e in x: \n", " s+=e\n", " return s" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def number_of_samples(K):\n", " \"\"\"Число элементов в выборке\"\"\"\n", " return np.sum([base**k for k in range(0, K)])\n", "\n", "def exact_mean(K):\n", " \"\"\"Значение среднего арифметического по выборке с близкой к машинной точностью.\"\"\"\n", " return 1./number_of_samples(K)\n", "\n", "def exact_variance(K):\n", " \"\"\"Значение оценки дисперсии с близкой к машинной точностью.\"\"\"\n", " # разные значения элементов выборки\n", " values=np.asarray([float(base)**(-k)/K for k in range(0, K)], dtype=np.double)\n", " # сколько раз значение встречается в выборке\n", " count=np.asarray([base**k for k in range(0, K)])\n", " return np.sum(count*(values-exact_mean(K))**2)/number_of_samples(K)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Создадим выборку из значений, отличающихся на 6 порядков, и просуммируем элементы выборки." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Число элементов: 1111111\n", "Самое маленькое и большое значения: 1.4285714285714285e-07 0.14285714285714285\n", "Погрешность прямого суммирования: 1.7459145240345464e-11\n" ] } ], "source": [ "K=7 # число слагаемых\n", "x=samples(K) # сохраняем выборку в массив\n", "print(\"Число элементов:\", len(x))\n", "print(\"Самое маленькое и большое значения:\", np.min(x), np.max(x))\n", "\n", "exact_sum_for_x=exact_sum(K) # значение суммы с близкой к машинной погрешностью\n", "direct_sum_for_x=direct_sum(x) # сумма всех элементов по порядку\n", "\n", "def relative_error(x0, x):\n", " \"\"\"Погрешность x при точном значении x0\"\"\"\n", " return np.abs(x0-x)/np.abs(x)\n", "\n", "print(\"Погрешность прямого суммирования:\", relative_error(exact_sum_for_x, direct_sum_for_x))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Попробуем теперь просуммировать элементы в порядке возрастания." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Погрешность суммирования по возрастанию: 1.0016432128178195e-12\n" ] } ], "source": [ "sorted_x=x[np.argsort(x)]\n", "sorted_sum_for_x=direct_sum(sorted_x)\n", "print(\"Погрешность суммирования по возрастанию:\", relative_error(exact_sum_for_x, sorted_sum_for_x))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Попробуем просуммировать в порядке убывания." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Погрешность суммирования по убыванию: 3.864975006557192e-11\n" ] } ], "source": [ "sorted_x=x[np.argsort(x)[::-1]]\n", "sorted_sum_for_x=direct_sum(sorted_x)\n", "print(\"Погрешность суммирования по убыванию:\", relative_error(exact_sum_for_x, sorted_sum_for_x))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Таким образом погрешность результата зависит от порядка суммирования. \n", "Как можно объяснить этот эффект?\n", "\n", "На практике суммирование предпочтительно проводить не наивным способом, а компенсационным суммированием (см. [алгоритм Кэхэна](https://ru.wikipedia.org/wiki/%D0%90%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC_%D0%9A%D1%8D%D1%85%D1%8D%D0%BD%D0%B0)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Погрешность суммирования по Кэхэну: 0.0\n" ] } ], "source": [ "def Kahan_sum(x):\n", " s=0.0 # частичная сумма\n", " c=0.0 # сумма погрешностей\n", " for i in x:\n", " y=i-c # первоначально y равно следующему элементу последовательности\n", " t=s+y # сумма s может быть велика, поэтому младшие биты y будут потеряны\n", " c=(t-s)-y # (t-s) отбрасывает старшие биты, вычитание y восстанавливает младшие биты\n", " s=t # новое значение старших битов суммы\n", " return s\n", "\n", "Kahan_sum_for_x=Kahan_sum(x) # сумма всех элементов по порядку\n", "print(\"Погрешность суммирования по Кэхэну:\", relative_error(exact_sum_for_x, Kahan_sum_for_x))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Задания\n", "\n", "1. Объясните различие в погрешностях при различных порядках суммирования.\n", "3. Почему алгорит Кэхэна имеет значительно лучшую точность, чем последовательное суммирование?\n", "3. Получим ли мы те же значения погрешностей, если будем суммировать последовательность со слагаемыми разных знаков? Проверьте на следующей последовательности: \n", "$$x_k=\\sin k.$$\n", "4. Что произойдет с погрешностью, если элементы выборки с разными знаками упорядочить по возрастанию? По возрастанию абсолютной величины? Проверьте экспериментально." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Подсказка" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Сумма первых $N$ элементов последовательности из задания 4 может быть найдена явна:\n", "$$\\sum_{k=1}^N\\sin k=\\frac{1}{2}\\bigg(\\sin n-\\mathrm{ctg}\\frac{1}{2}\\cos n+\\mathrm{ctg}\\frac{1}{2}\\bigg).$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Вычисление дисперсии" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Кроме вычисления оценки математического ожидания, часто требуется вычислить оценку среднеквадратического отклонения или его квадрата - дисперсии.\n", "Дисперсия $D[X]$ случайной величины $X$ определена через математическое ожидание $E[X]$ следующим образом:\n", "$$D[X]=E[(X-E[X])^2].$$\n", "Для оценки дисперсии мы можем воспользоваться формулой для оценки математического ожидания через выборочное среднее:\n", "$$E[X]\\approx\\frac1N\\sum_{n=1}^N x_n,$$\n", "т.е. можно предложить следующую формулу для оценки дисперсии *(первая формула)*:\n", "$$D[X]\\approx\\frac1N\\sum_{n=1}^N\\left(x_n-\\frac1N\\sum_{n=1}^Nx_n\\right)^2.$$\n", "Полученная оценка является [смещенной](https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%81%D0%BC%D0%B5%D1%89%D1%91%D0%BD%D0%BD%D0%B0%D1%8F_%D0%BE%D1%86%D0%B5%D0%BD%D0%BA%D0%B0), т.е. ее мат. ожидание не совпадает с верным значением дисперсии, поэтому на практике нужно использовать следующую несмещенную оценку:\n", "$$D[X]\\approx\\frac1{N-1}\\sum_{n=1}^N\\left(x_n-\\frac1N\\sum_{n=1}^Nx_n\\right)^2,$$\n", "однако в этой работе мы удовлетворимся смещенной оценкой.\n", "К сожалению, наша формула не позволяет обновлять значения дисперсии при добавлении значения в выборку, так как требует двух проходов по выборке: сначала считается среднее, затем считается дисперсия.\n", "Однако в учебниках теории вероятности можно встретить и другую эквивалентную формулу для дисперсии, получим ее, опираясь на свойства мат. ожидания:\n", "$$D[X]=E[(X-E[X])^2]=E[X^2-2E[X]X+E[X]^2]=E[X^2]-2E[X]E[X]+E[E[X]^2]=E[X^2]-E[X]^2.$$\n", "Снова заменяя мат. ожидание на выборочное среднее, получаем новую оценку для дисперсии *(вторая формула)*:\n", "$$D[X]\\approx \\frac1N\\sum_{n=1}^N x_n^2-\\left(\\frac1N\\sum_{n=1}^Nx_n\\right)^2.$$\n", "Вторая формулы для вычисления дисперсии более привлекательна, так как обе суммы могут вычисляться одновременно, а значения мат. ожидания и дисперсии вычислить, последовательно добавляя значения.\n", "Действительно, введем обозначения для оценок мат. ожидания и дисперсии по первым $n$ членам выборки:\n", "$$E_n=\\frac1n\\sum_{k=1}^n x_n,\\quad D_n=\\frac1n\\sum_{k=1}^n x_n^2-E_n^2.$$\n", "Отсюда легко вывести рекуррентные формулы:\n", "$$E_{n}=\\frac{x_{n}+(n-1)E_{n-1}}{n},\\quad D_{n}=\\frac{x_{n}^2+(n-1)D_{n-1}}{n}-E_{n}^2.$$\n", "Хотя эти формулы и просты, погрешность вычислений по второй формуле может быть значительно выше, чем по первой. Проверим это." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Рассмотрим выборку, среднее для которой на порядки больше среднеквадратического отклонения. Пусть ровно половина значений больше среднего на $delta$, а половина меньше на $delta$.\n", "Оценка дисперсии и мат. ожидания в этом случае легко вычисляются явно." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "# параметры выборки\n", "mean=1e6 # среднее\n", "delta=1e-5 # величина отклонения от среднего\n", "\n", "def samples(N_over_two):\n", " \"\"\"Генерирует выборку из 2*N_over_two значений с данным средним и среднеквадратическим \n", " отклонением.\"\"\"\n", " x=np.full((2*N_over_two,), mean, dtype=np.double)\n", " x[:N_over_two]+=delta\n", " x[N_over_two:]-=delta\n", " return np.random.permutation(x)\n", "\n", "def exact_mean():\n", " \"\"\"Значение среднего арифметического по выборке с близкой к машинной точностью.\"\"\"\n", " return mean\n", "\n", "def exact_variance():\n", " \"\"\"Значение оценки дисперсии с близкой к машинной точностью.\"\"\"\n", " return delta**2\n", "\n", "x=samples(1000000)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Размер выборки: 2000000\n", "Среднее значение: 1000000.0\n", "Оценка дисперсии: 1.0000000000000002e-10\n", "Ошибка среднего для встроенной функции: 2.3283064365386957e-16\n", "Ошибка дисперсии для встроенной функции: 8.053584167008077e-06\n" ] } ], "source": [ "print(\"Размер выборки:\", len(x))\n", "print(\"Среднее значение:\", exact_mean())\n", "print(\"Оценка дисперсии:\", exact_variance())\n", "print(\"Ошибка среднего для встроенной функции:\",relative_error(exact_mean(),np.mean(x)))\n", "print(\"Ошибка дисперсии для встроенной функции:\",relative_error(exact_variance(),np.var(x)))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ошибка среднего для последовательного суммирования: 1.164153218269348e-16\n" ] } ], "source": [ "def direct_mean(x):\n", " \"\"\"Среднее через последовательное суммирование.\"\"\"\n", " return direct_sum(x)/len(x)\n", "\n", "print(\"Ошибка среднего для последовательного суммирования:\",relative_error(exact_mean(),direct_mean(x)))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ошибка второй оценки дисперсии для последовательного суммирования: 1.000000029257143\n", "Ошибка второй оценки дисперсии для однопроходного суммирования: 1.0000000199804877\n" ] } ], "source": [ "def direct_second_var(x):\n", " \"\"\"Вторая оценка дисперсии через последовательное суммирование.\"\"\"\n", " return direct_mean(x**2)-direct_mean(x)**2\n", "\n", "def online_second_var(x):\n", " \"\"\"Вторая оценка дисперсии через один проход по выборке\"\"\"\n", " m=x[0] # накопленное среднее \n", " m2=x[0]**2 # накопленное среднее квадратов\n", " for n in range(1,len(x)):\n", " m=(m*(n-1)+x[n])/n\n", " m2=(m2*(n-1)+x[n]**2)/n\n", " return m2-m**2\n", "\n", "print(\"Ошибка второй оценки дисперсии для последовательного суммирования:\",relative_error(exact_variance(),direct_second_var(x)))\n", "print(\"Ошибка второй оценки дисперсии для однопроходного суммирования:\",relative_error(exact_variance(),online_second_var(x)))" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Ошибка первой оценки дисперсии для последовательного суммирования: 8.053990749371736e-06\n" ] } ], "source": [ "def direct_first_var(x):\n", " \"\"\"Первая оценка дисперсии через последовательное суммирование.\"\"\"\n", " return direct_mean((x-direct_mean(x))**2)\n", "\n", "print(\"Ошибка первой оценки дисперсии для последовательного суммирования:\",relative_error(exact_variance(),direct_first_var(x)))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Как мы видим, суммирование по первой формуле дает наиболее точный результат, суммирование по второй формуле менее точно, а однопроходная формула наименее точна." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Задания\n", "\n", "5. Обьясните, почему формулы оценки дисперсии имеют разные погрешности, хотя чтобы их применить, нужно выполнить одни и те же действия, но в разном порядке? Оцените погрешности обоих формул.\n", "6. Предложите однопроходную формулу для оценки мат. ожидания и дисперсии, основанную на первой формуле для дисперсии. Воспользуйтесь компенсационным суммированием, чтобы увеличить точность. Попробуйте увеличить точность вычисления по сравнению со второй формулой хотя бы на два порядка." ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Суммирование ряда для экспоненты\n", "\n", "Показательная функция имеет одно из самых простых разложений в ряд Тейлора:\n", "\n", "$$e^x = \\sum_{k=0}^\\infty \\frac{x^k}{k!}.$$\n", "\n", "Естественным желанием при решении задачи вычисления показательной функции является воспользоваться этим рядом.\n", "В данном разделе мы рассмотрим результативность этого подхода.\n", "\n", "Так как на практике мы не можем суммировать бесконечное число слагаемых, то будем приближать ряд его частичной суммой:\n", "\n", "$$e^x \\approx \\sum_{k=0}^N \\frac{x^k}{k!}.$$\n", "\n", "Так как частичная сумма является многочленом, то для практического счета удобно воспользоваться (схемой Горнера)[ru.wikipedia.org/wiki/Схема_Горнера]:\n", "\n", "$$e^x \\approx 1+x\\bigg(1+\\frac{x}{2}\\bigg(1+\\frac{x}{3}\\bigg(1+\\frac{x}{4}\\bigg(\\ldots+\\frac{x}{N}\\bigg(1\\bigg)\\ldots\\bigg)\\bigg)\\bigg)\\bigg).$$\n", "\n", "Проведем эксперимент по оценки точности этого разложения.\n", "Сравнивать будем с библиотечной функцией numpy.exp, которая не дает совершенно точный ответ.\n", "Оценим погрешность библитечной функции, предполагая, что она вычисляется с максимальной возможной точностью.\n", "Число обусловленности показательной функции для относительной погрешности равно $\\kappa_{exp}(x)=|x|$,\n", "тогда учитывая погрешности округления до числа с плавающей запятой, мы ожидаем предельную погрешность результата не менее $|x|\\epsilon/2+\\epsilon$." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqAAAAE9CAYAAADULNDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeVxU1f/H8deZAQRxXyj3LVNcccEld82t1HLfS8u9rExLy0pLSzMrszRafqammYZamprmvqeiuOGSCyiKirggIsvMnN8fIF8XhIGAywyf5+MxD+feO+fe98AgH8699xyltUYIIYQQQoisYjI6gBBCCCGEyFmkABVCCCGEEFlKClAhhBBCCJGlpAAVQgghhBBZSgpQIYQQQgiRpaQAFUIIIYQQWcrF6ABZwWQyaQ8PD6NjCCGEEEKkKjo6WmutnbqTMEcUoB4eHty+fdvoGEIIIYQQqVJK3TE6Q2Zz6upaCCGEEEJkP1KACiGEEEKILCUFqBBCCCGEyFJOfQ2oUqoj0DFXrlxGRxHCocXHxxMaGkpMTIzRUYQDcHd3p2TJkri6uhodRQhHZVZKfQ+s1FqvNDpMZlBaa6MzZDpPT08tNyEJkX5nz54lb968FC5cGKWU0XFENqa1JiIiglu3blGuXDmj4wjhkJRS0VprT6NzZCY5BS+ESFVMTIwUn8IuSikKFy4sveVCiBRJASqEsIsUn8Je8lkRQqRGClAhRLZ348YNZs+enbS8efNmOnToYGAimDFjBvPnz09Tm7lz5/Lqq6+m+JrNmzezc+fOpGU/P780H+euMWPGsHHjxnS1FUKIzCQFqBAi23uwAM0sFovF7tfNmTOHPn36pHsfj/JgATps2DBeeOGFdO1r5MiRTJ069T/lEUKIzCAFaAbZtHwO/54NMTqGEE5p3LhxnD59Gh8fH9566y0AoqKi6NatG5UrV6Zv377cvaEyICCAZs2aUadOHdq2bUtYWBgAgYGBNGjQgBo1atC5c2euX78OQPPmzXnjjTeoW7cuH3/8MeXKlSM+Ph6AyMjI+5bv2rhxI7Vr18bFxeWhfXz11VeEh4fTtWtXfH198fX1ZceOHQ+9p5UrV1K/fn1q1arF008/zeXLlwkODsbPz48vv/wSHx8ftm3bxsSJE5k+fTrHjx+nXr16Se2Dg4OpXr16iu+5TJkyREREcOnSpQz7XgiRk+3auIL9m5YZHcMpSAGaAS6Hnsa8/0c8fmrJQr+PsdlsRkcSwqlMnTqVChUqEBgYyGeffQbAgQMHmDFjBkFBQZw5c4YdO3YQHx/PyJEj8ff3JyAggJdeeonx48cD8MILL/Dpp59y6NAhqlevzocffpi0/7i4OPbt28eECRNo3rw5q1atAuDXX3+lS5cuDw0ntGPHDurUqXPfurv7GD16NK+//jqjRo1i7969LF26lEGDBj30nho3bszu3bs5cOAAvXr1Ytq0aZQtW5Zhw4YxatQoAgMDadKkSdLrK1euTFxcHGfPngVg8eLF9OzZM8X3DFC7du1kC2AhhP2scbEs/GIUJTaPxnXbp5ADRhDKbE49DmhWeaxkBa426IfaM52+l6ax5sNt1Bn6HV7FyxgdTYjM0bz5w+t69IARIyA6Gp555uHtAwYkPK5ehW7d7t+2eXOaI9SrV4+SJUsC4OPjQ3BwMAUKFODIkSO0bt0aAKvVSrFixbh58yY3btygWbNmALz44ot07949aV89e/ZMej5o0CCmTZvG888/z08//cQPP/zw0LHDwsLw9va+b929+1i/fj1BQUFJy5GRkURFRd33+tDQUHr27ElYWBhxcXF2DVnUo0cPFi9ezLhx41i8eDGLFy/mxIkTyb7nu7y8vLh48WKq+xZCJO/PnQf54c+tNFWRWF1MFOvjB3Kj3X/m1AVoVg5EX/XZEcQ16c7ur/vSNm43YX4tWFVhKM+88LbcESpEJrj359psNmOxWNBaU7VqVXbt2nXfa2/evJnivjw9/zfcXqNGjQgODmbz5s1YrVaqVav20Os9PDweGmbo3n3YbDZ2796Nu7v7I485cuRI3nzzTTp16sTmzZuZOHFiihkhocjt3r07Xbp0QSlFxYoVOXz4cLLv+a6YmBg8PDxS3bcQ4n63b4Rz/oe+bLxei4O2pjxZPB+Pv/wVHp55suLwTj8QvVMXoInftJWenp6Ds+J4bvmK0mD8OrYsmcETR76mzOmFrP/8CDUHzMCrSOGsiCBE1kipxzJ37pS3FymS5h7PvHnzcuvWrVRfV6lSJcLDw9m1axcNGzYkPj6ekydPUrVqVQoWLMi2bdto0qQJP//8c1JvaHJeeOEF+vTpw/vvv5/sdm9vb06dOvXI9m3atOHrr79Oul41MDAQHx+f+15z8+ZNSpQoAcC8efPue6+RkZHJ7rdChQqYzWYmTZqU1OOa0nsGOHny5H29vUKI1J0+spei/s9Rmdu84n6Zzm270qT+s1kZwaq1HpKVB8xqcg1oJmjW4w3yvrETW6mGtLq1kh1f9WfpnE+NjiWEwypcuDCNGjWiWrVqSUVdctzc3PD392fs2LHUrFkTHx+fpDvK582bx1tvvUWNGjUIDAzkgw8+eOR++vbty/Xr1+ndu3ey29u3b8/WrVsf2X7mzJns27ePGjVqUKVKFfz8/B56zcSJE+nevTt16tShSJEiSes7duzI8uXLk25CelDPnj1ZsGABPXr0SPU9x8fHc+rUKerWrfvIrEKI/4mPjWHNt2+T57du5NG3OVGqO+XfD6RJ/XqpNxZpIlNxZrLggHVY/3iNCqYw1tGQmkN/4LFipQzJIkR6HTt27KFrHp2Zv78/f/zxBz///PMjX9O5c2emTZtGxYoVszBZ2ixfvpz9+/czadKkLD92TvvMCMcXFHSUHxYu4EvX2YTpgoQ0mESD9v0NyZITpuJ06lPw2UHZOm2ILreJbbNeoI11F6F+zdle9RUa93jT6GhCiGSMHDmSNWvWsHr16hRfN3XqVMLCwrJ1AWqxWBg9erTRMYTI1rTNyoLvpjA1pDKxNKCel43nB71Psay51jPHkh7QLLRp0XQqHv+WYkSwu9Dz1BkyG3eP3EbHEiJV0psl0ko+M8IRRB5ejduyl8hlu8MM3YuG3UfRoHplo2PliB5QuQY0C7XoPQbTkA1szNWSRteXEzatHj/7+xsdSwghhMhRtNZ84fcdMf7DcbPFcLxoW1579/NsUXzmFFKAZrHiJcrS+t1lBDT5kTBrProcHsGCj18mOibO6GhCCCGE01u6aQ+/TejCyLB3yE0MQU2/xfvVJZjd5ZR7VpIC1CB1WnWn2tCfCFYl6Bfvz8lPGvDPul+NjiWEEEI4rc/m+fP+2vMcsJZjl4svbq/soFqr5Ee7EJlLClAD5StRiarv72V3vmcora5QfcdI1s4Yis0qU3kKIYQQGSX2+gXCJ1em6ik/ypku07//YJq+vxY3ryeMjpZjSQFqNLMLDd5cRETX3zilS1Lu2jYOftaOa5dCjE4mhBBCOLwdaxZgnlGNopYwKue3Mf/tvlSpLDfIGU0K0GyiYo2GVH1/DxGV+lDlzn5WfTOK5T9MNjqWEDnCjBkziI6OTnf7smXLcvXq1f+UoVu3bpw5cyZNbQYMGIB/Kjcyzp0797654AcNGnTfPPVp8fTTT3P9+vV0tRXCCLO/+phSuz4kBjdOPTmI8mM2UrhAfqNjCZy8AFVKdVRKfW+1Wo2OYhezqysN+77H+a6raGA6TsfQz1k76TmiIm8YHU0Ip/ZfC9C00Fpjs91/mc3Ro0exWq2UL1/+odf/1/+/HixAf/zxR6pUqZKuffXv35/Zs2f/pzxCZIXTZ07zxsTJ9Ljmh6e6Q1TbL3miz+dGx0oLs1Lqe6VUR6ODZBanLkC11iu11kPMZrPRUdLkiRr1Kfb63+ygJm2tmzkzvQUHd/xldCwhDLVgwQLq1auHj48PQ4cOxWq1EhISQsWKFbl69So2m40mTZqwbt06goODqVy5Mn379sXb25tu3bo9ssCcOXMmFy9epEWLFrRo0QKA4cOHU7duXapWrcqECRMA2LhxI88//3xSu7///pvOnTs/tL8vvviCatWqUa1aNWbMmAFAcHAwlSpV4oUXXqBatWqcP3/+vjYLFy7kueeeS1rOkycPo0ePpmbNmuzatYuAgACaNWtGnTp1aNu2LWFhYQ8d96OPPsLX15dq1aoxZMgQtNb4+/uzb98++vbti4+PD3fu3KF58+bs27cPPz+/+6Y1nTt3Lq+++uojv9YAnTp1YtGiRal/s4QwiDU+ngPfDaHn97v4PaYWn5tewvX1AB5/qo/R0dLKqrUeorVeaXSQTKO1dvpH7ty5tSOyWq165ZcjdNQHRXX0B4X1lh/HapvNZnQskQMFBQXdt9zDb+dDj/k7z2qttY6OtSS7fcnec1prrSOiYh/aZs/xO3TooOPi4rTWWg8fPlzPmzdPa631Dz/8oLt166anTZumhwwZorXW+uzZsxrQ27dv11prPXDgQP3ZZ589cv9lypTR4eHhScsRERFaa60tFotu1qyZPnjwoLbZbLpSpUr6ypUrWmute/furVesWHFf+3379ulq1arpqKgofevWLV2lShW9f/9+ffbsWa2U0rt27Ur2+E2bNtWHDh1KWgb04sWLtdZax8XF6YYNGyYd99dff9UDBw7UWmv94osv6t9+++2+zFpr3a9fv6RszZo103v37k3adnf5ypUrukKFCknr27Vrp7dt25bi11prrZ944gl99erVR34t73rwMyNEZrOEHdWRH5XWekI+vXTCc/qXv3drq9Uxf2cCt3U2qJ8y8+HUPaCOzmQy0eGNWYR0XMJ+U3Wanv+WI58+TWyUXIMlcpYNGzYQEBCAr68vPj4+bNiwIel6yUGDBhEZGYmfnx/Tp09PalOqVCkaNWoEQL9+/di+fbvdx1uyZAm1a9emVq1aHD16lKCgIJRS9O/fnwULFnDjxg127dpF+/bt72u3fft2OnfujKenJ3ny5KFLly5s27YNgDJlytCgQYNkjxcWFkbRokWTls1mM127dgXgxIkTHDlyhNatW+Pj48PkyZMJDQ19aB+bNm2ifv36VK9enY0bN3L06NEU32PRokUpX748u3fvJiIiguPHj9OoUaMUv9YAXl5e953SF8JoWmuO7PyLsNkdyWu9wcW8Nej83m/0fro+JpMyOp54BJkL3gFUqdscm09jts7/gKDTIbhNa8y/VV+nQ88hRkcTOdTioQ0fuc3DzZzi9kKebiluT47WmhdffJEpU6Y8tC06OjqpIIuKiiJv3rwAKHX/L54Hlx/l7NmzTJ8+nb1791KwYEEGDBhATEwMAAMHDqRjx464u7vTvXt3XFzs/y/U0/PRs+p5eHgkHQPA3d2du5cOaa2pWrUqu3btemT7mJgYRowYwb59+yhVqhQTJ068b3+P0qtXL5YsWULlypXp3LkzSqkUv9Z3j+Xh4ZHqvoXIClarjemfvM1wy0JclIU/vYbw7PBpdv+8C+NID6iDMLm40PSlT3iseGkKq0iaB73PysndsFksRkcTItO1atUKf39/rly5AsC1a9cICUkYqmzs2LH07duXjz76iMGDBye1OXfuXFLR9ssvv9C4ceNH7j9v3rzcunULgMjISDw9PcmfPz+XL19mzZo1Sa8rXrw4xYsXZ/LkyQwcOPCh/TRp0oTff/+d6Ohobt++zfLly2nSpEmq78/b25tTp04lu61SpUqEh4cnvZf4+PiHejfvFptFihQhKirqvjvj731vD+rcuTN//PEHixYtolevXkDKX2utNZcuXaJs2bKpvichMtup8xfpP+ErVkZXZY21HusbzKXDiM+k+HQQUoA6mM6vTMHcz58zqhQdLX+zZ1JTTp1I35AqQjiKKlWqMHnyZNq0aUONGjVo3bo1YWFhbNmyhb179yYVoW5ubvz0009AQuE2a9YsvL29uX79OsOHD3/k/ocMGUK7du1o0aIFNWvWpFatWlSuXJk+ffoknca/q2/fvpQqVQpv74fHEaxduzYDBgygXr161K9fn0GDBlGrVq1U39+zzz7L5s2bk93m5uaGv78/Y8eOpWbNmvj4+LBz5877XlOgQAEGDx5MtWrVaNu2Lb6+vknbBgwYwLBhw5JuQrpXwYIF8fb2JiQkhHr16gGP/loDBAQE0KBBgzT1/AqRGY4t+ZDcPzbGZI2htVck3d79iU7tnzU6lkgDlXCtq3Pz9PTUt2/fNjpGhrJZLKyd3o+n76zjqs7PtWd/oGr9p42OJZzUsWPHki24sqvg4GA6dOjAkSNHMnzfr776KrVq1eLll1/OsH3euXOHFi1asGPHDrLzqB2vv/46nTp1olWrVqm+1tE+M8IxRN6KYu/MfrSM2wQKbj3xPPn6zTM6VoZTSkVrrR993Y4TkB5QB2VycaH9uF8JaTkLzC5UWNWT//tiPBaLTOMpRGapU6cOhw4dol+/fhm6Xw8PDz788EMuXLiQofvNaNWqVbOr+BQiM1hObSbks8a0it/EebywjD7llMVnTiE9oE4g8sZV/L8ZR+/4P9inK+Px/JfUrV3X6FjCiThLb1bnzp05e/bsfes+/fRT2rZta1Ai5+UsnxmRPYSdCWL5nCn0NG/irGtFqr35J+65nbeDMCf0gEoB6iRscTHs+rwrvjG7uYkn1ubjebzFUKNjCSchxYRIK/nMiIxgiYvh/KznGHylC2d0cTqVtfHFkI6YTM59AjcnFKDO/R3MQUxu7jR6ZxUrnpzMHZ2LIpvHsX5qN7TNMaYhFUIIIe51+fxpoqdWotzN3TQxB/Fxy4LMGPac0xefOYV8F51Mt77DOdhmEQeoROM7mzny+bPExmTNHNdCCCFERjj9zypu/dCBvNYbHMzfkgmTZtC7zaOHUhOORwpQJ9SxcV3qfrCDbWVfpXzUfv7vkxEc2SVzyQshhMjeYu7c4ceZH1Jg9VC81A38S46l5qjlIGN7Oh0pQJ2UMptpPXAic0pNoSPbKf3XQNbMGmV0LCGEECJZlhsXmPTpZFaEFeS29mBzndl0H/yu0bFEJpEC1MmNHPQy4a2+4JIuRJsrP7F28vMye5IQDyhbtixXr141OsZ9ZsyYwfz589PUZu7cubz66qspvmbz5s33DWTv5+eX5uPcNWbMGDZu3JiutkLc68alYCwzfLgc54abmwtF39pHp06djY4lMpEUoDlA7WadyD1wKbupTlvLJkImV+fquRNGxxLCKVgy4A86q/X+mwUtFgtz5syhT58+GX68BwvQYcOG8cILL6RrXyNHjmTq1Kn/KY/I2bQlju0r55L72zq4E0erx+4wf/wQPPLmNzqayGROXYAqpToqpb5/8D/3nKhkuco0fH8Tq3N3ooDtJu7/14xDW5YbHUs4qp+effix54eEbXHRyW8/sDBh++2Ih7fZYcGCBdSrVw8fHx+GDh2K1WolJCSEihUrcvXqVWw2G02aNGHdunUEBwdTuXJl+vbti7e3N926dSM6OuWb8b7++mtq165N9erVOX78OJAwD/rzzz9PjRo1aNCgAYcOHQJg4sSJ9O/fn0aNGtG/f3/mzp1Lly5daNeuHRUrVuTtt99O2u+6deto2LAhtWvXpnv37kRFRQEJva5jx46ldu3a/Pbbb/dl2bhxI7Vr106a8rJ58+a88cYb1K1bl6+++orw8HC6du2Kr68vvr6+7Nix46H3s3LlSurXr0+tWrV4+umnuXz5MsHBwfj5+fHll1/i4+PDtm3bmDhxItOnT+f48eNJ03FCwmxS1atXBxKm4GzWrBl16tShbdu2SVNzlilThoiICC5dumTX91CI+2jN0U8a0zjgddyUheNF29H7tSnkdpOpXgGzUup7pVRHo4NkFqcuQLXWK7XWQ7Lz1HZZyeTiwjNv/0xk39WcMZVm0dqtrPpiCDExcUZHEyJFx44dY/HixezYsYPAwEDMZjMLFy6kTJkyjB07luHDh/P5559TpUoV2rRpA8CJEycYMWIEx44dI1++fMyePTvFYxQpUoT9+/czfPhwpk+fDsCECROoVasWhw4d4pNPPrmvpzAoKIj169ezaNEiAAIDA1m8eDGHDx9m8eLFnD9/nqtXrzJ58mTWr1/P/v37qVu3Ll988UXSPgoXLsz+/fvp1avXfVl27NhBnTp17lsXFxfHvn37GD16NK+//jqjRo1i7969LF26lEGDBj30fho3bszu3bs5cOAAvXr1Ytq0aZQtW5Zhw4YxatQoAgMDadKkSdLrK1euTFxcXNJA/YsXL6Znz57Ex8czcuRI/P39CQgI4KWXXmL8+PFJ7WrXrp1sASxESiLvxPP1N5/xhPUMf9kasMt3JpVfWSw3G/2PVWs9RGu90uggmUX+zMiBylTy4fzgP3jerzP1I4+xamooz37wJ8jYasJeA1c9eptb7pS3exZOeXsyNmzYQEBAAL6+vkDC3OleXl4ADBo0iN9++w0/Pz8CAwOT2pQqVYpGjRoB0K9fP2bOnMmYMWMeeYwuXboACdNtLlu2DIDt27ezdOlSAFq2bElERASRkZEAdOrUCQ8Pj6T2rVq1In/+hNOGVapUISQkhBs3bhAUFJSUIy4ujoYNGya16dmzZ7JZwsLCHhrE/d7Xrl+/nqCgoKTlyMjIpJ7Vu0JDQ+nZsydhYWHExcVRrly5R773u3r06MHixYsZN24cixcvZvHixZw4cYIjR47QunVrIOFygWLFiiW18fLy4uLFi6nuW4i7bu/3583lJ1kfX5NtpneZ9mofyhZ/3OhYIotJAZpDlSpejOLvb2XzlI48a9vBng8bUWrQAoqVqmB0NCEeorXmxRdfZMqUKQ9ti46OJjQ0FICoqCjy5s0LgHqgJ+XB5QflypULALPZbNd1lp6e909Scrf9vfvQWtO6deukXtLU9nGXh4cHMTExj3ytzWZj9+7duLu7PzLfyJEjefPNN+nUqRObN29m4sSJqb0levbsSffu3enSpQtKKSpWrMjhw4epWrUqu3btSrZNTEzMfYW4ECkJWvQe3ie+5kuTO98WeY3hQ0aQN19Bo2MJA0iXVw5mdnWj1pt/8IdLW2pxAtcfm3Pl4FqjYwnxkFatWuHv78+VK1eAhGszQ0JCABg7dix9+/blo48+YvDgwUltzp07l1Q0/fLLLzRunPZBrJs0acLChQnXrm7evJkiRYqQL18+u9s3aNCAHTt2cOrUKQBu377NyZMnU23n7e2d1CY5bdq04euvv05avrfn966bN29SokQJAObNm5e0Pm/evNy6dSvZ/VaoUAGz2cykSZOSelwrVapEeHh40tcyPj6eo0ePJrU5efIk1apVS/U9iZztxrXLrPjsZSod/4Z4XDjbyo+3x4yX4jMHkwI0h8ufx53n3lvChrJjcNUWCizrzekNc4yOJcR9qlSpwuTJk2nTpg01atSgdevWhIWFsWXLFvbu3ZtUhLq5ufHTTz8BCYXTrFmz8Pb25vr16wwfPjzNx504cSIBAQHUqFGDcePG3VfI2aNo0aLMnTuX3r17U6NGDRo2bJh0g1NK2rdvz9atWx+5febMmezbt48aNWpQpUoV/Pz8ks3evXt36tSpQ5EiRZLWd+zYkeXLlyfdhPSgnj17smDBAnr06AGAm5sb/v7+jB07lpo1a+Lj45N0F318fDynTp2ibt26qb4nkXNZ4uP556v+dLrtTySe3GnyHjWayhBLOZ3SWhudIdN5enrq27dvGx0j27sUeob9P7zKVktl2nicpN5rC8iTr4DRsUQ2cOzYsYeuSczOgoOD6dChA0eOHDE6Srp17tyZadOmUbFiRaOjPNLy5cvZv38/kyZNemibo31mROYIv3SB175ZQnV9ghbmg1R5YyX5CxVJvWEOp5SK1lonf42Ok5AeUJHk8ZLlKdD3/2jo8i8tLds4+HlH4h64Dk0IkTWmTp2aNNxRdmWxWBg9erTRMUQ2FRF8mFzf1mGX5UnO5a1F2ZF/SvEpkkgPqEjWmk960D5uLadtxYirNwLvDq8ZHUkYyFl6szp37pw0zNBdn376KW3btjUokfNyls+MSAet2TylE01jt6KA+SUn8OLgN41O5VByQg+oFKAiWTaLhbXfj6XGpeV4qRvcaPsVRZ/qb3QsYRApJkRayWcmZ7oWFYvf1FG867KQfylFrpI+lB60wOhYDicnFKByCl4ky+TiQvsRnxPUej63dG7yrX2D2fPmY7HYjI4mDJIT/lgVGUM+KzlT5K1IRn46i5HmZWy21sRz5A4pPsUjSQEqUtS6SWMsQ3cQ4lKW9cevMv8zORWfE7m7uxMRESGFhUiV1pqIiIgUxygVzufKse389cUQdsRXYr9+kjy9f6R4YZnPXTyanIIXdomPvsneqc/wlOkIu3VVSvb/gZJPVDU6lsgi8fHxhIaGPjQ4uhDJcXd3p2TJkri6uhodRWSB8NBTuP/YhLxEs7TkWLoOetfoSA4vJ5yClwJU2C0q8gbbvxlMy9iNHNNlqDRuK+658xgdSwghhAHuxFlZ+dOndLr4Be4qnpuP1Sf/8HVGx3IKOaEAlVPwwm558hWg3bu/sb5AN2qaTnN9Wk0uBP1jdCwhhBAGeOs7f5pf/I6LujCr8vUi/wvJTzkrRHKkABVp9syo79hUqAeF9XXy/9qRT3/4WW5OEkKIHOTQ3i00u/wzeYlm4WNv8cwoP/AsbHQs4UCkABXp0uK1H7jcfwuxKhd7zoTz/VcfGh1JCCFEJgs4HU7/D77k2or3mGNtz67yr/H+K4NQShkdTTgYuQZU/Ce22Nuc/bguj6lrbC7ck7YjZuDqIn/XCCGEs/nn5AVsP3ejoTmIk9biBDT5gd5tGhsdyynJNaBCpMKUy5O452ZzTnvR4do8/v6wLWdO/2t0LCGEEBno7MlDxP7ck4bmIA671+V6nzX0fLqR0bGEA5MeUJEhYu/cZueMfjSJ2cxlkxfF3z2IcpVxAIUQwtHFREdxZGpL6ppOcDpPHSqM3gByyj1TSQ+oEHbK5eFJi3eWc7ZIC0roS5yc1oLIS2dTbyiEECLbOn1oJzc+rUZ5dYG/crWjwpiNUnyKDCE9oCJDWW2an3/8ijVnLWhgWE0XWoENAmgAACAASURBVPZ6w+hYQggh0ujfo/u48OsbNDcfZqtXf54a9AUubm5Gx8oRckIPqBSgIlN8sXQLTQ+OoYQK58zzK2lUq7rRkYQQQthBa83YL75ldOSnxGpXLrf/Ed+GzY2OlaPkhAJUTsGLTPFm12ZYavajmLpOvd+bsXXeBKMjCSGEsMOKL0cw7dY7PKZuEPR4Jyk+RaaQHlCRqYKXf4T1wC+UV2GcLNmZSoPnGh1JCCHEI6yZPpD2UcuI1B64dZ6Fu09XoyPlSNIDmg0opcorpf5PKeX/wHpPpdQ+pVQHo7KJ1JXt/AGnOizjiipE6fN/cvCfjUZHEkII8YCb18LZNW889SLXcUyX5sYLG6X4zAGMrLEytQBVSs1RSl1RSh15YH07pdQJpdQppdS4lPahtT6jtX45mU1jgSUZmVdkjrb1quAx5G9+szVnyPILvPrZ90TFWIyOJYQQAjhxYDt7v+zB1X/3YTW5kbf/IkpXqGJ0LJEKR6+xMrsHdC7Q7t4VSikzMAtoD1QBeiulqiilqiul/nzg4ZXcTpVSrYEg4ErmxhcZJV/xJ4hr+i6+5n+ZGvU+f305yOhIQgghgJu/j+Fp835c8nnhNfEsJZ+oZnQkYZ+5OHCN5ZKZO9dab1VKlX1gdT3glNb6DIBS6lfgOa31FMDert7mgCcJX9w7SqnVWmtbhoQWmWZQm9rwVCn2f/YX3WKX88fHMXQcuwCTS6Z+DIUQQiTDZrGwdXIbmqtj/JWrHe3f/tnoSCINHL3GMuIa0BLA+XuWQxPXJUspVVgp5QfUUkq9A6C1Hq+1fgP4BfghuS+MUmpI4vUL+ywWOd2bbeQpSpXRq7msC/Jc/BpCpjXAaok3OpUQQuQoVouFoEl1aU4Ah3V5Ggz52uhI4n4ud2uYxMcQO9tlSY2VEbJ915PWOgIY9ohtc1No9z3wPSTcBZ8p4US6uOcrgttbezn7dQfKxR5n++TWVHjtT4oVymN0NCGEcHrxcbFcmFqXSoSyS/lQ6+3VuOd26huuHZFFa103sw+S3horIxjRA3oBKHXPcsnEdSIHMeUpSrmxuzj4eFcGx4yk4bQtbD8RZnQsIYRwWlGx8dT84E8CJjUlLN6TAwXaUv+9jVJ8OheHqbGMKED3AhWVUuWUUm5AL2CFATmE0Uwmag6bg5frHRqZDmNd2JPoqEijUwkhhFP669u3WKNG0sB8nFPu1agzciEms9noWCJjOUyNldnDMC0CdgGVlFKhSqmXtdYW4FVgLXAMWKK1PppJx++olPrearVmxu5FBtk4sQ/9CwbRzHSQA9Oe4d8LV42OJIQQTmXS7/vwvbYKBehyzen/zveYXaT4zMbMSqnvlVIdH/UCo2us/0pmQhLZxtqpvWgbs4YrugDWbvMoVr250ZGEEMLhHfzrJ05v/40uLjvYX2kUtXtPNDqSSEVOmAlJClCRrYTObEvJa7uJ0u5cGhLEEyUKGx1JCCEcUkz0bbZN68yWeG9Gmpbj6VWGPK9sAVO2nwQxx8sJBah8CkW2UvK1tewo0Inx8S/x0jcrCA05Y3QkIYRwSBvnvEcLvZcN1jq86j6ZPCO3SfEpsg35JIpsp+HIucR5FuecLsqs77/hpzU7jY4khBAOZf/m32kU/iuXdCFi3YvSrGFDoyMJcR+nPgWfePFux1y5cg2OiYkxOo5IgziLjbk/fctLoe/xry5J6V7T8azS1uhYQgiR7Z1a/RUF9nxBEW6wpmAf2r/+rdGRRBoppWKB+cBKrfVKo/NkBqcuQO+Sa0Ad19qvX6FtxAK0hgttv6fkUz2NjiSEENlSfFwsu7asxnvbaxQ1RRJSqBFlXlttdCyRDjnhGlApQEW2t3XZdzQ6OJbbePBt/Q2MfaaK0ZGEECLb+XLiCH6OaUI8Jpa1i6NCox6YXHMZHUukQ04oQOUaUJHtNe0ylMtP9mKf7Ul+2XqYrQeOGB1JCCGylVs/92cUC3nLZTEeuXJRsXl/KT5FtiYFqHAIxbtO4/GihblJHiYt2U7gzr+NjiSEEIaLs9hYN2cieU+vIFa7sMSlE98MaGJ0LCFSJafghUOZ77+MVofHcFXnJ6DFPF5qUcPoSEIIYZjBs/5k+pXB5FfRLCk6kh6vTDY6ksgAcgrewclUnM7nhW5dCKvQi5qmMzTbNcjoOEIIYZiNxy9zNfQUZ3UxrNV7SfHpXFKditPRSQ+ocEhnPqlL+bh/OaVL8Fjvb8hbuaXRkYQQIst8+fdJ/t28gNXW+swptpyWr3wLLq5GxxIZRHpAhcimInuv4Kzbk+Qnit8WfMfx0KtGRxJCiCyxadl3VNs6hLfMv9LWtIdGAz6R4lM4HClAhUPyKVeccu/uxS/3UCZb+jHMbw1RUVFGxxJCiEwVFxtD6cAvaW0+QGl1hVxuuciV38voWEKkmZyCF47NamHh1MFUjj2MF9cp8d5hTG65jU4lhBAZ7p/1S6my7RXyqjus9nyOViO/xdUtNyaTMjqayGByCl6I7M7sQu8RHxJiKkUp01XCv2gEITJ3vBDCicTcIvbXF5m44RLD419nY65WNBg4jVzunlJ8Cofl1AWo3AWfM5gKlqbGwK+4o914LOYMZxaNNjqSEEJknKUvkev474x2+Y14lzy0fGcZhYo8bnQqkbnkLnhnIKfgnZ/Nphm95CDtjr6JCc3Ggt2YNHIoLq4uRkcTQoh02/P3r9TbMTRp2fZeBCYX+X/N2ckpeCEchMmk+LKXD4+3fp11trosulKWd7/yMzqWEEKkS1y8lUUrVrNpx04CbBW5mKs8wT5vSfEpnIb0gAqnc/XaNb79/D06m3fg8WQzKvSbaXQkIYRIk4krjjBxfyOu6nwMso7j98mvGB1JZCHpARXCARUpVIg6RSxUMwVT4dQ8fvx8HBaLzehYQgiRqpCI2/T/8R9K7v8cgCIqkh8bXjM4lRAZT3pAhdO6c+MKphlVMGsrb+pRTHvvXdzd5PSVECL7enbmNo5dvMHxXC/ipqygTDB0Kzxe3ehoIgtJD6gQDsyjgBeuHT7Hgpl2ehtL95wyOpIQQqSo/bX5KDQBtic5WnUMTLguxadwStIdJJyaqe6LXDcVZeSSeNz+DGLPmat89UJjo2MJIcRDblwKZpj256SpKH3jxxPQuonRkYTINCn2gCqlTEqpp7IqTEaTcUAFQLHazzC0dBh9zOtpeOpLo+MIIcRD3vroI9S3DXFRNsIpgA0TBQsUMDqWMI6MA6qUOqC1rpVFeTKFXAMqAK5PqUrB2FAu5irP42/tleFMhBDZwsXwq1yZ2ZonTReYbemEqckoynrlp0vtkkZHEwZxhGtAlVImoJvWekl62ttzDegGpVRXpZTM9yUcmhq4iihyUzz2DDsnP43NYjE6khAipzu2kpMzO+NjPsMeW2W+sXbmzXZVpfgU2Z7W2ga8nd729hSgQ4HfgDilVKRS6pZSKjK9BxTCKAUeL8uNAVs4ZitNYw7w/cQXCbp40+hYQogcymbTnNqzhgHx4/jD9DS36wxn3kBfo2MJkRbrlVJjlFKllFKF7j7saSjDMIkc59iJYyyd/zU/W1vTwbSLV0Z9QPmieYyOJYTIISq8u5rRBbcz4vYsInVuxsQPpWPPIXSsWdzoaCKbcIRT8ABKqbPJrNZa6/KptbVrGCalVCel1PTER4c0JxQiG/Gu5E3hZsN42byatua9/P3VEI6HSae+ECLzXb55B6tN88/1hD9686loKpUtybPVHzc4mRBpp7Uul8wj1eIT7LsJaSrgCyxMXNUb2Ke1fuc/pc5C0gMqkrPt4AlyL+tPNU7zi8/PDOz8jNGRhBBO7vDSKbgeXMi/thJ0dNmdsHKiXAok7udAPaCuwHCgaeKqzcB3Wuv4VNvaUYAeAnwSLzZFKWUGDmita/yX0FlJClDxKKEH1lPs927E4IZl0Bbyl/I2OpIQwomFTK1P4TvBrFFNeSrvJYo1G4Sp7otGxxLZjAMVoD8CrsC8xFX9AavWelBqbe2dCenewcjypy2eENlXyVpPM9v6HJ4qFsuPbfBbtdvoSEIIJ3Tunz8Im+JDmZjj7LNVovzA7ygxepsUn8LR+WqtX9Rab0x8DCThrHmq7ClApwAHlFJzlVLzgADg4/8QNsvIQPTCHusfH8x2a1XWWevw7bYQsKZ65kAIIdKk0JqhFItNuF9jr4sP1YpLX45IkaMMRG9VSlW4u6CUKg/YVXSleAo+cezPkoCF/1W0e7TWl9KfNevJKXiRmpWBFxj5ayCgmVN2A2Wb9aO8dx2jYwkhHF3MTaIPLuXyqk8pZ0r81SnXfIpUONAp+FbAT8AZQAFlgIFa602ptU1xKhittVZKrdZaVwdWZERYIbKjjj4lOHftNjEbPqV52FJuLPZHTziHzL8ghPhPfulJ7nO7KGeCXVZvGtaobHQiITJE4kxId4CKQKXE1Se01rH2tLfnFPx+pZSMjCuc3vDmT1CpZT+OedSiEJGc2zzX6EhCCEdniWWZtTED496i8kt+8Lyf0YmEyBCJN6fP0lrHaq0PJT7sKj7BvrvgjwNPACHAbRK6WLXcBS+cVeSlM+T5thZ/2+pSavgyqsi1WkKINIiPjWXblA546XCeVKF4x8yhTJF8bBzT3OhowkE40Cn46cAuYJlO48xGKZ6CT9Q2XamEcFD5Hi9PoLkqVXQIb/6whEHNK9G2WdPUGwohBHB0xwpasodQirDX+gRlc8fQq141o2MJkRmGAm8CFqVUDP/rpMyXWsMUC9DEMT/Xaq3lohWRo/h0GMG25d+y904xQtaco2XDeFzdXI2OJYRwAHlD1gEwKG4MZ0xlOPmBTHIhnE/ijepVtdbn0tM+xWtAtdZW4IRSqnR6di6Ew6rdD99RvzG2ZBB+bl+y5dfpRicSQjiA1VN6UyFkCVrDaV0cDzez0ZGEyBSJp9xXpbe9PafgCwJHlVJ7SLgG9O6BO6X3oEI4AvdCxend+0VyzfwMy5mZnJnzL+VfmmN0LCFENjb/ti9ncKVD9ccYkKcivXxLGR1JiMy0Xynlq7Xem9aG9hSg76cjkBBOoUDhxzhXoCYlb+wl77ml/HtoCBVrNDA6lhAiG4mJsxJnteEeeYZTFi/cPeryas/XGG90MCEyX32gr1IqzTeqp1qAaq23KKXKABW11uuVUrkBOacgcozSo9azadHntDjxEcp/ILaqRzCZ5UdACJGg4dQNEB3B3lwjeNf1KULzNzI6khBZJd03qqc6DqhSajDgD3yXuKoE8Ht6DyiEI2rW/XVm051n4z7hhY9mEXg0yOhIQohs4np0PN6mc7goG+d1Ufr2GWB0JCGyhNY6BCgFtEx8Ho19Y8zb9aJXgEZAZOLB/gW80hc1a8lc8CKjmFxc6DDoQ8qartDUuosLy97FZrMZHUsIYTCtNQob3irhRuCw0h0p7FXc4FTCCTjEXPBKqQnAWOCdxFWuwAJ72tpTgMZqrePuOZgLkKbBRo2itV6ptR5iltOlIgOULlmCtZ8MpYn5KM9aN/H6+x8YHUkIYbDwsPOsdh3H+64LsGgTlb19jI4knINVaz1Ea73S6CCp6Ax0IvEmda31RSCvPQ3tKUC3KKXeBTyUUq2B34Ds/gURItOcqz0WgIHmNfz7+xSD0wghjBR+ah+VTaHsdavHwcpv0NVXRi0UOUpc4nBMGkApZffsTfYUoOOAcOAwCSPerwbeS0dIIZxCjeZd2Gj1obbpFOUPfIq+HWF0JCGEQfYcDuITSx8e7/s9dXpPIK+7TFghcpQlSqnvgAKJ9wytB36wp2Gqc8E7A5kLXmS0JXtCmLN8NS5YqO4RwZQPJhodSQiRBSb9tp2nDn9AAW6hUTxGBAVVFLnfv4DJxZ6RDYVInaPMBQ+QeHa8DQlDMK3VWv9tTzv5aREiHZ6pUYJxy0tj03AyuhQDTgZR6ckqRscSQmSy2EB/WrkGABBi8yKGXOxyrUprKT5FDpVYcNpVdN5LfmKESIc87i7MGeDLe3NXsdVtFKZfNBZzblzGXwCTXSNQCCEcUFkVlvT8cpvZ1GvcmooG5hHCUdn9mzJxAHohRKKmFYvgW6Mmaz2eIZwCuFijiQ70x2axGB1NCJFB4q3/G27t6sWzFNU3APjXVoIiT9Y3KpYQDs+egeifUkoFAccTl2sqpWZnejIhsjmTycSXvWvTftwvTCnwEQC5Vwxm7bTeBicTQmSE/9t+horj17Ai8CKcWAPfNQWT4vW4EfxufQpPueFICJRSHkqpSmltZ08P6JckTLUUAaC1Pgg0TeuBhHBmg3o+z2lbMQDqxvxD6LVogxMJIf4r/32hAPweGAqnNlBERfKHrQmHdHlmWTvLHe8ix0scKD8Q+Ctx2UcptcKetnadgtdan39glUwtJMQ9qhTLzxjrCOZbWlNY3aT19L+Js8hMSUI4NJXwT5zFhu3qvwBEedXhrE6Y6Si3m9xGIXK8iUA94AaA1joQKGdPQ3sK0PNKqacArZRyVUqNAY6lM6gQTuubkT3xLZ0Hk4KGHOTY3o1gletBhXBIMbcom98FM1byxoZx/VIwV3U+ihYpanQyIbKTeK31zQfW2TW+Z6rjgCqligBfAU+T8PfgOuA1rfW1dAQ1hIwDKrJM+L8wq27SorVcC8wv/m5gICFEmm2YBNumc0Plp8A9v1sDbBXZ1XwR09edBCB46rNGJRROzlHGAVVK/R+wgYRJi7oCrwGuWuthqbW15/xBJa113wcO2AjYkY6sQji3ohUJfrwNcReP8qTpArbQfZiNziSESJtjCbNN57NFctxUnjvV+3LrwnFO5G/K4CbleapCEW7FxhscUohsYSQwHogFfgHWApPtaWhPD+h+rXXt1NZlZ9IDKrLStSsXqf3FASa6zGWAyzrW5OlC+zE/GR1LCGGvWQ3QV46hFKxxaUn795YbnUjkMA7UA1pba70/PW0f2QOqlGoIPAUUVUq9ec+mfCCdOkI8SiGv4oyrtgW/Ix151vwP5pvBRkcSQqRF3C1U4g1I1txexmYRInv7XCn1OOAPLNZaH7G3YUo3IbkBeUgoUvPe84gEuqU/qxDOb1i/3lymML6x33JZF2L+UulBESK7OzurM39N6cnJ6/87M+hWqLSBiYTI3rTWLYAWQDjwnVLqsFLqPXva2nMKvozWOuS/x8x6ieNTdcyVK9fgmJgYo+OIHGbx3nN8v3o33eL+ALMbwz+S0/BCZGsT83PW9hjbbNVpYw7gki5M0ZcXUaLMk0YnEzmMUioWmA+s1FqvNDqPPZRS1YG3gZ5aa7dUX29HAbqJZG6p11q3TG/IrCbXgAoj7ZzQmCc4z5niHSjW7CXKVK5jdCQhxAOioyJx/6w0/9gq09B8DN67Ai65jI4lcigHugbUG+hJwh3wEcBiYKnW+kpqbe25C37MPc/dEw8igxsKYacb+SrhdeswXmELWPPLScp89LfRkYQQDwg+FkAVpWloPsZFilBcik8h7DGHhKKzrdb6YloaplqAaq0DHli1Qym1Jy0HESIna/f6dzR97ymmuv7Ik+rBScWEENlBeEhQ0vM8yCVbQthDa90wvW1TLUCVUoXuWTQBdYD86T2gEDmNycWFuHxlWBTVkuLqKjvHz+bnt/tSIL/8GAlhhKX7Q/li3Qk2tbuG+mMEYRThTHx1miX+RrSZZIpNIVKilFqite6hlDrM/ZdpKkBrrWuktg97fsoCEneuSDj1fhZ4OR15hcixFg9tyNfL7rAnJISrljxs27qejh27Gh1LiBxp0T/nuHAjBvPKVzDrOFx1DG658xEQ+yRmpfBu2NHoiEJkd68n/tshvTuw5xS8XZPKCyEerUxhT6YP7siJgC1UWtmJI8cbcLSAmXK1WpI7Tz6j4wmRo0TFJtzGcPce3GLqGn3HfQ+mlEYmFELcpbUOS3w6Qms99t5tSqlPgbEPt7pfSgPRd0nl4MvsCSmE+J8nfRpjW6Godns3bNjN4S1VqP7eLqNjCZGjXLkVC0C4zk8xEm/WleJTiPRozcPFZvtk1j0kpR7QlM5BaEAKUCHSSJnNrPKeyrpD53nZZTWVLKeMjiREjnO3B3SatQ/d9N9UN51BzkMIYT+l1HBgBFBeKXXonk15gR327OORBajWeuB/iyeESE7N1i/wauAmwi35+dj8I3f+nkdp7/rkLVnZ6GhCOKXIO/GcDo8iOjoadfkQJW1hFFbXuRyfm1pupzBhMzqiEI7mF2ANMAUYd8/6W1rra/bswJ6B6PMDE4Cmiau2AB9prW+mOa5BZCB6kd2UHbcq6fk0l+9o6nKExyeeMTCREM6rwSfruRQZS1Gu467iWO/2FrmUhUBbeXxMZ4h3yY3re2Gp70iILOIoA9HfpZTyImGseAC01udSa2PPRS9zgFtAj8RHJCBzCgrxH2wY3Yw977TA0xRPYRWJxaaMjiSE07oUmXDN5xCXVWxyG00uZWGZpTGzLZ340OsrXEcdNjihEI5JKdVRKfUvCSMkbQGCSegZTZU9BWgFrfUErfWZxMeHQPl0pxVCUKFoHrzy5yZ37jwc0eUopiI4/NcciAo3OpoQTusJdQEXlXC6/aAuzzpbPUrVaAqeRQxOJoTDmgw0AE4mjprUCthtT0N7CtA7SqnGdxeUUo2AO+lJKYS4X7US+QiylcasNNV3j+LGrJZGRxLCaVVUoUnPrTrh19/Zq9FGxRHCGcRrrSMAk1LKpLXeBNS1p6E9A9EPB+YlXguqgGvAgPQmFUL8zw/967JifyF+2QPHwm7gaw6lk9GhhHBSFswAnLU9xiZbLQCK5XdPqYkQImU3lFJ5gK3AQqXUFcCum25S7QHVWgdqrWsCNYDqWutaWuuD/ymuEAIAFxcTXeo9wbMvjWe3zZtCcZfBEmd0LCGckilxxsDC6hZXE2eULl7Aw8hIQji650g4Kz4K+As4TcrDeCZJtQBVSr2ulMpHwo1IXyil9iul2vyHsEKIB+TP7UYHzxM0Nh+GyUWJmViUa//adRmNECIZ8XFxBEyox4vvfMxkl/8DYKqlNwD5VDSeKuHGpAK5XQ3LKISj01rf1lpbtdYWrfU8rfXMxFPyqbLnGtCXtNaRQBugMNAfmPof8gohkqGfaJv03J04TmyYZ2AaIRzb+dNHqaNOUMt8CnfiWO82htyeefgo70RWmlvz7cutaFCuEE0ryg1IQqSVUuqWUirynsete/+1Zx/2XAN6d3yYZ4D5WuujSikZM0aIDPZcq8b8dKQtA13WApAr6rzBiYRwXNcvBwNQjGt0c9kGwPTxd2cHHAXAr08UNSCZEI5Pa533v+7Dnh7QAKXUOhIK0LVKqbwg00YIkdHKFM7NHXIlLVtvhRO482/+2rkPm01+5IRIi9tXEwaWd1UWg5MI4dyUUo2VUgMTnxdRSpWzp509BejLJEyz5Ku1jgbcAJmmU4gMZjKZOGYrnbRcjKv4rOuGZc14/m/HWQOTCeF4YiITxtQ9r70MTiKE81JKTQDGAu8krnIDFtjTNtVT8Fprm1KqLNBPKaWB7Vrr5emLKoRIycjXxhJwrDbRbl6sXfMHL5tWABB47obByYRwLLHRkdzWuThnkwJUiEzUGagF7AfQWl9MPFOeqlQLUKXUbOAJYFHiqqFKqae11q+kM6wQ4hGefDwfPN4VgD+2H6BUdDhbbDWxxtg1rJoQIlF83pJUDf2JJ5RcSy1EJorTWuvEDkqUUnbPX2/PTUgtAW+t9d2dzwOC0hVTCGG3fm4bcbljY4DLOoqEu7L5t4M0fm4oLm5uRkcTIls4FxFNqUIeXI2KY8vRYHyLu3Hl1AE8b58n1/kd9DWfY43VN/HVcu+sEJlgiVLqO6CAUmow8BLwoz0N7SlATwGlgZDE5VLAv+lJKYSwX/5ydSBwEwAdYlbB0VWsu3mFNoMmGZxMCOMdvXiTZ2duZ0LHKszbGczFiJt87vIt7cx7cVVWyupcuJu8WWh9OqFBta7GBhbCCWmtpyulWgORQCXgA6313/a0fWQBqpRaCWggL3BMKbUncbk+sOc/p7aTUqo8MB7Ir7XulriuOTAJOAr8qrXenFV5hMgq5Z5/n0vlGpLXEsGRoCPUPz0TS8QZo2MJkS0cuXATgN8PXODa7TjedvmVji4Jkzf4WTqy01aFCc/78EexhpD/OOQubGRcIbKljKixEgvOvxPbmpRSfbXWC1M7dko9oNNTOl5qO04MMgfoAFzRWle7Z3074CvADPyotX7kwPZa6zPAy0op/weOHwW4A6H2ZBHCET1eM6H3xrdmV2ZNDOZ23GM8Y3AmIbKD0Ot3ALh2Ow4UtDXtS9oWYKvITnyoUE9+WoTzMrLGSpwh8xWgBLCChAL0FWAMcBBIfwGqtd7yiIM2BnqTMPF8auYC3wDz72lvBmYBrUl4Y3uVUitI+EJNeaD9S1rrK8nsd5vWeotS6jHgC6CvHVmEcFgmFxcWW1tQPD7K6ChCZAtRsQnje8ZZbVgsmlLmhGGX3ol/mUO28vYNMiiEY5uLcTXWz8B1YBcwCHiXhAutn9daB9oT3p5rQFFK1QL6AN2Bs8BSe9pprbcmDuF0r3rAqcSqG6XUr8BzWuspJFTy9uz37qjc1+GekbuFcGKlzNd4RS/FNuEDFlpbMbfgSDaMbm50LCEMERXzvwHmi+TLBYkDRWyy+nCNvLiY5aYj4dwMrrHKa62rJx7jRyAMKK21jrE3/yP/RlRKPamUmqCUOg58DZwDlNa6hdb6G3sPkIwSwL3jYoQmrntUjsJKKT+gllLqncR1XRLvuvqZhOo/uXZDlFL7lFL7LBaZCUM4vgEV7lDTfBqT0vR3Wc/pcBmaSeRcN+/EJz2PibMmPX/avJ+CRJLPw9WIWEJkFJe7NUziY4id7bKkxgKSfgC11lYgNC3FJ6TcA3oc2AZ00FqfSgw1Ki07zwha6whg2APrlgHLUmn3PfA9gKenp13XrAqRnbUe+D4H8+R6ZwAAIABJREFUpu2kVvROAHIRZ3AiIYxzK7EHNL+7K2cjbkNivTnZ9f/bu+84uaq68eOf7522vW96SAESSAglBAhNqnRUFB8BRUWKojz62B70UbEriOWnPraAIoKAoI9IKFKkKS0JkZBASO89u8n2nXbP7497Z+bOzkx2QnZ3dme+79drX3P3tjln7s7sd84953vu4Mn4bCzRFlA1osWMMXMG+0nebowFHCUi7e6yAOXu7+KcwtT099z76iXzXpwm1WdE5DYROYuBSaS2BSeVU8IEd51Sqh9b/am3joVNLKZzxKtS5bQrNFeHiMZt4kaIGh8Ae6mmNxrf18FKFashibGMMT5jTI37U22M8XuW+w0+YR8BqDHmQWPMZcBhwDPAfwGjRORXInLOAZR7IXCoiEwRkSBwGc4IKqVUP0xlMwDvDX+D0eyhJ6b/ZFVpmtzkTLiytc2563dMeB7P2kcDECaQbCFVqsSMmBgrn7ngu4B7gHtEpB5nINKNwBP9HSsi9wKnA00ishn4ujHmtyJyA/A4zqis3xlj3nj7Vdjn818MXBwK6TglVRzC9dP54sbrmGFt4GxrMb//9vNc5X+cC6vuY9veHlZ+V9POqOLy7IqdfPSOhdx19fHE/3gZp7OIJ+LHck7Az9dCrxHuCEAILgp/l3f6XnWPEsoCvoKWW6kD5BORecB8Y8z8bDsUOsY6UOLOsFnUKisrTVeXDthQI58dj/PdX/2Oi3b+ikNlC1XitP5M7r0HgPU3X1jI4ik14C791Yss2rCHE6c2cu/Wc5Prl9hTOUh28JpvFhawd/zplG1fSKB+PI80XcO1p07hsLF53QlUatgRkW5jTN7zqo9EeaVhUkoND5bPx9duuJbFP36MqvY1vGZPpdeTJSMSswn6NQGiKk5L7cnMsta7vxm2mmbOuOnxjP3OHNJSKaXeDv1PpdQIFCtvAuBw2cRuU0tiQEZLZ7iApVJq4DVUBgGYUF/OJjMKgN2mhnmxi3nMzC1k0ZRSB0ADUKVGIKkeC0BIolzke5mTxOniEzM6Kl4Vl2mjqwGYUF/B2ZbTx7NJ2nnEnssiOWJfhyqlhrGivgWvg5BUseqtnsRW00CPCXGwtY0LfK9wilnKsnv+wY5AL3Pe/99QP7nQxVRqADit+53hKDH8BIlzT+wMpsg2Gq32fo5VasTqdxDSSFfUAah70eZXVlZeW+iyKDWQmo48m5NeGk0lPSwKXc+H/P9wNjjTYWMe3o5c2V8eYaWGvyWb2wBYtqWNAE5qpTBBHgh+k9XWwcBXClg6pQZN3BiT7+xHI1JRB6BKFavDpxzEyq9WY2JhAvybW+cv5NE3W/hv/32c71tIvGOnvrlVUUhMudkbjhAQJ+/tVX5n4FGkrKdg5VJKHRjtA6rUCBWsqidUNwarbgJNU49mnRnLN6MfBiDa01Hg0ik1MBIzGkW6M2+32/7yoS6OUmqAaACqVBGoKw8yRbbxcf/D3BM7gw2MLnSRlBoQiQDUhDO/VK2KNg11cZRSA0QDUKWKQG1FgHo6uMr/OC3UsjI+odBFUmpAhGNOZoet0Uq+Gr0qbVuPVdR5upUqakUdgIrIxSIyLx7X+bJVcauvCNCKk67mI74n6OntLXCJlBoYIb8zpWazv5t1Zkxy/f/FT2FrxWGFKpZSg80nIvPcbD5FqajHKegoeFUqxteXEzbO27lGuvmA/Qi9X2/iPbV/5tH/Oo2vP7SMu17eyNJvnEN1WaDApVWlaNbXH+czZx/KxtZu/vDSBj5/zjR+9MRKzp05mt9cOYcNT9/GQc99gU11c3jrnD/y+bv+yUdCz/As9yAhAzbsCtQlz3db7EIurK7bxzMqNaLpKHil1PA3qrqMT77nDNauuJzuzcs4IrqUMomye+cWOsIx7n5lIwCbWruZMa62wKVVpagjHOM7jyzHEuf3f65ycoa9umEPAFuWL2SSQFPbMhaub+X7gds4laVYYtjmG0csVMdbkVHg81Nd28i0TnjPOWcVqjpKqQOkAahSReLKuZNg7q/h3sthxVIAygmzakcHPhFixhCN60xJaujZdurvzmcJdtwwe2I9C9btQcSJSPf2Ol2lXoofTk8kzhGynlrpxjbChmO/wtwLPsREzzl1Ek6lRrai7gOqVEmqHJValDCb9/QQN85sMh29sUKVSpWwSCwVgEpywVmybedvM2wL2009P49fQk80zmRrBwBTw3cTb54+lMVVSg0BDUCVKjZVqQC0TjrZ0d6LG396/vsrNXSitkkuJxZX7nDSKgX9zr+hBb5jmRv+BZ1UMH1MtedoobJCR7srVWyKOgDVUfCqJI2ZlVyspYudHeHU72XBQpRIlbh4WgDqLG/d68xiNKo6BEA0bvNN/x183f97LEl9U7rZP48Kv3YdUSWn6EfBF3UAaoyZb4y5zufzFbooSg2dUYcDEDF+nrOPpKUzktwUjumXMTX0vLfgE7FozF1IdA+ZE17AR/xPMoHdrNvdldz/Mv+zVJXrjEeq5MSNMde52XyKkg5CUqrYlNUDYGHzMd9jjF4Vx+9rwhhh1ZvlzJl8ZoELqEqNZOn6EXMHxK3b5QSb7wguhxjUSBertjvTbkaMj6DEqaurH7KyKqWGhgagShWbshoA/GLz34H7IQ64qT9XvLEQLtAAVA2tgC/zZluiBTQadx59dhRw+i3HYhFuin6Ec6xFnOJ7g/JKTR2mVLHRAFSpYuMPwpe3QDzMHQ89xZ1L2okR4P7gN/FHOwtdOlWCYlnSfyUaRRN9QrdFyhgNiHFu2dfQzSm+N4gbC+1GpVTxKeo+oEqVrFAVVDSyJjSD9WYcm00zZ4V/yD+Dpxa6ZKoE7eoMZ6w7ZFQVkApAu+JOe8iT9mxMtJdZ1joAdqOtn0oVIw1AlSpidRWpUe89lBHVQUiqAPY1/0EiRdgeqng6fjSfin6G2ngL5/oWAfDu8DeHoIRKqaGmt+CVKmL1lal53//HdzenxVYVsDSqVGWbgWt9SzfgzIwE8Hv7QhZFpwBwbG0n7HT2Kyez9VQpNfIVdQuo5gFVpa6xMpRcvtD3CgfH1xWwNKpUZQtAd7u35RMj5KO2xRW+f/BK6JNUhncm9/t84M9DUkalhpmizwNa1C2gbv6s+ZWVldcWuixKFUJzdSoA7SGEGP0ypoZeLG4y1tmeUfBx23CD9WfOsP6NX2xaOnuS+82xVg5ZOZUaRuLGmOsKXYjBVNQtoEqVuqnNqSkMn7WPIm70La+GXnkgcxS7Z3Ik9nZHONW3DL84LaUdYecxanx6C16pIqX/jZQqYvWeQUgdpoKAxNmyaS3rNm7GDndD1+4Clk6ViupyP+X0MpZdVNKDn1hy9LuFzYa1K4DUbfoWu4ovRD/OVtOIhU7DqVQxKupb8EqVupDf+Y5ZHfLTFqvkNXsqH/jFEsZIK2fJYr4QeICzwj/gj5+/lKnNVQUurRoOnnlrJ1f9fiFPfe60ZKqkhFU7OnjnT57nzo8dz2nTmpPrW7sizP72kwBcfvxEvv/eI+HX74DtS5jcew8ALwc/xxhrLwC7TA3vjX+fTdRzmGxk9v99CICYsfCLzSGyldfNFCZZO9llaqkeioorpYaUBqBKFTER4XuXHMGcyQ187nddvNk+iTBB7g9+i9HiBAPV0suCda0agCoA5j2/FoAn3tjOIaMOSdv20JKtANzxwrq0AHTp5rbk8rMrdjkL25ekHfsX+x0carYAcI7vVT4b+hvn+57htrrP8ljkIgAWV5xCz/YVLLAP46IpFo92XErDzDNpRilVbDQAVarIXXHCJABmz5jGH15yBiXVSje2ESwxVBDOOlWiKk3tvc6UmNlGrneF4+5jLG193NOh08oy7zvArbHLALil6j6Ivco0ez3lEuXTV30Y6iYCsOzxFdy25SAATjznRI6bXNRjMJQqafpfR6kSccKUhuRyLyEscYKGcgmzdpdO0akcLW56pPbeWMa21q5I2mOCbVLBamc4lWmh2zh9kAWbUeyhnF5aqqbxRPxYXo85QSeB8uT+QX8qeh1dXXaANVFKDWcagCpVImrLUwOStphUMFpBLzE7M02OKk2JjEn+XE2ZWXhb0BODiwAqJIKfGFV0s6DsU3zI9xStdiXXRT/PLrvGfaKyrOcR/e+kVFEr6re4JqJXKqU7kmrR8pEKEtpMJZ3hzNYuVZoS+TkTA9jyUeZJs9Q3bg0SI7Eqjo/uzjZuD9zKGGl1VnoC0JAnAO3oie5fwZUqLkWfiL6oA1BjzHxjzHU+X2YOOqVKjTcZ+IvmSAC+GL2OReYwDUBVUiLwLA9mfm4m1vXdVl2WGk4wprY8bVuAKAGcRoAoPhqkg7N9/6ZWuogbAZ/32FQwGtR+yaq0xY0x17kT6hQlfYcrVSLqKlLzwm+R0QD0GGdQUt9BJap0VZc5fyc1ZYGMbQ1uXtkGT35ZgAbPlK9lfVpOfRh8bi7POD4QJ3j9Y/xsro/+V9q+4+pSwWsoSwCslCoeOgpeqRJRV5kKKOqlk/X2aP43+HMao+10V1xdwJKp4aTCDfzG15dnbGuqCqY9ZhOJpY+e9xMngPMFJ4oPLPffjjEEJf2Lj5C6fx/SFlClipq+w5UqEfWeQUgX+hYyUXZiG2GybKfJM2e8Km07O3qB9BHpCS3u6PeWPqPgd3Wkpsv09ekE6idOO5V8N3oFr9tTqQ46278RuJMfBn+Ttu/Wvak54LN1AVBKFQ9tAVWqRDRWpYLMRn8Pvrgh4s613a4DPpSrJ+q0YEZimZkREl01usLpAzuNZ1CbSCoA7TFBttOAjcVtcSfZfG3lTuiEcdJKkPS/O2/QG/JrAKpUMdMAVKkSEfT0zfPFupx1EqdOunh++Wa2HF9LtGsvTfV1VAUstsaqaaqrpqM3Sm15AL/PwhhDRziWtX+gKg6JIHNvd+aXkj3uuj3dkYxtCZ3h1HG9BLGxCBFhvOxmu2mApmn8devJVNHDcdYK6jzHhjyj6YP7MQpfKTXyaACqVImpqwiw3jeFmXFnqsTzfAv5RLvNyT9fyp8D32CybyUAYXs018Q+yjf9v6daWpgl93DRkeO4d8FG/nTdXE6Y2ljIaqhBkmjLlPzTgOZUL500s5dxspu/hW7iushn6TFH8KXop7jV/2uiff4F6ch3pUqHBqBKlZCHbjiZMTVlSPgB7n7gN5RV1rNt/fLk9l3B8RB3AtAp1g6u8T3KeNlNUOJ09MZ4/I1tAGza080JaABajIw5sEkJfFZ6EDlGWjDu4KIofnbv2sV9wTsZTSvxPsMQygIagCpVKvTdrlQJOXJCHaNqymhuHs2HPnkTl37kP5FTP5vc3j3hlLT9yyTCE/YcVtvjAOiJOP0DX1jdMnSFVkMqsI9WyMQI+Yo+A4TKPP01p4+uStsWIoLfzQMax6LSF2OutZxRsjcjAK2t0K4dSpUKbQFVqsR5Rxvb/oq0bcdbK1hmT+YQayuQui3bG9XZxYpVyG/RHcl+fevd/J/1ffKA1pSnAseyQPq/FRtfMgCN4scXcI79duxKWqjlNs++tWW50zsppYqLtoAqVeKOmZgaBlJVVQ3AZyPXJ9cdYa1PLltuBBqOaQBarBJplMbXZeYBbXbTdTXvI21XR2/64CU/cfzitoAaC3/ACVY7TRlNvq60fQei36lSamQo6gBU54JXqn/ekccV46Yzo/d3nOJblnXfRIrHcNTOul2NfB29zih47/zuCYl8n968n5DKHQqZreM+sVlrj+V/olezzoyhstyZbvPHgV/x2cBf0/a19c9KqYSinwu+qG/Bu3Oozq+srLy20GVRarjq9uR0rK2q4hxrEe/z/TO5rt2U82j8BAAqQ37ae2OEYxopFKtY3Lm2bVlyw3ZFEnlAc0/danmaMdtMBa/Yh2NjcU/8LAAaap1BTkGJU223px0b0kFISiXEjTHXFboQg0nf7UqVOG8S8Zoyi/8X/GXy924TopJexkorYDOp0ekjqjMnFa+4++ewuzOcsS2RG3TvPiYuiMZTX05sBBuLWjo5QtYSIkLNqIncHTuLV+OHstlOz6TQdx55pVTx0ne7UiWuKpS6ETKqtjJt24Pxk/GJ4TTf6wSJJW+RjtYAVOVgeabirKGbw2QjJ1vLeDj0VSbJDrCCfDV2NXGxCJM+6t2neUCVKhn6bleqxFWHUkFAsKIubdsOU89i+xBnGzFW7ewA9n0LVpW2gC8VgPrEcLSswo/zzSWGjz3t7cwP/g/HWyuw9V+QUiVL3/1KlbiqslQLaCCUnoZptOzhofhJAASJJvt+vrKudegKqIaNqpDPfUwfPlDhSb10/JT02+o+bPw4X1hi+KgIBpnlZlbomwdUKVU69N2vVInzBhPiSx/5fIX/ac6yFgNOC2hikpxo/MBmy1EjU2150H1Mv3Xu/RLTdzajHkL4xG0BNT7KKpwvOT+PvYdf877BLK5SahjTAFSpEhfoM/Bjr6nkqfgxyd9PdVMyhSSaHLAU03w5Re+ghoqMdbnygNqe6Ts37+lJ2+YTm4CbiD6GL9nK3mOCjPd3DmiZlVIjhwagSqk0x4R/wxtmctq6N+1J7DFVyRbQmK0toMUu25ScufKAekfM72jvTdvmw+ZFewafjnyKNiopK3cC0C/67+fK4LMDW2il1IhR1HlAlVL775v+O/mw/8m0dbfHzqeXIBUBH+GYTVwD0KK3pzuSsa4jHHUf8xuE1msC3Bc/E4D1ZiwA1RVlGOPMelQTaxmg0iqlRhptAVVKpekbfAIcYm1lLC3J/J91ffoAquLT2pUZgLb3xNzH3HlAAYgljnW+qIxnFyfIcixsqkMBbotdyFbTwMrYqIEsslJqBNEW0IFg2/Dmm4P7HGaQW5z0/IV/juFw/ldfTfu1xVTTKB180v8QUeNjR9sGDrfi7OgYw5L/20l5IMi2HsOpk8Zh+QJs6owxusLCtmF3xGZCReZHTMy22dxtM7nqbXz8DIfXqI+NnTEmVFj02vDirignNQd4cVeUE5sDtEVsxlX4WdkWY3VnnFm1Fo0hiwq33+3GrhgtYUNDUBDgIM9rsrMnzoKWVEtjXVA4qMJK26cjatMbh564zYRyi57O7XRaDdSEAuyNGsaW+9jaHacxJGzes4sV3RVMrilnWo3FzrYWxlRWsK19L4HO1bwZbuLY8WMJEKOcMJ1LFvPvNS8Ri8fp7WmhrKKZ6KYYY4kyqn0jW/+ymvbebrbHK+nobGWaVANQvfYtnr37FWabcqL4udT3HDNkAx/z/51pvXcSX7iAn8Yv4brAI6yyJ8NLL2V/YV98cb+vRV6G4d/QsDr/UDzHSD9/XR0cffTgPkcJEDMUf8wFVllZabq6ugbvCSIRCGlibjVyTb7xYXx2nDW3vhu+XpNc/8XodUwzm7g2+Fja/rdtP5ftjc180v83GqWDTUtrqXmklaP+60+8//UniPgC/G3mGay/5aKM5/rOGR/j9uPfy+O3Xc/01k2DXrfB9OrY6bzvwz/iUy/+iZaKWu47+jzGtO9me01Tcp/1t1zEUZ++l7ZyJ0A7fuNS7r/3ywBM+eJDGCt1I+qRO/6TmTvXATD7hrtprUzPywpw86M/5bKlTiv19M/9hXDA+ez53KK7+PQpj/HT2CU8t34miyfMYN0tFzHlxoc5d8WL/Oao/+Xh+Al8vud6zl35Ij+bPY81sTH0WiFmWhuIG8EnA/P/4D/CX+Pf5lDeCF1FUJwBSGET4PDwHSz70ft568aZzPav5unuozjz1n+mHTv5xoeTr5tSw9Jpp8Gzzw7qU4hItzGmsv89Ry5tAR0Ifj888AB8/euZ2046Cc49F8Jh+N73MreffjqccQa0t8OPfpS5/Zxz4OSTYfdu+PnPM7e/610wZw5s2QK/+U3m9ksvhSOPhHXr4I47MrdfcQUcdhi89Rbce2/m9quugilTYMkS+MtfMrd//OMwfjwsXAjz52du//SnoakJXngBHn88c/sXvwg1NfD00/DMM5nbv/pVJ7h/7LHsLSLf/rbz+OCDGa13BINw003O8v33w+uvp2+vroYbb3SW77oLVqxI397YCJ/9rLP82986r6HXuHHwqU85y7/4BWzdmr59yhS45hpn+Sc/ca6h12GHwZVXOss33wwdHU7HuIQjj4QPfMBZ/uY3nS86XnPmwCWXOMtf+QoZTj4ZLrjA+dv71rcyt591lvPT3s7zP/4eZXYMjjiCyENhdvirsE46lGMmT+TocIg7XjuHF6bMAmBS2zYeqTuR71i/o1GcxPQTxu1l08yjAHjq0LmcunYxYmzsh+ZjrVsLt92WfNotDeMA2HjD55l+3MGwfDn84Q+Z5bv2Wpg6FV57Df70p8ztN9wAEybAK6/AX/+auf3zn4fmZnj+eXj00cztX/4y1NbCU085PwmJa/CNb0BZGTz8MPzrX5nH33wz67YbWAkbmicys3UjAI3dbWkBKB/6EGeuWchfj3D6Qm6tGeV8Lnz1q5jn0rMJbD9kJjNHV0FTE1WNdcSi8MVVT9K5t52fHXEhPcEyNow/GMb74NOfJuw5fldzMwATZBdba91b248+Cs/ZbKwbA8DBZithf5BVo6YAUO/r4pexsxgdbaUp1JFZxzx0xUL8lvNZGx3LuWtfYkdFAweXt/KOaZuYH/k4Zz99DxawScbyYNtPqTh8Gr62mfx9/HHMmjALZu1NO9/T/7gF35lnOJ8XO3fCrbdmPun73gdz58KmTfCzn2Vuv/xymD0b1qyBX/86c/tVV8HMmfDGG9k/F6+/Hg4+GBYvhnvuydz+mc/AxIlO6222z8Ubb4RRo5wgJdvn4k03OX97jz8OTzyRuf2733X+9h56CJ57LnP7j3/sPN5/P7z8cvq2UAi+/31n+e67nTp41dQ4f9sAt9+eefeuudl5b4g4n2tr1qRvnzABPve5VDk2b07ffvDBqc/F730v83Nvxgznc1HE+Z/Z3p6+ffbs1Ofil77kfH55zZ2b+lxMfD57nX46vPvdznFf+lLm9vPOc37a2rL/z37Xu+DMM52/vWz/s//jP5zPVXXAtAVUKdWvy+e9zEtrnQEj48rCzIq8zvX+v3G0tRaAmBViy6fWcdqtz1Ie8NETdVq9Vn7nfIJ90jyd9oNn2NDazS+uOIYLjxw3tBUZYI8u3cYn/7iYyY0VHDamhr+/sT1jn/U3X8ihX3k0LXfq+psvBGDylx5J2/eb75rJR06aDMB7f/kClSE/d119Aos37uG9v3S+gJ02rZk7P3Z8xvEn1+zij5HP8L3oFcyLO62H675/AVO+7ATf68uu4DV7Ku+JfIfqkJ+nuYYdpp6LIt9nUfDjNFkdxIyFhcESk2wRtQ14Ztfkluhl3Bi4L/nYYqo5Npz+5fcbF8/goydPeTsvqVKK0mgB1UFISql+eQOQWunhN8GfJIPPh+Nz+RunJadg9DbiZpuyM7G9Nzryc4km8l/atiEaz12ffL/oe7MLRON21nPmykBgjLOvRe5y1NDt7As0Szs+bJpoY4+p5h/xo/GLjeXehk/cjvdee4ATLKfFbJTsAaCSHs6TV9L2ScyYpZRSuWgAqpTql88bhVjpPXduiH6aNUyko9cJNn2eCDTREuqVSO/TN5fkSJQYKd7aHWHFjty3sPONx7yvydpdXby13TnnSs+5t/fJs5nQ3euU5f2+LLdsXVMtp4W2170uh1ubeDD0NV4zh/DTWH6zEp3ue5358blc5X+c+fG5lEmME6zlafu8tmlvjqOVUspR1AGoiFwsIvPi8cx/gkqp/B0xvja5XFdVllzeZWr4nv92JtubUsGTJ1YNZwlA6yuc6Rwbq4KDU9ghVFfhpKOqKw/i79tU+Dbkek28Dah9ZyFKKHMHQj5sz815/mX2JGdfd7rMVXaqC8TBsjXrMdm8aU9Oe9xp6vM+VimVF5+IzBORiwtdkMFS1IOQjDHzgfmVlZXXFrosSo1kiaARYNqYWmhzln8bu4AvBe5jM6NY6fZx9AZLvbHMADTkd+abP/BwrfD87gh2v29gapNt9qG+gjn2SbRSd5nyrNsjxs/L9gwABGGXqSFMgHIiXOB7hbN9i7GNEMMiKHEixpccwd53hPyH3FyxH/Q7g7e205BnDZVSeYobY64rdCEGU1EHoEqpgdHiSUpu+VMBjuUmGrcwhN1gszuS6vcZyXLvObFfS5ZE5yNN4lZ2TzSeDEYPRFek/xmGsvWrBYjGnPWTZEfW7UGJMVPWO/vaNs2+dqLGj41FgBiV4rRgB9152xPBJ5CRnmm8OAPSJkifEc5KKZWnor4Fr5QaGBtaUlkkXt0W5mvRjwLw3wEnPVKIaNZg087S9zERtPWdM3wk6nSDwVxB4f7q6On/PHtzzEIUiTrHzrVyT4pxos/pq5m4VuOs1v0tolJKDQgNQJVS/fJ2bzQi3BU/h5ujlyXX1UhP1pHPdZWZfRobq5y+ir4B6DNZaJUh5yZSRdDP2NqynPvlW9XqstRNqebqEGNqnHMm+poC1JRnv3EV8DvrF9nTc55/tdvnM5Eaa4ep4xexd7PcHJRfAT1ajJNYv8OUs9Skp1w6qCF7NwCllErQAFQp1S+f5/ayZQmX+p7jLF8qwbURSQYd3n6MsSxphJqSQenID0DLA05/1oqgj6aq3LOh5RtsJwJagIbKYHLA0eiaVHBbHQpkHAcQDDjHrjG5c6t24pwnYFnsMjXsMrXcGz+L8Ti30mPGwjZOWePuY9+sT7e4Xzxujzm5TCP4WW0mpO0ztlYDUKXUvmkAqpTqlzeAshB+GPgNx1krAfh7/Dh+EL+cbAHl+pbMCSASIWk4ywClkSaRkzNmm33WJ988oDFPn4VIzE5mEfAeH83WrwGw3fUhcvetraPTOR+GZmknQJyJsoPtpp4H4yfllQf0NGsJAFNkGwCV9HKxpM8U1RMZ+ddWKTW4NABVSvXLm2JI+gQkX41+jO2mgW17e4D0UdqdvZktYl37AAAbBklEQVSByNa9Tt/Pvd3Z+zKOJImcpnu7I6ze2Zlzv3zzgO7uSAWP63Z3sdI958odqXPvbM+eP7Un7Bz7Ht8LOc8/2doJpCYBmG5t5t7gd1luJnNv7My8yjjXt5x7Y2fwH/7nuDd2BmUSZba1Om2f17e05XUupVTp0gBUKdWvWRNSeUDrPf06X7UP5Ub/vZzMEjbtcQJQb0qiSJYcvA2Vzi3kKU0jf5a5Bve1qK8IDkif1qbq/nOjjq7Jfqu/POQc+9f4KTmPXWI7fTXL3K4DK+zUrfNx7sj2fGw0o9Met5nGvI9VSinQAFQplQfv4JhxnsE2T8WP5f3+5zlJlianjfROFZltYJI/2UKa323p4cxym4MHakBVPqmccu1juesjZO8jmp4H1JlEIIoTiL7L9xI3B27DNkLE+Nz9fcljE/1BEz7un5/2uIu6fsutlFJemgdUKdWv3Z2pW8PecUUhSa1PpPbp9KQkimYJQBMDk7a1jfw0TImcp92ReF5J5PvTmUc6p45w9q4LUTcN0yGyJev2oMSY4/bbTeQBNQgRAgh2Mu9nPnlA66Qr7VEppfaXtoAqpfq11e3fCc483/8ZuYGtpoH/8v8fABUSJhrPbNEM+DM/YmJuC2lxBKCZyfcPRGdv/+dpz5ErNOImoj/WDTKzOdZa5e7rfAkYJdpXUylVGBqAKqX65R2EZIxhvn0S34p+OLmuVrqTt+C9JjZUZKw7yF1n9R3NNAJVuWmTKkN+xtflTj2U70yd3hyfo2vKkuds8PS7rSvPfos9EHDWJ26zZ5Po8xlyvxhstRv4QfQD+5UHNGacYzfazQC0mQpeM4ek7TO5MfO6K6WUlwagSql+pSWiBz7ke5Kr/H9Provh54jxNe6+qZ1jWVpFR1c7fUhHfviZGsxTHvClBYl9WXn2Ea0IpgLQuopA8pyJfKCQnivUK+h3yrLBHRiUTQ/O+fxuHtBWqnnIPnm/8oD+KPYfANwbP8s5Bh/rzNi0fbx5S5VSKhsNQJVSeUgFUFUhP98J3MEJ1luAMxL+6sjnsx71+uY9GesSuS7DWVpMR5pEXaJxQ0/0wPOAeluRe6Px5C1+78CuSI7XLbFPpfRk3Q7QQAcAtnHygIaIMl02stGM4g+xs/PKA3qebwEAR1hrAaigl0vlmbR98unLqpQqbRqAKqX6ta/b5d+LXkGXKWPtbmdASkUwNXq6I0se0HXufl159Hcc7hK5TNt6IqzddeB5QFs8g702tHSzxj2nN8foro7seUB7w876i6yXc57/IGsXkMpOcKi1ld8Gf8gaM55n7GPyKuNR1lpuj53Phb4F/DZ2PuUSZaa1IW2fN7a253UupVTp0lHwSql+HdycytnpHe39SPx4rvE/Sg8hnmo9EUhPRJ9tKs7EbetpY6oGq7hDJnGLvKEyOCB9Wr232nMZk+P2dnlZCKLwQPy0nMe+Gj/U2df9krDcnki19OATm0byH5DUYpy8sLvdxy2mKe9jlVIKtAVUKZWHqOcWsDcn6HJ7Euf7FjJL1ib7e8b6uV2cyJmZ513pYS0RdA7UgKp88onm2idRBjvHx3rE+Flkpjm/GCcPaNzd9yLrJX4YnJczD6jdJw/o5/wPpD22UItSSu0PbQFVSvXLe9vXO7CoWfYCTg/RRH/I9t5o1n0TEoHS5j25+yqOFIn0S13hOMEsKaf2V0dv/9OTtufYJxJ11h9mbYQs3VGDEuMk6w1n37hNs78dH4ZuUq2ulpiseUCtPnlAA+62gOic70qpt0dbQJVS/fIGoOtaOrku8lkeix/HR/xPAlArXVnzgFaVZX7HTTQW7mgvnjygPdGB6c/aFe4/oOvI0Xc2GnOOPUrW5Dx2lrXe2ddtmW6Qjv0soVJKDQwNQJVS/Yp77pfbBp6wj+PnsUuS6+qkK22kdsLULPO9T3X7kw7U9JWFlOiOUBUKMLH+wPOA1npyfI6tLUues7EqleKpviJ7HtBQwCnL8/aROc//lj3R2ddN2bTJbuJb0SuT6/PRapy+u8vdY/aYShaa6Wn7ePsMK6VUNhqAKqX61TeN0DW+R7gpcFfy9zB+jj3ImQ/cu2csS1DaVBXK2G+kSgRyZQGLuooDzwNa7skgUFMeSJ4z8ZpBeq5QL7/fWb/NNOY8f9idJ95vCbtMDW1U8oR9HOOkBcgvD+htsYsAeCh+srMdi81mVNo+3vIqpVQ2GoAqpfpV6Ql6RlWF+Grgj8y1lgPO7Dpn995K8g68J2B5eW1Lxrnae5y+itlmThppEnWIxG269pH70s5zxFXEk6+pOxJL5tP0vlbhWPbb9HF3nzpJpWzq+8WhkfZkeZqlnXIizJaVrDbj+GXsXXnlAX2P718AzLXeBJw8oJfLk2n7tPX035dVKVXadBCSUqpf3pY5r14TYF7sIg6RLYQX3MElljDa2ss6ewxrzVjWruvi6UfW0Nm6ndlTR/PmW8vp7ajgdCtGc1sbHSv8rKmYxa43nqdz20oOO+da9i6Znxwif+KFznSfj7y+lfPHtPP8W1tZ75vK9NHVnHhII5vXr2DV2nUs42CmNlXi2/BPfBOP5Z1HH8I/V+2iozfGjLHVbGzt4R3TmnllbQuTGisZU1vGsyt2snBdK5ceO4G23ih15QE6wjEqgn5WbO9gbG0Ziza0MqamnOljqonFbTa0dnPujNFs2tPDm9vaeXWDk2i/vSfK+paunK9fvrF2a1cqD+im1h4C7sCmtbtS597tyRWadi0iEfDBudZCfsBlWfeZYDkzHoVjNgThYGsbPwv+Ly/FZ7DMnpJXGadbm/lp7BI+4/9r8nGatSVt4NNb27VvqVJq3zQAVUr164zpzfz86dUAHH1QHeu2jWGKtZ09popTrdc51lrFRHsXeO5C/yL2Lm7tvYxf/ust/hz6FqyBCcA5kNrv3nm8p/ce/h36JPXSya9/9Rqf8D+cPMffNy1j5aHX8OMnV7G+7ApOByb33oMA626+kLI7zuYMaeeq3nuopZMlZdfxlwWn0Dvjb1z52wVpdVhy0zv5wLyXCfosVn73fK65cxEx2/Dk8h2s3JE7iXxfF84awyNLt6eta6wMMRCZmEbV9H/remxt9jygFW4e0PviZ+Q89qX44YDzhaLLhNhgRlMj3YQkSj25k8cbQ1r9ek0o7XFjn1vwSinVn2EfgIrIVOArQK0x5lJ3nQV8G6gBFhlj7ixgEZUqerMnNbD4a++krSfK5MYKOk56gV09XZRH2ji7vJrXFz7PJgwTagOIidMVMSxYZGAvySk7E56Iz+Yc32JuinyYI9xR2fXubeM51or0J25dx5tZZtVJ3FhuktS2SpxR9XOt5VlnHkqMWE/kJk3cFp82unq/AtA3t2W27g1QGtC88onm2kfc9bnOEDF+XjdTnV8MdBPCdvc+z1rAu3wvYRshhkVQ4kSML5mKqe9T3hi4L+1xL9X9llspNfwUMsYa1ABURH4HXATsNMYc4Vl/HvBTwAfcboy5Odc5jDFrgatF5M+e1e/GaUxpATYPRtmVUukaKoPJmX9q6pugPjX7zUkXZd6+Da99Cfa2JpOdJ1TTDcBmRnGqLKOWTlba4+mknB2mPm3feHkjo92Zf7bYjYQkvW/ha/ZUjnbnJO/E2W+jPYqjskRhgRxD0RMDifI1ujqUnE40oTMc2+/zZJMrx6dXrv6VkYhza36WtTZnHtDTrSV8nw8m84CGiNJOasR6rjygSqnhZ6THWIM9COn3wHneFSLiA34BnA/MAC4XkRkiMktEHu7zk+u+znTgRWPM54DrB7H8Sqm36eiJdVnXz7FWAnCYbOSdvsXUu7kot5mGjHRAIj78buAYwZ8RoEbws9U0AGDcj7NeAsnWwPRzZQ9At+7dv4T4fl/mx2ZvdGCCte488oB25hjslBioNEM2ZN0OTv9N7741MvInA1CqhP2eERxjDWoAaox5Hmjts/p4YLUxZq0xJgLcB7zbGLPUGHNRn5+dOU69GdjjLuvXdKWGocSc736cgKnHBFlgTycgNm/aB9Hltlj6ibHGHseFvgV0UZ5M/9NlQlg+X3KGISfYTE8xFDc+3rQnOctYLLKn8Zccc6H3DT8TOTf3NwANZglAq8sCTGqsyHlMlkOyqvPk+BxfV86kBuec3jniGyuzp3sKBZ1jn7aPyXn+N+2DnH3d1tr19mhujF7LSjMhvwIC6+zRACyynWk9W00VL9kz0vaZNroq7/Mppd6ekR5jFSIN03hgk+f3ze66rESkUUR+DRwjIl92V/8fcK6I/Bx4Psdx14nIIhFZFIsNzCwlSqn8bXEDuzeMc3u+XCK8FHcClRnWRqLuXOMx/GxxA8syIsn0P5USxo7Hk6mJgsSS+SoTfBJnpuW0+PmwmWOtZILsylqevomQ3u4t82zz24f8FjVl2RPEQ/5zxSeCdnBmkapxg+QGT9Dp3cfL73PW7zKplue+rb5Rt9dVIg9oJ2W8YM9ijPs/LJ88oPe7g5z+EZ8NgEHYSXrLdP0+cqIqpfLiT8Qw7s91eR43JDHWQBj2g5CMMS3AJ/qs6wau7ue4ecA8gMrKymLIea3UiLKp1enr+Yx9DHfFzuZK/1Oc5nsdcFriytz+nDF8yTnFG/tMDWniYXqjtrutnSmyI217A52MFSd4SrS0jpHWjPyXQMZMTbnyafYn2+32cMzeZ//NfPOAes/d2RtLljnsWZ/rdn8s7qxvlr3JdX1fh8S2uDE0W+10mXJOtpbyppnEy9EZ/Hfg/uS+ufKAXu77BwBn+hYDUEGYD8mT/MGcm9xnT3f2VFFKqbzFjDFzBvtJ3m6MNRAK0QK6BfB29JrgrlNKFalzfIsAONpy5imfYW3kJDeROZCcU36WO6AowRduo6XTmYc+W3/FQ6ytyeVynKDnnb5XM1rtIDMAfbvJ0lu6MoOrjt4Ym/fkvpWfbx7Qvd2pMm3Z28MGN4hf39K9z+cHCEecY8+0/p3z/OPcYD3RqjzZ2sEtgdvYYRr2OYOS10HWLm6JXsZx1kpuiV5GuUSYYm1L22d/sgoopQbUiImxChGALgQOFZEpIhIELgMeKkA5lFJD4DrffEZ7WuUSlrq35reYpoxtI01TVTCjpfDtGJMjx6fX+Lrsc85XljvH/ilHHtCI8fNcfBYAFUEfu0wNy9z+s1XSk8wDGnG7RiS6SADJ2/K5rDNj+i23UmpIjJgYa1ADUBG5F3gJmC4im0XkamNMDLgBeBxYDtxvjHljkJ7/YhGZF4/rOCWlCsXq0/vygdg7AHgxPpO7Y2clR68D+Aagv/v+xoG5Ruvvr5HQz+ct4wxC6tsj4CxrMTcF/5js9wnp9UlMz5nQNw9ohyeVk1JqQPhEZJ6IXJxrh0LHWAdqUPuAGmMuz7H+UeDRwXxu93nmA/MrKyuvHeznUkrlZ4I4Ay/rpIOJspMG2vaRB7SJsbVOi98muxnpEwgtjh/C4dZGIJUHdK09htn7kQc0W1qlfRlTU5aRB7SjN5ZzcND+yKdbQK7+lYlb8LOtVTnzgL7TepXv80HCbh7QSnpppSa5j09M8kuA5gFVqqDixph9DjwqdIx1oApxC14pVQKOnVSfdf2JPmdmpENlC6f5llIj3fiwaTXVLLMnp+0rYmG5n1IxLNpMektbTCz24KT8SbSkhgnuVx7QzXu6s67PxZflXvvbHdDUV0+k//N059gnMQjpUMmdN3qqtd3d1+kDWiE6WEgpVRgagCqlBkXAbVkM4LTMdZoynokfBcCK+Phki6WfGG+ZiZzt+zdhgvudB/QtN7dlIg/oX+OnZC1P37CxrtxJFbS9rXe/6pUtD2hNeYCpTblvQ+fbyOpNtzSxoZwp7jlHe+aIb6rKnuKoLOisf9w+Luf5EwF+orV2jT2WT0duYLUZl18BgSW2M53nc/EjAdhtaviXPSttn8PG6NScSql9k2zpSoqNiNjAUEz54QdKNeloKdcdSrv+WvfSVcr1L+W6Q2nXfyjqXm6MKepGwpIIQIeKiCwairxdw1Ep1x1Ku/5a99KsO5R2/Uu57lDa9S/lug+koo6ulVJKKaXU8KMBqFJKKaWUGlIagA6seYUuQAGVct2htOuvdS9dpVz/Uq47lHb9S7nuA0b7gCqllFJKqSGlLaBKKaWUUmpIaQDqEpEGEXlSRFa5j1mzaIvIR9x9VonIRzzrjxWRpSKyWkR+Jm7WaxF5v4i8ISK2iMzpc64vu/uvEJFzPevPc9etFpEvDVad+5RlsOqf9bwi8kURec39WSYicRFpcLetd8/1mogsKsK6ny4ibZ763+Q515Be+wLU/YMi8rp7zIsicpTnXEN23ft7nUUkJCJ/cre/IiKTPdv2630rzpzMr7jr/yTO/Mz7fI7BNMR1/6O7fpmI/E5EAu76nO+BwTTEdf+9iKzz1PFod72475XV7nth9uDWOq1+Q1n/f3rqvlVEHnTXF9O1/52I7BSRZX3Olevzr2DXflgyxuiP0w3hB8CX3OUvAbdk2acBWOs+1rvL9e62BcBcnHzXjwHnu+sPB6YDzwJzPOeaASwBQsAUYA3gc3/WAFOBoLvPjBFc/3zOezHwtOf39UBTEVz7rOcFTgcezvIcQ37tC1D3kzzHng+8MtTXPZ/XGfgk8Gt3+TLgT+7yfr9vgfuBy9zlXwPX7+s5iqzuF7h/GwLc66l71vdAkdX998ClWcpxgfteEfe988pg1bmQ9e9z3r8AHy6ma+9uewcwG1jW51y5Pv8Kcu2H64+2gKa8G7jTXb4TeE+Wfc4FnjTGtBpj9gBPAueJyFigxhjzsnH+yv6QON4Ys9wYsyLH891njAkbY9YBq4Hj3Z/Vxpi1xpgIcJ+772AblPrned7Lcf45FUoh6+5ViGs/pHU3xrzongPgZWDCQFcoD/m8zt7y/xk4S0SE/Xzfusec6Z4D0l/jXM8xmIas7uDMSW1cOF9WCnG9E4a07vvwbuAP7svyMlDnvpcGW0HqLyI1OO+BBwepXvkYjLpjjHkeaM3yfLk+Vwt17YclDUBTRhtjtrnL24HRWfYZD2zy/L7ZXTfeXe67fl/2da5s6wfbYNV/n+cVkQrgPJxvyAkGeEJEXhWR695GXfZXIep+oogsEZHHRGRmP88xmApy3V1X47QGJAzVdc/ndU7uY4yJAW1A4z6OzbW+EdjrnqPvc+V6jsE0lHVPcm+9Xwn83bM623tgMBWi7t91b7X+REQS86kW6jO+INceJ/j6hzGm3bOuGK79vuT6/CvUtR+W/IUuwFASkaeAMVk2fcX7izHGiEjRpQcodP1znPdi4AVjjPdb5CnGmC0iMgp4UkTecr9pvm3DrO6LgUnGmE4RuQCnZeDQgX7OhGFW90SZzsAJQL0Ttw/4dVfDxi+B540x/3R/H9L3QIF8GSf4COKk7bkR+FZBS1QYlwO3e34vhWufVKzxxEAoqQDUGHN2rm0iskNExhpjtrlN4juz7LYFp/9KwgScvp1bSL+1NMFdty9bgIk5jsm1/oAUqP79nfcy+tx+N8ZscR93ishfcW53HFAgMpzq7m0JMMY8KiK/FJEm9v038bYNp7q7z3kkzj+k840xLZ5yDvh1zyGf1zmxz2YR8QO1QEs/x2Zb34Jzm83vtqp498/1HINpKOsOgIh8HWgGPp5Yl+s9YIzZ/TbrlY8hrbunBSwsIncAX9iPcgyGQlz7Jpz38SWJdUV27XPJ9flXqGs/PJlh0BF1OPwAt5LeafgHWfZpANbhDMSod5cb3G19B2Nc0OfYZ0kfhDST9I7Na3E6Svvd5SmkOkvPHKn139d5cd7grUClZ10lUO1ZfhE4r5jqjtMamcjBezyw0T12yK99Aep+EE4fqpP6PMeQXfd8XmfgU6QPSLjfXd7v9y3wAOmDkD65r+cY5Os91HW/xr2W5X2eI+t7oMjqPtZ9FOD/ATe7v19I+kCUBYN93QtRf/e4TwB3FuO19xw3mcxBSLk+/wpy7YfrT8ELMFx+cPp6/ANYBTxF6h/sHOB2z34fw/kHuhq4yrN+DrAMZ4Tc/3reYJfg9PMIAzuAxz3HfMXdfwXu6GF3/QXASnfbV0Z4/bOe1932UZzO3d5yTHXf7EuAN4ai/kNdd+AGt25LcAbinOQ515Be+wLU/XZgD/Ca+7OoENc92+uMc3v0Xe5yGU7guBonyJ7qOXa/3rdu3Ra453oACPX3HEVU95i7LnG9b+rvPVBEdX8aWOq+P+4Gqtz1AvzC3X8pnoaJYqq/u+1Z+nyRLLJrfy+wDYji/J+/2l2f6/OvYNd+OP7oTEhKKaWUUmpI6Sh4pZRSSik1pDQAVUoppZRSQ0oDUKWUUkopNaQ0AFVKKaWUUkNKA1CllFJKKTWkNABVShU9EXmPiBgROazQZemPiEwWkSsKXQ6llBpMGoAqpUrB5cC/3Mc07qwnw8lkQANQpVRR0wBUKVXURKQKZ875q3FmOEFETheRf4rIQ8Cb7rqvicgKEfmXiNwrIl9w1z8rInPc5SYRWe8uf1REHhSRJ0VkvYjcICKfE5F/i8jLItLg7newiPxdRF51n/Mwd/3vReRnIvKiiKwVkUvdIt8MnCoir4nIZ4fshVJKqSE03L75K6XUQHs38HdjzEoRaRGRY931s4EjjDHrROQ44H3AUUAAWAy8mse5jwCOwZlFZTVwozHmGBH5CfBhnCkY5wGfMMasEpETgF8CZ7rHj8UJjg8DHgL+jDN13xeMMRcdaMWVUmq40gBUKVXsLgd+6i7f5/7+MM48zOvc9ScDfzPG9AK9IjI/z3M/Y4zpADpEpA1IHLcUONJtfT0JeEBEEseEPMc/aIyxgTdFZPTbqJtSSo1IGoAqpYqWexv8TGCWiBjABxjgEaArz9PESHVXKuuzLexZtj2/2zifrxaw1xhzdI5ze4+XHPsopVTR0T6gSqlidilwlzFmkjFmsjFmIrAOOLXPfi8AF4tImdtq6b39vR5I3La/lP1gjGkH1onI+wHEcVQ/h3UA1fvzPEopNdJoAKqUKmaXA3/ts+4v9BkNb4xZiNMH83XgMZxb6G3u5h8C14vIv4Gmt1GGDwJXi8gS4A2cPqn78joQF5ElOghJKVWsxBhT6DIopVTBiUiVMaZTRCqA54HrjDGLC10upZQqRtoHVCmlHPNEZAZOP887NfhUSqnBoy2gSimllFJqSGkfUKWUUkopNaQ0AFVKKaWUUkNKA1CllFJKKTWkNABVSimllFJDSgNQpZRSSik1pDQAVUoppZRSQ+r/A0mc1w6EGwviAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 720x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqAAAAE9CAYAAADULNDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3yV5f3/8dd1sndC9k4ImQQSAmEICk6QOnCiUkfVWm2xS63a9qtWf1ZrW2dVtErdiFK3tk5QRDYhkJCQvfeeJyfnnOv3R0LKJkCSk4TP8/E4jwfn5rrv63MUTt5c931dl9JaI4QQQgghxEgx2LoAIYQQQghxapEAKoQQQgghRpQEUCGEEEIIMaIkgAohhBBCiBElAVQIIYQQQowoCaBCCCGEEGJE2du6gJFgMBi0i4uLrcsQQgghhDimrq4urbUe14OEp0QAdXFxobOz09ZlCCGEEEIck1Kq29Y1DLdxna6FEEIIIcToIwFUCCGEEEKMqDEZQJVSE5VSLyul1ti6FiGEEEIIcXxGPIAqpVYqpeqUUlkHHV+klNqrlCpQSt1ztGtorYu01jcNb6VCCCGEEGI42GIS0ivAP4DX9h1QStkBzwLnAhXAVqXUR4Ad8MhB59+ota4bmVKFEEIIIcRQG/EAqrX+TikVddDhmUCB1roIQCn1NnCx1voR4IKRrVAIIYQQQgyn0fIMaChQvt/7iv5jh6WU8lVKrQCmKaXuPUKbW5RS25RS28xm89BWK4QQQggxxtlyTs1oCaDHRWvdqLW+VWsd0z9Kerg2L2qtZ2itZ9jbnxLLnQohhBDiFDHW59SMlmRWCYTv9z6s/5gQQgghhDjUK4zhOTWjJYBuBWKVUtH0Bc+rgGtsW9Lxqa0opDY/A9/IRALDY7F3cLR1SUIIIYQ4SVaLhabaChoq8uioLcLJK4gpZ1xs67LG/JyaEQ+gSqlVwALATylVAdyvtX5ZKbUc+Jy+lL5Sa5090rWdjNLNHzFz9wMAmLQd5YZAmpzDCbjqGYIj42moKcNk7CYwLAY7eSRACCGEGBW01UpzQzUNFfm01xRiaijB0FqGS2cF3qZqAi11+Kle/PrbZ7jNg+EPoPZKqW37vX9Ra/3iIM473JyaWUdqrJTyBR6mf07NkR5rHA62mAV/9RGOfwZ8NsLlDJn4s65lT2ginVV7MTcU4NRagnd3Gc6ungDkf/oUc8pfokc7UGEXRJNzOD2e0aRe9xjOru50d7bj5OyKwc7Oxp9ECCGEGF9am+qpL8+jvaaAnoYSVHMpTp2VePdUEWCpZYLqYcJ+7ZvxoMEukAbXGKrcF6B8InH2j8Y7ZBIJ4bEjUbJZaz1juDvRWjcCtw53P4cjQ3FDwNjdyZ6PHsfBJxy34Di80xbhHxKFg6PTQJvg065mS3Yo1oYCnNpK8DGW4dOViaPTMwDs/uctTGn+ihq7EJpd+sKpfWA86UuW2+pjCSGEEGOCxWymvqqYhrIcumoKsDQW49Regmd3JQGWarzowmu/9u3ahTr7IJqdw6lxnwM+kTj7ReMVEoNfWCw+XhPwsdmnOSljZk6NBNAhUF9ZxJziZ6H4f8esWlGnfGi2D6DTORCTWwh4heEYPQf3wKvxCI7GwzdoYMTTIelHZBZ64txWgl93EUEdP1BbEwj9AXT735fgZqylzS0Kq28szkEJ+MdMI3Rioi0+shBCCDGieoxd1JTm0VKZS3dNAaq5GOeOMnx6Kgmy1BKkzAT1tzVpO2oNgTQ5hZLjk4L2jsTJPxqPoBj8w+Px9PbFwzAmFwI6ljEzp0ZprW1dw7Bzc3PTnZ2dw9pHV0cr9ZXFtNUU0d1QhqWlHPv2Sly6q/Ey1eFvrcdZ9R5wjlE7UG/wp9UxgG6XYMweodh5h+HiF4mrbxiOLu6ExyQBsPGl3+BZt5VAUzl+tACQ5ZRK8r3fArD52ZuwOrhhHxCPV8RkgiZOwdPbd1g/sxBCCDGUOttbqC7KprUyD1N9AXYtJbh1luFrqiJAN2JQ/8ssHdqFWvtgWp3D6PGMwDBhIm7BsfiGxxMQOrbnWyilurTWbsdoMzCnBqjlf3NqFgNP8r85NQ8Pd70nQgLoCNn3kHNjVREddaX0NJZCSzkOndW4G2vwMdfhp5sP+MsF/3sOpd0lBJN7OMonEu0egNUKHhMCmTJ3Mdpqpfj/TSPcUo6Dsgycu9nvUmYt/xfaamXLO3/BJSiOgJgUAkMnosbnv/yEEEKMcr2mHmrK8mgszcZYsxfVVIh7ewn+pnICaDqgbSNe1NuH0O4WjtkrCge/ibgHx+IfkcAE/5Bx+7NsMAF0rJMAOor0mnqoryqhpaaYrroSepvLMLRV4NJZgU9PNYHWOhzVgbs6NeBNo30gHS6hdLuF0u0wAQ049LbhGT2D6Qt/TENVKX4vTh04p127UOUQSeeM20hbdAOmHiMtDdX4B0eO27/MQgghRo62WmmoKaOuOJuOqlx0Qz7ObcX4GssIstYeMFjSjAe19mG0u0Vi8YnBMTAWr7BEAiPjcfcco09iniQJoOPEWAmgx2K1WGisLaexvG8tst7GYuzaynHtqsTHVE2AteGAv9RWrWhQPn0z+ZzCabf3QgHu5lYmmKowTf8paeffQN6Ob4n76CLacKPKIZI2jxisfglEzVtKUMSIzPYTQggxBvUYu6gq3E1TaRammlwcmwvw6iol2FyJmzIOtDNqB6rtQml2jaDHayL2/rF4hCYQFJ2Mt1/QUXo4NUkAHSfGSwA9FnOviYbqUhor8umqK8LcWIJ9Wzlu3ZVMMNXgrxuw2+8Wf5d2osYumErHSNotTrjQjZ+lnjBrJT60k3XuGyTPvZBda9fg8MPjtHlOQvsl4B6eTEjcdCYEhNrw0wohhBgpne0tVBXsoqUsC3NtDs4tBfh1lxBirR74uWLVihpDAA1OEXR5RKH8JuEanIh/VBIBoRNlmcHjIAF0nDhVAuix9Jp6qC3Lp6k8l+7afHRTMc7tpfj0VBBsqRm4va811GgfOg0edLoEU0EAkd05hOsqvFTXwPXKf/w94ZOmkLv1Kzqq8/GNSSMsNvWA5aeEEEKMHa2NtVQXZNJWnoW1fi+urQUEGEsJon6gTa+2o9IuhCaXaEw+sdgHJeATOZXQmGScXd1tWP34IQF0nJAAemyHrqFWiFNbGV7GcoLNVbiqHrSGBjyptk6gUXnh5eyIyXsi3U1VnGleD/TvAmUfQZN7HGm3v4WdvT09xi6cnF1t/AmFEELsY+zqoDwvg+binVhrsnFrySW4p3hglRWAbu1IpX04LW7R9E6IxTk4kQlRKYREJ8pAwzCTADpOSAA9OdpqpbGukobSHNqr8zA3FOLYWox3/3M+DvRSqf1owIse7Yir6sFRmWmLWoRjYBxkvElkbyFVzjF0eSdgHzIF/9iZRCZOt/VHE0KIcc1qsVBVnEN94XaMlVk4Nebi31VwwK1zo3agwj6CZvdYLP4JuIQk4h+dSlBE7Cl521xbrbS1NtFSW4anbzA+/sFUl+6l9D9PgbYy+7YVw16DBNBxQgLo8LFaLNRVFVNfvJuuqlxoyMe1vRj/nvKBWzZbLHEowFt1EKn6ZvJnE4M+5wGCJk0j/7/PY+fuh8+kdCISpstoqRBCnIDWxlrKczbTUZaJoW4P3h0FhPWW4qp6gL5nNKsMQdS7xmCckIBTSDJ+MdMInZg8ptfMPB4dbc001ZTSVl+OsbES78gpTEqZS21FIY2vXoenuQFfaxMuygTA5qQ/MuvKuyjK2kzouz+iyi6U6Psyh71OCaDjhARQ2+jubKeqKJuW8mxMtXk4NBfg1l6KMndjUFbiDFVYNTThiZ9qA/pu4ZcawqmOvoQzrnsA6LtVJM8VCSFEH221UltZRE3uFrrLM3BuyCK4K/+A5zSb8KTKaSIdXnEYAifjHZ1KWNw0XN29jnLlsUtbrVQW7aGtvpzupkp6W6qgvQaH8DSm/+hmOtqaUX9POGBmPsDG0BuY89OnaG2qp2LFJXQ7BWB2DQCPIOy9QwiZfAYh0QloqxVgxJYqlAA6TkgAHV32rQ9XU5BJZ8VuVF0O1rYq6O0CFG7KSJd2It6uiny7GNLMmZSqYGqcJmINnoZf4jwiJ88et1+kQgixj8VspqIwi/r8LZgrduLWvIewnkJ86PtHu1UrKuxCqHeLp9c/GbeoNILjZuAXFH6MK489OZs/p6O6AHNLOYb2apy7qumakMScnz4JQOf9gYcs/bQz6HJm37YCbbWy+YWfg3sA9l4hOPuG4ukfjl9I9Kj8WSIBdJyQADo2aKuV+upSagt30lmRhaE+F0NLGUazBQ/VTahqGBgp/YLZeAZG0e0RjbW7lbDpi4iZMgd7B0cbfwohhDgxVouF8vxM6nI3Yq3YjldrDhGmwoFb6CZtR5l9FE0e8ejgFLyipxOemI6bh7eNKz9xFrN54PZ/5jdv01W+G0N7FY5dNXj01NLmHELaXZ8AUPrgZCKtFUDf4vVNdv7UBZ3BnJ8+BUDG569i7+KNh38oPoGReHr7jtnNVSSAjhMSQMc2bbVSV1VMbcFOGgq2Y6zNJ8BczWTrXrJ0FOmGPAC6tCOFhFHrEI5r6hLi08/DNzDMxtULIcShtNVKbUUhVXs20FO6Fc/G3UT05OGhuoG+dZpLHSfR5p2ICknBN2YG4fFpODo527jy47P/Kig7v36b7sINOLZX4N5dha+5BqNyIez+XAB2P3ImU3p20IYbjQZ/2pwC6PKbypyb/g5AQeYGnFzd8QuZiIubh80+00iQADpOSAAdnyxmM+X5uyja8RVd5btw664kWNcTrappxxk/1cF3lim4KhMNjiFo/wSi0hcTnzL3lJzZKYSwneb6asqyvqereCsu9ZmEd+fgSyvQ/+y7w0SavCajwqYTkHAa4bGpY2JikLGrAydnV5TBQNaGj2nP+gLHjvL+gFmLm+7C+f5alMHAlievJrX5c+oM/rQ4BtHlEoLFJ5o51/8ZgIaaMlzcPMf0iO5QkQA6TkgAPbXUVRZTV7ybjtKdNBduJ8m8h0hDHdD3vFSBDsHk6EOH7xQs/kmETzmdsElTJZQKIYaExWymbO926vasx1CxheC2XYTpaqDvO6jcLow6jySsIWn4xM4mMmnmqF39Q1utaK0x2NlRkPk99Vv/jWNrCR7dFfiaa/Gllaaf72FCQCgbX76T6WUrqTME0OwYRLdrKBavcNKuug8nZ1e6OlpxcnYbE8Ha1iSAjhMSQEVTbSW7v/s3PUUbsTc2EmrXSmRvIUU6GD/VSpkOoElNwOIRyoS4WYQkzSU0OklCqRDimDramine+R0dBRtwq9tGdPeegVvpTXhS6joFY9B0PGJmEpk8Fw+vCTau+PBqyvIp3fgeuqkYp/ZSvI2VBFpqqLr0PSalzGPre08xLfMB6gz+NDqG0O0WhsUzjKQLf4OXbyDG7k4cHZ3le3MISAAdJySAisMx95r49tU/4VK9mShzESGqEYAMawzTDIW04coWQwr2fjF4x80jYuoZTAgItXHVQghbqynLp2Ln11hKN+LXkkmUuQQ7pbFqRaldJHU+KRjCZxGcPJ/QiUmjZiJMZ3sLhdu+oqs6F9WYj2tHGRNMldTPe5DUs69i97fvMWXtTzBqB2rsgml2DqPHI4Lwhb8kdOJkjN2d2NnZyy5II0AC6DghAVQMRm1FIWUZX9PZ3YWrHXSX7WB+64dYtKJQh9CkPehVjhg8ArCPSGdC/FyikmbKl7EQ41xVyV4qMr5AlW4gtHUHIboWgA7tQrFzIh0B03GfdBqRKfPx9Pa1aa2tzQ3UFO6irSIHc30eTi1F6MlLmL74JkpzdxD59pkAtOFKrX0obS5huM67jcRZCzF2ddDWXI9fUISMYtqYBNBxQgKoOBGmHiN5Wz6nNecbvGo2EWfJx1FZ+M4yhTPsdtOk3SiyBmNwdKMnYApOUbOJSJmPX1CErUsXQpwgbbVSVZJD1c6voPR7wlszBhZ4b8aDErcUekLn4Df5TKInz7LJ84xWi4WasnzqinZirNqDU0AM0xZeT0dbM+6PRw20M2sD1YYgqpJuZtYVd9Br6iF/x1oCo5OZ4B8yakZmxaEkgI4TEkDFUOjubKcwYy2B0VOwWMxkfPg05ze+tt8IqScu9OBu10ujTwoqai5hqWcTHBlv69KFEEdRV1lM6dZPUUXriGjbTgBNQN/zmyXuqfSGnUbAlLOITJgxoiODVouF2ooCuttbmJg8C4CsR+Yz0ZgzsDYowFavhaT/5h0ANr/9CE6+kUyITCI4KlHu0IxREkDHCQmgYjgYuzooyFhLe+46PGs2EWvKxVGZWe80j5SeDOqsnlhRuCkT1V6pWMJPI2jq2UTETpWRByFsqKOtmYKtn2PM/Yqgxk1EWcsBaMSLEo80zOGnETT1HCLiUkf87+rWD/4BJd/j1VFIaG8ZbspInn0ccX/cCsDmZ29CKwOGgEQ8I6YQPCkVrwn+I1qjGH4SQEcppVQi8CvAD/haa/380dpLABUjwdjVQdGu70mavQirxcL2vywi3bSFFu1GgQ7FohXhqh5ng5kSt1R6I+YSlLpIAqkQw8zca6Igcz3Nu7/Aq+p7Yk05OCgLRu1AnstUusJOxz/lfKKT0od9hNPUY6Q8bydNhduwVO/GozkHV3Mr0fdlArDjrxcS0bmLGqcoOj0nQUAiXtHTSJhx9rDWJUYXCaDD0aFSK4ELgDqtdfJ+xxcBTwF2wEta60cHcS0D8JrW+sdHaycBVNhCY20FxVs+RReuJbJlMwE0kUcErV6JhLXuoN3qSJiqp0O5U+o1ExWzgKgZi/ELibR16UKMeS0NNRT88AHkf0Fs+ya86MSqFYX2MTQEnoZH0rlMmn42zi7D9zO+ub6aytwtdJRmkHbFPTg6ObPp2ZuZXf8uAN3akXKHKFo845l268s4ODph6jGOud2OxNCTADocHSp1BtBBX3BM7j9mB+QB5wIVwFbgavrC6CMHXeJGrXWdUuoi4Dbgda31W0frUwKosDVttVK2N4PutkYSZp2HsbsT66PR2GElm2g6rY7EqCpCDE2UGMKp8Z2Nc/zZxKQvHLVrBgoxmmirlaLsLdRv/wjvyrXEmnKwU5omPCn0Og1D3LlMnPkjfPyDh61/ZTCQs/lzjN8+SWhX7sCzpAAlS78mKnEG+Rnf0VaVh9+kGYTFJMui7OKwJIAOV6dKRQGf7BdA5wAPaK0X9r+/F0BrfXD4PNy1PtVa/+hobSSAitHG3GsiZ+N/6Mz6lND69YTrKgD+4/wjQqkhuisLZ9ULKPKckmgPO5Og9IuJjE+T2/VC9DN2d7J348cYsz4lqmkDgfSt5ZtvN4mGkAX4TruQSSmnD/lt9damesqyfqCjeAtOdbsI7syh4czHmDL/UnZ/+x5e3/6ROvdEzAHJuEWkEZowQ9YQFsdFAuhwdXpoAL0cWKS1vrn//bXALK318iOcvwC4FHACdmmtnz1Mm1uAWwAcHR2n9/T0HNxEiFGjPD+Tyi0fEpS2mKjEGez44k1iNtxJtiEOo9WOmWThrnqoxp8y37k4JZ1P3KzzcXX3snXpQoyojrZm9n7/HuR8TELbRtyUkU7tzF73dCwx5xI9e8mQPsZi6jFSkr0JZ3dvIuJSKcnZRtTq/z2PWaGCqHVPxG3+7fKcphgyEkCHq9OTDKDHS0ZAxVhTkLmBprX/IKZlA760YtL27LJLpMfBm2nGLbiqHnq0A3tdUumKPIuouVcQFBFr67KFGBYtDTXkrX8Xx/xPSezchpPqpQlPCibMx3nKEuLnLB6yvdStFguZX6+ip+gHvBp3Em3Kw1n1stnvMmYtX0mvqYdtq/6Ee3Q6EZNPw8s3cEj6FWJ/IxVAj3dS95D2PUoC6Anfgh8MCaBirLKYzeRt/5rWHe/h3ZhJ3L0b6O3t4dt/3o25rZrQ3hJSyAf6bjs2hi8kePblRCak2bhyIU5Oa1M9e9e+iUveByQaM7FXVmrwpyTgTDynXUp8+rkn/fyk1WKheM9WGvasA2DW0nvQViv1D8bgrdsodphEs28qDpGziUg9E/+QqJP/YEIMwmACqC0mdQ+l0RJA7embhHQ2UEnfJKRrtNbZQ9GfBFAx3ux+ZAFTejIAyDVMotgxDt+eSmbqvqVcSg1hVAWdjV/65UxKmSfPjYoxobuznT3rVmPI/jeTOzfjqCxUqCDKgxfiN/MKJk2dOyR/lrd99Dx2uR8xsSsTL/p+Nuy1jyf+j1uAvkdi/MMmDesMeSGOZpABdMQndQ8lW8yCXwUsoG+4txa4X2v9slJqMfAkff+RVmqtHx6qPiWAivGoLG8nlRvfxa/sv8RaCtjivZioK/5M0XerMRR+QVpvRv+okR8lgefiO2fZkP0AF2Ko9Jp6yF7/PubMd0lqXY+r6qEeHwoDFzJh1jXEpp5+wn9me009FO3aQPOetTjW7STl1+9jZ2/P5meuJ7RpM1XeaaioeYSlnk1QeKz83RCjxmBvwY/0pO6hNCYXoj9eEkDFeFdesBuFImxSMgWZ3xP53kVkO6dS5ZqAb3cx07r7RpPKVQgVYYsJmXctkfGpti5bnMKK92yl9tuXia39DF9aacWNvRPOwnX6UhJnnX9St9dzNn9Oz7rHie3aiZsyAlBmCMX5pk8JCI2m19QjW1SKUU0pZQJ273foRa31i4dpF8UwT+oeLrIAmRDjQPikKQO/dvcJZFvIMqKq/0Nqz3aM2oFM93l0BM3Ev+JLZpW9jGHVSxTYxdAQfSHRC64jMCzGhtWLU0VrcwO5X/4Ln7x3iDPnEabtyHKfQ3nqMpLOuJSZJ7AAe1NdJUVbP8Oa/w3eZ9xKXNp8erva8TOWkOW3CPuYM4hMO5eIoIiBcyR8ijHArLWeMdydaK3XAeuGu5/DkRFQIcYpbbWyd9vXtG55i/DG7/G5cwcubh5s/eItmkt2EVX3NXHmPKxakeWSRu+Ua5h81tXy3JsYUtpqZc/G/9C9eSXJrd/irHopNkRRO+ly4s658YTWx2xraST7nT/hX/s9kyyFfcdwI2/GA8y44JaBReGFGKtscQt+pEkAFeIUYLVYBhbjLnowhYnWEnIcJlMTuhBDTzPx1Z8QRD2tuJHrtwi/M24mZuppNq5ajGXtrU3s+e+LBO59gyhref+frYVMmHfjcT+L3NbSSP4PHwEwffFPMPUY6X5kIpUO0bSGzGPClIVMSj1DdhUS48ZJBNBhndQ9lCSACnGKqasspvCrlwgreY9wXUWXdmJX3O24hSdj2voayW3rcVK9FNjF0Bh7BYmLbsHT29fWZYsxojh7M3XfPMeUhv/gqnrIs4+jNfl6ppx3A86u7oO+TmVRNuWb3sO99CvijbtxUBZyHCaT+IcfgL5dkGS0XoxXg5wFP+KTuoeSBFAhTlHaamXv9m9o2/Ay9omLSVt4LQ015eStX4M2dRFY9G8mWQrp0k7s9jufwHNuJypx2B9JEmPQvsXbnbatIMm0mx7twC6fc/A64zbi0uYP+jqVRTmETkwEYMdfLyCtcz0lhgiqAxfgk3ohsdPPklFOcUqQnZDGCQmgQgzOplUPM3vvYzTjSW7wEuyi56H2vM/U5q9wUr1kO6Zgmn4TU866GnsHR1uXK2zM2N1J5icrCNnzEuG6imr8KZ20jIRFt+HtF3TM87XVSknudmo2ria48nOirGVUXreJ0ImJlO7diYOjMyHRCSPwSYQYXSSAjhMSQIUYHKvFQvaGjzBvfompHRtQwE6P0wlf9iwFX/6T6KJVBFFPLb4UT7qWyRf+Cg+vCbYuW4ywloYacj5+grjSVfjSSoFdDC1pt5F63vWD/odJfsZ3OH18KxHWSqxakeOUTMfEH5Fw3s14TfAf5k8gxOgmAXSckAAqxPGrKS+g+D9PY99ZS/pvVgOwZ9PndLfW47z9RSabMmnXLmSFXEHshXfiFxJp44rFcGusrSD//T8ztXoNrqqHTOd07E7/FZPn/OiYk4qa6irJX/s6jj5hTDvvx7Q01FD+z6vpillMzBlL8dtvmSQhTnUSQMcJCaBCnLzKomyCX51LtSGA8rgbcI+eQc/3z5La/i0W7Ng5YSFB5/+OiDhZ4H682T94OmEiw+tsfBfdQ3RS+lHP6zF2kfXNKux2v8Pkrq04KAtbvBcz89erRqhyIcYmCaDjhARQIU6exWwm86s3cN22ggRzDo14kR9zA/5pF9Cw9nlS6j/GATMZXucQeNH9ByyOL8amQ4PnOQRc8MdB/yNj9yNnMqVnB3VMoDB4MUHzriN68qxhrlqIsU8C6DghAVSIobVn038xr3uMuO5ddPxsO34hkQNhJaX6XRzpZYf3QkIuvo/QiZNtXa44Tl0drWS+8zAppa8MOnh2d7aT9eWruOS8S/jP1uA1wZ+s9R+irRaS5l4ks9eFOA4SQMcJCaBCDI+a8gKCwicBkPHY+Rj9kgmdfwNVXzxDas0a7LGww2cREZc+SFBErI2rFcdi7jWx46Nnid79FP40s8PtDPwufuiowbOyKIfyz58kqfYjPOmiXIXQs+QlJqXMHcHKhRhfJICOExJAhRhe3Z3t5D67lGldG2jCk7z424icczmln/2VabXvo4GM0GtIXvqAzJofpTLXvovX+geJspaRa58I5z1Ewsxzj3pOTXkB/i/NwIqBXZ7zcTntFhJnLZRtMIU4SRJAxwkJoEKMjLwd6+j9731MNmVSpQLpueJNXNy9qVhzLzPavqQJT/KTfsn0S34l64iOElXFudS9+2tSuzZSrkJomH0Pqedee9gQaeoxkvnpC5gbi5nz0ycB2PLvJ4iavYSA0OiRLl2IcUsC6DghAVSIkaOtVnZ/9z5sep5Jy/+Nq7sXrc0N1BZnY/7P70nqzaLUEE7bgoeYcsYlti73lGXs7iRj1Z+YVrqybwRz0q2kXfl7HJ2cD2nb1dHKro+eITpvJYE0km8fS/TdP8g/IoQYJhJAxwkJoELYTo+xi7q/TKfeNYagy/9KTd42Ajb9P8J0Dds8ziZq2ZOyBuQI2/3d+/isvYcwXcN29wWEXfU4gWExR2wb9s0v8aGNPY5TMJ/2G6accYncZhdiGJ0KAVS+QYQQw64i8mISOzYz4RUC3+IAACAASURBVJXT6anIxH35d2yMuIWpbd/i9PxMNq9+FIvZbOsyx722lka2PHUNU765AY2B3We9xvQ7PzwkfLa1NFJVnAtAwMSplLgmk3v+uyT9/numLrhMwqcQ4qTJCKgQYkTUlBdQ+c6dTG9fSzX+WK/7GKvVTMu7v2RKzw7y7ONwvOx5ohJn2LrUcSnzm3cI/u5ufHUzW0KWMe3av+Ds6n5AG2NXBzvf+ysJBS9R6TiRyb9fb6NqhTi1nQojoBJAhRAjKvuHz+jc8jrTl7+Onb09ZpOJnV++ysStD+Kuu9gx6RekX32frBs5RLo6Wsl6+TZmNn9KiSEC0wX/IC5t/gFtek097PjwGaKznyWAJnY5p+Oy6H5iU0+3UdVCnNokgI4TEkCFGJ0aayvoWnEuNSnLiZ51IWVv/Jy0zvXkOiThvvSfhE1KtnWJY1pB5gacPriZUGs1m0OvJe26v+Dk7HpIu02rHmb23sfIcUhCn3UfSXPOt0G1Qoh9JICOExJAhRidqopzaXvrJyT07mGX8wwCl71IecaXxO14EHttJiv1/5h5ye22LnPMsVosbHn7YdLynqJFeVJ37tMkz73wgDYVBVl0NFWTMPNcjF0d7N30CVMXXCnPdwoxCkgAHSckgAoxelktFra++xhTcp7ApBwomv0wYVPmU//q9Uw2ZbLVayFJN7+Im4e3rUsdE9paGil6cRmpXRvJcD2NqJ+sxMc/eOD3uzpayXzzj0yvepNy+wgm/mGHhE4hRhkJoOOEBFAhRr/y/EyMq2+i3TmYtDs/xmI2s+XVe5hV9hIVdiFYLvsX0ZNn2brMUa00ZzuGd35MkLWW7Ql3MGvpvQeEy93fvofvunsI0bVs9T6f6KsekyWwhBiFJICOExJAhRgbek09GLs78fCaQFVxLl1tjRjbGwn66nZcdTd7T/sr0xZeb+syR6WML94gbsMdGJUTtQtfOOQ5zuwNnzL5y2soM4TSce7f5TlPIUaxUyGAjsn7LkqpBUqp9UqpFUqpBbauRwgxNBwcnQb2iq9751eEvXcxXfWlcMt3lDtEMW3jL9m48ndYLRYbVzp6aKuVTa/9H9N++AWVDhGYb157QLhsqCkDIGnO+WxJvp+Au7ZK+BRC2NyIB1Cl1EqlVJ1SKuug44uUUnuVUgVKqXuOcRkNdADOQMVw1SqEsJ3wG16mwHkyMzP/SOGaPxL8i8/Y6nUec8peYOcTS+jubLd1iTZnMZvZ8txNzC56mu0eZxJxx7qBReW7OlrZ/PS1OK6YRU1ZPspgYOblv8XZZVwPqgghxogRvwWvlDqDvvD4mtY6uf+YHZAHnEtfoNwKXA3YAY8cdIkbgQattVUpFQg8rrVedrQ+5Ra8EGOTudfE1n/dwZyq18izj2PCjWso+OZfzMx/kjyHBIJv+xAv30Bbl2kT3Z3t5D57JdO6fmBT0DJm/vQZDHZ2AOTtWIfLx7f1Lb8Uci3Tb/jrYfd4F0KMTnILfhhorb8Dmg46PBMo0FoXaa1NwNvAxVrr3VrrCw561Wmtrf3nNQNOI1i+EGIE2Ts4MueWZ9gx5x+YlSMuHl7M/vED7Jz9BBN782l59mxqygtsXeaIa29touTJ80jp3Mim+LuZfetzGOzs+m7Hv/UQ0R9eioPuJWfhW8z52TMSPoUQo85oeQY0FCjf731F/7HDUkpdqpR6AXgd+McR2tyilNqmlNpmlj2mhRjT0hZeS+K963Hz8KaroxUnr0Dyz3uNCZYG1MvnUZa309YljpjW5gaqnlnEJNNeMmY9weyrf3/A79vVZZPlNhuXX21i8mmLbVSlEEIcnU1mwSulooBP9rsFfzmwSGt9c//7a4FZWuvlQ9Gf3IIXYvzYtOLnzKhexfbkP+IXPwfv967CioHuaz4gIi7V1uUNq9bGWuqeW0ykuZjsuU8z7bwfA1CWtxNttRKZkIapx4iDg6Os7SnEGDZSt+D7J3I/BGQDb2ut1w13n/uMlm+oSiB8v/dh/ceEEOIAydc8TLbLdGZlP0h95n9pX/oeBqy4vLVkXI+Etrc29YfPEnLmPzcQPrM3fIr3W4vp+vdytNWKo5OzhE8hTgFjfVL3aPmW2grEKqWilVKOwFXARzauSQgxCrl7+pD020/Z7nEmswufovqHVbRdsWYghJYX7LZ1iUPO2N1J2bMXE2UuJmf+86ScdRUA2z56ntgvrqXZMAGva1ZK8BTi1PIKsGj/A/2Tup8FzgeSgKuVUklKqSlKqU8OegUA67XW5wN3A38ayeJtsQzTKmAjEK+UqlBK3aS1NgPLgc+BHOAdrXX2SNcmhBgbHBydSP3VGrZ4Lyau/F08fINpX/oe9lgwvHkZDTXlx77IGGHuNZHzzBVMNu0ic/qfSTnrSrTVysaVv2PGjnvId5qM9/K1hEQn2LpUIcTQsd83j6X/dcvBDcb6pG7ZCUkIMWZZLRbqqooJCp8EwN5t3xD+8VVU2ocT8uuvx/z+8dpqZesz1zKz+RM2xf+O2Vf/AQBjVwelj59Nm1sEKT9/XWa5CzHODPYZ0JOdU6OUuhRYCHgDz4/kM6D2I9WREEIMNYOdHUHhk/qWH/rnr1BOHhjnP83kb29jz7OXkfjbz3BwHLsrtW1e9RCzmz9hY+gNzLn6D1gtFnqMXbi4eRD+6y9wcfWQ2+5CiBOmtX4PeM8Wfcs3lxBizNNa49BZxeySZ+muLSQj5QGmGrex44VD7lqNGZlr3yU97wl2uJ3BrBsfx9xrYvvTV1H01I/oNfXg6u4l4VMIcbAxM6lbvr2EEGOewc6O1NtXkeE2j9l7H8PO1YuNwdcxq/EDtvz7CVuXd9zK8nYycd3tlNhHkXDbGyil2PHs9aS3fkFbyGljelRXCDGsxsykbgmgQohxwd7BkcRfrCbXPpGkjXfiPe0idjlPJ3XX/yN329e2Lm/QjF0dmN++HrNywO36d3Fx9WDzCz9nZstnbAy/mTk3PGrrEoUQo8BYn9Qtk5CEEONKU10l7SsW0jDjN0yadQGd/zgde92L4/KNePsF2bq8Y9r8zPXMavyAzPkvkXLmFWx680/Mzn+czX6XMfPnL8ltdyFOAafCXvASQIUQ406vqWfgNnVB5vdEvHcR2e5zSL3j41Ed4LZ/9i+mb/k1m4KWMfvW5wAoydlGzdoXmfmz5zHY2dm4QiHESJAAOk5IABXi1LTto+exlG3B6hHGnOKn2TLlT8y87Ne2Luuw6qtKcHrxNGrsQ4m6az1tjbX4BoWP6sAshBgep0IAlW82IcS41VtfwKyG9zC4eJLllEryrj9Tnp9p67IOoa1WKt64DUdtwuWqlTTWlGJ4cR6bXjnWLnpCCDE2SQAVQoxbM6//C7uc00nN/gvmeXdhVva0v/NzrBaLrUs7wPb/vMy0rh/YGfsL/EMn0vXaVdhjJmTuNbYuTQghhoUEUCHEuGVnb0/oT16hQ7nise6PZCXeQVJvFts+eNrWpQ1oqqskZuuD5NnHMWPpH8h8eTkxliKKz3iCyPhUW5cnhBDDQgKoEGJc8w0Mo3zeX4ixFOPs6Uu241QSdv+VhpoyW5cGQMFbd+KmO3G49Dl2ff0WsxreY1Pg1aScdZWtSxNCiGEjAVQIMe6lnnM1RZd/Qdr5N+B5xT9w1j0Ur7rT1mWRn/EdM5r/w47gq4hOSkcZ7NnlPIO0G5+0dWlCCDGsZBa8EOKUUpKzjfJ1/+L02jfIX/IJsamn26QObbWS+8hcAnorcfh1Bp7evgPHZea7EKc2mQUvhBDjSHnBbkLfPg9l70wTnvR+di/aarVJLTv+s5LE3j0UTvkNuWvfZNObf8JqsUj4FEKcEuSbTghxygifNIVdHqeTXvEq28N/QpJpNxlfvjnidZh7TQRs+zvFhijC0haTtPPPuJd9g1JqxGsRQghbkAAqhDilRF7zNL3Y49ewhVJDGD6b/zriyzJlfPpPwnUVzbPupGbNHRiwMuGqF2T0UwhxypBvOyHEKcUvJJLdE29iWvdGcoKWEG0tJfOrN0as/15TD8GZT1NgF4ODiztpnevZFX0zIdEJI1aDEELYmgRQIcQpZ9oV91KuQvD29KBcheC55YkRGwXN+PQFwnQNbbPuwGPdfVSqQFKX/mFE+hZCiNHC3tYFCCHESHN2dSfwngzCnZzZ+qEn6Rn3kvH1Kqad9+Nh7VdbrQTsfpFCu2imnXM1uV5+dJhNhLqM68muQghxCBkBFUKckhydnNFWKy6+EZQRiPPWZ4e9z6z1HxBlLadpys0og4HEWQtJnnvhsPcrhBCjzVEDqFLKoJQ6baSKEUKIkZT1/Yckf7WMXZ4LSOzdQ/7O9cPan3XjczTgTW97PZufuR5zr2lY+xNCiNHqqAFUa20Fhn9YQAghbGDy3IsoNYQzuWMj7VZnWtY+M2x9le7dSYpxK1nBl5NU+BLOnZXYOzgOW39CCDFc+gcorzyZawzmFvzXSqnLlCxQJ4QYZwx2dtSnLifaWsZ3LmeR0vI1TXWVw9JXzZdPY9L2GLDiTQeui+4fln6EEGK49Q9Q/u5krjGYAPoz4F3ApJRqU0q1K6XaTqZTIYQYLVLPv5FKFUiUuRBHZSbvq5VD3oexu5OEhv+S4X4GSdXvscs53WZbgAohxBD5Sil1p1IqXCk1Yd9rsCcfM4BqrT201gattYPW2rP/vefJ1XxylFKnK6VWKKVeUkr9YMtahBBjm72DI+WTfkywpZrtKpnAgjVDvj1n9tq38aKTFveJ+NGCOu32Ib2+EELYwFLgF8B3wPb+17bBnjyoWfBKqYuUUn/rf11wQmX+71orlVJ1Sqmsg44vUkrtVUoVKKXuOdo1tNbrtda3Ap8Ar55MPUIIkXrJb3G9Oxdz4hKirSUU7NowpNd32LWKWnxJOPPHbAz/KcnzZOa7EGJs01pHH+Y1cbDnHzOAKqUeBX4F7Ol//Uop9ciJl8wrwKKD+rCjb7LT+UAScLVSKkkpNUUp9clBr4D9Tr0GeOskahFCCJxd3XF2cSPu7OtoszrR9P2/huzaDTVlTO7eRlHoRUQmTGPOTX+TLTeFEGOeUspBKfVLpdSa/tdypZTDYM8fzEL0i4HU/gdOUUq9CmQA955IwVrr75RSUQcdngkUaK2L+vt4G7hYa/0IcNgRV6VUBNCqtW4/kTqEEGJ/LQ01GP8xj0y7dGY0fI3VYsFgZ3fS1y387m1mKU231Z7czV+QMOu8IahWCCFs7nnAAXiu//21/cduHszJg90JyRto6v+11/FUN0ihQPl+7yuAWcc45ybgiMMUSqlbgFsAHB1lqRMhxNF5+wXRYOfJREs5frSwZ+uXJM1edOwTj8Gt8FOyiOH0qpVs110gAVQIMUoopU4HltGXB5O01sez9nu61jplv/ffKKUyB3vyYO4DPQJkKKVe6R/93A48fBwFDgut9f1a6yNOQNJav6i1nqG1nmFvLzuOCiGOrWHSZcRRyl5LKG3b15z09ZrqKkk0ZlLmGIODshA8/6YhqFIIIUbFnBqLUipmv34nApbBnnzUZNa/9uf3wGwgvf/w3VrrmuMs8lgqgfD93of1HxNCiBETf86NmHL/TqVdMMn1J38bvuC71aSjSezdw177BOITpw9htWI06u3tpaKiAqPRaOtSxBjg7OxMWFgYDg6DfnRyf68A/wBe23dgvzk159J3N3mrUuojwI6+AcX93ai1ruv/9TX03Vk+HncBa5VSRYACIoGfDPbkowZQrbVWSn2mtZ4CfHSchR2PrUCsUiqavuB5FX3/MYQQYsT4+Aez0zWdxK58/GmiYNcGYqedccLXcyz6gm0kkK5z2Rz/f0NYqRitKioq8PDwICoqCtm/RRyN1prGxkYqKiqIjo4+kfNtNqdGKWUAuoFYIL7/8F6tdc9grzGYW/A7lFLpx242OEqpVcBGIF4pVaGUuklrbQaWA58DOcA7WuvsoepTCCEGy3H+byhJuxsr0JD52Qlfx9RjJLYzgzqnaGrwI27BsqErUoxaRqMRX19fCZ/imJRS+Pr6Hmm03F4ptW2/1y2DvOzh5tSEHuOco86pOZx9W7VrrXu01rv6X4MOnzC4SUizgGVKqVKgk75hVq21nno8He2jtb76CMc/A078214IIYbAvolHBbtewKty/QlfJ3/7N0xWRkJmXEDgOW/J0kunEAmfYrCO8mfFrLWeMRI1aK1PdF/gr5VSlwHvaa318Z48mG/EhUAMcBZwIX1DuLKKshBi3KooyCLPMJFJPXtob2069gmH0Zb1X9qszkxMXyjhU4yYlpYWnnvuuYH369at44ILTmr/mJP25JNP8tprrx274X5eeeUVli9fftQ269at44cf/jcXecWKFcfdzz533nkn33zzzQmdO8qM5JyafVu195zIVu1H/Vbsf5j1c6116cGvkyxaCCFGrcqM/7K490uq8KNg84ndmPGr3cBWNZnup+Zg7O4c4gqFOLyDA+hwMZvNg263cuVKrrnm0Gkdg73GkRwcQG+99Vauu+66E7rW7bffzqOPPnpS9YwSA3NqlFKO9M2pGfI5PP2T1Cf3b9XueCJbtR81gGqtLcDe/gdUhRDilBA562IAKrQ/pr1fHvf5zfXVxJgLCaeeZgd/nF3chrpEIQ7rnnvuobCwkNTUVO666y4AOjo6uPzyy0lISGDZsmXsu1u6fft25s+fz/Tp01m4cCHV1dUA7Ny5k9mzZzN16lQuueQSmpubAViwYAG//vWvmTFjBg8//DDR0dH09vYC0NbWdsD7fb755hvS0tLYtxzi/td46qmnqK+v57LLLiM9PZ309HQ2bDh0G9yPP/6YWbNmMW3aNM455xxqa2spKSlhxYoVPPHEE6SmprJ+/XoeeOAB/va3v5Gbm8vMmTMHzi8pKWHKlClH/cyRkZE0NjZSUzPUi/wMH1vOqem/5f7pyVxjMM+A+gDZSqkt9D0Duq/zi06mYyGEGK2CImIpNYThajXh05xx3OeXZq4jAlfiVBkbQ24dhgrFmLFgwaHHrrwSfv5z6OqCxYsP/f0bbuh7NTTA5Zcf+Hvr1h21u0cffZSsrCx27tzZ33wdGRkZZGdnExISwty5c9mwYQOzZs3i9ttv58MPP8Tf35/Vq1fzhz/8gZUrV3LdddfxzDPPMH/+fO677z7+9Kc/8eSTTwJgMpnYtm0b0BfsPv30U5YsWcLbb7/NpZdeeshyQhs2bGD69AOXH9v/Gtdccw2/+c1vmDdvHmVlZSxcuJCcnJwD2s+bN49NmzahlOKll17iscce4+9//zu33nor7u7u3HnnnQB8/fXXACQkJGAymSguLiY6OprVq1ezdOlSent7j/iZAdLS0tiwYQOXXXbZUf8bjxajYE7NDqVUutZ664mcPJgAKmuHCCFOOdW+c0it+wAsmtamerwm+A/63O6ijRRYQ5lpl4dvymEChhAjaObMmYSFhQGQmppKSUkJ3t7eZGVlce655wJgsVgIDg6mtbWVlpYW5s+fD8D111/PFVdcMXCtpUuXDvz65ptv5rHHHmPJkiX861//4p///OchfVdXV5OYmHjAsf2v8dVXX7Fnz56B921tbXR0dBzQvqKigqVLl1JdXY3JZBrUkkVXXnklq1ev5p577mH16tWsXr2avXv3HvYz7xMQEEBVVdUxry0GnNQk9WMGUK31t0qpSCBWa/2VUsqVvgVNhRBi3HJJPAdV9wFlOoCunV+TctZVgz7Xs2EHrcqBZjyZlDJvGKsUo97RRixdXY/++35+xxzxHAwnJ6eBX9vZ2WE2m9FaM3nyZDZu3HhA29bW1qNey83tf4+TzJ07l5KSEtatW4fFYiE5OfmQ9i4uLocsM7T/NaxWK5s2bcLZ2fmIfd5+++389re/5aKLLmLdunU88MADR60R+kLuFVdcwaWXXopSitjYWHbv3n3Yz7yP0WjExcXlmNcWAxaezMnHnJqplPopsAZ4of9QKPDByXQqhBCjXeLcJXTdnkWkqqWr4NDn0o7E3GsiuiePZreJ5KfcdVI7KQlxvDw8PGhvP/Z64vHx8dTX1w+Esd7eXrKzs/Hy8sLHx4f16/uWIHv99dcHRkMP57rrruOaa67hJz85/AY4iYmJFBQUHPH88847j2eeeWbg/b5HB/bX2tpKaGjfUpavvvq/3SKP9lljYmKws7PjoYceGhhxPdJn3icvL++wIVocXv+E9HDgrP5fdzG41ZVgkA1/AcwF2vo7zAcCjr9UIYQYOxydnPHxC6LEIQbPhkN/KB5JyZ4tuKoeApPnM/OSXw5jhUIcytfXl7lz55KcnDwwCelwHB0dWbNmDXfffTcpKSmkpqYOzCh/9dVXueuuu5g6dSo7d+7kvvvuO+J1li1bRnNzM1dffdjHETn//PP57rvvjnj+008/zbZt25g6dSpJSUmsWLHikDYPPPAAV1xxBdOnT8fPz2/g+IUXXsj7778/MAnpYEuXLuWNN97gyiuvPOZn7u3tpaCggBkzRmTpzXFBKXU/cDdwb/8hB+CNQZ9/rLVDlVKbtdazlFIZWutpSil7YMeJLkRvC25ubrqzU5ZBEUIcn8y172K37mECdCN+95cMajRz8+pHCcheSf3cB5hxzlIZAT3F5OTkHPLM43i2Zs0aPvzwQ15//fUjtrnkkkt47LHHiI2NHcHKjs/777/Pjh07eOihh0a878P9mVFKdWmtR/XyGUqpncA0+jLhtP5juwabDwczAvqtUur3gItS6lz6Fh39+EQLFkKIMUNrklUx9dqbyuI9x24P2FVuo5YJxG78neyII8a122+/nXvuuYf/+7+jz1V+9NFHB5Y7Gq3MZjN33HGHrcsYa0z9yzFpAKXUcQXmwcyCv4e+fUJ307fq/WfAS8dZpBBCjDlRqWfCd9CGG8a9mwmfNOWY5/h25GNQ3ZS6JuMjOyCJcWz/ZzePJj4+nvj4+GGu5uTsP9NfDNo7SqkXAO/++UI3AocuhXAEg5kFb+2/4KAvKoQQ44HXBH+KDRG4WHswlu84ZntTjxF3cyP+hnaqAuUHmhBi/NJa/63/zngbEA/cp7Ue9M4dgxkBFUKIU1aDRxJRLT9Q05xzzLbleTvp0H74045XnCy/JIQY3/oD5/FvF8dxTJcXQohTUvTplBCKt7HimE2binbQhTO92o7oqRJAhRDiSAYdQPsXoBdCiFNK+pLlmGPOJVzV0dbSeNS2luos4lQ5xRe/j4ubxwhVKIQQY89gFqI/TSm1B8jtf5+ilHpu2CsTQohRwiUkCbNWVBUcfT1Ql5Y8Whz8iUs78sLdQggxXiilXJRSJzTDbDAjoE/Qt91SI4DWOhM440Q6E0KIMWnzCnbribSXZR21mZOxniJLIGV5g1+4Xoix5Mknn6Srq+uEz4+KiqKhoeGkarj88sspKio6rnNuuOEG1qxZc9Q2r7zyygF7wd98880H7FN/PM455xyam5tP6NyxQil1IbAT+G//+1Sl1EeDPX9Qt+C11uUHHbIMukIhhBjjLI6e+NGGpfbIE5F6TT30WBTnsom2urIRrE6IkXOyAfR4aK2xWq0HHMvOzsZisTBx4sRD2lssJxdNDg6gL730EklJSSd0rWuvvZbnnhv3N4sfAGYCLQBa651A9GBPHkwALVdKnQZopZSDUupO4NjTQYUQYpwwTYgjRDVg33LkUZea0ly6cQIgND59pEoTo9zSFzYe8np9YwkA3SbLYX//3W19Yz5NnaZDfm8w3njjDWbOnElqaio/+9nPsFgslJaWEhsbS0NDA1arldNPP50vvviCkpISEhISWLZsGYmJiVx++eVHDJhPP/00VVVVnHnmmZx55pkA3HbbbcyYMYPJkydz//33A/DNN9+wZMmSgfO+/PJLLrnkkkOu9/jjj5OcnExycjJPPvkkACUlJcTHx3PdddeRnJxMefmB419vvvkmF1988cB7d3d37rjjDlJSUti4cSPbt29n/vz5TJ8+nYULFx52AfwHH3yQ9PR0kpOTueWWW9Bas2bNGrZt28ayZctITU2lu7ubBQsWsG3bNlasWHHAtqavvPIKy5cvP+J/a4CLLrqIVatWHft/1tjWq7VuPejY0bfX/P/t3XmcFNW9///XZ3pmmGHYNxUhLAZZZAcBIySiYTERDSiConFBDRi9xuVeMN5ciTHX6E+TqDFfYhIhxg3FkGsSE40LLgQMi8gOIpssAg77DDDb+f1xumd69u6hp3t65v18POox3edUVX9O13T1p0/VqQoTSQI6DX8/+DOBXUB/4NaIwxMRSXLpp/ckYI7Ck8cqnSd7x3oCFLGfFrRse0YcoxMpsX79eubNm8eiRYtYuXIlgUCA559/nk6dOjFjxgymT5/OY489Rq9evRg9ejQAGzdu5NZbb2X9+vU0a9as0p67//iP/6B9+/a8++67vPvuuwD89Kc/ZdmyZaxatYr33nuPVatWMXLkSDZs2MD+/fsBmDNnDjfeeGOpdS1fvpw5c+bw0UcfsWTJEn7729/y8ccfA/Dpp59y6623snbtWjp16lRquUWLFjFo0KDi5zk5OQwdOpRPPvmEoUOHcvvttzN//nyWL1/OjTfeyH333VeuHbfddhtLly5lzZo1HD9+nL/+9a9cccUVDB48mOeff56VK1eSmZlZPP/ll1/OggULip/PmzePyZMnV/peA7Rs2ZKTJ0+SnV31wMUkt9bMrgYCZtbNzJ4E/hXpwpFcB7S7c25KeIGZnQ8sii5OEZHk1KpzH1gKrrAAV1SEVXCHoxNfbKKl5bInrRNtExCj1E3zvndepXWZ6YEq61tlpVdZX5G3336b5cuXc+65vhf++PHjtGvXDvDnNL7yyivMnj2blStLzlPu2LEj559/PgDXXHMNTzzxBPfcc09Er/fyyy/z9NNPU1BQwJ49e1i3bh19+/bl2muv5bnnnuOGG25g8eLFPPvss6WW+/DDDxk/fjxZWf7ujRMmVFERWwAAIABJREFUTOCDDz7g0ksvpVOnTgwbNqzC19uzZw9t25Z8wgKBAJdffjngE+k1a9YwatQowB+SP+OM8j8G3333XR555BFyc3M5cOAA55xzDuPGjau0jW3btqVr164sWbKEbt26sWHDBs4//3yeeuqpSt9rgHbt2rF7925at24dyVuZjG4H7gNOAi8AbwAPRrpwJAnok8DACMpEROql9mf1YWHqcE4v2kb2vp20Of0r5eaxA5/R3HLY3mxwAiIU8ZxzXHfddTz00EPl6nJzc9m501/P9tixYzRt6i8VZmal5iv7vDJbt27l0UcfZenSpbRs2ZLrr7+eEydOAHDDDTcwbtw4MjIymDhxIqmpkd/3JpSUViQzM7P4NQAyMjIIBAKAb/s555zD4sWVn6pw4sQJbr31VpYtW0bHjh2ZNWtWqfVVZvLkybz88sv06NGD8ePHY2ZVvteh1wrvSa2Hejjn7sMnoVGr9BC8mZ1nZncDbc3srrBpFhCoWawiIsmnUUZjWn7tWnqk7OTLzzdVOE9mzk6OpLSi39Sn4hydSImLLrqI+fPns2/fPgAOHDjA9u3bAZgxYwZTpkzhgQce4Oabby5eZseOHcVJ2wsvvMDw4ZXfRKFp06YcPXoUgCNHjpCVlUXz5s3Zu3cvf//734vna9++Pe3bt+fBBx/khhtuKLeeESNG8Oc//5nc3FxycnJYsGABI0aMqLZ9PXv2ZPPmzRXWde/enf379xe3JT8/n7Vr15aaJ5RstmnThmPHjpUaGR/etrLGjx/P//3f//Hiiy8yefJkoOr32jnHF198QefOnattUxJ7zMzWm9lPzKx3tAtXdQ5oOtAE30vaNGw6AlxRk0hFRJJVk7ad2eeac2xPxV9+zfL2kZN5OhmNm8Q5MpESvXr14sEHH2T06NH07duXUaNGsWfPHt577z2WLl1anISmp6czZ84cwCduTz31FD179uTgwYNMnz690vXfcsstjB07lpEjR9KvXz8GDBhAjx49uPrqq4sP44dMmTKFjh070rNnz3LrGThwINdffz1Dhgxh6NCh3HTTTQwYMKDa9n37299m4cKFFdalp6czf/58ZsyYQb9+/ejfvz//+lfpUxJbtGjBzTffTO/evRkzZkzx4XPwl2qaNm1a8SCkcC1btqRnz55s376dIUOGAJW/1+DPcR02bFhUPb/Jxjk3EhgJ7Ad+Y2arzey/I13enKt6wJKZdXLObT+1MGPLzHrhh/9nA28756q8uFdWVpbLycmJR2giUk8tfuI6zsl+k7Wdv8t5Nzxcrn7pj87lRKApfe94meYt2yQgQqkL1q9fX2HCVVdt27aNSy65hDVrqr7GbU3cdtttDBgwgKlTp8ZsncePH2fkyJEsWrSo+NB7XXTHHXdw6aWXctFFF1U7b0X/M2aW65yr/FyEOsbM+gD/BUxyzqVHskwko+Dnmtk7ZadTCPIZM9tnZmvKlI81s41mttnMZlazmouBJ51z04Hv1jQWEZFIWavONLNcCg6Uv8bn0cMHKCDAee5jGusWnCIMGjSIVatWcc0118R0vZmZmfz4xz9m165dMV1vrPXu3Tui5DOZmVlPM5tlZqvxY4P+BXSIdPlI+obDh8JlAJcDBVFFWdpc4FdA8ZA4MwsATwGjgJ3A0uDV9ANA2bN7bwT+CNxvZpcC9XZ4mYjUHeltusBmKMw9UK7uwO6tpJPPHmtDx/RGCYhOpGY6d+5cYe/n+PHj2bp1a6myhx9+mDFjxkS03uXLl8ckvopEGkMihZ9jW489A8wDxjjndlc3c1nVJqDOubL/RYvM7N/RvlDY+t43s85liocAm51zWwDM7CXgMufcQ8Allazq+8HE9U81jUVEJFLNzviqf5B/slzd4b3baGInOBBoS8c4xyVSG8KveylSEedcdNcIK6PaBNTMWoU9TQEGAc1P5UUrcCYQfruDncDQKmLqDPwQyAL+v0rmuQW4BfyJySIip6Jth24ApLj8cnUnsj/ndDvGZxlnxzssEZEai3ZMTXCZl51zVwYPvYcPJDLAOef6RvLakRyCXx58AcMfet8KxO6M4hpwzm0jmFxWMc/TwNPgByHFISwRqceatWzL39PH8NUTq8k7eYL0RhnFdfkHPifXNcK1VgIqIvFhZs/gjxLvc871DisfCzyOP43xd865n1WxmtCYmg+Cpz5Wm4ACdwT/VnaEOiKRHIKP+Mbyp2AXlDpy1SFYJiJSJ1hKCq26DaXb2jfYu38Xp3U4q7guLXcPWSl5fO3G8qPjRURqyVwSMKbGObcn+PBW59yM8DozexiYUX6p8ipNQM1sQjUBxPLcy6VANzPrgk88JwNXx3D9IiKnLD/QmM+KzqCoTALa6Pg+DgVa6xacIhI3dWBMzSjKJ5sXV1BWoaouwzSuiqnG3a5m9iKwGOhuZjvNbKpzrgC4DX8f0fXAy865tVWtR0Qk7j59g6aWS86B0gM+s09Abr5j366tlSwoUj907tyZL7/8MtFhlPLLX/6y3L3mqzN37lxuu+22KudZuHBhqQvZz549O+rXCbnnnnt4552ormCZambLwqYqTzsMU9GYmjMrm9nMOpvZ0/he1ArH1FSwzPTg+Z/dzWxV2LQVWBVhnJX3gDrnyt87Kwacc1dVUv468HptvKaISCwUZZ1Gq9yjbMkufYZQSmEe/QKfcbixrgEqUpmCgoJTvjNQYWFhqQvQFxQU8Mwzz7BixYqYv97ChQtp0qQJX/va1wCYNm1ajdd1++23c/PNN3PhhRdGukiBc25wjV8wQpGMqanAC8Df8Yf0w6/bftQ5V/46dZWo9kL0ZtbczH4eloU/ZmaxHgUvIlLnpbbsQKoVkVumBzSNfHJcI5o1b1XJktJgzfl2+enfv/V1ebkV13/8vK/PyS5fF4HnnnuOIUOG0L9/f773ve9RWFjI9u3b6datG19++SVFRUWMGDGCN998k23bttGjRw+mTJlCz549ueKKK8jNza1y/U8++SQDBw6kT58+bNiwAfD3Qf/Od75D3759GTZsGKtW+Y6wWbNmce2113L++edz7bXXMnfuXCZMmMDYsWPp1q0b//Vf/1W83jfffJPzzjuPgQMHMnHiRI4dOwb4XtcZM2YwcOBAXnnllVKxvPPOOwwcOLA40bzgggv4wQ9+wODBg3n88cfZv38/l19+Oeeeey7nnnsuixYtKteev/zlLwwdOpQBAwbwzW9+k71797Jt2zZmz57NL37xC/r3788HH3zArFmzePTRR9mwYUPx7TjB302qT58+gL/+6Te+8Q0GDRrEmDFjim/N2alTJ7Kzs/niiy8i2oanoNbH1DjnDjvntjnnrgreKfM4frB6EzP7SqTrieROSM8AR4Erg9MRYE4NYhYRSWoZrfxNPvKP7S8uy887SablsZ+WWEoku1SR2rN+/XrmzZvHokWLWLlyJYFAgOeff55OnToxY8YMpk+fzmOPPUavXr0YPXo0ABs3buTWW29l/fr1NGvWjF//+tdVvkabNm1YsWIF06dP59FHHwXg/vvvZ8CAAaxatYr//d//5bvfLblJ4bp163jrrbd48cUXAVi5ciXz5s1j9erVzJs3j88//5wvv/ySBx98kLfeeosVK1YwePBgfv7znxevo3Xr1qxYsYLJkyeXimXRokUMGjSoVFleXh7Lli3j7rvv5o477uDOO+9k6dKlvPrqq9x0003l2jN8+HCWLFnCxx9/zOTJk3nkkUfo3Lkz06ZN484772TlypWMGDGieP4ePXqQl5dXfKH+efPmMWnSJPLz87n99tuZP38+y5cv58Ybb+S+++4rXm7gwIEVJsAxVjymxszS8WNqXquNFzKzcWb2Kf7qSO8B2/A9oxGJpG/6LOfc5WHPf2xmK6OKUkSkHshs1R4Ad/xwcdnhA3vJII+j1ixRYUlddsPfKq9Lb1x1fVbrqusr8Pbbb7N8+XLOPfdcwN87vV27dgDcdNNNvPLKK8yePZuVK0u+xjt27Mj5558PwDXXXMMTTzzBPffcU37lQRMm+DHKgwYN4k9/8uNWPvzwQ1599VUALrzwQrKzszly5AgAl156KZmZmcXLX3TRRTRv7g+k9urVi+3bt3Po0CHWrVtXHEdeXh7nnVdynfNJkyZVGMuePXvK3Uc9fN633nqLdevWFT8/cuRIcc9qyM6dO5k0aRJ79uwhLy+PLl2qv/jPlVdeybx585g5cybz5s1j3rx5bNy4kTVr1jBq1CjAny5wxhlnFC/Trl07du+O+oZBlQqOqbkAaGNmO4H7nXO/N7PQmJoA8Ewtjql5EBgGvOWcG2BmI4GI770aSQJ63MyGO+c+BDCz8/HdrSIiDUr7r/bnTYbRypUkoMcO7uMYGRzLiPjIk0itcc5x3XXX8dBDZa+4A7m5uezcuROAY8eO0bSpP2fZzErNV/Z5WY0a+dvNBgIBCgqqvzN3VlZWhcuHr8M5x6hRo4p7SatbR0hmZiYnTpyodN6ioiKWLFlCRkZG2UWL3X777dx1111ceumlLFy4kFmzZlXXJCZNmsTEiROZMGECZka3bt1YvXo155xzDosXL65wmRMnTpRKxE9VHRhTk++cyzazFDNLcc69a2a/jHThSI4XTQeeMrNtZrYdf82pmp+JKyKSpJq3Po02WWm0I7u4LOfgPoakbKLd8OsSGJmId9FFFzF//nz27dsH+HMzt2/fDsCMGTOYMmUKDzzwQKl7le/YsaM4aXrhhRcYPnx41K87YsQInn/en7u6cOFC2rRpQ7NmkR8VGDZsGIsWLWLz5s0A5OTksGnTpmqX69mzZ/EyFRk9ejRPPvlk8fPwnt+Qw4cPc+aZfqD4H/7wh+Lypk2bcvTo0QrXe9ZZZxEIBPjJT35S3OPavXt39u/fX/xe5ufns3ZtSefjpk2b6N27d4XrS1KHzKwJ8D7wvJk9DuREunC1CahzbqVzrh/QF+jjnBvgnPukxuGKiCSxvYVNOFhQcnvfvKP+fNDM5u0SFZJIsV69evHggw8yevRo+vbty6hRo9izZw/vvfceS5cuLU5C09PTmTPHD+fo3r07Tz31FD179uTgwYNMnz496tedNWsWy5cvp2/fvsycObNUIheJtm3bMnfuXK666ir69u3LeeedVzzAqSoXX3wx77//fqX1TzzxBMuWLaNv37706tWL2bNnVxj7xIkTGTRoEG3atCkuHzduHAsWLCgehFTWpEmTeO6557jyyisBf9vv+fPnM2PGDPr160f//v2LL+OUn5/P5s2bGTy41ge2x9Nl+CPidwL/AD7DX6ozIuZc1XepNLM78IOOjgK/BQYCM51zb9Yw4LjLyspyOTkRJ+UiIpXaef9X2VPUknN/shSA959/iC4bf8+2c6YxYlLl581Jw7B+/fpy5yTWZdu2beOSSy5hzZo1iQ6lxsaPH88jjzxCt27dEh1KpRYsWMCKFSv4yU9+Uq6uov8ZM8t1zlV83kE9Eckh+Budc0eA0fjbNF0LVHVfURGReuuwNSXTTnIi1w9kOHF4Px1T9pMWOLXrG4pIzfzsZz8rvtxRXVVQUMDdd9+d6DBiwsyOmtmRsOlo+N9I1xPJHjN0NvK3gGedc2utujOURUTqqdyULFoVfcmRg/vJaNyEwtyDAGS2Oj3BkYlEr3PnzhX2fo4fP774MkMhDz/8MGPGjIlXaBHr3r073bt3T3QYVZo4cWKiQ4gZ51xM7rgRSQK63MzeBLoA95pZU6AoFi8uIpJsTgaa0rhwFzmHv4Qzu+BO+kEKGc10DqjUHwsWLEh0CJIEzGw40M05N8fM2gBNnXMR3ZM4kgR0KtAf2OKcyzWz1kCt3KZTRKSuK0hrSpO84xw87O+HnVLgr0qX1UIJqHjOuWovZSQC/n8lWZnZ/cBgoDt+rFA68BxwfiTLRzIKvgjoDPyPmT0GfN05F/HN5kVE6pNGvcfxuWtLfvBi9KmugI+LvkqzNmdUs6Q0BBkZGWRnZyd1YiHx4ZwjOzu7ymuU1nHjgUsJXnrJObcbiPjwfLU9oGb2a+CrQOjqsN8zs286574ffawiIsmtfddz6PTvHSw77g+9dwns42jj02jWonWCI5O6oEOHDuzcuZP9+/dXP7M0eBkZGXTo0CHRYdRUnnPOmZkDMLOoRu1Hcgj+QqCnC/6cM7M/AOuqXkREpH46fjyHZUXdyD3kE4xGRbkcTK3XV0uRKKSlpUV0K0eReuBlM/sN0MLMbgZuBH4X6cKRJKCbga8A24PPOwKfRhuliEh9cGTPFoakfMrrB/cCsLOgBY0O70hwVCIi8eWce9TMRgFH8OeB/o9z7p+RLl9pAmpmfwEc/nj+ejP7d/D5UODfpxS1iEiSahK83FLRCX9ziyw7QUpEl1QWEalfggnnPwGC94Sf4px7PpJlq+oBfbSq14wiPhGReiOzaQv/oOA4Bfl5NCKfYxb5Pa9FRJKZmTUDvg+cCbyGT0C/D9wDfAKcWgLqnHuvkhceDlyFv/m8iEiD0ijLJ6ApBSfIOXqYRuRzwJJ2FKuISLT+CBwEFgM3AT/E37ToO865lZGuJKJ7x5nZAOBqYCKwFXg12mhFROqDxk2aA5BSmMfxY4fIsDzyApkJjkpEJG66Ouf6AJjZ74A9wFeccyeiWUlV54Ceje/pvAr4EpgHmHNuZI1DFhFJck1btOEDBtA8rYATOYfZW3Q6Oc3OSnRYIiLxkh964JwrNLOd0SafUHUP6AbgA+AS59xmADO7M+owRUTqkUBqKq3TC4CjnMg5zNDABj7pfXeiwxIRiZd+ZnYk+NiAzOBzA5xzLqKT4qtKQCcAk4F3zewfwEvBlYuINGif5zcj3Z2k7clcAAKNdAheRBoG51wgFuup9Nohzrk/O+cmAz2Ad4EfAO3M7P+Z2ehYvLiISDLqU7SBjKJcjmTvJc+lsmfth4kOSUQkqURyL/gc59wLzrlxQAfgY2BGrUcmIlJHHacR6RRwMvcQ6VZASnrjRIckIpJUorp6snPuoHPuaefcRbUVUFlm1tXMfm9m86sqExGJlxM0Ip188nOPAZCa0TTBEYmIJJdavX2HmT1jZvvMbE2Z8rFmttHMNpvZzKrW4Zzb4pybWl2ZiEi85JFGGgUU5h0HIK2xLkQvIhKNiK4DegrmAr8Cng0VmFkAeAoYBewElprZa0AAeKjM8jc65/bVcowiIlEpsDTS3FGKggloIyWgIiJRqdUE1Dn3vpl1LlM8BNjsnNsCYGYvAZc55x4CLonVa5vZLcAtAOnp6bFarYgIh9sMoOO+v5KamspHhT1o275rokMSEUkqtXoIvhJnAp+HPd8ZLKuQmbU2s9nAADO7t7KysoLnqg52zg1OTa3tjl4RaUiymjTl9JRDNEt3DA1s4Cvd+iY6JBGRqCVynE0iEtCoOOeynXPTnHNnBXtJKywTEYmXA0eOsaSwBy73IMeLUklN01EWEYmvZB9nk4gEdBfQMex5h2CZiEhSyDj6Ob1TtnH40AEyUwr4cvf2RIckIg3PXGBseEHYOJuLgV7AVWbWy8z6mNlfy0zt4h9yiUQcm14KdDOzLvjEczJwdQLiEBGpkaJAOo3IJ1B0EoC0zKwERyQiDU0ix9nEQm1fhulFYDHQ3cx2mtlU51wBcBvwBrAeeNk5t7Y24xARiSUXaESaFRIoygcgI1MXoheRmEo1s2Vh0y0RLheXcTaxUNuj4K+qpPx14PXafG0RkdriAo0ASHN5FDkjPT0jwRGJSD1T4JwbXNsv4pzLBqZVV1Yb6vwgJBGROifNJ5zpls9J0rAU7UpFpE5ImnE22muKiESpXe8LOeiySHf5LHa9Ex2OiEhI8TgbM0vHj7N5LcExVUgJqIhIlDKzmtHSchgY+IwzGp1MdDgi0gAl+zgbXaFdRCRKB/bvYXFhT9rbl+Q6XQNUROIv2cfZqAdURCRKJ4/s47zAejItn5Z5XyQ6HBGRpKMEVEQkSoG0TACakku+DiSJiERNCaiISJQCqf6we6blUUAgwdGIiCQfJaAiIlFKSUsrflxk2o2KiERLe04RkSilpJVceL5Iu1ERkahpzykiEqUOX+3HCZfKvwvPZndqx+oXEBGRUpSAiohEKT0jkwwrYEhgE22zNAhJRCRa2nOKiETp6KFsthT2IJ18coq0GxURiZb2nCIiUSo4eZyhgQ0AfHQso5q5RUSkLB2CFxGJUqBR+CAkXYZJRCRaSkBFRKKUnq5R8CIip0J7ThGRKKWF9YA6XQdURCRq2nOKiEQpvVEm+c4felcPqIhI9LTnFBGJUqt2ZxKgiH8Xdudo1lcSHY6ISNJRAioiUgMFpDAksJFWLVokOhQRkaSjyzCJiESpID+PlUVfpZAUcvNdosMREUk6SkBFRKJk5ns/Ad7KbpPgaEREko8OwYuIRCklpWTX6UzXARURiZYSUBGRKFlKSvEoeCWgIiLRq/MJqJl1NbPfm9n8sLKeZjbbzOab2fRExiciDVNhcPfpdCckEZGo1WoCambPmNk+M1tTpnysmW00s81mNrOqdTjntjjnppYpW++cmwZcCZwf+8hFRKp2lMYAuBQloCIi0artHtC5wNjwAjMLAE8BFwO9gKvMrJeZ9TGzv5aZ2lW2YjO7FPgb8HrthS8iUrHGLpelRWdjrc5KdCgiIkmnVhNQ59z7wIEyxUOAzcGezTzgJeAy59xq59wlZaZ9Vaz7NefcxcCU2muBiEjFAgbnpmyiVZtKfyeLiEglEnEZpjOBz8Oe7wSGVjazmbUGfgoMMLN7nXMPmdkFwASgEZX0gJrZLcAtAOnp6bGJXEQk6JOirgQoIuf4yUSHIiKSdOr8dUCdc9nAtDJlC4GF1Sz3NPA0QFZWlq4ULSIx1S9lCxmWz9/3bkp0KCIiNWJmXYH7gObOuSuCZT2BO4A2wNvOuf9XG6+diFHwu4COYc87BMtERJJPSp3/HS8i9VCyD/RORAK6FOhmZl3MLB2YDLyWgDhERGrMYQCYElARSYy5JPFA71rdc5rZi8AFQBsz2wnc75z7vZndBrwBBIBnnHNrazMOEZFaowRURBLAOfe+mXUuU1w80BvAzEIDvR8CLoli3a8Br5nZ34AXYhNxabW653TOXVVJ+evo8kkiksQOuqZkWjYElICKSMylmtmysOdPB8e2VCcuA71jQXtOEZEaOJLSjL2FLWja8ZxEhyIi9U+Bc25wbb9ITQd6x4ISUBGRGmh89VyObVjMkNFXJzoUEZGQpBnoXefvBS8iUhd98frDtPzkNxw5uD/RoYiIhCTNQG8loCIiNdD34D85q3Arn6/5MNGhiEgDFBzovRjobmY7zWyqc64ACA30Xg+8XFcHeusQvIhIDRQSAPJJ0Sh4EUmAZB/orR5QEZEaWNtnBqsbDaB993MTHYqISNIx5+r/XSqzsrJcTk5OosMQERERqZaZ5TrnshIdR21SD6iIiIiIxJUSUBERERGJKyWgIiIiIhJXSkBFREREJK6UgIqIiIhIXCkBFREREZG4UgIqIiIiInGlBFRERERE4koJqIiIiIjElRJQEREREYkrJaAiIiIiEldKQEVEREQkrpSAioiIiEhcKQEVERERkbhSAioiIiIicaUEVERERETiSgmoiIiIiMRVnU9Azayrmf3ezOaHlV1gZh+Y2WwzuyCB4YmIiIhIlGo1ATWzZ8xsn5mtKVM+1sw2mtlmM5tZ1Tqcc1ucc1PLFgPHgAxgZ2yjFhEREZHalFrL658L/Ap4NlRgZgHgKWAUPnlcamavAQHgoTLL3+ic21fBej9wzr1nZqcBPwem1ELsIiIiIlILajUBdc69b2adyxQPATY757YAmNlLwGXOuYeASyJcb1Hw4UGgUWyiFREREamGc2CW6CiSXm33gFbkTODzsOc7gaGVzWxmrYGfAgPM7F7n3ENmNgEYA7TA97BWtNwtwC0A6enpMQpdRERE6iTn4ORJyM2N7XT8eOnnEybA888nurVJLxEJaFScc9nAtDJlfwL+VM1yTwNPA2RlZblaC1BERESqVlBQksDl5MQ+SQwliq4GX/eZmX5q3Lj0lJUFbduWLx84MPbvT4KYWVfgPqC5c+6KYNkFwE+AtcBLzrmFtfHaiUhAdwEdw553CJaJiIhIvIUnhxUliLF4np8ffVzp6eWTv9DUokXF5RUlklVNGRmQUucvCFQhM3sGf+riPudc77DyscDj+LE1v3PO/ayydQRPh5wafqUh4jTQOxEJ6FKgm5l1wSeek4GrExCHiIhI3VY2OayNBDEvL/q4MjJK9xSGHjdpAqedVr4nsbLnWVk+aSw7T2YmBAKxfz/rl7kk8UDvWk1AzexF4AKgjZntBO53zv3ezG4D3sC/Ic8459bWZhwiIiIxV1hYez2Gp5IcNmpUcdLXpAm0axdZUlhVAqnkMB5SzWxZ2POng6cWFkv2gd61PQr+qkrKXwder83XFhGRBiyUHNZmgljT5LCypC+UHEaSBFb2XMlhfVHgnBtcg+XiMtA7Fur8ICQREamHCgt9IhdK5kKPKyurbp6yCWJNksP09Ip7AkODUWqaFIZPSg6lDqnpQO9YUAIqIiLlFRX5UcWnkhRWNc/Jk9HFk5LiE7rwpDA0tW5durymPYep+kqUpJc0A731aRMRSUbOwYkTsU0Kw58fPx59TGUTw9DzM86oOHGsqKyyeRo10sW/RaqXNAO9lYCKiNSWvLzY9xyGPy4qqj6GcKGRy2WTuzZtapYUhj9P4svZiCSjZB/oba4mF21NMllZWS4nJyfRYYhIJIqK/KVnQlN+funnVZWXLcvPL5nKPq+oLJJ5qlqubI9kQUF0bU9LO/Wewsqe6/xDkaRhZrnOuaxEx1Gb1AMaK7t3w5o1fgcfmlJSoH9/v/P/8kvYtcuXhdd37uy/dI4e9VN4fSAATZv6ssJCf8gtENBhqIbCuciSsVNJ0Gp7HTV5vUT9KE5L81PJAZ4SAAAR90lEQVRqasnjip6Hl2VmQrNmJc9Dl7+paeKYlpaYtoskK+f8VFjo95dpaf47M3RLzlB56O/pp/vv0QMHIDu7fH3v3r5++3b/vV62/qKLEt3iekMJaKz8859w/fXly1euhH794KWX4Pbby9d/9hl07QpPPQX33lu+ft8+P/ry/vvhpz8tKQ8lqIcO+S/BmTPhN78pSWwDAf9luG2bn//ee+FPfyqd/LZsCQsX+vr//m//OLz+9NPhued8/Y9/7NsSnhx37AgPP+zrH3kEtmwpnUB37gw/+IGvf/JJ35bw+q5d4arglbrmzIFjx0rH37VryYf91Vd9chKqT0mBDh38zqKgAN5+u2QHAf5vy5a+DXl5sH69LwtNhYUlt187edLvjAoKShK+0Hqc86+bl1dxAlXbSV4iBQIliVVqavmpovJQWegOJlXNW906TnXeQCDyRFI/7KQ2hPYboX1OYaH/n2vWzNfv3u3nCdUVFvpOhw4dfP2KFX5fEF5/+unQo4ffN73+ekl56DXOPtt3fOTl+f13+GsXFsK558KwYb7D41e/Kr1sYSGMHQvDh/v99UMPlV//NdfA178OW7fCffeVXndhIdxzj6//5BO4667y9Y895tf/3ntw222l35+iInjhBR/fggUwfXrpusJCv9yAAfDb38K0aeVPQ9m40b8HTz4J//mf5bfJ7t3+nOTHH4cHHihff+SI3waPPw6/+EX5+qIi7StiRAlorFx8MXz4YfkPa9euvv5b34Izzyxf366drx87Flq1Kv1BLSryFw4G+OY3fUIZvqMI/doDv1MJnRMWqjcrSaDOOMMna6GdWUGBP2dr40b/ODvbJ2Lhr5+bC3/9q19m0SLYsKHkdYuK/MjT007z9XPnwuef+/LQL9K2bf0yBQU++T10qHTvVuvW8Lvf+eU/+qj8ZVMaN/bvSX6+3xnWtdNFmjWD5s19XLt3+/c7fOrSxX9Z5OfDunU+aTYrSaAHDPBfNIcOwfLlJeWhBP3rX/dJ/hdf+PcnlBCG/o4dC+3bw44dsGxZ+aRs3Di/DbZuhdWrSyde6elwySU+/q1b4dNP/f9Xerqf0tJg5Ej/ONQTEHrt0NSrl483O9sfbg6vS031PwCg5BZ8oR8PUreFvtBTUvy2y8kp2WeE9g3t2vn/l0OH/JGd8PqCAp8AZWb6/52NG8vXf/vbvv6TT3ySFb7uggKfeKSn+x+WixeXri8shJ/9zH+WXnwR3n+/dBKTluaTE/BJxHvvlV62RQu/HPgf7h98ULq+Qwd47TVf/93vwr/+VXq/2qsXvPmmrx850n/2wvfpw4fDu+/6+j59YNOm0u/vt7/t96sAgwfDnj2l6ydN8h0WAN/4hv9hHu6mm0rad0kF1xW/886SBHTq1PL1//M/PsE7dgx++MPSdSkpfp87fLhPxH7/+/JH9UaM8PPm5sLSpaXrAwH//xL6Pzp5suSHYEZGyb4BfI//2WeX7nQIBPw+Cfz35WWXla5PSfHfG+DbeO+9pWMLBErqR46EX/6y9LKBQEnyf/nl/vXL1mdk+PpbboExY8rXS8zoHNBYyM2Ft94qf25YVeeX1WS+mtQVFtZeuysS2tmE9zaVfRyeKIWSHSid4IR60Zo29fU5OaV3Uma+rl07X79jR0kCF0ryTjvNJ4Fm/ksu9Ks1NE+3bv4LorAQ/vY3n0iG/7L92tf8lJPje6jLJv/jxvn6XbtK9xSEpqlT/c56wwbfU1D2S/RHP/L1S5b4L42y9U8/7df/+uv+Czm8rqAA3njD//D4wx/8l1LoNI2Q1av9j47HHy/piQ63bRt06gQPPuhjKSs7238ZzZxZ0tMd7uRJv42+/3349a9L16Wnl1xm57rr4NlnS+oCAb9tdu0qqX/99dLbvlMnn1gAfO97/j0K/5I7++ySdd5xh09ywhP0Xr18u8B/ye7ZU/r/p3dvHzf4+Y4cKf0l07s3XHmlr3/8cf9lHl5/zjlw4YW+fs4c/38T+nIqLPQ9VMOG+c/gr39dftsNHw4XXOB7oR58sHyCNn48jB4Ne/fC3XeXr582zf+o/fRT/0VZNoF74AGf6CxdClOmlP/feuYZ/6P5jTdgwoTS9eD3Zxdd5BOhqyq4n8hHH8GQIT4RuuWW8vXr1kHPnr4H6a67ytfv2OF/XD3wgD+6U9bBgz5R/M//hEcf9WWh9ziU5AQCvrft2WdLtn3oUk3r1vllZswo/b8VCPgBV68H74Pyox/5BDe8/swzYfbskv+N9etL/+906uSTOPC9ebt2lU6Cunb1n0fwR6UOHSq9/i5d/L4DfCJ84kTp+k6d4LzzfP0//uH3NeH17dtD9+6+funS8qd1tWnjP19FRb5ToOxpXaFbXzpXkiCG9qnq2aszGsI5oEpAY2HHDr/TiEZ1SVplhw7ral0oqVQPV2KFzoUqKPBJYEqKv5zOsWOlE5TCQp8ApKX53uUvvijfyzV0qN+mmzb50yvK1l9+uV//kiX+Cz+8zqwkwfvLX3xPV3gClJFRkvT+9rfw8cel61u18l/uALNm+dM/wus7d/Zf7uC/7FevLh1f//7wxz/6+lGjfBvClx85EubN8/Xdu/vPcPgPjIkT4eWXfX2LFnD4cOn3+cYbfe8Q+C/vsocBb78dnnjCv/eNG5ffTj/8oT+lZv9+vx3K/vj60Y/8Onbs8LGG93wHAr7n58orYfNm/0MnfNlAwCd9F17of/w88EDpukDAJ7ADBvj6sr1cqan+MGvXrj6xDyVw4TGMG+d//G3ZUtL7Hr788OH+6M2uXf6HTtn4u3f3/58HD5Yk/+H1LVr4/62CgpJz37VvkQZECWg9UesJaF5eySHOSBI2nW8mUreF94YfP17+PLn09JJDeTt2lNQ75z/nzZv7UxCc80lW2QRLCZWIVEEJaD2hyzCJiIhIsmgICah+gouIiIhIXCkBFREREZG4UgIqIiIiInGlBFRERERE4koJqIiIiIjElRJQEREREYkrJaAiIiIiEldKQEVEREQkrpSAioiIiEhcKQEVERERkbhqELfiNLMi4HgcXioVKIjD69RFanvD1ZDb35DbDg27/Wp7wxWP9mc65+p1J2GDSEDjxcyWOecGJzqORFDbG2bboWG3vyG3HRp2+9X2htl2UPtjpV5n1yIiIiJS9ygBFREREZG4UgIaW08nOoAEUtsbrobc/obcdmjY7VfbG66G3v6Y0DmgIiIiIhJX6gEVERERkbhSAhoFM5toZmvNrMjMKh0BZ2ZjzWyjmW02s5lh5V3M7KNg+TwzS49P5LFhZq3M7J9m9mnwb8sK5hlpZivDphNm9p1g3Vwz2xpW1z/+raiZSNoenK8wrH2vhZU3hG3f38wWBz8jq8xsUlhd0m37yj7HYfWNgttyc3Dbdg6ruzdYvtHMxsQz7liIoO13mdm64HZ+28w6hdVV+BlIJhG0/3oz2x/WzpvC6q4Lfk4+NbPr4hv5qYug7b8Ia/cmMzsUVpfU297MnjGzfWa2ppJ6M7Mngu/NKjMbGFaX1Ns9IZxzmiKcgJ5Ad2AhMLiSeQLAZ0BXIB34BOgVrHsZmBx8PBuYnug2Rdn+R4CZwcczgYermb8VcABoHHw+F7gi0e2ozbYDxyopr/fbHjgb6BZ83B7YA7RIxm1f1ec4bJ5bgdnBx5OBecHHvYLzNwK6BNcTSHSbYtz2kWGf6+mhtgefV/gZSJYpwvZfD/yqgmVbAVuCf1sGH7dMdJti2fYy898OPFOPtv3XgYHAmkrqvwX8HTBgGPBRfdjuiZrUAxoF59x659zGamYbAmx2zm1xzuUBLwGXmZkBFwLzg/P9AfhO7UVbKy7Dxw2RxX8F8HfnXG6tRhUf0ba9WEPZ9s65Tc65T4OPdwP7gLZxizC2Kvwcl5kn/D2ZD1wU3NaXAS85504657YCm4PrSxbVtt05927Y53oJ0CHOMdamSLZ9ZcYA/3TOHXDOHQT+CYytpThrQ7Rtvwp4MS6RxYFz7n18p0llLgOedd4SoIWZnUHyb/eEUAIae2cCn4c93xksaw0ccs4VlClPJqc55/YEH38BnFbN/JMpv3P6afDQxS/MrFHMI6w9kbY9w8yWmdmS0KkHNMBtb2ZD8D0on4UVJ9O2r+xzXOE8wW17GL+tI1m2Los2/qn4XqGQij4DySTS9l8e/H+eb2Ydo1y2roo4/uBpF12Ad8KKk33bV6ey9yfZt3tCpCY6gLrGzN4CTq+g6j7n3P/FO554q6r94U+cc87MKr2EQvBXYR/gjbDie/HJSzr+MhYzgAdONeZYiVHbOznndplZV+AdM1uNT0zqvBhv+z8C1znnioLFdXrbS82Y2TXAYOAbYcXlPgPOuc8qXkPS+gvwonPupJl9D98TfmGCY4q3ycB851xhWFlD2PYSI0pAy3DOffMUV7EL6Bj2vEOwLBvfXZ8a7C0JldcpVbXfzPaa2RnOuT3BJGNfFau6EljgnMsPW3eoB+2kmc0B7olJ0DESi7Y753YF/24xs4XAAOBVGsi2N7NmwN/wP9iWhK27Tm/7ClT2Oa5onp1mlgo0x3/OI1m2LosofjP7Jv7HyTeccydD5ZV8BpIpCam2/c657LCnv8OfIx1a9oIyyy6MeYS1J5r/3cnA98ML6sG2r05l70+yb/eE0CH42FsKdDM/6jkd/yF9zTnngHfx50UCXAckW4/qa/i4ofr4y50bFExcQudEfgeocKRhHVVt282sZejQspm1Ac4H1jWUbR/8f1+AP0dqfpm6ZNv2FX6Oy8wT/p5cAbwT3NavAZPNj5LvAnQD/h2nuGOh2rab2QDgN8Clzrl9YeUVfgbiFnlsRNL+M8KeXgqsDz5+AxgdfB9aAqMpfRSorovk/x4z64EfbLM4rKw+bPvqvAZ8NzgafhhwOPjjOtm3e2IkehRUMk3AePy5HSeBvcAbwfL2wOth830L2IT/5XdfWHlX/BfRZuAVoFGi2xRl+1sDbwOfAm8BrYLlg4Hfhc3XGf+LMKXM8u8Aq/HJx3NAk0S3KZZtB74WbN8nwb9TG9K2B64B8oGVYVP/ZN32FX2O8acNXBp8nBHclpuD27Zr2LL3BZfbCFyc6LbUQtvfCu4DQ9v5tWB5pZ+BZJoiaP9DwNpgO98FeoQte2Pwf2IzcEOi2xLrtgefzwJ+Vma5pN/2+E6TPcH92E78+c3TgGnBegOeCr43qwm7Gk6yb/dETLoTkoiIiIjElQ7Bi4iIiEhcKQEVERERkbhSAioiIiIicaUEVERERETiSgmoiIiIiMSVElARqdfM7Dtm5oLXLqzTzKyzmV2d6DhERGqbElARqe+uAj4M/i0leAejuqQzoARUROo9JaAiUm+ZWRNgOP6C0pODZReY2Qdm9hrBO7WY2Y/MbKOZfWhmL5rZPcHyhWY2OPi4jZltCz6+3sz+bGb/NLNtZnabmd1lZh+b2RIzaxWc7ywz+4eZLQ++Zo9g+Vwze8LM/mVmW8wsdJesnwEjzGylmd0ZtzdKRCTO6tqvfxGRWLoM+IdzbpOZZZvZoGD5QKC3c26rmZ0LXA70A9KAFcDyCNbdG3+v6wz83U9mOOcGmNkvgO8CvwSext9F5VMzGwr8GrgwuPwZ+OS4B/4Wf/OBmcA9zrlLTrXhIiJ1mRJQEanPrgIeDz5+Kfj8r8C/nXNbg+XnA//nnDsBnDCzv0S47nedc0eBo2Z2GAgttxroG+x9/RrwipmFlmkUtvyfnXNFwDozO60GbRMRSVpKQEWkXgoeBr8Q6GNmDggADvgbkBPhagooOVUpo0zdybDHRWHPi/D71hTgkHOufyXrDl/eKplHRKRe0jmgIlJfXQH80TnXyTnX2TnXEdgKjCgz3yJgnJllBHstww9/bwNCh+2vIArOuSPAVjObCGBev2oWOwo0jeZ1RESSkRJQEamvrgIWlCl7lTKj4Z1zS/HnYK4C/o4/hH44WP0oMN3MPgba1CCGKcBUM/sEWIs/J7Uqq4BCM/tEg5BEpD4z51yiYxARSSgza+KcO2ZmjYH3gVuccysSHZeISH2lc0BFROBpM+uFP8/zD0o+RURql3pARURERCSudA6oiIiIiMSVElARERERiSsloCIiIiISV0pARURERCSulICKiIiISFwpARURERGRuPr/ATq8SEtesfoSAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 720x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqAAAAE9CAYAAADULNDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hUVf7H8feZyZT0DiGFJEAIkNBrpIOAFQVBmoKwilhwXcvqruuKK+4qq67CyvJzEbBiFAt2V0EUMJQAAQKhBBJCSO+ZTCbTzu+PgQiE0AyZAOf1PHngtnO/dwjwybn3niOklCiKoiiKoihKc9G4uwBFURRFURTl6qICqKIoiqIoitKsVABVFEVRFEVRmpUKoIqiKIqiKEqzUgFUURRFURRFaVYqgCqKoiiKoijNysPdBTQHjUYjPT093V2GoiiKoijKOZnNZimlvKI7Ca+KAOrp6UlNTY27y1AURVEURTknIUStu2u41K6KAKooiqIoinK1EkIMBqbhyn1dpJTXuLkk9QyooiiKoijK5UYIsUwIUSSESD9t/XVCiP1CiEwhxJMAUsr1Uso5wJfAW+6o93QqgCqKoiiKolx+VgDXnbxCCKEFXgeuB7oAU4QQXU7aZSrwfnMVeDbqFryiKIqiNBGbzUZubi4Wi8XdpSiXAaPRSGRkJDqd7oKPlVL+LISIOW11PyBTSnkYQAjxAXALsFcI0RaolFJW/7aqm4YKoIqiKIrSRHJzc/H19SUmJgYhhLvLUVowKSWlpaXk5uYSGxt7+mYPIUTqSctvSCnfOI9mI4CjJy3nAv2P//53wPKLLriJqQCqKIqiKE3EYrGo8KmcFyEEwcHBFBcXn2mzXUrZpynPJ6V8pinb+63UM6CKoiiK0oRU+FTO1yX4XjkGRJ20HHl8XYujAqiiKIqiXCEqKipYvHhx/fK6deu46aab3FgRvPrqq7z99tsXdMyKFSt48MEHz7rPunXr+OWXX+qXlyxZcsHnOeGxxx5j7dq1F3VsC7MViBNCxAoh9MBk4HM313RGKoAqiqIoyhXi9AB6qdjt9vPeb9myZUydOvWi22jM6QF0zpw5TJ8+/aLamjt3Li+88MJvqqe5CSFWAilAvBAiVwjxOymlHXgQ+A7IAD6UUu5xZ52NUQG0iVRXlrEvdQ12m9XdpSiKoihXqSeffJJDhw7Ro0cPHn/8cQBMJhMTJkygU6dOTJs2DSklANu2bWPo0KH07t2bMWPGkJ+fD0BaWhoDBgygW7dujBs3jvLycgCGDRvGww8/TJ8+fXj++eeJjY3FZrMBUFVVdcryCWvXrqVXr154eHg0aOO1116juLiY2267jb59+9K3b182btzY4Jq++OIL+vfvT8+ePbn22mspLCwkOzubJUuW8K9//YsePXqwfv165s2bx0svvcS+ffvo169f/fHZ2dl07dr1rNccHR1NaWkpBQUFZ/xcpZRYLbXUVJZgriq9uD+cJialnCKlbCOl1EkpI6WUbx5f/7WUsqOUsr2U8nl319kY9RJSEzn4y2p6bX4Y0xeeHPLqRm3kQEK7jSG2S180Wq27y1MURVGuAi+88ALp6emkpaUBrl7CHTt2sGfPHsLDwxk4cCAbN26kf//+zJ07l9WrVxMaGkpycjJPPfUUy5YtY/r06SxatIihQ4fy17/+lWeffZZXX30VAKvVSmqq6+Xs7OxsvvrqK2699VY++OADxo8f32A4oY0bN9K7d+9T1p3cxtSpU/nDH/7AoEGDyMnJYcyYMWRkZJyy/6BBg9i0aRNCCJYuXcqCBQt4+eWXmTNnDj4+Pjz22GMArFmzBoBOnTphtVrJysoiNjaW5ORkJk2ahM1ma/SaAXr16sXGjRu59dZbsNbW4LDWgq0WD4cFnaxDLyR6oFYYwS+4Cf/Urk4qgDaR9v1uYJsE+6F1hJdtIergK3DwFY4afyYqrjtH9rv+MWgb1w2hUR3PiqIoV4Vhwxquu/12uP9+MJvhhhsabr/rLtdXSQlMmHDqtnXrLriEfv36ERkZCUCPHj3Izs4mICCA9PR0Ro0aBYDD4aBNmzZUVlZSUVHB0KFDAZgxYwYTJ06sb2vSpEn1v7/77rtZsGABt956K8uXL+e///1vg3Pn5+fTuXPnU9ad3MYPP/zA3r1765erqqowmUyn7J+bm8ukSZPIz8/HarWeaciiBm6//XaSk5N58sknSU5OJjk5mf379ze45tatW1NTWYq0mgn08iAnIxVtUjs8j7fjQINVGKj1CEDoPNEavDAYvM55fuXcVABtIv7Brel9w0xgJgCFuYc4unMtvdu7uv2Lvn6evpX/o5hAjvj1RsYMIaLXdYTHxLuxakVRFOVKZzAY6n+v1Wqx2+1IKUlISCAlJeWUfSsrK8/alre3d/3vBw4cSHZ2NuvWrcPhcJCYmNhgf09PzwaD8p/chtPpZNOmTRiNxkbPOXfuXB555BHGjh3LunXrmDdv3llrBFfInThxIuPHj0cIQbt2sWxP3Uqn+I6s/fIjtE4LeqcVrXBCTQ5SgtViRu8ZiUkfikbvhc7ghYfegKca1eCSUAH0Emkd2Z7Wke3rlyNufY4t25LQHllPbNVWgnf9QE76/8FfXT/57d30La1iuhAS1tZdJSuKoihN7Ww9ll5eZ98eEnLBPZ6+vr5UV597opv4+HiKi4tJSUkhKSkJm83GgQMHSEhIIDAwkPXr1zN48GDeeeed+t7QM5k+fTpTp07l6aefPuP2zp07k5mZ2ejxo0ePZtGiRfXPq6alpdGjR49T9qmsrCQiIgKAt976dRpzX19fqqqqTtlXSom1rpY2IQEI6eCZPz/ObdcPRVOwm+6ttZSVFJK2eT29+/ajCi8ys/Po2r0XeqMXh/LKmDxzJD4hkWf/8JQmoQJoMwmP7UR4bCfgEaTTSfb+7dSUFQLgsNuJ+HYW/tSQrYmiMKgfurjhtO8zGv/g1u4tXFEURblsBAcHM3DgQBITE7n++uu58cYbz7ifXq9n1apVPPTQQ1RWVmK323n44YdJSEjgrbfeYs6cOZjNZtq1a8fy5Y1PnjNt2jT+8pe/MGXKlDNuv/7667nzzjsbPX7hwoU88MADdOvWDbvdzpAhQ1iyZMkp+8ybN4+JEycSGBjIiBEjyMrKAuCGG67n9om38+knH/PP55/GVl2MdFShL92HHph80wj+OP9Vnt6ylhpDKBpfT1Ymr+LRxx6nsvLl+mvue81QbDYbmZmZ9OnTpGO/K2chTrwNdyXz9vaWNTU17i6jUU6Hg0O7NlK6+3u88n6hQ+1uvEQdKW3uIOne16mzmNmX8hUd+ozC2zfA3eUqiqIojcjIyGjwzOOVbNWqVaxevZp33nmn0X3GjRvHggULiIuLu6hzSCmxWeuw19XgtNYi7LXonHXopI0Td8cdUoNVo8ehNYKH61lNvdELrfb8+tk+/fRTtm/fznPPPXdRNf4WZ/qeEUKYpZTejRxyRVA9oC2ARqslrucQ4noOAcBaZyEj7Scig8MByNy+ju4/3Y1tnZZ9+njKWw/At/MIOvQagdHziv7+VBRFUVqouXPn8s033/D111+fdb8XXniB/Pz88wqgTocDq8WMw2pG2mrROizoZR16nOiP72NFh11jwOrhj0bnhYfRC53e+Jue1bTb7Tz66KMXfbxy4VQP6GXAYjZxMHUNpn1rCCraRAfbAbRCknH9h3TuP4Zjh/dQW11Bu8QBasgnRVEUN7raekAvlpQSu60Om8WM02pG2C14OC3oT+nVFFiFwdWrqbvwXs3LheoBVVoso5cPXYfcAkNuAaCqopTDqf8joecwAI5+t5ABhR9Q/qkfh31744gZSmTvG9Qb9oqiKIrbOZ1OV69mXU19r6ZO1qHDyYlRQ614YNcYqNH6o9F74mH0/s29mkrLpnpArwAlBTlkbf4SDq8jpnILoZRTji/+Tx9Bo9WSuXMjoVEd8Q8KdXepiqIoV7SrvQfUbrdhs9TgqDMj7CcGcbeiOalX0yYM2LUGV6+m3gu90Rutx9XbH6Z6QC8jQojOwO+BEGCNlPI/bi7JrULC2hJyy/3A/UinkyP7d1CRf4jux2/HGz+bhY+zkAO6OEpbJeGbMIq43iMxGNVguoqiKMqFc70YZMFmMSOtZjSO4y8GYa8PFja02IQBm84XoXP1auoNnhhVr6ZCC+oBFUIsA24CiqSUiSetvw54DdACS6WUL5y0TQO8LaW842xtX+k9oGcjnU72b/2B8vT/EVCwkTjrPjyEky0BN9Dv4ZVIp5PDe7aoKUMVRVGawJXYA+p0OrBaak+5ha6XdWhxArgGcRd67BoD0sMTjcELndELnc5wjpYVUD2gLcEK4N/A2ydWCCG0wOvAKCAX2CqE+FxKuVcIMRa4D2h87AcFodHQqf9o6D8agOrKMg5t/Y6AINcb9jn7d9D+4zGUfexHlm8fHDFDadv3RsLaXtxwGYqiKMrlq7Fb6MbTXgyq1fqBzhMPgzd6oxcGrRYVN5UL0WImJZdS/gyUnba6H5AppTwspbQCHwC3HN//cynl9cC05q308ubrH0SPa6fQsZdrZouAsGi29vg7h/wHEF29nX67nyFsWR92/vgRAJVlxVRVlLqzZEVRFKWJnZgxqKayFFPxUcwFB7Dl7cajKB3Pqix86grRO2pwCA/M+mBqvCOxBsWz8MMfkQHR+LSOxScoDKO37wXdPYuJiaGkpOQ31T5hwgQOHz58QcfcddddrFq16qz7rFixgry8vPrlu++++5R56i/EtddeS3l5+UUde7VoST2gZxIBHD1pORfoL4QYBowHDMAZByATQswGZoNrxgflzPwDQ+h76wPAA/UzNBXs+IbOPYYDsPeLV+l7eDEZ+s5UhA8muPsNdOg+SN2uVxRFuUxIpxNrnRm7xYy0mV230J116IVrbM0Tt9CtGk/q6m+he6PT6evfUj/htdde484778TL69K/QyClREqJRvNrX9mePXtwOBy0a9euwf4OhwPtb/i/acWKFSQmJhIe7rpDuHTp0otu684772Tx4sU89dRTF93Gla7F9IBeCCnlOinlQ1LKe6WUrzeyzxtSyj5Syj4eV/HbdRdCaDTEdO7DgKlP4x8YAkCrnjeyNXI6OqeFpCNL6Pj5WEqe64DdZgXAUnt1PlurKIrSEjmdDpa/+V/69OpJt8Qu3H3H7dhzd1Cw+yd69OpDTWEWTqeDwbfdzecp+9lfoaPzyCnMevzv9Bl+M3fN+T1oDeh0DTtuFi5cSF5eHsOHD2f4cFcnxX333UefPn1ISEjgmWeeAWDt2rXceuut9cd9//33jBs3rkF7r7zyComJiSQmJvLqq68CkJ2dTXx8PNOnTycxMZGjR4+ecsx7773HLbfcUr/s4+PDo48+Svfu3UlJSWHbtm0MHTqU3r17M2bMGPLz8xuc929/+xt9+/YlMTGR2bNnI6Vk1apVpKamMm3aNHr06EFtbS3Dhg0jNTWVJUuW1M9VD66g+uCDDwLw7rvv0q9fP3r06MG9996Lw+EAYOzYsaxcufL8/tCuVid+wmgJX0AMkH7SchLw3UnLfwL+dKHtenl5SeW3Kyk4Kreu/o/8ZcWf69dlzB8gDz/bTab85z6566fPZK3Z5MYKFUVR3Gvv3r2nLN++5JcGX2//kiWllNJcZz/j9g+35kgppSw11TXYdjK73SbNpkpZXZonTQWHZO2xdJn+4yp507WDpTV7s7QfS5P3zJgs/2/Ry9JUXiQXL35dTpgwQS5YsEDOnj1bSillVlaWBOSGDRuklFLOnDlT/vOf/2z0+qKjo2VxcXH9cmlp6fFa7HLo0KFy586d0ul0yvj4eFlUVCSllHLKlCny888/P+X41NRUmZiYKE0mk6yurpZdunSR27dvl1lZWVIIIVNSUs54/iFDhshdu3bVLwMyOTlZSiml1WqVSUlJ9ef94IMP5MyZM6WUUs6YMUN+9NFHp9QspZR33HFHfW1Dhw6VW7durd92YrmoqEi2b9++fv11110n169fL/fu3StvuukmabVapZRS3nffffKtt96q369Dhw6ypKSk0c/yhNO/Z45fV41sAbnsUn619K7BrUCcECIWOAZMBqa6t6SrV3DrSILHzjllXUX0GHyO/kiv/GT0Be9Ru0ZPStvpJP3uZTdVqSiKcuWRUiKdDkyleQibGQ9nHXppxfP4y0F2tFiFgW837SE1/QB9xt6NEBpqa2sJj4nHOyCU++67n88+W82SJUtIS0urbzsqKoqBAwcCcMcdd7Bw4UIee+yx86rrww8/5I033sBut5Ofn8/evXvp1q0bd955J++++y4zZ84kJSWFt99++5TjNmzYwLhx4/D2dr3oPX78eNavX8/YsWOJjo5mwIABZzxffn4+oaG/jmmt1Wq57bbbANi/fz/p6emMGjUKcN2Sb9OmTYM2fvzxRxYsWIDZbKasrIyEhARuvvnmRq8xNDSUdu3asWnTJuLi4ti3bx8DBw7k9ddfZ9u2bfTt2xeA2tpaWrVqVX9cq1atyMvLIzg4+Hw+yqtOiwmgQoiVwDAgRAiRCzwjpXxTCPEg8B2uYZiWSSn3uLFM5TQD7pgHzMNsqiRjyzdYMr5HF+p6g760MBfrf4ZxNLA/Hh2vpf2Am+tv7SuKolwNku9NanSbp157xu12mxVzdTn6uhqW3RKCzmlBj921sa4QGx7YNAZqPPzQ6L3QGX3w0OnxEgK9dyB33TWTf/zjHw3aNZvN5ObmAmAymfD19QVAnDYu5+nLjcnKyuKll15i69atBAYGctddd2GxWACYOXMmN998M0ajkYkTJ3Ihj8KdCKVn4unpWX8OAKPRWP/cp5SShIQEUlJSGj3eYrFw//33k5qaSlRUFPPmzTulvcZMnjyZDz/8kE6dOjFu3DiEEEgpmTFjxhk/6xPn8vT0PGfbV6sW8wyolHKKlLKNlFInpYyUUr55fP3XUsqOUsr2Usrn3V2ncmZePv50HzGZ/g+8SZ/jvaS11RUUeMfTuWwNvTY/jM+rHdg3fwAH09a7uVpFUZSWwW63Ya4ux1SSi7ngoOtN9OI9eFVn42MtRuesw6YxYtK3wuwbgz00AV14V7zCOuITEoWXXzA6vaE+NI4cOZJVq1ZRVFQEQFlZGUeOHAHgiSeeYNq0afztb3/jnnvuqa8hJyenPrS9//77DBo0qNF6fX19qa6uBqCqqgpvb2/8/f0pLCzkm2++qd8vPDyc8PBw5s+fz8yZMxu0M3jwYD777DPMZjM1NTV8+umnDB48+JyfV+fOncnMzDzjtvj4eIqLi+uvxWazsWfPqX1WJ8JmSEgIJpPplDfjT762040bN47Vq1ezcuVKJk+eDJz9s5ZSUlBQQExMzDmv6WrVYnpAlStPZIdEIh//Cpu1jowd66jY/S3BBRvw9nfdPtn29XLkvq+g42g6DBhLQEiYmytWFEW5dBwOO9baGhx1JoStFp2zFv1JMwdZ0bneRNd5oTV4ozd6o/fw4ELGcenSpQvz589n9OjROJ1OdDodr7/+OtnZ2WzdupWNGzei1Wr5+OOPWb58OcOHDyc+Pp7XX3+dWbNm0aVLF+67775G2589ezbXXXcd4eHh/Pjjj/Ts2ZNOnTqdchv/hGnTplFcXHzGgfl79erFXXfdRb9+/QDXkEc9e/YkOzv7rNd34403sm7dOq699toG2/R6PatWreKhhx6isrISu93Oww8/TEJCQv0+AQEB3HPPPSQmJhIWFlZ/+xxcQzXNmTMHT0/PBr2ogYGBdO7cmb1799bX3NhnHR0dzbZt2xgwYMAF9fxebVrMTEiX0tU8E1JLtvmDf9Bx32ICqcIhBQd1nSiPGEr/6X9XwzwpinJZOjGrjdPhoM5Sg8NSg7Cb8XDUopc2TtzdtuKBTWNEerjCps7TGw+P0wc9uvSys7O56aabSE9Pb/K2H3zwQXr27Mnvfve7JmuztraW4cOH1wfplur3v/89Y8eOZeTIkefcV82EpCjNrP/kP+GwP86BXRso3fElwfk/0frot2i0LwKugOrhF0bcNWPxC1APcSuK0jJZ6ywcydhK2cHNGNr2x5K3B8NJLwjZ0GLTGKnxCECj90Lv6YNep7+gns3LTe/evfH29ubll5v2hVRPT0+effZZjh07Rtu2bZu07aaUmJh4XuHzaqZ6QJuAtc6C+R/tqRHe1Gp8sHj4YvXwxa7zxWnwRxr9EUZ/tF4B6LwD0fsE4ukbiKdfMD7+wXj7+CM0LeZxXLey1NZg9PTG6XBQ9Fw8YRRjlxr2GxKojhxORNIEouK6u7tMRVGuUtLppDD3EMfSf8Z2ZAsBZbuItR7EIGwA7BmzitiYtjg9PNHovdF5+qDTX36TVI4bN46srKxT1r344ouMGTPGTRVduVQPqHLRHHYb+0NGo7VWobNVo7dXE1R7BK8aEz6yBi9Rd9bj7VKDSXhdVID1CwzF08v3igmwRk/X3zeNVkvIU3vJ2P4jFTu/olXhzyQcXkhKXRVRca9hqa0hY/2ndEy6CW/fADdXrSjKlaqmuoLsXRupyvwFY+EOosx7CKOCMMAidWTp49gRNgFddF/adB6IptaJV5t4d5f9m3366afuLkFpYkIIb+AnYJ6U8ku316N6QC89m7UOU2UZNZWl1FaXYakux1ZTht1cgbO2Allbiaau8pQA6+kw4eU8vwBrlR5UCR9MGl/MWn/qdH7Y9AE4Df7gGYTwDsLDOxiDbxBGvxC8A0LwC2qNl7ffZRVci45loREaQsKj2f3TJ3T9cSZW6cF+Y1dq2o4gKuk2ItolnLshRVGUM3A6HBw9kEZRxgacuamEVuwi2nEErXD9P3lUhFPom4Ajog9BHa8huks/9AbjKW2cqTdLUc7mYntAhRDLgJuAIill4knrrwNewzV85VIp5QvH1/8NMAF7VQBtJu4OoL9VowG2phynuRxZW4G2rhyPukoMtgo87VV4O6vxlaazhler1FIlfKnR+GLW+lKn88emD8BhCEB6BqDxCsLDOwi9byhega3xCw7DPziswT+47mCts3Ag9XtMu7+hTdHPRDtd07VljvuKDt0HUV1Zhpe3H1r1BqKiKI0wVZWTlbYO08GN+BSlEmPZh6+oBaAKb7KNnagJ7YlXbH/adh1MYGjDQc1PpwKocqF+QwAdgitQvn0igAohtMABYBSQi2tCnylABBAMGIGSlhBA1f/OlwGd3kBgaJvz+sfvdJbaGqrLizFVFFNbWUJddSm26hKc5jJkbTkaSwU6awUGayW+dQV4mw/iJ6vPGlyrpSeVGn9qtAHU6gKwGoJweAYhvEPQeIdg8A/FMyAM74DW+IeEXZJnXPUGI4kDb4aBrtkrjh3OIHfravomugZ13vvOY3Qs+Z5M/yS0na6n48Bb8fELbNIaFEW5vBQdy+Jo2hrs2SkEl+0g1n6YrkLikIJsjxj2hoxBRPahdZfBRHXoSrcW/Ja1okgpfxZCxJy2uh+QKaU8DCCE+AC4BfABvIEuQK0Q4msppbMZy21ABdArnNHTG6OnN6HhMRd0XJ3FTHVZMdUVRdRWlmCpLMRWVYyzpgRhLsXDUobBWoavtQjf2gMElFehF/YztyV1VAg/TFp/zB4B1BmCsBsCkd4haH1bo/cPwysoHL+QcAJbRWAwel3wdUa060xEu19/gjQmXM+hHVV0rNyA/+bvsG56lFT/4fR55OMLbltRlMuP0+HgyL5Uivb8jDZ3E+HVuwiXRbQCzNLAYWNntraZhXfcIGJ6DKO9fxDt3V20ovzKQwiRetLyG1LKN87juAjg6EnLuUB/KeWDAEKIu3D1gLo1fIIKoEojDEYvDOHRhIRHn9f+0unEZKqksqQAU1k+lqoi6iqLcZqKkeZStLVl6OvK8LRVEFidh39lZf2trtNV4k2FJhCTRxAWQzA2z1CkdyhavzAM/mF4B4fjFxJBYGh4o2+Xdh8+EYZPxG6zsjd1DVU7vwAPY32tu/45BnNQAsG9b6VD98Fq3FFFuczZrHUc3rWRsr0/4pW/idjaPcRSQyxQQgA5Pt3ICZ9OcOehxCT0J/EyfDO9JYiJiSE1NZWQkJYzrfKrr75KUFAQ06dPP+9jVqxYQWpqKv/+978b3WfdunXo9XquueYaAJYsWYKXl9cFneeExx57jBtuuIERI0ac7yF2KWWfCz7ROUgpVzR1mxdLBVClSQiNBh+/QNdt7nbn9/xTncVMeXEeVcXHMJflYa0swFFVgKamGJ2lGGNdGa1M+wmo2tRoWC3Hl0pNICZdEBZDCHav1uAXjj4wAq/gSPxbt6VDr+Hok66vP6aqsgwPRy19c9/C49hySj4P4HDgQIKG3U+H7o1PQacoSstxcuD0zkuhfe1u4oVrmsUjmigygkaiaTuA8G4jCI+JJ+QyeuHySmW323/zzEAOh+OUAejtdjvLli1j+/btTX6+devW4ePjUx9A58yZc9FtzZ07l3vuuedCAujFOgZEnbQceXxdi6MCqOI2BqMXYVEdCIvqcM59LWYTZUXHqCrJpbYsH2tlAc7qQjQ1RegtJXhaywiv3k1I5Tr0BQ0fBSjDj3JtCCZ9KHWerXCEJfGL8UbMlaUEVuyhS9laDuaNhu6DyMvax7Fda+k4eCL+QaGX4tIVRblAZwuc2Zq2pIfegK79EKJ7jSK6dSTnd++mGSy/seG6hFuh3z1gNcN7Extu7zEVek6DmlL48LTetplfnfOU7777LgsXLsRqtdK/f38WL15Mbm4u1157LSkpKQQFBTF06FCefvppOnbsyHXXXUfv3r3Zvn07CQkJvP3223h5Nf4o1KJFi/jiiy+w2Wx89NFHdOrUibKyMmbNmsXhw4fx8vLijTfeoFu3bsybN49Dhw5x+PBh2rZty5gxY/j8888xm80cOnSIcePGsWDBAgD+97//8cwzz1BXV0f79u1Zvnw5Pj4+xMTEMGnSJL7//nv++Mc/1s/FDrB27Vp69epVHzSHDRtGjx492LBhA1OmTGH69OnMmTOHnJwcwNVbevqUoV988QXz58/HarUSHBzMe++9R21tLUuWLEGr1fLuu++yaNEi1qxZg4+PDzfddBPTp09ny5YtgGs2qZtvvpndu3ezbeeewHEAACAASURBVNs2HnnkEUwmEyEhIaxYsYI2bdoQHR1NaWkpBQUFhIVd0mmntwJxQohYXMFzMjD1Up7wYqkAqlwWjF4+hMfEEx5z9vH1pNNJeWkh5YU5VBfnUFeWi6MyH40pH2NtIT7WYiJr9xFcVnnKcVY0xKc8Tt6W59njjGGU2IJt+1/YoYmnKKgPbXrfQIdu1+Dl438pL1NRlOOk00nW3q0UpX2DV+6G0wJn1CmBM6Z1JDHuLbfFyMjIIDk5mY0bN6LT6bj//vt57733mD59Ok888QT33Xcf/fr1o0uXLowePZrs7Gz279/Pm2++ycCBA5k1axaLFy/msccea/QcISEhbN++ncWLF/PSSy+xdOlSnnnmGXr27Mlnn33G2rVrmT59OmlpaQDs3buXDRs24OnpyYoVK0hLS2PHjh0YDAbi4+OZO3cunp6ezJ8/nx9++AFvb29efPFFXnnlFf76178CEBwcfMZezo0bN9K7d+9T1lmtVlJTXY9PTp06lT/84Q8MGjSInJwcxowZQ0ZGxin7Dxo0iE2bNiGEYOnSpSxYsICXX36ZOXPm4OPjU/9ZrFmzBoBOnTphtVrJysoiNjaW5ORkJk2ahM1mY+7cuaxevZrQ0FCSk5N56qmnWLZsGQC9evVi48aN3HbbbRfzR9uAEGIlMAwIEULkAs9IKd8UQjwIfIdrGKZlUso9TXLCJqYCqHJFERrNSSMG9G90P2udhdKCI1QWHcVcchRr+TGoysOjpoBwcz5bbJ2wS0GULKZn6dvUffc+zu8EFcJAnginzjMEq3c40j8SXVBbfFrFEhzenqDWkep5UkW5SCUFOWRt/hIO/0hs5RbaUUE74IgmkvTQG/BoN4ToXtcSExZ1+QTOs/VY6r3Ovt07+Lx6PE+2Zs0atm3bRt++fQHX3OmtWrUC4O677+ajjz5iyZIl9eEQICoqqr5X8I477mDhwoVnDaDjx48HXNNtfvLJJwBs2LCBjz92veQ5YsQISktLqaqqAmDs2LF4enrWHz9y5Ej8/V0/zHfp0oUjR45QUVHB3r176+uwWq0kJSXVHzNp0qQz1pKfn99gCKOT9/3hhx/Yu3dv/XJVVRUmk+mU/XNzc5k0aRL5+flYrVZiY2MbvfYTbr/9dpKTk3nyySdJTk4mOTmZ/fv3k56ezqhRowDX4wJt2vw6ek2rVq3Iy8s7Z9vnS0o5pZH1XwNfN9mJLhEVQJWrkt5gpE10PG2iG+9RtdusFOdlsz7tZ0w5uwjw80VTlYtv8Q4CTIfJq66kdeFG2ot8xPE5ny1SR6E2jHJDBBafKAiMwdi6A4HhcbSOjsfo5dNMV6goLV9tTTUHt/4Pc8b3tC5OIdaZTQhQjh+HfftwuN1wovveSHRk+5ZzS72Fk1IyY8YM/vGPfzTYZjabyc3NBcBkMuHr6wuAOPEP2HGnL5/OYHC9wKXVarHbzzz6ycm8vU8dzvLE8Se3IaVk1KhRrFy58rzaOMHT0xOLxdLovk6nk02bNmE0Nj5+9dy5c3nkkUcYO3Ys69atY968eee6JCZNmsTEiRMZP348Qgji4uLYvXs3CQkJpKSknPEYi8VyShC/2qkAqiiN8NDpaRPdkTbRHevXSaeTzckvILO+ZkBdOlohySOEXcE3ENgqAlmWjcF0FP/aXOLMaXgXW1xDAh9XRBClujaYvCKx+8egC4nFp00cYbGJBIRc0ueCFKVFOHY4g6ObP8XryBria3fSTdiwSg8OGBNJiXiI0O7X0S5xAL3VnYSLMnLkSG655Rb+8Ic/0KpVK8rKyqiuriY6OponnniCadOmER0dzT333MOXX7rGIs/JySElJYWkpCTef/99Bg268JcxBw8ezHvvvcfTTz/NunXrCAkJwc/P77yPHzBgAA888ACZmZl06NCBmpoajh07RseOHc96XOfOncnMzGx0++jRo1m0aBGPP/44AGlpafTo0eOUfSorK4mIiADgrbfeql/v6+tb34t7uvbt26PVannuuefqe1zj4+MpLi6u/yxtNhsHDhwgIcE1Q9+BAweYOPEMz/xepVQAVZQLIDQaBkz5M/BnyoqOcWjDKnSZ3xAU3p5+tz1MeXE++z98mrohD2HsNYKy8iKKcvZhys/EVnIYj8ojeJtzia7cSqvK7yDn17bL8aVQF0WVdwyOoA4Yw+IJiupMm3YJLWL2KUW5GDZrHQdS11C968v6WcsigBxNBDvCbsOr82ji+o4m0dvX3aVeEbp06cL8+fMZPXo0TqcTnU7H66+/TnZ2Nlu3bmXjxo1otVo+/vhjli9fzvDhw4mPj+f1119n1qxZdOnShfvuu++Czztv3jxmzZpFt27d8PLyOiXInY/Q0FBWrFjBlClTqKtzTYQyf/78cwbQ66+/njvvvLPR7QsXLuSBBx6gW7du2O12hgwZwpIlSxrUPnHiRAIDAxkxYgRZWVkA3HzzzUyYMIHVq1ezaNGiBm1PmjSJxx9/vH5/vV7PqlWreOihh6isrMRut/Pwww+TkJCAzWYjMzOTPn2afGSly5aailNRmtDunz6h49rZGISNIoI4HDoS/z4Tie9zbYNnQy21NRTmHKQ8dx+W/H1oyjLxMWXTynqUECrq93NIQb6mNaXGttT6tUOExOHXtivhHXvjH9hyxuJTlBMqy0s4uH4V4uC3xFVvwY8arFLLfmM3aqKvJbLfrUR2SDx3Q5ehy20qzuzsbG666SbS09PdXcpFO/EmfVxcnLtLadSnn37K9u3bee655xpsu9ipOC93qgdUUZpQ16HjMfUczu6fP0KbsZqeRZ9h+OYj8lptJjy2ExUlBfgFhqLRajF6ehMd34Po+B4N2qmqKKXgcDpVuXuxFR3AUHGIAPMROhak4VlohT3AN1BIMIXGdpgDOqIN60JATHci43rgqXqTlGZWWpjLofUfYsz8is61O+gjHJQQwL6Aoeg6X0dc0li6qulwlUvghRdeID8/v0UHULvdzqOPPuruMloU1QOqKJeQqaqcQ6nf033E7QDsWHADEeYMskJH4Nt7Ip36jrqgt+adDgeFuZkUHdpJbe5uPEoyCKw5RKT9KAZhc+0jBcc0bSjxaoclqBPGqJ606dSf1pHtEWowbqUJFRzNJHtDMr5Z39Dp+DPRx0Rrjra+loA+t9Gx57CrblSIy60HtDHjxo2rv7V8wosvvsiYMWPcVNGV62rtAVUBVFGa0fZvVyB2f0Rn02aMJ27Td5jOgDue/U3t2m1W8rL2UnI4jbq8PRjK9hFiPkSEIw+tcP0dL8eXXEMcpqBE9FE9aN2xP+Gxna+6gKD8NqWFuWT++A7+mavpZHeNp5itaUt+xGha9ZtIu4R+V/UPOldKAFWajwqgVzAVQJWWxlRVzr71q9Du+QRL654kzfg7dRYz21c+S+SgqUTFdW+S89TWVHMkYwuVh1IRBTsJqtpHW3s2euEAoFp6kmPoQHVQN/Qx/YjqNozQ8JgmObdy5TBVlZPx40oMGR/TpXY7HsLJYU0MhdE3EpF0O207NnyM5GqVkZFBp06dzjmUkaKAa9isffv2qQB6uRBCeAOLASuwTkr53tn2VwFUuRzs3fQtnb6ZjEZIDnrEURo7lvbDpzd5IKyzmDm6fztlmVuReWkEVGYQazuEXrjG8ysghGM+idja9CYgfiCxiUkYjI1Py6dcmew2K+k/f4Ij7QO6VG3EU1jJJ5Ts8BsIG3QnsV36urvEFikrKwtfX1+Cg4NVCFXOSkpJaWkp1dXVDQa/VwG0GQkhlgE3AUVSysST1l8HvIZrSqmlUsoXhBB3AhVSyi+EEMlSyjNPkXCcCqDK5aLoWBaH171DcNbnxNkP4pSCI5O+v+T/2ddZzGSnb6L8wEZ0+duIqE4njGIArNKDLF0HykL74d1xKO16j8RHvUxyxTp2eA85a96g/bHPaUUZ5fhxIORa/PtNJb7PyKv69vr5sNls5ObmNhgcXVHOxGg0EhkZiU6nO2W9CqDNSAgxBDABb58IoEIILa5hvEcBucBWYApwC/CNlDJNCPG+lHLq2dpWAVS5HOUcSCNv8yf0nzYPodGwafFsDKZcZPcpJA6beMnHBi3OyyZ390/UZW0moHQH7az70QsHdqnhkC6OstD+eMcPo33vkXj7BlzSWpRLy2I2kf7Du3imv0+CdScOKdjt1R/Z804Sh01EpzecuxFFUZqMCqDNTAgRA3x5UgBNAuZJKcccX/7T8V1zgXIp5ZdCiA+klJPP1q4KoMqVIGXZH4nLSSaECsrx5UDoGEIG/4723a5plvObTZUc2r4O0/4fCSjaTAfrfnTHA2mmLp7y8CEE97iRDt0HqRebLhMFOQfJ+mYhnfM/IQCT6w326Am0G3UPrSLOPR+2oiiXhgqgzewMAXQCcJ2U8u7jy3cC/YEngH8DFmDDmZ4BFULMBmYD6PX63idmVlCUy5ndZmXPhtXYt71L1+oN7Ai+gf4PvYN0OiktOkZIWFSz1eIKpGsx7V9HcOEvdLAdRCMk5fhxyK8fdLiWdgPGEtQqotlqUs5NOp3sTfmGul/+Q3fTBgB2+gxGn3QPXZJuVD88KEoLoAJoMzvfACqlfPBC2lU9oMqVqLKsGKulhtDwGPalriHui9tI9+qLvetkEoZPxujZvP92lRUd4/DmL5GZP9C+chNBVOGUggO6TlTEjCHqmtuJaJfQrDUpv7JZ60j7+r+E7Povsc5sKvAhI3w8sdc9RFjbljuAt6JcjVQAbWbnewteSvmPC2lXBVDlSldwNJOsbxbSLu9LWlNKFd5kBI+i4+QXCAxt0+z1OB0ODu3+hZIdXxKa+z0dHIcAOKSNpShiFGH9JxDTua96oaUZWMwmdn7xb6IzlhJGMVmaGEoSZ9H1ut9h9PJxd3mKopyBCqDN7AwB1APXS0gjgWO4XkKaKqXccyHtqgCqXC0cdjt7f/mCutR3aVu1Hb8n0jF6enM4fTOt2nZ029vredn7ydmYjH/2t8Rb96IRkiOaSPLb3kL08Bm0iY53S11XsurKMtJX/4uOh98imEr26bpQl/R7ug27XQV/RWnhVABtRkKIlcAwIAQoBJ6RUr4phLgBeBXXMEzLpJTPX2jbKoAqVyObtQ6d3oB0Osl9LoFgZynpwaMJGHQPcT0Guy2ElBTkcOjnZPwOfkpnm+tnyT36rtTE30ankdPxCwh2S11XCkttDWmfvEz8wTcIpJpdxj54DH2Mzv3HqOCpKJcJFUCvECqAKlcz6XSyf/uPVG1YSmL5GrxEHYe07TANfILuI846gMQll5e1jyPrlhOZ8zlRMg+L1LE7YCR+g++lY69hKjBdALvNyo4v/kPUroWEUcJuQy8MY+bRsddQd5emKMoFUgH0CqECqKK4VFWUkvG/NwnZv5Kqfg/Tc8wMSgtzqSjKpX3XAW6rSzqdHExbT/nGZSSWfIu3sJCpbU9ZlztJHDMLLx9/t9V2Odi17mP8f/4r0c5cDnh0xDrsaRIHjXV3WYqiXCQVQK8QKoAqyqmk0wmA0GhIWfY4STlvkKFLwNxjFt1G3enWgcdNVeXs+fa/tNr3LrHOI1ThxZ7wCcSNfZyQsLZuq6slysvaR+FHj9DTvJGjIpziAX+m56hpqudYUS5zKoBeIVQAVZTGVZYVk/HNYqIy3yNCFlJMIJkxkxkw/e9uDTLS6WTf1u+pXf9velSvx4YHaSE3EnnjH6/64ZwstTXseP8ZeuaswImGne3vpdftf8Jg9HJ3aYqiNAEVQK8QKoAqyrk5HQ52//QRYstS7FojvR7/EoAj+7bTtmMPt4bRo5m7yf/6RXqUfoMWBzv8R9Lm1vlEtOvstprcZX/qWoxfP0S08yjbfEcQOeklWke2d3dZiqI0IRVArxAqgCrKhTnxBv3RgzuJem8I+z06UdPnPrpfewdaDw+31VWcl82hzxfQPf8jVxANvZX2E55t1hmg3MViNpH29h/pm/8+JSKIwqEL6DZ8grvLUhTlElAB9AqhAqiiXJya6grSv/oPkfuXEyELyRVhHOs0i+43P+DWQcyL87I5vOppepd+iRUdO6Nn0HPyM1fswOpZe7ciVs0kxnmUzUFj6TLjNXz9g9xdlqIol0hTB1AhRDvgKcBfStkifnJVAVRRlHNy2O3s/P4dfLYtpq0tC/MDOwlqFYHT4XDr3OFHD+6kePVf6GX6mVwRRumQ+XQfPtFt9TQ16XSy9ZNX6bb775iEN/nD/0XXoePdXZaiKJfY+QRQIcQy4Cag6MQEPsfXXwe8hmv89KVSyhdO2rZKBdBmpAKoojQN6XSSl72//tnLPX8fgsk3hqibnyI8xn2zGaVv+By/tU/S1nmM7d5DiJq2iNDwGLfV0xQsZhPpS2bQp+oHdht60Wbm21fFowaKopx3AB0CmIC3T5pBUotrBslRQC6uGSSnSCn3Ht/eYgKoGqtDUZTzJjSa+vBZZzFj8ommZ8lXhC5PYsurU8jNTHdLXYmDxtL6j6lsinmALqYU9G9cw7avl7ullqZQnJdNzivD6VW5hpToOST88QcVPhVFOYWU8meg7LTV/YBMKeVhKaUV+AC4pdmLOw8qgCqKclEMRi/6P/QO5fdsYVur8XQr/5427wxi14+r3FbPgLv+TvEdayj0iKD3lodJfeU2KstL3FLPxTqYth75xnAibUfYOfDfJM180a2POSiK4hYeQojUk75mn+dxEcDRk5ZzgQghRLAQYgnQUwjxpyav9iKoW/CKojSJkoIcDn75L3pM+Rue3r6kb/gcr4DWtEvs3+y12Kx1pL77F/oeWUqBpjW2CW8Rm9D8dVyo9PWraffDPVQJP8wT3nPLZ6coivud70tIQogY4MuTbsFPAK6TUt59fPlOoL+U8sFLWO5FUT2giqI0iZCwtiTd/S88vX2RTieePz5Du1WjSX15fLPfmtfpDSTN+ieZNyRjkBZaf3gzqV++0aw1XKgd/3uXjj/MolAbhsfsNSp8KopyMY4BJz+vE3l8XYujAqiiKE1OaDSE3P8tKeEzSKhaT+t3hrB50QyK87KbtY5O/UcjZv/EEX0H+qQ+TsryJ+qnIW1Jtn+znK4b55Kla0/QA98TEh7t7pIURbk8bQXihBCxQgg9MBn43M01nZEKoIqiXBL+wa1Jmr2QmntT2R56C71KvuDozh+bvY6Q8GjaP7aWrf6jSTqyhC3/noHdZm32Ohqz68dVJG56lIP6TkQ89B3+wa3dXZKiKJcBIcRKIAWIF0LkCiF+J6W0Aw8C3wEZwIdSyj3urLMx6hlQRVGaRf6R/bSO7IBGq2XTyr+DdNB7wh/R6Q3Ncn7pdLJp6cMk5b3Fdp+hdPv9Kjx0+mY5d2MyNn9HzNd3cMwjilZzv8cvINit9SiK0jJcDTMhqR5QRVGaRZvoeDRaLdLpRH8shQEHXiL/hZ7sXPtBs9wWFxoNSbMXsinuEXqZfiJt0RQcdvslP29jjh7cScQ3MynWhhI4+3MVPhVFuaqoAKooSrMSGg09H1nNziH/h5CS7j/fy+4Fozh6cGeznH/AtGdIiX2QPlU/sH3RNJwOR7Oc92RVFaXIlVNwoMVj+qcEt45s9hoURVHcSQVQRVGandBo6D5iMq2f3MGmjo8RbcnAXFnabOdPmvE8KW1n07fyWzYvf6zZzgvgdDjI+r/JtHEUkD/mDbfOIKUoiuIu6hlQRVHczmyqxMvHH4CUNx/DGNWDnqPvuKTnlE4nWxfdQb/yr0jt9QJ9xt53Sc93wqb3nmXAwVfY3PnP9J/0RLOcU1GUy8vV8AyoCqCKorQYltoajr00kPaOLHZ4XUObKYsIi+pwyc5nrbNw8OVRxNXtJWf8ajp0H3TJzgWQuXMjbT+5mT0+SfR49AuERt2EUlq2E4+onHh+21Jbg5ROpJQ4na5f9QYjRk9vHHY7FaUFSCnB6UQikVLi5RuAj18g1joLJXnZSCmRTodru9NBQKso/AKCqa2ppiB7L1Li2i4lUjpp1bYT/kGhVFWUkpeZBie1DxAe1wv/oFDKi/PJz0yjPtcc/zUqYQB+AcGU5B2h4FAav8Ye17PnsT2G4eMXSEHOQYoOuR4Fksj64zv2vx5Pb19yM9MpzUmn+4jJl/xzvxoCqIe7C1AURTnB6OlN2yc2s+mD+XQ/tAS59Bo2dfo9/W5/8pJMR6k3GImY/REV/07C8Nk91LRLwds3oMnPA1BnMaNbPZsK4U/szDdV+LxC1dZUYzGbsNaZsVlqsdXVIDRaYjr3AVwjH1gqCnDabUiHDWm34uETXN/jv+XjV3FU5SMcru3CaUMExdB/0pMAbPrPvejMhWicNoTTjkY6qGnVk6RZ/wQg7cUxGG2VaHCgkQ4ETorChpJ0z2sAZP8tEb2sQysdaHCiwcmBNjeTdO/r2Kx12J+PRHt8vYdwogFS2kwn6d5FVJUX47+oY4NrTomeQ9LMFynOyyJsWZ8G2zd1fJwBU/9C3uF0YpJHNti+tdvf6Dv+9xzJ2EKnL8c32L6t3yv0vuF3HNn1M13X3tVg+y7zm3QbPoGs7T/QK6XhhD8ZHh/i138MWVu+pG/anxtsPxT4HT5dB3Ak5WP6Z/yjwfZjMZuIaNeZoxtX0vfwYmiGAHo1uCwDqBCiM/B7IARYI6X8j5tLUhSliej0BgZMf468rGmUJD9It32vUZg7gTbRl+ZZyYCQMPaMfp3O301l25tz6PvwB5fkPNtXPkuSM5ddw5bRLSTskpxDObfammqqK0qw1FRSZ67Gaq7GbjHRfcTtAOz+6RNqslKRVhMaWw3CZkYg678vUt54iNYFP6GTVnTSih4r1Ro/ov/qGmrx4KJxdLNsPeWcRzSRcHw7PzxLT9upwzIe9IiD4wE0eO9btHccBsAqPbCj5UB1L8AVQH3LM/CzFWMXOhzCA6fQYrb+eofPqdFh03oihRYpNDiFFuEdUr+9yK8rQtqRwgOEBqnRoovoDoBW68G2NhORQgsaDUJokRotPh1cdwYMXj6ktHsIAaDRAAKEhqB413bfwFA2d/4TiBPbBEJoaN1lMACBYTFs6T4fITTHt7mOD09wHd8mNpHt/V9FaDRINIjjx0d1SQIgsvMAdjqWIoTm+LEC0BDVuR8AMT1HkO79jutChXD9gobIjr0BiB0wlr1h7Y9vPrFd0Da2MwDth05lX7s+Jx0rEBoNbdu0BSBu1GyyCscQd6ZvLOWCNfsteCHEMuAmoOjE3KXH118HvAZogaVSyhfOoy0N8LaU8qwPi6lb8IpyeZJOJzkHdxEd3wPpdJK+YTWJg265JL2HKUv/QFLuMtIG/oceo6Y2advHDmcQ/NZg9vgOpPdjq5u07auR2VRJRXE+pvICaiuKsJnK6DJiCl4+/uz6cRWWXZ/gYa1Gb6/CaK/G02ki4JEtePsGsOk/cxhQuLJBm/anivHQ6dm8aAb9Sz/DJrWYhZFaPKnR+tL+6TQANr3zVwz5qTi1hl+/PINIuvtfAGz/7h2sZUfR6Ixo9J5odEb0vsEkDhoLQM6BNGx1Fjw8dGh1BrQ6HQZPH4JaRQCunnKt1gOt1kP1kl/FroZb8O4IoEMAE67gmHh8nRY4AIwCcnFNJTUFVxg9vT98lpSySAgxFrgPeEdK+f7ZzqkCqKJc/nau/YDuP99LmlcSbe96s/4/7KZis9aR+0JfPJ01+D66rUlvxe98cTQdzDupmb2JVhGxTdbuleLEOLBCo6HgaCZHt32LvaoQUVOM1lKGvq6M4AmvEtkhkc3JL9I/4+8N2jh6xwaiOnRl08rnabd/KWaND7VaH6wevth0vsTN/D/8A0PYl7qGquydaAzeeBh98fD0Qe/lR4fug9FotVjMJjRaD/QGY3N/DIpSTwXQS3VSIWKAL08KoEnAPCnlmOPLfwKQUjZ8GKNhW19JKW/8//buO0zOutz/+PveXpJslvTeSSGU9AQQAalKU1AIIEpADgoeGwoeLHjUH3hEPaB4NAKCjSICIqJIByGBVAIhpCekQHrZlO3374/vTGa2z252Z3ZnP6/req6dedrcz06751sb20cJqEjHV11VxRsP/pAJK+5kj3Vl+1n/x7jpZ7XqY7z7xjOMeeoi5va9jOnX/rJVzvn2q39j/DOXM3fkl5l++fda5ZwdTenB/eBOXkEXNq1ZynvP/Irs/e+TX7qVbhXb6FG9g9Wn/oqjP/wJFj79+0Pt+A56DnusiJKs7mRecBfDx09j9ZLX2Lr4H2R16Ul2UR/yinpRWNSTPoNHK2mUtKEEtK0etG4CehFwlrtfHbn/aWCau9dtTRy2nwx8AsgFlrj7XfXscw1wDUBOTs6ksrKy1r8QEUm61UteI/exWfSt3sL8MTcwfebNrXr+N/53Jsft+hfbr3ztsMfo9Opqlt96AsUVWyi68S3y8tP3+6S6qoqMzEx2bXufd5+4new96yk8uImeFe/Ti12HOpqsXPwKQx47nx12BHuye3EgtxflBX3pc/LnGDZuCvv27mLP9s0U9x54aGgukc6mMySgHbITkru/CLzYxD6zgdkQSkDbPioRSYYRxxxPyZDXePPuWeT1Gt7q5x9y0Q+o/s0zbHrsW/T/yp8P61xLXvoLx1a8w+tHfYdpaZJ8VlaU8+7r/2T/xqWwfQWFJWvoU7aeVYM/xYxZ/0N1dRVT37uHbdaTHTn9WNt9BquKBtN75BQARhx9PBy9jX6ZmfSr5/xduhXTpVtxci9KRJKuvSSgm4BBcfcHRtaJiNTRtegIJn3t8UP35z1+F73HzGDImImHfe4+A0cwp/9Mpm3+PeuWzT80fE5LZM25gw/oxcTz663Made8upotG1fz/ruvU7phMRnd+jHtk18DYOQzs8izCko8n83Zg1nXfTr5gycAcESv/lT81wf0zc2jvr7+bTGcloh0PO0lAZ0HjDKzYYTE8xKgdbuhikhaOrBvD0MW307+ooMsOfkXHHPKRYd9zrEX3kzZzx9k19mp6wAAIABJREFU69M/YejYuj2mE7HqzVc5qvwt5o78Cn1zcg87prYWrUIHeOPOyxm58yX6spe+QLUbi7qdAnyNrOwcVp/7MD36j6BH30GMrtVT2zIy1BZTRJqU9ATUzB4ATgZ6mtlG4Lvufo+ZXQ88Tej5fq+7L23kNCIiABR0KWLvrH+x9f5PctSLVzP3/XeZfum3Duuc3Xv25fVe5zBh21/Zvnk9PfsPafY5dj1/Bwc8l7Efa5+ln2WlB1i54DlK3nmW4i2vk19dcmgsy+qsfFYXHc/K/hMpGj6JwWOnMCmuPeboyaemKmwRSROailNE0sL+kt2s+NVlTNj/b+b0u5wZ/1Gnb2KzbFqzlH73n8DrA65gxjV3NuvY3ds/oODn41jU63ymXf/bw4qjLcz94/c4dsUvyLdyKj2DVTlj2NVzIlNm/Yys7JxUhyfS6akTkohIB1HYtTvHfOWvvP5/V2H5Rxz2+QYMP4pFhTM4cvPjVJT/mOxmVKMvf/53TLMqenzo6sOO43BUV1WxYtGL7FrwOAO2PId/6g8MGTOR/P7jWLL7PHJHn8aIKWcypujw/18iIs2hBFRE0kZmVhZTr/vtoRlk1i9bQN9hY8nNK2jR+WziFfT497UsfukvzZodqdvKx1ifMYgRR89o0eMerp1bN7Hi0R8y/IN/MIadVHgm7+YdQ15pqAk69pRPwimfTElsIiIAmudLRNJKNPncte19ih86h3fuvJDystIWnWv8hy9kO93xRX9I+JjN65YztuId3h98XlKnUty9/QNWL3kNgMzsXMa//yibC0Yzf+KPOPCl5Rz9zRcZddyHkhaPiEhjVAIqImmpuFc/Xh/7JaYtu5WFd17E0V/6S7Oq0QGysnNY1et0Jmx9nH17dyU0PuX6l+6nPzD45M+0MPLmWfXmv9n5wl0cs+sZqrKHwTHzKCruycFvrOS4wq5JiUFEpLlUAioiaWvaxTcx98gbmLj/FZb8/GKqKiubfY5uEy8k1ypY/spfEtq/eMPzrMwaddizKDXl7X8/wbs/mM7Ixz7G+F3P8WbPj5H9idj0oflKPkWkHVMCKiJpbfql32buiC8xqeQF5j/602YfP3rK6eygCJb9rcl9d217nyMr3mV7v5NbEGnTqquqqCgP0wof3LqWblU7mTv6G1R+ZRnTvng/w8ZNaZPHFRFpbY1WwZtZBjDd3V9LUjwiIq1u+qf/mwV/H8zE0z/d7GMzs7JY3f0Exux+iarKSjKzGv7YXD33CSab02PCOYcTbr3emfMPcp69me0jPs70S7/NhHM/j59zLf07wCD3IiK1NVoC6u7VwOENpici0g5M+tjVZOfksmPLRt56+a/NOjZj5Cl0Yz+rl7za6H6++gV20ZWRx7ZeZ5/Na99l4Y/PZdzTl9Clag+5PQYDoX1qc9u0ioi0FjPLMLNPtfT4RKrgnzOzC83MWvogIiLtxbo/fJERz32O9e8uTPiYoZPPBmDHW083ul+/PYtZV3BMq813Pu+vv6T4vg8xZt/rzBlyLUVfX8yEM5PTuUlE0p+ZXWBmvzGzh8zsjOYcGymk/EZLHzuRBPQ/gD8D5Wa218xKzGxvSx9QRCSVBl58O6WWCw9/mn17dyV0TM++g1iTMZSumxsuAd3+wXsM9Pcp6z+1tUKlsM9wlhdMpORzc5hx5Y/UsUhEDjGze81sq5m9XWv9WWa23MxWmdlNjZ3D3R93988B1wIXtyCMZ83sBjMbZGZHRJdEDmwyAXX3ru6e4e7Z7t4tcr9bC4IUEUm5PgNHsPm0uxhYtYkVsz+DV1cndNy2IyYytHQ51VVV9W5/b/HzAHQfc3jV7/P/9mvm3PM1AMZNP4vjbnyaPgNHHNY5RSQt3QecFb/CzDIJTSfPBsYBM81snJkdbWZP1lp6xx36LVrW5PJi4DrgZWBBZJmfyIEJ9YI3s/PM7PbI0vqt60VEkmj8iefxxogvMnHfS8z7a2KfuTZgIl3sIBtWvlnv9vK1cyj1bIYffUKLYiorPcDrP/8Mkxd8g6Itr7d48HwR6Rzc/WVgZ63VU4FV7r7G3cuBB4Hz3f0tdz+n1rLVgh8B/3D3xNslxWIYVs8yPJFjm0xAzew24EvAO5HlS2Z2a3ODFBFpT6ZddgtzBn2OEcd/PKH9+4w5HoCt79Y/KEjXXctYnz2cnNy8ZseyZ9d2Vv30TKbteJw5/S7nyK8/36LziEjayDKz+XHLNQkeNwDYEHd/Y2RdQ74InAZcZGbXNjdIM8s2s/80s0ciy/Vmlp3IsYnMhPRR4LhIY1PM7H5gEfDN5gYqItJeZGRmMuOq2wEOVas31nlo4Khj2ef5VG9cUGebV1fTv3wNK4s/3Ow4qior2faLMxhVuY75k37EjPOa/R0gIumn0t0nt/WDuPudwJ2HcYr/A7KB6CwYn46su7qpAxOdirM7sWLeouZGJyLSXu3ZsYXNv7qAktGfZOpFX21wv8ysLNbnjqL77qV1tu34YAM9KaG691HNfvzMrCz2TPwCK4p6M/nE85p9vIhInE3AoLj7AyPr2soUdz827v7zZlZ/O6VaEmkDeiuwyMzui5R+LgB+2IIgRUTanW7FvXDL5Mi3f8Lu7R80uu++biPpX/FenY5Lm1eENvddhxyX8ON+sGEVbz7/MBDGKB2v5FNEDt88YJSZDTOzHOAS4Ik2fLwqMzvUS9LMhgP199SspdEENDL257+B6cCjwF+AGe7+UMtjFRFpPywjg/wLfkYXP8CKP93Q6L7eYxRd7SA7tm6ssf7AhvCDf+DoSQk95p4dW6i491wGv/xVSvbU7kMgItI0M3sAmAOMNrONZnaVu1cC1wNPA8uAh929brVN6/k68IKZvWhmLwHPA19L5MBGq+Dd3c3sKXc/mrbNoEVEUmbYuCnM7XsxUz94kFVv/puRx55Y736F/cfActiy5m169h18aH3mjhVso5hePfo0+VgV5WVsmP0pjqzeyqqz/8i4ooSGzBMRqcHdZzaw/ingqbZ+/Mh07QeBUcDoyOrl7l6WyPGJVMEvNLMpLYxPRKRDGDfzh5RYAbuf+98G9+k5NLTx3LdpWY31BQc2sj27X0KPs/DX1zC+bDFvTvhvxk0/q+kDRETaoeh07e5e5u5LIktCySck1glpGnCZma0H9gMWHtePaVnIIiLtT7fuPVhx3gOMH9NwNXqfgSM56Dn49pU11hdXbGFz16Y/Et+Z8w+m7XicuX0vY/oF1x12zCIiKfacmV0IPOru3pwDE0lAz2xZTCIiHcuRE8MwStVVVfUOyZSRmcn7mf3J37vm0LrKinJ6Ve9gfdeBTZ5/7LQzWbDrp0w67fLWC1pEJHX+A/gqUGlmpcQKKZucMbOpTkiZwNPuvr720iphi4i0M6vfmsv7PxjLioUv1bt9d/5gistinZC2v7+ebKsio/vgeveHME7oji0bsYwMJn30KrJzcls9bhGRZIp0VD8qMl17TnOna280AXX3KmC5mTX8yZoCZpZhZj80s5+b2WdSHY+IpI8+Q0bT1UvY9/xP6t1eXtiPnlXbDw3FtHPzagAKeg9r8JwLnvw1eb+cxNp35rV+wCIiKRCpcv97S49PpBNSMbDUzJ4zsyeiS0sf0MzuNbOtZvZ2rfVnmdlyM1tlZjc1cZrzCYOrVhCmmRIRaRVduhWztP8nObbkZTatqWf0kqIBFFgZeyPDJ+3fEqrji/rVP/1xyZ6dDF14G5uyBzNk9MQ2i1tEJAVa3FE9kTag327JiRtxH/AL4HfRFZGq/ruA0wkJ5bxIkptJGAg/3ixCd//X3P3XZvYI8FwrxygindiIj30FZv+O9579NQOuqTlLXXZxaOu5c/Nqiop7UrkztEjqPXBkved6+6HvMs33sOtjv290qk8RkQ6oxR3Vm0xA3f0lMxsCjHL3Z82sgJAYtoi7v2xmQ2utngqscvc1AGb2IHC+u98KnFP7HGa2ESiP3E1oxH0RkUT1HjCMxYXTGbX5r1RW3E5Wds6hbYW9hgCwd8t6OGoamXs3sp3u9CzoUuc8O7Zs5NhND7Gw6CNMnnBS0uIXEUmSFndUb7IK3sw+BzwC/DqyagDweEsfsAEDgA1x9zdG1jXkUeBMM/s58HJ9O5jZNWY238zmV1ZWtl6kItIp5J1yA+/N+AFhrOWYbj1DCWjZnjBtZ07ZDvZkFtd7jjVz/koOFfQ+p7UrkkREUi/SKX0QcGrk9gESa96ZUBX8dYQSytcjD7bSzHq3MNZW4e4HgKua2Gc2MBugsLCwWWNTiYiMmXJaveuLevYFoLpkGwD55bs4kNW93n2nXHAdH0w6k8GD6q+eFxHpyMzsu8BkQtPI3wLZwB+AE5o6NpEstczdo9XdmFkW0NoJ3SZCBh01MLJORCRltmxczZzf3lhjvvaCwm6UejYc2AFAYdVuynLqTqdZVnoAgL5KPkUkfX0cOI/Q/hN33wx0TeTARBLQl8zsv4B8Mzsd+DPwtxYG2pB5wCgzG2ZmOcAlaO55EUmxHRtXMmP9r1jx70cPrbOMDHZbdzIPbgegqHoPlXk1E9Dqqiq2/M9k5t791aTGKyKSZOWR4ZgcwMwKEz0wkQT0JmAb8BZhxPungG+1IEgAzOwBYA4w2sw2mtlV7l4JXA88DSwDHnb3esY/ERFJntGTT2MHRbCs5m/ukswicsp2UlZ6gK52EC/oUWP72688zuDqTWT1HZPMcEVEku1hM/s10D3SZ+hZ4DeJHJhIL/jqyMkSOmEC55vZwPqnCMmtiEi7kJmVxaoeJ3P09n9SemAfeZGe7geziymo2MWeHVvoDWR06VXjuIr5v2MX3ThaU26KSBpz99sjteN7Ce1Av+PuzyRybEI9lUREOqv8o8+nwMpYPvfJQ+vKc4rIr97Hgb2hHWhWYawEdH/JbsaVvMaKHqeSm1eQ9HhFRJLJ3Z9x96+7+w2JJp+gBFREpFFHTj2TvRRQum3doXVV2V0o8AOU7tsNQHZBbOrjZS//mXwrp+vkS5IdqohIh5HIMEwAmFlBZPgjEZFOI6+gC5n/tY5pObmH1lXndKHQD1K+fw8AOYVFh7b1P+ok5u69kalTz0h6rCIiHUUiA9Efb2bvAO9G7h9rZr9s88hERNqJ7LjkE4DcruRaBeV7twKQ1yU2Dmj/oaOZPvO/NO2miHQKZpZvZqObe1wiVfA/I0y1tAPA3d8ENKeciHQaWzetZfkPprLoX38AwHJDlXvF7s1ALAFdv3wx8//+G0oP7EtNoCIiSWRm5wKLgX9G7h9nZgkNo5lQG1B331BrleZfF5FOo6hHH4ZVrKZszWsAZOaHBDRjb5gvo6BrmIpz88v3cdwb36CsrDQ1gYqIJNcthNkydwO4+2JgWCIHJpKAbjCz4wE3s2wzu4EwVqeISKeQm1fAuuzhdNu5BIDM/NDmM+dAmA++sEu4X7R1HmuyR1JU3DM1gYqIJFeFu++ptS6h2TITSUCvJcwHP4AwPeZxwBeaFZ6ISAe3q/gYhpatoLKinJxIr/cu5Vs54LlkZmVRXlbK8PLl7OwxMcWRiogkzVIzuxTINLNRZvZz4LVEDkwkAR3t7pe5ex937+3ulwNjDydaEZGOJnPQFAqsjPeWLyKnMLT5LK7cxn4LY32ufes18qyCnKHTUxmmiEgyfRE4CigD/gTsAb6cyIGJJKA/T3CdiEja6jf+wywsPAmvriI3P8yI1JPdlFo+ALtXzwNg0LGnpCxGEZHmMLOTzewVM/uVmZ3cglOMcfeb3X1KZPmWuyfUCL7BcUDNbAZwPNDLzL4at6kboPFFRKRTGTB8LAO+HuaE37Rm6aH1lZYNwNRPfp0PNl1I3/5DUxGeiHQyZnYvcA6w1d3Hx60/C7iDkKvd7e63NXIaB/YBecDGFoTxEzPrCzwCPOTubyd6YGMD0ecAXSL7dI1bvxe4qAVBioh0eKUH9pGVk3fofpWFj1HLyKDvoJGpCktEOp/7gF8Av4uuMLNM4C7gdEJCOS8yLFImcGut42cBr7j7S2bWB/gpcFlzAnD3UyIJ6KeAX5tZN0Ii+oOmjm0wAXX3l4CXzOw+d1/fnIBERNLRG3deTv9d88i/9rlD6yoth4ryMhbf9WkKpn2Wo47/aAojFJHOwt1fNrOhtVZPBVa5+xoAM3sQON/dbyWUljZkF5DbyPbG4vgAuNPMXgC+AXwHaHkCGuc+M6vTpd7dT212lCIiHVhVYV/679jC9urYR2JVRhabVr/FlD1PM3+7PhZFpFVkmdn8uPuz3X12AscNAOLHbt8ITGtoZzP7BGGyoe6E0tRmMbOxwMXAhYQJix4CvpbIsYkkoDfE3c6LPEhlM2MUEenwcvqNJWODs3PTKnpH1lVl5LBjzWKGAsXDjkthdCKSRirdfXJbP4i7Pwo8ehinuJeQdJ7p7pubc2CTCai7L6i16lUze6M5DyIikg6KB4+HN6Dkg5WH1lVbNuXvL6XSMxg46pgURiciwiZgUNz9gZF1bcLdZ7T02CYTUDM7Iu5uBjAJKGrpA4qIdFR9howGoHLHeio9gyyrpjojh5zda/ggow8D8wpSHKGIdHLzgFFmNoyQeF4CXNraD2JmD7v7p8zsLWrOfGSAu3uTv8YTqYJfEDm5Eare1wJXtSBeEZEOrbBrd+YM+CxdR06nfM1vyKKM6oxszKvYkTeYgakOUEQ6DTN7ADgZ6GlmG4Hvuvs9ZnY98DSh5/u97r60kdO01Jcifxvr2NQoc09oys4OrbCw0Pfv35/qMEQkjey9pT/d2M+87mcz5csPpjocEUkjZnbA3QtTHUdTzOxH7n5jU+vq09hA9J9o7MBIw1URkU7lwL497N7+ATmEAeirM7JTHJGISMqcDtRONs+uZ10djVXBn9vINufwek2JiHRIS+7/GkdtfZL9Fgon9lVm8vatHybjlG8ybvpZKY5ORKTtmdnngS8Aw81sSdymrsCriZyjsYHorzy88NqOmY0DbiGMOfWcuz+S2ohEpNPo2o+u2w7yAT3pC5RWOePLFvN2RVmqIxMRSZY/Af8gzK50U9z6EnffmcgJMprawcyKzOynZjY/svzEzFrcC97M7jWzrWb2dq31Z5nZcjNbZWY3NXR8xNnAz93988AVLY1FRKS5srr3B2APXQDwqjAsclG/4SmLSUQkmdx9j7uvc/eZkdkyDxJqx7uY2eBEztFkAkoYZLSEMM/npwhzwf+2hTFDmLu0Rj1V3NylZwPjgJlmNs7MjjazJ2stvYHfA5eY2Y+BHocRi4hIs+QdMQCA/YT54LOqSgHo1X9YymISEUkFMzvXzFYSRkh6CVhHKBltUiLDMI1w9wvj7n/PzBY3O8qIVpy79LpI4qq2qCKSNF17hAS00jPAIL96HzvpxhEFXVIcmYhI0v0AmA486+4TzOwU4PJEDkykBPSgmZ0YvWNmJxCKWltTfXOXDmhoZzMbamazgd8BP25gn2uizQYqKzVzqIi0jh4DhjN39I10sdDmsyyzkPUFR6c4KhGRlKhw9x1AhplluPsLQEJTiCZSAvp54P5Iu08DdgKfbWmkrcHd1wHXNLHPbGA2hHFAkxCWiHQCXboVM33mf7H6+w9DFRQNn8KES76Z6rBERFJht5l1AV4G/mhmW4GEBl5PZC74xcCxZtYtcn/v4UTagKTOXSoicjjWL1/MjqoCRgCWlZvqcEREUuV8oBT4CnAZYar2/07kwER6wX8pknyWAD81s4VmdsZhBFufQ3OXmlkOYe7SJ1r5MUREWkXmg5dQXV0NQOHbf2DuH7+X4ohERJLP3fe7e5W7V7r7/e5+Z6RKvkmJtAGdFSn1PIPQ4/zTwG0tDTYyd+kcYLSZbTSzq9y9EojOXboMeLiN5i4VETls+zOLyM1wDlZnMtbX4KVtUTEkItI+mVmJme2NW0ri/yZyjkTagFrk70eB37n7UjOzxg5ojLvPbGD9U8BTLT2viEiyHMzuTjffSul1S8m/awxWoNHgRKTzcPeuh3uOREpAF5jZvwgJ6NNm1hWoPtwHFhHpqCqzu5BXvZ99u7cCkFV4RIojEhFJDTM70cyujNzuaWYJDYqcSAnoVcBxwBp3P2BmPYB2O02niEhbq8ruQr4fZMe+PQBk5XdLcUQiIslnZt8lDLs0mjBJUQ7wB+CEpo5NpBd8dWTg+MvNzIF/u/tjhxOwiEhHVnzCLNZtO43i3Hzeyp1IYa9BTR8kIpJ+Pg5MABYCuPvmSE15k5pMQM3sl8BI4IHIqv8ws9Pc/boWBisi0qEdOfHDsTvjXkhdICIiqVXu7h4poMTMChM9MJEq+FOBse4ePfn9wDstClNEJA1s37ye91ct5MipZ5KbV5DqcEREUuVhM/s10N3MPgfMAu5O5MBEEtBVwGBgfeT+IGBlS6IUEUkHa+Y8ytS3bmHO6msZ8t6j5H/hZYp79Ut1WCIiSeXut5vZ6cBeQjvQ77j7M4kc22ACamZ/AxzoCiwzszci96cBbxx21CIiHVRmXmjilLV7Hf19KwfyVQoqIp1TJOF8BsDMMszsMnf/Y1PHNVYCentjj9fM+ERE0ka013te6Vaq3MgvOOwh8UREOozIDJnXAQMIM1c+E7l/A/Am0PIE1N1fauBBTwRmEiaeFxHpdLILQgLatWIbB8ija0YiQyqLiKSN3wO7CDNbXg38F2HiogvcfXEiJ0ikDShmNgG4FPgksBb4S0uiFRFJB7mRBPSI6h0ctHxU/imS5qqrYc0aWLgQcnLgggtSHVGqDXf3owHM7G7gfWCwu5cmeoLG2oAeSSjpnAlsBx4CzN1POayQRUQ6uD5Dx/LmSb/hwOpXySjbS+9UByQiraeqCpYvD8lmdFm0CPZGpjg/4QQloFARveHuVWa2sTnJJ4SEsv4NZtXAK8BV7r4qsm6Nuw8/jIBTorCw0Pfv35/qMERERKQ9KS+HpUtrJpqLF8PBg2F7fj4ceyxMnBhbjjoqlIK2ITM74O4Jj6mZbGZWBUQTKwPygQOR2+7uTU4P11gV/CeAS4AXzOyfwIORE4uIdGqlB/ez7JXH6D1yAgOGH5XqcEQkEaWlsGRJLNlcsADeegsqIoV5XbvChAnwH/8RSzZHj4ashFordkhmNhi4E9gJrHD32xI5zt0zD/uxGyoBjQuuEDifUBV/KvA74DF3/9fhPniyqARURFrTrm3vU3zXGACW5E3mmJueS3FEIlLDgQPw5pshyYwmm0uXhup1gOLikGBOmhRLNkeMgHbSoTCRElAzuxc4B9jq7uPj1p8F3AFkAnc3llSa2ceAYnf/g5k95O4Xt84VNC2RueD3A38C/mRmxYSOSDcCHSYBFRFpTVk5ubHb1WUpjEREKCkJ1ebxyea774aOQwC9eoVE85xzYgnnkCFgHb5S9z7gF4SCQQDMLBO4Czgd2AjMM7MnCMnorbWOnwXMBR4xs1mEnu1J06xyZXffBcyOLCIinVJ2XAJaZelbPSfS7uzeHdppxiebK1dCtDa3X7+QZF50USzZHDAgHZLNOtz9ZTMbWmv1VGCVu68BMLMHgfPd/VZCaWkNZnYD8N3IuR4Bftu2Ucfok1NEpJmys2MJaHVGdgojEUljO3bEksxou83Vq2PbBw0KCebll8eq0fulzZS4WWY2P+7+bHdPpPBvALAh7v5GwgyWDfkncIuZXQqsa3aUh0EJqIhIM2VmZVHpGWRZNdWmBFTksG3ZUjfZXL8+tn3YsJBgXnVVLNns1St18ba9Snef3NYP4u5vAxe19ePURwmoiEgLrPzog+x77R6q+09KdSgiHYc7bN5csyf6woWwaVNsn1GjYPp0uO66kGhOmABHHJG6mDuWTcCguPsDI+vanSZ7wacD9YIXERFJMnfYsKFme82FC0NpJ4R2mWPG1OyNftxxUFSU2rjbgUTHAY20AX0y2gvezLKAFcBHCInnPOBSd1/adtG2jEpARURaYOE/fktBj4GMmXp6qkMRST13WLu2brK5Y0fYnpkJ48bBWWfFEs5jj4UuXVIbdwdmZg8AJwM9zWwjoTPRPWZ2PfA0oef7ve0x+QSVgIqItMiWW4bThx283usipl13T6rDEUme6mpYtapmsrloUeihDmHg9vHjY6WakybB0UdDQUFq4+5A2vtMSK2hQ5SAmtlw4GagyN0viqy7APgY0A24pyMNjC8iHV+lZYGDW/sYuFqkTcTPix5NOBctCmNvQpiS8phj4OKLY8nm+PGQm9v4eaXTa/MEtDVG6o+MZ3VVZIyq6LrHgccjg+PfjgbGF5EkqrTskIBmtu2c0CJJU1UVBnBfsADmzw9/Fy8OswpBbF70K66oOS96tkaCkOZLRgnofRzmSP3uvrWR838rci4RkaSpin58KgGVjqiqClasiCWa8+eHks1osllQEHqfX311rCp9zJi0nhddkqvNX0mtMVJ/fczMgNuAf7j7wtaLWESkadWWGW4oAZX2rro6JJvxJZsLF0K0b0R8sjl5ckg4R48OHYdE2kiqfso0a6R+M+sB/BCYYGbfjCSqXwROA4rMbKS7/6rWMdcA1wDk5OgLQkRaV/ZFv2HR375Nl+GNTTIikmTRDkK1SzajbTbz8kKyOWtWSDQnTw4lm0o2JcmS0gu+nnGqLgLOcverI/c/DUxz9+vb4vHVC15ERNJOdXWYmrJ2yebevWF7Xl4YVzOaaE6aBGPHqhq9A1Av+LbTYUbqFxGpz+JnH6Bi71YmnncdmfpCl7bmDmvW1CzZXLgQ9uwJ23NzQwehyy+PJZxjx6qDkLRbqfrUnAeMMrNhhMTzEuDSFMUiItJsXeb8mJFVq3mjuoqpF3011eFIOokf1D2acC5YEBtnMycnJJszZ8ZKNtUbXTqYZAzD1KFH6hcRqY8Rmi9ZltqYy2Fwh/Xra5ZsLlgAu3aF7dnZsXE2oyWbRx0VklCRDiwZveBnNrD+KeCptn58EZG2sK3XDEZ8sIaC3sNTHYrLTTiFAAAgAElEQVR0FO7w3ns1E83582HnzrA9OzvMGHTRRbGSTQ3qLmlKU3GKiLRQWekBcvM0vaA0YNOmkGDOmxdLOLdvD9ui01VGE83Jk0PyqWRTUCckERFphJJPOWTHjliyGV3efz9sy8wMyeZ558USzmOOCb3URTopJaAiIiLNUVISeqDHJ5tr18a2jx4NH/kITJkSluOOC9NYisghqoIXERFpSGkpvPlmLNGcPx+WLQvtOQGGDIklmlOmhCkri4pSG7N0eKqCFxER6SwqK2Hp0liiOW8eLFkS1gP06ROSzIsvDlXpkydD796pjVmkg1IJqIiIdD7V1bByZc12m4sWwcGDYXtRUUgw40s3Bw4Es9TGLZ1CZygBVQIqIiLpzR02bKjZZnPBgtgsQvn5oeo8PtkcMQIyMlIbt3RanSEBVRW8iIikl61bayab8+eHdRAb2H3mzJBoTp4M48ZpfnSRJNM7TkREOq79+0OP9DfegNdfD3/Xrw/bzEJyefbZsZJNDX8k0i6oCl5ERDqGqip4552ayebbb4f1AEOHwtSpYYn2SO/SJaUhi7SEquBFRERSwR02bgxJZjThnD8/lHgCdO8eEs1zz4Vp00LC2adPamMWkYQpARURkdTbuze014wv3YzOJJSdHQZzv/LKkHROmwYjR6qTkEgHpgRURESSq6IC3norlmi+/jq8+25scPdRo+DUU0OiOXVqSD41R7pIWlECKiIibcc9TFMZn2wuWhRmGALo2TMkmpdcEqtKP+KI1MYsIm1OnZBERKT17N0bEs05c2Du3HB7+/awLS8PJk2KVaNPnRo6Dmlwd5EaktUJycyGAzcDRe5+UUPr2uSxlYCKiEiLVFeHqvO5c2MJ59Klsar0sWNh+vRYwjl+fGjPKSKNSiQBNbN7gXOAre4+Pm79WcAdQCZwt7vflsDjPVI72axvXWtSFbyIiCRm165QhR5NOF9/PTabUPfuIdm86CKYMSMknd27pzZekfR2H/AL4HfRFWaWCdwFnA5sBOaZ2ROEZPTWWsfPcvetyQm1LiWgIiJSV3TMzWjJ5pw5obQTQpX5+PFw8cUh6ZwxA448Ur3SRVpPlpnNj7s/291nx+/g7i+b2dBax00FVrn7GgAzexA4391vJZSWthtKQEVEBHbsqFmV/sYbUFIStvXoERLNyy8Pf6dMgW7dUhuvSHqrdPfJLThuALAh7v5GYFpDO5tZD+CHwAQz+6a731rfuhbE0SQloCIinU1VVWir+dprIeGcMwdWrgzbMjPDdJWXXx5KNqdPD2NuqqOQSNpx9x3AtU2tawtKQEVE0t3+/aFE89VX4d//Dgnn3r1hW+/eIdGcNSv8nTwZCtN6BkCRdLYJGBR3f2BkXbvT7hPQBoYIOBn4PrAUeNDdX0xZgCIi7c3mzSHZjC6LFsXmSz/qqDDm5gknhGX4cJVuiqSPecAoMxtGSDwvAS5NbUj1a9MEtDWGCIg0pL3KzB6JXw3sA/II7RtERDqnaHV6fMK5bl3Ylp8feqPfeGNINmfMgOLilIYrIq3DzB4ATgZ6mtlG4Lvufo+ZXQ88Tcix7nX3pSkMs0FtOg6omZ1ESBR/F01AI0MErCBuiABgJk0MERA/HpWZZbh7tZn1AX7q7pc1FofGARWRtLF/fxj+KJpsxlen9+0bK9k84YQwhWVOTmrjFZFmS9ZA9KnUpiWgbTVEgLtXR27uAjRBsIikr127QqL58sthWbAAKivDNlWni0gHlYo2oK0xRMAngDOB7oRBWOs77hrgGoAclQCISEexdSu88gq89FJIOJcsCTML5eSE6vSvfx1OPFHV6SLSobX7TkgNDBHwKPBoE8fNBmZDqIJvswBFRA7Hxo0h0YwmnNHB3vPz4fjj4ZZb4KSTwlSW+fkpDVVEpLWkIgHtMEMEiIi0KndYs6Zmwrl2bdjWrVso2fzsZ0PCOWmS2m+KSNpKRQLaYYYIEBE5bJs3w/PPh+W55+C998L6Hj1Covmf/xn+HntsGAReRKQTaOthmDr0EAEiIs22Ywe8+GIs6YxWqRcXwymnhDacp5wCY8dq7nQR6bTadBim9kLDMIlImykpCZ2Gognn4sWhqr2wMJRsfuQjcOqpoYRTCaeIJKAzDMOkBFREpCHusHNn6CjU0LJqVRgWKScnDIV06qlhmTIFsrNTfQUi0gEpAU0TSkBFpA73MMbmxo2wYUPNJbpu40YoLa15XEYG9O8PAweG5cgjQ8J5/PHqpS4irUIJaJpQAirSCZWU1E0sayeZtT8XMjNDcjloUFiiSWb80rcvZLX7EexEpANTApomlICKpKGSkjCE0bp1YYnejv7ds6fm/mbQr18ssYwmmfFL377qiS4iKdcZElD9jBeR9mn/fli/vm5iGb29c2fN/QsKYNgwGDo0jKc5eHDN5LJ/f7XJFBFpJ5SAikhqVFaGqvDVq8Oydm3NZHPbtpr75+aG5HLYsNDBJ5psRv/27Kl50EVEOggloCLSdg4eDDP/RJPM+GXt2pCERmVnw5AhIZm84IKayeWwYdC7t4YxEhFJE2oDKiKHZ9euWFK5alXNJHNTrVl2u3WDkSNhxIi6y4ABan8pIoLagIqIhOGKNm+uW4IZTTZ37aq5f9++IaE87bS6SWaPHqomFxERlYCKCCHJ3LYNVq6EFStq/l21Cg4ciO2bmRmqyqNJZXyJ5vDhYQYgERFpMZWAikh62b27/iRzxQrYuze2X1ZWSCZHjQpTSUaTzJEjQ+9y9SYXEZHDoBJQkXSzf39IKqNLfJK5fXtsP7NQknnkkSHRHDUqdnvoUA22LiKSIioBFZH2qawstL+MTzCjtzdvrrlv//4hsfz4x2smmcOHQ15eauIXEZFOTQmoSHtVVQXvvQfLl4fEMr4k8733oLo6tm/PniGxPP30mknmyJHQpUvqrkFERKQeqoIXSbW9e0OS+e674W90WbkSSktj+3XrVn91+ahRUFycuvhFRKRVqQpeRFpHVVWY4ae+RPODD2L7ZWaGqvHRo+GMM8Lf6NK7t4YwEhGRtKAEVKQ17dpVM7mMJpurVkF5eWy/I46AMWPg7LNrJpkjRkBOTuriFxGRTsPMhgM3A0XuflHc+kLgJeAWd3+yLR5bCahIc1VWhukl4xPNaLIZP395VlZIKMeMgXPOqZlo9uyZuvhFRKTDM7N7gXOAre4+Pm79WcAdQCZwt7vf1tA53H0NcJWZPVJr043Aw60fdYwSUJGG7NhRt7o8WpoZP4d5r14hqTz//JpJ5rBhGi9TRETayn3AL4DfRVeYWSZwF3A6sBGYZ2ZPEJLRW2sdP8vdt9Y+qZmdDrwDtOkwKUpApXOLlmYuW1Y32dyxI7ZfTk7oUT52bBjOKD7RVAcgERFJMnd/2cyG1lo9FVgVKdnEzB4Eznf3WwmlpYk4GSgExgEHzewpd69u/JDmUwIqncO+fbFq8mXLYgnnypVQURHbr2/fkFReeGGoOo8mmUOHhg5CIiIibS/LzObH3Z/t7rMTOG4AsCHu/kZgWkM7m1kP4IfABDP7prvf6u43R7Z9FtjeFsknKAGVdOIOW7fWTTKXLYMNce/HzMxQmjlmDJx3Xvg7dmxINIuKUhe/iIhIUOnuk9v6Qdx9B3BtA9vua8vHbvcJaH09tMxsMHAnsBNY0VgDW0lD0SGN4hPM6O1du2L7FRaG5PLDH44lmWPGhORTPc1FRCT9bAIGxd0fGFnX7rRpAtqGPbSOBh5x9z+Y2UNtE72k3MGDNavNo39XrAhTUUb16ROSy4svjiWZY8fCgAGQkZG6+EVERJJrHjDKzIYREs9LgEtTG1L92roE9D7aoIcWMBd4xMxmAb9vg7glmbZvr5tkLlsG69eHanUIieSwYSGxPOusmiWa6gQkIiKdjJk9QOgw1NPMNgLfdfd7zOx64GlCXnWvuy9NYZgNavOpOCM9tJ6MloCa2QzCwKZnRu5/EyDSQ6ux8zwSVwV/A/BGpAfYofUN0VSc7UB1dZi/PD7JjP7dvj22X35+aIsZTTCjSeaoUZDXpiNCiIiItAuairNtHHYPLeCfwC1mdimwroHjrgGuAchRe7/kKSsLPctrdwJavjxUqUf17BkSy49/vGayOXiwqs1FRETSXLvvhFRfDy13fxtotNQzMlzBbAgloG0WYGe1d29ILN95p2ayuWZNKO2EMG/5kCEhsTzllJrtMzUTkIiISKeVigS0w/TQEsJg7O+8E0s0o7c3xT1lOTlw5JEwYQJcemksyTzySCgoSF3sIiIi0i6lIgHtMD20muWf/wxTMWZlhekXo8vDD8OJJ4btN9wQ2x79+6tfwbhx8MwzcNddNbdlZcEPfgD9+8NLL8Hf/lZ3+/XXQ7duMH8+LFhQ9/znnx8SxBUrwliY8duys+HYY0P8S5fCkiWhBHP16lCNvnx5zfaZhYUhsTz11BDzuHHh/rBh4ZwiIiIQOpBWVISlvDx2u3//UDv2/vuwZUtsfUVFGGLv1FPD8fPmhWmPKyrCjHWVleF7ZtassP2xx8L3VnRbRUX4Lrz55rD9Zz8L32nRbZWVYWSUO+4I27/4xbA9/vxHHQW/j/RrPvPMcP747R/+MDzxRHL/j2msrYdh6tA9tJpl6FD4yldiL/boizZa1dy1a+hcE/9mqKiIza5TUgJr19bdHn0zLVkC//d/sXNHffaz4U335JPwve/VjWvPnpCAzp4NP/lJ3e3Tp4eSzT176m7LygrHjBsXjn/yyVD6uXIlPPVU+CBZsiTs+8UvwiuvhKQ2JycsQ4bAffeF7T/4QUhoc3Ji+wwdCl/9atj+29/Ctm2xY7OzYeBAOPvssP2FF0L70vjz9+gRxvSEkFxnZMS2RRfNXiQiHZV7SMrKykISV14ePu/z88PsbitXxtaXl4f9Jk+G3r1Dp8/nnqubAM6cCYMGwcKF8OCDNbdVVITvkcGDw2f8L39Zc1t5OTz6aEjkZs+GH/2obpK5ejX06gXf+hb8v/9X95oOHAjx33Yb3HlnzW2ZmeG7D0LhzL331txeVBRLQB94AP7859hxWVnhOyf6nblgQfhOysqKFbpUVcXOVV0dvjMKC2MFM/37x7ZPmxb+T/GFOmPGtPy5lDravBd8e5CWveCrqsIbNScn/Jrcty8ksRUV4UNozZpQ6rl3b0j8Fi0KH1bx42cWFYVq87FjQw/zjIzwwZWfH85vBl/6Utj34YfDOeIT5MLC8AEE4YPmjTdiH0Tl5eHN/MADYftll8GcOTW3H3NMKNmFEMfixTWv8ZRT4Pnnw+1Ro8Kv4Xjnnhv7Ndq3b/g1He/SS+GPf4xtr6iomQBfdln4sHWHk08O6/LyIDc3LOeeC5dcAqWl8N3vxtZH95kxAyZNCp2rnn46tj26DBkSPogrK0NThvht6mgl0r5UVob3uln4bHMPP7hLS8PnZmlpWAYPhvHjw2fYfffVTA7Ly+Gkk8Jn1+7dcOONdRPEK68MnS/XrYNPfjJ2fPTvj34El18earWmTo0NRRf1wAPhc+mFF2KlhfH+9jc455zw2Xj++XW3v/hiKMl78MGQzMXX2GVnh8Rz/Hh45JGQJNbefs89IQF98kl46KG627/3vZAkv/givPZa3e1XXhn+vvlm+J6qvf1DHwpxbtoUvtNq19r16hW2l5eH5yorK/xNM52hF7wS0I6svDwklbXbZ9YeqH3gwFh1eXzVeY8eqYu9tvjENHo7KyskjgBvvQX799fcp0eP8AEN4UO5pKTm8WPHhqk2Ab7xjZAoxm8/9dTwAVxRAaefHv5n8cvnPhe+QHbsCB+48f9TCKW6N98cxisdOrTuNf3v/4YEfunS8IEeLysL7r4bPvOZkNh/4hM1k9u8vPBBfvLJ4fjbbw8/DOKXmTNh+PBQ0vHaa3W3jxkDXbqE6y4tDetyc9Pyw1rSRLS0L9p2fM2aMLvZgQPhdXzgQEhuoonX/ffDBx/EksPS0vBj9QtfCNuvuipU9Ua3lZWFY3/847B96NDQzKi0NFY6dvXV8JvfhMQvM7NuAvjlL4fq3f37w/urtm9/G/77v8O0wMccE37Y5ubGamW+8hW44grYvDl8xsRvy82FT386JLGbN4dSwPhtOTlw2mnhGrdtg1dfrXv8kUdC9+7hf7VtW90ELz9fP4A7ACWgaaLDJ6AHDoRSzNqJ5qpVsQ9Ns9hA7fFJ5tix4QNbDp97rKSirCwkiV27htvvvBMrJYluP+ooGDEifME9/HDdBPfCC0MJ6sqV8P3v1zy+tDR8iZ10UihJuOKK8AUcXaqrQ7vh004L57744rrxzpkTmljce2/4Io7KywtfQq+9FpLUP/0pfKFGE9eCgrDccUdoQvLKK+GLrrCw5nLGGeFLb+vW8GUcXV9QoCQ3HVVUhOd5//7wgwzC637t2rAumiACfP7z4e8994SakfgEsnv38JqD8Lp+9tnY9vJyOProWNOe6dPh9ddrxjFjRnjtQtj37bfD7WgNxhlnxKpmzz47/ICM/2F30knw9a+H7TfdFEo+8/JiyzHHhHMA/OUvscQuur1///Cj3j0kt/HJX3a2kjtpFUpA00SHSUBrD20UTTTXrYv9Cs/MDL9+ayeao0erx3ln4R6+NDMywuuhpAQ2bqyZoB48GDq/FReHEtRnnomtLy0Nf7/1rTCN6WOPhfZc8cfu3w9z54bqru98JyTItZWUhBKgr341JLDxCgvD6zkjIxz797/XTF6POCJ0uoPQQW/jxvBDqWvX8Le4OLy2IdZWS5pv795QkrZnT7i9d29orvOpT4UfG88+G6pc9+0Ly/794e/f/x6SrVtugV/8IqyL1gBkZITXn1koLbznnpqP2bVreBwIP3z+/vfYj5qCgpC8Pfpo2P7Tn4bh26I/fPLzQ3Ib/cH0wgvhdRbdVlAQEthhw8L2kpJQm6BmLZJmlICmiXaXgCY6tFF0OKP4RHPUqLBNJFncQ/IRLf2KLhMnhi/9+fNjTSSiS1lZrH3wHXeEJCd+e25uOAZCe7jHH6/5mEOGhB9eEHqjvvJKLDnt1i2UfEU7uP30p6Gqsbg4tgweHGuesX9/x6t2dA8J3q5d4QfErl0hiYwuV1wRErnnnw/Xv3dvLMncsydWuv2zn8U6+sVbvz78j267LbTfLiwMPya6dAm3n3oq/J8feSQkgdFt0WXWrPDjZ+XK0NYxmlxGS9GLipL/PxNJI0pA00RKElD30DapdpL5zjvhyzIWXKyqXEMbSWe0b19IYqIldCUlYf3pp4e/v/1teA/Fbx8wILSPg9Dh49VXa44OcfLJIXGC0CZu9epQchZNUM88M7ThhZCEZWaG0t7evcPfwYND6fDhqq4O17ZlS2iqsH077NwZOoEceWRILr/znZBg7twZWx5+GD76UfjrX+GCC+qe9/nnw3X//e+hzWFRUUgYi4rC8o1vhB68774b2hhHt3frFhLIwYP1+SLSjikBTRNtnoCWlYUvhPhEc9my8MUTVVQUSzDjE81BgzpWyYxIe+Qe2hHu2hWWjIzQBhfg178OVfzRbTt3htLR6LBlRxwR1se78srQdtY9NG/p3r1mgnr66WHZty/0BN66teZyzTWhh/OSJbGxduPdfXeoZl68OPR4Li4OcUSXK68MHde2bg29hYuLY8llt27qTCaS5pSApok2T0D37QvVgxC+oGqXZo4bF3pz6wtDpP1xD+/hbdtCwrdtW3i/TpkSflxefXXNbdu2hU4s3/9+aE4THeu3S5fw/u/dG/7zP8MoBXv2hKYC0fU9e4bRG3r1CkmkiEg9lICmiaRUwc+dGwZF1xznIuktOjh4Vla4vWFDSCjz81MdmYikCSWgaaLddUISERERaUBnSEDV+FBEREREkkoJqIiIiIgklRJQEREREUkqJaAiIiIiklRKQEVEREQkqZSAioiIiEhSKQEVERERkaRSAioiIiIiSaUEVERERESSSgmoiIiIiCRVp5iK08yqgYNJeKgsoDIJj9MedeZrh859/br2zqszX39nvnbo3NefjGvPd/e0LiTsFAlospjZfHefnOo4UqEzXzt07uvXtXfOa4fOff2d+dqhc19/Z7721pTW2bWIiIiItD9KQEVEREQkqZSAtq7ZqQ4ghTrztUPnvn5de+fVma+/M187dO7r78zX3mrUBlREREREkkoloCIiIiKSVEpAm8nMPmlmS82s2swm19r2TTNbZWbLzezMBo4fZmavR/Z7yMxykhN564rEvjiyrDOzxQ3st87M3orsNz/ZcbYVM7vFzDbF/Q8+2sB+Z0VeD6vM7KZkx9kWzOzHZvaumS0xs8fMrHsD+6XNc9/U82hmuZH3xKrI+3to8qNsG2Y2yMxeMLN3Ip99X6pnn5PNbE/c++E7qYi1LTT1Orbgzshzv8TMJqYiztZmZqPjns/FZrbXzL5ca5+0et7N7F4z22pmb8etO8LMnjGzlZG/xQ0c+5nIPivN7DPJi7oDc3ctzViAscBo4EVgctz6ccCbQC4wDFgNZNZz/MPAJZHbvwI+n+praoX/yU+A7zSwbR3QM9UxtsE13wLc0MQ+mZHXwXAgJ/L6GJfq2Fvh2s8AsiK3fwT8KJ2f+0SeR+ALwK8ity8BHkp13K14/f2AiZHbXYEV9Vz/ycCTqY61ja6/0dcx8FHgH4AB04HXUx1zG/wPMoEPgCHp/LwDJwETgbfj1v0PcFPk9k31fd4BRwBrIn+LI7eLU3097X1RCWgzufsyd19ez6bzgQfdvczd1wKrgKnxO5iZAacCj0RW3Q9c0JbxtrXINX0KeCDVsbRDU4FV7r7G3cuBBwmvkw7N3f/l7tFBmOcCA1MZTxIk8jyeT3g/Q3h/fyTy3ujw3P19d18YuV0CLAMGpDaqduV84HcezAW6m1m/VAfVyj4CrHb39akOpC25+8vAzlqr49/bDX1nnwk84+473X0X8AxwVpsFmiaUgLaeAcCGuPsbqfsh3QPYHfflXd8+Hc2HgC3uvrKB7Q78y8wWmNk1SYwrGa6PVLnd20C1TCKviY5uFqH0pz7p8twn8jwe2ify/t5DeL+nlUjTggnA6/VsnmFmb5rZP8zsqKQG1raaeh13hvf5JTRcyJCuz3tUH3d/P3L7A6BPPft0htdAq8tKdQDtkZk9C/StZ9PN7v7XZMeTKgn+H2bSeOnnie6+ycx6A8+Y2buRX5ntXmPXD/wf8H3Cl9P3Cc0QZiUvuraVyHNvZjcTpqP7YwOn6bDPvdRlZl2AvwBfdve9tTYvJFTP7ou0h34cGJXsGNtIp34dR/opnAd8s57N6fy81+HubmYaOqiVKAGth7uf1oLDNgGD4u4PjKyLt4NQPZMVKSWpb592o6n/g5llAZ8AJjVyjk2Rv1vN7DFCdWaH+PBO9HVgZr8BnqxnUyKviXYpgef+s8A5wEc80giqnnN02Oe+lkSex+g+GyPviyLC+z0tmFk2Ifn8o7s/Wnt7fELq7k+Z2S/NrKe7b09mnG0hgddxh32fJ+hsYKG7b6m9IZ2f9zhbzKyfu78faVqxtZ59NhHaw0YNJPQTkUaoCr71PAFcEukNO4zwK/CN+B0iX9QvABdFVn0G6MglqqcB77r7xvo2mlmhmXWN3iZ0Xnm7vn07mlptvD5O/dc1DxhlYeSDHEI11hPJiK8tmdlZwDeA89z9QAP7pNNzn8jz+ATh/Qzh/f18Q4l5RxNpy3oPsMzdf9rAPn2jbV7NbCrhu6XDJ+AJvo6fAK6I9IafDuyJq7JNBw3WcqXr815L/Hu7oe/sp4EzzKw40hzrjMg6aUyqe0F1tIWQbGwEyoAtwNNx224m9JZdDpwdt/4poH/k9nBCYroK+DOQm+prOoz/xX3AtbXW9QeeirvWNyPLUkL1bcrjbqVr/z3wFrCE8AHVr/b1R+5/lNBreHW6XH/ktbsBWBxZor2/0/a5r+95BP6bkIQD5EXez6si7+/hqY65Fa/9REJTkyVxz/lHgWuj73/g+sjz/CahY9rxqY67la693tdxrWs34K7Ia+Mt4kZH6egLUEhIKIvi1qXt805ItN8HKiLf81cR2nI/B6wEngWOiOw7Gbg77thZkff/KuDKVF9LR1g0E5KIiIiIJJWq4EVEREQkqZSAioiIiEhSKQEVERERkaRSAioiIiIiSaUEVERERESSSgmoiKQ9M7vAzNzMxqQ6lqaY2VAzuzTVcYiItCUloCLSGcwE/h35W0Nk5qL2ZCigBFRE0poSUBFJa5E5zE8kDCp9SWTdyWb2ipk9AbwTWfdtM1tuZv82swfM7IbI+hfNbHLkdk8zWxe5/Vkze9zMnjGzdWZ2vZl91cwWmdlcMzsist8IM/unmS2IPOaYyPr7zOxOM3vNzNaYWXSGtNuAD5nZYjP7StL+USIiSdTefvmLiLS284F/uvsKM9thZpMi6ycC4919rZlNAS4EjgWygYXAggTOPR6YQJgJaRVwo7tPMLOfAVcA/wvMJswcs9LMpgG/BE6NHN+PkByPIcyo9QhwE3CDu59zuBcuItJeKQEVkXQ3E7gjcvvByP0ngTfcfW1k/QnAX929FCg1s78leO4X3L0EKDGzPUD0uLeAYyKlr8cDf45MmQ2QG3f84+5eDbxjZn1acG0iIh2SElARSVuRavBTgaPNzIFMwrzmfwf2J3iaSmLNlfJqbSuLu10dd7+a8PmaAex29+MaOHf88dbAPiIiaUdtQEUknV0E/N7dh7j7UHcfBKwFPlRrv1eBc80sL1JqGV/9vQ6IVttfRDO4+15grZl9EsCCY5s4rATo2pzHERHpaJSAikg6mwk8VmvdX6jVG97d5xHaYC4B/kGoQt8T2Xw78HkzWwT0bEEMlwFXmdmbwFJCm9TGLAGqzOxNdUISkXRl7p7qGEREUs7Murj7PjMrAF4GrnH3hamOS0QkHakNqIhIMNvMxhHaed6v5FNEpO2oBFREREREkkptQEVEREQkqQVVjMoAAAAvSURBVJSAioiIiEhSKQEVERERkaRSAioiIiIiSaUEVERERESSSgmoiIiIiCTV/wdhII2tOqKV2gAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 720x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "def exp_taylor(x, N=None):\n", " \"\"\"N-ая частичная сумма ряда Тейлора для экспоненты.\"\"\"\n", " acc = 1 # k-ая частичная сумму. Начинаем с k=0.\n", " xk = 1 # Степени x^k.\n", " inv_fact = 1 # 1/k!.\n", " for k in range(1, N+1):\n", " xk = xk*x\n", " inv_fact /= k\n", " acc += xk*inv_fact\n", " return acc\n", "\n", "def exp_horner(x, N=None):\n", " \"\"\"N-ая частичная сумма ряда Тейлора для экспоненты методом Горнера.\"\"\"\n", " if N<=0: return 1 # Избегаем деления на ноль.\n", " acc = 1 # Выражение во вложенных скобках в схеме Горнера\n", " for k in range(N, 0, -1):\n", " acc = acc/k*x + 1\n", " return acc\n", "\n", "def make_exp_test(fns, args={}, xmin=-1, xmax=1):\n", " \"\"\"Проводит тест приближения fn показательной функции.\"\"\"\n", " x = np.linspace(xmin, xmax, 1000)\n", " standard = np.exp(x)\n", " \n", " theoretical_relative_error = (np.abs(x)/2+1)*np.finfo(float).eps\n", " theoretical_absolute_error = theoretical_relative_error * standard\n", " \n", " fig, ax1 = plt.subplots(1,1,figsize=(10,5))\n", " ax2 = plt.twinx(ax1)\n", " ax1.set_xlabel(\"Argument\")\n", " ax1.set_ylabel(\"Absolute error\")\n", " ax2.set_ylabel(\"Relative error\")\n", "\n", " ax1.semilogy(x, theoretical_absolute_error, '-r')\n", " \n", " line, = ax2.semilogy(x, theoretical_relative_error, '--r')\n", " line.set_label(\"theory (relative)\")\n", " \n", " for fn in fns:\n", " subject = fn(x, **args)\n", " absolute_error = np.abs(standard-subject)\n", " relative_error = absolute_error/standard\n", " \n", " ax1.semilogy(x, absolute_error, '-')\n", " \n", " line, = ax2.semilogy(x, relative_error, '--')\n", " line.set_label(\"{} (relative)\".format(fn.__name__))\n", " \n", " \n", " plt.legend()\n", " plt.show()\n", " \n", " \n", "make_exp_test([exp_taylor, exp_horner], args={\"N\": 3}, xmin=-0.001, xmax=0.001) \n", "make_exp_test([exp_taylor, exp_horner], args={\"N\": 3}, xmin=-1, xmax=1)\n", "make_exp_test([exp_taylor, exp_horner], args={\"N\": 3}, xmin=-10, xmax=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ясно, что 4-x слагаемых слишком мало, чтобы хорошо приблизить ряд. Попробуем взять больше." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAE9CAYAAAABPgSIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeXhU5fnw8e+TSSZ7AgSQVTYxhH0XRIo7rigIosUVN7BSq9ZC668Vt9elaq1WS7VVtKiNotSqrXXFBdFCAJFFFjFoIEAIS/ZMZuZ5/zhzJjOTM1sycbLcn+vKNZk523OWTO7znPvcR2mtEUIIIYQQor1JiHcDhBBCCCGEiAcJhIUQQgghRLskgbAQQgghhGiXJBAWQgghhBDtkgTCQgghhBCiXZJAWAghhBBCtEuJ8W5Aa5GQkKBTU1Pj3QwhhBBCiLCqqqq01lo6PMOQQDhCqampVFZWxrsZQgghhBBhKaWq492G1kDOFIQQQgghRLskgbAQQgghhGiXJBAWQgghhBDtkuQIN0FdXR1FRUXU1NTEuymilUhJSaFXr14kJSXFuylCCCFEuyeBcBMUFRWRmZlJ3759UUrFuzmihdNaU1paSlFREf369Yt3c4QQQoh2T1IjmqCmpoacnBwJgkVElFLk5OTIFQQhhBCihZBAuIkkCBbRkONFCCGEaDkkEG7Fjhw5wlNPPeV9v3LlSs4777w4tggee+wxXnjhhaimWbp0KTfddFPIcVauXMnnn3/ufb9kyZKol2P65S9/yYcfftioaYUQQgjRdkgg3IoFBsLNxel0Rjzes88+y09/+tNGzyOYwEB43rx5XHHFFY2a14IFC3jggQea1B4hhBBCtH4SCLdiixYt4ttvv2XkyJHcfvvtAFRUVDBz5kwGDRrEnDlz0FoDUFBQwJQpUxgzZgxTp06luLgYgA0bNjBhwgSGDx/O9OnTOXz4MAAnn3wyv/jFLxg7diz33Xcf/fr1o66uDoCysjK/96YPP/yQ0aNHk5iY2GAef/zjHykpKeGiiy5i3LhxjBs3jlWrVjVYpzfffJMTTjiBUaNGcfrpp7N//34KCwtZsmQJf/jDHxg5ciSffvopixcv5uGHH+abb75h/Pjx3ukLCwsZNmxYyHXu06cPpaWl7Nu3L2b7QghRz+l089TKnbjd7pjO9431eyg82Dae8Lmx6Aif7jgQ72bE1ctffo/TFdtjRIhoSSDcij3wwAMMGDCADRs28Pvf/x6A9evX89hjj7FlyxZ27drFqlWrqKurY8GCBSxfvpyCggLmzp3LHXfcAcAVV1zBgw8+yMaNGxk2bBh33XWXd/4Oh4O1a9dy5513cvLJJ/P2228D8I9//IMZM2Y0KAG2atUqxowZ4/eZOY/bbruNm2++mVtuuYU1a9bw2muvce211zZYp5NOOokvvviC9evXc8kll/DQQw/Rt29f5s2bxy233MKGDRuYPHmyd/xBgwbhcDj47rvvAMjPz2f27Nkh1xlg9OjRloG4EKLpbnxpHQ+9s40H39kW0/nenL+B0x/9OKbzjJdpf1rF5X9bE+9mxM1fP93Fr1d8zXUvrI13U0Q7J+XTYunkkxt+dvHFcOONUFUF55zTcPhVVxk/Bw/CzJn+w1aujLoJ48ePp1evXgCMHDmSwsJCOnTowKZNmzjjjDMAcLlcdO/enaNHj3LkyBGmTJkCwJVXXsmsWbO885o9e7b392uvvZaHHnqICy+8kOeee45nnnmmwbKLi4vJy8vz+8x3Hu+//z5btmzxvi8rK6OiosJv/KKiImbPnk1xcTEOhyOiMmMXX3wx+fn5LFq0iPz8fPLz89m2bZvlOpu6du3K3r17w85bCBG9o9Weq0c1dWHGjJ7TrWM+T/HjKz5iVM8pPipVdER8SSDcxiQnJ3t/t9lsOJ1OtNYMGTKE1atX+4179OjRkPNKT0/3/j5p0iQKCwtZuXIlLpeLoUOHNhg/NTW1QWkw33m43W6++OILUlJSgi5zwYIF3HrrrUybNo2VK1eyePHikG0EI9ieNWsWM2bMQCnFwIED+frrry3X2VRTU0NqamrYeQshopdmtwGQmSwPjhHWOqQZx0Z2qhwjIr4kEI6lUD24aWmhh3fuHHUPcGZmJuXl5WHHy83NpaSkhNWrVzNx4kTq6urYvn07Q4YMoWPHjnz66adMnjyZv//9797eYStXXHEFP/3pT/ntb39rOTwvL4+dO3cGnf7MM8/kiSee8OYzb9iwgZEjR/qNc/ToUXr27AnA888/77euZWVllvMdMGAANpuNe+65x9sDHWqdAbZv3+7X+y2EiB2HJ+/TGeMcYSGEiDXJEW7FcnJymDRpEkOHDvUGl1bsdjvLly9n4cKFjBgxgpEjR3orMDz//PPcfvvtDB8+nA0bNvC73/0u6HzmzJnD4cOHufTSSy2Hn3322XzyySdBp3/88cdZu3Ytw4cPZ/DgwSxZsqTBOIsXL2bWrFmMGTOGzp07ez8///zzWbFihfdmuUCzZ89m2bJlXHzxxWHXua6ujp07dzJ27NigbRVCNN6hCofxWumIc0tES7W/zLh6eKC8Ns4tEe2dMqsKiNDS09N1ZaX/3cpbt25tkBPbli1fvpw33niDv//970HHmT59Og899BADBw78EVsWnRUrVrBu3TruueeeuCy/vR03ov256rn/sXJbCdf/pD+/OSd2x3rfRcYNu4UPnBuzecZLW1qXxnjigx088t52TujXifwbJsa7OW2SUqpKa50efsz2TVIjREQWLFjAf/7zH/7973+HHO+BBx6guLi4RQfCTqeT2267Ld7NEKLNMvtX5DmKQoiWTgJhEZEnnngiovFyc3PJzc1t5tY0jeQGC9G8SsqNy96HqyQ1Qlg7WGGkRJRWSGqEiC/JERZCCBFTNXXGTXJ1Lkm9E9YcTrffqxDxIoGwEEKImDJLYuWk2+PcEtFSpScn+r0KES8SCAshhIiplCTjX0tmigQ5wpp5spQldYRFnEkgLIQQIqZq5LK3CMPtuaNSCleJeJNAWAghREyV1zgBOCQ3y4kgSj21pksr5WY5EV8SCIugHnvsMaqqqho9fd++fTl48GCT2jBz5kx27doV1TRXXXUVy5cvDznO0qVL2bt3r/f9tddey5YtWxrVxtNPP53Dhw83aloh2qKumcaj3junJ4cZU7RXXcxjJEOOERFfEgiLoJoaCEdDa4074HGsmzdvxuVy0b9//wbju1yuJi0vMBD+61//yuDBgxs1r8svv5ynnnqqSe0Rok0xL3dLIWEhRAvXrgJhpVR/pdTflFLLPe8TlFL3KaWeUEpdGe/2NcayZcsYP348I0eO5IYbbsDlcrF7924GDhzIwYMHcbvdTJ48mXfffZfCwkIGDRrEnDlzyMvLY+bMmUED3ccff5y9e/dyyimncMoppwAwf/58xo4dy5AhQ7jzzjsB+PDDD7nwwgu907333ntMnz69wfweffRRhg4dytChQ3nssccAKCwsJDc3lyuuuIKhQ4fyww8/+E3z4osvcsEFF3jfZ2RkcNtttzFixAhWr15NQUEBU6ZMYcyYMUydOpXi4uIGy7377rsZN24cQ4cO5frrr0drzfLly1m7di1z5sxh5MiRVFdXc/LJJ7N27VqWLFni97jqpUuXctNNNwXd1gDTpk3j5ZdfDr+zhGgn9nvqCB+pqotzS0RLVeJ5tPJBqSMsPOIVozV7IKyUsiml1iul3mrCPJ5VSh1QSm2yGHaWUmqbUmqnUmpRqPlorXdpra/x+egCoBdQBxQ1tn2m2X9Z3eDn76sLAah2uCyHv7rWCP4OVToaDAtn69at5Ofns2rVKjZs2IDNZuPFF1+kT58+LFy4kPnz5/PII48wePBgzjzzTAC2bdvGjTfeyNatW8nKygrak/nzn/+cHj168NFHH/HRRx8BcN9997F27Vo2btzIxx9/zMaNGznllFP45ptvKCkpAeC5555j7ty5fvMqKCjgueee48svv+SLL77gmWeeYf369QDs2LGDG2+8kc2bN9OnTx+/6VatWsWYMWO87ysrKznhhBP46quvOOGEE1iwYAHLly+noKCAuXPncscddzRYj5tuuok1a9awadMmqqureeutt5g5cyZjx47lxRdfZMOGDaSmpnrHv+iii1ixYoX3fX5+PpdccknQbQ3QsWNHamtrKS0tDbvPhGgPaj03ybnccrOcsFbn8tSalhsq46o9xWjB/Bg9wjcDW60GKKW6KqUyAz47zmLUpcBZFtPbgCeBs4HBwKVKqcFKqWFKqbcCfrpazDcX+FxrfSswP6q1agE++OADCgoKGDduHCNHjuSDDz7w5tNee+21lJWVsWTJEh5++GHvNL1792bSpEkAXHbZZXz22WcRL++VV15h9OjRjBo1is2bN7NlyxaUUlx++eUsW7aMI0eOsHr1as4++2y/6T777DOmT59Oeno6GRkZzJgxg08//RSAPn36MGHCBMvlFRcX06VLF+97m83GRRddBBgB/aZNmzjjjDMYOXIk9957L0VFDf9OPvroI0444QSGDRvGhx9+yObNm0OuY5cuXejfvz9ffPEFpaWlfPPNN0yaNCnktgbo2rWrX6qFEO2ZWRqra1ZKnFsiWqoMT2m9jBQpnxZn7T5Ga9Yij0qpXsC5wH3ArRajTAHmKaXO0VrXKqWuA2ZgbDQvrfUnSqm+FtOPB3ZqrXd5lvcP4AKt9f3AeRE0sQgwb2tuWtIpkH/DxKDDUu22kMM7pdtDDreitebKK6/k/vvvbzCsqqrKGxhWVFSQmWkcy0r5J+0Fvg/mu+++4+GHH2bNmjV07NiRq666ipoa4/Ln1Vdfzfnnn09KSgqzZs0iMTHywyo9PT3osNTUVO8yAFJSUrDZbICx7kOGDGH16uA95zU1Ndx4442sXbuW3r17s3jxYr/5BXPJJZfwyiuvMGjQIKZPn45SKuS2Npfl27MsRHtmtxl9LOl2qSMsrGV5AmCpNR0/7S1GC6a5e4QfA34FWF770Fq/CvwXyFdKzQHmArOimH9PwDextMjzmSWlVI5SagkwSin1a+B1YKpS6gngkyDTnK+UerqpN2c1h9NOO43ly5dz4MABAA4dOsTu3bsBWLhwIXPmzOHuu+/muuuu807z/fffe4PHl156iZNOOino/DMzMykvLwegrKyM9PR0srOz2b9/P//5z3+84/Xo0YMePXpw7733cvXVVzeYz+TJk/nnP/9JVVUVlZWVrFixgsmTJ4ddv7y8PHbu3Gk5LDc3l5KSEu+61NXVNejtNYPezp07U1FR4VdJwnfdAk2fPp033niDl19+mUsuuQQIva211uzbt4++ffuGXSch2gMzNaLW2fK+N0XL4HIbd1S63VJIuBnZlFJPK6XODzK81cdosdBsp2JKqfOAA1rrAqXUycHG01o/5DlL+DMwQGtd0Vxt0lqXAvMCPr7Galyfad4E3kxPT78u1HjxMHjwYO69917OPPNM3G43SUlJPPnkkxQWFrJmzRpWrVqFzWbjtdde47nnnuOUU04hNzeXJ598krlz5zJ48GDmzw9+teH666/nrLPO8uYKjxo1ikGDBvmlV5jmzJlDSUkJeXl5DeYzevRorrrqKsaPHw8YaRujRo2isLAw5Pqde+65rFy5ktNPP73BMLvdzvLly/n5z3/O0aNHcTqd/OIXv2DIkCHecTp06MB1113H0KFD6datG+PGjfMOu+qqq5g3bx6pqakNepU7duxIXl4eW7Zs8bY52Lbu06cPBQUFTJgwIaqecCHasuo6qSMsQjvsOTYOyzHSnFxa6+utBrSVGC0WlG6mx7oope4HLgecQAqQBbyutb4sYLzJGBu4ACjXWt8UZH59gbe01kN9PpsILNZaT/W8/zWAp9s9ptLT03VlZaXfZ1u3brUM/FqqwsJCzjvvPDZtapDP3mQ33XQTo0aN4pprYnfMVldXc8opp3gD+pbq5ptvZtq0aZx22mkRjd/ajhshojVryeesKTzMrWccz89PGxiz+fZd9DYAhQ+cG7N5xktbWpfGeOKDHTzy3nZO6Ncp6rRAERmlVJXW2jL/sK3FaE3RbKkRWutfa617aa37ApcAH1ps4FHA0xh3Bl4N5Cil7o1iMWuAgUqpfkopu2c5/4rJCoiIjRkzho0bN3LZZZeFHzkKqamp3HXXXezZsyem8421oUOHRhwEC9GeSBlhIVomidHqxftabhpwsdb6WwCl1BXAVYEjKaVeBk4GOiulioA7tdZ/01o7lVI3YeSw2IBntdahywK0Y3379rXsDZ4+fTrfffed32cPPvggU6dOjWi+BQUFMWmflUjbEE++OdhCCCg+auTnl9VIHWFhbX+ZcYwcKJc6wi1Yu4jRfpRAWGu9Elhp8fmqgPd1wDMW410aYt7/Bv7d5Ea2Y751c4UQoqnMGrFyH5QIxrxZzuWSOsLx1t5jtHb1ZDkhhBDNL9tTGqt7ttQRFtYyPbWms1KljrCILwmEhRBCxFSizcgOTk9uuTe5ivjKTDYuSKcnxztDU7R3EggLIYSIqZo643J3Va1c9hbWnJ7UCKdL8mdEfEkgLIQQIqbMHOEj1VIjVlg7Wm3cSCk3VIp4k0BYBNW3b18OHjwY72b4eeyxx3jhhReimmbp0qXcdJNl6UOvlStX8vnnn3vfL1myJOrlmH75y1/y4YcfNmpaIdqCnAw7II9YFsHlpBvHSCfPqxDxIt9Solk4nc4mP2nN5XL5PUjD6XTy7LPPsm7dupgvb+XKlWRkZHDiiScCMG9e4MNtIrdgwQKuu+46Tj311EbPQ4jWzHxOk5JCwkKIFk56hGPpuXMb/vzPU2nEUWU9fP2LxvDK0obDIrBs2TLGjx/PyJEjueGGG3C5XOzevZuBAwdy8OBB3G43kydP5t1336WwsJBBgwYxZ84c8vLymDlzJlVVVSHn/8QTTzB69GiGDRvGN998A8ChQ4e48MILGT58OBMmTGDjxo0ALF68mMsvv5xJkyZx+eWXs3TpUmbMmMFZZ53FwIED+dWvfuWd77vvvsvEiRMZPXo0s2bNoqLCeGpj3759WbhwIaNHj+bVV1/1a8uHH37I6NGjvQHvySefzC9+8QvGjh3LH//4R0pKSrjooosYN24c48aNY9Uqv8ovALz55puccMIJjBo1itNPP539+/dTWFjIkiVL+MMf/sDIkSP59NNPWbx4MQ8//DDffPON9zHLYDydb9iwYYBRP3nKlCmMGTOGqVOnUlxcDECfPn0oLS1l3759Ee1DIdoas45wRa0zzi0RLdU+Tx1hs56wEPEigXArtnXrVvLz81m1ahUbNmzAZrPx4osv0qdPHxYuXMj8+fN55JFHGDx4MGeeeSYA27Zt48Ybb2Tr1q1kZWXx1FNPhVxG586dWbduHfPnz+fhhx8G4M4772TUqFFs3LiR//f//h9XXHGFd/wtW7bw/vvv8/LLLwOwYcMG8vPz+frrr8nPz+eHH37g4MGD3Hvvvbz//vusW7eOsWPH8uijj3rnkZOTw7p167jkkkv82rJq1SrGjBnj95nD4WDt2rXcdttt3Hzzzdxyyy2sWbOG1157jWuvvbbB+px00kl88cUXrF+/nksuuYSHHnqIvn37Mm/ePG655RY2bNjA5MmTveMPGjQIh8PhfeBIfn4+s2fPpq6ujgULFrB8+XIKCgqYO3cud9xxh3e60aNHWwbiQrQHZo1Y6RAWwbg9x4hbik2LOJPUiFi6+u3gw+xpoYen54QebuGDDz6goKCAcePGAVBdXU3Xrl0BuPbaa3n11VdZsmQJGzZs8E7Tu3dvJk2aBMBll13G448/zi9/+cugy5gxYwZgPEb59ddfB+Czzz7jtddeA+DUU0+ltLSUsrIyAKZNm0Zqaqp3+tNOO43s7GwABg8ezO7duzly5AhbtmzxtsPhcDBxYv2z5mfPnm3ZluLiYvLy8vw+8x33/fffZ8uWLd73ZWVl3p5mU1FREbNnz6a4uBiHw0G/fv2Crrvp4osvJj8/n0WLFpGfn09+fj7btm1j06ZNnHHGGYCRxtG9e3fvNF27dmXv3r1h5y1EW5SZmkhppYNenVLDjyzapey0JL9XIeJFAuFWTGvNlVdeyf33399gWFVVFUVFRQBUVFSQmZkJgApI2gt8Hyg5ORkAm82G0xn+Mmd6errl9L7z0FpzxhlneHuNw83DlJqaSk1NTdBx3W43X3zxBSkpwYv4L1iwgFtvvZVp06axcuVKFi9eHG6VmD17NrNmzWLGjBkopRg4cCBff/01Q4YMYfXq1ZbT1NTU+J0QCNGe2DzfK6lNvE9AtF3mjZRpckOliDNJjWjFTjvtNJYvX86BAwcAI3d39+7dACxcuJA5c+Zw9913c91113mn+f77773B20svvcRJJ50U9XInT57Miy8auc0rV66kc+fOZGVlRTz9hAkTWLVqFTt37gSgsrKS7du3h50uLy/PO42VM888kyeeeML73rcn3HT06FF69uwJwPPPP+/9PDMzk/Lycsv5DhgwAJvNxj333OPtgc7NzaWkpMS7Levq6ti8uf4R6tu3b2fo0KFh10mItqjWaZRPK3dIaSxhzeEpsVcnj1gWcSaBcCs2ePBg7r33Xs4880yGDx/OGWecQXFxMR9//DFr1qzxBsN2u53nnnsOMAK4J598kry8PA4fPsz8+fOjXu7ixYspKChg+PDhLFq0yC+gjESXLl1YunQpl156KcOHD2fixIneG/FCOfvss/nkk0+CDn/88cdZu3Ytw4cPZ/DgwSxZssSy7bNmzWLMmDF07tzZ+/n555/PihUrvDfLBZo9ezbLli3j4osvBsBut7N8+XIWLlzIiBEjGDlypLf8Wl1dHTt37mTs2LFh10mItsjtKRtxpFICYWHNvJFSbqgU8aa0lkT1SKSnp+vKykq/z7Zu3dogZ7UlKyws5LzzzmPTpk3xbkqjTZ8+nYceeoiBAwfGuylBrVixgnXr1nHPPfdYDm9tx40Q0Tr38U/ZvLeM3503mLknhc/Dj1TfRcZ9FIUPRFZVpyVrS+vSGE98sINH3tvOCf06kX/DxPATiKgppaq01ta5hsJLeoRFq/LAAw94y5S1VE6nk9tuuy3ezRAibrx1hOPbDCGECEuy1NuRvn37WvYGT58+3VsezPTggw8yderUH6tpEcvNzSU3NzfezQhp1qxZ8W6CEHG192g1ADVOV5xbIloqs9b0vqNSR1jElwTCghUrVsS7CUKINsSsDRuuKo1ov8y0TEnPFPEmqRFNJH/EIhpyvIj2ICvFqA3bNyctzi0RLVWHNLvfqxDxIoFwE6SkpFBaWirBjYiI1prS0tKQdY6FaAuU5z9LcqL8ixHW0uw2AFI9r0LEi6RGNEGvXr0oKiqipKQk3k0RrURKSgq9evWKdzOEaFa1dUZt2KPVUj5NWDNrTTucUkdYxJcEwk2QlJQU0SN6hRCiPTFTgw9XSSAsrFU7jBspq+vkhkoRX3LdSgghRExle3KEk2xys5yw1iHNOEayU5Pi3BLR3kkgLIQQIqbMi91KKgkLIVo4CYSFEELEVLGnjrBLbiQWQew9YhwjxZ5XIeJFAmEhhBCx5Yl/5R+MEKKlk+8pIYQQMZWRYtyH3b9repxbIlqqjul2v1ch4kUCYSGEEDFl5gYn2aRGrLCWmmQcGylJcoyI+JJAWAghREzVOI2SWIerHHFuiWipajxl02qkfJqIMwmEhRBCxFRigtEjfLhSAmFhTR6oIVoKCYSFEELEVEayPKtJhGbWD86SOsIiziQQFkIIEVNuqZomwnB7SutpKbEn4kwCYSGEEDF1oLwm3k0QLdy+ozV+r0LEiwTCQgghhBCiXZJAWAghREyl240c4QFdMuLcEtFS5WQk+70KES8SCAshhGgWNk/1CCECJSca4Yc9UcIQEV9yBAohhIgpszRWSXltnFsiWqoqh1E/uNohdYRFfEkgLIQQIqaSbJ46wvJADRGE0+32vErVCBFfEggLIYSIqTS71BEWoWWlGPWDM1PkWBHxJYGwEEKImHJpeVqYCM3l6Ql2S4+wiDMJhIUQQsTUoQpJiRCh7S+r8XsVIl4kEBZCCBFT0scnhGgtJBAWQggRU6l2GwADu0odYWGtc2ay36sQ8dKustSVUv2BO4BsrfVMpVQCcA+QBazVWj8f1wYKIURb4OkSVkrqCAtrdpvRD5dkk/44YYhXjNZsR6BSKkUp9T+l1FdKqc1KqbuaMK9nlVIHlFKbLIadpZTappTaqZRaFGo+WutdWutrfD66AOgF1AFFjW2fEEKIeg6XcbOc5H+KYCodTgCqPK/ixyUxWr3mPBWrBU7VWo8ARgJnKaUm+I6glOqqlMoM+Ow4i3ktBc4K/FApZQOeBM4GBgOXKqUGK6WGKaXeCvjpajHfXOBzrfWtwPxGrKMQQogAZm/f0eq6OLdEtFRmsQgtCeXxIjGaR7OlRmitNVDheZvk+Qk85KcA85RS52ita5VS1wEzMDaa77w+UUr1tVjMeGCn1noXgFLqH8AFWuv7gfMiaGYRYN7eLI+3EUKIGEhJslFWIz19IrjMZCP8SE9uVxmaLYbEaPWaNTlHKWVTSm0ADgDvaa2/9B2utX4V+C+Qr5SaA8wFZkWxiJ7ADz7vizyfBWtPjlJqCTBKKfVr4HVgqlLqCeCTINOcr5R62uWSOFkIISIhTwsT4ZjHiNMlx0ozsimlnlZKnW81sC3EaLHQrKdiWmsXMFIp1QFYoZQaqrXeFDDOQ56zhD8DA7TWFVbzilF7SoF5AR9fYzWuzzRvAm+mp6df11ztEkKItkRSIkQ4Bzz54yXlkkfejFxa6+uDDWwLMVos/Ci3a2qtjwAfYZ1DMhkYCqwA7oxy1nuA3j7ve3k+E0IIEWdSM0KIlq+9x2jNWTWii+csA6VUKnAG8E3AOKOApzHuDLwayFFK3RvFYtYAA5VS/ZRSduAS4F+xaL8QQojGSUk0/rUMPCYzzJiiveriqR/cJTMlzi1pnyRGq9ecPcLdgY+UUhsxNsZ7Wuu3AsZJAy7WWn+rtXYDVwC7A2eklHoZWA3kKqWKlFLXAGitncBNGDksW4FXtNabm22NhBBChFt43CcAACAASURBVCVZnyIcs35wok2uG8SJxGgezVk1YiMwKsw4qwLe1wHPWIx3aYh5/Bv4dyObKYQQIsbqPHWEi49WM4qOcW6NaInKa42qIpW1Ul0kHiRGqyePdBFCCBFTdk9qRLmUUBNBJHg6guXhgyLeJBAWQggRU/YE+dciQku3Gxek0+xSR1jEl3xbCSGEiCmnPC5MhGE+httMoxEiXiQQFkIIEVOS9ynCOVhe6/cqRLxIICyEEKJZ2BIkAdSK2y29oEK0FBIICyGEiCmzNNaALhlxbknLJHEwHJOV4vcqRLxIICyEEEL8iCQOrr9akCBXDUScSSAshBAippwu42a5PYer49ySlklSI6Cspg6QEnsi/iQQFkIIEVNJnqeFVTokyLHikqIaJHpK7CVKj7CIMwmEhRBCxJRNHpsbkjxWGNLsNgBSPa9CxIsEwkIIIWLKJV2eIUmZZah1GukhDqekiYj4kkBYCCFETNVIcBOSBH9QWlHr9ypEvEggLIQQIqbMC/9mGTXhzyk95kK0GCG/pZRSCUqpE3+sxgghhGj9zNJY/Tqnx7klLZNbCqjRLTvF71WIeAkZCGut3cCTP1JbhBBCiDZPqqdBgjJOlpSSGwdF03g6bS9u7PSRXLf6QCl1kZKjVQghRARcbuPS/w+HquLckpZJEiPgaLVRR7jM8ypEY3k6bX/V2OkjCYRvAF4FHEqpMqVUuVKqrLELFEII0baZ5cGq61xxbklLJaGwPTHB71WIJnpfKfVLpVRvpVQn8yeSCRPDjaC1zmx6+4QQQrQXCoUEe8Gl2sP+623zUpOM+sEpSVJHWMTEbM/rz3w+00D/cBNG9NeolJoG/MTzdqXW+q2omieEEKLdcEuh3JBk89RfLaiRqwYiBrTW/Ro7bdhAWCn1ADAOeNHz0c1KqUla6183dqFCCCHaLqdbIr1QKmrk0dOHKx1+r0I0hVIqCZiPT6ct8Betddgk9Eh6hM8BRnqSkVFKPQ+sByQQFkIIEVSy5H9ackrZCCFi7c9AEvCU5/3lns+uDTdhpIlKHYBDnt+zo22dEEKI9sPMEO6TI3WErbilx5weHVIB6O55FaKJxmmtR/i8/1Ap9VUkE0YSCN8PrFdKfYTx/fYTYFH0bRRCCCGExMFCxJxLKTVAa/0tgFKqPxBRAnrIQNhTO/gzYAJGnjDAQq31viY0VgghRBtmxnm7SysZdWzHuLalJZKbCeFIlZG6eVTqCIvYuB34SCm1C6PTtg9wdSQThgyEtdZaKfVvrfUw4F9NbqYQQog2TymjMkKtU3JhrZiPoG7PUu1G2bRUKZ8mmkgplQBUAwOBXM/H27TWtZFMH8mdDOuUUuPCjyaEEEIgJYTDyExJincT4i5ZHqghYsRTzOFJrXWt1nqj5yeiIBgiC4RPAFYrpb5VSm1USn2tlNrY6BYLIYRo0yQODk3LFqLKYaRvVjukjrCIiQ+UUhd5UnqjEsnNclMb0SAhhBBCWDhUIbVzj1Q5/F6FaKIbgFsBp1KqBk/xGq11VrgJw90sZwP+q7UeFJNmCiGEaDck/9NanUt6hL0dd9F34Anhx9MLPERr/X1jpg+ZGqG1dgHblFLHNmbmQggh2q/endLi3YQWyS2pEXTPTvF7FaKxtNYaeLux00eSGtER2KyU+h9Q6bPgaY1dqBBCCNFeyQM1hIi5dUqpcVrrNdFOGEkg/NtGNEgIIUQ7991BqSNsReJgOOTJDT4sOcIiNk4A5iildmN02po5wsPDTRg2ENZaf6yU6gMM1Fq/r5RKAyTxSwghREh1LqkjbMVuk7zYjOREv1chmqjRhR3Clk9TSl0HLAf+4vmoJ/DPxi5QCCGEaM86pNnj3YS4s9uM8CPJJnWERdNprXcDvYFTPb9XEVmJ4IhG+hkwCSjzLGwH0LVxTRVCCCFEe1fpcAJQ5XkVoimUUncCC4Ffez5KApZFMm0kgXCt1tqbxKOUSkTqpQshhBCNsu9oTbybEHdHq+r8XoVoounANDxFHbTWe4HMSCaMJBD+WCn1GyBVKXUG8CrwZiMbKoQQop1ItzdP/qfb3bpzjyV3GhISlN+rEE3k8JRR0wBKqfRIJ4wkEF4ElABfYzy549/A/zWikUIIIdqRnh1Tm2nOrTt4cmu5qNoty6gffEyW1BEWMfGKUuovQAfPvW3vA89EMmEkVSPcnplFNEMhhBCiObX2MLK1t1+IlkZr/bAna6EMyAV+p7V+L5JppW6JEEKIZrGrpKJZ6gg7XW5sCa23iqc8UANKK41bjw5VSh1hERuewDei4NeX1C0RQgjRLJzNFPC19tSCVHvrDeJjJTs1CYCslKQ4t0S0dxEHwp4HaQghhBBx1drvNeuUnhzvJsRdoucmuUR5uIiIs0geqHGiUmoL8I3n/Qil1FPN3jIhhBDCgm71Wbatvf1NV15r1A+urJU6wiI2lFKpSqncaKeLpEf4DxiPrisF0Fp/Bfwk2gUJIYQQsdDac2x3l1bFuwlxV15t1A8uq5Y6wqLplFLnAxuAdzzvRyql/hXJtBGlRmitfwj4yBVVC4UQQrQ7GcnNcz+2Uq37crqrlQfysWDzpEbY5BHLIjYWA+OBIwBa6w1Av0gmjORb6gel1ImAVkolATcDWxvXTiGEEO1Fjw7NU0c4qZUHT638Xr+YMOsHd82UfGkRE3Va66MBJ8kR/aVFEgjPA/4I9AT2AO8CN0bbQiGEECIWWnvVCFe49gcbHu3n0Uzj+z7UsFhNW1trvLpcUFbWMtrUnOMGvrfboVs3RMxsVkr9FLAppQYCPwc+j2TCSALhXK31HN8PlFKTgFVRN1OENmwYbNnS8PPcXOjYEQ4fhm3bGg7Py4OsLDh4EL79tuHwIUMgPR0OHIDCQuvlJifDvn1QVGQ93G6HvXuhuLjh8BEjwGYzpj1woOHwUaOM1++/h9JS/2EJCTB8uPEFsXs3HDniPzwxEQYPNn7/7jsoL/cfbrcb2wdg1y6orPQfnpICxx1n/L5zJ9TU+A9PS4N+/UBrXDu/ZcDNr3Ln+3/h6vVvG8MzMqB3b+P3HTvAGXBjR1YW9Ohh/L59OwQ++jU7u/7LzmrfdewInTsb0+3c2XB4p06Qk2Ms12rf5eRAhw7gcMAPPzT84u3SxWhjba31vu3a1Tg2qquN/W81PC0Nqqqs9+0xxxjbuLLSOP4Cdetm7KOKCjh0yHp4YqKxX48etR5usxn/KAP3vTk8IcGYNnDfA3TvbrweOWKsoy+ljPZrbUwfeGwkJBj7xpzeEVDv1GYz9o85vC4g1zEx0dg3YPztulwNh2dlUZaUwoXn/Zb7/vskJRkdeWTyZZz67Rr+nXsSHR2V7MnI4avHL+XGaQvZ1O04irKP4f+98wQ/3foRpKcz9aL7+D6rK9VJKXQrO8g7z91Eh5oKsNu5fOZdrO6RR88yY985bEkcTcngjRduZWDFAUhO5tZTrqeGRPZkdeGOj/7GnqwuvD1oMpN+2MSfJsyi4NnrufqsXzJr0/u8c/xENnY7nh5lB7hs43+5/ayfc89Hz/D8sKkM2b+L1ccO46qCN+HM+QBc//u3KbOnkVN1lNdevJ038qbw5wmzyKk6yg/Zx1CXmMToPVt5fdntvJH3E/48YRYl6R2Z8l0Bj777J7DZeHbYWXzRawhJrjrIM25PWX/8GG66cBFVSamkO6r47QfPMGPLSr7t2JNbz7uVfZmdKU3L5vjS7zmcnMEFWz5mXc9BPPHmQ/zn+EksmTCTg2kdUFqT6qxl+bLb2dalL38ddyE/+W4dB9M78OGAccz73+v8a9BPuP3j50nAzUsjzybZ6WDzMQP4pktf3Ak2huzbyYq/34bdbezfR06aw7qeeTzy9qN0qzzMDxmd+b+pP+MPbz3Cm3mTeSvvJ3SuPAKDTgKgMimZn134G4qyu2Jzu8l0VHLHh39jePEOJt64lOzaCu5750/8c8gp9Dmyj2879eKBdx7njGv/zGk7/sdvPn6Obzv24LGT5tDv0B4+7j+GE3d/xQujz6Mm0c6o4m0898piMhOq+f6yvny+6Xgu+fJdAH511gK2HDOAKbvWsjerC8OLd/Bm3hRqE+1cs3YFD065mqdfu4cVQ09lW5c+3P7xC4wu3sb8Cxayrmceq/48l0Tt/523N7Mzt557C0/+8wEWXLAQm3YzY9MHnLZzDXeeMY+Re7exo3Nvlo0+D4Avvz/KrPl/JrWulrve+zP9juyjjgRO/NlSjqZkcOLurxhevINbV73Eb0+fh1sp7n3vz95nCz45YRadKw/z3sAJ1NkSUVrTrayU/+ZOZMnr9/H60FMZun8XiW4nG3rk8tsPnuaxk+bw91HnklZXw4LP/8Hcgjf573En8OrwM/i/D//KuwMn8Mbgk3nj+Vv4/ZQrmfX1+xx3qP7781+5J7HonJ+TW7Kb15bdTgLw7JhpDDrwHSf+8DUAa3sM4rZzb+H4g98z+bv1fHnsUKqTUnCpBLZ16cPS7a8z6P2IUlhFZBYAdwC1wEvAf4F7I5kwkkD4CWB0BJ+JpsrIgF69Gn6elWUEI253fVDmq0OH+uGB/6zBCLZSUozhLpcRAPjq1MkIVsD45x+oc2djuNb14/nq2tUICrSGVItLoWYgqLWxjr7LT0ioDyTNdfGVlATHHlv/3ioQ7tu3fv5mMGQuIyUF+vc3fne7GwY76ene4bWelPn3jjuBq496sn+ysoxA2Zw+MBDu0AH69DF+d7nqA2Fz+Z061e+zwEAIjEC1Z09jOqu8x27djO3jcBjbIlDPnkYwV1NjrGugY481llFZaRwjgcvo189oY0WFdaB+3HHG8XPkiHWgnptrbKPSUuNExHfdwTiJ8T0JC1z+sGHGMbNvn3GiFGj0aGMfFxXBnj0Nh48dawSUu3fXn6T5LmPCBOP122+hpMR/WpsNxo83ft+xo2Egb7fDuHHG71u3+gfyShnbe8wY4/2mTQ0D+YwMGDnS+H3DhoaBenY2DBvG+sTO7ErtxT/GnsvpxZvZ3bEH23OOZX9mDvvJAcA1ZiyDSgp5J3cSAC+POIufdnFBXh7b0ur/PvZldebz8WdyTtku6NaNih69SEpQdK8poywphd0djb+11044n0UJ38OAAfzT/hPcnr/7ZeMu4If0TqzvmcfWrv0oTcuGK6/ko8xxVCSn8pPCDWzonsvnfUdysEMXKu2pLD7lGsrs6Yzau43vcnrxrxGnc+HmD/nnkFMpSTceprE3uytvTpzGsn6TqEpKobxjGm7PAzHW98iF0aOpSuvKts590AkJvD3oJB7tegS6dOGJ6hEcTsv223Sunr1IctaRnZrCQVsmK8acxYzUcpwJGezP6MT+TGO7benan4zaSpZMnAXAP0+czrJ+J7Ivs7N3XnWJSbwwaSaDDu9h8zH9+apH/U3n9592LQ4SeOrEi0nQmk/6jeamVS/zZe9h3vZv7nYc2yeexlDHYQB+6HAMX/Yewrqf/x/n2A7z0k4XHx87ljcnz2C3Tuar7sdz9jajo0qhqThnGodTM9nZ2diPyXW1/PfE8zl+SDYHanM4kJnDvyZM46XjJnvb9Zvab/g2pzff5vTmN6nFPJM8hDcHTfEO35+RQ2WyUfF0ba8h/GfKDC5O+ohjex3ij9nDuSQnESZO5FB1f7bXprKpm9FZsGLoaUYbnA7yL7iB/a5MHjx1Lp8fOxyA30+5nJd3v80PHbqzP7Mzpfc9xDHv/Mv4XvT83T3TaSxf9BnBPxf9gc+rje/+XZ16cuTYAawYeiorhp5KoAp7Gmt6D+WdKTOZf+grqnIHU5JhnGSuHDCOlQPGcautiO87dmP1scO5c2AC9uMHQkUFvy8b4fc3n1lTQfmADADmzfodh5MzyPdZ1uCEalb1GkNtUjJ1tkSeGT+dudmV7FK9+V/vobx96myW9J5IeUoGP/z6bv7iHsV3XY/l6cP1nYslo8+lSqWxvmceZWeeSwft4IHhV3F8yW7e2vcfOO007qscyO5aO4fTsvk2pzcTv9/I+wMnUJtoJ8HtZuXM6xnUYEuIJhiktb4DIxiOStBAWCk1ETgR6KKUutVnUBYg1cCbw+rV8W5Bu+asdsBd7/G//qPgH1H/LQnRKAk7SuBv/+PLsaeTNHA2FOxhVb9RfuPoVZ/z9D3vgcM4mfq6+0B43vMApUVv+4373eIH4JSBACT9ZTUjFPzjwWn8d9M+blhWAMD6aZfBDRMBcPtM/+XYU9lfZlyy3pN9jPHhk0/CordZ03soWwaMoLrOBRr2d+8L1XXUpGWC083SsdMAKDpuKAXHDGywnpuuuomirxpeUdIqAQoKeG/pGvQ3Rs91bWIyPPssAIcD1g9g3d1/oOT9HRT83+mMv+8Dvh82Hl5YyLdfF7PvxXV+41Ykp3t///rKn/HDxoZtWHPKhezOtOPcEXDFKjERnG5W9x9NggJcmj9NutT43efiS8lfX4BBxvb6p9ne2ZfA8O4U/2M9bNjLlutv4a2vi3HUunhr2MnghiSbjdpnn+er33/knVdtUjJFM35KwswR8Lt3ANh99nTYUX+i5njjDbjvA+PNf/7Dlw+vhIP1J1r7suoDfYBtN/8a3J1g3fM4khPhbaON9hcLcHzd8EpQbaId1acb7DrE2v4jwWmc4K/uMxJevoNN5jr+7Gfw69v8pi3402dQdJSE00+BN40OhT3Zx7Bl7s+hwOKqFLD1GKMz4ocrroMZw3FXOuCegAeEffwxH5vL/ePjkOjptAk4PspTMry/V6Znedtu2nL1TXz/dTHUunAn2CjO6goffMBbj39C2d5yin46l/I1Rn0A1y9uhkc/YXXeiXDXXfXbZ+VOeMfoOHC8uhyyUnAseptN3QfC878AQD21Cr4/QllKBmUpGezK6eXtxXYnJMAgCYNj7BGlVDdgOZCvtd4U6YSheoTtQIZnnEyfz8uAmY1ppRAtmdNl/Gdr7fmHonWpqTOC2+o6F/uO1liOo4G6CJ8iUV5Tf9WipLzW21nme+Oa7zhWbQnG4XJ7s28cngAj0goIZdWh68WWlFuvu5V9R400l2qHiySbIt1TnaL4aHWoyYK2obLWiUVij3fd3FqHTA2tDrHdzGWWVTupc5rzqx9eXmNdPizU/g7c5lWO0Nu2rNoJ2kg7S1f1Vw2LjwTfXuYyoq1wUeE5tioCjrGjUZRJC7U9o2HVdt/94OtIVcP2OTz7wBGwL4oOhy9/V2FRH1n+szQfrfUpnkD4YuAvSqksjIA4bHpE0EBYa/0x8LFSaqnWenfsmitEy+R0N/wnJURzM//p19S5KA4WCGtNnSuyA9M3yD1YUYtFwg0VQYKvmrrQwbZvG8xALeJAOMgyTQfKayOaD+DdTjV1LnIykhncPcvv82jbUFnrtDwJMNdNa/8gJnCNqx0hAmHPMstq6rzbTPsFwtZBrDPE/g58dHVViOUby6gDbdyQ1lvV5/qH2l5mh0DUgbAnAAwMBIOtp5Xa5gyEffaDL6tAuM5zshc4ftHh0Cdc0PBEQDQ/rfU+4HGl1EfAr4DfEUGecCQ5wkuVUg2OJq11w0QfIVox6QkW8dac5XG/O1gRk/kkKONkMUEF5Ad4DOiawf4ogtr6+Ua+8tGMG6lo5mhug1AieXRw9w7WpcPsAeXh+nVO59MdVn3Wzac5tnE4PTs2T7m95hRNKT9bQut/PHhLpZTKA2YDF2E8AC4fuC3kRB6RBMK/9Pk9xbMQOdURbY5ZfzDwn5AQzSkzJdHzmoQtSPARzQMkOmdY3NCK/z/gnAzrACwjOZFap8UNtxZSkhJwuNwk2ZRfT3FWisVNnSGWaYokcPSOm1A/7sGKWjbvtag4YqFTuvW2yUpNwmkRoSQmKJxuTYIy9kGw3tF0iweH9O5k3KzWMc3ufbV55meeQiQnWt9uM+pY/5uGzZq7vu0KXH6oHtfsNDu4jXl+p7sHHc/X8F7ZrCk87N0GVqzWOzMlkQPltWQEHAfBjgtf3bMjC4RtCZEdK7aEhvssMyXRux982RMTqHS4GN2nIy97coQTPf8LQgW79kTrYVbbxlee5yqGiJlnMYLfqVrrvdFMGDYQ1loXBHy0Sin1v2gWIkRrID3CIh4SPRUbAoMbX9H0zQX7xxzJOJEEo2b8YPYYqoCe4cNV1oF0alLznGA6XTpsaoApzW4deKYk2aiwCIQTPF2/SikSVP0jVQPjwuQQ2zw92eb36ivSdIHAy+yBgWBqUuj71zOSbeA2Aq9aHdm97ub+TYik+9uHGQBmBKxvVmr4frdwOerRsgqEs1NDB+S+PeHmfg3VOaKD/N8wT3B9+TYl0mBeREZrPbGx04b9ZlJKdfL56ayUmgpkh5tOiNbGrHzmCqwFLEQzqvXkIdY63UF73qI5RYskKAyW0+pwRn7sO31uJPNVeNCinnOIZXrnF2EONDS8eSlSwXKgHU43Dovlm0GODrhZLpDVfjNv3PPdv+aDNMyxSyusTxq27fMvE7kpoMc7cHHOMN9ZdS4NLodn2ZGdkOwuNW4ICxbogXXgGuwmu2DHtq9NeyLr2XdHGphbtN3ltu70MNu7u7T++DVHC7W0YH9vVtP4LjbYjbEiOkqpVzyvXyulNvr8fK2U2hjJPCJJjSjA2KcKIyXiO+CaxjZaiJbKnmicocuZuvgx2T29sPZExYhe2XxbYh1IpiYlUB3mZjYwUhZMxx+TidXhnBKkdzZcvmNaUgI1TjduXf93EixXOFBymF7L3GMyw97sZhrRqwOfbD9IdlpSg89DCdYTnmRL4PiuGZQE5DYH9nabAjtJrb4zahxu77zN17QkG5UOl1+uaLfshvW/j1TXBd1H0PAKQbCUGpNxtSHRM219w0f07sC+zfstpzFv8gu2DcD6ZjRzUwSm80STcxyu1zbiUyaLtitl9KBXBgSwPTukUravvMExYGVs3458sj1MzrZFI31bc7Ai+jx6Yelmz+t5jZ1BJKkR/Ro7cyFao2jyMYVoKvN4UyjjMrTVOER+XPoGHLYE5Q1MMnwu1QabV7hFNOVvI9z5ZbB1DzVuYHAV7iQ22GClrJ8lVD9chdw2oZZqLjNBWY8YLEAMta0DB4XbL0oBylzB+gitOU76zbYEzjqaRTXnd3DQ/WCx/81mBI6eGOpgCZhWNC+ttVkY/Eat9ULfYUqpB4GFDafyF+qBGjPCLPz1SBopRGthXjaNtlyQEE1hpgxU17nYE6Qsk1vriNMWfOu17i+r8f4T7+Zzw1VZkJqu4dIXHM7G1xG2Kk/lK5pLxeZ2qnI4sScmeG/EClffNVgbKmqclikA3jrCbo32CWwCRw2VjmIu80hVnXeb+WYyBKuvG2p/B6aRVFrUrPV1tLoO3MaT77JU/XYOVQassXWEzbrIgTWbw+1/X+GOw0hZtd13P/g6VNmwfWZaS2Aqjm/6RDBW+d/yn6VZnUHDoPdsi88aCNUjfH6IYRqQQFi0KWbtSgmExY+pxllfRzhULd1IciwBKmvrg4hDlQ7L3spggVNtmGC7zqcN0dYRtnrAgK/SysgvFR/wPHyjts5Np3Q7ud0yPZ+HnkewNlQ5nNQ6Q9QRxj/4DVzjUDd5+dbVNQNY3+mD7YtQ29UVEImHewBFRY0TtJF33EPVX9I/UBb7OsLm8Rf4kI9w+9+X1b5oDKu2++4HX1Ynh2YlkcA6wpGk8IQ7ORGxoZSaD9wI9A/ICc4EVkUyj1AP1Li6ac0TonXxftXJJS0RJ815OfXbkh+njvDxx2S2zjrCUS0/fCGFpMTw8+vZsWF+MDTM4R7YNeNHryMcSX3cWO+FYz0l5+Ip2rQMqSMcdy8B/wHuBxb5fF6utT4UyQwiqRqRrZR6VCm11vPziFJKqkaINsf8+gtXikiIWMr2XNbPSo1NHeEumda1cn07ETtnBq8jHKlUTymypICSa8Hqp3ZppjrCJeW1bCw6EtF0wWosZ6fZvTct+jLXLUGFzqfNsCiV1aujEdSZtYs7pdu98zDnFCyICrzpL7AGc2CpvXD7rWO6HdI6AbDT3TPkuKYhPbIsl+UrzWK5Zpm0zIC6wR3SwtcR7pplfWIQKNLcZqu2Z6UmWU5v3kg5pk9H72dJEZRPC3YDptUx4cvcvqJptNZHtdaFWutLPU9BrsY4Q89QSh0byTwiOZV5FijHeH7zxUAZ8Fwj2yxEi6U9vVvSISx+TOaNX6Hu/I/mmIykhyrYONHUETbHDAzSS4PcDZ/cTHWEXW4dNqXDlBLkJDdYHWDvjYxK+d3sFdgbHCpQMmsXW9UwDpYfHG68wEAu2Hr5tcGeAYAzwqPJr45wFNLsRgAYWDc5kpOswHSKprJqe1aYANWXPYIHagQr5Wa1vr654XJTdmwppc5XSu3AqGz2MVCI0VMcViTfTAO01ndqrXd5fu4C+je6tXGklOqvlPqbUmq5532CUuo+pdQTSqkr490+EV9m3lhja5QK0RhmbnqN0xWTOsK+OcLBBAs4Ig0ooT5vMjAQ+P6Q9Q1r4dpV52z+OsLBbsKqjaCOcKhUiDqLafceMW5EM2/CralrWEf4sMUNWgBb9pb5vd9a7P8+sC2BOayBHE43OGs9y47shOQ7Tz3oUHWErbZnfV6t/3SR7LPA9Q6mKXWEnW5tWUfY/Nv7zqcOtjtgf1kJlp9ttQzfT/YcCX6jYnvVxBjtXmACsN1T7ew04ItIlhvJX0S1Uuokn4ZOwuh6Dkkp1Vsp9ZFSaotSarNS6uZw04SY17NKqQNKqU0Ww85SSm1TSu1USi2ymt7kCeR9ayBfAPQC6oCixrZPtA1mTdJocr6EaCqzvm5Koq3Bo3VNiuBPRQvk2xOX1z2LwRaXYM1euwZtCfNUunS7zdszaj5+NtIeQ6snq/myamcwo441Ll93DHhk8uhjO1qN7pUaZBsmJyYwqFtGg8+D9QgHrnJgeggYN/JBfb5vSlKCdx/6fsX06NDwscLltc6gbbVefuj9Zk9MKqCypQAAIABJREFUgEQjvULV3w3B6D7Bt5d5c1uonkurYK/+scT+00Xz6PoOadYpLKbo6gj7S0xQltv22E7GfvC9ouF9emLAuBP654RdtFUeu+8nhysje5R5c2mDMVqd1roUSFBKJWitPwLGRtL+SK4RzAee9+QFK+AQcFUE0zmB27TW65RSmUCBUuo9rfUWcwSlVFegWmtd7vPZcVrrnQHzWgr8CXjB90OllA14EqNsRhGwRin1L8CGkTjta67W+kDAZ7nA51rrv3jOQD6IYL1EG2V+p8sVK9EWRXNJWAjR5rW1GO2IUioD+AR4USl1AAhf547IHqixARihlMryvI/o2oWnyHGx5/dypdRWoCewxWe0KcA8pdQ5WutapdR1wAyM2m++8/pEKdXXYjHjgZ1a610ASql/ABdore8nsqeMFAHmaVlsH3IuWh2z7mM0l2iFaCozTaHK4QyaVhBNHWHfeq3FR6q9J3a+NyIFy00N93jmWp86wmaJK1eEaQrB0gBMe6O4VGxup8paJ8lJCXT09CB+Xxq6jvDhILVsy6vrLB+t7vJJ/whVRzjwKWVWyzxUaV1H+EiVdc9gNHWEKyxq1jZog9u4gb6jqo8NQm0vbx3hKNNQzDJkRwPqCB8Osp5WYpUrbNV23/3g66DF4659H4/ta1cEFVis/sZa0n+WNhijXQDUALcAc4Bs4O4IlhFR1YibPUFwOfCoUmqdUurMSGbuM4++wCjgS9/PtdavAv8F8pVSc4C5wKwoZt0T+MHnfZHns2DtyFFKLQFGKaV+jVELeapS6gmMswirac5XSj3tckmc3NaZuV5Oi3+IQjQX33+2pRb/jE2R1hH2DWaPVNd5A2PfXM+qIDVOwwXbTrf2/jM3gzGL9FhLlWGCm2gCJfPytcPppmOaneO6GmkNB8PUIg5W27W6zmX5wAdz3TT+ebmBq1wboo6vucwqh3Ud4WAnH9HUEa4JU3e3qtYJDiN4O0Yd9n4e6jG/3jrCUUZv5vpUB+zvSHLXTZGe9IVj1Xbf/eDL6mTCzHcO/J8Qrl41xO6hIE1kU0o9rZQK9VyIVh2j+bS1Umvt0lo7tdbPa60f96RKhBXJtbK5Wus/KqWmAjnA5cDfgXcjWYCnq/o14BdWvcla64c8Zwl/xrgxLzbFLi14Nsq8gI+vsRrXZ5o3gTfT09Ova652iZbB/OJvjhqlQkSieesIR3SVMKxwdYQHdctif3lJI+Yb3zrC0S0/fB1hyyoZAZusVyfrcmGB+dS5x2T+6HWEkxPD56THei/07Zwe4zlGwbMytijK+EHj6wj/SP9mXFrr60ON0NpjNKVUOf5fROZfmTJmqcPefBDJHjR31znAC1rrzUR4/CulkjA28IvBHsmslJoMDAVWAHdGMl8fe4DePu97eT4TImoJnsM6mlqqQjRVdmqS9zUWdYS7BqkR7KtLpnUAlhlFHnGwOsLBbvLqGmSZpsbWET5QXsOG7yOrI9wlyLbpmGa3vOEt0jrCgTVzof4muM6eGsA5Gcne/WvOKTHB+l/w0B7+pfoDbwoMrI8bbr91SrdDmnGD1zZ375DjmvK6Z1ouy5dVHWHf49lXxzA3wEH9tgqnKXWEs4PVEfYEtKN6W9QRDnETabBh4fbJkB7xfxxDW4jRtNaZWussn59M39dI5hFJIFyglHoXIxD+ryepOux1C2V8c/8N2Kq1fjTIOKOApzFyO64GcpRS90bScI81wEClVD+llB24BPhXFNML4aVbVAaXaC+89VpjVEc4koAy2DiRBBiBPaGBQbr5+ONA9gietNYYbjfURZjOFKwqRlIT6whbBdEms2pEqkUPsVU6hpVDARUGAvdTuN7bVLsN7EZva6Tfc42tI2yeCAWeEIWrGgJQXhPZ9oiUVdujOdnz1hEOcsICwVNYrB4s05Ky7tpijKaUOkkpdbXn985KqX6RTBdJIHwNxmPrxmmtqwA7xgYJZxJGGsWpSqkNnp9zAsZJAy7WWn+rtXYDVwC7A2eklHoZWA3kKqWKlFLXAGitncBNGDksW4FXPD3WQkTN/JIKVhdSiObgW0c42OX2xtYRTlDKMsBubB1h3zk5g9QR3nPY+qa3cDfiuaJIRnUGPtXDI1x6Q7C/7Vqn2zIHuyl1hIsOGzei+dYRDqxLGywQ/nrPUb/32/eX+72PVR3hUEHuTs8NYT9mHeFt+8rDjgOh86f9RFFH2JznzgP1V/6D1RH2vXJT08g6wj8EuTH2R9SmYjSl1J3AQuDXno/swLJIpo2kaoTbk0h9mVJKA59prVdEMN1nhOnI0FqvCnhfBzxjMd6lIebxb+Df4dojRDidMoxLec31BCwhrPjWER7RO5sdBxqm4Jl1hMMFk+Df85bbLbNBzVlofB3hNLuN6jojYDfqxbqMYCqCwCRcHeRB3bPYe9S6NznQiN4dWLmtpMHl9pG9reswm4I9Pj05MYHeHTPYX+Z/E5Ty5EGbPcLm1g9cZaseYbP6jG8d4VS7jcpal1+uqFUd4SqHK/Z1hN0N6wiP7N2BvUf2WU5jBrkqSC44xK+OcMQs2m7WEQ68ea93p1Q27y33q+IRrI7wuH6d+Ghb6Dz4YHWEzdZE+lTB5tIGY7TpGDf8rfMsd68ngyGsSKpGPIWRvPw1sAm4QSn1ZOPbKkTL5K0jLA9ZFm1Qh7SGeaxCCNFGOLRx+UIDKKUivvMykmSZU4E8zwJQSj2Pf505IdoEs95nbZhSRELEklleq9LhpPBg8DrCkT7+2LdW7p7D9XWEfW9EClaqLFyJK786wma5wQjrzJaGeZKWmUoQiULPY3Arap2k2BPI8dxM5vt43GjaUFZdZ5le4Iy0jnCI7WYus7TS4X3anG+uaGD+rylUCbHAtINwubWHKuvAbVSd6Kzq0w9CbS8zVSTS/Wsy0z0C0z7C7X9fwcrcRcuq7b77wVdJecP2mWkPgX97VldtAlmlvchdKM3qFaXUX4AOnnrHc4G/RjJhJIHwTuBY6vNCegM7GtNKIVoys7aqVY1JIZqLmTvpcLpD1tKNNC/SN2+zrKbOe33Dd/qaICkW4XJNffNozd8jTdcMV1c1mkvF5naqc7rpkGqnf5cMv8+jbUNNncty3c110/gHvw3qCIc4ea721tV1efeB7/TBckxD7e/AlIRwJ0nVDuf/b+/NoyTJ7vre783Mytr3pau6qrdZND0zmlULAoRBwqBlNJLgifMksIFn4Q3xh7FlIz/Owz72MUcGzsMGsQmZJwmDBIInIQlJWKBlNIxGo9l6pmem967urq7q2vclqzLz+o+Im3nz5t0iM3Kpqt/nnD5dFRUZcSNuZMQv7v3dzwV48KIxxIr5x7ZpfkVusG/9CsTxqMcVxavrug590ZVdrgcZXfAt1lM9wosW/7LAVK9EbeCc/wZj7EcArCGYke5XOOdf9fmsMRBmjH0Bwfe1G8ArjLGnwt+/B8BTVZeaIJoMcWv0VfMQRNzU0mHtai31xeURvvdoL2bPqzOl+mzX/9hNmrlqiNsj3JZ2e4SPD5bnBwPl02HfM9ZTd4+wKZ9aJu5quD18oWkE4lhsqjQdUdaXc8NtWjqiMsLA96sAwBhLMMZ+inP+J67P2VqEf8O2v4jlI4imR+QGqw8hgqglfaFvta+jRTuwDYjmET7S43axHunRO3172lsw7zFrFhAMftvdziOdZNiVelFMgcGoYZ+CKB5h+WX11toOnrm2bFm7iOncDHSmtS14LUmGvRxHggWBsml2v5728vzrsd4gyBXu4uHuwCOc5bwQD5uC77vHSvWn6vbVIKq3vaUwRbyOwa5WID8MAHglf9y4nsxdo914/NJi4Rzo0A267O9owdx6pmzA20CnewCc6ks2EcUjrNZZf0caSc3ylnDw5/0TfRAd4OJatunpTAMVe9pbrIM/T495KW4JB+HMxx9AMGPd5xEEwh8A8EEAZwBUHghzzr9p2OkbAbwPjunuCGK/UfBr0sxyRB0puGotgzSjXJE+QYJJm+UTX8jpAgDKRubfMjz8owS6Lrjyi85eoMMUtKSSCUATCMvWCPm2oMbDtta91kIwVb5vU36wivpyotaxyxrR1pIA8kFgztzTAACQjAkWa4SOggVFse+4rCGAv1fZF53RxMdnLBDn1Va/phQW3fE2k0f4APHHAJYR6Nt+DsD/jeCW+W7O+fM+G/Bq02eMPcQY+3XG2CSA/4zAB0cQBwrxLI1roAZB+CB7hE0tv2K+UB/kgVupBNMGoCaPsG2AFpQymDzCM6uVeYQ9Y9lw5bA8qkbMMvEBYPcI6+KZajzC15fcHuG17ay2Vfj5Gyslx3Z5vnRwVlweYVsALdzFNo+w7joyeYR98n4vzQX7dPWA1MIjLBadl5zNJo+wrIKr1CN8bTGeVCUCt3HOf5Zz/gcIGmnvAfAW3yAYsATCjLFXMcb+A2PsHIDfBnAdAOOcv4lz/pFqS04QzcZob9B12+aRG0cQcSF7hF89ru8uZTBPXawit3jdeaQbrzpSrtI0eYRd+Y4d6WSh1Vj4Yn1nHnO1COrKaeLVE8H0tGr3+30T9mlrbR7hO0bKbUummeXKPb7l50BMEKJ6hIEgV1Qg7jsymWzeeh+qyCOcKvcI286XGIBnC0p1MbLJI+wqo4w6PXPFaMouPMIq4/1BPaxLgzZNHuGHT/TDhckjLLClshCRKFQY5zwHYIpz7ickD7ElQ54D8C0A7+CcXwIAxtgvVlJKgtgPFD3CBHHw6CePMEEQB48HGGNr4c8MQHv4OwPAOefOZGxbIPzjCOaF/jpj7CsAPg2KEYgDzNx68BJJUywT9WQjTMXZyGRxeV7fXZrnvJBC4UL2td5Y2io0ig1KHmFTbuqGIy1oR0oh2InoEV7YsOfDXo8w5eyVMFVgfSeLjnQSI+GAtMsOv6upDCtbe9rzK6d/5C05wrbWPbHPhQ29R9ik4oriEV5zqOcWN3YBHsyENiLp02znS2gko3qEhcJuebO0TAseyjGB6zr0RVd2uR5k1FkFAUkFp+jxfKaCXiaPcF3gnFfdhWvsq+Ccf45z/l4ApwF8HcC/AjDCGPs9xtiPVrtjgmg2tsLcStPIcIKoBXuFnMq8NaDx1VvLD/mNTBYbYZAm52iagmqXQzuX54XWkHxEz6zLq+qaFEJGOIezuTx62ltwYjBIa1h1bMNUht1sTht8mTzCKrb8V9mrq/MImxzAUTzCu45gdWcvB+wFudsD0oQaNnezGDwc9XYorj/VrbyjCT5NRA2+TejKLteDjM5zLNZT13f5qgHzd4xoPpxJO5zzTc75n3LOHwUwAeA5AL9U85IRRJ0Rt7oW8jsSDaKWHuFri/4trjZEEU2Wi/vG7Xm6JqK4gWVrAufcOqDLl6geYRcdGjuBuosTBo+wmsZS6Tmthq5Wt0Yy7uv1zgh54nEjDqXNMxdfoLOBmJDTpKP6ionaEakmOOfLnPOPcs5/uFYFIohGIVpA1AE4BFFL+sPrra8jHYtHeEwz+EpFN0ALiDZISQzKSyuDolKGQVGuciWjeISl8zG7lsHTnh5hk8t4sKtVO+BNLEswu0JLd96Eq1mkbYx0t5YNvjLVqzpwsFMJStWBZ32OehvubgW6RgD4e4TvGOkK92U+bt2gM+ELVr3BQ13u+6rv9eftEdaUfbAzrf28OKevPlp86RD+YJtH2HS99zpy8qMMDiVqC72SEEQIDZYjGonN1hrlmvSJmU0BmM9nRS9xobdY+dD0il6fFueMjZU2AJtcxqayydYIm0fYdmyi5U/XArjoyJsWqG5mdXemYKykDKkgMK/MI+yP6Xh9bDy+XmVfdC3WvvYVoHi92F6CTGkcOkMJeYSbEwqECSJE3OrWIuQqEkS1yB5h0wOXw3+eF9mDnU4mtAGYySNsylcVyMUzeYRn1/TmItlvrCNKuCV0waq6zdVNrcsDBYLj1sXW1XiEhSfW5hFe38lqg+hnry2X1Pek4pyNyyPcaglOz93y8Ahr8qpNHmFXHjNQHATpSrmoyiOc49YXqVdm1go/mzzCbVILsek74/IIxzXlOVE9FAgTRMh4f5CvRx5hop7IHuF7jlo8wp7XpdyNfvtIV6GLW8bkEXYFku0tlXuEXTN63THi31V8T9h9rXal33vU4RE2tAa2phK4fThej7Bo/XN5hHXTXe/leV08wvcarjegGFxbPcKaZSaPcDqCR1g3ZXVF6DzCSYa2dHlZjvYF9SC/SJo8wg8e73Pu2uURpombmgcKhAkihFIjiIPMoEeOJkEQxGHDPSyUIA4JN8Pcxk3HVLAEESdCb7aeyeLirN7rmufcqR8TyK7ca4ubhRe7fmkQqMldu+GY7WpnL1exR3h+3e6RnYzQVXwxnAZ3fWcPna3JwiC4C7N2v6upDMtbu9i2TBecy/OSzFq1Z37Nct7mwn3OrWcKaRLyKTP5dW36LTXtwKZBA4D59V2AzwIAjrLiwELb+arUIyzyfNV83zlH/ctEUenZ0JVdrgeZW6vl5ds2eIRfnl4rW1dFl+9MYs7mhAJhgggReZPe+WcEEQN7YR96Npe3TiTge1nKEzFs7eYKgbC83DRZg8uhnePFQX1RPcKu/ONNQ96yDnGesjmO7rYWHBvoKFketQx72XxZrjNQemy2w7QFi+Jc72r2wZi5LmznVc0/decI5wAeBHo9rPjCYXvxqdQjLB+vbrkPcd2DdZvR1QOgd0znDR5hn3EkUY6XaCyUGkEQCuR3JBoBQ209wlFmbrPh8gg/cMydP6mjUo9wnvNYJmCIsn+ftOiutvJ2pnKPcIf2s0OKeuzBCs9pNfS0ufN0475eT486Z8ONB02xRS60qqpzUalHmMaiNA/0xCeIAsGNUPVfEkQt8fEIRwk4xKAfG2N9+okcXD5amYJHWAkETGU9atinoFKP8NxaBs/dWPH6nMllPNTVqlWrpT09wjr3+HDoDxZpG6M9bcbBVyq3KwMc1aCpzCPscNaO9LQB3aMAgHOeHmExeDCqR1jkog92tpYsF+fDhu7lQYevik9X9qGuVu1Lj1j37rFiMC78wW0VeIT7Hc8R3SBWojFQIEwQIZyLUdINLghxaGl4Uk4lHmGFG4aWZ2fsEuHgK/UImwKoRILpd+/pEbYdW8FFqwnKXHnTgpuKm7nMI5ywP8pbkgxIisDMr/WcVegRFkF6Syqa2g7wPx++6MouLB4+iDqzBd6m3gjd8cY0czQRMxQIE0SIeJgsxyx1JwgbskfYFCxw+HXHA6W+3rZUUtsFW0uPsGnwl8sjHGXCDRFkqZ/pcHQ32zzCupbsajzCV+fLPcIigBdrb2Zy2gD5u5NLJYG3+nIRl0fYpNEDigPC6ukRFu5l17VQlUc4z7UvPeJ8n51eLSwzeYQ7pfMWxSMsc3lePzCWqD8UCBNEyEQ44MbX10oQcSB7hO8a1bt0GfxzCmVf76nhTtym8eM2o0f4tmH/ruK7wlxS1Td7esyeY2rzCJ8aKs/XrcYjLJA9wsJfK/emj3SXp2vkub2+4/IInx4zu5tzYSDXCI9wt0d+shc6j3CCaVuFRdrMjvSyZEpluW/C7quWP1tSHOln00sZUX8oECaIkEq7WwliP+CTo0kQBHHYIH0aQYRMLgRdVVE0TgRRLULFtLazh/O39F7XKB5hOc/y6vxmoVFMnoXNlL6w7vAIb0seYdGi5eqWF8yu2fM/r0ToKj5/K+i2X9veQ1dbCuPhQLxzM3a/q6kMS5u72pm+9mLwCIt9zq5lsLNb7hGeW9dPSW2rb1XNtbJlT+eaW8sA/BYA4BhbLCw/N+P2CPvWr0A4qmWfNeCuf5m4PMK6ssv1IDO9Ul4PW+E1vq3UxYtTq2XrqqjHDzTBGABCCwXCBBGyvSdyHhtcEOJQkZNcpVuW7lLftEg5N3MnW/QIy4HVniGv0ZV7mZc8wiLTUu1JMXWluwIqNdiwIc5TLs/R1ZoqGCm2HNswlSGby2tzYeVF8l+Z8rtN37ZXyJnNl+WNJhPFgNO277K/Kb+7/M97uTzAg8CskxUH3plyxYN96OvXxZ5hIo4oAXVcHmFd2XX1AOi9v7zgyi5d36exRHdNqNcN0RxQagRBhIgbVJshj5AgakGiJA+1emWJaRNTy9vulSJs3+QRrtR5G2WwnKwyy+U5Mtnq8y2j7N/n9HW3uz3CYiIQlREljeXh4/3eZYsLH5VelHPmw71H3bm3saAptvjuqXnnLqL4gGW5Rwc9Z5oGCoQJokAQCg+SR5ioIyJloa+9JRaPsMmV67OOy0cLFF8YTR5hExP9Do9whKBKPh/z6xm84NFVDaCQQqEy3N2m9QSLY3N5hHXO2KGuIJgV53qs198jfGqodICjeo7VgWf9Go+xzGhvG9BzFADwiqdH+JSHR1gXBA6FHmFx/IKRHneOumkwo0o1HuHhbr1HWNg7XnWkOICwMJDVEuyayuLy0UcZHErUFgqECUIQPuHJI0w0iv3QbSp6iU2915OLm/o/ODfsv2qlPeem7zZj9hQAl0dYt1nRnS4CJV3AZMqbVbviVX2aehyuwDCZYEAiFZbV0yOMyjzCwhqhauF8rBGza/p86UrRlT3KTHDi5cc266Ap5UP3gkge4eaEAmGCCBFv/wsxS90JwobsETap+yr1CHekk9ou2Eo9wnJsY/IImzzcLo+wSwEmI/RXarDV5Zge1+YR1vl8q/EIX1sIgtcSj7DYrlQeXcD03cnlkvpWJ9SIyyNsm8nt7M2gld3mEdYNMKzGIywC/lp7hHWIfb4wVZyl0OQRlqef1uUWy581cWHWPFCRqC8UCBNEiOi69e2eI4g4kD3Cdx7Rd5dW6hE+MdiJk0PxeYTbaugR1pXTxJ1h97Xqm5W7tXXYPMInBuvgEW4p9wirKQSFMtXBI2w7XyKMq7RFuJk9wq0aj/CRMHVDDmxNqSz3HLX7quXPlhRH+tkUQBP1hwJhgggpvsBTbgRx8DjikaNJEARx2CB9GkGEXJoLPKYbmu4+gqgVa9tFj7CY1lYlz7m3XkzOO708t1FoFJNb2eYM6T9r2/4eYZFe4avFurVqz/+8NOffVfxyOA3u6vYeuttSOB7aF16atg+aM5VhcSOD9e1yd62vR3hF81l1n7dWdwqpGfIpM+XFRvEIu6aFn13LAPlpAMBJNldY/pLhegNKtW9REKll8+ulZXLVv8ya5XxGQVd2uR5kppb9PcLPX18pW1dlXvMd2w9jAA4jFAgTRMhOqGBy5XYRRJyIqWwDDZg56PC9LOX8yd1cvtC/IecF5wzBjevalz3CpnKlDF3gLtetKz9Zt24+z9HZmsKRnjavbZjKkMtz7GoGkfl6hNU8ad0+s3ledq5aksyY7xrFI5xz1Fs2lwd4UP9trBigZjxerqLeDrMFL3Zeu9yHuO7Bus3o6gHQe39NHuEdD12frl7JI9ycUGoEQYSIe51rwA1BxIkYkZ5IxOMRNqViyjNnmfJ6fXYv1jHlT943rnfBunJNbXqy8nWLB5nN5Y2D4KIQt0e4V6OiUz83blDKqXq7150c8C5bXLj0X0C0OvPhvgk/j3C1e9XVn/hO9DlUdCqVeoTpOdM8UCBMECHi3mgavEIQtUAI/Hvb4vEIi9bRStbp9ZhMQLRoCRtFi6eOarzPXi7fQXdA6WCxhY1dnHWkRAhMLuORHrtHOJlg1gFxuqBRLBOz3o33tXt7hI8rE22oQbo68MzlPh/rbQd6xgEA5/LHHHsPEIMH05bj1g3oGw4nAxlWJgUZ9fBbt6b8gkrfa0VXZ0d62rTfJ1H/d4wUB6yKINdkcwHML1CDjudIlMGhRG2hQJggQsSUouQRJhrFfug2dXmEr8xvVLVdH2qRvhRt/+51RNe4iJMYK69fU96s2k0/uVDqZlbvUa7W9kQCQEIEcxHPXcQbosmb7NN6PK1o4qpFd15sLzQq4hhsL6Im+4NuP+QRbk4oECaIEPHWPxPzzZggbMge4U5DdylHqcPXhuzr7WpNaV2xFXuEpWDG5BFeNQx02nKkL0TpYhbnSc1H7nVot0wDDjPZvNbnW41H+PpiuUdYrcKdvbxWWffM9ZWSc31LGVAXl0fY1gPw4lQwkK6eHmERCJvyzAW18AiLQP2568uFZSaPsDyTn+ncu17Wzt0yD1Qk6gsFwgQRcnwg6KpqNzhWCaIWyB7h24f13aUMdq+sjOzrPTbQUdbNDlThEU4lKvYI6yb2kNGV04SYnrZbCfJvH7FPW2vq4m5NJXBsoDxtIm6PsPDXyrmipi5029TVcXmEbeeLFVqy6+8Rji1/NoJHWEwBLQfZplSWu0btvmr5syXFkX7Oal6eiMZAgTBBhBQE8g0tBUHUBnUAFkEQBEH6NIIo8MpMMOBmnTzCRB0RqQSr23s4e9PiEfY0I8jd6Bdn1wuNYnLahclda0prEGzt5govjAWPsKf2TLZW6Lhwy98jfHYq+K6ubO2ipz2Fk4NBS/qLU/ZBczOGMiysZ7C6Ve7iFceWy3PIZ7/MI7xlPm/iuKcNHmFTnrDNI6ymsCw5PMIzqzsAvwkAuD1xq7Dcdr4KHuGIM6AJR/XcWqlHdzqCR9h1HfqiK/u0wSN8Y6k8JW4zXG9LqYtnry2Xrauic3VTG3BzQoEwQYTs5kQ+YIMLQhwq8pKr1Jbr6XtZyvrWbJ4XejjkiWJM3lvXtc+h8Qgr65i69F05k3t5/4BLrMt5kOYhDAWubZh8u3nOoYv3TCUu8whbjq1Qvxp/bTqVMH42zsGD+TwHeBDMtaB4HfhMlhH1diiuLbVMNtdy2T7j8ghrlunqATDkHUs54jI++c664yWPcHNCqREEESLudb3t9H5I1A95lH0Ul62JlCFfVW55TBryNX00bS6P8L1H9S5Y17FV6hHezea9Z4M07YIxpt2/qUQ+abP9nW6P8FGDUm6irzRf+Q23Dbp3GDM+Gsm4PcIPHuvzWq+WHmGX9kzFplYr30f2cw78AAAgAElEQVTxZx9VIVEfKBAmiBAWvqsPk0eYqCM9oemgp63F+ICP4hEe6XZfv6Z1ejxeAiv1CLtylCv1CC9t7uKVGb8R+Ef79B7h4e5WbaDeYvAIq616Oo+wmJhBuIsn+v09wqaJNgTqwDNX0Hq0rx3oDfzB5z09wmLwom3Qnm4A55Fw0NmI4qr2yVF32SIEvteKzoE82mv3CJ+S/L7tabdH2FSWIcf38FiEwaFEbaFAmCBCCr1fNFqOaBD7odvU5RG+NLc/PcIReu69yqrzy6ofM+VNZ5QpfC8rbuaornPGih/inleZj6JMl8IgLBNqfOjT2zG1vOVVNu/UCUvA60OicCzRPcK6/ZBHuDmhQJggQrrDrqopzaAJgqgVske4x+DB5fCfAlj2CPe0tRRmrpMxeYRND3VBKsEK74kmj/D6TmUeYZdeTaY7PE9qa3S/Y3pcm0e4XbN/k0dYrQmdR/jmcnAfsXmEd7N5rT/5+RurJfU9rwy8issj3G+Zke6labdHWFenJo+wTz6ySN9x6eC8X1oieITFPp+55vYIy+kTlXqEX/acDZGoPRQIE0TIsf6gq0r3QCSIWiF7hE8O6btLGdyOX4HsER7vb9dOK2zyCNu6wRGWQTSOxe0Rnuj37yoW09OqvtlTjmlrbR5h3RTQJo+w2kBYjUdYl1YB1McjbDtfcXuEXWWUMU0sE5kIHuHh7qAe5MDflMpyp8NXLX+2pDjSz1F6IIjaQoEwQYTQFMvEQcY0MIsgCOIwQ8PjCSLkzI0VAMDGDnmEifqxEvprV7Z3ceaGvrs0z7kztUAwI9khzt9aL7RCya3AJnetzYcLlHqExfS6vp7Zmw6PsO+AN6D4XV3e2kVvRwtuD2eaez5cbi6DPu1pfj2DZY2L19cjvGw5b2KfN1d2sJUp9whPG8pk80arHuHFjXJnrcz0yg7AbwAA7kxMF5bbzlelHmHhqJ5VPMKmc69jReN0rgRd2eV6kLm2qPEIh9e4+t377tUl5751rm5qBG5OKBAmiBBT7hhB1BJx1XEezyAweRN5XvQIr0mTFFTqaZU9wqLnRN1SmyEFwrXPKMdeWJcH6Q4ivcC1DdOf1RzgwnLDdspcypb9FoqqWadN00Wvw5Uf7jpznPNCQZJSaoSP2zfqlWI63kb42XW7NNWVtQ6VLZl81KXbK19GHuHmhFIjCCJEPGpsA0gIIm7E6PJUMh6PsClfVZ7pyqQ889m/CICThfzZ0r/fPdqj/Zzs/q3k7zIt0rqZbM57JjLT8SWq9Ajr8kEHutIl6zLGyj43alCKHVfUWq87OWAoiSfSjrmnFmek251KEyXv14eHT/R7rVcLj7C4NlTtm4sogzzlS7y/gzzCzQIFwgQRIt7UfTysBBEXwoDQ3RqPR3jY4/o1eWe72zw8wuEXRQwq9Q2GRnvt5YoQB5cEMsube7gw6zc9s8llO1SlR7hPE9SICRPGQ3fxeF+bt0fY5dxVB066PMLjfW1A33EAwPn8uGPvAWKQpW3Qnu5vop6PKAHluMHhLON7nVfjER7rbdfuR9S//BIirnHT4FLAPJhwpMdRJxEGhxK1hQJhgggR3V80xTLRKPZDdo4ooqms5z2D0rLtRkhF9emajkrcHmHVBQyUB9BCsaai5gf7Bvpx4qM706dW6HsKfGLca4ubHiWrziPsem/Le1gjZEzKQV2wTR7h5oQCYYII6W8PujKvLfndjAkiDmSPsG5aXiAIoHwnAtiUphvua2/RtlaaPMLqICwVH4/wlmG6403NACWZLo/WaIGYtU1tkRzqtLfCmQagZbL5Eu2coBqP8PRyMFhK9girVbiX49qu9RdulnqEl5SBfHF5hG0tya/MBMG3LejUeZlNHuFdjyhQ+JJdGr+qPMI5rg3KxT6f9fAIy72GlXqEz94kj3CzQIEwQYQIj6lOcE8QtUL2CKu5oQIGd3AgkB2sY33t2mmFTV29LldxNR5hXaApY5r+WIc4T6pv9vigvbvZ5AhvTSW06Qhxe4RFHcppIH2GSUDq4RG2na+4PcLqtNA2bKkIkdB5hJNMe26HusrrwdQifNtw9R5honmgQJggQmiGZeIgo5tYgyAI4rBD+jSCCHnmWuCG3DB07RJELVgOnanLW7t47rre6xrFIzwt+XpfmVkrvNjJPR0zBqeryyO8KZVBpGC4pmUWTBnyYQUvRZhy9rnrQff18uYu+jtaCjN9PXt92fYxYxnm1na0Lt5dT4+wmrqg2+fU8nbNPMILDo/wzeVtgF8HAJxOTBWWy2kAKqLL37d+BcJRrbqqXfUvE5dHWFd2uR5kJhe2ypaJa3xTSSV68sqic986V/c+GAJwKKEWYYIIKbYIU5swcfDwVYy5KHaZ6/8e2/S4nrS2JI3pBbUirjtEe9rvERwlrWA/EzUNY79xwA9v33I4vl0E4QELI2Ef/RRBxIVw4rYkE7F4hE15vvOSR9iUf+ozIE+sIcqqfuRVR7q1n3PlsUbyCEvb2tnLaWeF0+9Df3zJRELvEZbzgg3LAX2e9FB3Otw2K/yvfk5VjAlOKbm7Lr+uq9YSCQaw4Jxl4TcGQuRM27atC9CLxxj9Wn5NE3iETW5nE5E8wtJ+BzU5yURjoECYIAThTYoCYaKeCFtCV2sqFo+wzwN20GAL8DE3FDzCYapFyrO18ojDqxrJIyz9vLK1h0vzG16fMwU5g11pvUc4WfQIp2we4fZyM4fwQ4uAcqzX3yPsmtRBfdkx1adgrLcN6J0AAFzKjzn2Lj4T5JSbJl8x/U0E96o3Os4cdW+PsKZ84312j/CE5PcVg/Yq8QibXnIE4vwSjYcCYYIIEXl/uTzJHonGcBA8wq/MrFW03Shfu/3gEd7RqMXUj91Y0ufNbuyU5qSeq/CcVsOOxoOs4jNFcxSuLsTsEdbAmD1XV9ahFdKALOubcqh18bGcGx73uSMqhwJhgggR+pzJxfJBEwRRK2SPsE7hBET1CBcDmIHONAY0U4ZX6hFu8fAI6wJAtVw6ejWtqiYGQ19wa0vpI8w1K6TNI6ybVa8aj/DMitsjnMtzbU71SzNrJS3UK0p+d1weYVvL84VbQSt7PT3CYsBia8qeblCVRzjPy+oBKA4mPXOjOGDV5BGWVXuVeoRfbsDLDaGHAmGCCBnvC7rEXC5VgogT2SM8bug+juYRLgYRR3ratOkAlXqE0zX0CEfJzRTnST2OCce0tTaPsC51ox4eYdMLQD08wrZ0hUZ6hE31FBmdRzih9wgPaCazMaWynBjsdO6aPML7B9KnEURIllIiiAZQaHUEN3aXcvh3B8stUbk8Bw+fvvJkHaZtuXZRTZe0qxUvSlexWFdtdcs5tmH6M+f21AzOObgljLHtVewzz/UrmloObeda/ZOrXjiHNId18Thc56sSRFnUTUdLPald2oCxHjT1L4qhru7zrKjhIRAxQ4EwQYQIh+vWLgXERP0Q3d4rW3s4M6V36XLOsb3nd13eWi3aIS7MrhfCHrkVTOc4BdyKtS2pDFE9wiZfruCVW/5dxWemgu/q6tYeBjrTOD3aXbI8ahnm13ewtGn2COd5acCqBnU2a4XY5/TKdsEFLfemm+pix1LfaprBosOaMb2yDfDAH3w6caOwXE4DUKnUIzy7FpzHubXS43LVv0xcqj9d2eV6kLm+VJ4SJ1KI1FSipyftvmoAmF0jj/B+gfqACSKEh7cpcj0SBxFfxZgLl0dY2BLqRTqVqPs+47pFuNJFBO2HZNp3XwPJfiUGOyJRAw72VUcQUQhf18cieiQJohpE7mQ6Jo9wW4v+ti63GrYaAquUJddVINYQ3l+1yHeEs7ypuPKPWyr0CG/v5pwzqwlMeaqpZEIbhPl6hHX1NhLmHItzmkomynJOTarGO4ZLc1AfONZXWi5lfZdeL5lgQCKo8wz389eO97Vr9yWjO58JQ26xz6X9oHKcJny/Jab1bB5hU56+iSgTyMj7JU1n80CBMEEIwpuUa+Q5QcSJeJB2xuQR1lkifNfp8nioiwwBEXD7tuK5HvysQo/w6vaet3ZrxOAyHuhMQ/cOYPQIK33cugFvol5HhVe3p9W7t8nlBVYHe7nqfLS3DegZBwBc5SNeZRAe3KgeYWGiUAcfHu2rv0dYV76JfrtHWPb7Fr6bFo+wCdfgT5dnmKgfFAgTRIgYgBM1J44g4mI/qEVdHuGz0/o8ZxeRPMI1OFEaA5oRn1V1ijo1gL5mUDWqObIvVXhOq0GXR6sSdz1cmvObGKXawXS6T4tlGQ9/skzGoAvUIad2u5R3RP2gQJggQsQbvG/rEkHEgewRNs2+xmFXdMnIvt6hrlYMaVpiK/YIJ90e4T3DNlweYZ2+yoRo2W1TUjxcaU02j3C/plW3Go/wbDhoUfYIF1IomNg+tP7ic7fWS1qg15UJNuLyCNvOlwhKbUGnzhldjUd4ZStI3zGl7giq9QgnNS3CnaGy7UVpwKrJIyxr57KGwrg8wudvrVv/TtQPCoQJImSsJ5xS9IAP2CCaC9kjbOpOZfC/LuUBWMPdrdpUn4o9wsnaeYSHu/27ikfD7mvVN+uattbmER7qLk8viNsj3JIK1pO3ZRroZ6vvuDzCY5Z0hYZ6hOMaHGjwCIt6kOnr8PcIu3zV8mdLiuP8FNEISJ9GECGZsMViH/ROEweIfMG7yo0te1E8wnJ39V6uOJvZycHiw9vk7HW6fqUyFMpTQbl0ZCN0FYvzpG7TldZkKkM+z5HV5UZILcI2j7Dt0MQ+s3lePFXS+iYnrc2rrJ5yV+tjLs+BvGhVLh6H7XwVyxrtjijKrZ7rKGkUruPxxtAirNu8rnymFmFXz4n8WaL5oUCYIEKevx64IXcj5ogRRDWIfNDV7T2cval36UbxCAuPKxB0bxcsD1KLnM5xCgBrDn+rXAaRQ7rrmVw7Y/DlCs7P+ncVn70ZdF+vbe9hsCuNe4/2BMsdubSmMixsZLC8Va6XE8fm8givaD6r7vPW6k4hNUM+ZXNreuOFLdhS0wyWHGq8W6s7AJ8GUOoRFudRhwjQfetXMLceHM/8eulxuepfxnUd+qIru1wPMjeWyj3HYj01lei5626PsK5eKTRuTqgPmCBCxE2KUQcWcQBZ9FSMuXB5hPs6/PRccdGSTBhTPWpFXK7xrja/FIAoiq79TDp1sH3J5BFuTigQJgiF44Pu/C+CiAuRl9uaiscjbMqDXd4qtrK1GdbxyUMWJRTrqkU+NVTqwC3s05H3GSU3X8433drNls1iZsKUA92SSmj3X5IXDP3PgF4hd6S3taSs6VS5R3jIoEm760ipi/m+8d6S39X9u66bVDIBJIMc2C3ul4stpuS2Bf2qxk0ui1omn2v7/ole5zpAdR5hxpjVI3xsoPz+b2scMb6kaD4i75f0ac0DBcIEoTDUVd8WLeJwI1ozO9LxeIT7NYN+ytfRX+M+M52JDAERVPp6hF3fq0pbWde2s7immR5Xh8ll3N+R1rbWpTw9wj0a84OoV2G4GOn29wi7WtXVANRUn4IjPa1A9xgA4Dof8iqDCNJtLyi6v4lzrJ7rOCcqqsYjPN7XZvUIywGqCHI7DC+ONkZ1ga503dCEGs0DBcIEESIebibFEkHUmoPgEX5haqWi7doGh6mYlFXVEGUwl8+aGxm3R3hyQR/Aq9NhV3pOq0FXfpUoAxx9uOCZJ15Lj7BJLWhCp5AzIacsR/UVE7WDAmGCCBFTa14mjzBRR2SPsKnVrFKP8Eh3q9ZNXKlHOO3hETYFlK4JGkxpAjrEeVJTPMYds5dtG4KWTDavnZ2tGo/w/JrGIyzqsESfVt6afGFuo6QFWj13cXmEbdMJX5kP7oO2oFN3vVTjERaD5FxpNFV7hDUtymJWxZeniwNWTdaIE1L6hNFE4gjWL876TR5C1B4KhAki5EjoMU3FNRKGIDyQPcKmKYAr9QgPdrVqp+ut1CPcUoVH2NW97JpWWEZM46v6Zl15lyY/bWsqgUFN6kbsHuFkc3mEbeerkR5hVyDsjckjrKmv3vby74TJI2zzL6ufLSmO81NEIzgcQ1EJwoOtvaCVbB/0ThMHiIJ3lXNkDIo0Dn8vqezDzWRzhaBJHsSmdebCnZ6g8wj7dlOb9imIoi0Ureiqg9fVTa1ruQWCVj2dU5fH4BEW+9zL6T3CptZcW12of3I7mjmQ3wt3XQxIbeerqImOdkfMhXWi1rfp3Ou3Ec9dWFf2knpQlpvKoX73fNLnajENOFEbKBAmiJAXwqk1a5F/SBAmVneCAGVtew8vz5g9wjueHuE5yd96ZX6zEL7J3cHz6waP8I49P1LnEfYNcG45zA4X5/y7isV5Wt/OYqg7XbAqmM6fwORPXtzIaF3AezF4hMU+Z9f0HmHVtyuwpamowbPOgVxWBj4DALg7cb2wXE4DUBEvGVECWACYXw/KsqDo+kznXsf6TjweYe3U12t6j/DN5XKPsHhRUFNqznjkbOvqlZ4szQmlRhCEAmVGEAcRU8AVFRFPm0wWulzbWpJKJOLrSvckrntEj6Y7XrueIX3ioGFS/zUzUa4F8gg3JxQIE4TC7QYPKkHUgrZwEoHWliRSMTwpTbm4q9JsXR0G96nOC2tCDOZS0y1PDOq/P64c4Uo9whuZLGZWy1vzdJhyhNOppNUjzFAa8Ki1pPvsWF+Qfyt7okU+tfi86aXh7tHukt/vCWfOM+3fdd2kUwkgGexrg/t50kUqjW3TupxycV2kEqV/8xnsee/R2nuEkwmmfYkT5T4p3/+lHHETpnx7Xe68vBlxfRCNhwJhgggRPZ+6QTMEUStEK1iHpVUzike4z8Mj3NuuX8fHlyq+JyJoTnoGsK6W4kpbWTd2spjSdGvrMH23+zparB7hRIKVBJtqjqnO/CBaqWWvrroLU953j6F+BOoLi8s7PNzdCnSPAgCm+IB1XYFwE9s80bq/CfvHUHdpmeKcQKIaj/BYb5v2WhPfMdle0unx3TQxovMES9U92Eke4WaBAmGCCOHhXWpjh/yORP0JBsSZ/+a9nRonIhbGexn28/wN8ggD+jxXNfC9vqgP4NU0lueuL3uXLS7WPPJ04/YIv+LI8RbUxCMcLoyan1ypRziqr5ioHRQIE0TI8f6gS+ziPPkdifohBkXtZvNWr2va0yMsO2dHe9u0bmLTQ1hnTlDLIFrTTB5hU5Di8giPdPu3GE6E50nNKT3eb+/2t3mEdTN9GT3CSlXoBmUthIPGZI+wSKGQP69rnb+ysFmSSqAOnIvLI6ybTlggJvuIyyPsKiMAbIaTeLhyhav1COtSSUS+9vlbxUk9TB5h2cBSqUdYeJqJxkOBMEGEDIddeVG6oQmiWuQcUtM0xAz+UxnLHuH+jjT6NSkJprxGV45wSzJR6N6P2yOsK6cJ4RxWB8kNOaattXmEdSklRo+wsp6vR1jkocq3mE5DvratvuPyCNum+Y3bIxwlB7w1VVuPcEpTX7r0FpNH2CfNgzzC+wfSpxFEyHphSlGS3BD1Q7QoZfPc2GrK4Z86ILfqbu8WPcJ3jHQVlpta51zpAfLf8xE9wq7W5ihdzKJFWz2OLce0wKYyZHN5rZ7O1yNsS9XYlVr8hfZYPmWmMkXxCKs+ZZW9HAdy5S3Cm5bzValHWNTJXlaZWc5R/zKu4/FFV3a5HmR0rdsmj7DP9NO6XgJ6sjQnFAgTRMhLN1cbXQTiECJyMdd39kq6ZWU459jxDCQWNopO2cnFTW34tmBQqa07PMI7SpAN+Htm5xz6tssRUpLEedrYyWK4uxUPHusDAJyb1Z8/VxmWNndLrBoCX4/wmuaz6j7n1jOFYF/+vOrbFUTxCK9s2fNa59Z2AD4LoNQjbLregMo9wovh9be4WXpcrvqX2XBch77oyi7Xg8zMSrnn2OQRPuvxrFg01CvRfFBqBEGEiFsmow4s4gAyF2FCAxsuj7Ctu70WJBMsUrd7HMSVPdXX4dcW1e+wQhwUTGkizUyUVDryCDcnFAgThMJpxeFJELVE5Lm2xeQR7mrV51fKs8aZAg6dF9aEyAFNKmWeMAxYcwU56Qo9wus7e9pZwXSY8pTbWtweYVuOsC63Wgx8lOtX9QibtGevVrzBdyn3JDX4cr0ItLYkgVSQ17rCu6zrCm4f7gr3Zdmu5rjFuVDL5OOovnusx7mOq0wyuhi1JZmweoRvGy6eH5EfbQt2TQP71O+FWh7bwFiivlAgTBAK/R4eVoKICzGAyzSQC4jW6uRy0NrW8ZnZS2QICEer+sA35bY6v1cVvgNsZnKY9pxQw+Qy7ml3e4STFo9wlybIF4GfGAA51JUuO0RTbrHrpUEdiGbyQguGutJA1wgA4Bbvs66rbjOqR1icY9XZrPXqVojvAD7dC8KRnlarR1i+RsSLk+27aUJvISn+fFha+fcDFAgTRIi4SS078u0IIk5E7mmec+QMA5OiZGm6tE2A2QHsMy7K5RE+M6X3CLu2HcXjux88wrqcY1XHNbWkD+BnlTSWpyeXvMsWFytbu851fJRoUfDJvQVi8AhrPi6qX1dvNrYdWkDdPgD7QEWivlAgTBAhYmrNC44BNwQRJ9lc0RpxwuJ19fUIy/aDo33tGO8r74I1GRpcgU2r7BHO6z3CJkwOX4HOd2zieHieOpQ0kJOG6Z0LZTAELZlsHiMaJVY1HuGljXKPsEjpkFufddq2ycWtklZfNfCPyyN80jKd/PUwSLcFnToThMkjvOsRNIvr0qT3E1TlEc5xre5O1MPFWbdH+A4pfcL04ul6Ib26QB7hZoECYYIIcU0BSxC1QHShp5MJo0s3ikdYzoPtbW9Bb/iAl4M3UwqEK48zJXuEE/F6hHvb/b9/4jypvlnXd9h03K2pBHrby4OvuD3CSY1H2BT01cMjbDtfcXuEI+WAR8hVt2LIBU5q6kuXW2/yCLt81fJnS4rj/BTRCPbfEE2CqBGr2+6uQIKIG9Gyms3njdooDv+ue1m7tZnJFoKm26VWLLNP198jLH727abOaDy9Mi4HsMxGqJxTW0Jd0+OalGR72Ty2MuWtxb4e4T1L3cgtwjqPcMbQUm6r76gtwplsHsgH6RZyi7DtfFXqEZa9ySVlcNS/TFwpF7qyy/WgLlcRLfFqypJNlyfQtYCTR7g5oUC4ifj0U9fx1OQSfuzBcXzhhWk8ev9RfP6FaYz2tOHf/OhdZetv7GTx4S+fQzrF8KG3ncbHvnUVAHDv0R781fPT6EinwFgwSOX+Y30Y62nD187N4eriJka6WzG/nsHDx/vx/XcM4cyNFbzroXEAwMefuIqzU2t48Hgf7p/oxcvTa5hdz2C8rw3Xl7bwr3/kLuzs5vCnT13HP3njKfzNSzP425fn8M4Hj+LczDpOj3Xj6+fm8G/fchc+9dR1/OM3nMCffOcG3vu6Y/i9b17GycEObO/lsLWXw48/NIGlzQz+x+NXcc9YD37wrmH84WNXcXygA5u7Wdxa3cH733gK/Z0t+K2/u4TdbB7vec0Ezt1axz96wwkAgVz///1fF5BKJvDBH30Vnr+xgrPTqzg92l3wZP7k64+jJZXE+Zl1PHl1AccGOnFhdh0j3a348Ycn8NnnpvDc9SC3cSOTxRfPTGMjk8X2Xg7vfnAcX3xhGu3pJNLJBKZWtvHzP3QH/ualGZy5sYpsPo/NTA7vuH8Mj11YQCIBvOmuEYABrz0xgLM3V3FmagW3DXXhe28fLNTfRx+7jNm1DE4MdOCdDx5FX0caU0tb+MS3J/HIfWP46xdn8K4HxzG5sIkfuHMYX35pBm2pBN790AQevziPqZVtPHy8D8f6O/GRr13CP7xnBBwcF2c3kMnmsbCewQfedAf+4LEr2M3m8YE33YG/fnEG77x/DB//9jUkGLC4uYvu1hRWtvfw6P1j+Nzz02hNJfDoA0dx91gPFjcy+O7kEtpbkhjubsPnz9zEXo7jJ19/HEd6WvH737yCYwMdeOhYHzYyWXSkkzg91oMXp1ZxcS4497cNdeLbVxbRkU5haTOD1lQSW3s5PPLqUazsZDHW24bPPH0DP/fG29DfmcZXX76F15zoRz4PvDC1glQygaXNDO4e68UXX5jG2149ii+fvYWh7lb8zPeeBAA8e20ZF2bXcWVhE48+MIbLc8Vux3c+MIZEIoHPn7mJd9w3hi+9eAtzGxncPtSJH7xrBFPLW3jm2jKuzG/ituFOrG7vYbAzjUfuP4rHLsxjbWcP9x7twdWFTbz59BF858oixvvbMdHfgW9emMeTVxbxnocnsJnJorM1hZ29HNKpBM7PruN4fweevLKIsb523DPWg+29HG4sb+FHTh/BzOoOzs6s4uzNNQCBw/finN6lyzm3emVlFiWP8PWlLW34ZnKcuiYKkD3Cohvb1zM77/CqXl307yoW52ljJ4sjPa14zfH+kuXGMhhctstbuwWfs4yvR3jdEhgJT/DCht4jvLipfwG3TUChBoquvNaF9QzA5wCUeoQvzprPV6Ue4aXweJaU43LVv0xc+bPaqa839B7hW6vlekHxkqKu//LMmnPfSxvUsLJfoEC4ifjQ//8iAOCzz94EB/DnT08V/va+1x/HUSXX7+NPTOJ/fucaAOC7k8t4sYIJIT5/ZhpAcMMQgfB//PzLAIC/eHYKyQQra5l4672j+I9feBlPXV1CMgH82t+cx2Ymh888M1Wy3vM3VvDs9RX83jeuYH4jg48/cRWTi1ulx/D3kxjtacPT15aRYMAP3DmEb15YKFnn2uImjg904M/C8/Hp794AEEwl+2MPTeCT357Exx4PXgLuG+/FB/702bLj/LtX5vDJ938P3vLfHyv72+tPDeAX/+xM4fczU6v4hU89V/j9978ZBKwyP3x6BP/8j0v389nnbhZmBvudr18GAEx++BG847cfL6wz+eFHAABX5jfwq186V1j+0W9dweO/9Gb8u798AU9cXsTHvnUVHMAfhi83w12thQfJRH8H/tNsIQkAABdWSURBVNH/eKrw2X/zI6/C73zjEj757Ulpdjxx7rbwV2EdP3t9GU9cXsQffPOyNmD4w29dKbQCfeKJSbz0n96Kt/63xzCvuaFfX9rCqaFOfPSxK2V/m/zwI3j0I4+XLVf5yNcuAQDuHOnCxbkNzKzu4FfecQ/+6SefwVBXGrk81w5c/O3wcwDwhlMDuGu0Bz/+e08Ulqll+u7kEk4MduBXv3QOv/6V87ghqbYmP/wIfvDXv6FtfXvk/qP46T96qmTZEx96E/7Pjz6JVILh0q++Hf/0E09jN5fHV87eipTz9+bTw/j6ufm6thDpHvSVkGBBIBd0/ZYfwZGeNsxGmDyhEuTgnjHmnZ4RF+IcVEt/p5+hZqirvm7mRuFjPGk2onqEazDOk6gSyhFuIr7wC98PQN99osuZkgefuLoETaQSTPvW/KojXfiJ10xoA4SWZALTK0EwMbW8re1mAoCtsHyiRUQNJoGghUZ0IeW5vuvy7rHeQkuU/LwTI67lATCjhgE315e2tMsBaFuCZBbWywNBNW8uwYBMNsoUsaXriiDFNIhJbk1RVVFiW1xz5XCpmKIubxjOhVj10fvHCtfWgiYITjBgsDMdqSvbhthXb1tLoS4XNna97B0+uq9XZtZwbiZonb6h8c1GsQWshC1vhS7T8P+7jkRzT5+bWS+rrfa02SMcJU+zu03fviG39na16QMOkc/qQ0tK7xFWX9gL+4zRIyznxK5t7+H6ovn7LWPSkoneHhWRSqp6hFXUXGUAmBgIzoPIje5Il3uETdqzByZ6S36Xp8cGyoMvV05tW0sSaAnKs8T9XL13hte07bjbNFox4RZOK+fEx1H9Ks/vke97j269dMrkEQ7Kd6dUhmo8wrocb3kzxy0DY4n6QoFwE3HfhJ/fUYfp4efCNMiiuy1l1Oe0p5MFJ6TNDSlaMYRvVFdGeZnPg1C+kfgMWBAc0YwIF7gG8bSny8ulPlAZ81NPmRDnQRyeet+VH3Qm/6TOdSk/aMU+XK0u2XxxhLzuAZtg9m7bqIhA6sRgR2GATUuSeT3sfFpjxnrbCi9IvuYFE2UP/nBzUQf36ByjbZpgStmNFz73AtM6usBGRVwb4t6hBsKm/E6dHaGECqtmazeH2XW/1m6Ty7i7rUXrlk16eoQ7NQOtxPkRA9IGOss9wqZz5aoHdSBaj+HFRjDYlQY6hwEAc56BcHd4j7MN2tNNGtFfON7SMsU546Dvi6Gu7CPdJo9w8L98z6zGIzzUVX6flq+b/dj6fVChQHif4HI6bkZwGVb7OdPgDpW9iMGS6aHwipSP5RpDMbXs1zJULWpZc/l4uryq2YSuZTMnNdevOFpYxccXpNZn3eMmmw/SXmKDi+3y4ih9z6jI1ZoPBA/rZHEIfEVFFJiCc9FD4osugMjF5BH2ceyalGdRruHCNpQym1ywrm3nIuSi2gan2bC9rEZxE/usuazJ/VV1XDeX9QG8ej195+qid9niwpS7LBP1Hu/C5KBW8VX2mdB7hIOFam6zi0o9wpX24hLxQ4FwE6J72Oq+96ckB6Q62tu360gXPCWYvYtqeWuvUJ48B8b69K2ty0rwrnv4A8VuZQ79fte293DnEc20oGEZZBfmpmbkd7XobrmLmpSBKCFWT3t5izJQPH51n0yzrkBcB7qBTvL5EGkXpl6ABNO0ylsOSu2urRRx/TxzbdnYIm5CN9JfpSWZKLSgVXvDU1ugRavXTMT8W10Lcj7PS77TKr7TH2ell7SJ/nYcGyhPVTA5XV1pIq2pROHeUoiDvUrlfoGOMuXsqaGgW1ntmbnNcv4AYMeQvpTJ5nFUk1Zl8girtzJdepl48SzxCKfKPcK6Hp4by9slrb5q4BaXR1ieTlhFTFtt9Qhr9luNR1gE1q6Z9bzDYJ1HOM8LaT0youX+ynxx/ITJIyw/pyr1CF/zTOchag8Fwk1GUumCsyF34agfqWbsSIIxp49TbD/BzLl/5Xm0+kLJ7lTTfrXpAJqurJrgcdeNerrVnEJxzxRdt+r2uGZdQdETW14KOXjySd0ou/Ysn+mLaYpQuVtX7K7KiaNK2Mvli6P/q9yW+nDzSSXQoUstaUkmjNcyg/lFUkUuU3dbC7rD8yt/3lRumw8XQEkOs9iebze1K5+729G9LyOcw+oLheuaNHVxt6YS6NKki5g8wireHuHCOZPKFCHHVBCXR9iWrtJIj7DreLzR5QIbnrG6FDmTR9jHOU8e4f0DWSOaEF9vo6zMUd++q+k5ynPu7B4qtHJk80blkmgZEMejn4WIl3Qhmvarti4DxRYmnykxTYPQAHcrmKm7WoYj2k1OHVgnumXFADF1j/I1UaZOEp/RlFMefLiX1/s9ZdRzYTt2nylYfZDTG8T+81w39K8ytndzhQF51U7Nqp4f23VlQzcodC+XN17LXLNvEzvKIFrxzJdbm80zy9n3IacPRPUIu7qQo3QVC+f3bjYPsOJ3z3VNmma3y2T1DueSFmGbR9hy3sQ+t/dy0jmT/m44L1lLC6p6Lbhy9nf28kBetEAWg0xbulSlHuGicqy0TK6ZBWVq6RGW60FGHcAMFHta1fV90id033ESRjQn1CLcZOTyHL5pV7KuaXO39CZeXSAcTDN895h5UIUITJc3dzGzou8WFjcW8ZDQPeg2d7M4L01paZreWOe7FCP4Jz20Vbp8PYHLz+o7MCzKKV/bLq0v8TAUx6/ev+UHrfriIa4D3c1dfoHYCfdhCjjyPOi+lFtLbBMsXHI4W32RR/yLY8jmeWytwoubu4UHV1Qnqop6rSxtVpbnp7seNzJZXJnXX8tRPMJymaaWt3FjqTx/2fR9cPlbM9l84d4S1SPsyjm1mV1UxHnazGQx2tOG154cCJY77gW6lCYAWN3a1RpFZI+w/P0q8whbgnixz8WN3cKkEvLndS/58r51qPnMrlz5xY0MsBloKU9LHmE5DaB8H5V5hMXLvPpSYjr3OmrpEZbrQWZOYzUSDRZqSo3pOSVje+YQzQUFwvsEV5elb7epiknXBNR/VKupJHKXlWvQf2xTc0YkwapLR6kHvl2crzs5YD2WBAOOkfpn3xF1QJ+JYlqU/iIZM+jT4qTRX7W4vuuDXX732CPdZuvNQSKudKt6EuXZ2+zPiMMKBcL7BFf+XI+S3+b7fbOpwxYMUvz+jpZCDpctj03k/ornpU56L99ETHlhslZOfvbqgnjTYKOkpZyuc6ULINXBbglWnZBA/ay6KWb5m6AjXZ7pNCA9WMbEYCDDBqK4OccMvuZKENfFuGHQpY0jPc0x0cADx3rdKznoiMkjrF6bArnr1/SSGyXnWbx0qoHAqEFV6FJ8RXmJle8Vq9t73pOZmLRxHemU3iMseX+j+nSPD5YO6OtsTZV5hE339YeOlao0Tw2X3teSyvXgGkjZkU4B6WAb89xP03l61O0R1uVci5zoVuVvPgoy3wG41XiEW1uS2meRuKZOSz2hYj1bsGvMt9fUiVxtJx0DO4n6QYHwAUEdsBZHr/JlQ7dZa0uy4Egc1rgSBWJAgbjB6AbVuST7KnJ3+WCE2ZZsvmPXIJ52zSQDatDJeXUDvMR5MFkT5JuqqdVENxlCtxTwiMFAroDkwux6oetW94DliJbv50I8ZCb6ix7hdDLh9bDzCRCP9rXjaBhkV9tjYHqYpxLRtjuiCeB1kzIIorxj+XynTKPyfSbUENdGyhAkmCaWMQXo1bK9mytR/tkwDUbsakvpPcLhsbk8wroGBbG+GADb39FSVo+mc6Vep2qua0rpGnM1lPR3tgAdwfTui9wv2BT3OOugPc2XVNyfVGfzoOVZEZVqPMLDXeU+52Cbwf/y90d8322ObxODmgF1cjVGffYRtYMC4X2C0yNcoTbMNNDNhu8AoaiTLpgGSMheUle62vVF/2luq0E9thxvvEdY50GVPZ+unDXxcddAkFweeHEq+nTeJsTDIZPNRx6h7jNQMsH8vcQuTMWL6q/WpRXk8vF4hH1yOk2531H8rPniaKqS5S9Pr2nWdnt66+ERNh0f5/byqYGoz97F90g+TaqOa2ZFH8Crsz9+5+qSxx7jZd5jmuy4PcLPXV/2Wq9aj7BObSaW+b5UCbZ2/Z+hcrHjGmxMVA8Fwk2Ir0f4dqm7TL2J+06gpdtuksE6UG5F8Qib/J/qF93UvXRPuC8O/X43M9lCN10JYRlul1yY25pBENWiu+XqgsUooZbaMiXiorulc2HathpDie5E3cuQPMhDDLaKyyN8l65OKuBYeP08f2MlskfYR2ZfS4+waOXSTR9uQ9cyzcFxh8Xr6usRlh/yxwc6cGKwPJ/b7D61b7utCo+wK9CNMuXsHeG9T1We3enoWjcF0NlcHhOa3GY5AJZPWZlHWLNdYXMR37tMNl9o9Zc/r2s5nF7dsfZexOUR1vrZQ4Qbu54eYTEgsdYeYV3vi5gJVR58bfII3yM9p0ynx+URntIMziQaA6tWJ3RYYIzlAdTjyk0BiGfI7P7jMB87cLiPn4798HKYj/8wHztwuI+/HsfezjmnBk8HFAg3GYyxpznnr210ORrBYT524HAfPx374Tx24HAf/2E+duBwH/9hPvZmg94UCIIgCIIgiEMJBcIEQRAEQRDEoYQC4ebjo40uQAM5zMcOHO7jp2M/vBzm4z/Mxw4c7uM/zMfeVFCOMEEQBEEQBHEooRZhgiAIgiAI4lBCgXCMMMYGGGNfZYxdDP/vN6z3M+E6FxljPyMtfw1j7EXG2CXG2G+xcHYBxthPMMZeYozlGWOvVbb178P1zzPG3iItf2u47BJj7EO1OmalLLU6fu12GWP/ljH2fPjvLGMsxxgbCP82GW7recbY0wfw2H+IMbYqHf+vSNuqa9034Nh/ijH2QviZJxhjD0jbqlu9u84zY6yVMfZn4d+/wxg7Kf0t0veWMXYq3MalcJtp1z5qSZ2P/U/C5WcZY3/EGGsJlxu/A7Wkzsf+ccbYVekYHwyXs/C7cin8Ljxc26MuOb56Hv+3pGOfZox9Llx+kOr+jxhjc4yxs8q2TPe/htX9gYVzTv9i+gfg1wB8KPz5QwD+q2adAQBXwv/7w5/7w789BeANCKYx+DKAt4XL7wZwF4BvAHittK17AJwB0ArgFIDLAJLhv8sAbgOQDte5Zx8fv892HwXwNen3SQBDB6DutdsF8EMAvqjZR93rvgHH/n3SZ98G4Dv1rnef8wzg5wH8fvjzewH8Wfhz5O8tgD8H8N7w598H8C9t+zhgx/728NpgAD4lHbv2O3DAjv3jAN6jKcfbw+8KC78736nVMTfy+JXt/iWAnz5IdR/+7R8AeBjAWWVbpvtfQ+r+IP+jFuF4eReAT4Q/fwLAuzXrvAXAVznnS5zzZQBfBfBWxtgYgB7O+ZM8uNo/KT7POX+Fc37esL9Pc84znPOrAC4BeH347xLn/ArnfBfAp8N1a01Njt9zu+9D8JBsFI08dplG1H1dj51z/kS4DQB4EsBE3Afkgc95lsv/FwB+mDHGEPF7G37mzeE2gNJzbNpHLanbsQMA5/xLPATBS1Mj6ltQ12O38C4AnwxPy5MA+sLvUq1pyPEzxnoQfAc+V6Pj8qEWxw7O+WMAdHNom+6rjar7AwsFwvFyhHM+E/58C8ARzTrjAG5Iv0+Fy8bDn9XlNmzb0i2vNbU6fut2GWMdAN6KoMVAwAH8L8bYM4yxf1bBsUSlEcf+vYyxM4yxLzPG7nXso5Y0pN5D3o+gdURQr3r3Oc+FdTjnWQCrAAYtnzUtHwSwEm5D3ZdpH7WknsdeIEyJ+McAviIt1n0Hakkjjv2/hF3gv8kYa41QjlrQkLpHEAT+Hed8TVp2EOrehun+16i6P7DYJ/QmymCM/S2AUc2ffln+hXPOGWMHTsnR6OM3bPdRAH/POZffqt/IOb/JGBsB8FXG2LnwzbtimuzYnwVwgnO+wRh7O4KWkjvj3qegyY5dlOlNCALhN0qLY693omn4XQCPcc6/Ff5e1+9Ag/j3CIKgNALd1i8B+E8NLVFjeB+Aj0m/H4a6L3BQ44lmgQLhiHDO/6Hpb4yxWcbYGOd8JuyqmNOsdhNBfpNgAkHu702UdvlNhMts3ARwzPAZ0/KqaNDxu7b7XihpEZzzm+H/c4yxzyLohqoqIGqmY5dbRjjnX2KM/S5jbAj2a6JimunYw33ej+DB+DbO+aJUztjr3YDPeRbrTDHGUgB6ASw6Pqtbvoig+zMVtjLJ65v2UUvqeewAAMbYfwAwDOCfi2Wm7wDnfKHC4/KhrscutQhmGGP/H4APRihHLWhE3Q8h+B7/mFh2wOrehOn+16i6P7jwJkhUPij/APw6SpPbf02zzgCAqwgGDPWHPw+Ef1MHDb1d+ew3UDpY7l6UJuBfQZDQnwp/PoViUv+9+/X4bdtFcKNZAtApLesE0C39/ASAtx6kY0fQOis84K8HcD38bN3rvgHHfhxBjt33KfuoW737nGcAH0DpwJk/D3+O/L0F8BmUDpb7eds+alzf9T72nwvrsl3Zh/Y7cMCOfSz8nwH4bwA+HP7+CEoHTD1V63pvxPGHn/sXAD5xEOte+txJlA+WM93/GlL3B/lfwwtwkP4hyAX6OwAXAfwtig/61wL4mLTeP0HwIL8E4P+Slr8WwFkEI0o/In3RfwxBHlAGwCyAv5E+88vh+ucRjrYPl78dwIXwb7+8z49fu93wbz+LYBCCXI7bwpvOGQAv1eP4633sAH4hPLYzCAaMfZ+0rbrWfQOO/WMAlgE8H/57uhH1rjvPCLqt3xn+3IYggL2EINi/TfpspO9teGxPhdv6DIBW1z4O0LFnw2Wivn/F9R04QMf+NQAvht+P/wmgK1zOAPxOuP6LkBpIDtLxh3/7BpQX2gNW958CMANgD8Fz/v3hctP9r2F1f1D/0cxyBEEQBEEQxKGErBEEQRAEQRDEoYQCYYIgCIIgCOJQQoEwQRAEQRAEcSihQJggCIIgCII4lFAgTBAEQRAEQRxKKBAmCILwgDH2bsYYZ4ydbnRZXDDGTjLGfrLR5SAIgmh2KBAmCILw430AHg//LyGcRaqZOAmAAmGCIAgHFAgTBEE4YIx1AXgjgPcjmDEKjLEfYox9izH2eQAvh8v+H8bYecbY44yxTzHGPhgu/wZj7LXhz0OMscnw559ljH2OMfZVxtgkY+wXGGP/mjH2HGPsScbYQLje7YyxrzDGngn3eTpc/nHG2G8xxp5gjF1hjL0nLPKHAfwAY+x5xtgv1u1EEQRB7DOarRWDIAiiGXkXgK9wzi8wxhYZY68Jlz8M4NWc86uMsdcB+D8APACgBcCzAJ7x2ParATyEYFaqSwB+iXP+EGPsNwH8NIKpdT8K4F9wzi8yxr4HwO8CeHP4+TEEQfppAJ8H8BcIpmT9IOf8HdUeOEEQxEGGAmGCIAg37wPw38OfPx3+/kUAT3HOr4bLvx/AX3HOdwDsMMa+4Lntr3PO1wGsM8ZWAYjPvQjg/rA1+vsAfIYxJj7TKn3+c5zzPICXGWNHKjg2giCIQwsFwgRBEBbC9IQ3A7iPMcYBJAFwAH8NYNNzM1kUU9HalL9lpJ/z0u95BPfoBIAVzvmDhm3Ln2eGdQiCIAgNlCNMEARh5z0A/phzfoJzfpJzfgzAVQA/oKz39wAeZYy1ha24clrCJACRTvEeRIBzvgbgKmPsJwCABTzg+Ng6gO4o+yEIgjiMUCBMEARh530APqss+0so9gjO+XcR5Oi+AODLCFIbVsM//waAf8kYew7AUAVl+CkA72eMnQHwEoKcZRsvAMgxxs7QYDmCIAgzjHPe6DIQBEEcCBhjXZzzDcZYB4DHAPwzzvmzjS4XQRAEoYdyhAmCIOLjo4yxexDkAX+CgmCCIIjmhlqECYIgCIIgiEMJ5QgTBEEQBEEQhxIKhAmCIAiCIIhDCQXCBEEQBEEQxKGEAmGCIAiCIAjiUEKBMEEQBEEQBHEooUCYIAiCIAiCOJT8b6ibdWtkXqimAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 720x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqAAAAE9CAYAAADULNDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3zU9f3A8dc7l0kSVhiyJOwNYW8BAcGBCspQUHGhWKl1FWx/rbTiqNXWarUUq+IWpS7cA1FAqEzZICNhBUjCCNm5u/fvj4SQkHUJudwleT8fj3uY7/h8Pu9LTn3f5/sZoqoYY4wxxhhTWQJ8HYAxxhhjjKlZLAE1xhhjjDGVyhJQY4wxxhhTqSwBNcYYY4wxlcoSUGOMMcYYU6ksATXGGGOMMZUq0NcBVIaAgAANCwvzdRjGGGOMMaVKS0tTVa3WnYTVOgEVkXHAuJCQEFJTU30djjHGGGNMqUQk3dcxeJvUhIXow8PD1RJQY4wxxlQFIpKmquG+jsObqnX3rjHGGGOM8T+WgBpjjDHGmEpVrceAGmOMMZUpOzubgwcPkpGR4etQTBUQGhpK8+bNCQoK8nUola5aJ6D5JyEZY4wx3nbw4EEiIyOJjo5GRHwdjvFjqkpSUhIHDx6kVatWvg6n0lXrR/CqukRVZzgcDl+HYowxpgbIyMggKirKkk9TKhEhKiqqxvaWV+sE1BhjjKlslnwaT9Xkz4oloMYYY0w1cfLkSV544YW842XLlnHFFVf4MCJ45plneO2118pUZuHChdx9990l3rNs2TJ+/PHHvOP58+eXuZ0zHnjgAZYuXVqusqZ8LAE1xhhjqolzE1BvcTqdHt/38ssvc/3115e7juKcm4Deeeed3HjjjeWqa9asWTzxxBPnFY8pG0tAjTHGmGpizpw57Nmzh5iYGB588EEAUlJSuPbaa+nYsSNTp07lzAY069atY9iwYfTu3ZsxY8YQHx8PwMaNGxkwYADdu3dn/PjxnDhxAoDhw4fzm9/8hj59+vDoo4/SqlUrsrOzAUhOTi5wfMbSpUvp1asXgYGBher4xz/+QUJCAtdccw19+/alb9++rFy5stB7WrJkCf3796dnz56MGjWKo0ePEhsby/z58/n73/9OTEwMy5cvZ+7cuTz11FPs2LGDfv365ZWPjY2lW7duJb7nli1bkpSUxJEjR0r8/brTT5GdfrpsfxRTJEtAK8iW1x9g08uzfB2GMcaYGuyJJ56gTZs2bNy4kb/+9a8AbNiwgWeeeYZt27axd+9eVq5cSXZ2NrNmzWLx4sWsW7eOW265hd///vcA3HjjjfzlL39h06ZNdOvWjT/96U959WdlZbF27Voefvhhhg8fzqeffgrAO++8w4QJEwotJ7Ry5Up69+5d4NyZOu6//37uuece7r33XtasWcN///tfbrvttkLvaciQIaxevZoNGzYwZcoUnnzySaKjo7nzzju599572bhxI0OHDs27v2PHjmRlZbFv3z4AFi1axOTJk0t8zwC9evUqMgE+I9vpxHUiDufJg9SEXSS9zZZhqiCnEg7TK/lr0k49TK06DbzenjHGmCpg+PDC5yZNgrvugrQ0uOyywtenT895JSbCtdcWvLZsWZlD6NevH82bNwcgJiaG2NhY6taty5YtWxg9ejQALpeLJk2acOrUKU6ePMmwYcMAuOmmm5g4cWJeXZMnT877+bbbbuPJJ5/k6quv5pVXXuHFF18s1HZ8fDydOnUqcC5/Hd988w3btm3LO05OTiYlJaXA/QcPHmTy5MnEx8eTlZXl0ZJFkyZNYtGiRcyZM4dFixaxaNEidu7cWeR7PqNRo0YcPny42DrTTiVSBxfZERfW6MlDFaVaJ6CqugRYEh4efru326oz7C7ClnzK+s//Ra8pf/B2c8YYY4xH8nfCOBwOnE4nqkqXLl1YtWpVgXtPnTpVYl3h4We3Jx88eDCxsbEsW7YMl8tF165dC90fFhZWaJmh/HW43W5Wr15NaGhosW3OmjWL++67jyuvvJJly5Yxd+7cEmOEnCR34sSJTJgwARGhXbt2bN68ucj3fEZGRgZhYWFFV6hKcOZxsgiiVkSdUts3pavWCWilUaVhYDpbAjpywa43UffvkABbe9QYY2q8knosa9Uq+XqDBmXu8YyMjOT06dLHKHbo0IGEhARWrVrFwIEDyc7OZteuXXTp0oV69eqxfPlyhg4dyuuvv57XG1qUG2+8keuvv54//KHojpdOnTqxe/fuYstfcsklPPfcc3njVTdu3EhMTEyBe06dOkWzZs0AePXVVwu81+Tk5CLrbdOmDQ6Hg0ceeSSvx7Wk9wywa9euAr29+R0/cZz6ZHI65AKCrfezQtgY0AqQePQA9d+fzN6gdjR1x7Nz5Ye+DskYY0wNFBUVxeDBg+natWteUleU4OBgFi9ezOzZs+nRowcxMTF5M8pfffVVHnzwQbp3787GjRv54x//WGw9U6dO5cSJE1x33XVFXr/00kv54Ycfii3/7LPPsnbtWrp3707nzp2ZP39+oXvmzp3LxIkT6d27Nw0anB3iNm7cOD744IO8SUjnmjx5Mm+88QaTJk0q9T1nZ2eze/du+vTpU6ietCwnjvREnBpAYET1GmInIq1F5CURWZzvXCcRmS8ii0VkptfargkDacPDwzU1NdWrbaz663japqxjU+RQGo+cRdeeA7zanjHGGP+zffv2QmMeq7PFixfz0Ucf8frrrxd7z/jx43nyySdp165dJUZWNh988AHr16/nkUceKXQt8dRpolJ24w5vhKNuswpvu6jPjIikqWp4MUXO3PMycAVwTFW75js/FvgH4AD+o6qlri8lIotV9dpzzgUAr6nqNI/fTBnYI/gKEjrkVzT88hqiortb8mmMMabamzVrFp9//jmfffZZifc98cQTxMfH+3UC6nQ6uf/++4u8Fph+HAQc/tf7uRD4J5C3+r6IOIDngdHAQWCNiHxMTjL6+Dnlb1HVY0VVLCJXAjOB4r9ZnCfrAa0gqsr2ef2po8mEXf8aCft30eFir3xpMMYY46dqWg9odedyuXAf2YrLEUboBd5JoMvbA5p7XzTwyZkeUBEZCMxV1TG5xw8BqOq5yee59RTqAc09/6mqXu7hWykTGwNaQUSE491uo5k7nt3v/I7GP8wmMz2l9ILGGGOM8UsZp48TJC4Ir/Tez0ARWZvvNcPDcs2AA/mOD+aeK5KIRInIfKDnmWRVRIaLyLMi8m+g5O7t81CtH8FX5jqgAL3H3MjRjY+T7A6hLims+2ohva8qeS9bY4wxxvgfp8uNpCWSRRAhEXUrvXlVLTwjqoKpahJw5znnlgHLvN12te4BVdUlqjrD4aicJZHCwkLZ0WIyI10riJOmRG5+tfRCxhhjjPE7yadPU4sMtFZUVVp4/hDQIt9x89xzfqdaJ6C+0OGyu8kiiO2OjrR37mLn+uKXnzDGGGOMfwpNP4KLAEJqN/RF8w4RWZD7JLcs1gDtRKSViAQDU4CPKz6882cJaAW7oElz1tUZRe/stRzVehzes9nXIRljjDGmDNzZGdTSNNKC6kOAT0YrulR1Ru6OjkUSkbeBVUAHETkoIreqqhO4G/gS2A68q6pbKyfksrEE1AvqDr+bhpLMjra3MGLir3wdjjHGGFMhnnnmGdLS0spdPjo6msTExPOK4dprr2Xv3r1lKjN9+nQWL15c4j0LFy7M2ws+48Rhbr3/z2yPK3KVolKNGjWKEydOlKusp1T1OlVtoqpBqtpcVV/KPf+ZqrZX1Taq+qhXgzgPloB6Qaeeg9ka1IX2e1/HnZ1NxnG/HH5hjDHGlMn5JqBloaq43e4C57Zu3YrL5aJ169aF7ne5XOfV3pkENDMri9DsZP769FP06tmzXHXdcMMNvPDCC+cVT3VnCagXiAipMbfRRI+x/m9XkfjcSNzn+S+GMcYY44k33niDfv36ERMTwx133IHL5SIuLo527dqRmJiI2+1m6NChfPXVV8TGxtKxY0emTp1Kp06duPbaa4tNMJ999lkOHz7MiBEjGDFiBAAzZ86kT58+dOnShYcffhiApUuXcvXVV+eV+/rrrxk/fnyh+v72t7/RtWtXunbtyjPPPANAbGwsHTp04MYbb6Rr164cOHCgQJk333yTq666Ku84IiKC+++/nx49erBq1SrWrVvHsGHD6N27N2PGjCE+Pr5Qu3/+85/p27cvXbt2ZcaMGagqixcvZu3atUydOpU+vXuRmZHO+CnT2bhhPfPnzy+wrenChQu5++67i/1dA1x55ZW8/fbbpf+xilfeMaBVh6pW+1etWrW0smVmZuqRh1vp13PHqD5cWzd+t7jSYzDGGFO5tm3bVuB40vwfC71e+3GfqqqmZTqLvP7umv2qqpqUklnomiftX3HFFZqVlaWqqjNnztRXX31VVVVffPFFvfbaa/XJJ5/UGTNmqKrqvn37FNAVK1aoqurNN9+sf/3rX4utv2XLlpqQkJB3nJSUpKqqTqdThw0bpj///LO63W7t0KGDHjt2TFVVr7vuOv34448LlF+7dq127dpVU1JS9PTp09q5c2ddv3697tu3T0VEV61aVWT7F110kW7atCnvGNBFixapqmpWVpYOHDgwr9133nlHb775ZlVVvemmm/S9994rELOq6rRp0/JiGzZsmK5ctVqTD27XzEObddiwYbpmzRo9duyYtmnTJq/M2LFjdfny5SX+rlVV27Ztq4mJicX+Ls849zOT+75S1Q/yJ2++rAfUS4KDg9ndcjIXuf/HcWrj/uk/vg7JGGNMNfftt9+ybt06+vbtS0xMDN9++23eeMnbbruN5ORk5s+fz1NPPZVXpkWLFgwePBiAadOmsWLFCo/be/fdd+nVqxc9e/Zk69atbNu2DRHhhhtu4I033uDkyZOsWrWKSy+9tEC5FStWMH78eMLDw4mIiGDChAksX74cgJYtWzJgQNFbWsfHx9Ow4dlZ6Q6Hg2uuuQaAnTt3smXLFkaPHk1MTAzz5s3j4MGDher47rvv6N+/P926dWPp0qVs3Xp2jk5aWhqRko4rpF7euYYNG9K6dWtWr15NUlISO3bsYPDgwSX+rgEaNWqUN6bUFFatF6L3tfaX3Y2+8CLrA7oyInUV8XG7aNKyva/DMsYYU0kW3TGw2GthwY4Sr9cPDy7xelFUlZtuuonHHy+882JaWlpeQpaSkkJkZCRAoTUuPV3zct++fTz11FOsWbOGevXqMX36dDIyMgC4+eabGTduHKGhoUycOJHAQM/TjfDw4negDAsLy2sDIDQ0lDNrfasqXbp0YdWqVcWWz8jI4K677mLt2rW0aNGCuXPnFqgvOOsELuoTVq9xgXJTpkzh3XffpWPHjowfPx4RKfF3faatsLAwj95zTVSte0BFZJyILDjfgcnl1bBxMzbWHUVb5y8A7Pl6gU/iMMYYUzOMHDmSxYsXc+xYzuzt48ePExcXB8Ds2bOZOnUqf/7zn7n99tvzyuzfvz8vaXvrrbcYMmRIsfVHRkZy+vRpAJKTkwkPD6dOnTocPXqUzz//PO++pk2b0rRpU+bNm8fNN99cqJ6hQ4fy4YcfkpaWRmpqKh988AFDhw4t9f116tSJ3bt3F3mtQ4cOJCQk5L2X7OzsAr2bQF6y2aBBA1JSUgrMjA8Pr4UzOZGMoHqFll4aP348H330EW+//TZTpkwBSv5dqypHjhwhOjq61PdUU1XrBFQreSekotQbfjfRAQl8UO9m2l/zB5/FYYwxpvrr3Lkz8+bN45JLLqF79+6MHj2a+Ph4vv/+e9asWZOXhAYHB/PKK68AOYnb888/T6dOnThx4gQzZ84stv4ZM2YwduxYRowYQY8ePejZsycdO3bk+uuvz3uMf8bUqVNp0aIFnTp1KlRPr169mD59Ov369aN///7cdttt9PRgxvnll1/OsmXLirwWHBzM4sWLmT17Nj169CAmJoYff/yxwD1169bl9ttvp2vXrowZM4a+ffvmXZt2zThmPvQYg0aNIz09vUC5evXq0alTJ+Li4ujXrx9Q/O8aYN26dQwYMKBMPb/nqPaTkCRnrGv1Fh4erqmpqT5rf9ujg6jrTOSC328joPwfRmOMMX5u+/btRSZc/io2NpYrrriCLVu2VHjdd999Nz179uTWW2+tsDrT09MZMWIEK1eupCI7l9SVjR7dSjIR1G3a9rzru+eee7jyyisZOXJkqfcW9ZkRkTRVLX4sQjVQrXtA/UVqzK001aP87z+/Zu0/b/J1OMYYY4xX9e7dm02bNjFt2rQKrTcsLIw//elPHDpUsetrp5w4RgDKiYB6pd/sga5du3qUfNZk1gNaCbIyMznxeCd2ciGDdSOxU1fQpn1Xn8VjjDHGO6paD2hxxo8fz759+wqc+8tf/sKYMWN8FJH3uFVJi99JoDrJrNeeOrWCK7X9mtoDas+DK0FwSAh7Wk6me+xCnARy4su/QPvXfR2WMcYYU6QPPvjA1yFUmpS0dCI0nezQBpWefNZk9gi+krS/9C7CyeQ76UtM0qc4TxRem8wYY4wxlUtTkwgQCK7dsPSbTYWxBLSSNLigBdtrDybAmUEgLjZ9Ot/XIRljjDE1msvpJMx5kgwJQ4JCfR1OftV+FrwloJUoYuhMRjvW80nQGNIaxfg6HGOMMaZGSz8ZT5A60cgmvg7lXC5VnaGqS3wdiLdYAlqJWve9lC1B3Rjk/IkhIy73dTjGGGNMjaWqBGedJCMgjLCIOr4Op8axBLQyiXCg+yzq6wm2f/Is276xiUjGGGOqjujoaBITE30dRgHPPPMMr732WpnKLFy4kJl33kEwTtyh9Yu8Z9myZQUWsp8/f36Z2znjgQceYOnSpeUqW13ZLPhKNuySCezf8DDHNy6hFzs51mMMjRo28nVYxhhjjFc5nc7z2RkIAJfLVWABeqfTycsvv8z69evL1p4qkp2KUwMIrV18AhoREcGgQYMAuPPOO8sd96xZs7j99tu5+OKLy11HdWM9oJUsPDSIfS2uoY0eJEyyWPfpf3wdkjHGGG955fLCr59ezLmWlVb09Q1v5lxPTSp8zQNvvPEG/fr1IyYmhjvuuAOXy0VcXBzt2rUjMTERt9vN0KFD+eqrr4iNjaVjx45MnTqVTp06ce2115KWllZi/c899xy9evWiW7du7NixA8jZB/3qq6+me/fuDBgwgE2bNgEwd+5cbrjhBgYPHswNN9zAwoULmTBhAmPHjqVdu3b89re/zav3q6++YuDAgfTq1YuJEyeSkpIC5PS6zp49m169evHee+8ViGXp0qX06tUrL9EcPnw4v/nNb+jTpw//+Mc/SEhI4JprrqFv37707duXlStX5hR0Z+NQJyccUXz22ef079+fnj17MmrUKI4ePUpsbCzz58/n73//OzExMSxfvpy5c+fy1FNPsWPHjrztOCFnN6lu3boBOVtwDhs2jN69ezNmzJi8rTlbtmxJUlISR44c8ehvWBNYAuoDLUfeTn05RRxNaBW7iMxsp69DMsYYUw1s376dRYsWsXLlSjZu3IjD4eDNN9+kZcuWzJ49m5kzZ/L000/TuXNnLrnkEgB27tzJXXfdxfbt26lduzYvvPBCiW00aNCA9evXM3PmTJ566ikAHn74YXr27MmmTZt47LHHuPHGG/Pu37ZtG9988w1vv/02ABs3bmTRokVs3ryZRYsWceDAARITE5k3bx7ffPMN69evp0+fPvztb3/LqyMqKor169czZcqUArGsXLmS3r17FziXlZXF2rVruf/++7nnnnu49957WbNmDf/973+57bbbAMhOO4UquELqMGTIEFavXs2GDRuYMmUKTz75JNHR0dx5553ce++9bNy4kaFDh+bV37FjR7KysvIW6l+0aBGTJ08mOzubWbNmsXjxYtatW8ctt9zC73//+7xyvXr1OpsAl67az4K3R/A+EN0ymnURQwg6fYDuAfv4cfnnDLq42n7GjDGm5rr50+KvBdcq+Xp4VMnXi/Dtt9+ybt06+vbtC+Tsnd6oUc4wr9tuu4333nuP+fPns3HjxrwyLVq0YPDgwQBMmzaNZ599lgceeKDYNiZMmADkbLf5/vvvA7BixQr++9//AnDxxReTlJREcnIyAFdeeSVhYWF55UeOHEmdOjmTfjp37kxcXBwnT55k27ZteXFkZWUxcODAvDKTJ08uMpb4+PhCuwjlv/ebb75h27ZtecfJyckcSUgi0JlGpgQTVTucHdu2MnnyZOLj48nKyqJVq1bFvvczJk2axKJFi5gzZw6LFi1i0aJF7Ny5ky1btjB69GggZ7hAkyZnZ9c3atSIw4cPl1p3LpeqzvD05qqoWiegud8cxoWEhPg6lEKiLppBi8+mkah1SN63DrAE1BhjzPlRVW666SYef/zxQtfS0tI4eDBnE5SUlBQiIyMBEJEC9517fK4z/091OBw4naU/wQsPL7ijZP7/J5+pQ1UZPXp0Xi9paXWcERYWRkZGRrH3ut1uVq9eTWjo2TU+E5ISESAkJIwgRwCzZs3ivvvu48orr2TZsmXMnTu31Pc0efJkJk6cyIQJExAR2rVrx+bNm+nSpQurVq0qskxGRkaBRLymq9aP4FV1iarOyD9g2V9E972cpMAL2CUtGTX9j74OxxhjTDUwcuRIFi9ezLFjx4CcsZlxcXEAzJ49m6lTp/LnP/+Z22+/Pa/M/v3785Kmt956iyFDhpS53aFDh/LmmzljV5ctW0aDBg2oXbu2x+UHDBjAypUr2b17NwCpqans2rWr1HKdOnXKK1OUSy65hOeeey7veOPGjUh2zhhXceT0wZ06dYpmzZoB8Oqrr+bdGxkZyenTp4ust02bNjgcDh555JG8HtcOHTqQkJCQ97vMzs5m69ateWV27dpF165dS31PNUW1TkD9WkAAx7vezCA2sW7VUpzpyb6OyBhjTBXXuXNn5s2bxyWXXEL37t0ZPXo08fHxfP/996xZsyYvCQ0ODuaVV14BchKn559/nk6dOnHixAlmzpxZ5nbnzp3LunXr6N69O3PmzCmQyHmiYcOGLFy4kOuuu47u3bszcODAvAlOJbn00kv54Ycfir3+7LPPsnbtWrp3707nzp35179eoI7rJC4JBAnIi33ixIn07t2bBg0a5JUdN24cH3zwQd4kpHNNnjyZN954g0mTJgEQHBzM4sWLmT17Nj169CAmJiZvGafs7Gx2795Nnz59yvR7qc5EVX0dg9eFh4dramqqr8MoJDvtJJlPdmIz7WgScJwLf7+JAId9JzDGmKpq+/bthcYk+rPY2FiuuOIKtmzZ4utQym38+PE8+eSTtGvXrtR7M48fICQjkczQRoTUb1YJ0eX44IMPWL9+PY888kiha0V9ZkQkTVWLHndQTVi240NBteqyvcl4gl2pRLsPsGV94W9YxhhjjCneE088kbfcUWkCMk+ToUEE1a3crTedTif3339/pbbp7ywB9bFml8yic0AcWergxCrbGckYY0zliY6OLrL3c/z48cTExBR4ffnllz6IsHQdOnTgoosuKv3GzBSCNJPUwLoEBFRu+jNx4kTq1q1bqW36u2o9C74qaNqqEztCOnA6I5v+SR+SlvAHajVs6euwjDHG1GAffPCBr0OocNkpiYgGQHiD0m/2PYeILACWqOoSXwfjDdYD6gcyukwmlEyCcbL363/7OhxjjDHnoSbMrahqVBUyT5MmYdSr5T9LM5bwWXGp6ozqmnyCJaB+oePIG2grh3jdcTV1R9zj63CMMcaUU2hoKElJSZaE+pnjx5MIwomE1iEgoOR1TiuLqpKUlFRgjdKaxB7B+4HQiHqsbXgZUxM+IjX7QaCxr0MyxhhTDs2bN+fgwYMkJCT4OhSTy+VWnMlHOIwbjQgi6OhxX4eUJzQ0lObNm/s6DJ+wZZj8xK69e4l+tQ//i7iYhi060HHKo74OyRhjjKnytqz6kq5fTuKP2Tcx95F/+E0PaElsGSZTadq3bs2akAFkJCfRascCXGknfB2SMcYYU+XV3vhvTmgEM3/zxyqRfNYUloD6kYzuNxBCFiFksf3rhb4OxxhjjKnakvbQ/OhS3mU0jaOifB2NyccSUD/Sd+QEWspR9mgTQn5+DXW7fR2SMcYYU3X9bz4uHGy8YKL1fvoZS0D9SO2wELY1vpJkrUU79162rvrC1yEZY4wxVVJ66mnSf3qVj1yDiG7VxtfhmHNYAupnmg2/hQ7s53/ambRs6wE1xhhjysrpcvPgc68TRianW13K9EHRvg7JnMMSUD/TvUtX9kT2pi0H6dJnmK/DMcYYY6qcuKRUbkh7FYArxl5G49pVbq1Nh4gsEJFxvg7EWywB9UMhF91DlCSz9YOnORFXeI9eY4wxxhQt2+Vm20/f0j9gB4e1Pg2bRvs6pPKwnZBM5WvXdyw7A9rR+Jc3OfLefb4OxxhjjKkynvh8B8mrXyNdg3H86idfh2OKYQmoH5KAAJJi7mSnNqf96Z9IjNvu65CMMcaYKiH26HGucKziC3dfGjZo4OtwTDEsAfVTXUZMpjXxOAnk0KdP+DocY4wxpkoYd+QF6kgawb2n2tJLfszvE1ARaS0iL4nI4nPOh4vIWhG5wlexeVOdyEiSQxqzWjvR5tiXZGWk+zokY4wxxq/p8X1cnf0pLgnk8iun+DocUwKvJqAi8rKIHBORLeecHysiO0Vkt4jMKakOVd2rqrcWcWk28G5Fxutvjne+kbp6mlDNZPP6lb4OxxhjjPFrp+M2AvBFz39BgMPH0ZiSeLsHdCEwNv8JEXEAzwOXAp2B60Sks4h0E5FPznk1KqpSERkNbAOOeTd83xp+5U2EONysDoih96BRvg7HGGOM8WtHvn0BgGZdBvo4ElOaQG9Wrqo/iEj0Oaf7AbtVdS+AiLwDXKWqjwOePk4fDoSTk8Cmi8hnqlrtVm0PDAwkoc21DN3zNHG7fqZl+x6+DskYY4zxS4f2bqV9yk8kay16tG7u63BMKXwxBrQZcCDf8cHcc0USkSgRmQ/0FJGHAFT196r6G+At4MWikk8RmZE7RnSt0+ms2HdQibqOupEsdwApb93M0tfm+TocY4wxxi8l7PkZgP2j/42ITT7yd4yHTrEAACAASURBVF7tAa0IqpoE3FnMtYUllFsALAAIDw9XrwRXCeo1iWZNvdE0PrEe994PcTofIjDQxrUYY4wx+WUfyklAL+w62MeRGE/4ogf0ENAi33Hz3HOmGPUHTOM0YXTjF9b/8LGvwzHGGGP8y6lD9I2dTyJ1qV03ytfRGA/4IgFdA7QTkVYiEgxMASyrKkHrvmNpHHCKZK1F8o+v+DocY4wxxq9kfPs4AF80ut3HkRhPeXsZpreBVUAHETkoIreqqhO4G/gS2A68q6pbvdT+OBFZ4HK5vFF9pZHAYI42H8t+d0MGZa/mxInjvg7JGGOM8Q9Jewjd9DqntBYRA6b7OhrjIa8moKp6nao2UdUgVW2uqi/lnv9MVdurahtVfdSL7S9R1RkOR9UfM9l03P8RItl8FnARVXZAqzHGGFPBDv6Ss/bniw0f4sqYYuc0VzUOEVkgIuN8HYi3+P1OSCZHvcYXQlQbhrrXEBYW4etwjDHGGL+w4qe1AAy6aEx12nrTpaozVHWJrwPxFktAq5C0TpOoy2nWvDaHpDivjFowxhhjqg63m5EnFpEuYQzq1t6rTakqm5ctBlfVXdrRn1TrBLS6jAE9o3m/q9ntbkb/Q69y6KvnfB2OMcYY41Mat5KGmsTJ0Bbg5bU/ly/7km7LbiXxu+e92k5NUa0T0Oo0BhQgqm5tTjXoxTp3ey489AmaneHrkIwxxphKtychhQ+XrmDfFzmdMd/0XeD1Ngcnvkd2YAT1h9zi9bZqgmqdgFZHUaPvIxsHdTnN3h8X+zocY4wxptLN+2QbV/9wOa2Pfsl2dwvatrzQq+19vukw+7MiCBp4JwGhkV5tq6awBLSK6dC5B47gWsRrPbLXvObrcIwxxphKl5mcmPdz2449GNjGe4vPbzl0iplvbWD26SmkDX3Ia+3UNJaAVkHu7lPY4m4FqQmoM9PX4RhjjDGV6t5TT+T9HNR2uFfb+t+mbQwI2MbdI9pQK9jvdzCvMqp1AlrdJiGd0Wv0dbSXA0jtZkhgiK/DMcYYYyqP200H124O1eoIdyyHvrd5tblGW1/izeDHuOiCLK+2U9NU6wS0uk1COiOiVhib6lxM21MrSY/fgbqrV4JtjDHGFOW5b3/hpqfeoraksq3pRGjS3auz348nJTL89CfsrH8x1GnutXZqomqdgFZnYf2ns8vdDOYPZfear3wdjjHGGON1C37YS52T2wDIaNjN+w1ueI1ISafW8Hu931YNYwloFXXxoIGcDGyIiwDSfrLJSMYYY6q3A8fTOJ3ppHNAHJkaiDbs4N0GXdnU3/QSRA8luvsQ77ZVA1kCWkUFBAiBPSez3t2OdonfcijxpK9DMsYYY7zmN4ty9nzvLHHs0uZE1fbuttRL/7eW7Kx0GDTLq+3UVJaAVmEdR0ylESeoJZms+OYjX4djjDHGeIXLrWw9fApQOgfEsc0dTYcLvLcep6ry++/TmNPkZWh3idfaqcmqdQJaXWfBnxEZEcnRujGc1lA673nR1+EYY4wxXrH/cDyz9RVaSzwNJJlt2pIGEd5bBWbNj9+RcCqFHu2jvb7FZ01VrRPQ6joLPr/2F08jXqPYXP9SX4dijDHGeEXWyue5OfBL5gW+DEDPfkO91lbCyRRaf3UTfw5cyCAvLnBf01XrBLQmaNLtYuoHZjIkaRGo+jocY4wxpsKdPpEAwCBHzgz4q8eM8VpbG75dRANJptPwybRtZNtueosloFVdYAg/Nr+VY5nBfPLcb3wdjTHGGFOhXv0xllOHduUdnwptDqG1vdbe0NOfkx7SgJ4jrvVaG8YS0Gqh16jrCBIno5Pe5NiBX3wdjjHGGFNhHv54K23lEAC7IvoS4sU1ObMPrCcs9mvC+t8CDtt205ssAa0Gml/YitTA+ihw4uu/+jocY4wxpsKEkEULSeDrhtNp/8A3hA7w3tabX7z5d1IdtW3ppUpQrRPQ6j4LPr+wNoP4wd2d5vuXgNP2qzXGGFMNZCTzTNDzBIiSVru1V5taE3ucWScn81n/N736iN/kqNYJaE2YBX9Gs7H3ckzrEE4aCdu+93U4xhhjzPlb/jSXOtYAkF2vjVeb+ml7LAEiXDZskFfb8Sci0lpEXhKRxeecDxeRtSJyhbfartYJaE3SKCoKZ63GxLkbodnpvg7HGGOMOW/u9LO7/KWER3uvof2rmf6/yxhRax/hIVVj7KeIvCwix0Rkyznnx4rIThHZLSJzSqpDVfeq6q1FXJoNvFuR8Z7LEtBqpF73sTSVRBISjvk6FGOMMabcMrJdZDndpKedzjvnDKzltfayN7yDqBtt3NVrbXjBQmBs/hMi4gCeBy4FOgPXiUhnEekmIp+c82pUVKUiMhrYBng1magaab7xyJjRl5G0rgHxK99kf1BrLh15sa9DMsYYY8qs4x++AOC/wZvondtV1qpBuFfaysjMJGT3F6S2HMaj1/T3ShveoKo/iEj0Oaf7AbtVdS+AiLwDXKWqjwOePk4fDoSTk8Cmi8hnququkKDzKbEHVEQCRKTmDIao4kJDggm65GEulKO0/v7XuNy2ML0xxpiqq6Uc5XtXd/7WfQkjOzX2ShtfLP4Pcjqe2gOn06ROmFfaKIfA3DGYZ14zPCzXDDiQ7/hg7rkiiUiUiMwHeorIQwCq+ntV/Q3wFvCiN5JPKCUBzW30eW80bLwjqv/1pBBOh4ADxO6P83U4xhhjTLlEkEYDSeZHdxd6dOrglTacLjct9i7iiKMJAR3Gll6g8jhVtU++1wJvNKKqSap6p6q2ye0lzX9toap+UlzZ3E7KSeVt25MxoN+KyDUiIuVtxFSigAAy60QDcHDDV76NxRhjjCmjrGO76SW7mOxYBkCcNqZWsHdGDL66Ko45aVOJ6zUHAqrFijmHgBb5jpvnnqtwuZ2Uvy1veU/+oncA9wEuEUkHJKdd9ftFskRkHDAuJCTE16FUqshOF3Pifytptuk5XFdMxxEU7OuQjDHGGI8Ev9Cb9/P9b3uHtiAytOITUFXlzf/FUbdFV/pfPrjC6/eRNUA7EWlFTuI5Bbjei+19IyIPAIuA1DMnVfV4aQVL7QFV1UhVDVDVIFWtnXvs98kn1Kx1QPNr1utSdrhb0Np9gKPbfvB1OMYYY0y5fOQaRKw2oWndih+buWP1F/z25Dxu6eaXnTQOEVmQ25FWJBF5G1gFdBCRgyJyq6o6gbuBL4HtwLuqutWLcU4GfgX8AKzLfa31pKBHXylE5ErgotzDZSWNCTC+V++CaBzhUWSnBRBSr9ixx8YYY4xf+9mds/h8vVpBFVux2037tX+gdfgpXD3bV2zdFcOlqiVOPFLV64o5/xnwmVeiKtxWq/KWLbUHVESeAO4hZ02obcA9IvJ4yaWMr9W99h8gwrEv/4bT5ZUJbMYYY4xXHddIACp8GkrschxJvxBy2WPUiqhTsXXXICISJCK/FpHFua+7RcSjbwueTEK6DBitqi+r6svkLHp6+fkEbLyvXZu2fBx0GSf2b2H9u4/5OhxjjDGmWNFzPsU1tz68M7XA+WPUrfC2MrKc7HvrXk476pHZzq9mvldF/wJ6Ay/kvnrnniuVpzsh5f8E2FeFKkBEaDNsCs0lgcC9S30djjHGGFMiBy7YcXaE38ELRvHwrJl8/+DwCm3nw2WraeXcw9cNpkGQ93ZXOk+ljgH1E31V9SZVXZr7uhno60lBT8aAPg5sEJHvyJkBfxFQ4t6ixj906DOSn79qSMusWD7bHM9l3Zr4OiRjjDHGI02H3EBAk4qf87zqUBaHQu7i/sm3QqDfTlIudQyon3CJSBtV3QMgIq0BlycFS0xAc9f+XAEM4GxGO1tVj5xHsKaShIeFkhYQTjNJ4ndfLuOybkWOVzbGGGN8KghnoXMBXljBRlVZedCFo/1kqF/u+TPmrAeB70RkLzmdlC2Bmz0pWGICqqqauwdoN+Dj8w7TVLpa9Zujx9cwKXsJYAmoMcYY/+F0uTmSnEELOVYp7R374T/MzVqMs9lfKqW96kxEAoB0oB1wZquqnaqa6Ul5T8aArhcRj57nG//TesSNiIDTWfjbpTHGGONLT3+9iyF/+Y6lIQ8UvlgvusLba7znfa5wrGZktF+u/Zmf348BPbNdu6pmquqm3JdHySd4loD2B1aJyB4R2SQim0VkU7kjNpXqgm4jOFqrA0mZsGjVL74OxxhjjMnz4+5EhMJLBX7adBZc0K1iGzuyBQ6shmGziWzeuWLrrnguVZ2hqkt8HUgpyr1duyeTkMaUIyC/UFO34ixAhOTBD7Hyk82EfPU+kwb8tuLXUzPGGGPKITI0iNqkFTqfWa9DEXefn8Tv/kk4IZzqPJ0LKrz2GuvMdu1OEcmgDNu1l9gDKiIO4EtVjTv3VSFhe1lN3YrzXG17j+QPQW/wgj7G/76vlM0RjDHGmFJFhgYSJcmFz0dEVmg76najv3zDaroRUbdRhdZdU+X2enbJ3a49uKzbtZeYgKqqC9gpIhdWRLDGNyS0NsER9QCIWP6Ij6MxxhhjckSGBlKfwgloRHjFrc/pdiuT/r2KBzNuJrPHTUSEeLQLuSmFqirwaXnLezIGtB6wVUS+FZGPz7zK26Dxjbojfs1qV0c6O3ewf9dGX4djjDHG0EQSeTjotbzjNM0ZMhfiLvxYvrzcqqyJO8kydwztB19dYfUa4DwmqnvyNeAP5anY+JdafafiXPE56Sf3EfrD49B+ka9DMsYYU8NN3PMHmgfEArDH3YR7s+/iiYh36NB7RIW1EbjtfZbFrOZfTKJVg/AKq9fLHCKyAFji5xOR+gNTRSQOSOXsGNDupRWUnB7UUm4SaQm0U9VvRKQW4FDV0+cZdKUJDw/X1NRUX4fhcwd2b6bJ6xcRG9aZtnNW+jocY4wxNVzCY11pmHUAgPYZr3LdwLb86aquFdeA20XmM73JdoQSPutHJMDTHch9S0TSVNXvs+Xc/LAQT+YKlfqXEJHbgcXAv3NPNQM+LEuAxj+0aNuNvY1GkZmWzMcbDvg6HGOMMTXe2U6wLIIIDargScNb3ickeR+PpYyrMslnVZKbaLYALs79OQ3Phnd6dNOvgMGQM0pYVX8BbApZFdW43wQey76ej5b819ehGGOMqeHOfQgbUoEJqLpdJH3+KL/QgtRWYyusXnOWiDwMzAYeyj0VBLzhSVlPEtBMVc3K11gg+b+ymCqlTrfL+F3Q27zgmsehg1ViNS1jjDHV1LnJRGhQxfVS7t+5kaj0fSx0jmFUlyYVVq8pYDxwJTnjP1HVw4BHa2h58pf+XkR+B4SJyGjgPcCfB8SakoTWIatOa0Ikm++XvOrraIwxxtRALqcTZ3YWge6sAudDAyumB/REahYLfjzI685R3H7TdMb1aFoh9ZpCsnKXY1IAEfF43KonCegcIAHYTM6K958B/1eOII2faH7FbE5pLeod+dHXoRhjjKlp5tbBMS+KwEcbEuU6BkC65uzNHlIBPaApmU7e+mk/b/4SSPNp/+LCNhU4qany+P1e8LneFZF/A3Vz5wx9A7zoScFSl2HK3Wz+RU8rNP6vYbv+7NJ6tOIgKRnZRIQG+TokY4wxNUERK+/8Pfwe3j/RFqiYHtDvdhwj8Ns/8kRgKu0bjyAgoEpuP+1S1Rm+DqI0qvpU7tPxZKAD8EdV/dqTsjYlrCYKCCAixEE7Ocikf/3g62iMMcbUFK6sQqfW1bucDh06A1TILPhxnepwnWMpIZLNBXXCzrs+UzJV/VpVH1TVBzxNPsES0BorvekAXnBeyfajqbjcNqfMGGNMJXBmFjoV5BDcuT2jwYHnmZa4Xegb11Bb0pHeN+Oomr2fNYLHf+ncBehNNdGq9yU0lpMoDvYlpvg6HGOMMTVBET2gwYEBeR0hgY7zSxjd8ZuR/atIC6rP1Vdde151Ge/yZCH6QSKyDdiRe9xDRF7wemQVQETGicgCl8vl61D8TkDHy+kWdIi/BC5g1e5EX4djjDGmJiiyB/RsAuqQ80tAEw7sxK3C0v4vw3nWZTwjImEi0qGs5TzpAf07MAZIAlDVn4GLytqQL6jqElWd4XBU8M4K1UFwLRpF1WVy4DKarX3c19EYY4ypCVyFE9BgRwBOtxuAwPN4ZJ6e5WLEZ3XokvkSvXr1LXc9xnO5s/Q3Al/kHseIyMeelPXoEbyqnrtvo3UpVgMRvSaSoUG0Ob7c16EYY4ypCZwlP4I/nzGbO/fspl32Tvq0akjT+hHlrseUyVygH3ASQFU3Aq08KehJAnpARAYBKiJBIvIAsL2cgRo/EtL3JlIIowVHilwawxhjjAHYfSyFVg99yt6Ess0ZcLrc9Hj4c5Iebg5z68AL/Qtcz9QgggMDiAoPAaBWcKmrQxYrcPdXfBTyR54YXS12C68q64Bmq+qpc855lFB48pe+E/gH0Aw4BHwF3FWm8Ix/CgojObINUac38MqXq7l57EBfR2SMMcYPfbjhEKqw5Od47hnVzuNyqVku3JkpRIWeLlifaxC76g0nomUM0wa0pHFkKMM6NKRrs9rlCzArla7r/g8VB02jPY/Pj1WJdUCBrSJyPTkJczvg14BHu9x40gPaQVWnqmpjVW2kqtOATucRrPEjDTsOZoW7K/9cfgBcTl+HY4wxphpxu5VaZBQ6v8g1gguHXMdd14yhfeNI6tQK4rp+FyLlnDjkXpeztbR0vBwJsHkflWgW0AXIBN4CTgG/8aSgJwnocx6eM1VQZP8bWeqOIcsF/GsQJOzydUjGGGOqiWy3mwhJL3Q+SwMrbo3OUwcJ+PIhstTB6t5PV0ydxlMdVfX3qto39/V/qlr4G0cRin0ELyIDgUFAQxG5L9+l2oB9vaguGnYgvuFF1D2aAok7ca97lYCxj/o6KmOMMdWA06XUovDM9yyCznvNzzN2Z9bhV5lP0CQki3+2qF8hdRqPPS0iFwCLgUWqusXTgiX1gAYDEeQkqZH5XsmAre5ajYQ0bs8BbUSaBnNq7TvgtkUOjDHGFKaezS/J43Rp0T2gBBJQQet0Pv7ZDnbqhUydNIWIkPJPYjJlp6ojgBFAAvBvEdksIv/nSdli/1Kq+j3wvYgsVNW4ignV+KMeLery0c+HidUL6OzcD7u+go6X+josY4wxfiLblbNOZ5bTXbZybneRY0CzCCIwoAJ2A3dmMXv/HYxpMJBRnS47//pMmanqEeBZEfkO+C3wR2BeaeU8+aqwUEQKfeVR1YvLHKXxS+N6NGVN7HE+3DGUzgFvkr5/LWGWgBpjjMmVmpUzSTU1s2yTVbNdbsKLSkAragzo3mW0d++hQUidck9gMuUnIp2AycA15GxYtAi435OyniSgD+T7OTS3EZsuXY00jAzhX9N68/jCWJ7Znc7o9Ai6+DooY4wxfiMtM2doVmpW2YZoOV1KuBTXA1r+hPFvX+3kvXUHmRv6HmMCgqh/x6flrsucl5fJSTrHqOrhshQsNQFV1XXnnFopIj+VpRFTNTRoEs2jO66leephS0CNMcbkOdMDmpZVMT2gmQTiOI9JSD/uSWJB5my6Zf4CFw6C4FrlrsuUn6qWewHxUhNQEck/pSwA6A3UKW+Dxn81a9yAhmzni13JXJyaSf3cnSmMMcbUbKm5PaApmS7cbuXdtQeY0Ks5wYE54zh3b13Lpu07adn3MlIznQRseY+GrmMkHU/lvsDFheo73x7QS0+8STd+yTlo0a/c9fgxh4gsAJao6hJfB3MuEXlXVSeJyGYK7nwkgKpq99Lq8OQR/LrcyoWcR+/7gFvLEa/xcy0b1uW7kPuJIIN/L47ijpum+zokY4wxfiDTmZOAZmS5WLLpMHPe38zhUxncN7o9AG3fG0lbIHrtW1woR/kh5CEAOkBO9gCkaChauxkJp1LJJOi8xoBekvV1zg9R7aDHlHLX48f8fSeke3L/eUV5K/DkEbxHm8qbqq9lVC0icsfqXLHvUWC6T+MxxhjjX1yqJKdnA3A8tfD6ngChZBU4TtTaxN3yM71b5jxQ7TYnZ7xmeWbBv7xiH+u27eR5jrKr+2zaT/hdmesw509V43N/vEtVZ+e/JiJ/AWYXLlVQSQvRTyil8fc9CdJUHeH51k+7OOMvbE9PJiCsnPvyGmOMqXZc7rKtAwrgxFFkslmeHtA3VsfR7PgGCIb2fWwxHj8wmsLJ5qVFnCukpB7QcSVcU8AS0GpGRBiV+SSKkEkIseu/pvXga3wdljHGGD/hSQIaTHahc0XtelTeMaBhHUeTcOkt1KtT16NxhKbiichM4C6gtYhsyncpEljpSR0lLUR/8/mFZ6qi3doMEH4X+Cb6zRYW0ovpg20UhjHGmNIT0ADchR7BC0qQo2J6QE+mZ/PjniT6Pn2UV27uy4gOjcpch6kQbwGfA48Dc/KdP62qxz2poNQBGCJSR0T+JiJrc19Pi4jNgq+m/nhFFy7p3JhI0qjjPsHcJdt8HZIxxhg/4daSE9BQsgiVInpAi0g2y7IXfKbTxcVPL+N4ahZ/cj/LJQFraN840uPypmKp6ilVjVXV63J3y0wn5+l4hIhc6EkdnowAfhk4DUzKfSUDr5QzZuPnbhnSitljOxKrF9BAkrlKVqCl/AfHGGNMzVBaD2goWYSc0wMKFN0DWoadi/ZtXcunyRPpL9u5xrGCZpJI0zqhHpc33iEi40TkF3JWSPoeiCWnZ7RUniSgbVT1YVXdm/v6E9C63NGWkYi0FpGXRGRxvnPDRWS5iMwXkeGVFUtN0aJ+GMG5/wEZH7iSE2mFv80aY4ypeTxJQEOLGAN6vo/gMzd/SJhk0SsgZ+3PNj2G2Nab/mEeMADYlbtq0khgtScFPUlA00VkyJkDERlMTldrqUTkZRE5JiJbzjk/VkR2ishuEZlTXHmA3KT33HVHFUghZ2vQg57EYjwXHOhgkzvnO4YC++L2+jYgY4wxfsFV2iN4ySo0BlSRYiYhebYMU1xSKieOxHFSwwmXdBRh2lXlXn7SVKxsVU0CAkQkQFW/A/p4UtCTv/5M4HkRiRWROOCfwJ0eBrYQGJv/hIg4gOfJmabfGbhORDqLSDcR+eScV3Gji5er6plp/n/yMBZTBt9rDLdn3ccIx89s+GmFr8MxxhjjB0rrAQ0hm1Ap4hF8UcsweTgGdNhfl1EneSdBOLnN8RnJ4S0hJMKzgI23nRSRCOAH4E0R+QeQ6klBTxai3wj0EJHaucfJnkalqj+ISPQ5p/sBu1V1L4CIvANcpaqP4+GK+qrqzv3xBGD7RXqFkK7BAGz9xXpAjTHGgLuoBDRfr2jOI/jCCej5LcOktJFDHAlrR0bLYXTsM8rTcI33XQVkAPcCU8nZqv3PnhT0ZC/4e8iZdHQaeFFEegFzVPWrcgbbDDiQ7/gg0L+E9qOAR4GeIvKQqj6eu0j+GKAuOT2yRZWbAcwACA4OLmeoNdd3DwzHcTAUPoQxAT+RnbgPd90LCQl0+Do0Y4wxPuIsKgF1nt0RKVSyCDlnDKigRSagHo0BdbuZEL6F7dKFZgNvpM2wm8ocs/EeVc3f2/lqWcp6sobrLar6DxEZA0QBNwCvA+VNQMskd2zBneece59SFsJX1QXAAoDw8HCbxl1GrRqEQ0hXAMY61rDm2clMzHqY2Ccu93FkxhhjfKXIZZicZ6eFhJBFSCmP4B0BgsutnvWA7v6av7keZ1rWQ7xhyaffEJHT5EwTyTuVeyyAqmqp2yh6koCe+YRcBrymqlvl/KaeHQJa5DtunnvO+JuIs0Nw52bbv/jGGFPTFTkGNH8PKNlFPoIPyJdsBuYmoAEeJKAa1Q4BmkgSexJSaNPQR2M/T56En3+GDRsgIgJuu803cfgJVT3vRVg9SUDXichXQCvgIRGJBNyllCnJGqCdiLQiJ/GcAlx/HvUVS0TGAeNCQmyYaLmIkK0OgsTFIY0iADdpWU5qBdvmZ8YYUx1sOniSp77axUs39eGxz7bTqUltdh9LoWVULQ6fTKdx7VBuHBhNXddx/hs8lx/c/egY25RfO/aR6rod10uXsjohiMG59f0h6HXCyCzQRpoW/H9w7bAgEk4XvKdYdXP6q/4atID/7Jjp/QRUFeLjcxLN/K99+87ec/HFlZGAOkRkAbBEVZd4u7HzkbtSUjtVfUVEGgCRqrqvtHKeZBK3AjHAXlVNyx2T6dE2nSLyNjAcaCAiB4GHVfUlEbkb+BJwAC+r6lZP6iur3D/akvDw8Nu9UX9NECQuAN4JnseD2TM4fDKDto1s9qExxlQH9737M7uPpbAvMZVXVsYWec+NA6O50BlL74Bf6K57Cdrpom8QPJ95GY4DP+Yln8lai835lvDbX6cPTYPSyOg0gfwbOr8zYwCfbYqndmhQqfHJGxPyfg4NquA5CG437N2bk2CuX3822Tx27Ow9bdtC7945CWfPnjmvCy6o2DiK5lLVGZXR0PkQkYfJWXapAznzhYKBNyDvY1EsT2bBu3Nnsk8TEQVWqOoHngSmqtcVc/4z4DNP6jD+oWPAAe4I/JQVv4yzBNQYY6oJpyvngWZp4zEdOIGznRIAAeoscM9vs2fwhbtf3vGHkwcT06JuobraNIxg1sh2JbZ348s/cTw1k3dObcYZfAEvNfodd/dpXvKbKYnTCdu3F042T5/OuR4YCF26wGWXnU00e/SA2qUOZazpxgM9gfUAqno490l5qTyZBf8C0BZ4O/fUHSIySlV/Vc5gTVXSZiRf70mhj25leMBGnjhyytcRGWOMqSDZrpwxnUXtVJSfQ11FnCuYgDop2ENZlq0281NVftiVQARpRISe4InsKfQeNNbzVVjS02Hz5rNJ5vr1OccZGTnXw8IgJgZuuAF69cpJNrt0ARuuVx5Zqqq5HZSISLinBT15BH8x0ElzNwQXkVeBbeUK01Q9N7zP6k+28tWqhfw1aAF1T20lZ0SGMcaYqs7pzu0BLWVR+ECchc6VmoCWYavN/DKy3VwZ8CPjHcsBNCAROgAAIABJREFU2KdNuCikmOQzORk2bjzbq7l+fU5Ppys3Ya5bNyfB/NWvcv7Zqxe0bw8OW1KwgrwrIv8G6orI7cAtwH88KehJArobuBCIyz1uAfxSnigrm01CqhhtGkbwujtnBE+XuDcY+9ApJl1+KbcMaVVKSWOMMf7sTA9oaclioJaegGadk1KUNwFNif+FZ4PPLvG9xR2dM1702LGCvZobNsDu3WcLNmmSk2ReffXZZLNlS7A9471GVZ8SkdFAMjnjQP+oql97UrbYBFRElpAzjjgS2C4iP+Ue9wd+Ou+oK4FNQqoY1/W7kMyk7kxZ8X/c6fiYN4Mf44r/Z++846Qo7z/+nu3XC3dw9KNJlV4E7IiKWLCLYgtqiL2XX4wlJpEkamLsxl5AjRVFbAgWRJBDpHcOOOAq1++2zTy/P57t7fYadxzzfr32tbtTn5ndnf3Mt/4wUBegOjo6Ooc5Lk8MqEJ8MaCBhMaAukWoBbRpY8p+Vfam2aF1ZYbzEapJpOvxE2DnFv9CfftKkXn11Yc6OUgnBI/g/BpAURSDoiiXCSHebmi9WBbQx2Ltr5Hj0zmMURSFK6ZO4Pnvd1JiSCOFOrql6VZlHR0dncMdtxrf33mTYkAj9H8PQ9Ng27bgxCBP/nQ/wwGqSQAgc9I4uOE6adUcOVK61nXaDE979huQ3S0XIAXoDcCdwG9A0wWoEOK7KDs9FpiJbDyvc4RgNJv51nonSYqs3TY2R68FqqOjo3O4440BbYhIMaCGkGmuUBd8qOvb6YSNG4Nd6GvWQG0tufd8xkLXIoZ2qg1a5dYB5dj6T0I54c24xqlzyHgTKAeWA9cA/4dsXDRDCLEmng3EpSIURRmFLBZ/IbAL+KApo9U5vPGKT4AsURxjSR0dHR2dwwFXK1pADWtWw5a1frG5fr0UoSC7CY0cCbNnS/f5ZhiatgcmnAmbP/Nt49YZk6BTv0Yelc4hoK8Q4mgARVFeAg4AvYQQ9ng3ECsG9CikpXMmUAq8CyhCiJOaNeRDiJ6E1HrUlhW29RB0dHQ6CE63xuo95RzTt1OTt7FiZxkjeqa3WLFyTRMs31nG5P5ZLbK9Q82q/IMM6ZbaYp3rIsWAhorSsCSkc2dAdRlkZUmRedtt/njN/v0h0EV/70Icwow1uYtvknbuixh08dlecXlfCCFURVEKGiM+IbYFdDPwA3CmEGI7gKIotzVpmG2EnoTUstzjuo5xhs38pvVlW2lCWw9HR0engzB30WZeWbaLz246lmHd0xq9/vbiai5+8Wdmju/Fo+cd3SJjemXZLv6ycBMvXj6GU4ceXsktxVV2Lnh+OdOHd+WZS0e3yDYjZsGvWwMBH1dYDOgrr8CEUdCjR4OZ6EdlWbHWuGCNP3TQYLY1b9A6rckIRVGqPK8VIMHzXgGEEKLBCv6xIoTPQ5pUlyiK8l9FUaZ4NqxzhPIRJ3Gnaw5vqqdSpuoCVEdHp2XYUVIDEH9/8BAq6qQxZmtRdYuNaX+FNObsOVjXYts8VNQ6pWVy0/6qBpaMk/vvx1S8P2yyqT64MUlYFvzpp0HPnjHFZ2mNg/kr9/De2R6x6bbzTJdH5OvEw9P6fCQghDAKIVI9jxQhhCngdVzto6IKUCHEx0KIS4BBwBLgVqCzoijPKYpyasscgs7hhCbAjJtByh6S1ArsLpXSGgdFVXZfOzcdHR2dxuKtF6lq7afAis0s/x7trvDYxw7J7t3R582di1F1hk22jBoa9D4sCSmOOqDzV+zhvg/XkT5vum/axSVPMj/tWsg6qsH1dQ5fGqyRIISoFULME0KcBfQAfgXuafWR6bQ7VE2QTjVfWO/lRG0lk+d+y9i/fMOEvy1mzlt5bT08HR2dwxSDx0KmivYkQKU1z+7qYDfXmgZbt8I778Bdd/mnT5gQfZ3qakw52WGTzVqwxTosCSkOAWoxGTCgoQqFT61ShGZppdhTcyE5fJ86HYdGRScLIcqBFz2Pdo+ehNSyCKCEdOqEhW6imLJa/x3xks16VryOjk7TMHmEitaOLKBWU0ewgApZ9mj1asjL82ejV3tCFaxWuPVE+fqxx/z9DkNJSIiYBW/WgnNOQgWoKQ4BWmV3kU4NRkVQWWunwphEulJLempcXlydw5gm9ik4PBBCfCqEuM6o93xtQRTciplJxg1tPRAdHZ0OgtdV625HAtRnAXUfJgLU7YZ16+C11+ARTwzltu0wdChcfjm88IIsgXTFFfDKK7L+ZnVAzOysWTE3HykLPlSAhmbBG+Jogbn3YD2dPLkss0yLKRDS6nnuOD37vaOjVxPXaTSaKYHurmLeNz/I7123U0Zai5X60NHROfLwumq1duWCl/YZR3t0wTudsGFDsGXzt9/ALgWh1r0/zDoO0tLg9ddl96BBg8DU9Ot0pCx4i1Yf9D68E1LDAjTZaqSbUuZ7/6U6lmGGfDSjrWNbyHR0AaoTP69eNY7dZbXsLbmexau+xYaTjy0PkEEVp9rmt/XwdHR0DlOMHp3SvpKQvBbQNhagdrss4O4Vmnl50tLpLeiemioF5vXXw5gxMHo0WlpXePJH6NwZrjixRYYRqRNSQzGgYZ2QInAlnzLQ8g/f+wRFHtfmMidDejZlpDqHC7oA1YmbkwZ19ry6g7NXDEII+Jfpac4wrsR1uLipdHR02h3enuHtSYBaTd4kpEN4baurg7Vr/WJz9WopPt0e8ZeRIcXmrbfK5zFjoG/f4ILugFooXdoteTbjiQENrdQYTxLSwALZWPEy532MN2xmqTqSS4xL6NZTd8F3dHQBqtMkEsxG6pwq20RPrMpP1NsPv1p5Ojo67QOjRz81VYC2hmw1e8yyrSZAa2pkHGagG33TJlA9++vUSQrMu+7yWTbJzW2woDuAO872mvHg1ZCRYkAtYQK08WjIZJSjumcz45KbmGU1kZl8a7O3qxMfiqL0Bf4IpAkhLvBMOxF4BNgAvCOEWNoa+9YFqE6TSE8wU+dUqccCgEVrWgFpHR0dHV8d0CbGgLam5bRFYkArK6XYDHSjb9kC3uPt0kWKzBkz/GKzgQLusfDG0rZE5xiT5+4gUgyoWTT/uv+5cQpnsoNhhR/icF9E70561Zp4URTlFeBMoFgIMSxg+unAk4AReEkIMTfaNoQQO4HZiqK8HzgZqAFsQEFrjB06uADVyzC1Hp1TbeyvtFOPPLeJNP9OWEdH58jEmy3d1DJM3vVEKyQxNToLvqLCLzK9gnPbNv/87t2lyLzkEr/Y7NatRcfsFeQtcTYsHgFqJJILvj5sWmNZlD4TS2EeQ5TdnPqv7/ngD5MY0zuj2ds9QngNeBp4wztBURQj8AwwFSkef1EUZQFSjD4asv7vhBCRaij+IIT4TlGULsATwGWtMPaOLUD1XvCtx8AuKazZW0GdkAI0QdEtoDo6Ok3D1MwyTK1ZvimmBbSqSgrMVavkIy8Ptm/3z+/dWwrMK6+Uz6NHS2tnK9OSFmGTJxQhYha82kTDQ30FmtGGYrLgcrs41ehvZLIq/6AuQONECPG9oii5IZPHA9s9lk0URXkHOEcI8SjSWhrPdr1f+nKg1Sx4HVqA6rQexw7oxLur9pIvcnjPfQIOYWnrIeno6BymGJrZitPrulea6LKOhc8CWl0ti7h7heaqVbKjkJdevaRF8+qrYexYKTaz2qaXeYsKUIPXAhrJBd9EAfr33r4SS6FdbbzVB3QwKYqyKuD9i0KIeJoAdQf2BrwvAKK2uVIUpRPwV2CUoij3CSEeVRTlPOA0IB1pYW0VdAGq0yQykqTg3CG68V91Ov81/5OnXzOxwTSYu0ar9C35Dk64q4Gt6Oh0HIQQPP7VVi4c24PenZIaXH5/RT2vL8/nntMGYTAovLE8n7UFlfz13GF8sb6QJIuJU4a0nrXsjeX5DOmaSs/MRF7+cRf3nD6IynoXT3+7nfvOGITZ6M+s/mL9AVQNpg/vyrebi6ioc3He6B4A/LS9lPyyOi6d0CtsH+v3VfLSDzsZ0CUFo0HhuAFZDO2WBsCry3YxvEcaY3pn+sr1vLdqLwNzUiipdpCeaObkQcHHb3epPPLZRhxujfunDyY9UV6HvC74vN3lvP5TPldOyg1a75kl2zllcBcG5qTw4vc76JqWwOJNRXTPSODOUweiKArzVuwht1Mik/pn8f6y7fy2dpfcZ3EpDB7MItEJDZi+ZRn06MGS48+h6JJbycvozdDBPbnqtKNZuesgWwqruHyi3P/aggp+3lmG061x6tAcvtlURM+MRHaU1HDLlAEoisLrP+UzpFsq43Iz5Tn4ZS85aTaOPypyG0q7S+XhTzdQWuPEoMDUITlcMEZ+Fj/vLGNbcQ39suX3L5Ycf+mHnUyr+ZgXzAspFun86U2Ve03v8bJ7GveY38GGEwMaZofKr/94nN6O7WEbtLmqGh9oqoVblKtEAo+4L5fbNOvVPz24hRBjW3snQogyYE7ItA+BD1t737oA1WkS43M7cdaIbhxY+y3vW/8MwEfbfmCRmsG/t18BuGHSjWBOaNuB6ugcIgrK63l6yXY+X3+Ab+84scHlb5r/K3m7y5l+dFeG90jngU9kd7Frj+vLLe+sASB/7vRWG693f8f2z+LH7aVMGdSZd1ft5cPV+xjVK52zRvjjEue8tRqA6cOn87vXpFHGK0AvfWmFfI4gQM986seg93MX+Y/p4U83AvK90ePm3VpUw+Uvr/QtH3r8H6wu4O0VewDZQ/xv5x4NBFv8HlywIUiAulWNf365hae/3c6mR07nb59vDtrm+UOy6Lt3K/+3oFzu89O7ufMsf11Kp0uDAQP4w5Dfy3Nw6xjIyeHqexeCAygU/K9wD1eddjQXvbAcwCdAz356mW87L3y3k2qH34p49aQ+pCWaeXDBhqBjvfuDtRGPPfAczF/pN3B9uaHIJ0AvefFnAN6aLQ1eseygf1m4iWtsD9PdY3AcV7iFQaa9nG/8jmxPZyKAHVpX7DUWDtCJd7RTGKNsJp0aLLiow8YP6tEck7CXgoTB3HrsAOqcKqN6prMy/2DkHav+Fs4uYQSjiYWnr6RqSzFsKNItoM1nHxBYQbWHZ1q7QxegOk3CYjLw1MxRzF77KZpQMCiCZEUGpFu9rhp7lS5AdY4YvG7kemd8SSt1nuXiaVfYmtQ55e/VaFBweoquH+qORPEULIfg8kKugALx8bicnaqGqAsvF6eNHg2le+Gez+SEPn2C95mWDgsWwL0L5YScnLjGGkpdSDknr+huLEocJkd3BCtjQ5g9121riKv9RtfNbBK95TJGBVeEEk/PnT2aM4/uGjRtWsh7H6o/X0DFgMGaxszxvVi8qUju36QL0GbyCzBAUZQ+SOF5CXBp2w4pMrqtW6dZ5JODQZEXpCRPJvxezeM6clRHW01Hp8PhrRvpUuP78/cuZzG17WXYKygCXe6HmnhaNsYiYvkmux1WroTnn5fv3W7UtPTw5ebMgY8/9r//7LOg2c44P88GxxgikuMV3aGY4xCu7amlaRhGCyJrEAA2xYWlvpgah5sXLh/Lbw+cykmDIoceHIEYFUV50VPNJyKKoswHlgMDFUUpUBRlthDCDdwIfAlsAt4TQmw4NENuHLoFVKdZ1Amb7/VRinQL/Vc9gz8bXgenLkB1jhzMnmSNSBaiSLg9wsbUTPHVXLxC2GRUWiWJJx7itQIHLhb4WnW6ghccNcrfQUgxwN0LQFFw330vYdWEbroZOifD8oUR99maGfZNIZ4bBa9mbulPM97vdkzMCWjZg1BKtmBQBA+5rqDkg7U8c+lo0hLNzd9+x0EVQlwXawEhxMwo0z8HPm+VUbUgHdoCqijKWYqivKiqepvI1sIRcA8z2biR+01vYvG6cIx6/VWdIwevIHLHbQFte8sj+AXWoRxHqDWwSSJ8yxb4/e9hzBi02dcEzRLZ2XDnnfD++7Bjh5xoNOL605/CNtOQtbA5GeUN6eqm1C01xWEBbck6oC2O2wkVe3yes5REG1ajgVd+3EXuvQvJL61t4wHqHCo6tAVUrwPa+jx2xcnMnXcpi9SxvGN5hGtMiwLmtsvLn45Oq+KKU7B44/Sa635uLm1hiQ0NU4jaM9zlgg0b/GWPChUY6EnOWbYMfnoXxo7FPWZa0GruRV/4BbWqITsKRm5RGW/IRGPQNIHBoGA2GGK68JtiXTUZ4rGAtp9rr6oJzvrPD1xZ+zJjzryW/jkZGA+s9s2f5l7M68bL+WJDIQAHKu3kZjVcRULn8KdDW0B1Wp+Th+Swb+h17BY5THQ8w32u2f6ZtaVtNzAdnTYiXguoVwy1cQ6SzxIbj7CJRWOseaHCK6oIT0mR7vRrroF588DqD/nhgguhvBy++QbtgguCtx/FVeyKkJzTkn3TQ/fTkLWyKfuOJwbU2Y68fjUON3sKi7jY9TGdP7yAt5ZtDZqfrZViMRl8ojkeC+8RQoMxoIc7HdoCqnNoOG5AJ8ZveITuShnz1Cn+GWU7oO8JbTcwHZ02IF7jU2tY3pqC1xLbXCHs1kRc4gjAHdje8s47MRYAuSeFL3jDDbKo+5gx0L8/rNgDnvJRpKb4Bh16Kl2aRgLh2dSRBF9TMsYjESjA3arAavKGNUQXg5EEcUPEEyrh7d7UHqScpgkSkZnvqUo9s9ZeBYD9jP+woS6DZeWpXDK+JyXVDq55fRUDc1LacLTtigZjQA93dAGq02z6ZiUz0LiMFMXOC+6AmzVnTdsNSkenndMiCR0tQEuNw6Vq8cWRnnYazg3bYNZTKEKDp5/GOD3K/+zjj8e179As+MASTaFjDMXpDl63qf3kA8+jdz8NCfJo44xFPBZCu6fkU3v4hrk0jVLSwqZX2bozZvwpjAmYtv1vZxy6gem0OboLXqfZpNhMpCiyBNNGT704gIrKSvJLa+Oui9hWlNU4qLK7Gl6wAewulaKqJrama0Wcbo2C8vD6hzptS0tZ3ppLJFEWj2s4VKj5BFhZGXz5JfzlL5FXLCzEfYaM4zQbDVBVhfGO2xs36BDUkGOIFlsZSWyHfg5NjZ8M3E68YQ1NiQGNR+TbmyBsWwuXKtAw8Jr71KDpv5+/nkXrDrTRqHTaA7oA1Wk2nZKsfK6OB6CaBLZp3QF4YdkeTnxsKRe/8FNbDq9BxvzlG8b95Ztmb+fKV1Yy4W+LW2BELcsfP1rHsX9fQo0jvJezTtvRXiygTXVLuzUh+6N73/9uNvTrJ/ufn346RMg4B+C333A/+ncATCYjWCzRk5BCiGacDD2EaOENkY4r9PibWnYp8PN0xxkD2pQwjHiSxbwu+PZApyQLvZVC+ip+sfmROpm9ojOOdiSUdQ49ugDVaTZZKVaGzHmToit+4ImLR/IH1y0A7BWyj/PafVWxVm8XtMSFcMWuKK3n2pglW4qB+Dv06BxZRBJlUcXxSn+bTPeo0ZDmd626f10jE4bmzoXFi2WCUBR8SToeMRVvUfZogk0LEY3RLLjxZME3NTY3MPnMHWeJraYkIcVTq9XhibFtDzGgNrOR/so+jjeu8017Xz2eUtLavAJEO0dPQtLRiYfc7jlADucB7y9K4MLqB9ghujW0mo6OThsTKDa9bnW3yw1r18Ivv8hHuvwPVI+ZKIu6A67cviScNwNPAzRcy3+GjMS49hkq0OItARVonQy0hobGgEaz4EYMN4hDvAaGG3hLLMXajivO0latFYZh91hA24ONvbLe5euSB+BM6kZX10FMuNu8CUM7p8MnIekWUJ0Wp9qQzCbRi4OktvVQdHR04uWTT+DXXwFw3XsfjBghyx/Nn+9bxPXue/7X8+bDQw/53zfCmudP0pF/QfG64KMl7YTGbYYmFvn32zQLaJC4jCIane7wGNCGLKDRxtlcHO724+3Ye7COZE+OQD1WTCfezWPmF8ikGlMbN2HQaVs69Kevd0JqG/bVKpxiWO1rzanTPmhqdq9OB0II2LMHPvwwfN5tt6Fs3w6A65hJ8NZbsttQgCvdddbZvtfhlsP4rXmB7T8B4jWEBRb5D2rFGTqWKCIx0hhDRWmkRgKBojSa0I5kAW0oC761LKCtFVsZ62jWL1vI+y//g437q9hSWA32KpwuN05VI4l6QH79NhWUAHDCkG7kpNpibFGno9OhXfB6J6S2weEW/Nv6LI+6ZrJV7dnWwzni8erOUDelzhFAaal0oa9c6XenF8uYYO75LHjZhQshH1jnyVKfMiBsc8FWvlDLYeML0TdkIRRCBMU8BgrIQJ0YKkCjjSWSuAwVpZFEqt2lBc2PdDMXFAPqK6oe+/haKxHNW4appVGU6Ilg2vePc5J9K2P+M5QMqvjVNgcLYNT6kqSMBCBRcTD0t78CMH1kLkf3CC/PpHPk0KEFqE7b4MAMQF/lAFlUcpAU3Ev+wQdJF7N2XxXnje7OmN6ZbTzKI4/W6Pii046or5cu9BUrpOBcuRJ27pTzFAUGD4Zp02DcOFnc/aOQTmWDB6Pt3gxEt2YGlvcJzx5vggW0AdOnSxVYTAECNEBABo4xzAIaLQs+kgU0DvFaHyDoXKqIWKopKAs+3hjQVmpGYG+lLPhY97B2YaZIyOt6muLv5z7CsJNznX9mcI8sxh+YR4Yi60Ov3FfHicNbZZgdBaOiKC8Cn3qMaR0OXYDqtDgqBkpEGheblnKmcTlzXLehLP07Tzqy2U9n3l6xh/y509t6mEcMXgOSpltAOw6qCps2+YXmypUyacgbbtSzJ4wfD7//vXweM0a2tQzko4Vhm/UKomj97AMrKYQKzkZZQNX4LIRuTcMSECkW5AoPGGN4ElIj6oCG1RANF2+hxx1p+5HqgDaYBR+j5FO0ZKd4aIsY0KHuDSQZqrl6ci7f/7QvaN6/zM+SNW0eaT3/AbVFHPe3z9n73W5OHtyNsbm6MSIKHT4JSRegOi2PgCmOf3KF8WvONf7IE+ZnMSqCZMXRPtIyj1CaWmBbp40RAgoKgsXmqlVQ4+k0lpYmrZr33AMTJsjXXbs2aVdeYRjNMhcoxFyqCCp/1BhrnlesNdgpKNTKGsHKCOFlmJpTB9QZIX4ySICqIuL2W7oOqEvTsBrC24nGQ2vFgMa6giRpsiZsqs2MDdnYo0okkqrUMdm4EVtOihTUKTm+En06Rza6ANVpcQyKQpVI5mn1XJ5Wz+Vsw0/8x/I0RvSiw22JbgE9TKgOqJt7zjlScBYWyvcWC4wcCVddJS2b48fDgAHQQMedeHF6LaBRrJl1Tn8zA5eqBWWENy4LPj4LYawM9cD9xR0DGqkVZ8i0SPVyw467gWz60Cz/aMQ6Z95+8vESKMIdnpCBtvjNv7lsG30VJwCpSh01wkaNkkhWhIPR64Ae2egCVKfFSbAYqHH4L+KlnnJMKejtINuSpnZ40Wll1vwG61YBfeT7SZNh9jPy9ZYtMHWqX2yOGAFWa6sNxWsNjGaZC42FDLQeRitPFIm462SGZqhH6LcO8WfkR3bBB0+rj5DAE37ckRKVgpeBOLLgQ6y4gS73xhbEDzz/XgvooYz7rknqSXLtXpz2OtSM3ngS3zGjUqVZqbK7SLWZg9aJp62oTsdFF6A6LY73pjtXOcBc80toQl5Uhxl2slId3IYjO7LRXfBtjKbBtm1+N3rS6XL6WWdCdZk/K/2mm/Ddq23efEiH6HUdRxMugSLLrWohLvHGx4A21gIa6EIP3F+opS9aDGs8bUcjZZAHi0st4vaDz018veBdIfVFA13ujc2QDzw2rwA9lBbQeYazuY5nsOHi1/JE8FRYsiouzMJNea3TJ0CfnzWaOW+t1i2gRzj67YdOi+PNwFSAYwybmGjYCMAerXMbjkqnlUoO6kSjsBAWLID775dWzMxMGDQIrrgCXn3Vv9wLL8janF6ua7u8A6/oiWbNDLQEujURtFxz6oBGI1aXokDhGHcWfBxtRxuygLq1yBbQ4GXiPL4I7TtjjTX2tsJd8C190xnraBKFvGuyKU46URk0z4ElKOGsW3oCF4zpQXpisEVUJwi9FaeOTmPxZqRWiiRAZmG7hJFvxDjfMi5V090vhxi9DmgrUlMDy1f53/fqBXs9jRiMRhg+HC65xO9KHzwY/viFnH/GGZCWAKw95MMOpSELaL0zOM4x2AUfvE6sxge+OpkNWAhDhV60GNBQS1+08ceTBR94jJGmuaPEgAafG4+Ft8Hji25Bbqz7PPBmwN5KFtBYdUBn1bzKEnUEhSKDcww/Bc17yHUlLwZYO3/eWUa3NBtd0xJadHwdDD0LXkenqVTh7wttVlSGKztYK/oBcLDWSZdUG3mL3yevBCb1sFC1fQU7k0ZQlDaCG07qj80s3VGaJnh9eT4Ot8blx/Tmw9UFnD2yO2kJ4XfPH64uoFdmIgXl9cwY1Z3iKjvvry6gU5KFi8f1ijnelbsOsm5fJVdNysVoUMjbfRCnWzChTyav/ZTP0T3SqHOqnHBUdtB6O0pq2FZUHTTtrZ93I4Tg8om5cZ0ru0tl3oo9DMpJwWo2MqZ3hm/er3vKqXeqTOqfFde2vOyrqGfFzjLfezXEovLZ2v3kl9Yy65jevPD9Tk4Z3BmHS8NmMTK6V0bo5sLYdKCK/RX1FFbZmTasK5lJlqjLfrZ2P8O6pZGblRQ2b8mWYrKTrQzrHlyU2qVqvP5TPrOO6c3bK/Zw2YRevu9EJHaU1LC1sJppR3flg7wCJvXvFPYHV1rjYPGmIt93YfGmIrqlJzC4a5S2sZoGlZWyoHtZGZSUSMtmYSEUFbHpoIMDReVsqVNIcNph6hwAPp86k5K+gzD36U0v8waKOo3m/JMn89OCl1m/bT+OIiunGPLYLbqwcO0B7C6VBOxcZPwOxHG+3eftPsiIHum8vnw3A7uksClvCVa1jl2pY8mp28LoTDcrTaNxuFSO7pHOwVoHUwZ3wV64jXWrfmBV8gkkmI3075xMzwNfUFu4gzUpJ1Bhkw0i0qhhunEF89STARhuzwPFiFvLodbh5tkYMv9qAAAgAElEQVSl27E7HPzOuIg31Kl8saEQBY0rjV/x+EIz3bM7+cb69Lfb2Li/CqdbQyAQAs41/MAe0Zlxhi0cEJl8oh3LY19uIW+37K70zaYi5r/5Ank1mZgxM1LZTh02tovuzDR+y9zPsxjeMxOBoM6p8tXGIt/+1uyt4KnF25jYrxPfbCoO+ticP/wHSo3QZSiMuIxzDD/yizaI/yw20Y1SrjJ9SZHIoEykkpL3Oc8m3epb99Pf9gOQTB1/MC3ge3UEPy7eyRjFRZ4YyLffLGRgJzPgLWslmGX8hrU70gHop+xj2/cbea76PCrqnZxn+J5l2jAmGDaRpx3FPrLJppzVC57h+XxZCDOVGn56436G9+2BjAVW+Oqj1xjCTuom3MqBNV/Sq2YtK3v9jq2lLky4udH0Meu0PizWxvDwgvVMrf2MOcZdzFNP5mBtMtcYF9LNXsZnr69BKEZ2JI+mxtKZmaYlVNfWMM3gr9UZL7HkrAsTm0Rv3JiweZKQvNgUZ5AFdMXOgxRW2bn91IGNHoNOx0EXoDotziXjevLOL3txY8IpjFgU6Q5aYP0TA+xv4MLEgYp6uqTaGPn9NQzDiHWzzDKdBOTa5zG5fxbH9JV/bl9vKuLhT6Ub/6PV+9hSVM1PO8p4btaYoP3aXSq3v/eb7/05I7txzRurWFsg3UHHDcimW3r0O+6LXlgOQKLFyMzxvTj/Ofn+qZmj+PNnG33LhdYwnfL4d2Hbuv/j9QDMHN8rrn7HT3y9lRe/3xlxH+c++1PE/TbERc8vZ19FPak2+TMPtdrcOE/2/TYYFJ5buoPlO8pYs7ci7n1Ne/IH3+tvNhbx6tXjoy5747xfsZkNbH5kWti8q1/9JeI+X1uWz18/38T7eQVsLqymst7F7VOPiroP7+ew6c+nc8f/fiO3UyJL7zrJv4DTyZxXlrNqfy2TSnfQs76c2StlQk++ulQKTK/Q9D4OHoweu5CZybRr34AI9zXXZx8P1cDaevJt91MiUnGfsJtJq2/3fcfzbY8DkLtwHgCPmOZxuekbCnafgDeA7vznlvPnc4byiOf7l2+7BoCjeY91XA3AhfZ5Qfsen7uPNw+cxTTFxR8C5uXbbgfgGPE8RzneBOAx8wtMNebxm9YXgL/VPghWuE5dTN7ucp5ZsoPfGRfxgPlNjKi8vO1MTjOs4iHzG7x6sIiHi6/0bX9rUQ1bi2RpqBSbiQTsrLQ8FzS2hfZjeHrJdiwBv4mZO+4mSZ3I+9zEo+aX6W/Yz/PuM5lj+oybt6Xwry2TI59/4PGvt8LX/vcJZgNmVzWzql6EFYA5CY6+mCctz7JPdGJy/VNcaFzBdaaAGqgCxn45GZA3QCt2yZu2cYYt3GBawDTDSvo6C8EqP7e7C26EArgFeW4v61LAXypf5ZNNW3mHG1hsvQsqIfeLISRTx3rb82zXutHfsJ8ikc4Ex7O8YvknR6/Pp9r+LJDOY+YXOLUwDwphjPIgeWIgs/feB8CMXX15w/gIqUodT+3uxS9iEEOVAm41yXaqufZ5rFv+JQ9aH2WSGUYZtnOX6zruN78NgLrzS4yKYIfWlSnOx7nf9n8APBf9frHxCBUzbq40L2bcBXfxxf+kAH3VfRpXm77kVtMHmI1+kb94s7xh2FdRT/cY12Sdjo3uA9VpceaeP5z8udPZ/tdp5PW8OmheBtJSWFLjAOBq190MdLzBD+qwoOUCa/EFBveXetYrrnaE7TdSlndZjf9OPN54qIo6V9D7ynpXlCUbJt7M84o6Z8MLNZJ9FTINtdrh9uwj8nHUeuY3p31fRRznqLHdWco956TE81lXefchhHR5794NeXnw1Vcwf75vPeXOOwDYX1ItO/706QOpqWC1Urp+GwDuy2bB+ef7d/b003I7u3eDzSZd5hdcAPfdB088Aa+/Dp99JrsM7dkDdrsUqHGSrVQ1uEy6p0OMwV0fNL3G4Q5bdt1Dp0XdTmmtA6sS/fOwKKov9i7TMy4r4ct7v7lpBjmeZKUeo0EhETsAqZ5uN3efHmzFykyysO6h01h570mE4nXCXjGxd5DF/HN1AgD5IkduG7ntJMUeto3XfzeeL249Lmw6wANnDeXScT3kG6OFQJtdF6TV1RThX08JWM5oUDAbFd+0VMVfvWP+tccErffC5WO4+Xi5vwylOizr3eDZRmdF3th1USq4d9ogsjzn3Yj8zZ3Uy2/Z75Nu4Mzh/jquQgjfGPzjDL6u2AI+705KtW+/TmHEqAjfviPxq9aPS5x/xCWM/KINZI/oTI2wYRfhHqZo7nejKj+nJFFLen0+VuRv96CQVuIBpiKSLOH2roaqIOh0bHQLqE6rYTIaUHuMJ3f7SVxiXMJc80tYFDcIKPeIoUHKXpwGM8cZ11Mi0lilSQvX3oO1gHR1B8ZoeUOqXBE6fURKDGioDEok4ukNHS8uVYvpNj4keP40osWDeWPXmhOTGyvWLbRIeMhM/+uffgqyPrpLUoDumCrLwZQEb78Nc16T850RBLsni1x56y24biouxQCdO8t4y06d5MORDW7gtdegVza84+nYUl8fvj2dQ4bmkaZumvdbsehx5Y3m7+5L+FkbSqExg6uc9/mm91CKGabkUyQaDscxqn6DwNxP13BcggAV7jC/D8BSxnJ+BLGpZ8Ef2egCVKdVSTIKJho2YvFYWExIa45RAaFp/J9ZurEKRQY5SjnTjL+AC4qr/QJjzV5/RqXXirevItwyEikxIND9HW88fmgyRXPqZ7an/usN1XZsKGM3Fr517XYZJ1la6nt2FZcA/eX8Cy4Inl9WBnctkPMmB7taXaf8HsZ0x+R0SAGaniYTdrxi0vvIypLPr8sQBlFUBH/6AqEo8PnnwQP95xIoq4NJkyAryS9A24Bl6lBucd3oe79HZPONOprB7ecrc8jwNqlQm+mU21pcHTNTuzE4hZF7XNdyk/HD2OnfhzmnGH7lZ20omR7vVDJ11JBIgehMgQiuXHKRcQkW3FxkXEonpYqTHY/zN/NLVKwYwfLU05lY9QW9lWIKup4MBf/zrVfgDI79TraaqHG4dQvoEU6HFqCe8gVnWVuxcLNObLK0YuZb/kqVSGCb1g2TkALUZjZhr6/FG/2To5QHrRfoglcCrlFeN3pgZxIvodOEEEFu93gLZYdn3jZdETSmOHdro0bNbJbnLcyKqWlQUREmKH3P5pN9i5p+/AFuOwVqwxMb3GYb3C4tIWzcCNnZshzRccdJ8ej92BYtChKW7iV74Oc9mHv2kKJx+plw9tAYRygF6OFS73Sueyal+BOvnnSfjxML79ZWxlirY9JdKQUgjcYnxgSyKr+ccS1U7S1fdOVHdQS9lCJuMCxomY22Q5weq7MJlR5KMaOU7eRpRzHEsJvNoieVIolqpIA80/AzyUo9ww27AOin7OdcwzL+ub8Hj6rnsNL6JQ+Y3+S6vb2CRPsAJfhG79ZTBvCXhZt0C+gRTocWoEKIT4FPk5KSrm3rsRypZGTIzO1UpZ77XNdg8aiNinondZUlRAs/d6p+F3vXNJvvdZLVRLXdjRLBJGGP0EJvX7nftXqgwk6/7OQGxxxvV5V4iNcCeigqJLkcDtlT3CsgPdT9th7IxLRxPSR2kxO7dJHWSTVKXGhSEtzoF6DmjDRZvzI7W4pK73NWFu6UDHhqlbR2bNwYvq17PQkhp58eNNlXqqeRbtX2ZHWOhSvk8utExkRGqALU4Rli2A0q9FSKG144Bi0pZ7zxlnbRktk67Y+P1WMBqMVGmUiljFQSFAdWnCj4z8NkwzqON67DERAbasaNQRHsFDkkK3Wc5fwruUohK7VenK88yJOTHaSsf5Mv7SdyRsA+h3RN5apJuVgiBeTqeDEqivIi8KlHy3Q4OrQA1Wl7DKn+kkULtYnkIBM3ft5Zxokp0ePuHAEW0ESLPy4sLcFMtd1Nki08Vqw+JC5UURQSLAac9XJb8SbZVIYk6zS2JV5LrRsTIaS1sbhYCsriYv9rr8DsehEAFrcTh8mC5drZsFFmigvwxUzW78yHPpmYq6v8AvTcc4OFZOhzQoJfOALmMWPg8sgl65yeJKLGxpg63d5akY2TFaG9vaMRMzb1EHCOcRmb3f4U+hzKKKRTjDU6LrlKITON30ZMOmoMsspFy8TzJil2EDL5qiPTTSljq+gJKNRj4ycxDCtOMqlmb4ALPtlzXq2Ki8/UYxis7MbkSaK6xvQ54wxbudZ5Ows1mag19vhpdJ46EMuZ9/FkyD4n9c9qdFm5IxC9DqiOTnMQCX4B+r3lFq533UKh6EStQ6WwsIjunnk7tK70MxzwLRuoDQKtgzaTFJ5GJVzMWIzhojQj0UJlvbS6xttZpLwuOMM+Wlu/eIjXfa+EaqxFi/zCEk/70unTg4VmtMSZpCQpEi+RAjTBIHAA1osvgq6XQXY27sxO8LnMxLWfOAV2l2M+8Xjw1lN8/vlGHWes+NFYXWFiFyuX68VrJTEo8nsT7+fc1uERFxmXcpxhLWc6HwXgdtP/GGHYiSXpvgbW7Hg4MfGeegJnG5aRZWy4YkA0BnVNoaqsZQRjN6WML6z3USqi1IjtIEwxrGapNhIQjFW2YECjjFQ6K+VYhAsFgQOLz3sF8H+u2SgIBhtkB69xhq0AuAKSyDITLbqFUycmugDVaVUS0v130L0MJSQhxV2N3U2J28rX6mi2iR70Vgrph1+ADs5J8b0ObHHnjfOscYSXjQnN8hZCBImeTsnxxQKHisaDNcGCVAiBEqYYI+MuKoYDO8KtlKGvh86AwQFla84IcFh5e4QXFcms7iFD5LP3kZ3tf52VBYmeBgAeC6VISoJ6N44zz4bRsmSM26nC57ITT53n/DYnHiuWdTNW3+9YCV7+ftrxjctkNOB0a3G74NvaVZ8vcvhM9Zf1SVCcDDQUsL8Niya0VbMsBVAxojUzCamtrdqHIyIgcMGsuINc7P2VfewRnWUrTfzX4T+bX2W/yGKpOiJoWxMH5PDi5dM46v5FPPbVFs4b3YPsFD0HQycyugDVaVUMKV0AqBE2khU7Zk8Zpup6O4UHq3nIdSep1LLWJsN0v1NlZ5BAEbg/IOO9rFZmx9dGiPeMVK8zqFVgnK7ZwqpgwZlfVhf03rV+I5ayEr+AJDd4A4MGwQxZZNw99VQo2hE832gMFo4TJkC3kALrP/3kF5V//V5OW7WKplDlsQAXVvnPY6D1zyvwI8XVxksskejr+x1hmVgi0N8vPD5RYjYoOIn/c25rAfqueiLvqf6bjltcN3CT62YWOSPXa2wN5rpm8qD5dQpFBnUON59px3CT62YmhdQevcZ5B1tFDzDI2o7L1FjJYI1ngToJgJ2iK5PZ0OTt9MlKZl15SYuMqVBkkGufx43Gj7jT/L+GV2hnVIsEzMLVYGDsn92X+14v1/yf6w4h/VPeWqUmT0ORYx3/5kerLCr/D/clvOyexmzTIgAum9jfV/rOpQrK65y6ANWJii5AdVoXg5Fc+zxGKtv52PoApxjy6Kfsx1VipHPZOm405vKDJkXnGq0vQz3ZlVuKIrvhfNfSCNqhtCa8OH2g1a04RFgiBFRXE4q7sAhuvhkSZbFvd95qyMz1zx8zBosrYFteC6WX4cN9L1333gc904MFZ3q6v6Cph+q38mB9oX/CxInhB9hMgsR4QIxtfQQx31hiiUSvlTOSBTSWG9y/XvwWUFDjLpvV1i74r9SxQe81j/uy1H7oMoN/EYP4o2s2+8lmV1mtrw5n6Ai+0WTXMTOwVIxiqWsUj5ufBeCrDYU0l5Yqw+QtsN8SeC2DO0TXBpZsf2jA0Y6XucH4EXcZYovnbCo5QCfMRL4OqJ7vRKHI5Gt1DNUiMWh+oNv9iW938sprtQzpmsrGA1UY4vQU6RyZ6AK0pfj2WzjzTEhJgeRk//Pjj0sL16+/wiuvhM+fPl2KkpIS2LcveF5iYoTgwMOPB45P5cA2I5TDVaavAHjHfSILtMk8b/k3l4tvABhp2OnrvhEmFkOIJDHCkoyWLqWuohZvw6+DL70Be36SlsuiIvmw28MEpFpaBv97A+ZIAepKCK5h53rlNegW4P7+V4hl8r33fO7v6jPOhpDe8ZHYdKDpcW/xEii4AkVafTM6IHmxxBCJXotkJCEZjwU03j8xr8ANLOEVi7a2gDa36HpL4R2HyWBgk9YbCP9OTDKsJ1/rQgmdUdAQAUIxvzTYQxDKF+pYXnFPY7pxRdRe4l4rW3MF6C/5B5u1fiBeUezg8MuC94rnhdox3EVsAXq8cS3fqcNJ8SRbmXDjjiANftCGk0w9N5g+8U0bp2xmjkleP//o+h1f7pEVS0b0TGPjgar2UWbJ7Zad06qrZUe0tDSoqoKlS+U077yaGpgxA0aOhA0bZBe0mhqZ7FlTIx8vvginRe9CptM4dAHaUnTrBtdf7/+ier/UZs8d+e7dspNLdbX8QXhZuVIKmU8+gWtDqkUpivwhDB4Mb7wBTz4ZLFCTk+Ef/4DMTPj5Z9mWMFTgjhsHJpNMWDEYwGI55KL2d2ccBzvclLyRRr7WhXHGrVxiWkovVSa8pAW0uvO2lAt0wRsC/7Z8IkrAPff4hWRREY60QTDhMv+yU6Zgv/EtSEoHwLF1K5TslSWGBg6U571LFwjpqJg+cij8t8InIp19+kKh31LqmnEuxBlPWh+hXmkkMpMsYa7+lkaNEo7Q2hZQ72cZaZlY7vLGVhDwCty4LaCtVaEgTkLLMLUV3nGYjAqFnq43oeemTlh9QiyLKnIVv9WzS6o1aivWQpHBHJfsQb/SPZjAW8eDtf5mE1mKrH3qxEyhyECIpsWj/ritlLEtVAfUe91x0HJW1UOF9wp/geG7Bpd1CZPPve6tA7pR9OYopYBF2gSyqKAUeQ0da9jKRcalvnW7eeq33uK8nk+0Y33Tv95YBDSj1aYQsHNnuEDs1w9Gj4a6OnjkkeB51dUwaxZcfrksNzdqlJxuD6is8OST0ru1dy+cc074fnv3lgJUVeUyycmQkQE9e8rXnY7MKhWtRfu4AnYEBg2Cxx6LPn/GDPkQQrYR9IrUHNn7mKlT4cMPg39QNTVSIIEUlF27ymmFhf5l/v53OX/BAnj00fD91tVJAXrfffLHZzL5xWlqKqxbJwXps8/KuEOvsE1JkcL2ppvkdlavhsrK4PmpqfIRD+m9yFYqyTZW4hJGzIrKJKOsCalFCFJyr/4Vhl8LRUXk9D0eTrgKgKTqcuxJGYAC//63PD+dO0PXrjhzg/vJ8/XXGH90gd1jybjnPjglJNYSgsoJAWECPbwuaPz/jPY4rXHN6UIUL4HZ/IHH4IhzjKGYjUqAuIyRBR8jBjSWCPSOMd7z7R1DvHVbY8WmHgqaa+1rKfwWUCUoISWQNWIAIF3w1SSwSfjLR5XWRmiL6uEYxzMhUyJvv6siLZd/d8/k7+6ZmHDzpnYqowzbw5atcbjpwqGIK/QI0Ag90Q8XMpSaBpf5UDsOgAqRRLHIIB/5n+PyhWPI83C1cZEv1tOL2dNYZKfoxlBlF9tFdxxYKK2R3wnDvLehvsL/vzZ0KMyeLVc+4wzpjQr8z7v0UnjuOfk/OWBA+F3IrbdKAQrwxBPhBhmX50YoNRUuvDDcIDNJxhrTr1+wwSY5WVYP8YZGDR8uvZY6rYouQA81igJWq3wE3k317i0f0Tj3XPmIxgMPyB9noHitrgabp4j7WWdJsRZ4t+hy+cXWnj3SiuqdX1cnl/cK0IcfliI3kD595F0qwCWXSJFqs0krq9Eoj2/yZGmhXPU9G7rksLLzUNKz7JxrXubbzEE1iURjcP0/lwD69oWJE0nqdDQebxhJ2ZmU1XkuSnZ7kFh0LNkOX27xn+opU8ja8APFB6T1Ml7XrN0VvFyqLfhn0hjLmSNO93ZLWCGjYTUbsLu0oONoqFRRPJn+JoMBl6dQfaxe8K5YWfCxXPAewewda6ySTYFjiLf0lb/QfdsI0HONP/KjejQHPLU/eymF7BE5h3QMqdT6LaAGA8MNO/lUmxTzs7eHiL+ymugCNBxBJBHaT9nPLOPXvKVOBcCNic2iN6MIF6A3vL066tazkq1A7PCdeElAHleXkC5thxN1IoZQr9KgTjA6cQurLQNJ2FyDs5+ZdaIfVpxY6pyQAFqdwmufPQjHW3z5lv9ync9t5g84e9v3MAyeMj9FrqGIExxPsNvzHT5rTx5d//4QPqt3UhKcf75fgFos8j+mXz8pBFNS/ALRYIA335RhaIEC0muwSUwER4zPOTVVGlWiYbP5haxOm6EL0I6CzSYfnaP4n6ZMkY9ozJ0rH15UVbrt6+ulxfXSS6U7/8ABKShLSmRszLHHyvd79kjLbiiLFsmYG3M9fU9JYahhMXNdlwQtUmtI4lu1Jycb1wDQpbqEY7f/AsP6wL/+hbpsF7mvf016fTWnl26mrqaeGksiLE2EkzxZxD//zMDSWrJqDnIwMR3N8wfaLT2BjR4BGq9lrN4V7DYPjUFsTG94hzu+ZTMSWy/OzGqSAjTJ6v+5OyOMq6DcHwLg1kSDyT8mowKugNdRiFUHNJYQ9n5eXkHZUD1WnwU03jqg3tjUGOK5NbnXNJ8644cc5/wPADcbP+QY42bU5IcP2RjuMc2nr3KAG1y3kJpgYqJBZqCHnpELjN/xpToWO8n0YT+VNNxRLJB826Ws13KZ4fxzxPjCFOp84nO6YTnrtL70MjSuK5KiQFG1HZyRwwEaS5JiJ996advXARUC3AIcgi7VpZAmpIYvVKFEY2btFxzt2gFuO6jAyX6rZe1qI6yuAYcgyVnNj+ar4TbPdhfaYaubc0d+w+rTBpL9eTEzT/mCrwZPJF2poc/B/RRkdaZ7ZTHp9moyK/1GgufUs3lePYtHUv8LQK5Butzdwh/XbJk6BcPj14ZbF718/HHs477sstjzOz56JySdDojbLV0fhYXBj6Ki8GlVUZJjsrKk2E1NhbFjZTJVly7+hze+snNnKYwLfiPhpeOB4Lpz890nkWmys1NkcTJSgP7firfpk2iG7rIAe53TTX6mLAkyc+1XfDV8KsMPbIN586QAFQImTeIUIVgF5HqSisQdd2AcdSkAD3/1HNO+LIHnsv132zNmwBlnYHXZcZj97T4zi/bD+vVY3E6cJgvlIS7GeK2aAJqITwy1ZrC+V7bVBcSjRhJpxdV+i4JbFZgbyJEJHHFcdUAjCD2/dTR6gpJ3rA3dQJg8229sHdC2soBuF935QD0uaFoWlRw8hHq4r3KAicZN5LoLSbGZqQQshJfucQujLwZUQ6EG/+9lYt9Mlu+MnfxTI2xBcaMAyVYTNZ5yT4H1Px1YUDFQLRIa1VtTCPh1TwVJZoXA/C4hBDXChhLwW9yp5fCeeiL3mN6JGhKvCTluVShN6vFpUt2kO6qgXsNgd4HTDU6B6RjPjd5eN9ds/hCcYFy2EcrrwAG2WfXYAZY5YJmT9x23giavOU/xd766Y4K8Q/jVBSudPMrT/p1agZP833+n2QyZBrAouKwm/meZym14ki4nWWCUmfoMKbD3XdUTV5KNWmxYhQtnTxs9RQk7u/ZgxhVPcI9pPn/gUxzCzCLLvbyhnsrPOUdzEX5v1vnj+nD7+SeQe+9CPthSwSOXZZNo0WVGE9E7IekcJggBBw+GC8hIwrK0NHKEf1qadHHk5MgA7pwcKSK907zvO3eWsaSNITHN9/I+83z/a/e13Gr6nNnGDwB41308L5x9NROGDWD4eUcDUFjpF0YPnnUrdrfG6u6DeeieSf5jX7SID/L28khhEgZNRTMYYepUyndLa0hmfSVaokEe/9atMtRg4EA444wg8QmQs20dHD0Lp7dVZXEpGPxd67PPmQaZKXDnnXDKKSQ66lANRhxmj7vrww8BKzaXndQEswx1cLlk+8oo/3ZlMeLomku1pw7o3oN+C2ckN3VgFQGXppHQQJZ24PKxrKVOXz3P8Hn+DPnoCUouj7W2Ide62dN1Jd5WnLH2fSh41n0232kjfe/vdF/Pne7r+cxxCOuAumdyA59QILJwaxpfqWNxYiY7JMnuY0+CiRnYTXBZIkMcN0/DHK8AoOD/bGoDao1+rk3wvfaWfNonshnC7kYdT9+sJIoqg5P5hJD7v8X4PgBr1L5spjtLtZHMMX1KOrVh29E0wS61K8Mcr3CSI49Xi+eCAzq/8zpUapBmYPiBrQz74xukVe6B/FpGOdbwtf1auEiFHCMXrvuGR7+U4jAZfyxmyqn75It9Ktf89Ak1lgSURA2MGljB5PXAZBlgqIlPzCdyQcL3YFV4xnCOz7vDZAuMNTOBZxhu28V/k5+Q1xdN8Qn6z4cey92jPwLAKRJ40nGpX4D2ltfwv9llHVBXpoX3XScCsB8r+zXZKtPscXOYUKkRNoY5XibfdhkPG15niP0VLC43c80vATBjbG7QeYw3HEbnyEQXoO0db9JRtIdXXBYV+QOwA7FaZfJSTo6MtZk0KVhQBgrLhITw9VsKS2LYpP+6z+Am44ek4iZFqWeROo6LTd/zN+c1bI6nLFGGzNjFYIDTTuPXunVUVO3xzz/tNIwvrQTgpnPu5apJuTx0dsMFtH/rN1KWUsqT7+uV4J+JPTFFin1PyIHDZEE1Bixz/vlwz2d0rSqVF+CvvpIlukwmKfK9pUD++19pPV6xgrRff4HsgASpt9+GadNkIpiXsjK5rrlpSRHBSUjhIi0w7i8eK6LJaMDpiQHdsD/65+Xd1vbi8D967x9UJP3qLRvle25AWJoN3iSkeLPgo8emHgoCxWcg5Y5DZ5H9TfTnNtf11JJAcZUDNyZMuOPu9AWwbHtZ1HkzjYuZr/pDf7zlmzQhgkoyGQNqUE43LGehNpEMwmv0NsTO0lrvBsEpYJ8DsWABkMhHdcdyQ947PDPJHwI00vFfVn54Je+U38uU2c+TU1XKuMItfHrUZHYbpND+Te0P8+q55cw7calv9ZoAACAASURBVK8s4pkkFdIMJDjtVG7ZgWJ0kinMOJPMrM/oT65JXjh+6TGER0+5ivuS3qHOaiPR6gSrQlXXnrATGGdh4ojnOaBks63fvzHvk9eqmgRPF7iBZhho5k3XOVxgXgHAd46xuLxJUanyXBbZs6g3HGh2dZPAVpuBuDxVANZruSxgYlC90CTsQeXEZjy/kiqxnpMGZrNkS0n7KMOk027RBWhb4HBEdoFHEpe14X/aGAzBlslhwyKLypwcKVjaQy1Rk1/c1ggbDsykUse15s+pVxJAwDTjLxwUyQjVSXld4y2CkSxfDrf/YlkWoVB9JMqT0uHC0yFPZsfXmCwQIGq2PP863Qd18b33iU8h5LleswbmF7CrUw9pdTzqKFmhoKpKVhLwPid56ovm59OpdH+wAJ01C9auDRagWdIiQUKCFLA//ywT1957D9591y9svc9iICgKitAQigFrcZG0fqelRbRMBP5XxJNoFSj01uyNbrXzutADXfz+bch5da7w/YVmwTckLBsbAxorNvVIIrAcVAlpuDGFNXUIrAMKMnnJS2A1hFAeNb/Mz9oQdoUUcw/9fhkDQ1Xc0NVQylAlnxEbNqPYnaQ4aklx1LEtsyefDJNx38n2Gt55548kO+r4vs8oHjj1+uCd12jwajnG1y6Buxewz5zNbT/OCxKgAFUJSexRupBZV0nn2oPsTe/iGZMbVTHhsplhdiKfZJ0IwDPm5wBY0Xs4Z/QeTqJJMEFbw9WmL7nFfTeVhpe4jG/ZntWLoqxO3G39CDc2UDzF9q0ej4tRQSitc/PTGLvjKGUbyUo9yYo9yhIycewT7ViKyeAp81O+OTON33K7WVqWn3SfS52QYRoDuqSwZEtJm1WY0Dk80AVoS6Gq8s89Uhxl6KM8SlZlZqZfOE6YEF1Uduoks8wPJyyJVIgkikQGfZX9JCt2LjYtBcCKX2xmKjWkKfVBiT7xCoRIWe5qwHYaSmLxkmILtjCGJh2FZsn78Ar9ESNgfgHgcTMOGAr33ht9hxdfTF5+NpTX+6dt2RJeFeHJJ/0CtqpKdlQC+X3assU/r7paimFPCIHV7aLebOX4Jx+GG5cDcExiItz0HgBHFeeztXMuPfbtoDxDltex/uffcL9nzOvWSUt8erp8pKVBQkKQ4I9l6fB+Ll3TbGHzvOdWjfDZeOMDKzw3I+V1sW8gvJbMuLPgG9lrvqMS2MnG7hEQdSFVGWpEAlXIGyYrTs40LvfNS7WZKatxkOysJ9VRQ7rLn1C3Z0sGu3oHi88r8j5FHX+Df8I/q0kaVA4yB4mFBtkFrFIk89InD+GVi6pi4IOhJ/kEqNNkpig5k+2derCma3B5NU0oGFIMMDsT9zWfw8eloMCgOz4IPwHnJHKP8xYOksbBxDQZTqIK38/ZZTBCDxN49VnI9ajOrXCReakcowZ/1K7hMtO38nxioZ/jbfooB7jd9D+qRSIHKur5TetLV2PLFc2Pxs3GDxtcxoUJs8f6GVgHFGQ7zu6Usg/ZTKO3UsTpxl986/Y3yHCCKY5/sld09iWYLdksE8j0Tkg6sdAFaEtQUyP/lCNZXhIT/S7wwYNl0kwkUdm5s3SXd1QMRtKVWtKVWuqEBXOA6NSEEpR1a8FFXYAg6RzQSzjZasLujmwdjWS1MwUkvsRbhkkLsR+Ehss6ownQCMQbj6iF7uSoCPVKb7458sq//718+DamSRH66I9yDCYpqPPOvYLTe14KFRXk7/H3y661SOv0M589xvGXy4zslP884Regf/qTbJQQSP/+cP6/fW+zN6+DC5/xC9T+/WHOHACSf/0FsNLdUSmLO6elySQwRYlpafV+XtUeIVpQHs1CI/HGpDa2DmhbueDbC163uFJVKd3WJn/JqynbVzCyagP/Gn0eAI99+gR3nnEbP2nDGKls4413/8TvLngQq6ay6ulZ2NxOlvcbA4/LDObje4fWAYV+BwvY7Nm+QVNhiImknuHu3zpsPHHdlbxjOpkaayJ1ZluQN8dpsjL7ggcjHpMLI1azAn3MMHIEfLwYFHAbw8NXItUhBnxiymshHqbswtJzFERIzjdFaWPpdV/vEl25w/UHnJhh+W5e53bWG37nW+7litHMweOCV82o7pYpy5aqRPCghbBe9AHRh+vFJxSLdH6jH0Y033nxZtT/w/QCF5mCC9sn4KReWHBiYqSynZVCJo5uK5Yxr7oLXicWugBtCZKS4P77ZVvGUGGZ3LhyJR2ZPK0/y9RhHGUo4HSjv32lCyOmgPgji6JSHSBAkwPqVybbTFELXztDLF+KopCblUjeHmlxjleYNJTlnmiN3/ocr+ht0WB9g0GKPA9GkwlV1bBPnAwzZGLXxjX74B1ZdWCfx+X4l0ffhY1FIAT5qzbQz7uBv/5VCtyKCmllragAmw1rqcFXxN7idsquXRUV8jFihE+AjvnHnxh4/PWcueYLePh8uc2TToJvv8WtCsbt3cDg8r1w7kt+K+v48WhCHkOao44KSyKZdeXSw5CRIWsIhuD904u3+H9b1wEdoWwnTanle20EAAOUAraJHk3bmBAkuuyk2WvIVYvxGCuZuHstQ4p2kGavAXe9LJGpAFJP0qW+jKIEWYe064mTmNptIJ+ePRnvz2/2L58wac9a+vYuYGenHozdu5E0ezX5thycmMnrPhi30YTbaOKhKdeiKUYqcnowMcowFQQPTv0DF3sEqGYwwvQEBmqFzFJlHdDAVp8lWZkUq43vPuPChNWT8OSNZx2vbGa5CI8BdzbwNzhIkXHllxi/pbDf1CABOrl/J5ZtL2OO6zZetfwzbF0jqq+X+hjDVpZr/v0HVgN5qWIMczza+Pua7qQWVMZxlNExILDhYKfWDTzl7aIxSNnDZtELAXSimj1CXg+81+SDyCz5BMXvgfiH62JuM72PDQcJipOvLXdjU1zk2ucBcEzfTJxuDV1/6sRCF6AtgaLIQu06MRlj2M4Yw3b+5TovSICWixS+0UZxlvFnANJNTiqNkS2Xse6oB3ZJ9rWA89Ir05/8FK/E84oqgwKNKPkZEVecYig7xRoxRrIl8J6yJKvf+lMfYVwF3hAARcFpDrDGDx0qHyFkPrqYA57agM6Jk+DVO/wzA9rNLvvjP9m20c3XJ1/IVdfPkAK1q3TL/j97Zx1nR3X+//c5M1fWN7ubbGzjngAhJMEtSILmW6CF4oUChQqlVKEtbaFIW6BIBbfipRRosAQanCRIQtx1JbubdbkyM+f3x8idK2shyI/ez+u1r9zMPXfmjJ3znOf5PJ8nblqcsexlxnbugjxlf9fYaHOkR9hetGtfuoPvz/0ZFz99G1x7mr3TSy6Bv//ddk/PmgWFhRxSOJOXB05h8n23Qf+j7XamCYsW2UZrv34EfN7zL9oD+nDwRkCwT9TWUrxMPsuR1jLaOn4OyuZuj6vbwoSXlnPhkg0JIzKi4CrnPN6I8sHisyiKtBFwpHpMKeGXeSAEc1ct5IxPXsUUEkIWhAUUJM73uh13U9razO39T0P99CfMWfwbIOH1//7JP+Wi0EucHnqDG8yzOPrSe5is1rNMFWAiue2QMz0O6BNTjwPssrKp2BI+k83WQI6J/QEDPe29GiFqPB3Q4+Uidqp+bFd9q6mpS4FhKUpzNHTLBM+DB5PFZk7Q3uc9YzK5ROjwyUhl0iUVQA4RVoUv8HRAl6tRvLu0kh/72h0wyjZATa+aFCwKJKIRus8APVCuSjJAc0l49A/N2Yq7BtfpecwwleDU6DUsVyMzfi9R5NPJphTubSacpS3gV4btjb1In8fvjHMpo5n95FqWWmNoI8c7FxcLrGn8NTqXa/X7OZQVXgllF+GARkfM7FMyWxb/e8gaoFl87vAPSU8aRzBRbuEDa7xngH4nZwE3NksWvCEpqXkXFdjHa98RMwkTpYBOHlm4nEGtK7CGzoBgPvOW13CU/JDXHBmX5o44i7fYPKsAccY2vMnCFzdTXbQvhwbW8IaaSm4w3ZvZ36zjpdcX0k81sYtiDhQrWKwmUEIbdRTT1BHng3n3EAkNoGD84QBMF2tYqkZjEGD1oleYyBbWUcHWNR/w7rzlRMqnMWv6FDpiBh9saWRmRS5r33+RUH4/GnesZWXVcN+VUTzzymtMz29gdaw/I6niALkalrXR0NxEuyygqiXOmrz9MTXbUKxoWsSIfQ5n8ydvY+QPRrXuBEIILA5gOa0iiFy2iJfCR5PbvI5IZTVgVwKZIjaxXg1lZ309Ap2RooY333mLLaX5HH3Yoby+ppbmjjimUnxt3yFUN3VS9dbDDIyFqXbK9uXoGs98uIPmzjgleUGG9sth+ogSmjpivKDKsGQdtWGd5n3zKJp2IYvX7SD60hMsaJ3IMydeicTk8SNa2d7/cKYMKURTivhtNoXgnoO+TnFHC0/sM5txx8+guHYNOybsx7K3N9M/qDgyasC6jeSOGYMxRGf6/X+Gn9kG6PzHH+SYc77t3dvLJxzC3TNPYdlV7xI5fgbjOqq4/J6b2fFyGa15BXTmFhLqX0rTQYcy8MD92LytjqPCHWw0Q3zUoth37EAMSzFxUBfi5I7lplsmhqbbwuFb4tCpELfeCq9HIKIYMGMXKwIjeazhSP717JUMa67BkgIMg6GRH1L8g8doyinkmPWLmHX/I8zCCRWHFeSIRHJimeSVcQfSHM63/0L5hAeU8Rt1Mwi4/sgLuP7IC2gN5bI55+y07oYmwTRtGy3RQsR3LqE9egu50QiatDOxd+UVEw2EMCxfxTGHJ+oaVrMnD+Q/n1Rnvh4Odqpicn1JLnlBLUkH1J8I1Uw+nQSppyhtP93BpbHkBAThWBwc3VIh4P7gHwmpGL/kQk7X32CK2MSV8Ut5Ivg79hEbu+235eiAVqsSWy7Nt1756383EpSKmHN9hBCU+LL3NUx+rT/M/cYc+tHKHLmY18UBKDOKJhJWeIuVWPDFleyxPG4z+YQwiZFs7DerPFpUDgqop5jOXpQsrVPF3ucmZbvO6yminRxKRQvtyjbWA74o1auhn/Ht2JVUqxJiSiPo1JK/5LBR/OL4iYxILW+cRRYZ8KU3QIUQo4CrgSKl1GnONglcCxQCHyilHvoCu5hFLxEhSJgYkzU7pNWmwtxqnMq9wT9xtf4PAP5hzOLsyOtoei2dC0JM0z7iI+3rgF2GtLE9RoQQEULsnH8b5wSe5qXFM7g0fgUSk1xRgsTCQvLth5fwwVY7O/sP+l18rf1dWAzvmpMYqq3isej1rFQj0voZVp0c9+ZcLsUOJ61XQzHRqcMeqDdv28o3ltt+kBELHiNMlPVqKIbD95r40jdYzWOcJRfwe+6HJVCj+tGx9wZ+8a/lPLe0intLH+Xo9sQg3Z+/UIcjK4Xg1PfsGOlw4Ds8xmZrMDc8eyYlQAlQAaw3juIa40IG0Mji8HdZtGQix4rV3j6/y2M8GbyW78SuoIFCTm+7i+PeuA2AwwEZPJY/xL5BC3lECbKPsZpdTGSTGswlK2wB/2ta3uGh9xJajAMLwzz/xnvcWv0L7oxdDY4BunBdHQvXJXilAFtuPIHzH1jiZcjXRAIUPX8BTD6WbY9cymnam/wu+gdgKBYa+79/GXfEfsGPrb2S9rNiwCgsBe+MmEpT8HeMH72GX9XO4NX/rLIbHJac4HXnKyvh9c0AHLPmCrZ9cxh/ajudwkgbCyfNYEd4AP+qbOHhpefx89zHOH/2lbz9t28xNNJGQcz2Av/kuB/w9LttTK1ay9GPXMkYYAzQqYdoDufBEw/DCScwpm4rp654ndKOJvpFWrno1F8DML1yFe8P25v9t6+EF+x9as87vrMw9J/cxDWF57GhYCgHlC9ldflIrp79PQAWWPO8hJ/Hps5h4KXf4o+LapONSFeCbHKAq0d/L+n8R/XPg9ZbAGgJd08Busk4g3VqKDtUGXHT4ur4hQwR9QwvTU6Au8NMlAFeg/2dW8u+Nzy//aN2WUSXT6hrMkkH9FVzuvf57ZT731tYyo4kxC0DUwkvtUop+/iuDugyaxSNzvUdJyozioQobA7q/tG/MkzU8GboRzZVImbic57SGTc5dzw8sdb2AMZNxUjzMTaGbO+9gcYNxpnE0alSpYwWVYiJA5i25k8YKmHJvtYx2ttvpwrQ2RFPOk4qqimjWpWlbf9t/FzetqZ40kjL1Oi0Ni5uM77GifJ92sjhWLmE9WoId/rus3sfwk5p0wAmS63R/DR+Ma+GfsafA3/h5Nh1LIpN5JmQHQHcf1RJ+oGyyKILfKYGqBDifuBEoFYpNcW3fQ5wG7Za271KqRu72AVKqU3AhUKIf/o2zwWGAruAHZ9F37PY8wheuZr6+mp+9dBmlsRfZFNwPDeUvcrY1kqCwuQPFX/lp2eewIo/zmaNMYxtagD9aKWUenKJoGMQI+F5umhGCSyFMaLK27bSF5JaW5PwRFxhfA8lJKdobzNF2sZJoWjPGJc3UgTYU70IRoreapRgWn1sgDKR4HENFI20WopNdbbnKr99W1LbCH0vxXlUeRsnXXgs7dXr4BGYmCLafeq0Iaz9pMLjmpkpBRbPHBNn1Na7mB+ZyIPmHEKk68hWNiUn/sRNi/ZOe9sQUZ/W3g2DulhTk9AH9UJ4lsFIYXvM8lWyaHgJ6Xqibjh4r8FFlNU3J+8rAwzpG9Z0wbBxTTwfsT3VQ0UtKNg4ZFjSbw659AEAQljkdrQS1e37sbV4IC9fdQsfLt1EsLWZokgbRZE2TncoBBv6D+emI7+V1oePBk8A4NWx+7PyB5MxpWTSLxei3z4ChGBlZLT37P1qdrJ8UPURh2C9aT+DjblFtA6qoCWcfJ32FFaqkaw07HemrjVKLIWP7aKUZnaleCTd5+m5pVVp7V2cIt/iX1ai2pP7LEbiZtKrJ0XC43eCfI/51nTy6D7pLBPqHBpLZbA/w2hyjmnjSdPOnv/IGstHjAVgWvQu5gd/krQPlZIQuM2pbd4VNrdiJxf54Hp0LaQX4m8jh0fMYyneuIuXjLM5W1vg9U3rRdi9N3jT2pt6isij5+flVuPrXB5+ll/LRwC4KX4Gm8Jnc2bsKn6nP8gKNYItaiD1qojV1jBes/YlRNzzhOaLCOWi0fOQAlzwoE2tOmGvQcxb3r1XPIssPmsP6IPAncDD7gYhhAb8BVt0YwewRAjxPLYxekPK7y9QSmUqCDweeFcpdZdjmL72GfQ9iz0MWVBGWUEZxcWN3F1zErNHlXPklhtAGMRzy/nR+d8ETTJBbSAqTcaqSqZr6ylTrbwZ+iFlooUJxhOcIN/nLG0BD246gcuBHcpOUlA91Mtbbw2hh+I+QLIsDUBHinFppkxQ7nGLaaWJAm/7beapjJU7OFFb1OMxe+p7JmhCUJQbQIQzn9QzH1XyDBd4mo1+A7RG9eO7m0/maOudpPBnX7DVKk/b1h3lK9CF0HVv0RTpvsb3ofIT3rL2/lSJD5am0eir2tWYW8T6WTN4KriZ5s7E8U+fNq3b/cQcAzYSCDO5YDufWCMxC4tooYAH4nMAOEJ+zHY1gI1qyO53eA/DQGe1GoFqSDZgxsvtbLFi1DpyPIfJZUlaoF3hluDfaI3lMN+anrS9qTP5XsqUlWApzUyWW3bjDGykvsMAtV6EIRnbVf+M2wtp9zzR3eGtKkGIWBKv1V3E+hezj5jHAunnDvDDkvfohc3YI/pKW3CxzhrCsQ4v/++BWykUnYwhsbB4w9yb8+I/Z4zYwXPBX3nbr9Uf8Lza/zASBQf6F4QoDH/pA6xZfMH4TNn3Sqk3gVSxs5nABqXUJqVUDHgCmKuUWq6UOjHlL5PxCbbh6opp7hm9iiw+NxTm2AOTX38xIBW6kwyih/IIE/eMsjfUNMpEwjN2uvZfDtJWMarjEyAhdaIQPBy4gReCVzFNrEs7bm8NrT/odyf9X6W8Jl0l0x+vLfLCVS6aVO9UEBSJknefFUzfZNimcviws5yboqfwijkDgJDom/j/EjWhT+0v0tN5YX0yvDOVj/VhtKiikHbPCD5kTHqI8ovC3nIzSilKRBtXOsLdDwb/yGuhhPdtitjEx6GLCcT7XgFoT8E1mPzhcbCfF78HdJb8mJDoeUGx2qrgDWvvtO1WN9l986wD2UkJC6zpPd3yLtGXRVVXbUWv0xZhXvCq5EIOzj57errdI+giMY0VyBiDM2jm9gXue/UH/a4u2+TRSafD511sTeBdaxKQHvG5KHYF1xjnAbBTlfCyNYN1lr1oGiOr2EUhB0bu4FrjHO83b66royXy6RacWXz18UUsUYYA233/3wHs30VbhBClwO+BfYUQv1BK3QD8C7hDCHEo8GYXv7sYuBggmEGyJYsvDp2OyHVvuGPrrCEMD7Z4GaL5YR0ZtS3A2SXVUAsjRQ1gh2UP05YDcJxcxLL4eG8/J8j3+WXgUVZaw3jAmM0l+jzqVHIiSQ4ROgkTdgyxA+RK6lUROcRYrkZ57fqSGd/biVAhKKUFC9mjLExf4U6kfg+o3zNTTxFDRS2/0B9nQcz2VLlFnbqDy7XtLSpE+nqyb57f7tvWqBJayPNE7TP1P4/PRmmgJ7SoXMI9XNBL9P/QT7RR3LIGm2Fko6Y5EYq+Nn4Ww8VOal9ZyzDjcDs5bQ8ippzQccoz/onDJXSfmvnWdGbLnj37x8Vuyrg9Tfc29XvnudqdyACk02i6QyZvKdiJPn4EiTF77+GQvrZN8+4n9mlXEeoa9nc37TqMS8N/72WP/X2Kp4X//QjT9aKynRxynLHua9rb3GDYvO+njcP5XiCh+1uritniZNO3kcuVcZcyoiilhTZyOGnaSA4aU0Z+SKeqqZPtjZ00fVzZ5/PJ4n8LX3ofuVJqF/CdlG0dwIU9/O5u4G6AvLy8PSiymMWnhSv3kxv0PX6FyfqHmrB4wjiSy/VnGEQ9LxvT0YRFQV6AHZH+mErQGh5MKZ/woWXzuSwklVYpQ+Qupsgt+JwKHCptb+lkuY1pciNjZRXFTghRABWihscCv+fi+I9409qbaXID52rzaVD5DBYNbFKD6CTEzcY3GF6UPGHpGBjorLUqPC7oD7RnuN08tQ8ToaCGUubKd2hKCftNEZv6ZOil4kr9aZZZozhSJvQA/YbxAXIlc+W7gM2/O0iu7NV+vybf4hnr8F73IxNP1jWOv6W91OXvhLAN4p7UklwjIOoUCmjN4IH5SeApNlvlPGIctdvetb7ifXMCxaKdMc6C62njMO87v6G33eoPGsQCyWFUf1naX+iPowuL0W9cyBz28ZJpdhcD2UUNCZ3Nc/T5LI5PTONBzpXv8Jx1MADlNPCONYV9M0QZeoJAoRBpBu5eYjPnaq/ysHksOUQooINaSroUie8J/kWcu4eDxQreUune2EwyTC7KafD4xj/Vn0RUXI9am1jc7De8Hx9ubeTk2HXcGLjH+53Lp9YxiTvv7iB2UU2ypqn7/Pu9yYYS1LfF6Mau9J1ncqOJYgur1Qg0LAbQyJvW3uytbelxP3kiSovK40VzJm9Y+1BitFAoOtmlCqhRicQi9110e+96xacMKeKUaclj+K9OnNTzCWTRHTQhxN3AC0qpF77oznwW+CIE8Cqxk3hdDHW2ZfE/gqBuP3bThvs4WQU+on+oiFItwmFyGR0qTIlRw3Xm2dxtnIgQMFTUoQlFtGAY8839eNma4fxQMUTuQimIKj3Jw7pLJSb1Socz6k4SUsCC4E8YKnfxXf15Kq0y1lpDCBFnpRrJMFHLt/WX+L7+b/t3evKkmEOUCWIr4+V2LwR/mf480LV3JRWDqCePTl6yZqZ9d4X+DC+GrurVfjLhTO01bg7exUhZ423z9+sQuYJNahBPmYczXa7jLP31Hr2fAEdrH/WpH6us4WnbpCNFM1V2LYXj3saeNAUPlbb3250gOzMUFBgnK7lIfxEp7Ml0S/jM3nT9U2G4rKWDkGfUneBwgi1FUtjWTY4rL8pN+n2Bj0unO8k6a66dw8/1xzhbS6e/96bgguuB/HngcV4J/pSh1FKUE+Ak7X2Gi5o0A3Gu9o73eZywA1iuR91fqawrbAmfyeLQpWiOMZfqAR0rK3nWPASww/vT5Vq7XR8M0JAzrgwp1BkoEswvIWCmWM0JjszbCFGT9LtMx5ACBBaLwt/juZDNeYwS5Np5q5PenfEDbc53M/nE0dElrAmdR5GwCZ3+ZLkz9NeZLDYn+kvcO/K4YCKhr1SPENC7P+/h1GTcfpJTIlViMUA08aEan7EdJELwprKPVSF2cry2mEFiF5PkNiwF88wDaHd0QKHrqEh54aejDGSREaZS6uKvqvEJX4wBugQYK4QYKYQIAmcAz38B/cjiC4Jwhl1dCgg7hmHcl/Habzj1ejmtKodcESWudI6QyzhU+4SOmEmjyqNNhVBC43rjTPrjZpsrWlQOd5kncL7xiyQvzunaf73PBcL2wCpnNFXAMssOMZ6gLeKPwbvJI0qtKma1NZxOgnwzdjUPGbZQdl1blO1WGZstWyg7nw6eDF5LUMUJYrDRGkSlKmU/sZZhGcLOGa+JsCekGAGvLy7qVBEbrZ4FpVMxuDjM0fIDtqkB/Ms8hK1WQtg7TIx9cuy+bVMDeMKcxSprBCut4fw4fgkR1bP7pVEV9NjGj0yZ/q6hszTlnFNRENZ7TGpowTbc3Cz8jmi6B/RFYwYHRW7HVAJTCTZYg3vT9U+FAjpYYO6HaSneNifxgDEbgKfNw7gsliivGkfDUumGtuGrkhVTtvET0CQVsp7cDJSC1ojBEmsc75sTk7Zvs8pYYw2lQeV5XmJTCUpFC4OpIy+kU231YzRVhAPJU0O9bwHX7ugDuQbo8Xt3nyUOsMkaSJtKGDKDisLkhxL3s1Xl0Orcv1rVj1Zlf+6L59+lXpTkaAwWyakHNwbu4ShpL5iO1T7iP8Ff2Nv1uzlFezuprfDGBckmayBRpWMpwVZHGN/vMX1s0TaGFyhnu31vqzTR8QAAIABJREFUTKRn1EksrtEfopRmSmj1ohBTxGakUB4HtMlMGHCdlu7RlLpCByEvquPH0fIj/qT/HQVsVQO6fY/dELyrR5rnVDqaJLcyVW7kZP19xohKkqRCuogaRHqoHpdFFpnwmRqgQojHgfeA8UKIHUKIC5VSBvA94BVgNfCUUqp3Mb++H/8kIcTdppl9Ob5McCsbbaxrgzwnUaR2RVKbhyOHMV5WMlFuI47GdYEH+IH+b5o6YvQT7eSLKPn1S/lv6EqPsymBQtHJXo6XwS8HlO8YnQBnaq8DCX6ZpWCGlhxOHCrr+ab+X+4N/om95BYeD/6e8/T5dldra6mQ9fzdnOscV1EkOiiVrdwb/BOjZTWjZQ2/CTzEidoidqkC7jNmo5RKC226aFT5Xsk7fyY9wM+NizkqdnMvrmwyvjljGLcE/s5psd/wo/hlPG8d5H03SW7juVHPM1js4inzSG/y/6d1BP80D0+qFNMVFlr79NjGjxXWiLRtbgjxAfO4Ln9nKduoKs3v3tN2l3EikKhwtL2xM63NI+bRVFGGhaSFPI6O/am33d9t5IsIPw08CcAh2iq+G7DX2/+nvcscbYnX7p/mEUgBjSk2ZU1LYnEWFMljWSaPVFvUYIZcxwFaMj90mKxngtzBOmuYJ3S+SE2iTLQgEMQMi0GykbuCtzKuvMCTNFpuDmeHKiNIHKXgI8er5hqHWi/c5bNitzArdouXCBfStaREp/lO8Qiwk9veUvs4x+i9B9S0FFJAZ9zykmvAKZYVu4V/mHZxgnetiTxn2nQC//VPtFfewmhW7BYOjt1JM3k85cg4pUY1jncc+yYSw4LJ0Qe8kqpxdK43zmIXRXzsVBX6v6mDma0tIa40z4jfbiTE4HeZOT3yzOvox1sZkrt+FL+Mx80jiaPTSh5V9D4Rb7a0r4U7PgJcH7yfCp/cWlcVg1dVp8unZZFFT/iss+C/qZQapJQKKKWGKqXuc7a/qJQap5QarZT6/Wd4/BeUUhdrWu8J6Vl89nDDb+1RE1SGcOHOlZzCgh73Iw17Yv6GtjBp+8HaKo6X7yeVWPzESiQR7Snq300O58s13hpVAUus8Z6Xyg3xl4pWLtRfIRK32NliT+pbTFv65T1zIu+ZE2klD1C2TiXY1Vc+JWqaIzxmzvImcUOlvwd/zH2Yg+SKtO29oQ4Uir7pxmTS7nQXAd1lHPeWqxnoIrzbFXZXfmpPISQMTnZCpn60pYghFIZ7QQbsAw7QVqeZddsop74tyhar3CvvWNNsG/CHy2X8KPAMF2ovIQQMFzVsCZ/pabne9/aWpH1ZvoXWSQ632IV7v5s6Yl3e8RPkexTSxmDqM2rTdgdLwYaGOO8m1Vy38YhT6nOFNZJ7THuxMjV6D/81e15I+aXYDLSkZ3KZY59lSvJTCO8526H686A5hxVVLdxsfMPej3M9yrU9o3ywQo3kQzV+t5O3ssji88QXUwQ5i/9pDCi0B3NdE9CwOb2BMjOGFlMRcPhw4QyT1FiRTCt+0UoILbzpeA5aVDLXbncRdAyfqWJ90vZdqpCok1W8whpOTlDzSg8Ox568D9RWc6C2mmFiJ6fIt3g79EMOlCt53JyFoSRPG4cyUWzlHO3VPvfr0cXbuNE405sM/eHMd81JzNlwCpVWSUbDtDfGWZ3qm+ZgQGQyQG3IXghx+wsLZMJ+0vZiF+f2zmDrLT/384LLYc2JJleUcmXLgCQaxZ7AYU4Yt8Qnc1atSli3M3GtXVMmqnQEsJ+TfLSfTH7eXTR1xJl8zSvMvftjbg/cye/0+zlYLvcWV5Ds1c2EPCJMkluSylX2BH/LTM9vamTBxVpVkXH7IBKev06VbID6kwvfrRHsL1Z5CyBIJEH537nFyqZEbKhtSzvWb/r/N23bp4FrgKbqq3aFJdY4mp2Etr7IT2WRxadB1gDN4nOHm/2u91Ix/DWVnpgD9Dg5xbtIxljlhIKbfRnEfTWm/HApAIdqKzhFe9sLkxaLhFC3y38ryrGNo9QQd4cKc4bDUx0rdnCW/hq6sPi6/hZX6P/k2sCDacf9Y91Mrn52OQ9+1MQyaySgiGcwJl3PjN9D00wea6Il/Cky15sYC3wezbjq2QDdrvpmDH1X+3faNnei1LqR83Xvclf0BRelooVC2r0kt0PHdh9+7M05fp5wr7+0khdUfg7oTpVI3FtqjaZKfbrSh4McrqTraRwhd3KCtpgOHwfxP6a9eFvNcEwLGhxDbotlcz9P3Dudn3zGjGFMHSARAs7VF/Bo8AbeDv3Qu89LtjR6bZ81DqJF5ZLjVD6aZx1IA4UssKZ7C7i+oi+Li1SlCvdq+41Hl7+cF9QIE0/7zZOh6+jvq3zWW/UL9/kP+BZge0IH1F02PBa4rssWfh3Q1dZwL6SfujAP+qScsn7VLPYkvtIGaJYD+uWES7DXZc+P3zprCKOCicmqwBeO7C5MPUTUJfGo/ElIA4S9P39IuFlllrPpruRjJgzyJT9MlNs8eZWQMGiPGl5m/i6H7xlTGv8x96eKsiQx6t704evqVeYtr+bBdzazj9xMpSojIExeMA/gFae2di4RX9ZyAq6HqFbZ3LMj5cdcqT/tfd+bCbSvlY0GitSaFH4DtGcPaE9+mUZVQAt5dES7vmfFvuo9fdGK/LTYpQqQvZEWyAC/t9DvdTSUJJohySQ32PN59UaD19ufk5ySSwSFLUYO8KxTYjOWstATwK9PmsRvjxtFKlyPnJ8e8zX9Xc7XX2V1+ALeCl7Or/WHESgu1l5glRrR63760Scd0C6M3J0kjHs3BH/OgSMoEu09GriZogrd4ds1/9en9i6CXVAUehNZ8OuAnqvPp97RRX7SPGK3+pJFFn3FV9oAzXJAv5yoa7MnNH8WLMXJEj26MHnUnIVAUcFOXjH342VzOgVhnR2qjJjSaMu1if7vW7YHz0RSZdmTRoWoS/KwLrXGeJ/dGu1lTq1oKewBu1MFedo4lJfN6SwyJ/CmOYUV1ghWWcMwVOJVGT0ouaSf4RjCH1ljeNtMcM9afFm/BtLRsnQUAIRikTmepdZo8ojQn0b+aRzKK+Z+bLQGEfcd7yFzdppoPsDQnBhLf30sL5xle6D6YYf2TtLeZ7ZTVu8b2kKeC13DXYGb+bb2Mk8bh9GscrnPSCT9FNDBedorAJwmF/L3wK2MFl3X93Zxhta3sOFmle4pcz1v39WfS/vOhXsbe0rMmCS3AtgaikBVU3oS0k8CT3G9fi8apvccfNZYZI6nQRUgpcBQkgeMY73v/Oe0Q9ke21iwOOn3/XITCTX+8KiJTKpu5aIgHGCNNZRnjEMy9qdNhcl3FAU+cjR0/dEA1wM2uNh+fsudonP52NdzAA2stwazxgld90uhPHgGsEw37NzeHzm+P3kZDOUKWcfXtLc5Xi7iqsDjlNC35BbXxvcble4ocIRPB9eP7ugme4uNjBDVlNLCtfr9DO2Xg6Gk99xOdGSYDovemqRUMcRJ3OlpkZbJ8x+WBlXN3VMUXKTqgM6WiwF70TpebOMhc3av9gN21bZ55kzetvbib8ZJPGIczZ3xuVSrRCShq3VLRb89Q2fK4n8LX2kDNIsvJ9yJZ+Jgn1GV56vHnNOPfnqMI+QnNKoCCo16fha/mFuMr6OAoaKeoDCJ5g/lWfNgXnF0QAWKwbLBzppWOUleHn9YaY1lT5w5TmjJFqKvJUfEKBMtvGdNIiyiNFLAP83D0bA8/UWAcE4+H1hjud2wvRau966TEMvUaC8JqVB0ep8/diZ6VyomrjQqZB0KyWS5lbFiOwvVvlwSvxJBgt8KcK72Kv0djl7M51nJD9jnl5sTdvphT2auBMzBo0u9c5ytfUiJaGG0rKJThbhY/w+XBudRJNqZJT9mvjWdR82jmCy3sr9czR+M03nWPLjbsLfLWewtFlkT07a5vNAKUZf2nQspIByQPYbg93eqArntmjPU3B4lazhTfx0pbIrE56EDOkg0UqNKsCyFLixPu1Ol6oA66g0Di3KSfp8XStxz6aOdjJOVDPZlKLsQAibIHZyqJ8sLLTdH0K5C5IuEceNesxLV7HFnlzkJe67qgCtvJRx/9V5yM2NlFRMcz3pxbrK8Vijg9FcL8pIxg0eNWd53bkJceWHYa7dTFXsLvJjSeMeaQqujPZmpFvvw0szGTk7ATg4aVxpkqtyQdD2OlB9zorQTvmbItV64H9JL0ApAc+7LXwK38c/gbxktq+kvmvjlv1ewVlV4kY1yJ1S+TZUTIUhAE2wJn8lwafNd/QbmlfpTXiRmothKiDiaY5KHReJZ7a/bhr7ZTYRnMJnfl9M0uzCgxKJC1LHQmtrlPlJ1QIcJm34xQtQwRy6mXDTwlrVXUgJWVzH4/r3Qgs0ii1RkDdAsPnckdA4V5DjexFgiNEpRBbu0AbSqMANEE3Glcab2Gudpr9IRM6hThbSqMKC4zzjO82SCokHlc695HBcbP04yWE7VExVbS4WdYOHq+SlguTPpHqkt47eBhxkjqggTp5ZiNEwuiv2Iv8btzNmdzRGKaKcAm7PneoYkFgNFo8cB7VBB7/Mgscs+pmV5bQeLBgIYDBBNmGiMpJo7AreznQGcH/sxf4p/nXXWEKqsElY4Iu4J0X2ImPZ17IjYk5ebTOFyY6dWFHOR/h+vvSYU0+QGBspGTtAW87PCBewjNnCi9h6z5WJCxNlqDeATayTvWZO43TiFho70Un7thmC5OYI2FSaX3nlq7OudPty4hofriesKeUG9x0nO5fGazn3PVAnpGeMQRkcewVSCNhXmE2tkr/r+aTBM1vKJGoWlFPONadxknA7AQ8YxXBS9wmvXQdihlSTP8jHDrwOa8Nb1E23kivT70xoxeN+c4PCCEwiLGOutIexUxbQ518blDBfT5nGzh4h68oIaHTGHPuJ4+ywngB5xeIOFDsc5VQPSE8IXgjpVxGPmUWyz+rPZKvcoF21Rw3sXykWTt8ALCpMKUUu+81xlSkb8+XET+NvZ09K2B3XJ0RPL2W9ggHGy0lbYUBYoxR2BO6h1+LNT5QbeD30XgIu1F7hcfzZtXy4+VmPpVEHaVYg1aph9fmievubCtXVMLUvogCqlqFVFHrdSANfoD1FIO8W0MV3YAvsTxVakUJ5B7tfrbLPsz915ZqMEOEZ+kLa9v2jmjsDtSBSrrOHdUhFSdUBd8fwpcgsj5U6O1T5iktyaHMbvYg3YnkFzN4ssekLWAM3ic4c7WG2qa4dch2dVl6xZeE9kFhPkDkbIncTR+GngKc7SX6O5I05/0UKBiJC3azn/Cf3SE5aXQIloY7KwQ7FJOqA+Q8n1EuAL7abqgOaJKLO1D7g9cCdjZDX3BG/hsoBtzNXvqmOsrGKdY/C1Od6a9arC87IAScbBSU4VlpZO+9yHYntIpmm2p2YXRczWlnCS9j6Hy2U8GPwTPw48bXu5ZANTnPDy8U6IDWCNYSeByLg9cewtkxUFwgHNC8tnhBnj+/q/OUb7iMO0FZymvUkDhRyuLee50K+5Tr+f1s70iaW9rZUy2cJUbROrwhck77KbOLm/oooL99q9ZGZONLP3aRssg4rSf+/Hg+YcIJF85mpd+vFP81BMNCwkK9QITo59ZipwSfiuUxnrGP0jfhl4DIDzA/M5TX/La/Nv8xCkUDSk2PS1rX4d0J4n+vaowQHaGvZJeR7GyiqmapvYapV79+lJy9a2bCSfqGNIjpI1jC0vYKOTre2qC4yWNi3D1as9QK4CYHO9b/GIz/A3opwbWMC80NUMk3WMlDs903pFZXPGZwtgH7mJGXJN0jH92FjblpHD2hYxuPe86bS1O8+8ZYARQSlFvoh4iX/DxE6KRCchYvxMf4KoCtDhK5JgqYTe5Q/i3+fQ2O3MMw/gz8ZpgG0YVqtESc0DHR3+ThXEtGBm9G8ssGwDOebogLaQxzxrfxarCZw+o4Jy0UhcaUkhdHe9vC1mX9/ujMddFDPfmp62/RuxX7HA3I8YAaooSypJ2hNcoX5vfASuCTzCEGfxDF3rgK7duWdkpLL438JX2gDNJiF9OeFOfp0x054kUlGznPPpufqYNGzD88yUcoQHa6uYK99OSnRYYiVK0u1ufelU3BC4D8DR8LQTme41j/fC5KutZHmXviR+dAU/FcCFFcwH4HFHKNtFZVMn0R4KSo+WO5P+v68vdHmwtjJNU3NTXRsB4knJVkl9SZmg/AZpUMWps+zJNap02lXIJxfTdbKEwtaW7KnEpO7w7aye85kAML4EWfAuV9eP9pRXwlVO2FOYqa1N21ZJObvaY2yxyvnIx5cGvOzuAjrQfTNGBT1U+crwbme6z01dJAB2h2ElXXMOa1MuYKrNtMt5BjVnJFhijUuq0uU+spPEZlaGvsUv9Ed52ZrBEfJjADZYg5LGkKUOC6KTkHeshPcyoQO6zqrgafMItu5q52/mXEcH1Ma+oaq0cWl3kuRiBHnOOthTvMhmrWfxZcZX2gDNJiF9OVGabw/2QV1C49YMLVSvsqIDTuhIz9B2hEg2rF6zEiG7/zq8qK4y3/sKN0Q5UyZ7cZtUvicjs8waRU4vspP7gnLLMQCE/Rqnyqdsb+jwRPJ3Fy0pYeyWiJHETav0eYIgPUkh7nOZXBt8kP6yBaItvGZNI09EPY5fIwW8a06kWiUnePn3s3RHU8bvXAx2PDUjynp3zl82HdAj5DIAciLJhp2/Fvx6a8gePeZRjlHlT8iqViWsqUkk/1Q6SSipGqRFTgg+KZmwB2QyiDoIeVQAWxXiADYqu0Tqzi6ehz7BKXbh1rN3OY03Bu6hkyCb1aAkDU8XB8hV5Ikop2pvcX/wTzwY/CMAp2pvM1pWe+3eq4Gb9Lu8BRAksuD9xq/rOX5/U/ri7Y/lr6TJyvXVePS/l66EVLgbPWU/D3ahuTeNjryW6MXYm0UWewJfaQM0iy8nQro9OOta74bYBeyfcXtPOqCp8jAu1jmeyRafcVbzKSa6kJNAsL9cw+naQo/3WSISYSmXE+Z6s9pSwtFtKsejDvQWBcrev3AqQu0jNwH2JO5KVN1vJJe4TNI7lQE2WuXdHyND/fWYmbhv/vAc9LJqkVIcr9lUguHOQuHH+lMcpK326lFnQsyw2KFKiXYhcRMiTiHtnqHfkw7o5ynD1BvkOslBUiUb/XEfB7RR5XufPzDHsrmH+9cTXMPTzdZ2dUAj8cS740p6rWMYpgX12M/QWuc92l15KReDRYOXjOa+O1uUHdd2ZcJSUdPLLHE/hqcsSk/W3iNPRDlHX5CWrS5IPB9/cDi7AD86ZlxSQYWinAB/HreS0/U3vDrvdwZu4xv6G+Ds40ztNYZQx0hRnWT0QUKGTM+gA1okkqkNPcHPGVXYEYHngr/qsr1EeePSNlXOQqciVKNKFuzP6oBm8Vkha4Bm8bmj0+GadccXdLHOGsLoQMJjUJjTOx3QYWJnkjF0tpYo7TnUybj2ez3aVGbh577qgJb5KsqMlzu8bNkC0ZmkA+p6G1wd0BpKEX2o+uJHWNoG8MFOSc2gMJOypf14zJeRTNmYpJrZmdDbYgEuUo+a+vu3zCkQzCcVA4Tt3Syk6/KeHTGTBooICZO6DIZJlAAt5FHfmp6Y46LUJ+vzeZbi3KmKd9tQ2+njgGYKn6fCTSbqDlovF3+QEMgvoAMF3rWfZx0IZObafhqcqL3vqTcEu5Ax6ozvWVpVajU1BexwCi2sthIScanSUWfOHMbhg+w+uuoCJ2qLEu2JcH3gPh4NXs9/Q1dyd+AWAKaLNexQ/b2F6BHbLmS+OW23hfchdUEleqwulqoD6i7IHzeP2u0+ZJFFX5A1QLP43NHqZG0necv6JWfsBoXB4+YRBDAYQTXzzWm8bO5HfkinUpUSUQFa8+ys1LetKQCYCGos25M5WOwi4DN+3rMmeZ9zHC+bXwdUoIioAI8YR/OscTAfWON4z5zIamsYq62hSVmqYweXJk0Ubib3Emt8Ul3pVp8OaLPKS5LdCQiLD6yxfKJGUUwb5eziUeMonjYOY5M1kE7f8e4xT2C7le7NEwF7/4FQbtrxXLiTUFTpNKtcykUjy80RdshTBrjbPIGXzBlst/pzWuwaVjuZvi4yGaDhnNwuJWJSt/prDfzDOMoWo5cajSqfNhX2wrufOCoE1SkhfbCv2ej+eZTmBfnA4fL2F+nh+GHsZILYxrYG22B6a309v4qfz33GHK/NTwNPcVvgTnRM9pEbM57DnsYH1ljaVQgpBe0qxP2+/vjXYFXOucdDyd74Ep/MkV+PtmsdUJ0N1iCeNw7M2J82FfbC5h9m0AF1veQVDs+yBNvT7lJNBlPHRmsQa5Wtw+tSalzkuSH5bnRAxwzIJzeU2QNdo/pRLOxEotwMHvGKLvifbnTBkCF+EzsHhAZaEOE8la84STsb1RCWOs/bCp9x6UIK+2+lNYKF5t5MElu4z5jDi+YMBhfn8Kgxi3udyMKw0lx2Wvb12mKVowmotBLPsHLO+CNlX+eRooainACnam8xVlZ6C67hoobXrX35u3Ei5YE2qpojnBS9jpvjX/fGyUpV2m2EIUicH2jPABAgzv5yDdfEz+/6ByloUgW8aM7kHWsyN8XP4E5jLjfGT6dSJSTyulqPjijdM3SmLP63kDVAs/jc4U4USbI6uaVJnwt0k0PkSqpVKblGA9+JX8E18W+hlB32DYs4sbzB/MM4yqcDCgNlI6YS7FKFSN9o6ef7uYLRYZ8O6CDRQFjEGS+2s04NxVSCLWogD5hzUMgknb5gOJeV1ghuip8BJLykMXRWqeFeElKB6PS4bSuUbWC7BkdMaYwWVRhKY2+5ibFiB++pyfzE+A4GOjm+412kzaNC2pkOfiMzz9EBdT157tlm4oKFhEE+nUyU2xgjK+0wYksV61UFL5sz+bNxCsfLRUxz6tnXWkXcYxyfxOEECOmSUMhOdLDPJ3lGSnXy+SfMDkK2wL0RoZ9oI19EPMHuPDrZZA2kiPRsWilsz3dZfojF1gS7H6R7OQ/WVvJk8HdeHwYWhvm3eTDXGud6bYbJOuZq7yKE/Rx9HjqgxbSzTg3DshR5IsoF+sved/4JfbKjA1pemOyN9xtq/iS0CXK7581PxRhZzcn6e0nb1lhDaUvRAT1YrgSgv2qiJC/otLND666+p+ul0zAR2BW+RstqxosdQHqSlFsKFS3Ic8aB3GWc4H3nJtqU5Yc8Kk6qDugH1nh2Ol7WVF6zv1+pcKkXM4YV8ZvgIyA1kDrCuchrLXtxFSXIa6bNCf/QGpe2Hyns53gnJcyUa/hV4BFGiyoOkqsozg0y35rOC+ZBAJTkBekMlfIX42TqVRFSCkpFi1dVyK38tN6yjfWhsp5vHzqSIx3ureu1fKbsHm4I3MflgX9zUGgTg4rCFItW8kSEXDoxleDI6C18iL0AG0CDT37Oue7C5FTtLSQWGhYVopZXM2TKu0jVAa0QOzleW8wEuY2L9HnsIzay1BqdlKDVVQzefXayyKIv+EoboNks+C8nXAPBslTC8Iz6Kp4UDqFRK6NNhRktbSPtp/oT/DbwEO0xg2qrHy0qB6FM/mMdSImyeWwCizpVyIPmbL5nXJ6UwT1Xe9f7PNApxRn36YCudOrDz9TW8rPAk+yvrWWUrMZCUkwbl8cu49b4qYBdYSdEjDLHC+dqYWpYDBO1Ho+tXYU8vpjLP3MlgjQs+ol2ckXUFqwnwHi282Twd9RRzJnRq/hz/GssM0eyyRrIe6Yt4u56ewE6TPv17YzaxuoGJ3HD5cbuN7wfl+mJ+uuaUOwjNyWM22gLe4uNnK+/zMX6PPqJVpZZo9hq9adWFfOseUgaT3fioELi8bgnwZMa6k910Fg+F99QUW8bXEaU182p/CR2Ec2OQb1BDWG76t9l8llHzKCiJJcDhU0ziJI+4SkERaLDM3pPnjqY5eGLuF6/12vzz/ghnBH7JREVoE4V8rGZXC4yk9h9TwL4PWGMrKJG9cNSipfMGfws9m0A7jJO4PzYj712TSrfMQaSr3nUx8f064AWiY6khZGLtojBe+YEtqTwQ00kq9VwKq0STyrJrdZVQAdhRxh+pKihIKzT5siluQs1Vwe0Q9kLxxKHbtKRogEZ9+mAdhLidXMaa6yhrDSHewZoc2fcUzVI1QEdK3ZQ7PAfM3lA27rQnIwa9rvmcWiVBVZi7Hc5tnvJTVymP4+pBOdo89P2o5T9V0wruSJGG7lMl+sIEac9anC0/JCTnPGkLWJgyRBvWXuzUQ3GUop6VchSa7S9L+d8h4sawBkTNEm+Ix3nPu+FPrk0y1KMK8/nt/pDfEd/gVwiVKlSloQu9SqUFdPKY8Hr6OdQSgxlV1obLmt5PHAtGiZhYoSJUacKM1JtUnVAXfrQXmIzJaKVQ7UV7Cs3JoXyu3oV3KhWFln0BV9pAzSbBf/lRGO7PVjVtUUhx+Hy1ft0OJXF3zqPZqLcTrloIo7GJfo85mhLaOmMM0g2Uig6yW1YyRPB6+zMakAg6C9amCC2Ackc0zwf+d81Rj1DOIMOKNhJRTcG7mGwbOC24F+5ImCHtxob6pmsbfNCU22OvuAKa6SXyQwkJdS4cjvuxD/EqWTianc2UMiR2sfsL9dwsFzBY6Hr+WHgWfbRNjNK1nCgZmfYHyM/9Pa5zrANDFcHdC+5Jan/AU0m6Z+mwYzxHf0F9pUbGS938DXtHaIEGS7rmKJt5Wr9UYwMwn9GpI3BXcgwpU5Q/p+7iUcAs7Sl/DF4D0XORGwhOVxbTjXpIXjTgu0NnSilOEe3JbcyJRC5SVjuwmN1tf1cnKm/7rWZKdfwRPA6dKEw0VibQjnINMGu3dlmS4Z9CpyvvwrAcdoSbgraBvEl+jzO9xlA86wD0YSiPuWWuaVroZc6oDGDA7U1jEiR2JostzFDrmOnU5UJEvXcGyjwznGorGd0/3w219lG0fQUHdAmh788Xdp81K3SPJbOAAAgAElEQVQNybzdNp8O6Bn6Qp4MXcsEuYPJ2lZvwlld3ZKxUADY3Ol9HU/8SFGd9v3muraM1BB3XNlS62T0WwaYUe+edjg873IayBEx9orelzGkbCp7TJgm7T7omOSLCDkixtZd7Zytv8a39ZcA2FDbRjBazxPB6zCFxLTgv9a+THXoHW4EwpWyyhNRtjd0YDnPb46bpR5JqBDs7NRZv7ONUdI2WmtVIRWyniLRQT8nQhAQFuNkFXcFbgWghhJvPKtTxeiY/DrwD47VPuCA6F/IETH+ZtiFNFpUmBXWCCpSkrIOk58AyYv1nwWeTEo07Iq2v762G73hLLLoAl9pAzSLLyeO38sOgR84qhTMDAkjO1dwiei6OokLVwfUn2AEtg7o17WFSTqgfs9hpoo8u4NfBx4BoM3hz3US4mHzGC8En8ov623Wf3fIqAMasg2Ch82jk7Zva+joUQd0pEwO4e7lEy8/WFvpVRVysb62rVv1gd2VOp3lhCQrMpSWdI+2bEczG9Rg1lgVvOqrCNUXVAhb4iiAwUDRyBn6wqTvMwlt5wa1XiXM7Q6O0JalbUvVZ+/XRch5d+EWP/Cjiv40dmTWAS11PGOpOqAjHK9el/gMdUC74oEC7OpMXiyk3rkGlSgBHFEBXjJnsIsCUpHnVDjrCaFO+x1yi0TkiYjnTXT1OF3u8hJzHJVNnbSTOekx4/67qSfvJqWZvjHtbbUXypNhinvFKE50imEUighT5BbeCl1BFlkIIUYJIe4TQvzTt00KIX4vhLhDCHHeZ3XsrAGaxeeO382dzEe/Ooa9hhZD0/bd3k+wG0NoMMnyQG9be3mfXf5Xk0rPxt4duMkZh6TURm9VuV6y0ofmGC/E2RX6arsNslwDwP5lp0ouVVnV1MkuCvk0SPVStUcNjG50QHcXrpSV1kfVgUyYPLio50Z9gMsJ/KxxtGZXosmNJBt2/lrwKzMkzXwazHbKOfqTuqpVCSurEpQYVxJpszUw6bduCdpMUl1dobc6oG6VsUxJaX2Gs4j6umZLI0WcRdkdgTuwENSrorRseyEyJ7plgnt7XCmnU7S3/XsCEuF/13P/iHEMQJ8M0e4wmEREYqpILDB+rD/Ju6HvATDPPMDb/ryZnKD2ojmTBscI7yl7PosvD4QQ9wshaoVwuEmJ7XOEEGuFEBuEED/vbh9KqU1KqQtTNs8FhgJxYMee7XUCWQM0i88dQohek9YjKsCr+AZL3wzWldSQi5hPHsav87fJ4Uq2+rQ4d6juNSO7g2s87Ss3cI423+OA+icwl29anBtwjp3swWlReUxOCaH3hDxl8+RcHVA3VOrXAf2HM9G5SDpPLch6JyGrKxRmMC7in1YH9FNgkNjFBLmdaSKdMuF67nKCe3ZYa+qMf+bnBXYWM4BQyQaAX+ao3ScXtid0QN1sczeRztUBjfs0dF837cINGxiKaUEtdpb+cqfWvPiU6pCZdEC3O/SWepV5AVXd3DvvZPJxkr3rR2kfkytinKMv8K69B4UXPbg2fna3+y10hrI8kU53cRen52k2BWO444GP+vjnAJFQ4r30KxIAGD65sAE0ZuyD7qNmjPGVL5Vp/l+IK41tKrmoQL0q4nVnYZ6qvZrVAf1S40Fgjn+DEEID/gIcB0wCvimEmCSE2EsI8Z+UvwHpuwRgPPCuUupHwKWfVeezBmgWX2psUwMYG0hMHIXh3umAjhTVSUPv6drCpO8gMTkARFXmUHVfvAEKKBSJiXGMrPZ0QEtFK20Rw9OCbML2vro6oO6kvjvIkW4lJrt+dnc6oE8YvnKdpaOTklrMDMNBX8uHdqcDGlcaC8x9IZQe7uwtChyv28AMHNRl1miaVS61LcmJK2udDGTou64rOIkmn9ICrVYlu12Kta41cT690QHN60Vlor7QQVwjtYh2FLDLMQrnOzQIN/lnT+FE7X3PuxrOoHYAJAnl7wmkhrkVUO0s1twF657AYGkv2A5w3lX3uMonWdWqErJqC8x9+USN9Ma6vtR2B/s8XKP+LIc/HRAm39FeSJKWO1ef71WIeto8oo9nlcUXBaXUm0DqYDgT2OB4NmPAE8BcpdRypdSJKX9d1dPdAd5q5zPL4v5KG6DZLPj/j1CSzDsLizhPmYeTQ5TR7OANc28WmPtSENapViV0qiAtBbYHxi2taSI8Tb5y0UjAN8m+5eOAupmppdjEfylswySqdO42jucfxlEsNUfzgTmWDdZg1luDafeFt8cP7Z9UkcYNSS+2JnhVYwBafd4qV+/StUGCwmKpOYpV1nAG0MQg6rnPOI77jDlstfonHe8O42uedJQfMmhPVHrI9pi0daMDGlEBWlQOQ0Udy60RNk9VBrjT/D8eMY5iu1XGObGfs8JK6LEaSmY0mnJy8zLK40D3OqCPmbPsLF4haVJ5VKt+bHc8Ma4eZWUGT7QUMKTYPre/mSdnPC7Y3tcHzdnsaLSNl/HltqH7vfj3E22cBYArZ9WbkHZpfpBQYPeHyqXmKGJKQwhBk8rjYSPB1fUvoqpVCQDxcEny8X3RgpivCpStA5rer4KwzlZrAC+bmSV42lXIM1Ld697o40But2zv43BH29E1Bt0oQgU1bLbKPR3QAQXJYeTudEDdLPjx5QVdGspbrHJPID1T0tXwLjQn3eiC0sL8On6efXwtiHDu+QuOcP56q4J3zMkALDbHp+1Hc3RAP7FG87Y5mQPlSh41ZvG6sQ9DS3K5yziBm+OnATCyLI9qy/YYbrIGoslkHVDXTH7JnAkkxgT3Xrv3L6hrVKsSFpj7Miynk1H981lrDeV24xQGiUbWq8FstAbyqrL30+ToCjc776G/rPAGazDt5LDYHMer1gxPZsmlOXxgjUMXFsvU6KTzbnR0QN+w9uaq+IVcGz+Lq2Pf8t5R6JrjPbr/nqEzZZEEXQjxge/v4l7+bgjg57btcLZlhBCiVAjxd2BfIcQvnM3/AmYLIe4A3tydzvcGX2kDNJsF//8Rcnxhn7wB5Oqwv1zNFjWQoNHCefGf8734DzAtxSBhZ7HGc8r5u3EiL5sJHdBy2UxcaVSp0qTKM37P1zYnvOd6QAW2pExIGBwiV9BIPi3ksFSN5XbzFCKEkjLa9WCYrdYAe5IjUVHJQGODGuzTAY14g/46Z7JO6IBKJsltdBJiP7mOMWIHH6uxXGucSwc5hIh7hu339We92tP+kGSuM3+7GqfuZJaxJrSIk0eEveVmxopK2yvSvIOtaiBLrAncaJzJoXI5+zmZzTVWP/5qnpyWBZ8T1AgGAyywpjnn070OqD93p40chop6iEcoFu0MEo1eUlAJLWywBnmLAj+kgPywzoCCEMsceZtMOqDTtXWcr73i9aGfY7htVgnj3RL2RXNlcCbL5PKnWoYRMSeg7bb3EmwjaomagGUpikU75+qJpDm/p3qS2AJAeUEylzfHV30n6CsDOVlupSKDDqgrxzPHUV5wsckqt41P37PsZj4PUvWeobtF2WF9t+pYp+MZc3VAx8lKRsqdng5ofgpNw9MB1UM8bRzKrfFTEn1z/u2XF/TapeqArlAj2eWUg8y0qCrMyRytcDnW0yoK+V3gIRDS1gF1HojNziLOkpKPlL3g3ZDBuykczm89RUyT6/m+/ixlNDNV20BhOMB71mTetOyCE0W5AaKhUv4Q/wZ1TrUrvw6ocM7Y5dEWiAgzR5RworQ1Wl1OaMCKMEg0cLT2McP1BopzA8TR+Lr2BiNEDeNlJfUkxsgi2hECboh/E7Az+10MFA1oGEyQ29mu+nvjQrkjP+eW3HSVBlJ1QKfKjfxOf4A5cgmb1UBi/kTGLl6DVC3YLPYIDKXUdN/f3Z/FQZRSu5RS31FKjVZK3eBs61BKXaiU+r5S6i+fxXHhK26AZvH/AfKcKhudPsJ/wUCaNNvLuY/chKEkN+l383DwRtqjJpWqzNYBtWIsscZTRkIHdKdVzKPmUVxpXJYUNj3BJwE0zJm0XY6XAtY4ItWT5Da+rz/HYdoKDpPLKKGV4aKGq+MXcFP8GwDsaLC5l0OxjSdXB1THZIyo8oyEVhX2uG3jnMna5aVqWASFQbGws8o7CTNFbGZh8ArayOWs2FXcbx7HEnMca60hvGbYXl5XXxCgzbQnr86obYy5k5ybpT5zRAmX68947TWhmCS3JrQjY63MEGv4qf4k1wfuZaio4wNrHButgTSqfBaaU9NCtePLC4jF4hwt7YSZNB3QlEi1Xwd0ithiXw8zyivGdK6Kf8vLgF5mjWajGpyBsWbfn7aIweDiHA5xDKZMOqACknRAG9vt63Jz4G9emyfih3Nh7Eo6VYBqqx/vmxPS9pGKzrj5qbLgJ8ltgMBSiheNmVweuwyAO+JzOTuayA+oV8WYSqb1wi8B5feA5ouIR/HwozUS5z1zQpIXHWye8XJrJFutAbR02s+Ay/fLI0LIMeDGy+0U5QS8Nq5UkImGIsFDdTnObSmJah73Wik0FMvVKJaao1lsjvc8oI3tMY9nmqoDOkVsplS0OueYzvV0+5WKiFOeU1rO954OqH3v3ESgSWILF2ovEVU6Z2j/TduPqwNaRjO5IkY7ORytfUQBEVoicebKdzjLkc9q7oijpM5aVcEmNQhLKapUqbdQcu/leEcarlWFkVJ4vHF3YWwZiXNqMyRNHXEGiwaPn7rdKmO6WOtJzBlImlWOF80RvjdniKgnhyhrrAq2qIHcZZ4EwE5l03xc5QV3nHLHC1cfeR+xEV1YzNDWcZC2KikxsCsmSnMX9ySLLwSVQIXv/0OdbV86ZA3QLL5YhB2PXoNPGsYy+FvnLCbIHRSKDgw0TtcXMlOupTUSZ4iot3VAG1dzX/BmKqRtCAoE5bKJsY6x5zd+cn16mMc5xqg78HalAzpOVvLrwCMUik5+H7ifnwWeAqC5qYGp2iZaHB6nm1D0sTWWGQ63C2xvhwt30HdFtAdj81onSjtS0kQ+h8jljJA7mSHX8GToOi7WX2SGto7xspKj9KX2fnw6oxsMOzQm4/YkPSUliUlKkcRzTYNpcIH+EkMdjcGTtPfRhGK0rGGitp0r9acz6oCa0TYKReaa7WlC9L4Nh2ufeJ9n6x9wfeABT3A8JAxmax9SSX9SYVpQ2dSJaSnOcLi8kQwGqCsh5S481u60jZi5WqIi0GFyGfcFbyYgFIiE0Z6pvy52tcWSxOB3B6f9v/bOPUiuqs7jn2/3ZGbyImQSgZCQZKKBgAhBAREEkbVAXRVcUIO4worrY0Gr1qVWLHardrfKWqVYWa3VUsoHrlsVlPhIkEcAgVVcQpBnSEhCHjzyMAkTMiSZJDPT97d/3HN77vR0z3QnPd3TM79PVVffe+6jz69/93b/7jm/8z3ZuBfrg00r+Xbz9wD40rilXNe0LL/P8ugssorYWRBzdezva+1Nt4CWoqs7x7uya/u1dAIszG7inOxa9jApH0j8NnRL72IKXd3xtXmMOmmfPpGXO2LfnBVaxd+Sif/DOsN1f0bQyXz19f7Xwv5EKD7XzV81PcqPm29hYXYjZ2fX5f9w1u3YOyBwTZib2cFpinU05xRoVQK83LGflqaBf117uuJrfePOMIK/QAd0f2hNPZbdTFA3Zxy6bVAd0NOClmcTObIyxinHlt1dfLTpj3y8Kfbn5tf203ywgx81/wdZReQi+GN0an6a16T1MUkpmKyDvPTa/vygxHyOa2oijl0Hm9i0ax9zwu9ah03mhMxrZGUcReyTcYqYogNcGTRu16fijeejdpqIODu7niZy/CDof7aFoD4ZrFjIuWFWrA+kHtavb1raT/O31HPYxl2uAzqCeAKYL6ldUjOwCFg2xDF1wQNQp770FhFK37mGz2vpkIdmwrGLUgOMINYBvSr7IE2p/tSkyxj6T8t5JNww7k4A9oUAtIcmFucuyrdSPZvrP7/98OmAxkF8eo5xiP8ciwVqaWZn+o8MPkV9XdLnZVfTW/CPs+7Pe4dFB/Ti0F385iLC4wmrtnayyWawNjqBh1L+rITjw6j9JnqZUUQHtNgf7Myjx/dL56gm78quGVB2qCDGnFblaQ4Twf40O5jGnq6eojqgU8MgpEId0HmD+AoYVh3Q448e2DWfP9/BwXVAO1JpLPuslV/mzqeD/jmMgvw87UPRfDC+hy4Ok0S06Y0BOqDPhO90RW4Bf37jYD6toazzD6IDujD40lKt5o/byfkAdxIH8oHn5oKHLWfEk5V0m6QPl9pB0mLgMeAkSVskXWtmvcD1wHLgBeAXZra6NlWuDA9AnfrSefg9A4PpgE4vyCVMhKCB/ECh3Xb4o7HTJPmIiZh6QheteR3QlbmThtQBLTUNZSlmRtv6rSeBdSLDtOONg/lut8OlcNrDAz25YdEBTWxX0U74yjhtVnV1QJOcwOHmkuwTAEw40D+wS+eAPl0QHB4pH8rE4uRJfiDEA2RWbe27fzZYPH5hY9Q/XzLpVZjcWn7+X7k6oGtsLlB8UFrFhCbQq0LubZJ685Pmm8kS0WUtNBcO9BW0aWA+cjFag3uaQ7d6Ot0nsXdKCOKTQPFHvR8AqqcDOislMXWm+pQSvtJ0Jw82x9O9Ls/1Td6wOK2GAdzZe0FeM7gaWrxOVciZ2efM7K5SO5jZlWY2w8zGmdksM/tRKL/HzE4MeZ1fr12VK8MDUGdE02kTuI/z8utKRQKV6IDmp7wDXg2DLNI//i9HpeTQhibJw3tr5iU+m703302algrqJYuZMXVi/OdXqPXXaZM4OfNKRZ873uK+WoUZoc7JxNN1prtpf57r/0fTb37wplbWRSUHRwLFBxcMpgNa2IJY7bhtpl5jQeZVztLaAdsey50MpAbBVInXu2qjA1oqCE9LDvWkckCroQOaaFcmLZOJDmg65/X3uXgSh00cT28UT/sIfQ91R+rjYjqgySjxUg+JW1+vXAe08KH0nZm1jB9EBzRppbyp5zODnndyaKCewMB565PWy09m467y9jB7VPLt9umA9qWe7Cloje0uQwc03bKcnoK1lA5o4QQVB2jh/vBgvq3godJ1QJ3hwgNQZ0Szw6Zy0rg+qbL0rCu5QXRA36Kt/X56L8/+Ib98Ysi7TGsM5siUzG8qpNSnRvQNLgBoz+zIB6cz9Rr7D+Xyot1vhAA00QHdxdEDT1gm4zPxZyRzV0Pp4PzO3AV9K23t+dHHULw15ggGfwP9dUQPWDN3586GlsOfnWliaHUrNkvNWptNp01g+57+aR2rorn55aYycigL2X/oyHVAt0TTDnsk/Wv7KtMBnVSGDui4CoL0ZEDQNOJu5ddDUJiMBE8G/1SLD2VXcHTIdZxYJKgD6M4Nvw7ojhAEb7PpRKZ8b0YhlVwax2XiAPLdmXjimta8Dmjfg0Uy8n+vjef+3Dt43ubl79MDQ6TUDKgbfUH9NU3LgVgH9PqmpQN0QJN0gV+lfyMcZxgZ1QGo64A2ENNP7Lc6Xt0syV3AUXQxn1d4PHcSj+beypTx49gRTaHLmtl7VDzS9P7oHUCsA7or5HdNV2c/HdCHglYo9P3AT0/pgLbQTS9ZvtNzGd/v+UtW52bzXDSXV6I3sTk6lr02Pv8nsGD2MWyzaflcz6R8ZbSAu1LT3aVHIa+12fnPgvhPYVVuLuujWRzHbmayg+/2XsqtPZezLZqW1wvssmZu7v0E64u0VGZb+uuApmfJSUhaRg5ZE3ttPLO1k9XRHHosA9lxfKv3Y3y756Nsjdr4h+4v8EJQA4BYO7RY0DRh4kS2WduAchjYVZ2WNVqcey+nayNIdNoENkXH5QcBrYzi0ehbbOAgpIzghLbYZ7f2XlH0cyHuOrw9dwnbO+MA9OQZ8bXwpZQOaCJLlXxXz6eC01JMn9QyZPrEYKzOzSaDIYkOm8wdvRf21ScVvOyI4nSJ3tb+3c5vmtR3HRVOHBCV0AHdGrXxSO60ovXpsmYmhG79J3OxDuhuJucDqRdDV3t70HZsDUFgci21s42XomPyOqAzpvS/7vKyTIPogJ4846gB8k0J66JZZEKus4o8SLWX0JxMehc0bjz/1H1N0AFtyfea/Cp3PhDfi/fn4t+M/y3yHSU6oE9F83k8WsD7Myv5Te5cnormM2faRL7Vczn/2vPXALzlmElsD2kuG6MZZDPxw0ZC8s+zNHcuEP8miL58zCRtpqUpk9cBnTehi/nHTmJNNJtbej/OTHXwir0pVsOwuJVyj00kMvJ6xGkd0PXRTPYxnqdzb+bu6Jz8g3oSQCc2P2P90zk6bAr35M7md9EZXNf9Zf6x+2/5cvd1vGx9reyZEhHD/GNcB3QYGDIHtNGR1aJvqc5IioDK+2wqpwkGyRgf3Yxl22Fs2++2j13Gsv1j2XYY2/bXwvbxZja6GwnHQgBaKyT9ycyKTz8yyhnLtsPYtt9tH5u2w9i2fyzbDmPb/rFsezUZ1dG14ziO4ziOM/LwANRxHMdxHMepKR6AVpdhmau1QRjLtsPYtt9tH7uMZfvHsu0wtu0fy7ZXDc8BdRzHcRzHcWqKt4A6juM4juM4NcUD0AqR9DFJqyVFkkqOgpP0fknrJG2QdGOqvF3S46H855KqO9HzMCKpTdIDkl4M7wPmeZT0XknPpF4HJV0Wtt0uaXNq28KBnzIyKcf2sF8uZd+yVHnD+h3K9v1CSY+F++M5SZ9IbWs435e6h1PbW4IvNwTfzk1t+1ooXyfpklrWuxqUYftXJK0Jfv6dpDmpbUXvgUaiDPuvkbQrZednU9uuDvfJi5Kurm3Nj5wybL81Zfd6qW9WiEb3vaQfS9op6fkS2yXpO+G7eU7S21PbGtrvdcHM/FXBCzgZOAl4BDizxD5ZYCMwD2gGngVOCdt+ASwKy98Hvlhvmyqw/WbgxrB8I/DNIfZvA3YDE8L67cAV9bZjOG0H9pUob1i/l2s/cCIwPywfD2wHjm5E3w92D6f2+Tvg+2F5EfDzsHxK2L8FaA/nydbbpirb/t7Uff3FxPawXvQeaJRXmfZfA/xXkWPbgE3hfWpYnlpvm6ppe8H+XwJ+PIp8fwHwduD5Ets/CNxLPCHeOcDjo8Hv9Xp5C2iFmNkLZjbUfHhnAxvMbJOZdQN3AJdKEnARsCTs91PgsuGrbdW5lLjOUF7drwDuNbOuYa1VbajU9jyjwO9Qhv1mtt7MXgzL24CdwMCpjRqDovdwwT7p72QJ8BfB15cCd5jZITPbDGwI52sUhrTdzB5O3dcrgFk1ruNwUo7vS3EJ8ICZ7Taz14EHgPcPUz2Hg0ptvxJYXJOa1QAz+z1xo0kpLgX+22JWAEdLmkHj+70ueAA6PMwEXk2tbwll04A9ZtZbUN4oHGtm28Pyn4FjB9uZuFWo8Mfp66Hr4lZJLcUOGqGUa3urpD9JWpGkHtD4focKfS/pbOIWlI2p4kbyfal7uOg+wbedxL4u59iRTKX1v5a4VSih2D3QSJRr/+Xhel4i6YQKjx2plF3/kHbRDjyUKm503w9Fqe+n0f1eF4pPxjvGkfQgcFyRTTeZ2dJa16eWDGZ7esXMTMUmau47zwzgbcDyVPHXiIOXZmIZi68C/3akda4WVbJ9jpltlTQPeEjSKgiTzo9wquz7nwFXm1kUike0753DQ9KngDOB96SKB9wDZrax+BkalruAxWZ2SNLniVvCL6pznWrNImCJmeVSZWPB906V8AC0CGb2viM8xVbghNT6rFDWQdxk3xRaTJLyEcNgtkvaIWmGmW0PQcbOQU71ceDXZtaTOnfSgnZI0k+AG6pS6SpRDdvNbGt43yTpEeAM4JeMcL9DdeyXdBRwN/HD2orUuUe074tQ6h4uts8WSU3AFOJ7vJxjRzJl1V/S+4gfTt5jZoeS8hL3QCMFIUPab2YdqdUfEudIJ8deWHDsI1Wv4fBRybW7CLguXTAKfD8Upb6fRvd7XfAu+OHhCWC+4pHPzcQ36jIzM+Bh4txIgKuBRmpRXUZcZxi67gNyg0LgkuREXgYUHWk4QhnSdklTk65lSdOB84A1o8DvUJ79zcCviXOklhRsazTfF72HC/ZJfydXAA8FXy8DFikeJd8OzAdW1qje1WBI2yWdAfwA+IiZ7UyVF70Halbz6lCO/TNSqx8BXgjLy4GLw/cwFbiY/r1AI51yrnskLSAebPNYqmw0+H4olgGfDqPhzwE6w8N1o/u9PtR7FFSjvYCPEud3HAJ2AMtD+fHAPan9PgisJ376uylVPo/4z2gDcCfQUm+bKrB9GvA74EXgQaAtlJ8J/DC131ziJ8JMwfEPAauIg4//ASbV26Zq2g6cG+x7NrxfOxr8XoH9nwJ6gGdSr4WN6vti9zBx2sBHwnJr8OWG4Nt5qWNvCsetAz5Qb1uGwfYHw+9f4udlobzkPdBIrzLs/3dgdbDzYWBB6tjPhGtiA/A39bal2raH9X8BvlFwXMP7nrjRZHv4HdtCnN/8BeALYbuA74bvZhUpJZxG93s9Xj4TkuM4juM4jlNTvAvecRzHcRzHqSkegDqO4ziO4zg1xQNQx3Ecx3Ecp6Z4AOo4juM4juPUFA9AHcdxHMdxnJriAajjOKMeSZdJsqBfOKKRNFfSJ+tdD8dxnOHEA1DHccYCVwKPhvd+hFmMRhJzAQ9AHccZ1XgA6jjOqEbSJODdxKLSi0LZhZL+IGkZYbYWSf8saZ2kRyUtlnRDKH9E0plhebqkl8LyNZJ+I+kBSS9Jul7SVyQ9LWmFpLaw35sl3SfpyfCZC0L57ZK+I+n/JG2SlMyU9Q3gfEnPSPr7mn1RjuM4NWSkPfk7juNUm0uB+8xsvaQOSe8I5W8HTjWzzZLOAi4HTgfGAU8BT5Zx7lOJ57tuJZ4B5atmdoakW4FPA/8J3EY8k8qLkt4JfA+4KBw/gzg4XkA8zd8S4EbgBjP70JEa7jiOM1LxANRxnNHOlcC3w/IdYf23wEoz2xzKzwOWmtlB4KCku8o898NmthfYK6kTSI5bBZwWWl/PBeuiF4cAAAFbSURBVO6UlBzTkjr+N2YWAWskHXsYtjmO4zQkHoA6jjNqCd3gFwFvk2RAFjDgbmB/mafppS9dqbVg26HUcpRaj4h/XzPAHjNbWOLc6eNVYh/HcZxRh+eAOo4zmrkC+JmZzTGzuWZ2ArAZOL9gvz8CH5bUGlot093fLwFJt/0VVICZvQFslvQxAMWcPsRhe4HJlXyO4zhOo+EBqOM4o5krgV8XlP2SgtHwZvYEcQ7mc8C9xF3onWHzLcAXJT0NTD+MOlwFXCvpWWA1cU7qYDwH5CQ964OQHMcZrcjM6l0Hx3GcuiNpkpntkzQB+D3wOTN7qt71chzHGY14DqjjOE7MbZJOIc7z/KkHn47jOMOHt4A6juM4juM4NcVzQB3HcRzHcZya4gGo4ziO4ziOU1M8AHUcx3Ecx3FqigegjuM4juM4Tk3xANRxHMdxHMepKR6AOo7jOI7jODXl/wH8nV9eOimFyAAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 720x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqAAAAE9CAYAAADULNDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd1xWdf/H8ddhTxe4RXGggIBsNXOlppZa7m1Z5qhsaeV9d//SsmG2TBtmZVqWkbYsm+ZNmaIyVRw4QREQRPa+ruv7+wPkdqGIF1yMz/Px4PHorO/5nAuJN99zzverKaUQQgghhBCippiZugAhhBBCCNGwSAAVQgghhBA1SgKoEEIIIYSoURJAhRBCCCFEjZIAKoQQQgghapQEUCGEEEIIUaMsTF1ATTAzM1O2tramLkMIIYQQ4oby8/OVUqpedxI2iABqa2tLXl6eqcsQQgghhLghTdMKTF1DdavX6VoIIYQQQtQ+EkCFEEIIIUSNkgAqhBBCCCFqVIN4BlQIIYSoCSUlJSQmJlJYWGjqUkQdYGNjQ7t27bC0tDR1KTVOAqgQQghhJImJiTg6OuLq6oqmaaYuR9RiSinS09NJTEykY8eOpi6nxskteCGEEMJICgsLcXJykvApbkjTNJycnBpsb7kEUCGEEMKIJHyKymrI/1bqZADVNM1D07TVmqZt1jRtnqnrEUIIIWqDzMxM3n///fLl0NBQRowYYcKKYMWKFXz22Wc3dcy6det49NFHr7tPaGgou3btKl9evXr1TZ/nooULF7J9+/YqHSuqptYEUE3T1mqalqppWuwV64dpmhanadpxTdMWASilDiul5gITgD6mqFcIIYSoba4MoNVFp9NVer+1a9cyZcqUKrdRkSsD6Ny5c5kxY0aV2po/fz7Lli27pXrEzak1ARRYBwy7dIWmaebAe8BwwBOYrGmaZ9m2UcBW4OeaLfPadCXFpJw+ZuoyhBBCNGCLFi3ixIkT+Pr68vTTTwOQm5vLuHHjcHd3Z+rUqSilAIiMjKR///4EBAQwdOhQkpOTAYiJiaFXr174+PgwevRoMjIyABgwYABPPPEEgYGBvPzyy3Ts2JGSkhIAsrOzL1u+aPv27fj7+2NhYXFVG++88w5paWmMHTuWoKAggoKC2Llz51XX9OOPP9KzZ0/8/PwYPHgw586dIz4+ntWrV/P222/j6+vLjh07WLJkCW+88QZHjhwhODi4/Pj4+Hi8vb2ve80dOnQgPT2dlJSUCj9bg8FAfk4G+dkXbv4bI65SawKoUupv4MrvajBwXCl1UilVDHwF3FO2/xal1HBgas1Wem0xv3yC0yc92btiMmeOHzB1OUIIIRqgZcuW0blzZ2JiYnj99dcBiI6OZsWKFRw6dIiTJ0+yc+dOSkpKmD9/Pps3byYyMpIHHniA5557DoAZM2bw2muvsX//fry9vXnhhRfK2y8uLiYiIoLFixczYMAAtm7dCsBXX33FmDFjrhpOaOfOnQQEBFy27mIbCxYs4PHHH+fJJ58kPDycb775hlmzZl11Tbfffju7d+8mOjqaSZMmsXz5clxdXZk7dy5PPvkkMTEx9O3bt3x/d3d3iouLOXXqFAAhISFMnDjxutcM4O/vf1UANhgM5GdfIO/cCVTKAexy4jHLPXfT3xdxtdo+DFNb4Mwly4lAT03TBgBjAGsq6AHVNG02MBvAysqqeqsE2vkNIepMBD1Sf8Dy81+IaDwI5+H/wtUjsNrPLYQQopYaMODqdRMmwMMPQ34+3HXX1dvvv7/06/x5GDfu8m2hoTddQnBwMO3atQPA19eX+Ph4mjRpQmxsLEOGDAFAr9fTunVrsrKyyMzMpH///gDcd999jB8/vrytiRMnlv/3rFmzWL58Offeey+ffvopH3300VXnTk5OxsPD47J1l7axbds2Dh06VL6cnZ1Nbm7uZfsnJiYyceJEkpOTKS4urtSQRRMmTCAkJIRFixYREhJCSEgIcXFx17zmi1q0aEFSUhIGg4HC3ExUQSY2+hzsMKBXZhRaOKDZNsHGockNzy9urLYH0GtSSoUCoTfYZw2wBsDe3l5Vd02tXLrQ6pFPOJ+ymOPfL8MneTOpm46i/rMPzazWdDQLIYRoYKytrcv/29zcHJ1Oh1KK7t27ExYWdtm+WVlZ123L3t6+/L/79OlDfHw8oaGh6PV6vLy8rtrf1tb2qmGGLm3DYDCwe/dubGxsKjzn/Pnzeeqppxg1ahShoaEsWbLkujVCacgdP348Y8aMQdM03NzcOHDgwDWv+WIdOdmZtHZywJBy4IrQ2RQbh8bYm5nf8Lyi8mp7AD0LuFyy3K5sXa3l3Ko9znPfJ/P88+iTTqKZmZGTdYGjHz+Afb9HcQ8abOoShRBC1JTr9Vja2V1/u7PzTfd4Ojo6kpOTc8P9unXrRlpaGmFhYfTu3ZuSkhKOHj1K9+7dadq0KTt27KBv3758/vnn5b2h1zJjxgymTJnC//3f/11zu4eHB8ePH6/w+DvvvJNVq1aVP68aExODr6/vZftkZWXRtm1bANavX3/ZtWZnZ1+z3c6dO2Nubs7SpUvLe1yvvObioiL274vCvUNLbPQ5nDpygIl39qTI3IHisp5OCZ3Vp7Z3zYUDbpqmddQ0zQqYBGwxcU2V0sS5FZ19bgPg7NEoOuVE4L51LLGv9ufgzq0og8HEFQohhKhvnJyc6NOnD15eXuWh7lqsrKzYvHkzzz77LD169MDX17f8jfL169fz9NNP4+PjQ0xMDM8//3yF7UydOpWMjAwmT558ze3Dhw/n77//rvD4lStXEhERgY+PD56enqxevfqqfZYsWcL48eMJCAjA2dm5fP3IkSP57rvvyl9CutLEiRPZsGEDEyZMKL/mTZs28fTCBXh398DPx5Pov37GVpdNrt6KY6dTCBo6EfuWnbFr5ISZhM9qpV18G87UNE3bCAwAnIFzwGKl1Ceapt0FrADMgbVKqZdvtm17e3uVl5dnzHKvEvvPFlx9+uLQqOk1t+fnZrH/hxV0ObYWZzI5YumJy2O/YO8oz5IIIUR9cfjw4aueeazPNm/ezA8//MDnn39e4T6jR49m+fLluLm51WBl/6OUoqggF33uBax0WViiR680Cs0vPtPZlB+2bCEqKoqlS5fWeH3X+jejaVq+Usq+gkNumqZpZsBSoBEQoZRaf4NDql2tuQWvlLrmn09KqZ+pJUMtVSQjLRmPP2ag/8Oc/bZ+FHQaSsc+42jR9n8PSts5NKbX1MUUFixkz5Z3MUuKKg+fJ2P30NEzSJ4VFUIIUWfMnz+fX375hZ9/vv6v6GXLlpGcnFzjAbSoMJ+SnHSsSrKwoQSD0igwsy+9ve7YFHvz/0UgnU7HggULarS+W6Vp2lpgBJCqlPK6ZP0w4B1KO+4+Vkoto3QEoXZAOqUvdJtcrekBrU7V3QOqKykmLnwbOft+wCX1v7RVpUM0HDPvwvm2g2gReC+dvHpdM2CmnDlOs4+DOW3hSm6vhfQYNEmCqBBC1FENrQe0tikpLqIoJx2LokxsKEIpKDSzRW/dFJtGzbCwsLxxIzWsqj2gmqb1A3KBzy4G0LLx048CQygNmuHAZGAUkKGU+lDTtM1KqXEVNFtjJIAamTIYOB0XTdLeb2l65k+6lhzBTFOk0JwE537Y+YykW8/hWFmXvvGnKykmeusaWu9bRTuVwnHzzuT2fpoed0yUICqEEHWMBNCap9frKMxORyvMxNaQj6ZBIdborJtg7eiEpZX1jRsxoVu5Ba9pmivw0yUBtDewRCk1tGz5X2W7ngGKlVJfa5oWopSaeK32apIE0Gp2PuU0J3d+i+WJ33DPi8BWKyZH2XLUsSeq21249RlD42bN0ZUUE/XTh7Tdv4qWhjRSZ+6mjWs3k9QshBCiaiSA1gxlMFCQmwH5GdjoczHTFMVYUGzZBCtHJ6xs7ExdYqVVEECLgUtntVlTNrzklfu5cnkAHQcMU0rNKlueDvQEngFWAfnAEaXUe8a/kptTa54Bra+cW7XHeewTwBMU5OUQs+tHig/9ROeMf3CKDKUk4l8csOlBfue76NxvEo3vns3RqP/iWRY+wz6cj51bX3wGjJMeUSGEEA1W6ctEeehyz2Ojy8YOPTrMybdogrlDM2zsHLHSNFOXaSw6pZTRZrJRSuUDDxqrPWOQAFqDbO0d8R0yBYZMwaDXcyQ6lIzI73FJ+QPvQy9hOPgyR6y6k91xOCltu2Dn2JQOKb/SJvkz4na9QVGfZ/DuP0aCqBBCiAbj4nOdlkUZ2FBc+jKRuT1Fts2wdWyKg/xOvFSdGT9dbsHXAspg4NShcM7t2USrs7/T0ZAAwFGLrqS2u5MSZY5Hwpe0Io04C3dsJ3xI+66+N2hVCCFETZNb8MZhMOgpyMlAy7+ArSHvf8912jTFxtEZC8va9zJRVRn5GVALSl9CGkRp8AwHpiilDhq57FsmfzbUApqZGZ28etL7wTfo+Px+zkz9m7COj6KhuD3+XQYmvEMWjmy1GYGFPp/GTqVz12ZlnDdx5UIIIRqSFStWkJ+fX+XjXV1dOX++gt9dSlGYn0Nu6ikMKbHY553BUhWSb+VEcbNu2LTxxKFZayZNnszJkydv6rz3338/mzdvvu4+69atIykpqXx51qxZl81TfzMGDx5MRkZGlY6trLLx08OAbpqmJWqa9qBSSgc8CvwGHAa+ro3hE+QWfK3k4tYDF7cewMskJ8SRsPNrGp/6heEFW9FQnHlvIAdbDaVF8nbOWDXBYsjzuAcOMnXZQggh6rkVK1Ywbdo07OyM95KPrqSYouzzWFx2i92BYrtmWNs3xt78fzMSHTx4EL1eT6dOna5qR6/XY25e9dmL1q1bh5eXF23atAHg448/rnJb06dP5/333+e5556rchs3UpfHTwfpAa31WnfoRq8p/4fHc7u4MGcfe7s/R7ZlcwIS13FeZ0ObwhO4/zSGyFcGczJ2j6nLFUIIYWIbNmwgODgYX19f5syZg16vJyEhATc3N86fP4/BYKBv3778/vvvxMfH4+7uztSpU/Hw8GDcuHEV9nCuXLmSpKQkBg4cyMCBAwGYN28egYGBdO/encWLFwOwfft27r333vLj/vjjD0aPHn1ZW0oplr36Ep7uXfH19uSjd9/CgBkHU3V43DGRec+8SFDvviQmXj5m+hdffME999xTvuzg4MCCBQvo0aMHYWFhREZG0r9/fwICAhg6dCjJyclXXceLL75IUFAQXl5ezJ49G6UUmzdvJiIigqlTp+Lr60tBQQEDBgwgIiKC1atXXzat6bp163j00Ucr/KwBRo0axcaNGyv9PWuQlFL1/svOzk7VN2nJp9Xur15V0S/2Ubv+E6yynm+p9M83Vj+9PU8lxR8xdXlCCNEgHTp06LLlCat3XfX12a5TSiml8ot019z+dfhppZRS6blFV22rzPlHjBihiouLlVJKzZs3T61fv14ppdRHH32kxo0bp5YvX65mz56tlFLq1KlTClD//POPUkqpmTNnqtdff73C9jt06KDS0tLKl9PT05VSSul0OtW/f3+1b98+ZTAYVLdu3VRqaqpSSqnJkyerLVu2lB7fvr06dXifCvvlK+Xl3kVlHgtTySdjlYeHu4qKilKnTp1SmqapsLCwa56/X79+av/+/eXLgAoJCVFKKVVcXKx69+5dft6vvvpKzZw5Uyml1H333ac2bdp0Wc1KKTVt2rTy2vr376/Cw8PLt11cTk1NVZ07dy5fP2zYMLVjx47rftZKKdWlSxd1/vz5Cj/Li678N1N2XXmqFuSn6vySW/B1lHMrF5wnLgIWkXLmOFHb1qE/tYshGRux+vQLthOMwaUnvsMfwrlNB1OXK4QQogb8+eefREZGEhQUBEBBQQEtWrQASp9p3LRpE6tXryYmJqb8GBcXF/r06QPAtGnTWLlyJQsXLqzU+b7++mvWrFmDTqcjOTmZQ4cO4ePjw/Tp09mwYQMzZ84kLCyM1e++TX7yUTCU4KA7zz/h+7h75CgcOwXR2MycsWPHsWPHDkaNGkWHDh3o1avXNc+XnJxM8+bNy5fNzc0ZO3YsAHFxccTGxjJkyBCg9JZ869atr2rjv//9L8uXLyc/P58LFy7QvXt3Ro4cWeE1Nm/enE6dOrF7927c3Nw4cuQIffr04b333qvwswZo0aIFSUlJODk5VeqzbGgkgNYDrVy60GrmSwCcPXmY+L/W4x7/Nc6no4j64A9OWtmDxwi6DZpB46bOJq5WCCEajpA5vSvcZmtlft3tzeytrrv9WpRS3Hfffbz66qtXbcvPzy+/pZ2bm4ujoyMA2hVjZ165XJFTp07xxhtvEB4eTtOmTbn//vspLCwEYObMmYwYcTdaST5jhg+gUWESJZijNHNKmrph2egAViXpmJld/cymvX3FL3/b2tqWnwPAxsam/LlPpRTdu3cnLCyswuMLCwt5+OGHiYiIwMXFhSVLllzWXkUmTZrE119/jbu7O6NHj0bTtOt+1hfPZWtre8O2Gyp5BrSeadvJgz4zl6E98AsRDv0JMoujuy4W/b6vKXnbj6g3RhL9+waKi278AyeEEKJuGTRoEJs3byY1NRWACxcukJBQOrTfs88+y9SpU3nxxRd56KGHyo85ffp0eWj78ssvuf322yts39HRkZycHACys7Oxt7encePGnDt3jl9++QWlFPnZF2ii5dLWyZHX33qHqZMmkO/QHotWXmhm5lha29K3b1++//578vPzycvL47vvvqNv3743vD4PDw+OHz9+zW3dunUjLS2t/FpKSko4ePDyF8Avhk1nZ2dyc3MvezP+0mu70ujRo/nhhx/YuHEjkyZNAq7/WSulSElJwdXV9YbX1FBJAK2nWnfoxm1Pf8vZqaEccbyN3uaH2WPXD9fcGPx2PULeq13Y8+5MjoRvQxkMpi5XCCGEEXh6evLSSy9x55134uPjw5AhQ0hOTuavv/4iPDy8PIRaWVnx6aefAqXB7b333sPDw4OMjAzmzZtXYfuzZ89m2LBhDBw4kB49euDn54e7uzuTJ0+iZ5A/+syz2OUmYKkKGTt+Iu06uOLfbzh2jZwum0TF39+f+++/n+DgYHr27MmsWbPw8/O74fXdfffdhIaGXnOblZUVmzdv5tlnn6VHjx74+vqya9euy/Zp0qQJDz30EF5eXgwdOrT89jmUDtU0d+7c8peQLtW0aVM8PDxISEggODj4up81QGRkJL169cLCQm40V0QGom8gEuJiaO/mg05XwvYPHsOQnUK/kp3Ym5WQqLXmjMtI2g+4n7adupu6VCGEqLPq2kD08fHxjBgxgtjY2Js+VilFYV42htw0bMvmYy/QbDHYOWPr2IzHHnsMPz8/HnzQeDNAFhQUMHDgQHbu3HlLQy5Vt8cff5xRo0YxaNCNh0i8lYHo6zKJ5g1Eh26lMyeZm1vgkhuLpz6WExauxDkPxiUjnJ4JH2H22RqOWHiQ1XUM7oNn0rhZ8xu0KoQQoqEx6HUUZJ3HojAdW4rRY0aBZRMsG7XA1qZ0fNCAgADs7e158803jXpuW1tbXnjhBc6ePUv79u2N2rYxeXl5VSp8NmTSA9oAGfR6on/9lFYRy2mrzhFr7Yvu9qcpOLWH1vHf42o4TZGy5ECjflgH3Uf3PiMwq8V/aQohRG1R13pAKzJ69GhOnTp12bqXXnqRgcE+2OiyMMdAIVbobZ2wbeSMmbn0Z1VVQ+0BlQDagBUXFRL17Vt0ifuQnPFf07F7Tww6HSdiw7jwz1o8zv9GI/JIpjnx7UfjOmgWrTt0M3XZQghRa9WXAHqRUoqC3EzITcPWkIcCCswdMXNogY29Y6XfmBcVkwBaj0kAvb6iwnysy26bhL89Ab1VI7qOfwE7xybEbv8S6/1f0r0wGoCDNr4UeU/Ba9BUbGzr9c+GEELctPoSQPV6PQVZaVgWpmNNMTrMKbRsinXjFlhaWZu6vHqloQZQ6TMX5eHToNdjsLAhMPUbCt/7iWjX+/Cd8B9s736I5IQ44v/8hA5nvqNNxNNkRyxhn/NQnPo+SGfv2y57u1EIIUTdVFJcRFHWOWxKMnDAQBHW5Nm2wbaxMw7XGLNTiKqSHlBxlYS4GC788G/88neSSjMu3P0R7kGDgdKQemjXTxSGf4Z31l9YayUcN+/MBY9pdB/6APaOTUxcvRBCmE5d7QEtys9Bl30OW30OGlBg7lB2m70RyG32atVQe0AlgIoKHdr9K2r7K7R84AucW7lQmJ+LjZ1D+fasC2kc+WMtLeK+pKMhnlxly8Hmw2kxcC4du/c0YeVCCGEadSmAKqUoyMlAy0vFVhWgV2YUWDbGqnFLrKxlBp+aIgG0HpMAeuuUwUDcK7eRb9OCVmOX06aj++XbIv4kZ+dH+GRux1or4YilJzle0/EeMuOy0CqEEPVZXQigBoOe/KzzWBacx5piSrCgyNoJm8YtbjhwuqurKxERETg7155pnVesWEGzZs2YMWNGpY9Zt24dERERvPvuuxXuExoaipWVFbfddhsAq1evxs7O7qbOc9HChQu56667uOOOO67a1lADaJ18BlTTNHvgfaAYCFVKfWHikuo9na6EjDb96JGwDot1fQhrM4nuE1+kUZPS2S3cg4dA8BAyz6cQ/dsa2h7fiHv0v8iMfpmYliNpO3geLm49TH0ZQgjRYOl0Ogozz2FdnI4DeoqwIs+uLbaNnHGogef4dTrdLc8MpNfrLxuAXqfTsXbtWqKioox+vtDQUBwcHMoD6Ny5c6vc1vz583nooYeuGUAbqlrz5oimaWs1TUvVNC32ivXDNE2L0zTtuKZpi8pWjwE2K6UeAkbVeLENkKWVNb0fWE7u7D3sazKY3skb0K/w5fi+fy7br4lzK3pNfZ52/3eQ2CEbOOEQSEDK17h80Y/YV/sT/fsG9Dqdia5CCCFq2Kd3X/2196PSbcX5194eXdankpd+9bZK2LBhA8HBwfj6+jJnzhwKC/I5FLkTD7dOFKbEUaws6TPuYUIPJJKWmY+npydTp07Fw8ODcePGkZ+ff932V61ahb+/P97e3hw5cgQonQf93nvvxcfHh169erF//34AlixZwvTp0+nTpw/Tp09n3bp1jBkzhmHDhuHm5sYzzzxT3u7vv/9O79698ff3Z/z48eTm5gKlva7PPvss/v7+bNq06bJatm/fjr+/f3nQHDBgAE888QSBgYG88847pKWlMXbsWIKCgggKCmLnzp1XXc+PP/5Iz5498fPzY/DgwZw7d474+HhWr17N22+/ja+vLzt27GDJkiW88cYbHDlypHw6TiidTcrb2xsonYKzf//+BAQEMHTo0PKpOTt06EB6ejopKSmV+h42BLUmgALrgGGXrtA0zRx4DxgOeAKTNU3zBNoBZ8p209dgjQ1ei7YdCXoyhGP3/sQJxyDadS2duzcjLfmy/TQzM7z6jCRg4Q9kzYshrOMjOBedxW/XI5x72YPdG5aQdSHNBFcghBD11+HDhwkJCWHnzp3s3R2GoSiPr9a8iUcrO554dC5znl/F+1/+hJe3D0OHDgUgLi6Ohx9+mMOHD9OoUSPef//9657D2dmZqKgo5s2bxxtvvAHA4sWL8fPzY//+/bzyyiuX3aY+dOgQ27ZtY+PGjQDExMQQEhLCgQMHCAkJ4cyZM5w/f56XXnqJbdu2ERUVRWBgIG+99VZ5G05OTkRFRTFp0qTLatm5cycBAQGXrSsuLiYiIoIFCxbw+OOP8+STTxIeHs4333zDrFmzrrqe22+/nd27dxMdHc2kSZNYvnw5rq6uzJ07lyeffJKYmBj69u1bvr+7uzvFxcXlA/WHhIQwceJESkpKmD9/Pps3byYyMpIHHniA5557rvw4f3//awbghqrW3IJXSv2taZrrFauDgeNKqZMAmqZ9BdwDJFIaQmOoXSG6wXDz7Qu+pT+QhQV5FL7Xl302rjQb++ZVt9qdW7XH+b5X0JUsIXr7RqwjP6LX8bfJf+d99jgPp9Xgx+jgEXCt0wghRN02c2vF26zsrr/d3un626/hzz//JDIiggA/H8yUgYLCIpo7O1Pi7M4jC/zY8vtQVq9eTUxMTPkxLi4u9OnTB4Bp06axcuVKFi5cWOE5xowZA5ROt/ntt98C8M8///DNN98AcMcdd5Cenk52djYAo0aNwtb2fy81DRo0iMaNGwPg6elJQkICmZmZHDp0qLyO4uJievfuXX7MxIkTr1lLcnLyVc9PXrrvtm3bOHToUPlydnZ2ec/qRYmJiUycOJHk5GSKi4vp2LFjhdd+0YQJEwgJCWHRokWEhIQQEhJCXFwcsbGxDBkyBCh9XKB169blx7Ro0YKkpKQbtt1Q1JoAWoG2/K+nE0qDZ09gJfCupml3Az9e60BN02YDswGsrKyqucyGzczMnIQu0+h+bDXWGwYS1mYy3pNfwqFR08v2s7C0wm/ofTD0Pk7s30X69lX4nt+Kdcj3HLD2Rx88B58B42XaTyGEqIKCvBwKs85x37jhvLToMQosm2LdpFX5wPH5+fkkJiYCkJubi6OjI8BVsxndaHYja+vS9szNzdFV4pEqe/vL36W5ePylbSilGDJkSHkv6Y3auMjW1pbCwsIK9zUYDOzevRsbG5sK65s/fz5PPfUUo0aNIjQ0lCVLltzokpg4cSLjx49nzJgxaJqGm5sbBw4coHv37oSFhV3zmMLCwsuCeENXJ3sPlVJ5SqmZSql5Fb2ApJRao5QKVEoF3upDz+L6rKxt6DVtCUXz9hLTdCi9kzdQ8JYfSfFxFR7T2ec2gp/YSP6jB9jt+ggti+Lx3TGHpJc82f3lUnKzM2rwCoQQou4qyM0iPzkO26zjDO3jx6at/+Wc1hyHFh3Iyc0jISEBgGeffZapU6fy4osv8tBDD5Uff/r06fLQ9OWXX3L77bffdA19+/bliy9Kfx2Hhobi7OxMo0aNKn18r1692LlzJ8ePHwcgLy+Po0eP3vA4Dw+P8mOu5c4772TVqlXly5f2/F6UlZVF27ZtAVi/fn35ekdHR3Jycq7ZbufOnTE3N2fp0qXlPa7dunUjLS2t/LMsKSnh4MGD5cccPXoULy+vG15TQ1HbA+hZwOWS5XZl60Qt5KZXWHoAACAASURBVNyqPcFPbCRuxHecdOpP6/ZuANd91rNp89b0uv8Vmv77CJHBb5Fj0YxeR9/A8JYnYR/OJy0pvoaqF0KIOkQpCnMzKUg+gm32SaxUEblWLfDsO4qXX13GXXfdjY+PD0OGDCE5OZm//vqL8PDw8hBqZWXFp59+CpQGp/feew8PDw8yMjKYN2/eTZezZMkSIiMj8fHxYdGiRZcFucpo3rw569atY/Lkyfj4+NC7d+/yF5yuZ/jw4fz9998Vbl+5ciURERH4+Pjg6enJ6tWrr1n7+PHjCQgIuGx4qZEjR/Ldd9+Vv4R0pYkTJ7JhwwYmTJgAlN5t3bx5M88++yw9evTA19eXXbt2AaVh9Pjx4wQGBt7wmhqKWjUOaNkzoD8ppbzKli2Ao8AgSoNnODBFKXWwojauRcYBNZ3zKaexWt2Lw06D6TrpNZo2b33DY45G/UXu9jfpkfM3esyIaTqUFkMX4OohP7hCiNqtJsYBLcjNgpxkbFUBJZhTZO2MbZOWlw1PVFnx8fGMGDGC2NjYG+9cS40ePZrly5fj5uZm6lIq9N133xEVFcXSpUuv2tZQxwGtNT2gmqZtBMKAbpqmJWqa9qBSSgc8CvwGHAa+vtnwKUzLysaeQy1GEHD+R8zeC2BPyDJ0JcXXPaarf3/8F24h5b6dRDe/B++MbbiGDGLfa0M4uHMrymCooeqFEKL2KMjLLr3Vnn0SC1VMrnVLzFp2x8GpTZXCZ32xbNmy8uGOaiudTseCBQtMdn5N0zw0TVutadpmTdNuvou7GtSqHtDqIj2gphd/OILc7xfgVRTDCfOOtHlqB7b2jpU6NiMtmSM/raBbwpc0I5ujFl3J8Z9LjyHTsbCUF8yEELVHdfSAFuTloLKTsVN56DCn0NoZuyYtq/WFzdGjR5cPM3TRa6+9Vj50kzCeqvaAapq2FhgBpF68c1y2fhjwDmAOfKyUWnbJNjPgM6XUNCNeQpVIABU1RhkMRP/+GUUJ4fSe8x5QOoSTjW3l7jIU5ueyb+tq2hz6BBeVxFmtJWe95uE7Yh5W1hW/4SiEEDXFmAG0qCAXfVYydoZcdJiV32o3M5cXa+uTWwig/YBcSgPlxUcXzSl9dHEIpSMHhQOTlVKHNE0bBcwDPldKfWn8K7k5EkCFyZzYv4sm307ihNcTBI5+vNJ/zet1Ovb9uRHH8Hdw0x0jBWcS3GfRY9R8mXdeCGFShw8fxt3d/YZDGV1PcVEBuoyz2Bly0CszCqydsG3aCnMJnvWOUoojR45U+RnQa7w70xtYopQaWrb8r7LzvHrJMVuVUpWbVqsa1ZpnQEXDY2VrT4pVe4JjX+DYq7dxYv+uSh1nbmGB/9DpdPn3Xg4M/JQMy5b0PLKM3OXd2b1hMXk5mdVcuRBCXJuNjQ3p6elUpXOnpKSI3NRTWJw/grU+l1xLJ1RLTxyc20n4rIeUUqSnp1c0RqmFpmkRl3zNrmSz1xo/va2maQM0TVupadqHwM+3WLpRSA+oMCllMBCx5QM6xyyjscphb5vp9J6z6sYHXuFQ2C/oQ5fjXRRFJg4c7jANz3ufpnFT5xsfLIQQRlJSUkJiYuJVg6Nfj8FgoCQvC0t9LhpQbGaLhX0TCZ0NgI2NDe3atcPS0vKy9bfQAzoOGKaUmlW2PB3oqZR61Ni13yoJoKJWyLqQxpEvFmKwb0HvB14HSsOpZnZznfRxEdsp2L4c3/wwcpQtse0m4Tn2ORo3a14dZQshRJUVFxUS+e3bdIt7n2ZkE+04gOajltLOzcfUpQkTq85b8LWFBFBRq1wMnTF/foVZ+Ec0G/cO7brc/MwRJ/bvIuv3V/HN2UGuZsvB9tPxGrsIx8bNqqFqIYSoPGXQE/PrOpqHL6edSuGwtQ/Ww1+ik29/U5cmaolbCKBGGT+9JkgAFbVS+A/v4xH1IhboiO40h8DJz5fPZ3wzTh3cQ+bPL+KX9w+ZOHCk0wP4jFmInUPjaqhaCCGu72jkdvh1EV1L4jhp1oHcvv+Hd/+xN323R9RvlXwLfiMwAHAGzgGLlVKfaJp2F7CC0mGY1iqlXq7ueqtCAqiotdKS4kn84hH88v7hhHlHDCNW4ubXr0ptHYvZQf5vL9KjYC/pNOZY19n4jn6y0kNACSHErUhKOMbZzYsIytlGGk057v0UQaPmYXHFs39CQMOYCUkCqKj1on9bT7uwxZzq8RTBox+7pbaOhG9Dt20pXkUxpNKMU54P43fPfBlHVAhRLXKyM9kX8iIBiZ+joYhuNx3vSYtxcGxi6tJELSYBtJ6QAFr35WRdwMGxCZqZGRE/foiVozM+A8ZWub3YnT9iHvoKHiWHOKu1JCXwGfyHPyC3wYQQRqEMeiJ+XEP76OW05ALRje6g7fjXaOHS1dSliTpAAmg9IQG0/lAGA8de6UlX3VHCG99Jl2kradq8dZXbOvDXtzjsWEonQzxHLbpSMnAJ3fuYfHxeIUQddiL6L/Q/P03XkjiOWbjBsFdxCxxi6rJEHSIBtJ6QAFq/FBbkEf3Ffwg8s55czZ4T/s8RMGJ2lXsv9TodUT99iEvMW7TiPPtsg2k08hU6egYZuXIhRH2WcT6FY18uJDD9J9K1JpzssZCgUfOqdc52UT9JAK0nJIDWT6cO7qH4u/l008Vx7J4fq/yC0kWF+bnEbH4Nz5MfY68KiGw6nA7jXqJlu85GqlgIUR/pdDrCv30Hj0Nv4aDyCW81Ec/Jr9C4iQz7JqpGAmg9IQG0/tLrdBza9SPe/UYDpeN/dvLqdUvPcmaeT+HIpiX4p2zCgEZ0u6n4THoBe3lpQAhxhaPRO1A/PUU3/VEOW3lje+/buMrdE3GLJIDWExJAG4ZTh8JxCbmTWLtg2k7/kOZtXG+pvaT4OJK+/TeB2aXDpsT7PUPAiDlyO00IQXZmGkc2PENg2ndkao04HfhvetxV9UeBhLiUBNB6QgJow6DX6Qj/+lV6xK2kRLMkzvc5AkfNu+VfCEci/sTs10V01R0lzqIbDFtGt8A7jFS1EKIuUQYD+375mPbhS2mscohoMRbPqa/h2MTZ1KWJekQCaD0hAbRhOXP8ALkhs/EoOUSUfV/8Fmy55RBq0OuJ/HE1HWOW40wm4Y2H4jpx+S33sgoh6o6k+DjOf/UIPoXhxJm7oY1YQVe/201dlqiHJIDWExJAG56LvaHoiuk1Y6nR2s3NzuDAV4sJOPsFOszZ12kW/hP/g7WNndHOIYSoXXQlJewJWYbvsVVowL6ujxE04VmZxUhUGwmg9YQEULFv+1cYItbT/r6PcGrZ7pbbO3vyMKnfLMQv7x/OaG3IHLgM7373GKFSIURtcjJ2DyXfP0o33VEO2AbTfPJ7tGovg8mL6tUQAqg8LS0ahKKMZLrn7YUPbiNm28Zbbq9tJw/8nt7KgTvWAeC9fQaRb47mfFLCLbcthDC94sJ89nzyJC6bhtNcl0J08Bt4P/O7hE8hjER6QEWDcepQOGrzLDoZ4tnbbCTdZ75rlKGVCgvyiN74Av4JaynGgoPujxE0/hnMLSyMULUQoqYdj9mB5ZZ5dDCcYU+joXSdsZKmzq1MXZZoQBpCD6gEUNGgFBXmE7X+aXomfUFU4GsEjpxjtLYTj8dyYfPj+BRGcNy8M4a736Kr/wCjtS+EqF5FRQVEfv4fgs+s5YLWhMTbl+E/eKKpyxINkATQekICqLjSqYN7cPUIQjMz41j037h274mllfUtt6sMBqJ+XY/L3hdxVhmENx9N9xlv4dCoqRGqFkJUl2MH9qB9N4cuhlNENB6K233v0bhZc1OXJRooCaC1lKZpHsDjgDPwp1Lqg+vtLwFUVCT9XCK27/tz1sIFqwmf0KGbr1Hazcm6wMENzxCcuplUzZnUAa/hM2CsUdoWQhiPXlfC3i8WE3ByNbmaA2dvX4b34CmmLks0cBJAq+OEmrYWGAGkKqW8Llk/DHgHMAc+Vkotq0RbZsBnSqlp19tPAqi4nqhf19Fx93+wUUXs91pE8NgnjTabyZG9f2D76xN0MCQS3ngYXWespLFTS6O0LYS4NUnHD5Ab8iBdS+KIcuhP5/s/pLFza1OXJYQE0Go5oab1A3IpDY5eZevMgaPAECARCAcmUxpGX72iiQeUUqmapo0C5gGfK6W+vN45JYCKGzmflEDy+vvxLooiyqEfPo9/g4WllVHaLizII3rDcwQmfkaW5sjpXi/gP+x+o7QthLh5ymAg4vtVdN/3MsWaJccCXyDw7gfRNM3UpQkBSACtvpNqmivw0yUBtDewRCk1tGz5XwBKqSvD57Xa2qqUuvt6+0gAFZVh0OvZ+8USyEmm1yMfG739E/t3oX54lC76E0TZ96X99PdxbtXe6OcRQlQsIz2VE2tnEZj3F7FWPXCasY7W7TqZuiwhLtMQAmhtGSemLXDmkuVEoGdFO2uaNgAYA1gDP1ewz2xgNoCVlXF6skT9ZmZuftmsScei/+b8vp8JnvaSUYZU6uxzGzqP3YRtXIr/iQ/IX30bUb1ekt5QIWpI7M6fcf5jPj1UBnu6PEbQ5MWYyXBpQphEbekBHQcMU0rNKlueDvRUSj1qjPNJD6ioirAP59M7+TMOWvnQ/L7PaNG2o9HaToiLoXjTLNx0xwhvfCfdZq6mURMno7UvhPgffUkx4eufJejMpySbtaL4njV08u1n6rKEqFBD6AGtLTMhnQVcLlluV7ZOCJPp9dA7hPu+TMeiOKw+up2YP677qPFN6dDNF9dndhLmMgu/zG3krwgm9p8tRmtfCFEq9cxxTizvS6/EtUQ2HU7Tp3ZL+BSiFqgtPaAWlL6ENIjS4BkOTFFKHTTG+aQHVNyK00djKA55gC76E+zr9yE97phk1PbjIrZjt/URXFQSu1tMxPf+t7CxczDqOYRoiPb992s6/PUkFkrPwYAX6TlqtqlLEqJSjN0DqmmaPfA+UAyEKqW+MFbbVVXjPaCapm0EwoBumqYlapr2oFJKBzwK/AYcBr42VvgU4la17+qLy9P/sLvr03TvOwYofWHJWLoF3oHTgt3scR5Dr9QQUt7oxcnYPUZrX4iGpqSkmF1rHqPHXw9xwcyZ9Km/S/gU9Y6maWs1TUvVNC32ivXDNE2L0zTtuKZpi8pWjwE2K6UeAkbVeLHXUCcHor9Z0gMqjOl8yhmyPhpJfv/FePcbbdS294d+Q5vQp3BUecR4Pk3w+KeNNiapEA3B+aQEUj6dhlfJfsKbjcR71mq5oyDqnMr0gN7ksJb3AL8opWI0TftSKWXy2RbkN5sQN6koPxszZaD7nzMJ+2Qhep3OaG37DBiLNm8ncba+9Dz8CjFvjiTrQprR2heiPosL+xltTT86Fx8h2v9Vgh7bIOFT1FtKqb+BC1esDgaOK6VOKqWKga8oDZ+JlL5fA7Uk+9WKIoSoS9p26k6rBTuJbHInvc98xKHXB3Mh1XjvzDm1bIfX07+xu8sTeOWGUbCyN0f2/G609oWob5TBQPiXL9Ll1ynkafakTNiK36iHTV2WELfCQtO0iEu+KvsMybWGtWwLfAuM1TTtA+BHI9daJXILXogqUgYD4d+9Q4/9L7O/6WCCnvjK6Oc4GhWK/Y+zaWlII7zjHKONSSpEfVGQl8vBD+8nMPsPouxup/Psz2ncpJmpyxLillT2JaSaHtbSmKQHVIgq0szMCB77JIljt+A2bQUAeTmZKIPBaOfo6j8Ax8fD2NeoP73jP+DgG8PISj9ntPaFqMuSEo6R+FZ/ArP/IKzDXHwXbJHwKRq6OjOspfSACmEkxUWFnHq9P9n27fGe86lRnz1TBgN7N7+J38FXOW/mRP69n9Klx+1Ga1+IuuZQ2C+0/G0O1hRzsu/b+AyabOqShDCaW+gBrdZhLY1JekCFMBILC0sutOlPUNbvnHmzPymnjxmtbc3MjJ4TnubUyM2YKz0u397L3u9WGq19IeqSiM1v4PbrVPI1ezKn/CrhUzRIdX1YS+kBFcLIYrZtpPOOJynRLEm+80O633aXUdu/kHqWpE+m4FUUw95mI/F56ENsbOv1jG1CAKDX6YhcM5fg1E3sswnCdc5XNG7qbOqyhDC6hjAVpwRQIarB6aMx8NUUDJjh8u8Yo784pCspJvzTBfRO+oxjFm443vcVrVy6GPUcQtQmOdkZnPhgEr4Fu9nVfBLBs9/FwtLS1GUJUS0kgNYTEkCFKeRkXSA7/RxtO3lQWJAHShl9TMLo3zfgtnMhhZo150esxT1wkFHbF6I2SDpzgrxPx9FJf4qI7v+m54RnTF2SENVKAmg9IQFUmNreFZNpmnuMJg9spnkbV6O2nXA4EouvJ+NsuMCBgKUEjppn1PaFMKUT+3fh8O1UHMgnfsB7dB8wztQlCVHtGkIAlZeQhKgBlp5306bkDGrNQI7v+8eobXfwCMD+kb85bu1BYNQiwtbMN+pc9UKYysHQTbT+5l5AI238FgmfQtQj0gMqRA05GbsHu81TaaSyibvtdfyG3mfU9ouLCon+8CF6XthCtN1tuM39EodGTY16DiFqSuQPq+gR9TynLDrS6IFvaNm2o6lLEqLGNIQeUAmgQtSg8ymnSf94HK11iajH9tG4WXOjtq8MBvaELCPoyHISzDtg/8C3tGzX2ajnEKI6KaUI+3wxt518hwNWfnR45FsaNZbB5UXDIgG0npAAKmqTwvxcEo/F0KXH7SiDAZ2uBEsra6Oe48Bf39Jx+8PkaXbkTwiho2eQUdsXojoY9AbCPnyYPqkbiXQciNcjX2JtY2fqsoSocQ0hgMozoELUMBs7h/JZjPZsXMrx1weSkZZs1HN49x/DuXHfo6Fw+noUB3duNWr7QhibrqSYiJWT6ZO6kYgWY/F7fLOET1GrGPR6zqecMXUZ9YYEUCFMyLJJWzoWHyX//f6lY4caUWfvXhge+J0LZk64/T6DiK0fGbV9IYylqCCXg2+PJDjrV/Z0mEPA3I8xM/LYuUJURnFREWeO7WP/9hDO/vo2/PIs2enJDH7rL95e8jCOH/jJS55Gct1b8JqmmQG9lFK7aq4k45Nb8KI2i4vYjvNP92OOnpS71uEePMSo7WddSOPs6tF4Fh9gd5cn6DllMZqZ/O0paof83EziV43CvXA/ez3/Ta+JMsanqF7KoCc1KR592jHa6M6iugzmoS1ptD77G4uL3sBCM/xvZ0t71P1beTRU4WeZgDfH8LvnMaysbaq1xoZwC/6Gz4BqmhatlPKroXqqhQRQUdudPXkQw+fjcDKkkz8vEudWLkZtv7Agj4PvTSEgN5TdLSfRc84HEkKFyWVlXiDpvbvpWnyYCP9l9LxnrqlLEvVIYW4GNpknwKEln8TqSD4WxeTEpbTWJWGnFf1vxzEfM2dfR9rqE7lTF4q5cxcc2nSjZQd3mrVoB5pW47XX9gBa1kE5Tin1dZXbqEQAfYPSye6/VXX0jSUJoKIuyEhL5mT4rwTcNbNa2jfo9exdPYdeaZvY2/RuAh75zOhThApRWVkX0kh+7246644T2+tN/IZXz7970QAY9Bw+l0fsyUTa7VuBfdYJWhadoiXppdsHv8CMo7eRm3aG5/mQQseO4NyFZi4edPX0g0ZtTBIyr6e2B1AATdMilFKBVT6+EgE0B7AH9EABoAFKKdWoqietaRJARV2zP/Qb8o6G0vPBFZiZmxutXWUwsGftQnolfkKkwwC854dU+60kIa6UlZ5C2vt30V4XT1y/d/EeNMXUJYk6IKewhKQDf5F9ej/6c0dwzDmOp0UymsdIFuZN5fvIeKKs55Jq0ZpMh84YnLsRHNQb2vhhcGiNmVntCpnXU0cC6DLgPBAClIcspdSFSh1fRzs1b4oEUFHX7F79ML1SviDCcRDej2ww+tvAuz9/nl4n3mGfbTDd5n9n9DnqhahI1vkk0j8YTlvdWeIGfIDPwPGmLknUMga9nqRTh0k9HoG3+RksbR35QDeS1349wi7rR2mjXSBfWXPWwoUO7v5YeQzjdOvhaBq0bWyDmXndf7yojgTQU9dYrZRSnSp1fGUCqKZpo4B+ZYuhSqmfKl+i6UkAFXWNMhjYvWExvU+u5KBVDzo8+oPRZzXas+kNgmJf4rC1F+0f2YKjDPYtqllW+jkuvH8nrXRJHL1jDT36jzZ1ScLUivMgI4GjuPB5WAL94pZyW34o9lohAEozQ+t8B5F9P2b3yXQCzU/Qtl17WnfoirkR7w7VNnUhgN6qytyCXwYEAV+UrZoMRCil/lXNtRmNBFBRV0Vs+QDfyH9zyrIzrR/7w+ghNOKnNfiGP8sJSzfazP9VQqioNlkZ6aS+eyftdQkcHrgG3wFjTF2SqGH5xTpOHIwg9/A2zFP20TL3MO0NiWhW9uydtI8H1kfyTKPf6GadiVlrb5p2CsDF3Q9rW0dTl17j6kIA1TTNEpjHJR2UwIdKqZJKHV+JALof8FVKGcqWzYFopZRPVYuuaRJARV0Ws20jRUd+J/jhT6rlzfWo3z7He9fjnLDsStv5P0sIFUaXnZ3B2ZXD6VJylMP93sdn0CRTlySqWVFhHgmHwmmcEUvLnMOc7fV/9H0nksfNN/G4xXek0YxEO3ecugTR3rMnhi53gplFnXpOszrVkQD6MWAJrC9bNR3QK6VmVer4SgbQARcfKtU0rRmlt+FNFkDLXv9fCjSitDd2/fX2lwAq6ovE47EoFC5dvI3abvRv6/He9QTHrdxpN/9no/e0ioarIC+HE+/chXtRLIf6vIPPnTNMXZIwNqVQBh2bolPIPrydgfHv0F4Xj6VWNmC7nTNqxvesOmiDX9MiPFo74Nza1aQl13Z1JIDuU0r1uNG6ilRmDJZXgWhN0/5L6Rvw/YBFN13p/4pbC4wAUpVSXpesHwa8A5gDHyulll2nmXuAdkA6kFjVWoSoS5TBQP5XM2mmS+XE2BA6e/cyWtt+Q+8jymDAZ/dTHFt1Fy4SQoURFBcWcGLVPXgWHSAmaDn+Ej7rhfzcTE7t+4ecY7tomb2fjoWH0O56ndWhTjTLKSTYpjF7W07Dpn0g7bxuo2XbzmiaxmOtTF25MDK9pmmdlVInADRN60TpiEmVcqOZkDRKg56O0udAAfYqpVKqWq2maf2AXOCziwG07Lb+UWAIpYEynNJnTc0pDcCXeqDsK0Mp9aGmaZuVUuOud07pARX1RUJcDDYbx2BLIUl3rTf6rEmRP39Kjz1PcdTKkw6PbcXesYlR2xcNh16nY/+K0fjl/s1urxfpNe5xU5ckqirzDOiL+fSIGaER+/nkwv3lswUlmrvQzrs/BNxHWpMeONlbyW10I6gjPaCDgE+Bk5R2UHYAZiql/luZ46/bA6qUUpqm/ayU8ga23GqxZW3+rWma6xWrg4HjSqmTAJqmfQXco5R6ldLe0stompYIFJctyqSsosHo0M2X5Jm/kLXuXjpsncKBwjV49zPem8QBd80kEgM99iwkbtVIOj/5Kza2tfr/gaIWUgYD4e8/SK/cv9nVZQG3SfisM5RSnD15mKR9f0DCLlyyo2itUsFnIhmOCym2aUFY+9k06hiAa4/+tHNqWX5scxPWLWpW2aOQBYAb0K1sdZxSqqjio65ooxLPgK4H3lVKhVe10Gu06Qr8dEkP6Dhg2MUHVzVNmw70VEo9WsHxdsAqIB84opR67xr7zAZmA1hZWQUUFVX6MxGi1jufcobsNSMosHDEc9HfRn85KWLLavwjF7HPvjfeT/6AhaWVUdsX9ds/Hy/k9sSP2NN6Oj3nvGvqcsR1KIMBdf4YZlmn+a3Ym8U/HGR94WN0M0skg0bE2/fArecwHNwHQQsPU5fbYNSRHtBbmqq9Ms+A9gSmapqWQOlI9xdnQjLZS0hKqXzgwRvsswZYA6W34GuiLiFqinMrFywe/g3N3ALNzAxlMBg1hAaOmsuegkx6Hn6V8HenEfDYRqPOyCTqrz2b3uT2xI+IbDqM4IdWmroccQ1JZ05yZu+PWCT8hWt2JE5kgnVjWk2JJtC1KfFNXsS2UwdcuvrhZyY/96JCf2qaNpYqTtVemR7QDtdar5RKuNmTXdKmK5f3gPYGliilhpYt/6vsHFc+/1kl8gyoqM8K8nI4tmo0ev/78btzmlHbDvv0WXonrGZ38/H0nLemWoaBEvXH/m0b6L7jUWLtguj+5E9YWFmbuiQBqMIstPidpLa4jUlrYxiX+QkPW2whnSacdAykhfcgOvjfCU6da92c6A1VTfWAaprmATwOOAN/KqU+uIljL07VrgMKucmp2q/bA1r2ctBvSin3yhZUReGAm6ZpHYGzwCRAJgcWohJKSoqx1uXQaedjROlL8B8+02ht97rvVXZ/mEmvc18Rtq4ZvR9YbrS2Rf1yPGo7XXc8wTHLrnR5eLOETxPS63SciAklY/+vNE7eiVtJHObocZ7+A55tGuHUYy7xbefTwT0QJ/mjss4yxqhCSqnDwNyyZzo/AyoVQMteUu+ulDpd5for0QP6AzD/Vk5yRXsbgQGUpu1zwGKl1Ceapt0FrKD0A1urlHrZGOcD6QEV9V9O1gXOvns3XYqPsC/4dQLurtQ4wJVi0OuJXDmFoKxf2eP5H3pOeNpobYv6ISk+Dut1QyjUbLCau53mLduZuqSGJ/8C6ItZ8t90TkZt5zP+g0FpHLdwI9+lL779R4NLMFjIHwZ1QWV6QI0xqpBSKrVsuvV5wOdKqS9vosYDZS+pV0llAujfgB+wl9JnQAFQSo2q6klrmgRQ0RDkZmdwetUIuhUfJKbnmwTcdd3HpP+fvfsOi+pKHzj+PXRBRMFewQIo2AVsMZYYTTFqNL0b09smm7qpv03PpvdoYtom0cSYxERTTVGjqNhFLKioYEVUlF7O74/D7AwoMMAMMwPv53nuM3DLuS8od945tUaKiwpJfvk8YnNXsenMGfQdfbHDyhae7fjRLI68MZKWpYc5etlCukTVekyCqAFdWsruLas5sOo7wvb/QfeCKlSEOgAAIABJREFUzaj4G3leXUdmdi4XN11Ht7hzCW0lk296Inub4B3ZpVEptUBrfV4NYqzTIHV7BiE9WpuChRD1q2mzFoTftZB1715NaLhjxwj6+PrR/dav2PXqaHr8dTupYR3o3neYQ+8hPE9xUSFp711MTMleto/9iJ6SfDqX1mw9eJIvVu7hknVX07M0lXAg1bsbeQn/ILDvJB5oZ+kxN8CFgQoH8FFKJdl8P6NscHV1OgB7bb5PxwwmPy2l1EjgQsAfWFjDGOs0SL3aBFRr/VfZQKQeWuvfyqZAkmFxQrihwKYhDLz3O8DUkKTv2EinHnatilatoODmhFw/j+wZYwj55goOhP5G207dHVK28EyrZ95GQv4qkno/yqDhE10dToOUl3OClKXfEXn0T5pmp7J32Gxmr9pDVKuzyW5/JRFDJtO9Q7irwxSOV6y1HuTsm2it/wT+rOXl4+py72oTUKXUDZj5NEOBbpjs+l1gTF1uLIRwrpVfPk+/lJfYOOYDeo9wTHLQqn04uy76nJZfTiTzwwvJvvMPmjUPc0jZwrOs/vpFEg59yfLWlzBk6r2uDqdBOVlQzLq/fyJwzXtEn1jBAFVAvk8ziDmfERFBrH30bJr4nePqMIV7ygA62XzfsWyfw2mtdyulhmMqKD9USrUCmtp7vT3D324DhgHZZTfcDrSuTbBCiPoTPXYaGd4d6L5oOpuX/+iwciNiEkgb8x4dS9JJe/ciiosKq79INChbVv5Knw3PsDYgnrgbTlkHRNRCaV42rJ9DYWYaQ59dxH9/W0XnkxvY2PIcNo35BJ/7U2HyO/gFBtPETxohRaX+N6uQUsoPM6uQQ1ayrEgp9TjwAPBQ2S5f4L92X2/HIKQVWusEy4z3SikfYI0rJ6KvKRmEJBqrIwfTOfneeFqWHGbvhM+JHuS4houVX79K/MbHSWxzGYNveddh5Qr3djBjF94zR5KnAgm+fTHNw2QBxtrKz8th8+J56I1f0fvkcvwohLFPMtt3Et1aBjCgSxjesgBEo2TnKPh6n1Wowv3XYQapr7GsiKSU2mBvfmhPAvoCcAy4GrgDuBXYrLV+uC6B1ydJQEVjdnhfGgUzx9FUn8TrHxsc2mSe+NZ0Bh/+ilX9niFu0m0OK1e4p4KCPHb+ZxRdinZy6JIFhPeKc3VIHmlj+nG+WLadf26eTBjZZNGM1JZnMeD8G/DpPBhkbs5Gz0OW4lyptY5XSq3RWg9QSgUByx2ZgHphlr08GzPC6WfMxKYes7ylJKCisTuwZzsHtiXR76zLHFpuUWEBW186mx75yeyeOJfIASMdWr5wLyvevI6EzHmsS3iFfudMc3U4HmVH8io6pH1DwMm9fBHxNE/9sJmn2i2le8/+9Bw2AR9fP1eHKNyIhySg9wI9MHOOPgtMAz7XWr9h1/UelEfWmiSgQlht/Gse7aLiaNm2U/Un2+FY5gFy3xqBjy7C68Y/adn+tKv3Cg+3Zv5bDFjzL5a3vZwhN9u9Wl+jdjzrMFt+nUWLbXOJLNlGqfLBK2o8+ZNnoZWP9OUUlfKEBBRAKTUWmwpKrfWvdl8rCagQjcfxrMN4vdabgz7taXPnbwSHhDqk3F3JK2jz5QT2+kYQcd9f+PkHOKRc4R72bEmi1RfnkOrXk+j7f8NXausqV1pCUXER//w6hZabP+Ix74/Y6R1OZrepRI69nuat2rs6QuEBPCUBrQvpaCJEIxIS2oqdI9+gS3Eae96aSH6eYz6YRcQkkJLwPFHFW1jzwZ0OKVO4h5yT2ZR+eS25qgltrvuvJJ+VOJiRxpY5j8KrffDdOIe8ohJ8+l1K6uSFdH1kHfGXPyrJpxA27K4BVUoFaq1znRyPU0gNqBDlJc1/l0FrHmBt0HD63P0d3j72LIpWPcugpDWDX2PA+GsdUqZwrcRXLyf+6EI2n/URsWdMcnU4bkWXlpK87AcKls+kz8m/8VUlFIefic+Z90LECFeHJzyY1IACSqmhSqnNwJay7/sqpd52emRCCKcZdMHNJEbeR/+cpaxdONNh5Q6Y/ibbfCLpsfxB0lM3Oaxc4Rqrvp/B4GMLSOp0jSSftooLSErLYswriyn55XG65axhTbtL2HfV3/hcO1+ST9FoKKWaKKWianWtPfOAAlOB+TbzPG2yLHzvCaQGVIjT2/T398QMOQ/lwGlf9u/eSuCHo8j0bkOHe5cS0KRBf4hvsPbvTKbZx6PZ69eV7vf/JaO0gbQt62i2fiahaQtJv+pv7vx2FzfGKkbG9ZX/58KhPKEGVCk1AXgR8NNaRyil+gH/1lpfYM/1dr3raK33VthVUrMwhRDuKHbYBJSXF3u2rWPdotkOKbNdlyh2nfEy3Up2sn7mzQ4pU9Sv4sICcj6/hmK8aXblx406+dSlpWxc/B3rnx9L+OwzCU6ZA1Hn0jHYi3m3DmP8iKGSfIrG6gkgHjNXPFrrdUCEvRfbk4DuVUoNBbRSyrds3qeUWgQqhHBTWd8+SPTi29my6jeHlNdvzKUsb3c1CVnzWfvzxw4pU9SfpE8fpnvxdrbGP037LpGuDsdlftp0gBte/ZLev19Np7wtrOh8AydvXQeT3oLgtq4OTwhXK9JaH6+wz+6plexpgm8JvAachZnn6RfgTq11Vg0DdRlpgheiakcP7yfn7VEE6Rxyr/6JDl1j6lxmUWEBaS8Mo1Xxfopu/JtW7cPrHqhwupSkP+jx/YWsbX4WcXd/5epw6l328SyCNnyC98kDvN1kOt+syeCRqHQSRk+Smk5RbzykCf4DYBHwIDAFuBPw1Vrb1fRlTwI6TGv9d3X73JkkoEJUb2/qRoL/O55srxBCbvuDkLA2dS5zz7Z1tPzsbHYExBBz/294ybrWbi3nZDaZLw0mgHwC71pJcPOWrg6p3hzLPEDKt/+hV/oXhJAD3cZQeMlsfH19UUq5OjzRyHhIAhoIPIyZiB7MSplPaa3z7bnenib40y2pZNcyS0IIz9Gpe2/2nzOLtiUHSZn9sEPK7BzZj42x99O7YA0r5zzjkDKF82z8+B666AyOjn2t0SSfh07k89VnM/B7ow9D0t9nV1A/0ibPh6vm4efnJ8mnEJWL1lo/rLWOK9sesTf5BKh08j+l1BBgKNBKKXWPzaFmgFRjCNEA9UwYRwqf06/PcIeVGT/lHtbt+o3+W19jV/LZRMQkOKxs4Tib/57P4MNfsaL1RSQMneDqcJwvez8UZDNt9iEy9wXSpdVIWp9zP/16DnJ1ZEJ4ipeUUm2BucAcrXWN5t6rtAleKXUmMBK4GXjX5tAJ4Hut9fZahesC0gQvRM0dP5pJ2trf6Tv64jqXdeRgOrwzlGyvFrS/fzn+AYEOiFA4Su6Jo2S/HEcBfrS6N5HAoGauDslpjhxMZ8e3TxN3eB6qYxyrR31CaJA/ES3durVTNDKe0AQPUJaAXgxcgqmgnKO1fsqua+3oA9pFa727zlG6kCSgQtTcijeuYUDm92w/53N6DR5f5/LWLZpNvyU3kdjxegZPf9kBEQpHSXxrOvGH5pJy7lfEJIx1dThOkZ11iM1fP02f9C/wp5CDEZNof8HjEGr3rDFC1BtPSUAtlFK9gfuBS7TWds3bZk8C+genGVavtR5dmyBdQRJQIWru+NFMsl8/gyB9ksJpv9O2c486l7nqlYvod2wRe6YupFvvwQ6IUtRV8spF9FwwhVWtp5Bw2weuDsfhSko1MxbvJOfPV7mXT0gKHkXrCU/QObKfq0MTolKekIAqpXpiaj6nAEeAOcDXWutDdl1vRwI60ObbgLIbFWut769VxC4gCagQtbN76zpCPx/PQZ/2dLjnL5oEBdepvONHDlL0RjzHvMPo8sByfP38HRSpqI3Cgnwyno8nUJ8k+J7VBAa3cHVIjlNaChvmoP2DuXxJS5p5F3JvnB89+sgHH+H+PCQBXY5JOr/UWu+r8fXVJaCV3HSl1jq+xhc6iFKqF2YG/iPAIq313KrOlwRUiNpb//uX9P7rRla1mkzC7R/Wuby1P39M/+V3sjziNoZcIyPjXSnxowcZnPYOG854jz5jLnV1OA6zael8Av98gq7FO6DnBPImf0wTPxk7KzyHJySgdVXpKHgLpVSozbdewEAgpLY3VErNAs4HDtmuJ6+UGo+Z8N4beF9r/VwVxZwDvKG1XqKUmo8ZgSWEcIK+oy8mKecoXQeOc0h5/cddw5qNXzNg5wx2b5lKl+gBDilX1ExG6noG7JpJUvAoBjWQ5DN9+zqOfPMAfXMTOUArdo54la4jr6GJl12rTgsh7KCU+lJrfbFSaiPlu2gqQGut+9hVjh1N8LvKbqCAYmAXZrH5pbUMfARwEvjEkoAqpbyBbcBYIB1YBVyGSUafrVDEtLLXx4FcYKjWelhV95QaUCEco6S4mEMZO2jXJapO5WQe2IvPu4PZ79uF6IeWoiRBqFe6tJTkF8bQOW8L+TetoHX7zq4OqU601jy9IIVDiV/wlPf7bOo6nQEXPygrFwmP5c41oEqpdlrr/UqpLqc7bu/A9WprQLXWDh0iqLVerJQKr7A7HkjVWu8EUErNBiZqrZ/F1Jaezm1lies8R8YnhKjc6reuofPRRI7etpQWrdrVupyWbTuxsvd9xG98nFXz3yZu0u0OjFJUZ/XPnzAofw2J0Q8y2JOTT61h09eogmxyCuMI7DeVghG3MrR17f9vCiGqprXeX/blrVrrB2yPKaWeBx449apTVTUP6IXVBFDrxK8sAf3BpgZ0KjBeaz297PurgASt9Wnflcqu/xcQBLxzutpYpdSNwI0Afn5+AwsKCmobrhCiTOr6pXSaN4mtTfoSc+/PePtU+xm2UqUlJWx7dhitizPwviPJIUt/iuqdPJnNyRf7k+cdTOeHVuHt4+vqkGplT0oSJ7+9h14F66HLMPQ1P0hNumgw3LkG1EIptUZrPaDCvg32NsFX9dc6oYqtslrJeqG1TtNa36i1vqKyrgBa6xla60Fa60E+dXiTFEJYde87nHWxD9EnP4mVnzxUp7K8vL3xnfgqIfoEWz73mEk1PN6GLx6jLZkUjXvBI5PPvNwcEmfeSfvZY+lQkEpy/yfgmu8l+RSiniilbinr/xmllNpgs+0CNthbTqWZmdb6OkcEaqcMoJPN9x3L9gkh3Ez8lLtZlb6ChN0z2bh4OL1HTKx1Wd16DyZxycXEH/ySbWv+JHLASMcFKk6xf2cyg9I/JSlkLIPiz3Z1ODW2fMcRPvpyLu/kf0JS83F0vfwVYtq0d3VYQngspZQX8CRmFaMkrfXHdlz2OfAjZozOgzb7T2its+y9d7UfGZVSIUqpl5VSSWXbS0qpWo+Cr8QqoIdSKkIp5QdcCsx38D2EEA6gvLyIvfEDNgbG4euAQR4xVzzHEdUcrwX3UFJc7IAIRWUOz72HInzofMlLrg6lZvKPw6Z5JKVlscUnkvUTfyX+7jm0lORTNGJKqVlKqUNKqU0V9o9XSm1VSqUqpR6s7PoyEzGVfkWYQeDV0lofL2uJvqxswFEeZrB6U6WU3Z3K7WmzmIVZ//3isi0bqPVkgEqpL4DlmKrbdKXU9VrrYuB24GcgBTOpaXJt7yGEcK4mQcH0feBXouPOqnNZwSGh7B70L7qX7GD1d286IDpxOpuXfkef3ETWdr2R1h1OO3jVLW36Yw4Fr8XBvBu4ub8fP901gv4D4lwdlhDu4COg3DrJZYOz38JMV9kLuEwp1Usp1Vsp9UOFrTUQBSzTWt8D3FKTmyulJiiltmNmR/oLSMPUjNp3vR3TMK3TWverbp87k2mYhHCO4qJCkt6/A9UinIRLa98nVJeWsvWZobQs3k/APeto2qwBrcjjBkpKStj1TByBpScIvX89AU0CXR1StbKPZ5Hy4R0kHPuBPT4RdL72A+g4sPoLhWgAlFKFwEabXTO01jNOc1445Qd1DwGe0FqPK/v+IYCyWYVOd58rgUKt9ZdKqTla60tqEON6YDTwm9a6v1JqFHCl1vp6e663pwY0Tyk13OaGwzDVrUKIRs7b24eA7DT6pbzEzk0ral2O8vKC8U/TkmNs/PLfDoxQAKyc/y7dS3ZwYOB9HpF8rtxxiCOvjiDu6AIS219N638uk+RTNDbFloHUZdspyWclOgB7bb5PL9tXmXnAOKXUG8DiGsZYpLU+Angppby01n8Ag+y92J7h4bcAH5f1+1RAFnBtDYMUQjRAysuLztfNIvvtYXjPu568iOW1Xi8+etAYkv4aQ/+9n3Jg72207dTdwdE2Tvl5OYSvf5lUn+70P9euignXKSlm4/4cLn1/FdODL2TKWcMZ7IGDpYTwFFrrXKC2D4ZjSqmmmMT1M6XUIcDu5uZqa0C11uu01n2BPkBvrXV/rfX6WgYrhGhgQlt34MDo1+hUks6GWbfVqawOU59FAelfVddvXthr7dznaUcmRaP/D+XlvuuhFxzcDu+PJvborzw+IYY7//kYUZJ8ClFT9Tmr0ERMi/jdwE/ADsxUnXaxZxT8XUqpZpiBSC8rpdYopeSpIIT4n94jJrKi/RX0zVzIgT3ba11Ouy5RrOlwOYOyf2Xbmr8cGGHjlH3kIDE7ZrKuSQI9h7p0+uYqrfx+BkXvnEFJ1m6UX1OuGRpOU3+Zv1mIWqi3WYW01jla6xKtdbHW+mOt9etlTfJ2sacP6DStdTZwNhAGXAU8V8t4hRAN1IBr/sPhKxfRtnOPOpUTe8kTHCGE4p8eRpeWOii6xill7v8RpPNodv5Trg7ltPJzT7Li9auJX30fGb7hHLlyEUSNr/5CIYTLZhVSSp1QSmXbbCdsX+0tx54EVJW9ngt8UvaDqCrOF0I0Qv4BgXTq0ReALSt/rXU5wSGhpEbfQq/CjWxa8q2jwmt0Du/fQ599X7E65Gy6xsS7OpxT7DmSywtvv0tC1ncktruKbvf9RWvp9yuE3crm4WyntfbVWnfUWn9Qtn+h1jpSa91Na/20E+4brLVuZrMF277aW449CehqpdQvmAT0Z6VUMCDVEkKI01q98EOiF05lzY+1ni6YfpPu4gCtCFjyjNSC1tL2eU/iSzEdJz7u6lBOdeIAs/7exdyTvUkc9z2Db3oTHz9/V0clhKghpdRwpdR1ZV+3VEpF2HutPQno9ZilluLKRkv5AfW5TKcQwoP0Oetytnt3J2LFYxw5aNfCGqfwDwhkT+/b6VG8nXW/fe7gCBu+QxlpDDz0DWtDz6F9txhXh/M/pSUlnPz5KXitHw8NKGHBnWcweMgIV4clhKgFpdTjwAOAZRJoP+C/9l5vzyj4UiAceEwp9RIwQmtt92LzQojGxdfPH9+p7xGo89jzyU21rsEccMGt7FXtaZ74H0pLShwcZcO269sn8aKUDhc85upQ/udkdhbrXzqfpsv/Q3HPifi3iaRTqPvPSSqEqNRk4ALKpl7SWu8D7J6Hz55R8G8DN2Nm5N8E3KSUeqtWoQohGoXwnoNY2+0W+ucsZe3PH9eqDB9fPw4OvJuI0jTW/PiBgyNsuDIzdtL/0LesCT2X9hHRrg4HgP07N3Hk1RH0zklkRdT9eE9+B3wDXB2WEKJuCrVZTlMDKKWCanKxPU3wo4FxWusPtdYfYvqCjqlxmEKIRmXQZY+yISAO5e1b6zIGnHM9u7zCab3mVUqKix0YXcO169unAE3HCx51dSgAJO48woJPXqRZ6TFSzvqEhMseNitfCeEpsrLgl1/g6adh0iT4xz9cHZG7+FIp9R7QXCl1A/Ab8L69F9sz0Voq0BnYXfZ9J6D2E/0JIRoFH18/+jz4W53K8PL2JmvQnQxceQ+rf/mUgedK9/OqZB5Mp/eh+axtMZ6EiChXh4POz+alX7ZyrOlVnD31YXqH122KLiGcLicH1qyBVaus244d1uM9ekBkpOvicyNa6xeVUmOBbCAKeExrbfcUKMrUnp7mgFLfY6pVQ4A4YGXZ9wnASq31yLqFXn+CgoJ0To7dq0MJIRyouKiQpC+fpVnXeHoNOafG15cUF7Pv6d4UegXQ9eHVUntWhb9n3MWQjI/Zd+VfdCybEssVdGkpJUtexmf1LI5e8RNezdoR0qT2NeFCOEVhIWzYUD7Z3LwZLP3WO3WCuDjrNnAgNG9eL6EppXK11jVq0nY1pZQXcJnW+jN7zq+qBvTFKo6dPmsVQogKigoL6Jz6GSWps8nvN4KAJjV7pnr7+LC/zy3Er3+U9X/Ope/oi50UqWfLPp5FbMZXbAgeTj8XJp8lxUWsfWcag47MpzRmCi3C2oCPJJ/CxUpKICXFJJlJSeZ1/XqThAK0bGmSzAsvtCacbdq4NmY3VbY65m1AB8wqS7+WfX8vsB6wKwGttAa0ihsPx2S4dVv0uR5JDagQrrVx8Tf0/v1alnecxpDpr9T4+qLCAo48E8Mx31ZEPfS31IKeRuJ/n2Bw6iukXjCf7gPOdEkM+Xm5pLx5Ef1zlvJ3u2sYMv0VvLzdd/150UBpDTt3lq/ZXLPGNK8DBAeb2kzb2s0uXUC5zxo77lwDqpT6DjiKWYVpDNAas0DRXVrrdfaWY9diu0qp/sDlwEXALuDrmgYshGi8eo+YzKrVnzNo78fs3noNXaL61eh6Xz9/dvecTkLKsyQn/kTM0HOdFKlnKirIo1vqxyT79SXGRcnnyYJifn3zLibnLCUx8j6GXf6IS+IQjdC+feWTzaQkM3AIwN8f+veH666zJptRUSAfYuuiq9a6N4BS6n1gP9BZa51fk0IqTUCVUpHAZWVbJjAHU2M6qtYhCyEara6Xv0LeO/Fkz7sbHvqjxtf3nXA7mSnvULL4RZAEtJyNP85gAFlkDKmq55Rz/WP2WlYdHUf74cMZfO41LotDNHBHj5oEc+VKa8K5b5855u0NsbHlm9FjY8FXuoA4WJHlC611iVIqvabJJ1RdA7oFWAKcr7VOBVBK3V3jMIUQAghr05HV8U8SGNaxVtcHBDZlXfgVDE57i7SUJMJ7DnJwhJ5Jl5YSuuF9dnhF0GfE5PoP4MRB+OMp7hv9MHvjOpPQS/rNCQfJy4N166zJ5sqVsN1mEp7ISBg1ypps9usHgbK4QT3oq5TKLvtaAU3KvleAtnc9+KpGwU8CLgWGAT8Bs4H3tdZ2r/PpLqQPqBANw7HMAwS8EcuG0HHE32VXP/cGb8OS+fRZdBUr+z5J/OQ76/Xeh/ftxve/FxBSdBh17ffQYWC93l80IJZBQitXWreNG8Ey/2/79hAfb7a4OBg0qN5GpLuCO/cBdZRKa0C11t8C35bNbD8R+AfQWin1DvCN1vqXeopRCNGAlJaUsPLdm8C/GYOnv1yja5u3bMuKsHPod+RHsg5lENq6g5Oi9BxFy97lKM3oe8719XrfzP17yJ15Lq1KD3P4ojm0luRT2Etr2L27fM3m6tXWQUIhISbBvO8+a8LZQf7WG5pqByFprXOAz4HPlVItMAORHgAkARVC1JiXtzfehcfpe+gb9qZeR6fuvWt0fdux/8B/znzWLHidIdc976QoPUPGzhT65S4jqdO1JATUX2XJkYPpnJx5Lq1LD7P33I+JipWhAaIKmZnWRNOSdB4+bI75+ZlBQtOmmUQzPt5M9i6DhBq8Gk/D5ImkCV4I95J5YA/+78SzI7Av/R74ucbXb3huDO3zU2n20Fb8/BvvmuKJ797KoP1fkHXDalp37Fov9zyaU8h9787l0ewnyBn3Cr2Gnlcv9xUewrKSkG3t5q5d5phS0KuXNdGMj4fevU0SKspp1E3wQgjhLC3bdiax2w0M3vk6m5bOJ3b4BTUrYPCttPxzGqt+mkXcxFudE6Sby8/JpteBb1kfPIKB9ZR8UpTP2j3HWHY8lPQr/mJYVLv6ua9wT0VFsGlT+drN5GTrSkKdO5sk85ZbrCsJBQe7NmbhNjyiBlQp1RV4GAjRWk8t2zcJOA9oBnxQVZ9UqQEVwv3k5+Vw9Pm+ZPuEEvXIyhpdq0tL2fNUH4qUH90eTmqUE9OvnvcyAzf8HxvHzaH3kPHOv2FRHvx3CnQYyJGhjxDW1N/59xTuQ2uzJrptM/qaNZBfNvtOaKi1v6blVVYSqjWpAXUApdQs4HzgkNY61mb/eOA1wBszuv65ysrQWu8ErldKzbXZZxkk1QKzbKj0SRXCgwQ0CeLYOW/RrFXnGl+rvLw4EHUVCSnPsG3dEiJdNPm6y2hNi+RPSPWKIDbhbKffrriokM2vXkjvnOWoQdMk+WwMDhwo34y+apWZgxOgSRMYMMDUbFqSza5d3WolIeH+6qMJ/iPgTeATyw6llDfwFjAWSAdWKaXmY5LRZytcP01rfaiK8h8pK0sI4WF6Joz739elJSU1Wrax57jp5G5+iWNL3oNGloBuW7uEyJJdJPZ8mO5Orv3VpaWse/saBuUsY2X0g8T3nurU+wkXyM42o9Btazf37jXHLJO7T51qrd2MiQEf6cEn6sbp/4O01ouVUuEVdscDqWU1myilZgMTtdbPYmpLq6WUUsBzwI9a6zWOi1gIUZ8KC/JJeXUCua36M2TaC3Zf16x5GCtDzyI26zeyjx2hWfMwJ0bpXrKWzCBP+9FrnPOnXlo1627ijy5kWcfpDL30IaffTzhZQQFs2FC+3+aWLaaJHaBbNxg2zDpIqH9/mdxdOIWrPsJ0APbafJ8OJFR2slIqDHga6K+UeqgsUb0DOAsIUUp111q/W+GaG4EbAfxkhJ0QbsvPP4ASrwD67v6IzAO307Kt/U3yzc+4icD5C1jx8/skXPKAE6N0HzknjtE761eSW4xmkJOT7s9X7GHxzuYUtLuI4dP+49R7CSfQ2qwctHIlrFhhXtetg8JCc7x1a5NkXnaZdTWhsMbzQU64lkfUoWutjwA3V9j3OvB6FdfMAGaAGYTk1ACFEHXSevKz+H16Bhu//j9a3vaB3df16HcGqQu60Wrr5+jS+xrFYKTNv35MnMqn6RAn134WnGTH4ZMU9DiPwVcPahRbVEOKAAAgAElEQVS/W4+XmWlNNi0Jp6XfZlCQmdz9rrustZudOkm/zUZOKdULeAI4AizSWs+t+grHcVUCmgF0svm+Y9k+IUQj1LF7LCtDz6X/oW85sOdB2nbuYdd1ysuLI9FXkJD8b7as+YPoQWOcHKnrNUv5gjTVkai4s5x3k8Pb4MNzePS8lyg65wJ8vSX5dDv5+aY205JsrlgBO3eaY15epp/mlCmQkGC2Xr1Mf07RYDhikDdwDvCG1npJ2VicBp+ArgJ6KKUiMInnpcDlLopFCOEGOk9+Aj74id3zn6Ht7R/afV3MuGnkbnqe48s+ggaegO7bvpaoohSWdr2bcCfVSGYfOUjeuxMJ8wOf9v0l+XQHlqZ022Rz/XozDyeYZSoTEuCmm8zrwIHQtKlrYxb14SPqOMgb+BR4XCl1AVCv/S/qYxqmL4CRQEulVDrwuNb6A6XU7cDPmF/KLK11srNjEUK4r7ade7D+zHeI7j+6Rtc1bdaCVc3PpGfWb+TnniQgsOG+8e798yNaay96jJ3mlPKLiorYPeMSIosPs23cbHq16OKU+4hqZGaWTzZtp0AKCjJ9Ne+5xySb8fGyTnoj5cBB3reVJa7znBXr6dTHKPjLKtm/EFjo7PsLITxH39EXA2bqn5r0OWwy6EqaLfqF1X/MZuB5050VnkuVlpTQJWMBm5oMol+7ms+dao+VH9zDsIK1rOr7b+LindjEL6zy82Ht2vJ9N22b0i1TIFmSTWlKbyx8lFJJNt/PKBvbUp2aDvIOB/4FBAH1OtLQIwYhCSEaj12bV1H69Q2oye/RNbbS52Y5PYecx8FFYfhsmgMNNAFNTvyJ3hwmI9Y5o/1/3LifLXtz8G03ifgL73LKPRq90tLyo9IrNqV37ChN6cKiWGs9yNk30VqnUTZjUH2TBFQI4VZC23RGlRxkx8L/g1j7Gkm8fXzY2f584jI+JfPAnhpN5eQpTq76jBwCiBl9qeML15p5azM41P56br3RvqRf2OHw4VNHpR87Zo41bVq+KT0hAdq3d228oiHwmEHekoAKIdxKSFgblne6giF7Z7IreQURMfYlRO3PnIbPFx+T+tssWl75hHODrGf5eTnEHP2DLS1GMjAw2LGFF+bAZxfzzpkPkt0mAX9feVuoFUtTum3fzV27zDFLU/pFF1mTzZ49pSldOIPHDPKWJ40Qwu30mnQfOa9/StZPzxER841d13SJ6sc2n0ja7PwGM61dw5Hy11f0V7n4Dzhtl/o62fLhbUTt/xsfSggNkkU77KK16aeZmAjLl5vX9euhuNgctzSl33KLtSk9KMi1MYsGx9MHeUsCKoRwOyFhbVje/mIS9n3K3u3r6dSjr13XZXWbzOCtz7M7ZTVdeg50cpT1R22aSybNiR5ynkPLXfXD+8Tt/4bVnacxsOtIh5bdoJw4YUaiW5LNxEQzUh2sTen33msdKCRN6aIeePogb0lAhRBuKXLSAyQt7Ua/zlF2X9P9zCso3fIC+5bPbjAJaO6Jo/Q8kcjqVhMZ6uvrsHL37dpC9KpH2OoXTd8rq5qnupEpLYWtW8vXbm7aZF0rPToaJkyAwYPNFhMjTelC1IIkoEIItxTWpiNhU/5Ro2tatu9Csn8sbdN/op5nFHGalCVfM1AVETxgqsPKLC4pZfnclzkbCL78Y3z8/B1Wtsc5etT017QknCtWwPHj5ljz5qZWc8oUk2zGx0OLFq6NV4gGQhJQIYRbWzHneUpPHmbI9S/adf7JbhOISXmGtJQkwns6fRYT50v+jkya0yt+rMOK/GhZGk8duYAZ513D2RHRDivX7RUXQ3KytRl9+XJT2wnWgUKXXAJDhpiEMzLS7BdCOJwkoEIIt6YObKB/1s9kHbqb0NbVr/jS7czLKNn8LPuXzfb4BDQ/J5ueJ1ewodW5DPZx0OP68FYu6u6Dz4QYxg4Nd0yZ7urQIWuymZhopkHKyTHHWrY0iebVV5vXQYMg2MEzDAghKiUJqBDCrbUZ908CZv/A2h9eY8i0F6o9v2XbziT796F9xo/o0hdqtKKSu9my9Bv6qQKC+k5xSHmFBfn4fnUdISUFXHvbSlDKIeW6hcJC2LCh/EAhy4pCPj7Qrx9cd52172bXrg3r5xfCw0gCKoRwa12iB7C+STyRe2aTn/c4AU2qn87mZPcJxGx+ip1bkujaK74eonQOnfwdWTQjevA4h5S3+pN/MeRQMgUXfY6/l4cPnNm3zySbloRz9WozFyeYUehDhphpkAYPhgEDIDDQtfEKIcqRBFQI4fa8h99J2K9XsnLhDOKn3F3t+d3PvIyS5Kc5uGyOxyagxfk5RGb/zYbmYxniW/f5OVPXLyUu/UOSmo9jUIxjp3NyuuJiU7u5bJl1273bHPPzM/Ns3nqrtXazY0ep3RTCzUkCKoRwezFDzmPFmkk0bWfflExhbTqy2S+G1vsXOTky59me+AM9yccndlKdyyoqLMB7/m0cVSH0uOZNB0TnZFlZplbTkmyuWAG5ueZY+/YwbBj84x+mlrNfP/BvxKP4hfBQkoAKIdye8vIi4Y6Pa3RNdpexDE59hf27t9Kui/1zibqLk5t+JEcHEDP0nDqX9eHirTQt6Er0iCkMCG3tgOgcSGszEt22djMlxRzz9jYJ5vXXw9ChZuvUSWo3hWgAJAEVQniMw/vS2LVsHvFT76n23A6Dp0DqK+xZ/jXtuvyrHqJzHF1aSqfMJWwLGkj/wLot4VhSqvlu83E6RT3C5We7weT8OTlmVSFLsrl8uanxBDPH5tChcOWV5jUuTpawFKKBkgRUCOExUn+dyZBdb7I7diRdogdUeW6n7r3Z7dWRoF2/AJ6VgG5LTiKKTDK631bnsrwXPcE3E88jt1VvB0RWC3v2lK/dXLcOSkrMsZ49YfJka+2mzLspRKMhCagQwmNEjr+FwrffZf+it+kS/X615+9rM5pB+z4j+1gmzZq3rIcIHWN/0nyigG5DJtepnIzlc+nw96v4BYbi16UeBmMVFpoE0zbhzMgwxwIDzUpCDzxgks3BgyEszPkxCSHckiSgQgiPEdamI0khI4k59AO5J48T2DSkyvNbDJiI7/5P2LB0HgPPv7Geoqy7kPQ/2eMTTud2EbUuIz/3BN6/PMhe33A6Db7VgdHZOH7cNKEvXWq2FSusUyF17gxnnGGt3ezTBxy4lr0QwrNJAiqE8ChNh99M8MLfWPHj+yRc9M8qz+0xYBRZC5pRuvVn8JAENG3PbvoUb2JT12l0rkM5a2Y/yVB9mORRr4O3gxK/jAxrsrlkiZkaSWszWKh/f7jpJjNCfcgQMxWSEEJUQhJQIYRHiRo0hu0/d6f0aFq153p7e7M7JJ6ux1dRXFyMj6OWs3Si/SvmEq40rRMurXUZhzLS6Lf7I9YGn0H/oefWrpDSUtiypXzCmZZmjgUGmiTzscdMLWdCAjRtWut4hRCNj/s/jYUQwoby8iL8gWX08LNv7kfVfQxhq38jZeNyevY/w8nR1V2LtB/ZQ1s6RdZ+HftXlh6iRekUrrzwDvsvKiw0qwlZks2//7aOTm/dGoYPh7vuMq99+0pzuhCiTiQBFUJ4HN+y5PPIwXTC2lTd1Nsl/nxY/RBHN/wEbp6AFuXnEJGzjsUhF9C5lqPBi0tK2XtCEzzkTtp37Vn5ibb9N5csgZUrrf03e/SAiRNN7ebw4dC9u8y9KYRwKElAhRAeKfGLZ+i35WWO35lMSFibSs9r0aYzu7zDCclYUo/R1U7i4p84gyLa9K3l2u9a4/PdLXw69DyKo+LKHzt0CBYvhr/+On3/zVtuMcnmsGHQpvLfpxBCOIIkoEIIj9QqZiQBW59n3a8fMvjSB6s890DLoQw8MIf8nOMEBFU9ct5VtNYkr1nGGUBs3KhalZG24jvCN8xGdRyE78EDJtm0bFu2mJMs/Tcff9wknNJ/UwjhAm6fgCqlugIPAyFa66ll+0YCTwLJwGyt9Z8uC1AI4RLd+gwl9btutNz+JVB1AhrQcyx+Bz9nc9Iv9DrzovoJsIYSd2bR9OQuCps0w69pqxpfX5qWRtFPj7O/NIy2Vz2P2lY26j842CSa114LZ54JAwdK/00hhMs5dckJpdQspdQhpdSmCvvHK6W2KqVSlVJVvnNorXdqra+vuBs4CQQA6Y6NWgjhKY70uIjuJTtI3bCsyvN6DBpLvvYlN+XXeorMftn5RcxZtYctu3Zzpc8ivFr2qL6/pdawcyd8+KFJLCMiWDt9Aj1IY9+GUFRUL3jxRbPkZVYWLFxoJoAfPFiSTyGEW3B2DehHwJvAJ5YdSilv4C1gLCZ5XKWUmg94A89WuH6a1vrQacpdorX+SynVBngZuMIJsQsh3Fz02GkUpLxE5pJZdO8ztNLzmjYNZq1/H9oerjpRdYWnf0hhTtJe7m/2GwA+3c489SStYft2+PNPaz/O9LLP3i1bUjJiBKGxKeymA/2+XAZ+fvX3AwghRC04NQHVWi9WSoVX2B0PpGqtdwIopWYDE7XWzwLn21luadmXRwH75mIRQjQ4IWFtWD/yHaJ7Vz+6/Xj74fRPe42MtG10CI+sh+jsU1hiHmfReWvY59eB9mc9bg7s2QO//27dLEtatmljmtItW8+eLNiwjx+/nME1I2PoIsmnEMIDuKIPaAdgr8336UBCZScrpcKAp4H+SqmHtNbPKqUuBMYBzTE1rKe77kbgRgA/eSAL0WD1HWVfn87YMyZD2mus/mMeHa6rus9ofWodbD5D9/HayQHvvrS/8UaTcO7YYU5o1QpGj4ZRo2DkSIiMPKWJfmdmLrvbjCX+rOH1HL0QwpNVMs5mEnAe0Az4QGv9izPu7faDkLTWR4CbK+ybB8yr5roZwAyAoKAg7bQAhRAut3rB+xTt38zg6S9Xek7Lrv3I8gol7MDSeoysCseOweLFtPorlWa+HWipsgn74VdIDjCJ5h13wJgxEBNTdZ/Qzd/xD58t3HrTnXh5yVydQjQWSqlZmJbjQ1rrWJv944HXMF0b39daP1dZGWWt0dcrpeba7PsW+FYp1QJ4EWgwCWgG0Mnm+45l+4QQolaK9iQx4MCXHD/yQOVzgirF3haD6ZW5mILCQvyd3DJSUFzC8bwiWgcHmB15eWbS90WL4PffKV29hgNBLWgWGcfos/uaEP/1Hxh/K9i5ZGhpSQlFvz6Fv68PfiPuc9aPIoRwTx/hnHE2Fo+UleUUTh0FX4lVQA+lVIRSyg+4FJjvgjiEEA1Ey6FX4qdK2PrHZ1We5xc1lhbqJIl//+70mO6Zs574pxdR8tLLMH48hIbC2WfDSy+Bvz9PPvgeQ2/9iOb3TeBVv7fNRcMusDv5BNjw+2z8j25ja/fpUMuVk4QQnklrvRjIqrD7f+NstNaFgGWczUat9fkVttMmn8p4HvhRa73GWfE7exqmL4DlQJRSKl0pdb3Wuhi4HfgZSAG+1FonOzMOIUTD1q33UPZ4dSBoW5U9c4gaMgGAE8lOaVGCzEyYPRuuu46lSakA7HvyBTOg6KabYMECOHoUlizhv7QDwLs0D4D0cTOhRbj999KaoBWvkaHa0G3UVY7+SYQQruWjlEqy2W6087rTjbPpUNnJSqkwpdS7lI2zKdt9B3AWMFUpdXNl19aVs0fBX1bJ/oXAQmfeWwjReCgvLzI6TSAh7T0O7E2lbafupz3PK7gVR7xb4Xd8l2NuXFho1lP/5Rf4+WdYs8ZMmdSiBV2vHsFagtjxwyI6DY855dKikvJd073b963RrbcmLiCqeCvLox+mg68MtBSigSnWWg9y9k0qGWfzOvC6s+/t9oOQhBDCHp3PvJrUjN9RR/ZXmoACFDVpRcDxw3y9Op1urZvy+PxkPp+eQJB/hceh1mYS94wMSE/n1Y3HefVoMybm7yW11J9XV/2XxNJgXo2/iGF7itgx+BYOnhVGJr5c6v07j3i/xZTC/+PaH9IYsvkEX9w4GIDst0bzztF4Bqg2vO73JgdSQmvVFjVn00kGcgajLri15hcLIRoqjxlnIwmoEKJB6NA1Bh5ZVe15Ia060ip7C7/tOMinv6ew/kgh61//kKGHtplksyzhZN8+yM//33WvPvADAN8FmGf7a/0m4tM0kCPezVnQ60xsKzSf832/3D2X7zzyv6+bHV7NA6zmEa/r6Kgy6agya/yzHsst5Kv0FgQPf5nzAmUddyHE//xvnA0m8bwUuNy1IZ2eJKBCiAblxPEsSktKCClVsHs3pKWVe23SPIk2XRTMfB/adYf20WR8Mge2L4WOHaFDB0hIMK9l35e0bw/zj5a7jxpxBihg3T68vBQlJTWb7e3sXm1he+1+xua7FrLspp7o0IjaFSCE8Hhl42xGAi2VUunA41rrD5RSlnE23sAsdx1nIwmoEMIznTxpJmu3bLt2cXT/XoL6LGP1ju4M+Wxl+fODgyE8HIaEEeq1m8AEf1rrXKazgJwrY9k2/t8cCozkePJvRIZ3oCjvJNk7VtDWP5/Fe0uA8jWNy1Izq12y3RmKT2bh/e0tBMdcCJOcNkOKEMLNefo4G0lAhRDuSWs4eNCaYO7cWT7hPFRhBpEWLWgRHs72mHaEReTDK6+YhLNLF/PavLmZ0D3xHfjpQR70+dB6bR7wzYecnf85aQE3wbryRYcDj/F5uX1Hcgod/zPbYfW3r5FQlEtO/+kEuSQCIYSoO0lAhRCuU1RkmsdPl2Tu3Ak5OdZzlYJOnaBbN7jgAvPatat57dbNJJhA5scPM2TXmxyYcn4lg5FqV235+fQE3l+6i9+3VDVvs3OVFhfRZcdnbPLtQ2yX/i6LQwgh6koSUCGEc5WUmCRz2zazbd9ufd2zxxy3CAiwJpVjxpRPMsPDwd+/2tt1HHYp7HqTtCWzaXv5I877uVxg819fEasPs6f/o64ORQgh6kQSUCFE3WltRo3bJpiWr3fsMDWdFs2aQY8eZqDPFVeUr8Vs167OK/p06t6bXV7hNNv1I2YluYYjOXk9zWlD37MudXUoQghRJ5KACiHsozUcOXJqgml5zc21nhsQAN27Q69eMHEiREaarUcPaN0aZ4/eyRv7HEEtKlkT3kOlH83lof0juPXMq7jXr/qaYCGEcGeSgAohyjt58tQE0/L1UZupiLy9Te1ljx4wapQ1wYyMNNMXuXBt8l5DznHZvZ2lpXcuL17Ul8Fdw1wdihBC1JkkoEI0RlqbCde3boUtW8pv6enlz+3UySSVl15qTTAjI02fTF9fl4Rvjw1/fk1uxiYGX/G4q0Opu9ISAj4YyYXR58GA510djRBC1JkkoEI0ZPn5puayYqK5daup6bQIDoboaFOTGRVl3bp1g8BA18VfB7nJP9Lv0Lfk5dxDk6BgV4dTJ9uWzSfy+F4K2scjje9CiIZAElAhPJ3WcPiwNbG0TTR37TLHLTp3NonmtGkmwYyONlu7dk7vl1nfgnqfR8DvX7EucQH9xnj2oJ3cxFlk0Yyg6HNdHYoQQjiEJKBCeIqiIjM35ukSTdu+mQEBJrmMi4OrrrImmpGRENR4pi6PjB9HzqIACjYvBA9OQLOPHabXiWUktb6Qof5NXB2OEEI4hCSgQrib7GyTVKaklE8yU1OhuNh6Xtu2JrG85JLytZmdO7t0AJC78A8IJLlpHBFHlqBLS1Ee+jvZ8tunxKtiwoZe7epQhBDCYSQBFcJVjhyBzZtNorl5s/Vr20FAPj5m4E/PnjBpkjXJjIr638o/onLF3c+meMM2jhzYS8v2XVwdTq28dbgPPwf8k0f6DnN1KEII4TCSgArhTFrD/v3WJNP21XYt88BAk1iOHGnmzuzZ02xdu7r1SHN3N3DCrXhNvN1jaz+LSkop9QsmNOFyj/0ZhBDidCQBFcIRSkvNspIVk8zNm+H4cet5ISEmwZwwwSSYlmRTms2dwtvHPOJKS0rx8va8369v8lw+jT2KjrvB1aEIIYRDSQIqRE0UF5uBQBWbzrdsKb8SUOvWJrG8/HJrktmrl+m32cBGm7u79Qtn0nblM/j/YzXNm4e6Ohz7aU3J4pfwbtIclXCTq6MRQgiHkgRUiNMpKDCr/1Sszdy2DQoLred17GgSyxtuMK+WZDNMVqtxF/4hbWhDFkmrfmXQ2EtcHY7dMrYm0SFzCxv6PkYfVwcjhBAOJgmoaNxyckztZcWm8x07oKTEnKOU6YvZsyece661NjM6Gpo1c238oloRA0ZT8IsvRdsXgScloMvm0FYrWiVc7OpQhBDC4SQBFY1Dbq5JLJOTy29padZzLCPOe/eGiy+21mhGRkITmX/RU/k3acrGgFjaZia6OpQaCUv/ja1+MfRq38nVoQghhMNJAioalrw8U6NZMdG0XRHI19dMY5SQYFYEsiSa3bvLiPMGKrv9cHrveoOsA3vwhF6g2zMOkVXsj+ohKx8JIRomt09AlVJdgYeBEK311LJ9nYHXgSxgm9b6OReGKFwhP9+sBlQx0dy504xIB1OjGRkJAwfC1VdDTIzZJNFsdNoMvIDEnIN0Kymu/mQ38H3yUd4seozE88e4OhQhhHAKpyagSqlZwPnAIa11rM3+8cBrgDfwflUJpNZ6J3C9Umquze7ewFyt9X+VUnOcE71wC4WFp080U1Otiaa3t2k679vXjDq3JJo9eoCfn2vjF26he2w83WPjzTd7XRuLPS7v15webfrTOjjA1aEIIYRTOLsG9CPgTeATyw6llDfwFjAWSAdWKaXmY5LRZytcP01rfYhTJQJzlVLTgE+dELeob0VFZoR5xURz+3brYCAvL1N7GRNj+mhaEs3ISPD3d238wu0VFRWyZ9Myulm6YrirY3tp+25/Jkx6B7jI1dEIIYRTODUB1VovVkqFV9gdD6SW1WyilJoNTNRaP4upLbXHdcDjZeXPBT50UMjC2YqLTe1lxURz2zaThIIZdd6tm0kuL7zQmmhGRUGA1AiJ2kn8+nXO2PIk2/s+QA9XB1OFnX98RNfSInTHQciMsUIIZ6qkm+NI4EkgGZittf7TGfd2RR/QDpRvBEsHEio7WSkVBjwN9FdKPVSWqP4EPKGUuhxIq+S6G4EbAfykGbb+lZSYqYwqJppbt1rn0VQKIiJMcjlhgjXRjI6WUefC4fqNnARbnmTLzt1unYD6psxjk1c0saERrg5FCOHGnNjNUQMngQBMjuYUbj8ISWt9BLi5wr5NwNRqrpsBzAAICgpyfpvbzz+b2jofH7P5+prX2bNh+HBz/L77yh/z9YV33jHzSv76K7z9dvljPj7w5JPQvj0sXgzff2/dbznnttvMXJRJSbB69an3nzTJ9IPcts0sFVnx+IABJhE8dMjMiVnx/iEhll/o6VfwKSkxI8wrJppbtpjJ3C3Cw01yec455RPNoCCn/9MIARDctjsHvNvROmerq0Op1P70nXQq3ElK+1uJrf50IdxXSYmpbCgqsm7Fxeb9zMsLDh6EAwdOPT5qlHmvWbfOdMGyPQ4wfbp5/f572LCh/PGAAPj3v83xN98074vFxdatVSvzngtw772walX54926wZdfmuOTJ5v3VNvj8fHw00/1+3us2kc4p5vjEq31X0qpNsDLwBVOiN0lCWgGYDuxXceyfZ6tc2e49Vbzn9Tyh1RcbF0RJyjI/Oe2PV5UZE3qTpwwNYYVjz/0kDm+fr1JUG3/EAGuucYkoAsWwBNPnBrX8eMmAZ0xA1566dTjJSUmhkcfNefYCgw0SSnAlVfCF1+YAT+WmL29zWt+vvUaX19TexkWZn4nr79uEuwXXjBJaUaGSXb//tvUfj74oLnuvffMA8nPz2y+vub6iRPN8R9/NPfx9bWe07q1mT4JTIKtlPVaPz8Tf2Bgtf90ovHYFzaYmIM/ko8PAcr9RsT/9cu3XAr0GznZ1aEIV9PaPPMsSVxhodlCQ80z/8QJ82G/4vFBg6BDB0hPN+8Llv2Wc664wrwXrV0LM2eWTxKLi02lR1SUqTR54YXy70dFRTB3rumL/+GH8Nhj5a8tKjLP+c6d4bnn4JFHTv25jhwxP8Mrr8Dzz596vLDQPMNnzjTvebb8/KwJ6Ny58ElZ3uXtba5p08aagG7YAH/+Wb5CJS/PWpblvS8w0Fox066d9Xj//tCihfWYj4/5ud2Is7o5aq3LRvhyFHDaAAtXJKCrgB5KqQhM4nkpcLkL4nCsnj3hP/+p/Pjw4WarzIUXmq0yd9xhNouSEvMHb+le8M9/wo03npoAN21qjt9+u6kNtT1WVGQ+iQJcdx0MGWL2Hz0Ke/fC/v1w002waZN5WGltjoNJqFu3NmXGxJjjGRnmHMsDrW1biIsz5+/ZAxs3ln9QxsaWT0DXri3/M48aZU1A77jDJOi2JkyA+fPN1yNGmATW1mWXweefm6+bNTM1srYJ7rXXmoek1qYm2M/PDGaybFOnmnPy8uDuu80+23NGjTL/prm5MGdO+Wv9/U0Nb6dO5r47d556vEkT81AT9SYoegxND33DspJeDPXe7OpwytmfXcR7qS0I7HovF3Tt6+pwGgfL8yo/3/ydFhSYv83Wrc3x5cvN37/lWEGBWRUtLs48g19+ufyx/HwYPdo8F0+cMPMMV0wQp00zz5V9+8wzxLLfsj33HNxyi0kue/c+NeZZs8zzOjnZPLMr+vJLuOgikwjefPOpx+PiTAKakQFffWV9HlqSNEulQ0mJ+Zl8fU3Nom0iBybJHDu2/LW+vtZWrVGjzM9i2W85x9K96sorzVzMttf6+lorNv71L/N7sOy3bBYzZ8L775trT9c6V7FCpaJXXqn6+GOPVX3c+XyUUkk2388oa9mtTp27OSqlLgTGAc0xNaxO4expmL4ARgItlVLpmIFDHyilbgd+xlQJz9JaJzszjgbJ29v6hwom0bQkm6cTHm42WydOQGKiSTBtN9tErkUL8xC87jqTMMbGmoQztIbTeX/0UdXH16wp32RTWGhNjsHUgObmlv8037y59T1YiOAAABUuSURBVPi778LJk9Zri4rKf1r95z/NG4lt+bFljZwlJSZRLCw0D9ycHMjKgmPHzPH8fPjmm/JvNFrDU0+ZBPTwYfOmUtGrr8Jdd5lBV7GnaVB9/324/nrTDDRmzKkJ6iuvwLhx5nfz6KPmTaBJE7MFBJga9549TTPVggXW/ZZzhg83/35ZWaapq+L1/v6nf3A3YJFDJrDl4GaGbHm7+pPrSaZuxpySkUScKCS+UyD9Jv8TfBrRrA6lpeZv07KVlkKXLubYmjXmeWR7PCTEJFgAr71mPtzl5VmTyKgoay3Y1KnmuO3f7qhR1pqzdu1O/eB6+eXw2Wfm6zFjyteagflQHhdn/nbuv9/sU8r6d9uihUlAlTJL+9q22vj5WZ/bAQFmjmLbVhs/P/N8BfMB/tlny1/r5wfDhpnj0dHmuWj7odrPz7Qsgfn737evfNm2Cd7555tnV2XOPddslRkzxmyVGTrUbJWxvJ9UpkMHs1Wm4Y/tKNZaD3L2TSrp5jgPmOfsezt7FPxllexfCCx05r2FjYIC82m4YqJpuwxlYKB58J17rvXBEBtrHtD1laR4e1sTpIp6VDNsZNKkqo8//njlx3x8rDWpp9OixalvUsXF1pWVOnQw/WBt3+QKCqxvBB06mO4LFY/Hl81L2bKlSUQrHrf0vy0oMN0WLG/A+fnmdcoUk4CuWWNqaCtKTDQ1DN98Y222srVpk/k3nznTdN+omMB+9ZVp0vrhB9PfKiio/HbDDeb8rVtNbUrF461auV2Cq5o0JzqiC7hRN9Cniq7k29LhzN23iOdLv4YQN2p+Ly42H+xycqxbbq5JLJQyNYQbNpj9lvOKi63dfV56yTTl2iaQwcHm/yaYVp9vvil/z27dzIc2MP30/vij/PG+fa0J6FdfmZYVy/9dy/9fi5AQ8/dn+8Guf3/r8fvvN39Plg9kAQHlnzXff2+eS5bj/v7WblVeXuZDvL//6WvhmjY1tZSVCQ21ttCcTsuW1hai02neHMaPr/x4QED5JmXRWHhMN0dp/2tILCPPKyaa27ZZ59L08TGfnAcPNkmJJdGMiChf4yiqZtt07uNzau2yrebN4dJLKz8eEVF1c9CQIaaWtDJTpphuE7Zv8nl55t8ZTJPg7NnWxNWSxLZta46Hh5vBYbbJbV6e9Wfctg2++86agFgS7+uuM6/vvXf6+C19rO66yyTgQUHmg05QkHlzXVj2GXTWLPNGHRxsuko0a2aSV0v3i927zT0tx+u4ilXarlR+LT6HzuowY7zWsF13oKeX62an76hMLZR32mJ03k6Udy1/Pq3Nv9uJE+ZDk5+f6fqybh1kZ5v92dlmu/dec87cufDBB+UTzJwc0+c8NNTUvD93mgG0+fkm8friC3jjDet+Pz+T9L34ovm3P3HCbE2amH+7Jk3Mv73FlCnQp4/1Q09goDXBA9OKkJtrPd6kSfmBi0uXVv07+eCDqo/fc0/Vx6uq4YOqW52EcA2P6eYoCagn0tp0MLdNMjduhJQU64AgpUxfpdhYU8tgSTQjIxtD00Xj4uNjklzbLgm2IiKstbGnM3as2Spzzz3WN2rLwIicHGsicOedcMEFJlGwJDD5+dYPNAkJpnuDbYJj231k6dL/b+/+o6Qq7zuOv78zu7D8WGAXFBfhCKhVCGpFS9SCAU2M4Wi0UXNQ649oE5Vjj9ZjUqknxiQ9p0nVNrGnNrWNVVN/FX/FWH9HrVqLiiiIiAKCIiKG5ccuP3ZhZ7/947nDzA4zu7M4O7Mz83mdc8/evfe5d55nnntnvvPc57k3tGRt25ZaNn58KgD97nfDXSKS6urCQIuXX069/urVqeC1oSG0DF9wQVi/cGF4vYYGaGhg/z+8yvRYC/clTmZx58HcljiD5wdcw8TYZ7nfg33Q6vndSuwgC63rB7QuZXnjDCatWBF+HAwbFvpiP/54+IGRnLZuDS36U6aEFrorr0wFl8kfmgsXhsu7Tz0VLhmni8fDo2kbGkKdbdwYAqmmplTrdbI1b/bs8GMgs3U7WX8/+lFopUsuz+zTfOON2QdHJp3fw+DaI4/M6z0UqUbl3s1RAWh/t3Hj3oHm0qXhyyZpzJjwZTRrVirQnDxZtziSwjPbu5tEtv7F6c47L0y53HFHmBKJEIS2tna9hde8eWFAWTLIam3t2gd5+/bQBWD58tBvd/Nm+MpXUgHonDldBrANPq2OA44O27/SGfqgffRKAxNbVvP92rtgaDs0xWFi9PG4IQEDjZbPN9G2K4+R8+7Q6cztuAqAE1e9wX47WuDm90Kfu2d2wlG1cCiwPoG/1Ub9STtosk0cMP9xuPrhEJCffXYo09y5Yb91deFHxvDhIQiF0EVi1qwQrCZbiOvrU33nzjwzBKLJ4Ly+PtRdMsC88MIw5TJjRphySW+tFJGiKvdujgpA+4vW1tBhPTPQTO97OGJEGBB0/vld+2n2dkCQSH8Uj4fgKtn3NWnWrO63y7zM6t41gL377nAeJVsQ1/4HDbG1xBMJrqmZz8W7r+PDRBOz3uvgsp0PgXfC0bUhAHWHf90ODpfXrQDg3vvm8dq4I/jl9POoSXTwi9/dTF1iF6Nbm2nc0cLInVthpnHwtE95mSP5yXO3M37L+vB1MGAADOyACTV8uGMQ9w67hh/U3M3B9ikdHqPmzEvgshNSd49IDiRpaMj+FLBp01J9ibPZf//UiG4RkX5EAWixtbeHQRvpQWbmgKBBg1I3bZ8yJQSdxR4QJFKuzLoGa5kjce9/C5avZQAdfCW2hBG0MvbEFphVzyE772FN7LzwHBAIf88ZBG2pZ1lcdfr3GbQ7BLiDd7fR1LqRn838DlcsmM/7+42nefBwLhvzFKfFF3Bn4lQuOesGOuI1vHTTt0ML5I9DV4lb1oynNX4IP/zaf/Jx+/4sGjCVaZdeBw0HpfKaa1CeiEiZUwDaVxKJcPuPzEAzc0DQYYeFPnIaECRSJOFH3Lza+7i/Yya31v4T02NLo1XG72uOZqKt57NEI0OsjSGHtbHFh/CtKQfy8Fvr+MPQ1BWHlrqhnHXBzQC8Me5Le5ZPqN3EMN8BwIejogGpw4Z1ycXXRjbz8Oej2eaD+HXtTTSe+nddg08RkQqmALQQ2tvh+ee79tVctqzrE4I0IEikfxh7DCwPt92aU/PinsVtHkafN9lmtjCUCbHPOMA271l/S0sb+VrjTZwffy7n+ns7TmJdayd/GX+YVT6G2fHXWbpbPzpFpHooAC2EXbtSN+xtagqXzOfOTQWakybpdh0i/UVNlr6UQJ2FR9xOjn3E2s5RbPUhewLQBZ2TmHHIKF5d1ZzXS0yx1Qyx9pzrT4//H1tiTcytfbCXmRcRqQwKQAuhvh5efTW0aGpUqEj/tvWTHpOMi23ca1lN3Bg5ZADN23f1uH13j/nc5XEeSMzky41bYDPc1zGLc2teyJleRKQS6ZpPoRx/vIJPkXKw5aNeb3Jc7D0Axo8q3K3NBsZDX/CPfXTB9ikiUi4UgIqI5Gn4oOxPKarpxSfpAEvwFzVPsmV32NfU2AeFyJqISFlRACoiVenHu/+cVZ2pZ2V/5g175j/3rvci7XRjXONgWnbuzmvfLyaO6nZ9s9ezwI8AYCht/E/iSIaOGNXtNiIilUQBqIhUpVo6ODi2HggB4SDCoKFlnQexzkfxfufYPWlj5gyrq2X1xu1Z99XpXf+PkaDdc3exH2mtbKtpYIOPYLWP5o9inzBw0OAvWCIRkfKhAFREqtLf1N7P/I4ZNHs9I62V4Rbu27nCx9DutRwWSw1W6nSjpS1362dmALqDOj7qpm9ns9cztGMzo20LE2wD73ROoH3nji9WIBGRMqIAVESqy9jUoyvPqXmZkdYKsKfF8lD7lIG2m486U4+wjJmzdlP+AeLHPpoDbe+R9EkjrZUJu0Lfz+Pjyzgl/ibbtuROLyJSaRSAikh1idfS6Xs/0nagdQDhPqBjrJk2Ug+JWNA5qVcvMTW2otv7gDZ7fa/2JyJSaRSAikh12byGmHm3SUbbli6X4Hvr2G5Gtu/yOI8kpjNxcGhRvbPjlH1+HRGRcqUAVESqS8u6Xm+SvA/oxP0Kdx/Q2lgnABu8sYeUIiKVRwGoiEie6usKdx/QTbvCJf7jY+8WImsiImVFAaiIVKW/3X0eK9PuA7q2M3UfznU+kl0e3/N/h8c4aOQQNu/I/hhOz7ii/3Ti2CxpUok2+VAWWLhXqGO8kphMfeN++1QOEZFyZJ75yVmBzKwT2FmEl6oBOorwOv1RNZcdqrv8Knv1qubyV3PZobrLX4yyD3L3im4krIoAtFjMbKG77930UQWquexQ3eVX2auz7FDd5a/mskN1l7+ay15IFR1di4iIiEj/owBURERERIpKAWhh3V7qDJRQNZcdqrv8Knv1qubyV3PZobrLX81lLxj1ARURERGRolILqIiIiIgUlQLQXjKzc8zsXTPrNLNjM9bNM7OVZva+mX09x/YTzOy1KN0DZjYgW7r+Lsr729G0xszezpFujZm9E6VbWOx89hUzu9HM1qW9B7NzpDs1Oh5Wmtl1xc5nXzCzm8xsuZktMbNHzGxEjnQVU/c91aOZDYzOiZXR+T2++LnsG2Y2zsxeMLNl0WffVVnSzDSzrWnnww2lyGtf6Ok4tuDWqO6XmNnUUuSz0MzssLT6fNvMWszs6ow0FVXvZnaHmX1uZkvTljWa2bNmtiL625Bj24uiNCvM7KLi5bqMubumXkzAJOAw4EXg2LTlk4HFwEBgArAKiGfZ/r+AOdH8r4ArSl2mArwntwA35Fi3BhhV6jz2QZlvBK7tIU08Og4mAgOi42NyqfNegLKfAtRE8z8Hfl7JdZ9PPQJzgV9F83OAB0qd7wKWvwmYGs3XAx9kKf9M4PFS57WPyt/tcQzMBp4EDDgOeK3Uee6D9yAOfAYcVMn1DpwITAWWpi37e+C6aP66bJ93QCPwYfS3IZpvKHV5+vukFtBecvf33P39LKvOAO5393Z3Xw2sBKalJzAzA04CHowW3QWc2Zf57WtRmb4N3FfqvPRD04CV7v6hu+8C7iccJ2XN3Z9x9+RNmBcAY0uZnyLIpx7PIJzPEM7vk6Nzo+y5+3p3XxTNtwLvAQeWNlf9yhnA3R4sAEaYWVNPG5WZk4FV7v5RqTPSl9z9JWBTxuL0czvXd/bXgWfdfZO7bwaeBU7ts4xWCAWghXMgsDbt/0/Y+0N6JLAl7cs7W5pyMwPY4O4rcqx34Bkze9PMvlfEfBXDldEltztyXJbJ55god5cQWn+yqZS6z6ce96SJzu+thPO9okRdC44GXsuy+ngzW2xmT5rZl4qasb7V03FcDef5HHI3MlRqvSeNdvf10fxnwOgsaarhGCi4mlJnoD8ys+eAA7Ksut7df1vs/JRKnu/DuXTf+jnd3deZ2f7As2a2PPqV2e91V37gX4CfEr6cfkrohnBJ8XLXt/KpezO7nvA4unty7KZs6172ZmZDgYeAq929JWP1IsLl2W1Rf+hHgUOLncc+UtXHcTRO4ZvAvCyrK7ne9+Lubma6dVCBKADNwt2/ug+brQPGpf0/NlqWrplweaYmaiXJlqbf6Ol9MLMa4FvAMd3sY13093Mze4RwObMsPrzzPQ7M7N+Ax7OsyueY6JfyqPuLgdOAkz3qBJVlH2Vb9xnyqcdkmk+i82I44XyvCGZWSwg+73H3hzPXpwek7v6Emd1mZqPcfWMx89kX8jiOy/Y8z9M3gEXuviFzRSXXe5oNZtbk7uujrhWfZ0mzjtAfNmksYZyIdEOX4AvnMWBONBp2AuFX4OvpCaIv6heAs6NFFwHl3KL6VWC5u3+SbaWZDTGz+uQ8YfDK0mxpy01GH68/I3u53gAOtXDngwGEy1iPFSN/fcnMTgV+AHzT3XfkSFNJdZ9PPT5GOJ8hnN/P5wrMy03Ul/XXwHvu/g850hyQ7PNqZtMI3y1lH4DneRw/BlwYjYY/Dtiadsm2EuS8ylWp9Z4h/dzO9Z39NHCKmTVE3bFOiZZJd0o9CqrcJkKw8QnQDmwAnk5bdz1htOz7wDfSlj8BjInmJxIC05XAfGBgqcv0Bd6LO4HLM5aNAZ5IK+viaHqXcPm25PkuUNl/A7wDLCF8QDVllj/6fzZh1PCqSil/dOyuBd6OpuTo74qt+2z1CPyEEIQD1EXn88ro/J5Y6jwXsOzTCV1NlqTV+Wzg8uT5D1wZ1fNiwsC0E0qd7wKVPetxnFF2A/45OjbeIe3uKOU+AUMIAeXwtGUVW++EQHs9sDv6nr+U0Jf798AK4DmgMUp7LPDvadteEp3/K4HvlLos5TDpSUgiIiIiUlS6BC8iIiIiRaUAVERERESKSgGoiIiIiBSVAlARERERKSoFoCIiIiJSVApARaTimdmZZuZmdnip89ITMxtvZueVOh8iIn1JAaiIVINzgVeiv11ETy7qT8YDCkBFpKIpABWRihY9w3w64abSc6JlM83sZTN7DFgWLfuhmb1vZq+Y2X1mdm20/EUzOzaaH2Vma6L5i83sUTN71szWmNmVZnaNmb1lZgvMrDFKd7CZPWVmb0aveXi0/E4zu9XMXjWzD80s+YS0nwEzzOxtM/uror1RIiJF1N9++YuIFNoZwFPu/oGZNZvZMdHyqcAUd19tZn8CnAUcBdQCi4A389j3FOBowpOQVgJ/7e5Hm9k/AhcCvwBuJzw5ZoWZfRm4DTgp2r6JEBwfTnii1oPAdcC17n7aFy24iEh/pQBURCrducAvo/n7o/8fB15399XR8j8FfuvubUCbmf0uz32/4O6tQKuZbQWS270DHBm1vp4AzI8emQ0wMG37R929E1hmZqP3oWwiImVJAaiIVKzoMvhJwBFm5kCc8Fzz/wa257mbDlLdleoy1rWnzXem/d9J+HyNAVvc/Y9z7Dt9e8uRRkSk4qgPqIhUsrOB37j7Qe4+3t3HAauBGRnp/hc43czqolbL9Mvfa4DkZfuz6QV3bwFWm9k5ABYc1cNmrUB9b15HRKTcKAAVkUp2LvBIxrKHyBgN7+5vEPpgLgGeJFxC3xqtvhm4wszeAkbtQx7OBy41s8XAu4Q+qd1ZAiTMbLEGIYlIpTJ3L3UeRERKzsyGuvs2MxsMvAR8z90XlTpfIiKVSH1ARUSC281sMqGf510KPkVE+o5aQEVERESkqNQHVERERESKSgGoiIiIiBSVAlARERERKSoFoCIiIiJSVApARURERKSoFICKiIiISFH9PzpfRSbJ3c9EAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 720x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "make_exp_test([exp_taylor, exp_horner], args={\"N\": 15}, xmin=-0.001, xmax=0.001) \n", "make_exp_test([exp_taylor, exp_horner], args={\"N\": 15}, xmin=-1, xmax=1)\n", "make_exp_test([exp_taylor, exp_horner], args={\"N\": 15}, xmin=-10, xmax=10)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Точность приближения растет с увеличением числа слагаемых, однако даже для умеренно больших аргументов ни одного верного знака в ответе не получается. Посмотрим, как погрешность изменяется в зависимости от числа слагаемых." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqAAAAE9CAYAAADULNDFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3xW5fnH8c/1ZJCEPUQpG4pMEWQLAg5Qq4KigBNbcYAVV7W11VZaa7VaFy5ciKJWLGrFVReiiKAMUUCGERGCyIYQAmRdvz/ywC9k8QSSnCfJ9/16nRc59zn3OdcTI7m4z7mv29wdEREREZHyEgo6ABERERGpWpSAioiIiEi5UgIqIiIiIuVKCaiIiIiIlCsloCIiIiJSrpSAioiIiEi5ig06gPIQCoU8MTEx6DBEREREDio9Pd3dvVIPElaJBDQxMZFdu3YFHYaIiIjIQZnZ7qBjKGuVOrsWERERkehTJUZARURERKoqM2sGTAC2Aivd/e6AQ9IIqIiIiEhFY2aTzGyjmS3J136ama0ws2QzuyXcfAwwzd0vA7qWe7CFsKqwFnz16tVd74CKiEhZyszMJCUlhT179gQdilQQCQkJNGnShLi4uAPazSzd3asX19fM+gNpwPPu3incFgOsBAYBKcA84AJgAzANcGCKuz9b2p+lpPQIXkREpBSkpKRQs2ZNWrRogZkFHY5EOXdny5YtpKSk0LJly0Pp/6mZtcjX3BNIdvdVAGb2MjAUyARuD/eZBgSegOoRvIiISCnYs2cP9evXV/IpETEz6tevX9SIeayZzc+zXRnhZRsDa/Psp4Tb/gdca2YTgdWHE3dp0QioiIhIKVHyKSVRzM9Llrt3L637uPsS4LzSul5p0AioiIhIJbB9+3Yee+yx/fszZ87kzDPPDDAiePDBB3n++edL1Gfy5Mlcc801xZ4zc+ZMPv/88/37EydOLPF99rnpppuYMWPGIfWNQuuApnn2m4Tbok6FTEDNrL2ZTTSzaWY2Nuh4REREgpY/AS0rWVlZEZ83adIkLrzwwkO+RlHyJ6Bjxoxh1KhRh3StcePGcffdgVclKi3zgDZm1tLM4oHzgekBx1SoqElAS1JOwN2XufsYYATQN4h4K5qMrBzmr97KG4vW8dznq3noo5X87c2lPDHze15dkMKrC9by2MxkXvpiDe8uWc/KDTvJyckJOmwREYnQLbfcwvfff0+XLl24+eabAUhLS+O8886jXbt2XHTRReyrfLNgwQIGDBhAt27dOPXUU1m/fj0AixYtonfv3nTu3JlzzjmHbdu2ATBw4ECuv/56unfvzp133knLli3JzMwEIDU19YD9fWbMmMFxxx1HbGxsgWs89NBDbNq0iXPPPZcePXrQo0cPZs+eXeAzvfnmm/Tq1YuuXbtyyimnsGHDBlavXs3EiRN54IEH6NKlC7NmzWL8+PH861//Yvny5fTs2XN//9WrV3PMMccU+5mbN2/Oli1b+Pnnn0vtv0V5MLN/A3OAtmaWYmaj3T0LuAZ4D1gGvOLuS4OMsyjR9A7oZOARYP8YericwKPkKSdgZtPd/VszGwKMBaYEEGtU+3b9DqbOS+Hbn3YQGwqxLT2D5E1pZGWXvORWk7qJdGhUizpJcWTnOKd0OJKT2x1JfGzU/NtFRESAu+++myVLlrBo0SIgd5Twq6++YunSpfziF7+gb9++zJ49m169ejFu3DjeeOMNjjjiCKZOncqtt97KpEmTGDVqFA8//DADBgzgL3/5C3/961958MEHAcjIyGD+/PlAbmL39ttvc/bZZ/Pyyy8zbNiwAqWEZs+eTbdu3Q5oy3uNCy+8kBtuuIF+/fqxZs0aTj31VJYtW3bA+f369WPu3LmYGU8//TT33HMP9913H2PGjKFGjRrcdNNNAHz00UcAtGvXjoyMDH744QdatmzJ1KlTGTlyJJmZmUV+ZoDjjjuO2bNnc+6555bmf5Iy5e4XFNH+DvBOOYdTYlGTgJawnMC37j4dmG5mbwMvlWes0WZvVjafJ2/mwY++Y/n6nezN+v+Ry7pJcRzXrC69W9Vnx+5MjqqVQO2kOOomxVE3KZ5m9ZJIjI9hY+peVvycytb0THbszmTdtnR+3JpOncQ4Vm3exQ+bd5Gd47y6MPdVkloJsbQ6ogaj+jTn1I5HUb1a1PwoiYhEh4EDC7aNGAFXXw3p6fCrXxU8/utf526bN8N5+eaMzJxZ4hB69uxJkyZNAOjSpQurV6+mTp06LFmyhEGDBgGQnZ1No0aN2LFjB9u3b2fAgAEAXHrppQwfPnz/tUaOHLn/68svv5x77rmHs88+m2effZannnqqwL3Xr19P+/btD2jLe40PP/yQb7/9dv9+amoqaWlpB5yfkpLCyJEjWb9+PRkZGRGVKxoxYgRTp07llltuYerUqUydOpUVK1YU+pn3adiwIT/99NNBry2lJ9qzhsLKCfQys4HAMKAaRWT54ZIFVwLEx8eXbZQBmf71Ol6Zt5aFa7aTnpEN5CaGPVvWY1jXJpzSoSE1E+IOcpVczetXp0fLekUez8rKYfb3m3lv6c8s+HE7a7ams2jtdhat3U58zGJaHpFE07pJXNCzGSe2PYJQSCOkIiJBq1at2v6vY2JiyMrKwt3p2LEjc+bMOeDcHTt2FHut6tX/vy563759Wb16NTNnziQ7O5tOnToVOD8xMbFAiaG818jJyWHu3LkkJCQUec9x48Zx4403MmTIEGbOnMn48eOLjRFyk9zhw4czbNgwzIw2bdqwePHiQj/zPnv27CExMfGg15bSE+0JaKHcfSYw8yDnPAk8CbkrIZV9VOVj555M/vnucl5ftI5de7Mx4LxujTm1YyO6tahL3aSySbZjY0MMaNuQAW0b7m9L3Z3JknU7mLlyEy9/uYYVP6fx4bKNxISMY5vUZsyA1gzueFSZxCMiEvWKG7FMSir+eIMGJR7xrFmzJjt37jzoeW3btmXTpk3MmTOHPn36kJmZycqVK+nYsSN169Zl1qxZnHDCCUyZMmX/aGhhRo0axYUXXsif//znQo+3b9+e5OTkIvsPHjyYhx9+eP/7qosWLaJLly4HnLNjxw4aN24MwHPPPXfAZ01NTS30uq1btyYmJoY77rhj/4hrcZ8ZYOXKlQeM9krZi/YEtMKUEyhrmdk53PLqYl77KgV3iA0ZgzocyV/O6EDT+kmBxFQrMY7jf9mA43/ZgD/9qj3zf9zKlDk/8unKTSxcs50rpyyg3VE1ObtrYwYcfQTtG9UKJE4Rkaqgfv369O3bl06dOnH66adzxhlnFHpefHw806ZN49prr2XHjh1kZWVx/fXX07FjR5577jnGjBlDeno6rVq14tlni14w56KLLuK2227jggsKfRWR008/nUsuuaTI/hMmTOC3v/0tnTt3Jisri/79+zNx4sQDzhk/fjzDhw+nbt26nHTSSfzwww8AnHXWWZx33nm88cYbPPzwwwWuPXLkSG6++eb95xf3mTMzM0lOTqZ791IruykRiKq14MPvgL6VZ03TWHLXND2Z3MRzHnBhSWd0VfS14Gcs38A/3llO8sY06iTGcUX/Vlx1Qitio3gi0PL1qbyxaB1zVm1l0drtANSvHs+o45vz2wG/jOrYRUQOxbJlywq881iZTZs2jTfeeIMpU4qeC3zOOedwzz330KZNm3KMrGRef/11Fi5cyB133BHI/Qv7uYlkLfiKLmpGQMPlBAYCDcwshdw1S58xs33lBGKASdFaTqAsfJ68meteXsSmtL00r5/E06O6c3L7hhVipY12jWrRLjzi+fXa7fz97W+Z/+M2HvjgOx7+KJkBRx/B+CEdaFqvUv//JSJSKY0bN453332Xd94pfrL13Xffzfr166M6Ac3KyuJ3v/td0GFUOVE1AlpWKtoIaE5ODqOfm8/HKzYBMPDoI3hiVDeqxcYEHNnhSduTxb3vr+DVBSmk7c0iPsY4v2czLj+hJc2UiIpIBVfVRkCldFTVEVAloFFm/fbdnP3obDbs3MuRtarxzKU96NS4dtBhlboZyzbyv6Xref2rdWRlO83qJ3H7WR05qV3Dg3cWEYlCSkDlUCgBrcQqSgKavHEnl02ex5qtuzmlfUOevKRbpS9nlLItnSufX8C363NnMx5Vqxq3D+nI6Z0aHaSniEh0UQIqh6KqJqBR8w5oVffojO949ONkkqrF8syl3Tm5/ZFBh1QumtRN4p3rTiB5w05ueW0x83/cxtgXFtKjRV3uH9GFpvWCmeEvIiIiZUcJaBS48Km5fP79FprXT+LlK3vTqHbVK4b7yyNrMm3s8fy4ZRc3TF3E12u3c9J9M/lVp0aMHdh6/4QmERERqfgq9/PdCmDUpC/4/PstNKuXyFvj+lXJ5DOv5vWr89rVffn09ycxvHtT3vj6J057aBYXPDmX7ekZQYcnIiJ5TJw4keeff75M7/Hf//73gCU783vwwQdLHMPkyZO55pprij1n5syZfP755/v3D+ez3nTTTcyYMeOQ+lZWSkADdPWLC/h05Waa1E3kwxsHRrxsZlVwVO0E/nHOMUwZ3ZOjalVjzqotdLvjQ+58+1tycnIOfgERESlTWVlZjBkzhlGjRpXpfYpLQLOyspg0aRIXXnhhoccOR/4E9HA+67hx47j77rsPK57KRgloQCZ+8j3vLP6ZhjWr8f4N/YlXYfZCndDmCOb+6RT+fEZ7YmOMp2b9wGkPzWLFzwdfbk5EpKp54YUX6NmzJ126dOGqq64iOzubH3/8kTZt2rB582ZycnI44YQTeP/991m9ejXt2rXjoosuon379px33nmkp6cDsGDBAgYMGEC3bt049dRTWb9+PQADBw7k+uuvp3v37jz00EOMHz+ef/3rX/uP3XDDDXTv3p327dszb948hg0bRps2bbjtttuKjRGgRo0a3HrrrRx77LH07t2bDRs28PnnnzN9+nRuvvlmunTpwvfff3/A550xYwbHHXccsbGxhca3adMmzj33XHr06EGPHj2YPXt2ge/Zm2++Sa9evejatSunnHIKGzZsYPXq1UycOJEHHniALl26MGvWrP2fdfny5fTs2XN//9WrV3PMMccU+31r3rw5W7Zs4eeffy6V/86VgbKeALz59U/c87/ldG5Sm49+N4CkeL2KezCjT2jF138ZxLDjGrMhdQ+/mjCLcS8tZEPqnqBDExGJCsuWLWPq1KnMnj2bRYsWERMTw4svvkjz5s35wx/+wNixY7nvvvvo0KEDgwcPBmDFihVcffXVLFu2jFq1avHYY4+RmZnJuHHjmDZtGgsWLOCyyy7j1ltv3X+fjIwM5s+fX2jx9vj4eObPn8+YMWMYOnQojz76KEuWLGHy5Mls2bKlyBgBdu3aRe/evfn666/p378/Tz31FMcffzxDhgzh3nvvZdGiRbRu3fqA+82ePZtu3bod0JY3vuuuu44bbriBefPm8eqrr3L55ZcXiLlfv37MnTuXr776ivPPP5977rmHFi1aMGbMGG644QYWLVrECSecsP/8du3akZGRsX+Zz6lTpzJy5MiDft+OO+64QhPgqkqZTzm7//0VPPJxMt2b1+O5y3qSGF+xi8uXp4T4WO4f0YVtuzL45/+W8/K8tbyzeD2/PfGX3Di4bdDhiYgcYOQTcwq0ndm5EZf0acHujGx+/eyXBY6f160Jw7s3ZeuuDMa+sOCAY1Ov6lPs/T766CMWLFhAjx49ANi9ezcNG+bWVr788sv5z3/+w8SJE1m0aNH+Pk2bNqVv374AXHzxxUyYMIHTTjuNJUuWMGjQIACys7Np1Oj/S+ONHDmyyBiGDBkCwDHHHEPHjh3392vVqhVr167ls88+KzLG+Ph4zjzzTAC6devGBx98UOznBVi/fn2BEkZ54/vwww8PeHyfmppKWlraAeenpKQwcuRI1q9fT0ZGBi1btjzofUeMGMHUqVO55ZZbmDp1KlOnTmXFihXFft8aNmzITz/9dNBrVxVKQMvRF6u2MGFGMolxMTw1qpuSz0NUt3o8d5/bmc5N6jB++lImzEjmPwtSeObS7nT4ReUr2i8iEgl359JLL+Wuu+4qcCw9PZ2UlBQA0tLSqFmzJkCBpZ3NDHenY8eOzJlTMIEGqF696PKU1apVAyAUCu3/et9+VlZWsTHGxcXtjycmJiaidzgTExPZs+fAJ2F548vJyWHu3LkkJCQUeY1x48Zx4403MmTIEGbOnMn48eMPet+RI0cyfPhwhg0bhpnRpk0bFi9eXOz3bc+ePSQmVu2JxnkpAS0nezKyGP3cPACmjO5J7aT4gCOq+C7s1Ywhx/6CMS/M57PkLfxqwmf8/rS2jB3QusBfqiIi5a24EcvE+Jhij9erHn/QEc/8Tj75ZIYOHcoNN9xAw4YN2bp1Kzt37tz/CP6iiy6iefPmXHHFFbz11lsArFmzhjlz5tCnTx9eeukl+vXrR9u2bdm0adP+9szMTFauXEnHjh1LFE9JYyxKzZo12bmz8Pf+27dvT3JycpF9Bw8ezMMPP8zNN98MwKJFi+jSpcsB5+zYsYPGjRsD8Nxzzx1w39TU1EKv27p1a2JiYrjjjjv2j7ge7Pu2cuVKhg8fXmSsVY3eAS0no5+bT9rebC7u1YzuLeoFHU6lUSMhlhcu783zl/WgSd1E7vnfCn797DzWbk0POjQRkXLVoUMH/v73vzN48GA6d+7MoEGDWL9+PZ988gnz5s3bn4TGx8fz7LPPArlJ06OPPkr79u3Ztm0bY8eOJT4+nmnTpvGHP/yBY489li5duhwwG7wsYizO+eefz7333kvXrl0LTEI6/fTT+fTTT4vsO2HCBObPn0/nzp3p0KEDEydOLHDO+PHjGT58ON26daNBgwb728866yxef/31/ZOQ8hs5ciQvvPACI0aMACj2+5aZmUlycjLdu3cv9rNWJVqKsxy8vXg9v31xIY3rJDL7lpMCi6Oyy8lxXvjiR+58exkZWTlc1KsZfxvasdIvZyoi0aGiLcW5evVqzjzzTJYsWRJ0KIflnHPO4Z577qFNmzZBh1Kk119/nYULF3LHHXcUOFZVl+LUb+Yylp6Rxb3/W06dxDhevqp30OFUaqGQMapPCyb9ugdJ1WJ44Ys19LlrBskbVLJJRKSyuvvuuw86ihq0rKysQqsGVGUaAS1jN0xdxH8XreOly3vTp3X9QGKoijKycrhqynw+XrEJM7jhlKO59uTo/dexiFR8FW0EVKKDRkCl1N373gpe/2odQ7v8QslnOYuPDfHsb3ryxMXdiI8Jcf8HK/n7W9+yNys76NBERESqPCWgZWRrWgaPz0wmITbEHUM7BR1OlXVqp6P44k8nc1GvZjz92Q+c/tAsPlmxMeiwRKSSqgpPFaX0lNfPi5kNNLNZZjbRzAaWy00PQgloGfnja9+Q4/DHX7XXGu8Bq5MUz53nHMMTFx/Hj1vSufTZefx+2tdaU15ESlVCQgJbtmxREioRcXe2bNlSbI3S4pjZJDPbaGZL8rWfZmYrzCzZzG7ZdzsgDUgAUg4r8FKid0DLwM49mRz71/epXi2WxeNPLbf7ysF9s3Y7Fz/zBal7smheP4nXx/alXg3VZBWRw5eZmUlKSkqBwugiRUlISKBJkybExR04UBXJO6Bm1p/cpPJ5d+8UbosBVgKDyE005wEXAMvdPcfMjgTud/eLSv/TlIwK0ZeBf723ghyH3w78ZdChSD6dm9Zh/m2DuPjpL/hy9Vb63P0RL13Ri27NVZtVRA5PXFxcRMs4ipQGd//UzFrka+4JJLv7KgAzexkY6u771iPdBlQjCugRfCnLzM7hw2Ub6dCoJlf2119E0Sg+NsQrY/pw46A25Lhz6TNf8r8l0V3CQ0REqpRYM5ufZ7sywn6NgbV59lOAxmY2zMyeAKYAj5R2sIdCI6Cl7JV5a1m3fTd3nN1dBdCj3LUnH8253Zpy9YsLGfPCQro2rcOLV/QiKV7/W4iISKCy3L3Ulk1y99eA10rreqVBGVIpysjKYfybS2lQI54T2zYMOhyJQOM6ibxyVW96tazHV2u30/sfH/H9prSgwxIRETkU64CmefabhNuiToVMQM2supk9Z2ZPmVngL9Lu8/e3vyUz2zn3uMaYWdDhSISqxcYw9ao+XNCjKal7shj8wKe89fVPQYclIiJSUvOANmbW0szigfOB6QHHVKioSUBLWE5gGDDN3a8AhpR7sIXIysrh5S/XEh8T4ubB7YIORw7BXed25l/ndcbduebfX/Gv91YEHZKIiEihzOzfwBygrZmlmNlod88CrgHeA5YBr7j70iDjLEo0vew2mdwXY5/f1xAuJ/AoecoJmNl0coeUF4dPi4qlbe59fzkZ2TmM6tOc2NioyeulhM7r3pQOjWtx0VNf8MjHyWS7c9PgtsSENKItIiLRw90vKKL9HeCdcg6nxKImU3L3T4Gt+Zr3lxNw9wzgZWAouclok/A5gX8Gd2fK3DXEhozbzugQdDhymDo0qs3cP53MBT2b8vjM7znl/k/YmKq6fiIiIqUl8OTtIAotJ0DuTK5zzexx4M3COprZlfvKF2RlZZVpkBtS91I7MY6rB7YmXqOflUK12BjuGtaZUX2a88PmXfS/52O+Xrst6LBEREQqhahaCSlcUPWtPBX9zwNOc/fLw/uXAL3c/ZqSXLc8VkLKzM7BgNgYJaCVzYMfruTBD78jZHDf8C6cc1zjoEMSEZFKLJKVkCq6aM+WKkw5gbiYkJLPSur6U47m8YuPwzBueGUR9/5vedAhiYiIVGjRnjFVmHICUrmd3qkRb13bl5oJsTw683ue/PR7ounpgYiISEUSNQloRS8nIJVf+0a1mXfrKfzqmKP4xzvLuWzyPDKycoIOS0REpMKJqndAy0p5vAMqVUdOjvPbFxfy7tKfObJWNd67vj91kuKDDktERCoJvQMqIgWEQsbjl3RjUPuGbEjdS79/zmD1Zv0DR0REJFJKQEUO0VOX9mB0v5ak7c1m0AOf8OUPW4IOSUREpEJQAipyGP58ZgfGn9WBrGzniufns+LnnUGHJCIiEvWUgIocpl/3bcmrY4+nWmwMI56YwycrNwUdkoiISFRTAipSCo5rXpdXxx5PQmyISyd9yYSPvgs6JBERkailBFSklDStl8Rzl/UkITbE/R+s5C9vLAk6JBERkaikBFSkFLVrVIuPbhpAzYRYnp/zI9e8tDDokERERKKOElCRUta4ThKzfn8iDWrE89Y367n1tcVBhyQiIhJVlICKlIE6SfF8+vsTObZJbV78cg33f7BSS3eKiIiEaSUkkTKUnePc8uo3/GdBCsc1q8O0MX0IhfTvPhERKZpWQhKRwxITMv55bmeObVKbhWu2c+qDs8jS+vEiIlLFKQEVKWOhkPH61cfTpWkdvtuYxkn3zyRDSaiIiFRhSkBFykEoFOK1sX04vnV91mzdzUn3zWRPRlbQYYmIiARCCahIOQmFQrx0RW9OaNOAlG27ueE/X5OVrZFQERGpepSAipSzKaN7cfOpbXl38c/89qWFpGskVEREqhjNghcJyBMzv+eu/y3nyFrV+PimgSTFxwYdkoiIRAHNgheRMnPVwNYMat+QDal7GXjvTI2EiohImTCzs83sKTObamaDg44HlICKBOqpS3twWscj2bhzLyff94kmJomISETMbJKZbTSzJfnaTzOzFWaWbGa3ALj7f939CmAMMDKIePNTAioSsImXdOeU9g1Zv2MPp0/4jOycyv9ajIiIHLbJwGl5G8wsBngUOB3oAFxgZh3ynHJb+HjglICKRIGnL+3BoPZH8sPmXdz8n6+VhIqISLHc/VNga77mnkCyu69y9wzgZWCo5fon8K67LyzvWAujBFQkSjx1aXduHHQ0r321jouenqsVk0REqq5YM5ufZ7sywn6NgbV59lPCbeOAU4DzzGxMKcd6SDTtViSKXHtyG77bsJM3v1nPaRNm8f71J2jteBGRqifL3buX1sXcfQIwobSuVxr0m00kyjx0fhe6NqtD8sY0znpkNjk5GgkVEZGIrAOa5tlvEm6LOhUyATWz9mY20cymmdnYoOMRKU2hUIhXx/ShfaOaLP0plfOfnBt0SCIiUjHMA9qYWUsziwfOB6YHHFOhyj0BLUnZgKK4+zJ3HwOMAPqWZbwiQQiFQrz52360bJDEl6u38Y93lgUdkoiIRBEz+zcwB2hrZilmNtrds4BrgPeAZcAr7r40yDiLUu4rIZlZfyANeN7dO4XbYoCVwCByX5idB1wAxAB35bvEZe6+0cyGAGOBKe7+UnH31EpIUlFlZOVw2eR5fJa8mTvO7sQlvZsHHZKIiJSxqrASUiBLcZpZC+CtPAloH2C8u58a3v8jgLvnTz4Lu9bb7n5GcecoAZWKLDM7hzFTFvDR8o1c0LMpdw3rHHRIIiJShqpCAhot74AWVTagUGY20MwmmNkTwDtFnHPlvvIFWVlaXUYqrriYEI9c2JU6iXH8+8u1/PPd5UGHJCIicliiJQEtEXef6e7XuvtV7l5oRX93f9Ldu7t799hYVZuSii0xPpb3b+hPUnwMj3/yPU/N+j7okERERA5ZtCSgFaZsgEhQGtZK4J1r+xEfE+LOt5fz6oK1B+8kIiIShaIlAa0wZQNEgtSiQQ2mje1DTMi47b9LSd6YFnRIIiIiJRZEGaYKXTZAJGidm9Th9auPp3q1GEY98wXrtqUHHZKIiEiJBDILvrxpFrxURkt/2sHwx+eQg/P2tSfQ+ogaQYckIiKlQLPgRSRqdfxFbf5wejv2ZOZw1sOfsTltT9AhiYiIREQJqEgFdunxLRg7oDXpGdkMfmAW6RkqOSYiItFPCahIBfeH09txdpfGbN2VwekPzSInJyfokERERIqlBFSkEnjw/C70blWPH7ekc7cK1YuISJRTAipSSbx0eS9G9mjKk7N+YNJnq4IOR0REpEhaIkikkgiFQtx5did+3rGHv721jJ927OG2MzoEHZaIiEgBGgEVqURiY0I8dH4XqleL4elZP/D8nNVBhyQiIlKAElCRSqZOUjxvXdOPuBjj9jeWMnPFxqBDEhEROYASUJFKqOURNZhyWS8ARj83n+XrUwOOSERE5P8pARWppHq3rmIVkr8AACAASURBVM8953UmJ8e5fuoi1QgVEZGooQRUpBIb3r0pT1zSjZUbdnLNiwvZm5kddEgiIiJKQEUqu8Edj+L2IR2ZsWITZz3ymQrVi4hI4JSAilQBl/ZpwbFNarNyQxpjXlgYdDgiIlLFKQEVqSJeHXM8R9aqxvvfbuCe/2m1JBERCY4SUJEqIjY2xLvX9icpPobHZn7P6wvXBR2SiIhUUcUmoGYWMrPjyysYESlb9WrEM21sH+JCxl/fXMpP23cHHZKIiFRBxSag7p4DPFpOsYhIOejQqDbTx/UjO8e5bPI8UndnBh2SiIgEwMxamdkzZjathP1CZjbicO4dySP4j8zsXDOzw7mRiESP9o1q8djFx7Fiw05O/NdMMrI0M15EpCIxs0lmttHMluRrP83MVphZspndUtw13H2Vu48u6b3DA5S/L2m/vCJJQK8C/gNkmFmqme00My2rIlLBndDmCIYc+wu27MrgnMdmBx2OiIiUzGTgtLwNZhZD7pPr04EOwAVm1sHMjjGzt/JtDQ/z/h+a2U1m1tTM6u3bIu1s7n6Y949+1atX9127dgUdhkhUOv2hT1m2fifndG3MAyO7BB2OiEiVZ2bp7l49gvNaAG+5e6fwfh9gvLufGt7/I4C733WQ60xz9/NKGOMPhTS7u7eKpH9Es+DNbIiZ/Su8nVmSAEUkur0+9njqJsXx+lfreGrW90GHIyIiEGtm8/NsV0bYrzGwNs9+SritUGZW38wmAl33JauRcveWhWwRJZ8AsQc7wczuBnoAL4abrjOzvu5eokBFJDolxMfy1rX9OPHeT7jv/ZWc0v4oWjY46D+8RUSk7GS5e/eyvom7bwHGHEpfM4sDxgL9w00zgSfcPaKZrZGMgP4KGOTuk9x9ErnvG5xxCLGKSJRqXCeJd67rR2JcDKOfm8eOdM2MFxGpgNYBTfPsNwm3lYXHgW7AY+GtW7gtIpEWoq+T5+vaEYcmIhXGLxvWZOLF3fhxyy5Oun8mezKygg5JRERKZh7Qxsxamlk8cD4wvYzu1cPdL3X3GeHtN+Q+MY9IJAnoXcBXZjbZzJ4DFgB3HmKwpSJcf+pOM3vYzC4NMhaRyqRXq/oM69qELWkZnPv4nKDDERGRIpjZv4E5QFszSzGz0e6eBVwDvAcsA15x96VlFEK2mbXOE08rIDvSzsXOgg/X/mwCZPH/We2X7v7zocWaW7cKOBPYuG/WVrj9NOAhIAZ42t3vLuYa5wBnA1uAt939o+LuqVnwIiXzq4c+5dv1OxnerQn3Dj826HBERKqUSGfBB8nMTgaeBVYBBjQHfuPuH0fU/2BlmMxssbsfc7iB5rlefyANeD5P2YAYYCUwiNwZW/OAC8hNRvOXDrgsvG1z9yciKR2gBFSkZPZkZNH7rhls353J34d25OI+LYIOSUSkyoj2BNTMQkBvcp+Ktw03r3D3vZFeI5JH8AvNLOJn+gfj7p8CW/M19wSSwxX5M4CXgaHuvtjdz8y3bSQ3Sd0W7lvocK+ZXbmvfEFWlt5lEymJhPhYpl/Tl9iQcec7y1inNeNFRCRs31Lt7r7X3b8JbxEnnxBZAtoLmGNm35vZN2a22My+OaSIi1aiulXAa8CpZvYw8GlhJ7j7k+7e3d27x8YetNqUiOTTrH51pl7Vm5AZVz4/n90ZEb/aIyIild9hLdUeSWZ26qFcuCy5ezpQ4rVLRaRkujWvx8MXduWyyfM5Y8IsPryxP6FQpMUzRESkErsKuBHIMrM95L4H6u5eK5LOxf4mCb+b+Z67/5h/O+ywD1SedatEpAROanckJ7Y7glWbd/GbyfODDkdERAIWHvXs6O4hd49391ruXjPS5BMOkoC6ezawwsyaHW6wB1GedatEpISeGdWdX9RO4JOVm5jw0XdBhyMiIgHy3Bnsbx/ONSJ5llYXWGpmH5nZ9H3bod4wCupWiUgJhUIhpo/rS7XYEPd/sJLPvtsUdEgiIhKsw5qkHkkZpgGFtbv7J4d60/KmMkwipePLH7Yw8om51EyI5fM/nkyNaprgJyJS2qK9DBOAmS0Hfgn8COzi/98B7RxR/4MloOGbNAfauPuHZpYExLj7zkMPu3wpARUpPS9/uYY/vraYwR2P5PGLuhEKHdIESBERKUIFSUCbF9Ye6Tyhgz6CN7MrgGnAE+GmxsB/Iw1QRCqX83s249Yz2vPe0g2M+/fCoMMREZEAhBPNpsBJ4a/TiezVTojwxN8CfYHU8A2/AxqWPFQRqSxG92tJm4Y1eHvxzzz44cqgwxERkXJmZrcDfwD+GG6KA16ItH8kCeje8OpE+24YCxz8ub2IVFpmxtQr+1AtNsSDH37H58mbgw5JRETK1znAEHLf/8TdfwJqRto5kgT0EzP7E5BoZoOA/wBvHkKgIlKJ1KsRz/OX9cSA30yex9a0jIP2ERGRSiMjXI7JAcysRO+sRpKA3gJsAhaTW/X+HeC2EgYpIpVQr1b1uWHQ0ezNyuHciZ8TyaRGERGpFF4xsyeAOuH5Qh8CT0XaOaJZ8BWdZsGLlK2rX1jAO0t+5vazOvCbvi2DDkdEpEKrCLPgAcJPxgeTW4LpPXf/IOK+SkBF5HDl5DhXTlnAx8s38MDILgzp0jjokEREKqyKkoAejoiny4uIFCUUMu4feSxJ8bFcN3URS9btCDokERGJYhEnoOEC9CIihaqVEMd9I47FHc5/ci7pGVlBhyQiIlEqkkL0x5vZt8Dy8P6xZvZYmUcmIhXO4I5HMapPc9L2ZjFi4pygwxERkTJkZolm1vZQ+kYyAvoAcCqwBcDdvwb6H8rNRKTy+9vQTrQ/qiZLfkrl729/G3Q4IiJSBszsLGAR8L/wfhczmx5p/4gewbv72nxN2RFHKCJVzn/GHE+dpDhenLuG7zelBR2OiIiUvvFAT2A7gLsvAiIugxJJArrWzI4H3MzizOwmYNkhBCoiVUSNhFjeve4EEuNjGPvCAnbuyQw6JBERKV2Z7p5/xmnEpZUiSUDHkLsefGNgHdAFuDri8ESkSmpUO5EJ53dh5YY0Tn9oFjk5OUGHJCIipWepmV0IxJhZGzN7GPg80s6RJKBt3f0idz/S3Ru6+8VA+0ONVkSqjn5tjqDfLxuQsm03101dFHQ4IiKSj5lVN7P5ZnZmCbuOAzoCe4GXgB3A9ZF2jiQBfTjCNhGRAib/ugf1qsfz5tfreW1BStDhiIhUCmY2ycw2mtmSfO2nmdkKM0s2s1siuNQfgFcOIYR27n6ru/cIb7e5+55IOxe5EpKZ9QGOJzebfSDPoVrAOe5+7CEEGwithCQSrB82pXHK/Z+AGTN/N5Cm9VVWWESkKJGshGRm/YE04Hl37xRuiwFWAoOAFGAecAEQA9yV7xKXAccC9YEEYLO7v1WCGD8GjgKmAVPdfclBuhyguBHQeKAGEAvUzLOlAueV5CYiUrW1PKIGdw47huwc5/pXFlEVlgAWESlL7v4psDVfc08g2d1XuXsG8DIw1N0Xu/uZ+baNwECgN3AhcIWZRbxAkbufCJwIbAKeMLPFZnZbpP1ji7nwJ8AnZjbZ3X+M9IIiIoU5v0cztqVl8M/3VvD0rB+4on+roEMSEYlWsWY2P8/+k+7+ZAT9GgN5S2emAL2KOtndbwUws1+TOwJaotmi7v4zMCE8Gvp74C/A3yPpW2QCmsdkMyswXOHuJ5UkSBGRMQNbs2jtdv7x7jIS40Jc3KdF0CGJiESjLHfvXl43c/fJJe1jZu2BkcC55C5WNBX4XaT9I0lAb8rzdUL4RlrkWURKzMz429md+Gj5Rv4yfSm9W9Xnl0fWDDosEZHKYh3QNM9+k3BbWZhEbtJ5qrv/VNLORU5CKraT2Zfu3rPEHQOiSUgi0eWNReu47uVF1E2KY96fTiE2NuLXjkREKr1IJiGFz2sBvJVnElIsuZOQTiY38ZwHXOjuS8su2kNz0L/1zaxenq2BmZ0K1C6H2IqLqYOZvWJmj5uZJkSJVDBDuzTmrGN/wbb0TEY/Py/ocEREKhwz+zcwB2hrZilmNtrds4BrgPfIXbXyldJOPs3slfCfi83smzzbYjP7JuLrHGwE1Mx+IHdpJSP30fsPwN/c/bNDDHwScCawcV/GHm4/DXiI3FIBT7v73cVc43fAl+4+y8ymu/uQ4u6pEVCR6JOTk0Pff37M+h17ePTCrpzR+RdBhyQiEhUiHQENgpk1cvf1Zta8sOORTlw/pEfwh6OU6lYB3A6kA8e7e9/i7qkEVCQ6rd++m6GPziYmZLxz7QnUrR4fdEgiIoGL5gR0HzP7p7v/4WBtRfYvphD9sOI6uvtrEUdZ8NotOPCdhT7AeHc/Nbz/x/A98ief+a8TA7zm7kOLO08JqEj0WrJuB8Me+5wuzerw0uheeh9URKq8CpKALnT34/K1fePunSPpX9ws+LOKOebAISeghShR3apwAvsnoDpwbxHnXAlcCRAfr1EVkWjVqXFtLuvXgomfrOLKKfOZ9JsKM79RRKTKMbOxwNVAq3zvfNYEZkd6neIK0f/m0MMrW+6+mnByWcw5TwJPQu4IaDmEJSKH6PentuX1heuYsWITL32xhgt7NQs6JBERKdxLwLvkviKZd635ne6ef2WmIkUyC762md1vZvPD231mVtqz4MuzbpWIRJlQKMS0q48nJmT8+b9LWLslPeiQRESkEO6+w91Xu/sF4QlHu8l9Ml7DzCIePYjkZatJwE5gRHhLBZ49hJiLMw9oY2YtzSweOB+YXsr3EJEo1rRuEncNO4Zsd8574nNyckq0IpyIiJQjMzvLzL4jtzrSJ8BqckdGIxJJAtra3W8PL2y/yt3/ChzyIs5B1a0Skeg3ontTTmnfkA2pe5nyxZqgwxERkaL9HegNrHT3luQWv58baedIEtDdZtZv346Z9SV3uPWQhIdsG7l7nLs3cfdnwu3vuPvR7t7a3e881OuLSMX25CXdGXD0Edz59jK+/WlH0OGIiEjhMt19CxAys5C7fwxEvH59JAnoWOBRM1ttZj8CjwBjDi1WEZHihULGfSOOJSkuhmGPf87mtD1BhyQiIgVtN7MawKfAi2b2EBBxzcuIC9GbWS0Ad089lCiDpDqgIhXPU59+z53vLKdlgyQ+vunEoMMRESk3FaQOaHVgD7krZV5E7jLtL4ZHRQ8qklnw14WTz53A/Wa20MwGH0bMIiIHdUX/1vRoUZcfNqfz5/8uCTocERHJw913uXu2u2e5+3PuPiHS5BMiewR/WXjUczBQH7gEKHKddhGR0jLlsp7UqBbLlLk/Mvf7iP9eExGRMmJmO80sNc+2M++fkV4nkgTUwn/+itz125fmaRMRKTMJ8bFM/k0PAK6b+hVZ2SrNJCISJHev6e618mw18/4Z6XUiSUAXmNn75Cag75lZTUC/BUSkXHRvUY+/nNmBDal7mfDRd0GHIyIiYWbWz8x+E/66gZm1jLRvcWvB7zMa6AKscvd0M6sPRO0ynSJS+VzWryXfrk/l4RnJHFkrgYt6Nw86JBGRKs3Mbie37FJbchcoigdeAPpG0v+gI6DungO0AP5iZvcB/d39m+J7iYiUrtvP6kBcTIi/vKGlOkVEosA5wBDCpZfc/SegZqSdI5kF/xi5dT8XA0uAq8zs0UMKVUTkENVMiOMf53Qi22G4luoUEQlahufW8nTYX5YpYpG8A3oScKq7P+vuz5L7LujJJQ5TROQwnde9KQOOPoKfU/dy8zQ9iBERCdArZvYEUMfMrgA+BJ6OtHMkCWgy0CzPflNAMwFEJBDPjOpO7cRYXl24jo+Xbww6HBGRKsnd/wVMA14l9z3Qv7j7hEj7F7kSkpm9Se6wam2gB/BleL8X8KW7DzysyMuRVkISqVyWrNvBuY9/TvN6SUwf14+EuJigQxIRKTUVYSWk/MwsBFzg7i9GdH4xCeiAYvq5u396CPEFQgmoSOUzY/kGLps8n0t6NeOOc44JOhwRkVITzQloeHXM3wKNgenAB+H9m4Cv3X1oJNcpsgyTu39SxI37AReQu/i8iEggTmp3JCO6NWHKF2uomRjH709rF3RIIiJVwRRgGzAHuBz4E7kLFJ3t7osivUiRI6AHnGTWFbgQGA78ALzq7o8cQtCB0AioSOW0c08mPe78kL2ZObx29fF0bVY36JBERA5blI+ALnb3Y8JfxwDrgWbuvqck1ylyEpKZHW1mt5vZcuBhYA25CeuJFSn5FJHKq2ZCHE+N6o4Do575kj0ZWUGHJCJS2WXu+8Lds4GUkiafUPws+OXklmA60937ufvDQHaJwxQRKUMntDmCC3s2ZefeLC59dl7Q4YiIVBhmdoKZTTSzp83s8wi7HWtmqeFtJ9B539dmlhrpvYtLQIeRO6z6sZk9ZWYnk/uMX0QkqvxjWGea1k3kix+2sjhlR9DhiIiUOTObZGYbzWxJvvbTzGyFmSWb2S3FXcPdZ7n7GOAt4LlI7uvuMe5eK7zVdPfYPF/Xijj+g70DGq5sP5TciUcnAc8Dr7v7+5HeJGh6B1Sk8lu/fTdnTJhFs/rVeXXs8cSE9O9lEamYInkH1Mz6A2nA8+7eKdwWA6wEBgEpwDxy87cY4K58l7jM3TeG+70CjHb3naX6QYoRyVrwu9z9JXc/C2gCfAX8ocwjExEpgUZ1ErntzA4sWrudv7/9bdDhiIgcjlgzm59nuzL/CeFymFvzNfcEkt19lbtnAC8DQ919sbufmW/bl3w2A3aUZ/IJka2EtJ+7b3P3J91dS3GKSNQ5p2tj6leP59nZq/l2vR7Fi0iFleXu3fNsT0bYrzGwNs9+SritOKOBZw8lyMNRogRURCSamRn3jzgWgMufWxBwNCIi0c/db3f3SCcglRoloCJSqQxo25Dererx0/bdPPJxctDhiIiUp3VA0zz7TcJtUadCJKBm1srMnjGzaXnazg7Pzp9qZoODjE9EostTo7oTF2M8+MFKtqdnBB2OiEh5mQe0MbOWZhYPnE/ucplRp8wT0FIqE7DK3Ufna/uvu18BjAFGln7kIlJR1UyI4/entSUrx3l4xndBhyMiUurM7N/kLofZ1sxSzGy0u2cB1wDvAcuAV9x9aZBxFqXIteBL0WTgEXLLNwH7ywQ8Sp4yAWY2nYOUCSjCbeFriYjsd8UJrVm2fifPzl5N7cQ4rjnxl4RCFeKhj4jIQbn7BUW0vwO8U87hlFiZJ6Du/qmZtcjXvL9MAICZ7SsTcBdwZiTXNTMD7gbedfeFpRexiFQWdwztROruTO7/4DtenpfC9GuOp0GNhKDDEhGp8oIaDihRmQAzq29mE4GuZvbHcPM44BTgPDMbU0ifK/fVz8rK0vrQIlVR9WqxPHlJN05o04Cftu+m790f83ny5qDDEhGp8g66ElKp3CR3BPStPJX6zwNOc/fLw/uXAL3c/ZqyuL9WQhKRR2Z8x33vr8SBGwcdzbUntwk6JBGRQkWyElJFF9QIaIUpEyAilcM1J7Xh31f0plpsiPs/WMnb3/wUdEgiIlVWUAlohSkTICKVR+/W9Zl9y4kc07g2v/vP13y9dnvQIYmIVEnlUYapQpcJEJHKpUGNBJ79TQ/q14hnxBNz+GLVlqBDEhGpcsrlHdCg6R1QEclv5oqN/PrZecTFGDN+N5Cm9ZIKnLPgx21k5+TQuG4iR9ZIIDZWZZxEpOxVhXdAlYCKSJX1zKxV3PH2MmolxPL5LSdTIyGWLWl7+dtb3/LBtxtIz8jef64BtZPiqB4fw8ade3EndyP379Ck+FgS4mLIzslhx+7MAveqmZB7PDM7h+3pBY/XSoilWlwMGVmF96+dGEd8bIi9mdmk7ilY2aNOUhxxMSH2ZGazs5DjdZPiiI0JsTsjm7S9BY/Xqx5PTMhI35vFrjyfe5/6NeIJmbFrb9YB35d9GtSIx8xI25PF7syCx4+oWQ2AnXuy2JPvuJnRoEY8AKm7M9mblXPA8ZAZ9cPHt6dnkpl94PHYkFG3eu7xbemZZOU/HhOiblIcAFt3ZZCdc+DvvfiYELXDx7ekZZCT7/ditdgQtRJzj29OyyD/782EuBhqJuRWNdy0c2+Bz54YF0ONhFjcnc1pBVfmSoqPoXq1WHLc2VLI8erVYkmKjyE7x9m6q+DxGtViSYyPISs7h22F/GzpZ690f/ZOP6YRj154XIH7lKaqkICWRyF6EZGoNPqEVqzavIsXv1jDKffPpE+r+ryzZD17s5z42BAnt2tIvRrxbE3LoE5SHEnxsWzcuYfFKTsIhYyQGTGh3F9SLepXp2GtBNIzMlmckgqAk5u4ArRqUJ0GNauxc08my9bvLBDLLxvWoF71eHbszmTFzwWPtz2qJrUT49i6K4PkjWkFjrdvVIuaCbFs2rmXHzYX/Ad3p8a1SIqPZUPqHn7ckl7g+LFNalMtLoaftu8mZdvuAse7NqtDXEyItVvTWb9jT4Hj3VvUJWTG6i272Jh6YBIWMujeoh4AqzalFUjCYmOM45rVBeC7jWlsy5dkVYsNcWzTOgCs+HlngSQpMT6GYxrXBuDbn1ILJDk1EmLp0KgWAIvX7WB3viSmdmIcbY+qCcDXa7cXSELqVo+nTcMaACxcs42s7AMT0AY14ml1RO7xeau3kn9cp2GtarSoX52cHGf+j9vIr1HtBJrWSyIzO4ev1hR8L7lJ3UR+USeRvZnZfJ2yo8Dx5vWTOLJWAukZWSxZl1rgeMsG1TlCP3ul8rOXuieTruF9OTwaARWRKu+CJ+cyZ9UWasTHMKRrYwa1P5IBRzfQykkiEoiqMAKqBFREqrycnBymzk/hjGMa7X/UKiISFCWglYQSUBEREakoqkICqudLIiIiIlKulICKiIiISLlSAioiIiIi5UoJqIiIiIiUKyWgIiIiIlKulICKiIiISLlSAioiIiIi5UoJqIiIiIiUKyWgIiIiIlKulICKiIiISLlSAioiIiIi5UoJqIiIiEgVZGatzOwZM5uWp626mT1nZk+Z2UVldW8loCIiIiIVjJlNMrONZrYkX/tpZrbCzJLN7JbiruHuq9x9dL7mYcA0d78CGFLKYe8XW1YXFhEREZEyMxl4BHh+X4OZxQCPAoOAFGCemU0HYoC78vW/zN03FnLdJsDi8NfZpRzzfkpARURERCoYd//UzFrka+4JJLv7KgAzexkY6u53AWdGeOkUcpPQRZThk3I9ghcRERGJLrFmNj/PdmWE/RoDa/Psp4TbCmVm9c1sItDVzP4Ybn4NONfMHgfePJTgI6ERUBEREZHokuXu3cv6Ju6+BRiTr20X8JuyvrdGQEVEREQqh3VA0zz7TcJtUSfqE9AiSgQMNLNZZjbRzAYGGJ6IiIhItJgHtDGzlmYWD5wPTA84pkKVaQJahiUCHEgDEsh9v0FERESkyjCzfwNzgLZmlmJmo909C7gGeA9YBrzi7kuDjLMo5u5ld3Gz/uQmis+7e6dwWwywkjwlAoALOEiJADOb5u7nhb8OuXuOmR0J3O/uxRZKrV69uu/atasUP5mIiIhI2TCzdHevHnQcZalMJyGVVYkAd88Jf7kNqFY60YqIiIhIeQjiHdDDLhFgZsPM7AlgCrlFWAvrd+W+8gVZWVmlF72IiIiIHJaoL8NURImA18itU1VcvyeBJyH3EXyZBSgiIiIiJRLECGiFKREgIiIiIqUviAS0wpQIEBEREZHSV9ZlmCp0iQARERERKX1lWoYpWqgMk4iIiFQUVaEMU9SvhCQiIiIilYsSUBEREREpV0pARURERKRcKQEVERERkXKlBFREREREypUSUBEREREpV0pARURERKRcKQEVERERkXKlBFREREREypUSUBEREREpV0pARURERKRcKQEVERERkXKlBFREREREypUSUBEREREpV0pARURERKRcKQEVERERkXKlBFRERESkCjKzVmb2jJlNy9PW3swmmtk0MxtbVvdWAioiIiJSwZjZJDPbaGZL8rWfZmYrzCzZzG4p7hruvsrdR+drW+buY4ARQN/SjzyXElARERGRimcycFreBjOLAR4FTgc6ABeYWQczO8bM3sq3NSzqwmY2BHgbeKesgo8tqwuLiIiISNlw90/NrEW+5p5AsruvAjCzl4Gh7n4XcGYJrj0dmG5mbwMvlU7EB9IIqIiIiEh0iTWz+Xm2KyPs1xhYm2c/JdxWKDOrb2YTga5m9sdw20Azm2BmT6ARUBEREZEqI8vdu5f1Tdx9CzAmX9tMYGZZ31sjoCIiIiKVwzqgaZ79JuG2qBP1CWgRJQKamdl/wzPAip3hJSIiIlJFzAPamFlLM4sHzgemBxxToco0AS2rEgHAMcA0d78M6FrKYYuIiIj8X3v3GmNXVcZh/PkzFGpbhUIVpUUKglbkLipeQxATvGJivVSMihii0SBeomhijB+MmhhF4yVpvIDE4KUqokaMUYx3RCgUShGblkoRKCIUaAUpff2wd+N0hoHWmdn7zMzzSyZn77XOPuc9Z501887e66w10JJcBPwReFqSjUnOrKptwLuBnwNrgO9W1eo+4xxLqmryHjx5EXAf8M2qOrItGwJuBF5CMzj2CmAZMAR8csRDvK2qNrXHraiqpe32/sAKoIALq+objxTH3Llza8uWLRP2uiRJkiZLkq1VNbfvOCbTpH4JaRKnCDgD+Fj7+CuAR0xAJUmSNDj6GAM67ikCgEuBs9vym8Y47qwd0xds27ZtYiKXJEnSuA38NExjTBFwHbD0UY5bDiyH5hL8pAUoSZKk3dLHGdApM0WAJEmSJl4fCeiUmSJAkiRJE2+yp2Ga0lMESJIkaeJN6jRMg8JpmCRJ0lQxE6ZhGviVkCRJkjS9mIBKkiSpUyagkiRJ6pQJqCRJkjplAipJkqROmYBKkiSpUwO/FOeUcc45cP75o8sf/3hYuBAeegiuvXZ0/ROf2Pw8+CCsfpjpUA88EJ7wBLj/frjhhtH1ixbBggWwdSvceOPo+oMP11RW7QAAB71JREFUhvnz4b77YO3a0fWHHAL77AObN8P69aPrDzsM5s2Du+6CDRtG1z/1qTBnDvzzn7Bx4+j6JUtg9mzYtAn+8Y/R9c94BsyaBbfd1vyMdNRRMDQEt9wCd9wxuv7YY5vbm2+GO+/cuW6PPeDoo5vtDRua1zDcrFnN8wOsWwf33LNz/d57w9Of3myvXdu8h8PNmdO8fmje+61bd66fN695/wDWrIEHHti5/nGPg0MPbbZXr24+A8PNn9+0H8CqVbB9+871++8PB7WLil19NaP42fOzB372/OztXO9nb/yfvVNOgfPOG12n3eIZUEmSJHXKieglSZIGiBPRS5IkSRPMBFSSJEmdMgGVJElSp0xAJUmS1CkTUEmSJHXKBFSSJEmdMgGVJElSp0xAJUmS1CkTUEmSJHXKBFSSJEmdMgGVJElSp2bEWvBJtgP/7uCp9gS2dfA82j22y+CybQaT7TK4bJvBNNHt8piqmtYnCWdEAtqVJH+pqhP6jkM7s10Gl20zmGyXwWXbDCbbZfdN6+xakiRJg8cEVJIkSZ0yAZ1Yy/sOQA/Ldhlcts1gsl0Gl20zmGyX3eQYUEmSJHXKM6CSJEnqlAnoBEhyapK/Jlmb5Ny+45nJkhyU5LIk1ydZneQ9bfl+SX6R5G/t7fy+Y52JkgwlWZnkJ+3+IUkub/vOd5Ls1XeMM1GSfZOsSHJDkjVJnmuf6V+S97a/x65LclGS2faZfiT5epJNSa4bVvawfSSNL7RttCrJ8f1FPrhMQMcpyRDwJeClwBHAsiRH9BvVjLYNeH9VHQGcCLyrbY9zgV9W1eHAL9t9de89wJph+58GPldVhwF3AWf2EpU+D1xaVUuAY2jayD7ToyQLgbOBE6rqSGAIeAP2mb6cD5w6omysPvJS4PD25yzgKx3FOKWYgI7fs4G1VbWuqv4DfBs4reeYZqyqurWqrmq376X5Q7qQpk0uaO92AfDqfiKcuZIsAl4OfLXdD3AysKK9i+3SgyT7AC8CvgZQVf+pqruxzwyCPYHHJNkTmAPcin2mF1X1G+BfI4rH6iOnAd+sxp+AfZM8qZtIpw4T0PFbCNw8bH9jW6aeJVkMHAdcDhxQVbe2VbcBB/QU1kx2HvBBYHu7vz9wd1XtWD3EvtOPQ4A7gG+0wyO+mmQu9pleVdUtwGeAv9MknpuBK7HPDJKx+oh5wS4wAdW0lGQe8H3gnKq6Z3hdNVM/OP1Dh5K8AthUVVf2HYtG2RM4HvhKVR0HbGHE5Xb7TPfa8YSn0fyDcCAwl9GXgDUg7CO7zwR0/G4BDhq2v6gtU0+SzKJJPr9VVT9oi2/fcQmkvd3UV3wz1POBVyW5iWaYysk04w73bS8vgn2nLxuBjVV1ebu/giYhtc/06xRgfVXdUVUPAj+g6Uf2mcExVh8xL9gFJqDjdwVwePvNxL1oBolf0nNMM1Y7rvBrwJqq+uywqkuAt7TbbwF+1HVsM1lVfbiqFlXVYpo+8quqOh24DFja3s126UFV3QbcnORpbdGLgeuxz/Tt78CJSea0v9d2tIt9ZnCM1UcuAd7cfhv+RGDzsEv1ajkR/QRI8jKa8W1DwNer6hM9hzRjJXkB8FvgWv431vAjNONAvws8GdgAvK6qRg4oVweSnAR8oKpekeRQmjOi+wErgTdV1QN9xjcTJTmW5sthewHrgDNoTlDYZ3qU5OPA62lm91gJvJ1mLKF9pmNJLgJOAhYAtwMfAy7mYfpI+w/DF2mGTGwFzqiqv/QR9yAzAZUkSVKnvAQvSZKkTpmASpIkqVMmoJIkSeqUCagkSZI6ZQIqSZKkTpmASpr2krw6SSVZ0ncsjybJ4iRv7DsOSZpMJqCSZoJlwO/a250MW1VmUCwGTEAlTWsmoJKmtSTzgBcAZ9KswkSSk5L8NsklNKvLkOSjSf6a5HdJLkrygbb810lOaLcXtMuJkuStSS5O8oskNyV5d5L3JVmZ5E9J9mvv95Qklya5sn3OJW35+Um+kOQPSdYl2bG6zaeAFya5Osl7O3ujJKlDg/afvyRNtNOAS6vqxiR3JnlmW348cGRVrU/yLOA1wDHALOAq4MpdeOwjgeOA2cBa4ENVdVySzwFvplkhbTnwjqr6W5LnAF8GTm6PfxJNcryEZvm+FcC5tCtFjfeFS9KgMgGVNN0tAz7fbn+73f8J8OeqWt+WPx/4UVXdD9yf5Me7+NiXVdW9wL1JNgM7jrsWOLo9+/o84HvN6nwA7D3s+IurajtwfZID/o/XJklTkgmopGmrvQx+MnBUkgKGgAJ+CmzZxYfZxv+GK80eUTd8De7tw/a30/x+3QO4u6qOHeOxhx+fMe4jSdOOY0AlTWdLgQur6uCqWlxVBwHrgReOuN/vgVcmmd2etRx++fsmYMdl+6Xshqq6B1if5LUAaRzzKIfdCzx2d55HkqYaE1BJ09ky4Icjyr7PiG/DV9UVNGMwVwE/o7mEvrmt/gzwziQrgQX/RwynA2cmuQZYTTMm9ZGsAh5Kco1fQpI0XaWq+o5BknqXZF5V3ZdkDvAb4KyquqrvuCRpOnIMqCQ1lic5gmac5wUmn5I0eTwDKkmSpE45BlSSJEmdMgGVJElSp0xAJUmS1CkTUEmSJHXKBFSSJEmdMgGVJElSp/4LMeSCXrtIrE8AAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 720x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "def cum_exp_taylor(x, N=None):\n", " \"\"\"Вычисляет все частичные суммы ряда Тейлора для экспоненты по N-ую включительно.\"\"\"\n", " acc = np.empty(N+1, dtype=float)\n", " acc[0] = 1 # k-ая частичная сумму. Начинаем с k=0.\n", " xk = 1 # Степени x^k.\n", " inv_fact = 1 # 1/k!.\n", " for k in range(1, N+1):\n", " xk = xk*x\n", " inv_fact /= k\n", " acc[k] = acc[k-1]+xk*inv_fact\n", " return acc\n", "\n", "x = -10\n", "standard = np.exp(x)\n", "theoretical_relative_error = (np.abs(x)/2+1)*np.finfo(float).eps\n", "theoretical_absolute_error = theoretical_relative_error * standard\n", "Ns = np.arange(100)\n", "\n", "partial_sums = cum_exp_taylor(x, N=Ns[-1])\n", "absolute_error = np.abs(partial_sums-standard)\n", "relative_error = absolute_error/standard\n", "\n", "fig, ax1 = plt.subplots(1,1,figsize=(10,5))\n", "ax2 = plt.twinx(ax1)\n", "ax1.set_xlabel(\"Argument\")\n", "ax1.set_ylabel(\"Absolute error\")\n", "ax2.set_ylabel(\"Relative error\")\n", "\n", "ax1.semilogy(Ns, Ns*0+theoretical_absolute_error, '-r')\n", "\n", "line, = ax2.semilogy(Ns, Ns*0+theoretical_relative_error, '--r')\n", "line.set_label(\"theory (relative)\")\n", "\n", "ax1.semilogy(Ns, absolute_error, '-')\n", " \n", "line, = ax2.semilogy(Ns, relative_error, '--')\n", "line.set_label(\"experiment (relative)\")\n", "\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Оказывается, что даже суммируя очень большое число слагаемых, мы не можем достигнуть максимальной точности. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Задания\n", "\n", "7. Относительная ошибка приближения частичной суммой ряда Тейлора показательной функцией много больше для отрицательных аргументов. Объясните причину этого. Воспользуйтесь свойствами показательной функции, чтобы выравнить точность вычислений при положительных и отрицательных аргументах.\n", "8. Почему абсолютная погрешность мала при аргументах близких к нулю? Как именно погрешность зависит от аргумента? \n", "9. Абсолютная погрешность приближения функции частичной суммой ряда равна остатку этого ряда. Оцените остаток ряда Тейлора для экспоненты и найдите число слагаемых, необходимое для вычисления экспоненты с наперед заданной точностью. Проведите эксперимент и убедитесь, что предсказанная вами точность отличается от фактической не более чем на порядок.\n", "10. Ошибка вычисления через частичную сумму складывается из ошибки отбрасывание остатка ряда и ошибки вычисления умножений и сложений. При увеличинии числа слагаемых первая ошибка уменьшается, но вторая растет. Для произвольного x оцените число слагаемых, при которых точность вычисления показательной функции максимальна.\n", "11. Схема Горнера дает несколько меньшую погрешность, чем суммирование одночленов. Почему?\n", "12. Можете предложить лучший способ вычисления показательной функции?" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.5" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
yuvrajsingh86/DeepLearning_Udacity
sentiment-network/Sentiment_Classification_Projects.ipynb
1
99598
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Sentiment Classification & How To \"Frame Problems\" for a Neural Network\n", "\n", "by Andrew Trask\n", "\n", "- **Twitter**: @iamtrask\n", "- **Blog**: http://iamtrask.github.io" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### What You Should Already Know\n", "\n", "- neural networks, forward and back-propagation\n", "- stochastic gradient descent\n", "- mean squared error\n", "- and train/test splits\n", "\n", "### Where to Get Help if You Need it\n", "- Re-watch previous Udacity Lectures\n", "- Leverage the recommended Course Reading Material - [Grokking Deep Learning](https://www.manning.com/books/grokking-deep-learning) (Check inside your classroom for a discount code)\n", "- Shoot me a tweet @iamtrask\n", "\n", "\n", "### Tutorial Outline:\n", "\n", "- Intro: The Importance of \"Framing a Problem\" (this lesson)\n", "\n", "- [Curate a Dataset](#lesson_1)\n", "- [Developing a \"Predictive Theory\"](#lesson_2)\n", "- [**PROJECT 1**: Quick Theory Validation](#project_1)\n", "\n", "\n", "- [Transforming Text to Numbers](#lesson_3)\n", "- [**PROJECT 2**: Creating the Input/Output Data](#project_2)\n", "\n", "\n", "- Putting it all together in a Neural Network (video only - nothing in notebook)\n", "- [**PROJECT 3**: Building our Neural Network](#project_3)\n", "\n", "\n", "- [Understanding Neural Noise](#lesson_4)\n", "- [**PROJECT 4**: Making Learning Faster by Reducing Noise](#project_4)\n", "\n", "\n", "- [Analyzing Inefficiencies in our Network](#lesson_5)\n", "- [**PROJECT 5**: Making our Network Train and Run Faster](#project_5)\n", "\n", "\n", "- [Further Noise Reduction](#lesson_6)\n", "- [**PROJECT 6**: Reducing Noise by Strategically Reducing the Vocabulary](#project_6)\n", "\n", "\n", "- [Analysis: What's going on in the weights?](#lesson_7)" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "56bb3cba-260c-4ebe-9ed6-b995b4c72aa3" } }, "source": [ "# Lesson: Curate a Dataset<a id='lesson_1'></a>\n", "The cells from here until Project 1 include code Andrew shows in the videos leading up to mini project 1. We've included them so you can run the code along with the videos without having to type in everything." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbpresent": { "id": "eba2b193-0419-431e-8db9-60f34dd3fe83" } }, "outputs": [], "source": [ "def pretty_print_review_and_label(i):\n", " print(labels[i] + \"\\t:\\t\" + reviews[i][:80] + \"...\")\n", "\n", "g = open('reviews.txt','r') # What we know!\n", "reviews = list(map(lambda x:x[:-1],g.readlines()))\n", "g.close()\n", "\n", "g = open('labels.txt','r') # What we WANT to know!\n", "labels = list(map(lambda x:x[:-1].upper(),g.readlines()))\n", "g.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Note:** The data in `reviews.txt` we're using has already been preprocessed a bit and contains only lower case characters. If we were working from raw data, where we didn't know it was all lower case, we would want to add a step here to convert it. That's so we treat different variations of the same word, like `The`, `the`, and `THE`, all the same way." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "len(reviews)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbpresent": { "id": "bb95574b-21a0-4213-ae50-34363cf4f87f" } }, "outputs": [], "source": [ "reviews[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbpresent": { "id": "e0408810-c424-4ed4-afb9-1735e9ddbd0a" } }, "outputs": [], "source": [ "labels[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Lesson: Develop a Predictive Theory<a id='lesson_2'></a>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "nbpresent": { "id": "e67a709f-234f-4493-bae6-4fb192141ee0" } }, "outputs": [], "source": [ "print(\"labels.txt \\t : \\t reviews.txt\\n\")\n", "pretty_print_review_and_label(2137)\n", "pretty_print_review_and_label(12816)\n", "pretty_print_review_and_label(6267)\n", "pretty_print_review_and_label(21934)\n", "pretty_print_review_and_label(5297)\n", "pretty_print_review_and_label(4998)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Project 1: Quick Theory Validation<a id='project_1'></a>\n", "\n", "There are multiple ways to implement these projects, but in order to get your code closer to what Andrew shows in his solutions, we've provided some hints and starter code throughout this notebook.\n", "\n", "You'll find the [Counter](https://docs.python.org/2/library/collections.html#collections.Counter) class to be useful in this exercise, as well as the [numpy](https://docs.scipy.org/doc/numpy/reference/) library." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from collections import Counter\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll create three `Counter` objects, one for words from postive reviews, one for words from negative reviews, and one for all the words." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create three Counter objects to store positive, negative and total counts\n", "positive_counts = Counter()\n", "negative_counts = Counter()\n", "total_counts = Counter()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**TODO:** Examine all the reviews. For each word in a positive review, increase the count for that word in both your positive counter and the total words counter; likewise, for each word in a negative review, increase the count for that word in both your negative counter and the total words counter.\n", "\n", "**Note:** Throughout these projects, you should use `split(' ')` to divide a piece of text (such as a review) into individual words. If you use `split()` instead, you'll get slightly different results than what the videos and solutions show." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# TODO: Loop over all the words in all the reviews and increment the counts in the appropriate counter objects" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following two cells to list the words used in positive reviews and negative reviews, respectively, ordered from most to least commonly used. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Examine the counts of the most common words in positive reviews\n", "positive_counts.most_common()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Examine the counts of the most common words in negative reviews\n", "negative_counts.most_common()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see, common words like \"the\" appear very often in both positive and negative reviews. Instead of finding the most common words in positive or negative reviews, what you really want are the words found in positive reviews more often than in negative reviews, and vice versa. To accomplish this, you'll need to calculate the **ratios** of word usage between positive and negative reviews.\n", "\n", "**TODO:** Check all the words you've seen and calculate the ratio of postive to negative uses and store that ratio in `pos_neg_ratios`. \n", ">Hint: the positive-to-negative ratio for a given word can be calculated with `positive_counts[word] / float(negative_counts[word]+1)`. Notice the `+1` in the denominator – that ensures we don't divide by zero for words that are only seen in positive reviews." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create Counter object to store positive/negative ratios\n", "pos_neg_ratios = Counter()\n", "\n", "# TODO: Calculate the ratios of positive and negative uses of the most common words\n", "# Consider words to be \"common\" if they've been used at least 100 times" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Examine the ratios you've calculated for a few words:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "print(\"Pos-to-neg ratio for 'the' = {}\".format(pos_neg_ratios[\"the\"]))\n", "print(\"Pos-to-neg ratio for 'amazing' = {}\".format(pos_neg_ratios[\"amazing\"]))\n", "print(\"Pos-to-neg ratio for 'terrible' = {}\".format(pos_neg_ratios[\"terrible\"]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Looking closely at the values you just calculated, we see the following:\n", "\n", "* Words that you would expect to see more often in positive reviews – like \"amazing\" – have a ratio greater than 1. The more skewed a word is toward postive, the farther from 1 its positive-to-negative ratio will be.\n", "* Words that you would expect to see more often in negative reviews – like \"terrible\" – have positive values that are less than 1. The more skewed a word is toward negative, the closer to zero its positive-to-negative ratio will be.\n", "* Neutral words, which don't really convey any sentiment because you would expect to see them in all sorts of reviews – like \"the\" – have values very close to 1. A perfectly neutral word – one that was used in exactly the same number of positive reviews as negative reviews – would be almost exactly 1. The `+1` we suggested you add to the denominator slightly biases words toward negative, but it won't matter because it will be a tiny bias and later we'll be ignoring words that are too close to neutral anyway.\n", "\n", "Ok, the ratios tell us which words are used more often in postive or negative reviews, but the specific values we've calculated are a bit difficult to work with. A very positive word like \"amazing\" has a value above 4, whereas a very negative word like \"terrible\" has a value around 0.18. Those values aren't easy to compare for a couple of reasons:\n", "\n", "* Right now, 1 is considered neutral, but the absolute value of the postive-to-negative rations of very postive words is larger than the absolute value of the ratios for the very negative words. So there is no way to directly compare two numbers and see if one word conveys the same magnitude of positive sentiment as another word conveys negative sentiment. So we should center all the values around netural so the absolute value fro neutral of the postive-to-negative ratio for a word would indicate how much sentiment (positive or negative) that word conveys.\n", "* When comparing absolute values it's easier to do that around zero than one. \n", "\n", "To fix these issues, we'll convert all of our ratios to new values using logarithms.\n", "\n", "**TODO:** Go through all the ratios you calculated and convert them to logarithms. (i.e. use `np.log(ratio)`)\n", "\n", "In the end, extremely positive and extremely negative words will have positive-to-negative ratios with similar magnitudes but opposite signs." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# TODO: Convert ratios to logs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Examine the new ratios you've calculated for the same words from before:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "print(\"Pos-to-neg ratio for 'the' = {}\".format(pos_neg_ratios[\"the\"]))\n", "print(\"Pos-to-neg ratio for 'amazing' = {}\".format(pos_neg_ratios[\"amazing\"]))\n", "print(\"Pos-to-neg ratio for 'terrible' = {}\".format(pos_neg_ratios[\"terrible\"]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If everything worked, now you should see neutral words with values close to zero. In this case, \"the\" is near zero but slightly positive, so it was probably used in more positive reviews than negative reviews. But look at \"amazing\"'s ratio - it's above `1`, showing it is clearly a word with positive sentiment. And \"terrible\" has a similar score, but in the opposite direction, so it's below `-1`. It's now clear that both of these words are associated with specific, opposing sentiments.\n", "\n", "Now run the following cells to see more ratios. \n", "\n", "The first cell displays all the words, ordered by how associated they are with postive reviews. (Your notebook will most likely truncate the output so you won't actually see *all* the words in the list.)\n", "\n", "The second cell displays the 30 words most associated with negative reviews by reversing the order of the first list and then looking at the first 30 words. (If you want the second cell to display all the words, ordered by how associated they are with negative reviews, you could just write `reversed(pos_neg_ratios.most_common())`.)\n", "\n", "You should continue to see values similar to the earlier ones we checked – neutral words will be close to `0`, words will get more positive as their ratios approach and go above `1`, and words will get more negative as their ratios approach and go below `-1`. That's why we decided to use the logs instead of the raw ratios." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# words most frequently seen in a review with a \"POSITIVE\" label\n", "pos_neg_ratios.most_common()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# words most frequently seen in a review with a \"NEGATIVE\" label\n", "list(reversed(pos_neg_ratios.most_common()))[0:30]\n", "\n", "# Note: Above is the code Andrew uses in his solution video, \n", "# so we've included it here to avoid confusion.\n", "# If you explore the documentation for the Counter class, \n", "# you will see you could also find the 30 least common\n", "# words like this: pos_neg_ratios.most_common()[:-31:-1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# End of Project 1. \n", "## Watch the next video to see Andrew's solution, then continue on to the next lesson.\n", "\n", "# Transforming Text into Numbers<a id='lesson_3'></a>\n", "The cells here include code Andrew shows in the next video. We've included it so you can run the code along with the video without having to type in everything." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from IPython.display import Image\n", "\n", "review = \"This was a horrible, terrible movie.\"\n", "\n", "Image(filename='sentiment_network.png')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "review = \"The movie was excellent\"\n", "\n", "Image(filename='sentiment_network_pos.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Project 2: Creating the Input/Output Data<a id='project_2'></a>\n", "\n", "**TODO:** Create a [set](https://docs.python.org/3/tutorial/datastructures.html#sets) named `vocab` that contains every word in the vocabulary." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# TODO: Create set named \"vocab\" containing all of the words from all of the reviews\n", "vocab = None" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell to check your vocabulary size. If everything worked correctly, it should print **74074**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "vocab_size = len(vocab)\n", "print(vocab_size)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Take a look at the following image. It represents the layers of the neural network you'll be building throughout this notebook. `layer_0` is the input layer, `layer_1` is a hidden layer, and `layer_2` is the output layer." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAFOCAYAAADaclTUAAAABGdBTUEAALGPC/xhBQAAACBjSFJN\nAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAB1WlUWHRYTUw6Y29tLmFkb2Jl\nLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1Q\nIENvcmUgNS40LjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5\nOTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91\ndD0iIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4w\nLyI+CiAgICAgICAgIDx0aWZmOkNvbXByZXNzaW9uPjE8L3RpZmY6Q29tcHJlc3Npb24+CiAgICAg\nICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgICAgIDx0aWZm\nOlBob3RvbWV0cmljSW50ZXJwcmV0YXRpb24+MjwvdGlmZjpQaG90b21ldHJpY0ludGVycHJldGF0\naW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K\nAtiABQAAQABJREFUeAHtnXnQVsWV/5tJqlJJJmocmZqaqIWEYSKoGI0RNJqouDDEAYNBGaPGII46\noENcmNEQRv1JiUuIS8QN1zAoikoR44aYkbglSkCRxJRjCDjzx5Axku2PqUq9v/vp5Dzpt997n+fu\n23NO1fPerZfT377v7W+fPt09bCAQo6IIKAKKgCKgCCgCikAOCPxZDmloEoqAIqAIKAKKgCKgCFgE\nlFjoi6AIKAKKgCKgCCgCuSGgxCI3KDUhRUARUAQUAUVAEVBioe+AIqAIKAKKgCKgCOSGgBKL3KDU\nhBQBRUARUAQUAUVAiYW+A4qAIqAIKAKKgCKQGwJKLHKDUhNSBBQBRUARUAQUASUW+g4oAoqAIqAI\nKAKKQG4IKLHIDUpNSBFQBBQBRUARUASUWOg7oAgoAoqAIqAIKAK5IaDEIjcoNSFFQBFQBBQBRUAR\nUGKh74AioAgoAoqAIqAI5IaAEovcoNSEFIHeCGzevNkMGzbM3H777b0D91GISy+91Bx77LF9VGIt\nqiLQXgSUWLS3brVkikAjEHjnnXfMfffd1whdVUlFQBHojYASi94YaQhFQBEoCIFrrrnGTJkyxWzb\ntq2gHDRZRUARKBuB95edoeanCCgC/Y0Aw0Fjx47tbxC09IpAixFQYtHiytWiKQJ1RGDMmDFmYGBg\nkGrqXzEIDr1QBBqNgA6FNLr6VPk2IYBD54wZM6xzJw6e/A488MAhjp6/+tWv7P1ejTFpEZ/wrqxY\nsWJIPjhPYknw5cknn7R6cCQe6anzqY+SXisCioCLgBILFw09VwQqQoCG/ayzzjIjR460vXl69PwW\nLlxobrnlFksERLWddtrJnHzyyeapp54KJQOEwyHy/vvvt+EIL3LuueeaCy+80Bx55JGdfPBv+OUv\nf2mHJyAQYbJq1SqzaNEiM2/ePBtv1qxZYcH0niKgCCgCRodC9CVQBCpGABIAgbj66qvNRRddNEgb\nrBI7duwwJ510kjn//PPN+PHj7fPJkyebiy++2Dz22GOGoQVfHn/88U44eYZF5Dvf+Y554YUXzO67\n7y637fnNN99sPvrRjxoIw6ZNm4xLRggYFq+TgJ4oAoqAIuAgoBYLBww9VQSqQICGHjnssMNCs99z\nzz3tfQiGCGTimGOOsVYJuecesXLw3CUdV1xxhZkzZ84gUuHGOeecc+zsjAceeMC9bc9PPfXUyHhD\nAusNRUAR6GsElFj0dfVr4euAwPTp0+3wglgjXJ2wZlx//fXurc75zJkzzfr1640/fPHSSy/Z+zwX\nwT+CIY8o8kI4rBgHHHCAWbt2rUTrHMeNG9c51xNFQBFQBLohoMSiGzr6TBEoEQGGKljXQRw3OR5y\nyCHW7yJMDQjJHnvsYfB/cGX16tX2Ps9FxNoxYcKEQem7eXEOUXn33XclWue48847d871RBFQBBSB\nbggoseiGjj5TBEpAAKsEsy0YvkAgAeK8uXXrVnPKKadEasEQBf4P7swPVrHkfpi88cYbnbQlD//o\nW0DC0tF7ioAioAhEIaDEIgoZva8IlIQADpvbt283zz77rHXe9B0nu6lx/PHH2yGOJ554wgaDFDDk\nwX1XxOKAY6aKIqAIKAJFIqDEokh0NW1FIAYCzz//vDn00EOHzMSQqN3IAH4Z+EU88sgjNjjDIlz7\n/hoMqSAbN260x7A/WE4YDmFKqooioAgoAmkRUGKRFjmNpwjkhMDw4cPNT3/609DUGOJg/YhucvbZ\nZ9vZISxwxbAI177gmMmsD6a14twZJkuWLLG3Z8+eHfZY7ykCioAiEAsBJRaxYNJAikBxCLDoFE6T\nvqUAZ84jjjjCHHfccTZzccD0NZk0aZK9JX4VrHkRJldddZWdgopTJ2mLYKlglU5Ix2233TZoiqqE\n0aMioAgoAnERUGIRFykNpwgUhAANPT4SrH7pztL40Y9+ZBv7K6+80hICCEPYMt5ijYCcfP7zn48c\nUsF3Ax+M+fPnm4ceeqiTFzNLENav0BU1C6pkTVYR6CMEhgUe4YN3A+qjwmtRFYG2IIAFgiXBIShh\n5KMt5dRyKAKKQP0RUItF/etINVQEeiKwZcsW67SppKInVBpAEVAECkZAiUXBAGvyikDRCODgydoV\nYU6bReVNnu6wTZxzd62NovTSdBUBRaB6BJRYJKgDnOtk34YE0VoXFLO7bJ8tDQorRmrDUU1V/8u/\n/IthZkmZ/hH4a/gLa/W6TrI+RzVIaq6KgCKQBwJKLPJAsY/SYPYAm1nRO5aGhNUc16xZY2cwMMNA\npRwEILkQu//8z/8csqx3Wg3efPNNs//++6eNrvEUAUVAEdBt0/UdiI8Alor777/fzh5w96FgB80H\nH3zQEgs2vtIloeNjmiUky33nLVidRo0alXeymp4ioAj0EQJqseijys5aVNmK2yUVkiZmbqwYTz31\nVOQCTBJWj4qAIqAIKALtRUCJRXvrNteSyVbcJ554YmS6slDT66+/HhlGHygCioAioAi0GwElFjnV\nL8ME+B+IMyNHHBy57wrXPOs2XEAjThg/LmZqf1ttphf64SQ/nvEjHo6npJnW+VTIwr777ivJDzmy\nUBOLLa1du3bIM73RDATUAbcZ9aRaKgJ1RkCJRQ61c+mll9rFiUaOHNlxaMSxkSWSGT6AcIiweiKN\nL5tFRcnq1attGHdpZvaB2GeffezSz+xeKY6TWBD8PPx0v/jFL9pbLAmddlz+vffes2n08uzfe++9\nI/e98PXS6/ohgCPu4YcfXj/FVCNFQBFoDAJKLDJWFbMgIBBXX321YellV7AWsA8EDo+y8RMNM8su\ns1lUVO+QNQncpZkJxz4Q/JYvX26wDIgwxRCSwg6ZWDN8+fGPf2w+9alPmZtvvjlyqWc/Tti1EAs3\n77Bwu+66q90CPOyZ3lMEFAFFQBFoPwJKLDLW8QsvvGBTOOyww0JTkqEHdwOpKVOmGKwO7M3gy4oV\nK+wzwogQbvv27ZakyD33SGMP6bjxxhvd2/acfNjVMquwj0Uc+ehHPxonmIZRBBQBRUARaCkCSiwy\nViwzJBiWGD9+/JCUsGZcf/31Q+5jyTjggAPsRlD+w0ceeWTI0swMdRx66KFdLQ7jxo2zhEQsI5Iu\n+fSyMkjYbse4hCEuAemWlz5TBBQBRUARaC4CSixyqjscKH3HykMOOcTgdxEmMjUT3wkRiAjDJv7S\nzFgruI/zZdRP/DFcywjp7rbbbpJ8puMuu+xi40cN30ji7777rl0FUq712CwEXnvtNevf0yytVVtF\nQBGoEwJKLDLWBmSA2R9YFRAadnGsxFHylFNOCc1BpmY+9thjneePP/64PZdnnQfBCcMZkm63I9aQ\nIkSIBeXtJvh0jB49ulsQfVZjBPClycPCVeMiqmqKgCJQMAJKLDICfNFFF1n/h2effdZw3mvWhGTH\nx/vkk0+2lgi599BDD9l7/oedfSBefvllCVbJUaaZdptVAunApyPKSlOJ4pqpIqAIKAKKQKkIKLHI\nCDezMbr5P2zatCkyhxNOOMFOH8UvgiERVq3kni/HHXecDdfNWsCUV4ZJ3KEVP50s1/iQ4K/xve99\nLzIZsbgcf/zxkWH0gSKgCCgCikC7EVBikbF+sSb89Kc/DU0Ff4RFixaFPuMmjp+sacG6FQyJcB62\nXLYMp2ARCRMIB1NUGS5h346iBN+PJUuWdKbOuvlQVoaDjjnmmFBHVjesntcXAXxkVBQBRUARyIKA\nEoss6AVxWadi/fr1dmVLNymcOY844giDtQHxnSolLNNEIQU4Z86ZM0duDzpCFm677TYbhsW2XMsF\n+eAkCsG56qqrBsXL+4I1Mxi+gfwwLVYEK4kswrV06VK5rccGIsCQ3kEHHdRAzVVlRUARqAsCSiwy\n1gSN7BNPPGGYZunO2PjRj35kF85i0Sx68czaCHOsxBqBXwLkZPLkyZHa0KizKiL+C1g2JC+2MIeQ\n0CDE9e+IzCTGAxbomj9/vrXEiA5jx441EydOtDr4/iExktQgioAioAgoAi1CYFgww2CgReVpZFFY\nRIulsLvtH9LIgqnSjUMAsqifhMZVmyqsCNQKAbVYVFwdMpOi266hFauo2SsCioAioAgoArERUGIR\nG6piAjK0wGwLhjrKEn8hLxnSiDqG7UFSlq6aT3kIvPnmm4YVXFUUAUVAEciCgBKLLOhljIvTI/t7\n+CttZky2Z3Rml3RbZMt/FjUbpWdGGqBRCDCzZ9SoUY3SWZVVBBSB+iGgxKKCOmEmB9YBnB5xhCzT\nWlFBcTVLRUARUAQUgT5C4P19VNbaFBUioWSiNtWhiigCioAioAjkiIBaLHIEU5NSBJqMQK8N5ppc\nNtVdEVAEykNAiUV5WGtOikCtEWCdlMMPP7zWOqpyioAiUH8ElFjUv45UQ0VAEVAEFAFFoDEIKLFo\nTFWpooqAIqAIKAKKQP0RUGJR/zrqquGvf/1r88gjj3QNow8VAUVAEVAEFIGyEFBiURbSBeXzkY98\nxMyePdv893//d0E5aLL9gsBrr71m96Hpl/JqORUBRaAYBJRYFINrqamy46nuKloq5K3M7L333jO6\niVwrq1YLpQiUioASi1LhLiYz1sS45ZZbiklcU1UEFAFFQBFQBBIgoMQiAVh1Dfq3f/u3Zvjw4eaZ\nZ56pq4qqlyKgCCgCikCfIKDEoiUVPXfuXMOGZiqKQFoE3n333bRRNZ4ioAgoAh0EhgUbTg10rvSk\nsQjgvPmxj33MsHoiDp0qikBSBNi/Rj8HSVHT8IqAIuAjoBYLH5GGXv/1X/+1mTlzpnn44YcbWgJV\nWxFQBBQBRaANCCixaEMt/rEMzA5ZvHhxi0qkRVEEFAFFQBFoGgJKLJpWY130Peqoo8z27dvNm2++\n2SWUPlIE/oQAQ2g33HBDZx0UXXDtT9jomSKgCKRDQH0s0uFW21hXXHGF2bFjh7n22mtrq6MqVi8E\n8M1xF1ibNm2aeeihh+qlpGqjCCgCjUFALRaNqap4ik6fPl1nh8SDSkP9EQGG0Fw55ZRT3Es9VwQU\nAUUgEQJKLBLBVf/ArGnBT/cPqX9d1UXDSZMmdVQZN26cOeGEEzrXeqIIKAKKQFIElFgkRawB4efM\nmWOWLVvWAE1VxToggG+OyFe+8hU51aMioAgoAqkQUB+LVLDVOxIOeDvttJP5r//6L8M0VBVFoBcC\nZ555pt1vRtdB6YWUPlcEFIFeCLzv3wLpFUifNwuBD3zgA+Y3v/mNJRYHH3xws5RXbStB4Pe//73d\ngOz444+vJH/NVBFQBNqDgFos2lOXg0rCviEXXHCB2bBhw6D7eqEIhCEgs0LUwhWGjt5TBBSBJAio\nj0UStBoUVsbNf/jDHzZIa1W1KgQgFEoqqkJf81UE2oWAEot21eeg0uCI98ADDwy6pxeKgCKgCCgC\nikCRCOhQSJHoVpy2bkxWcQVo9oqAIqAI9CECSixaXuknnniiYcEjXZug5RUds3gMjW3evNm8/vrr\nZsuWLeatt94yGzduHBKb1Td32WUXs99++5mxY8eaT3/607pr7hCU9IYioAiEIaDEIgyVFt1joawb\nb7zRrF27tkWl0qIkQQBH3scff9yuyDp8+HAzceJEs++++5oxY8bYacksqOYKli6mKr/zzjtm06ZN\n5tlnn7U/yAazRr7whS8oyXAB03NFQBEYhIASi0FwtO+CNS0+8YlPGHqq6pzXvvqNKhH1ftddd5k7\n77zTBpk7d645+uijU78DpLdmzRrz2GOP2fUumHH01a9+NXV6UXrrfUVAEWg+Auq82fw67FqCj3zk\nI4a9IJYuXdo1nD5sDwLsVgqZfO6558ztt99upxyffvrpmUgA7xHDaXfccYe1ZoAWm5ddeOGFgzYw\naw+KWhJFQBFIi4ASi7TINSjerFmzzMqVKxuksaqaBgGsUvvvv7959NFH7Y8dSg866KA0SXWNg+WL\n3XMZLkHI45577ukaRx8qAopA/yCgxKIP6lrG0BlrV2knAlgppk6dahjywJ+mCELhIycEAyKzePFi\ng6MwQyYqioAi0N8IKLHok/qnwVm+fHmflLZ/iklDzj4fNO4QCoY8yhZIzLp168yIESPsEMybb75Z\ntgqanyKgCNQIAXXerFFlFKmKrmlRJLrVpA2pmDJlitl1112toyZ+EFULQyKXXHKJJTliKataJ81f\nEVAEykVALRbl4l1ZbpitZ86caR5++OHKdNCM80NASMUBBxxg8KWoA6mgdFhMbrrpJnPkkUcatVzk\nV9+akiLQJASUWDSptjLqyuwQdbLLCGINorukAifKugmzR5Rc1K1WVB9FoDwEdCikPKxrkRNTBBmL\nVzN1LaojlRJM8Vy/fr2tx1QJlBQJEotTJ/4XdbGolFR0zUYR6GsE1GLRZ9V/9tln27UN+qzYrSku\njTVOuKtWrap9mRgW+dSnPmXOOOOM2uuqCioCikB+CKjFIj8sG5ES496Mf8saBDh16oqcjag6uxAV\nMzCYAVLGdNI8UGHY5rDDDrPTYKuYsZJHGTQNRUARSIaAWiyS4dX40AyB8GMPkSuuuMI6/jW+UH1S\ngPPOO89gcWoKqaBaGAJh9U9mikAy+lXY+G3YsGF9by381a9+Za655hqz5557WjzAhB/3eKbSDgSU\nWLSjHmOVAusEqzPus88+du2Dr3/967HiaaDqEaDeXnzxRfPP//zP1SuTUAOIEI7Dl112WcKYGrxN\nCLCpHd+e+++/367cOjAwYPg98cQTdh8ankHAVJqPwPubXwQtQVwE6DGyOiMEQ6VZCCxatMgsXLiw\nsU6QbFiG47BuXNas9y5PbZnujuAftPvuu3eSPvbYY82ECRPMEUccYU499VTz6quvdp7pSTMRUItF\nM+stldYMgej26amgqzSSWCua7KOAHw87on7jG9+oFEvNvBoEXnrpJfPUU09Z4uCSCtFmp512ssN8\nzHYirEqzEVBi0ez6S6w95EIXyUoMW6URbr31VjNv3rxKdcgjc6wVzGjpZ1+LPHBsYhpbt261ao8b\nN66n+q+//nrPMBqg3ggosah3/RSiHQsY3X333YWkrYnmiwCNMFves8FX0wWrBcR2zZo1TS9Krvrj\ne4DzojgyyvHcc88d4nOAIyzPn3zyyUgd6PEThrCuiOOkpM+RYQg/HHFIX/JZsWKFOfDAA0PTdNPv\ndo7/xNVXX20OOeSQbsHss5133rlnGA1QbwSUWNS7fgrTDrM6pmmVeiNAI8zYdFumBPPePfbYY/UG\nvUTtIBU0ttQzTozi0MgRGTt27KChgZNOOsnsscceXdcxWb16tQ1DWBGcImncGWrYtm1bJx8I6y23\n3GKdayWse8QfAv8eLGboNGvWLPdx7PMxY8aYiy66aJBvhR+ZpemROOTDj6vXNUMgeFlU+hiBn/zk\nJ31c+voXPSAVA4F1qf6KxtQwWD+FFjNm6PYEe+ONN2y5b7vttkGFCqbhDgREYWDHjh2D7stFsBfM\nwMknnyyX9njOOed0jUN6hBEhbdIhrzAJiIZNL7AodB4HJMfqS1o8L1rQl/fC1bvoPDX94hBQi0XN\niF7Z6mCaVqkvAo8//rgZP358fRVMqBmWF7z/cUhVMdZKceihhxqcF8Nk9OjR5t133x30iB1tsTo8\n8MADg+5zwbAFzwgjQrjt27dH+ungTMlsjBtvvFGidI7cD3O27ATIeIIlhanIS5YsMcccc4y56qqr\nMqao0euAgBKLOtSC6qAIhCAg04LbRv7YkZU1OVSMnVqJQ2uY4Pvw/PPPD3mEX4Tsaus/ZOE7nhFG\nhKGObuSFcDhVQkj8GRlxnC0ln6THSy+91A71sK5FYJUxDz74YCTBSpq2hq8WASUW1eKvuSsCkQiw\n7Drz+9sm++67r5FZAm0rW5ry0GvHeZOeu+tYydTwvffeOzRJVmBl+qa7oBT+GjTSPHMFawX33bT9\nc/HHCIZN3KimCEdKdIb4sC4L/iJYVCBXUVabQQrpRSMQUGLRiGpSJfsRAXr1I0aMaF3RceTbsmVL\n68qVpkAQChw0f/aznxlmawWj3p0fje3HP/7x0GQnTZpk77uOsAybIfLMXvzxT+C70EnXzcM/dy0d\nbvy8zhmqobyQIpZ5h2BOnz49r+Q1nZogoMSiJhWhaigCYQiwp4JKOxFg2OHiiy+20zBvvvnmRA0s\nfg8MH2CJEGFWBfd8n4jhw4ebl19+WYJVdoRUYBlhqCZwZjVXXnllZbpoxsUioMSiWHw1dUVAEfAQ\n+MQnPmFWrlzp3e2/S1kIit1fo6QbIcDCIStVMryAFYB7vhx33HE2HEMlUYK/A8Mj7tBKVNg098n7\nwgsvtA6azz77rMFqpdJeBJRYtLdutWSKQC0RYMdTFdPxX4jyN8F5E+IQJQwh4KPAuhUMiXAeNqxw\nyimn2CRYRyJMaPTvu+8+w3BJUQ0+sz5wDl28eLH6UoRVQsvuKbFoWYVqcRQBRaAZCEACmGLJAlTu\nSppYDVh1k9kcDG384he/iCwQ00EhBQyJzJkzJzQcZCFYP8OGwUHUtVxAXliQiuGSIqd6vvLKK3YI\npCjiElpwvVkZAkosKoNeM1YE+hOBN998szUriWatQQgF5IHhCpmpAVnYa6+97FTUL3/5y9ZqwTOX\nfEi+WCOwBGDZmDx5stwecmTFTPwaRo4caS0bktcVV1xhCQnDE0XOyvjxj3/cKYfkHXUMK+eQAumN\nWiMwjLW3aq2hKqcI9CEC7BHyzW9+05rLzzvvvFYhwOJY9NJlCedWFa6CwuDgy7RUbZArAF+zDEXg\n/aF39aYi0AUBGgbMtTifMW3wrbfeMhs3bhwUgxUWWYNhl112Mfvtt589P+iggwaF0YvBCEAmgiXW\n7U16j+zt4E4nHBy6uVdshqWSDwIMa2CxmD9/fj4JaiqKQA4IKLHIAcR+SOKZZ56xi9gwV57x2IkT\nJxoWOmL6GI2gvzokq0aywBMfvk2bNtnlhDG3sqEWJlviqxOfMYIT7xA4uuSLBvjtt99u3euFSf7w\nww9vXbmqKBBrXTB9M+3mYEl15p1MumgWi24VOcyStAwavngEdCikeIwbmwM96LvuusuarSETc+fO\nNUcffXTq8XHSYxfHZcuW2SWdcST76le/mjq9pgLrkomPfexjXcvPODQf8zaRMHbUxDcgbGpkU+u0\nCr2xGuKbgbWiLGJRRTk1z+YhoM6bzauzwjWGANxwww2G9Qaee+458+ijj5oNGzYYtrzOsn03jSON\nCWPrsgkVDSvz28mzzYLDImWWcmOZ4NcLTzbs+sEPftAqaFhR9OCDD25VmcosDDM5IJysYKmkokzk\nNa+4CKjFIi5SfRKOho/ez6hRo+zwhWuaLwICeu9f//rXDUMs7B0AeWmLCImgPJC0NFYHvPaRtoyh\ny/sFUVVpPgL8//7d3/2d7Xg0vzRagrwQUGKRF5ItSIdGjLnzVTTw0uB86lOfsovopGmE61AFLpnI\ng5Rh6cCPpS0NMe8Y6zJcf/31dagu1SEjAtQnPhTXXnttxpQ0epsQUGLRptpMWRaGIaZMmWJjf/vb\n3+5pnk+ZTc9o6IEfBw6LrNTnO4T2TKCCAOgsMznIPg8y4Rdj//33N9ddd5056qij/EeNu2boi5Ui\nP/zhDzeifhsHcMkK824yNFPEe19yUTS7HBFQH4scwWxiUkIq8CxftWpVZaQC7LBS3HHHHQa/giOP\nPNLQW6+jYP7FMsGPcz6q8itC36985St2Rk4RaZeZ5iOPPGLJBO8aviWudadMPTSvfBCQ+lNSkQ+e\nbUpFLRZtqs2EZXFJRd1MmTRCs2fPNmvXrq1FzxYCwfRZpNdMjoTV0DM49cR0PfLv5ezZM7EKA9C7\nXbBgwaDZIDRO2jBVWCkZssbpmqmnbfH/yQCFRvUQUGLhAdIvl3UmFVIHVZMLLCaymFPZZEIw4Aip\nYaXK3/72t9ai4z5ryjl1edlll4X6iii5aEot/klPvh84JFN3TSa7fyqRnuWJgBKLPNFsUFpnnnmm\nee+992q/rDLOYSysxTBNGQ6dYt6lKtPO5MjzNYDcUG5+6MPU36b18GmE2Brct1a4OIF7HfB2ddLz\naAQgijfeeKO1KEaH0if9ioASiz6sedaouPPOO826detKaayzQsyCSiwNjv9FEeKSiTo12n5je889\n99gZM02pN6kryCFLvvfaGwQSRe+3DAIpuukxHQJ0TFhBVxc5S4df22MpsWh7DXvl4+NNz5CZDE2Y\ndYH6Yna99957c5kZQXpFz+TwYE98CakIIzmQrHHjxjVmXJtyTJ06NbbJXMlF4lel9AgMzTE02LYV\nYUsHssUZKrFoceWGFY2GiX0amrZjJnuVnHbaaZYQpOnRumQibG+TMKyquCd6hpEK9JFZKDfddFPt\ne4tpdVVyUcWbFz9PLGdYzYqyIMbXREPWFQElFnWtmQL0Ege6ppnSBYqkpIiGTWZy1JlMSPnQF2LR\ny5IkJKsuM2ZEf/dIOVgbhamlaWYcQS4gkOoY6KJaj3Omgl966aW5WA/rUSLVIm8ElFjkjWiN0wub\n7ldjdYeoRmPDR41hjCirBWHqMJNjiPI9bkAqkDgNKWG/973vmYsuuqg203Hd4gmpGDlyZKZebRJM\n3Pz1vDgE5H9QCHtxOWnKTUZAt01vcu0l0B1rBdJkZyt68uyIyo6r7lCOSybwH+nV408AWylB0T9J\n75yP+j/8wz+YD37wg5Zo1clyIaQC4BYvXpwJP0gW5IJfHMKVKTONHAuBFStW2P/BWIE1UP8iMFCQ\nPPDAAwMBqvZ38sknF5RLccm6+lMOV6RcHIOdGt1HPc8D03AHl9tuu61n+LwCTJs2beDhhx/OK7nK\n0gl2+hwIGpkBjvILLBSV6ZM1Y8qQRH/Cu0Kd8h7WoW4DS9JAsGrqwAUXXOCqmPk8IFIDpK1SPQL8\n72ldVF8PdddAl/QOvsptF3p8K1euNBMnTmxFUdlnguEOHBz5RQ2L1L2wMvMjrv7UI974rmCBCsiG\nXaW0yu3nsYgxTMUMkDQ+FW6Z/HOsFfyw7KhUhwC+PcOHD2+cRbA6xPo3ZyUWfVD3Tz/9tJk5c2Zj\nG2C3iiASOI6xzXpTheECIRVJysAQCA2sL2BCelu2bLELUXFelkB2WNOA5ddZvMsdospTBxkqUnKR\nJ6rJ0uJ/jk0CVRSBXggosYhAaPr06Yx/dH4RwRpxm90kWcymLTJ+/PjGbspFQ8wPMpBEehERCAcL\nUPHhx2rADJoiCQbkiIXWKAeLl+FQm7RMScpPWCUXSRHLLzz1zQ67Rx99dH6JakqtRaBUYsH2usOG\nDev86Hm+8847keC+9NJLtnfqxtlzzz3tNr3i+e9HdsMSn9+xxx5r8yR/JE4YnJTccH4+7vWTTz7Z\nyYM45Me9NBJWZhwW0SetMAxy8MEHp42eOZ7gSDnyEHHObFrvFUKBiP5xsSCePwQSFff000+3jTxr\nlQjBwISdl4A5Qy44yT733HN2VgpDH3GHc7LqIeSiSNKUVcc2xl+zZo0J/LRCLWZtLK+WKSMCRTmB\nuM6POG/yC1Qd8ttjjz0Gtm3bNkSNq6++ekhYNz7x3njjjSHx3DB+GuIsGSeMqz/hXXHjX3LJJZF6\nSn5u3G7Om4R30/bPySup4GgVrNSYNFqu4aUcxxxzTG7pBkM7tXBYjFsg6gEnxDTiO2zGTQOn0Lvv\nvtvWf2DRsE6VQQORWA/yv/zyywelk7YscXWPEy4tLnHS1jCDEWiL8/fgUulVUQiUMt30/vvvD9qW\ncAlIhZ2Pv3z58k4ALAsXX3xx5zrshHjHHXec2bRpk91SOixMrzSIEydMWNpyb+HChXI65HjWWWeZ\nfffd12C67yVYOAjfTchrxIgRZtasWd2CDXq2efNmM2rUqEH3qrp46qmncst6v/32M7wDTRB612k3\n2Oo1BNKt/PTusWDww9LAO7ZkyRLryMuy4LwXvE9YAX3BGvHuu+/aDeCCmR6GH6bwo446yg9a2bX4\nlhQ9BFNZAWuSMRYzrJ5M81ZRBOIgUNpQSNBbNYGFwfos7Nixw3At4hIPhjjYtEiElfuCKZ0dX4eg\n1y6PbMNy6623dq7DTggfsDL7i2qQ44QJS1vuBZaGTh6BpUNu2yP7W8QRt1wuVjSegbWnkwTYRA0D\ndQI5J8THLF4XYagnDxk7dqw1xeeRVpFpCDFIM1SQZAikVxkYfsGxEj8M/h94T+fNmxdKKkjrnHPO\nsVu1E5Z1MubPn18rUiHlFXKBD4BKMQjwzgRTiEsb7iqmFJpqqQgUZQrxhxKCBm5QVqz/EBS08wvI\nhn3uxwtbJ8IdVmFIxBU3TcKFSZwwvh5uOm78gBC4j+y5P6QhZeNh2FAIQzpumj5WxKecEgbd4sr1\n118/wK9KEb05Mhzi4pFWL8zgmGfrKgxDZDXVZ41fV2yK0IuhJjBXyR8BhlIZQlNRBOIiUIrFAqvD\n7rvvHrQrfxL/WnrhbK8sEjSmocMIX/7ylyWItVpg7g8T5tX3kjhhuqVx/PHHD3l86KGHDrrXzUGV\ngAzniGCt8LFhn4tTTz1Vgpif//znnfNeJ5i06d1nFRwvxQkz6dHNm+EQzOoMd/XCxY3XpHMsDfyy\nmOjF0tGkclepKxYZMFfLRb61IA7SdRoCy7eEmloRCJRCLEaPHh1b97fffrsT1m+g5cHOO+8sp/Yo\npGTQzeDCD+c/5zpOmLB4cs8nAdyHCLgSpZ+ECXrwcmpoeMMabteX47333uuEj3Pi6xMnTpFh1q9f\nb/1JmrwWRRQ+NG5I0pkfbnqkEXcWiBuv38+VXOT/BtABYDaIiiKQBIFSiEUShTSsItBUBKR3F7aI\nVZIyRS2ElSSNfg0r5EIIXr/ikFe5capnTR8VRSAJArUjFuyIKPL888/L6aCj28PnQZU9chxSffEt\nFGFWDTeOazXBUTMYx+r6u/LKK93oXc/x+o8aKuoaUR8mQoChCwhFVlKhQyCJYA8NLNYiJReh8MS+\nyfonYCl4xo6oAfsegVKmmyZBmWlwIsxoYBaBP10zmJsvQQx+GGPGjOlcl32CDwMLYrniEiL060Us\n9tlnn0504kJM8iJLTCX0iVgnswQnzAo4//zzE8ToHbQXLr1TqEeIvMhAGUMg5PHyyy9b3yTeXUSm\nlXIOMZowYQKnhv9F3h/+/5rWuFAOysovK9mzYPThH6wVTFVWUQSSIlA7YsHaFDTGkArkn/7pn8y3\nvvWtDrlgtU53eqrr1Ji08HmE99eWYIVMdz2KOPpBjHBwxfeAcn/xi1+0W04LYSJNVjsUTIJZIYnM\nk3kQC9ElD8zySAMrDNaYKgVHwTyXsmYIJIvDZxQWDNHwDrEWwfbt2y1xYAryKaec0iG9ki8NMXog\nTPNet26dfReJN2nSJLs0PBufNUGEXFD+phGjqvHl3V66dKkJFkarWhXNv4kIxJ0+kjScO10zbNpn\n0Eh2pk8GuA1afdOfrsnzsF9AQIZMXXTDRU3LjBPG1Z/wrrjxe51TTlfCppvy3M8vKl3iJ5G6T8tM\nUhY3LCtBVjmNlpUnmeKYlxQxtZSt1JkqGDSwduXMLHlQXlbxZFt00gN77jVBAgtgrnXVhDJn1ZG6\nZnVbFUUgDQK187EIGlS7sqS7YBT3fMGq8cQTT+Q2ZOCnH/c6WDY8MigLZ8U19+MgRfhuglVj1apV\n3YIMecbsAnqqbROmJYvJvuyy0atH8uoFk16es0DYwnz//fc3l112mVmwYIG1QDCUJVaJNHjR+8cs\nzmJZ7GK6detWqzMbkdV9iqfsLyLOtWnK329x7rnnnlZtXNhv9Vd1eWtJLAAFB0WIg08wIBQ0wKz9\nUAfzPOs7BNYGO5QhlclaFOgetdKnhPOPhMcZ1CcrEArK/Oqrr8YmKpI2DQJj5W36qNKQQZZYJrts\nERzBNS9h6CGP9NCNXU2FUGzYsMEUMWwBQWHjMfTGT4N6yHOjs7xwddNRcuGi0f0cosu7VMS70z1n\nfdoWBIZh5mhLYbQc4Qjgn4ETHks6t0FoxCCe9J7LFJw00+75EaVnXo6f9DAh4SzTfcYZZ5S6/DL1\ncdppp1kfjMWLF5eadxSuUffz9ouJyqfJ99k2AL8syKOKIpAGgdpaLNIURuOEI4DTHebrNgiN2LJl\ny0r3VhcCkGbPjyjc8xoCgThCKqhjyGOeOkbp7t5nVUacWFm4bcqUKbW2joENFhfqUyUcAayBJ510\nUvhDvasIxEBAiUUMkJoehA8/pk0x4ze5PJ/+9KftMNPw4cNt40ADUWQjQQ9XSEXeuGUdAkE3lqRn\nNlGes1PSlJMGm82qGLZDp7q/a0ouwmtZ/pey+OOEp6x3+wkBHQrpk9pui3kTk//q1attI+ZWnXwQ\n5V4eQxZYFGi883LSFN04ZiUr6IV1AMGht2wrhc044g/Oo7Nnz7ZDVUVgF5FtqttZ6yFVpjWOhPWL\nBftw9lVRBNIioMQiLXINiydm96y95KqLzWyH6667rucW3vSY3RVQmXWRxEESvJAkceJik0faOGmy\nsFXdSIVg0DRykQcRlbI39QhZBQfIVhHvfVNxUb2TI6DEIjlmjY1BbwRpqlMW1gqcA5ntkFRozCFV\nIqxsGtWbhpRgASjq45q1l4z16dlnn60tqRCMm6In+lLn1HedLD+CY1lHyOCNN95YulN0WeXTfMpD\nQIlFeVhXnpNYLRiPj2pUK1cyQgHpTeGgmMf4L+mBgysy7l5k7zUrqZAZGE3pVWJZ2WWXXcwdd9zh\nQl3L834nF2eeeWajVlat5UukSlkElFj02YvAgkY0zmVP1cwKMx89pMgGCouIuzZKHgTGLXfWIRAh\nV/fee2/PoSA33yrPm6Zz0daqKuuiW97S6WD4sJ+tNt0w0mfxEVBiER+r1oTEa3/q1KmNWdei6F66\nWC98IoFVwJWsloys1ooyyJVb3rzOpf6wEDWh0cpKAPPCrcx0INXsC1MkcS+zPJpXtQgosagW/0py\np1cGuWhCz7doXWlEIBZxhobQJa1DaFZSQXzIYFMaZ//FZkiEFWCbMtug38gF3wM2eGRquooikBUB\nJRZZEWxo/CZ47dPgM6Uy2PiqkAYpa+NB/DgOoVnz4RWjYWZH0qaungoGzMxp0qykPOqtCZ8HIe/u\nu9wEvVXH+iKgxKK+dVO4Zpg/WbERf4s4PfbCFXIygFQcffTR5jOf+Uwhs1j4mOY980OGVJxidFZ5\n9IdZ3DC9zpturZDyNXGNBMhFXIuWlLNpx7ascdM03NusrxKLNtdujLLxsV++fHmtyIVYKvbZZx9z\n6qmn5jILxIWChjqrv4SbXrdz3yE0Tb7UURv2emlqz5j3EYJRN/Ld7b1L8gxLUh07F0nKoGHrhYAS\ni3rVRyXayLBIHXwuaHzYp2DixIkdS0WeRIC0slgPklRQmCmd8iXx06BRY82NJg0hdMOIsfw5c+Y0\nbufMtpILHGsvuOCCVGvDdKtnfdbfCLzv3wLpbwi09HvvvbcZOXKk3eb9d7/7nfnsZz9bCSj07tkl\n82tf+5q5+OKLOzrQo9qyZYv5v//7v9SzCmgYXnvttdJIBcrjaImFwpXddtvN+hpQJn7oRThICL/f\n/OY3hjAi3/3ud83//M//2CWy5V7Tj2vWrDF///d/36hifOADHzD8eIeot7bIzTffbP2YWNFWRRHI\nCwG1WOSFZAvSoTd9zjnn2JIsWrSotEaYBhWnxLfeesvcfvvtkfkSjoY4qUk6bbwsVZrWMiJEQ/K+\n/vrrra/J6aefLrcafaQusBg12VEwbd3WreJ419pkDasbvv2sj+5u2s+175WdBpuxVqY18mNsn4ag\nKOHDhuMYPUCmIjKPvtswBUsu8+PDHldE/6RkJG76YeHIM22vFodSMJDfpk2bzIc//OHa7xYahkPY\nPepPdqYNe96Ee9RNknewbmXi/w7BcjRt2rTClq6vW7lVn/IQUGJRHtaNyQnrAeZ5hAaShZkYi81L\nsIxAWugt7dixw/ZeWd8gzuJJ0vDyYZcPZJRe5IPQmJUpeflDQFA2btxop5qWSYyKxgr/mc2bNxed\nTaHpN5lczJ071/4/L1u2zJxyyimF4qSJ9ycCSiz6s957lpoGnM3KcDTcb7/9rIMX47AQAkhGr0bd\nzwAigHWCNHDgY2vm5557zixYsCBVw8+HnYZXLBJh+YmFw39W5DXlRLc8BIJCj7JtwgyX119/vfHF\nEnKR9H+h6oK/99571jl65cqVdviRZf6j/o+q1lXzbyYC72+m2qp1WQhAMLBg8MMCsGLFCrNkyRL7\nYWL4YtSoUXYYA6LgC8SBrb3ZiZNFrvj5W55naYjpxfNBRC+3R58lTb8MSa7RJe0QSFg+9OpHjBgR\n9qjR9yZMmGBJZaML8UflIRe8f5DYOBa3upUZJ2lmhZRt1asbDqpPvggoscgXz1anRuPtLsnMBxWL\nxosvvhhabhxBGe7o1oOXXl+3MKGJ//EmH0R6jJAJZmAwhJM2rW75xHmGhSHPvBkmonevUm8E+L9o\nKrmA7GOZVFEE8kRAiUWeaPZZWmIlyNqY0sunt5+210RPkTSefPJJc+yxx1ZSC1VZSSopbMZMIYCY\n4dskQi54F9O+x2XjAalYtWpV2dlqfn2AgPpY9EEl172IYnVIO1Yt48Psp8F52nTS4pT3EEhaPZoS\nr4lDBnGwFaIt72OcOFWF4X+OIc221kVVuGq+f0BAiYW+CbVAgI+yzERJohAmaER6iaTDh73Mj3te\ns0CSlFvD1hMBeQ/LfP/SIPHoo48O8ktKk4bGUQSiEFBiEYWM3i8dAUzkQhTiZM7wAx9y+ZhLHOk5\nJklL4iY96hBIUsRMpmGv5LmVH0Pex7qSiyuvvDJXX6DyEdYc646AEou611Af6YdZll+cD7I06FGm\nXCEchCtK0DPPWSBF6Vm3dLHwMDOkzSLkogxymxRHId5J42l4RSAuAuq8GRcpDddBgAb15ZdfNtu2\nbetMG5RppQSSaahyzsyG8ePHxzK98kEWS0QnQ+cE/4m4Mz8gHTiWkh7WkCgS4iSf6DTvWSB+5nvs\nsYd57LHH/NuNv3Y3YWt8YboUgHeZ9xVykUdjzv/dj3/8Y/PGG2/YPUtYj8L9vyM/IWz8D/J/N2bM\nGLVOdKkjfVQMArpXSDG4ti5VPo6sYYE3//bt2+0H7PDDDzdjx461U0opsMwOISyNBz/5CL7yyis2\n3owZM8ykSZPMUUcd1RUjsUi4gfiw8qFO85FGJ4iF9CTddNOch+mXJp1ucchj3rx5dpn1buGa9owF\nmRDWRukH4Z3l3U373sr/HauwsmAa/3eQzt13393C5//fcZMp4Fu3brXLdvP/yv/c5MmT7fozeRPs\nfqhDLWMyBJRYJMOrr0LzQWQ/gcsuu8yWm4/a9OnTU30gSYDG/aWXXjKLFy+2JING84wzzgi1JPgf\nYz7MSBZikIWY2Mz/+CcPXdz0os7BgHVAIGhpG6aotKu8zxLxNIyzZs3KVJ9VliFp3tRlXEsbaT/y\nyCPmxhtvtP8zccl4lE68O08//bRh92D+B88++2wzc+bMvsE+Che9XyACAyqKQAgCDz/88EDQiA8E\nZGKA87zlBz/4gU2bPIIdPAeCxnNIFsGH2N7nGAw7DHme5gb5kHcWyRo/Tt7kwe/AAw8cePDBB+NE\naUwY6lzqVMpZBqZ1AKhXOQMiPxAMY9hfEf934B6stDkQNCn2GPZ/VwecVIdmI2Carb5qnzcCfHiC\nhXPsh63XRzCPvMkD8sLHlI+qL3fffXco6fDDJb0m3zQf1aIwIV33J+W5/PLLB/i1RXi/qOswccuf\nF5EMy6fqe2HvEOXl/wDSVQSh8MtMfoHVwubH/5iKIpAnAkos8kSz4WnxgaEngwWhbBELCY2oNPh8\ngDmnMSpCSDdJA0bYJOG76UzebkMaFVZ6sFHPm3af+qXH3EvAOQ4+vdKp63OXXIS9+2XpjR4QPUiG\n/N+Vlbfm014E1MeiwGGmpiTN+C9+FPhTPPDAA6l9KLKWl7HgL33pS+b3v/+9CRog89nPftYmWaRP\nA2lT/jiOdVkcNsknaCw7ECWZpcKUVhY0Eie9TiINPGF329tvvz1xWcBeBDyCnr1cNvZIme677z7r\nEF1l/fL+s5U6DtZV/v83tiJV8SEIKLEYAkl/3eCjMmXKFFto9g2o2mOcBvhrX/ua3fdj7dq1nQY/\nS6Peq0bBILAgdG3skuYvaUreWRpDtptnQ7KmbxaFQyIEdsOGDQJLqqNL0nBujUMKU2VUcKQLL7zQ\nfP/73zf33nuvGT16dMG59U6e2TqLFi2ys5CaimnvUmqIMhBQYlEGyjXNQ0jFAQccUJtGC50gN3x0\nly9fPugjl7RxTwo76YdZEmjIkF69ZOKL5NngkT/EBItHLx0k/zoe2cvllFNOMSeccEJu6vkELqz+\ncsssx4R4v9evX283AaMMdalXyN/s2bMH/d/lWGxNqk8QUGLRJxXtF7OOpMLXUcgF1gTIBjrTyBbZ\nmwpb7yKK0LhEAt2LHKoAC6SpVguwmjp1qrUMFWkVo/4CXwGLVZ7kziaY0x+XVBSJRVp1lVykRU7j\nCQJKLASJPjvW/eMm1SF6MiyC0HDQuyvygwx5gcRAYFxS4TZa6FIkkSB9V9CJ/NzhIfd53c/xrViw\nYEGu1opeZaYOIaUidbBmMNxw5513mnXr1hX6DkuZ0x5Z84L1ZuquZ9ryabxiEVBiUSy+tUydj8Yl\nl1xSeO8xr8IfeeSRJpgCa+bPn2+TdBv7vPLw06FRwqHuL/7iL8zw4cPt46obJholdBKS5etc1+u6\n6O0SwyqsGWK1aQo5ZCEzlg1/6KGH6vpqqV41RUCJRU0rpii1pOdbpRd60rKF6VwEufB7uCyFDKmo\nmlC4eEGyGFJoynLYNObgh+WgyCEsF6M4535dF13H5EceCxcuNKeffnocFSsPg86HHXaYnTHSFJ0r\nB00VsAgoseizFwEHumDeeqf335Ti+6ZZyAaS1ekNgiLi9mJd4lLG8Ivo0OuILpALzNQsr15naVLD\n5FozsszgiaoPZvaw10fTev9iZeGY9X8tChu93z4ElFi0r04jSyQfCXGGjAxY0weQIjZgkt662/jH\nVdltQIgT5icRRlqIh19HHT6uN910k/l//+//mf/4j/+olRXArQNIBdOY6zTjyNWv2zn17645EvaO\ndIvvPyO9Js/qabrjsF8fel0CAu1d+0tL5iPACntlLBfs55vXNasEBg37oBUC3RUMw/IJSNSgFRzj\nrC4YlSarQZJelYJulIFVUsGian2isGB1TZaGj4N3VBp1uQ/m8uMdSCpgUcVqtkn1jApPmYOmKPOq\ns8GOqzYd0rrtttuisuur+8GCZB1MwKVsoR7Il1+wE3Vu2ZdfktxUzyehoEfVAdZ/2bs9yyf38lJp\ny9LQ7KfgfqRpuNzGlY+gNALSCCdBmTjdhPx6hekWP+2zsHxpsOpGLtCT5aHbQir8+vLfL/+5fy2N\nMrg0WXjX+GUR+Z5y7CeRhpsjRMKVqokFuki9HHPMMa5qmc6VWDSEWHR7OeO8AXzs27DZEI26u4kV\nH2x2//ze975nG3w+5GmFuHHjpyEtWfRyyZObjlguwjZwc8OVcU5dQCjaSirCMOQ9kF/Yu5NHgxyW\nb9n3KBvfoLQEye0Z+41r2WUpO79u3+46EAtXh7zqRolFHxCLrB+Fsv8Re+X3N3/zNwPf+ta37Add\nGlw+7lklaRrkHdaYZNXDjR8nD9nEyrXkuGmUcQ52WE+y9mrL0LWoPHgXhGTIe1k3i1KWsmMtTDOU\nGixHP7DHHntYYsKx36QbsagDFn79cJ1V/iwotErLEXj66adNYLGo9YI8casAh01mQ7z99tvW8VKm\nMOJgx7O0ksYRVPLGsbMIQaegYerpMMoS2ayNwBRiZowUpU9YGXHSZMYDU2BxKm3qyqBhZUt6j7ri\nPeTH+c0332zcmUZJ06tbeJZjX7ZsWWK1gl6w2bZtm403Z86cQfFXrFhhhg0bZn+XXnqpfXbNNdd0\n7vHs3HPPNZs3bx4Uz71gU7sDDzxwUBzuvfPOO26wQeekR7qS95577mnQhThyj6OfBte+foTjnq/j\njBkzbFpuxieddJK9R16IW37SQQKr0CAd0NMXP8yTTz45KMhLL71kwNMtC/pIvm5g3tFTTz3V3qKe\nnnjiCfdxuvM0zASzlozLBLlaJsq9QKlByQWLMHX8F2Cq/nM3jbBxN5iTa0LrlpebcVz9iOPqQDxX\nuj0jHM5IbhnR7+STTx4yjiZpuumBBfEZ15JygZGvA+nJc/8Y12zFMEianoboXbcjvUF3OET0o8eY\nxoKQNp7ki3k4qbVD4oYds6SH1YJeMpaDNFiE6RN2Dx0lL96vIvMKy78J99ginl9bhDrnG8Qxibjf\nPb55rrhmeL6l7vfQ/975cfmGdgvP9zTMIZF0/LTl+uqrrx70zG2zSEvCRR3d73ecb7dbftIUOeec\nczp5hVl5yEd04LlrZXCfSRj3CM6+BGSik14evhZ/KomfU8h10ookPIWWQrkF8gH1Xxoq0Y0rabhH\nP05S/Sii+9K7L0WvZ2kqz8/LLYt7zgspEufllLBRR9LO+8MP1tQhdYqOYXXFPZ4RhrDEyUtoPMPK\nBOlI+uHLixSQTtK8fTwok5jR/Wdxr0kDYkG9c8yanpsvaQuhwDSeF3ZuHm05x9ckb3yq/r+jTEn8\nefzG2K9bvx1wv4P+ud/gdSMVEpdvkNvoch72rZLw/tH9Zrnfbz+cey35xfl2++UXfPz7PkFyiQfn\nIi5BcHXyz/22Dp3dMH5+kn7cYyJikaYi/QZYKsqtJBcYFI9b+aThShr9XD18sKOepa08Nz23EsPO\nyQOJ83K6GPjnUb17P1zca+rPfanDdO92j7jyDsTNMyxct/HeJB/zJGHD9PDvgXcY4fHDhV1niRuW\nHnrQY4aEYeHhPE150QsnUSwT1C3HNOmE6djme2CVl9Tl/453KIkvj/v994kB2PgNKGGkUaMd8L9/\n0mj78dxvd7dnrj7UjxvPt1bwXL5VvpXDjec/k2+31D3pyA/dXPF1lWd+Q+/mRxiXHLn5uW2MiyXl\ncLH0CRdpunH9/HieRGK/+T4AbsbdnqGMq7D0XgVoCiiVJ4qTtjzn6OblV76A2k2Hbs9c3dx8fL3d\nZ26cJJXnxvPLRTncMlNOV9xnlCeu0LugEc5D0NF9oV2dkpyThtRbWr34uEV94LAa0Bj2EhretCSg\nW9qkGSd/Nw3CZ7V2uOn557wHNAoQDOqKnicEQXD0j4TlvYGU8CMsw2lF6ujr3ORriBcY5yF1+r/j\nHeBdiCtuJ8TvQJKG/2322wLf4iHP3XRdS7jo5bYhfHdF+F7LtyosHvfkOUfJz02P75cv7rfd/z67\n6fnP/PK76bpldLFzMUEXIVvufVd3SZNw7vfb18UlHmHYSDpxjrGdN4PpfIGuf5AgUzNr1iy5tM50\nAfCd61tuuaVzzkngwd+5Zq38RYsWda7ZWGr33XfvXHPiLnvr53XRRRfZ1fwkwmuvvWZPs+gnacU5\n4qCzfv36TtClS5eaMWPG2GvKceutt5qg8ux18FJGOsL45Tr22GNN8PJ00mXznzwkeNnsapVZ08Jp\niTqnTFmFNEjLd4xKki4YP/fcc6FRZOdTHAu7SUAAejpGdosf9SxoiG26cZ1JxUlT9I5KN8v9o446\nyi7jvmHDBuscxv8g+0BEyc4772zmzZtnHWLB6Y477rA7kxapY5QuTbwfEDCz6667Zla9bv93fOOS\nfJtefvnlDgZ77bVX5zzsJGich7QF8m31w7vpshqvL5MmTerc4ntNffB76qmnOvfD4oXdIwLfq6BB\ntb+tW7faNHCQxEkU50q3TehkkPHkc5/7XCeF73znO53z559/vnP++c9/3joIc2PTpk2d+wGBGoKl\n66RJwJ///Oed8JyMHDmyc/3KK690ztOcvD9upDQVSUGQ8ePH2+WZDG8AACv4SURBVN00IRWIVAIv\nkktQ7MPgj1v5QQ9LbneOr776audcTrLoJ2nEOcatPCmrX3mSR1i5PvnJT8rj2h2XL18+hFRQfwHL\nNbvssovZd999Q3V+/fXX7Yco6DEPqlfIBWlCFNOIT0b9NPwtz/3naWaB+Gl0u6YBlpkqURtcQXwC\nS4UN1y2tvJ+JbuinUgwCeRH6uv3fsTT5ypUrY4PGRn4ifCe6yejRo7s9HvRM2hBuHnfccYOehV1A\nKnwZO3asf6vTKRzyILhBGkEv35x11llhj3O/55aL7yWdWojWj370o05eLJsvElgk5NR+a2WWSeem\nd9KNIP7iF7/wQie7jE0s0lSkEAtUojd+3333DWqcXEuGqO33YpkGFEey6hcnD8LkVXlxyxVXr6hw\n9OqZJpZVIAau8A8WZxMsSCUCgYDhT5gwoZMMaaYlFp1EupxIw+43oLJ3Q5eouT0i77B9RtABYuHr\nllvGmlArEKjb/x3WuCSSh4UzSX5FhYVUBENbnU6x5IPlecSIEQYrvdsGyfMsR9pPOm7333+/TQZL\nBR2qJUuW2Gustu73NEteecf9s7wTjEqPivFfMnqzKsUj0Kt3H0cD14rEP1McUuGnK5Yrue+mKffy\nPtLDohF3paghEDcP99xf70LWmZD7blg9VwRcBNz/kSb930kZsGoWIW66gfNkZ5hChiv8Y9g3EKuS\nL34bJc/pSAlxIG/CkceVV14ZanWXeFmPrEsjgqWCsoq4wyDcY/hSBELiY+Bfo3tREptYZK1IFtHx\nhXu+hcK1chBexrP8uP51Vv389KKu61R5UToWfR+GnlayxE2TJz0sLAPib1H0EEiUjuJ3wfbvch4V\nVu8rAmEIZPnfyRI3TJe493bbbbdO0G6m906gmCcHH3xwJ2TcDirkQvzfiBzmoxV2j7AsQCdy9tln\nD/JfoNMspEPC5HVkQS0RLBWufu4wCGH22WcfCWqwbqBXWkkyLBWWR2xikaYiJUNW+xJzDhWLYwkC\n6xOzjoSFWLiVH+ajwDCCrCiG8wySRT/JO84xz8qLk1/WMIxr+ivCZU3T/SdLmlaWuEnzkvBYBvBl\nKHMIRPKWo/hTnH766VYXITryXI+KQC8EsvzvZInbS69uzz/+8Y93Hv/sZz/rnGc9cR0b8XmQdoB0\n6ay6q2qyKqeIrDDJNX5wbjzOxTdOwocdmVwgjTbDu1/84hfDgoXec4fSQwN4N2U4RG6LfmHDIPhf\nSAebthW93G8/7bDbdvqrcLKasYikI9eJj4F5JJYwNSVIvPNzp18GhRi0tkGgVCdNf4oL8fx5v1y7\nEpj8OvmQpzs10Z9uyhQbJK1+6CrlcstEmlHP3PvudFPRI6j0TproJeLG88tMGPIXXcDAFbnP0dfT\nDeefyzRC/37Sa3cqEjpQD9RtXCGsWz7SIM20wnS+JNNogw+B3awsbX5Z4oVNP2V6KffLFnAAO94L\nmVIKjv6PhbUIE4zxV6Jn2bjknZ/gmzXduv3f8d4GFrfYxXL/5/lW+uJ+t6O+B+63j7ZGxP2eumH8\nc/cbTHz/ebdryc9vd7rFcfND17CwEsYtP+HCxMVQ0nKnn7px/PQkvH8EO1/cdsttc/1wca7DSxIR\nM01FuiQBxaUxcv9h/ELGrXwf3DT6uXH8BjvqWdrKc9PLQizkJZGXM6K67O28PnBhLzd68LGgLnke\n9uMZYURn9+jj3a0c/jMWbKLxiys0pjTkZTfm3QhEWfqQD3ixrgL4cxTiAC5hP8Lz7kA4iJNlga24\nddSmcGCahPhGlb1u/3dJy+V/y+X7L+V1v6VJiQVpR31b5DsT9o1x85RwcvQJhBALjm7DK+E50sbR\nFsk90nAlTEf5dvu6uPHkHMwkbTl2a/ij3hmJSzsk5YrKw68nCRf3mIhYJK1IrAlSGI5uJXd7hvI+\n4G46nFNZfuGT6kc+bmPv6tfrWZrKc/NKSiy6vZzoGiVJPwRR6YB1mA5+vcS9Dqu/qLzD7idZAdBt\nwMGjLCEvLATdBN0gH0UI1gYhBhAJrnvpE6UHZZEFtiAZEI+0aUXl0ab71Ck4ZZW6/d8lJfSU3/1u\n+A2i+51PSiwEW77Fbh58g2jsw76xEodn5CffK77N6MJ9ucfRbWNos1wCIXFIM4qQ8MyPR7rkhbjl\n536UuOVzO+hR4cnT1wl9/TZO4lMvUu6oepCwcY7RJekSO25FumBQKF98a4bPogDHDUPBu4Ej6cfV\nj/CkJ4D6oHd7RtykleemF/bSk7/oQrld6fZyuuH8cxquJKZLP757jQ5unYquSY+kQVpZhAaThjKO\n+GTCv46TRpIwMtwQN07S8L3SpXw0akURACEsvFdYNVTCEeD/Ig/yVaf/Owgq5CKJuI2n/11Lkk4Z\nYd1vMA14v4hLmIT0ZCl7KmKRJUONWz4CNDB59or553NJUlxiQRyfvKVFI+5HO4xEuBaMtPlHxcti\ngUDXLA0RebPcMg1+0o9/VHm63UdfCB7vVxjO3eL2w7Mk5DcOHnX4v0tT1/T6ZRghTm87DhZpw7gd\nI75HbmeWzp7oyfeFsP0g1I98w8EkDxlGIkGiKi1G4MILL7QrYzIjIU/B+/qFF16wi4Yxx/qXv/zl\noOQ/+tGPGlYTZYruIYccMmiK1qCACS+eeeYZO3+8l6e7rF8RNLRDcmAtCe7nuUR12EJYQzLucSNt\nGmBy2mmnmRkzZpgFCxbkWq4eKhum0AY9UcM0PJboV/kDAjfccIOdLn/ttdfmCklV/3f8P7GgW0Bg\nE5eHGReyYmVAkApd+6Gbcq4e3cLxLOi5p1qvp1e6dXvuYpJbmfNgJ5pGvRFg46C8NkSquqSY4efM\nmWPH+3vp0qsX3et5r/Td51iEslgb3LSSWj3wfcBKEXdoyM0rr3N05h3jlxcOeelWRTpg8OCDDw4M\nHz68NXik8a9wsRdrQV69YjftJOeub0XQyHd66+553YdskpS3W1jXmpSnhUaHQrqh3pJnfORoePj4\nN10oy1/+5V/ajzbEIIocRN13y09aeQwRkRdp5SmkF6cMjHnTmOdRjjz0R5+8h97y0KuMNKgD6oyf\n1AdYVEn48ix31rLgKyKNd15DomnLhx+B61cgeuHwGOb/ljafusejHig7Q0DusFBWvXUoJEC1H4Th\nECRvs2zZ2D3yyCPmxhtvHLQSnruLKAvKyPBG2BCIr2+34RI/rH8ti14Vud8HZYvaxIw6ZcW/VatW\ndcrs61jFNXqxeRZDVW1etpx3xx0WCKsnholWr149aMfmKuoka568h1OnTh1U3qxpavz2IqDEor11\nO6hkMj4a9KRq1QgNUjLGxf777299CE444YTQ0DT2wdBPZyt79grpRTDSLPMNnuRVRsMZ5ndRV1Ih\nlSLkounvm5RHji6JjfNu8Y5AOIjX6z2UPOp4PPHEEw1bip933nl1VE91qhkCSixqViFFqsPHniVd\nm/pxwFpx2WWXmQ0bNkTC5JOEOL1KEvPjRWYQPAhr6LuFz+OZS2RwCrzzzjvNunXrak0S605+4tQL\ndR0MS3WCprFOUV/s8cBS0E0U/jewVrSNJDaxLpqisxKLptRUDnrSONHLwnzbtN4TPb/DDjvMXHfd\ndeaoo44KRYPyId3KFtVQkD7xe1kg+MiGmbxDFcr5JjpijfnXf/1X8+yzz/bUNefsUyXH7oyBD0hj\nZouAMQ2oSB51TZqk8+ijj9pZFZJ2U45qrWhKTdVHTyUW9amLUjRhR9mNGzc2rvcUR+8kVgcBmzgi\n//u//2sOPfTQUCuANDhpeqySftajNFA33XSTiRoKyppH3vEha2B27733RhLCvPNMmp77DuCj04tc\nJk2f8PhaLF68uPZWJr9sonc3K6EfR68VASUWffYO0DjR8587d67Je12LoqDkw48plmOUNYJnWRt9\nsAnzz6Bx5FkRDU4SzBhaYOvpO+64I0m0ysPKEFZdhm6oT9fpMut7Exdgev7BzIrGWG+w7mFxaqql\nJW69aLj8EVBikT+mtU+RDwamWUy+VTeWvcCK00unoUCiSEevPNzn5Ed64MKRBcA+9KEPmWA9gsqG\nQNBPPvLdyJVbjrqdV21OBzeROE6XEjbPI+8TJKYJFif+D6ZMmWIJfVN9svKsO00rGQJKLJLh1ZrQ\n9CJnz55d6ymB8nELFtTpOk02D2uFW7FCVOjVumPsUf4ZbtyizqtumLOWizoq0wGwyrrqhpWskMoU\nVN7rusqZZ55prWNNdTitK679opcSi36p6ZBy1tlrX0jFrrvu2tUfJG9SAUzkzZBIr6Eitxdc1Ng8\n+oi1oule+UWSI+osb6dLsC9C/v3f/90ORTJTpI4Wwzp/F4qoD00zfwSUWOSPaaNSlI/IkiVLavOR\nE1IBkN0WfxLLQh5DIFJppEn+fPCTkBa/YcvT3E4dsd9K0/fhEKuF698guKc5lkXs0ugWFUfer82b\nN9fSYijfg27/d1Fl0/uKgCCgxEKQ6OMjH5O6rJTIh/dLX/qSGTlypPWil1U0w6onScMfFt+/h2WA\n/ISoQBbQJ02vknhuA+oOqfj5drtGB+JSVtGrW/i6P2OBs25Thrvp72NaltNlN52SPEN/ROpRhiPr\n4HPBe4ZPBaKkwsKgfzIg8L5/CyRDfI3aAgSCzWdsQ85skb322svw8a9CVqxYYcfhp0+fbhufD3zg\nA5FqFEEq+ODvtttunTzJnymoHLvp0ongnEBQsFrIb8uWLeZnP/uZJSq/+c1vBuXjRBty+v3vf99I\n73bIwwbe+OAHP2ief/55wzvXS2jsXnvtNYsZjTLDTZAswbRX/Do990kFuu299972f23WrFnmd7/7\nnfnsZz9bicr8LzF9manWt9xyS+h060oU00wbi4BaLBpbdfkrTo/9pJNOMqNGjTKsFig9q/xzGpwi\nDQjTXx9//HFrpWBKXjcrQdhHenCKya74sHazKORNYiiv6w/QbdgEa1KTV0v1a4K6w9LgWnPcMK7T\nZZF+K26eRZ/3el95jpUOWbRoUeZp03HLw3v4zW9+05KJhQsX9vQpipuuhlMEdHfTrNu4tSw+u2pe\nf/31dsc7dqoMGoDCSih5BQRmYObMmZ0dQrkfNLyR+cbZ9TMysvOAfOKmFTeck3zsUzAmffmhlwg7\nSnbDQsI16eiWSeogrOxNKlOUrtRt3P8h/u/4Xyj6/w5dA+dkm9e0adNi6xdVRr2vCPgIKLHwEdFr\niwAfQz5wAfe2xzwbN9KWjygftrBGWxocvzrCwvph4lyjQ5IyEZ5fGYJelPPVV1+1+JeRZ5l5nHba\naQMXX3yxLWOSOihTxzzySvPO8N67/3d5ve+Uh7T5v4PY8WvLdu551JWmkS8Cf6ZGG0UgDAGGQdhi\nPfg42seswMePIRKGBpIKJm6WByYNTP9bt261K/oxTz7MCQ8fBe6TFyZbBJMxcbMKuiDdhlv8PMAD\nPUQX/3me1+hF2X//+9+bgHjlmXQt0jrwwAPNn//5n9syJqmDWigfU4lewx9RyfDey/8dQ2D4X+Dz\nxJL2af7v0AMnUdalYGgJn5Xbb7/dbuQXtedOlG56XxGIi4D6WMRFSsMZFvfBDyLo6dj9Rmj0RowY\nYX0AgIcpkXy8tm3bZtHasWOHDffiiy/a60mTJpnJkyebiRMnJnIQgwjwwYXkhJEQm3jMP3ycu/lT\n9EqG+Fl16JWHPIeIvf76610XB5OwTTqCIb4EbV18KS2piKpD/u9YAZaN5/ixqRuzpvbbb79OlLFj\nx5o33njDXkf93x188MGl+U11FNOTvkRAiUVfVnv2QtNzD8zYdsYCHzIEKwR7WbgfvAkTJlgrAz3+\nLPLd737XfPzjH09kZXDzE32zkgLSoeEoo6eNdQhp25LKbSYWeZMK9x3mXN5jZgp1+7+DaOy+++6l\nvKe+jnqtCCix0Heg9gjIxxqrBWQmKTkgPh/kvMgAFhSIEvoUKW0lFtQFlq1gVLdI+EpPW97TrCS6\ndMU1Q0UgZwTUxyJnQDW5/BFgCEQackgFPV4apziSxp+iV7oQFAiOSjoEiiZk6bTKFkveMyUV2XDU\n2O1AQIlFO+qxtaUI82mAXNA7lB5iVOGJy4e+iI+9EJyovPV+/yAgFqwi3rP+QVFL2iYElFi0qTZb\nVhaIQ9QsEBnWkJ6iW3SsGUJIiuwdo1svcuPqped/QADM2tIIC6ko8j3T90YRaBoCSiyaVmN9pK8M\ngUQVWawRkAgRGi1+Sf0wJH6SI/lDYuIOyyRJu81hqVecepsuSiqaXoOqf1EIvL+ohDXd9iJAQ4qP\nAdNIZWpbWGllKioe6uyLkKSXKhaHsHTde/QUZVjife97n/mrv/qr3Jw03XyizrGcxNU1Ko2o+0zf\nXbduXdTjxt4PFmpqrO6iuJIKQUKPisBQBJRYDMVE74QggBXg6aeftotcyVz6Aw44wK5hMW/evJAY\nxk5FZQoqW7KvXLnSBKv92QWf2GRMhjLCIpJX1BBIWHjuMcvgt7/9bdTjQu+zLgYNTbcypVFgzJgx\nFu80cesch/UWeBeaKkoqmlpzqndZCOh007KQbmg+rNq3bNkya52YMWOGYZGrT3/606mmWspCP+yg\nOHz4cLNgwYLQxbKSWgAIL4teQUqwqOTdyPeqPvJFklhleqVJOdo4LZNVIFkojR01myZKKppWY6pv\nFQgosagC9QbkCQkI9iywmkYRgCzFcAnLTTfd1GlkkpAKGZLx/Smi7mfRN07cJLrHSY8wLOfMEsx+\nGePGr2M4rFFr164tnfxlxUJJRVYENX6/IKDEol9qOmY56Xmz0iP+E26DHzN64mA0xuyHsOuuuxq2\nCKchjdPrj2OZKKKh71XAvPMEE3wt5s+f3yvrRjyncWa/GBw4myRKKppUW6pr1QjorJCqa6BG+WNF\noGfM+DfOmWWYqslvw4YNZurUqdY8Hmf/CD7ySK/hDtKmoceCUZbkOQUV8sSeEPfdd58tR1llKDKf\nFStWGIbUmiS8Q5BdnVLapFpTXatEQC0WVaJfo7zpGS9fvtzuOFqV2R3CcM4551jrxV133RX6Iecj\nL/4UceEjXRqFOJaQuGl2C5e2d0s8d8YEJAWdmzp0EIYRFqnrrrvONGVnzbwtUGGY6D1FoG0IKLFo\nW40mLA+9+TPOOMO8++675tvf/nZpjW+Umugzd+5c8/bbb5tVq1Z1yEVWv4k4QydROqW5H6dB8olE\nFGFiy2ym9bKddpNF/HawUDVB4tRhE8qhOioCZSOgxKJsxGuUH431lClTrEZuI14HFbGgrF+/3pIL\n9OTXa+ijl95ZyUmv9N3n5AWZcXWmoXIliki4YTgnHawWvRYM8+PV7frEE080hx9+eCN2a1VSUbe3\nR/VpEgJKLJpUWznryrQ/3zKQcxaZkoNcfP/73zf33nuvGT16dKa03Mg0GnEbdTde0nO2ekeYWotk\nGWICC6SpVgswx48G3526+yooqbCvmv5RBFIjoMQiNXTNjoh5nYWu6mapcFHFdA6pYOGrOE6dbtxe\n53n7XYg1xM1XnEezEApJr+lWC2aCQCyYcVRnUVJR59pR3ZqCgBKLptRUjnrSYJ922ml2pkFZDo1p\n1afBZrimiEYpi9+FTyRYyMod9nDLm1djdcMNN5jnnnsud5Ll6lrE+T333GMWL15sZ/8UkX5eaeZV\nT3npo+koAk1FQIlFU2supd40iAwDYAloimc+1gV6vI8++mim4YQwyIQg9LIqSDhJoxuRkDByJK7v\nbyHPkhxJ57DDDrPOraeffnqSqJWFLbLu8iyUkoo80dS0+h0BJRZ99gbgV4HccccdjSp50b1eGhbX\n7wIi4C7ilIRIhAFLA5vHWgikg574KkRZSMLyr+IeRKgoa1Oe5VFSkSeampYiYIwSiz56C/iANsWB\nLqxasFrQUy+itw6ReOGFF8yHPvQh62wpa0iE6ZH2Xl4NGAuZzZ49u/bLYkNi33vvvVoP3eRVJ2nf\nCY2nCLQRASUWbazViDI1abpfWBHyJEb0/MMWo8ridxGms3svryER0nSn49ZxlkXd9aMusPr0GgJz\n60/PFQFFIB4CSizi4dT4UHk2ylWCATk6/vjjE1stfCLhDnv45Smy0YG4IHk4zUrjXYeFzVwMRa+6\nzjjKk+C55dZzRUAR+AMCuldIjzfhwAMPNMOGDbM/dpl0Re5zfOmll9xHXc/ZL8GN2zVwTg9vvfVW\nM2/evNqvIdCruCz5zQyDXgKRcn805PRO5detl88zwhGfRihPQQ/XdyNL2qxpccABB1hdIU5VC1hB\n/GRhs24YV6WrkoqqkNd8+wmByokFjbU0sjTiKvkjwMd06dKl9qOff+rlpigzWWj0XXFJBOdCIOSY\nppEjLhYGsTK4+WU5F9KSJQ2JC7lgF1osMDi4ViUQG2as7LLLLrVdG0VJRVVvh+bbbwi8v98K3I/l\nXbNmjZk5c2Yu5vc64Pf5z3/eEiVXFxrrIoSZF0Iu8hi+EB0hAjTGeczsYBfaH/zgB3b7+dWrVxvW\nu8hTV9E57EhjzYZx559/vrn77rsTD1GFpVnEPSUVRaCqaSoC4QhUbrEIV6s+d1999VUzMDBgf7Nm\nzaqPYgk0eeyxx2xvMkGU2gZlca/PfOYzduhJrBFFkQoBQRrpPIcbxIJCg5eHgMG6devslvfMaIFc\n5JV2lH7MTsFKwaJdOEIWMVsnKu8k95VUJEFLwyoCOSAQNJqVyIsvvjgQqB/6C8aNh+h02223DXDf\njcO9bdu2hYaVcCeffLJ9fvXVV3fiSgQJwxF9+B1zzDE2HGkjbp5yLyr+E0880YlPmqTFPV8eeOCB\nji6EC5Mk5Q2L794LGsaBYFzfvdX48yrKFMwiGQgsA7lil3d6KBc08gPTpk0bAKPLL78817oHg4cf\nfnhg3Lhx9sd5nQV9wUNFEVAEykMgvFUrIf+4xALiII29SwTkfI899hh44403BmlMoyzPIRZ+fAks\nYTi6xINrIRFxicUll1zSydNN101L8u1GLNKUV9INO/JRpYFpm9BwBkM8lRQLMkCDlZcUQS7Qjbq/\n4IIL7Ht5xBFHDARDFakaWSETpMW7BPZ1JxSUX0kFKKgoAuUjUHsfC3wDnnrqqaB9DpegITbHHXec\n2bRpk2F1RF/uv/9+/1bo9cUXXxx6P+7NhQsXRgY966yzzL777mvGjx8fGUYeZC2vpCPHd955x0yY\nMEEuKznOmDHDSD0Er3guOrD9dkAoK1mWnGEHhkUYzgga2szlYegCP4480nKVwX8D584FCxYY/GwY\nEgsIsA3COwGGyNixYwf972zevNns2LHDvPbaa+aVV14xGzduNAGZsNN8v/rVr+aup1Ui5z86/JEz\noJqcIpAAgcp8LGhkaWQCy0BH3cA6YO/h14AwLdMlFYQlDr+g19+JB7lwrzsP/nhCuoGFpBPXfy7X\nfHQl/TT+FFH6kT57c/SSvMrr5kPjKw2Ie7+q86AXmUvWgaXKNny5JJYiEXG6zMPvAkKR1xTUsKJA\ngHDwZBl38lm7dq1h2i4CgViyZIlZtGhR5/f666/bZ5MnTzbM2uJ/gt1l8aHIm/zYjHL+I862Ukc5\nJ6/JKQKKQC8Ego9GpcKQQ6Cj/THs4Erw8es8Y6jBl6i47n3SZtglTCRfjuKL4YdLMhTix/X1CD7i\nNkjUUEja8vr5utfXX3/9AL8qBWwF66i6SKofwweY5KsWzO15DWXklU7VmFSZP75EbfMnqhJPzVsR\nSINAZRaLoKHpKS+//HInTFive9KkSZ3nLMoT1RuOMwTBPhRZhNUgfTn00EMH3WJYopvkVV43D8zZ\n9O7rItIbros+WfXAGsDQSB6LackU1Kw69Wt8WW+kCVaVfq0jLXd/IFBrYgFZEMGPQhbSkqPfYIYR\nC4ZB4sjOO+8cJ1hkmN13333IM9/nI0w/N1Ie5XXT45xNoMJ088OVdX3FFVcYxvDbJpALMcGnLVve\nU1DT6tHEeEoqmlhrqnNbEag1sWgr6E0sl7tCqhC7uEdx3KTc4mx7zTXXtI5gyJh+Fr8L0ghmczTx\nFalMZyUVlUGvGSsCoQjUmli41gbX+TIY8+k4WbrnVfbMcZL0xbdQ9NKviPKyxHKvIRhf76KvIRfM\nwsF60TbBDM/PX3I8STllaCVJnH4Nq6SiX2tey11nBGo93fTggw+2GxoBIGPzcXwlqgKb1QePPfbY\nQdk///zznWuGbXoRiyLKu99++1krQUcRPSkcAdfvotsuqt0UKWoKKnliUWE4CoK3detWs2XLlkGq\nQEZ5bxgeHDNmjPUhGRSgJhdKKmpSEaqGIuAhUCuLxfbt2wep97nPfa5zzVoQ7u6i9MLPPffcjt9F\n1RuYsY6Fqx9TR9FZ5NRTT5XTyGNR5WVKYduEhpEGsM6Sxe8CqwdrMeSxLDdpsPz2mWeeaSAsJ510\nklm2bJmFbs8997S73rLzrfyYZopA5rnHkBfOzSwTLo25DVDhH9FDHTUrrATNWhGIQKBWFgt6UHzE\nGBJgLYvp06fbufXi1EhD7TbWbpn4AFYt3fSTdQO66VhEeVn8iHUKsgozcBiOylN859YkaUOW6FXX\nXfCZoBHESiA+GHF1Jrzs1Bo3jhuOuKzvct1113UWuAqW+O65FgWEyBWISTAV1jz++OPWeoFec+bM\nsWtjuOHKOldSURbSmo8ikBKBNHNU84zDXhqB6oN+AbHoZBGQjSFLcvvhWS/CFXf9CDctNwznbjqs\nLREmxJdwfj5yn6O/JLj7zI8XtY4F+acpb5jeco85/UGvTi5bc6xySe80IAb+NqmX006614Ws8UG9\ns4ZJnus6UI4q9wrRdSrSvH0aRxEoFwGcICsXGt7AB6HTgIeRAcL4e36waFbYgkuElYY9LC0psITh\nmJVYQAhIwyUiWTchi1teKU/UkQYmaeMUlVZd7lNneTaYZZSLRjnNIlhxG1PSZ9MxIRRcFylCMNiH\npIz3izyaVudF4q9pKwJ1RWAYigUfaZUWI8DYOttb13Vb66TQs3V6sCGW2bBhQ9KotQjPEEVSp85e\nQyI8Zxn6UaNGWV+IgFyUVlZ8L84//3wTWEfMeeedV0i+DCVRJlnro5BMNFFFQBHIBYFaOW/mUiJN\nZAgCOOPdc889Q+439cYLL7xgfQaaqn8ap85uU1Cp26lTp5q5c+faPT3KJBXUAWQisCaYRx991DqI\n5uFw6tatkgoXDT1XBOqPgFos6l9HmTXkQ4+jZGBG7um4lzmzEhJgZgMbaSV1hixBtURZ4IRI3cQt\nR5jT4oUXXmiWL19eCzwoC+Tm7bffNqtWrcrFuqCkItErpYEVgVogoBaLWlRDsUpgPmboYOnSpcVm\nVELqTJscPnx47Ma4BJVSZ4FlgR/DGHGEsDTe/BBIBTOmsBbEJSdx8kkbhveMHVQDPyMzZcqUjp5p\n01NSkRY5jacIVIuAWiyqxb+03Gm8MJfTCDV5nPqTn/ykmT17tpk5c2Zp2JWREfUT1++CsIGjsCUV\neVkG8i6jkJ60+impyLtGND1FoDwE1GJRHtaV5sQY/YQJE8xdd91VqR5ZMsdaga8xa2rQuLq/LOnW\nIW4SvwsWB2P449vf/nZtSeK1115rRo4cac4444zE8CqpSAyZRlAEaoWAWixqVR3FKkNDjNWCY9kO\nfnmUbP/99zcLFiwIXZiJMrmCT0kdhgdcneKc9/K7oNHFslGX4Y9uZWLIhiGRYDqqmT9/fregnWdK\nKjpQ6Iki0FgElFg0turSKY6Jmq3UGQtvkjClkVkHOG3GERo1Gl9X4g41uHGqOBfdsWK4wn2mDeMg\n2ZSpwxAFlgOn7vzyuGXjXEmFj4heKwLNRECJRTPrLbXWNE40sDfddFNozz91wgVGzKuXTjrBolGD\nNO3V2A0KXPIFVhiXDLEb7MaNG+2U0pJVyZQd02EXL17cdd0Rv6yZMtTIioAiUCkCSiwqhb+azPmI\nMyTShCmbRffS/SEUprLWaZgIMiTOtujW1CnDWC1458IW0KIO6kzwqvkv1VwVgeYioMSiuXWXSXOG\nFu68806zbt26TsOVKcGCItMgMX0RZ8AyBB8HGm9XXKuBe7+sc3T62te+Zvbaa6/Yvgpl6RY3HyGz\n/qwkJRVxEdRwikBzEFBi0Zy6yl3TrFMCc1fIS7Au+vlDKGU7hkIssFagx+jRoz2UmnN54oknmsMP\nP7xjtVBS0Zy6U00VgSQIKLFIglYLw9al8XahZfjjsssuq+06DejnO4YWOYRCHSFlWW3cusjzHCLB\nfibs8aKkIk9kNS1FoF4IKLGoV31Uog0N15o1a+yiS1VP0aTRZooiknZxpSpADBtCyctvANLSBH+Y\nOLgzZfiss84y5557bpzgGkYRUAQaiMD7G6izqpwzAvSE8bnAn6HK2SL0YnHwmzFjhl2vQpwWcy5u\nIcnh8Ok7fVIeV9IMobCTK2SvasLnliPL+bRp0+xeIlnS0LiKgCJQbwTUYlHv+ilVO2nYWdny8ssv\nH9JQFqUMVopvfvOb5pZbbjELFy5szBoNSfEIG0Lp5RiKNWnnnXdurNOmjxF+IhBY30HWD6fXioAi\n0FwElFg0t+4K0ZzGD/8GloyeN2+eXZK5SMsBy3ST36hRo6zVxO/1F1LIGiXqO4aimjuEwtDB7bff\nPuhejdRPpUqbhnZSAaCRFIGWI6DEouUVnLZ4WC8WLVpkXnzxRUsw8OjPq9GHvDz88MN20ST0u+66\n68xRRx2VVtXWxZMhlN/97nfmc5/7XGPXroiqmDPPPNOuINqU1UOjyqH3FQFFIBwB3YQsHJe+v0uv\n+aGHHrJLMW/dutVOd6RBYBVFHBWTCmQC6wRp4GuwevVqSyiYIaCkYjCaYM/vQx/6kMEnAcGy0RbZ\nb7/9DO+UiiKgCLQTAbVYtLNecy8VxICZI4899ph5/PHHzfDhw+3wBesSIOyc6go7cO7YscO89tpr\n5pVXXrFLUdNIHn/88eboo4/Ozfrh5tm2c0gcC5g1bV+XXvWAQ+qSJUsatzR5r3Lpc0VAEfgDAjor\nRN+EWAjgZ3HCCSd09hehBw152LZtmyUQDJu4MmLECLPnnnuayZMnm3/8x39slY+AW84izyFm9O7b\nJlisVBQBRaC9CCixaG/dFlqyNk2BLBQoTXwIAjhv4rujoggoAu1EQH0s2lmvWipFoLYI4AScxk+n\ntgVSxRQBRWAQAkosBsGhF4qAIqAIKAKKgCKQBQElFlnQ07iKgCKQGAG1ViSGTCMoAo1CQIlFo6pL\nlVUEmo8Aq27KNNrml0ZLoAgoAj4CSix8RPRaEagJAizlres91KQyVA1FQBGIjYASi9hQaUBFoFwE\nxowZY7Zs2VJupiXkxoyQcePGlZCTZqEIKAJVIKDEogrUNU9FIAYCbFC2cuXKGCGbFYRF01jjREUR\nUATaiYASi3bWq5aqBQiwKBk9+zYt5021sBLr+PHjW1BDWgRFQBEIQ0CJRRgqek8RqAkCEydONE8+\n+WRNtMmuBiRp+/bthgXWVBQBRaCdCCixaGe9aqlagsCkSZPsRnAtKY556aWXzIwZM9pSHC2HIqAI\nhCCgxCIEFL2lCNQFAXZ+pZfflrUfFi9ebCBLKoqAItBeBJRYtLdutWQtQYAe/je+8Y3Gl+aHP/yh\nHQaBLKkoAopAexHQbdPbW7daspYggLXioIMOMj/5yU8MDp1NlRNPPNEcfvjh5rzzzmtqEVRvRUAR\niIGAWixigKRBFIEqEWDTrgkTJpi77rqrSjUy5Y21gvUrzjjjjEzpaGRFQBGoPwJqsah/HamGioD1\ns2BdC5bDhmg0TdRa0bQaU30VgfQIqMUiPXYaUxEoDQGmZ15++eWNHEa45557zFtvvaXWitLeFs1I\nEagWAbVYVIu/5q4IxEbg17/+tcFqsXDhQnP66afHjldlQPEPefTRR62fSJW6aN6KgCJQDgJKLMrB\nWXNRBHJBAF+FqVOnmrVr1zZikakjjzzSHHHEEWb+/Pm5lF8TUQQUgfojoEMh9a8j1VAR6CDA7JB5\n8+aZk046yWDBqLNceOGFVj0lFXWuJdVNEcgfAbVY5I+ppqgIFI4Ajfb69evNqlWrajkFFf3WrFlj\n1q1bV0v9Cq8gzUAR6GME1GLRx5WvRW8uAtdee6054IADzJQpU2pnuYBULF++3DzwwANKKpr7iqnm\nikBqBJRYpIZOIyoC1SLgkos67IDK0IxYUpriA1JtDWruikA7EVBi0c561VL1CQKQC5wjcZJ85pln\nKis1sz+wnsjwjO5eWllVaMaKQOUIKLGovApUAUUgGwI4R957773mtNNOM2eeeWbpQyOsU4FTKQQH\nS0WTlx3PVhMaWxFQBEBAiYW+B4pACxBgYy/2EkFY6+KGG24ovFRMfcVSwo6lrFOhsz8Kh1wzUAQa\ngYDOCmlENamSikB8BGjwFy1aZFe7/MpXvmJXvMzTivDII4+YZcuW2b0/mrRYV3wENaQioAhkQUCJ\nRRb0NK4iUGMEIBi33nqrWbp0qZk5c6aZPHmymThxYqqhCtJ64oknzC233GKGDx9u5s6da77whS+k\nSqvGkKlqioAikAMCSixyAFGTUATqjACOlU8//bRZvXq1WblypfWFYKrqnnvuacaOHWt22mmnIeqz\nE+mOHTvMxo0bbZxx48aZadOmmenTpzdixc8hBdIbioAiUBoCSixKg1ozUgTqgQDWh82bN1vi8Nxz\nz4UqNWLEiA7x2HvvvRu5o2powfSmIqAIFI6AEovCIdYMFAFFQBFQBBSB/kFAZ4X0T11rSRUBRUAR\nUAQUgcIRUGJROMSagSKgCCgCioAi0D8IKLHon7rWkioCioAioAgoAoUjoMSicIg1A0VAEVAEFAFF\noH8QUGLRP3WtJVUEFAFFQBFQBApHQIlF4RBrBoqAIqAIKAKKQP8goMSif+paS6oIKAKKgCKgCBSO\ngBKLwiHWDBQBRUARUAQUgf5BQIlF/9S1llQRUAQUAUVAESgcASUWhUOsGSgCioAioAgoAv2DgBKL\n/qlrLakioAgoAoqAIlA4AkosCodYM1AEFAFFQBFQBPoHASUW/VPXWlJFQBFQBBQBRaBwBJRYFA6x\nZqAIKAKKgCKgCPQPAv8fPYIkU9UI+YoAAAAASUVORK5CYII=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import Image\n", "Image(filename='sentiment_network_2.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**TODO:** Create a numpy array called `layer_0` and initialize it to all zeros. You will find the [zeros](https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html) function particularly helpful here. Be sure you create `layer_0` as a 2-dimensional matrix with 1 row and `vocab_size` columns. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# TODO: Create layer_0 matrix with dimensions 1 by vocab_size, initially filled with zeros\n", "layer_0 = None" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell. It should display `(1, 74074)`" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_0.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from IPython.display import Image\n", "Image(filename='sentiment_network.png')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`layer_0` contains one entry for every word in the vocabulary, as shown in the above image. We need to make sure we know the index of each word, so run the following cell to create a lookup table that stores the index of every word." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create a dictionary of words in the vocabulary mapped to index positions\n", "# (to be used in layer_0)\n", "word2index = {}\n", "for i,word in enumerate(vocab):\n", " word2index[word] = i\n", " \n", "# display the map of words to indices\n", "word2index" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**TODO:** Complete the implementation of `update_input_layer`. It should count \n", " how many times each word is used in the given review, and then store\n", " those counts at the appropriate indices inside `layer_0`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def update_input_layer(review):\n", " \"\"\" Modify the global layer_0 to represent the vector form of review.\n", " The element at a given index of layer_0 should represent\n", " how many times the given word occurs in the review.\n", " Args:\n", " review(string) - the string of the review\n", " Returns:\n", " None\n", " \"\"\"\n", " global layer_0\n", " # clear out previous state by resetting the layer to be all 0s\n", " layer_0 *= 0\n", " \n", " # TODO: count how many times each word is used in the given review and store the results in layer_0 " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell to test updating the input layer with the first review. The indices assigned may not be the same as in the solution, but hopefully you'll see some non-zero values in `layer_0`. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "update_input_layer(reviews[0])\n", "layer_0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**TODO:** Complete the implementation of `get_target_for_labels`. It should return `0` or `1`, \n", " depending on whether the given label is `NEGATIVE` or `POSITIVE`, respectively." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_target_for_label(label):\n", " \"\"\"Convert a label to `0` or `1`.\n", " Args:\n", " label(string) - Either \"POSITIVE\" or \"NEGATIVE\".\n", " Returns:\n", " `0` or `1`.\n", " \"\"\"\n", " # TODO: Your code here" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following two cells. They should print out`'POSITIVE'` and `1`, respectively." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "labels[0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "get_target_for_label(labels[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following two cells. They should print out `'NEGATIVE'` and `0`, respectively." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "labels[1]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "get_target_for_label(labels[1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# End of Project 2. \n", "## Watch the next video to see Andrew's solution, then continue on to the next lesson." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Project 3: Building a Neural Network<a id='project_3'></a>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**TODO:** We've included the framework of a class called `SentimentNetork`. Implement all of the items marked `TODO` in the code. These include doing the following:\n", "- Create a basic neural network much like the networks you've seen in earlier lessons and in Project 1, with an input layer, a hidden layer, and an output layer. \n", "- Do **not** add a non-linearity in the hidden layer. That is, do not use an activation function when calculating the hidden layer outputs.\n", "- Re-use the code from earlier in this notebook to create the training data (see `TODO`s in the code)\n", "- Implement the `pre_process_data` function to create the vocabulary for our training data generating functions\n", "- Ensure `train` trains over the entire corpus" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Where to Get Help if You Need it\n", "- Re-watch earlier Udacity lectures\n", "- Chapters 3-5 - [Grokking Deep Learning](https://www.manning.com/books/grokking-deep-learning) - (Check inside your classroom for a discount code)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import time\n", "import sys\n", "import numpy as np\n", "\n", "# Encapsulate our neural network in a class\n", "class SentimentNetwork:\n", " def __init__(self, reviews, labels, hidden_nodes = 10, learning_rate = 0.1):\n", " \"\"\"Create a SentimenNetwork with the given settings\n", " Args:\n", " reviews(list) - List of reviews used for training\n", " labels(list) - List of POSITIVE/NEGATIVE labels associated with the given reviews\n", " hidden_nodes(int) - Number of nodes to create in the hidden layer\n", " learning_rate(float) - Learning rate to use while training\n", " \n", " \"\"\"\n", " # Assign a seed to our random number generator to ensure we get\n", " # reproducable results during development \n", " np.random.seed(1)\n", "\n", " # process the reviews and their associated labels so that everything\n", " # is ready for training\n", " self.pre_process_data(reviews, labels)\n", " \n", " # Build the network to have the number of hidden nodes and the learning rate that\n", " # were passed into this initializer. Make the same number of input nodes as\n", " # there are vocabulary words and create a single output node.\n", " self.init_network(len(self.review_vocab),hidden_nodes, 1, learning_rate)\n", "\n", " def pre_process_data(self, reviews, labels):\n", " \n", " review_vocab = set()\n", " # TODO: populate review_vocab with all of the words in the given reviews\n", " # Remember to split reviews into individual words \n", " # using \"split(' ')\" instead of \"split()\".\n", " \n", " # Convert the vocabulary set to a list so we can access words via indices\n", " self.review_vocab = list(review_vocab)\n", " \n", " label_vocab = set()\n", " # TODO: populate label_vocab with all of the words in the given labels.\n", " # There is no need to split the labels because each one is a single word.\n", " \n", " # Convert the label vocabulary set to a list so we can access labels via indices\n", " self.label_vocab = list(label_vocab)\n", " \n", " # Store the sizes of the review and label vocabularies.\n", " self.review_vocab_size = len(self.review_vocab)\n", " self.label_vocab_size = len(self.label_vocab)\n", " \n", " # Create a dictionary of words in the vocabulary mapped to index positions\n", " self.word2index = {}\n", " # TODO: populate self.word2index with indices for all the words in self.review_vocab\n", " # like you saw earlier in the notebook\n", " \n", " # Create a dictionary of labels mapped to index positions\n", " self.label2index = {}\n", " # TODO: do the same thing you did for self.word2index and self.review_vocab, \n", " # but for self.label2index and self.label_vocab instead\n", " \n", " \n", " def init_network(self, input_nodes, hidden_nodes, output_nodes, learning_rate):\n", " # Store the number of nodes in input, hidden, and output layers.\n", " self.input_nodes = input_nodes\n", " self.hidden_nodes = hidden_nodes\n", " self.output_nodes = output_nodes\n", "\n", " # Store the learning rate\n", " self.learning_rate = learning_rate\n", "\n", " # Initialize weights\n", " \n", " # TODO: initialize self.weights_0_1 as a matrix of zeros. These are the weights between\n", " # the input layer and the hidden layer.\n", " self.weights_0_1 = None\n", " \n", " # TODO: initialize self.weights_1_2 as a matrix of random values. \n", " # These are the weights between the hidden layer and the output layer.\n", " self.weights_1_2 = None\n", " \n", " # TODO: Create the input layer, a two-dimensional matrix with shape \n", " # 1 x input_nodes, with all values initialized to zero\n", " self.layer_0 = np.zeros((1,input_nodes))\n", " \n", " \n", " def update_input_layer(self,review):\n", " # TODO: You can copy most of the code you wrote for update_input_layer \n", " # earlier in this notebook. \n", " #\n", " # However, MAKE SURE YOU CHANGE ALL VARIABLES TO REFERENCE\n", " # THE VERSIONS STORED IN THIS OBJECT, NOT THE GLOBAL OBJECTS.\n", " # For example, replace \"layer_0 *= 0\" with \"self.layer_0 *= 0\"\n", " pass\n", " \n", " def get_target_for_label(self,label):\n", " # TODO: Copy the code you wrote for get_target_for_label \n", " # earlier in this notebook. \n", " pass\n", " \n", " def sigmoid(self,x):\n", " # TODO: Return the result of calculating the sigmoid activation function\n", " # shown in the lectures\n", " pass\n", " \n", " def sigmoid_output_2_derivative(self,output):\n", " # TODO: Return the derivative of the sigmoid activation function, \n", " # where \"output\" is the original output from the sigmoid fucntion \n", " pass\n", "\n", " def train(self, training_reviews, training_labels):\n", " \n", " # make sure out we have a matching number of reviews and labels\n", " assert(len(training_reviews) == len(training_labels))\n", " \n", " # Keep track of correct predictions to display accuracy during training \n", " correct_so_far = 0\n", " \n", " # Remember when we started for printing time statistics\n", " start = time.time()\n", "\n", " # loop through all the given reviews and run a forward and backward pass,\n", " # updating weights for every item\n", " for i in range(len(training_reviews)):\n", " \n", " # TODO: Get the next review and its correct label\n", " \n", " # TODO: Implement the forward pass through the network. \n", " # That means use the given review to update the input layer, \n", " # then calculate values for the hidden layer,\n", " # and finally calculate the output layer.\n", " # \n", " # Do not use an activation function for the hidden layer,\n", " # but use the sigmoid activation function for the output layer.\n", " \n", " # TODO: Implement the back propagation pass here. \n", " # That means calculate the error for the forward pass's prediction\n", " # and update the weights in the network according to their\n", " # contributions toward the error, as calculated via the\n", " # gradient descent and back propagation algorithms you \n", " # learned in class.\n", " \n", " # TODO: Keep track of correct predictions. To determine if the prediction was\n", " # correct, check that the absolute value of the output error \n", " # is less than 0.5. If so, add one to the correct_so_far count.\n", " \n", " # For debug purposes, print out our prediction accuracy and speed \n", " # throughout the training process. \n", "\n", " elapsed_time = float(time.time() - start)\n", " reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0\n", " \n", " sys.stdout.write(\"\\rProgress:\" + str(100 * i/float(len(training_reviews)))[:4] \\\n", " + \"% Speed(reviews/sec):\" + str(reviews_per_second)[0:5] \\\n", " + \" #Correct:\" + str(correct_so_far) + \" #Trained:\" + str(i+1) \\\n", " + \" Training Accuracy:\" + str(correct_so_far * 100 / float(i+1))[:4] + \"%\")\n", " if(i % 2500 == 0):\n", " print(\"\")\n", " \n", " def test(self, testing_reviews, testing_labels):\n", " \"\"\"\n", " Attempts to predict the labels for the given testing_reviews,\n", " and uses the test_labels to calculate the accuracy of those predictions.\n", " \"\"\"\n", " \n", " # keep track of how many correct predictions we make\n", " correct = 0\n", "\n", " # we'll time how many predictions per second we make\n", " start = time.time()\n", "\n", " # Loop through each of the given reviews and call run to predict\n", " # its label. \n", " for i in range(len(testing_reviews)):\n", " pred = self.run(testing_reviews[i])\n", " if(pred == testing_labels[i]):\n", " correct += 1\n", " \n", " # For debug purposes, print out our prediction accuracy and speed \n", " # throughout the prediction process. \n", "\n", " elapsed_time = float(time.time() - start)\n", " reviews_per_second = i / elapsed_time if elapsed_time > 0 else 0\n", " \n", " sys.stdout.write(\"\\rProgress:\" + str(100 * i/float(len(testing_reviews)))[:4] \\\n", " + \"% Speed(reviews/sec):\" + str(reviews_per_second)[0:5] \\\n", " + \" #Correct:\" + str(correct) + \" #Tested:\" + str(i+1) \\\n", " + \" Testing Accuracy:\" + str(correct * 100 / float(i+1))[:4] + \"%\")\n", " \n", " def run(self, review):\n", " \"\"\"\n", " Returns a POSITIVE or NEGATIVE prediction for the given review.\n", " \"\"\"\n", " # TODO: Run a forward pass through the network, like you did in the\n", " # \"train\" function. That means use the given review to \n", " # update the input layer, then calculate values for the hidden layer,\n", " # and finally calculate the output layer.\n", " #\n", " # Note: The review passed into this function for prediction \n", " # might come from anywhere, so you should convert it \n", " # to lower case prior to using it.\n", " \n", " # TODO: The output layer should now contain a prediction. \n", " # Return `POSITIVE` for predictions greater-than-or-equal-to `0.5`, \n", " # and `NEGATIVE` otherwise.\n", " pass\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell to create a `SentimentNetwork` that will train on all but the last 1000 reviews (we're saving those for testing). Here we use a learning rate of `0.1`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell to test the network's performance against the last 1000 reviews (the ones we held out from our training set). \n", "\n", "**We have not trained the model yet, so the results should be about 50% as it will just be guessing and there are only two possible values to choose from.**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp.test(reviews[-1000:],labels[-1000:])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell to actually train the network. During training, it will display the model's accuracy repeatedly as it trains so you can see how well it's doing." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That most likely didn't train very well. Part of the reason may be because the learning rate is too high. Run the following cell to recreate the network with a smaller learning rate, `0.01`, and then train the new network." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.01)\n", "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That probably wasn't much different. Run the following cell to recreate the network one more time with an even smaller learning rate, `0.001`, and then train the new network." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.001)\n", "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "With a learning rate of `0.001`, the network should finall have started to improve during training. It's still not very good, but it shows that this solution has potential. We will improve it in the next lesson." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# End of Project 3. \n", "## Watch the next video to see Andrew's solution, then continue on to the next lesson." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Understanding Neural Noise<a id='lesson_4'></a>\n", "\n", "The following cells include includes the code Andrew shows in the next video. We've included it here so you can run the cells along with the video without having to type in everything." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from IPython.display import Image\n", "Image(filename='sentiment_network.png')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def update_input_layer(review):\n", " \n", " global layer_0\n", " \n", " # clear out previous state, reset the layer to be all 0s\n", " layer_0 *= 0\n", " for word in review.split(\" \"):\n", " layer_0[0][word2index[word]] += 1\n", "\n", "update_input_layer(reviews[0])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_0" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "review_counter = Counter()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for word in reviews[0].split(\" \"):\n", " review_counter[word] += 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "review_counter.most_common()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Project 4: Reducing Noise in Our Input Data<a id='project_4'></a>\n", "\n", "**TODO:** Attempt to reduce the noise in the input data like Andrew did in the previous video. Specifically, do the following:\n", "* Copy the `SentimentNetwork` class you created earlier into the following cell.\n", "* Modify `update_input_layer` so it does not count how many times each word is used, but rather just stores whether or not a word was used. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# TODO: -Copy the SentimentNetwork class from Projet 3 lesson\n", "# -Modify it to reduce noise, like in the video " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell to recreate the network and train it. Notice we've gone back to the higher learning rate of `0.1`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)\n", "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That should have trained much better than the earlier attempts. It's still not wonderful, but it should have improved dramatically. Run the following cell to test your model with 1000 predictions." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp.test(reviews[-1000:],labels[-1000:])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# End of Project 4. \n", "## Andrew's solution was actually in the previous video, so rewatch that video if you had any problems with that project. Then continue on to the next lesson.\n", "# Analyzing Inefficiencies in our Network<a id='lesson_5'></a>\n", "The following cells include the code Andrew shows in the next video. We've included it here so you can run the cells along with the video without having to type in everything." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Image(filename='sentiment_network_sparse.png')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_0 = np.zeros(10)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_0" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_0[4] = 1\n", "layer_0[9] = 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_0" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "weights_0_1 = np.random.randn(10,5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_0.dot(weights_0_1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "indices = [4,9]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_1 = np.zeros(5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for index in indices:\n", " layer_1 += (1 * weights_0_1[index])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Image(filename='sentiment_network_sparse_2.png')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_1 = np.zeros(5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for index in indices:\n", " layer_1 += (weights_0_1[index])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "layer_1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Project 5: Making our Network More Efficient<a id='project_5'></a>\n", "**TODO:** Make the `SentimentNetwork` class more efficient by eliminating unnecessary multiplications and additions that occur during forward and backward propagation. To do that, you can do the following:\n", "* Copy the `SentimentNetwork` class from the previous project into the following cell.\n", "* Remove the `update_input_layer` function - you will not need it in this version.\n", "* Modify `init_network`:\n", ">* You no longer need a separate input layer, so remove any mention of `self.layer_0`\n", ">* You will be dealing with the old hidden layer more directly, so create `self.layer_1`, a two-dimensional matrix with shape 1 x hidden_nodes, with all values initialized to zero\n", "* Modify `train`:\n", ">* Change the name of the input parameter `training_reviews` to `training_reviews_raw`. This will help with the next step.\n", ">* At the beginning of the function, you'll want to preprocess your reviews to convert them to a list of indices (from `word2index`) that are actually used in the review. This is equivalent to what you saw in the video when Andrew set specific indices to 1. Your code should create a local `list` variable named `training_reviews` that should contain a `list` for each review in `training_reviews_raw`. Those lists should contain the indices for words found in the review.\n", ">* Remove call to `update_input_layer`\n", ">* Use `self`'s `layer_1` instead of a local `layer_1` object.\n", ">* In the forward pass, replace the code that updates `layer_1` with new logic that only adds the weights for the indices used in the review.\n", ">* When updating `weights_0_1`, only update the individual weights that were used in the forward pass.\n", "* Modify `run`:\n", ">* Remove call to `update_input_layer` \n", ">* Use `self`'s `layer_1` instead of a local `layer_1` object.\n", ">* Much like you did in `train`, you will need to pre-process the `review` so you can work with word indices, then update `layer_1` by adding weights for the indices used in the review." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# TODO: -Copy the SentimentNetwork class from Project 4 lesson\n", "# -Modify it according to the above instructions " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell to recreate the network and train it once again." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000], learning_rate=0.1)\n", "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "That should have trained much better than the earlier attempts. Run the following cell to test your model with 1000 predictions." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp.test(reviews[-1000:],labels[-1000:])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# End of Project 5. \n", "## Watch the next video to see Andrew's solution, then continue on to the next lesson.\n", "# Further Noise Reduction<a id='lesson_6'></a>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Image(filename='sentiment_network_sparse_2.png')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# words most frequently seen in a review with a \"POSITIVE\" label\n", "pos_neg_ratios.most_common()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# words most frequently seen in a review with a \"NEGATIVE\" label\n", "list(reversed(pos_neg_ratios.most_common()))[0:30]" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from bokeh.models import ColumnDataSource, LabelSet\n", "from bokeh.plotting import figure, show, output_file\n", "from bokeh.io import output_notebook\n", "output_notebook()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "hist, edges = np.histogram(list(map(lambda x:x[1],pos_neg_ratios.most_common())), density=True, bins=100, normed=True)\n", "\n", "p = figure(tools=\"pan,wheel_zoom,reset,save\",\n", " toolbar_location=\"above\",\n", " title=\"Word Positive/Negative Affinity Distribution\")\n", "p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], line_color=\"#555555\")\n", "show(p)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "frequency_frequency = Counter()\n", "\n", "for word, cnt in total_counts.most_common():\n", " frequency_frequency[cnt] += 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "hist, edges = np.histogram(list(map(lambda x:x[1],frequency_frequency.most_common())), density=True, bins=100, normed=True)\n", "\n", "p = figure(tools=\"pan,wheel_zoom,reset,save\",\n", " toolbar_location=\"above\",\n", " title=\"The frequency distribution of the words in our corpus\")\n", "p.quad(top=hist, bottom=0, left=edges[:-1], right=edges[1:], line_color=\"#555555\")\n", "show(p)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Project 6: Reducing Noise by Strategically Reducing the Vocabulary<a id='project_6'></a>\n", "\n", "**TODO:** Improve `SentimentNetwork`'s performance by reducing more noise in the vocabulary. Specifically, do the following:\n", "* Copy the `SentimentNetwork` class from the previous project into the following cell.\n", "* Modify `pre_process_data`:\n", ">* Add two additional parameters: `min_count` and `polarity_cutoff`\n", ">* Calculate the positive-to-negative ratios of words used in the reviews. (You can use code you've written elsewhere in the notebook, but we are moving it into the class like we did with other helper code earlier.)\n", ">* Andrew's solution only calculates a postive-to-negative ratio for words that occur at least 50 times. This keeps the network from attributing too much sentiment to rarer words. You can choose to add this to your solution if you would like. \n", ">* Change so words are only added to the vocabulary if they occur in the vocabulary more than `min_count` times.\n", ">* Change so words are only added to the vocabulary if the absolute value of their postive-to-negative ratio is at least `polarity_cutoff`\n", "* Modify `__init__`:\n", ">* Add the same two parameters (`min_count` and `polarity_cutoff`) and use them when you call `pre_process_data`" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# TODO: -Copy the SentimentNetwork class from Project 5 lesson\n", "# -Modify it according to the above instructions " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell to train your network with a small polarity cutoff." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000],min_count=20,polarity_cutoff=0.05,learning_rate=0.01)\n", "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And run the following cell to test it's performance. It should be " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp.test(reviews[-1000:],labels[-1000:])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the following cell to train your network with a much larger polarity cutoff." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp = SentimentNetwork(reviews[:-1000],labels[:-1000],min_count=20,polarity_cutoff=0.8,learning_rate=0.01)\n", "mlp.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And run the following cell to test it's performance." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp.test(reviews[-1000:],labels[-1000:])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# End of Project 6. \n", "## Watch the next video to see Andrew's solution, then continue on to the next lesson." ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Analysis: What's Going on in the Weights?<a id='lesson_7'></a>" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp_full = SentimentNetwork(reviews[:-1000],labels[:-1000],min_count=0,polarity_cutoff=0,learning_rate=0.01)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mlp_full.train(reviews[:-1000],labels[:-1000])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Image(filename='sentiment_network_sparse.png')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def get_most_similar_words(focus = \"horrible\"):\n", " most_similar = Counter()\n", "\n", " for word in mlp_full.word2index.keys():\n", " most_similar[word] = np.dot(mlp_full.weights_0_1[mlp_full.word2index[word]],mlp_full.weights_0_1[mlp_full.word2index[focus]])\n", " \n", " return most_similar.most_common()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "get_most_similar_words(\"excellent\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "get_most_similar_words(\"terrible\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import matplotlib.colors as colors\n", "\n", "words_to_visualize = list()\n", "for word, ratio in pos_neg_ratios.most_common(500):\n", " if(word in mlp_full.word2index.keys()):\n", " words_to_visualize.append(word)\n", " \n", "for word, ratio in list(reversed(pos_neg_ratios.most_common()))[0:500]:\n", " if(word in mlp_full.word2index.keys()):\n", " words_to_visualize.append(word)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "pos = 0\n", "neg = 0\n", "\n", "colors_list = list()\n", "vectors_list = list()\n", "for word in words_to_visualize:\n", " if word in pos_neg_ratios.keys():\n", " vectors_list.append(mlp_full.weights_0_1[mlp_full.word2index[word]])\n", " if(pos_neg_ratios[word] > 0):\n", " pos+=1\n", " colors_list.append(\"#00ff00\")\n", " else:\n", " neg+=1\n", " colors_list.append(\"#000000\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.manifold import TSNE\n", "tsne = TSNE(n_components=2, random_state=0)\n", "words_top_ted_tsne = tsne.fit_transform(vectors_list)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "p = figure(tools=\"pan,wheel_zoom,reset,save\",\n", " toolbar_location=\"above\",\n", " title=\"vector T-SNE for most polarized words\")\n", "\n", "source = ColumnDataSource(data=dict(x1=words_top_ted_tsne[:,0],\n", " x2=words_top_ted_tsne[:,1],\n", " names=words_to_visualize,\n", " color=colors_list))\n", "\n", "p.scatter(x=\"x1\", y=\"x2\", size=8, source=source, fill_color=\"color\")\n", "\n", "word_labels = LabelSet(x=\"x1\", y=\"x2\", text=\"names\", y_offset=6,\n", " text_font_size=\"8pt\", text_color=\"#555555\",\n", " source=source, text_align='center')\n", "p.add_layout(word_labels)\n", "\n", "show(p)\n", "\n", "# green indicates positive words, black indicates negative words" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
mne-tools/mne-tools.github.io
0.15/_downloads/plot_brainstorm_data.ipynb
1
3144
{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "execution_count": null, "cell_type": "code", "source": [ "%matplotlib inline" ], "outputs": [], "metadata": { "collapsed": false } }, { "source": [ "\n# Brainstorm tutorial datasets\n\n\nHere we compute the evoked from raw for the Brainstorm\ntutorial dataset. For comparison, see [1]_ and:\n\n http://neuroimage.usc.edu/brainstorm/Tutorials/MedianNerveCtf\n\nReferences\n----------\n.. [1] Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM.\n Brainstorm: A User-Friendly Application for MEG/EEG Analysis.\n Computational Intelligence and Neuroscience, vol. 2011, Article ID\n 879716, 13 pages, 2011. doi:10.1155/2011/879716\n\n" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Authors: Mainak Jas <[email protected]>\n#\n# License: BSD (3-clause)\n\nimport numpy as np\n\nimport mne\nfrom mne.datasets.brainstorm import bst_raw\n\nprint(__doc__)\n\ntmin, tmax, event_id = -0.1, 0.3, 2 # take right-hand somato\nreject = dict(mag=4e-12, eog=250e-6)\n\ndata_path = bst_raw.data_path()\n\nraw_fname = data_path + '/MEG/bst_raw/' + \\\n 'subj001_somatosensory_20111109_01_AUX-f_raw.fif'\nraw = mne.io.read_raw_fif(raw_fname, preload=True)\nraw.plot()\n\n# set EOG channel\nraw.set_channel_types({'EEG058': 'eog'})\nraw.set_eeg_reference('average', projection=True)\n\n# show power line interference and remove it\nraw.plot_psd(tmax=60., average=False)\nraw.notch_filter(np.arange(60, 181, 60), fir_design='firwin')\n\nevents = mne.find_events(raw, stim_channel='UPPT001')\n\n# pick MEG channels\npicks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True,\n exclude='bads')\n\n# Compute epochs\nepochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks,\n baseline=(None, 0), reject=reject, preload=False)\n\n# compute evoked\nevoked = epochs.average()\n\n# remove physiological artifacts (eyeblinks, heartbeats) using SSP on baseline\nevoked.add_proj(mne.compute_proj_evoked(evoked.copy().crop(tmax=0)))\nevoked.apply_proj()\n\n# fix stim artifact\nmne.preprocessing.fix_stim_artifact(evoked)\n\n# correct delays due to hardware (stim artifact is at 4 ms)\nevoked.shift_time(-0.004)\n\n# plot the result\nevoked.plot()\n\n# show topomaps\nevoked.plot_topomap(times=np.array([0.016, 0.030, 0.060, 0.070]))" ], "outputs": [], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.14", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }
bsd-3-clause
hmenke/pairinteraction
doc/sphinx/examples_python/vdw_near_surface.ipynb
3
25578
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Dispersion Coefficients Near Surfaces" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this tutorial we reproduce the results depicted in Figure 5 from J. Block and S. Scheel \"van der Waals interaction potential between Rydberg atoms near surfaces\" [Phys. Rev. A 96, 062509 (2017)](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.062509). We calculate the van der Waals $C_6$-coefficient between two Rubidium Rydberg atoms that are equidistantly placed in front of a perfect mirror (i.e. in horizontal alignment in front of a perfectly conducting plate). One finds that the relevant length scale is interatomic distance devided by distance from surface and that for decreasing surface distance the $C_6$ coefficient is significantly reduced." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As described in the [introduction](https://pairinteraction.github.io/pairinteraction/sphinx/html/introduction.html), we start our code with some preparations and load the necessary modules. " ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "# Arrays\n", "import numpy as np\n", "\n", "# Plotting\n", "import matplotlib.pyplot as plt\n", "\n", "# Operating system interfaces\n", "import os\n", "\n", "# pairinteraction :-)\n", "from pairinteraction import pireal as pi\n", "\n", "# Create cache for matrix elements\n", "if not os.path.exists(\"./cache\"):\n", " os.makedirs(\"./cache\")\n", "cache = pi.MatrixElementCache(\"./cache\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The plate lies in the $xy$-plane with the surface at $z = 0$. The atoms lie in the $xz$-plane with $z>0$.\n", "\n", "We can set the angle between the interatomic axis and the z-axis `theta` and the center of mass distance from the surface `distance_surface`. `distance_atom` defines the interatomic distances for which the pair potential is plotted. The units of the respective quantities are given as comments.\n", "\n", "Be careful: `theta = np.pi/2` corresponds to horizontal alignment of the two atoms with respect to the surface. For different angles, large interatomic distances `distance_atom` might lead to one of the atoms being placed inside the plate. Make sure that `distance_surface` is larger than `distance_atom*np.cos(theta)/2`" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "theta = np.pi/2 # rad\n", "distance_atoms = 10 # µm\n", "distance_surface = np.linspace(distance_atoms*np.abs(np.cos(theta))/2, 2*distance_atoms,30) # µm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we define the state that we are interested in using pairinteraction's `StateOne` class . As shown in Figures 4 and 5 of [Phys. Rev. A 96, 062509 (2017)](https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.062509) we expect changes of about 50% for the $C_6$ coefficient of the $|69s_{1/2},m_j=1/2;72s_{1/2},m_j=1/2\\rangle$ pair state of Rubidium, so this provides a good example. \n", "\n", "We set up the one-atom system using restrictions of energy, main quantum number n and angular momentum l. This is done by means of the `restrict...` functions in `SystemOne`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "state_one1 = pi.StateOne(\"Rb\", 69, 0, 0.5, 0.5)\n", "state_one2 = pi.StateOne(\"Rb\", 72, 0, 0.5, 0.5)\n", "\n", "# Set up one-atom system\n", "system_one = pi.SystemOne(state_one1.getSpecies(), cache)\n", "system_one.restrictEnergy(min(state_one1.getEnergy(),state_one2.getEnergy()) - 30, \\\n", " max(state_one1.getEnergy(),state_one2.getEnergy()) + 30)\n", "system_one.restrictN(min(state_one1.getN(),state_one2.getN()) - 3, \\\n", " max(state_one1.getN(),state_one2.getN()) + 3)\n", "system_one.restrictL(min(state_one1.getL(),state_one2.getL()) - 1, \\\n", " max(state_one1.getL(),state_one2.getL()) + 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The pair state `state_two` is created from the one atom states `state_one1` and `state_one2` using the `StateTwo` class.\n", "\n", "From the previously set up `system_one` we define `system_two` using `SystemTwo` class. This class also contains methods `set..` to set angle, distance, surface distance and to `enableGreenTensor` in order implement a surface." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# Set up pair state\n", "state_two = pi.StateTwo(state_one1, state_one2)\n", " \n", "# Set up two-atom system\n", "system_two = pi.SystemTwo(system_one, system_one, cache)\n", "system_two.restrictEnergy(state_two.getEnergy() - 3, state_two.getEnergy() + 3)\n", "\n", "system_two.setAngle(theta)\n", "system_two.setDistance(distance_atoms)\n", "system_two.setSurfaceDistance(distance_surface[0])\n", "system_two.enableGreenTensor(True)\n", "system_two.buildInteraction()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We calculate the $C_6$ coefficients. The `energyshift` is given by the difference between the interaction energy at given `surface_distance` and the unperturbed energy of the two atom state `state_two.getEnergy()`. The $C_6$ coefficient is then given by the product of `energyshift` and `distance_atoms**6`.\n", "\n", "`idx` is the index of the two atom state. The command `getOverlap(state_two, 0, -theta, 0)` rotates the quantisation axis of `state_two` by `theta` around the y-axis. The rotation is given by the Euler angles `(0, -theta, 0)` in zyz convention. The negative sign of theta is needed because the Euler angles used by pairinteraction represent a rotation of the coordinate system. Thus, the quantisation axis has to be rotated by the inverse angle." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "# Calculate C6 coefficients\n", "C6 = []\n", "for d in distance_surface:\n", " system_two.setSurfaceDistance(d)\n", " system_two.diagonalize()\n", " idx = np.argmax(system_two.getOverlap(state_two, 0, -theta, 0))\n", " energyshift = system_two.getHamiltonian().diagonal()[idx]-state_two.getEnergy()\n", " C6.append(energyshift*distance_atoms**6)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEKCAYAAAAxXHOuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl4FeX5//H3nYQkENawb2ENqKgg\nxH1FrFutW9Val7q0RetSta2tdrF2+bXa1taq31qptWqrVqsVqSu4r6AgyI7sSwQCBEIgZL9/f8xE\nDjHASTg5k+Xzuq5zZeaZZ2buM2dy7jPb85i7IyIikigpUQcgIiItixKLiIgklBKLiIgklBKLiIgk\nlBKLiIgklBKLiIgklBKLiIgklBKLiIgklBKLiIgkVFrUATSGbt26+cCBA6MOQ0SkWZkxY8ZGd+++\nr8tpkYll4MCBTJ8+PeowRESaFTNbmYjl6FSYiIgklBKLiIgklBKLiIgklBKLiIgklBKLiIgklBKL\niIgklBKLiIgkVIt8jkVEpDWqrnZKK6vYUV5FaWU1pRVVlFVUU1ZZRVlldfCqiBmurJkeDCeKEouI\nSJJUVlWzvayK7eWVbC+rZHt5FSVllZSUV1FSUUVpeRUl5ZUxw1W7DO+oCF6ln7+C5LEjTCDlVdVR\nv0VAiUVEZI/cnW1llWwrq6S4tOZVEZTVjJeFZeH454kjTCIl5VVsK6ukvDL+L34zaNsmlXbpqbRN\nT6Vtm1TapqfRtk0K2VnpZKalktkmhbbpqWSkpZLZJhjPbBPUzWyTEpYHfzPSUsiIHU5LDceD4fS0\nFNLuTMw2U2IRkVahvLKaLSXlFJaUU7i9nKKSCop27HxtCf9u3bFr+dYdFVT7npdtBu3T0+iQmUb7\nzDSyMtJon5FG9w4ZZKUH4+0yUmmfnka7jDSy0lPJykgjKyOVdulptEsPEkhmm53jGWkpmFlyNk6C\nRZJYzKwz8CBwIODAlcApwLeBDWG1H7v7i2H9W4FvAlXAd939laQHLSJNSlllFRu3lbOxuIwNxWVs\n3FZGYUk5m7eXU7i9gs0l5WzaHoxv3l5OcVnlbpeVlmJ0atuGTm3b0LFtG7q0S2dg16yYsjQ6ZLYJ\nEkfGzuGa8az0NFJSmmcSaAxRHbH8GXjZ3c8zs3SgHUFi+ZO7/yG2opkdAFwIjAD6AK+a2TB3T9yV\nJhFpMraVVbKuaAdri0op2FrGhm1B4vj8FY4X7aioc/7MNil0zcqgS1ZNgmhHl3bpdM1Kp0tWOtlZ\n6XRuF0yrSRzt0lOb7dFBU5T0xGJmnYDjgMsB3L0cKN/Dh3oW8G93LwOWm9kS4DDgg8aPVkQSaUd5\nFZ8V7WDtllLWhsljbdEOPttSyrqiUj4r2kFx6RePLNq2SaVHxwy6t88gt0d7jhrSle7tM+jWISjr\n3iGDru3T6ZqVQdv01AjemcSK4ohlEMHprn+Y2UhgBnBDOO06M/sGMB34vrtvBvoCU2PmXxOWiUgT\nU13trC8uZdWmElYWlrC6sISVm0pYVRi8CreXf2Gebu3T6dUpk5yu7ThicDa9O7eld6dMenXMpGfH\nzOA6RYYuBzcnUXxaacBo4Hp3n2ZmfwZuAe4DfkVwzeVXwF0E117iYmbjgfEAOTk5iY5ZRELuzrqt\npSxev40lBds+TxorN21n9eYdu9z5lJpi9OmcyYDsLE4Z0Yt+XdrSp3MmvTsFyaNnx0wy2+gIo6WJ\nIrGsAda4+7Rw/GngFndfX1PBzP4GPB+O5gP9Y+bvF5btwt0nABMA8vLy9nIPh4jsTXW1k79lB4sL\nilm8fhuLC4LX0oJtbIu5EJ6VnkpO1yxye3Rg3P49yclux4Cu7cjJbkefzm1pk6oGPlqbpCcWd19n\nZqvNbLi7LwLGAfPNrLe7rw2rnQPMDYcnAY+b2R8JLt7nAh8mO26RlqyopII5+UXM/ayIReuKWVxQ\nzJKCbZRW7Dz66N4huL7x1dF9GdqzA7k92jO0R3u6ZqXrwrfsIqoTl9cDj4V3hC0DrgDuMbNRBKfC\nVgBXAbj7PDN7CpgPVALX6o4wkYbbUlLOnPyiIJGEf1cX7vh8eu9OmeT27MDFh3f9PHkM7dGezu3S\nI4xamhNzb3lnjfLy8lx93otAcWkFs1Zv2W0S6Z/dloP6duLAvp2Cv3060SVLCaS1MrMZ7p63r8vR\nrRYiLUjRjgo+Wl7ItOWbmLa8kLn5RZ8/NZ6T3Y6D+3bmosMGhMmko45CpFEosYg0Y4Xby/kwTCLT\nlhWyYN1W3CE9NYVR/Ttz7dihHDowm4P7dVISkaRRYhFpRraVVfLu4g28t2QT05Zv4tP124DgafPR\nOV24cdwwDh+czaj+nXUbr0RGiUWkicvfsoPXFqzn1QUFTF26ifKqarLSUxkzMJuzRvXliMHZHNS3\nM+lpuq1XmgYlFpEmprramftZEa/OD5LJ/LVbARjcLYvLjx7IuP16MHpAFz0fIk2WEotIE1BaUcX7\nSzcyZX4Bry9cz/qtZaQY5A3I5sen78e4/XsypHv7qMMUiYsSi0hEqqud95du4j8zVjN53np2VFSR\nlZ7K8cO7c9L+PTlheA+ydeuvNENKLCJJtnLTdp6esYZnZqzhs6JSOmamcc7ovpwyohdHDM4mI00X\n3aV5U2IRSYLtZZW8MGctT89Yw4fLC0kxODa3O7eevj9fOqCn7uCSFkWJRaSRuDvTlhfy9Iw1vDhn\nLSXlVQzulsXNpwznq6P70atTZtQhijQKJRaRBNtSUs5j01bx5EerWVVYQvuMNM4c2Yfz8/oxOqeL\nGmyUFk+JRSRB1m8t5cF3lvH4tFVsL6/iqCFduelLuZw6ord6NZRWRYlFZB+t2LidB95eyjMz8qly\n5ysH9+bqE4awX6+OUYcmEgklFpEGmvdZEfe/uZQX56wlLTWFCw7tx1XHDaF/druoQxOJlBKLSD19\nuLyQv7y5hDcXbaB9RhrjjxvClccMpEcHXYwXASUWkbi4O28sKuAvbyxl+srNdM1K5+ZThnPJEQPo\n1LZN1OGJNClKLCJ7MTe/iNuem8vHq7bQt3NbfnHmCC7I668L8iK7EUliMbPOwIPAgQRdEV8JnAt8\nBSgHlgJXuPsWMxsILAAWhbNPdferkx2ztD6bt5fzh8mLePzDVXTNSufOrx7EuaP7qfFHkb2I6ojl\nz8DL7n5e2O99O2AKcKu7V5rZncCtwI/C+kvdfVREsUorU1Xt/PujVfz+lUUUl1ZyxVGDuPFLuXTM\n1CkvkXgkPbGYWSfgOOByAHcvJzhKmRxTbSpwXrJjE5mxcjM/nzSXuflbOXxQNr8860CG9+oQdVgi\nzUoURyyDgA3AP8xsJDADuMHdt8fUuRJ4MnYeM5sJbAV+6u7vJC1aaRU2FJdx58sLeXrGGnp1zOTe\nrx/CGQf31lPyIg0QRWJJA0YD17v7NDP7M3AL8DMAM/sJUAk8FtZfC+S4+yYzGwNMNLMR7r41dqFm\nNh4YD5CTk5OcdyLNXmVVNY9+sJI/TfmU0soqvnPCEK4bO5SsDN3XItJQUfz3rAHWuPu0cPxpgsSC\nmV0OnAGMc3cHcPcyoCwcnmFmS4FhwPTYhbr7BGACQF5enjf+25DmbuqyTfz8uXksWl/MccO6c/tX\nDmCwOtMS2WdJTyzuvs7MVpvZcHdfBIwD5pvZqcAPgePdvaSmvpl1BwrdvcrMBgO5wLJkxy0tR0VV\nNb9/ZRET3l5Gvy5tmXDpGL50QE+d9hJJkKiO968HHgvvCFsGXAF8BGQAU8J/8Jrbio8DfmlmFUA1\ncLW7F0YTtjR3azaXcP0TM5m5aguXHJHDT798gPpCEUmwSBKLu88C8moVD91N3WeAZxo9KGnxJs9b\nx81Pz6aq2rnvokM44+A+UYck0iLpCqW0eOWV1dzx0kIeem85B/btyP9dNJoBXbOiDkukxVJikRZt\ndWEJ1z3+MZ+sKeLyowZy6+n7qU95kUamxCIt1stz13Lz07MB+Oslozn1wN4RRyTSOiixSItTVlnF\nb15YwCMfrGRkv07cd9Fo9ZEikkRKLNKirNy0nesen8mc/CKuPHoQt5y2H+lpajRSJJmUWKTFmDJ/\nPd97chZmMOHSMZw8olfUIYm0Skos0iL8Z/pqfvTMbA7q24n/u3g0/bro1JdIVJRYpNl76N3l/PL5\n+Ryb240HLh1Du3Tt1iJR0n+gNFvuzp9fW8zdry7m1BG9+PPXR+lWYpEmQIlFmqXqaufXLyzgofeW\nc96Yftxx7kGkqWdHkSZBiUWancqqam797xz+M2MNVxw9kJ99+QBSUtSApEhTocQizUpZZRU3PDGL\nl+et48aTcrlhXK5aJRZpYpRYpNkoKa/kqn/O4J3FG7ntjAO48phBUYckInVQYpFmoaikgisf+YiZ\nqzbz+/MO5vy8/lGHJCK7ocQiTd6G4jIu/fs0lm7Yxl8uVptfIk2dEos0aWs2l3Dp3z9kXVEpf7/s\nUI4b1j3qkERkL5RYpMlas7mEC/76AdvKKvnXtw5jzIDsqEMSkThEcuO/mXU2s6fNbKGZLTCzI80s\n28ymmNni8G+XsK6Z2T1mtsTMZpvZ6ChiluTaWlrBlQ9/RHFZJU+MP0JJRaQZieqJsj8DL7v7fsBI\nYAFwC/Cau+cCr4XjAKcBueFrPHB/8sOVZKqoqubaxz5m2YbtPHDJGEb06RR1SCJSD0lPLGbWCTgO\n+DuAu5e7+xbgLOCRsNojwNnh8FnAox6YCnQ2M129baHcnduem8s7izfym3MO4qih3aIOSUTqKYoj\nlkHABuAfZjbTzB40syygp7uvDeusA3qGw32B1THzrwnLpAWa8PYynvhwNdeOHcIFh+qWYpHmKIrE\nkgaMBu5390OA7ew87QWAuzvg9VmomY03s+lmNn3Dhg0JC1aS58U5a/ntSws54+DefP9Lw6MOR0Qa\nKIrEsgZY4+7TwvGnCRLN+ppTXOHfgnB6PhD707VfWLYLd5/g7nnunte9u25JbW5mrtrMTU/OYnRO\nZ/5w/ki1/SXSjCU9sbj7OmC1mdX8JB0HzAcmAZeFZZcBz4XDk4BvhHeHHQEUxZwykxZgdWEJ3350\nOj07ZvK3b+SR2UZN34s0Z1E9x3I98JiZpQPLgCsIktxTZvZNYCVwQVj3ReB0YAlQEtaVFqJoR3Bb\ncXllNf8efyhd22dEHZKI7KMGJZbwYnupu1c1ZH53nwXk1TFpXB11Hbi2IeuRpq2iqpprHpvBik3b\nefTKwxnao33UIYlIAsR1KszMUszsIjN7wcwKgIXAWjObb2a/N7OhjRumtDTuzk+fnct7Szbx23MP\n5sghXaMOSUQSJN5rLG8AQ4BbgV7u3t/dewDHAFOBO83skkaKUVqgv761jCenr+b6E4dy3ph+UYcj\nIgkU76mwk9y9onahuxcCzwDPmFmbhEYmLdYLs9dy58sLOXNkH773pWFRhyMiCRbXEUtdSaUhdUQ+\nXrWZm56aRd6ALvzuvIPV+6NIC7TXIxYzu5Tg2ZNrgErgbXdXe11Sb1tKyrnmXx/Tu1MmE3RbsUiL\nFc+psEOBke5+PoCZ/blxQ5KWyN35ycS5bNxWxrPXHE12VnrUIYlII4knsWwF+pnZt4HNQFbjhiQt\n0cRZ+bwwey03nzKcg/qptWKRliyeayw/AyYC2UAGwcONInFbs7mE2ybO49CBXbj6+CFRhyMijWyv\nRyzhA4oTa8Z195fUR1W1872nPsGBP14wilS1ASbS4tXryXsz+xtwhplVAp8Bs4HZ7n5vYwQnzd+E\nt5fx4fJC7jp/JP2z20UdjogkQX2bdDkO6OfuVWbWl6D3x4MTH5a0BHPzi/jjlEV8+aDenDtaXeiI\ntBb1TSzTgK5AgbvnEzRf/2LCo5Jmr7SiihufnEV2Vjr/75wD9byKSCtS32bzHwDeMrMfmNmxYTfD\nIl9wx0sLWVKwjT+cP5LO7XRrsUhrUt/E8i/gUYIjnWuA981sacKjkmbtzUUFPPz+Cq48ehDH5qrT\nNZHWpr6nwta4+29jC8xMHWjI5wq3l3Pz07MZ1rM9PzxV3QuLtEb1PWKZZWY3xBa4e1kC45FmzN35\n8X/nUFRSwd1fO0RNtoi0UvVNLD2Bq83sMzN73sz+n5md3xiBSfPznxlreHneOn5wyjAO6NMx6nBE\nJCL1OhXm7hfA56e/RgAHAYcB/6nPcsxsBVAMVAGV7p5nZk8CNedOOgNb3H2UmQ0EFgCLwmlT3f3q\n+qxPGt+qTSX8YtI8jhiczbeOGRx1OCISofo+IDmH8KHI8PUa0NBemsa6+8aaEXf/Wsx67gKKYuou\ndfdRDVyPNLLKqmpuemoWKSnGXReMIkVP14u0avU9FXY88DdgB3AhMBc4PZEBWfDAwwXAE4lcrjSe\n+99cyoyVm/n12QfSt3PbqMMRkYjVK7G4e6G7v+nu97j7ZQRN6i9pwHodmGxmM8xsfK1pxwLr3X1x\nTNkgM5tpZm+Z2bENWJ80krn5Rdz92mLOHNmHs0bp6XoRqf+psGHu/mnNuLsvNrOGNOlyjLvnm1kP\nYIqZLXT3t8NpX2fXo5W1QI67bzKzMcBEMxvh7ltrxTYeGA+Qk5PTgJCkvtydn0+aR+e2bfjVWQdG\nHY6INBH1fvLezFaZ2Qdm9oCZPQLMNbN6tS4YNgeDuxcAzxLcAICZpQHnAk/G1C1z903h8AxgKfCF\njtLdfYK757l7XvfueigvGZ6dmc+MlZv50Wn70amdGr0WkUB9T4WNdfcc4GvA8wSnwdoSPN+yMJ5l\nmFmWmXWoGQZOJrhWA3ASsNDd18TU725mqeHwYCAXWFafuCXxiksr+M2LCxnVvzPnjW7o/Rsi0hLV\n98l7ANx9FbAK+F9NmZm1j3P2nsCzYaOEacDj7v5yOO1CvnjR/jjgl2ZWAVQDV7t7YUPilsS557XF\nbNpext8vy9NdYCKyiwYllrq4+7Y46y0jaG6/rmmX11H2DPDMPgUnCbWkoJh/vLeCr+X1Z2T/zlGH\nIyJNTH2vsUgr5+7cPmk+7dJTufkUtQUmIl+kxCL18sq8dby7ZCPfP3k4Xdur/VER+aJ6JRYze83M\nTq9VNiGxIUlTtaO8il89v4D9enXg4sN1S7eI1K2+RyyDgB+Z2c9jyvISGI80Yfe/tZT8LTv4xZkj\nSEvVwa6I1K2+3w5bgHFATzP7n3qQbD1WbSrhr28t5cyRfTh8cNeowxGRJqy+icXcvdLdryG4U+td\noEfiw5Km5lcvzCctxfjx6ftHHYqINHH1TSx/rRlw94eBy4DJiQxImp43FxUwZf56rj8xl16dMqMO\nR0SauLieYzGzewkajsTM7qk1Oa7nV6R5Kq+s5pf/m8+gbllceczAqMMRkWYg3gckp8cM/wL4+e4q\nSsvy0HvLWbZxOw9fcSgZaepqWET2Lq7E4u6P1Ayb2Y2x49JyrSsq5d7XFnPS/j05YbgupYlIfBpy\nz6gnPAppkn770gIqqp3bzjgg6lBEpBnRwwhSp2nLNvHcrM+4+rjB5HStV68IItLKxXvxvpidRyrt\nzKymky0D3N07NkZwEo3Kqmp+PmkefTu35TsnDI06HBFpZuK9xtKhsQORpuPxD1excF0x9188mrbp\numAvIvWjU2Gyi+LSCv405VOOHtqVUw/sFXU4ItIMxZVYzOwsM7s2ZnyamS0LX+c3XniSbA++s5zN\nJRXccur+hJ2xiYjUS7xHLD8EJsWMZwCHAicAVyc4JolI4fZyHnxnGacf1IuD+qkZOBFpmHgTS7q7\nr44Zf9fdN4VdFGfVd6VmtsLM5pjZLDObHpbdbmb5Ydms2Ob5zexWM1tiZovM7JT6rk/ic/+bS9hR\nUcX3vjQs6lBEpBmL98n7LrEj7n5dzGj3Bq57rLtvrFX2J3f/Q2yBmR0AXAiMAPoAr5rZMHevauB6\npQ5ri3bwyAcrOXd0P4b20L0aItJw8R6xTDOzb9cuNLOrgA8TG9IXnAX8293L3H05sAQ4rJHX2erc\n+/oS3J0bxuVGHYqINHPxHrHcBEw0s4uAj8OyMQTXWs5uwHodmGxmDjzg7jW9UF5nZt8gaJvs++6+\nGegLTI2Zd01YJgmyYuN2nvpoNRcfnkP/bD0MKSL7Jt7nWAqAo8zsRIJTUgAvuPvrDVzvMe6eb2Y9\ngClmthC4H/gVQdL5FXAXcGW8CzSz8cB4gJwcdZtbH3969VPapKZw7Yl6GFJE9l28T96bB14H6kwm\nNXXiWZ6754d/C8zsWeAwd387Zll/A54PR/OB/jGz9wvLai9zAjABIC8vT+2ZxWnB2q1M+uQzvnP8\nEHp0UF8rIrLv4r3G8oaZXW9muxwKmFm6mZ1oZo8QdPq1V2aWZWYdaoaBk4G5ZtY7pto5wNxweBJw\noZllmNkgIJfGv67Tatw1+VPaZ6Rx1XFDog5FRFqIeK+xnEpwWuqJ8Mt9C9CWIDFNBu5295lxLqsn\n8Gz48F0a8Li7v2xm/zSzUQSnwlYAVwG4+zwzewqYD1QC1+qOsMT4eNVmXl2wnptPGU6ndm2iDkdE\nWgiL8+zVzhnM2gDdgB3uvqVRotpHeXl5Pn369L1XbOUu+ttUPl1fzFs3jyUrI97fGCLSUpnZDHfP\n29fl1LutMHevcPe1TTWpSHzeXbyR95du4tqxQ5VURCSh1AhlK+Tu/P6VhfTplMlFh+sOOhFJLCWW\nVmjy/PV8sqaIG08apn7sRSTh4r3dON6ftVvcfeveq0lUqqqduyYvYnD3LM4dredMRSTx4j25/gjB\n3Vp7akfdgYeBR/cxJmlEkz7J59P12/i/i0aTlqoDVhFJvHifvB/b2IFI4yuvrOZPUxYzok9HTlMn\nXiLSSPSTtRV5cvpqVhWW8INThpOSok68RKRxNPg+UzO7lKBByGsIHlx8293vT1Rgklg7yqu497XF\nHDqwCycMa2hPByIie7cvDzAcCox09/MBzOzPiQlJGsOjH6ygoLiM+y4arS6HRaRR7Uti2Qr0C/tp\n2UwDepKU5NhaWsH9by3l+GHdOWxQdtThiEgLty/XWH4GTASygXTg+oREJAn30LvL2VJSwQ9OHh51\nKCLSCsT7HMtQoKe7v1dT5u5uZhuBOe6+tLEClH1TtKOCv7+7nJMP6MlB/TpFHY6ItALxHrHcTXDq\nq7aicJo0UX9/dznFpZXceNKwqEMRkVYi3sTS093n1C4MywYmNCJJmKKSCv7x7nJOHdGLA/p0jDoc\nEWkl4k0snfcwrW0iApHE+/u7yyguq+SGk3KjDkVEWpF4E8v08O6vXZjZt4AZiQ1JEmFLSTkPvbeC\n0w7sxf69dbQiIskT7+3GNxL0+ngxOxNJHsHdYOc0RmCybx58ZznbdLQiIhGIt62w9cBRZjYWODAs\nfsHdX2/ISs1sBVAMVAGV7p5nZr8HvgKUA0uBK9x9i5kNBBYAi8LZp7r71Q1Zb2uxeXs5/3hvOV8+\nqDf79dLRiogkV32bzV8avmqX16hPs/lj3X1jzPgU4FZ3rzSzO4FbgR/VrNfdR8W53Fbvb+8so6Si\niu+O09GKiCRffZrN35t9ajbf3SfHjE4FzmvIclq7wu3lPPL+Ck4/qDfDe3WIOhwRaYWiajbfgclm\n5sAD7j6h1vQrgSdjxgeZ2UyCZ2l+6u7vJDieFqPmaOVGHa2ISET2pa2wfXGMu+ebWQ9gipktdPe3\nAczsJwStJT8W1l0L5Lj7JjMbA0w0sxG1T7mZ2XhgPEBOTuvsx33TtjIeeX8FZxzch9yeOloRkWhE\n0h+Lu+eHfwuAZ4HDAMzscuAM4GJ397BOmbtvCodnEFzj+cJj5O4+wd3z3D2ve/fW2Sz8hHeWsaOi\nihvGDY06FBFpxZKeWMwsy8w61AwDJwNzzexU4IfAme5eElO/u5mlhsODgVxgWbLjbuo2bSvj0fdX\ncubIPgztoaMVEYlOFKfCehI8E1Oz/sfd/WUzWwJkEJwag523FR8H/NLMKoBq4Gp3L4wg7iZtwtvL\nKKus4voTdW1FRKKV9MTi7suAkXWU13n+xt2fAZ5p7Lias43bynj0g5qjlfZRhyMirZz6vG8BHnhr\nKWWVem5FRJoGJZZmrqC4lH9OXcnZo/oyuLuOVkQkekoszdyEt5ZRXlnN9TpaEZEmQomlGSsoLuVf\n01Zy9iF9GdQtK+pwREQAJZZm7a9vLqOiyvmu7gQTkSZEiaWZKthaymPTVnLOIX0ZqKMVEWlClFia\nqfvfWkpltXP9iXrKXkSaFiWWZmjN5hIem7aKcw/py4CuOloRkaZFiaUZumvypxhw05e+0GSaiEjk\nlFiambn5RTw7M58rjxlEn85tow5HROQLlFiaEXfnty8toEu7NnznhCFRhyMiUicllmbk7cUbeW/J\nJq4/MZeOmW2iDkdEpE5KLM1EVbXz2xcXkJPdjkuOGBB1OCIiu6XE0kw8OzOfheuKufmU4aSn6WMT\nkaZL31DNQGlFFXdNXsTIfp348kG9ow5HRGSPlFiagX+8t4K1RaXcevr+pKRY1OGIiOyREksTV7i9\nnL+8sYST9u/BEYO7Rh2OiMheRZJYzGyFmc0xs1lmNj0syzazKWa2OPzbJSw3M7vHzJaY2WwzGx1F\nzFG59/XFbC+v5Een7hd1KCIicYnyiGWsu49y97xw/BbgNXfPBV4LxwFOA3LD13jg/qRHGpGVm7bz\nr6kr+dqh/cnt2SHqcERE4tKUToWdBTwSDj8CnB1T/qgHpgKdzaxVXMH+/SuLSEtJ4caT1HSLiDQf\nUSUWByab2QwzGx+W9XT3teHwOqBnONwXWB0z75qwrEWbtXoLz89ey7ePHUTPjplRhyMiEre0iNZ7\njLvnm1kPYIqZLYyd6O5uZl6fBYYJajxATk5O4iKNgHvwMGTXrHTGH6+mW0SkeYnkiMXd88O/BcCz\nwGHA+ppTXOHfgrB6PtA/ZvZ+YVntZU5w9zx3z+vevXtjht/oXl9YwLTlhdx4Ui7tM6LK/SIiDZP0\nxGJmWWbWoWYYOBmYC0wCLgurXQY8Fw5PAr4R3h12BFAUc8qsxamsquaOlxYyuFsWFx7WvI+8RKR1\niuLncE/gWTOrWf/j7v6ymX0EPGVm3wRWAheE9V8ETgeWACXAFckPOXn+M2MNiwu28ddLxtAmtSnd\nWyEiEp+kJxZ3XwaMrKN8EzAQo7VgAAARwklEQVSujnIHrk1CaJErKa/kj1M+ZcyALpwyoufeZxAR\naYL0k7gJefCd5WwoLuPHp+9HeEQnItLsKLE0ERuKy3jgraWcOqIXYwZkRx2OiEiDKbE0Ae7O7ZPm\nUVZZzQ9PHR51OCIi+0SJpQl48qPVvDBnLd8/eTiDu7ePOhwRkX2ixBKxJQXF/OJ/8zl6aFeuOm5w\n1OGIiOwzJZYIlVZUcf0Ts2ibnsofLxilvlZEpEXQY90RuuOlhSxYu5WHLs9Te2Ai0mLoiCUiry1Y\nz8Pvr+CKowdy4n56ZkVEWg4llgis31rKzU/PZv/eHbnlNHXgJSItixJLklVVOzc9OYsd5VXc+/VD\nyEhLjTokEZGE0jWWJHvg7aW8v3QTd371IIb20K3FItLy6IgliT5etZm7Jn/Klw/uzQV5/fc+g4hI\nM6TEkiRbSyu44d8z6dUxk9+cc5DaAhORFkunwpLA3fnps3P5bEspT111BJ3atok6JBGRRqMjliR4\n5uN8Jn3yGTeOy1UDkyLS4imxNLJlG7Zx23NzOXxQNteMHRp1OCIijU6JpRGVVVbx3X/PJD0thbsv\nHEWqmmwRkVYgssRiZqlmNtPMng/H3zGzWeHrMzObGJafYGZFMdNuiyrm+nB37nxpEXPzt/K7rx5M\n705tow5JRCQporx4fwOwAOgI4O7H1kwws2eA52LqvuPuZyQ3vIbbXlbJTyfO5dmZ+XzjyAGcPKJX\n1CGJiCRNJEcsZtYP+DLwYB3TOgInAhOTHVciLFpXzJn3vctzs/L53peG8fOvjIg6JBGRpIrqiOVu\n4IdAhzqmnQ285u5bY8qONLNPgM+AH7j7vNozmdl4YDxATk5O4iOOw1PTV3Pbc3Npn9GGf33rcI4a\n0i2SOEREopT0xGJmZwAF7j7DzE6oo8rX2fVI5mNggLtvM7PTCY5kcmvP5O4TgAkAeXl5nvDA96Ck\nvJKfTZzHMx+v4aghXbn7wlH06KBm8EWkdYriiOVo4MwwSWQCHc3sX+5+iZl1Aw4DzqmpHHvk4u4v\nmtlfzKybu29MeuR1WLy+mGse+5glG7Zxw7hcvjsuV3d/iUirlvTE4u63ArdCcMcXwamtS8LJ5wHP\nu3tpTX0z6wWsd3c3s8MIrgttSm7UdXtmxhp+OnEuWRmp/PPKwzkmV6e+RESaWpMuFwJ31Co7D/iO\nmVUCO4AL3T2pp7pq21Fexc8nzeWp6Ws4fFA293z9EPUAKSISijSxuPubwJsx4yfUUec+4L6kBbUX\nSwq2ce1jH/NpQTHXjR3KjSflkpaq50xFRGo0tSOWJqlgaynTV27moxWFPPnRajLbpPLwFYdx/LDu\nUYcmItLkKLHUUl3tfFpQzPQVm5mxcjPTVxayunAHABlpKRyb241fn30QvTrp1JeISF1abWJxdyqq\nnNLKKubmFzFjxWamr9zMx6s2U1xaCUC39hnkDejCZUcOZMyALozo04n0NJ32EhHZkxaZWD5dX8xx\nv3uDqmqnoqr687+V1R68qqqpruPy/7Ce7Tnj4D7kDehC3sAu5GS3U4dcIiL11CITS2abVEbndCYt\nNYW0FCMt1UhLqRneWdYmHB7WswOjc7rQqZ064BIR2VctMrHkZLfj7gsPiToMEZFWSRcMREQkoZRY\nREQkoZRYREQkoZRYREQkoZRYREQkoZRYREQkoZRYREQkoZRYREQkoSzirk0ahZkVA4uijiMO3YAm\n0RPmXijOxGoOcTaHGEFxJtpwd++wrwtpkU/eA4vcPS/qIPbGzKYrzsRRnInTHGIExZloZjY9EcvR\nqTAREUkoJRYREUmolppYJkQdQJwUZ2IpzsRpDjGC4ky0hMTZIi/ei4hIdFrqEYuIiESk2SUWMzvV\nzBaZ2RIzu6WO6Rlm9mQ4fZqZDYyZdmtYvsjMTokwxu+Z2Xwzm21mr5nZgJhpVWY2K3xNaqwY44zz\ncjPbEBPPt2KmXWZmi8PXZRHH+aeYGD81sy0x05K5PR8yswIzm7ub6WZm94TvY7aZjY6ZlpTtGUeM\nF4exzTGz981sZMy0FWH5rETdPbQPcZ5gZkUxn+1tMdP2uL8kOc6bY2KcG+6P2eG0ZG7P/mb2Rvi9\nM8/MbqijTuL2T3dvNi8gFVgKDAbSgU+AA2rVuQb4azh8IfBkOHxAWD8DGBQuJzWiGMcC7cLh79TE\nGI5va0Lb8nLgvjrmzQaWhX+7hMNdooqzVv3rgYeSvT3DdR0HjAbm7mb66cBLgAFHANMi2J57i/Go\nmnUDp9XEGI6vALo1kW15AvD8vu4vjR1nrbpfAV6PaHv2BkaHwx2AT+v4f0/Y/tncjlgOA5a4+zJ3\nLwf+DZxVq85ZwCPh8NPAODOzsPzf7l7m7suBJeHykh6ju7/h7iXh6FSgXyPEsTfxbMvdOQWY4u6F\n7r4ZmAKc2kTi/DrwRCPFskfu/jZQuIcqZwGPemAq0NnMepPE7bm3GN39/TAGiG7fjGdb7s6+7Nf1\nVs84o9w317r7x+FwMbAA6FurWsL2z+aWWPoCq2PG1/DFjfN5HXevBIqArnHOm6wYY32T4FdCjUwz\nm25mU83s7EaIr0a8cX41PCx+2sz613PeRIh7XeEpxUHA6zHFydqe8djde0nm9qyP2vumA5PNbIaZ\njY8oplhHmtknZvaSmY0Iy5rktjSzdgRfxs/EFEeyPS24PHAIMK3WpITtny31yftmwcwuAfKA42OK\nB7h7vpkNBl43sznuvjSaCPkf8IS7l5nZVQRHgidGFEs8LgSedveqmLKmtD2bDTMbS5BYjokpPibc\nlj2AKWa2MPzFHoWPCT7bbWZ2OjARyI0olnh8BXjP3WOPbpK+Pc2sPUFyu9HdtzbWeprbEUs+0D9m\nvF9YVmcdM0sDOgGb4pw3WTFiZicBPwHOdPeymnJ3zw//LgPeJPhl0Rj2Gqe7b4qJ7UFgTLzzJjPO\nGBdS61RDErdnPHb3XpK5PffKzA4m+LzPcvdNNeUx27IAeJbGOZUcF3ff6u7bwuEXgTZm1o0mti1j\n7GnfTMr2NLM2BEnlMXf/bx1VErd/JuPCUQIvQKURXDgaxM4LcyNq1bmWXS/ePxUOj2DXi/fLaJyL\n9/HEeAjBBcbcWuVdgIxwuBuwmEa68BhnnL1jhs8BpvrOi3nLw3i7hMPZUcUZ1tuP4GKoRbE9Y9Y5\nkN1fcP4yu14c/TDZ2zOOGHMIrj8eVas8C+gQM/w+cGqE27JXzWdN8IW8Ktyuce0vyYoznN6J4DpM\nVlTbM9w2jwJ376FOwvbPRtvYjbiBTie4o2Ep8JOw7JcEv/wBMoH/hP8cHwKDY+b9STjfIuC0CGN8\nFVgPzApfk8Lyo4A54T/DHOCbEW/L3wLzwnjeAPaLmffKcBsvAa6IMs5w/HbgjlrzJXt7PgGsBSoI\nzkN/E7gauDqcbsD/he9jDpCX7O0ZR4wPAptj9s3pYfngcDt+Eu4TP4l4W14Xs29OJSYR1rW/RBVn\nWOdyghuHYudL9vY8huCazuyYz/b0xto/9eS9iIgkVHO7xiIiIk2cEouIiCSUEouIiCSUEouIiCSU\nEouIiCSUEksLZ2a3m9kPwuFfhg9m7q7u2WZ2QPKi22XdJ5jZUUle535hy7IzzWxII67nJTPrV6ts\nj59FWCeh28TMBprZRQlc3l7fwx7mfdjMzguHH9zTfmdBK9t9GhqnJJ8SSyvi7re5+6t7qHI2QSvQ\nUTiB4LmTpDCzVIL3+7S7H+KN1MyLmbUFurr7mtjyOD4LaMA2CVub2J2BQMISS5zvIZ7lfMvd5++h\nyuWAEktz0pgP5egVzYvgQdBPgXcJHuD6QVj+MHBeOHwHMJ/ggak/EHyBFRI8VTsLGAJ8G/iI4CGu\nZ9jZ1P/DwD0ETwsvq1lmOO1H7Hwo8Y6wbAjwMjADeIeYBy3D6QOBdQTNRMwCjg3LXg/jew3IqeN9\nHs/Oh71mEjQHfgIxzakD9wGXh8MrgDsJ2pm6KGadb4TTJ4YxzgPGxyzj1HCeT4DXwrIs4CGCh3Bn\nEjR/UtdncRrwuzrKYz+LFcAvwnXMIWhFoK5t0j38HD4KX0eH898O/BN4L/y8B4bb+ePwdVRYbypB\no6yzgJsIHib+R7jOmcDYsN7l4baYEsZ2HfC9sM5Uwqeua72HQwn2h0/CbdKh1vu18LNYRPCA8Isx\n875J0GZearjMuWFMNwHnAdvC+WYBbYHbwvc/l6ArXYtZzp3h+j8Fjg3LUwn28bkE+9P1YfkY4K3w\nM3+FmJYm9NrH76CoA9ArwR9o8M8yB2gHdCR4UnaXxELQ2vOimH/IzrHTY5bVNWb41zH/kA8TtG6Q\nQnCEsyQsPy38cqlJQDVfQK8RNl8DHE5MnxQxy7+9Js5w/H/AZeHwlcDEOub5Hzu/XNsTNOdxAntO\nLD/cwzpr4m0bfgl1JfgyXw0MqlXnN8AlNdsv/CLLqiPGe4AT6yj/fFuHcdVs22uAB3cT3+MEDRdC\n0PTKgph6M4C24Xg7IDMczmXn0/O1t833CfuuIUhmqwiSzeUE+02H8P0XsfPp7D8RNGD4+XsgaDpl\nGXBoWN4RSKv1fs8lSFSpBEcfW/hiYhlD0Dx7zTydY6fX/pzC4X8CX4mpd1c4fDrwajj8HYIuNNJq\n5gfaEOyr3cOyrxHTj49e+/ZS68Ytz7HAsx7292J195pYBJQCfzez54Hnd7OsA83s1wRfnO0JftXV\nmOju1cB8M+sZlp0E/KNm3e5eGLamehTwn6BbHCBor21vjiT4MoLgy+N3ddR5D/ijmT0G/Nfd18Ss\nY3ee3MO075rZOeFwf4Iv5e7A2x704YPvbJ32ZODMmutXBF/IOQT9XMQ6GvgBe1fTKOAMdr7v2k4C\nDoh5jx3D7QtBs0A7wuE2wH1mNgqoAobtZnnHAPcCuPtCM1sZU/cND/rtKDazIoIkDsGPloNrLWc4\nsNbdPwqXVVeruccRtJRdBXxmZq/XUWcZMNjM7gVeACbvJu6xZvZDggSaTXCEWRNf7HYcGA6fRNB+\nYGUYX6GZHQgcSNCqMAQJb+1u1if1pMTSCrl7pZkdBowj+MV5HXU3h/8wcLa7f2JmlxP84q1RFjO8\np2/zFGCLu4/al5jr4u53mNkLBL9O37Ogu+lKdr12mFlrtu11LcvMTiD4AjrS3UvM7M065t1lFuCr\n7r5otxWCpvpXe9Dh1N7UbM8qdv9/mQIc4e6ltdYDu76vmwjaohsZzrNL/TjFfr7VMePVe4hvn7j7\nZgu6Qj6FoA2rCwiOVj9nZpnAXwiOYFab2e3s+jnFsx0h+PzmufuRCQpfYujifcvzNnC2mbU1sw4E\n/UDsIvyV28mD5sZvIvgCAigmOP1RowOwNmxu++I41j0FuCLs1Agzyw5/vS43s/PDMrOYftRj1F73\n+wStUxOu+5063scQd5/j7ncSnHPfD1hJ8Ks+w8w6EyTPeHQCNodJZT+C1l0huKZwnJkNqnlPYfkr\nwPVh76SYWV3N8Z9GcG2poWpvk8kEXS8TrnN3yboTwRFENXApwa/xupb3DuHnambDCI64dpso92AR\n0NvMDg2X1aGOmwjeBr5mZqkW9Eo4tvZCwmbvU9z9GeCnBF3+1o67JolsDPfj8+KIbwpwVU1M4We4\nCOhuZkeGZW1iOguTfaTE0sJ40P3okwQXUV8i+MKtrQPwvJnNJrjA/72w/N/AzTG33/6MoJe594CF\ncaz7ZWASMN3MZrHzFNDFwDfNrKYl17q6iv0fcE54+++xBF+gV4QxXgrcUMc8N5rZ3LBOBfCSu68G\nniK4RvIUwQXneLwMpJnZAoIbG6aG72kDMB74bxh/zam0XxGccpptZvPC8dpOZd8SS+1t8l0gz4Ie\nPecT/Kqvy1+Ay8J492Pn0cxsoMqCXhdvCuulmNmc8H1d7jF9A8UrPCL7GnBvuM4pfPFo71mCbgvm\nEzTf/kEdi+oLvBnuO/8Cbg3LHwb+GpaXAX8j+Hxfoe79u7YHCa4fzQ7juyiM+TzgzrBsFkm8K7Gl\nU+vGIo3AzDIIegzMizoWkWRTYhERkYTSqTAREUkoJRYREUkoJRYREUkoJRYREUkoJRYREUkoJRYR\nEUkoJRYREUmo/w/qMnBBdSXM7gAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10b7945c0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot results\n", "plt.plot(distance_surface/distance_atoms, np.abs(C6))\n", "plt.xlim(min(distance_surface/distance_atoms), max(distance_surface/distance_atoms))\n", "plt.xlabel(\"distance to surface / interatomic distance\")\n", "plt.ylabel(\"|C$_6$| (GHz $\\mu m^6$)\");" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
xbsd/CS109
content_raj/HW1-Copy0.ipynb
1
37311
{ "metadata": { "name": "", "signature": "sha256:3eabce1a0b9c3e1a9ee432ec43b13290cab7e68011597e38d675bc10224aa3ef" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Homework 1. Which of two things is larger?\n", "\n", "Due: Thursday, September 19, 11:59 PM\n", "\n", "<a href=https://raw.github.com/cs109/content/master/HW1.ipynb download=HW1.ipynb> Download this assignment</a>\n", "\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Useful libraries for this assignment\n", "\n", "* [numpy](http://docs.scipy.org/doc/numpy-dev/user/index.html), for arrays\n", "* [pandas](http://pandas.pydata.org/), for data frames\n", "* [matplotlib](http://matplotlib.org/), for plotting\n", "* [requests](http://docs.python-requests.org/en/latest/), for downloading web content\n", "* [pattern](http://www.clips.ua.ac.be/pages/pattern), for parsing html and xml pages\n", "* [fnmatch](http://docs.python.org/2/library/fnmatch.html) (optional), for Unix-style string matching" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# special IPython command to prepare the notebook for matplotlib\n", "%matplotlib inline \n", "\n", "from fnmatch import fnmatch\n", "\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import requests\n", "from pattern import web\n", "\n", "\n", "# set some nicer defaults for matplotlib\n", "from matplotlib import rcParams\n", "\n", "#these colors come from colorbrewer2.org. Each is an RGB triplet\n", "dark2_colors = [(0.10588235294117647, 0.6196078431372549, 0.4666666666666667),\n", " (0.8509803921568627, 0.37254901960784315, 0.00784313725490196),\n", " (0.4588235294117647, 0.4392156862745098, 0.7019607843137254),\n", " (0.9058823529411765, 0.1607843137254902, 0.5411764705882353),\n", " (0.4, 0.6509803921568628, 0.11764705882352941),\n", " (0.9019607843137255, 0.6705882352941176, 0.00784313725490196),\n", " (0.6509803921568628, 0.4627450980392157, 0.11372549019607843),\n", " (0.4, 0.4, 0.4)]\n", "\n", "rcParams['figure.figsize'] = (10, 6)\n", "rcParams['figure.dpi'] = 150\n", "rcParams['axes.color_cycle'] = dark2_colors\n", "rcParams['lines.linewidth'] = 2\n", "rcParams['axes.grid'] = True\n", "rcParams['axes.facecolor'] = '#eeeeee'\n", "rcParams['font.size'] = 14\n", "rcParams['patch.edgecolor'] = 'none'" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction\n", "\n", "This was the [XKCD comic](http://xkcd.com/1131/) after the 2012 Presidential election:\n", "\n", "<img src=\"http://imgs.xkcd.com/comics/math.png\">" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The comic refers to the fact that Nate Silver's statistical model (which is based mostly on combining information from pre-election polls) correctly predicted the outcome of the 2012 presidential race in all 50 states. \n", "\n", "Polling data isn't a perfect predictor for the future, and some polls are more accurate than others. This means that election forecastors must consider prediction uncertainty when building models.\n", "\n", "In this first assignment, you will perform a simple analysis of polling data about the upcoming <a href=\"http://en.wikipedia.org/wiki/Governor_(United_States)\">Governor races</a>. The assignment has three main parts:\n", "\n", "**First** you will build some tools to download historical polling data from the web, and parse it into a more convenient format. \n", "\n", "**Next** you will use these tools to aggregate and visualize several past Governor races\n", "\n", "**Finally** you will run a bootstrap analysis to estimate the probable outcome of current Governor races, given the level of precision of historical polls.\n", "\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "## Part 1: Collect and Clean\n", "\n", "The [Real Clear Politics](http://www.realclearpolitics.com) website archives many political polls. In addition, they combine related polls to form an \"RCP average\" estimate of public opinion over time. For example, the chart on [this page](http://www.realclearpolitics.com/epolls/2012/president/us/general_election_romney_vs_obama-1171.html) shows historical polling data for the Obama-Romney presidential race. The chart is an average of the polling data table below the chart.\n", "\n", "The data used to generate plots like this are stored as XML pages, with URLs like:\n", "\n", "http://charts.realclearpolitics.com/charts/[id].xml\n", "\n", "Here, [id] is a unique integer, found at the end of the URL of the page that displays the graph. The id for the Obama-Romney race is 1171:\n", "\n", "http://charts.realclearpolitics.com/charts/1171.xml\n", "\n", "Opening this page in Google Chrome or Firefox will show you the XML content in an easy-to-read format. Notice that XML tags are nested inside each other, hierarchically (the jargony term for this is the \"Document Object Model\", or \"DOM\"). The first step of webscraping is almost always exploring the HTML/XML source in a browser, and getting a sense of this hierarchy.\n", "\n", "---\n", "\n", "#### Problem 0\n", "\n", "The above XML page includes 5 distinct tags (one, for example, is `chart`). List these tags, and depict how they nest inside each other using an indented list. For example:\n", "\n", "* Page\n", " * Section\n", " * Paragraph\n", " * Conclusion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "-----\n", "#### Answer: Problem 0\n", "\n", "* Chart\n", " - Series\n", " - Graphs\n", " - Graph\n", " - Graph" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "#### Problem 1\n", "\n", "We want to download and work with poll data like this. Like most programming tasks, we will break this into many smaller, easier pieces\n", "\n", "Fill in the code for the `get_poll_xml` function, that finds and downloads an XML page discussed above\n", "\n", "**Hint** \n", "\n", "`requests.get(\"http://www.google.com\").text` downloads the text from Google's homepage" ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Setup\n", "\n", "import pattern.web as web\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from cs109style import customize_mpl, customize_css\n", "customize_mpl()\n", "customize_css()\n", "%pylab inline" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "ImportError", "evalue": "No module named cs109style", "output_type": "pyerr", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-3-b861867ac100>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mcs109style\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mcustomize_mpl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcustomize_css\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mcustomize_mpl\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0mcustomize_css\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mImportError\u001b[0m: No module named cs109style" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "\"\"\"\n", "Function\n", "--------\n", "get_poll_xml\n", "\n", "Given a poll_id, return the XML data as a text string\n", "\n", "Inputs\n", "------\n", "poll_id : int\n", " The ID of the poll to fetch\n", "\n", "Returns\n", "-------\n", "xml : str\n", " The text of the XML page for that poll_id\n", "\n", "Example\n", "-------\n", ">>> get_poll_xml(1044)\n", "u'<?xml version=\"1.0\" encoding=\"UTF-8\"?><chart><series><value xid=\\'0\\'>1/27/2009</value>\n", "...etc...\n", "\"\"\" \n", "#your code here \n", "\n", "def get_poll_xml(poll_id):\n", " url = 'http://charts.realclearpolitics.com/charts/' + str(poll_id) + '.xml'\n", " website_html = requests.get(url).text\n", " return website_html\n", "\n", "get_poll_xml(1044)" ], "language": "python", "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "global name 'requests' is not defined", "output_type": "pyerr", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-2-7b74d0c7d67d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 29\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mwebsite_html\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 31\u001b[0;31m \u001b[0mget_poll_xml\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1044\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m<ipython-input-2-7b74d0c7d67d>\u001b[0m in \u001b[0;36mget_poll_xml\u001b[0;34m(poll_id)\u001b[0m\n\u001b[1;32m 26\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mget_poll_xml\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpoll_id\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 27\u001b[0m \u001b[0murl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'http://charts.realclearpolitics.com/charts/'\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpoll_id\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m'.xml'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 28\u001b[0;31m \u001b[0mwebsite_html\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrequests\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 29\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mwebsite_html\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: global name 'requests' is not defined" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here are some other functions we'll use later. `plot_colors` contains hints about parsing XML data." ] }, { "cell_type": "code", "collapsed": false, "input": [ "# \"r\"egular \"e\"xpressions is kind of a mini-language to\n", "# do pattern matching on text\n", "import re\n", "\n", "def _strip(s):\n", " \"\"\"This function removes non-letter characters from a word\n", " \n", " for example _strip('Hi there!') == 'Hi there'\n", " \"\"\"\n", " return re.sub(r'[\\W_]+', '', s)\n", "\n", "def plot_colors(xml):\n", " \"\"\"\n", " Given an XML document like the link above, returns a python dictionary\n", " that maps a graph title to a graph color.\n", " \n", " Both the title and color are parsed from attributes of the <graph> tag:\n", " <graph title=\"the title\", color=\"#ff0000\"> -> {'the title': '#ff0000'}\n", " \n", " These colors are in \"hex string\" format. This page explains them:\n", " http://coding.smashingmagazine.com/2012/10/04/the-code-side-of-color/\n", " \n", " Example\n", " -------\n", " >>> plot_colors(get_poll_xml(1044))\n", " {u'Approve': u'#000000', u'Disapprove': u'#FF0000'}\n", " \"\"\"\n", " dom = web.Element(xml)\n", " result = {}\n", " for graph in dom.by_tag('graph'):\n", " title = _strip(graph.attributes['title'])\n", " result[title] = graph.attributes['color']\n", " return result" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "#### Problem 2\n", "\n", "Even though `get_poll_xml` pulls data from the web into Python, it does so as a block of text. This still isn't very useful. Use the `web` module in `pattern` to parse this text, and extract data into a pandas DataFrame.\n", "\n", "**Hints**\n", "\n", "* You might want create python lists for each column in the XML. Then, to turn these lists into a DataFrame, run\n", "\n", "`pd.DataFrame({'column_label_1': list_1, 'column_label_2':list_2, ...})`\n", "\n", "* use the pandas function `pd.to_datetime` to convert strings into dates" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\"\"\"\n", " Function\n", " ---------\n", " rcp_poll_data\n", "\n", " Extract poll information from an XML string, and convert to a DataFrame\n", "\n", " Parameters\n", " ----------\n", " xml : str\n", " A string, containing the XML data from a page like \n", " get_poll_xml(1044)\n", " \n", " Returns\n", " -------\n", " A pandas DataFrame with the following columns:\n", " date: The date for each entry\n", " title_n: The data value for the gid=n graph (take the column name from the `title` tag)\n", " \n", " This DataFrame should be sorted by date\n", " \n", " Example\n", " -------\n", " Consider the following simple xml page:\n", " \n", " <chart>\n", " <series>\n", " <value xid=\"0\">1/27/2009</value>\n", " <value xid=\"1\">1/28/2009</value>\n", " </series>\n", " <graphs>\n", " <graph gid=\"1\" color=\"#000000\" balloon_color=\"#000000\" title=\"Approve\">\n", " <value xid=\"0\">63.3</value>\n", " <value xid=\"1\">63.3</value>\n", " </graph>\n", " <graph gid=\"2\" color=\"#FF0000\" balloon_color=\"#FF0000\" title=\"Disapprove\">\n", " <value xid=\"0\">20.0</value>\n", " <value xid=\"1\">20.0</value>\n", " </graph>\n", " </graphs>\n", " </chart>\n", " \n", " Given this string, rcp_poll_data should return\n", " result = pd.DataFrame({'date': pd.to_datetime(['1/27/2009', '1/28/2009']), \n", " 'Approve': [63.3, 63.3], 'Disapprove': [20.0, 20.0]})\n", "\"\"\"\n", "#your code here\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "The output from `rcp_poll_data` is much more useful for analysis. For example, we can plot with it:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def poll_plot(poll_id):\n", " \"\"\"\n", " Make a plot of an RCP Poll over time\n", " \n", " Parameters\n", " ----------\n", " poll_id : int\n", " An RCP poll identifier\n", " \"\"\"\n", "\n", " # hey, you wrote two of these functions. Thanks for that!\n", " xml = get_poll_xml(poll_id)\n", " data = rcp_poll_data(xml)\n", " colors = plot_colors(xml)\n", "\n", " #remove characters like apostrophes\n", " data = data.rename(columns = {c: _strip(c) for c in data.columns})\n", "\n", " #normalize poll numbers so they add to 100% \n", " norm = data[colors.keys()].sum(axis=1) / 100 \n", " for c in colors.keys():\n", " data[c] /= norm\n", " \n", " for label, color in colors.items():\n", " plt.plot(data.date, data[label], color=color, label=label) \n", " \n", " plt.xticks(rotation=70)\n", " plt.legend(loc='best')\n", " plt.xlabel(\"Date\")\n", " plt.ylabel(\"Normalized Poll Percentage\")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you've done everything right so far, the following code should reproduce the graph on [this page](http://www.realclearpolitics.com/epolls/other/president_obama_job_approval-1044.html)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "poll_plot(1044)\n", "plt.title(\"Obama Job Approval\")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "## Part 2: Aggregate and Visualize\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Problem 3\n", "\n", "Unfortunately, these data don't have any error bars. If a candidate leads by 10% in the RCP average, is she a shoo-in to win? Or is this number too close to call? Does a 10% poll lead mean more 1 day before a race than it does 1 week before? Without error estimates, these questions are impossible to answer.\n", "\n", "To get a sense of how accurate the RCP polls are, you will gather data from many previous Governor races, where the outcome is known.\n", "\n", "This url has links to many governer races. \n", "\n", "http://www.realclearpolitics.com/epolls/2010/governor/2010_elections_governor_map.html\n", "\n", "Notice that each link to a governor race has the following URL pattern:\n", "\n", "http://www.realclearpolitics.com/epolls/[YEAR]/governor/[STATE]/[TITLE]-[ID].html\n", "\n", "\n", "Write a function that scans html for links to URLs like this\n", "\n", "**Hint** The [fnmatch](http://docs.python.org/2/library/fnmatch.html) function is useful for simple string matching tasks." ] }, { "cell_type": "code", "collapsed": false, "input": [ "\"\"\"\n", " Function\n", " --------\n", " find_governor_races\n", "\n", " Find and return links to RCP races on a page like\n", " http://www.realclearpolitics.com/epolls/2010/governor/2010_elections_governor_map.html\n", " \n", " Parameters\n", " ----------\n", " html : str\n", " The HTML content of a page to scan\n", " \n", " Returns\n", " -------\n", " A list of urls for Governer race pages\n", " \n", " Example\n", " -------\n", " For a page like\n", " \n", " <html>\n", " <body>\n", " <a href=\"http://www.realclearpolitics.com/epolls/2010/governor/ma/massachusetts_governor_baker_vs_patrick_vs_cahill-1154.html\"></a>\n", " <a href=\"http://www.realclearpolitics.com/epolls/2010/governor/ca/california_governor_whitman_vs_brown-1113.html\"></a>\n", " </body>\n", " </html>\n", " \n", " find_governor_races would return\n", " ['http://www.realclearpolitics.com/epolls/2010/governor/ma/massachusetts_governor_baker_vs_patrick_vs_cahill-1154.html',\n", " 'http://www.realclearpolitics.com/epolls/2010/governor/ca/california_governor_whitman_vs_brown-1113.html']\n", "\"\"\"\n", "#your code here\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Problem 4\n", "\n", "At this point, you have functions to find a collection of governor races, download historical polling data from each one,\n", "parse them into a numerical DataFrame, and plot this data.\n", "\n", "The main question we have about these data are how accurately they predict election outcomes. To answer this question, we\n", "need to grab the election outcome data.\n", "\n", "Write a function that looks up and returns the election result on a page like [this one](http://www.realclearpolitics.com/epolls/2010/governor/ca/california_governor_whitman_vs_brown-1113.html). \n", "\n", "**Remember to look at the HTML source!**\n", "\n", "You can do this by selection `view->developer->view source` in Chrome, or `Tools -> web developer -> page source` in Firefox. Altenatively, you can right-click on a part of the page, and select \"inspect element\"" ] }, { "cell_type": "code", "collapsed": false, "input": [ "\"\"\"\n", " Function\n", " --------\n", " race_result\n", "\n", " Return the actual voting results on a race page\n", " \n", " Parameters\n", " ----------\n", " url : string\n", " The website to search through\n", " \n", " Returns\n", " -------\n", " A dictionary whose keys are candidate names,\n", " and whose values is the percentage of votes they received.\n", " \n", " If necessary, normalize these numbers so that they add up to 100%.\n", " \n", " Example\n", " --------\n", " >>> url = 'http://www.realclearpolitics.com/epolls/2010/governor/ca/california_governor_whitman_vs_brown-1113.html'\n", " >>> race_result(url)\n", " {'Brown': 56.0126582278481, 'Whitman': 43.9873417721519}\n", "\"\"\"\n", "#your code here\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here are some more utility functions that take advantage of what you've done so far." ] }, { "cell_type": "code", "collapsed": false, "input": [ "def id_from_url(url):\n", " \"\"\"Given a URL, look up the RCP identifier number\"\"\"\n", " return url.split('-')[-1].split('.html')[0]\n", "\n", "\n", "def plot_race(url):\n", " \"\"\"Make a plot summarizing a senate race\n", " \n", " Overplots the actual race results as dashed horizontal lines\n", " \"\"\"\n", " #hey, thanks again for these functions!\n", " id = id_from_url(url)\n", " xml = get_poll_xml(id) \n", " colors = plot_colors(xml)\n", "\n", " if len(colors) == 0:\n", " return\n", " \n", " #really, you shouldn't have\n", " result = race_result(url)\n", " \n", " poll_plot(id)\n", " plt.xlabel(\"Date\")\n", " plt.ylabel(\"Polling Percentage\")\n", " for r in result:\n", " plt.axhline(result[r], color=colors[_strip(r)], alpha=0.6, ls='--')\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 9 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that this is done, we can easily visualize many historical Governer races. The solid line plots the poll history, the dotted line reports the actual result.\n", "\n", "If this code block fails, you probably have a bug in one of your functions." ] }, { "cell_type": "code", "collapsed": false, "input": [ "page = requests.get('http://www.realclearpolitics.com/epolls/2010/governor/2010_elections_governor_map.html').text.encode('ascii', 'ignore')\n", "\n", "for race in find_governor_races(page):\n", " plot_race(race)\n", " plt.show()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 10 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Briefly summarize these graphs -- how accurate is the typical poll a day before the election? How often does a prediction one month before the election mispredict the actual winner?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Your summary here**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "\n", "## Part 3: Analysis\n", "\n", "#### Problem 5\n", "\n", "You are (finally!) in a position to do some quantitative analysis.\n", "\n", "We have provided an `error_data` function that builds upon the functions you have written. It computes a new DataFrame with information about polling errors.\n", "\n", "Use `error_data`, `find_governer_races`, and `pd.concat` to construct a Data Frame summarizing the forecast errors\n", "from all the Governor races\n", "\n", "**Hint** \n", "\n", "It's best to set `ignore_index=True` in `pd.concat`" ] }, { "cell_type": "code", "collapsed": false, "input": [ "def party_from_color(color):\n", " if color in ['#0000CC', '#3B5998']:\n", " return 'democrat'\n", " if color in ['#FF0000', '#D30015']:\n", " return 'republican'\n", " return 'other'\n", "\n", "\n", "def error_data(url):\n", " \"\"\"\n", " Given a Governor race URL, download the poll data and race result,\n", " and construct a DataFrame with the following columns:\n", " \n", " candidate: Name of the candidate\n", " forecast_length: Number of days before the election\n", " percentage: The percent of poll votes a candidate has.\n", " Normalized to that the canddidate percentages add to 100%\n", " error: Difference between percentage and actual race reulst\n", " party: Political party of the candidate\n", " \n", " The data are resampled as necessary, to provide one data point per day\n", " \"\"\"\n", " \n", " id = id_from_url(url)\n", " xml = get_poll_xml(id)\n", " \n", " colors = plot_colors(xml)\n", " if len(colors) == 0:\n", " return pd.DataFrame()\n", " \n", " df = rcp_poll_data(xml)\n", " result = race_result(url)\n", " \n", " #remove non-letter characters from columns\n", " df = df.rename(columns={c: _strip(c) for c in df.columns})\n", " for k, v in result.items():\n", " result[_strip(k)] = v \n", " \n", " candidates = [c for c in df.columns if c is not 'date']\n", " \n", " #turn into a timeseries...\n", " df.index = df.date\n", " \n", " #...so that we can resample at regular, daily intervals\n", " df = df.resample('D')\n", " df = df.dropna()\n", " \n", " #compute forecast length in days\n", " #(assuming that last forecast happens on the day of the election, for simplicity)\n", " forecast_length = (df.date.max() - df.date).values\n", " forecast_length = forecast_length / np.timedelta64(1, 'D') # convert to number of days\n", " \n", " #compute forecast error\n", " errors = {}\n", " normalized = {}\n", " poll_lead = {}\n", " \n", " for c in candidates:\n", " #turn raw percentage into percentage of poll votes\n", " corr = df[c].values / df[candidates].sum(axis=1).values * 100.\n", " err = corr - result[_strip(c)]\n", " \n", " normalized[c] = corr\n", " errors[c] = err\n", " \n", " n = forecast_length.size\n", " \n", " result = {}\n", " result['percentage'] = np.hstack(normalized[c] for c in candidates)\n", " result['error'] = np.hstack(errors[c] for c in candidates)\n", " result['candidate'] = np.hstack(np.repeat(c, n) for c in candidates)\n", " result['party'] = np.hstack(np.repeat(party_from_color(colors[_strip(c)]), n) for c in candidates)\n", " result['forecast_length'] = np.hstack(forecast_length for _ in candidates)\n", " \n", " result = pd.DataFrame(result)\n", " return result" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "\"\"\"\n", "function\n", "---------\n", "all_error_data\n", "\n", "Calls error_data on all races from find_governer_races(page),\n", "and concatenates into a single DataFrame\n", "\n", "Parameters\n", "-----------\n", "None\n", "\n", "Examples\n", "--------\n", "df = all_error_data()\n", "\"\"\"\n", "#your code here\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "errors = all_error_data()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here's a histogram of the error of every polling measurement in the data" ] }, { "cell_type": "code", "collapsed": false, "input": [ "errors.error.hist(bins=50)\n", "plt.xlabel(\"Polling Error\")\n", "plt.ylabel('N')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Problem 6\n", "\n", "Compute the standard deviation of the polling errors. How much uncertainty is there in the typical RCP poll?" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#your code here\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Problem 7\n", "\n", "Repeat this calculation for the data where `errors.forecast_length < 7` (i.e. the polls within a week of an election). How much more/less accurate are they? How about the data where `errors.forecast_length > 30`? \n", "\n", "**Comment on this in 1 or 2 sentences**. Does this make sense?" ] }, { "cell_type": "code", "collapsed": false, "input": [ "#your code here\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Problem 8\n", "\n", "**Bootstrap resampling** is a general purpose way to use empirical data like the `errors` DataFrame to estimate uncertainties. For example, consider the [Viriginia Governor Race](http://www.realclearpolitics.com/epolls/2013/governor/va/virginia_governor_cuccinelli_vs_mcauliffe-3033.html). If we wanted to estimate how likey it is that McAuliffe will win given the current RCP data, the approch would be:\n", "\n", "1. Pick a large number N of experiments to run (say N=1000).\n", "2. For each experiment, randomly select a value from `errors.error`. We are assuming that these numbers represent a reasonable error distribution for the current poll data.\n", "3. Assume that the error on McAullife's current polling score is given by this number (and, by extension, the error on Cuccinelli's poll score is the opposite). Calculate who actually wins the election in this simulation.\n", "4. Repeat N times, and calculate the percentage of simulations where either candidate wins.\n", "\n", "Bootstrapping isn't foolproof: it makes the assumption that the previous Governor race errors are representative of the Virginia race, and it does a bad job at estimating very rare events (with only ~30 races in the errors DataFrame, it would be hard to accurately predict probabilities for 1-in-a-million scenarios). Nevertheless, it's a versatile technique.\n", "\n", "Use bootstrap resampling to estimate how likely it is that each candidate could win the following races.\n", "\n", " * [Virginia Governor](http://www.realclearpolitics.com/epolls/2013/governor/va/virginia_governor_cuccinelli_vs_mcauliffe-3033.html)\n", " * [New Jersey Governor](http://www.realclearpolitics.com/epolls/2013/governor/nj/new_jersey_governor_christie_vs_buono-3411.html)\n", " \n", "**Summarize your results in a paragraph. What conclusions do you draw from the bootstrap analysis, and what assumptions did you make in reaching this conclusion. What are some limitations of this analysis?**\n", " " ] }, { "cell_type": "code", "collapsed": false, "input": [ "#your code here\n" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Your summary here**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Parting Thoughts\n", "\n", "For comparison, most of the predictions in Nate Silver's [presidental forecast](http://fivethirtyeight.blogs.nytimes.com/fivethirtyeights-2012-forecast/) had confidences of >95%. This is more precise than what we can estimate from the RCP poll alone. His approach, however, is the same basic idea (albeit he used many more polls, and carefully calibrated each based on demographic and other information). Homework 2 will dive into some of his techniques further.\n", "\n", "\n", "## How to submit\n", "\n", "To submit your homework, create a folder named lastname_firstinitial_hw0 and place this notebook file in the folder. If your notebook requires any additional data files to run (it shouldn't), add them to this directory as well. Compress the folder (please use .zip compression) and submit to the CS109 dropbox in the appropriate folder. If we cannot access your work because these directions are not followed correctly, we will not grade your work." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "*css tweaks in this cell*\n", "<style>\n", "div.text_cell_render {\n", " line-height: 150%;\n", " font-size: 110%;\n", " width: 800px;\n", " margin-left:50px;\n", " margin-right:auto;\n", " }\n", "</style>" ] } ], "metadata": {} } ] }
mit
metpy/MetPy
v0.9/_downloads/ef4bfbf049be071a6c648d7918a50105/Simple_Sounding.ipynb
1
4765
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\nSimple Sounding\n===============\n\nUse MetPy as straightforward as possible to make a Skew-T LogP plot.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import matplotlib.pyplot as plt\nimport numpy as np\nimport pandas as pd\n\nimport metpy.calc as mpcalc\nfrom metpy.cbook import get_test_data\nfrom metpy.plots import add_metpy_logo, SkewT\nfrom metpy.units import units" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Change default to be better for skew-T\nplt.rcParams['figure.figsize'] = (9, 9)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Upper air data can be obtained using the siphon package, but for this example we will use\n# some of MetPy's sample data.\n\ncol_names = ['pressure', 'height', 'temperature', 'dewpoint', 'direction', 'speed']\n\ndf = pd.read_fwf(get_test_data('jan20_sounding.txt', as_file_obj=False),\n skiprows=5, usecols=[0, 1, 2, 3, 6, 7], names=col_names)\n\ndf['u_wind'], df['v_wind'] = mpcalc.wind_components(df['speed'],\n np.deg2rad(df['direction']))\n\n# Drop any rows with all NaN values for T, Td, winds\ndf = df.dropna(subset=('temperature', 'dewpoint', 'direction', 'speed',\n 'u_wind', 'v_wind'), how='all').reset_index(drop=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will pull the data out of the example dataset into individual variables and\nassign units.\n\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "p = df['pressure'].values * units.hPa\nT = df['temperature'].values * units.degC\nTd = df['dewpoint'].values * units.degC\nwind_speed = df['speed'].values * units.knots\nwind_dir = df['direction'].values * units.degrees\nu, v = mpcalc.wind_components(wind_speed, wind_dir)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "skew = SkewT()\n\n# Plot the data using normal plotting functions, in this case using\n# log scaling in Y, as dictated by the typical meteorological plot\nskew.plot(p, T, 'r')\nskew.plot(p, Td, 'g')\nskew.plot_barbs(p, u, v)\n\n# Add the relevant special lines\nskew.plot_dry_adiabats()\nskew.plot_moist_adiabats()\nskew.plot_mixing_lines()\nskew.ax.set_ylim(1000, 100)\n\n# Add the MetPy logo!\nfig = plt.gcf()\nadd_metpy_logo(fig, 115, 100)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Example of defining your own vertical barb spacing\nskew = SkewT()\n\n# Plot the data using normal plotting functions, in this case using\n# log scaling in Y, as dictated by the typical meteorological plot\nskew.plot(p, T, 'r')\nskew.plot(p, Td, 'g')\n\n# Set spacing interval--Every 50 mb from 1000 to 100 mb\nmy_interval = np.arange(100, 1000, 50) * units('mbar')\n\n# Get indexes of values closest to defined interval\nix = mpcalc.resample_nn_1d(p, my_interval)\n\n# Plot only values nearest to defined interval values\nskew.plot_barbs(p[ix], u[ix], v[ix])\n\n# Add the relevant special lines\nskew.plot_dry_adiabats()\nskew.plot_moist_adiabats()\nskew.plot_mixing_lines()\nskew.ax.set_ylim(1000, 100)\n\n# Add the MetPy logo!\nfig = plt.gcf()\nadd_metpy_logo(fig, 115, 100)\n\n# Show the plot\nplt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
intel-analytics/BigDL
apps/ray/parameter_server/sharded_parameter_server.ipynb
1
15424
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# This notebook is adapted from: \n", "https://github.com/ray-project/tutorial/tree/master/examples/sharded_parameter_server.ipynb\n", "\n", "# Sharded Parameter Servers\n", "\n", "**GOAL:** The goal of this exercise is to use actor handles to implement a sharded parameter server example for **distributed asynchronous stochastic gradient descent**.\n", "\n", "Before doing this exercise, make sure you understand the concepts from the exercise on **Actor Handles**.\n", "\n", "### Parameter Servers\n", "\n", "A parameter server is simply an object that stores the parameters (or \"weights\") of a machine learning model (this could be a neural network, a linear model, or something else). It exposes two methods: one for getting the parameters and one for updating the parameters.\n", "\n", "In a typical machine learning training application, worker processes will run in an infinite loop that does the following:\n", "1. Get the latest parameters from the parameter server.\n", "2. Compute an update to the parameters (using the current parameters and some data).\n", "3. Send the update to the parameter server.\n", "\n", "The workers can operate synchronously (that is, in lock step), in which case distributed training with multiple workers is algorithmically equivalent to serial training with a larger batch of data. Alternatively, workers can operate independently and apply their updates asynchronously. The main benefit of asynchronous training is that a single slow worker will not slow down the other workers. The benefit of synchronous training is that the algorithm behavior is more predictable and reproducible." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from __future__ import absolute_import\n", "from __future__ import division\n", "from __future__ import print_function\n", "\n", "import numpy as np\n", "import ray\n", "import time" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Init SparkContext" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Current pyspark location is : /root/anaconda2/envs/ray_train/lib/python3.6/site-packages/pyspark/__init__.py\n", "Start to pack current python env\n", "Collecting packages...\n", "Packing environment at '/root/anaconda2/envs/ray_train' to '/tmp/tmp7qvxc3o2/python_env.tar.gz'\n", "[########################################] | 100% Completed | 34.4s\n", "Packing has been completed: /tmp/tmp7qvxc3o2/python_env.tar.gz\n", "pyspark_submit_args is: --master yarn --deploy-mode client --archives /tmp/tmp7qvxc3o2/python_env.tar.gz#python_env --num-executors 2 --executor-cores 4 --executor-memory 2g pyspark-shell \n" ] } ], "source": [ "from bigdl.dllib.nncontext import init_spark_on_local, init_spark_on_yarn\n", "import numpy as np\n", "import os\n", "hadoop_conf_dir = os.environ.get('HADOOP_CONF_DIR')\n", "\n", "if hadoop_conf_dir:\n", " sc = init_spark_on_yarn(\n", " hadoop_conf=hadoop_conf_dir,\n", " conda_name=os.environ.get(\"ZOO_CONDA_NAME\", \"zoo\"), # The name of the created conda-env\n", " num_executors=2,\n", " executor_cores=4,\n", " executor_memory=\"2g\",\n", " driver_memory=\"2g\",\n", " driver_cores=1,\n", " extra_executor_memory_for_ray=\"3g\")\n", "else:\n", " sc = init_spark_on_local(cores = 8, conf = {\"spark.driver.memory\": \"2g\"})" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Start to launch the JVM guarding process\n", "JVM guarding process has been successfully launched\n", "Start to launch ray on cluster\n", "Start to launch ray on local\n", "Executing command: ray start --redis-address 172.16.0.158:34046 --redis-password 123456 --num-cpus 0 --object-store-memory 400000000\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2019-07-18 07:09:19,971\tWARNING worker.py:1341 -- WARNING: Not updating worker name since `setproctitle` is not installed. Install this with `pip install setproctitle` (or ray[debug]) to enable monitoring of worker processes.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "2019-07-18 07:09:19,855\tINFO services.py:409 -- Waiting for redis server at 172.16.0.158:34046 to respond...\n", "2019-07-18 07:09:19,858\tINFO scripts.py:363 -- Using IP address 172.16.0.102 for this node.\n", "2019-07-18 07:09:19,861\tINFO node.py:511 -- Process STDOUT and STDERR is being redirected to /tmp/ray/session_2019-07-18_15-09-10_137772_188428/logs.\n", "2019-07-18 07:09:19,862\tINFO services.py:1441 -- Starting the Plasma object store with 0.4 GB memory using /dev/shm.\n", "2019-07-18 07:09:19,887\tINFO scripts.py:371 -- \n", "Started Ray on this node. If you wish to terminate the processes that have been started, run\n", "\n", " ray stop\n", "\n", "\n" ] } ], "source": [ "# It may take a while to ditribute the local environment including python and java to cluster\n", "import ray\n", "from bigdl.orca.ray import OrcaRayContext\n", "ray_ctx = OrcaRayContext(sc=sc, object_store_memory=\"4g\")\n", "ray_ctx.init()\n", "#ray.init(num_cpus=30, include_webui=False, ignore_reinit_error=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A simple parameter server can be implemented as a Python class in a few lines of code.\n", "\n", "**EXERCISE:** Make the `ParameterServer` class an actor." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "dim = 10\n", "@ray.remote\n", "class ParameterServer(object):\n", " def __init__(self, dim):\n", " self.parameters = np.zeros(dim)\n", " \n", " def get_parameters(self):\n", " return self.parameters\n", " \n", " def update_parameters(self, update):\n", " self.parameters += update\n", "\n", "\n", "ps = ParameterServer.remote(dim)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A worker can be implemented as a simple Python function that repeatedly gets the latest parameters, computes an update to the parameters, and sends the update to the parameter server." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "@ray.remote\n", "def worker(ps, dim, num_iters):\n", " for _ in range(num_iters):\n", " # Get the latest parameters.\n", " parameters = ray.get(ps.get_parameters.remote())\n", " # Compute an update.\n", " update = 1e-3 * parameters + np.ones(dim)\n", " # Update the parameters.\n", " ps.update_parameters.remote(update)\n", " # Sleep a little to simulate a real workload.\n", " time.sleep(0.5)\n", "\n", "# Test that worker is implemented correctly. You do not need to change this line.\n", "ray.get(worker.remote(ps, dim, 1))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Start two workers.\n", "worker_results = [worker.remote(ps, dim, 100) for _ in range(2)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As the worker tasks are executing, you can query the parameter server from the driver and see the parameters changing in the background." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[19.16281869 19.16281869 19.16281869 19.16281869 19.16281869 19.16281869\n", " 19.16281869 19.16281869 19.16281869 19.16281869]\n" ] } ], "source": [ "print(ray.get(ps.get_parameters.remote()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Sharding a Parameter Server\n", "\n", "As the number of workers increases, the volume of updates being sent to the parameter server will increase. At some point, the network bandwidth into the parameter server machine or the computation down by the parameter server may be a bottleneck.\n", "\n", "Suppose you have $N$ workers and $1$ parameter server, and suppose each of these is an actor that lives on its own machine. Furthermore, suppose the model size is $M$ bytes. Then sending all of the parameters from the workers to the parameter server will mean that $N * M$ bytes in total are sent to the parameter server. If $N = 100$ and $M = 10^8$, then the parameter server must receive ten gigabytes, which, assuming a network bandwidth of 10 giga*bits* per second, would take 8 seconds. This would be prohibitive.\n", "\n", "On the other hand, if the parameters are sharded (that is, split) across `K` parameter servers, `K` is `100`, and each parameter server lives on a separate machine, then each parameter server needs to receive only 100 megabytes, which can be done in 80 milliseconds. This is much better.\n", "\n", "**EXERCISE:** The code below defines a parameter server shard class. Modify this class to make `ParameterServerShard` an actor. We will need to revisit this code soon and increase `num_shards`." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "@ray.remote\n", "class ParameterServerShard(object):\n", " def __init__(self, sharded_dim):\n", " self.parameters = np.zeros(sharded_dim)\n", " \n", " def get_parameters(self):\n", " return self.parameters\n", " \n", " def update_parameters(self, update):\n", " self.parameters += update\n", "\n", "\n", "total_dim = (10 ** 8) // 8 # This works out to 100MB (we have 25 million\n", " # float64 values, which are each 8 bytes).\n", "num_shards = 2 # The number of parameter server shards.\n", "\n", "assert total_dim % num_shards == 0, ('In this exercise, the number of shards must '\n", " 'perfectly divide the total dimension.')\n", "\n", "# Start some parameter servers.\n", "ps_shards = [ParameterServerShard.remote(total_dim // num_shards) for _ in range(num_shards)]\n", "\n", "assert hasattr(ParameterServerShard, 'remote'), ('You need to turn ParameterServerShard into an '\n", " 'actor (by using the ray.remote keyword).')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The code below implements a worker that does the following.\n", "1. Gets the latest parameters from all of the parameter server shards.\n", "2. Concatenates the parameters together to form the full parameter vector.\n", "3. Computes an update to the parameters.\n", "4. Partitions the update into one piece for each parameter server.\n", "5. Applies the right update to each parameter server shard." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "@ray.remote\n", "def worker_task(total_dim, num_iters, *ps_shards):\n", " # Note that ps_shards are passed in using Python's variable number\n", " # of arguments feature. We do this because currently actor handles\n", " # cannot be passed to tasks inside of lists or other objects.\n", " for _ in range(num_iters):\n", " # Get the current parameters from each parameter server.\n", " parameter_shards = [ray.get(ps.get_parameters.remote()) for ps in ps_shards]\n", " assert all([isinstance(shard, np.ndarray) for shard in parameter_shards]), (\n", " 'The parameter shards must be numpy arrays. Did you forget to call ray.get?')\n", " # Concatenate them to form the full parameter vector.\n", " parameters = np.concatenate(parameter_shards)\n", " assert parameters.shape == (total_dim,)\n", "\n", " # Compute an update.\n", " update = np.ones(total_dim)\n", " # Shard the update.\n", " update_shards = np.split(update, len(ps_shards))\n", " \n", " # Apply the updates to the relevant parameter server shards.\n", " for ps, update_shard in zip(ps_shards, update_shards):\n", " ps.update_parameters.remote(update_shard)\n", "\n", "\n", "# Test that worker_task is implemented correctly. You do not need to change this line.\n", "ray.get(worker_task.remote(total_dim, 1, *ps_shards))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**EXERCISE:** Experiment by changing the number of parameter server shards, the number of workers, and the size of the data.\n", "\n", "**NOTE:** Because these processes are all running on the same machine, network bandwidth will not be a limitation and sharding the parameter server will not help. To see the difference, you would need to run the application on multiple machines. There are still regimes where sharding a parameter server can help speed up computation on the same machine (by parallelizing the computation that the parameter server processes have to do). If you want to see this effect, you should implement a synchronous training application. In the asynchronous setting, the computation is staggered and so speeding up the parameter server usually does not matter." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "This took 4.21185827255249 seconds.\n" ] } ], "source": [ "num_workers = 4\n", "\n", "# Start some workers. Try changing various quantities and see how the\n", "# duration changes.\n", "start = time.time()\n", "ray.get([worker_task.remote(total_dim, 5, *ps_shards) for _ in range(num_workers)])\n", "print('This took {} seconds.'.format(time.time() - start))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python (ray_train)", "language": "python", "name": "ray_train" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
Zhang-O/small
tensor__cpu/skimages/get_started.ipynb
2
336126
{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import skimage\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "# %matplotlib\n", "%matplotlib inline " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "numpy.ndarray" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from skimage import data\n", "camera = data.camera()\n", "\n", "type(camera)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "((512, 512),\n", " 262144,\n", " 0,\n", " 255,\n", " 118.31400299072266,\n", " 61.996043576099197,\n", " 3843.5094190895907)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "camera.shape, camera.size, camera.min(), camera.max(), camera.mean(), camera.std(), camera.var()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x19383128320>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu0rVdVJ/iba33ffpxz7iMJeUBeJiGAMCCiURBR02Ig\nuUGhqAeiCDroAEFRi7ILq1qrW6vLUbajR3WPHpUo2j6osvBdPshNIKVQIKJAKiJCAiTcPCEJed3H\nOWfv/X1rzf5jPtb69r03OSfkwmGMu8a44+6z9/f+1pprzt/8zd8iZsbJdrKdbCdb3cLX+gJOtpPt\nZNt57aRhONlOtpPtqHbSMJxsJ9vJdlQ7aRhOtpPtZDuqnTQMJ9vJdrId1U4ahpPtZDvZjmonzDAQ\n0RVE9Fkiup2IfuZEnedkO9lOtqe+0YngMRBRBPA5AJcDuBfAxwG8jpk/85Sf7GQ72U62p7ydKI/h\n2wDczsxfYOYFgN8F8KoTdK6T7WQ72Z7i1pyg454N4J7q73sBvOi4F7Gyys3eU0EMMGHwvzWmY+xo\n33H1mfTvx9sGw+/8J/u7Pka9//Ixj3U9xzrP4DceXuPy9S3vzxDzfbzjLt/P8a7PHmb9IO1B15/p\nOB5kvd3ycer9691Ddfz6+ut7PdY9LN+/3ZNvX/1RX/Pg3paOsXRO36XeVrd5vEdR9w2q/17e3s6X\nIe8vb+W+jnOM47Xj9Znlc2ibPXDvQ8x8+uMc0duJMgxP2IjozQDeDADN7lNw4RvfAY7yW24BSgBl\ngKN8BgNsV6ufKcnvYQGkCYMygQMjdIQ04vJCApAjEJL8zRGIC0JuGRz1ueZyvNzqeQIDmQaf80pG\nmBEoyf6UAeoI3Oq2gcGhXDu35e0w8dE+WmAg6r5Jz9VmfRByPHlg1bMLDE66PUH2t9YT0DCwCKBJ\nAmdCGCXZ3q4jBT8OiP1vMGTbTPKbba/PILYZWY+TuyjX0QXE1Q65C+A++P6cAihmvdag57VrCXLe\neZRr74Lccxfk70TlnhIBbQbNIti+03dKicDEICYgAdD+w5ERZgEcGKTXK++3vDPWW7bP1Ot2ZhQS\n/F3ZNv6+9ThhTt5nAelf1Gn/zUDoi62y/hYWBG7gn8tLBagf/g8G8kiPvdA5JeljGetnKv8Del9c\nGRgux/zML7/jLmyxnahQ4j4A51Z/n6PfeWPmdzHzpcx8abOyKg+A5cbCAgMrzkEMAUe9cXsIEeDA\n+iLEKHCEv6zQlRfXzMj3oSSGBCgPWnbQTqIvgJIMTGIZ/JSA5nCQ66HSmcwocKPHzPLiAYAWJB0Z\nZXtUg24wAOrPZpC6AGoykMpgZTMIDYNGCRQYFLMfjwKDpr2cU40IRUZUg0OBEdrkRoECI056f64U\nGCEWg2Tn7WcNKLJ/x5lAbUbabPQaGHnWgPtQJnQzAjpAOQVwItkGKPeZxQAgVcaQIc8uEXiU/Tla\n4ygDnyODG5Z31JEYhVa+4xGLQcmEPJKBjUyIc0LcFAMfOvJ3zpERdIKgXt6l9CUgzvW9ZCDMSQyB\n9RW9Vm6Hk0xckPcrJiCP5N7ijOTYNNw+LMrfobfzwg0FByA38lszk++oei6Uq79Z9ndDs412ojyG\njwO4mIgugBiEHwDwg4+3Q5yVmdoGb32DxAD3xWuwl8ZBO1wjA5mSPowgljkuCDmyWPskz4cygZnF\n842yfahmEwDyknVW8oGdgX4tI26Ecp0duWcihkQ6QJhLBzcDgaznzQzqghoTyCwZikGgREMPMOjM\nmgkM2ZYigxcyu3Ifiqdhj0sHG7VZBm9kmX0SIbQZeRFlxvcZnZBmTZndicsY1IsJbQZHRu5sGmX5\nLomXIA9WDJXsZ4ZMjU+Twb14ESAzElHu3YyBGQd7JuZJEQB7zkB53kz+HCkR8ijLd8SgnkAg9xi4\nZX1XLM9U97X3xwQEM0LQgdrAvRMGkCfD7QfvyfpIpxNT0AloxN6XPXxxr7IcxLxM8zbsO/NsfOav\nJrI0Kt4Mk/TjenxYH/VQahvthBgGZu6J6McBvA/i4P0GM3/6iXcsD8XdIy5WmRscHU/ZNmoVORTD\nYi84QF1NwA1EbiAvr5P/mVkeNANhLpZfdqjOFYAwV6PQDt3UNGbETXKPI1chBFUD12a4QdNZCA2D\nc7Vdm/3+6m2ZABpJT+M+DLdp2D0IG/z+nOw/YpB1OGJQhBiJauBTZAmRNawIISNlcb+Ceh5idIrx\nCW1G7oIYIqinouEK6UC3MCV3sXhII/VkLMxoq2u2bQKKAc06OO2mGx1oC/XaAqTXZesTtp14bTa7\nUy7GxgZtbiUUrRurbSLzLPS1eEhj2wWUPmX7sXmz1d9mrNTjgXsrSx5sZQiKF2sTFo7qGyEBSBI2\nxzkQF4xuVa45VyHPVtoJwxiYeT+A/dvdz288l5DAXCj/PWJgBAA1DDzcRjoEgXrFDtSNGwzMoJY3\nyYNliFHwF1m90EzwjseGX6hF5oaRW+mY1rG4UTfWjJZ1hIa9c3trZVaXTq1d3mZQAsDqKZgxilnj\neB1wGl5QzIhtRlpEd+8BlMHdRx+s/ghCRq5whLSIIAAhZjcgnAOaNiGFgBgz+k7AGfNOuA8lrNGB\nmOdRjHMjxkOMgrxQD4vUUHAmDMDDrKFVjfPk+ncMMCRAByDUE0vWRyxkFINMWc8Jed9JDYHNzh7u\nVbaJFJuipUkCoZrdUf4n/V28V/IfKMLPJV4EeX8HKi+Z1Uiol8FmbKiMDT+vhtdxIYN/cI3maZMa\njW20rxn4WDcmDSMqPCEDyAaw6MPLIx48WG7EIKQxAxEIPbk7lqas3gCjX5OXJSAlgFb7YGAg6stp\nZTDWYJK7gj0hq0GgjpCmGWEekCe5DO4EpF0JYTOgX0uDQc+T7F6Bg5EjceOx3oCnCZgF0EoCd+q3\nVsbLXP68iAijhLyICvCpMQgl7gcT0iIijhKyztg2yJ2yYvFqCmgmnX4VfAKKGg6kFNC2CSkRghoD\nCoyU1EikgKBGjABQkOeRejEa0XAOPS6rAQiRkSlLx22AvChAJgI7QOmAqRo/LPShBvUKCPpcZbu8\nmhSf0VnZp3Lo7Cvb5nEWbGGD/GeODIL8FuZBDDUg4V0G8pgRZ4TcissOm3ygg1EHbJzLeZkFXMwj\n2Y9jMRI26YWFYAWL3Yz2CHlYmxVYJ5aZPxkAqWAmJSBNgfYI/HpylFAodNLHOQBpTHKtT6LtCMOw\nnBbiAOSpuOZ5DJQshMz+aNR4RNbuDDQbhDyCZxriprwUrixomsAHJyVC0rDCPQBz3XLlbvr3BPTS\ngeJm0BcruISh4WEWwCMWozHNxWW0azAk3WcZGnR4eqwVIxK4TEFdkHh2MwAjCQ8AFEQ/qYFgmdUx\nkgHXzxqdpXQwtslj/bww+B7o50NsASyZgzRrEEYJXRcHBsg+91lGhYUaTABydFBRPBq5/zTTbmYg\n5iIW4+duNRxryIsog7qT+6H1CF5JVRwf3MDG9Yi0miQzsSBQJuRJdq+QMokXEDSLYLG9TUbAAGuI\ns1DCicoradY1hOurfmrX7e+2TEikxohJgO7aqHDQwTwqxiRNyqB2r7kHurUSNmTIzG+Zin4if3er\nxeNd7BW8DpAxwnoP2zUQO8IwAKhSQuYqUcEK1F2njIIzQB/omBGs41omgeAWOkf2h8KtTiI6C8RZ\nkMFfX0iVymJzM6m4ZJ6GDJISi4mG6fOkOEZXgCUi6ZzcsA5WMQ5kbmYQgyPoOUqYYR3T3FsD6Ww2\nnAcPPdzNZt2fARprzL4I4KiYhM3CPWkIEsBzQpj2xegkMSRgIHcBsc0DCkFsEvp56To1kOmYBuCz\nPhkmYdkWBUP9mm3mr1OXPXmWglfUE9CsD1fPJu1SH1kzWRxZMkFQAwCIZwfxOONmQJiRz/DmzmfD\nJKD9Rt+9ueZ5BMcO7D0TiQtvHu9yf81QL3NBbgzShL2Penp8VPCqOKsMh3rE3rezfGdhLqIM/KCG\nKDdAexiOdRigmiPQT7GtFp54k69C4/KvWdcbrdI1YWHxGopbqA+sXS9xmqcqK6AmGNiEEmeZoaC+\nuLm2vYFLIQFRXU0HhIIM+LhB4hWMWXED+TmPpReFedAMiaTCwkwQqqAzmhzTZjIASTtPy+5VUCIQ\nE2hBIDVgSCQDx55ZwDDFZwZCQwue68w8yhVXQY3GKJfwowIFKZasBagAjQDc00ideAZ+TGuEkgUh\ngLua16CDwa7XQjlAMg76fNEKCIpGjuH3tAzYNjVOJGlJAJ66hHJI3OAC7trnsWIgUf51u3KJOnQf\n6skNBWt0l1bYUf88kuffT+F4A3QQ+sSix88NOxYQuiGuYKl2ykA/ZTcw5s14JiOipPQVXLTvOZZw\no1+RfbOm99O4GKzttJ3jMdiFk2YMbMRq4wiwkZ4q0NFAo1CBMzVOYIAjoGNCgRzzHixGZBJDBMBf\nPtfpUztM0JffcPECYglPDDSS/cSKleyCuvxKyuGGC4BZhTx1xoNH6n00rLMoFzec9DmNKuOgA9O9\nGEYhK7FkEUi9LorQEEJDDiP5NDWC5bZYvAH9wwZ8aLNjBwY8+nNts2AQOct2aiAspckpIEz7ks5U\nvoVkM6w/sKRpUd0z2IlP6IIbGa6IaazvkkLllRk2pR5anjDCTI181Z8cwFODAMUYnLdSOWeADuIK\nBIXa8drr48iwNG2OjNCTY2TSR0m+q7xjz9Bp/7TwBNDx0hYD4++qAu4Nh2MCmgW21XaMYfB4z260\nspSAeA3cLL04qIuXCvMxR3ZOQpwVN59shq2yHQz4QK+vwTIQgD7cCSMbwKc4AxmIVRGbDAXnFZ29\n2lwGW08yq1m4A+0s1nnqzhVY0HQDLA13sIFhHaSK0R29j1y4AkyDQW4Apv/d5DKj98EHOgDPZnAi\n/97TmWZgKhLUgBWpxomiZDj8OBWOYUbAwhdiyPe9jgBi8CIWD6MOPexekxCa0JUUsBlnG6Sc2fkl\nhjVQr3yXXLxJCymZyYFpsmyFYlbWOADNpng9xrCtJzZoNiHMyHkM9cCOC50gGg0jzIvM8Axa6U9w\nUBIowKT3VUtzajYj9DrBLeQZcMKTAiB3hmEwCxzL/2FR3CRP80EtfQPBFdhiNt03M0IP5xD0Uy7x\nlp1LPY40ySVd5MaHBpmDmqgCpkKljRAyzaLsT50aiApvCBvRXVPrMPIDSkc2wkzIw5jbB7zuY7G3\nAYrmjtce9jH4C4b4G75ATfZ9PMsxjx5W5EVEu7pA6oaJ75pSbbM7mCTz0WSk+ncFKcXIGGAa9Djy\nfxhLdsUGPYfgxsAxCMtUAGLwuiDeVxaDYM+Qo9KisxkGwX/kR/G6uM3glhxfMECOm2pm7oC8Ur0X\nNRZBJx4LA5AlE+aMRxt4avc8tDRSXaKS9kRlDFh+C4sCKNbNgHb3GNTgNBtwsNKMgoHnQdOWsYd6\nOvAxsJ22MwwDyuAUlFY+pwZKjyY3EpbyseyDM80At8xWK2EvKWySGxQO4hYK6kxOpUWwAUzulRiX\nvebX52lGXA9az6GZj8igtgyMMNOU5hlz5EP6xt0fh4OMQmIqgKNx/n2sWwhQ5/MZ4raPkgwi9Rxs\nMLINtokOKjUiYSzYgWU3HE840pbja7NMBVAGcp6VAcsJhXtQ1UVwH+RvveaUQhn4fdUzW0bebCps\nAXKtHQHjXNKSkeW7hjU7w6BZUGBaB3CvbNGgIR0z4nocGOkwI2CjQdrTI8wkF25AdpjL7BuSho42\ne6MYDet3/gqN3Nnqu4rSp5ojYnR8kGtWK494wDGwlKb0ewZHSYdLKY0ZSqBfLZ6yd6EEzE8VLM7O\nU9dH2D5pIp4DZdkub3Ok7wzDwFV8r5kJAxBBVejAVfyks73MrvAQwrgHdjzn0lfupbmSgL7wBgPK\nrae1ek0/5RLChM2gMwHBAEUOAjI6gSoAxIT80FiYiKmAjp55ABxoBOQe2LACa+Y5JJTBqzOo0aQ9\nZdnLIEWbnQpd043zQjMHa8nDBjB5epOaXGZroNCqG6VNV9mG3AmPwus7dOBbatTPzygGcazT7yIU\nfCBQMUiBpTcaVtKrFR3ngffEI5bwgKngNArgOqmpZp1maIYBYrS82E1+SxMZUCkOZ/s05ipWL65+\nGsGL8ew7YoDm5IbC3qDzDhiIFbMxj7SAiuDZt8LBqb0J7f/qsVg4E+c6DrgaG9bv+spwUTln/HoF\nH4EqTtPPNbBSU6UtXeipppY9tABQ0VDLyzW3UHk1xfozJHVogKH9U6Me5sqp70uowE2hspoLx5F9\n1vLCKRIDUWMJR30egFZ6A24saPi9MSGXP1tYYaQpwKsroRiDsSAlti8ApJOdMiFoIZUXSNXFXhbl\nBEZAknCltRRoXUlJvh1XhsuNWJXl8EyD/a9VoQNKtN0r9B0qaOQhhXkPVHlghtsAXu+SW01jqsFk\nPW4BlfV6tWqyngwMfAxWa2H3qB7q8ejGudH+pX9bn7J7Y+N/QEMSomH9RAOEmexnJCl53zJ5Dmop\nqPrcl8/L4ORW285IV0KNgg20asC5y1WlgCztY9WUvj+qsKIvoUDBJzDINADVS9XOZC+Om4JPON/A\n/uupGAP1EtI0lzBBB1uNJXDk0mnNOLRZBkNcMgjL1Zdm9KpMBGmmI4xTCSdi9toF6KC1GgYAiDEP\nnilFRgiMycoCUTMIRp227ILddqiozpLF0ONrZaazLxv9vskIbUIYJdBIvJh6G4qMMOlBoyScCegx\nK0DTB2GNzRBL+bp5UFx+kxcKxMMFVLJUoEwiRlyTO5NMAwakJQ8lOkknk1bohjmV4rilWRoQL8Im\nHqo8Cig+YICkFfoZvkCseBnE6/W0eVKiEpeQwFP2du46W1ZtZ561P0f9fTttZ3gMVKyrNY/T2Fw+\nc8n162CuUslCOOed4DXvNbho+/nLg7xQzz1XnStoaJENPIR0rjwSRmOeZJ/BLL0YFsKm5HqfdIyi\nKfvTgLVqwMn5aYC8e0Vl5b5zJ7UJeRE9/ecMRoZUPAKehQhKYa5LtzkRUheRqkwDZwJHKpWQgIuR\nmMfh+gqZAGbBHIxRadv1JfPg21q6L2mmYhZl4ADAOBd8xAbvEgDr+guJgI2iz+DaCzqo00oBlt1b\nSMNBzAoI+rGrULJG/A18tndMjMHMbf0xjcqgNaq0Ve2afCKbF1ljJBWvJSpe5lkIRtEm0XFgfde+\nr5tlLCwNauFG6IUluZ22YzyGoEVQHIUHbq0upvLPHsTJfxaX1RWNgLp5Tfk8cC8hBiG3MnPk0TD2\nr88vH1CIL0E6Y1gEiWutc0yzexdhU5PZHgIVd9jSkNTR0LVOBDLgLS9tD8jAqm6xHrwAiksfh+Ir\nXtTUhTIgzPMYhBgKYnp5NBwrcB0FSzmS4ACWzuRejI54A9kzIJYuDW0qHk+VdUCA4AjmQtdFU4Bg\nJpaWhHprGu9R5ZuXKsWSPjZWoWQTyGnO9gg9XOh0EHfVzKyDzjUZstLx9XdjQRouYUQ7J9YpVyZH\nSZs3G2pUAiPO4Ndk9xKWQHQDDS39WLNuPaz251B9px5KHqmYS5Yx0GxgW21neAy15zyrYjPrvAmI\nvdRN0BIJKS7IRVfYOh3gVXXiXknYkav6dUBfAMQ9NO/fEGsya92R57ud2GIGiGuLLy/DwgwQEOZB\njImyH53Dr1WfYlQINA8l3ge89sKbxe4VU9K8jEHZdS6ztJCJYvE0EMBdkH6o3kQwqjOXGd/ToESV\ncSmzPs9iyWqMLG0J0YdoqmrOKA+Mk+6Xo2syOOZQ4ytWM1J/B0g2YpKKd6V4UZgH5CYL/wOyDy00\nVblQr0np7GkihVHccklXZgGWAbgh4qgepJKZrLLRFZ0A9GtaXj/WPtQDeYXB83LJxGIUgpKKut08\nMCT9CmvFo/BuhDejmJhOIElBwzQu/cL6v+ELo0PFE7AQuV+teBG9vDpjQm6n7QzDAHjIwEEtZKyM\ngw6aOCuSVmFubjrQHibkBog1oo+h+AsA50YUy65Vk8ZX8A3hHHR32UL1v3bAgfQaFNOovrPsCQdG\nXskDdSGndq8XK5BHBiyWGZCtRFuvaxCDJ3W3R9nFTSy7YOlMVjygLrU24RbTUwBQfidyliLFVNKM\nJswSu0KUIkYwGnhgL902Q2ONQpGLEy0JQe3qkmsKXLIyji3o8Uy4pfIk8ji7AfGU70D6j5GiAdRC\nRouzUO3PKqaDEk6wPHsp3pNroB5Seh8sPCiMRe9nG5KR8PJsLu/QdToqLg5IPWSSCc/qf8SrKX0U\nKGGEfQZkkAcuxVN16OEYhp7HajoG5dhbaDvHMFTNAcjKbcpLbpZJb3EsnoUDlureCe+8wgdiGbDI\n8sA4wpV6BhJZjEFhjVnq4rYRkhbnWN0Dt+xucqmr1/OrLuSA7ajApmMQdSxtKdGAMiic2qz/LO0H\nlP+ZnNcApyEHGZwpILSp0j/AEAMwfEA/h8jgSi+SMyE2CZxLqAFIUZVcfvDLI0AUoyILCSqyb1cI\nWuSYiD93E2sBhqBsbfM108B5+NyAggXI/gBDwhfqLXtRhRqGS6EajNU7qEHG3BbGZF0b4R6cbmtp\nxzSR8LQMavJwNfRUQhzDAQxU1Hfr1b5VGt9+twkrzrTvmhGpw4lQjmXlAttpO8MwUImvPAthMZUN\n+gZO8PDCkXHhnKfqJchx1BD4CyyFLADAY5SOher80LhMSSsWX9oATQZCWcWjXa9WTnJk15pkNxIF\nL/DZLaJIky01z2TYDZl3YvUSRsGuPAT3UhSUtMwBRSgTkkE5I7ZJWI2EgUpTbJKLuMSYFajMamfL\nyCODAqoBn7OIt9idhKAGE3YM/Z2B2CbkHJQyrRJyFV84tHLuozyjwEBHLt1Wg7tI+qy4eFqkoF+d\ntvaMQz8cJQQ4kLisdmR4FPWq8Ziqfmjv3jgyXT2Dl3M4XdmYk9Yn7DVqKbbLv6mXULv/A6CRyj+/\nBjUEcQEMaP8Bg/B5q21nGAbAbzIbumsxvqLJTi9VQ+ByXSRxVVgMMxvmMRgIZJMsUGaHQf5Z3VeO\nQJ6wu6M63Mo0qIPfXdkgzLWwCJKx6KkQoGyCrzsxMKj/d3XjDBC04MpFY8t1oc3ALAhQZ94CAbxZ\n0+LgAyrPtQYhivCrSa45q1FDCVYvIefg3/X6YBhBVJzUUABAToJTWM0EZxngfYrFW0OowgQBLU2/\nwQ1pogEb0uTlnCZt92SFY13QEE8L0OzNRMsIBa0vgdekFPUkea9xjlIdqXyFHLV02liM6jnWOhuu\nGVF7JuamKzDIkL5n6uVWQ1ELC5X+UPq8z/bOz9G/reYBldHQ8MPp0KFsY33dqiwNRHWPeJttR2Ql\nrOrRWI4109G8gzgrM7RnH4KyHBfDY4VOKaYZHvsZ0ChElaGHABSrL/yFUnprlNswDzLTWFbEMhPr\n0XUg65mIq+IYO5aFEVJjQe45iBpQUTN2VzVymTkzFfag/W2WTrejNquOQil99usxyfg6dcriTVjq\nspaBs5ZSQE6q7pQJFDJCyEX30WoflhiTwbGDwoJ0Y6HnCqPkWIRJ1Zl+Q5j04hnVBWSaxfCUpWZ9\npFIyS7EZ5HdupHoyt+zl8P2eLH3NwTzZrl9lDwusUK9WhrIwwbQSPLUdVC3J+k6UvplGjLigAT7m\nDEblvXjVr4YNSScjkxpYFoK1FLyLu6KMDdvORF4srB5Iz9dcjS20HeMxWK25o78rjDgvQIqlJNOI\ni0hFBJojJCivunxhIdu6d6qxW0iEDMboYEA/4fLwDYys1FYGdRTqluVxRrMR0EdVaOIsM/+iFvMo\niDijFNBkVF7DosIjLMwhzWA0DB5nz1KELmjKLRdqcE+FTelZCgEhuQO4Tmm0WTIRCuR5XQTg4ilG\nOgqBRfUJEA4EQ/gNgIOR8p1qNajQCwBwH9AnQhinYQUnMfrUDAxNrRFpBCwgO/6RNxvhZ5jqU02R\nruJ6btMQoFTcp5S/sxSmRRqI5tTrfuQRV4OskvgzpWYFLm0S6XYpLqCDLE2KKpSlN61vZn2/Volr\nxiJo1ipu0qC60ij1Ui0s9xRnMi6adRn0WftqqIHPuXq+VIxHXYDYrosK1NdlKEEZiJvy2bII7Tp5\nWgZAYTEGaG6ZwIkHEvGoBvog5RcgZdMoqSLrZKETAQ5HgatY1PQUrLrSSFZpVxJ6rVlnHbyWYy9s\nRxTGo2GD4wyaBadVW0fO46wVgjIAeJRVio6GtOJx9sElI5qH21hmw7bQDIDQkWXQ5y4U/oLO4jkR\n2pWFuP5AVR0J11EwAxFGCRmxYkIygtZc+LURD9Wkl87HWZ4p90asgitHZ8NMMiGsdmIkjOtgHbye\n0WF4TfJiKwBSjWmhlXJMbIIxaT6nSDf2rksGgT3VC6+HsD5KPMQRygSDAlgnONEqOPe5pDFpAXAg\nT3WHBbnHzOqNWGatFiqycMXLuRXAjFqlaXhDWEg6k3qg/brkMVTNYrHcotSmc3H9ByKf0G21Ms0F\nOnWwMiR2tRQSl4nMLXkt3iE/QkC9DGeoUR8KuKfiKjaYUaPUsbi5snaAhQEYdGhWdHpQ7KNlw0dR\nWAOXbMQQMxsKtNi26rpa5sGKm6ymwSTduRpUXn6dNWQw/GLpWecu6FoSagD1dxdh8dSmGPA6m+H3\nRCgkKTtXhUl46TXLs8qqRj3wDuyZKRPSw4uZYiM2sKm8KzC8jqVmzyKy8wd80RqbJDrltxhgrTwH\nl4dXT6HmuMh7kH2ZrA+ocUklRHDqcpWOdD6KhhfNOjwssGwcgCLqW/Vp84DBck0194ISRDt1G21n\nGAZaip1qkKcCaizdaNba05G5vJgcxRgwlo4JwCjO1KtBCNX5CE6r9ToJtfguA2/gWlUYxT6C4YU9\n1gkH5dX1ALcbAjxGlhJdKsc0D4BQUohVAY/VRjCXgV/iJ91nEV0wBQDICP36u834FJOEwSELCKmh\nRbI1IhgVHZoqxaUgIUywIJf8GTEINM1lKbulTMBRsnCOQWBoCBOV4qql5p5BlVo0AhnXXJBQGYr6\nDRjICDg+lFUxy4vt1EOt6fLGaanTmwhAUPGW3LKrNNVqSp7GRvEK6v9rHKCurMyNZhsg/ds1Hq1/\nU/EqDFRRhNqaAAAgAElEQVR3+cKK+7CdtiMMA1dW0VWa9MEA1ewe4fRQwxpqZqPxHmrvYKD4m1Hi\ney6/2fHrJe0MGMxNLh2s5bKOoknCoxr4ClRaGEMdgce5qnqjomVoHr+lHjMVCbjAZR1HoLAKZ1G2\nMaMRdWavyU225FxTLVFnszHKpATAU4hEMguZ7Pto0mO+PhooPXOvCtMzZdeAPIThROV6K3KSqT3z\nIviJw0qPvGHLJen7rcRY3IDU3kFcGtAmbhNLdofrNHKlvUb1cVg8PmEbap9Ywh4kF8vI1SxPDOTg\nh5Bb0XDU04hq4A3cJL0/Mzw5AiGSTz6Or8diGCScgAsi51YmL8qqCF0ZjlwBkUUApgIudRzYminb\nbTvCMNRcb9dv5MrSQgZvs0mFERm5EJx0xrXBbC+GEgY6C3Zs1k5hKLLllEtlJklMuiAQVUVSs4Bs\nFt+EQxKV8wfI4jLaSUgHj68qBXLj4F4HUIA1wF3omsxE8wCmLNTgTAOjMShTZovl80CBSSojsxuA\nsVGi1UPgatxFPW4YJV+gpl6sNkyKmvRRrTZoTo3OYIRBaDN49614PYPCMQVEXe/B5PVrEBEoRCZL\n9RrTsSsDkAOX1cNMP5PLZALA90GEYz9ZJdnAVJ8SxoolA0J1AAed2Q0c5AhkiNcAlIjMC/9QqX9V\nLr9l5ga0fQsjjuEdGBZhtUa+Potmu0LFrdhO2xGGwT2GLMUedrNAeWj1ij4uvKL7xkppCdULC72m\ncMxoaGjbK3cegNNiOZZ1Js0IsKbHaDGMtX3gp6oQBiiAJ2MALHoaUo/tHa32MhJUQQjFSNjhLGVX\nhxEGKkLdfK2DsJLmNGvKsnOZ0ERJPa6szDFpe2zMR1g/PMF0dYEmZqxN5ph1DZgJ867BZFK8iayG\nxYhMPnG1EhK47oJ5Ozat2tTKxatxvYaxKlBBtxspf4NwtPeh6Upbu9MFaWZxSBCzWVvTw3Zs543U\nuKwZhygGIGu9TZhR4bFoXzJVaQEOlbwWCmuSIB6BMSmNmyBqTqzAYZnU8gi6RokcR1Zip3LMyih0\na5Kds4VtjatjAKhzGbj0m1ow2UWOh07XE7YdYRiIJe3i5aGkZBTtXE5IMsKSWnS2ScZmOR3AHETG\nzYqmnKWmXkKcVWi1rmdYKjj1GMY9qEAK0xZ0xLourzYPoLbMxk2wmTQwWDudy5q57gMrbjAsr0Yq\niki2ToSVV4dRAqaCLdjycAYwtisLrK3MMVIa8ub7zsDZ++/H/v/+x0/4Pva98OVIF5yFR5+zioe/\nd4anP+0gNrsGs0XrXkfOwWstwoi9yhKmylzF89TINToI2Wj1Z2AJMwyXoaULIZRKTAs3bAZW+TZf\nr1Lfge+ayb1N0+M0Xor1eksnA2IQCNJHfHl68w65YA6kNpqjep2WNUsQvIXKYHRJOAtzkxzbVrQG\ngBq1JKaCacDGhYZyGrY0WmQY1FsgPVeNQ9TAI/R4X5fpSssiSL6/uEg2Jms3yvKz0G3DQqyDlFhr\nTG4zLxSMNJCnZWU3lhncUX87fiihhXRMFJDL6LgjDQUylzAFGk601cxez5yAnFMzCRy1OrGr3liF\nFwwUoO05aV2BpPdieT5Wt8DiMcQmYTRK2DOd4d5bnoEL/nQTf/MH1wLv3Nr72H/L+wd/X/pvrkH8\nRw8hxoyuky5T0pKo1qW0Gggzpkvf2zMwT8CejQ1+oBhEe37WjMtgf84DUpNKOKGuMwDEjeDkJgDS\ny6vBYlWXts6ohH1yOtaZ2D03i9KAAaZgBVPGn7Fm+xrRTrYtg9sBSK5mfMsoYPjZsh5eyFcZHX28\n5RkxHHuusxjiyRQwcqttRxgGuxmrnDSGl5WkmjFojizRoQEXhbXQgTKhV5KKuZAc2VV+zbUzAJJ6\nEV3xQigVd+XIQlJaEGCiMRUKbTnzwX2sJGC9KaHGNIE3G5nxq5WrLU4fGAUbDEZcaobGIbQiyhLG\nyY1DXkQ0016qGhlSv5AJRBI2TH/gMD7/qeuA139l7+cTv3AdAOCCP3szaNqjGfe+dqVRrake3IBn\nLMKkL4Clhhy+yE0XikzatC/L7gFDo2AYjKYBKZFUqyqYJIv/ZElHdoR+b/LwzxincUOqWn0tD6CA\n0k5Jl5CCGUXeDfJbSACU8xLmBTegLKEsB/YwIzeVeNCCBmQ6oEx82cRmQzEGpFAUq9ecR/D1Kx2H\no6GRyY2GzSM5R3tYsQY9ZrPJ6NaW3bHHb9t0ME5sc5ahDlqTvDJhjDQVuqkZihoRtnDBfgdQJN2z\nUZA13tUORBmAv9BiEJBRhFZILL7pONryZ+jkd+uo1BF4w5LK6l2s64BYb2R7FULNh1tnDtJCVq3C\nPGC0uihxNqMoHnVBBhcBeaNB3mxckbmfNWWRWwB5EbE4NMYZvz3F/k/95VP6fg58/7tw+n8bgz6/\nim6zVcUmyT6YwOxAqTpqyBAlY2KzPicqqtDarObD15HoCWSGs8J+AAxwBQ5Ch6assT0DQZWkwQCP\nGHEWkHblKkMl/1jxB2G5CpZQV+9mpToTZNDlsVDzOUAVwuB05jQSPMG8VssW2KTk4WkWISJbD8Ww\nDMMeapmApOSkOrNQZzEMiATgrEhfos6+Y6CfVqXYW2w7xjDUmnZxRp7XrdNNzToJrXRBsg2L1fc0\njrlQDK+Es4o2o1eHjkr4UVlqAA46AigZA8C5957+yuV8zqMwXoMRdyKX5e5r0MvYewRZU9I0DIPM\n8h5vL3kT1GbXRPTl5do8yO9zIsRJj7AesXbLvV/xOzlW+9tfug4X/e4jGN09wsptY+z5xBhYBETF\nOOy6BtfGEBykySDTqAwsdRBtLqETIJhDm8uzBWSJPn2mzvlYiLGWNSPYMxIWDnpLoqwVNirZ+aCe\nqCl4OyGIvE6ClTRnYq+CcYkBIFjfHPbbmkBnGJjpQVi9jzMk1fiAMFhISTyOcvnGZPRwWlutKxIW\n2t+zCruEsk+9wtZ22o4xDOYe1XXkNdsxVABhbsRzkJWMUZiOZuH1ZclAhS9xTyidizoSd1HJTi7n\nbYYDcGQ72KyuyLPpAZCWAZuHUOsGAkDYiFKv4EVf+r/Nir6h/JZsDYolhl+JI3Wmq43GyMhL4s63\nbcLo7HV88VXf8GRew5ba/pt+Dxf96l1gAlYeSDjw/e9CrzN+nPSuHUlT+RzGSZe3Ex9ZVKora2lG\nuBGjR5HlvhQL4tVUsCDIO8jTjDwtxzAwOE+ycBXUeEJz/Xkl++zMUVSdOLKvZZnH2TEJAyoBuIqd\nZSacvWiDV4+Xx3BcYqgxyo5vpElV+l+HSoYVGeio3oBIwAng6DO+TnqhL1COFUsRy7YWhhgYWdMB\nttp2jGEoZCa4Fa31FinJylLUa4gRBINI+sIcsKHy8pcrynxbNSBseeusWEWw2QfeqZr1MPAGah59\n/R0TlxWsqHRgAGVGrPkJ1tHtDdhvQQeFYRJAoTRn8tnY2YxR1ZijqDu3bY+27fH099z6lLyW47Xr\nP74fn377tdj71/cAAJ72Vy3yejvYhgIjtpUPW4OSFX16oHqlQKZNDrb6FiDb1StO0ZJxNV4JMXnd\nirFXTeC3UJHJvQUPFy2M00v1SSSrx9lXnqwNYluAWaXd3CPN0k99tTObTIyXYMxJFDCxpkTXzEVL\nXJguJaBeTF/tXw386jELj6EyIlttO8IwmA6DVJpZ7GbWVe6oX2F30QBFllvd1iThAVdjAkqu15SQ\npOIOcC6Er4YM7xxmHJYVfEwRWhDnoQGQC0KZ+cxIWS2DdXRrXTUorMrRtss0QN/BKCKsfUn5OX9A\ne03OBM4Bk7bHmf9hgv2f/sCTeRXbbtd/fD8A4OP/7jqcekssGQo1XKmPjoGYt2DVnuiPvlcs5D49\na5HIn+HAIFuYUfETPGXsRCENLYwGr8bZvQHjkHDJIABw3kspvwas4E7OU4es5APXxFnrehfrvyLg\ng+E5bBszCChhhnnMdQbOC6xsEtW05bLKWG4UyFfv4sm0JzQMRPQbRPQgEf1D9d2pRHQTEX1e/z+l\n+u1fEdHtRPRZInrFlq6C7IGQorXCQ0gj/X9iPpM8lF5TUU7i0MN4NWNUaa1x5S4u6SOYhwBA3E6G\nuKaa9soTCQH6XXmwnDoNFJSqJxgEBxgYEwW6aFLF1Y14BDROxYvQa6JpX1iDRpxqGHHayyw3smS6\nahlULnnTJuxa2wT/4dNw03t+c0uP/aluN/9v1yEELsaqiy4pb/wKWZpOH5qRogA4o9OyF2pMqQvD\nZ5SKx+DfcSGJOa9BB6WTx0ZqFAxbqFaujrpWBDE8jDQOgvEFAHjGzH4HoDUR+rkRrzSNNCth6XMN\nVakyLrmFZ9/I41z9nzBgPxo4mSZF/6HOUGSbIAO8fsIMSFJAc7t6DFvxGH4LwBVL3/0MgL9g5osB\n/IX+DSJ6LoAfAPA83edaInpiMqZa2uIaKWC4EGDR8QLzDgJcxz8klMU+KstPHaHZkE5FHTl2EOYq\numJuXibEzeC0WMs6hM0gs1FSlNsyDyMuaLm1DJnNZ9HxBzcQGZKVqGfJRRAUXrMU5tbyPIoxscGg\n26aZ7G9kIO4D8pEWrNmJvIjoVL/g1N/6my280hPX+L6p0KdNwKVNJZVpRsBIX8aYNK+g5pfY8cwL\nU2NghkDo4eU7WYQGw5XHRzwQ2LWJwleU0n9pIqIuaZp9KTs7t6XDOQDdXjH8aQRfXl4K+QRjqMMD\nufnKa2nE6+1XeOAJWLpxkK6EgoiowoxcfeYSYnjYq9diRgWoDEvEUw8+MvOHADyy9PWrAPy2fv5t\nAK+uvv9dZp4z8wEAtwP4ti1dCZWHZVdmzLTQSRYibtJgDQBnM1YxmBgUqGAm+3c1EuxMOTUYJtjh\nGYlGSUxaipsn+egBDxS8wNZPDFwyFPUzrDkKTQWsWT4/cqnMNEHZGn+wQWPH6UI5BiDeQ2CsjDq8\n775btvS4T1Q7730LKc9eWvDGqzkbHuIsjILBhOo5AUMjMR4CjVDK+SB1aR6FNscbquNYOtzT4oCX\nWodZQL8qGSjHmqB4Q8uIm2EJWBz2WQMqpfJReTOxeKZWqBcWFV6gg9wqJmtSX+jgXAd5HnBGpZ+X\n5TvLTHgIUnk5wPZDiieLMZzJzF/Sz/cDOFM/nw3gnmq7e/W7oxoRvZmIPkFEn0gb6+7+2EPwtfpI\nQUYNB3yVIK48iVBZ0Cr+8v+DvFhzyZz40lTajQSk1QRfl0DDCWO/ObhoJdgZZcarJznrwI0OgrEO\nYE3LCTqPso39BhQGYKi+9/24hCO2roOtHZkJsU340pf3bOMVnpj2l+/+/8DrjadOAZQVrWpGqXpF\nVIdOtQdhM7r93gUtRCt4jAOItngLIAa8xi1SifNhtGSdEBzw9oVu1fVXEpwtcmOpTOPLOA5Q9TvP\njlHplwb6mWEK82JMnI/ApU/WKufLhqI2BnEmpCVJwyvwqecbHZYFbWwchaS6Dl/trATL+lv8hBse\nvd+7mPlSZr40rqwOLLl5Dzmysx8BDLMJvk31XVDXjgrWUGMM9lnunIvLZUAWF7DKS6eX0G+yONhv\npLr7pvreBrLtSvBFWMIolcwCV9vbjEqQjmr7aJxkbrmtGxlGCaGV9N6u1Rmau7e5DtkJaPte+HLx\ntHphRbpbXhsFu+ek4VcdmtlvhjN0Bj7CjcEAge+GBqLUM8tvkolQfoqlGrVP1aQ3MwSkOIXhC5Ro\nCPABDk46l4El7HWPQe/ZcS07vk1KamDq9LyvUm34QJABP/B4uZyTYynK8uIpC8ntfBnbNgjWnqxh\neICIng4A+v+D+v19AM6ttjtHv3v8ZgPZLLi5XnrTA5EJu1HLJZuVN7duedBWVY2OanPlRmYLJ7Iz\n54xGbRiDXIt1Tj2mehLUhYKsMzBas+WHQjEaZthSETrxZp0TclyqKwqtMMmANi2cqtefBIAQGNO2\nR3NkGJ9/LdrB77oAvJLQTHu0kx7Nalf0IMw4WGhUvyvAGY8AykAHPCNUi634u7FDVIcy7Kh+/9Dy\na+rleTPBmbFBlZoI4k3EzeIdCOYAJxBRB/cUbPk4SsPzW7OsWi2WUhc0eXhrngKqcDdiwIIEihdR\nr61pyywKKA/khnzb0Ns44qOO9UTtyRqGPwPwRv38RgB/Wn3/A0Q0JqILAFwM4GNbOaAVgJhrVtdA\nABBFXw0JLCNhEuCGM5jVz2PphHGziLJwYF8gxlaoNi/C8YPHGVee3myHcSxHdsouuoDFwfGAsDMA\nEisjIPJoVMIDBeBYxWSdAFVRi6nJSLOmqCIp0g/ILrFaJu1r1fZ88iEcuPLX8fnLfgsXXX0nznl3\nCxxs5TqtypRQakKWZrRBStjeS1vCN6oMh3yQ/1zV27CHyiM0r8LjbB2sxPC6B2sMwGTg3SPFEpaQ\nIEB4LP/SuGS9zEOIM10v0/AzGoYRsh+8OrJmPQohqtCn00RWnrJ6CJ9Erc5DPY1+Ra5ZMnPquTTb\nnzC2kq58D4CPAng2Ed1LRG8C8O8BXE5Enwfwvfo3mPnTAH4fwGcA3Ajgx5j5iWEPkkyEa/Cbgage\nYrNOCthodoAkzWQYgnkXhfteZhbKUnFHmsP2zMPCZpXiUbi4x2aQ32N5SubGto/pFxY61C5sT6UG\noAoTyAaEDn5qsrjRiYorrdkNP455BKME9Jrq02Z1CbmLOG3vEaz+wi78/U9f+4SP+itpV5x3KV7y\njrfihb/4tuNuwytjXP7aH5U/zn067rk8YvXuiL23jNwgOF16koc4S2ThfgD6LlUSvqqRYF2vwZiN\nXKedxxXLVCeXrFoWecToV7JWP6rxIIj2QraZV44tmQNhy5ZZmgfGglGMhVDsASNOZa3X6afssvBy\nAyWMqKnUtj5lnQ5dzi444F6NCV8RPpTMRp0OLWJEQFxsL9on5u3tcCLa5Oxz+bxr/rn/LTRmsbhp\nxIMwQZBe2S6kEhJAGWZmG3NlIJbdNQEYqWwHDGNfmx2UKFPXQIgacRYFJ1NUGjDwuKTdGNLxGUfr\nLFi8nSojUu9XXQ8Z7bnJ7mlYqXUIjOazK7j1LdszCld96z4nJz1Re8k73opHnx2Qxox+jyhb3fHa\nX9nyua585ktw5BXPx8YZAY++xIQ2MKB2U5vFW/IvMAwFgBLnMxU9Tn//GE5zCb6Qba2UxBU4yY0u\nOjNmL8UOSQe9VubaZVj5c5jL//Y9Vdc1UCunkl6sORcDIpUVRlVpRTMYvk6rZieWB/2xllMU7gW8\nTqKu6mw2GZ+89l/czMyXbuWd7YiyazC8ViG3Qg4RhRv29AwSkEZF3SZofOWKN7m8LFPSEbn3o08X\nZqVMF0DBFjJ53tuyFsvSbaK7oN9Zx66KgBw0SyQqQ6GIqAI6ADRsoSAlvoNBENlLrB2lBxBHSZaE\nCyJ0ao1Cxup9Wzful7/2R9EcmuGGj7/ncbe76kWvxIE3nofuuRsY/dPDmLY9HrtrL/Z8OmJ+GvAd\nP/kW7L7xM7jhsx9+wnPecPtfA/hrAMBLf+It+NKrFgOJeABiFOpnWBtbYDDwZfUreVd1RiLHoszl\naWYGXEVKjYLRnaOuCRHnUpkaAO9LNY5k4KPF/zZAlxdRBgPNppwrV6thi26IGjKd7eO8DGDXZFBy\nEqCDeaby75qCNy9gdJjRT8jVoAEgVuIuElowOEp6nxYMpu2FEzvDMABuFFhjbrfwNngz4OsXKprL\nLWPvcx/Gl+85RcqktZmxYGPh6cCjhJKVqJ6TcxaMZ5DJcYhBpV4FfJaTcUmxNVwG/tK9uTtM8MyC\nUIcx3J4hmor2lcbmuc6M6DXJak8B3a6tv/QvvnSK+akTXHH+t+HGu44N/1z17d+Hz/zvZyKMN5EP\njUCPTDG+B7joH2a46fd+E4AYBnr6GVs+r7XplxegyFg9ZROzWSugX8jgHJAWUUrXm6Vn3jAoBbia\nVhDjMGBABk0zA8WgG4jdF5DRjmn1EwQzGCghY52B0MHnWj6WiqyKmgw4N0MDiCHIIxRQkavPClzW\nSyT6coy6YIyfxwwSwdOfORJce9JsaSwGTH4jUBLjgASEtL3IYGcYBqoMQADq1YMBjZNshZ7KO6AE\nzE1RyEpoLaOwNNjsOPXfJhpaew6E4MCX60QqrdZTmSi/uYegYBqDBki4i5EYVyERmAHOsSgb2fYG\nyOkz8evOBO4a5zOYliMAhJhx6q1bl+dpjwDjx+BG4aoXvRLX/+17B9vc+i+fgTBagA+OcNotAWd8\n5CHs/4s/GGyz609uwX47xne8CsgZ/Zl78dhz1nDq3x8EdQlMBErGsAlA12PjkhF2/VVEtwtoVmWw\nhk7i+nT+XHgftuRfGoYKDu5pylHqGXgIGpPhRbq/Es/qhVy82TvWxtXfy6bWyHR2LbJ9ARxthSkn\nRemycJQAHlXn5ep4BOfg1Klt+87X1VSWpWVInFtj/2t9UBFBLkZAlKoIcf71aBgY7sp79ZuNjwzk\nzIgdfG0+c7lCR1i/Yw+oZY8njQefR4xmI3idhXsLDOfSW5NFSFTJaUEgkKv6mGoTN5XkeMOSiZiH\nqnBnCWcACvff2lLmg5dFTw2TMARfDQ4FLperhCbLZrRtwgd+49e2/KjHBxl77pBlvy67+mrc9b8S\nvvvNb8Z/f9e7ynVFFm3HNmPjrIjZuUPi1BXnXYovvf1SWMLp+o/8KZ5Me8Vr3oD3/fG7B9+94GOv\nw5F7divmYkaZBmpcAMokUBkO30a1NoDivseZhAs2sEQdXE+ai95jTSSycNXWQLXfKaFKoYt6ua22\nLtgCoZ9qSOy4FnxRWhc7VjASVERZQqd9XpdsBIo3wE0xAvX1MUHkCzugX1U9k9rbxvDzVtpXTHB6\nqlvWMtejij6CADIAvJRUXjShPRwQND1ky5XHDbXkC+1AAU55jptBYlE1LvbZshXuIQCexaBeAS8W\nZSFb9UguWvcxlp56ER7eRPZZ0LEEAxut8xDEkFi5MMFBSopZdA7UYwhaihxV3Xk7rdnMaB5ZBwBM\n3ncLdn2uwcqdh4aPehaQ5xFh2iM9/wgOvDrgsquvBgBc9PtvxSN/egH4ux/Fy//JG7d17qOu5cFD\nR313+JFVcc1NYk9xBGSAjaUKdd+rOgrzNPMoy74N+0JBeZTRr2RRcRpLTYTtW4qhIApONnGoMaZq\nZi7nxkBbMY3YK3wtbWi06GQsyirL5pqNmjGwpehqIp8BkeYpeHqSiuEwwLFWd/Ll75idxxAXGlJs\n591sa+sT2JwKbTGjavSLK1hZRf0NACx/a6CMNaedmmw4zOrrYh8jlXNT149HuYQw5uLZ2g9WB5Gr\nMMIYiosS93IsaTVfin5PtehLJFmJGlhaw1ENWBC9Rl8jssrTxyahn7UYry4QY8bKeIGVtsOXP/AM\n/M3bhzPuE7WP/D+/igv/61sEPBx9Cmv3ZeRPf9Z/v/LZ34ndbww49MwGeReQIiPs7nD3vhEu+v23\n4rSLH8YZq0ew1s7x6L9dwWVXX40P/tqvYd8ll4OaiPTlhxB27QKfdxZue8suXPK8u7Dej3DaZB0P\nbOzCXbedhec+/248uL6GR655mmMdV3z/63Hjn/1nrN06wmI3Y/GMDqd+rMU7/8V/wS/9Xz+II+dF\nLE5JhecQKqMAuDcR5qGoI9nrWuialdoXohpsy0LYu7UFa0MdshgAaTUKBF/0KKrn0GwS2EhOZANU\n+5lRrxnDTIJmDYxPYeQnM0TtERRpuVwAT7uuZlNChiIVL5hCbghxwT52gj6E0H09hhIorlaamu4e\nlRRjBtBK3GYWEygvrU43IbArKZlOIwKQDYx0y0sOHJXClUqPoZL1dln4LB4DA7KwjJcIQy60QtkH\n6ysACG1CM0oYjzs0IYN0euiSTFk5BxFaiWI8+hTFucgBo6bHvE3ouoh0x27wIcLuj87w6d95cryF\neDjgS5dl5PYFmDySEJ73bFz17ecAIeDI5WeBCWgOE1LXAmjFZR2LatKXH9iD9T0jnL5rHRfsfhgf\net3pAID9n7zpqPN840d+GAcePRWHH1vBnaOE0/YeAa8mnDk5jFvvOQsX/+4hxzrWz13FK179w8jv\nPIiXnXcHvmXtTnzqm87BWc1BvO2n/is+NzsLf/jBFw9CiUFalzW8yFDB32JYrYRa+hj5YLL0NgeU\nuojgu3n2x9F/x7aohLppqPEBwEVhw6JoLbpGoxVF6TX7ddhA7uB6kqGD423EklkgZjCoYOpB+7KN\niQZgY2PS0JvYTts5hiEw0FCJ88yvsmBH3aoi117dLMHXpKxptAO9BH+RGn9VxBgAwqM399KUgFJJ\nX9q1eLRPcA9B1gPIBT+wcEGLpjgFrO2d4fAjqxh9Yg10kDE6wtj7mUMIjx4G+gSEAF6bIu2Zoltr\nMb5/HeHwuv+GnJEffUxTfwB+/Mk/62f+widx31u/Cc0sYXrPIaRdYzx86SmYn1K8qNATMotiVr8r\ng1cT6EjEyp0jrH9DwJcBrLQLnHvGo8c9zysuvBWffdOzEA49jNvefha+/OAEz/mtQ/jLtz4Xb/j2\nj+Dn//zTvm23QsjTBhuPRbzv7m/CTWc+B0977wTn/etH8J+uvQLdboDPTY4r1P875Vg5L2Y0bAIR\nb0HwHIvL9XU67uAGYmlWt25os3qwNLoamtCTL6pMWaspYxns5WAFl7BBXSYp+T8aR4LLd3Dvh9Qz\npmohXet/YjRsrQu55+peqGy71bYzDEMoxmA5TemrTEU+aqUme8kGLNUVb5QrsLJSGWYtZBoYBTMa\nRnwxkgprOOEokG4ToamiavtcXgqqmo3YZjQrHc750ftFVWlZ2eJr0GpewVXf8Sp0Z++STpzhFYjd\nGiOvZESVtqP1iLM/AKx86QjuuXwNG+0UB3LAmXsOH/c8H/7ihbh5/38BAHzjr74N8zMSbtC/r9z3\ng7jytl244QuiH9FPCakNOHDlrwMAXvHqH8b7/uRXcPG7r8Hnf/Za7Lvkctz6S+cDKTqWULIWVSbK\nvBNktrgAACAASURBVAibLCqg1mpkbPJIY+EypEn5rlbvcjtP8MxVmgDNBjmu4INfyXY+QzclHBaK\nu3kucEl4C3eM2+DL3tt2Vt+gdAzq1ZuwzBxpWJ2pGi9Absi9jzwGmnX+OvUYuHJ51Ix7fratrPNC\nuOKARhhaK+ELcgSdrCeVK2muoYpzuLCFNl/+PBUadZgH4TGQeg9VpwEg7t2EfUVlSiQ4RcXCRFZ9\nxpARb971VZNaO1Z7xdkvPK5Ow/Uf+VPsu/y16Kd7kEYReQQs9pB0sImIpjaHItbuJfTTjPVzpvjM\nNVsLYW7+lt8HIMbn1OvuR/87ZwL/SH4zA2EtjQi5LVh4vO0uAMCFf3wEeAPw6OUXifdUT3yKC7EO\neqmTyVpNSUgrWirvg1XWCcl1pqplhBmV5QSBgZu+TJALnYCNtn+p8bGYBtJvQtUHtXkp9GJ4bJN2\nM48BkC7kv4+kdJpYFtu1xW7NWAAFYPTrUUyiWZdrMuGXrbYdk5Uoq/ZUxScZPgtHTSmaYhMyROXZ\n0uQdfOkvyTTogXMZ/ByAaJmJWUDcCCorr+fWJcxMN9BLrjVvboVWtlbF8Aa4FExpxoFiRrcxwj/8\nxImtYVhuV3zfDw3+bs475/F3+OKDWL3zMKaPZoQFMDrIaA8ReJwRNwKmDxJGBxkHLwx46AUB3/7T\nbz3uoa560SuPylZ0zzgFb/mGD+HIOeWZXfLLb8MzP/gj/jcxY35Kmdb23/YhAMCBV6/hude+DQ9+\nKxA2oi7xpu/LyqqT/J92JR+UaUUMhK8DApT3nKALwVBJTyoojafPjsoOAChFekmITHFRVMag+AFQ\ncKoiI2j3VzzZOoXpv+WCK8RFATsBpUdPxKsyT8AGfB2yOH8hC6HJqzRHhHZ9e+DjjjEMZoXjjNCv\nssdqptOQJox+Um7OatktJrO0D6slrcMIU/qtF67NI0balSV+NnVo00JQryKrxLgRngYpMkCKfmyV\nqUxF2HUkys2cCQeu+PWv0hMsbf7vj+A7f+wtAIArL3wx8t41vOSfvxX7nvc/HXP7/Z/+AG644T3Y\n/XcPYO8X5li9P2Pt3ozTPtZg/Cjh1Fs7nLb/szjrb+ZYuxtY/dICF/3Fj+J73vCmo441u/hMvP8P\nfxv7Ln+tEJ8AvP8PfgvX/cI/wfn/0WVD8cn/5Vqc/t4Jrnz2d2Lf878Hi91lAD/32rfhqpe+Gi97\n/ZvQnZowOyOJXPxqQnsooD2sWYVW9TUIEnvPgqeirdjO0tGuu9jRAGg0I2Pp7nhgWngCncy8xDJQ\nXfiVLK2uBXeKW3lWozJG0H0Nv6jBSGM41tqOJuZqaufEWoFZKUSLKDJpgZfhYuS/2XehZ50oeYCd\nbKXtjFACcPAmjdhxhFqE2Quk7Deo41alMjkyQKSVlpVrWINKVDAMByoB5CYj9GEYZtRAF3gIZgIF\nZATEKJgKEDH27NnA039yBlz+1D6nrbQ7P38mLvmpO7Hv+d8DWgVyGzE+mNA/93xc+cyXFABzqV3/\nV38iQivPOhtxrcH8lIjRYcbK/7hrsKrVlRe+GNO3X4Rm4+juM75HwMj9N/3e4PtTbrrDvQBr8z0E\nIgJOOwVpCnRTeZZn3Nzh+r/6EwCyLN7kwYhuTWXcZ8D8FAYmGWyrVVmGiKF8h5KlMtcafUHyAZQ0\nX+2yA/CqRsOquGQnKKEI+DBKVWdkBC7eCJbO4Y1LXzTcYmAsuGzn2HutLG3HNo/AsTb2/dJI0qh1\n267eI7BTPAYyC7kE6KC4c9nKXdvy2RVqAruF9UMmcq9Ctisl1XJc/T9Ua0U0lXioQ9Yof9dNj+nM\nRgJsterp2hyP3r/7STMCv9K2eleDSdPhgX/8bNDuXQAzJl86gvbeh49rFKztv+X9GN39EKZfPII9\nnzuCvR/8AvC0U3DZm672bWaXPR8hZFA+2j093mrax0pnzk4jdJdchP0f/CMvawbgZJxv+flrsHpn\ng9X7GPnsGXbdCZzyuYSL/8MdeNabbsaBV/4anvbxgDzNR1Uo1voZAHxlqbo5achk/9QgmNc50FaE\nehhag1HLCMp5zSvFsJLTUp1cvNxaYtB1Gur+RiirX1ko0wiQ6LweTVPmhpBbQo40uNbcSpYiRxoY\nn622neExMBw4dIaYU1p1m1C28VkglG3jHGAmLbeG57QBe5hlAFshlXMYGMNl0oGSwdBO5p7KJJVC\nHzUEAMBZJNtikzC/cxcOvG7rZclPdTv1th4Pv3wV3/HmT+C/nfGtOO/GQ6BFj+s/+udb2v/6j/45\nrjhPqnPTN38jZmdMsfq5hwEAV175Otz5k4zVHMDxyc0rr3jNG3DP966h281ob5Ol9BanJPQPNrjk\nl9+GU3/yPrzzgW/Cz/30f8INjz4fz155AGtxhvk3t3jv/c9H99DZuOmW92Pfc74L6z8u8vy8qPAf\ntomhWs06C5Ba40mAGAVbu9T8idwymo2SukXU15+syK/E9mmk9QxkfVFCjH4qxzCSU80noL5KfRJ8\nVSnPSigAGToRaonzCuMwLAIFaLTjsl1/Q57yJOAoo7GVtnM8BrOMZhTMEKgAha/toC/fhDdM0DVN\nFT+gMqiz7TMqFNsCQJEbBGc3WsaCgLyaJDPRViFEZBFX0fOAICXVmdCuLBC0duH2r6FRAIAPXfcu\nPHB4DRdPH8T0RQ/hoUt2YXbuHuy77B9v+Rg33v0JhIsvwMY5Kxgd7LD/g3+EfS/7p7jtJ1YBBkZN\nj366zd4GYN8ll+N9f/xufOZt12LtbkL33HNw1YteCYwzDr9wjtmLj2DadPirBy7ELRvn476NvfjU\nkbPxd0fOw98dPhf3H96F9pENAAJQTh4S9qiBkC62o1qZWRW/fIAawKzvvQB3VKmNKyhZTZs1LdkF\nUEaaMh8Vo2Ce73I1pbMwtRbCJOGIy7EauS1ZXm4u2zXrSoqqQ5S+mhwNQ9DjNzNGs6mTo+IN8m97\n72lnGAYG4ia5CItVkcUZKkFMQ5+hEl6SWaCeZG3JXtei1BmCY9nH2GM+M6ihsQVHi0y7/h9QsAMr\naLLPtmRa5LIuRMxIfcR40uH031j5aj6547b1A3tw68bT8ciX9qBfIRw+u8VjLzwdl7/uR3HlM1+y\npWPkzx8AABy8aILLrr4an/u5VVmYtsmYd80gvbjVlh876J/P/JWPofnbW3H9374X8bEGk9vHaD65\nhv3P3o+PvOCPsf///i6891k34DfP+zA+/HvfjC9e1uOT3/aeAX5x5h/cBuMnWFg44KgArtwFlOyA\nLVdHiQYFVaQEJk8FZhSdR66AQju2MxPlPJKtKJmTWm1psM4DlZDD2JCmyFSHG9xUJwvFmzCgEkE9\nAhKwMUdCGpF6NdvXYbC2M0IJQFafatUti5YvBrw01hhgZj2T5KM9Xxxk1SoDF6kj9yAAMSYm3UVd\n8Ra8jNt4DHa+WmUJkHUcGK7ARDGDWyCMEqarCyxu241/+JHfBF781X1ux2t3vPZXcNW3XIFnnT/H\n7a+NoDNnmPz9ChZrE+yJ34grzu+Pq8dg7ca7PwHgEwBkpk+vOV+eR0/IK2HbsxCAwTnl+NLOvSnh\nA78h12yszo//u+v890+941rgHcc4YNM4fpQnQsgCigdQMlMYqCBxBkIuQi3IQNAB3qyTD14AXjRF\nSYA9Aa5R3PVUsAfrMFZJabTomrTnFcT6f5yhoOm1lwHIdQHeLw1YpKWMRFyw9mkxEJ4S1VKCY+FB\nj9d2jGGwXC4AxxL8N62HMHYhYQg0el17NSt4WlHjTcA6C3sc6HwU9RqICVj4btLGeaBe7C9OBVqm\nqwtsHJrgCz9SOvFOafPnPAOjvzuA82+4CHdfPsWuu+UB9ysR7Qu2rNMLAJi98PyBzHtKBOq3lwMz\notWxCFf3v6jFFd//esTpEVx29dUYPzxHmPXYOGcNcZExufNR5F0TxEfXwesbQGYgJzz0fc8EUvLJ\nAEDpJxYCWjm/VUyijEPXNdDmGgjLE+0SJb/uoyZBGCrmLNHQINRLylnmw2qBaqDSmJCADGi7pqDH\n8SfeFu6P06CbyvsFSlXok3AadoxhMBAmL19RLjhD7ODpR0N6bTVha0Xf7xi05wporKXia++hVvp1\nnYWlwihqxDrtPfUIHv3iHjz3/3wQePmJejJPvt115Rjnthdhcs9BnHfTHkxuuQu0tgLe2ER64MEn\nPgCAF73zGjz2LGDxmgQvEjMFqW2qAs33XYp9LzwdYXx0uXVYAHzzp3H9fbfgeR/9IWw8NoWvzJoC\nKD1N+CL96tJ+jDATnkLcDPAqWC5FdaEraWvg6EmnLpwCo1Q1WjGSNh+wyrIFAGQ4N4bjkNgkPIli\nFJY1Hi1bYKGEUai9yCoUo2D7G/hYsyYDM3Jb59kL4Bh6wVFMMXqrbWcYBhZXzBaXqSWrLNYLOgsE\nhnDFgaLfR3DhS0OMWenSXq+u1pMjISMXrUiz4InAzJ6p8CIuU2di/TzKvtzamT8X8D9ueBfw/V/l\n57XFdvEv34573ngxVk8/DXs/ewQ8mx0zbfh4bc8dG2h/6DC++MBeWbq+0ro8fI7wbK966audd3C8\ntu/534PF90asNg3o9Kcd9ft5+x/FDepFzOetYDfzMAj1kMoao1kzDLY2hGUd4kyXkVMPAbB4XMDG\nRo0EAK/KtRoE5ytA5wJbxQwo3IZqXQlZ5kA8DGueFYNsY6u0m8GIM7027be+sG2uvAa9COrl9tNo\n+HvQa+hHxoos9yAXUVdhkhD/tuk17AzDQOWBAksWOQxdPYZa5kpnIU8Z7OsRqOXPwxSNEUpY1Z7y\nuKqSsQPb+YzXAHbikik1h1FC2mzwnP93Azfc8PiCql/rtv+TN+Flrz8PBy8Y4cY/+8/+/ZVXvm7L\n194eeACb3e6iItUFoM1IXcTDL5BtjmcU6pBBCFJ/ecztAIDuf9g/p1mDwaI+Jsyr8mlGXqOOHJkH\nZPD5QkIVozCbWMosOClO1JLIZ2pPR9faj5pGhM7+pPs63pVlNg+KZ9WiKea5xrlcs61DORB+1e08\ngq4EYd3Y5PLZFqtp1xn9lBCNUanXGWYsgsmaEo2L4klsl8ewM7ISBE+/5BYIfUkd1WpO5g4WOW54\neallIiwWI0apqwgoaUmGqAeruwjo7xM1FBYL1orFKqgSRwnpSIsDV/76UUVAO7WNHziC6aMFC7jq\nW67YlkG7/uYb8dgdpyLY8zCPgYDJRYew77tfAwD4zh97C15x9gsH+xqesJW2/5b3++e9nxiJwrau\nUL7MRkWmAuop0cxm0zinIdYAOBU61J5jBWpTrtx1NTSWSgSKC++iLUaB1uxY9gyXhrYmJ6cVlJ5e\nTDLD10bBqdLGq1tUAGlT9nc6dJaaCbtWSX1qmjQSmk32NSRyVYZtak5bbTvDMDC8aCTMZaGO0Ivb\nNqhAq+I6oAx+z19X1jq3jDRmV55241EtRFMbATLptcrwmFRbM+0xWl1g7a9XcOCVW9dX3AmNDq3j\ni99ZRtb1N9+47WM869cfw3RljlrWnR8dYf2hFdz2UyLU8uH/+KvHrOB8Mqtv3/Kz1+Kc66MYcB1w\ncTNo8RJ8uTgAPmvLSugF8AtJi5FUbBaAr5RuhoAA72eWHjejUEuzQ7eLM6gHW/gwQesxgKrfGJZF\nBWMIlToT9fp7KMbCrtsNUi7GxDEJtmthNwaAGITQM8KCkUcEq1a27eJs++mjHWMYfLHSytWylFH9\nsHwhUehAtxlA88L1IzBeg+Saq/wy20sob77WD+QqDxfahLSIOOP3prjlX391qySfitY//RTsuej4\nYipbaTe8/3cx+ZO9soJUm0GTJLyRjQis9njRz1yz5WNd9dJX48orX/eE263d+ClPQxuLlRWMA8r/\nLtxTcQRIf7f+YGCi1dU4eA0Fu/W33ECWnmuHRsEZkABcrVqxqTRhXRSpcCicXDUqs755t6bT4PTo\ninbtRCkb8BVvIbdl/zQi11wo901iFCDXxVGyFDVFezttZ2AMQCEe6Yut6Z4e8x0jnTkonELpFNRT\nEdoIEHS6BiMBP0itPmxpSymaYkxWFjj3F4Eb//x3TsyNn+AWbr0TZ/z8ecDW2NDHbR/7xetwwQ3/\nM5ovt3j6RxPSNQ/i/of2gI+02P3Ge3HJL70Nz/jgo+A2Ik1bxI0FaJ5Aiw53v+ZMMAFn3rzAgZ8F\n2gefeIXVG27/a1z4R8/3vxkoxXI1Td7CARtoFXRkqUmrOzBD4WO+AvTqge/HRjXRpCpjZkxGKgM7\nLuCM27peAyYhqEB3XdBnoYD3SS6/+8K1OlnWxV6erai4FB6SsIYQgCs7iUbpEz7yQdsxhsGk4zmV\nxV9q49BqrhiQdyLZCXKwaOApKGo7TPVQQZPNYhvIqIuVeAFVw6BRBncB5/3QHa4y9PXYbvjsh3Hp\nv9n6jL7crnrpq7HxrNORG0J4WcBZf5vxoevehQPdEez7zX+JC667HV/8Z8/EJ//VtcA7j97/ygtf\njH/4iT/CS97xViAz1j4zBjeCdTxeWHPxu68B705ADoXq3pUKybioCHCAD56AMkh4yYhYhsv+BkrI\n4JWW6rHmCoisB6SnJysAUrxX6U9S1SlYlme+UIxPnR61lLsbmFAMhRGgcqu4RMV4DB0cEDXj5veh\n6UuOhEwVDrPNtjMMA0FdMMAkq5zvDrnZNKkMRf3CtRW1XxHPSBN2A0FZXcuGB0CPo9j6Ug39RpSF\nYg5c9WvAVV/F53AC2hXf90NY/5kj29pn3wtfjlv/j/Ox+/QjmP/IXtfIANhnzYO5xcqXGPncM3D4\nRZt41ruvQXuQsOvujEYXN6EMLP5ZwMte/zyspjmag3NwM8ZiL+Pwt5133PO/4jVvQP+mHvGQTONW\nCGXrSiKIwptjStD+oNodxlugbNtrPcUS/6D2SK0WIo9FJck4BmZIjK5csz1DD10ICX6dOVZEpzAc\nlHVRnylE1+4NWdhc8RXawxgYP/vNDEEt0pInBU8JHbs3JFm/r0ceg16zSW5naO53KZQAlh5GlfbJ\nESDjnptFrxbn8P1rVMWelbl9k/+fvfeOsuSq7n8/55yquqHj9CRNVg4IIQkhEYQwIBRmBhvWewgQ\nJsuKYMs4p5/xW17+PfvB4vfDj2yiHxgbsA0YJUBCIJJkCUkIoZwmx57ON1Sdc94fJ1Td7h5NDyBp\nJLHX6tXdN9Stqlu1z97f/d3fbUkHO6h7+g96SOyhauL+Tax9/RRsXdjrT/x/r2DNmgnnFAHO6H1+\n/WcdPvC2f3wPd7537jl6xTsv5si/uYcrD/s2daHRVjBpUzIMTVmwrRjgsi9cyu43t/a7D51Fjh8R\n1b5DXu+t2tAUrxERbhbhiEK+hOcW5QqWRFm5spQ3YtiWmhGxqtUrQe9f4/cjCAmplggf4pyXV6HW\nme/QVCVGFqpqMidGCUHbsacTmHJ/TA0HsIZKRbUEn9Bzn6i2Sx0iRidEVCOXBznt+tBwDPhQP5Qt\n/WNVbxxfV6lbz8kDvUU0N5nnfdUJyZ54ElII1Z8jHuh7xjgFYEFDZ4Od9IErWPSo7uE8VG3Dqefy\nyLuGWX/uG1mld8Mfz32NKAzTOmNHMQBAXeaM6SaZ0NSNu7p1Rjm7YR7bd2yK6OqSU2JEXAREBTgE\nvyBQLhLVXLuae8eUoFoqFOXvHn4Cs1bzcGxBtk0LN2VKU2JTVbOulGlqzoEkLRErY+Fi7SnPVyZU\nV/spdFY6JACpLUZ6tWjf4NXzsaKMVNw+2J7tHYwdGo7B9v6WXnexelKqjSw9bwuVjLAKhC8znGj/\nrwsJRe/HhYvOCmxqUI80uO+iQ6/n4cmwDWdfwPDxmps+/PH9vubq27/JmVdeytQxQzS3t9hw4iuY\nfPmxqLZhZnnCLf/zo9g/3cN7V32Db0+fwPJ0jEHa1EVOJjQjaoYL/r/3cOor7ueEgR37/ZyJ5+Yx\njYjzJ6t4ZQAdK05gtrpWrEQE8C6E4bq8KSPoGABMX2asVrkC2c4a3IJicE10lSHFMnRohtJ6jGL9\nmLqAI4RU2Fc0YgdlFZjU5WPSYxwhqrBK9KQy7vyEdNuxHSOYWSULwhwndyA7JBxDmLTj0N1qyOib\nU3y7dZyGjTt5sus1/Su5JuABIn/RyN7P0aEj0wiXkybG6Svkgvve8ex0Ckf922UsfT78+H0H1pGY\nWq2YPLmD7daAo8G4K11NW577j1fw5cveT10YPnjnKxgamOEPjr2eE7NtAByXKu676KM87/1XMPWb\nNVh697yfIVKDlS6Ot9KVnaF3dRfayb+LgCeE94K7eb1uIqpMH+IQF/zNW6lWhG0H4ZVgNvRNVKNU\n7diUIcIQHXedCSPQNXejqq4gaTnBFrw+I4KorRDl3QikPqJzsBAH2sTUwqfGQT066EAGURYAU2mx\n7omsoScFWYgdEjwGG2q+njwClNN8/CzHQHWt1pyNHyQaU4pKtCAruWOoB+t6FS22cTVBCx55bTnU\n9dlkx33qcgYfkgtyCgD9WzS1vq4jfwkIk7+G7hd86OKPMW5qTNqE95/+FX77iFs5MduGFJaa0Nzp\nbzh95jibrzp8v59hwzxPL8Cim+4KL/UHgtiviBUBXbfu8ZpFNz2xza/icciMKfkPITgIN76plY4j\nSAeatIL8VyKLMJXKpo5pWfSXy7gjFuGvWSI7Mo5F8GXJ6kQqWXggMyV6uHAjy1mpjupJLehhNAqf\nPqiOjZiCLCxS2zkp+YHsgI5BCLFGCPEdIcTPhRB3CyGu9I+PCCG+JYR4wP9eVHnPnwshHhRC3CeE\nOG9BO1KRfjdeoQmIZJFIBKnUgDG+thxpn72phplVLo8CHUHlJ7Ukg10e+a1np1MI8m0HQ9z6wQc/\njvYTqIM2xdB9ikt/v9S3bFvFYWqc59Y3I4XFWMFiZbnwq78LwHtP+obTV9ifmSoxjajyHAYZh0ai\nUDEQ2i0kUoMohFN7bgmS6QrrMaD5QfXZsyDDsCLVpqeKBUSGZZWRGMG+ShnTXbtuAZM9EvWVkH5W\ndSIwIYHSUVRYjlGnwZTXuqg4tuDAwszK6KwCzqAcJhG1H+yvHnwsgD+01v5ECDEA3CaE+BbwduB6\na+3fCyH+DPgz4E+FEM8B3gicCKwEvi2EONZa+7g+K/Y8yPLkBqksx36rRAQVcAnviaPcVuAuGBBV\nthrEDVhlMYMFYkpxzJVb4c4FnatnlL3kDy5j319K7rvo4IHWlZ+rsflNBaaV0HjE1fGOr23joh+/\nHbOrzumn309D5SyrTfK85mbubx/Gd/76TB766Md43+hRfO1vXsXr/3F+LOOkD1yBXGXKaK9aftQu\nRLdelEf48qW0gE9FJcRhK4EwF79//xhUwUkbxYGEdtuB3gUm4ASBvKTaAkMlrdXlJCwXEYi4mAXB\nlirt31ZSGLeBEl+wChI/1d2EdIEy1a5yG9y+VSIDfxwIz33w2EXsyDwIO2DEYK3dbq39if97ErgH\nWAW8Bvicf9nngNf6v18D/Ku1tmOtfQR4kDlFr/mtDP1dyC+M8OUfv8pXSjO2EhKGI7G+ZFU9shBK\nCk9MCV8uheCYf2kddBvyM8F+45JL2Hui+IWrLzd+6p/I6gUoS+vILhj46wdfy8bjfsbiOwS33HEM\nq+pjDKg22gr+/aFTGPjpTk5+3xV87Nvn8P39OIWX/t6lTB1ZlOi8pIwcZOW7rxDfQlQBs66NWWW/\naIY5YXW8lvyNrrqiBDMrrNsAOMb+Gw9uVMup1RU/bLtKiQ7bCp8X1c1F+ZzO3Gsj7TtspwqiWtvz\nWCjTRpyiAmhGHdWDsIN6uRDicOBU4GZgubV2u39qB7Dc/70K2Fx52xb/2OPvSLUVNXDRw8mVLrUI\nnWsyzBa0ZXQQgZbZf4d9tyWIZTLDspsSrvuPf17ooT+jbM9JyS9dfUnTgnVr9vDbz7+Z8TM6tD6/\nghs2H8P0CkEyKXn14B08t7EFJSxnrn6YsY8qZk6f4aHXz49lrF9/IVs36DiiHt9z0NNyLBzSXyX8\nVG/e/fU3VEcLxKExUOokzLpOZtOjjXIDj1xUUDqmkD7E1ueQdhhmoaF+P8KNXKlIVGdJVNWcYnnT\npxCxk9I7SZP4lCU+b3txjBjNlJ99MLbgqoQQoh/4d+D3rbUTooKAWmutELMLKQfc3iXAJQDJ0KKy\niuAPqhpmCT8+TCvrwrgg6OLLk7YGslOe6CjNnVQuDl8TN5mFmuHmf3h24gpHXPM7PPK7vzxPY8lH\n+phaOcxtdzQ5uk8jO5Pc/PdfjLHh0V98F5987SfoWkXXJNT/n0U88PlP7Xd7914+gNon45AfcCu0\nzqAY1iQTqmel70ktQ9kPeq4P8Ll7iC6sW2R6JNdFrzhQUIgOLdRo74xw/+u6uwbdBpjDl3F0e5f+\nhMUslt2rjqDyfpOVeETg7gjrKg9Rv8GDj6FD1MS0YpZjw5bOyFKKyT4R5UohRIpzCl+w1oaJIjuF\nECustduFECuAoBW2FVhTeftq5uHdWWs/AXwCoL5yjY2hfiVMDBhCaF91IZZ7TQAdBeXqYCVxuo+u\nE7nrQESRrbL035PB+oM4S88QO+bzl/PIm381JdkbPjv/6L0NJ5/D1Xd+iwcv/BhnvftSpg5T3P5X\nH4HP759o9ZL3XIY400eFCmRb9HAQ1KQqe2JCdaFe0TYIZUNLORXdA5LKsxCjI1Hu5o9MxdAro3tX\nf5TouZkCo1a1wlLsfoIjIPEOwFKKzLZFb9NUBVfoYVwGlq6vZoC78ZUnhwZHFaOF1C2EVQKTahNp\n28Gqoi9zJBMPYAd8uXChwaeAe6y1H6g89XXgbcDf+99fqzz+L0KID+DAxwWpjjpgRZT1XFWSlkxo\nqKJ0FlG8JamgyTiPGsAZnYnIaYiW2sdHxJ+hduQ3L+LhX5FTeDyrYjY3fWj/ZKlg517wdra/syDZ\nncZFIOot2spiJwGvpYD01GVfco4sxFDqbvvnfDqquo4Pk7QqTU0h5fSRZwDzAnhXlVJL24Ki6Xpl\nhQAAIABJREFU6ZyCrtmSaxPD9gp/QPdGBVGMxfMoQtRgUhyFP1zHwilA60rVIQygie/3i14y42Ti\ni4ZTh47iLRJktyxNltTohX13VVuIHzkTeAtwlxDiDv/YX+AcwpeEEBcBjwGvB7DW3i2E+BLwc5wP\nfNeBKhJAHA0evpiqkIX0rtv4C6F6Mnu8cGwgmbv9gEIP3JM+7RujDtaO+efLefithyZ5K314B+g1\nbjS9xQ+EgdgNOQtcLMVLyugy/B11QwlRZJlyxrbrMNM04BTCqzz7gclOlLiMCgLvIA6/LXqjgNCp\nG6/DynuChcWuR3QlkJxUiVlUB8tY5RqoTK0XULdA0oJuf3h/BTPRZWk/tnozd38WYgd0DNba77P/\nDOXs/bzn74C/W+hOBCpqpHNWRoCHgzSJ9V61HEPX8/7KJGDw0UfuV5DKRbbkp52F7tYzwo7558s5\n6ssT8Nanek/mt6tuu5bn/+3ljB9nY4dr1eJCAQRVJPxNGEa8AS7EpnfiUixpU73GeoHt+FojYmkx\nRKlVTgIZPRLxkagUui5N+T6lRUlL9jd8KCGaDCiYs5+RcVU5fFMjirxKTRRB7gyJ8n3BAiNTiV71\n7grwejB2SDAfgXgAVW63C+c88GPL51y+FTgJZfhWVeOtApRllWLWSXuG2/GfvJzVNxZPiMjMaX9z\nORtP3/Ar2daKq7dgMuNIZ4mNtOCqSlO1UzaUI23l+fg49ICP0BtVUlmEAiahMxsdRZBdc+F+CeR1\nRgzdVTnt5UUsedsg+x7ByZLzUCU2VZungrRcTFUqlYwQGQSiXogkwmS2QMqK90hlcYzbtgG49e/z\nn6t+1TyGJ8Niw4ov8wQkNdKgBbGjLeANUK4awpQjzwOCHHMrX84KX8DmV9aegiN88u2oG97Bvb/z\nUb7z6SdGo9K+epRi67Zfybau+tF/ETopgfh99dB/O5VFIITborJAzBPTVvkMDrAOoXapBRr6c5we\nqFulgUhWSlqOcNR/xDgvPO5hXv78e+gsCztACRYG/CCQmLzjio9rFzmEz4yzJKSrPmC9I7SB0Uik\n8kd6tiDSwq10GEQ4TqdZ4uTiQ+QTwUjhRW0Owg4JxxCigchNr6QOcRXILEXTxhu9OkwmSHeDe05n\nJctMtUuCjFXQXXqQpPGnoR39xcto3NV4Qj8j/coI122748AvXOj2xtwX2CPfpxxuZP3/SNzINX+9\nqG4lrZxFaJrNT5BBucmGm96BdapTVhDCgBmrrGvOM4JkxvUdJH42XCYL1GA3zrvsucbw++UH0spu\nJRoI6YNPY2QlXVadCo9HlIuYrFyqIcJxkvDuuQiYBk6EdgNsY5k+RNm/QJB8SDiGKvurykuH3tUh\ndKSFH+FzvCjNFeimpgRyTOqaa6zEKTjlghM+fsVTdqxPtJ36P69A5IKfXfnEVl5G/vNnv9LtHfk/\nbnMXckW9Ozj0OBKgGkbjUwbtAMEwSzKyZMM15BmLPRqiPmoIpezIhhUOR0gnBI1dLjrFwtCjOWMP\njnDntlXcP74MPZaVfIfZKYMvpYcZENL/NoFPMJvLgHtMN8qbOAxOitd6TJFK6fiiXkYRwVmEiKGq\n1hScxOy+oQPZIdF2DUSSSJXhGDxsiA6UL0PFVELQ08ASQtFYsw0ciNgcI7AdQWeJZv2RL3paaznO\nZxtOeiWDLy64/S+eePLWNffdxFnvvpStZ8Ph/1lwwz878tK5F7wdoQ0PvqFJNi5ZdI/hh//rwJ2b\n1z52C0f+ZzmDwkI56GX2qDhBHPKCJ8SJ4FTCa3x4HbU9CtecJ8PrqwBhpfGovkew8sZ9iB17yY9d\nBRLSnz3GcXcmdE5cw+hzVtEYDtsoQ/4QCYTV3saFibL0qigHzwTilU+dq4B7WNhilEN5fwRnpwKB\nD8eCrFbiZG57cI6qQtRC7ZCIGIDoTSOBxJ+0wECL3rTiQSM7LWxCEB1KpJVWIo4o6tKWbP795z95\nx/YE2foNb+r5/+q7buC7n3jyGJ3dfgl9pVMAmFpTZ8/JfQw+JEmmD55Y0wMqmtIpxBU/AHzeQiOU\ny7+tW+UrlYjQ4xAFXSqlcAg3to2/pQYx08GOTyCMxUoBUqF37kJq09saHcDyCkYWJN6rn1FVh+55\nfyX6DYQp90R5zPF5z7uIPA9/LqoYymycJUQsgQpwMHbIRAyR3z2LmwA4JxFSDQ/wCONCvTgrsBKi\nBaXeqlZDNAMomFmjOfl9V3DnHz89yU4bX/hqrrn5qZ2G1R0UNAbaPY+9/b1f54z6I7zp0++JzL2F\n2MaXvhZ+v3QAAoiq3h57soH5F/gslZsnSqxDzKljVOBTyhBlVOeJAHHalewKuoOw62XLqU0sZeJw\nhUmhefjRpK2jmDhc0hl2PAnVqugshM/0nxtK7vE6nlWGjFWKWTdy5EyE46pU3Ajnw4YFz5byeJVF\nMPRMhAjCJH5690He6cIeZJ/2E2H1lWvs4b/zB5jMlgSTSq05SLBV04hg1egh0Fuh0i8RypWyZI5Z\nCTZ1J9DUzLNWpOWJtrPffBHXP05/RNWO/sLlEVOIGANE9aUq8Sf87S56UfYyhOvFVyvijRtummKe\nGyTyXiAbg/ETNfSXcbmogNzWCDfYtyNJxxTJTAhNKBmO4fryUYP0N2U1uoiNVpTOI6YSwv0dxGWi\nhIAp9z1WaMKuzbq+Vdf2kptwjuInn/7D26y1L1jI93FopBKixBascn/rzMamJ6tK+XjwK4g/MSGf\ns8oBR9W+iaJRyQOVcwYmpWzS8WHm8Z/8xecu/Nr2b9mu6QW97pjPO6cg8Cst5Q0WtBIi4BzSikCf\nxzuBwFmh5BIEC6u3yehZ2QMdOnigpOXb8gt3WwjlZOdNrnpX91l3TQD3qhWA0DgVrsVwY4cuTCid\nSWx2ojf1VZ1wrJQ9HJRAYlClssqBkVXhl/i3qBz7Qdih4RgosQLVdai06ooIMsVSkCUO3oie1uIb\nSuhJHZw6T5njWnAj6zRuwKn/UdOSfNBy5FcufVKP99lg13zzX3n5xRfv9/lXvvUijvj6JdH5V4fN\nBmJPUIiO5Ur/nQfdTiutv/GFTyEhANFBf8NkNt64VUdQ7YmIOIEWpH1dVGqcxBwgM40MfRg1jajr\nXkDP34hV7YWiYaMzCESjAEIGPkO8gUPgUSFwVZ2N9tyKHtXzUM706UUS5l9GwL50VAfbcg2HimOo\neHCT2p6cKlgEGkONt/ATjz3YKLw+YCTAyDKcDKFbSZf2Gw297Lnbzgv+x68jh4Xai//oMjaedv4B\nX9e86b79PvfI65T7DiqTqMPNFAC3qL/gwTf3fYqe6CFWtNLAdq2oK1Vl6kV5s0SqsKW8ZjygpwsV\nL8mQShifRlgtsNrvb6g0dMvtBwtaj6FsuT8H4P7wvyRR8m1292Vo+goVNvCpg7ZEaTdZYYtWjrn6\nGQu1Q8MxQPTy4YsHKvVsQRgNpjrldGGTOBQ6Vi0ow8xgs5V+ouiFDisPkau+93TNKf/3M5fj8Ku0\n1mK5oMnZV9/7vf0+1/doSJr9zRcWhZCnqzJCRBLVvGyF3QqUlQhDZMGG53vK2z5aCCtyzzZCtSCg\n/FogU+NwBe2cglC2xBzCjS6Iw2iBHgwhfk6MYny0UGkWDH0U1fA/KjBJeha0KAwbeopCE5Wq6GNW\ny7rK9U70CMcs0A4dx1D18ML30Fv3W9es01cIVYuicsKkL1OlXmUnLS8Gndn4pZmUqAQcctaANwSP\nrCYVE8dojrjmdzh/3YLU6J61pjq/PGi95sN3QWL99+PIZ+H7Cd+vpfyudM1hTyZgSnXXAi0LEXUY\nrLQxWgzkJqkdhyESjEIDVGJLGjbeOfjnhLJIaVCpQUiLzDRJPXfOITGlIlRgNxYlBhCrCb5UWI0s\nXLRb7kPsAQpOglKYNlChwUVFJqTOQQLfR1JBEdqlHhX8zOB6g36Br+rQcAyzKM5W2tKrelM+hzLK\nOQqT2pirhYsphJsBra4q+QpfEw8eNeay1dKVtMiORE4m3PfhkznrXb/GHfZny2/cNeexo254By/6\n48sWvI1r7ruJkVsT10Dlo8DQTBR4KFKXOJKjBAsXNRauZFg0LLpRruKxPBlEWPxo+phiBLqwr1y4\ndNQvDG33uPURp84Vxi9U1giMkVgjSGoFplYi/1WArycS8dFENS0AfwNXuDZAyeSt4AuhPA/OGUQZ\n/OCUdIhCRI+epFGO5h2mXtuEg55deWg4BhtAxnIEWJCSr2IGUP4WWkTAUXbK1CCWsgK/oeKh4/NV\nGmsRcjVRXpwaKARbX1Pw/L/9Ne4wn5mBes//R33pMl585CPsPMtw3qpT9/OuuTb0aA51g6nZmCPP\nLrWFkDyqccV0wN3wqiXK8mRIJSMILeJv66NNk9i4/WqzkpWOy2A7CpNLZGDSdlVMIYS05NNZhU5N\n3Cf3QAl8Fn1usHKVlhyl1sLbZuENopJGxTZzT4zSWRnt2lCe9NyF0LU52wGUTmLBX4k7Xwf38ifO\nAoIMfsKQpad9VuYiavLN7qiLAp8V/EDmZTkrCMgGsY1qOBYxiDDyPP4vsLlk+U37nuAjf3ra7Fbu\n/sPHed3SW0nHFGp4eMHbueGznyTdlfZQdkOqWMUCoGQ2GmUjC9B1LYYKBH5wi43AZezQJdCjS2AQ\nyjA+dvYqkI3C4Qthf7xTsFo4h5FpF32GPghfBo/NTx7MDtJu0Asohp6f6OA8ISk4BKkrBKUQhZjK\n7AuIyufViCFEwfF4w/g65ZSeDsYODcdg6S03eauKeELwlDaeXOnfU/XA7sSWpJfwnigd7x0IVADJ\n6vtFmV7IesE13/zXJ+aYn8a28aWvnfNYI8upi9ytwq25lMez3n0pG86+YN7tLb/ZlBT2EGL7n/Ad\n9ZQxK6MEYuu1Kf+fbYEfU6UdR/6Amvt5VrvbwuSyrEQY4R637rdNXBkxUq5ngX5h2z3K0ZS5f7VC\nMZ+sfCg7yi5RCs5WoilT3e+kfK/UvZOnZBGc6NMxlRA+/5Pllx7yxcgXj3mijy4kFe0FH+ZFRNtG\nmqh7vvyJRJhQF0/LaKHqJGxiY675a+u1rRtXznlMSXdlqraY05z2G5dcwpZXax5685J5t9f/7Z9j\nMzdSrqqhUY0WBOVjAVyOrw1mKiXqWJoW5cIgbSn8Y0ocAPz158l11ZXCVhSfhDL+fxuJR0S+xdwU\niKqTE7Nu/ECLnsWnqGJrMS2uVE4iA1KWxx47OXWZOoSKhMNSDh59PGQcQ7DCa+/Jwq0CsWab0VOW\n1DUHLhUVRmSwSCDxN37IxaA8ydFRaHfCi6bpqXAgQe45SLrYs8RG7uv2/H/eqlOZateYMPWelRPg\nhE9cwdZXSNS+hO6ygvnsmvtuwqaVGDgAxXm5mkJvmF59bVwIvNNwrxUOgA7RaEgj47Qoj1EU7rfs\nOpVn2ZZYLTFdhdUSoYxzCNoBj0KFPCBsw92sul7m+WFfQ7RQ1WGMVkln4wSpSsky4gkh6ggLZSA5\nVU9XWv4umq41W9cdzlLUK/qWB2GHhmOgzLlKMKaX6CTyIANeAoQmtb1124A5hHKQce8LOV1gi0WZ\nMOMchcxx8xEFjh3pndLIXb+OGOaz2o96SUvXbb2d/nqHusijqCrAcZ+5nO6QiWminFL7BXPr21K3\nonunHFD/iP14oFBnFdwgLBpJGX6Hkl+g1UOIBkIIQbxRnZQc0dGE/D44A5nqkrcgSg6DSAzWq0EB\nJWhZATGDhVbrXp5NZeX3lYv4+kpaU42YooCRKisXMdKFnqpb0rIkM474FFSkD3Z25aHhGCLzq0wB\nepqj8gAaEZWdgAhARUDJ558xVaD83SOO4T15aKaqgo7WT0mmblhy1YNP7HE/Te2a+27q+f/8dWeQ\na4VBxhvznAvfQdG0bvqXIVLSx04wczcI3HPJR7CZH2vvcZ6QPhjV6/TDaqnC/AlvJbjnPjNoMQTS\nk9Aiht3h9VXMKt68hcS0k/hjW6GRAYcxFNItHp4LkffbeJP36B74NKFqoRW89/r2Lw8ErKpjkb2A\nY3U7tuIQq/9DSWyywjus5OmIMeAPTjtefG1fLxBplCOyhFmWUrvfSDzBpXQY8YsOFFtfrgS3mshZ\n9NvqUBDp+ygAhLTPmrmWZ/zF5Rxx1f57Gqr2vPfPZYbKRp2+rEvXqpKerKRrTTYlyu5+xH7Zpct+\nqLBBTMU7E6FdI1UEISuraNEoS9KxVFmpZoXGPJ2F62dWaC5LYNLhCz7tVBaRGkSmvUezHngso4kQ\nMchCkE6JeN1VW6+DRSEXf9O3F1tmVmlmVmpmVjlPIgpIp8sURHXKdEr74bZWuJ6IyGcw7twEMlSg\nTAeg0SjhwEeIvxdqh45jCCmCdSKXgaASSo3GE1WiB65UF4KF14fQMFwsUHmtrfwfwjVTPvWLNJw8\n3W30JIucVpz4oStYf/RLHve1RXOeBw9birWC3CYU/Zrz151RUs3pBXuFFkwcq+fZCNz89x/FJk6K\nT9C7+sYGuVCSDtmELhcLmAVIevxBxTC/vH5ipSAAgITtOcDRGsdnwAj3o301wlcswnutl38TprLA\nhFK4D+9jk5VPNYplObXDZlBLOshlbbrDvoO4Vjqu6uyKsK3gHOLn+2OM/4fKSiVtCFHDwdoh4xgc\nJbRXABbcFxuqDyYpKxHBqr34AXWOnXch4ggorv+cnlSDykmuno2JQ0bD5gm19Ue+CFN3q11rheah\nvz75cV+/8gftOY/ZZg0hLH2ygxzIkUevo+hTc27SsKIJLXjhn86PNTS3uKjBggeDyxC/rDr0ajiG\nmzQ6jFBCDOXLADSasrRdbYeu8gvARQVo7xCCBUKTdxDhc2Npu1PuS7iJqze2FdBermmvKEibXfJc\nUbQShDQUh3WZXlfQOswws0ZT9JXOAYhM0JAuUHmuJPz14hfCOmFYJxxrseppmkoEC/0RVan4sBo4\nme8K8myJpBWT+FDQ38+6bmN/RCxd+lXDQgxBozQ3oOsGUzOYgYLDvzH/qvZMswf+9lRk27E+k2mJ\nBY78yqUc/cW51Ob1x53Ft7/w6TmPi1zT1Yqu9+immWFSEVvoa3v8zePxHzUj2HPa/KHtz678CKZh\nSFqCdNxhAvmApTtsKPoteZ+jxCetSjNd1NcQnhHry3SBDBfwBR2ASPdZoR1aeeGT0MtguwqUJTR3\nidylrXZGOeDReJasf6+p4dMKd50F4VcrfTXN39DpshaDh03SqOfUf9pk2XdT8tE6ixZPsmj1OHJZ\nm+aKKbrDJipBWw82BvXzkE4lbXpK8uD1JKRLIUwi0JmIGMPs6PpAdmgsi361jyq/1q36UckJnzum\nNqLToQvT+IGlLvQUZXhn/GPaI8aqjEaqNfG4GklfmUgsoqa54bOfeUpOxZNtNnEAYWxa8tRj3Wfc\nZOz15fDaR//wJOCmuRsx7qqb1E6yXmhbEm4K6C6yEejDo/FCw3krT5lXgl5oQWex+2LESBeVaLJM\nI6XBGEmeK2amMsS0Ih2XvusyXB+9pcSya9fzG6SIUUJ4XteIZWur8NiCB7GVX22VRaZl6BKBQhFA\nTOI5DJ2XrlpBpGLrLU2mjUAPaGpNy/QKQbZPMTmx2B2rga5skITSuncwsapWAS6LunNKQFSLDiA9\ngdwUKeXlVLaF2qHhGETp+apKz5JKahG8XiQp+VJU4J8IQNpSmCVx4Z1NQTesm08QwsfwegMiRBGB\nOJNYlDy4k/h0N2HcOVIdUa6mbTlnkckHykeO+MbFnPBH97m26kKTa8VAReRR6DKlg4qoisV9F0ZQ\nvPI0YK5jWHyrRF2wm/HpBkq5z5TSUE8LhuoulckXKSbaNfZtGyIdVSQtETtzY3XBg37BWYSFIDim\n2aMQXZ5vkalBtxOioIsWDoA0AqEsKjW+W1OUyksVglL4jPB4uL6H7nfOqTOcxP2s7RWk0w6nKPrc\nfnaH3HbCwJ0g8WYFPXesST0wm1e4Oinxug73htA2NlQt1A6ZVEL69tjqMJEgwhKqCqEC0VMTDifM\nRwBR7qsipx0rFIFUMuuKFxVatRzMWflvzw5i09lvvghRCD9WXTgAPjhQZVn2g14kdlllZrnqzzEz\nM4DDGKSwjOk+J4NWGKysqCmJivMNDjmHR38z5fy1cyUI//vvPsrOTSOkaYHWkm5XMT1VZ7qdsWuy\nn/F2ndxIhhpt1h25i8ZzxmitzcuIUrp0tOokoLKqF+6mmk/uLBt35KYeUDI1rj/CA41GO65LBBoD\nMcmWkUgAHU3m96dh6Q4I8j4ReQ3BiZjURzzKyRE6jZEyLe4pgfrPTCqt2T16E9CDO7j7onT4C7VD\nwzH4L6HKWgO/gvsDF/4LiP+bEomuHkXk25cRpd8m5WurJJIKtdQ2DGJnje999NkhDrvjRbWytEvl\nArRgU8vib9zb8/rqfIjq+mMTifEnXCgDldXJqnmiL3/O67skatWKefdt1bcFzcx5dyEgSTVKGRKl\nkR51tFaQKk1/vUPf4hm6K3KshNqoixS7Q4bOYkM+6H50zZIPuolmRcP9GO9Awk1tUk+F16IEIEOV\nwvdM4KPTcBLCYhTSiyr7MWpAeDJVydB0N7bqOiKSLHrl2QKhCaqAaglEVqsTsXeosOXCZyolyurf\nC7RDJ5WoNj0lNgJVPaIdfnrQbNl4W8mPowaDcmXPKusslMEC/hBOsPWCHbJRcNzfbIULn5rT8GTa\nuRe8nZm35SSjSSnIHZylb0u++u7v7Pe9xTsTbOHuiCAOMqymIztQ5iVmFL83DxLW9goW/zyneedm\nusfO7xi+/48f58QPXUH7CD+jTlnylhcyAC+k4v5OfO6fNrt0jrCYLHOaHTWDsCJGQFY6YpIIjMnU\npTgyh8AzkLlASIudzUyKd6JPdb2OpHuucoN6R1DVhAwjD4A4IS1ULXTmeDUmlGkrTjryFQBUGSHo\nOiQzZQQU9iNsK6ZMyqd0SmAOsmR5aDgGiIIWIS3QylY8oSibXJKymSo4DaR3DgFQ8pWGQH82AZ+Q\nPkzz5S5bGXJqlWXkO3Wu+u+rn9Lz8GTZ7lObiLbuufxFjstRLchWbzC58bTzo5Tbzhc0IS8QqY/F\nrUUbx2Nwq21ZJZBdsF66QXYFqg1rvrqNq77/Vc5bdSpq5WI2nPiKeZ3Q2qv28dAbXAu3SUEPFbGE\naDODKRwoqHPZQ1fOV3cYuKNONlaG0JEXYMubrqgLOotK1Shw14cN3IWKWSSyUUSB2GpHZdBaiMrQ\nsnJtenzBKhDtEjystlkX/to3GXGympUlKOp3oIctWS3jBudQlRIQ1qcjSjgweN6rYP92yDiGOGqu\nYoHBFioLpkYUBxW5Cxdl4U9oUfGUaVlXJnjh4Dz8Z0jjQlEbopXEsvRLP4O/fXKP+6mw89edwfj/\n1sgZWeIt0q1EwgIKBu+dlWVmZTfT9GqL6AqufcyBDqaRonw8ndQK9KCTNbbSYrJwczogOTECOz4B\ngBoepjNUZ+yC44G5juGaa77ICT94C91Ogko0zXqOMRIlDbW0oJMnWKCZ5eRa0slTsqQgSzR7V9QQ\nhSCd8hGMX7GTdiAyAAg6uNVf5n64bVdANxAIrE8lgNRGp6ASTVFRGetplqJ8LEYUwemkkE65zQWy\nk/QgaNEQZVpry21JXYKM4COIwOGQZUoSMIvAcZCISN6zqlfOYCF2SDgGoSGZEdFDptOVgxXeIfh5\nf/iDdTJf3nPngdBUOo1q227IruKEH1meRBH6JYyY0wPwTLW9bz4NkVtUmzjlCfz5AWxquP2vPt7z\nHrtvPP5tai4XC+VGqySp0ozpJkUnQXa7seyJdzQA9VHB4rs62JarLIjBflRHUxvff/5r7u0n0y4N\n6Xgn1lUwXfMRZFMzVdOOpZhY9ECHbmFY/Nzd5CdIJmbq5O0EO52gplUU/AnXgera2HkJftWXFtGR\nIL3w7CwfaYyspB6V6ABi1SUAm7ILsWnLeucbImHtFjCTuoWqGgEEkFRYJ9DSI+gS7oGQQlf3wxI1\nIK3wpX9Eb6/QAuyQcAwqh/7NhqLhwrN0JnSFWUwqaA9JdE1QG7W0lpXchsj+SsroAl3mccGJAD0n\nZja+IOqaVV9P4LeetEN+Sm30eZZk2hGBtLLOwfqeAiTIxtz2aLFoCIDz174A8X7hnKkIYbWhnSek\nwiH3Vjrl4iiC6iX7+rfonjmXettO0m7O8OgA517wdr755c/O+dx118yw7WV9lRzfpZkyF4g25EpG\nfEilGmMEUoKxgoFal4Fal3aRsK/epEudvvsSosy6cDdqldwkcxC564uIStB+4QiMR1JDtX1bVE5X\nlKQvKEvrAZC0JQkqWpX6HEqMYbu+UiHD8z7NjnyTKuXfP24UJF0wiSirIwdJboIFOAYhRB34HlDz\nr/+Ktfa9QogR4N+Aw4FHgddba/f59/w5cBGOavF71trrHvczcktzZ45NJLJrkNogPIpqE0HSSrBC\nUNvXZbJVR2cCnUF3yEcZljmhkvX13FhxCDTSEG55ZDkAbTd9qHeFfCabzSxyzN1QumkxuSPAFEMG\nW9cksyoJG049F7N6EIB9bzrdAVoVnQSr3EnOZ9XEqtOVXOjc+yXJI9ZQjPRhaorJ1bV59/WbX/kc\nR3zjYsdEFKDqPs/f418viX0Mql5Q5ApVy+nk7sOlsBgrWDQwwz6gaPbT3GFJOpa8IeiMuGsoLDYO\nb7CQWucgwNGhEwtauOYqcPMzZ63C8ToU5YofSrah+pPMWIqmiKC5zEuOQRXMlDlRJTvgBwGXEMax\nLaMTmVWlqMrgOwyuJJwt1BZSruwAr7TWngycApwvhHgR8GfA9dbaY4Dr/f8IIZ4DvBE4ETgf+IgQ\n4nGrqMJYVMeQTBckU93o4UwmEbmhtrdDNp5jMklzR05twpBO2wj2BPHPWMqcxWaOIRoV7+1LoWK4\nywl/uX0Bp+GZYSd+6AqScUnRZ+msyslWTdN3zBgDJ+1l2RF7OfGorfT/sLdTyh62OP6PocB5AAAg\nAElEQVS9+3QTgTmhyq+10IqOSV1LsjbIriM49W0J5B1XxwfXn7Hh7AuYeN4S9h3fx9iRddojkpP+\n1/xdl4fdqBhcPE1zqIXY0mDRd+sM3yuojUrkjETkEptLuh3Xe6C1RBvJTCdjql2jkyd0C0WtlmOe\nP8nYccS25DiNO3BcBIi6RmQG29CQWFfJaEuoVEGsl72PvlD0Vhuq0nGxP0dA0gppsiVp+QpHWsrx\nW0kccxBmUQrjUpOASeh6iT2Eha5HZj4NkZw7TqscPfpg7IARg3VTb6f8vykRt+Y1wMv9458DbgT+\n1D/+r9baDvCIEOJB4AzgR/v7DGEs6Z4pbC1FTLcRQ02sFJ6+6r+Mibarl9cSZFch6iXibHwFwyRu\n74SvcJVlKVyU4EPCIKZhlaVWL541lQhwjVK1PQpjLWJG0TZ1uvXCdQ7mkqnFNX72F70TwO3dD3Dt\nplvd3yGaMMQTrGtuclMtLHM4VLx/E/Tt0OQDCXm/6GHfmb4aeVOia+5mqY1bJofmv3h/9P6P8bxb\nLqS9eYAj/6tN9uhuxl+4CuE1GHMtKQYtRipUomlN1dz8SYFvk7ZktYI8V261X9VmlDqDj/jQPuCR\ngfWZuZXE5BKr3YM2cfMkwLEwCeKzgUhXKVGGxUfX/dgDA9qDjbnPiky9nKYlc9ANUQHaK9FB4DJ0\nIfZLeCemMx8pqFCJcBWOmD6LCi5RifAWYgvCGPyKfxtwNPBha+3NQojl1tqw1O4Alvu/VwFV0b8t\n/rHZ27wEuASgng5CoRHaQJYiW+5s20Qico0oDKJbuJMjBOl0QW1Uk07XmFyTMLMCRFegdFnODPXc\nKMoBTgSkEnbZukH+ZADOXPD5elrb+g1vgndCc7slmwo0ZYVJEreqN2Bm5RC8qPd9sllGEKIQmLrB\n9mlE3YXzuiZpZjkDsgVWYFMVdTDyPifeUhUZQUqwlqTlcr1A8kmnFaf9X5dz23s/Omff9S2LMKsL\ntp/ZwPzGWlqrC9S0xaTGCbzUNVYL8ska5ALpKwtWOT5DF8C6WRFps4te3aazrxH1DqJ4atc7hFbl\n1gjMWj+NKs+VSyv8Sh6G5sY2boHX/gDdIFKvS1EWV+GIqYN3GroGqlXiHUH2PWm73ogwY8MxSd1b\no+y99oNtPQkqNFsF7RE5K4o+kC3IMVhrNXCKEGIY+E8hxHNnPW+FODjc01r7CeATAEPNldY2a6At\ntqZACESuScbbiJk2FBrb7sCSYUwtcd1j/SnTyxVFg8hvCNZd5Fym0ALZFpiaxfRr8BOFVKrRO5qI\nrmTN+26B3z2YPX/62sN/nlCTM0wuK4enKN+xo5SlWe+wtjnT85716y9k+hUDwPd43vuvYNmrdtEt\nFEv7ppFLRoByVWvbDJEYTKrI+yV5v6A2YZwOYdPSGC2/IznZJp1p+pHtgrzpcv2ptfNfRne/+yM8\n/9Y3sC8ZRHQksj9Hq8Tlz8pi225lF10HTtvUItsC1ZYkOxXtZRJhBPUxST6QYPoM00cUyLZEtQXJ\ntCj7HLR0jqatSpyqwnQsOgmyLRFFpWIgyptZFoCnRKu2q56F1MB6inKoKqiOc9LtERlVpxt7HNmp\nM+I+MO+HZJrIt7DKRSDBqSHA+IjBpJAPWpIZEaPoanvAQu2gqhLW2jEhxHdw2MFOIcQKa+12IcQK\nIIwm2gqsqbxttX9sQSYKg00VcrKFadYhUZAm0KiBlFgpMDXp2kmVO/HphIjRgVWWRYfvY0lzhlRp\n7rljHaZuWLpyjExpljSmqSc5m4eHmbrusBgiP9PttL+5HHnOFEXuQ2PfiWqMRAAag5KWBzYvhxPK\n900dOUi3362+kyd2aQLdwl02NnW/TeLCeYWbEC2MQWeCogFTKxVFn8U0DHnD37x9fZjBhkfOBToV\nDGzqoLM63eH958Jjm4chM26FbSWxuUkog5U+QuhzfQ0mV2glMVpgkY70lhmKuohdmDYz2OGcYtJx\nlWdWujZv2tKrR/lcvXDtyyKXMZUSQNFvUS3viHzYH2ZiqDZkUxbtyUuycGC5yXwK4Xkjui7oDgmK\nJp6dKbBSoOvQHbIRQyiaZcm+qkURW86LwM92/ApXbfHK6/n+z+n+bCFViaVA7p1CAzgH+Afg68Db\ngL/3v7/m3/J14F+EEB8AVgLHALfM2XDVjEW0uqBkbBm1e0YRy73cuJLYLHGphbHI3B1w307jGk/G\nJd1+QXupC4eVtKRKY6wb+tG3KWHmkaXsW2TZ1jSIRV1OP/Ix9tyx8MEoT3ezrx6lKSxtmYYqI0oa\nlDQIYUmVYWX/OON39Eq8Jy1DbcwtOatWjdJIcxJpWN03xrbmWsCBXbnuxZeNEnSHLTMrnVOQ/Tl7\nny94wV9fjnmdI/SEMNwqGLq3zbJrtyOLIzjzykv5wQfnVomW/lgiLtzLrt2DUJS4uekqMMKBhsqg\nUu1vVsdiLDLjnEhqKAYhTB0TXYVNJEjIhzW5soiuRHbctkUhYtUKfCoqbExTiqYr+0Ig6JXgI4RK\nDNisHPiSexGWsJoH5WedWT8sxyuYZdDYKWgv8yC5FigDtggdq24bRV9IUTzLVIm4L6FkDAcfNSwk\nYlgBfM7jDBL4krX2G0KIHwFfEkJcBDwGvB7AWnu3EOJLwM9xAdW7fCqyfzOaq2/8d85bdSrJYcux\n+8a4+uEfc/66M5BHr2Pq2EXURnOSyQ7tJRlWuhNT25eT9yV0hkAWlnRSYBJo3biUXbuXMPxAizW1\nLrohycZyusMpOpNAxoOLj+PWL8zNZZ+pdvjwKNN5DdN0N7EQNjYhpVKTSc1zBnew/e6jet7XuP0x\nrr79m24bg6PMFC65Hcmm2ZI5ZyBzi9aStnXCALqm0Jm7WFULxPIufc0O9LfJ10AtLSjyhJmxJtbf\nZJs2LmLk3kFaSwWtF3TYcPI5czQ3b/6Hj/Kcj14Bh2nUjL95dXmjyaJsZ04Lekp0yYwPuwmdia6q\nVTRkRPdFAfVRQ23ckE3m6FTSXpL68rjCKugOJpFNaZKy7Vp7kaDAiwBoW+Fa/nUQh3EiMwhIpkWp\n9hyaowRxwlT/ZsvQI22KRoJJHK4mjIsoirpCebaXahcUzQRTk8iOQddVz2s7wynpZIHUlrsP4npZ\nSFXip8CcYYTW2r3A2ft5z98Bf7fQnTCNjI2nnY9aoinWLUN6yqw8Yg0PvXkJa1+0hW3Xr2HR/Rn7\njnGdUEWfRbXrDD1kGDvBovvciRq8L2HlDfu45povxu2fv+4M5PAQiRSIJMFOTnHT44xnfyZaIg2p\ncv65L+lSWEkz6TJTZCytT8XXDTzWK90m+krgccvUMLmRLG9OIoV1qy3ljdAxqeuuRGIy6BzhttWo\n5XEgTZa4SC6Rhsb9NWr7LFYI+nZpsrGCoUehsacBnQ7z2eEfuoct7ziB5k5D3i8oxWJd95KVgmza\nfZZOBbomSGdMLNeF5q5sQlPbOU1rZb/DQ/okRsHApg7pvVu4+s5vsfG088lWLUE3UvLBhLwpEYVE\nN0RUVQpiKgjIh2ycSG1SGwWNbZDUt76qIxwO4Fi6rtSuPYiYjxhkW9BZLJg4sk4yLRjYbJhaVaNo\niqg4pjqQTluauxPyhqA9Iin6PKZQJA5ETV06kk7VXMRww0FcLwt/6RNnuia4748OZ+AhyWE/HMPm\nBeetPAXxggb5sGHL6DBDjxl2niFZfepWHtu6BISl20oYeEzR3CowqaS9xIKBzvI+znvtWxA/uYdr\nN90aOf3PVttw9gWs+Mx2MqkZyaaZLOpIH2MeVp9guqhRUwX3Ty1D/fShnvfmhw3Fv1Ol2bpnmKFa\nm12dgUhsMqkgUYZ+1XYrtrXkfQKVGrJaGcMKYUmkoevTjrzfKy4JmLGS9nBG3ueES/RzDsfx6nrt\n6ru/w9FfOJ7JY40DBIuyAmH6tG+VDmmAKyvKaRVFY4RvpVZtSTq9iM5IGF9oQIHK6yzeM8z5a1+A\nfcEyxo9qugEumYjlSF0LfAEPBNatG1gU+m4Cqc47I1vXkEuHayjryFoeH6FfO5UonxqJxGCHoNAC\n20roGGitkNR3Chq7LY29BplbkhlNOt5GNzNYmjF08yR7T+pn8nBYdJ+htq9gZnnKRCYZeMwwfN8U\nPz+Ia+aQcAzplGbxnYLG7hzdl5EcsQbR6tAaqdP/kELcP0A2VdC3OSG/5TDWTRlPisoReYchP/6h\n6E9pLUkwqWD7SwfovOZ0Npx9BFdf/+Wn9gCfYrv6+i9z3Gcujz0BYR5iGFAiCnexL3qg4Hv39WpR\niKKMx6f/aRWrxzRjQ2sZA374b06fQRjo5klkPgpjWfaTDt2Ha7QWNdA1h/i3F8HoEV3SZpfhgRbF\nqg5W1kjaguk+nI5jF1rLBNvO6uf83/ztOcNzAY77yDZ+/qfLWf5dRX1Ms+e5kvYyw7r/gNreFuPH\n9DF+jOSwH+c079rK7nPWMX6MYNmthv7r7mL6nOey5WxXgxTGTctubpeM3NOhfucmWDZC51WnMrkq\nQddcr07eT4wM4iCbFPJBT4LKjEuLBE4aDl/dkBYhnDOwRkR5ONNKQLkhNlJabObKraarHJjaUYhc\noFoSXTe0lxuKpiDvUyy6PyeZ6iIn28iHt/Et35l63mvfQmdkoAefOfd1b0PecjfXbroVNX+H+7x2\nSDgGOl1G/vNn2HYH2ahz9b3f47yVp9BIFCsmhlyTzqY9DNxScNVt13L+ujPAGq7ddKvz7FqjBgZQ\n3S71LINaDZmvY3p5Clt3PtVHd0jY6uu7qHbhOCHauN+FAWOwtRTdTPnmVz43533ypw/Ev+ujBcl0\nQWcoCFs4sxK0FhgrSVJN0ahhEkFRd7X+4YdzGo+NISamscMDdJb3s/OMflijGXwYFt89w/iRDaZW\nw9CjmsE7d1MsHWDPqYPzHstVP/gax3/ycn78PocRbXzhq9n2mrXc+KlSSOYl77mM73z6n+L/z/3g\nFQz++DGuevCHrD/SIF92Cvmwc3o2tejRhKSlMeuWM35sP91+QdEnKOqOiZj7kfa6YUsp+JpB9BVu\n8K0R4GedAK6EWhDl4MDTub3gC4mNszCtsqUIjMWJ0RrXj2LbkI1JZFeQzDgnPLkmoTvYR9+2hGT7\nrniMwliyccv6486KDYHBKRysHRKO4ZjnTnHNdb2djU4kdK4eINCTGhzwoP/hl927p7+94p0X8+gb\ngaKGsD7U1gKTGXeB1jQqNWw4+4Ke6Or8tS/g2k2Oq3bWuy9l+t1j7Ns5yLp1O2gXCef/1pu59uuf\nxwrHg5jUdaS06Jpg37EJ0yd2QFjGdtbIxpbS2LWEoYe7JFNd6rszZo4vMEmNZPck4vA63UVObMRu\n3UGSpbSW9e33mPKBslpw1c3f4OT39dKp1Szx0+6QZeeGIwCw2om5qsUdhMc+kpl+0k17oCgY2T2O\nzVK6q4eZXF2jvcSVD/NhXTYRKIusu+4px7L1fTfGT6pSrjIiPM8CbM+NLxsFUlpMVRkKn0p0FbIt\nycYk2Tj0bTfU93RJJ7qo6S5s3g6Bjp64W/i8Vaeiju8wcl+KyFI2nr4BjAExutDLpMcOCcfwa3ti\nbc9JKX0PuZJVOm1jm7NR0nfkJQhjufr6z/a8b9OfnQE4x9t/7V0M3NTHsrFHEEpSL4rolIV1EUPH\nJjRqXWS3ztqvbMV+dob8+NWYtItNBKPHZTy2MUUPSKAg2ZGRD8LWjct9h6Jlz/MEY8eeQnO7K0mv\nP/eNXPPNf51zTEtvhfV/+RKuefCHALRHHp9fZ2qW0Ze55ho5MuwqAcogf97PkZ/exFU3/zP81f7f\nf/7aF9A+51T2HZ8yffoMaarpdhJsIVGNwtGk61AVStK+XBoiCpk6cl2jr0u3qxxlGfec7bobPduV\nMPAIDD7apX77I4ihQez0jCvpZylm7+icaeIAslbDbtlBNjHAVXcdBMq4H/u1Y3gW2F3v+ciBXzSP\nyeeXGgzhBpzPrABrJNrzz3VDYscm5qgyrT/3jXQO6yOdyjGpioSfbp909fytod5vqY1ZOotEFH2Z\nbT9+38fYeOOG+L+u9z4fynnxWHIBfnq52TtKOnE0ya397txcesBT4Z2gc4Qvv/hidrywgVmdk/io\nwRjpnAOQJJpOJyVNNUWuMImhVivQWiAE5LlyzFNdSggkexMGH4FlN48jd4462njm9lfUa9iZNhiD\nyOYXKr7m4R+7KWLmF+ixnsd+7Rh+bfs1HfQHDmBSu47DoWSGRPnSYDL30hJaU79rc+RFnPu6t5Hs\nmULkBd21I+T9Cc0HRmF8EkaGmFm2lGTfDC/5g8v44Qc+Nmd7VVOzBmTJ3PbMragyAK3WLLrX9Ijb\nHozd+E8Ou1i//kIeunCYfFmOCg5CS0SqGexvIYQlT10kUE8LptsZShnyPKHoihhNDN+eseLLD3L1\n7d9kw8nnQL3mGL9CQF6AFO4nSRwLeD9mZmYQA/2/0DHNtkPCMTxwd7/LiWoZeqQftXUP1hgXPiUK\nksTJga1ajmh3sfUMmyWgLXJ8Cr18GJFrdyILg9CaYqSPdNMezFA/Qmvaa4a44bOfPPDO/NqiDX69\nH850Sk17Ln3xvM1NZ155KdJCZ0eT7yw5jqkfLWX1pmlEs85pt72efXsHOOozhvSnjyKa01zlnQKA\n7BTY7bu42gNl6487C9Nqce2mWzlv5Sk0T16MGJuk27eEjWe+hqt+8LWez652xaqKChNAOtEtNSmB\n/kdL9uF1W28Hbv+lz0+VK3PWuy5ly3kWNejGz4FzrMYIkkQzrTOKQqGUQWtB+kidpXcY+q++06UG\nf+G2I/qbpUMwxjmIri/5HiAamG94zy9qh4RjIMuYft4q8n5J0ZAM9qVuWnK7wNQUeV9CY8cw7eUN\n0omCfDBB1ySNHW2EtbSXNhwVtLAk085zt5ZnNJKl6JoineiS9z2uJMQz0s694O2ocbeUdg7rw6SS\n2rW3kqxcgVk6jNi6G4xG1OeK4J717ktZ/O27HXh7xkm0ls7l25/3f7yV0fMUy24rWPwTxd5b1lEb\ngHTHOHZiilet3szZJ9zN337tnbGkVjW5qXQKQI+03nXb7uClv/dCrDHUJgyPvWFOg26P2VnBjRqd\nRufd+H9j1JCNH2SL4UHYTR/+OK9860VseVUDs7bFTCvFeqGXPNPI1GBySd5KSXZkHPWZbXMcHVDe\n/GninEPh9ln4CEzv/cXAxIO1Q8IxHHPMKH337aZYNkjRTMk278MMNJCjk5Ao0sEmYtMO+kaHsLUU\nmww4NZzxNvaRzTRZQzHcwEpBsq/lnMWSjPbijG6/RI0kUQjj2WQPvCUj2+vGxuUDhmRG0jj2xfTt\nMEht6Zw6xNQ6QXd47kp07J/czac+9H0Atv3GAOmkY5BWK0Ld4RqdJZrvfqLkPqw/7ix0q4Vavoz/\nuGcdX09Pon2OnTOO7ryVp6CWPv7+921pcfXt3+T833ozo8+Zv3QZLOltCsVu39XzeUP3TsT9e6K0\nPYNs3caXvpaf/8kywPdXaIHuWOrbUlZ+r8P1n/8ovHX+bdgsRWiDHunH1BLSLXuxU21EvU6xdduv\nNCp4PDskHMP9Dy9G/J8r6A4K8j7gjJUANHYOu1pyA7Jx1/AkDOQDrr6cHb2Y9PQR2iNe4bcDqltH\naJhZIUimoTtsyQdg7XW/GlDm6WKv+u13suRwFyWZDHSm/EASS2dIkE3BktvHMenQ3OUWSHwD/3kr\nT8H+GaRTlvysk4BbfBnzVradldDY1htJhJvu3Ne9jZcd+SB3fvIkmq/Zy8P/cgrr15+AaaTsPbGP\n/EpX83/lW9fSeGAXxaYtPsQvTU65FV/tHGPowQPkzrP8vpma6vlfbN0NiwZhxbLH386vwK76/lfZ\n+NLX8vBbV9IZcecx251w5Oe2zh8lVPezm2OzFLV1D7LQLpXw0cKT5RRgYdJuT7iJTs7QgzMMPlpQ\n3+tkxmv7LIvum2HooZyhRzRDj+YMPdxl8c+mGX6goH+rZeihnP4tXQY2a0buLVj+31Msv2Eny695\njLXXTLDyu+Osva7F4f+V95Bdng22/cV1GqOabMo4Xv2UJWn5QajCdT/qvoyi4RzobPvWPa73+rpt\nd9C31TL4WJf6I3sAh9BvfOGr6S4tWPfV3fN+vprucs//fi4DWwqW/4nluJU7uffKPjBOfLa+z7Ls\nJy1qu2cww/2I5z+HjWe+pmcb5mduEpYdnyDp2HnH2QWzs5a4ZPWs1GN4gJmjRrj6xn9/nLP2q7Or\nvv9V7rnkI6z6Dgzek7D22vYBnQKAnZhCzLSd/ojRkCQIKbHdX0BU4ZewQyJiwDPxrIL6mBuBXrVu\nv/SjvaGRSPJ+iU5dWQygqEtMajFZg7Q/pbZj2vW1J4rR4xssvW18vk99xtpvXHIJL/3r2yl+y0cM\nCJbVJjFW0DEJh9f3kgpN2yY0ZZdP/NNv9rz/RX98Gcd/+2G4HV78R5ex6P5Jrv3653tec8+frKLv\nIRUJUS/+o8sYfHCaHWcOsPSONt++5tNz9uuo2y9j04aMey6Zv3y68fQNvPKtF7H3xBqL7s+5cZtz\n5qKviWpb9ItPIpQMZ9uab4zC75X/j71oFS+7/BLquzvsO67J+Dtcb8PLL76Y+nW3H5AYtz869sHa\nTR/+eExfNpx9AaaZYX/yc67bevu8076Fr0joY1aT7BzzDsLO6TR9ou3QcAxpwszqJq0RWQq3WugO\nZXSHFHnTqxg3BEVTor3Ypc5cU0zRxLWYDgnEkoz6ogQrhaO1NgXc/+hTd2xPgckrd/L7y66nYxVd\nJBmGpiyY8cqnTVmgrUAJS9sqrrp2N/xx+X7zpr1c/T5XPei8cR/7vjwy5zOG142x5It1uNL9n7Qt\n02ubtJZbZpbPX2t/6A0f46JNL+XoL17G2uuKOVWiYtt21NHLqY9aZG7Y+NLXYveMkp+6Al0X6LZk\nwzlv4Opv/ducbVdJUBvPfA21owraS1LaS2vUxw3NH7pco7a7HYG8qoX0CGDDyefQemEfL7/oYpqb\nJjD3PRSfO2/VqXNSnmDnrToVWashjlrnhF2278J2c+xx6zhv5STmrH6m1tRYNHM0G04c5rpt32HD\nyedgp6eRQ4OYxcPIegvaHadUNtDnoofpeUK6J9gODccA1Hd3SWYSZNcwenyNog9aS1IQUBu1LPrZ\nOJ2lTWo7pjH9GaamkB2NnOrSGlnEzApfo5bQXuJ653Vmqe95fHLOM9EuXP3fTNoUYyVjxrVNdwuF\nQTKh684hmJQB1WJnPjynyewth5cA49K+aSbzRXM+Y9+OQX7yFbein7fqVPTrBfuOlxQr2ui75ycl\nAWz+w6PZ8MHbuOGIY1m//kLkrn1x9J1QinTPDCN7HYBsGzXE0CDZgzvJNmdYJZk4ef+I5TlveAfp\nninMSEZ90xiNhwrMntGIe2w4/mXoiQmu2XYH5606FaFULI2qY9ex8bQlXHXbtdjpaeq7WsysbpIv\naZJuG+C8lacg63WSlSOcvy6NIOyGE1+B7XQQfX2oZQIhJbQ62GYdDluKyAtMIlGLR1CjMzRqvovS\n62XS6WC7XWy3ixyfwrY72Hab7MHt0KhjpqefkutXWPvUo/WDA6vsKS+/kvqOGabX9rP1lSAXd5wo\nZ0cxfEfKYT8cg8IgZ9rQ6foab4LesYvuK57H7pMzl0O3rJs3UXeh4z2X/mKsv6ezbTztfOz0DHpi\nIoaq6ze8yXE8Ol2u/u5/sPHM12DrGfqeB+aEs8+75UJ+eoar0Z/4oStY+/XRnhX5mM9fzmE/NnEW\nx8svvpjHXgvnnvwzfrDlSAa+MsCP3j+XPLT+yBeBlFzz4A857qa3Yh7r49gPPobetQdb5HElfvlF\nF2MyQWNnm2T7PgDMQB+m3zmHdPsYV33/q3O2f86F78CNiXcLhujm2EaGnGxhxycca7BRxyqJrWXY\nmkJ0NChBPtJwA45UCbvJ3GBSyf9P3ntHWXbc952fqrrx5U7TPT2DGWA4ABFIgiAIgqCYRDAAM2JY\nkbQtk7a0lEmalNNK8jqsdY5lH3vtY69le2VxRe/akhVseb06kmlCpKjMIEoUDhMCkQaYASZ2fPHm\nqv3jd9/tAWeGAuSgAVXnzOnp7tfvvXtf1a9+9ft9QxVqdOUar5OyZbDBXGil9oQwIt8252hU/p6K\nuSiOKfTc07MCk1pMJh4qlT+nr2t0YTGFrSXhNTaQ3+nc4jxFGWtM5lClxYaauQWdqoTunXcM/tSi\nS/csCbgy1nzhF//6/c65KxdqLhpXRcagiorofAJKYVLL4lc8ylYL60MwFJXLZ948oP9UhVN9/InF\nn5X4D5zkUyd/n2N3HyY8tIyqYPB4yvBFEcHEUsRXRW31f/hw3TZ0WpgDq00n4MJrOs3EfN0PfJjk\nTSLWuv7MuUv+vvtzPRH8Rzoa516/yO1/9yPc/3c/xj3veD9H/vHTjO8/2DzeegqcI9TCGdCF49gb\nvhvbb9WS/4bK19i7NVnfcPz2Ho/c/+/4a0dfyX9u3861v7yONYo3fvCVqAomBzxMAU7HsB6jKtcI\nrVSBIrtt/bLX7X/5Cc5/zy11d6q1p4hU9dCViJjPF7PJ6+d0oCv3LMMipxWmlg8UReY9KTUp3MqC\n08WeF4Suf1fWsvBO72lBOlUrZsciTagc5B1Rm5q/vihlQxVpCmhc2KBWoop183xlpFFWi+rT3MnK\nyXFb12pRZR1Q5r//b+4r8T9iuDzHnN9leOcBrKcYnBD1nt0XhQQTRzAR2+q0ryl6CqcM/sRjOTvI\nsTe+m2K1I+o3bcX4UEjR2ePa/0kbb/z+DzJ8s4+uxPFIF2BSsWwX70TF8DojE6zDJT39ew6/is+f\n3OPzqxLyPiw8Jjfzifd0CXYdvYvwYs7I1rQWjPBNhS6hXOkyuSauvRdcs3N5qWP68mvkHH/7tbzl\n732NX8tv5eCvW1SdvZqCRvtAOqkyqctI7xm8XGbc943f4WX/9CVUgZjHyms6nMQqfrcAACAASURB\nVF9rhVayk6P2vuLgYs/vKpBFnncuWthmLyio8tnva+5babJaw1HvuUjNvxfTl7nU3F6Qmd+TIlSU\noQjBeOmzr70xnXF7IrCqEnEjk4uk4dzlXXs05jLNY61c69yf5bmOq2JLdZ0Wu68+wGxF0iTra8qW\noXeqINoq0IWjfb6ic6Zk4RsFyw/kLDyWUcUethejKsvCYxmLjxT4M0e8YVEWsisYmHw7j92jvuAV\ncvBHTvQJHXiJmNh6U0e07Yi23J4j+EVDsAoy7nn7+4gvODqnHZ/7l4Lsu/11jzD4D6JXMB9OA8bh\n65JumMsCsq6RVS8jLeYyNWEqWfbYPH6U6Hce5Om3RXjrM565W5N3DLN9nsimIbvvdJ8h7Wuyvm5c\no0ziuPUfX9616ms//BN76kr1bl+F8lxlVL/netEWbRFgKWPIBkr+LUgRu+goiq4oOFeBSMRZI1+r\nSMhfNlBYT2F9wdroedAwtRnMRU5Seh7s6jFf4MqKV2swsYQjh8nqXb9emV7qGk+IPR9M96znyrsi\nv1+0NUW85zo1DwrfTEF/LuOqCAw2UJSRJhhJepcuir5e1jdkCx55T3wK8p6hbGuKtiEb+GQLPtNr\n2kwOxcz2BaSLhqyvyfqKZFkRb/3JSxnCXUdr00olfrOitVES71hamxZ/JliGeSYV7l46Yapwb0qM\nru9SthVLXxQxkKfe6fHlZw42ae+x294KQPfTD7H4RZ+HJutc+Ow63Qc2cUYCgTPzhSm7cBXS+Cds\nv+dWXFly9Ac3ef+bPsuFV9EIp1pPjii6rB2faudna+R4U7ZEoOVyo4z3dlmg0YVsjguqVmMOZJGX\nbdXs4HOV5/liNmnt5DRXdDY869ghz+/2lJ/9PQk4VXtLAI1F3dyw1tbXCDQy+nNxWBAXbi8V5Wgx\neK4fW79vU9AEUDk6yeP8ZJ5BqOZam6PO8xhXRWBooiCSIlW+BIoyEpHOvCORMO8oipamaCnyribr\nyU6S9epIXqdQ8w/wcgWwb/fhjEyYMpIdJOsb8raWHTOWhZn1FbP9imB0aWDQxV4wHV6nKSMaUNDN\nLz1F67c7DK/1yBYUo9eJ8MmvPPJZwqFjXzgm2nTgHNlCQBlLQJCFPt9d93bUvKMYHruF8sxZPvF/\nvZ4PvOU32b5FEYzl6FH5Mh/mzs+6cLW0mqT5T7/30GXvweFf3qJoqyYNn7uSlW3ZPb3EYnLRpvDH\nDm/qaF+oiLYt0bZQvr2Zw6TiLykK5PLVZPIzkwiKtGmvl3VAqlwt416/GfVs5Wj3rCOYfFZFm1pT\nsj5S1L6a80yl8ut7UO1Z180DTlM7cHJkkSAlytTqotqFLp9f1nBV1Bh0bcgBEG0UYB3JPl+UgXJE\nC7Leycq2xqRykf60JFvw0bl8aFlf7ro/g+WvzuB/+WO5nD/Wkawo8q5pTEdQtV6CJ1LuVe3clS1V\nHP5/L0UtlheRzYqu4+i/eAL+sugJnvhrhsWxI12WhZl15TM59tI3sflDincPvsR/vPVV9E4tNWm2\nqmsMunTNmX6+Y5tM4Nmzv3QX+3/q6/ztH3kEvgt+2r2JhYckezRZnUFY0Kha2v2iOsFlxn2f+QVe\n9k/ro0Zd3AMIzllMWvs0OCtHg0DO340Zcq36bArx1LC+qrMB19gWyDFJUcQK41ydkbhnneOtr/BS\nx9zY1hqFl9pmgXqziqIt+qTW26sHpPMjU634YjLX1Edg75rLWOEnDn9i641QAoj1Ff7MNfLxzjm8\nqd3LIJ7juCoCg/UgWZKWULIi4BjxJZCzcRUGmNw1FeW8U3Mm2rUwSF1ImqdWRUfxhR+7VL/w2328\nbf3l2Jq+6wyyCJ0E1/KbUllVKexTzzzr7+95x/uZ3i438fjt96A+SqOd8NQ7O/R+S3bFuSV7MJnn\nt7UilNvzevAnFcFYAGtVsFdQnE9YZWsr+pbGn1omb7kZ+Cyfe8M69/7al/jV5FUsPFJRRuJtaT3w\nk7mzkrijW+/Kk33/58bsvriDKWTx2EChc6n0m1zcuNGQ9Q1e6gh3CpxSZIuyJObBrGhpdEmtzFw2\naFunlFC962vyEksVaNmpXZ3pAN60amT2dW7xZoWoaztHULdH/VGGKi1lNyTcUei81qLUCp2V2NiT\nVqlz6Pyi50tLVFZAZbFdkY/S00zQlb7B+gYzy1GlpWpfHnR2pXFVBAZdQeechMTpqsZ6SlK4mjVb\n+XvnN/GqVPU5TxyCTeIuKvoo8v4VX+rbemTH7yC+IFwEkB1vXqVWlSBHdSnFqnBbXyKrn6y1Gpbi\n6NWHiTZlct975NXw01O6nwspOmIT6AyEO3WaV1V7KXWlMFlteKLE9Soazr1EqXdHJ5V6JTui9WRH\nfvP7PsCvPfhvuOHffYR73vUlPvtTd7DwaE4Z62anrQLdHE1UBcfe8N3c99u/eMm9+PQv/Qx3/fBf\nJNytZMctFf64EPu32FAFWoxZKvCmJbqosL4hPp/L4zOxwfY79UYVGsEY1IK6aCV4CE80NM1MbrrK\naoXoyMMGBjMr0CO5qc5o8WIN9xapm1swFiV+Ud/EvAClqBbbEnR2U8pBhNMaVVr0JBePV4RnRFFK\nTcBoVJpjZqkQsUBIWFqLVuTzGFdFYLAaZst7u42r75vzoGypWt58niJJamzKedVb7RV2SjA4Vr7y\n3493f7WOO//GRygOQTCSnXjeDTCFnDPzjmpaamUb1n/nUpht0dYsfm0XgN2jppGEe/zv3YYtUvKe\nEdn+GgPQWLGVJbpS5JjarFXAQF4mjwtG8nnowuKUwgYandfgntBIBlFavFHGW77nf+bRf/8x3vy+\nD7Dv75wi/bF12k+MUM5RtYNG4dqGHs43zG5YuuI9WfiDDXZfsUK0WUgRUyuKjodycgx1Sl7XJAVl\nN8AphT9MZXHXTut6lAj1H1mEthVRLsSgwb8wET9VpdDTBBcFDQFKRyHGGNx0JuWAshR4NML81J0O\nVBUuz1FBgIprbTrPg1ICrm6F4Jw4vRcWXfu6Vn3T3MOqHaCzElVU2NjHLneeBchSlcX5Gp2Uz2s+\nXRXFR6grwDlQg1L8qfgfeFNpufmzupBSV2nnFWMvkWDhzSCYyq5ysT7An5SRDZRU0Ks9pB1c5LA8\nN0Gpq+HeE2cveY4yVo0qUee0rPrjd72d+IZd1NmoOas7I48tuvWuVXMPAipcqxIwU6DrGpGrK/Vi\nClTF9Y4faPKuL2CiepetOgFYec1f+7l/w+zHD9D+oWfYfdmAchCTL0bkSzHlIMKGHmVscEpx773f\nc9l7Mi+aWl8316/q1N8kJd6sqBeQRWdi4KLTUoLCLENtD1G5pOpqdwxJit4ZEZzewT87gu0h7smn\nUafP47Z2RF1slkIiwcGNp7jxBJIUO5qglDih6TCU/8cRuttFr+1DtVryLwolUAQBqqhQeb2gldpz\n/vLEBlAVldgBxj4qLzHjDJMUhOemBOfG+NszvI0xwVObeJvj5zWfroqMQbl6sVd1KyaRiqpG4WVS\n/S0jOa+aOfu0LurM5bp0IQUhe4WC1LfzOPbGd8Pb9ireZaSbyr0zCqp5NZ+m9XffRRJr85Et7N27\neUfn1J+6BmeHjanPHG03X/AAqttpTFiUZ0FrVGbxsnmGt1cwK2NZpF4qNSOTg7LCnoW6APeifRy/\n6+189nd/kps+/+dY/b5zTP6fNcJh1dQz0GAKEZxJ1q+s1bDwe2fJDy7KWTur8M/lqMrKbh34GKVQ\n0wQNQm22FTqKcHmBrclNqqyoNrdRRuMqi653d5fn2DTFeB6EIW6WyG5vjATL2oEbrTD9nqT1AMsL\nqLKWInSuVmoqcZ2WBKI4wrYiVFVBNT+G1VKH1qGGJbrlY6ZyLapyckQxBl2UMBxjt3dRvieWjMaI\nZuTzGFdFYMDtgUOCiasLP1C09hBifmJr80/XoNB07lDO4U9K0sUA5xxLD6Z/2Kt9242dV67QfaYS\n38JK7ku0VVG2DVWgCIcVU+Njcmm3DR67fFo5BzxdrHK0ds/TnPzSQVZOliK9V0N+ra/wp3utzTlm\nwOVGuAr1eXmOHJxnMF4ilfkq1Ph18bKMNTp3lG2DN61rTS9Z4/Uf+RAPf+zj3PG/fYS//vd/no9/\n+N14I3mTNpJsw5tkWBNx77E/y6/c9/OXXNMnP//LvPl9HxBYdS9Elb7svErhbU9xgUex2qPoeXiz\nCqcUVagJRgVmmlMGBj0rYG0BNctxrQBXWvRohrIWFfiU+3p4uwkqybArkXA05pyLXhvnGy7mJKnS\nimRblkvwmNcZPIMNA5RzqEwWvYtDOS7XBVvnaRRgdqa4doQey3x3gS9BxTOoVoyJQlz93nB1x2Tz\nuc+pqyIwKCfkk3krZg+Hrhqgi4BzbIMhd0o1ENqiI74IygrB5U/aCHcqglFRk2y8Gi8gGVa4U+LN\nSuINUUxSFURPXLjs87QvyKJs2Ihv+G6e+tEey19zDQ5BVQJIM7l8HgAuTVEVjGwkRiy5RRUVZSiP\nizbrSW40ZdvDJJWc2efdjECTDXyizW8qkFnN3e//fr70sx/jlh//KPkHZxz+1yHeSFzPw+0CVTm8\npGJ28MpZQxkZPE/jfAkIOivlKLJYG9po8CclOinReUWxEGEmGWqWYTIjRwQXQVnhfLNXYKyLiDot\nmvmoqmqPuOUZ2NxFR6EsfOckIGgllOooQGWFPG44hrCPniby3L5HtdhBTzMUIpw7J3zpWYrzjBx3\nkgwXBRD4EhxG00bkxeUFfi2erNIXYPER5CxsCodK987HXiYgE106ypYm7+rauVhjUmlBedNKsgjr\nxNB20ef4XW/nk7/7iT/mK/ofN7IFI220uk02Z/op6yjaPtV6IF2JSBBzwaefueQ53vbdf57P/eJP\nPutnD//QMvHDHvFmLn35RKThvbTu49eYB5cXmFpcR2lpq6nSokvJLLKFQOoSkXAW5qTspg7i1biI\nRZ+8o4l2K7xZha5kAd79/u/nwZ/9CW7+2Efp/ehjPHrf9Sw8UlHFBuvHVKEA4Y7d8p2XeFmALPp0\nNcaflKjKUnYDrFGYwlLGnggIayg7QVMgLRZjVC+q4cctKeBlFc5o0oNdnOpiMkuwNaPqBKjIgVGo\nJMf5hvyaBVRhYaXbXKcuqqaToQqLDY0IEPkaXQyagqE3zuqAoSkXWk2xtVrQoBV+7IN1EqSKFqqy\nTQZlIg/qoipA0fKlw9JvwannPqeuisDgajSbnrkGGjqHmM6RXBcPk1r8SdmAnoq2h0krQbnljtEr\n1jl24+u570+A1f1b3/O9cC0XYTz2AC7Kyf2Yt/d0JTiEywmNPPp9z3ZsOX77Pdz2C09y/tePSF3A\nqProJr93XITiq6q9DoXdI+yY+rXnRwkvlQdZX6Ezi2KPuWgSi5dWmMzgTUtMUqDSEhcabORz7O73\n8tCv/wQ3ffyjHHrLKfSvdJvJX3VDdOGT3XYEuDQwfOYX/i3f+YEP1q9tKKM5H1o6WkXPAwtFRxiL\ncxCWzh1FW4KZP7O4ri84iNQ298GGHkXLw0srtG9wXoTzpLAKNPRs2ONHWK/mruRSN/AnJWXbo/KA\nEMq2h5eUYGG6LmHUn0otASBbCOvP1kJomvZv2TZ4sdw/11ao0jW07aL3AsQxqLrGoAvXpKlOCxAF\nLRRSnTuUkfOo9RRVpDG5pYw1ZajwawDLnM239c5bOP7axcvy9r+dRr4Q4E8tXmLrwp4mGAliTwqy\n0vER5J2j6Fy+EfXWV3z9Wd8/9X1HuM4+Sf+hXYrFFmVbRHSU0/ijcm/y1kNZsOjahl5abP60QpUX\nEYKSqpmo81ZaFXlSjJyVOF8TbiZNxqHyAjsvsmVSdX74Qz/B0Z/7CMHbFdf926fAM5i8wAzN3tHg\nMqNsaZzxJGuoyUiit2CoQl1rI4iDlc4sVWQECFVbEijrKNseoPEnJd4ohcpha5yDNQobetJJKC0m\nrTPZoSNdCWoim7Raq8g0QdVLqroFq6WYmsgxBw3eOKN9Dslq6kBRtj2p8XgKZeVeY6VjYX0FiWAu\n5p0e62uKtkfWf34NyKsiMICkvTYQWKc3j4w1xNl6NX++Fr9wNe896xu8pO5KlLJreokj62uCqWXz\nO/Zf0fvw22VkfSOL0hceCUC6WCtCe4JNqII9ok52qUobAEbtZWXH7n4vL/2/v8FjP/1igltdc//B\nkLcVcahJFjTRUF7vVx7/Ajd/7OVorNi9exoX+mR90xQpy0hjPR9dQTCsqGKR6LM1VbgBryBaGnMp\nv6yv8RKHl3V57V/5MPFGzuP//mPcfv+fon1Pxtn/42jDpyhjxev+0ocbAZmLx2d//Ce5829+hLxr\nMLkcq6pUE+4UBDs5RS8QmrOnqEKh+CsnqMhkyRBtVygn97OMA/RKUPMiJNhWgcGZQIqrNb17rvOg\ny5oL4Wn8mWQR8blUiGahoQp9TGYxk5yqFeCNMykyZgVmqjGTPfTiPJsSTVONtzHGtSVLic5ZETMa\nTrAbm9g0JbrpelRW0N55frqnzzmMKKWMUurLSqn/Un+/qJT6jFLqsfrrwkWP/VtKqceVUo8opd72\nhz536RquRBnPz52SPrXOiRK0qoSO6qVCUQ0mlmC0xzobX6NJFzXpgsEZRbIo4J6dWwdNGvntNu55\nx/uFsegLurGMBEnoz6xgPuo2cDh0xNsWf7KHJr143Hv0NXz6cy9vvn/yT61wftalc6YSIk8gxKus\np6hiRdbTVLEiHexNH39UZwy5liJjNyTvCNNVgpcAnlTlSFY8kkVNGaumdhFMbHPUaPQ9o7pvbyTo\nzVY052+Ped0PfJj7b/+P7GQtzt2lG/QkQLKoxebtMqNoQxEr0r5kmVWgGB0OSdYisoGhaAlhD2Qx\nX7zpVJGgDtvnMrm/dZesbEvgCiaWaFu0KHQumJt4I6d9OqXz2JDBAzu0z2T4o5JgV7Ij9LxrozBp\nSdkLsb4m21cL3LRDwW4sCNzZ25kRPLWBHs7wNkZ4j50R1OcTT6NPnpdOSV2X0SvLeNcdFqyF0Ze1\nDPxW4/nkF38VePii7/8m8OvOueuBX6+/Ryl1M/BngFuAe4CfUEp9y1aB8+RDKuK56Ku4MJeRpuga\niq6pOxF7rMEqEIwDSBobbzqRRoeGI4ATPH/WN3zHX30OzqUvsLFxe5e8JzDxdKDJe6IpsHvUcOGV\nmt0XGdKBJlnSTPfL77/ZmAVg+923csNP7e0oN939GOc+d4CsrxvsgzUiDKLqXdDNCVH18KeOraqD\nTjW6kMIg0AQiIQsJJDuYSBGzjGv8SlkDptqavKtqxqwAoYKJo4wh74noTLTtKFqK4699F5+56RO8\n9vUPcPY1ujk6AVx4x9HL3q99//pLQj6aCT25CpRkJ3U22rpQ4ifCw4i3S6KtgvhC0bRlq8hQdDxM\nIvgJb1YRbpf1caMi3M4IhqUUxRNLuhiQLwQk13Qp+xE20KQrAZODAdP9obiNW8kg8n5AFRrygUfW\nN1SxRz4IKWNNFRmqdoALfWlHTmbCKitLjt9+D3rQR3Va0to0hmp1gOu1sb0Wo9ddx+7t+0hvO/y8\n5tZzCiNKqYPAceAfAD9Y//idwBvr//808FvA36h//h+ccxnwpFLqcUQo7He/1WuYwhGMLONDHtYI\ni04mjG6w/iaXnaQKFHlXdB1NKrtkFdKAZESHQdWAGtMAo175Ix8hmDq6v/B7V1T6fSGNoj2HOat6\nokpgUCUEu7KQqqgmUcVX1sA88MHH+cWjIk9+7I3vZvufK1b/oGB0yEPn8ve6ksWsc9lBw6FrwGVv\nW385rXdW/O8P3kPrtMb6dSDXEI7sRe9XN1JjvVMlea9W2VICeMo7qoEuC/BJXiPcFUyLDaDSApja\neP1+McV9+BT8q4TpkYLBf+gIG/IKiPhPnfoDXvH375DiX+YadaV8WeOlsiEFuyWTA0HNoPRk0acO\nb2YpOpoiNg0k3KuLkPFGjtOKZC0ScpaTeQuS/UxX/YbE5c0s3kzuST7wmvegKrXH2MxrpW0HRUsR\nji2TgxEQAT1RTa+o6ePStdOZaEAK5Lw+kqeS1XiFbd7Pcx3PNb/458D/CnQv+tmqc26Oqz0HrNb/\nPwB88aLHPVP/7FlDKfUh4EMAYTwQAMoc3VhKd6KqEXZzrL/TIqwBtZqNFty/yerqtqVRwCnN3g4i\nGnsSKIqe0Hzf9q6X8Olf+pnnePlX5/CnAhEHgYPnHdC7MtGCiUyYeTpcbVxZyWct3oPLnr53Ff//\nc8SnhwS7gSzSWY5OSzn35iXFsmAGskWfN37wg/ivK3FaEX66RzC2JKtBoymQ9TSmoGHHVh2FP3VN\nBmh9Rd4WCrGXin7D/Nhh0vn5XWpLIkgyp9xbZusRn/tPv8mx297K4/9ijeERw+CJCmsU9x55tZjF\nftNYuX/C1ss60rrNoWrVFPBc/EvyTkDelwBYthX+uO4kdKUlOt+crBEZNusppvvD5vqMc6Dk9/7E\n1kVAX4h/RmoPXiLM0CYoWKlVgKOMDMHY1rBzjZ/I63fO1h6kCwG6Ug2VulkPlW6KqK0zaV0zEULb\nvGPxfMYfGhiUUt8FXHDO3a+UeuPlHuOcc0qpy8+6Kwzn3MeBjwN0+wfdXKjCS1wt4ClFxIuVapxB\nSDpuzmmvATQ7ttkp5rx4L5FzZ7xVV4kHHkW2R+F9+q1djt/5XXzy9/7L83nbV824997voXuwpIw1\n0VaBv5OSrrUb1SMQx2czlb66Ssvmvn3z+NXHboQDsohGt+Yc/emKshtKP32WCfjGOlSWCVx3fw9d\n2VqyTRF7Ii02P6bM34OXyZneGqAmXTkP0kWNySv8mQR8Zef8F4G+z9N79B7XQwqQrgZZycahC8d3\nfuCD/OaX/zXHv+OdtH/mNI//3A20z1vKO2/i2fuTjE//0s9w59/8SF1olGCjKtmZvUQClj+ZH1H3\n7pdsUFWjD5F3jGxOSGHRn1jwVUO9dv7eDh3tVLXIS9UETGc0JgXl1+33WVm3F1XzucmbUNjA4G2O\nsa0ILzQEQ9vwP+Yu36p0qLDeHMdZU9gEQO/JvT3X8Vwyhu8A3qGUOkadyyilfhY4r5Ta75w7q5Ta\nD8zhdKeBay76+4P1z644rK9IFzThyFFF4l+pKtn1rKFOm1yNtpO0uQzlkBtvVejckve9WuACglGJ\n076oPXU01sgNMoVrKtgmg/LpS4E+L5Rx+u6FRupsst+gy7BGfqq6Tw7RtkFZUVnePWq45jOjS57n\n9h/9CIcfy+GN4nDtvSfj/O0t4k2HPwvIun2mB1YbDQbri32gLmjO67sv8vAnUuTMOwobyOc31zR0\nGqjT+9YFOZI4rUiWVC2kIjtnGSu8RDAP6aLURIKRFPbi8zmj66IGrxEOLXlfFuddP/wXWRg9yug7\nJ7zn/t/gZ37xbla/dOWpvfDgiO2X9qgieVv+BKgzr84zOemS3+hGzIuaOpeiqZdY/Ikl3ijE+6KG\nUAN4pbRZTWZRfZ+yrbGBT7hdUHQ8soFPuFvgjTKiJ0a4oK4ZpDlud4TLMrqr4ptRLXYwm/KYYt8i\nZSfAeXLfvJm0bnUmgC09yykXWo3cvfMNZWwo24ZgJBmD+2/NlXDO/S3gbwHUGcMPO+fer5T6J8D3\nAv+o/jo35vvPwM8rpf4ZsA5cD/z+Nz/vs19EJrKcMfek2TJP1cgwmZTRbk0oKagptOAnGhUqQczt\nVJhckGvCu6gfb+VMWLRl8jV6/1F0pXd01Y95fjYPmk4jZ/WZk9pD6kiWpGIfDiEYconNHED33Wf5\n9ZcI1mPzpQZ3OqZ9Tirs86Lj4HF5sbytiIaWoiXPG0zkjNvacCSLHllfNeIpunLEO7bhVkgwgHC3\nQJWO8aFQgFhzhePK0T1VUMWCE2idLnG+YboeEowqUaDKHPGkkhR7YptOFgomrz3K73zs49xz6JX8\npa99gp86+V2XtZm77lN/ge4bAnqnKjpnKpJlr6GQl5Ei2eeTdxReImd0pzUoccbyZxZvahuxVlND\nwoPthORAG6/Gd+hJQXw2p+oEpIsBuqiILuToWY4LfWxgqJZ7TQtyemCRcGcZf5Rj5ypRRUW13EOn\nJf4oF3zE3JdimmJAipCeB9biZwXF/gH5wCO4YPEnEjzCk9vo/QNM9vz0T/9raNf/CHiLUuox4M31\n9zjnHgT+I/AQ8CngB5xz31ogodZ8nIOclKU+x4n+X2tDJuBcfivtC99c5/L/2YppcBDWV6RLXoNa\n04WrF44oAHupIxjKhLzcGfSFMrypI9qcQ8blZ8mKFB5VJYXJsi0V77mWxTePt773+/jotXtIwfRw\nzsJDklaX8dzMRPQCg3HF4ESGU5AsS9YW7pT444qipSlj6J/I8RJH2YLZeq0IvaSZHNQNc/P87RGn\n3hoxXZfawXRdHuMUjA4HZH3DdC0kW4lwWtE5OcMkkhVGWwXthzfoPbxLsJ1SxgKCm7cO3/ChD/Gp\nU3/AJ162Svt7znL+rj3Fnre+53s59sgxPvb6n2F8QymtyZ4UElvnS4KxpXOuxHqKaEe6EuniXCPE\nkS77IgUXSQfEZJZsIcDbFW6DPymZrodkA0M+CBkd7VL5uuF/6LQkX+uS7G+T7I+pWgEoRdnx6Tyd\n4DxNsj8G6yh6AflSTL4UU3UF+aiyPeUm1xJ/y/zofmFNag1FiRmmtWK3QicFJrMCza4s4dlLs8Vv\nOb+ez4Odc7+FdB9wzm0Bd1/hcf8A6WA8xyeWKrFKXF2ckV1QCjy2Qar59e/DsaSjrU2R/tKVa8RA\nqkAUhvxpUQNkDGUMwdgRjKir7HsqRy/Ukffm9ZVa8k4pWuekPuNPpJJeRoI7KGNY+vpen/Leo6/h\nsR+9lb/68ft4XXSa/zzdx4/95ffRus0n2q3I+prJAYOqdHOW92YaNRBRlWDoGF9j4BqDNxO9DGVh\ndG0g5+2pw2SSmYmvqBSJ5wW4+IKqu0gQ7EoxL13QVGENYNNQhR7TfR7OQUYDbwAAIABJREFUQLqk\nRO6+hHRpTZ43VKRLIp7q18dMHLz+Ix8irr7E8JfWeceHf5u/cuYO/uX6l/CfPM83vnItHz35fm76\nP4e4U2e48D0vEaKZqoFgoaZ9TrAbecew8GiGziqS1Yikp2ppPEUwAacEHp0e6FIFmnA7qzk7ssmF\nwwp/UlC2fExSYGO/0SeNNjL8c0Nwjng4pdg/wB8XhJsl+SAk2E4x53fB9yiXu+isxEVeAxEv+jHh\nM7vyvINOg8C0oRHVLt9gNoYEoxnlSq8BnD2fcVUgH52uJdk60mqZi73K72qos1YUsfxsnj6rSgJH\n3tGojmnSVYC850nEdzSVe53La0XbFcHwhRsZjt/5XfBnqI11JMua6yHOpcXzniLaduTIru8/vdX8\n/a88/gWO397jx8J7eMM7HuGz4xcDsPK1grxjCIcW64nWofX20n1TQF5/Bv64LgAndQAKpHjXPV02\nHQcvcZSxwZ+KFkTRVXSeqvASR7poiDfKRkMj6wsnoX2uajAJ6YLBzBzh0JIu6OZomHYF4xDuOtoX\nSoHS+7V9W+qYvetV9J8s+O3z1/PXrvs1jt9xjE/ef9/eDRTVe279Jy8FC36iCEcyj3RZi9DmDn8n\nxRlFMCxJFgP8mdS25JxfoguLLiq8efpfgT8VzQhTCPw5fGYXnMO1QtonJ1SdAG9nJozKmpptQ4OZ\nFqSrMbpwVG0ftShckGwlItzKsKGBto9OSpynyA/0BW7eFfyDNy2pfE3eNegsxMTL+NszzO4MVVZk\nh68Aeb3CuCoCg66EOmyNR1U5golrzDoa5qSiTh1rVGRqSZYFEl109nT5G9uuSjfZgTOyswQTKT5m\nC4bWE5M/7sv+I4+d1xxEVSLjZo3UUuaamMmSJtq25H2NP5U2ZrKoL+m+fPL+T/Gm7/sLfO83fpD9\nv71F+OhXeeYHX0nvpMXklmBSy5bXak3WF0yCP5OjRjB2RDuyOJJln6yv6T6dg1YUWrwdnXF0n66a\n1pvT4Nc9fH8mRDiQHTYdxLV6sxQ2VeXwE4FGR5s5WS8m2C0pel4jnx7tisejLixZX5iZ/sRiUuHY\nnP29/fzQhffy4t7lP+toS8BTUG9OPiSLkqV0zhTYwKAqS7CdwHUB8WbJbMWrdUU9wt2C0vfxhylV\nJ2iCgg01ZJZ0JaY1nIkgS+XI9rcINxMRTgmlhWmjmmwVe6QDQ/+JGdY3ZKttwgszTGIpOn5TSCwG\nIaNrfJyB1qZtUK+mbxoToCoIyDuKYBLRPpNTtk2D6Hyu46oIDChhtpnCNT3rcKdieJ1fF7equn+t\nSBcUwYiGITfvVKjKkS8IYEaEQBStDUtSp6hzPwNnYLZfE+48vwh6NY3dGzSqlOsMh9KqTdYkEFY1\np7noOtIFJV2KK5hPb90S8NW//hPwd+T7e95+PcMXd8k7dUqqNdZK61GXMFkzRLtS9It2pNqtSlVn\nDZAuiTu5AM4EXNbaKMUo1gkoyp+UmElO0Y+EAt3yUFYEY63ZA7SFw0qEWStLvhAQb4sAa7hT4I8U\nwU7K+EhH4O/LPkVbs/L5C0xuWiLcLti+KaL7FJjHImZHLj/Nf+8ffYzb/uFH0YX4nEZDwRe0nxII\nrfNF+UiVBUsPTrG+YekLG9h+W7QVgO2XDRhMcipfM1n3aZ+bBzs5Ou3csY9wWAkAyVMkay0JvNsp\n+SCUWs3JbarFDvGWx+hIq1aqgmIhIlmRexptFkKI6pjaaUsxXZWWp8mdGNlWoq9pfUU4rDdLXwiI\nl6sxfatxVWg+CmsPcBBvyy6BBurUWExTxF1qbrgh8vIOf1rVoCbJFpSD3lMl8ZZE02DqGlefKlLk\nPYU1jvjspWKoL4Rx/PZ7sL4s1PEhzXTVUNSLKR8oqhhG12mKnnAjqtiRHigu+1zFRdomb33P95Ls\nb9eoOsmyvMTVwqniYDU3W1n4xrRBmTotu3zRoQnsIJNVXKcETRhvFJjcEZzYIF+Kme730XlFss9n\neCSQyVtnPnlHMT7osfPiiO2bWgwP+1gPZise42tC8oHH9FCHoq1pPTUi3hTY8vYdK0xXDWXbo/u0\nwJu9xBLs5Bx76Zsuew96T5WEw4rBIxO8qaVzKqHoeVSxwT+7S7YUki+1UH/wEMGJ83zy87+M3hrB\nI0+injzN4LEpZmdK+IWHWfrybsOC9GYF0WZK96mk1pZwRJsp01XRYJhe02ZyMCDvebjQp+iFRGcn\nDB4aEW5lKAfDawU41X9gl/jEFqp0RBs5+35vyOrvDmmfsyx/eSit255m5waDvyt8jGRRsoR00Qhw\n8Hl6V14VGYPT0vP2U9swA9OBoX2uIuvqRp8h3nDi09dRe4jInqEK6x1mUyZVtmAatGTeF4n5BiE4\ndJhUoU68MDEMbtBl8UFH55kE5ym8rYRipUX/iQozzbGxz2w9ZnZBY3JY/51cUtvjlz5XGe9NluHR\nloBwcihammBsm7O1sor+E0nNBNSky1Fjs24K2ckHTxRUgaZ3MmVu4d49kTM91GJ4XYCf1OjVOw/U\nNoSa0Ys6zFY0+QBGRwxeogi35PjoJRAOq9oBWjXsUIDZim6KnLNre5SxYnLQ0D9RoiuNySqCc2PQ\nA3Rm8c8Nmd3xIuA3LrkHv/3xj/PG7/8gZpwSAs7TpAOBdOe9VfyJZbbm4x9/Bc4o7j32Zxm9ukv3\nyQF6e0KyGhFphWlHIje/OSOYpdh+m3wxZrbm0390gg0MNjS0z1fET49RztHqhhQdn6obEZ4dNQVC\nM86IJjllq0+0nbP7sgFFS9E7VeCfnZDt7xE9fJre5gjKinZW0K4s4XARG3r454YsVIIMdQrapyYU\n/efXmr8qAoN86KCT2gIsvUhnoRaGnZ9NdWVq3wmBhDonEyiv/Q78mUxYfyLtrfE1YVOQ1IUj2q4Y\nXeuJ1NYLcAxfsogpHNN1IdgEi4EYsBhFsho1zkrt8xWzFcPOjSHr95255HmOveVPE967B3qZ7VPC\nSWjXyDytme0LiLYF0JPsCxuBnGzRJ+sYQTTWsmjeboreHJLcsk6wlaDqs3P38TH90QyqiulL1qSQ\n2dUCdKql3/qPS52o/2SONy0pur58xrMKk1Vs3RITTFyDIwiHqkFGqro+FYwtOrd0Hh8yO9Qjv2FB\n5PNDjbfWJ9hOOfaWP819n/mFS+5F69SIbH+Poivn+O6pjGRV7ms2qCnXVsRQJke6dE9MhAkZ9IXZ\nGRqyxZBgXGAmOZpIeA9dqYHlgxBvVhKc2sY7ex69MMAt9jFPnkPPEtTBNdJr5D3qpPaJKEqirZjg\nqU0WzviwvUu1vQPLyxLA8hwV+HzyS/fxtvWXY1b3Ef/mWVQYXlbFCsDsf+7z7KpYHboQGy1VWjrP\nFOQ9H+3XXYe6gi18fjkuBBNL+9SUohfWOoeacGiFu5+6mqjjSJZlcs5drXQFkwMeXgLV1vYf81X/\n0Ub/gW1c4FF1QlQhWUK6vyMAoUd3KfsRzmiCU5vEqwOKQXhZsZrhzYNnMS3bZy2LX9khuaZXG8HI\nTtk+nQqab5qjtod88v5Pce+LXwcvuoZqLqJy6hyuLHGeR/T0EDWaYg+vyPm8qHDTGSoKCXZyqshD\nOU3eUnWtQjgdrY2S8MyEYqWFPy4ouj5530MXplFBam/lIkFvNOFOKl4KkY+ZZFTtgKIXUA6kmqhL\nR7Qlvfyy4zNZ95v6yzeP+z7zC7ztu/88AN44p4p9vKlltuoJvX87xcYeBrE/zOr36G1OKHqLIj0P\n6KwiW6ml2HzdoA2LrkfZNpSdFcyhRVRhyRZD7A0DgmHZyPC75Rin4kayMNnnM9iVdiT79+H1ulSL\nHcFA7OuQrAQcv+vteNdp3NZO3W26B4BjN76eajz+I5MFr4rAoCpBk2ULHqYQFps/swS7Bd72lPhc\niNmeCGqsHYpA5u4YfbJCRSH5tSuio+cMJhHiStmW6nEwtphMetDzAmZro+TTZ77yx33Zz3vc8473\nYzKpsHuPb8HyAuTiI+BCAxe28WctbK9FdeY8Js3Y47Y9e4yvMUTbcpS45/CrWFo//SydzHsOvZKF\nbheXJKg4hqrClnvOU3pnDGUbPZxQ7uxgVvdhD66I/0Ftl+Y0jG8YYG8eiB19re3gDA0D0q99QbK+\noej0G6Wj3aM+2QD6J+rOxE5FGYm2ZbKgKaMWvRMS2fQ4Qc0yktUVdG6YrXr0n0zFpCWvyPu+gLZa\nV763s3XpeuBEcSk+l2IDRbSRobOS2YEWJrUEwxxX12ZUItZyyjrCExsUBxYFhIfUuuLzKbs3tIg3\nq4YDkaxGhNsF6YIhmFqcp5iuGcJdR7idkS36lLGuRYgsxWKMvzFDj6e4MECnpXQyLPQe3qVcHZAv\nRrQerDh24+spbt3P29715+BmhXdhxLE3XAeBj9oeAj/+nOfaVREY5pr37TOi/tv7xFfRqyu4wMf2\nYvQowbaiBsQxPdQGt8hsRZPsU7TOOoJp7R848HDaq6HUiskBqVGEQ8d0VRPtOIbXPT+wx9Uyxte1\n6WhFthTBkQHjgx6d03tQ2SA6wGx/KCSm628TOPMDO5d9Lqdh+ZOPwz8EffTwxdIKHL/jGGbFis+B\nt0yx3EEXFWaYcM/b3wc3QWk0RS+guL6Pu/MAyaKm6CjCHdcU/bK+IesrFh/JBTUYayZrpjnuJfsU\nyT5D+4zAq3debDAZtM8IiMqb1lR6JwjOrGdqlWoIzluyhZC8Z+DgmhRNS6gC6QzsHI3EySxS0g2Z\nSfH5cjBpgO7nn2T7zUdo1dog6UpIsmhIF1q0zwXEFzKyhYDhi1q0zxd4F0a4KBA8wyTHdVp4w5S5\nGW2yz8OZgHBoic9OBQ5tDLF12Nhj+beepjp3AbO+SvR0RNWNyJYiTOZonZ7gPM3OjW3CoabqR6QH\nuw0PQ2dls2b0rCDenZG8eJVwsyf+GZUI8pbLXWzoYX1NuHn5eXClcXUEBgfR6THFYgvrK8bfdWtt\nZy8XH4xbOCU8h3RR17be8qfhLnTOlYwPehSxqTUc5HfBxOGm0od3CvJBjb67Knoxz28ce+mbyP4n\njbcvJhgW7NwQgYPRIY942xLuiitRtFUQnBtTLHeYrofYR5+87PPpAu77qmgw2FaAPnGGtx24jU+f\n/jL50VW8YYaapoxvWpRW426Bd3LMM+88glMweFyASn7tA+ElltYXHmf45hua45810smYrXiNm7Mz\nSBW9q+mfkDpIuqwalmDnGWm35V2pP5Q+dE+X6MwSnyspegFpZZiuGRYfTjjzBo9gR5CR4XZFtJkz\nPhyRLYhWhbLz46hgYCbXXV5m/r4v/yov/WcfxRlfTHhzxWxNQGKqFCu9uTDx1i0BC2YJf1bKfaqN\nYVRZ4ScZ2WHZtOJtaJ+aiYLSuU2y24+IYGtiSa9fxd20hskq/IeeQZ+c0jqwxuyGJdF8rNuhk3Uf\na3zCkaWMPEzh6DztSJcDysMtuk9OyQ92JUvui/hL9MQFMf3x5fhTLneYveIw3HfZS7/suCoCg/UV\nw5sHlJEmHFX444p84BFu5lShIVkSFl28WRLulEzXA6pAiFf9B6ZMD0S0z1WiANSRCnb3dEkVKGbX\naronLf7MkS0YdDEXcnlhjfu+/hscf20P24rQ04SVnRg9Tfjk53+ZYy99E/d9XSru9x55Nfed+CLH\nXvomOvbQJca1IJwCrt/73vkGNeiR33mUV/7IqzGHweQhvccU7ZOTxs8gu3GdQ7+8QbHcwd+coHbH\nVJvbuLLg06e/zLHb3krnP/0+OEdn/xqjuw6jKkf7qTHlIGK6FuLNHK2zCcpKZ6N9AbKuZrquWXy4\nZPsmj+WvFsxWRSo93rRM9nuky4r26aBhOw6eyBgfjug/AlUksGp/XLF7fYw10DtZkS5oskXFdK2u\nPdUiqm9+3wf4tZ/7N5fcl4M/+XV2334LkwMaL1EEQ0FXzlZ9qkDRvlCKgFAluprTNY9oV4BNVaDJ\ne3v+q8tfm+K0YnqoRbBbkrz+eilU+gIAS5Z0DdNXTN7yIpQVrYaiA+46n3jDsvSVISorGL5kUdjH\nQ0cwqRgfjkgHmt6pkvIiMdp0X0D3ySnVSp8q9ik6HrqwhBsznp9G9FUSGJwWPrs/qxF8gSbayKli\n09jQlbGmaBtap2cEPY/RNYbBEyJIISrTjnCnQlkj8Nu2fEjRpqS2upBiZrriCHdfoDZ2RYne2sVN\nZ2hrm5rAfV//DY694bspV7q4OzX3HgFuXBNbs8uM6aoh3JEd6d6jryH7zpDd69cJprZxpvYSkSsv\nFiLCk9tS0MxLOH2eICtwwxHOOj518vc5dst3cvyOY9itCyhjMKv7cIMueUcz26dIFgdYX/AQC4+n\nmO0p3fNDpjfuk87TzJH3FLNlI21lLRyKqtawNLVyVBnXwsCZY+d6qSRWoSLcdTjj2L45BAuDEwVV\nqPBSmIWiR6lzIJDC9MbLL9+6+5VHPssrf+Ql9E9YOk8nTA7FDTw664vWQrKoaZ+vSBcN4djSOptI\nuz3yGjdxk1p0WlL2w9pXVVJ/b1LgTECwk+NPa8SjUY0+JBYm14SSfZ1NGov7KlAsPpKKKGxWoQ52\nRYYgFVHdOcsz2ioYH2nTfWomsvNKEMDhBo3U/nMdV0VgMJl4CpSRERfkwlL0PAEwTUpMoskH4jaF\nVngzS2tDobMKb5RRxh2KlmD74wviyDRZ9wmHlu5TSSNRvvC4Y5x4Deb+hTSO3f1eiiMd8q5PdCHB\njFPuPfZnUbOMYrXH+FUhRUfEUnrcRNHyGsjxN48qVix+WQp32WtvrpWCLK0zCc5oxocjut8Yo8dT\npjf3CC6ITZrtBHjZomQtSQpRyLG73wtrUHYjTDvGtULSxRgbaMJhxWzVE32GEqLd2sEp8JldL8jT\nrK+Jdi0Lj4ubU7ytyLu1CIpRNZlLoNXpgnAk0mVFtOkaroiyIuBStKF9RlL/6aEAL4HekwJ7jrcr\n4rMJZScg6wcce+O7G9Pbi0c0tHSenGAuDGkb0UbQWUn3pCJbCnGe8CnirZLo3AxzbgeXF+hD+wjq\nTFQlOa4V4m0lsBSQrEVUvsJ0jHB1zpUYX4RUdGExqcI/M0SVFb2sJ/yGosT220yu69LaKJujnWtH\nNQ/FEp0eMTsyEKj5pMCGhmBc1SRCSzAuUIVQu1+YACdPeu9FR1NFmvhCJgYkk5xiIDvDnODSnuQw\nCGmdK/AeeBLWVogv+Mz2h/h1i0dVjva5kmA3w/q1BH2omax5lG3FsPMCtLGrbKNepWcFaGE+brx+\nHytf2qX3pMUbpswO9UgXA3pfPMkn7//UZZ9qfJ3ly3/7pwDhGbRPZRSDEOuL2Kk/tehpwu6r1gHY\nesUiRQf2fWnM1l1rdQBaEHLW1NI5OWP3xg7pQpf+UyXBqMQfF0TncsLdUARKtgV9WbY9imu65F1D\ntFmw8GiGsjBb8xldq4kvSPaw8GhJa6O2sKut8ao1hfMkC1x8eIb/5HlGdx1mtqzpP1WgS5/ZmsJ6\nAQuPZejcMro2IhhD++SE7Zf1UZUj2nY8/Y7Ld2s6T04YHe1iDkstItwpsHjoTAJB+ys7JDftx3qG\nfClG9SO8WYHZmpAeXiA6tcvkpiWcUfR+9yTdz29jr9lHuhI3zlWqlIwiGE3Jj6wQn9iCLCe7YQ1b\nKz+ZaS7sy/Mp3uYEleW4MEA9fY7WiRK10AfraD2lBeRlfYLtBFVY/NPb+KclALO9C9pgD+17XtPt\nqggMOqsITmzgnw3ZvW0F/8Q5vMU+4xcPGi+JKgBQ7Nw6qO3RIF66CV2CPy7xEitWYwueYMU3Zpx+\nU5/B4yLeUrRkt4m2HKPrXnhHifEty/jTCuspxjf26T4+Jl+IWHw4oeqE5D2fbDGk9fQYNcuwkytD\nvk26d/3T/QGDX3yI8MYj2MAQ7yRk6x2qp0/T9z3KlS7DF8X0Tkn2sfDAkAuvHkirbc7mnOZE2xXt\nc9Iq9rYS8DTO05hpgV0JqEL9LKOV1vmc0eGQcCikp3RRs/bFDJOWnHldG+srWmdTZusx/qQiOj1m\ndO0SlAjdvuUxfe1h+g9sEy+2Rcil8Fj/p1/EveZW8oEPLUMwsUxXDVsv71N0alWpSoqvlxuf+sTP\n8aY///2gFdNVn7Qf4mWOcOiRLHlwc49gYvGnFemCJ0XSLGD59Dbxg6epNrdpxwHZSovRXYfpPix4\nGeVgeCRgobB444yyGzK7eUDrXE610KbqLDA+GNJ/Yka+GOGFsjRNUlCudNFpQbqvhb52Af9X/wBv\neZFytcv4ujamcLWGZIyXVFQrfdKVGF057FEpkvI8k+SrIjBUscf0ZfvRhWPh98+S37Cf6VpIuijS\nXtZXdJ8p94Am04Iq9vE3JzhjsC2fdF+MKiqCUUXZFg+AcEeqyHlXmGf+tJYM3/3vcx1X8k78rx3H\nv+OdVHcq0oFP72SON8mxkWA+qtDgD1N8LYSZZL1DFfco79gHfPayzxdu7QWG3okZ1e03on//Icxc\nhlx3MYcOUg7EgSreKsm7Bohpf+U0ndNdWk+P2XlJn8k1mv6jPv5UAsfkQEjsa8q2wR+L8lLvqxuw\nO8YdWKHshqQrQhUOR5YyViSLHv0nC0xaki2G9E9UVKHi/B0dwqHwA9TuGFiie7oi3C6oYkMZa3Zf\ntkQ2EFGfogv86TsZHZaOR7RVkq35Aq8eVQQTRbBbEuykbLyyx+t+4MN89l9dak4TP7HJ+GWr+MlF\nDl9KsfDgiKoj793WKsz9B0eMbupz/m3XsPBIirtxHTMtCHZSotM5VTdicli6bUsPTMmWQqpQi9Hw\nplyHmUHeFQDW5FBM+2yGqize5oT02gWmqz6DRypaT2xTLnfgVS/F5hU29ug/uEu5EOPtJKjT50XR\nSSvaGyHVcg8betJGfSG2K1XlmnRxcssq0zUjOgqV6AooK8Kmyf5Y0GRLAZM1QziUY0bWlwqvDVpi\nNJOJp6DJYLJuRNPP7ekXdE9/a0GpP8o4ftfb2XjXQS7nnfhfOy68cR1/JtyQ8aEAL/WJNguqyODN\nKjZu7wGioISGaCMnWd2rQx9/7buehX5cemhvu9y4rU3eUyz3biUYFYL3HxfYXgs9K8jqSW2NdHuK\na/fReegC+YEFou2K/hMzhjd0mKxr/Klj8FhO0RVtxGzRo/v4mNkNSwwPi8DK2heGBLuayYGA9vmC\n1jMZ2VJEumiIzgtFe+fF0j0Kd6Xod+7VMdx5LfGmI+tp8v+/vTcPkvO87zs/z3u/fXfP9NyYwckB\nCJAATx3URUq8QB+ysrIty7IV2bJzbNmpra2NHW82lUpVKtnd2s1uvE5s67AVy5JiW7YOkpKogyHF\n+wBB4j4HA8w903f3e7/P/vE0hqQoUUQIi6Oq+VZNodGYbvymp/t5n+P3/XxzKq1KDxSgR6Qaflmj\nciKhPW5QPJf0W5EN9FCSWwpIXJ1ezqB4colkuETlhI/UxPoR7WVtf+gTfOIrj/O3fzhG9fk2UcEm\nzOlYfozWC+lO5sidUzSk1DVJM4rAZDctumM2zlqEcA3M1R5J3qG5K0vpRJvUMRWZKaejWxpB2cDs\npbgX2rT2FLHrMe7aZWtAjBbEzPziMANHEyqH6utBMvrzJ4lv2QOAeewS0vcxGFdJ2xkXbItwvKwi\n9ABv2CH7zHHC269XLPc3qA0xMACYbbU/EDuXG1XULnZYUEQnLVQvTNg3VSUO6CuSXlVfP368vOzQ\nQ0ltb47uhCB3UWJ1U3xDwy8JcpdSRR+6ylq8e2I9FetqS2rgV1TjTemsCjS57M/XvZjskk6U1Yjy\nhmIXVMx19yPwqkHh4Hs/RKb3MptXiyCzpNymzekCVks5AfWmTzzg9t2tGtnlBKOb0Bu10QaHFIWo\nE5O4Bs3tyu6eJIL6NTZBBdwVTdnex7OKERlKgrIgLDskjt7fU9IhtYj7AUJr1+VxGil2Q7XJ201l\n5w5RvSeXg196w2q2oEA9gs6YiulLLIG7lpI/36WzNbsO/FHMTw2zJ4m2DBBnDMKSQWtSp1i+FTjE\n3R/6NU79hs1X7vyP/NfGLQT3tOiu5oj6OSZWS6O3vURzm47u5/qb4hF+1cVd6GJoAssUWI0ApCTJ\nWuj1LlE2hz+UWfeU5M8HCuyqKbMYoAaF08tYgwXCsoM36qLF6hQtd75NmjGJClnMToRuTpGaGuZS\nDzleJRjKQCpxjy8gC1lmf66KsybJLproYUpmTm0yW2veFb3nNsTAIFKF1rYbGlquH/oxYVGY8WlP\nOdj1hPa2LIYncVdiElcju6hgHFqi9XFhEWYnwl0x0f2Y1jYXd0kFmZitmFQ3SC0Ndy0hfyn48UVd\noezmle36XolUGpPCml9Gn/UG1YfD8AxkH0ludlUCVJTVKJ5sv+o57h47wDfnX+D471U4f++n1u93\nGv0jYsfAXYmwlrt0riliFGz8AatPblZvUjRBe1ynMKvW+ImjfAx2TTUuWW2F5s8sKF+KFqplXKqr\n3AZ3RdLYZRFlBbl5xWpMHH39yNLspqSWoHRGzWiCknLJmh0UBAb1YdKSl+Gy8hUDYOwqV6iIEvyS\nwrS5C10623L4RQ23nuJX7X7itOrS1Po5FTP3ZdEcn2e8rXQSmw9MneR7W27FailsvbPco7Uzj7sq\nqe82yV/UsGuaGtQyJn7VRoulmql2FL4dyyR2lbs3zChefVoyCQo67moMpLT2FNWgub2KFqqeg6hQ\nIMhqFM+rE4XmDhezlyq/xVQGq5UQDatZYpTt804Hi0QVV0UoBBAWNGJbJ2sKtPdetw6HfaPaED2A\nsaPR2ur0u+UEzR0Whi/ROwFWP8mouUOnsUONY5l5D7OjkF5aSJ+1oKOfXUD3Y9b2ZTA9SfX5Nnb/\niExIGHqyQZTT8CtX2u7x+jp4w11klkPqe/5+Xs6gKPCqgs4WRcOu7dbRQ3W/2U5oTen9yDfV6+HU\nEnWV6uvmf/mP+ffnn+JhT+PxO/8DTwcRe5/4KHd/8GPr2La59+Y9UVEfAAAgAElEQVRoTVk095Zw\nlwJW92dobFdLutSE7ohGa9Iku5iu07V6VZ3eoMbYN+YxehK7leI0UvyqoD2lruTZhYDsQkR2PkQk\nUDobUT4dUzzVwfATsk+dp3SirYjWvvpduRcaGN2Y7EJA+dAahQsh7tlV0AT1XTaRq9qkS8da+EUN\nqyXJLSQkJtR268QFh8yKctHW9xbwi1qfeK38C1YzUmzRQM04D153Bzs+t4RsWXz2wju5JXeeea9I\nnFVL2dQQtHblyV/okZ0PGXgpIMyp+MTsJY/uuIPZTrDqIY1dLhfvLROVbJZuqzD6/SZBSac+rWOv\n+QpiY4G70MWZbZCagtypOr0h9Z7sblWZTvkZj8xSSGeLQ+XFJsVn5skdW6X8/Vl1eufqGC0fZzUk\n/9IyUcVF92K2fPYEpZMdKk8sUDrns7rPpDdsEpR/hIPsR2hDzBjMRsCT/8d/5r5bDiLbHeLrtquW\n0NMXyIbjiI5H9qRBOr8IO7eSFB3MxSZmq4N73EKGIVSKoAn0F05TfSYGmSIsC8vz0FwXK4oRpSLF\nVo+08Dpumv8eFfNYz51hTOzqZ2tdXWWXEgqz6nzePb1MfnaQsGiSfWYGoWmMLZdUZ+JwFqMTYS42\nqd86sv74woWQXz30CWwzwjHVJmFvJYs/BNmLXfSlBpmFQYyGR3dbES2IKZ0O0aMUo+ETVDOgCWUL\nPjuHKOSQrQ6VzgQiSelOVymeD1XqkpTkTwSgC0QYk2YshToPEpzZBtK1kKM5tJaHcfgUD/Q7M+97\n1wfB83EtE3/HENIQuGdWQUqs5S7SNHAOz6JFE2rjctWDUzNUg3Hicga9FVBYWiNZXUXfvRPrTBuj\nO05QNhj8b/Ok5TzeeJawZJM5usDAko2IYqRpEF07xUNf+izv/qe/Tef4CP/r/g8x8KTB5OefR8Yx\n35h9lrs+/HH0swsYlonMurhHu8o1ms9RPB/zwKFvrb/eB3e/hwdOPKJu33AX+eePUXRdHjzzOAdv\nuAvrmytokxNEEwOq7+bCHKXFVUTGRT/U4MEzj3PP1K1868LT612t90zdilYqkna7ZJaHMZ4/Q9rp\n8NDcIe6dfjd2EIJlcv9L3+Xg/juJV1YwGy2OfOF73Lv97WBemT9IyB+RTvSTVKEwIQ+893eQQmB2\nVSKPNARm3Udr9ehOV1U3XD1E6hpmrQcXFwhv2kli68QZha/yyzp2KyF3bHU9Glw7Pw+GgbAsVt6/\nBbOb0hnTOfzPX5vh+N+rO3/pH9La5tAdFRz53av3vKDISisHsqS2Omo1eyndEQWxuZz4dJnnl1gw\ncKRH45oMZjflsf9H7bhve/A3+ds7/j+G9YiiZqELwS+d+RkufGkHUR623F/Dn8jTGVXXiYEX1eZa\na1cedzlSx2wnffReSGdbjthWGR0IFSBzOVB36HmPtX0O/oAiVktdtZ8HeQ0tgex8iL3YJRzKEpZU\n1Lxaa8PAC0110tIOWL2lgjeonr90JqEzqmN11Eak2ZG4tYTuiM7QY3Uu/EKFxJLkLqpZTOlsQGOH\njdWRNLdp/SWWAvSERXXKlVmO0YOEzpi1zgh94v/8z+uv+Q3/9p/wK//om3zqb+8ifwEGD7VYu75A\nnFWPjx210Ws1AsVa8BK0QBGeo4JBd1hbz0EpHK1BnODtGCBzfFExIddqeO/dS2fMID/38mkboLwO\n51dJKmrwlLaFP5HHbEeEJZMwr+MuR/gDBtn5gNZWp78xrUhV3XGnH0YsqB7uYTQ8RKtLsrjMQ+Ff\nPielvPmNvO82xIxBxCnuJeUo0y6tQBzj37QdrdlFdnpkj8TIMCTYuwV7oUV65gLa1gmsuSbRaIHY\ntQiKitfgrATIrENq6XijLmJkJ0KqfYb1MFLv6g6G7Ul7HXF+tRUWLYSU2HXV7RbmVAZDlNHWsw8z\nqyoCLXY1vBGV1lR6/CKg7NPVrzTRhCSjqU1XW5gcmRtl51NNVg8UCEayqukmVnFqUdHBqnm4yxH2\nQovBpkV3KodITNylkN6IpcJmmwkilrjLCbU9Ln7VojAbM/xEV9mgt1dojxu49RSzk2DVfeKycriZ\nrRgt1LHrau8gLtq0Jh1EqmzK5ROKt6C1PHRfncWbqz1ae0os3awz/GxCUnQYfkatnQ1PzYRak2oZ\nYbViRGL2AT70TVRSkan6H0QhIbsQ0NzmcNeHP863/urPABh5uMbw/9gkzkkqxzySnEX+ohrUtGaH\n+m0TRAVDMSuGTQYeXyVdWEJ/2x7aRY3ySfUzNbdZ5DLWujVbWiYiThDjI7jzHew1A2nq+EMuzrLX\nb5v2iKsFjIU63p4RnPM13LNrRGNFhbEzNIKq4kLqnYCBh5fxp0fpTFjYKz52PUYPdWUWNASpa6Kl\nLlouC1eAINkQewwAcclRO9bbRkh2TRBldYKtA9Tv3EG4vQqeT3dUYbD0sWHSYgZvewURq4xLqQuc\nRorUNVq78hhLDexGpJqjbA1zsUnk9pmPV5jj93q6e+wAnYl+RNlVHnAOXncH3qCBFILuqMpeaE8p\nr4BfVse75TO+Wt82IuxaTNA38iRLKjHwG7PPYnxugH8x8wv00oRveRW+2s2QtCx6E9l+WGw/KVlX\nm1ar+216Ezk64xZrtwzS2plHC1U/CSjTm7rSCryqAqVUn2nQHdbwBgxSSycezGGv9MjNx+vpzlLX\nMFq+YioMmUQ5Dc2P0IIYf8BSjMg+DFjrhKq/v9Eme2JZ4eJcE2ctono4JXeqjnFqTlG/Szq13Q5G\nwye7ECoKWDvEWYspn/LWWRydKXBWQ1LXIMybWK0UEaWEeUFni8PBGxRX/sFvfZF/9fgH2X/TWZo7\nMwrX9vBhtHaXtJgjP9Nb/5n0UJKu1pBxTJQxyKwk2AstzEdfonDh5TBgZ6YOlprOS9siHFDHwXo3\nxK4FGBdX+OaXP4fW89HPziE7XZxDFxB+CI025oszyPMXQQgMTzVXSUODNCVxFVJPC2KchQ5SF7iL\nPkYzoLUjp5Bxg+Ureu9tiIEhNTVSXfkhwpJNa3sGkUq6oxa9YY3atEN83XainCC1DaLxCt3JLI2d\npnLyXQpVuqiA5g6HMKfRvXak/9xqw86fKmP4koEjPiOPXlmzx+tJGIpyLOJX75BfFQ0NYHVS7GZK\n8XxK5aRPZlFlN5TOxrirMeZCi8RV/gZvSEFT9UgNCJdVPNEkSnQi4Ig3wb/5t7+OtaKrHo+uxFzt\nUL+mT+RejCifUFdhlQ4m8aoazqrf5x9adEc0mlt1WlMGiS2IKi5a28PsgrsSo/UidZVMJFYrwujG\nhAWd1s4s3kROhQIJyM0qb0actzA7CbmFmOpjakCTjqGStXdPIDMO1lyd5jU5esOWSsEeyiEMxQe1\nGwlI6Gwv4Mw2CPMawaDya2iBckSWzkZs/WqPoGLSG7IUs1JXx+BmRyVtydHB9dds2xfh10afYG2/\nJHVNxO6dpOU8UTXDN7/8OZyFDqmpKar1dduRN+7BXvPJXGwjbROha5jfeR6Wa8pPcWkB0ekRn7+A\nmJ0ntTQwNBUajGJ53jv9bpJKDiolGCwj222S4RLJjlFkHCPyOVJLR++GWJ0E7dIK6UAJe8XHOrWA\nNHV6kwWkBmHZIsmYZJZD1fU58nIq1xvRhlhKxK5gdb9NdiHFG9BVBHogSU3JwNGQ1haT5g6X/CXF\nG1Roc6ge6tGZVGe+hp8SZtUbTkugvcUgLJpUjscYnrJquysxqalR33dlL9LrSRuoMPhSRG2PSVAU\nHNx/5zrn4M3onsmbCT5QwvBSVvebDD8T4VUtimdDwpJB8RnFcfSmh3HnupBm0aKU8tNrr0oduu+W\ng8z+epn/tO0LOELwntwJHjn5NnojWRUenEJve4nKcTW7am6zqJzw0LshiaN2yGNHAUqtVOIsxGTn\nbWq7XexWit1MMNohFz48xuCRCLMTs/ieCnFW5V4ABGXFw7Da6gqbP9Gkt7VAe6ur0Or9wJgoo7F0\n+xADRzxWD+TJzbmEBZ3ymQW8veOKvdiHlUQ5A++2KUSiZgFDT3UQYYyIYkpPzpFW8khTR2v2KD3d\npHXTGO7pFaLCEPmXlpHNFtG1U8jnjjK0MoH0A9Ug1Nd3/+xT/LOFm7nrPS/w9PEbqH7pCFohD+UR\n7rvt56EosC81cM7HhJPKEKa3AoSU9CYLWJlpjNPz+DdMqaXLVJVECL71xNe4Z+pW3LNriE6PZHwQ\nc66G9APk9BT6Qg1ZyEKS8uC5Jzm42yJptUhuO4B5aQ39xIX1jc17p9+NVm+hdU0ufmQ7Tk3SmRBs\n+/wcC/eMYQ4YpDqEJfEjnbY/ShtixmD0JFZD0h3V6I5qBHmt73fXqU1bdKZg4MnlfmiJQPf69GBb\nJ3+uS+F4Q3W4zYXY7ZSwoKajQ88F68sGdyVGD1Lq0xbe0NX7sdMtQ9irHp3JlPatHsF1k1fleYXr\nErsaqSHY/udzZF9cwPDUqYTVSli5fYKkWiTK6jR3F0hcjaVbbebvGSPNvHwcm5YLeCMJI3oXW2h8\nfvUdGE2fqb9eZOKPX1Jrby+lN2SQmWlRPB/S3O4SDLo4axGr16uNtN5kQXEbvBBv2MbqSjKLai2t\nr7XJzkuMXkJ92kFISfF8QuGCwviPPuaRn01xVxXMNRzKkn3iDLGtouB0L8G91MGux+r4+cw8hdmI\n3rDC8y3fs43uqEVn1KA1ZbG2zyEs6Kzt1ck/cpqHvvRZxOwi6ZkL3P/YV7j/qa+rExFLJx4qIOtN\n8i+tkGZd7FVPnUoNlPGGLaI7b6J22zj+/kkIX33W/5Xnb+CXB56keQ0sfuw62jdPsPB2RyVTHzlF\nUsmy+u4xYtdAbwW09hQhinEXuuitQJ2SeQlr1+XxqzbGiVkOvv/DhO+9jva+Ku1bJwlLNvFwCX//\nJOLIGe5/5gGYWwJd4wMf/QSMVNGrVdUbUW8i41ih2wBhmevLE3dF4q4mbPvzWcKJCmanz71spkx8\n8RzS/CkMnEkttfY322pzMLsYM/szGtkZ1b4rzwui4YJaQ1cU89+phaS6Rm8iQ+xksesJWpKSm+mi\nRRliR8Na7uIPFHE6Kr5r4Tab/Ix8VZ7Cm67dVs677EWNiT/pvOpD+WYkRodobdVxViXpgRGcWogW\nSaKJAVJd2WrDioPup/2sz5jCjE3pa0chevkNnhQd9MGAYV2jlyZ858w0w9faNHbplE9Vyc1JoryK\niwuGcyT9vQazFSoUeVush6es7M9QfUHS2K4z8pRHnDUw25Fa9/opcUYF0ngDGmFODfBD376INz1M\n5YU6wgtYe8cIQupYtRGVoCWhN2Ihx2zCnIrXa79zG2FevZF7I4KRp71XOTT1nqotKGVov2cXd35k\nit4HLJy1mPf9xn71+k2pn99shYQ37cSs+4heQDCWI9UF7gLkH3gJuWcbUstgtkJkIfsqkvTQowbP\nvmM7EzfMEz09grMaklnU1Xp9+xh600MkGdXOH0YUjzWQs3M8eO5J7rvt50lHB1XSdSNVwBvHYeaD\nVQZfisnM9RBJijeaJbUdrHpIfMse7rupBPSQlxYxL8yp1KrtE4g4Jdq/Q53IPf0S9x78FRhNET2f\npJylMOvjVS3SYg6jHVA8q+DKaAIMg4e+8NkrokRviBmDSMBdTRXRpq06y3b9F4/Rx7rKPzGmM/9u\nFVJidJWL0mgqJ15m3qP87AqGn+BVLYSvXnQ9kvgTefLnu1gzqzgLHQZfjLG66foU983q4N7bqe1x\n6U5mqRyP6O4oKyzX1VCzTWYppfJiQ/kOSiZSEypmvR8IAxBnNdoTBou3uDR2aaz84r5XpXh3JhzK\nReW01IVg6KsOfllb7/5zV2LcJQU+FVLSHVH+guauLCJJyc+q4JrOuE5+TjWPVV8MWb3OVZH3UlK/\ndUQlNguBXYupPtdm8KlVijMB0ZYB9CCltaeEv3WAwoyvOA0TOex6jEghsxySXQywWynZxQgtkhTP\nepROe1SOx4ioHyeQNfCrFkvvKCqoakPS3Kazcr3qDBRSIeXW9poYXkxr0mBtX4Yoa9CdytHeN4jR\njbFaESJK6N65j95Elsb2fhbH1hJrN1YU1xKVVPXHX7mbf7VdAXGM5RaV4138qTIIQW9ridKJNkYv\nIR7MkToGvQ9czx0f/01kp4e20iAo2/gljd5EDlnIMvm1GtnzTaKSTXcqhx6m2Cs+UtfQvQgMg/YH\n9tD42b3EN00rCO+LJ4gqGTpbbMKhLMa2KcSFBaJqhu6eKnFBnejEtlCeCikxmmozEqB1y7gaSK5A\nG2RgkBRmfApnO+QvBYw+2kJvesQZAy1Myc/FDByN0WKw13zM+TpIxfPXa13kwjJGK1AsvYm8+jcd\ndc5ccVQicBjRHdGJHbEeyf5mle4YV4xJR9AZM/AGdWp7rk7z1AOHvqUSi7bm1e59LDE8df5urXkk\nlqA2bdHYqbwi+Usp7rKkfMpff457pm6lO6JRdNR9i4lO7qJPZiVl6FCIU4txv38CvR2okJ8Bk7Ck\nuJqFGV+BP1oJWgJBSfVMpJagVzWIM9DYYVCfziiy84VlpA7ekElYcQhGVcuuN+wQVEysRkxiawRl\ni9hVCVL+gDpObG5z8KoWZiclLOg0dhn0Ru0+cCSmcY0yxwUlHasRk1lK8AYUDs5qSqQB7XGDKGsQ\nO4KJh+qYCy3KpwOKMxGdsX5exJFVpCHQgpioksFuRKoHRAN3KcBqhmiJZPVAYf01HP9eyJfrN7H4\nNo3OtYO0t2ZITQ1/2MVZ8dZp2HFGXRCcVR/nfI20Xkf2PLJHFrDbKkYwGsoRVTP0JgvYyz3y3z6O\n89w54pxFfdpBa3mQqmgEu5nw0Jc+S7pvB/pQFZGklF5sYF1qQBjxwNHvYbQCpBAktg4CBh5fILlM\n6BYC0QtoT2XQA+VZuRJtiIEBFM5NGhpakJBkTRr7BwhLilmXmWlhdBMKZzvobZ9wokJ3a56wYLD4\n/iHSvdto7VRx5GFeI3XU1XXxHTmsmg+JxNsxgN2QRBmxjjV7s0qyJoULCjSSW4wxfBW+e7WUm1NH\nb+0tOkFRV2ivKCW1DRJT7c0MPR/iLqkTg8EXPawzC+uP1ydG8QcledMnkCnPeFsxGp7qdvRUD4IY\nHYIwIvPkWUQC+YsJxfNRP2Vc+VGcWkLpbIK94pOb72cj1hXwxPRUuG06UCIoqlMCo6sGsOZWm+xs\nB2c1xF710KIUo5dgdFO0tQapAdnFiOJ5nzCnqWNTQ2C2JJGrERUMekMWQVGF6JodxXvIzvkgoXwi\nIj8Xk11IMbsSb1AnKgjigkNSypDYOlFWtY9rQQL1FkYzIMmadMdtrHMruGsJuicxGh56L1IhyQXB\nnb/0DwH47uc+zdeeP8D1bzvT9yEoqlhia4goISrY2Itd7MWuakNPJSKMEJaFyGVJFhbJne+oE54g\nISib6rh2PAtbRhGFPImrKWdsvUX3+nG0bkD2+YvcPX6DOuHJZtCCGCElaTFD9/pxbv/EJ6nvLaxj\n6a12SjhZIag6JBkTrecr67af4ix5KvbxCrQhBoY4K1i81aE36qqr1MU6VjshN9Mlzhqs3Fph9m4L\nfalBe3dFcfxrkYpU82HhnTkFCRXqeHJtr0t2PiA7n+KNZFTnWCuk/OQciSMY+cbViaer73K4eIeN\nXxYktoYeSNUReJVkHzqHe67G4OGA4smXrbtG06d0LqD6bIPv/tmnMM4u4C50EUn6KmpTNFoiHI+4\nrjhPTpj838ffj2h10U7NYh4+y3f+4tOkeUcdZQ0NIFJJ4b+dI/P0DEY7QHv6GJmZFtknzuCuhBir\nbeVstaB0LsBuJf3Zkol0DAaeWCLKKN9LWFAYd3H0LMZL59aXPo1dFoafkA6UMAJJc6vJ8gEXq5MS\nFg3y57qIFKxu2l/qRIz/5WkGnq9h1wL0pprJDH/7Eu0tBlbNp3C6jVNTpxujjzSJswaN3TncCw3y\nj5xWgUarHTrv3EbtuiLNbQ6ZpZBLH5rEWewqO/5qnTivOIkjj7UxF5vrr+M1nwn4rbFHmP1QSuHw\nEg996bPkHz1HUM2gJSnBWI7mvpLCtJ1fJM1nWfvF/cTjFeofuUUFKZ2qM//uHK0pHbsekT2+Qnu6\nhMw4ZJ6ewVrr8cDhh8jMthB+SDpcQcvlEEFI68CwYj22unD4FJmnz2J4MfmLgWrYW+1QOLyE5sW4\nlzqERQvZ7kIQkn9xCX2tTexe2Ud9QwwMug9bvtkgf6qBdewSUtfIvrjAyo15FRHWTMksCJLhkopj\na/pEOUNFoPdpPOWjLZyVEKuVYjclia2BALuuWlelrhFNDFA8H8EV8u9+mO4eO4BbSxl9PMbwoD2u\ns7ZPf91QkyuV9DwaN1aVBwGFwEsNQZK1sF44T+qa3D12AKFp6MtN9GMzr3q8N+yQKXpc4yzSkRE8\nXUQ2WwQ37yLZPcW9934EAHOxyQPf+St1Jr9jlAcOP0Rnex7/rv2wuIIoFtC7ESQJxcOrGD60t9h9\ngIlqZ9YuLNE8UGXgmVUK5z1FD7IE8S17aN69h9l7iyzfbK+fJnlTeaKMRv5izOBLataFgN54hjir\nkqc6YzrOzBrCMmlPl+iOO3R3FIgzOt19IxgeBFWH7lQOZ8Ujygl6E1na4wYDz6zibymy/AvTAKQF\nl8ylrmJALMU0dtiMPNXh0p0lxr5Tg0IOa3YVqxErt+L52fXX8Ztf/hy+NPnkzY/S2j/MvXf9MgyW\nsFd6KsC2G5OdC5SNupTH29LnNC41VYNd1oLVBpN/cQ5nTRJlFR6+8MwcoqMGBK3V456f+1WEFxBX\nC6SW2nRktc6jf/jHPPitLxKPlvE/sJ8HXvou5mqPb3/+M5SeXyHNO9z//b9Dv7AEQmC1ItKpYTBU\nk2A4USH35KvfGz9OG+JU4jJrgdU6wjCg0yPYPUb+YkxQVjDQ1ISLdxYYOhTRuL6kpr3nuzjL6ny2\nsy1P4fAS5okuybaRdfilNARGzYO8IgO7cyGy2XrTNTc+9g7c1RjDT7CbygYeZxQr4mpJG67S2KVR\nfmJNBYosdTGXO8SVLP4tO2jsMKm4N4IX9zfjqsAj649vbtOZqtR5p3OB+dik+kKEKBexF1RWY+3m\nPCOPN4jGitz+iU+SDAmaOzLc8fHfpLdNI7MMDA3Q3a4GZCoOWpRidVLVYdl3Xtb3FtB2F5QhyDJI\nbZW6rHsG1rklgsoEA0fVFd1ZVYCU+nQGt6Z+77VrbVIToixUX4ix6ym9YR0tkng7B+lVDfyKRulc\nROZcg3Akj4gV+duZqZOUMgSDrvKPmIoLufi+QdV4loC7lrByUx6rLSm92EDr+WTOaMjFFaqFaXpb\nC1jNCL0X0thl0Zm0GNh5MwffN7UOjP2Dz/wan/7kf+S//MqtGJ/Oq6yMVAXZuEs+iWvgDRrUdg8r\n8M2RiOX3jVG4EKK3AtLJIbqTOaQGuUOX6NwwgdWMMGs91XE5qEJxkYo65g+7ZJ48i5wa5V2/89vY\ntRjNTsmcWeO+t/0M3t6CInOPOIg45Y6P/ybx2zXyLy4hLiwgSgXi0TJxRi1Dy0v5qw9qEULMAG0g\nAWIp5c1CiArwJWArMAP8opSy3v/+3wd+o//9vyOl/ObrPn+c0pwukM3bGC11rCSFSjfOzQVoXszE\nnCQYVA0oysuu1vgilSS2ivxu7R/GqYVITdAbsiieaKK1PWSzhV4zYLBM47oyjz/wyOuV84YUZxQb\noH6NTW9UMPSsOmqN3Ku3lLj/ia9x2+/+NtJSeybS0EhyWcKSqda4KejdCJGoqaro+a96vDciGXVb\nDOsW3+1N4p6rITtdkuGSYjN6CihyObsjdsHwhIKMLqe0JnX0sESU0TA7KZnZFt6WAkFBwxsUlE8n\nSF0jP+PhjajEZuIEUXKISrba30E1IMWujh6l6E1PJTSXVWis0Ykonlcshdak3kfEvUzyttY83ONN\n2jeOEeZ17LxDUFZn92YrZuW2IaSmmBXN7RqpDaOPh+vt290hg5UDJlZT4pc06C9pZNYhuX4HvaqB\n3UyxLtUItg7gVQW5WdUJeZl5ADD1mTM8+tFr+Nj003y9eDtuLcZZ8li5KY9IbZyVgHw3Jg80d7hY\njai/SauTbMnjV3TKR1vkgHh8QHE1DAFhhGx3iK6dICwYhLvzSE3grsYkuybQOiGxLcg1VYZoWnBJ\nxoqYrZBktEJrp2rR1oOEKKuz+u4xykfVeXxzRwark5K7GBBX83Dyjb/3rmQpcbuU8sAr3Fm/B3xH\nSrkL+E7/7wghrgV+GdgL3AP8kRDida+jSUYdkaFBXHAUersXIRKJX7GQpk5qGziX2liNAOdiE/fM\nqnJfejFRVu8DY4U6yzU1WtvUZmZ3ukqyYxxhGESDGcLcm//g3v3Bj6GFoHsJUVaQWMqvUTjdxuxd\nPb/E3eM3UDzWoDs9iDegXgOpqXwDgOLZkMZ0Dn8ko86741cj6+KBiAm3ji0M7l+5DhGExNNb8Idc\nOhOOCk4ZtGhNmqSmoHLCJ8qCM9cis+BRPhURFFWgcGfMIC65JLagdKpH/mJKdqZNfsZDbwV0hxXh\nKB5Syw6jG6PPrZJWS5jzdZyFDtbMKgDBljJWPcSeV5ty7lwXo5virkjMuk/2fJP8Cwvkjq8BIDtd\n9EDS2KWxfHOe3qBG/RpdmZhGBXFG9BvcJKkusec76F6KFOp+Z1WSXUrJrCT0tuQJt5SJymoG6dQS\n5bXp9BCpJLMoGf7uEtljy5hLLQ7uvR1Qp0R/8vW7eFfuJEFJkDm1htYNGHiph9lO0HsR/qBFaqm9\nJoDMSrxOPtcSiMoOjWsLdCcz+GVdBfSWs6T7dqAFCd1hHXctoXS6S+bZGUSs9i+0BBBqCdnensNo\n+BjHZ5UPQgPj4irmQov8w6doTwqkqdPalSd2+qG6BWM9YPeN6s3sMfw88Of9238OfPAV939RShlI\nKc8DZ4BbX/eZhFAIqhRmflZNjboTLpmzNdzlAKkJUktDJA4JF2gAAA/RSURBVAntrRlmf67K6d8c\n5eI9JbxRl/zDp8jNRwQlgVfRcM+sMvk3at7kznfwh1xq752kvuuHB41cie699yM0dudoTIM1V6d0\nNmbwsJotiCDBWbsyUs7rKb79RqLBDJmZFvlLKly1O25jtmOctRBnrkVjN3gDBu3dRdLWy9Smu8dv\nIFv22OteQhcaxx7eSevGMVYOZGlNGnTH1K9eiyWDh1qIFLyqxcARn+a+CsbFVdyLbaxWSmHWJzev\nZmlGNyFxDOxmQur2Q1NyFoOHexi9BH/QYvmWPGt7XeKpIWYPlohGSxDFxMMlkhNnsJ45pQhQRUc1\nCXV9Hv70n5LY4I1mSbIWst6ElRrhgIt/03bcCw2GnlW4ebeWMvZIl8TWGDgaK3qWUB/y3EVoXF/C\nqyp6klNTXbKRq4xfzrJHfZdDUDIxllu4C12Kp7uIXAa9q9rCV941THf3ELVbqtQOTnPPlHr77viX\nz/GH8+8nuLulUO5BhNQ1Grss2jvz6IFE9FO2U0sj+7xyuAZFjcYuDevYJey6AhZnVmLVl5KzaEzn\nkLpG5bhPYquEcIYqNK/J4ZyvkZ0L4PApvvXXf07ur56Cc5dIdk3grkQ4tYS0WgJdY/a39rDt83M0\nd2TILIXk5mPsRkTmdA3z2IUreu+90YFBAt8WQjwnhLiMIhmWUl4+G1vk5VjlceDiKx57qX/fqySE\n+C0hxLNCiGfjXltNPc8sMPRMSn1/GS2SJJUsQdnCG7Zo7LAJR/IUznQYOBqz9es9hp4NFHthfJgo\nqzNwxGPk/gvIZgvR89FmFgiqGcKCpqbNjqByrPeDpVyRHnzwC3QmBNk5gbdzEKsVU35mkaGH54mq\nGZzDsz/+Sd6glm7tW5GDEL0b4Y1myc4F6JHKmOhtLWGvCQaeXKbw4ioPnnyZCh3ffiM5J2DSUF7b\nylE1q8ktqE680UdbDDx4huyxZVLHVISlFBo7HZy1GH96lKToEBY02hM2Zi9GGmo509xmkdgCzYto\nb3XRvIioYKk4+HbC6N+dZ+jxOmHJRguhtidDb1cFvRvyzblDpHu2YnZU1P2le6ss3THM9r/5bexm\nSn23ibHSguFB0h3janZ4ehnhh7jfP6E6GXMaRr2nHJpZTSU3zXtYzQi7qY6ks/MBdjPB7MSUzvhk\nVmISU+CNuuihYof2rhkgrLhIU23SaReXGX5kFS1WXpv8bICWgJjeDsA3LjzNsa9P89vT32fl7WWk\na4MGw393FrOTqg91P7l95YDD2h1bKR5pUDrtMfR8RLpliEsf0KlfYyn2SCvEOb+KuxrT2ubgDVv0\nqjqaH/PAQ1/C7Kb4U2XW9jnE79rHBz76CcJ7bqH2wX0Kh+grlkOStWBxlSO/+0fc/9hXGHh8ARFL\nskcW0B97iQce/huEc2UXxTe6+fguKeWcEGIIeEgIceKV/yillEKIK5pDSyn/BPgTgKIzKs1GAJpG\n4VSL5beVKD94mnjPJLljy3Snqww/dkGlL4cRjiYIqg5WIwJDZ/79CqElnztKLATa9bshThEN1XAT\nFAUrNwikkZJYV9bo8cM09piHNbOK9ANFjkoSdTW+QWP7cuVNP/9ljT/cQcQpy+8ZZujRZXJzq3jX\nTSA1QebkMtpwkeSyYeoHgDsrB2y2Z9tMmwGJdCiebCENjd54Bi1S+zP1e3ZSPt5Wpzz5PLqXUloL\nWd3rogcK1Rbbys7uD1jkj9cwLszhf/B6pCZYubmE6Ula16i1uB6oZKVo+4iiLH37EFueK5Osrq6T\nmO/+4MdIbQNv2KK2WyezKPEHBNP/4hgPnnyUuz/0a8z+D+MYHqpnQs/SmVCxg1u+kcG4uMLg6UuI\nclHtsQSS3LkWccFh+UaX0tmYoKiz+DaX0rkEq6a4DtJwCUqC8kPL2ONlRJISli3akxaZJTXltzMu\ndDwqLzVVJkatQ1SoUt9fWn9dJ//0BPt/6wKNOzwqx12inIG+VsP65grBwZuJcybu6RWqDGCu9Lh0\nb0VlrJ6N4IUTTJb2YzUC4ryFUe9Rv3WU0otruPMGwgvJZ2xkPyTJbkQYax7GhMW3P/8ZRWa6ZpzK\nQofm7iKlF9dgeY0HXvou7/if/xF3fmQr5nwTWg0e+tJXuHv8BozJCd73G58kU7iyzIQ3NGOQUs71\n/1wG/ha1NFgSQowC9P9c7n/7HLDlFQ+f6N/3I5XaOsGAQ7xlkAcf/AIA7duvIc6ZrL5rFDRIVmt0\npwepv2OcxnQOo6fSnQGcukSvdZC3HWD1t95OZ3uB9nQJbIvIVV1gE9+NqT4LE19feqOvzY9Ub8gi\nLecRGRfR85EZB8NLKZ+QNK8t/fgneIOKMybBoMuz/+Y/IeKEC7+2nV61P5b7ASJKGDoUsfb2oXUz\nzWX5Q5J9xXkKmsNjgfo1d7ZmMdsJWqxyDHJzIdJQSzQtTDE7MX7FwmqrjMnsvLIEKwBOiAgi/Pfs\nXSdQ5xZj7GaCuxrhrMUYrYD2pHJeNrdZ6MNDpJNDNH/lbdz+iU/yvk9+UvkvTlzCWYsYei6iMBMy\n8Z0WZ/5gH/v+339ClDOpHg4ZfMkjdtQeQarD+PfapC+eAE1TvI5R5TzNn6jR25Knfo3D4X/+R5jd\nmMpJn9HHu+hBSntbFhHGaGGKHoC/dQAtStC7Ic0pk8HHl3EXuljtlPb1w7RuGaezPU8w6JJUclj1\ncD12AFRO6D8+9FH+9U1fY/nGDF7FQBgGxuQED//pn/LdP/sU0jT49uc/Q3rkBFs+c4KxB+bJnK0p\nNkYvRsQp1nNnIE4ofPl5SFKVB1LJ4o1nSTImB9/3D9C8mO6OApmlmHt+9qOIfJZv/dWf0d2aJ3fR\nIxzJE++e5PZPfJLcxQC9E8LSKiKX5a4Pf5zuP7iV+jvGiXIaceUqdz4KIbJCiPzl28BdwBHgq8Cv\n97/t14Gv9G9/FfhlIYQthNiGylV+beTyDyi1BL1RV8FJhgWtLbo6XRgW1HeacP0uwoKGSFQWoRQK\nEuKPFygfaxNOVmhud4kdQW9IozatM3ffmDIE9SRhUUeLwZ988x/c0tPziCghnKzgTQ+TFF1aU8Z6\ndPvV0H23/TzOzBqZl+Y4+P4Pk2Yc1fJ8uEFiC9bu2ApAlNNw12KSY6fWH3v32AFEBKNWA11o/HXt\nFrR6G7OjjE6XgahakqJ1QtKMhXNyAXOpRf7x8wD4FQvt6WNUjnbIn+tgtNUg4V5sMfDsKmY7xl4L\nEAms7XVwZtbwRzJkVmLKZ3yK50MVo2eq112kUkXs9e2/3VELZ8VDpOBXXUonVfhs4ugYnQh/wMJq\npWihxGpJwopD8r4bIE0xVtssvi1DUNDpbS31N0497rvlIHFGV3TrjIFIUCi8HeX+SQ7YlxrotS6p\nbajw21KG1NLJHFXu1eyFDoUXljC8WBGfWwGGx3onJID1PWXb775DbVjWPnwD/o4hbv/EJzl4w12k\n59R6Xtu3m7TZIqnkSAuu4jaGCXHeJr1mEn+qTPLOvaT9o/TUVjkhRtNX+Z7jGXJnmggJccGmfd0Q\nd3/wY4Q5RepavNVBGgpZ3x2z0XohqeeTlnL4gxaxraC5Uhdo/tWnRA8D3xdCHEZ9wO+XUn4D+HfA\nnUKI08AH+n9HSnkU+K/AMeAbwD+VUv7YhBctljR26IhcFqlB+5qE7ojqyY8KkDomTi3BG1Q2YKvm\nqWyCgoGIEnpDFn5FYDclYV7Q2xbR3BtTOhP2Y8o08ue7ym32JnX/E1+DMCLVNfQgQfMirLakcsKn\nN3h1Ghmkozbg4vkFettLYGgULoQK7tF/NfX5NQwvJbG0V4WmGKMjaIlg3FRAmpPNYWSrQ+b4ompZ\nrvdUipcmkI5B/doCMo6h3uKBQ98isxLT2KnzjQtPIxLVgh0MumpNvVxDdDzMToTmRX0yNcTnZvAG\nDJyLTcwTc9gLLe5/6utEOROnHmN0ItDAaPoIx8Zuqh/C6EUqP3MxVj0BC130bkiqq4uFs+Lh1FP8\nik79GhuZzyINnaiA6nS1BNmLXcyFBp0bJrBXfHpVFYfnXmytm/CsRqSStFdqhONFGtM5nEU1QIQV\nh/uf+jrWmoc4Ncv93/87rNkasaujNTuYvZTanpfX6Lm5hFP+CNdNzKHFsPL2lO6oiTegnJeXITne\nVJ5vzD5LWLIJKw4yjli5KY8/aNGdzJKaGnonRLu0gtWKMBda2DNryNl5tHYXw0tVqI0h8AZNeoM6\nKzfl6GzRiB2V8m2seejnF3FXItXVunWCoJohyiq/CygGBuLK3vcbAgYrhFgBusDqW13LG9Agm3Ve\nbf201PrTUif88FqnpJTVN/LgDTEwAAghnn2jBNu3Upt1Xn39tNT601InvPlaN4RXYlOb2tTG0ubA\nsKlNbeo12kgDw5+81QW8QW3WefX101LrT0ud8CZr3TB7DJva1KY2jjbSjGFTm9rUBtFbPjAIIe4R\nQpwUQpwRQvzeBqjnM0KIZSHEkVfcVxFCPCSEON3/s/yKf/v9fu0nhRB3/wTr3CKE+J4Q4pgQ4qgQ\n4nc3Yq1CCEcI8bQQ4nC/zn+9Eet8xf+tCyEOCSG+vsHrnBFCvCSEeEEI8exVr1VK+ZZ9ATpwFtgO\nWMBh4Nq3uKb3ADcCR15x3/8O/F7/9u8B/75/+9p+zTawrf+z6D+hOkeBG/u388Cpfj0bqlYUBTPX\nv20CTwFv32h1vqLe/wn4S+DrG/V33///Z4DBH7jvqtX6Vs8YbgXOSCnPSSlD4Iso2/ZbJinlI7w2\n/vPqWcyvXp0LUsrn+7fbwHGUi3VD1SqVOv2/mv0vudHqBBBCTAD3AZ96xd0brs7X0VWr9a0eGN6Q\nRXsD6E1ZzP++JYTYCtyAuhpvuFr70/MXUEa7h6SUG7JO4D8A/wvwyjy3jVgn/D2gEF6pDcF8/GmS\nlFduMf/7lBAiB/wN8M+klC3xip74jVKrVF6ZA0KIEvC3Qoh9P/Dvb3mdQoifAZallM8JId73w75n\nI9T5Cl11FMIr9VbPGK7Yov0W6apZzK+mhBAmalD4vJTyyxu5VgApZQP4Hgr5t9HqvA34uT7f9IvA\nHUKIv9iAdQJ//yiEt3pgeAbYJYTYJoSwUKzIr77FNf0wXVWL+dWQUFODTwPHpZT/10atVQhR7c8U\nEEK4wJ3AiY1Wp5Ty96WUE1LKraj34XellL+60eqEnxAK4Se1i/o6u6sHUTvqZ4E/2AD1fAFYACLU\nWuw3gAEU8PY08G2g8orv/4N+7SeBe3+Cdb4Ltc58EXih/3Vwo9UKXA8c6td5BPjf+vdvqDp/oOb3\n8fKpxIarE3WKd7j/dfTy5+Zq1rrZ+bipTW3qNXqrlxKb2tSmNqA2B4ZNbWpTr9HmwLCpTW3qNdoc\nGDa1qU29RpsDw6Y2tanXaHNg2NSmNvUabQ4Mm9rUpl6jzYFhU5va1Gv0/wP7DUyajRbbKwAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x19383071208>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mask = camera < 87\n", "camera[mask] = 255\n", "plt.imshow(camera)\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x193831c2e48>" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWm0bddVHvitZu9z7n2desmNbDXGttwbG0JnMBAbSEJI\nEYpAUXQhuHkJSWUQKkkV/EoqhBFIEUJJ9H3KQEFwATFdmS6AQwA3WLItq7Ns2ZJR/5p7z9l7NfVj\nzm+ute+TrPeEhZ/HeGuMN9695+6zzz57rzXXnN/85jddrRUXxoVxYVwY/fCf6Au4MC6MC+P8GxcM\nw4VxYVwYZ4wLhuHCuDAujDPGBcNwYVwYF8YZ44JhuDAujAvjjHHBMFwYF8aFccZ4ygyDc+6LnXO3\nOudud879i6fqcy6MC+PC+PgP91TwGJxzAcD7AbwGwD0A/gTAV9da3/Nx/7AL48K4MD7u46nyGD4d\nwO211jtrrROAnwXwZU/RZ10YF8aF8XEe8Sk67zMAfKj7/R4Af+3xDg5HD9Xh8ouWL7oKVLf4nb/V\n6uDc2Xk6zgF0ipxb/q29XgE41Co/OwC1ez9q+71/Df35+Lv+7/QdFQ4O7Zz+wHW7x3j7weFdRa1u\n+Xn2/vaOqvfrse6N00+pejWPdX2le927ilLd4poqHLz+Vh7jHADsPbwO/m1x/fplDzqrj/X9D15r\n/34HvUa+3L354KPhnKlwZz7P5WXZ/6WbZ3z/8hr1u9n72rt5LQenSX9NBz+Xn2PH1DPn7OIctc3v\nxzru4P2d7vrIA7XWyx//jG08VYbhCYdz7nUAXgcA8bJjeOa/eSN8KACAEAqe+Xdvwd0//2J4X1GK\nQ60OQf/On0tx8L4iJY9hyPbwcvaIMS8ecgwZKQdUAMFVzDkg+ILgC5yrKMUjV4fgKoaYAbTF0f+8\nO8zYpIhcPGKQz5yzxxAKSnXwrsoErA7BFwy+dN+5Ivp2XKkO0ck1lOowlwDvKgYvn8/j+Pkc3lWk\n4pGLt3NyzDlgCBn7acChYUKpDuswI5Vgx6Tq7Twe1X7nsaV6eNfOWfTv6zhjynKeqUR4VzHlgKPj\nBlOOmEqw96fqEV2BdwWpyntS8XItNcCjYj8NCL5gmyNWIWEuAcEV5OoR9PNz9Rh8xt48Ivhi3927\nat+/VodUvN2HIWTszQMcgKzPr1a3eGYHF3wu/sDvDl4XWy4OwVd7L88zpYDg23NJ2SMVjyFklCI/\n83NSCgih2P/BF6TcHHbngJy9zV9+r6hzMaWAWoGq1xmHjFLkWkv2spEC8F7eZ0ahOkDn911f/e13\n4yzHUxVKfBjA1d3vz9TXbNRaf6jW+spa6yvD0UOItrDlJnzoF16kx8lrIRR4L4vOdTfBuYoQij1Q\n7yq8PqxcPIIeu50HAGIUcnUYY7JjOBwA74s+fJkA3K3n7JGLw4nNyq6B76VRCL4ZLk7SbQ5mXGb9\nOeqk967ae7gAeE32nhIw+myLAYD9PISMdUjwrto5uXiODFv7jFQCos9Yx9leG30yo+BdxW6cOiNU\nMIZmHGkkTs0rRD0/DdsYMk7NK3hXEH3BXhoxlfadaQSS3qtUA1LxmNRQ9UZy8Bm5evNKuOBz8VjH\nGaU6O6/c9yzP2BcMIWMuHnPx2JsHDPraKmQEXmtMqHqO7RyxmQbk4mXD0GfOBRt8RdJnDgBTCtjO\nUa9Bfu/fJ4tRnjs3Ge8qUgpwgM0ZLvQ5BZvbtTrd5ArSHFCLQ8keJXvk7DHPQeY853goyNnJsfq5\nHKU41EIXyqEUj1L8Y3otH2s8VR7DnwD4FOfctRCD8FUA/qeP9YZ5igjcqdVLoEfAL08DAYh17V0o\nehAFTi2uRwgFcw7wvu3KRc81602m91B0gpXiUdUY+FB0kcpnlOJxaDVhf5bbFnzFnD28A0oFcgnw\nTibBlGX3p4EoVRziUh3284BVTLZYuBBy9bbjF1383Fn7XT76gm2KCL5gqmFh3PhZADCGvFh4Uw4Y\nQ8ImD5hK1B1dFu1eHeVnXchTPniuhFgdphztmqPPSFW8BO8qfK1YBzG4BQ7eFXiIMRh9xlQCostm\nuPe581csjMNcAnwVIxchz2mbo93L3mMa9Dvm4jF23sCsng09hiFkmQtq1IKvCD7b85OdNyDrz7k4\nxFBQKvTvGesh6Tk0TKq9VyX/J92MGIrEmG3O9aFeCMud3bzMWFoYonOeawCuisdQ2pyv6jXQ4/Cc\nbzonJHx67BD1Y42nxDDUWpNz7h8B+A0AAcCP1VpveeL3tQiO7hFvXi0ervMMOHhD6X459RiKWk35\nvy2c4AtScRiChBBJralzFatBdpRtCt2CxuKz6EoPajQAcTVXQ8JmGuD1GqPuuECbnHKsNy9Bzi/G\nrFSH0Wf7buKuJvt+i+OrwyrKjj+VsDhmCFk9iGyLH0DnDYix4RYiC7wguozoiy38eMBtj06MECBG\ngtcSkTX0yBhDwpQjono+qQQ1DlU9CmdhylSi3YeVnm/0GanznLyrFlJEXxb4hniGxe5bchXbFNv3\n17/18Xvw8syq7vpFjUKbey3k7Ad367nzEARHkPnK93pf4NTL4fvaptZCTM7NftOr1Zm32n8uj+Ua\n4LkO4j++ALU45BLgfEVJHjV5hFWWDdSfm2l4yjCGWutbALzlXN9XsofTG2YGoPtZvIgGGMruU9WD\nkOOu/oqb8aFfeJEaiWZJo3obvrtJDsBqSMjFIeUWswcNU7zuWLU6OPU8vGsPOij4M/iCHLO6omo8\n9HjuVJyYXAA9NjD4bK5ocAXFO6TqsfJJPJ4qrjonXXSyW/Mc/QJexxl7adQF0hZZdAWTLtbYGdf+\nvIv3umL3qsBhHRImVzH6jE2mWy3vm0pUz6GYEZJwQbyFUjU8cmKm+3CE/xcsDWB/DAALe/qQws6p\nOyNf4/3gGYkfVVdlw60OKQfsjLNhBd43Y1+6XTtlpwu6zdMWTi4BX/tfryPnhl143/CDUjxqrYoT\n6HUX8YJ5rPwMfZ+EJNwsQaPH69B1swDsawdQlu71sxifMPBxMVxFiOoG+mrhwqAAS3Fy82LMixsb\nQkHOHsMgi4fG4Z5ffCHWw2yTfXe9VZwgYD3I7uRs0hVk9SAALHbzXDzGmDAXj0F30Flf26SIdUyL\nuP/Iaou9ecDh1XYxqQ8NEwqcAVMAsBPF/T6xXePwuMXpecSRcYtJdyXumgB0gRZs8oB1mLHJgwB8\nDDe6fwUOe2nEbpwsnOEiPwikphpwODYswgDWOAGAgYmpBERXsMkKOJYgRqIEeNfCFY+KGIphDIc7\nnKNUB188ShWX3xd9zVds8mBApnfVAEozgr4gQkBKw2jUnd/maGHWkXGLWT87V7cwFBKyOMNFsndm\nwJ0abWg4MuWAocOp6BHuTwPGKKAjFFPiXOT/Uwpwem0pBcSYMc/BjAIA8w5SCijZY2d3i83+KKFr\nCvAaFtcK5BSAwPBA1kEpQBgy0jbCBaByM80ONXv4Qa4LQ5HXnsSSPD8MQ11aM+cqxjFhmqJlG4gh\n5CwGQcDItoi32wExZnndVWznKB5CtzOuh4RSWxgQQ1aQqAGXBP7obtrr1WHW+HF/FjR9yrJjc9fe\npIhVyNikiMPjZHFucW1B5uLtd0Bc/6267w/u72J3mOE793SrmYptGrEKCVORY4noc/FU3XFXIaFU\nh1PzShZRpbudNNYXjAGQBSPeQTFsQTwD8RpohHoDxJ97j2HpJWgo4rJd214a7fsDwGYbLWvDHTp4\nyUZ4l81QzCVgFZIZT55vPw8SMqDi9DTi0DhpCBhRAaxjMtC5QhZ31TnhfUENCsAqpjWEYljDNkUL\nJ4gv1OpwejvKYl9kEqpmJQq8A1IVA5I6l9+5imEQ48CNTBa34A9zcZjniGFMssmNyQxAzg6r9Szh\nRHEo8KjFwQcNCwfBGOKoOEZxGHcnJMXAxIOApIbzJ6PHABjQyAxDzs6wAom9WpqSsd08RwxDWljs\nUmA4Qy4SQsy2M7R0Uy4ykUoFLvvS9+P+X34egGbNAZkwKbcY3qkrGrw4vZKp8Jg645M1bSbnbgaB\nXkfRcKFAPp9/D74guIbeWzqzu/6Dabr9NFh6kzgF/+XisRNnpOoFuNNYn2lLpmtT9ZjTgEPD1hZ1\nKh6jT+qSB8sI8LpGn22xA+iATMEqOLjrM8OR1Ogy/uc5GTMH16Uuc8Cg2ZjD49ZCMAAoahC9qzi2\n3kiWQb0NAHZf+VTWmoEaQ8b+PGAzR3gHzTwF2yQMQMzBjANDhSE0Qwco1lM8piTPYgjZDF1guBJk\nnmRb6N684Krv96EIQKmfM0/R5ps3Q6Kgo3pYBBu9qyjOWQjifcW0GcRbcDAD5H2FH7o46CzGeVFE\nVSskZqoO2+2AlLx6Bw4peXG5ikdKzRLzhm02g1lY74sBOMxqMLwAYK7jlHSh6d8e+JXnqrHw9sAv\n+9L3Y2+SnZWTwzvJQuxtR0H4IydDywIAwJQDsrqzqXhsUsv5c7LOOWDWyZ2KN+As6uQiSLY/Dzg9\nj4LC6yKXeybu8SokS/ENvrn1NBylihdhXAV04KWrZpRKbRgFsxbeVQMaAZinsVHOAs/JIcbMG3A5\nZfIaWsw/hrzwQADYd+L3iZpq7EHEPsQDoLiFs9BipYufqcuoHJLgWkpYnlkyTyEGwZ2OaKgJyGbA\nBU5D4TVk2B1nw6mGIEDxzjhLmls9ixiybSzeCfeB3i2NAzcyALbR1eowjgkhZvhQLENnWQtf4EMW\nkpyGHEDDGBh+xyHDhWoGxMdyBoB9NuP88Riqg5fQESHUM76M9wWlBL1RbVfnDaAVFm+hTSI+SIA7\nc0UqkmrMBeZpcIHyuPvefIOFCMF3yLMDQux2BwUqBw1Lgi8oaoCCq8gARl0oxZGpVxVHKIsdlIP5\neQBYRdk9me5bhWRuuKvVFhMX28Hz9SSpAofoMsaYDLRLlWnVbB7D2OEb/TlihyeQyDSGZNgBDUnP\ncZCUqbfPTIpPAECCx3rYYqUhDvkWqYRF1sS2L99CllQEmJ01KxNR4GMjjZEnYW91jXtCTGGtWNGU\ng82Tft55ByEHVWCM7ZnwGri4x5gt7OT7YshgGtvZPOWczRYSk4zXQPI+E8fMWsdw1O9Ti3y5gyxX\n5ytcFqC8qsfsHJCmZablicZ5Yxho8Yz+yofjl8yxgwYjRsEeiEV45SIEXzCn5l5yQZYKiz8FP4BZ\n5wHZPrulDR3WyqL0rmJ2wn2oAIJacHQ7hAOwOwiRaKUAHSAewkp3yz6ubvn7tpijk52MgOXuIOSj\nne74PubnZ9MoRJdR4A0v4BBsYDAfe/QJay87+lQU2FOj0Gc7aACYzkzVaXqzZTzG0FiR4jVkRNdC\njlT8AscgU5HGiFmJqURJb0JwDHoYtTrzUKIr9jPDLCOKFY/ie2MII6r1/+fiUOpgc6loqNoT5SYl\nOgVfsVHvUeZkwWYa4FzzHHqjUfT79DwLbl4k8DEsjgq6c97ROMgElZ2f7F5AvIWSPVxo89rrmqiQ\nrF4pDshiXF0NKOeILwDnSShBLI43QRa3s59jzEJx1hslP8t7xpgwxIwhyD/upoCkIZmmFLefjElx\nPddDMteT7yX7zWvcSKAyV2cTP+puA7RJd/iL71zszgBwah7N5e/Tbjy3hCYyScg3kPshjMT+fHPH\nFOw9gp4401KSzd4zLEglYMoRo0+yqBXkIwDJz5LMh3ggfUzd/y74g8dUIk7NK6QSsEmDpiQFjJTd\nv5iXYbRo/V67cbIQY86hI1ZJiDIp6Dp1Cz8XoVkXOGOR8m+GHelrmxTtH70qITl5fSbCPpRnKPcw\n6YbCkJHzYTtHrIZkWEgpHmPMxqNIxZ+RKmX4k2sLaUvxC/C8VsEA5pme8HIIZibhtNTnCMCYZkld\nktHYe8rM7FU9FuopnTc8hnMdtJK1AtNW6cshCaW0s5xM+QjfvBrTDJBcNa03LXXJAUmtcFQMYox5\n8fB6noHrXP1JQayeX787zDg9jYIFqLscfMH2N6/BSj2OTYrYGWY84/CjeHi7C2CZlycLs7/OVHUi\n9t5QT+6ptcuWCKdgk6PxLug9bHIUzEHrGshR2I0TNnnA6UmyGzQij047RiKiEWKmAoAt6E0azSAd\n5BOwLqKnQkdfkNJouz09J0A8qVNlZdhC1AzPNkfsxBn7SZ7/4CVjM/qMrYYMp+fR6l0AYFZj4PQ8\npTqcnlpdBZ/H3jzg4vU+NrMAzqV4xFCwTcI0TXqveoMbQ7GNYtJ5yHnG6+7DidPbEQ6wlDSflWAZ\n2diITGly3vegO9/nHLBazeYpy6QXQ7IzJmy3A3xoTGGGH+NqFsOhnjSqZDF8ODfw8bwwDLVKagaQ\nL0lOgxWJlH53bDciMa8LWAjBNBB3N/M8XO3Cg8aBn9OAGArmrmhmO0fjyq/HuWUkqsPePJhR4I7m\nivDtWX/BYz9y6pjhBRWNZNN7DsaerA7rOFshFc+Tla9A136ugk7vpwEFguRz8RUI/2FUwG+ZXhyE\n/DTuW9iQqrf0JklLjfHZvAPiCxz2fr2uUh0mJVsJ7boBg7x35G1s1XANPptx4r0YfTavYCoBuUpm\npXfTd5SfQk9p6IxiX0PS5pYz45hqX+wmi36tbFeyXjkv+HvwrZ6GfIbUAdqlS2/TUBjYXfxik7Fw\nLxQl07UsGEHyBkaiy7ZJqDxNslznWXgUBOwLGt6Wc6uzIZ+iVmdg5dmO88IwcNTi7UvWDrkFBIDx\nXirJvFGHxXgIx8Gj55j3ixlaGssFWmt7gDKBYTUSzi0LtaYULJzoQ4ys6UjGo0xhRl+scIqxX/AF\nXj+L54h//YMob716sbiYesxkCWIJdgkW0SovB9fiaucqVrrYANjuSyeXRU6peKtXWLAOq7dCqh7H\n4ODP8r/wKUblEiR0lZRuec0gwq+v9cSt4QCe4ZXTMfiMEQ1YIwW6x2dWIVnKt4/zh5AVDNXFoUa8\nTyF7VxVUbAuc2MDghe+wnCPQTEZY3BOGkT39vR98rq67dwcXLf9mgGNt9RMhFEyTeBckSclaEGPi\nfDVMjilM5ypK1v9xJjh5tuO8MQxVF23Qxe/04ckfnd0UrwAkYzWvYTC9C6uszI2vLsajpa2gn5Ny\nq2noLT1R6+w1FlUQyuJ9DT1oCObisTPMzXh0+XqGDcEX0GYPPiO/9WrZNcHJ0cqoCdABkDLk4gHf\niFRAm3TrMFvVIxfnVKKdO6qxSMoD6LMfDEF2woz9jvQUXUGCXxiIgxhJ2+kLdrusyGiLvX1W8svd\nijiB4A+tdiK6guRadoAeFY1nT90mU5GeiXeSASrV4eR2xM4gno5sBE6o0LbDNoITQUXODV4znzlL\nrkmb3s7LJcMMWFJeSO2uB4CFPWRdluIADzTq8xIjIDApc9hphaRkGUhtdoaVVeTcV2iqN61rRm5k\nNfr0uYzzwjA4By0+aq/FocVptdYFMUTe03b2nh4NtJgtdDsxBx82XUaSWYLWXACCUCetootatgv9\n66ihAbEBurO5eEw5YBWT1UgQXOzjXb4HkF3duwpfscjVy6Ih8u6t0Kl334UjkAwsBGSRphrMYACN\nezD6ZIAe0MhGU4kCHHYLtXgWYC11KZpL3pVMQ6jFZFTyOAE8fReauEbUUq9ivw620HfijE2RMKPW\nuuBI9AaZnsGpaWX3a5NiKygqHjtDQoXySYoyXDsPlDUxnEdy7lZQRT0OajKQMk+ei20w1RlusBqS\ngZmkSrNqt3L+6a7OWgjObwAKUAYD3HOWkDHERo+uJEblxgTuRwiNEFiKt3CjFGfr6WzHeZGVALSa\nUm/YuGqkGmIK8jOZX/I33hZa6nAAYCFBhj/zIZCXwGyF/BO6tBzbztG7mizR9q5a/jt1buvOMBvr\nbm8e7G80ED1YRzS+ryTM1Su67xbuc4HD9vPuswwGx6Q1DBypBquSXCxehkU5PmZ9RVSGoXgQxYyC\nV3ebWYU+5egh36k3MPQYSIcefcboWTmZbMFEfV40eDvKrORr9JaYTcjF233t72Ptvht35FydYQzB\nF4wxKYPRG83ZQpTiDcCec8CUgm0apD4nzSaUKq8xJDUMSz9zbzsaqS3r+Qh2z3PAVmngzlVMU9As\nBcMHLNKUhpUNGTk79aDVs/DFvIFGDGych1paXRGxOu/rJyePofcU5ima92AxU3HIWeom+qwEIDlh\nWnhxx2A/A2jAHLEBdQ2BlqYqNdhDI95QqsMYJb3Vg2gAFqkpr25iLh4jYGxGGo/gpByYRVdBXf4E\nb64vGYqc5EPntgNC8gm/83Tsp5ZlsMWuXoAZHdcwi00ZmqeB0PEMSBFu5dMCPra6iAKPiaAfmOv3\nOD2PBiRSU4LeAFOwAIz2nTRTMdVoJC0Cgf13jr4s7kOPlewOk6Vr6QVuUsTgKlYhC86g2E5wAgjL\nQhYPYxWTFEaFbHToUoH1OOv3gp5bAGeSmUhLFi9F7sGh1YTNNBghKmWP1ZAWIQa9JnpIu+tpUdOy\nWqVGrGOK0RWb65zHpQiF2hH41fkf4wznKjb7o3kC5OKs1nMXinjUWhBjsXVztuO8MAwALC4S8MQL\nc6uiWUq1tBJSiKpNCWIN9zeDuVH9YOEKIOfhbp8Lue7iZQS3ZFpKnC/Ao0yS5lJ6B0wqklI0duXg\nhORrwRcTZ9kdZszFYzONmDoBlZPTyt5PF5UgW9Hdr8ABuqP3qUXSpCmL5lFViCVKmFFaNaJ3xYpv\nGP/L3+ixSCm2h4i5lCpaC+RE8NwXK2axyQM8qlVi9vG/GJrm9flKynWBd+pJHBCR8U4yF309CL0m\n1nr0ZdnrmMzoMayjjB5/JhGNaWV6HQCsStK75iEStN5Mg5Ti11aKH3wFfNHQcynLtjcNRmU3TEN3\n/TFmLd5q85MkJ8HKonEaeoITj6WkGwCTdePGOa7SQt6QYUPhtTmpscj53Muuz5tQoh9OAZOm96g4\nhGcde0vNyPENcyBFmqEF88T9jk+X1jkBhmLHqOQ/SSv1hTV+4WlQMYgpKsaeRMiBpTAqi6jWikHw\nHyDXEDrXvupkJ+BG97qXPBMXtomaDF74FAWyW+1/3kdb8VL19j8rIRdMSV+63zuj4QvWYdawoomi\nMH1J5uNoQGdZ/OM5ADFG65Aw+iQsSpetFLz3jihVJ/dFDCFTzT34SUJS/14AVgMinymmZNDMBOnr\nBJwH5SkwvOD/xDF6kR7iUHztIEbR79I5e9UZ7ajpqghFIxC7WgiGEkxZksfQ64Z4XxWAZJ0QjBjV\np/NLl0ol6NjXC53tOC88BlaKyS/VXiOFtC8SaQVTFcNQLDvRU0vlPVq4gub6B9fqKFYxI5dlloKa\nWUUBq5F8iupsQbFUu8+tW41EVTEQTkIi4foZ/e7G43qxWEsJ6sQtnSErJZg8GWNojyaa0nAEASXX\n//UylJoBp9WPvqDUYsQo4i99xoJhif0MNVZhmbYsugMbgaouMx4LYpYaDP59rQVdYjAKkCOKa9jC\nGBJSGs178q5iTqKP0Id0PbhLYhtDGluMtcnp8TkCS51PQHfq0kLIPv3YNEC9akB6Y2E2A9arM/mF\n4AvPX6tD1jlNQL03JqyF4EKvFQgdLFA6D8VBDRiWrOFSdbOsgKMbpJts79mezTgvDAMAQ2wpxlKr\nszoI51psWau3mglAbsxqmA3ssRRZcbaQuGs1j6Fp+nFIukvwh7WqK/eLtnd7g6tYj5Ol7UIJRuzh\n55GNB2DBzERuC5yLktct9RStvsI7AflyEc+A8X3RiepcxWmlM0fXgD2gaSDIomySa2Q1tvvkbXHz\ntY0yEotzVq7Na0pQsDFHqdTMXs87LLwQu19oO3uPKaQSFmxIpluJcwCyoPa1cIyaj8SM0BlNZoSc\nPifWpPQSa8EXbLejPXOqPMdQsJ2j8BSYAi0i/sOra7UtbfPghkC+TUCTBZAQNWvJdSM5MSToCwB7\nCcIeWM/ZLUh/pTQK9DAmpUlXMxghZsvO8d4ZONvN47Md50cocSAE6F0jpm/mrsyUu4lDE/nkYHxK\n0tPBMuYxZswHZL8BFjTBiErBVVMdZp3EXFpJcfQFmxRxYlph0yHmHCsWWOm5KfLiFYwkis7JzjDE\n9AxdtfAAkAlP0A+QlCZ3QR43BskCMJzo07RWgNQRjJhNSMXj0c95cJHB4WB5tWEBEGNI4JLnZdhS\n7HOKHc/MBiswTbU6zI334LJla8aQsRsnDCHjkBaQDV24QlefBmcIGbvDjEPDZHNkCNlwCNa1HNvZ\nLEhFLJs/vN6CoixRS6T7EIfhw0YZsZT9cxDxH3oMJLrFmJG0gG8JonsLIWK3gJ2rVgSYs0NO3kLg\ndoyWf/tGnfahWHgBAHFg1axeD5+Jpk3PZZwfHoN6B6SBAsITn+doGo+kisbYkO/gC/a3I9bjbC5f\nzxvoOQM878n9tXgYierRVbMT7Vb0dRTcncaQsTcNC9SbSDhrHHaG2f6GjqUHNK9hq6kzIvjcRTeK\nrO/E2STMTpfRFjypwfslWKjCBUsatSD3rQqQQifJyfd5NLe6iKU8fMXFf3gJTs3iZcyvvheHfv9y\nbLRmgWBkqU61GKLdZ0BClb1E5mQx7gSFYZY9Kpy9hwQsgErSCafnlSlIAVI81rQq2/1a6f3oBWq8\nq0ZBp8JT8H4RXhCvqBoO8XXOgyEICGs4TmnY0uH1FklrbwBgZ5xNFYpaH0ZsUq+W+BaNBcOGaY6L\nEJjl1zE2zGCeIuKQMW0HxCFppqJ5EoBIvzlfgU6TpGg2xjlJU8ZVWuAVZzPOC8MghVMqyR6VtLIZ\nEGMB2Qqp8xhSFzOaRLy67j1Dj8OhIf4746zWXaTB5xSwu5psEfexKPUU6A7ujDNydTiy2mKbGieA\nhoMTMHSGK+hkNa5DnHF6HhcTWPomCDff+jwME1j/QPZj0toBnouLJmmDFmYo+jGqupMM2aWnHEGK\nNBfUlAOODhtZaH9wKVJZpjNTadkKkqcME0E1QRZ6DMxi8P1ybKtTQPVWZh1dBrRaM/hi0m6lOhwb\n97GXxgXXwa6ptji/VoeVGlXDG0ozXrtduFkBoDPw3OnJPh01vSlgLuz8FPgZdDFPXf1BE3dpmJIp\nUhcJgWVZ23WiAAAgAElEQVT+wkqoWTVp9T2pgYneVwxjkvS9LwYqVijuUbzqicCITDl78RKcMj5z\ngB/Ec06bT0IeQz9YERY090qL2/Tym6ouAAVpSrtpaimZeeizDH1DmKA3m0BRz2d3+p4KMQ5TaRWc\n1E2QoqdkIJSBefo3h0bAWsTW1WOloiUHi31KdXC1hVEADACEq3AHanOZ3ouMe3EmhXnS8mc2lxFj\nJunDpLOeCs/JXP3l/xxTjgIOHsAMoqpA99gIHLr0pbdsh3etdwWgx/heDEZEZ2kkpxLNI+t7a0B3\n8+Jagdyeejyhe6Z8ViVFo6/3aelBQ0cCyCRDAbDSa3oM5DnM1EbQMLDkZQ0FsQ7W3pBbI/Rlsh/7\n+gjY9ZCx6FzFdjsY0Fh08cvk0DmCJVnLgEZdI7UICFkL4OInYXVlo0TrA1ukaRoPwXcLO2ePIUpu\nvr9BfYl0UAnuUqtKlmNBjzXglpMLcrP7ir2KtvObK6teQV+7AMAk1DgJqROYi0fUPhAcFIQlviDx\neCso6id3D6r2Ii/RFQEI1W3uU5pRCUvURACAsRNt9a4jI6EY0EnjIBjKAKpAU1mJ7EdK4KfiMb/6\nfqx+7yq7Xl5jHHJrZUeNCKZ/D8jCmZfHDJUaQiprkz7ex/585n3nrv6+8HUufH/Ak+xT2LzmURWz\ncmlziFyGnlOT1SDwjM5p1ynFqfqKyb7NYk+BbpqmrTeK3Y/iTGvBh4I6q8fRpeydb30ze1yEitGA\nKj0Bn5yhBDoryoxDr4vHG0exVOeqYQ29Iq/X9/Upp17xV7pFtToH/o1EGC5SoLHXWk7bacuzhL15\nxKFhssmdi7hwE4VF9RzbJBWOxWLxYE1lGJMSfJuqoO/8HuzjyPNIP0bRUjC31TdtRaYZubB53j4u\n73/nZ/fZll72/ZFpV6nNqseg8nLsOdHfo6KsTHIOsoZADAm2qQmcHhk3ODmt5bHrech4ZG8NoGlT\nelfNI+Lo9TP4M0Oynjbeu/X8nXUs9NAOYg/2mex4Vig5zxVWDO3vjWCj6zdV8X4zi7G1WJTr8/Y6\nX2M4wW5UIWYJIZQezQxEReM1gMYAmtFT4lTxztbTwdD6bMb5YRjqslXX0tJ6AHJTewaZ94I1cHep\naHwFI8Bkh7kT2Ai+Ws/AUmFkF+a6aRTm4rGrdQ/9pNt0ys+MZXO/47uKudu5oO5vLt5ETmkcSGIC\nGq0Z0JACWJCZ9pMo/+5qGnVhNLRMGWjlyaLO1ARWGUrQABxStqLtwB2jkGCgEJvkehlqsDS7l2Pr\nR2/QKHsbXQECOuOznHLCSHTmKbDy0eniCa6YcMtBELE1hxGwlwZ/1rQed1NSwVfKPi0qysurr2jV\nlNYUSMPE6pZCtN4BpXs2FVgIvVAA2LuuGEpmtrzft6xI7zXI70xtNn4Cv5/L7gzvAHr8oDUVtbrW\nn6XK0aV404c8l3F+GAbwRlRMW1kEw6jAlT781qwDJrwCwEguAM7AFVLxWGuXKbHSMjnJnQdgtFi+\nl4MVe9zx+hiSRoRSYhR/7SsJUbwJuTINSZR70vOQH5CL1E0gLPEIYgbUfLQwwglRiQua1ZYkKkUv\nzWWFaCRxMBvEHBs22AkTTqcVHtzu4uJxH6NPOBy22AapstzPA47EbTM0HUYx+gwovjn6pvBEb4E9\nMcyD0+/di9XiC+/Bzu9dacbLOdGSYPUkjYtHNYCVi5PUaHbApjo0P4Pl7XOXJRg6YLh/ht5VyzKx\nEdFmjtp/pPWFWA3N+xI6vIDXUwrGX4gqAyiFWOr2o7Efe7xMQiNvRkL4Oh7ONbl4zv31zoR5jibn\nRjo0w2SWXqNqgRVYSFWtVLtkv/CczmacN4YhzcEqypyr2uEXC+vK0upSYBqQqbRGnmSmMS5n0VS2\nSSkGgA1hAcmCcNcHYAAmeQzodiWyFXN1CJCdIhAIqqTctlRpcAUhagMc5fszX01ZM/Zd5OQ/WF7N\nvH6pDmPsAMIqLeV9ZJOYBJZdp+JxdNjgIl30APAr73kx1u/ZwS3fcuMTPouXfM9xbC+qmK5IeMUL\n7sK1hx7Efh5xOo9irIIzQlREltqBonqPsRk1DmZGbLf/3ach1WZ0Cxzqqz8M99vPWFyHcxWDa/dL\nsApZ8PuzNJ3h/3wGHBUwHQumVufiF8/aDDLEIHBDoaRfa1PXMAeGqgxHej2GlFvnr4M9QFqjZr+s\nf+ivuTJsbptgmld2L0oVvUeK7EgtRPM85omGtmELcM1QnMs4bwyD8wUe/gxABmgsLlKhCaTY4sWS\nNs2yXkAsdp+j7l1/noMLmRkHhhbcLXs+vHPVuirT7e1BMRY09cfbMXBYKbcg+GKeS1NZWnbJ7sVY\ngSakOvqEqbawppVIy99Gn7ETZlwU9/BbH34+TrzrUtzxjTcBX3h2z+LPv3VpPK59yz/Al77sXYiu\nYNuJ0vKamaaUbEf7Pj1O0BdY9QtGWIMV9a3PBNRDYGjUL5peEh6AVUuSTdrfr33d9Xsgt/e4WHXJ\nLAQXuVNsgaEmqzA5v9htCmhqYP7AdXL+9PhDK56qcG6p1OR9NVwAAHLqtCKosqXz0gGAa+fzroXP\n8pma4XASRhjuEeo5K0WfH8xHQHUYJD8uxI+C1WrGMGQMMePQztbcsd76kTHI3Zxx2hAzdrSsNviC\nXf2Zuox956CRis26Sw++YGeYsY5NmagVAxXjGfThhXcVR8YtNmkwt3Wn03AcfDZ9xd04YSc2uXVe\nI89vqH4X27IzlFUzKpForWxIAciayztXj//yU5+DP/nUn8et33jTX+rZ3PU3fgTf9/Q/wQdOXYIT\n0w6AVuxEcLJnVAJixCYVcGnl3q1oiyHAXALmErATpVz4sYxCz74k/Xl3mA0EZBhFjsJFOxsLA6mz\nudGy6N6rIyjNzyuKUxC4Zqk1hXu2SZrg0tAD4u5Pij1NczTyE1sYsECqZx4ajVlrUMTt75Sc9Xfp\nYyklAot0qGsZCRYbVhVoGcaEkjycb9m9PHnjB53tOG88BgDmmvVuF12oWjzGoTUzAWB8Abr3DCGY\nd6YLaVhAFZ5Aj2ZzYo3KbeffTk2jNa3NxWOrBmJ/HgQ7YPPULnbuezzU6vDotMboM05s1zYZPSoe\nTrsYvUjWn9Ky61Q8nnHoUdy/f7jl3/X7TzlgguyKRPTp9ZxSV1MqFcVYnJpXuO2dV+OOb3visOFc\nxm/d8Cu49pdfhyNXncQ1Fz9srzP7IEzHljqkYAzrIKYS7JkUDQ9o/E6nUUlRGftpsGzTKiTrtkXc\nYPAFq9d+ANvfvEZoyTEZ6FeqM4q6eHAZp6cRR1aiicAMCUAeQxNoDZ1RpqKXFFA1sdj9abBmMlzH\no6uLcwJaDFVJ6c+2qeUs5dK1dqQ9xQuGISO7BkbGIZlKND0G55pBII5QqzPvIrFFHc9bHMJYFob2\nbMZ54zH0LeWknNSdUS66nYSKKyQTPaZ0xTIQYyEZCa9KPBIfbudov1Oxt+fNQ9/LSRUWFrqxFxlm\nALCUGWNO351vCNnShwcJTgxPmNmgQePO2GMQgBZChWw4BEuLx5AXx1Em/uS0wu69T82jvetv/xDS\nn16Mux66BO+79wrc/IGnYz8NRofmdXGBQ+9XgZRss97Du4pDw2Q1EIvUrAKo9KL25tHuMe/3iV+7\nHluV0ltpE1viQ/0SSEX0OPfmwTgpNNy2aZTGTaBRPhheSNFdNgNhyk6KW3CjAQhGdmKyxACID5TO\nzdcQuBH5qnkSgGJpvloJNYedu4rUW6VUfCxaflkVkGxeyLmM88YwCNDYhFkOsh176auDHHOnYCEL\noBrgyEXdHhIn15y9IcjclZnhoOvLHcq0AzXM4HHMmXOi9ZWcspuP1ugEaCzGwWfDIYBWnvzg5pC8\nF0udShoixux9CEIKNCnO6zDj+mMP4PQLtx/3Z8TxnuM3An90kWSSTgx46wt+GSfUk9mNkzWZOTJs\nEV1ur8GZnmXfBo8GYAgZKy18WoVkzXqPrjbSncu14w6Pk3X84kIefMHuMItRDsvel7vDbJkGGtfg\nqvWyHLsQovccOBfZ75IKYH1LOzlfbunEA5sKac/DkA9wGWCfASwzb85VpDkip4A0BwMTKwRMZGk2\nACuLrxUos9Ksk0dJzl4/2FH+icZ5ZBhIZipmRRt1VWK21ZBaU1A9dtA0U99IlPnoXmUHEMFOoK+k\nrLYzmKiHYg+cVKe2owGUnAR9ERS9Ceeqxc0EHFm2HVVwJGnzWb7GakEA1rQlurYojM2phoM4Ar0H\nnkfET+S1lc9Y+Ywj71zhqRzv/qc34tZX/RQOfVCM1HtvewYeVfyBw2ta1X7vQMmePt17VARxS6XQ\nbl4YRu6Sc0dd5nmca529iPOQvbp67QeQcrD39/qMxCJ6jYV+E2kep8y9lH3ThFSPYWtdrbxpQ5bS\naiWcq+YVU9ORIQOLovpUO/tAEHQHgJqdMRoZJgAsI2j33ZjzTt/TGZGzHeeFYWAul15A6CrTuDjW\no1j8aJbbW0qy11uQvLGcl8Uu9B5YHms7jIKWhlprHEfFn4N5b6tnOBBPAkxxLpvUrrsKwEVI1OXv\nOfF5XOpiaQDGx+DrvCaGKOQyUDR2J0z4vd9+Cd71v3588YXHG+/+p/I5d/2tH8adH7zCMhQ0XFMJ\nqh7tTYm614nsvytxBy56uve5+/58VkZG6+4JFzMBY4YWgy848WvXWxhCg8Jzl+qMicrzNFWnRmVm\n6T8NS6kqzNIZk56cxJ0fWCqOAU1qjQu/p0rX0jIbDS9YZufkNTUOtZ2Tna59LEDFOUu6cTyhYXDO\n/Zhz7i+cczd3r13inPst59xt+v/F3d/+pXPudufcrc65LzrbC+m7VYdQFouemQTerNUwgzJdoTMe\n9ACCl0pIto8TdzEtlJzoIQAwnsDuMFvaax0lBDi63poXQaJMTzc2CTNXFmW85C4USHbCOeEqDFpC\nvRPnRQ3EEDIOxcm0FViZN4SMw8PWiFmlOqtmpLcASJbgknEPv/L2l+H9X/+Xy0I82XHXF/+IicAC\nUpxFSXnWVZyeVwthV+OpVGe6lTSQxFqYkegrGPuakR5rIn2cYB1ByRUxog5bAGQ+bbVtXc9hkBoJ\ntjdU3kNt4j7BNQ+XGJfMVQGVe9EU1lGwDyUg/JmGLTRvwbna8AFuPE6OCVF4MU7/LucGXJCUJLMb\nBCfhAB9Fgeup0Hz8CQBffOC1fwHgrbXWTwHwVv0dzrkXAPgqAC/U99zonHvCes+KVhgFqP6d7ih0\n1QjQRQ0DVkPClIK6daEjpzR8YG8aFjvTlCKmJBhCVjCnQsgyVd+z1Z1jbx7s8zcpghLmO0PTSwCa\n6zuVgNPzaOrAnCypeJzYrjErsCifEXFyXlm7NoJX+2nANkdbDFOR1/bSaJ/Pz3p02sHJeWWLj9mJ\ni9/xiU003fnIpVapCUiatS/vBhpLkt5VriJqy3CrP5b4DOcBDQHp4XytJ7UBYph3hrkTkGl9Rnsi\nkneyiayHJHoaSTyQi//mbbqpiNaj9wUX7WxQqsy9GFpXMu+qSAXWZe9RZsycE1xstUpYrZJm3lgQ\nKGlLegEML6j6bALHtdN2hFZOKobm9LNcUODVjEaXDv14g4+11t8H8NCBl78MwE/qzz8J4O90r/9s\nrXVba70LwO0APv2JPoNpGN4svmaZCs0Vb2fRQJhSsBb3tZtEBBO3c8SsCs9z1yuAwFHvhs659Vpk\nRkKKpbL1KLC0ZXUL0lEkCq8oenRNjakfnDyDpiiJIRCN52sFzv7GcwOtuKvVcgQ7DpC6Bu8KDoUt\n3v4dnxhvgePhmy/DlOMZDW/I/+gl5g1f0PvAhcrwqjcSO3G2z2DtCjMSZnA6TwCA4Q39kgi+qLBr\n6+zF0GWTIg6vtwi+4NSvX7co0x9Cwf48oFf+otAPBzcnkpKysnJ7glzO3gRbUmoYRE5+ARLWQv3I\n5h3QOHhXoT17FMtomQl61cxCGGj5V6QSfWWt9V79+T4AV+rPzwDwoe64e/S1M4Zz7nXOuT91zv1p\nOrFnN5WxligsVbBCTYgnbUdgnEeD0usiAOi0/cTDGJQBSUPCnYbotXcVh8bJuPMMJzh5ncaqI9WY\naxNR6a0x03HSbEXChuDKoolrHz5IpkPRcNcq94Ii89aZ2reFw9fYO7JUqYW449RlT/JxfvzGbV97\nEx6d1kgldGSs9sy40MkDYVqS/TopOEMgdvAZwRUzhoDiCmie4FY9OmBZOwNoY1n9meSxpO/rvZLe\nS1l1lZpAYzFKdW7bZFpLgb40u7YwplN9BqA0/9a5nWEE2YretzCCpdWGI3qYMcjJI09SHFWSR03e\nqM95E5FVSh7Q16bwV5+VqLXSIz/X9/1QrfWVtdZXxqO7Yn1D6YxBNZeLN7ZlExSAUrDRXvMFg5Zj\nc4c1jKHDG4BGQgKWbcsJVnEhEqDiYM1D+x6d9mJYpuCYneDnMf5eh9myCGXx3dqO2lOySR6iW86M\nhpwnIfqMS8Y93PHQJ94wvOR7jouHV4IIxh4IuZYENY/9NCxStwbCKc6wzVHCMAVXiTHwHNTkZOjZ\nf96suEOFFMWxZN9widoyILk4zFprs83BwlRmGQ4yJBdchupwxZe974zNjWB6r/xM2nKvdk5DwG5s\ntTrBFZLXrILs/H2bOmFKQoE3Xlz7J8e7czYIHE/WMHzUOfc0AND//0Jf/zCAq7vjnqmvPfGF+Mdi\nj2mdeeea99x1xnkAgce2EOXYTjKc8WgX2wJyH7dJOjcbWq7eBOXbeC2WSkMTcd3muNAjvGS1B0AM\nCN/DiULlYlYkAkuRES6cXkGpZ1SmGixs4Pmg92cnTNhsm97jJ2qcuibj8LjF0XGDw8MWF632QRHY\ntgi9VU/26clZlaMPZix4D1l9CWDRHo/HcHB99M+fDFcTb3Gtr+hBjGozDQZoTkqkS1kEVWlcGFby\nGu75xReecS+YQiUdOoTWEwJoobJ0rdZrr1Il6V2FO9BysWbJQBhvoUhmwilG4YcCx79l38RaKs44\n1xONJ2sYfhnA1+vPXw/g/+1e/yrn3Mo5dy2ATwHw38/mhD1LjFadKSdAAJ/ghaxEQCiGbIiyuHti\n9VdaNruZhgVCTZ7BSnf2UdOV9Ax6o3JwkBRzUJWaLj9TbffvH7Z4eQh5ATr2RoA7oOs+fy7iFnNS\n8rjWuyFhL42qitQqKQENrdIT4rxP+di5N+Atz3sLfvba38a7f+4F+NM/eh4e2D9kxm4uYcH07Bc0\nvTguXN4XitPQYAAwkK8BmtW8B8q1mQufg+38fA9L8acD94yhACnSPemJg6nyHsBkDxKg0aFnE39t\nqXd6wa03igiw+FDsH6CkrVgQhgwfKkIsiGOGj7qBWsoS4iEoPuFHZUr6Cj9oViQ8/rx+vHE26co3\nAXgbgOc55+5xzn0TgH8L4DXOudsA/HX9HbXWWwD8PID3APh1AP+w1npWbXatg083OUxSzRec3o6S\nUUgBsx63naOFEhIGCJbA9wINgNqfo2Qe1FUEWku5nvBC9trePFhDFT58uqoP7+0Iyq24AbMU3klZ\nMHkKhiX4bPRnLv7RC2U4q7vM40n8mUpAVmR/HUTIlJkHOVZ2q6lEXLU+gV/9tb+G2z//x8/mVj/p\n8fJ/fRzX/dLrcd1v/f3HPaYMwHN/4o0AgPkIcNkL78d9Dx3F+z54lXE9SOU+NExSM6IFZsEVrGMT\nml2FhN1hsvvQg42jAbot7cwuX3w/peNl4SbsjnMX9kmoJ9oLsAbH3gG7q8lCQT7zMQrGJeFrts0L\naN2zGSLQk10Nybg0QBd2Kn5ARi+lBkruUpxoho1eB2uHKBlvjYAYkrgm6eaDAhRejivp3HwAV8+V\nEvUUjJ3nPL1e9z3fbL/bjqI5aaK/3lVrEgLAGpACsDiRN3OM2QwE88P97kJacd9LgQvZ2IgdoNmH\nN2yAYimz2nZt1jMYc48ycn6ps9CHDTxv/76eNktPZ/RJmsQqUYiT/933PQ23fOZ/Oqd7/uL/87iR\nk55oXPdLr8fOVacwxoxjOxtsc8DbXvqLZ/1ZL/vO4zh5fUE5mvDS6z/UeA6d53WwtyS/f68N2ROZ\niB30/Sp7jy8V30qzS+se1ZdDB1+sPylLsbnIh1BMDFZel+O2Sc7ZP6PeM2H3s/7ZWpn0AZITX3/2\nV74bH/x/Xmx4WikOaY6ixqTZiX7Ru1AX2AH1Hz3DFgKYFJ/1UmH5wW/4l39Wa33l2Tyz86K6sqI1\n+WSjGCrcpOLhq0PKLZwAxChEVcxhT0E+LCrp7IzzAjjk2Cim0BuAot4C897zgUllE88JASf4YuIh\n0r+gTVAaC2YiepyAWEbvhvbxNztHbfKAgmakduOk9Rwivc7hUbH38JKK/LHGc3/ijQgbh/c+gVF4\n8fceR/q0k3jp0z+Mz3vFe7ATZtz80NPwwY9civXhLa77xdfj6G0B7/wXT2xc3vkv2zHX/cLr8bKX\n3bmQiAewEM8xslNnzHuDyvvCSliGFcGXlnJWb4FhCf8ncSx46UAVVDLQOWkAy7lU1APNVUquK7RO\nwrWsx8EmLrUC0ySh4KCqT1kJUikFKY0OEkYkzVDU6nDXm16KMqnXoeeSWomAOGTUBOl4pV5A3kT4\nQYwG3aVa5L4IwNKJxRaPkpZScWczzgvDADShlZ7F2O8CFdQUdPBwijdkfMaVH8AtjzwNe3MD3kR8\nozZ+hGtlzGPIQJdLB2RHNpVgrYjkLu27TEMfD0Ovh0aB9RNNMKQsjuuxACo3l+q749tnUFmZBoV9\nItv5mnZDgYNfn1W0Jvf5+tM4cngfL/8/juMd//tjL+oX/YfjeNaXfAC7ccL9+4fx0OldPPLQIQz3\njrjzG4Qncd0vvh7z4bP+WBvxtHznp40ncDKt7B4WOOylESenlYVoNJbUyOyBxIKWsgaw0HYkpZ1P\ni8adtOdSYX0acmmy8MbC1OfX6PTt+fG8zXtpwPk8RyMdpeRN6JXHwc5P0BF27RRjYcOYoi1VmIXg\nz9AFb6wmRhNGj5aMhoPKyLMy8xx5DOeFYZAbU+3ng/lPAYHIVYB5B6KT0HYIpqwOEl36lCB/J1jl\nutfl4ceFMemZjAQUeQ6v3kNSQVbbSSj86bKyLFtXatM+dC2U6EOYOQdkYBFKlOqwl0cLHaTTdCui\ncveuz/pez9uI+/eO4i41Ci/+3uN49/+yNBCXfeFHsA4zHtg/jLs/eBl27hpx1z9cHnPsfcEMy4u+\n7zhQgXSoYntFxvreCJf1YXYSY64A6WkZf3r7NYirhNV6NqLPapVw/SUPYifOVq5NY8t7QG1NpqMJ\nKtPIZ30mfdNhPstaG8GNo+FZ/WYkf+trW/pjASx2dW7ZPcgISDMZKfjT7mm+Ls7rXCP28XvYJ+p5\nnYYeTlP4RbUdP+Ub/gy3//TL1cPg4octnoURcBJ61PmT0DBUsCJMAcAKONfSjBVYCLtSCHNKAe96\n4BkmhrpQZYoJe9NgKk59SEAJN45tEmByHZPFuXRbc2cQuGuNPiMEUS8mjpAPuPcAjPvPwRiXg+Am\n/0YuhBkPNMagYSFgL0iScRJu/5qzZzvWvYjxQVlgz3nTG/Ds196D63/2Dbjjq37AjmFGaBUS1se2\nmI8t06Av/9fHceKz9u33m//xkyvYet6PvhG3ftPy2r/5Q5+NWx+5woyy6DJ6ywb1eo1z8QuMYfDF\njH2fjoar2J8GXYQiicb+I3xvrdQErQg04lm6nrMHatUNJdeW7gYgIHhsuEPOHuOYFCxc4gssw3aq\n61C1f8QwJgPgUZ31SwGaN8Bsw+0//XL5bkx1OuD6//kduO0nXoEwZiE4FdeUZIDlz2cxzo/qyu5n\nazt+oGTaASbPNSv5hNb25GaFlD32p8HSUntb6Uo0pWj5b8af+5pxoKvOn2kUeuozsxj0GljYw65H\ngBitOatsOvn+cDg1aWekTgK950MwjCC4ycpCEq1agVZWIRTp+sRWcaPPODJszu1ezw5hT+74kTs8\n7v7opVg9vLzXmxSxl0YcGrZ4xTM+hGe+/CN4zpveAAD47D//crzq7/8JvuBT3o/n/dgbz+mzD464\nd+Yudu/+0aaX4CVLMavRZOEZ0JoAAUv+x6iaDkPIVj07hozdccaR1YQxZuwM86KNINCyEsQfeg4C\n56SFua5pMeYqHoEZotpITt5LxTDLrMl27LtYh1isFV3fQoE9I5wT/oJVVDIDF6qRnGoBbv+ZlwO+\naTvWisZjSH7RxOmsns05Hf0UjXYzgcLKO20nziIRuva1tgo3hhSSgWjnk4rLsuAccGevEN1HqjjB\nVYxuqexbAfMQKMzSMxtZJdmnGQeVHwNgYcOlO0J24iJnJWSflbAwYihKmAnWBo7vHX3GqbTCReMe\nBldwKG6xE2a8+f0vwa2v+qlzutd3/t0fxKtv/jsCHgagPDxi/UC7eS/7t8dx4hUb4MpHgJVc66Xr\n06gvvg+f/edfjldc9iFcMZ7Erp/w9C99BM950xtw+1f/AF7y3cdRPRD3gDIC01Hgqld9GK+58n3Y\nKyMuiafxwHwYf/AX1+O1T3sv/mI6gkOfc79hHc//4eN43zffiFs/ciV2drd45rFH8d67no43vfoH\n8dW/+3ocveQ0Ljm0Z4bVdyEGAOsmvlEeSC/4S8+MwsH7ikc5V5GT8GCGUKyaknPJO5FrL3WZoSLJ\nadKOY9s5onhvzEbvpZoyxmxeguAWXXhYRK6Q8956qFRpbZe30bCEWp2FAvSA8uyXmAIxhiCGAMQo\nuMbyufkA54VhYGyWs8ez/sd34yO/9AKz0E6/nFnvKo1kAAI2WKSbhOHmETxUpFMesOvSSPxMYg1c\npGTLDX6pkRe89CowFqMHkGGgGbMQ/B04U4Bk9Am7ccZOmK2ACoBhJKU6+FixUuMxVw+2j2fNxDZH\n3Pzg07C3GVHuPIz3f92TK5g6uR3xrOd9FHeHKxBOB2wuc3jRfzgOOGDvepEGO7lZYc4BD+AQchHj\ne3fVSZgAACAASURBVHiccOepy3ByvcYVq5N45vgwXvbptwMA/vyfnRlOfN3dn4u7N5fg3v1j2I0T\nrlqfwNHVBhfH03j7I1fj5J9cjvcqTjEfK3j+j7wRn/Pam/GZx+7Ac8f78IGnXYZjfosf/7wfw4fT\nxfj+O19tOz1Drx6kBHSjoHo0n7cu5l7KrXU5l59nkp+6nZ+NZTi3KsSblA2rhbrkMDR8IVgmwioi\ni0N1TQDWpNo0tUgadMkCSrrQ0pNsyEQ6tesBCV0jVlHpKyqxDwcJKYBzDiXOC8MAtKzEvW++QZqW\ncAHr35uhaAubQJJ31XpS8gHTILA/ZQ9QEdTqHdlUWuNaEwipTXnZzuEar4GFP7VKhaAZLzRpeXaj\nvnS9h3v3j+KPP3IN0n4Eth7rj0aEjYBycEAegLyuKCMwnHLwU/sbKhA2Xervc578vc6/eRnu+Yx9\nuNljfNQhryr2n5ngDyVQDi9njxqlHuDIeoujqw0e2ezg7vsvxv5lsuPu+gnXH37gcT/nCy5+H77r\nTV8BPwFHP/ej+NDJi/DQ267Cf37VgNc/6/fwla/7LTu2rArKEPDR/SP48Yc/E88++jD++F3Pwfe/\n9qfwLX/wNYjrGU+/5IThCv3/PS/B+Sayw3oIemgBLc0NaArQtVQ3jYVdUwcM1z70002M/1tT5Uox\n42Lhgw1XO1VooILdtmCTvCQv2AKNACAL3le4KsbCEVykgUAzFgZCAkDPdXCfxOlK78QYENzhIrVQ\nwBcDgGgc+JANWOoILBUwsHJgH0I9L8OT/rMBmKsZuvCBlhyAUXKjL0iuCdUGpSxb/4CuZmMdZ4w+\n4b+/6aWiqvTcp+4enu3oeQUv+r7jmI9CJpFuNLU6HFqLpuLpaUTwBSe2a9z7visQTzrcG4sqNzs8\nbX3icT/nT09ei/e+Xj7rhW/7Glx+5LT9fsMPHsd3Pgi843/TaxkKqhc6NQA8/0feiLv+wU14xZ99\nJe587Y/iJd99HIf/9v14ZLNjWELuwEfOG3oRNN5Mc/N5jjHb5rEaErZzxM442zwbI8VgWgahT22v\nhyRK0YormDYksAhfQigIoQkQFZV3z9kjxiyVlsQRvBQPYgDSHK0prVCZW8bBwEblM5Cr4GqrvCzJ\nmWhLzR4uFpRt+OQEH4HmpnPR0j0M3YM3ZpmmjsaYcfHfvG0hzOmcCG+sIgU75Px9s9P+QdPlJMd+\n6EgynFws6OkJUSy/BjSt5psyE78PtRr/293X/JVJrT3W+NR/9fgg4c3/+EYMJxz8vkfZRORJGvRK\nDYqoRp3YrHDPfRejjAXzsYL3fNbP4C3Pewt+6tm/j++68p2Pe+7vf8YfAxDj88XXvBd333mF/e29\nr7+xGQUALlbUjtO/elCey+l3XAoAOPmctJD8Bxo/hPNFAGD5G4HqPgNFI7IeEtaaFRhjxmaOltIE\nWhFfrw/CMSnzMbhlfU0pfRduWHjRDyumU0mBXoWpVmE7et2UvBZGSSf4akVRbHEPfoYanjyp+CtT\nlvSct5riPce+EueNYTD1puJVXMUv+Axc2GwFVqsIdN775hvs77NWwE0pmDgnO1yT+87MwzZF7M8i\n/kLjMGsKjF21e4HQvhcFe1H2gwVCBpAq3+DEvMb7P/fcAMK/7Ljhh44vfp+Ofmw/cjgFjA97uL0A\nJI95f8D+/iicgjni0ROHUPcj1pfv49DVJ3Htm1/3uOd68fcePyNbMR+p+LKL347x4pZBuf63vxFf\neWdrjVUrkHfb5H3XPxejsfPSh3HDH34trrr2QZyaR+mxQRXv4u05peJxZLUVYw5gZxApP9bFAN0m\nULypeVEKULyJhGcdfbjzBBujlfyIUp3W67QqUMHA+D2WdPbGX+iITTQ8DGk0PGAIQv4Dj8vJww8F\nYdRO8NnZgkdxhiMYf6EqoUnTmy4W5O25FdidN6EE88BzCliP8zLmV/orOetApwqNlnHoW4odDCO4\nWMHKyq7gpqfb9jHpKi6zA3BdXAiY0hJA0DLb+8hs/NXn/tpTe+MeY/wPX/YHuP7n34A7vvIH8PJ/\ncxz5EuC6//x6HLk9PKbnwtde+B+PYz7mkNcV8ybg/aevwnBoBu5d4eiHPfauOozNpTOGEwFffvtr\n8O63PQe3fe0SAN1cUnHb192EF9x4HD6JR3LrN96Ea9/8Ohy9NQKvkuPu+IIfx7Vvfh1e9vPPQw3A\n8OmnMe/Ls73hD78W/u1HMB2ruObT7sH+PGiKseBDD4ts/c4wS0t7XbBzEQWmKS0JarU6ZDXsBKMB\n8SSDr3Y8lZ9vfeAKq6icU1gwHYkhONcWcStwkm3cjEq36HNuXa1r8YDPphYNaOPbLGGCR8Mr5NzS\nK4JFUM5JGOFiES+C+IJjhSXMU6lKiKrn2J4OOI88Bt4MI4rggJ5C8cZZ5/EADCyjWIsUW+ExXUMA\nOPold1hcSA+BWQ9iDBzsct0j4D3ZiEU+qdMbIMX3qp2TuP3Xrn/qbtjHGG974Fp80xf8Dl76746j\nDEANgN/32Fxe8bLvPP6477vlW27E+n7hOYTTHpg80oNr7N7r8a5vuxG3fe1NuOtv/AgO3eNw8bgP\nP595jvFRuefvOX7jgvh05PZoXoCNnYzqgLQj3ZkwKNZz9yHc8i034jbNujx48hAe2tvBR08ewTxF\nrIYZh4bJlKyW2YmlxBt374PkMoKMLNfnzyxEInBZmT0AFmBij3UxvO3Pz2OWL7TF7nSOOrSWdbag\nsVzc5gmQHl2dGQVAMx7qOTwmX0E3tXMZ541h4I2NiipzUIUpakOQaD8r8lsbFrB88B5UkGbuuwI4\n/evXyXm7rAfjxcGXRf/HPt3oD9xY6ilQm9Hoyr7g4tUe7jhx2ZNmBP5lx4cfuAhrP+PEiybklcyJ\n4aTDcMItgMfHGn/+rTdifNRhOOGxuj/i8F0BaQd4zv/9Bjvm5LM1zn+MufZ43bQfK525Pjxh/8qK\nW/7RjeKyU2REZ+W1v/4PcPf9F2Pz8BrPPvYwHnngMPJHdzD/7mX4yM9dg9+44Vdx912X4/A4LWps\nyGMgyUleP7NNG99D2T96ANbbpMMzeLyVPh+Yb62TFLMSrjteDYkXvgEl3YR/UIyHYJgDYC3nuNCd\nhgSOi9wpBhFE0IWsSLtWfc3O+8lYKwE03jhVlloXqp7zDr0hTWqbi3+eI2pwRnVlvjoG2EMGlDDE\nyeJaDpxkKPLxmcFg/puey6FhskKfXlC0VJVs8xnvfehK/LeX/cJf4d1bjnzfDh664RC+/bN+Fd99\n9DWo7zkCn4Gb/8nZGaqb/8mNePm/Fs9i/6qK+XDF+gF5Djf8wHE8/wvukvvxJLeV5/3oG+GffwqH\nd7bYPnAEAHDJoT2cOrnG9b/9jfh7n/9H+E8nL8XPff5NePv+Nbh6fBBrN2N+esTbTj8Hb/ovn4v3\nf+tNeOl3Hcfqs08qFiLVmkMXEjo0Id2qIV6PMwBCZJu6yk5A6NJ729GwJQAWxlqqWr1IkuXIxWnA\neMJGsxfEDAB0KU5hQEoNhEeB9K6c52BhSM4eYcjaDRsm1+Y6HQYzzp0KFLMW/PtBo3E247zwGJxr\n1FRqN5KDEINqOYaGM1C7cXeclTabsB5nbTbaCb1GQY9XqvrMeBSAAUncVbjjc/c/Om6xignja+42\nT2BQcZVVSOZ2sgjq6LCx1mqfSKMAAHf8vR/AR7dH8YzhYXzhNe/H9ukz5mMVL/z+xw8jDo53fPuN\n2F4MTMcqwsbhln90I17wfx3HtZ//ASNdlSexrbzku4/j1m+6Ce/97J/Ggw8exubyihd/73HsxBkv\nfNa9+Mzr7sLKJ7z91LPxgfkyPJCO4M7tlbhjuhJ3TFfgvu1Ro1K/65/fiO3JlVHbe7Ed7vZ8dix3\np4Zn6zLVQO+WBg9WuMdxsDclPZKUW5ai9yRY5g20lCUgxVW1OORM5qNgaDFmzJNS8lMQNa7qkKao\n3azbPbRy6woLK2ggyhxQJ2/pZxObPTe7cH54DLVCa+Ilt7yZo1lyi+PUHKbsgQihjZKaqtJdvTw8\nwSbnKqCZBXa15uInOabvXWC0V4qvvPVq6eJcPQBJS/I92xxFpDXOmErAsWGD3/vDFwHP+q+fiNu4\nGDc/dBU+7eiluO3E5XCrjHQRkHc9nvuTb8TuR544pACA1cPA5gpgvjThOW96Az71S27FpDTw/Tws\n0otnO0LXUvPYH68BL1yGz3jnV+DR0zuoFfiZz/ldAMC1v/rNuOtv/TAA4Dm/+w048ke7kuI8/jY7\nx9F3jyjXtaKmnmbOUdE4KlVxiFpbFS4lAmMQEFKkAZsUXA9AsqiqD1F97QhVpEB3DFjpK5HN+/Vs\nv+gLahEFp5yF5m1CK2i8BbvLTqnTKsACD9SsHAanNRVeXoerltp8MlpM54VhAATFHfQBkbMwxmSZ\nBla+sfNwhsN6SNZtyDspSKHHMOdgHgQgE4MeAYty+jqIvh8lMww9wLQTZjsueFFqLj5jHWZcPO7j\n7R99Jt7xaT8LPOsPPoF3sY23vfQX8eJ/fxzTsYorX/kXuPrII3jnPc/AvFrhtIsfU4+B4x3f3v7+\nku8+jlOz6CfMOeDo6Bqz7hxG/5n9+R+45XLc/jU34cX//rixOmkUAOD2V/8E8Oozz1c9DD/aHWac\n3Ir8XVNrcuZtFjTQsaAiq8jPdo6WESvV4bSGEZw7fcjJGpusKXOnXmjDJ+S6aCBSZp/KYKnLojUO\nBDbnOZgDwDtqeEhdeghWJFUa+Oic1kdUAKRSM3/qC3Cga/zZjPPGMNTqFnhCn3VlQ9ti1n5ZV88S\nZSnRba4esBRXyWrdHZbgIrkKUjm5zPfuaP/JvseAfGZB9ILO3789LEYBwBc9/WX4jY88Punnr3Js\nL6vYuc/hgXdfgfxCj/kh0W0oY8Xm8nObKPtXVVOsAoBUAty5cWbwqf/qjXj7d9xk//djdd0JPP+H\njyMMUg4e9hx8cpiOFfjkMD7iUEbAb4EwQWLnCpx8/oy5aKOh1OpOSgU8nG4souVgbMg+HVipw6BA\npBqKg2AzM1cWx6PNhbkrmAKacAtTmAY2opGfSmnnqJ0HUtGAbmYjWtk1rwTy5btaCkCxBdeZF6fA\n47nb7/PHMDiN1/s6d0A8hajKTib/5lscx4XN0QpkvOWjgWYIiCsQPDroPfTpUDuObqFWx42aJnvm\nziO47cTl+Mj/d7XoYQMLo/CJNhLHXvQgHvGXYnjU4eFbLsOR+3RxzUA8fXb+5bW//DocueokrnnF\nPVYkxgIwd3ansHHiORUv+Z7jCI/BtUkp4NB9FW//jpvwjR98FT66f6Tt+qqyvQrJxHI5DueAjYaM\n+/NglZLVNZ3PSeeNt1qFduGl+I5oJMVKUTkxSVslclgBV23qUBWNs8DMBH/mnOViNso8Q4IiO78P\nxQhOVnEJCLuRVZNo4KP0otQLUFByIQ/vGuBYswMK4IZzs+LnjWFg3XupDh5i5V11zR1TT0FEWFrH\n66THzFrRxu5A1H1kYQxDEtOMpOun/whG0m2k4SloYQVbyEWVHvudX/lUvPcNNwI3PPZ3+kR7Dtvf\nvgz1lXvYPzJi9RcRPj122vBjjfGBgC/69PfhtpNXYCoBAbAGMfNF8hxe+B+PP26akuOl/+44yvUZ\n1QNp98y/+1sO4+3fIec4rb0691PThRR24yiudw5Ya4aB4i3MOlA7sk81s9XA4IsZCYBVua3mhtWU\nkloU8NEt0o5LCrZz1bAwjuCL8hDEA16tZvNQAGCaggKCTtONUieRVa8h6/p1aIaERVqckxIqAGEo\nxoqsPYehaiEWNKIYyjl7DeeNYeANBZYWmTXxAKzISujJVOD1WI8zamity8FFfkDGKzhNT3UgJAdD\nDlKes4JA7BlBDch1mHFqXuGu371GjMJ5PP78n92IT/mpNwKXJrzvm9u13vADx8/62sdHHPbzCNGZ\nFGn8VUjY5IjLr34YwONzF/qQ4V3f9rE/bzjdft5L44I01ldS9obcelPqs6uAeYm5OPMQRtX03Bgr\nEsp0hKa0y//P3ptHSZZV9f6fc869NyIyszKzxu6q6qmq53lAoEWcEAERwYeCKKIi0nQlT5+KPtGf\n+tZC8afvpz6XLAtkFPmhPNCngIL8fIIDgg0Pep67q7p6qHnMMeIO5/z+OGefeyIzqzur7W6yu91r\n5crMiBs3bsS9d5+9v/u7vzt246baj35BUrFSJsQ7CfcdvoIhHZYp8ClNU1UQmq1rX6LU2mMbSkhy\nttUHjY+7RKjIte0CsRt0YFCFx9qkXwIHttK+J0L7NMPVuo0knqLZlU+oCQtMmlqapm1OaayK6LCk\nEW2brYu6/cJ6rBsdSS5Cc21ZkX4l6WZ1BCLBv/doXg6d2LTDUn6PZCUnBj0+c+FnYpfgE2kv3XLV\nE77PfFb5Hohgl//+yp0CwK0/v5Mbj2yN3A+ZkaGV4/L1+7j0Xb4Eeu7Hr1/SrCV4wkrslre1x3TH\nA1vomJrK6qCM3Tpw6VEo6wyZISmrdxxonEywAlHxaq8F61otDx+FqkQoVsXHUtatDYQ5R9uO3Yjj\nCCu6vNYTnRxVZWJHpVJEWfjUKaSNUEAQgg3Xe1RoUslUKYUqZFJtSH9CBKG0w5bGA5EwRJo6VVr0\nqogYnGtLhYPQKyGlRgEKlXLIeNJUsDMV+JTHRVgkMwydsNQZSLMUeCcg0mspD8IoXwMfywdkyvKl\ne7ez67s/+KR9D09G6mFKOO2CQ/H/W3/+1B3asX89nUtecYDjg54XpFGOg/NrmMm6bPzOvQDc/9r3\nLPvaxzN9e9dLPsD2T1zPuZc9wol+F6ymDOVoOTfQ0p3rRsdUUnAJ32zX0qOzyGNo8SajbUwpwXdk\nxipDY4YWChlHJ9eihPkp4ChU5xRoFNn4WOEKaUncT7ix4/TqRH9DZNtiU1bAFYfmS0Bs08Yq30MR\nhtpGd/o4AMhVETFAIIHgj1/IJHF8nJPBscRBommUICmEgJJiMrVKvH/jVNR3FCEWsbSKke5DxsJ9\n6asXPalO4cmyasxx9YYVjQ89qd2xYyf/+6ZLKEwT28srq5mtCsY7fbZ96uTdlovt0ndNcfF7Hpto\nNX6fjtdBylGRVCFttYe2qU7wBhl1r5SLYKIsMjpZIDJto0KzkKHSBQR5jVQKSPABBXnWkGXNEPNR\nBjNnmRcN1sYLyJjMtiPqhB6t2pH22jRevSmWPlx785swo1I7dGaj5oJ8fqFM+3/wTEjjQoclT19K\ntA6UTvHwqbeWj5SWM1tuvEWleaZTUWo+bZ8VdNrolv0oYGOqPiwpjVw8E0Wff/u7y9l13erDE1ZS\n9egeVnzhb6+B6/7t3/Veu7/vfbz87pdzYHaM4/et4/u/7SvsmV/HibLH66/9Muf+wxsp7u3hDNjc\nYUqFakA1UF0x60PpPaNc+NLd7J0ef8z3u+mXd/Jtt/6n+L+cc6+O1ZLeGsfQebaJrqKstMJ9EUeR\nXisyx0HO/+LGO4kqcS2JykLsapR9lnXWCr6Gxawdc68wRpxGCyq2IKREBCqWGCPtOaz2Qon2B9cS\nnWQ1TaMKASFbJSgHp9Z1vXocg3SzWafiF5yexLl+QRaqEQbijAkBi9JVvgrIc2Zsy14L2/sLpO2f\nEKCzCYAk+KEznaymbAw3/b+Xc+evrD6nAMunHoudxU1v38m2z/zU436PS981xWCdF1HZdPEhjt+/\njvt/6D0cbOZ40VevQ//rBH925UZ2vfiD8F1LX3/1b01x+7f9Kdv/6i0YB3ftPQ2tLZf//tSjpjXP\n+dprGe8OsHUWiWpx2rXzWhx+MhlY52KXrUyTkggjdSKEChe0N770P6QNd2VtKMK1I9iFvEYiVYd3\nGhFTCOXQxmqckjmW6RAbFZ1CnKGi/LEjKbN2uNp41iJAcFxNrX0EoL3jiJiCCnMlBIAMoU+cgi2R\nQhIZr9RWjWOQ0qEnkiQ5WXguz1pWol85hk1asmVoS5HV0UEI8ixhZuSth1VAVgIZS2e0n1Pxdxf9\nLfzKU/cdPBG22Flc/N4pvvWlt53SPq74vSm2fO8ezh47in7ecbLK0Cl8VUZo0HPWMXe8R2ccrtn2\nINf8nx9ibqFDebSLkuEmTuEuqzn/T3eQOTB9RaMtYyMDTmxdpmYZ7MIP7GDbtzzI8b4fvSe9C3Kj\nauWp801ceX0UYZQvQZbJeZfryjJccRDsCQgrvncQnbymyPwC0rignwBDg2/E6sCWTfstBGyU/aaM\nwxR7aGoPXCr5nmh5CilfoR5kLWFE0TIm6/C/VbgAUOrctiBlE6jVwWEM8RxWYKvGMUBbT9aLbuDU\n36WEJlHgAYa6Kts800ZAUmyoVVa8eVgFRvOS9d05bt6/5ZSHxK5W6xyF2/70Uvi1f17R9hf+y4+h\nxvFOEeCMLw89f/GXPT7w4n/5aXa/7P1LXn/eR3fwc9/7N3zf2J3kQAMMQprbVXDUGl5345v4lmvv\nOOkxNL0AEDdtlNckxCa5iWG4zFw3YR5HWO1TIVcxASZlLoU0Vcm+5ss8cllMcCj+WMzQviTVlB4f\nUYluAv04yxoGg7wVaAmMJV+u9DetpuXvtMKtITKwgYuQWVKptqHWamFUhods5asfNAoCViG7dac4\n7XrVOIZUvEIwgNQbx+0StDViNGr47pd9pB9OHI0wH2VfaWvtRGeB2w6d/oxxCsBjDp1NU4/z/vEn\nsIc77Hrz8q+54vemyF54nEvePUXHAi9auo2yMLA5x2V0IJZ5l2FwzAcOdZH5JqWTmTttQL/OY5m5\nsWZI0SsFBmVBkOd9ZSIRhdWt0lJa0UhxLKl+SXoAw9dZPC7XCq3EhqgkLUi3axpNnvtJ7WWZxXJl\ni2GIM7FDE6pViJpdKIPapMzoZM6KabkLQ999vCEIzkQljuRpCj5CG2qJNLd4aRimNIulugyyCshF\noyCGkkDMLVMzyUnomJq7D2/iluf9+ZP2+VajiVO45I+mcBstu05SdgTPNdj+l29BrbdkM4or//sU\ns+dYVA3Nmobd3/c+XvOSf+W147dwW7meST1PV9XkymJwrNENr/j6m3nDeV/h7OLksvPnbz0Y0wgR\n3GmHYA6fd+EUKIYXCKlEpBWrxg47BGm+k0XXpyRtX0SKQcnYAAdDAKIMikk1O6LsYLjp5VhjKVMw\nMZ38DwGbkBkSoSQaypPKWA+ULHIGsZ9C9u2CM5D7RKoRpwgzrArHIB52sTMQqW1r/byIdBq21K+N\nsTQiriKttfhoY/GY8sYqekUVV4csIMoyzOXmZ5lTEPvmm3+AhTNqdr/qvY+5rVpbcumZ+9qGpTBw\nZ64suOCff4zPv2AnhVJ8cP8L2dSZ5YfXf5kt2k/k2mx63PK8P+e8L7yRN1x2A4ydWPY9CtOEm1kQ\n//b8RqEUpxjJa59u0Ib4EhkKmGh8Ek/d6Ig/AEORQ3QAAWMYVAnFObyfaH/Ga8e0AGTVtE1QQtev\nGkNZZhRFTZa13ZbGSMTRjp3zkYGOziEdIBPxhVBtkOqEzmwrMS8QRNpk5RLnAE9PoRYgjgyPK3yQ\n2G6Ctp00qgzVnE1LUwWGooW6MTElEYZkr6iiqIeilXivrOELl37yKf28q8Wu+MoPc+DgxIqcAsB5\nP3ojk8V8vGk13pkf2D/JX137x8w7Rd85fmHr3/E9a29mi5n3VHQFD9Z+EO63nnsfH7n9eSd9jzpZ\n1evG0Ms98FkEvkBmbBD71dEJ9IqKzFg6ec1Ip/S9EaaJzFnBm4QHIdeafI5O5revahNlBPOsiXhX\njC6RaoC/Bsva0OuU8dhFsVqu2SbwbkTeTdIJE9MB5RWcrMJkzZL0OJWLx/m5EWIpI9I/4KMLV+mI\nKUTNyCeaEq2UOlMp9QWl1B1KqduVUv8lPL5OKfX3Sql7w++1yWt+WSl1n1LqbqXUSx/zKJTnkkvk\nYIyNpUkhiwjJRPye5IBZ0mORjpSHFkkWE0FZkabvZDXru3P8wyWfesxDfCaayLedCnHrc3tvog5t\nzo3zIfTD+9fy/m//UNymcjCpS87MjmMC12CNNvzoHT8OwFs2/aPXVziJiSy7xwr87Emhu0u1QQYb\ng48Eyzrz3ZDWDzfulzmzYcyebGND+7zsv2pMZNj2q3b4sUSaQqaLylDJj09Vg6hw7NlouTbWas96\njJFM+/migpM8h/ASkqoJHkyMqs/CeRCOQtNqSLZ6DW0Ugk5wCDf8/iuxlUQMNfA259wlwLXAW5VS\nlwBvB/7BOXc+8A/hf8JzrwMuBV4G7FRKPSa9wiRMtuG8LKGOhm0dLRotwBEEPcfQ7CQ5I8hsCZX0\nWFjWdhdYqHLu+MuLVvAVPPNs+1+9hfK7TjwuTOUrX76Q0XyAxrH7sB8Is8XM8BuPfC9vvPMNfHLm\nCj43ewm3DrbyUD3CVwdbueYTP8eXr/xLPjU3wo/8zcmZj+f9409wYtCNpcg8Vhj8ajyo8tjNKDdr\n3fg5IrE/JmG1CtfAJqkADBOZRHxFQExp0JK/ZdYDBGA7VDziIpVgWensiDTidUlkoE07gUrwBbnG\nwTsEW/kpUnJzS1XCOwfCABodZN1UGykEjgOVbvUarPL/n4I95tbOuX3Oua+Hv2eAO4GtwKuAD4fN\nPgx8f/j7VcDHnHMD59xu4D7g5HFjYm2/essYk/KPhGCxXJRwHKClu0ozjFwAEiXYwJeXZqqqMRz6\n6mmn3Ib8TLBzP3Y9Y1unH3f15b4feQ9j+QCjLeduPAxO8SfHXsDL1t/G3j3r+dTeK9iYTdNVFe/Y\nfg2fO3o5vQOacz//Rn7n/pex6wf/eNn9bv+Lt3DmxmMxPdCKQGn3Zcv0Zo4NTukNmjiDNHBOo0i3\n6H9Yei3VtYkpa+pI0jboFgBl6LpMMTDwkYD8mBAFp7oMItxC8jqdtfTn9iDbRdLzHPxjqWI0xoWD\nXvRbuycXfFRKnQNcDdwAnOac2xee2g+cFv7eCqT824fDY49qAj4CyRcu7zvcVSlUVlkt0igpAAET\nbQAAIABJREFULc6k9WuZIJQbLwx6z71b2P2mxzct+ulu2db5f3f1paMbLp/cy9Uje/gz9Xw+fsPz\nePHVt1NMDpjud7im+zDHbcGv7zrOrf0zmXzNPI/0J/nYts8vu7+L3zPFJS/azeH5UaAd8NMPMmsp\nwzWtyok5GCpjpmpNadlSeANpWuCSfUpnpOxT4asLRrdzTmS/aQWhSQBIlbz3EG8mub5Ri0bYhfRE\nnlMEEkJ4Dxw4fPQgfRPyOn+sriU0hX0A/v/HoRK9YseglBoD/hL4WefctEoKt845pxaTCR57f9cB\n1wFkGyba1tWondfWhz1Y00SBVzmxgjtkxjKoh8fDCYDVqk8HdWnjm4B2v3JlYNszzV5+98u5+1v/\n/SPz/vGfrqCeqPnU3hdgC0enVrzvzH+FM/8VgGtv+nE+cMlHmHGaymV86u+fHwfILGdbvu1hDs+P\nUjW6HUJsNUVWM9nrM93veuXkYGmzW3pDpdcHEKeKqUU3NYS+GPk//JYFSq4laMuPvupQx1RGMAWT\nsAolmpCKmnOKum5xh8XOwDpPhqqDKrQ2Dc761MlkTUuB1njnYHUQgA2OxyTkKIjKT6IgTSolfwq2\nIseglMrxTuGjzrn/FR4+oJTa7Jzbp5TaDBwMjz8CnJm8/Izw2JA5594LvBegd94WJ4SOoROn27Zr\noTkLVyHLmthPLzXndBZFN6+DI2lnWGbBUdyzbxNceErf0zPCnvv11/LVaz7+hOzr3h9d/ia/4nen\nuOUXdvJvV/0F2z/xczBRseslH+CnH8UpbP9fb2HLeYcoTMPEy+/j8KcvaHUTFMwMOj5ioO2eHBpG\nS6LhGSjuPoXUVM5Eolyr8eFvUG1aZSa5aeWm9kNn2mMUdqyUMiUNkGvWGBsBdGleqioTiU3gb+pU\niyFiYLYdeRf1G7WjqUJaHNqvPcgYCE61HiYwVRqyRWuzDk6hVnGYz0ptJVUJBXwAuNM59/vJU58C\nfjz8/ePAJ5PHX6eU6iiltuHVEL/yaO8h4ZtziqrKIq5Q14J+q6GwUCkXEWOjXeyJcAE00toGlFlH\narRoNnRM/aiI+DPVXnnvy54wp/BolmI2u17zHna95AOPuv2FH9rBRZc+xEKVsVDlHPvb8xOFJRPL\njVIilMrTQun1Mxx+IRANT98ElYXowK/q0r49qHzlQvArD1AHbKrW8bprUwWf4vb7/r3KKksiWx9d\nVJWhqkwSFQgeRvxfJlubrGm5C1mDNk0M+T0/IVn5G4WJbdRhm4AV2DLMby1C1c158ZZWrSnsJOm+\nPFVbScTwLcAbgFuVUtKh8yvAbwMfV0q9CdgDvBbAOXe7UurjwB34isZbnXPN0t22psKJ8SKZNp7Q\nyP4K/qshREhJt1tTt6PPhYSSkqTExKnct28TPMsKEc/52mv52nOefKfweKw45qtF3aACLit9ZB5a\n3VajXKt7uDiPl1U/SrAtwhikDVquKZXckFVtyPOW39A2QbVS77WQrBIsAdqIQd57KfXZT5xChXKk\niAoFJyRzJ6TXIlbbNNSDrK1MgG+GwvmBMt2mLV8K3JB0WIqUfDR3at7hMR2Dc+6LnNznLNNoC865\ndwLvXOlBtKhuCPVCKAeivEvU1Ivin8nr03ww/R0l35P2WfVwd6WH9Yyw53zttcx/bQM85xt9JMvb\nrT+/k22fexNbNh/zjmDR8+nMSUsoF0IcHzhUlUq2hdaRyN/SyLTcEBbBFwTfiqE9gQgX0ldxGnLz\nZ1k71RqEBm2GAE7RYqhK30IuJcz2vUE6LCMICtEpRPl4EW0ZqduNxJQLJVA3FHkMlVZOwVYN81G4\n5K0Yy9ITmwqsyHbSCZeizNBeJCbx7h6Eeqo/2TfOLr/hRzhx13rufBJEZrZ99qe4/H+sfOTdo9no\nXR0K0/hFThSOAqgMxL/l1AlNOWW6Amz+/juBpQ4iVYyWkW1yrWhtA0jot015B8KKBJgYXeCsyeNs\nGp9ty48hrUirDcLBSYlNsj9oR9QNpSzyGhmGY1WQdCOyGSNXodEti3FxFNC0KQxWtalEeO5UbNU4\nBokMBMgZokEryd10vGigXTXS0DFKfKm27iuhXmMV3YuOf8M+41NpP3j/i7n1+X/Gfa9/ckqy33PF\nbeQzT4yXve2/7CQLbdDgAUcbhF3FBiFlbJIFQquWpaiV4+Anh3NErYbJbz7sJ97Ukq4I/d4YG1MK\nGzo0qzLDVpor1u/lRRvu5tVbbuL08RlgmL8gTqIFLoedhxCblPKq5zKmTilHlnunKOPoosiKavkM\nyngJeP87XOsyKyJgDyoPgGlIXSIYqRxkbeVkJbZqHIO1aVWizd2iNp+xsQFK0RJJgNhbT3iuyOrY\nhuvVhHXkQmwcm1v65s8wu/amH+SWhx+TOvLvss9+7Qq+/utPnNM5MueFW9LcPBVrlXOehWhApoNJ\nWpleDzF6TPYv+JMvMQZ2IkRRl6oycSr10A0dVJfz0DKeq5q1nfm4eHmJ+FbZ2VpFVZlYprTWRwi2\naasewoKUCkVdGVzQklDgowOpQiSfyfdK6Nh2batEjcoRIhE8thDKm49XwWl1OIaQRkgqIeEYDAtx\n+MExbkhhV+ZN6uAcTMgNM239KHttA+PRRcbjpV9+/Tfy0z6ptv3vf5Kq0dzz7R9+Ut9n4o4ntjHX\nfW596GHQidq3jg1x4iRSfQ4ZUNQEGrSklG1lQIWqxTB/QaKG02Pq0Qq5ZlnDwkLB7HQvCKhAdiTn\na4fP4KaZM3hwsJ5DC2OR77A4ZZAOSpGMb0JPg9CgW6wj+eyAyZuWZq1CBCA/4SMr7TBBOl7nNkYR\n4ix0iBiG1JpEEPYUy5XKPZ5RuE+w9c7b4rb9rlcaTk+g1INlpZAml+VSCUF1gVa0M0GkpQaulGO0\nqJj59GY/OfkZZFf+P1PMnmm5/3Un11R4Im37J67nrIv388iNm7n3DT56uPBDO8DCum86yMxCl/m9\nY+x69fIU6MX2Hbd9PzODIv4v1GhRYxJwTkqUooGQ5uv+dXLz25awFCJSGQADreR7+nvrq2/nwV9/\nAfkc9Nf7G7R30MunLWx0NJsHdEaqWN0Q55CWOIWTI88LbiHDZtqReO1nF0l5+dz+sZOs9MLfCRUJ\niSb8c2qoeQoIJCfFg298+9ecc9+0knOxKiKG9guFsmxZZWnpp3Et/TSdIZiCTDFMc63Kc5qP+vIQ\n9OuMuRfOPvUf9Am2i/94GPy7+Rd3PmVOAcB1LOOdfnQKANWkpdxaceDgBIN+HjUiV2petam9QWR+\npJw/cQpiKY7UApfE10sE4RY5kNQ5CB6glOPeD1+DrsAMiPNhnfKzPpUjyrb7926jkbR61o6Ua48x\nOqfQOi6vjz/Q9ktAfL38yI2etmAPlTGWqz4I3hCk5E7pPJzS1k+SLe6oTEUsIDgJ2kpFHdINaFHs\nNKyTyUFR2Sd5LwlTt6yb5tzPv/Ep+XxPhl3+B1NPyjSsUzHVq1nfGcZs3vey9/P57/oDuqPlEmm0\nR7NL3zUV8YT0JhbNDBlsLJGfpBFAfHxx5SFd0UUbwQRN0dTq2kRsoOhVzG+vOHFhg922gN4+y8xF\nFccvt2z75S8zOTFHt6iGbu72PaUiFrgKixr/xHzVoV0MJXJwkg4lzYSyb/9Au2B6LYagu5BUIkQR\nKjoO40J14tRwhlWRSnTP2+LO/p3r4+AOyc/a2vAwkSW1NHpI5brTfglxrFlQddLakocLrZvVz1qR\nlifbzv/THY/aH5Ha8258zdDwYWjL1XXQUICW+gytInjaywDtQiOruazs4hhSS9OPcr7grC1HmOws\nxOe1are3TlNaw0Kdc3y+R7/MOes1t/LQX1w2NIVKqNLOeaeTkqBk4VtMk46phCySCX9hiRZDkJNP\n0wcvIhucahohSDrSKB588y89vVIJBbHhxISadW4atPZ/i85CetMLP6FxgfKs/DBaqWRobaNik4CS\nubHkWRObdATdvvyGH/kGfvpnruVzK1ulnvv119JY0VaQNntPdy/D9OpYdk7SgTpWAloWYft/u3+p\nNsg1lpLgpLTonMKVXg6+DIrUmW6CM8iWdG6KPfiJy2MVI2U8CkU6nY/SKjolTkH5/D86t4THY+tW\n+Umplrgk4GKcTak98BgjE0cbISi8c1jcR/EYtiocA7Seuwpt1AI0CgdethFgMc07B7WJqLRcilVj\n6FdZ3F4pz5VvrEe+y9pQ1oa5Mme81+eFt7z6qf7Iz3i7Y8dOzvvz60/6/Pkf2cF33fHK0BzXTgAT\nnKgU8ZVQnZB0YTFWIDdbE1ORlqugtYuj4lIezOJ9KOXR+6oxTBYLdLOKOjiIrqnidTSSlYzmZRim\n7D+HpBGt9oKlKOohZyAcB49DBBo04bpfBDrGWa3GRX1HYFifIaQjkjbYKhCfJDxWrv3/FFuuYZU4\nhhgRuWEKbLreNLZllDVBUUdWl/Tx2DMPQ7JcNnEwgk/IyiTOaNvfvvkp+8xPd9v219dx+e8/NvNx\n9MGTX2JnPeeRKLMm/RFeUMcmisx2CGuTSWVpz4OkB3LtyCoN7c0GS7GsCFZbjQ1KSNYpSpumLoFr\nYH0aUQcpe7n2tLaxjyJNc6OzStJipRzbXndLmyLL9kMpUMLilSxGohxHq9AEMdVoeyQWibvAMMf6\nFGxVOAYF0cvLiYcEU7Eq0mXL0HEJRCDJJa9Jy1bQXhii9BNHmIff6Qq1fdsBtv/vn3yKPvXT29RY\nvaLJ2Tf/0sm3eejwJNDeIEXWBMdO5KXEiA/iyivgXvvbDq3AseKQVCxke2HHpq8FfCejagl1tdUU\nxs+/qK2htFkYdtumoYJfZFmT6Ie0zkeih9jMpR0PfuLyyKNABX5DSCdSjES4DCnvodV2xGs6ulb3\nUYhMQ30S8lxavVihrQrHACm660GcPAwSyU1DkTV08zp2ojVJpCAotTGWIqujJLwOmENumog/dDKv\n/CuaDkXAGyS/nRl02LLpOC+/++Vc/c4npg/gmWruFDUEl7ORL41RaH8+iqyhChLvRifzIsK5LLIm\nnK8mYkxFVvvW/EBDlnMv0aJfCFQUU4nai7ZVcdbpCmtcTEkzbcmUpZtVaGXpmoqxbECmLYVuokMR\ndmPTJLqQ2sZoQQRhtXZhWy8EK12bzgVcQZwEfnydi8So4HCSm1z0HwWfEEVoZZJOTJc4ilOsSMCq\ncgxu6O90VDlAv8pC66wlz2uvJJ3c4LHOHU5qilFAUO0N6QcIa45hJp1ylI3hxKDLplc/yLkfP3l+\n/Gy3kfuLJY/94P0vZtsnr1vxPm56+07ueeB0CuOdAhD1F+T8S0VCFLq8srMP52WwbSfIywsAKZGg\nxxTc0IotUaawbP2NGypglcjW+2PpN9mwlL3zTmMkK4OUvf8ckgKkkUPKpEyrEOBHJThHnBPh90H7\nmA58CeDc19/oP1uQgVei80iIIHTop5Bqi2u3iWlF+vwKbdU4BsnJ2nKOjiItcRoQbURkrYreXS4a\nmS4Ebb4pcyRkkrZgFX4fOs4c8Nz7djhpaQ2XXv0A2z73pqf4m3h6mF3kF77lllfzwnX3sf38/Vzz\nGztWvJ/sSM5oXgbnzpCoTnouTeLk4ziBkHoOqiziSRGcDPuXVVxaqtOSpSgnSXkR5aXqF+qcssni\n9PN+k8dFSivH8bIXRYfTFALalNgYS6eoE+6EGyI/ickKHyOXAEYKxnL/R69GdB51Js1VgbsRUggX\nogjn1BIHsMRJrNBWjWNIwzrJNdP2WbmhhbwE7cmQ+rDkmE3Yrm2cUdEJQDu3QP4GrxiUKhFXjaFs\nDL1dnafmC3ia2eJW7svW7eMFI/dybL5H01l56Hrvj76bvdPjQzdLVOdSrWYnpGS2tnHKBuRfnEcd\nqNICXKa8BUk50pJhvHbCDemHGw8CvtBWCSAAkE1G11Sekdm04GeqWSqprlcW8+8t+pCi7iRUfy0a\nkXUS3dhkNqZpvDMIlQeZZSmt22nEIKmFWCxvaoc9xaG2q8YxtAhu69nSejO09FdBbiWqSGvW0oor\nOeAwXXZ4aI0AkouRa1mZRrKSO3Y8s/opngi79F1L8ZeeqSjwkZeul75m+yeu55I/Wh63ObFr7VCV\nQCcOQBYEcQYtRpCwIwVPSIDH1NpKBaThf8pjUAHsa6ymdn7RKJuM0mYxMq2dweJ/Z6FFW4DvlKYt\n9Gj5naYS6dwJ+V8k3FJZeWH72sanOio0Q0XGpU5kBRLW7/k/8bWhyVOi5aBW7qv9Zzi1zZ88a2W3\n2oaZFFWOJ1K1vfSpyhMEBJeWIpui0wI4CuFJ6uKZtm2pzLVOIjfNo05kfjbbwsX9JY+ZIDRY1WZJ\nc9q5H7ueS67cQ/7cY8vub80uTScAxR5sHO6ZAGJ6sPiaSK/3tOqULiqyMKQVitYp+Ndq7W+8wjTo\npLYnjXhexSlEsrTXY8pPSG92/x7D/RDtOIRE/s0leqbJzS7HCC1/QZu2EpFy/WUKtrOKe//kOR6D\nELBSMVypWKGtuiu/k1dAqDzQYgpSpZDwrgjDbjt5y1sXE1BSbvwsqARDO7tQBs80VpNnDSNFFXJc\nP7cw05b9c2ueio/8tDOzfzi9uuY3djDbdOi7bElH4GX/9no2XnSYw/OjbB6fXnZ/N719Jx3ThhnW\n+XSiqk0cEusfH8aIgKGFwCQ3lbUqAos2AJryeFpOlO7LujZQa/p1Ru00/SandppM+epE7Qw2/G9p\nnY5UIPJ8WLJN3mO4ySr5boJDAa/HoBIpOGj1SGJ6IOXRiEW0u4qVC+PQRYMprBdxUQ6dt4Kzp2Kr\nxjG0nHZ/SGf8wO1DRKfa6jDBuuUlGG0jCCT7IGwraYI0XKVDUmUYrnOKLAwyLUMVQ3gStdUceGgt\n/2FLbfTh4Zv/67/2bsbMgFw1UQEJ4Mqv/DBren0P5ta+2nMyMPeRExMoCPoa0MlrTx5K9DqlBC24\ngxxFlkSDwnvIFs0/TeeUSLQpzMR4w4YWb+8MGgpdR96CxsW/C10Pyb6JY0nl5MXSMqW8v+ADWvub\nN0u+szQ9ECEX/0Sq7uSCpHxLdnKhNOmsoim1F5ixymMLCRdipbZqHAO0X4pWjv1/fTHQrhIRWEq+\neEk3jHIR8BEnsKSKkXhrmYOYNlO1KYTv0xjNS9bcnT9Fn/zpZTe9fThVuPqdU1TO0NDemBd8eAcj\nnZKyNtgQZpe1Yevm5dOJ2679KL28GiozSxogTEjwjl6u8SqMkhOTqpSklKmYimBTKY6VVsGcI+bl\npTXM10X8mat9CUYrh0VR2qydtG0svU61ZCYKDJOt2sekIartjUj7KhZXEJRyQ4Bjuh8pd8qkqqHy\nZ+ij8G3ayeSqFdqqcQwSdtVWMzvXjbx3CPJZYaKwjBVvwgASGT6ahl5DtGjXNtu0g0hMJMEslHkY\nf+fDTSlZauWeNXMtt336zbzsru9d0bbnfeGNSx6zGYyZgQ+1pUFNQb/MQzXIxOnStdUnZZfed+/m\nEAXq6EyawFeQCDDltnTy2jsAKWkngKKPBm0kybVEozZaTHN7rR1kvr07035iWdf4fgeNixyGTDVk\nqokRQ9NoFgb5ECgOLaPS/91iB1o7xtfMc/raGTZNzrJpnU+vrNWUg8wLw1pFUxviSL3MesKT8pWJ\nyGdwYGsVyVA4sI0acg5OnMrTVQy2BWwUeVFHgkqMAiJ45LcXCuzwPoYVelOUWraN9FKIoJS0+fr/\nTz0fe7rbaWceY6bscNEX38BV//ejMz7zYmnJoR6FBk2DYqwz8KxR1UZpJvQ7KDzqf8Zpy0cNu1/5\nXvKgvSDnXUzAR6lMpFwUWSygxRugPccShYgYrH9dK7OWhtmiFmWdYqH2OIPFLy61M7FiIccgEYkw\ndmVIjd+GJJJVMdXYvGaGc8aPcMaa45y55jhjIwMf+WZNxBqEJp1+fpv0ScTn0sqdkmpL8qW6thJz\nKrZqHEOan+lFoZR430wvFdlIe/HFK2999e1DYVymbZtaqPZCFWuVhtvHji6MPLEfcJXa1b81RTer\naaxm08Qs+ruPPOr2zf1jSx6zua9K5KphbWeewSTYotXmhLYJqqwNjVNs+9TyDMn9R8eHKgjCaZF9\npDoLaddtKgnvt0ujApIb2L9PyoiUfcpNlimv5WFpW7kHjVcWEwfh37dd0KowTk7KkSlXAvx1t3F8\nltMnZhjP+/SbnOmyi8ZxxsQJtm44zsbJWbasm6bTrSLRCdqqg6QL3uPJaiZoZzt5m9ThBeHYpy3B\nSUxCvzRKkBu3aswQ8iyphVa+2UZ49Hv/6hKKrI79EYJbpGUrh1+9sqDRoJSjk9V+fmKnz4FbTnuU\no3zmWP49h+jXfpzf7KBAKccLb3k11970g0u2veq3p7hnGeEV1cDAZrG863JwxsX0b3q2B7Q6jfOD\ngi3nHF72eO759g8zVpT0y5y5BT+zcqw7YKLXZ7RTMtLxLMmyzIaa6aBNR1shVh0ITO0NmwKRcRRi\n5eXjqT2e1W9Cw1SIMwe112OYKTsUuomitc551ac8F4EhiQraFEVmVhhjOWvNMc4bP8SavM9ND2/l\nzrvPYN/8OGeNHOPiyQOcueY4544fZmJkwac8NqlEKNCZOIfQZp2ULAGaUrfApXHozEaM4QmfRPVU\nWVoXlhRATjD4k260jbTX2kpVwcbQT1aENLyrnXDvg2NQLWXWlytDTqg8HdZoy0hWnnRo6zPNpGNV\n6v+ZaaitZrQoefndL+czF34mblt/x4nldxIWo77L2//DhVhbzejIYEhgRSjo17xjx7IS9FVjWDvq\nVZROH52m0A09U8XKw8BmHB2MMD3oMt3vJF2XbYUhJRjJ9eAjjVYHUh7P8lDtMn7h6Joai7/eDGDy\ngDsE5laG51i0lTSVXKfCX/DPSbWiaTT3Hd+AdYo1nQGdTg0TA47OjfClhXPCa1XEVSAcN0QQMQKX\neGEWG5unXAQpfbWijTRAsIZTiwFWlWNIf2faUtPOMEwRX+uS1lvlhrAEUWfKjGVQG9+Jp22cMyEX\nj072t/GVdzP7d9uTctmzC2ewVtMtKgZVFjGWfr300hjrDuLfL73zFez/1Fnc/Es7URYqZ+iqKj6v\nbOvsLe1FLwIsRitmzln+ePY8sJFXPedGjpYjcZ6DVo6eKRnPPLlqa+84M3WXe6c3cnh2lEGVxTy/\nDeHd0P86dG2K2pJULeQ5tKOT1xSmZr4u4rXVOI12vrkq0w2FqWIvThutSHrSzkiBtnNSKTiwfxIs\nHB2pg9SAYm6uSzMw4EB3fNmyN1KGadfhxg+6C0oxJLqijYvgI9J6bSQ6cLFF+2mdSqTzJKSXIa76\nSSoh9FQIqLVgCxAiCb9tWbf8BplPkO43tcOfviDuc313jq999XxeuuWqJ/9Df4Pt/D/dEQlecfBK\nbWLfwa77Th/a/uCu9fHvic4COvgBm/vvfs4VlDZDWYaAsEhJVy0lvbaaDVce5OrfXAp27n7F+7j1\n2BY6uqFymoUm51jZY6bucqgcY7ruUlvNZDbPNese4nmb93DWumNhpkgocYbux+E830VA0CQ8h9Rm\nFrr0mzxGoQC5boKKk08jysZzXZz1Q2UkAkkjEYlistx3XBZFjenW6E7jOyUDhuCsb5cW/ECAd2fb\nxW8oDQiVB+mbiCxIaJ1GgjvE8ufT0TFICrCYUppiA3XoidBqGDSCoTQrrkpxrqHsU5yJ7DcAmUa7\nCDqOFQMenpnk/h96D5/bexPPdDPbZ2msiulUOsS1k9WM3zUcNaTzIYaiKt1+v5myQ9exXuaClNT4\n6PQo1UnIpbvv2MxoNojv1TU1mbLkquU0NGhy1TBmBmwdOcGZk8dRyrEw1yHTljW9PmvH5lnTG7Cm\nN6DIGka6Jd2iij8iQOycAqvirIom9OGIgxDBFut0dHByAzZNG5GkVYEhNSYnhCbi+DnXeAKSswri\nzR74G5JG0PIUZDqV9HX451TosPSRgxVF6PC/30idcrlyVaQSaSXCl5VcJCpJGhAprAGUlA666Hld\nO+JLLtJuXlPVrUxXZpolJ0pWM6McY/mARz57NjzzgwUu/NAOzrn2IQ7PjwxVdIx25OHmuPm/Ls/j\nuPBDOzj3BXtQUc7Z/xpVZauqbNsqgeTNwlicm+vC3i69A4rB+uVXsl0/+Mdc9MU3cM6GoxFfSgHB\nTDeRTCW5/3je59wNR9hj1tLJa7pZ0F1MQOeUUi2q4ZH0pIgMy8UmdSx5/8I0yaRrFSsUMrnaBM0F\n/3xbwoz4V4gadJho7cKMylhpsWpJCiB8BZNZT6MWvEzEYTMXNRoIv2Uf6hRDgFURMUCb24ucVx6m\nH9c2UcZRQQkaguqzvzjkRwgwIt4iWguynVa+x0IqEaIIlId9fe2ubdz6c4+P1PR0Sz2qMwbMVcVQ\nWuVHwPkVcr4aZn2m+o71WX0qa3BGViQvrd7gV1YVb4g21AbPEZib79C5rcd9r383+ZzDDBRX/vfl\nuRPqtjUcmFnDwdkxDs+PMqgz5uqCmapDv8k51h9huuwyXfaYrTr0m4xC12xbe5SDR8Z5YPcm9jy4\ngYceWs8DD25k/yNrObR3ksN7Jzj88CT7965lbr4zVNqWeRXCX6isoXGasjHRAYGMK2h7IdL2bqXb\nEruAkCkvJ97Qyt+wJrdggvhrcBjeATRDhQelQ0XCqdgfId+z0m3TFVKqFNDSPk0jBqBlNiaPtXqO\nmrr2jSoucBCkdyL9LZOnMu2BRwDn2hF11uFFPwntrCac1Kym0A0Tt+awMgLgEns6pR5Xv3OKs161\nl/kqjxeTUo5u7lfYTFv27l0/9BrXQjasXzfLQpVz4//lnajN2z6Ckayk6bTRX5aFPgb8alk6RcAP\naTqKuuvoX16xnN15/U5+bM+3MV8XFLphNCtDP0RDR9exRDqaDaitYaHJ6ZiaQtc8MjnBETuG64cD\nl/RbdAkcuLAuZplvgEL5noeF2guzaFwkN+VZE1WjC93EAUjpNeqdy/CQG2jTKWMs1SAzUzT9AAAg\nAElEQVRDm+AwAsfAOYUpAtVfpWl1O1VNrlulXbyWI47TeOFYX4ZPadgeiBzCIVZoq8IxWKsYDDLy\nvGmpoSJlpUBlXkvBGovWLfutrH03X60C4zGkEiI3LqGrXNN1Y+LMCZF20wTeBGpJD8Az1Y5fWTFi\ndZTXl0qENCx1TM2ul3xg6DUm6bQuQnQXy40actUwZzvM1wUqjGFPy4gAc7Nd9CNdVFh4mw7oBtSC\n4WR204Gtkf8gl7tRvnpgtGUsL+llFQt1Tm4a1nXmyFXGt2zeRX2a4Xjlo4kTZZe5soippVwHZZ1F\nlWfwnY6ZstE5SAqTWh1wBimpS1kUQtpQ69gYVQdQV57zKUYAHy24WqNkJsWQsFCrTdnUegiXkEnW\nnsyEb61u2iE00YkoKZ2ylCb8GLYqHAONpjrWpcqtZ3CVGlUrz8swDtuzuNxSz+UU44OktOlfnqpF\nO4iTrqENr9ImKp+ztoSn0bzktpvOgYufuo/80i1XfcOijNPPPMpsqP8b5eiHse2ihzCaD5a8pun6\n31f/5hQjr9wfwLfwpIWBzTHKkmnf5utCaCshtFIOd6wYmnOZz4JqFGbecOGHdnD3G5dyGga3TeLO\nmyMPmY0nEDWhCzaP+MFoPvD8A6exAYAezQaMZgMGnYzDgzEeYYIHj64LAKBfRKQKUNcGws04aLIW\nrHaKPFQj6kDgKmhTCU+ya68tcRKpw0gZiYvHLwo+5v+mraSE7dN+B0V4OJCcXE2SZwj5yQVnEyoR\nj2M8HazAMSilusA/A52w/V845/6bUmod8D+Bc4AHgNc6546F1/wy8CagAX7GOfe5R32TBrJpg9MG\nFdrHBcNyWmErhVOGfEFRVqFWmzmyXk0WVHQWd7Fl2g49riEIjBIbdLTyQBvArtc8dcNg4RubenRM\nw3S4cEc6pW9wqg0TvT4jeRm1DsWu+L0pmlA9OH5FTcfq+L0BEalqFgnbpNqKxrglA27LCah7DpdB\nNbm0dAhw90++m5fe+YpY7hzJSmqr2Tc37t86AIq1NmR6QGkzeqpiYLP4vHWKDR0/xHhvMUF5ogO1\ngjwAmXk7aFYHvKlj6kiDHjQZhW6CpHwTQe7FZe9Usk3UoMUpWBtmYpQGXTSRI+4aHQFG6YCU1CTu\nL2AP1rUydCqzwYsoSJy09Ey0QI/C4U7ZOawkYhgAL3LOzSqlcuCLSqnPAq8G/sE599tKqbcDbwd+\nSSl1CfA64FJgC/C/lVIXOOeWP/PhM6jG/+jad+uBz2tVDWZe4Yz/P5s2ND2HKyy2UJDTViRCjbxx\niixxFII0e5DGYhtDbnwouqE3y72fPh9+7pS+t6etXfTFN9DrVIx0KjaOzrKhO0vPVORhtd+Qz/LB\nG18A29rXVKPt32duOxTJTy5Z+iqnqTCBx6BQjT8fs0dG6E4MGO2UzHa9o7j6t6YYTED/9AbXCSW8\nbsP5//gT3Psdf7LkmO+5ewsv+aZbKW3GbYc3c3j/OGjojfcZ6/noRikXsYjaabRTERPItB8h0DMV\nzz/rAW4/fDpHH5n0pKKETk1IgXqZxzxy01A1hrmqoGoM4x2fTxW6jiMUIWnfbgyNBaVD6ttodJCt\n1yFCodS4IPPuZ0x6HoPtZxDEVfK88VoKrl3tvXqT76Y0uU89tPGqY4TqRuQ1CBAqVY2ktLpSe8yq\nhPMmM+Pz8OOAVwEfDo9/GPj+8PergI855wbOud3AfcDzHv1NIJtTmIHCLCh0pVANeMqc38T0Faav\n0LV3IMIZhxZJlp4JEDQ4lJYyPwdA1ICkN0JKlI+3EvFU2hNV9dg0MRvH882WHQ4urOFQf4wH59dy\n14nT2D2/gV3f/cGh13QPt+KvgttYWZkAa3xVIqeVRVMOZo+MoKczyoHvxUhLb7YAVzi/aluFm8+G\nBEtS2/3978U6zT3HN3LilvWM3VOgZg0Lx7vMzHeZGRQMmoz5oJtwbDDCvoVxDvTXcGQwypHBKLN1\nwYmqS2kzzp44xrqtxyHzN2/ThDJjOL6uqTyhSbXaH7lp/DwJ/HXTMYGIlFRgpDtS0oG8qGlqTRNa\nvk3WQKfxfQ+5xXQbdN74qKHwPRVCmmqnpYVmrXCMOguix5K+KMLwGcCFRkTdkpo8eWp5LcxHsxVh\nDEopA3wNOA/4I+fcDUqp05xz+8Im+wHpOtoK/Fvy8ofDY4v3eR1wHUA2sdZTaCsfFXhGncJph248\nSKMaoAGlFKaEbN5QDzSDdYpioqaxfrSYKPLUoe9BgDUPVpqILQCM5CU3PHgOnP3Pp/KdfUPsiUg9\nLv7jKdZ/837mj/dgoJlx4zjl2uUhtzy8dhLO+uLQ62xSuawaQzerGe/0mRbAP3OMZgO6usKisCbU\n0RuFKzw3IlXachL9VgqH9mClhXKQse3vfordL3v/kmP/lz3b2bx2GrbPURvHtrUnmCsLMm3pZDWj\nuU8xjg5GGDQZZXg/k0QAfvxcxnjeZ9vkUWZme/iReK4Va20MZZNFcZZ0wSmtp9gPmsyXa50iy1rV\n6YgNBC5O02iKTh3Vqeva+O8EAn05rOyhQmGyhqYyXjvCgjIeM7CV9kNrA09Cqzbt0MYFBqXy/RMu\nGTITeAzy/KnYihxDSAOuUkpNAn+llLps0fNOnaJLcs69F3gvQHfLmc7mAT8x4bttaCME61OKuucv\nQqfAFWDHa7LcDiHWAGtHfANO4xT9KqPIGtaP9AODrqJravbMrKVf54z80xh866kc+dPXnvPSO9DK\nd/mJ8Eih/Sqd6YbxbMD6YnboNRe/Z4ryHH8Bn/eFN/KKi3xIv7GY4YGRkG+EcLdyvtbvDNiORXUb\n6BuKTsVIp2Qm4AIAugRdKlztIw/b8RTlTeuX14W864UfYeqRayl0w0Kds7YzT66beNMu1N57LVR5\nxI76dcZCbTg0Pcb6NXM44MR8j7HugNGi5OxNR5mvchbKnH6Ze3Tf+qpDL6uYq4q2gkE7vm6+LujX\nGU2jqUodowSZXm0bjQ0wQl1l2Fr5RqdQNhR1JeeUn+g10DBaQxbwhZkMNGSj3qFlnZq6zNBGZN8s\nRoUJWwlz0zk/zMb0LIMg+qLDUN1TtVOqSjjnjiulvgC8DDiglNrsnNunlNoMHAybPQKcmbzsjPDY\nyswCIWpwWUBhs3CkAtYG54D2evzz/SLSUbV2XLFuL+uLWXLV8Nm9l9DNai4YP0hH16zN5unqis3d\nE/z1nVdy/6+u/jTi8djiqse2z/4U33rJPZQBwBGqr5TeamvQynLj8TNh4+3xdeU6iw3YwAVbDgCt\nNoFgjc741xv8b+X8OcpySzNZMtKpGMkrXB7SkNyXKp0O+zCO/JihMh0GI0srImJ3HDs9jIxzzFYd\n39wUFJV0uJTHO326pqK0me+UzPzNKs10/byKSl55VrG+N89x5dvC9Vq/ys9VPlqQLscq3PCDJiNP\ngNlup6Ksspi2Vi7Qyp2nN7u+gcxX2pxVqF4dQEMAz2Aks9CDolPFlvBK+edGRwbxpq87dRA2HpaQ\nE3Hj2JEZjqWbt7qUEq3tXunFw8qqEhuBKjiFHvDdwO8AnwJ+HPjt8PuT4SWfAv5MKfX7ePDxfOAr\nj/oezoOOSdpKNg910EpxKhBstACVfkM1nYN2DOYzVLeht6ZPr/CzBnPV0Dgv3XbgyAQPHVrLmrEF\nennNppEZXrjufszD3VP4qp5etjj1+J4rbkPjmGv86odpQTmNI9MNm4sT/NPD5w29TlWKPJCELp3Y\nR0fX5KphUz7dphiaWAWIpmFkZMBIp2SsKJkoFjjz7MNs+8xPweUDTGExoruhHObgKJ17co7ZCbb/\n5VvY9QN/zGLbs2sTr3ru13lgdj2lNRAk6/tNjkXRyyoy5SXZhAFrnaKbVTROk+uG8e7ATx2zmsGg\nSx6qHWtHFsh1Q7/OI7ia0rihdRCSpox0Sgal7+q00vQnDVLgL1bjPFW5Djdy0dLydTKhSkh6xlhs\nZsnyhunpHmNr+rE5rHImtgeAxzG6RRX7OuowtKYO5WelbYzmUjWsldhKIobNwIcDzqCBjzvn/kYp\n9WXg40qpNwF7gNcCOOduV0p9HLgDqIG3PlpFAgAHt//nnVzzGzuoRj0z7sZf2cnV75xiMAmDDRaz\n4MHJeqQtzWQLiqYA1/Mda4N+gTGWz95zKfVMTnE4wxogd6i+4kS3x3ED+9jEjWNns3sZ0ZFnqp3d\nPcK8LZh0msoZDDY2IcnP2cVhpvcOdzWN7Ffc8jYfVW3tHGNgc6DLGr3Qlh9D+F2GgSzWAMaXEftl\nzplrjrO2mGd9Z46L1+6no2sWmoID/TUMwk24x1jm9o1i1lR80zl7uOJ3p5Zobu5+5Xu55Es/yqbx\n2UjZbgL3oHGtQIu0VKd5dV0ZtAx2qbQnBNUKVVgP0Al1eC5DL2jMQOE0NGPWf87M+vC+W1MPwth7\nSQ8IXBpjyYt2oppzXpcydTCdMJx5tt8hM02iN2pCmdPf1AtHeuRHM+ayLs44TNmSmWzmUMHRNLWP\nwFx4rMr9toE4SdN16IE61ebKx3YMzrlbgKuXefwI8F0nec07gXeu9CBs7rn4qgflhOfPg69z5889\nxqvPuY2/uOcqBvtHyE9b8Oy8wjdIVQdHOG3LcUaLEq0cu/ZtoLinx73XtxfV1e+coung6aba57c3\n/9JSgOuZbBJF5aphhBKLoqMrBjZnwizwN5euZfvdUBwbZiE2yYzKfeUktdVsKma84I0sQuH+qzBk\nKqwBmeW89V6laTQrMVIh0n70W64b7jmwkcFc4Qk/0xlmQdEc7nDDzHmMn2Qpyb84zsPPzWmmc+hY\nHzTUumX2KVCDcGDG+RumVLjM0RCiTQdZX5PNKqpxi+348jca8mOG7mHFLb+wk8t/f4qqb7C5w3Y0\ntnDUjUIVTauqJF2QyjHaG0S9ysw08WbvFS34aUIkM9HzmFdlNVrpqFbeGVmgX2eUY4Zqk2HQz6mO\ndbCTFh3e1xhLUxuagUHNZLjCokZrsqKmMF5JyjYGrS3jIwMWBjlNbZZ+mY9iq4P5mDlGX3SQgwcn\n6OzuoCxc844dNJth48gCDy6sZXCkx4btx/jurXdx2/QWHxbXBfcdHuHwsTUc1ZbJ8XlwUI85Lnr/\nDnr7FTf+6s7I6X+22iV/NMVbX/9pctWwRveZt53Y27DOzNF3OT9w50EeqtbRO6CG8Il6tF1qctWw\np7+O8azP0XpsCGModE1XVZH8YzoN3ayiZ9o+CI0jVw0D5y+7Xqfy9N2Qn9cjyusVDAz9DcsvcTf/\n150878bXsOa0AZnylQIJ7dcUAxrnZ4JUjYlEpZmyE4VkpZW6X2X0+zlrx/p+5Q44xJ5mE9lcxtW/\nOUW52VFuaCC3qKwt/enMM22zQNUvsjoMLBrWnZD5qCN5SWVNPCajrMdHcEx2vM6DYD/SqFVbw0zV\nwY4pyrWGwyfGKGcK9GxGbT1w2+0rmsJRoykOdRhsNnQ3zjLYP46Z11TjDYO8YXCkR+fgqd3qq8Ix\nqIHiwIPrMLPeK5cTCl0rmp7j4UNreejAWnRfc+ToGB/b9c3ogY6kqKIBDvsTcKwYwY41KOOozx1g\nr+hzyR9Nccdbn92O4Y637uTKr/xwnMbUTmjSsb1XZxZ3oMv9b9/pqWrBVJti82f/+gL0vOYrvfMB\n2PUTIRVzioUmb5mPDtSDPb5y6ALcSIMKxJ3uaMn2DUcYz/ts6Mxy9uQxHtITDKqcbreiLH3fQmd8\nQDNSc/F7p5YMzwWY/5eNrHnxw9xzzxbMvEZvWWDdxBz3ff1MsnnFYGPD6Glz9O8fp3dQMXtexfhp\ns8w+MMGa+zUz2y2bL/ZYuQ/jc06cGMHs67DmgKIegZltjmayRuUWlVk63SoyaUXgJdOWiV6fQjd0\nsppB7YHIbpiqVRsdKxqZtrHBC2Cu6gQnEtrJVUVt/QQs6dWoGsNCldPJajZMzDLT6TDX6aIOdDCl\nj3yL44qb/6s/Dxe9fwcLo50hfObCD+5gcq9fIM2vr/yaWRWOQTcwcUeGajzr8eZf2sk179iB04pq\n0AUNxQkFj3S59ec99oCDG391J1f/5hTKOZpCoRuwJsMZWGi6TI/njM8+9vs/G2z+rslY+tXW8way\nQCBzme+QvPsnl2IuvYNtnm7mNLoC22O4Wy9UNSza9ytkPopwuVcm0ocKiuMKU3bZ1RmnGnOoc+bY\nsm6aowfHKfbnlOsbirV97OEOZp/BjTr6Z5TLfpbbfmYnl9/wI+x+1XsBuPwPpjh4qWHXj7S09u3/\n6y3sen37eS74px9n5GHNTb+8k6t/a4r6Qs1kzzMZc9MwM9dF1z59HWysoWPRnYYs99O1RjolVW3o\nFq2D6GY1E0Wf0prAkTDtJCzdRBUxKXOOhO7Q2vrIIVPW93a4oEodSsh9m2FDc1+/zjix0KWuDZUA\nnWtrbNeQTWvy2eREOEW9kHHVb0/FhsCR4BRO1VaFY7jk9EN8ZVFn43IioWJpavCYH/qV/65De0bY\neR/dwbnPfYgyAFsysakIbL5eVtHNqiXR1dW/ORW/3+2fuJ6XfeeN7JpZz5VrH2FgMy563xR3vXkn\n5//MDWRfHqfvcrSyuMyhT+tz6db9aByPzEwwM99hYbpDdjjHlDCY6TC+uY8yjmxOUa6D8dE+h7Mu\n+Sw4o+iMn7x0mepP3vqzOzn3828c3mCR/sDoyIDjFwbAxHkG55axE5GpubvcSO9EcJjzGU5DNeEo\nJxvqsYoiq5kcWYg3ea4bRjJxXL5rt9BNmFRlyALHwvMsfIQhJeJ+kzGWD7yuqdXRKYBv6e43GfNV\nzon5HgvzBe5EgZnVZAOfQuQztL0RIUi75jd2oNdBfjDHGbj8f/jFMzv1/ilglTiG/7An19TWBXYf\nXO/R+4GJbc5OZhSENt7di1Ku/nfOxL/H79N8cc81mAH8f+pssHBXcBr3/uHzWW/voXSGsaxENdC5\nZYQH/s92+hsCSKlBnT5g/RWHmAg9B49Mj5N1K/qXWFSoIKw78ziD03MWjvfoKrjk3VPcsWOp89//\nwHqu+swUN/2yf250bOkE7tQ6ec2VFzwI+E7RxvoZlTfu24q+YYJdP7sTXnLy11/9m1M8tN3iTh/w\nnHMepGsq5muvcTmWe7xjLBsMqT9JubS0WSCT1XRNzdpigYXGE7Fs6DeZD9WZfdPjTB8eJTuSM7Jf\n0e2CKf35cQayBZZMEwfvSIsZMKXi5l/896fO/+EYngW2XGPSSuwFZ7aUGLkBlzXlpc9k1bO5129Y\nLA13ybunOLKvw7HSX+RN13mma8djEEePjbaS6POGZkShOsuDkLtf9V4u39UqP3Xz4QlZetHArLI2\ncXq5WYCZhQ43HD/Hfzff/KhfAzAcmZ7359fT2z7N2WuPMRZa1GUyNvhoYq4uItEK6tAV6iOLgfUT\nteumlZE7NDfK0UPjdPcUjM2F7zQUEmwW2gRc+9iS4/uVnX6K2CmWJU9mq0ba7T9s9VnlVnh5WL8a\njuiBL1dmSSlzaDuPWZzza1/mnp94N9m8ondAM/pARn40Qx3sMHJvhzW3dejuM9SlL2Fu/6u3POYh\n9KvhNU41imvesSP+b7SLOb9yjoV9Y4/bYd73w+/h1uf/Gfd/fhv3HNnIbNWJz9Wh2rChM8d4NmBN\nNmBtscBkvkDH1GE+RospzNcFX991FtU/bmD3y97v0wTtHafNPf7mD5qgHXDy49KVezwT75e1VREx\n3L5/I5f/jyls5sO8fCZ0iTpiGKoHUI0RAMbQku3ADHxbsGrwNWwLWGhGHMUJ5fkL1ueLz5YhMk+U\n/cvNF8HZ/8w179jBsedVyzY3bf/Lt6AcPDC9nhtHzuHvd19Efkxjc/jPjzzfd21+aRu9AwqT48lS\nb/Ov1bUin/XTs1+65SoO/MwLULVfna95xw76MzlmAK6wXPaHU9z2M8MRSNoVWy+q0+sBrSYlcOTw\nmsg+/PqvPTHXwZ0JV+bcj1/POZftZX13LrJAK+dv/lw3zNRdKmvIjKW2hnuPbGTuwXEm7tXs+pWd\nnk9M6DpVQdkqXP9CDXmsaODRcLlTtVXhGJyBhdMC0SR32ML4L6f2iHlTOPIZTT1m0QOF7ThsBvmM\nb56oR234AlWcdVCPWZzWvltz4GcpPtvswg/twPRDg9OYF0oZv19RjfmSnDhgm7Gk9Xz7J65nfJeG\nV8L8FuiuWQoEXviBHfQumaa/Zw0P7dnAn+ze6KnpcwozgG8ev4/rNj7Cf7rxZ2NJLbV8moiee95E\nS+P++q+/m+1/4Z2O6mvKqx69vLREqGfBa0JEm/PRx5Nl97/2PZz/kR0cu/goF6w/xPRgLPIrusYP\nsSmbjOmqy8MnJnA3TLLrZ5ZJz4J0gjXBOUTBIv/bLDw11/GqcAyXbTzE3BFNPeKwOeTTCptD1vdf\nSFMoimkwfY3TnuiG9d2XxQkA7cVblL8gcNCMePq061hUo1DVk3dRrFY74/mPcHjWq6ys6w6YL3NO\nnDaCO1GAhf5Wy+iGeSZCN2pqb/vuv+Wtkw8B0Jy3gO1nXP3OqaGKUNOF08bm+efXfTQ+dtVvT/lO\n2FH49OEr+Zy+lLMu3bdkHN0179gBjzE3OD+hueVtO7nofVOYLY/Oqi8Hw6rW+ezwCto5aOLxPVna\nniJbd+m7ptjy4ofigKPGaRbqnEdOTDC4Z5x7f+zd8E3L70McQNOFOnPk015mwC+E7gmNCh7NVoVj\nuO3IRk47u0b1arKioQrevz/dQXUaTG7pL4isE+iury/3+xkLfYMZq0E5bK2pau1z2ck+5SCnNzJg\nrDvg0G2bvoGf8Km3C/50B9W6gMBljpms58U9GgW9Bgaa7iM5c6YXxUZSM6FB6Zp37EB9xxx2rsPs\nmX5DKWOOnn+cA8eHeyvkprvwgzv41rX38rtfeinfe+WtHH7DDBe/ZwqbO8rTa/S39EHB+R/ZQeeo\noph2S0J8U3pnns/B7MHRoecWd48u/gi6Gn4kn/E3W7V0WPcTbrf/9E4ufdcU6rknmBxZwDrFwdkx\n+MoE9y4XJSSmrHcO+Qwoq9oOVJ7YVOGxbFWAj6qG4rBBHSmo5nKUgmq+oDiYoQ8VNIc7ZEdyssM5\nxb4cDnYoj3XRhwqy4xn2aIHb3yXf02Hk3oKxuwvs7ePk9/Yo75jg8M2buO/1zy58QW+fRc8Z3zdQ\nKd8CXIZwKwBZtnDoomGwaLUF+LtDXnLj67/+bqrjXbKjGZ3j/ka98Vd3cvkfTHH6mhnMLcvfabpU\n/N4XXo45lvP5v34Ol63Zy7kv2u2xo0Zh53LMQ12yOY8DLZymuOwPh+dLdA8FMZKB7/JMx9kt7h7V\nSRckQLVmOEJsOjBYZ7n9Pz81LNjbf3ont137UfbdtYkH9q1n4Y7JJRjJcmYGPoXWdcDZdKtP8lTa\nqogYlKOddzhvKKvhdmjXsTTas+nMrMF1fDurzT3/3uU+f66MxhZ4NphyWAPlppruw0sv/Geynfux\n6/nFl32a5jIZOadZl83SOEXlMk7Pj2NwlGEQ7Y5/+9Gh12/75HWsuS+Dt8G2v76OzqGMu948fFGv\n/a597D64nnsC92HbX19H57Ch2t7HPNzlnuuX3gTf/MilZJdNc9e1H13yHHhSzvkf2YHd0kcd6HBf\nWCFtDqpWzJ1x8vw6u30Mvq39f+7MhnP/5/WePLWpZvLao4xmDef9+fWsuV8/JjHuZHTsU7X7X/ue\nmL5c8kdTuBx6B3x0tNy0b5v5CGGwzhO/dA04lnSaPtm2KhyD076r0o3WXvIKPE7QddieQ3W8rBW5\nxRa6bfeVkVyFr4O7XkM9pmhGjG+j7VhUp6Fz9NnlGH7oO7/EK8bu9sIh+LCwq6Afvrau8vLdBqiA\nzp09eFH7+u977o384au+CsD3PPeW/5+8N4+2LKvKfH+r2Xuf5vbRZERkRCaRfZ9kPlBAeWXJU+yq\n4JWUzSgftlAZ11LskadlDREtEATpIukEQUQLcVhaOvQNRUvfKxCThEz67JPsor/t6fbeq3l/zLX3\nuUHcgAxNJBLXGHfEvXHPPe1ec835ze/7Jn9++w1nPMZ1S0c4dtse+Ffys6o11YII2dZm8zNuD/Dh\nG/+QN68d4Bl3vIBTn9p1RpcoG0TKJQjDDOsV175xGTuCco+oJKNRXHN4mc8sn7lJtpKgrnvDMmYx\n4mcCDlBjw+7nfY57X/sMsqHaNk/eyvK84TXLVPsDl73vFvI1TbEy5THc/CuHztrVuPlXDhGNolwA\nVGOPD5MdUpK5iyL1gkfVlht/fZk7f+kwN7xmGV1LRuO7oK1k0MFKh0LXtID6P+c6LwIDiBlsqDKU\nB7+nwuSeOFtjADfM6ByxuH4kGyh8rojpDTSVYtxXFAuNWzDEWZHDWusZbna+ODnnq3A9Z+7TlBE8\nilFqna2g8CgmMcMQqKOlo2rWQu8Mkdm3LXyi/X5XvilS5S9Y923sbLUVN//KIbg20N074KL5NVYf\nmz/rc3vDH30HP/fv/ogPLV3G1W+Rjf/Jn5LHj0phh0JJbph+oYBiRZElg8nx3rPn1Ff89iHsUBE7\noq1RqwY7SrjHv4cbX/UsTBn52C+J90dUqm2NVksi/f/kTx1G15J1VvOxveZufvkholW4GU4DYW/8\n9WXR+GRAb5r2R5va6EEYpr6rsCOIRl5H42vTuqN7oJRrWjt5zSGToPCVuH5V3A55+mdenf0H4r6f\n/gmyTTl1Lrz6GHv6G1TeMnYZ9zx8QSvHbt64hsprhzC4OML+Mb7WxMpgeg6bOYwJfPqZ26etX83r\n+tfKKSSbQDbv1W9dbt+/T//YYa57wzLBQOfUmUj3ix7+Ot5+4H8BYjevPzl72on89I99F6fuW2pn\ncVz2e7dw2U0P8/w9d3DbxkH++mPX8MDz33bG87rp15aJSi7073vwG7hrZTeTv92JHYEKU/Dxsvfd\nIvTfgWpFQiGXtjVa/v/TP3bmZrni3Yek3eflwGhEebqWDlcwU2PbaBMXxstm9h957UQAACAASURB\nVD2hh28dv9AAgdFGoWw3rux5TI5iUyPdqKME0CaImiiUc6aOY83fq6BQjulQpS3ydeWVlNXp/5vR\ngMojuFAmhiwqyPNqbteU4qEQ/4lmGljzgmIWefAlP3N7jPEs/ZDT13mRMSgPdqAl2jp4+KGdPFIs\nok3Ej6zo9a8cEU4WYo5RisV897ji478gtdt4yUJQZCct9Q4IZS725P8CV8hlA9Qzqu0E1AfL1tHo\n0vffQri0Rncc+W3dM/7+g/9wHaTAYG1gdGnJwT//ER741ndw1duX+e7n/y2/8+DXt7dvpk5lKg1j\nSWWA78iGialujgcDvhvak/m3l3bz2/mzePSOvUQduez3boGg8AsOvIwerOfidBMg/9b73RnPGaB7\nVLFxYwV12qCK6YZuStRmMzsFaWORNlW7FFz+nz7CPW/4WilJU+mqgtxnozFpMqmo4vR3WfJ0bO5P\nxZRFiGO2jJaLsBVGCylIBNW+TsmYmu/VdI8rwdTkeW/Z/KmF37yWlrejkr2bPbe9cN4EhmwIw/0e\nDGSnxP213lmjSo0uRQ1IN6C7DhTUE4NyGde+aRk3k9x0uo56UaE6Min7HzOa68m+LnvfLYQrJAjo\nXCzvYt0MPhEbcrVLjEk6nZo7fv5dp/39Tb+6zP1buQpek3Vr6mMSQPo3n+Sh8VJ7GkI6sVRkhx1Q\naIfyCteP1AthepI212mtGe8J3PCaZUZ7Iz/z7X/Cu/0zOP7ZXVM6b7vhkI2gp6feF+P83vnSw1z2\nNz9IsKkLk/YPBoiyedvNZs5yP0aAmbvf/vSU59OOlY+KdigNzUtqHJ+bCWnNbSLTn4OwN0/rqYbp\ne0IeiTY9t3oLANJY+0exiWvdZqISzXxqzasAoXmfNYTGcDaCiopovuCxH8c6L9qVPhcUOc46mTWQ\nUia7kmGGMndAbxrMukEdLVCPdshOZMTkNqwCZCcy1NEOutSwmUmU7W1/snw1r7C7Er6CU4SxTRtE\nRqNRa0Jp8AOLH2TU9ZmKnIarAILMTzakNXz/C97K5b9ziP9w8KP87W3XiK1as5L7kSbQt6VsoJhO\nViUbOuYJQCwCfiaweWXNzEOKW9/2PC6dP8Xuq08Qioif9e3gl5gFmHPi6dnd8v+V4dIPfoHMOq17\n//W70jSmON3UNghQbbeO1Ysy/KVIDk09h+o5TL9G9xy644Qv03VoG8SwRUf5N5m3KBvE99EEAcCb\nkkFHOaHTpia1aE87qJoNHhVUGlVq1MSIl2NgGgCdOg2QPy04NHfV8ZAHYi4zXpugJ0EhbosRfal1\nXgQGTEqPJka8+fqBkEd8N+B7Ad8JxCISOpGQy5fvRFw3Us8H6sWAmwn4vieki8jM1sTBeZEQ/bOu\nOLKogUWNDXpgMAODGhn5v0rLiZQuqmp0Zrcmbkk5y10eXXh6D8n7uPepR/nYxkXp4lXc8BvCK5i7\n1/Dp+y7k89Uu/sd919E9puXKajanDTJ+rUjuMFbS2/VrHSrAnX90DT956V+x+5JTCTuKbcov053j\n9BTWcn8291z/m8tf+PQBGVTbbkhoh9+cVi6YKBZtmRiyNCd44/LcOD57p6fzJZuvL9hnMSiu+MHb\n5TAyaWN+YTBoRsW1w2BoA10jjop6ikvgFcrJoai23o9JQa95X0AyB6flb5rPd2sMakqdc1jnR2Bo\noiCktlTiJmRi0hkLiYSxCMQ8EgqZdRA7KRB0vFzQW04JpeK2ANhX/VJy8cYsEAqp6dv3L5NNqXqO\nYmECkzMzhq2nS7ZzjM18Swr65r2f5UN3Xwo7S0y/ZnCxdAju+PnDqLFhyQ4YbxYQZVgteQoImnSy\nps8obW7V8Wxc4ckGkZf+rxfw85f/BQv7NlCpDMDICd2erKmm1laMU8c3nknlBtCfmJXNrjnt71Th\np/R4pwilIUwMoTSwYYlDSxhmxJElloZYa2KlZaDsxLRlWawE5I5et6f53W9/OqRpUTg93Vkqtu+B\nPLktOX0TaAovZcSWTKM57Zv9AOm1bBPgpvfHdKxjwk4EzEz96XNY58eRGlR7QZqROP66WanvlNOY\ngW5PspBPrbNNpXDdmFo+itBNqWKl0Y/m8A1fiRfzlV12tsa7NKvBCr9DRscHqsqS5w6tI0v9Eac+\nPnvG328Vm/U6Ff7vluDZ4if41OfcRZwY1EyQWJ4G0dz46mXmv2GFZ3Q+z2UXHeeBlQsF8U8Xe/Sy\nudoDQCFZYq2h61l7Zs38Rzs8/7kDuOZP+S/x37BxZBZskNs0hjJBocaGODFUKj9jenazPrMsWMP0\nRSEPup7JtaMQYERPkf0GqDztxK6FM6OiOh2gTJlLzEI73l65LZgBqcNQ69R1SJu9Vq0oSteq7bJE\nk1yuo25Lpuau2vttTvxmInYW5P7LBhBN76mJUk6n1xRjlIlf55gCnB+BwUSYccSg8LPC5jA2yiDP\nSuOs1EltzVrIKRLzBEoZSZfaD7UI3PXvzhxY8tW+bn75Icw3igqxHTaS5i0005ZDkDTZRxGmbV1X\nvX2ZcEDsyq5/7TLq61fbmRLFDWt85HOXyKno04j3xqa92UukCc1B1JVunOYNNqlvc9sGGKsFqY+V\nZuNS2TH/5c0v5Cdv+QCvqp9LebRHTO25aKKUQikd144WlNxu2fs6+N0pQyhV25pE0x4kKPBaNrAd\ny0xJ30tDkVPbMOS0szV1paTkJWX2zrT2ALpWMu8hyC+bg0w2pUr3mchKCXswUQBNU2pUAF9EGNuW\n/twojENG28JUXqfrXKNdanvGLXLtCmIGwUhL1VQCUJ6ruvj8KCVCiuabNg3hBF9pYjm9sOKWtEt1\nvACLczXM1pIqFx4K8dffTiL8L2FtXB4pNwrcRk691sGd7OBWOvjNjMnJLm5kKVc7lOOMI0cXz7DV\nr2eD6CmA0f7AcFN6ajf92jLX7z6CWbWokYHNjDi0kt0BRJkTCmKZphNppzlh1VijKoWeaGnLtX12\n2uxPBRF+3flzh3nD3f+an7nuL2Guxm4YVK3EDdo1LcNkBBNFybjd+tyP3CqbeSQbSFcKO1aYkUqH\njGxmMzTYoULV8hzsQJNtarIN+dcOtExgT9wBM1bYoXxlA5nObsYKO1LkG5p8XZNvKLINLbcbKYoV\n+crXFfmGwg7S32/Izxf/lw8J12KUfpd+L1Pd5f6FTwEoGSij/fR90440C1SIUmYs95VtTl+Xrs4N\nYzg/MgYViTOpgxAUygYiEhB07hMdWhHLBKxExHRDS5rcAkJepidXD/e/2KN9Va6Df/JiWKphIhup\n6QY04FUsfKp9IzZ3qHvPfI9iHuk8JpeE3j1pHY7st5xk4i2hI2m3ckqunHQIqSABwSezU2I64Zx8\nhiZhGSpAZHp6nzbEOMnor3j3Ie7+/lu54j2H+L++9e947wefTbEiqXHIp0Qjqb1lStnZVu8Ry/hC\njxnotp0fcmkvmkoyBBXSaV9I+m4nsiEbg5SsnKbhwqdI+IkSolXDWdB18lBIBDzRPIhkuvnbJhPI\nBpGQpffJw7EfexY2wSUtWQlOu41K3gzRgE/ZgPIpo3GJzJVF3BYTo6aVOZ0g//jX+ZExgKSaqf6L\nQUFpWoAoTowEhcQsiy6BMAkIIiItn3Ta3fc9b/nij/VVuFTPQa2FVbcFoIo6yqj75sDQMqK9WD3z\nBIlZaF2J3JroHa57/TJP3fUoD20stsy92IKbKa1uTERUZCYvp4y9Jlin2jdqCVZoubB9EVu3Ikip\ndJTHvPuFt/Lev3k2L3zO3zHe6/DdiOuC60V8V4x6Qhp6fPVbts8aGtA0mi2vP5GFVNIgNAI+5VJQ\ncAl+qMW3UglMI6rH9H/ZppzGdgL5ukikzVheh65p2bmmlFNcpRM9JiwgGtUOaw65SMFDlr5sYmia\naUCQD3j6Pkc9/b2wOQVnM4n4lw0UdlOyFTtUYt1/jiY151VgUGnUWKzMFHAppcdLbNDVhPo2BBGn\nJCgkIxZlzn6CfLWua9+UNkbb/4/TtqPa8pU6At5P51FuXbo/5X00HZ3yxhEhKk4cS/qHBgTzU7JQ\nyGmnQOfat6QeVScAr2kqZNJy9l1pRzfPMyblbOM9UC5Grnv9Mvd911u4b7ST73rmP1DPN1GJ9nWp\nIAB0PfdFsoaHTVtG2HFK6VfT5hlJOm9Hoq3INoRoZ0cSAEw5xQXsWGjVdpS+hk2wkGDWnMoNNblJ\n/WWupBjX+K54QlSz8r3ryM/ay/vVmr9m8vvGzWnr6a+c4uDLPowdS3lgJzLTVTtScJDnV6xJ0LKj\n9H9f3ET7zGvh3G7+ZVpxS5us1KiJbpFVlQKAqlRbn+qJBAs9NJixJls3iacO9kjxxR/rq3CN9jvU\nSi628Ok9susGPZaAaTdNm1HpDUt8cPtSKyaH5qe+cnoCf/c1t/Px4xdiTgnnQdqe0nbc2toMCWOY\neHta2tywBNHIZq4UZiyPo8tpCgwpzU9BbLI7cOl/u4X3XPx3vP+2p/O+bzuM9uLQZcqpnsBMJEO6\n+q3bZw2f+vHDLdjnC8k2XD9Sz0kgClYC0XhPYLI7MrogMr4gUO4QpWc9F/EdmOyCcl7+reZl49Z9\nKBcVk90R1xOiXj1L+73P5Pt6JgWBXL4a/UMzAEgIfenf9Hu15Xdt9oVkaw//52cJ7mASrlDDha/6\n0JYSRB6znoHJ7shkZ2Sy9GQEH1FTAgu0PVig5TSoIP1nM9HTmivdPiQOuvKqvcj+JS0zSkDXQLcg\nU0wkGzPS6ArMQKMn8h5uV0YAsCH4QuPCdO0bl7l3uIvVR+bl/kwD/gFe0lZINXVUTKJMYhK1YELw\nVQLVNiWt1bVCl/K9Kadf0Qqw1362qW6+/D2HeOA73s4PfPQHuPnZd+E78vm6XtPbJ02QOnvWENqs\nJG26FNB8L0o5pOT01ZUEHu3kOeqq0eVMN2owUyfmZsPqhOk0J3uw0xLEjiTb0LXMh7CThEdkEiSC\nkc3fYBG6TiJBJdlEsxe0S+9dLeVOg2s0gsKHf/FZosZMZYupJPvJ11M5sflkLSUSu02XumVpqVrJ\nSPKBmMOGTkj16jSaqvSGmckUvb3u9dufHl+ty/cC9UyqvXuB0A2EjgRU3w9UOz2+H/BzHj/ryTfO\nDJ5X/tYh7n/B6S3ePc95hE8c2YcdSFtOpVHsqlaoqNoWmPJQVQm0VLG9mFUqN1w34maEpeq7QURV\ndnqC+lywBt+N1IteFIJRNoNCgsPnvv53+MSRffzwt/8V/qqBpOsJCPSFUK5v/PXtP3ddKdxMc5zS\nmgmLnyjTdmuecA8kaNSzUf6dkSzD9aQUq+Yik52Bak7uxxfCxPX5FFCt5+T25Y5IuSD3Vfcj1Xyk\nWpDn7Gbl+3IpMN6dfp6L+KLBI9JnWkR8np7HjNyv76TMZyYSCnnvXE8yl2oeqjkoF+W5hkKym3NZ\n50lgSOPKI1z2k3/fgkUqqDbybl0C5qj2dPT5tD5VHsZ7Aze+6l9GcLjynWl2gk41e+FpmW9NB6Eh\n5wQgD9sajVz0rEdO+/n61y7zzRd8lsmRvmADltPuF5jyRiKtcrPpSkA69RtCkUoBJXESmvq5wUVE\nJq4wAyOndJNVTGQm6TVvXuYzz3ovv3PP1/C9V99OvqLJNra0DIea0Z7ts8W7f+DWFhuJJmUQZiqd\nDkUkpCDq+oKDuK5svno+UM8LJuL68nWanNnK3zbZSMjThi5ko9YzETcbcLNyP64fcTNBjIrT7msI\nSI0svAkA0UC9EKiWQhrOE9tg4bpye58nQyM7DQ7RynMPuShbg43TDOtxrvMjMETVkkjuef0z2oup\n6YU3qKtyUiqErkTyaBOQ1Q3TN8IAATaudmftcX81Ld8VpptJXAEqLRiMn7LxmtRZOX1WcPY7937s\ntJ+rpw+oo6FzzEgfPwViXaeSZaSxw+nl08zEdGE6iVxXiX9QpY0+Ui1yLr9PWWHK+IhSdjReCtI2\nFOZeUz9/6hm/y58/cg1cv9l2ChoQsR3Oss1qNDZCrppyAEBSfwmcAuI12Id2krHaTS0Byk2JTtmm\nIhuqVsIgXQbZuCqk11RJcGuYvTophZt2MtCChg0foSk7QAKl3dSSNZfpIGwCUkMtT3G4AXAhdSza\nDlLq5MycGyf6/OAxQIvsiuw1ZQINxVlP09JW8mpB95x0MEBQ8kQ7Dd2AKjWji91ZZx9+tSzfDaio\npLedUvvQC9NUPhdlYUNP7va3J39tnbl4zZuX+Y/f+xe88SPfCPtc+/4DxDwQRobY84QEIt7xssNc\n86HvSwNcQ4vI+25oKboxiziTNs1Y3IkaCu8XipL0RNh6MRO7PmoBUS/5wH/EDjV3f/+t/KdHv5aL\nrz7JW/7qm1p/gpgFLvmDW1oDma3r/n//Fg7+yYsJHWmLxywQEuPRjEWliwpEraQM63pClGDqdcQM\npTMW84jLIq6vWpA1FEm5mbIigmrl23LAqVbzoCsBDbPNaZYQC2F3mlJo0iZxJ5rM2JS07EWxehMG\naNTJ+SxP2fLASKcmdSaUi0x2SDfPjs8tB3jct1ZKGaXUx5VSf5p+XlJK/aVS6p707+KW275MKXWv\nUuoupdRzv+Sdhy0XXibBoLmg7IbBrpnWhEK5JFEtNWFsueKHPyovZKkk9r1sCgWxL74A432Oy373\n0Nke+Um9rnr7MhShFduQhSmzsOHYe9EXMBQJ9hdObAJ46n9d5l0PTgc4qpvXOVnPoNetXOA2iPS5\n41H5ln9701OoHGeEqCi9TIr2hUis6XrRsMRm04CfCcS+k89aR8kaJtOWcxsUGiBZIdTpWUe4aMKl\n77+FN134EdZdj6XLVoRa3WgI+o4bXnOWTLHw0lXpyhg9bKRedNSzgs3EPBI6TRqRlIo0G1tOYbuZ\nMqBmlmQ+ff561KghJbu1Q022rilOaTpHDdmGZAxNR6EpsaKWbMF3ZLO7vmQeIU/lQSJUmbGiWFOY\nCS2j8tM/dphiVVqTuqIF7V0PqgXVtinPVStxLjd/CfDZLT//PPDBGOPlwAfTzyilrgG+B7gW+Bbg\nsFLqLKM40zIpDcuDGGI0TjdZqv+K6ckSbdKd2whOcfc7niatqM1MnHualWpdPdGEbuCSP/zS8w+f\nbKs8UGG6LvkJeEzXEXseu3vMwlPWsLsmqJ6HGYear9Bdh6vO/CjWr3WsffiC9ucXXvEP/PH918uG\nbtR+Wt7vhrK+NSUHCKVhGDNGddZ6HgJpOhDTrkbSWCgbWw8D5RUh+QmojgSS2EkCsNJAHlBdcXXy\nA0soAte+cZlX7P4kLzz4EXZcforGTAVg8+rtaX4LtxWoPKAqPRVIldLliiZiNo20dB2YoZavzVSi\nkXgYKRCooNpSSflEuR4p9CQxO2uF7woeUM2HdoCv60fcgsfNhalvRRrwGwzpb4J4jXQEv2get3HC\naoKSCoIF+c60zYkWoLEBdgcXe8b7PeOz4C9nW4+rlFBK7Qe+HfhV4KfSfz+PqX7x3cD/BF6a/v/3\nY4wl8IBS6l7ga4APn/UB0slmJgq/5ARIG5vWDqsFq5widoNcVFrUg95pUeBlUS5egIGVuiuTN7jB\nMA7+2YtQlWbhU/oJm1/4lVym8ASnUUbcskNlyLo1IWgGo4IQxLEpOEWWn90D85av+xteuuMeQMhS\n3/Sd/0D54KxQrJPOPwYke0jksjiybZZ388sPoa+MvPP4/87xlTmUYQogT7bgEHkgKuloqJWM2JEy\nKCpkoxZuqsJs2tdOoUZGBHM2lZIeRk+pufKdh+icVFz5gru4dsdR/va2a0SwdBbnro//4mEO/j8/\nLByMps7XEPoe5aTcMWOFW0gAbkvUkiwhFKFV90ab7iMiWIuCejZOqd5Z07FRuDlPNLrFXUjB2XfT\n69EC3kYth6NyCjcrWVbMA2qiqeenG7s5QBswtyE+RSvdnaYkbwIYW7gij3c93ozhN4Gfo01UALgg\nxngkfX8UaI6cC4GHt9zukfR/py2l1IuVUh9VSn3UD4YtD52AbPQE5rTgWSLWqCy1KSIoJbx/oAXV\nYq1pHXBCqvcCxMKjCs/lP/oR1p5ZctU7nvzlhS9N6xugxoboFPU4I1SGeq2DX8+IJwrUak51vMf4\nkTNl1gCLdth+P7l6zB9/7CayDU3+WE52wtI5auk+Zuk8mtF9MCNbMWQrBlUpLvu9WxhcBCj4689c\nhVvLcTOJLh0hdhIhSiNfRWhlyI2fYuxJit/amqXWqB7r5LwkBwG1glKDU+iRoZ4L3Plzh/ncH11J\n6S1250QyAKe46de2LyeKh3O5lrrikdC6HykpI9yCl+wkD+iZWrIaI7+LRUhlTpj6IBhwc0HSfR3b\nhkU0UbgPjVIydc1adaaZBoVGD9FkAnoinJMmKKmgyNalLFGVQk3EiqApoZr7DmKPKmPtRvI+mIk6\nZwEVPI7AoJT6DuB4jPH2s90mitX0OYWkGOPbYoxPizE+zfT70vbJ5eJQDcU5ATptWyy96zHIl6sN\n9SiXE2VoYWBl+pKf1odmYLCb4mIUR5Z73vS1xKFFXT04qwPQk2Fd/ZZlUTuONdkpS3HcYFYz9JpM\n7zKbhnzFSFtvXdM5Zuic2P7j/qtTV0/v98BRspMWXwhQlg0U2SaJNjydJ9qItPysT732qTKT1BnC\nNdD7NOtDgeq7qW8AtNlggzHoiZzQrZeBinJdlFqyjQZo9orLfvcQn/jpw3zif1zNi67//4izUnIM\nL9z+cvzcj9zaeiWiUwZUawkAEQH1Jkmns8XIRqVgZIbJFavxPCAFAd8A5LS06Gbp1JkxqTvTZBVN\nO7cxNzaldC5MKXM7i5OG4rgR2vZgusntQG/h7+i2y9OyQRtS1ladxZfBDPbrgH+rlPo2xNt2Tin1\nXuCYUmpvjPGIUmovcDzd/lHgwJa/35/+7+xLy6mhJoZowjRVKk3b/om1vBkiFErgFLLxlUeQZJMG\n206UZKK5uBg14a9BhwFcbehuQ/R5sqz6yjExgtYR5zR1sv/SuUfpiK81fmhbk5Fs9xj1uTPHyR38\nix/BHs/gkg9yyR/cwtc87W7CRRP8ZoarFLET6CxO8E5LaaIDbpQJNpAHobDvLkXVOTYigbd+mq01\nKXlaesPKZ6AgzDg5XgM0xiekbNH3A3S83G8p8ud6Kfk+6ogamxbUPPjfX8xcCe+79bm87ifewy9+\n8nlMHtg+OwLoHLVM9tbirAQi2Ev4hF2z8tjpebcO0V5AU5WYm2agp/aLzabz006FT8BkNAIaih2h\nULjNRGFWp3MptU+CLQ+unzpyHRFmRQ3V4tQ6P6ppO7ORoataypJ21qVJYqy2w3Fm5+dLrS+ZMcQY\nXxZj3B9jfAoCKv51jPH7gD8Bvj/d7PuBP07f/wnwPUqpQil1ELgc+Icv+UxqLeQcoDHwjF2P6nrU\nXIXq+pbg0Xradbz0pwtJ9VSKupF0ky0nUjSR2PHofo1JZjDRful367n7nvolb/OVWM04kBjEzKa5\nsENlxK+w1qgZJ6mygnqcnTFmDuC7bvqoTF8Guvs3uX9tB349w2waOYkqTXm8J74OI4s70WmzOjYt\nemTgaCGfX9eLUWriBKiRnLwkiTxKNobdSNPEkgkqicNiV60AfmNFccKQP5andFgLAOqUAIQjk7oA\nBj02qFozuCjw8V84zC+/7oW89ob342c9V7/tzIzwO+7+VurLxxJsTuQwbjTKgI24WfEMbS3aG3KW\nTzqdUrW08GZQTLYpwUzXtCS7fEO32IPykA00xQmd2LkR323EUpHRhZ7R3shkl7Aj6748H9+VTa5L\nOewaD4jGa6ERgJlK2pYqNgEiaSgqRbaeaOeDL1O7cpv1SuCblFL3AP9H+pkY46eB9wOfAf4C+NEY\n4xdnVzSh1zenjMLk4sobJ4awmYnUWkmEjF2fUlW5GMOsa9HdaITBpnwCbhqPPwVZrybUBj+yxKj4\n+P/9pfkNXzg89XxZoTSEQUaodeuO1JktW6BQF158F6x0cGJ55kd95bsO8X/OTyvEgztWOPHogtTc\nDTdAC9inJ0ps/RUSWEPSYZSJGp0F7MmMWGl07ukujmVE4IwjWygxSbkZLhrTuWYNO18JQLZQoWZk\nJIBbcviusARdX7K/fFW3tboZaoqTms5xgx1DyMNptfmlv38LH//Fw7z0tS/iu55+G+XBqaTwynce\n4pdPXMMrLv7vHNxzkphHfCe0wUZPNGbDSAAaGcxQE/vpsk0tVhI/oykdXDe2cmZdKdxcIPQCvgPl\nTi8aiFFDLgM3G6lng1CtE9kq5JCtaaJO4GWEUJDozcKgBFqPCJgKrsqlmCz2m6xD0cyxaMqLek74\nFNk5aiXOieAUY/yfSPeBGOMp4Dlnud2vIh2Mx3nHqccdtZBeKo2vdNvjJkJU6ZQyETURD0g9MHIB\nB+RUQeifKJHjxkxaleQBJpp6YuX08kram0/iZboO7zLUyLabd7JeCBEmvc5gLSoXcC1/bPp6n/pf\nl8m/5QSv/+53cmVWcntp+e4PvARz0RA9MmKwu1gRgpLg7OXz8OkE9SOLXqqEWlIZAQQjuB01ykZ8\naZg4IeHYTEqbPKupVUTpwGCji7ay0cLIovIgpWQWxGhVgbcaPytlQ9avqYZSvvh+sjazETNT420m\neFKa6nTpf7uF+Rj5gzv/N175rA/wW+t7+OH5o+Rrir947GpuX7uIR//mAPMbsH5jBUERlJbyNYvo\ndSl1QhHJjmeyoWcioSPAQAzSbo2po1HPRYKN2FEqiZLfgx6LeE3GzAmhq/EnbRygVMID6pmIqUCN\nNL4jwSYb0rYvlVMyUcvJ4ee6kXxDMAZfpEZNamfqWnAOySRUS72O50hlPD+Yjw04UniU3YJOp98p\nr8TTMZeaUHrIug0ooRPwUS6WmNJCX0SJ+E0mAu0IeDMUiuuXYz1331O/7FnG9b+5jHrqSAbrTGjJ\nOFHFqb9ix6OG0rZFy4XUrDtedpjrX7vMK8y3875r3sOny30A+Ed6xCKinlW1QAAAIABJREFUx4aQ\n7ic2TFQVxW8wlXstMFdL50BZCehq1bZu3bpW1LmVGt4GdMcTT3Wlx98LYvKrAW0kfY8iC2/cjkNP\nOAdubKDnp6VhR4KKH1kpLdLzDJkAputXRvTJjNuHB/nOhdu4/nUvaedjAlLcApf+9Q8KSanOBN+K\nIblMpbJlLJmmnkDoI+BqOngamnbbgoSW20AEHeTnfAN5jAyKVY0vYnu/oal0raT+biYkTkfEJbzC\n9SNmRGvq0nhGNpkAhQSQpowJnYh3MgnejqZU863tzsezzo/AEKS94lM/V5VyKrTuvM1ryoJsbgO4\n1H+utbTAFFOSSzPGq3F6UsjFW0qm4XuBYuXL89K3BoUvV5AYXuTRURHHFnQUCnEEpRVxqSIOrUyP\nKoWwQ9/xyZ84vWz65E8d5vL3HuIbjr6Ezr0Fs6sw/PoRYaUjCHdppvyRPKBMIK4UoATBVxMjLbEA\nri/tPrsqpUZoAr0CvZpJ4M+VMIWbTbRFBKciVD0kjY8QG1OS5A1pR4qqEzBjOVFbM9mRaYk+vpuY\nlqVFObnNn3/+au4b7BQF5TYrDDLJJpsnkcpQVMSsWykZghi8OMAOjGAQVoRWZqIIOoHdqYtDpCXf\nuX6QTFal19hPmYVOQUFN+QUhE5VsftJIVjATkxelUJ4bINF3wC0K10cNJAhHGwlOyesH3HxEdTz1\nxGDXjeBwDaPzca7zIzAo4Zs3kT/qiBlpws6a6BRqU8g0EY3u1zJhqZkW7FRr76a7rh0UErMo5rIp\nRVUmELTUkP2FMZPR2VHrJ2p9uTKHzp4h3mt8yNBj2cBxxoNTQvoCup0a3zfY3JNl20M8Yd+E+7/x\nXfDN8vPVb1um3u0IhWzKWCQk3CuiN6j5GkZGyGijlNInok3MdNpUksVFK/ZvZmDEmSgiQ3AqAcNc\nR0CykAmQqsZGlI7J1cmMpRPRbHo9NKDELyFOMuxYUe7wiUIsnazegxmTXQEzVtQX1GyemOH2o7OY\npe03xQP/9m1c8pc/BN4Q84gay6Fj1yUbatzHda3Ij1qigf7nregq0mE12ecwx408j3mHSZ4Wgs/A\n6IATgVtSldazEZ2yEd8RTCFblw1vBoZqhxcjm5gcn2bkPW2yK19IAFMmEOdqydgSMErQmIkAu3Es\ngG2Dh+htMKYvtv4p4OMTtsQNV74aHoKgwZKihq588Ga2liEfKQMgpW7tQNDUHjOnMtTAyBtYaaJT\nhNqgsoDtOLQOgiQ/Cdf1r13GmEDwmmxpQphzclHbgO458tzR2TlmvjshTGSOxP6FtW3vq+hMqcNX\nvvMQ1VzCY5LXhd7ip0ktDFNdafLjdgu3JIH6hT/N7k1IaSIHNuPU3nNiEuN6ETcv1u5u1uN21uni\nTYh/EfCLjnp3TXWBI+yoxddh1lMveHw3UC3INVGsCvqvKs3ogCPMOUIGZtVCncx9xoobX709Z0Wd\nyjFjTXFcgla2qpMoSsxefQIBe0fkuX/qxw9jx9BZEV5HfkLUp/1HFJ1Hs9Y4RdeCJeQrqbsTk+Bp\n1hO1yLndgpOSN234bFPROWYFsIyKesmhnKJz1JCvpc7NUNH5fE7xQAe9nsljjjWhE8j3jDATeR9D\n38s4wL74X5wby+g8yRhi6jbgpspA34uodaHNNgNH/GaG6nh0xwkV2CkZX2cjeqyJg4xYeHxP0OZY\nBEzPESOtX4AbWwZOM7v9XvmKrsdTevgCJo/Okq3LCdIdyQBZdVIubJ91qOciD28U4BWTu+e5187B\nVWfeV5FNPR6rnVs6PXlET4T3H/pAhPyUnPzRiidBM2ZdBcAr7IlcQLjVNExWK8wpTbUQcDu8sBaL\nwHC/jCFUfUe1Q6Fnazq9inyXp6wtk0EhtUglcmNJzVP5mGCSOCvdFkpDuZgYsYsV6kQhw3y9iJ0q\nRRIzKYb7tt8Z933PW7jsfbeIYA8JiL4n15zviMWgm/NsXC7v99VvXaY84MlXDGZCO1A55HIo2aHI\ns30hIKGb8xQnbBK6gd405OspIyhSmZCCQpMFm1LcpSe5BJ3xXmFi2pUMu6moZyOdk2KRpxphYdSU\n4z7aSgdCBStemAryNY3rPBkxhjSzTycSUzuIJJNhII0GHsAHiDpZpCc6aRMxUcjppiR10qNE/Gk9\n4MTQw++oz5Nc6fT1eEqPyR45mes52RC+m94fJS5FDY1cb1jCrMPvcXQ/1znjfq45vEx1zaj92cxV\n0m0ovHgrKEOYi6ihGKe4fmxlwI1TVNQRGlZfMlud7JI6uqmdi1MGXYkceLI7pC5AgI1Myg2nGR3v\nMyqk3ZnVjS+i1OzaQ7XHCZEq4RJxLLoDk/gSulbEiWAjWQpG5c6EMyUjVjuW1/yZ5TNb1PmaFoVl\nIXV8tmqmQGAvYIamZWGWS4HilGlFUaJRgKoXWpu6AG15rCvBRXSdDGcHqjWBLdaEoVjNCjhoxqo1\nlFVBwMN8TZFtWOwEzEQMWkDeF2/gkz95mJtffgjXV8w8qIkG7vy57dvw5qWP4yJM6/zYHkmdpoJQ\nQZUHGt+/UrUWZTIJWYhL+YrBbOp26Elzuqik3VdRak+gRZJVUPgFB5XGjM8xtzpPVueooTglA1GK\n44bipG5T1eKkJlsTY5HuUU3xWIY5VvDpHzvzQplc4KXVmJZfz+k+mMvE8OO5AIkToVPbkaI4Kfd5\n9w/cyuwD8tj5KUO2rukeUxRrkj5n6wo7JLWYE/8g+Rk2no6NOAhAjawY1p7M5NQ0cnvlVeukpFJr\n0450y+4zY0W2qVtyjykFE/DdVMoE6T41fgXlBY7xJdW27+lnlg+Lz0FyjgIJgKHnxWB4nLoPtQCh\ndT+1HbdwFEwlXox1P9m4JWwAJEC4fqRcigwvnNq5DQ8Ehvsi5c4gMyF6kWohMNkVKBcj9bwXmzcr\nxq7VvKKek07FeLcQo657/TLVgjz2HS87LKYzwI2vWubmX/nH64HOi4xBvP2lhaUGOkXaRB0dKcKm\nxiSOfsiltWNKicDRQrlAQrQlKGivkm23IPYNOQqnoBCQ52O/9ORTV1719mUaA6ZiRbH3Nz7EIy97\nFtlg2rvWTuFzyAbyfXWW4lIvVfg0DfymX12mPwOfesk0gNz0imVCbtvhKe0QGeR7mbkgG9JMxLik\nnk0M52SwCjIQZtIYspiYZNyxZWqSXIl8N+CLZuaDIuwuKXo1kxNd8JL9BSttuNjzVJkiPyWBTcxL\nJGMKXuFnPdmKbfULdSegioDOz86zq+fkxJYDJaX2Jk2pcgo/FyQATBTkQuhoXJ6JkK9Kii/Zqbwm\nO4Bql0MPTctgdDPyOKEnZkJoCPNOSFVjJWzHPOK6IbV1pTuhK6bu0Zk8Zue4ERl3F7onFDe+apny\ngshV7zhE3CmZ27VvXJZgO4GpMPpLr/MiMDQXUbahcb3I/F2Gup8CQSFBQMxDpU6rFhJDbNbRmSup\n1zoivKqU2L41qjUdiYsVSkfCyKLnHHGYEXZuf3Kc76ta8uSr8h5VCu5+59PQa+G0yUVP+YUPc8+b\nv5ZyJ6Alw9h2qcjsXRn8mxRYt6zrX7cMvSnDzqUT0kyU0Ix3kHwNodwRifuFM2I6XvQZdfNZyGRt\nc7QQ45EMmK+Fhakgm61gFur1QpiHe0Z4ZwhrOXFsmZSmLRejkfa0iGECejOTkqYTqeeZenlYhdmw\n1DudTDLLPGFkhYSVBa5+2zKfffGZGdTMQ5rNyxxoI9Tovjxe1QOzYbFDGaBc7fRiHjRQLX/AVHIQ\nCfNQ7s/1I16DHhvyDY1K/AO1Ke/rzP0WO5RMIFvPJavoCZkp25COT7XbEVOLtppjyptIEhOQgFhM\nYLIjtrZ4jZ9mM5gnaunmnMs6P0qJKFLRRq66foVntF8MJspdnnJHoFwM1AuB+oKa2HeErkT/cpRh\nNoQg0yCxsS98d7wSWXLqZHR6FWa2RjfimSfRuvHVy8Sup56RbMrPCXkrLtWEruTtwcADr3wmnccM\nNnHji9Xt7y96xSd+Jk1qysRqvEk9yyXZGCC4gO9FYiYB2l81IFw9oFoMLaHITDRmzdK/rZvctdLk\ncS0Trd2sAMJNtqDHIlpyJzu40qJn6laIFFdz4bB0kmAqC5g1i5ko8hNCaGJsCHMOUyoWLlrD7pik\n+5XSx/c9pl8LHTwmpW0uvhTl0vZZwyd++jBmvhLvhELaoPl8KT4fgamPYpQ2b7kjUM9JK7MdBuOl\nkxGNHFohi3Jd60g2FJPXelawiclSZHCxlBV2DJ0TiuKUsH0bDghIC7Ta7UQSPu9x86HlOUz2eEIW\nKRfloPSdiOtEGZZTSaDKBpLZjPae2zV/XgSGaKTmrZekhWVGIgqym5JC+l4gJIKLPZElklOEWpM9\nXIgX3nqiO2cBZSJ6Q7gPxcKEODbokaGc5JJqrp2F8XIerzt/9jC9+3KKVRma2n0oo39Pzv3f/FvM\n3mu49z/cyj0vvJX+I4rP/OhhuidEw/+Fg2tBNAVb1XbBiPJv4xI4+Gcvol70lLs9oRC2XnFKY0aK\ncmfEfnKGeF+fzlFD7zHNzOcVsw/Avd/7FqKBhc9o5u9WzNxrhbewYekcsWTrqVtRGuymSpRhBRtW\naNELFf5ID7trLMQpG4R/MjH4eYe6eCg2+PMObCQ7mVEtelaPzlFPhFatS0W100mb9FRBrLXoReab\n+XAKjAzP3W7N/H0PAuSzFTEP1OMMNTK4OY9bEj2HHmvieo7vB+odjmoxUM+LnfzogGN0wOFmhIKe\nbQgQ6gsYXBxaw9aQR9zOWq7rLLJ5mWPjKs/oYodfqqn3l9QLgc5jGd2HMpEA9LxIrSeKatETF2tU\npVryVlTgZgOmSrZuc4JjVPPTsvxc1nkRGFBRpKzDhggigFJM5YByiS2WRxkbVmp04cnWTEs2UUnU\noyYy6zIkL8RysxD2XxBGXX92cr686nNezSRjMxac5VM/Lpv+zp89zLVvXObKdx5ieGHkpl9bpprj\ndFudLSvMesJQqsjn7nsqvhcZPsWJO1E7mVpSUt9J3Yga7KYiG6TZjSNJaT/+C4fxheL61y2LTFgp\n6lkh7MQioC6YMNlfU+8WLkJ20mLHiu6x1IrM0nj7CGHGE4Jkd2Ekk89VrcBpgjcS9HMB9epdtUw3\n73goDXFs8HtLVCEZRiPRzzIvGWOypYsq4vdvP6/tjp8/DFmkPtEV/GIougmVJOaSCXhUKSWDmmgJ\ncknJKBZvYrKi03VMVC0GIq7WaZr1StYC58qJ4jRbkWxIreZkjXgsMSmz4xnFSUO+pqVLspZJNyY5\nqBMFbK12SLfIzYXkpt7ICM7tWjsvMAbl5I0MNraGEw0TUleq9c9rkG5diQjKOsgmiioTfrnyCrMp\ngI6bd+ixwa6Y1h48Hi8YVKKke7Kta968jFsUtV02EPT86rcuo+uUol7kIJmlDDFtmr/dUrkne0RG\n+d3/688kZAFViYwXLSdSfsKgK8nk7ECozj5Nm45p8Gq08rzok2YzTMVC0cjpquaQEqLJBJEMsdyR\nLtiuJ44M+niBVhCHhthM1U4YEUERVnLoSXmRzVTUgxzdER5GjEjXIvfU64WwJedkyO/oRF/cmIaG\nbFNOWNf1XPum5Xbo7WnvzVhTrBjsCKJOHS8nJY7vxXY0nxlqsk2NHZJUjGBHpr19o1VwaXANJuIL\naZ1nm3o6OMlLRyHbSOIrZ2TsXhDOSrkYsJsmmbQI+I4ScWG2oaiWGu1G0lwknEMlhqlMxI5PUoJT\nAphCEVGWliNuqjSmCzl9YgCzYvGdiN0wdE4o6VEPBRHWlcLPCkHKbFjpZCTsLdqIn/Powssp8yRb\nKjFDVaQdiYaC0SUVnYdy1CmDmVhJXbuR3iP6dOHQlrV71wZ//00fkPsN0sf3nQTw5eKspGsY7Zf3\nabzfQeEpHioYbQlAKDnt81VNuVu8LjhZpBkIoAcaP+miO1N5cshknFzoRMxAY47lEBEi0M4x5UaB\n6XrisULYq0yvDzKR4teDnPyYJV/LGB4IMOOwpzLqoLBzFU5nZCfElLZa8jDR5GuayV6R56uhpbxu\ntN1bQ7FiKHd6yiS8s+OpsjHb1HSP5kx2inGr60Vch3a2RbUQydcVk11SNvQf1sw8pKnmpHWunEot\nV7BOru9yMdI5IQa05Y5mCM1Ud2GT/4IY1kK+Mf28VBRZerUYCFF4JMpPp3FHnRy3lASuc1nnxdGp\nPBSriu4RYcU104ireUmF3IwXmzcN430OP+txF1RsXuaZ7A7ywdVTS+9oItlQES4dJ+AsDRvRkTDI\nKDpPvq7EZHdoXYInu/xUfnsskxFmHakpsw1N55huuQPbrXE1lWDXc57u8TRX0kG+LryIbAO6Rwz5\nqmxOsyJ/c8Uh8dxpLPxbItJIo490xIhlqNrpSjJHIbZOyDJfQZiJbsEl+rEwIf39M+RHM7SWz9qM\nVPvZFiup9AgKPTCEDIYXezrHNfnRrG1Nzv6/XfITViZLdZLArAhM9tXi5dhJRix++2zqsy8+LOrb\nUpiz9ZKjXvC4fmSyxzG4VJ6zdtJedztrql0e7QVAzNdls5qJYngg4BpuWVSCKzRu0b3I8IBPB6IA\nvvWCF5Vll3YMnfJCLvNdKJcCo70RU0oAqRsA0tJ2NVCCMUx2BarFyPDCwGRX8n84h3VeBIZoYXxB\noFqI9B4xlDvkBce5uu1/m9VM/O/WDMUxS3Ykb8k+ppySafREtWPZ3MjKG58GiJA8HiajLw/4eLbZ\nif/Udd0blmVgy4JDl4p8TXr6DVqu6+mkqHouMN4TWL/KnfX+hsMpEzI/ZRjtjXROQp6YeFGlic4d\naTGaoRay0UzgsZ99FnrNUpwSV+VsaSK3SQS1el46JwK6iX1694ihe0yRrzcORgnlnxhCHvDzHn0y\nR7t0Cp/sELNIfXEpOIWTjggAq3krW45ZZLLXU+2tcXsr7NKEtesC8ZJRa/MeCpHx65GB9Qx7PKfz\ncE6oDZe+/5Zt359iVZibqkqOUU46Zp2jlmzVtMFO1Yru53NUrRhcUQmB6YAEOjtWdI4LJ6da8vi+\nJz+STduSQdylGxq0LyLYQL0YWn5ENpASutoh+opiRTweRvukpAgZdI4J16JY0aLnOCVS784J3cqu\n7VDROfVkBB+TEi0qGO8O1Lvq5MirxPcvE9Cxnk0+/QsBt69ivN8x3ueoLqoIPUFg/YKIikT6qgkL\nKbhE4epjI3H1iQ8M171+mY1rtp9n8E9dw0tqGl8Jt+iodgQZRpLcfSYHKuoL6ra8aEg5zTpjVN9j\n08BQ7a+Il4zYPCij3xvTENH+J+JRmigVtXBIOieSochQo+7pU+5yhIvG1BdU2E0jJWE6Ue1QUe4M\nDG4oKS+dYBJ92s96TKkoThrMuhFyWxLPFXtG2KUJ0WlUzxGfMmZ804g4McSOdK98egw9UaihIXqF\nP9qFvsOd7LS4lHKKLAmZYhbpnJJNnh3LMBN1Bjvw+fc8l1/+ofcS5hz56pR6r+upt6IdSMfHDiSA\nZGsau5K1syJCJkSkUETKXZ7ilGReoaCdk1LPS0ci2xSVqK4VemDFLatOzMubNgl5pPuobRmZvaOS\nRUUT2wzFjqXsCFnS0uwQjglIW7NYhfEFT8KMAZIirBeExOKV9LAb1+FKtzMMQke8IHUzdanrYZBQ\n6DTPTzlFucfR3Tma+gpGyLq1cO6XnvhSYnhFRTOg9QlfCmLfoWdqkR87AVtNmoikN4TAEwrp7vhu\nPO2T3UqJvvaNy3SPbzk9vKLeyMk2tUyjTlmCCrQDUlXPtzqFejYw2R2Sr6AiZtDZNcZa+Uz8BRX5\nhUPRo0TFRb/8ITFFTZJw140tGOYLuYBDLllhuVeCWznKpFU4Tt0Gp4leJRKbRnUdcVb8LKNB7OGy\npBMZWPKVJNRqaPVRnL10qWWadCfi+oFwYMLaVfKZXflbh/iWz307bzj4h9TR8I3Xfk4OoHkv8zBM\npFoKqF0l9Zy8TyoIuKhdwlTKxNZNdndmrCAP1DPp9h7yFelamJGUbCDdtGJFMkEzFt1GPR8IQZGv\nakIWZXp2N1IuyCFqJsI0He5PwbwUjUl9w1BUqQsyODdLBj0NffvxrvMiMKgorTg9kk1s14STkKf2\njRloAZGi6NLV2MCRQi7MNKjDDDXZqsYez8jWRKM+Xu+gnNR7qtTU4wwzMJiHzxQV/ZNfw9igttiN\nP6H3XWqoNGGYtXL0MOfEG3FGTnIVU11vIRSB4uTpz+Xml8vJePE3P8gnf3IaKFQyVA1WwMB8XacN\nm2rWZLfWGqAuVtJOTJOSXDdSDnOqSUYYWqJTTNY6Inn2cM+bv7bN3txmhttdofZMaKTJIY2iU5UW\nqz4F+niBOZVwEK+IE4N+rINpBumu5XINVPq00WsxkwxBedrxefmGpp4NIndWwkgMWQSDsDQTDl1c\nv0bPVtxfzzGJGc9euBu1VKYhO4osUfX9ZkbcU+JmpFQKudyfSwau0ca2TRwNQsOOqr1dPSuTqBpH\n88luMTSuFuX3TZvedwP1yS4hj5S7RWrekJqilWDQPn4utGg3G2XauNNpRobD9SODi6I4cp3DOi8C\nQ7TTOgwNbleNcmI02rQW7a4x7JJCM9tQbd8YJ8y2kEWKVQHQqr01qtIUj+To1CIjQufBnFCEVmjz\nRK0bfmMZO9D09g2e0PttVux67GxNsTQmdALF3pH05btePAx2lK21WcgjZmhExJPWwT97EX/4slfz\n6WrM7172Ae6rB/zgQ8/mqnccSqKkSLxshFtyTC7wAvxeWKF3JUjbRMJ8jVuqiet5cuoW3kGccXTv\nKoilBEY1MmSzJb2dI8K8w25o7Lo4CRFFnh2PdShOWLRT9B/RdI5ZmHHtCdpgHXZD033UYlcsxapq\n+QsxzYDoHLPCeB1bWMvAROzekYCOm5a4o2Kyx6XhMgI+N/MZYtrwYcZz46uX8R9ZZGXS58/Wb+Ty\n/Cgn3CxZ4dBdGepb7vJy8Kwb9KMdYiFDdbJ1ybSamZTVToe/ZoDvwPhgRX5fl9ALUh6NVJvZZpta\ntD4mUpzUuPR5VYvyb75isJtaiE5HLL1HDZ3jmv7nTesX0WiJOse12BTU0L+tR3Hc0H/Ikp2y6H1j\n3Jw/52v+vGhX6onigee9jetftyy9892S+heroLzG1BBOzdDfhHJRTqpsU9o98aQg0q4DKOgeU/SO\n5C2/XkRAChWEDGUqc1arr3/s8gV0jyhGzMEzntj7BikV4kqGD9BfUVSrM+hOpP9oMk4dduU0nIno\npDYc758GBrtiecWRb6Fraoo0lOCR4QL1jFzY2RCqzR7dsaJcSm2147kAYGNBxduhqqvyek0JZWVR\nQVHuCNhTVsbQR4U5MUNQ0PVCtwYBhvN1S7BQz8rfd4+rlpl57RuFk7HvNR/m/lc+E7QIk1RExs1r\n+WwnISOYZqgrKCeaCVMq7NBgx5bJkgx8nVQFvhfoPWDxHVIJIIKjbGDF31HDeFfk7h+4lUvffwsP\nLS7xyQP7uOu+fSzcmdENMtruyncdolhNdOcMOicyyXhyKNYMn/jpaRZ246uWufOl8vMNv7FM95gm\n2FnueNlhOUTut1RzItyym4Z8A7KhdFq6RxV3vOwwN/3qMh//hcPc+Opl7vxZ+dkXqTU6EKBR15GP\n/edbeeorl1tC1Z0/e5gbXrOMHYn13J3f/25u+rXlcx5qq2L8MtXF57A6+w/EfT/9E3I4VdJRIElr\ndZXIMOnCjJrkqw/jvdJPFnKTmLzosRY0OI0GL9Zoh3AMLpVMQi1U3Pecdz1hz/+K3z5EveTJ5kvu\n/lfvfsLuF8RZqd5foWwgDDKx8JqvYT0T8xJP6/WHjeRHMqpdDlVp7v/OtwLwbXd9G2++5P0saE1P\nZ2g0rz51De/42NdjC4f9TF9q73npZHSSo3S5y2M2NW5nTXY8w1SiNYhZFKcnlXwfeh7ddZiHO9R7\nKzozlThWa1ADI2Y7QWHXDdlAZMu+mzpFCgjymMHKBh8fkNkfCgjHO8SFmjgxAkRODHpoCPOO7gM5\n3LiBtZ7NU33BkU5m1DtrVGnIdo5lYllliGMr2MRY9BbaSwdFJTbkA89/W/ueX/KXP8RvPuv3+cVP\nP4/Nk306j+TS7iy8+Gwmq3wzEXs27UimQYJfxLla7NZGhs4x8aIol8RcRUVhrg4ulm6MWbNihZ8C\naFTi0+A7osaMVujNwulJXpObYqOXbUiJrdNgXjNW1PNpHouNZI9KB0ek6fCJN/3U7THGpz2e6+68\nyBhIPgxoyDYF+JJ+rTC6usflhY93SaZQrEE1JyVFPSsCn0a00+jvG3+9ejZhGKWSetVG4jYTn/8p\nq1706JmaevjEW9L7ThQHqqH4FsRCBrrEPLGdctADk/wTE8tOQ/8heY03vWKZZ//QbRgFhZKPO1OG\nOzb2UzxYMLlQE2eSE1MQPoLrSLvNbGqyTYWd5JSLISHyWgauOiPehAHs0FJdEIn9KHyHBwt6tZB3\n/EKSFJfJVDWltGaiCN60qj/fidSLgiPpocEct2iv0CWUTui/9hHLZLenf3Cd4QPzshEfmKUCGjOq\netGjN63YsoeuBE2FeIU6jZ7o6UaMUq7US44r33WIu35QpPidezssPHtEv6gojy7gCzG6zQYZphT+\nRAMmujlP//OWbADDC1PZd0xSUrfDETMj5rZxStSqZ0RJbEdyytczwmaNCmyyfM8GislO4fQUK4p6\nLpKv6lbtasZSas/cb5nsENzCDsWgN7jplKvmdepzvDTPC4wBpA0kqGtksiS1crUgApNyUfj6bt5L\nq2dGGJHlYurlp5NHj8SUs9zpxbwj0UNDsrsii2Krbp84deXNLz9EtpCa7PUT+3be+OplGYumIF8o\niT1Pb+dIvBf7gvpnJ+0UDR9pmTyFnBAgafCf/v3NvGftaZTRcWcFt5cVpyZ9qnkJpjK2XgJN6ATC\n/gnVvAx4HR9wlDt9OyoeaC3loxKzUl0qOg/lxLlaPAaNAJfZUGGG6Ar1AAAgAElEQVTWTUvNjlrS\n25iliU+FqBOVk82ADa31fJM5mhI6J3XbjrMjzeChOYqTmuKUBPrQE9WtGUtW0syDNENNfkImvQan\nWdwxENJUJh0RPZEDR3U99ULght+Qtu5nDh3m1x/6Vp6//xMisx4qZj4v2asvIFvRU4drJ9OgSIFZ\nD4R6PfOwwq5YlEPKojW1hYUrHZ+Gf2JHQm++64dvRTnhUehKygrtU9l1TFqTKCmPxX6OVm+Srcrr\nbhiP2aZcE9UOL4/XPbdr77wIDOLGK0is70C1Q06Oes6j50SAM9kdoQipRhUuQ9hdStRfk5MwKqh3\nOGIhLjhy32IrXi0kdPlITnHfE9eViFqJM3WYavGfqFX3EKOZsaE+2SU7njFa72LWLJwoMAM50WMW\nqRa90MHTPIiP/+K05i2OG+po8EQernfwgr/8UU4M+oSFGipxOYoXyBQru2FQR1MTPCJl3WwtbMZS\nsgUzX///7Z15kKR3ed8/z3t1v90997X3pV3dEpICmAAhtmOCr0riuFwFCQbbpIx2nQISYxcY4yqD\nSWwSG8dxZmVM4uAAplxJXCG4ihQ+4qMUdKBzJe2uVqtdzd6zc/X5nr9f/nh+3bNCgLS1Azuq6qdq\nanp6erp/0/2+z/v8nud74E2nlFO5k+NX6TJSnSB5ubzEYLWsGtLpUktdp98YrqjuQF9SzV8LqJ3S\nS5sJtC+RTNtBYk9ndBIjhaxPY4xOs7Cw62P3E62pz0hRW5dek55PsBjReWJSL0CNdcyE9KceiZBf\nYe157ME9fF/jaeZ2LWNCSKf0YlTULcfec3hwAtpQ1ZR6W6yTYnOgJYGRUyqeE3S0EvZyiFYtYdMd\n8x4DH8qyAnf9+iF9jaqeyH4Gef2KC+CVknepbqfLWHtKlSVNPNm4lidl7KYcbY9kW66V5FXEpkgM\nhHqVwoeyUQ5cgKUQvHNVMJr5/JVA/2FHJAnPVMgnFIDTL7N1YyqUEwV2d0+NQzoexViptmMeipnf\noChjsGdjxLNIreDOf78x6Me7f+2QCtLkQn2ug5eoT0GwGGJCS3zRo7rokY1bwqZK3Pltj9pzEfHC\n+g7xjk8dwt7e4u1jDxGKx63RBaJLAWka4ldKqBidz5+v4vc8iinVOYjWnEReIXihcVsBqCz6+KfU\nx1I6PkFTNSHzOzv4Hb2SJjeklPt7JLszsq057OsQzvWQumoUVJZU6DWbVKjxlXTk7v6MoCuk2zOy\nCUMxavATBVap07SOn01o6exSHIOXQ/V0xMJH3ogYqC/oVVuRf1A74w/IZ1II8Tmf+jmdItQuWOrP\nhdTOeevoSuDZdx7m6XQ7P7P3ftLtmQKJHL3i9t85BAJRU6ifCq44yR36c8TQ3WIpYqG3RSvc3pxi\nER75lcN4hSpwBR1XgbSEIIFkSpW3+m7ij/7SPJVlqJ/VvzcBVJaEZ947z4l33KciMYn23Hp390i3\n5IS7O9TO+ZSTOdl0ST5Z4NWLq2ZXbo7EkHnKyR/L8McybNXo6HIsp9yS0pjuUHtB8e+Ik7cyKkwS\nLamXoRRCsOojiQJg8Cy8EA/Kt758eTGX4Y1sHEIxG9UPZnaqyV17FujNbkwz1wZ6NbK+hQfHiC96\njjOgwiidfTlFjcGc24Tg723TuykdTAJAr3LTox3GPUOIz191DyhM9rEGja/ViOqZogRHVB0qWArI\npkqKmiXoetR3trClqFy7m/LkDcUdBE6CP+g5FaZclF5tobxcWZfxP1knW65CO1SQVN3SWPDAWcFJ\noT0mv6v06Mqy0pJLZ+7SvjGnGFMthmKyIN+aYaqWeHubxmnVoYya2mg+8r55nvzA/GDrUzRUuCS+\n4A0YjyZyfISGobUXOrsLenN23TbexRfPvY6/F59gekuT5j0p3W0G2dvBT6C6qFyVzp5CJfJTIZkt\ndZLTUq5F/1hNt+YUdW0+3vqfDtHeZUnmDN3txoGtLL05S7yo4q5hW6vfG//wIEUdiprbGiVaId38\nGcWkqFer+5xbIV7HJ3hohGzUOgdvxdfUHls/D15pbI7EEFi8uMAkPibz8Zs+u/dfwg8N3mJE9/lR\nRXc5kxPrvAoAsjFLb1uhe0WLwliXI6QTEHYUQdnHPIT7W5D6eBuIUOwrDy0uj3L0/xwg2CDru7wB\nTKeYmnIf0gkl1OSjqqgtmecgv1pKB10hvRwz+kiF6uX15ymrlh0jq4x5Eakt+Ivlm0nmSsq7WzT3\nl2QrVS3l2x55ww56DX4KGEh6kW6VPMi3Z7o3nkkI1jzny+h4KrnjF3R1X2grhnKsoH5G9Q7jswHx\nGZ+ybihGS5UqS7V5WYwY0lknhmIc+WjU9UpGM53H9zzCywHhYkD1dIVw1aO7FtPebbjxswdp3VDS\n3mnZ/4V72f+Fe8nG7UCro7dVq0wptZeVjxhMCAfe94BWFR0fzyEHb51fr/iOHd/OyWKSt24/Cs1A\nGZRrFYoYklkG9m99U5fqRR09PvPeeUeHd/ydru/4LVDe2R4oO0Vr3gAc5WXQ2Wa547f09aMW1M6q\n/kXe0ITQm7NkY1A7pzL2ecNtwasQrijaU0fJQnTZp3LZd1R6OP7uq9M43RyJwYiO4pzIit2Scv6B\nrXgnY/3dWIG3v00xVur+KtcPxXM89toZBcsUdePuU+RjNmqJltWsI2wJ6UIDST2KZGOGMa/55CGy\nOYWfcr5COmXUVHcDwk/BNEOq53QaUVbtOg7fyOCTM5GlnMgxu3vU5jqs3ZG/yMU7HzPMVloAeCI8\n/Ph+bK3ElB74Wkn15cgEVDKuFNIZvfqVyxUVvhkvkJVQwWNnYopt2cDCrrejVMdmcfDehYj4hZBw\nOSAb1ZMmmS3JxvTz8Hse2ZjRCsEKQVurD0k8gqZe6aIln+hygLlQdc7lCtUu6pZ0b0LR0CQkMynF\n9lSTP6gb1rZEG3STOdnWnDLSnlRvzuix43QKTnzqDUoBn8nIRy3ZhGHnr92vupaoU9UvHfkx/vnE\nA4BSoKOLAdm4fhbZhKF6MVCn65pesJr7DAc+d1DxJF2nu1grycYMZQT+kQaVZc81zw2e873ob0Xw\noLVPSXDdrfr+xovazM3HS4qGJRvXRmRRV4Xp/kSnb/CsYr3rfJnOdsMtv3d1W9xNkhgU6RUtKXsy\nfC52+0jNuP5qQH62PvAxDFsuUwdKIAnbLlHkmgzEAp6WkGWsWVRKVeO1oSGsbQxXIp1AR6ChzqRN\nvSSb25j+xRM/Pw+eHnym4rgJzg5ex1yWcktKMNvDaweYlQrdZpVwcT3p3f2JQ8hYxmigikVrRk9g\nrxVgF2r4HdUL8FNnoFpTNyupF45v4IQ/jBDGueoaBoZipFSo70xKNqsaB9Gals7liHFXZU2QRUMb\nYX5PfUML1xSrrOgsvk9tLuo63SirBmZT8hEzwLVkMwXUC/V46Ak0Q0yjUDm4boB4OhYtI6uyb0dr\nqkmwGBIshZgx7ZvEF7XH1J+C+Ik4PxLtP/iJcHz+9STb17ea3WPjfK23l+kblklmDfmkm7o0jLIj\nHXGtj0MIOkK0omW/l7tRe+LEgxpaHWTjSi4bOalApTKCfDbXKs0y4Ewc/6nDJDOWoqafT3w+IFzT\npPb4L87rhEeUqQpqnzdQ6BZ9/T5bMx99FWo+Qr9Lq6WxiSzJNsWHi1F+u5epXLiX6smfTShWvXsg\npTdjSae1EWWqZtCLKPYmA0nwdNKVuZEh3yDatYks4UqAWMFv+oizft+oCFa1dyKTGWVs1hV5AiUd\n2dTHvlAnaKv/RnQuorK8vpXJR1TKbsRPyCk5mY+qH8OayoZh1svd+hnn2bAc4V2OBjR2HQN7FItV\ngo7AagSepeyEmI5a0PtdjzJ2WJI+O7CEfLIgWtVtjoqNrNPD/Z6W4EHTJ1wOHL1awEe9SSPtPxQN\nTVY28ZFUx3fhmlYacqGCvxpg1yLtU9UVaNUHGvXBbxTipN8dfiKyFGOGyorgt31s5juzFyfNFhfc\n+F91H//sTx7mj8+9lh/f9Rj7/9XX1J4gk8HUpN/UDNtC3jDOCqEvegNBW8VfsNpv0MSoJ2o+os1H\nG1oHmFL5AS+D+LzHPR8/qAzXCLxCL4ZlVR+z//MHFe7ta3XpJR7ZmB1wQcRdnyTXiky+hf7Et4pN\nkRikYmB3l2JEy7GwqXTaaEVhor1dORO3XybsQDpjHHrMjcRyj3JfMiClWN+SbckJmh52NSIfMYoc\nS6G2oP6V9WMbkxjymZzqzavYmjagJBe8ysapQ9UuqF+id6ZK9ZITH6k49d+lgOpCyLPvPExlRYia\nul+/UrUpb1h2ja+yt3KJqgT8t8U34mdQWda5+LPvOoyJdPyb1wALjVM+tbNaRdTOKbuvsaDkJb/n\nWK+BHez7bWAoxvT/r53WEzpztGi/6VO9DNVL66PcYjZXkZNY369iKqfckSCpaj5ESzp6VMdz3erU\nH42JzwQDfQEbQP1ESDlRrE9KOiogHJ2Idbw4WxKtCo3TTli4q72LZGtBPlkQtDy6d/RUJq+qz1NW\n9BgKT1a1KnVx6v6dvK1xhPD/bqV6Ua/kjdMeRd2y70P/j3xEyU1SqnOUiWDt9pxsxLJ6ZwFGzYDM\nDT1kKiXoqYFPMqPj99pZTZ5PfHCeaNXDK9U9y4Sa0HpbzMC4J74E9bOq+BSuqtR90BWqFz1n+OMo\n8alWmPHFPqDrVTiutLmHf7RO5bJHdVE/kPiiR7pDdRak57O82iCvo6AXl/V1zi6YUqheUO1/L1H2\nZX9WHvRkYFaTj1q8y9GGXNTv+dhBpBPQPTGm9PCJjMqONsG3MTW52vAK6G1XdSDgRWO9+II2++75\n2EFFzHWhevnFV4WiYZmpttkerJDYgr85tQ8vVVRpOmW55T7dd4YtVZa2kUqRP/HBedJJQ2ufIezo\nXL3vFBaf9yH3yMdLh75UOHO0Br1tJfFCQLTka/Xha0Ottb+E21rI7o4Cgdy83UYWfyXAO1vVhqXo\nZyQV1XY047kjGqkiUT5mSCe1IkxmVYClqFvVReyoUlM2ZijHC+KFgHzM0rxNt41lRdWpgqaP3/LJ\np3OCU1WKm7pUjseUkW6H/J6AdWAiF8fec5gMj3+x/W9I5gy3Hj5E4fADz/+bv6v8hTVPJdwrKl3n\nt31tfot+XkEPqo/UMO1QtTOtO8FzeOKD8/iZGgpJ6ejuvlKsgx6c/In7ePrgPHnD0tprePwX5gk6\nwvF3HSY+62Mipdb3t3N+KmRjDPQzslFL/czVneqbAhLdHxMFvXXQRzqtB01ZM3hG8DyDvbmNvFCn\nt7VAjBAte4TtAAhcI8ijelm193Tz5w24FcaJmoRNDy/9lkt5xbFyV6lgnkKwPR9pBiRRtKGaDHkd\nqnMdvBdGSaeUGdh3YO5usxQzGTaMkLw/lntxYpCZlD3xEgfCHsulxSzUtYPtjFHLXSmV5yvko5b9\nnz+IHSnJpksOfO4gdjrHNgPyGopzKN1V3rirebUcMC+TLQXprEKorROJ9RMG7tZlLGRn69pL6ujB\nm82Wqi0Bqu7sW6JKQbZQx3YDZDSH0iObUJSk1Au8xYho2aMY0SablNpYLqvanPPWgoHiV2+/k/Uy\n6jyW7swg8YjPO+2OpYiwA51KTDphFDmaCcVsTm2yw9rZ0RcJxv7kg+/hf7/hMG/6nqe5/29vU7tE\ni5rhtlWXomiU5HMlYbXAnIvp7MsJlh08e3QdfFQ779Hdqq8ZdIU7f/MQJtZdqGp7qqtW/Yye4Pv+\n+3udpD5Uljzu+O1DZDOWOz51SE2HDRz43EHMDkN8UVmbZVUrRhNayti48+SVxytKIyJySkSeFJHH\nRORhd9+kiHxVRJ513yeuePyHReSEiBwTkbe97PMbJewkU8orN6EWA9aDcE3BKt7xOuUL6oIStB0m\n3KkYFTWF8iZzqm9nIkVPBh2FmoZdvRp4mZDOlgPm2zVFZBCjc/t4V0sPyMCuE5o2II68f57kfH2g\nboWnLuBlVbn4WCcQUmppGq2+ODFMjHWYDluMeRGni1HdU2eqIuSVYDNPRVQcsKxPjOqb4jKVkk0a\nfYynIzbjg62WSnLKBVJPpdYdHLevu1lWGdCog66bw6frUmN+S1WV/ES0p7EckWeBis/0PGQ5wlvT\n7UPj+QBZijBV13eInf6Bhe6enHRrgYkNwbYutR1t3a8vh/grgfI/dnZAVHCm7+BkIh3/FSN93QZN\nMNWRlOZy3SEh15N85cEGR7MZ/un0I5jY4Hc8KpcC1cVw48ZoxSc6F5GvVQajTBNZsjFDMlcQrXjc\n+N6HnJWdfp5SKh+oaOjjOrsL0jlt6CaTini0oSVI9L0yFUVC+qn2h9IZNZ3p94M6ewqycX3/s2k1\nzglX/YFexCuNq6kvvs9ae9cV7KwPAX9urT0A/Ln7GRG5FXg7cBvwg8C8iHxbeIVKYbmutlMQ6rv+\nlk6K3AaWqKnbgnDNdX6dO7BxhCK1aFeF3mC6pzz6KcUA9MkndgN6ADd/5uB6Q6tSEvolJjZUFn31\nSNiguOfjB6le9ElmDGWjxAT9Por+PlgMSWdL8hHFzX8jum2m3mYmaBLg80D3Bh0bOvm2fEwZj0XN\nUkzm4FnCiyFUSsKmELQEuVhRWbfQUo4pp98GVsVWlytEK85cOBXsaE42aRz1Wz+XsKXCpH3V4n7i\nypyzc3+6FDa9gSWA31P9wviCIjtBTxwphOpch2xXhm0UBHNdFREeT5CKomWzlSqeZ9QGPtetCaWQ\ntyOkGUJLVbTzUTvQJ/A7HibWhh8WkrUKtWcjqoseYVsGOp5P/Pw8v3r0R7kpvIStlWomnEF0LlTd\nkFxeBMMGrVSs004Qo8pax+dfr3D+WukEWSzJjGu6jxb4bZ9oUc18xGhlJ46XYiJLOlXi90Qr46kS\nK3pehC11u65O9TC+SsrhRufG9U6uJq7lKP7HQJ9j/Fngn1xx/xettam19nngBPD6l3uysKkHydid\nS05U1FBZdjj+/slgIJ80FLd3iN6wTHlLm3zE0jjlEawF2FqJrZeqMv14wz2vAnfaews1KbnGuOW+\nQ6SzJZNb1xQvf6nC2sKY8xvQA22jorVbk1llxSNc9RWr4URB+sSb0S0tyrohmSlfBOm95+MH2Ro3\n2RUs44vH5068jt5WQ74jw07myLjuvcVA9Uyk5WvdEJ6PSLaURA6A4yUe4YrqMgKDjrzX8wYNrTKy\nRGejwcmR7krJtuRkYxZ7W0uRkkb/l+qypX5OBgpQfb+EE//sPhVDHdEKRaG+ut/ubrVEq0J2qoF/\nMUI6PnKirszEs7r1sG560lrSrWbZ0ITWb0r2vS3DtpDPqFpz0FbH7Mqi78ySFUfQ3ZsPnKWaNxXc\n/QlNDuYr03y5fQfff+tRd7JrVVvM5qRT5UCE2O/olio+r8eCiUuqcx2qi0p08xNPk4YoqCqddVf2\ni6EaMZdCUYN0piBaEYI1j/gSHPuZw4w/5VFZ1Smb31bzmaKmFWXvezr4Xx9R4lfLw19TP4rKkke8\n+J2ZSljgz0Tk6yLys+6+OWvteXf7AjDnbm8HFq742zPuvheFiPysiDwsIg+bVoeyqvjxpecnHJJR\nKbqFI73k0znFiCW67FOej+k+OYE9Xad6ySMf0WwanQ9pHI0IEpwUupPyqhq8zENCQ3Th2qjRz9w7\nT2Wyx8pKg2xCyT/xWZ/6yZCibokvbhyTSvZ0yCdKRTdmQjZqtMnlQCzZhKHTqVJ7ISC+4KuTkovW\nbhgJEybV5pjO2RFMXCKrIbarWJGR4wHVRT3B+wpL+XSB3/FUULSq710+rmKlfSpvMVXoAZyL6gHk\noliRQuntjacqxKciJQQVPtlcQTpl8DLhkY8eJpnW0ruMILu1R/dAxlue/DFtGm9JnVGL4kTCNYVI\neyUOc6H6E35PKEZKxXg48xU/UcIUkSFoKhbAy5SBGrR8cFT8vvRZOm0G5jjZuCVqQvxcNODahCva\nRE0n9T199CPz/P6RN/ET0w/R250NGtwjT0V4qeI0xFGsyx0J7RsKqhcUqJWdbpCNwvStlynnUm3P\npKq94Lc98slS3bpHCqSApw/N46UeO/7t/eRbMzo7LTf+4UGaN8Darepq6xXalzORemMe//uf5cj7\n5qmfDsAohqK+IDz1L+fVdOkq4pUmhjdba+8Cfgj4ORF5y5W/tKr2clWbGGvtp621r7XWvjao1tWm\nW3T0RMXomElUBtvLhMbRiHBNKa59WW2v0AM1vbFHtOpRX4CwbcncfNgE6B4yLpk6sMTc7Brl3m9u\nT3Y1YZ5rUHuqSnzRldxGR0qVm9Yoatf89IOQZ+tULgZ09yn4pXZOmXsm0D2x3xP8oD+yePHf2p0J\ns2GLbb5PaXWbU7mgzRspdarTurFQFl8ig6ZvuBRQbskopgoFxTgR1aKmV9jGCwLO8CbZqRVYOlOq\nSK+7imYTlrxuGXleqD1cY+KRgBPvuI+nD81z82cOKkN2zBDuaVP2fMI4p/mnWzn5479H8HyV9M4u\nvZsTsnFDsqWkd0eP7DUd0nGtLEefCd0JqLiDyqJOocqdiQrZCJg9PaVWuz6GGLA19aEIl30ip4lZ\nTBTap6orTNrPoXo+oHIm0p5JIvS2rYPW4gca7A5WeN3NzztCn8XvwehJBgzIaFXwz1SJzwXkt3TJ\ndygLOL4IS0/OEJ2qDtSyuzuUo1I9p8m9uhCt83sSYeGjb4TM4/i7DlO9pD2i6jnls6iilnDspw/T\nvLHgxs8e5Lb/eAg/heM/dZiwpXok+79w71Wrlr2ixGCtPeu+XwL+BN0aXBSRrQDu+yX38LPAziv+\nfIe771uGcfz0bNTyzL161WvtVYn07u7CjR11ZNXdpYarXi4DxJfpKDiksxNWXqd73f6MmNAiAsvP\nTHHh1BSVp66SmP5NomgoPdyEfek4ncm3zzdI5jZuXGlCfV+e/5HfBwvp3+kMmmVSaNOxfKFOd1fx\nEpLM6EiXfZVLxBJxPNdkmE04jchSVHxk1Vf9RtNvgmnCtYmvvISmHh7WVwEcMdDeZQdHjd9UeHPQ\n8dSkJRHyiZJstqCYKijq6oC0cmfJ/s8fZP8f3YsJdKwadD3y03WCpRDveB3/rZe58a/fpczZMzHB\nuQq2rwTuWbxna8SL2rRLJ3UKI5lQWVTj2Hym4Ll/8Af4maja1MlY9T8nS2dGA+RqYtT/X81UTu10\nSNjSLVNvztDZriNRNXxxnJwrGsqP/8I8n7zwNt6/7avkO1OFYHuQjQon3nEfz77zMNZDT+RFS+2h\nGvHRKpVlj0d/eX7QO4vP6/s59oyPWAU8FbElH9Vx7G2/q1J36aTBb/nc8mmVdjv204fJJgzhqk5n\nkmmdKIWrTgynq5XYTX9wkNVb9HwxFaXGX028bGIQkbqIjPRvA/8QOAJ8CXi3e9i7gf/lbn8JeLuI\nVERkL3AAePDlXsf6qnL7mn93iHgsQSa13ApGM+xsSjKjqEYMqlyMioTko5bKxYBsTI05vLDEjBaE\nW7r0blF7dJt6mFhJSNnYtY8Ta2d8tT8bUzxAWbUql141L/JzuJa4/XcOEa0J8SVl5NkA8lZEfE6N\nVts36FXMVLRDXl1a/7/u+dhBCuMx6bfxxeP+3j6F6KY6hegLoopVyLENobqk++/6gh4SZWypnRMq\nFwIqS3rQgU534gUnDtNVuHSxNSVaU2n5oKVJJVhSv0vjvB4HFnvuHMtHS8UeWLVvWz4/RpGEznPT\nCZk4IZWyF1DE0N6tz+H3hHJPgomNiqd6EF0KdHwXuilViE4kMtWkLKsWQm3UBT0VePEWI+cMZYkX\ntYFYWdHGp1dow9tPBTJvgIQE+KtjBwB4/Q2nwMLq7SomtP/zB7nzNw8RrerjkhlVoCqrWsHe/YlD\ng6ScTur2pbPDyQigY95+hWN9xXRUlnQkVVYVu3HzZw7q9m7Ewu6uk5KHYtQgOWz5D/dTVhwWInRY\nnz4P4yrilVQMc8Dfisjj6An+p9barwC/DrxVRJ4FfsD9jLX2KeCPgaeBrwA/Z6192cuoGJDZhDIC\nEcvOuRXK0YKoklOJc0yofHzbKFRQpNeHiDqJrYZR+a5ugF8t2DO9zN5tlwkWQ7VTG82Ilr0NEVM5\n8n5H63WwYS8XSDzCiyGmsTEVg/G1Sgrb6mdgPRV1Hfg4onBbL9eD6JGPrrPn8oZgjMe4rwICL2RT\nTglJqwW/pyPDvrpVskX5+n6i3Xe/5ePNJjz6kXmltwd20HEPulpuexkDE5cgKqmsWNUhXNOOedgS\nnvzAPCZSYpWXoeAbh1z0e27ikOvWxm/62NQjchMKPPd6HQ/p+pT1knw2d1ocUI21eWp9BuYv3a3K\nQbAjqvsQrcmAhOcnosdNV0+4dFbVsI1TN3ryA/MDgdk+WEjp1CCZqKGPC1mJOFtMcPfoAlIKu/dd\nUlp4o6SIGYjkZOOGR395Xi8csUWMJd2ZUdaso7Fr4glbuO86uYmabhKTa5PW+m6r0yhJd2aEEwk2\nNOS9UNfs+hR+Bmc+/Ebtq1WM2i+AKopf5XG/KcRgRWQR6ACXX+6xmyCmGa5zo+PVstZXyzrhm691\nt7V25pX88aZIDAAi8vArVbC9njFc58bHq2Wtr5Z1wrWvdVNwJYYxjGFsrhgmhmEMYxgvic2UGD79\n8g/ZFDFc58bHq2Wtr5Z1wjWuddP0GIYxjGFsnthMFcMwhjGMTRLXPTGIyA86evYJEfnQJljPfxGR\nSyJy5Ir7NoxivoHr3CkifykiT4vIUyLy/s24VhGpisiDIvK4W+evbsZ1XvHavog8KiJf3uTr/I5K\nIWCtvW5fqC3rc8A+IAIeB269zmt6C3APcOSK+z4JfMjd/hDwG+72rW7NFWCv+1/879I6twL3uNsj\nwHG3nk21VhRS1nC3Q+AB1BN8U63zivX+a+ALwJc362fvXv8UMP0N923YWq93xfB64IS19qS1NgO+\niNK2r1tYa/8aWP6GuzeUYr5B6zxvrX3E3W4Bz6As1k21Vk2SqXwAAAHpSURBVKvRdj+G7stutnUC\niMgO4EeAz1xx96Zb57eJDVvr9U4Mr4iivQnimijm3+kQkT3A3ejVeNOt1ZXnj6FEu69aazflOoHf\nBn4RZeT0YzOuE74DUghXxqbQfHw1hbXWimygRvw1hog0gP8BfMBa2xRZB8VvlrVa5crcJSLjwJ+I\nyO3f8Pvrvk4R+VHgkrX26yLyvd/sMZthnVfEm621Z0VkFviqiBy98pfXutbrXTFcNUX7OsWGUcw3\nMkQkRJPC5621/3MzrxXAWrsK/CUq+bfZ1vkm4B+JyCl0S/v9IvK5TbhO4DsvhXC9E8NDwAER2Ssi\nEaoV+aXrvKZvFhtKMd+IEC0N/jPwjLX2tzbrWkVkxlUKiEgMvBU4utnWaa39sLV2h7V2D3oc/oW1\n9p2bbZ3wXZJC+G51Ub9Nd/WH0Y76c8BHNsF6/gg4D+ToXuw9wBQqePss8GfA5BWP/4hb+zHgh76L\n63wzus98AnjMff3wZlsrcCfwqFvnEeBX3P2bap3fsObvZX0qsenWiU7xHndfT/XPm41c6xD5OIxh\nDOMlcb23EsMYxjA2YQwTwzCGMYyXxDAxDGMYw3hJDBPDMIYxjJfEMDEMYxjDeEkME8MwhjGMl8Qw\nMQxjGMN4SQwTwzCGMYyXxP8HWE/QotbtWw8AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1938315a128>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "inds_r = np.arange(len(camera))\n", "inds_c = 4 * inds_r % len(camera)\n", "camera[inds_r, inds_c] = 0\n", "plt.imshow(camera)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x19383254e48>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXm4ZVdV7v2bc6619j6nulT6FlJN+h4UEQTpQRThfp83\ngoqCaEKOeu3vVe/1++Pqveoner2f3grSCdiASBtCSMRAUCEikBDSJ5UUCUkqTaUq1Zxz9l5rNt8f\nc4655j5VlVRVqlKV5IznOc85Z5+9115nrzXHHOMd73iHCiGwaIu2aItWmj7YJ7Boi7Zoh54tOoZF\nW7RF28kWHcOiLdqi7WSLjmHRFm3RdrJFx7Boi7ZoO9miY1i0RVu0neyAOQal1OuUUrcrpdYrpX7r\nQL3Poi3aou1/UweCx6CUMsAdwKuB+4CvA28JIdyy399s0RZt0fa7HaiI4QXA+hDC3SGEFvgo8MYD\n9F6LtmiLtp+tOkDHPQH4bvH7fcD37e7JjRqEIUsO0Kks2t6aPq1Cq4APCgVITBlQ6PSbR6HSz6H4\nWV4DoFTA326f2pNftN3adrZsCiEctSfPPVCO4QlNKXURcBHAkGm+T73yYJ3Ks87qa44DQKuAJmBD\nDBx9UAxNhw8arXx+vk9/H1YdrTMAtD46j9YZljcjWlfRepNfb4OmUh6tPDbE11ivGZoOGwyawPwP\nPvRU/tvPevun8PF79vS5B8ox3A+cVPx+YnosWwjhPcB7AJarwxcbNg6gTX35GCrtqLRnZGs8gUq5\nvIC1CgxNx5xtANDK0xhH6wxaBcDjg2ZHN2C6avFB5YiiMY4d3YCh6ai0Ys426TWAIjuB1ifnEAzW\npwz26hNRKuCCxiiPVgH38gcOwie0aAvtQDmGrwOnKKVWER3Cm4GfOEDvtWhiV58IxBAeoDEOHxRx\nYStaZ2iMZeRqWl+lHT1gvWYuxAWdF7KLh4yvh8ZYqqBoXbxlNIFKO2yIUYJWAR0CQxNTB49CK48m\nOoNGO1pvqJRD63h+8z46JRfIjsZ86Xg6H8/BaB9/fmWZlS7aU2EHxDGEEKxS6heBqwADfCCEcPOB\neK9nu5kvHY8PipAWcG0cWsWIQBY/kHdxSR8ECIgL3FOpGFHIwq907zTi8TxtSgkaWfxBUeFS6uFo\njKV1FZWOXsV6k5xDQCtPpVVOU1pfYXQ8t0E6XqMdNmjq9HqtAkZ5+OIJuKDjeb/yvgP9kS4aBxBj\nCCFcAVxxoI7/bLb6muNotE25e1xc5QIeVl0O6atikVXK06bFWqk+e6u0z+H9xGuVz7u7RzE0llYF\nGu0YuQofVMYfWl+lyMFnJxTThxgt+KBj9KFiKUyrkKME+e4zbEl+XP4GxLTn6pPS+yqaV+9xyrxo\ne2kHDXxctD23qS8fg1aekasZmo6RiwtSnEH55Yl5/nTVZoxAFrksMFlsNhiWVuP8mDw+XbUAGUy0\n3lApz8glwNGb6CS8QSvXL2IClYnOxwfF0no88X7aa3zQNMahfXpMB0auzkCm4B0lFlFpT4VnnJxR\npTwoUF88gXE6J4DqVfc+1ZfmGWuLjuFQtqtPxAaNDR1j2zAwltbHSzZva0yx04e04w6MxQfFjm4Q\nF1GIDkEijEZHjAHirhyjA5+xhRgZxKghOqF6wgHJz2XEMBklpFREuXxuPagZnzMaV4SgMNrj0nOM\n9jFdUC47is4bBsaybTxkaTPOx5t3dUyZCMy2DUualhAU4ytXE4Clr7v7Kbg4z2xbdAyHoLVfeG7c\nZb2i0p7O9eU+rQLOa5QKzNu4gGrt8KgcYvugcF4zVXXYoBm7BDQSsKk60DkTHUvQdLZmST3Oi9p6\nTaOjg7HeMKy6iWij0S4vdqAAMiNWISa7fmNcPq4P8X+S84TEdwgKo2JUMDCWzhlqHZ3L0maM85om\npUU+OUStAiuGI3xQjHMFBWavXA3AkkUHsc+26BgOEZu9cjWDysaFbzUh3eTzXdzda+NAQ+djKB1S\n+D4wdgLFzzk7fVQxMDbzCsSBDCqbnxtfp3M6IDt2LEH2BKWRq1PEUaU0ImRwE0gRRax8+KBorYkp\nja/ye0WA01Al4NEFlZ2B/D8CfPbH1BPRBfRAJRDPobLZ2RliBDX+x5Ojw9F+EY/YS1t0DAfZ5q9a\nlUt9YrVxeREM0g0v5b6BsTkMVyHkxSQ7aLkjQw/iQQQQK+VoklPIPIMEUkrEIDuzWF7UBZ4gRKbG\n2IwdaBXi7wXHIZZMdX5Pm/AJAItmWI8ZpBTHehNLoN5MVE0ycb9wGNZrBjo6RaUCFR5dhYxBCG9C\nXjr+x5MZO8PyH7prv16/Z6otOoaDYPNXrQJiXl2nxVYXi7lSnsrE3d16zXTdolVgKi2MErGXvLt0\nCpVyeHTGC8QiNlBnjnOjLUMd0wTZ1aWKITu6zYChzeVMG1Qqb/YVj8b0rEgfdCRUqT7lsF5P4BjW\n63i85IykKtH6KpY3iThGY2I6EYKaiBDkZ0mzpPTpvMbr0hnGxyQF23rF2pRqKY58wx3787I+o2zR\nMTzFNnvlairl843cuWLHTjwBlYA36AG7zsecWxa/RAjCX6CoPpT8BUkLpMdBsAP5mwCN4mhGruaw\nZp6Rm7w17EQYH3d3G1TCI1zGLuI5+5xS4CMGYRHmYzzOdNVmYFPSInEGVZEStcXCH3cx5fConDbI\n34JgK0FhgJHtHc7AuJRyaUZdhVagFTz8mdOpjOfwH1l0EAtt0TE8RTZ75ep88wsW4LymTuxEG+IC\ncaGv5cvirrRHh5CJTLGnIeb6KuXtEj2MXBXR/dTXIE5EFuJs2+R8vlKere1UJBHROyGpVAC5z2Fk\nm7xghUYtAKLgF1KmlHO2tskLvy0cx8BYdvgB44JM1TrD2FVMVR3zNuEq2jF2FY12jFPKMNs1BMBk\nh6lxqXFLzm+2bTBF2jGyFXNdzcrhPKOuwgfwXlMZz9gaNn321MXoYYEtOoYDbO0XnovzmhAi0GYK\nwo6EtxD/Nqy6CCSmG1r6CCTsBuiChqCYtzWeiOTL4vMoau1oTJd33L68WEfyUzOf0wYbdC5vCmlJ\n3keIS40WJ9LjDvn16bx8ULTB5AUuVGxxZEoFpqpImx4nx1Vrl52TfBaNjtiKOBkXYmXFFenSVN3l\n/zekFEz+T/lfa9OfaygiLBs0tZFoxOO8YlhHzGbL504hBLUYPSRbdAwH0OavWoUOMULQaaHITla9\n6l781SdNLC4pPTphCdIvCCBhEa7/WfV5tVKBQVpsQN59JYWIlOS4QKRfYYJ1GGJUsZCRKFZWCSDy\nKZrEJbAUnZRq8pxJ1QSfHqsLYLNegGdoEyOEWjsa+p6P2HcRF38GZVNKMbYVtXHRiaYITHudna/S\nHpecw9j21RFUwKcoTc7XA1uvWMu4qzj6jbc96ev/dLZFx3AAbMeVq2Nom7AEcQgSTNfa4a4+Ke6a\nhLQAdF7gAtABGJXKdNrnBQR92Dw0HTu6QQIdfe5DkGNXyVkIFiALRo6hVWDKdMwXpKdKeSx6wkGU\n1OTJnd4zXVRFmrzY+/eyuk8jSJ+LVEjK3olKeWw6rkrv6XwfMZXUbaM9JAcg5+jS+W8fN0zVMdIJ\nxKghqCIVS/9DUzlGbd0fj75p7NmeXiw6hv1oW69Yy7LBmNr5HBkISFbu+rJLCZ1XB7LzACkrCvKu\nc6NTGb63ziScoc7lP2EwisMAMsux0TZzD6AnG7W+Sq3Y/UL1Whqw+qpDCXoK7uCDQqOwrmdUyvNa\nX02kQD6onqiVoor5UOeFPlV1jHxMM0LoNSLk/SECtRIZ7GgH+fMa2aoXlPGaqdoSgNaZmJqk8q9E\nINb1P6t8bI1OPrOu4v+96bOnohXPyvRiUSV6P9n8VauYqjvGCQ2f6+q8+MRBlGCd9Tqz+yDhDUHH\nRZrwAtnpPYrxDz5I50xfhYDUxtxHETaY3CU5sXiFruyqXfZXVIlhGCMIn52CTuG29FWUJUdN/J9K\nByMRg9ChG+1otHRO2si9SGBpCCo7vKnErJTHJFoSjobzOn+u5ecYiv/NFVUJwRiM9jSVxSYHYZ3B\nhyJF8RqjQ74WrTU4H0uZ1sWlYZ3m4c+czpbPnXIA7ppD1xYdw36wHVeuzrtTl760CoxSTjtOqLjs\nmKKDAHHhztua+a6eyIFLyrAmYL50fET9Eweg700w2KBpvaF1ZqIPYuTqopJgGLmKOdswsnVqie7P\nIYKPdd71fdCxnBjKCEEz2zXYEJ3VoOrbr+XcxSotPAyTHUdTpDVyzhNVjOKxEiuZrlsGlaU2Ln93\nCdQcVBajAgNxBqnEGZmXFZ0zDCqLUoGmksgqnuOw6aiMo05fgzo5scpRGY9WUBlPXTmcVzz8mdP3\n961zyNpiKvEkbMvnTok3cNq05YYUOrPRnkBcONN1F+vobUNregbh9naQjyehsYBsPu1+HgVpRy9L\ni9ZrXKosCC26SWXMobGMfN+NqJVHm9SFqPuqQZ8uxFZsTU9prujZkHLslWlxj1yNJuROzDL/l6Yt\nMR2Ecu3RKkUSxWcg36eqbqIfRKIm6fUo27KHlc1OT0q+dZG21NpjEsbgQmRhStQBcfG31mROA5Ar\nHaO2ZlBbXFA57TA6gPZsvvxU4JmfXixGDPtomy8/lcbEsD03AWmfEXKYFEbtvKbWnmFlqbXPXxB3\nOVOE9iHd7AK4SXgtFYaezNOLmtTaRaCTmOPP/+BDffNSytdt0Qk5wZQsGJUTTkP72C+hHFr5HFlI\n+VKYj00GOv3ElxwDojMaGkujbWRRKpdbwctIY5g4FvFz8VnyTT5jIH9GksaUJv0m8T2jK6lTZcJo\nj9GBKn0utYklS0kv5LvgGL4QHKyMw+iQH3vkstP2/eZ5GtiiY9hLm71yNds+vyYvfl1EB+IIpJdB\nFr7cX7K7xR0o/k3q8OWXqDCp4tgQeyjEaQhZqtF9ezPEqKVSnmX/cmTsi0g7t1QthqmCII/lvoa0\n4GMfhM0OqUr6j+IE5f8td3whPIlJJ2c+hvYZIJXvlfbJQfTOLx7X5v9Zqx50lfOUSMok5xPSY/L5\nCgbhkuOQiC0UDsgVERnpejmv8F5PgJQAuqBaW6cTXhHf85mcWiymEnth81etghB3+GHT5rKdSfl9\nYxxdYhsKGw96lp4LCpyhTs+TdEBu/s6ZpLnQ06E1qT6vHbNdk4E6uYFnbZPTBQH2oNdAqLSPFYkk\nuSasxlxKTO9vQ79QhA7tlcqLPIu5ksBGV8VOTafTceuJKCQvZvqdvcQOrDcTbEhxXEKThrhg51Pj\n2DiRr4TcROE0nde0zqDoKdBCeAKyIx6PGyqTIhgTU4nKRKp1UzmQEqjX1LXN5eVeMyIK48q1cUHx\nwKfORKnAcW+69cnfYIeQLUYMe2A7rlzNls+dQpeR+5AUlyu2tYPMyxdwEWBgXI4UoqipzunC2FYZ\nRZebXdIQyauFDFTW14U9CLGkKbugPK8xMUKQdKLcxXMDUkEwElDQes3WH3i0JxoVrxNwM2MBOYqw\nE8eVtMWHPhqR50tlQzowpYtyaLqe96BcrtY0xjFdtdTGsSQ1kNVFuiKhvjic2jim644ldcQ7VIq6\nBIcYJtBxxdQopwoQcQajPUuHY3wgg41aT6Y4kj6MugqjI96gVEABwzqCn8+01GIxYthDa4xjrq0n\nUO9ae8aphOiCYqru8t8oWHrQRw3jVL2QdEB20ZGtqFPpTiTMZn2TF7xQg+e9yamKLFihUcfGqzq/\npwidWBUX0FbX90XIQhYntPIrh7Oji1FG97KNLPnnoxilngUBI2Olo6L11UQTU+sr5qwwJ32ujIgw\nzOSMCpVfIwQsECVpy2ySopeIp0slWeFgyOc1SJ9HKVAjaVj+fAkYrXN6If+vShhFr6IdowHnFbWJ\nIGzGcVJJE2DpcIx1Jpcyp5qOcVehtcc6w4OfPoNjnyGRw6JjeBybvXI1LiiCT3z/psMFxbLBmLHt\nOQGokNMIH1R2AiYh43VxA05VHbNdM3EDO68ZVja3FmsVmK7b3P8g7EebegfkWLJobJrLIBWK0pqk\n7hQt7tKtqxCKtCyo1hmW16O40P71CKyfVIMuBViEPJVp0og+Qy8OK1UMeX18bt+nQCp5ZiJV0Fk5\nWjpCfVCsaOaZs80E1yGfU4FthKAYJKcqQGXne+c1XXc5zQsAhYPXGfOJzrypLG1yfOLSQojCMxAJ\nUOXvcq2d1zz46TMI8LRPLRYdw25s6xVrMcSF3aY0AMi6CbHpyeZef0kvdPqbImuNTObWQWf1pIXN\nPj4oVAGIAUl6PToftWAAsZT3Ksl72ZnC3HqTwT0J1SPGoLFSZk0KzzaH+pPfxVpX0STwstylq6QC\nXWIjKIrypc7VjghWmgw2Wq9Bl2IwUXRWnGTrqxyRSdqiVQABItP/qlRgLkU8skjFQbig8DZiFJ1g\nFKSUI1UupGohZCiIbMgYnYmjD1in6Ww6j5QG+kJWjuK6P51tEWPYhc1ftYphZTPNVnZ+6YwMKSqo\ntM9sPoiNPbVxuQV4qu7yTSo3ff4qKgJyDHEutemxhbKtWur7oVhEMay2DI1lUNnEPPQLqhGx3Cid\nkrKYpawoA2OkfNhXA3q0v58VofMAGXEesy99BE9fMeicyZyB1lc5MrDB9LqSYbLUKI5GMJZY1Ymp\nUIm9lM+Vz72sMqj0fwgO0SVQUjCd0kIBEMsxRGnK+T7FsE5nRqR0i/oQqeDlnM74vPiZbfz0GU/6\nPjyYthgxLLAdV67G0KPrfU077vADY5nrGpbUbd7BnNdoE6XXXNEfMLaxw9HnXDwuqHgTpeEtacG1\nIaLv4iA6bzIeIB2Ec13UUhBn45PDENl10UGUn6GQbpewX/V8gEZPkoxK2ffH2ulEbU56DElerhxB\nlysQXzqeeWv6MXNpgUtKMLZVzuuXNSO2t0OgpybPJxp4rV2fKlBEJPQYBfTiNkb7/LOkZCVt3AdF\nGWNl4pPuhV0WYg/5PY2UKdMMi/Q7utfblHsDopPRCZSUz+D+T56FUoHj/8Mt+3IrHlRbdAyF7Ujq\nwp3XTKe+h/KmGxW0X8llXaooyA3VZTDLQwp/nddZ5FScg/ARgInmptz9V5CZ5m2NSrhDzp3FaaQ2\nZejbkyvlcskxpzj06cWSxFbM1Osi+JXIIBKb4vlKqiGt2aUcW2mlQzPp/CvlwVA4n8lbLjIS0yAa\nFXLnY0ypInYiwi0LQcSSv4DvRW86r3O0pyCrQA0S+9Q7k/9Gel7ndKo4+Bw5OK8Jqm9ui+8Lvrg2\ngcgvsUWZOvejaI9zT8+gfNExJNt6xdqJnUk69mTHK3NICf+dj+pBXnogitIiXmchVwmFBeVu03GE\nH+C8xgGYSTxCMAPRfMz19ERUkgUt3ZbSuFRpz5xtUoOVT1OmIz9iRT1iyrTM2gGPjqdZ2czTaMtS\nM2ZsYpflvKtZVo17R1NgFI12kPDNRvcKTxItaEIOt4XH4IvF4oOCV97H1JePyc5LtCSke1KciyZk\ngFUWp1Cja50iqKoESHVub5fSsTj20qnI83VKD1tnGKY+iVFXMaxtTkuUCgzqPvpqbSxZauVprcmK\n1LHnwqdGrMSfIJY/H/jUmTinOenHbtq3m/Mg2KJjIPY8yK4bIN8wnddQ7EomhcOiK1gbhynAQqP7\nduv4fI+p4u/C96/rGC2IrFmjHTblxcLmk5tcOA5SVmuqAiAMcaS8rmRIjEXarq3XLK9HHJYWPcBn\nbzmH4S1T3PxL657w8zj3T2YYHxZoj7Y8/8wNrFryKPOuYdY10VkZlTGCithwJKKxuuqdmphURvJu\nf81x2NA7XY8ivOx+1BdPmDgPpQK16j8vrXqi1XwXh87Id7kGYgGyjoWUVruEI5TCsQL/jroq90q0\nWS8yHStEtqNSAV8wL2P6kPpbnMEWk78WzgDROvDdj5/9tHEOz3rHsO3za7KeolQchEYru6XkwrIT\nNomaLGFvDsmDyg1N5fN1sXsOEqBmtGeQymK9ylKPF5RNSWKyGBttaUOf1vQt0vFvjXZMmY7Dqjm+\ncP/pbLvhCO56+6Xwyj37TL7965POY9UVP8cbzr+BSnnGvm/nlnPuyUseX1QcSpygbLAqF4xSAUMg\nXH0ipAghO+lioZeS8BDTA+mypNC2BJhPu75EcOKsZSe3KTKRKoQscpWwhYg/pLQhOYd4HcGGnlYd\n5XUmz1PunxJ/8L6vgjxdTIVw8E92uTo8fJ/aw7t2P9q2z6/JHAKXF7Y02MRdemyr3JiT04LkAMZF\nHg+xfLhtPMw7yopmxPZuEIHKIpQemi4zDoEJDUQgvw+QI4YqjW6brtq8EFtvWN6McvlQpNYlerjh\nY2dzw28+cYSwp/bqW9/AkqrNEnCx1bufbh25BWaiNDpdtRmwFLBS/s/WmexEl9XjjKXA5GIrMZjO\nmai5kBZ9lwBH6eXo0vWU9E8Yp/NdRW18BkGB3ChVJ1o0wPQgfr6tNdlZQHQmAZhOpKZ43WIUKSmQ\ntQatPcb4pPXgY6XCaZSK5U3vNc5qVr3lhv12XfbU/il8/JshhO/Zk+c+ayOGLZ87BZ0Gtkifg4KM\ndO9oG4YyGcprxmlhz3d1xA4Sgu+KBV/OeAhBsbUd0mjHtvEw71qawBY7TaOjBsCO1HZtveaEJVt5\nZH5pX39Pu2rrDC1xVxREXwDPHV18fSw1RnLQjm7And86ibv2o1MA+MIZn2XVZRex7NjtnLxyS368\nlKgvOx5FMEb6IFpvcljvU3ogu/qsbRIpyjFve1n5gbFRrCXojBvU2jN4zXcY/+PJkZacHLu890Lp\n+Nm2YdkgOmepkIDwGJLDMn7BLM0ACS9xXjFIorHzbU1lHFpBojfQqDBxTICQVLm0DmjtcE6jdcA5\naAaTJLRD0Z6ekOmTtM2Xn5rLTWV454qbyhSPC/e+TDOAXDKTCEEXx6uNy+XDhQQnSU+ksiFcBelL\nKDEIkE5El3EIiWCaJJ4qJjv09nbA9MYDc2k3/Oh7sN9YyYbNh3PbxqO56TvHM2/rTIeW85IFDv0w\nmUa73O+hVWBJ3eYeiInSbAJQBQuY65r8Gcvnve3zaxgnERYRaxF8qKyVWK+ZqjvmujpzUsRxZwA5\n4QclKWpheuF8BBjFQVgXm62kI1PKpiBgZB+deB8dRNeZKMLrFd/9+NkH5PrsL3vWOYatV6xNUYHO\nCLLsypIuSHlLdqisHah9bpPunMk1c7nRhHILpN28yaQn6FmMtXY5hAYy6v/oaEl8bUHmkWPJ4z6o\nfH5ApkALxXloOtas2MTsWeMD9RFyy8w6+OphKAVsq7n6zMvYliKZ6arNo+yW1WMq5frHUFnPshyD\nV7aVD1Lj08DYPKx3+WCUiWHyvKVNy3Td5c9H2tyn6y465dSLImDudN3lSoM4V6OiqlNTpbbyQhKu\n5CeEoGL3JZHXEDUdegJaPJ7LJVC9YFNRKuIMde0y1yEExb3/cA73fOycA3adnow9qxzDts+vAWTX\nINetZfaAgsw6lJtqx7jJXZFyE5RNUBJNiMwY9ArHkgdXSXDEBp2BuVKzAMhDWyrVLwqJPrJYS+jn\nQeZhNInRKI8NtGOgHcu+NeBA2o2/uo7bX/JhltwbndStd57A1nZq4jla9ToMwAQoWdKny4gqMyCD\nzI1wE45RiEldQV2W46jksMVJS3oXgMFrvhNxgtBrQ7oiFSx/hskqk/OKcVdFTMKLLkMCMlPEME59\nE6LbEIiakhIxxIqGSl86/3yo2rPKMRgVJkLF2rhIddY9Y69U/FlY9879DAvySZASZ69a5EMcICMd\ngCWYNi7q93Ljy/NskUsDWalIHpdzkhRFuAwiGjtlWr78xXO54T/vX3xhd3bjr8b32fAj7+Xue4/O\nwKg4rtabpCOpsxK1YAESdYkJ7iCLXsJ7V/z/cq3KEX/ymeSu07TAJbWotWfb59dMTACDSSq1XfCZ\n96pOKkcNne0rMnJ/+AXOJARiJAXp51Rx0mGC7BR8f87f+ftz9+s12R/2hI5BKfUBpdTDSqmbiscO\nV0p9QSl1Z/q+svjbbyul1iulbldKvfZAnfje2I4rV7PjytW9PoKUIdPvwhOYrrtc9hom0dHlw3GO\nIoQoU9KNs4RZUjoq8YdxEjOZqrrM4a9TC/VU1eXXQoxUllRt1laQnojaOJbW4wikyej61M1Y9kQM\njeXwZo7PXnc+d/zMpU/lx5ttw+vel0VgIfZJiLisVClmu0FOo8o+E2F05qG3BdYi3I1MBS8Wt0R8\nos8g9HGfnLyAkgPBiApsAeLCHaexdSWHIfZIxBbrrOKUsAPoMShppIKEBVURVPZeY4p0w1qD9wqb\nGrBMFasXWgdC4JBLKfYkYvgg8LoFj/0WcHUI4RTg6vQ7SqkzgTcDZ6XXrFNKGQ6yyc7U2orWRgzB\nJSAxEMkyIT1vnHYOUXW2iQotEuZTda+XAH3o23rDbBfnO8rrIO7k28ZDugQsdmlG4/ZukMe1CXg1\nb2vGrsqLofXxsTnb5PeX99raTrG9G+TFJ9WJldcf3ELT3Y8dkTs1IcrGl+3d0LMkJbpyIYraSrpV\nPrcs2wo5KQSV6eHymAC4Gc9RcZxdLyAT0zDhLggAqlVspx/WNupp2BiBrPzhO5P8fNR61Npz2NQI\nH2BQ26Qi3cvwDSqX0xMxkflTCozxDAaWwcCitc/OJgQwJuIQh1Lk8ISOIYTwz8DmBQ+/EfhQ+vlD\nwJuKxz8aQhiHEDYA64EX7Kdz3Sd7+DOn5844AY7KMFRq4GWZKzZLuTyjIJcti5Ik9DLwQkOuVK/G\nVJrcPHUqUQqGIGi8POZR+W+lxHym+ubavcnPA1J3pGeJGXPd7x6caEFsy01H0rpqp4E3wl+QzwIK\nfCF9DrJQJb0qncRU1eX3kN4VqUhkh1NEAkDGG0qmjtE+Cbv2k70kdRnZiqXDMUb72EyXF28UcJnv\n6tyCDTFaKH+XlCOWKVNX7QKCnHMaa0363mMQzsb5poeK7SvGcEwIYWP6+UHgmPTzCcB3i+fdlx7b\nyZRSFymlvqGU+kbHgUHQt16xNs8HqE28iFJFkJ1G0GutAkuaNnPnJZ2Qm1d69xtRYw69iEqJNUg5\nLg5biWn4/MJzAAAgAElEQVSDUX5iiGuZPsRKh8xE6Dv3TELm82Rq3S8ceUxmR/oQSU137TjygHyO\ne2N3vvVStrZDrDe9tLzqd21Z6MIDkbKkzOsUwRkBYmvtMMpnZwgJV6DHKMYpogNyxUjMpoYqiM5J\nBs+U5UVJPeT3QdGpCT2L0QcmNhmtSN9DlpkXXEIBzvXDdwG6zmR6tHyFEKMG0uMbPnpoRA1PGnwM\nkTq5174uhPCeEML3hBC+p+bAIOiyyzaVzWFkP3SkZ8CVXHsBq2QhCkAlJj0P/f9RaC+ayRKcVCfk\n/ST/HpouVxHESZgFO2pJyRbykITlUtGIx7FU2nF4M8ddmw++Yzj3T2Zio1hiRS5MuXIjFZHxOW/r\nidJt2XZtg45gpDcZXBWMQY7ReZ1D+BKIjJiFzlWJUVLcksqS9LzIsZxXdElPYZymUom+gnW9lHxI\ngOMElyEojn7jbflekP+hSkpPIcRypQCT8ntkQ0bRGe813sVJ5nf/3flPxaV6XNtXx/CQUuo4gPT9\n4fT4/cBJxfNOTI895bb1irUTN5CUo0RsRcLIQCTVCJ1YbiijfZZvg15hSSIFASnHrprQIzx8MAdE\nByKvkRtFlIulIxHINzr0fQSlglLJqLTB5LRBjgdJFMa0jMa93uPBsh0nO5Y2Y5Y3I5bWYw4bzCMi\nsP0i1Ll7sixPdkk5emHFQj5DoR4DE+Px5DlislOV118YrqWgi1Q5pIwpcm2jts6AplCjrTOxVCnV\nknRd5Bzu+8RZO30WUkL1ApSakOnRQC5ZKt2TskJQKO3Z8JHz9v/F2QvbV8dwGfAz6eefAT5TPP5m\npdRAKbUKOAX49yd3intv4hRGbT2BUAvPQPohmlSulMigJKYsNCHFSGVi4vGkhTh2FY/ML835cm3c\nBOhYOgHZAVXx/p2PYXE5K6GUd2+0Zc42aU5k30kJqYRmDzrOy9RGwxWnXcFHV32RG//+TL7x1dPY\nNL8kO7vOmwmmZ7mgJYqThSufi4jTiMMAMsjXA5ohRw8i15ZDeGfyzi+vETWmdsFnJqmAUKRL0pOY\nkN1KALOpepEZoUN3CUuQ9CF+9wl3iNFCXTu802jj8xfsrHXxVNuelCs/AlwLnKaUuk8p9Q7gD4FX\nK6XuBF6VfieEcDPwMeAW4ErgF0IIbtdHPnAmPAXoAaj5roqVhxQqQj9SriS8CHttrqvj8JbiBpBQ\ndcvcVES5E24gVQppLBKeQsYStMv0Z1n8jY6UYZfCZXm+EH9ab3AJ2R+aKGQqlYf43Lhbtb7i2OE2\nLv/897H+5X91QD/XC35/htWfupjVX/jZ3T7H13DqBy8BoFsGR571CA9uXs5t9x6buR5C5V5St7Fn\nREfw1SjPsOqFZgfGMl23+XMowcYmA7p92VmmfMnrRTo+LlzLdNMVaV9M9aL2QtRNaKrYAzE9aHMq\nKNdc5lkaFSdZlUODBF+QFEEqFoPaZuFYKNJOr/NzndNUdTyed0WJEw5qSvGM664Uff+mctlBlO3P\n0A8+hV5cpcx9MxvR90KvJbIsnZW5ZFZqI6qezy88hJL0VA6YkXRBjlu+ruwClEin0TYOiU1EIbn5\nb3zwOG7+/r/dq8/pnP81k8lJT2SrP3UxU8fuoKkcK6ZGjJ3h2vM+scfvdf4fzLB9jccvt5y35rs9\nz6GIvBbOlpT/X8qe0DtaIX0FmJhXWUZ81uu+NTulhiVpCmIU0FpDU7ncii2LvDY+i8GKFF9TOcbW\n5Ilgco5lZKKToyqvrTAcF5Kc5PHnXngj9/7DOeh0r3qvsF2FqRzBq/3Wibk33ZXPKMfwyGWn5Yva\nWhPl3gsiS9m6K2260OfqgX7eQlfcVAtR69KJCDBYDoaBvpV6oa6C/C4Op2zHFgfSaJuJQRKxTFdt\nXkj9gNhY/bj21jVseP379ugzOvWDl2BGilvf+fhO4Zw/m8F+73bOO/5+pkzHlOm4afNx3LfxcIZL\nx4w2LmH5nYZv/dbeMSxXf/xizj//7omp3NA7Rnms82anhS4OtSQqSRs2xGuXS87FsUpugRDHxCnI\nPAlZ5DKfUipYMo4uQD8ST3ANPxlwh9BXIuqk+uQSQcpaQ/AKbWIaYVOFQhyMT05L/mNFij5qh20N\na996/V59zruyZ2Xb9bbPr2GQNMei+EYEdLLEWMrbG+OgqKVD3JHFgUhHpOzSuqg0LMz7SqcgDqR3\nBH7ieSUWIMrNPuidHEdMJ6p8zqLHUO6uAj5KlUMP9zxbU2tmWbZ0ngv+xwzX/9ddL+qz//cMz/mh\n7zBdtTwyv5TNs9M8tnkJ9caGu98WeRKrP3Ex3dI9ftts1Wz8n49rtrHdDvJn6FHM2Ybt7SCnaOIE\nRCOzdMaeyUVfajsKpV2ulkQMNjtW8GkBO98rQWcWZrp+gvWU10+O2zs0Mn7QdRVKCdNRU1Ulh4E8\nVq8HHcnnLtOvtPZ4Z/A+/iH4STr9U2XPGMcgN4Mgzc7vHIKWO5KAVap4PF78asKZlExGARTlGPEG\nVdgkyJpRdOQGdoll2U+lzhGC6lOJMoXpnMHBRCrhg2LONTl1iJOm+yYqtXG4x59TN654ZG45G5JT\nOOfPZrjxVyYdxJGvfICh6dg0v5R77j2SqQ0NG35h8jkrbjPZsZz9/81AALskMD7aMdxYoRxp20sv\nUKA82OMc31h/MtXAMhh2megzGFjWHP4oU1WX27XF2cpnINqawvMQUFmcvEvXRCpQ0G8MsvuXhKTc\nFh2EINVPs164GMvrEYrHRFK2BBkBrI0CLd4rqsrlx+UYSpE3Lvk/8jum46qUeij91Ef1zwjHMHvl\natqU+5Uqv3NtzVQTwaxSzVkk3MTGNgKTovwD/exFVzgE2bUa7TAmqhcLjuCKXFi6CIX7LyY5rpiA\nm/I34UJk50HPGMxYSJ4FKWQcy/qf3HO2Y5iraB6NC2ztR97Jc19zH2s++k7uevO783OEUzEwluGK\nMd2KyTLoBb8/w7YXzeffb/pP+9awddr7L+H2d0ye+89/98Xc/tjR2SlHXUadq0GlXmPn9UTKUGuf\nnX1ZjkYF5ts6LUKZUekmHG8IfQphxIk7TZX6HiSNMMnxyPEBxl2VOQtKxcXcNDalB5P4grRhq6Tr\nEHxq3GssLqk9ERTaFGmFDqz/mwtY+1NPPp3YU3tGdFduHw2wTjPf1rksNTeOU4laW+X6t+Sf86ni\nIKG6/CxOoaQ+SxVDogZp7JGpRxCjgM4l2XTh+6PY0abJSIUEesmHKPEGEW4pNR76Bi2X5dQq7fKo\nuEY7ltWjvfqsVKcwc/FmXXaX5p6HjmCwZfI2GNmKOduwpB7z/BO+y4kXPMDaj7wTgBd/+//iJT/7\ndV5xyh2c9oFL9uq9F1o1t3OIvHF+ea+XoGOVoktOUxrPoB8CBJP8jyZpOtTG5e7Zxjimm45lg5am\ncnEQkADREnmlqoTgDyUHQUBBcerChdEpSq2qPoIrSU5ae6rK5TZrYTs61zsLU3nqxtK1VaZEKxVQ\nOo4fUAqCi9/X/80FT+rz3ht72oOPmy8/FehFOwU0Ep2EbkH4KdbaKrMghcuQlX2D6gVfQ8/Wk7BW\nuiTLMmOt+6jBFBiAvHdcyP10qIUsQHESMiOylIlrtGOHHXBYM0etPEuqMVOm49N3nMvtL/nwXn9m\nL7vpTdx7+zEsv8Ow7TTHYTfr3GNx/h/OsO35I4475jFWDEa5s3PT/FI6r3n+kd/l6GY707plq5vi\nb//pJax/y7s5910zBA3VHPgG2uVw7Evu59XH3Macbzi8mmVTt5R/fXgNrznuVh5ul/FvD51Md8VR\nXP9f13H6e2e47efXcco1b2NqesyJK7Zy64bj+cjL/pK3XHMxyw+f5fAlcxMs05JPkvUXC3CxBDZl\nZqUPfYt1n0pEyrxsKjpfN/K91SYNSblP5LWV9mmwbZhouXZOU1UuVyHcBIaRzssLZTo6iQAQFKiA\n71IKkXAGCu2GU972zb2+5vAsAh83ffZUCEyUmyLDTWN0vJgSOqqijAR9bpe9f0KEJSQtc0yZVZBZ\njBpwZNBMSpbyO+wsQNJoy3QV0X1poAIYF8NbdBUYJOfRBY2Mj5eeibGruOnR45gbNfi7l3LHT+9b\nw9T2ccNzTnuIe8zRmFnD6EjF2f97BhTMrfGgYhTWOcMmluB8rOMvbVru3nEk24dDjh5s58RmC+e/\nYD0A3/6NndOJn77npdwzOpyN8yuYrlqOHW5j+WDEymqW6x47ie1fP4pbE07RrfCc/r5L+IHX3MT3\nr7iLU5sH+c5xR7JCj/mrH/wA99uV/MXdL8s7vaReJUgJ0Qk0oh4t1zst5lLKTaoRUonohPxU7Pwy\nWEburUAadedVThFckIoGBb5gciWidwKKoCL7MT6gcpqD3Fcq4F0EJZUJhBRZECbp1E+FPa0dgwBJ\nWkXSSWx8EfQ/OgTx+iVAJaBWGcha3w+uzQIh6SYTk5tMwkxp/Akhdgjm0JNeWl6mUR8xnGPj/HK+\n9sDJ2PkKxprhQxVmFEE5FLga3DDgG6h3KHTb/40AZgTf+u20AH9g3z83949Hct8L51GdptmqcIPA\n/IkWvcRGJ5ry5FDFfoBlwzHLByMeG01xzyMrmT8ypkXTumXN0k27fZ9XrLyNP/rIj6FbWP7Sh/ju\n9sPYfO2xfPIlNRc/58tceNEX8nP9wONrw0Pzy/irLd/Pc5dv4Ws3rOUvXvNhfulff5Jq2HH84dsy\nrlB+L3kJSvciO1JalAjNILhBWvxeZ9xBHIQrdmbpg4A+6rBeZ7xAvpskOS/pg6hBTyg0qZCdglIQ\nCHmAsdyI3uqILYgTgBhB6IAK0VmoRcfw+Lbps6cSXGSZZWCpILAEYFhbnI8sN+jDTaUmBUMzv6G4\nwWQnEk8OZEpupT1W9VOTTaIs5/kBuudMDKuORlv+/SPnRVWlU5+CD+cJLDsXYkWhW068ARPIHoJi\nyTBqKs62DUZ7to2HbLztaKrtio2VT8rNiuOG23b7Pt/YvopbL47vdda1P8lRy2bz72f85Qx/8Chc\n/zvpXGpP0JFODXD6+y5hw89dyvO/eSF3v+b9nPuuGZb+6CM8NprKWIIrwEcBBSWKEOcdmJz90VQu\nbx6D2jLuKqaaLqclTSViMMXE8WI1DmsblaITrpC1IWEifTHGY4w0T4kgrM8pRteZHkfQUbCFGmxX\noXSMFpRJXR9yXVJfxVMBRD5twceQLvLKH75zQphTqSi8MahEsCM+vxx2Wl5oCTmFY19rn0FKubmk\noackREn7NaSymu6VmaDnK2gC/3bPyU+Z1Nqu7Hm/t3uQ8Kb/tI56m0LPa/yowrVxQG9UNYqqUdtG\nA+57cCW+8XQrPLe86G+44rQr+PBz/5k/OuZbuz32X5zwNSA6n9edfCv33H10/tutF6/rnQKgqkAw\n/XUZPBqvy+z1RwCwfa3NrdIl0UzaqsVpS9Q36nqiU09Nj9drWFuGqSrQVI5RV+WSJpRybJO6GkBf\n/VKT/TXe9+mMcBkWhv25mc6a3FUpzw8hsh21UPCTeItSxCjCaYJLVYynAIh8WjqGBz99RqwOdFUe\nNy6L16eOuLHtySylyo9UHsa2Yr6roshnukBdKoGZdMOVAqELJyv7iZijH+gqUYbwDbZ1Q+546d4D\nhE/GznjPzMTv7fLHJ8jUO6DZolFzBqymm6+Zn28ip6Cr2LptCWG+YnjUPEtO2s6qT1+022Od82cz\nO1UrumWBN668jmZlX0FZ88W3c+HdPeAcArjpfiHe8F+i05g6bwtnfOWtHLvqUXZ0TZyxISreqbtR\nqkjLBuPozIGp2sbO2QUAJZC6JqvEfPSJv6BoKstzlm8pIsEesNZFRNJak3soujSIptd5nKSz9/yF\ngtgkjkdSmhCjgTyQJvEf5HnOanTtMY1PPRUKPz6wDXNPu6rEg8kRVBO5f48plNWJMo0A8jRi8fJ1\nEQFk3kLoeQ6DarI6AD1ZqtI+C6vAJMNSJkf5oPn0KVft68eyz/Y7D53L33/5Rdx14bu54H/OMDoc\nxkc7lq03jxu5nPXnM3QrQsQ5Bh5qT72kw98/xZL7NXPHBuwRHfWmmrNftJ4br13LnW+dBEBP+fAl\n3PnTl3Lmuhm07TkOqz59Ectvr/KCl8dW3FYRDMy/YJZuy4ANb3oPZ3zlrejrltGuCJz8vfcx39Wp\nxOj57pYoW3/Ush25QiHEtto4WjtJUJOFKsxHuT904SulRwJS56SQqpLTkYhEMAQpYWYac+gVn7NT\nMT5HDOU8ieA1pnJZLRqiboNPRCZhOsp7CcHJ256wJUKyBLVXFYq9qUo87SIGcWN9WtDPFRTvH0HH\nnUNDgOU/dFfOCyVCCOk5gjGIyZizEgEvyUbS5GMLvQGh+B47tZ31Sa7+qbZrN63iHa/4Euf98Qy+\nhmBAz2tGRwXO/4OZ3b7u5l9ax/CRyHMwsxpajX10yPRGzQ2/uY4733opG17/Ppbcp1jZzKO7nY/R\nbI2f+S0z6yaIT8vWTzoFAKYcQYGdStOZ6oT13LOEm39pHXemqsuj25eweW6Kh7Yvo2srBnXHkrrN\nSlaT1YlJiTdZuAvJZQIyRkxqgXNPZUSXFqi8qgQTS16DyLeVx5fnTD7Qy8gr1Q/H8U4a6dLTyp9T\n+hBPIGFeQcXU4gDu6U87x1Dp2CNfpfmAMVLYxVQpr2O/RK5Vxws8e+VqoFf5VelnAbKkCrGw3LhQ\nq0H0FESbMdOVtWflYI67th25z4zAJ2v3bzqMoe7YdnaLG0TstN6uqLepCeBxV/btX19Hs1VRb9MM\nHqlYusFgp2Dt370zP2f7c1Oev4sbc3fTtHdVzhwubZk/JnDzL66LIXvCGIREuurKn+OeR1Yy2jLk\nuSu28NimpbiHpuiuOZIH/v5krjrjcu7ZcBRLm7YnH+l+ypSQnOLjfqeFKq8R2T+JAGShC7+lfL48\nZ+H9pkU2MFclyuYoEWAJEZhOnAdUIjKp+HjGHIgAtk+vIf2upPcifSkFd374ebu7lE/KnlZVic2X\nn4qhX+wxROwbWIJRmeoq9erKkC8yJMKQ3Cyqr4ELYUb4+FLBkPq3pBBL6jY3+pSCoj4kyTbtuHXz\nMfzb+R8/CJ9QNPfgFJvPWMJ/e9HlvGv5qwm3LEM7uOmX98xR3fTL67jg92NkMX9soFsaGG6Kq/WM\nd89w+is2xM9jH7eV095/Cfr0HSydGjPetAyAw5fMsWP7kDVffDs//vKv8rfbj+DvX34p182fzEnN\nowxVR3d8xbWza/nI517KHb9+Kef90QyDF29PWEicn1kXKaGiF9INKTUscQYgpx8l+a0yjrlxM0GK\nk9brXKpOUWRT2T59KTaiprKMUvVCMAOgKHFGBqRSMWLwQF3HaoVoMjinMbXDWROdi08ORkDaVMY+\nEPa0ihgEQBTtxummS7RZy7Dp0rDRQui1iujxIKk+S0kLyECS7Cqy48vuv7wZM6gszavvyZFAncRV\nBsbmsFOaoJbXozxa7WA6BYC7fvzdPDRezgn1Fl558h2Mj+/oVgTO+ovdpxEL7fr/to7xSmhXBMxI\ncfMvruPM/zPDqpd/J5Ou/D5sK+e+a4bb33Ept774r3n00aWMjgqc82czTFUdZz1nI9+/egMDbblu\nx3P5Tnckm+wy7h4fw13tMdzVHs2D4+WZSn3Df1nHePsgU9tLsR3Z7eXaiXSfaHj2U6Z6bEEiAJt6\nMqoCn1o4m1IiEuv6KkUZSfgi1ZCSJcTmquAVzqnEfIzku6pydG2i5FsT1biCwraJVVkUSIJXvVMI\nijs+sEewwV7Z0yZi2Hz5qeAjQYUKguqHkIqWXykPH/vt02TjVFmQqday+IUcU84uyLRXEV+5+qQ8\n1h1iWVJeM3ZVFGmtOlpvWFGP+PJXzobn/MtB/KSi3bT5WL53+RHcue0o1MBhDwM3rTn1Q5cw/cAT\npxQAgy0wOhq6IyxrP/JOnvdDt9MmGvi8qyfKi3tqphAEX/G1IejIZXjht36MrbNThAB/8wPXALDq\n8p9nw4+8F4C117yNZV+djiXOmWvzMZbf2OBXq53o56UFeo6KUKBD6Ltwq1SerUwEIQe1xYdeCq4E\nIKWpqkxRdSgIVYn6XDJg41wJl8FGnQhRaE/wUcHJOYWW54gDSryF/CmrGHF4l5yOhuDI7dv70542\njkE632TysEMxrG2eNqRVbEiRiKFzJkcQEG8MiQikKUcG1EoXZanQXGs3ATBNmS4/z+io1Oy1Y2g6\nVjbzXPfQiVz/vR+F5/zrQfyUerv2vE9wzp/O0K4IHPM9D3PSssf41n0n0A0GzKrqcfUYxK7/b/3f\nz33XDDu6qJ/QOcPyRuWceG+sfM/y+JtuPor1P3kp5/zpTGZ1ilMAWP+yD8LLdj5e0GT8aLru2D6O\n8ne9WpNKGILH04OOnoBLQi3jLupsdmnYzGxKI+TeKVNO6ZlwiRejpIyZ8Yl4XuIgrJM5lSaXLr1X\nmQYdSLLyZB5T/L/ksw2TEYJ3ZZ9FfIra+8vwhPa0cQy1EfWenr4qJi3KsUV3ZzUgMZe8u/RMCLgo\nXIXYOTlZH55K8yfLGQPxPT2Vjuj8I+Ol0SkArz3+fK56YPekn6fSxkcGph5UbLrxaNxZmm5z1G3w\nTWB01N7dTfPHxu5PWSzWG9TO/J/Htef93iVc97uX5u+lDVZv4/T3zmDq2A5u5hTaKtoVHm0VzWMK\n34Aeg2mBhMFtP72j8yZP6gLyfaJRqYQdtRwyG7IoY8qGI23sdXIUC8FmqVzJp6bo74XOmomGKcEa\nIq6gerCRnvzkfX+MUEQgwtQEcjVCypgxMpADBSh6Ke74wPdw6s9+Y+8uyOPY08IxbL781DgM1ZoJ\nwLFc2GJ9g4xewHWYBBoFPFoYPZTl0Pw8CQtJwFIqk5049Rh3bjuKB/7ppKiHDRNO4WA7iRVnP8pj\n+gjqrYotNx/JsgfT4uqgmt2zNGDVZRex7NjtnPz8+3KTmDSAqT07RLZtawPn/skMZhfcHGsNSx4M\nXPe7l/L2e1/CQ/PL+l0/qWwPjM1iuWJLnWGUUsb5rs6dkkH1Op9tum907lXoT9x7XRCNYrNSjDRj\n2lrKwuUGrtCrQwXIYKFUJuTnqORkkMWcKfOSEvi482vjM8Epd1xCFLfRPW9BwEdtCswhgZLK7KWX\nfgJ7WjgGGfgh1YYm0Z3jFOQ0IyB1tMl0INF9FKKTkJ8k0pDWWQkZBYyUsFEcj6dPK2SEXJWkx770\n2edF7cQzdn3eBztyGH/xSML3zDG/rGHwcIW2uy4bPp41mwyvfcFt3Ln9aFpvMJAHxHSHxetw1p/P\n7LZMKXbeH8/g1ziCBju989/1zUu57nfjMWbTrM55W/epXlBY3+QZo8NUYRDxFqk6jFOFoSw1xxTU\nUWufnQRIV27fWCXdlLG0GMFHNVF2nKRgS2t/W4jYmtTeHVJ6MRh0OUIBaFsTmY4hViRUGmzrkl6D\nS+tb0TsSadKSezK4mFqY2mdWZPBqv/ZQHPKOYfPlp1IlfbCQyo6RniwKvJph0xFMP7ocWeQLZLyM\nSuWpAoQUK/UEJVJAhTwzQjQgh6ZjRzdgwzUnP6Gg6sG2b//GOk758CVwhOW2n+/P9Yx3z+zxuTeP\nKeZdQ9SZjNL4A2MZuYqjTtoC7J67UKYMN/zm479fPdv/PGebCdJY2UlZOvI8mzJdu0DPiHVe5Qih\nSZqeo8yKjM7AOlJJ22fmbKn9GDekJNwiYi3pfSS6tM7kDssS+JSmqagDGTUgjUlCLTY1UBEjBtG/\ny48nEFP+Kfk5d4OODarxvYitjw1wvtt/KOQhX650XmV0WNKIvs02ZN1+YT1apzPJJV58XbAi404y\nrGwGIiFe5CV1O3Fhyw5L+T5dtWwdT3HFaVfkLsH9aa89fv/PEah3qNgDkeycP91zpwBw46+t4/pH\nT8jcD5mRoVXgnCM2ctafxxLomo+9c6dmLcET9sS+/ev9Od3yneMZGEvno7pW6cClR6G1VZ4hKbu3\n85pxV01MsAJR8ervBR9EfFWi0F68JVcXiqYo5+MoOpMqBNKO7cRxpB1dXhuJTiFRoX2ePiWy8KVT\nkIWdZeZSvw8kUpNOWg4COgaFalJYkc5fIgilA3e8f/+ULg/piGHjp89A+Z7ZKONJS8HOUuBTHhdh\nkcowccFKZyDNUhCdgEivlTwIo2INfGk9plKer965mrtf/YED9v8eiNTDtHDMqY/k32/8tb13aFu+\ncixn/shDPDaeioI0KvDw3DK2V0OOevkDANx14bt3+dp9mb5992vez+p/eCdrzr6fraMheE2bytFy\nbaCnO1uncyopuIR1BuuYKElGHkOPN5mkryARwijt7q4AK8U5yDg6uRclzC8BR6E6l0CjyMbnCldK\nS/Jx0sKWkmMo9DeiUyiEaFPZQpyEEJ2kTRuvUNX+wRoO6Yghj48LMjiWPEi0jBIkhRBQUix2wens\n/V1QWd9RhFjyexVVjPIYMhbuq18//YA6hQNl3dLABUc+ufGht1yyjn/61pk0xuX28s5rdnQNywcj\nVl22+27LhXbWn89wxrufmGi1fL3OpKKSoyKpQtlqD32LtOANMupeqZDBRKlG6WKDqLTPCs1Chio3\nEOQ1UimgwAcU1JWjqtwE8zF+j81RJo2dU9rHcnpKSzI9WoXsFLRxUb0plz5Cv/hN/FnpgK58/Fn1\n97tQpveXHdIRQ+5vl9+LxpieG+9RZZ4ZVOI6lEIqPTptdM9+FLCxVB+WsqXcPCuaEf925TncfdGh\nhyfsSdVjuEnxpc89Dy76tyf1Xhve8F5ef/vreWjHUh5bfzhveum/c8/c4Wxtp/jJF17LmqvfTnPn\nFMGArwOmVSgHykF37o4YSt+zhNNeu4EHti1/wvf71m+v46U3/of8u1zzqI4lKSC4wMR19kw2z/X3\ng8qOorxXZI6DXP+FjXcSVRJ6EpWHrLIkx2xt1Qu+ps2sH3OvMEacRqH5mEFIiQhUlnpThQQcyQmV\nlagUSboAACAASURBVAghOkkUMRFV7Ac7pNuuNybdBejFNaEnnERUWU84irJGXRmfMQcxH8hVDZMA\nJAGUJI9udFQabp3hoU8+d0JQ5FC3XTmLVVf83B5PqlpoZ/35DOPDo4jK0Wc8wsO3H8VdF76bh90s\nr/j6ReivrGDHeSPuftWuo6kL/ucM1//OOlZ/6mLMDk04aR6tPYNvLH3ctOb537yQ5cNxVpASYhWQ\nMYFBElvJup6qx5gkwiinSgETeFU8VgzrK9M7jX5s3c4j7cqGvOw0YAKPEFwhVxJ8rxLtnMpEJ0id\nlTnqCXkwcQBIjstZHR1FchySeuTeCQEghdbgFKe+fed27GeEGOz9nzwLTR8u1lXPSow7x6TZJJgh\nQ1uaytKl0pQgz3Jh802SdgHZCaSn32hP6wxXnv45+J2n8J/eD7bQKZzxnhle8tqb9uoY5/7JDMf/\n8D08d+lm9Aseo+oMgyZWZYQGPesDs49NMVgOz1t1L8/7xo8zOz+g3TxEdT3xJpxtOeXDl1AFMCOF\n056l02O2nrCLmmWy095/CatefC+PjaaAvndBFqpWUZbN+X7n98SqU1O5XJIU1F4IcGXFQRY4kHb8\nmLYMaktTRefjgkpVAyYG34jZxJYt+y3EKchxy47OEntwNgKXSj4n+oVe8hXsuOoJI4qeMWnT714R\nEkCpa98LyD5JO2QdQ/mhlv9qSWgSBR5goquyzzN9BiTL45bHgn469pK65YjhLDc8ePxeD4k9VG2w\nGW768Fnwu/+8R88/7V9+GrWc6BQBTrx24u9nXBvxgVf9yy+x4XU7RyFr//YSfvWHL+cNS2+lBhww\njrR+hgo2e8Obr38HL37hLbs9BzeVAOJURYigY19ZkUUMk2Vm61Te/aXUCJO6CAJMylwKaaqSY821\ndY5ITXIo8VzMxLEk1RynsXSiEi2RQlU5xuO6F2hJjKUYFcQoQUMWfcn0chVQqXQSAhE3CBCkfFmW\n4IVRmR7yXax+4J48E/KQdQzAhDcWkzAOeoexUCBDcrzyn5NIQZiPcqyytXbFYJ6bHjn2GeMUgCcc\nOlumHmuveRt+04C7f37Xrzn3T2aofuAxzrx0hoEHXrHzc5SHsa95LLVe1njmQoUhMJc41E0Vm5R2\nZ+GYMSNb5zKz82ZCxbsEBmVDkL/HykQhClsoLZUVDUkhJAKVdLIcYrMwye5Tg159SdKCsl9Bmqnq\n2qG1p22rXK7sMQxxJr5vnJK0AMElfO6NgNRUlQBJ4S5MfPYlX/tJIgSHpGO47xNnoelzSpikNIuV\nugyyC8hNoyCHktDnlqWZ4iIMjOX2TUfz7Rd85ID+b4eaiVM48//MEI7y3L2bsiNErsHqT1yMOsJT\nbVec9//OsONkj7Lgljk2vOG9/MfXfIULl3+bm9ojOEzPMVSWWnkMgWXa8SPX/TxvXfvvPLfZvez8\nKSc8nNMIEdwphwSX1104BdJ3ICaViLJi5fykQ5DmO9l0Y0rS90VIm74CZGxAgAkAUSeBl1KzIw+s\nSYtezjWXMgUT08XvRAKf0LJzSTSVJ5XxEUhZsOBzP4UcO6gYVRTrZF/skHQMYgI4eh/nRRjjJ3JE\nmx5zGZTqpbzros01H88rppouO9QqIcoyzOWGZ5lTEPv+G/5v5k+0bHjje57wuWply1knbewbltLA\nndm24dR//mm++KJ1NErxgQd/gKMHO3jLEddyvJ4D4Dgzxbdf8BHWfuntvPXsr8HSrbt8j8Y4RHdD\n8n/oF7VwDaZrG9MN+hBfIkMpXZuYxGOdzvgDMBE5ZAeQMIZxV1Cc0/uJ9me+d4zPEUbn+iYoAbY7\nZ2jbiqaxVFXfbWmMRBwq7/AxMtDZOaiEJcQ3lOpEKkmm6oSufC8xLxBE2WQVAnd+8Pn7PLXqkOUx\niMS2S9p20qgyUXM2PU0VmIgWrDO5LCkMyammy6Ieil7ivfOGL531maf6Xzwk7Nx/fwsPPbxij5wC\nwNqfup7Dmrm8aCWye+jBw/jUC/+SuaAYhcBvnHAlP7TyBo43c5GKruBeGwfhvmTNev765hfs9j1s\nsatbZ5iqI/DZJL5AZXyaGaKzE5hqOirjGdSW6UEbeyOMy8xZwZuEByGVLPk/BlV8fmdNkg50EfDW\n/TBbiSwk3K9S78XUoM3nLorVcs+6xLsReTdJJ0xOB1RUcPIKU7md0mORi89t13YytZgAG0OMLkKn\nCfbJLe0nfLVS6iSl1JeUUrcopW5WSv1yevxwpdQXlFJ3pu8ri9f8tlJqvVLqdqXUa/fmhL778bMx\nxufSpJBFhGQikZTkgDKTEJgYKQ89kiwWZxOaPJBmUFmOGM5y9ZmX7c0pPmNM5Nv2hrh11QPfwqY2\nZxdiCH3fgyt53w/+VX5OF+Aw3XJS9RgmcQ2WacNP3fIzAFx89DVRX2E3JrLsESuIU8GF7i7Vhs6a\nQtk5UqSti0DifFszamt2pDF78hyf2ufl+J0zWcxn1PXDjyXSFDJdVoYqvmKqmkSFc89Gz7XxXkfW\nY45k+v8vKzjJ3xBeQlE1IfU+BEkRpLkr/d31GpK9XkMfhVB0Ze6L7YlbscCvhxDOBF4I/IJS6kzg\nt4CrQwinAFen30l/ezNwFvA6YJ1Sao9F8OXC9HlZQR1NzwkU5CcVJiIGGVQrOSPIbAk1UY9eOZxn\nvqu55ROn7+mpPaNs9acupn3l1n3CVP792tNYUo/RBDZsigNhjjfb+b37f5i33/pWPrP9XK7acSY3\njk/gu3aar49P4Hn/8Ktce94nuGx2mp+4fPfMx7XXvI2t42EuRda5whB343FX525GWazWxTkiuT+m\nYLUaJfLufSoAk0QmEV8REFMatORnmfUACdhOFY+8SRVYVjk7oox4QxEZaNNPoBJ8Qe5xiA7BdxpV\n+QwySlUiOgfSAJr4FVWjU6SQ+ibodK/XsA/2hI4hhLAxhHBd+nk7cCtwAvBG4EPpaR8C3pR+fiPw\n0RDCOISwAVgP7D5u3IXFfK1Hd8sQLJeLJG0o0gedQEj5HfoowSe+vDRTdc7wyNeP2es25GeCrfno\nO1l6wrZ9rr6s/4l3s7QeY7RnzVGbICg+uOVFvO6Im3jgniO47IFzOaraxlB1/PfVz+Oqzecw9ZBm\nzRffzh/d9Tru/rG/3OVxV3/8Yk46aktOD7QiUdpj2bJczJlQVC7QwhmUS6KMIsOC32Hne8lak1PW\n0pGUbdA9AMrEfVliYBAjAfkylcyr6AFDEW6heJ2uevpzf5L9Jhl5DvGxUjEaE9JJF9/30fYKfFRK\nnQxcAHwNOCaEsDH96UHgmPTzCUDJv70vPbbH1n/g8r6TXZVCZZXdovz3y1JmWb+WCUK1icKgd9x5\nPBvesW/Top/uVp0w96SrLwPtOOewB7hg+h7+Tn0fH/vaC3jVBTfTHDZm22jA84b38Zhv+H/ufowb\nRydx2H+c4/7RYXx01Rd3ebwz3j3Dma/YwKa5JUA/QHiUZNZKhmtZlRMLTJYxS7WmsmwpvIEyLQjF\nMaUzUo6piNUFo8lVMTluWUFwBQCpivee4M3owmmoBSPsUnoif1NE/EEmXccRljF6kL4JeV081+Qk\nEm7xZKff7rFjUEotBT4B/EoIYZsqCrchhKAWkgme+HgXARcBDOlZcL12Xl8fjmCNywKvcmHzPAfj\nGdvJ8XACYAn6LCKxjYlNQBt+dM/Atmeavf7213P7S578yLxrvnwudoXlsgdehG8CA6t470lfgZO+\nAsALv/UzvP/Mv2Z70HSh4rIvfF8eILMrO/6l97Fpbgmd0/0QYq9pKsthUyO2jYaZLgyTzW7lgirv\nDyBPGFMLFjWkvhj5PX2XKdZyL0FffoxVB5tTGcEUBBiHPpqQiloICmt73GGhM/AhkqFsUoXWxhF8\nTJ1M5TIFOpZeiApPTshNqYy5ICJaqCC9L0SnPXIMSqma6BT+NoTwyfTwQ0qp40IIG5VSxwEPp8fv\nB04qXn5iemzCQgjvAd4DsVdCHq8T/x0S8AiZJ99UNnMVqsrlfnqpOcsF9F4zrG1yJP0Myyo5ijs2\nHg2n7eEn9Ayy773uQr7+vI/tl2Pd+VO7XuTnvmuGb//GOv7t/I+z+h9+FVZ03P2a9/NLj+MUVn/y\nYo5f+wiNcax4/Xo2ffZUyrGD28eDGDHQ9ytMDKOl0PBMFPeYQmq6YDJRTiIKlxaoNr0ykyxaWdRx\n6Ex/jsKOlVKmpAHiCIzxURo+RxFJ5FUVTVNeT2gxZAysmFuZh87ogOtSWix9ET5FEyYQbMITJN3o\nNFQL9mbdlzL31p6wiUrF0OBDwOYQwq8Uj/8x8GgI4Q+VUr8FHB5C+M9KqbOAvyPiCscTgclTQghu\nF4cH+iaq+z95Vg7JhEoa87NEe9a9xFXeEYyf4MALf721VWTYeU0tTVPas2Iw6um+zyL70Ttfx2Wn\nXHmwT2MnO+2vLmHNi+7hoR1LcyOUgIiyGMVKLoHoLpRVhDK/78P9uEjrJBFfPkcEXCvjGaeZDmWD\nkxzbOcVgYLHWUNc26Tj2uEMZLMt7lmmDUrHiILLx8ndhUIoTsmnYTAQqFabqG6hKoZZg4zxLZXyc\naSnVChUdRg+6RMdx6s/FiGF/N1G9GHgrcKNSSjp0fgf4Q+BjSql3APcAF8YTDzcrpT4G3EKsaPzC\n4zmF0kpPPcH+ShipI0VIxY3gbD/6XG6ckjEpJqnH+o1Hw7OsEPH8b17IN5+/fyKF/W3NllgtGtY2\n62SIo5dehlyNkkW2izxeFrEuNo8SY5A2aLmnchqiospzXff8hr4Jqpd6F2dQYgnQRwzlAp+kPseO\nSpJzEEDRJ1Bd5k5kZ5EjBrDjqq9MAChQBEKrYej68qXADVK2lFRiH+Z+iO1JVeJfQwgqhHBuCOH8\n9HVFCOHREMIrQwinhBBeFULYXLzmf4QQ1oQQTgshfH5PT0aCl6x3hyjv9k0rpfqNmJCW4jF6UKlL\nJKdc7vIadd9wT0/nGWHP/+aFzH3zyIN9Gru1G39tHXfcG3Hrso1ZTJqdRLRHmIjVAgcgIOFkN6Oa\niBBKEdaFFtLit2kcXIkbZOHXRLSCnUfay71b0qHlb8YEqioRpYzf6f2FyixgZwZXC6dQchLUtN05\nTRBHpxd8hgrueO/37vwPP4EdUszH6G17b73wwpYCK/I86YQrHQL0N4kpvHsEoZ7q/+rg2Tlf+wm2\n3nYEtx4AkZlVn/85zvlfez7y7vFsyW0DGuPiJicKRwlUBvLPcunEOZRM1/+fvTePlyyr6ny/ezjn\nRMSdc6rKrDGHmueiS4oSu1VUEHnAoxEHHEAFK68tz1ZbsFX8PAaf2jbPxiaLSQFp0Ub6oWKLPqcW\nbRCw5oGqrMrMmnPOvHmHiDjD3rv/2Hufc+Lem1WZZVWRmdXr87mfGzeGc09EnL32Wr/1W78FsPG1\nXwNWOoi2YrRz1A4iVrc8SOif2+YdqNbinhobcP70HBsmF5vyYwj722lD5OC0iU3xeNCMqBtJd+Jr\n4jAcK4KkGzWbseYqGOlTBGBFP4QR9fvACs9jeIbX+ynjGB77zJV1+uA/8BYNWrAsHwueWLhAP212\njlriSzR13zpXtILOpXNft/f4fNrrd30bd7/4Uzz0xuemJPudV99DsvDseNl7/q8d6BAZgAccbRB2\njZaHlNG0NogYQcbbB/54NEeUrTKkDNdVnOlQg4bC1fR7pWydUtjQoVkWGltKrl77JN+67gFet+kO\nzp5cAEb5C9FJNOnwqPOIxCYh/Ii6iDcI4dCJd4pxHF0UgY1AY8QTEITf4VpPQlQjPW9BJCEaCalL\nDUY+g93wlHEM1ooWcaTJ3WptPmXrBijBaCedal1UAt/WG9twvZqwrLkQ68eXVv7zM8xuvOP13PX4\nSVFHTto+f+vV3PbOZ8/pHF7yJet2bt4Wa43feUwh4nSwOMdhJQA42jbdpJqtNABqUZeyVPVU6pEF\nXShcJUlCy3giKmayfr15eYn4RtnZWkFZqrpMaa2PEKxpqh6RBRkrFFWpcEFLQoCPDuxo+uCc3/1t\nBCOtqOXihXDEUXYuYguhvFnzGk7SThnHEMs/kYTSDv8hCrQ03IUIQsV5kzLmoqHso6X1o+ylDYxH\nVzMer/jSG7+eb/U5tS1/+SOURrLzX33iOf0/U/c9u4257i/Whh4G2VL7lnVDXHQSbX0OGTgKJtCg\nY0oZF350DhELaJyOjxrOrlOPRshVa8NgkLI43w0CKqAPJ9x66FzuWDiXR/O1HByM13yH5SlD7KCM\nkvEm9DREGnTEOkbeO6AS09CsRYgA4k94y0I6VJCOl4mto4joLGSIGEamUik3Iu5yonbKaD6e+9m3\nAYx8gbHUFHeK2OSyWirRLhHVop0tRDrWwIVwjKUlC5/beFppOZ6IXfMfZlk8z7Lre4+vqfBs2pY/\nvJnzL9vHE7dv5MEf9NHDJR/bDhbW/IsDLAw69J8cZ/frVqdAL7dvvue1LORp/XekRsfSZQTn/GJv\nNBCWl7DjdRNl1mJpUKlmAAw0JcP273Nedy+PvvMmkiUYrvULtHvAy6cN1jvMxpysV9bVjegc2uXR\nCDI2Oo+yvj5NpVoj8Zr3HkH1+L79fcfZ6SOIGgDIGE34x0Qj4lKDMo6L33zrSZUrT5mIIXrcomhY\nZe3Sj6lr0m5khmAbZKrDNNeoPLfzUV8egmGlWXrp4vP/Jp9lu+xDo+Dfnf9ux/PmFABcZpnMhrVT\nACinLcU5JfsPTJEPk1oj8kTNqzY1CyTOj4zfX3QK0do4UgNcUr8+RhBumQNpO4eIBwjhePAT1yNL\nUHlIzUMkrpec38hVS7JdNNFIrJ4pZVsj5ZpzrJ1TaB2Pr69/oOmXoKmexJ+40Nst2LWnhNFyBq37\njIBKsvNjLzq57+Gknv0cWrujsi1iAcFJ0FQqqpBuQINit8O6ODmoVvZp/59wnW5aM8/Wv3nz8/Le\nngu76jdnn5NpWCdjoluxNhvFbD7yio/yNy/7TTpjxUkB4lf81myNJ7QXcdTMiCrOMfKLaQTQlCuX\nVR7aO3rURlDK1gB1tKpSNTaQdkv6W0qOXWKwmwfILYssXFoyd5Vl889/iempJTppObK4m/8ZK2KB\nq7Cs8S+arzoImopFOEZMh2zzvuKx/R3Nhum1GOQKQlNUhKodh3KhOnFyOMMpk0ps/MxP1YM7Yn7W\n1IZHiSxta0cPkd4KjPRLRMeqg6qTlJYkXGgdXb1gRVqea7vod7c/ZX9E277h9u8eGT4MTbm6ChoK\n0FCfoVEEb/cyQMNYjLt53NmjY2hbO/0o+innbzrMdDaoH5eizWeQFFYxqBLm+l2GRcL53303j33m\nypEpVJEH4Zx3Om0SVNz4ltOk61QiPM+PvW+0HevUAbwzaPMYnK9CxP4JVzWS9HVp0wgefcvbT79U\nIjacqFCzTpRBSn876iy0F33kJxgXpOGFH0YbKxlS2lqxKYKSibIk2tRNOhHdvurL3//1fOtnrCVL\nJ7ZL3XDbGzA2aivENnuv9ViE6dV12bmVDlR1JaBhETZ/N8eP1YZ4jTXOQNSlRecErgh0+qBIraUJ\nzkCv6NyM9ugfXlVXMdqMx9g4FVOUdtQy4hSEI86PiPdBSFOqRvlJiEZ4JYKLImo7Sg881pGJo4kQ\nBN45LO+jeBo7JRxDubVTv6kytFFHoNHYURnwCCy28868UjUqHS/F0iiGpa6fL4SX+jbWI99FpSgq\nxVKRMNkd8tK7Xvd8v+0z3u7bvoNtv3/zcR+/6JPbedl9rw7Ncc0EsIgTFVF8JVQnYrqwHCuIi83U\nqUjDVZDS1aPi2jyY5ccQwqP3pVFMpwM6uqQKDqKjyvo66umCsaQIw5T9+4hpRKO9YEnTasQZRI6D\nxyECDZoQsSwDHetZrcrV+o6wjNUY0pGYNtgyEJ9ieCxc8/czqEqcEo6hjohc0z0Ho9iAsQ2jzARF\nnbi7tO+ve+ZhRJbLthxMxCfizhSd0eb//pbn7T2f7rb5j97KVe97eubj2KPHv8TOf9ETtcxa7I/w\ngjq2pchsR7A26xoqcvwd04N47cRdGprFBk2K0XYG8RqwQQnJOkFh26lL4BpYn0ZUQco+XntS2rqP\nop3m1s6qlRYL4dj8vXc1KXJ8/kgK1GLxxiwmRjmORqEJ6lSj6ZFwq1Ki/TGe9qsasVPCMQiovXz8\n4qGFqVhR02WLSjUSbQFIcq3XtMtW0FwYUemnHmEefrd3qC2b97Plr37keXrXp7eJ8eqEJmff+fbj\nP+exQ9NAs0BSbYJjp+al1BEf1DtvBPea33ZkB64rDq2KRXx+ZMe2XwugtGcUxnOprCRVfv5FZRWF\n1WHYbZOGRvxCa9PSD2mcT4we6mYu6Xj0D6+qeRSIwG8I6UQbI4lchjbvodF2xGs6ukb3MRKZRnQe\n42Pt6sUJ2inhGKCN7noQJwmDRBJlSLWhk1R1J5ppRQoRpVbKkuqqloSXAXNIlKnxh0x75d+o6ZAG\nvCHmtwt5xqYNc7zygVdy3XufnT6AM9Vc+c+/dHpfHCeV/vtItaEMEu9KtuZFhO8y1SZ8X6bGmFLt\nW6AjDTl+9zFa9BuBqMVUau1F26g4t9usUa5OSbW0aGHp6BIpLB1VMq5ztLSk0tQOJbIbjWnpQkpb\nRwtREFZKF57rhWBj16ZzAVeITgI/vs7VxKjgcFqLPOo/RnwiKkIL1erEdC1HcZIVCTilHIMbud0e\nVQ4wLHVonbUkSeWVpFsLvK5zhy+1jVFAUO0N6QdE1hyjTDrhKIziWN5hw+seZeunj58fv9Cttytd\ncd/rd30bm//4rSd8jDvesYOdD59NqrxTgDiwVtbff6xIRIUur+zsw/m81GRJRRa6HiMAGSNBjym4\nkR07RpmRZesXbqiAlVG23p/L0OhRKXvnnUZPF0HK3r+PmAK0I4c2k7JdhQBCpyX1nAh/DJr7ZOBL\nAFvfeLt/b0bUlYoakwh6C17qLeQdrnlOnVa0Hz9BO2UcQ8zJmnKODBLlopkGRBMRWStq7x4vmjhd\nCEYnE9dqvyGFaJhlsp454Ln3zXDSwiquuO5hNv/Fjz7Pn8TpYXaZX/jGu17HS9c8xJaL9nH9u7ef\n8HH04YSxpAjOnTB8uClBQ9MLE514PU4gpJ55qWs8qQYnw/HjLh51FNoly6icVLdZCy9VP6gSCqPr\n6edDk9SblBSOuaJbiw63UwhoUmKlLFlatbgTboT8FC3u8HXkEsDIiLHs+r3riDqPUsfmqsDdCCmE\nC1GEc2KFA1jhJE7QThnH0A7rYq7Zbp+NCzqSl6D5MmJ9OOaYJjyvrdEQnQA0cwvibfAzBNpKxKVR\nFEbR3Z09Px/AaWbLW7mvXLOXm3oPcrTfxWQnHro++AO38OT85MhiifMcYpk5WkNmaxqnbED+o/Oo\nAlU6Apdt3kJMOdolw/raCQvSDzfOA77QVAkgAJBG01GlZ2SaBvxsuihlneqWQdsBIuFKEgfcRqq/\njBqRVSu6sa3ZmMp4ZxAqD3GWZWzdbkcMMbWIVpc3pfNKTydhp4xjaBDcxrO1683Q0F8jchujinbN\nuhZzaZUpG7rs6NCaCEguR67jztTTBfdtP7P6KZ4Nu+K3VuIvXVWS4iMvWa18zZY/vJnLP7A6bnNs\n98xIlUC2HEDcEKIzaDCCFjsy4gkt4LFtTaUC2uF/m8cgAthnrKRyftMojKawuo5MK6ew+N86tGhH\n4LtN027EhRztbk5YKfDiadJNBOPPrWH7WuNTHRGaoWrGpWzJCrRYvxe96VbvECKAH1iPq4nTPJWd\nMo6hkd1qGmbaqHL9RYqml75Ry2lKU3EnETQRRVSLjrlinDsgCAzJWCpzjZNIlHnKicwvZBtcNlxx\nnwpDZ8tKrWhO2/oHN3P5NY+Q3HB01eNN7JZkASj2YONozwRQpwfLr4n29d6uOrU3lbgxtCsUjVPw\nr5XSL7xUGWSrthcb8awTaBEiWZrrsc1PaC92/z9G+yGacQgt+TcnWk7KrThHaPgLUjWViDbXP07B\ndlbw4Mdf5DGICFYKRisVJ2in3JWfJSUQKg80mEKsUsTwLg3DbrOk4a1Hi6BkXPg6qARDM7swDp4x\n1ovF9tIy5Lh+bqGWln1LE8/HWz7tTO0bTa+uf/d2Fk3G0OkVHYFX/uMbWX/pIQ71x9g4Ob/q8e54\nxw4y1ZJNcz6dKCtVD4n1949iRMDIRqBai8paUQOLNgCa8f52OTF2X1aVgkoyrDSVkwxNQuUkWvjq\nROUUNvxtaZxOrEAkiakdhP8/zaCkpsmq9dkEhwJej0HIZtYFNHokdXoQy6M1FtEcqq5cKIdMDSq1\nXsRFOGRiOK2FWhpOuz+lc//1vSNEp6j+HC+8qLVQtYRf40URwUYXbkceehySGofhOifQYZBpEaoY\nkSdRWcn+x2b437bSxh4fXfy3/dItjKucRJhaAQngmq98HxPdoQdzK1/tOR6Y+8SxKQQEfQ3IksqT\nh+p5lbIuQUfcIZ6FbkWDkfegl80/bc8pidFmZCbWCza0eHtnYEhlVfMWJK6+ncpqRPYtOpa2nHy0\ndpky/v+ID0jpF69ufWbt9CAKufgH2upOLkjKN2QnF0qTzgpMIb3AjBW1ivTJtkSdMo4Bmg9FCse+\nP7oMaHaJGlhqffAx3VDC1YBPLRYbjxl+t8eSxTmI7WaqJoXwfRpjScHEA8nz9M5PL7vjHaOpwnXv\nnaV0CkOzMC/+xHZ6WUFRKWwIs4tKcc7G1dOJe278PbpJOVJmjmlAZEKCd/TxGi/DKLlosSoVU8q2\nmErEpto4VrsK5hx1Xl5YRb9K65+lypdgpHBYBIXVzaRtZelm5cjYumhtslVzX2yIanoj2n0VyysI\nQrgRwLF9nFjujJOqRsqfoY/Ct2m3JledoJ0yjiGGXZWVLC51at47BPmsMFE4jhU3YQBJHD7aDr1G\naNGuabZpBpGomgQzKJIw/s6Hm7FkKYV7wcy13Py5t/CK+7/rhJ677W/fvOI+q2Fc5T7Ujg1q+eFh\nlgAAIABJREFUAoZFEqpBqp4uXVl5XHbpQw9uDFGgrJ2JCXyFGAG2uS1ZUnkHEEvaLUDRR4O2Jsk1\nRKMmWmzn9lI60L69W0s/sayjfL+DxNUcBi0MWpg6YjBGMsiTEVAcGkalv91gB1I6Jif6nD2zwIbp\nRTas8emVtZIi114Y1gpMpahH6mnrCU/CVyZqPoMDW4maDIUDa8SIc6jnUZzkgNtTxjE0gI0gSaua\noFJHATV45J8fKbCjxxhV6G2j1PG5Nb0UalAqtvn6v08+Hzvd7azzjrJQZFz6Dz/Itf/PUzM+k3Rl\nyaEaA4PEIBjPcs8aFa0hs6HfQeBR/3PPWj1q2PPqD5ME7YX4vUeL4GOsTLS5KHGzgAZvgOY7jlFI\nW7q96UlorgmgVouyTjCoPM5g8ZtL5VRdsYjnECOSyNh1ruFOxNsN1uBTjY0TC1w4eZhzJ+Y4b2KO\n8V7uI19taqwh0qTb79+2+iTqx9qVOxGrLa0P1TWVmJOxU8YxtPOz5dOA2pOolotstHvxo1c+53X3\njoRxWtomtRDNhRqtURpu7jsy6PFCsOt+ZZaOrjBWsmFqEfnth5/y+WbX+Ir7bOKrEokwzGR98mmw\naaPNCU0TVFH5WR+b/2R1huS+I5MjFYTIaYnHaOsstLtu25Lw/nntqIDWAvb/p82IjMeMi0wLr+Vh\naVq5c+OVxaKD8P+32dDKME4uliPbXAnw1936yUXOnlpgMhkyNAnzRQeJ49ypY5yzbo7104tsWjNP\n1ilrohM0VYeYLniPF3eziHY2k7dpO7wgHHvaEpyixdCvHSXEhVsaNYI8x9RCCt9sE3n0T372clJd\n1f0REbdol60cfvfSQaNBCEemKz8/MRuy/66znuIszxxLvvMgw0pTGsliniKE46V3vY4b73j9iude\n+6uz7FxFeEUYyK2uy7suAadcnf7NL3aBRqexn6dsuvDQquez8199gvG0YFgkLA38zMrxTs5Ud8hY\nVtDLPEuyKPRIMx006WgjxCoDgalZsG0gMu7mVenl46k8njU0oWEqxJl55fUYFoqMVJpatNY5r/qU\nJFFgKEYFTYoSZ1YoZTl/4ijbJg8ykQy54/Fz+NoD57K3P8n5vaNcNr2f8ybm2Dp5iKnewKc8tlWJ\nECB1dA6hzbpVsgQwhWyAS+WQ2tYYw8n2Szy7Ur//DGvXhWMKEL9g8F+6kramvVY2VhVsHfrFHaEd\n3lUucu+DYxANZdaXK0NOKDwdVklLTxfHHdp6plnsWI31f60MlZWMpQWvfOCV/Nklf1Y/t/rmY6sf\nJGxGQ5c0f4cLsbKSsV4+IrASKejXv2v7qhL0pVHMjHkVpbPH5kmloavKuvKQW82RvMd83mF+mLW6\nLpsKQ5tgFK8HH2k0OpDxfp2EapfyG0dHVVj89aYAlQTcITC3NJ5j0VTSROs6jfwF/1isVhgjeWhu\nHdYJJrKcLKtgKufIUo8vDi4MrxU1rgLhvKEGEWvgEi/MYuvmKVeDlL5a0UQaELGGk4sBTinH0P6t\npaWimWHYRnyta7XeCjeCJUR1Jq0seaV8J5609ZyJePHI1vHWv/oBFv98S6tc9sLCGayVdNKSvNQ1\nxjKsVl4a4528vv3yr72KfX9yPne+fQfCQukUHVHWjwvbOHtLc9FHARYlBQsXrn4+jzy8nte86HaO\nFL16noMUjq4qmNSeXHVOd46FqsOD8+s5tDhGXuo6z29CeDfytwxdm1FtKVYt4mNIR5ZUpKqiX6X1\ntWWcRDrfXKWlIVVl3YvTRCsxPWlmpEDTOSkE7N83DRaO9KogNSBYWupgcgUOZObLlt1eEaZdh4Uf\ndBeEYER0RSpXg4/E1msVowNXt2if1qlEe55E7GWod/1WKhHpqRBQ64gtQIgk/HOLquE3xPkE7eO2\n7dDnLq6PubazxK1fvYiXb7r2uX/TX2e76He31wSvevBKpeq+g90PnT3y/AO719a3p7IBMvgBm/jP\nfsmlFFYjLCNAWE1JFw0lvbKSddcc4Lr3rAQ797zqI9x9dBOZNJROMjAJR4suC1WHg8U481WHykqm\ndZ/r1zzGN2x8hPPXHA0zRUKJM3Q/jub5rgYEVYvn0LaFQYehSeooFCCRJqg4+TSiMJ7r4qwfKhMj\nkHYkEqMYnfiOyzStUJ0KmRnfKRkwBGd9u3TEDyLw7myz+Y2kAaHyEPsmahYkNE6jhTvU5c/T0TEk\nu4b1BQRtzniDDVShJ0KKUdAIRtKseleq5xrGY0ZnEo8bgEwlXQ06jqc5jy9Ms+t7PshfPHkHZ7qp\nLYsYK+p0qp6m5ASZrpi8fzRqaM+HGImqZPP5amFHrmO5ygUZU+Mj82OUxyGX7rlvI2M6r/9XR1Vo\nYUlEw2kwSBJhGFc55/SOcd70HEI4BksZWlomukNmxvtMdHMmujmpNvQ6BZ20rH+iALFzAqyoZ1WY\n0IcTHUQUbLFO1g4uLkBjmoikXRUYUWNykdBEPX7OGU9AclZAvdgDfyOmETQ8hTidKvZ1+MdE6LD0\nkYONitDhb/8kcdLlylMmlWi3ryrVTLWOaUBNYQ2gZOygqz2va0Z8xYu0k1SUVSPTpZVZ8UXF3UwJ\nx3iS88TnL4AzP1jgko9t58IbH+NQvzdS0VHSkYTFcefPrc7juORj29l60yOIWs7Z/xoTRaOqbJsq\nQcybI2NxaakDT3bo7hfka1ffyXa//kNc+g8/yIXrjtT4UhsQ1NLUZKqY+08mQ7auO8wjaoYsqejo\noLvYAp3blOqoGl6TngQ1w3K5xTpW/P+pMmjdgJ6xQhEnV6ugueAfb0qYNf4VogYZJlq7MKOyrrRY\nsSIFiHwFpa2nUUe8LIrDaldrNBB+x2OIkwwBTomIAZrcPsp5JWH6cWVbyjgiKEFDUH32F0f8iQSY\nKN4StRbi86TwPRaxEhEVgZJwrFvv38zd//aZkZpOt9SjPDdnqUxH0io/As7vkP1ylPXZ1neszh9S\nWoVTcUfy0uoGv7OKekE0oTZ4jsBSPyO7p8tDb7yFZMmhcsE1v746d0LcM8H+hQkOLI5zqD9GXmmW\nqpSFMmNoEo4Oe8wXHeaLLotlxtBoUlmxeeYIBw5P8vCeDTzy6Doee2wtDz+6nn1PzHDwyWkOPTnF\nocen2ffkDEv9bKS0HedVRP5CaRXGSQqjagcEcVxB0wvRbu8WsimxRxCyzcupF7TwC1YlFlQQfw0O\nwzsAM1J4EDJUJJyo+yPi5yxk03RFLFVG0NKexhFDzWxs3dfoOUqqyjequMBBiL0T7d9x8pSWHngE\ncK4ZUWcdXvST0M6qwpeqK1JpmLo7gRMjAK6w0yn1uO69s5z/mifpl0l9MQnh6CR+h9XS8uSTa0de\n4xrIhrVrFhmUCbf/gneiNmn6CHq6wGRN9Kd16GPA75aFEwT8EJMJqo5jeFXJava1m3fwQ4/8S/pV\nSioNY7oI/RCGTFZ1iXRM51RWMTAJmapIZcUT01MctuO4YTjxmH5HXQIHLuyLWvsGKITveRhUXphF\n4mpyU6JNrRqdSlMPQGpfo965jA65gSYaVspS5hqpgsMIHAPnBCoNVH/RTFyDZqpavG6FdPW1XOM4\nxgvH+jJ8m4btgcgRHOIE7ZRxDHmuSRLTUEOjlJUAob2WglUWKRv2W1H5br5KBMZjSCWi3HgMXeM1\nXRlVz5yI0m6SwJtArOgBOFNt7pqSnpW1vH6sRMSGpUxV7P6O3x55jWp1WqchuqvLjRISYViyGf0q\nRYQx7O0yIsDSYgf5RAcRNl6TgTQgBorj2R37z6n5D/FyV8JXD5S0jCcFXV0yqBISZViTLZEIzTdu\n3E11lmKu9NHEsaLDUpHWqWW8DopK1yrP4DsdtbC1c4gpTNuqgDPEknosi0JIGypZN0ZVAdSNj/kU\nI4CPFlwlEXEmxYiwUKNNaSo5gkvESdaezIRvrTbNEJraiYhYOoWLfug2HjmRiyPYKeMYyqMdysR6\nBlchEZXwvAzlsF2LSyzVUkI6mbdKm/61bbVoB/Wka2jCq3YTlc9ZG8LTWFJwzx0XwmXP3/t9+aZr\nv25RxtnnHWEx1P+VcAzD2PaohzCW5CteYzr+93XvmaX36n0BfAsPWshtghIWLX2brwuhbQyhhXC4\no+nInMtkEYQRqL7iko9t54E3r+Q05PdM47YtkYTMxhOITOiCTWr8YCzJPf/ASWwAoMd0zpjOyTPN\noXycJ5ji0SNrAgDoN5FYBagqBWEx5kY3YLUTJKEaUQUCV0qTSniSXXNtRSfRdhhtRuLy8YsRH/O3\naSop4fntfgdBuDuQnFxFK8+I5CcXnE2oRDyD8XRwAo5BCNEBvgBk4fmfcc79shBiDfBfgQuBh4E3\nOOeOhtf8PPCjgAHe5pz7i6c9kXmFkwoR2scjhuWkwJYCJxTJQFCUoVarHbpboYOKzvIuNi3tyP0S\ngsAodYOOFB5oA9j93c/fMFj4+qYemTLMhwu3lxW+walSTHWH9JKi1jqMdvV/nMWE6sHc1RWZlfXn\nBtRIlVkmbNPWVlTKrRhwW0xB1XU4DeX0ytIhwAM/cgsv/9qr6nJnTxdUVrJ3adL/6wAoVlKhZU5h\nNV1RkltdP26dYF3mhxg/mU5RHMugEpAEIDNpBs3KgDdlqqpp0LnRpNIESXlTg9zLy95tybaoBh2d\ngrVhJkahkKmpOeLOyBpgjB2QMTWpjxewB+saGTqhbfAiAlpOOvZMNECPoKlvnLidCPiYA9/qnLsG\nj9e/QghxI/AO4K+dcxcBfx3+RghxOfC9wBXAK4AdQojjx4rBtrz9S37KcEGdDzrl6baqL1BDgVPe\ngYihgqKlf+dG1X3Msi/MtEK0SLGOYeK67iJ7/nTLCXwMZ4Zd+g8/yLFBh15Wct70HFunDnHd+sf5\nxk17uHbt49y0djdfeejCkdeUY83t8zYfbJDz1tZXOkmJCjwG4R28cCwd6eKcYCwroOMdxXW/Msvl\nH5hlcLah2FBRrq0QYxUX/Y83rXrOOx/YxHljR1nfWWTP3Fpu33kB+/bOcGypS79MyI2mML5VOnZC\nVlaxVGUslB1y6yXauqrkxec/zJqNx+pwXLbo1IQUqKtLMl0xnuak0lAaxVKZNvMvZFWPUGxX05yV\noSsycBBco8okQ4RCIes02RZhUI2yjRy/cCSJl6evR9AFsFEGTEKFSoZUrqY7j8jMRyC0rkg8B47B\neYsz45Pw44DXAJ8I938CeG24/RrgD5xzuXNuD/AQ8A0ncjIqF6iBQJb+wvKUufDY0DsHWXlnETnj\n0CDJsWcCIhocvkjtP+ioBhR7I2KJ8plWIp5Pe7aqHhumFuvxfItFxoHBBAeH4zzan+H+Y2exp7+O\n3d/+OyOv6RxqxF8jbmPjzgRY5asSCY0smnCweLiHnNcUue/FaF+gNgWXOr9rW4Hr6xHBkrbtee2H\nsU6yc249x+5ay/jOFLGoGMx1WOh3WMhTcqPpB92Eo3mPvYNJ9g8nOJyPcTgfY7FKOVZ2KKzmgqmj\nrDlnDrTDBlFX56hJQB1VekKTaLQ/EmX8PAn8dZOpQERqVWBid2RMB5K0wlTeWcTHyYzve0gsqmOQ\nifFRQ+p7KiJpqpmWFpq1wjlKHUSPY/oiCMNnABcaEWVDavLkqecglQAIO/6twDbgA865LwshznLO\n7Q1P2QfErqNzgH9svfzxcN/yY74VeCtAB9/JKEsfJXhGncBJhzQepBEGMCCEQBWg+4oql+RrBOlU\nhbF+tFhU5KlC30ME1jxYqWpsAaCXFHz50Qvhgi+c8Af29bJnI/W47EOzrH3JPvpzXcglC24SJ1yz\nPSSWx2em4fx/GHmdbVUuS6Po6IrJbMh8BPy1Y0zndGSJRWBVqKMbgUs9N6KttOVi9FsKHNKDlRaK\nXLP5z3+MPa/46Ipz//tHtrBxZh62LFEpx+aZYywVKVpaMl0xlvgU40jeqyMI8EBlV/uqhx8/p5lM\nhmyePsLCYhc/Es81Yq1GURhdi7O0N5zCeop9brQv1zqB1o3qdI0NBC6OMZI0q2p16qpS/jOBQF8O\nO3uoUChtMKXy2hEWhPIRgC2lH1obeBJSNGlHjBqcFb5/wrWGzAQewzORdjshx+CcM8C1Qohp4LNC\niCuXPe7E8iT/6Y/5YeDDAJNijQPvFJwKn62hiRAsiAqqrr8InQCXgp2s0IkdQawBZnq+Acc4wbDU\npNqwtjcMDLqSjqp4ZGGGYZXQ+7tx+KaTOfPT11708vuQwnf5ReGRVPpdWkvDpM5Zmy6OvOayD85S\nXOgv4G1/+2ZedendFFazPl3g4d5m/6SwI5XO1/qdAptZRMfAUJFmJb2sYCHgAgCyAFkIXOUjD5t5\nivKGtavrQt7/0k8y+8SNpNIwqBJmsj6JNPWiHVTeew3KpMaOhpVmUCkOzo+zdmIJBxzrdxnv5Iyl\nBRdsOEK/TBgUCcMi8ei+9VWHri5ZKtOmgkEzvq5fpQwrjTGSspB1lBCnV1sjsQFGqEqNrYRvdApl\nw5giOCd8CpFLGKtAB3xhQYMEPeYdms4qqkIjVZR9sygRJmy1mJvO+WE2qmvJg+iLVJYLv+euk75W\nTqoq4ZybE0L8LR472C+E2Oic2yuE2AgcCE97Ajiv9bJzw30nZhYIUYPTIcXS4UwjWBucA9Lr8feH\n6Ugud/WaJ1mbLpIIw+efvJyOrrh48gCZrJjRfTqyZGPnGH/0tWvY9YunfhrxTGx51WPz53+Mb7p8\nJ0UA5SLVN5beKquQwnL73Hmw/t76dcUaiw3YwMWb9gONNkHEGp3yr1f438L570gnFjNd0MtKekmJ\nS0IakvhSpZPhGMqRHFWUKiPvrayIRLvv6NlhZJxjscx8c1NQVJLhUp7MhnRUSWG175TUfrHGZrph\nUtZKXokuWdvtMyd8W7ic8bv8UumjhYhNlWHB50aTtIDZTlZSlLpOW0sXaOXO05vdUIH2lTZnBaJb\nBdAQwDMY0Ra6kGZljVmUwj821svrRV9lVRA2HpWQi+LGdUdmOJdOMqpLebJ2IlWJ9UAZnEIX+Hbg\n14A/AX4Y+NXw+4/DS/4E+JQQ4n3AJuAi4CsncjLnvfuLPPYLN/kT60MVtFKcCAQbGULQoGQj5hOQ\njryvER1Dd2JIN/WzBhNhMM5Lt+0/PMVjB2eYGB/QTSo29BZ46ZpdqMc7J/xBnW62PPX4zqvvQeJY\nMn73Q/koQYXdUEvDxvQYf/f4tpHXiVKQBJLQFVN7yWRFIgwbkvkmxZDUVYDaJPR6Ob2sYDwtmEoH\nnHfBITb/2Y/BVTkqtaiouyEc6sAY2c6Eo3aKLf/tx9n9rz/Ecntk9wZec8NtPLy4lsIqCJL1Q5Ng\nEXR1iRZeki0yYK0TdHSJcZJEGiY7uZ86ZiV53iEJ1Y6Z3oBEGoZVUneWtmnc0DiImKb0soK88F2d\nNjb9xQYp8Bercp6qXIWFnDa0fNmaUBVJekpZrLboxDA/32V8Ylg3h5VO1e0B4HGMTlrWfR1VGFpT\nhfKzkB5faOK0E7cTiRg2Ap8IOIMEPu2c+1MhxJeATwshfhR4BHgDgHPuXiHEp4H7gAr4iZCKnJCp\nHPQQbv/3O7juvbPk05Cvs6iBQOWCqteUZvRAYFJwXd+xlg9TlLJ8fucVVAsJ6SGNVUDiEEPBsU6X\nOQV72cDt4xewZxXRkTPVLugcpm9Tpp2kdAqFrZuQ4s8F6SHmnxztaurtE9z1Mz6qOic7Sm4ToMOE\nHDTlxxB+F2Egi1WA8mXEYZFw3sQcM2mftdkSl83sI5MVA5OyfzhBHhbhI8qytHcMNVHyLy58hKt/\nY3aF5uaeV3+Yy7/4A2yYXKwp2yZwD4xrBFpiS3VbPLUqFTIOdimlJwRVApFaD9BF6vCSRg4kKhc4\nCWbc+veprQ/vOxVVHqsJDeKvlEUqS5I2E9Wc87qUbQeTheHMi8MMrUxLb1SFiplf1IPDXZIjmiXd\nwSmHKhoyk9UOERyNqXwE5sJ9ZeKfG4iTmM5zFDE45+4Crlvl/sPAy47zmvcC730mJ1RMef68vw3J\nDUd53YX38Jmd15Lv65GcNfDsvNQ3SJUHepy1aY6xtEAKx+6960h3dnnw5uaiuu69s5gMTzeVPr+9\n8+0rAa4z2WIUlQhDjwKLIJMluU2YUgP+9IoZtjwA6dHRyrJpzajcW0xTWcmGdMEL3kTQMqy/EoUW\nYQ/Qlm1rvUrTmC5QrVKfDaShnfvXky+lnvAzr1EDgTmU8eWFbUweZytJ/mGSx29IMPMJZNYHDZWs\nq1cIEHk4MeX8gikETjsMIdp0oIcSvSgoJy02c7jUL/zkqKJzSHDXz+7gqvfNUg4VNnHYTGJTR2UE\nIjWNqlLsghSOsW5e61VqZerF3k0b8FOFSGaq6zGv0kqkkLVaedYbMKw0xbii3KDIhwnl0Qw7bZHh\n/yplMZXC5AqxoHGpRYxV6LQiVV5JyhqFlJZt33fnM7peThnmYzRZCYSF69+1HbMR1vcGPDqYIT/c\nZd2Wo3z7Ofdzz/wmHxZXKQ8d6nHo6ARHpGV6sg8OqnHHpR/dTnef4PZf3FFz+l+odvkHZvmJN36O\nRBgm5JC+zerehjVqiaFL+NdfO8Bj5Rq6+8UIPlGNNTtOIgyPDNcwqYccqcZHMIZUVnREWZN/VGbo\n6JKuavogJI5EGHLnL7tuVnr6bsjPq57wegW5Yrhu9Z3uzp/bwTfc/t1MnJWjha8UxNB+Is0xzs8E\nKY2qiUoLRVYLycZW6mGpGQ4TZsaHfucOOMQjZgN6SXPde2YpNjqKdQYSi9BN6U9qz7TVgaqf6ioM\nLBrVnYjzUXtJQWlVfU5KWI+P4JjOvM5DxH5io1ZlFQtlhh0XFDOKQ8fGKRZS5KKmsh647QwFJnVU\nSNKDGflGRWf9Ivm+SVRfUh7Pu56AnXKOwaaOYkogK4HpOh4/OMNj+2eQQ8nhI+P8we6XIHMZsAZI\nDXDIfwFH0x523CCUo9qaY68ecvkHZrnvJ17YjuG+n9jBNV/5vnoaUzOhSdbtvVJb3P4Ou96xI1DV\nvIkmxeZT//MmZF/yle5FAOx+U0jFnGBgkob56EA82uUrBy/G9QwiTEXqjBVsWXeYyWTIumyRC6aP\n8picIi8TOp2SovB9C9lkjulVXPbh2RXDcwH6f7+eiW97nJ07N6H6ErlpwJqpJR667Tx0X5CvN4yd\ntcRw1yTdA4LFbSWTZy2y+PAUE7skC1ssGy/zWLkP4xOOHeuh9mZM7BdUPVjY7DDTFSKxCG3JOmVN\nkIsCL1paprpDUmnIdEVeeSCyE6ZqVUrWFQ0tbd3gBbBUZsGJhHZyUVJZPwEr9mqURjEoEzJdsW5q\nkYUsYynrIPZnqMJHvumc4M6f89/DpR/dzmAsG8FnXr79mfFfTjnHcOEvfIm/ePIOrn/XdpwUlHkH\nJKTHBDzR4e6f9tgDDm7/xR1c955ZhHOYVCANWKVxCgamw/xkwuTi0//PF4L175+uS7/Set6ADgQy\np32H5AM/shJz6R5o8nS1JJEl2C6j3XqhqmGRvl9B+yjCJV6ZSB5MSecEquiwO5ukHHeIC5fYtGae\nIwcmSfclFGsN6cwQeyhD7VW4Mcfw3GLV93LP23Zw1Ze/nz2v+TAAV/3mLAeuUOz+/obWvuX/+3F2\nv7F5Pxf/3Q/Te1xyx8/v4LpfmaW6RDLd9Z1hiTIsLHWQlU9f8/UVZBaZGXTip2v1soKyUnTSxkF0\ndMVUOqSwKnAkVDMJS5paRSyWOXuhO7SyPnLQwvreDhdUqUMJeWg1NjT3DSvNsUGHqlKUEeicqbAd\nhZ6XJIutL8IJqoHm2l+d/Wc3BJ5yjiHaaiKh0dqpwe1PV2589bN1Rqevbfu97Wy94TGKAGzFiU1p\nYPN1dUlHlyuiq+veM1t/vlv+8GZe8S23s3thLdfMPEFuNZd+ZJb737KDi972ZfSXJhm6BCksTjvk\nWUOuOGcfEscTC1Ms9DMG8xn6UIIqIF/ImNw4RCiHXhIUa2BybMgh3SFZBKcE2eTxS5dt/cm7f2oH\nW//mzaNPWKY/MNbLmbskACbOMzg3jR+rmZp7ivV0jwWH2dc4CeWUo5g2VOMlqa6Y7g3qRZ5IQ09H\nx+W7dlNpwqQqhQ4cC8+z8BFGLBEPjWY8yb2uqZW1UwDf0j00mn6ZcKzfZdBPccdS1KJE5z6FSBZo\neiNCkHb9u7cj10ByIMEpuOr/9ZvnJr54QtfIcjtlHcP/tmfPxDkD9hxY69H7XNVtzi7OKAh9A3uW\npVzDb1mob08+JPmHR65H5fD/iwvAwv3BaTz4/hez1u6kcIpxXSAMZHf1ePiftjBcF0BKCeLsnLVX\nH2Qq8zv1E/OT6E7J8HKLCBWENefNkZ+dMJjr0hFw+S2z3Ld9pfPf9/Barv2zWe74ef/Y2PjKCdxt\ny5KKay5+FPCdosb6GZW37z0H+eUpdv/UDviO47/+uvfM8tgWizs750UXPkpHlfQrr3E5nni8Y1zn\nI+pPsVxaWB3IZBUdVTGTDhgYT8Syod+kH6oze+cnmT80hj6c0Nsn6HSa/iGnQA9YMU0cvCNNF0AV\ngjv/nX/8n0OjPyUdw9ezJflMtAe/+ePP6HU3nbenvh0X4KomvPRZ3PVs4vUblkvDXX7LLIf3Zhwt\n/EVuOs4zXTOPQRw5OtZIovcVpicQ2eog5J7XfJirdjfKT51kdEKWXDYwq6hUPb1cDWBhkPHluQv9\nZ/OSp/wYgNHIdNvv30x3yzwXzBxlPLSox8nY4KOJpSqtiVZQha5QH1nk1k/UrkwjI3dwaYwjByfp\nPJIyvhQ+01Agsjq0CbjmvhXn9+93+Cliz6w6ucJOGWm3/22nnpXuBC8P63fDnsx9uVK3Spkjz/OY\nxYW/9CV2vukWdF/Q3S8Ze1iTHNGIAxm9BzMm7sno7FVUhS9hbvnsjz/tKQzL0T1OGMH179pe/62k\nq3N+4RyDvePP2GE+9H0f5O4Xf4pdf7OZnYfXs1hm9WNVqDasy5aY1DkTOmcmHTCdDMhgPzvuAAAg\nAElEQVRUFeZjNJhCv0q5bff5lP9jHXte8VGfJkjvOG3ihWz8SRO0A45/XrJ0z6QtYlU7JSMG8BoA\nOOowVOZQjhMAxtCS7TwhqhwLTVYioOgWTM+RHhOev2B9vvhCGSLzbNnf33kpXPAFrn/Xdo5+Q7lq\nc9OW//bjCAcPz6/l9t6F/OWeS0mOSmwC/+aJF/uuzS9uprtfoBI8Wepn/GtlJUgW/fTsl2+6lv1v\nuwlR+d35+ndtZ7iQoHJwqeXK989yz9tGI5B2V2xbhQn89VJrUgKHD03U7MPbfunZuQ6+1uLKbP30\nzVx45ZOs7SzVLNDS+cWfSMNC1aG0Cq0slVU8eHg9S49OMvWgZPe/3+H5xISuUxGUrcL1H6khTxcN\ntHG5f2437inrGDb+xy/y8HtegtNgUkeyIKnGLTIX2MxhNSQLvnmiGrPhAxT1rINq3OKk9N2auS+D\nvtDsko9tRw1Dg9O4F0qZ3CUox31JLlnwF5/VrGg93/KHNzO5W8Krob8JOhMrgcBLfns73cvnGT4y\nwWOPrOPje9Z7avqSQOXwksmHeOv6J/g/b/+puqTWtmSeGj33qWOTPt72zlvY8hnvdMRQUlz71OWl\nFUI9A4EwrfuWfPTxXNmuN3yQiz65naOXHeHitQeZz8drfkVH+SE2hdHMlx0ePzaF+/I0u9+2SnoW\nJBasCs6hFizyv9Xg+bmOT1nHAJDOB1pqKkjnQQ0lTnqiG9Z3X6bHACSm6xur9MAz20zP06ddZhFG\nIMrn7qI4Ve3cFz/BoUWvsrKmk9MvEo6d1cMdS8HC8BzL2Lo+U6EbtW0/8+3/nZ+YfgwAs22AHWqu\ne+/sSEXIdOCs8T5f+N7fq++79ldnfSfsGHzu0DX8hbyC86/Yu2Ic3fXv2g5PMzc4OSa562d2cOlH\nZlGbnpqsU+SjqtbJ4ugOmh1Q9fk9V9qeUbbuit+aZdO3PVYPODJOMqgSnjg2Rb5zkgd/6Bb4F6sf\nIzoA04FKO5J5LzPgN0L3lNW6aM+Gdscp7RgWt5WIzKASy3AQTtWB7Pj68nCoGQwVarwC4bCVpKyk\nz2WnhxR5QreXM97JOXjPhq/vm3me7eLf3U65JiBw2rGgu17cwwjoGsglnScSllS3FhtpmwoNSte/\nazvim5ewSxmL5/knxjLm2EVz7J8b7a2Ii+6S39nON808yG988eV81zV3c+gHF7jsg7PYxFGcXSG/\ncQgCLvrkdrIjgnTerQjxVeGdebIEiwfGRh5bDlAvfwuyHL0nWfCLrVw5rPtZt3t/cgdX/NYs4oZj\nTPcGWCc4sDgOX5niwdWihJYJ651DsgDCiqYDlacu4T/bdkqDj+kBjTyYYg5l6MMJ+lBCujeBAxnF\n0Q7yYIqe09gjKW5fh+SRjN6DKeMPpNh7J0ke7FLcN8WhOzfw0BtfWPiC3LKIXFK+b6AUvgW4COFW\nALJs6pCpIV+22wL8+UEvuXHbO2+hnOugj2iyOb9Qb//FHVz1m7OcPbGAumv1lSYLwX/821eijib8\nzR+9iCsnnmTrt+7x4JgR2KUE9VgHveRxoMFZgivfPzpfonMwiJHkvsuzPc5uedVKtrogAcqJZfJ+\nGeRrLPf+m+eHBXvvT+7gnht/j733b+DhvWsZ3De9AiNZzVTuKyqyCvoqstEneT7tlI4YLvzFL7Hr\nN27EZRYjPZtOLSpc5ttZbeL59y7x+XOpJDbFs8GEwyooNlR0Hl954Z/JtvUPbubfveJzmCvjyDnJ\nGr2IcYLSac5O5lA4ijCIdvs//sDI6zf/8VuZeEjDz8DmP3or2UHN/W8ZvahnXraXPQfWsjNwHzb/\n0VvJDinKLUPU4x123rxyEbzkiSvQV85z/42/t+Ix8KSciz65HbtpiNif8VDYIW0CohIsnXv8/Frf\nOw7/svl76TzD1v96sydPbaiYvvEIY9qw7fdvZmKXfFpi3PHo2Cdru97wwTp9ufwDs7gEuvt9dLTa\ntG+rfYSQr/HEL1kBjhWdps+1ndKOAcB2HSLzslYkFpvKpt03juRKfR3cdQ3VuMD0lG+jzSwiM2RH\nXliO4Xu+5Yu8avwBLxyCDws7AobhY+sIL9+tgBLIvtaFb21e/3/ccDvvf81XAfjOG+7i87deveJ/\nXLlmL/u/ejb8K/+3KCXFtG9km5tIVzwf4EvX/Dc+MHceN97xeg7fs35FlShZdORrwC4laCO44rdm\n0X3Iz/Zdkk4JLt8xy32zKxdJmwR15ftnUTMOM26pADFQbHjN/Tz0vhtJlsSqcXKb5Xn1b8xSnGvZ\n9qmbSeck2ZGGx3D9u7cft6px/bu345QgnwZElMeH4VqfklXnO8ppgyg11/z6LHe+cwdX/8YssvQR\njemC1F6tzGpfoZAlNaB+IvZsaYOe8o7hop/4Mjs/cgOdvZpqzJEsCkwqcOEDVIVgMCbIpj1qLgS4\nCd8Oq7VhaaHz1OScM9BeNnkvuQODoB9KZ0cQGARDl6CwlE7TESVztreiyeyV040U2Pp0wbcqL7Nd\n8+vq3orr370drrB0Ny5y/tQcR5+cOu65vf+zr+LnXvdZvrhmG5d90C/8u3/a/38nBHrJU5Ij089m\nkB0RJEFgcrDx+DH1xR/fjl4SuI7vrRFHFbofcI/vhmt+7SZU7rjtnTv8IhaiLo0Wa/wYvrt/egey\n9FFnMeXqa+76d23HaUE1zggIe82vzyJM0MXsNWG/06GMbj3D1HQFug9O+fcRdW2E8T/SALm/pmXl\n37NNvFP4ely/wq2GPD3PNinWuBeLVaUdAHjw4y8i25PV2o8xvEKCXoLFCxycO8CUElcoVK9CJxVK\nWe59yeph65lsV73P70J+EfjFe9mHZuvP796f3MGV75/FKugcXol0v+Wxb+Qj5/1PwMvNy7snRnbk\nG257A4d3ralncWz7/ZvZdt1jvPbsO/jq/Gb+5rbL2fPaD684r+t+ZRYn/IX+Aw9/Mw8c2cDw79ah\n+yBsAz5u+9TNnv67KOomIZv6sjXS33/vT65cLBd/Yrsv9xm/YQjTsAb1MKhZh+DRaerxBE543kuY\n6FZbBAKddp6yHVXZUxcUxRohXSedd6DRiSrnKec0imPx9cIKREUzVKnVvi6Mlx2IHJ44GlAYPC6U\neEEWYf15xecJC1t/tq3BvNL+yn3mVufcceoho3bKRwwAF73pVnZ96lrsocyLY+ReYr57QHD7L/jc\nbbBGgxUkhzTlWrB56uXJX4BmU78AynFRVwLKzXmtaLT10zdjt5bITkX61e6K1//1V66E4Bi0tvS3\n5mz+/I+x5zs/yqUfmeV7Xvt3fPLhl9bPj1OnEhGGsYQ0wHT8gnEhb3abLaZr653542s28PH0Jp64\nYyNOOrb9/s1gBWa6AuNHD5aTrlkE+N/ludWKcwbo7hPMX1NAGWdE0CzoqOYUF3MlICwsLMu6ReGi\nf/NlHnz/i31KGmc2WH/M2GMSIyknXPNYEjQd4/GEC1GEV8z2o+UctFUFbXASVtTv00dM8baI4yP8\n8ZJ43kEB2q2eHv1z7LRwDABmKYGuRXYrEFAOFaJKuOI/z1KNBzWdbkU5IxAdPyn7mejpn+627VM3\nYy/2TkCmXvLOlV4t2DkvQy7We2GSTqfkjnd8bOT11713lt1troKRJN2Scr93IGPXH+LRwZp6N4Sw\nYwnHWr1IJiuEEVRjjnLaNjtpeLooJYOzLVf/xiz9jY6f/a4/4RPmRg58bX1D560XHH4hyPB34p5S\nCv3Ot+9g29++GatDFSasHxTg/OKtF5s6znGUB2Z2fuSGEOdTj5V3gnooDfEtRcXnOCEtPsfR/G09\ne3Okpmqbz4TU4XQ4t7K1wqO0v/MycbXajBO+Zz6U5oUF+wyGyjyVndLlyrbJBYU6phD7MsQTHZKD\nCS6oDQsLycEEsa+DzCUsJN7L9lbfWc5ksxsKz1eoBHagwwIJU49Kic0VZlFjFhPKcmVHTuQqgEfm\nh/O+NLz79R/iok9u542b/4m/++rlXlYtWlA/kljGdO4XkAs7q/AL2qUBQMwsZtyycEnJ+KOCWz78\nGrZOHWbDZQexmcNMmHrwi0ssTFZe07Pbur9QbP3rZW3WwR76lo952bW4KKXzi0g7nG6P1XN++EsW\nFJp6FaJXocZKZK9CdirPl+lWSG29YIt0/ncQbxHaet1HZT0AHlMG6Xw0EhY1oUQ7slHFBe4EFBKR\nS8RQeS1HS+MAK9FEO8udQzxUx3Dx7AnpLZ+wnTaOYdtP/yO247Cp/zEdR9V1lFOWcsZSjVvMmMGG\ni0hNlLjF0yYgetbM9TViUSMGCrmoUIsK0Vf+vkL6HSlcVEV/ZbWmDmWBfL1BZobeo/5z3HjtPm6b\nPz9cvML3swCTDynu3XUOjxTr+dyuK+nul/7KiotTW0isdyZRMt0Jjl1RISzc+dnL+bdb/4oNWw4H\n7MjVIb+f7uyaXVj64+nUcNVvzi4/fcAPqq0XJNTDb0bSBeW8RFviBVniDh5VnqPis6lkM18y/iwL\nRJ0VXPzmW/1mpKx/38udgYxcZ9GE/nGXD/1ATja4BEYgKj+MR7SPo4LTi58LBCrws2unjWMAX350\nqcNmftaB6wRH0DH+gm7tEkK4VQGwM96Ev3hdYrGZz+ld5qeFu8QvStGryKaHMFwZMbQrEMm6ATox\nNSnoOzZ+jS/u3ArrctRYyeIFvkJwxzt2IAaKNXqRwUIGzg+rJQ0OQQZF5XhRh8UtOob5iw3JouPt\n//P1vOOiP2d607yfTRpCcZHYZmcNObXUXjh1cM1KKjeAvGvCL3bJyOtEZhp6fCWwucIOFTZXMK9x\nSxq7lOD6GpcrXClxYdakHao6LXOFB7mdkfVuvvMjN0CYFkUlm5UlXP0Z+JNrhfzR0WTGpxGtSEM4\nn1r4Mm2DNazm4J4LO60cw8Vv+SqiEMiBRPYlyVGNGCrkMY1aUIhSIgqJWNLI3StBtReC6YkSpkrk\nREkyk5OsGZLODOlu6KMmSrrTQ3rjORumFutIoG3tZrNepyD7imc2XvrR7dyzsMmnJuHadGEQzTX/\nYZap845xY+cRtp1/gHyd9Yi/cn7ACtSDXOuwWDm/yLqGuZfkTN2e8dqxRX758j9l4tx5/zzpn9Pe\nqcVA4Y6lFAd7mIXV+Sn3ze6o55r6N4VfUMcSRC480BdCdyrpGaERqIxmhBe0KUKIP1CIJR+JiYHy\n0VclcLmE3DNM68hsKGHo/5aLGrGg/e0FjTqmUfOK5LBGzmtkHc0Jfz7g33cEPCvvyEQe0o2QdiAc\nopTIJcXFNz+7aQScRuBjNJf6PBUncGkApZRHhuswLLM88LqVA0vOdLv+XdtR3+q7EOOwEcK8hTht\n2VofJhvnG9PadulHZrHnebmyq943i3jp0XqmRHb1HF++f4vfFU0Y8R5l2mP0i5cuw/ruymoQ5g3G\n0Dc+N+TJovRIvSsk81u9A/nlD/wQ//bmz/Br5cvJ9/VwoTznlPOLMYTjsqIGJVczvauD2RAihFzU\npUlk5A5472akX2B64GdKml4YihzKhjalnq0pC+EBUEJkX/mpWziQpfDzHqx/MKZkshD1eQoTyEoB\ne1DOA5oqlwgLJnMw0DX92QlfmrcJdQlTGBmuc4msBOf/389Muu3p7LSKGADIDKJjPLA4WcJE6UPl\nzEDm9fVXaxF+Idj8RY58PqOaTynnOlSHOlRHOpiFhOGhLlVfkx/tkA8S9u6bWSGrX05Yv3sC/XMt\nSwu+pnbdr8xy1Ya9qKN+52MhwS1pVL9xDCbkwMZK3y4c9DEAxED6SG8o/Q5YiGaaWNBIENY3ft35\nczt4/85v4Wev/EuYLNHzClEKrwZdxZJhEIJxvpNxNbv/x27xi7nvF5AsBHogUH3/v530i1ktKfSS\nQJT+HPSiJFmQJPP+t16UfgJ74A6ogUAv+Z9k0U9nVwOB7gvSeUl6TJLOC5J56Z/XF2RH/E96TJDO\nC/RieP28//uCX/6i51r0w2PhcT/V3R/f8ykA4QfKyFVIZ8+mnXYRw8VvvpUHP/4iL7ohnR9WEgEh\n46cnF4+NPd1hzjjb/CdvhTUlDP1CitWACF65zITc16HTCvHQys/IpY7Ok/6SkBuGtcKRfsUhhkZj\nO6F+Xwl/5cQSpPUOwQSxU1zY4SofLagQIgsLjmb3Fi5Ge/4xNRRc/Int7PzhW7j4d7fzg9/5Bf7L\nX38T2RE/UMamDdHI595+StnxrPe4ZnCOQS36HdmJkCo5gSp8hCBs2O0zPzhGD/2CjAIpSZhIVZ+/\nDviJ8ESryFmQZdBQCAQ83/PgW6bja2MkkCw6bBI+JwP7f/ImdIBLIlkJGHmOCNoMToFRromAniM7\n/SIG8E7BCAhAEA6fC4bdbtf3fvCpD3AGmuhVUErPqmsBVE46P+o+bjDSj2jPjq7ccVxia1Wias73\nO1z5n2a5dv0TPDo/UzP3XA1uhrA6iogIx3iaN4y96KyVz5mdDFwE6S9sk7larQhCKO38/9z5Q7fw\nX/72m/ihl32BwcYK03VUXah6DtP1Qj02DD2+7IOrRw0RNHWq9f4DWUiEHgQRnJioglOoCNGE160U\nvg3Hdz2G+5IFQbIg0ENIj/kWaTXw70OW1OxclYMswt9FyOwkOCXqYc029a3gNgk/OjA0VeMQ/Bfc\nfM5O+scv/IUvneRVcuJ2WjqGi3/snxqCSBXqwEGIRajj7yBnql3xn8PCqOv/rik7itZPqAgY08yj\nbJsca3gfsaKTX9PHOsHB/aH/IQJ0piEL2ZR6CnQqTU3qEaVAlLIpKiQO23GYrvW04nCeLnTORu2B\nfMZx5X+aZdcbPsiu/jre8JKvUE5Fr0T9voT11Ody8imihsdUnUboQQjpj/o0QPd9OK/7vrcimffa\nD7rvHYDKG1xADzytWvfDz1J0Ft6ZuTChXQQWZQz9/VxJL1xjul4Topjwt6uO/1sa/3nV4q+Jfzyq\nOQlHTWQSlWDzz3+pjjCeKzstHQPAxTd/BbmkUANJckwFnjrovdnTv/gMs/65FeJI6lH0kMPrYwo5\n8A5TL6g6opLzGvfw6qmWC/Xwa3+12YG/5/Jbuf3AOajDvgLgy56+7NgubdqAMQyNHgmbI0sQiV/M\nhUAN/P+ReehnSKKDcbUTG26wbP2vN/O7F3yBT3/1Bj71yh1I4xW6VN70E6ihj5Au+9DqUcM9b9tR\ng30m89FGNeYoJ70jsto7osHZluEGR/8sx+AsS77Wd3qWkw7TgeF6yKf872LKL9xyDPIZwXCDo+r5\nOZ/lBPVtk/jb5XhwAqn/if0PcQCQk8GByKD5qHyUUfdqxOgLH6099ks3ccE7n7toAU5jxwANOcwG\nDrowor7IXkim+gHoWpTIIlZq/Gei+hJZgFqUyKEvfa2WRgAw7/GFqMJ0xW/N8tDSeo4+PuWPpyL4\nBxjfrwIhp3aCofOTmHy3YEDwRQDVFjygJkuBzP1tlTc/Tntgr86nK3/7ot/dzp5XfYQ3/dObuP6b\nHqinN1e9WNsnTJA6ftRg66gkLLrg0EzP+XRI+OqBLLzjkZU/R1nEvpxmoVrVKDHHBSsDphN3dqub\nFET3fbQhSz8fQg8DHpF4J2GVX/wRi5BlaBIUPpqIvRyyCp9dKTjv3c9NJaJtp7Vj2Poz/4gIH5ga\nNujtlf9p9d3jTDXTs5TjIffuWWzXYjs+VDdjlmKdwYxZzKTBTBjS+ZXO85Lf3s7u14+WeM9+2ePc\ntXcTetGX5UQYxS5KgXCi5jwIA0URQEvh6otZhHSj6jqqcc9SNV3rm6p0s4Oa1GMNpusoZww284tP\nVgKBdw73v/ST3LV3Ez/6XX+FuXTRh+sBCDSZp1xf8+urf++yEFTjEdGjFhP2eqI05dY04B54p1FO\nOP973EcZVc+nYsWkY7jOUkz645jMM3FN2gCq5aR/fr7WkU/7Y5VjjmLKUUz7c64m/O18jWWwIfw9\n6TBZxCPCd5o5TBrOY/z52fhOa8cQzaRNfioMDDZarvm1F4ZzuOR3wuwEGXL2zDR04FhBiN2DFkjt\nqkIj59/0+MjfV71vlu8462sM9455bEAzclyg4Y046s7NWJWAsOtXDXIvSlFzEmL+HHER3yYuUIvK\n79Ixqhj6maSXf2CW+276L3zywW/g+y67lfR/tffuUXZf1Z3nZ5/ze9xH3apSSSVZT0uy5ScGzBBI\nyGORZBJISIf06m6G9GTIE4LETEjniYPTq0PTCQ0JpDuJTJMAnQQIQ5JJh0mm00NCerp7hYABYxsc\nY8tv2XqUVO/7+D3OOfPHPvdW2ZKxjCWrZN+9Vi3de3Xr1qm69+zfPnt/H/OGdHndyLBr6F129k1z\nz4/cMuqNBBsrCLtGnfZ5wMckWre1D1I3dbNXU55qSnsidVu/1qiOOh3xaRhVIz6LGzrXxFBNBOqO\np+7o69TtQD3hVag47j7FOqzRwocJIFiopj3ljI/mPIH9v3BhjxDDuOQTw/5f/Ay+qX+4EU/ew/K1\n9ZPOuJ9L4ZoBUxhsxApQGsULuLgpw1rpLLV50ubsP9n+xcfdL79hlSpYGieszvHL+FXFI0vPkHTX\nPj5DT8zarzmRmzLiD8q40Xt6bDCVxP/XZDGs+Ah67BhqKejYMGBKGY3wvvyNH+U/H70OblgZTQqG\nTUTzNcZ3Q46NgqvWsBMQRVOEEXBq2PswtaJskxWjCapeAzqlK0LalRGFQacMCrITH3+nUpMbcVJk\nCqOvXa1NjUy9Noo09dqxAzRRJisG0zf6dysvLHZhfVzyiQHgqoOfU4ht5Kn7pkcKQ+/ymutueW4n\nB9dU/ohr6BECgx4nMm0S+pZTK/qGg05Fc+Ls4K/1novX/c4hfvL6/8EHb/0W+jtqqhmHb3lcR48j\ndVst4uu27qwv3XSYNKujgasfdeRd01NPOiW9tT3ljKPueHwSRrTsespRTznKLY5qk6PYVlNOe8pp\nT3+7o9hRMbispr/dsf9PfpKrfv8gn7vxj/nOvffwhh/+L/S3e/q7HIPtjnJLzf4/fvNZf7/7/9n7\ntSKY1Ku/a3nqZsBUuslZB5xyjYCfcNRTNb7lqTa50Wg1ZFoBFJs9xYwflfr1pKPc7Cg36dpd21O3\ntFKQECuLhh/hL5Kujka91eRO0ETgE0ZJQMecmoBsX9j3S89OtQBPIzGIiBWR20TkL+L9GRH5lIjc\nG//dtO65N4nIERH5qoi86kIs/IlhZgpCWz/ACIS26gL0d9Rc+dGDT/0Cl2Bc87uHIPcjsg2pX0MW\nxmphhPnvKgX7iY5NAC/+tUN8+ME1A0d5yRKnqgnMUqIjzsQr9bnhkGzdv621S3TRT/FBKJw6Rbs8\nQtebThNW7E3gwU14QrtWUpcJWjUM1kbO+DhyHTaS44YMnRq/Z8AVn3gzv73zsyzVLWaunFdodRyd\nhnbNC3/9SS4GudOpSlNt9EgC1aaaqqO9mZDp5tU16KgVYq8kNhSTlVgBDb0ks7X1m96QDanHqKRr\nSJcM+WlD47glXdaKwfZlbdIQR5umjl6eBuq2Vh4+I+I3AnveceEbjuvj6VQMbwX+Yd39twF/E0I4\nAPxNvI+IXAe8HrgeeDVwWESexIrz/MUV//xLqtwzjHjWNQODb3r2/+lT+x9ealHsLrHNOuoJOGyz\nJrQcydY+03sXSWYHSMvBRI1MlZhmTV2e+VYsXV+z+Jlto/tvuOpz/Pn9N+iGHrL9TFDSkF/rGazX\nBPCFpRtSelU60jwERpTg0VQjciwkCSMNA3GiFU6mjEvf9ErQkoAUFjKPNFXVya0m+Nxz/W8d4p1b\n7+QN+z7L5gOnGYqpAKxce3b11OlbcyTzSkSqVFRYCqPrtUGJeKVCr23X6NdKPKIRcRgxEYiX0VFJ\nXIRc9wQziMjOSnBNbR6WU35k4Fu3A/W0o570a7oV0eB3WD24pletkYb2Ly7GpO2cEoOI7AJeA6w3\nL3wt8Pvx9u8DP7Du8Y+HEIoQwgPAEeBl52e5T7HOXD9YEpGRIfVaSscP976/fCP7/+wnVbz0ORA2\nd/jaIFbVsn1pSZsV3htWezneq2ITEkizmkar5L7v/PAZr/Pmb/7bEeLx+t8+xLFyiuLBDjSiTkFp\nCL2YUGqlGodeMkKavuQdBzErCR86+W2cnJ+MjTg9z0usBPSqq0cckoDMp9C3Si8W9OqcBNVfiONQ\nvCguo2cJhY10bcVQ9PZWXP2hg/ze776GvVPzvPJFd4/ed9zZz+K33XyYEOLaIqgIA76tZKuQBmxf\ndILTisecSTfa6CHRI5Gb0CPS8HlDD4iqExNHYFTtiBN9fjvgE+2X2BWL6al7mmupfoM2LoMqPQF1\nR48jvu248me+tpbjhYhzrRh+E/gFRqBYALaFEI7F28eB4SVnJ/DIuucdjY89LkTkTSLyeRH5fMX5\nIT0d+JEvKE13qIAzpPl6CLlDcseBt3yWxW8quOb3Lv3k4Ao70g2QviXUQtVP8aWlWmzgllLCXI4s\nZJQnW/SPds76OpuS7uj24No+f/7FG0mXDdljGelcQuN4QvOxhMajKc0HU9J5SzpvkVK48o/ezOoe\nQODTd11DvZhRT0S4dIDQiICoKEZCrnJvQ8BTsIHQ0hJ/JGsWR6OmH5NFojBqKoFC6c6mZ6kmPbf/\nwmHu/rOrKVxCsmWgFUAt3PirZz9O5I9kyhCN/ZjQcJB5gugxop52Wp1kHjNRaVVjY38g9/GY49d0\nECzUk9qvwITRwCLYoNiHIVMyTs1G7EwbpxsRfDViXsYq1wz0c3vVm259ph+TryueMjGIyPcBJ0MI\nX3iy5wSVmn5a9U4I4QMhhJeGEF6acv7Qile98dYoxqG/ml21JCuqYhR6Cff+9ssJ3QS5dvVJFYAu\nhbj2/YeU7dg3pKcT8pMWu5BiFtW9y65YsnmrY70lQ+OEpTF39rf7r09fu/a6u4+TnkpwuV7d0lUh\nXSHChhWgE4abOlUpNm3ArTEziZMh6mHrPYxGlAhIuyZYnaYAo7HqsMdgBnqOVxE01aoAACAASURB\nVAXluIGqqEcQ1tiR4oQrP3qQO372MHf839fyxhv+B6GjR47uzrN/HO/+iVtGWomYoLcrowkgoA3I\ngSJI/TohG4nJyHajKlZh1sa2Noyo3MGuwaKHYeJkxsbpzJBANhznDsWNbaGTC1uob2d+6oKfwJ80\nzoVd+c3A94vI96LatpMi8hHghIhsDyEcE5HtwMn4/EeB3eu+f1d87FkLW4iqamWqYjRMf1rORuRc\nZWmeBehzqUR1dZ8QwJhAXRuqKP9lMoeYgKsMrpsgQa886dY+cveZdnL7/uonSE6msP9v2P/Hb+Zl\nL70Hv2eAW0mpSyE0PI1NA1xt9GhiPHUv1d5A5qEwyNZCWZ19qxT4xK1VazEZDMMsJ/oeCPiJOpIo\n0Kv3sGoQcG2vR5mBbsJk1VDNuJFoi/TtqKm57z+9ickCPnbLq3jfT/8BN9/5WgYPnL06AmgcTxhs\nr1RZCaCwo/5Espjoz47rHgmmOG2aSkRu2lWzJr845KVEDQdx4GJjMlhFdKocoUK47UCwC2u+lMZF\nwpaDuh1RmQ3Y86+e3Ybj+njKiiGEcFMIYVcIYS/aVPx0COGHgE8CPxyf9sPAn8fbnwReLyK5iOwD\nDgDnX2Lma8S+t31Gz63rrkjBBkLDYdoVtqPNqZA89Vz4fDn7nO8Y2oEEL8owHQKMSqt6hZVBJmot\nlQWqfnqGzRzA6278vLovA81dK9y/uBm3lOo5uBKkNBQnW6rr0Euo5xp69S4NrKgCEcdzZbo2nQql\nRkyA9PTKS6TII7oxkuXoJjZUI4pCKMlCog2/vpDPWbLHMqQW7ECl0qTW87n0bJwCWExflbtW93hu\ne/thfuV9b+C9L/wEruO49gNnVoTfd8/3UB3oa7KZy6Bv17D1SaDuqGboSKJ9CM5yOu0xhYxg4UOj\nmHTFMKReD0F22XLEecTnpauGfM5EdG7ANYdkqUBvp6O3PTCYVXRk1Q4XNSnAM8MxvAv4LhG5F/if\n431CCF8BPgHcBfwV8JYQwrNsyQkH3vr32uV2a4CStFXhK4vrJYQg3PZLT+3w80Tz1I0SvrD41RRf\nmVGzrdEptOnqweROdReSODsvznyrr/7wQf7x1NoJcd/meeYendYzd9wYwWijzgyE9HSim7tTgY88\njCJCo1NPciollAaTOZqb+moROFGTThfYyNz0e/o0rlskmSqViDVdIhNqCVDP1Ip96GizLghkC2Z0\nVrddQ37K0DhpSfrgM/+4s/kVH38zt918mF987xt53TfcSrFvsPa7fuggvzJ3He+8/D+x77JTI+zH\nMNmYgcEua4NTehbbNYR2/NjGESsRnzE8OtRNbVZChF1PesV7NKDY4pQD0RuCy6DuBKqOV6h1BFv5\nDNJFQzDavJQAfgPwAC8JJ6pnEve8/2V6fhwYtX8fbiSBB77/0hWLvfK//ghuJUXqKPU1FBN1wnpD\nFckcwRmyx9KRpdyLf+0Q2avneMfVn+Tl+QL31wn/y5+8FbunS32shW8qICp4QUxQ0dOh7oWgCsvN\nuNFLqw3BWJZLEggBnZT0LelkiZiAtZ6qTBDjqcsEk3j1CgkgmcrFSeq1+hH0fYrHhrRdUXXj8aWK\nv28SsBMVbjXVflJ0dSLA1D3C4stL3vWKP2HFNfnxqePc8N5DTHznCWZbXY58aj/ZMiy9qNTKZmB0\nGpAGzNLaUSdZ1aRUTwR8240a2lJEzIXRhOCTQNKL9O8QSWGixwOf6tEWoJzWRJb0okJT3HpV9EWR\nWtWcLlQ855yonlGkfm18FS3gbVchrhciXrXjxRe8yrjhNw8hL+7p5h0wAuMECWv6ig2HdJORKUq2\nvPb7fummw9zw3kO8076Gj133B3yl2AGAO9oi5AHTt/j4OsGGNZVlZ5SLAWuNuThmlES1G2UhGal1\nm0qoskTP8InHNBzhdFNn/C2PXdUrJcZq+R6UFo5ByU4txRzUfQstt3Y0bOjV2/WiCHBcp0+1Ybp0\ndcCcSvlCdx//ZPpWbnjfW0f+mIAeboErPv2jClKqUmRgCcFHlal4bOnrBcQMwLfR5BiTxhCmPYR+\nAyNsAwGM1/vZMvozUsgXDC4Po9f1w5NuovDwEdFrA8RzAhL9teKqH/+8bpQkjM6zruVJehcmMaxP\nCheqP9Hd47SP0E/iB9cghWBKgzSVRJU2K/VcLBXncOdPP/7YdOfPHObEHdt45affyrs+8jo6Dwpm\nR390JpYiaq4FbTKaVj0SxQGQgSWZT1ULY2AItZAsJNqXWAeCMgup6kIUKtM+nDZI5F7YQeQTCFrG\nB9ZESUo9BqbL2kOxfaNril0/6anMvIq2BgVFBYUSI/CfH7qWdx/9HmVQniX0KDY0h9Sk6toKtDLl\nGpoyiceFZNVqskyUaEXUUTC1TiOGSSEkegyq1zUxJUDV1sQ1/L6QRs9M9P4VP/vs4xWeLJ77FQMq\n6nLkD2/EGz1Dtqf7DHpP3rU+X3GhKofGZV2cMzifYvpWG6sTDmrBJh4HNBsVrm1JMkeanr3F43cM\nuP87Pgzfrfev/cAhqq01PtdNGXL98AcnBGeRqQp6ujlsL5b0XjdvSI1282UNDBRSj121qkwUUBOc\nUkvtuqGKyj7VRqr0rTIdo6qT7eskQnwkinVVtj7pC2GQkvSFYrOLEGLdzK0HUwazHtsXqm0VK3MT\nfOF4Bztz9ivxA9//AfZ/6sfAWUIWkL4BC8mSJouh+riphOx4QrDQfijB5YxGlYMdNfak1XVM1dio\naTE0m+3trpXgFlmlVSdgYjXiGtpTSJeEXb92cZuNT4znfMUwjCv/t9uQ1JM0aozx2km+BOOG9x7C\nWo93hnRmgJ+s9UOd6FU9y2oaW/pMNQf4QUKW1eyaXjzra+WNNejw1R86SDnptR8TlYPMOj1NKqMe\nmKUhO5msUa7j1ZDcPU7uTZxApGvbfhzv1SoSU7cC9ZSiDeuOo95SaUk+7PjnHrepptpaUW6r8Zsr\n1XXoOKpph2sqUSlknnxBu/9SGnq7a/xkref6hQQqTVq2L7zoPWfHrMjpDNs35Cc1aaULRoVhExV7\ndS2lT7eO6dq//FOHSfrQmFdcRzan7NP2UaHxaDpyYjeVEqWy+TjdCXrfdxzBKJ27nq5xedhwSQGe\nJxXDKATqfsJqbeicfa9c1DiX/oTLYfBoh3RJz+fNnhrIyin9YLu0QTUZeGQ5BycM7pniSDIJ15z5\nWnm6pvFYbnERlGQIWcAMFPfv20CA7LRe+UNkRko0dxUPOCGZy7QJtxDNZI1gTxvKaU+92SlqMfd0\nd1k94rRrys2C6VQ0WiXZrKOoEgar+QiGbfomluZ6JR/Jm3V02kJhKTbpBEU2lchcrma+TslOpQzJ\nTEJ3x9mb7Pe9/v1c+bE3YwqjwtcmekuYgGsYTGGoJx3LB/Tvfe1/OESx25HNW+yAkaGyz/QYkXSV\nnu1ynVrUk458LolENzArlmxJfy+XC/5JjjkXO55XieHAG1Rz4J4P/08bslY6l6PH4DK9MleTuiFc\nU1F8RlSlKERrd7Oc4Ds17rKa5t2NM17nusOHKK/rje7byRLXSzC59i+8WPxkQLoqnFK3w4gGPFSK\nCibAENUXxVYHs9qhHxJ/8tMWU1rEq44jXvDiYTnV40Zt6J1s08t13JlWQ11EPY8bB+VltQKpYl8i\n9JX4ZCNewlRCGDQULxCTUbElsjOjEGvS19/5rkNnjqizRaM8hzxgCyFdsNQTOur2LY/t2hEKs5jx\n5KftiBQltTIvy5YfydR50GSRB0xpcI2AqaLg7KqMRGDzRWH7b2y8agE25Pa48HHVj34B27/4Y9qv\nJxrHLflpNUTJT1ryU2ZUquanDOmiCos0jxvyx1LsiZyv/B9nbobBNqejxhhuKaP5YKaO4SczkoUE\nBgqnTnpCfkpf854fuYXOA/qzs9OWdMnQPCHki1o+p0tC0kWv9LGROdQzHGo6EhiRhaSXqGDtqZR0\nRZt4ttSjyFBJSRKdQiQ9lccPRl8rXTGqo9hV56sw1DZAG5K2q1qYPoNiW01/f3nWv+ldhw6r1mJU\njoI4hmw5FRjuD7kMyqCs2mE0dgTFKNion1C1o4zbhB9VOD7XKquYCXR3rsm5bdSkAM+zimF9fPFf\nnilvttHjmt89xFCAKZ/Xq83Rm15BuqobKulph9xlkK7q7fJJKCxmpsRFN/Ab/80h2hPw5beuJZAb\n33kInyUj85SRiQx6Wz0XdEPaQaBuC1UnIpyjwCqoIcwg+kqotkN4HEWaUicfrulx+dDzQfBbC/JW\nxWCuCU61DnwStFnZcpSpkJ3WxGYq3bT1hMc7wXUc6Xwy4i9UDY/kHpM9Oc6umtQxogSlRmuSii5V\nteAmvSaAgUCmo4ahyjMBsgWh6kReB/o7JatQztaYrtWpRaFHD9uXi8KYfDrxvE0Mw1HiRkU2ni3K\nGUe2YKhbgVLgng+9FLPoH+dctPftn+He33k5xRbAaIVx1pBA56sp/CMoph//Xze87xC01iTN63iF\ntANRmPFmoq4hFJsDYVcgtB224ZSfUWnZ75vqrG2P5yo8kgJTlaIwBdJOCR2olnJFHl7Ww9UWv5gR\n+gmDIdU6aDXg204zT+IxK6keaRqBaipWIF4IiWCXE6ottQKxUofvJSMQ1rUfOMQ/vOnMCmriYcPK\nlTUYq9Dotv68sgV2OSHpCnUzUG5xJMuWZFXUearSasGnMWkMITPtgDNg+pZs2SDRs1JWuODS7+cj\nnpdHiUsxXvSeQ4Smo5rQs7ebVLxCmKnwTa3bvYUH3vVNNB6zJKv61uYLZ3+94IQ7fi46NaVqtDLU\nqShmdGOA9gVcKxBSNVhx16zir12l3ORHgCI7MNjFhPatzejKLFFmTt2q647Thl6sFkxfSUv1qQZ1\nkWAmqhERKSxkqpvYiISp1GMXE+xAyOYU0ETf4idrbCFM71kk2TyIr6tHH9d22HalcPAQmbaZx9dC\nMXP2quGOnz2MnSpVfyHXMWg2VUAax6p2rTrwOwYUmz3VpI4yR7gLp5OMYMF3anwaSJeVG5F2FeF4\nKSQFGCeGDUuSemLc/vOHad2XkS+oaWrz4ZT2vRn3f/cH6RyxHPlfb+HeN9xC+6hw11sO05wT0iVz\nhnEtKKdgPePRW2X+Le9XMZtqk6PY6vC5ovXy0wbbE4otgeTOCcJ9bRrHLa3HDBMPCZ0H4MgPvp9g\nYfouw9Q9wsQRtYw3ywmNYwnpUpxWFJZkRbUWTCmwnOB7CTJd4o61SGb7qoqUeCVkDSxuqkYu76oM\n/lQNSSA9lVJuciwcn6QaJArCKoRyS61j0tM5oTLKF5ka+sMJWDXPPVtM/H0LPGSdkpB5qn6K9Cz1\npKOeUT6H6RvCUoZre6rNNeUmTzWlcvK93TW93TX1hCd7LCVd1kaoy2H1cs/+X7w0kgKMEwOgyeFS\nSBDGqUei7SuE9ss/pZv+9p8/zPW/dYirP3SQ7s7Ajb96iHKSx8vqrAvfcfiuniJftePFuFagu7dW\n9aGRM7WO31wjTiMqSFaEdDV6N/ZUp/C2tx/G5cIN7zuE7UMQoeoIroGSqLYNGOyqqLYqFiE9lZD0\nheaJOIpMo719AD/h8F6PGb6XKFejEqgN3lmVsMu0qVfNVupu3nBQWELf4rYXSK4VhtQClSFNlSsy\nlKULEnC7Bmf9u3zpbYchDVRzTe1fdJU3IZFirpWAQ4rIrhwYTXJlhEg7RZ+aqCgdLEqFr+DKf7Gx\newpPjOdtj+FSi+t+5xD1JvUrSFe1e37tfziEqbRErfbUEMVSuthRmX+2kMyRHlUK3/3v/iZ86pFS\nJdgxQrnJkc1ZTKnTi2RVodcuuk2HaLwaEl0X7WjikupZu27qKM/0DTKJHiEiWhK0X1BsjlOJpiP0\nLOZkjhEIXUsYumqbQNikRCc/n0FLjxfpREm1mmEaisMIAZ1aZI5qKVe05KSa/Pbm2qrG1LWkK9qY\nrZuO63/70Mj09nF/m74hn7ckPQhG12tqPeK4VhhZ89muIV0xJF09QlSTkET5O1NrfybpKZhr782X\nTqUwjHFiWBcbuSE5ZA5KYGSJhkBvf0nj4Qw5bbGDREvXZqB11DyeOLQuts4u8/ff9Sf6ul7n+K7B\nSHfQFAZTQW+Xnsf7u2rIHfnDOb11CQjRq322YCi2qtYFp/Iofw5m1eAGTUxjjZ7sU7WT842AXTXY\nExkEFAi0pU+xnGObjnAiR1YjNDk2IEk9YgLVakZ2IiFbTOnu9jBRk5xOqbyQTJbUJiWdU1HacsbB\nwJAtGgbba/0bdhOKF/TO9qchn7cUWxxFJN4lfZV0N7XqLjSPZwy2qHBr3QrUDUbeFuV0IFsSBrMq\nod9+xHDgrZdWpTCM8VHiLLERjxWDrdHazcBgVgVK62YgO5GqhVlDZ+PpsqFxwoywA2eLfpmObleT\njubJ6CtZQ7akuIh0GZrHLNmCbk47r99z1UHV3NEmo1kDIvUM5lhjRIoauisNyUhDJeSRr8KKoZ6u\nI/xYkZDu/gmy4ynGKG7B9uKmrIR8Ph49vGBWLT6F7uWOxklDdjwdjSY7/71JNpeos1QjYAYGcs9g\nR6Vajo0oxPIkgrH/8KbDyr4thJB7qpmaalq9NAaX1axeoWs2tZLx6i0V5azDOGjMicKkF5S9u+PX\nNy5O4alinBjOYzyZd+IzjRf8+0OENFBP15hCyBZ1pj/slptqzSmqmvT0L/MsXVM/6et1u2tIyOy0\npbc90DgF2aKeh4NER+eGjhht1yjYaMLz2M+/ArOYkJ82hDQoXyONAB8P1ZROTrTppvLpzWOW5gkh\nWzIjf1FvlaHpM4+bcphTGaaOV+FTDUIaqC4vtE9R60QEgIVsRFsOaVCjme0V9faSZGbA4gs8YX9v\nJPPuc5WLMz0LSynJyYzGIxm+slzxibOb0+QLityUqOgsteorNI4npAt2lOykEpoPZUglrF5VKoBp\ntya6S6nReLYYJ4YniafbkHzBvzvE8nVn9zN4ptHdXzE0j6k31ZSbvZqR5DriG+wuqbZVo+PFEJQz\njDOs+h5bSwzlrpKwv8fKPrV+ryYCtlRlIVNF4FEzmtoYKKcDjTmF+dquQe5tU8zW+D19qm0lyYpV\nU9p4RU26QrHFs/rCguKKATbCp13HYQshP2WxSxbX8pF/AfllPZKZAaE2SKsm7O3Tv7FHGFhCw1HN\nqDOU1Nokla4lOMEdb0K7pj7VGPk6SC2kkcgU0kDjtG7y9ESKHcgZVgI/cO+r+JUf+wh+siZbsGuC\nLJUglSIrk1Wd+CSrmkDSRUMyn1JPeva97TOXzEjya8U4MTxFnGty6F5VMjRoPe8hENo1ZqJS+nGt\ncmo2OiKZZQXw+DxgCt0Q69/Z9ZDo63/rEM2T68poJ1TLGemKUTfqWCWI16t3SALSciOeQtXxDLYq\nqMqUQkihMdsnSRwm9bhtJdnOLm6zlh57fuXvVCshUsLrZvSQDNElOte+BjZQbNfkVvRSHRX247Sh\nNqrwVCqLUpo1oaN6lsGi8nBp5ImsJmTzkagVHaEkqJGtKYy6STcCddvjdw9YvEbfs6s/eJBX3/0a\n/v2+P6UKlu+4/m4lgE05QqaJsZzxyGxBNal/J/HaXDS19lQO/O+fvTDv/0WIcWI4hziX5CB9i6yT\nGz+fIYVKq/luGquCgJ+sVRtxQq/kEuK5PgGf+zOkx1/yDr0yXv7dD3Lnv1hLFBIFVX2izcBsycQN\nG23fo9zaSAB1U6njxOiUVDcDRTejHKT4bkKohcFiQynPDu79nZfrhq0N9UpKvbVELhuMqMk+WtFJ\naTCrliBgTubY07EP4oQwsJjHGtihke5ipvoNpRk5RkMcfdb6c4f2edmyoep4pTuLIhJ9GsCiKM2I\nd8pvWKSVlNxfTTIIKd86fQ8yUyiMuxbSVU28biUlXFZQT+hRyWf6epfi5OFrxXgqcY7xtSYWL/yN\nQySzgeyq5Qvys0PTkTRrbOIoTjdpbOkzmG8Qmg67kuJ3DVSNKA1Rus4qiSfGvr98I5++6T18pbR8\n9Mo/4b7K885j38Nn/t8XIJPqkxiu7FOvZLgJRQ+WO0ts7lSX0Qb8VIV3gixlWhkFwU84sIHWV3N6\n+ytNjBJItvZJU0cvaZKeTNWKTaCeckrPTgP5sm60xkmhmjQUewvMiQxnA9misjnNspbrVSeQLwrF\nTKDaUqm6tBMaJxMGOytCP0EGBpqeZHsP12tjVhLC5pJBK1nTwzQhKlRD1fJaeU04XvSeQ7gGzH97\nn79cehE/MP0F/q53gDSvqQDfTSlmHem8UZr0ktXGqRMO/NRzp0pYH+PE8DTjbJoJLofmMaHHJHzj\n+f+ZZjkhzKc4D+15oVyYwDQC7UcNQcB1m3o1nAiYyDbs71pLDMl8wjuPvZqmrcijx/rR7jTVRCBd\nMqRdKFdaNPtCMaPKycnJDPGQ9nWTIspozBf097UFFGWCeKHY7ElOJ2pDHwQ7N4EX1d4N8cIvDrKl\nBJ9A1dHvb56UETLz+t9STMaOX/8M97/rm8AoMUkCajdvoHlCGPgUb3U8mM+D1MqZsIWQdC1JP2Ew\nI+TzwqDMcS1P64EE1yAeAVBU6Gqi+o4G+rOBe37kFq74xJt5eNMMd+7ewVfv28H07SlNr9Z2V3/4\nIPlChDun0JhLR3b1z8UYJ4avI56YHKqJQG+PI506P1Z76+PqDx0k7Coh8bjVFNcUmKpgKWV1v9KC\nQx6TQBLIjqX09lYjX0mAAy97iJu3/xXTxtAyKQbDe9Iu981sxW+vcXe1cRmUs/pJl2Wj0mmzjiCG\nenNFejJFAqzsj54LEYFolhN8y2GaNfJIg2pHSWOiZLCUK2lo1aoWoxeSJUu6qqV+f5unt9ex7y/f\nCB4amfY0Hrn5FdSb1Puj3AX+ZIMwXREGVhuRA4vpWordFabO4EXL5Ilj5XRbtS5PpVRbSqSwpFv6\niBd6k1arimZN6Cf0sRinExSJaEiA+173fgD2f+rH+Hev/Cg3z76WlVNtrv3AIcodFdUupzqbqVct\n0edwjBPD1xnrjxbVJoeZiBLn5zlcQ+XYQ1d1C0Kuhi4hi2inDMyqjfqJqgWAgfbD2mO48Z2H+NYf\nuxUrkIu+3alYvrS8i/zBnMFOQ5iISkxe8Qh1I5D0BbtiSFeEZJBRbPKxI2+oOx5qq+KsHpJuQrkt\nENpB8Q4P5rQqKDYF3HStPg2FCrnUUS/BDgTv7Eho1TUC1SYlhpmuxZ5MME4wBRR1qloIRxMGWx3t\nfUt0H5jCNQLugQ4lMBSjqjY5zEqCLYTKNzVpCph2ha8NZmDUkyJFFZeWDdVMzdUfPshXf1Sp+I0j\nDaa/tUc7LymOT+PyQLKQkK6m2AJ2vPvSxSeca4ybj88wXrXjxaTTsVKozu+f80XvOaS2aALZdEFo\nOVpbeqq92Nauf3oqUcu0QRRobWg3behTe9vNh/mLv38Jf7D4UopQc3sJXyhKTg/alFPKgFTbek00\nvuHxuwaUU2rw2t9dU2xxI6t4YCQpH0SNWEwhNB7OCJOVqixbbVymXcEu2RE0O5iAHejYsO44laqv\ndLRatwIkfiQ9b0tlLdoCGqfMSII96RlWH54kP2XIT0fF5pan2lapitSSHflB2q4hm0v096oNmzav\nKmgq1YmIGagSlDQd1bTnhb+hY927Dh7m3Q9/Dz+w6w6lWXeFiYeE3f/6754XSQHGieG8xL4fvJ0w\nlEw/j1G1VBo+9C3VKW3k9Zaa2MUE5nLsql7RQxooNzlcx498JW67eW3ykJ+0VMHiCDxSbeaffuot\nzK228dPayEu6QtimLlbJskWORyukKOVOp1I0Y6HVgp2qMFsK3GalS7uWSpdRWOxqVJSKFGVb6EjV\nNTzFFkc1pWQkBNIFVZoeSqrZpYTWg1p1+UT7EoMtKiibrgjFrE5ipJa1aYwH09PEsecdf0e2JOpa\n3VqTXpO+JZnL6N4xg2uGkWzb0HouDCxmIFTrrD2/+rm9fPvEXWzbM49PYevh50dCGMb4KHGeYqgn\n+ao3nx/DmRvfeYhyn6Lr2nu6DB7oULc9yVyKa3paj+pRodgc1Hch6Ic8O2ofN8K74X2HCN+wwuun\nbiUVw3XZcbKTCcVUqlOHIDqfP9bAmkC9uSY7mWBKoYgaCSZVPUMJAVmx+OUG5dYaGRhsX23qqhd2\nsY81MaUwuKLAZo56EI8urZJUoBok+DqlMWcpNimPwfbNmmFMFuhdWZIdSyl2ltjFBN8I5POWwWxQ\n7cWoe+CzQHePH6lIpQ9lPPL2V2ActB+x1JH7YQfQOmrp7fDk8waXQ+OkIRlAfxZaxwNJLx0Rn4Zx\n7w/dwn9c3snU9x5hiiPP+P281GJcMVyAOB9ci5DoXD7YAJ+bonnCRM6ACqN091fULd0gxVansOR9\nq/SvLkaTAFDR0S2TXaaNJ8Xy//UOKJ/hSxNM/H2LrF0qSrCj6lDJ6YRys6NuBZKeob17heBE5dqt\nkomqCcUdJFGCP+lHFaZKlF4dwJ1SLIKsWri/TTnfgNVUQVLtwMQj6uqkKEm1fbc9pUfn80Iyn+I6\njpAEVq+qqKdUi6Geqam2l/hGoLlzlYmHVIcyW4Z8Uanod/704dHRp54I2AE0j5sR49FnUDfV+Wll\nH3Qvr+lvCyNMwzD+6Jodz/h9vFRjXDFcoHimVnXVBLClwK+m9C8bCqkKVcQdSGki5BekMpgailNN\npu5O1rQZ0abers4iUyajCDWfnr+GwTZHtq1H/3iLsNDA5ApuqibCqNdgCy3nB/2MEBQWXO0s4WiG\nmR1gHmxGjkQUfa0iv6BnCROOkHtcwzNxJGWwOdB8VMFEvT3KcCz7iQK3AgrUmozTFSd0d3t8Q3+J\nZLJEHmoqBDs2Km30i+y1mpjLPVf9/kHqKxy2a7jyY5H/MB2bnAX0t+v3mgpcR/9+6YrhwE99lof/\n1SsIYjGFqlNfd/gQu9/5/Do2nC3GieECxvrK4ekmCVuAX05pHE/UHbmhPfbLbAAADhZJREFUqD6F\nK8sIfu2zQGjV0Kpp5RVLaYsHXvO7o9eppjxb8xVAJeY/f/uVhJbDO/VqsKtKbKongpKYJtXRqph1\nZKct9XyukODpGrOQUm6vSI42qXeUyHwKQejvUvBP3Q7YnsEuqJZD3QmUk3olHmx12J4hm1fp9XLK\nY3vKuUi6uuHrALavBLGh0GvdtSROpzA+QsHrnQWykCE9i8wW1E4wcxmCulLZqRLzUJNqa4UDzFKC\ny7Unka4q2kocHHnfNwKesKnCL6Xs/eXnFnrxmcT4KPEsxdM9Xtzxs4fBoNqKeeQmRDv4pKdncndZ\nQbK1j1lN8As5veUG6dxarr/x3xxCpkomE1UsWvKOdNEoKvCRFrZrmHhYKcbKjVA3K2nXkW+AKjl5\nIW1Wer5PPHXHqeLybEG5VSuAbEmbea6jY82qo4mrnlCGpe0bNatpKoQ4X1BLuyG1uW7rdMM1PGwt\nqDpeldhKoZytoV2rx0NfYDnFT9QqB9dLEKNjUZepCnV6d0tVpuZSktMpfkr1IZsnFEI9nILYgTYq\nkXDJ6iZcqBhXDM9iPF0hmGRRZceZLXDLKelKohLqiZKOQmEJx3OSEuoWpIsZ2cLaaKTqQLszoGMH\nVDjuryb1SFJr2R+MHlnEQfuoYfVyT5jPlIkYPSFItetflw2yrlAmGTQiVNrp8cb2DK6JqkJHYheo\ndHrjsXSkJlW31IMheJWnCzboFMRBNVMjvQSaAd9PINP+g88DplXju6n6PjgwS4ay4ZHjOTYIvjTq\ne9lWoJVrJIQ6qkylynVQ6XdV0naNQD3paT9k2XfT587zu/zciHHFcBHiXCndrePql2iONmicjOIj\nuYKD0tMJjUdS7v2hW8gXhGxZwUbrVZuqicCe6UX25SdpSMIfzr0CW0I+r/Die99wCz5DDVJaQICJ\nBy2tR7WKaD0mZAuGiUeUvGT78QiTBNLTiQqjJp56qsYn0HooIWSBMtKi7bKlcQoaJ9fJqm+tVOSk\nqX2JenOF2zVACtV8yE7HCUuhV3e7amjf1qR5NCHpKV4jJNA+kuI21SR9yOcstquO2NkR7X0UWx3Z\nojDxkD6e9LR3Mdhes++mz3DgLZ993mASvp4YJ4aLGE+VIEwN/Z2qDgSK6x+O9ZrH9ar/knccVKuF\nHjROPR5IUU8EZhur7EwWGISa//7gfkwBve2BYnPg2vcroCddUWXpkAWKTYE7fu4wxYxnZb8n7aLy\nZVGIpXnMQmWopl1EX0LjsZRsCfo7HM1HErLTVqHGFro7AitXOrh+Bbm8C1FcRk1pA3YhwTzagKBV\nSjUZkFy1Hf10RbakrzOY9VRTnmJGZesHW1WApW4Hik1eWZe5p5zyuOma5iMJ1VRg+XqVsnK5qlNd\n9eZxhXAuMT5KbIB4siZl1YbGti7m4UmKzSoQMnRg7u0I1LMlIc2QajiWe3xikNmCvc3THEj7zLuA\nf6SNa2giqDoBt6cgfyCnmgxc+dGDhI6j3OI48JGDhC0VYTmhaqE4Bxev8j5ezRvR/MWq5FmxVSHU\nIYrE2gEjd2vXFMpH2yrN3tXqodzqVFsCVN3ZBrK8pnykTeglyGQFzlBuUpSktGvMXEY2b6g7Qb0c\nnCVbjEeDVsAsJSPHq/6VRbTFWpOjG8e5xzklBhF5EFgBHFCHEF4qIjPA/wnsBR4EXhdCWIjPvwn4\n8fj8nwoh/JfzvvLnaKzvQ3z5rYfZ/6c/SdPoZxwTxU0aIdrGqUCIeCE/pZqN62PTVJct6QpTJuOu\nMidfEGypmgTGQV0anWpYcBNOiVFRyt0sJ7C5oHR5FIhV0dhyKhAaDtupCCcaBKOThqqjtm7iwQXF\nTwzHi0nUbhSvxyDx4FZslFsHTikVu9ocodAYGOiUIekJjVMJve161PB5eBzfordXxV2kMKSzSvcu\njkyy/xfGE4ZnEk+nYvj2EMKpdfffBvxNCOFdIvK2eP8XReQ64PXA9cAO4K9F5KoQwpMbB47jjBgm\niMbNlsGsxzc9tlAhkxA1WJK5lGKrzu+zRfM4/ALAbHuV2WSZBMtne1fo2HCzXl1DpnyHuhXwnRqc\nkJ5IqS4rSZeVpuzqPFrCK6TZFcpNyOYSqsqQLxh8pg7P5c6Ssla5NBWMCaQr6jSdrgxFXRUbUU4p\nrsAWgssUuVl1PG4lJe1rVWSqoWq1emhILeS7Vxm0c4IT0nYJ97fJpweUgxTpWsqFBnvHR4XzEs/k\nKPFa4JXx9u8D/xX4xfj4x0MIBfCAiBwBXgaMU/jXEU8E29z7Oy/HrmoSSFaF1tUrLB/vMEgDk0fW\nVJte8q8PcuMP38meZB4rlo8c+Qb62z1hOlKrE09YTREPjaMZg8t0ZJgeyxhc5mg/bHGlUBjlOwxt\n7U0ZN3nfjB5zWSB7NCMkSp320+oFgU+Rq1ep7plQj4V2oHUMshWhuzMCqXpaQRz55+9n3//zE1Qd\nT9IT0hU9cvSmA3VThWrLByewTnUo5Vgbn8Llr7vzWXonnl9xrs3HgF75vyAib4qPbQshHIu3jwPb\n4u2dwCPrvvdofOxxISJvEpHPi8jnK86/jsFzNQ685bOqQBwU49DtNmg9nNA8btVJKcbK5dBJB8xY\nxTB0H+3gmw5ZTAk9S3pfk849CY053eDJkoUgVFtqbNcw2ByPLA1PNe10hGmiye3mmpAoM7Kc0f9z\nuY4iTSFMfCWn+WCGa0BdW8ptNcVmjymFL/7yLQy2qKCMy6C8rk/vQMm33fmPVePxsiIatUCxCdIl\nhUgbR8RcKEJy782fueSVmDdynGvF8C0hhEdFZCvwKRG5e/1/hhCCiDwtJdQQwgeADwBMyswFUlF9\n7sa+X1rbFEd/6RU80e0+7B6wNV1hh7W44MnnLMFYqkltJPossHKVIz+hhrFuUhmSppdQby8JlVG5\ntCRgepa6FdTDYRmW2no1H+yuoFKUJIBxWsmUm9SQpfOAqB9lP/DFX1atg2t+7yA+UZ5Cvr3HYCkn\nbVcs/+V27n/bYa7+4EGKF/ZwlWo7YgKyqcRaz84fvP1Z+/s+3+OcEkMI4dH470kR+TP0aHBCRLaH\nEI6JyHbgZHz6o8Dudd++Kz42jgsUu35Vjxuv+rW16cYV3Mb+r56kKRn3VFo1lJsUluxFm5jJoiUY\n7TWI0yamawXCwJIuKJOxnFV9hWRFN/3qnjUFarscLdkqIaDNwME2NZ0FqE+n1G1YOeC48qMH1ZE6\n0bHqwBiqh9okTjCPZtjvOsVV/+0NhAw42uTAuHl4UeMpE4OItAETQliJt78beAfwSeCHgXfFf/88\nfssngY+JyHvR5uMBYNwRugjx4asv58NcDsAe/o773vNN+EzHnsEwEkQJKTROKw+jcVpYOaCw5sl7\nDeJU13FYkWRLAouJWsCXOn2otxc0725QbPEkK4pkHArA+uj1KEE9JocN0mrSkc8ph6Fue7b8o3vY\nclH+SuM4W5xLxbAN+DMRGT7/YyGEvxKRW4FPiMiPAw8BrwMIIXxFRD4B3AXUwFvGE4mNEVf8/Nmv\nwve8/2V07k2wA7jj5w5z5UcPIjv73Pa6/8i1HzikMOwUUidq9pqAK7VSqDueJHPkC4He5Z7mIwnJ\nQEFRd/70YQ784UFsz2gSaTKSWd/+bP7i43jaISFc/OO9iMwBXeDUUz13A8QWxus833GprPVSWSec\nfa2XhxBmz+WbN0RiABCRz4cQXnqx1/FUMV7n+Y9LZa2Xyjrhma91zJUYxzjGcUaME8M4xjGOM2Ij\nJYYPXOwFnGOM13n+41JZ66WyTniGa90wPYZxjGMcGyc2UsUwjnGMY4PERU8MIvJqEfmqiByJLM2L\nvZ4PichJEfnyusdmRORTInJv/HfTuv+7Ka79qyLyqmdxnbtF5G9F5C4R+YqIvHUjrlVEGiLyORG5\nPa7zVzbiOtf9bCsit4nIX2zwdT4oIneKyJdE5PPnfa0hhIv2BVjgPmA/kAG3A9dd5DV9G/AS4Mvr\nHns38LZ4+23Av423r4trzoF98Xexz9I6twMvibc7wD1xPRtqraio20S8nQKfRT3BN9Q61633Z4CP\nAX+xUd/7+PMfBLY84bHzttaLXTG8DDgSQrg/hFACH0dp2xctQgj/DZh/wsOvRanlxH9/YN3jHw8h\nFCGEB4AhxfzZWOexEMIX4+0V4B9QFuuGWmvQWI130/gVNto6AURkF/Aa4PfWPbzh1vk14ryt9WIn\nhnOiaG+AeEYU8wsdIrIXuBG9Gm+4tcby/Eso0e5TIYQNuU7gN4FfQB07h7ER1wkXQAphfYw1H59m\nhPD0KeYXMkRkAvhT4KdDCMuR0wJsnLUG5cq8WESmUd7NC57w/xd9nSLyfcDJEMIXROSVZ3vORljn\nujjvUgjr42JXDJcKRftEpJazkSjmIpKiSeGjIYT/ayOvFSCEsAj8LfDqDbjObwa+P+qbfhz4DhH5\nyAZcJ/B4KQTgcVII52OtFzsx3AocEJF9IpKhWpGfvMhrOlsMKeZwJsX89SKSi8g+nkWKuWhp8EHg\nH0II792oaxWR2VgpICJN4LuAuzfaOkMIN4UQdoUQ9qKfw0+HEH5oo60TVApBRDrD26gUwpfP61qf\nrS7q1+iufi/aUb8PePsGWM8fAceACj2L/TiwGfgb4F7gr4GZdc9/e1z7V4HveRbX+S3oOfMO4Evx\n63s32lqBFwK3xXV+GfiX8fENtc4nrPmVrE0lNtw60Sne7fHrK8N9cz7XOkY+jmMc4zgjLvZRYhzj\nGMcGjHFiGMc4xnFGjBPDOMYxjjNinBjGMY5xnBHjxDCOcYzjjBgnhnGMYxxnxDgxjGMc4zgjxolh\nHOMYxxnx/wPSE1pcg54v5QAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x193ff4072e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "nrows, ncols = camera.shape\n", "row, col = np.ogrid[:nrows, :ncols]\n", "\n", "cnt_row, cnt_col = nrows / 2, ncols / 2\n", "outer_disk_mask = (row - cnt_row)**2 + (col - cnt_col)**2 > (nrows / 2)**2\n", "camera[outer_disk_mask] = 0\n", "plt.imshow(camera)\n" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([[1],\n", " [2]]), array([[1, 2]]), array([[2, 3],\n", " [3, 4]]))" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array([[1],[2,]]), np.array([[1,2]]), np.array([[1],[2,]]) + np.array([[1,2]])" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "<matplotlib.image.AxesImage at 0x193832f3048>" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQYAAAD8CAYAAACVSwr3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXm4ZVdV7v2bc6619j6nulT6FlJN+h4UEQTpQRThfp83\ngoqCaEKOeu3vVe/1++Pqveoner2f3grSCdiASBtCSMRAUCEikBDSJ5UUCUkqTaUq1Zxz9l5rNt8f\nc4655j5VlVRVqlKV5IznOc85Z5+9115nrzXHHOMd73iHCiGwaIu2aItWmj7YJ7Boi7Zoh54tOoZF\nW7RF28kWHcOiLdqi7WSLjmHRFm3RdrJFx7Boi7ZoO9miY1i0RVu0neyAOQal1OuUUrcrpdYrpX7r\nQL3Poi3aou1/UweCx6CUMsAdwKuB+4CvA28JIdyy399s0RZt0fa7HaiI4QXA+hDC3SGEFvgo8MYD\n9F6LtmiLtp+tOkDHPQH4bvH7fcD37e7JjRqEIUsO0Kks2t6aPq1Cq4APCgVITBlQ6PSbR6HSz6H4\nWV4DoFTA326f2pNftN3adrZsCiEctSfPPVCO4QlNKXURcBHAkGm+T73yYJ3Ks87qa44DQKuAJmBD\nDBx9UAxNhw8arXx+vk9/H1YdrTMAtD46j9YZljcjWlfRepNfb4OmUh6tPDbE11ivGZoOGwyawPwP\nPvRU/tvPevun8PF79vS5B8ox3A+cVPx+YnosWwjhPcB7AJarwxcbNg6gTX35GCrtqLRnZGs8gUq5\nvIC1CgxNx5xtANDK0xhH6wxaBcDjg2ZHN2C6avFB5YiiMY4d3YCh6ai0Ys426TWAIjuB1ifnEAzW\npwz26hNRKuCCxiiPVgH38gcOwie0aAvtQDmGrwOnKKVWER3Cm4GfOEDvtWhiV58IxBAeoDEOHxRx\nYStaZ2iMZeRqWl+lHT1gvWYuxAWdF7KLh4yvh8ZYqqBoXbxlNIFKO2yIUYJWAR0CQxNTB49CK48m\nOoNGO1pvqJRD63h+8z46JRfIjsZ86Xg6H8/BaB9/fmWZlS7aU2EHxDGEEKxS6heBqwADfCCEcPOB\neK9nu5kvHY8PipAWcG0cWsWIQBY/kHdxSR8ECIgL3FOpGFHIwq907zTi8TxtSgkaWfxBUeFS6uFo\njKV1FZWOXsV6k5xDQCtPpVVOU1pfYXQ8t0E6XqMdNmjq9HqtAkZ5+OIJuKDjeb/yvgP9kS4aBxBj\nCCFcAVxxoI7/bLb6muNotE25e1xc5QIeVl0O6atikVXK06bFWqk+e6u0z+H9xGuVz7u7RzE0llYF\nGu0YuQofVMYfWl+lyMFnJxTThxgt+KBj9KFiKUyrkKME+e4zbEl+XP4GxLTn6pPS+yqaV+9xyrxo\ne2kHDXxctD23qS8fg1aekasZmo6RiwtSnEH55Yl5/nTVZoxAFrksMFlsNhiWVuP8mDw+XbUAGUy0\n3lApz8glwNGb6CS8QSvXL2IClYnOxwfF0no88X7aa3zQNMahfXpMB0auzkCm4B0lFlFpT4VnnJxR\npTwoUF88gXE6J4DqVfc+1ZfmGWuLjuFQtqtPxAaNDR1j2zAwltbHSzZva0yx04e04w6MxQfFjm4Q\nF1GIDkEijEZHjAHirhyjA5+xhRgZxKghOqF6wgHJz2XEMBklpFREuXxuPagZnzMaV4SgMNrj0nOM\n9jFdUC47is4bBsaybTxkaTPOx5t3dUyZCMy2DUualhAU4ytXE4Clr7v7Kbg4z2xbdAyHoLVfeG7c\nZb2i0p7O9eU+rQLOa5QKzNu4gGrt8KgcYvugcF4zVXXYoBm7BDQSsKk60DkTHUvQdLZmST3Oi9p6\nTaOjg7HeMKy6iWij0S4vdqAAMiNWISa7fmNcPq4P8X+S84TEdwgKo2JUMDCWzhlqHZ3L0maM85om\npUU+OUStAiuGI3xQjHMFBWavXA3AkkUHsc+26BgOEZu9cjWDysaFbzUh3eTzXdzda+NAQ+djKB1S\n+D4wdgLFzzk7fVQxMDbzCsSBDCqbnxtfp3M6IDt2LEH2BKWRq1PEUaU0ImRwE0gRRax8+KBorYkp\nja/ye0WA01Al4NEFlZ2B/D8CfPbH1BPRBfRAJRDPobLZ2RliBDX+x5Ojw9F+EY/YS1t0DAfZ5q9a\nlUt9YrVxeREM0g0v5b6BsTkMVyHkxSQ7aLkjQw/iQQQQK+VoklPIPIMEUkrEIDuzWF7UBZ4gRKbG\n2IwdaBXi7wXHIZZMdX5Pm/AJAItmWI8ZpBTHehNLoN5MVE0ycb9wGNZrBjo6RaUCFR5dhYxBCG9C\nXjr+x5MZO8PyH7prv16/Z6otOoaDYPNXrQJiXl2nxVYXi7lSnsrE3d16zXTdolVgKi2MErGXvLt0\nCpVyeHTGC8QiNlBnjnOjLUMd0wTZ1aWKITu6zYChzeVMG1Qqb/YVj8b0rEgfdCRUqT7lsF5P4BjW\n63i85IykKtH6KpY3iThGY2I6EYKaiBDkZ0mzpPTpvMbr0hnGxyQF23rF2pRqKY58wx3787I+o2zR\nMTzFNnvlairl843cuWLHTjwBlYA36AG7zsecWxa/RAjCX6CoPpT8BUkLpMdBsAP5mwCN4mhGruaw\nZp6Rm7w17EQYH3d3G1TCI1zGLuI5+5xS4CMGYRHmYzzOdNVmYFPSInEGVZEStcXCH3cx5fConDbI\n34JgK0FhgJHtHc7AuJRyaUZdhVagFTz8mdOpjOfwH1l0EAtt0TE8RTZ75ep88wsW4LymTuxEG+IC\ncaGv5cvirrRHh5CJTLGnIeb6KuXtEj2MXBXR/dTXIE5EFuJs2+R8vlKere1UJBHROyGpVAC5z2Fk\nm7xghUYtAKLgF1KmlHO2tskLvy0cx8BYdvgB44JM1TrD2FVMVR3zNuEq2jF2FY12jFPKMNs1BMBk\nh6lxqXFLzm+2bTBF2jGyFXNdzcrhPKOuwgfwXlMZz9gaNn321MXoYYEtOoYDbO0XnovzmhAi0GYK\nwo6EtxD/Nqy6CCSmG1r6CCTsBuiChqCYtzWeiOTL4vMoau1oTJd33L68WEfyUzOf0wYbdC5vCmlJ\n3keIS40WJ9LjDvn16bx8ULTB5AUuVGxxZEoFpqpImx4nx1Vrl52TfBaNjtiKOBkXYmXFFenSVN3l\n/zekFEz+T/lfa9OfaygiLBs0tZFoxOO8YlhHzGbL504hBLUYPSRbdAwH0OavWoUOMULQaaHITla9\n6l781SdNLC4pPTphCdIvCCBhEa7/WfV5tVKBQVpsQN59JYWIlOS4QKRfYYJ1GGJUsZCRKFZWCSDy\nKZrEJbAUnZRq8pxJ1QSfHqsLYLNegGdoEyOEWjsa+p6P2HcRF38GZVNKMbYVtXHRiaYITHudna/S\nHpecw9j21RFUwKcoTc7XA1uvWMu4qzj6jbc96ev/dLZFx3AAbMeVq2Nom7AEcQgSTNfa4a4+Ke6a\nhLQAdF7gAtABGJXKdNrnBQR92Dw0HTu6QQIdfe5DkGNXyVkIFiALRo6hVWDKdMwXpKdKeSx6wkGU\n1OTJnd4zXVRFmrzY+/eyuk8jSJ+LVEjK3olKeWw6rkrv6XwfMZXUbaM9JAcg5+jS+W8fN0zVMdIJ\nxKghqCIVS/9DUzlGbd0fj75p7NmeXiw6hv1oW69Yy7LBmNr5HBkISFbu+rJLCZ1XB7LzACkrCvKu\nc6NTGb63ziScoc7lP2EwisMAMsux0TZzD6AnG7W+Sq3Y/UL1Whqw+qpDCXoK7uCDQqOwrmdUyvNa\nX02kQD6onqiVoor5UOeFPlV1jHxMM0LoNSLk/SECtRIZ7GgH+fMa2aoXlPGaqdoSgNaZmJqk8q9E\nINb1P6t8bI1OPrOu4v+96bOnohXPyvRiUSV6P9n8VauYqjvGCQ2f6+q8+MRBlGCd9Tqz+yDhDUHH\nRZrwAtnpPYrxDz5I50xfhYDUxtxHETaY3CU5sXiFruyqXfZXVIlhGCMIn52CTuG29FWUJUdN/J9K\nByMRg9ChG+1otHRO2si9SGBpCCo7vKnErJTHJFoSjobzOn+u5ecYiv/NFVUJwRiM9jSVxSYHYZ3B\nhyJF8RqjQ74WrTU4H0uZ1sWlYZ3m4c+czpbPnXIA7ppD1xYdw36wHVeuzrtTl760CoxSTjtOqLjs\nmKKDAHHhztua+a6eyIFLyrAmYL50fET9Eweg700w2KBpvaF1ZqIPYuTqopJgGLmKOdswsnVqie7P\nIYKPdd71fdCxnBjKCEEz2zXYEJ3VoOrbr+XcxSotPAyTHUdTpDVyzhNVjOKxEiuZrlsGlaU2Ln93\nCdQcVBajAgNxBqnEGZmXFZ0zDCqLUoGmksgqnuOw6aiMo05fgzo5scpRGY9WUBlPXTmcVzz8mdP3\n961zyNpiKvEkbMvnTok3cNq05YYUOrPRnkBcONN1F+vobUNregbh9naQjyehsYBsPu1+HgVpRy9L\ni9ZrXKosCC26SWXMobGMfN+NqJVHm9SFqPuqQZ8uxFZsTU9prujZkHLslWlxj1yNJuROzDL/l6Yt\nMR2Ecu3RKkUSxWcg36eqbqIfRKIm6fUo27KHlc1OT0q+dZG21NpjEsbgQmRhStQBcfG31mROA5Ar\nHaO2ZlBbXFA57TA6gPZsvvxU4JmfXixGDPtomy8/lcbEsD03AWmfEXKYFEbtvKbWnmFlqbXPXxB3\nOVOE9iHd7AK4SXgtFYaezNOLmtTaRaCTmOPP/+BDffNSytdt0Qk5wZQsGJUTTkP72C+hHFr5HFlI\n+VKYj00GOv3ElxwDojMaGkujbWRRKpdbwctIY5g4FvFz8VnyTT5jIH9GksaUJv0m8T2jK6lTZcJo\nj9GBKn0utYklS0kv5LvgGL4QHKyMw+iQH3vkstP2/eZ5GtiiY9hLm71yNds+vyYvfl1EB+IIpJdB\nFr7cX7K7xR0o/k3q8OWXqDCp4tgQeyjEaQhZqtF9ezPEqKVSnmX/cmTsi0g7t1QthqmCII/lvoa0\n4GMfhM0OqUr6j+IE5f8td3whPIlJJ2c+hvYZIJXvlfbJQfTOLx7X5v9Zqx50lfOUSMok5xPSY/L5\nCgbhkuOQiC0UDsgVERnpejmv8F5PgJQAuqBaW6cTXhHf85mcWiymEnth81etghB3+GHT5rKdSfl9\nYxxdYhsKGw96lp4LCpyhTs+TdEBu/s6ZpLnQ06E1qT6vHbNdk4E6uYFnbZPTBQH2oNdAqLSPFYkk\nuSasxlxKTO9vQ79QhA7tlcqLPIu5ksBGV8VOTafTceuJKCQvZvqdvcQOrDcTbEhxXEKThrhg51Pj\n2DiRr4TcROE0nde0zqDoKdBCeAKyIx6PGyqTIhgTU4nKRKp1UzmQEqjX1LXN5eVeMyIK48q1cUHx\nwKfORKnAcW+69cnfYIeQLUYMe2A7rlzNls+dQpeR+5AUlyu2tYPMyxdwEWBgXI4UoqipzunC2FYZ\nRZebXdIQyauFDFTW14U9CLGkKbugPK8xMUKQdKLcxXMDUkEwElDQes3WH3i0JxoVrxNwM2MBOYqw\nE8eVtMWHPhqR50tlQzowpYtyaLqe96BcrtY0xjFdtdTGsSQ1kNVFuiKhvjic2jim644ldcQ7VIq6\nBIcYJtBxxdQopwoQcQajPUuHY3wgg41aT6Y4kj6MugqjI96gVEABwzqCn8+01GIxYthDa4xjrq0n\nUO9ae8aphOiCYqru8t8oWHrQRw3jVL2QdEB20ZGtqFPpTiTMZn2TF7xQg+e9yamKLFihUcfGqzq/\npwidWBUX0FbX90XIQhYntPIrh7Oji1FG97KNLPnnoxilngUBI2Olo6L11UQTU+sr5qwwJ32ujIgw\nzOSMCpVfIwQsECVpy2ySopeIp0slWeFgyOc1SJ9HKVAjaVj+fAkYrXN6If+vShhFr6IdowHnFbWJ\nIGzGcVJJE2DpcIx1Jpcyp5qOcVehtcc6w4OfPoNjnyGRw6JjeBybvXI1LiiCT3z/psMFxbLBmLHt\nOQGokNMIH1R2AiYh43VxA05VHbNdM3EDO68ZVja3FmsVmK7b3P8g7EebegfkWLJobJrLIBWK0pqk\n7hQt7tKtqxCKtCyo1hmW16O40P71CKyfVIMuBViEPJVp0og+Qy8OK1UMeX18bt+nQCp5ZiJV0Fk5\nWjpCfVCsaOaZs80E1yGfU4FthKAYJKcqQGXne+c1XXc5zQsAhYPXGfOJzrypLG1yfOLSQojCMxAJ\nUOXvcq2d1zz46TMI8LRPLRYdw25s6xVrMcSF3aY0AMi6CbHpyeZef0kvdPqbImuNTObWQWf1pIXN\nPj4oVAGIAUl6PToftWAAsZT3Ksl72ZnC3HqTwT0J1SPGoLFSZk0KzzaH+pPfxVpX0STwstylq6QC\nXWIjKIrypc7VjghWmgw2Wq9Bl2IwUXRWnGTrqxyRSdqiVQABItP/qlRgLkU8skjFQbig8DZiFJ1g\nFKSUI1UupGohZCiIbMgYnYmjD1in6Ww6j5QG+kJWjuK6P51tEWPYhc1ftYphZTPNVnZ+6YwMKSqo\ntM9sPoiNPbVxuQV4qu7yTSo3ff4qKgJyDHEutemxhbKtWur7oVhEMay2DI1lUNnEPPQLqhGx3Cid\nkrKYpawoA2OkfNhXA3q0v58VofMAGXEesy99BE9fMeicyZyB1lc5MrDB9LqSYbLUKI5GMJZY1Ymp\nUIm9lM+Vz72sMqj0fwgO0SVQUjCd0kIBEMsxRGnK+T7FsE5nRqR0i/oQqeDlnM74vPiZbfz0GU/6\nPjyYthgxLLAdV67G0KPrfU077vADY5nrGpbUbd7BnNdoE6XXXNEfMLaxw9HnXDwuqHgTpeEtacG1\nIaLv4iA6bzIeIB2Ec13UUhBn45PDENl10UGUn6GQbpewX/V8gEZPkoxK2ffH2ulEbU56DElerhxB\nlysQXzqeeWv6MXNpgUtKMLZVzuuXNSO2t0OgpybPJxp4rV2fKlBEJPQYBfTiNkb7/LOkZCVt3AdF\nGWNl4pPuhV0WYg/5PY2UKdMMi/Q7utfblHsDopPRCZSUz+D+T56FUoHj/8Mt+3IrHlRbdAyF7Ujq\nwp3XTKe+h/KmGxW0X8llXaooyA3VZTDLQwp/nddZ5FScg/ARgInmptz9V5CZ5m2NSrhDzp3FaaQ2\nZejbkyvlcskxpzj06cWSxFbM1Osi+JXIIBKb4vlKqiGt2aUcW2mlQzPp/CvlwVA4n8lbLjIS0yAa\nFXLnY0ypInYiwi0LQcSSv4DvRW86r3O0pyCrQA0S+9Q7k/9Gel7ndKo4+Bw5OK8Jqm9ui+8Lvrg2\ngcgvsUWZOvejaI9zT8+gfNExJNt6xdqJnUk69mTHK3NICf+dj+pBXnogitIiXmchVwmFBeVu03GE\nH+C8xgGYSTxCMAPRfMz19ERUkgUt3ZbSuFRpz5xtUoOVT1OmIz9iRT1iyrTM2gGPjqdZ2czTaMtS\nM2ZsYpflvKtZVo17R1NgFI12kPDNRvcKTxItaEIOt4XH4IvF4oOCV97H1JePyc5LtCSke1KciyZk\ngFUWp1Cja50iqKoESHVub5fSsTj20qnI83VKD1tnGKY+iVFXMaxtTkuUCgzqPvpqbSxZauVprcmK\n1LHnwqdGrMSfIJY/H/jUmTinOenHbtq3m/Mg2KJjIPY8yK4bIN8wnddQ7EomhcOiK1gbhynAQqP7\nduv4fI+p4u/C96/rGC2IrFmjHTblxcLmk5tcOA5SVmuqAiAMcaS8rmRIjEXarq3XLK9HHJYWPcBn\nbzmH4S1T3PxL657w8zj3T2YYHxZoj7Y8/8wNrFryKPOuYdY10VkZlTGCithwJKKxuuqdmphURvJu\nf81x2NA7XY8ivOx+1BdPmDgPpQK16j8vrXqi1XwXh87Id7kGYgGyjoWUVruEI5TCsQL/jroq90q0\nWS8yHStEtqNSAV8wL2P6kPpbnMEWk78WzgDROvDdj5/9tHEOz3rHsO3za7KeolQchEYru6XkwrIT\nNomaLGFvDsmDyg1N5fN1sXsOEqBmtGeQymK9ylKPF5RNSWKyGBttaUOf1vQt0vFvjXZMmY7Dqjm+\ncP/pbLvhCO56+6Xwyj37TL7965POY9UVP8cbzr+BSnnGvm/nlnPuyUseX1QcSpygbLAqF4xSAUMg\nXH0ipAghO+lioZeS8BDTA+mypNC2BJhPu75EcOKsZSe3KTKRKoQscpWwhYg/pLQhOYd4HcGGnlYd\n5XUmz1PunxJ/8L6vgjxdTIVw8E92uTo8fJ/aw7t2P9q2z6/JHAKXF7Y02MRdemyr3JiT04LkAMZF\nHg+xfLhtPMw7yopmxPZuEIHKIpQemi4zDoEJDUQgvw+QI4YqjW6brtq8EFtvWN6McvlQpNYlerjh\nY2dzw28+cYSwp/bqW9/AkqrNEnCx1bufbh25BWaiNDpdtRmwFLBS/s/WmexEl9XjjKXA5GIrMZjO\nmai5kBZ9lwBH6eXo0vWU9E8Yp/NdRW18BkGB3ChVJ1o0wPQgfr6tNdlZQHQmAZhOpKZ43WIUKSmQ\ntQatPcb4pPXgY6XCaZSK5U3vNc5qVr3lhv12XfbU/il8/JshhO/Zk+c+ayOGLZ87BZ0Gtkifg4KM\ndO9oG4YyGcprxmlhz3d1xA4Sgu+KBV/OeAhBsbUd0mjHtvEw71qawBY7TaOjBsCO1HZtveaEJVt5\nZH5pX39Pu2rrDC1xVxREXwDPHV18fSw1RnLQjm7And86ibv2o1MA+MIZn2XVZRex7NjtnLxyS368\nlKgvOx5FMEb6IFpvcljvU3ogu/qsbRIpyjFve1n5gbFRrCXojBvU2jN4zXcY/+PJkZacHLu890Lp\n+Nm2YdkgOmepkIDwGJLDMn7BLM0ACS9xXjFIorHzbU1lHFpBojfQqDBxTICQVLm0DmjtcE6jdcA5\naAaTJLRD0Z6ekOmTtM2Xn5rLTWV454qbyhSPC/e+TDOAXDKTCEEXx6uNy+XDhQQnSU+ksiFcBelL\nKDEIkE5El3EIiWCaJJ4qJjv09nbA9MYDc2k3/Oh7sN9YyYbNh3PbxqO56TvHM2/rTIeW85IFDv0w\nmUa73O+hVWBJ3eYeiInSbAJQBQuY65r8Gcvnve3zaxgnERYRaxF8qKyVWK+ZqjvmujpzUsRxZwA5\n4QclKWpheuF8BBjFQVgXm62kI1PKpiBgZB+deB8dRNeZKMLrFd/9+NkH5PrsL3vWOYatV6xNUYHO\nCLLsypIuSHlLdqisHah9bpPunMk1c7nRhHILpN28yaQn6FmMtXY5hAYy6v/oaEl8bUHmkWPJ4z6o\nfH5ApkALxXloOtas2MTsWeMD9RFyy8w6+OphKAVsq7n6zMvYliKZ6arNo+yW1WMq5frHUFnPshyD\nV7aVD1Lj08DYPKx3+WCUiWHyvKVNy3Td5c9H2tyn6y465dSLImDudN3lSoM4V6OiqlNTpbbyQhKu\n5CeEoGL3JZHXEDUdegJaPJ7LJVC9YFNRKuIMde0y1yEExb3/cA73fOycA3adnow9qxzDts+vAWTX\nINetZfaAgsw6lJtqx7jJXZFyE5RNUBJNiMwY9ArHkgdXSXDEBp2BuVKzAMhDWyrVLwqJPrJYS+jn\nQeZhNInRKI8NtGOgHcu+NeBA2o2/uo7bX/JhltwbndStd57A1nZq4jla9ToMwAQoWdKny4gqMyCD\nzI1wE45RiEldQV2W46jksMVJS3oXgMFrvhNxgtBrQ7oiFSx/hskqk/OKcVdFTMKLLkMCMlPEME59\nE6LbEIiakhIxxIqGSl86/3yo2rPKMRgVJkLF2rhIddY9Y69U/FlY9879DAvySZASZ69a5EMcICMd\ngCWYNi7q93Ljy/NskUsDWalIHpdzkhRFuAwiGjtlWr78xXO54T/vX3xhd3bjr8b32fAj7+Xue4/O\nwKg4rtabpCOpsxK1YAESdYkJ7iCLXsJ7V/z/cq3KEX/ymeSu07TAJbWotWfb59dMTACDSSq1XfCZ\n96pOKkcNne0rMnJ/+AXOJARiJAXp51Rx0mGC7BR8f87f+ftz9+s12R/2hI5BKfUBpdTDSqmbiscO\nV0p9QSl1Z/q+svjbbyul1iulbldKvfZAnfje2I4rV7PjytW9PoKUIdPvwhOYrrtc9hom0dHlw3GO\nIoQoU9KNs4RZUjoq8YdxEjOZqrrM4a9TC/VU1eXXQoxUllRt1laQnojaOJbW4wikyej61M1Y9kQM\njeXwZo7PXnc+d/zMpU/lx5ttw+vel0VgIfZJiLisVClmu0FOo8o+E2F05qG3BdYi3I1MBS8Wt0R8\nos8g9HGfnLyAkgPBiApsAeLCHaexdSWHIfZIxBbrrOKUsAPoMShppIKEBVURVPZeY4p0w1qD9wqb\nGrBMFasXWgdC4JBLKfYkYvgg8LoFj/0WcHUI4RTg6vQ7SqkzgTcDZ6XXrFNKGQ6yyc7U2orWRgzB\nJSAxEMkyIT1vnHYOUXW2iQotEuZTda+XAH3o23rDbBfnO8rrIO7k28ZDugQsdmlG4/ZukMe1CXg1\nb2vGrsqLofXxsTnb5PeX99raTrG9G+TFJ9WJldcf3ELT3Y8dkTs1IcrGl+3d0LMkJbpyIYraSrpV\nPrcs2wo5KQSV6eHymAC4Gc9RcZxdLyAT0zDhLggAqlVspx/WNupp2BiBrPzhO5P8fNR61Npz2NQI\nH2BQ26Qi3cvwDSqX0xMxkflTCozxDAaWwcCitc/OJgQwJuIQh1Lk8ISOIYTwz8DmBQ+/EfhQ+vlD\nwJuKxz8aQhiHEDYA64EX7Kdz3Sd7+DOn5844AY7KMFRq4GWZKzZLuTyjIJcti5Ik9DLwQkOuVK/G\nVJrcPHUqUQqGIGi8POZR+W+lxHym+ubavcnPA1J3pGeJGXPd7x6caEFsy01H0rpqp4E3wl+QzwIK\nfCF9DrJQJb0qncRU1eX3kN4VqUhkh1NEAkDGG0qmjtE+Cbv2k70kdRnZiqXDMUb72EyXF28UcJnv\n6tyCDTFaKH+XlCOWKVNX7QKCnHMaa0363mMQzsb5poeK7SvGcEwIYWP6+UHgmPTzCcB3i+fdlx7b\nyZRSFymlvqGU+kbHgUHQt16xNs8HqE28iFJFkJ1G0GutAkuaNnPnJZ2Qm1d69xtRYw69iEqJNUg5\nLg5biWn4/MJzAAAgAElEQVSDUX5iiGuZPsRKh8xE6Dv3TELm82Rq3S8ceUxmR/oQSU137TjygHyO\ne2N3vvVStrZDrDe9tLzqd21Z6MIDkbKkzOsUwRkBYmvtMMpnZwgJV6DHKMYpogNyxUjMpoYqiM5J\nBs+U5UVJPeT3QdGpCT2L0QcmNhmtSN9DlpkXXEIBzvXDdwG6zmR6tHyFEKMG0uMbPnpoRA1PGnwM\nkTq5174uhPCeEML3hBC+p+bAIOiyyzaVzWFkP3SkZ8CVXHsBq2QhCkAlJj0P/f9RaC+ayRKcVCfk\n/ST/HpouVxHESZgFO2pJyRbykITlUtGIx7FU2nF4M8ddmw++Yzj3T2Zio1hiRS5MuXIjFZHxOW/r\nidJt2XZtg45gpDcZXBWMQY7ReZ1D+BKIjJiFzlWJUVLcksqS9LzIsZxXdElPYZymUom+gnW9lHxI\ngOMElyEojn7jbflekP+hSkpPIcRypQCT8ntkQ0bRGe813sVJ5nf/3flPxaV6XNtXx/CQUuo4gPT9\n4fT4/cBJxfNOTI895bb1irUTN5CUo0RsRcLIQCTVCJ1YbiijfZZvg15hSSIFASnHrprQIzx8MAdE\nByKvkRtFlIulIxHINzr0fQSlglLJqLTB5LRBjgdJFMa0jMa93uPBsh0nO5Y2Y5Y3I5bWYw4bzCMi\nsP0i1Ll7sixPdkk5emHFQj5DoR4DE+Px5DlislOV118YrqWgi1Q5pIwpcm2jts6AplCjrTOxVCnV\nknRd5Bzu+8RZO30WUkL1ApSakOnRQC5ZKt2TskJQKO3Z8JHz9v/F2QvbV8dwGfAz6eefAT5TPP5m\npdRAKbUKOAX49yd3intv4hRGbT2BUAvPQPohmlSulMigJKYsNCHFSGVi4vGkhTh2FY/ML835cm3c\nBOhYOgHZAVXx/p2PYXE5K6GUd2+0Zc42aU5k30kJqYRmDzrOy9RGwxWnXcFHV32RG//+TL7x1dPY\nNL8kO7vOmwmmZ7mgJYqThSufi4jTiMMAMsjXA5ohRw8i15ZDeGfyzi+vETWmdsFnJqmAUKRL0pOY\nkN1KALOpepEZoUN3CUuQ9CF+9wl3iNFCXTu802jj8xfsrHXxVNuelCs/AlwLnKaUuk8p9Q7gD4FX\nK6XuBF6VfieEcDPwMeAW4ErgF0IIbtdHPnAmPAXoAaj5roqVhxQqQj9SriS8CHttrqvj8JbiBpBQ\ndcvcVES5E24gVQppLBKeQsYStMv0Z1n8jY6UYZfCZXm+EH9ab3AJ2R+aKGQqlYf43Lhbtb7i2OE2\nLv/897H+5X91QD/XC35/htWfupjVX/jZ3T7H13DqBy8BoFsGR571CA9uXs5t9x6buR5C5V5St7Fn\nREfw1SjPsOqFZgfGMl23+XMowcYmA7p92VmmfMnrRTo+LlzLdNMVaV9M9aL2QtRNaKrYAzE9aHMq\nKNdc5lkaFSdZlUODBF+QFEEqFoPaZuFYKNJOr/NzndNUdTyed0WJEw5qSvGM664Uff+mctlBlO3P\n0A8+hV5cpcx9MxvR90KvJbIsnZW5ZFZqI6qezy88hJL0VA6YkXRBjlu+ruwClEin0TYOiU1EIbn5\nb3zwOG7+/r/dq8/pnP81k8lJT2SrP3UxU8fuoKkcK6ZGjJ3h2vM+scfvdf4fzLB9jccvt5y35rs9\nz6GIvBbOlpT/X8qe0DtaIX0FmJhXWUZ81uu+NTulhiVpCmIU0FpDU7ncii2LvDY+i8GKFF9TOcbW\n5Ilgco5lZKKToyqvrTAcF5Kc5PHnXngj9/7DOeh0r3qvsF2FqRzBq/3Wibk33ZXPKMfwyGWn5Yva\nWhPl3gsiS9m6K2260OfqgX7eQlfcVAtR69KJCDBYDoaBvpV6oa6C/C4Op2zHFgfSaJuJQRKxTFdt\nXkj9gNhY/bj21jVseP379ugzOvWDl2BGilvf+fhO4Zw/m8F+73bOO/5+pkzHlOm4afNx3LfxcIZL\nx4w2LmH5nYZv/dbeMSxXf/xizj//7omp3NA7Rnms82anhS4OtSQqSRs2xGuXS87FsUpugRDHxCnI\nPAlZ5DKfUipYMo4uQD8ST3ANPxlwh9BXIuqk+uQSQcpaQ/AKbWIaYVOFQhyMT05L/mNFij5qh20N\na996/V59zruyZ2Xb9bbPr2GQNMei+EYEdLLEWMrbG+OgqKVD3JHFgUhHpOzSuqg0LMz7SqcgDqR3\nBH7ieSUWIMrNPuidHEdMJ6p8zqLHUO6uAj5KlUMP9zxbU2tmWbZ0ngv+xwzX/9ddL+qz//cMz/mh\n7zBdtTwyv5TNs9M8tnkJ9caGu98WeRKrP3Ex3dI9ftts1Wz8n49rtrHdDvJn6FHM2Ybt7SCnaOIE\nRCOzdMaeyUVfajsKpV2ulkQMNjtW8GkBO98rQWcWZrp+gvWU10+O2zs0Mn7QdRVKCdNRU1Ulh4E8\nVq8HHcnnLtOvtPZ4Z/A+/iH4STr9U2XPGMcgN4Mgzc7vHIKWO5KAVap4PF78asKZlExGARTlGPEG\nVdgkyJpRdOQGdoll2U+lzhGC6lOJMoXpnMHBRCrhg2LONTl1iJOm+yYqtXG4x59TN654ZG45G5JT\nOOfPZrjxVyYdxJGvfICh6dg0v5R77j2SqQ0NG35h8jkrbjPZsZz9/81AALskMD7aMdxYoRxp20sv\nUKA82OMc31h/MtXAMhh2megzGFjWHP4oU1WX27XF2cpnINqawvMQUFmcvEvXRCpQ0G8MsvuXhKTc\nFh2EINVPs164GMvrEYrHRFK2BBkBrI0CLd4rqsrlx+UYSpE3Lvk/8jum46qUeij91Ef1zwjHMHvl\natqU+5Uqv3NtzVQTwaxSzVkk3MTGNgKTovwD/exFVzgE2bUa7TAmqhcLjuCKXFi6CIX7LyY5rpiA\nm/I34UJk50HPGMxYSJ4FKWQcy/qf3HO2Y5iraB6NC2ztR97Jc19zH2s++k7uevO783OEUzEwluGK\nMd2KyTLoBb8/w7YXzeffb/pP+9awddr7L+H2d0ye+89/98Xc/tjR2SlHXUadq0GlXmPn9UTKUGuf\nnX1ZjkYF5ts6LUKZUekmHG8IfQphxIk7TZX6HiSNMMnxyPEBxl2VOQtKxcXcNDalB5P4grRhq6Tr\nEHxq3GssLqk9ERTaFGmFDqz/mwtY+1NPPp3YU3tGdFduHw2wTjPf1rksNTeOU4laW+X6t+Sf86ni\nIKG6/CxOoaQ+SxVDogZp7JGpRxCjgM4l2XTh+6PY0abJSIUEesmHKPEGEW4pNR76Bi2X5dQq7fKo\nuEY7ltWjvfqsVKcwc/FmXXaX5p6HjmCwZfI2GNmKOduwpB7z/BO+y4kXPMDaj7wTgBd/+//iJT/7\ndV5xyh2c9oFL9uq9F1o1t3OIvHF+ea+XoGOVoktOUxrPoB8CBJP8jyZpOtTG5e7Zxjimm45lg5am\ncnEQkADREnmlqoTgDyUHQUBBcerChdEpSq2qPoIrSU5ae6rK5TZrYTs61zsLU3nqxtK1VaZEKxVQ\nOo4fUAqCi9/X/80FT+rz3ht72oOPmy8/FehFOwU0Ep2EbkH4KdbaKrMghcuQlX2D6gVfQ8/Wk7BW\nuiTLMmOt+6jBFBiAvHdcyP10qIUsQHESMiOylIlrtGOHHXBYM0etPEuqMVOm49N3nMvtL/nwXn9m\nL7vpTdx7+zEsv8Ow7TTHYTfr3GNx/h/OsO35I4475jFWDEa5s3PT/FI6r3n+kd/l6GY707plq5vi\nb//pJax/y7s5910zBA3VHPgG2uVw7Evu59XH3Macbzi8mmVTt5R/fXgNrznuVh5ul/FvD51Md8VR\nXP9f13H6e2e47efXcco1b2NqesyJK7Zy64bj+cjL/pK3XHMxyw+f5fAlcxMs05JPkvUXC3CxBDZl\nZqUPfYt1n0pEyrxsKjpfN/K91SYNSblP5LWV9mmwbZhouXZOU1UuVyHcBIaRzssLZTo6iQAQFKiA\n71IKkXAGCu2GU972zb2+5vAsAh83ffZUCEyUmyLDTWN0vJgSOqqijAR9bpe9f0KEJSQtc0yZVZBZ\njBpwZNBMSpbyO+wsQNJoy3QV0X1poAIYF8NbdBUYJOfRBY2Mj5eeibGruOnR45gbNfi7l3LHT+9b\nw9T2ccNzTnuIe8zRmFnD6EjF2f97BhTMrfGgYhTWOcMmluB8rOMvbVru3nEk24dDjh5s58RmC+e/\nYD0A3/6NndOJn77npdwzOpyN8yuYrlqOHW5j+WDEymqW6x47ie1fP4pbE07RrfCc/r5L+IHX3MT3\nr7iLU5sH+c5xR7JCj/mrH/wA99uV/MXdL8s7vaReJUgJ0Qk0oh4t1zst5lLKTaoRUonohPxU7Pwy\nWEburUAadedVThFckIoGBb5gciWidwKKoCL7MT6gcpqD3Fcq4F0EJZUJhBRZECbp1E+FPa0dgwBJ\nWkXSSWx8EfQ/OgTx+iVAJaBWGcha3w+uzQIh6SYTk5tMwkxp/Akhdgjm0JNeWl6mUR8xnGPj/HK+\n9sDJ2PkKxprhQxVmFEE5FLga3DDgG6h3KHTb/40AZgTf+u20AH9g3z83949Hct8L51GdptmqcIPA\n/IkWvcRGJ5ry5FDFfoBlwzHLByMeG01xzyMrmT8ypkXTumXN0k27fZ9XrLyNP/rIj6FbWP7Sh/ju\n9sPYfO2xfPIlNRc/58tceNEX8nP9wONrw0Pzy/irLd/Pc5dv4Ws3rOUvXvNhfulff5Jq2HH84dsy\nrlB+L3kJSvciO1JalAjNILhBWvxeZ9xBHIQrdmbpg4A+6rBeZ7xAvpskOS/pg6hBTyg0qZCdglIQ\nCHmAsdyI3uqILYgTgBhB6IAK0VmoRcfw+Lbps6cSXGSZZWCpILAEYFhbnI8sN+jDTaUmBUMzv6G4\nwWQnEk8OZEpupT1W9VOTTaIs5/kBuudMDKuORlv+/SPnRVWlU5+CD+cJLDsXYkWhW068ARPIHoJi\nyTBqKs62DUZ7to2HbLztaKrtio2VT8rNiuOG23b7Pt/YvopbL47vdda1P8lRy2bz72f85Qx/8Chc\n/zvpXGpP0JFODXD6+y5hw89dyvO/eSF3v+b9nPuuGZb+6CM8NprKWIIrwEcBBSWKEOcdmJz90VQu\nbx6D2jLuKqaaLqclTSViMMXE8WI1DmsblaITrpC1IWEifTHGY4w0T4kgrM8pRteZHkfQUbCFGmxX\noXSMFpRJXR9yXVJfxVMBRD5twceQLvLKH75zQphTqSi8MahEsCM+vxx2Wl5oCTmFY19rn0FKubmk\noackREn7NaSymu6VmaDnK2gC/3bPyU+Z1Nqu7Hm/t3uQ8Kb/tI56m0LPa/yowrVxQG9UNYqqUdtG\nA+57cCW+8XQrPLe86G+44rQr+PBz/5k/OuZbuz32X5zwNSA6n9edfCv33H10/tutF6/rnQKgqkAw\n/XUZPBqvy+z1RwCwfa3NrdIl0UzaqsVpS9Q36nqiU09Nj9drWFuGqSrQVI5RV+WSJpRybJO6GkBf\n/VKT/TXe9+mMcBkWhv25mc6a3FUpzw8hsh21UPCTeItSxCjCaYJLVYynAIh8WjqGBz99RqwOdFUe\nNy6L16eOuLHtySylyo9UHsa2Yr6roshnukBdKoGZdMOVAqELJyv7iZijH+gqUYbwDbZ1Q+546d4D\nhE/GznjPzMTv7fLHJ8jUO6DZolFzBqymm6+Zn28ip6Cr2LptCWG+YnjUPEtO2s6qT1+022Od82cz\nO1UrumWBN668jmZlX0FZ88W3c+HdPeAcArjpfiHe8F+i05g6bwtnfOWtHLvqUXZ0TZyxISreqbtR\nqkjLBuPozIGp2sbO2QUAJZC6JqvEfPSJv6BoKstzlm8pIsEesNZFRNJak3soujSIptd5nKSz9/yF\ngtgkjkdSmhCjgTyQJvEf5HnOanTtMY1PPRUKPz6wDXNPu6rEg8kRVBO5f48plNWJMo0A8jRi8fJ1\nEQFk3kLoeQ6DarI6AD1ZqtI+C6vAJMNSJkf5oPn0KVft68eyz/Y7D53L33/5Rdx14bu54H/OMDoc\nxkc7lq03jxu5nPXnM3QrQsQ5Bh5qT72kw98/xZL7NXPHBuwRHfWmmrNftJ4br13LnW+dBEBP+fAl\n3PnTl3Lmuhm07TkOqz59Ectvr/KCl8dW3FYRDMy/YJZuy4ANb3oPZ3zlrejrltGuCJz8vfcx39Wp\nxOj57pYoW3/Ush25QiHEtto4WjtJUJOFKsxHuT904SulRwJS56SQqpLTkYhEMAQpYWYac+gVn7NT\nMT5HDOU8ieA1pnJZLRqiboNPRCZhOsp7CcHJ256wJUKyBLVXFYq9qUo87SIGcWN9WtDPFRTvH0HH\nnUNDgOU/dFfOCyVCCOk5gjGIyZizEgEvyUbS5GMLvQGh+B47tZ31Sa7+qbZrN63iHa/4Euf98Qy+\nhmBAz2tGRwXO/4OZ3b7u5l9ax/CRyHMwsxpajX10yPRGzQ2/uY4733opG17/Ppbcp1jZzKO7nY/R\nbI2f+S0z6yaIT8vWTzoFAKYcQYGdStOZ6oT13LOEm39pHXemqsuj25eweW6Kh7Yvo2srBnXHkrrN\nSlaT1YlJiTdZuAvJZQIyRkxqgXNPZUSXFqi8qgQTS16DyLeVx5fnTD7Qy8gr1Q/H8U4a6dLTyp9T\n+hBPIGFeQcXU4gDu6U87x1Dp2CNfpfmAMVLYxVQpr2O/RK5Vxws8e+VqoFf5VelnAbKkCrGw3LhQ\nq0H0FESbMdOVtWflYI67th25z4zAJ2v3bzqMoe7YdnaLG0TstN6uqLepCeBxV/btX19Hs1VRb9MM\nHqlYusFgp2Dt370zP2f7c1Oev4sbc3fTtHdVzhwubZk/JnDzL66LIXvCGIREuurKn+OeR1Yy2jLk\nuSu28NimpbiHpuiuOZIH/v5krjrjcu7ZcBRLm7YnH+l+ypSQnOLjfqeFKq8R2T+JAGShC7+lfL48\nZ+H9pkU2MFclyuYoEWAJEZhOnAdUIjKp+HjGHIgAtk+vIf2upPcifSkFd374ebu7lE/KnlZVic2X\nn4qhX+wxROwbWIJRmeoq9erKkC8yJMKQ3Cyqr4ELYUb4+FLBkPq3pBBL6jY3+pSCoj4kyTbtuHXz\nMfzb+R8/CJ9QNPfgFJvPWMJ/e9HlvGv5qwm3LEM7uOmX98xR3fTL67jg92NkMX9soFsaGG6Kq/WM\nd89w+is2xM9jH7eV095/Cfr0HSydGjPetAyAw5fMsWP7kDVffDs//vKv8rfbj+DvX34p182fzEnN\nowxVR3d8xbWza/nI517KHb9+Kef90QyDF29PWEicn1kXKaGiF9INKTUscQYgpx8l+a0yjrlxM0GK\nk9brXKpOUWRT2T59KTaiprKMUvVCMAOgKHFGBqRSMWLwQF3HaoVoMjinMbXDWROdi08ORkDaVMY+\nEPa0ihgEQBTtxummS7RZy7Dp0rDRQui1iujxIKk+S0kLyECS7Cqy48vuv7wZM6gszavvyZFAncRV\nBsbmsFOaoJbXozxa7WA6BYC7fvzdPDRezgn1Fl558h2Mj+/oVgTO+ovdpxEL7fr/to7xSmhXBMxI\ncfMvruPM/zPDqpd/J5Ou/D5sK+e+a4bb33Ept774r3n00aWMjgqc82czTFUdZz1nI9+/egMDbblu\nx3P5Tnckm+wy7h4fw13tMdzVHs2D4+WZSn3Df1nHePsgU9tLsR3Z7eXaiXSfaHj2U6Z6bEEiAJt6\nMqoCn1o4m1IiEuv6KkUZSfgi1ZCSJcTmquAVzqnEfIzku6pydG2i5FsT1biCwraJVVkUSIJXvVMI\nijs+sEewwV7Z0yZi2Hz5qeAjQYUKguqHkIqWXykPH/vt02TjVFmQqday+IUcU84uyLRXEV+5+qQ8\n1h1iWVJeM3ZVFGmtOlpvWFGP+PJXzobn/MtB/KSi3bT5WL53+RHcue0o1MBhDwM3rTn1Q5cw/cAT\npxQAgy0wOhq6IyxrP/JOnvdDt9MmGvi8qyfKi3tqphAEX/G1IejIZXjht36MrbNThAB/8wPXALDq\n8p9nw4+8F4C117yNZV+djiXOmWvzMZbf2OBXq53o56UFeo6KUKBD6Ltwq1SerUwEIQe1xYdeCq4E\nIKWpqkxRdSgIVYn6XDJg41wJl8FGnQhRaE/wUcHJOYWW54gDSryF/CmrGHF4l5yOhuDI7dv70542\njkE632TysEMxrG2eNqRVbEiRiKFzJkcQEG8MiQikKUcG1EoXZanQXGs3ATBNmS4/z+io1Oy1Y2g6\nVjbzXPfQiVz/vR+F5/zrQfyUerv2vE9wzp/O0K4IHPM9D3PSssf41n0n0A0GzKrqcfUYxK7/b/3f\nz33XDDu6qJ/QOcPyRuWceG+sfM/y+JtuPor1P3kp5/zpTGZ1ilMAWP+yD8LLdj5e0GT8aLru2D6O\n8ne9WpNKGILH04OOnoBLQi3jLupsdmnYzGxKI+TeKVNO6ZlwiRejpIyZ8Yl4XuIgrJM5lSaXLr1X\nmQYdSLLyZB5T/L/ksw2TEYJ3ZZ9FfIra+8vwhPa0cQy1EfWenr4qJi3KsUV3ZzUgMZe8u/RMCLgo\nXIXYOTlZH55K8yfLGQPxPT2Vjuj8I+Ol0SkArz3+fK56YPekn6fSxkcGph5UbLrxaNxZmm5z1G3w\nTWB01N7dTfPHxu5PWSzWG9TO/J/Htef93iVc97uX5u+lDVZv4/T3zmDq2A5u5hTaKtoVHm0VzWMK\n34Aeg2mBhMFtP72j8yZP6gLyfaJRqYQdtRwyG7IoY8qGI23sdXIUC8FmqVzJp6bo74XOmomGKcEa\nIq6gerCRnvzkfX+MUEQgwtQEcjVCypgxMpADBSh6Ke74wPdw6s9+Y+8uyOPY08IxbL781DgM1ZoJ\nwLFc2GJ9g4xewHWYBBoFPFoYPZTl0Pw8CQtJwFIqk5049Rh3bjuKB/7ppKiHDRNO4WA7iRVnP8pj\n+gjqrYotNx/JsgfT4uqgmt2zNGDVZRex7NjtnPz8+3KTmDSAqT07RLZtawPn/skMZhfcHGsNSx4M\nXPe7l/L2e1/CQ/PL+l0/qWwPjM1iuWJLnWGUUsb5rs6dkkH1Op9tum907lXoT9x7XRCNYrNSjDRj\n2lrKwuUGrtCrQwXIYKFUJuTnqORkkMWcKfOSEvi482vjM8Epd1xCFLfRPW9BwEdtCswhgZLK7KWX\nfgJ7WjgGGfgh1YYm0Z3jFOQ0IyB1tMl0INF9FKKTkJ8k0pDWWQkZBYyUsFEcj6dPK2SEXJWkx770\n2edF7cQzdn3eBztyGH/xSML3zDG/rGHwcIW2uy4bPp41mwyvfcFt3Ln9aFpvMJAHxHSHxetw1p/P\n7LZMKXbeH8/g1ziCBju989/1zUu57nfjMWbTrM55W/epXlBY3+QZo8NUYRDxFqk6jFOFoSw1xxTU\nUWufnQRIV27fWCXdlLG0GMFHNVF2nKRgS2t/W4jYmtTeHVJ6MRh0OUIBaFsTmY4hViRUGmzrkl6D\nS+tb0TsSadKSezK4mFqY2mdWZPBqv/ZQHPKOYfPlp1IlfbCQyo6RniwKvJph0xFMP7ocWeQLZLyM\nSuWpAoQUK/UEJVJAhTwzQjQgh6ZjRzdgwzUnP6Gg6sG2b//GOk758CVwhOW2n+/P9Yx3z+zxuTeP\nKeZdQ9SZjNL4A2MZuYqjTtoC7J67UKYMN/zm479fPdv/PGebCdJY2UlZOvI8mzJdu0DPiHVe5Qih\nSZqeo8yKjM7AOlJJ22fmbKn9GDekJNwiYi3pfSS6tM7kDssS+JSmqagDGTUgjUlCLTY1UBEjBtG/\ny48nEFP+Kfk5d4OODarxvYitjw1wvtt/KOQhX650XmV0WNKIvs02ZN1+YT1apzPJJV58XbAi404y\nrGwGIiFe5CV1O3Fhyw5L+T5dtWwdT3HFaVfkLsH9aa89fv/PEah3qNgDkeycP91zpwBw46+t4/pH\nT8jcD5mRoVXgnCM2ctafxxLomo+9c6dmLcET9sS+/ev9Od3yneMZGEvno7pW6cClR6G1VZ4hKbu3\n85pxV01MsAJR8ervBR9EfFWi0F68JVcXiqYo5+MoOpMqBNKO7cRxpB1dXhuJTiFRoX2ePiWy8KVT\nkIWdZeZSvw8kUpNOWg4COgaFalJYkc5fIgilA3e8f/+ULg/piGHjp89A+Z7ZKONJS8HOUuBTHhdh\nkcowccFKZyDNUhCdgEivlTwIo2INfGk9plKer965mrtf/YED9v8eiNTDtHDMqY/k32/8tb13aFu+\ncixn/shDPDaeioI0KvDw3DK2V0OOevkDANx14bt3+dp9mb5992vez+p/eCdrzr6fraMheE2bytFy\nbaCnO1uncyopuIR1BuuYKElGHkOPN5mkryARwijt7q4AK8U5yDg6uRclzC8BR6E6l0CjyMbnCldK\nS/Jx0sKWkmMo9DeiUyiEaFPZQpyEEJ2kTRuvUNX+wRoO6Yghj48LMjiWPEi0jBIkhRBQUix2wens\n/V1QWd9RhFjyexVVjPIYMhbuq18//YA6hQNl3dLABUc+ufGht1yyjn/61pk0xuX28s5rdnQNywcj\nVl22+27LhXbWn89wxrufmGi1fL3OpKKSoyKpQtlqD32LtOANMupeqZDBRKlG6WKDqLTPCs1Chio3\nEOQ1UimgwAcU1JWjqtwE8zF+j81RJo2dU9rHcnpKSzI9WoXsFLRxUb0plz5Cv/hN/FnpgK58/Fn1\n97tQpveXHdIRQ+5vl9+LxpieG+9RZZ4ZVOI6lEIqPTptdM9+FLCxVB+WsqXcPCuaEf925TncfdGh\nhyfsSdVjuEnxpc89Dy76tyf1Xhve8F5ef/vreWjHUh5bfzhveum/c8/c4Wxtp/jJF17LmqvfTnPn\nFMGArwOmVSgHykF37o4YSt+zhNNeu4EHti1/wvf71m+v46U3/of8u1zzqI4lKSC4wMR19kw2z/X3\ng8qOorxXZI6DXP+FjXcSVRJ6EpWHrLIkx2xt1Qu+ps2sH3OvMEacRqH5mEFIiQhUlnpThQQcyQmV\nlagUSboAACAASURBVAghOkkUMRFV7Ac7pNuuNybdBejFNaEnnERUWU84irJGXRmfMQcxH8hVDZMA\nJAGUJI9udFQabp3hoU8+d0JQ5FC3XTmLVVf83B5PqlpoZ/35DOPDo4jK0Wc8wsO3H8VdF76bh90s\nr/j6ReivrGDHeSPuftWuo6kL/ucM1//OOlZ/6mLMDk04aR6tPYNvLH3ctOb537yQ5cNxVpASYhWQ\nMYFBElvJup6qx5gkwiinSgETeFU8VgzrK9M7jX5s3c4j7cqGvOw0YAKPEFwhVxJ8rxLtnMpEJ0id\nlTnqCXkwcQBIjstZHR1FchySeuTeCQEghdbgFKe+fed27GeEGOz9nzwLTR8u1lXPSow7x6TZJJgh\nQ1uaytKl0pQgz3Jh802SdgHZCaSn32hP6wxXnv45+J2n8J/eD7bQKZzxnhle8tqb9uoY5/7JDMf/\n8D08d+lm9Aseo+oMgyZWZYQGPesDs49NMVgOz1t1L8/7xo8zOz+g3TxEdT3xJpxtOeXDl1AFMCOF\n056l02O2nrCLmmWy095/CatefC+PjaaAvndBFqpWUZbN+X7n98SqU1O5XJIU1F4IcGXFQRY4kHb8\nmLYMaktTRefjgkpVAyYG34jZxJYt+y3EKchxy47OEntwNgKXSj4n+oVe8hXsuOoJI4qeMWnT714R\nEkCpa98LyD5JO2QdQ/mhlv9qSWgSBR5goquyzzN9BiTL45bHgn469pK65YjhLDc8ePxeD4k9VG2w\nGW768Fnwu/+8R88/7V9+GrWc6BQBTrx24u9nXBvxgVf9yy+x4XU7RyFr//YSfvWHL+cNS2+lBhww\njrR+hgo2e8Obr38HL37hLbs9BzeVAOJURYigY19ZkUUMk2Vm61Te/aXUCJO6CAJMylwKaaqSY821\ndY5ITXIo8VzMxLEk1RynsXSiEi2RQlU5xuO6F2hJjKUYFcQoQUMWfcn0chVQqXQSAhE3CBCkfFmW\n4IVRmR7yXax+4J48E/KQdQzAhDcWkzAOeoexUCBDcrzyn5NIQZiPcqyytXbFYJ6bHjn2GeMUgCcc\nOlumHmuveRt+04C7f37Xrzn3T2aofuAxzrx0hoEHXrHzc5SHsa95LLVe1njmQoUhMJc41E0Vm5R2\nZ+GYMSNb5zKz82ZCxbsEBmVDkL/HykQhClsoLZUVDUkhJAKVdLIcYrMwye5Tg159SdKCsl9Bmqnq\n2qG1p22rXK7sMQxxJr5vnJK0AMElfO6NgNRUlQBJ4S5MfPYlX/tJIgSHpGO47xNnoelzSpikNIuV\nugyyC8hNoyCHktDnlqWZ4iIMjOX2TUfz7Rd85ID+b4eaiVM48//MEI7y3L2bsiNErsHqT1yMOsJT\nbVec9//OsONkj7Lgljk2vOG9/MfXfIULl3+bm9ojOEzPMVSWWnkMgWXa8SPX/TxvXfvvPLfZvez8\nKSc8nNMIEdwphwSX1104BdJ3ICaViLJi5fykQ5DmO9l0Y0rS90VIm74CZGxAgAkAUSeBl1KzIw+s\nSYtezjWXMgUT08XvRAKf0LJzSTSVJ5XxEUhZsOBzP4UcO6gYVRTrZF/skHQMYgI4eh/nRRjjJ3JE\nmx5zGZTqpbzros01H88rppouO9QqIcoyzOWGZ5lTEPv+G/5v5k+0bHjje57wuWply1knbewbltLA\nndm24dR//mm++KJ1NErxgQd/gKMHO3jLEddyvJ4D4Dgzxbdf8BHWfuntvPXsr8HSrbt8j8Y4RHdD\n8n/oF7VwDaZrG9MN+hBfIkMpXZuYxGOdzvgDMBE5ZAeQMIZxV1Cc0/uJ9me+d4zPEUbn+iYoAbY7\nZ2jbiqaxVFXfbWmMRBwq7/AxMtDZOaiEJcQ3lOpEKkmm6oSufC8xLxBE2WQVAnd+8Pn7PLXqkOUx\niMS2S9p20qgyUXM2PU0VmIgWrDO5LCkMyammy6Ieil7ivfOGL531maf6Xzwk7Nx/fwsPPbxij5wC\nwNqfup7Dmrm8aCWye+jBw/jUC/+SuaAYhcBvnHAlP7TyBo43c5GKruBeGwfhvmTNev765hfs9j1s\nsatbZ5iqI/DZJL5AZXyaGaKzE5hqOirjGdSW6UEbeyOMy8xZwZuEByGVLPk/BlV8fmdNkg50EfDW\n/TBbiSwk3K9S78XUoM3nLorVcs+6xLsReTdJJ0xOB1RUcPIKU7md0mORi89t13YytZgAG0OMLkKn\nCfbJLe0nfLVS6iSl1JeUUrcopW5WSv1yevxwpdQXlFJ3pu8ri9f8tlJqvVLqdqXUa/fmhL778bMx\nxufSpJBFhGQikZTkgDKTEJgYKQ89kiwWZxOaPJBmUFmOGM5y9ZmX7c0pPmNM5Nv2hrh11QPfwqY2\nZxdiCH3fgyt53w/+VX5OF+Aw3XJS9RgmcQ2WacNP3fIzAFx89DVRX2E3JrLsESuIU8GF7i7Vhs6a\nQtk5UqSti0DifFszamt2pDF78hyf2ufl+J0zWcxn1PXDjyXSFDJdVoYqvmKqmkSFc89Gz7XxXkfW\nY45k+v8vKzjJ3xBeQlE1IfU+BEkRpLkr/d31GpK9XkMfhVB0Ze6L7YlbscCvhxDOBF4I/IJS6kzg\nt4CrQwinAFen30l/ezNwFvA6YJ1Sao9F8OXC9HlZQR1NzwkU5CcVJiIGGVQrOSPIbAk1UY9eOZxn\nvqu55ROn7+mpPaNs9acupn3l1n3CVP792tNYUo/RBDZsigNhjjfb+b37f5i33/pWPrP9XK7acSY3\njk/gu3aar49P4Hn/8Ktce94nuGx2mp+4fPfMx7XXvI2t42EuRda5whB343FX525GWazWxTkiuT+m\nYLUaJfLufSoAk0QmEV8REFMatORnmfUACdhOFY+8SRVYVjk7oox4QxEZaNNPoBJ8Qe5xiA7BdxpV\n+QwySlUiOgfSAJr4FVWjU6SQ+ibodK/XsA/2hI4hhLAxhHBd+nk7cCtwAvBG4EPpaR8C3pR+fiPw\n0RDCOISwAVgP7D5u3IXFfK1Hd8sQLJeLJG0o0gedQEj5HfoowSe+vDRTdc7wyNeP2es25GeCrfno\nO1l6wrZ9rr6s/4l3s7QeY7RnzVGbICg+uOVFvO6Im3jgniO47IFzOaraxlB1/PfVz+Oqzecw9ZBm\nzRffzh/d9Tru/rG/3OVxV3/8Yk46aktOD7QiUdpj2bJczJlQVC7QwhmUS6KMIsOC32Hne8lak1PW\n0pGUbdA9AMrEfVliYBAjAfkylcyr6AFDEW6heJ2uevpzf5L9Jhl5DvGxUjEaE9JJF9/30fYKfFRK\nnQxcAHwNOCaEsDH96UHgmPTzCUDJv70vPbbH1n/g8r6TXZVCZZXdovz3y1JmWb+WCUK1icKgd9x5\nPBvesW/Top/uVp0w96SrLwPtOOewB7hg+h7+Tn0fH/vaC3jVBTfTHDZm22jA84b38Zhv+H/ufowb\nRydx2H+c4/7RYXx01Rd3ebwz3j3Dma/YwKa5JUA/QHiUZNZKhmtZlRMLTJYxS7WmsmwpvIEyLQjF\nMaUzUo6piNUFo8lVMTluWUFwBQCpivee4M3owmmoBSPsUnoif1NE/EEmXccRljF6kL4JeV081+Qk\nEm7xZKff7rFjUEotBT4B/EoIYZsqCrchhKAWkgme+HgXARcBDOlZcL12Xl8fjmCNywKvcmHzPAfj\nGdvJ8XACYAn6LCKxjYlNQBt+dM/Atmeavf7213P7S578yLxrvnwudoXlsgdehG8CA6t470lfgZO+\nAsALv/UzvP/Mv2Z70HSh4rIvfF8eILMrO/6l97Fpbgmd0/0QYq9pKsthUyO2jYaZLgyTzW7lgirv\nDyBPGFMLFjWkvhj5PX2XKdZyL0FffoxVB5tTGcEUBBiHPpqQiloICmt73GGhM/AhkqFsUoXWxhF8\nTJ1M5TIFOpZeiApPTshNqYy5ICJaqCC9L0SnPXIMSqma6BT+NoTwyfTwQ0qp40IIG5VSxwEPp8fv\nB04qXn5iemzCQgjvAd4DsVdCHq8T/x0S8AiZJ99UNnMVqsrlfnqpOcsF9F4zrG1yJP0Myyo5ijs2\nHg2n7eEn9Ayy773uQr7+vI/tl2Pd+VO7XuTnvmuGb//GOv7t/I+z+h9+FVZ03P2a9/NLj+MUVn/y\nYo5f+wiNcax4/Xo2ffZUyrGD28eDGDHQ9ytMDKOl0PBMFPeYQmq6YDJRTiIKlxaoNr0ykyxaWdRx\n6Ex/jsKOlVKmpAHiCIzxURo+RxFJ5FUVTVNeT2gxZAysmFuZh87ogOtSWix9ET5FEyYQbMITJN3o\nNFQL9mbdlzL31p6wiUrF0OBDwOYQwq8Uj/8x8GgI4Q+VUr8FHB5C+M9KqbOAvyPiCscTgclTQghu\nF4cH+iaq+z95Vg7JhEoa87NEe9a9xFXeEYyf4MALf721VWTYeU0tTVPas2Iw6um+zyL70Ttfx2Wn\nXHmwT2MnO+2vLmHNi+7hoR1LcyOUgIiyGMVKLoHoLpRVhDK/78P9uEjrJBFfPkcEXCvjGaeZDmWD\nkxzbOcVgYLHWUNc26Tj2uEMZLMt7lmmDUrHiILLx8ndhUIoTsmnYTAQqFabqG6hKoZZg4zxLZXyc\naSnVChUdRg+6RMdx6s/FiGF/N1G9GHgrcKNSSjp0fgf4Q+BjSql3APcAF8YTDzcrpT4G3EKsaPzC\n4zmF0kpPPcH+ShipI0VIxY3gbD/6XG6ckjEpJqnH+o1Hw7OsEPH8b17IN5+/fyKF/W3NllgtGtY2\n62SIo5dehlyNkkW2izxeFrEuNo8SY5A2aLmnchqiospzXff8hr4Jqpd6F2dQYgnQRwzlAp+kPseO\nSpJzEEDRJ1Bd5k5kZ5EjBrDjqq9MAChQBEKrYej68qXADVK2lFRiH+Z+iO1JVeJfQwgqhHBuCOH8\n9HVFCOHREMIrQwinhBBeFULYXLzmf4QQ1oQQTgshfH5PT0aCl6x3hyjv9k0rpfqNmJCW4jF6UKlL\nJKdc7vIadd9wT0/nGWHP/+aFzH3zyIN9Gru1G39tHXfcG3Hrso1ZTJqdRLRHmIjVAgcgIOFkN6Oa\niBBKEdaFFtLit2kcXIkbZOHXRLSCnUfay71b0qHlb8YEqioRpYzf6f2FyixgZwZXC6dQchLUtN05\nTRBHpxd8hgrueO/37vwPP4EdUszH6G17b73wwpYCK/I86YQrHQL0N4kpvHsEoZ7q/+rg2Tlf+wm2\n3nYEtx4AkZlVn/85zvlfez7y7vFsyW0DGuPiJicKRwlUBvLPcunEOZRM1/+fvTePlyyr6ny/ezjn\nRMSdc6rKrDGHmueiS4oSu1VUEHnAoxEHHEAFK68tz1ZbsFX8PAaf2jbPxiaLSQFp0Ub6oWKLPqcW\nbRCw5oGqrMrMmnPOvHmHiDjD3rv/2Hufc+Lem1WZZVWRmdXr87mfGzeGc09EnL32Wr/1W78FsPG1\nXwNWOoi2YrRz1A4iVrc8SOif2+YdqNbinhobcP70HBsmF5vyYwj722lD5OC0iU3xeNCMqBtJd+Jr\n4jAcK4KkGzWbseYqGOlTBGBFP4QR9fvACs9jeIbX+ynjGB77zJV1+uA/8BYNWrAsHwueWLhAP212\njlriSzR13zpXtILOpXNft/f4fNrrd30bd7/4Uzz0xuemJPudV99DsvDseNl7/q8d6BAZgAccbRB2\njZaHlNG0NogYQcbbB/54NEeUrTKkDNdVnOlQg4bC1fR7pWydUtjQoVkWGltKrl77JN+67gFet+kO\nzp5cAEb5C9FJNOnwqPOIxCYh/Ii6iDcI4dCJd4pxHF0UgY1AY8QTEITf4VpPQlQjPW9BJCEaCalL\nDUY+g93wlHEM1ooWcaTJ3WptPmXrBijBaCedal1UAt/WG9twvZqwrLkQ68eXVv7zM8xuvOP13PX4\nSVFHTto+f+vV3PbOZ8/pHF7yJet2bt4Wa43feUwh4nSwOMdhJQA42jbdpJqtNABqUZeyVPVU6pEF\nXShcJUlCy3giKmayfr15eYn4RtnZWkFZqrpMaa2PEKxpqh6RBRkrFFWpcEFLQoCPDuxo+uCc3/1t\nBCOtqOXihXDEUXYuYguhvFnzGk7SThnHEMs/kYTSDv8hCrQ03IUIQsV5kzLmoqHso6X1o+ylDYxH\nVzMer/jSG7+eb/U5tS1/+SOURrLzX33iOf0/U/c9u4257i/Whh4G2VL7lnVDXHQSbX0OGTgKJtCg\nY0oZF350DhELaJyOjxrOrlOPRshVa8NgkLI43w0CKqAPJ9x66FzuWDiXR/O1HByM13yH5SlD7KCM\nkvEm9DREGnTEOkbeO6AS09CsRYgA4k94y0I6VJCOl4mto4joLGSIGEamUik3Iu5yonbKaD6e+9m3\nAYx8gbHUFHeK2OSyWirRLhHVop0tRDrWwIVwjKUlC5/beFppOZ6IXfMfZlk8z7Lre4+vqfBs2pY/\nvJnzL9vHE7dv5MEf9NHDJR/bDhbW/IsDLAw69J8cZ/frVqdAL7dvvue1LORp/XekRsfSZQTn/GJv\nNBCWl7DjdRNl1mJpUKlmAAw0JcP273Nedy+PvvMmkiUYrvULtHvAy6cN1jvMxpysV9bVjegc2uXR\nCDI2Oo+yvj5NpVoj8Zr3HkH1+L79fcfZ6SOIGgDIGE34x0Qj4lKDMo6L33zrSZUrT5mIIXrcomhY\nZe3Sj6lr0m5khmAbZKrDNNeoPLfzUV8egmGlWXrp4vP/Jp9lu+xDo+Dfnf9ux/PmFABcZpnMhrVT\nACinLcU5JfsPTJEPk1oj8kTNqzY1CyTOj4zfX3QK0do4UgNcUr8+RhBumQNpO4eIBwjhePAT1yNL\nUHlIzUMkrpec38hVS7JdNNFIrJ4pZVsj5ZpzrJ1TaB2Pr69/oOmXoKmexJ+40Nst2LWnhNFyBq37\njIBKsvNjLzq57+Gknv0cWrujsi1iAcFJ0FQqqpBuQINit8O6ODmoVvZp/59wnW5aM8/Wv3nz8/Le\nngu76jdnn5NpWCdjoluxNhvFbD7yio/yNy/7TTpjxUkB4lf81myNJ7QXcdTMiCrOMfKLaQTQlCuX\nVR7aO3rURlDK1gB1tKpSNTaQdkv6W0qOXWKwmwfILYssXFoyd5Vl889/iempJTppObK4m/8ZK2KB\nq7Cs8S+arzoImopFOEZMh2zzvuKx/R3Nhum1GOQKQlNUhKodh3KhOnFyOMMpk0ps/MxP1YM7Yn7W\n1IZHiSxta0cPkd4KjPRLRMeqg6qTlJYkXGgdXb1gRVqea7vod7c/ZX9E277h9u8eGT4MTbm6ChoK\n0FCfoVEEb/cyQMNYjLt53NmjY2hbO/0o+innbzrMdDaoH5eizWeQFFYxqBLm+l2GRcL53303j33m\nypEpVJEH4Zx3Om0SVNz4ltOk61QiPM+PvW+0HevUAbwzaPMYnK9CxP4JVzWS9HVp0wgefcvbT79U\nIjacqFCzTpRBSn876iy0F33kJxgXpOGFH0YbKxlS2lqxKYKSibIk2tRNOhHdvurL3//1fOtnrCVL\nJ7ZL3XDbGzA2aivENnuv9ViE6dV12bmVDlR1JaBhETZ/N8eP1YZ4jTXOQNSlRecErgh0+qBIraUJ\nzkCv6NyM9ugfXlVXMdqMx9g4FVOUdtQy4hSEI86PiPdBSFOqRvlJiEZ4JYKLImo7Sg881pGJo4kQ\nBN45LO+jeBo7JRxDubVTv6kytFFHoNHYURnwCCy28868UjUqHS/F0iiGpa6fL4SX+jbWI99FpSgq\nxVKRMNkd8tK7Xvd8v+0z3u7bvoNtv3/zcR+/6JPbedl9rw7Ncc0EsIgTFVF8JVQnYrqwHCuIi83U\nqUjDVZDS1aPi2jyY5ccQwqP3pVFMpwM6uqQKDqKjyvo66umCsaQIw5T9+4hpRKO9YEnTasQZRI6D\nxyECDZoQsSwDHetZrcrV+o6wjNUY0pGYNtgyEJ9ieCxc8/czqEqcEo6hjohc0z0Ho9iAsQ2jzARF\nnbi7tO+ve+ZhRJbLthxMxCfizhSd0eb//pbn7T2f7rb5j97KVe97eubj2KPHv8TOf9ETtcxa7I/w\ngjq2pchsR7A26xoqcvwd04N47cRdGprFBk2K0XYG8RqwQQnJOkFh26lL4BpYn0ZUQco+XntS2rqP\nop3m1s6qlRYL4dj8vXc1KXJ8/kgK1GLxxiwmRjmORqEJ6lSj6ZFwq1Ki/TGe9qsasVPCMQiovXz8\n4qGFqVhR02WLSjUSbQFIcq3XtMtW0FwYUemnHmEefrd3qC2b97Plr37keXrXp7eJ8eqEJmff+fbj\nP+exQ9NAs0BSbYJjp+al1BEf1DtvBPea33ZkB64rDq2KRXx+ZMe2XwugtGcUxnOprCRVfv5FZRWF\n1WHYbZOGRvxCa9PSD2mcT4we6mYu6Xj0D6+qeRSIwG8I6UQbI4lchjbvodF2xGs6ukb3MRKZRnQe\n42Pt6sUJ2inhGKCN7noQJwmDRBJlSLWhk1R1J5ppRQoRpVbKkuqqloSXAXNIlKnxh0x75d+o6ZAG\nvCHmtwt5xqYNc7zygVdy3XufnT6AM9Vc+c+/dHpfHCeV/vtItaEMEu9KtuZFhO8y1SZ8X6bGmFLt\nW6AjDTl+9zFa9BuBqMVUau1F26g4t9usUa5OSbW0aGHp6BIpLB1VMq5ztLSk0tQOJbIbjWnpQkpb\nRwtREFZKF57rhWBj16ZzAVeITgI/vs7VxKjgcFqLPOo/RnwiKkIL1erEdC1HcZIVCTilHIMbud0e\nVQ4wLHVonbUkSeWVpFsLvK5zhy+1jVFAUO0N6QdE1hyjTDrhKIziWN5hw+seZeunj58fv9Cttytd\ncd/rd30bm//4rSd8jDvesYOdD59NqrxTgDiwVtbff6xIRIUur+zsw/m81GRJRRa6HiMAGSNBjym4\nkR07RpmRZesXbqiAlVG23p/L0OhRKXvnnUZPF0HK3r+PmAK0I4c2k7JdhQBCpyX1nAh/DJr7ZOBL\nAFvfeLt/b0bUlYoakwh6C17qLeQdrnlOnVa0Hz9BO2UcQ8zJmnKODBLlopkGRBMRWStq7x4vmjhd\nCEYnE9dqvyGFaJhlsp454Ln3zXDSwiquuO5hNv/Fjz7Pn8TpYXaZX/jGu17HS9c8xJaL9nH9u7ef\n8HH04YSxpAjOnTB8uClBQ9MLE514PU4gpJ55qWs8qQYnw/HjLh51FNoly6icVLdZCy9VP6gSCqPr\n6edDk9SblBSOuaJbiw63UwhoUmKlLFlatbgTboT8FC3u8HXkEsDIiLHs+r3riDqPUsfmqsDdCCmE\nC1GEc2KFA1jhJE7QThnH0A7rYq7Zbp+NCzqSl6D5MmJ9OOaYJjyvrdEQnQA0cwvibfAzBNpKxKVR\nFEbR3Z09Px/AaWbLW7mvXLOXm3oPcrTfxWQnHro++AO38OT85MhiifMcYpk5WkNmaxqnbED+o/Oo\nAlU6Apdt3kJMOdolw/raCQvSDzfOA77QVAkgAJBG01GlZ2SaBvxsuihlneqWQdsBIuFKEgfcRqq/\njBqRVSu6sa3ZmMp4ZxAqD3GWZWzdbkcMMbWIVpc3pfNKTydhp4xjaBDcxrO1683Q0F8jchujinbN\nuhZzaZUpG7rs6NCaCEguR67jztTTBfdtP7P6KZ4Nu+K3VuIvXVWS4iMvWa18zZY/vJnLP7A6bnNs\n98xIlUC2HEDcEKIzaDCCFjsy4gkt4LFtTaUC2uF/m8cgAthnrKRyftMojKawuo5MK6ew+N86tGhH\n4LtN027EhRztbk5YKfDiadJNBOPPrWH7WuNTHRGaoWrGpWzJCrRYvxe96VbvECKAH1iPq4nTPJWd\nMo6hkd1qGmbaqHL9RYqml75Ry2lKU3EnETQRRVSLjrlinDsgCAzJWCpzjZNIlHnKicwvZBtcNlxx\nnwpDZ8tKrWhO2/oHN3P5NY+Q3HB01eNN7JZkASj2YONozwRQpwfLr4n29d6uOrU3lbgxtCsUjVPw\nr5XSL7xUGWSrthcb8awTaBEiWZrrsc1PaC92/z9G+yGacQgt+TcnWk7KrThHaPgLUjWViDbXP07B\ndlbw4Mdf5DGICFYKRisVJ2in3JWfJSUQKg80mEKsUsTwLg3DbrOk4a1Hi6BkXPg6qARDM7swDp4x\n1ovF9tIy5Lh+bqGWln1LE8/HWz7tTO0bTa+uf/d2Fk3G0OkVHYFX/uMbWX/pIQ71x9g4Ob/q8e54\nxw4y1ZJNcz6dKCtVD4n1949iRMDIRqBai8paUQOLNgCa8f52OTF2X1aVgkoyrDSVkwxNQuUkWvjq\nROUUNvxtaZxOrEAkiakdhP8/zaCkpsmq9dkEhwJej0HIZtYFNHokdXoQy6M1FtEcqq5cKIdMDSq1\nXsRFOGRiOK2FWhpOuz+lc//1vSNEp6j+HC+8qLVQtYRf40URwUYXbkceehySGofhOifQYZBpEaoY\nkSdRWcn+x2b437bSxh4fXfy3/dItjKucRJhaAQngmq98HxPdoQdzK1/tOR6Y+8SxKQQEfQ3IksqT\nh+p5lbIuQUfcIZ6FbkWDkfegl80/bc8pidFmZCbWCza0eHtnYEhlVfMWJK6+ncpqRPYtOpa2nHy0\ndpky/v+ID0jpF69ufWbt9CAKufgH2upOLkjKN2QnF0qTzgpMIb3AjBW1ivTJtkSdMo4Bmg9FCse+\nP7oMaHaJGlhqffAx3VDC1YBPLRYbjxl+t8eSxTmI7WaqJoXwfRpjScHEA8nz9M5PL7vjHaOpwnXv\nnaV0CkOzMC/+xHZ6WUFRKWwIs4tKcc7G1dOJe278PbpJOVJmjmlAZEKCd/TxGi/DKLlosSoVU8q2\nmErEpto4VrsK5hx1Xl5YRb9K65+lypdgpHBYBIXVzaRtZelm5cjYumhtslVzX2yIanoj2n0VyysI\nQrgRwLF9nFjujJOqRsqfoY/Ct2m3JledoJ0yjiGGXZWVLC51at47BPmsMFE4jhU3YQBJHD7aDr1G\naNGuabZpBpGomgQzKJIw/s6Hm7FkKYV7wcy13Py5t/CK+7/rhJ677W/fvOI+q2Fc5T7Ujg1q+eFh\nlgAAIABJREFUAoZFEqpBqp4uXVl5XHbpQw9uDFGgrJ2JCXyFGAG2uS1ZUnkHEEvaLUDRR4O2Jsk1\nRKMmWmzn9lI60L69W0s/sayjfL+DxNUcBi0MWpg6YjBGMsiTEVAcGkalv91gB1I6Jif6nD2zwIbp\nRTas8emVtZIi114Y1gpMpahH6mnrCU/CVyZqPoMDW4maDIUDa8SIc6jnUZzkgNtTxjE0gI0gSaua\noFJHATV45J8fKbCjxxhV6G2j1PG5Nb0UalAqtvn6v08+Hzvd7azzjrJQZFz6Dz/Itf/PUzM+k3Rl\nyaEaA4PEIBjPcs8aFa0hs6HfQeBR/3PPWj1q2PPqD5ME7YX4vUeL4GOsTLS5KHGzgAZvgOY7jlFI\nW7q96UlorgmgVouyTjCoPM5g8ZtL5VRdsYjnECOSyNh1ruFOxNsN1uBTjY0TC1w4eZhzJ+Y4b2KO\n8V7uI19taqwh0qTb79+2+iTqx9qVOxGrLa0P1TWVmJOxU8YxtPOz5dOA2pOolotstHvxo1c+53X3\njoRxWtomtRDNhRqtURpu7jsy6PFCsOt+ZZaOrjBWsmFqEfnth5/y+WbX+Ir7bOKrEokwzGR98mmw\naaPNCU0TVFH5WR+b/2R1huS+I5MjFYTIaYnHaOsstLtu25Lw/nntqIDWAvb/p82IjMeMi0wLr+Vh\naVq5c+OVxaKD8P+32dDKME4uliPbXAnw1936yUXOnlpgMhkyNAnzRQeJ49ypY5yzbo7104tsWjNP\n1ilrohM0VYeYLniPF3eziHY2k7dpO7wgHHvaEpyixdCvHSXEhVsaNYI8x9RCCt9sE3n0T372clJd\n1f0REbdol60cfvfSQaNBCEemKz8/MRuy/66znuIszxxLvvMgw0pTGsliniKE46V3vY4b73j9iude\n+6uz7FxFeEUYyK2uy7suAadcnf7NL3aBRqexn6dsuvDQquez8199gvG0YFgkLA38zMrxTs5Ud8hY\nVtDLPEuyKPRIMx006WgjxCoDgalZsG0gMu7mVenl46k8njU0oWEqxJl55fUYFoqMVJpatNY5r/qU\nJFFgKEYFTYoSZ1YoZTl/4ijbJg8ykQy54/Fz+NoD57K3P8n5vaNcNr2f8ybm2Dp5iKnewKc8tlWJ\nECB1dA6hzbpVsgQwhWyAS+WQ2tYYw8n2Szy7Ur//DGvXhWMKEL9g8F+6kramvVY2VhVsHfrFHaEd\n3lUucu+DYxANZdaXK0NOKDwdVklLTxfHHdp6plnsWI31f60MlZWMpQWvfOCV/Nklf1Y/t/rmY6sf\nJGxGQ5c0f4cLsbKSsV4+IrASKejXv2v7qhL0pVHMjHkVpbPH5kmloavKuvKQW82RvMd83mF+mLW6\nLpsKQ5tgFK8HH2k0OpDxfp2EapfyG0dHVVj89aYAlQTcITC3NJ5j0VTSROs6jfwF/1isVhgjeWhu\nHdYJJrKcLKtgKufIUo8vDi4MrxU1rgLhvKEGEWvgEi/MYuvmKVeDlL5a0UQaELGGk4sBTinH0P6t\npaWimWHYRnyta7XeCjeCJUR1Jq0seaV8J5609ZyJePHI1vHWv/oBFv98S6tc9sLCGayVdNKSvNQ1\nxjKsVl4a4528vv3yr72KfX9yPne+fQfCQukUHVHWjwvbOHtLc9FHARYlBQsXrn4+jzy8nte86HaO\nFL16noMUjq4qmNSeXHVOd46FqsOD8+s5tDhGXuo6z29CeDfytwxdm1FtKVYt4mNIR5ZUpKqiX6X1\ntWWcRDrfXKWlIVVl3YvTRCsxPWlmpEDTOSkE7N83DRaO9KogNSBYWupgcgUOZObLlt1eEaZdh4Uf\ndBeEYER0RSpXg4/E1msVowNXt2if1qlEe55E7GWod/1WKhHpqRBQ64gtQIgk/HOLquE3xPkE7eO2\n7dDnLq6PubazxK1fvYiXb7r2uX/TX2e76He31wSvevBKpeq+g90PnT3y/AO719a3p7IBMvgBm/jP\nfsmlFFYjLCNAWE1JFw0lvbKSddcc4Lr3rAQ797zqI9x9dBOZNJROMjAJR4suC1WHg8U481WHykqm\ndZ/r1zzGN2x8hPPXHA0zRUKJM3Q/jub5rgYEVYvn0LaFQYehSeooFCCRJqg4+TSiMJ7r4qwfKhMj\nkHYkEqMYnfiOyzStUJ0KmRnfKRkwBGd9u3TEDyLw7myz+Y2kAaHyEPsmahYkNE6jhTvU5c/T0TEk\nu4b1BQRtzniDDVShJ0KKUdAIRtKseleq5xrGY0ZnEo8bgEwlXQ06jqc5jy9Ms+t7PshfPHkHZ7qp\nLYsYK+p0qp6m5ASZrpi8fzRqaM+HGImqZPP5amFHrmO5ygUZU+Mj82OUxyGX7rlvI2M6r/9XR1Vo\nYUlEw2kwSBJhGFc55/SOcd70HEI4BksZWlomukNmxvtMdHMmujmpNvQ6BZ20rH+iALFzAqyoZ1WY\n0IcTHUQUbLFO1g4uLkBjmoikXRUYUWNykdBEPX7OGU9AclZAvdgDfyOmETQ8hTidKvZ1+MdE6LD0\nkYONitDhb/8kcdLlylMmlWi3ryrVTLWOaUBNYQ2gZOygqz2va0Z8xYu0k1SUVSPTpZVZ8UXF3UwJ\nx3iS88TnL4AzP1jgko9t58IbH+NQvzdS0VHSkYTFcefPrc7juORj29l60yOIWs7Z/xoTRaOqbJsq\nQcybI2NxaakDT3bo7hfka1ffyXa//kNc+g8/yIXrjtT4UhsQ1NLUZKqY+08mQ7auO8wjaoYsqejo\noLvYAp3blOqoGl6TngQ1w3K5xTpW/P+pMmjdgJ6xQhEnV6ugueAfb0qYNf4VogYZJlq7MKOyrrRY\nsSIFiHwFpa2nUUe8LIrDaldrNBB+x2OIkwwBTomIAZrcPsp5JWH6cWVbyjgiKEFDUH32F0f8iQSY\nKN4StRbi86TwPRaxEhEVgZJwrFvv38zd//aZkZpOt9SjPDdnqUxH0io/As7vkP1ylPXZ1neszh9S\nWoVTcUfy0uoGv7OKekE0oTZ4jsBSPyO7p8tDb7yFZMmhcsE1v746d0LcM8H+hQkOLI5zqD9GXmmW\nqpSFMmNoEo4Oe8wXHeaLLotlxtBoUlmxeeYIBw5P8vCeDTzy6Doee2wtDz+6nn1PzHDwyWkOPTnF\nocen2ffkDEv9bKS0HedVRP5CaRXGSQqjagcEcVxB0wvRbu8WsimxRxCyzcupF7TwC1YlFlQQfw0O\nwzsAM1J4EDJUJJyo+yPi5yxk03RFLFVG0NKexhFDzWxs3dfoOUqqyjequMBBiL0T7d9x8pSWHngE\ncK4ZUWcdXvST0M6qwpeqK1JpmLo7gRMjAK6w0yn1uO69s5z/mifpl0l9MQnh6CR+h9XS8uSTa0de\n4xrIhrVrFhmUCbf/gneiNmn6CHq6wGRN9Kd16GPA75aFEwT8EJMJqo5jeFXJava1m3fwQ4/8S/pV\nSioNY7oI/RCGTFZ1iXRM51RWMTAJmapIZcUT01MctuO4YTjxmH5HXQIHLuyLWvsGKITveRhUXphF\n4mpyU6JNrRqdSlMPQGpfo965jA65gSYaVspS5hqpgsMIHAPnBCoNVH/RTFyDZqpavG6FdPW1XOM4\nxgvH+jJ8m4btgcgRHOIE7ZRxDHmuSRLTUEOjlJUAob2WglUWKRv2W1H5br5KBMZjSCWi3HgMXeM1\nXRlVz5yI0m6SwJtArOgBOFNt7pqSnpW1vH6sRMSGpUxV7P6O3x55jWp1WqchuqvLjRISYViyGf0q\nRYQx7O0yIsDSYgf5RAcRNl6TgTQgBorj2R37z6n5D/FyV8JXD5S0jCcFXV0yqBISZViTLZEIzTdu\n3E11lmKu9NHEsaLDUpHWqWW8DopK1yrP4DsdtbC1c4gpTNuqgDPEknosi0JIGypZN0ZVAdSNj/kU\nI4CPFlwlEXEmxYiwUKNNaSo5gkvESdaezIRvrTbNEJraiYhYOoWLfug2HjmRiyPYKeMYyqMdysR6\nBlchEZXwvAzlsF2LSyzVUkI6mbdKm/61bbVoB/Wka2jCq3YTlc9ZG8LTWFJwzx0XwmXP3/t9+aZr\nv25RxtnnHWEx1P+VcAzD2PaohzCW5CteYzr+93XvmaX36n0BfAsPWshtghIWLX2brwuhbQyhhXC4\no+nInMtkEYQRqL7iko9t54E3r+Q05PdM47YtkYTMxhOITOiCTWr8YCzJPf/ASWwAoMd0zpjOyTPN\noXycJ5ji0SNrAgDoN5FYBagqBWEx5kY3YLUTJKEaUQUCV0qTSniSXXNtRSfRdhhtRuLy8YsRH/O3\naSop4fntfgdBuDuQnFxFK8+I5CcXnE2oRDyD8XRwAo5BCNEBvgBk4fmfcc79shBiDfBfgQuBh4E3\nOOeOhtf8PPCjgAHe5pz7i6c9kXmFkwoR2scjhuWkwJYCJxTJQFCUoVarHbpboYOKzvIuNi3tyP0S\ngsAodYOOFB5oA9j93c/fMFj4+qYemTLMhwu3lxW+walSTHWH9JKi1jqMdvV/nMWE6sHc1RWZlfXn\nBtRIlVkmbNPWVlTKrRhwW0xB1XU4DeX0ytIhwAM/cgsv/9qr6nJnTxdUVrJ3adL/6wAoVlKhZU5h\nNV1RkltdP26dYF3mhxg/mU5RHMugEpAEIDNpBs3KgDdlqqpp0LnRpNIESXlTg9zLy95tybaoBh2d\ngrVhJkahkKmpOeLOyBpgjB2QMTWpjxewB+saGTqhbfAiAlpOOvZMNECPoKlvnLidCPiYA9/qnLsG\nj9e/QghxI/AO4K+dcxcBfx3+RghxOfC9wBXAK4AdQojjx4rBtrz9S37KcEGdDzrl6baqL1BDgVPe\ngYihgqKlf+dG1X3Msi/MtEK0SLGOYeK67iJ7/nTLCXwMZ4Zd+g8/yLFBh15Wct70HFunDnHd+sf5\nxk17uHbt49y0djdfeejCkdeUY83t8zYfbJDz1tZXOkmJCjwG4R28cCwd6eKcYCwroOMdxXW/Msvl\nH5hlcLah2FBRrq0QYxUX/Y83rXrOOx/YxHljR1nfWWTP3Fpu33kB+/bOcGypS79MyI2mML5VOnZC\nVlaxVGUslB1y6yXauqrkxec/zJqNx+pwXLbo1IQUqKtLMl0xnuak0lAaxVKZNvMvZFWPUGxX05yV\noSsycBBco8okQ4RCIes02RZhUI2yjRy/cCSJl6evR9AFsFEGTEKFSoZUrqY7j8jMRyC0rkg8B47B\neYsz45Pw44DXAJ8I938CeG24/RrgD5xzuXNuD/AQ8A0ncjIqF6iBQJb+wvKUufDY0DsHWXlnETnj\n0CDJsWcCIhocvkjtP+ioBhR7I2KJ8plWIp5Pe7aqHhumFuvxfItFxoHBBAeH4zzan+H+Y2exp7+O\n3d/+OyOv6RxqxF8jbmPjzgRY5asSCY0smnCweLiHnNcUue/FaF+gNgWXOr9rW4Hr6xHBkrbtee2H\nsU6yc249x+5ay/jOFLGoGMx1WOh3WMhTcqPpB92Eo3mPvYNJ9g8nOJyPcTgfY7FKOVZ2KKzmgqmj\nrDlnDrTDBlFX56hJQB1VekKTaLQ/EmX8PAn8dZOpQERqVWBid2RMB5K0wlTeWcTHyYzve0gsqmOQ\nifFRQ+p7KiJpqpmWFpq1wjlKHUSPY/oiCMNnABcaEWVDavLkqecglQAIO/6twDbgA865LwshznLO\n7Q1P2QfErqNzgH9svfzxcN/yY74VeCtAB9/JKEsfJXhGncBJhzQepBEGMCCEQBWg+4oql+RrBOlU\nhbF+tFhU5KlC30ME1jxYqWpsAaCXFHz50Qvhgi+c8Af29bJnI/W47EOzrH3JPvpzXcglC24SJ1yz\nPSSWx2em4fx/GHmdbVUuS6Po6IrJbMh8BPy1Y0zndGSJRWBVqKMbgUs9N6KttOVi9FsKHNKDlRaK\nXLP5z3+MPa/46Ipz//tHtrBxZh62LFEpx+aZYywVKVpaMl0xlvgU40jeqyMI8EBlV/uqhx8/p5lM\nhmyePsLCYhc/Es81Yq1GURhdi7O0N5zCeop9brQv1zqB1o3qdI0NBC6OMZI0q2p16qpS/jOBQF8O\nO3uoUChtMKXy2hEWhPIRgC2lH1obeBJSNGlHjBqcFb5/wrWGzAQewzORdjshx+CcM8C1Qohp4LNC\niCuXPe7E8iT/6Y/5YeDDAJNijQPvFJwKn62hiRAsiAqqrr8InQCXgp2s0IkdQawBZnq+Acc4wbDU\npNqwtjcMDLqSjqp4ZGGGYZXQ+7tx+KaTOfPT11708vuQwnf5ReGRVPpdWkvDpM5Zmy6OvOayD85S\nXOgv4G1/+2ZedendFFazPl3g4d5m/6SwI5XO1/qdAptZRMfAUJFmJb2sYCHgAgCyAFkIXOUjD5t5\nivKGtavrQt7/0k8y+8SNpNIwqBJmsj6JNPWiHVTeew3KpMaOhpVmUCkOzo+zdmIJBxzrdxnv5Iyl\nBRdsOEK/TBgUCcMi8ei+9VWHri5ZKtOmgkEzvq5fpQwrjTGSspB1lBCnV1sjsQFGqEqNrYRvdApl\nw5giOCd8CpFLGKtAB3xhQYMEPeYdms4qqkIjVZR9sygRJmy1mJvO+WE2qmvJg+iLVJYLv+euk75W\nTqoq4ZybE0L8LR472C+E2Oic2yuE2AgcCE97Ajiv9bJzw30nZhYIUYPTIcXS4UwjWBucA9Lr8feH\n6Ugud/WaJ1mbLpIIw+efvJyOrrh48gCZrJjRfTqyZGPnGH/0tWvY9YunfhrxTGx51WPz53+Mb7p8\nJ0UA5SLVN5beKquQwnL73Hmw/t76dcUaiw3YwMWb9gONNkHEGp3yr1f438L570gnFjNd0MtKekmJ\nS0IakvhSpZPhGMqRHFWUKiPvrayIRLvv6NlhZJxjscx8c1NQVJLhUp7MhnRUSWG175TUfrHGZrph\nUtZKXokuWdvtMyd8W7ic8bv8UumjhYhNlWHB50aTtIDZTlZSlLpOW0sXaOXO05vdUIH2lTZnBaJb\nBdAQwDMY0Ra6kGZljVmUwj821svrRV9lVRA2HpWQi+LGdUdmOJdOMqpLebJ2IlWJ9UAZnEIX+Hbg\n14A/AX4Y+NXw+4/DS/4E+JQQ4n3AJuAi4CsncjLnvfuLPPYLN/kT60MVtFKcCAQbGULQoGQj5hOQ\njryvER1Dd2JIN/WzBhNhMM5Lt+0/PMVjB2eYGB/QTSo29BZ46ZpdqMc7J/xBnW62PPX4zqvvQeJY\nMn73Q/koQYXdUEvDxvQYf/f4tpHXiVKQBJLQFVN7yWRFIgwbkvkmxZDUVYDaJPR6Ob2sYDwtmEoH\nnHfBITb/2Y/BVTkqtaiouyEc6sAY2c6Eo3aKLf/tx9n9rz/Ecntk9wZec8NtPLy4lsIqCJL1Q5Ng\nEXR1iRZeki0yYK0TdHSJcZJEGiY7uZ86ZiV53iEJ1Y6Z3oBEGoZVUneWtmnc0DiImKb0soK88F2d\nNjb9xQYp8Bercp6qXIWFnDa0fNmaUBVJekpZrLboxDA/32V8Ylg3h5VO1e0B4HGMTlrWfR1VGFpT\nhfKzkB5faOK0E7cTiRg2Ap8IOIMEPu2c+1MhxJeATwshfhR4BHgDgHPuXiHEp4H7gAr4iZCKnJCp\nHPQQbv/3O7juvbPk05Cvs6iBQOWCqteUZvRAYFJwXd+xlg9TlLJ8fucVVAsJ6SGNVUDiEEPBsU6X\nOQV72cDt4xewZxXRkTPVLugcpm9Tpp2kdAqFrZuQ4s8F6SHmnxztaurtE9z1Mz6qOic7Sm4ToMOE\nHDTlxxB+F2Egi1WA8mXEYZFw3sQcM2mftdkSl83sI5MVA5OyfzhBHhbhI8qytHcMNVHyLy58hKt/\nY3aF5uaeV3+Yy7/4A2yYXKwp2yZwD4xrBFpiS3VbPLUqFTIOdimlJwRVApFaD9BF6vCSRg4kKhc4\nCWbc+veprQ/vOxVVHqsJDeKvlEUqS5I2E9Wc87qUbQeTheHMi8MMrUxLb1SFiplf1IPDXZIjmiXd\nwSmHKhoyk9UOERyNqXwE5sJ9ZeKfG4iTmM5zFDE45+4Crlvl/sPAy47zmvcC730mJ1RMef68vw3J\nDUd53YX38Jmd15Lv65GcNfDsvNQ3SJUHepy1aY6xtEAKx+6960h3dnnw5uaiuu69s5gMTzeVPr+9\n8+0rAa4z2WIUlQhDjwKLIJMluU2YUgP+9IoZtjwA6dHRyrJpzajcW0xTWcmGdMEL3kTQMqy/EoUW\nYQ/Qlm1rvUrTmC5QrVKfDaShnfvXky+lnvAzr1EDgTmU8eWFbUweZytJ/mGSx29IMPMJZNYHDZWs\nq1cIEHk4MeX8gikETjsMIdp0oIcSvSgoJy02c7jUL/zkqKJzSHDXz+7gqvfNUg4VNnHYTGJTR2UE\nIjWNqlLsghSOsW5e61VqZerF3k0b8FOFSGaq6zGv0kqkkLVaedYbMKw0xbii3KDIhwnl0Qw7bZHh\n/yplMZXC5AqxoHGpRYxV6LQiVV5JyhqFlJZt33fnM7peThnmYzRZCYSF69+1HbMR1vcGPDqYIT/c\nZd2Wo3z7Ofdzz/wmHxZXKQ8d6nHo6ARHpGV6sg8OqnHHpR/dTnef4PZf3FFz+l+odvkHZvmJN36O\nRBgm5JC+zerehjVqiaFL+NdfO8Bj5Rq6+8UIPlGNNTtOIgyPDNcwqYccqcZHMIZUVnREWZN/VGbo\n6JKuavogJI5EGHLnL7tuVnr6bsjPq57wegW5Yrhu9Z3uzp/bwTfc/t1MnJWjha8UxNB+Is0xzs8E\nKY2qiUoLRVYLycZW6mGpGQ4TZsaHfucOOMQjZgN6SXPde2YpNjqKdQYSi9BN6U9qz7TVgaqf6ioM\nLBrVnYjzUXtJQWlVfU5KWI+P4JjOvM5DxH5io1ZlFQtlhh0XFDOKQ8fGKRZS5KKmsh647QwFJnVU\nSNKDGflGRWf9Ivm+SVRfUh7Pu56AnXKOwaaOYkogK4HpOh4/OMNj+2eQQ8nhI+P8we6XIHMZsAZI\nDXDIfwFH0x523CCUo9qaY68ecvkHZrnvJ17YjuG+n9jBNV/5vnoaUzOhSdbtvVJb3P4Ou96xI1DV\nvIkmxeZT//MmZF/yle5FAOx+U0jFnGBgkob56EA82uUrBy/G9QwiTEXqjBVsWXeYyWTIumyRC6aP\n8picIi8TOp2SovB9C9lkjulVXPbh2RXDcwH6f7+eiW97nJ07N6H6ErlpwJqpJR667Tx0X5CvN4yd\ntcRw1yTdA4LFbSWTZy2y+PAUE7skC1ssGy/zWLkP4xOOHeuh9mZM7BdUPVjY7DDTFSKxCG3JOmVN\nkIsCL1paprpDUmnIdEVeeSCyE6ZqVUrWFQ0tbd3gBbBUZsGJhHZyUVJZPwEr9mqURjEoEzJdsW5q\nkYUsYynrIPZnqMJHvumc4M6f89/DpR/dzmAsG8FnXr79mfFfTjnHcOEvfIm/ePIOrn/XdpwUlHkH\nJKTHBDzR4e6f9tgDDm7/xR1c955ZhHOYVCANWKVxCgamw/xkwuTi0//PF4L175+uS7/Set6ADgQy\np32H5AM/shJz6R5o8nS1JJEl2C6j3XqhqmGRvl9B+yjCJV6ZSB5MSecEquiwO5ukHHeIC5fYtGae\nIwcmSfclFGsN6cwQeyhD7VW4Mcfw3GLV93LP23Zw1Ze/nz2v+TAAV/3mLAeuUOz+/obWvuX/+3F2\nv7F5Pxf/3Q/Te1xyx8/v4LpfmaW6RDLd9Z1hiTIsLHWQlU9f8/UVZBaZGXTip2v1soKyUnTSxkF0\ndMVUOqSwKnAkVDMJS5paRSyWOXuhO7SyPnLQwvreDhdUqUMJeWg1NjT3DSvNsUGHqlKUEeicqbAd\nhZ6XJIutL8IJqoHm2l+d/Wc3BJ5yjiHaaiKh0dqpwe1PV2589bN1Rqevbfu97Wy94TGKAGzFiU1p\nYPN1dUlHlyuiq+veM1t/vlv+8GZe8S23s3thLdfMPEFuNZd+ZJb737KDi972ZfSXJhm6BCksTjvk\nWUOuOGcfEscTC1Ms9DMG8xn6UIIqIF/ImNw4RCiHXhIUa2BybMgh3SFZBKcE2eTxS5dt/cm7f2oH\nW//mzaNPWKY/MNbLmbskACbOMzg3jR+rmZp7ivV0jwWH2dc4CeWUo5g2VOMlqa6Y7g3qRZ5IQ09H\nx+W7dlNpwqQqhQ4cC8+z8BFGLBEPjWY8yb2uqZW1UwDf0j00mn6ZcKzfZdBPccdS1KJE5z6FSBZo\neiNCkHb9u7cj10ByIMEpuOr/9ZvnJr54QtfIcjtlHcP/tmfPxDkD9hxY69H7XNVtzi7OKAh9A3uW\npVzDb1mob08+JPmHR65H5fD/iwvAwv3BaTz4/hez1u6kcIpxXSAMZHf1ePiftjBcF0BKCeLsnLVX\nH2Qq8zv1E/OT6E7J8HKLCBWENefNkZ+dMJjr0hFw+S2z3Ld9pfPf9/Barv2zWe74ef/Y2PjKCdxt\ny5KKay5+FPCdosb6GZW37z0H+eUpdv/UDviO47/+uvfM8tgWizs750UXPkpHlfQrr3E5nni8Y1zn\nI+pPsVxaWB3IZBUdVTGTDhgYT8Syod+kH6oze+cnmT80hj6c0Nsn6HSa/iGnQA9YMU0cvCNNF0AV\ngjv/nX/8n0OjPyUdw9ezJflMtAe/+ePP6HU3nbenvh0X4KomvPRZ3PVs4vUblkvDXX7LLIf3Zhwt\n/EVuOs4zXTOPQRw5OtZIovcVpicQ2eog5J7XfJirdjfKT51kdEKWXDYwq6hUPb1cDWBhkPHluQv9\nZ/OSp/wYgNHIdNvv30x3yzwXzBxlPLSox8nY4KOJpSqtiVZQha5QH1nk1k/UrkwjI3dwaYwjByfp\nPJIyvhQ+01Agsjq0CbjmvhXn9+93+Cliz6w6ucJOGWm3/22nnpXuBC8P63fDnsx9uVK3Spkjz/OY\nxYW/9CV2vukWdF/Q3S8Ze1iTHNGIAxm9BzMm7sno7FVUhS9hbvnsjz/tKQzL0T1OGMH179pe/62k\nq3N+4RyDvePP2GE+9H0f5O4Xf4pdf7OZnYfXs1hm9WNVqDasy5aY1DkTOmcmHTCdDMhgPzvuAAAg\nAElEQVRUFeZjNJhCv0q5bff5lP9jHXte8VGfJkjvOG3ihWz8SRO0A45/XrJ0z6QtYlU7JSMG8BoA\nOOowVOZQjhMAxtCS7TwhqhwLTVYioOgWTM+RHhOev2B9vvhCGSLzbNnf33kpXPAFrn/Xdo5+Q7lq\nc9OW//bjCAcPz6/l9t6F/OWeS0mOSmwC/+aJF/uuzS9uprtfoBI8Wepn/GtlJUgW/fTsl2+6lv1v\nuwlR+d35+ndtZ7iQoHJwqeXK989yz9tGI5B2V2xbhQn89VJrUgKHD03U7MPbfunZuQ6+1uLKbP30\nzVx45ZOs7SzVLNDS+cWfSMNC1aG0Cq0slVU8eHg9S49OMvWgZPe/3+H5xISuUxGUrcL1H6khTxcN\ntHG5f2437inrGDb+xy/y8HtegtNgUkeyIKnGLTIX2MxhNSQLvnmiGrPhAxT1rINq3OKk9N2auS+D\nvtDsko9tRw1Dg9O4F0qZ3CUox31JLlnwF5/VrGg93/KHNzO5W8Krob8JOhMrgcBLfns73cvnGT4y\nwWOPrOPje9Z7avqSQOXwksmHeOv6J/g/b/+puqTWtmSeGj33qWOTPt72zlvY8hnvdMRQUlz71OWl\nFUI9A4EwrfuWfPTxXNmuN3yQiz65naOXHeHitQeZz8drfkVH+SE2hdHMlx0ePzaF+/I0u9+2SnoW\nJBasCs6hFizyv9Xg+bmOT1nHAJDOB1pqKkjnQQ0lTnqiG9Z3X6bHACSm6xur9MAz20zP06ddZhFG\nIMrn7qI4Ve3cFz/BoUWvsrKmk9MvEo6d1cMdS8HC8BzL2Lo+U6EbtW0/8+3/nZ+YfgwAs22AHWqu\ne+/sSEXIdOCs8T5f+N7fq++79ldnfSfsGHzu0DX8hbyC86/Yu2Ic3fXv2g5PMzc4OSa562d2cOlH\nZlGbnpqsU+SjqtbJ4ugOmh1Q9fk9V9qeUbbuit+aZdO3PVYPODJOMqgSnjg2Rb5zkgd/6Bb4F6sf\nIzoA04FKO5J5LzPgN0L3lNW6aM+Gdscp7RgWt5WIzKASy3AQTtWB7Pj68nCoGQwVarwC4bCVpKyk\nz2WnhxR5QreXM97JOXjPhq/vm3me7eLf3U65JiBw2rGgu17cwwjoGsglnScSllS3FhtpmwoNSte/\nazvim5ewSxmL5/knxjLm2EVz7J8b7a2Ii+6S39nON808yG988eV81zV3c+gHF7jsg7PYxFGcXSG/\ncQgCLvrkdrIjgnTerQjxVeGdebIEiwfGRh5bDlAvfwuyHL0nWfCLrVw5rPtZt3t/cgdX/NYs4oZj\nTPcGWCc4sDgOX5niwdWihJYJ651DsgDCiqYDlacu4T/bdkqDj+kBjTyYYg5l6MMJ+lBCujeBAxnF\n0Q7yYIqe09gjKW5fh+SRjN6DKeMPpNh7J0ke7FLcN8WhOzfw0BtfWPiC3LKIXFK+b6AUvgW4COFW\nALJs6pCpIV+22wL8+UEvuXHbO2+hnOugj2iyOb9Qb//FHVz1m7OcPbGAumv1lSYLwX/821eijib8\nzR+9iCsnnmTrt+7x4JgR2KUE9VgHveRxoMFZgivfPzpfonMwiJHkvsuzPc5uedVKtrogAcqJZfJ+\nGeRrLPf+m+eHBXvvT+7gnht/j733b+DhvWsZ3De9AiNZzVTuKyqyCvoqstEneT7tlI4YLvzFL7Hr\nN27EZRYjPZtOLSpc5ttZbeL59y7x+XOpJDbFs8GEwyooNlR0Hl954Z/JtvUPbubfveJzmCvjyDnJ\nGr2IcYLSac5O5lA4ijCIdvs//sDI6zf/8VuZeEjDz8DmP3or2UHN/W8ZvahnXraXPQfWsjNwHzb/\n0VvJDinKLUPU4x123rxyEbzkiSvQV85z/42/t+Ix8KSciz65HbtpiNif8VDYIW0CohIsnXv8/Frf\nOw7/svl76TzD1v96sydPbaiYvvEIY9qw7fdvZmKXfFpi3PHo2Cdru97wwTp9ufwDs7gEuvt9dLTa\ntG+rfYSQr/HEL1kBjhWdps+1ndKOAcB2HSLzslYkFpvKpt03juRKfR3cdQ3VuMD0lG+jzSwiM2RH\nXliO4Xu+5Yu8avwBLxyCDws7AobhY+sIL9+tgBLIvtaFb21e/3/ccDvvf81XAfjOG+7i87deveJ/\nXLlmL/u/ejb8K/+3KCXFtG9km5tIVzwf4EvX/Dc+MHceN97xeg7fs35FlShZdORrwC4laCO44rdm\n0X3Iz/Zdkk4JLt8xy32zKxdJmwR15ftnUTMOM26pADFQbHjN/Tz0vhtJlsSqcXKb5Xn1b8xSnGvZ\n9qmbSeck2ZGGx3D9u7cft6px/bu345QgnwZElMeH4VqfklXnO8ppgyg11/z6LHe+cwdX/8YssvQR\njemC1F6tzGpfoZAlNaB+IvZsaYOe8o7hop/4Mjs/cgOdvZpqzJEsCkwqcOEDVIVgMCbIpj1qLgS4\nCd8Oq7VhaaHz1OScM9BeNnkvuQODoB9KZ0cQGARDl6CwlE7TESVztreiyeyV040U2Pp0wbcqL7Nd\n8+vq3orr370drrB0Ny5y/tQcR5+cOu65vf+zr+LnXvdZvrhmG5d90C/8u3/a/38nBHrJU5Ij089m\nkB0RJEFgcrDx+DH1xR/fjl4SuI7vrRFHFbofcI/vhmt+7SZU7rjtnTv8IhaiLo0Wa/wYvrt/egey\n9FFnMeXqa+76d23HaUE1zggIe82vzyJM0MXsNWG/06GMbj3D1HQFug9O+fcRdW2E8T/SALm/pmXl\n37NNvFP4ely/wq2GPD3PNinWuBeLVaUdAHjw4y8i25PV2o8xvEKCXoLFCxycO8CUElcoVK9CJxVK\nWe59yeph65lsV73P70J+EfjFe9mHZuvP796f3MGV75/FKugcXol0v+Wxb+Qj5/1PwMvNy7snRnbk\nG257A4d3ralncWz7/ZvZdt1jvPbsO/jq/Gb+5rbL2fPaD684r+t+ZRYn/IX+Aw9/Mw8c2cDw79ah\n+yBsAz5u+9TNnv67KOomIZv6sjXS33/vT65cLBd/Yrsv9xm/YQjTsAb1MKhZh+DRaerxBE543kuY\n6FZbBAKddp6yHVXZUxcUxRohXSedd6DRiSrnKec0imPx9cIKREUzVKnVvi6Mlx2IHJ44GlAYPC6U\neEEWYf15xecJC1t/tq3BvNL+yn3mVufcceoho3bKRwwAF73pVnZ96lrsocyLY+ReYr57QHD7L/jc\nbbBGgxUkhzTlWrB56uXJX4BmU78AynFRVwLKzXmtaLT10zdjt5bITkX61e6K1//1V66E4Bi0tvS3\n5mz+/I+x5zs/yqUfmeV7Xvt3fPLhl9bPj1OnEhGGsYQ0wHT8gnEhb3abLaZr653542s28PH0Jp64\nYyNOOrb9/s1gBWa6AuNHD5aTrlkE+N/ludWKcwbo7hPMX1NAGWdE0CzoqOYUF3MlICwsLMu6ReGi\nf/NlHnz/i31KGmc2WH/M2GMSIyknXPNYEjQd4/GEC1GEV8z2o+UctFUFbXASVtTv00dM8baI4yP8\n8ZJ43kEB2q2eHv1z7LRwDABmKYGuRXYrEFAOFaJKuOI/z1KNBzWdbkU5IxAdPyn7mejpn+627VM3\nYy/2TkCmXvLOlV4t2DkvQy7We2GSTqfkjnd8bOT11713lt1troKRJN2Scr93IGPXH+LRwZp6N4Sw\nYwnHWr1IJiuEEVRjjnLaNjtpeLooJYOzLVf/xiz9jY6f/a4/4RPmRg58bX1D560XHH4hyPB34p5S\nCv3Ot+9g29++GatDFSasHxTg/OKtF5s6znGUB2Z2fuSGEOdTj5V3gnooDfEtRcXnOCEtPsfR/G09\ne3Okpmqbz4TU4XQ4t7K1wqO0v/MycbXajBO+Zz6U5oUF+wyGyjyVndLlyrbJBYU6phD7MsQTHZKD\nCS6oDQsLycEEsa+DzCUsJN7L9lbfWc5ksxsKz1eoBHagwwIJU49Kic0VZlFjFhPKcmVHTuQqgEfm\nh/O+NLz79R/iok9u542b/4m/++rlXlYtWlA/kljGdO4XkAs7q/AL2qUBQMwsZtyycEnJ+KOCWz78\nGrZOHWbDZQexmcNMmHrwi0ssTFZe07Pbur9QbP3rZW3WwR76lo952bW4KKXzi0g7nG6P1XN++EsW\nFJp6FaJXocZKZK9CdirPl+lWSG29YIt0/ncQbxHaet1HZT0AHlMG6Xw0EhY1oUQ7slHFBe4EFBKR\nS8RQeS1HS+MAK9FEO8udQzxUx3Dx7AnpLZ+wnTaOYdtP/yO247Cp/zEdR9V1lFOWcsZSjVvMmMGG\ni0hNlLjF0yYgetbM9TViUSMGCrmoUIsK0Vf+vkL6HSlcVEV/ZbWmDmWBfL1BZobeo/5z3HjtPm6b\nPz9cvML3swCTDynu3XUOjxTr+dyuK+nul/7KiotTW0isdyZRMt0Jjl1RISzc+dnL+bdb/4oNWw4H\n7MjVIb+f7uyaXVj64+nUcNVvzi4/fcAPqq0XJNTDb0bSBeW8RFviBVniDh5VnqPis6lkM18y/iwL\nRJ0VXPzmW/1mpKx/38udgYxcZ9GE/nGXD/1ATja4BEYgKj+MR7SPo4LTi58LBCrws2unjWMAX350\nqcNmftaB6wRH0DH+gm7tEkK4VQGwM96Ev3hdYrGZz+ld5qeFu8QvStGryKaHMFwZMbQrEMm6ATox\nNSnoOzZ+jS/u3ArrctRYyeIFvkJwxzt2IAaKNXqRwUIGzg+rJQ0OQQZF5XhRh8UtOob5iw3JouPt\n//P1vOOiP2d607yfTRpCcZHYZmcNObXUXjh1cM1KKjeAvGvCL3bJyOtEZhp6fCWwucIOFTZXMK9x\nSxq7lOD6GpcrXClxYdakHao6LXOFB7mdkfVuvvMjN0CYFkUlm5UlXP0Z+JNrhfzR0WTGpxGtSEM4\nn1r4Mm2DNazm4J4LO60cw8Vv+SqiEMiBRPYlyVGNGCrkMY1aUIhSIgqJWNLI3StBtReC6YkSpkrk\nREkyk5OsGZLODOlu6KMmSrrTQ3rjORumFutIoG3tZrNepyD7imc2XvrR7dyzsMmnJuHadGEQzTX/\nYZap845xY+cRtp1/gHyd9Yi/cn7ACtSDXOuwWDm/yLqGuZfkTN2e8dqxRX758j9l4tx5/zzpn9Pe\nqcVA4Y6lFAd7mIXV+Sn3ze6o55r6N4VfUMcSRC480BdCdyrpGaERqIxmhBe0KUKIP1CIJR+JiYHy\n0VclcLmE3DNM68hsKGHo/5aLGrGg/e0FjTqmUfOK5LBGzmtkHc0Jfz7g33cEPCvvyEQe0o2QdiAc\nopTIJcXFNz+7aQScRuBjNJf6PBUncGkApZRHhuswLLM88LqVA0vOdLv+XdtR3+q7EOOwEcK8hTht\n2VofJhvnG9PadulHZrHnebmyq943i3jp0XqmRHb1HF++f4vfFU0Y8R5l2mP0i5cuw/ruymoQ5g3G\n0Dc+N+TJovRIvSsk81u9A/nlD/wQ//bmz/Br5cvJ9/VwoTznlPOLMYTjsqIGJVczvauD2RAihFzU\npUlk5A5472akX2B64GdKml4YihzKhjalnq0pC+EBUEJkX/mpWziQpfDzHqx/MKZkshD1eQoTyEoB\ne1DOA5oqlwgLJnMw0DX92QlfmrcJdQlTGBmuc4msBOf/389Muu3p7LSKGADIDKJjPLA4WcJE6UPl\nzEDm9fVXaxF+Idj8RY58PqOaTynnOlSHOlRHOpiFhOGhLlVfkx/tkA8S9u6bWSGrX05Yv3sC/XMt\nSwu+pnbdr8xy1Ya9qKN+52MhwS1pVL9xDCbkwMZK3y4c9DEAxED6SG8o/Q5YiGaaWNBIENY3ft35\nczt4/85v4Wev/EuYLNHzClEKrwZdxZJhEIJxvpNxNbv/x27xi7nvF5AsBHogUH3/v530i1ktKfSS\nQJT+HPSiJFmQJPP+t16UfgJ74A6ogUAv+Z9k0U9nVwOB7gvSeUl6TJLOC5J56Z/XF2RH/E96TJDO\nC/RieP28//uCX/6i51r0w2PhcT/V3R/f8ykA4QfKyFVIZ8+mnXYRw8VvvpUHP/4iL7ohnR9WEgEh\n46cnF4+NPd1hzjjb/CdvhTUlDP1CitWACF65zITc16HTCvHQys/IpY7Ok/6SkBuGtcKRfsUhhkZj\nO6F+Xwl/5cQSpPUOwQSxU1zY4SofLagQIgsLjmb3Fi5Ge/4xNRRc/Int7PzhW7j4d7fzg9/5Bf7L\nX38T2RE/UMamDdHI595+StnxrPe4ZnCOQS36HdmJkCo5gSp8hCBs2O0zPzhGD/2CjAIpSZhIVZ+/\nDviJ8ESryFmQZdBQCAQ83/PgW6bja2MkkCw6bBI+JwP7f/ImdIBLIlkJGHmOCNoMToFRromAniM7\n/SIG8E7BCAhAEA6fC4bdbtf3fvCpD3AGmuhVUErPqmsBVE46P+o+bjDSj2jPjq7ccVxia1Wias73\nO1z5n2a5dv0TPDo/UzP3XA1uhrA6iogIx3iaN4y96KyVz5mdDFwE6S9sk7larQhCKO38/9z5Q7fw\nX/72m/ihl32BwcYK03VUXah6DtP1Qj02DD2+7IOrRw0RNHWq9f4DWUiEHgQRnJioglOoCNGE160U\nvg3Hdz2G+5IFQbIg0ENIj/kWaTXw70OW1OxclYMswt9FyOwkOCXqYc029a3gNgk/OjA0VeMQ/Bfc\nfM5O+scv/IUvneRVcuJ2WjqGi3/snxqCSBXqwEGIRajj7yBnql3xn8PCqOv/rik7itZPqAgY08yj\nbJsca3gfsaKTX9PHOsHB/aH/IQJ0piEL2ZR6CnQqTU3qEaVAlLIpKiQO23GYrvW04nCeLnTORu2B\nfMZx5X+aZdcbPsiu/jre8JKvUE5Fr0T9voT11Ody8imihsdUnUboQQjpj/o0QPd9OK/7vrcimffa\nD7rvHYDKG1xADzytWvfDz1J0Ft6ZuTChXQQWZQz9/VxJL1xjul4Topjwt6uO/1sa/3nV4q+Jfzyq\nOQlHTWQSlWDzz3+pjjCeKzstHQPAxTd/BbmkUANJckwFnjrovdnTv/gMs/65FeJI6lH0kMPrYwo5\n8A5TL6g6opLzGvfw6qmWC/Xwa3+12YG/5/Jbuf3AOajDvgLgy56+7NgubdqAMQyNHgmbI0sQiV/M\nhUAN/P+ReehnSKKDcbUTG26wbP2vN/O7F3yBT3/1Bj71yh1I4xW6VN70E6ihj5Au+9DqUcM9b9tR\ng30m89FGNeYoJ70jsto7osHZluEGR/8sx+AsS77Wd3qWkw7TgeF6yKf872LKL9xyDPIZwXCDo+r5\nOZ/lBPVtk/jb5XhwAqn/if0PcQCQk8GByKD5qHyUUfdqxOgLH6099ks3ccE7n7toAU5jxwANOcwG\nDrowor7IXkim+gHoWpTIIlZq/Gei+hJZgFqUyKEvfa2WRgAw7/GFqMJ0xW/N8tDSeo4+PuWPpyL4\nBxjfrwIhp3aCofOTmHy3YEDwRQDVFjygJkuBzP1tlTc/Tntgr86nK3/7ot/dzp5XfYQ3/dObuP6b\nHqinN1e9WNsnTJA6ftRg66gkLLrg0EzP+XRI+OqBLLzjkZU/R1nEvpxmoVrVKDHHBSsDphN3dqub\nFET3fbQhSz8fQg8DHpF4J2GVX/wRi5BlaBIUPpqIvRyyCp9dKTjv3c9NJaJtp7Vj2Poz/4gIH5ga\nNujtlf9p9d3jTDXTs5TjIffuWWzXYjs+VDdjlmKdwYxZzKTBTBjS+ZXO85Lf3s7u14+WeM9+2ePc\ntXcTetGX5UQYxS5KgXCi5jwIA0URQEvh6otZhHSj6jqqcc9SNV3rm6p0s4Oa1GMNpusoZww284tP\nVgKBdw73v/ST3LV3Ez/6XX+FuXTRh+sBCDSZp1xf8+urf++yEFTjEdGjFhP2eqI05dY04B54p1FO\nOP973EcZVc+nYsWkY7jOUkz645jMM3FN2gCq5aR/fr7WkU/7Y5VjjmLKUUz7c64m/O18jWWwIfw9\n6TBZxCPCd5o5TBrOY/z52fhOa8cQzaRNfioMDDZarvm1F4ZzuOR3wuwEGXL2zDR04FhBiN2DFkjt\nqkIj59/0+MjfV71vlu8462sM9455bEAzclyg4Y046s7NWJWAsOtXDXIvSlFzEmL+HHER3yYuUIvK\n79Ixqhj6maSXf2CW+276L3zywW/g+y67lfR/tffuUXZf1Z3nZ5/ze9xH3apSSSVZT0uy5ScGzBBI\nyGORZBJISIf06m6G9GTIE4LETEjniYPTq0PTCQ0JpDuJTJMAnQQIQ5JJh0mm00NCerp7hYABYxsc\nY8tv2XqUVO/7+D3OOfPHPvdW2ZKxjCWrZN+9Vi3de3Xr1qm69+zfPnt/H/OGdHndyLBr6F129k1z\nz4/cMuqNBBsrCLtGnfZ5wMckWre1D1I3dbNXU55qSnsidVu/1qiOOh3xaRhVIz6LGzrXxFBNBOqO\np+7o69TtQD3hVag47j7FOqzRwocJIFiopj3ljI/mPIH9v3BhjxDDuOQTw/5f/Ay+qX+4EU/ew/K1\n9ZPOuJ9L4ZoBUxhsxApQGsULuLgpw1rpLLV50ubsP9n+xcfdL79hlSpYGieszvHL+FXFI0vPkHTX\nPj5DT8zarzmRmzLiD8q40Xt6bDCVxP/XZDGs+Ah67BhqKejYMGBKGY3wvvyNH+U/H70OblgZTQqG\nTUTzNcZ3Q46NgqvWsBMQRVOEEXBq2PswtaJskxWjCapeAzqlK0LalRGFQacMCrITH3+nUpMbcVJk\nCqOvXa1NjUy9Noo09dqxAzRRJisG0zf6dysvLHZhfVzyiQHgqoOfU4ht5Kn7pkcKQ+/ymutueW4n\nB9dU/ohr6BECgx4nMm0S+pZTK/qGg05Fc+Ls4K/1novX/c4hfvL6/8EHb/0W+jtqqhmHb3lcR48j\ndVst4uu27qwv3XSYNKujgasfdeRd01NPOiW9tT3ljKPueHwSRrTsespRTznKLY5qk6PYVlNOe8pp\nT3+7o9hRMbispr/dsf9PfpKrfv8gn7vxj/nOvffwhh/+L/S3e/q7HIPtjnJLzf4/fvNZf7/7/9n7\ntSKY1Ku/a3nqZsBUuslZB5xyjYCfcNRTNb7lqTa50Wg1ZFoBFJs9xYwflfr1pKPc7Cg36dpd21O3\ntFKQECuLhh/hL5Kujka91eRO0ETgE0ZJQMecmoBsX9j3S89OtQBPIzGIiBWR20TkL+L9GRH5lIjc\nG//dtO65N4nIERH5qoi86kIs/IlhZgpCWz/ACIS26gL0d9Rc+dGDT/0Cl2Bc87uHIPcjsg2pX0MW\nxmphhPnvKgX7iY5NAC/+tUN8+ME1A0d5yRKnqgnMUqIjzsQr9bnhkGzdv621S3TRT/FBKJw6Rbs8\nQtebThNW7E3gwU14QrtWUpcJWjUM1kbO+DhyHTaS44YMnRq/Z8AVn3gzv73zsyzVLWaunFdodRyd\nhnbNC3/9SS4GudOpSlNt9EgC1aaaqqO9mZDp5tU16KgVYq8kNhSTlVgBDb0ks7X1m96QDanHqKRr\nSJcM+WlD47glXdaKwfZlbdIQR5umjl6eBuq2Vh4+I+I3AnveceEbjuvj6VQMbwX+Yd39twF/E0I4\nAPxNvI+IXAe8HrgeeDVwWESexIrz/MUV//xLqtwzjHjWNQODb3r2/+lT+x9ealHsLrHNOuoJOGyz\nJrQcydY+03sXSWYHSMvBRI1MlZhmTV2e+VYsXV+z+Jlto/tvuOpz/Pn9N+iGHrL9TFDSkF/rGazX\nBPCFpRtSelU60jwERpTg0VQjciwkCSMNA3GiFU6mjEvf9ErQkoAUFjKPNFXVya0m+Nxz/W8d4p1b\n7+QN+z7L5gOnGYqpAKxce3b11OlbcyTzSkSqVFRYCqPrtUGJeKVCr23X6NdKPKIRcRgxEYiX0VFJ\nXIRc9wQziMjOSnBNbR6WU35k4Fu3A/W0o570a7oV0eB3WD24pletkYb2Ly7GpO2cEoOI7AJeA6w3\nL3wt8Pvx9u8DP7Du8Y+HEIoQwgPAEeBl52e5T7HOXD9YEpGRIfVaSscP976/fCP7/+wnVbz0ORA2\nd/jaIFbVsn1pSZsV3htWezneq2ITEkizmkar5L7v/PAZr/Pmb/7bEeLx+t8+xLFyiuLBDjSiTkFp\nCL2YUGqlGodeMkKavuQdBzErCR86+W2cnJ+MjTg9z0usBPSqq0cckoDMp9C3Si8W9OqcBNVfiONQ\nvCguo2cJhY10bcVQ9PZWXP2hg/ze776GvVPzvPJFd4/ed9zZz+K33XyYEOLaIqgIA76tZKuQBmxf\ndILTisecSTfa6CHRI5Gb0CPS8HlDD4iqExNHYFTtiBN9fjvgE+2X2BWL6al7mmupfoM2LoMqPQF1\nR48jvu248me+tpbjhYhzrRh+E/gFRqBYALaFEI7F28eB4SVnJ/DIuucdjY89LkTkTSLyeRH5fMX5\nIT0d+JEvKE13qIAzpPl6CLlDcseBt3yWxW8quOb3Lv3k4Ao70g2QviXUQtVP8aWlWmzgllLCXI4s\nZJQnW/SPds76OpuS7uj24No+f/7FG0mXDdljGelcQuN4QvOxhMajKc0HU9J5SzpvkVK48o/ezOoe\nQODTd11DvZhRT0S4dIDQiICoKEZCrnJvQ8BTsIHQ0hJ/JGsWR6OmH5NFojBqKoFC6c6mZ6kmPbf/\nwmHu/rOrKVxCsmWgFUAt3PirZz9O5I9kyhCN/ZjQcJB5gugxop52Wp1kHjNRaVVjY38g9/GY49d0\nECzUk9qvwITRwCLYoNiHIVMyTs1G7EwbpxsRfDViXsYq1wz0c3vVm259ph+TryueMjGIyPcBJ0MI\nX3iy5wSVmn5a9U4I4QMhhJeGEF6acv7Qile98dYoxqG/ml21JCuqYhR6Cff+9ssJ3QS5dvVJFYAu\nhbj2/YeU7dg3pKcT8pMWu5BiFtW9y65YsnmrY70lQ+OEpTF39rf7r09fu/a6u4+TnkpwuV7d0lUh\nXSHChhWgE4abOlUpNm3ArTEziZMh6mHrPYxGlAhIuyZYnaYAo7HqsMdgBnqOVxE01aoAACAASURB\nVAXluIGqqEcQ1tiR4oQrP3qQO372MHf839fyxhv+B6GjR47uzrN/HO/+iVtGWomYoLcrowkgoA3I\ngSJI/TohG4nJyHajKlZh1sa2Noyo3MGuwaKHYeJkxsbpzJBANhznDsWNbaGTC1uob2d+6oKfwJ80\nzoVd+c3A94vI96LatpMi8hHghIhsDyEcE5HtwMn4/EeB3eu+f1d87FkLW4iqamWqYjRMf1rORuRc\nZWmeBehzqUR1dZ8QwJhAXRuqKP9lMoeYgKsMrpsgQa886dY+cveZdnL7/uonSE6msP9v2P/Hb+Zl\nL70Hv2eAW0mpSyE0PI1NA1xt9GhiPHUv1d5A5qEwyNZCWZ19qxT4xK1VazEZDMMsJ/oeCPiJOpIo\n0Kv3sGoQcG2vR5mBbsJk1VDNuJFoi/TtqKm57z+9ickCPnbLq3jfT/8BN9/5WgYPnL06AmgcTxhs\nr1RZCaCwo/5Espjoz47rHgmmOG2aSkRu2lWzJr845KVEDQdx4GJjMlhFdKocoUK47UCwC2u+lMZF\nwpaDuh1RmQ3Y86+e3Ybj+njKiiGEcFMIYVcIYS/aVPx0COGHgE8CPxyf9sPAn8fbnwReLyK5iOwD\nDgDnX2Lma8S+t31Gz63rrkjBBkLDYdoVtqPNqZA89Vz4fDn7nO8Y2oEEL8owHQKMSqt6hZVBJmot\nlQWqfnqGzRzA6278vLovA81dK9y/uBm3lOo5uBKkNBQnW6rr0Euo5xp69S4NrKgCEcdzZbo2nQql\nRkyA9PTKS6TII7oxkuXoJjZUI4pCKMlCog2/vpDPWbLHMqQW7ECl0qTW87n0bJwCWExflbtW93hu\ne/thfuV9b+C9L/wEruO49gNnVoTfd8/3UB3oa7KZy6Bv17D1SaDuqGboSKJ9CM5yOu0xhYxg4UOj\nmHTFMKReD0F22XLEecTnpauGfM5EdG7ANYdkqUBvp6O3PTCYVXRk1Q4XNSnAM8MxvAv4LhG5F/if\n431CCF8BPgHcBfwV8JYQwrNsyQkH3vr32uV2a4CStFXhK4vrJYQg3PZLT+3w80Tz1I0SvrD41RRf\nmVGzrdEptOnqweROdReSODsvznyrr/7wQf7x1NoJcd/meeYendYzd9wYwWijzgyE9HSim7tTgY88\njCJCo1NPciollAaTOZqb+moROFGTThfYyNz0e/o0rlskmSqViDVdIhNqCVDP1Ip96GizLghkC2Z0\nVrddQ37K0DhpSfrgM/+4s/kVH38zt918mF987xt53TfcSrFvsPa7fuggvzJ3He+8/D+x77JTI+zH\nMNmYgcEua4NTehbbNYR2/NjGESsRnzE8OtRNbVZChF1PesV7NKDY4pQD0RuCy6DuBKqOV6h1BFv5\nDNJFQzDavJQAfgPwAC8JJ6pnEve8/2V6fhwYtX8fbiSBB77/0hWLvfK//ghuJUXqKPU1FBN1wnpD\nFckcwRmyx9KRpdyLf+0Q2avneMfVn+Tl+QL31wn/y5+8FbunS32shW8qICp4QUxQ0dOh7oWgCsvN\nuNFLqw3BWJZLEggBnZT0LelkiZiAtZ6qTBDjqcsEk3j1CgkgmcrFSeq1+hH0fYrHhrRdUXXj8aWK\nv28SsBMVbjXVflJ0dSLA1D3C4stL3vWKP2HFNfnxqePc8N5DTHznCWZbXY58aj/ZMiy9qNTKZmB0\nGpAGzNLaUSdZ1aRUTwR8240a2lJEzIXRhOCTQNKL9O8QSWGixwOf6tEWoJzWRJb0okJT3HpV9EWR\nWtWcLlQ855yonlGkfm18FS3gbVchrhciXrXjxRe8yrjhNw8hL+7p5h0wAuMECWv6ig2HdJORKUq2\nvPb7fummw9zw3kO8076Gj133B3yl2AGAO9oi5AHTt/j4OsGGNZVlZ5SLAWuNuThmlES1G2UhGal1\nm0qoskTP8InHNBzhdFNn/C2PXdUrJcZq+R6UFo5ByU4txRzUfQstt3Y0bOjV2/WiCHBcp0+1Ybp0\ndcCcSvlCdx//ZPpWbnjfW0f+mIAeboErPv2jClKqUmRgCcFHlal4bOnrBcQMwLfR5BiTxhCmPYR+\nAyNsAwGM1/vZMvozUsgXDC4Po9f1w5NuovDwEdFrA8RzAhL9teKqH/+8bpQkjM6zruVJehcmMaxP\nCheqP9Hd47SP0E/iB9cghWBKgzSVRJU2K/VcLBXncOdPP/7YdOfPHObEHdt45affyrs+8jo6Dwpm\nR390JpYiaq4FbTKaVj0SxQGQgSWZT1ULY2AItZAsJNqXWAeCMgup6kIUKtM+nDZI5F7YQeQTCFrG\nB9ZESUo9BqbL2kOxfaNril0/6anMvIq2BgVFBYUSI/CfH7qWdx/9HmVQniX0KDY0h9Sk6toKtDLl\nGpoyiceFZNVqskyUaEXUUTC1TiOGSSEkegyq1zUxJUDV1sQ1/L6QRs9M9P4VP/vs4xWeLJ77FQMq\n6nLkD2/EGz1Dtqf7DHpP3rU+X3GhKofGZV2cMzifYvpWG6sTDmrBJh4HNBsVrm1JMkeanr3F43cM\nuP87Pgzfrfev/cAhqq01PtdNGXL98AcnBGeRqQp6ujlsL5b0XjdvSI1282UNDBRSj121qkwUUBOc\nUkvtuqGKyj7VRqr0rTIdo6qT7eskQnwkinVVtj7pC2GQkvSFYrOLEGLdzK0HUwazHtsXqm0VK3MT\nfOF4Bztz9ivxA9//AfZ/6sfAWUIWkL4BC8mSJouh+riphOx4QrDQfijB5YxGlYMdNfak1XVM1dio\naTE0m+3trpXgFlmlVSdgYjXiGtpTSJeEXb92cZuNT4znfMUwjCv/t9uQ1JM0aozx2km+BOOG9x7C\nWo93hnRmgJ+s9UOd6FU9y2oaW/pMNQf4QUKW1eyaXjzra+WNNejw1R86SDnptR8TlYPMOj1NKqMe\nmKUhO5msUa7j1ZDcPU7uTZxApGvbfhzv1SoSU7cC9ZSiDeuOo95SaUk+7PjnHrepptpaUW6r8Zsr\n1XXoOKpph2sqUSlknnxBu/9SGnq7a/xkref6hQQqTVq2L7zoPWfHrMjpDNs35Cc1aaULRoVhExV7\ndS2lT7eO6dq//FOHSfrQmFdcRzan7NP2UaHxaDpyYjeVEqWy+TjdCXrfdxzBKJ27nq5xedhwSQGe\nJxXDKATqfsJqbeicfa9c1DiX/oTLYfBoh3RJz+fNnhrIyin9YLu0QTUZeGQ5BycM7pniSDIJ15z5\nWnm6pvFYbnERlGQIWcAMFPfv20CA7LRe+UNkRko0dxUPOCGZy7QJtxDNZI1gTxvKaU+92SlqMfd0\nd1k94rRrys2C6VQ0WiXZrKOoEgar+QiGbfomluZ6JR/Jm3V02kJhKTbpBEU2lchcrma+TslOpQzJ\nTEJ3x9mb7Pe9/v1c+bE3YwqjwtcmekuYgGsYTGGoJx3LB/Tvfe1/OESx25HNW+yAkaGyz/QYkXSV\nnu1ynVrUk458LolENzArlmxJfy+XC/5JjjkXO55XieHAG1Rz4J4P/08bslY6l6PH4DK9MleTuiFc\nU1F8RlSlKERrd7Oc4Ds17rKa5t2NM17nusOHKK/rje7byRLXSzC59i+8WPxkQLoqnFK3w4gGPFSK\nCibAENUXxVYHs9qhHxJ/8tMWU1rEq44jXvDiYTnV40Zt6J1s08t13JlWQ11EPY8bB+VltQKpYl8i\n9JX4ZCNewlRCGDQULxCTUbElsjOjEGvS19/5rkNnjqizRaM8hzxgCyFdsNQTOur2LY/t2hEKs5jx\n5KftiBQltTIvy5YfydR50GSRB0xpcI2AqaLg7KqMRGDzRWH7b2y8agE25Pa48HHVj34B27/4Y9qv\nJxrHLflpNUTJT1ryU2ZUquanDOmiCos0jxvyx1LsiZyv/B9nbobBNqejxhhuKaP5YKaO4SczkoUE\nBgqnTnpCfkpf854fuYXOA/qzs9OWdMnQPCHki1o+p0tC0kWv9LGROdQzHGo6EhiRhaSXqGDtqZR0\nRZt4ttSjyFBJSRKdQiQ9lccPRl8rXTGqo9hV56sw1DZAG5K2q1qYPoNiW01/f3nWv+ldhw6r1mJU\njoI4hmw5FRjuD7kMyqCs2mE0dgTFKNion1C1o4zbhB9VOD7XKquYCXR3rsm5bdSkAM+zimF9fPFf\nnilvttHjmt89xFCAKZ/Xq83Rm15BuqobKulph9xlkK7q7fJJKCxmpsRFN/Ab/80h2hPw5beuJZAb\n33kInyUj85SRiQx6Wz0XdEPaQaBuC1UnIpyjwCqoIcwg+kqotkN4HEWaUicfrulx+dDzQfBbC/JW\nxWCuCU61DnwStFnZcpSpkJ3WxGYq3bT1hMc7wXUc6Xwy4i9UDY/kHpM9Oc6umtQxogSlRmuSii5V\nteAmvSaAgUCmo4ahyjMBsgWh6kReB/o7JatQztaYrtWpRaFHD9uXi8KYfDrxvE0Mw1HiRkU2ni3K\nGUe2YKhbgVLgng+9FLPoH+dctPftn+He33k5xRbAaIVx1pBA56sp/CMoph//Xze87xC01iTN63iF\ntANRmPFmoq4hFJsDYVcgtB224ZSfUWnZ75vqrG2P5yo8kgJTlaIwBdJOCR2olnJFHl7Ww9UWv5gR\n+gmDIdU6aDXg204zT+IxK6keaRqBaipWIF4IiWCXE6ottQKxUofvJSMQ1rUfOMQ/vOnMCmriYcPK\nlTUYq9Dotv68sgV2OSHpCnUzUG5xJMuWZFXUearSasGnMWkMITPtgDNg+pZs2SDRs1JWuODS7+cj\nnpdHiUsxXvSeQ4Smo5rQs7ebVLxCmKnwTa3bvYUH3vVNNB6zJKv61uYLZ3+94IQ7fi46NaVqtDLU\nqShmdGOA9gVcKxBSNVhx16zir12l3ORHgCI7MNjFhPatzejKLFFmTt2q647Thl6sFkxfSUv1qQZ1\nkWAmqhERKSxkqpvYiISp1GMXE+xAyOYU0ETf4idrbCFM71kk2TyIr6tHH9d22HalcPAQmbaZx9dC\nMXP2quGOnz2MnSpVfyHXMWg2VUAax6p2rTrwOwYUmz3VpI4yR7gLp5OMYMF3anwaSJeVG5F2FeF4\nKSQFGCeGDUuSemLc/vOHad2XkS+oaWrz4ZT2vRn3f/cH6RyxHPlfb+HeN9xC+6hw11sO05wT0iVz\nhnEtKKdgPePRW2X+Le9XMZtqk6PY6vC5ovXy0wbbE4otgeTOCcJ9bRrHLa3HDBMPCZ0H4MgPvp9g\nYfouw9Q9wsQRtYw3ywmNYwnpUpxWFJZkRbUWTCmwnOB7CTJd4o61SGb7qoqUeCVkDSxuqkYu76oM\n/lQNSSA9lVJuciwcn6QaJArCKoRyS61j0tM5oTLKF5ka+sMJWDXPPVtM/H0LPGSdkpB5qn6K9Cz1\npKOeUT6H6RvCUoZre6rNNeUmTzWlcvK93TW93TX1hCd7LCVd1kaoy2H1cs/+X7w0kgKMEwOgyeFS\nSBDGqUei7SuE9ss/pZv+9p8/zPW/dYirP3SQ7s7Ajb96iHKSx8vqrAvfcfiuniJftePFuFagu7dW\n9aGRM7WO31wjTiMqSFaEdDV6N/ZUp/C2tx/G5cIN7zuE7UMQoeoIroGSqLYNGOyqqLYqFiE9lZD0\nheaJOIpMo719AD/h8F6PGb6XKFejEqgN3lmVsMu0qVfNVupu3nBQWELf4rYXSK4VhtQClSFNlSsy\nlKULEnC7Bmf9u3zpbYchDVRzTe1fdJU3IZFirpWAQ4rIrhwYTXJlhEg7RZ+aqCgdLEqFr+DKf7Gx\newpPjOdtj+FSi+t+5xD1JvUrSFe1e37tfziEqbRErfbUEMVSuthRmX+2kMyRHlUK3/3v/iZ86pFS\nJdgxQrnJkc1ZTKnTi2RVodcuuk2HaLwaEl0X7WjikupZu27qKM/0DTKJHiEiWhK0X1BsjlOJpiP0\nLOZkjhEIXUsYumqbQNikRCc/n0FLjxfpREm1mmEaisMIAZ1aZI5qKVe05KSa/Pbm2qrG1LWkK9qY\nrZuO63/70Mj09nF/m74hn7ckPQhG12tqPeK4VhhZ89muIV0xJF09QlSTkET5O1NrfybpKZhr782X\nTqUwjHFiWBcbuSE5ZA5KYGSJhkBvf0nj4Qw5bbGDREvXZqB11DyeOLQuts4u8/ff9Sf6ul7n+K7B\nSHfQFAZTQW+Xnsf7u2rIHfnDOb11CQjRq322YCi2qtYFp/Iofw5m1eAGTUxjjZ7sU7WT842AXTXY\nExkEFAi0pU+xnGObjnAiR1YjNDk2IEk9YgLVakZ2IiFbTOnu9jBRk5xOqbyQTJbUJiWdU1HacsbB\nwJAtGgbba/0bdhOKF/TO9qchn7cUWxxFJN4lfZV0N7XqLjSPZwy2qHBr3QrUDUbeFuV0IFsSBrMq\nod9+xHDgrZdWpTCM8VHiLLERjxWDrdHazcBgVgVK62YgO5GqhVlDZ+PpsqFxwoywA2eLfpmObleT\njubJ6CtZQ7akuIh0GZrHLNmCbk47r99z1UHV3NEmo1kDIvUM5lhjRIoauisNyUhDJeSRr8KKoZ6u\nI/xYkZDu/gmy4ynGKG7B9uKmrIR8Ph49vGBWLT6F7uWOxklDdjwdjSY7/71JNpeos1QjYAYGcs9g\nR6Vajo0oxPIkgrH/8KbDyr4thJB7qpmaalq9NAaX1axeoWs2tZLx6i0V5azDOGjMicKkF5S9u+PX\nNy5O4alinBjOYzyZd+IzjRf8+0OENFBP15hCyBZ1pj/slptqzSmqmvT0L/MsXVM/6et1u2tIyOy0\npbc90DgF2aKeh4NER+eGjhht1yjYaMLz2M+/ArOYkJ82hDQoXyONAB8P1ZROTrTppvLpzWOW5gkh\nWzIjf1FvlaHpM4+bcphTGaaOV+FTDUIaqC4vtE9R60QEgIVsRFsOaVCjme0V9faSZGbA4gs8YX9v\nJPPuc5WLMz0LSynJyYzGIxm+slzxibOb0+QLityUqOgsteorNI4npAt2lOykEpoPZUglrF5VKoBp\ntya6S6nReLYYJ4YniafbkHzBvzvE8nVn9zN4ptHdXzE0j6k31ZSbvZqR5DriG+wuqbZVo+PFEJQz\njDOs+h5bSwzlrpKwv8fKPrV+ryYCtlRlIVNF4FEzmtoYKKcDjTmF+dquQe5tU8zW+D19qm0lyYpV\nU9p4RU26QrHFs/rCguKKATbCp13HYQshP2WxSxbX8pF/AfllPZKZAaE2SKsm7O3Tv7FHGFhCw1HN\nqDOU1Nokla4lOMEdb0K7pj7VGPk6SC2kkcgU0kDjtG7y9ESKHcgZVgI/cO+r+JUf+wh+siZbsGuC\nLJUglSIrk1Wd+CSrmkDSRUMyn1JPeva97TOXzEjya8U4MTxFnGty6F5VMjRoPe8hENo1ZqJS+nGt\ncmo2OiKZZQXw+DxgCt0Q69/Z9ZDo63/rEM2T68poJ1TLGemKUTfqWCWI16t3SALSciOeQtXxDLYq\nqMqUQkihMdsnSRwm9bhtJdnOLm6zlh57fuXvVCshUsLrZvSQDNElOte+BjZQbNfkVvRSHRX247Sh\nNqrwVCqLUpo1oaN6lsGi8nBp5ImsJmTzkagVHaEkqJGtKYy6STcCddvjdw9YvEbfs6s/eJBX3/0a\n/v2+P6UKlu+4/m4lgE05QqaJsZzxyGxBNal/J/HaXDS19lQO/O+fvTDv/0WIcWI4hziX5CB9i6yT\nGz+fIYVKq/luGquCgJ+sVRtxQq/kEuK5PgGf+zOkx1/yDr0yXv7dD3Lnv1hLFBIFVX2izcBsycQN\nG23fo9zaSAB1U6njxOiUVDcDRTejHKT4bkKohcFiQynPDu79nZfrhq0N9UpKvbVELhuMqMk+WtFJ\naTCrliBgTubY07EP4oQwsJjHGtihke5ipvoNpRk5RkMcfdb6c4f2edmyoep4pTuLIhJ9GsCiKM2I\nd8pvWKSVlNxfTTIIKd86fQ8yUyiMuxbSVU28biUlXFZQT+hRyWf6epfi5OFrxXgqcY7xtSYWL/yN\nQySzgeyq5Qvys0PTkTRrbOIoTjdpbOkzmG8Qmg67kuJ3DVSNKA1Rus4qiSfGvr98I5++6T18pbR8\n9Mo/4b7K885j38Nn/t8XIJPqkxiu7FOvZLgJRQ+WO0ts7lSX0Qb8VIV3gixlWhkFwU84sIHWV3N6\n+ytNjBJItvZJU0cvaZKeTNWKTaCeckrPTgP5sm60xkmhmjQUewvMiQxnA9misjnNspbrVSeQLwrF\nTKDaUqm6tBMaJxMGOytCP0EGBpqeZHsP12tjVhLC5pJBK1nTwzQhKlRD1fJaeU04XvSeQ7gGzH97\nn79cehE/MP0F/q53gDSvqQDfTSlmHem8UZr0ktXGqRMO/NRzp0pYH+PE8DTjbJoJLofmMaHHJHzj\n+f+ZZjkhzKc4D+15oVyYwDQC7UcNQcB1m3o1nAiYyDbs71pLDMl8wjuPvZqmrcijx/rR7jTVRCBd\nMqRdKFdaNPtCMaPKycnJDPGQ9nWTIspozBf097UFFGWCeKHY7ElOJ2pDHwQ7N4EX1d4N8cIvDrKl\nBJ9A1dHvb56UETLz+t9STMaOX/8M97/rm8AoMUkCajdvoHlCGPgUb3U8mM+D1MqZsIWQdC1JP2Ew\nI+TzwqDMcS1P64EE1yAeAVBU6Gqi+o4G+rOBe37kFq74xJt5eNMMd+7ewVfv28H07SlNr9Z2V3/4\nIPlChDun0JhLR3b1z8UYJ4avI56YHKqJQG+PI506P1Z76+PqDx0k7Coh8bjVFNcUmKpgKWV1v9KC\nQx6TQBLIjqX09lYjX0mAAy97iJu3/xXTxtAyKQbDe9Iu981sxW+vcXe1cRmUs/pJl2Wj0mmzjiCG\nenNFejJFAqzsj54LEYFolhN8y2GaNfJIg2pHSWOiZLCUK2lo1aoWoxeSJUu6qqV+f5unt9ex7y/f\nCB4amfY0Hrn5FdSb1Puj3AX+ZIMwXREGVhuRA4vpWordFabO4EXL5Ilj5XRbtS5PpVRbSqSwpFv6\niBd6k1arimZN6Cf0sRinExSJaEiA+173fgD2f+rH+Hev/Cg3z76WlVNtrv3AIcodFdUupzqbqVct\n0edwjBPD1xnrjxbVJoeZiBLn5zlcQ+XYQ1d1C0Kuhi4hi2inDMyqjfqJqgWAgfbD2mO48Z2H+NYf\nuxUrkIu+3alYvrS8i/zBnMFOQ5iISkxe8Qh1I5D0BbtiSFeEZJBRbPKxI2+oOx5qq+KsHpJuQrkt\nENpB8Q4P5rQqKDYF3HStPg2FCrnUUS/BDgTv7Eho1TUC1SYlhpmuxZ5MME4wBRR1qloIRxMGWx3t\nfUt0H5jCNQLugQ4lMBSjqjY5zEqCLYTKNzVpCph2ha8NZmDUkyJFFZeWDdVMzdUfPshXf1Sp+I0j\nDaa/tUc7LymOT+PyQLKQkK6m2AJ2vPvSxSeca4ybj88wXrXjxaTTsVKozu+f80XvOaS2aALZdEFo\nOVpbeqq92Nauf3oqUcu0QRRobWg3behTe9vNh/mLv38Jf7D4UopQc3sJXyhKTg/alFPKgFTbek00\nvuHxuwaUU2rw2t9dU2xxI6t4YCQpH0SNWEwhNB7OCJOVqixbbVymXcEu2RE0O5iAHejYsO44laqv\ndLRatwIkfiQ9b0tlLdoCGqfMSII96RlWH54kP2XIT0fF5pan2lapitSSHflB2q4hm0v096oNmzav\nKmgq1YmIGagSlDQd1bTnhb+hY927Dh7m3Q9/Dz+w6w6lWXeFiYeE3f/6754XSQHGieG8xL4fvJ0w\nlEw/j1G1VBo+9C3VKW3k9Zaa2MUE5nLsql7RQxooNzlcx498JW67eW3ykJ+0VMHiCDxSbeaffuot\nzK228dPayEu6QtimLlbJskWORyukKOVOp1I0Y6HVgp2qMFsK3GalS7uWSpdRWOxqVJSKFGVb6EjV\nNTzFFkc1pWQkBNIFVZoeSqrZpYTWg1p1+UT7EoMtKiibrgjFrE5ipJa1aYwH09PEsecdf0e2JOpa\n3VqTXpO+JZnL6N4xg2uGkWzb0HouDCxmIFTrrD2/+rm9fPvEXWzbM49PYevh50dCGMb4KHGeYqgn\n+ao3nx/DmRvfeYhyn6Lr2nu6DB7oULc9yVyKa3paj+pRodgc1Hch6Ic8O2ofN8K74X2HCN+wwuun\nbiUVw3XZcbKTCcVUqlOHIDqfP9bAmkC9uSY7mWBKoYgaCSZVPUMJAVmx+OUG5dYaGRhsX23qqhd2\nsY81MaUwuKLAZo56EI8urZJUoBok+DqlMWcpNimPwfbNmmFMFuhdWZIdSyl2ltjFBN8I5POWwWxQ\n7cWoe+CzQHePH6lIpQ9lPPL2V2ActB+x1JH7YQfQOmrp7fDk8waXQ+OkIRlAfxZaxwNJLx0Rn4Zx\n7w/dwn9c3snU9x5hiiPP+P281GJcMVyAOB9ci5DoXD7YAJ+bonnCRM6ACqN091fULd0gxVansOR9\nq/SvLkaTAFDR0S2TXaaNJ8Xy//UOKJ/hSxNM/H2LrF0qSrCj6lDJ6YRys6NuBZKeob17heBE5dqt\nkomqCcUdJFGCP+lHFaZKlF4dwJ1SLIKsWri/TTnfgNVUQVLtwMQj6uqkKEm1fbc9pUfn80Iyn+I6\njpAEVq+qqKdUi6Geqam2l/hGoLlzlYmHVIcyW4Z8Uanod/704dHRp54I2AE0j5sR49FnUDfV+Wll\nH3Qvr+lvCyNMwzD+6Jodz/h9vFRjXDFcoHimVnXVBLClwK+m9C8bCqkKVcQdSGki5BekMpgailNN\npu5O1rQZ0abers4iUyajCDWfnr+GwTZHtq1H/3iLsNDA5ApuqibCqNdgCy3nB/2MEBQWXO0s4WiG\nmR1gHmxGjkQUfa0iv6BnCROOkHtcwzNxJGWwOdB8VMFEvT3KcCz7iQK3AgrUmozTFSd0d3t8Q3+J\nZLJEHmoqBDs2Km30i+y1mpjLPVf9/kHqKxy2a7jyY5H/MB2bnAX0t+v3mgpcR/9+6YrhwE99lof/\n1SsIYjGFqlNfd/gQu9/5/Do2nC3GieECxvrK4ekmCVuAX05pHE/UHbmhPfbLbAAADhZJREFUqD6F\nK8sIfu2zQGjV0Kpp5RVLaYsHXvO7o9eppjxb8xVAJeY/f/uVhJbDO/VqsKtKbKongpKYJtXRqph1\nZKct9XyukODpGrOQUm6vSI42qXeUyHwKQejvUvBP3Q7YnsEuqJZD3QmUk3olHmx12J4hm1fp9XLK\nY3vKuUi6uuHrALavBLGh0GvdtSROpzA+QsHrnQWykCE9i8wW1E4wcxmCulLZqRLzUJNqa4UDzFKC\ny7Unka4q2kocHHnfNwKesKnCL6Xs/eXnFnrxmcT4KPEsxdM9Xtzxs4fBoNqKeeQmRDv4pKdncndZ\nQbK1j1lN8As5veUG6dxarr/x3xxCpkomE1UsWvKOdNEoKvCRFrZrmHhYKcbKjVA3K2nXkW+AKjl5\nIW1Wer5PPHXHqeLybEG5VSuAbEmbea6jY82qo4mrnlCGpe0bNatpKoQ4X1BLuyG1uW7rdMM1PGwt\nqDpeldhKoZytoV2rx0NfYDnFT9QqB9dLEKNjUZepCnV6d0tVpuZSktMpfkr1IZsnFEI9nILYgTYq\nkXDJ6iZcqBhXDM9iPF0hmGRRZceZLXDLKelKohLqiZKOQmEJx3OSEuoWpIsZ2cLaaKTqQLszoGMH\nVDjuryb1SFJr2R+MHlnEQfuoYfVyT5jPlIkYPSFItetflw2yrlAmGTQiVNrp8cb2DK6JqkJHYheo\ndHrjsXSkJlW31IMheJWnCzboFMRBNVMjvQSaAd9PINP+g88DplXju6n6PjgwS4ay4ZHjOTYIvjTq\ne9lWoJVrJIQ6qkylynVQ6XdV0naNQD3paT9k2XfT587zu/zciHHFcBHiXCndrePql2iONmicjOIj\nuYKD0tMJjUdS7v2hW8gXhGxZwUbrVZuqicCe6UX25SdpSMIfzr0CW0I+r/Die99wCz5DDVJaQICJ\nBy2tR7WKaD0mZAuGiUeUvGT78QiTBNLTiQqjJp56qsYn0HooIWSBMtKi7bKlcQoaJ9fJqm+tVOSk\nqX2JenOF2zVACtV8yE7HCUuhV3e7amjf1qR5NCHpKV4jJNA+kuI21SR9yOcstquO2NkR7X0UWx3Z\nojDxkD6e9LR3Mdhes++mz3DgLZ993mASvp4YJ4aLGE+VIEwN/Z2qDgSK6x+O9ZrH9ar/knccVKuF\nHjROPR5IUU8EZhur7EwWGISa//7gfkwBve2BYnPg2vcroCddUWXpkAWKTYE7fu4wxYxnZb8n7aLy\nZVGIpXnMQmWopl1EX0LjsZRsCfo7HM1HErLTVqHGFro7AitXOrh+Bbm8C1FcRk1pA3YhwTzagKBV\nSjUZkFy1Hf10RbakrzOY9VRTnmJGZesHW1WApW4Hik1eWZe5p5zyuOma5iMJ1VRg+XqVsnK5qlNd\n9eZxhXAuMT5KbIB4siZl1YbGti7m4UmKzSoQMnRg7u0I1LMlIc2QajiWe3xikNmCvc3THEj7zLuA\nf6SNa2giqDoBt6cgfyCnmgxc+dGDhI6j3OI48JGDhC0VYTmhaqE4Bxev8j5ezRvR/MWq5FmxVSHU\nIYrE2gEjd2vXFMpH2yrN3tXqodzqVFsCVN3ZBrK8pnykTeglyGQFzlBuUpSktGvMXEY2b6g7Qb0c\nnCVbjEeDVsAsJSPHq/6VRbTFWpOjG8e5xzklBhF5EFgBHFCHEF4qIjPA/wnsBR4EXhdCWIjPvwn4\n8fj8nwoh/JfzvvLnaKzvQ3z5rYfZ/6c/SdPoZxwTxU0aIdrGqUCIeCE/pZqN62PTVJct6QpTJuOu\nMidfEGypmgTGQV0anWpYcBNOiVFRyt0sJ7C5oHR5FIhV0dhyKhAaDtupCCcaBKOThqqjtm7iwQXF\nTwzHi0nUbhSvxyDx4FZslFsHTikVu9ocodAYGOiUIekJjVMJve161PB5eBzfordXxV2kMKSzSvcu\njkyy/xfGE4ZnEk+nYvj2EMKpdfffBvxNCOFdIvK2eP8XReQ64PXA9cAO4K9F5KoQwpMbB47jjBgm\niMbNlsGsxzc9tlAhkxA1WJK5lGKrzu+zRfM4/ALAbHuV2WSZBMtne1fo2HCzXl1DpnyHuhXwnRqc\nkJ5IqS4rSZeVpuzqPFrCK6TZFcpNyOYSqsqQLxh8pg7P5c6Ssla5NBWMCaQr6jSdrgxFXRUbUU4p\nrsAWgssUuVl1PG4lJe1rVWSqoWq1emhILeS7Vxm0c4IT0nYJ97fJpweUgxTpWsqFBnvHR4XzEs/k\nKPFa4JXx9u8D/xX4xfj4x0MIBfCAiBwBXgaMU/jXEU8E29z7Oy/HrmoSSFaF1tUrLB/vMEgDk0fW\nVJte8q8PcuMP38meZB4rlo8c+Qb62z1hOlKrE09YTREPjaMZg8t0ZJgeyxhc5mg/bHGlUBjlOwxt\n7U0ZN3nfjB5zWSB7NCMkSp320+oFgU+Rq1ep7plQj4V2oHUMshWhuzMCqXpaQRz55+9n3//zE1Qd\nT9IT0hU9cvSmA3VThWrLByewTnUo5Vgbn8Llr7vzWXonnl9xrs3HgF75vyAib4qPbQshHIu3jwPb\n4u2dwCPrvvdofOxxISJvEpHPi8jnK86/jsFzNQ685bOqQBwU49DtNmg9nNA8btVJKcbK5dBJB8xY\nxTB0H+3gmw5ZTAk9S3pfk849CY053eDJkoUgVFtqbNcw2ByPLA1PNe10hGmiye3mmpAoM7Kc0f9z\nuY4iTSFMfCWn+WCGa0BdW8ptNcVmjymFL/7yLQy2qKCMy6C8rk/vQMm33fmPVePxsiIatUCxCdIl\nhUgbR8RcKEJy782fueSVmDdynGvF8C0hhEdFZCvwKRG5e/1/hhCCiDwtJdQQwgeADwBMyswFUlF9\n7sa+X1rbFEd/6RU80e0+7B6wNV1hh7W44MnnLMFYqkltJPossHKVIz+hhrFuUhmSppdQby8JlVG5\ntCRgepa6FdTDYRmW2no1H+yuoFKUJIBxWsmUm9SQpfOAqB9lP/DFX1atg2t+7yA+UZ5Cvr3HYCkn\nbVcs/+V27n/bYa7+4EGKF/ZwlWo7YgKyqcRaz84fvP1Z+/s+3+OcEkMI4dH470kR+TP0aHBCRLaH\nEI6JyHbgZHz6o8Dudd++Kz42jgsUu35Vjxuv+rW16cYV3Mb+r56kKRn3VFo1lJsUluxFm5jJoiUY\n7TWI0yamawXCwJIuKJOxnFV9hWRFN/3qnjUFarscLdkqIaDNwME2NZ0FqE+n1G1YOeC48qMH1ZE6\n0bHqwBiqh9okTjCPZtjvOsVV/+0NhAw42uTAuHl4UeMpE4OItAETQliJt78beAfwSeCHgXfFf/88\nfssngY+JyHvR5uMBYNwRugjx4asv58NcDsAe/o773vNN+EzHnsEwEkQJKTROKw+jcVpYOaCw5sl7\nDeJU13FYkWRLAouJWsCXOn2otxc0725QbPEkK4pkHArA+uj1KEE9JocN0mrSkc8ph6Fue7b8o3vY\nclH+SuM4W5xLxbAN+DMRGT7/YyGEvxKRW4FPiMiPAw8BrwMIIXxFRD4B3AXUwFvGE4mNEVf8/Nmv\nwve8/2V07k2wA7jj5w5z5UcPIjv73Pa6/8i1HzikMOwUUidq9pqAK7VSqDueJHPkC4He5Z7mIwnJ\nQEFRd/70YQ784UFsz2gSaTKSWd/+bP7i43jaISFc/OO9iMwBXeDUUz13A8QWxus833GprPVSWSec\nfa2XhxBmz+WbN0RiABCRz4cQXnqx1/FUMV7n+Y9LZa2Xyjrhma91zJUYxzjGcUaME8M4xjGOM2Ij\nJYYPXOwFnGOM13n+41JZ66WyTniGa90wPYZxjGMcGyc2UsUwjnGMY4PERU8MIvJqEfmqiByJLM2L\nvZ4PichJEfnyusdmRORTInJv/HfTuv+7Ka79qyLyqmdxnbtF5G9F5C4R+YqIvHUjrlVEGiLyORG5\nPa7zVzbiOtf9bCsit4nIX2zwdT4oIneKyJdE5PPnfa0hhIv2BVjgPmA/kAG3A9dd5DV9G/AS4Mvr\nHns38LZ4+23Av423r4trzoF98Xexz9I6twMvibc7wD1xPRtqraio20S8nQKfRT3BN9Q61633Z4CP\nAX+xUd/7+PMfBLY84bHzttaLXTG8DDgSQrg/hFACH0dp2xctQgj/DZh/wsOvRanlxH9/YN3jHw8h\nFCGEB4AhxfzZWOexEMIX4+0V4B9QFuuGWmvQWI130/gVNto6AURkF/Aa4PfWPbzh1vk14ryt9WIn\nhnOiaG+AeEYU8wsdIrIXuBG9Gm+4tcby/Eso0e5TIYQNuU7gN4FfQB07h7ER1wkXQAphfYw1H59m\nhPD0KeYXMkRkAvhT4KdDCMuR0wJsnLUG5cq8WESmUd7NC57w/xd9nSLyfcDJEMIXROSVZ3vORljn\nujjvUgjr42JXDJcKRftEpJazkSjmIpKiSeGjIYT/ayOvFSCEsAj8LfDqDbjObwa+P+qbfhz4DhH5\nyAZcJ/B4KQTgcVII52OtFzsx3AocEJF9IpKhWpGfvMhrOlsMKeZwJsX89SKSi8g+nkWKuWhp8EHg\nH0II792oaxWR2VgpICJN4LuAuzfaOkMIN4UQdoUQ9qKfw0+HEH5oo60TVApBRDrD26gUwpfP61qf\nrS7q1+iufi/aUb8PePsGWM8fAceACj2L/TiwGfgb4F7gr4GZdc9/e1z7V4HveRbX+S3oOfMO4Evx\n63s32lqBFwK3xXV+GfiX8fENtc4nrPmVrE0lNtw60Sne7fHrK8N9cz7XOkY+jmMc4zgjLvZRYhzj\nGMcGjHFiGMc4xnFGjBPDOMYxjjNinBjGMY5xnBHjxDCOcYzjjBgnhnGMYxxnxDgxjGMc4zgjxolh\nHOMYxxnx/wPSE1pcg54v5QAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x193ff407278>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "lower_half = row > cnt_row\n", "lower_half_disk = np.logical_and(lower_half, outer_disk_mask)\n", "camera[lower_half_disk] = 0\n", "plt.imshow(camera)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
jeroenjanssens/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
Chapter5_LossFunctions/LossFunctions.ipynb
4
1358823
null
mit
roatienza/Deep-Learning-Experiments
versions/2020/keras/cnn/cnn-siamese.ipynb
1
14604
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Implements a Siamese/Y-Network using Functional API\n", "\n", "~99.4% test accuracy" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n", " from ._conv import register_converters as _register_converters\n", "Using TensorFlow backend.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "__________________________________________________________________________________________________\n", "Layer (type) Output Shape Param # Connected to \n", "==================================================================================================\n", "input_1 (InputLayer) (None, 28, 28, 1) 0 \n", "__________________________________________________________________________________________________\n", "input_2 (InputLayer) (None, 28, 28, 1) 0 \n", "__________________________________________________________________________________________________\n", "conv2d_1 (Conv2D) (None, 28, 28, 32) 320 input_1[0][0] \n", "__________________________________________________________________________________________________\n", "conv2d_4 (Conv2D) (None, 28, 28, 32) 320 input_2[0][0] \n", "__________________________________________________________________________________________________\n", "dropout_1 (Dropout) (None, 28, 28, 32) 0 conv2d_1[0][0] \n", "__________________________________________________________________________________________________\n", "dropout_4 (Dropout) (None, 28, 28, 32) 0 conv2d_4[0][0] \n", "__________________________________________________________________________________________________\n", "max_pooling2d_1 (MaxPooling2D) (None, 14, 14, 32) 0 dropout_1[0][0] \n", "__________________________________________________________________________________________________\n", "max_pooling2d_4 (MaxPooling2D) (None, 14, 14, 32) 0 dropout_4[0][0] \n", "__________________________________________________________________________________________________\n", "conv2d_2 (Conv2D) (None, 14, 14, 64) 18496 max_pooling2d_1[0][0] \n", "__________________________________________________________________________________________________\n", "conv2d_5 (Conv2D) (None, 14, 14, 64) 18496 max_pooling2d_4[0][0] \n", "__________________________________________________________________________________________________\n", "dropout_2 (Dropout) (None, 14, 14, 64) 0 conv2d_2[0][0] \n", "__________________________________________________________________________________________________\n", "dropout_5 (Dropout) (None, 14, 14, 64) 0 conv2d_5[0][0] \n", "__________________________________________________________________________________________________\n", "max_pooling2d_2 (MaxPooling2D) (None, 7, 7, 64) 0 dropout_2[0][0] \n", "__________________________________________________________________________________________________\n", "max_pooling2d_5 (MaxPooling2D) (None, 7, 7, 64) 0 dropout_5[0][0] \n", "__________________________________________________________________________________________________\n", "conv2d_3 (Conv2D) (None, 7, 7, 128) 73856 max_pooling2d_2[0][0] \n", "__________________________________________________________________________________________________\n", "conv2d_6 (Conv2D) (None, 7, 7, 128) 73856 max_pooling2d_5[0][0] \n", "__________________________________________________________________________________________________\n", "dropout_3 (Dropout) (None, 7, 7, 128) 0 conv2d_3[0][0] \n", "__________________________________________________________________________________________________\n", "dropout_6 (Dropout) (None, 7, 7, 128) 0 conv2d_6[0][0] \n", "__________________________________________________________________________________________________\n", "max_pooling2d_3 (MaxPooling2D) (None, 3, 3, 128) 0 dropout_3[0][0] \n", "__________________________________________________________________________________________________\n", "max_pooling2d_6 (MaxPooling2D) (None, 3, 3, 128) 0 dropout_6[0][0] \n", "__________________________________________________________________________________________________\n", "concatenate_1 (Concatenate) (None, 3, 3, 256) 0 max_pooling2d_3[0][0] \n", " max_pooling2d_6[0][0] \n", "__________________________________________________________________________________________________\n", "flatten_1 (Flatten) (None, 2304) 0 concatenate_1[0][0] \n", "__________________________________________________________________________________________________\n", "dropout_7 (Dropout) (None, 2304) 0 flatten_1[0][0] \n", "__________________________________________________________________________________________________\n", "dense_1 (Dense) (None, 10) 23050 dropout_7[0][0] \n", "==================================================================================================\n", "Total params: 208,394\n", "Trainable params: 208,394\n", "Non-trainable params: 0\n", "__________________________________________________________________________________________________\n", "Train on 60000 samples, validate on 10000 samples\n", "Epoch 1/20\n", "60000/60000 [==============================] - 351s 6ms/step - loss: 0.1769 - acc: 0.9435 - val_loss: 0.1412 - val_acc: 0.9904\n", "Epoch 2/20\n", "60000/60000 [==============================] - 361s 6ms/step - loss: 0.0664 - acc: 0.9795 - val_loss: 0.0923 - val_acc: 0.9903\n", "Epoch 3/20\n", "60000/60000 [==============================] - 359s 6ms/step - loss: 0.0528 - acc: 0.9835 - val_loss: 0.0772 - val_acc: 0.9908\n", "Epoch 4/20\n", "60000/60000 [==============================] - 286s 5ms/step - loss: 0.0471 - acc: 0.9854 - val_loss: 0.0836 - val_acc: 0.9930\n", "Epoch 5/20\n", "60000/60000 [==============================] - 244s 4ms/step - loss: 0.0429 - acc: 0.9861 - val_loss: 0.0736 - val_acc: 0.9931\n", "Epoch 6/20\n", "60000/60000 [==============================] - 242s 4ms/step - loss: 0.0393 - acc: 0.9878 - val_loss: 0.0507 - val_acc: 0.9931\n", "Epoch 7/20\n", "60000/60000 [==============================] - 183s 3ms/step - loss: 0.0364 - acc: 0.9883 - val_loss: 0.0434 - val_acc: 0.9934\n", "Epoch 8/20\n", "60000/60000 [==============================] - 141s 2ms/step - loss: 0.0364 - acc: 0.9890 - val_loss: 0.0471 - val_acc: 0.9931\n", "Epoch 9/20\n", "60000/60000 [==============================] - 139s 2ms/step - loss: 0.0358 - acc: 0.9892 - val_loss: 0.0384 - val_acc: 0.9938\n", "Epoch 10/20\n", "60000/60000 [==============================] - 138s 2ms/step - loss: 0.0342 - acc: 0.9891 - val_loss: 0.0500 - val_acc: 0.9915\n", "Epoch 11/20\n", "60000/60000 [==============================] - 138s 2ms/step - loss: 0.0327 - acc: 0.9895 - val_loss: 0.0328 - val_acc: 0.9919\n", "Epoch 12/20\n", "60000/60000 [==============================] - 137s 2ms/step - loss: 0.0328 - acc: 0.9896 - val_loss: 0.0364 - val_acc: 0.9928\n", "Epoch 13/20\n", "60000/60000 [==============================] - 139s 2ms/step - loss: 0.0334 - acc: 0.9898 - val_loss: 0.0322 - val_acc: 0.9938\n", "Epoch 14/20\n", "60000/60000 [==============================] - 143s 2ms/step - loss: 0.0306 - acc: 0.9908 - val_loss: 0.0346 - val_acc: 0.9942\n", "Epoch 15/20\n", "60000/60000 [==============================] - 180s 3ms/step - loss: 0.0319 - acc: 0.9903 - val_loss: 0.0417 - val_acc: 0.9942\n", "Epoch 16/20\n", "60000/60000 [==============================] - 148s 2ms/step - loss: 0.0306 - acc: 0.9906 - val_loss: 0.0308 - val_acc: 0.9930\n", "Epoch 17/20\n", "60000/60000 [==============================] - 149s 2ms/step - loss: 0.0299 - acc: 0.9906 - val_loss: 0.0300 - val_acc: 0.9945\n", "Epoch 18/20\n", "60000/60000 [==============================] - 137s 2ms/step - loss: 0.0316 - acc: 0.9904 - val_loss: 0.0333 - val_acc: 0.9923\n", "Epoch 19/20\n", "60000/60000 [==============================] - 141s 2ms/step - loss: 0.0279 - acc: 0.9917 - val_loss: 0.0255 - val_acc: 0.9942\n", "Epoch 20/20\n", "60000/60000 [==============================] - 137s 2ms/step - loss: 0.0297 - acc: 0.9910 - val_loss: 0.0249 - val_acc: 0.9938\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "10000/10000 [==============================] - 4s 377us/step\n", "\n", "Test accuracy: 99.4%\n" ] } ], "source": [ "from __future__ import absolute_import\n", "from __future__ import division\n", "from __future__ import print_function\n", "\n", "import numpy as np\n", "\n", "from keras.layers import Dense, Dropout, Input\n", "from keras.layers import Conv2D, MaxPooling2D, Flatten\n", "from keras.models import Model\n", "from keras.layers.merge import concatenate\n", "from keras.datasets import mnist\n", "from keras.utils import to_categorical\n", "from keras.utils import plot_model\n", "\n", "# load MNIST dataset\n", "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n", "\n", "# from sparse label to categorical\n", "num_labels = len(np.unique(y_train))\n", "y_train = to_categorical(y_train)\n", "y_test = to_categorical(y_test)\n", "\n", "# reshape and normalize input images\n", "image_size = x_train.shape[1]\n", "x_train = np.reshape(x_train,[-1, image_size, image_size, 1])\n", "x_test = np.reshape(x_test,[-1, image_size, image_size, 1])\n", "x_train = x_train.astype('float32') / 255\n", "x_test = x_test.astype('float32') / 255\n", "\n", "# network parameters\n", "input_shape = (image_size, image_size, 1)\n", "batch_size = 32\n", "kernel_size = 3\n", "dropout = 0.4\n", "n_filters = 32\n", "\n", "# left branch of Y network\n", "left_inputs = Input(shape=input_shape)\n", "x = left_inputs\n", "filters = n_filters\n", "# 3 layers of Conv2D-Dropout-MaxPooling2D\n", "# number of filters doubles after each layer (32-64-128)\n", "for i in range(3):\n", " x = Conv2D(filters=filters,\n", " kernel_size=kernel_size,\n", " padding='same',\n", " activation='relu')(x)\n", " x = Dropout(dropout)(x)\n", " x = MaxPooling2D()(x)\n", " filters *= 2\n", "\n", "# right branch of Y network\n", "right_inputs = Input(shape=input_shape)\n", "y = right_inputs\n", "filters = n_filters\n", "# 3 layers of Conv2D-Dropout-MaxPooling2D\n", "# number of filters doubles after each layer (32-64-128)\n", "for i in range(3):\n", " y = Conv2D(filters=filters,\n", " kernel_size=kernel_size,\n", " padding='same',\n", " activation='relu',\n", " dilation_rate=2)(y)\n", " y = Dropout(dropout)(y)\n", " y = MaxPooling2D()(y)\n", " filters *= 2\n", "\n", "# merge left and right branches outputs\n", "y = concatenate([x, y])\n", "# feature maps to vector in preparation to connecting to Dense layer\n", "y = Flatten()(y)\n", "y = Dropout(dropout)(y)\n", "outputs = Dense(num_labels, activation='softmax')(y)\n", "\n", "# build the model in functional API\n", "model = Model([left_inputs, right_inputs], outputs)\n", "# verify the model using graph\n", "plot_model(model, to_file='cnn-y-network.png', show_shapes=True)\n", "# verify the model using layer text description\n", "model.summary()\n", "\n", "# classifier loss, Adam optimizer, classifier accuracy\n", "model.compile(loss='categorical_crossentropy',\n", " optimizer='adam',\n", " metrics=['accuracy'])\n", "\n", "# train the model with input images and labels\n", "model.fit([x_train, x_train],\n", " y_train, \n", " validation_data=([x_test, x_test], y_test),\n", " epochs=20,\n", " batch_size=batch_size)\n", "\n", "# model accuracy on test dataset\n", "score = model.evaluate([x_test, x_test], y_test, batch_size=batch_size)\n", "print(\"\\nTest accuracy: %.1f%%\" % (100.0 * score[1]))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
root-mirror/training
SummerStudentCourse/2019/Exercises/ROOTBooks/CentralLimitTheorem_Solution.ipynb
5
50466
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Exercise: Central Limit Theorem\n", "\n", "In this exercise we will show what is the Central Limit Theorem and how it applies " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Part 1: Generate random number according to a uniform distriobution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first goal is to generate *n* random numbers according to a uniform distribution between [-1,1], fill an histogram and compute the average of the generated numbers.\n", "Display also the obtained histogram.\n", "\n", "Let's start with n = 10" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "int n = 10; \n", "TRandom3 r(0); // initialize with zero to have a random seed " ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Create and book the histogram" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "auto h1 = new TH1D(\"h1\",\"Distribution of generated values\",100,-1,1);" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Generate the numbers and fill the histogram.\n", "You can compute the average directly or let the histogram computing it for you" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "for (int i = 0; i < n; ++i) {\n", " double x = r.Uniform(-1,1);\n", " h1->Fill(x); \n", "}" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false, "scrolled": true }, "source": [ "Display the histogram and print out the average result" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAHYCAIAAAApvgy/AAAABmJLR0QAAAAAAAD5Q7t/AAAgAElE\nQVR4nO3dQbajugEmYOjTWRc4o7eS9C4ekGVkJZm8gzhZmHuglEIB4mJfbAP3+wZ1yjbGAvuiH0mI\n8n6/FwAAS/7PpwsAAByXoAAAZAkKAECWoAAAZAkKPKyu6/J3dV3Xdd227cryryhJCCF++vhhrhi7\nGH/cobRtG/dzCOHTZTm3tm3fsxsnv144LEGBhw3DMH9mGIau6xbr6fnyXwohbD9ST9a/4yF+Uoz4\n/yc259Xatu267oAFe4+Hfi1b1rbXqrb4sd8aJ/J/P10AzqppmpQJwi8xLkwO3FVVPbry2+1WFEXf\n91+eb1VV9bpzsliMdAlxXdcv/binxb09/kZ+jhDC7XarqkpTCryIoMCTxvVl7Hoofh21h2EIIYx7\nBF5XhjdXD0eujQ6YYIALEBTYUzznHoahbdsv69TY8JBCxnZxzV++KxXgPTXo9lLtvtWPNl/vXtQt\nK9z4dbRtO2kXGf+QnthpWzZh4w55QirA69a/vubv7D34rzs8KP5y+r5ffLXv+8lPa/5Lm3dGNE0T\nX2qaZvJS/KC0kvFPd/JZ8WFVVbmVTBablDyWKpZkXsLctqQy5P6s0sfNl0xbvWL+rnHJ56/mvpfF\nPd80zXirk/kOnCyQNnOywvlevS/N/Tr/rKZp0rakz1rct+OSrOyZ+SbMy7b4jcQtyu3GuNqVzUwP\nF3vc5r/DYvUv5Z75ua7/KrbvAdhCUOBh80Pe+gK5A2jTNOm4nCqAvu/TAS5W+eOVpIXjIW8xKIwP\n+uNjZSrPlqAwLkZcz+K2pE+MRR1/3HyZtLa+79OGrO/qL9ef210r38t8zxS/177rX9D864hbNN5d\nD+2fVPWmJeM3NX9vWiZ9lZPijZ8fv3fys5l/L/Mdsj0HT7ZiUoDml/mGPx0UHvrVTZaRFXiCoMDD\n1o+kaYFc5To/Gs7P0uYfsXgEzwWFydFwUitvCQq5oi5uy2RVk83PlWqy2KLFZeZPrp8ER6mqGD85\nDwGLFeH8vfOaaXGxxeaKyZO5Omzx3H2+wsVv88ufSlpV7qey/ee9+ImLK5k8+XRQ2LLyxT2/uH74\nkssj+by2bfu+3zJiv2maLf2suU7ufYci5lYbj+xd162Xat4ynFv/5I259a+Ly0+aN+Y7JF1vMn6y\nbdtY8UyWn2zC5KuJV8HMyx8fzss/L0zTNJMn05jZIi8uM/mp1HUdS5sKE8s2WdXGH+HkjfPhF/Ek\nfrJDnrj8Zy6WcH71TfzKJls3X2axNwfWCQp8xmROm42D+zZe/vfO0Yvzo3/u058bvbh9/VtsfO98\nscUaerLYPCgUm8s/X2xxVOOWqLdYRxa/b0JuPdt/hOMBpPMtXSz8LlMm5EYvxmfSR8TC3G63cTGe\nGEILhaDA6+QOSemc5na7xYkd9736f/G8bfGEeBcbB5w/4aEB7VtWtWi8u9Ji5UxsAHhoi8Kv+anm\na9te/jTjZFmW8crbjZ+efl1JbCwZNySs/FS2SOWPO2eeDCaF37jaLeLkZot7NX163JC05PuvJeYy\nXB7Jq6ycWN/v93j9ZDxqd13XdV1ztvmCLnzYzVWWz52PPtfkHqebHK8hfvrGPpdd2vlzmqbpui7+\nhhcv+6zrenxyH0/l27b9fqNCXMOWrYtlSx86DIOZqXjSpwdJcD7xl5Mb7TUfz7/+S1u8BGD+EYsr\nyQ1mzJVqPJz++4MZF0fbzRdbHye/Mphx4/rv2wYz5vZMfD438nR9bfNPnO+f9dGa9/xmTgoW5S4B\n+HKs30TuN7Dx7ffRls5/NmnoxmQlk69p42DGyf5ZHKW4xeJlKbCFrgf2lBoJciP14uQzk37TFw02\nHNtyJvfo2d6kVzjZaytesf6N750vFlvRH/rolQaAjTMgFflxqSty3Uzz3953zu/Tp8wHbIZfM2pP\ntvG5j9s4nHOydfM93LbtfBgmbCEosJu2bWNHbFVVK50I8X4QLy3J4iC7yUDx799KKq1tcVT/95u+\n911/rCQmPeXzr2lyaUAUQog3nXqo6yEtPK/qnq6ht/xycldVxCEO9a9JEsfdGfMyfykumX7w8wUm\nW/30gJLJvkpDKefXa4yXjPdpWyyD8Yw87NNNGpzP+i8q14Y8f/tkop5i6fr73KxN0cqESyuz9KS1\nxbl9JmWYdz3EZRaLMZ4jIbctT3c9bFz/fVvXw32258fV23yr51/Q4p5Z/Ihc+Re7mda7Hha/o8WP\nGBdmMgvT4lQN8ymJxjvky5053lGThdOa46dPCp/KkJvaofj1k1t81/33ToT1v6BxGbZMEQGLBAUe\nVmRUmZkBc0f2yXvHbxkf+/rfp3AeWwwKkyP++qE8SbPXzScyGn/EvBiLm7NSyMk2ftlh/OX675uD\nwn323TWZGYvnO3B9fqHJ81+Wf/zGXFCYv7H6fRrs+UaNVzLfhI0fEcuzZWfOQ89koyY7cFKjL/4w\ncpu88gcy3yG5PbBxu2CivH91ggivMBkuPm8OTQs8dylEevtKd/hKh+58mfVibPm479hx/ZMdGzsC\n+tkdvffdoqfXNn/j4g8jbcsTW/Gi725xtfHJ9Q/aXp4vl/zyrwy2EBTgR4jX8sUxiePn4/X3jgNA\njsGM8FPE23+Pn0nDPD9SHuAUtCjAT5Em74vJIA2SdxAAVmhRgJ/i/msQXLx2rvg1RO7T5QIOTYsC\nAJClRQEAyBIUAIAsd48EYGeT215zTBvHHggKAOzPALiD2x7mdD0AAFmCAgCQJSgAAFmCAgD8T1mW\nX96LLt485R2lOQATLgGws7I8ceVSlmVVVes5YMsyB7f9O9KiAACbxFuw/rSLPwUFAJiK92SfdEOE\nELqu+1yhPuPErUMAHNPZux7if6qqSrdPm/Qy/KiuBxMuAcBUqkTLskz3ZP+ZdD0AwG+qqlr8/88k\nKAAAWYICAJAlKAAAWYICAJAlKAAAWSe+1HXRT5swC+CYLla5XM+PnkfBrxPgs5yzXckFgwIAHycr\nXIagAMD+NO4e3PYkZzAjAJAlKAAAWYICAG/Stm25pK7r76w23g96pzKeyeJ+CyG0bTu+O/Y3GaMA\nwJvE+zLPb7O0JSiUZdk0zY7139m1bTu/rWVd1+nJruv6vv9mCCsEBQDerG3b79deYzF//Bxt24YQ\n5ikhPpniVFmWt9vt+6NKL9j1sNiu9TNbpQBOJIQQA0TsoajrOiWA+HzXdbEKjC/FxYpZ8ojrmawh\nrSfWCKdumei6bp4SiqKIG5U2rWmaYpcUdb+W620RwOnkDsWx06Hv+8VX+75PdVPqnuj7vu/79LCq\nqvvvp8hptXElsXacrCGVavx8XNV5xS0dPzPZqLg/m6ZZfPv26vKCLQoAHNntdpu0+I7P72NVF0KI\n9VxsLYinxU3TjM+PU4U31nVdWkN89Xa7Fb/Os/u+T88vnpQzJygA8FbVzPjVFBrWxzHMR0QWv5rZ\nx7EjNTCkTo24zGLIuJi4yd/vejjlYMa2bbuuK4qiqqrdB8UA8FK7HLdzVwYWv5oQJs/XdV1V1TAM\n8dWqqi4/BDJu4E+86iFe+xGzZPzKd7n8A4BraJpmUimMz63TJQPbb594Iq/oTzlf10NMCSGE1M90\n6sGrAOwl5YP6l3hxRDFqxohBYbcrAo5k0h0z74h5zslaFBY324AUgBNZ7HrY5ZQvXUWZmhDi2Mb4\n6jAMMTpExR7N8ofStu3tdkvbON727zhZUKjretxSlMbBfqxAADxoGIb5Cd6WoNB1Xdd16/0F9/s9\nTjQUH6axCOMeh/jS9eqOuq6bpum6Lm3jLk0mJ+6hSUMax5vw3MRK590JAAf0ou7/7c0Ak5mavnz+\nYrbsqO3f0SmDQgghN2z1koNTAM7Fofj4tn9H5xvMmFJCnDfj08UBgCs7X+gry3Ll+lcxFuDjHIqP\nb/t3dLLBjIszdtV17QpJAHiFkwWF2JDgekgAeI+rtQ5p7wL4uNyhOF6Y1jTNvBk4vnSlmXbTbA1f\ntnmnBeZLLr6U7lgxfibtt/EsESs784HqcuNdJs/ielsEcDq5Q3Gu6klTGuTuQH06k0kacts1n8sh\nLTm+6fZkp82r8nQv6dzzc9ury6tVq4ICwMc9GhS+rFDPJdbx8W7X919bt7jk+KWUDOLDOKli3CEx\nT4zTQFr52GSx8RoWP3rj5pzv8sgvlRmfLhcA/7VlBHrbtmVZzoerx1tBzl9q2za2yadX9y3zdrFU\nqXcgd1+JyeTC8f6W6aVhGNLdrdq2nUzGvHLzzElvxQ7zCGwMFGdxvS0COJ3cobgoiqqqYp2Xnkzn\nwcXo9DfWUKl2TCfQqVpNL81b3dNHLJ52v8G8ei2WegH6vp+UML0xbmZabPKutI1VVY1X2/f9eOHJ\nLp0XcuvmbFzuLAQFgI9bDwrzTDB5cjFJxJcmdfD4Yfx/Wu1kJe+0GBS+TC1xM+NiKeiM0894sfVz\n/nmKWizkxs25YNcDAEc2bxKfNKQPwzCuI8fLj2vixUb18Z2mdyrvMx69bWNd1/HuReONGoYhNhJU\nVTUMw7ifJeWhmBvmOzD+Z5/5izcGirO43hYBnE7uUFz8fsZ8H7Wxz5sNJtIp9bwOnqw8Grfev9m8\nei3yLQqphWB89j8fh7hSZedemoxtnL9rdSP+52QTLgFwAXVdD8MQQui6bvHku6qqxQGPaSaGOEnA\nKQaqr9zLMe6H3H0Jxm+JjQrrHxRnU0jvivdY/n6jgq4HAN4thoD472INOgxD/UtRFPFegOkygfH8\nQgc0GUaQCwrp0oZ5XT7vnUkpYfE6vhi2uq6LO2pfggIAH5BOkectB6nfPU4yGCu/8cyD8T+HzQrj\nABRbTcYP06WbKQ3Uv0sL3263uAfiw/HlIWnnjFcVX4rXiE5e+paNXRRncb0tAjid3KG4mI3enzyc\njNFLJtcyJOnh/UhjFO6zeRUnz48HaqzUy+Mnx0MNJjtnPrhh8aWJ7TvnandGWOmvutiWAhzWXrfd\nWWy0n7QorIwA+Ljvl21lDSs9GvE/65+7/Tu6YFC42BYBnI5D8fFt/46MUQAAsgQFACBLUAAAsgQF\nACBLUAAAskzhDAD7i7MeFRumPEoLTJZMaxhPzLz9pR2mWoo2zrdwFtfbIoDTWTkUT2Yi+vLmy5M3\nju+TNP64yTpXJhp6j9yEUXO5Snl+O+ktL00mXFr/3I3bcrVq9edEIoDDyh1yU0pomqZpmvG8iumN\nuTp+MnXjfJ3VL49GkN2Np1+8r974cXyXyPFUlZM1jB9OXhq/a3K7yHSLzkU/Oih8uggAP13uUDyv\nMmO1l+q2lQp+PShM3hXryE+1K0xq6PWST+Zmjg/nb0m7buWl+e5d2Qnbq0uDGQH4mLquUxtA7GuP\n942Mz8Q7G5Vl+Wh3e+ykj3djmqwq3k4pfeKkGX/+zBMm94Oe3wpyXMjxRNRt26YbSlVVlZuDeeWl\nue/fZvpq59/X2yKA08kdilM9t9h3Puk1SBX2uN99Y4vC/ffT+nH3RPxPPM+enPr/9ddfRVH8+eef\nT2zyfDMnz+RKON669daUxVfHbSeTz83tmVSkrZuzcbl3WvwpJH3fp507X0xQAPi43KF4PpJxchgv\nfu/aH1dyjwaFcRP9pAZN+WCSDNY79bebl2clKMRqvu/7xTQwrvImbx+nn8kzsQtjvUXgxEEh15cT\n5VJhIigAfNz6oThVfvOabNKcMK4LHhqjMF5+cSjAYoZYOf9+yEMtCuOCTd6YKvv5OIO0Ayc7ZBzF\nVtoh7icNCuP4kwsKk7i3+GW8tJAAfGn7oXhy4cMkKIyXfDQopPoiN+YgrmrSuvDXX389tKWLJnXT\nPKnktmhcx+UaEu6PDNVcWWz7d3SgwYxxCMkkZq57aGEAPiiEUJblZGzd+lC77wzESyMK47i/2Lw/\nFp//888/46v//Oc/i6L4+9///vQnJpNoMh60ODYexjgpcwhhGIamaeZ7oG3bYRj6vp8P8GzbtizL\n8cPFz33YxkDxNitTatx/74BZjFQH3CKAnyZ3KC6WTpHHlVFaYH4WPp5yYGyxRWEyo0Cx1PUwKcBi\n2Z422ZD0cYtTLMTgMi5zak6YSG+ZPB/flVaeOlxWtmh7dXm4anU9KNxn005NXr1GWgI4tdxxdTwU\nPZqc8s0r0fFAv5WgUMwmcRrXkelTFscMxkaFYqd+h0mpJrXMvP4eLzbZ9sXaar0iGzdmrOee7XXf\n4erI9aAwTpSTmBap9QE+buVQPO8yno/mK0YNDONqbz0o5Na5+Lnjl+LohFdUHzEM7bXYvp+7fXvL\n+7Nn4S8SQrjdbqn3aKIsy6qqUp9N27Zd140XLsvDbRHAT/PloXg85dHiS+M5lxYXe8LKh/5A26tL\nd48E4N1WqurJSztW6vLBcw501UNOHCgbR29WVTUMQ5oOM07P6bsHgBc5QYvC+OKQOFl313VpBu/F\n3ikAPmt8nR6ndtYe/VyvlTEKAERl+a/7/R+5hy/70KtVQydoUVikuwEA3uAEYxQAgE85a4vCilzH\n2MXaggDgDS4YFAQCANiLrgcAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIOuC8yiYcAkA9nLB\noCAQAMBedD0AAFmCAgCQJSgAAFmCAgCQJSgAAFmCAgCQJSgAAFkXnEfBhEsAsJcLBgWBAAD2ousB\nAMgSFACArCMGhbIsQwgrC7RtW5ZlWZZt276pTADwIx1ujMKXdX9d18MwVFVVFEXXdVveAgA850At\nCrGdINb9OSGEYRj6vg8hhBCqqlpfHgD4jgO1KNR1XfyKArllYuNBXDIu/PpyAcDPdaAWhbqu27Zd\n70eInQ7GKADAexyoRWGjYRjGYxRiH8R4gdyESytMvQAAi84XFIpRvR4HNuZeBQC+6UBdD0+IXQ9G\nKgDAi5wsKMQeh0REAICXOkFQCCGkcYvjqx5CCPHayHQRBACwrxOMURg3G9R13TRN13VpxKIRCQDw\nOuVJK9qYHuZtCWV51i0CYF9l+a/7/R+5hy/70KtVQydoUVikuwEA3uAEYxQAgE85a4vCityESxdr\nCwKAN7hgUBAIAGAvuh4AgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgKwLzqNgwiUA2MsFg4JA\nAAB70fUAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGRdcB4FEy4BwF4uGBQEAgDYi64HACBL\nUAAAso4YFMqyDCF8uVhd17nhCADALg4XFNq23bJYCGEYhheXBQB+ugMNZmzbtuu6jQvfbreXFgYA\nKA7VolDXddM0VVVtWbIoii1LAgDfcayg0Lbtl10PbdsOw9D3/VsKBQA/2oG6HrYIIXRd1zRNbFRY\n9MQIR1MvAMCikwWF2+1WVdV6q4NaHwD2cqCuhy/FayaHYSjLsizLeNVDWZYbL5QAAB51phaFONox\nPYyXSKx3QwAA33GCoBBCuN1uTdNMhjrGqRQ0JwDA65yg62HLLI0AwCuUFxv6V5ZX2yIAnlOW/7rf\n/5F7+LIPvVo1dIIWBQDgUwQFACDrBIMZH5WbcOlibUEA8AYXDAoCAQDsRdcDAJAlKAAAWYICAJAl\nKAAAWYICAJAlKAAAWYICAJB1wXkUTLgEAHu5YFAQCABgL7oeAIAsQQEAyBIUAIAsQQEAyBIUAIAs\nQQEAyBIUAICsC86jYMIlANjLBYOCQAAAe9H1AABkCQoAQNYRg0JZliGE3KshhLquy7Isy7Jt2/cV\nCwB+nsONUfiy7r/dbkVRVFVVFEXXdSGElVQBAHzHgYJC27Zd160vU9d1MRquWNf1MAyvLhgA/FgH\n6nqo67ppmthUkDOJBTE3aFEAgBc5UItCXdd1XYcQYufCosmljzEixLgAAOzuQEHhISlPNE0zeSk3\n4dIKUy8AwKJTBoU0mqHv+3lzglofAPZyvqAQGwyapnFtJAC82smCQgwHiw0JAMDuThAU4nCE2IQQ\nexwmbQmuegCAFzlHUJg8M7lIMs7V+LbyAMDPUV5s6F9ZXm2LAHhOWf7rfv9H7uHLPvRq1dCBJlwC\nAI5GUAAAsk4wRuFRuQmXLtYWBABvcMGgIBAAwF50PQAAWYICAJAlKAAAWYICAJAlKAAAWYICAJAl\nKAAAWRecR8GESwCwlwsGBYEAAPai6wEAyBIUAIAsQQEAyBIUAIAsQQEAyBIUAIAsQQEAyLrgPAom\nXAKAvVwwKAgEALAXXQ8AQNbpg0JZliGET5cCAK7p3EGhbdtPFwEAruysYxTatu267tOlAICLO2tQ\nqOu6KIoQwjAMny4LAFzWiYNCXdchhNvt9umyAMBlnTUorMjNo7BifEVlWf5raYF/fKtM/PLE7vWN\nUCz9DHb/DfilbfeKffXlOn1Bn3LBoPD9eRQmv7zFXydPe2L3+kYoNtQZ+37E6z7lGl6xr75cpy/o\nI8591QMA8FKCAgCQJSgAAFmCAgCQde7BjHVduwUUALyOFgUAIEtQAACyzt31sCg34ZJOCgB41AWD\ngkAAAHvR9QAAZAkKAECWoAAAZAkKAECWoAAAZAkKAECWoAAAZF1wHgUTLgHAXi4YFAQCANiLrgcA\nIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIOuC8yiYcAkA9nLBoCAQAMBedD0AAFmCAgCQdayg\n0LZtWZZlWdZ1nVsmhFDXdVwmhPC+wgHAz3OgoNC2bdd1VVVVVTUMw2JWCCHcbrdhGOIyt9utbdt3\nFxQAfowDBYWYEkIIIYSmaYZhmC8TY8H9fg8hxEGLXde9uZwA8HMcJSjEToTUPBD/82VrQVVVrywU\nAPx0RwkKi+ZDEGJ0KMuybdu6rodhaJrm/QUDgB/iKPMoxEywMoYxqus6jk5IPQ7zVofchEsrTL0A\nAIuO1aLw5VUMsRWh7/v7/d73fbEUC+6Pe9HmAMDZHSUoLLYlzJ+M1zvE5+u6jv0OLpIEgBc5VlBI\nVf7GnggA4KWOEhSKoqiqquu6GBFut1sxSg9x9GJcZhiG+P8QQhypIE8AwIscKCikiBCHHcQhCMXv\nPQshhJgnyrKMYSItBgDs7ihXPURxJqXi90aCtm3HlzbEBfRNAMAbHCsoFJvrfhEBAN7gQF0PAMDR\nHK5F4ftyEy6ZLwEAHnXBoCAQAMBedD0AAFmCAgCQJSgAAFmCAgCQJSgAAFmCAgCQJSgAAFkXnEfB\nhEsAsJcLBgWBAAD2ousBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMi64DwKJlwCgL1cMCgI\nBACwF10PAECWoAAAZB0rKLRtW5ZlWZZ1XW9ZrG3bN5UMAH6kA41RaNu267qqqoqiGIahrusQwnyx\nuq6HYYiLdV0X3/jWggLAj3GgFoWYEkIIIYSmaYZhmC8TQhiGoe/7uFhVVTErAACvcJSgEBsPUttA\n/M+8qSA+kzomQgiucQCA1zlKUFg073qInQ7GKADAexxljELMBOtjGKNhGMZjFGIfxHiB3IRLKzRL\nAMCiowSFKISwJSukej0ObMy9CgB801G6HhbzwZehIXY9LF4cAQB837GCQqrycz0RscchEREA4KWO\nEhSKoojXOsa6/3a7FaP0kMYtjq96CCHEayO39FYAAE840BiFGAhiRCiKou/79Hxapq7rpmm6rksj\nFo1IAIDXOVCLQlEU9/u97/u+7+/3e2onaNv2fr+Pp1gYL/apogLAT3CgFoVoYz+C7gYAeINjtSgA\nAIdyuBaF78tNuKSfAgAedcGgIBAAwF50PQAAWYICAJAlKAAAWYICAJAlKAAAWYICAJAlKAAAWRec\nR8GESwCwlwsGBYEAAPai6wEAyBIUAIAsQQEAyBIUAIAsQQEAyBIUAIAsQQEAyLrgPAomXAKAvVww\nKAgEALAXXQ8AQJagAABkHSsotG1blmVZlnVdf7lwXde54QgAwC4OFBTatu26rqqqqqqGYVjPCiGE\nYRjeVTQA+KEOFBRiSgghhBCaplnPAbfb7W0FA4Af6yhBIYRQFEXbtvFh/E96OBEbG6qqekPBAOAn\nO0pQWBTTw0TbtsMw9H3/9uIAwI9zlHkUYib4cgxjCKHruqZpVpZ8YoSjqRcAYNGxWhQWmxDGbrdb\nVVW5Lono/rgdNwEAruQoQWGxhWDyZIwRwzDESyjjaMeyLNdzAwDwtKN0PcRMEEJI/ylmQaGu66Zp\n0sOu64qiWO+GAAC+4yhBoSiKqqq6rqvruq7rePVjCg23261pmrZtx40HcSoFzQkA8DpH6XoofrUi\n3G63OBoxXdfw5cAFAOBFDtSiUBTF/X6fdzpMGhISAQIAXu1YQaHYcIUkAPA2B+p6AACO5nAtCt+X\nm3DJfAkA8KgLBgWBAAD2ousBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMi64DwKJlwCgL1c\nMCgIBACwF10PAECWoAAAZAkKAECWoAAAZAkKAECWoAAAZAkKAEDWBedRMOESAOzlgkFBIACAveh6\nAACyBAUAIOtYQaFt27Isy7Ks6zq3TAihruu4WNu27yscAPw8Bxqj0LZt13VVVRVFMQxDXdchhPli\nt9utKIq4WNd1IYTFxQCA7ztQUIgpIdb6MTTMl4ktDWm4Yl3XwzC8r4gA8MMcpesh5YP4MP5n3rMw\niQUxN2hRAIAXOVCLwtw8AUwufYwLrAxoAAC+4yhB4dEqP4QQBys0TTN5KTfh0gpTLwDAoqN0PUQb\nOxHato0poe/7effE/XF7bwcAXMRRgsJiW8Lik2VZdl3XNM39ftfpAAAvdaygkFoUcj0Rsf1gsSEB\nANjdUYJCURRVVcV5EYpfkyWk9JDmVorXTLZtW498rMQAcHVHGcxY/AoEMSIURdH3fXp+suTkIsk4\nV+PLywcAP8+BgkJRFPf7fd7p0LZt6mgw8BAA3ulYQaEwKQIAHMmBxigAAEdzuBaF78tNuKTbAgAe\ndcGgIBAAwF50PQAAWYICAJAlKAAAWYICAJAlKAAAWYICAJAlKAAAWRecR9w+9SIAAAVfSURBVMGE\nSwCwlwsGBYEAAPai6wEAyBIUAIAsQQEAyBIUAIAsQQEAyBIUPiN3DeehnKKQhXLu7STl/H+fLsAm\nJ9mZZynnOb706xEUAICsC86jYMIlANjLBYOCQAAAe9H1AABkCQoAQNYpg0LbtmVZlmVZ1/XTK3lk\nlO/WobavGDm8fZ2vWPIFK7QzP/PpH/zSz7Iz/Tg/8tE/dmeeyPmCQtu2XddVVVVV1TAM38kKAMC6\n8wWFmBJCCCGEpmmGYfh0iQDgsk4WFEIIRVG0bRsfxv+khwDAvk4WFBbF9AAA7O9+Kk3TTMpcFEVV\nVeOHAPBB764aX+yUEy6FEHJjGO+yAgDs52RdD4v5wIUPAPAipwwKaVBC/I+gAAAvUp6urb6u62EY\n+r6v6zrOgHG6TQCAszhZi0LxqxXhdrvFlND3/crCZVke5JqILbNJxrEXcZmPFHvjlJdpsU9dmPrQ\n1JwpUL7fQ1/6B/dnssucpzs6yw680g+y+PQf+CkOlV86TtWzjw8PpnxW3/d9368vEy+R+HKxN4gl\nibNJFr9fppGkxBOXKYqiaZqjFfJ+v6dX43/eXMj75nJGaa++q3T/s7Gc6Uvfsjkv9dCOPU55Pr4D\nL/aD/Owf+CkOlV86TtWzl7MGhXXxe4qO8G2Nf/HzKzyj+KMfv+XNR5MthYx/ommXTsr8HlvKOV74\nU8flJ770j+zP5KEd+wZn2YFX+kF+/A/8FIfKFUerevZylP27r77vm6aJv6ePf1uTv737/b4YgT97\nyHuukO+3sZxROil5f5k3lnNyjPvgichDO/Y45fn4DrzYD/Kzf+CnOFSuO1TVs6PzjVHYoq7rtm0/\n3uO7Yt59FUsb+wXjgM1xOP2IeSGHYaiq6uNjFCYW+wLbto2DXt9enKx5OeMf4WSBg4wPKI435+lZ\nduB5f5AH/AM/xaEyOX7V86TPZZSXm+fTj/hyNskkdbm9/6vZWMhUtk91CW8sZ/zq47nIR044tn/p\nUao/PnUS/2iBX+0sO/BiP8jP/oGf4lC5xUGqnh2dcmbGoiji3SPnz38wyv373//+z3/+M3/+b3/7\nW7E6m2Q0vuwzhBAv67jvfeXnNwsZpVLFMu9awP/6Zjlvt1s8MXpF2cZ22Z/xzulFUcRvf+ciPmJj\ngd/mLDvwOD/Idcf5A19xkEMlY9fsejiUjbNJxka/+Hxd1zFcv63t97kpL+OB750N1FvKGcszDENs\nPo1Huje3o27fn2VZdl0XzzU/WEkfbc7Ts+zA6/0gx978B36KQ+XPdNYWhbquD3XqUxTFH3/88ccf\nf+ReTTH5s92o3yxkVVXjM4zX/XF+p5zp2BHFc82maV6xz7+5P+OB+OMNCcVoztMj/Eq3l+fjO3BL\nOd/5g8zZuD/f9ge+6Gg/Qv7nc70eL3ecjqLxINjxbp/3XMb/f+Ri6y2FjP+PvYafuiJ8Sznny7+3\njP/73PVyxuer372/qOsFPlp5jrYDr/SD/Pgf+CkOlV86TtWzl7O2KJxLCKEsy9vtFh+mH/c4sMcc\n3XVdPOEYL3acQsZzo67r0tRy97d3DW4p5xFsL+ekG/hTAwVyBf6Us+zAK/0gP/4HfopD5Q9kDMj7\nbGxJ+2yD2ykKeYQCbHSWciZHK/DRypNzsXI6CjEmKAAAWa56AACyBAUAIEtQAACyBAUAIEtQAACy\nBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUA\nIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIEtQAACyBAUAIOv/\nA8XQyPVr5oXjAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "sample mean = 0.265254\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1\n" ] } ], "source": [ "h1->Draw();\n", "gPad->Draw();\n", "std::cout << \"sample mean = \" << h1->GetMean() << std::endl;" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Part 2: Study the distribution of the sample mean composed of *n* numbers uniformly distributed\n", "\n", "Now repeat many times what has been done before to study the distribution of the average, $\\mu$. The exercise will show that this distribution will converge very quickly to a Gaussian distribution. It is enough to have a very small \n", "$n$ to get already a pretty good Gaussian. \n", "For having the sigma of the distribution indipendent on the number of generated events $n$, we will \n", "make an histogram of $\\sqrt{n} \\times \\mu$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Do then as following: \n", "* Make a loop where for each time $n$ uniform numbers are generated and their average $\\mu$ is computed. \n", "* Make an histogram now of $\\sqrt{n} \\times \\mu$.\n", "\n", "Start using a very small $n$ (e.g. $n=2$) but use for the loop, which performs the generation of $n$ numbers, a large value (e.g. $n_{experiments} = 10000$. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "auto hout = new TH1D(\"h\",\"Sample Mean Distribution\",50,-2,2);\n", "int nexp = 10000; " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAHYCAIAAAApvgy/AAAABmJLR0QAAAAAAAD5Q7t/AAAgAElE\nQVR4nO3dW5KrOMIuUDjx97jA1XOpnkUBNYveI+mX2kD0wHweFFutAoTJTNtccq2oqMgkBebibX2W\nhCjv93sBALDk/+29AwDAcQkKAECWoAAAZAkKAECWoAAAZAkKHFHbtnVdl4m2bffeqWVt2z5r9+Ih\nr5QZhiGUqev666/4XOFUTNR1Xdf1MAy58ot/+rpwMuOvD0/sc18OrkRQ4HDKsuy6bhzHdGHXda+r\nVA4iHvJK7Ih/mpyfI1i8OuM4juN4u93mySaU/+g1HYZhyyovPT/zfQgvd+33J9+WoMCxxOqk7/t7\noqqqoihut9ueO/cuXdfl/nTAfDBRVVV64fq+b5qmKIpxHCffueu6rqrqQ00jbdvebrct7TdVVYX3\nzCuE3UhjQdM0Hz0WOAtBgWMJFeH9fp985sYP5cP2QTzX4nfTM35hreu6bds4sVt6Wdu2HYbhRZXr\nxoaHZwnH8raXg3cSFDiQ9RAQvpjmatCNn9SLJYdf1lf8XCP5R9daOcxwfkKBlRd9eCq+eLo+J7Yr\nbHnRz526sLcbi72tXt94IJ87ZHiHOxxG3/cffVvOm5fnTd9h4aR+DcUWFwbhT03TzCvmdPux2OKB\n5PZqUSi5chLWC8xPxaT75kOna34I860tbnzlSMN24rkK5dNTNz/V6dYmfworho2khxb2c3KKJqdu\nspFJsclux3NyX7qy6cst9petnMP4cpOSW94t8DaCAseyvVq6Jx+vzS/zz9n0kz3Uf/NwkC6MNcek\n2CQxxO3Pg0K6G7m9Wjn2eFyTMzCvwhfPW24/P3S6YpW/srXc5Vg5zEmBSVCIx5U7b2EcQDyEcH7i\nNieFJzs8ueKTTc0vQWoSFCbXN10xvWSTKzLJMWmZeB4W34ewO0GBY5nX4iufmIsf65OFsfpZrMvT\nhZNqLFfBLxabVzaL3x3X00/c88VWipge5kFhsYaeL/zQ6Zpsbcv+fzEozBsY5rsXzkz6Eov1/XzF\n+I5KDyFe4txaQRoU0hedV/lxyXzLKy+3WEyjAschKHA4fd8vjlefJ4bwXW2yMFfzTV4it3AeFOa7\nly6fVOq5T/ktn/7pZucvHZfMd35xP+fLP3267plafLHMyjFOTulkm/OKPOzPvGqf19nzF108RbnD\nn+zDpMwngsLiseSKNZl+qzscg8GMHE6Yn+f+q5k3hob5VApt204Gr+XGsi0mj8/dPhdH6a/cmDAf\nyR92bPvNjWHf4kuEHxZ3eOVPk/3cfrpeKrer1a87YNO9CvM1Pdzmxlsn5sWa/NDRr5u/3OSyLhZz\njyVHIyhwXOHOuhAa4pfRyVQKYQR7nNNwZQaCz1lJGIu1S4gCIdNMfOh1Q20Rq8zww2K9HnYjzFLw\n8BU3nq7PRaiHHt6LEV43nr3clI5znw4KYclzZ6dY2efwcm5t4Fz+b+8dgP/JfR0vfk3qHFJCvPk+\nrQurqgrfPo8wKdPXK9q2bdPpKcMP69Xhwxfd/XQ9PIpwf2DbtqFkmNKxqio1K+xIUOBAQqXV9/1i\nXZJroc2Vf4rF75orFV5VVeM4hljzxZcOm4p1ZC4H1HXddd3D2vQ9p2tF2gOyUixtRYhpad5p8ul9\nWJzI67ktKOtJaL0AHJCuBw4kfF4/rBLS5uK9qr0i83E/6TKIQhX1odoubmql3yFaDDRpB//upyuk\nwJUqeT4coW3b544hmG9nS8396Vefr7ilZQiORlDgQOKIv8VKMXy8rn/5e8XovMWWjNxuxEOYVBK3\n2+2jHeFxU+u1S1w+H6j48BXfM5hxGIbY67FS6YYjnRR47lfwyZiMYRjCKZqch8k+fGLgS8g3uaGj\nggLnIihwIHVdp8PZwlfwOPhu8oC+8Fkcns0ThEb48NcnVoHjOKZ7sli1pOKOhZGYbdvGavKje5XO\nI7RSLNxQ13VdaLdPT0V8xXeersmYyjgMYj6tYSq96yHu4WJImueJ7cIzwcPGw46lU3fEfYijJVZG\noa7MAx1DXvpy4WxPZgqBE9j7/kyYyn2ShkkJ05Lz6jOdg6FK5tytMhMVryyMt+zP92d+Z//kVvj5\nKlvmz5n/k4w1a/qK6zND5PbzK6fr/pF5FBYtrjjf5uIWFo89rjif0iCYnKK4qYc7trgDk3OSXt+V\nKZzXjyW31nznYV/lfendDLsLX+nir7mvvLFY2sMdCs/7vD8kjKSLgwQ/sc3FfXuph6/4utP1LOl1\nX9ylr5/Vh8e75SVimfXGmPe/B+DpBAVYNgkKAN+TMQoAQJagAABkCQoAQJYxCgBAlhYFACDLsx4A\neLKPPi6VXWzsUhAUAHg+/doHtz3M6XoAALIEBQAgS1AAALIEBQBYFp7/ufde7ExQAIAsT3sRFACA\nLEEBANa0bVvX9bfthjCFMwBPVpYXqVziZANVVY3jGH64RmfE9mt0kWsJwHFcLCjEY5n8emrbr5Gu\nBwDIqqpq8efvQ1AAALIEBQAgS1AAALIEBQAgS1AAALIucgdLtP0B2wC8zsUql+vZfnvk/716V97P\nuxNgX76zXckFgwIAu5MVLkNQAOD5NO4e3PYkZzAjAJAlKAAAWYICAJAlKAAAWYICAG9SL/noRoZh\n+MRaR9O27WTJMAxt2w7D8HBhWH1x4XyzX3fBCZcudkQAp5P7KA4j7ScPa55XeGn5vu8nsaBt267r\nzv5RPzm0uq7HcQw/N00T6vtwpGFhVVXhRA3DcLvd4nbieUjvYpiftMUd2HoO79dyvSMCOJ3cR3Go\n8FZW7Pt+Un6yZPJrbmHf94sljyCtzsOSvu/jr03TxLMXQsOkQFVV8RzGAulaaYH13di6wxvLncX3\niUQAh/XRoDBpYwhl4q+hFgxlqqpKK8Xwcyw239oB40LTNGG3476lR3T/FY9COEgXxtMSVwxHev/7\niZ2smLO9WrzgGIWVkwLAvsZxTAcopH3q8St1aISPlWIoM45j3/dpP8UwDF3XxbVCK33btqFkWP0V\nffZf1LbtpF9gGIZ5d8ykR2ZSIEi3M9/m13bzfy4YFAA4o1DV5TrXq6qaD1YI1Wcc3hhjQaho7/f7\nE+vL3Y3juMvhmMIZgPeJg/I+ah4gQsNDOrKv+JUVuq4LDQxbhvUdQRzJuGIeld5DiwIApzQZtRc6\nKULrQvi1qqpJjDimefU/v3E0dNmEn2PSmnTEpD88MVIICgC81fB3n95OuKUwbKFt25AJ4t2Dn5uk\nYRfxZsj4/7jz4f9p3V9VVbxnchzHMBAyDuwoiqLrusUBDZ+3cdDjWVzviABOJ/dRvFgNha/+cZV0\n0H4oEOvCsHByK2DcTiyQbjwuPJT0dscgvX1jctvk/EDiwrRBJT0VW/Zhe3V5temJTLgEK8ryx5Zi\n9/vvr94Tru2JH8Vb5mGcl3l68/t7LB7s9oUry+e2X6OrVauCAqwoyx8PQ8CWMrDOR/Hxbb9GxigA\nAFmCAgCQZR4FYOrhUAZ9E/B9CArA32wZxPCePQGO4IJBIX3UZsrIGgD4qAsGBYEAAJ7lgkEBgGNK\n5xlcX3gKYWbJlSkgFwusrBX+lD7xMp2ucaJt28lDsOKfnjwr5caJmc7iekcET1QU/z7IRri2xY/i\nOM/gw4WnkM6luDj/4+Kskela6byKweRUpJX1z58/568e53Cc1OzpnI8528/5+a7NujO+2+BtBAXe\nYz0opNVqrE0nJRdXX3ytLZXiK8QDmc/HPFmYzjm9stbkVExmqp48/moSCHJhZX3/t5b80HaPT1CA\nFYIC77ESFNLHOoSS6ZLFr+mL38Ljitu/Qz9R+kCK+1I9nVbzoUDf9/O14uGE8umpSP/68+fPxZOW\nBoX+l42HsL26NOESAO+TjkiYPJFhGIau6+K38K7rQoGu6+K38Pi4yKIoxnGMdd5iL/7rzEdUTJYM\nwzB5hOP8UZlpgXDgk21OxhmEAvMhHeHn2y9Pf8KFoADA+6T1XNu2aWWZDs1Li/V937btvKKNLQ1V\nVcWHLO/i0491DrtdlmVVVVsq+GEYQjya/ykErJClnhub3PUAwFuF1oK2bcdx7Pt+Uv3fbrf4c8wT\ne+WA3BMaJ0vGcZxnhS37XFVVrNTjYaa3M0yEkxNiUyxZ13WMDnVdV1X13FtIBAU4jS1TIppcmeNr\n2zYEhaIo6rpOa7W0kktTQt/3oc7OTan3Irkat67rrusmSya/ToJCKJCuNY5jbBQZxzGW77pu0r8Q\n/hQjVNxI7IiZ3FT5ZBvHMpzF9Y4IooejCL9e4Cm7AYsfxek4/1ABhcF6cdzf/E6Bvu8ng//TLcTx\ng5MBku8RdyDdw6Zp0uGW8wLxqBfvlZiP65ysNdmB2N1Q/P1mii13QGw/Y1erVgUFLkxQ4CweBoV0\nGoBJRRu/x8baLi5JbyDcPSikYw8X9yQ9lhgIFteKJgeSdmfMdyDdbFpyHikWbT9j5f1aEx6X5dWO\nCKKy/LHes/D1Ak/ZDfjiR3EczLi4ZP7XHT3cmcUCHzqEvu/TcRtf2ZnU9mt0tWp1pfvqYkfKNyQo\ncBa+sx3f9mt0wcGM3p0A8CzmUQAAsgQFACBLUAAAsgQFACBLUAAAsgQFACBr59sjw4zf6ZI4oXeY\nuTo8aWMy23ZcKxYG3unhUydMtEBO/AAPz0Na/wz/+fPnn3/+OakC5k9VePMzpj8nPP0yt6uT5emD\nNMM0SulRTxbOn6s53+CXbJzB8UXCrJNVIk5IGXYvnbBzvkoxmyh79yOC1znIFM4PmeOZ3Edx/AAP\nz0Qo/v60gnn5P/74Y7481g6xItg4afGO0mp3Um3d/z7Zc3o46cL5hNbF3x8b8dHKfXt1uXO1mrvA\nk/mui8zjLubzewsKXJigwFnkPoon1WSo6e9LQeGvv/6654NCWnEsPl1pXhnvaP5cq5UCiwvjz+nC\nxQO///0pGCu2V5dHGaMwaTaZPNu7qqrQVBWfOhqWTx7ECcDBpU3ibdu2bTsMQ3iWQVmWwzD8/Pmz\nLMt//vOfZVn++eefDzdY13XoxYi/lmV5u93C1sJm41f2pmne/KDqoiiGYYg12mKPQCiw2IMwFze1\n2GsTtv/kvpiNgeJFJjuTNq2kgShGsEkWm+ep3Y8IXkeLAmeR+yiOlVzofYjL0xaF4leDwV9//bVY\nTxWzpuhYNaQPpUwrjrQx//39FGmNttgMMKkKF7vgJ6dr3i8fV9nYmrK9utyzRSFGp77vw2F3Xbee\np8ZxXNlOUH7cs44IgBXDMPR93zTNOI5d15VlOfnu+/Pnz+LXp/pvv/2WNi2viN+tu64Lq8TnKIYv\n62ndEboz9rLYDJBGmaqqQvvKpGqbt7sXSetC3HhVVc8f478xULxH8SvrFVoUYEaLAmeR+yiefNmN\nH+mxRWEyKGHLGIV0O/M6LrxiURR//PHH4tbeoHjUopCKBdL0sHE4wvqW5+tuLHmUMQpRzH1GHgBc\nSRyLEM270idfkRdbkefGcUxHIaSVbvh6HRoV/vzzz12aE+Y3+U++9M/PQ13X4zjGYrF1ZHKfZJHU\nlWEjL5kyYGOgeIX5OM8iaVFI/xSXT1ZZ3MIrdxn2pEWBs8h9FIcP8/SWyOLvLQr35AN/ZYxC8avP\nOuaD8Ke01Tn9Obep90jbAya9DLHBI11YzFrQ49iLdBDGpJkh3fIW28/GntVqOMhwpuLQjPT4QzBM\nz8s9OaFx9XSbggIXJihwFrmP4vkd/+kq4aM+Vuq5L7STvy52Q8StTdZ61gF+VLpX6S6ld/7Pdztd\nOJkXYLLwPuuGeGj72Sjvs5P+TpOWqKZpYgtMOmljunyyymT/y3LnI4LXKcsf6zMePpwwsXjLnIkP\n95PLW/8oDq3l80byOAKxKIqfP3/+9ttvn3v13PZ3lx7g4l+L2W5vOVefs726PES1unJRc+cit4qg\nwIWdpQI+y37yOj6Kj+9kQeGJvDu5sLNUwGfZT17HR/Hxbb9Gh7vrAQA4jp2fHgnAJZnL7jIEBQCe\n7Dv3O1yv20XXAwCQJSgAAFkX7HrIdYxdrC0IAN7ggkFBIACAZ9H1AABkCQoAQJagAABkCQoAQJag\nAABkCQoAQJagAABkCQoAQJagAABkCQoAQJagAABkCQoAQNYFHwrl6ZEA8CwXDAoCARxcWf54WOZ+\n//0NewI8dMGgABzfeg7YkiSA9xAU4CjUjsABCQpwINrbgaNx1wMAkCUoAABZggIAkCUoAABZggIA\nkCUoAABZggIAkCUoAABZF5xwyUOhYHdmmYTLuGBQEAhgX+aXhCvR9QAAZAkKAECWoAAAZAkKAECW\noAAAZF3wrgfYxZYbAt0OAJyOoABPs54DTC0AnJGgAJyP9ht4G0EBOCXtN/AeBjMCAFmCAgCQdcGu\nBw+FAoBnuWBQEAgA4Fl0PQAAWRdsUQAuwG0LcBCCAnA4pkCA49D1AABkCQoAQJauB3gf/e7A6Ryo\nRaEsy2EY4q/DMNR1XZZlXdeTkm3blmU5KQ8Hd7///vC/vfcRYOooLQrzWZJut1tRFFVVjeNYlmWc\nHaGu63Ecq6oKZfq+nycJAOApDtGi0LbtZEmo++/3+zAMISKEMsMwjOPYNM0wDMMwVFUV8gQA8Ar7\nB4VhGLquCy0EUWwzCKqq6rouFC6SYBHyhA4IAHiR/YPC7XarqirXqDAxyQQ6HQDgpXYOCh9tEhjH\ncb5wsnr5cV88CgC4qj2DQtu24zj2fb99lUkPRTBpV7h/3BcPBACuas+7HkJLQDoaMfwcam4jDwBg\nd3sGhbZtYxoItzNUVRWbB9Jehji2MdwbGZeH1Y1UAIBX+URD/SuEDoi+79Nfm6a53+9N06R/Koqi\nqqpYJvwcHeeI+G6K4t977wL/43Kwl+tVQ0eZcGmiruumabquC3dFNk0Tmw36vr/dbnEEoh4KAHid\n/814eExhIufF5cVSp0M6hyO8U1n+MAfzcbgc7OV61dBBWxSi3PgD4xIA4A32n3AJADgsQQEAyBIU\nAIAsQQEAyBIUAICso9/18Am5hzxd7H4VAHiDCwYFgQAAnkXXAwCQJSgAAFmCAgCQJSgAAFmCAgCQ\nJSgAAFmCAgCQJSgAAFmCAgCQJSgAAFmCAgCQdcFnPXgoFFAURVn+WC9wv//+nj2BU7tgUBAIgIch\n4GGMAAJdDwBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBAlqAAAGQJCgBA1gWf\n9eChUADwLBcMCgIBADyLrgcAIEtQAACyLtj1AK9Qlj/23gWAHQgKsNX9/vveuwDwbroeAIAsQQEA\nyBIUAIAsQQEAyDKYEdzRAJAlKEBRuKMBIEPXAwCQdcEWBQ+FAoBnuWBQEAgA4Fl0PQAAWYICAJAl\nKAAAWYICAJAlKAAAWYICAJC1f1Bo27Ysy7Is67pOlw/DUNf1fHm6yjAM79pNAPiOdp5Hoa7rcRyr\nqiqKYhzHsizjLAi3260oiqqqJsvTVW63W9/38yQBADzFni0KwzCM49g0zTAMwzA0TRMWFkUR6v77\n/T4MQ4gIbdvOV6mqKuQJAOAV9u96iO0BacNAbDMIqqrquq74FSNCaIir6IAAgBfZMyjUdX2/3+u6\nHoahbdvQNrCYG6JJJtDpAAAvdYhnPcTug9D7sGIcx/nCMOwx/pp7KNQKj4cAgEWHCAphLMIwDKF/\nIfYszIWxjZOFk3YFtT4APMvOgxljV0Jd13G4YvzrLnsFAEQ7B4WVexbSloM4tnE+18J8IQDwLDsP\nZgz/T+v70K7Q9338ef7/eLND13XpzREAwHOV+/bot20bxiUETdPEAQrpn9Llk3aIyf6nUzPBRmX5\n437/fe+94K3K8seWYt4YfNT1qqFDHM9KD8LkjoaHq1zvCvEGggKLvDH4hOtVQ5c7nstdId5AfcAi\nbww+4XrV0P4zMwIAh3WIeRTgpTb2RgMwJyjwLWhABvgcXQ8AQJYWBYCsh/1WGqu4vAsGhdxDoS42\nDBV4tYchwPAXvoMLBgWBAACexRgFACBLUAAAsgQFACBLUAAAsgQFACBLUAAAsgQFACBLUAAAsgQF\nACDrgjMzAryNh0FweYICwCd5GATfwQWDgodCAcCzXDAoCAQA8CwXDAp8N1p3AV5HUOAKjBcDeBG3\nRwIAWYICAJAlKAAAWcYoALyQGZk4O0EB4FXMyMQF6HoAALIEBQAgS9cDR6dtFmBHggInYLQXwF4u\nGBQ8FAoAnuWCQUEgAIBnMZgRAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMgSFACALEEBAMgS\nFACALEEBAMi64LMePBQKAJ7lgkFBIACAZ9H1AABkCQoAQJagAABkCQoAQJagAABkCQoAQJagAABk\n7R8U2rYty7Isy7quh2GIy4dhqOs6LM+tkpYHAJ5u5wmX6roex7GqqqIoxnG83W5934dkcLvdiqKo\nqmocx7Is4zRK6SppeQDg6XZuUQhV/jAMwzCEKNC2bVEUoe6/3++T5cMwjOPYNE1YpaqqkCcAgFfY\nMyiEjoOQAKJxHItfASIurKqq67r5KiFP6IAAgBfZMyjUdX2/32PHQajvm6aJf52vMskEOh0A4KX2\nH8wYtG0bOhEmDQwTob1hYpIeyo975pEAwIXs//TIYRjiuMWHnQhhbONk4aRdwdMjgRMpyx/rBe73\n39+zJ7Bo56AQU8L85gUjD4DLexgCHsYIeLWdux5ut1tVVelIhShtOYhjGxfDhJEKAPAiewaF9OaF\nKCzs+z4WmP8/3uzQdV16cwQA8Fx7dj2E9oDF8Yl1XTdN03VduCuyaZrYbND3/e12iyMQ9VAAwOuU\nBx/6FyZyXlxeLHU6pHM4cg1l+cNgLr4t7//TuV41tP9dD+ty4w+MSwCANzjKPAoAwAEJCgBAlqAA\nAGQdfYwCl2c+GYAjExTYn0HdAId1waCQe8jTxe5XAYA3uGBQEAgA4FkMZgQAsgQFACBLUAAAsgQF\nACBLUAAAsgQFACBLUAAAsi44jwKHYoZmgFMTFHg5MzQDnJeuBwAgS1AAALIu2PXgoVAA8CwXDAoC\nAQA8ywWDAsCVPLx1yHhhXkpQADiuhyHAHci8msGMAECWoAAAZAkKAECWoAAAZAkKAECWoAAAZAkK\nAECWoAAAZAkKAEDWBWdm9FAoAHiWCwYFgQAAnkXXAwCQJSgAAFmCAgCQdcExCryTR9wCXJugwFfd\n77/vvQsAvIquBwAgS1AAALIEBQAgyxgFgHN7OKbYQCK+QlAAOLGHIcCtSXyRrgcAIOuCLQoeCgUA\nz3LBoCAQAMCzXDAoAJDaMkzBgEdyBAWAK9uSAAx4ZIXBjABAlhYFsnzJAEBQYI1uS4BvTtcDAJB1\nlKBQluUwDOmSYRjqui7Lsq7rSeG2bcuynK8CADzXIboe2radL7zdbkVRVFU1jmNZlnF2hLqux3Gs\nqiqU6ft+niQAgKfYuUUhtA10XTdZHur++/0+DEOICCFMDMMwjmPTNMMwDMNQVVXIEwDAK+wcFOq6\nbpomNA+kYptBUFVVCBOhryG2QIQ8oQMCAF5k/6DQtu1i18Nih8IkE+h0AICXOspgxo3GcZwvnKSH\n8uPetPcAcDYnCwrzTopi1q5w/7g37T0AnM1xg4KRBwCwu+MGhbSXIY5tnDQehDBhpAIAvMhBg0Lf\n98Wvuxvm/483O3Rdt9gZAQA8xSEmXJoLt012XRfuimyaJjYb9H1/u93iCEQ9FADwOuXBh/KFiZwX\nlxdLnQ7pHI58UVn+8FAo+A78Y3+i61VDB21RiHLjD4xLAIA3OOgYBQDgCAQFACBLUAAAso4+RoHX\nKcsfe+8CAEcnKHxrxjkDsO6CQSH3kKeL3a8CAG9wwaAgEADAsxjMCABkCQoAQJagAABkCQoAQJag\nAABkCQoAQJagAABkCQoAQNYFJ1wC4KMePvzFjO/flqAA8N09DAGeIfed6XoAALIu2KLgoVAA8CwX\nDAoCAQA8ywWDAoE+RQC+TlC4MqOUAfgigxkBgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIcnskAI95\natS3JSgA8ICnRn1nuh4AgKwLtih4KBQAPMsFg4JAAADPousBAMgSFACALEEBAMgSFACALEEBAMgS\nFACALEEBAMgSFACALEEBAMgSFACALEEBAMi64LMePBQKAJ7lgkFBIACAZ9H1cHS5BpKTutjhFI7o\n8C52OMXljuhih3NJggIAkCUoAABZFxyjAMD7leWP9QL3++/v2ROeS1AA4KsehoCHMYLD0vUAAGSd\nskWhbduu64qiqKpqGIbPbaQsy403Uu5bMr+FeTz/V1H8+4mv/s7Dec+rO6ItJTe62OG86NUvdkQX\nO5wXlbye8wWFkBKqqiqKYhzHuq4/nRXObtLWV5b/0gUIwHOdr+shpIRhGIZhaJpmHMe99wgALutk\nQSE0HrRtG34NP8RfAYDnOllQWPRtux4A4NVONkYhZIK6rlfKbJ8Q9Owly/Jfr371Yx64kgcpeYqd\nVPK5Jb+ywflH1te3ecySF3OyoBAMw5DLCt92VCoAvMLJuh4W88F6AwMA8GmnDApxUMKWnggA4NPO\nN4NEXdfjOPZ9X9d16DE63SEAwFmcrEWh+NWKcLvdQkro+35epm3bsizLsjzvdExlWa7sefl3521T\nWT/MY0rfXbkyJ71AWw7tmC58URad8R9O8Q0+1i5Q9Sw65WDG+/2+0ukQmhzi1I232y00P7x1F79m\n48wQ4RiL03a+nHECjA9NDHquC3TeOU8vfFEWnfEfTvENPtYuUPVk3S+nKIqqqnK/HlzTNPHS9H2/\nWCY0ouT+egpbDvOY0rdTOIp5mZNeoC2HdkwXvigTJ/2H800+1k5d9aw7X9fDusnUjcGJpnmu67pp\nmpipF8XWlLN84ZvbcpgHtHFi0DNeoPPOeXrhizJ30n843+Fj7exVz7pTdj2sqOv6noxtDBcvzbMH\nV9d1+Kdyu93WS6ZTf9zPNpxz+2EeX+5z7dQXKDjpR3Zx3Yty0n843+Fj7SNGIzkAAAIASURBVOxV\nz7qrtSik2rYN78tTfDHaLr4F+74Pb8RvO1/Ym228HfeMF+i8dxpf+KJ8K1e6QNerek7ZohAeHTlf\nHq9KjK7hOZPv27NtHu7/w9Xjz+Hzseu6ldkqd/HFY9zXf/7zn//+97/z5f/4xz+K1YlBg1NcoEWn\n2MlFF74o38Q1LtDBq55Pu2CLQrxUfd9f6VLlnOsf0ql9bmLQU1yg8855euGL8p2d8QJduerZcyTl\naxTnH2u6PgB4coDnGqCeOuM456IomqYJP+f2/6QXaMuhHdOFL8qic12d6PIfaxeoenJOdiUeCm+v\n6u/ih8hZzP9FhSXhQMLg4fDXsPyk784zft6lJz+N2he4QLlDO74LX5RFZ/yHc7/6x9o1qp6cU45R\nWBEafC5zU0qUNmSFfrs4fvhinWEHNwxDWZbx5MeJQS9wgXKHdnwXvijXdqULdNWqJzjfsx6ITjfS\n5zK2j7Q/3QX6Drc/nPHovg8X6IAEBQAg64J3PQAAzyIoAABZggIAkCUoAABZggIAkCUoAABZggIA\nkCUoAABZggIAkCUoAABZggIAkCUoAABZggIAkCUoAABZggIAkCUoAABZggIAkCUoAABZggIAkCUo\nAABZggIAkCUoAABZggIAkCUoAABZggIAkCUoAABZggIAkCUoAABZggIAkCUoAABZ/x9FOLptlUQo\n0wAAAABJRU5ErkJggg==\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "n = 2;\n", "hout->Reset(); // for running this cell a second time\n", "for (int iexp = 0; iexp < nexp; ++iexp){ \n", " h1->Reset();\n", " for (int i = 0; i < n; ++i) {\n", " h1->Fill(r.Uniform(-1,1));\n", " }\n", " double average = sqrt(n)*h1->GetMean();\n", " hout->Fill(average);\n", "}\n", "hout->Draw();\n", "gPad->Draw();" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false }, "source": [ "### Part 3: Fit the obtained histogram with a Gaussian function\n", "\n", "we perform now a fit with a Gaussian distribution and see how the obtained data agree with the function" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAHYCAIAAAApvgy/AAAABmJLR0QAAAAAAAD5Q7t/AAAgAElE\nQVR4nO3dy3Lcxv328e7Um9vJ8r+wPQOMKFu2N84NpLKTbsBKxZJJYCiZdlW080papUq5gCQLk7JE\nAiDtVMW5ktxCfMC7+HlaTZwGcwK6G99PqVRDEDODE9EPuhsNXZalAgAAaPKbsRcAAAC4i6AAAABa\nERQAAEArggIAAGhFUAAAAK0ICnBRmqZxHGtLmqZjL1SzNE33tXhmlTvmyfNc5onjePdv3C/ZFBVx\nHMdxnOd52/yNv9qdbEzz49oNu9+vA0JCUIBztNbL5bIoCnvicrk8XKHiCLPKHbHD/KqyfVzQuHeK\noiiKYrFY1JONzL/pPs3zvM9bDrp96ssgXxf28YnJIijALaY4ybKstERRpJRaLBZjLtxQlstl268c\nzAcVURTZOy7LsiRJlFJFUVSuueM4jqJoo6qRNE0Xi0Wf+psoiuSYOQRZDDsWJEmy6boAviAowC1S\nEJZlWTnnmpOys20Q+9V4berjBWscx2mamoHd7N2apmme5wcqXHtWPOyLrMtgXwcMiaAAh3SHALkw\nbStBe56pG+fMV7rfuF0l+abv6lhN2T4yQ8eXrt0UO26u7Zh6hT5fut2mk6XtOdtg5XrPFdlulYEh\nlIAzsizb9LCsVy/Xq75lYqV8ldkaJwr5VZIk9YLZ/nwzW+OKtC1VI5mzYyN0z1DfFJXmm402V30V\n6p/W+OEdayqfY7aVzG9vuvqmtj+t8it5o3yIvWqynJVNVNl0lQ+pzFZZbLNNyqY9a39dY3tZxzY0\nX1eZs8/RAgyGoAC39C+WSuv0mqzUz7P2mV3Kv3o4sCeakqMyWyUxmM+vBwV7MdqWqmPdzXpVtkC9\nCG/cbm3LudHmMkV+x6e17Y6O1azMUAkKZr3atpv0AzCrINvHfGZl5soCV/Z45aPqu8BWCQqV/Wu/\n0d5llT1SyTH2PGY7NB6HwOgICnBLvRTvOGM2ntYrE03x01iW2xMrxVhbAd84W72wabx27E4/Zskb\naylMeqgHhcYSuj5xo81V+bQ+y79jUKhXMNQXT7aM/RWN5X39jeaIslfB7OK2dwk7KNhfWi/yzZT6\nJ3d8XeNsVCrAHQQFOCfLssb+6vXEINdqlYltJV/lK9om1oNCffHs6ZVCve0s3+fsb39s/avNlPrC\nNy5nffrWm6tsKcUb5+lYx8omrXxmvSCX5akX7fUyu/6ljZuobfUry1CZZ4ug0LgubbMlLe1WJeAG\nOjPCOTI+T7mq5jWhoT6UQpqmlc5rbX3ZGpPHdrfPmV76HTcm1Hvyy4L1v7lRls18hbxoXOCOX1WW\ns//mOqi2RY1Wd8DaSyXjNa39zJ63TtRnS9q7ju6u/nWV3do4G/dYwjUEBbhL7qyT0GAuRitDKUgP\ndjOmYccIBNvpSBiNpYtEAck0FRt9r5QWpsiUF43luiyGjFKw9ht7bq7tItRaa+/FkO81W69tSMe6\nrYOCTNnv6BQdyyxfx60N8Mv/G3sBgLfaLsfValBnSQnm5nu7LIyiSK4+XRiUafeCNk1Te3hKedFd\nHK790tE319q1kPsD0zSVOWVIxyiKKFmBEREU4BAptLIsayxL2mpo2+bfi8ZrzY4CL4qioigk1uz4\n1fJRpoxsywFxHC+Xy7Wl6TCbq4PdAtIxm12LYNJSvdFk62VoHMhrvzUo3UmoewbAQTQ9wCFyvl5b\nJNjVxWMVe6rldF9pMjCkiNqotDMf1dHuYDQGGruBf/TNJSmwo0iud0dI03S/fQjqn9On5N762+tv\n7FMzBLiGoACHmB5/jYWinF67L/4O0TuvsSajbTHMKlQKicVisWlDuPmo7tLFTK93VFz7jcN0Zszz\n3LR6dBS6sqaVGfZ7CV7pk5HnuWyiynaoLMMWHV8k37R1HSUowC8EBTgkjmO7O5tcgpvOd5UH9Mm5\nWJ7NI6QSXn67xyKwKAp7SRqLFptZMOmJmaapKSY3XSp7HKGO2eSGuuVyKfX29qYw3zjk5qr0qTTd\nIOrDGtrsux7MEjaGpHqe6E+eCS4fLgtmD91hlsH0lujohdoxDrQJefbXydaujBQCeGDs+zOBqrYz\nqQxKaM9ZLz7tMRgia8zdqGWg4o6J5pb9+vLU7+yv3Apff0uf8XPqf5KmZLW/sXtkiLbl3GVzlZuM\no9Co8Y31z2z8hMZ1N2+sD2kgKpvIfNTaBWtcgMo2sfdvxxDO3evS9q76wgPj0mXT0QyMTi7pzI9t\nl7xmNruFW2aut3lvRHrSmU6CW3xm47Id1NpvPNzm2hd7vzcu0u5bde369vkKM093ZczwxwCwdwQF\noFklKADANNFHAQAAtCIoAACAVgQFAADQij4KAACgFTUKAACgFc96AADs2aaPS8UoejYpEBQAAPtH\nu7bj+oc5mh4AAGjFSCoEBQAAWnU81GMiCAoAAHRZLBZa68nGBYICAABdsixLkmSYx7I7iKAAAMAa\nU36mF0EBAAC0YmRGAMCeaU3h4rr++4hxFAAA+8eYS8Gg6QEAsH9ljXQJFFmW1WcQSZK0/Qpmu9kb\n8Pz83Lx+9eqVef3tt992fFT/XUlQAAAMIc/ztjsMqX5YK8/zOI5lA6ZpmqapbLT5fH52dmZeP336\nVF5rrZ8+fRpF0e5fTdMDAGA4cvtAHMcmHHz22WdKqX/+85+ffPKJTDGlYJIkcRwvFgulVJZlU771\nwLZcLsuylLhwc3NTluV8Pr+4uJDXWuvXr1/P5/OiKPaSwKhRAAAMpCgKKd7kyrgsy9lsNp/PzQxS\nJS4jFiRJslwu8zyPoihJknGW2BlxHHfnpN/85jez2UwpJf8br1+/3vGrqVEAAAyke9iid99917w2\ndeZSOkqwoEahwy+//HJzc6OUkv+N999/f8dPJigAAAayXC6Xy6VSqruGQJoeiqKQ2eQtkx0YsS5J\nEmlTKMvyxx9/lNcffvihVM/MZrP3339fOivYtTVb41ZXAMCeMY6C+6Y7jgJdZwEA2KPQgoJa9YUB\nAIyl8ZrN7mdAn4NGcg+kPeXy8vLo6Ehen5+ff/TRR+ZXFxcXH374oVLq6urqzp07lY+6urqSF/Vf\nbYq7HgAAQ0jTVG50VEotFovJPrW5TZ7nledZn5ycnJ6eSuqazWZmvAS1Gj5BKaW1Pj09NfFCa50k\nydXV1dHR0enpaVEUuy9YgDUKAABn2fng4cOHz549U0rJSAA3Nzez2ez6+toUh5OqIU7TNMuyPM/N\n7aNPnjwpy/Lk5OTk5OS7776Tu0nPz8+11rKtrq6uoijK89wMOyEfJfkgiiLpB7ojahQAAAORUi1N\nU7n78dmzZ59++uk777zz8OHD2Wz26NGjm5ubi4sLtYoI5+fnIy/xgIqiWDtYglLq5ubmo48+evTo\nUWX61dXV6enpycmJUiqKInmxl3571CgAAAYSx3Hb7ZFnZ2eVWPDee+8Nt2QjsetXJEWtbZGZz+df\nfvmltDvYpBbh9PRUKXV5eRlF0Z07d+THHREUAAADMU8rEJ9++qk0PXz//ffPnj2Twq8yXlDY7PoD\n04ejLEupWjg+PjbjJfz0009mvISyLC8uLs7OziQKaK2llWG5XJoEJl0gpV5hR6Hd6srNuwAwOk7F\n7uu/j+ijAAAAWhEUAABAK4ICAGAg9r1/tm+//da8th8vCVHZGpcr8qO99czEq5Xdvz20ZqSOW0EC\nW1MAcFZj+7cU/3LjQ1mW9jzz+fzzzz//4IMP1GrIICkaiQtqtd2KosiyTDo/mkdrnpycyF0kNzc3\nsknn8/n19fXl5aXc71AUxeXlZePgjP37KAQYFAJbIwDwTkdQkIdA/u9//7t3797jx4+vr6/lNodX\nr16ZoCDv1VpnWZYkyfX1tTwFMYoi6eQ/qfO8rK9sN/lfAsHJycnR0ZHW+tWrV/fu3Xvz5k1RFFEU\n3b17V7ZPkiRFUbSFrQ02YxmW8NYIALzTdio2N+/JPK9evZrNZuZ15b1KqdevXyuljo+PlVJv3ryZ\nz+fHx8fHx8eDrIQrZINkWRZFkUyZz+dv3ryRbaKUms1mZqNJorLf2P2xfTCOAgBgCHEcS/8DedH/\njfP5fD6fHx0d3b179/r6upxSdYKQgZjMoAtRFB0dHR0fH//8889KKalxuby8LIqiKAqt9eXlpQyu\nsJdvJygAAIZgPxQqz/PlcintDvW+ZTLFNMm///77cqF8fHy8l6cc+SXLsspATJIGZMpsNpPXEqSe\nPHkioSqO430FhdBaeqbWdgUADuJU7D4GXAIAuCtNU/t5ynAZTQ/AhGj9os9sZXn/0EsCZFlWGS/B\nboavkEdK/ve//1VK/fGPfxxi+Ub1j3/845NPPpHXFxcXH374ofmVGRrBvumxcdN1bM+NEBSAaVkb\nAnqGCWBH9VGVOsZZOjs7m81mZ2dnf/3rXw+/aCMwgyUkSSL3evz+97//+9///sMPP8hzpU0zwdHR\nkXQ+MEFB+ocqpfI8XywWURTJj+ZBnRt1Ha0jKAAAhmCHACnD7IdJ2pe/pnuj3O8nAy387ne/U0r9\n5z//CbJGQe5rMFHp+++//9Of/vT999//5S9/OT8/rzxRM4oiu6OiGZ1CKZVlmblFwrzedeE2upvT\nfeGtEbBHSj3fyzxAt8ZTcZZl9mAAFUmSZFlmvz1JkvPzc7Xq2//o0aOwz/AyyIRshIcPH6rVaBOy\n4ufn5zJbFEUyTrN5o71JsyxTSiVJUnld139j0pkRQJXWL7r/jb2A8JLUH7S1mu+rQd1TUpdQlmUc\nx++++66yHjvwxRdfzGYzqVS4urqKoujOnTtRFElnBRmawnyIvHG5XMrGzLJMKm92slngcV54awTs\n0V5qC6hywFptp+KOU7R9WaxWNQpJksiwg2p1Yb3vJXWFKZTtNoWHDx/KWpvcIJUEMpu8sV6doJSS\n6hnzuu0bey5baLe68lAooIPWL3a/o2EvH4KwtT3rwVQqTLnywBH9x1EIsDMjgQAAHGTyASnBL/RR\nAAAMRFri2/rh73gXn78qG0T6KgoZQELII6D6f9S+xrMiKAAAhmDu/VssFo1l2B663flGGmLsrWEe\npa2Ums/nZ2dn8lpr/eTJk47mdbV6moYMeSmdHLvn74mgAMCi9a1/wF7JcyOlv57WWoo088KeOO5y\njuj6+rooivl8fnJyIj/OZrM3b97I87VlnjiOtdaNLThyA6o8cyvP891HW1IEBWDSKrGgngxIDNir\n5XIp17hSyJVluVgsZHwFKc/s11PQ1q9TspQ8P1opdffu3dPT0ydPniilrq6uiqI4OTmpP0jTDO9o\nf+buqYugAExPd/Fflr/+q78F2I3cqtdRdNHPURRFEUWR1no2m11fX79588YkA/mVGZwxt0iFTSVp\n7b5JA7zrAUCbUj1Q+sHtSe13CZlfmYjw64vnB1g0TFSWZYvFwryQ+gYzBsCkSO3C8fGxbIQff/xR\nKXV2dnZ2dnZ+fv7kyZMnT57M53OplTFPfLBzgDRJqNUGlNe73wkY4DgKga0RsB+V+oAt/kx2/wRM\nBqdi9016HAUgVH3GTm4eCsku47c+fcsb7doFSgJgAggKgE+6h0RsThKmaC9LrV/sWrb/+iEP3n4y\ncQEIGp0ZgXDZPRD3W5zbn0YnR/RmP0kZ9thT33zzjZluD7Ik5PlPG7lc2WEBf0VQAAK1l+aGDvad\nEdwTgR7yPJd+i4vFos8NkN3Pk7SfmuijOI5lO+R5PpvNvvzyS631N998YwZZMnFBa22GYDIqYasy\nHIVS6nRl96wQYFDQLcZeLmBAdkXCQZsGqFpAb+bOPelDZ5dt5kSd5/lnn30mtwWmaVoUhfntycmJ\nDDWotU7TdLlc+j6SYxRFZhyFm5ub9957T6bLIEvmudInJycy+FKHxWIhD9s0U66vr5VSJycnR0dH\nOy5ngH0U6GqLqTtQc0Mbu5MjPRzRzh4gyNzxr5SSsRrNYyC++uqrP//5z0qpe/fupWn6008/HR8f\nF0VRFIUUh3ItbheKnpLBm9M0vbm5mc1m33333ccff/zxxx/P5/Obmxsp6e/cuXPnzp1KzYo9cIL5\nlalLkCkytuPdu3ffvHmzY1YIsEYBmLSBU4JRH3QBuE2GFlarngpmemWEQUkJX331lfwoQxrLmAEh\nkahkmh5ubm4+++yzR48ezefz2Wxmrnivrq6SJJHtZnoqSD6Qx3abDzSfJj9GUXR0dCQZa9dlLcMS\n3hoBhlLP187x67+tP2HHxVi3AJiItlOxKXpkqGbzOoqiLMuk8tzUwMv8r1+/Nu+SGeSNUqMw7Grt\nk6kRybKsssri0aNHyhp7Kooi816zrbIsM1PsjZkkiYz93LGJ+m+90MbEYJQPBEzrF123R/aoS1jz\nCUMtBoLHqdh9/fcRTQ9AENwpnmmDAMJCUAD8tyqStSNPYSAroIk9bID92mX1hbTvNrQHPPj222/N\na3vYA/sT1q7yjl9nOjl2f8vGtmpbcVd4awQYzZ0DrG4Ba7sgHLyPQsuCYWoaT8XSIdHMIE+SdFmS\nJLLMpivAfD6Xtv+yLGez2Ww2U6uOBfZrebSj9BuwX1fW2nzspl9X+WrzFeaRkvJ2+6Pq+heXI/8N\n1+9vsbtmyArbPTgq76pvAoICAtZQQt8ujAcLCmv/3Vo8TE9HUDDdGJMk+fTTT80lq5R8dof/0c/n\nsgDSbdCeMp/Pj4+PzWK/evXq8ePHr169UqsKABn5IFuRgkwKLHulKkVY/69TSsmXXl5enpycyJfK\nW8zbK5mjbe36GHkcBakhabzvRQbwiqKoKAq7z0Ucx+ZWmcVikWUZzy/H1A3bL2Ftd8jqIycYXAEr\ncodknudyDn/27Nmnn376r3/96+HDh3KVfHZ2JhXsZVlqrc/Pzz/66KNxl1luRLSnRFH0zjvvmB+L\novjiiy/k0t/ci3h6erpcLmUwShklQgo1o3EshD5fJ66vr7/44ounT5/euXNHa22K0eVyWZalfIJs\n7d2LyJGDghT59QYVWTETDmQcLrlDtCiKJElkK8iwGyXnIEyT+z0AytKDhcSA4jiW4RTr1clnZ2fn\n5+f2FHPT4IhMWW5PrIzrEEXR559/fn19LQV2FEXL5fL09FTGOZDEo1Y3Opq4IJ/ZOJJS99eJp0+f\nXl9fX11dFUVhviJNU9mwUlbKe/cw0HXPmocDUauWhXoNjN3iYBpdKjfOyo/2e0dfI+BwbjUcNPUA\nGKbpYa21y4ngNZ6K7XZ0qSG3mx7Uqplfxg8oy/K999775ptvhl50i+lYIAufJIk0AaiWthL7td0v\nQYozeW03r7eNhbD26+pfbb7CLhBNe0ej/sXlyLe6Vh7BYKoKtNbmtVo1N5RlaV7IdKnVsVsfuHkX\nAbs1gEHTI57XDpOwl3EU1qp+izu3bmIonIrd58c4CqbFQbp7SHVN930djUNRVt7S9lCoDvtaI2Ag\nfh20FBiAz8bsoyCNN+ZHeURY96PKpW9j/XPsH4mxmArvDnV6NQIecm7AJZMDvBiLAxiBX9UJgiGY\noJRaPQ5KTu+PHz8ee3H2rFJsXa7Ij2aIpG9X5Ed7dKaen6zaB2Kyf+zzyb307MtwCPVHeqjbnT7q\n0xs7M1Y+4ZCLDIxJqefdfQNd7Mx4+xf0apyIxlOxDChkztvSFy8YbcMlzefzN2/eqNsjMsm9oOWq\ndKtsrq0HYjI/mk+uD0Rk9C8ux6xRMDeH2DeESAdG85Dyxv9lzjzPl8tleM8eBdbzugKfSoVpi+NY\nzvA3Nzd/+9vfTF+xOI7trmNS9+BRNzLpY2ceCa2Uur6+VkqdnJz8/PPP8uNsNpOKhPl8/vnnn19d\nXZ2cnKytPm/85KIo5vP5ycnJzc2NfPLFxcXjx49vbm7Uqi7BDNS4q56B4kDM3SDCHtvSvsu2MuZl\nx/KPvkbAAfV4inTfMRMPu5g8h3rq2k7F5sQu8/zf//3fy5cvX758KaVasmKelSzzuz/Yc7laZVly\nmWLqEuwahcePH5vRFWW2ynV//bbJ+ifLlOPjYxl5oizL2Wwmt5U+evRoNpudnJwopeT/7gXuY+QB\nl6Q/o6SkSp9EM8JSZXrHW4CQ9bjJcIBbH3dlhmCiY+P0yJiDMgxRn1GAlsulqXX3QmW4pCiKjo6O\njo+Pi6J4/PjxfD6/d++eNBl88MEHUrtw7969y8vLO3fumA/ZeiAmCSJnZ2dKqTRNzbhPu69XaLe6\ncvMugtU0cIKb1o/W4M+6YDuNp2IZ+UZel2WptX758uUf/vAHmRJFkSkI7STRNoCva8zalWUpozJn\nWSatD1K7cHNzM5vNZABHpdRsNlssFqYgN5vLPP7RDO1c/+RffvnlyZMn9U9WSl1cXJydnZlv6dh0\n/YvL0IpVggLC5NWYRX2DgvJjdbCFnqfiv/3tb19//bW8/ve//33ghcIt/YvLkZseAKy3Kla1eh5I\nuUoDxAT07IT48uXLH3744euvv/al0+IEhXb9TY0CArSqqB9mAObd9V1OGiAQovCKIecGXAJwS/CX\nWcGvIOA5ggLgsLDb8oNcKSA4AfZRaGvoCqwuCBMS/KFLTwXAYQEGBQIBAjGFOnnTqxGAq2h6ANw2\nkeBLXABcRVAAnDSdgnMiSQjwFkEBcNikCtHpZCPAKwQFwD1TKzInlYcA3xAUAFdNsPicWkICfEBQ\nABwzzcLSpKJprj7gMIIC4KQJVidMcJUBHxAUAJdwPa3YCIBbCAqAeyZ7bT3ZFQccRlAAnMGVtMGm\nAJxBUAAcM/Gr6omvPuAeggLgBq6hK9gggBsCfCgUT4+ExzhKFU+KAtwSYFAgEMA/EysXtX7RPUO5\nmo/kBIwuwKAA+GpKhWJZ3u/4rdaqVA8GWxgAHQgKwNhW1Qlrr7OniEoFYGwEBcANZan0i+7r7Gmh\npwLgBu56AEZFWbgWmwgYFUEBcAC1643YLIADCArAeLhW7okNBYyHoACMjevmDmwcYGwEBWAkXCVv\nhM0FjISgAIyKK+a12ETAqAgKwBi4Pt4CGw0YA0EBGA/Xyj2xoYDxBDjgEg+FAkZ3qFEmGagRGFyA\nQYFAANeFXoV+kPElGagRGAlND8BISLQAfEBQAIbFZfGO2IDAsAgKwBioTtgCGw0YA0EBGBBXw3vB\nZgQGRFAABseV8dbYdMDgArzrARjF2hsCS/VgmCWZBO6TBIZCUAD2Zs1tgfqBzDTMwgSL+ySBYREU\ngEFQtu2d1lo97/j9QYZzAKaHoAAMiOqEvVhVKnREgUMNDQlMD50ZgcOjOuFA2LDA4REUgIF015Nj\nI2xMYDABNj3wUCi4haveg+L2B+DAAqxRKFuMvVyYNo7AvWOTAoMIMCgADqE6AYDnAmx6AJzDte/m\nNrhtgdYH4JAICgCc03cIBAZfAg6PpgfgYCjDBsOmBg6GoAAcGLXiB8XmBQ6MpgfgMJqucRku8IDo\nqQAchkM1ClrrPM/Nj3mex3GstY7juDJnmqZa68r8gIusoqss76/9N+KSeox8ABySKzUK9VGSFouF\nUiqKoqIotNZmIIQ4jouiiKJI5smyrJ4kgJHRZD4KKhWAA3CiRiFN08oUKfvLsszzXCKCzJPneVEU\nSZLkeZ7neRRFkicAF1FoDYZNDRzM+EEhz/Plcik1BIapMxBRFC2XS5lZWcFC8gQNEHAL1QkjYuMD\n+zZ+UFgsFlEUtVUqVFQyAY0OcBfXuANjgwOHMXJQ2LRKoCiK+sTK2/XmdlwL4C0Op9GxC4C9GjMo\npGlaFEWWZf3fUmmhEJV6hbaHQnXYcUWAKg6qUbDZgQMY864HqQmweyPKaym56XkA/3AtCyA4YwaF\nNE1NGpDbGaIoMtUDdiuD6dso90aa6fJ2eirALVzXjk5rpZ6PvRBAKLaoqD8EaYDIssz+MUmSsiyT\nJLF/pZSKosjMI68Nd9YIU6PU81KpkiNwdEqVSin1fOzlwESFVwy9HchoXHmeV0ZPStNUbolUSiVJ\nYm6LkDnNGyvLbw/NBAzKtDtwBI6LHYFRhVcMub4+MpBz43TV1OgQ3h6CN6R84vBzAfsC4wmvGApu\nfYLbQ/AGhZM72BcYT3jF0PgDLgEh4H4HB7FTgH0gKAD7E9ZlhMfYEcD+EBSAnXHlCiBcBAVgPzQ3\n7juIDAfsjKAAIEDkNmBfxhyZ8UDaHvIUWDdUuIJrVsdpTZcFYBcB1ii0jS019nIhaBxgDmKnAPsQ\nYFAAAAD7QlAAdkC7gxfYTcAOCArAzqjidha7BtgZQQHABFCpAGyLoABsi7LHC1QqALshKAC7oRzy\nBcEO2ApBAdgKpY5HCHPADggKwA4ogQCEjqAAbI7qBE+x44DNERSAbVGd4BF2FrAtggKAKaFSAdgQ\nD4UCNkRJ4wmtX9ye8LxUD+zpZXl/8IUC/BNgUCAQYAgcZm5rDgH6gVKqVA9UWdZiBIBmND0Am6A6\nwWvEO2BzBAVgc5Q3ACaDoAD0RnVCMNiVQG8EBWBDVCd4jd0HbIigAAAAWhEUgH6orA6L3CoJYC2C\nArAJKq4DwE4ENkFQAAAArQgKQA+0OwSJ3Qr0QFAAeqPKOhjsSqA3ggKwDtedACYswGc98FAoHATH\nT5C0Zs8C3QKsUShbjL1cAByi1fOxFwHwQ4BBAdgn2h0ATBtBAeiBGqmAkQWBTgH2UQAOQesXYy8C\n9q0sSQnAWgQFoN3tUqQs74+1IAAwFpoegHVodwge9QpAO4ICgAkjBQLrEBSAFlxlTgq7G2hBUAA6\nccUZPHYx0InOjEDDHQ2letD2KwSLURqBJgQFQKn6HQ36gUyl3JgE7pME2tH0ANRQZgDASoA1CjwU\nCvvBATNBtD4ANQEGBQIBgI3R+gC0oOkBuI3SYuI4AIDbCApAE+qlJoidDjQhKAAWriahOAyAWwgK\nQA1XlpPFrgdqCArACteRAFBDUABu45oSitQIvDV+UEjTVGuttY7j2J6e53kcx/Xp9lvyPB9qMQFM\nA0kRuG3kcRTiOC6KIooipVRRFFprMwrCYrFQSkVRVJluv2WxWGRZVk8SwDlO0d0AABJSSURBVMa4\nggSAJmPWKOR5XhRFkiR5nud5niSJTFRKSdlflmWe5xIR0jStvyWKIskTwH5wNQmD7AgopVxoejD1\nAXbFgKkzEFEULZdLtYoREhrMW2iAALBP5EXAMmZQiOO4LMs4jvM8T9NU6gYac4NRyQQ0OmAvzEOl\nAQAVTjzrwTQfSOtDh6Io6hOl26P5se2hUB14PASU4joSNTwjCnAkKEhfhDzPpX3BtCzUSd/GysRK\nvQKlPjZDUzTqeEYUsDJyZ0bTlBDHsemuaH47ylJhosiXaERcwOSNHBQ67lmwaw5M38b6WAv1iQCw\nB2RHQCk1emdG+d8u76VeIcsy87r+v7nZYblc2jdHABvjehEAOulxW/TTNJV+CSJJEtNBwf6VPb1S\nD1FZfntoJmA9rZVSWj0vy/tjLwoGpfWLtfO8vR2Gswp6C68YcmJ9OloQKnc0rH1LeHsIh0VQQDut\nX/yaFTiroLfwiqHg1ie4PYQDWrU7EBTQiKCALYRXDI0/MiMwsrD+pHEQ9GXBhDkxjgJwUG2t0WXn\nbwGlGFABIChgGhpaFlZnfxod0AujNGKqaHrAtHHqx1ocJJg2ahQwSVQmox9pmSpXP2j1vDIDNVII\nXoBBoe2hUIF1Q8UecEigkxUC7ku4rMQCOrhgCgIMCgQCrEF1AgD0Rh8FTBWBElsgZWJ6CAoA0APJ\nElNFUMDEcEWIHXEIYWIICpgkrg6xBQ4bTBJBAVPCtSD2ggMJU0JQwPRwXYitcfBgeggKmAyuAgFg\ncwQFTAxXhNgLcicmg6AAAJsga2JiAhyZEWjA9R/2Tmulnq8dxZmHQcB3BAVMCdeC2IuybHz0Qx0P\ng0AAAgwKPBQKFaV6MPYiIFBakz4RvACDAoEAzTgwsEerSgUgeAEGBUxNd+0u1Qk4LCoVEDqCAkLQ\n1VSsH8gcgy0MpoJKBUwDt0cCwG6ICwgaQQFB4wyOg6KmChNAUMAEcDbHoRFJES76KCBcnLsxgHU9\nFRiRCb4jKCB0VCdgPIzIhADQ9IBAUZ2AgXHIIVAEBQSN6gQMgMMMQaPpAa6jbhYARkRQgAc27u1F\nJTBGwSiNCFGAQYGHQuFX7HEMhlEaEa4AgwKBYOo4XwPA/tCZEYEiL2IU5FQEh6AAAPtANkWgCAoI\nC9dzGB0HIcJCUECIuLbDKDjwECKCAgAAaEVQQECo8oUjOBQREIICgkP1L0bE4YfgEBQQCq7hAOAA\nCAoIC9dzcATJFaEgKADAXpFWERaCAoLA1RscxGGJIAT4rAceCjVd7GI4gmdEISABBgUCweRwRoaz\nePA0/EfTA0LB6RhO4YBEKAgK8BzVCXAchyg8R1BAELh6g4M4LBEEggJ8xrUavMCBCp8RFOA/rtvg\nLA5O+I+gAG9xlQaPcLjCWwQFeI4rNjiOQxSeGz8opGmqtdZax3Gc57mZnud5HMcyve0t9vyYFq7P\n4B0OWvhp5AGX4jguiiKKIqVUURSLxSLLMkkGi8VCKRVFUVEUWmszjJL9Fnt+TBHXavACAzXCZyPX\nKEiRn+d5nucSBdI0VUpJ2V+WZWV6nudFUSRJIm+JokjyBAB4gLgAD40ZFKThQBKAURSFWgUIMzGK\nouVyWX+L5AkaICaHsy28Q+0XvDVmUIjjuCxL03Ag5X2SJOa39bdUMgGNDpPGmRcADm/8zowiTVNp\nRKhUMFRIfUNFJT3oze1zTXBo7C94jQMYvhn/6ZF5npt+i2sbEaRvY2VipV6Bp0dOAnsZ3mnp0qj1\ni3Xvu3+YBQJ6GTkomJRQv3mBngdowNUYwrI2BKyNEcChjdz0sFgsoiiyeyoYds2B6dvYGCboqTA5\nVCfAa+RdeGXMoGDfvGDIxCzLzAz1/83NDsvl0r45AgCcRsaFh8ZsepD6gMb+iXEcJ0myXC7lrsgk\nSUy1QZZli8XC9ECkhWJCuA5DMLQmNMAX2vGufzKQc+N01dToYI/hiDBo/eLXdlwJCuxf+G6TI/nt\n8Q9PhFcMjX/XQ7e2/gf0S5gcqhMQGCoV4AlXxlEAeuHEigBwGMMrBAX4gOoEBIkDGz4gKMAfXIch\nGBzM8IfrfRQQvPXD0qkHwywJMAJ6KsB5BAWMb02nbv1AZhpmYYCBtIzoDLgmwKDQ9pCnwO5XmQrO\npAgelQpwW4BBgUAQIPYpgkSlAnxAZ0Y4jHMoJoJDHQ4jKMB5VCcgYBzecB5BAa7iGguTwgEPVxEU\n4DautxA8DnK4jaAAJ3F1hQnisIeTCApwGFdamAgOdTiMoAD3cF2FyeLgh3sCHEcBTlk7QnMrrrEw\nKYypAFcRFHBwa0ZoruBciYljoEY4hqYHOIkTJSaIwx5OIijAJVQnAIo/BLglwKYHHgrlPfYUJoue\nCnBPgEGBQOArzo+AQU8FOCPAoAC/cXLExNUqFdbeOrRZf2FgQwQFuIHqBKBCa1WWa0PA9ncgA/3Q\nmREuoToBUPwhwC0EBTiA6gSgEX8acABBAc7gKgow+HOAMwgKGBvXTEAH/kAwNoIC3MD1E1DBHwXc\nQFDAqLhaAtbizwSjIihgPOb0x5UT0Ig/DTiAoICxcSoE1qJSAeMhKGAknPiAPkjSGFuAIzPyUCif\nsFOAnnj6A0YSYFAgEHiA6gSgP/P0B7ICxkDTAwZHH0ZgU/yxYDwEBYyEEx+wBWrjMDiCAobFaQ7Y\nDtkaIwmwjwKGtOUjbjnlAVujpwKGRVDArsryft9ZqU4AdmF6NQIDoukBg+NiCNgRcQEDIihgKJza\ngN2RszE4ggKGxWkO2AuSN4ZCHwUMgpMasC+18ZfW9ineoCMRUENQwICoTgD2wurVuDYEbHlrErBC\n0wMOj+oE4ED448LhBVijwEOhHMX2B/aIB0BgKAEGBQKBW7jiAQ6EYRUwiACDAhzC85+AAayrVOjT\nTYEOj2hDUMDhkRKAA+nRANEnAdDhER3ozIiDoVIUGABBHAdGjQJa7XSRQaMDMDB6NeIwCArosmuz\nJactYADcAYFDoukBB0CjAzAw8gEOxpWgoLXO89yekud5HMda6ziOKzOnaaq1rr8FTqDRARgRMR37\n5kTTQ5qm9YmLxUIpFUVRURRaazM6QhzHRVFEUSTzZFlWTxIYDSkBGAsNEDiMkWsUpG5guVxWpkvZ\nX5ZlnucSESRM5HleFEWSJHme53keRZHkCbiFkxQwCvOnR70C9mfkoBDHcZIkUj1gM3UGIooiCRPS\n1mBqICRP0ADhCs5NwOiI6di38YNCmqaNTQ+NDQqVTECjg0NodACcQnDHnrjSmbGnoijqEyvpQW9u\noKUPGCkBcAcNENgrz4JCvZFC1eoVys0NtPTBY0sCjiArYH/cDQr0PPAGZyLAQQR37Im7QcFuZTB9\nGyuVBxIm6KkwJhodAMcR5bEbR4NClmVqdXdD/X9zs8NyuWxsjMDQSAmAg/jDxD44MeBSndw2uVwu\n5a7IJElMtUGWZYvFwvRApIViTFypAF5gCCbsQDvelU8Gcm6crpoaHewxHLEjrV90PRSKRgfACz3+\nVNf8sWMT4RVDjtYoGG39D+iXMDJSAuALM7QzsBVH+yjAD6QEwCPEBWyFoIDNcboB/MKwCtgBQQEb\notEB8BFZAdtyvY8CDkfrF1u859cXpATAOzyHGlshKEzaZv2cSQmA7+jYiM0FGBTaHvIU2P0qo2Ez\nAgGgUgG9BRgUCAQHwVUIEAYaILAhOjOiBxodgJDQsRGbIChgHVICEB6yAnojKKATKQEIFVkB/RAU\n0I6UAISNP230QFBAC1ICMBmlejD2IsBdBAV0IiUAYaMBAusQFNCEUwYwHWQFdCIooIZGB2BitHq+\nekVWQFWAAy5hJ6QEYJK0ev5rTwWt3+YGy2YjviMgBAVYSAnAJK1CwH05CZTqQeUksM0z5BAKmh6w\nQkoAQH8F1ARYo8BDobZBSgAgeBgEbgswKBAINkZKAGAjK8ASYFCA6NumSEoAUEdWwApBIWTreymT\nEgC0sbNC030QmAg6M04YKQFAt9XJgTGep4ygMFWkBAB9cB/E5BEUJomUAKA/ssK0ERSmh5QAYEO3\nxngmLkwMQWFK7L9wUgKAjdgnDbLClBAUJsP+wyYlANhCWd5qhiAuTAO3R04AEQHAzqyhWZ6/vQnC\neoIUT40KFUEhdKQEADurhYD7Sqm3T5CyOzEgODqwAY+1Dm2NtkdEAHBonGdqwiuGAqxR4KFQSvHX\nC2AQcnp5O4AjJ5wABRgUphUI6ogIAAZmBntWPBsiQNz1EBYrJdBkCGAwWj1nXKZQERRCURkjgUQP\nYHjcPBkigoL/Kn+QRAQAI2JcpuAE2EdhQip/hEQEAC6gh2NYCAp+IiIAcFylh6PiTOUrgoJviAgA\nfGFXLSjigq/oo+CVSl8E/t4AuK9ysqLjgm+oUfAE3RUBeI2OC96iRsF53NQAIBiVqgVqF3xAjYLD\n6I4AIDx0XPANQcE99YjNnxCAwDTGBcXpzkUBBgVfHwrVuNiOLzMA7KISFxSJwUUBBgXXA0EdVQgA\npqzxIRE0STiDzozjkY489Tseb/9htFWQeCqw1VGskfMCWx0V3Brp7nNg/TyJwQVYo+A6mhgAoBtN\nEi4hKBxeRxbmiAeANh1NEvV5cDAEhcPorijjyAYQHK1fdM9Qlve3/OjGxNA4hbPrARAU9o2WBQDT\nszYErI0RPb+m8qH1r1nzFmyOoLCztsoDjk4AOKi1uaE+kTPz5rwMCmmaLpdLpVQURXmeb/chWute\nN1JqrZXqeWT9OmePj+377V2fUI/nD5R63u+9vb69/0LuvjrDfDtr1GfOngJbnQN9e2Br5PrqrH77\nds51VQ669x31h1gjX/gXFCQlRFGklCqKIo7jrbNCsy3uw7HbzwY8kip1fVo/2L4JEADCQ5XDPvgX\nFCQlSDgwVQt9VQ6I/pmAQwcAfFc/k/fp5VD/1cRKBM8GXDL5QH6UF+bHW8wwHfa/nsygH7XhjwAA\nQdnibN9YvoQ7KpR/NQp1mzU9jNRMAABwXUehYIqMcANBG8+CgmSCOI475lkzvqn12/4jobo5p9YP\nDv3tbq44czoypxcLyZz7nXOXD6yfsnb/TLfmDDRDeBYURJ7nbVlhsr1SAQA4BM/6KDTmg+4KBgAA\nsDUvg4LplNCnJQIAAGzNvxEk4jguiiLLsjiOpcXIu1UAAMAXntUoqFUtwmKxkJSQZVl9njRNtdZa\n6/0PxzQUrXXHkuvb/K1T6V5NN9lHV9s8nu6gPqvmpoB3SiMf/3DUBE5rARQ9jbzszFiWZUejg1Q5\nmKEbF4uFVD8Muoi7aR4ZokbWUXnb+NJzNZ2y0cCgfu2gg495ejAB75RGPv7hqAmc1gIoelqVwVFK\nRVHU9qPjkiQxuybLssZ5pBKl7bde6LOabrIPJ1mL+jye7qA+q+amgHdKhad/OBM5rXld9HTzr+mh\nW2XoRlEUxSgLs4U4jpMkMZm6kalN8eWCr67Pajqo58CgPu6gDcY8dUzAO6XO0z+cKZzWfC96unnZ\n9NAhjuPS6tsoO8/Os46L41j+VBaLRfec9tAfpW/dOfuvpvvazmte7yDh6SlbhbtTPP3DmcJpzfei\np1toNQq2NE3luPTiwqg/cwhmWSYHYv+RxbCLnrfj+riD/L3TOOCdMikh7aDwih4vaxTyPG+8YjB7\nxURX85xJp6xd/rVvN6/l/LhcLjtGqxzFjus4rouLi5ubm/r03/72t6pzYFDhxQ5q5MVCNgp4p0xE\nGDvI8aJnawHWKJhdlWVZSLuqjV9/SF7bbmBQL3aQv2OeBrxTpszHHRRy0TNmT8rDUP73Ne3uAFxZ\nQb86qNt87OeslEqSRF63Lb+nO6jPqrkp4J3SyK+9YwR/Wgug6Gnj2Z5YSw6v6DZzEvFF/S9KpsiK\nSOdh+a1M9/To9PF8Z298O2oHsIPaVs19Ae+URj7+4ZShn9bCKHraeNlHoYNU+ARzU4phV2RJu53p\nPxxYY5jj8jzXWpuNbwYGDWAHta2a+wLeKWELaQeFWvQI/571AMO7nj7B6N/T3rsdNIXbH3xcu+lg\nBzmIoAAAAFoFeNcDAADYF4ICAABoRVAAAACtCAoAAKAVQQEAALQiKAAAgFYEBQAA0IqgAAAAWhEU\nAABAK4ICAABoRVAAAACtCAoAAKAVQQEAALQiKAAAgFYEBQAA0IqgAAAAWhEUAABAK4ICAABoRVAA\nAACtCAoAAKAVQQEAALQiKAAAgFYEBQAA0IqgAAAAWhEUAABAK4ICAABoRVAAAACtCAoAAKAVQQEA\nALQiKAAAgFb/H+s+oBAxfWYUAAAAAElFTkSuQmCC\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ " FCN=226.458 FROM MIGRAD STATUS=CONVERGED 59 CALLS 60 TOTAL\n", " EDM=9.76666e-11 STRATEGY= 1 ERROR MATRIX ACCURATE \n", " EXT PARAMETER STEP FIRST \n", " NO. NAME VALUE ERROR SIZE DERIVATIVE \n", " 1 Constant 5.32296e+02 6.54072e+00 3.96502e-02 5.18912e-07\n", " 2 Mean 3.63931e-03 6.37389e-03 4.68616e-05 -6.85231e-04\n", " 3 Sigma 5.95212e-01 4.63812e-03 1.58913e-05 5.77603e-03\n" ] } ], "source": [ "hout->Fit(\"gaus\");\n", "gPad->Draw();\n", "gStyle->SetOptFit(1111);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Repeat the operation above by increasing $n$ to a larger value (e.g. $n=10$). For the Central Limit Theorem as $n$ is increased the obtained distribution will converge to a Gaussian. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question** : What is the computed standard deviation of the distribution when we generate $n$ uniform number between [-1,1] ? \n", "What will be then the $\\sigma$ if I generate the number between $[-\\sqrt{3},\\sqrt{3}]$ ?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer** : $\\sigma = 2/\\sqrt{12}$ if we generate between [-1,1] and $\\sigma = 1$ if $x \\ \\epsilon \\ [-\\sqrt{3},\\sqrt{3}]$" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "ROOT C++", "language": "c++", "name": "root" }, "language_info": { "codemirror_mode": "text/x-c++src", "file_extension": ".C", "mimetype": " text/x-c++src", "name": "c++" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-2.0
llooker/public-datasets-pipelines
samples/tutorial.ipynb
3
6210
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "7i8lsRFe2lu5" }, "source": [ "# Overview\n", "\n", "Add a brief description of this tutorial here." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "cFeLh7K7KI6B" }, "outputs": [], "source": [ "%%capture\n", "\n", "# Installing the required libraries:\n", "!pip install matplotlib pandas scikit-learn tensorflow pyarrow tqdm\n", "!pip install google-cloud-bigquery google-cloud-bigquery-storage\n", "!pip install flake8 pycodestyle pycodestyle_magic" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "6_jTxerkMtkg" }, "outputs": [], "source": [ "# Python Builtin Libraries\n", "from datetime import datetime\n", "\n", "# Third Party Libraries\n", "from google.cloud import bigquery\n", "\n", "# Configurations\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": { "id": "2x4wG61omjBQ" }, "source": [ "### Authentication\n", "In order to run this tutorial successfully, we need to be authenticated first. \n", "\n", "Depending on where we are running this notebook, the authentication steps may vary:\n", "\n", "| Runner | Authentiction Steps |\n", "| ----------- | ----------- |\n", "| Local Computer | Use a service account, or run the following command: <br><br>`gcloud auth login` |\n", "| Colab | Run the following python code and follow the instructions: <br><br>`from google.colab import auth` <br> `auth.authenticate_user() ` |\n", "| Vertext AI (Workbench) | Authentication is provided by Workbench |" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "i7aszhgnkxuv" }, "outputs": [], "source": [ "try:\n", " from google.colab import auth\n", "\n", " print(\"Authenticating in Colab\")\n", " auth.authenticate_user()\n", " print(\"Authenticated\")\n", "except: # noqa\n", " print(\"This notebook is not running on Colab.\")\n", " print(\"Please make sure to follow the authentication steps.\")" ] }, { "cell_type": "markdown", "metadata": { "id": "N7qEYK98Nx89" }, "source": [ "### Configurations\n", "\n", "Let's make sure we enter the name of our GCP project in the next cell." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "So_ed4wf0lKu" }, "outputs": [], "source": [ "# ENTER THE GCP PROJECT HERE\n", "gcp_project = \"YOUR-GCP-PROJECT\"\n", "print(f\"gcp_project is set to {gcp_project}\")" ] }, { "cell_type": "markdown", "source": [ "" ], "metadata": { "id": "xhyBJNts3MHK" } }, { "cell_type": "code", "source": [ "def helper_function():\n", " \"\"\"\n", " Add a description about what this function does.\n", " \"\"\"\n", " return None" ], "metadata": { "id": "eo0IVOdr3MSU" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "UXIitTXv7IEu" }, "source": [ "## Data Preparation" ] }, { "cell_type": "markdown", "metadata": { "id": "LBLKdccfZzKu" }, "source": [ "### Query the Data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "P1VfAL04kwF7" }, "outputs": [], "source": [ "query = \"\"\"\n", " SELECT\n", " created_date, category, complaint_type, neighborhood, latitude, longitude\n", " FROM\n", " `bigquery-public-data.san_francisco_311.311_service_requests`\n", " LIMIT 1000;\n", "\"\"\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "eoJgVS5KkwF7" }, "outputs": [], "source": [ "bqclient = bigquery.Client(project=gcp_project)\n", "dataframe = bqclient.query(query).result().to_dataframe()" ] }, { "cell_type": "markdown", "metadata": { "id": "_I8mnYhOBsnr" }, "source": [ "### Check the Dataframe\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "84lvVNg8odvS" }, "outputs": [], "source": [ "print(dataframe.shape)\n", "dataframe.head()" ] }, { "cell_type": "markdown", "source": [ "### Process the Dataframe" ], "metadata": { "id": "K3-yckkMKX3g" } }, { "cell_type": "code", "source": [ "# Convert the datetime to date\n", "dataframe['created_date'] = dataframe['created_date'].apply(datetime.date)" ], "metadata": { "id": "fFMgzswOG0Wz" }, "execution_count": null, "outputs": [] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "Cloud Datasets - Tutorial Template", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
stereoboy/Study
Issues/algorithms/Linked Lists.ipynb
1
6428
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Add two numbers represented by linked lists" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class Node():\n", " def __init__(self, value, Next=None):\n", " self.value = value\n", " self.next = Next\n", " def __str__(self):\n", " if self.next == None:\n", " return str(self.value)\n", " return str(self.value) + '-' + self.next.__str__()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5 0\n", "0 1\n", "4 1\n", "3 0\n", "1 0\n", "1-3-4-0-5\n" ] } ], "source": [ "def getSize(node):\n", " count = 0\n", " while node != None:\n", " count += 1\n", " node = node.next\n", " return count\n", " \n", "def _add(node0, size0, node1, size1):\n", " \n", " if node0 == None:\n", " return None, 0\n", " \n", " if size0 > size1:\n", " node, carry = _add(node0.next, size0 - 1, node1, size1)\n", " \n", " new = node0.value + carry\n", " else:\n", " node, carry = _add(node0.next, size0 - 1, node1.next, size1 -1)\n", " \n", " new = node0.value + node1.value + carry\n", " \n", " carry = new//10 \n", " new = new%10\n", " print(new, carry)\n", " return Node(new, node), carry\n", "\n", "def add(node0, size0, node1, size1):\n", " \n", " node, carry = _add(node0, size0, node1, size1)\n", " if carry > 0:\n", " node = Node(1, node)\n", " \n", " return node\n", "\n", "a = Node(1, Node(2, Node(5, Node(6, Node(3, None)))))\n", "b = Node(8, Node(4, Node(2, None)))\n", "\n", "print(add(a, getSize(a), b, getSize(b)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.1 Remove Dups: \n", "Write code to remove duplicates from an unsorted linked list.\n", "FOLLOW UP\n", "How would you solve this problem if a temporary buffer is not allowed?" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input:1-2-3-4-4-4-3-2-1\n", "output:1-2-3-4\n" ] } ], "source": [ " \n", "List = Node(1, Node(2, Node(3, Node(4, Node(4, Node(4, Node(3, Node(2, Node(1)))))))))\n", "\n", "def remove_dups(List):\n", " marks = {}\n", " cur = List\n", " prev = None\n", " while cur != None:\n", " if marks.get(cur.value, 0) == 0: # not duplicated\n", " marks[cur.value] = 1\n", " else: # duplicated\n", " prev.next = cur.next\n", " cur = prev\n", " \n", " prev = cur\n", " cur = cur.next\n", "\n", "print('input:' + str(List))\n", "remove_dups(List)\n", "print('output:' + str(List))" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input:1-2-3-4-4-4-3-2-1-3-2\n", "output:1-2-3-4\n" ] } ], "source": [ "def remove_dups_wo_buffer(List):\n", " cur0 = List\n", " while cur0 != None:\n", " prev = cur0\n", " cur1 = cur0.next\n", " while cur1 != None:\n", " if cur1.value == cur0.value:\n", " prev.next = cur1.next\n", " cur1 = prev\n", " prev = cur1\n", " cur1 = cur1.next\n", " \n", " cur0 = cur0.next\n", " \n", "List = Node(1, Node(2, Node(3, Node(4, Node(4, Node(4, Node(3, Node(2, Node(1, Node(3, Node(2)))))))))))\n", "\n", "print('input:' + str(List))\n", "remove_dups_wo_buffer(List)\n", "print('output:' + str(List))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2.2 Return Kth to Last: \n", "Implement an algorithm to find the kth to last element of a singly linked list." ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2\n" ] } ], "source": [ "List = Node(1, Node(2, Node(3, Node(4, Node(4, Node(4, Node(3, Node(2, Node(1, Node(3, Node(2)))))))))))\n", "\n", "def kth_to_last(List, k):\n", " cur = List\n", " size = 0\n", " while cur != None:\n", " size += 1\n", " cur = cur.next\n", " if size < k:\n", " return None\n", " \n", " cur = List\n", " for _ in range(size - k):\n", " cur = cur.next\n", " return cur.value\n", "\n", "print(kth_to_last(List, 4))" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2-1-3-2\n" ] } ], "source": [ "def kth_to_last(head, k, i):\n", "\n", " if head == None:\n", " return None\n", " \n", " node = kth_to_last(head.next, k, i)\n", " i[0] = i[0] + 1\n", " if i[0] == k:\n", " return head\n", " else:\n", " return node\n", " \n", "print(kth_to_last(List, 4, [0]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ocefpaf/folium
examples/plugin-patterns.ipynb
2
137190
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Preleminary demo of the pattern plugin for Folium" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div style=\"width:100%;\"><div style=\"position:relative;width:100%;height:0;padding-bottom:60%;\"><span style=\"color:#565656\">Make this Notebook Trusted to load map: File -> Trust Notebook</span><iframe src=\"about:blank\" style=\"position:absolute;width:100%;height:100%;left:0;top:0;border:none !important;\" data-html=PCFET0NUWVBFIGh0bWw+CjxoZWFkPiAgICAKICAgIDxtZXRhIGh0dHAtZXF1aXY9ImNvbnRlbnQtdHlwZSIgY29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PVVURi04IiAvPgogICAgCiAgICAgICAgPHNjcmlwdD4KICAgICAgICAgICAgTF9OT19UT1VDSCA9IGZhbHNlOwogICAgICAgICAgICBMX0RJU0FCTEVfM0QgPSBmYWxzZTsKICAgICAgICA8L3NjcmlwdD4KICAgIAogICAgPHN0eWxlPmh0bWwsIGJvZHkge3dpZHRoOiAxMDAlO2hlaWdodDogMTAwJTttYXJnaW46IDA7cGFkZGluZzogMDt9PC9zdHlsZT4KICAgIDxzdHlsZT4jbWFwIHtwb3NpdGlvbjphYnNvbHV0ZTt0b3A6MDtib3R0b206MDtyaWdodDowO2xlZnQ6MDt9PC9zdHlsZT4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmpzIj48L3NjcmlwdD4KICAgIDxzY3JpcHQgc3JjPSJodHRwczovL2NvZGUuanF1ZXJ5LmNvbS9qcXVlcnktMS4xMi40Lm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvanMvYm9vdHN0cmFwLm1pbi5qcyI+PC9zY3JpcHQ+CiAgICA8c2NyaXB0IHNyYz0iaHR0cHM6Ly9jZG5qcy5jbG91ZGZsYXJlLmNvbS9hamF4L2xpYnMvTGVhZmxldC5hd2Vzb21lLW1hcmtlcnMvMi4wLjIvbGVhZmxldC5hd2Vzb21lLW1hcmtlcnMuanMiPjwvc2NyaXB0PgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2Nkbi5qc2RlbGl2ci5uZXQvbnBtL2xlYWZsZXRAMS42LjAvZGlzdC9sZWFmbGV0LmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL21heGNkbi5ib290c3RyYXBjZG4uY29tL2Jvb3RzdHJhcC8zLjIuMC9jc3MvYm9vdHN0cmFwLm1pbi5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9tYXhjZG4uYm9vdHN0cmFwY2RuLmNvbS9ib290c3RyYXAvMy4yLjAvY3NzL2Jvb3RzdHJhcC10aGVtZS5taW4uY3NzIi8+CiAgICA8bGluayByZWw9InN0eWxlc2hlZXQiIGhyZWY9Imh0dHBzOi8vbWF4Y2RuLmJvb3RzdHJhcGNkbi5jb20vZm9udC1hd2Vzb21lLzQuNi4zL2Nzcy9mb250LWF3ZXNvbWUubWluLmNzcyIvPgogICAgPGxpbmsgcmVsPSJzdHlsZXNoZWV0IiBocmVmPSJodHRwczovL2NkbmpzLmNsb3VkZmxhcmUuY29tL2FqYXgvbGlicy9MZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy8yLjAuMi9sZWFmbGV0LmF3ZXNvbWUtbWFya2Vycy5jc3MiLz4KICAgIDxsaW5rIHJlbD0ic3R5bGVzaGVldCIgaHJlZj0iaHR0cHM6Ly9jZG4uanNkZWxpdnIubmV0L2doL3B5dGhvbi12aXN1YWxpemF0aW9uL2ZvbGl1bS9mb2xpdW0vdGVtcGxhdGVzL2xlYWZsZXQuYXdlc29tZS5yb3RhdGUubWluLmNzcyIvPgogICAgCiAgICAgICAgICAgIDxtZXRhIG5hbWU9InZpZXdwb3J0IiBjb250ZW50PSJ3aWR0aD1kZXZpY2Utd2lkdGgsCiAgICAgICAgICAgICAgICBpbml0aWFsLXNjYWxlPTEuMCwgbWF4aW11bS1zY2FsZT0xLjAsIHVzZXItc2NhbGFibGU9bm8iIC8+CiAgICAgICAgICAgIDxzdHlsZT4KICAgICAgICAgICAgICAgICNtYXBfODgzM2MxYTk5OTI0NDc0MWFhMWQ3ZGQ4YzA4MWYwMjMgewogICAgICAgICAgICAgICAgICAgIHBvc2l0aW9uOiByZWxhdGl2ZTsKICAgICAgICAgICAgICAgICAgICB3aWR0aDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGhlaWdodDogMTAwLjAlOwogICAgICAgICAgICAgICAgICAgIGxlZnQ6IDAuMCU7CiAgICAgICAgICAgICAgICAgICAgdG9wOiAwLjAlOwogICAgICAgICAgICAgICAgfQogICAgICAgICAgICA8L3N0eWxlPgogICAgICAgIAogICAgPHNjcmlwdCBzcmM9Imh0dHBzOi8vdGVhc3RtYW4uZ2l0aHViLmlvL0xlYWZsZXQucGF0dGVybi9sZWFmbGV0LnBhdHRlcm4uanMiPjwvc2NyaXB0Pgo8L2hlYWQ+Cjxib2R5PiAgICAKICAgIAogICAgICAgICAgICA8ZGl2IGNsYXNzPSJmb2xpdW0tbWFwIiBpZD0ibWFwXzg4MzNjMWE5OTkyNDQ3NDFhYTFkN2RkOGMwODFmMDIzIiA+PC9kaXY+CiAgICAgICAgCjwvYm9keT4KPHNjcmlwdD4gICAgCiAgICAKICAgICAgICAgICAgdmFyIG1hcF84ODMzYzFhOTk5MjQ0NzQxYWExZDdkZDhjMDgxZjAyMyA9IEwubWFwKAogICAgICAgICAgICAgICAgIm1hcF84ODMzYzFhOTk5MjQ0NzQxYWExZDdkZDhjMDgxZjAyMyIsCiAgICAgICAgICAgICAgICB7CiAgICAgICAgICAgICAgICAgICAgY2VudGVyOiBbNDAuMCwgLTEwNS4wXSwKICAgICAgICAgICAgICAgICAgICBjcnM6IEwuQ1JTLkVQU0czODU3LAogICAgICAgICAgICAgICAgICAgIHpvb206IDYsCiAgICAgICAgICAgICAgICAgICAgem9vbUNvbnRyb2w6IHRydWUsCiAgICAgICAgICAgICAgICAgICAgcHJlZmVyQ2FudmFzOiBmYWxzZSwKICAgICAgICAgICAgICAgIH0KICAgICAgICAgICAgKTsKCiAgICAgICAgICAgIAoKICAgICAgICAKICAgIAogICAgICAgICAgICB2YXIgdGlsZV9sYXllcl82MGMwZTBhMWJjZjU0MDA0YjY5NjU5NGEyZmYxODI2OSA9IEwudGlsZUxheWVyKAogICAgICAgICAgICAgICAgImh0dHBzOi8ve3N9LnRpbGUub3BlbnN0cmVldG1hcC5vcmcve3p9L3t4fS97eX0ucG5nIiwKICAgICAgICAgICAgICAgIHsiYXR0cmlidXRpb24iOiAiRGF0YSBieSBcdTAwMjZjb3B5OyBcdTAwM2NhIGhyZWY9XCJodHRwOi8vb3BlbnN0cmVldG1hcC5vcmdcIlx1MDAzZU9wZW5TdHJlZXRNYXBcdTAwM2MvYVx1MDAzZSwgdW5kZXIgXHUwMDNjYSBocmVmPVwiaHR0cDovL3d3dy5vcGVuc3RyZWV0bWFwLm9yZy9jb3B5cmlnaHRcIlx1MDAzZU9EYkxcdTAwM2MvYVx1MDAzZS4iLCAiZGV0ZWN0UmV0aW5hIjogZmFsc2UsICJtYXhOYXRpdmVab29tIjogMTgsICJtYXhab29tIjogMTgsICJtaW5ab29tIjogMCwgIm5vV3JhcCI6IGZhbHNlLCAib3BhY2l0eSI6IDEsICJzdWJkb21haW5zIjogImFiYyIsICJ0bXMiOiBmYWxzZX0KICAgICAgICAgICAgKS5hZGRUbyhtYXBfODgzM2MxYTk5OTI0NDc0MWFhMWQ3ZGQ4YzA4MWYwMjMpOwogICAgICAgIAogICAgCiAgICAgICAgICAgIHZhciBzdHJpcGVfcGF0dGVybl9mZTFiZTI1MjNkNTQ0MTQyYTc4MDhmYTdmOTQ4YTVlMyA9IG5ldyBMLlN0cmlwZVBhdHRlcm4oCiAgICAgICAgICAgICAgICB7ImFuZ2xlIjogLTQ1LCAiY29sb3IiOiAiIzAwMDAwMCIsICJvcGFjaXR5IjogMC43NSwgInNwYWNlQ29sb3IiOiAiI2ZmZmZmZiIsICJzcGFjZU9wYWNpdHkiOiAwLjAsICJzcGFjZVdlaWdodCI6IDQsICJ3ZWlnaHQiOiA0fQogICAgICAgICAgICApOwogICAgICAgICAgICBzdHJpcGVfcGF0dGVybl9mZTFiZTI1MjNkNTQ0MTQyYTc4MDhmYTdmOTQ4YTVlMy5hZGRUbyhtYXBfODgzM2MxYTk5OTI0NDc0MWFhMWQ3ZGQ4YzA4MWYwMjMpOwogICAgICAgIAogICAgCiAgICAgICAgICAgIHZhciBjaXJjbGVfcGF0dGVybl9hNThhNmE4OWQzNDk0NDA0ODkyZGFkZTM0NTZhYzcxY19zaGFwZSA9IG5ldyBMLlBhdHRlcm5DaXJjbGUoCiAgICAgICAgICAgICAgICB7ImNvbG9yIjogIiMzMzg4ZmYiLCAiZmlsbCI6IHRydWUsICJmaWxsQ29sb3IiOiAiIzMzODhmZiIsICJmaWxsT3BhY2l0eSI6IDAuNSwgIm9wYWNpdHkiOiAxLCAicmFkaXVzIjogNSwgIndlaWdodCI6IDIuMCwgIngiOiA5LjAsICJ5IjogOS4wfQogICAgICAgICAgICApOwogICAgICAgICAgICB2YXIgY2lyY2xlX3BhdHRlcm5fYTU4YTZhODlkMzQ5NDQwNDg5MmRhZGUzNDU2YWM3MWMgPSBuZXcgTC5QYXR0ZXJuKAogICAgICAgICAgICAgICAgeyJoZWlnaHQiOiAyMCwgIndpZHRoIjogMjB9CiAgICAgICAgICAgICk7CiAgICAgICAgICAgIGNpcmNsZV9wYXR0ZXJuX2E1OGE2YTg5ZDM0OTQ0MDQ4OTJkYWRlMzQ1NmFjNzFjLmFkZFNoYXBlKGNpcmNsZV9wYXR0ZXJuX2E1OGE2YTg5ZDM0OTQ0MDQ4OTJkYWRlMzQ1NmFjNzFjX3NoYXBlKTsKICAgICAgICAgICAgY2lyY2xlX3BhdHRlcm5fYTU4YTZhODlkMzQ5NDQwNDg5MmRhZGUzNDU2YWM3MWMuYWRkVG8obWFwXzg4MzNjMWE5OTkyNDQ3NDFhYTFkN2RkOGMwODFmMDIzKTsKICAgICAgICAKICAgIAogICAgICAgIGZ1bmN0aW9uIGdlb19qc29uXzExY2ExM2JhY2UzODRhMDE5OThiMzI2ZjU1YWNjNDZkX3N0eWxlcihmZWF0dXJlKSB7CiAgICAgICAgICAgIHN3aXRjaChmZWF0dXJlLmlkKSB7CiAgICAgICAgICAgICAgICBjYXNlICJDTyI6IAogICAgICAgICAgICAgICAgICAgIHJldHVybiB7ImNvbG9yIjogImJsYWNrIiwgImZpbGxDb2xvciI6ICIjZmZmZjAwIiwgImZpbGxPcGFjaXR5IjogMS4wLCAiZmlsbFBhdHRlcm4iOiBzdHJpcGVfcGF0dGVybl9mZTFiZTI1MjNkNTQ0MTQyYTc4MDhmYTdmOTQ4YTVlMywgIm9wYWNpdHkiOiAxLjAsICJ3ZWlnaHQiOiAyfTsKICAgICAgICAgICAgICAgIGNhc2UgIlVUIjogCiAgICAgICAgICAgICAgICAgICAgcmV0dXJuIHsiY29sb3IiOiAiYmxhY2siLCAiZmlsbENvbG9yIjogIiNmZmZmMDAiLCAiZmlsbE9wYWNpdHkiOiAxLjAsICJmaWxsUGF0dGVybiI6IGNpcmNsZV9wYXR0ZXJuX2E1OGE2YTg5ZDM0OTQ0MDQ4OTJkYWRlMzQ1NmFjNzFjLCAib3BhY2l0eSI6IDEuMCwgIndlaWdodCI6IDJ9OwogICAgICAgICAgICAgICAgZGVmYXVsdDoKICAgICAgICAgICAgICAgICAgICByZXR1cm4geyJjb2xvciI6ICJibGFjayIsICJmaWxsQ29sb3IiOiAiI2ZmZmYwMCIsICJvcGFjaXR5IjogMS4wLCAid2VpZ2h0IjogMn07CiAgICAgICAgICAgIH0KICAgICAgICB9CiAgICAgICAgZnVuY3Rpb24gZ2VvX2pzb25fMTFjYTEzYmFjZTM4NGEwMTk5OGIzMjZmNTVhY2M0NmRfb25FYWNoRmVhdHVyZShmZWF0dXJlLCBsYXllcikgewogICAgICAgICAgICBsYXllci5vbih7CiAgICAgICAgICAgIH0pOwogICAgICAgIH07CiAgICAgICAgdmFyIGdlb19qc29uXzExY2ExM2JhY2UzODRhMDE5OThiMzI2ZjU1YWNjNDZkID0gTC5nZW9Kc29uKG51bGwsIHsKICAgICAgICAgICAgICAgIHNtb290aEZhY3RvcjogMC41LAogICAgICAgICAgICAgICAgb25FYWNoRmVhdHVyZTogZ2VvX2pzb25fMTFjYTEzYmFjZTM4NGEwMTk5OGIzMjZmNTVhY2M0NmRfb25FYWNoRmVhdHVyZSwKICAgICAgICAgICAgCiAgICAgICAgICAgICAgICBzdHlsZTogZ2VvX2pzb25fMTFjYTEzYmFjZTM4NGEwMTk5OGIzMjZmNTVhY2M0NmRfc3R5bGVyLAogICAgICAgIH0pOwoKICAgICAgICBmdW5jdGlvbiBnZW9fanNvbl8xMWNhMTNiYWNlMzg0YTAxOTk4YjMyNmY1NWFjYzQ2ZF9hZGQgKGRhdGEpIHsKICAgICAgICAgICAgZ2VvX2pzb25fMTFjYTEzYmFjZTM4NGEwMTk5OGIzMjZmNTVhY2M0NmQKICAgICAgICAgICAgICAgIC5hZGREYXRhKGRhdGEpCiAgICAgICAgICAgICAgICAuYWRkVG8obWFwXzg4MzNjMWE5OTkyNDQ3NDFhYTFkN2RkOGMwODFmMDIzKTsKICAgICAgICB9CiAgICAgICAgICAgIGdlb19qc29uXzExY2ExM2JhY2UzODRhMDE5OThiMzI2ZjU1YWNjNDZkX2FkZCh7ImZlYXR1cmVzIjogW3siZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTg3LjM1OTI5NiwgMzUuMDAxMThdLCBbLTg1LjYwNjY3NSwgMzQuOTg0NzQ5XSwgWy04NS40MzE0MTMsIDM0LjEyNDg2OV0sIFstODUuMTg0OTUxLCAzMi44NTk2OTZdLCBbLTg1LjA2OTkzNSwgMzIuNTgwMzcyXSwgWy04NC45NjAzOTcsIDMyLjQyMTU0MV0sIFstODUuMDA0MjEyLCAzMi4zMjI5NTZdLCBbLTg0Ljg4OTE5NiwgMzIuMjYyNzA5XSwgWy04NS4wNTg5ODEsIDMyLjEzNjc0XSwgWy04NS4wNTM1MDQsIDMyLjAxMDc3XSwgWy04NS4xNDExMzYsIDMxLjg0MDk4NV0sIFstODUuMDQyNTUxLCAzMS41Mzk3NTNdLCBbLTg1LjExMzc1MSwgMzEuMjc2ODZdLCBbLTg1LjAwNDIxMiwgMzEuMDAzMDEzXSwgWy04NS40OTcxMzcsIDMwLjk5NzUzNl0sIFstODcuNjAwMjgyLCAzMC45OTc1MzZdLCBbLTg3LjYzMzE0MywgMzAuODY2MDldLCBbLTg3LjQwODU4OSwgMzAuNjc0Mzk3XSwgWy04Ny40NDY5MjcsIDMwLjUxMDA4OF0sIFstODcuMzcwMjUsIDMwLjQyNzkzNF0sIFstODcuNTE4MTI4LCAzMC4yODAwNTddLCBbLTg3LjY1NTA1MSwgMzAuMjQ3MTk1XSwgWy04Ny45MDY5OSwgMzAuNDExNTA0XSwgWy04Ny45MzQzNzUsIDMwLjY1Nzk2Nl0sIFstODguMDExMDUyLCAzMC42ODUzNTFdLCBbLTg4LjEwNDE2LCAzMC40OTkxMzVdLCBbLTg4LjEzNzAyMiwgMzAuMzE4Mzk2XSwgWy04OC4zOTQ0MzgsIDMwLjM2NzY4OF0sIFstODguNDcxMTE1LCAzMS44OTU3NTRdLCBbLTg4LjI0MTA4NCwgMzMuNzk2MjUzXSwgWy04OC4wOTg2ODMsIDM0Ljg5MTY0MV0sIFstODguMjAyNzQ1LCAzNC45OTU3MDNdLCBbLTg3LjM1OTI5NiwgMzUuMDAxMThdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIkFMIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiQWxhYmFtYSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbWy0xMzEuNjAyMDIxLCA1NS4xMTc5ODJdLCBbLTEzMS41NjkxNTksIDU1LjI4MjI5XSwgWy0xMzEuMzU1NTU4LCA1NS4xODM3MDVdLCBbLTEzMS4zODg0MiwgNTUuMDEzOTJdLCBbLTEzMS42NDU4MzYsIDU1LjAzNTgyN10sIFstMTMxLjYwMjAyMSwgNTUuMTE3OTgyXV1dLCBbW1stMTMxLjgzMjA1MiwgNTUuNDI0NjldLCBbLTEzMS42NDU4MzYsIDU1LjMwNDE5N10sIFstMTMxLjc0OTg5OCwgNTUuMTI4OTM1XSwgWy0xMzEuODMyMDUyLCA1NS4xODkxODJdLCBbLTEzMS44MzIwNTIsIDU1LjQyNDY5XV1dLCBbW1stMTMyLjk3NjczMywgNTYuNDM3OTI0XSwgWy0xMzIuNzM1NzQ3LCA1Ni40NTk4MzJdLCBbLTEzMi42MzE2ODUsIDU2LjQyMTQ5M10sIFstMTMyLjY2NDU0NywgNTYuMjczNjE2XSwgWy0xMzIuODc4MTQ4LCA1Ni4yNDA3NTRdLCBbLTEzMy4wNjk4NDEsIDU2LjMzMzg2Ml0sIFstMTMyLjk3NjczMywgNTYuNDM3OTI0XV1dLCBbW1stMTMzLjU5NTYyNywgNTYuMzUwMjkzXSwgWy0xMzMuMTYyOTQ5LCA1Ni4zMTc0MzFdLCBbLTEzMy4wNTM0MSwgNTYuMTI1NzM5XSwgWy0xMzIuNjIwNzMyLCA1NS45MTIxMzhdLCBbLTEzMi40NzI4NTQsIDU1Ljc4MDY5MV0sIFstMTMyLjQ2MTksIDU1LjY3MTE1Ml0sIFstMTMyLjM1NzgzOCwgNTUuNjQ5MjQ1XSwgWy0xMzIuMzQxNDA4LCA1NS41MDY4NDRdLCBbLTEzMi4xNjYxNDYsIDU1LjM2NDQ0NF0sIFstMTMyLjE0NDIzOCwgNTUuMjM4NDc0XSwgWy0xMzIuMDI5MjIyLCA1NS4yNzY4MTNdLCBbLTEzMS45Nzk5MywgNTUuMTc4MjI4XSwgWy0xMzEuOTU4MDIyLCA1NC43ODkzNjVdLCBbLTEzMi4wMjkyMjIsIDU0LjcwMTczNF0sIFstMTMyLjMwODU0NiwgNTQuNzE4MTY1XSwgWy0xMzIuMzg1MjIzLCA1NC45MTUzMzVdLCBbLTEzMi40ODM4MDgsIDU0Ljg5ODkwNF0sIFstMTMyLjY4NjQ1NSwgNTUuMDQ2NzgxXSwgWy0xMzIuNzQ2NzAxLCA1NC45OTc0ODldLCBbLTEzMi45MTY0ODYsIDU1LjA0Njc4MV0sIFstMTMyLjg4OTEwMiwgNTQuODk4OTA0XSwgWy0xMzIuNzMwMjcsIDU0LjkzNzI0Ml0sIFstMTMyLjYyNjIwOSwgNTQuODgyNDczXSwgWy0xMzIuNjc1NTAxLCA1NC42Nzk4MjZdLCBbLTEzMi44NjcxOTQsIDU0LjcwMTczNF0sIFstMTMzLjE1NzQ3MiwgNTQuOTU5MTVdLCBbLTEzMy4yMzk2MjYsIDU1LjA5MDU5N10sIFstMTMzLjIyMzE5NSwgNTUuMjI3NTJdLCBbLTEzMy40NTMyMjcsIDU1LjIxNjU2Nl0sIFstMTMzLjQ1MzIyNywgNTUuMzIwNjI4XSwgWy0xMzMuMjc3OTY0LCA1NS4zMzE1ODJdLCBbLTEzMy4xMDI3MDIsIDU1LjQyNDY5XSwgWy0xMzMuMTc5MzgsIDU1LjU4ODk5OF0sIFstMTMzLjM4NzUwMywgNTUuNjIxODZdLCBbLTEzMy40MjAzNjUsIDU1Ljg4NDc1M10sIFstMTMzLjQ5NzA0MiwgNTYuMDE2Ml0sIFstMTMzLjYzOTQ0MiwgNTUuOTIzMDkyXSwgWy0xMzMuNjk0MjEyLCA1Ni4wNzA5NjldLCBbLTEzMy41NDYzMzUsIDU2LjE0MjE2OV0sIFstMTMzLjY2NjgyNywgNTYuMzExOTU1XSwgWy0xMzMuNTk1NjI3LCA1Ni4zNTAyOTNdXV0sIFtbWy0xMzMuNzM4MDI3LCA1NS41NTYxMzddLCBbLTEzMy41NDYzMzUsIDU1LjQ5MDQxM10sIFstMTMzLjQxNDg4OCwgNTUuNTcyNTY4XSwgWy0xMzMuMjgzNDQxLCA1NS41MzQyMjldLCBbLTEzMy40MjAzNjUsIDU1LjM4NjM1Ml0sIFstMTMzLjYzMzk2NiwgNTUuNDMwMTY3XSwgWy0xMzMuNzM4MDI3LCA1NS41NTYxMzddXV0sIFtbWy0xMzMuOTA3ODEzLCA1Ni45MzA4NDldLCBbLTEzNC4wNTAyMTMsIDU3LjAyOTQzNF0sIFstMTMzLjg4NTkwNSwgNTcuMDk1MTU3XSwgWy0xMzMuMzQzNjg4LCA1Ny4wMDIwNDldLCBbLTEzMy4xMDI3MDIsIDU3LjAwNzUyNl0sIFstMTMyLjkzMjkxNywgNTYuODIxMzFdLCBbLTEzMi42MjA3MzIsIDU2LjY2Nzk1Nl0sIFstMTMyLjY1MzU5MywgNTYuNTUyOTRdLCBbLTEzMi44MTc5MDEsIDU2LjQ5MjY5NF0sIFstMTMzLjA0MjQ1NiwgNTYuNTIwMDc4XSwgWy0xMzMuMjAxMjg3LCA1Ni40NDg4NzhdLCBbLTEzMy40MjAzNjUsIDU2LjQ5MjY5NF0sIFstMTMzLjY2MTM1LCA1Ni40NDg4NzhdLCBbLTEzMy43MTA2NDMsIDU2LjY4NDM4Nl0sIFstMTMzLjY4ODczNSwgNTYuODM3NzQxXSwgWy0xMzMuODY5NDc0LCA1Ni44NDMyMThdLCBbLTEzMy45MDc4MTMsIDU2LjkzMDg0OV1dXSwgW1tbLTEzNC4xMTU5MzYsIDU2LjQ4MTc0XSwgWy0xMzQuMjUyODYsIDU2LjU1ODQxN10sIFstMTM0LjQwMDczNywgNTYuNzIyNzI1XSwgWy0xMzQuNDE3MTY4LCA1Ni44NDg2OTVdLCBbLTEzNC4yOTY2NzUsIDU2LjkwODk0MV0sIFstMTM0LjE3MDcwNiwgNTYuODQ4Njk1XSwgWy0xMzQuMTQzMzIxLCA1Ni45NTI3NTddLCBbLTEzMy43NDg5ODEsIDU2Ljc3MjAxN10sIFstMTMzLjcxMDY0MywgNTYuNTk2NzU1XSwgWy0xMzMuODQ3NTY2LCA1Ni41NzQ4NDhdLCBbLTEzMy45MzUxOTcsIDU2LjM3NzY3OF0sIFstMTMzLjgzNjYxMiwgNTYuMzIyOTA4XSwgWy0xMzMuOTU3MTA1LCA1Ni4wOTI4NzddLCBbLTEzNC4xMTA0NTksIDU2LjE0MjE2OV0sIFstMTM0LjEzMjM2NywgNTUuOTk5NzY5XSwgWy0xMzQuMjMwOTUyLCA1Ni4wNzA5NjldLCBbLTEzNC4yOTExOTgsIDU2LjM1MDI5M10sIFstMTM0LjExNTkzNiwgNTYuNDgxNzRdXV0sIFtbWy0xMzQuNjM2MjQ2LCA1Ni4yODQ1N10sIFstMTM0LjY2OTEwNywgNTYuMTY5NTU0XSwgWy0xMzQuODA2MDMxLCA1Ni4yMzUyNzddLCBbLTEzNS4xNzg0NjMsIDU2LjY3ODkxXSwgWy0xMzUuNDEzOTcxLCA1Ni44MTAzNTZdLCBbLTEzNS4zMzE4MTcsIDU2LjkxNDQxOF0sIFstMTM1LjQyNDkyNSwgNTcuMTY2MzU3XSwgWy0xMzUuNjg3ODE4LCA1Ny4zNjkwMDRdLCBbLTEzNS40MTk0NDgsIDU3LjU2NjE3NF0sIFstMTM1LjI5ODk1NSwgNTcuNDg0MDJdLCBbLTEzNS4wNjM0NDcsIDU3LjQxODI5Nl0sIFstMTM0Ljg0OTg0NiwgNTcuNDA3MzQzXSwgWy0xMzQuODQ0MzY5LCA1Ny4yNDg1MTFdLCBbLTEzNC42MzYyNDYsIDU2LjcyODIwMl0sIFstMTM0LjYzNjI0NiwgNTYuMjg0NTddXV0sIFtbWy0xMzQuNzEyOTIzLCA1OC4yMjM0MDddLCBbLTEzNC4zNzMzNTMsIDU4LjE0NjczXSwgWy0xMzQuMTc2MTgzLCA1OC4xNTc2ODNdLCBbLTEzNC4xODcxMzcsIDU4LjA4MTAwNl0sIFstMTMzLjkwMjMzNiwgNTcuODA3MTU5XSwgWy0xMzQuMDk5NTA1LCA1Ny44NTA5NzVdLCBbLTEzNC4xNDg3OTgsIDU3Ljc1Nzg2N10sIFstMTMzLjkzNTE5NywgNTcuNjE1NDY2XSwgWy0xMzMuODY5NDc0LCA1Ny4zNjM1MjddLCBbLTEzNC4wODMwNzUsIDU3LjI5NzgwNF0sIFstMTM0LjE1NDI3NSwgNTcuMjEwMTczXSwgWy0xMzQuNDk5MzIyLCA1Ny4wMjk0MzRdLCBbLTEzNC42MDMzODQsIDU3LjAzNDkxMV0sIFstMTM0LjY0NzIsIDU3LjIyNjYwNF0sIFstMTM0LjU3NTk5OSwgNTcuMzQxNjE5XSwgWy0xMzQuNjA4ODYxLCA1Ny41MTE0MDRdLCBbLTEzNC43MjkzNTQsIDU3LjcxOTUyOF0sIFstMTM0LjcwNzQ0NiwgNTcuODI5MDY3XSwgWy0xMzQuNzg0MTIzLCA1OC4wOTc0MzddLCBbLTEzNC45MTU1NywgNTguMjEyNDUzXSwgWy0xMzQuOTUzOTA4LCA1OC40MDk2MjNdLCBbLTEzNC43MTI5MjMsIDU4LjIyMzQwN11dXSwgW1tbLTEzNS44NTc2MDMsIDU3LjMzMDY2NV0sIFstMTM1LjcxNTIwMywgNTcuMzMwNjY1XSwgWy0xMzUuNTY3MzI2LCA1Ny4xNDk5MjZdLCBbLTEzNS42MzMwNDksIDU3LjAyMzk1N10sIFstMTM1Ljg1NzYwMywgNTYuOTk2NTcyXSwgWy0xMzUuODI0NzQyLCA1Ny4xOTM3NDJdLCBbLTEzNS44NTc2MDMsIDU3LjMzMDY2NV1dXSwgW1tbLTEzNi4yNzkzMjgsIDU4LjIwNjk3Nl0sIFstMTM1Ljk3ODA5NiwgNTguMjAxNDk5XSwgWy0xMzUuNzgwOTI2LCA1OC4yODkxM10sIFstMTM1LjQ5NjEyNSwgNTguMTY4NjM3XSwgWy0xMzUuNjQ5NDgsIDU4LjAzNzE5MV0sIFstMTM1LjU5NDcxLCA1Ny45ODc4OThdLCBbLTEzNS40NTIzMSwgNTguMTM1Nzc2XSwgWy0xMzUuMTA3MjYzLCA1OC4wODY0ODNdLCBbLTEzNC45MTU1NywgNTcuOTc2OTQ0XSwgWy0xMzUuMDI1MTA4LCA1Ny43Nzk3NzVdLCBbLTEzNC45Mzc0NzcsIDU3Ljc2MzM0NF0sIFstMTM0LjgyMjQ2MiwgNTcuNTAwNDUxXSwgWy0xMzUuMDg1MzU1LCA1Ny40NjIxMTJdLCBbLTEzNS41NzI4MDIsIDU3LjY3NTcxM10sIFstMTM1LjU1NjM3MiwgNTcuNDU2NjM1XSwgWy0xMzUuNzA5NzI2LCA1Ny4zNjkwMDRdLCBbLTEzNS44OTA0NjUsIDU3LjQwNzM0M10sIFstMTM2LjAwMDAwNCwgNTcuNTQ0MjY2XSwgWy0xMzYuMjA4MTI4LCA1Ny42MzczNzRdLCBbLTEzNi4zNjY5NTksIDU3LjgyOTA2N10sIFstMTM2LjU2OTYwNiwgNTcuOTE2Njk4XSwgWy0xMzYuNTU4NjUyLCA1OC4wNzU1MjldLCBbLTEzNi40MjE3MjgsIDU4LjEzMDI5OV0sIFstMTM2LjM3NzkxMywgNTguMjY3MjIyXSwgWy0xMzYuMjc5MzI4LCA1OC4yMDY5NzZdXV0sIFtbWy0xNDcuMDc5ODU0LCA2MC4yMDA1ODJdLCBbLTE0Ny41MDE1NzksIDU5Ljk0ODY0M10sIFstMTQ3LjUzNDQ0LCA1OS44NTAwNThdLCBbLTE0Ny44NzQwMTEsIDU5Ljc4NDMzNV0sIFstMTQ3LjgwMjgxLCA1OS45Mzc2ODldLCBbLTE0Ny40MzU4NTUsIDYwLjA5NjUyXSwgWy0xNDcuMjA1ODI0LCA2MC4yNzE3ODJdLCBbLTE0Ny4wNzk4NTQsIDYwLjIwMDU4Ml1dXSwgW1tbLTE0Ny41NjE4MjUsIDYwLjU3ODQ5MV0sIFstMTQ3LjYxNjU5NCwgNjAuMzcwMzY3XSwgWy0xNDcuNzU4OTk1LCA2MC4xNTY3NjddLCBbLTE0Ny45NTYxNjUsIDYwLjIyNzk2N10sIFstMTQ3Ljc5MTg1NiwgNjAuNDc0NDI5XSwgWy0xNDcuNTYxODI1LCA2MC41Nzg0OTFdXV0sIFtbWy0xNDcuNzg2Mzc5LCA3MC4yNDUyOTFdLCBbLTE0Ny42ODIzMTgsIDcwLjIwMTQ3NV0sIFstMTQ3LjE2MjAwOCwgNzAuMTU3NjZdLCBbLTE0Ni44ODgxNjEsIDcwLjE4NTA0NF0sIFstMTQ2LjUxMDI1MiwgNzAuMTg1MDQ0XSwgWy0xNDYuMDk5NDgyLCA3MC4xNDY3MDZdLCBbLTE0NS44NTg0OTYsIDcwLjE2ODYxNF0sIFstMTQ1LjYyMjk4OCwgNzAuMDg2NDZdLCBbLTE0NS4xOTU3ODcsIDY5Ljk5MzM1Ml0sIFstMTQ0LjYyMDcwOCwgNjkuOTcxNDQ0XSwgWy0xNDQuNDYxODc3LCA3MC4wMjYyMTNdLCBbLTE0NC4wNzg0OTEsIDcwLjA1OTA3NV0sIFstMTQzLjkxNDE4MywgNzAuMTMwMjc1XSwgWy0xNDMuNDk3OTM1LCA3MC4xNDEyMjldLCBbLTE0My41MDM0MTIsIDcwLjA5MTkzNl0sIFstMTQzLjI1Njk1LCA3MC4xMTkzMjFdLCBbLTE0Mi43NDc1OTQsIDcwLjA0MjY0NF0sIFstMTQyLjQwMjU0NywgNjkuOTE2Njc0XSwgWy0xNDIuMDc5NDA4LCA2OS44NTY0MjhdLCBbLTE0Mi4wMDgyMDcsIDY5LjgwMTY1OV0sIFstMTQxLjcxMjQ1MywgNjkuNzkwNzA1XSwgWy0xNDEuNDMzMTI5LCA2OS42OTc1OTddLCBbLTE0MS4zNzgzNTksIDY5LjYzNzM1XSwgWy0xNDEuMjA4NTc0LCA2OS42ODY2NDNdLCBbLTE0MS4wMDA0NSwgNjkuNjQ4MzA0XSwgWy0xNDEuMDAwNDUsIDYwLjMwNDY0NF0sIFstMTQwLjUzNDkxLCA2MC4yMjI0OV0sIFstMTQwLjQ3NDY2NCwgNjAuMzEwMTIxXSwgWy0xMzkuOTg3MjE2LCA2MC4xODQxNTFdLCBbLTEzOS42OTY5MzksIDYwLjM0Mjk4M10sIFstMTM5LjA4ODk5OCwgNjAuMzU5NDEzXSwgWy0xMzkuMTk4NTM3LCA2MC4wOTEwNDNdLCBbLTEzOS4wNDUxODMsIDU5Ljk5NzkzNV0sIFstMTM4LjcwMDEzNSwgNTkuOTEwMzA0XSwgWy0xMzguNjIzNDU4LCA1OS43Njc5MDRdLCBbLTEzNy42MDQ3NDcsIDU5LjI0MjExOF0sIFstMTM3LjQ0NTkxNiwgNTguOTA4MDI0XSwgWy0xMzcuMjY1MTc3LCA1OS4wMDExMzJdLCBbLTEzNi44MjcwMjIsIDU5LjE1OTk2M10sIFstMTM2LjU4MDU1OSwgNTkuMTY1NDRdLCBbLTEzNi40NjU1NDQsIDU5LjI4NTkzM10sIFstMTM2LjQ3NjQ5OCwgNTkuNDY2NjcyXSwgWy0xMzYuMzAxMjM2LCA1OS40NjY2NzJdLCBbLTEzNi4yNTc0MiwgNTkuNjI1NTAzXSwgWy0xMzUuOTQ1MjM0LCA1OS42NjM4NDJdLCBbLTEzNS40Nzk2OTQsIDU5LjgwMDc2Nl0sIFstMTM1LjAyNTEwOCwgNTkuNTY1MjU3XSwgWy0xMzUuMDY4OTI0LCA1OS40MjI4NTddLCBbLTEzNC45NTkzODUsIDU5LjI4MDQ1Nl0sIFstMTM0LjcwMTk2OSwgNTkuMjQ3NTk1XSwgWy0xMzQuMzc4ODI5LCA1OS4wMzM5OTRdLCBbLTEzNC40MDA3MzcsIDU4Ljk3Mzc0OF0sIFstMTM0LjI1Mjg2LCA1OC44NTg3MzJdLCBbLTEzMy44NDIwODksIDU4LjcyNzI4NV0sIFstMTMzLjE3MzkwMywgNTguMTUyMjA2XSwgWy0xMzMuMDc1MzE4LCA1Ny45OTg4NTJdLCBbLTEzMi44NjcxOTQsIDU3Ljg0NTQ5OF0sIFstMTMyLjU2MDQ4NSwgNTcuNTA1OTI4XSwgWy0xMzIuMjUzNzc3LCA1Ny4yMTU2NV0sIFstMTMyLjM2ODc5MiwgNTcuMDk1MTU3XSwgWy0xMzIuMDUxMTMsIDU3LjA1MTM0MV0sIFstMTMyLjEyNzgwNywgNTYuODc2MDc5XSwgWy0xMzEuODcwMzkxLCA1Ni44MDQ4NzldLCBbLTEzMS44Mzc1MjksIDU2LjYwMjIzMl0sIFstMTMxLjU4MDExMywgNTYuNjEzMTg2XSwgWy0xMzEuMDg3MTg4LCA1Ni40MDUwNjJdLCBbLTEzMC43ODA0OCwgNTYuMzY2NzI0XSwgWy0xMzAuNjIxNjQ4LCA1Ni4yNjgxMzldLCBbLTEzMC40NjgyOTQsIDU2LjI0MDc1NF0sIFstMTMwLjQyNDQ3OCwgNTYuMTQyMTY5XSwgWy0xMzAuMTAxMzM5LCA1Ni4xMTQ3ODVdLCBbLTEzMC4wMDI3NTQsIDU1Ljk5NDI5Ml0sIFstMTMwLjE1MDYzMSwgNTUuNzY5NzM3XSwgWy0xMzAuMTI4NzI0LCA1NS41ODM1MjFdLCBbLTEyOS45ODYzMjMsIDU1LjI3NjgxM10sIFstMTMwLjA5NTg2MiwgNTUuMjAwMTM2XSwgWy0xMzAuMzM2ODQ3LCA1NC45MjA4MTJdLCBbLTEzMC42ODczNzIsIDU0LjcxODE2NV0sIFstMTMwLjc4NTk1NywgNTQuODIyMjI3XSwgWy0xMzAuOTE3NDAzLCA1NC43ODkzNjVdLCBbLTEzMS4wMTA1MTEsIDU0Ljk5NzQ4OV0sIFstMTMwLjk4MzEyNiwgNTUuMDg1MTJdLCBbLTEzMS4wOTI2NjUsIDU1LjE4OTE4Ml0sIFstMTMwLjg2MjYzNCwgNTUuMjk4NzIxXSwgWy0xMzAuOTI4MzU3LCA1NS4zMzcwNTldLCBbLTEzMS4xNTgzODksIDU1LjIwMDEzNl0sIFstMTMxLjI4NDM1OCwgNTUuMjg3NzY3XSwgWy0xMzEuNDI2NzU5LCA1NS4yMzg0NzRdLCBbLTEzMS44NDMwMDYsIDU1LjQ1NzU1Ml0sIFstMTMxLjcwMDYwNiwgNTUuNjk4NTM3XSwgWy0xMzEuOTYzNDk5LCA1NS42MTYzODNdLCBbLTEzMS45NzQ0NTMsIDU1LjQ5NTg5XSwgWy0xMzIuMTgyNTc2LCA1NS41ODg5OThdLCBbLTEzMi4yMjYzOTIsIDU1LjcwNDAxNF0sIFstMTMyLjA4Mzk5MSwgNTUuODI5OTg0XSwgWy0xMzIuMTI3ODA3LCA1NS45NTU5NTNdLCBbLTEzMi4zMjQ5NzcsIDU1Ljg1MTg5Ml0sIFstMTMyLjUyMjE0NywgNTYuMDc2NDQ2XSwgWy0xMzIuNjQyNjM5LCA1Ni4wMzI2MzFdLCBbLTEzMi43MTkzMTcsIDU2LjIxODg0N10sIFstMTMyLjUyNzYyNCwgNTYuMzM5MzM5XSwgWy0xMzIuMzQxNDA4LCA1Ni4zMzkzMzldLCBbLTEzMi4zOTYxNzcsIDU2LjQ4NzIxN10sIFstMTMyLjI5NzU5MiwgNTYuNjc4OTFdLCBbLTEzMi40NTA5NDYsIDU2LjY3MzQzM10sIFstMTMyLjc2ODYwOSwgNTYuODM3NzQxXSwgWy0xMzIuOTkzMTY0LCA1Ny4wMzQ5MTFdLCBbLTEzMy41MTg5NSwgNTcuMTc3MzExXSwgWy0xMzMuNTA3OTk2LCA1Ny41NzcxMjhdLCBbLTEzMy42Nzc3ODEsIDU3LjYyNjQyXSwgWy0xMzMuNjM5NDQyLCA1Ny43OTA3MjhdLCBbLTEzMy44MTQ3MDUsIDU3LjgzNDU0NF0sIFstMTM0LjA3MjEyMSwgNTguMDUzNjIyXSwgWy0xMzQuMTQzMzIxLCA1OC4xNjg2MzddLCBbLTEzNC41ODY5NTMsIDU4LjIwNjk3Nl0sIFstMTM1LjA3NDQwMSwgNTguNTAyNzMxXSwgWy0xMzUuMjgyNTI1LCA1OS4xOTI4MjVdLCBbLTEzNS4zODExMSwgNTkuMDMzOTk0XSwgWy0xMzUuMzM3Mjk0LCA1OC44OTE1OTNdLCBbLTEzNS4xNDAxMjQsIDU4LjYxNzc0Nl0sIFstMTM1LjE4OTQxNywgNTguNTczOTMxXSwgWy0xMzUuMDU3OTcsIDU4LjM0OTM3Nl0sIFstMTM1LjA4NTM1NSwgNTguMjAxNDk5XSwgWy0xMzUuMjc3MDQ4LCA1OC4yMzQzNjFdLCBbLTEzNS40MzA0MDIsIDU4LjM5ODY2OV0sIFstMTM1LjYzMzA0OSwgNTguNDI2MDUzXSwgWy0xMzUuOTE3ODUsIDU4LjM4MjIzOF0sIFstMTM1LjkxMjM3MywgNTguNjE3NzQ2XSwgWy0xMzYuMDg3NjM1LCA1OC44MTQ5MTZdLCBbLTEzNi4yNDY0NjYsIDU4Ljc1NDY3XSwgWy0xMzYuODc2MzE0LCA1OC45NjI3OTRdLCBbLTEzNi45MzEwODQsIDU4LjkwMjU0N10sIFstMTM2LjU4NjAzNiwgNTguODM2ODI0XSwgWy0xMzYuMzE3NjY2LCA1OC42NzI1MTZdLCBbLTEzNi4yMTM2MDQsIDU4LjY2NzAzOV0sIFstMTM2LjE4MDc0MywgNTguNTM1NTkyXSwgWy0xMzYuMDQzODE5LCA1OC4zODIyMzhdLCBbLTEzNi4zODg4NjcsIDU4LjI5NDYwN10sIFstMTM2LjU5MTUxMywgNTguMzQ5Mzc2XSwgWy0xMzYuNTk2OTksIDU4LjIxMjQ1M10sIFstMTM2Ljg1OTg4MywgNTguMzE2NTE1XSwgWy0xMzYuOTQ3NTE0LCA1OC4zOTMxOTJdLCBbLTEzNy4xMTE4MjMsIDU4LjM5MzE5Ml0sIFstMTM3LjU2NjQwOSwgNTguNTkwMzYyXSwgWy0xMzcuOTAwNTAyLCA1OC43NjU2MjRdLCBbLTEzNy45MzMzNjQsIDU4Ljg2OTY4Nl0sIFstMTM4LjExOTU4LCA1OS4wMjMwNF0sIFstMTM4LjYzNDQxMiwgNTkuMTMyNTc5XSwgWy0xMzguOTE5MjEzLCA1OS4yNDc1OTVdLCBbLTEzOS40MTc2MTUsIDU5LjM3OTA0MV0sIFstMTM5Ljc0NjIzMSwgNTkuNTA1MDExXSwgWy0xMzkuNzE4ODQ2LCA1OS42NDE5MzRdLCBbLTEzOS42MjU3MzgsIDU5LjU5ODExOV0sIFstMTM5LjUxNjIsIDU5LjY4NTc1XSwgWy0xMzkuNjI1NzM4LCA1OS44ODI5Ml0sIFstMTM5LjQ4ODgxNSwgNTkuOTkyNDU4XSwgWy0xMzkuNTU0NTM4LCA2MC4wNDE3NTFdLCBbLTEzOS44MDEsIDU5LjgzMzYyN10sIFstMTQwLjMxNTgzMywgNTkuNjk2NzA0XSwgWy0xNDAuOTI5MjUsIDU5Ljc0NTk5Nl0sIFstMTQxLjQ0NDA4MywgNTkuODcxOTY2XSwgWy0xNDEuNDY1OTksIDU5Ljk3MDU1MV0sIFstMTQxLjcwNjk3NiwgNTkuOTQ4NjQzXSwgWy0xNDEuOTY0MzkyLCA2MC4wMTk4NDNdLCBbLTE0Mi41Mzk0NzEsIDYwLjA4NTU2Nl0sIFstMTQyLjg3MzU2NCwgNjAuMDkxMDQzXSwgWy0xNDMuNjIzOTA1LCA2MC4wMzYyNzRdLCBbLTE0My44OTIyNzUsIDU5Ljk5NzkzNV0sIFstMTQ0LjIzMTg0NSwgNjAuMTQwMzM2XSwgWy0xNDQuNjUzNTcsIDYwLjIwNjA1OV0sIFstMTQ0Ljc4NTAxNiwgNjAuMjkzNjldLCBbLTE0NC44MzQzMDksIDYwLjQ0MTU2OF0sIFstMTQ1LjEyNDU4NiwgNjAuNDMwNjE0XSwgWy0xNDUuMjIzMTcxLCA2MC4yOTkxNjddLCBbLTE0NS43MzgwMDQsIDYwLjQ3NDQyOV0sIFstMTQ1LjgyMDE1OCwgNjAuNTUxMTA2XSwgWy0xNDYuMzUxNDIxLCA2MC40MDg3MDZdLCBbLTE0Ni42MDg4MzcsIDYwLjIzODkyMV0sIFstMTQ2LjcxODM3NiwgNjAuMzk3NzUyXSwgWy0xNDYuNjA4ODM3LCA2MC40ODUzODNdLCBbLTE0Ni40NTU0ODMsIDYwLjQ2MzQ3NV0sIFstMTQ1Ljk1MTYwNCwgNjAuNTc4NDkxXSwgWy0xNDYuMDE3MzI4LCA2MC42NjYxMjJdLCBbLTE0Ni4yNTI4MzYsIDYwLjYyMjMwN10sIFstMTQ2LjM0NTk0NCwgNjAuNzM3MzIyXSwgWy0xNDYuNTY1MDIyLCA2MC43NTM3NTNdLCBbLTE0Ni43ODQwOTksIDYxLjA0NDAzMV0sIFstMTQ2Ljg2NjI1MywgNjAuOTcyODMxXSwgWy0xNDcuMTcyOTYyLCA2MC45MzQ0OTJdLCBbLTE0Ny4yNzE1NDcsIDYwLjk3MjgzMV0sIFstMTQ3LjM3NTYwOSwgNjAuODc5NzIzXSwgWy0xNDcuNzU4OTk1LCA2MC45MTI1ODRdLCBbLTE0Ny43NzU0MjYsIDYwLjgwODUyM10sIFstMTQ4LjAzMjg0MiwgNjAuNzgxMTM4XSwgWy0xNDguMTUzMzM0LCA2MC44MTk0NzZdLCBbLTE0OC4wNjU3MDMsIDYxLjAwNTY5Ml0sIFstMTQ4LjE3NTI0MiwgNjEuMDAwMjE1XSwgWy0xNDguMzUwNTA0LCA2MC44MDMwNDZdLCBbLTE0OC4xMDk1MTksIDYwLjczNzMyMl0sIFstMTQ4LjA4NzYxMSwgNjAuNTk0OTIyXSwgWy0xNDcuOTM5NzM0LCA2MC40NDE1NjhdLCBbLTE0OC4wMjczNjUsIDYwLjI3NzI1OV0sIFstMTQ4LjIxOTA1OCwgNjAuMzMyMDI5XSwgWy0xNDguMjczODI3LCA2MC4yNDk4NzVdLCBbLTE0OC4wODc2MTEsIDYwLjIxNzAxM10sIFstMTQ3Ljk4MzU0OSwgNTkuOTk3OTM1XSwgWy0xNDguMjUxOTE5LCA1OS45NTQxMl0sIFstMTQ4LjM5OTc5NywgNTkuOTk3OTM1XSwgWy0xNDguNjM1MzA1LCA1OS45Mzc2ODldLCBbLTE0OC43NTU3OTgsIDU5Ljk4Njk4MV0sIFstMTQ5LjA2Nzk4NCwgNTkuOTgxNTA1XSwgWy0xNDkuMDU3MDMsIDYwLjA2MzY1OV0sIFstMTQ5LjIwNDkwNywgNjAuMDA4ODg5XSwgWy0xNDkuMjg3MDYxLCA1OS45MDQ4MjddLCBbLTE0OS40MTg1MDgsIDU5Ljk5NzkzNV0sIFstMTQ5LjU4MjgxNiwgNTkuODY2NDg5XSwgWy0xNDkuNTExNjE2LCA1OS44MDYyNDJdLCBbLTE0OS43NDE2NDcsIDU5LjcyOTU2NV0sIFstMTQ5Ljk0OTc3MSwgNTkuNzE4NjExXSwgWy0xNTAuMDMxOTI1LCA1OS42MTQ1NV0sIFstMTUwLjI1NjQ4LCA1OS41MjE0NDJdLCBbLTE1MC40MDk4MzQsIDU5LjU1NDMwM10sIFstMTUwLjU3OTYxOSwgNTkuNDQ0NzY0XSwgWy0xNTAuNzE2NTQzLCA1OS40NTAyNDFdLCBbLTE1MS4wMDEzNDMsIDU5LjIyNTY4N10sIFstMTUxLjMwODA1MiwgNTkuMjA5MjU2XSwgWy0xNTEuNDA2NjM3LCA1OS4yODA0NTZdLCBbLTE1MS41OTI4NTMsIDU5LjE1OTk2M10sIFstMTUxLjk3NjIzOSwgNTkuMjUzMDcxXSwgWy0xNTEuODg4NjA4LCA1OS40MjI4NTddLCBbLTE1MS42MzY2NjksIDU5LjQ4MzEwM10sIFstMTUxLjQ3MjM2LCA1OS40NzIxNDldLCBbLTE1MS40MjMwNjgsIDU5LjUzNzg3Ml0sIFstMTUxLjEyNzMxMywgNTkuNjY5MzE5XSwgWy0xNTEuMTE2MzU5LCA1OS43Nzg4NThdLCBbLTE1MS41MDUyMjIsIDU5LjYzMDk4XSwgWy0xNTEuODI4MzYxLCA1OS43MTg2MTFdLCBbLTE1MS44NjY3LCA1OS43Nzg4NThdLCBbLTE1MS43MDIzOTIsIDYwLjAzMDc5N10sIFstMTUxLjQyMzA2OCwgNjAuMjExNTM2XSwgWy0xNTEuMzc5MjUyLCA2MC4zNTk0MTNdLCBbLTE1MS4yOTcwOTgsIDYwLjM4Njc5OF0sIFstMTUxLjI2NDIzNywgNjAuNTQ1NjI5XSwgWy0xNTEuNDA2NjM3LCA2MC43MjA4OTJdLCBbLTE1MS4wNjE1OSwgNjAuNzg2NjE1XSwgWy0xNTAuNDA0MzU3LCA2MS4wMzg1NTRdLCBbLTE1MC4yNDU1MjYsIDYwLjkzOTk2OV0sIFstMTUwLjA0Mjg3OSwgNjAuOTEyNTg0XSwgWy0xNDkuNzQxNjQ3LCA2MS4wMTY2NDZdLCBbLTE1MC4wNzU3NDEsIDYxLjE1MzU3XSwgWy0xNTAuMjA3MTg3LCA2MS4yNTc2MzJdLCBbLTE1MC40NzAwOCwgNjEuMjQ2Njc4XSwgWy0xNTAuNjU2Mjk2LCA2MS4yOTU5N10sIFstMTUwLjcxMTA2NiwgNjEuMjUyMTU1XSwgWy0xNTEuMDIzMjUxLCA2MS4xODA5NTRdLCBbLTE1MS4xNjU2NTIsIDYxLjA0NDAzMV0sIFstMTUxLjQ3NzgzNywgNjEuMDExMTY5XSwgWy0xNTEuODAwOTc3LCA2MC44NTIzMzhdLCBbLTE1MS44MzM4MzgsIDYwLjc0ODI3Nl0sIFstMTUyLjA4MDMwMSwgNjAuNjkzNTA3XSwgWy0xNTIuMTM1MDcsIDYwLjU3ODQ5MV0sIFstMTUyLjMxMDMzMiwgNjAuNTA3MjkxXSwgWy0xNTIuMzkyNDg2LCA2MC4zMDQ2NDRdLCBbLTE1Mi43MzIwNTcsIDYwLjE3MzE5N10sIFstMTUyLjU2Nzc0OCwgNjAuMDY5MTM2XSwgWy0xNTIuNzA0NjcyLCA1OS45MTU3ODFdLCBbLTE1My4wMjIzMzQsIDU5Ljg4ODM5N10sIFstMTUzLjA0OTcxOSwgNTkuNjkxMjI3XSwgWy0xNTMuMzQ1NDc0LCA1OS42MjAwMjZdLCBbLTE1My40Mzg1ODIsIDU5LjcwMjE4MV0sIFstMTUzLjU4NjQ1OSwgNTkuNTQ4ODI2XSwgWy0xNTMuNzYxNzIxLCA1OS41NDMzNDldLCBbLTE1My43Mjg4NiwgNTkuNDMzODExXSwgWy0xNTQuMTE3NzIzLCA1OS4zNjgwODddLCBbLTE1NC4xOTQ0LCA1OS4wNjY4NTZdLCBbLTE1My43NTA3NjgsIDU5LjA1MDQyNV0sIFstMTUzLjQwMDI0MywgNTguOTY4MjcxXSwgWy0xNTMuMzAxNjU4LCA1OC44Njk2ODZdLCBbLTE1My40NDQwNTksIDU4LjcxMDg1NF0sIFstMTUzLjY3OTU2NywgNTguNjEyMjY5XSwgWy0xNTMuODk4NjQ1LCA1OC42MDY3OTNdLCBbLTE1My45MjA1NTMsIDU4LjUxOTE2MV0sIFstMTU0LjA2Mjk1MywgNTguNDg2M10sIFstMTUzLjk5NzIzLCA1OC4zNzY3NjFdLCBbLTE1NC4xNDUxMDcsIDU4LjIxMjQ1M10sIFstMTU0LjQ2Mjc3LCA1OC4wNTkwOThdLCBbLTE1NC42NDM1MDksIDU4LjA1OTA5OF0sIFstMTU0LjgxODc3MSwgNTguMDA0MzI5XSwgWy0xNTQuOTg4NTU2LCA1OC4wMTUyODNdLCBbLTE1NS4xMjAwMDMsIDU3Ljk1NTAzN10sIFstMTU1LjA4MTY2NCwgNTcuODcyODgzXSwgWy0xNTUuMzI4MTI2LCA1Ny44MjkwNjddLCBbLTE1NS4zNzc0MTksIDU3LjcwODU3NF0sIFstMTU1LjU0NzIwNCwgNTcuNzg1MjUxXSwgWy0xNTUuNzMzNDIsIDU3LjU0OTc0M10sIFstMTU2LjA0NTYwNiwgNTcuNTY2MTc0XSwgWy0xNTYuMDIzNjk4LCA1Ny40NDAyMDRdLCBbLTE1Ni4yMDk5MTQsIDU3LjQ3MzA2Nl0sIFstMTU2LjM0MTM2LCA1Ny40MTgyOTZdLCBbLTE1Ni4zNDEzNiwgNTcuMjQ4NTExXSwgWy0xNTYuNTQ5NDg0LCA1Ni45ODU2MThdLCBbLTE1Ni44ODM1NzcsIDU2Ljk1Mjc1N10sIFstMTU3LjE1NzQyNCwgNTYuODMyMjY0XSwgWy0xNTcuMjAxMjQsIDU2Ljc2NjU0MV0sIFstMTU3LjM3NjUwMiwgNTYuODU5NjQ5XSwgWy0xNTcuNjcyMjU3LCA1Ni42MDc3MDldLCBbLTE1Ny43NTQ0MTEsIDU2LjY3ODkxXSwgWy0xNTcuOTE4NzE5LCA1Ni42NTcwMDJdLCBbLTE1Ny45NTcwNTgsIDU2LjUxNDYwMV0sIFstMTU4LjEyNjg0MywgNTYuNDU5ODMyXSwgWy0xNTguMzI5NDksIDU2LjQ4MTc0XSwgWy0xNTguNDg4MzIxLCA1Ni4zMzkzMzldLCBbLTE1OC4yMDg5OTcsIDU2LjI5NTUyNF0sIFstMTU4LjUxMDIyOSwgNTUuOTc3ODYxXSwgWy0xNTkuMzc1NTg1LCA1NS44NzM3OTldLCBbLTE1OS42MTY1NzEsIDU1LjU5NDQ3NV0sIFstMTU5LjY3NjgxNywgNTUuNjU0NzIyXSwgWy0xNTkuNjQzOTU1LCA1NS44Mjk5ODRdLCBbLTE1OS44MTM3NDEsIDU1Ljg1NzM2OF0sIFstMTYwLjAyNzM0MSwgNTUuNzkxNjQ1XSwgWy0xNjAuMDYwMjAzLCA1NS43MjA0NDVdLCBbLTE2MC4zOTQyOTYsIDU1LjYwNTQyOV0sIFstMTYwLjUzNjY5NywgNTUuNDczOTgzXSwgWy0xNjAuNTgwNTEyLCA1NS41NjcwOTFdLCBbLTE2MC42NjgxNDMsIDU1LjQ1NzU1Ml0sIFstMTYwLjg2NTMxMywgNTUuNTI4NzUyXSwgWy0xNjEuMjMyMjY4LCA1NS4zNTg5NjddLCBbLTE2MS41MDYxMTUsIDU1LjM2NDQ0NF0sIFstMTYxLjQ2Nzc3NiwgNTUuNDk1ODldLCBbLTE2MS41ODgyNjksIDU1LjYyMTg2XSwgWy0xNjEuNjk3ODA4LCA1NS41MTc3OThdLCBbLTE2MS42ODY4NTQsIDU1LjQwODI1OV0sIFstMTYyLjA1MzgwOSwgNTUuMDc0MTY2XSwgWy0xNjIuMTc5Nzc5LCA1NS4xNTYzMl0sIFstMTYyLjIxODExNywgNTUuMDMwMzVdLCBbLTE2Mi40NzAwNTcsIDU1LjA1MjI1OF0sIFstMTYyLjUwODM5NSwgNTUuMjQ5NDI4XSwgWy0xNjIuNjYxNzQ5LCA1NS4yOTMyNDRdLCBbLTE2Mi43MTY1MTksIDU1LjIyMjA0M10sIFstMTYyLjU3OTU5NSwgNTUuMTM0NDEyXSwgWy0xNjIuNjQ1MzE5LCA1NC45OTc0ODldLCBbLTE2Mi44NDc5NjUsIDU0LjkyNjI4OV0sIFstMTYzLjAwMTMyLCA1NS4wNzk2NDNdLCBbLTE2My4xODc1MzYsIDU1LjA5MDU5N10sIFstMTYzLjIyMDM5NywgNTUuMDMwMzVdLCBbLTE2My4wMzQxODEsIDU0Ljk0MjcxOV0sIFstMTYzLjM3Mzc1MiwgNTQuODAwMzE5XSwgWy0xNjMuMTQzNzIsIDU0Ljc2MTk4XSwgWy0xNjMuMTM4MjQzLCA1NC42OTYyNTddLCBbLTE2My4zMjk5MzYsIDU0Ljc0NTU1XSwgWy0xNjMuNTg3MzUyLCA1NC42MTQxMDNdLCBbLTE2NC4wODU3NTQsIDU0LjYxOTU4XSwgWy0xNjQuMzMyMjE2LCA1NC41MzE5NDldLCBbLTE2NC4zNTQxMjQsIDU0LjQ2NjIyNl0sIFstMTY0LjYzODkyNSwgNTQuMzg5NTQ4XSwgWy0xNjQuODQ3MDQ5LCA1NC40MTY5MzNdLCBbLTE2NC45MTgyNDksIDU0LjYwMzE0OV0sIFstMTY0LjcxMDEyNSwgNTQuNjYzMzk1XSwgWy0xNjQuNTUxMjk0LCA1NC44ODc5NV0sIFstMTY0LjM0MzE3LCA1NC44OTM0MjddLCBbLTE2My44OTQwNjEsIDU1LjA0MTMwNF0sIFstMTYzLjUzMjU4MywgNTUuMDQ2NzgxXSwgWy0xNjMuMzk1NjYsIDU0LjkwNDM4MV0sIFstMTYzLjI5MTU5OCwgNTUuMDA4NDQzXSwgWy0xNjMuMzEzNTA1LCA1NS4xMjg5MzVdLCBbLTE2My4xMDUzODIsIDU1LjE4MzcwNV0sIFstMTYyLjg4MDgyNywgNTUuMTgzNzA1XSwgWy0xNjIuNTc5NTk1LCA1NS40NDY1OThdLCBbLTE2Mi4yNDU1MDIsIDU1LjY4MjEwNl0sIFstMTYxLjgwNzM0NywgNTUuODkwMjNdLCBbLTE2MS4yOTI1MTQsIDU1Ljk4MzMzOF0sIFstMTYxLjA3ODkxNCwgNTUuOTM5NTIzXSwgWy0xNjAuODcwNzksIDU1Ljk5OTc2OV0sIFstMTYwLjgxNjAyMSwgNTUuOTEyMTM4XSwgWy0xNjAuOTMxMDM2LCA1NS44MTM1NTNdLCBbLTE2MC44MDUwNjcsIDU1LjczNjg3Nl0sIFstMTYwLjc2NjcyOCwgNTUuODU3MzY4XSwgWy0xNjAuNTA5MzEyLCA1NS44NjgzMjJdLCBbLTE2MC40MzgxMTIsIDU1Ljc5MTY0NV0sIFstMTYwLjI3OTI4LCA1NS43NjQyNl0sIFstMTYwLjI3MzgwMywgNTUuODU3MzY4XSwgWy0xNjAuNTM2Njk3LCA1NS45Mzk1MjNdLCBbLTE2MC41NTg2MDQsIDU1Ljk5NDI5Ml0sIFstMTYwLjM4MzM0MiwgNTYuMjUxNzA4XSwgWy0xNjAuMTQ3ODM0LCA1Ni4zOTk1ODZdLCBbLTE1OS44MzAxNzEsIDU2LjU0MTk4Nl0sIFstMTU5LjMyNjI5MywgNTYuNjY3OTU2XSwgWy0xNTguOTU5MzM4LCA1Ni44NDg2OTVdLCBbLTE1OC43ODQwNzYsIDU2Ljc4Mjk3MV0sIFstMTU4LjY0MTY3NSwgNTYuODEwMzU2XSwgWy0xNTguNzAxOTIyLCA1Ni45MjUzNzJdLCBbLTE1OC42NTgxMDYsIDU3LjAzNDkxMV0sIFstMTU4LjM3ODc4MiwgNTcuMjY0OTQyXSwgWy0xNTcuOTk1Mzk2LCA1Ny40MTI4Ml0sIFstMTU3LjY4ODY4OCwgNTcuNjA5OTg5XSwgWy0xNTcuNzA1MTE4LCA1Ny43MTk1MjhdLCBbLTE1Ny40NTg2NTYsIDU4LjQ5NzI1NF0sIFstMTU3LjA3NTI3LCA1OC43MDUzNzddLCBbLTE1Ny4xMTkwODYsIDU4Ljg2OTY4Nl0sIFstMTU4LjAzOTIxMiwgNTguNjM0MTc3XSwgWy0xNTguMzI5NDksIDU4LjY2MTU2Ml0sIFstMTU4LjQwMDY5LCA1OC43NjAxNDddLCBbLTE1OC41NjQ5OTgsIDU4LjgwMzk2Ml0sIFstMTU4LjYxOTc2OCwgNTguOTEzNTAxXSwgWy0xNTguNzY3NjQ1LCA1OC44NjQyMDldLCBbLTE1OC44NjA3NTMsIDU4LjY5NDQyNF0sIFstMTU4LjcwMTkyMiwgNTguNDgwODIzXSwgWy0xNTguODkzNjE1LCA1OC4zODc3MTVdLCBbLTE1OS4wNjM0LCA1OC40MjA1NzddLCBbLTE1OS4zOTIwMTYsIDU4Ljc2MDE0N10sIFstMTU5LjYxNjU3MSwgNTguOTI5OTMyXSwgWy0xNTkuNzMxNTg2LCA1OC45Mjk5MzJdLCBbLTE1OS44MDgyNjQsIDU4LjgwMzk2Ml0sIFstMTU5LjkwNjg0OCwgNTguNzgyMDU1XSwgWy0xNjAuMDU0NzI2LCA1OC44ODYxMTZdLCBbLTE2MC4yMzU0NjUsIDU4LjkwMjU0N10sIFstMTYwLjMxNzYxOSwgNTkuMDcyMzMyXSwgWy0xNjAuODU0MzU5LCA1OC44ODA2NF0sIFstMTYxLjMzNjMzLCA1OC43NDM3MTZdLCBbLTE2MS4zNzQ2NjksIDU4LjY2NzAzOV0sIFstMTYxLjc1MjU3NywgNTguNTUyMDIzXSwgWy0xNjEuOTM4NzkzLCA1OC42NTYwODVdLCBbLTE2MS43NjkwMDgsIDU4Ljc3NjU3OF0sIFstMTYxLjgyOTI1NSwgNTkuMDYxMzc5XSwgWy0xNjEuOTU1MjI0LCA1OS4zNjI2MV0sIFstMTYxLjcwMzI4NSwgNTkuNDg4NThdLCBbLTE2MS45MTE0MDksIDU5Ljc0MDUxOV0sIFstMTYyLjA5MjE0OCwgNTkuODgyOTJdLCBbLTE2Mi4yMzQ1NDgsIDYwLjA5MTA0M10sIFstMTYyLjQ0ODE0OSwgNjAuMTc4Njc0XSwgWy0xNjIuNTAyOTE4LCA1OS45OTc5MzVdLCBbLTE2Mi43NjAzMzQsIDU5Ljk1OTU5N10sIFstMTYzLjE3MTEwNSwgNTkuODQ0NTgxXSwgWy0xNjMuNjY0MDMsIDU5Ljc5NTI4OV0sIFstMTYzLjkzMjQsIDU5LjgwNjI0Ml0sIFstMTY0LjE2MjQzMSwgNTkuODY2NDg5XSwgWy0xNjQuMTg5ODE2LCA2MC4wMjUzMl0sIFstMTY0LjM4Njk4NiwgNjAuMDc0NjEzXSwgWy0xNjQuNjk5MTcxLCA2MC4yOTM2OV0sIFstMTY0Ljk2MjA2NCwgNjAuMzM3NTA2XSwgWy0xNjUuMjY4NzczLCA2MC41Nzg0OTFdLCBbLTE2NS4wNjA2NDksIDYwLjY4ODAzXSwgWy0xNjUuMDE2ODM0LCA2MC44OTA2NzddLCBbLTE2NS4xNzU2NjUsIDYwLjg0Njg2MV0sIFstMTY1LjE5NzU3MywgNjAuOTcyODMxXSwgWy0xNjUuMTIwODk2LCA2MS4wNzY4OTNdLCBbLTE2NS4zMjM1NDMsIDYxLjE3MDAwMV0sIFstMTY1LjM0NTQ1LCA2MS4wNzE0MTZdLCBbLTE2NS41OTE5MTMsIDYxLjEwOTc1NF0sIFstMTY1LjYyNDc3NCwgNjEuMjc5NTM5XSwgWy0xNjUuODE2NDY3LCA2MS4zMDE0NDddLCBbLTE2NS45MjA1MjksIDYxLjQxNjQ2M10sIFstMTY1LjkxNTA1MiwgNjEuNTU4ODYzXSwgWy0xNjYuMTA2NzQ1LCA2MS40OTMxNF0sIFstMTY2LjEzOTYwNywgNjEuNjMwMDY0XSwgWy0xNjUuOTA0MDk4LCA2MS42NjI5MjVdLCBbLTE2Ni4wOTU3OTEsIDYxLjgxNjI4XSwgWy0xNjUuNzU2MjIxLCA2MS44MjcyMzNdLCBbLTE2NS43NTYyMjEsIDYyLjAxMzQ0OV0sIFstMTY1LjY3NDA2NywgNjIuMTM5NDE5XSwgWy0xNjUuMDQ0MjE5LCA2Mi41MzkyMzZdLCBbLTE2NC45MTI3NzIsIDYyLjY1OTcyOF0sIFstMTY0LjgxOTY2NCwgNjIuNjM3ODIxXSwgWy0xNjQuODc0NDMzLCA2Mi44MDc2MDZdLCBbLTE2NC42MzM0NDgsIDYzLjA5Nzg4NF0sIFstMTY0LjQyNTMyNCwgNjMuMjEyODk5XSwgWy0xNjQuMDM2NDYyLCA2My4yNjIxOTJdLCBbLTE2My43MzUyMywgNjMuMjEyODk5XSwgWy0xNjMuMzEzNTA1LCA2My4wMzc2MzddLCBbLTE2My4wMzk2NTgsIDYzLjA1OTU0NV0sIFstMTYyLjY2MTc0OSwgNjMuMjI5MzNdLCBbLTE2Mi4yNzI4ODcsIDYzLjQ4Njc0Nl0sIFstMTYyLjA3NTcxNywgNjMuNTE0MTMxXSwgWy0xNjIuMDI2NDI0LCA2My40NDg0MDhdLCBbLTE2MS41NTU0MDgsIDYzLjQ0ODQwOF0sIFstMTYxLjEzOTE2LCA2My41MDMxNzddLCBbLTE2MC43NjY3MjgsIDYzLjc3MTU0N10sIFstMTYwLjc2NjcyOCwgNjMuODM3MjcxXSwgWy0xNjAuOTUyOTQ0LCA2NC4wODkyMV0sIFstMTYwLjk3NDg1MiwgNjQuMjM3MDg3XSwgWy0xNjEuMjY1MTMsIDY0LjM5NTkxOF0sIFstMTYxLjM3NDY2OSwgNjQuNTMyODQyXSwgWy0xNjEuMDc4OTE0LCA2NC40OTQ1MDNdLCBbLTE2MC43OTk1OSwgNjQuNjA5NTE5XSwgWy0xNjAuNzgzMTU5LCA2NC43MTkwNThdLCBbLTE2MS4xNDQ2MzcsIDY0LjkyMTcwNV0sIFstMTYxLjQxMzAwNywgNjQuNzYyODczXSwgWy0xNjEuNjY0OTQ2LCA2NC43OTAyNThdLCBbLTE2MS45MDA0NTUsIDY0LjcwMjYyN10sIFstMTYyLjE2ODgyNSwgNjQuNjgwNzE5XSwgWy0xNjIuMjM0NTQ4LCA2NC42MjA0NzNdLCBbLTE2Mi41NDEyNTcsIDY0LjUzMjg0Ml0sIFstMTYyLjYzNDM2NSwgNjQuMzg0OTY1XSwgWy0xNjIuNzg3NzE5LCA2NC4zMjQ3MThdLCBbLTE2Mi44NTg5MTksIDY0LjQ5OTk4XSwgWy0xNjMuMDQ1MTM1LCA2NC41MzgzMTldLCBbLTE2My4xNzY1ODIsIDY0LjQwMTM5NV0sIFstMTYzLjI1MzI1OSwgNjQuNDY3MTE5XSwgWy0xNjMuNTk4MzA2LCA2NC41NjU3MDRdLCBbLTE2NC4zMDQ4MzIsIDY0LjU2MDIyN10sIFstMTY0LjgwODcxLCA2NC40NTA2ODhdLCBbLTE2NS4wMDA0MDMsIDY0LjQzNDI1N10sIFstMTY1LjQxMTE3NCwgNjQuNDk5OThdLCBbLTE2Ni4xODg4OTksIDY0LjU3NjY1OF0sIFstMTY2LjM5MTU0NiwgNjQuNjM2OTA0XSwgWy0xNjYuNDg0NjU0LCA2NC43MzU0ODldLCBbLTE2Ni40MTM0NTQsIDY0Ljg3MjQxMl0sIFstMTY2LjY5Mjc3OCwgNjQuOTg3NDI4XSwgWy0xNjYuNjM4MDA4LCA2NS4xMTMzOThdLCBbLTE2Ni40NjI3NDYsIDY1LjE3OTEyMV0sIFstMTY2LjUxNzUxNiwgNjUuMzM3OTUyXSwgWy0xNjYuNzk2ODM5LCA2NS4zMzc5NTJdLCBbLTE2Ny4wMjY4NzEsIDY1LjM4MTc2OF0sIFstMTY3LjQ3NTk4LCA2NS40MTQ2MjldLCBbLTE2Ny43MTE0ODksIDY1LjQ5Njc4NF0sIFstMTY4LjA3Mjk2NywgNjUuNTc4OTM4XSwgWy0xNjguMTA1ODI4LCA2NS42ODI5OTldLCBbLTE2Ny41NDE3MDMsIDY1LjgxOTkyM10sIFstMTY2LjgyOTcwMSwgNjYuMDQ5OTU0XSwgWy0xNjYuMzMxMywgNjYuMTg2ODc4XSwgWy0xNjYuMDQ2NDk5LCA2Ni4xMTAyMDFdLCBbLTE2NS43NTYyMjEsIDY2LjA5Mzc3XSwgWy0xNjUuNjkwNDk4LCA2Ni4yMDMzMDldLCBbLTE2NS44NjU3NiwgNjYuMjE5NzRdLCBbLTE2NS44ODIxOSwgNjYuMzEyODQ4XSwgWy0xNjUuMTg2NjE5LCA2Ni40NjYyMDJdLCBbLTE2NC40MDM0MTcsIDY2LjU4MTIxOF0sIFstMTYzLjk4MTY5MiwgNjYuNTkyMTcyXSwgWy0xNjMuNzUxNjYxLCA2Ni41NTM4MzNdLCBbLTE2My44NzIxNTMsIDY2LjM4OTUyNV0sIFstMTYzLjgyODMzOCwgNjYuMjc0NTA5XSwgWy0xNjMuOTE1OTY5LCA2Ni4xOTIzNTVdLCBbLTE2My43NjgwOTEsIDY2LjA2MDkwOF0sIFstMTYzLjQ5NDI0NCwgNjYuMDgyODE2XSwgWy0xNjMuMTQ5MTk3LCA2Ni4wNjA5MDhdLCBbLTE2Mi43NDkzODEsIDY2LjA4ODI5M10sIFstMTYyLjYzNDM2NSwgNjYuMDM5MDAxXSwgWy0xNjIuMzcxNDcyLCA2Ni4wMjgwNDddLCBbLTE2Mi4xNDE0NCwgNjYuMDc3MzM5XSwgWy0xNjEuODQwMjA4LCA2Ni4wMjI1N10sIFstMTYxLjU0OTkzMSwgNjYuMjQxNjQ3XSwgWy0xNjEuMzQxODA3LCA2Ni4yNTI2MDFdLCBbLTE2MS4xOTk0MDYsIDY2LjIwODc4Nl0sIFstMTYxLjEyODIwNiwgNjYuMzM0NzU1XSwgWy0xNjEuNTI4MDIzLCA2Ni4zOTUwMDJdLCBbLTE2MS45MTE0MDksIDY2LjM0NTcwOV0sIFstMTYxLjg3MzA3LCA2Ni41MTAwMTddLCBbLTE2Mi4xNzQzMDIsIDY2LjY4NTI4XSwgWy0xNjIuNTAyOTE4LCA2Ni43NDAwNDldLCBbLTE2Mi42MDE1MDMsIDY2Ljg5ODg4XSwgWy0xNjIuMzQ0MDg3LCA2Ni45MzcyMTldLCBbLTE2Mi4wMTU0NzEsIDY2Ljc3ODM4OF0sIFstMTYyLjA3NTcxNywgNjYuNjUyNDE4XSwgWy0xNjEuOTE2ODg2LCA2Ni41NTM4MzNdLCBbLTE2MS41NzE4MzgsIDY2LjQzODgxN10sIFstMTYxLjQ4OTY4NCwgNjYuNTU5MzFdLCBbLTE2MS44ODQwMjQsIDY2LjcxODE0MV0sIFstMTYxLjcxNDIzOSwgNjcuMDAyOTQyXSwgWy0xNjEuODUxMTYyLCA2Ny4wNTIyMzVdLCBbLTE2Mi4yNDAwMjUsIDY2Ljk5MTk4OF0sIFstMTYyLjYzOTg0MiwgNjcuMDA4NDE5XSwgWy0xNjIuNzAwMDg4LCA2Ny4wNTc3MTJdLCBbLTE2Mi45MDI3MzUsIDY3LjAwODQxOV0sIFstMTYzLjc0MDcwNywgNjcuMTI4OTEyXSwgWy0xNjMuNzU3MTM4LCA2Ny4yNTQ4ODFdLCBbLTE2NC4wMDkwNzcsIDY3LjUzNDIwNV0sIFstMTY0LjIxMTcyNCwgNjcuNjM4MjY3XSwgWy0xNjQuNTM0ODYzLCA2Ny43MjU4OThdLCBbLTE2NS4xOTIwOTYsIDY3Ljk2Njg4NF0sIFstMTY1LjQ5MzMyOCwgNjguMDU5OTkyXSwgWy0xNjUuNzk0NTU5LCA2OC4wODE4OTldLCBbLTE2Ni4yNDM2NjgsIDY4LjI0NjIwOF0sIFstMTY2LjY4MTgyNCwgNjguMzM5MzE2XSwgWy0xNjYuNzAzNzMxLCA2OC4zNzIxNzddLCBbLTE2Ni4zNzUxMTUsIDY4LjQyMTQ3XSwgWy0xNjYuMjI3MjM4LCA2OC41NzQ4MjRdLCBbLTE2Ni4yMTYyODQsIDY4Ljg4MTUzM10sIFstMTY1LjMyOTAxOSwgNjguODU5NjI1XSwgWy0xNjQuMjU1NTM5LCA2OC45MzA4MjVdLCBbLTE2My45NzYyMTUsIDY4Ljk4NTU5NV0sIFstMTYzLjUzMjU4MywgNjkuMTM4OTQ5XSwgWy0xNjMuMTEwODU5LCA2OS4zNzQ0NTddLCBbLTE2My4wMjMyMjgsIDY5LjYwOTk2Nl0sIFstMTYyLjg0MjQ4OSwgNjkuODEyNjEzXSwgWy0xNjIuNDcwMDU3LCA2OS45ODIzOThdLCBbLTE2Mi4zMTEyMjUsIDcwLjEwODM2N10sIFstMTYxLjg1MTE2MiwgNzAuMzExMDE0XSwgWy0xNjEuNzc5OTYyLCA3MC4yNTYyNDVdLCBbLTE2MS4zOTY1NzYsIDcwLjIzOTgxNF0sIFstMTYwLjgzNzkyOCwgNzAuMzQzODc2XSwgWy0xNjAuNDg3NDA0LCA3MC40NTM0MTVdLCBbLTE1OS42NDk0MzIsIDcwLjc5Mjk4NV0sIFstMTU5LjMzMTc3LCA3MC44MDk0MTZdLCBbLTE1OS4yOTg5MDgsIDcwLjc2MDEyM10sIFstMTU4Ljk3NTc2OSwgNzAuNzk4NDYyXSwgWy0xNTguNjU4MTA2LCA3MC43ODc1MDhdLCBbLTE1OC4wMzM3MzUsIDcwLjgzMTMyM10sIFstMTU3LjQyMDMxOCwgNzAuOTc5MjAxXSwgWy0xNTYuODEyMzc3LCA3MS4yODU5MDldLCBbLTE1Ni41NjU5MTUsIDcxLjM1MTYzM10sIFstMTU2LjUyMjA5OSwgNzEuMjk2ODYzXSwgWy0xNTUuNTg1NTQzLCA3MS4xNzA4OTRdLCBbLTE1NS41MDg4NjUsIDcxLjA4MzI2M10sIFstMTU1LjgzMjAwNSwgNzAuOTY4MjQ3XSwgWy0xNTUuOTc5ODgyLCA3MC45NjI3N10sIFstMTU1Ljk3NDQwNSwgNzAuODA5NDE2XSwgWy0xNTUuNTAzMzg4LCA3MC44NTg3MDhdLCBbLTE1NS40NzYwMDQsIDcwLjk0MDg2Ml0sIFstMTU1LjI2MjQwMywgNzEuMDE3NTM5XSwgWy0xNTUuMTkxMjAzLCA3MC45NzM3MjRdLCBbLTE1NS4wMzIzNzIsIDcxLjE0ODk4Nl0sIFstMTU0LjU2NjgzMiwgNzAuOTkwMTU1XSwgWy0xNTQuNjQzNTA5LCA3MC44Njk2NjJdLCBbLTE1NC4zNTMyMzEsIDcwLjgzNjhdLCBbLTE1NC4xODM0NDYsIDcwLjc2NTZdLCBbLTE1My45MzE1MDcsIDcwLjg4MDYxNl0sIFstMTUzLjQ4Nzg3NCwgNzAuODg2MDkzXSwgWy0xNTMuMjM1OTM1LCA3MC45MjQ0MzFdLCBbLTE1Mi41ODk2NTYsIDcwLjg4NjA5M10sIFstMTUyLjI2MTA0LCA3MC44NDIyNzddLCBbLTE1Mi40MTk4NzEsIDcwLjYwNjc2OV0sIFstMTUxLjgxNzQwOCwgNzAuNTQ2NTIzXSwgWy0xNTEuNzczNTkyLCA3MC40ODYyNzZdLCBbLTE1MS4xODc1NTksIDcwLjM4MjIxNF0sIFstMTUxLjE4MjA4MiwgNzAuNDMxNTA3XSwgWy0xNTAuNzYwMzU4LCA3MC40OTcyM10sIFstMTUwLjM1NTA2NCwgNzAuNDkxNzUzXSwgWy0xNTAuMzQ5NTg4LCA3MC40MzY5ODRdLCBbLTE1MC4xMTQwNzksIDcwLjQzMTUwN10sIFstMTQ5Ljg2NzYxNywgNzAuNTA4MTg0XSwgWy0xNDkuNDYyMzIzLCA3MC41MTkxMzhdLCBbLTE0OS4xNzc1MjIsIDcwLjQ4NjI3Nl0sIFstMTQ4Ljc4ODY2LCA3MC40MDQxMjJdLCBbLTE0OC42MDc5MjEsIDcwLjQyMDU1M10sIFstMTQ4LjM1MDUwNCwgNzAuMzA1NTM3XSwgWy0xNDguMjAyNjI3LCA3MC4zNDkzNTNdLCBbLTE0Ny45NjE2NDIsIDcwLjMxNjQ5MV0sIFstMTQ3Ljc4NjM3OSwgNzAuMjQ1MjkxXV1dLCBbW1stMTUyLjk0MDE4LCA1OC4wMjYyMzddLCBbLTE1Mi45NDU2NTcsIDU3Ljk4MjQyMV0sIFstMTUzLjI5MDcwNSwgNTguMDQ4MTQ1XSwgWy0xNTMuMDQ0MjQyLCA1OC4zMDU1NjFdLCBbLTE1Mi44MTk2ODgsIDU4LjMyNzQ2OV0sIFstMTUyLjY2NjMzMywgNTguNTYyOTc3XSwgWy0xNTIuNDk2NTQ4LCA1OC4zNTQ4NTNdLCBbLTE1Mi4zNTQxNDgsIDU4LjQyNjA1M10sIFstMTUyLjA4MDMwMSwgNTguMzExMDM4XSwgWy0xNTIuMDgwMzAxLCA1OC4xNTIyMDZdLCBbLTE1Mi40ODAxMTcsIDU4LjEzMDI5OV0sIFstMTUyLjY1NTM3OSwgNTguMDU5MDk4XSwgWy0xNTIuOTQwMTgsIDU4LjAyNjIzN11dXSwgW1tbLTE1My45NTg4OTEsIDU3LjUzODc4OV0sIFstMTUzLjY3NDA5LCA1Ny42NzAyMzZdLCBbLTE1My45MzE1MDcsIDU3LjY5NzYyXSwgWy0xNTMuOTM2OTgzLCA1Ny44MTI2MzZdLCBbLTE1My43MjMzODMsIDU3Ljg4OTMxM10sIFstMTUzLjU3MDAyOCwgNTcuODM0NTQ0XSwgWy0xNTMuNTQ4MTIxLCA1Ny43MTk1MjhdLCBbLTE1My40NjA0OSwgNTcuNzk2MjA1XSwgWy0xNTMuNDU1MDEzLCA1Ny45NjU5OV0sIFstMTUzLjI2ODc5NywgNTcuODg5MzEzXSwgWy0xNTMuMjM1OTM1LCA1Ny45OTg4NTJdLCBbLTE1My4wNzE2MjcsIDU3LjkzMzEyOV0sIFstMTUyLjg3NDQ1NywgNTcuOTMzMTI5XSwgWy0xNTIuNzIxMTAzLCA1Ny45OTMzNzVdLCBbLTE1Mi40NjkxNjMsIDU3Ljg4OTMxM10sIFstMTUyLjQ2OTE2MywgNTcuNTk5MDM1XSwgWy0xNTIuMTUxNTAxLCA1Ny42MjA5NDNdLCBbLTE1Mi4zNTk2MjUsIDU3LjQyOTI1XSwgWy0xNTIuNzQzMDEsIDU3LjUwNTkyOF0sIFstMTUyLjYwMDYxLCA1Ny4zNzk5NThdLCBbLTE1Mi43MTAxNDksIDU3LjI3NTg5Nl0sIFstMTUyLjkwNzMxOSwgNTcuMzI1MTg4XSwgWy0xNTIuOTEyNzk2LCA1Ny4xMjgwMTldLCBbLTE1My4yMTQwMjcsIDU3LjA3MzI0OV0sIFstMTUzLjMxMjYxMiwgNTYuOTkxMDk1XSwgWy0xNTMuNDk4ODI4LCA1Ny4wNjc3NzJdLCBbLTE1My42OTU5OTgsIDU2Ljg1OTY0OV0sIFstMTUzLjg0OTM1MiwgNTYuODM3NzQxXSwgWy0xNTQuMDEzNjYxLCA1Ni43NDQ2MzNdLCBbLTE1NC4wNzM5MDcsIDU2Ljk2OTE4N10sIFstMTU0LjMwMzkzOCwgNTYuODQ4Njk1XSwgWy0xNTQuMzE0ODkyLCA1Ni45MTk4OTVdLCBbLTE1NC41MjMwMTYsIDU2Ljk5MTA5NV0sIFstMTU0LjUzOTQ0NywgNTcuMTkzNzQyXSwgWy0xNTQuNzQyMDk0LCA1Ny4yNzU4OTZdLCBbLTE1NC42MjcwNzgsIDU3LjUxMTQwNF0sIFstMTU0LjIyNzI2MSwgNTcuNjU5MjgyXSwgWy0xNTMuOTgwNzk5LCA1Ny42NDgzMjhdLCBbLTE1My45NTg4OTEsIDU3LjUzODc4OV1dXSwgW1tbLTE1NC41MzM5NywgNTYuNjAyMjMyXSwgWy0xNTQuNzQyMDk0LCA1Ni4zOTk1ODZdLCBbLTE1NC44MDc4MTcsIDU2LjQzMjQ0N10sIFstMTU0LjUzMzk3LCA1Ni42MDIyMzJdXV0sIFtbWy0xNTUuNjM0ODM1LCA1NS45MjMwOTJdLCBbLTE1NS40NzYwMDQsIDU1LjkxMjEzOF0sIFstMTU1LjUzMDc3MywgNTUuNzA0MDE0XSwgWy0xNTUuNzkzNjY2LCA1NS43MzEzOTldLCBbLTE1NS44Mzc0ODIsIDU1LjgwMjU5OV0sIFstMTU1LjYzNDgzNSwgNTUuOTIzMDkyXV1dLCBbW1stMTU5Ljg5MDQxOCwgNTUuMjgyMjldLCBbLTE1OS45NTA2NjQsIDU1LjA2ODY4OV0sIFstMTYwLjI1NzM3MywgNTQuODkzNDI3XSwgWy0xNjAuMTA5NDk1LCA1NS4xNjE3OTddLCBbLTE2MC4wMDU0MzMsIDU1LjEzNDQxMl0sIFstMTU5Ljg5MDQxOCwgNTUuMjgyMjldXV0sIFtbWy0xNjAuNTIwMjY2LCA1NS4zNTg5NjddLCBbLTE2MC4zMzQwNSwgNTUuMzU4OTY3XSwgWy0xNjAuMzM5NTI3LCA1NS4yNDk0MjhdLCBbLTE2MC41MjU3NDMsIDU1LjEyODkzNV0sIFstMTYwLjY5MDA1MSwgNTUuMjExMDg5XSwgWy0xNjAuNzk0MTEzLCA1NS4xMzQ0MTJdLCBbLTE2MC44NTQzNTksIDU1LjMyMDYyOF0sIFstMTYwLjc5OTU5LCA1NS4zODA4NzVdLCBbLTE2MC41MjAyNjYsIDU1LjM1ODk2N11dXSwgW1tbLTE2Mi4yNTY0NTYsIDU0Ljk4MTA1OF0sIFstMTYyLjIzNDU0OCwgNTQuODkzNDI3XSwgWy0xNjIuMzQ5NTY0LCA1NC44Mzg2NThdLCBbLTE2Mi40MzcxOTUsIDU0LjkzMTc2Nl0sIFstMTYyLjI1NjQ1NiwgNTQuOTgxMDU4XV1dLCBbW1stMTYyLjQxNTI4NywgNjMuNjM0NjI0XSwgWy0xNjIuNTYzMTY1LCA2My41MzYwMzldLCBbLTE2Mi42MTI0NTcsIDYzLjYyMzY3XSwgWy0xNjIuNDE1Mjg3LCA2My42MzQ2MjRdXV0sIFtbWy0xNjIuODA0MTUsIDU0LjQ4ODEzM10sIFstMTYyLjU5MDU0OSwgNTQuNDQ5Nzk1XSwgWy0xNjIuNjEyNDU3LCA1NC4zNjc2NDFdLCBbLTE2Mi43ODIyNDIsIDU0LjM3MzExOF0sIFstMTYyLjgwNDE1LCA1NC40ODgxMzNdXV0sIFtbWy0xNjUuNTQ4MDk3LCA1NC4yOTY0NF0sIFstMTY1LjQ3Njg5NywgNTQuMTgxNDI1XSwgWy0xNjUuNjMwMjUxLCA1NC4xMzIxMzJdLCBbLTE2NS42ODUwMjEsIDU0LjI1MjYyNV0sIFstMTY1LjU0ODA5NywgNTQuMjk2NDRdXV0sIFtbWy0xNjUuNzM5NzksIDU0LjE1NDA0XSwgWy0xNjYuMDQ2NDk5LCA1NC4wNDQ1MDFdLCBbLTE2Ni4xMTIyMjIsIDU0LjEyMTE3OF0sIFstMTY1Ljk4MDc3NSwgNTQuMjE5NzYzXSwgWy0xNjUuNzM5NzksIDU0LjE1NDA0XV1dLCBbW1stMTY2LjM2NDE2MSwgNjAuMzU5NDEzXSwgWy0xNjYuMTM0MTMsIDYwLjM5Nzc1Ml0sIFstMTY2LjA4NDgzNywgNjAuMzI2NTUyXSwgWy0xNjUuODgyMTksIDYwLjM0Mjk4M10sIFstMTY1LjY4NTAyMSwgNjAuMjc3MjU5XSwgWy0xNjUuNjQ2NjgyLCA1OS45OTI0NThdLCBbLTE2NS43NTA3NDQsIDU5Ljg5OTM1XSwgWy0xNjYuMDA4MTYsIDU5Ljg0NDU4MV0sIFstMTY2LjA2MjkyOSwgNTkuNzQ1OTk2XSwgWy0xNjYuNDQwODM4LCA1OS44NTU1MzVdLCBbLTE2Ni42MTYxLCA1OS44NTAwNThdLCBbLTE2Ni45OTQwMDksIDU5Ljk5MjQ1OF0sIFstMTY3LjEyNTQ1NiwgNTkuOTkyNDU4XSwgWy0xNjcuMzQ0NTM0LCA2MC4wNzQ2MTNdLCBbLTE2Ny40MjEyMTEsIDYwLjIwNjA1OV0sIFstMTY3LjMxMTY3MiwgNjAuMjM4OTIxXSwgWy0xNjYuOTM5MjQsIDYwLjIwNjA1OV0sIFstMTY2Ljc2Mzk3OCwgNjAuMzEwMTIxXSwgWy0xNjYuNTc3NzYyLCA2MC4zMjEwNzVdLCBbLTE2Ni40OTU2MDgsIDYwLjM5MjI3NV0sIFstMTY2LjM2NDE2MSwgNjAuMzU5NDEzXV1dLCBbW1stMTY2LjM3NTExNSwgNTQuMDExNjRdLCBbLTE2Ni4yMTA4MDcsIDUzLjkzNDk2Ml0sIFstMTY2LjU0NDksIDUzLjc0ODc0Nl0sIFstMTY2LjUzOTQyMywgNTMuNzE1ODg1XSwgWy0xNjYuMTE3Njk5LCA1My44NTI4MDhdLCBbLTE2Ni4xMTIyMjIsIDUzLjc3NjEzMV0sIFstMTY2LjI4MjAwNywgNTMuNjgzMDIzXSwgWy0xNjYuNTU1ODU0LCA1My42MjI3NzddLCBbLTE2Ni41ODMyMzksIDUzLjUyOTY2OV0sIFstMTY2Ljg3ODk5NCwgNTMuNDMxMDg0XSwgWy0xNjcuMTM2NDEsIDUzLjQyNTYwN10sIFstMTY3LjMwNjE5NSwgNTMuMzMyNDk5XSwgWy0xNjcuNjIzODU3LCA1My4yNTAzNDVdLCBbLTE2Ny43OTM2NDMsIDUzLjMzNzk3Nl0sIFstMTY3LjQ1OTU0OSwgNTMuNDQyMDM4XSwgWy0xNjcuMzU1NDg3LCA1My40MjU2MDddLCBbLTE2Ny4xMDM1NDgsIDUzLjUxMzIzOF0sIFstMTY3LjE2Mzc5NCwgNTMuNjExODIzXSwgWy0xNjcuMDIxMzk0LCA1My43MTU4ODVdLCBbLTE2Ni44MDc3OTMsIDUzLjY2NjU5Ml0sIFstMTY2Ljc4NTg4NiwgNTMuNzMyMzE2XSwgWy0xNjcuMDE1OTE3LCA1My43NTQyMjNdLCBbLTE2Ny4xNDE4ODcsIDUzLjgyNTQyNF0sIFstMTY3LjAzMjM0OCwgNTMuOTQ1OTE2XSwgWy0xNjYuNjQzNDg1LCA1NC4wMTcxMTZdLCBbLTE2Ni41NjEzMzEsIDUzLjg4MDE5M10sIFstMTY2LjM3NTExNSwgNTQuMDExNjRdXV0sIFtbWy0xNjguNzkwNDQ2LCA1My4xNTcyMzddLCBbLTE2OC40MDcwNiwgNTMuMzQ4OTNdLCBbLTE2OC4zODUxNTIsIDUzLjQzMTA4NF0sIFstMTY4LjIzNzI3NSwgNTMuNTI0MTkyXSwgWy0xNjguMDA3MjQzLCA1My41NjgwMDddLCBbLTE2Ny44ODY3NTEsIDUzLjUxODcxNV0sIFstMTY3Ljg0MjkzNSwgNTMuMzg3MjY4XSwgWy0xNjguMjcwMTM2LCA1My4yNDQ4NjhdLCBbLTE2OC41MDAxNjgsIDUzLjAzNjc0NF0sIFstMTY4LjY4NjM4NCwgNTIuOTY1NTQ0XSwgWy0xNjguNzkwNDQ2LCA1My4xNTcyMzddXV0sIFtbWy0xNjkuNzQ4OTEsIDUyLjg5NDM0NF0sIFstMTY5LjcwNTA5NSwgNTIuNzk1NzU5XSwgWy0xNjkuOTYyNTExLCA1Mi43OTAyODJdLCBbLTE2OS45ODk4OTYsIDUyLjg1NjAwNV0sIFstMTY5Ljc0ODkxLCA1Mi44OTQzNDRdXV0sIFtbWy0xNzAuMTQ4NzI3LCA1Ny4yMjExMjddLCBbLTE3MC4yODU2NSwgNTcuMTI4MDE5XSwgWy0xNzAuMzEzMDM1LCA1Ny4yMjExMjddLCBbLTE3MC4xNDg3MjcsIDU3LjIyMTEyN11dXSwgW1tbLTE3MC42NjkwMzYsIDUyLjY5NzE3NF0sIFstMTcwLjYwMzMxMywgNTIuNjA0MDY2XSwgWy0xNzAuNzg5NTI5LCA1Mi41MzgzNDNdLCBbLTE3MC44MTY5MTQsIDUyLjYzNjkyOF0sIFstMTcwLjY2OTAzNiwgNTIuNjk3MTc0XV1dLCBbW1stMTcxLjc0MjUxNywgNjMuNzE2Nzc4XSwgWy0xNzAuOTQ4MzYsIDYzLjU2ODldLCBbLTE3MC40ODgyOTcsIDYzLjY5NDg3XSwgWy0xNzAuMjgwMTc0LCA2My42ODM5MTZdLCBbLTE3MC4wOTM5NTgsIDYzLjYxMjcxNl0sIFstMTcwLjA0NDY2NSwgNjMuNDkyMjIzXSwgWy0xNjkuNjQ0ODQ4LCA2My40MjY1XSwgWy0xNjkuNTE4ODc5LCA2My4zNjYyNTRdLCBbLTE2OC45OTg1NywgNjMuMzM4ODY5XSwgWy0xNjguNjg2Mzg0LCA2My4yOTUwNTNdLCBbLTE2OC44NTYxNjksIDYzLjE0NzE3Nl0sIFstMTY5LjEwODEwOCwgNjMuMTgwMDM4XSwgWy0xNjkuMzc2NDc4LCA2My4xNTI2NTNdLCBbLTE2OS41MTM0MDIsIDYzLjA4NjkzXSwgWy0xNjkuNjM5MzcyLCA2Mi45MzkwNTJdLCBbLTE2OS44MzEwNjQsIDYzLjA3NTk3Nl0sIFstMTcwLjA1NTYxOSwgNjMuMTY5MDg0XSwgWy0xNzAuMjYzNzQzLCA2My4xODAwMzhdLCBbLTE3MC4zNjIzMjgsIDYzLjI4NDFdLCBbLTE3MC44NjYyMDYsIDYzLjQxNTU0Nl0sIFstMTcxLjEwMTcxNSwgNjMuNDIxMDIzXSwgWy0xNzEuNDYzMTkzLCA2My4zMDYwMDddLCBbLTE3MS43MzcwNCwgNjMuMzY2MjU0XSwgWy0xNzEuODUyMDU1LCA2My40ODY3NDZdLCBbLTE3MS43NDI1MTcsIDYzLjcxNjc3OF1dXSwgW1tbLTE3Mi40MzI2MTEsIDUyLjM5MDQ2NV0sIFstMTcyLjQxNjE4LCA1Mi4yNzU0NDldLCBbLTE3Mi42MDc4NzMsIDUyLjI1MzU0Ml0sIFstMTcyLjU2OTUzNSwgNTIuMzUyMTI3XSwgWy0xNzIuNDMyNjExLCA1Mi4zOTA0NjVdXV0sIFtbWy0xNzMuNjI2NTg0LCA1Mi4xNDk0OF0sIFstMTczLjQ5NTEzOCwgNTIuMTA1NjY0XSwgWy0xNzMuMTIyNzA2LCA1Mi4xMTExNDFdLCBbLTE3My4xMDYyNzUsIDUyLjA3ODI4XSwgWy0xNzMuNTQ5OTA3LCA1Mi4wMjg5ODddLCBbLTE3My42MjY1ODQsIDUyLjE0OTQ4XV1dLCBbW1stMTc0LjMyMjE1NiwgNTIuMjgwOTI2XSwgWy0xNzQuMzI3NjMyLCA1Mi4zNzk1MTFdLCBbLTE3NC4xODUyMzIsIDUyLjQxNzg1XSwgWy0xNzMuOTgyNTg1LCA1Mi4zMTkyNjVdLCBbLTE3NC4wNTkyNjIsIDUyLjIyNjE1N10sIFstMTc0LjE3OTc1NSwgNTIuMjMxNjM0XSwgWy0xNzQuMTQxNDE3LCA1Mi4xMjc1NzJdLCBbLTE3NC4zMzMxMDksIDUyLjExNjYxOF0sIFstMTc0LjczODQwMywgNTIuMDA3MDc5XSwgWy0xNzQuOTY4NDM1LCA1Mi4wMzk5NDFdLCBbLTE3NC45MDI3MTEsIDUyLjExNjYxOF0sIFstMTc0LjY1NjI0OSwgNTIuMTA1NjY0XSwgWy0xNzQuMzIyMTU2LCA1Mi4yODA5MjZdXV0sIFtbWy0xNzYuNDY5MTE2LCA1MS44NTM3MjVdLCBbLTE3Ni4yODgzNzcsIDUxLjg3MDE1Nl0sIFstMTc2LjI4ODM3NywgNTEuNzQ0MTg2XSwgWy0xNzYuNTE4NDA5LCA1MS43NjA2MTddLCBbLTE3Ni44MDMyMSwgNTEuNjEyNzRdLCBbLTE3Ni45MTI3NDgsIDUxLjgwOTkxXSwgWy0xNzYuNzkyMjU2LCA1MS44MTUzODZdLCBbLTE3Ni43NzU4MjUsIDUxLjk2MzI2NF0sIFstMTc2LjYyNzk0NywgNTEuOTY4NzQxXSwgWy0xNzYuNjI3OTQ3LCA1MS44NTkyMDJdLCBbLTE3Ni40NjkxMTYsIDUxLjg1MzcyNV1dXSwgW1tbLTE3Ny4xNTM3MzQsIDUxLjk0NjgzM10sIFstMTc3LjA0NDE5NSwgNTEuODk3NTQxXSwgWy0xNzcuMTIwODcyLCA1MS43Mjc3NTVdLCBbLTE3Ny4yNzQyMjYsIDUxLjY3ODQ2M10sIFstMTc3LjI3OTcwMywgNTEuNzgyNTI1XSwgWy0xNzcuMTUzNzM0LCA1MS45NDY4MzNdXV0sIFtbWy0xNzguMTIzMTUyLCA1MS45MTk0NDhdLCBbLTE3Ny45NTMzNjcsIDUxLjkxMzk3MV0sIFstMTc3LjgwMDAxMywgNTEuNzkzNDc5XSwgWy0xNzcuOTY0MzIxLCA1MS42NTEwNzhdLCBbLTE3OC4xMjMxNTIsIDUxLjkxOTQ0OF1dXSwgW1tbMTczLjEwNzU1NywgNTIuOTkyOTI5XSwgWzE3My4yOTM3NzMsIDUyLjkyNzIwNV0sIFsxNzMuMzA0NzI2LCA1Mi44MjMxNDNdLCBbMTcyLjkwNDkxLCA1Mi43NjI4OTddLCBbMTcyLjY0MjAxNywgNTIuOTI3MjA1XSwgWzE3Mi42NDIwMTcsIDUzLjAwMzg4M10sIFsxNzMuMTA3NTU3LCA1Mi45OTI5MjldXV1dLCAidHlwZSI6ICJNdWx0aVBvbHlnb24ifSwgImlkIjogIkFLIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiQWxhc2thIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stMTA5LjA0MjUwMywgMzcuMDAwMjYzXSwgWy0xMDkuMDQ3OTgsIDMxLjMzMTYyOV0sIFstMTExLjA3NDQ0OCwgMzEuMzMxNjI5XSwgWy0xMTIuMjQ2NTEzLCAzMS43MDQwNjFdLCBbLTExNC44MTUxOTgsIDMyLjQ5Mjc0MV0sIFstMTE0LjcyMjA5LCAzMi43MTcyOTVdLCBbLTExNC41MjQ5MjEsIDMyLjc1NTYzNF0sIFstMTE0LjQ3MDE1MSwgMzIuODQzMjY1XSwgWy0xMTQuNTI0OTIxLCAzMy4wMjk0ODFdLCBbLTExNC42NjE4NDQsIDMzLjAzNDk1OF0sIFstMTE0LjcyNzU2NywgMzMuNDA3MzldLCBbLTExNC41MjQ5MjEsIDMzLjU0OTc5XSwgWy0xMTQuNDk3NTM2LCAzMy42OTc2NjhdLCBbLTExNC41MzU4NzQsIDMzLjkzMzE3Nl0sIFstMTE0LjQxNTM4MiwgMzQuMTA4NDM4XSwgWy0xMTQuMjU2NTUxLCAzNC4xNzQxNjJdLCBbLTExNC4xMzYwNTgsIDM0LjMwNTYwOF0sIFstMTE0LjMzMzIyOCwgMzQuNDQ4MDA5XSwgWy0xMTQuNDcwMTUxLCAzNC43MTA5MDJdLCBbLTExNC42MzQ0NTksIDM0Ljg3NTIxXSwgWy0xMTQuNjM0NDU5LCAzNS4wMDExOF0sIFstMTE0LjU3NDIxMywgMzUuMTM4MTAzXSwgWy0xMTQuNTk2MTIxLCAzNS4zMjQzMTldLCBbLTExNC42NzgyNzUsIDM1LjUxNjAxMl0sIFstMTE0LjczODUyMSwgMzYuMTAyMDQ1XSwgWy0xMTQuMzcxNTY2LCAzNi4xNDAzODNdLCBbLTExNC4yNTEwNzQsIDM2LjAxOTg5XSwgWy0xMTQuMTUyNDg5LCAzNi4wMjUzNjddLCBbLTExNC4wNDg0MjcsIDM2LjE5NTE1M10sIFstMTE0LjA0ODQyNywgMzcuMDAwMjYzXSwgWy0xMTAuNDk5MzY5LCAzNy4wMDU3NF0sIFstMTA5LjA0MjUwMywgMzcuMDAwMjYzXV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJBWiIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIkFyaXpvbmEifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy05NC40NzM4NDIsIDM2LjUwMTg2MV0sIFstOTAuMTUyNTM2LCAzNi40OTYzODRdLCBbLTkwLjA2NDkwNSwgMzYuMzA0NjkxXSwgWy05MC4yMTgyNTksIDM2LjE4NDE5OV0sIFstOTAuMzc3MDkxLCAzNS45OTc5ODNdLCBbLTg5LjczMDgxMiwgMzUuOTk3OTgzXSwgWy04OS43NjM2NzMsIDM1LjgxMTc2N10sIFstODkuOTExNTUxLCAzNS43NTY5OTddLCBbLTg5Ljk0NDQxMiwgMzUuNjAzNjQzXSwgWy05MC4xMzA2MjgsIDM1LjQzOTMzNV0sIFstOTAuMTE0MTk3LCAzNS4xOTgzNDldLCBbLTkwLjIxMjc4MiwgMzUuMDIzMDg3XSwgWy05MC4zMTEzNjcsIDM0Ljk5NTcwM10sIFstOTAuMjUxMTIxLCAzNC45MDgwNzJdLCBbLTkwLjQwOTk1MiwgMzQuODMxMzk0XSwgWy05MC40ODExNTIsIDM0LjY2MTYwOV0sIFstOTAuNTg1MjE0LCAzNC42MTc3OTRdLCBbLTkwLjU2ODc4MywgMzQuNDIwNjI0XSwgWy05MC43NDk1MjIsIDM0LjM2NTg1NF0sIFstOTAuNzQ0MDQ2LCAzNC4zMDAxMzFdLCBbLTkwLjk1MjE2OSwgMzQuMTM1ODIzXSwgWy05MC44OTE5MjMsIDM0LjAyNjI4NF0sIFstOTEuMDcyNjYyLCAzMy44Njc0NTNdLCBbLTkxLjIzMTQ5MywgMzMuNTYwNzQ0XSwgWy05MS4wNTYyMzEsIDMzLjQyOTI5OF0sIFstOTEuMTQzODYyLCAzMy4zNDcxNDRdLCBbLTkxLjA4OTA5MywgMzMuMTM5MDJdLCBbLTkxLjE2NTc3LCAzMy4wMDIwOTZdLCBbLTkzLjYwODQ4NSwgMzMuMDE4NTI3XSwgWy05NC4wNDExNjQsIDMzLjAxODUyN10sIFstOTQuMDQxMTY0LCAzMy41NDk3OV0sIFstOTQuMTgzNTY0LCAzMy41OTM2MDZdLCBbLTk0LjM4MDczNCwgMzMuNTQ0MzEzXSwgWy05NC40ODQ3OTYsIDMzLjYzNzQyMV0sIFstOTQuNDMwMDI2LCAzNS4zOTU1MTldLCBbLTk0LjYxNjI0MiwgMzYuNTAxODYxXSwgWy05NC40NzM4NDIsIDM2LjUwMTg2MV1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiQVIiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJBcmthbnNhcyJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTEyMy4yMzMyNTYsIDQyLjAwNjE4Nl0sIFstMTIyLjM3ODg1MywgNDIuMDExNjYzXSwgWy0xMjEuMDM3MDAzLCA0MS45OTUyMzJdLCBbLTEyMC4wMDE4NjEsIDQxLjk5NTIzMl0sIFstMTE5Ljk5NjM4NCwgNDAuMjY0NTE5XSwgWy0xMjAuMDAxODYxLCAzOC45OTkzNDZdLCBbLTExOC43MTQ3OCwgMzguMTAxMTI4XSwgWy0xMTcuNDk4ODk5LCAzNy4yMTkzNF0sIFstMTE2LjU0MDQzNSwgMzYuNTAxODYxXSwgWy0xMTUuODUwMzQsIDM1Ljk3MDU5OF0sIFstMTE0LjYzNDQ1OSwgMzUuMDAxMThdLCBbLTExNC42MzQ0NTksIDM0Ljg3NTIxXSwgWy0xMTQuNDcwMTUxLCAzNC43MTA5MDJdLCBbLTExNC4zMzMyMjgsIDM0LjQ0ODAwOV0sIFstMTE0LjEzNjA1OCwgMzQuMzA1NjA4XSwgWy0xMTQuMjU2NTUxLCAzNC4xNzQxNjJdLCBbLTExNC40MTUzODIsIDM0LjEwODQzOF0sIFstMTE0LjUzNTg3NCwgMzMuOTMzMTc2XSwgWy0xMTQuNDk3NTM2LCAzMy42OTc2NjhdLCBbLTExNC41MjQ5MjEsIDMzLjU0OTc5XSwgWy0xMTQuNzI3NTY3LCAzMy40MDczOV0sIFstMTE0LjY2MTg0NCwgMzMuMDM0OTU4XSwgWy0xMTQuNTI0OTIxLCAzMy4wMjk0ODFdLCBbLTExNC40NzAxNTEsIDMyLjg0MzI2NV0sIFstMTE0LjUyNDkyMSwgMzIuNzU1NjM0XSwgWy0xMTQuNzIyMDksIDMyLjcxNzI5NV0sIFstMTE2LjA0NzUxLCAzMi42MjQxODddLCBbLTExNy4xMjY0NjcsIDMyLjUzNjU1Nl0sIFstMTE3LjI0Njk2LCAzMi42NjgwMDNdLCBbLTExNy4yNTI0MzcsIDMyLjg3NjEyN10sIFstMTE3LjMyOTExNCwgMzMuMTIyNTg5XSwgWy0xMTcuNDcxNTE1LCAzMy4yOTc4NTFdLCBbLTExNy43ODM3LCAzMy41Mzg4MzZdLCBbLTExOC4xODM1MTcsIDMzLjc2MzM5MV0sIFstMTE4LjI2MDE5NCwgMzMuNzAzMTQ1XSwgWy0xMTguNDEzNTQ4LCAzMy43NDE0ODNdLCBbLTExOC4zOTE2NDEsIDMzLjg0MDA2OF0sIFstMTE4LjU2NjkwMywgMzQuMDQyNzE1XSwgWy0xMTguODAyNDExLCAzMy45OTg4OTldLCBbLTExOS4yMTg2NTksIDM0LjE0Njc3N10sIFstMTE5LjI3ODkwNSwgMzQuMjY3MjddLCBbLTExOS41NTgyMjksIDM0LjQxNTE0N10sIFstMTE5Ljg3NTg5MSwgMzQuNDA5NjddLCBbLTEyMC4xMzg3ODQsIDM0LjQ3NTM5M10sIFstMTIwLjQ3Mjg3OCwgMzQuNDQ4MDA5XSwgWy0xMjAuNjQ4MTQsIDM0LjU3OTQ1NV0sIFstMTIwLjYwOTgwMSwgMzQuODU4Nzc5XSwgWy0xMjAuNjcwMDQ4LCAzNC45MDI1OTVdLCBbLTEyMC42MzE3MDksIDM1LjA5OTc2NF0sIFstMTIwLjg5NDYwMiwgMzUuMjQ3NjQyXSwgWy0xMjAuOTA1NTU2LCAzNS40NTAyODldLCBbLTEyMS4wMDQxNDEsIDM1LjQ2MTI0M10sIFstMTIxLjE2ODQ0OSwgMzUuNjM2NTA1XSwgWy0xMjEuMjgzNDY1LCAzNS42NzQ4NDNdLCBbLTEyMS4zMzI3NTcsIDM1Ljc4NDM4Ml0sIFstMTIxLjcxNjE0MywgMzYuMTk1MTUzXSwgWy0xMjEuODk2ODgyLCAzNi4zMTU2NDVdLCBbLTEyMS45MzUyMjEsIDM2LjYzODc4NV0sIFstMTIxLjg1ODU0NCwgMzYuNjExNF0sIFstMTIxLjc4NzM0NCwgMzYuODAzMDkzXSwgWy0xMjEuOTI5NzQ0LCAzNi45NzgzNTVdLCBbLTEyMi4xMDUwMDYsIDM2Ljk1NjQ0N10sIFstMTIyLjMzNTAzOCwgMzcuMTE1Mjc5XSwgWy0xMjIuNDE3MTkyLCAzNy4yNDEyNDhdLCBbLTEyMi40MDA3NjEsIDM3LjM2MTc0MV0sIFstMTIyLjUxNTc3NywgMzcuNTIwNTcyXSwgWy0xMjIuNTE1Nzc3LCAzNy43ODM0NjVdLCBbLTEyMi4zMjk1NjEsIDM3Ljc4MzQ2NV0sIFstMTIyLjQwNjIzOCwgMzguMTUwNDJdLCBbLTEyMi40ODgzOTIsIDM4LjExMjA4Ml0sIFstMTIyLjUwNDgyMywgMzcuOTMxMzQzXSwgWy0xMjIuNzAxOTkzLCAzNy44OTMwMDRdLCBbLTEyMi45Mzc1MDEsIDM4LjAyOTkyOF0sIFstMTIyLjk3NTg0LCAzOC4yNjU0MzZdLCBbLTEyMy4xMjkxOTQsIDM4LjQ1MTY1Ml0sIFstMTIzLjMzMTg0MSwgMzguNTY2NjY4XSwgWy0xMjMuNDQxMzgsIDM4LjY5ODExNF0sIFstMTIzLjczNzEzNCwgMzguOTU1NTNdLCBbLTEyMy42ODc4NDIsIDM5LjAzMjIwOF0sIFstMTIzLjgyNDc2NSwgMzkuMzY2MzAxXSwgWy0xMjMuNzY0NTE5LCAzOS41NTI1MTddLCBbLTEyMy44NTIxNSwgMzkuODMxODQxXSwgWy0xMjQuMTA5NTY2LCA0MC4xMDU2ODhdLCBbLTEyNC4zNjE1MDYsIDQwLjI1OTA0Ml0sIFstMTI0LjQxMDc5OCwgNDAuNDM5NzgxXSwgWy0xMjQuMTU4ODU5LCA0MC44Nzc5MzddLCBbLTEyNC4xMDk1NjYsIDQxLjAyNTgxNF0sIFstMTI0LjE1ODg1OSwgNDEuMTQwODNdLCBbLTEyNC4wNjU3NTEsIDQxLjQ0MjA2MV0sIFstMTI0LjE0NzkwNSwgNDEuNzE1OTA4XSwgWy0xMjQuMjU3NDQ0LCA0MS43ODE2MzJdLCBbLTEyNC4yMTM2MjgsIDQyLjAwMDcwOV0sIFstMTIzLjIzMzI1NiwgNDIuMDA2MTg2XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJDQSIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIkNhbGlmb3JuaWEifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy0xMDcuOTE5NzMxLCA0MS4wMDM5MDZdLCBbLTEwNS43Mjg5NTQsIDQwLjk5ODQyOV0sIFstMTA0LjA1MzAxMSwgNDEuMDAzOTA2XSwgWy0xMDIuMDUzOTI3LCA0MS4wMDM5MDZdLCBbLTEwMi4wNTM5MjcsIDQwLjAwMTYyNl0sIFstMTAyLjA0Mjk3NCwgMzYuOTk0Nzg2XSwgWy0xMDMuMDAxNDM4LCAzNy4wMDAyNjNdLCBbLTEwNC4zMzc4MTIsIDM2Ljk5NDc4Nl0sIFstMTA2Ljg2ODE1OCwgMzYuOTk0Nzg2XSwgWy0xMDcuNDIxMzI5LCAzNy4wMDAyNjNdLCBbLTEwOS4wNDI1MDMsIDM3LjAwMDI2M10sIFstMTA5LjA0MjUwMywgMzguMTY2ODUxXSwgWy0xMDkuMDU4OTM0LCAzOC4yNzYzOV0sIFstMTA5LjA1MzQ1NywgMzkuMTI1MzE2XSwgWy0xMDkuMDQ3OTgsIDQwLjk5ODQyOV0sIFstMTA3LjkxOTczMSwgNDEuMDAzOTA2XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJDTyIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIkNvbG9yYWRvIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stNzMuMDUzNTI4LCA0Mi4wMzkwNDhdLCBbLTcxLjc5OTMwOSwgNDIuMDIyNjE3XSwgWy03MS43OTkzMDksIDQyLjAwNjE4Nl0sIFstNzEuNzk5MzA5LCA0MS40MTQ2NzddLCBbLTcxLjg1OTU1NSwgNDEuMzIxNTY5XSwgWy03MS45NDcxODYsIDQxLjMzOF0sIFstNzIuMzg1MzQxLCA0MS4yNjEzMjJdLCBbLTcyLjkwNTY1MSwgNDEuMjgzMjNdLCBbLTczLjEzMDIwNSwgNDEuMTQ2MzA3XSwgWy03My4zNzExOTEsIDQxLjEwMjQ5MV0sIFstNzMuNjU1OTkyLCA0MC45ODc0NzVdLCBbLTczLjcyNzE5MiwgNDEuMTAyNDkxXSwgWy03My40ODA3MywgNDEuMjEyMDNdLCBbLTczLjU1MTkzLCA0MS4yOTQxODRdLCBbLTczLjQ4NjIwNiwgNDIuMDUwMDAyXSwgWy03My4wNTM1MjgsIDQyLjAzOTA0OF1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiQ1QiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJDb25uZWN0aWN1dCJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTc1LjQxNDA4OSwgMzkuODA0NDU2XSwgWy03NS41MDcxOTcsIDM5LjY4Mzk2NF0sIFstNzUuNjExMjU5LCAzOS42MTgyNF0sIFstNzUuNTg5MzUyLCAzOS40NTk0MDldLCBbLTc1LjQ0MTQ3NCwgMzkuMzExNTMyXSwgWy03NS40MDMxMzYsIDM5LjA2NTA2OV0sIFstNzUuMTg5NTM1LCAzOC44MDc2NTNdLCBbLTc1LjA5MDk1LCAzOC43OTY2OTldLCBbLTc1LjA0NzEzNCwgMzguNDUxNjUyXSwgWy03NS42OTM0MTMsIDM4LjQ2MjYwNl0sIFstNzUuNzg2NTIxLCAzOS43MjIzMDJdLCBbLTc1LjYxNjczNiwgMzkuODMxODQxXSwgWy03NS40MTQwODksIDM5LjgwNDQ1Nl1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiREUiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJEZWxhd2FyZSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTg1LjQ5NzEzNywgMzAuOTk3NTM2XSwgWy04NS4wMDQyMTIsIDMxLjAwMzAxM10sIFstODQuODY3Mjg5LCAzMC43MTI3MzVdLCBbLTgzLjQ5ODA1MywgMzAuNjQ3MDEyXSwgWy04Mi4yMTY0NDksIDMwLjU3MDMzNV0sIFstODIuMTY3MTU3LCAzMC4zNTY3MzRdLCBbLTgyLjA0NjY2NCwgMzAuMzYyMjExXSwgWy04Mi4wMDI4NDksIDMwLjU2NDg1OF0sIFstODIuMDQxMTg3LCAzMC43NTEwNzRdLCBbLTgxLjk0ODA3OSwgMzAuODI3NzUxXSwgWy04MS43MTgwNDgsIDMwLjc0NTU5N10sIFstODEuNDQ0MjAxLCAzMC43MDcyNThdLCBbLTgxLjM4Mzk1NCwgMzAuMjc0NThdLCBbLTgxLjI1Nzk4NSwgMjkuNzg3MTMyXSwgWy04MC45Njc3MDcsIDI5LjE0NjMzXSwgWy04MC41MjQwNzUsIDI4LjQ2MTcxM10sIFstODAuNTg5Nzk4LCAyOC40MTI0Ml0sIFstODAuNTY3ODksIDI4LjA5NDc1OF0sIFstODAuMzgxNjc0LCAyNy43Mzg3NTddLCBbLTgwLjA5MTM5NywgMjcuMDIxMjc3XSwgWy04MC4wMzExNSwgMjYuNzk2NzIzXSwgWy04MC4wMzY2MjcsIDI2LjU2NjY5MV0sIFstODAuMTQ2MTY2LCAyNS43Mzk2NzNdLCBbLTgwLjIzOTI3NCwgMjUuNzIzMjQzXSwgWy04MC4zMzc4NTksIDI1LjQ2NTgyNl0sIFstODAuMzA0OTk3LCAyNS4zODM2NzJdLCBbLTgwLjQ5NjY5LCAyNS4xOTc0NTZdLCBbLTgwLjU3MzM2NywgMjUuMjQxMjcyXSwgWy04MC43NTk1ODMsIDI1LjE2NDU5NV0sIFstODEuMDc3MjQ2LCAyNS4xMjA3NzldLCBbLTgxLjE3MDM1NCwgMjUuMjI0ODQxXSwgWy04MS4xMjY1MzgsIDI1LjM3ODE5NV0sIFstODEuMzUxMDkzLCAyNS44MjE4MjddLCBbLTgxLjUyNjM1NSwgMjUuOTAzOTgyXSwgWy04MS42Nzk3MDksIDI1Ljg0MzczNV0sIFstODEuODAwMjAyLCAyNi4wOTAxOThdLCBbLTgxLjgzMzA2NCwgMjYuMjkyODQ0XSwgWy04Mi4wNDExODcsIDI2LjUxNzM5OV0sIFstODIuMDkwNDgsIDI2LjY2NTI3Nl0sIFstODIuMDU3NjE4LCAyNi44Nzg4NzddLCBbLTgyLjE3MjYzNCwgMjYuOTE3MjE2XSwgWy04Mi4xNDUyNDksIDI2Ljc5MTI0Nl0sIFstODIuMjQ5MzExLCAyNi43NTgzODRdLCBbLTgyLjU2Njk3NCwgMjcuMzAwNjAxXSwgWy04Mi42OTI5NDMsIDI3LjQzNzUyNV0sIFstODIuMzkxNzExLCAyNy44MzczNDJdLCBbLTgyLjU4ODg4MSwgMjcuODE1NDM0XSwgWy04Mi43MjAzMjgsIDI3LjY4OTQ2NF0sIFstODIuODUxNzc0LCAyNy44ODY2MzRdLCBbLTgyLjY3NjUxMiwgMjguNDM0MzI4XSwgWy04Mi42NDM2NTEsIDI4Ljg4ODkxNF0sIFstODIuNzY0MTQzLCAyOC45OTg0NTNdLCBbLTgyLjgwMjQ4MiwgMjkuMTQ2MzNdLCBbLTgyLjk5NDE3NSwgMjkuMTc5MTkyXSwgWy04My4yMTg3MjksIDI5LjQyMDE3N10sIFstODMuMzk5NDY5LCAyOS41MTg3NjJdLCBbLTgzLjQxMDQyMiwgMjkuNjY2NjRdLCBbLTgzLjUzNjM5MiwgMjkuNzIxNDA5XSwgWy04My42NDA0NTQsIDI5Ljg4NTcxN10sIFstODQuMDIzODQsIDMwLjEwNDc5NV0sIFstODQuMzU3OTMzLCAzMC4wNTU1MDJdLCBbLTg0LjM0MTUwMiwgMjkuOTAyMTQ4XSwgWy04NC40NTEwNDEsIDI5LjkyOTUzM10sIFstODQuODY3Mjg5LCAyOS43NDMzMTddLCBbLTg1LjMxMDkyMSwgMjkuNjk5NTAxXSwgWy04NS4yOTk5NjcsIDI5LjgwOTA0XSwgWy04NS40MDQwMjksIDI5Ljk0MDQ4N10sIFstODUuOTI0MzM4LCAzMC4yMzYyNDFdLCBbLTg2LjI5Njc3LCAzMC4zNjIyMTFdLCBbLTg2LjYzMDg2MywgMzAuMzk1MDczXSwgWy04Ni45MTAxODcsIDMwLjM3MzE2NV0sIFstODcuNTE4MTI4LCAzMC4yODAwNTddLCBbLTg3LjM3MDI1LCAzMC40Mjc5MzRdLCBbLTg3LjQ0NjkyNywgMzAuNTEwMDg4XSwgWy04Ny40MDg1ODksIDMwLjY3NDM5N10sIFstODcuNjMzMTQzLCAzMC44NjYwOV0sIFstODcuNjAwMjgyLCAzMC45OTc1MzZdLCBbLTg1LjQ5NzEzNywgMzAuOTk3NTM2XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJGTCIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIkZsb3JpZGEifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy04My4xMDkxOTEsIDM1LjAwMTE4XSwgWy04My4zMjI3OTEsIDM0Ljc4NzU3OV0sIFstODMuMzM5MjIyLCAzNC42ODM1MTddLCBbLTgzLjAwNTEyOSwgMzQuNDY5OTE2XSwgWy04Mi45MDEwNjcsIDM0LjQ4NjM0N10sIFstODIuNzQ3NzEzLCAzNC4yNjcyN10sIFstODIuNzE0ODUxLCAzNC4xNTIyNTRdLCBbLTgyLjU1NjAyLCAzMy45NDQxM10sIFstODIuMzI1OTg4LCAzMy44MTgxNl0sIFstODIuMTk0NTQyLCAzMy42MzE5NDRdLCBbLTgxLjkyNjE3MiwgMzMuNDYyMTU5XSwgWy04MS45MzcxMjUsIDMzLjM0NzE0NF0sIFstODEuNzYxODYzLCAzMy4xNjA5MjhdLCBbLTgxLjQ5MzQ5MywgMzMuMDA3NTczXSwgWy04MS40Mjc3NywgMzIuODQzMjY1XSwgWy04MS40MTY4MTYsIDMyLjYyOTY2NF0sIFstODEuMjc5ODkzLCAzMi41NTg0NjRdLCBbLTgxLjEyMTA2MSwgMzIuMjkwMDk0XSwgWy04MS4xMTU1ODQsIDMyLjEyMDMwOV0sIFstODAuODg1NTUzLCAzMi4wMzI2NzhdLCBbLTgxLjEzMjAxNSwgMzEuNjkzMTA4XSwgWy04MS4xNzU4MzEsIDMxLjUxNzg0NV0sIFstODEuMjc5ODkzLCAzMS4zNjQ0OTFdLCBbLTgxLjI5MDg0NiwgMzEuMjA1NjZdLCBbLTgxLjQwMDM4NSwgMzEuMTM0NDZdLCBbLTgxLjQ0NDIwMSwgMzAuNzA3MjU4XSwgWy04MS43MTgwNDgsIDMwLjc0NTU5N10sIFstODEuOTQ4MDc5LCAzMC44Mjc3NTFdLCBbLTgyLjA0MTE4NywgMzAuNzUxMDc0XSwgWy04Mi4wMDI4NDksIDMwLjU2NDg1OF0sIFstODIuMDQ2NjY0LCAzMC4zNjIyMTFdLCBbLTgyLjE2NzE1NywgMzAuMzU2NzM0XSwgWy04Mi4yMTY0NDksIDMwLjU3MDMzNV0sIFstODMuNDk4MDUzLCAzMC42NDcwMTJdLCBbLTg0Ljg2NzI4OSwgMzAuNzEyNzM1XSwgWy04NS4wMDQyMTIsIDMxLjAwMzAxM10sIFstODUuMTEzNzUxLCAzMS4yNzY4Nl0sIFstODUuMDQyNTUxLCAzMS41Mzk3NTNdLCBbLTg1LjE0MTEzNiwgMzEuODQwOTg1XSwgWy04NS4wNTM1MDQsIDMyLjAxMDc3XSwgWy04NS4wNTg5ODEsIDMyLjEzNjc0XSwgWy04NC44ODkxOTYsIDMyLjI2MjcwOV0sIFstODUuMDA0MjEyLCAzMi4zMjI5NTZdLCBbLTg0Ljk2MDM5NywgMzIuNDIxNTQxXSwgWy04NS4wNjk5MzUsIDMyLjU4MDM3Ml0sIFstODUuMTg0OTUxLCAzMi44NTk2OTZdLCBbLTg1LjQzMTQxMywgMzQuMTI0ODY5XSwgWy04NS42MDY2NzUsIDM0Ljk4NDc0OV0sIFstODQuMzE5NTk0LCAzNC45OTAyMjZdLCBbLTgzLjYxODU0NiwgMzQuOTg0NzQ5XSwgWy04My4xMDkxOTEsIDM1LjAwMTE4XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJHQSIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIkdlb3JnaWEifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbW1stMTU1LjYzNDgzNSwgMTguOTQ4MjY3XSwgWy0xNTUuODgxMjk3LCAxOS4wMzU4OThdLCBbLTE1NS45MTk2MzYsIDE5LjEyMzUyOV0sIFstMTU1Ljg4Njc3NCwgMTkuMzQ4MDg0XSwgWy0xNTYuMDYyMDM2LCAxOS43MzE0N10sIFstMTU1LjkyNTExMywgMTkuODU3NDM5XSwgWy0xNTUuODI2NTI4LCAyMC4wMzI3MDJdLCBbLTE1NS44OTc3MjgsIDIwLjE0NzcxN10sIFstMTU1Ljg3NTgyLCAyMC4yNjgyMV0sIFstMTU1LjU5NjQ5NiwgMjAuMTI1ODFdLCBbLTE1NS4yODQzMTEsIDIwLjAyMTc0OF0sIFstMTU1LjA5MjYxOCwgMTkuODY4MzkzXSwgWy0xNTUuMDkyNjE4LCAxOS43MzY5NDddLCBbLTE1NC44MDc4MTcsIDE5LjUyMzM0Nl0sIFstMTU0Ljk4MzA3OSwgMTkuMzQ4MDg0XSwgWy0xNTUuMjk1MjY1LCAxOS4yNjU5M10sIFstMTU1LjUxNDM0MiwgMTkuMTM0NDgzXSwgWy0xNTUuNjM0ODM1LCAxOC45NDgyNjddXV0sIFtbWy0xNTYuNTg3ODIzLCAyMS4wMjk1MDVdLCBbLTE1Ni40NzI4MDcsIDIwLjg5MjU4MV0sIFstMTU2LjMyNDkyOSwgMjAuOTUyODI3XSwgWy0xNTYuMDAxNzksIDIwLjc5Mzk5Nl0sIFstMTU2LjA1MTA4MiwgMjAuNjUxNTk2XSwgWy0xNTYuMzc5Njk5LCAyMC41ODAzOTZdLCBbLTE1Ni40NDU0MjIsIDIwLjYwNzc4XSwgWy0xNTYuNDYxODUzLCAyMC43ODMwNDJdLCBbLTE1Ni42MzE2MzgsIDIwLjgyMTM4MV0sIFstMTU2LjY5NzM2MSwgMjAuOTE5OTY2XSwgWy0xNTYuNTg3ODIzLCAyMS4wMjk1MDVdXV0sIFtbWy0xNTYuOTgyMTYyLCAyMS4yMTAyNDRdLCBbLTE1Ny4wODA3NDcsIDIxLjEwNjE4Ml0sIFstMTU3LjMxMDc3OSwgMjEuMTA2MTgyXSwgWy0xNTcuMjM5NTc5LCAyMS4yMjExOThdLCBbLTE1Ni45ODIxNjIsIDIxLjIxMDI0NF1dXSwgW1tbLTE1Ny45NTE1ODEsIDIxLjY5NzY5MV0sIFstMTU3Ljg0MjA0MiwgMjEuNDYyMTgzXSwgWy0xNTcuODk2ODExLCAyMS4zMjUyNTldLCBbLTE1OC4xMTA0MTIsIDIxLjMwMzM1Ml0sIFstMTU4LjI1MjgxMywgMjEuNTgyNjc2XSwgWy0xNTguMTI2ODQzLCAyMS41ODgxNTNdLCBbLTE1Ny45NTE1ODEsIDIxLjY5NzY5MV1dXSwgW1tbLTE1OS40Njg2OTMsIDIyLjIyODk1NV0sIFstMTU5LjM1MzY3OCwgMjIuMjE4MDAxXSwgWy0xNTkuMjk4OTA4LCAyMi4xMTM5MzldLCBbLTE1OS4zMzE3NywgMjEuOTY2MDYxXSwgWy0xNTkuNDQ2Nzg2LCAyMS44NzI5NTNdLCBbLTE1OS43NjQ0NDgsIDIxLjk4Nzk2OV0sIFstMTU5LjcyNjEwOSwgMjIuMTUyMjc3XSwgWy0xNTkuNDY4NjkzLCAyMi4yMjg5NTVdXV1dLCAidHlwZSI6ICJNdWx0aVBvbHlnb24ifSwgImlkIjogIkhJIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiSGF3YWlpIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stMTE2LjA0NzUxLCA0OS4wMDAyMzldLCBbLTExNi4wNDc1MSwgNDcuOTc2MDUxXSwgWy0xMTUuNzI0MzcxLCA0Ny42OTY3MjddLCBbLTExNS43MTg4OTQsIDQ3LjQyMjg4XSwgWy0xMTUuNTI3MjAxLCA0Ny4zMDIzODhdLCBbLTExNS4zMjQ1NTQsIDQ3LjI1ODU3Ml0sIFstMTE1LjMwMjY0NiwgNDcuMTg3MzcyXSwgWy0xMTQuOTMwMjE0LCA0Ni45MTkwMDJdLCBbLTExNC44ODYzOTksIDQ2LjgwOTQ2M10sIFstMTE0LjYyMzUwNiwgNDYuNzA1NDAxXSwgWy0xMTQuNjEyNTUyLCA0Ni42Mzk2NzhdLCBbLTExNC4zMjIyNzQsIDQ2LjY0NTE1NV0sIFstMTE0LjQ2NDY3NCwgNDYuMjcyNzIzXSwgWy0xMTQuNDkyMDU5LCA0Ni4wMzcyMTRdLCBbLTExNC4zODc5OTcsIDQ1Ljg4Mzg2XSwgWy0xMTQuNTY4NzM2LCA0NS43NzQzMjFdLCBbLTExNC40OTc1MzYsIDQ1LjY3MDI1OV0sIFstMTE0LjU0NjgyOCwgNDUuNTYwNzIxXSwgWy0xMTQuMzMzMjI4LCA0NS40NTY2NTldLCBbLTExNC4wODY3NjUsIDQ1LjU5MzU4Ml0sIFstMTEzLjk4ODE4LCA0NS43MDMxMjFdLCBbLTExMy44MDc0NDEsIDQ1LjYwNDUzNl0sIFstMTEzLjgzNDgyNiwgNDUuNTIyMzgyXSwgWy0xMTMuNzM2MjQxLCA0NS4zMzA2ODldLCBbLTExMy41NzE5MzMsIDQ1LjEyODA0Ml0sIFstMTEzLjQ1MTQ0LCA0NS4wNTY4NDJdLCBbLTExMy40NTY5MTcsIDQ0Ljg2NTE0OV0sIFstMTEzLjM0MTkwMSwgNDQuNzgyOTk1XSwgWy0xMTMuMTMzNzc4LCA0NC43NzIwNDFdLCBbLTExMy4wMDIzMzEsIDQ0LjQ0ODkwMl0sIFstMTEyLjg4NzMxNSwgNDQuMzk0MTMyXSwgWy0xMTIuNzgzMjU0LCA0NC40ODcyNF0sIFstMTEyLjQ3MTA2OCwgNDQuNDgxNzYzXSwgWy0xMTIuMjQxMDM2LCA0NC41NjkzOTRdLCBbLTExMi4xMDQxMTMsIDQ0LjUyMDEwMl0sIFstMTExLjg2ODYwNSwgNDQuNTYzOTE3XSwgWy0xMTEuODE5MzEyLCA0NC41MDkxNDhdLCBbLTExMS42MTY2NjUsIDQ0LjU0NzQ4N10sIFstMTExLjM4NjYzNCwgNDQuNzU1NjFdLCBbLTExMS4yMjc4MDMsIDQ0LjU4MDM0OF0sIFstMTExLjA0NzA2MywgNDQuNDc2Mjg2XSwgWy0xMTEuMDQ3MDYzLCA0Mi4wMDA3MDldLCBbLTExMi4xNjQzNTksIDQxLjk5NTIzMl0sIFstMTE0LjA0Mjk1LCA0MS45OTUyMzJdLCBbLTExNy4wMjc4ODIsIDQyLjAwMDcwOV0sIFstMTE3LjAyNzg4MiwgNDMuODMwMDA3XSwgWy0xMTYuODk2NDM2LCA0NC4xNTg2MjRdLCBbLTExNi45Nzg1OSwgNDQuMjQwNzc4XSwgWy0xMTcuMTcwMjgzLCA0NC4yNTcyMDldLCBbLTExNy4yNDE0ODMsIDQ0LjM5NDEzMl0sIFstMTE3LjAzODgzNiwgNDQuNzUwMTMzXSwgWy0xMTYuOTM0Nzc0LCA0NC43ODI5OTVdLCBbLTExNi44MzA3MTMsIDQ0LjkzMDg3Ml0sIFstMTE2Ljg0NzE0MywgNDUuMDIzOThdLCBbLTExNi43MzIxMjgsIDQ1LjE0NDQ3M10sIFstMTE2LjY3MTg4MSwgNDUuMzE5NzM1XSwgWy0xMTYuNDYzNzU4LCA0NS42MTU0OV0sIFstMTE2LjU0NTkxMiwgNDUuNzUyNDEzXSwgWy0xMTYuNzgxNDIsIDQ1LjgyMzYxNF0sIFstMTE2LjkxODM0NCwgNDUuOTkzMzk5XSwgWy0xMTYuOTIzODIsIDQ2LjE2ODY2MV0sIFstMTE3LjA1NTI2NywgNDYuMzQzOTIzXSwgWy0xMTcuMDM4ODM2LCA0Ni40MjYwNzddLCBbLTExNy4wNDQzMTMsIDQ3Ljc2MjQ1MV0sIFstMTE3LjAzMzM1OSwgNDkuMDAwMjM5XSwgWy0xMTYuMDQ3NTEsIDQ5LjAwMDIzOV1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiSUQiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJJZGFobyJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTkwLjYzOTk4NCwgNDIuNTEwMDY1XSwgWy04OC43ODg3NzgsIDQyLjQ5MzYzNF0sIFstODcuODAyOTI5LCA0Mi40OTM2MzRdLCBbLTg3LjgzNTc5LCA0Mi4zMDE5NDFdLCBbLTg3LjY4MjQzNiwgNDIuMDc3Mzg2XSwgWy04Ny41MjM2MDUsIDQxLjcxMDQzMV0sIFstODcuNTI5MDgyLCAzOS4zNDk4N10sIFstODcuNjM4NjIsIDM5LjE2OTEzMV0sIFstODcuNTEyNjUxLCAzOC45NTU1M10sIFstODcuNDk2MjIsIDM4Ljc4MDI2OF0sIFstODcuNjIyMTksIDM4LjYzNzg2OF0sIFstODcuNjU1MDUxLCAzOC41MDY0MjFdLCBbLTg3LjgzNTc5LCAzOC4yOTI4MjFdLCBbLTg3Ljk1MDgwNiwgMzguMjc2MzldLCBbLTg3LjkyMzQyMSwgMzguMTUwNDJdLCBbLTg4LjAwMDA5OCwgMzguMTAxMTI4XSwgWy04OC4wNjAzNDUsIDM3Ljg2NTYxOV0sIFstODguMDI3NDgzLCAzNy43OTk4OTZdLCBbLTg4LjE1ODkzLCAzNy42NTc0OTZdLCBbLTg4LjA2NTgyMiwgMzcuNDgyMjM0XSwgWy04OC40NzY1OTIsIDM3LjM4OTEyNl0sIFstODguNTE0OTMxLCAzNy4yODUwNjRdLCBbLTg4LjQyMTgyMywgMzcuMTUzNjE3XSwgWy04OC41NDc3OTIsIDM3LjA3MTQ2M10sIFstODguOTE0NzQ3LCAzNy4yMjQ4MTddLCBbLTg5LjAyOTc2MywgMzcuMjEzODYzXSwgWy04OS4xODMxMTgsIDM3LjAzODYwMV0sIFstODkuMTMzODI1LCAzNi45ODM4MzJdLCBbLTg5LjI5MjY1NiwgMzYuOTk0Nzg2XSwgWy04OS41MTcyMTEsIDM3LjI3OTU4N10sIFstODkuNDM1MDU3LCAzNy4zNDUzMV0sIFstODkuNTE3MjExLCAzNy41MzcwMDNdLCBbLTg5LjUxNzIxMSwgMzcuNjkwMzU3XSwgWy04OS44NDAzNSwgMzcuOTAzOTU4XSwgWy04OS45NDk4ODksIDM3Ljg4MjA1XSwgWy05MC4wNTk0MjgsIDM4LjAxMzQ5N10sIFstOTAuMzU1MTgzLCAzOC4yMTYxNDRdLCBbLTkwLjM0OTcwNiwgMzguMzc0OTc1XSwgWy05MC4xNzk5MjEsIDM4LjYzMjM5MV0sIFstOTAuMjA3MzA1LCAzOC43MjU0OTldLCBbLTkwLjEwODcyLCAzOC44NDU5OTJdLCBbLTkwLjI1MTEyMSwgMzguOTE3MTkyXSwgWy05MC40NzAxOTksIDM4Ljk2MTAwN10sIFstOTAuNTg1MjE0LCAzOC44Njc4OTldLCBbLTkwLjY2MTg5MSwgMzguOTI4MTQ2XSwgWy05MC43Mjc2MTUsIDM5LjI1Njc2Ml0sIFstOTEuMDYxNzA4LCAzOS40NzAzNjNdLCBbLTkxLjM2ODQxNywgMzkuNzI3Nzc5XSwgWy05MS40OTQzODYsIDQwLjAzNDQ4OF0sIFstOTEuNTA1MzQsIDQwLjIzNzEzNV0sIFstOTEuNDE3NzA5LCA0MC4zNzk1MzVdLCBbLTkxLjQwMTI3OCwgNDAuNTYwMjc0XSwgWy05MS4xMjE5NTQsIDQwLjY2OTgxM10sIFstOTEuMDk0NTcsIDQwLjgyMzE2N10sIFstOTAuOTYzMTIzLCA0MC45MjE3NTJdLCBbLTkwLjk0NjY5MiwgNDEuMDk3MDE0XSwgWy05MS4xMTEwMDEsIDQxLjIzOTQxNV0sIFstOTEuMDQ1Mjc3LCA0MS40MTQ2NzddLCBbLTkwLjY1NjQxNCwgNDEuNDYzOTY5XSwgWy05MC4zNDQyMjksIDQxLjU4OTkzOV0sIFstOTAuMzExMzY3LCA0MS43NDMyOTNdLCBbLTkwLjE3OTkyMSwgNDEuODA5MDE2XSwgWy05MC4xNDE1ODIsIDQyLjAwMDcwOV0sIFstOTAuMTY4OTY3LCA0Mi4xMjY2NzldLCBbLTkwLjM5MzUyMSwgNDIuMjI1MjY0XSwgWy05MC40MjA5MDYsIDQyLjMyOTMyNl0sIFstOTAuNjM5OTg0LCA0Mi41MTAwNjVdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIklMIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiSWxsaW5vaXMifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy04NS45OTAwNjEsIDQxLjc1OTcyNF0sIFstODQuODA3MDQyLCA0MS43NTk3MjRdLCBbLTg0LjgwNzA0MiwgNDEuNjk0MDAxXSwgWy04NC44MDE1NjUsIDQwLjUwMDAyOF0sIFstODQuODE3OTk2LCAzOS4xMDM0MDhdLCBbLTg0Ljg5NDY3MywgMzkuMDU5NTkyXSwgWy04NC44MTI1MTksIDM4Ljc4NTc0NV0sIFstODQuOTg3NzgxLCAzOC43ODAyNjhdLCBbLTg1LjE3Mzk5NywgMzguNjg3MTZdLCBbLTg1LjQzMTQxMywgMzguNzMwOTc2XSwgWy04NS40MjA0NiwgMzguNTMzODA2XSwgWy04NS41OTAyNDUsIDM4LjQ1MTY1Ml0sIFstODUuNjU1OTY4LCAzOC4zMjU2ODJdLCBbLTg1LjgzMTIzLCAzOC4yNzYzOV0sIFstODUuOTI0MzM4LCAzOC4wMjQ0NTFdLCBbLTg2LjAzOTM1NCwgMzcuOTU4NzI3XSwgWy04Ni4yNjM5MDgsIDM4LjA1MTgzNV0sIFstODYuMzAyMjQ3LCAzOC4xNjY4NTFdLCBbLTg2LjUyMTMyNSwgMzguMDQwODgxXSwgWy04Ni41MDQ4OTQsIDM3LjkzMTM0M10sIFstODYuNzI5NDQ4LCAzNy44OTMwMDRdLCBbLTg2Ljc5NTE3MiwgMzcuOTkxNTg5XSwgWy04Ny4wNDcxMTEsIDM3Ljg5MzAwNF0sIFstODcuMTI5MjY1LCAzNy43ODg5NDJdLCBbLTg3LjM4MTIwNCwgMzcuOTM2ODJdLCBbLTg3LjUxMjY1MSwgMzcuOTAzOTU4XSwgWy04Ny42MDAyODIsIDM3Ljk3NTE1OF0sIFstODcuNjgyNDM2LCAzNy45MDM5NThdLCBbLTg3LjkzNDM3NSwgMzcuODkzMDA0XSwgWy04OC4wMjc0ODMsIDM3Ljc5OTg5Nl0sIFstODguMDYwMzQ1LCAzNy44NjU2MTldLCBbLTg4LjAwMDA5OCwgMzguMTAxMTI4XSwgWy04Ny45MjM0MjEsIDM4LjE1MDQyXSwgWy04Ny45NTA4MDYsIDM4LjI3NjM5XSwgWy04Ny44MzU3OSwgMzguMjkyODIxXSwgWy04Ny42NTUwNTEsIDM4LjUwNjQyMV0sIFstODcuNjIyMTksIDM4LjYzNzg2OF0sIFstODcuNDk2MjIsIDM4Ljc4MDI2OF0sIFstODcuNTEyNjUxLCAzOC45NTU1M10sIFstODcuNjM4NjIsIDM5LjE2OTEzMV0sIFstODcuNTI5MDgyLCAzOS4zNDk4N10sIFstODcuNTIzNjA1LCA0MS43MTA0MzFdLCBbLTg3LjQyNTAyLCA0MS42NDQ3MDhdLCBbLTg3LjExODMxMSwgNDEuNjQ0NzA4XSwgWy04Ni44MjI1NTYsIDQxLjc1OTcyNF0sIFstODUuOTkwMDYxLCA0MS43NTk3MjRdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIklOIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiSW5kaWFuYSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTkxLjM2ODQxNywgNDMuNTAxMzkxXSwgWy05MS4yMTUwNjIsIDQzLjUwMTM5MV0sIFstOTEuMjA0MTA5LCA0My4zNTM1MTRdLCBbLTkxLjA1NjIzMSwgNDMuMjU0OTI5XSwgWy05MS4xNzY3MjQsIDQzLjEzNDQzNl0sIFstOTEuMTQzODYyLCA0Mi45MDk4ODFdLCBbLTkxLjA2NzE4NSwgNDIuNzUxMDVdLCBbLTkwLjcxMTE4NCwgNDIuNjM2MDM0XSwgWy05MC42Mzk5ODQsIDQyLjUxMDA2NV0sIFstOTAuNDIwOTA2LCA0Mi4zMjkzMjZdLCBbLTkwLjM5MzUyMSwgNDIuMjI1MjY0XSwgWy05MC4xNjg5NjcsIDQyLjEyNjY3OV0sIFstOTAuMTQxNTgyLCA0Mi4wMDA3MDldLCBbLTkwLjE3OTkyMSwgNDEuODA5MDE2XSwgWy05MC4zMTEzNjcsIDQxLjc0MzI5M10sIFstOTAuMzQ0MjI5LCA0MS41ODk5MzldLCBbLTkwLjY1NjQxNCwgNDEuNDYzOTY5XSwgWy05MS4wNDUyNzcsIDQxLjQxNDY3N10sIFstOTEuMTExMDAxLCA0MS4yMzk0MTVdLCBbLTkwLjk0NjY5MiwgNDEuMDk3MDE0XSwgWy05MC45NjMxMjMsIDQwLjkyMTc1Ml0sIFstOTEuMDk0NTcsIDQwLjgyMzE2N10sIFstOTEuMTIxOTU0LCA0MC42Njk4MTNdLCBbLTkxLjQwMTI3OCwgNDAuNTYwMjc0XSwgWy05MS40MTc3MDksIDQwLjM3OTUzNV0sIFstOTEuNTI3MjQ4LCA0MC40MTIzOTddLCBbLTkxLjcyOTg5NSwgNDAuNjE1MDQzXSwgWy05MS44MzM5NTcsIDQwLjYwOTU2Nl0sIFstOTMuMjU3OTYxLCA0MC41ODIxODJdLCBbLTk0LjYzMjY3MywgNDAuNTcxMjI4XSwgWy05NS43NjY0LCA0MC41ODc2NTldLCBbLTk1Ljg4MTQxNiwgNDAuNzE5MTA1XSwgWy05NS44MjY2NDYsIDQwLjk3NjUyMV0sIFstOTUuOTI1MjMxLCA0MS4yMDEwNzZdLCBbLTk1LjkxOTc1NCwgNDEuNDUzMDE1XSwgWy05Ni4wOTUwMTYsIDQxLjU0MDY0Nl0sIFstOTYuMTIyNDAxLCA0MS42Nzc1N10sIFstOTYuMDYyMTU1LCA0MS43OTgwNjNdLCBbLTk2LjEyNzg3OCwgNDEuOTczMzI1XSwgWy05Ni4yNjQ4MDEsIDQyLjAzOTA0OF0sIFstOTYuNDQ1NTQsIDQyLjQ4ODE1N10sIFstOTYuNjMxNzU2LCA0Mi43MDcyMzVdLCBbLTk2LjU0NDEyNSwgNDIuODU1MTEyXSwgWy05Ni41MTEyNjQsIDQzLjA1MjI4Ml0sIFstOTYuNDM0NTg3LCA0My4xMjM0ODJdLCBbLTk2LjU2MDU1NiwgNDMuMjIyMDY3XSwgWy05Ni41Mjc2OTUsIDQzLjM5NzMyOV0sIFstOTYuNTgyNDY0LCA0My40Nzk0ODNdLCBbLTk2LjQ1MTAxNywgNDMuNTAxMzkxXSwgWy05MS4zNjg0MTcsIDQzLjUwMTM5MV1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiSUEiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJJb3dhIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stMTAxLjkwNjA1LCA0MC4wMDE2MjZdLCBbLTk1LjMwNjMzNywgNDAuMDAxNjI2XSwgWy05NS4yMDc3NTIsIDM5LjkwODUxOF0sIFstOTQuODg0NjEyLCAzOS44MzE4NDFdLCBbLTk1LjEwOTE2NywgMzkuNTQxNTYzXSwgWy05NC45ODMxOTcsIDM5LjQ0Mjk3OF0sIFstOTQuODI0MzY2LCAzOS4yMDc0N10sIFstOTQuNjEwNzY1LCAzOS4xNTgxNzddLCBbLTk0LjYxNjI0MiwgMzcuMDAwMjYzXSwgWy0xMDAuMDg3NzA2LCAzNy4wMDAyNjNdLCBbLTEwMi4wNDI5NzQsIDM2Ljk5NDc4Nl0sIFstMTAyLjA1MzkyNywgNDAuMDAxNjI2XSwgWy0xMDEuOTA2MDUsIDQwLjAwMTYyNl1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiS1MiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJLYW5zYXMifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy04My45MDMzNDcsIDM4Ljc2OTMxNV0sIFstODMuNjc4NzkyLCAzOC42MzIzOTFdLCBbLTgzLjUxOTk2MSwgMzguNzAzNTkxXSwgWy04My4xNDIwNTIsIDM4LjYyNjkxNF0sIFstODMuMDMyNTE0LCAzOC43MjU0OTldLCBbLTgyLjg5MDExMywgMzguNzU4MzYxXSwgWy04Mi44NDYyOTgsIDM4LjU4ODU3NV0sIFstODIuNzMxMjgyLCAzOC41NjExOTFdLCBbLTgyLjU5NDM1OCwgMzguNDI0MjY3XSwgWy04Mi42MjE3NDMsIDM4LjEyMzAzNl0sIFstODIuNTAxMjUsIDM3LjkzMTM0M10sIFstODIuMzQyNDE5LCAzNy43ODM0NjVdLCBbLTgyLjI5MzEyNywgMzcuNjY4NDQ5XSwgWy04Mi4xMDE0MzQsIDM3LjU1MzQzNF0sIFstODEuOTY5OTg3LCAzNy41MzcwMDNdLCBbLTgyLjM1MzM3MywgMzcuMjY4NjMzXSwgWy04Mi43MjAzMjgsIDM3LjEyMDc1NV0sIFstODIuNzIwMzI4LCAzNy4wNDQwNzhdLCBbLTgyLjg2ODIwNSwgMzYuOTc4MzU1XSwgWy04Mi44NzkxNTksIDM2Ljg5MDcyNF0sIFstODMuMDcwODUyLCAzNi44NTIzODVdLCBbLTgzLjEzNjU3NSwgMzYuNzQyODQ3XSwgWy04My42NzMzMTYsIDM2LjYwMDQ0Nl0sIFstODMuNjg5NzQ2LCAzNi41ODQwMTVdLCBbLTg0LjU0NDE0OSwgMzYuNTk0OTY5XSwgWy04NS4yODkwMTMsIDM2LjYyNzgzMV0sIFstODUuNDg2MTgzLCAzNi42MTY4NzddLCBbLTg2LjU5MjUyNSwgMzYuNjU1MjE2XSwgWy04Ny44NTIyMjEsIDM2LjYzMzMwOF0sIFstODguMDcxMjk5LCAzNi42NzcxMjNdLCBbLTg4LjA1NDg2OCwgMzYuNDk2Mzg0XSwgWy04OS4yOTgxMzMsIDM2LjUwNzMzOF0sIFstODkuNDE4NjI2LCAzNi40OTYzODRdLCBbLTg5LjM2Mzg1NywgMzYuNjIyMzU0XSwgWy04OS4yMTU5NzksIDM2LjU3ODUzOF0sIFstODkuMTMzODI1LCAzNi45ODM4MzJdLCBbLTg5LjE4MzExOCwgMzcuMDM4NjAxXSwgWy04OS4wMjk3NjMsIDM3LjIxMzg2M10sIFstODguOTE0NzQ3LCAzNy4yMjQ4MTddLCBbLTg4LjU0Nzc5MiwgMzcuMDcxNDYzXSwgWy04OC40MjE4MjMsIDM3LjE1MzYxN10sIFstODguNTE0OTMxLCAzNy4yODUwNjRdLCBbLTg4LjQ3NjU5MiwgMzcuMzg5MTI2XSwgWy04OC4wNjU4MjIsIDM3LjQ4MjIzNF0sIFstODguMTU4OTMsIDM3LjY1NzQ5Nl0sIFstODguMDI3NDgzLCAzNy43OTk4OTZdLCBbLTg3LjkzNDM3NSwgMzcuODkzMDA0XSwgWy04Ny42ODI0MzYsIDM3LjkwMzk1OF0sIFstODcuNjAwMjgyLCAzNy45NzUxNThdLCBbLTg3LjUxMjY1MSwgMzcuOTAzOTU4XSwgWy04Ny4zODEyMDQsIDM3LjkzNjgyXSwgWy04Ny4xMjkyNjUsIDM3Ljc4ODk0Ml0sIFstODcuMDQ3MTExLCAzNy44OTMwMDRdLCBbLTg2Ljc5NTE3MiwgMzcuOTkxNTg5XSwgWy04Ni43Mjk0NDgsIDM3Ljg5MzAwNF0sIFstODYuNTA0ODk0LCAzNy45MzEzNDNdLCBbLTg2LjUyMTMyNSwgMzguMDQwODgxXSwgWy04Ni4zMDIyNDcsIDM4LjE2Njg1MV0sIFstODYuMjYzOTA4LCAzOC4wNTE4MzVdLCBbLTg2LjAzOTM1NCwgMzcuOTU4NzI3XSwgWy04NS45MjQzMzgsIDM4LjAyNDQ1MV0sIFstODUuODMxMjMsIDM4LjI3NjM5XSwgWy04NS42NTU5NjgsIDM4LjMyNTY4Ml0sIFstODUuNTkwMjQ1LCAzOC40NTE2NTJdLCBbLTg1LjQyMDQ2LCAzOC41MzM4MDZdLCBbLTg1LjQzMTQxMywgMzguNzMwOTc2XSwgWy04NS4xNzM5OTcsIDM4LjY4NzE2XSwgWy04NC45ODc3ODEsIDM4Ljc4MDI2OF0sIFstODQuODEyNTE5LCAzOC43ODU3NDVdLCBbLTg0Ljg5NDY3MywgMzkuMDU5NTkyXSwgWy04NC44MTc5OTYsIDM5LjEwMzQwOF0sIFstODQuNDM0NjEsIDM5LjEwMzQwOF0sIFstODQuMjMxOTYzLCAzOC44OTUyODRdLCBbLTg0LjIxNTUzMywgMzguODA3NjUzXSwgWy04My45MDMzNDcsIDM4Ljc2OTMxNV1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiS1kiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJLZW50dWNreSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTkzLjYwODQ4NSwgMzMuMDE4NTI3XSwgWy05MS4xNjU3NywgMzMuMDAyMDk2XSwgWy05MS4wNzI2NjIsIDMyLjg4NzA4MV0sIFstOTEuMTQzODYyLCAzMi44NDMyNjVdLCBbLTkxLjE1NDgxNiwgMzIuNjQwNjE4XSwgWy05MS4wMDY5MzksIDMyLjUxNDY0OV0sIFstOTAuOTg1MDMxLCAzMi4yMTg4OTRdLCBbLTkxLjEwNTUyNCwgMzEuOTg4ODYyXSwgWy05MS4zNDEwMzIsIDMxLjg0NjQ2Ml0sIFstOTEuNDAxMjc4LCAzMS42MjE5MDddLCBbLTkxLjQ5OTg2MywgMzEuNjQzODE1XSwgWy05MS41MTYyOTQsIDMxLjI3Njg2XSwgWy05MS42MzY3ODcsIDMxLjI2NTkwNl0sIFstOTEuNTY1NTg3LCAzMS4wNjg3MzZdLCBbLTkxLjYzNjc4NywgMzAuOTk3NTM2XSwgWy04OS43NDcyNDIsIDMwLjk5NzUzNl0sIFstODkuODQ1ODI3LCAzMC42Njg5Ml0sIFstODkuNjgxNTE5LCAzMC40NDk4NDJdLCBbLTg5LjY0MzE4MSwgMzAuMjg1NTM0XSwgWy04OS41MjI2ODgsIDMwLjE4MTQ3Ml0sIFstODkuODE4NDQzLCAzMC4wNDQ1NDldLCBbLTg5Ljg0MDM1LCAyOS45NDU5NjRdLCBbLTg5LjU5OTM2NSwgMjkuODgwMjRdLCBbLTg5LjQ5NTMwMywgMzAuMDM5MDcyXSwgWy04OS4yODcxNzksIDI5Ljg4MDI0XSwgWy04OS4zMDM2MSwgMjkuNzU0MjcxXSwgWy04OS40MjQxMDMsIDI5LjY5OTUwMV0sIFstODkuNjQ4NjU3LCAyOS43NDg3OTRdLCBbLTg5LjYyMTI3MywgMjkuNjU1Njg2XSwgWy04OS42OTc5NSwgMjkuNTEzMjg1XSwgWy04OS41MDYyNTcsIDI5LjM4NzMxNl0sIFstODkuMTk5NTQ4LCAyOS4zNDg5NzddLCBbLTg5LjA5MDAxLCAyOS4yMDExXSwgWy04OS4wMDIzNzksIDI5LjE3OTE5Ml0sIFstODkuMTYxMjEsIDI5LjAwOTQwN10sIFstODkuMzM2NDcyLCAyOS4wNDIyNjhdLCBbLTg5LjQ4NDM0OSwgMjkuMjE3NTMxXSwgWy04OS44NTEzMDQsIDI5LjMxMDYzOF0sIFstODkuODUxMzA0LCAyOS40ODA0MjRdLCBbLTkwLjAzMjA0MywgMjkuNDI1NjU0XSwgWy05MC4wMjEwODksIDI5LjI4MzI1NF0sIFstOTAuMTAzMjQ0LCAyOS4xNTE4MDddLCBbLTkwLjIzNDY5LCAyOS4xMjk4OTldLCBbLTkwLjMzMzI3NSwgMjkuMjc3Nzc3XSwgWy05MC41NjMzMDcsIDI5LjI4MzI1NF0sIFstOTAuNjQ1NDYxLCAyOS4xMjk4OTldLCBbLTkwLjc5ODgxNSwgMjkuMDg2MDg0XSwgWy05MC45NjMxMjMsIDI5LjE3OTE5Ml0sIFstOTEuMDk0NTcsIDI5LjE5MDE0Nl0sIFstOTEuMjIwNTM5LCAyOS40MzY2MDhdLCBbLTkxLjQ0NTA5NCwgMjkuNTQ2MTQ3XSwgWy05MS41MzI3MjUsIDI5LjUyOTcxNl0sIFstOTEuNjIwMzU2LCAyOS43Mzc4NF0sIFstOTEuODgzMjQ5LCAyOS43MTA0NTVdLCBbLTkxLjg4ODcyNiwgMjkuODM2NDI1XSwgWy05Mi4xNDYxNDIsIDI5LjcxNTkzMl0sIFstOTIuMTEzMjgxLCAyOS42MjI4MjRdLCBbLTkyLjMxMDQ1LCAyOS41MzUxOTNdLCBbLTkyLjYxNzE1OSwgMjkuNTc5MDA5XSwgWy05Mi45NzMxNiwgMjkuNzE1OTMyXSwgWy05My4yMjUxLCAyOS43NzYxNzhdLCBbLTkzLjc2NzMxNywgMjkuNzI2ODg2XSwgWy05My44Mzg1MTcsIDI5LjY4ODU0N10sIFstOTMuOTI2MTQ4LCAyOS43ODcxMzJdLCBbLTkzLjY5MDYzOSwgMzAuMTQzMTMzXSwgWy05My43NjczMTcsIDMwLjMzNDgyNl0sIFstOTMuNjk2MTE2LCAzMC40Mzg4ODhdLCBbLTkzLjcyODk3OCwgMzAuNTc1ODEyXSwgWy05My42MzAzOTMsIDMwLjY3OTg3NF0sIFstOTMuNTI2MzMxLCAzMC45MzcyOV0sIFstOTMuNTQyNzYyLCAzMS4xNTA4OV0sIFstOTMuODE2NjA5LCAzMS41NTYxODRdLCBbLTkzLjgyMjA4NiwgMzEuNzc1MjYyXSwgWy05NC4wNDExNjQsIDMxLjk5NDMzOV0sIFstOTQuMDQxMTY0LCAzMy4wMTg1MjddLCBbLTkzLjYwODQ4NSwgMzMuMDE4NTI3XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJMQSIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIkxvdWlzaWFuYSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTcwLjcwMzkyMSwgNDMuMDU3NzU5XSwgWy03MC44MjQ0MTMsIDQzLjEyODk1OV0sIFstNzAuODA3OTgzLCA0My4yMjc1NDRdLCBbLTcwLjk2NjgxNCwgNDMuMzQyNTZdLCBbLTcxLjAzMjUzNywgNDQuNjU3MDI1XSwgWy03MS4wODE4MywgNDUuMzAzMzA0XSwgWy03MC42NDkxNTEsIDQ1LjQ0MDIyOF0sIFstNzAuNzIwMzUyLCA0NS41MTE0MjhdLCBbLTcwLjU1NjA0MywgNDUuNjY0NzgyXSwgWy03MC4zODYyNTgsIDQ1LjczNTk4M10sIFstNzAuNDE5MTIsIDQ1Ljc5NjIyOV0sIFstNzAuMjYwMjg5LCA0NS44ODkzMzddLCBbLTcwLjMwOTU4MSwgNDYuMDY0NTk5XSwgWy03MC4yMTA5OTYsIDQ2LjMyNzQ5Ml0sIFstNzAuMDU3NjQyLCA0Ni40MTUxMjNdLCBbLTY5Ljk5NzM5NSwgNDYuNjk0NDQ3XSwgWy02OS4yMjUxNDcsIDQ3LjQ2MTIxOV0sIFstNjkuMDQ0NDA4LCA0Ny40MjgzNTddLCBbLTY5LjAzMzQ1NCwgNDcuMjQyMTQxXSwgWy02OC45MDIwMDcsIDQ3LjE3NjQxOF0sIFstNjguNTc4ODY4LCA0Ny4yODU5NTddLCBbLTY4LjM3NjIyMSwgNDcuMjg1OTU3XSwgWy02OC4yMzM4MjEsIDQ3LjM1NzE1N10sIFstNjcuOTU0NDk3LCA0Ny4xOTgzMjZdLCBbLTY3Ljc5MDE4OCwgNDcuMDY2ODc5XSwgWy02Ny43NzkyMzUsIDQ1Ljk0NDEwNl0sIFstNjcuODAxMTQyLCA0NS42NzU3MzZdLCBbLTY3LjQ1NjA5NSwgNDUuNjA0NTM2XSwgWy02Ny41MDUzODgsIDQ1LjQ4OTUyXSwgWy02Ny40MTc3NTcsIDQ1LjM3OTk4Ml0sIFstNjcuNDg4OTU3LCA0NS4yODEzOTddLCBbLTY3LjM0NjU1NiwgNDUuMTI4MDQyXSwgWy02Ny4xNjAzNCwgNDUuMTYwOTA0XSwgWy02Ni45Nzk2MDEsIDQ0LjgwNDkwM10sIFstNjcuMTg3NzI1LCA0NC42NDYwNzJdLCBbLTY3LjMwODIxOCwgNDQuNzA2MzE4XSwgWy02Ny40MDY4MDMsIDQ0LjU5Njc3OV0sIFstNjcuNTQ5MjAzLCA0NC42MjQxNjRdLCBbLTY3LjU2NTYzNCwgNDQuNTMxMDU2XSwgWy02Ny43NTE4NSwgNDQuNTQyMDFdLCBbLTY4LjA0NzYwNSwgNDQuMzI4NDA5XSwgWy02OC4xMTg4MDUsIDQ0LjQ3NjI4Nl0sIFstNjguMjIyODY3LCA0NC40ODcyNF0sIFstNjguMTczNTc0LCA0NC4zMjg0MDldLCBbLTY4LjQwMzYwNiwgNDQuMjUxNzMyXSwgWy02OC40NTgzNzUsIDQ0LjM3NzcwMV0sIFstNjguNTY3OTE0LCA0NC4zMTE5NzhdLCBbLTY4LjgyNTMzLCA0NC4zMTE5NzhdLCBbLTY4LjgzMDgwNywgNDQuNDU5ODU2XSwgWy02OC45ODQxNjEsIDQ0LjQyNjk5NF0sIFstNjguOTU2Nzc3LCA0NC4zMjI5MzJdLCBbLTY5LjA5OTE3NywgNDQuMTAzODU0XSwgWy02OS4wNzE3OTMsIDQ0LjA0MzYwOF0sIFstNjkuMjU4MDA4LCA0My45MjMxMTVdLCBbLTY5LjQ0NDIyNCwgNDMuOTY2OTMxXSwgWy02OS41NTM3NjMsIDQzLjg0MDk2MV0sIFstNjkuNzA3MTE4LCA0My44MjQ1M10sIFstNjkuODMzMDg3LCA0My43MjA0NjldLCBbLTY5Ljk4NjQ0MiwgNDMuNzQyMzc2XSwgWy03MC4wMzAyNTcsIDQzLjg1MTkxNV0sIFstNzAuMjU0ODEyLCA0My42NzY2NTNdLCBbLTcwLjE5NDU2NSwgNDMuNTY3MTE0XSwgWy03MC4zNTg4NzMsIDQzLjUyODc3Nl0sIFstNzAuMzY5ODI3LCA0My40MzU2NjhdLCBbLTcwLjU1NjA0MywgNDMuMzIwNjUyXSwgWy03MC43MDM5MjEsIDQzLjA1Nzc1OV1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiTUUiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJNYWluZSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbWy03NS45OTQ2NDUsIDM3Ljk1MzI1XSwgWy03Ni4wMTY1NTMsIDM3Ljk1MzI1XSwgWy03Ni4wNDM5MzgsIDM3Ljk1MzI1XSwgWy03NS45OTQ2NDUsIDM3Ljk1MzI1XV1dLCBbW1stNzkuNDc3OTc5LCAzOS43MjIzMDJdLCBbLTc1Ljc4NjUyMSwgMzkuNzIyMzAyXSwgWy03NS42OTM0MTMsIDM4LjQ2MjYwNl0sIFstNzUuMDQ3MTM0LCAzOC40NTE2NTJdLCBbLTc1LjI0NDMwNCwgMzguMDI5OTI4XSwgWy03NS4zOTc2NTksIDM4LjAxMzQ5N10sIFstNzUuNjcxNTA2LCAzNy45NTMyNV0sIFstNzUuODg1MTA2LCAzNy45MDk0MzVdLCBbLTc1Ljg3OTYyOSwgMzguMDczNzQzXSwgWy03NS45NjE3ODMsIDM4LjEzOTQ2Nl0sIFstNzUuODQ2NzY4LCAzOC4yMTA2NjddLCBbLTc2LjAwMDEyMiwgMzguMzc0OTc1XSwgWy03Ni4wNDk0MTUsIDM4LjMwMzc3NV0sIFstNzYuMjU3NTM4LCAzOC4zMjAyMDVdLCBbLTc2LjMyODczOCwgMzguNTAwOTQ0XSwgWy03Ni4yNjMwMTUsIDM4LjUwMDk0NF0sIFstNzYuMjU3NTM4LCAzOC43MzY0NTNdLCBbLTc2LjE5MTgxNSwgMzguODI5NTYxXSwgWy03Ni4yNzk0NDYsIDM5LjE0NzIyM10sIFstNzYuMTY5OTA3LCAzOS4zMzM0MzldLCBbLTc2LjAwMDEyMiwgMzkuMzY2MzAxXSwgWy03NS45NzI3MzcsIDM5LjU1Nzk5NF0sIFstNzYuMDk4NzA3LCAzOS41MzYwODZdLCBbLTc2LjEwNDE4NCwgMzkuNDM3NTAxXSwgWy03Ni4zNjcwNzcsIDM5LjMxMTUzMl0sIFstNzYuNDQzNzU0LCAzOS4xOTY1MTZdLCBbLTc2LjQ2MDE4NSwgMzguOTA2MjM4XSwgWy03Ni41NTg3NywgMzguNzY5MzE1XSwgWy03Ni41MTQ5NTQsIDM4LjUzOTI4M10sIFstNzYuMzgzNTA4LCAzOC4zODA0NTJdLCBbLTc2LjM5OTkzOSwgMzguMjU5OTU5XSwgWy03Ni4zMTc3ODUsIDM4LjEzOTQ2Nl0sIFstNzYuMzYxNiwgMzguMDU3MzEyXSwgWy03Ni41OTE2MzIsIDM4LjIxNjE0NF0sIFstNzYuOTIwMjQ4LCAzOC4yOTI4MjFdLCBbLTc3LjAxODgzMywgMzguNDQ2MTc1XSwgWy03Ny4yMDUwNDksIDM4LjM1ODU0NF0sIFstNzcuMjc2MjQ5LCAzOC40NzkwMzddLCBbLTc3LjEyODM3MiwgMzguNjMyMzkxXSwgWy03Ny4wNDA3NDEsIDM4Ljc5MTIyMl0sIFstNzYuOTA5Mjk0LCAzOC44OTUyODRdLCBbLTc3LjAzNTI2NCwgMzguOTkzODY5XSwgWy03Ny4xMTc0MTgsIDM4LjkzMzYyM10sIFstNzcuMjQ4ODY0LCAzOS4wMjY3MzFdLCBbLTc3LjQ1Njk4OCwgMzkuMDc2MDIzXSwgWy03Ny40NTY5ODgsIDM5LjIyMzkwMV0sIFstNzcuNTY2NTI3LCAzOS4zMDYwNTVdLCBbLTc3LjcxOTg4MSwgMzkuMzIyNDg1XSwgWy03Ny44MzQ4OTcsIDM5LjYwMTgwOV0sIFstNzguMDA0NjgyLCAzOS42MDE4MDldLCBbLTc4LjE3NDQ2NywgMzkuNjk0OTE3XSwgWy03OC4yNjc1NzUsIDM5LjYxODI0XSwgWy03OC40MzE4ODQsIDM5LjYyMzcxN10sIFstNzguNDcwMjIyLCAzOS41MTQxNzhdLCBbLTc4Ljc2NTk3NywgMzkuNTg1Mzc5XSwgWy03OC45NjMxNDcsIDM5LjQzNzUwMV0sIFstNzkuMDk0NTkzLCAzOS40NzAzNjNdLCBbLTc5LjI5MTc2MywgMzkuMzAwNTc4XSwgWy03OS40ODg5MzMsIDM5LjIwNzQ3XSwgWy03OS40Nzc5NzksIDM5LjcyMjMwMl1dXV0sICJ0eXBlIjogIk11bHRpUG9seWdvbiJ9LCAiaWQiOiAiTUQiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJNYXJ5bGFuZCJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTcwLjkxNzUyMSwgNDIuODg3OTc0XSwgWy03MC44MTg5MzYsIDQyLjg3MTU0M10sIFstNzAuNzgwNTk4LCA0Mi42OTYyODFdLCBbLTcwLjgyNDQxMywgNDIuNTUzODhdLCBbLTcwLjk4MzI0NSwgNDIuNDIyNDM0XSwgWy03MC45ODg3MjIsIDQyLjI2OTA3OV0sIFstNzAuNzY5NjQ0LCA0Mi4yNDcxNzJdLCBbLTcwLjYzODE5NywgNDIuMDg4MzRdLCBbLTcwLjY2MDEwNSwgNDEuOTYyMzcxXSwgWy03MC41NTA1NjYsIDQxLjkyOTUwOV0sIFstNzAuNTM5NjEzLCA0MS44MTQ0OTNdLCBbLTcwLjI2MDI4OSwgNDEuNzE1OTA4XSwgWy02OS45MzcxNDksIDQxLjgwOTAxNl0sIFstNzAuMDA4MzQ5LCA0MS42NzIwOTNdLCBbLTcwLjQ4NDg0MywgNDEuNTUxNl0sIFstNzAuNjYwMTA1LCA0MS41NDYxMjNdLCBbLTcwLjc2NDE2NywgNDEuNjM5MjMxXSwgWy03MC45Mjg0NzUsIDQxLjYxMTg0N10sIFstNzAuOTMzOTUyLCA0MS41NDA2NDZdLCBbLTcxLjEyMDE2OCwgNDEuNDk2ODMxXSwgWy03MS4xOTY4NDUsIDQxLjY3NzU3XSwgWy03MS4yMjQyMywgNDEuNzEwNDMxXSwgWy03MS4zMjgyOTIsIDQxLjc4MTYzMl0sIFstNzEuMzgzMDYxLCA0Mi4wMTcxNF0sIFstNzEuNTMwOTM5LCA0Mi4wMTcxNF0sIFstNzEuNzk5MzA5LCA0Mi4wMDYxODZdLCBbLTcxLjc5OTMwOSwgNDIuMDIyNjE3XSwgWy03My4wNTM1MjgsIDQyLjAzOTA0OF0sIFstNzMuNDg2MjA2LCA0Mi4wNTAwMDJdLCBbLTczLjUwODExNCwgNDIuMDg4MzRdLCBbLTczLjI2NzEyOSwgNDIuNzQ1NTczXSwgWy03Mi40NTY1NDIsIDQyLjcyOTE0Ml0sIFstNzEuMjk1NDMsIDQyLjY5NjI4MV0sIFstNzEuMTg1ODkxLCA0Mi43ODkzODldLCBbLTcwLjkxNzUyMSwgNDIuODg3OTc0XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJNQSIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIk1hc3NhY2h1c2V0dHMifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbW1stODMuNDU0MjM4LCA0MS43MzIzMzldLCBbLTg0LjgwNzA0MiwgNDEuNjk0MDAxXSwgWy04NC44MDcwNDIsIDQxLjc1OTcyNF0sIFstODUuOTkwMDYxLCA0MS43NTk3MjRdLCBbLTg2LjgyMjU1NiwgNDEuNzU5NzI0XSwgWy04Ni42MTk5MDksIDQxLjg5MTE3MV0sIFstODYuNDgyOTg2LCA0Mi4xMTU3MjVdLCBbLTg2LjM1NzAxNiwgNDIuMjUyNjQ5XSwgWy04Ni4yNjM5MDgsIDQyLjQ0NDM0MV0sIFstODYuMjA5MTM5LCA0Mi43MTgxODldLCBbLTg2LjIzMTA0NywgNDMuMDEzOTQzXSwgWy04Ni41MjY4MDEsIDQzLjU5NDQ5OV0sIFstODYuNDMzNjkzLCA0My44MTM1NzddLCBbLTg2LjQ5OTQxNywgNDQuMDc2NDddLCBbLTg2LjI2OTM4NSwgNDQuMzQ0ODRdLCBbLTg2LjIyMDA5MywgNDQuNTY5Mzk0XSwgWy04Ni4yNTI5NTQsIDQ0LjY4OTg4N10sIFstODYuMDg4NjQ2LCA0NC43MzkxOF0sIFstODYuMDY2NzM4LCA0NC45MDM0ODhdLCBbLTg1LjgwOTMyMiwgNDQuOTQ3MzAzXSwgWy04NS42MTIxNTIsIDQ1LjEyODA0Ml0sIFstODUuNjI4NTgzLCA0NC43NjY1NjRdLCBbLTg1LjUyNDUyMSwgNDQuNzUwMTMzXSwgWy04NS4zOTMwNzUsIDQ0LjkzMDg3Ml0sIFstODUuMzg3NTk4LCA0NS4yMzc1ODFdLCBbLTg1LjMwNTQ0NCwgNDUuMzE0MjU4XSwgWy04NS4wMzE1OTcsIDQ1LjM2MzU1MV0sIFstODUuMTE5MjI4LCA0NS41NzcxNTFdLCBbLTg0LjkzODQ4OSwgNDUuNzU3ODldLCBbLTg0LjcxMzkzNCwgNDUuNzY4ODQ0XSwgWy04NC40NjE5OTUsIDQ1LjY1MzgyOV0sIFstODQuMjE1NTMzLCA0NS42MzczOThdLCBbLTg0LjA5NTA0LCA0NS40OTQ5OTddLCBbLTgzLjkwODgyNCwgNDUuNDg0MDQzXSwgWy04My41OTY2MzgsIDQ1LjM1MjU5N10sIFstODMuNDg3MSwgNDUuMzU4MDc0XSwgWy04My4zMTczMTQsIDQ1LjE0NDQ3M10sIFstODMuNDU0MjM4LCA0NS4wMjk0NTddLCBbLTgzLjMyMjc5MSwgNDQuODgxNThdLCBbLTgzLjI3MzQ5OSwgNDQuNzExNzk1XSwgWy04My4zMzM3NDUsIDQ0LjMzOTM2M10sIFstODMuNTM2MzkyLCA0NC4yNDYyNTVdLCBbLTgzLjU4NTY4NCwgNDQuMDU0NTYyXSwgWy04My44MjY2NywgNDMuOTg4ODM5XSwgWy04My45NTgxMTYsIDQzLjc1ODgwN10sIFstODMuOTA4ODI0LCA0My42NzExNzZdLCBbLTgzLjY2NzgzOSwgNDMuNTg5MDIyXSwgWy04My40ODE2MjMsIDQzLjcxNDk5Ml0sIFstODMuMjYyNTQ1LCA0My45NzI0MDhdLCBbLTgyLjkxNzQ5OCwgNDQuMDcwOTkzXSwgWy04Mi43NDc3MTMsIDQzLjk5NDMxNl0sIFstODIuNjQzNjUxLCA0My44NTE5MTVdLCBbLTgyLjUzOTU4OSwgNDMuNDM1NjY4XSwgWy04Mi41MjMxNTgsIDQzLjIyNzU0NF0sIFstODIuNDEzNjE5LCA0Mi45NzU2MDVdLCBbLTgyLjUxNzY4MSwgNDIuNjE0MTI3XSwgWy04Mi42ODE5ODksIDQyLjU1OTM1N10sIFstODIuNjg3NDY2LCA0Mi42OTA4MDRdLCBbLTgyLjc5NzAwNSwgNDIuNjUyNDY1XSwgWy04Mi45MjI5NzUsIDQyLjM1MTIzNF0sIFstODMuMTI1NjIxLCA0Mi4yMzYyMThdLCBbLTgzLjE4NTg2OCwgNDIuMDA2MTg2XSwgWy04My40Mzc4MDcsIDQxLjgxNDQ5M10sIFstODMuNDU0MjM4LCA0MS43MzIzMzldXV0sIFtbWy04NS41MDgwOTEsIDQ1LjczMDUwNl0sIFstODUuNDkxNjYsIDQ1LjYxMDAxM10sIFstODUuNjIzMTA2LCA0NS41ODgxMDVdLCBbLTg1LjU2ODMzNywgNDUuNzU3ODldLCBbLTg1LjUwODA5MSwgNDUuNzMwNTA2XV1dLCBbW1stODcuNTg5MzI4LCA0NS4wOTUxODFdLCBbLTg3Ljc0MjY4MiwgNDUuMTk5MjQzXSwgWy04Ny42NDk1NzQsIDQ1LjM0MTY0M10sIFstODcuODg1MDgzLCA0NS4zNjM1NTFdLCBbLTg3Ljc5MTk3NSwgNDUuNTAwNDc0XSwgWy04Ny43ODEwMjEsIDQ1LjY3NTczNl0sIFstODcuOTg5MTQ1LCA0NS43OTYyMjldLCBbLTg4LjEwNDE2LCA0NS45MjIxOTldLCBbLTg4LjUzMTM2MiwgNDYuMDIwNzg0XSwgWy04OC42NjI4MDgsIDQ1Ljk4NzkyMl0sIFstODkuMDkwMDEsIDQ2LjEzNTc5OV0sIFstOTAuMTE5Njc0LCA0Ni4zMzg0NDZdLCBbLTkwLjIyOTIxMywgNDYuNTA4MjMxXSwgWy05MC40MTU0MjksIDQ2LjU2ODQ3OF0sIFstOTAuMDI2NTY2LCA0Ni42NzI1MzldLCBbLTg5Ljg1MTMwNCwgNDYuNzkzMDMyXSwgWy04OS40MTMxNDksIDQ2Ljg0MjMyNV0sIFstODkuMTI4MzQ4LCA0Ni45OTAyMDJdLCBbLTg4Ljk5NjkwMiwgNDYuOTk1Njc5XSwgWy04OC44ODczNjMsIDQ3LjA5OTc0MV0sIFstODguNTc1MTc3LCA0Ny4yNDc2MThdLCBbLTg4LjQxNjM0NiwgNDcuMzczNTg4XSwgWy04OC4xODA4MzcsIDQ3LjQ1NTc0Ml0sIFstODcuOTU2MjgzLCA0Ny4zODQ1NDJdLCBbLTg4LjM1MDYyMywgNDcuMDc3ODMzXSwgWy04OC40NDM3MzEsIDQ2Ljk3Mzc3MV0sIFstODguNDM4MjU0LCA0Ni43ODc1NTVdLCBbLTg4LjI0NjU2MSwgNDYuOTI5OTU2XSwgWy04Ny45MDE1MTMsIDQ2LjkwODA0OF0sIFstODcuNjMzMTQzLCA0Ni44MDk0NjNdLCBbLTg3LjM5MjE1OCwgNDYuNTM1NjE2XSwgWy04Ny4yNjA3MTEsIDQ2LjQ4NjMyM10sIFstODcuMDA4NzcyLCA0Ni41MzAxMzldLCBbLTg2Ljk0ODUyNiwgNDYuNDY5ODkzXSwgWy04Ni42OTY1ODcsIDQ2LjQzNzAzMV0sIFstODYuMTU5ODQ2LCA0Ni42NjcwNjNdLCBbLTg1Ljg4MDUyMiwgNDYuNjg4OTddLCBbLTg1LjUwODA5MSwgNDYuNjc4MDE2XSwgWy04NS4yNTYxNTEsIDQ2Ljc1NDY5NF0sIFstODUuMDY0NDU4LCA0Ni43NjAxNzFdLCBbLTg1LjAyNjEyLCA0Ni40ODA4NDddLCBbLTg0LjgyODk1LCA0Ni40NDI1MDhdLCBbLTg0LjYzMTc4LCA0Ni40ODYzMjNdLCBbLTg0LjU0OTYyNiwgNDYuNDIwNl0sIFstODQuNDE4MTc5LCA0Ni41MDI3NTRdLCBbLTg0LjEyNzkwMiwgNDYuNTMwMTM5XSwgWy04NC4xMjI0MjUsIDQ2LjE3OTYxNV0sIFstODMuOTkwOTc4LCA0Ni4wMzE3MzddLCBbLTgzLjc5MzgwOCwgNDUuOTkzMzk5XSwgWy04My43NzE5LCA0Ni4wOTE5ODRdLCBbLTgzLjU4MDIwOCwgNDYuMDkxOTg0XSwgWy04My40NzYxNDYsIDQ1Ljk4NzkyMl0sIFstODMuNTYzNzc3LCA0NS45MTEyNDVdLCBbLTg0LjExMTQ3MSwgNDUuOTc2OTY4XSwgWy04NC4zNzQzNjQsIDQ1LjkzMzE1M10sIFstODQuNjU5MTY1LCA0Ni4wNTM2NDVdLCBbLTg0Ljc0MTMxOSwgNDUuOTQ0MTA2XSwgWy04NC43MDI5OCwgNDUuODUwOTk4XSwgWy04NC44Mjg5NSwgNDUuODcyOTA2XSwgWy04NS4wMTUxNjYsIDQ2LjAwOTgzXSwgWy04NS4zMzgzMDUsIDQ2LjA5MTk4NF0sIFstODUuNTAyNjE0LCA0Ni4wOTc0NjFdLCBbLTg1LjY2MTQ0NSwgNDUuOTY2MDE0XSwgWy04NS45MjQzMzgsIDQ1LjkzMzE1M10sIFstODYuMjA5MTM5LCA0NS45NjA1MzddLCBbLTg2LjMyNDE1NSwgNDUuOTA1NzY4XSwgWy04Ni4zNTE1MzksIDQ1Ljc5NjIyOV0sIFstODYuNjYzNzI1LCA0NS43MDMxMjFdLCBbLTg2LjY0NzI5NCwgNDUuODM0NTY4XSwgWy04Ni43ODQyMTgsIDQ1Ljg2MTk1Ml0sIFstODYuODM4OTg3LCA0NS43MjUwMjldLCBbLTg3LjA2OTAxOSwgNDUuNzE5NTUyXSwgWy04Ny4xNzMwOCwgNDUuNjU5MzA1XSwgWy04Ny4zMjY0MzUsIDQ1LjQyMzc5N10sIFstODcuNjExMjM2LCA0NS4xMjI1NjVdLCBbLTg3LjU4OTMyOCwgNDUuMDk1MTgxXV1dLCBbW1stODguODA1MjA5LCA0Ny45NzYwNTFdLCBbLTg5LjA1NzE0OCwgNDcuODUwMDgyXSwgWy04OS4xODg1OTQsIDQ3LjgzMzY1MV0sIFstODkuMTc3NjQxLCA0Ny45Mzc3MTNdLCBbLTg4LjU0Nzc5MiwgNDguMTczMjIxXSwgWy04OC42NjgyODUsIDQ4LjAwODkxM10sIFstODguODA1MjA5LCA0Ny45NzYwNTFdXV1dLCAidHlwZSI6ICJNdWx0aVBvbHlnb24ifSwgImlkIjogIk1JIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiTWljaGlnYW4ifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy05Mi4wMTQ2OTYsIDQ2LjcwNTQwMV0sIFstOTIuMDkxMzczLCA0Ni43NDkyMTddLCBbLTkyLjI5NDAyLCA0Ni42NjcwNjNdLCBbLTkyLjI5NDAyLCA0Ni4wNzU1NTNdLCBbLTkyLjM1NDI2NiwgNDYuMDE1MzA3XSwgWy05Mi42MzkwNjcsIDQ1LjkzMzE1M10sIFstOTIuODY5MDk4LCA0NS43MTk1NTJdLCBbLTkyLjg4NTUyOSwgNDUuNTc3MTUxXSwgWy05Mi43NzA1MTMsIDQ1LjU2NjE5OF0sIFstOTIuNjQ0NTQ0LCA0NS40NDAyMjhdLCBbLTkyLjc1OTU2LCA0NS4yODY4NzRdLCBbLTkyLjczNzY1MiwgNDUuMTE3MDg4XSwgWy05Mi44MDg4NTIsIDQ0Ljc1MDEzM10sIFstOTIuNTQ1OTU5LCA0NC41NjkzOTRdLCBbLTkyLjMzNzgzNSwgNDQuNTUyOTY0XSwgWy05Mi4yMzM3NzMsIDQ0LjQ0MzQyNV0sIFstOTEuOTI3MDY1LCA0NC4zMzM4ODZdLCBbLTkxLjg3Nzc3MiwgNDQuMjAyNDM5XSwgWy05MS41OTI5NzEsIDQ0LjAzMjY1NF0sIFstOTEuNDM0MTQsIDQzLjk5NDMxNl0sIFstOTEuMjQyNDQ3LCA0My43NzUyMzhdLCBbLTkxLjI2OTgzMiwgNDMuNjE2NDA3XSwgWy05MS4yMTUwNjIsIDQzLjUwMTM5MV0sIFstOTEuMzY4NDE3LCA0My41MDEzOTFdLCBbLTk2LjQ1MTAxNywgNDMuNTAxMzkxXSwgWy05Ni40NTEwMTcsIDQ1LjI5NzgyN10sIFstOTYuNjgxMDQ5LCA0NS40MTI4NDNdLCBbLTk2Ljg1NjMxMSwgNDUuNjA0NTM2XSwgWy05Ni41ODI0NjQsIDQ1LjgxODEzN10sIFstOTYuNTYwNTU2LCA0NS45MzMxNTNdLCBbLTk2LjU5ODg5NSwgNDYuMzMyOTY5XSwgWy05Ni43MTkzODcsIDQ2LjQzNzAzMV0sIFstOTYuODAxNTQyLCA0Ni42NTYxMDldLCBbLTk2Ljc4NTExMSwgNDYuOTI0NDc5XSwgWy05Ni44MjM0NDksIDQ2Ljk2ODI5NF0sIFstOTYuODU2MzExLCA0Ny42MDkwOTZdLCBbLTk3LjA1MzQ4MSwgNDcuOTQ4NjY3XSwgWy05Ny4xMzAxNTgsIDQ4LjE0MDM1OV0sIFstOTcuMTYzMDIsIDQ4LjU0NTY1M10sIFstOTcuMDk3Mjk2LCA0OC42ODI1NzddLCBbLTk3LjIyODc0MywgNDkuMDAwMjM5XSwgWy05NS4xNTI5ODMsIDQ5LjAwMDIzOV0sIFstOTUuMTUyOTgzLCA0OS4zODM2MjVdLCBbLTk0Ljk1NTgxMywgNDkuMzcyNjcxXSwgWy05NC44MjQzNjYsIDQ5LjI5NTk5NF0sIFstOTQuNjkyOTIsIDQ4Ljc3NTY4NV0sIFstOTQuNTg4ODU4LCA0OC43MTU0MzhdLCBbLTk0LjI2MDI0MSwgNDguNjk5MDA3XSwgWy05NC4yMjE5MDMsIDQ4LjY0OTcxNV0sIFstOTMuODM4NTE3LCA0OC42Mjc4MDddLCBbLTkzLjc5NDcwMSwgNDguNTE4MjY4XSwgWy05My40NjYwODUsIDQ4LjU0NTY1M10sIFstOTMuNDY2MDg1LCA0OC41ODk0NjldLCBbLTkzLjIwODY2OSwgNDguNjQ0MjM4XSwgWy05Mi45ODQxMTQsIDQ4LjYyMjMzXSwgWy05Mi43MjY2OTgsIDQ4LjU0MDE3Nl0sIFstOTIuNjU1NDk4LCA0OC40MzYxMTRdLCBbLTkyLjUwNzYyLCA0OC40NDcwNjhdLCBbLTkyLjM3MDY5NywgNDguMjIyNTE0XSwgWy05Mi4zMDQ5NzQsIDQ4LjMxNTYyMl0sIFstOTIuMDUzMDM0LCA0OC4zNTk0MzddLCBbLTkyLjAwOTIxOSwgNDguMjY2MzI5XSwgWy05MS43MTM0NjQsIDQ4LjIwMDYwNl0sIFstOTEuNzEzNDY0LCA0OC4xMTI5NzVdLCBbLTkxLjU2NTU4NywgNDguMDQxNzc1XSwgWy05MS4yNjQzNTUsIDQ4LjA4MDExM10sIFstOTEuMDgzNjE2LCA0OC4xNzg2OThdLCBbLTkwLjgzNzE1NCwgNDguMjM4OTQ0XSwgWy05MC43NDk1MjIsIDQ4LjA5MTA2N10sIFstOTAuNTc5NzM3LCA0OC4xMjM5MjldLCBbLTkwLjM3NzA5MSwgNDguMDkxMDY3XSwgWy05MC4xNDE1ODIsIDQ4LjExMjk3NV0sIFstODkuODczMjEyLCA0Ny45ODcwMDVdLCBbLTg5LjYxNTc5NiwgNDguMDA4OTEzXSwgWy04OS42Mzc3MDQsIDQ3Ljk1NDE0NF0sIFstODkuOTcxNzk3LCA0Ny44MjgxNzRdLCBbLTkwLjQzNzMzNywgNDcuNzI5NTg5XSwgWy05MC43Mzg1NjksIDQ3LjYyNTUyN10sIFstOTEuMTcxMjQ3LCA0Ny4zNjgxMTFdLCBbLTkxLjM1NzQ2MywgNDcuMjA5MjhdLCBbLTkxLjY0MjI2NCwgNDcuMDI4NTQxXSwgWy05Mi4wOTEzNzMsIDQ2Ljc4NzU1NV0sIFstOTIuMDE0Njk2LCA0Ni43MDU0MDFdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIk1OIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiTWlubmVzb3RhIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stODguNDcxMTE1LCAzNC45OTU3MDNdLCBbLTg4LjIwMjc0NSwgMzQuOTk1NzAzXSwgWy04OC4wOTg2ODMsIDM0Ljg5MTY0MV0sIFstODguMjQxMDg0LCAzMy43OTYyNTNdLCBbLTg4LjQ3MTExNSwgMzEuODk1NzU0XSwgWy04OC4zOTQ0MzgsIDMwLjM2NzY4OF0sIFstODguNTAzOTc3LCAzMC4zMjM4NzJdLCBbLTg4Ljc0NDk2MiwgMzAuMzQ1NzhdLCBbLTg4Ljg0MzU0NywgMzAuNDExNTA0XSwgWy04OS4wODQ1MzMsIDMwLjM2NzY4OF0sIFstODkuNDE4NjI2LCAzMC4yNTI2NzJdLCBbLTg5LjUyMjY4OCwgMzAuMTgxNDcyXSwgWy04OS42NDMxODEsIDMwLjI4NTUzNF0sIFstODkuNjgxNTE5LCAzMC40NDk4NDJdLCBbLTg5Ljg0NTgyNywgMzAuNjY4OTJdLCBbLTg5Ljc0NzI0MiwgMzAuOTk3NTM2XSwgWy05MS42MzY3ODcsIDMwLjk5NzUzNl0sIFstOTEuNTY1NTg3LCAzMS4wNjg3MzZdLCBbLTkxLjYzNjc4NywgMzEuMjY1OTA2XSwgWy05MS41MTYyOTQsIDMxLjI3Njg2XSwgWy05MS40OTk4NjMsIDMxLjY0MzgxNV0sIFstOTEuNDAxMjc4LCAzMS42MjE5MDddLCBbLTkxLjM0MTAzMiwgMzEuODQ2NDYyXSwgWy05MS4xMDU1MjQsIDMxLjk4ODg2Ml0sIFstOTAuOTg1MDMxLCAzMi4yMTg4OTRdLCBbLTkxLjAwNjkzOSwgMzIuNTE0NjQ5XSwgWy05MS4xNTQ4MTYsIDMyLjY0MDYxOF0sIFstOTEuMTQzODYyLCAzMi44NDMyNjVdLCBbLTkxLjA3MjY2MiwgMzIuODg3MDgxXSwgWy05MS4xNjU3NywgMzMuMDAyMDk2XSwgWy05MS4wODkwOTMsIDMzLjEzOTAyXSwgWy05MS4xNDM4NjIsIDMzLjM0NzE0NF0sIFstOTEuMDU2MjMxLCAzMy40MjkyOThdLCBbLTkxLjIzMTQ5MywgMzMuNTYwNzQ0XSwgWy05MS4wNzI2NjIsIDMzLjg2NzQ1M10sIFstOTAuODkxOTIzLCAzNC4wMjYyODRdLCBbLTkwLjk1MjE2OSwgMzQuMTM1ODIzXSwgWy05MC43NDQwNDYsIDM0LjMwMDEzMV0sIFstOTAuNzQ5NTIyLCAzNC4zNjU4NTRdLCBbLTkwLjU2ODc4MywgMzQuNDIwNjI0XSwgWy05MC41ODUyMTQsIDM0LjYxNzc5NF0sIFstOTAuNDgxMTUyLCAzNC42NjE2MDldLCBbLTkwLjQwOTk1MiwgMzQuODMxMzk0XSwgWy05MC4yNTExMjEsIDM0LjkwODA3Ml0sIFstOTAuMzExMzY3LCAzNC45OTU3MDNdLCBbLTg4LjQ3MTExNSwgMzQuOTk1NzAzXV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJNUyIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIk1pc3Npc3NpcHBpIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stOTEuODMzOTU3LCA0MC42MDk1NjZdLCBbLTkxLjcyOTg5NSwgNDAuNjE1MDQzXSwgWy05MS41MjcyNDgsIDQwLjQxMjM5N10sIFstOTEuNDE3NzA5LCA0MC4zNzk1MzVdLCBbLTkxLjUwNTM0LCA0MC4yMzcxMzVdLCBbLTkxLjQ5NDM4NiwgNDAuMDM0NDg4XSwgWy05MS4zNjg0MTcsIDM5LjcyNzc3OV0sIFstOTEuMDYxNzA4LCAzOS40NzAzNjNdLCBbLTkwLjcyNzYxNSwgMzkuMjU2NzYyXSwgWy05MC42NjE4OTEsIDM4LjkyODE0Nl0sIFstOTAuNTg1MjE0LCAzOC44Njc4OTldLCBbLTkwLjQ3MDE5OSwgMzguOTYxMDA3XSwgWy05MC4yNTExMjEsIDM4LjkxNzE5Ml0sIFstOTAuMTA4NzIsIDM4Ljg0NTk5Ml0sIFstOTAuMjA3MzA1LCAzOC43MjU0OTldLCBbLTkwLjE3OTkyMSwgMzguNjMyMzkxXSwgWy05MC4zNDk3MDYsIDM4LjM3NDk3NV0sIFstOTAuMzU1MTgzLCAzOC4yMTYxNDRdLCBbLTkwLjA1OTQyOCwgMzguMDEzNDk3XSwgWy04OS45NDk4ODksIDM3Ljg4MjA1XSwgWy04OS44NDAzNSwgMzcuOTAzOTU4XSwgWy04OS41MTcyMTEsIDM3LjY5MDM1N10sIFstODkuNTE3MjExLCAzNy41MzcwMDNdLCBbLTg5LjQzNTA1NywgMzcuMzQ1MzFdLCBbLTg5LjUxNzIxMSwgMzcuMjc5NTg3XSwgWy04OS4yOTI2NTYsIDM2Ljk5NDc4Nl0sIFstODkuMTMzODI1LCAzNi45ODM4MzJdLCBbLTg5LjIxNTk3OSwgMzYuNTc4NTM4XSwgWy04OS4zNjM4NTcsIDM2LjYyMjM1NF0sIFstODkuNDE4NjI2LCAzNi40OTYzODRdLCBbLTg5LjQ4NDM0OSwgMzYuNDk2Mzg0XSwgWy04OS41MzkxMTksIDM2LjQ5NjM4NF0sIFstODkuNTMzNjQyLCAzNi4yNDk5MjJdLCBbLTg5LjczMDgxMiwgMzUuOTk3OTgzXSwgWy05MC4zNzcwOTEsIDM1Ljk5Nzk4M10sIFstOTAuMjE4MjU5LCAzNi4xODQxOTldLCBbLTkwLjA2NDkwNSwgMzYuMzA0NjkxXSwgWy05MC4xNTI1MzYsIDM2LjQ5NjM4NF0sIFstOTQuNDczODQyLCAzNi41MDE4NjFdLCBbLTk0LjYxNjI0MiwgMzYuNTAxODYxXSwgWy05NC42MTYyNDIsIDM3LjAwMDI2M10sIFstOTQuNjEwNzY1LCAzOS4xNTgxNzddLCBbLTk0LjgyNDM2NiwgMzkuMjA3NDddLCBbLTk0Ljk4MzE5NywgMzkuNDQyOTc4XSwgWy05NS4xMDkxNjcsIDM5LjU0MTU2M10sIFstOTQuODg0NjEyLCAzOS44MzE4NDFdLCBbLTk1LjIwNzc1MiwgMzkuOTA4NTE4XSwgWy05NS4zMDYzMzcsIDQwLjAwMTYyNl0sIFstOTUuNTUyNzk5LCA0MC4yNjQ1MTldLCBbLTk1Ljc2NjQsIDQwLjU4NzY1OV0sIFstOTQuNjMyNjczLCA0MC41NzEyMjhdLCBbLTkzLjI1Nzk2MSwgNDAuNTgyMTgyXSwgWy05MS44MzM5NTcsIDQwLjYwOTU2Nl1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiTU8iLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJNaXNzb3VyaSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTEwNC4wNDc1MzQsIDQ5LjAwMDIzOV0sIFstMTA0LjA0MjA1NywgNDcuODYxMDM2XSwgWy0xMDQuMDQ3NTM0LCA0NS45NDQxMDZdLCBbLTEwNC4wNDIwNTcsIDQ0Ljk5NjU5Nl0sIFstMTA0LjA1ODQ4OCwgNDQuOTk2NTk2XSwgWy0xMDUuOTE1MTcsIDQ1LjAwMjA3M10sIFstMTA5LjA4MDg0MiwgNDUuMDAyMDczXSwgWy0xMTEuMDUyNTQsIDQ1LjAwMjA3M10sIFstMTExLjA0NzA2MywgNDQuNDc2Mjg2XSwgWy0xMTEuMjI3ODAzLCA0NC41ODAzNDhdLCBbLTExMS4zODY2MzQsIDQ0Ljc1NTYxXSwgWy0xMTEuNjE2NjY1LCA0NC41NDc0ODddLCBbLTExMS44MTkzMTIsIDQ0LjUwOTE0OF0sIFstMTExLjg2ODYwNSwgNDQuNTYzOTE3XSwgWy0xMTIuMTA0MTEzLCA0NC41MjAxMDJdLCBbLTExMi4yNDEwMzYsIDQ0LjU2OTM5NF0sIFstMTEyLjQ3MTA2OCwgNDQuNDgxNzYzXSwgWy0xMTIuNzgzMjU0LCA0NC40ODcyNF0sIFstMTEyLjg4NzMxNSwgNDQuMzk0MTMyXSwgWy0xMTMuMDAyMzMxLCA0NC40NDg5MDJdLCBbLTExMy4xMzM3NzgsIDQ0Ljc3MjA0MV0sIFstMTEzLjM0MTkwMSwgNDQuNzgyOTk1XSwgWy0xMTMuNDU2OTE3LCA0NC44NjUxNDldLCBbLTExMy40NTE0NCwgNDUuMDU2ODQyXSwgWy0xMTMuNTcxOTMzLCA0NS4xMjgwNDJdLCBbLTExMy43MzYyNDEsIDQ1LjMzMDY4OV0sIFstMTEzLjgzNDgyNiwgNDUuNTIyMzgyXSwgWy0xMTMuODA3NDQxLCA0NS42MDQ1MzZdLCBbLTExMy45ODgxOCwgNDUuNzAzMTIxXSwgWy0xMTQuMDg2NzY1LCA0NS41OTM1ODJdLCBbLTExNC4zMzMyMjgsIDQ1LjQ1NjY1OV0sIFstMTE0LjU0NjgyOCwgNDUuNTYwNzIxXSwgWy0xMTQuNDk3NTM2LCA0NS42NzAyNTldLCBbLTExNC41Njg3MzYsIDQ1Ljc3NDMyMV0sIFstMTE0LjM4Nzk5NywgNDUuODgzODZdLCBbLTExNC40OTIwNTksIDQ2LjAzNzIxNF0sIFstMTE0LjQ2NDY3NCwgNDYuMjcyNzIzXSwgWy0xMTQuMzIyMjc0LCA0Ni42NDUxNTVdLCBbLTExNC42MTI1NTIsIDQ2LjYzOTY3OF0sIFstMTE0LjYyMzUwNiwgNDYuNzA1NDAxXSwgWy0xMTQuODg2Mzk5LCA0Ni44MDk0NjNdLCBbLTExNC45MzAyMTQsIDQ2LjkxOTAwMl0sIFstMTE1LjMwMjY0NiwgNDcuMTg3MzcyXSwgWy0xMTUuMzI0NTU0LCA0Ny4yNTg1NzJdLCBbLTExNS41MjcyMDEsIDQ3LjMwMjM4OF0sIFstMTE1LjcxODg5NCwgNDcuNDIyODhdLCBbLTExNS43MjQzNzEsIDQ3LjY5NjcyN10sIFstMTE2LjA0NzUxLCA0Ny45NzYwNTFdLCBbLTExNi4wNDc1MSwgNDkuMDAwMjM5XSwgWy0xMTEuNTAxNjUsIDQ4Ljk5NDc2Ml0sIFstMTA5LjQ1MzI3NCwgNDkuMDAwMjM5XSwgWy0xMDQuMDQ3NTM0LCA0OS4wMDAyMzldXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIk1UIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiTW9udGFuYSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTEwMy4zMjQ1NzgsIDQzLjAwMjk4OV0sIFstMTAxLjYyNjcyNiwgNDIuOTk3NTEyXSwgWy05OC40OTkzOTMsIDQyLjk5NzUxMl0sIFstOTguNDY2NTMxLCA0Mi45NDgyMl0sIFstOTcuOTUxNjk5LCA0Mi43Njc0ODFdLCBbLTk3LjgzMTIwNiwgNDIuODY2MDY2XSwgWy05Ny42ODg4MDYsIDQyLjg0NDE1OF0sIFstOTcuMjE3Nzg5LCA0Mi44NDQxNThdLCBbLTk2LjY5MjAwMywgNDIuNjU3OTQyXSwgWy05Ni42MjYyNzksIDQyLjUxNTU0Ml0sIFstOTYuNDQ1NTQsIDQyLjQ4ODE1N10sIFstOTYuMjY0ODAxLCA0Mi4wMzkwNDhdLCBbLTk2LjEyNzg3OCwgNDEuOTczMzI1XSwgWy05Ni4wNjIxNTUsIDQxLjc5ODA2M10sIFstOTYuMTIyNDAxLCA0MS42Nzc1N10sIFstOTYuMDk1MDE2LCA0MS41NDA2NDZdLCBbLTk1LjkxOTc1NCwgNDEuNDUzMDE1XSwgWy05NS45MjUyMzEsIDQxLjIwMTA3Nl0sIFstOTUuODI2NjQ2LCA0MC45NzY1MjFdLCBbLTk1Ljg4MTQxNiwgNDAuNzE5MTA1XSwgWy05NS43NjY0LCA0MC41ODc2NTldLCBbLTk1LjU1Mjc5OSwgNDAuMjY0NTE5XSwgWy05NS4zMDYzMzcsIDQwLjAwMTYyNl0sIFstMTAxLjkwNjA1LCA0MC4wMDE2MjZdLCBbLTEwMi4wNTM5MjcsIDQwLjAwMTYyNl0sIFstMTAyLjA1MzkyNywgNDEuMDAzOTA2XSwgWy0xMDQuMDUzMDExLCA0MS4wMDM5MDZdLCBbLTEwNC4wNTMwMTEsIDQzLjAwMjk4OV0sIFstMTAzLjMyNDU3OCwgNDMuMDAyOTg5XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJORSIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIk5lYnJhc2thIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stMTE3LjAyNzg4MiwgNDIuMDAwNzA5XSwgWy0xMTQuMDQyOTUsIDQxLjk5NTIzMl0sIFstMTE0LjA0ODQyNywgMzcuMDAwMjYzXSwgWy0xMTQuMDQ4NDI3LCAzNi4xOTUxNTNdLCBbLTExNC4xNTI0ODksIDM2LjAyNTM2N10sIFstMTE0LjI1MTA3NCwgMzYuMDE5ODldLCBbLTExNC4zNzE1NjYsIDM2LjE0MDM4M10sIFstMTE0LjczODUyMSwgMzYuMTAyMDQ1XSwgWy0xMTQuNjc4Mjc1LCAzNS41MTYwMTJdLCBbLTExNC41OTYxMjEsIDM1LjMyNDMxOV0sIFstMTE0LjU3NDIxMywgMzUuMTM4MTAzXSwgWy0xMTQuNjM0NDU5LCAzNS4wMDExOF0sIFstMTE1Ljg1MDM0LCAzNS45NzA1OThdLCBbLTExNi41NDA0MzUsIDM2LjUwMTg2MV0sIFstMTE3LjQ5ODg5OSwgMzcuMjE5MzRdLCBbLTExOC43MTQ3OCwgMzguMTAxMTI4XSwgWy0xMjAuMDAxODYxLCAzOC45OTkzNDZdLCBbLTExOS45OTYzODQsIDQwLjI2NDUxOV0sIFstMTIwLjAwMTg2MSwgNDEuOTk1MjMyXSwgWy0xMTguNjk4MzQ5LCA0MS45ODk3NTVdLCBbLTExNy4wMjc4ODIsIDQyLjAwMDcwOV1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiTlYiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJOZXZhZGEifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy03MS4wODE4MywgNDUuMzAzMzA0XSwgWy03MS4wMzI1MzcsIDQ0LjY1NzAyNV0sIFstNzAuOTY2ODE0LCA0My4zNDI1Nl0sIFstNzAuODA3OTgzLCA0My4yMjc1NDRdLCBbLTcwLjgyNDQxMywgNDMuMTI4OTU5XSwgWy03MC43MDM5MjEsIDQzLjA1Nzc1OV0sIFstNzAuODE4OTM2LCA0Mi44NzE1NDNdLCBbLTcwLjkxNzUyMSwgNDIuODg3OTc0XSwgWy03MS4xODU4OTEsIDQyLjc4OTM4OV0sIFstNzEuMjk1NDMsIDQyLjY5NjI4MV0sIFstNzIuNDU2NTQyLCA0Mi43MjkxNDJdLCBbLTcyLjU0NDE3MywgNDIuODA1ODJdLCBbLTcyLjUzMzIxOSwgNDIuOTUzNjk3XSwgWy03Mi40NDU1ODgsIDQzLjAwODQ2Nl0sIFstNzIuNDU2NTQyLCA0My4xNTA4NjddLCBbLTcyLjM3OTg2NCwgNDMuNTcyNTkxXSwgWy03Mi4yMDQ2MDIsIDQzLjc2OTc2MV0sIFstNzIuMTE2OTcxLCA0My45OTQzMTZdLCBbLTcyLjAyOTM0LCA0NC4wNzY0N10sIFstNzIuMDM0ODE3LCA0NC4zMjI5MzJdLCBbLTcxLjcwMDcyNCwgNDQuNDE2MDRdLCBbLTcxLjUzNjQxNiwgNDQuNTg1ODI1XSwgWy03MS42Mjk1MjQsIDQ0Ljc1MDEzM10sIFstNzEuNDkyNiwgNDQuOTE0NDQyXSwgWy03MS41MDM1NTQsIDQ1LjAxMzAyN10sIFstNzEuMzYxMTU0LCA0NS4yNzA0NDNdLCBbLTcxLjEzMTEyMiwgNDUuMjQzMDU4XSwgWy03MS4wODE4MywgNDUuMzAzMzA0XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJOSCIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIk5ldyBIYW1wc2hpcmUifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy03NC4yMzY1NDcsIDQxLjE0MDgzXSwgWy03My45MDI0NTQsIDQwLjk5ODQyOV0sIFstNzQuMDIyOTQ3LCA0MC43MDgxNTFdLCBbLTc0LjE4NzI1NSwgNDAuNjQyNDI4XSwgWy03NC4yNzQ4ODYsIDQwLjQ4OTA3NF0sIFstNzQuMDAxMDM5LCA0MC40MTIzOTddLCBbLTczLjk3OTEzMSwgNDAuMjk3MzgxXSwgWy03NC4wOTk2MjQsIDM5Ljc2MDY0MV0sIFstNzQuNDExODA5LCAzOS4zNjA4MjRdLCBbLTc0LjYxNDQ1NiwgMzkuMjQ1ODA4XSwgWy03NC43OTUxOTUsIDM4Ljk5Mzg2OV0sIFstNzQuODg4MzAzLCAzOS4xNTgxNzddLCBbLTc1LjE3ODU4MSwgMzkuMjQwMzMxXSwgWy03NS41MzQ1ODIsIDM5LjQ1OTQwOV0sIFstNzUuNTU2NDksIDM5LjYwNzI4Nl0sIFstNzUuNTYxOTY3LCAzOS42MjkxOTRdLCBbLTc1LjUwNzE5NywgMzkuNjgzOTY0XSwgWy03NS40MTQwODksIDM5LjgwNDQ1Nl0sIFstNzUuMTQ1NzE5LCAzOS44ODY2MV0sIFstNzUuMTI5Mjg5LCAzOS45NjMyODhdLCBbLTc0LjgyMjU4LCA0MC4xMjc1OTZdLCBbLTc0Ljc3MzI4NywgNDAuMjE1MjI3XSwgWy03NS4wNTgwODgsIDQwLjQxNzg3NF0sIFstNzUuMDY5MDQyLCA0MC41NDM4NDNdLCBbLTc1LjE5NTAxMiwgNDAuNTc2NzA1XSwgWy03NS4yMDU5NjYsIDQwLjY5MTcyMV0sIFstNzUuMDUyNjExLCA0MC44NjY5ODNdLCBbLTc1LjEzNDc2NSwgNDAuOTcxMDQ1XSwgWy03NC44ODI4MjYsIDQxLjE3OTE2OF0sIFstNzQuODI4MDU3LCA0MS4yODg3MDddLCBbLTc0LjY5NjYxLCA0MS4zNTk5MDddLCBbLTc0LjIzNjU0NywgNDEuMTQwODNdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIk5KIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiTmV3IEplcnNleSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTEwNy40MjEzMjksIDM3LjAwMDI2M10sIFstMTA2Ljg2ODE1OCwgMzYuOTk0Nzg2XSwgWy0xMDQuMzM3ODEyLCAzNi45OTQ3ODZdLCBbLTEwMy4wMDE0MzgsIDM3LjAwMDI2M10sIFstMTAzLjAwMTQzOCwgMzYuNTAxODYxXSwgWy0xMDMuMDM5Nzc3LCAzNi41MDE4NjFdLCBbLTEwMy4wNDUyNTQsIDM0LjAxNTMzXSwgWy0xMDMuMDY3MTYxLCAzMy4wMDIwOTZdLCBbLTEwMy4wNjcxNjEsIDMxLjk5OTgxNl0sIFstMTA2LjYxNjIxOSwgMzEuOTk5ODE2XSwgWy0xMDYuNjQzNjAzLCAzMS45MDEyMzFdLCBbLTEwNi41Mjg1ODgsIDMxLjc4NjIxNl0sIFstMTA4LjIxMDAwOCwgMzEuNzg2MjE2XSwgWy0xMDguMjEwMDA4LCAzMS4zMzE2MjldLCBbLTEwOS4wNDc5OCwgMzEuMzMxNjI5XSwgWy0xMDkuMDQyNTAzLCAzNy4wMDAyNjNdLCBbLTEwNy40MjEzMjksIDM3LjAwMDI2M11dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiTk0iLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJOZXcgTWV4aWNvIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stNzMuMzQzODA2LCA0NS4wMTMwMjddLCBbLTczLjMzMjg1MiwgNDQuODA0OTAzXSwgWy03My4zODc2MjIsIDQ0LjYxODY4N10sIFstNzMuMjk0NTE0LCA0NC40Mzc5NDhdLCBbLTczLjMyMTg5OCwgNDQuMjQ2MjU1XSwgWy03My40MzY5MTQsIDQ0LjA0MzYwOF0sIFstNzMuMzQ5MjgzLCA0My43Njk3NjFdLCBbLTczLjQwNDA1MiwgNDMuNjg3NjA3XSwgWy03My4yNDUyMjEsIDQzLjUyMzI5OV0sIFstNzMuMjc4MDgzLCA0Mi44MzMyMDRdLCBbLTczLjI2NzEyOSwgNDIuNzQ1NTczXSwgWy03My41MDgxMTQsIDQyLjA4ODM0XSwgWy03My40ODYyMDYsIDQyLjA1MDAwMl0sIFstNzMuNTUxOTMsIDQxLjI5NDE4NF0sIFstNzMuNDgwNzMsIDQxLjIxMjAzXSwgWy03My43MjcxOTIsIDQxLjEwMjQ5MV0sIFstNzMuNjU1OTkyLCA0MC45ODc0NzVdLCBbLTczLjIyODc5LCA0MC45MDUzMjFdLCBbLTczLjE0MTE1OSwgNDAuOTY1NTY4XSwgWy03Mi43NzQyMDQsIDQwLjk2NTU2OF0sIFstNzIuNTg3OTg4LCA0MC45OTg0MjldLCBbLTcyLjI4MTI4LCA0MS4xNTcyNjFdLCBbLTcyLjI1OTM3MiwgNDEuMDQyMjQ1XSwgWy03Mi4xMDA1NDEsIDQwLjk5Mjk1Ml0sIFstNzIuNDY3NDk2LCA0MC44NDUwNzVdLCBbLTczLjIzOTc0NCwgNDAuNjI1OTk3XSwgWy03My41NjI4ODQsIDQwLjU4MjE4Ml0sIFstNzMuNzc2NDg0LCA0MC41OTMxMzZdLCBbLTczLjkzNTMxNiwgNDAuNTQzODQzXSwgWy03NC4wMjI5NDcsIDQwLjcwODE1MV0sIFstNzMuOTAyNDU0LCA0MC45OTg0MjldLCBbLTc0LjIzNjU0NywgNDEuMTQwODNdLCBbLTc0LjY5NjYxLCA0MS4zNTk5MDddLCBbLTc0Ljc0MDQyNiwgNDEuNDMxMTA4XSwgWy03NC44OTM3OCwgNDEuNDM2NTg0XSwgWy03NS4wNzQ1MTksIDQxLjYwNjM3XSwgWy03NS4wNTI2MTEsIDQxLjc1NDI0N10sIFstNzUuMTczMTA0LCA0MS44NjkyNjNdLCBbLTc1LjI0OTc4MSwgNDEuODYzNzg2XSwgWy03NS4zNTkzMiwgNDIuMDAwNzA5XSwgWy03OS43NjI3OCwgNDIuMDAwNzA5XSwgWy03OS43NjI3OCwgNDIuMjUyNjQ5XSwgWy03OS43NjI3OCwgNDIuMjY5MDc5XSwgWy03OS4xNDkzNjMsIDQyLjU1Mzg4XSwgWy03OS4wNTA3NzgsIDQyLjY5MDgwNF0sIFstNzguODUzNjA4LCA0Mi43ODM5MTJdLCBbLTc4LjkzMDI4NSwgNDIuOTUzNjk3XSwgWy03OS4wMTI0MzksIDQyLjk4NjU1OV0sIFstNzkuMDcyNjg2LCA0My4yNjA0MDZdLCBbLTc4LjQ4NjY1MywgNDMuMzc1NDIxXSwgWy03Ny45NjYzNDQsIDQzLjM2OTk0NF0sIFstNzcuNzU4MjIsIDQzLjM0MjU2XSwgWy03Ny41MzM2NjUsIDQzLjIzMzAyMV0sIFstNzcuMzkxMjY1LCA0My4yNzY4MzZdLCBbLTc2Ljk1ODU4NywgNDMuMjcxMzU5XSwgWy03Ni42OTU2OTMsIDQzLjM0MjU2XSwgWy03Ni40MTYzNywgNDMuNTIzMjk5XSwgWy03Ni4yMzU2MzEsIDQzLjUyODc3Nl0sIFstNzYuMjMwMTU0LCA0My44MDI2MjNdLCBbLTc2LjEzNzA0NiwgNDMuOTYxNDU0XSwgWy03Ni4zNjE2LCA0NC4wNzA5OTNdLCBbLTc2LjMxMjMwOCwgNDQuMTk2OTYyXSwgWy03NS45MTI0OTEsIDQ0LjM2Njc0OF0sIFstNzUuNzY0NjE0LCA0NC41MTQ2MjVdLCBbLTc1LjI4MjY0MywgNDQuODQ4NzE4XSwgWy03NC44MjgwNTcsIDQ1LjAxODUwM10sIFstNzQuMTQ4OTE2LCA0NC45OTExMTldLCBbLTczLjM0MzgwNiwgNDUuMDEzMDI3XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJOWSIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIk5ldyBZb3JrIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stODAuOTc4NjYxLCAzNi41NjIxMDhdLCBbLTgwLjI5NDA0MywgMzYuNTQ1Njc3XSwgWy03OS41MTA4NDEsIDM2LjU0MDJdLCBbLTc1Ljg2ODY3NiwgMzYuNTUxMTU0XSwgWy03NS43NTM2NiwgMzYuMTUxMzM3XSwgWy03Ni4wMzI5ODQsIDM2LjE4OTY3Nl0sIFstNzYuMDcxMzIyLCAzNi4xNDAzODNdLCBbLTc2LjQxMDg5MywgMzYuMDgwMTM3XSwgWy03Ni40NjAxODUsIDM2LjAyNTM2N10sIFstNzYuNjg0NzQsIDM2LjAwODkzN10sIFstNzYuNjczNzg2LCAzNS45Mzc3MzZdLCBbLTc2LjM5OTkzOSwgMzUuOTg3MDI5XSwgWy03Ni4zNjE2LCAzNS45NDMyMTNdLCBbLTc2LjA2MDM2OCwgMzUuOTkyNTA2XSwgWy03NS45NjE3ODMsIDM1Ljg5OTM5OF0sIFstNzUuNzgxMDQ0LCAzNS45Mzc3MzZdLCBbLTc1LjcxNTMyMSwgMzUuNjk2NzUxXSwgWy03NS43NzU1NjgsIDM1LjU4MTczNV0sIFstNzUuODk2MDYsIDM1LjU3MDc4MV0sIFstNzYuMTQ3OTk5LCAzNS4zMjQzMTldLCBbLTc2LjQ4MjA5MywgMzUuMzEzMzY1XSwgWy03Ni41MzY4NjIsIDM1LjE0MzU4XSwgWy03Ni4zOTQ0NjIsIDM0Ljk3Mzc5NV0sIFstNzYuMjc5NDQ2LCAzNC45NDA5MzNdLCBbLTc2LjQ5MzA0NywgMzQuNjYxNjA5XSwgWy03Ni42NzM3ODYsIDM0LjY5NDQ3MV0sIFstNzYuOTkxNDQ4LCAzNC42NjcwODZdLCBbLTc3LjIxMDUyNiwgMzQuNjA2ODRdLCBbLTc3LjU1NTU3MywgMzQuNDE1MTQ3XSwgWy03Ny44Mjk0MiwgMzQuMTYzMjA4XSwgWy03Ny45NzE4MjEsIDMzLjg0NTU0NV0sIFstNzguMTc5OTQ0LCAzMy45MTY3NDVdLCBbLTc4LjU0MTQyMiwgMzMuODUxMDIyXSwgWy03OS42NzUxNDksIDM0LjgwNDAxXSwgWy04MC43OTc5MjIsIDM0LjgyMDQ0MV0sIFstODAuNzgxNDkxLCAzNC45MzU0NTZdLCBbLTgwLjkzNDg0NSwgMzUuMTA1MjQxXSwgWy04MS4wMzg5MDcsIDM1LjA0NDk5NV0sIFstODEuMDQ0Mzg0LCAzNS4xNDkwNTddLCBbLTgyLjI3NjY5NiwgMzUuMTk4MzQ5XSwgWy04Mi41NTA1NDMsIDM1LjE2MDAxMV0sIFstODIuNzY0MTQzLCAzNS4wNjY5MDNdLCBbLTgzLjEwOTE5MSwgMzUuMDAxMThdLCBbLTgzLjYxODU0NiwgMzQuOTg0NzQ5XSwgWy04NC4zMTk1OTQsIDM0Ljk5MDIyNl0sIFstODQuMjkyMjEsIDM1LjIyNTczNF0sIFstODQuMDk1MDQsIDM1LjI0NzY0Ml0sIFstODQuMDE4MzYzLCAzNS40MTE5NV0sIFstODMuNzcxOSwgMzUuNTU5ODI3XSwgWy04My40OTgwNTMsIDM1LjU2NTMwNF0sIFstODMuMjUxNTkxLCAzNS43MTg2NTldLCBbLTgyLjk5NDE3NSwgMzUuNzczNDI4XSwgWy04Mi43NzUwOTcsIDM1Ljk5Nzk4M10sIFstODIuNjM4MTc0LCAzNi4wNjM3MDZdLCBbLTgyLjYxMDc4OSwgMzUuOTY1MTIxXSwgWy04Mi4yMTY0NDksIDM2LjE1NjgxNF0sIFstODIuMDM1NzEsIDM2LjExODQ3NV0sIFstODEuOTA5NzQxLCAzNi4zMDQ2OTFdLCBbLTgxLjcyMzUyNSwgMzYuMzUzOTg0XSwgWy04MS42Nzk3MDksIDM2LjU4OTQ5Ml0sIFstODAuOTc4NjYxLCAzNi41NjIxMDhdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIk5DIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiTm9ydGggQ2Fyb2xpbmEifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy05Ny4yMjg3NDMsIDQ5LjAwMDIzOV0sIFstOTcuMDk3Mjk2LCA0OC42ODI1NzddLCBbLTk3LjE2MzAyLCA0OC41NDU2NTNdLCBbLTk3LjEzMDE1OCwgNDguMTQwMzU5XSwgWy05Ny4wNTM0ODEsIDQ3Ljk0ODY2N10sIFstOTYuODU2MzExLCA0Ny42MDkwOTZdLCBbLTk2LjgyMzQ0OSwgNDYuOTY4Mjk0XSwgWy05Ni43ODUxMTEsIDQ2LjkyNDQ3OV0sIFstOTYuODAxNTQyLCA0Ni42NTYxMDldLCBbLTk2LjcxOTM4NywgNDYuNDM3MDMxXSwgWy05Ni41OTg4OTUsIDQ2LjMzMjk2OV0sIFstOTYuNTYwNTU2LCA0NS45MzMxNTNdLCBbLTEwNC4wNDc1MzQsIDQ1Ljk0NDEwNl0sIFstMTA0LjA0MjA1NywgNDcuODYxMDM2XSwgWy0xMDQuMDQ3NTM0LCA0OS4wMDAyMzldLCBbLTk3LjIyODc0MywgNDkuMDAwMjM5XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJORCIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIk5vcnRoIERha290YSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTgwLjUxODU5OCwgNDEuOTc4ODAyXSwgWy04MC41MTg1OTgsIDQwLjYzNjk1MV0sIFstODAuNjY2NDc1LCA0MC41ODIxODJdLCBbLTgwLjU5NTI3NSwgNDAuNDcyNjQzXSwgWy04MC42MDA3NTIsIDQwLjMxOTI4OV0sIFstODAuNzM3Njc1LCA0MC4wNzgzMDNdLCBbLTgwLjgzMDc4MywgMzkuNzExMzQ4XSwgWy04MS4yMTk2NDYsIDM5LjM4ODIwOV0sIFstODEuMzQ1NjE2LCAzOS4zNDQzOTNdLCBbLTgxLjQ1NTE1NSwgMzkuNDEwMTE3XSwgWy04MS41NzAxNywgMzkuMjY3NzE2XSwgWy04MS42ODUxODYsIDM5LjI3MzE5M10sIFstODEuODExMTU2LCAzOS4wODE1XSwgWy04MS43ODM3NzEsIDM4Ljk2NjQ4NF0sIFstODEuODg3ODMzLCAzOC44NzMzNzZdLCBbLTgyLjAzNTcxLCAzOS4wMjY3MzFdLCBbLTgyLjIyMTkyNiwgMzguNzg1NzQ1XSwgWy04Mi4xNzI2MzQsIDM4LjYzMjM5MV0sIFstODIuMjkzMTI3LCAzOC41Nzc2MjJdLCBbLTgyLjMzMTQ2NSwgMzguNDQ2MTc1XSwgWy04Mi41OTQzNTgsIDM4LjQyNDI2N10sIFstODIuNzMxMjgyLCAzOC41NjExOTFdLCBbLTgyLjg0NjI5OCwgMzguNTg4NTc1XSwgWy04Mi44OTAxMTMsIDM4Ljc1ODM2MV0sIFstODMuMDMyNTE0LCAzOC43MjU0OTldLCBbLTgzLjE0MjA1MiwgMzguNjI2OTE0XSwgWy04My41MTk5NjEsIDM4LjcwMzU5MV0sIFstODMuNjc4NzkyLCAzOC42MzIzOTFdLCBbLTgzLjkwMzM0NywgMzguNzY5MzE1XSwgWy04NC4yMTU1MzMsIDM4LjgwNzY1M10sIFstODQuMjMxOTYzLCAzOC44OTUyODRdLCBbLTg0LjQzNDYxLCAzOS4xMDM0MDhdLCBbLTg0LjgxNzk5NiwgMzkuMTAzNDA4XSwgWy04NC44MDE1NjUsIDQwLjUwMDAyOF0sIFstODQuODA3MDQyLCA0MS42OTQwMDFdLCBbLTgzLjQ1NDIzOCwgNDEuNzMyMzM5XSwgWy04My4wNjUzNzUsIDQxLjU5NTQxNl0sIFstODIuOTMzOTI5LCA0MS41MTMyNjJdLCBbLTgyLjgzNTM0NCwgNDEuNTg5OTM5XSwgWy04Mi42MTYyNjYsIDQxLjQzMTEwOF0sIFstODIuNDc5MzQzLCA0MS4zODE4MTVdLCBbLTgyLjAxMzgwMywgNDEuNTEzMjYyXSwgWy04MS43Mzk5NTYsIDQxLjQ4NTg3N10sIFstODEuNDQ0MjAxLCA0MS42NzIwOTNdLCBbLTgxLjAxMTUyMywgNDEuODUyODMyXSwgWy04MC41MTg1OTgsIDQxLjk3ODgwMl0sIFstODAuNTE4NTk4LCA0MS45Nzg4MDJdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIk9IIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiT2hpbyJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTEwMC4wODc3MDYsIDM3LjAwMDI2M10sIFstOTQuNjE2MjQyLCAzNy4wMDAyNjNdLCBbLTk0LjYxNjI0MiwgMzYuNTAxODYxXSwgWy05NC40MzAwMjYsIDM1LjM5NTUxOV0sIFstOTQuNDg0Nzk2LCAzMy42Mzc0MjFdLCBbLTk0Ljg2ODE4MiwgMzMuNzQ2OTZdLCBbLTk0Ljk2Njc2NywgMzMuODYxOTc2XSwgWy05NS4yMjQxODMsIDMzLjk2MDU2MV0sIFstOTUuMjg5OTA2LCAzMy44NzI5M10sIFstOTUuNTQ3MzIyLCAzMy44Nzg0MDddLCBbLTk1LjYwMjA5MiwgMzMuOTMzMTc2XSwgWy05NS44Mzc2LCAzMy44MzQ1OTFdLCBbLTk1LjkzNjE4NSwgMzMuODg5MzYxXSwgWy05Ni4xNDk3ODYsIDMzLjg0MDA2OF0sIFstOTYuMzQ2OTU2LCAzMy42ODY3MTRdLCBbLTk2LjQyMzYzMywgMzMuNzc0MzQ1XSwgWy05Ni42MzE3NTYsIDMzLjg0NTU0NV0sIFstOTYuODUwODM0LCAzMy44NDU1NDVdLCBbLTk2LjkyMjAzNCwgMzMuOTYwNTYxXSwgWy05Ny4xNzM5NzQsIDMzLjczNjAwNl0sIFstOTcuMjU2MTI4LCAzMy44NjE5NzZdLCBbLTk3LjM3MTE0MywgMzMuODIzNjM3XSwgWy05Ny40NTg3NzQsIDMzLjkwNTc5MV0sIFstOTcuNjk0MjgzLCAzMy45ODI0NjldLCBbLTk3Ljg2OTU0NSwgMzMuODUxMDIyXSwgWy05Ny45NDYyMjIsIDMzLjk4Nzk0Nl0sIFstOTguMDg4NjIzLCAzNC4wMDQzNzZdLCBbLTk4LjE3MDc3NywgMzQuMTEzOTE1XSwgWy05OC4zNjI0NywgMzQuMTU3NzMxXSwgWy05OC40ODg0MzksIDM0LjA2NDYyM10sIFstOTguNTcwNTkzLCAzNC4xNDY3NzddLCBbLTk4Ljc2Nzc2MywgMzQuMTM1ODIzXSwgWy05OC45ODY4NDEsIDM0LjIyMzQ1NF0sIFstOTkuMTg5NDg4LCAzNC4yMTI1XSwgWy05OS4yNjA2ODgsIDM0LjQwNDE5M10sIFstOTkuNTc4MzUsIDM0LjQxNTE0N10sIFstOTkuNjk4ODQzLCAzNC4zODIyODVdLCBbLTk5LjkyMzM5OCwgMzQuNTczOTc4XSwgWy0xMDAuMDAwMDc1LCAzNC41NjMwMjRdLCBbLTEwMC4wMDAwNzUsIDM2LjUwMTg2MV0sIFstMTAxLjgxMjk0MiwgMzYuNTAxODYxXSwgWy0xMDMuMDAxNDM4LCAzNi41MDE4NjFdLCBbLTEwMy4wMDE0MzgsIDM3LjAwMDI2M10sIFstMTAyLjA0Mjk3NCwgMzYuOTk0Nzg2XSwgWy0xMDAuMDg3NzA2LCAzNy4wMDAyNjNdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIk9LIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiT2tsYWhvbWEifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy0xMjMuMjExMzQ4LCA0Ni4xNzQxMzhdLCBbLTEyMy4xMTgyNCwgNDYuMTg1MDkyXSwgWy0xMjIuOTA0NjM5LCA0Ni4wODEwM10sIFstMTIyLjgxMTUzMSwgNDUuOTYwNTM3XSwgWy0xMjIuNzYyMjM5LCA0NS42NTkzMDVdLCBbLTEyMi4yNDc0MDcsIDQ1LjU0OTc2N10sIFstMTIxLjgwOTI1MSwgNDUuNzA4NTk4XSwgWy0xMjEuNTM1NDA0LCA0NS43MjUwMjldLCBbLTEyMS4yMTc3NDIsIDQ1LjY3MDI1OV0sIFstMTIxLjE4NDg4LCA0NS42MDQ1MzZdLCBbLTEyMC42MzcxODYsIDQ1Ljc0NjkzN10sIFstMTIwLjUwNTczOSwgNDUuNjk3NjQ0XSwgWy0xMjAuMjA5OTg1LCA0NS43MjUwMjldLCBbLTExOS45NjM1MjIsIDQ1LjgyMzYxNF0sIFstMTE5LjUyNTM2NywgNDUuOTExMjQ1XSwgWy0xMTkuMTI1NTUxLCA0NS45MzMxNTNdLCBbLTExOC45ODg2MjcsIDQ1Ljk5ODg3Nl0sIFstMTE2LjkxODM0NCwgNDUuOTkzMzk5XSwgWy0xMTYuNzgxNDIsIDQ1LjgyMzYxNF0sIFstMTE2LjU0NTkxMiwgNDUuNzUyNDEzXSwgWy0xMTYuNDYzNzU4LCA0NS42MTU0OV0sIFstMTE2LjY3MTg4MSwgNDUuMzE5NzM1XSwgWy0xMTYuNzMyMTI4LCA0NS4xNDQ0NzNdLCBbLTExNi44NDcxNDMsIDQ1LjAyMzk4XSwgWy0xMTYuODMwNzEzLCA0NC45MzA4NzJdLCBbLTExNi45MzQ3NzQsIDQ0Ljc4Mjk5NV0sIFstMTE3LjAzODgzNiwgNDQuNzUwMTMzXSwgWy0xMTcuMjQxNDgzLCA0NC4zOTQxMzJdLCBbLTExNy4xNzAyODMsIDQ0LjI1NzIwOV0sIFstMTE2Ljk3ODU5LCA0NC4yNDA3NzhdLCBbLTExNi44OTY0MzYsIDQ0LjE1ODYyNF0sIFstMTE3LjAyNzg4MiwgNDMuODMwMDA3XSwgWy0xMTcuMDI3ODgyLCA0Mi4wMDA3MDldLCBbLTExOC42OTgzNDksIDQxLjk4OTc1NV0sIFstMTIwLjAwMTg2MSwgNDEuOTk1MjMyXSwgWy0xMjEuMDM3MDAzLCA0MS45OTUyMzJdLCBbLTEyMi4zNzg4NTMsIDQyLjAxMTY2M10sIFstMTIzLjIzMzI1NiwgNDIuMDA2MTg2XSwgWy0xMjQuMjEzNjI4LCA0Mi4wMDA3MDldLCBbLTEyNC4zNTYwMjksIDQyLjExNTcyNV0sIFstMTI0LjQzMjcwNiwgNDIuNDM4ODY1XSwgWy0xMjQuNDE2Mjc1LCA0Mi42NjM0MTldLCBbLTEyNC41NTMxOTgsIDQyLjgzODY4MV0sIFstMTI0LjQ1NDYxMywgNDMuMDAyOTg5XSwgWy0xMjQuMzgzNDEzLCA0My4yNzEzNTldLCBbLTEyNC4yMzU1MzYsIDQzLjU1NjE2XSwgWy0xMjQuMTY5ODEzLCA0My44MDgxXSwgWy0xMjQuMDYwMjc0LCA0NC42NTcwMjVdLCBbLTEyNC4wNzY3MDUsIDQ0Ljc3MjA0MV0sIFstMTIzLjk3ODEyLCA0NS4xNDQ0NzNdLCBbLTEyMy45Mzk3ODEsIDQ1LjY1OTMwNV0sIFstMTIzLjk5NDU1MSwgNDUuOTQ0MTA2XSwgWy0xMjMuOTQ1MjU4LCA0Ni4xMTM4OTJdLCBbLTEyMy41NDU0NDEsIDQ2LjI2MTc2OV0sIFstMTIzLjM3MDE3OSwgNDYuMTQ2NzUzXSwgWy0xMjMuMjExMzQ4LCA0Ni4xNzQxMzhdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIk9SIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiT3JlZ29uIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stNzkuNzYyNzgsIDQyLjI1MjY0OV0sIFstNzkuNzYyNzgsIDQyLjAwMDcwOV0sIFstNzUuMzU5MzIsIDQyLjAwMDcwOV0sIFstNzUuMjQ5NzgxLCA0MS44NjM3ODZdLCBbLTc1LjE3MzEwNCwgNDEuODY5MjYzXSwgWy03NS4wNTI2MTEsIDQxLjc1NDI0N10sIFstNzUuMDc0NTE5LCA0MS42MDYzN10sIFstNzQuODkzNzgsIDQxLjQzNjU4NF0sIFstNzQuNzQwNDI2LCA0MS40MzExMDhdLCBbLTc0LjY5NjYxLCA0MS4zNTk5MDddLCBbLTc0LjgyODA1NywgNDEuMjg4NzA3XSwgWy03NC44ODI4MjYsIDQxLjE3OTE2OF0sIFstNzUuMTM0NzY1LCA0MC45NzEwNDVdLCBbLTc1LjA1MjYxMSwgNDAuODY2OTgzXSwgWy03NS4yMDU5NjYsIDQwLjY5MTcyMV0sIFstNzUuMTk1MDEyLCA0MC41NzY3MDVdLCBbLTc1LjA2OTA0MiwgNDAuNTQzODQzXSwgWy03NS4wNTgwODgsIDQwLjQxNzg3NF0sIFstNzQuNzczMjg3LCA0MC4yMTUyMjddLCBbLTc0LjgyMjU4LCA0MC4xMjc1OTZdLCBbLTc1LjEyOTI4OSwgMzkuOTYzMjg4XSwgWy03NS4xNDU3MTksIDM5Ljg4NjYxXSwgWy03NS40MTQwODksIDM5LjgwNDQ1Nl0sIFstNzUuNjE2NzM2LCAzOS44MzE4NDFdLCBbLTc1Ljc4NjUyMSwgMzkuNzIyMzAyXSwgWy03OS40Nzc5NzksIDM5LjcyMjMwMl0sIFstODAuNTE4NTk4LCAzOS43MjIzMDJdLCBbLTgwLjUxODU5OCwgNDAuNjM2OTUxXSwgWy04MC41MTg1OTgsIDQxLjk3ODgwMl0sIFstODAuNTE4NTk4LCA0MS45Nzg4MDJdLCBbLTgwLjMzMjM4MiwgNDIuMDMzNTcxXSwgWy03OS43NjI3OCwgNDIuMjY5MDc5XSwgWy03OS43NjI3OCwgNDIuMjUyNjQ5XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJQQSIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIlBlbm5zeWx2YW5pYSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbWy03MS4xOTY4NDUsIDQxLjY3NzU3XSwgWy03MS4xMjAxNjgsIDQxLjQ5NjgzMV0sIFstNzEuMzE3MzM4LCA0MS40NzQ5MjNdLCBbLTcxLjE5Njg0NSwgNDEuNjc3NTddXV0sIFtbWy03MS41MzA5MzksIDQyLjAxNzE0XSwgWy03MS4zODMwNjEsIDQyLjAxNzE0XSwgWy03MS4zMjgyOTIsIDQxLjc4MTYzMl0sIFstNzEuMjI0MjMsIDQxLjcxMDQzMV0sIFstNzEuMzQ0NzIzLCA0MS43MjY4NjJdLCBbLTcxLjQ0ODc4NSwgNDEuNTc4OTg1XSwgWy03MS40ODE2NDYsIDQxLjM3MDg2MV0sIFstNzEuODU5NTU1LCA0MS4zMjE1NjldLCBbLTcxLjc5OTMwOSwgNDEuNDE0Njc3XSwgWy03MS43OTkzMDksIDQyLjAwNjE4Nl0sIFstNzEuNTMwOTM5LCA0Mi4wMTcxNF1dXV0sICJ0eXBlIjogIk11bHRpUG9seWdvbiJ9LCAiaWQiOiAiUkkiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJSaG9kZSBJc2xhbmQifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy04Mi43NjQxNDMsIDM1LjA2NjkwM10sIFstODIuNTUwNTQzLCAzNS4xNjAwMTFdLCBbLTgyLjI3NjY5NiwgMzUuMTk4MzQ5XSwgWy04MS4wNDQzODQsIDM1LjE0OTA1N10sIFstODEuMDM4OTA3LCAzNS4wNDQ5OTVdLCBbLTgwLjkzNDg0NSwgMzUuMTA1MjQxXSwgWy04MC43ODE0OTEsIDM0LjkzNTQ1Nl0sIFstODAuNzk3OTIyLCAzNC44MjA0NDFdLCBbLTc5LjY3NTE0OSwgMzQuODA0MDFdLCBbLTc4LjU0MTQyMiwgMzMuODUxMDIyXSwgWy03OC43MTY2ODQsIDMzLjgwMTczXSwgWy03OC45MzU3NjIsIDMzLjYzNzQyMV0sIFstNzkuMTQ5MzYzLCAzMy4zODAwMDVdLCBbLTc5LjE4NzcwMSwgMzMuMTcxODgxXSwgWy03OS4zNTc0ODcsIDMzLjAwNzU3M10sIFstNzkuNTgyMDQxLCAzMy4wMDc1NzNdLCBbLTc5LjYzMTMzNCwgMzIuODg3MDgxXSwgWy03OS44NjY4NDIsIDMyLjc1NTYzNF0sIFstNzkuOTk4Mjg5LCAzMi42MTMyMzRdLCBbLTgwLjIwNjQxMiwgMzIuNTUyOTg3XSwgWy04MC40MzA5NjcsIDMyLjM5OTYzM10sIFstODAuNDUyODc1LCAzMi4zMjg0MzNdLCBbLTgwLjY2MDk5OCwgMzIuMjQ2Mjc5XSwgWy04MC44ODU1NTMsIDMyLjAzMjY3OF0sIFstODEuMTE1NTg0LCAzMi4xMjAzMDldLCBbLTgxLjEyMTA2MSwgMzIuMjkwMDk0XSwgWy04MS4yNzk4OTMsIDMyLjU1ODQ2NF0sIFstODEuNDE2ODE2LCAzMi42Mjk2NjRdLCBbLTgxLjQyNzc3LCAzMi44NDMyNjVdLCBbLTgxLjQ5MzQ5MywgMzMuMDA3NTczXSwgWy04MS43NjE4NjMsIDMzLjE2MDkyOF0sIFstODEuOTM3MTI1LCAzMy4zNDcxNDRdLCBbLTgxLjkyNjE3MiwgMzMuNDYyMTU5XSwgWy04Mi4xOTQ1NDIsIDMzLjYzMTk0NF0sIFstODIuMzI1OTg4LCAzMy44MTgxNl0sIFstODIuNTU2MDIsIDMzLjk0NDEzXSwgWy04Mi43MTQ4NTEsIDM0LjE1MjI1NF0sIFstODIuNzQ3NzEzLCAzNC4yNjcyN10sIFstODIuOTAxMDY3LCAzNC40ODYzNDddLCBbLTgzLjAwNTEyOSwgMzQuNDY5OTE2XSwgWy04My4zMzkyMjIsIDM0LjY4MzUxN10sIFstODMuMzIyNzkxLCAzNC43ODc1NzldLCBbLTgzLjEwOTE5MSwgMzUuMDAxMThdLCBbLTgyLjc2NDE0MywgMzUuMDY2OTAzXV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJTQyIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIlNvdXRoIENhcm9saW5hIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stMTA0LjA0NzUzNCwgNDUuOTQ0MTA2XSwgWy05Ni41NjA1NTYsIDQ1LjkzMzE1M10sIFstOTYuNTgyNDY0LCA0NS44MTgxMzddLCBbLTk2Ljg1NjMxMSwgNDUuNjA0NTM2XSwgWy05Ni42ODEwNDksIDQ1LjQxMjg0M10sIFstOTYuNDUxMDE3LCA0NS4yOTc4MjddLCBbLTk2LjQ1MTAxNywgNDMuNTAxMzkxXSwgWy05Ni41ODI0NjQsIDQzLjQ3OTQ4M10sIFstOTYuNTI3Njk1LCA0My4zOTczMjldLCBbLTk2LjU2MDU1NiwgNDMuMjIyMDY3XSwgWy05Ni40MzQ1ODcsIDQzLjEyMzQ4Ml0sIFstOTYuNTExMjY0LCA0My4wNTIyODJdLCBbLTk2LjU0NDEyNSwgNDIuODU1MTEyXSwgWy05Ni42MzE3NTYsIDQyLjcwNzIzNV0sIFstOTYuNDQ1NTQsIDQyLjQ4ODE1N10sIFstOTYuNjI2Mjc5LCA0Mi41MTU1NDJdLCBbLTk2LjY5MjAwMywgNDIuNjU3OTQyXSwgWy05Ny4yMTc3ODksIDQyLjg0NDE1OF0sIFstOTcuNjg4ODA2LCA0Mi44NDQxNThdLCBbLTk3LjgzMTIwNiwgNDIuODY2MDY2XSwgWy05Ny45NTE2OTksIDQyLjc2NzQ4MV0sIFstOTguNDY2NTMxLCA0Mi45NDgyMl0sIFstOTguNDk5MzkzLCA0Mi45OTc1MTJdLCBbLTEwMS42MjY3MjYsIDQyLjk5NzUxMl0sIFstMTAzLjMyNDU3OCwgNDMuMDAyOTg5XSwgWy0xMDQuMDUzMDExLCA0My4wMDI5ODldLCBbLTEwNC4wNTg0ODgsIDQ0Ljk5NjU5Nl0sIFstMTA0LjA0MjA1NywgNDQuOTk2NTk2XSwgWy0xMDQuMDQ3NTM0LCA0NS45NDQxMDZdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIlNEIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiU291dGggRGFrb3RhIn0sICJ0eXBlIjogIkZlYXR1cmUifSwgeyJnZW9tZXRyeSI6IHsiY29vcmRpbmF0ZXMiOiBbW1stODguMDU0ODY4LCAzNi40OTYzODRdLCBbLTg4LjA3MTI5OSwgMzYuNjc3MTIzXSwgWy04Ny44NTIyMjEsIDM2LjYzMzMwOF0sIFstODYuNTkyNTI1LCAzNi42NTUyMTZdLCBbLTg1LjQ4NjE4MywgMzYuNjE2ODc3XSwgWy04NS4yODkwMTMsIDM2LjYyNzgzMV0sIFstODQuNTQ0MTQ5LCAzNi41OTQ5NjldLCBbLTgzLjY4OTc0NiwgMzYuNTg0MDE1XSwgWy04My42NzMzMTYsIDM2LjYwMDQ0Nl0sIFstODEuNjc5NzA5LCAzNi41ODk0OTJdLCBbLTgxLjcyMzUyNSwgMzYuMzUzOTg0XSwgWy04MS45MDk3NDEsIDM2LjMwNDY5MV0sIFstODIuMDM1NzEsIDM2LjExODQ3NV0sIFstODIuMjE2NDQ5LCAzNi4xNTY4MTRdLCBbLTgyLjYxMDc4OSwgMzUuOTY1MTIxXSwgWy04Mi42MzgxNzQsIDM2LjA2MzcwNl0sIFstODIuNzc1MDk3LCAzNS45OTc5ODNdLCBbLTgyLjk5NDE3NSwgMzUuNzczNDI4XSwgWy04My4yNTE1OTEsIDM1LjcxODY1OV0sIFstODMuNDk4MDUzLCAzNS41NjUzMDRdLCBbLTgzLjc3MTksIDM1LjU1OTgyN10sIFstODQuMDE4MzYzLCAzNS40MTE5NV0sIFstODQuMDk1MDQsIDM1LjI0NzY0Ml0sIFstODQuMjkyMjEsIDM1LjIyNTczNF0sIFstODQuMzE5NTk0LCAzNC45OTAyMjZdLCBbLTg1LjYwNjY3NSwgMzQuOTg0NzQ5XSwgWy04Ny4zNTkyOTYsIDM1LjAwMTE4XSwgWy04OC4yMDI3NDUsIDM0Ljk5NTcwM10sIFstODguNDcxMTE1LCAzNC45OTU3MDNdLCBbLTkwLjMxMTM2NywgMzQuOTk1NzAzXSwgWy05MC4yMTI3ODIsIDM1LjAyMzA4N10sIFstOTAuMTE0MTk3LCAzNS4xOTgzNDldLCBbLTkwLjEzMDYyOCwgMzUuNDM5MzM1XSwgWy04OS45NDQ0MTIsIDM1LjYwMzY0M10sIFstODkuOTExNTUxLCAzNS43NTY5OTddLCBbLTg5Ljc2MzY3MywgMzUuODExNzY3XSwgWy04OS43MzA4MTIsIDM1Ljk5Nzk4M10sIFstODkuNTMzNjQyLCAzNi4yNDk5MjJdLCBbLTg5LjUzOTExOSwgMzYuNDk2Mzg0XSwgWy04OS40ODQzNDksIDM2LjQ5NjM4NF0sIFstODkuNDE4NjI2LCAzNi40OTYzODRdLCBbLTg5LjI5ODEzMywgMzYuNTA3MzM4XSwgWy04OC4wNTQ4NjgsIDM2LjQ5NjM4NF1dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiVE4iLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJUZW5uZXNzZWUifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy0xMDEuODEyOTQyLCAzNi41MDE4NjFdLCBbLTEwMC4wMDAwNzUsIDM2LjUwMTg2MV0sIFstMTAwLjAwMDA3NSwgMzQuNTYzMDI0XSwgWy05OS45MjMzOTgsIDM0LjU3Mzk3OF0sIFstOTkuNjk4ODQzLCAzNC4zODIyODVdLCBbLTk5LjU3ODM1LCAzNC40MTUxNDddLCBbLTk5LjI2MDY4OCwgMzQuNDA0MTkzXSwgWy05OS4xODk0ODgsIDM0LjIxMjVdLCBbLTk4Ljk4Njg0MSwgMzQuMjIzNDU0XSwgWy05OC43Njc3NjMsIDM0LjEzNTgyM10sIFstOTguNTcwNTkzLCAzNC4xNDY3NzddLCBbLTk4LjQ4ODQzOSwgMzQuMDY0NjIzXSwgWy05OC4zNjI0NywgMzQuMTU3NzMxXSwgWy05OC4xNzA3NzcsIDM0LjExMzkxNV0sIFstOTguMDg4NjIzLCAzNC4wMDQzNzZdLCBbLTk3Ljk0NjIyMiwgMzMuOTg3OTQ2XSwgWy05Ny44Njk1NDUsIDMzLjg1MTAyMl0sIFstOTcuNjk0MjgzLCAzMy45ODI0NjldLCBbLTk3LjQ1ODc3NCwgMzMuOTA1NzkxXSwgWy05Ny4zNzExNDMsIDMzLjgyMzYzN10sIFstOTcuMjU2MTI4LCAzMy44NjE5NzZdLCBbLTk3LjE3Mzk3NCwgMzMuNzM2MDA2XSwgWy05Ni45MjIwMzQsIDMzLjk2MDU2MV0sIFstOTYuODUwODM0LCAzMy44NDU1NDVdLCBbLTk2LjYzMTc1NiwgMzMuODQ1NTQ1XSwgWy05Ni40MjM2MzMsIDMzLjc3NDM0NV0sIFstOTYuMzQ2OTU2LCAzMy42ODY3MTRdLCBbLTk2LjE0OTc4NiwgMzMuODQwMDY4XSwgWy05NS45MzYxODUsIDMzLjg4OTM2MV0sIFstOTUuODM3NiwgMzMuODM0NTkxXSwgWy05NS42MDIwOTIsIDMzLjkzMzE3Nl0sIFstOTUuNTQ3MzIyLCAzMy44Nzg0MDddLCBbLTk1LjI4OTkwNiwgMzMuODcyOTNdLCBbLTk1LjIyNDE4MywgMzMuOTYwNTYxXSwgWy05NC45NjY3NjcsIDMzLjg2MTk3Nl0sIFstOTQuODY4MTgyLCAzMy43NDY5Nl0sIFstOTQuNDg0Nzk2LCAzMy42Mzc0MjFdLCBbLTk0LjM4MDczNCwgMzMuNTQ0MzEzXSwgWy05NC4xODM1NjQsIDMzLjU5MzYwNl0sIFstOTQuMDQxMTY0LCAzMy41NDk3OV0sIFstOTQuMDQxMTY0LCAzMy4wMTg1MjddLCBbLTk0LjA0MTE2NCwgMzEuOTk0MzM5XSwgWy05My44MjIwODYsIDMxLjc3NTI2Ml0sIFstOTMuODE2NjA5LCAzMS41NTYxODRdLCBbLTkzLjU0Mjc2MiwgMzEuMTUwODldLCBbLTkzLjUyNjMzMSwgMzAuOTM3MjldLCBbLTkzLjYzMDM5MywgMzAuNjc5ODc0XSwgWy05My43Mjg5NzgsIDMwLjU3NTgxMl0sIFstOTMuNjk2MTE2LCAzMC40Mzg4ODhdLCBbLTkzLjc2NzMxNywgMzAuMzM0ODI2XSwgWy05My42OTA2MzksIDMwLjE0MzEzM10sIFstOTMuOTI2MTQ4LCAyOS43ODcxMzJdLCBbLTkzLjgzODUxNywgMjkuNjg4NTQ3XSwgWy05NC4wMDI4MjUsIDI5LjY4MzA3XSwgWy05NC41MjMxMzQsIDI5LjU0NjE0N10sIFstOTQuNzA5MzUsIDI5LjYyMjgyNF0sIFstOTQuNzQyMjEyLCAyOS43ODcxMzJdLCBbLTk0Ljg3MzY1OSwgMjkuNjcyMTE3XSwgWy05NC45NjY3NjcsIDI5LjY5OTUwMV0sIFstOTUuMDE2MDU5LCAyOS41NTcxMDFdLCBbLTk0LjkxMTk5NywgMjkuNDk2ODU0XSwgWy05NC44OTU1NjYsIDI5LjMxMDYzOF0sIFstOTUuMDgxNzgyLCAyOS4xMTM0NjldLCBbLTk1LjM4MzAxNCwgMjguODY3MDA2XSwgWy05NS45ODU0NzcsIDI4LjYwNDExM10sIFstOTYuMDQ1NzI0LCAyOC42NDc5MjldLCBbLTk2LjIyNjQ2MywgMjguNTgyMjA1XSwgWy05Ni4yMzE5NCwgMjguNjQyNDUyXSwgWy05Ni40Nzg0MDIsIDI4LjU5ODYzNl0sIFstOTYuNTkzNDE4LCAyOC43MjQ2MDZdLCBbLTk2LjY2NDYxOCwgMjguNjk3MjIxXSwgWy05Ni40MDE3MjUsIDI4LjQzOTgwNV0sIFstOTYuNTkzNDE4LCAyOC4zNTc2NTFdLCBbLTk2Ljc3NDE1NywgMjguNDA2OTQzXSwgWy05Ni44MDE1NDIsIDI4LjIyNjIwNF0sIFstOTcuMDI2MDk2LCAyOC4wMzk5ODhdLCBbLTk3LjI1NjEyOCwgMjcuNjk0OTQxXSwgWy05Ny40MDQwMDUsIDI3LjMzMzQ2M10sIFstOTcuNTEzNTQ0LCAyNy4zNjA4NDhdLCBbLTk3LjU0MDkyOSwgMjcuMjI5NDAxXSwgWy05Ny40MjU5MTMsIDI3LjI2MjI2M10sIFstOTcuNDgwNjgyLCAyNi45OTkzN10sIFstOTcuNTU3MzU5LCAyNi45ODg0MTZdLCBbLTk3LjU2MjgzNiwgMjYuODQwNTM4XSwgWy05Ny40Njk3MjgsIDI2Ljc1ODM4NF0sIFstOTcuNDQyMzQ0LCAyNi40NTcxNTNdLCBbLTk3LjMzMjgwNSwgMjYuMzUzMDkxXSwgWy05Ny4zMDU0MiwgMjYuMTYxMzk4XSwgWy05Ny4yMTc3ODksIDI1Ljk5MTYxM10sIFstOTcuNTI0NDk4LCAyNS44ODc1NTFdLCBbLTk3LjY1MDQ2NywgMjYuMDE4OTk3XSwgWy05Ny44ODU5NzYsIDI2LjA2ODI5XSwgWy05OC4xOTgxNjEsIDI2LjA1NzMzNl0sIFstOTguNDY2NTMxLCAyNi4yMjE2NDRdLCBbLTk4LjY2OTE3OCwgMjYuMjM4MDc1XSwgWy05OC44MjI1MzMsIDI2LjM2OTUyMl0sIFstOTkuMDMwNjU2LCAyNi40MTMzMzddLCBbLTk5LjE3MzA1NywgMjYuNTM5MzA3XSwgWy05OS4yNjYxNjUsIDI2Ljg0MDUzOF0sIFstOTkuNDQ2OTA0LCAyNy4wMjEyNzddLCBbLTk5LjQyNDk5NiwgMjcuMTc0NjMyXSwgWy05OS41MDcxNSwgMjcuMzM4OTRdLCBbLTk5LjQ3OTc2NSwgMjcuNDgxMzRdLCBbLTk5LjYwNTczNSwgMjcuNjQwMTcyXSwgWy05OS43MDk3OTcsIDI3LjY1NjYwM10sIFstOTkuODc5NTgyLCAyNy43OTkwMDNdLCBbLTk5LjkzNDM1MSwgMjcuOTc5NzQyXSwgWy0xMDAuMDgyMjI5LCAyOC4xNDQwNV0sIFstMTAwLjI5NTgzLCAyOC4yODA5NzRdLCBbLTEwMC4zOTk4OTEsIDI4LjU4MjIwNV0sIFstMTAwLjQ5ODQ3NiwgMjguNjY0MzZdLCBbLTEwMC42Mjk5MjMsIDI4LjkwNTM0NV0sIFstMTAwLjY3MzczOCwgMjkuMTAyNTE1XSwgWy0xMDAuNzk5NzA4LCAyOS4yNDQ5MTVdLCBbLTEwMS4wMTMzMDksIDI5LjM3MDg4NV0sIFstMTAxLjA2MjYwMSwgMjkuNDU4NTE2XSwgWy0xMDEuMjU5NzcxLCAyOS41MzUxOTNdLCBbLTEwMS40MTMxMjUsIDI5Ljc1NDI3MV0sIFstMTAxLjg1MTI4MSwgMjkuODAzNTYzXSwgWy0xMDIuMTE0MTc0LCAyOS43OTI2MDldLCBbLTEwMi4zMzg3MjgsIDI5Ljg2OTI4Nl0sIFstMTAyLjM4ODAyMSwgMjkuNzY1MjI1XSwgWy0xMDIuNjI5MDA2LCAyOS43MzIzNjNdLCBbLTEwMi44MDk3NDUsIDI5LjUyNDIzOV0sIFstMTAyLjkxOTI4NCwgMjkuMTkwMTQ2XSwgWy0xMDIuOTc5NTMsIDI5LjE4NDY2OV0sIFstMTAzLjExNjQ1NCwgMjguOTg3NDk5XSwgWy0xMDMuMjgwNzYyLCAyOC45ODIwMjJdLCBbLTEwMy41MjcyMjQsIDI5LjEzNTM3Nl0sIFstMTA0LjE0NjExOSwgMjkuMzgxODM5XSwgWy0xMDQuMjY2NjExLCAyOS41MTMyODVdLCBbLTEwNC41MDc1OTcsIDI5LjYzOTI1NV0sIFstMTA0LjY3NzM4MiwgMjkuOTI0MDU2XSwgWy0xMDQuNjg4MzM2LCAzMC4xODE0NzJdLCBbLTEwNC44NTgxMjEsIDMwLjM4OTU5Nl0sIFstMTA0Ljg5NjQ1OSwgMzAuNTcwMzM1XSwgWy0xMDUuMDA1OTk4LCAzMC42ODUzNTFdLCBbLTEwNS4zOTQ4NjEsIDMwLjg1NTEzNl0sIFstMTA1LjYwMjk4NSwgMzEuMDg1MTY3XSwgWy0xMDUuNzcyNzcsIDMxLjE2NzMyMV0sIFstMTA1Ljk1MzUwOSwgMzEuMzY0NDkxXSwgWy0xMDYuMjA1NDQ4LCAzMS40Njg1NTNdLCBbLTEwNi4zODA3MSwgMzEuNzMxNDQ2XSwgWy0xMDYuNTI4NTg4LCAzMS43ODYyMTZdLCBbLTEwNi42NDM2MDMsIDMxLjkwMTIzMV0sIFstMTA2LjYxNjIxOSwgMzEuOTk5ODE2XSwgWy0xMDMuMDY3MTYxLCAzMS45OTk4MTZdLCBbLTEwMy4wNjcxNjEsIDMzLjAwMjA5Nl0sIFstMTAzLjA0NTI1NCwgMzQuMDE1MzNdLCBbLTEwMy4wMzk3NzcsIDM2LjUwMTg2MV0sIFstMTAzLjAwMTQzOCwgMzYuNTAxODYxXSwgWy0xMDEuODEyOTQyLCAzNi41MDE4NjFdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIlRYIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiVGV4YXMifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbWy0xMTIuMTY0MzU5LCA0MS45OTUyMzJdLCBbLTExMS4wNDcwNjMsIDQyLjAwMDcwOV0sIFstMTExLjA0NzA2MywgNDAuOTk4NDI5XSwgWy0xMDkuMDQ3OTgsIDQwLjk5ODQyOV0sIFstMTA5LjA1MzQ1NywgMzkuMTI1MzE2XSwgWy0xMDkuMDU4OTM0LCAzOC4yNzYzOV0sIFstMTA5LjA0MjUwMywgMzguMTY2ODUxXSwgWy0xMDkuMDQyNTAzLCAzNy4wMDAyNjNdLCBbLTExMC40OTkzNjksIDM3LjAwNTc0XSwgWy0xMTQuMDQ4NDI3LCAzNy4wMDAyNjNdLCBbLTExNC4wNDI5NSwgNDEuOTk1MjMyXSwgWy0xMTIuMTY0MzU5LCA0MS45OTUyMzJdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIlVUIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiVXRhaCJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTcxLjUwMzU1NCwgNDUuMDEzMDI3XSwgWy03MS40OTI2LCA0NC45MTQ0NDJdLCBbLTcxLjYyOTUyNCwgNDQuNzUwMTMzXSwgWy03MS41MzY0MTYsIDQ0LjU4NTgyNV0sIFstNzEuNzAwNzI0LCA0NC40MTYwNF0sIFstNzIuMDM0ODE3LCA0NC4zMjI5MzJdLCBbLTcyLjAyOTM0LCA0NC4wNzY0N10sIFstNzIuMTE2OTcxLCA0My45OTQzMTZdLCBbLTcyLjIwNDYwMiwgNDMuNzY5NzYxXSwgWy03Mi4zNzk4NjQsIDQzLjU3MjU5MV0sIFstNzIuNDU2NTQyLCA0My4xNTA4NjddLCBbLTcyLjQ0NTU4OCwgNDMuMDA4NDY2XSwgWy03Mi41MzMyMTksIDQyLjk1MzY5N10sIFstNzIuNTQ0MTczLCA0Mi44MDU4Ml0sIFstNzIuNDU2NTQyLCA0Mi43MjkxNDJdLCBbLTczLjI2NzEyOSwgNDIuNzQ1NTczXSwgWy03My4yNzgwODMsIDQyLjgzMzIwNF0sIFstNzMuMjQ1MjIxLCA0My41MjMyOTldLCBbLTczLjQwNDA1MiwgNDMuNjg3NjA3XSwgWy03My4zNDkyODMsIDQzLjc2OTc2MV0sIFstNzMuNDM2OTE0LCA0NC4wNDM2MDhdLCBbLTczLjMyMTg5OCwgNDQuMjQ2MjU1XSwgWy03My4yOTQ1MTQsIDQ0LjQzNzk0OF0sIFstNzMuMzg3NjIyLCA0NC42MTg2ODddLCBbLTczLjMzMjg1MiwgNDQuODA0OTAzXSwgWy03My4zNDM4MDYsIDQ1LjAxMzAyN10sIFstNzIuMzA4NjY0LCA0NS4wMDIwNzNdLCBbLTcxLjUwMzU1NCwgNDUuMDEzMDI3XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJWVCIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIlZlcm1vbnQifSwgInR5cGUiOiAiRmVhdHVyZSJ9LCB7Imdlb21ldHJ5IjogeyJjb29yZGluYXRlcyI6IFtbW1stNzUuMzk3NjU5LCAzOC4wMTM0OTddLCBbLTc1LjI0NDMwNCwgMzguMDI5OTI4XSwgWy03NS4zNzU3NTEsIDM3Ljg2MDE0Ml0sIFstNzUuNTEyNjc0LCAzNy43OTk4OTZdLCBbLTc1LjU5NDgyOCwgMzcuNTY5ODY1XSwgWy03NS44MDI5NTIsIDM3LjE5NzQzM10sIFstNzUuOTcyNzM3LCAzNy4xMjA3NTVdLCBbLTc2LjAyNzUwNywgMzcuMjU3Njc5XSwgWy03NS45Mzk4NzYsIDM3LjU2NDM4OF0sIFstNzUuNjcxNTA2LCAzNy45NTMyNV0sIFstNzUuMzk3NjU5LCAzOC4wMTM0OTddXV0sIFtbWy03Ni4wMTY1NTMsIDM3Ljk1MzI1XSwgWy03NS45OTQ2NDUsIDM3Ljk1MzI1XSwgWy03Ni4wNDM5MzgsIDM3Ljk1MzI1XSwgWy03Ni4wMTY1NTMsIDM3Ljk1MzI1XV1dLCBbW1stNzguMzQ5NzI5LCAzOS40NjQ4ODZdLCBbLTc3LjgyOTQyLCAzOS4xMzA3OTNdLCBbLTc3LjcxOTg4MSwgMzkuMzIyNDg1XSwgWy03Ny41NjY1MjcsIDM5LjMwNjA1NV0sIFstNzcuNDU2OTg4LCAzOS4yMjM5MDFdLCBbLTc3LjQ1Njk4OCwgMzkuMDc2MDIzXSwgWy03Ny4yNDg4NjQsIDM5LjAyNjczMV0sIFstNzcuMTE3NDE4LCAzOC45MzM2MjNdLCBbLTc3LjA0MDc0MSwgMzguNzkxMjIyXSwgWy03Ny4xMjgzNzIsIDM4LjYzMjM5MV0sIFstNzcuMjQ4ODY0LCAzOC41ODg1NzVdLCBbLTc3LjMyNTU0MiwgMzguNDQ2MTc1XSwgWy03Ny4yODE3MjYsIDM4LjM0MjExM10sIFstNzcuMDEzMzU2LCAzOC4zNzQ5NzVdLCBbLTc2Ljk2NDA2NCwgMzguMjE2MTQ0XSwgWy03Ni42MTM1MzksIDM4LjE1MDQyXSwgWy03Ni41MTQ5NTQsIDM4LjAyNDQ1MV0sIFstNzYuMjM1NjMxLCAzNy44ODc1MjddLCBbLTc2LjM2MTYsIDM3LjYwODIwM10sIFstNzYuMjQ2NTg0LCAzNy4zODkxMjZdLCBbLTc2LjM4MzUwOCwgMzcuMjg1MDY0XSwgWy03Ni4zOTk5MzksIDM3LjE1OTA5NF0sIFstNzYuMjczOTY5LCAzNy4wODI0MTddLCBbLTc2LjQxMDg5MywgMzYuOTYxOTI0XSwgWy03Ni42MTkwMTYsIDM3LjEyMDc1NV0sIFstNzYuNjY4MzA5LCAzNy4wNjU5ODZdLCBbLTc2LjQ4NzU3LCAzNi45NTA5N10sIFstNzUuOTk0NjQ1LCAzNi45MjM1ODZdLCBbLTc1Ljg2ODY3NiwgMzYuNTUxMTU0XSwgWy03OS41MTA4NDEsIDM2LjU0MDJdLCBbLTgwLjI5NDA0MywgMzYuNTQ1Njc3XSwgWy04MC45Nzg2NjEsIDM2LjU2MjEwOF0sIFstODEuNjc5NzA5LCAzNi41ODk0OTJdLCBbLTgzLjY3MzMxNiwgMzYuNjAwNDQ2XSwgWy04My4xMzY1NzUsIDM2Ljc0Mjg0N10sIFstODMuMDcwODUyLCAzNi44NTIzODVdLCBbLTgyLjg3OTE1OSwgMzYuODkwNzI0XSwgWy04Mi44NjgyMDUsIDM2Ljk3ODM1NV0sIFstODIuNzIwMzI4LCAzNy4wNDQwNzhdLCBbLTgyLjcyMDMyOCwgMzcuMTIwNzU1XSwgWy04Mi4zNTMzNzMsIDM3LjI2ODYzM10sIFstODEuOTY5OTg3LCAzNy41MzcwMDNdLCBbLTgxLjk4NjQxOCwgMzcuNDU0ODQ5XSwgWy04MS44NDk0OTQsIDM3LjI4NTA2NF0sIFstODEuNjc5NzA5LCAzNy4yMDI5MV0sIFstODEuNTUzNzQsIDM3LjIwODM4N10sIFstODEuMzYyMDQ3LCAzNy4zMzk4MzNdLCBbLTgxLjIyNTEyMywgMzcuMjM1NzcxXSwgWy04MC45Njc3MDcsIDM3LjI5MDU0MV0sIFstODAuNTEzMTIxLCAzNy40ODIyMzRdLCBbLTgwLjQ3NDc4MiwgMzcuNDIxOTg3XSwgWy04MC4yOTk1MiwgMzcuNTA5NjE4XSwgWy04MC4yOTQwNDMsIDM3LjY5MDM1N10sIFstODAuMTg0NTA1LCAzNy44NDkxODldLCBbLTc5Ljk5ODI4OSwgMzcuOTk3MDY2XSwgWy03OS45MjE2MTEsIDM4LjE3NzgwNV0sIFstNzkuNzI0NDQyLCAzOC4zNjQwMjFdLCBbLTc5LjY0Nzc2NCwgMzguNTk0MDUyXSwgWy03OS40Nzc5NzksIDM4LjQ1NzEyOV0sIFstNzkuMzEzNjcxLCAzOC40MTMzMTNdLCBbLTc5LjIwOTYwOSwgMzguNDk1NDY3XSwgWy03OC45OTYwMDgsIDM4Ljg1MTQ2OV0sIFstNzguODcwMDM5LCAzOC43NjM4MzhdLCBbLTc4LjQwNDQ5OSwgMzkuMTY5MTMxXSwgWy03OC4zNDk3MjksIDM5LjQ2NDg4Nl1dXV0sICJ0eXBlIjogIk11bHRpUG9seWdvbiJ9LCAiaWQiOiAiVkEiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJWaXJnaW5pYSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbWy0xMTcuMDMzMzU5LCA0OS4wMDAyMzldLCBbLTExNy4wNDQzMTMsIDQ3Ljc2MjQ1MV0sIFstMTE3LjAzODgzNiwgNDYuNDI2MDc3XSwgWy0xMTcuMDU1MjY3LCA0Ni4zNDM5MjNdLCBbLTExNi45MjM4MiwgNDYuMTY4NjYxXSwgWy0xMTYuOTE4MzQ0LCA0NS45OTMzOTldLCBbLTExOC45ODg2MjcsIDQ1Ljk5ODg3Nl0sIFstMTE5LjEyNTU1MSwgNDUuOTMzMTUzXSwgWy0xMTkuNTI1MzY3LCA0NS45MTEyNDVdLCBbLTExOS45NjM1MjIsIDQ1LjgyMzYxNF0sIFstMTIwLjIwOTk4NSwgNDUuNzI1MDI5XSwgWy0xMjAuNTA1NzM5LCA0NS42OTc2NDRdLCBbLTEyMC42MzcxODYsIDQ1Ljc0NjkzN10sIFstMTIxLjE4NDg4LCA0NS42MDQ1MzZdLCBbLTEyMS4yMTc3NDIsIDQ1LjY3MDI1OV0sIFstMTIxLjUzNTQwNCwgNDUuNzI1MDI5XSwgWy0xMjEuODA5MjUxLCA0NS43MDg1OThdLCBbLTEyMi4yNDc0MDcsIDQ1LjU0OTc2N10sIFstMTIyLjc2MjIzOSwgNDUuNjU5MzA1XSwgWy0xMjIuODExNTMxLCA0NS45NjA1MzddLCBbLTEyMi45MDQ2MzksIDQ2LjA4MTAzXSwgWy0xMjMuMTE4MjQsIDQ2LjE4NTA5Ml0sIFstMTIzLjIxMTM0OCwgNDYuMTc0MTM4XSwgWy0xMjMuMzcwMTc5LCA0Ni4xNDY3NTNdLCBbLTEyMy41NDU0NDEsIDQ2LjI2MTc2OV0sIFstMTIzLjcyNjE4LCA0Ni4zMDAxMDhdLCBbLTEyMy44NzQwNTgsIDQ2LjIzOTg2MV0sIFstMTI0LjA2NTc1MSwgNDYuMzI3NDkyXSwgWy0xMjQuMDI3NDEyLCA0Ni40NjQ0MTZdLCBbLTEyMy44OTU5NjYsIDQ2LjUzNTYxNl0sIFstMTI0LjA5ODYxMiwgNDYuNzQzNzRdLCBbLTEyNC4yMzU1MzYsIDQ3LjI4NTk1N10sIFstMTI0LjMxNzY5LCA0Ny4zNTcxNTddLCBbLTEyNC40MjcyMjksIDQ3Ljc0MDU0M10sIFstMTI0LjYyNDM5OSwgNDcuODg4NDJdLCBbLTEyNC43MDY1NTMsIDQ4LjE4NDE3NV0sIFstMTI0LjU5NzAxNCwgNDguMzgxMzQ1XSwgWy0xMjQuMzk0MzY3LCA0OC4yODgyMzddLCBbLTEyMy45ODM1OTcsIDQ4LjE2MjI2N10sIFstMTIzLjcwNDI3MywgNDguMTY3NzQ0XSwgWy0xMjMuNDI0OTQ5LCA0OC4xMTg0NTJdLCBbLTEyMy4xNjIwNTYsIDQ4LjE2Nzc0NF0sIFstMTIzLjAzNjA4NiwgNDguMDgwMTEzXSwgWy0xMjIuODAwNTc4LCA0OC4wODU1OV0sIFstMTIyLjYzNjI2OSwgNDcuODY2NTEyXSwgWy0xMjIuNTE1Nzc3LCA0Ny44ODI5NDNdLCBbLTEyMi40OTM4NjksIDQ3LjU4NzE4OV0sIFstMTIyLjQyMjY2OSwgNDcuMzE4ODE4XSwgWy0xMjIuMzI0MDg0LCA0Ny4zNDYyMDNdLCBbLTEyMi40MjI2NjksIDQ3LjU3NjIzNV0sIFstMTIyLjM5NTI4NCwgNDcuODAwNzg5XSwgWy0xMjIuMjMwOTc2LCA0OC4wMzA4MjFdLCBbLTEyMi4zNjI0MjIsIDQ4LjEyMzkyOV0sIFstMTIyLjM3MzM3NiwgNDguMjg4MjM3XSwgWy0xMjIuNDcxOTYxLCA0OC40Njg5NzZdLCBbLTEyMi40MjI2NjksIDQ4LjYwMDQyMl0sIFstMTIyLjQ4ODM5MiwgNDguNzUzNzc3XSwgWy0xMjIuNjQ3MjIzLCA0OC43NzU2ODVdLCBbLTEyMi43OTUxMDEsIDQ4Ljg5MDddLCBbLTEyMi43NTY3NjIsIDQ5LjAwMDIzOV0sIFstMTE3LjAzMzM1OSwgNDkuMDAwMjM5XV1dLCBbW1stMTIyLjcxODQyMywgNDguMzEwMTQ1XSwgWy0xMjIuNTg2OTc3LCA0OC4zNTM5Nl0sIFstMTIyLjYwODg4NSwgNDguMTUxMzEzXSwgWy0xMjIuNzY3NzE2LCA0OC4yMjc5OTFdLCBbLTEyMi43MTg0MjMsIDQ4LjMxMDE0NV1dXSwgW1tbLTEyMy4wMjUxMzIsIDQ4LjU4Mzk5Ml0sIFstMTIyLjkxNTU5MywgNDguNzE1NDM4XSwgWy0xMjIuNzY3NzE2LCA0OC41NTY2MDddLCBbLTEyMi44MTE1MzEsIDQ4LjQxOTY4M10sIFstMTIzLjA0MTU2MywgNDguNDU4MDIyXSwgWy0xMjMuMDI1MTMyLCA0OC41ODM5OTJdXV1dLCAidHlwZSI6ICJNdWx0aVBvbHlnb24ifSwgImlkIjogIldBIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiV2FzaGluZ3RvbiJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTgwLjUxODU5OCwgNDAuNjM2OTUxXSwgWy04MC41MTg1OTgsIDM5LjcyMjMwMl0sIFstNzkuNDc3OTc5LCAzOS43MjIzMDJdLCBbLTc5LjQ4ODkzMywgMzkuMjA3NDddLCBbLTc5LjI5MTc2MywgMzkuMzAwNTc4XSwgWy03OS4wOTQ1OTMsIDM5LjQ3MDM2M10sIFstNzguOTYzMTQ3LCAzOS40Mzc1MDFdLCBbLTc4Ljc2NTk3NywgMzkuNTg1Mzc5XSwgWy03OC40NzAyMjIsIDM5LjUxNDE3OF0sIFstNzguNDMxODg0LCAzOS42MjM3MTddLCBbLTc4LjI2NzU3NSwgMzkuNjE4MjRdLCBbLTc4LjE3NDQ2NywgMzkuNjk0OTE3XSwgWy03OC4wMDQ2ODIsIDM5LjYwMTgwOV0sIFstNzcuODM0ODk3LCAzOS42MDE4MDldLCBbLTc3LjcxOTg4MSwgMzkuMzIyNDg1XSwgWy03Ny44Mjk0MiwgMzkuMTMwNzkzXSwgWy03OC4zNDk3MjksIDM5LjQ2NDg4Nl0sIFstNzguNDA0NDk5LCAzOS4xNjkxMzFdLCBbLTc4Ljg3MDAzOSwgMzguNzYzODM4XSwgWy03OC45OTYwMDgsIDM4Ljg1MTQ2OV0sIFstNzkuMjA5NjA5LCAzOC40OTU0NjddLCBbLTc5LjMxMzY3MSwgMzguNDEzMzEzXSwgWy03OS40Nzc5NzksIDM4LjQ1NzEyOV0sIFstNzkuNjQ3NzY0LCAzOC41OTQwNTJdLCBbLTc5LjcyNDQ0MiwgMzguMzY0MDIxXSwgWy03OS45MjE2MTEsIDM4LjE3NzgwNV0sIFstNzkuOTk4Mjg5LCAzNy45OTcwNjZdLCBbLTgwLjE4NDUwNSwgMzcuODQ5MTg5XSwgWy04MC4yOTQwNDMsIDM3LjY5MDM1N10sIFstODAuMjk5NTIsIDM3LjUwOTYxOF0sIFstODAuNDc0NzgyLCAzNy40MjE5ODddLCBbLTgwLjUxMzEyMSwgMzcuNDgyMjM0XSwgWy04MC45Njc3MDcsIDM3LjI5MDU0MV0sIFstODEuMjI1MTIzLCAzNy4yMzU3NzFdLCBbLTgxLjM2MjA0NywgMzcuMzM5ODMzXSwgWy04MS41NTM3NCwgMzcuMjA4Mzg3XSwgWy04MS42Nzk3MDksIDM3LjIwMjkxXSwgWy04MS44NDk0OTQsIDM3LjI4NTA2NF0sIFstODEuOTg2NDE4LCAzNy40NTQ4NDldLCBbLTgxLjk2OTk4NywgMzcuNTM3MDAzXSwgWy04Mi4xMDE0MzQsIDM3LjU1MzQzNF0sIFstODIuMjkzMTI3LCAzNy42Njg0NDldLCBbLTgyLjM0MjQxOSwgMzcuNzgzNDY1XSwgWy04Mi41MDEyNSwgMzcuOTMxMzQzXSwgWy04Mi42MjE3NDMsIDM4LjEyMzAzNl0sIFstODIuNTk0MzU4LCAzOC40MjQyNjddLCBbLTgyLjMzMTQ2NSwgMzguNDQ2MTc1XSwgWy04Mi4yOTMxMjcsIDM4LjU3NzYyMl0sIFstODIuMTcyNjM0LCAzOC42MzIzOTFdLCBbLTgyLjIyMTkyNiwgMzguNzg1NzQ1XSwgWy04Mi4wMzU3MSwgMzkuMDI2NzMxXSwgWy04MS44ODc4MzMsIDM4Ljg3MzM3Nl0sIFstODEuNzgzNzcxLCAzOC45NjY0ODRdLCBbLTgxLjgxMTE1NiwgMzkuMDgxNV0sIFstODEuNjg1MTg2LCAzOS4yNzMxOTNdLCBbLTgxLjU3MDE3LCAzOS4yNjc3MTZdLCBbLTgxLjQ1NTE1NSwgMzkuNDEwMTE3XSwgWy04MS4zNDU2MTYsIDM5LjM0NDM5M10sIFstODEuMjE5NjQ2LCAzOS4zODgyMDldLCBbLTgwLjgzMDc4MywgMzkuNzExMzQ4XSwgWy04MC43Mzc2NzUsIDQwLjA3ODMwM10sIFstODAuNjAwNzUyLCA0MC4zMTkyODldLCBbLTgwLjU5NTI3NSwgNDAuNDcyNjQzXSwgWy04MC42NjY0NzUsIDQwLjU4MjE4Ml0sIFstODAuNTE4NTk4LCA0MC42MzY5NTFdXV0sICJ0eXBlIjogIlBvbHlnb24ifSwgImlkIjogIldWIiwgInByb3BlcnRpZXMiOiB7Im5hbWUiOiAiV2VzdCBWaXJnaW5pYSJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTkwLjQxNTQyOSwgNDYuNTY4NDc4XSwgWy05MC4yMjkyMTMsIDQ2LjUwODIzMV0sIFstOTAuMTE5Njc0LCA0Ni4zMzg0NDZdLCBbLTg5LjA5MDAxLCA0Ni4xMzU3OTldLCBbLTg4LjY2MjgwOCwgNDUuOTg3OTIyXSwgWy04OC41MzEzNjIsIDQ2LjAyMDc4NF0sIFstODguMTA0MTYsIDQ1LjkyMjE5OV0sIFstODcuOTg5MTQ1LCA0NS43OTYyMjldLCBbLTg3Ljc4MTAyMSwgNDUuNjc1NzM2XSwgWy04Ny43OTE5NzUsIDQ1LjUwMDQ3NF0sIFstODcuODg1MDgzLCA0NS4zNjM1NTFdLCBbLTg3LjY0OTU3NCwgNDUuMzQxNjQzXSwgWy04Ny43NDI2ODIsIDQ1LjE5OTI0M10sIFstODcuNTg5MzI4LCA0NS4wOTUxODFdLCBbLTg3LjYyNzY2NiwgNDQuOTc0Njg4XSwgWy04Ny44MTkzNTksIDQ0Ljk1Mjc4XSwgWy04Ny45ODM2NjgsIDQ0LjcyMjc0OV0sIFstODguMDQzOTE0LCA0NC41NjM5MTddLCBbLTg3LjkyODg5OCwgNDQuNTM2NTMzXSwgWy04Ny43NzU1NDQsIDQ0LjY0MDU5NV0sIFstODcuNjExMjM2LCA0NC44Mzc3NjRdLCBbLTg3LjQwMzExMiwgNDQuOTE0NDQyXSwgWy04Ny4yMzg4MDQsIDQ1LjE2NjM4MV0sIFstODcuMDMwNjgsIDQ1LjIyMTE1XSwgWy04Ny4wNDcxMTEsIDQ1LjA4OTcwNF0sIFstODcuMTg5NTExLCA0NC45NjkyMTFdLCBbLTg3LjQ2ODgzNSwgNDQuNTUyOTY0XSwgWy04Ny41NDU1MTIsIDQ0LjMyMjkzMl0sIFstODcuNTQwMDM1LCA0NC4xNTg2MjRdLCBbLTg3LjY0NDA5NywgNDQuMTAzODU0XSwgWy04Ny43MzcyMDUsIDQzLjg3OTNdLCBbLTg3LjcwNDM0NCwgNDMuNjg3NjA3XSwgWy04Ny43OTE5NzUsIDQzLjU2MTYzN10sIFstODcuOTEyNDY3LCA0My4yNDk0NTJdLCBbLTg3Ljg4NTA4MywgNDMuMDAyOTg5XSwgWy04Ny43NjQ1OSwgNDIuNzgzOTEyXSwgWy04Ny44MDI5MjksIDQyLjQ5MzYzNF0sIFstODguNzg4Nzc4LCA0Mi40OTM2MzRdLCBbLTkwLjYzOTk4NCwgNDIuNTEwMDY1XSwgWy05MC43MTExODQsIDQyLjYzNjAzNF0sIFstOTEuMDY3MTg1LCA0Mi43NTEwNV0sIFstOTEuMTQzODYyLCA0Mi45MDk4ODFdLCBbLTkxLjE3NjcyNCwgNDMuMTM0NDM2XSwgWy05MS4wNTYyMzEsIDQzLjI1NDkyOV0sIFstOTEuMjA0MTA5LCA0My4zNTM1MTRdLCBbLTkxLjIxNTA2MiwgNDMuNTAxMzkxXSwgWy05MS4yNjk4MzIsIDQzLjYxNjQwN10sIFstOTEuMjQyNDQ3LCA0My43NzUyMzhdLCBbLTkxLjQzNDE0LCA0My45OTQzMTZdLCBbLTkxLjU5Mjk3MSwgNDQuMDMyNjU0XSwgWy05MS44Nzc3NzIsIDQ0LjIwMjQzOV0sIFstOTEuOTI3MDY1LCA0NC4zMzM4ODZdLCBbLTkyLjIzMzc3MywgNDQuNDQzNDI1XSwgWy05Mi4zMzc4MzUsIDQ0LjU1Mjk2NF0sIFstOTIuNTQ1OTU5LCA0NC41NjkzOTRdLCBbLTkyLjgwODg1MiwgNDQuNzUwMTMzXSwgWy05Mi43Mzc2NTIsIDQ1LjExNzA4OF0sIFstOTIuNzU5NTYsIDQ1LjI4Njg3NF0sIFstOTIuNjQ0NTQ0LCA0NS40NDAyMjhdLCBbLTkyLjc3MDUxMywgNDUuNTY2MTk4XSwgWy05Mi44ODU1MjksIDQ1LjU3NzE1MV0sIFstOTIuODY5MDk4LCA0NS43MTk1NTJdLCBbLTkyLjYzOTA2NywgNDUuOTMzMTUzXSwgWy05Mi4zNTQyNjYsIDQ2LjAxNTMwN10sIFstOTIuMjk0MDIsIDQ2LjA3NTU1M10sIFstOTIuMjk0MDIsIDQ2LjY2NzA2M10sIFstOTIuMDkxMzczLCA0Ni43NDkyMTddLCBbLTkyLjAxNDY5NiwgNDYuNzA1NDAxXSwgWy05MS43OTAxNDEsIDQ2LjY5NDQ0N10sIFstOTEuMDk0NTcsIDQ2Ljg2NDIzMl0sIFstOTAuODM3MTU0LCA0Ni45NTczNF0sIFstOTAuNzQ5NTIyLCA0Ni44ODYxNF0sIFstOTAuODg2NDQ2LCA0Ni43NTQ2OTRdLCBbLTkwLjU1NzgzLCA0Ni41ODQ5MDhdLCBbLTkwLjQxNTQyOSwgNDYuNTY4NDc4XV1dLCAidHlwZSI6ICJQb2x5Z29uIn0sICJpZCI6ICJXSSIsICJwcm9wZXJ0aWVzIjogeyJuYW1lIjogIldpc2NvbnNpbiJ9LCAidHlwZSI6ICJGZWF0dXJlIn0sIHsiZ2VvbWV0cnkiOiB7ImNvb3JkaW5hdGVzIjogW1tbLTEwOS4wODA4NDIsIDQ1LjAwMjA3M10sIFstMTA1LjkxNTE3LCA0NS4wMDIwNzNdLCBbLTEwNC4wNTg0ODgsIDQ0Ljk5NjU5Nl0sIFstMTA0LjA1MzAxMSwgNDMuMDAyOTg5XSwgWy0xMDQuMDUzMDExLCA0MS4wMDM5MDZdLCBbLTEwNS43Mjg5NTQsIDQwLjk5ODQyOV0sIFstMTA3LjkxOTczMSwgNDEuMDAzOTA2XSwgWy0xMDkuMDQ3OTgsIDQwLjk5ODQyOV0sIFstMTExLjA0NzA2MywgNDAuOTk4NDI5XSwgWy0xMTEuMDQ3MDYzLCA0Mi4wMDA3MDldLCBbLTExMS4wNDcwNjMsIDQ0LjQ3NjI4Nl0sIFstMTExLjA1MjU0LCA0NS4wMDIwNzNdLCBbLTEwOS4wODA4NDIsIDQ1LjAwMjA3M11dXSwgInR5cGUiOiAiUG9seWdvbiJ9LCAiaWQiOiAiV1kiLCAicHJvcGVydGllcyI6IHsibmFtZSI6ICJXeW9taW5nIn0sICJ0eXBlIjogIkZlYXR1cmUifV0sICJ0eXBlIjogIkZlYXR1cmVDb2xsZWN0aW9uIn0pOwoKICAgICAgICAKPC9zY3JpcHQ+ onload=\"this.contentDocument.open();this.contentDocument.write(atob(this.getAttribute('data-html')));this.contentDocument.close();\" allowfullscreen webkitallowfullscreen mozallowfullscreen></iframe></div></div>" ], "text/plain": [ "<folium.folium.Map at 0x7f7bea452dc0>" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import folium\n", "from folium import plugins\n", "\n", "\n", "m = folium.Map([40.0, -105.0], zoom_start=6)\n", "\n", "url = \"https://raw.githubusercontent.com/python-visualization/folium/main/examples/data/us-states.json\"\n", "stripes = plugins.pattern.StripePattern(angle=-45)\n", "stripes.add_to(m)\n", "\n", "circles = plugins.pattern.CirclePattern(\n", " width=20, height=20, radius=5, fill_opacity=0.5, opacity=1\n", ")\n", "circles.add_to(m)\n", "\n", "\n", "def style_function(feature):\n", " default_style = {\n", " \"opacity\": 1.0,\n", " \"fillColor\": \"#ffff00\",\n", " \"color\": \"black\",\n", " \"weight\": 2,\n", " }\n", "\n", " if feature[\"properties\"][\"name\"] == \"Colorado\":\n", " default_style[\"fillPattern\"] = stripes\n", " default_style[\"fillOpacity\"] = 1.0\n", "\n", " if feature[\"properties\"][\"name\"] == \"Utah\":\n", " default_style[\"fillPattern\"] = circles\n", " default_style[\"fillOpacity\"] = 1.0\n", "\n", " return default_style\n", "\n", "\n", "# Adding remote GeoJSON as additional layer.\n", "folium.GeoJson(url, smooth_factor=0.5, style_function=style_function).add_to(m)\n", "\n", "m" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
TimothyADavis/KinMSpy
kinms/docs/KinMSpy_tutorial.ipynb
1
227468
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# KinMS galaxy fitting tutorial" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial aims at getting you up and running with galaxy kinematic modelling using _KinMS_! To start you will need to download the KinMSpy code and have it in your python path. \n", "\n", "To do this you can simply call `pip install kinms`\n", "\n", "To get started with kinematic modelling we will complete the following steps:\n", "1. Generate a model to fit (can be skipped if you have your own observed data cube)\n", "2. Read in that cube, and extract the important information from the header\n", "3. Fit the data using an MCMC code\n", "\n", "We will start by importing a variety of modules we will need to work with KinMS, and plot its output." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "from kinms import KinMS\n", "import numpy as np\n", "from astropy.io import fits\n", "from kinms.utils.KinMS_figures import KinMS_plotter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Generate a model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we will generate a simple galaxy model using KinMS itself, that we can attempt to determine the parameters of later. If you have your own observed galaxy to fit then of course this step can be skipped!\n", "\n", "The `make_model` function below creates a simple exponential disc:\n", "\n", "$\n", "\\begin{align}\n", "\\large \\Sigma_{H2}(r) \\propto e^{\\frac{-r}{d_{scale}}}\n", "\\end{align}\n", "$\n", "\n", "with a circular velocity profile which is parameterized using an arctan function:\n", "\n", "$\n", "\\begin{align}\n", "\\large V(r) = \\frac{2V_{flat}}{\\pi} \\arctan\\left(\\frac{r}{r_{turn}}\\right)\n", "\\end{align}\n", "$\n", "\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def make_model(param,obspars,rad,filename=None,plot=False):\n", " '''\n", " This function takes in the `param` array (along with obspars; the observational setup,\n", " and a radius vector `rad`) and uses it to create a KinMS model.\n", " '''\n", " \n", " total_flux=param[0]\n", " posAng=param[1]\n", " inc=param[2]\n", " v_flat=param[3]\n", " r_turn=param[4]\n", " scalerad=param[5]\n", " \n", " ### Here we use an exponential disk model for the surface brightness of the gas ###\n", " sbprof = np.exp((-1)*rad/scalerad)\n", "\n", " ### We use a very simple arctan rotation curve model with two free parameters. ###\n", " vel=(v_flat*2/np.pi)*np.arctan(rad/r_turn)\n", "\n", " ### This returns the model\n", " return KinMS(obspars['xsize'],obspars['ysize'],obspars['vsize'],obspars['cellsize'],obspars['dv'],\\\n", " obspars['beamsize'],inc,sbProf=sbprof,sbRad=rad,velRad=rad,velProf=vel,\\\n", " intFlux=total_flux,posAng=posAng,fixSeed=True,fileName=filename).model_cube(toplot=plot)\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that we have set `fixSeed=True` in the KinMS call - this is crucial if you are fitting with KinMS. It ensures if you generate two models with the same input parameters you will get an identical output model! \n", "\n", "Now we have our model function, lets use it to generate a model which we will later fit. The first thing we need is to define the setup of our desired datacube (typically if you are fitting real data this will all be determined from the header keywords- see below). " ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "### Setup cube parameters ###\n", "obspars={}\n", "obspars['xsize']=64.0 # arcseconds\n", "obspars['ysize']=64.0 # arcseconds\n", "obspars['vsize']=500.0 # km/s\n", "obspars['cellsize']=1.0 # arcseconds/pixel\n", "obspars['dv']=20.0 # km/s/channel\n", "obspars['beamsize']=np.array([4.0,4.0,0]) # [bmaj,bmin,bpa] in (arcsec, arcsec, degrees)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We also need to create a radius vector- you ideally want this to oversample your pixel grid somewhat to avoid interpolation errors!" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "rad=np.arange(0,100,0.3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we have all the ingredients we can create our data to fit. Here we will also output the model to disc, so we can demonstrate how to read in the header keywords from real ALMA/VLA etc data. " ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAKqCAYAAAApPtZIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdX4wc13nn/d8jC2vA2Iij4eqFAcFYuSnB2EABxiNqvTcxGYtULpILvwopAbyM5Rka2au8skbKVa4iDWXkavPaM3Ry8wJEbFKGX2BzEXGoFR0sEEficIAIXmglNgUYBowopIbehYEElp+9qFMzNT3V3VXdp7r+9PcDNMiprq4+HGkOfzz91HPM3QUAAAC00X11DwAAAACYFGEWAAAArUWYBQAAQGsRZgEAANBa99c9gK4zs5uSHpL0Qd1jATATj0r6yN2/WPdAuop5FZg7I+dVwmz1Hjpy5MjDS0tLD9c9EADV29nZ0b179+oeRtcxrwJzZNy8Spit3gdLS0sPv/XWW3WPA8AMnDx5UtevX2fFsFrMq8AcGTevUjMLAACA1iLMAgAAoLUIswAAAGgtwiwAAABaizALAACA1iLMAgAAoLUIswAAAGgtwiwAAABaizALAACA1iLMAgAAoLUIswAAAGgtwiwAAABaizALAACA1iLMAgAAoLUIswAAAGgtwiwAAABaizALAACA1iLMAgAAoLUIswAAAGgtwiwAAABaizALAACA1iLMAgAAoLUIswAAAGgtwiwAAABaizALAACA1iLMAgAAoLUIswAAAGgtwiwAAABaizALAACA1iLMAgAAoLUIswAAAGgtwiwAAABaizALAACA1iLMAgAAoLUIswAAAGgtwiwAAABa6/66B9BUZnZGUk/SsfDrhrtfGThnWdJxSf1wTt/dt2Y9VgBoOuZUAFUhzOYIk24/nWjNbEHSDTNbdPfNcKwnad3dT2ded9nM+u7er2XgANBAzKkAqkSZQb6eu2+nX7j7rqR1SRuZc1YHvlb4er364QFAqzCnAqgMYXZAWDF4LvyatRWe74Wvz0jaHjjnnXAcACDmVADVI8wOCCsGvfDIFSblnqS7Oa/NTs4AMNeYUwFUjZrZHO7+YM7hU5J23b2fTqzpRJujp+QGBknS9evXZWZF3neC0QJAs8WeUyXmVQD7WJktblXSK+H3gx+XAQDKYU4FEAVhtgAzW5F0190vTPL6EydOyN3HPgBgHkw7p0rMqwD2EWbHCB9/rWbbxWSeYzUBAEpgTgUQG2F2vHVJTw0cS2u3FrMHMxMxPREBIB9zKoCoCLMjmNmGpLXBmxLC130drvNaVLihYUZDBIDWYE4FUAXC7BChpms9O4ma2alMi5gtJdsuZi2H4wCADOZUAFUhzOYIWy9K0oKZLYfHKUlnMxPxmqSzAy9dDccBAAFzKoAq0Wd2QKjRujzk6b0VBXffNbM1M1uX9LaSPojrfBwGAPuYUwFUjTA7INRuje/EnZy7rcPbLwIAAuZUAFWjzAAAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAa90/yzczs0cknZJ0TFJP0oKkxfDrrqS+pLuSbkm64e7/bZbjA4C2YV4FMO8qD7Nhoj0vaUXSEUm3lUyu/fD7O+HUo0om36OSnpR0wcxc0pakDXf/QdVjBYA2YF4FgH2Vhdkw2W5KekLSZUln3f1ayWv0JD0l6byZXZT0orv/ZeShAkArMK8CwGGV1Mya2auSrir5l/9Rdz9fdsKVJHfvu/tFd39ayUdoj5nZ22b272OPGQCajHkVAPJFD7Nm9oakf3b3x9z99VjXdfddd39J0nOSLprZM7GuDQBNxrwKAMNFDbNm9h1Jq+7+rZjXzQqrCk9LOmZmX6nqfQCgCZhXAWC0aGHWzD4vac3db8e65iju/pokm8V7AUAdmFcBYLxoYTZMtm5mz5vZA7GuO+Y9S9eLAUBbMK8CwHixuxn8iaRvStows8tKblSgpyG671fvln/N/Y/HHwe6iHkVAEaIHWavSlpV0vfwWUlnzeyWpHVav6D1Jgms01yPsIsE8yo67xm9MfL5P9Tvjnz+9+/mHFz0KUaENol6A5i7X3P3B5W0e1mT9KakR5XcJXvHzP6M9i9ojV+9e/BR9/vXNQ7UinkVXfdCXhCN4S7l3/Oikj6z7n7b3V9z99Pufp+kpyVdDL/eNrPvVfG+wNTaEBoJt3OJeRVdVFmQTRFo50Ll29lKkrtvKdk+UWZ2RNLxWbwvUEjbA2F2/JQmzA3mVbRd5UE2ddcoOei4qGE23G37rKTvu/sv8s5x93uSuFsW9Wt7iM2T/pkItZ3BvIo2+r2/2v/9f/hqfePY8/8VWKH9i4Gv/54A3Baxywz+RNKGpI/N7K/N7HciXx+Yzrx8PD8Pf8b5wbyKVskG2dYYDLKS9J8oUWiL2GH2qqRfKGm6/aykLTP7n2b2tcjvA5Qzr+FuXv/c3cK8itbIC7L/44ezH8cBfzPFawm0rUA3A3QbYS7B96G1mFfRFtOsyPbuPh1vIGXlrcpmEWgbr5IbwMKuNa+Fh8zslKRTSu66fcnMLrv7c1W8NyCJ4DYMNbWtxbyKJvns8v7vn/jP48//Hz+srnY2t8dsbP/J9C//5rcPHPr0j340gzdGEXQzQPfUFWR/+X7513zmsfjjKOJX7xJoW455FXXJBtlZ+Sv97diNE3KNKzEYtyobDAZZSfqXL3+ZQNsQlfSZHcXd77H3Nyoxq4/Sf/l+/qPua5VF6UFnMK9iVvKC7I3/Uuy142pnay01GCEvyO499+Uvz3AkGGbmYRaoRNWhbNZBc5bhlkALoIBRK7JFA22jFFyVHYdAW79oYdbMPm9mz8e6XoH3e8DMXpjV+6GhqlxdnHWArXMsBNpGYl5FXe67703dd9+b+uyy9h7jFAm0tXc2KGnUquyB8778Zf3Ll7+sOz/84d4DsxMtzIabE26b2bfN7DdiXTePmT0l6aK7f6vK90HDVR1im6qqYEvZQeMwr6IO9933Zt1DiGNUvWyBVdmiQTb1v//4jw98TaCdneituZTsFX6zih6IYdXgDUlnuGt3zlURupoeYvNUFWrRGMyrmKXBIPtPO+WC7bSrs02pm502yKYItLMRvWbW3beV3FX7pJm9b2ZfC9sxTszMlszs+5JuSNpw92/EGCtaKnbYihgI/aN3Cz+iih1qCbSNwryKWRi2IltFoK1VpFrZ1LAgmyLQVq+qPrO7ks6bWU/Sq0qae9+Q9I6SifMdSbuS7mb3Gg+T86KkZUk9SU9KOiNpW9Kmuz9bxXjRIjFD1pThb9pAmvd6e2jKdlnpnylGyy/adzUK8yqqNK604J923tT/tfSVwte78V9G95+tsu+spKl2/SqzKjsuyKbu/PCHOvrVKv/A863SPrPu3ley/aLM7A8knZb0kpIJVZLc7NDOGumBLSWT7XF3v1nlONESsYLsFCE2+orqmOtPHG5/+T6BtqOYVxFb0RrZsoF2Ur27T6u/+EY1Fx+zKltFkE0RaKszk00TJMndX5f0evp1aPK9qP0J+K6k3XDDA3BQjUG26gBb9L1LB1sCbecxr2JaZW/2KhNoa1+dLanKIJsi0FZjZmF2kLvfk3RPEpMsRosRZOsKsT/98f7vP/elqS6VjqdUqI1VdkCgbQXmVZQxadeCmIG2jSYNsikCbXy1hVmgkBqCbOkQmw2sk55XIuhOHGoJtACCadtvzarkICtvS9vfv5tz4rB62RElBkVXZacNsikCbVzsAIZuqyrI/vTH+48YstcreM3SobttbccANFrRLgejuhsMa9M1yxZdsw6yiI8wi+aadlW2RHgr1C4rdoAt8l5jlG7zNW2gpWUX0AlmfyqzP536OjEC7UxM2Y4rZpBlRTY+ygzQTDMOsiOVCa/v9YufK0lf6I1+Pn3vMWUI/tG7xcsOpi05oNwA6AyzP5X7n051jWlLDuq8EazIqixBtvlYmUX3FAyyhVdjR3mvf/BRVtHXFlipnekKLYDOmNUKbe2rszUjyFaHMIvmmcFH2YVLCoaZNLyOUiTYjhnXzNqIUW4AtNanPvXlQ8dilB2U3SmsEnk3fw0pMZjVquzRr371UJA9+tWvsjNYRIRZdEuBFcepVmPHhM3dD+4UfoxUJNQOUTjQsjoLzJ28IJtVdaAdtjqbdyPYLG8CyxMryI56jkAbB2EWzTLNil+McDYsJI4Il4UD6ojXDX3tqFBbd6BldRZolXFBNhWj7KDpxq3KVh1ks+cQaKdHmEU3lKiTHWpUkM0xSYAdZWyozdOEkgMAjVc0yKamCbSTrs5WYoIuBrMKstlzCbTToZsBmqPilb5YQXZUgP3Zh7ulxvTwIwtDr7/w6NHDY8nrfvDTHw/tdlCoy8E03Q3obAB0VhpoJ+l2MEmHg1l1NSizbW1Z3ORVj0atzJrZA2b2iJk9UPdYMEemDLI/+3B371HWqNflhuYJVmgx35hX0URN7WwwzaosQbY+Mw+zZvbKiKePSTot6Tkze3XMuUAixk1fg0oE2VF+8vNPDjyGGRZqSwXaIQr92bkZrNWYV1GlSUsOGtHdAHOhjjKDU5JeznvC3W9Kupl+bWZHzOwVd889Hx1SYYlB6fKCAkF2WIgdFVjznv/Nz34q97rZ8oPdD+4UKzkYUW5QKUoNmoB5FZWKsblCE4wqMWBVtr3qKDOwoie6+70qB4IOmGZFseBH80WC7LiV12GGvW7wPaa90YybwTqPeRWVm2SFdtTqbPRSg8Ees1NuYVsUQbZ+dYRZL3piqPE6VeFYgIMm2AhhXIj9x9379I+7o3/UJgnCuWOdpnaWUoM2Y17FTFTdtmuw3+yses1OuipLkG2GysoMzOwpJXVag5Nsz8z+TONXEnqSzkhaq2B4UZjZsqTjkvpKxtt39616R4WsaVckx63K5oXQYcF18PhvLfz60LWyZQc/+3B3fLkB5krX51Xm1G6apLMBUEZlYdbdr5lZOiGdlbSiZAI2SS8VuERf0nl3v1jVGKdhZj1J6+5+OnPsspn13T3yPqcdV0fz/YK1slnTBNk8/7h73/SBtkTtbKE2XWi0Ls+rzKnt0ZX62WmxKtscld4A5u63Jd2WdM3MLkh6R9ItjfmIqyU1XauSNgaObUhaV/KXDFqubJ1qmSCbfc1goAVG6fC8ypxakbIbJgBtM7Oa2fAv65Xw+3ujHrMa05TOSNoeOPZOOI5ZoMYTc65j8ypzagWqCrJt3PJ2WCeDSeplWZVtllnfAHZV0rUZv2d0Zrag5GO+u9nj7r4bns/ZpgldMlhiMMmq7LDXTnQzWCz8A6GNWj+vMqdWo0krssO6GjR18wS0y0zDbFgh2KvrMrMlM3vezJ7Jnjf4dQMtSvsTbY4DE+/169dlZmMfQJ5JdhabuTrqniGpM/NqqTlVYl4dp0lBFqhaLdvZhsn2bUk3JG0qqZXKumlm3zGzpdmPrpCF8acAc4RNE2rX8nmVORXAxOrYzvaIpDclfSzpWUlPSDrQesXdb7v7eUmnzeyRWY8xthMnTsjdxz7QXlXexJXtZgDkYV5lXh30ySc/qnsIBwxrzfXEf57xQNBJdazMvirp6+7+tLu/HrZazJ1x3P01HV5daIxQ54W6fOax2t56cBvaaQwG4ZjXxtzoxLzKnBpXlYG2S625/u2f/3ndQ8CU6giz99z99RLnN7HoKe15uJg9mJmI6Yk4hzrRYqvGfyBgKm2fV5lTK9K0Fdo6ffpf/y7ate788IfjT8LM1BFm/7nk+UcqGcUUwk0KfR2u81qUtEuD7xbI2VRg0OBuW1V83F82ALMDGIZo9bzKnFotAi26ro4wW/Zv46b+7b2lZNvFrGUN1KmhXqV2vBrcSWuMvHKA31r4daGAOuy8wWuODdB5Yx4S1Nn9q9O6MK8yp7ZEl0oMpsHqbHPUEWbNzH5n8NiQE78t6R+qH9JE1nR4V5pVNXTP80Zr8J3w41Znh9W3pmF12CPPuCDLqixG6MK8ypzaApME2WE3f+X5D+xFgAnMPMyGfogXzezPzOw30sPZc0KLmb+VdNzdvzXrMRYRPhZbM7N1MztjZi8q2Vecj8NmaZoaz7wVzAKrs3mBdpqbtvJeX6ikocSqLLqtC/Mqcyry9BffmMn7THoTGKuzzXB/Te/7tKQ3lExcu5Lumtlz4bmekrqpbY3Za7xu7r6tw9svomHsocflH03e1H/h0aPa/eDOgWMPP7JwaDODNJAW3cFrWADOC7LTrsoWKjHg5q+2a/28ypzabLFXZaO35fo9SX+T+fqPJP3FwVM+/a9/N3Rb20nd+eEP2d62ZrVsmuDufXd/VNLLknYlHVPSF/EJJX0Sz7v7ky3ZTxx1m8HqbF6YHLZ6mq60jnvkKRxkm7Qq2+AykXnCvIoqzUOd7DQtulihrVctYTbl7hfc/Zi736dk4n3Q3R9194t1jgs1qDgQjVyZnDLQxuhyMOw6MYIsq7LzhXkVsU0aZMvUynYBgbY+tYbZrLA7DSsGqEzpu/mHBNpRobZMsB31mmHvU7bjAuYb8yqmVVWQberOX9NuoECgrUcd29kuDTweyDz3gpm9b2Z3zOx7XdhyETMy7crisJXNIeFxVA1rNqSOegy77tBrDwuyda7KUmLQCMyrqMKsSwtm1clg3OYJsw6099335lTvh3pWZk8rKfB/WZmegmb2qqR1SdeU3KBwUdIGE+8cmTYYFQhlpcsNpCREjliljdEya2yIrSrIoiuYVzFS2Y0TpgmyjVqV/aMZvldG0UB7331v6qMf/IIbyKZUR5jdlXTa3Z9z9++6+y/M7IuSXpS06e7n3f2mu29JelYN3UMc7TVRoJVGfsQ/SbAd+5pRIVaKE2RZle0K5lWMVTTQVhlky6iyLVfVq7PS+EBLkI2njtZcR9z92sCx55T0RFzPHnT3e2Z2d2YjQ/3uf1z61eRttPSZx6Rfvj/2tJHtutKQ+NMfH34uDZfvDW99OfVK7bi62DFdC2YSZNE0zKso5JNPfqRPferLuc9NW1ZQJMgOW5WNVmIw2J5rCv/2z/9c//uP/3iqa6SBdjCwEmTjqmNlNu9mhFNK9t/+MOc5zzmGLptBuYFUIPSNW6Udt3JaVpHrxQqy02JVtmmYV1FY3gptnUG2ckNKDcatzkpxVmilw6u0BNm46gizg7vSHFGy//Y7Q85nD0+UFzPQjuvfmg22ZcJtmdcVGEepIMuqbNcwr2Ji89BDdphZB1q6HVSjjjKDwdu4091oLg+eGCZkPg6bR9OWG0ilSg4kjd4lbFTpwaCYq7UFNkIovRo7bZBlVbaJmFdRWqwQO+2q7Ky6GDQFgTa+OlZmb5vZM5IU2sesS/rY3b+bPcnMliS96u6v1TBGNEGM0FQiuBUKhUVWaqeVvgdBFsUxr6KUWQbZSUS/+WtEV4NZrs6iGjNfmXX3183sO2b2Xe2vJixLeysGK0puXFiW5GZ2Y3BCxhyZ4QqtVHCVVjocNIus2Ba9VgET1cZSWtBZzKuoQ9EgG2tV9g/1u8VOjHgTWFaMG8JQjUrCbFgh2HX33E7A7n7ezNYk9dz95sDT2+GR4uMwTK9EoJXGdDvIU/VqbVBriGVVtlbMq4jp17/+ylTN+mME2Rj+66L0+0X/b/4jSX+R/9Sn//Xv9C//5rfHXiJWoOXmr7iqKjP4EyVNvA8JH3PJ3e8NTrjh2LWBx+CkjHkTK0SVDHX20OON2Xhg4rEQZLuEeRVR/frXk5UIxCotaFqtbJFyA2n6kgOCbHxVhdktSa8Oee5imQuZWTUFOWiXmIF2wlA762A71ftO8OcciiDbFMyriK5soC0TZCddla1ys4RYO4JNGmgJstWoKsx+0d3z+h5KkpW81vr4UzAXYoaqCYNeNmDGDrfRrh2zNpYg2yTMq6hE0UA7iyAbze9N9rKiq7NS+UBLkK1OVTeAnTazv5b0dXf/XwPPlW3WHbHPEVovxg1hqTT0lailHVQkdKa1t5Wv7Ma+wYsg2zTMq6jMuBra2F0LmlZikFW0flYqXkNLkK1Wld0Mzko6a2a7OnizQc/M7hS8xmDvRGA/ZDUo1I7SuhArEWSbi3kVlckLtJOE2NpXZccZcSNYKmagJchWr8owe0/Spg5PnEeV08h7iKOSnok5KHRIzFVaqfJQG11VrbYIsk3GvIpKZQNtVUF21KpspfWyFUpLDgZDLUF2NqoKs6vunntDgpkdd/fzRS9kZh/EGxY6J3aglQ6GxKYF26p7xRJkm4x5FTORV0P72eXxr2vciuyofrORV2cl6dM/+pE+XfhsxFTVDWBHRjxXtrZrY5qBYA5UGcDSrgB1bjgwizHc/zhBtvmYV1Gbn2+PP6eIJtfK5il6Q9inf/SjikeCUapamT0a60Jsu4hCYtfR5hkMk1Ws2tYRmgmxbcG8ilr9fHv4Cm2MVdmZlxgUWJ2Vxq/QEmTrV1WYfTDWhczsebZdRGFVlB0M0/btYQmxbcO8itrlBdqiQbZtq7JFEGSboaoyg8tm9r1I11qLdB3MCz4yH43vT1sxr6IRfr598PE3f1j9e/6hfnfoc/91ccQLx/WbLbiJwqf/9e/0mf+uAw+CbHNUsjLr7tfM7CUze1/JHbb9zNM9M/t/VKzJ91HRDxGTmkXpQdsQYluLeRVN9jd/KP3eXw1/vvWrsn/v+qTuMWCoylpzuftpM7ss6aWcp8vUa5W9sQE4iFBLiO0I5lU02bhAO0qtLbnG1c7+PT8uTVdVmYEkyd3Puvt92Yek7cFjwx6SFiXtVjlGzJF5/Hh9Hv/MHce8iibLKzmofVV2wq1tJRFkW6LKTROm5u67Zna77nGgY7q+Ukt4xQjMq6hakRraF+6OPyeq35Pu+3fXRp6S3STin3bezO23i2aqI8y+UuZkdz9e1UAw57KhrwvBlhA7z5hX0SrfWpxxoF10/frXZV5AkG2TmYdZd3991u8JjNXGYEt4RcC8ijaaWaBdpFSg6xpdZgDUoqnBlvAKoGMqD7QE2bkwszBrZg9IWpH0nKTBPUS2Jf21pIvu/otZjQkYKy9AVhlwCawogXkVXfCtRUl6Wp/61JeHnvP/67fl/qcjr0PN6/yaSZg1s1ckvZh+mXPKE0om4gtmtu7ufzKLcQETIXCiAZhX0TWffBJzEwKC7DypNMyGVYNrSibVvqQtSVeVtIVJP1johcfTkp6S9JKZnZJ0itUEADiIeRUADqp6ZfZNSQuSzo64QeFm+PU1MzsiaVXSq0om6P9Y8fgAoG2YVwEgo7JNE8JHYHfd/dGid9q6+z13vyDpUUmLZvb/VjU+AGgb5lUAOKySMGtmn5d02t2fnuT17t6XdFzS02b2SMShAUArMa8CQL6qVmb/QNLXp7mAu+8q+WhsNcqIAKDdmFcBIEdVYfZJd785/rTR3P2apGMRxgMAbce8CgA5qgqzMff97ke8FgC0FfMqAOSoKszG3HKD7TsAgHkVAHJVFWZ7Ea+1EPFaANBWzKsAkKOqMJu3G035iyT9EY/GuBYAtBzzKgDkqCrMfi/0Q5zWq0r2FgeAece8CgA5KgmzoZn3WTP7nUmvYWbPK9l68QfxRgYA7cS8CgD5KtsBTNJ5SVtm9rWyLzSzVyVtiF6IAJDFvAoAAyoLs+6+Jekbki6a2T+Y2f9tZg8MO9/MHjGzF8zsjqRvSjrv7m9WNT4AaBvmVQA47P4qL+7um2Z2V9L3JV2RJDPrK+lxuKvkjtpFJXfpLmj/BoezRfcdB4B5wrwKAAdVGmYlyd2vmNmDki4o2YrxmIbvPrMpac3d71U9LgBoK+ZVANhXeZiVpDCJrkpaNbOnJC1rf+K9JanPigEAFMe8CgCJmYTZrLAv+LVZvy8AdBXzKoB5VmU3AwAAAKBShFkAAAC0FmEWAAAArUWYBQAAQGsRZgEAANBahFkAAAC0FmEWAAAArUWYBQAAQGsRZgEAANBahFkAAAC0FmEWAAAArUWYBQAAQGsRZgEAANBahFkAAAC0FmEWAAAArUWYBQAAQGvdX/cAmsbMzkjqSToWft1w9ysD5yxLOi6pH87pu/vWrMcKAG3AvAqgSoTZjDDh9tNJ1swWJN0ws0V33wzHepLW3f105nWXzazv7v1aBg4ADcW8CqBqlBkc1HP37fQLd9+VtC5pI3PO6sDXCl+vVz88AGgd5lUAlSLMBmG14Lnwa9ZWeL4Xvj4jaXvgnHfC8VzXr1+XmY19AECXMK8CmAXCbBBWC3rhkStMyD1Jd3Nem52YAWDuMa8CmAXCbIa7P5j9OCw4JWk31G0thvN2h1wid9I9ceKE3H3sAwC6hnkVQNUIs+OtSnol/H7wozIAQHnMqwCiIcyOYGYrku66+4W6xwIAXcC8CiC2TrbmKlljdTfv461wjVV3fyLnuYURH4kBQOcwrwJoqs6F2bRfYYmXvC0pb4VgXdJTA8fSfoeLkvYm3cyduvRDBNA5zKsAmqxzYTbcUHB2mmuY2YaktcFVAnffNbO+Dtd4LWr/ZgYA6BTmVQBNRs3sgFDPtZ6dQM3sVOYjti0lWy5mLYfjAIABzKsAqkSYzQjbLkrSgpkth8cpSWczk/CaDq9QrIbjAIAM5lUAVetcmcGkQn3W5SFP760mhI/E1sxsXUldWLqnOB+FAUAG8yqAWSDMBqGOq9Deh6EB+GATcABABvMqgFmgzAAAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAaxFmAQAA0FqEWQAAALQWYRYAAACtRZgFAABAaxFmAQAA0FqEWYxlZjKzuofRWnz/psP3D8gn8uAAACAASURBVF3D/9PT4fs3va59DwmzAAAAaC3CLAAAAFqLMAsAAIDWIswCAACgtQizAAAAaC3CLAAAAFqLMAsAAIDWIswCAACgte6vewBz4NGdnR2dPHmy7nFMrQt/hjrx/ZtOW75/Ozs7kvRo3ePouE7Mq20ff934/k2vLd/DcfOqufvsRjOHzOympIckfVD3WADMxKOSPnL3L9Y9kK5iXgXmzsh5lTALAACA1qJmFgAAAK1FmAUAAEBrEWYBAADQWnQzACpiZsuSjkvqS+pJ6rv7Vr2jai4zO6Pk+3Qs/Lrh7lcGzuF7Cswx5oBy5mVeJcxirHn5YYjJzHqS1t39dObYZTPru3u/xqE1Uvh/rJ/+f2VmC5JumNmiu2+GY3xP0QnMqZNhDihnnuZVwixGmqcfhshWJW0MHNuQtC7p7OyH03i97F/m7r5rZutKvmeb4TDfU7Qec+pUmAPKmZt5lZpZjNNz9+30C3ffVfI/efZ//lE/DPPqjKTtgWPvhOPICH+ZPxd+zdoKz/fC13xP0QXMqZNjDiho3uZVwiyGmrcfhljC96sn6W72ePhLK/t9g/a+L73wyMX3FF3AnDo55oBy5m1eJcxiqHn7YYhoUdr/HuSYx+/JSO7+YHa1KjglaTd8rMr3FK3HnDoV5oCS5mleJcxipHn6YYhocNUFk1mV9Er4Pd9TdAJz6sSYA+Lo5LxKmMUkOvnDgOYwsxVJd939Qt1jAWaAORWV6/K8SphFKV3+YYgtpy4OBYSPUVezd3JnnuN7ik5hTi2HOWAyXZ9Xac01J0rWWd3N+4gr88PwRM5zCyM+Fps3aeucRUl735PMhDHPrXWKWJf01MAxvqdoFObUmWMOmE6n51XC7BxIexaWeMnbkvJWCTr9wxBL6OXX1+GPCxe1XxeHHGa2IWlt8C9xvqdoEubU2WMOmNw8zKuE2TkQ/oecqvnxPPwwRLalZPee7I0ey+E4coSPW9ez/8+Y2SklDeb74nuKhmBOrQ1zQEnzMq9SM4uxhv0wZD5mS38Yslr3wxDZmg7/ZbcajmNA2BVJkhbMbDk8Tkk6m/n/ju8pOoE5dWLMASXM07xq7l73GNBg4YdhUUnD7tSikh+G1XDOgqTLA1svXlVSCza3qwhhb/XnlHzE2JO0Pe97q+cJ//98POTpvrsfy5zL9xStxpw6HeaAYuZtXiXMYqh5+2EAgCoxpwLVIMwCAACgtaiZBQAAQGsRZgEAANBahFkAAAC0FmEWAAAArUWYBQAAQGsRZoEOKrlvfLTXAkBXMa82F2EW6Jiww8upYc+Z2Xpmn/e843fDVpsAADGvNh19ZoEOCY3WV9OdhHKe/1jJnu+r7r457HhYRdjI7kAEAPOIebX5CLNonLDd43Phy3Trxp6SnXCulN3OMd2LWtKupDvh1+y/kLckbSv5V/cr7n5l8tHXJ/zr/4akJ9x9N+f5nqRb4csH03NGHH9R0lF3b9Ue3QAOY16dDPNqO9xf9wCAVJgcN5RMrGdznl+WdNnMtopOBGE/893B65nZupJ/MV9x97OZj4cOTVZVMbNTkbenXJe0njfhBmfCr1cGzsk97u4XzOyWmW3M+37wQFsxr06NebUFqJlFI5jZiqSrSj6OyZ1Q3X3b3Z+QtGxmNwbrk3KueVlSL28Cl5R+FPT1cO1dd1+b1d7n4V/t0T5qCtc7lf2IK0f6foN1W8OOS9LakOMAGo55Ncr1mFdbgDCL2oWPvzaUTLhjJ71Qb7Qg6dqYU89IGvbR1oKSlYWZrRgMiH1n63p4jHJKUj/nezzsuMJHg8e5ExdoF+bVKJhXW4Iwi1qFVYDLkrbH/Ot30JqSlYRxE82tEc/dLfF+seWtakzjjKTvD3syfNQoDUzMw44P+L6k3BsfADQP82o0zKstQZhF3dIf9lfKvCj8y7Yv6cVxH4s1TfjX+ErE651R8pfWqNWQ00pWTAb/Yht2POuyIo4XQOWYV6e/HvNqixBmUbf0h3mSmqr0Na2YEMxsIUyQNyJf+rSkd8acc0r79WxFju8JH5Mt8JEY0BrMq9NjXm0RWnOhNuGjmKtK6oqOTfD6M9r/KO2JzLGXwynLSu6izbtjtKekvms7c+zr7r6duU5P+3fhLoTfL0jaSs8bGE+6GnJH0tFw7lqmJcu69ptu542t8N3EA+97S8ndtrmTZ1hh+VjSsezds8OOT/IeAJqBeZV5dR7Rmgt1Wg6/TtqeJJ0Q0+ukH5NdkSQzcyX9DS8MvjDsxPJsOlnnPHd18HWZvySeGDje0/4dw1uZ42ck3Tazp8Idw2vheDrZbUbqNdjT6BWE48rvIznseJ6+pNJ/MQKYOeZV5tW5Q5kB6pT+EE9652v0Gw3ChPhsXoPvMKHm3cV7VcnktTVw/hUlk+HF2ONMFenj6O5beW10hh0foq/4dwoDiI95dUrMq+1DmEUTNOlGg56SOqZhY7qa/SLs5tLT8BstNpTcHbw85PlpLYZfq76DOP0oEEA7NOnnlXk1H/NqJIRZ1Clt77I48qzhov+LNlOzdcPMzuRMvt/XwY/vVjW6r2J67vGIw8zqSUlz8oqun7qjyf87AZgd5tXpMa+2DDWzqFN2f/BJpK87dNPAlJ5Q0jj8siSZ2baSO3y/l3ODQk9SP6wkDLOlensvxsIKAtB8zKvtwrwaAWEWtXH3K2YmhfYkE+xTnW4X+L3I49qW9GDYCvKskn/9v6ik9+KFzA0H6aS/m3czRMao56Y1q8n8qGa4vzqAyTCvRsG82jKUGaBuaUuSM2VeFD6mStuxRGtrEnoWLkiSu2+6+2l3f1DJTRWbSibedLUg6oRnZssTNCpP29NU/a/7BU1+dzSA2WJe3X9v5tU5QJhF3dIWKi+PPOuwtKH3hch1TceV0yzc3fvuvqpk4l0Nx9J+hrFqzI6rZP1UZtWl6rqrRXXjIz1gHjCvHnxv5tWOI8yiVmHiOqvkI7Fx+4FL2vsYal1JU+8Y/QQHPTfiuQ0dnODWlYx96F21ZtYLvREljb2pYNKJraq7elM9jd6PHUBDMK8ewrzacYRZ1C70DVxV8lHTyC0Uw8c+V5XcnPBURUMa1fJlUZktIsPOLdva3ws9z1pOf8W8lYdjE66GbOVcK7Zlxb8hBEBFmFf3MK/OAcIsGiFMXqclrZnZRl6tUtgp5oaS7QmfGDVBZV5/dMgpixp9F+nq4BjC12va/wgv9ZSkxbDDzeA4XlSy6jBoXdJei5opa7O2JT05xetHSm/IGGxeDqDZmFeZV+eFuXvdYwAOCB8dPafko6F0Yu0p+Vf3RoH9rm9of49whdetu/tmmARXtf8v7rQ+a83dt8LKwfHMuUeV9AJU+P3Q9w/nPzkw7nHnP6ewIjHpR3thzDfc3SZ5fYHrr0g66+6nx54MoJGYV8thXm0XwizQAeEvmq/n9GuMce2rSv7yyNtyEgA6iXm1PQizQAeEf+WfLrEneNHrLki6HdroAMDcYF5tD8Is0BFmdkvSyJq3Ca65LulWqL0DgLnCvNoO3AAGdMeawlaRMYQbFE4x4QKYY8yrLUCYBToi1F71w93JMWwo6VUJAHOJebUdKDMAOsbMLiu5aWHij8XCHcF9bk4AAObVpiPMAh1kZi+6+4UJX3tKov8hAGQxrzYXYRYAAACtRc0sAAAAWoswCwAAgNYizAIAAKC1CLMAAABoLcIsAAAAWoswCwAAgNYizAIAAKC1CLMAAABoLcIsAAAAWoswCwAAgNYizAIAAKC1CLMAAABoLcIsAAAAWoswCwAAgNYizAIAAKC1CLMAAABoLcIsAAAAWoswCwAAgNYizAIAAKC1CLMAAABoLcIsAAAAWoswCwAAgNYizAIAAKC1CLMAAABoLcIsAAAAWoswCwAAgNYizAIAAKC1CLMAAABoLcIsAAAAWuv+ugcAAGgPM1uWdFxSX1JPUt/dt0q8/oyk3cHXmNmCpBVJVyTdlbQoaVXS1TLXBzB/zN3rHgMAoAXMrCdpw91PZ45dlrTm7v0Crz8l6bKkszlhtifpVubQrqSvu/uVKIMH0FmszFbMzG5KekjSB3WPBcBMPCrpI3f/Yt0DqcCqpI2BYxuS1iWdHfaiEFTXJN1Qsuo6zGlJ70haHBWOmVeBuTNyXiXMVu+hI0eOPLy0tPRw3QMBUL2dnR3du3ev7mFU5YwOh9l3JF0d9aIQTFclyczWxpy7q2RVdhTmVWCOjJtXCbPV+2Bpaenht956q+5xAJiBkydP6vr1651bMQw1rT0NrKy6+66Zycx6RUoNImFeBebIuHmVMAsAKGJR2ls5zdNTclPYNHrhBrH0/e5SMwtgHMIsAKCIhYqvf1eSsuHVzC6bmfIC7fXr12VmYy/KTc5A99FnFgBQO3ffdffNgcPpzWUAMBRhFgBQWKidnZW+ktKDQ+954sQJufvYB4DuI8wCAIpI62EXswczQXOqelkzezHncHqzWW+aawPoNsIsAGCscONXX4drZxeV7Og1cZgNfWjXw6+D15amv7EMQIcRZgEARW0p2co2azkcn1jahzYnEJ+StD2igwIAEGYBAIWt6fBOX6vhuKSk7MDMbpnZypBrLCq/M8Ld7MpsKF9YlfT16YYMoOtozQUAKCRskLBmZuuS3lZSy7qes6KaV1f7cjh/QUlJwWlJV9O2W+5+xczOhD6zR8N5Z2e4EQOAlpq7MBsmyp6kY+HXjcEehma2rOSjtH44p+/uW2XPAYCucfdtSdsjnt+V9GDOsZHb2Ibz2CABnbW5ualLly4VOvfcuXNaWRn24QYGzVWYDUG2n06YYbXghpktpv0N0xsR3P105nWXzayfrhAUOQcAgFkhKDXfpUuXtLOzo6WlpZHn7ezsSBL/jUqYqzArqZf9l3/4yGxdSWPutFn3avg6K23cfbbEOQAAzARBqR2Wlpb01ltvjTzn5MmTMxlLl8xNmA2rsM+Z2ebAnbFb4fleWFU9o8NB9R1JVzNfFzkHAICZIShhXs1NN4MQYHsa0Xw7BN6e9ht1Z18rM+sVOSfuyAEAADDM3KzMSpK7P5hz+JRCw+80iI7oabgXVMecc6Bu9vr16zKzIuMbew4AAAD2zc3K7Airkl4Jvy+y5/gs9yUHAADACHMdZkNT77vufqHK9zlx4oTcfewDAAAA5cxtmA0lBavZ9lqZ58auvhY5BwAAANWa2zCrpI3WUwPH0lrXvN1r0ueLnAMAAIAZmKsbwFJmtiFpbfAmrtB3tq/DdbGLCjeJhdePPQcAAADVm7uV2VAne2AvcTM7lWmptaVkm9qs5XBcJc4BAABAxeYqzIbtbCVpwcyWw+OUpLOZcLumw7t4rergvuJFzgEAAEDF5qbMINS0Xh7y9N4qbSg1WAvb3L6tpG/sgZXcIucAAACgenMTZkN97PidC5JztyVtT3sOAAAAqjVXZQYAAADoFsIsAAAAWoswCwAAgNYizAIAAKC1CLMAAABoLcIsAAAAWoswCwAAgNaK1mfWzB6RdErSMSWbCCxIWgy/7irZmOCupFuSbrj7f4v13gAAAJhPU4XZEGDPS1qRdETSbSWhtR9+fyecelRJqD0q6UlJF8zMJW1J2nD3H0wzDgAAAMynicJsCLGbkp5QskXsWXe/VvIaPUlPSTpvZhclvejufznJeAAAADCfStfMmtmrkq4qWVE96u7nywZZSXL3vrtfdPenlZQmPGZmb5vZvy97LQAAAMynUmHWzN6Q9M/u/pi7vx5rEO6+6+4vSXpO0kUzeybWtQEAANBdhcOsmX1H0qq7f6uqwYTV2qclHTOzr1T1PgAAAOiGQmHWzD4vac3db1c8HkmSu78myWbxXgAAAGivQjeAzSrEDrxn6TpcAAAAzBc2TQAAAEBrEWYBAADQWtF2AEuZ2Svu/nLs6wIAADTR5uamLl26NPKcnZ0dLS0tzWhE86WKldleBdcEAABopEuXLmlnZ2fkOUtLSzp37tyMRjRfRq7Mmtk3JS2WvOapyYcDAADQPktLS3rrrbfqHsZcGldmcEXJbl+3JN0reM2FqUYEAAAqs7Ozo5MnT44859y5c1pZWZnNgIApjQyz7n7bzE5L+oOimyWY2fejjAzz5VfvFj/3/serGwcAdFiRj7nTj8sJs2iLsTeAhUD7aIlr9qcYD7qoTFCd9HoEXAAYa2VlZWxIHbdqCzRN0W4Ga0Uv6O4vTTgWdEHs4Fr2fQm1AADMlaI7gBWtl8W8iRFef/l++dd85rH844RaAADmSvQ+s5gD0wbYScLrsGuMCrUEWgAAOm+qMGtmX3H3N2MNBg02TYCNEV7HXTsv1BJoAQDovGlXZjckDVkaQ+vNKMD6R+Xfxx4aCKm/fH/4Ki0AAOisacOsRRkFmmUGIXaSAJv3+gOhNi/QsjoLAECnTRtmPcoo0AwVh9jCAfanP84//rkv5V6TQAsAwPziBjAkmhBkh4XYwecHQu2hVdrseNJgm/3zEWwBAOgMwiwSacCbJNR+5rGxgTYNmiNDbRpSR4XanNXZVPbaucE2HeuoPyNBFwCAViHM4qBJQ226Ahoz1E4h7/r20OPDx5e3gisRbgEAaDjCLPJNG2qlkcG2UKgtqmCN7dCAK+WXJkhswgAAQMMRZjFaNsRVsFqbvXlromA7qiRhXA3u5740ujRhMNQSaAEAaBzCLIpr0mrtsKD6Xr/MyPZlgu2BUEugBQCg0QizKG8w0JUJtwWC7dhQmxdkc0Ls7gd3hg5j4dGj+cF3MNSyGQMAAI1GmMX0Jg23Y4KtPfR4sVXaTCjNC7A/+3BXkvTwIwu55+0F2y/0kqA8eANaNtCyOgsAQKOwAxjimyTcDqmvHRtoc4JsGl4H5R1/+JGFvdctSPuBVsmOILklBwRaAAAaY9ow+0SUUaDbyoTbnJ61RVZo84LsT37+ycjX/OZnP3Vg1Xb3gzv7gTY4tMMYAABolKnCrLvfizUQzJFxHRIKbMIgaW9VdjDIZkPsP+7eN+ICyXlpqD0QaFOhhvZQ/SyrswAANMKov+k7y8zOmNmpIc8tm9mKmZ1Kf53kHBR0/+P5obDkTVflg+z+8z/5+Sf6yc8/2bvGgbrbwZvNsiF7mi2AAQBAFFHDrJktDTweyDz3gpm9b2Z3zOx7ZvZIzPcuMcZTki4Oea4nad3dN919y903Ja2G44XPwQTyQm0m0I77qD+9ues3P/upid4+fd2Butq0HvenPz5Y5kCgBQCgMWJ3MzgtaV3SZUlXJfUlycxelfRNJSFyQ9JRSRtmturuH0YeQ64QNtck3ZB0d8hpq2F8WRtK/kxnS5yDWDIlB3u1s5/7UrJi+oWe9F5fC48e1e4Hd/TwIwv62Ye7+s3Pfko/+fkn+q2FX0savkKbPp9n94M7B7scaET9LCUHANBJm5ubunTp0tjzdnZ2tLS0NIMRIU/sMoNdSafd/Tl3/667/8LMvijpRUmb7n7e3W+6+5akZ5UEw5lw9767r4aV1GHOSNoeOPZOOF7mHExqTMnBXphM22eFoLnw6FFJB1do09XW31r4de6jlLTDQbpCO1jTywotAHTOpUuXtLOzM/a8paUlnTt3bgYjQp7YK7NH3P3awLHnlHQ5Ws8edPd7ZjZshXTmzGxBUk8Dq7buvmtm6cru3XHnuPuEW1Bhz/2PHw6HBVdos9JVWml0Z4PB0oQDN4Pl9KDNvSEMADpkZ2dHJ0+eHHveuXPntLKyUv2AarS0tKS33nqr7mFghNgrs3ndDU5J2h1STuCR338ai1ISTIc83yt4ziHXr19XCLsjH8iYZIU2Z5V2cKU2Da6DXw+zdzNYpn5WGrFCCwAtd+7cuUIfme/s7BT6CB6oWuyV2QPh1MyOSFpWUj+b5+iQ43VYGH9KoXMQS5kVWil3lTatpZX2b+4qcpNYujqbXmNw1TcXtbMAOmBlZaXQamuRlVtgFmKvzA6GvbRl1eXBE0PQbUyZQZVOnDghdx/7QI6iK7TS0FXavJXaIrKdDXY/uMPqLAAADRQ7zN42s2ckKbTlWpf0sbt/N3uSmS1JetXdX4v8/lMLtbNTn4OIhgXaEGrtoccPlh2MKD2QNHGglXQo0O5JAy03ggEAMFNRw6y7vy7p6XBj166SGtKnpGQl1sy+aWbvKOkGsGJmz8d8/ymlN24tZg9mgmu/4DmoQoHNFUaGWqlYqYD2N1FIHdpM4b39/8zjttkFAADVir4DmLufl/R5SU+4+33unu1psa2k1+tpSU8r6fnaCOGmrr4Ol0osKrmBrV/knOpHOufSUJsNtukq7bCVWmloC69B2RCbDbWldgdjdRYAgJmpZDtbd7/n7jdzjl0beNwcdo2abEk6PnBsORwvcw5mYdiuYZlQK6lwoB3Wvmsw0EpidRYAgIaoJMy2wKLyOxOs6fAuXqvheJlzMEvDVmuVWaUtuUKbNdj9YOTqbIrVWQAAZmJuwqyZLZjZupldVhJk181sw8z2du4KZQRr4bwzZvaipPVs+UCRc9AQgxsajKmhzWvZNbKNV97qLJ0NAACYqdh9ZhsrDaEFztvW4e1qS5+DmuT1plXOrmEZDz+ycKAHbVpWUKQf7Uj0nQUAoHJzszKLOTVsu9kR5QZFdgY7YFipAdBBZrZsZitmdir9teTrzwx7zbTXBjCfCLPoniGroZN2OEiNe55SA3SdmfWUlFVtuvuWu29KWg3Hi7z+lKSLVVwbwPwizKKbcm4Gk3IC7YCiGyrk9ZzNxY1g6JZVSRsDxzaUbJAzlJn1zGxDSe/xYTs/TnRtAJibmlnMuc88lr9i+oWe9F5fC48e3Quo2Rrawn7644MB+ZfvDy9xANrrjA4HznckXR31onCD7KokmdmwexcmujbqtbOzo5MnT44859y5c1pZWZnNgErY3NzUpUuXRp6zs7OjpaWlGY0Ik2JlFt2V14NW48sNppHbc5bVWXRA2Onw0MpquLlW05QDVHltVOfcuXNjg97Ozs7YwFiXS5cuaWdnZ+Q5S0tLOnfu3IxGhEmxMotuK9rdYGCFtsjq7O4Hd5IA/F5/LxADHbYo7QfMHD1NvqV36Wtfv35dZjb2wu4+4ZAwzsrKytgV13GrtnVbWlrSW2+9VfcwMKVaV2bN7JE63x9zqMRH/0XrZ/cM294W6IaSPxCNuTaAjqu7zOByze+PeTBFuUHpQCtKDYBZOHHihNx97ANA91UWZs3sETNbGvVQ8tERUL2q62fHdTUAOiLUt7bu2gC6K3rNrJm9IunF2NcFpjakfnacUquzdDVAd6X/YluUtFfbmgmg0/yLrsprA+i4qGHWzL6ppP3Ka5JujTn9QUmvxHx/YBLjbgYDkNycZWZ9Ha5vXZS0G9pvNe7aALov9srsaUmfd/d7RU42s+Y1nkO3ZVdnh/WejcA/ene/hCH1q3eH7k4GtMSWpOOStjPHlsPxJl8bNSrSi1Zqbj9aNF/smtntokE2WI38/sBEquw9C3TImqSzA8dWw3FJSWmAmd0asVixqPzuBWOvjfYp0otWanY/WjRf7JXZfy5zsrtfi/z+QDkFVmeHlRsQdDFvQjnAmpmtS3pbyU286zllAIvZL0Lt68vh/AVJ62Z2WtJVd79S8tpokSK9aKW4/WiL7OwlsbtXl8QOs/fM7AF3/0WRk83sK+7+ZuQxAKOV3EihtFE3gVFqgJZz920dLAUYfH5XyT0Rg8fGrrCOuza6LdbWuOnOXuOCKrt7dUfUMOvuF83sVTP7jrt/WOAl65KejDkGoLQpVmcPGNgJLLduFgBwSJFQmW49W2Sll5295kv01lzu/pKZfTvspb2t4V0NFpQU9wOzN8HqLN0NAKAaXdgaF/WJ3ZrriJI7T58Ih06PeQnbs6AZKuxsAACIo0gpArWw8yf2yuy6pI+V3JE6rtjwqKS/jfz+QHHjNlEYsTo71c1f1M0CQGlF61uphZ0/scNsz92fLnqymd2M/P7A5MLq7F6pwRBlguxe3Sw7gQHAVIp2RsD8id1n9mrJ8wd7CgKzVXSFNHNjVyE//XH5sQAAgNJih9lSNbDufjvy+wNRHNpEAQAANFLsMHvbzApXXZvZC5HfHwAAAHMkaph199clnTazZwq+hO1sUb9sqcGoutaypQYAAKBysVtzvRJ+e8rMLkp6R8O7Giwq2a4QaLa0q0ERAxsnAACAasXuZrAq6YgkC1/TZxatNa6rQWl0NAAAILrYNbN3Ja26+31FHpLuRX5/YDJFSw1iGdXfFgAAFBY7zPaV7ABW5nygPcqUEITShKiruwAA4IDYN4A97e4flnjJmZjvD8RGiy50VYkbdQGg0aKG2QlabZXdZAGYDWpb0TJm9n7Jl6xXMhAAmLHYZQYvFz3RzJ4S3QzQJFXtBgbMxjEz+40iJ5rZ58X8C6AjYofZB83sa+NOCiu4b0R+b6BaRUsN3htRCv7LzOIZN4EhvovjTggb27wzg7EAwEzEDrOSdGHY6oCZPWJmb0u6IDoZoCX26maziq7OchMYZuvZUeVe4bkbkh6c3ZAAoFqxw+yupFclfXfwiTCJ3pJ0TNJZd19UgVUEYKZm3aILiOdCaHl408y+nX3CzB4ws+8pWUjYVBJmX69hjAAQXeww+3l3f03SajqZDqzGvh7OeV2S3P185PcHKhG1qwGlBqiAu78Ufr0m6SUz+06Yf5ckbUs6q2Qh4Rvufs/dn61zvAAQS+zWXPfCr7tKJtM3tL8ae9rdn03PAVqv5I1glBpgVkJYPS/pipKygo8lHUsXEgCgS6qomZW0F2zPS7ot6ZGwWnAAfQ7RSDFKDbI3gYW6WWBWQlnB30paVvKJ2Ja73655WABQicrCrCS5e1/SaQ1v2UWfQ7RGbqnBpG26flm2JSgwmpl9Jfy6pGQR4bSSsoJnJW2a2bfN7IE6xwgAVbi/zMlhslye4H2Ww80Hb2eOHRV9DoGkbrZoj1tguKtmdkXJzoq3JR1PV2PDr98ws1fNcteRxwAAIABJREFU7A13f9PMXnD3b9U5YACIoVSYlfS0pBeneL+zA1/7FNcCqnP/4/s3Z33mscMrqZ/7UrnygZ/+WPrcl+QfvZvf6guYnikJsheH3Vzr7i+Z2TfNbEvJ/EuYBdB6ZcPsLSV3xT417Y1cZrYQrge0hj30+OEbub7Qy98o4b0+u4Vh1tbGrba6+2tm9u8kld1+HDXY3NzUpUuXxp63s7OjpaWlGYwIaJ6yNbN3ldxIMHVHgtDxoNU3JJjZspmtmNmp9Ne6x4SKVNFzlhZdiGu3aNmAu68pWclFw126dEk7Oztjz1taWtK5c+dmMCKgeUqtzIa2LtFau7j78VjXmjUz60lad/fTmWOXzawfbnxD22VLDfJkSw2Grc4Cs7NV8vztSkaB6JaWlvTWW2/VPQzM0M7Ojk6ePDn2vHPnzmllZaX6ATVcpd0MOm5V0sbAsQ3RoQFj0G8WVZhgE4TvVDIQAFM5d+5coZKRnZ2dQiUo86BszSz2ndHhMPuOpKs1jAUAytpQztbjAOq1srJSaLW1yMrtvCgUZs3s80pu+prJxBd6Ia40tW1MuHmtp6SGeI+775qZzKxHqUF35d4EVkToaABUwcyeL3H6E5UNBABmrFCYdffbZnbbzL4t6UV3/19VDcjMnlISZJ+r6j0iWJT2bmLL05O0F2avX78us/H3WrjTqaxz6GiA2dlU0m5r3GSTnsOEA6ATCpcZuPs1M/tY0k0ze8Xd/zLmQMJq7BVJtxoeZCVpoe4BoIPYPAHT2ZX0iobfCLYo6ZiSEqlX1fJuMgCQKnUDmLtvSzou6Ukze9/Mvjbt9ohmtmRm35d0Q9KGu39jmus10YkTJ+TuYx+YQ2xri3juuvtr7n5zyOOau2+6+9NKygyYdAB0QuluBu6+G3aX+d3w2DWzt8O+38+HcPrIYMg1swfC8WfM7AUz+56ZfSLpoqSr7v5YaP3VGqF2Fl2WXSmtotcsEM/p8ack3P01JSu0ANB6E3czCDc4PStJZvYHSibSl5TUi0qS59SJpge2lPQ4PO7uNycdQ43SethFJR/tSToQbrn5ax7RaxY1cveyZQNsmgCgE6K05hrcTMHMjigJemmwvatkd5pO1GiFrgV9Ha6dXVTy5yTRYCT/6F3ZQ9THolaLdQ8AAGKopM9s2O72nrp9g8GWkvrh7C46yyq/Cw/aLLsLGNASoQyM9lwAOoFNEya3JumyknY4qdXwAPZl23ON6zVLRwNMKLROLGJRSb3s2QqHAwAzQ5idUCg1WDOzdUlvKympWKfEoIPufzwJmRkTb5yQ55fvc3MZYijyD+ldJWVf5939BxWPBwBmgjA7hdCqbHvsieiOzzw2WTutnM0TqJtFZLuSniekApg3pVtzARiQLRsostvXuBrbX0Va8cW86RNkAcwjwiwwoairqmyegCm5+/G6xwAAdSDMAkXE2Dwh24M2rM5Gq7sFSjKzF+oeAwDEQJgFmohSA1SPzisAOoEbwIAp7HU1yPabHbUTWM6NYHvoaoARwk6LpyJeskCBNwA0H2EWKCrbomvSrgZZoecsXQ1QUE9xV1M94rUAoDZRywzM7JGY1wPmGqUGOGhX0lV3vy/GI1wPAFovds3sjcjXAxpvb1V11M5eWcNKECS6GmCUvqSbEa/X5e3GAcyR2GH2QTP7WuRrAs1RdKvZIv1mJboaoDB3v+buL0W8Hq28AHRCFd0MXjOz75nZVyq4NtAc09ysNWp1FgAAFBb7BrC+uz8qSWb2lJl9R9IHkjbd/ReR3wvopmxXg1+9W3w1GJ0XFgl6ko5JWpC0KOmupFvu/q06xwYAdYkaZtMgG35/TdI1MzsiadXMFpXcvPBmzPcEuoKuBihgS0kXgiuSXnX3mDW0ANBKlW+a4O733P01d39ZkpnZd8zsBTN7oOr3Bloh7U8LFLPp7s8RZAEgMdMdwMJq7YakpyV9TG0tuqJ0RwOpeFcDWnThoPW6BwAATTKzTRPM7HlJa0rqvUzhYzJJPTP7vqR/ELW1ADCSu384eCx80rVY5jUA0BWxN014fuDrR8zs22b2iaRNJSH2JUkPuvuz7n7T3V9392clXZN0YfAaQONkb8iKtf0sLbpQzLDl/GOSziqZX/uSbinp+72quFvgAkDjxF6ZXTezq5KekPSypGXtr8JuhDKDXKH+63zogvCMu/8g8tiA5nmvX6wnLV0NkPg472CYP29KkpldkfSGpGdHzbkA0BXRN01QsipwJfw+uwpbaFIN5z0ZeVzA7BXdOGEYdgPDBNx9K/xKkAUwF6q4AeympNPu/mjoYnCv6AtDWcIDku5UMC6g2Sg1QDzb404ws+/NYiAAULXYYXbX3Y9PsSLQV1LndTTimIBG2f3gjnY/yPx7ja4GiM8LnLNc+SgAYAZih9nvT/n6l5R0NHg5xmCAWZqoPdcQrM5iiClrVyq7FgDUJvYOYOenfP2FWGMBKnX/4/srpZ95bKL61t0P7mjh0fAhRHoj2E9/PDoMcyPYvHswdIfZHXPegplRrgVgLsyyz2zaB/EuvWSBEn75frwWYOgCU3KD7TjjzilSigAAjRe7z+wrI54+Jum0pOfM7NUx5wJzIbd2dtyNYNTOzrtlJUF1msfxmY8aACoSe2X2lJL+sodk+yBKkpkdMbNXqI9Fl9hDjx8MoV/ojb7BSwPlBsOwOotE3913Ilxn28xuR7gOANQu9g1gVvTEMi27gEYatRPYpDeBFV2dxbxaj3ittYjXAoDaxA6zhWuwQg0t2yxirhwoKyhw/ADadM09d78Y8Vqvx7oWANRpojIDM3tKSf3rYHjtmdmfafwKbU/SGbEyABw20NnAP3p3v+0XAAA4YKIw6+7XzKyvJJSelbSiJNiakl6x4/QlnY+5ygDUItuiKzhUN1tQodrZLNp0AQAw+Q1g7n5b0m1J18zsgqR3JN3SmNIBamWBAtLV2UHcCIaamdmykm4I6YJG3923pn2dmS0oWRi5IumuklaOq5KuFrk+gPkVpWbW3ftKJiG5+71RjxjvBzTSsJvA8kLpEIdqZ2nThQYxs56kdXffdPctd9+UtBqOT/u6RSU3uN2S9LGSrc3fJsgCGCfmDWBXJV2LeD1gLu0F2mGdDQZ3GyPQYnZWJW0MHNvQ+C4LRV93Wkkf3GPu/qC7X5l0oADmR7QwG1Zei9TL7jGzr8R6f6A2OXWrZW7Y+tmHu/rZh0N2Jx3Wo3aC7XOBCM5I2h449k44HuV17r4bPu0DgEJit+Yqa/Bf6kC7jek3O+oGr2ygLVRuQKsuzFCoae0pqWfd4+674fncUoNJXwcARU3amusFSdvu/ubA8VckLZS4FJMYuiGnq8EBBXYCk5JA+/AjyY/QXneDoq266G6Aai1K+yE0R0/JzV3TvK5nZulq7aKku8NKDa5fvy6z8fv0uBdufw6gpUqH2dBj9oKSAv3BZaazKhdQmWXQWZO26CoVaAe7GxBoUZ0yCxWTvO6uJGXDq5ldNjNROwtglEnKDN5R0jolrz62L2nV3e8r8pA07F/qQHtF2Np2aA1tHupn0QGhVnZz4PDQm8tOnDghdx/7ANB9pcNsuNHr2SEbHvSVdDUo6nbZ9wcaa9yKaGjRVXRjhDTQju1uIFE/i5kJNbCzel1fSenBpKvCAOZA1BvA3P28u39Y4vzjMd8faIywOjvtNrTjAu1QBFrEl9a1LmYPZoLmsKLwQq8zsxdzXpveNMb9FQCGqqybgZk9MOT4V4Y9B3RWiVKDn/z8E/3k55/sfX0o0GYMXZ0FIgs3cPV1uAZ2UdLQdlpFXpduqpDT2SANwLTqAjBU9DBrZktm9n1JH5vZ/8w55YakPzGzZ2K/N1C7gqUGqcHa2GyIzQu0kkaXG2SxOov4tpRsSZu1HI5P/LoQhFdzAvEpJZ1zuL8CwFBRw6yZfV7JhPSspA8l7Qyek9lcwcxsKeb7A40yotQgr242G16HHTtUbjCI1VlUa01J15qs1XBcUlI+YGa3zGylzOsk3c2uzIYyhFVJX48xcADdNVGf2RFW3P0bkuTux0ad6O6vh760hwIv0GrDes5+7kvja10H/J/27uY3suvM7/jvsWcVIGM2hQAGZuOpVjCAAQNtdmstx2Ir+4SUAm9nRArZeGM03f/AyNXjhXcTtvwPSGzPPkPKsZaJ1FQDCQIEcZcCZBMg6Raddewni3MueXjrvte9devl+wEK3bx131jFOvXc55z7nO9/99vX/89Kdt0q1xVl92zPletKz4OSXViQu1+Z2YmZTSV9oTCWdVqQUd1tu527PzOzg1hn9g2FYQmHzAYGoE7fwWx9BevF1u9FbCyv3H2ua8zM9hS6w2aKxbzz6zVZB0jdqjmbTKDwF9/buR5C8P3vfvtWJjYNZDNpDVpJ1fVnMwS26JG7X2p+atr0+StJd9puF9ehniyA1voeM9u2qN93ej5+LTPbl1RUViybVnHq7k/d/SLWPDzOdX3VrgNcK6s5+1eT66EGaXCaBbBFgWzq6vevKkt2zd0Ylh9+8P/+C2NqAQAboe9gdu5qvIyZfUfzM4gNxswmZnaqgjnCE8cKRbpT+aLdTdbBtivIfFaNnS0KaMukN4MVBrQEtQCALdJ3MPvczD5puO6nkv6x5+OXcveZux8XzDCTOtB8N9iXcXmbdYAbFdlZqTigrVMa0DYNavMIaAEAa6rvSRM+lrRrZq/M7K/N7Hvp82b2PTP7mZm9iuv/us/jLyLeOTuXtc1KwsTMbu06Rfv+/PPPZWa1D2yYNDubr2yQC2gzbQPatAZtaVAbEdACADbREJMmHEj6rcK41Jdm9scY3P5R0kuF7vjPJL03wLEXsSvdBKYFJg3XAZpJJlJIS3XVBbRFkyqUBrXSXJb2GgEtAGAD9B7Mxjqyh5LelfQPkr5WGEv7B8Ug1t3fc/c/9H3sBTVJiXWaH/ztt9+Wu9c+sIGqsrOZ3HCDKvlJFdLANh/USirM0hLQAgA2yWDT2cY7/Q/d/U13/5a777r7u+7+m6GOCay8muEGVeNniyZVSJ/LB7V1FQ+uEdACANbYYMHsUOLY1aaP1pnUJtt02S+2WL6yQVlAG9XNDvafr75V+MjWS4NaqaTigQhoAQCboe9JEwaV1XhtsckXkp40XDebZWZX0vWY2CRwnenmxq+qdYB5JbOCXU+mkAW0BdPU5gPZMtlzP9j5k/7r//qjvv/dbxfPGlY0yYJ0e+YwAADWxGDBrJn9uaQjSW9J2lMI9J5Leuru/6PLPuO0hvn5vXsRp1ucaX5c7K7CbGEzSWqyDlAoDWj/yT+/zoY2mR1safIBbXa+zBgGAFhRgwwzMLOfSfpGISt6KOmupIeSfq5Q4eBvhzhuDy4UpqlN7cXlbdYBihXcEHatZHaw73/329cTKfxg50+lu/7Bzp+un8/Wnxt7+1fzBTduDTeQyoccMMECAGAF9Z6ZNbNfKJTn+lAhwEtrsk4k/RtJH5rZjrv/276P39CuiisTnEg6k5ROrHAcH23WAcoVZGhvDTf4n/8xBLQK412zDO3NzGDlN4Kls4dlgWyTKglzqoYcpAEtGVsAwMh6DWbN7IeS9tz9zZJVvoqPEzP7RzP7sbv/ts9zqDi3HUmPFQLqHUlTM3so6dzdn0nXQw1OzGyqMN52ImmaDh9osg7Qxa3hBtJcQHujeuhBuu6tQLYgK5u5NXY2k2Voq8bR5jO1BLcAgCXrOzN75O7vNlnR3d81s79XmGBhcHGig5MG611qfrra1usAlarGz2brJBnazHxgW64yI5uroCCVBLRSs6A2Q3ALAFiyvoPZtnOyrtrECcDylAS015IhB5Kk/zYrDFCz0lulwWs+I1sQyGZKA1rp9vk1rXpAcAsAGFjfwezvW67PtFdAJhk/K+l2ya40qM3EqgeNg1ipMpDNZEMdSoNaqVtgKzHeFgDQu76D2bs97w/YbPn6s7khB1IuqJWuJz2oGgNbqEEgm0rH7zYKbNvWqCWwBQD0oO9g9tLM/sbdf123opl9JOlVz8cH1k8WyKVDDjJJpjYzRnfGoNlaicAWANBZr8Gsu38cqxRMVDI5gpndUyhj9cDd3+rz+MBaywe10lxgK5UHlHP1YtuIM4LVGTxbKzFRAwCglSFmADuU9JlC+a2ZQh2h1wq1XbOyWJeS3hvg2MD6ywdxRRnbvKIMbpPgNhuykP9/puZmMYmgFgAwrt6DWXf/g6QHZnakMJ3t/eTpmaRfuPvf9X1cYGNVBXMlQxOk20FmYWBbFLwWrVOTsa2sgJCeU5eAVgq/IwEtAKDEEJlZSZK7P1WcJcvM/tLdvx7qWMDWqhqakIxhnZuQQbpdKaFIwxvGagPZ9JzaIogFANQYLJhNlQWyZvYzd//lMs4B2Gj5qgjSXO3aW9URUi2rHKT7qkUQCwAY2FKC2QrHkghmgT40CGiliqC2QuPgNTtmVwSxAICWWgWzZvavJe33ePyWhTIBVGoY0EotA9Q6iwSwEkEsAKCztpnZiUI2tS/MAAYsQ8E42t722RUBLACgB22D2StJ5+7+L/s4uJkxaQLQt6KbwjL5ALRJcLto0JoheAUADKBtMDuT9FWPx6fCATCUoiEHeX0FqmXHBwBgYK2CWXf/TGFChF64+4O+9gWgQBpQ1gW2fRwDAIAlG6yaQZy29oGk1+7+D8nyf5X+DGBJCDoBABvoW33v0MzumdkXkp4rTJqQv2HsKzP7dzHYBQAAADrrNZg1s+9I+q2kbyS9pzCV7UW6jrt/7e4fSnpoZt/r8/gAAADYLn1nZn8h6QN3f9fdf+PuX6mk/Ja7/536LfMFAACALdN3MPsHd/9Ni/Wt5+MDAABgi/QdzP6flut/p+fjAwAAYIv0Hcy+MfD6AAAAwLW+g1kzs3+RX1ay4t9L+k89Hx8AAABbpNdg1t1/LuljM/tbM/un2eJ0nVi6699LeuDuv+zz+AAAANgurYNZM/txzSrvKpTlujKzV5KOzeyL+HilUH92V9J+67MFAAAAEl0ys2dVT7r7zN3flPRY0pWkuwr1Zu8r1J/90N3fcvc/dDg2AAAAcK1LMHvHzP66biV3f+Lud939WwoB7R13f9PdP+5wTAAAAGBO1zGzT83sk6ZT0sZZv8jEAgAAoFddg9k7ko4kvWVmn5rZz8zsz3s8LwAAAKDWn3XY5tDd/2/8/8cK1Qt+KOmJmbmkM3f/bW9nCAAAAJRonZktmq7W3b9y9w8l/VzSXbK1AAAAWIYumdlScVws2VoAAAAsRd8zgF0jWwsAAICh9ZqZLVKQrZ2amSR96u7/YejjAwAAYHMNlpktcUfSGwqVEC7M7L8v+fgAAADYIINnZuOwgiNJx5Imkiw+9VTS6dDHBwAAwOYaLJg1sx8rBLAH2SJJl5JOmQUMAAAAfeg1mK3Lwrr7V30eDwAAANutdTBrZn/j7r/OLSMLCwAAgKXrkpk9kfRrsrAAAAAYW5dg9m6sQjCJP5OFBQAAwCi6jpm9G/9dqyysmR0oBOF347+n7v4st86epAeSZnGdmbtftF0HAAAAw+sazD5y91/2eiYDi4HsLAtezWxH0nMz23X3p3HZRNLU3R8m252Z2czdZ03XAQAAwHJ0mTRhtm6BbDRx98vsB3e/kjTV7Vq3x5qvfXsa12uzDgAAAJagSzD7rH6V1RKzsO/Hf1MX8fls/O+Bwvjf1Je6qdLQdB0AAAAsQetg1t1/PsSJDClmYSe6uWltTgx0J5JeF2wrM5s0Wado359//rnMrPYBAACAdgafznZVuPudgsX7kq7cfZYFollgWuA6UK1Zh3GzAAAAS9JlmMEmOZb0Ufx/fghCkSbrzHn77bfl7rUPAAAAtLO1wayZHUl67e5Pxj4XAAAAdLN2wwzKxqWWeF00JCDu49jd7xc8t1MxjKDxOgAAABjeWgWzWY3XFpt8Iako8zqV9E5uWTbWdVfSdaCaVECY6ebGr6p1AAAAsCRrFczGSQkOF9mHmZ1KOslnVt39ysxmmh8Xu6t4k1jcvnYdAAAALMdWjZmN42SnadBpZvvJ0IULhWlqU3txuVqsAwAAgCXYmmA2TmcrSTtmthcf+5IOk+D2RPOZ3+O4XC3WAQAAwBKs1TCDruKY1rOSp6+ztHGowYmZTRXG206Uy+Q2WQcAAADLsRXBbBwf22iKLXe/1Px0ta3XAYBNZGZ7CkOtZooTxbh77TCrJtt13TeA7bYVwSwAYHFZRRl3f5gsOzOzWVXvVJPtuu4bALZmzCwAYGHHkk5zy05VXzKxyXZd9w1gyxHMAgCaOtD8EKsv4/JFt+u6bwBbjmAWAFAr3kg70c3kMZKu70konZ2xyXZd9w0AEsEsAKCZXekmwCxQFnA22a7rvgGAG8AAAI3kZz7sc7vW+/78889lVl+k5qc//alevHjRdvcr48WLF7p3797Yp4EV9eLFC/3oRz8a+zQ6uXfvnn71q1/1si+CWQAAVtS9e/f0k5/8ZOzTwAri7+IGwSwAoDEz26kYDrDQdm32/fbbb+t3v/td29MANsbR0ZGOjo7GPo2VwJhZ1DKzRt15KMbrtxhev5WR1XrdTRfGm7fS57ts13Xfo+Pvc1y8/uNaldefzCwAoFacynum+fGtu5KuyiY2aLpdl30DgERmFgDQ3IXCdLOpvbh80e267hvAliOYBQA0dSLpMLfsOC6XFIYGmNlLMztqs13DdQBgDsMMAACNxCEDJ2Y2lfSFQv3XacEwgN2227XYNwDcQjALAGjM3S81P+1s+vyVpDttt2u6DgDkMcwAAAAAa4tgFgAAAGuLYBYAAABrizGzw3tznedOTm3C7zAmXr/FrMvr9+LFC0l6c+zz2HAr166u0rlsI17/cQ39+te1q+bug57AtjOzryT9M0m/H/tcACzFm5L+t7v/cOwT2VS0q8DWqWxXCWYBAACwthgzCwAAgLVFMAsAAIC1xQ1gwEDMbE9hrvmZwmxGM3dnnvkSZnag8Drdjf+euvuz3Dq8pgAk0R4Mpa+2eJnvD8EsMAAzy6bifJgsOzOzGdNzzouN5yxrMM1sR9JzM9t196dxGa8pAEm0B0Ppqy1e9vvDMAPUMrMDM3tkZqdmdh7/2PPr7JnZkZntZ/+Oca4r5FjSaW7ZqaTpCOeyDiZxKlNJ11OiTnX7NeQ1xej6ag9pMxdGezCMvtripb4/VDNApeQq7TL+vCPpucIVV3qVdpq/ApN0sq1XyGb2UtLD9PePr9037m7jndnqia/LZ5LeiQ1ntnwi6aWku+4+4zXF2PpqD2kzF0d70L8+2+Jlvz9kZlGHjFlL8QM7kfQ6XZ41DrFhQBRfl0l8FOI1xYpYy6zVpqE9GEZfbfEY7w/BLErFP8j347+pi/h89gd5IOkyt86Xcfk22pVuPrgFaGhz3P1OGiRE+5Ku4pU9rylG1XN7SJu5GNqDgfTUFi/9/SGYRSkyZp3lv+zQzbGkj+L/eU0xqnXOWm0g2oPlatsWL/39oZoBKrn7nYLF11dpWcNbcwXGGDC0YmZHkl67+5OxzwXI9NQeqsE6tJlYCevSFpOZRRdkzBoo6I5EAzEgOE5vjkme4zXFqln5rNWmoj0Y1qJt8TLfH4JZtLIuV2kjy7Iqu+nC5INN1qXaVNI7uWW8plg5tIejoT1Yjq5t8dLfH4YZbImW47BeF3WBJVdp9wue26noNtsq7n5lZjPNZ2B2dTOIHgXM7FShPNGtvyVeU/RpFdpD2szuaA+Gt2hbvOz3h2B2C2QzcbTY5AtJRZmGuqu0tC7dtl8hXyhM45feFboXl6NAzHJNc3UJ9xXqes7Ea4oerEB7+LrBOqhHezCQntripb4/TJqARuJV2rToiioWRz5My3nEL4znJTdMbLz4xXSWK4p+rpDJ4csqJxaj31UoT5TZVfi7Oo7r8JpiJSzaHtJmLo72YBh9tcXLfn8IZlErXqVdlF2lxYb9eTYDTnz+QNL77n64/DNeDWa2J+l9hczORNKlu5M1yMlmhSl5eubud5N1eU0xqj7aQ9rMftAe9KvvtniZ7w/BLCqRMQOAYF2zVsCmI5hFKTJmABCsc9YK2HQEswAAAFhb1JkFAADA2iKYBQAAwNoimAUAAMDaIpgFAADA2iKYBQAAwNoimAU2UMu553vbFgCw3sxsYmaPxj6PNghmgQ0TZyPaL3vOzKbJPPBFy1/HGYoAAFskJjPOJb0x9rm08WdjnwCA/sRC7NezERU4k7Qj6aWkp0XL3f1pDGzP0xmKAGDVmdmEWdTai4mMqcJ3Q+nrt6qvL5MmYOVkc5THH7MPzURhppxnbT9IMVN5KOlK0qv4b5p5vJB0qZDN/Mjdn3U/+/HExui5pPvuflXw/EShoZKkO9k6FcsfSXrD3U8GP3kAWFBs6yfu/rR2ZZQyszOFWe3m2v4s6K1ImIyCzCxWRmyIThUC1sOC5/cknZnZRdMAK853fpXfn5lNFTKRz9z9MOl2nwsCh2Jm+z1PXzlVaGTKfoeD+O+z3DqFy939iZm9NLPTVbwSBzZJFogptEuzdb2oHktZr1RMjuxKuivpnCmDF+PuV6vYc8eYWawEMztSGKdzXBaouvulu9+XtGdmz/PjPgv2eaZwlT4XGOumi/2DuO8rdz9ZVkMXs6G9NQRxf/s1GYnsePnxsGXLJemkZDmwceKX9Esz8+TxMrZPddse5Lb7JgaoTT1U6EGaqse2oQsz22l57qOK3wVnCu1V3luSjiU9krS3zPPaVDG5cR6TQiuBYBaji1fOpwqBbG0wGa8GdyR9VrPqgaSy7MaOQsZ2aZnYnL4rBkzjo8q+QsYn/xqXLVfMDj2gwgG2QbygvauboGjm7nebdFvHz8qd+OOxu99pc3Ecj70qma6PFYKV0jvaVyzYLe2VismRd5Z/SpvN3Z9IOliV7waCWYwquaK+bDnO6UQhQ1sXwL2seO51i+P1rShbvIgDSZ+WPZk0C93WAAAKv0lEQVR88UybLM/5VCGzAWyF+EUtSZO6HqACzzZgzOa5wpCry6In++5ZWkSTXqkRkxabbmV67ghmMbYsiPqozUYxCzKT9KjDl82oYuNb223ZYn8HChcDVQ32Q4VMdL7BL1ueOlOP5wusiewz0eZv/z21bMtWkbs/rcksr0Q2LmrSK7Xx4tCQly0fC2XXV6nnjmAWY8u+KLqMVc22WYtAKzY2BwoVB/r0UNKXNevs63Yprrrl1+IX2s4qNFjAEmUZpza9Eg/dvTCbuWH67llaRGWv1LaI933cbfno4x6Rlei5o5oBRpNcFc46dgOdKwSy70t6Evd5IOlxss7UzIo+aBOFAC0NLD/Ivojifia6qW6wE/+/I+mi6AsrGfLwSqHg9I6kk+R3e6w4PlXhRoSj3JVx4yoNOfuqyEzEzPWecl9AZctLzNQg8AU2hbtfmtmlwnCm2soj8W76L5ZzduNJepae1K27hHNp0iuFYZ2p/Oa7pSGYxZiyO0u7ln3KGrDrO1Rjt8czSTIzV6gbO9foxhmu3ovVEYqeO89vFwPPc0n3c8uzGVNu3cAWG9qvzeydWInhJC7fkfSNpKc91XCdqDoz+0DF9XnLlheZKZS2AbbJaXwcq7736Fgjf6EPKbZb+wo3h62KJr1SGJC7X8Rex1EnUyCYxZiy4KjrVXXvN3DFBvu9ooLQ8UNbVB3hXCEovMit/yxmhT9WLgDu+XylitcwnldRpYLC5SVmWq1xcsDg4mx4pwp3be+UZQCzz2HF83W9No3FMmH3FW5uzdrQ0ybDG5Jt0+PeqiMdf99JfDxLLrgb9yxlyYL4eyoe7yQ/Nt/MXuqmXblSmPClTUBU2StVJ75vX+fO86NYY/s8ntuuYuIh6bGTQiA9U/I+xtd3R+E93lNBUqTDObbuJRzB6D13BLNYBat0A1c2/KDsi+s8/SGWrpmo/KaPU4WJHvYGanR2479DV2a4EsEsttNThW71qq719xS6Wm9p2mvT5CSSyi9nBRMDnJvZZVlPT7Jt0QQyp3FilOw8pgqByamStrlNz1I8v+M4jGtPJUGqu981s29UEOg2VNcrVSlOAPCRQqCeP4dj3bwOWVt/kUxmkQW8n0m6Hy9YPkoC2x2F97jzLIptewkXFX+HicI45Kv491s4E1jO6D133ACGMWVls3Yr1yrXe3CVNOjPYxH0fKD9qW4PizhWdb3abN0HPZ5maiItpfTMK3V/n4B11uRGsIclY2pLe20UgrA2XfafqaSEYaxPe1BRF/ZjSQ+KJpCJgefj5OdZj6XFsiCoarKCiy7Ha9Ir1XAfb0n6y/w55F6HPYWgLn/hcaowpvpUIcOdzqB4pXAhVFqrt8G5vecFM8HFv6feZ4iLtY4P3d1iNYvDhoH46D13ZGYxpizQ6/ohyLbrO+N5X+GL40yS4k0gF5I+KWjMJpJmVcXF47Zj1rTtyypl0IGlqLsRrOzGrz57bWL3dd3NmlNJp2b2NA2qYhbvQCXBeNbVXzWMoqs4NGumECzPBV92M4V5Fwv1SsVgcVoU4Bd44MUTWlx/h5UMj3gZj9VlPGmrXsKRjd5zR2YWo0muOLuWfcoal096OiVJ19Pm3tHNTR8Thavr5+kkDck5X7n7k4rHw6Kr654sK0h+QwtkQIA1V5WdPVbxWME+e22OFTKDVQFRWanC49zzeZfqXlGmiSx7WdTGHy5QHqpzr1Q8l7nhGhXqhjLUJVRaJwI69BKOafSeO4JZjC37Ejhos1FyZ226j4XFuzKzmzmexkD0jsJ4oKcKkzRkWdheA0kz2+swAUQ6PmtIO1qdhhNYqqS7+VZQUXPj10TSazN7VPRQaL+a9trsqf5iMtvPWwXbqiwQjl3JQ453zF67W93V8bWrmqFxEMk45v0WSZS6tm+o3+O+QpB4JukbM3tuZtOYzR9zOvYio/bcEcxibOmdsm1k2YcnPX+gH6hgEoY4firLwBzHZVfqd6zQA7W8uk2+oIa+Kt7VZgyVALoqmhGs6sYvqYdem2RfTT9/+fGp6Z3wSxfbyWeab1ePtFgiokt79FCh/c4qOsy9d6ukaS/hChi9545gFqOKDd2hwlCDRh/O2LhPFW6GGKKu4/sVz53qduA4VTj30hsczGwS716WVNst1jVgrLrBog8TjZBFAVZI0VCDshu/ervw63DBms8iZmWcBlXTs5RVBEgD2jcWTER06ZW6ijc5Zd87ezX3O4ymZS/h2EbvuSOYxehiZuJY4cNZOTVt/HCfK4xRemegU9qrCE53lYw9i92Pl6qudXhSkH0pyuje7di4Z1fsQ9pT/zfaAWsjjmG8VLhZar/sxq+4bt+9Nk32VXZD7JfSrQzvUEp7lmLAP1PsiUtKS3XWsVfq+v1KKgJMl/DadNG4l3AFjN5zRzCLlRCDwoeSTmLdw7mr7dgAPlco5XK/KvBLtn+jZJVdVWcrjvPnEH8+0fwsP+9I2o3lWfLn8UjFd+tOlYy/W3DM66Xmx8n1JmvoF7hRA9gUaXa27MavTOtem5rjVu5LNz1K+fYm+7n0ODELuF/2fGqBnqVThQuBPS1241feIr1SH2i1hxu06SUc0+g9dwSzWBnufhFvRDiX9HEMaqfxcaYQ7D6suwM1Fur+Ov74yMxeZhnfePPFS8WG3cyyQfVZQ/5aocD5scIMN9Pkho3H8blb3SlxIP59SS/N7Cw9b4Uak3MZzRi8n0j6LK73eIEhE5+o5Q10LWU3qgBbLb0RLP5cNfNe116bon09ifuqavuOFO4hyLdP2RTfVfclPFa7yQe69Cxlr91U/QU+C/VKxfP9QKs73KBxL+HIxu+5c3cePHis+UMhY7030L7PJR2M/Tvy4LEKD4WMmEvab7DuTvxsnhY896joMxv3XbT+JO5rWvDcedE2ufM4j4+d3HMHRZ/vsvOIzx3F53eS/c+dV8F2Z+l2PbwXU4USW03eBy87R4UZzQrf07i88BgKF/ou6VHJ84/i863b5mTfpwXvWfZ+Tvr6u17gPZiEUHLc87B4MgDWWMw8P/RmBcDb7HdH0tcebjwAtl7MlJ15i3JWMev3lkLPT5a9PPUkixp7lCa6Gf40i+vkpzJ9pNvDp3bi+dRm6bJ2IncetyaDKTmP4/z+43m8r5gd9AY9S/G1e9xXOxX399zdrWKdot/nOiMeh4elY1NnCq/RWcF2p+7+JKtTq9tDHC7jfi+SySCuq1rE7Q+94eQJ8Xd74O5Pk/f8VXz6DeX+fsYS/6YOvXhSieWdB8EssBni8InKscQd9jmV9NL7m94SwJaK44OvmgTeLfb5XNIHXjOLGoZhZlmvwFATAzU7D4JZYDPEL4rjvq6Qk1ly7vexPwDbzczOBug9GqRXCvVWqeeOG8CADRGvjGdN70pu4FTVc8EDQCNVpcwWEXuNusyeiMU91nx1n1EQzAIbxEMVhrmyYm1lJcVWYUwWgPUSK8B4rn5rXSmzRZxodctrbaT43u6vyhA0gllgw8TutsrJJ6rEzO7l2GOgAKy1mWLd2axGeJ/j+VMD9Eqh3kr13DFmFgAA9CrePPpK4c77L5ZxcRzrkX8wVNCMIPbczVYp4UEwCwAANoKZPcqXM0N/sux3nxUp+kAwCwAAgLXFmFkAAACsLYJZAAAArC2CWQAAAKwtglkAAACsLYJZAAAArK3/D7tIr3vl9vF8AAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 720x720 with 4 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "'''\n", "True values for the flux, posang, inc etc, as defined in the model function\n", "'''\n", "\n", "guesses=np.array([30.,270.,45.,200.,2.,5.]) \n", "\n", "'''\n", "RMS of data. Here we are making our own model so this is arbitary. \n", "When fitting real data this should be the observational RMS\n", "'''\n", "error=np.array(1e-3)\n", "\n", "\n", "fdata=make_model(guesses,obspars,rad, filename=\"Test\",plot=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Read in the data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this example we already have our data in memory. But if you are fitting a real datacube this wont be the case! Here we read in the model we just created from a FITS file to make it clear how to do this." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "### Load in your observational data ###\n", "hdulist = fits.open('Test_simcube.fits',ignore_blank=True)\n", "fdata = hdulist[0].data.T \n", "\n", "\n", "### Setup cube parameters ###\n", "obspars={}\n", "obspars['cellsize']=np.abs(hdulist[0].header['cdelt1']*3600.) # arcseconds/pixel\n", "obspars['dv']=np.abs(hdulist[0].header['cdelt3']/1e3) # km/s/channel\n", "obspars['xsize']=hdulist[0].header['naxis1']*obspars['cellsize'] # arcseconds\n", "obspars['ysize']=hdulist[0].header['naxis2']*obspars['cellsize'] # arcseconds\n", "obspars['vsize']=hdulist[0].header['naxis3']*obspars['dv'] # km/s\n", "obspars['beamsize']=np.array([hdulist[0].header['bmaj']*3600.,hdulist[0].header['bmin']*3600.,hdulist[0].header['bpa']])# [bmaj,bmin,bpa] in (arcsec, arcsec, degrees)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fit the model\n", "\n", "Now we have our 'observational' data read into memory, and a model function defined, we can fit one to the other! As our fake model is currently noiseless, lets add some gaussian noise (obviously dont do this if your data is from a real telecope!):" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "fdata+=(np.random.normal(size=fdata.shape)*error)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Below we will proceed using the MCMC code GAStimator which was specifically designed to work with KinMS, however any minimiser should work in principle. For full details of how this code works, and a tutorial, see https://github.com/TimothyADavis/GAStimator ." ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "from gastimator import gastimator,corner_plot\n", "\n", "mcmc = gastimator(make_model,obspars,rad)\n", "\n", "mcmc.labels=np.array(['Flux','posAng',\"Inc\",\"VFlat\",\"R_turn\",\"scalerad\"])\n", "mcmc.min=np.array([30.,1.,10,50,0.1,0.1])\n", "mcmc.max=np.array([30.,360.,80,400,20,10])\n", "mcmc.fixed=np.array([True,False,False,False,False,False])\n", "mcmc.precision=np.array([1.,1.,1.,10,0.1,0.1])\n", "mcmc.guesses=np.array([30.,275.,55.,210.,2.5,4.5]) #starting guesses, purposefully off!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Setting good priors on the flux of your source is crucial to ensure the model outputs are physical. Luckily the integrated flux of your source should be easy to measure from your datacube! If you have a good measurement of this, then I would recommend forcing the total flux to that value by fixing it in the model (set `mcmc.fixed=True` for that parameter). If you can only get a guess then set as tight a prior as you can. This stops the model hiding bad fitting components below the noise level. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Its always a good idea to plot your model over your data before you start a fitting processes. That allows you to check that the model is reasonable, and tweak the parameters by hand to get good starting guesses. Firs you should generate a cube from your model function, then you can overplot it on your data using the simple plotting tool included with KinMS:" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAKnCAYAAACVoMWWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzddXzV1R/H8de5d72xjY0NRo7R5QhpJKQMkA4VRARBAQOkDcCfQdiKNIigoEgqopSAUkqJhNRGx4Cxznvv+f1xByzZHayufJ6Px32Mfet+7x378ObcE0prjRBCCCGEEPbIUNA3IIQQQgghxN2SMCuEEEIIIeyWhFkhhBBCCGG3JMwKIYQQQgi7JWFWCCGEEELYLYeCvoH/OqXUfsAPOFnQ9yKEyBMVgata6zoFfSP3M6m1Qvyn3bHOSpjNe35eXl6lateuXaqgb0QIkfsOHDhAZGRkQd+GkForxH9WdnVWwmzeO1m7du1SW7ZsKej7EELkgZYtW7J161ZpDSx4UmuF+I/Krs5Kn1khhBBCCGG3JMwKIYQQQgi7JWFWCCGEEELYLQmzQgghhBDCbkmYFUIIIYQQdkvCrBBCCCGEsFsSZoUQQgghhN2SMCuEEEIIIeyWhFkhhBBCCGG3JMwKIYQQQgi7JWFWCCGEEELYLQmzQgghhBDCbkmYFUIIIYQQdkvCrBBCCCGEsFsSZoUQQgghhN2SMCuEEEIIIeyWhFkhhBBCCGG3JMwKIYQQQgi7JWFWCCGEEELYLQmzQgghhBDCbkmYFUIIIYQQdkvCrBBCCCGEsFsSZoUQQgghhN2SMCuEEEIIIeyWhFkhhBBCCGG3JMwKIYQQQgi7JWFWCCGEEELYLQmzQgghhBDCbkmYFUIIIYQQdkvCrBBCCCGEsFsSZoUQQgghhN2SMCuEEEIIIeyWhFkhhBBCCGG3JMwKIYQQQgi7JWFWCCGEEELYLYeCvoHCSinVHQgCKqR8naW1/iHdMXWBB4GQlGNCtNYb8/tehRDCHkmdFULkBgmzmUgpsCE3i6pSyhvYq5Ty0VrPTtkWBEzRWrdNdd4ypVSI1jqkQG5cCCHshNRZIURukW4GmQvSWu+7+Y3WOgKYAsxKdczgdN+T8v2UvL89IYSwe1JnhRC5QsJsOimtA71Svqa2MWV/UMr33YF96Y7Zk7JdCCFEFqTOCiFyk4TZdFJaB4JSHplKKcBBQHgm56YuxEIIIdKROiuEyE3SZzYTWuuimWxuA0RorUNuFtGbRTUTQVgHKwCwdetWlFK2PO9d3K0QQtif3K6zILVWiPuVtMzabjDwfsqf0380JoQQ4t5JnRVC5JiEWRsopQYB4VrrqXdzfosWLdBaZ/sQQoj71b3WWZBaK8T9SsJsNlI+6hqcemqYVPuk5UAIIe6R1FkhxL2QMJu9KUDrdNtu9tPySb0xVdGV+Q+FEMJ2UmeFEHdNwuwdKKVmAWPSD0BI+T6EjH26fEgZvJBPtyiEEHZN6qwQ4l5JmM1CSv+tKakLplKqTarpYDZiXWIxtbop24UQQmRD6qwQIjdImM1EyjKLAN5KqbopjzZAj1RFdwzQI92pg1O2CyGEuAOps0KI3CLzzKaT0h9rWRa7b7UeaK0jlFJjlFJTgL+wznk4RT76EkKIO5M6K4TITRJm00npp5X9rNvWY/eRcalFIYQQdyB1VgiRm6SbgRBCCCGEsFsSZoUQQgghhN2SMCuEEEIIIeyWhFkhhBBCCGG3JMwKIYQQQgi7JWFWCCGEEELYLQmzQgghhBDCbkmYFUIIIYQQdkvCrBBCCCGEsFsSZoUQQgghhN2SMCuEEEIIIeyWhFkhhBBCCGG3JMwKIYQQQgi7JWFWCCGEEELYLQmzQgghhBDCbkmYFUIIIYQQdkvCrBBCCCGEsFsSZoUQQgghhN2SMCuEEEIIIeyWhFkhhBBCCGG3HPLzyZRSgUAboAIQBHgDPilfI4AQIBw4BezVWv+Wn/cnhBD2TuqsEOJ+k+dhNqWwvgAMAryAUKzFNCTlz9dTDvXFWmx9gfrAVKWUBjYCs7TWK/L6XoUQwh5JnRVC3M/yLMymFNfZQD1gGdBDa70ph9cIAloDLyil5gCjtdbzcvlWhRDCLkmdFUKIPOozq5SaDGzA+j99X631CzktsABa6xCt9RytdTusH5lVUkr9pZQql9v3LIQQ9kTqrBBCWOV6mFVKrQeuaa0raa2X59Z1tdYRWuuxQC9gjlKqa25dWwgh7InUWSGEuC1Xw6xSaiYwWGv9QW5eN7WUVoR2QAWl1MN59TxCCFEYSZ0VQoi0ci3MKqXKA2O01qG5dc070VpPA1R+PJcQQhQGUmeFECKjXAuzKcVVK6UGKqU8c+u62TxnjvuHCXFXTIduP4QoIFJnhRAio9zuMzsemAXcUEotVUq1yuXrC5E/UofX9AE2t0Nt+ueSwCzuTOqsEEKkkttTc20ABmOd57An0EMpdQqYIlO9iEIvpyEy/fEONbO+zs19tj5P6mNSnyuE1FkhhEgjV8NsysdRRVP6dXUH2mGdv3COUmoq1taEWVrrM7n5vELck9xqCb3Tde7lOUyHJNCKW6TOCnv36uWM2ywlLth8/ueXSme5LyTgzueWD8u4LdQfyqNtfn5R+OTJPLNa61Ct9TStdVuttQFrsZ2T8jVUKfVdXjyvEDliTx/p28t9inwjdVbYq09KpH0AGC6XwnC5VIHdU6iMc7Rreb6cLYDWeiPW5RJRSnkBD+bH8wqRpazCYU67A+QnW+5Z3Lekzgp79UmJ2621hsulctRKm17QpexbZ7MSipIWWjuV2/PMemY3ylZrHSmjY0WBsjWk2ktItKcWZnHPpM6K/6KbLbS5IejS3Z8rLbT2SWYzEPeXnIQ+CYiicJI6K+xG56XWhy1yM9DmRPmwVI/lwHKV9iEKvdwOsxuAKKyTbPcENiqljiulBuTy8wiRc7bOIiAtnaJwkzor7ELqEGtLoM1sYFh6dxr8ddPddjPg97s8TxS4XA2zWutNWuuiQAVgDLAZqIh1lO11pdR7SqlyufmcQmTrfgmnqV/j/fKa70NSZ4U9yCy83inQ2hJkbXHXQVbYtTwZAJaySs20lAdKqTZAG6yjbMcqpZZprXvlxXMLkUYeBrrk5GTCwsK5dOkaly5f5cqV60RFxRATG0dERDQREdEkJSVjMpsxm82YzRacnBxxdnLCxcUJFxdnvL2LUKSIOx7ubnh6uuPnVxS/Yj74+/vg51cUR0fHnN1UZgs82EvfX5EjUmdFYXWn0Np5KazqnXZb6iB7L4O/7inISqusXZPZDMR/Vy4FWa01Z85cZPuO/Rw6fJKj/4bw77FQTp48i9lsyfQcDw83vL2L4OTkiIODAw4ORgxKkZRsIjExiYSEROLjE4mKisnyeQ0GA+XKBVC5UiCVKpalWtUgGjV8gAceqIyDQw5+dSXQ3hekzorCoEoXqJbNf6E6L4XAlvlyO7bJLsguV9Atk1kOeqb0p/1eZkAoaPkSZlPTWkcCMspW5I1cCrCXL19j9ZrNbNm2hz+27+P8+SsAODo6UKlCADUql6Jbh3qULV2MgBJFKVG8KCX8vfH2csfd3Rmj0Zjxom6VMmyyWCzExSUQHR1LZGQ0165FEHY1nLCwcC6cOcrJs7GcOHGGnbv+vhV8PTzcaNigFi2aP0i3Lm2pXr1C9i9IAu19ReqsKAhVutz7Ne51aq48kz7Q9lRp/yyBtkDle5gVIs/cY5A9e/YSy1dsYPnKjezYeQCtNaVK+fNQo8o0e/UJmjasSo1qZXB0vMtfm7gTGTYZAA+PSnh4uBEQ4JfquHJAnVvHadeKnDt3mR07D/DH9n1s33GACZO+5K2J06lRoyI9u7ejV49HqFKl/N3dmxBC3IPcCLI33W2gzW6O2cxW/8pR94KbgbZnJjMcSKAtULkWZlOWVmyttZ6bW9fM5vk8gUFa6w/y4/lEIXeXQTYiIoo1P25h8bc/sXHTLrTWBNcKZOK4XnR7ohHVq5ZBqTyemiWTkJueij9J2bKVKFs2gN69HgWsrcfLV2xg2fL1THx7BhMmfUmrlg0YNLA7nTs9jIuLc9qLSOus3ZM6Kwqj9EH26HfZdzXITqFtoc0syKbeJ4G2QORamNVahyqlQpVSM4DRWuvo3Lp2ekqp1lgLrAxuEDkOsmazmfUbdjBz9ves++UPkpNNlCtXkglvvsjTnWtQsUIhHQ57M/SmdFcoUaIYQ4c8ydAhT3Lp0lW+XryGmbOX8WSf0fj4eNGv7xOMHPEsJUv6375G+vdKwq1dkTorCppSCVTu7JLtcbkRaAuFnC4KLYG2QOT61FxY1wbfnxdzHqasfLMe6C4FVuR0+qmrV8OZPHUuFas+zmMdh7Br90FeHvY0u/74htATvzDhzRcLb5BNLZOW3IAAP8aMGsCpYz+zft0s2rZpzGdffEtQ5UcZ9vK7nD+fxbw3MoWX3ZE6KwqKUgk5Ov7oHYLg6S3Zn2+4XCpHz3cnmXYxyAvLDXduvRV5Itf7zGqt9ymlHgQmK6XGApOBZVrrqLu9plKqNtZVb+oAY7XWy3PnboXduYvgdf16BNM+XMDn05cQFxdPq5YNmPLeq3Tu1Bonp1RTX9nwcX9W4uMTOX7yIpeu3ODqtSiuXovi2vkQkk1mzGaN2WJBa/Bwc8KreFk8i7jh7e1O2dLFCCzrT0CJohgMOfi/ZdyJTAeUGQwG2rZpQts2TQj53znenzKPWXN+YM685Qwa2J1JE4bi4+OV8Xo331dpqbULUmdFfstpkLXF6S05n9XgpYDzWS6ckFV/2XwNsje/Go1gNufTE4u8mmc2AnhBKRWEtcjOUUrtBfYAN79GAOGpi29K/ywfoC4QBNQHugP7gNla6555cb/CTuQwyN64Ecknny3m408XERMTx5Pdm/HGqB5Uq1I60yBoC601oaevsGf/KfYfDOXo8fMcPnqOkNNXsFjSTtNlNBpwcjRiMCiMBoVSipi4pEyn83JyciCwrD/BNQOpVaMs1auUoVaNclSqEJB1n9103Q7SCwoqw5xZE3lj/CDemzyHL2d+x5Lv1jHlveE8179L5teVUGs3pM6K/JI+yB5fZVtXA7j37gaZ9Z29U6AtVCTQ5ps8nc1Aax2CdblFlFLdgLbAWKwFFEBn8g/qzQ0bsRbXB7XW+/PyPoUdyEGQTU5OZuas75nw9pfcuBFF1y5tmDT6cWpWT7UoUuogmE2L7JmzYfz4yx7W/riF3X9f4EZkPACOjkYqlvUhuJIfTz5WheqV/ChdwhM/H3f8fNzx9nTJEBi11sQnJBMVk0h4RDzn4rw5feYqp8+GceLUJfbsP8WyVTtuHV+iuDetHqpFq4dq0qblA5QPLJ7xBrNopb2pXLmSzJoxgaEv9mboy+8xcPAEFn3zI7NnTKBy5cDMT5LBYnZD6qzIbbndCnunQHs3rbP5Jif9ZZdn8claZtM0SsDNdfk2NVfKR1a3PrZKmdTbh9sFNxyISFnVRoi7su6X3xkxahr//htK64cb8uHUUQRXusPH91kE2YuXwpn79UaWr9nJwUNnAKgU6Eu3R6rzYK1S1KtZkpqV/HF2ztmvkFIKN1cn3FydKOFXhOoAwaWAUtyciivOrSL/Hr/Avr9D2PLHITZv+4clP1jnj3moSXUG9G1N906NcXdP1TKSTaAFeOCBKmzdvID5C1YyauyH1Knfk9kz3uLppzpkfoK00todqbMiv+SkdTY7dwq0eTqjQVbTcuV00FdWQTYr0mKb6wpsntmUSb0jASmq4s5saJUNC7vO4CFvs2r1ZipWLMvqFZ/RsUNLVPxJm59Ga83OP4/x+ayf+WH1TsxmC80eLMvUse3o+HBVqgQVs/k6UTGJhF2PTdOlQClFsaJu+Hi73nG6L7e4k9QtDXVLB/D8s23RWnPsxAVWr/2TeYs28eyLn/PS6Ln06dmc0a90IbBcymwFNgRag8HAwAHdePSRZvR+ejR9+o3jj+37+fjD0Rmn8rpJWmntltRZkZfys7tBriuoIHuTBNpcJYsmCLv3409bGDBoAlFRMUx+71WGv/KMdWCXjQO6LBYLq5b8wOSZv/PXwQt4ejgztE8DhvZpQMVA3yzPO38pkkPHw/h3317+PRvD0TMxnL8az+XwROITM1/mFsDBwUBxXw8C/D2oGuRH5SBfqpQvRrWKflSv6JdmIJi+ag3yVYrCmOFdGf1qF37fcYR5izYxb9Em5izcyIC+rXlrTE9KBvhk/pozCbilShVn84a5vPHW50z9YAF//vUPP676Iu00XqlJK60QIhO5FWjztbtBQQfZm4xGlCU2zft3bOW9XfJ+JWFW2K2kpGTGjv+Yjz9dRO3gqvy2YR41alS07rQhyCYnm/h22e9M+WApR09dJahMUaZP6kDfzsF4uGdspbx+I45NO0LYtDOEzTtCOHU2/Na+okUcqV7OgyY1ilLcx5kAXxf8vZ1wdLhd7MxmzbXIJK7cSORyeCIXriWwZXcoi1f/fesYH29XWjYsT8uG5WnbrEKa1mB99RDKrybNm9agedMavPvmU7z/0QrmLNzI10u3MPKlTrwxqnvaGRpuvheZBFpHR0emvD+Cpk3q8PQzY2nRuj/bNn91eyUyIYSwQU4DLWQeavMi0ObZTAb3GGTj+vQBIJbB6fYsvKfr3q8kzAq7dO3aDbp0f5U/tu/jpaFPMW3Kazg7O9l8/obNBxjy2hxOhlwiuFoJvv2kB90fqY6DQ9rO+haLhc07Q5m9ZA+rNhzBZNZ4ujvQItiHYR2rU7eyF1XLulPMyylD14GkZAtaa4zG27MZZCY23sTJC3EcDIliy4HrbD54kRW/HgGgUe3SDH6qPj0fq4mri+OtQAtQulQxpn84iBFDn+CNd77lf1OXsfbXvXw7bzhVKqWbn/EOXRCe6NiK9T/Pot1jg2ndfiBbNs7H3z/rFmkhhEjv+CrroLHc7naQbyuB5bRV9h7cDLI3uS1efPubhRJm74aEWVG4ZdJf9sSJMzz2xBDOnbvMksVTby3vaosrYRGMGL+Ab5f9TqUKAayZ/TSPt6qcIWjGxiUx89u/mPntX5w6G46PpyMvdQ2kR8sAHqzihYPR+r9yi0Vz5EwMK7ZdZvfRCM6FxXPpeiIXrycQEWNKc01HB0WpYi6UK+5KYAk3yge40ai6N01qFiW4oifBFT3p28463UzopThWHXJm9tI99B+9khHv/sKz3eowelAzSqRrOK0QVIIl80fQq2tTBr70JXWbj+ST959jYL82aV/XHQJt48a1WbtmOo92GEKb9s+zecM8ihUrmvYg6WIghMhGbg4MyxNZdTHIiXtolU0fZNOQPrR3TcKsKFyy6Zv555//8GjHFzEYDGxeP48mTWrbfOlvvt/KsJFziY1L5K0xPRn7TBVcnNN+JJ+QmMyMb/5i8pebuRqRRPMHfJjUtzZdm5fAxcnaaht2I5HV26/w444r/H4wnMhYa2j1K2KkQjEnqvo40DKwCMU9jRgNCrNFY7ZAgklzMSKZ09fj2fRnFBciTGgNDgaoV8Wb5sE+9GgZQL3KXpQPcGN4ALzapgFbLxZn1pK/+GzhLmYv3cPYFx5i9LhBGboTdO7QkAb1KtHvhc8Y9MoMNvz2N4vnvJKx20EWmj/0IGtWfkaHTsNo9+hgtm/7GlfXQvyPkhAiTyg1D63vfnG5whJo86SLwV0E2TsG2JskyN4TCbOi8EjdCptJi+zBg8do//hgihb1ZMO6OVSoUCbz66TrL5uUlMyI8V8xfc46mjaqytzPh1ClaESaY7TWLFr1N29+tIlzlyJpXdeXt5+rQuMa1tbJuAQz02ft4fs9UWw/FY9FQ/lijvSs60HTCq40CXKjvK8D12MtXIw0cSEimStRZpQCJ6PC2UHh4qgIKuZFRX8nnBwU0QlmdpyKZ9uJOLadiOOTH0KZtjSEqmXd6dO2NH3alqJscVdalgqj5ac9mRR6jXHTNvDmR5v4dvVBZk9/lWaNq6V5HSUDfPh15VtM+3QVYycuRmvNkvkjMnSfyErrhxuxbOmHdOw8jAmTvmTq5BHWHdIqK8R/hsEwHQCLZWiW+5Sad2vb3QTbnHY7uCmzfrO51tXgXgd+SZAttCTMCrsQEnKO9o+/gLu7K5vXzyMwMIs1u9MF2YuXwunRbxo7dh9j5EudeH9iH4w3jqY55sq1GAaNX82Pm4/RoKo3C0Y25OG61oFXsfEmZv54lg++Oc6VKDO1SjnzxmPF6FKnCNVKOLH3bAJbjscxdMlltp+KIy5JZ/tajAYIKuZE9QAn2tfwYFirorzb2Z8bsWaWXXBm8YbzvDHvGBMWHOfFTuWY1L8yRc/tpnL5hiz/8knW/naMYRPX0uKxN5gyuh2vjR2UpjuBwWBgzPCuODk5MmL8AtyGTWfBl8NsXi63w+MteH5ANz78eCE9urWjfn0JskL8FxkM09ME2ptBNrV7aaGFwtNKm6WCDrIiV0iYFYXDHeaSDQu7TvvHXyApKZnff1uYeZDNZPaC7buO0v2ZaUTHJPDdgtfo2bXpramublq5/giDX19DdGwSH45/hFdaGzAYFMkmC5+vOM2Uxce5Gm2mTVV3lg0qRrOKbhy/ksiMrREs3BVBRJx1Cq6aJZ15trE3VUo44R0fTwkPIz4uCqMCM5BogjiTJszZlaOXEzl2OYl9ZxNY/XcMQ5dAo/KudK1ThP5NvBn0WRNCL8Uxbekpvlx9mqWbL/LuwCo896jGGNiIx1tVoUWDQJ4bs4pRk3/l0PErzJwxFheXtAPghg/tSExsPG+9uxR3N2emfziIrGe3TWvalNf4+Zff6f/8m+zd/R05XBtCCGEnbgba9EH2XkOsLbIaBHY3sxqEBKT9PkMXg8xaZfMoyEqIzX/yT5Qo1BITk3is4xAuXAhj069zqF69QtoDspiC69eN++n01GTKli7GxtUTqVGtbJogazZbeGnSWmZ++xd1qgfw9QfdqOFqnVf+UGg0T/1vP4dCo2lbzZ0JHYrRpIIbW4/H8uhnZ/n1SCwOBuhYyZlOVZxpUNKR0Agzm08n8tuBOM5FmTkbaeZqnLWV1sUB3BwVHo6KasViqRvgSK/yDsx4KpBLkSZWHohm1YFoRi0PY+JPV3nl4euMfelBvhxei0Edy/LK50cY/OE/zPnpLGveS6SEjwseZRqy9LMevDPdn4mf/sbJM6NZ/9MU3NzSTin2xqgexMQkMPXTVRT392bC22/Y9L57eRVh1pcT6NBpKNM+XMAbb9W19UcmhLAzeR1kC7x1VoLsf56EWVGovfv+bPbuO8LKHz6hceN0g72yCLJH/j1Hz/4fUq1yaTaumYivT5EMQfa5MStZtOpvXhvYlHdHtMbpyl4AFqw7x7BPD+HprFj1YmmeCC7C9RgT/RZcZNHuSIp7GhnX1J0+tZzZe8nMj8cTGL4+mhsJGgcDlPU04udkoXlxRQlXAxqIN2kMbs5EJFg4dNXE+pAkNKCWR/JIBScG1XXjjfHlOXQxkffWXee9ddf5ascmpnT156m+tdnySSOWbr7IoA/+4eHhu9j8cSNKsBtDmYa89VIrqgb58eSry3hu4Lss+WZSmi4HSikmT+rLhUvhvDPtB3p1bUrV2q1seu8ff6w5jz7SjJmzv2fcmIEYnYNz9LMTQojckm9TdKV2r4si2CiuXz/cZEque5I/PykbKaU8lVKBSinPgr4XUfAOHPiX96fM45k+T9C5U2ubzrkeHk3HXu/h6uLEmqXj8PUpkma/yWTm2VErWLTqb94e/jDTxrbH6cpekk0WBk47yICpB2kU6ML+14Po+IAH3++JovqkEJb8FclrjdzY178owf4O9FwexTOrI9l8Oon2Qc7MfbwInzY20jsQKnkqrsZrfj1v4beLFg7f0JwOS4DEZPqUh93P+bC6pzevNHDjz4vJdFkWQfU3TrBp1zW+7l+SP0aVo6S3A30XXGTQmztINmmebF2KtZPrcy4sgdYjdnM5PAHO7Qag5+M1eW9kG75be4jpH8/P8J4opfjovWdxc3Pm1bHz0bHHbf4ZPPtMJy5cCGPrtj02nyMKN6mzIjtKzcv0kReO5sf8rg9lsi0Plta9l1bZuH79cvFO7j/5HmaVUu/fYXcFoC3QSyk1OZtjxX9YYmIS/Z57HV9fLz7+cHTGAzJplU1ONtH9mWlcuBTOqm/HUKa0dRDXzVZZk8nMMyNX8M2ag7wzojVvDG0J53YTE2/iifF7mP/zOcb3qcj6V8ri6qToMfsCvedeoJSb4re+PrQp70y3HyLpvTKSuGTNnA6ezGpmxNWUxLhN0Qzdbua9A2aWh1q4Eg9lPMDPBZItcCYGNl2w8OYeMw3mhzPq10iiIhP4qrmRLx4pgouDYsSGaBq+fRLCotk1JpDxj/oyb3sE7YZu5VpkEs2DfVk7uT5nrsTTesRuroQn3nrto55vyuOtKvPae7+w97f1Gd4bfz9vJo3rxa+bDvDTL7YH044dWlKkiDuLv/npjv2aReEidVbkhbwOtoVKPrXKpiaB9u4VRMtsm6x2aK33a63npDzGAlJo71OTp87j4D/HmTtrEj4+XjadM3biIrb8foi5nw+hUf0qGfYPfuNHlv70D++Pasv4IS0A6ypdj4z6kw17rzJ7ZC3eaeZIZLyFJlNOs+bvaCY2d2f900X55VQijy65wcnrybxZx8inDRXTd0bTfYOJRScs1CiqGF7VwMd1FaOrKRr6AGZwN0D1IjCwqoFPGxv5rrWR4bWMeDvB18ctdFlv4kBoLOuf8mZ+R0/OR5lptSic+Wsv8k4nfxb1L8nu0HgaP7+FG9HJNA/25eeUQNvmtV0khewErDMYfDW1K/6+7vR6+XuSLv6dYbDb0OcfpVqV0gwftwBLzLHbO+JO3H6k4+rqQveubflhxQYSE5Mk0NoPqbMiT+U00N6cqiszmbXOnt6SwxvKTTJzgd0piDBr64BqtNaReXkjonCKjo7l408X0bVLGzo83sKmc46duMCnM9YyuH87+vS6fc7NQPfrthMs+GEfYwY/xJjBKZ85ndvN21+fYMfhGyx+vQ4DK5owWzRPz7vAqWvJ/PJyWV5u4M6MvfG8+0csPZLbXRgAACAASURBVKs7s/YRR0q7K/psNnEqSjM62MiGxxyo7aVYec7CiH2aSYc0X4dq9oVrfrui+ea0ZuyfZvptNfPydjOuRviiqQPrHnXk8bIG5h6z8MQ313mojBM7+vvSoKQjQ9dFsfa3Szzd0Iv1r5Tl9PVkRs20TinWPNiXb16vzeHTMSz89fyt1+pb1I1P33qMU2fDWf/HyQzvkaOjA2Ne7cKp0MscPHTG5p9H2zaNiY6O5dSpczafIwqc1FmR5/6TrbQSZO1SQYTZ7CfiTJHSpyvLFoaCppSqq5QapJRqc/NrQd/Tf8H8BSuJjIxm9Gv9bT5n3MTFuLk58/brvTPsi4tPYsiEn6hc3peJL98e/LTryA0mf3uSZx8pTe+HSwIw4cer/Hokls97FaeuQwILDsQzYWsMXao480X7Iiw5aeHFP0wUd1N819qRyl6KgVtNfPKvBZOG7mUVY6obmNXAwOyGRhY2NrKgkYEP6xp4uYrC0xHeO2Cm9U/JrAg180ZdI28/aGT/NU2rReHEJGkWd/aivLeRvqsjOX0tiYcquTG8tQ/zfz7HzsM3AHiiaXHqV/Vi8rcnMZ3eees1Pd6yMj7ernyz+mCm71PbVtZBXBt++/v2RrdKtx+ZqBBkXZzi5GkliyfYD6mzotC5U+usQAaB3YM8m81AKdUaa7+s9EU1SCn1Htm3HAQB3YExeXB790wpFQRM0Vq3TbVtmVIqRGsdUoC3ZtdMJhMff7aIZk3r0rDhAzads33XUVb+tJv/vfEk/n7et7bfbJV9Z/pWQs/dYPPi/jinTJgad2IH/d7/mzJ+rnwyrDoAqw5E89666wxo6k2PAAvfH0lg5MZo2gc58Xn7IvT7IZx15yy0L21geC0D43Yls/8G+DrDkEoKR4OBi/GwLczaGnslwYKbEcq5Q4CroqQrjKqmuBSv+PGChRlHLfx+WfNpEwe+bqUY/LuJHssjWPdkUZZ29ab51+E8PfMs28ZX4K3H/fj2zyhe/eIwO6c3xWBQvNG3Ep1e38O3Gy/yzEDra3ZycqDnYzVZuOIA0TGJePqlfa9KBvhQo1oZNm45yKhxtv1Mbq60durUKdtOEPlG6qz4r8hqztk8k0sDz3KrVVaC7L3JszCrtd6klArBWix7AIOwFlwFjLXhEiHAC1rrOXl1j/doMDAr3bZZwBSsr1fchTU/buHMmYt8+pHt/7a+8c4SAkoUZfiQjre23QyyIWfD+WDudp7tXoeWjcrf2v/OohOcOB/Lpo8a4unuyLW9x3n2q4vUL+fC572Ls3fPVYb9EkWzMo7M7+jFhK0xrDtn4ZWaRp6qoOj0q4nrSdAnUNG+pGL5WcWa82YsgFFBgIsi2NtAvFlzNRGORWkSLbDkDLxeQzGqupG/rms+P2bh6c3JrG7vyBdNHHj+DxOD1kayokdRprb2YMi6aGZtu8GQlj5M7urPMwsusnzbZXq0DKBDY3+CK3gybekpnmm/G8o0BKBP52BmfvsXazb9S5+B9TK8X21bBTNz/nqSkpJxcnLM9v318fHCy8tLwmwhJHVW2JsCn3P2Tgpg0BdIkM0NefqT01qHaq03aa1fACoCkcBeoOidHlprg9a6YiEusGBtzdiXbtuelO3iLq3fsANPTw+b+8pGRsaybfsRnu/XFnf3jAVy7ZbjmEwW3hza8tY2rTVLNl2kQ2N/WtWxzniwYn80UQkWZj4dgIujgUUH4zEqWPCEFwkmzaJ/4ulW3sDAqkZWntZcToBR1Qx0LG0gPBF+vmimpJuiX5CRUdUceLaCA4+UNNKljAMDKjgwspoDgyo64GSAOSctmLWmvq9iRDUDl+Nh2yULtYsZ6FvRwLazyUQnWehV3YVALwMb90cA8FR9T5wcFHuOWb9XSvF4Y3+Ono3BYrndMFevhrXLxOkLEZm+Z0GBxUlISCI6Otam91gphZubG0lJSTYdL/KX1FlxP3op4Hz2B+Wx3GqVlVkM7l2+/Tck5SOhQSl/jrzTI7/u6W4ppbyxtoSEp96utY5I2R9UEPf1X/DHjv00aRyM0Wi07fhdR7FYLLRsViPT/b/tDCWoTFHKlyl6a9vhE2GcuRJPxybFb21bvi+aSv5O1C7jzLXj11h5LIH2FZzxcTWw7GgCiWboXcFAskUz518zVT0huKjCrDXTjmgU0KW0kTJuBhwMGT/ZVUrh76JoV8LI2Tj49aI1fD7gDV6OsPyUdVncOr4GLBoOXDahlKKyrwMnw80AGAyK0t4OXLh6u9+Zr6cjFgtExppubXNyMmI0GoiNyzx8OjlaP5BJijyW6f7MJCTE4uJSSFtTxC1SZ8V/SYHOaJDPJNDem/xuU98AbMrn58wLPnC7qGZCiuxduHEjksOHT9KsqQ1Lp6YMVtr6xxGcnBxoVL9yhkPMZgtbdofSqnHaH8dPm60h7rGG/gBcj0xi87FYutUtglKKLWeSuBqn6VHNBa018/bGUr2ooqq3gZ/OWrieCF3KWH91Vp3TnI/XPFbSiJdT9gPIq3gqKngolp7R3EjSGJSiga9if7gmwayp5WO9xp5LyQBULGrk1A3TrZbX0kUdOX/29l87X08n62twq3Zrm1IKd1dHYuOTM70Hx5thNsmU6f7MJCQkWcOs6VDahyiMpM4KkcfyYgYDCbR3L1/DbEqLwK1+XEqp2kqpgUqprqmPS/99IeSd/SG3bd26FaVUto/73a7d1hH4TZvUsfmcP3YdpUG9Sri6OmfY98+xK0REJdCyYWCa7b9u2EedSp6U8rO2NK5bfRizBbrWsa4W9uPxRDydFW3KO3H0mpkTkZqugdZflQVHzZRzh2BvuJqgWXZWU91TUcPbtl8lpRRtA4wkWmBuyuxZdX0UiRZYcdyMt7OilBvsCokDINDbSLwJjhy4CkDxIkYuRtwOqV7u1mB6IyrtKGFXF0fisgizRqP1XpOTzTbds8ViISEhERenqIw7JdAWOvdrnQWptcL+xfXrl+YhbFMgvZ1TiutfWPt1zcbayT+1/UqpmUqp2vl/dyLfpQSiS5euAVA+sJTNp0ZExhJQvGim++ITrGGuWFG3NNuTTBZ8itwe+GTR1lZPb1dr1waDAgcDODsoUiY/wDHlN8XfTWHW1lBaxBE8HSHKZO2Ha6ujkdYuBaXcrP+oHorQGIAAV7gUp7kUB4FFrPv+upiMl7PCz82AxaLZFRpP1RK3g/tfxyIxGhRBqbpRhF2P4cq1GCqW88n0+f89fgEHByOlSma+P73jx0+jtSaofGmbX6MoeFJnhchCfiyhK/JVQSxn6wVsBm4APYF6wMbUx6QMaHgBaKuUCszve7RVSp+ubLVo0QKtdbaP+1Kqlr2oqBgAPD3dbTs3patBVu+dm6v1I/i4hLQtlL6eTlyPur2tdK2yAJy/Yd1WoagD4fGa8HgL5b2NeDorDt+wPkfzAAPn4yAsQeNiVPQqpzgfpzkWZdvP73ychW1hFmp4KZ4sp4lK1my8rGnqp2gV6MDKUDMaGNKsKDFJFtaeSKRzFWeKVy3Gn6cTOHfDRPd6RW5d76cdV2hasyi+qQL7ll2nATK0SN+0869j1K4VmGlrdmb27D0MwIP1MumXLPPOFkr3Y50FqbW2sliG5ur1Cv3CCb8X9A3cHZnlwHYF0TI7GXhea91Oa71ca72fLCb41lpPI2NrQmFwc37DNE1bqYquzH9oi3QfUd+IiEIphZdXkSxOyCirjwyVX03cXK2tr+k/bvf1dOJa5O3BUaVTuhucj7D2Ia3kY22hPXXDjEEpahd3uBVmW5a0/srsDU/5vriitBv8cdWM2XLnfyQTzZpV58wUc4aR1awfd667aJ2yq3MZ62CyFactNC6uKOdtZN3JJOJM0KOa9f6W7YvC0QhPPGB9f85cjuNgSDQdmvjDud23nue33aEUcXemXs2SGe7BZDLz176TNG6QcbnfrOzddwRXVxeqVi2f/cGisJA6K+4otwNtYVI+rKDv4N5JkM2ZggizkVrr5Tk4vtB1cEoZkBBCxj5dPkCETOZtg0z6WkZGxuDh4YbBYPtfS6Ug2ZR530/3lDAbHhmfZnsxbyeuRiQRl2A9r7SfKwCHLyYCUKGoNcz+edEagmsXd+R4pOZsjKash6J8EdhwSRORpDEqRd/yBi4nwHdnTVxPNHEhzkKi2Zob4k2aU9EWtoWZ+TrURGQyDKtiwM1BcThCs+6ipoEvtAtyYOkpC1fioXt5I4kmzax9cZQuYqBRaUci4sws/SuKdtU98K5jbZFetOECAB0b356VITHRxC9bT/BQ/bI4BgRneE92/XWcuLjEHIXZHTv/pnZwFRwc0k1LLa2yhZnUWZGt/3KgtWcSZHOuIMLstRwe75Und3HvNgIPpttWl3Qf5Qnb+fv7EB0dS0xMnM3n1KxWlj/3nsj0o8OSNRpTvkxRftqUdgqqjo39SUy2MO/nswC4uRjpFOzBl1tvcCXKRL36/jQr48iUHbGcjzLTP9gVDyfFsO3JRCVpxgY7EJ4EYw9YOHhDE+xtXTwh1gQzTmgWhJiZdtTEh0eT+fBfE0vOmPk9zIKTAV6qovBzts41+84hCz5OMLG+A7OPmpl8wEzzEopeDb15fm0U+y6bmNjCA+8KvvRdcJGr0SbeeMw6L+6h0GjeWXSSzs2KU6Wsx63XNmX275y5EMGwvo0yfb8mTf4OX58iPN4u42IKmfnnn+P8+dc/dOnc2qbjRaEhdVYUSlktmJDZ6l+BLfP2Xu6F2+LFeXZtGfiVcwURZn3z+Pj8MoaMK9AMppAuC1noZNKqVzFl2dSQkHM2X6ZNywe4dPkGR49lnEBbKcXTnR5g084QLl65PRK/eYfHaFarKNOWhpCUbB2MNXlEPeKTLLy55ipKKRYOLovWMPCnKAKKGPi6kxfnY2HANhNBnor5LRwo6gzvHrbwv0MWAj0UH9VVfFzPwMhqBnqXUzQupniynOLNmgbmNzLwZk0Dp6LhlT0WfruiaROgmN/SgckHzHx+2MyjZQws7unLsF+i+elEIu8/7EHXqi689eNV1v4Twyc9i9OwvCuJSWb6vLMfbw8HZr1Wy/qiyjTkWMg13vtyG7071OKRFpUyvB+bthxk45aDvD6yO56ebhn2Z+bLmd/h4uLMc892ybhTZjIozKTOimwZDNNz5TpaD8iV6+TE55eyHpAa6n+XF+1mydHhEmgLj4IIs0op1Sr9tiwOnAH8mfe3lHMpH4GNUUpNUUp1V0qNxrqGuHz0dZfKB1qLU+jpCzaf06al9aP0jVsOZrq/T6dgLBbNkh//SbN9fJ+KnL+awNfrrSG4SlkPhrXyYd72CP4Mjad8MSc+a1+EPy8mM35zDE3LOLG4sxfnYjRPbU5GAUtaOzLqASNhifDOIQsT/tFsuaIJT9SUdlO0LK7wdoI/r2veP2xh6B4LP1+0Dvb6pJ6BAdWNPLfVxI4rmvG1jSzs7sPIjdGsPJbI2y08GFzXjY2Rjry37joDmnrzYouiUCWIN+cf52BINHNHPYCftzOUaYjWmhffXIObqyMfv/FohvdBa834t7+hTOlivDigvU3vbWRkNIu++ZHePR/B1zfHsySJgiV1VtxRbgXZnCg0y9hm0gp8tyTQFg4O2R+Su7TWY5VSJ5VS3wPva62jSTcwIWWqmCmAj9b6xfy+R1tprfeRcalFYSuHmmla94KCrGH26L8hdHriYZsuEVjOn4pBASxbtYOXBj+WYUBY5fLFaBBcipnf/sULT9XH3c06w0H7rh2oN+84E786Ttt6xShXwo2Jwx/kuz2b6TP/Ar+8XJb+HUrx9xUTn/1l7fbwdksPfn3ah57Lwum7xUSncgaermigZ5ADa85ovj1l4acLGmt32dt/pV2MEOgO7UooWhYHRxcjq8+a2bLXhK8LfNXSgSpBnjy5MopNp5N48yF3htV3Y9WxBIb+cpXGQa580bs4SinmrT3Lh9+H8HyHsnRI1Vf2nelb2bL7NLPeeYLixTxIb+7Cjfy59wTzvhiKi4uTTe/t9BlLiY2NZ8gLvW06XhQeUmfFnRREkL1XlhK2N3LYpBeZT9HVzQLLc9bOdzPQ5sVCCsI2BTLPLNAO63QxEUqp68BgpdRfKY/rWOdF9AHaFND9iQLg6+tN3TrVWL4iB93h3CoxfEgH/th5lO9XbM+wW/nV5L2RbQk5d4OhE3661bdWKcWcD54iLsHMwyN2cf5qPJ7ujnz/fCmux5ppMvU0f4bG82H/sgx90JX5f8fTalE4l2PNbO7nS4eyBn48Y6HLBhOd15s4HqUZXtPI962NvF9b8VZNxahqitdrKEZUUTTxUySY4Z3Dmld3mth3TfNkRQNLuhVl3VUHGs0PZ+f5JD5o48GzD7jy8q9RPPdjFHXKuLDyhdI4OSj+t9vM8x/8Q7sH/fh4aHUAdOkGTPhkMxM+2UyfTsEM6Jlx9bStfxxm6Mg5tG0VTL+nWtr0tv77bwhvvzOTLp1bU7++DPSyU1Jnhd3K1f6yD+Xw+Bx2N7gpL1tpxZ0VSJjVWodorSsC44AIoALWeRDrYZ0X8QWtdX17WD9c3KN0fWf7PNWBPXsPc+xYqM2XGPxcO+oGBzHi9a+Ijo7PsP/hxkG89VJLvl55gAU/7L+1vXb1AH5Z+BzXIpNpPWI3F68l0PTxmuwYHYi7s4FWH51h8e5IPhtQjlU9vYlL1nT/IZKuyyJoXdWd3QN8eLOukUpeijWnLQzbYaLbRjPjDmjePqSZdlTz7mHNe0c0809pdl7XNClu4IumRj5uZMTRzZn2397gh6MJPF/Xlb0DffF0NtBowXWWHE5gVDtfNo8oh6uTou8PUUxYcJy+bUux5r0HcXMxoks34PUPN/K/L7bwbPc6LJja5dZMEMrP+r6eCrlMt75TCQoszvdfjcRoNN5+Y9wy9qsF64pfzz3/Fu7urnz5+RtZv/Eym0GhJnVW5Adb+8sWmi4GqeVid4ObcjPQyqwGtsv3bgapaa2nAlMBlFLlgXAprPe33r0eZeSYD/lmyVrenjgs+xPiTmA0Gvnyo0E0bjOOiZOX8uG7/dMcovxq8sZQC9v3nmHohJ+oWdmfBsHWLg0Ngkuz7qtneaTfAtq8tovfPm5MlRbV2OlmpPvs8/RfeIlFuyL58qkS7CnpyPJ/E/hyTxzDfommhLuBtkFOdK7lyAvmOGKTITwRYpKtjziTxt9V4e8KDgoikzR/XIGJ+yxci9c4GOLpW8uVEY3cuBprYcgv0fx2OokGgS6s7xNAcGkX9p9NoNfCK4RciuN/Ayoz/umKKKXQWjNq8q98NG8Hz/d+kBlvd8gwpVlkZCwde7+HxaL56bvxeHunWowiiyALMGPmd+zc9TcL579LiRLFMj9IgqzdkDorBNbW2ZwsnnAX3Q1ykwTZnCnQMJua1tr2pjjxnxUQ4Efrhxsyb8FKRo54Fk/PjP0/M9PwwcoMfKYNn85YS4umNXjisQZp9juUeIBvP+5Bg66z6DBwMcu/7M1D9QMBaFK3LD/N68djzy2k3uDf+WhIdXq0rMQWDyOz/4hg3Mowak4K4ekGXgxp6cvBJ0qyevMV5u6P48cTiSz6J+H2/XsYcNAWnI0KRwNcibcQnnj7PrxdFG3LO9GugjNNSzuy9UwS/ddEsueSCU8XA5/1Ks6LLYoSl2Th9d+T+OC70/h7O7P5o0Y0D7YOOL8akcgLMy6wcv1RhvZtyGdvpe0rrPxqcu16FE/0fp8Tpy6xYdUEKlYIuH0Tdwiy+/cfZcz4j2nbpjF9+3S06b0X9kPqrMgtuTmDQWbTcuWJnAbau+S2ePE99Z+VIJtz+R5mM1kHPERrHZWybyTWaVd8sM4jOEZrfTp/71Dku3QDwSa9NYSmLZ5hzLiPmTH9zTuf61YJ4k4A8ME7/TjwTyg9+n3A6iVjeaRN2v6jxXzc+fWrfnR8fjFtnlnI9IkdGNjLOt9q8waBbFv6PINGfUvvt/cz/+dzfP5KTV5orugcXIR3111j0a5IFu6KJKiYI93qejKhe0nqlHHm731X2XspmVM3zFyOtZBg0iSYIMmsqe9hINDLSDkvI4HeBlwcFLvOm1h7IpHRG6O5kaCpXNyJj3oUp38TL8wWeOfna3y2NZIb0cn0a1+aaS9Wo5iXddDWqj8uM/jDf4iMNTN1bDteG9A0w6C3vftP0e2ZqVwJi+S7Ba/R8qFUrah3CLIhIed4tOOL+Ph4sWDu/7JcXU1aZQs/qbMit+RGaC2UXQxscQ+ts3cbaCXI3p2CaENvi3Vk6jhSTYatlJqMdWTtJqwDEuYAswrzmuEibzRuXJvhr/Rl5uzv2fzb7uxPSAlonp5u/LriLWpULUPnp6awKd10XcqvJpUCfdn5wyAeblSeQa+v5vnxq4mMtras1q1Zkt0zmvHZyzXYdTSCWs9tY8jPsVzwKs5nbzUm5N2KzOkbQOXiTny88TqNppzG45VjPLsuhvWXINkC5byM1CjmQP2SjjQr44Snk4F/wkzM2hfPkyuiaPrVDV7bGM3uC8l0CPZkw6tlOTKhPO2ru/P+L9cp//pJJv10jYdq+bDry6YsGBtMMS8nrkcm0X/y33R9cy+lS/qyZ/ULjBzYLG3gLFaDuWsv0aTdOLTWbPv5f3R9IvPFE9ILC7tO+8dfICkpmV/XzqJUqeKZHyhB1l5InRX3LD+CbKFfLOEuB4OBNdDmpA+tBNm7pzJbOSlPn1Cp57G2EmxKta0O1pG1s1JPEaOU8gLGaq3H5etN5iKl1JYWLVq02LJlS0HfSuGXqnU2Li6e4HrdMZvNHNy3Ag8PGyb5T2mhvXY9ioc7TuBkyCXW/fAmLZrVyHBo8qW/eeOjTXwwdzsBfkWYPqkDT7SpCues4flyeAKvzz3Gkk0XSUiyEFzBk+ceK02Xh0pQOvwSN2LN/HwohoMXEjl+JZF/Lydx6moSpnR1z9kIZXwcKePjSDkfRxoFudKqsjuBvg78dSaB1X/HsPrvaI5fSUIp6NkygHFPV+SBCp4ARMYk88nyUD5eFkpsvJmxLzbnzaEtcHJK+6FKgkclhrw2m6+++Y12D9fmm7mvUszXM+3NZNEqGxkZTet2Azl85BSbfp1LkybpG/VSSJDNVMuWLdm6detWrXXLgr6Xm+63OgtSa3Miu6m5cqsLwd0EWcg8zKafmiv9ogkhAWm+pXxYJhfOqotBZlN0pZaLfWezaq2VIHtn2dXZgugz65W6wKbohXUOxCmpN2qtI5VS4fl2Z6LQcHNzZcGc/9H84Wd5+pkxLFv6EU5OjtmcZO1yUMzXk42rJ9Dy8bdo12USUyb15eUXHk8zQMoxIJjJo410bV+d58evpvML39KuWQXeHt6aBj4XKOHjwrzRwXw4pDpLNl1k/s/neOXzI7zy+REqlXanVR1fmhWDvg09KefrSBEXIxaLxmQBs0VjsmgsGjxdDCSZNOcjTIRcTWJHSDxDllxiV2g8sYkaBwO0quLOy70r0alpCUr5WYt/2I1EZqw5w6c/hBIRY6LrQyWYOK4bNStnbDHdfNjCiyNGcOLUJd4a05O3xvRIO2vBzfcmE+fPX+aJLi/zz6ETrFr+aeZBVkKsPZI6K3IsN/vB2m3Xgszk4mCwzLofSJC9dwURZjMbRdsGiMii31b+Nh2LgpOu72yzZnX5/JNxDHvlPZ7qO4Yli6fg6GhboPX382bbuncYMGw6w8ct4Of1+/hqxkuUDPC5dajyq0mDYNiz6gW+WLSbd6ZvpVG32TSq7s1LXQPp1jwAbw9HXuxUjhc7leNQaDQb9lzlt/3XWbLpIrPjTLeu5e3hQBl/V5wdDZBgHfFltmguRZq4HGW+/ZwKgks782xjbx6q6Ea7TjXw9rC+JpPZwtqdV5i/7hw/7gjDZNZ0alOVN4a1pF7Nkhle6jVVhtde/4pFS7dSMSiATWsm8XCLWpm/J5nYu/cwT3R9mejoWNas/IxHH8lkMkYJsvZK6qywWW4vR2tLkL2XVtm7ltUAsKwWUMgjaboemM1ZHyhsVhBhNv0qNF5AXWBDFscX1jXDRV5IF2iHDnmS5GQTw0dOpe+zRhYvfB8Hh2z+2qZqoV317VhmL1jP8PELeKDJcD6fNpDe3W73NVV+NXG8eojhzzVhQI+6LFx5gC++3s3T7xxgpO9RerUqSbv6xWj+gC81yxehZvkiDO8RhMls4XBoDP+ejeHMlXjOhsVzPiwBk9kCWAdrGQyKug84U8bPlbLFXSjr70q9yl54edwO5JfDE1iyKYxN+67zy59hXLyWiJ+3Ey8/25gBPepRraJfhpcXFZ3AnJ/O8/5HU4mOSeDN0T0Y/1q3jCt73WGw1/IVG3im/+sUK+bN9q1fU6tW5cx/FsJeSZ0VWbJYhubZKmD3EmQzk+srf91toM2LqbokyOaaggiz6Rd5v7n6zLL0B6YUYPn4636TLtC++kpfTGYzo8Z8iNFg4Kv579jcQquUYvBz7Wn5UE36PP8JTw34mI+n/8jkiX1vtWIqv5roq4fwLOLCS880YmifBvz6+0m+XPwnM9aE8MkPoTg7OfBQLW/qV/WiejlrqK1WzoPgip53vo8UiUlmzlyJZ9O+axw5E8PR0zEcOBXF0TMxgLVlt1UdX55uU4oOPTpk6BMLcCksmk+/2snMpfuIioqjTcsH+GzqQKpVKZ3h2KwkJCQycvQHTJ+xlIYNHmDV8k+znktW2DOps+KOcjvQ2tqt4E5BNjcHfoX6Z9Fv9k7yM9BKkM1VBRFmQ5VSXbXWK5RSnlj7b93QWs9NfVDK1DKDC/Oa4SIPpQu0I0c8i9lsZuz4Tzh77jJLv5ma9Yj7m262TMadoEqlUuzaNJnF323jzXeX0PqJCbR8qCavv9aNh1vUwpASaAEMBgOPtqjMoy0qE5+QzLY/T7P+j1Ns3H6KqUtDMZtvj/IqW9wVf28n/L2d8PN2RikwmTXJJguJyRYuXkvkbFg8koK7PgAAIABJREFUl1NPNgsElnClRmAR+rUvzcOPtqBO9QCMxoxFUmvN9r1nmbN0D9//fJhkk4VuTzRi9CudebBuxRy9pXv2HKbfgNc5cuQUI159hvfffTXrfsjSKmvvpM6KbOVWoM2NIHuvgi5lHASWpTvNN2tLoL3pboOtBNlcl+9hVmu9XCk1Uyk1l9utB3XhVgvBIKx/neoCWim1N30BFvenMaMGUKZ0CQa9OInaD/Zg8cL3ad+uafYnprTSGo1G+j3Vil5dmzJrwXomf7yCtp0nUalCAIP7t6PfU60o5ut5K9QCuLo40r55Jdo3twbjpCQTJ06H88/xK/x76iqnz0cQduECl8MTOXQ6Bq01jg4GHIwKJwcDASX9eayWF2VLelG2pDc1K/tTNagYHu7Od7zlsxcjWP7LEeZ+t5ejp67i6eHMgGfaMHxIx7QLINzpNaeIjo7l3fdn88FHCylRwpdf1s607X0TdkvqrLCVxTIUpRKyPzAL/6mBXjfZ2oe2gFcJE7flSZhVSnXFOtBgc2b7tdYvKKXGAEFa6/3pdu9LedwkH3+JW5568nHq1qlGj96v8WiHFxkz6jkmvPkiLi53DoepF1dwcXHilRc7MLh/O5av2cnM/7N33/FRVfn/x18nCQmQQAoQShAwFEFBQ8cKShEpa6MIYldw/anrKgK6fl12V1cD6iquIgEFGxawobvqUhYUdVVKEEFpoYO0kNBCSXJ+f8wdGMIkmSQzSSbzfj4e8wi599x7D5fwyeeee8pr/2H0Y6/zp7/NpG+v9vTt2Z4re6bQLHrPGaeJjIzgvFaJnNcq0a9/r4OHjvH9im188dU6vli0jtXrXdfu1rkVrz04hCHXXkx0dMl+aeTl5THj9U/40+OT2LVrH7fdcg3PPfMwcXG+dY2Qyk1xVipaSRLZclvly0OpuhqUlBLaSiFQLbOP4hpocEaQNcakWGvTnbXBTwuwzraC08mInKZ162S+/3Ym9z/wNE9PeJVZH/yHlyb9qfjWRo+EFlxJ7Y1DunPjkO78vHozaTPmMufzH/nkXz8A0KpFIy7u1pqUdmfT4YJkOjQ+So3qxfTVLYa1lm07D7By7S5+Wb+H5at3svTnHazduA9rLZHVwrmsS1Nuv7Uf/a/sSOtWvveHPXmNGi2YP/87Hh77HOkrfuWiC1OY8+GLdOniZaYDCWaKs1Jh/N0iG6iFEkqd0JbzDAdSNoFKZucBTxeybyrQ2dcTGWOuKKzlQUJXzZo1mJb2F4bdcBX33PckffvfzcABPXgm9SFatWpWxIGnJ7Rubc9tyqQJd/JC6h2sXb+DL+en8+X85Xz2xRKmv3Xqx691qyRaJEWT3DSB5k0SqBtfk1rRUdSKjiQmOoq8vHyOHsvl6LFcjhw9wc7dB9n22wF27DrA5u1Z/LRmF5lZOSfPl1S/Nh3bNmLYwHZ0ufRiLr2wDTExNUp9X777YQ2PPvEUCxf9SJMmDXn37YkMGXxl4UvTeqP+ssFCcVYqREkT2YpolS1Xap2tcIFKZts7T//elOC3KuAauOBzUJYqpMAgMG96XtGNn5Z9wPOT3uSJv6fRpt3VDBl8JeMevoMLLjjH+0GFJLQAxhjOaZnEOS2TuP/u/lhr+W3Xfn5ctp6l6RmsXLWZ9Rt/Y8H3yzly5JjXcxQUHh5Go4YJNG5Uh+uvvoQL2jXjgrbNaBV/gMTWXX06R1GstXz7/a88/Y+P+OyLJdSvX4cXn3+Eu+4cRFRUZPEn8KRENpgozopfWFt0clqWPrW+JLIVsnxtUYPA3ErSOutrQqvBXwERqGS2tzHmXeAua+3BAvtKOjl3sp/qJMGosOTKI8mNiopk7MN3cOvNV/Pc828wecr7vPve5/S76lIe+uMt9Oje+bTVv4DTZjooijGGhg0S+F2/LvyuX5eT26217Nqdxf6swxzctoqDh49x6PBxIiLCqB4VQfXEltSoHkmD+vHUT4w9c0UuP9hzuA5vvvUp06Z/yC+/ZBAXV4u/P/EH7r93ONHRPiz/W5AS2WCjOCvlwtrqpUpoA9UiW3Ap26KUuc+sPxNaJbIBE8jZDAYDg40xWZw+uCDZGLPPx3MUnCtRxMWdeHkktfXr1yX1qQcZN+YOXn7lPZ6f9BY9+9xJkyYNuenGAdx68zW0aNHk9PP4mNQWZIyhQf14GtSPhxLM81pWO3Zm8vFn3/PZvF+YN/9/nDiRy4XdLuDVtL8yZPCVxMSUIomVYKY4K+WipAmtr4lshbTKlpQ/ElolsgEVyGQ2G0jjzEBZBy8TdxeiDnCdPyslVYyXpDY+PpY/PTKSP/7hJj6Z81/eeGsOT6W+ypNPTeXSSzowbGg/Bl3fm3r1Ti1te9pqWSVMbAPJWsuva7fz5fzlzPn3jyxcvAprLS1aNOH+e2/ktluu4bzzSjbfrFdqlQ1WirNSbnxNaP2VyJZ19S+/zmRQloRWiWzABSqZHWWtnepthzGmk7X2bl9PZIxZ779qSSipWbMGw27ox7Ab+rFjx25mvPEJb838jHvue4L7HniKnld05ZrfXUHPK7rSsmXTU4OkKjCxzc/PZ826Hfyw8gCLv1nOl3O/YevW3wDX4LP/GzOYG268kTZt/PhWWIlssFKclXJnbXXOubboMr+8V3xCWylaZH3pN+tpKHB9SXvwSHkIVDIbW8S+kv4kTClLRSREFDNYrFGjRB4ddxePjL2Tn39ex7vvf8G773/OPfc9AUDjxvW5okdXLux2ARec34p27Vq5Xtn7O7H1ON+BA4dYvXoDq9K/ZdWvW1m5ajM/Ll9PdvYRAGJja9Hziq489shI+vS+iGbNksp+/YKUyAYzxVmpdNZ85Pp6zbtlO09ZW2UDQolspRWoZLaOv05krZ3or3OJGGNo186VrD7x1/tYv34LC/77PQsW/sC/v/iaN96ac7Jc8+Zn0aplU5qc1ZAmTRpyVuP6NGnSkLp14qlXL56EhFjCj2Wcdn5rLYcPH+XAwRyyDxxh+459bNuxj11ZEezencmWrTvZtGkHmzbvYO/e/SePq1GjOue2SWbY0AF06dyWrl3Op3Xrs88cuOar4maCUBJbFSjOSqXiTmQBPr6h8IQ20N0L3Py6aIIS2UotUMlsvL9OZIy5U8ssSiAYY2jZsiktWzZl1MghWGvZvHkHK35aw4qf1vDTynVkZGzj+x9Wsm9fltdzVKsWQVhYGOHh4RgDOTnHyM/P91q2Ro3qNGnSgGZNk+jY4VyaNWvEuW2ac965LWjWrFHZZzwomKB6fu9ObJXEViWKs1JpeCaybt4S2rJ2LyjJTAY+8aWrgRLZSi9QyewsY8x71lp/TMwxFlCQlbLxMlCsIGMMzZol0axZElf/7orT9h05ksPmzTvZvmMXe/dmsWdPJnv3ZXHiRC55eXnk51vy8/OpWbM6tWvHUCsmmtq1o2nUKJGzGjegQYM6pZsuq6R/P7eCyauS2KpIcVYqhLfE1ZvSdDUIVPeCjc4K5F5baotKaJXIBoWAJLPW2vnGmHHGmHW4RtR6votNNsY8hG+TetdB8x+Kr4pL6MqgZs0atGmT7N+BV/5S2N/b/WclslWS4qxUZoUlspsWBm7wV/JOyGh4+jZ3ElusggntpUCiEtlgEbCpuay1vY0xs4BxXnaXpH+WfpqkdIpK8qoKb10JJGQozkplVNrBX4Ee9FVs/9lLPf6sRDaoBHQxYWvtYGttmOcHWFZwW2EfIAHw3llRJNSpxVVQnJXQ4Ut/2eSdfriQEtmgE8hFE8rMWptljNlY0fWQKsKXEf7B0rrpLZH1oV+wSEGKs+JvH99Q2iO9Tz94P64W2/sabis2obUNLWanOaO7gTcbE+FsvZSoEioimX2qJIWttZ0CVREJQcW1ZhaV0FaWbgu+/B1A/WVDm+KsVBmTSDqZ0BbFNrQnv2700l28YP9ZJbJVR0C7GXhjrf2gvK8pUiIRbU9PAgt+77m9pOctq5KcQ4lsyFKclapmUiGttm7uRNatuERViWzVUqm7GYhUKF+SwUC/2ldCKiICuBLaF71sL5jIup2N9xZaJbJVT7kls8aY2sBIXKsbdyiwexnwLjDVWnugvOokUi4KtvL62o1BpIQUZ6WqKyxx9ZUS2aqpXJJZY8xTwBj3t16KdMQVeCcYY1KttY+WR71E/Kakr/8LJrRKZKWMFGdFiqZEtuoKaDLrtBLMxxVEM4B5wFxc08BkOsWSnU8foCcwzhjTC+il1gMJCUpkpQwUZ0WKp0S2agt0y+wCIA4YXMSAhOXO14nGmFhgFPA0roDcJcD1E6kY7tZZJbJSdoqzIkVQIlv1BWw2A+eVV6a1toWvI2uttdnW2glACyDBGPNyoOonUuGUyEoZKc6KFE2JbGgISDJrjDkb6G2t7VOa4621GUAnoI8xppkfqyYiUiUozoqIuASqZfZ64K6ynMBam4XrVdgov9RIRKRqUZwVESFwyWxna+3y4osVzVo7H2juh/qIiFQ1irMiIgQumfXnOt8ZfjyXiEhVoTgrIkLgkll/9rhW720RkTMpzoqIELhkNtmP54rz47lERKoKxVkREQKXzHpbfabkJ3HNh1jHH+cSEaliFGdFRAhcMvueM/9hWT2Nay1xERE5neKsiAgBSmadybsHG2MuL+05jDF34lpq8UP/1UxEpGpQnBURcQnYCmDA3cA8Y8wdJT3QGPM0MAXNfSgiUhTFWREJeQFLZq2184DfA1ONMT8YY641xtQurLwxppkxZrQxZh/wMHC3tXZBoOonIhLsFGdFRCAikCe31qYZYzKB94HZAMaYDFxzGmbhGkGbgGtUbhynBjQM9nWdcRGRUKY4KyKhLqDJLIC1drYxJh6YgGvpxeYUvtpMGjDWWpsd6HqJiFQVirMiEsoCnswCOEFzFDDKGNMT6MCpQLsByFALgYhI6SnOikioKpdk1pOzDvj88r6uiEioUJwVkVASyNkMREREREQCSsmsiIiIiAQtJbMiIiIiErSUzIqIiIhI0FIyKyIiIiJBS8msiIiIiAQtJbMiIiIiErSUzIqIiIhI0FIyKyIiIiJBS8msiIiIiAQtJbMiIiIiErSUzIqIiIhI0FIyKyIiIiJBS8msiIiIiAStiIquQGVjjBkEJAPNna9TrLWzC5TpAHQCMpwyGdbaeeVdVxGRYKQ4KyL+pGTWgxNgM9xB1RgTByw1xiRYa9OcbclAqrW2t8dxs4wxGdbajAqpuIhIkFCcFRF/UzeD0yVba5e5v7HWZgGpwBSPMqMKfI/zfWrgqyciEvQUZ0XEr5TMOpzWgaHOV0/znP3JzveDgGUFyixxtouISCEUZ0UkEJTMOpzWgWTn45UTgJOBTC/Hegbi0yxatAhjTLEfEZGqLJBxFhRrRUKVklkP1tp4z9dfjl5AltNPK8Epl1XIKQoNsiIiojgrIv6nZLZ4o4CnnD8XfDXmk+7du2OtLfYjIhKiyhxnQbFWJFQpmS2CMWYkkGmtnVDRdRERqYoUZ0WkrKrk1FxF9anyItPb6yznHKOstR297Isr4hWYiEiVpzgrIpVFlUtm3fMTluCQHwFvLQKpQM8C29zzGyYAJ4Osx8hczX8oIlWe4qyIVCZVLpl1BhAMLss5jDFTgLEFWwWstVnGmAzO7NOVwKnBCyIiVZrirIhUJuozW4DTfyvVM2AaY3p5vFKbh2uJRU8dnO0iIlIMxVkR8Sclsx6cZRYB4owxHZxPL2CwR9Ady5ktEqOc7SIiUgTFWRHxtyrXzaC0nP5YswrZfbL1wHkFNtYYk4qrH5h7DXG9+hIRKYLirIgEgpJZh9Nvy6elYZwJvwtO+i0iIkVQnBWRQFA3AxEREREJWkpmRURERCRoKZkVERERkaClZFZEREREgpaSWREREREJWkpmRURERCRoKZkVERERkaClZFZEREREgpaSWREREREJWkpmRURERCRoKZkVERERkaClZFZEREREgpaSWREREREJWkpmRURERCRoKZkVERERkaClZFZEREREgpaSWREREREJWkpmRURERCRoKZkVERERkaClZFZEREREgpaSWREREREJWkpmRURERCRoKZkVERERkaClZFZEREREgpaSWREREREJWkpmRURERCRoKZkVERERkaClZFaKZIzBGFPR1QhKunelo/smoUY/86Wne1d6VeneKZkVERERkaClZFZEREREgpaSWREREREJWkpmRURERCRoKZkVERERkaClZFZEREREgpaSWREREREJWkpmRURERCRoRVR0BUJAi/T0dHr06FHR9SiTYK9/RdK9K51guW/p6ekALSq6HhL8sTaY617RdO9KLxjuXXFx1lhry682IcgYsxyoB6yv6LqISEC0APZYa9tXdEVCmWKtSJVWZJxVMisiIiIiQUt9ZkVEREQkaCmZFREREZGgpQFgIn5mjOkAdAIygGQgw1o7r2JrVfkYYwbhuj/Nna9TrLWzC5TRvRSRMyg2+CZU4qySWRE/MsYkA6nW2t4e22YZYzKstRkVWLVKxQmwGe6gaoyJA5YaYxKstWnONt1LETmDYoNvQinOqpuBFMkYM8gYM8YYM8UYM9f5z1GwTAdjzEhjTC/314qoayUxCphSYNsUILUC6lKZJVtrl7m/sdZm4bpHnvdO91JCguJsiSk2+CZk4qxmM5BCeTzVLXO+jwOW4nqK83yqm1LwqQ4YG0xPdf5ijNkA9Pb8uzv3bb+11lRczSoP537MB3o6wdW9PRnYADS31mboXkooUJwtOcWG4oVanFXLrBQlZJ7q/MEJAMlApud2dyBxgkjIc+5HsvPxSvdSQojibAkoNvgm1OKsklnxyvkhH+p89TTP2e/+IR8ELCtQZomzPdQkwKlA4EXQBIZAs9bGe/4Cd/QCspwWAt1LqfIUZ0tFscFHoRRnlcyKV6H2VOcnBX8hScmMAp5y/qx7KVWe4mypKDaUTZWMs0pmpVCh9FQnFcsYMxLItNZOqOi6iJQnxVkpL1U5ziqZlZKqkk91/uTllaEUwWlZGuU5uMVjn+6lhCLF2WIoNpRMVY+zSmbFZ1X5qc5P3KNBEzw3egSKkBt17KNUoGeBbbqXEpIUZ4ul2FA6VTrOatGEEFDCPlWZ3l5neTzVdfSyL66IV2Ahw1qbZYzJ4MyWlAROvTIUD8aYKbimFzrt50f3UoKN4mz5UGwouVCIs0pmqzj36h4lOORHwFuLQHFPdZ7z2AXdU50fzcO1LKBnH7gOznbx4LRApRaY37AXrjk3M9C9lCChOFvuFBt8FCpxVosmSLGcp7pUb09pzoTLgz0HMDiBfam1Nr4cq1kpOL9gZhWY3HwurtaWUPyl45UzUXwCrumF3BJw/SyNcsroXkrIUJz1nWKDb0IpziqZlSI5T3XzCnuqcwLwUvdKNc7+QcBQa+3g8q9xxTPGdACG4mp9SQaWWWuD6ik3kNyryxSyO8Na29yjrO6lVHmKsyWn2FC0UIuzSmalUKH0VCciUhEUZ0XKTsmseBVqT3UiIuVNcVbEP5TMioiIiEjQ0jyzIiIiIhK0lMyKiIiISNBSMisiIiIiQUvJrIiIiIgELSWzIiIiIhK0lMyKVCElXB/eb8eKiIQKxdnKR8msSBXhrBjUq7B9xphUj/XcvW3PdFYaEhERLxRnKyfNMytSBTgTqo9yrxjkZf9+IM4pk1bYdqfVYIrnSkMiIqI4W5kpmZVKw73WuPOte4nGZFwr3swu6bKNzhP0YCAL2Od89Xwingcsw/WU/ZS1dnbpa19xnKf9pUBHa22Wl/3JwAbn23h3mSK2jwHqWGvHBrzyIlKuFGdLR3G2couo6AqIOMFwCq5AOtjL/g7ALGPMPF//4zvrlmcVPJ8xJhXXE/Jsa+1gj9dBZwSnQDHG9PLzMpSpQKq3AOsY5HydXaCM1+3W2gnGmA3GmCla912kalCcLTPF2UpMfWalQhljRgJzcb1+8RpArbXLrLUdgQ7GmKUF+yN5OecsINlbwAbcr37ucs6dZa0dW15rnDtP6X57teScr5fnKy0v3Ncr2E+rsO0AYwvZLiJBRnHWL+dTnK3ElMxKhXFed03BFWCLDXJO/6I4YH4xRQcBhb3KisPVklBuLQQF+Hska6rzKUovIMPLPS5sO86rwE4aeSsS3BRn/UJxtpJTMisVwnnqnwUsK+Zpt6CxuFoOigssG4rYl1mC6/mbt1aMshgEvF/YTufVIhQIxIVtL+B9wOtABxGp/BRn/UZxtpJTMisVxf2f+6mSHOQ8yWYAY4p7DVbZOE/fI/14vkG4fkkV1frRG1cLScFfZIVt9zQLP9ZXRMqd4mzZz6c4GwSUzEpFcf/nLU0fKvcxQREAjDFxTkBc6udT9waWFFOmF6f6r/my/STntVicXoGJBC3F2bJTnA0CmppLyp3z6mUurn5EzUtx/CBOvTrr6LHtEadIB1yjZr2NEE3G1Z9rmce2u6y1yzzOk8ypUbdxzp/jgHnucgXq42792AfUccqO9ZiCJZVTk2x7q5vPo4cLXHcDrtG1XoOl06KyH2juOVq2sO2luYaIVE6Ks4qzoURTc0lF6OB8Le10JO4A6D6P+7XYbABjjMU1n+GEggc6K68McQdnL/vmFjzO45dCxwLbkzk1Qniex/ZBwEZjTE9nhPBYZ7s7uKX5aW7BZIpuMeiE93kjC9vuTQZQ4l+EIlLhFGcVZ0OGuhlIRXD/py3tSFe/DyxwAuAQbxN6OwHU26jdubiC1bwC5WfjCn5T/V1PN1/mbbTWzvM2bU5h2wuRgf9HBotI4CnOlpHibPBQMisVqTINLEjG1W+psDrN9fzGWb0lmcIHVkzBNRq4QyH7yyrB+RroEcPuV38iEpwq0/9fxVnvFGfLSMmsVAT3dC4JRZYqnN+fYD36aC01xgzyEmzf5/TXdaMoeh5Fd9lOfqymp2RwTUYeoPO77aP0/04iUnEUZ8tOcTZIqM+sVATP9cBLw33cGYMEyqgjronCZwEYY5bhGtH7npcBCclAhtNyUJh5VOxci/6iFgOR4KM4G1wUZ8tAyayUO2vtbGMMONORlGJdavfygO/5uV7LgHhn6cfBuJ72x+Caa3GCxwADd5DP8jb4wUNR+8qqvIJ3HcpxPXUR8Q/FWb9QnA0S6mYgFcU9BcmgkhzkvJZyT7/it2lMnDkK4wCstWnW2t7W2nhcgyjScAVad+uAXwOcMaZDKSYmd09HE+in+ThKPxpaRCqW4uypayvOVmFKZqWiuKdMeaTIUmdyT+A9wc/9mDrhZXJwa22GtXYUrkA7ytnmnr/QX33KOlHC/lIerSyB7meVQNV4hScSihRnT7+24mwVpWRWKoQTqAbjegVW3PrfwMnXTqm4JvH2x/yBBQ0tYt8UTg9oqbjqXugoWmNMsjMXIlDsIILSBrJAjeJ1S6bo9ddFpJJSnD2D4mwVpWRWKowzT+AoXK+Wilwy0XnNMxfXYISeAapSUVO8JOCxJKSzUssyTq197s1YL/MpemtpaF7K1o95Xs7lbx3w/wAQESknirMnKc5WYUpmpUI5wao3MNYYM8Vb3yRnZZiluJYj7FhUQPI4vk4hRRIoetToqIJ1cL4fy6lXdm49gQRnRZuC9RiDq5WhoFTg5JQ0ZeyLtQzoXIbji+QegFFwsnIRCS6Ks4qzVZ2x1lZ0HUSAk8sTDsX1KsgdSJNxPWVP8WF966WcWhMc57hUa22aE/RGceoJ290fa6y1dp7TUtDJo2wdXHP/4fy50Os75TsXqHdx5YfitECU9lWeU+el1lpTmuN9OP9IYLC1tnexhUUkKCjOlozibHBQMisSxJxfLHd5mZ/RH+eei+uXhbclJkVEQoLibOWnZFYkiDlP9b1LsAa4r+eNAzY60+aIiIQsxdnKT8msSJAzxmwAiuzjVopzpgIbnL52IiIhTXG2ctMAMJHgNxZnaUh/cAYk9FKAFRE5SXG2ElMyKxLknL5WGc5oZH+YgmtuShERQXG2slM3A5EqwhgzC9cghVK/BnNGAGdoMIKIyJkUZysnJbMiVYgxZoy1dkIpj+0Fmu9QRKQoirOVj5JZEREREQla6jMrIiIiIkFLyayIiIiIBC0lsyIiIiIStJTMioiIiEjQUjIrIiIiIkFLyayIiIiIBC0lsyIiIiIStJTMioiIiEjQUjIrIiIiIkFLyayIiIiIBC0lsyIiIiIStJTMioiIiEjQUjIrIiIiIkFLyayIiIiIBC0lsyIiIiIStJTMioiIiEjQUjIrIiIiIkFLyayIiIiIBC0lsyIiIiIStJTMioiIiEjQUjIrIiIiIkFLyayIiIiIBC0lsyIiIiIStJTMioiIiEjQUjIrIiIiIkFLyayIiIiIBC0lsyIiIiIStJTMioiIiEjQUjIrIiIiIkFLyayIiIiIBK2Iiq5AVWeMWQ7UA9ZXdF1EJCBaAHuste0ruiKhTLFWpEorMs4qmQ28erGxsUkpKSlJFV0REfG/9PR0srOzK7oaolgrUmUVF2eVzAbe+pSUlKSFCxdWdD1EJAB69OjBokWL1BpY8RRrRaqo4uKs+syKiIiISNBSMisiIiIiQUvJrIiIiIgELSWzIiIiIhK0lMyKiIiISNBSMisiIiIiQUvJrIiIiIgELSWzIiIiIhK0lMyKiIiISNAKuRXAjDGDgGSgufN1irV2doEyHYBOQIZTJsNaO6+kZUREREQksEIqmXUS2Qx38mqMiQOWGmMSrLVpzrZkINVa29vjuFnGmAxrbYavZURERETOkJYGM2cWX274cBg5MvD1qQJCrZtBsrV2mfsba20WkApM8SgzqsD3ON+nlrCMiIiIyOlmzoT09KLLpKf7lvAKEEIts04r7FBjTJqTxLrNc/YnO62qgzgzUV0CzPX43pcyIiIiImdKSYGFCwvf36NHedWkSgiZllkngU12Pl45CW8ykOnlWIwxyb6U8W/NRURERKQwIdMyC2DP6M4yAAAgAElEQVStjfeyuReQZa3NcCeiBVpuPZ1MVIspc1q/2UWLFmGM8aV+xZYRESkvZR3o6oxTyPJ2THGDcZ2Gg5HAbFyNBwm4unjN1WBbEfEUUslsIUYBTzl/jvOhvC9lRESCWlkHuhpjegFTgcFe9hU7GBdX8prKqbEIWcBdSmRFpKCQ6WbgjTFmJJBprZ0QyOt0794da22xHxGRSqRUA12d7lhT8NIdy4Mvg3EBegPxQHNrbXzBaRRFRCCEk1mn1WGUZ6uDx75iW199KSMiEsQGAcsKbFvibC+UtTbDWjvKo4X1NB6DcQvG0JODcQucL0tTHopIUUI2mcXVCtCzwDZ3wEzw3OgRdDN8LCMiErQCOdDVl8G4IiIlEZJ9Zp1XYGMLDuKy1mYZYzI4s19sAs4gMef4YsuIiASxBCjZQNeSKG4wrud1nP617jplFtXVQINtRUJTyCWzTj/ZVM+A6QxUcA9qmIdr9K7n67UOznY3X8qIiASriuhG5TkYF5xW4QIzHMwyxqC+syLiKaSSWY8n/DhnyhlwPe0PttaOcr4fC8wCPPt7jXI+lKCMiIj4wNtgXKdVuGC/2ynOx2sy2717dxYWNRF9qPB1uVTQkqlSJYRMMuv0AZtVyO6TrbROV4OxxphU4Edcr9NOa8n1pYyISLAzxsQV0dXAX9dwD8bt6EPxDFxdDwJer6DmXi41JaXocu4lVZXMSpALmWTWCXzFd6ZylV3GmaN4S1xGRCRIeQ50PZk0Bmigq7fBuBhjxniZNtE9IC0Zxd+iFbdcKmjJVKkyQnk2AxER8cJ5+A/4QNfCBuO6F2zwMmuCexYZvQUTkZOUzIqIiDfuga6e/DbQtbDBuMaYZGfbKC9Jcy9gmboYiIgnJbMiIuLNWM5cinaUsx1wdTswxmxwElNvEvAyM0LBwbjOpxeuwbjuBDbTs2XW6eIwCrirdH8dEamqQqbPrIiI+K4EA129LSDziFM+Dld3gd7AXGvt7BIMxp1tjBnkJL51nHMN1kBbESlIyayIiHhV3EBX53V/vJdtY70fUeLBuJpPVkSKpW4GIiIiIhK0lMyKiIiISNBSMisiIiIiQctvfWaNMc1wTZvSnFMd/90jWd1zFmYCG4Cl1tr/+uvaIiIiIhKaypTMOgns3cBIIBbYiCtpzXD+vM8p6h6JWgfoDEwwxlhc8xVOsdZ+WJZ6iIiIiEhoKlUy6ySxaUBHXFOsDLbWzi/hOZJxLWF4tzFmKjDGWvtqaeojweHEiRNs2bKFbdu2sW3bNrZv387OnTvJyspi//79ZGVlcfDgQfLz88nLyyM/P5/w8HASEhKoU6cOCQkJNG7cmG7dutGtWzdq165d0X8lERERqWAlTmaNMU8D1wPjrLUflPbCzlyBGcBUZ97BccaYH4FB1trNpT2vVLzc3FzWrFnD8uXLSU9PZ82aNaxdu5aMjAxyc3NPKxsdHU1CQgJxcXHEx8fToEEDIiIiCAsLIzw8nBMnTpCZmcnq1avJzMxk9+7dWGsxxtCuXTuuuuoqxo4dS3x8fCG1ERERKQdpaTBzZvHl0tMhJSXw9QkhJUpmjTH/Af5jrW3pz0o48w6Oc1prpxpjXlHXg+CRnZ3N4sWLWbRoEYsXLyY9PZ2cnBwAoqKiaNWqFe3atWPQoEG0aNGCs846i8aNG5OUlEStWrVOnsday4EDBzh+/Di5ubnk5uZSrVo16tevjzGuaSkPHDjA999/z7fffsvixYuZOHEir776Kn//+9+5/fbbCQ8Pr5B7ICIiIW7mTN8S1ZQUGD68fOoUInxOZo0xr+BaK3tjoCrjtNb2McY8bIy5wlq7IFDXktKz1pKens6cOXP47LPPWLZsGfn5+VSrVo3OnTszatQoOnToQPv27WndujUREaf/mOXl5bF69Wree+89li9fzqZNm9i4cSObNm06mQR7io6OpmXLlrRq1YqOHTty++2307t3bwDS09O5//77GTlyJJMnT2by5Ml07dq1XO6DiIjIaVJSYOHCiq5FyPEpmTXGnA2MtdZmB7g+AFhrJxpjepbHtcR3y5Yt4/XXX+fjjz9my5YtGGPo1q0bjz32GN27d6dbt27UrFnzjOOstaxevZpPP/2U//znP/z4448cOnQIgNq1a9O8eXPatGnDVVddRaNGjYiKiqJatWpERESQk5PD+vXrWbt2LcuWLeP9999n/Pjx3HbbbTz44IOkpKSwaNEi3n//fUaPHk2vXr1YsWIFycnJZ9RDREREqh6fktlAtsYWcc0SDSiTwMjMzOTtt9/mtddeIz09naioKPr27cuf//xnBgwYQGJiotfjrLUsXbqUN998k08//ZSNG10/QikpKdxyyy107dqVrl270rJlS4wxnDhxgl9//ZV169Zx9OhRjh8/zrFjx6hVqxZ33XUXbdq0ISwsjFWrVvHcc88xbdo0Jk+ezK233sqUKVMYOnQoF154Ie3ateOWW25h4cKF6nIgIiISAvw2z6xULTt37mTixIm88sor5OTk0LFjR1566SWGDRtW5GArd/L76quvsmLFCqpXr06vXr0YN24c/fv3JykpCYDDhw/z+eefM3HiRJYvX87PP//MsWPHCj1v7dq16dq1K1deeSWTJ0/miSee4JlnnuG5557j6NGjvPnmmzRp0oQXX3yRW265hWeffZYxY8b4/b6IiIhI5aJkVk6zbds2JkyYQFpaGrm5uYwYMYIHHniAlGI6tG/dupUJEyYwbdo0jh49SseOHZk8eTLDhg0jNjYWgCNHjvDWW2/xwQcf8MUXX3D06FHi4uLo2LEj9913HykpKbRp04aaNWsSFRVFVFQU2dnZ/PDDD3z33Xd8++23jB49mhkzZjB9+nSeffZZEhMTGTduHLVr12by5MncdNNNfPLJJ/zf//0fffv25fzzzy+P2yYiIiIVxO/JrDHmKWvtI/4+rwRWTk4Of//733nmmWfIzc3llltu4ZFHHqF58+ZFHrd582aeeOIJXn/9day13HzzzScTU7etW7fywgsv8Oqrr5KVlUVSUhJ33nkn119/PZdccgkRERHs2LGD2bNn89prr3HkyBFycnI4evQoUVFRXH755fz1r38lMTGRzz77jFGjRtGtWzcefvhh/vznP5OVlcXTTz9N7dq1SU1N5ZVXXqFdu3aMGDGCr7/++mQyLSIiIlVPIFpmNfImCM2YMYMnnniCmJgYvv76azp16uTTcSNGjGDx4sUkJSWxYMECWrVq5bXMV199RWxsLJ9//jl9+vQhLCzstDLXXXcd33///cnvW7RoQc2aNcnMzOS9997jL3/5C4sWLWLAgAGsWrWKhx56iKeffpp33nmHe+65h1tvvZWJEyfy0Ucfcc011/DHP/6RcePGkZCQwPnnn0/nzp3p0qULnTt35rzzzjtjhgURkZCUng49ehRdZvhwGDmyXKojUhphRe10psh6qiQfoFc51V38aMSIEdx3333k5ORw+eWX8/jjj5OVlVXscWlpafTr14/t27fTq1cvXn/9dfLy8k4r88orr9C/f3+ys7O54447SEtL4/jx46eVmTFjBhdffDHVqlUDXKuF9enThy+++ILvvvuOEydOcMUVV7Bx40bi4uJ49dVXmTt3Ls2aNWPs2LG8++67dO/enTp16vDCCy+c7HrQunVrjh49yjvvvMNdd91FSkoKsbGxXHrppTz00EPMnTuX/Px8/91IEZFgMXx48XOipqf7thCASEWy1hb6Ac4G1gNfAu/7+Mkr6pyh9gEWdu/e3QaL1atX28GDB1vAxsXF2SeeeMJmZWUVe9yCBQts586dLWBbtmxpX3vtNXv8+PHTyixatMhedNFFFrDNmjWz06dPtydOnDitzP79++2MGTNsv379bEREhI2JibEHDhyw6enpNj4+3taqVcv27t3bjhs3zs6ePduuW7fOLlmyxI4cOdLWqFHDArZ69eq2TZs2tm3btjYhIcECFrDR0dG2U6dOtm/fvrZz5842KirKArZ58+Z2woQJdvfu3X69lxIaunfvboGFthLEm1D+BFusDaju3V2fynauqk73PWCKi7O+BIizgdHFlfMo/76vZUPhE6wBdvny5XbgwIEnk8C7777brly5sshj8vPz7QcffGDbt29vAdu0aVP78ssv2yNHjlh7YqW1J1ba/OM/2c8/m2w7duxoAXvOOefYL/895eR+z88nH06ygF20YLq1J1balcs/tHfefr1t3769jYiIOJmkhoeH27PPPtt2797dXnnllbZHjx62VatWNjw83AI2IiLCtmzZ0rZv397WrVv35N9pyJAh9i9/+Yu99NJLLWAjIyPtk08+WT43WKoMJbOV4xOssTYglFRVDN33gCkuzhbbcdBau9EY06IEjb0ZJSgrlVRKSgpz5sxh6dKl/POf/2T69Om88sordO/enTvuuINrr72WmJiY044xxnDddddx7cCWfP7F1zzx9zTuuecexo9/jPvvvZHfjxpKQkIsfa+8hCv7XMwncxbw8LjnuLLfKG4YehXPTXyYhg3rnTxfl87tAFi6dDWXXdqJtm1bMnXKeACOHj3GypXr+HnVOjZsOsaGDRvYsGED6enpZGefWtsjLi6OpKQkjh07xooVK8jPz6dz5840bNiQ+fPn8+GHH/LMM8/w8ssvM378eP70pz8RHx/P73//+8DfZBERES/Sduxg5u7dxfdnBoYPH87IEO/TXGSfWQ9jfT2htXZcKesilVDHjh2ZPn0627ZtIzU1lS1btnDzzTdTv359RowYwZdffklubi7k/nzyY4yh31WX8c1Xb/Lfea/RqeN5PPb4izRJ7s0DD6ayY8dujDFcc3VPVi7/kPGP38OHH82jddsBTPnnP+HIOgAaNKhL48b1WbJ01Rn1ql49isaN67MvM5tdO39l+7a1bN68mePHj9O4cWNat25N27ZtadiwIdu2bWP9+vVYaznnnHPYsGEDc+bMoVWrVlx00UU88MADPPnkk0ybNo0BAwZw77338vHHH5f3rRYREQFg5u7dpDsrZRYlPT2dmerT7PMKYOWyjK1UXnXr1mXMmDGMHj2ab7/9ljfffJP333+Ht99+mzp14rjmd1cweFAfrri8y8lBXMYYenTvTI/unVm5ci3PPPc6L01+lylTZ3HP3UMZ+/DtJMZk8ueHejHs6nO558E07v7jFBo1TGDgVa7rdkppypIl6ScTXABqtuTYseNc2W8UK39eR716CZzTqhmXXXIBOUePcfAQHDhwgOzsbLZu3Upubi61a9emadOmbNiwgby8PK666ipWrFjBwYMH+cMf/sCLL77IypUrmTlzJrt372bYsGHMnz+fiy66qALutoiId2lpacUnL+npDE9MJLTb6oJfSkwMCxcuLLJMDx9abkOBry2zIgCEhYVxSbc4prx0H79tW8hHs5/nyt4X8f7sL+nb/27qJ/Xgtjse47N/LeLYsVMzFrRrbnj9pVtZs2QSQ6+7iOcnvUVyq7489reZHDt2glYtGvH5B4/R9twm3PvwVA4dygGgU0oL1q7fQXb24VOVOLKOPz/2BCt/Xsecj17k7TeeonbtaGZ/OJd//fsrvvrqK9LT09m4cSO5ubk0aNCAJk2asHnzZo4cOUKLFi34/PPPiYyMJDIykg8//JC3336bnTt3cuONN/LRRx/RuHFjBg4cyJo1a8r7FouIFGrmzJmkp6cXWSb90CHXK2qREFGmyTaNMVdYaxf4qzJSCeX+XOiuqKhIrrm6J9dc3ZOjR48xd953zJr9Hz76ZAEz3viEWrVqMLBvJ4YPvpQ+V6RQrVoEyWc3YMbk+xj3x2sZ/9R7PPnMbBZ9s4oP3nyYemzjlfF9uGTINB7/v5d49tG+dEwOB2DZigwuv8zVh3bxd78w4YWPGXhVJx7900R+Xr2FxMQE+ve7jP37D3Dw4GEOHc7lwIED1KxZk+rVq7N69Wry8/OpX78+q1at4vzzzycrK4tjx46Rk5PDhAkTTi7X+/bbb/Pll1/StWtXRo4cycKFCzHGlMvtFhEpTkpKSpEtdj3i4sqvMiKVQFlnjp8CtPRHRSS4Va8excABPRg4oAfHs1az4KuVfPDJ//jos++ZOetrEuvFMmzQJdwy7HLaX5BM61aNeWfClVzTvRG3jfmILt0fZE7ajVzUoQkjh3XihRnfMeLqC+jYthEAPy7+hh5tDAcPHeOWu6fRpHFdvvthLbViavBC6h38e/6v/OvfX9GqVTNia8dQvXokcXFxZGZmsm6dq4tCcnIyW7duJTExkbVr1xIdHU1YWBh16tQhPT2dt99+m4EDBzJ+/HiGDBnC+PHjuffee5k7dy59+vSpyNsrIiJVhC9dRdIPHSKlwCBrKVxZuxmouaoqK6JV1qsj6+DIOiIjq9G3VwemvngPO9ZM45N3xnHphW2Y/OqXdLhsNFf2f5jv530BwND+7Vj0zh0cP5HHxUOmMmferzw1ujf1EqIZ9dgnxMfWoFnjOJau3AHA6Ke/JGPTLpo0qMnBQzmMfeAannxmNv9d+APJyY1Zu3YTPy75mR+XrGL58uVs3ryZ8PBwzjnnHHJycjhx4gSHDx+mWrVqREdHk5uby5YtW2jfvj2fffYZSUlJANx///3cddddNGvWjEcffdQ99Y+IiEiZ+NJVJCUmhuGJieVUo+BX1mRWv+HlZBLrTWRkNX7XrwuznuvHzu8eJnVsH5au2km369MY/ZQroe18fhI//LMLrRvX4Lp7ZrL6m4X84/ctWbJyB//4x7t0apvE4qWbWfT9Rqa+u4T+l7fi6x83c23v1tz9xynExUYTFRnOrl17mfD0gyen73Lr378/Bw8eZOfOnSQmJnL48GEiIyPZsWMHERER1KtXj2XLltGlSxemTp3KTTfdxJw5c3jnnXcYP348S5cuZdKkSYG+iyIiEiLcXUUK/aSkMLJRo4quZtDQADApN/GxNXj4rkvI+O8fueuGTjz36re8NmsZAEkdujP3ma40a1CTG/66nCvaJ3DtpfV5JG0NXS5IYufuQ0x6/X/UrxtD+uqd1IqOZMnK7cTWqs6B7AM0bVSbo0ePY07s5borzyapUcLJ6z42bhhbMv7NgP7dOX48h1tu+h3Z2VnUr1+H6Oho9uzZQ+PGjVmyZAmNGzdm5syZdOrUiTvuuIPY2FgGDhzIAw88wN/+9je10IpIUEg/dIgePXoU+0lLS6voqoqUmZJZKbuaLV2fIph6bU9+asVE8dL4/vS6OJl7Hv+Ur37YBEBsm0uYNfkW9h7I5aZnNzHt+dtodXZdnp7yNQ/cdiEf/ecXhg9sx/4DR2lQrxabtmfRslkCBti6M5vLOjfl4f97gwHXPsZHb40la8ub5O2fTefzogg/lkFSYhRRkeE89eQDREZG0vqcZuzbt5fmyY3Ztm0bdevGkZ2dSa1atdi4cSOtW7dm+PDhjBkzhptvvpnHH3+cp556KvD3U0SkDIYnJvrU31JzlEpVUdYBYFKVRbQtWb9Zd0JbSJcDN1OvLdWAd184xiVDp3H1qJl89e4dtDunPu3Pa8iLf+7PyD99wgsz/scnU4bT9fo0vli0ln49WvHC6//jD7deyAszvuOC1g1YvnonbZrXo0bOCb5bvpUHbruQdz5dSZcrxnLr9e35++heNKhXC4BjB/cQGRlBw9gsRt83kL+mvs+fRg/iyWdmk5zcmK1bfyMmpiaGXIwxZGZmUq9ePa655hoWL17M8ePHefzxx+nduzedO3cu5U0VEQmskY0auV5Ra45SCRFqmRX/c7fUFtNaW6dlF774+Amia1aj3+1vsmVHFgB3DOnALdel8Ld/LmLDlkxm/XMoazdlkp+fz2Wdm/L89O8YcfX5LF+9k94d67Jh817yjh+lecPqTHr9O/5wbRJjbkhm5pwVdPndi+xYvgiA48fziAzLx+75mYeGtSSxTjSzP/mOW4dfTkbGNuJiaxIWFsb+rAMkxEdz5MhB4uLiXCua9evH+PHjadiwISNGjODIkSMBv40iIiJSPCWzUrSItt4/viomqW3aJJEvPvorh47m0ve2N9i3/wjGGF76ywDatkpk+B9nUyMqgucfu4ovvlpPu9b1ubxbM978eAX9uyXyxQ97uPDceA7l5PJb5jEuO78Oj05dw+6s4yz841nsP3iC3z36I4fXfsPx7N1EmuOw9Xtq7U9n1j+Hsn3HHr5anE7nji05eDCHo0eP0qBBXTZkbCMpqT4//fQTQ4cOZdeuXQwfPpzJkyezdu1aHn74YT/cXBERESkrJbNSOiVJaKHI1tp25zVlzjuPsHFbNgPufIvd+w5Rs0YkH00eRp24GlwxYgaJdaK5e3hnXnz9exol1ubylDr863+7GdKjIQuW76NJ7TCiIyxLfsnkrkvimPHFNh6avZvJN9Qnff0BRjzyDTmZh4jKPwFrMgC4qN5vfJnakX37c/htx27iakURXSOKjRu3065tS1av3kBycmOmTp3KM888w4oVK/jXv/7Fgw8+yMsvv8znn3/ujzspIiIiZaBkVkqvNC214DWxvezi83j3tQdJ/3UXKb9LY/7PeSQ3SeDbWXfRsW1Dht7/Ps3OiuP/7u3OW5+s4PDRPLpfkMD7C3cyuGMtVv92HJOXT+1qhg+WZvNEjxhWbMnh6c928USPGD5ZcYgvfj5E2Ik8ALKWr6PTrfO594VVvPJAGw4dOU6+tezPPkTL5Aakr/iVlAvOYePG7dSoEcn06dO58847efXVVxk5ciRt27bl9ttvZ+/evf68oyKVijGmgzFmpDGml/trCY8fVNgxvpy7rNcXkdCgZFb8oyzdEBzXDOjKDwtSiY+Loc+1f+XRl9KJrVWdeW/eypB+bRmXOpffNm1kxrgLWLHhABlbshnQLoZZSw9yUVIEB45ZjuVZwg288L9D3H9eOKv35mEP5TC8RRh5FiLDDXvW7OXaFzayascxtv12mFufXsHtVzYk78RxEmKrs3bDTi5o24z0FWuIialJYmIdfvzxRxISEggLC2PixIm89dZb7N27l7/85S/+v5cilYAxJhlItdamWWvnWWvTgFHOdl+O7wVMLe25y3p9EQkdWgFMAqMkya1HK+35bZvx438ncMdNPXn6Hx9yydBp/PjTdmY+P4ixoy5l6mdb+Nsb63j+3nPJt4b5vx5iUJso/rv5BIlRlqMnLNFhluP5MO2XPM6qCc//lMdV9SwDmoRxXkwev/9oH4s2n+D5PrVYPCKeK9vU5Nn3M2jaoAZ7Mw/TrHEcK37exDktk8jPy2Xdus106ngezz77DIMGDWLGjBnExMQwYsQIXnvtNfbt21cON1Sk3I3CtWS5pylAalEHGWOSjTFTgGQgswznLtX1RST0lDWZ7eiXWkjV50ti6yS00dHVmfriPbw3/SG27T5C92Gv0f+Ot7i+77ks+Ec3LHD3cz/Tq3U05yREMPuXY1zVOIxNByEqDLYcggZRcCAXDufCnmOwYBfc1MSQc8zy4aZ8bmtleDf9EMNm7WNochiv3FifNVsOUzc2kk3bsmjWOI6Nm3dx9NgJEuslsGnzDmrWrMHOnTupVq0af/vb3xg9ejRHjhzh5ZdfLp97KFK+BgHLCmxb4mwvlLU2w1o7ymlJLcu5S3V9EQk9ZZpn1lqb7a+KlCdjzCAgy1o7z8u+DkAnIANXy0JGwXK+lJEieCa0Beexrdny5Dy1Q667mAF9O/HSC9NJnbKYLtdOYXD3hnz3xyT+/vk+Ji3I5KzahssbGT7fls/5sbD6AMRWgzUHITnGkHHIUjcK3t9iyTpu+Wib5aK6hg1ZlsW7IbEG3PjxAVrXOcyEa+ty/3u7aVq/Bpu3Z1EnriaEhbN7j6tx6eKL27NgwQKGDRvGm2++yaOPPkr//v2ZNGkSo0ePpkaNGuV1B0UCyhgTh5eWVWttljEGY0yytTYjUOd29gXk+iKlkpYGxS0wkZ4OKSnlUx85Tcj1mVU/rkrGW2utR7eDmjWjGH3nJWxY8ACP3dudWYt28uJ/9/OPIfX51w1xZB6F3DzLqDZh/JQNPRJh/wk4qyZkHLIkRMIRp4V2SaZrKdrE6mFsPgwRBi5vGIYBft2XR83IMB7pW4fNu3JIqhtFg3ox7N13kOiaUSQ3q8+yZauJi6vF4YOu1ll3Ert3716toiNVTQK4ksdC9pcl3vly7kBeX6TkZs50JatFSUmB4cPLpz5yGr8ms8aYlAKf2h77Rhtj1hlj9hlj3jPGNPPntX2om/pxBRsnoTX12lK7VnX++kBPhl3RiIlzM8nYc5y+PRry8IXRfL0LLkgwtIkzLM2Ec2rB3qNQIxzCDRzJg8TqsO2IJTEKvtyZxw1NDbkW3svIp3tDw+xeEVxdL4+busYC0OqsGNZk7CE+rgYN6sezbcc+cnKO0blTW/79xWIG9L+MN954g44dO3L++eczadIkrLUVebdE/Cmugs9dqusvWrQIp+W2yI9IqaSkuFZVK+ozcmTF1S+E+btltjeuPk6P4HoND4Ax5mlcyd58wN0yOqU8E1r146rkihkkZuq59k/463Aiwg2jvzwEwNjBjUmOC+f5X2DMBWHsP+FKXI/mQ6tarv6yLZ3ktno41I50Jbgfb4fvro7g332r8eLF1TgnzvVfoWX9SFrVj+TgvsOcyLV0u6AxW7bu5vjxXBrWj2f3bzvJzc0lIb42Bw8e5J133uH+++/np59+4quvvgrsPRIRkUorLS2NHj16FPtJL66FV0rM38lsFtDbWjvUWjvNWnvAGNMeGAOkWWvvttYud/qXDsHVylkpFNWPy9mf7EuZ8qltFeUtoS2wyEJSg9o8+v8u5+PFu/jPgVpERhievaEhazPz2B1eg+vPDuPbvXB5I8PKLGgeA9uOQGQ4JETC+oMwoEkYa7ItE1fkc1bM6a00Wev3MaBdDCu2HyOhVgS5h/dzIjefhokxREZGsOLnTeXoqsEAACAASURBVHTrej6ff7mY885tzqvT/snw4cNJSEhg0qRJgbw7IuXOiXkVdu6SXr979+5Ya4v9SAmlp0OPHsV/0opqK6r6Zs6c6VOimpKSwnB1R/CrMg0A8yLWWju/wLahgKXAa3hrbbYxprDX/RXB5z5axZTRoISyiGhb6KAwU68tds/PPHj7RUyfvYw/vLiKFa9exu/sRnq2rsnT3x5m7o3x/HfmfnbnWKpHQHx12HwYzokzrNpvaVoTPtmczw3Nw3h3Qz4d6uZxdbNwALZvyiKpWRyX18nnuVxL1yZRzF+RSduzY8jKCWPz1j1UqxZOQmwE//t+F31uvYjXZnzEhg0bGDlyJBMmTGDz5s00bdq0Am6ciF+541gCrkYK4LTksixxzpdzZ/pQRvwgPT2dHj16FF5g506GJyZS7MtzdxIX4q/ZU1JSWLhwYUVXI+T4u2XW2+wGvXDNHLDJy77K9IisflyVRREttKZeW6o3TuEfj13Fmq2HmfThRkzr5jz3cEeyj1mmb7CMvyyGn/fDlc2jWLIXLmvoSmQbR8PhPDAGMrLz6VDXMPGnPA4cP/3HsGtSNeKqGyIjDMdP5NO8UTTbfjtAeLiheZN4vv1+DY0axrNx03aqVYvgtWkT+P3vfw/AtGnTAn57RALNeWDP4MyYl4Arnpc6mfTl3IG8vpwyfPhwUooZfZ++axczGzUqvq+oRvFLBfJ3MntaVmCMiQU64OpT6k0dP19fqopi+tAOGHI9Ay5vxePT1/PN7ga0S67N769pyksL95PUrDYXN6/Bos3HaN8ggqX7LEk14Xg+7D0GHeoYftgLHeoaDhyHab/mnTzv9k1ZRIQZep0dyTdrD9Pt7OqsXpdJRDic3aAGv+0+RFb2Ybp2asV/F/5Azyu68ubbn9GgQQP69OnD66+/Tn5+fqDvjkh5mIfH2AdHB2d7eZw7kNcXYOTIkSxcuLDIT3HJrkhl4O9ktuBTtHsd7VkFCzqJbmXqZgCoH1elUnDaLo8puwBem/YITRrFMvCut/k5pxkT725Dp3NiufXNXTzcO4Hs49A0NoxjedAwNoLdOdAqFr7bZUmpY5i5Pp8rGhneXp/PjsOn7v/2TVlc2TyKvTmWixLDWLf7BBe3TWBP1nGyDh6lQd0YduzMJDw8jFox0ezdu59PP36JW2+9la1bt7JgwYLyvEsigTIWGFxg2yhnO+CKhcaYDcaYwt4tJ+D9jVax5/axjIiI35PZjcaY6wCcablSgf3W2tPevRpjUoCnrbUT/Xz9svDsx3VSgT5avpQRf/M2Dy1Qr24s/5nzJDWja9L3tjfYVf1cZk+9g6hqYTzyeTb/r0c8H685zs3d4liyM5fODSPIOABRERBmXMnrgROury+uyjvtEueG5RBuICfXUrt6GOFHj5J9OJe6sZHEREfy/ZJ1XHbxuXz9zTIaNarHq9M/5Or+LYiLi2PGjBkBvyUigea86h9rjEk1xgwyxozBNcd2wTh3Rjx0jpmFK5FNNcZMcRar8fncJbi+iIQ4vw4As9Z+YIx5xRgzjVNP4x3gZEvsSFwDwjoA1hiztGCiW1GclWWK7aPlSxkJgIIDw5yEtmkT+OKD/+PSq/5E3zvf4+u3R/DeP4fT55bXadU4kXObxvDpTwfpdnYNft6eQ1SEoX51y7K9MLBJGJ9uyadvY8NnW/K5OCGX5BjDuQ3CqR1puKSB4aNfj3Ftq0je/yWH+rXDia1VjbWbMwkPN9SuVZPfftvL4EF9+ODDeezdu59hw4Yxffp0XnrpJWJjYyvoZon4h7V2GWdORei5PwuI97Kt2NbT4s7taxkREb+vAGatvRs4G+horQ2z1nrOU7EMV5DrDfQBlvr7+mWkflyVmbvbQYGuB+069+LTj19m89Y9DLznQy7scBapY/vwyTe7uLx9HfYcziexVjh51nBW7TAyDkKjmvDjnnwa1oCMg5aYCHhrYz7WWlb/lsfq3/K47uxwfjv8/9m78+iojjPx+9/qvaXWvu8LEohdFosNBsS+GcfGMU6CncRObHAymWQmkzG2Z+bN753fO+NgZzLJJBPHOImdOMYrBtvsi43A7AIEYhcIISGhfVd3q6Xuev+4LYwxIAk3NJLqc849gtt1697qY9qPqp96ykNGuB5Hh2R0goWz5W0IARkpEezae5LoqBAaaivxeDz85Y2PePyxyTidTt59913/vU+KoiiKMoD4ujQXoJXdAg5f49zVZbv85UZ5XO8BVxbLW8oX6+H2pI1yq10Z0HYeY/KkMbz51+V8/ZF/5DfvnmfZsiXsP1LOinUn+fHXU/nVu+f5YW4ov89rJCVEh8vlodIB85ME68sk06IFn1ZLTjbDMO+E6pRYQaABjpY6GBVtoLq1E4+ErKRA6hod1Na3sXDB3Xy04QD3TszmzbfW8fyzT5GVlcXbb7/NU0895Z/3RlEURfGpFRUVrKyu1urpXkdBQYFaMOcntySYvRN581qfQ6sF25XHNQvYIqV8Hy6nGiwTQiwHDnjbfimPq7s2ym3mTUF4aOFMZs64h9++upmf/uh+/vM/fsh7G/4OY2gCIYFl1GAh2KIjOkDHgSYPGcFQWC+JtUKVUxJqhDVlHoaF6BkWq6fTI3G6IdwMs6JN/HqfnaxYExKoqW/DajEiAbfbQ0ZGCn/564dUVFQzd+5c/vCHP9De3o7ZbPb3u6MoivKVdFuLVmvUs3q0d6IVK2Dlyhs2WVlcTAFwo1BVbYbgPwMmmFV5XP2cN6D96T98h/n3/5B3V+/msW/kMn92Dq9/UMB3Zify8kcX+M7dwbyxr4kQsyAkQM/Byk4eTNGx5oKHefGCDRWSdoNW87fSAW4Jw5MDSQ7R8197tWB2faG2lW56UhhHCkuwWk20t9UCsGXrHnInpfLrXzs5cOAAkyZN8ttboiiK8lX1NDgraG2F1laWdBf0Ll58522ssHKltunDjWZVbTayY2LUhgh3qAETzCoDw9w5kxg2bBD/9b+bePSRKfz9kvnM/fpBUrLuxb2mBHNUKB3uJkalWdh9zkGEVVDt8GDUgc0MURb470I3f5kqLpfrSg7RMy7OiFkPeiFwuSEhUptxPX+hiikTh1FQWEJsbCQbNn3Gy7/7N4QQbN++XQWziqL0aUuWLGFJD4LPqUOGQFXVjRvdybuEZWdrmz9cT3dBuuJXPl8Apih+YxiBEIJ//PG3KThyiu07jzFr+mgGZ8Tz3vrjzJ86mA92VJI7Opzi2g7cEoZEGNhbo+XHriuTfG+InsN1ku2XJOV2LZhNCtZhNQrGxBk5X9eBxSiIDDFRXKrNxoaHB3HqTDm5k8eyafNugoICGDVqFHl5ef58NxRFUW6fuLjPA0K1S5hym6lgVulfDCN47NEFREWF86s/fIJOp+NHS+ax78hF5kzOpKqhneFpQZQ3dnJXkpmzDZ0A2Ixg7wSBJNUGvznmpqxVIoCEID0AExONFJQ5uTfdSl2dA0e7h8TYYGprtV2cI0MFTU0t7N5TQG5uLrt27cLlcvnrnVAURVGUAUEFs0q/Y7GY+bsffJO16/I4Varnu9+ahs1mYf+RMoZlRLH7WD2x4WZ0QlDdJsmOMbC7BoaFCt4t9vD3I/Sca5a8V+wh2gomvZZDOzHJhEdCWqSRi42dGA2CqIhADhacIyoymOqaJoxGA+vW72Tq5HQcDgcHDhzw87uhKIqiKP2bCmaV/scwgh8sfQSz2cR//+YNgoMDeHzxNN7dcILvLcqh4GwLc8ZFcbDUSUyQHmHWU2OXjE82U9wCIUYYGSZodEFCgLjc7bg4IwYdeLw73w6KD6ChrhGHs4PhQ5PJ23WcSffmsH7jTnKnjEWn07F582Y/vQmKoiiKMjCoYFbpl6Ljc3n8Ow/w+l8/5GJ9ED9aMh+Xq5OmVicRYQFUOa3odYJB0SYOXmgnKVjH8dpOwq2Ct4s9/OMoLbUgPvDzYDbQJLgr1sCJS+0khBowGnSUVDowm/QYDXqqa5oYMzKO48fP0tLSxsSJE1m7dq2/3gJFURRFGRBUNQOl33r2+Rf502ur+cWLf+J3//MvzJ6ezZ/eL+T7i3L45R93MXNMBAdONaHXQUachU9P2/nWcDPvnmhn2WjBP43UM3NE8Bf6vDfRxO/y7XxzXDAfHtFKdGWkRHC+uAwAodOC33Xrd3DfvDE89y+/oaKigvj4+Ns7eEVRlNus23q0d2gtWrUhQt/n15lZIUSqP++v9G+pqak88cQTvPqnVVy8WMlP/uEpKi7Vk5SZhU4nsIVH09DSQXZGCEcuOrEYBe1uiUfCxnojjw/Rc3eC8Qt9Tkwy0umB5DAjLU4PkSEm9B4HZy/UMzgjngMHixg0KIl1G3awYH4uAOvXr/fH8BVFUW6bxYsXdxvsFbS2akHjHWZldbVWJ/cG1IYIdzZ/z8y+B4zz8zMo/djzzz/Pa6+9xi9/9Rd+9ct/ZnBGPH97J49FD97L2g37SE8Ko72jk/o2D7mZVjYWO5meauSNo06emRBxuR9Hh2TxmkZmppnQC2jvlOgEJEVbKLrYBkBqcjSf7Cjk+9+ezl/e2sGgQUmkpKSwdu1annzySX+9BYqiKLdcT+rRTg0NpaC19cazt5cusVhKlvTk2ywfbsCQbbOpDRH6sFs2MyuESBVCZN/oQNsKVlFumdTUVB5++GH++rePcLk6WLJkMfvyi5g36y5a2lyMGRHPsfMtxEeY6fCA3SVJDzNQbfewreTzslpWo+CP94XwwzEBDI00UFjRzrA4Mx6PpNXhJjIsgA5HE52dbqKjQnE629l/oJCZ08eQl5eH2+3247ugKIrif4ujo8m22W7YpuDcOVYW92B3+IKCbregVQYOn8/MCiFeAJ7xdb+KcrOeeOIJ3n77bT76+FMWf3M+zzz7K06dKSc5KZKqWm/ea0IguwrrGRRl5GQLRFoFbx1zMneQ+XI/EQHa7353xRpYV+zk/pGBrCvUZmUT40IoOl+HyWSgobEVIQQ7dh4kd8pY/vTaBxQWFqp8K0VRBrQl8fHajOsNZkAvz972oL/FFRV3XP6t4h8+DWaFEP8MLAVeAs510zwMeMGX91eUa5kxYwaJiYm89pc1PLJoLjNn3MOb7+1g8cOTeel/PmTcqAQq6hpwSxgaa2JtYRuPjrDw3kknDQ4PYdYvfoFxV6yRNwqdpEQYqW1zkxBpAVcbFyubGT8mgz37zzBq5GDyduTz3VcfACAvL08Fs4qiKN1YHB3do3YFra3Q2sqSG6QsrKioYKUQ2u5k3fTV3Yyxcmfz9czsLCBNStnUk8ZCCPVLlXLL6fV6vvvd7/LCCy9w8WIl3350Ad9+/HmyBifgdntISQjhwNFyMhICqGjqRAiwhVtwuZ18cMrJ9+8K+EJ/k8dGwJYWDN7NFDISAjh2vgWA+LgIPlp/gCe/M4M33tlJbGwkqamp5OXl8ZOf/OS2j11RFKUv6cnsLcDUIUMoOHeOqQUF122T16SFIrndBLPZNluPg2jlzuTrYPZQTwNZr6U+vr+iXNPjjz/Of/zHf/DXv33MT/7+UQIDrXy25xSjR6ZSXNqAXq8jIcpCXkE996RZ2XKilVHRBv58xMH3sq0I8Xm92ZEJFkwGQV2rG70OAix66po7CAky42yux+PxEB5mw+FwcvDgcaZOGc3H63bg8XjQ6VRpZ0VRBrCCghuWwKKgAHrwLdbif/qnbnNmcwsKWOxy9SwVQZVP7NN8HczW9qaxlHKbj++vKNeUkZHB5MmTef2vH/Lcsid56MGZvPfhNpb9w0Ke/3/fJHd8KkXnLqHTQXSQnr3nHTw3N4IXNtaxo7SD3BTT5b5MBsHoBDNHLmqLwFrsndo9UiI4dqYKk8lAU7MdIQRbtu0hd8pYXv/rh5w4cYIRI0b46y1QFEXxr56UtsrO7lG7nlRPYMWKni0S6+E9lTuXr4PZJiFEsJSyuSeNhRDTpZSf+PgZFOWannjiCb73ve+xZ88Rvv3YAt5482PCQ20IIYgICyCvrp1xQ0IoqGwn0CyobO4kOkjPHw7avxDMAoxNtfK3fU08dJeN9SfbCA8yYDTqtbzZsZnsPXCG8eNGsn7DZ7z1t+WAljergllFUQasJUt8Vkrrjryf4jc+/c5TSvkq8HwvNkNY7sv7K8qNLFq0iMDAQF77yxqmT7ub+Pho1m0+yNRJwyk4cYnAABM2q4HSaieTRkWw6lALT00KZVOxi3MN2uxraIZWe3ZsioUWp4fEMCM1jS7GDA6l8pL2xUR0ZAgFhSVMuzeD/QcKCQy0kpSURF5ent/GriiKoij9lc8T+KSUzwLLhBCbhBAvCCGevM7xMyDH1/dXlOux2Ww8/PDDvPPeRtrbXSz+5nw2bDnMgwvuprisgSnjUjh0rhWbVY8Qgmanh8QwAyaD4PVz8nIgC1owC6D35tLGRZopqXQQHx1Ec30tUkoiI4KQUrJp825yJ48mLy8PKaVfxq4oiqIo/ZVPg1khRIgQ4gDawq5ZwDJgxXWOF315b0XpiSeeeIKWljZWr9nGo9+6j85ON+5ON2azUct1bWln7JAQPiusJznawjv5LSweF8zrexpptH++8cHQWDNWo6C21Y1eJ9B5g9rBaREcO12F2Wyk9GItMTERrN+4k9wpY6murub06dP+GrqiKIqi9Eu+npldDjQAi4Ax3RyzfXxvRenW5MmTSUtL47W/rGH06CEMGzaIVR/vZcGcMezKv0BCTBDtIpBWh5tJo8LZfsbOnGGBtLVL/rSr8XI/Br0gO8nC0XInw1NtlNc6sVn16HQ66pscjBqewvbPjjF/1mg2bvqMKZPHALBx40Z/DV1RFEVR+iVfB7PpUsrZUspVUsrD3RxbgcM+vr+i3JBOp+Oxxx7j0+0HqK9v4pGH57B732nmzcqhtsHOhJxkDp+4RFSoCbdbSwkorutgdKKZzSfavtDX8HgzZ6pc5AwOobC4hfFZodQ12gGIigjm+MkyJt49hMZGrQZtamoq+/btu70DVhRFUZR+ztfB7JZetl/k4/srSre+9rWv4fF4WL9hJ7NnTkBKiRDici1ZZ3snQ1NsHCpqJjMxkIMXnGQnWjhW0f6FfhJCDVS3uBka0E5lfTsJURYuXmrCYNBBRwtut4cAq5Zbe6G0gmHDhnHq1KnbPl5FURRF6c98Hcz2anWLlPK8j++vKN3KyckhLi6Oj9cfZty4EQQH29h74AzZI1O5VK3NooZERlF0sY0RaTbyKzoZHm/mUlMnda2dl/tJCNUq2yWGGgGwmHTUNTpIig2mzdEBgMet5dmWlFSQlZXF6dOn8Xg8t3O4iqIoitKv+TqYPS+E6PEG9N6KBopyW+l0OhYsWMDGjRvxeCTTpo5jy6dHuGf8EI6eqSE5PoQ2uwuAUJuR0ioHSWFa4Hrl7Gx8iBbEhli1f0ad3rSEmEgb9Q0OAOob29Dr9ZRcqCArMwiHw0FZWdltG6uiKIqi9He+rjO7CpglhHioh5eo7WwVv7j//vtpaWlhx858Zs2YQElpNekpMbS0OBiWGc3p4lpMRh2Odm1m1eUNVAvLPw9mE7wBrt0liQ03U9+szcbaAs2UXmoiMNDM2eJLJCXFUlJSTlZWGoBKNVAURVEUH/LpDmBCiBe8f5wphHgVyAeKr9M8HEj35f0VpadmzJiBxWLh47V5/N0PvgmA3a4FqqFBFsqrWrhrWBwXqpwIAedrXcQE69l1zsGPpml9dKUZlDd2Mio9iAtV2mysXidoanGSPTKVU2fKSUmO40LpJbKGfB7Mzpkz5zaPWFEURVH6J19vZ7sUCAGE9++zummvKsgrfhEQEEBubi6f5h3l179aRlJSLEeOnSc8zIbdqc2wxkXb+GR3FUOSAjlUb2D+CBsfHG6hwy0x6gURgXrMBkFFUycjB4Xwuw9KSIg00+7S8mpjY8I4cbqMaVMnsvWTvURGhhEeHq5mZhVFURTFh3ydM1sPLJVS6npyAE0+vr+i9Ni9997LsWPHaGpqYdaMCXz62UnuHpvJ2YutBFiNeCQ4XR7S4gLIP9PI/aOCaHJ42Fmkld8SQhAfaqCisYNR6UG0d3iIj7TQ2OwEIMhmpbSslvj4aCoqanC5OsjKylLBrKIoiqL4kK+D2WJgay/bK4pfTJw4ESkle/cdZeaMe2hoaCY5MYqTp8vJGR5HeWUzoFUpqKhtZ0S8CbNB8PHR1st9xIcYvGkGwQDYrAbKq7SKCHq99s/LrGtBSklZWaUKZhW/6MU6hquvyxFCLBFCzOz66YvrhBDLva+F3qCPUCHEM0KIdO+f07uuu5mxKIrSf/l6AdhsKWVJLy552Jf3V5TeuPvuu9Hr9ezeU8CM6XcD4HJ1IqUkKS6EE2drSIgJorlNSxs4qQ9nRlYAawu14BS0vNnyxk6GJAciBOh0gpr6NmIibTidWkWEzk5vea4L5WRlZVFZWUljY+M1nkhRekYIUdTLS5bfxD3SgeVSyhVSyq1SyhXAUu/5r3pdDlpd8gYhhLzqOOdtE+597nNoO0seBA54N9xRFEW5zKfB7E2U2urtJguK4jM2m43Ro0eza08R0dERjByRSUlZDUII9AFhuN0eMlIiOH2xDZ0O8k83sWBUEOdqOjh5SQtU40ONlDd2YC4uISnaSkeHVkM2LtpGTV0zOp2OpmYtLeHChUtkZWUBcPr0af8MWukvBgkhgnrSUAiRxs0ttl0KvHLVuVfoPjDuyXXFaGsqxgCDrjiW8sXNdGYBYcAgKWWYlPL93gxAUZSBwddpBs/1tKEQYgaqmoHiZ5MnT2bPnj3Y7Q7unXgX+YeLGZaVSGlZLTqdwGzWc7HayeDEQD4rrGfBSBsAHx3VUgmsRoGjQ9LpgSFJgVTWaxURbAFmTp66QEZ6LMUlVZjNJo4dL2L4EG3N5aFDh/wzYKU/ebW7Bt663/k32f/DwNX/oebT/TdqPbnuoHfW9pCUsrjrAJBSfuFaKWVj12uKoijX4utgNkwI8f3uGnlncDf7+N6K0msLFizA4XCwZese5s2dREtLGyOHJbN7/2nGj0qgrEJbo5gQaWHHkXoCh6czJtnCR0e0vNn9JQ5GJ5ox6gW5oyM4c7GN6DATnZ1u6hsdjBiaxPbPjjPp3rvYtGU3aWmJJCcns3mz+s9f+coeudG3Yd7XDqLNbPaKN5c1HW1R72VSykbv69eciOjpdd7Ug6uvXXKt84qiKN3xdTAL8OL1vv4SQqQKIQ4AL6IqGSh3gNzcXMLCwli9ZhszZ9yDxWLG7ZZ0drpJzUjl5LlaMlMjaGjtwO2RrN9bzQPZQewrcVBW38GeYgeTMgIAmDU2EoCsZBsnztYgBBgMetranGRmpHDyZDGlpZeYM2cOn3zyCR0dHf4cutK3veitCHNYCPHylS8IIYKFEO+gfc6uQAtmV/Wy/3D4PAi9hut9q3ZT13kXdV1rBjldCPGw91gihFDrLBRF+RJfB7ONwC+AP179gneW4BxaXtQiKWU4PfiaTFFuJaPRyIIFC/h43WeYTEZmzZzA/sMlxMWG0VCvzb6mJoZScLaFmDATq3dW8sBoG1LCv6+rxe6STPYGszmZIYQFGdEJaG5tZ8TgaE4XVWAyGWi31wKwdl0ec2YOpbm5mX379vlt3ErfJqV81vtzG/CsEOIP3smCbLSv+Behfc7+QErZJKV8pJe3uG6VgVt0Xc7V6QV4Z3ellO97jxXAN24U0Obl5SGE6PZQFKV/8fWmCWlSyiZvGZWXpZQ/EEKkAu+hJfq/DzwlpWwCkFI+7eP7K0qvLVy4kDfeeIMdOw9y/325fLx2O4sWTmT95kMMzoinqcWJxyMZmR7E+n3VvPbsTNIjL/KnXdrkU1cwq9cLZuZEsutYPXodhIcGkLevhEkThrL/YBGDB6fy4cef8u5bv0Sv17Np0yYmTZrkz6Er/YD38/RpIUQ+cBdaMDtISnnev0/WM97g9Es5sd7Z3avTDl7xHv1uIdiKFStYuXJlt+0KCgrIzs6+DU+kKH2Hr0tzdQWpjWizBZv5fDZ2lpTyka42inKnmDNnDlarldVrtrHgvlwArLZI2tqcjBiWzKHjl4iNtNHRKXG6PKzfW8PXRmuZNLHBemJDPv+dcObYSCrq2hkzJIRL1doisbiYMI6fLGNa7ji25x1ACMHdd9/Npk2bbv9glX7Hm1awCa3c1Spgq68C2RvVgfXhdc/R8/rkxWipB9fsPzc3Fyllt8edaOXKlRQUFHTbLjs7m8WLF9+GJ1L6ioKCAqZOnXrDY8WK/p2O7uuZ2cu8M7RPoy30ypFSNl/dRgjxkJTyg1v1DIrSEwEBAcyZM4c1H33C//z6OcaPG8nJk8UEBVlxtXfS2elh+OBo9haUERNm4v28S/xorI1fb6v/Ykeni5k1NhaA2HAz+3dVEx8TRF29FtQGB9vo6Ohkw8bPmDMrm//z7y9TW1tLZGTk7R6y0scJIaZLKT/xphVsQ8uLXSSlXCWESPPm0S671uduD3XNlIajpY913Tf0qte/0nXe8znXyrEVQjwjpXzxqtNd/+jS+XLFhD4vOzub7du3+/sxlD6kJ7/YdP2StGTJklv9OH5zKxaAXeYtpzKL65fs6nUhb0W5FRYuXMjFi1Xk5x/n/gW5HMg/xrRJIzhwuIiI8CDcbg9t9g7GDgll/b5qsqcN4fjP0yn418/Xs1xq6iA52kpGQgCNrdpGCxkp4ew7WERSYgRnTh0jKiqcDz/+lLmzJyGlZMOGDf4astK3bfEu8jqItqHAICnlKgAp5Xkp5Q+A54UQ06H3NcC9wWUxX86BDQeuWyrrJq6byRVBb5eujReuUTUh3PtTlepSFLQAdfv27Tc8BkJaSq9mZr0fjDk3cZ8c7wfvgSvORaDqzCp3iAULFqDX61n94Ta++chc/u3nvyM6Lpmq6gPMn53Drj3HsQWYkEgc7R42HajlkXjz5esLypyMf+E8v/+pY2iTxAAAIABJREFUlZljInljczkpMRba2920tTnJvXcY2/IK+frCOaz+cBuv/fH/Eh8fz+rVq/n2t7/tx5ErfZRAq9v66vXWHkgpnxVC/LMQYisggV/28h5bgbF8cQY0h+5TAnpz3TiunS9bLIRYep3g99ANqiUoijIA9TbNYDbwzFe436Kr/n5nJi8pA054eDhTpkxh3Yb9/Mf//THJyXFcLK9Er9dhsZhoamln2j1p7DtVeTnV4JH/MwZOFyOl5GfvV9HpgU37a1g8M4E/fFTKrLGRbD5YhdmkRwhBa6uTjIwkmptb2fnZQR588EFee+017HY7AQEB/n4LlL5nmZTyhgGqlPIlIUQk0NvdGQGWoS3evTLZbqn3AC6nCRzEu31tT6+7wpdq0l6hXgiR3hXQeu+1FHiq90NRFKU/622awTm037bDpJS6r3JwVU6VovjbvHnzOHr0KOXlVXxtwVTydhzk3ruzOHnmImazkUCrkbpGB+OzQlm3t5o2RycMSWdtYSufnLYTEagn70g9U7PD0esEFpMOu6ODUUNiOHGqDJPJQGVVLVarhQ8/+pSHHrgLh8OhNlBQbkZjd4FsFynlMrSZ3F7xzn4uE0Is99Z5fQYtaL16tjT8Jq8DLZC9XsrC+2jf6j0jhFiOlpa26BolvBRFGeB6G8zWo62U/coVCbwfeH2idMz1CCFyvIW8Z3b99PczKTdv3rx5AGzZuof7F0zF4XAyeOhQTp66yITxQzhVXEtggAmdXuBo97D1oFY79v/7pIXBMSb+88EoaptcVNa3M35oCOcvObCadQQGmDl/oZqJ44eweVMes2bew/qNO5kyeQxhYWF8/PHH/hy20jf1dPV/l5sKAL3bzS7z1nl9UUq59arXG6WUYVfv3NXddVe0WyqlvNaMbdfrXdcv87ZVubKKonxJr4JZKeWqrmLdviClHOurvm63rgUKUsoV3j3GVwBLr7fNo3LnGzp0KEajkTPn7Nxz9yjvWS0TJj42jPMXGxmSFkGrJxCAkkoHAA0tHYxJtpCdZAHgTFkb9wwL48i5ZoYkBeJ0aTt9xcaGce58FSOGZ1BSUgHA6NGjOXXq1G0cpdIf3MQmCH+4JQ+iKIpyB7il1Qz6uaVoxbuv9AqqQkOfpdfrSU5OpqSkhOBgG7GxkTQ1tQFgNOpxuz2EhViprmtFrxNUN7YDYDXrcbg8pEcaAThf6eCuzGCcLg8RwSbqGrSg16DX4fF4sFosSCmprKwjNTWVkpISv4xXGVCu/qxSFEXpN25ZndkB4GG+/D+IfGCLH55F8ZErg8vEhBiampoRQuDxaDO0VouRS9WtRIWaqG50aedMehwdHYQH6gmy6CiusDNzTDIARoOO8qpGzCY9LpdWrqtr1WN5eRVpaWlUVFTQ3t6O2WxGUXpCCPFkL5qPuWUPoiiKcgfoUTArhEgDZkgp/3iLn6frfsHAkp4ucLjdvKtqv7QKV0rZ6N37O13ldvVNqamprFu3DoCEhGiKiy8SHxdGm12bhdXrBLUNdkalB1HT4A1mzTocdokQgrQIIyWVdtLjtOoEOgF2RwcZqeG0tGoztO3t2nXlFdWkpqYCUFpaSmZm5u0cqtK3rUD7vai7hV1dbVTlGEVR+q0epRl4t0Y8L4R4WQgRdCsfSAgxA6124h0ZyHqFw+VFbNfyhbzZvLw8vEHuDQ/F/1JTU6msrMThcJIQH83F8ipSkqKorW9Br9fR6fYAEBxo+FKaAUBapJHzl+wEWPREhpjodGsxRFRYIJVVjZhMBpqatB3Byss/D2bPn+/TayGV268ReBZt1vVaxyzgabTdwWYCGf55TEVRlFuvxzmzUsptwKvAYSHE9339IN79xTcDD0spv+Hr/n3spvYrV+58l2dKK4JISIihoaGZxKRUyspqiY8Lx9mupQpYzfrP0wzMOhwdWtCaFmnifKUDKSUpMVZaHW4AbIEmSkprSE2OprKyFpPJyEVvmgGg8maV3qqXUr4kpTx8nWObd3HqbLTgVs3MKorSb/W2msEhtJ1dxgkhioQQ3/emBNw0IUS2EOJdtMLbr3i3YexXcnNzkVJ2eyj+1xXMlpSUkJgQA0BYWDBl5bUkxkfQ3KrNxpoMOqrqvTOzJj2Ojs9nZu1ON9UNLlJirNQ2awGv0aCnobGVpMRIis+dIyEhmvLyKuLj4zEYDCqYVXprVk8bSilfQsvxVxRF6Zd6Xc3AW1fwaWCO92gUQhzwpiA86Q1OU68Ocr0zr6lCiIeEED8TQrwjhHCjzfZukVJmdu0t3ld4c2eVfuTKYDYhIRqAgAALnZ1uoiKDqalru9y2zemmzdGJxazH4fLOzEZ0VTSwkxxj5WKNk2CbGbc3PSEizEZxSRUJ8TGUV1RfrqCg0gyU3vCmfvWGymNSFKXfuulqBt4FTo8ACCG+jjZT8Cyf54vKa+SBdp3YilbEe6yU8vDNPoMfdS3u+sIuZlcEt2rxVx8VFxeH0WikpKSE3HsnAGDQ6wGwBVqoqG7BbDJczp2taXJ50wy6ZmZNAJy/pAWzdqeb4ZkRtDm0WrNWi4nGpjaio8M5cvQ0gCrPpdwO4d03URRF6Zt8UprLO6N6eVZVCBGC9uHZFdjWo22/2C+mn7xVC4r5cu5sONo4VTDbR11ZazYh4UEA3B4tUDUa9bg63CTHh+D0LviqbnB50wy6cma1mdniS3aGpWhrJSMDOqlutAPg8aaTBFgtlJdXI6UkLS3tcgUFRfE177dkqjyXoij91i2pM+vd7raJPr5dbTe2ouUPX7lNZA6932ZSucOkpqZy/vx5goICCQoKxG53AlxOFQgLsdJs14LTqoZ2rGY9zg6JxyMJMOmICdZTXGFn3nhvmoJFT9nZJsJDrdi9Jb50Oh1OZzv11buuqKDgwGq1+mHESl8jhHi5h03D0fJlF93Cx1EURfErtWnCzVsGvIdW77HLUu+h9GHZ2dn89re/pbm5lZEjMtm3v5BBabGUXawDIMBq5OgpB3qdYO+JBgbFa9vbnrjUzogEC+NTrWzaXcmvfjgUi0lHR6eH1jYX40cncOxkKRaLiebmVgA+23WIUaO0rXP37NnD9OnT/TNopa/pyedMI9q3Yk9LKT+4xc+jKIriN2o725vkrTG7TAixXAjxsBDiGWC5SjHo+xYuXIjL5WLdpvM8+MB0DhecZOrkEew5cJqhgxNoa3PRZu9gWIqNj3dXM2tsJACbTmiLw56YGEpFUyc7CxuYOz6K4yWt6PWCYJuF00UVTBg3mIMHjxAcbGP1mm1MnxKL2Wxm7dq1/hy20rc0opUx1N3gCJdSZkgpX/X3wyqKotxKKpj9CqSUh6SUy6SU70spX5RSqhSDfmDChAnExsayatUqFj4wA4CAoGhcrk4GZyZwrKiaQKsRW4CeY+db6OiUDE2xseWkFszeN9JGTLCeP71ziq9PieNSXTtjMoM5W6LN7EaEB1FWXsekiXfx8bo8LBYT06ZNU8Gs0hvFarZVURRFo4JZRbmKTqdj4cKFbNiwgfj4KEaOyORwwUmio0Kw29vxeCRDM6I4V6lVKPhwVyWzxkayo8iOw+XBqBd8555Q1ha2MnZICCajjuBAIyXljWQNiqSktBohBDZbAPX1TezYeZAF83IoKiri9OnTfh690hdIKcf6+xkURVHuFCqYVZRreOihh7Db7WzavJuFD85g1+4CpueOZN/BM8TFhCGEoLqujUHxAXy0q4o546Jwdkh2ntUWhn1vYghuD2zcX8PssZGcKm1FCIiNtHGwoJhxORmcPHEKq9XC6jXb+Nr90wBYs2aNP4et9FNCiJ/5+xkURVFuFRXMKso15ObmEh4ezpqPD7HwgRlIKQmLSKC52cGY7HROnK1GrxfEhJvZWVjPiLQgrEbBx0e1hV1DYs0MizOxdlsJX58Sx8UaJ6MHBVNR3YKUkuTECApPXGDSpLtY/eE2EhKiGTd2BKtW9al9Q5S+Qy1MVRSl31LVDBTlGoxGI3PnzmXDhg38ecVPSU1N4FxxGSaTAb1BT5u9g5FDYqiqb8Hjge0FdcwdbmNNQQu/eSQGnU5w/6gg/mtLHa+ODsegF4QFGSk4XEdCbBC1dVrQGxURRnl5Nfn5x3lo4Qye+5ffUFpaSnJysp/fAcWfvBvRzPRhl+ndN1EURembVDCrKNcxf/58Vq5cycGDJ1j4wHT+9+W3mTJxGIXHSwkMtGALNFF42k50qImPdlWxcH46q//zCPkXnIxPs3L/KBvLN9Wxd9tpZo6J5ERJCwCDkiLYs/8UQ7MSKSk+h8FgYPWH23jiuw/y3L/8hjVr1vDjH//Yz6NX/Cwd386mSh/2pSiKckdRaQaKch1z585Fp9OxbsMOHnpwJi5XB0kp6RSXVDJx/BCKLzQAMCghkI37a5iRE4lBBx8UaEHr3WlWooL0rD3aykNTYimtdpKREEBji4N2VycjspLZc+AMEyeM5oM128jMTGHE8Aw++EAtUldoBLZ0U3qrxwdXbLutKIrS3/g0mBVCpPqyP0Xxp4iICO655x7Wb8xnwoTRREWFU1evxQRhoTaq6lpJTwqj1dFBm9PN4aJmpmcF8sGhZqSU6HWC+0baWH+8lfmRDnQ6iIuwcOxMNaHBFuyOdqSUJMYGcOZMCSdPFvPQwpns3LmT6upqP49e8bNi4LAP++vPuzEqijLA+Xpm9qCP+1MUv7rvvvvIz8+npqaBBfOnsGPnQUaNSKH0Yg06nY7Y6CCOl7QRaNHz4a4qFmYHcbamg+MV2ra1XxsVRKPdw+kqF5NGhHOpzonHIxmWEcXuvSdITY6msloLkFd/uI2HHpyJx+Pho48+8uewFT+TUm6TUj7rw/5UKS9FUfotXwezYUKI7/u4T0Xxm9mzZwOw87ODzJl9L42NLYwZcxcHDp1l/JgMWlu1urPD04LIO1LHfQ8OA+DTM1qJrllDAzEbBGsLW1mQYeBsuZ24CDNSQkOTg/FjMti19xRjcoazafMuRo0aTEpKPBs3bvTbmBVFURSlL7kVObMvCSHeEUKoTeaVPm/o0KEAnCm6QGaGVmEgOMSG2+0hLjaM6npt169Ai57zl+zEhpkxGQQXGzq182YdkzMC2HyijbEpFgAy4gO5WNkMgNlsor29g8y0MA4dPonH42HCPaM5cODA7R6qcocRQkwXQjwphHhBCPGy93P1ZVUzVlEU5Yt8Xc2gWEqZASCEmCGE+ANwFlghpWz28b0U5ZYLDAwkISGBM2ebWPpUHAB6nR4Aq9lEZU0rIUFmpJR0dEou1jpJDDVQ3tBxuY85wwP551XVRNq062wBesou1RMfHUR9VQUAAQEm2tocnDp1nrFjhvP2Oxuorq4mOjr6No9YuYNsRatC8D7wCymlL3NoFUW50xUUwNSp3bdbvBiWLLnlj3Mn8+nMbFcg6/3zNinl08CrwFLv7IKarVX6nMGDB1NUVERERChWq4X2di0f1uPxAJAQE0yb0w3AuXI7SWFGyq4MZocFArCvxElKuBFXh3ZdWlIYx4uqCQkJwOnU2uftyGfc2OEA5Ofn354BKneyFVLKb6hAVlEGmMWLITu7+3YFBbBy5a1/njvcLa8zK6VsAl4CNVur9E2ZmZmsWrUKIQTJybFUVdcRGxNKS5sTgLAQK+Xl2iYIReVtJIYZ2F3suHz98HgzCaEGNh1vJTvJzKkaJzodBFiMlFxsZNI9QzlztoKkxEg+zdvPtx+7HyEE+fn5zJ8/3y9jVu4Yy/39AIqi+MGSJT2bbe3JzO0AcFvrzEoptwGvALOBBpVbq/QFgwcPpq6ujvr6JlKS4yktrWRIZgJVNVoVAovZwMUaBzarnuMlLSSEGSlv7MTj0erUCyGYPSyQLSfbGBFvpqi8jawkG81t2gxvdFQwR49fYMrEYWzPy8dmC2Do0HSVN6sgpSy5+pwQIlgIkXq947Y/pKIoip/dtmDWu5ChCMhH26ZxFfALtAoI7wohfiaECL5dz6MoPTV48GAAiooukJwUx4XSCoZkxFN8vorAABMAnW4YnBhI4bkWEkMNuDolta3uy33MHW6jyeEh0CTweCA9PoCzxVXodAKPsxmXq5OM9Fhqaxs4fvwsY3OGk5+fj5Rq46YBrPg65wcBi4BnvW3OoZVFXIpvt8BVFEXpE3y9acKTV/091bv61g2sAATaB3CYlPIRKeVhKeUqKeUjwDbgxav7UBR/y8zMBLSKBsnJsVRV1ZGeFkt9QyspSdHY7S5A2xCh8HwLCaFa9s7Fxs/zZiekWwHwpssSEmigrrmDrPRIquu0FAWTyQjAp9v3M27scCorKyktLb0tY1TuSA3XOun93HzJuyZhNtrn6iNSyueklH+8rU+oKIpyB/D1zOxyIUSKEOIhIcQBtBmDpWizsLOklBneD+Gmqy/0fkA/DZwXQjzk4+dSlJuWnp6OTqfjzDk7KcnxAISFaIu6IsKDqG3U8mODAgw0tHRgMggAyuo7L/eREGog2KKjqrmTYIsOV6c24xoXHUTh6WpCQwK5UFpNanI0n+YdYNrU8QBs3rz5to1T6XuklFu9P7f5+1kURVH8xeebJqB97fW+989XzsL26MPW226cj59LUW6ayWQiLS2NoqIikpO18lxmszaLarWaKLvUhNGoR2gxLI12bfr1yplZIQTD4sycrHQxOtHMxRoHVrMOvauZlrZ2stLDyD98jmlTRpC3I5+srDSSkmLZsGHD7R2s0hcd6q6BEOKd2/EgiqIo/nArcmYP080s7PV40xKCgbpb8FyKctMyMzM5c+YMyUmxAHSIcPR6HVKCs72TpNhg7A4tR7asoQOjnssbJ3QZGmfixKV2RidZKCxuISczmKoGbRFYWLCVwhOlTLoni/r6Jo4dO8u8OZPYunUrLpfr9g5W6Wt6klidczMdCyFyhBBLhBAzu3764johRKgQ4hkhRLr3z+lCiOXXaHdT91cUZWDxdTDbKKUc+xW+8ipGW8gQ4cNnUpSvbPDgwZw+fZqYmAh0Oh3nSypITY7G7tCC0ajwAM5X2kmMsnCsvJ2EUCOl9R1f6GN4vJmqZjfJYUZaHW4GJQRysrSNkCAzzvZOOjo6CQ2xAbBl2x7mzplES0sLO3fuvO3jVe4I6f7sSwiRDiyXUq6QUm6VUq5Aqxl+w756eF04Wtmxc2i5wQeBA11pE1/l/oqiDDy+Dmbf/YrXP4tWf/Y5XzyMovjKtGnTsNvt7N13lPHjRrBl6x7Gj8mk6FwFQggCAkwUnm9hZFoQ+aVOhsebOVre/oU+poe6EQIuNXViNgia2zpxdXgYkRLAwWMVmIx68nYdJ2d0Ou++t4k5sydiswXw9ttv+2nUip+FCSHcQoi6Gx1ATg/a3IylaKUUr/QK3de+7el1s9DS0QZJKcOklO/76P6Kogwwvt4B7OmveP2LUsqXfPU8iuIrs2fPxmKxsG79Du6bP4UD+ccYk51OdU0zwzKiaGh0ICWE2AycqXIxLM7EyUvt2F2ey32khuqZm27ib/ubWDQmiC0HqkmKsuBwuWlubeeuYXG8u3oX33hoIgfyj3HpUi0LH5jB+++/f3nXMWXAEWgB342OnrS5GQ/z5XzcfO95n1wnpWyUUl6vBNnN3l9RlAHmdtaZ7Sr0rWrJKn1OQEAAEydOZPuOY9w3bwoAHZ1ajmxCTBDHiqoJtOgvb2trM+vwSDh68YtB6FM5AdS0uBkUZaKtXTI8LYiCs81Eh5lwezxUVjWSlBgFwNvvbmDxt+bT2NioFoINXDl0H6h2d4zt7U2FEKFoqQn1V56XUjZ6X7/mV/03e92t6kdRlIHB13VmX7jBy4PQvlb6hhDiF920VZQ7ztSpUykoKCA5OY74+Gjyj1YSHxdOu7TQ2ekhMz2K4gqtTFdbuzYjm39B+3vjWe2b3txkI4PD9aw92srQWCPVl5rxeGBoso0jJysJDDDySV4hkyYM5a231jBzxj1ERYWzUu29PRAVSykLpJRNX/E4BJzv5b3D4fPg8RquF0z25rp0IcTD3mOJEOLKGdebvb+iKAOQr2dmr7vS1FtH9lXv8SygAlqlT5k6dSpSSj7bdYj5cyezZetecu8dxskzFzGbDFgtRk5caCEtzsqZKhfRQXoOlTq/0IcQgqU5ARwsdZI7OJBDZe2MTA+isr6djk4PwzOiWfXhLh5+YALHT5Zx4sQ5vrFoDh9//BHNzc1+GrniJ77MDV3Wy/ahN3mfnl5XDyClfN97rECb6OgKaG/q/nl5eQghuj0URelffB3M9vhTojcluxTlTjB+/HgsFgvb8w5w3/zJNDe3Eh8bTnVNE9nDYqmubUVKSIqykl/qZGyKhYNXBbMAi4aZCTYLKho7EQISrB5Ol7WRGmPF7uygoclBRLgNvV7HW+9s4NFv3YfT2c7q1av9MGrFX6SUr/qwr1W+6ssXvLmyK646rRZ39cSKFTB16o2PggL/PZ+i+IGvg9kebyTvzZ1VNQOVPsNsNl/Om505YwIGg4GWVi2NICbCxrnSBowGgV4vuNjQyeAYM8crvrgIDMBm0vHYCAvrj7UyId3C6UoXOgEJURaOF1UTGmxhw9rtzJo2mrfe/ojx40eSnp7Im3+7emG3otxa3tzV23VdMVrqweVre9tPbm4uUspujz5t5crug9XsbFi8+PY8j6LcAQw3c5EQYgZa/uvVnwrpQoj/pPsZ2nS0Fam9/epLUfxq6tSp/PznP8fl6mD8uBEcOVZCYkIEbZ3ajmCpsQFUezdCCDAJPBIKypwMA6SUl7/i/F62ld8fdBAfYmT3OScTB1k5V2FHShiSHsmHW0/x6+Xf56m/f5m9e4+y+Jvz+c9f/JFLly4RFxfnr+ErA0dXhYFw4HLe6hXB5fUqEPToOiHEM1LKF6+6tmuxV/pXuP/AkJ0N27f7+ykU5Y5xUzOz3k0RXgG2oq2WXQY8w+db2C7r5hgDPC2l/OVXfH5Fua268mZ3fnaQ3CljyT9czKS7szh6/AJBgWYCg4M4XdaKTget3kVgB0udlDW5SftdLatPaWkH6WEGxsUbKLxgx2yAAKOgsr6dzIQAGpudtNldGOyVWCwmVv5tJY9+6z48Hg9vv/nf/hy+MkB4F14V8+Xc1XC0zXGuGUz25LquzRCuUZEg3Puz+GbvryjKwHTTaQZSyvNSym3e2rIZQBPaLi43LBMjpdR5t7r1WT6YotwuV+bNTs0dh9vtJi42nJraZkZlxdDQ6KDTDakxAZy61E5ssJ49hU0UVHXQ3C75+43NHK/Rtrn9xjALp+vcTB0cyKFSJwEmCA82cbq4lqjwQD7ceoqvzRvLu6t3MWhQEmPHDOeNN9f6+R1QBpCtfLmsV473/E1f5w1El14jIJ0JHLqigsHN3l9RlAHGJzmz3g+lJd4/37BMjC/upyj+0pU3+2leIRMnZKPX63E4XQCEBVu4UNGEEBBsM5Bf2k5OsoVDlR2cb9Tqz5oNgu9+2ITbI3lwiAWjDgyuDurtHsYkWzld1grAoJQw1m8/w9fmjaemtpktW/fw7Ufv53DBSQoLC/02fmVAWQYsuurcUq5IDxNChAohzgkhlvTmOqD+yplZb/rAUuCpXvajKIri0wVgW4BtPuxPUe5IM2fO5MiRI7S0tHHP3aPYf7CI1ORoGhzaP6fUWCt2h5v6NjcpEUaK6t2Xr21wSiICBBIIt+qYl2Fm98UO4oL12F2SxtZOhqXaKC2twdXhpvzsCaKjQvjDy6+x+FvzsVot/NdL/+qnkSsDiXeGdJkQYrm3FuwzwPJrzKiG9/Y679a1OUKIZ4QQy9GqGCzy1sTt7f0VRRngbmoB2LV4Z12f7c01QojpUspPfPUMinI7zJ8/n+eff56Nmz5j3txJ/Ov/81u+u3ga763ZTbDNTHBoCMdOVwLQ6dZWSUYGCHJiDcQH6VlxXzBuD7x+xM53Rlr46Ew78xP1rD/rJDHMgHS6qKhzMTzVxitvHeDJRaN54eWdNFUeY+lTD/Pb/32Ln//bRtIy5/r3jVD6PW9wefWWsle+3sg1tsvt7jpvm/e/6v0VRVHgNm5nex2q1pDS54waNYqEhATWbdjJvDmTAAgPDcRub2fkkGgqa1pweyAxysL5Wq3sVmmTh62PhfPXB0KwGASbi9t5ZlsrR6o6GRap53yjG4OAlHAjJytdRATqMJt0FJc1kJEcjl6v43//uIGf/SAXvV7H8pf+DJ3H/PxOKIqiKIr/3Wxprp+hJep/ctX5F+jdzi1qS0KlzxFCMH/+fN5++23e/OsLxMZGUnqxFqPRQEBwOFW1ZVhNOsKCjOwubmVEvJn9FR1f6KNrEdj/7G9j2b02nv+0ldxkI4fKnBh0kBZp4mBRM3ERZt786CiPzB/On97Yxr8//02+9/hC/vz6av71+SUkJgKGEX54FxRFURTlztDrmVlvjdkXgfeu8fIitAT9nh6K0ifdd999tLS0sHvPEebOvpdPdp7g7rGZVFY1AJCeEkldswu7S5IaaeRQlRu35/OyzCdq3QQaoMkFZZV2gs1aHm2LSzIq2sDpKhdSQlayjW27i5mXm0lzs52V7+1k2Y+m43Z7+OWv/qJ1pmZoFUVRlAHsZtIM8oH3uXZ+bFfJFV1PDq4ohq0ofcmMGTMwGAxs3lbEvLmTaGhoZvCgOI6dLCMlIRQhoKK2HZ13+5Bmp4fTdZ8vBDtZ28nEGMHkWMGbZz3MS4DdZR1khutodEpanB5Gxps4ca4Ri0mwY38Jo4fG8vs/bSQlOYpvf3MKK/74PnV16p+QoiiKMrD1Opj1lth65Dp1YovRqhr01Pne3l9R7gQ2m42xY8eyc+dOZs2cgF6vp5NApJRkZaVSXKbN0KbEWimt01IMulIN2lyS4gY3mSE6fjhMT3MHmPSCTgnxJklxo5uUYB1tdjdVzW7uHRHO39Yc5jsLszlSWMLeA2f46d99DYfDyZ9fX609kJqdVRRFUQYony4WpvsFAAAgAElEQVQAk1I+LaUs6UX7qwtiK0qfMWXKFPbv34/FYmbCPaM5WliE1WpCr9dhd3QQFR6AxaTnyMV2Im16DniD2dN1nUggM0QwIlxHbpzgwxIPd0fBiUZJgF4r21Xc6CY6SI+90Y6j3YO9spigQDMv/+/bjByeQu6k4fz+D+/gdntnfFVAqyiKogxAt6yagRAi+Drnp1/vNUXpSyZPnkxHRwf7D7Uxb+4kCo6cYvyYTIpLqtDpdMRFBVFe40AC6ZFG8mu07W2P12qLvwaHaDkIP/DOzkZadNQ4ISdScKymE6se4qyCPcUO7hkWyqvrynj0gVG8u/44dfUt/OipeZSUlLN+w05/vQWKoiiK4nc+D2aFENlCiHeBBiHEmWs0OQg8L4R4yNf3VpTb6d5770UIwY4dOy6X6IqOSeDUmXLuGpVGm8NFs92NxaRDrxMUVbuotXs44Q1UEwO1foaH6RgTDtsrPESYtEVhHR5IDxKcqe9EJyDO5Ka0ysHQiDbaXZ38+ZU3eeC+8STEh/O737/1+UOp2VlFURRlgPFpMCuESENbAPYIUAIUXN3Gm3P7rNZcZPvy/opyO4WFhTFq1Ch27tzJ6DFfJyoqnLY2BwApSZGX82aTY6yUN36eN3uippNBwQKdEJyodHOi0s1DSTra3JASCIUNkpFhUOWUODphaKSez87aSQjVs25PNZPHpfDKynz0eh1Pf28Om7fs5tQptSmSoiiKMjD5emZ2iZTyBwBSykHeoPaapJSrgG/4+P6KcltNmzaNHTt20NzczMwZd7N3/1EiIkJpbLIjJSTGBdPu8lBa34nVKNh0rp1Wl7xc5aBLRpBgcBAUt4JRgF4nqHVCXABUtnqoaXUzMsHC5vxaJmToOVdaz69f+iNPfXcWgYEWvvv4z3A4nFpnncfUDK2iKIoyYPg6mBXdN/lK7X3Cu8/3zOu8liOEWCKEmNn182baKAPDY489Rnt7O++88w7fffwn1Nc3MX7cSHbuOcGgtFgMeh0XqhwY9ILUSCNrilzMzTBztF5yoUUyLFZ/ua9H03Q0dsDoCEFBnWRoqJZyUOeQpIbo2FFkJyvWxGsfX2DOuEiee2kzl07l89eXHmT/wSKe/P5PkW1XZPZ0BbUquFUURVH6MV8Hs7L7Jl8Q4uP7d8sbeF6rrBhCiHRguZRyhZRyq5RyBbDUe77HbZSBIycnhxEjRvD6668zc+ZMEhNjaG5uoaPDzYihSZRcbMRg0JEaa6W82UOL00OoWaAT8OEFrQpBV0CbFSyYl6SjsF4SZYZ2N7jckBQIpc0e8EiCzDqaHG48rXbCgww8+qO/MmdyBv/+j9NZ+d5O/vzGNrAXacfVVFCrKIqi9EO+DmbDetpQCBECRPj4/je6X7oQ4hW0LXTrr9NsKfDKVedeAZb3so0yQAgheOKJJ9i7dy9nzpzh8cefYs/eo4wckUnR+UqMRgNpiWFUNnbS3NZJVKiJzRUepqeaWHsR3FL7/W9YrJ5hsXr+8f9v777jo6ryxo9/TiYhBQKTgCBVmQC6oggBRbGEEhA7YiKCqwJKgruWdUViWfdRH1cIoiIusgnq64HFQnFRV10VEHzk8SctBKSokES6lJAECKSR8/vj3gnDZGoyyaR836/XfUHunFvmzsy533PuKZdZUAo6tVTknoArzlPsLYaWodAuKoT1u0sYGRfO8h2nSL68Jdt3n2TKswt45pYIhl7dnUenzuPnnfuNk/MU1AohhBBNRKCD2Y1KqUU+pl0MfB3g47ultc7VWqeaNanuJAFZTus2mOv9SSOakXvuuQeLxcL8+fOZMGEClZWVXHhhJ7bv2Mv1gy7ht/xTnCwuIyY6jJjoML75+RS3D4zh4MlKdltanrOvjlGK8b1C2HxM068tbDyq6RgFYSFG7Wyv2BBW5pVydecw3l5TSMp1Vv7x6R4++3+Hmf+4jYjwUO4ZP43S/Q59L10FtRLQCiGEaCICPWnCPCBWKZWvlHpAKXWh4+tKqQuVUlOUUvlm+rcDefzaUEpZcVFrq7UuNF+3+ZLG1b6//fZblFJeF9E4dejQgZtuuokFCxbQrVs3hgwZwpYfdxIREU54i1BOnDjNebFRtI6OImd/MVrDgcJyQkNg1a9ldL7Qes7+JlxkoX0knKyASAuEh8CxUugUBQdPGGPVntGaijOaE8dKiO8WwQPTNqEUvP3EJWzceoDnZn2DPuIUsEpAK4QQogmqi0kTkoBvMNql5iilzpjB7RkgB+Nx/ErA7UgHQRILZwNTF2w+phHN0IQJEzh48CBff/01EydOZPfuAyRcP4Bvv99Bty7tiG4dze4DRZyphJ5doli0pYSrbJGs2l0GcE5AGxWqmNLHws4iGNghhF9PGhMsHD4Np8qhV2vFugMVDOoSxqLtJUzp34LT5ZVM+OsP3N6umJRbu/FK5hpWfp+DPrL13KBWAlohhBBNTMCDWXMc2WRgBPAvIA+jLW0RZhCrtb5La10U6GPXktV7Ep/SVJOQkIDW2usiGq+bb76ZDh068NZbb3HnnXfSpk00AMXFp7m8b29yfz2EUnD+ea2ooAW5B07Rs30LNh+q4OipSorLNJ/mt+CHQ5WUntGM7BLCLd1CWLGvkivaKXKPaywKOraETfma3jGwbn85kRb4n80lPH9dS5bvKOazH0/y2vBILu7WkglPLOJ0iTG+rQS0Qgghmqo6m87W7OmfrLXuobUO0VrHaq1HmOPLCtGktGjRgtTUVL744gv279/P2LH3sPrb9fTu3YOcnH2EhIRwQdf2lJefIW9fIS0jLByubAHAhtIW/CenlGdXnWTSdxUM+qScSf9bQY/W0LUV5J7QRFogKhT2FUOrUCgqMUY7iGut+Dq3jDZlp4mLsfDU4oOEhyr+kdyOfUdKeHP2kqpzrNbswJEEtEIIIRqpOgtm64rZdtXXxe+aVF+2qcl+RdM3efJkLBYLc+bM4YEHHqC0tIxLL+nB9h05DLr6cgoKT5JfeBpLiCLuwnas2pSPtVUoX+8oZr9qgQLeGBTKmLgQjpXBrK2VXN0+hOPlENsCCsqgdRiEKth3Gnq1hq3HNNYwmL21ktResOPoGeb9ez/X94zixt4tmf7+Lgq2r6k6x6qAVkY5EEII0USEBvsE/GEf49WPTdYDM3xMa58PNBaoahPrELjmcrbjl6c0opnq2LEjycnJvPvuu7z44ov07duXrdv30rJlJBHh4RQdP0V4eBjtz2vDwcMnOFVayWW21qzYcZKEnlF0ig7h3kGxDP21EK01T68/w6LcSm7uBJ8dMALaE+VQriEmDPJOgkUZ67cVaPYVVHJJjGLa/xVzx0VHefmO9sT/LY8ZH+YwbVIYdB147gmf2glRPYNzsYQQQogAqbNgVinVGkgBrgDiMQK9jUCm1vrXmuxTa50LJAfqHJ32XaiUyqV6u9hYoNA8Nr6kEc3XI488wgcffMCCBQuYPHkykydP5pabr2fFyrW0axdDaKiFI0eLKCkpp2VkGEVloewrqGDbwVL2n6hkT9EZLBjj1yZ3gm/2w/bj0LuNYnuR0a66dSicqIAKDW1bQG4xtA2H+XmaBy+28OqPZ3jgsyL+PlIz7orWzPwwhxOnKvjr071p37YV+shW1HmXGifsHNBWbIXQS+v/wgkhhBA1VCfNDJRSU4ACjFrRZCAOGA48hTHCwct1cdwAWAEMcFoXb673J41opq666iquuuoqXnvtNcaNG8f555/P4SMllJWVc1nvHvz221HKyiqwtmlJRGQEP+UcpUNMC3YeKadjm1AGvJPPzF9COFCs2VOuOH0Grj1P8effKSItRnvZ4xWgNbQPh/wysIYZQ3eFKHj9xzNcf77iq5wyrp9/jDv6RTPplm5kfLqHnkPfYNrc/63qFFbFVYcwaXIghBCikQh4MKuUmg5MNpc4jJEM7Et/YCYwWSn1VqCP7YdYXI9MkEb1mt9Uc70/aUQzpZTiySefJDc3ly+//JKnn36adevWkZiYyPc/bObii7rTqlVLCouKyT92grhusRwqKEMphdUawfir2/DB9lJu+aqcaZvPMKCd4on4UFqFKu63KU5UQEsLRIfB4VLo0QoKyyE2HI6Xwe9iFP/7m6bf+aGER1hIythPaXkl3/99EEOv7s6zr67gdyNm894771NZWXn2xD1NfyuBrRBCiAYsoMGsUqofEG+OYDBPa51nDtVlXzZprdO01rFAD6XU0EAe38u5WZVS6UqpJRiBbLpSKkMpVTVzlzl+bJqZLkkpNRVId2w+4Esa0bzdfvvt9OjRgxkzZjBp0iQ6depEfn4+ANaY1hw/fpJWraLo3DGWnD3H6HJ+ayoJYee+YtbsrWDFn7rxwLVWurWxMG9ULF27x3DJ+RYm9wnl8liFUkYAe0U7xa6T0KM15JdC55ZG29mrOoex+XAFpRWaCTd2YcFX+xn1/BYm3T2AbxZOoF1MFL//81ISb3uewsLisyfuKqC1cwxsJbgVQgjRgAS6ZjZFaz3Cl4Rmujpp/+rmeIVmIJ2stVZa6zhzetulTumyzHRLtdYztNbVmg/4kkY0XxaLhSlTprBhwwZWr17Ns88+y8aNG5k48QF++GEzA/r3prS0jP0Hj3Fxz84cOHwCS0gIXTtZOVRQxh2ZBxh7RRt2/K0Xlw9oDxiTKnTtHsMbN1s5dQbOj4TthZpRvcLZdRwutIawpxj6dgjlh/3lXHx+OBVnNEtWH2TmQ7+jXUwUt6W8x77fjrNuWSoZL93Gmh9+YvAtz/HboYKzJ+9q6ltXnINbCXCFEEIESaCDWX/nZG1oEycIERD3338/F198MRMnTuTWW2+la9euZGVlMWzYMLZtz8FiCaFbt478tHM/nc6PBaXYvb+Q+Mu60rZ1CxLf2MP/5IUBYO3Rtmrp0yGMB/pGcrgEOrSy8OnOUgZfEMavhZVc1KEF2Ycq6Nc1nJwjpaiwUC7oEMkTc3fw+9sv5/orLuD+J//F/H9lM+nuAfw7cxy7cg5wzYhnyMn97dw3YA9qfQls7SSoFUIIEQSBDmZ3+Zlepr0STVJERASLFi2ioKCAlJQUnnnmGdauXcuIESMID4+g/Xmx7NlzkF69LuTwUaNM16G9lZXf5zJ8yKUkDOzOxPQtbCAWLrIZC0Zgm35vV9q2shDTOoybL2vF6t3l9O0azs+HyrikYws27yulY7soikvOUFxyhuHXxJE242su7dWBxEE2HnjqY+Z9uIER1/VgxYL7KSw8zjXDp5K9Jc/1m/E3sJWgVgghRD0KdDAbF+D9CdFo9enTh9dff50vv/ySoqIiRowYwdNPP83EiRPZs/c3bN27kJOzl7ZtYwixhHDwtwIuuagLc/65ltuGXYy1dQTTlxWcHR/WDGqt/Xoy54nL2by/lLV7y7h7aEey95bS/fxIfvqtDFunKA4XlBIeGsLR42fI21fA+KR+/P2fa7nr5t7cNLgnqX/5lMwPNzCwb1e++/BBwkJDuCXpBfJ3rvP8pvytrRVCCCHqWKDHmc1SSj2otX7bW0Kl1DQgP8DHF6JBmTx5MitXruQvf/kLX3/9NUVFRcyZM4dhw4axevVqunXryOHDxwhRcF67GLb/vI9+fbrz55e/Yszoa3h/yXf8lHOEi+POnfDg1uQKPo8K5el5P/HhNwe5ureVrF+K6NQugn1HS2hrbUXB8dN07tCavQeLWL9lP4P6deWx//4P/7foQQAefv4z4nt3ZMBlnVn2j3FcnZTJ5L/8m0VvRqKUOjsWrSuOAa27iRdkzFohhBD1IKA1s1rrecBdSqmXlVIXukqjlOqrlJoLJGqtZwby+EI0NEop5s2bR+fOnZk4cSILFy7EZrOxbt06unbtSn7+cVq1iqZFeBhHjhbQrp2VvD1Hsdm68u//bCAiPIwZC4xJDuzLus376HfbW9wwdR0dOnXgoXuuYOMvJ4iKDOfYiTPEtI7idEk5LcIs7NqdT/9LO7MzL59TpeVERYTx+yc+IuOl2+l4XjT3PL6Uk8Wl9L+0Ey/+aShLv9zGgmXZgDH1rX3xSGprhRBCBFFdTJqQDIzAmBxhp1JqvVLqK/PffIxZwAYAd9XBsYVocGJiYvjggw84cOAAd955JwsXLsRqtXLy5EnCw8PRWlNaeobzzjuPo0cLOX26lDZtWnHi5Gku6d2DhYu+Y29+NKWWC3j2xfcYlPw2J0s0Ux8bxboff2Pue+sZ2LcLLVqEYrEoikvKUSGKiopKzm/XijUbdnPzkF5kb/+Na/p3Y/uuI/zXG9+wYOZodu0+xuN/+xKAJyddy/VXXMAjL3xO7p5j57wHn4NaIYQQop4FPJg1x5MdADyEMVpBf4zZv/pjzAr2lNb6Cq21m94mQjQ9V199NZ999hm7du1i3LhxfPzxx1RWVhIZGcnp06dp164dR48epV27doSEWFi/fiuXXHIJP/+8B4ApT83j+iHjefnVj4jv9zu2bPqE9Jn/Td6Wf/Dnh2/lu/W7OXT0JK2iW1FeoTlZXIbFojiUX0yPC2JZ9vUObht2MZ+s+Im7hpzPu0uyOLpzM2ljbbyzeCMf/M+/sBxYz/w/27BQyZ1//JD/l7UHrc/to+k1qHWupZWOYEIIIepYoNvMVtFaZwKZAEqp7hK8iuZu+PDhLFu2jBtuuIEVK1bw0UcfMWTIEO644w6WLVvG4MGDWb16NREREcTExLBt2zaio6OxWCwsXrwYq9VKeHg4GzZuo++AcVjbRFB86jQ5OXsBsFhCOFZwAmublhzNP05YiyhCSypoFxPFrt3HSB07gE3bD1JU0ZKeXVry/P/8wqpZV/F/WwuYkL6F86zhJPZvx8Jn+3L/jG1cc9fb9LgglrG39mHcbX24yNbOtzfqrg2taHSUUvEYT9JyARuQ68u42r5sZ05YY8PoOGwDMhzH/VZKWYEUYClwDGPmxlRguYztLYRwVBfNDKpxF8gqpabUx/GFaChGjBjBjTfeyPTp0+nXrx8PPvggn376KSNHjuT777/nmmuuoby8nIKCArp27cqJEyeIiIhAKUVISAilpaW0bNmSyspKyisstGgRxoD+velzWS/OnKmkQ3srh48U0atHJwYNvIiQkBB+yjvKsEE2Rib05N47LufrNTn89U8j+XnfKUa/9AsL54wnrltbRkxZy/jZ++mXMJicVY/z9rRRdOvUhpfmfMvvRszmslvn8cTr6/l6czmnTpW6foPOgax0AGu0lFI2jNkNM7XWK8wKilRzfa22MwPZXHPSmVSM5mnpSqkUh13FAulADsZTvY3AeglkhRDO6iWY9SA1yMcXot699NJLFBQU8OqrrzJ9+nRiYmI4evQonTt3Ztu2bXTs2JHo6Gj27t1LXFwcRUVFREdHU1hYSGRkZFWThB07drBjRy6/7j6AUopePS9gz94jJN05nIzXJ/Pv/2ygb5/uFBaVMH3qCJRS3D+6H5WVmv2Hj/Pea0l8n7WXB5/6hNXvT2BqyrV8+NmPXDR8Nm8u+IGxt17Gin9OYN+Oebz28gQ6dojhrbe/ZOSd/03shfeReNvzTHv1I9Zt3MmZM2ekRrbpSQUynNZlYASYtd3OprXOsv9hThOe7mK74UAMEKe1jnGesVEIIcDPZgZKqTuBxAAe32MJX4imKD4+nqSkJF5//XVSUlJ49dVXuf/++3n55Zd58803OX36NGVlZcTFxfHbb78RFRVFeXk5LVq04Pzzz+fIkSOUlJRU7e/o0QKOHi3AYrHw0OQxHDlyjKG3PU+MtSXZP+YxLvk6BgwxZpnudR4MGvgl8z/Zwba1b1B8upyJactIefZTFr85hkljBpA26wf++vo3vDF/PePHDSF14gge/+OtPP7HWzl1qpTvvt/OV99ks+Lbn3jmxffgxfewWqNJHHYVN428jpE3XEvHjucF6/KKwEmienC5AVhem+3M5gNjlFKZZhBrt8J83aa1zrWvNNM4phNCiHP422bWRmBrU2UGMNEs/e1vf+Orr74iMTGRVatWkZCQwCuvvEJmZiaTJ08mOjqaX3/9lcjISNq3b09eXh5dunQhPz+fkydPYrFY6Ny5M1FRUURGRhIZoTl0OJ+5/1hEbGwb/vTo79mz5yAff/oNL/1l3DnHHj9uKCmPzWVD1i4mTL6X4pC2PPLk29z80DJmvHgfHy2cynffb+eNuZ8xa+5nvPr3Txl6/WWkThjB7cnjuOG2S7nhNmMwksOH8/lm1TpWrPyBL79ew9KPjDgnvt/vuGP0OMaMCadnT6mxbWzMgNOG0Va1ita6UClVLeD0dzuzyYENyHLehxBC+MvfZgaFGI3vQwKxIKVt0Uz16tWLL774gr179zJ8+HDS09OJjIxk3Lhx3HvvvZSWltKlSxcuuugi8vLyiI2NpbCwkOPHjxMSEkLHjh0JCQmhoqKCkydPcvjwMc5rF8Mr6U/w9RcZJFw/gKX/Ws4fJo+h+yXXnnPsu+4YREREC2bN/YyKijM8nHITc19LZcOmHOKvn8Id90yndXQkS/85lb3bM3npxUfI2Z3PmAmv0vmCYTz+RDpbtxojFrRv35a7x9zI25kvsDdvBZs3LmXa3x4jIiKc5557jl69ehEfH8/06dM5cOBAMC61qJlYqKoVdcXdUzWftjObDDgHsolAoVOQbFNKJZlLitnWVgghzqW19nkBhgHT/dnGy/42BGpfDXUBVickJGghXFm5cqWOiIjQffv21Tt37tSjRo3SgL7iiit0586dNaA7deqkO3bsqAFtsVj0BRdcUPW3pyUmprU+cvB/tS7/sdry6MP3aEBfckmc/vzTObqy8CNdsPuf+vm//kG3aROtAX37bUP0mtULdGXZFl1Rkq2/+iJDJyeN0GFhoRrQ114Tr5cuek2Xn9507v5Ne/fu1a+99poeOHCgBnRoaKhOTk7Wq1ev1pWVlUG86oGVkJCggdW6AeQ3gVqAeOP24PI1jTHpTcC2M1/fCEx1+NsKpDilWQIkudl+tbffhH1piBISErRP94qEBGMRQmufvg8+f7caMG/5rF81s1rrlVrrp/zZxsv+BgRqX0I0RkOHDuXjjz9m+/bt3H333Tz66KPMnTuXrVu3UlxczLBhw4iOjubgwYNERERwwQUXUF5ezsGDBwGwWCzExcVx3XXXMWbMGF599VUWLVrE559/ztbsZbRrF+PyuLNeS2PZ0lmUlZVz821/ZMSdr5BzMIz/eu4h8nb+h/967iG+W5PFtYPvY9B1v+fjT75h2NCBLP7gVfbvP8DMmTPZf6CApDF/psfFo5g560uOn+p2zugFXbp04fHHH+eHH35g586dPPbYY6xYsYLBgwdz2WWX8eGHH1JZWVkv11k0bOYoBse01jPs67TWhdoYCcGRLx3QhBDNTJ2NZmBOW/ugUmq00/rR7rYRojm64YYb+Oijj9i5cydDhw5lxowZTJw4kWuuuYa1a9fy888/Ex0dTdeuXSkuLq56XN+qVSsuuugiIiMj2bp1K4sWLWLKlCnMnj2bHTt2cEb1NIJLF8NjKaUYdfswtm3+mFmvprExazsDrrqbhKHjWf3tBp57NpU9uV8zZ84cjhwtJmnMn+l9+RjeX7yF2NhYnnjiCXbu3MmyZcu48MILefLJJ+nevTszZszg1KlT1Y7Xo0cPZs6cyb59+3jnnXdQSjF27FiuvPJKVq5cWefXWNSM2Qa2Trcz28+maq2H+5A8F6Ppgcv9JyQk+FrzLIRoQgIezJpB7HqMR0aZVO8wtkkp9Q+lVN9AH1uIxuqWW27h4MGDLFy4kLi4ON566y0+//xzWrZsyYABA7DZbBw6dIhDhw4B0KZNG9q1a8eBAwfYunUrBQUF9OnTh3vuuYfi4mKmTJnCxRdfzIcffmgcwB7UOi0tovrx2J+nk5u7m5kzZ7J7z1FGJ/+Jnr+7g3cXrGXChAn8/PPPLFmyhBYtWnDPPfdU1aoqpRg1ahSrV69mw4YNDBw4kLS0NOLi4vj73/9OWVlZtfcZFRXFxIkTyc7OZsGCBRw5coTExERGjBjBjh076vOSC8/s7VZjHVc6BJHVOn/VYrt0jCZs51BKTXWR1t6xTEbCEUJUCWgwq5RqA3yDMcD1XRhT2J4zwLXWOk9rPRkYrpS6MJDHF6Ixi4qK4p577mH58uX8+uuvzJ49mxtuuIHi4mK2bNnC8ePHAWjfvj1t27alqKiIwsJCWrVqxYABAygsLGThwoW0atWKzz//nPj4eMaOHcvjjz9+zlBerlitVp544gl27drF0qVL6dSpE48++ijdu3dnwYIFJCUlkZ2dzeLFiwkJCWHs2LGEh4eTlWX04enfvz9ffPEF3333Hb169eKRRx4hPDycH374weXxLBYL9957Lz///DOvvfYaGzZsoG/fvrz22muBvaiiRrTRgSsXo92qo1iqd9Kq8XZKqQwgTTt1GLNPvOBiggZ7kOwumBZCNEOBrpmdDkzSWo/QWn+ktd6Em+G3tNavIJMmCOFSt27deOSRR5g/fz7bt2+nqKiIVatW8fLLLzNw4ED27NlDWFgYy5YtY/To0fz444+0a9eO2bNn88svvzB+/HjeeustHnnkEWbNmkV8fDyLFi3i9OnTHo97+vRpoqKiuOqqq2jZsiWHDh3inXfeASAkJIQhQ4Zw9913A1BRUcFXX311zvaDBg3i4Ycfrvr7888/93i8iIgIJk6cyB133EFZWRnvvvuuPAZuOFZgTEnrKB6nCoqabme2k013DHCVUokOw36lugiaE4Es5+BXCNG8+TvOrDdFWuuP/EivAnx8IZqk6OhoBg8ezODBgwFYt24dgwYN4uOPP2b+/Pnceuut3HXXXXTp0oWVK1cyfPhw+vTpQ2ZmJp999hlTp07l7rvvJiwsjP79+3PttdfSrVs3jh8/TlFREUVFRWzZsoX169dz5swZWrRoQWJiIpMmTeKmm25i06ZNzJ07l3/+85+UlArwjuIAAB24SURBVJQwYsQInnzySYYNM54OnzlzhsWLF/PSSy+xfft2Lr74Yl544QWSk5PdvqfTp0/z1ltvMW3aNPLz83nwwQeZMWMGSkm20ECkYYwe4NgJKxWHSgiz+cBGzOlr/djOPsSWVSkVb/4/FkjWxvS2AMccx7M1j5UKTArAexNCNCGBDmaP+pm+TYCPL0SzcOWVV/Lss8/y4osvkpiYyO9//3vefPNNHn74YbTWfP/999x3332kpKRw+eWXM3v2bEpKSlizZg1r1qxh9uzZVW1aIyIiaN26NTabjbS0NIYMGcLAgQPZvHkzy5Yt44knniA3N5eIiAjuu+8+Hn30UXr37g3AgQMHWLBgAe+88w67du2id+/efPjhhyQlJWGxWFye++nTp1m4cCEvvvgi+/btY8SIEbz88sv079+/3q6f8E4bEx2kKaXSgfUY7VTTXdSWxvqznRmULnFzWMeZv5bax5gF2mI0XUh218RBCNF8BTqYbVvH6YUQpueee45Vq1bx0EMPMXDgQP74xz8SEhLCH/7wByorK1m+fDmffvopU6dOJTExkeuvv57+/fszceJEpk+fTlRUFCEhIZSXl3Py5Eny8vLYtGkTL7zwAps3b+bEiRNVNbRPPfUUo0ePrmqru3jxYhYsWMB//vMfKisrue6665g2bRqjR48mJMR166UdO3aQmZnJ/PnzKSgoYODAgSxYsIAhQ4bU85UTvtLGxAZuZ+kyH/dXG//N03bmNj5Vv2utl/p2pkKI5izQwaxSSg3RWq9yXOcm4VxgXYCPL0SzERoaynvvvcfll1/O2LFj+f7773nooYcICQlh8uTJJCYm8uSTT7JlyxbmzJnDRx99xNy5cz12BmvZsiWXX3459913H9dddx033ngjUVFRbNu2jXfffZcvvviCNWvWUFFRQadOnXjqqacYP3682ylrd+/ezSeffMKSJUtYs2YNYWFhjB49mpSUFIYMGSJNCoQQQtRaQINZrfVTSqldSqnFwDSt9QmcOoCZQ3KlA7Fa64cCeXwhmpuuXbvy7rvvcscdd/D4448za9YsUlNTiYiIIC0tjVGjRtG+fXvuu+8+3njjDbp168apU6fYtm0bBQUFtGzZsmrp2LEjUVFR7Nmzh7y8PNatW8ecOXPYuHFj1dixffr0YcqUKdx0001cffXVhIaem4WUlJSwdu1aVq1axaeffsqmTZsA6N27N+np6YwfP5727dvX+3USQgjRdPkdzCqlhmqtv/GQZATwNZCmlCrEaMQ/xnzNhtHuKQujV6oQopZGjRrFo48+yuzZs/niiy945plnuP/++xk3bhxffvkl7777LrNmzWLmzJkAhIWF0aVLF1q3bk1paSmlpaWUlJRw9OhRysvLq/YbHh5OfHw8Dz74IFdeeSXXX389Xbt2rXpda01ubi6bNm0iKyuLNWvWsHbtWkpLS1FKcfXVV/PKK69w++23u625FUIIIWqrJjWzS/DQ1tVsnN/DHPA6FYhzeDkXeEprPa8GxxVCuDFr1ixGjhzJ888/T0pKCi+99BIPP/wwAwcOZP78+ZSUlLBu3Tr27t3Lnj172L17N8XFxURERBAeHk54eDixsbF07979nMVisZCfn8/+/ftZt24d7733Hjt37uSXX37hxx9/pKioCDDGje3Xrx8PP/wwCQkJXHvttcTEuJ5KVwghhAikmgSzMUqpB7TW73hKZM6xPQNAKdUdY97tohocTwjhhVKKG2+8kZEjR/LVV1/xwgsvMHXq2QmU4uLi6NWrF1arlTZt2tCtWzfCw8OpqKioWoqKili9ejUff/wxBQUFHDp0iAMHDpxTWwvQoUMHevbsydixY+nXrx/9+vXj0ksvJTIysr7fthBCCFHjNrOZSqkRGO1is70l1lrn1fA4Qgg/KKUYOXIkI0eO5ODBg2RnZ7Np0yY2bdpEXl4eO3furBpXtqysjNDQUEJDQ7FYLERFRRETE4PVasVqtdKzZ086d+5ctXTv3p0ePXrQunXrYL9NIYQQokpNg9kYjFEK7lJKPYMxKkGm1vp4wM5MCFErHTt2pGPHjtx4440uX9day2gCQgghGr2aBLPJDkHrPGCeUqofMEMppYElXjqICSEaAAlkhRBCNAWuRzf3wNV0tVrrTVrrycBTQJxSarFSaopSSp5HCiGEEEKIOhPocWaLkNpaIYQQQghRT/yumfWV1NYKIYQQQoi6FujpbKtxUVubbrbVW+w07a0QQgghhBB+qbOaWTdiMCZcSAFWKKV21vPxhRBCCCFEE1LnNbNms4IUjNnAbBhDegFkAhl1fXwhhBBCCNF01Vkwq5QaihHAJtlXAVlAhkxnK4QQQgghAiGgway3Wlit9aZAHk8IIYQQQjRvfgezSqkHtdZvO62TWlghhBBCCFHvalIzmwa8LbWwQgghhBAi2GoSzMaZoxDYzL+lFlYIIYQQQgRFTdvMxpn/Si2sEEIIIYQImpoGs1O11jMDeib1QCmVhFGjHGf+m6G1XuqUJh4YAOSaaXK11iv8TSOEEEIIIepeTYLZ3EYcyObag1ellBXYqJSK1VpnmutsQLrWerjDdkuUUrla61xf0wghhBBCiPpRkxnAlnpP0iDZtNZZ9j+01oVAOudO3JBK9YkcMsx0/qQRQgghhBD1wO9gVmv9VF2cSF0ya2HHmP86WmG+bu/MloTRmc3RBs4OOeZrGiGEEEIIUQ9qUjPb6Ji1sDbOjsBQjRno2oBjLrZFKWXzJY2rfX/77bcopbwuQgghhBDCP3U2nW1Do7WOcbE6ESjUWufaA1F7YOpCVaDqJY20mxVCCCGEqCfNombWg1Rgmvl/5yYIrviSppqEhAS01l4XIYQQQgjhn2YbzCqlUoBjWusZwT4XIYQQQghRM42umYG7dqluHHPVJMDcR6rWur+L16wemhH4nEYIIYQQQtS9RhXM2sd49WOT9YCrmtd0YJjTOntb11igKlB1GAEhl7MdvzylEUIIIYQQ9aRRBbPmpATJtdmHUioDSHOuWdVaFyqlcqneLjYWs5OYub3XNEIIIYQQon40qzazZjvZdMegUymV6NB0YQXGNLWO4s31+JFGCCGEEELUg2YTzJrT2QJYlVLx5pIIJDsEt2lUr/lNNdfjRxohhBBCCFEPGlUzg5oy27QucfNyVS2t2dQgTSmVjtHe1oZTTa4vaYQQoilQSsVjPInKxRxHW2vt9SmUL9sFKo0QQjSLYNZsH+vTFFta6yyqT1frdxohhGjM7B1utdbDHdYtUUrleiq8+7JdoNI0FpmZmbz//vse02RnZ9O3b996OiMhmpZmEcwKIYTwWyqQ4bQuA2M0GE8dcX3ZLlBpGoX333/fa7Dat29fxo0bV49nJZqT7OxsBg8e7DHNuHHjSElJqZ8TCjAJZoUQQriSRPVgcgOwPADbBSpNo9G3b19Wr14d7NMQzZAvhaTs7GwACWaFEEI0DWY/Axtnx9YGqvoMoJSyuXrU78t25mu1TtPYmhoIESwpKSleg1RvtbYNnQSzQgghnMVCVX8DV2y4niTGl+0IUJpqx//2229Rynv3iMf69iU7L89rukDJPnmSvq1agbeAYdw4aKQ1YyKIsrNr/906eJDsnBwGW52H0a9bfbt3Z9amTbXejwSzQgghnNX0jubLdoFK02j0bdWKce3be0707bfG4qWjGNnZIB3FhJ0v7ax9+G6N++WXAJ5U/ZNgVgghRJOQkJDQeNulZmZ6D2TBCGSlo5iwS0nxXpvvw3crJSGBlEb8ZECCWSGEEC4ppaweHvXXartApWkyfAlKhKiJZvDdajYzgAkhhPCZvT1qrONKs4OX4+s12S5QaYQQApCaWeGFvTOF1jrIZ9L4yLWrGbluwWeOGpBL9barsUChu5EEfN0uUGkaIvn+Bodc9+BpCNdeamaFEEK4sgJjKllH8eb62m4XqDRCCCHBrBBCCJfSqD7TVqq5HjAe+yulcpRSKf5sF8A0QgghzQyEEEJUZzYZSFNKpQPrMcZ2TXfxiD/W3+0ClUYIIUCCWSGEEG5orbOALA+vFwIx/m4XyDRCCCHNDIQQQgghRKMlwawQQgghhGi0JJgVQgghhBCNlgSzQgghhBCi0ZIOYHWvR3Z2NoMHDw72edRKYz//YJJrVzON5bplZ2cD9Aj2eYiGldc2lPNobuS6B09dXntv+ayS2TLqllJqE3AesCvY5yKEqBM9gCNa637BPpHmTPJaIZo0j/msBLNCCCGEEKLRkjazQgghhBCi0ZJgVgghhBBCNFrSAUyIAFNKxQMDgFyMKThztdYrgntWDY9SKgnj+sSZ/2ZorZc6pZFrKYTwSPKJwAtU/lxfn40Es8IjCTj8o5Syzx8/3GHdEqVUrswpf5b5vcq1f5eUUlZgo1IqVmudaa6TaykavMZ2029qJJ8IvEDlz/X62WitZZHF5QIkAfEOf1uBHCDFYZ0NWO603RLAFuzzD9I1SweSnNYlAkuCfW4NaQGmuliXYmRJci1laRxLoPJIyUdr9RlIPhH4axqQ/Lk+PxtpMys8sWmts+x/aK0LMb6cGQ5pUp3+xvw7ve5Pr0FKArKc1m0w1wuqSvljzH8drTBft5l/y7UUDV2g8kjJR2tO8okACnD+XG+fjQSzwiUJOPxnXisbcMxxvXmDc7xmzZp5PWzm4pJcS9HQNdabflMi+UTgBSp/ru/PRoJZ4ZIEHDUSC2ffvwvN7Xq4pbWOcazRMiUChdpoSyXXUjRojfWm38RIPlEHApQ/1+tnIx3AhFta6xgXq6u+0PZM1suXtTk1wHeuoRH+SQWmmf+XaykavADlkfiQpjnlo/6QfKL++Js/1+tnIzWzwl8ScIiAU0qlAMe01jOCfS5C1FKDvukL4a/GkD9LMCt81hi+0A2BizZ0wgOz9ipVOwzf4vCaXEvRaEgeGRyST9Sd2ubP9fXZSDODZsDPNlfHXD3ucvhC93fxmtXDI7LmxP4oMBaouh4OP2Z5VOhaOjDMaZ1cS1FvGkIeKflojUg+Ufdqmj8f8yFNwEgw28TZBy32Y5P1gKtaBQk4vNBaFyqlcqn+2DCWsw3nhQOlVAaQ5nwTl2sp6ksDyCPr9abflEg+Ubdqmz/X52cjwWwTZ35hkmuzDwk4/LICYxYfx56g8eZ64cB8JJvu+D1RSiVizDyTi1xLUQ8aQh4p+WitSD5RBwKUP9fbZyNtZoVH7r7QDo/l7F9WR805I0mj+o0x1VwvTOZ0iQBWpVS8uSQCyQ7fNbmWosELUB4p+WjNST4RYAHMn+vts1Hm9GJCVGN+oWMxBu+2i8X4QqeaaawYU9M5zr28HKPtWLOsUTDnWB+D8TjSBmRpmWO9ivmdKXDzcq7WOs4hrVxL0WAFKo+UfLR2JJ8InEDnz/X12UgwK1ySgEMIIdxrrDd9IZoiCWaFEEIIIUSjJW1mhRBCCCFEoyXBrBBCCCGEaLQkmBVCCCGEEI2WBLNCCCGEEKLRkmBWCCGEEEI0WhLMCiGEEEKIapRSNqXU1GCfhzcSzArRhDjMOlSv2wohhGhazHvCcqBtsM/FGwlmhWgizOkGE929ppRKNwd6d7f+mDnHvBBCNHpSQK8ZpZTVvBckAW5noGtI11eCWSGaAHP2oGStdaabJEuAqcBd7tZrrQuBdHMaTSGEaLQ8Fe6FZ1rrQq11qtZ6BlDoIWmDqQAJDfYJCGFnznM+xvzTXhq0YUzvuNTfOcrNzCwZ48eYb/7r+MNbAWRhZHjTtNZLa372wWOf1x3o7+Z1G2CvkV3sab3WOlcptVwpla61Tqu7sxZCuGPmXfbfZ25jzZuCxaFwn+q0PgmIBeKA5TJdcO1orQvNJ3vLtdbDg3kuEsyKoDMz7gyMgDXZxevxwBKl1ApfAyyzdrHQeX9KqXSMG8RSrXWyw2N3T6XPgFJKJQY4E00H0s2aVVeSzH+XOqVxuV5rPUMplaOUyvC3ACFEU2HmFUkYQaVdLsZvzd0TEPu2SRgFTLtCjODK19/9cCAeo6CdCQQtmDXzyAGNJfDzUri/AuOaxmNUcDSK99SQNZQKEGlmIIJKKZWC0cA81d0PQWudpbXuD8QrpTY6t/t0sc8lgM1VYIxxYwCYZO67UGudVl8ZtVkbGrASrLm/RC83V/vxnB8HuVsPkOZmvRDNgpkvxGH8FsCoIY3zFsia2y4FYsw/U7XWMf7kMeaxg1rT5WAesNxTj3azQqKhcFu4N+8xw+r/lJo2szlCUjDb0EowK4LGrL3IwMjsvWb0ZuZuBVZ6SZqE+5oMK0aNbb3VxDoJ9I893Vw8ScS4ETtfY3fr7TfjAQ2pgb8QwWDeqAFs3grSLiz1Jfht4JZj1CxnuXox0AX02vClcB/EvL+pC2oFiASzIigcHgVl+ZnZp2HU0HoL4HI8vHbMj+MFmqva4tpIwqEdrDOHGpN0X9Y7WQykenhdiObCnkel+LHNXcC0OjiXeqW1zvRSs9yQCry+FO6bPHM0ghw/l1rVrge7AkSCWREs9gzHr8ze/MHkAlNrUEsSVOaP3J+bobf9JWEUBjzVNAzHqIl2LjC4W+9oCQE8XyEaMXuNkz+Fu+Faa5e1mU1MoAvoteGxcN9cmM3n4vxcAtHULmgVIBLMimCxB0k1+QHZt2kUgZZZSk4CNgZ418OBDV7S2DuQ+Lq+ipm5WaWpgWjuzKA0C6OpgdcaLLPT6vo6P7EgC3QBvTZ8LNyLuhW0ChAZzUDUO4ebQW4NM57lGD+YMcAMc59JwNMOadKVUq5KiDaMAM0xsJxkr0Ex92Pj7OgGVvP/VmCFq5oWhyYP+RgzpViBNIf39jRm+1SMXrQpTjdEn0dpcJKIh0dqZs11PE41J+7Wu5GLD4GvEM1Ahrmk4r0QnsrZjmNNjpmHJGJ0DmsofCncizqktV5hVt7Y6nskHAlmRTDEm//W9MtuDxLt+7E3P1gKoJTSGOPGznDe0Bzg+S5zdARXry133s4MPJfjNNSLw1R/53RgMwPiPKXUMHMkhjRzvRUoADIDNISJDc+Z9wBcj8/rbr0ruRhjMgrRrGmtM+2zIimlrO4K4vbmTx5e91b49Zk5Gkx/jD4C9t9phi/NGxy2dTzuOcPxme/XZi5LHfItnwvo9jyXs2NaF2K833MKyEqpHM62vy0E+vsZEHks3Htjfm55Tuc5zRyqcLl5brGY+bdDxQcYgXQuDp+jeX2tGJ9xPC7uLTU4R78rW4IgOBUgWmtZZKnXBaN2QwNLarh9vLm9dvO6BqZ6OHaBi/VWV+sdXl8CxDuty8EYAsZV+uXARhfH0O628fMa2Pdlq4fPqkafkyyyNLXFIe9ymb+YaVIwetQ7r7eZeUai0/okjEJuvIttNEaA6bzeauYxKS5eW+4pj3HYttrv2nx/8U7nnOLlPHzK0zCaWXnMs8zrUO09+fjZaFfX0EPaap8hxmyI1c7B6Tqkm+mc7wdVeb6Zxup0nQpqk/ebn02Si/WJ/rx3P46Xbt73tHnuS3z8nD1+/+pqkTazIpgaUgcue/MDd+d0zhSv5piLNtx3YMvAGHUh3s3rtRVr/lvXIzPYS/1CCN86gg3XrjvTLMeo3TznNW08VdqAf4/sV+JmJBhtDGGY5GFc2HkYkyBUa2akjRmznnb4O9fVMWrIXqvrKU9cUZPjBWLyG3MfVwDdnc/B6TrEYzSRc64Ftef5GRiBv+NENIUYNZVux+r14dzu0i5mgjO/TwGfVEMbYx0na62VNkazSNa+PVHMJQgjXEgwK4LBPmxWrMdU7gX8h+KQMW1USiW5CGoXc26ziFQ8j1drTzsggKfpyAb1MmZiPjX/nIRoUrSXjmDuOn4FsvBrPr6Ox/OYnukY/QbOycfMc07CTXte81G/q/yv1sygK5dz+zY4n1tNxymtVeHefL/pZsDmLU8d4CqoxGEKdu26eUSOeaya3L/8qmwJsqBUgEibWREMVT/6Gm5v3y7Q7YP6Y9R4LAFQSmVhdPRY5KIUbgNyPc2KY24bzDFtA0VqZoU4y1NHMHcdv/wp/HrL11IxagY9tSd1HPHFsZ1mqtPrzrKgTgvJGRhBtquAL9msGa6JGhfuzeAyQ/s+45q3TmbePj+/81OtdZZSCozKljSMGmzH99qQhiMLSgWIBLOi3mmtl5o/zJr2erRnOosCfF5ZQIxZ85GMcWOZijGm7Qx9tkNDVScF7blBf60a+3tRX0FyW2rx6E6Ipka76QjmpeNXIAu/8XgPmOz7ucLFtrjLc101PQiwTIxa4zQcmmqY187TRDd1wqETr82Pe5G3NHX1PvypbAm2eq8AkWYGIljs7Y+S/NnIYUgYx33UmjmciP1mlKm1Hq61jsHoIZyJEdDab0QBDSSVUvE1eKx3zg20Dlmp+agTQjRVrmYEuwsz0HDkXPj1sAx38/ja1b58zYOcmy049oSvd2agv5TqY5GmULv8vCZ58nCMgNo+okO1z64h0cbIODGcfSJgw6hs2ejDjJj1KSgVIBLMimBxHOLFH/ZMcEaAH4UNwMVgz2bD/1SMjDbVXFdIYBu5D8DPxzIONQh1/TgnlqbRVEKIQHLVEcxdx6+A/X5q8Lt3LojWS3tGLwX0DDONY37btpb5eU0K94VmJ6dCjCdx8V5qzoPGz8qWYAtKBYgEsyIoHDIQq6+lSrNWIh2jF29dDEg+xsNrGZx7A0nHOHe3HTaUUjZzXEDAa3uumt7w6mq0BDv7cEJCCJNzRzBPM37VQeHXl32561ewAWrcCckfbgvoDh3B7M227ON411gNC/dVn5fDiADpDXTGQ58rWxqAoFSASDArgsZ8pJaKUar0OAWeWSpdjpE5D6ujU/LUmzgWh04T5jAtWXgepDvNxWNDVzeiuBrWStgfNdUlX9rnCdEcOdbO2gMKd/wu/Ho5rsd9cbZg7jw6gP1vt8cxawG9TtkLtSqgZ2AUBOIxOn7VZFpzV2pTuJ9Ew25u4E9lSzAFpQJEglkRVGZQOBxIU0pluHpMZGasGzF6cPb3lIE6bN/WTZJYPD9mS3UxnI0VoxbBuTZ4GBBrdgZxPo+puB5mJh2HoW9q2eY1i+odPALGXkMRwBuNEE2Gw7ijSebfbvOlWhR+Xe1rhrkvTzVxKRhNsc553KvPzpToqXnX0/g3LWxNCuj2a5dO4AKfWhXuzfOdRMNtbuBzZUuQBaUCREYzEEFnBktxZq3EPKXUMc42ILdhZJbDvfU0VUpt5GxmNtXcX7rZ+3gqRuZvM9MWcHb6QXsv4lR7WqVUW4whRsAIjFNd3BgKgf5m+iXmPuznneHqfM39W4GVSqkV5rqaNplYhBHk15VEGk4GKURDlIkROPpSmzcM43ef4TwElYfCrzvJwBKlVLpz/mFOvbrYQ74yydx2OUataKHDtknAej+fFKUDGfaRHXwpoJvplmIUBAI1goJPhXtPFR7mSDuFGM0NstwU5N3VgNrXu3v/gWirnKqUSnP6zOyVLUFvZhDMChCljenHhBCNkBnAT6qLoVnMm12GL7VFQjRHZk3ZEq11nB/bTMUIutwWfh0K5vYAKNdMM8PFvhyDMqt5Pl6DCbNp13Cn8zhnmCc355HqvH/zPMZgFn59KaCb1+7pQA0HZu5vo9ZaeUjj6v1U1YibT9kcm7zlYlyjJS62y9BazzADuCWc28Qhy9zvCofJIKpGtTC3T/Z1WErzvQ1wqJhxrmxxWXlS3+zDWvoxZm/gji3BrBCNl/2GFOjxIc3Sfp7ZY1YIIQLKrAUuDGQtXl0W7oV3wawAkWBWiEbOnILSY1viGuwzHcjRgZuXXQghqiilltRBIbxOCvfCu2BXgEgHMCEavzQC2APXfGyWKIGsEKIueBrKrDbMPKsmk9CI2nsa11M51wsJZoVo5MxHOrm+DqfjgwwC1ylDCNGMmR1ktdP4rd6GMquNgBbuhXcNoQJEglkhmgCzd3S1YcX8Ze9V3RA6EwghmoxczHFn7UMtBngGxyp1ULgX3gW9AkTazArRhCilpjr3ePZj20SQcWWFEIFltsHPx+h5v74+OgiZwyVOqqugWRjMCpDcYI96I8GsEEIIIZqc2hTuhXcNqQJEglkhhBBCCNFoSZtZIYQQQgjRaEkwK4QQQgghGi0JZoUQQgghRKMlwawQQgghhGi0JJgVQgghhBCNlgSzQgghhBCi0fr/AdAcieQz5VYAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 720x720 with 4 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "model=make_model(mcmc.guesses,obspars,rad) # make a model from your guesses\n", "\n", "KinMS_plotter(fdata, obspars['xsize'], obspars['ysize'], obspars['vsize'], obspars['cellsize'],\\\n", " obspars['dv'], obspars['beamsize'], posang=guesses[1],overcube=model,rms=error).makeplots()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see, the black contours of the model arent a perfect match to the moment zero, spectrum and position-velocity diagram extracted from our \"observed\" datacube. One could tweak by hand, but as these are already close we can go on to do a fit! " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you are experimenting then running until convergence should be good enough to get an idea if the model is physical (setting a low number of iterations, ~3000 works for me)." ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Doing chain 1\n", " Chain has not converged - Accept rate: 0.08666666666666667\n", " Chain has not converged - Accept rate: 0.1\n", " Still varying: ['posAng' 'Inc' 'R_turn' 'scalerad']\n", " Chain has not converged - Accept rate: 0.2866666666666667\n", " Still varying: ['Inc']\n", " Chain has not converged - Accept rate: 0.45666666666666667\n", " Still varying: ['Inc']\n", "Chain converged: LL: -5417.6915586532605 - Accept rate:0.43\n", "Best chain so far!\n", "Best fit:\n", " Flux: 30.0\n", " posAng: 269.90007276088943\n", " Inc: 47.854655719347996\n", " VFlat: 190.0066572057255\n", " R_turn: 1.9306907362857078\n", " scalerad: 4.931147911070421\n", "Starting final chain\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "[Parallel(n_jobs=3)]: Using backend LokyBackend with 3 concurrent workers.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Final best fit values and 1sigma errors:\n", " Flux: 30.0 (Fixed)\n", " posAng: 269.8973861297394 + 0.046268424097263505 - 0.017317013075341947\n", " Inc: 46.69701598839461 + 0.10982841217780503 - 0.20773477781962413\n", " VFlat: 193.9123324657629 ± 0.34437214188913856\n", " R_turn: 1.9498716985274913 + 0.013209686719802827 - 0.010186707854953791\n", " scalerad: 4.8752275278090975 ± 0.013733314328538526\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "[Parallel(n_jobs=3)]: Done 3 out of 3 | elapsed: 6.6min remaining: 0.0s\n", "[Parallel(n_jobs=3)]: Done 3 out of 3 | elapsed: 6.6min finished\n" ] } ], "source": [ "outputvalue, outputll= mcmc.run(fdata,error,3000,plot=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see, the final parameters (listed in the output with their 1sigma errors) are pretty close to those we input! One could use the cornor_plot routine shipped with GAStimator to visualize our results, but with only 3000 steps (and a $\\approx$30% acceptance rate) these wont be very pretty. If you need good error estimates/nice looking cornor plots for publication then I recommend at least 30,000 iterations, which may take several hours/days depending on your system, and the size of your datacube. \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One can visualize the best-fit model again to check how we did - turns out pretty well! (Note the flux in the integrated spectrum isnt perfect, this is because of the masking of the noisy data). " ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAKqCAYAAAApPtZIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3yN5//H8dd1sncksQkSe++996xNa9SX0mrpUIpWdaC2LlWrlFKrtCjVWqVafmoTVSuxQkiESCKSnJzr98eJERLJ4WQc/Twfj1POfe5xnSM+fbvOdV+X0lojhBBCCCGELTJkdwOEEEIIIYR4UhJmhRBCCCGEzZIwK4QQQgghbJaEWSGEEEIIYbPss7sBzzql1CEgN3Amu9sihMgSxYFwrXWV7G7Is0rqqhD/OY+tqxJmM19uLy+vgpUrVy6Y3Q0RQmS+w4cPExUVld3NeNZJXRXiPyS9uiphNvOdqVy5csEdO3ZkdzuEEFmgcePG7Ny5U3oMM5fUVSH+Q9KrqzJmVgghhBBC2CwJs0IIIYQQwmZJmBVCCCGEEDZLwqwQQgghhLBZEmaFEEIIIYTNkjArhBBCCCFsloRZIYQQQghhsyTMCiGEEEIImyVhVgghhBBC2CwJs0IIIYQQwmZJmBVCCCGEEDZLwqwQQgghhLBZEmaFEEIIIYTNkjArhBBCCCFsloRZIYQQQghhsyTMCiGEEEIImyVhVgghhBBC2CwJs0IIIYQQwmZJmBVCCCGEEDZLwqwQQgghhLBZEmaFEEIIIYTNkjArhBBCCCFsloRZIYQQQghhsyTMCiGEEEIImyVhVgghhBBC2CwJs0IIIYQQwmZJmBVCCCGEEDZLwqwQQgghhLBZEmaFEEIIIYTNkjArhBBCCCFsloRZIYQQQghhsyTMCiGEEEIImyVhVgghhBBC2CwJs0IIIYQQwmZJmBVCCCGEEDZLwqwQQgghhLBZ9tndgJxKKdUNCAACk3+dq7Ve/dA+VYHqQHDyPsFa661Z3VYhhMjppKYKITKLhNlUJBfd4LuFVinlDRxQSvloreclbwsApmitWzxw3A9KqWCtdXC2NFwIIXIgqalCiMwkwwxSF6C1Pnj3idb6JjAFmPvAPq889Jzk51Myv3lCCGFTpKYKITKNhNmHJPcY9Ez+9UFbk18PSH7eDTj40D77k7cLIYRAaqoQIvNJmH1Ico9BQPIjVclFOQCITOXYB4uzEEL8p0lNFUJkNgmzqdBa53rwK7FkzYGbyWO3fJL3u5nGKaTwCiFEMqmpQojMJDeAZdwrwKTk3z/8ddlj7dy5E6VUuvtprZ+gWUIIYZOeuKaC1FUhxH3SM5sBSqmXgUit9dTsbosQQtg6qalCCGuSMJuO5LFarzw4XcwDr2WoN6FRo0ZordN9CCHEs84aNRWkrgoh7pMwm74pQLOHtt2d89DnwY0PFGKZE1EIIVInNVUIYVUSZh9DKTUXGPXwTQnJz4N5dJyXD/dvaBBCCPEAqalCiMwgYTYNyWO6pjxYRJVSzR+YImYr5mUXH1Q1ebsQQogHSE0VQmQWCbOpSF56EcBbKVU1+dEc6P5AIR4FdH/o0FeStwshhEgmNVUIkZlkaq6HJI/R+iGNl+/1KGitbyqlRimlpgD7MM+DOEW+DhNCiPukpgohMpuE2Yckj91Kf/JC874HeXT5RSGEEMmkpgohMpsMMxBCCCGEEDZLwqwQQgghhLBZEmaFEEIIIYTNkjArhBBCCCFsloRZIYQQQghhsyTMCiGEEEIImyVhVgghhBBC2CwJs0IIIYQQwmZJmBVCCCGEEDZLwqwQQgghhLBZEmaFEEIIIYTNkjArhBBCCCFsloRZIYQQQghhsyTMCiGEEEIImyVhVgghhBBC2CwJs0IIIYQQwmZJmBVCCCGEEDZLwqwQQgghhLBZEmaFEEIIIYTNkjArhBBCCCFsloRZIYQQQghhsyTMCiGEEEIIm2WflRdTShUFmgOBQADgDfgk/3oTCAYigbPAAa3171nZPiGEsDVSV4UQ/3WZHmaTC+1g4GXACwjBXFyDk39/PXlXX8zF1xeoAUxVSmlgKzBXa/1jZrdVCCFsgdRVIYS4L9PCbHKxnQdUA34Aumutt1l4jgCgGTBYKTUfGKm1XmDlpgohhE2QuiqEEI/KlDGzSqnJwBbM//L31VoPtrTgAmitg7XW87XWLTF/hVZCKbVPKVXE2m0WQoicTOqqEEKkzuphVim1GYjQWpfQWq+x1nm11je11qOBnsB8pVQXa51bCCFyMqmrQgiRNquGWaXUHOAVrfV0a573Qcm9Ci2BQKVU08y6jhBC5ARSV4UQ4vGsFmaVUsWAUVrrEGud83G01tMAlRXXEkKI7CB1VQgh0me1MJtcbLVSaqBSytNa503nmhaPFxPiiRiDUn9k5rXEf57UVSGESJ+1x8y+B8wFbiilViilmlj5/EJknYyEVmsF29TOk9mhWdgKqatCCPEY1p6aawvwCuZ5D3sA3ZVSZ4EpMvWLsAlPERx14jHi4u4QFRVDQkJiitccHR3w8HDD1dUZg+EJ/g15t1325Z+4fcJmSV0VNu+tsNS3m/KFZuj4mVcKPfb14Pzpn6PYtYc25NEZurbI+awaZpO/nsqVPM6rG9AS83yG85VSUzH3LszVWp+35nWFeGoZDLHh4ZH8vS+IkydDCA65RMi5UIJDLhEefoOoqBiMRmO653Bzc8HX15u8eXzJl8+PfHl9KVw4H4EBhc2PwML4+nqjVCpDF41BEmj/Y6SuimfB5/lSPk8r3GaWR4IsEIKiGBJonwWZsmhC8jivackPlFLNMS+32BIYrZT6QWvdMzOuLYTFUguy9uXBGMSZMxf4ZdMudv/fYfb+fYxz5+73Inh6uhNQrBBlSgfQpJEfXl7u5oenB87Ojvf20xoSEhKJib1NdHQs0dGxREZGEXb1OhcuXGHv30e5di0yxeV9fb2pWKEklSqWpGKFklSrWpby5UuYe3Ul0P4nSV0Vz5LP85kDrSGsIJDxHtq0BFzJWO/swyTQPhsyfTlbAK31VszLJ6KU8gKqZ8V1hXisVEJsUlISu/48yPqNC9m4cSOnTp0CoHDhfNSqWYEhrz5PzRrlKVe2OD4+Xqn3nj6B27fjCAkJ5WzwRc6evciJf4M5cvQU875Zw+3bcQB4eXlQr25l6terSrMmtahevdyjQxYk5P5nSF0Vtu5uoM1uEmhtn1XDbPLdtj2AVVrrW6nto7WOAuRuWZG9Hgiyd+7Es237Xtb//DvrN+wgLCwCJycnGjduzNChQ2nbti2BReIytTmuri6UK1eccuWKp9ielJTE2bMX2fv3MXb9eYA/dx/il027AMib15fmTWvTvFlt2rSuT968fjK29hkkdVXYok4rYO3z6e9nzUBrae9syqEHCnY9tENXCbi2wto9s+8B7wBzlVI/YB7H9buVryHE0zEGobVm796jfLt4LStW/cqtWzG4u7vSulU9undtSbu2DXFzc00+IHOD7OPY2dlRsmRRSpYsSt8+HQDzuN3NW3az4Zc/2Lx1D98v34jBYKBVy7r069uR5zo0xsUj25osrE/qqrApnVbc/zUjgdZanmSYwT0PB1lhU6w9NdcW4BbmSbd7AFuVUqeUUi9Z+TpCPJHoG3v57PPvKFepE3Ua9GHpso107tiUTRtmExG2ix9WfEqP7q0fCLI5T+7cPvTu1Z7lS6cSdul3Du9fzeiRLxF0/AzP936HfIWaMHToUC5dupTdTRXWIXVV2Iy7QTat5w/LCcMMJMjaPquGWa31Nq11LiAQGAVsB4pjvuv2ulJqolKqiDWvKURGREZG8vGHQygS2JK335mGt5cH38z9mLBLv7No4Se0blUfJyfH9E+UwxgMBipVKsUn49/g3Jnf2Lb5Gzp2aMK8efMIDAzkjaG9uXxhu8xVa8OkrgpbkVZwTWu7NYPsU/XKCptn7Z5ZwHzXrdZ6mta6hdbagPlu2/nJv4YopVZmxnWFeFhERAQjR46kaFF/Phr3NQ3qV+X//vye3buW8tKALnh4uGV3E63GYDDQtEktvls0kVP//MyLfTrw9ZyVBJZqy/B3pnEzYreEWhsmdVXkZOn1wHZaYQ6vDz6sJVuGF/SQVZ9zkkwJsw/TWm/VWo/WWlcHcgHzsuK64r8rOjqajz8cQkBAUWbMmEH7dg05cmA1636cSa1aFa13odunH//IJkWLFmT+3I84efxnnu/Rms++WEKJMu2ZN/8HkpKSsq1dwnqkroqcolTn7G7BE0ovyK5JI7DeDbISaHOMLJma60Fy163ITEajka9njmX8xLlERNygS+fmTPj4dcqUCbDuhZKDqtaa0MvXOX32ChdDI7h46TqXLl8n6tZtEhISiU8wkpBgxMHBDg93Fzw9XPBwdyFvHm+K+uehWJE8FC2SB18fD5RbycdeC9cSFjczMLAw3y6YwBtDe/Pm25N55bVxfD1nJV/N+ob69es/6bsXOYzUVZFdLAmy53ZA0capv2YIK5jmXLPprf6VqdaolLMaPBxgeyhYJbMeZLcsD7NCZJagoCAG9H+BffuDaN6sNhPHv0mNGlaYouqBHlajMYn/23eKXbv/4e+Dp9m7/zRXwm6k2N3Xx4Nc3u44Otrj5GiPo6M9iYlJnIq5zK3oOG5F3yYuLuGRY6pVDqRa5QCq1apPndqVKOAdlXo7niDUVqlShp3bF/HD6t8YMWoGDRs2ZOTIkYwbNw5HR9sbKyyEyH7W7pF9XKB9nPSm5Ept9S+LhhfcDbRp9cRKoM12VguzyUstNtNaf2Otc6ZzPU/gZa319Ky4nsi5jEYjU6dO5aOPPsLLy52Vy6bRvVurp1/QIDk8XrwUwW/bDrF1x1G27jjK9choAEoE5qdZo4rUrFacsqUKU7iQH4UK+OLq6pTuqW/ejOX8xWucuxBOyPmrBP1zgQOHg5n25TqMxh8BKF2yIA3qlKV+ndI0bViBQgX9UrTL0lCrlKJH99a0bdOQt0dMZcqUKWzZsoVVq1YRGBho0blE1pC6KnKK9ILriZVQ5llaf+7hEegr0/n/iQTabGW1MKu1DlFKhSilZgMjtdbR1jr3w5RSzTAX3Gfpr454AmFhYXTr1o2//vqL7t1aMuvLMeTO7fPU570ReojV6/awdNVO/vjrHwAK5PehXatqdGhdnaYNK+Dj8+STuXp7u+HtXYxKFYql2H7nTgJHj59n55/H+X1XEKvW/sX8xVsAqF2jJN061qHrc3UoWiSPOdQ+QS+tu7sr8+Z8RNs2DRgw6AOqVq3Mt9+Mp0v3t574/YjMIXVV5ARK3aFkJ+d097NGoE2td/b1/JeeeKhBqr2ymUUCbbax6jADrfU2pdQN4JBSapLWeoE1z5/ca7AaOCsFVxz8exUdu75BZOQtli6eRK8X2j11b+yhQyeYMn0hP63dSkKCkVIlCjLh/V507lCLMqUKWW352rQ4OztSs1oJalYrwTtvdsJkMnH8xEU2/Lqf1ev2MOL9xYx4fzH165ThnTc60r61CYN7qSe6VqeOzahSuQw9e71D1x7DmDAumPdGDzK/R1lBLMeQuiqyk1J3LNo/vUD7uHGzd1k63CBHTMu1Jvl+egm02cLqsxlorQ9iXiO8hlLqtFLqpeRi+cSUUpWVUquAA5hXv3nVGm0VNsoYxJpVn1G/cT+UUvy18zt692r/VEFz9+7DtHvuNarW7MGmX/9g8IBW7Pt9Kif2fcmYd7pRtnThJz6/Dg9K9ZERBoOBCuWK8O7wrhz4YzpnD3/NlI/7cin0Oh1fmEyFOsNYNH8uCQmJT9S2IkUKsHP7t/R+oR3vfzCT/i+9bz6XMUim8cpBpK6K7GBpkL3rRCZMEvd6fssXgcmyXtk1hpS/t7PLoguLuzLlBjCt9U1gsFIqAJiMeXLvA8B+zIVzP3ATiHxwrfHk4uwDVAUCgBpAN+AgME9r3SMz2itsiDGI6Z8u4p1RM6hTuxI/rf6cvHn9Mn78Q9NlHfw3kZHvfsq27Xvx9fVmwrjXGdKvJt7eGZt/9vbtePYdPMO/py5x7kI45y5c4/zFcG5cv07cHSO34xK5fScRB3sDubxc8HJ3wsPdiXx+7hQrvJlAfx8CK1SlfFl/8ubxTvd6AcXyMfKtzrw99DlW/fQXUz7/if6vfcXHk1cxbfyLdH3hRYtDt5OTI0sWT6JEiSJ8NO5rLlwMY/1PM3F3d70faKWnNttJXRWZKb3gemptxoYaZERGemczKq1e2XSDbAMefxNYTx4dN2uJ1AKtTIuYaTJ1NgOtdTDm5RdRSnUFWgCjMRdUAJ3K/3jvbtiKudhW11ofysx2Ctvx+RdLeGfUDHr2aM2iBRNwdk7/Zqt7HgiyFy6G8/6EZSxZsRM/X0+mT+jH4AGtcHN7fLE2GpPYum49W3cH8+e+8xw4fhmj0QSAg4Md/vm9KFLQi8Kl8uHkaIerqyMuTvYkGk3cjIojOjaBqOg7HPk3jLVb/yUxMQlYD0Cgvw9161agbs3SNG9ckeKBaX93Zm9vR6/uDXmhWwN+3XqIUR8uoXu/6TT55le++OJjKlRIY5qvNCil+HDsqwQUK0T/gWNp3W4wmzbMvr+ohDFIAm0OIXVV2AJrDDd42NOMnX3E44KsJSF2jQVfcNvZSaDNJFk2NZfWeg2w5u5zpZQX5t6CuwU4EriptQ7JqjYJ27Jg3jiGjZhK1y4tWLp4Evb2Fvz4JgfZ+PhEJkz7gekzzQFy9LAujB7WGS+vx/fEHjkWwuKFa1i2/ihXI2JwdLCjZqWCDH+pHg1qFKFiqbzkz+OBnV3GC1tSkonQq7c4ez6Sg8evsOfQRTZvPcCSFTsBqF6hAC8835KeXepRsIBvqudQStGmRVVaNKnEvG83M/aT5VSu3p03X+/NpE/esniJ3r59OuDi4sTzvUfS7rnX2LRhNm5uruYXJdDmOFJXRVaytHc2K2Y4SGtarpA8j+mdTSvIWtoTa0mQvUsCbaZQWstA5cyklNrRqFGjRjt27Mjupti0lStX8sILL9CqZV3W/TgTR0eHjB+cHGT/+fcivQd+zuFjIfTu0ZCJH/TGv3DuNA8zmUys3fA3E6cs5UDQZRwc7GjfpCR9O1emdcPiODtZ0IYM0loTfOEGa7ecYMWGYxwIuoxSipb1Axk96kUa1S/32GEEkZHRjBm/jDkLf6Na5UBWLRpOQLkGFrdj5apf6dV3FA0bVGPj+lm4urqk3EFCbZoaN27Mzp07d2qtG2d3W55VUletz5LxsZYON3hcoE2rdza1G8DS6pW1aKhBdgbZB0mgtUh6dVUWTRA53rZt2+jTpw8N6ldlzarPnijILvp+O6++PQ8Pd2fWr3iXDm1qpLq7Dg/CZDKxetM/jP9qB8dPX6NEUV++/KAdz7cvj5/Poz24CQlGzpyP5MTe3fx7MYaTF2K5eiOe23eSiE1+2Du54u3pfO9RMJ8n5UrkoVyJPJQJzI2bq7kHVSlFYBEfhg+sx/CB9TgVEsGy9UeZs2wfTdp/QO3KhRgzpBHtundJNdT6+Hgw+7NXaNWsMv1f+4oqDUew8tu3ad286v2dMjCdV88erTEajfT933t06T6MDeu+StkTLr20QvxnWbOH1prjZ9OVU4IsgJ0dt/v0SbHJdfHipz/vf5SEWZGjhYWF0atXL0qWLMLPa796tIcwHSaTiZFjv2PGV+tp1qgiS+e/Sb68uVLdV4cHse9oKC+PWceRE2GUCczN0k+70bNd+UeGD1y7HsPG30+xYeMeNu+LIPbO/X9lF87jTAFfZ9yc7cjl4YCbsx2JRk1U7G3Cw25x6nQiF8PvkJBoHmurFJQv5kG72nlo36kJtSoVune9ksX8+OjNpox6pQGL1hxi2vw/6TDoe+p8/QcL5r5DmVKp91R0al+LyhWK0bn3FNr3mMjczwfz0ovNLfrsevdqz+3bd3j51Y95/4OZTJ44zKLjhRDPrlNrzT25GQ21d2c4yKqFFbJ0flkL3Q2xrkuXpnxBwuwTkzArciyTyUS/fv2Ijo5m++a5eHq6W3R8UlISL78+m4VLtzFkUBs+nzwAe/vUp0y5ffEQH36xnU8X7CZ/bg++/6wbPdqmDLFaazb/uJGpK86y4/B1tIaCfs70blGQBhV8KFPEnZKF3XB3Sf+vlTHJxJnQ2xwPiSboXDQ7Dl1n2opgJi87i5+XI90a5WN4jwACazcFwMXZgVd712Rgj2p899NhRk3dTJX6b/PRu88z4o2Oqb6vokXy8MemCfT433QGvv418fGJvDaojUWLLQwa2I0DB/9hyrSF1Khenq5dWmToOCHEf4M1ZjnIkt7ZHNAr+3BPbAoy7OCpSJgVOdaMGTPYvHkzc+fOpVy54hYdazQa6dd/DMtWbOODUT346N2eaY413bX7HwYMnsWZ85EM7FmNaaNb4eVxvzibTCZ+WraeSd+f4eDpWxTK7czYF0vwXN28VCnhmeK8oeF3+O3vcM5fjeNGTCI3ohOJiknE3s5Abm9H8uRyJLeXEyULu1G1hCel/d3pmi+OD/vV4UZ0Ipv3hfPz7qss3HSJeRsu0L3RSUa+EEiVpi0B84wJL/WoRvumpRj64Qbe/Xgpa9bvYdHs1ylXxv+R9+bh4cLaZaPp3m8aQ0bMRwNDLAy0X3w2miNHT9JvwBhKlypm/rOQIQZCiGSW9tJmhKULJzwo03plJcjmWBJmRc5jDOLIkZO89957dO3alUGDBkHS8QwfrrXmxf7vsXzFJiZ92IfRb3dJc98vZm/g7fe+pWhBb7Yu+R9N6wSkeP3vzb8xcNpRgkKiKVHIjW/eqUifFgVxdDAXtetRCazYfpmdR67z97EILkQa7x2rFHi7GMjlakdikuZadBLxxvs3XDrZK6oXcaZmMRdalomheRk3ejYNpGfTAky7focv1pxjzvrzrPz9Ch3rnWbm5D4Uyu8FQF4/d36Y9Tw//BLE0HG/UqPJSFYsfJvn2tZ85D06OTmw+rt36N5vOkNHzMfVxZH+fZpl+PN0cnJk9cpPqVarJ116DOPIgdU4W9ZJLoTIZgbDLEymIWm+rpR5YTmtX3ria1hzLtqMyrLVv54wyD42xIIEWSuRMCtypDEffImHhyvzZw9DWRBkwTwX7fIVm/hkbK/HBtkJ035g7ITldGlVlkVTO+Pudn/O2vh4Ix9/8j1TV5ylgK8zy8ZWoXuj/NjZKZJOnGXTP7Es2n2TdUdjSDBqivo6UCfAlWHNXKgb6EKJPI54OhswGO732mqtiYk3cfVWEkdD7/DX2Tj+LziOr3fc4LOtkRTwsqdv7XD69SpPaX93Jr9cmnd7BTJr7Xk+WXqa8q2/YNq7bRnYs9q93uDubcvTsGZROg75ia59p7Fq0XA6d6j9yHt1dHTgh8UjaN9jIq++PY9K5YtStW7GemYBChbMy5JFE2nZ5hW+/Op7Ro6uluFjhRA5Q1qB1mCYde/3Txtq0wu0WTFd1yOedojBEwTZdEMsSJC1IpmaK5PJFDIWMgaxZ89h6jbsy6RP3mT0yIEWHb5371HqN36RDq2rs2bpyFSHFmiteX/8MibOWEPfTpVYMLlTijGnB4Mu879h3xMUEk3/NoX49LWyeLmbZ1D4ZfVR3lwVxtnwRHzd7Ohdy5P+db2pVMgZrTX/hiWw5UQsp68lEBGTRESMkfDoJBzsFHk97cjraU8+T3vKF3SiRRk3/NztiU80seFYDIv3RLHpeAxJJmhR3Y/PhpSlbFEPAM6GxvLyjGP8fug6zeoGMO+TjhQrfP9GtqjoO7R5eTX7Dp5h+YK36d65bqqfT3hEFFUbjsDRwZ5DB9ZaPA65Q6eh/LHrEGfPnsXPz4KV1/5DZGquzCd11XIPBtYHA+2D2+96mt7Zux4XaNMKs6mNm314qMHD03M93DOb4em4sjvIIrMXWEKm5hI2Z+xHX5Enjw+vD+ll0XFRVw7zfK/hFCzgw8JZQ9MMsiPeX8SnX/3MwJ7VmDO+AwbD/WK1bP1RBoz6ET8vBzZMqkHb2nkAuLDnJMNWXeWnw9GUzufIqkEFea6SB/YG2BgUw8zfI9n8TyyXbpiHGXi7GvB1Uvi4KAq6GDCaNKHhRg6di+NarIkkbR6GUN3fmZbl3Ohe1ZP1Qwpz9ZaRxXuimPJbBJUH7mJo56J82K8EgQXd2DK9Ft9svMg7c05QvdMcfvz6eRrVKgaAl4czv87rRruBS3nhpU8xmUz07Fr/kfef28+LFQvfplHbsbzy2jiWLZli0fK3Uye9TYUqXRg3bhxffvmlRX8+Qoic4W4P7cNB1hohNsfJoUFWWJeEWZFzGIPYsXMf27bv5dNp79xfeSo9yXPJvj7yGy6GRrDr10/w9k59Ra8ZM9fx6Vc/M6RvLb78oG2KIPfFoj0Mm7CJRpV8WP1xNXy9zHO/Llx4kDdWhqE1TOyUm7eb++JgBz8eiub9deGcvJqAl5Oiob8jw2u40LSII4W9zD29txM1V2KScDAo8rsbcLBTJJk0h68a2RaSwPZzCUzadJ1PfrlOy7JufNIxNyNb+TKgnhdj1oXzxZoQlm+7zOJ3K9GyRm5e7uBP82p+tH/3b1r2W8Sqmc/TsUUZADw9nNm0sC/tBi6lz8tfUCC/Dw3qln3kM6hXuwzj3nueMeOX0a5NA/r07pDhP6IyZQIYNGgQs2fPZujQoZQsadmyuUKInOHBIJsZIfZxww3SGmpg9VkNJMj+Z1hh5l8hrGfW7OX4+eXi1cGWDar699Qllq78g+FDn6NOzVKp7nPqzGXeH7+Mzi3L8MXYNimC7C87TvH2J7/SuUFefptW616Q/WrOfgYuuUKdABeOfxjA6NZ+HLl0h4bTz9N9XigYk/imvSenh/gxv70ned0MjNsVQ71F1yk2M5xCX4RTY0EkledfJ99n4ZSdHUGrZTdY9c8dGhd1ZNML3px6zY8PGrixP+Q2NSad4/n5l7gVZ2Ju7/zsHV2UPK7Q4b19/LQrDICAAq789VU9qhT3ovewVRw6fuXe+3B3c2L9vN4UKZybAUNmERcXn+pnMWpYZ2pULc4HH88iMTHRos/6o/fNM0PMnTvXouOEEDnT3XGy4sk9SZC93a9fJrTkvylHhVmllGoRvIgAACAASURBVKdSqqhSyjO72yKyXnh4JOvW/86LfTrg7OyU/gFwr1d26hdrcXJyYPjrz6W6m9aawW/NwdnJnlkft08xtOBkcAS93vqBSoEefPdu5XszFcyau583Vl6lUyV3Ng71p6ifI/N23aDe1HOcvhLPZy092NXPh8BcdozeFkOZ2RH0+imK7cHx5HM00aaQ4s3ydnxSw46Pq9kxuIyBOrnBISmJ747E0XrZDarMv87X+2/TuZQzBwf6MqK2KxuPxlBlfDA/H42mehEX/hhRhOr+zvT46CCrfr8MQC4PB9Z+Ug0fDwc6DvyWsCM7770fLw9n5o1rzZngK3w0KfVuCDs7Oz4Y1YOQkFCWLf8lY591srx5/ejYsSPfffcd8fGph2WRc0hdFRmh1IJUH0/j7pRd2Sa1lbwz0k9ijRW+MkgCrXVkeZhVSk16zMuBQAugp1Jqcjr7imfMkqU/k5ho5KX+ac9AkJqLlyJYsmInA19sRp7c3qnus3jZ7/y+K4jJI1uQL7fHve3RMfF0GrwMJ3vN2gnVcUte8GD2uvO8vuIqz1V0Z8WgQhgUvLkyjMHfh9HI35G9A3zoXMqJd7fH0HTJDZYFxVE7t2JWPXs2t7NnVCV7mhUw4OUIZ6I0l2I1BdwUHYsYmFTTnt/b2zOhuh2FXDSf771NrYXXmXMgjrdru7Gnvzkgd/z6EuM2huPhZODXNwpTJ8CZXhMO8f0W8w0R+XycWfdJdSKjE+n6wQESE+/fGdukTgADe1Zj+sx1HDh0NtXPpF2ralSpWIyJU74hycK7agf2b05ERATr16+36DiROaSuisxirWD7sBOWLlaQVbJheIEE2qeXHT2zaa6pqbU+pLWen/wYDUjh/Q9ZsOgn6tSuRNmygRk7ILlX9vPZPwMw4vWOqe4WFRXLiPcXU6+aP4N6ppxSatgnmzh9LoKVH1bFP695qdzl20IZ8nkQHSq6s+rlQtgboOOnwcz8/QaDq7mwvIsX56KSqDk/gm8Px9G7uIHf2zswsYYdF2I0rX8x0npTIoN2GRl3MIklp00s+NfE2P1J/G+nkaYbE+m5zYhBwez69vzW1oGmBQxM3h1LnW/CiTNqNj6fi+fLOvPRzxH0+DIEdycDm173p2FxV16cdPjekIMqJbxYOLIie47f5KMJKZdGnDqqJflyuzPw1RmYrh175HNRSvH+O905deocq9dsuf+Z3n08RvNmtfH3z8+CBfL1ZA4hdVVkuuwYjmAIK5jma1afYzYbx8lKoH062RFmM3zrtNY6KjMbInKOS5cu8c8/Z+netaVFx2mt+ennv2nbsipF/POkus+6X/7memQ0U0a1TDG84OLlKBb/eJjXuxSjcWVfAGLjjAz/8hi1ijmzalBBHO0Vn22LZNPZBCY0dmdiEw/+CTfSccUN7A3wfVN7RlW258QNTfetRqYcSaKACwwqrhhb3sCs6gaW1DU/vqhm4N1yBv4XoLAH3tuXRJ/tRsLiNNNq2zO3gT3RidB+xQ1CbiYxq40H79Vz48d/4/l8WyRuTgY2DC1M5UJOvPHlceLizb2pPZoUoFezAny55hw3ouLuvT9vTxfGvdWMwyfC2HPoYqqfTaf2NSlU0JfVP2626HO3s7Oj03NN+eOPPyzu1RWZQuqqyBLW7KXNsb2zwuZkR5jN8MS2yWO80uxxEM+OPXv2AFCvbhWLjjt15jIh56/SqmnlNPdZvW4PhfN7UadK4RTb5yzfh9aaN7sWvbdt5k/nCLuVxPSueXFyMHDmWgLvr71Gu+KOvFrNhauxSfRYE4WrPSxo5EApb8UH+40M+MNIVLxmRBkDY8oZaJ7PQGlPuJkIv13R/H5VczsJyntBmwIGJlY28FoJxaVYTd/fjXxyyEitPIpvGzmgTJrua24SflszvLYrbQIdee+na5y6Go+ro4FPu+clNOIOX6wJudfukS8EEnsniblzfkzxHru1Louzkz3frzua6mdjMBho07wqm7fsISEh0bzE7d1HOqrVaElcXBwnT55Md1+R6aSuihwp28fNZlQ2z14gc84+nUybmksp1QzzOK2Hi2yAUmoi6fckBADdgFGZ0DyrUEpVBaoDwZjbG6y13pq9rbJNu3fvxtnZicqVS1t03IZf9wPm8Z+puXkzlt+2HuLV3jVTzF5wJz6R+Sv281zdPBTNZ54C7GZMIlOXn6VdBXfqFXdFa80rCy/iaKeY2twDk4aXN9wiOt7Esqb25HOBd/9O4tdLJjoWUnQrrFAK1odq/rimuRKnSUrx069xUFDEHer4KVrnV9TyU6w4r1lx1kRMIoyvbses+vb03WHkpZ+j+LG7NzNaeFDn20heXhrG9mH+NCrpRoe6eZi87CwD2/nj5+VIxUBPWlT3Y+aP53h7mBFHR/NfbU8PZzo2L83Kjcf4LD4RJyeHRz6j59rWYP7iLezYuY+WLVJfbOER9uWpUsX85g4dOkTZso9OASas71mvq1JTn02WLHNryfRcAVeeYKhBDuwNliD79DItzGqttyml7hak7sDLmAuwAkZn4BTBwGCt9fzMauPTUEoFAFO01i0e2PaDUipYax2cjU2zSbt376ZGjZo4Oj4ath5n428HqFCuSJpDDH5cvoaExCRe6FAhxfZVvxwn4sZtXu9yf/tnP4RwM8bI+OdyA7D2cDS/n0tgSlN38rvb8fneWHZdTGRCdTuKexmYcNDIr5dM9Cmq6FDIQKxRM/qgiWvxUNBFUcPHQEFXRUFXhUnD5TjN5TjNxVjNkhDNrmuaDysY+F+AAQ97E6sumHA0wMfV7fm8pSeDf7nF1D2xjKnvzvjG7rzxWzSL9kQxoJ43k1u4U+H/rjHp+zPMeM0cJN/uHkCbUX+zcsk6+r7U9d776t+tKis3BrHh1/107Vjnkc+oWaMKuLq6sG799oyFWfvyAJQpUwZnZ2cOHjxI79690z9OPLVnua5KTRVPK9XVvzIiG3tlJchaR6YOM9Bah2itt2mtBwPFgSjgAJDrcQ+ttUFrXTwnFtwHvAI8PNHmXGBKNrTF5p09e5Zy5cpZfNw/Jy9Ru3raE/cf+ucK7m6O1KiY8iaCvYcvkcvL5d5YWYDfD0VQN8CFyoXNPQg/H4vBz0UxoLL5xrDVJ+5Qr5ADHYvaEZOo+fGciWZ5zUEWYEOo5lo8dPO3o3+gPc3z21HGy4Cng8LbUVHWy0DzfObXuhS241wsrL1k7mDr6m+gVX7FuvMmIuM19Vzv0DrQkZXH76C1pnd5ZwK87Vh/JBqAMvmdaFUjN1sPRNxrf8safvh4OvBX0I0U77VZ3QCcHO3Zuz/1m7pcXJyoUb0cR489/qavh9nb2+Pv709oaGj6OwureYbrqtTUZ1haww1k3KywhiwbM5v8L+uXk38f9bhHVrXpKXUDDj60bX/ydmEBo9HI9evXyZs3r0XHJTkFEB5xi3x5U5+OC+Dy1WgK5/N6ZMnW86E3KFbI+952rTX/nI+hXMH789seunCHSnkdsDMobt4xcSIiicqeJgD+DDORaIIGeczHRyVofg7VlPVUlPZM/69VWS8DFbwVv4Rqrt0xB9qmeRVJGraGmq9RzTOJS9EmzkUloZSiegF7/j57+945Knqb+PdCDIlG8/5KKUoUdONMhF2Ka9nZGShW2JuzIWFptse/gBsXLl5J8/UUjEH3fuvl5cWtW7cydpywumesrkpNFTbBmmNlZRYD68jqG8C2ANuy+JpWp5Tyxvw1X+SD27XWN5NfD8iOdtmqiAhz72KePKkPFUhLePgNTCYT+fKkHWYvhUVRKN+jc8Wfu3STIj6m++e6mUDkrUTK5DOH2TuJJo5fjqdSXvNInL2hiWigmp85vG4L1Xg6QKnkU6+7pDGaoGHelEHycRrnsUMDs0+bw2wRNyjgAmvOmmcHqJnb/Ndz1wXzCl1V8jkQFmsi9Ib5efkCTiQaNacvxd47Z4lCbpw5n+LHEoBAfx/OhKQdVv0L5SY09BpGozHD7Qfw9DBwKyosRcAVWc7m66rUVJGtuprS3ycTSaB9elkaZpN7CO6N61JKVVZKDVRKpZgl/+HnOZAP3C+0qUhReHfu3IlSKt3Hf9W1a+aBTpb2zIaFmUNw3jTCrA4PIjQsmoIPhVmtNedCb+Kf1/Xetn8vxABQJp95Gdugy/EYTVAhjznM/l9oIvYKKvgqEk2aXWEmqvsoDEoRnajZfEVTwVvh55TxP0cvR0VtPwP/RGm2XjH/DNT1U5yIgt0XjBTzAD9n+OtiAmAOswD7zpu/riuf3It8LDj63jmLF3Tj4pVb3IlPuURtYBEfzoZcRevUb3r3L+RHUlISly+HZ6zxxiAwBuHp6U5UVPT9bSLLPSN11aKaClJXbU1GbwBLz+v5L6X5Wohl/SFPxJq9sinO26/fIw+RcdmynG1ysd2HeZzXPMxjpR50SCk1RymV9nxL2SvtrkBhscREc/ByMFy26DiDwfw/KpMp7VmJ7OwURuOj/+o2GFSK4+4NN7j7/DHXVQ+9rpL/k+G5kR5s390TJf9qeOjChgfOe/e1u4H07q4PXtdgML/+cGa1tzNgMqXd+3B3lgNLe2a11hIYcggbr6tSU21MdiygkJ5HbgDb9dDztMbnZuHytSJzZMdytl7AduAG0AOoBqSYeiX5BofBQAulVNGsbqO1NWrUKDlgPP7xX+XubA6xsbFx6eyZUqFC+QC4dPl6qq+r3OUJKJyL4Ispv3ZXShHo78PZ0Ptfz5cp4g7AP1fiAShXwAk7BUHh5nBXq6ADRg1BkRp7g6J+PgMHIjUmrXF3ULTKrwi6qYmIz/ifY5xR838RJqr7QPN85uP2R2qKe0Bdf3uu3IZrcVCzgDloBl0zt6VK8g1qJ8LMPbZl/N3vnTPkym3y5XbHxTnlrBChYbcomN83zeAZecPcM+3j45Xh9gNERcXg5eWR/o4iU0ldlbqaHpNpSHY3QVhAZjmwTHb8c2QyMEhr3VJrvUZrfYg0OrW01tN4tHchx0ge5yWehjEINzfzbAExMbfT2TmlXLk8cXFxJjSNMAtQrLAPwRdvPLK9uL8PZy/fv56flyO5vR05ccUcEJ0dDJT0tePoVXOAvBsoD19PvlmroCIqEU4nf8PesZDC0QBHbmR8Naw9ESYSTNCziPmvYWS8JjgG2hYxj7s9dN2U4trHrhnxdFIU8TU//zcsHqWgZGG3e+c8HxZHsUK5HrlW6NVbFCzgk2ZbbtyMQSmFp6d7mvukJioqGk/P5OsnT9klssUzUVelpmaunBhoy/TM7hbkPBJkLZcdYTZKa73Ggv1z4neYd+c8TJEOHijEMieiBdzdzWNXo6Nj09kzJaUUhQrl5eLV+DT3KV6mNGHhMcTEptwnsIgPwVdu35sJAMw9nEGX708fUzGPA0euGkkyaXxcDJTwseNwtPmvTP18BuwV/HHNnBc8HRRtCyj2RGjuJCVRwfvxNxRciDWxP9JE3dwKfzfzj/iucPO5mhQwX2NfuLnXt2xu87jdw2GJVPF3ude7+s/leIrld8XF6f5NZ8FXblPM59FAffFaHAXzPz7Ment7pFjuNyOibsXg5WVZABaZwtbrqtTULJITA60tcV26NHPPL0H2iWRHmI1If5cULPveMwsk36QQzKPjvHyAmzLBt2U8Pd1xd3cl5Jzl85VWqliSXX8eTHM8aM1q5mVZf9mRcg7VetX8STRq1v559d625tX92BtyhwPnzcMdutbz5dptE98dNQfcbmWc2Xk+kY0XkvBwUHQqamBrmGZD8lRa7Qsp/F1h+gkTb+xP4thNIwmmJOKMmttGTZJO4ky0kV9CE/kuJAkvB3i+SHKQvWZi+TlN3byKAA/4v6smfgox0bGUE/YGxaYz8Ry6aqRDJXNwPH89kXVHY2hW1e9e+/8+cZNzYXHULpeyZ/ZUSATnL4RTtVLaN4QfPBJMieJF0v/AH5CYmMjFi2EUKphPemWzn03XVampIqNmXimU3U0QOVB2hFnf9Hd5qv2zylbMyy4+qCoPjVMT6TMYDFSuVJpDh/+1+NgunZpz5Uo4e/4+merrTRqWp2BeT75fdyTF9raNSxJQwJUvVofc2/ZGl6L4ejowdr35jv6uVT1oUNiB8X/GEB5rYlgtV2oVdGDCIRPnojVjqtjRspCBJSGaledNOBlgUmUDr5ZQeDiYF1GY+o+JGf8a+fRfI5OOm1hxXnM5DjoVUkyvasDPCX67YmLWKU3N3IrP69gTfgdG/W2kuI8dk5q6E5NgYuS2aMr42fF6E3PH1Yc/h6OU4v2+xe+1/8s1IXi62dNvQKcU7/X7dUdRSvF81/qpfkY3b8ayd/9pWrZ4dHWwxzl58hwJCYlUqlhSZjLIfs9CXZWamgUMhllZfs2nmcnAlC8LFmWxcGquzOydlVkMnkx2hFmllGry8LY0dpwN/J35TXoiozAvJ/mgV8iha57nWMk9elUql+bwkX9JSsr4mFOAdm0b4ujowE8/7031dTs7O3p2b8Svu84QefP2A9sNvD6gEbuP3+DvE+bZgDzdHBj5QiC/Ho9l1+nbKKWYM6AwsQmaMTuisTco5rfzxMEOhvyVSGQ8TK5pRwd/Az9e1Iw5auJ4FDTOa+CTSnZ8W9vAhxUMvFBE0aeoYmx5AwtrG/iiuh0vFDVwIRbGHjWx8KymTl7FzHr2GDW8tdtIvEmxuKMX7o4GJv4VS2i0iW8GFMLBTnEs9A5L9kYxtEtRCucxjzcODb/Dqh1XGNCjBh7u9xd+0FqzYsMxmjQoT8ECqeeX7X8cIynJlLGlbB9w5Kj5HxAVK6S9ApvIMs9CXZWamsmsGWS1fumpz5HaeNmijZ/8fOlOzWXF8bkSaHOWLA+zyfMhzldKTVRK3b0NOsWNCslTzPwGVNdaT8/qNmZE8tdio5RSU5RS3ZRSIzGvKy5fhz2BqlXKEBsbx6lT5y06ztPTnUYNq7PhtwNp3rn8QtcGJCYmseqX4ym29+9aBQ9Xe6avPHtv25BORcnvZc87a64Sn2iiTH4nxrTzY/WJeJYci6OQpx3Lu3gTGa946Y9Egm9pJta0Z05987jWicdNfH3WxOYrJi7cBn9X6FTYQIdCBoq6w9U7sCdC8+mJJMYeNRGVCJ/UsGN2ffPsBQP/MPJvlGZeO09K+dqz9uQd5hyIY2BlF+oEuGJM0gz/4Rqezgbe7RV4r91frAkhyaQZ2rdWivd4IOgyp89dT7NXFuC3bYdwd3emdq2KFn32R46ewtHRgdKli1l0nLC+Z6GuSk3NXNnRIwvWm1/WatIKtE+wcILr0qWZFmol0FrGPpuu2xLYjLlw3QQilVJ3f8QCMI+bOgg0z6b2ZYjW+iCPLr8oLGVfnkYNzRNh/7h2K2PKvGzR4c/3aMNLL3/Api0Haduy2iOvV6sSSI2KBfnoi+30aFsOH2/zDWeeHs68NaA+47/awYrtl3m+aQFcne2Y8UYFeo0/xPPfhLLq5UK829qPXadv8+Zv0Vy6lcToum6s7OpF359u8vw2I/8raWBQGTt+bOHAolMm1oQksfMK3M0S7vZg0nD7gU5nNzsYVNrAwNJ2KOCr40ksOmXC1UHxXUcvWgQ4MnV3LJN3x1Itvz2fD/DHmKTpszCUrf/GMntYeXw8zQs87Dx8nU9/CKZvp8oE+N+/f8ZkMjFswiZ8vF3o1jH1IQRRUbEsX/MnHVrXwMHBIdV9UqO1ZsMvO6ldq6JFx4lMZfN1VWqqyFZdTU8056zr0qWZtpiCyJhsmSlYax2stS4OvAvcBAIxz4tYDfM8iYO11jVsZD1xYQXFihWiSeOaLFz002Mn909N3z7tKVYkLx98siLV3lmlFPNmvc31m3G8M3lzitfeH9KIulULM2jaUYJCzPNsPd+0ADPfKMe6IzH0WRCKAjYO9ad/XS+m7bnNwA23qJzXgb8H+tG9rDMLT5qoty6RiYeTqOqn+LmVPetaOvBlXXtGVLSjtp+iQR7zUIPP6tizqpk92zvYUyePgelHk2j5SyLz/zXRpbQzewf4Uq+wA/3X32Ly7lh6lnVm13uBONgpei8IZdWBaKa9WoZXnjPfrHXhahw9xx2keBFfZn7YLsV7m7fiAH8duMD0d1uTK1fqMw7M/XYz0dFxjHhnqEWf+eHD/3LiRDC9nm9r0XEi80hdFeIhDbLuUtbuoZVZDSyTrcteaK2naq0DtdYGzIU3l9a6uNZ6fna2S2SPl/p3Jjj4Ejv/2G/RcQ4ODnwwqjsHDp9l3cbUhwJWrliMd97oxLerD7Jt99kHjrVj1cyeeHi40GXsfm7GmFcjG9K5KNNfLcMPB6Ppv/gydgb4pm9+pnTJw9qT8TT8LpL/C03kq9YebOubiy5lnPjlgon+O420/83IgpNJHIs04WIHnQLsaFPUDn9vA8cjTXx32kT7X40M+MPIxgsmmgU4saGnN7PaePDnxQQaLo5k45l4ZnTLw7LXi2JnMAfZHw5GM/3VMgzvYZ6VIDbOSKf393MnwcTaOb1SjJUNDbvF6KmbaVY3gP+9knqPQXx8Ip/P3kCzprWoWrWsRZ/5shW/YG9vT7euLc0bZDaDHEPqqshsGR0vmyOGGKQWaB83dvYJhhtYmwRZy+WYNdySV6eRHoP/KvvydOncHC8vD+YvWG3x4X16NqJEYH4+mLiCxMTUl2T9YFR3ihfx4ZUx64mKvj+fbIG8nqya2ZNzV+/Qa/wh7iSYxwO83SOACS+V4vu/b9Fzfijh0Um809KX3970x8nZjj5ro+iw8iY37mhmt/Hk1JDczGvnSXFPxd5rJhb8a2L8oSSG7jby1h4jEw+bhxLsDzdR0UexoL0nJ1/LzZy2noTfNtFs6Q0GbriFq4Niy1v+DGvuy6UbRjp9fZHVB6OZ8VoZ3k4OsncSkujzyWGOBt9i+ZfPUzow9733YzKZeO2Dn0lITGLOV8PTXPXru+U7uBJ2g5EjBlj0WRuNRpav/IU2revj6+stQTYHk7oqrM0aN35ZS3D+lM8fWc42i1mjd1aC7JPJ8jGzqawLHqy1vpX82gjMd6/6YJ6OZZTW+lzWtlBkFxcXZwYO6MKnn3/HyOEDqFy5dIaPtbe3Y8rHfenSZyrvffw90yY8OnjexcWJb+cOp0n7sbR7aQmbFr54rzezfvUifP1xB14es46WI/aydkJ1fDwdea9PcZwcDbw37wTbT8YyuXMeBtbz5vD7Acz/8ybjN4bT5Yeb5HE10LaEI02KOPJdN1+8nA0YTZprsSaOnIrCTkGlUl7kdjVgUIrQ6CR2nEvgrc232Hk+gYg4TVEvA7PbeDCwQ0GMSZpJv0bwyS8RmFDMeqs8r3Y0Dy2IiEqg8/v7+SvoBl++UY42je7PJmAymRj60UZ+3n6Sz8e2pXhg/kc+B4DgkDBGjF1C3TqVadHcsim5Fn+3ntDQa8z+aqwE2RxC6qqwtqcNren1ylp7JoPHagDssmD/Jxw7+7QkyD657LgBrAUwBfgB2ELyyi5KqcnAO8B8YC7meRDnKqVekcL73zHm3UEs+m4dw0ZMZfuWBWn2Kj7CtQSdO8BrA1szfeY66tcpQ8d2NR/ZrX6dMqxYOJye/WfQ9qUl/LKg771AO7BnNTzcHek34keqDNrFotGVaFLFj+E9AmhXOw+vfnqMwd+HsXhPFFO65GFwQ28G1PVi3ZEYlu+LYs3J2yw6cgeDAn9PA76uBvxcDPi62pNkgnnB0YTfNhEeayIs1vxVVh5XA02KOtKhpDMvtMpPkgl+OhTNmHXhnL6WQOcGeZnxWlmK5jPftLZp7zVemXGM8JsJrPigCj1e7HzvvSUlmXh5zHq+XX2QkS/X543hqf/PKCEhkRde+gylFEsXT8r4Z5x87PiJc6lZowLt2zXK8HEi00ldFVaRk3pe0xNwJWXvbEgeK/bOPsXNYIDFN4RJkH062RFmbwIttNbb7m5QSlUBRgJztdavPrB9HzAa8w0N4llnX55cuYIY/9FQXnt9AuvWb6dTx2YZP961BJ9O7M/e/afp9+qXHNgxncCAfI/s1rVjHZYveJsXXvqU9oOWsvGbPri7mQNtz3YVCCjsQ583ltJ8+F7zUIMBJSnt7872z2qzZHMoI2afoOH085TM60i/Ol68WMuLHtU9SUzS7A2JY8uJWM5eS+DytTgux5g4es2IvQFyuxrI726gYh57Svna81yD3FQoaL7u3+fu8MbKq6zcf4vI2CRK5HFk05SatKppHj5wMyaRt2f9w6JfL1G2iDs/ja9OteYt772nxMQk/jfyR5b/fIwPR/fgw9E90wypY8Yt4+8Dp1m1fDrFilm2ms7i79Zx/vxl5swai3KoYNGxIlNJXRVPzVpB9kl6ZTNVar2yPYGVmXfJB4ccpBdsJcg+vewIs14PFtxkPTHPYzTlwY1a6yilVGSWtUzkCIMGdmXWnBWMGDWDFs3r4ObmmuFjnXKV5YfFI6jW6B26vjiVnRvH4+Xl9sh+3TvXRWtNr4Gf0W7gUn78+gV8c5mvU6NiQQ7Oq8+IOSeYsTKYLfvCmflmeRpU9OHFVoXo0jAfP+y4wqJfLzFmbThj14VTo6gztYq5ULuYC/3reFHE1yHVMKm1JibeRNDleLaciGX8xgj+LySO0JtGnB0UnSp50LdbKVpU98PezoAxycSq368wcu4JrkYm8G7vQD54sQROgfcXOIiOiefFEWtYt/VfJn/Uh1HDuqT5+SxfvYvpM9cx+OUedO/WKsOfK0Bc3B0+mTyfWrVq0artKxYdKzKd1FXxxKzZG/ukQTa1IQZZsvrX41hpuMHjemslyFpHdoTZ1G5GaI55/e1zqbyW+kz44tlkXx57gpj5+bs0azmQQYM/4vvvplj0VXixsvVZtuAtOvScRMvO4/jtxw/w9n400PboUg+tNS++8gWV2s9iwaROtGpYAgC3kvWYPcyedrXz8MqMYzR6cw8NKvrwbu9AWtXITf82henfh6fxEwAAIABJREFUpjBnQmP57rdL/HEkkm92R/Hl9hsAKAW+bnbkcrXD28VAokkTEZNEREwSdxLv/0gX83OgYQlXmpZ2o1uPCni5m+dsvX0niTnrz/HpqmDOhcVRMcCDtROqU715ygD6+55gBr23jnOhN5k5bSBDX057qqwlK3bwv1e/okH9qnz+qeWLKo0YOZ3z5y/z7bdLLfrzEFlC6qqwSGYMJ8gRsxfkYA/PRytB1nqyI8w+vCqNF+b1t7eksX9OXENcZCb78jRpDBPGvc6YsV9So1p5hr31okWnaP1cT9YsMdLtxek07/gRm3/6AB8fj0f269m1PiUC89P3pam0GbCEV3rVYNqoluZhB4Vr0Z69nF7qx4JfLjBtRTBtR+2jaglPBncsQttaeShe0I1xA0oBYEwycSw4miNnb3HqYiw3YhKJijFyIywKBztF5ULO+Pn7ktvbkRKF3KhTNhd5fe5Pp5VoNPHHkets2HONRb9eIiIqgTrlvPlsSFk69OyAwXC/hyAq+g4jp2xm/or9FC/iw46N42lQN+3pteZ9u5nBw+bSpHFN1v/0JU5OjhZ9nuvWb+frOSsZPnw4TZo8vGqqyAGkrorHMpmGZOoqYBkJspYML7Bqr2xaN4BlZKiBlW8Guzf8wMKl28XjZUeY9X7o+d3VaH54eMfkgixfh/0X2Zfn3VEDOXDwH94Z/SmVKpWiaZNa6R/3gOe69eYnOwNd+kylQZv32bhqDEWLPLp4d9XKgRz4ayZj3vuSzxbuYeufZ/l6XHua1wtEFa6FK/B6Fzte6VCEpVtCmbriLC9PP8b/s3ff4VFUbxvHvyeFJLQUqjRDACkihIBYKVIFFUVBECzYCFiwgw1EfZVi74LtJyoWEHuhKaBio8SGBQm9CiQQakhy3j92Fpaw6btJNnt/rmuvmNnZ2cOYfXLnzJlzANo1q07fU2tz+omxNG9YlTYJ1WnXLLrAtllr2bLzIF8t286fa/ew8JcdzF2ynV17swgLNfQ9pTZ3DE7gjL59jnpdTk4O73+5glsf+pLN/2Vw+7Vn8MCDNxAVFZHn+zz69EeMHjeNvn06MfPdx4mKKlrvycaNW7nq2vtJSkri4YcfLtJrpdSorkqB/BFoC9sbm1+Q9dssBp7yC7SQf6j19ewGCrI+Z/Jaz95vb2jMRYC11s4yxlTHtXRhrLW2Rq79EoFkzxsXApExZkGXLl26LFiwoKybEpAy0n7k1DOHsnnzfyxe9AYtWiQU+RgLFv5M/4tuJCIinPffuIMzTm2Z576LvvuDK5MfJ3V9Gl1PiWf8Td3o3DH+qH2stfy2cB6f/7iNz3/YxuI/0nAvWhYRHkLT+pWpGxdB5chQqkSGERZqCDEc7qlN33OItVv3s2vvkflw69WMoM8ptenTsRY92tekeoszj3rPrKxs3vv8Dya+uIjf/9nGSc3r8PKEC+jYPe9xr3v27Of6219i2tsLGDigF2++PpFKlYq29Gxm5iF69RnOz0tWsGzZMpo3b16k1wejrl27snDhwoXW2q6l9Z6qq1IUISHP+WSYgS+CLBwbZvPrlX1m89E3reaeaxYKmNEgvym6CnNDWElDrYJssRRUV0u9Z9Za+74x5kVjzMsc6U1IgsM9BsNx/a2UBFhjzFJr7cul3U4pH6rFnsLHs57h9M6XclbPq/lqziu0bFm0QNu1y8ks/mY65/W/gS59x/LwuKHcPur8oy7bu3U+40RWLH2RKc++zoQXFtF1yKt0PSWeW68+g96dmhIeHooxhjZde9KmK9y5/kfSMg7x++oM/lm/h7/X7+Wf9XvZsTuTHbsPsfdANoeycsixEFctnOgqYcTXrczprWNpeXxVWnY4mZZNalGvTjWv41C3bt/Du5/9zjOv/8CqdTtp1bQWbz4+gEHntCasbps8/80/LV3J0GueZNXqLYwfdx1j70n2+u/NT3Z2NpdecScLFy1h2rRpCrLlmOqqFEVOzvUYc6DgHfPhryBb7rlXCCtOqFWQ9Ru/hFljzIW4bjz4ytvz1toRxpgxQIK1dnmup5c5DzddDgtyTZo0ZMG81zir51Wc1fMqvprzCq1aNSnSMVq2TGDpj+9y7YjxjLnvDT6bs5RnH7mWk048/ph9IyLCGXXbNVxzcXumvrOESVO+od/wt6gZW5lB557Epee3oWPbBq7w2fAUYoFOrTxWTVz/IzQs2pAIT9t37uXj+X/zzqe/8tX3q8nJsZzcpj6T7xzMBZcMyDeU7tmzn0lPfsCEx2dR77g4vv70Abr0uqDIbbDWkjzyAWbMnMOjjz7KZZddVux/j/iG6qqUF/6+0StkS/1Cj5nNPdcslGC+2aJM11VGCyuId/7qmb0b140HxxRdY0yitTbFWWLxqILrbMs9vYwILVsmsGDeq3TrdQ1de1zF/NkvcdJJJxT8Qg/R0dV4d/qj9O7yIqPHTaNdp9u4YXgf7r9rsNfpuyo3bMfNd7TjuqEd+XLRSt766Fdefncpz73xI7XiqnBau4ac2q4Bp7VryInNalMjtvLhgFsYOTk5bPlvD6s3pPHLn1v5MWU9P6RsYOWaHQAkNIzlzhGduOTcNrQ+o1u+x8rOzmba2wu458HpbN6SxqWDuvDM5GuIqZd7YaiCWWu5ffSjvPLaLO69ezi33XZbkY8hfqG6KmWuKEG21OeT9QU/zz8r/uGvMDsPmJjHcy8BJxf2QMaYbnn1REhwadHCFWjP6nk1nbsN46NZT9O5U4ciHcMYw9UjRnLBuadw74PTefrFz3l75rc8cPdgrry0m9cxpZXqtaXf4Lb0GzyAXbv28sGnP7Jg3rd8v3w9H8//6/B+UZHhNDyuOg2Piya2ehSREWFERoYRGur6633X7gNk7D1Ixp6DbP5vD2s3ppN56Mhlpzo1q3Jau4ZcNTCJbqclcHK3XgVOgWWtZc78FO4c/yYpv63mlA7NmDntDk4/pfBLAec+3tj7nuHxJ6dxw3WX8MD4G4p1HPEL1VUpM4E27ZZPVwPLi3pnyw1/hdl2Tm+AN0WdoHISRSjSUrGdcEI83y2cxtnnjqB7r2t5+ok7GZF8cZHnPa3RIIkXnqjGNZf3YNSYlxlxyxQefvx97rltAMOGnpXnjVLR0VUYNrQbw4a6ekq3//MTP6SsZ+WaHazfvJsNm3exbtMuNm3NYP/BQ+w/kEVOjsVaS0z1SKpXjaBabBxt29bj/J4hNG4QS3yDGFo2qcXx9WMIqV24VbWys7N5/6MfmPjELJb/uprjG9Xi7VduZdBFZxw5F5WbFemc7Nu3nyuvGct7M2Zz9ZUX8tQTd2qVr/JFdVUCRmF6ZYs6Xjb3zV9+o97ZgOOvMNvTGPMOcK21NiPXc0WdPqHot69LxRLWGrJ+P/xtfHx9fvj2LYZefifX3fh/LE/5k2eeurvIc6dSuRnt28G3sx9m9vzljJ/wLsk3v8hDj83kxuF9uWRAJ+rXy386zpondOTcEzpi//s93/0ATK3WRWufFxs37WDmR9/z7NQv+Dd1Myc0rccrz17P0GFXHfn371tZ5CC7YcMWzr9wFMtT/mLyxFu5/dZhCrLlj+qq+Iy1Bfe0FvcmsfIwvCDPXtm8pujKrbCBtrC9s7r5y6/8OZvBQGCgMSado282SDDG7CjkMXLPnSjBKuzoIBhTEz7+5GvGjRvHww8/zJKlK3hr2sQiz3RA5WYY4Oweht7d2zF7/nIenDyDO8ZOY/S4NzirU2uGDOzE+ed0pGaN6nkexjOoegbbkgZYay2rUrfw6ewlzPhwMYt//BuAk5OaMnPaHVxwbkdCQ0PBM8gXMcguXpzCRYNuYe/e/Xz8wTOce06XY863lBuqq1JqrI0scqAtbJDNr1e2zJexdStKoIW8Q62CrN/5M8zuAqZybOGsgZeJvPNQA8h7oXkJaqGhoTz00EN07NiRa665hqSOFzN5wi1cf90lRZ6G6nCo7XcCZ/dI4p9/NzF9xiLeeu8brrnxea658XlOOvF4enRtQ9+eSZzWsTlVqnjv2ShJgM3MPMSKvzbwzfcr+HrR7yz+6W+2bksHIPGkxvzfvUO46PxTaXGCx+W2IoZXt4MHM3ng/15k4uRXiI+vx7wvX+LEE5sqyJZvqqtSqgobaIvSG+vv6bh8Ola2pDMcKMiWCn+F2WRr7UvenjDGdLDWjijsgYwx//quWVIRnX/++ZxyyilcffXVjLplIjPen8PUF+4r1gILAFRuxgltmjG+TRfuu/Mfli5fxZyvUvj6m995/uUveeK5TzDG0LpVI9onJtA+sQknNKlH/Xpx1D+uBtHRlfMdw5uVlc3Wbems27Cddev/Y+36//jznw2k/LqGP/5az6FDrsUU4hvVple3tpxxSgu6d2lD0yZeZgcvZpD94YdfuGr4OP78M5Vhl5/Pk4+PITr62OV+pVxRXZUyYW0kzfuXdSt8qLBDDdyKG2gVZEuNv8Jsfut5FnVs15SSNESCQ926dfn00095/dWHuPm2yZzU7iKuGzGI+8aOJC6u4OVl82KqnECHM0+gw5l9uHvfSvbuPcC33//JN9//ydKUVXw2eyn/e+vro14TFVWJ6OqVCQ8Po1J4GOHhoWRmZpGxZz8Zew5w4EDmMe9Tu1Y07do0pnf3RNq1aUzH9s1oHF/He1jdt9L1tRhBdsuW7Tzwfy/y4tT3aNCgDp9/8jx9zu50ZAf1ypZnqqtSbn04GC54p+D9CuqVLTdDDHJ7r3RXS5Wi8VeYzf+umSKw1j7iq2NJxWaMYdgVF9C3TyfGjX+OZ59/mzfe+oT77h3JdSMHER5etKVcj1G5GVUqQ+9+J9G7hytQWmvZuGkHq9duY+OmnWzaspONm3eQkXGAQ1lZZGZmcehQNuHhoVSrGuV6VIui1nFNOf7442jU8DgaNqx7dK9oQWG1GCE2PX03kx99jaeeeYvMzENcP3IwDz04iurVqx7ZSUG2vFNdlXLp7w9cXwsKtCUJsqU2k4E3FynIlnf+CrOxvjqQMeYaLbsoRVG7dg1efH4c148czK13PMLNt03iiaff4O4x13DlsAtKHmrhcKA0QINmrsdh7jCaz+sKc+wScYJpRkYGzz77LI888ghpaWkMGdyX+++7nqZNGx2zr5R7qqtS7riDrFtegTbglq11U5ANCP6a7XeGMcZXs7SN8dFxJMicdNIJzPliKp9/8jx169Qk+boHaNG6H6+/tZSsrCz/vXHlZkc/PLeXhrDWZGRkMHHiRBo3bszdd9/N6aefTkpKCm+9/RlNW/R1BVj3QwKF6qqUK7mDbEn4cnjB6tqF2KlTwbsoyAYOv/TMWmvnG2PuNMasxHWHbarH0wnGmNso3CTfNdB8iFIUueakNcbQ5+xOnN37TL6Yu56xY8cybNgwxo07juRrB3L1lf2pU6emf9tUWiEW+HdNJNOmjeP5559nx44d9O3bl/vuuZSOHU9ScA1wqqtSlgobXAszbra0eIZarzMc5HcjmIJsQPHb1FzW2p7GmBnAnV6eLsp4Lf1ESdF4CW0G6Nv3JPr06cMnHz7LM89N556xTzP+gecZcFFPrrjsfM7q2jHPlb/Ks+3b03h/1lymvfkJi79PwRhD3759GXf3UFeIdcv6XYE2wKmuSnlW3CBbUK9sQeNlEzZDaq7JXgoMsm65A20noLY+HoHGn/PMYq0dmHubMWaJtbZDYV5vjIkBVvm8YRK0TPYf9DvvLPqddxZ//72aF6a8x/+mfcTb73xBdHQ1zjunC5cOPZfu3U4hLMyvH49iy87O5scff+OTzxYwZ+5ilqf8hbWWVq1aMWnSJIYOHUr9Omll3UzxE9VVKY/KU49skXkOOVCQDUjl87e1w1qbboxZXdbtkIqpefPGPPn4GCY8dBPz5v/ArA/m8dEnX/Pm9E+Jjq7G2b3PoO/Znejd63T/D0XIx86du1iy9A8Wf5/C4u9T+PGn39i9ew9hYWGcdmob7r/vOs457yratWt3ZH7bLIVZ8U51VcrCmgX+vQnMW+9skSnIBqyyCLMTirJzYXsbRArF8zK7M7Y2KiqS887tynnnduVgdjNmz57NB++/yhezv+Xd974EoGXLBNq1bUFSUiuS2rWkRfPG1KlTo+grjeUhM/MQ69ZtZvWaDaSmbuDvf9bw+x//8vsf/7J5838AhISEcFLrZgy95By6dO5A716nExNT3fvQAfc2j/HDGmJQoamuSpn6cHBJXl3f69ZRFP6mMHucZXUeQ8ZX1z56qMHq2tBYI20qlFIPs9ba90v7PUW88hLuIsKgX79+9OvXj5zMX0lJ+Ysv53zHjz/9yqJvlzL9nc+P7BsRQaNGjYg/viZ1atcgJqYasbHViYmuRmRkBCEhIYSEGEJCQjh4MJO9+/azZ88+9u7dz44d6WzdtoOtW3eyddsOtmzZTk5OzuFjR0VF0qplAr16nEbr1s1IbNucUzq2oVq1KgX+G4r0vFQIqqtSET1NfUaxkRuP25DvuFl7nCuYNib/QOumIFvxlOthBiJlKaRSG5I6tiEpqZVrQ1hrtm3bxvLly/n3339Zs2YNa9euZc2aNfy76g/S03eQnp6BtfkXysqVo4iLq07dOjWpV68W7RJb0KBBHRrH1ychoQGN4xtQr14tQkND82+ggqqIVHDuQJsXd5B1yy/Qup+XiqfUwqwxpjowHNcqx0m5nl4GvAO8ZK3dXVptEikUj9BYu3ZtevfuTe/evb3umpP5KxkZezl4MJOcHEtOTg7Z2TlERIRTpUoUUVGRhFRq49rZcwhAEdog4qa6KsHgaerzjJftuYOsW16BVkG24iqVMGuMmQCMdn/rZZf2uArxZGPMJGvt3aXRLhFfC6nUhujoPEJqUQKpwqsUQHVVgklewbWwFGQrNr+GWafXYD6uopoKzAPmAunATme3BOfRC+gO3GmM6QH0UG+CBKTCBtFcCzwU+fUSlFRXRYpGQbbi83fP7FdADDAwnxsUljtfHzHGRAPJwERcBbqjn9snUrZyB1oFWSmY6qpIISnIBgffzCvkhXMJbKe1tmlh77S11u6y1k4GmgJxxpjn/dU+kXJHQVYKoLoqUngKssHDLz2zxpjGQM/izmVorU01xnQAlhhj4q21a3zaQJHyRCFWCkF1VaTwFGSDi796Zi8Cri3JAay16bgujSX7pEUiIoFNdVVExAt/hdmTrbXLC94tf9ba+UATH7RHRCTQqa6KiHjhrzDry3W/U314LBGRQKW6KiLihb/CrC8Hq2jgi4iI6qqIiFf+CrMJPjxWjA+PJSISqFRXRUS88FeYzXth5KIcxDU/Yg1fHEtEJMCproqIeOGvMPuuMx9iSU3Etba4iEiwU10VEfHCL2HWmcx7oDHmrOIewxhzDa6lF2f5rmUiIoFJdVVExDu/rQAGjADmGWOuLuoLjTETgSloLkQREU+qqyIiufgtzFpr5wEjgZeMMT8ZY/obY6rntb8xJt4Yc7sxZgdwBzDCWvuVv9onIhJoVFdFRI7ll+Vs3ay1U40xO4H3gJkAxphUXHMcpuO6ozYO1126MRy5wWFgYdcdFxEJJqqrIiJH82uYBbDWzjTGxAKTcS3F2IS8V5+ZCoyx1u7yd7tERAKV6qqIyBF+D7MAThFNBpKNMd2BJI4U3lVAqnoMREQKT3VVRMSlVMKsJ2dd8Pml/b4iIhWV6qqIBDN/zmYgIiIiIuJXCrMiIiIiErAUZkVEREQkYCnMioiIiEjAUpgVERERkYClMCsiIiIiAUthVkREREQClsKsiIiIiAQshVkRERERCVgKsyIiIiISsBRmRURERCRgKcyKiIiISMBSmBURERGRgKUwKyIiIiIBS2FWRERERAKWwqyIiIiIBKywsm5AeWOMGQAkAE2cr1OstTNz7ZMEdABSnX1SrbXzSrutIiKBQHVVRPxJYdaDU3BT3UXWGBMDLDXGxFlrpzrbEoBJ1tqeHq+bYYxJtdamlknDRUTKKdVVEfE3DTM4WoK1dpn7G2ttOjAJmOKxT3Ku73G+n+T/5omIBBzVVRHxK4VZh9NbMMj56mme83yC8/0AYFmufZY4271auHAhxpgCHyIiFYnqqoiUBoVZh9NbkOA8vHIKcgKw08trPQuziEjQU10VkdKgMOvBWhvreTnM0QNId8ZtxTn7pedxCK9Ft0uXLlhrC3yIiFQ0qqsi4m8KswVLBiY4/537UpmIiBSd6qqI+IzCbD6MMcOBndbayWXdFhGRikB1VUR8rUJOzVXEMVY7vV3eco6RbK1t7+W5mHwuiYmIVDiqqyJSXlW4MOuer7AIL/kZ8NZDMAnonmube77DOOBw0fW4U1fzIYpIhaO6KiLlWYULs84NBQNLcgxjzBRgTO5eAmttujEmlWPHeMVx5GYGEZEKRXVVRMozjZnNxRnPNcmzgBpjenhcYpuHa8lFT0nOdhERyUV1VUT8SWHWg7PsIkCMMSbJefQABnoU4TEc20OR7GwXEREPqqsi4m8VbphBcTnjs2bk8fTh3gTnktgYY8wkXOPC3GuK61KYiIgH1VURKQ0Ksw5nHFeh1j50JgDPPQm4iIh4UF0VkdKgYQYiIiIiErAUZkVEREQkYCnMioiIiEjAUpgVERERkYClMCsiIiIiAUthVkREREQClsKsiIiIiAQshVkRERERCVgKsyIiIiISsBRmRURERCRgKcyKiIiISMBSmBURERGRgKUwKyIiIiIBS2FWRERERAKWwqyIiIiIBCyFWREREREJWAqzIiIiIhKwFGZFREREJGApzIqIiIhIwFKYFREREZGApTArIiIiIgFLYVZEREREApbCrIiIiIgELIVZEREREQlYCrMiIiIiErAUZkVEREQkYCnMioiIiEjAUpgVERERkYClMCsFMsZgjCnrZgQsnb+S0fmTikY/0yWj81dyFe0cKsyKiIiISMBSmBURERGRgKUwKyIiIiIBS2FWRERERAKWwqyIiIiIBCyFWREREREJWAqzIiIiIhKwFGZFREREJGCFlXUDgkDTlJQUunbtWtbtKLGK8G8oSzp/JRMo5y8lJQWgaVm3o4KrEHU10Ntf1nT+Si5QzmFBddVYa0uvNUHIGLMcqAX8W9ZtEZFS0RT4z1rbrqwbUlGprooEnXzrqsKsiIiIiAQsjZkVERERkYClMCsiIiIiAUs3gIn4iTEmCegApAIJQKq1dl7Ztqr8MsYMwHWemjhfp1hrZ+baR+dUJIipBhRNsNRVhVkpULB8GHzJGJMATLLW9vTYNsMYk2qtTS3DppVLzs9YqvvnyhgTAyw1xsRZa6c623ROpUJQTS0e1YCiCaa6qjAr+QqmD4OPJQNTcm2bAkwCBpZ+c8q9BM9f5tbadGPMJFznbKqzWedUAp5qaomoBhRN0NRVjZmVgiRYa5e5v7HWpuP6Iff84c/vwxCsBgDLcm1b4mwXD84v80HOV0/znOcTnO91TqUiUE0tPtWAQgq2uqowK3kKtg+DrzjnKwHY6bnd+aXled6Ew+clwXl4pXMqFYFqavGpBhRNsNVVhVnJU7B9GHwoDo6cAy+C8Zzky1ob69lb5egBpDuXVXVOJeCpppaIakARBVNdVZiVfAXTh8GHcve6SPEkAxOc/9Y5lQpBNbXYVAN8o0LWVYVZKY4K+WGQ8sMYMxzYaa2dXNZtESkFqqnidxW5rirMSpFU5A+Dr3kZFyeF4FxGTfa8k9vjOZ1TqVBUU4tGNaB4Knpd1dRcQaKI46x2ervE5fFhaO/luZh8LosFG/fUOXHA4XPiUTCCeWqdwpgEdM+1TedUyhXV1FKnGlAyFbquKswGAfechUV4yc+At16CCv1h8BVnLr9Ujr1cGMeRcXHihTFmCjAm9y9xnVMpT1RTS59qQPEFQ11VmA0Czg9kiSY/DoYPg4/Nw7V6j+eNHknOdvHCudw6yfNnxhjTA9cE86nonEo5oZpaZlQDiihY6qrGzEqB8voweFxmc38YPAXch8HHxnDsL7tkZ7vk4qyKBBBjjElyHj2AgR4/dzqnUiGophabakARBFNdNdbasm6DlGPOhyEO14TdbnG4PgzJzj4xwIxcSy/OxTUWLGh7EZy11QfhusSYACwL9rXVvXF+ftLyeDrVWtvEY1+dUwloqqkloxpQOMFWVxVmJU/B9mEQEfEn1VQR/1CYFREREZGApTGzIiIiIhKwFGZFREREJGApzIqIiIhIwFKYFREREZGApTArIiIiIgFLYVakAiriuvE+e62ISEWlulp+KcyKVDDOCi898nrOGDPJY513b9t3OkttiogIqqvlneaZFalAnInWk90rCXl5Pg3Xmu/J1tqpeW13ehGmeK5AJCISjFRXyz+FWSl3nOUeBznfupduTMC1Es7Moi7n6F6LGkgHdjhfPf9Cngcsw/VX9wRr7czit77sOH/9LwXaW2vTvTyfAKxyvo1175PP9tFADWttQK3RLSLHUl0tHtXVwBBW1g0QcXOK4xRchXWgl+eTgBnGmHmFLQTOeubpuY9njJmE6y/mmdbagR6Xh44pVv5ijOnh4+UpJwGTvBVcxwDn68xc+3jdbq2dbIxZZYyZEuzrwYsEKtXVElNdDQAaMyvlgjFmODAX1+UYrwXVWrvMWtseSDLGLM09PsnLMWcACd4KOOC+FHStc+x0a+2Y0lr73Pmr3WeXmpzj9fC8xOWF+/1yj9vKazvAmDy2i0g5p7rqk+OprgYAhVkpc87lrym4Cm6BRc8ZbxQDzC9g1wFAXpe2YnD1LJRaj0Euvr6zdZLzyE8PINXLOc5rO86lwQ66E1cksKiu+oTqaoBQmJUy5fQCzACWFfDXb25jcPUkFFRoVuXz3M4ivJ+veevVKIkBwHt5PelcaoRchTmv7bm8B3i98UFEyh/VVZ9RXQ0QCrNS1twf9glFeZHzl20qMLqgy2LljfPX+HAfHm8Arl9a+fWG9MTVY5L7F1te2z3NwIftFRG/U133uEYAAAAgAElEQVQt+fFUVwOIwqyUNfeHuThjqtyvCYiCYIyJcQrkUh8fuiewpIB9enBkPFthth/mXCaL0SUxkYChulpyqqsBRFNzSZlxLsXMxTWuqEkxXj+AI5fS2ntsu8vZJQnXXbTe7hhNwDW+a5nHtmuttcs8jpPAkbtwY5z/jgHmuffL1R53b8gOoIaz7xiPKVkmcWTSbW9tK/TdxLnedxWuu229Fk+nhyUNaOJ592xe24vzHiJSPqiuqq4GI03NJWUpyfla3OlJ3AXRfRz3ZbKZAMYYi2t+w8m5X+isxHKxu1h7eW5u7td5/JJon2t7AkfuGJ7nsX0AsNoY0925Y3iMs91d7Kb6aK7BBPLvQeiA93kk89ruTSpQ5F+MIlLqVFdVV4OOhhlIWXJ/iIt756vPbzRwCuLF3ib4dgqqt7t45+IqXvNy7T8TVzF8ydftdCvMPI7W2nneptHJa3seUvH9ncIi4nuqqyWkuhp4FGalPChPNxok4BrHlFeb5np+46zmkkDeN1pMwXV3cFIez5dUnPPV33cQuy8FikhgKE+fV9VV71RXfURhVsqSe3qXuHz3ypvP/6L1GLO11BgzwEvxfY+jL98lk/+8iu59O/iwmZ4SwDU5uZ+O77aD4v9/EpHSo7pacqqrAUZjZqUsea4PXhzu1x1z00AJtcc1cfgMAGPMMlx3+L7r5QaFBCDV6UnIyzzKdu5FX1EPgkj5p7oaWFRXfUBhVsqMtXamMQac6UmKsU61e7nAd33crmVArLMU5EBcf/2PxjX34mSPGw7cRT/d280QHvJ7rqRKq5jXoBTXVxeR4lFd9QnV1QCjYQZS1txTkgwoyoucy1Tu6Vh8Nq2JM2dhDIC1dqq1tqe1NhbXTRVTcRVed2+BTwueMSapGBOVu6en8fdf9zEU/+5oESldqqtH3lt1NQgozEpZc0+hcle+ex3LPaH3ZB+Pa+qAl8nCrbWp1tpkXIU32dnmns/QV2PMOlDE8VMevS7+HncVR8W4pCcSDFRXj35v1dUKTmFWypRTuAbiuiRW0HrgwOHLUJNwTerti/kEcxuUz3NTOLrATcLV9jzvqjXGJDhzIwIF3lRQ3MLmr7t63RLIfz12ESknVFePobpawSnMSplz5g1MxnWpKd8lFJ3LPnNx3ZzQ3U9Nym/Klzg8loh0Vm5ZxpG10L0Z42V+RW89D02K2Rsyz8uxfC0J398QIiJ+orp6mOpqEFCYlXLBKV49gTHGmCnexio5K8UsxbU8Yfv8CpTH62vksUsc+d9Fmpy7Dc73YzhyCc+tOxDnrHCTux2jcfU65DYJODxFTQnHZi0DTi7B6/PlviEj9+TlIlK+qa6qrgYLY60t6zaIHMW5dDQI16Uhd2FNwPVX95RCrHe9lCNrhOO8bpK1dqpTBJM58he3e3zWGGvtPKfnoIPHvjVwzQWI8995vr+z/8m52l3Q/oNweiSKe2nPafNSa60pzusLcfzhwEBrbc8CdxaRckl1tWhUVwOLwqxIBeD8ornWy3yNvjj2XFy/PLwtOSkiUiGprgYOhVmRCsD5K79nEdYEL+xxY4DVzjQ6IiJBQ3U1cCjMilQQxphVQL5j3opxzEnAKmfsnYhIUFFdDQy6AUyk4hiDs1SkLzg3KPRQwRWRIKa6GgAUZkUqCGfsVapzd7IvTME1V6WISFBSXQ0MGmYgUsEYY2bgummh2JfFnDuCU3VzgoiI6mp5pzArUgEZY0ZbaycX87U9QPMfioh4Ul0tvxRmRURERCRgacysiIiIiAQshVkRERERCVgKsyIiIiISsBRmRURERCRgKcyKiIiISMBSmBURERGRgKUwKyIiIiIBS2FWRERERAKWwqyIiIiIBCyFWREREREJWAqzIiIiIhKwFGZFREREJGApzIqIiIhIwFKYFREREZGApTArIiIiIgFLYVZEREREApbCrIiIiIgELIVZEREREQlYCrMiIiIiErAUZkVEREQkYCnMioiIiEjAUpgVERERkYClMCsiIiIiAUthVkREREQClsKsiIiIiAQshVkRERERCVgKsyIiIiISsBRmRURERCRgKcyKiIiISMBSmBURERGRgBVW1g0QEZHAYYxJAjoAqUACkGqtnVeE1w8A0nO/xhgTAwwHZgI7gTggGZhblOOLSPAx1tqybkOFZoxZDtQC/i3rtohIqWgK/GetbVfWDfE1Y0wCMMVa29Nj2wxgjLU2tRCv7wHMAAZ6CbMJwCqPTenAtdbamV6Oo7oqElzyravqmfW/WtHR0fUTExPrl3VDRMT/UlJS2LVrV1k3w1+SgSm5tk0BJgED83qRE1THAEtx9brmpSewBIgrIByrrooEkYLqqsKs//2bmJhYf8GCBWXdDhEpBV27dmXhwoUVtcdwAMeG2SXA3Pxe5ATTZABjzJgC9k3H1SubH9VVkSBSUF3VDWAiIlIgZ0xrArl6Vp3w6e59FREpdeqZFRGRwoiDI+HViwRcN4WVRIJzg5j7/XZ6GzMLsHDhQowxBR5Q94WIVHwKsyIiUhgxfj7+TgDP8GqMmWGMIa9AKyICGmYgIiLlgLU23Vo7Nddm981lx+jSpQvW2gIfIlLxKcyKiEihOWNnS0sqrqEHpfmeIhJgFGZFRKQw3ONh4zw3egTNEo2XNcaM9rLZfbOZbi4TkTwpzIqISIGcG79SOXbsbByuFb2KHWadmRAmeZkRwR2cS3pjmYhUYAqzIiJSWPNwLWXrKcnZXmzueWi9BOIewLJ8ZlAQEQm+2QycaV8SgCbO1ym575QtzNrjJV2fXEQkAI3BtRyt541ayc4DODzsYCkwycsNXeDqbfU2BnanMSbBHWid4yQD1/qo7SJSQQVVmHWCbKo7vLqLrjEmzl103Ze7cq89boxJ9SiyBe4jIlLRWGvTjTFjjDGTgJ9x/SE/yUvd8zau9i5n/xhcQwp6AnPd9dhaO9MYM8Cp0zWc/QaqpkpFMXXqVKZPn16ofYcMGcLw4cP93KKKI6jCLJDg2QvrFOZJuKZ/cfcgFGbt8WKtTy4iEuistcuAZfk8nw7EetmW7zK2zn6aT7aYFJTKv+nTp5OSkkJiYmK++6WkpADo/1ERBE2YdXoGBhljpuYafzXPed59easwa48Xa31yERERf1BQCgyJiYksWLAg3326du1aKm2pSIImzDq9sAm4LnN57VXIb+1xY4x7eMHOgvbRZTERESltCkoSrIImzAJYa2O9bO6BM62Me1qYAtYepxD7KMyKiIiIlIKgCrN5SAYmOP9dmFVmirwSzcKFCzHGFLifll4UERERKZqgnmfWGDMc2GmtnVzWbRERERGRogvaMOsMKUj2nF7L47kCe1+LslZ4ly5dsNYW+BARERGRognaMItrGq3uubYVZu1xv65PLiIiIiKFF5RjZo0xU4AxuW/icmYkKHDt8cLsIyIiIiL+F3Q9s8442aNWrDHG9HDPZEDh1h73y/rkIiIiIlI0QRVmnWUSAWKMMUnOowdHL5k4hmNX8Urm6NVrCrOPiIiIiPhZ0AwzcMa0zsjj6cO9tIVZe7wI65OLiIiIiB8FTZh1xscWPNkrBa89Xth9RERERMS/gmqYgYiIiIhULAqzIiIiIhKwFGZFREREJGApzIqIiIhIwFKYFREREZGApTArIiIiIgFLYVZEREREApbCrIiIiIgELJ8tmmCMiQd6AE1wrYgVA8Q5X9NxrbK1E1gFLLXWfu2r9xYRERGR4FSiMOsE2BHAcCAaWI0rtKY6/73D2bUGrlBbAzgZmGyMscA8YIq1dlZJ2iEiIiIiwalYYdYJsVOB9sAMYKC1dn4Rj5EAdAdGGGNeAkZba18pTntEREREJDgVOcwaYyYCFwF3WmvfL+4bW2vdPbgvGWNigDuNMT8DA6y1a4t7XBEREZFyZ/Nm2LoVunbNf7+UFKhTp1SaVFEUKcwaY+YAc6y1zXzZCGttOq4wm4Ar3L6ooQciIiJSYWzdCnv2FLxfYfaRoxQ6zBpjXgSSrbWr/dUYp7e2lzHmDmNMN2vtV/56LxEREZFSVbUqLFiQ/z4xMaXSlIqkUFNzGWMaA2P8GWQ9WWsfAUxpvJeIiIiIBK5C9cyWVojN9Z5FuqFMRERERIKPFk0QERERkYClMCsiIiIiActnK4C5GWMmWGvv8vVxRURERMqjqVOnMn369Hz3Sdmzh8SqVUupRcHFHz2zCX44poiIiEi5NH36dFJSUvLdJ7FqVYbUrl1KLQou+fbMGmPuAOKKeMwexW+OiIiI+FNKSgpdC5i4f8iQIQwfPrx0GlRBJCYmsiC/abcKWixBiq2gYQYzgbnAKmBXIY+pCdKkyHJycsjIyCA9PZ309HQOHjxIdnb24UflypWJiYkhJiaG6OhoKlWqVNZNFhEJOEOGDClwH3cPo8KsBIp8w6y1drUxpidwkbX20cIc0Bjznk9aJhVKWloaK1euZOXKlfz777+sX7+ejRs3snHjRjZt2kRaWho5OTmFPl5CQgLt27enQ4cOdOjQgTPOOIOIiAg//gtERMqxQi6VOhwYPmQI5BNUC+q1FSlvCrwBzAm0TYtwzNQStEcCnLWWf/75h2XLlrF86VxSfvmLlF/+5r//dh7exxhDnTo1qF+vNo3ja3Pm6a2oWTOGmOhqxMRUJzq6KpGREYSGhhAWFkpISAj79h0gPX036ekZ7Ni5i9//WMmSJYuZMWMGAA0bNmTcuHFcccUVhIeHl9U/X0SkbBR2qVT3uE71ukoFUtjZDMYU9oDW2juL2RYJQNZafvvtNxYsWMCiRYtYtOjrw8G1UqVwWp/YlPPO6ULLlgk0a9qIZk2PJyGhAZGRR/eiZmTsZc2ajaxes5E1azaRsWcvBw9mcvBgJocOZVGzZizxx9ejfVIr4uPrU7duTYwx7NiRzrffLWPCpFe49tprmTBhAvfddx9Dhw4lNDS0LE6JiEjZKMxSqep1lQqosCuAFXa8rASBzMxMFi5cyEcffcTHH3/M+vXrAYiPr0+f3mfSuVN7Tu5wIi1bJnjtJd2xI52vF/zETz//zs9LfmfJ0j/YunWH1/eKiAgnPDyUPXsOHLW9zUknkHztQIYOOYfz+3Wj33ln8dnnixh737NcccUVLFq0iJdfftn3/3gREREpV3w+z6xUTNZafvrpJ1577TXeeecddu3aRVRUJL16nsb4sdfSo/upNGp0nNfX5uTksGzZn3z2xSI+/2wuPy/7F2stxhhatWhAnx5taNGsPvGNatM4vg7xjWoRXb0KlSqFYYwBYO/eA6zbsJ0167bx1z8befPdhVw/6iHuuPNxLhnUh7H3JHPuOV3o26cTd93zJJMffYXu3btzySWXlOZpEhERkVJWojBrjOlmrf3KV42R8ictLY2Xp/4fr73+IX/+mUpUVCQX9e/BxQN706P7qURFReb52j//TOW1l1/jzfcWsnlLGsYYTunQjPF3DaLz6a1on9iEatWisNaycdMOlv+6mi/nLeeXpb+yM30f+w4cYm9mCPv3Z9KoYS0ST4qnbet4zurUmptGnsOylFRefHU209/5lNlzFrJg/hs0adKQhx4cxXeLU0hOTqZjx440adKkFM+YiIiIlKaS9sxOAZr5oiFSvqxdu5Ynn3ySl156ib1793L6aYm89OJ4Lh7Ym+rV817BZP/+A7z51qe88sp0flyykrCwUM7p3Z4B559G7+6J1KoZDcDBg4f4atFvfPjpj3zy5RI2b0kDXDeHNT0+jrq1qhJbPYoGlSsRUSmU1HVpTHl1NvsPHAKgY/tmPP/YcF5+9npuGN6X7v3uo2v3y/h63jSaNm3E9Dcm0bb9RQwePJjvvvtOU3mJiIhUUCUNs8YnrZByY8WKFTz88MO88847AFwyqA+33zqMtm2b5/u63bv38MKUd3niyf+xdVs6J7ZsyGMPDePSQZ2pXcs19bC1lq8X/cbL0+bxyec/kbH3IFWrVKJP52Z0Ovl02p1Yl7Yt6lK1SgRZWdlk7M1k956D7NmbSXyDGCIjwli5ZgcLf1rD+Ke+5uSzRjPiql78371D+OqT++nebzxdu1/Ggvlv0LRpI1596UEuHHgzd999N48+WqiZ5URERCTAlDTMWp+0QsqFkSNHMmXKFCpXrsyoUaO4+eabaVRvd4Gve/e9Lxlx3XjSd+2l51ltueuVW+jaqfXh8a4AKb+uZvAVE/g7dTux0VEM7Hsi/Xu1pPvpCURGuG4S27c/k24Dn+Wnv9KPeY+wsBCSTjyOR+86m+RLTmbwuScx7smveO61OcyY9Q33jB7Ep+/ezXmDJ9Cl+5WMvTuZPmefyXUjBvHYY4+RlpbGqaeeSuvWrWndujXVqlXz3YkTERGRMqMbwOSw9evXY60lJiaGxo0bU6NGDaDgMLt9exoZe/YTHh5GixPqc0LTekcFWYDdGfvY8p9rDsQWCTU556wT6N2pKWFhR6bPysrKYck/xwbZSuEhZB7K4Zc/t7IjbR8A0dUieWpsX64akMQt//c5t9z1GrHRUVx0/hl8/c3vjLzhQQBatkigSZOGTJ/+Jq+++urhY9atW5PjG9UjvnFL4uPjad68OW3btqVVq1ZERuY9DlhERETKl5CyboCUH5988gmzZ8+mcePGjBo1ikaNGnHf/c8dteCBN9dfdwl///Epl1/ajxdemU1C25EMG/kMPy1deXifzmecyLoVL/P4w1eycetuLrruHRp3eYL7n/6ajVtcgbl6tUgO/X0/f80dxauT+jNq2Kl06RhPbHRlhvRrw59zbuT8ni2Peu+2Levy1VtXsXjGtXQ7tTGvvDGf9Rv+o0O7Jpx+Sgtysg+wZs0mDhzIBMAYiI2pQnhYGFu2/MeCBfN47LFHueqqq2jfvj1Vq1aldetmjBkzhrVr1/r4DIuIiIivKczKYcYYevXqxTfffMN3331H586deeD/XqRRQi+uuPIeFn2zBGu9jyxp0qQhL0+9n39WfMo1V13E+x9/zyndxnBy1zv431tfsW/fQapXr8wt15/Hqt9e5qO37+Skk5rwwDMLiO/yOAOvf4evv3ctHndC45oMu6gdT97bl6+nX8XmH0bz5uMDiG8Q6/W9121KJ8daxozoxEdTLmHwuSdhD+3jt99T+XvlJrKzswGIqBRKrZrRVI6K4ODB/WzYuJWtW3eQlZVNbExVenQ/lcGDzqZ+vdo89thjJCQkcNFFF7FgwYI8/90iIiJStjTMQLw6/fTT+eCDD/jrr7946on7mP7O50x782OaNm3EVcP6M/jis2ncuMExr2vcuAHPPXMvEx66mTfe/ITnX3iDK697lhtHv8zAC07n8sFd6XxGK/r17Ui/vh1JXb2FKa/N4eXXZ/P+7BW0alqL6y49hSsHtCMqsuBlab9bupZuQ1/lUFbeYTOqUghVo8KIqByJwbL/wAF2pO/DnU/r1Y0lNrYqi79fzr59B6lTO4b7xo5k7959vPTK+8yaNYthw4bx6quvHjN8QkREhM2bXUsK57fCWkoKJCaWWpOCiXpmJV8tWrTghSnvsnnzVqZNm0b9+o25+96nSDihD0knX8z/PTyFFStWHdNzWb16Va6/7hJ+//UzFn71GhcP6MPMj77nrHPH0bjNCO59cDorV20ioXFdJj1wORv+epXXnr+BqMhwbhj/KR37T2HFym35tm3dpnQuGvEGx9eJ4rOJJ/Pxwx14655ErrvgeM4/ow5dE+No16w6DWpHUTUqFHsok4yMfYeDbEgINKoXTWQ4/PHnekKN5cLzTqV503qMG/+sa4ndf7/k9luH8b///Y/nnnvOn6daREQC1datsGdP/vskJsKQIaXTniCjnlkplMqVK3PZZZdx2WWXsXr1ambNmsWsWbMYe9+zjL3vWeLj69Orx2n06nk63c7qSGysaz5ZYwydO3Wgc6cOPPPUXXz08de8/r+3mfD4LB56dCandWzOFZd0ZejFnRk2tBtXDDmLL97/gGF3fMDJ/afwzH3ncOWAdsf0iO7bn0n/q19m/8Ecvn6iAyHG8MLHa3n983Xs2p8DQGQYVIkIJTwUDhyy7D6QQ45H5q4dE0F25gHWbT9IZKUQEhrGMeuTH6haNZK+vZJ4/sV3WZW6gbffnMTf/6zhlltuITExkTPPPLPUzruIiASIqlVhwYKybkVQUs+sFFnjxo257bbb+O6779i4cSPPP/88iW2b8857XzJg0K3UrNuZk08dzO2jH+XTzxaSnu66waty5SguGdyXL798g/Wr5zJ54q3sztjHiFumkNB2JI8+/SH792fSd8CF/PL9U5zWsQXX3PUhl932Pnv2Hjz8/tZarhrzISn/7uaNu9sy9qnltLxiIS98uIaeLavQK6ESjaqHcCALduzNZsvubNL3Hx1kq0YYyMpi43bXcWOqhvPLX1to06IOzeNjmfv1L9x5S3/mf/UDnc4axv89cCPx8fUYOHAgmzZtKtXzLSIiInlTmJUSqVevHiNHjuSDD+ezfftOvv32W+69ezhVqkTxzHPTOe+CG6hRpxMnnzqYMXc9zuw537F37z7q1avNHbddyW+/fMZ3C9+gXZsE7hg7jYS2I3niuU+Ii63GnA/H8cA9g3nn09944NkFh9/z4RcW8d7nv/PwtS1Iy8hi1vIMbu8Zx3d3xPP72n3MS82kQfVQTqkXRp2oY9scZiAyFP7LcN0YVqdaKNvSDlK/ZiTrNuzgt7+3EVMtkmnvLOTtV25hw4ZNXH3tOGa+8xi7d+9i4MCBZGZmltIZFhERkfyUNMzqbhg5LDw8nDPOOIP7H3yBBQt/Jj19F19//TVjx44lqnIcTzz1BmefM4LYWmfQ59wRvPraB6Sl7eb00xOZPfsNvvn6dU5s0ZBb736Niy6bTE6OZezoizm/b0emzUrh0KFssrKyeeDpr+jfqQ43XXg8419aQftGkfRPrMY5T69l/e5soiNg8YZDLNmURaUQqB4OUaEQXQniIlxf92Vasi3ERBiys3KwFtJ2H8RaaHV8ZdJ272fHjl08PeVznp50NUuW/sF3i1N49aUHWLx4MWPHji3r0y0iIiKUPMy290krpEKKioqia9eujB8/nkWLFpGWls7s2bO56cZL+fufNVw9fBx16nelz7kjmDf/e848M4n586fzwuPJfDZ7KcNGPkNOTg5XXdadbTv28vmCf8jYm8mhLMuZJ8Ux9dP1rN15iN6tqtDt8bWEhUAokGOheXXAwPq9rh/yqmFQyYCxkJ0D+7Jc28ONZft+S2SYK+BGhVp+WZVBTJVQqlSuxDeLV7A0JZXuXdpw99in6dK5A1dc1o+nnnqK9evXl+0JFhERkZKFWWvtLl81RCq+KlWq0KtXLx557DVWrVrPkiVLuPXWW/ljxSp6nj2cfv1vZMOGLYy48QYeHjeU6TO+4aYxr9C7eyLH1Y3l1RnL2LPXdXk/NMTw0Ot/c2rjSB7+cgfN4sLIOGgxwO5MWLcHqjm3N+7Jcq27nG1dj0zX/WFEhMLOg67LC9k5rhvGtuzOplFsGGkZh8jIOECjetE8/eJn9O2VxP79+7ntjke4/77rsTaH+++/vyxOo4hIyaSkuKaQyuuRkuKaakokQATlbAbGmAFAurV2npfnkoAOQCqQAKTm3q8w+0j+jDG0b9+e9u3bc//99/P000/zwAPjueCim1j8zZvcee8Ytu8O5fEnp5F4UmOuubwHD06ewfk9WxAWanj1i/X8l5HN8XGuuWizcix7DkHNCFdwbVYdfk13jY8dfHwo8VWP/N1mreWH7TnM35pDnUioEQErdkFMGMRWDWHtzizqRoeSRSjrNu0ivkEM4x5+h2FDzmLq/z6nc6f23HDdJTz+5Cu0adOGUaNGldFZFBEposJMDVXQFFMi5YxPw6wxJvdswKnW2t3Oc7cDyUAcMA8YY61d48v3LwxjTA/gJWCgl+cSgEnW2p4e22YYY1KttamF3UeKJjIyktGjR9OsWTMuvPBC7rrnSR575A4mT7yVX3/7hxvueJmvP7mfeXN/YNQDn3P/zd249/H5tGhUhSVr99KqZigrtmdTOxK2HYAalVxBtk4kpGfCm2uyqReVQ/3KhjqRhsqh8P32HKLD4faWIazYCyszcri8WQhP/5FD9QiIqxzKis2ZxNeNYvO2DGKrR/HZ7KV069ya60c9xCcfPsvqNRu56aabCAkJ4YYbbijr0ygiUrDhw12P/MTElE5bRHzE1z2zPYFJwAxgLq6eS4wxE4E7cIXIKUANYIoxJrm0Aq0TQscAS4GdeeyW7LTP0xRc/6aBRdhHiqF///5cP3Iwjz85jTNOb8eF/Xvw1rSJdDh1MP0umcDMaaMZetVkpry9hAl39OTOyXNp2agKK9bt5dSESH5IPUCNCNhxEBpWgZ0H4GCOa/zsoRzLr2mWg84QgxqV4N6TQujROIyFP2VROxIGJITy4p85tKsTzsJ1mXSMj+SnNfupXjmMalUrsWlbBjvT9tC8WT0uH3YnP/84A2stN954I1WqVOHKK68s2xMoIiI+NXXqVKZPn17gfil79pBYtWoptEi88XWYTQd6WmvnuzcYY9oBo4Ep1tqRHtt/Bu4E7vJxG7xyek2Tnfcek8duAzg2qC7BFcyLso8U06OPv8aSpSsYPPQOPpj5FOf07cy8L1+ic7dhDL7qMZ5/dCSXXP0YL7+7lJuGncpT//uBxAYR/JB6gCY1w9mYfojYSMOuTMvebGhaHf7Z7RoX2yYG2sRCXCVDy2jD6Y1cP/7b9ltqRxliIwx9G4UwZ8MhBraKYOafB2gYG8b+nBBWrtlJ547H883Pa+jWpQ2r127jqmvG8tnHz9Hn3JHcfvstXHjhhURHR5ftCRQR8YGUPXvomt/SrI4hQ4YwvKCe3gA2ffp0UlJSSCxgGdrEqlUZUrt2KbVKcvN1mI32DLKOQbiGMU7y3Git3WWMyauHtNQZY2JwjX89qk3W2nRjjLtndzlkI8sAACAASURBVGdB+2ioQclERkby5eyF9Oh+BhcOvJmPP3iG3r3OYN6XL9G1+xXcdNcrvPXyLYy46Xlem7mcgX1OZMYXf9ClbRwp/6QTFuqaLW73IWhSHVZnQOUwaFPDsHq3JWU1VA61tI6DjzZnUTsKVu22tK/lGlM7pEkIH67JoVH1UJrGhpKWadm5N5PEptVZ9NNaLujVkg/n/Mr553Tko89+4rEnXueJR0eT1PFiHn30UR588MGyPH0iIiVW2FCWkpICUKHDLEBiYiILClrZqxDBX/zH12HW2+wGPXDdbLXGy3PWy7ayEgeuYJrH8wnu/yhgn2PC7MKFC49ZjtUba8vT6Sg7MTExzJn7DT26n8n5F47i04+epUf305jzxct063Ulo8e9wQdv383IUU/z/uwV9OnSjDnf/EtstXBqVrKs+u8QJx5Xib+2ZBIV5rrB6/utloZV4LpWIWzeZ1mTAb/uzGH7ATiQDc2jXf9/WsaG0KO+4fEf9nHPmZV55Pt9NKkVTsq/u0lqVp1P5v1F99Ma8+XcZZx/Tkfuu/95unTuwKCLz+aJJx7jhhtuoE6dOmV8BkVEim94vXoMr1evwKVZC9NzK1IafL0C2FFpzBgTDSThugzvTQ0fv39JFGbEu0bFl5K4uDjmzvuG5s1bcN4FNzLtjY9JTGzBl59OZdv2XfTq/wAX9e9K3y7N+GLhSjp3jKdmdDir/jtEi4ZV+HtrJlGVDHWqhrJ2DzSLCyE8PJTnV+SwJgPGtw/jiz6V+OmCcH44P5xrWxz5KEzoGMbJtQwTvtvHoFaRrNx2iCY1w/l7bQYNa0fyy4oNGANhYaEkxNdhyGVjuO3mKzhwIJOHHry1DM+aiIhI8PF1mM0d9no4X2fk3tEJuuVmmIE/denSBWttgQ85Wo0aNZg3bx5t2yZyxVX3cPKpg9l/4CC/LJ1Fz7PaMn7iu/y9LoMrh3bjp183snLjPk5r15DUzfuIjAilXkw4q9KyaRATxsaMHLbvy+bKtpGs2wejFh9iX5bFGEOVcHNUz/meQzC5YygnxhreWXGAk48LY93OQ4SFGqIqhbL/YDb161Tj/Y++557bLmTr1h0889x0rr6yPy9OfY/Vq1eX4VkTEREJLr4Os6uNMRcCGGOq4xonm2atfdlzJ2cKr4nW2kd8/P4l5oydLfE+4hu1atVi8eLFvPnmm/y3PY1uPa9m1C0Tuf326/ns4+ewFl576yuS2jahV7d2/PjLBipFhFOvZiT/bM2kYa1IDmZbcoCalUN57ZcDnFI/nHV7YGJK9jHv91d6Dud+eYjLFmQxqnUo8VUNv/+XRdVKhpioEP5ct4ekZtGsWpdGbHQUL742h5tGnMNbb3/GpUPOJTQ0lPHjbi79EyUiIhKkfBpmrbXvA72cG7vScY0h7Q6unlhjzB3GmCXAMmC4MeYaX75/CbnHusZ5bvQIrqmF3Ed8LCQkhKFDh/L336lMnDiRRd8spdNZV3DDTQ8zcOA5jL79Sv5dvYUv5i6jSeO6NG4Qyz/r99KgbnUysyz/ZWRTNSKUNbuy6dWqCp//m0nTuFA+WJPDnA05h99n017LyG+ziAxxLXc74pssejUw1IwAY2DtziwSG0bwzW9pHBcXQVREGD8uWUnThLpERITxymuzuOG6S3jjrU/4/fffy/CMiYiIBA9f98xirR0BNAbaW2tDrLUpHk8vwzXXa0+gF645X8sF56auVI4dKhGH6wa21MLs4/+WBq+oqCjGjBnDhg2beP3112napBGTHnmVyY++RqNGDbhqWH8qhYfx299bqX9cHNnZOWxNO0jT+pXZviebmlVDmbNiLz1aVmblzmyOjw5h/NIstuyz7Mq0jPz2EPsPwV0nhjApMYS2sfDsHznUiTLs2m9pHBNCyvqDNK4RzqHMLDZty6BB3eo8/Pj7XHN5D96c/imDLj6batWqcP94jZ0VEREpDT4Ps+Cadstau9zLtvm5HsvzOkYZmYdrmVpPSc72ouwjflStWjUuv/xy5sxdzPr165k8eTK7du/h1f99wEltT+SjWU8TFRXB5v/+n737Do+qyh8//j4z6YX0nkAISSihhNB774giCIhs011iXbeooO532V0r9p9d1N21LEpXpIaEKqFD6C2d9B6SkDYz5/fHHZCeBIY0zut57hO8c+6Zc8cnk8+c+ZzPKefhOaPIKqrFz9uZvDIjoV7WxJ68QLi7nrwKEwYT/N9+A4sTjSSXwaxgQZCjwNla8GxnHQM9BfsLJF3dBSklJoKcdZgkFJQbCQtwoLKqlvRzBQT4uWNlpeerr3/k8UdnsnJVHOfOnWvql0pRFEVRWr07Esy2AO5cvzLBPK7dxSvafL4hbZRG4u/vz7PPPsuJE0nMnz+f75dswNfHkyMJq2nX1otDR5L576dPk51XxsgBISTm1xIZaEvuBRNCQJCLnt15EhsdBDjAkjRJeoWk0iD5b7JkV4HE204r6QUQ7qEnraiWDl7W2NnqKSypJMivDTGbDzNlQh+WLlvHb399HyaTie/+924TvzqKoiiK0vrdNcGsEMJVCLFQCLEMLZBdKIT4TAgx/WIbcxrBPHO76UKI54CFl6cP1KeN0viEELzwwgt4e7vz3PPvYGdny6sv/5VDR1KorKxmRP/2HDqRjaeLNToHW6oMEOZjy5kiI5089Hx43MSTEXocrODZQyZ+u9vExmzJrA46fhxnzUBfPe1d9VTUas8XGWjLqbQy9DoI8nNhy45jjBsVSV5+KecyshnQvwff/m9N074oiqIoinIXsPSmCc3WxSC0Hu0OouX23lYbpfE5OzuzYMFLPPHEE6xZu41ZMyfw7ruf87eXv2P5188wYPTzDO8fzOb4FGaN9OP7zdmE+9iQXVJDe1c9ryYYebWPFd8mGjlfAy/21NPD45fPe1G+VsRn1CIAF3s9tUbo2t6JnPxypJQUl5Tj7GzPd9+vZ87syTzxx1c4fPgwPXr0aLoXRVEURVFaubtmZla5O/zhD3+gS5cuRD/+LwoLS3jrrRc5l1HA2o0HmfvbsWzdnUpEeyc27sunW4AtheUGKmshwFmHrR5eSzDwel8rloyyuiKQBejlZ012uYlQNx0phbV4OeuxtdaRfK6YTiGeLP9xF1Mn92PlqhjunTICKysrvv322yZ6JRTlzhBCRAkh5gohRl/82cDrp9/omtvtW1GUu5MKZpVWxdramsWLF1NYWMIjcxcwdEhv5syezMtvLmfCmJ44O9ri5u5Oda3E0cWe0koT3YPs2Jpey/QIe4qr4YmdBiqvLUFLlJ81AGEeVvyceIGxXRw5m14OQPsgN/bsP8uwwRGUlFZw8NBJJk4YzOLFX2M0XqczRWmBhBAhaGlVi6SUsVLKRUC0+Xx9rh8NfH4n+lYU5e6lglml1enRowdvvvkWP63Zykcff8fHH/6NDu19eOwvi3jm6an8fCCd307rxe4TJQzv6cH+tCoGhNjzxaFK5g925FSx5G/7DNfsytbd2worHThYCWqNEORqzfkqE6EBDmTllQGQmVWIh7szi79fx5zZk8nKymNrHfubK0oLEg18dtW5z9A2yLkhIUSIEOIztNrjN9r58Zb6VpRbtWjRIoYPH37TIyEhoe6OlCanglmlVXrqqaeYOHEiz8x7m5SUDJZ+/z6FRWX8vOsUXcO9Wbb+GGOHhLLtcBEd/B1ILqjBz0nHooOVPDPAgU2ZkmUppiv6tLMSdPWyIqfChJO1ILfMgJ21wNvVlsMnc4jq6sfSVfHMmDqQH1fHMWxob9q0ceKbb75poldBUSxuOteuF9hvPn9D5jrd0ebZVov2rTSthISEOgPCRYtu9r+96SxevLjOYDUyMpLZs2c30oiUW3XXLABT7i5CCP7zn//QvXt3HvzVPPbt+o533nyOJ/74Cs88NYVPvtxA6flKPNrYIKWkqMLI4FAHdiZe4GB2LSPaWfNGQi2RHoJwl8sXgVmz9GQVw9pZE3uygtGdHDh0TpuV9fdyZs2WM8x7+j4++XIjG2PimX7/GJYuX8bHH3+Mg4NDU70cinLbzDsdXjOzKqUsEUIghAi51aoud7Jv5c6pT5B3MVicO3funR7OLYmMjLz5t2eLFsHixdpxMwkJEBlp0bEp9admZpVWy9vbm6+//poTJ5KY++g/iZ77ANPuH8N7n6zluT9NZc/hTAb360BydiV9Ormx5fQFHujVhtjUWqJ8rXG11/HsbgMXDL+kG/Tys6K8RtLV24pzxQZ6B9uTWWKgRwdnzqYVodfrOHEmg/btfPh28RrmPDSZ8vILrF69uglfCUWxCHe4VBnmem4nt7XBfW/btg1zoHvTQ7lz5s6dy9atW296RLb0AG/xYi1QrUtkJKgZ3CbTpDOzQohgKWVqU45Bad3Gjh3LK6+8wosvvkhgoA9ffPYPDh44whdfx/HwnFH8+9s4Jo/syJrNp+kW4swPCWVMiHDkvb0VvDTCiRc3l/PGYSOfT/MEflkE5mSj/ZE0GkEI8Pe0Y/2efAb0DGTJip3MfmAwr72ziv988RKBgT588803zJo1q8leB0WxgOttNNMS+laU2xMZCWrtQ7PW1GkGy4A+TTwGpZV7/vnnycjIYOGbn9AzsjPLlvw/Bg6dQ0lpBb17dmD73lQ6hXiSW3QeK72gvNpEgLOOT/df4Kk+Dry/7wJ7FxXQ09eavAotjzatxEQnDz27UyoZ3MGetPRS9DqBh5sjuw6dpkfXYEwmE8tXbGL2rIm8/e7XFBYW4uHh0cSvhqK0DsOGDVOLK++khAQYPrzudrNnQzNNIVDuHncszUAIESyEiLzZwe19LaUo9SKE4IMPPiAiIoKFb/6bqKguPPOX37FqzR5e/ttszpdXM7h3O/JKahjT14cdiZXMm+hF+nkTHvaCFwY5UlwlOVlgQAiYHGbL5HBbjBIcbQSDQx04nVtDjw7OFJdWApCdW0JIsA/bduxn6r2jMBqNxMXFNfEroSi3z5zf2uL6Vhpg9uz65X8mJNSdS6oojcDiM7NCiNeA5yzdr6LcDr1ez5NPPsljjz3Grl2HeSx6Bgvf/JLYrUcYOzKSNVtO07OLH0eSz+Nsp2PLmQuM6ezI+/sucPAPHjwzwPGK/sprTCQWGXlokB1BbtYYTRAa6EjMvix8PB3ZfyiRAX07snnHYXr16kKbNk7ExsYyY8aMJnoFFOW2XVyA5Q5cym29LAC9nQVad7JvpaHmzq3fbGt9Zm4VpRFYdGZWCPEsWq3AN4FH6ziet+RzK0pd5syZg4uLCx98vJjAQF/unzqaL7+J48m5E8jJL6dXN3/OnKtg0kBflh8s4zcDXCislHyyv/Kavo7nG5FAZKAdYd42AHi72lJSbqBHZz9+3nWKAX07kp2dT1ZWPiOG9yE2NraR71hRLMe8OCuZa/Nb3YGS26k2cCf7VhSl9bP0zOwYoL2UsrQ+jYUQKtFGaTROTk48/PDDfPDBB7zzZj5PPv4gy5bHkJNbTPeu7dh5IB0/D1vyS6pxsdex7MB5pkY68+H+cn7f0x53+18++x3LqwWgZ5AdNlbaYjA7G+1xXy8nYnYkEtLOG4Dde44wZtQAfly9heTkZEJCVHaN0mLFAr25sh5slPl8c+5baUIXa9HWZfbs2c22hJfSvFk6Z/ZgfQNZs2gLP7+i3NTjjz+O0Wjk40+/Z8jgXnTvFs6Hn6/nr09O4WRiPmOGdibuYCFzxgfx4+FyZvZxpqJG8uauiiv6OZJnwN1RT6CbFd7OepxsdVRUGbC2EmCu5FVQVIa9vQ27dh9m9Kj+AGzatKmxb1lRLGke8MBV56LN5wEtNUAIkXSTyQp3rl+9oM6+lZZn9uzZ9SrPlZCQwGKVf6vcIkvPzBY0pLGUUq2IURpVaGgoU6dO5f0PF/OXP/2ap56YzR8e/QeB/h4E+LQh+VwRdjY6SspqcXfU81V8KXOHuvL5jhIe6Gx3qTTXsTwDPYNsL9WxDPO2JjWnkm7tncnIKcXZ0Zb4PafpExXKrvg9vPv2cwQG+hAbG0t0tPoMp7RM5k0M5gkhFgL70BbxLrxOGoD75f9hzn193tzeFVgohBgDbJJSLm9g30oLMnfu3HrNttZn5ra+Fi1aVK/AOCEhoeXXwVUAywezpUKINlLK8/VpLIQYKaXcbOExKMpNLViwgJUrV/Lu//uG+c89wnPPv8MHi9bx9BP38dzfv2bWSD+WbMnmzw+0583vk9n4dBA/HS7n6ZgyNs9xA+BEgYEnu7e51Geolw2HMioYHunBiu0ZDOrVjh27TjB5XG/e+egnqqtrGD2yP6vXbMZoNKLX65vq9hXltkgpD3LttrOXP14CuF3nXJ0zrHX1rbRu9UlHqE8qwsVtausKVNVWta2HRYNZKeXnQojXhRCf1nMzhIWoOrNKI+vevTvTp0/nvfe/5U9//BVPPTGbf738Kc89fR/OjrZUWbmi1+WSW1yNl6sNb2ws5KMHfZn6aQYf7r/AuBBbqo3a4q+LQr1tWHW4iMgObfhi7TkiwrzZsD2eeU9PpbbWwMGDJxk9qj///fpHEhIS6NWrVxO+AoqiKM2LpbfGrXObWqVVsXhpLinlfCHEJ0KIELRP2Ek3aOqKltyvKI1uwYIFrFixgnfe+4o/P/1r3n73v3z0+QZ+P7MX73+1m1/d14Nvf0jguVkhvPq/JP420ZPpUc68sasck7MWxPYMujKYNRglfp62ALiY2xhN2iYLu/YcZs7sSQDExsaqYFZRFOUy9UlHGD58eL1mb+udPrBoUd11chMS6ldzV2lSFg1mhRAuaCtPL/6lHlPHJbKOxxXljujatSsPPPAA/++D//Hnp3/NY9GzeOe9r9m69l988PVudHqBXifILKzC39OWvyzL5cfHgog9VcEr6wqxtRJ09LW51N/F8lxWOoG1laC0rAo7WyuOnkgjJNiHn7dv569//g3duoYRGxvLvHlqTYuiKK1AfXYKs9AuYfVNCah3+sDixXUHq5GR2viVZs3SM7MLgWK0Fal1Je17ABst/PyKUm8LFixg2bJlvPPe1/zlT7/mg4/+x7dLtjHn3h4s/vEIc6b25KsVB3nvqS48+d5xlh48z1vTfPj9N9lUGyR6nbjUV6iXFsym5lbSo0Mb9h/Nol+PQLZvO8CoYd35fuXP1NbWMnpUfz7+dAmVlZXY29s31a0riqLcvvoEeebUAEsEs/VdTNYgkZGg0hFaPEuX5gqRUo6VUq6QUh6q44gFDln4+RWl3rp06cKUKVP479c/4uPjwYPTB/P9yp388enZVFUbCAlyxWCUVFQaGNLdna92lfK7gS7sfT6YpX8IuKIvnzZ6HGwEKdmVRIW7cOxUJr27B3DsTB5DBnamrKySxMRz9OvbnerqGpKSbpR9oyiK0kLMnasFgjc71Ff0SiOwdDDb0CKaV9cUVJRGNXPmTLKy8oiPT2DqtKmcP3+B/ILztAtwZd+RLLp19GHj3gIm9vfmaGY1ueeN9G5nz/Reba7oRwhBkJs1GfmVtPdzoPB8LX5ezlRVG/BwdwbgzNlUAvy1jRQyMzMb/V4VRVEUpTWydDDboBxYKWWKhZ9fURpk8uTJ2NnZsWLVJkaP6o+9vQ2r1+9n3NBQ4uKTGTMohB1HixgYodV433y64oZ9tXW3Jj23iva+WvqAna1Wfkuv037NziamExCggllFURRFsSRLB7MpQoh6f6cghHjGws+vKA3i7OzMsGHD2BCzEwcHe8aOjGT1+n2MnzSSsopqAn1dqDVICkprcW9jTezJGwezQe5WpOdVEuzrYD6j5dQWFpfh6dGGs2fT8Fczs4qiKIpiURYNZqWUK4AxQoj763mJ2gpJaXLjxo3j1KkU0tOzufe+yZzLKMDTow1WVjqy8spwstcTsz+fkT09iD1VgZTX/wIiyM2anKJq/Dy08lyVVbUApKTmEdbBjzNn07C1tcHDw5WsrKxGuz9FURRFac0sXZrrNfM/RwshPgf2c+OqBu5o2xUqSpMaN24cABtjdnLvlBEIIYjbdoRBUW2J3ZnE6MHhrN+TyvMPdWD5thzO5NbQ0df2mn7aumtb3dbUmnCw05OZex4fTydS07VgNm7bEQACA3xIT09vvBtUFEVp7upT8xUsVuZLaV0snWYQDTyHVl/Wzfwz+gaHWvylNAudO3cmMDCQjZvi8fb2oF/vMDbGJTBuaCgJJ3MYGBVEem4l7by1XNhNN0g1uBjMnsuvItjHnrTMEoIDXElJyyO8gz+ZWUVUVFygU6f2nDx5stHuT1EUpdm7WPP1ZhIS6hfwKncdSwezRUC0lFJXnwMotfDzK0qDCSEYP348sXG7MRgMjB0Zyd4DiQwaMQwAKyvt1+Rwchnt/eyJO3WDYNbNHMzmVRLsa09qRgntg9wuzcwCJCaeo0vnEFJTU6mouHH+raIoyl3nYs1XVeZLaSBLB7PJaDuANaS9ojS5cePGUVpaxp49Rxk7YTImk4m8glJ8vZzYeziTyM6+rNudx6goT7acvoDBeG3ebKCblrWTnldJsJ8DKRnFBAe6kp5RQEiwDwBnE9OI6BKKlJJTp0416j0qyuUasLZBUZqPizuO1XUsWtRkQ1Qan6UXgI2VUqY24JLplnx+RblVo0aNQqfTsXHTTvr27UqbNg5s2nKYcUNCifk5kQnDwog/VszACDfOV5nYl1Z5TR/2Njq8nPWk51YR7GtPyfkqvD2cqK014Oio5dieTUynS+cOAJw4caJR71Fp3YQQZxt4ycI7MhBFuVp9AtC6UgxAy5etz+ysSke461h6AdgzUsq3GnDJJiDMkmNQlFvh5uZGv3792BgTz7/+8SQjhnQlZvNhXl3wEF+tTCA40A2jSVJrlAih5c0OCHG4pp+2btacy6tkTG9P4Jdas/kF5/HzdePMmVRCQ4OwtrZSwaxiaR2EEM5SyrK6Ggoh2qMW4CqNoT5b3oIWpNbVdu7c+i3+uhgcDx9+83YJCSp1oZWwaDALPA/UK5gVQoxCvZkqzciECRNYsGAB2dn5jJ8wjh/XvkRQgAd6vY6k9CI83RzYfLCAgRFuLE6o5P8mSoQQV/QR4mnN3rRywgMdAbhQqZXnSjiaSkSnIA4cPIG1tTVdOndgz549jX6PSqv3OTDrZg3MtcDjGmc4yl2vvgGoJVkygFZaBEvnzLoJIR6pq5F5s4QYCz+3otyWadOmIaVk+YoYpt43Uks7iEtg1ID2LF9/nGnju7A6Ppc5YwM4c66C7WcvXNPH4DAH0nIrcbLX4+tuy/6jWYS392BdzAHGjozk6LGznDuXw7ixA/n55585f/58E9yp0orNuNlmNObHDqBVm1GU1mnu3JsvJLv8UGW+WgVLB7MAbwghnK/3gBAiWAixD3gDVclAaWa6dOlC14hQlizbiI+PJ8MHR7Bk5U5mzhpP8rliIjv7UVltwtZKh6uTFYt2lFzTx/BwLfVgx5Fixvf1YuOORCYMC2fLjmMMH9IVgHXrtzNxwhBqa2uJi1MTZIrFvGGuEnNICPHJ5Q8IIdoIIZagvfcuQgtmVzTBGBVFUSzO0sFsCfA68MXVD5hnBJKADsADUkp3tK/EFKXZmDnrN+yMP0RGRg4zZ03lbFI2YSF+2FjrOZWcT6BvG1b9nMOcMYGsSCinoNxwxfURfrZ4tLFm2+FCJvTzpri0kg5t3aipMXAuo4Dgtt6s27CDgQMicXFxZu3atU10p0prI6Wcb/4ZB8wXQnxqnkCIBA6i1fZ+QEr5mJSyVEo5oynHqyiKYimWDmbbSynfBKIvzgxcNRu7wtxmBYCU8lELP7+i3JYZM7S/78uWx3D/1NHo9TrWbTrIhLG9WLb+OA9MjGDD3nxmjvCjptbEV7uu/IJBpxMMbm/LzmPFjOntiV4nyMotw7WNHWs27mfSuF7Exu3BaDQxdswA1q1bd8PtcRXlVpmD1UeB5WhpBcVAh4vvvYqiKK2JpUtzlZp/lqDNDMTwy2zsGCnljIttFKU5Cg8Pp0f3jixfuQlPTzdGjxqgpRrcP4is3DI6hnhSa5CcTC9nYIQbn/9cck0wOrCDA2czKqipNTGoqxsbdyQyfmgYazceYMKYKC5cqGTb9v1MHD+E7OxsDh8+3ER3q7RW5rSCjUAU2iRCrJQypYmHpSiKckfciZxZ4FJg+yiQAgSbv/q6girarTRH0+4fTfyuBDIzc5kxfRwpabkE+LrjYG/NwePZhLf34NuYTObe05YzuTVsO3PlQrBBHbRtb+OPFzO+nxeHTmQzqFdb8vJLcXK0xd7ehrXrtjN+3GAA1q1b1+j3qLQ+QoiR5p+RaO+7Y9DSCmYAi4QQnwgh2jTlGBVFUe6EOxbMAkgpk9HeUJ+/QRNVtFtpdqbPeAKAVT/EMfW+kVhbW/Hj+r1MmdiPFRtOMOfeHmw/UkTvji7XXQjWq60dttY6dh4rZmI/bwCklOj1OjZtOcLo4d358act+Ph40LtXhMqbVSxlk3mR1zVpBVLKFCnlY8ALlwW9N6x6oCiK0pI0qM6s+U0w6haeJ8r8JrvvsnMeqDqzSjPUuXNnOncOYcWqWJ58Yjbjxg5i6ap43n/jEb5f8TPBAa4IIViyJZtfjQ3k0x9TyS/zwctZ+3WytdbRu6MLO48W8UZ0JwI87di2J5XBvdry04Z9/Pnxe/hp/YccPHiCiROG8PKriygsLMTDw6OJ71xp4QTaroqf32g9gpRyvhDiWSFELCCpZ11wRVGU5qyhmyaMBZ67jed74Kr/VitflGZp2rTZvPrqq+TlFTJrxnjWrN2Gi7MjLi4OxO1KZsygEL7emMHqV3vzwcpU/hNfynPjfglGB3Z1473lKVTVmJjY35vvtiTy4mPDeP6tTUR2a49er2flD3FMmTycf738KTExMTz44INNeMdKKzGvrl0YpZRvCiE8ATUzqyhKq9DQNIMktBIvblJK3e0cgDtaKS9FaXamV56S+wAAIABJREFUT5+OyWTihx83c++Ukdjb27Fi9S7uv6c/q2JO8tC93UnLrSS/pIYRPT14d2sp5VWmS9cPcquh1iDZf7qUewZ6U15Rg5eHVoN2555TDB8cwcofYundOwJPTzfWrFnTVLeqtB4l9d1OXEo5D20mV1EUpcVraDBbhLYq9rYrEpgrHrTo1bVCiCghxFwhxOiLP5t6TIpldO/enZCQENau346TkwMTJwzhpw37mTF1IOfLq3FxtsPZ0ZYV23N46eFwcour+T7D5tL1A82LwHafKGZUlCe21jpOJhUQ2s6dTVsOc++kPpw6lcK5czlMmjCE9evXqxJdyu2KbWD7g3dkFIqiKI2sQcGslHLFxcLcliCl7G2pvhqbECIEWCilXCSljJVSLkKrr6vygFsBIQSRkZGcPpMKQNeIUDIyC+kcHghARk4ZHdq6kZFfSf8ubljpBUlZv1Q18HSyws/DlpNp5djb6gn2tScto4Quod4kpeTQtXNbAFJSM+kV1YXi4mJycnIa/T6V1uMWNkH49I4MRFEUpZE1NGdW+UU08NlV5z5Dq9BwdW6w0gKFhYXx00+rMRgMBAb4IKVESomNjRVpWSX4ejmRnZuPTicI8LQjM78K+GV2tlNbJ06llwMQ6GVHRk4pvbsHsGVvGkEBngCkpWXRsWN7AE6fPo2fn1+j36dy1/qM6+zWqDQvixYtYvHixXW2SygvJ9LJqRFGpCjNjwpmb910rg1m9wObmmAsyh0QFhZGba2B9PRsAgK0EltZOcUEBXiSnlmCr7czx05mABDkbce5vErglzKeHYMc+S4uCyklgV72xB0+z7TxEZSVVeLsrKUhpJ/LZsTwvoAWzA4fPrxR71FpPYQQv29A8153bCCKRS1evJiEhAQiIyNv2i7SyYnZ3t6NNCrlTksoL6/X34PZs2czd+7cOz+gZq5ewawQoj0wSkrZKJ/izYW959Z3MUNjE0K4opUVK7r8vJSyRAiBECLEXGNXacHCwsIAOJuYTmCADwCZWUUEBniQmXuewb3bkVtcjcmkBav7Tl25nrFzOydKKwzkFlcT6G1HVl4mgb5asJuTW4yvjyvp6TkEBflib2/H6dOnG/cGldZmEVqFmLoWdl1so5K0W4jIyEi2bt1680bqg3CrUd8PJQkJCQAqmKWewayUMkUIkSKE+AR4TkpZdqcGJIQYhRbIzrxTz2EB7nBpEdv1hACXgtlt27YhRN0Lh9UCoOblUjB7No2+fboCkJFVSKC/BzvjM/H1cqbWICkqqyXQy45VO6qQUl76f91JaL8mJ9PKCfS0w2SSODpoaQhp5/JpG+hF+rlsdDodYaFtVTCr3K4S4DVuvBDMHW1r8enA67TwBbiK0lrN9fdnrr8/1PEBRn2T94t6pxlIKeOEEMXAISHEa1LKLy05EPNs7HIgqZkHsgCuTT0A5c7z9fXF0dGRs4npuLq2wcHBnoysAgL9PcjKLcPX0xGAnKJqAr3sqK41UVBuvLR5Qmc/WwBOpVfQ1tsOAJ1OC3S1YNaTo6eyAejYMZiDh1Qwq9yWIinlm3W0iUPb2vZZLvvArSiK0pI1tJrBQaA30EcIcVYI8cjt7vUthIgUQixF24LxM/OWi63KsGHDLi0eutmhNC9CCEJDQzmbmIYQgoAAbzIyCwnwd6em1oidrRa05hRVE+St5cCeK669dH2AqxVO9npOppVferz8Qg12tlakpefTNsiT9PQcpJR0DA8mJSWF6urqxr9RpbUYU9+G5qB3+h0ci6IoSqNpaJ1ZpJQl5q0Sx5mPEiHEPiHEJ0KI35uD0+Crg1whRBvz+fuFEM8IIZYIIYzA58AmKWXYxX3EWwpz7qzSioWFhZGYdA6AwACfS2kGACaT9gEku7CKQC9t5jWj2HDpWiEEndo6cfpc+aXHM3PO09bf5VKaQWVlFYWFJXQMD8ZkMpGUlNSYt6e0IlLKhqYNqE0TFEVpFRoczF4kpUyWUs4w7+b1Otob43y0QtzJQLEQwnjxAIrN55ejbYubAvSWUvaRUn5+uzfSyC5+Ped++cnLglv19V0rERYWRkpK5qXyXJcHs9U1RuDizKwWrF4+Mwtaea6TaeW4OVtjb6sjI+c87QPdSEnLo22gVp4rPT2bjuG/lOdSlEbiXncTRVGU5s8ipbnMM6qXZlWFEC5ob5QXNxAoQttqsVUsODBXLUjm2txZd7T7VMFsKxEWFobBYCA1NYvAQB+ysovx99NigKLSShwdbMgpqsbb1RZrK3HFzCxowey3mzIprzQS5G1PZs552ge5sXfdSdoGegFaea6RI/oBKphVGof5mzNVnktRlFbhjtSZNW93W0rrXi0bi5Y/fPmWkFE0fEtJpRm7WNHg1OkUAgN8MBiMGAxGrKx0pGaW4OvpRGZ+1aWNE9KLrp6Z1RaJHU46T6CnHSkZxfTpHkBxSTmOjtoCseTkDO67dxR+fn6cOHGicW9QaTXM1Wbqwx0tX1Zt7qIoSqtwy2kGCvO49o9BtPm80kpERUXh4ODA+g076N+vOwCxW4/Qu2coW3Yl06d7AFsSCjEaJZGhbdiTUnnF9SOdy2njaMUnP6QxtIcH+49mERaszezu3neG8FB/1q7fAcCQwd2JiYnBaDQ27k0qrUV0PY6ZaDOyj0opVzbROBVFUSxKBbO3yFxjdp4QYqEQYroQ4jlgoUoxaF0cHBwYO3Ysa9ZtJzKyE8FtvVn5026mTOjD/qNZDO7djvySGvaeKmFoDw+SC2o5d9nsrKuDnl+PDWTljhzuGeiNlJITifm0C3Bl2Q/xzLx/EFu37SM3t4D77xtNbm4uu3btasI7VlqwEmC6lFJ3k8NdShnaAtcpKIqi3JAKZm+DlPKglHKelHK5lPINKaVKMWiFJk2aRHp6NidOJHH//eOJ3XqEkUO7AVBVbcDKSsePO3MZHqnNuG47e+GK63/bGaprTew5WcKgrm58+8Nhpk/oQszmw4wb2QOTycSKlbFMnDAEGxtrVq5UE2bKLUlWs62KotyNVDCrKHWYOHEiAGvWbWPa1DHU1BhITMmmQ3tf4uKTGNY3mLW7cunWvg2uTlZsPVNxxfU9g+zoFuLMVxsy+NXYQE4k5tO9ky8Gg5HTidl06RTEkmUbcHZ2ZMzoAaxcuVLVHVYaTErZu6nHoCiK0hRUMKsodfD396dnz56sXbeD/v274+frxg9r9jJlYh/i4pMZPagDx1PLSc+rZGh3D7afuXJmVgjBr3vas+dkCT1C22BjrePA0SxCgtxYsnInM6YOZMfPB8nOzuf++0aTlpZ2ac9tRblThBDPNPUYFEVRLEEFs4pSD5MmTSJ+VwIlJWVMnjSSjZsTmDgmippaI04ONgCs3Z3H0B7uJObXknlVvdmH+rqg1wl++DmHSf29WLruGNPGRxC37Qijh3dHSsmKlZuYcs9wdDodK5d/2hS3qdxdopt6AIqiKJZwR0pzKUprM3nyZF5++WU2bPyZyZOG8fmXKzCZTLi5OrH/aCYdQzxZuyuPV37fEdDyZmf3dbl0va+LFRMiHPkmJoM3ozuzakcCYcHuGI0mjp88R9cubVm6fCNPPjGbYUN7s2xFDP96WSKE2qRJ0QghpgGjLdhlSN1NFEVRmj8VzCpKPfTp0wcvL3fWrtvOok8XYGtrzfrYQ0wa14s1Mfv41b3d+fh/e+ng74CLoxVbTl8ZzAL8ZoALaxZl4mCnx8FOz4FjWYQFe7B0VTwzpg5kwatLyMzMZcb0cTz25EscO3aMbt26NdEdK81QCJadTVWJ2YqitAoqzUBR6kGn0zFhwmQ2xOzEzs6WkSP68dP6/UyZ2IfC4gu0C3SjptbEloRChkd6EHuy4ppFXJO7OeHuqGfJlmwm9/dm5caTTJ8QwZYdxxgxpKs51SCW+6eOQqfTsXTp0ia6W6WZKgE21VF6q96HuT9FUZQWz6LBrBAi2JL9KUpzMmnSJIqKStm9+wiTJw4jKSWHkGAfbGysSM0spo2TLWt25TGmtydpRbUk5l2ZN2trrePBPm1YtUPLm80vqiA4wBWTycTR4+l0i2jH0uUb8fb2YMTwPixd+q2qaqBcLhk4ZMH+WvMOjYqi3EUsPTN7wML9KUqzMXbsWPR6PWvWbWPSxKEAbNl+lOGDu7J+61nGDw1j7a48RvfyBCDmZPk1ffxmgAvVtSZKKgw42evZeySDzh28WLJKq2qwM/4QGRk5zJg+jjNnUjl8+HCj3qPSfEkp46SU8y3YnyrlpShKq2DpYNZNCPGIhftUlGbB1dWVXlFd2LP3KO3a+RMSEsj+Q0kMHdiFMymF9IsMJLe4Gkc7PR5trDmWVX1NH73a2tEtwJbvN2dxzwAfVsee5r6xndkRf5JRw7Ttctes3c59945ECMHq1asb+zYVRVEUpUW5EzmzbwohlgghRt6BvhWlSXXt1odjxxMB6BgezOmzWYS09wHA3tYagLTcSoK87ckoNlxzvRCCqZHO7D5RwvCeHuQXVdDWzwWTyURKWi7t2nqxfuMOvL096NunG+vWrWu8m1OaPSHESCHE74UQrwkhPjG/136iasYqinI3s3Qwm2ze+3smIIQQnwohnhFCtLHw8yhKk+jatSv5+UXk5xcRHhbMmaQsgtt6AyDNi8NTcyoJ9LIj46pasxdN7OqElKATYG0lOJtaiKebA+tiDjJxTBRxm3dTXV3DxAmD2bt3L/n5+Y12f0qzFwt8hlbZYJGUcqaU8jEp5VtNPC5FUZQmY9FgVkoZetm/46SUjwKfA9HmmQQ1W6u0aBEREQAcP5FEeFg7Llyoxt5O2zThQpUWvKbmVBLgZXfdmVmA3u3s8HLWszWhkJE9Pflp82kmDAtj/aaDjB0VSUVFFT/vPMjE8UORUrJhw4bGuTmlpbgYxFpyMZiiKEqLdcdLc0kpS6WUb0opn0fN1iot3KVg9ngi4eHtACgqLsPe3oas3DK8PRxJzblAkJc9hRVGKmtM1/Sh0wnGd3Fiw958Jg/w5mxqIZGd/SgqLsfJwQ4bGyvWrd9BVFRnfHw8VKqBcrWFTT0ARVGU5qRR68xKKePQviIbCxSr3FqlpfH398fV1dk8MxsMwNmkbILbepOaUUxwoCtpuVqaAXDD2dkJXR0pPF9LW297AErLq9DrdWw2V0f46adNCCGYMG4wGzduxGC4fj/K3UdKmXr1OSFEGyFE8I2ORh+koihKI2q0YNa8aOEssB9tS8YVwOtoFRCWqtlapSUQQtC+fSjp57IJDPTBzs6GM0lZtG/nTcq5YtoHul3KmQXIKLl+3uzYLk7oBOw7XULvji5s+jmJwb3asjbmAPdN6svZpGxOnEhi0sShFBcXs3v37sa8TaX5Sr7B+Q7AA8B8c5sktFKJ0Vh2C1xFUZRmx9KbJvz+qv8ONq+0NQKLAIH2ZusmpZwhpTwkpVwhpZwBxAFvXN2HojQ3gYGBZGTkotPpCOvgx5nEbNq38yElo4R2AdrMrL+HLXDjmVl3Rz0DQuxZvyefSQO82Z2QwbB+wRw5lkbvKC31fNWPcYwZPQC9Xq9SDZSLiq930vxe+qZ5ncJYtPfaGVLK56WUXzTqCBVFURqZpWdmFwoh2gkh7hdC7EObHYhGm4UdI6UMNb/hll59ofnN+FEgRQhxv4XHpSgWExAQQGZWHgDhHcM5k6jNzJaWVeHj6UhNrQm9TvvVutHMLMCErk4cOFNK/85uSCmxs7UC4MChJPr3CWfVD3G4uDgzZHAUP/zww52/MaVVkFLGmn/GNfVYFEVRGoPFN01A+4prufnfl8/C1uuN1dyuj4XHpSgWExAQQEFBMVVV1YSHtSM5NZegQG3XLxtrLSDNK6nGzdn6ujOzVbUmqmtNTOzqBEBWQRW+7rYcOpFNcKAra2MOMHVyPw4eOklaWhYPTBvLyZMnOX78eOPdpNLSHayrgRBiSWMMRFEU5U67Ezmzh6hjFvZGzGkJbYDCOzAuRbGIwMBAALKy8ugYHozBYLwUxJpMv9SaDbpOrdk1R8pw/fMZfvdVNj0CbfFzsWLD3nwm9vcmZkcS44aGErf1MBPG9ATghx83c//U0eh0OpYuXdqId6m0cLIebaLu+CgURVEagaWD2RIpZe/b+HorGW3RgocFx6QoFhUSEgLAseOJdOncAYCi4nKEEOQVlWOlFxxNKaOtjz0pBVcGs08vzaXGIPl+/3lO59Zwbw8nVsfn0q+zK6VlVXi5OVJZVcuhIyn06BbMf776AR8fD0aO6MuXX35JdfW1W+Qqd5WQZtqXoihKk7F0MHu7U0fz0QqCP2+JwSjKndCvXz8cHOyJ2RRPVFRnPNyd2R5/gh6dfNi5P53eHV2IP1ZE53ZOnMmrwWD8ZZIsr8zAjC62tLEV/GlpLi+M98BKJ4nZl09YoCPrtp6ha7g3b727lD9GT+TwkdPExu3i2b/+jszMTL7++usmvHOlGXATQhiFEIU3O4CoerRRFEVpFSy9A9ijt3n9G1LKNy01HkW5E2xtbRkxYiQbN8Wj1+sZOrALP+86yYgBIew6lEGvqHAOnCmlY5AjNQZJYn4NANW1JiqqJWHuVswf6EjMiQoOpFfzp1HurNiew0Oj/Tl4PJuxQ0I5ejoXfz8PfH1ceeudrxgzegB9enfltddeUzVnFYG2JuFmR33aKIrSXCUkwPDhNz8SEiA7u+nG2Iw0Zp3ZNpflxCpKizZu3DgSE9NJSjrH4KFDSErJIbJvL6prDLi2saOy2oSNlfbrdTxLSw0ovqDtBuZmJ3gk0p5OHnr+sjyXuUNccbARnD5Xgb+nLQePZeHl7sjHHy3lj9GTiNkUz5EjZ3jx+T+QkpLCd99912T3rTQLUdQdqNZ19G70USuKUj+zZ0NkZN3tysshN/fOj6cFsHSd2ddu8nAHYAwwUwjxeh1tFaVZGz9+PAAbY3YyeJC2jkZKbavakvIqAArOa/myJ7K1YLaowgiAq50Oa73g9VHOpBTU8t/4UqKHurF0Sza/HhfI1j2p3DOqI2u2nGHMiB44Otrx9rtfcc/k4XTrGsarr76KyXTtNrnKXSFZSplg3ib8do6DQEpT34yiKNcxdy5s3Vr34eTUZENsbiw9M3vDnWbMdWQ/Nx/zARXQKi1WaGgo7dsHsHHTTnr27IS9vQ2HjiTTq6s/Ccez8Xaz4XDieYI9rDmRraUZFF3Qglk3O+3XbmhbG6aE2/L6hkJm9nJGr4OcQq2kV25BOVZWOr7+fiu/e2gES5atp6CgmBefn8upU6dYuXJlk9270qQWWrCveRbsS1EUpclYOpgV9W3YkJJditLcCCEYN+4eNm/Zi5TQr3c4O3efYnj/9uw9kkXvcBd2nygmIsztUprBxZlZN7tffk1eHu4EUvJeXDG/G+jC4rgsHhzlz/ptZ7hnZEf+/U0sc2YOo6bGwJf/WcX0aWMIDw/m9ddfR8r6VF9SWhMp5ecW7GuFpfpSFEVpSpYOZuv919WcO6v2DFdarPHjx1NefoH4XQkM7t+JQ0dSGDB0ILW1RrwCAjh9roIQfwdO51ZjMMrLgtlffu0C2+h5tJcDSw6cZ2qkM0ajiapqLYXA2dGGigs17Nx9ipFDu/HpZ/8D4OknH+LAgQPs2bOn8W9aURRFUZoZq1u5SAgxCi3/9ergNUQI8Sp1z9CGANNRX3MpLdiIESOwsrJiY8xOhg8fjfHN5Vhb6bGy0lFVrVUcsLES1BohMb/mlzQD+yt/PR7v5cCig5V8vauUh/q68N3mTCb08ean2OMM7BXEB5/8wBuv/J4Zv3mLteu286s59zD/xff46KOP6N+/f6Pft6IoiqI0J7cUzEop44QQyWhB6QPAXLTAVqDViq1LMvCoJb8yU5TG1qZNGwYO6MHGmHjmP/cIQggOHkmhV4Q/6dmlCAHnzQHs8axqii8Y0QtwtrkymPVw0PFIpD0f7j/PT08E8s2eUlydrSg6X0uPTn7EHziHAAL83fnok++Zcs8IfvOrKSz6Yilvv/023t7eTXD3yt1KCBGFVg3h4t+AZCll7O1eJ4RwRftbshwoAtyBaGBTffpXFOXudctpBlLKFCllnLm2bChQirZ7101LwkgpdeatblUgq7R44ydM41DCSaqqqunetR0/7zpJv56BJJzIoXM7J9JyLgBaRYOiChOudgIhrv3i4sk+Dtjp4ft9ZUyNdGb93ny6tHMifvcp2gW48MGHy4j+3VhiNsVz5kwqTzw2i5qaGr744ovGvmXlLiaECAEWSikXSSljpZSLgGjz+du9zh1tgVsSUIz292SfCmQVRamLRXJmpZTJaJ+oqaskjCWeT1Gai4slutau28Hg/p2J33uaXv37UFlVSwd/B/aeKqG9pzWH0quoqDZhrbs2kI1NqeZ4voGHIx34395SRnR0oOh8LWFBjhxOOs/QPsFs35dGSDsfrK2teOH/3qdjx/aMHtWft99+m7Nnzzb2bSt3r2jgs6vOfUbdVRbqe90YtImPDlJKNynl8lsdqKIodw9LLgDbBMRZsD9FafYiIyPp0CGI75as4/4HplFRUYXRaMLaWo9wcKek3ECnDq5sOlVBj0BbcipMJBdfuYPXi1vKmbWyhLEh1rRz0fPGxkLu7eHE2vhcOrdzYt3mE3QJ9eKPzy3imaemsGLlJj76+Ds+/uBv6HSSCRMmkJeX10SvgHKXmQ4cvOrcfvN5i1wnpSwxT5AoiqLUi8WCWfPMa33yZS8RQoy01PMrSlMQQjB71kQ2b9lLeFg7/Hzd+GHtXiYMDWP/kUxcnayortG2sXWx137dNqfWXLreJCXppUaqjfDo+jLeGOVETqmBaoPE21lPdUU1FVUGPByM1NQY2bx5L5PGRfHX596kvPwCP636gMzMDKZOnaq2uVXuKHNOawhaPuslUsoS8+PXTTW41esURVHqq9G2s72Bq792UpQW56Ff/RmTycSy5TE8OH0w6zcdYvKU4WTllTGwd3v2nirBwUawP62K9q564lJ+CWZzyk1UG2F6ex3FlSbe2n2Bvw91ZMPxCiZ2cya5oJZ+nd3YcaSIByZGsCchg7aB3nh5tmHmg08TERHKl4v+SXx8PC+//HITvgrKXcAdfglCr+NGQWlDrgsRQkw3H3OFEDec8d22bRtCiDoPRVFav1stzfUMcFBKufmq868Brg3oSn0iV1q8jh070iuqC4u/X8dnH/+ddz78iQuVNdjbWaPT6SivNNK3sytrjpYzpYczX8WXUm2Q2FoJ0ku1agejA3T08xY8u6eWzh567g235T87S5jW04kVh4ro09GF71YfZvaUbnzy5QZe+tuDLHh1CU/+8VW++s8rbNi4k5deeokxY8YwaNCgJn5FlFaqIe/tt3JdEcDlebJCiGVCCO7q3NnsbMjNheHDb94uIQEiIxtlSIrS3DQ4mDXXmH0DbbWpx1UPP0DDAlS1hZHSKsx+6BH++te/4uhoT6fwAFat2cM9E/qweWsCXq42SCnJKDYQ5m1LRa1kT1YtQ9vakGoOZgMdBe2cdZwskfz7SBUvDXfkWL6Bn89cINzbmozsChzs9Bw/nkpUhB/vf7yaeX+6j9feWcmokf348P0X2LnrEA89NIPDh0/g4uLSxK+IojSMeeZ20VWnPzMf1wSzw4YNY+vWrY0wsiaWmwvl5XW3i4yE2bPv/HgUpRm6lTSD/WhvLNfLj00Gos3lt+o8gBt97aQoLcqsWbMQQrD4+3XMnDmF7TtPMHZkJAXFF+jVvS0n08sRAvLKDFjrIDZZSzVILTEiAH9HrZ8/dtUzxFfwj20VzO1pz/lqEw5CknPeQO9AGw4nldG1ow8FxReorqll2OAIHn/qJbKz8/nfV6+TkZHL448/3nQvhNLqmXNgG+u6ZLTUg1udFW4dnJxg69a6j7lzm2yIitKUGhzMmhd6zbhBndhktKoG9ZXS0OdXlObI39+fEcP7svj7dcyYPg4pJSWlFTg72lJrMFF+wUjntk5sPFHBgA4O7MrUgtm0UhM+9lwq2aUXgrf6W9HRVfCPbeU80duBhFwDUX5WxJyoYFJ/L75ZlcD4oaF88Nk6XnphFna21vzmt3+lb99uLPi/R1m8eDHffvttU74cSut0scKA++UnLws0b1SBoF7XCSGeu861FxeNqZQ0RVFuyKILwKSUj0opUxvQvrcln19RmtJDc+aSmJhOefkFukW0Y9WaPUydMoD9RzOxs9Hh4mjFwfQqOvvZcDTPQI1RklZqJNDxykUqtSZY2FePux18efACk0NtSMgx4O9qxamkEtr72XPydAa21nrefOtb3n7lt+zZf5alyzbywvw/MGhgT/70p6coLVVlnRXLMacBJHNtDqw7cMNyWvW57uKmCtepbHAxAFaluhRFuaE7Vs1ACNHmBudH3ugxRWnJpk2bhq2tDf/7bi0zZ05h5+5TjBrWjdKyarp18iMtrxIAowlqjHAi30ByYS2BTlowK6XkpzQjY9bW8vBWAy/1skICh7JqcLcX2CFJyq+ld7grqTmVDOnTjp82n8bH24Ue3YJ5/oW3MBiMvP/ufAoLS1i4sK469orSYLFoW9JeLsp8/pavMwfC0dcJiEejLTZWKWmKotyQxYNZIUSkEGIpUCyEOHOdJgeAF4QQ91v6uRWlKbm4uDBp0mSWLNvAtPtHA5CbV4q7mxNCQFZBNUHediTmVgOwJ7OGvCpt8VdRteQvuw28sM9IoAOUG+DFfQZe6aOnsBqc9ZLkEiO92tmxYns2Q7q78fO+ZNoFuPLXeZ/x+oI5pKbn8eHH3xEV1YXZsyby3nvvkpmZ2ZQvidL6zENb6Hu5aPN5QEsfEEIkCSHmNuQ6oOjymVlzGkI08AdLDFxRlNbLosGsEKI92qfrGUAqkHB1m8s2VxBCCFVHRGlVHnroIXJzC0lJySSqZ2e+W76DKRP6cDKxAAA/d1t2JlfiYS/YmKTlzTpZSabH1BKbKXkPFq9dAAAgAElEQVSwneBf3XXMj9CRWwmfHDPyQqSe5DKI8NRzLKMKV3sd2dnlVFYb8XA0cSIxnx/X7WPUsG786+WP+fqb1fzrH09gNBqZOGEk//73vymvz2poRamDeYZ0nhBiobkW7HPAwuvMqLo39Dpz+a0oIcRzQoiFaFvdPiClvHrnMEVRlCtYemZ2rpTyMQApZQdzUHtdUsoVwEwLP7+iNKlJkybh6+vLG2/9h+g/PMChIyn07N6esopqOoZ4cCylDJOEdp42bE2vxdse/n3GRBdzJa2jJZLztXD2vMQEDPDTcV+wjsG+gjNFRuyswNkKskpraWOn4+CZ8/i52/Lpvzdy7Hgynh7O/ObhF5kx8ykenTuDmtpaHnnkEXx9vfn1nCls2rQJo9HYpK+R0rJJKQ9KKedJKZdLKd+QUsZe9XiJlNJNSrmoIdeZ21x8bJ6U8nppB4qiKNewdDDb0O1WmmR7FvPMwOgbPBZl3nlm9MWft9JGuTvZ2toyf/58tm7bR1CQL0FBvixZtZNZ0waRmlFKjUHSuZ0TB89VE+ptTaURCqtA6gQLovScKYPovSa+TZWMC9TxZIQeIQQv97bCxQbsdZBaamJomCNWOnC0FRSU1uDlaoODnTXJKbmEBXtQUHie9z/8H1UXKvjTU3OYMX0cq9dsZezYsbRt68+C/3uMsrKypn65FEVRFOW2WTqYbegmCI1e2d0ceF6vrNjFPcIXSikXSSljzTML0VflcdXZRrm7RUdHExgYyD9f+pR5zz5M/J7T3DO+DwChwR4cTy0nPMiRgnIjtSbo4KZne45kT55k8UgrhvgKHuyg45U+enTm7Tg97ASv9bEitxJ6+Fix4XgFTnqBp6MegcTBVkdKRglhgY4UFFVwLrOAEUO74unhzHsffMu69Vt5961nWfrdW/SM7MS/Xv6U0NBgFi1ahMFgaMqXS1EURVFui6WDWbf6NhRCuHDtDmJ3jBAiRAjxGVq9wqIbNItG223mcp+h5W41pI1yF7Ozs+Pvf/87e/Yewc/Xi4AAb954/weeenQSp5IKcLa3wt5GR3WtJNjThjNFRiZ0sGFDholvzpr4cJAVL/S0wlZ/5RcX/X10PNxRx+FcA4/3sqeiVpJVYiDQzZq03CrCfWzIL6mmtLyKnl382LnrJMdPpvObB4cT6O/Bw3/4Ox999B8Wvvpn9uxcTHhYMNHR0fSM7Hx37KSkKIqitEqWDmYPCCGW1LPtUiDGws9/Q1LKZHMO1tXbJV5uOnD1YoP95vMNaXOFbdu2IYSo81Baj9/+9rd06NCBf738KR+9/yKHj6ZyobIaL3dH/H1dOZxUxoBu7pzKqaGTrw2bU2t4uIc9P6aZeDXBiJTX/5LjiQg9PT0EHx+oJMRNT28/K5ILaungpifnvIHzFQYigp05eDwbLxdr+kcG8tV3WykqKGTB/BkcPZ5GZO/prF/zI9s2/4flS97hQmUVY8aMYfXq1Y38KimKoijK7bP0pgmfA+5CiEIhxCNCiODLHxdCBAshnhFCFJrbf2HJ578d5jIw18zaXqxvaJ7ZrbNN44xWae6sra355z//yeEjp6muruHJxx/k4883MHP6UE4lFzBpRDibDxbSt5MriXk1OFoLdqRX81gve5Ykmfj0pOn6/eoEHw3S80w3Hafza9mVaaC7txV5FUYqqkxE+NtyLLkMD0c9Oh1s2Z3C5JHhVFTW8u6HP/LJu9HMvH8Q/3htCQv++RHT7h/DoX3LiOrZmenTp7Fu3bpGfqUURVEU5fbciU0TpgOb0fJSk4QQRnNwawSS0L6OjwNuWOmgibjDL4HpdYTUs801hg0bhpSyzkNpXWbNmkVERAR//+dHvPbK03SNCOX/t3fn8VFV9//HXycJ+xbCIoigBESsohCWolZABfyJCy4sKm2lIsTWhbp8QZTab+sa6reLVWvApbZqi8GlxT2AoLYqSABbVyAo7ghZ2Jck5/fHPROGyUxmyUxmkryfj8c8ktx77p2TOzNnPvesC5/5F/37dOadtV8w+PjD+e+m7XRqm07rlulsKK1i1/4qzj26BX/+pJJdB7z3xJY9lkXFlfzv6gomLjnAiMUV/OnDKoZ3NZzTK40N2yrYfQD6d0rnP1/uo30LQ0YafLV1LyNOzOKF1z6hXQtLz+4duHTa7zhp2DFM+9EZ3H7nfObd8wjt27fllRcf5IQB/bjwwgt49dV6azARERGps7gHs24e2YnAWOAZYBNeX9pyXBBrrZ1krU21tTYDl1qMNY0IAOnp6dx22218/PGnPFXwKn9/4jfs2LmXzl27cKCikp279tGmTSuat2jGF2UVDD2qJX/5zz4GdktndwW8sNmrnZ2zsoJfFVVS+EUVHZvDuT0MwzoZln9leX5zFWkG+rSH97dW0qEZZLVK49sdlfTt0pzX15VwUu9WfPHdHprbvYw9pQ9X37iADh1ac/FFP2D2nN/xwJ/+TmZme159aT79j+nN+PHnsWzZsiRfPRERkcgkbDlbN9J/orW2r7U2zVqbZa0d6+aXFWkSzj//fE4++WSunnkn320t5be/mcWbb33I5ItGsGFzKX16deTLbXvpe3hrVn26l+91b84f3tlN/07p/L24Cmstm3dazuqZxpvnNePaow3pBsr2W0YdBmd2NxzZGj4ph7YZ0L45bCqrpHNL+Pjb/ZzQNYN3Nu2hS9t01m3czt4dJcy4ZAi/vW8xPxjen/PGDeWqa+/gr48vJiurA0teWUDfPj254IILKC7WFJ8iIpL6EhbMJorruxrpI+qa1EiOieW80jQZY3j22Wfp3bsH54y/iuOP68uFF4zmob8s5crLx/L22i8YPrAnG77aTacOzdh7wGLT0kg3sL7csnprFd/thSPawH+/qeSBTyyLPrd8tgte+Rpe+dry/nZolQ5tMuDzXdC1BZTtg6wW8N6WCvp1Sue7HRUc1akZr63ZxpatOzlr5NH8fM4jXD39LM4YeQLTZtzKypX/oXPnjjz/j/tJS7NMnjyZ/fv3J/sSioiI1Coj2RmIhm+O1ygOWQXMizCtrxoqC6juE+sXuBZzcOBXbWlEDtG1a1eWLn2TkSNPYtx5P+PVF/PZuPFz/rrwdaZMGsETT71Or8M7UL59F8XlFZyU3ZK3ivfStpkh/8NKKi18ud2SXwJvfGc5pUsao7qmYYHS/bBlr+WtrVV8tceS1Rx2HoAKC3sqoF0z+HBrJT3apfHptgP079ac5wo/4qdThtKnVxaXXn4Py1+6k7Mn3cHES25g5b+f5MgjD+eRBbdx4cSfM23aNO699146dox41j0REZF6lbBg1hjTHpgBDAVy8AK91cB8a+2nsZzTLW04MV55DDh3mTGmmJr9YrOAMt+yipGkEQnUrVs3li17k0GDTmDuL+/jn8/+kRMHX8SXX5cw6gfH8dbKj7FVlfTo7AWyHVqlse9AFW9vgfbN4MWvvEAVYE1JFZ/vsmS1AIMhzcCeSm+w2P4qyEgDqqBNMy+w7dACyvdZsjs3A+CYnm14893NPPPAJRx/1n0sfOZfLHrsfxh59i8YfeZ0li99lAvOP4Nb517JbXfk88ILL3DDDTdw8cUX06dPnyRdQRERkeAS0s3AGHMjUIpXKzoR6AOMAW7Cm+HgzkQ8bxwsAYYEbMtx26NJI1JDjx49uOWWW1n22jus3/AZd942k+Vv/JeJF5xMp07tad+uFV9u3Uvvbq0o31NF2xZpZKTB9gNeN4K9brau5mmwbZ9l/XbLR9ur+E9ZFfurvO07K6BtM+jYHHZXQFbrNPZWwE9OyWTDdwe48IxefPz5Ln50wYkc27cLZ57ah0ceX8rAE3rzz7/NYf2GzzhzXC7l5Tv41S+vYu27BXx/2PeYO3cuffv2ZdCgQdxxxx28//77moFDRERSQtyDWWPM3cCV7tEHbyYD32MwcA9wpTHmgXg/dxSyCD4zwWxq1vzmuu3RpBEJKjc3l169unPVtXdw8eT/x7ChA/jV3U/xyH1XUb5zHz27t2fTN3s4sU87tu6qokOrNNKAls0MuyugZTocsLCr0nvsqfRqY/dWQs+20KM1fLUHDlRBs3TYW2F58dqeLH5vJ4N6tuCZN76m75FZXPvj4QBMv3gIX35VwkuFRZwx6gSe/uv/sO69jzl11GUsfn45Awb046XnH2TT+pf5v3k30qqlZe7cuRx//PEcfnhXpkyZwsMPP8ymTZuSe2FFRKTJimswa4wZBOS4GQwWWGs3uam6fI811trZ1tosoK8x5vR4Pn+YvGUaY/KMMQV4gWyeMSbfGFO9cpebP3a2SzfBGDMLyPPvPhBJGpFQWrZsyV/+8jc2bPicK3L/lz/dN5et23bwyONLuef2y/j86+0cfVQn1m3cweB+7dm2q4rO7dIp3WtJM5DZ0gtqA1Va+HQHtG1mGNO7OQcsdGyZxrIbjuKVD3bz6bYDDM/pxkebd/Gbm86keXOvh9E5px3DYZ3bMu8Pz7F9+27OPnMIzz05m507tnPeBdeQM3QSzzy7hF69unP9dZfx7zce5/NNhTyU/ytOGzWUpUtf4YorriA7O5ujjurB1KlT+fOf/8xnn31Wz1dWRESaqnj3mZ1hrR0bSUJr7VhjzJ/wFlhIOF8QGkG6ImouVxt1GpFQRo4cybx587jhhhsYNvR47rz9Wm66+fd8t3U7ky88hYXP/Itxo47mpRXr6dyhOeW7K0gz0CMzg/I9VVi85v10A22aGVpmwP5KKNtn+bjc8nH5fgZ3z+DU77Vj9O83s3VnJeec1JW/L/uSM07O5rzR/avz0qxZOr/++en89NbFnHjK9fwl/1rOPnMIY08fyJMFb3DHPYu4aNJ19Ot3FFN/PJ4fTTmHI47oxrTLL2Ta5RdireWDDzayfMUqXluxiuef/wePPfYYAP36HcWYMWczduxYTjvtNNq1a5eU6y0iIo1bvLsZmCjTp9rCCSL14rrrrmPy5MncPPdehgw+jsceuYM33/6INe8Vc1z/nry4fD0n9u9Gq9at2Hegit7dW7OfdLa7jrNZrdPo1iGDrHYZtG2dwWGZzcjp1ZLv927JkCNb8t6WCv6wrJRTTuzMst8N56hurSjfVcFvbzkLYw79mE6/eAiv/30a6VQwctwvmH3rX6iqslx26Wl8uOpennjo53Tt1Iqb5/6BXtljGTNmCo8/sZjdu/dgjOG44/py1c8uYdHC37LlqxW8V/Q0v/+/2fTt05NHH32E8ePH07lzZ8aNG8f8+fP59ttvk3HJRUSkkYp3MLshyvQaQSJNkjGGhx56iGOPPZaLp8xi1MihLHllAVu37eCbLWVc8eMz+LZkH59/XU6vwzuwY5/h29J9AHRok0Gbts0xzTLYU2X4dkcFn5ce4JvyCnbsraJVM8Pl43rx1v0nk3/DAFq3SOdP/9jM9IuHMuCYw4Lm5+ScXqxZ/FOumDyYeX94juOH/pTf3b+Y8vLdXDpxBG+8fAcb1jzAL2ZNZEPxN/xo6s10O2Ik06bfyutvvFs9GCwtLY0BA/ox89of8sI/H6Bky5ssK3yYa666hI8//pjc3Fy6d+/OiBEjePTRR9m5c2e9XXMREWmc4h3Mat4ekQi1bduWZ555hv37Kxk4ZAIvvPg6zxT8kayObXnoL0vZf6CCk79/DLv2VrFl2y4AMtu3pG3b1uw5kMZ3Zfv5tnQ/u/ZZdu+3fFVewQdf7+eNDXvIX7yZ4T/7N90uXMLwn/2Ltq3S+fXM2ruot23Tgvzbz+P5h35Il6w2XH/zo/ToP43Lpv6at1d9THbvw/jVzRezcd0DLH/hNiaMP4mnFr3EyNN/wtHHjOW3v3uM0tJDG1tatGjOaaOGcc+8G9mwYQPr1q3jl7/8JVu2bOHyyy+nW7duTJs2jbfffjth11lERBo3E8/pdYwx0wFrrX0ogrR3AdustffELQMpyBizfOTIkSOXL1+e7KxIilqzZg133HEHzz77LMYYzjt3JEf3PZL3P9jIa8vfYffufbRokUHXzh3IyEinrHwXpWW7DjlH65bNOKJ7e7p1aUuXrDYc2SOT3kdkAgZjDCOGHcnx/YLXyoay7sNvyP/bKh7/xzp27trPoO9152dXns8lE06lTZuWAOzatZdnFr/N/D8X8uZbH9KqVXN+OGkk18y8kgED+h16wozjq3+11vLWW2/xyCOPsHDhQnbu3MnIkSO55ZZbGD16dI2uEA3JqFGjWLFixQpr7ahk56Wxakrl6qhMb+Kd5WVlYVJKU9OU3hvhytW4BrMAxphXgXcJsTiCMWYg3lRWQ6y1Q+P65CmoKRW6UjebN2/m/vvvZ8GCBykt3Q5Au3Zt6HF4VzIy0tmzdx/btpVRVraj+piMjDQ6ZXlz1GZQwdbSXXxXshuAIQMO59rLTmLSuOOqZy8IVFVVxV+fW8faD76hX+9O9M/uTP8+XejWpW11QLlj5z6eXPweDzy+kv98/C0d2rVk6kWDuP7GqfTq2aX6XGvf28T9C17iiYLX2bNnP+PPO41f3JzL4MHHHXxCv4DWZ+fOnTz88MPMmzePr776iqFDhzJ37lzOPffcBhnUKphNvKZUrjalgEWi05TeG8kIZjsAS4FBeKt+leEtA5sFZONNi1UETLLWNvrJKZtSoSvxsXfvXt577z3WrVtX/Vi/fn2NgVNt2rSiY8f2NMvIoKSklPLtXhB73LE9yT6qG59s+JKP139Fty5tuWHaKcycOpyMjPTq49d/uo0f3/A076z7gubN0th/oOqQ8/9gQEeefSSXTh1bA15t6r+LNvPA4yspeOl9AC45ZwD33DOTrl0OTttcUrKD+x96id/d/zylZTsZd9ap/OG3N9G3b6+gwazPvn37eOyxx7j77rvZtGkTJ510Eg8//DDHHnts3S5oPVMwm3hNqVxtSgGLRKcpvTfClatxXzTBzSc7BPgp3mwFg/FW/xqMtyrYTdbaoU0hkBWJRcuWLRk2bBjTp0/nvvvu44033uCbb75h9+7dfPTRR7z88svce++9TJnyI3r17M43325j+449LHjwl9x5+0w6ZbVj8UurOLbfESxeeDPHH5fN/9z9CsMuyGflui+qn2fRS+/zjvs7MJAFePM/pSx7/tXqv40xnJzTixumncK5px9DRYVXq1v42rpDjsvKasf/XHs+N113AcYYXnzpDRYWvBz2/27RogXTp0/ngQceoEOHDrz11ls8+eSTsV5GERFpIuI9z2w1a+18YD6AMaa3gleRumnVqhXHHHMMxxxzDGeeeWb19h07dpCTczz/e9ufWLf6aebMvoI/3vcE1153N8YYXii4hedfXs01sx7ipAkL+OmUofz656dz05WncvZp/Vix8lO2luxm/4FKWrXMoFXLZnTr3JZTBvciu1cWBw5U8u+izTxb+CH/KPyIz74so3mzdH44/kR+dvXFDB96sG/s5s+/47G/vcYDD73MN9+WMWzoAG6+6QrOPWdUrf9bVVUVixcv5s4772TlypX06NGDe+65h6lTpyboaoqISGORsGDWX6hA1hhzY2MfACaSaO3atWPhwmcZPvz7XD79Fzz39L1cc/UUrIWZ19/NJZf/jr8/ej2jR53A3Nuf5MFHXuGBx1eSc1x3hpzQg2EnHMFx3+/KgQOV7Ntfyf4DlXy1ZQe3P7CC9z78hv9+soX9Bypp0TyDMadkc+ucKZw3biidO7UHYM+effzzxVU88vgyCl9bh7WWsacP5Im/Xs1po4bV2u+1vLychQsXcu+99/L++++TnZ1Nfn4+l112GS1atKivSygiIg1YvQSztcgFFMyK1FFOTg7z7rqe626cx333P8k1V0/h2mumYK3l5zfk8b1hM7n/nun8/u7LueHq88h/9FVWFW1g4fP/Zf7f3g16zi5ZbRh4bDeunTqc4aeezNjTB9KuXSsAPv9iKw8+/AovvLqapSveY8+e/fTq2Zlb517J1B+P56ijetQ8oesvW1lZybJly3j00Ud59tln2bt3LwMGDODxxx9n8uTJZGQku1gSEZGGJKpvDWPMRcDoOD5/dhzPJdKkzbz+bpa+9g43zv4/fnBKDoMGHcvMa39I3769uHz6Lzjzwl/Tr+/hXDX9LK6/+jw6d2pPVVUV6zd+zdfflNKiRTNaNM+gefMMOndqz2FdMzHGsH37bj74+HMefWIZ77z7CStXb2BD8dcA9O7dg2k/uYjx553GaaOGkZ6eHjRv5eU7eGXpUzz//PO8+OKLbNu2jY4dOzJt2jSmTp3K4MGDG+TMBSIiknzRVoFk49WmxotWABOJE2MMj/55ESNHDidn2CTuvvPnXHPVpZw9bgSbiwtZ9PSr/PH+vzFz9sPMnP0wHTPb0je7G316d6NL5/ZUVFRSUVFFRWUlpWU7+Wzzd3y6+TtKyw6u0tXj8CyGDRtEbu6lnH3WCPr37x00CC0v38G/31rLG28W8fobq3ln5X+oqKigU6dOjBs3jvHjx3POOeeoK4GIiNRZtMFsGVBorT0zbMoIGGO2xeM8IuLp3LkzS5e+ybTLJ3HTzb/n3vue5Jdzr+QnU89nyqXnMOXSc3j33fd5/Y132bDxczZs3Mw7RZsoKdlOswxDs2bpZGSk075dK47s2YWThh3DUX2/x9F9ezF0yPH06HHowgvWWrZs2cb7H2xkzZoPWbP2I9as+4gPPyymqqqKjIwMhgwZwo033sg555zD8OHDQ9beioiIxCLaYLYYWBPH59cMByJx1q1bN1548XVef/115tw0k9yf/Zqbbvk9w4YO4PvDBjBs6ADOH386nTpl0r5925DN+1VVVezYsYuysh18910p765+n3/88zW+/GoLn376Jes3bOaT9Z9RXn5wEYcePboyaOCxTLxoLKeOvIjhw4fTunXr+vrXRUSkCYoqmLXWLsVbECEu3Hy0IpIAI0aM4M1/FfHiiy/y3HPPsXLlSm6/cz5VVQfnlE1PTyczsx2tW7ekqqqKqipLVVUVe/fuZ/v2nQRbVCU9PZ0jjjiCfv368cMfjqRfv37079+fgQMH0rVr1/r8F0VERBI3m4FbtnYIUGKtfcZv+4X+f4tI4hhjOPvsszn77LMB2LVrF6tXr2bjxo2UlpZSUlJCaWkpu3fvJj09nTTKSEtLo0WL5mRmtiMzqx+ZmZlkZWXRo0cPevToQdeuXdVVQEREUkbcg1kXxC4AcgADFAL+wesaY8yDwIPW2rXxfn4RCa1NmzaMGDGCESNGJDsrIiIicRHX5WyNMR2AZXjL1k7CW8J2iX8aa+0ma+2VwBhjzFHxfH4RERERaVriGswCdwPTrbVjrbVPW2vXEGL6LWvtb4jvNF8iIiIi0sTEO5gtt9Y+HUV6zZIuIiIiIjGLdzC7Ncr0HeL8/CIiIiLShMQ7mO2U4PQiIiIiItXiHcwaY8xpgdtCJPwTsDLOzy8iIiIiTUhcg1lr7U3AAmPMncaYdr7N/mmMMQONMa8AQ6y198Tz+UVERESkaYk6mDXGnB4myVi8abnKjDHbgFxjzCr32AasBrKA0VHnVkRERETETyw1swW17bTWFltr+wJzgDKgD958s4Px5p+90lo71FpbHsNzi4iIiIhUiyWY7WiMmRYukbV2nrW2j7U2DS+g7Wit7WutXRDDc4qIiIiI1BBrn9n5xpiFbunasNyqX6qJFREREZG4ijWY7QjMAIYaY54yxtxojGkfx3yJiIiIiISVEcMxE621293vC/BmLxgEzDPGWKDAWrssbjkUEREREQkh6prZYMvVWmvXWGuvBG4C+qi2VkRERETqQyw1syG5frGqrRURERGRehHvFcCqqbZWRERERBItrjWzwQSprc0zxgA8Za19LdHPLyIiIiKNV8JqZkPoCHTCmwlhiTFmfT0/v4iIiIg0IgmvmXXdCmYAuUA2YNyu+UB+op9fRERERBqvhAWzxpjT8QLYCb5NQBGQr1XARERERCQe4hrMhquFtdauiefziYiIiEjTFnUwa4y5wlr7UMA21cKKiIiISL2LpWZ2NvCQamFFREREJNliCWb7uFkIst3fqoUVERERkaSItc9sH/ezQdXCGmMm4AXhfdzPfGvtooA0OcAQoNilKbbWLok2jYiIiIgkXqzB7Cxr7T1xzUmCuUC22Be8GmMygdXGmCxr7Xy3LRvIs9aO8TuuwBhTbK0tjjSNiIiIiNSPWBZNKG5ogayTba0t8v1hrS0D8jh0rttcas59m+/SRZNGREREROpBLMHsovBJUourhZ3sfvpb4vb7+v9OwOv/6+9dDs7SEGkaEREREakHUQez1tqbEpGRRHK1sNkcHLRWgwt0s4GSIMdijMmOJE2wc69YsQJjTNiHiIiIiEQn4cvZpgprbccgm0cDZdbaYl8g6gtMg6gOVMOkUb9ZERERkXoSSzeDxiQXuMv9HtgFIZhI0tQwcuRIrLVhHyIiIiISnSYbzBpjZgAl1tp5yc6LiIiIiMSmwXUzCNUvNYSSYF0C3DlyrbWDg+zLrKUbQcRpRERERCTxGlQw65vjNYpDVgHBal7zgDMCtvn6umYB1YGq3wwIxRwc+FVbGhERERGpJw0qmHWLEkysyzmMMfnA7MCaVWttmTGmmJr9YrNwg8Tc8WHTiIiIiEj9aFJ9Zl0/2Tz/oNMYM9qv68ISvGVq/eW47USRRkRERETqQZMJZt1ytgCZxpgc9xgNTPQLbmdTs+Y3120nijQiIiIiUg8aVDeDWLk+rQUhdlfX0rquBrONMXl4/W2zCajJjSSNiEhjZYzJwWudKsbNrW2tDdsyFclxsZ5bRJq2JhHMuv6xES2xZa0touZytVGnERFpbHyDcK21Y/y2FRhjimu7oY/kuFjPLSLSZLoZiIhIneUC+QHb8gk/y0wkx8V6bhFp4hTMiohIpCZQs1XqXbe9rsfFem4RaeIUzIqISFhu7EE2B+fbBqq7cYVc0CaS42I9t4gINJE+s6U8V+8AABOYSURBVCIiUmdZcDDADCKb4AvHRHIc0Z57xYoVGBN+KMTMgQNZu2lT2HRJc9hh0L17yN1rd+5kYNu29ZghaUjW7tzJqFGj6n6ir7+Gb7+t+3miMLB3b36/Zk1czqVgVkREIhG4WEw8j4v13A3bzp3ez1qC2YFt23Jp1671lCFpSC7t2tV7D61dW/eTlZd7Pzt0qPu5kkDBrIiINDgjR45k+fLlyc5G3YwaFVkgcvjhCc+KNDwzbryRGU8+Gb8TXnopzJgRv/PVIwWzIiISMWNMZi3dAep0XKznbrAuvTR8moEDI0snTc+MGQ02+Iw3BbMiIhIJX5/VLKA64HSDt/z3x3JcSQRpGh8FIyJxoWBWwvINsrDWJjknDZOuX93o+qUGt/phMTX7t2YBZaEWNoj0uFjOnQr0/kwuXf/kSpXrr6m5REQkUkvwlpv1l+O21/W4WM8tIk2cglkREYnUbGBiwLZctx3wugYYYzYaY2ZEc1yEaUREalA3AxERiYjrMjDbGJMHrMKb/zUvSDeArGiPi+LcIiKHUDArIiIRs9YWUXPZWf/9ZUDHaI+LNI2ISCB1MxARERGRBkvBrIiIiIg0WApmRURERKTBUjArIiIiIg2WBoAlXt+1a9cyatSoZOejzhrD/5BMun5101Cu39q1awH6JjsfjVzKlauplJemSNc/uRJ9/cOVqybZqzY0dsaYNUAXYEOy8yIi9aIv8J21dlCyM9JYqVwVaXJqLVcVzIqIiIhIg6U+syIiIiLSYCmYFREREZEGSwPARBLEGJMDDAGK8ZbmLLbWLklurlKXMWYC3nXq437mW2sXBaTRNRURQOVBosSrLK7P10fBrEgCGGN868qP8dtWYIwp1lrzNbnCs9hXYBpjMoHVxpgsa+18t03XVEQAlQeJEq+yuL5fH3UzkLCMMROMMbOMMfnGmEL3Zg9Mk2OMmWGMGe37mYy8ppBcID9gWz6Ql4S8NATZ1toi3x/W2jK8a+V/DXVNJeniVR6qzKwzlQeJEa+yuF5fH81mILXyu0srcn9nAqvx7rj879LyA+/AgNlN9Q7ZGLMRGOP//7trV2qtNcnLWepx12UpcIYrOH3bs4GNQB9rbbGuqSRbvMpDlZl1p/Ig/uJZFtf366OaWQlHNWZRch/YbKDEf7uvcHAFgzjuumS7R1C6ppIiGmStVWOj8iAx4lUWJ+P1UTArIbk35GT3098St9/3hpwAFAWkeddtb4qy4OAHNwgVtAGstR39gwRnNFDm7ux1TSWp4lweqsysG5UHCRKnsrjeXx8FsxKSasxiFvhlJ7HJBe5yv+uaSlI15FqrRkjlQf2Ktiyu99dHsxlIray1HYNsrr5L8xW8Ye7A1AdMomKMmQGUWGvnJTsvIj5xKg+JII3KTEkJDaUsVs2sxEI1ZhEI0hwpEXABQa7/4Bi/fbqmkmpSvtaqsVJ5kFh1LYvr8/VRMCtRaSh3aUnmq1XJ8t/o98FWrUvt8oAzArbpmkrKUXmYNCoP6kesZXG9vz7qZtBERNkPqyRYE5jfXdrgIPsya2k2a1KstWXGmGJq1sBkcbATvQRhjMnHm57okPeSrqnEUyqUhyozY6fyIPHqWhbX9+ujYLYJ8K3EEcUhq4BgNQ3h7tL856Vr6nfIS/CW8fMfFZrjtksQrpYrL2BewtF483oWo2sqcZAC5WFJBGkkPJUHCRKnsrheXx8tmiARcXdpecHuqNzkyBP9p/NwXxirQwyYaPTcF1NBwKTohXg1OfqyCuAmo8/Cm57IJwvvfZXr0uiaSkqoa3moMrPuVB4kRrzK4vp+fRTMSljuLm1JqLs0V7Cv9q2A4/ZPACZbayfWf45TgzEmB5iMV7OTDRRZa1VrEMC3KkyI3cXW2j5+aXVNJaniUR6qzIwPlQfxFe+yuD5fHwWzUivVmImIeBpqrZVIY6dgVkJSjZmIiKch11qJNHYKZkVERESkwdI8syIiIiLSYCmYFREREZEGS8GsiIiIiDRYCmZFREREpMFSMCsiIiIiDZaCWZFGKMq15+N2rIiINGzGmGxjzKxk5yMaCmZFGhm3GtHoUPuMMXl+68AH217iVigSEZEmxFVmFAKdkp2XaGQkOwMiEj9uIvbq1YiCKAAygY3A/GDbrbXzXWBb6L9CkYhIqjPGZGsVtei5iow8vO+GkNcvVa+vFk2QlONbo9z96fvQZOOtlLMo2g+Sq6mcCJQB29xP/5rHJUARXm3mXdbaRbHnPnlcYbQaGGytLQuyPxuvoALo6EtTy/ZZQCdr7eyEZ15EpI5cWZ9trZ0fNrGEZIwpwFvVrkbZ7wt6a6kwSQrVzErKcAVRPl7AOjHI/hygwBizJNIAy613XhZ4PmNMHl5N5CJr7US/ZvcaQWCiGGNGx3n5yjy8QibU/zDB/VwUkCbodmvtPGPMRmNMfireiYs0Jr5ADK9cKm6oN9XJEqpVylWOZAF9gEItGVw31tqyVGy5U59ZSQnGmBl4/XRyQwWq1toia+1gIMcYszqw32eQcxbg3aXXCIw52MQ+3Z27zFo7u74KOlcbGreCwJ1vdJgaCd/zBfaHDbUdYHaI7SKNjvuS3miMsX6Pja58CnfshIDjSl2AGqkxeC1IecSxbIiFMSYzyrwnlfsuKMArrwINBXKBWUBOfearsXKVG4WuUiglKJiVpHN3zvl4gWzYYNLdDWYCS8MknQCEqt3IxKuxrbea2ADxnjEgzz1qMxqvxifwGofajqsdGqIZDqQpcDe0fTgYFBVba/tE0mztPisd3Z+51tqO0dwcu+dOlZquBXjBSsgR7SkW7IZslXKVI2fUf5YaN2vtPGBCqnw3KJiVpPK7oy6Ksp/TbLwa2nAB3MZa9pVE8XzxFqy2uC4mAE+F2un3xZMXyfYAT+HVbIg0Ce6LGiA7XAtQEIsaQZ/NQrwuV0XBdsa7ZakuImmVSmKlRWOXMi13CmYl2XxB1F3RHORqQYqBWTF82SSVK3zDNltGcb4JeDcDtRXYY/BqogML/FDb/RUQx/yKNBC+z0Q07/1JRFmWpSJr7fwwNcspURvnRNIq1ei5riEbo3zUqXY9lVruFMxKsvm+KGLpq+o7pkEEWq6wmYA340A8jQHeDZNmNIdOxRVuezX3hZaZCgWWSD3y1ThF0yoxxlobtDazkYl3y1Jd1Noq1VS4cR99onzEY4xISrTcaTYDSRq/u8LiGJuBCvEC2cnAPHfOCcAcvzR5xphgH7RsvADNP7Cc7vsicufJ5uDsBpnu90xgSbAvLL8uD9vwJpzOBGb7/W9zcP1T8QYizAi4M454loYAo6mlZsLVXOcQ8AUUansIxUQQ+Io0FtbaImNMEV53prAzj7jR9KvqJ3fJ49eyNC9c2nrISyStUpJYBYQefFdvFMxKMvlGlsY67ZOvAKseoeqaPRYBGGMs3ryxNQpdt8LVJDc7QrB9hYHHucCzEBgcsN23YsohA9hcQbvJGHOGm4lhttueCZQC8+M0h2s2tdfMDiH4/LyhtgdTjDe1jUhTku8euYRvPcolyV/oieTKrdF4g8NSRSStUpJA1tolrtUxqYspKJiVZPIFR7HeVcd9AJcrsCcFmxDafWiDzY5QiBcULglIv8jVCi8gIACOc36hlmvo8hVspoKg20MoJrX6yYkknFsNLx9v1HZmqBpA3+ewlv3hWm0i5qYJG4w3uNVXhuZH0r3B71j/5z1kHmn3/2a7xyK/G+6IW5Z8lQXu/8Q93+zAvvnGmI0cLFfK8BZ8iSYgqrVVKhz3um0KyOddbo7tQpe3LFzFg1+LHXiBdDF+r6O7vpl4r3EOQSpFYshj1K2ESZD0ljsFs5IKUmkAl6/7QagvrkL/P9zUNdmEHvSRj7fQQ06CCp0s9zPRMzOUoWBWmqb5eM3qtTWtT8Jraj1EpK02kWTCb+aXgiALAxQaY4pCtfT4HRtsAZl8tzCKLx95eIFJPn5lczQtSy5/ua4bVw4hglRrbR9jTClBAt0IhWuVqpVbAOAuvEA9MA+5HLwOvrJ+id9iFr6Adykw2N2w3OUX2GbivcYxr6IYbSthXbn/IRuvH3KZe/8GXQksQNJb7jQATJLJN21WVq2pQot7cOVXoK92k6AHBtpPcWi3iFxqn6/Wl3ZIHLPpLxvqZeqZbcT+Ook0ZJEMBBsTok9tyFYbvCAsmib7pYSYwtDNTzuhlnlhFwBDgi0g4wLPOX5/F8dxajFfEFTbYgVLYnm+SFqlIjzHUKB3YB4CrkMOXlAXeOORj9enOh+vhtt/BcUyvBuhkHP1RpC3STbISnDu/RT3FeLcXMcTrbXGzWYxMcJAPOktd6qZlWTyBXqxfgh8x8W7xnMw3hdHAYAbBLIEWBikMMsGimubXNwdm8w5beMllWrQRepFuIFgoQZ+xbPVxjVfhxusmQfkG2Pm+wdVrhZvAiGCcV9Tf23dKGLlumYV4wXLNYIvc3AJ81jUqVXKBYt5wQL8IIbY4AtaVH+HhegesdE9Vyz9SaNqJUyypLfcqWZWksbvjjPWaZ98hcvCOGUJqF42tyMHB31k491dr/ZfpMEvz2XW2nm1PMYEu7uOk/oKkjtRhxoQkQauttrZXIL3FYxnq00uXs1gbQFRqKkKcwP2Byoi9hllIuGrvQxWxk+sw/RQMbdKubzU6K5Ri3BdGcJVqERdERBDK2EyJb3lTsGsJJvvS2BCNAf5jaz1P0eduVGZvsEc810g2hGvP9B8vEUafLWwcQ0kjTE5MSwA4d8/K5EySZ2CU6Re+TU3HxJUhBn4lQ2UGGNmBXvglV+RttrkEP5m0neeoUGOJVQg7JqSE9nf0XftDmmudteuthUaE8KvH/PoKCpRwpV9ifo/BuMFiQVAqTFmtTEmz9XmJ3M59mCS2nKnYFaSzX+kbDR8tQ/z4vyBHkKQRRhc/ylfDUyu21ZGfPsKDSHKu1u/L6hE3xVn0Ti6SojEKtiKYLUN/II4tNr4nSvSz19g/1T/kfD1zpWTi6hZrs6gbhURsZRHY/DKb9+MDjVeu1QSaSthCkh6y52CWUkqV9BNxOtqENGH0xXueXiDIRIxr+PkWvblc2jgmIeX95ADHIwx2W70MhC2WSzWgLG2ARbxkE0SalFEUkiwrgahBn7F7cYvhhvWwFpE3zROCRWmZck3I4B/QNupjhURsbRKlblBTr7vnZww4x2SJspWwmRLesudgllJOlczkYv34ax1aVr34S7E66N0RoKylFNLcJqFX98z1/xYRO1zHc4OUvsSrEa3T4yFu++OPZFyiP9AO5EGw/VhLMIbLDU61MAvlzberTaRnCvUgNh34ZAa3kQJ2bLkAv5iXEuc39RSMYuxVar69fKbESCvHq5NLCJuJUwBSW+5UzArKcEFhWOA2W7ewxp3264AXI03lcvg2gI/v+M7hUiSRe21FbmBeXB/z6bmKj9nAFluepbAfMwi+GjdPPz639Wxz2sRNfvJxY2voK/DQA2RxsK/djbUwC+fqFttwjxvrefiYItSYHnj+zvk87hawNGh9vurQ8tSPt6NQA51G/gVqC6tUtNJ7e4G0bQSJlPSW+4UzErKsNYucQMRCoEFLqjNc48CvGB3TLgRqG6i7k3uz1nGmI2+Gl83+GIjrmA3xvg61fsK8hK8Cc5z8Va4yfMbsDHH7TukOcV1xB8MbDTGFPjnG2+OyRo1mi54nw0sdenm1KHLxEKiHEAXJd9AFZEmzX8gmPu7tpX3Ym21CXauee5ctZV9M/DGEASWT74lvmsblzCH6BYfiKVlyXft8ohf4FOnVimX3+mkbneDiFsJkyz5LXfWWj300KOBP/BqrHMSdO5CYEKy/0c99EiFB16NmAVGR5A2030284PsmxXsM+vOHSx9tjtXXpB9hcGOCchHoXtkBuybEOzzHSofbt8Mtz/T7/w18hXkuAL/4+LwWuThTbEVyetgQ+URb0WzoK+p2x70OfBu9C0wK8T+WW5/1GWz37nzg7xmvtczO17v6zq8BtleKJncfBiXGRFpwFzN8xgb2QTg0Zw3E9hkvYEHIk2eqykrsFFMZ+Vq/Ybitfz4ai/zrV8tqmtRyuZg96dilyZwKdNZHNp9KtPlJ2wtna+cCMjHIYvBhMhHbuD5XT4m42oHbQQtS+7azYlXOeXOt9paa2pJE+z/qa4Rd93D/PumFuNdo4Igx+Vba+f55qnl0C4ORe68S/wWg6ie1cIdP9FGuHiC+9+GWGvn+73m29zuTgS8f5LFvacm2uCLStRfPhTMijQOrvtErX2JYzhnHrDRxm95SxFpolz/4LJIAu8ozrkamG7DrKImiWGM8bUKJGphoMjyoWBWpHFwXxS58bpD9lslZ3A8ziciTZsxpiABrUcJaZWS8FKp5U4DwEQaCXdnXBzpqOQI5FP7WvAiIhGpbSqzunCtRrGsnih1N4eas/skhYJZkUbEerMw1JhWLFq+KcVSoU+WiDQsbgYYGzB/a7ipzOpiNqk7vVaj5F7b0anSBU3BrEgj45rbal18ojauZrco2X2gRKRBK8bNO+ubIzye/fn9JaBVSsJLqZY79ZkVERGRuHKDR7fhjbxfVR83x24+8umJCprF41ruilOpwkPBrIiIiDQKxphZgdOZSfz4ar/jOSNFPCiYFREREZEGS31mRURERKTBUjArIiIiIg2WglkRERERabAUzIqIiIhIg6VgVkREREQarP8PujLIhD70HTIAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 720x720 with 4 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "bestmodel=make_model(np.median(outputvalue,1),obspars,rad) # make a model from your guesses\n", "\n", "KinMS_plotter(fdata, obspars['xsize'], obspars['ysize'], obspars['vsize'], obspars['cellsize'],\\\n", " obspars['dv'], obspars['beamsize'], posang=guesses[1],overcube=bestmodel,rms=error).makeplots()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Tiny error problem\n", "\n", "I have found that fitting whole datacubes with kinematic modelling tools such as KinMS can yield unphysically small uncertanties, for instance constraining inclination to $\\pm\\approx0.1^{\\circ}$ in the fit example performed above. This is essentially a form of model mismatch - you are finding the very best model _of a given type_ that fits the data - and as you have a large number of free-parameters in a data cube you can find the best model (no matter how bad it is at actually fitting the data!) really well. \n", "\n", "In works such as [Smith et al. (2019)](https://ui.adsabs.harvard.edu/abs/2019MNRAS.485.4359S/abstract) we have attempted to get around by taking into account the variance of the $\\chi^2$ statistic.\n", "\n", "As observed data are noisy, the $\\chi^2$ statistic has an additional uncertainty associated with it, following the chi-squared distribution ([Andrae 2010](https://ui.adsabs.harvard.edu/abs/2010arXiv1009.2755A/abstract)). This distribution has a variance of $2(N - P)$, where $N$ is the number of constraints and $P$ the number of inferred parameters. For fitting datacubes $N$ is very large, so the variance becomes $\\approx2N$. \n", "Systematic effects can produce variations of $\\chi^2$ of the order of this variance, and ignoring this effect yields unrealistically small uncertainty estimates. In order to mitigate this effect [van\n", "den Bosch & van de Ven (2009)](https://ui.adsabs.harvard.edu/abs/2009MNRAS.398.1117V/abstract) proposed to increase the $1\\sigma$ confidence interval to $\\Delta\\chi^2=\\sqrt{2N}$. To achieve the same effect within the Bayesian MCMC approach discussed above we need to scale the log-likelihood, by increasing the RMS estimate provided to GAStimator by $(2N)^{1/4}$. This approach appears to yield physically credible formal uncertainties in the inferred parameters, whereas otherwise these uncertainties are unphysically small. \n", "\n", "Lets try that with the example above:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Doing chain 1\n", " Chain has not converged - Accept rate: 0.11\n", "Chain converged: LL: -112.97430961201346 - Accept rate:0.2966666666666667\n", "Best chain so far!\n", "Best fit:\n", " Flux: 30.0\n", " posAng: 270.0\n", " Inc: 44.957062230395515\n", " VFlat: 201.01285763281135\n", " R_turn: 2.03929515740805\n", " scalerad: 5.013047475148751\n", "Starting final chain\n", "Final best fit values and 1sigma errors:\n", " Flux: 30.0 (Fixed)\n", " posAng: 269.8723305066128 + 0.946321323228176 - 1.1107270271547236\n", " Inc: 45.781525045651954 + 2.1113884290902405 - 0.9361234945474166\n", " VFlat: 199.09454514602965 + 3.294369458631081 - 5.327156135062893\n", " R_turn: 2.110158720751331 + 0.15726926408759345 - 0.18741126338718428\n", " scalerad: 5.029909360644904 + 0.20293482085984138 - 0.2480078138126771\n" ] } ], "source": [ "error*=((2.0*fdata.size)**(0.25))\n", "outputvalue, outputll= mcmc.run(fdata,error,3000,plot=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see we now get a much more reasonable error estimates, for instance a 1$\\sigma$ inclination error of $\\pm2^{\\circ}$. \n", "\n", "If you want to implement this fix yourself there is a wrinkle to consider. You need to be careful choosing $N$. Formally this should be the number of constraints- i.e. the total number of pixels in your cube. But consider a large datacube with signal only in a small section (although fitting such a datacube would be inefficient anyway; see speed tips below), all of the actual constraints are coming from a small number of pixels. If you find yourself in this situation I would recommend setting $N$ to the number of pixels with actual detected flux in your datacube. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Speed tips\n", "\n", "There are some common ways to make sure you don't spend a lot of time MCMCing rather than doing science. \n", "\n", "- Cut down your observed data to only include spaxels and frequency channels near signal. Ideally you want some padding around your observed signal so the model knows it must not include flux in those positions, but not so much as to drastically increase runtime! On a similar note...<p>\n", "\n", "- Make sure your observed data (and thus models) have spatial dimensions that are $2^n$. If this is impossible then $3^n$ and $6^n$ are pretty good too. This is because convolving the KinMS model with the beam takes the majority of the computation time, and FFTs are faster when working with such dimensions.<p>\n", "\n", "- Don't provide a radius vector that is very oversampled/overlong well beyond the projected dimensions of the cube. This can slow down internal interpolation routines." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
napsternxg/ipython-notebooks
Monte Carlo Integration.ipynb
1
232991
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction to Monte Carlo Integration\n", "\n", "Inspired from the following posts:\n", "\n", "* http://nbviewer.jupyter.org/github/cs109/content/blob/master/labs/lab7/GibbsSampler.ipynb\n", "* http://twiecki.github.io/blog/2015/11/10/mcmc-sampling/\n", "* https://en.wikipedia.org/wiki/Monte_Carlo_integration" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from numba import jit # Use it for speed\n", "\n", "from scipy import stats" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## What is Monte Carlo (MC) Integration?\n", "\n", "Let us say that we want to approximate the area between the curve defined by $f(x) = x^2 + 3x + \\ln{x}$ between $x\\in (0,5]$ and the x-axis." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0 5.0\n", "4.0 41.6094379124\n" ] }, { "data": { "text/plain": [ "<matplotlib.text.Text at 0x7fe4f4f43cd0>" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEaCAYAAAAcz1CnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcVOWV//HPCTuyi7I0glFRAdmb1SUqRkWNMaOZcUNN\ndIxJiDFO3BInbRLHJWOMMROjuMVdiGJcRn/qgEvMZBBc4mhAETWKLbKIIiJrn98fp3po2+6muruq\nblXd7/v1qhd9b92qe/pq16n7PM95HnN3REQkvb6QdAAiIpIsJQIRkZRTIhARSTklAhGRlFMiEBFJ\nOSUCEZGUUyIQEUk5JQIpWmY23sz+YmZPm9ldZtYu6ZhEypESgRSzd4AD3X0/4C3gq8mGI1KelAhS\nysx2MLPHzWy1md1oZpea2VlZvvZZMxuW7xjd/T13/zSzuRGoyfc588HM3jKzg5KOoyXMzM3sEzP7\ntzyfZ66ZrTezZ/J5HmmYEkF6XQAsdveewPnAScB1Wb72CuBn+QqsPjMbBBwMPJiD97rdzN4zszVm\n9pqZndb6CEuHmXUwsx+Z2V/NbIWZrazzOLmRl4109x/XeY/pZrbAzDaY2e+zPO+TmQ/6tZnHq3Wf\nd/cDgTNa/ItJq7RNOgBJzEHA9zM/nwI8XOfb97Y8AFxrZv3c/b18BFfLzLoBtwGnuPumbRx7EYC7\nX9TEYZcCp7r7BjPbE3jSzF5w9+daGF825ywKZtYBeAJ4BTja3V9v4VtVAxcDhwCdmvG66e5+QwvP\nKXmkO4KUMbP2ZvYRMBx40Mz+F5gKPFXnmF+Y2X11tv/dzObUdta6+3rgOeJbemvjafRcZtYWuBv4\nqbu/2vi7ZM/dX3H3DbWbmceu2cSTi/Nn3vMtM/uhmb1kZh+Z2Uwz69ia82f5uvOAv7r7P7ciCeDu\ns939j8Cqlr6HFBfdEaSMu280s0nAE+7eB8DMVgB1P2gvB5aY2ShgInAosE+9b+QLgZH139/MHgL2\naeT0z7j7EfX2NXouM5sGTAD+1cz+Ffidu89s5q/8OWZ2DXEX1Al4AXg4m3hae956/jHz3uuBP2fi\nubYV58/mdScAU3L5SzTTpWZ2GfH/2o/d/ckEY5E6lAjSaRTw1zrbPYCPazfcfZWZXQXcCnQnPlA+\nqvceHwP96r9xAx/0TWrqXO5+G9EslFPu/h0z+x4wCdgf2FDnuWx+91y42t2rAczsQeK/SYvPn+Xr\nBgIvm1ljb/MDd7+5Rb/Ntp0H/I3o9D+WuBsd5e5L8nQ+aQY1DaVT/USwGuha75gXiOajC9z9nQbe\noyvwYY7i2da5GmVmD5nZh2b2IdHpfX7tdubupEHuvsXdnwEGAN9uTjwtPWc9y+r8vA7oku35m7Ct\n170LjHD3Ho088pUEcPd57v6xu29w91uIu6DD8nU+aR4lgnQayWcTwUvA7rUbZjYc+B1wC/DNRt5j\nSL33qH3tI3VGhtR/PNLA8dmcq1HufkTtBxlwGXBZnQ+2bO5O2vLZPoJtxpODczaqpdcjy9fNJEaL\nFQMHGr01kcJSIkin+ongYeBLAGZWQQzTPAP4DjDczPav++LM6JOxwOP139jdp7p7l0YeU+u9zzbP\nlUtmtqOZHWtmXcysjZkdAhwHzE0ingbiy+ba/77+kM1mxH0JMNnMrjKzPq2Is22mc7sN0MbMOmY6\n9huLr4eZHVJ7nJmdAOwHPNrSGCS3lAhSxsz6Aj2BRXV23wocZmbdiaRwpbs/4O7rgH8H6hcTHQk8\nWdvG3cI4umV5rlxyohloKdEcdgVwlrvfn1A8dXXO8vw7Ec0qQPOuo7t/AuxNtNM/W6c5q/bxjSxj\nvRD4lGgWOzHz84UNxZfRjhhuugJYCXwPOCpXI8Gk9UxrFguAmV0CLHf3q7I4dh4xFv/l/Ecmtcys\nPXEnNyIPo5gaO+d6ojP9anf/13zFZ2aPE6OdnnX3JEc2pZISgYhIyqlpSEQk5ZQIRERSTolARCTl\nlAhERFKuJKaY6N27t++8884tem11dTX9+/fPbUAiIgXQ2s+v5557bqW777Ct40pi1FBlZaUvWLCg\nRa81M0rhdxQRqa+1n19m9py7V27ruLJvGqqqqko6BBGRFinU51fZ3xGIiKSV7ggyqqtbPAuCiEii\nCvX5VfaJoKKiIukQRERapFCfX2WfCEREpGlKBCIiKadEICKSckoEIiLFaPbs+PfVAizb4O5F/+jX\nr58Ti4p85vHuu++6u3tVVVWjz1dVVTX5/LZer+f1vJ7X84k8D14FXjVuXIvfH1iQzWes6ghERIrF\n2rVw0klw331gBkOGwPXXw+TJLXo71RFkqI5ARErCG2/ApEmRBDp0gIMOonqvvaB9+7yfuuwTgeoI\nRKTozZ0L48bByy9Djx5w1FEweTIVs2YV5PQlMfuoiEhZcof/+A/4wQ9gyxYYMACOPBJ22OaEoTmV\n9zsCM2tjZi+Y2UOZ7S+a2TwzW2xmMzMLXouIpMuGDXDaaXDmmZEEhg2D448veBKAwjQNfR9YWGf7\ncuBX7j4YWA2cWoAYRESKx7JlcMABcNNN0K4d7LsvfO1r0KlTIuHkNRGY2QDgcOCGzLYBBwL3ZA65\nBTgqnzGIiBSV+fOhshL+8hfo2hUOPzySQps2iYWU7zuCq4BzgZrM9vbAh+6+ObO9FGiwN9fMTjez\nBWa2YMWKFS0OQOsRiEjRuP32+Pb/7rvQpw/84z/CyJExVLQBVaNGFSSsvCUCMzsCWO7uz9Xd3cCh\nDRYyuPsMd69098odWtFmdtFFF7X4tSIiObF5M5xzDkybFn0DgwfDiSdG53ATLho9uiDh5XPU0N7A\nkWZ2GNAR6EbcIfQws7aZu4IBQF4H+mvNYhFJ1MqVcOyxMGcOfOELMUz0oIOg7bY/fqvXraMQn155\nuyNw9wvcfYC77wwcC8x19xOAJ4BjMoedDNyfrxhAdQQikqDnn4/+gDlzoHNnOPRQOOSQrJIAQMXM\nmXkOMCRRUHYecLaZvU70GdyYQAwiIvl1662w997w97/HkNCvfz3uBhrpD0hSQQrK3P1J4MnMz28A\n4wtxXhGRgtu0Cc4+OwrFAHbbDb7yFejWLdm4mqDKYhGRXFm2LL75P/NMDAcdNw6mTMm6KSgpxR2d\niEip+J//gaOPhupq2G47OPBAGD26KJuC6iv7RKA6AhHJuxkzYPr0aBbq0wcOOwwGDmz12xaqjqDs\nE4HqCEQkbzZsiARwww2xvccecMQR0KVLTt6+HOoIioLqCEQkL5YujaagZ5+NPoAJE3I+VUTJ1xEU\nC9URiEjOPf00jB0bSaBr17gLmDIl5/MFFaqOoOzvCEREcsYdfvUrOPfcmDq6X78YGtqvX9KRtYoS\ngYhINtasgW9+E+69N7aHDo07gYSmjs4lJQIRkW15+eXoD3jttVhPePJk2GefmDuoDCgRiIg05Y47\n4PTTYd066NULDj44RgeVkbJPBKojEJEW2bAhpoq45prY3mWXaArq2bNgIaiOIEdURyAizfb22zFV\nxLPPxkigysoYFdSuXUHDKFQdQXk0cDWhujqvyx2ISLl59FEYM+azQ0MPOaTgSQCijqAQyj4RqI5A\nRLJSUwM/+xlMnQqrVkFFRSwoM2pUYvMFqY5ARKRQVq2KZSQfeSQ+9EeOjEVkOnZMOrKCUCIQkXSb\nPx+OOSb6BTp2hP32i+kiymRoaDaUCEQkndzh2mvhrLNg40bo3TuahXbZJenICk6JQETSZ80a+Od/\nhlmzYnv33aNTuGvXZONKSNknAtURiMhnvPBCDA1dsgTat4eJE6M5KMcTxuWC6ghyRHUEIgJEU9B1\n10VT0IYNsP328OUvF3WVsNYjyBGtRyAirFkT00TUDsccPDhWEevRI9m4tkHrEeSI6ghEUu7FF2Pt\ngJkzoylo333hn/6p6JMAqI5ARKR13GMt4e9/P5qCevXa2hRUAgvKF5ISgYiUn48/jqagu++O7d12\ni6agAk4YV0qUCESkvPz1rzEqaPHimB9o4kT40peKclRQsVAiEJHy4A7XXw9nnqmmoGYq+0SgOgKR\nFPjoIzjjjM82BR1+eEl0CDdFdQQ5ojoCkTI3bx4cdxy8+WY0BU2YAPvvXxZNQVqPIEe0HoFImaqp\ngcsvj7WD33wzCsSOPjoWkCmDJABajyBnVEcgUoaWLYtpos8/HzZvhj33hJNOKuoq4ZZQHYGISEMe\nfTQ+9Jcvh06dYPLkeKRo2uhcUyIQkdKwcSP8+MdwxRWx3bdv3BUMGpRsXGVAiUBEit+SJdEhPH9+\nfPMfMQIOPjjuCKTVlAhEpLjddRd861tRLdy1axSHjRmj2oAcKvtEoDoCkRK1dm0Uh918c2wPHBjT\nRPTpk2xcBaQ6ghxRHYFICXrxRTj2WHj1VWjbFior4YADYvbQFFEdQY6ojkCkhNTURGfw+PGRBHr2\nhK99LfoDUpYEQHUEOaM6ApES8e67MTfQOefApk2xjvDJJ8PQoantDyj5OgIz6wg8DXTInOced68y\nsy8CdwO9gOeBae6+MV9xiEgJuPfeWEx+9eoYCbT33jBpkmoDCiSfV3kDcKC7jwRGAYea2UTgcuBX\n7j4YWA2cmscYRKSYrV0Lp54KxxwTSaCiAo4/PhKBkkDB5O1Ke1ib2WyXeThwIHBPZv8twFH5ikFE\niti8eTBqFNx0U3QIjxsH06bBgAFJR5Y6eU25ZtbGzF4ElgOPA0uAD919c+aQpUCDjfhmdrqZLTCz\nBStWrMhnmCJSSFu2wMUXx7f+JUti3YCjjoKpU6FDh6SjS6W8Dh919y3AKDPrAdwHDGnosEZeOwOY\nAVBZWdngMdlQHYFIEXnrLTjxRPjzn2N7yBA45BDo3j3RsIpVWdURuPuHZvYkMBHoYWZtM3cFA4C8\nju9UHYFIkbjjDvjOd2DNGthuu7gjmDBBfQFNKPk6AjPbIXMngJl1Ag4CFgJPAMdkDjsZuD9fMYDq\nCEQS9+GHcMIJcSewZk1UCJ9wgkYFZaEc6gj6AU+Y2UvAfOBxd38IOA8428xeB7YHbsxjDKojEEnS\nnDkxQdydd8bqYZMnR0Lo1y/pyEpCydcRuPtLwOfua9z9DWB8vs4rIkXg00/hggvg17+O7d69o1hs\n992TjUsaVPZzDYlIgc2fHwvHLFoUTT977RUdwp07Jx2ZNEKJQERyY9MmuOQS+PnPY4hoz54xZfSI\nEamdIqJUKBGISOstWhTFYAsWxPaQITFRXI8eycYlWSn7RKA6ApE8qqmB3/wmFpFfvz4Wjtlnn5g2\nWiOCWq2s6giSpDoCkTx5+234xjdg7tzY3nXXuAvYccdk4yojJV9HUCxURyCSY+5w220wfHgkgc6d\nY9GY445TEsixcqgjKAqqIxDJoRUrYqbQk06K4rCddooEsN9+0KZN0tGVnZKvIxCRMnPvvfDtb0cy\naN8++gH23z8KxaSkKRGISNNWroTp06H222nfvlEctssuycYlOaNEICKNmz077gKWL49v/qNHw5Qp\nqVw/uJwpEYjI561aFXcBd98d2337RgLYbbdk45K8KPtEoDoCkWa67z4444zP3gUceKAWjUmA6ghy\nRHUEIllatQrOPDNmCoW4CzjgABg8WFNEJKRQdQRlnwiqq6vp379/0mGIFLf774dvfQvefz/uAkaN\niruAjh2TjizVqtetoxCfXqojEEmzDz6I9QGOOiqSQN++UScwdaqSQBFQHYGI5Nf990dfwLJlugtI\nOSUCkbR5//3oC5g1K7b79Nk6Ikh9AamkRCCSFu5w++1w1lnRJFR7FzBlikYEpZwSgUga/P3v0Rn8\n6KOx3b9/JABVBwspSASqI5BUq6mBa66J9QI++STa/8eOjUniVB1c9FRHkCOqI5DUWrQITjsN/vzn\n2B40CA46CAYMSDYuyZrWI8gRrUcgqbNpE/zbv8HIkZEEatcLOPFEJYESo/UIckR1BJIqzz0X00Nf\neCFs3BgjgU46KZqC2pZ9A0DZUR2BiGTv00/hoovgiiuiX6BbN5g8GcaN09rBsk1KBCKl7vHHozDs\njTeiDmDIkFgvoGfPpCOTEqFEIFKqli+Hs8+GO+6I7Z49owlo5EgVhkmzKBGIlBp3uOkmOOccWL06\n2v6HD4+6gO22Szo6KUFlnwhURyBlZdGiKAx7+unY7t8/1g3W9BBlSXUEOaI6AikL69fDpZfGY9Om\nGBI6dizss48Kw8qY1iPIEa1HICXviSeiM/i112J7t92iGahv32TjkrzTegQ5ojoCKVmrVsE3vhFT\nQ7/2WnQGH344HHeckkBKqI5AJK3c4bbb4F/+BVaujM7gYcMiIXTrlnR0UoaUCESKycKF8N3vRnMQ\nxDf//feH3XdXZ7DkjRKBSDH45BP4+c/hl7+EzZuhU6foDN53X3UGS94pEYgkyR3uuy8Wi3nnnfjW\nP3hwdAb36ZN0dJISZZ8IVEcgRWvJEvje9+CRR2J7++1h772jMljzAwmqI8gZ1RFI0Vm/Hi6/PGoC\nNmyIZSJHjoy+gE6dko5OikjR1BGY2XTgDndfXYB4ck51BFJUHnkk7gKWLIntXXaJtQK0ToA0oJjq\nCPoC881slpkdalZaQxdURyBF4Z134Oij4bDDIgn07Bk/n3CCkoA0qlB1BNtMBO5+ITAYuBE4BVhs\nZpeY2a5Nvc7MdjKzJ8xsoZm9Ymbfz+zvZWaPm9nizL+aK1fK18aN8ItfxNTQs2dDu3YwZgx885ta\nK0CKRlb/F7q7A8syj81AT+AeM/tFEy/bDPyLuw8BJgLfNbOhwPnAHHcfDMzJbIuUn0cfhREj4Lzz\nYnjooEFw/PHwla9Aly5JRyfyf7LpIzgTOBlYCdwAnOPum8zsC8Bi4NyGXufu7wHvZX7+2MwWAhXA\nV4H9M4fdAjwJnNeq30KkmLzxBvzgB/DAA7HdvTtMmADjx0ObNsnGJtKAbEYN9Qb+wd3/Xnenu9eY\n2RHZnMTMdgZGA/OAPpkkgbu/Z2Y7NvKa04HTAQYOHJjNaUSS9cknMRLoiitiNFD79rDXXtEZrDsA\nKWLbTATu/pMmnlu4rdebWRfgXuAsd1+TbV+zu88AZgBUVlZ6Vi9qgOoIJO/cYdYs+OEPYenS2LfL\nLrFa2KBBycYmJa0s6gjMrB2RBO5w99mZ3e+bWb/M3UA/YHk+Y1AdgeTVSy/BmWfCU0/Fdu/eMHEi\njB6tjmBptULVEeTt/9TMMNMbgYXufmWdpx4g+hzI/Ht/vmKAqCMQybkPPoDp0+MD/6mnohBs0qQY\nDTR2rJKA5ET1unUFOU8+/2/dG5gGHGhmL2YehwGXAV82s8XAlzPbeaM6AsmpLVvguutiNtDf/jb2\n7bEHnHwyHHywKoMlp0p+PQJ3fwZorENgSr7OK5I3Tz0Vo4FeeCG2+/aNpSKHDtUU0VLSyn6uIZFW\nW7IEzj03CsIgRgBVVsLkyVEgJlLilAhEGvPRR3DxxXD11VEh3K5dfPs/4ICoDRApE0oEIvVt3gzX\nXw8/+UksFQmw666xSIyGg0oZKvtEoDoCaZbHHoOzz4ZXXontPn1iOOiIERoJJAVXFnUExUB1BJKV\nRYtisfiHH47trl2jH2DiRC0VKYkpmvUISp3WI5AmrVoFP/0pXHNNDA1t3x6GDYtFYrp1Szo6Sbli\nWo+gpKmOQBq0cSNcdVWsD/yb30BNTfw8bRoceaSSgBSFkq8jEClK7vCHP8AFF8QsoQD9+sVQ0GHD\nVA8gqaREIOnx9NMxMdz8+bHdo0dMBzFhguoBJNWUCKT8/e1vcP758OCDsd25cywWv+++mhJCBCUC\nKWfvvQdVVXDjjdEHUFsQtt9+0KtX0tGJFI2yTwSqI0ihjz+OxWGuuALWrYvx/7vvHvMC7bRT0tGJ\nZE11BDmiOoIU2bQJbrgBLroIlmeWudhpp5gees891REsJUd1BDmiOoIUcIc//jFGAr36auzbYYdY\nI3j0aK0TLCVLdQQ5ojqCMjd3blT//sM/RBLo1i0mhTvttKgMVhKQEqY6ApGmzJ8PP/oR/Nd/xXbn\nzjB8eIwE2m67ZGMTKTFKBFJaFi6ECy/cujZAhw4xEmjffaFnz2RjEylRSgRSGt5+OzqBb7klhoK2\nbRtLRO67b8wQKiItpkQgxW35crjkEvjd72J+oNqhoJMnw8CBGgkkkgNlnwhUR1Ci1qyBX/4SrrwS\n1q6ND/wvfjE6hgcPVgKQVFAdQY6ojqDErFsXU0JfdllMEQ0wYEAMBR02TIvDSKqojiBHVEdQItav\nh+uug0svhfffj319+sC4cTBqlIaBSioVqo6g7BNBRUUF7p50GNKYDRuiGviSS6C6Ovb17h2zgo4d\nq1lBJdUqZs7Ef/jDvJ+n7BOBFKmNG+H3v4eLL4Z33ol9228flcDjxml5SJECUiKQwtq8GW67DX72\nM3jrrdjXq1c0/4wfH3UBIlJQSgRSGFu2wJ13RgJ4/fXY16NHrAswaZISgEiClAgkv7ZsgVmzYoH4\n2gnhunePBDBxohaGESkCZZ8IVEeQkC1bYObM6ANYuDD2desGI0bEHUDnzsnGJ1ICVEeQI6ojKLBN\nm+COO2IU0OLFsa9Ll0gAkydrQjiRZlAdQY6ojqBANm6MeYAuvRTefDP2desWM4JOmqQEINICqiPI\nEdUR5Nn69bEm8OWXbx0G2qNHJICJE9UEJNIKqiOQ4rZuHcyYAb/4RSwSDzEN9IgRMGGCOoFFSogS\ngTTP2rUxF9Avf7l1XeBevWIU0IQJGgYqUoKUCCQ7q1fDb38LV121dTK43r0jAYwfr0pgkRKmRCBN\nq66OqaCvuy7uBgB23DGmgtBcQCJloewTgeoIWmjx4mj/v/XWGBEE0L9/TAUxenSsECYieaU6ghxR\nHUEzPf98rAVwzz3gHgvADBoUH/7Dh2s9AJECUh1BjqiOIAvu8NRTUQPw2GOxr02bWBGssjKWhtSK\nYCIFV6g6grx9vTOzm8xsuZm9XGdfLzN73MwWZ/7tma/z16qoqMj3KUpXTQ3cf38UfB1wQCSBdu1g\n6FCYNg2OPz4WiFcSEElExcyZBTlPPu/zfw8cWm/f+cAcdx8MzMlsS6Ft2BBrAQwfDkcdBfPmQceO\n0f5/6qnw9a9Hc5ASgEgq5K1pyN2fNrOd6+3+KrB/5udbgCeB8/IVg9SzenWM/rn66q1FYF26xB3A\nxIlRECYiqVPoPoI+7v4egLu/Z2Y7NnagmZ0OnA4wcODAAoVXpt58M8b/33gjfPJJ7OvZMxaDnzhR\n8wCJpFzRdha7+wxgBkBlZaUmC2qJZ5+FK66Ae++N/gCIIaDDh8OYMSoCExGg8IngfTPrl7kb6Acs\nz/cJU1dHUFMDDz4YU0D86U+xr00b2HXX6AMYOlRDQEVKRLnWETwAnAxclvn3/nyfMDV1BJ9+GsVf\nV14Jr70W+zp0gMGDYwjowIHq/BUpMSVfR2BmdxEdw73NbClQRSSAWWZ2KvA28PV8nb9W2dcRLFsG\n114b8wCtXBn7unSBIUNiErjtt082PhFpsZJfj8Ddj2vkqSn5OmdDynY9ggUL4Ne/juUgN22Kfb17\nRwewpoEWKQtaj0A+b/NmmD07EsB//3fsM4tmn+HDow9AcwCJSDPpU6MUrFoF118fzT9Ll8a+Dh2i\nA3js2JgKQu3/ItJCSgTF7JVX4tv/7bdHZzBA9+6w556xBkCvXsnGJyJlQYmg2NTUwH/+ZySAOXO2\n7q+oiPb/MWO0CpiI5FTZJ4KSqSNYvTrm/7nmGnj99djXrh3ssku0/e++u8b/i6RMudYRFFzR1xE8\n/3y0/d9119bmn65dY9bPceNiNTARSaWSryMoFkVZR7B+PfzhD5EA5s3bur9//xj/X1kZs4GKSKqV\nfB1BsSiqOoI334zirxtv3LoAfO3on1Gj4l81/4hIhuoIykVNDTz6aHz7f/jhWA0MouK3tvmnR49k\nYxSRVFMiyJdVq+Cmm+IO4I03Yl+bNrHgy157xaNdu2RjFBFBiSC33OGZZ2DGjOgD2LAh9nfpEqN+\nxo6Ffv1U/CUiRUWJIBdWrYqZP2fMgEWLYp9ZjP0fMiQSgDp/RaRIlX0iyFsdgTs8/XR8+N9zD2zc\nGPs7d45O39GjYeed9e1fRFpMdQQ5kvM6ghUr4JZbYu6f2nn/a7/977FHVP5q6UcRyQHVEeRITuoI\namrgySfj2//s2Vunfd5uu/j2P3KkJn4TkZxTHUGOtKqOYPnymPbh+uu3TvtgBgMGxMRvo0dHU5CI\nSB6ojiApmzfDI4/E0M+HHoptiG//u+0WhV+DBunbv4iUDSWCWgsXws03x+if99+PfXW//Wvkj4iU\nqXQngjVrYNas+Pb/l79s3d+9e3z7Hz065v/Rt38RKWPpSwTu8Kc/xYf/H/4A69bF/vbto8lnyBBV\n/YpIqpR9Ivi/OoKlS2PY5803w5IlWw/o2ze+/Y8ZAz17JhOkiEgDVEeQCxs2cNGwYTB1Kjz2WAwD\nha3DPocPj4VfNOOniBQh1RG01rJlMGwY1R98EONw27SJSt899ohx/506JRygiEjTVEfQWn37wqBB\nVHzwAT5+fDT97LijOn5FpGSojiAX5s6Ndv+DD447AhER+ZzybhzXgi8iIttU3olARES2SYlARCTl\nyj4RVI0Zk3QIIiItUqg6grJPBBeNHZt0CCIiLVKoOoKyTwTVn3ySdAgiIi1SXTsFTp6VfSKouPPO\npEMQEWmRipkzC3Kesk8EIiLSNCUCEZGUUyIQEUk5JQIRkZQr+0SgOgIRKVWqI8gR1RGISKlSHUGO\nqI5AREpVWdcRmNmhZvaqmb1uZufn81yqIxCRUlW2dQRm1gb4LTAVGAocZ2ZDCx2HiIiEJBamGQ+8\n7u5vAJjZ3cBXgb/l7YybNsGWLXl7exGRkubuBX0AxwA31NmeBvxHA8edDiwAFnTv3t2Bzz3effdd\nd3evqqpq9HnAqyorG37+lFPcp0/3qnHj9Lye1/N6vuieB7zqu99t+PnsPv8WZPO5bJkP3YIxs68D\nh7j7aZntacB4d/9eY6+prKz0BQsWtPR8FPp3FBHJhdZ+fpnZc+5eua3jkugsXgrsVGd7AFCdr5NV\nVVXl66326zH4AAAFiElEQVRFRPKqUJ9fSdwRtAVeA6YA7wLzgePd/ZXGXtOaOwIRkbQq2jsCd98M\nTAceBRYCs5pKAq1VXZ23mw0Rkbwq1OdXEqOGcPeHgYcLca6Kigr1EYhISSrU51fZVxaLiEjTlAhE\nRFJOiUBEJOWUCEREUq7gw0dbwsxWAH9v4ct7AytzGE6uKK7mUVzNo7iap1zjGuTuO2zroJJIBK1h\nZguyGUdbaIqreRRX8yiu5kl7XGoaEhFJOSUCEZGUS0MimJF0AI1QXM2juJpHcTVPquMq+z4CERFp\nWhruCEREpAlKBCIiKVcWicDMbjKz5Wb2ciPPm5ldbWavm9lLZjamSOLa38w+MrMXM4+fFCiunczs\nCTNbaGavmNn3Gzim4Ncsy7gKfs3MrKOZPWtmf83E9dMGjulgZjMz12ueme1cJHGdYmYr6lyv0/Id\nV51ztzGzF8zsoQaeK/j1yjKuRK6Xmb1lZv+bOefn5tzP+99joZeqzNPyl/sBY4CXG3n+MOARwICJ\nwLwiiWt/4KEErlc/YEzm567E+hBDk75mWcZV8GuWuQZdMj+3A+YBE+sd8x3g2szPxwIziySuU2hg\nKdgCXbezgTsb+u+VxPXKMq5ErhfwFtC7iefz+vdYFncE7v408EETh3wVuNXD/wA9zKxfEcSVCHd/\nz92fz/z8MbEuREW9wwp+zbKMq+Ay12BtZrNd5lF/lMVXgVsyP98DTDEzK4K4EmFmA4DDgRsaOaTg\n1yvLuIpVXv8eyyIRZKECeKfO9lKK4AMmY1Lm1v4RMxtW6JNnbslHE98m60r0mjURFyRwzTLNCS8C\ny4HH3b3R6+Wx+NJHwPZFEBfA0ZnmhHvMbKcGns+Hq4BzgZpGnk/kemURFyRzvRx4zMyeM7PTG3g+\nr3+PaUkEDX3TKIZvTs8Tc4GMBH4D/LGQJzezLsC9wFnuvqb+0w28pCDXbBtxJXLN3H2Lu48i1tge\nb2Z71TskkeuVRVwPAju7+wjgv9j6LTxvzOwIYLm7P9fUYQ3sy+v1yjKugl+vjL3dfQwwFfiume1X\n7/m8Xq+0JIKlQN3MPgBIfA1Ld19Te2vvsWpbOzPrXYhzm1k74sP2Dnef3cAhiVyzbcWV5DXLnPND\n4Eng0HpP/d/1sliXuzsFbBZsLC53X+XuGzKb1wNjCxDO3sCRZvYWcDdwoJndXu+YJK7XNuNK6Hrh\n7tWZf5cD9wHj6x2S17/HtCSCB4CTMj3vE4GP3P29pIMys7617aJmNp7477GqAOc14EZgobtf2chh\nBb9m2cSVxDUzsx3MrEfm507AQcCieoc9AJyc+fkYYK5nevmSjKteO/KRRL9LXrn7Be4+wN13JjqC\n57r7ifUOK/j1yiauJK6XmW1nZl1rfwYOBuqPNMzr32MiaxbnmpndRYwm6W1mS4EqouMMd7+WWB/5\nMOB1YB3wjSKJ6xjg22a2GfgUODbffwwZewPTgP/NtC8D/AgYWCe2JK5ZNnElcc36AbeYWRsi8cxy\n94fM7GfAAnd/gEhgt5nZ68Q322PzHFO2cZ1pZkcCmzNxnVKAuBpUBNcrm7iSuF59gPsy32/aAne6\n+/8zszOgMH+PmmJCRCTl0tI0JCIijVAiEBFJOSUCEZGUUyIQEUk5JQIRkZRTIhARSTklAhGRlFMi\nEGkBMxuXmZisY6Yy9JUG5vkRKQkqKBNpITO7GOgIdAKWuvulCYck0iJKBCItZGbtgfnAemCyu29J\nOCSRFlHTkEjL9QK6EKupdUw4FpEW0x2BSAuZ2QPEdMZfBPq5+/SEQxJpkbKYfVSk0MzsJGCzu9+Z\nmf3zv83sQHefm3RsIs2lOwIRkZRTH4GISMopEYiIpJwSgYhIyikRiIiknBKBiEjKKRGIiKScEoGI\nSMr9fwPf1W6ikoaFAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fe550234a90>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def f(x):\n", " return x**2 + 3*x + np.log(x)\n", "\n", "step= 0.001\n", "x = np.arange(1,5+step*0.1,step)\n", "y = f(x)\n", "print x.min(), x.max()\n", "print y.min(), y.max()\n", "plt.plot(x, y, lw=2., color=\"r\")\n", "plt.fill_between(x, 0, y, color=\"r\", alpha=0.5)\n", "plt.axhline(y=0, lw=1., color=\"k\", linestyle=\"--\")\n", "plt.axhline(y=y.max(), lw=1., color=\"k\", linestyle=\"--\")\n", "plt.axvline(x=x.min(), lw=1., color=\"k\", linestyle=\"--\")\n", "plt.axvline(x=x.max(), lw=1., color=\"k\", linestyle=\"--\")\n", "plt.xlabel(\"x\")\n", "plt.ylabel(\"y\")\n", "plt.title(\"$f(x) = x^2 + 3x + \\ln{x}, x\\in[1,5]$\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Concretely, we are interested in knowing the area of the red-shaded region in the above figure. Furthermore, I have also provided a rectangular bounding box for the range of values of $x$ and $y$. The true value of the area under the curve is $\\sim{81.381}$ using its analytic integral formula (see http://www.wolframalpha.com/input/?i=integrate+x%5E2+%2B+3x+%2B+ln(x),+x+in+%5B1,5%5D).\n", "\n", "The most accurate way to get the value of the area is to find the value of the definite integral $\\int_{1}^{5} f(x) dx$. However, in many cases analytically finding this integral is very tough, especially if the function is not easily integrable. This is where numerical methods for approximating the integral come handy. Monte Carlo (MC) techniques are one of the most popular form of numerical solution used for definite integral calculation.\n", "\n", "A basic intuition of the Monte Carlo Integration is as follows:\n", "* Define the input domain $[a, b]$ of the integral $\\int_{a}^{b} f(x) dx$.\n", "* Uniformly, sample $N$ points from rectangular region between $[a, b)$ and $[\\min(f(x)), \\max(f(x)))$\n", "* Find the proportion of points that lie in the region included in the area of $f(x)$, call it $p$\n", "* Multiply the area of the rectangular region ($A$) by $p$ to get the area under the curve $A^*=p*A$\n", "* As $N \\to \\infty$, the area of the shaded region $A^* \\to \\int_{a}^{b} f(x) dx$\n", "* Usually, a much smaller value of $N$ will give approximate value within a reasonable error span.\n", "\n", "\n", "Below, we will try to approximate the area of the curve using the MC integration method described above. We will use $N = 10^5$, and plot the points which fall in the region of the area in red and the other points in grey." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "@jit\n", "def get_MC_area(x, y, f, N=10**5, plot=False):\n", " x_rands = x.min() + np.random.rand(N) * (x.max() - x.min())\n", " y_rands = np.random.rand(N) * y.max()\n", " y_true = f(x_rands)\n", " integral_idx = (y_rands <= y_true)\n", " if plot:\n", " plt.plot(x_rands[integral_idx], y_rands[integral_idx],\n", " alpha=0.3, color=\"r\", linestyle='none',\n", " marker='.', markersize=0.5)\n", " plt.plot(x_rands[~integral_idx], y_rands[~integral_idx],\n", " alpha=0.3, color=\"0.5\", linestyle='none',\n", " marker='.', markersize=0.5)\n", " plt.axhline(y=0, lw=1., color=\"k\", linestyle=\"--\")\n", " plt.axhline(y=y.max(), lw=1., color=\"k\", linestyle=\"--\")\n", " plt.axvline(x=x.min(), lw=1., color=\"k\", linestyle=\"--\")\n", " plt.axvline(x=x.max(), lw=1., color=\"k\", linestyle=\"--\")\n", " plt.xlabel(\"x\")\n", " plt.ylabel(\"y\")\n", " plt.title(\"$f(x) = x^2 + 3x + \\ln{x}, x\\in[1,5]; N=%s$\" % N)\n", " print \"Proportion points in space: %.3f\" % (integral_idx).mean()\n", " area = (integral_idx).mean() * (\n", " (x_rands.max() - x_rands.min()) * (y_rands.max() - y_rands.min())\n", " )\n", " return area\n", " " ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/entity/anaconda2/lib/python2.7/site-packages/numba/dataflow.py:346: RuntimeWarning: Python2 style print partially supported. Please use Python3 style print.\n", " \"Python3 style print.\", RuntimeWarning)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Proportion points in space: 0.490\n", "\n", "Area is: 81.533\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEaCAYAAAAcz1CnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmQJHl21/nxuO87IjMyIyLvuzIrq6unD3Vr1C1pFy0I\nWBaxh2SAdgGhlemYkWSSRquxaa2BACEDGexyjC22YsGMEWtIHFpkIFBrerrpqSO7qrKOvDMiMyIz\n7iPjvn3/iPr9VF3U1VVd00x3fM3CMiM83P3nHu6/9973fd9zRVVVhhhiiCGG+OxC80kPYIghhhhi\niE8WQ0MwxBBDDPEZx9AQDDHEEEN8xjE0BEMMMcQQn3EMDcEQQwwxxGccQ0MwxBBDDPEZx9AQDDHE\nEEN8xjE0BEOgKMpLiqK8ryjKO4qi/DNFUfSf9JiGGGKIbx2GhmAIgDjw3aqqfh6IAX/ykx3OEEMM\n8a3E0BA8ZyiK4lcU5fcURSkqivKPFEX5a4qifOEJ172sKMrK8x6jqqpJVVUbd9+2gf7z3ufzgKIo\nMUVRvveTHsfTQFEUVVGUmqIof/U57+f3FUVpKory7vPczxDfXhgaguePLwF7qqq6gV8A/hzwD59w\n3V8D/vfnNbD7oSjKBPBfA//mY9jWP1UUJakoSllRlF1FUf7is4/w2weKohgVRflFRVFuKIqSVRQl\nd8/rzz9ktfOqqv5v92zjxxVFuaooSktRlN94wv3+wd2Jvnr3tXPvclVVvxv40SfclvuugXr/vs//\noaIof/tJtvGY7T/0+BRF8SiK8tt3jeORoig/+HEtf9Ztfxqh+6QH8BnA9wI/dff/Hwb+7T3e9+Pw\nr4F/oChKUFXV5PMYnICiKA7gnwA/rKpq5zHffQtAVdW3HvG1vwb8BVVVW4qiLAJ/oCjKNVVVN55y\nfE+yz/8ioCiKEXgbuA38aVVV959yU6fAXwH+CGD+COv9uKqq/9dT7vNerAMpYPm+a3Ad+Hsfw/Yf\ndXz/J4PodOTu/v4/RVFuqKp6+2NY/qzb/tRhGBE8JyiKYlAU5QxYBf6Noig3gf8G+Po93/lVRVF+\n+573f1NRlP8okrWqqjaBDQZe+rOO56H7UhRFB3wN+GVVVXcevpUnh6qqt1VVbYm3d18zTzKej2P/\nd7cZUxTlZxVF2VQU5UxRlN9UFMX0LPt/wvV+HrihqupfegYjgKqqv6Wq6r8E8k+7jSeBoih/T1GU\nB03s68BV4PeAP3H3u1oG1/S1Z93vw45PURQr8KeBL6uqWlVV9V0GTtGffdblz7rtTyuGhuA5QVXV\nNvAqkFFV1aaq6iqDG+jeifZvAG8qirKuKMqPAt8H/Hf3eeRbwPn7t68oyu8oilJ6yOt3HjCkR+3r\nfwJeBr58l1r4Hz6GUyAmmDqwDSSBf/sRj/3jwH9/d9tTwBqDqOxZ9v8k6/0Q8Fy5/sfgrykDCuo9\nRVHeeNyXVVX9MVVVf+wBiy4A14F/Cfy3dz9bBLQMrkuJp7geH4V5oKeq6u49n90AVj6G5c+67U8l\nhtTQ88U6g4tIwAVUxBtVVfOKovw68P8ATuB1VVXP7ttGBQjev2FVVb//owzkUftSVfWfMKCFPlao\nqvpjiqL8BAOD+AbQumfZkxz7x4G/o6rqKYCiKP+GwW/y1Pt/wvUiwC1FUR62mS+qqvp/P9XRPB4/\nD9xhQG38jwyi0XVVVQ+eYlvrwL8Cfp8BRWm/+9mt+w3mR70eHwMbcP85PQPsH8PyZ932pxLDiOD5\n4n5DUOQ/v6CuMYgUvqSqavwB27ADpY9pPI/b10Nxr8fHIOn9C0/i8amq2rsbXoeA//WjjOdp93kf\nUvf8X2dwoz/R/h+Bx613Aqypqup6yOt5GQFUVb2kqmpFVdWWqqr/GHgP+KMfdTt38xxLwHVVVYvA\nZQbUpogSnieqgOO+zxz8oRP1LMufddufSgwNwfPFeT5sCDYZhJ4AKIqyCvx94B8D/8tDtrF03zbE\nur+r/KEy5P7X7z7g+0+yr4dCVdXvFxMZ8NeBv37PxPYk3qCOD+cIHjuej2GfD8XTno8nXO83GajF\n/kuACjw0NHkEzgEN4PDue0EPXeAB+YGPej0+BruATlGUuXs+O88g+f6sy591259OqKo6fD2nFwNv\ndPWe9z8NfPXu/+MMirf+BGAB0sAb961vBArA2DOO47H7+ojbewt46xHLAwxoCRsDPvmPADXgTz7t\neB63z7vfiQHf+4j3bwH/9AnP/W8Av/E05xGwMjDevw6MPOE5VYHZ+z7TASYGCqx/cvd/3SPG57p7\nrk131/2hu+d94b7v/TDw7mOO9S8C37jn/QSDyLTAgA77OO6PRx3f14B/dvdcvsaAnlm5Z92nXv6s\n2/40vj7xAXxaX8AoA05cf89nPiDBgFu+AfzkPct+Fnjvvm38GeC3nnEcjifZ10fc5ls82hD4Gaij\nSkAZuAn8pWcZz+P2efc7MR5vCH7rCc/9fxRjfppxMzCCvwoc3T0P977+5wd8/0GG4C3+UHElXm89\naHz3nPcrDGiMEvBN4L96wL5+mA8bggdt6/8A/u59n11nUGxo/5jukUcdn4dBFFIDjoEfvG/dp17+\nrNv+NL6Uuwc+xLcIiqL8CgMl0a8/wXcvMdDi33r+IxtCQFEUA4NJf039+FVMD9tnk4Hj8HdUVf3y\n8xqfoii/B7wCXFZV9Xs+iWMd4r88DA3BEEMMMcRnHMNk8RBDDDHEZxxDQzDEEEMM8RnH0BAMMcQQ\nQ3zGMTQEQwwxxBCfcXxbtJjw+Xzq5OTkU617enrK2NjYxzugIYYYYohvAZ51/trY2Mipqup/3Pe+\nLVRDL774onr16tWnWldRFL4djnGIIYYY4n486/ylKMqGqqovPu57n3pq6Ctf+conPYQhhhhiiKfC\nt2r++tRHBEMMMcQQn1UMI4K7OD09/aSHMMQQQwzxVPhWzV+fekMwPj7+SQ9hiCGGGOKp8K2avz71\nhmCIIYYYYohHY2gIhhhiiCE+4xgagiGGGGKIzzg+s4ag1+t96O+9n9//mfi83W7/Z+s9aP0Hbef+\n/+/d1sPGd+822u027Xb7odu7/zPx3XvXedC69+/vUcf0sLH1ej0ajYb87HH7fNixP+zzh333UXjY\neXvU959kP48674/7+1HGf/+YHnW9PGzsD9vn4667B312//7F+4+6rfuXPew+edQ1+KDze+95uhdP\ncp4/yrgfNOYnWefe7zxqXnjSbX3s+KQfiPAkr2AweP/DK1RAPTk5UVVVVb/yla88dPmXv/xl9ctf\n/vIDl29tbanJZFL9+Z//+Yeu3+121V/6pV964PJoNKoeHx8/dPuXL19W6/X6Q5dfuXJFrVQqj1z/\n8PBQ/dKXvvTA5fv7+2qlUlG/+MUvPnD5rVu31GvXrj10/Wg0qna73Yfu//j4WC2VSupP//RPP3T8\nrVZL/fEf//GHrl+pVNSf+7mfe+j4W63WQ/cvlj/s+La2tlRVVR/6++zv76tXrlxR//Jf/ssPHZ+q\nqo88Pzdu3FB/8Rd/8YHLr169qtbrdfVnfuZnHnp+6vX6Q89fNBp95PFfunRJ3draeuj5Oz4+Vlut\nlvqFL3zhkcf3sPNzfHz8yN//5ORErdfr6k/+5E8+dHyJROKh61+9evWxv++dO3ceOn5xfh52/i9f\nvqxWKhX1p37qpx64fHNzU93c3Hzo+vv7+4+9vx+1/HHnLxqNPvb6PD4+fuj4TmIx9Su/9EuPnN8e\nN/8BVz81D6Z52jqCXq/H6ekpqqoyOjpKu91mY2ODsbExvF4vH3zwAXNzc9y5c4cLFy6QTCbpdDpo\nNBoWFxfRarUUi0U6nQ5erxetVku73SYajbKwsEC73WZ3d5f5+Xn29/eJx+O4XC6KxSIjIyP4fD6a\nzSbT09Ps7OwAg0rBcDjM8fExkUiE27dv4/P5mJycZGtrC5/PRz6fp9/vo9PpKBQKTE5Oks/nsdls\n9Ho9QqEQh4eH9Ho9arUaHo+H4+NjZmZmODs7I5VKYTKZcDqdtNttLBYL3W6XcrlMoVBgfX2der2O\nVqvF6/XicrnY2toiFouxtLREMplkYmICjUbD9vY2S0tLhMNh8vk8lUqF09NTbDYbPp8Pq9XK5uYm\nzWYTt9vN2NgYpVKJSCRCLpdje3uber3OysoKiqIwMjLC8fExLpeLs7MzAGw2G8lkkpGREer1Ovl8\nHp1Oh6IoTE1Nkc/nmZycpNVqEQgE6PV6JBIJEokE586dIx6Pk8lkcDqdrK+vc3R0xPHxMSsrK6TT\nacLhMLFYjNPTUyYmJjg4OGBtbQ2DwYDFYuHGjRtYrVYAuX2LxYLX6+Xk5IRer0epVCKdTrO4uIhG\noyGXyxEIBNDpdPj9fgqFAu12m3w+z+npKUtLS5TLZTweD2dnZ2xtbREMBmm1Wuh0OgKBAFNTU+zt\n7eFyuSiVSrhcLsrlMjabDYfDwe3btzk8PMTv96PRaGi1WnzHd3wHJycnFItFwuEwiqJQq9VwOByk\n02l2dnZYWFhgZWWFRqOBzWZjd3cXn8+H0+mkUqnQaDSo1Wo4nU5UVUWv1zM2Nka73ebGjRvUajVe\nfvllDAYDm5ubpNNpCoUCFouFCxcu4HK5KBQKRCIRtFotjUaD3d1dVFXF5/Phcrm4fv06Xq8Xu91O\nq9WiUqlgs9loNpvMzMxwenpKr9fj0qVLTE5OEgqFKBQK+Hw+vF4vhUKBZrNJs9mk3W5TrVYZGRkh\nFosxNjbG2dkZFosFjUZDp9ORv9Orr75KqVSiUqmQSCRYX19Hp9NRLpfxer2oqkqz2eSDDz7A4/Ew\nNTVFvV5nbm6OZDJJPB6X17BWq8Xj8ZDP5+l2u+h0OvR6PaFQiOvXr7O+vk6z2cRkMrG5uYndbqfX\n61Gv1wkEAnS7Xebm5rh16xbNZpPx8XF0Oh39fh+NRkMmk6Hf79NsNikWi8zNzVGv14nH41xcXyeS\nTKLt9eC110Cvf6q580nrCL4teg09C1KpFBrNgAHrdrv4fD6Ojo6oVCqkUim63S7nzp0jmUxit9tp\nt9sYDAZ2d3fp9XpMTk6SSqXkjVCtVun1elSrVT744AOq1SoOh4Px8XEKhQIej4dKpYKqquh0Oqan\npzEYDPh8PiwWC8VikcPDQxRFoVqtYrPZ2NzcpNvtcnJyguiplEwm2dvbIxgMoqoqGo2GWq3G+Pg4\n0WhU3gQul4tEIoHL5aJarVKtVvH7/UQiES5dukSn02F0dJRut4tGo8FkMqHT6ej1eszPz5NOp9nd\n3UWn0xEKhahWq/T7fY6OjrBYLBgMBs7OzjCZTDQaDeLxOCsrK5RKJXK5HDdu3MDhcNBoNKhUKszN\nzdFsNnn33Xfp9/vMzc0Ri8XIZrOMjo5y6dIltFotFosFAFVVKRaLBAIBTCYTgUAArVbL5OQkZrOZ\nRqPBzs4Ox8fH0lDUajWsVisGg4GjoyOCwSCpVEr+Trdu3aLT6XD16lVmZmYol8u43W7a7TbxeFxO\nLtlsllqtRq/Xw+12c3x8TLvdplgssrS0RKvVIpvNUiwWWVhYYHp6GpvNxvXr18nlcszMzBCPxxkd\nHcXpdGIwGPD7/czNzWEwGDg9PaVer3N0dCQnhkgkQrvd5uDggH6/T71eJxQKyd/S4/Fw+fJlyuUy\nOp2O8+fP02q1MBqNpNNp4vE4NpuNRqPB4eEher2e8+fPYzab0ev1mEwmrFYrh4eHhEIh8vk8rVaL\nTqdDuVym2+1SrValk1Iul+Xvl06nyWazuN1uCoUCfr8fVVWZnp5mfHycs7MzGo0G165dw+l0Mj4+\nLp0hg8GA0WikXq/T7/dxOp3s7+8zOztLMpnEaDSSz+cZHR0lnU6zvb3NwsICb775Jvv7+7TbbUql\nEjabjStXrqDVakmn07z22msoioJOp+Pk5ERe/xcvXsRut1MsFnG73Wi1WqxWK9lslomJCXkPBoNB\ndnd3aTQaTE5OEo1GcbvdjI+P4/f7qVQqdLtdMpkM0WgUrVZLv9+XhrnT6dDpdKjVaoyOjmK1Wsnn\n85TLZTY2NrBYLPR6PcLhMD6fj2g0itVq5datW4yNjdFoNKjX66yurlIul0kmkwBYLBby+Tx2u514\nPI7T6SQejzM+Pk6r1cKp0aC9c4fTzU3GLlwAp/O5zpOfakOg1Wp56aWXODg4kBdmp9PBbDaTy+VY\nXFwEkBNDvV4nFovx+uuv4/f7ef/991EUhenpaXq9Hnfu3CEQCGAwGIhGo7RaLQwGA7lcjkqlwurq\nKvv7+7RaLVRVpVQq0ev1ZCSxs7NDp9OR2xSThNVqlTdypVLB5XJhs9lot9vkcjnGx8cZHR1la2uL\nTCaDqqoYDAaq1Spvvvkmfr8frVaLwWCg0WhwcHBAIpHAZrOxsrLC3t4eHo+HeDzOK6+8gs1mY2dn\nh8nJSRKJBOVymVwux8svv0y73ZYRTjab5fz58wQCATmJVioVotEopVKJlZUVVFWVk0KxWOTs7ExG\nJ41Gg4mJCdrtNjabDaPRyMLCAul0mv39fT7/+c8DcPXqVTqdDvV6Hbfbjc/no1arodVq5W8njGij\n0SASiVCpVNBqtTSbTeLxOB6PB5fLRaPRwOv1otfrcblc1Go1GeF4PB60Wi2f+9zncDqdbGxsEAqF\nGBkZwWw2oygKmUyGubk5dDoduVyObrdLp9PB4XCQSCSYm5tDr9fz2muvYTAYaLfbnJ2dsbm5STgc\nplqtygnk7OyMYrHIzMwMRqMRr9cLQDQaxeVysbe3R6PRoFgsMjU1xcHBAevr68zOzlIoFNjZ2ZHX\nzuHhIZOTk9jtdsxmM2azmVarhVarJR6Po9FoGB0dpVQqyXN348YNRkZGKJfLuFwu3G43BoOBer3O\ne++9h8PhkJOjiGhKpZI0mgD9fp9+v08ymaTVauH1etFoNCwtLdFut7l58yaKonB0dCQ9eb/fT7Va\nRa/Xo9PpsFgs8r5Lp9Osr68zNTVFpVLBZDIRDAYxGAzY7XaMRiPj4+McHh4SCATIZDLMzs4Si8Wk\nQaxUKly+fBm73S6dGp/PR7fbJZVKoSgK4+PjdLtd6bTFYjF5/u12O91ul0qlQigUotvtYrfb0ev1\nRKNRms0miqIQDAYpFArodDrC4TCJRIKJiQmazSYvvfQSiUSCarXK8vIyNpuNs7MznE6nPP6zszOi\n0ShGoxGDwUA6nSaZTKLX62WkPjk5Sa1WIxgMks1mCY+O0j47w/aNb8D4OOM/+qOov/Irz32u/FQb\nAoF4PE6v18N516o6nU4ODg7odDqMjY2RTqdpt9skk0k8Ho8MtbVaLTqdjtu3b2M2m1leXqbZbGK1\nWkmlUjSbTSwWC4qiyBu6Xq8zMjJCIBDAarVy584dTCYTJpMJi8WCzWaTYfHp6Slut5tWq4XNZqPT\n6VCtViVV4fP5SKfTlMtldnd3GR0dJZfL0Ww2WVtb49q1axwfH5PL5aTnptFosFgspFIp6Xnr9XqO\njo6o1+vU63U8Ho/0UFdXV9nZ2aHdbjM6Okq9XsfpdHLx4kWy2SwffPCB9GILhQJjY2MsLy9Lj8jr\n9VKtViXNcHp6SqFQIBgMEggEMJvNOJ1OtFotrVYLvV6PVqvFaDTS6/U4Ozv7UOJRURQ8Hg+FQoGt\nrS0qlQqTk5Mf8p6npqbo9XocHR1RLBYpl8uMjIygqiqpVIp4PE44HKZer+P3+/F6vbTbbVKpFGaz\nWVINsViMYrFILpcjGAySy+WIRqOoqiq94VAoxNzcHFqtVnrEGo0Gg8HA1tYWJycnqKpKv99HURRs\nNhutVou9vT1mZ2fpdrsoisLx8THZbJZms4nH42F8fByPx0MulyOXywFgMBiIxWKEw2HK5TLnz5+n\nXq+j0Whwu90sLCyQSCQIBoNyPH6/X5673d1dgsEgJycnjIyM4Ha7KZfLWK1WDg4O2NnZwefzYTKZ\n+M7v/E5ZtWq323G73fK4XS4XqVSKarVKsVgknU7j8/mYmJjA7/fT7/dJJBIyAnvjjTfQarX4/X6W\nlpYkHVUqlaSBSaVSLC0todPp2N/fp1arMTU1hd1uZ3d3F5vNhlarRaPR4PP5ODg4wO/3U6/XMRgM\njI2NsbGxIQ2tmJwFDTU/P4/BYOCFF16gWCwSjUbxer0Ui0UA3njjDXlvlEol5ufnOT095f3332dx\ncZFCoYBer+fll18mGAyys7PD9evX+Y7v+A5arRZ2u51arUY4HJbOlsvlwuVysbOzQ6/Xk4ZJr9ez\nuLhINBpldHSU3d1dksmkpM50Oh0mk0nOOaFQCKvJhKPfx3l0xPl6HUMoBHNzgwnsKWmhj4LnbggU\nRdECV4ETVVW/X1GUKeBrgAf4APizqqp+9NT+E0B4NbOzs2QyGRwOB6VSibOzM+x2O3fu3JE3x8LC\nAk6nE7vdjslkolQqEQ6HOTw8JJlMEolEcLvd1Ot16ZXbbDamp6dxuVxcvnwZnU7HxMQEhUKBfD7P\n8fExZrNZ5glOT0+p1WpyfC6XC7PZzN7eHqVSCa/XK70Ho9HIyckJ3W6XRCJBOBymVCrx4osvUi6X\nCQQCMuweHR1Fr9dL3lF4zkajkb29Penl5/N59Ho9vV5PemClUgm9Xs/o6Ci1Wg1FUUgmkwSDQfr9\nPsFgkFgsxsTEBGazmampKQqFAplMRqobPB6P5IGFQRL5hmq1ysnJCXq9nlwux/z8PM1mk7GxMcmr\ner1eFhYWiMfjcjJsNptyIvZ6veRyOfr9vswrNBoNUqkU4+Pj8ma0WCwEAgG8Xi9msxkAr9dLo9Hg\ngw8+4Pz587TbbRnuu91uGZoLPls4C7FYDL1ez8zMDDdu3ECj0TA1NcXp6SkOh0Oev5GREaampjCb\nzRQKBQqFArVajcXFRaxWK4lEgkajweLiIq1Wi1arJTl7AJPJhKqq5PN5arUagUBARh4iF5JOp6U3\n22g02NraQq/XMzU1hVarJZFI4PV6ZQ7G4XCwvb1NOBym3+/j9/tRFAWHw8Hx8TF6vR6bzSaPXeRE\nstksY2NjbG1tScrRZDKRy+WwWCxsb29Lr14Y8nPnzlEoFNBqtfR6vQ/lvoRxEBRhr9eT1GkoFMLn\n81EoFOTnotPm9vY2+Xxedt08ODig2+3Ka8/n80knIp1Oc3x8TDgclvm9VqtFLBbD4/EwOzsrKVCn\n04nJZOL9999Hr9eztrbG/v4+xWKR6elpmccR64m8hs1mI5/Po9FoaLfb7O3tEY/HsVgszM/Ps76+\nTj6fp9fr4fV6OTs7o1KpYLFYyOVyLC0tce3aNTk+k8nE0dERS0tLZLNZ1G4X694e47duof3BH0T7\nW78Fbjfs7w8mirs06vPEtyIi+ClgC3Dcff83gL+tqurXFEX5B8BfAP7+89ixwWAAIJvN4nQ65cV3\nL2ccjUalZ7K9vc3k5CSbm5uMjIxw7tw5JiYmOD095datWxwfH5NKpVhYWCAQCOByuTAajdRqNV59\n9VXq9Tper5d6vS4TfkajUXKQbrebk5MTOp0OiUSCxcVFvF4vlUqF4+NjNBoN/X4fl8slE0o+n4/l\n5WVqtRqZTAaDwYBeryeVSmG1WrHb7dTrddrtNmtra2i1WkKhEPv7+zLpfPHiRdLpNPl8XibMRCir\nqip2ux0Y5FBGR0dlAlMk4UQSLBgMkkgk6Ha7mEwmFhYWaDQauN1url69KpNsxWJRevcnJydyXKen\np/h8PnmDidzJ8fExjUaDjY0NFhcXmZ6e5ubNm3Q6HXq9HgcHB2g0mg8lvHd3d/F6vYRCIdrtNhqN\nBqfTya1bt5iampKe2O3bt2m326ysrNDtdun3+5IXX1xcZGRkBL9/0K49lUrRarVkLmlmZgaDwUAk\nEqHZbHLr1i0ikQh6vV4mgDUaDel0muXlZcxmM4FAgPfff5+pqSmuX7/O5OQkXq+XZDKJw+FgbGwM\nnU5Hu90mnU6zsLAgJzytVovP55ORx82bNyWH7XA4uH79Oq1WC5/PR71e5+rVq6ysrLC5uUkwGMRi\nsXDt2jX6/b7kruv1Oi6Xi1ar9SGDube3h6qqjI2N0ev1yGQy8lr2eDxsbW3x2muv4XK5JAVns9kA\nsFqt6HQ6+fubzWb8fr+kBs1mMxcuXCCdTmM2m5menmZ/fx+3241er8fhcHB0dES1WsVut+NwDKYG\nQSfV63XW19cxmUxEo1EODw+5cOGCpFBtNhvlcplSqUSn0+HixYsyIhXX8iuvvCLp0Gg0Srvdptls\nYjabWV1dJRqNyjxFNpvl4OCAVqvF0dERBoOBZDJJOBwGoFgs4vV68Xq90kD5fD76/T75fB6ATCZD\nNpvFYDCgqiqTk5MypyHk1UajEYvFQq1Ww2630+l0CAeDmO4et1YkhatViMfhW/gcledqCBRFCQF/\nDPirwE8riqIA3w384N2v/GPgLZ6TIRAQNM/Z2Zn0dkVILlQDImTXaDQyVC4Wi5hMJk5PT1lfX6dU\nKhEIBDg4OECr1aLX6wkEAlKhotPp0Gq1LC4uEovF2N/fl16Z4P0LhQIwyEu8/fbbvP7660xNTXF0\ndITNZkOn02EwGGi1Wrz66qtotVrJ1zcaDbLZLP1+n0qlIimSYrHI/v4+DocDRVEkBXLx4kVyuRy9\nXk96XhsbG8zOztJsNolEImg0Gk5PT9Hr9ZRKJUZHR2m1WkSjUSKRCNPT07RaLUZHR6Uy5/T0lFgs\nxrlz5+SkJqIJi8VCKBSS0U6v15PRUSaTkV63yDmI5HupVCIYDEqq7KWXXiKVSnFyciITgIqiYDKZ\nSCaTzMzMsLOzg16vJ5FIYDAY0Gg08nwI/l6n0+F2u9nb28PhcOD3+5menpa/Q7vdRq/XUy6XWVhY\n4MaNG5ydnbG8vEwmk5HJWWEQYrEYc3Nz5PN5Sf/F43GOjo6kx/nmm2/i8XjQ6/XyGNvtNo1Gg1Kp\nhNVq5fT0lEAgQCqVQqfTyagKBhOPqqqSIlteXsbj8VAul2U+5ujoSE5cer0eq9VKt9tlZWWFWq0m\njfXa2hqVSkXmOMQ+nE6njCCr1SrhcFhevx6Ph2q1Sj6fZ2pqCo/HQ6PRwGAwEI/HAaRDodPp2Nra\nIpFI4HCaYzC3AAAgAElEQVQ4CAaDMlLM5/NyIjw6OiKTyTA2Nsbk5CSVSoXR0VEp5hC047Vr19Dp\ndFitViKRCOPj41SrVa5cuUKj0WBqaor9/X1JfVmtVnmt5nI59vb2ZFR5/vx5jo+PmZqakqKHiYkJ\n6ZSIJLvIF0xPTxMOh6XxunPnDqenp3Q6HZlsdrlc8lharRaRSIR+v4/JZOLixYvSWSyVSnS7XQ4O\nDuj1eoyMjDA6OsrBwQEWiwWtVsvsyAiNK1fw/+Zvov1zfw7t2hr8zu8MJq3z52F5GX7t157n1Cjx\nvCOCXwd+DrDffe8FSqqqdu++TwAP7KqkKMqPAD8CEIlEnmrnvV6PL3zhC+RyOcxmMzdv3mR8fFwm\nfYXX5HK5sFgsHB4ecufOHdrtNkajkUAgwO7uLoFAgNu3bxOPx/nu7/5uzs7OcLlczM3NkcvleP31\n1zEYDGSzWW7evMns7CyNRgOXyyVDZeEtRSIRjo+PmZycZG5uDo/Hw40bN1AUhbOzM9xuN4FAgOvX\nr0sZqtvtZnR0lEQiQafToVAo0O122d7eptvtysRtPB6nWCxit9ulV2m1Wrly5Qp6vZ4XXniBr3/9\n69LgGY1GmcQToWyv10Oj0eD3+2VSOBAIsL29TSQSweVyEYvFJNURiURIJBIyn/HCCy9gs9nIZDIc\nHR3h8XhoNpvk83lmZmaIRCKSXrDb7UxOTsobOBQKSXmjSErWajVJLXQ6Hfm79vt9qbYRihSv1yul\nuWazmXg8jtVqxWKxYDabWVhYoFwuk8lkpDd548YN/H6/5LWF4SgWi9y4cYNAIIBGo2F2dhYYeK33\nRny5XE4mpgV9YzAYOD4+plgs0m63UVWVcrmMwWCQCpdutyuT40Jtc/PmTcrlssw3CE7barVy6dIl\n3G43DoeDnZ0dFEWh0+nI/JLwlpPJJDqdjmazCSCNaSaT4dVXX2VlZYXT01O8Xi/T09PkcjnsdjuK\nolAulyXF5fP58Pv97O3tSapzampKyogdDgeHh4esrKzg8XgwGAxsb28Ti8WIx+P0+330er00+p/7\n3Oe4efMmFouFk5MTjEYjN2/elIbmnXfeoVQq4XQ6pcEURkDIgt9++212dnZYWVnh5OQEp9OJy+WS\n+xaO2/r6Ona7HbvdTiQSkXkGESGLnFWtViOdTjMyMsLk5KSkG0U+T+TjRA7H7XZTrValk1Yul6nX\n65JqzmQyUjYeiUSoVqtSVut0OvnmN7/J6OgolUqFWqHA+MYGkdlZDD/wA2C3D5RBFy/Cu+9Cvw/H\nx3zlj/9xqNefOz303AyBoijfD2RUVd1QFOUN8fEDvvrAQgZVVb8KfBUGdQRPO44vfvGLUvFw4cIF\nDg8PmZ2dlcnUiYkJDg8PuX37tvQ4X3nlFenFi4tzfHycpaUlKpUKRqORfr/PxsYGWq1WTj4Gg0Hq\nmZeXl2m322QyGVKplNTlZ7NZfD4fqVSKqakpKeUTeQhVVdnf38fpdMrJvtFoSBmo8EYMBgM2mw2P\nx8PFixdpt9t0u105ma+vr8uJQVEUydWGw2Gpj9fr9VSrVUZHRyVFUiqVyOfzVKtVxsfHmZqakrUU\n3W6XWCwmE9CtVktGCUKNInTwLpdLhtCpVEoqeg4ODpifn0dVVXmj6HQ6mbQXNRXZbFaqXRYXF2XS\n1ePxEIvFpKxWeL7T09Myed/r9YjH4zIvcy8Xrdfr2dnZIRKJ0Ov1JP0kvFeR7FNVlVdffVV6hGI8\nglarVCrSQPv9fkZGRshms2xvb3N4eIjH42FycpLj42OpSAmFQqRSKWw2G5FIhLOzM6rVKqFQiFwu\nJ7333d1dvvM7v5N4PI6qqpKC6vV6NJtNfD4f7Xab6elpNjc3abfbOJ1OKX8UjzcUGvV+v8/s7Kyk\ndFqtljT+gp4rlUqMjIywvb2NXq+nUCjQ7/elwTg+PpZ5K0FNCkVMsVjk3LlzH6I0P/jgA/k+nU5T\nLBalui0QCLC3t0cul8PpdOLxeLDZbIRCIbRaLYqiYDab0Wq1OJ1Otra2sNvtzMzMSAMluHZhSN57\n7z0ZQZRKJeLxOPV6nUqlInMi/X6fTqfD0dERFy9elHU5vV6PDz74AEVR6Ha7hMNhjo6OZK2EqNE4\nOzuTif7T01Mpcy4UCuRyObRaLYDMTyUSCanCcrvd9Pt9arUaarXKd+VyjG5uoj06ArMZQiEIh+G3\nfxtefXVgCMJh3vq+73vaqe8j4XlGBK8Bf0JRlD8KmBjkCH4dcCmKorsbFYSA59ZwW2iCA4EA/X5f\n6r1FMYqYuHw+n6QYKpUKtVoNs9lMqVSShTh7e3scHR3RbDYJh8NyIhJ8v8PhIJPJyAvj5ORETnqT\nk5OyYKdUKjE9Pc21a9dkbYKQV+r1evR6PX6/n1qtRqlUotVq0Ww2uXDhgqS3xsfH6XQ6pNNput2u\n9K61Wi0mk4mVlRUpPxUJXLvdzs7ODsvLy8TjcdrtNm63m8XFRSmBzOfzuFwufD6fVCgJaknQa8Jb\nFUnHO3fu8PnPf56DgwMuXrxIKpWi3+9L7b0oOCoWi3g8HkqlEoqiyIgikUjI7yiKwujoKMViUU4c\nX//61zk6OsLlcuFwOKTmXyQnxbGlUincbreUl46OjhKPx5mYmKBYLKLT6bhy5QrlchlFUVhaWuL2\n7duycG9paYlGoyG9QZHAF/UXfr+fsbExbt++La8vnU7HyMiIdCqEZxwIBGR9hJgMYZCABigUCpjN\nZs7OzqQ0WSjOhBLo/fffx+12s7S0hNfrZWdnh7OzMynt9fv9ZLNZaeRFwZLwRMVEDrC4uCjpr5mZ\nGSlHfemllzAajVy+fJkLFy6QSqXw+/0YjUa0Wi3lclkmi6PRqKyzAWi1WiwsLEgDvbm5icViod/v\nS9m2oFRmZmY4ODiQnruQYH/Xd30X7XZbFvp1u112dnakcc1kMni9Xvr9vqSOnE4n77//PrFYjJGR\nEZxOp5RsRqNRcrkcLpeLSCSCzWZjdHQUj8cjz5WgMbPZLLFYTNZveL1e9vf3WVhYQFEU6QBqNBoZ\nAfb7fSkBF9eKmBOEaKPT6WAymTAYDExPT5NMJjk7O5O/3aLTifZv/S1sFgusrg6igM99bmAA/v2/\nH+QIvvlN+IVfAKeT09//fcbuRsLPE8/NEKiq+iXgSwB3I4KfVVX1hxRF+X+BH2CgHPrzwL96XmMA\nJKcoLiThaaTTaclRms1mstksfr+fCxcuyKpRUVx1dnbG3NwcDoeDfr/PxMSE1PGL2oRms0ksFpNh\nocFgkPrxfr/P8fGxrOY0GAw4nU7pnayvr5NIJABkvYPRaJTqpV6vRzqdJpVKAYNkXSaTkUYkHA6T\ny+VwOBwkk0nJyWq1Wsxms/xfFPNks1mpO+/1ely/fh232000GpWJ052dHUZGRrhz545MugP4fD7p\nOen1etbX18lkMjKBKopvhDEEpIY7FArRarWk/FKv17O0tCQpA0DSWHa7nUajgcVikYYvm81iNBqZ\nnp6W6qhut4vb7WZqakpGK4lEAo/HI1Ux8/PzspCn3+8zMjIic0KhUAiz2cz29jaZTIYXXniBw8ND\naZyFFHd/fx+fz0cgEKBSqUh6TWjFc7kcfr+flZUVrl+/TiaTwWazMTMzQ7/flwVhYvIsFos0m03J\n0U9OTrKzs4PD4ZBUgjC4u7u7NJtNScMsLy9LXlwY9FgshlarlUbgzp07GI1GrFarTHY6HA5pIESd\ngqqqUjRRr9dRFEXWHIjjTKfTsjp3YmJCGuVUKkUwGGR7e5u1tTXOzs7I5XIoioLT6ZT8u1arlYol\nr9dLIBDA6XRKAz82Nka1WqVcLjM9PS2TxKqqykn65OREGj8hFdVqtVy6dImlpSXm5+eBgYKt3++z\ntbUli8ay2azMwYl8U6lUQqfT4XQ6JWWk1+sxGAwoiiIVdUdHR7TbbXw+n6TDrFYrS0tLdLtdXC6X\nlIZqNBr29vZ4/fXXpcH0er3SaXthdhbn22/D5z8P6TSsrw/yAP/u38Hrr8PSEvyH/zCIDBIJCAYZ\n/5t/E/VXf/V5TpHAJ1NH8PPA1xRF+SvANeAfPa8diaSV4DhTqRRGo1FWUt66dQu73S4vBJGobDab\nUidcKBSkYqVQKDAyMgIgbx6hCrJYLMzOzjI+Pk42m6VSqUiaodvtyvYRZrNZSlb1ej0LCwscHh7K\npOHY2BjhcPhD7QKq1SqJRIJIJILf7+f69esywtFoNOTzeW7cuEEkEmFkZEQWCAWDQcxmM6Ojo2i1\nWlkJOjc3x/b2tjw/Qm4p+FRBZVgsFunVd7tdWSAlZLRC+y30+rdv35byV4PBQCKRkLJWcUO/9957\ntNttTCYTt27dwuPxSPmiy+VCr9fLfIpGo5GU0cLCAsFgkG63y/Xr15mdnWVmZoatrS05Ua6vr0vZ\n4pUrV5iZmZGyVWEYUqmUVOKEQiF2dnZYXV1Fp9Nx7tw5crkctVpNKjuOjo6IRCK0Wi2pONLr9bjd\nbvL5PNevX2d1dZV+v082m2VkZISxsTE0Gg1er5d4PM758+e5efOmpCN2d3dRFEVGMEJRUiqVOH/+\nPIlEgrOzM1ZXV9na2sJoNGI0Gjk6OpJORyKRkBGfzWZDVVUpjRQ8uPBm3W43MzMzZDIZzs7OmJqa\n4uLFi8Ag5/Hyyy+TTCaZmpqSRr1Sqcgq40qlwuLiIqVSib29PVZXVzEYDNKRePHFF2UEIXJre3t7\nstVGNBolHA4zPj4uo9pMJkM6nZbV6n6/n263SzabJRKJYDKZZMJaUK7j4+McHx9Lr91kMuHz+WQE\nKRofVioVOZmLfFq325XnoF6vU61WmZmZkQ9+6Xa7sr5Hr9ejKArNZhODwSCLF++N5O7cuSMVayJC\nGxsbk21CNjY2aLVazM3NMe52U0gmsW1vg8cDb78NuRysrAwmKlUFoxGi0UF08Hf/7iBncNfxI5eD\nu3Lj54VvSfdRVVX/QFXV77/7/6Gqqi+pqjqrquqfUVW19bz2Kzi7mZkZvF4vHo9HUji1Wg2bzcbi\n4iJra2u4XC4URfnQBSXCXGEgTk5OqNfr3Lp1i9PTU8xms/TkhRckKkAFv16tVsU5kBWaogDK7/dj\nMBgolUosLi5KT0ev1xMOh3n11VfluvV6XV6IExMTzM/PS4WRwWBgdXWVtbU1HA6HNBi3bt2i0Wiw\nurqKx+Ph5OSEb3zjG1LaeXBwwM2bN7l27RpHR0ccHh6SSCQ4ODiQRkZIUwWt0e12pVa9UqkQi8Vk\nbYBoUyG0+IuLizJMvnPnDtVqFa1WKxU/brcbjUaDVquVicj5+Xmpj89msySTSZxOJ2NjYwQCAXmT\nCo9TFEAJLX44HKbVaslK5Ha7TTAYlDxxp9NBVVUKhYKUCuZyOarVKjdv3pT8u8/nk96p0H+LoqJO\np8PBwcGgWZeicPPmTUmRiGNfW1sjEAjw4osv4na7+dznPkev1+Pw8FDmJfr9Puvr64TDYbLZLKur\nq7LtgE6nw2azyVYX09PTLC8vY7fbZTuUcDgsaT2/3y+vOeH1i8S33+8nlUqxvb3N+Pi4TFyLiTuZ\nTJJKpdjZ2WF8fJxcLicrwYV6yeVySYNst9vl+RLOgKA6g8Egt2/fludWFCqKaLVcLjM6Oipl0WNj\nY/L60ev1UiG1t7dHp9ORMtuJiQk2NzexWq20Wi3Gx8dlrysYJHLPnTsnizTn5uawWq34/X4p1ez3\n+5jNZnldC2GC6BEWDAblMYtoymq1cv78edxut6y5mZubY2RkhGKxyOnpqYwu3nnnHZljGRkZIZ1O\n069WMf+Lf8H4b/wG2q99DbpdmJyECxdAp4Pf/V34nu+BhQX4+tfhyhX4iZ+AqakBRQSfmjqCTxxH\nR0f0+31Jc/j9ftbW1ojFYuzt7Um5HgwKfI6Pj1lbW8NkMsnkk9BLi0Z0gpu+t/gkn8/j8/kwGAyY\nzWZOTk5wOBx0u12WlpZkqLm+vk61WuX09JRyuTxIIKkq0WhUthcQ9QziZheN5+LxOCcnJ4yNjVGr\n1Zifn2d7e5tarSapl93dXcxmM+fOnaPb7cqqYIPBIKMAt9uNoigyqTg2Nsbq6qpsUXBwcEAoFJLF\nSe12m4WFBa5fv87S0hKRSEQaIpHLeOGFF6SmHpA5lk6ng9VqpVqtSqmk4PSFKmT/bvFMNpuVShCj\n0cja2hrRaFTWFYyMjEgZp5iEzp8/j91ul++FzLFWq7G2tiZrH0T/GOEQiORvOp2mXq+j0+kwm83M\nz89jt9tlg7OJiQlyuZwsyBMtCnw+n9SGO51OksmkFCAcHBxgs9m4deuWNEZOp1MqdXK5nKzkFn2F\nBPUl3u/u7gIDR0ZMgBaLhc9//vPSW15fX6dQKMhCtGAwyMWLF2WbE0FpbGxsYDKZANBoNFKaKrju\narUqeylZrVaMRiOTk5Myt9NoNGQLErPZLKMwcX/FYjHZq2pyclJy8WazmXK5TKPRwO/3k8/n+eY3\nv4lWq+WVV16RLU7C4bBMjIu+U8LAC1pQCClE3yshawakvr9er8u8mRAtiKhue3sbl8vF0tISer1e\n9iQymUzEYjEURZHqv4WFBSwWizQswqgKx1DId81ms6x5CIVCcp6xmc0shUJMlstoWy3I5+GP/bFB\nYnh+Hkymwd+jI/jX/3oQCfzwDw8m/YODQfL48uXBBPYtqCz+VD+PQPB0DoeDiYmJQTOnu55kMpmk\n2+1K1YLVaqXf7+NwOPie7/keGU6KCenw8BCTySQbTAnKxul0ShpBeJnf/OY3OTg4YGNjQ/bC0el0\nrK2t8eabbzIyMsI777wjE4qiwZoorBGJ0HK5zNe//nWZFBYFWxaLRbaeEL2MhMESdEq9XiccDjM7\nO8vh4SG5XI79/X1Zdp/NZnE4HHKysdls1Ot1YOD1r62tEYlEJMcZDAbZ39+X8kudTsfVq1c5OTmh\n0WhIDyiRSHB6esrp6amUsjabTXme19bWJOecTqdRFEX2DvJ6vbz00kvS619cXJQaeKPRyOzsLNls\nFgC9Xs/x8TEHBweyXYQQBszNzTE6Oippl36/L39fUeAl8hfiuEdHR5mbm5PSxlqtJo2qqCSv1+uc\nnp6SSCQYGRkhkUhgt9tJJBKyE+zGxobM0wjt+Msvvyz7OyUSiQ8VkAmPvtFooNVqOTk5IR6PS8mz\n8GI7nQ7b29skk0lJYYjmdYqisL29jaIo3Lhxg2w2i81mIxAIALC/v49Wq5VUk6A5pqampEhheXkZ\no9Eo1S+iZUK1WkVVVbLZLIVCAZvNJovORHVxtVplZWWFYDAoJ/ULFy5gMpkwGo3S267ValLmOz09\nTafTYXp6mqmpKYLBIGNjYwSDQdrtNhMTE9RqNY6Pj2XyfXp6WvZ4slqtUsHk8Xhkvkg4XKKCXNC5\nFosFi8Ui+zNpNBrZZNBut8u+UhsbG1itVplHtFqtVCoV2XNJFEzOz89js9lkTVG/38dgMGAymXCY\nTIzmclz4xjcwl8sD7/6ll8Bqhf/0n2B7GxoN2N2FN94YUEA+H/zBH8DGBjSbA4NxN1/H3fvyeUL7\n1ltvPfedPCu++tWvvvUjP/IjH3k9caOdP3+efD4ve7+I3iaiXYHQ+YsfHJAJVuFddLtdcrmc9C7H\nxsaIRqPSixD9ckSPGq/Xy/LyslQniZYJ0WiUsbEx2SZa6PZhIDurVquySE3QQIJjF5WMExMT7O3t\nce7cOZrNJkajUbaOgMEkKQqAhJJDSB4F372/v8/i4qLUiudyOVn0NKj7G/DHQvEjupo2Go0PSRAP\nDw/Z39/HbrfLQrVsNiubt4lWDgcHB9KL0ul01Ot1zp8//6GiJtHbSRROVSoVZmdnpaGo1WpMTk7K\nnkKi4lq0jBaN73Q6nfTEFxYWZCGh6GIp6B6v10upVKLZbFIoFJibm8Nms3Hp0iVmZ2dxu92ypYSo\nIH7hhRdQVVXWaIjCOLvdztbWFisrKzKvZLPZZNO3QqEgvVNRtS3ku6IwLRaLMT09jdPppN/vE4lE\npHLH6/VKT71SqUi5abfblR0vHQ4HTqeTSCRCqVSSDkEmk2F5eZnR0VGazaZsmV4ul9nb2yOVSklN\nvKhj2djYoFQqMTExQTAYpNFocP36dVmkJySyTqdTdqIVyXXxm87OztLv9zk4OJA5MJvNJs+/Xq+X\nwoV0Os3JyQn9fl8m2AE6nQ7FYpHl5WVisRipVEpGaqIdhkajYXd3l36/z9TUlLxH+/2+7JkknISp\nqSnpaIioRai1JiYmcLvdhEIhWSEsokHR7trhcBCLxTg6OpLCCSFeaLfbjFkszLTbeHo9DNvbA48/\nk4EXXhjkAl59FS5dgnIZNjcHxiEeH0z6Ot2ghiAQGHw3HIadHd74oR96anrol3/5l5NvvfXWVx87\nV36aDUGv12N2dlZWXwp+WzQwE50kk8mk7JciqIylpSVCoZBsMiYu0nA4TCQSkV0ghQcjdN4nJyeY\nTCZZCv/ee+/h8/lQVVWGv61Wi0ajISd8QY1MTk5y584d2f7ZZrNJ6aBo/qXRaGg2m/j9fpLJpCwI\nEt1Oxc18eHhIv9+XFZB6vZ5MJoPf7yedTstKTKPRKCWu7XZb9hfKZrPU63UpZ52YmJBSz8nJSUnv\nrK6u4na7paES4bro4y401mNjY7K6UxQDif1YrVY0Gg1zc3NUq1Vu3bolG3yJStzr16/jcrmo1+uM\nj48zNjaGVqtla2uLxcVFmXwXHqx4ZoTH45FN5+bn59FoNFIhI55edu7cOZxOJ+l0WvYD0ul0ciI4\nPDyUPX2MRqPs4inyPkLvL+oZYNBm+N1335UKr2q1KqWlYsIUUkNhcEUFcyaTwefzEYvFKJfLFItF\n2aKiWq2Sy+XkeSiXyzLRKp4bIIrYFEWR7Q2ESk7UIYgodGZmhkAgwPLyMuFwWKqpbDYbs7OzOBwO\nSYl5vV5sNhvj4+OYTCbC4TB37txhenpatkBptVrs7OxIqbCILoR8NRQKyahCGLZGoyFbmwi5drlc\nlv18VldXZZQ2NjbG9PS0fJ7IwsICp6enmEwm5ufnZSQDSPHFwsKCbN+SSqXY29uTFdGiYFP02zo8\nPKRcLksDr9PpyGQyUkklmgWKhL1o7Neo1TjLZll6911sIyMD505RBhLRmZlBu4hf+7XBZD8yMugj\nFA5DJALf+72DvEG5DKUSFArw3nvwp/4Ub7z00iB/cDff+VExNAQgOcXFxUUcDgdvv/22bO2cz+fR\narWyHsBut7OwsCCTbNlsVuq7JyYmZHM5UU28u7srqwmFLFQ8gEJ0jxR9hMSE0W63OT4+BmBhYUHy\np6FQSNY2CG651WpJz8nlckkP0+FwyOpnkRQWXq3olS48YY/HI3XZgkZaWFjAZDLJ4jBRwANw+/Zt\n3G63bGss2hqItrzCmPn9funZ5nI5WaUrFFnCexIT6uTkJEajkVAoRDgclsk74c0bjUZarRaKosjn\nNAjjIkL3ZrOJRqMhEAhQq9Vot9u0Wi0cDof07E0mk6SMRJh+7do1KQsUob5ojZBKpQiFQtJ47u/v\nk8vlWFlZkc8LEA/9aTQavPDCC1Ipks1mpQpNJC9F07FisSh56fHxcSqViuzKKQr4AC5duiT15mdn\nZ5KTFyIFkXwX1d+C2hLPFxAddUUCVFwnPp9PChWE8yB+GxGRxuNxWXQlpMxnZ2fEYjGZR8vn8yQS\nCfkcDBFNCFWRyJGIHFCv15O5IIfDQbPZlIl2IesVld4nJyeyg+i9IgARGYjiQCF7vXbtmhQoHBwc\nEAwGqdfr5HI52Z56YmJCSnBFxwDxfIZ6vS4jHNFzSHR/dTgcslWI0WjE7/dLFZDNZuPo6Ei2Ohd9\nw0RBot/vJ3t6iiOfZ/2VV3CfnAwaxkWjMDExoH3y+cF7vR6+7/vgn/9zODyEN98cePpXrw6Mxvw8\n7OwMqKTZWajVOM1ksK+sPHdD8KnOEfR6PV5++WVZBDQ+Ps7IyAjz8/O89tprUnu+t7fH5uYmJycn\nMgwUWnmhEAGkVv7q1avU63WsVqvUL4tinHt72YtGXg6HQz7sw2q1Ssmk8NxKpRJzc3Ncu3aNmZkZ\n+TQyRVHI5XLSY4E/VO288sor2O126RmLp04JjnRzc1O2eNDpdBSLRUmdtFot0um0nCz39/fZ3t7m\nxRdfxGw2Mzk5SSAQQFEUeSMK70fwxcKQiloAVVVl++5+v8/+/r6sA7h58yaxWIyrV68SjUblQ3pE\nSwmPx8Pi4qKsYBYTv5j4tra28Hq9mEwmLl++LHMLDoeDYrFIJpORbSsKhQLhcJhQKCQVHicnJxQK\nBZLJpPyN5ufn5TMQKpUKd+7cQa/XMzk5SbPZlNSXeB6C+M7t27dptVr0ej1Jy4gKb7fbTSqVkpFD\nJpMhmUxis9lIp9NcuXJFGhyRXBXy1qOjI/b29mS0MDMzg1arlU+8E9Wp9XqdpaUl5ubmCAQCRCIR\n2R5FFE2Jug+x/36/j6qqstGhaKEiuoUaDAapdRfRZT6fl7mGXq9HKpWSogNx7Lu7u1itVtnEUaPR\nkEqlpAMGSPqo2+3i9XqlYENQeYeHh5yenvLOO++QTCaZnJxkdXVVtogvl8sAjI2Nkc/nmZubY3Z2\nVrZ7P3/+PKOjo/L5HoA8b6LaXTwj5P9n782CG8HP694DYt/3nQABEOACbk02e7Z2WyONZiwvkhJL\nSuQoS0V2xa6o9HIrpby4IsVPWR5Sdsq5flAcxbEVuWJZq+WxxpqRpqeH3eqe5r6TALEDBEDsGwEQ\n9+HP7+ueug+3rlTje2syrJqamebaIPBfznfO7wBC7ux2uzg8PGRnULPZhFKp5KAlNZidnp6iVCph\naWkJ4XAYarWaJbp4PI7BYACvTodfALC0sQHLYCAW9OFQ/KPTAb/2a0AoJOyh//yfA/0+MDMjnEI2\nm3ifRCIW/loNuLwEkklxY/j2t+H93OfEn7/Hb+9r1xDZR+mUS21h7XYbsVgMNpuNT6jtdhvpdBpj\nY7ceaKQAACAASURBVGOYnJyE0+l8V4bg4OAA/X4fUqkU0WgUyWQSd+/exUsvvQSHw8H00kKhwCni\nq6srhEIhJBIJqFQqnJ+f87XyzTffhMPh4CDa8vIyPvKRj7DFkAo9YrEYGo0GS1o0HG42mxySUalU\n2N7eRiAQ4EHv+vo61Go1a+K9Xo/92zqdDktLSxy0mZiY4BPt9vY2PvzhD6NarTJMr9frcfKTZhdG\no5Elr2w2y+1TyWQS4XAYOp0Ou7u7KJVKqNVqfLo2GAzIZDI8l6lUKjg+PkYoFMJgMEAikQAAuFwu\nTpzOz8+j0WgwPlsqleK1117j4hDKgtDQT6lUwul0IpPJYHZ2Ft1ul0OAl5eXPAMIBoOMDyAp5Ozs\njHkyFxcXqFaruHnzJnc50EInk8m4GvTq6grr6+vQ6/VwOBxYXl5mZ00mk2GfP3H+CdlNrKmTkxPe\n9OljafE1mUwIh8NwOp1oNpsoFou8gfl8Pn6++P1+xONxzMzMQKfToVqtAhALKN20iEFlt9txeHgI\nvV4Pr9eLfD7PVsiVlRWG2NHGBICfJ8FgEDabjSU2ssySY44OC8PhkDM1ZBaggSot2Ol0GhKJhGct\n9Dykpr+joyO2ATscDmZNFQoFuN1u1Go1DnURnsJkMnGrnNFoRDqdRjQaRalUwvT0NAAwCZWqWgnU\neOvWLcaIz8/PQyqVYmNjg5ExxWKRN8N0Oo3LTgee+/cRkEoh3d0Fvv1tIf0cHwOZjJB7Tk/FP5OT\nQu558UWg1QIMBiEDvfqqkIpefRX45jcBr1dIRW+8AVCQ8z1uJwP+N9kIaEZAp3eqoSTWPgC2wpH1\nj57Q5OhoNBocVPH5fLhz5w4vZOS2IKKlXC7HCy+8wMEVooLOzs6yv3pmZgZ6vZ6dRcViERaLBWtr\na3xljcfj/ISk0z0NKrvdLhqNBnevTkxM4OrqCoPBAN1uF61WC+l0GuPj49ja2uJ5CIWiqJWMTn3k\nJ6eBMdX8JRIJRCIRBoGRy8ZisSAej6PRaGBubo7xy8TckclkmJubQyKRgMfjwczMDA/HCY5HV3Vq\n2TIYDIwJp24IQCwYZNGkFzu5jwi/TENxCsRRWjmRSCAUCvH8p91uIxwOc7K6XC5jZWWF9WyS8Sjj\nEQ6HYTQa8eyzz+Lo6IgT37VaDXK5HPPz8+xA6vf7LJURF+r5559nWYrMByTVUJ+x1Wpl2Bq1l5H2\nT7p7KpXCM888wyRZAjEeHx8jFovhox/9KDdfbW1tYW5u7l1SHQAolUo8evQId+7c4edYt9vlFO1o\nNOJ5TqlUglarRbfbZbgfOXR2d3fhdru5ErVarWJ/f5+1+NFohPPzc55nhUIh3ihyuRzOzs44/KhW\nq5HP57ngCACD7ygDoNVqsb+/j1gshomJCXZD9Xo9zhZQ0p1aw8jWS8YCk8kEQAABJyYmkEgkGBgo\nk8mQTqeRTCYRjUa52MbpdGJ6epq7oyORCB48eMAzlpBCAcuXvwzpV74idPxEQjCCej0x/D09Be7c\nAYpF4CMfAe7eBaxWYHUV+Mu/FENkr1f8+ekp8Eu/JCSkyUlhHSUM9fuhmOb/yzdy0Tz//POMASAf\nOPnI6/U6YwGorCObzfICTm1FBF8bDofseiFL3e3btxmnSzkEQvoSGI1kFrp+KpVK9iiT75uGiT6f\nj7tbU6kUY3Lpujs3N4ft7W3Y7XbMz8/z7IEi9ZlMhgtDer0enyg3NzcZykY6u8Fg4Lo/GthubGxA\noVBgfHwclUoFqVSKh5VUit7v97mGkhKvZM+7urpCp9PB+fk5p3ipdObi4oKHgFarFTKZDHq9Hjab\nDevr6/D5fNjY2MDy8jInb8fHx3F6esqyBC1uw+EQSqWSeTv1eh2Li4sARJkJlZ3TvIeYOxKJBPv7\n+1hZWWG9t1gsckI0k8mw5n52doZ0Oo3l5WVeyGiwS0Neyg8QobPRaGB/f59nL1R+4nQ6mUdlMplw\nenqKSqXCLjJChpTLZa7spFvR/v4+L465XI5b7M7Pz+F2u9HtdpHJZDgx2+12eSBcKBTQ7/ext7fH\njp5UKoWVlRVks1loNBrMz8+jXq/j5OSEB6R2u50txi6XCw6Hg0NnCoUCFouFOVvk9EmlUhzoehpD\nTS4mwoVfXFygUChgeXkZ5XIZEokEFxcXiMVinNEgRxw9X8giXavVIJPJuBmQAosajQZHR0cIhUKY\nmppCLBbD4uIib8Q//elP4ff7eaOjgqFMJoPV1VXk83mWo8rlMg/0TSYTD8U9Tidmr5UFxX//7yIg\ndvcu8LnPidvAxATw1a+KDSGXAzY3hQyUz4t5wKuvAl/4gsgNfOpT4s/6fZEeTiTEhrC2Bjz7rCit\n/+IXxfvf483gfT0jeJoGSEEw+u9Go8EefnprNBo4Pj6G1+vlQSqRQ51OJ/fbzs7O8rDT6XRCoVC8\ny+7mcrl4ESgWi9jd3cXe3h5z1PP5PPPNLy8v2YdcKBQwGo3w5ptvYjgcMtKZOEF02qJBGslZa2tr\nOD8/x+PHj9FsNjk4Rc4jYuKsrKwgEonwC256eppDN0QSpXpCl8sFj8fDw1FKQpfLZTx69IjbuOiW\nEI1GMTc3h4mJCd5klUolu4Lsdju/yAmgR7LSG2+8wZgFqvej0u8f/vCH2N7e5hsKDSyHwyFcLhdO\nTk5wfn7OaIStrS3E43EErustb9y4wcRKQjtTB8FgMMDq6ipnSuixJRmsXq+j1+uh2WxiY2ODF1Fy\nFvn9fhQKBczNzSEUCsHhcLAbiRrIqOSHfPFOpxMqlYqDdSSn0Qn0xo0bTBIlO+Th4SGWl5dZPqJT\n+o0bN/Diiy/C6XRibW2NW+s0Gg3q9Tq2t7d5E6e8Bj2HpqamGENB8zCy5E5PTyMSiXBa3OVycV5k\nbGyMUR/JZJIHwrlcjjsyKO9hNpuxtbWFN954A81mE+vr61CpVNDr9VAoFIx3MBqNcLlc0Ov1zHSi\nBDhtlJRhkMlkCAaDmJub40AkzVRqtRofYCjrEo/HOe9CLXwkkdLty3N98jYYDFCr1awG0BrQ6XTw\n0ksvAa0WHPk81K+9BsVgIOYAn/+8sIDWasBf/IWQdAIB4B//Y+C3fkuc8g8PhQzUaAD/4l+I4fA1\noRQnJ8DOjpCNUimx+Fut4s+u8dd/F2/va9cQcUe8Xi93BBBLXaVSod1uw+1246c//SnGx8f5n1gs\nxhWKl5eXsFqt2NnZ4RO9VqvlLMLU1BRH+ilkQj28brebi74dDgeXv9tsNhwcHGBqagoOh4PdRhTH\nJ7mJtHej0chJWkIyUPcuBWQI12wwGJDNZhlDQFfedrvNhedEVgyHw3xCTqfTuHnzJr/oJBIJpzkp\ntWo0Gvm2cnBwwK6pUqkEp9OJWq3GgTLSpGUyGfu8SWozmUzs3DCbzZiamuINkX4+sv6Snk6aMKVr\nKWxUrVYxPz+PYrHIUX8AzOSJx+NwOBxsZ+z1esx9ooSwUqnk1G+r1YLJZOJ2slwuh9XVVZbvaA4Q\nDAZZ947FYtjY2IBWq2VnFDnTJBIJpqamoNVqEYvFkEwmsb+/zxyqer3OwSoCxJGUQXMCspmmUim2\n3ZI232634XA4GI1MQ95Op8Pee0KfE+dILpej3+9zkZDRaOS6RgKnSSQSRo2T359K3ilxS7ciKo+n\nNPLY2BhSqRSy2SxmZmZQr9cRiUSQTCZRr9eRTCbhdrshk8lwcHDAizw5caj72WazcU8FdYLo9XqW\nAOlGSYFDKrux2+3M+gLA5gGZTAabzYbDw0PY7XYOkfX7feh0On6N0fOXAIWTk5Nw6HTQ/tVfwVCp\nQPrJT4rT/h/+oUgDj0ZC9/f7gQ99CNjdFSf/V1554gIyGoVTyG4XvKFbt4A33wQWF4Vd1GIRktHG\nhvi4V14RX99mw4uf+czPfCP4wD4KEaW/ffs2Li4uoFKpsLe3x4NWIiVOTEyg0+kAANxuN7RaLZd+\n0Kn6/PwcFxcXaDQa3FBGZRS1Wg2xWIxbr0jjpsEgSUZUaUc8GKo11Ol0PLiqVCqIxWIAwE4Pl8vF\nWm82m+UwG3UBl8tlLuQgbd5oNCIYDDIzRalU8kJAizMgBrJkrSOnEoVmer0eJ6az2SwUCgWXhhMJ\nkspyFAoFS0g+nw9jY2PI5XKsw/v9foZ/Wa1WHBwccLDHYrFApVIxPsPpdMLhcMBut3PoKB6PY3l5\nGW63m8tx6GRPJ1zi4E9OTmIwGDDllOoaA9d48IuLC+ZOUaEN3RSo+5mAaHR7oZT50+1W1L724MED\nxn8TCZYCTFqtFi6Xi+c2VMozPT2NVqvFNslwOAybzYbHjx/z84qQ6cFgkO2WWq0WrVYLR0dHPNT8\n8Y9/jH6/zwucTqfDxMQEe/43Nja445eGoOTdJxtxqVRizAJ1G0SjUdjtdv4+9XodHo8HtVqNf5dq\ntZodTVTlScNeQq4Qh5/yByR/UZCOngf0WPh8PpydnXGKn25HtDGSQ41QIiaTCQ8ePGDbMRXS0MCZ\nMBs0HJfL5fD7/UxF9fl8GAwGLC3F43GWdnU6HYadDuQSCXRyOaTFIsZOT0U24JvfFKf9aFTYQatV\nsYBfXYk8gF4vMBL37olZwCc+If4/nRYnfalUDINrNZEwHhsTMpPFIkik5+dAMokXJyaA554Tn/sz\nvH2wEUDcCLa2tpgiOjU1xdWPdAqhWkgCq1GIihq1iDPSaDSwsLDAsKnRaMSLU7lcRqFQ4BAV+fip\nB4FSnJSeHRsbQ6PRAAAGYJFWr9Fo0Gg0uADb4XCgVqsxDOvi4gLdbpev5FQqT6c1am2i1C/ZPCnX\nsL+/j/Pzcz4ll8tlLhQHwPx4WojIckj+77OzM8Y2KJVKuFwultusVivbQgmDQCGzw8NDhMNhXpAI\n9JXL5ZiW+nQKmsBjZMOcmJjgcNXe3h4PB6PRKGcsut0uCoUCa8rz8/Pw+XxotVrM2G80GpiamuLC\nc5LJaJi5ubnJ1FEKtRWLRVitVhwfHzPTyeFwoFqt8mLY6/UYDEjsnZWVFQBgVs75+Tn3ClBnMm2O\nRGAlvz4RWikRq1ar4fV6MTY2xgl0rVaLxcVF7mUYDoc8ayD/PPGZFAoFut0ub4yXl5eceKcu736/\nj/Pzc2YW0cBeIpEwAoIODJR8ttlszPanUzr1FhMinAqA9vb20O12MTs7y6FCcsER4I3MGCT3EUTv\n6OiIb7VUB1kqlTgPIpfLEQ6HUa/XEbju/6hUKtBqtUyFVSqVeO2117h2lW6qgHBX+f1+xrsHAgFI\nWi3YHj6EO5GAfHtb6PfPPCNO+IuLIhCm1wuXUCAgTvuvviqGw4UC4HaLGwFxhUYjscj3+0ImiseF\nDCSTAd/7nvh6gLgpVCrA4iKyt25Bfx1S/FnePtgIAD7FfeELX2DgGpWNkCNgZ2cHKpWKdXrCUJhM\nJrRaLSQSCZyenmJ+fh4AuL1qNBpBrVZjNBrh4OAA3W4X09PTMJlMzPQhW5zRaMTs7CyUSiU7Pkiv\nTSaTvMDSycjpdLKjhEJV5XIZfr8f+XweXq+XcwW1Wg3j4+MIBoPMdjk4OGAKZigUYgRFOp1G4LpU\nu9VqwW63c9UhLaCRSIRTttlslh0u3W4XR0dHPKgleNvm5iZju5vNJksWg8GAeUx6vR6RSISDOsS6\nsVgsPOgmfzhtdjKZjP+eBoMB1WoVjUaDbZxUAlKpVLiMxOVycYKXhvWkK1N9Jskhw+GQF1cKDALg\nwShhsy8uLnhxJHeJx+NhqYhOnAQjI0soySQEVSN6Kfn3afNMJBLY29tDMBhELpfjTm36nZFVlIJM\nJPNR//LTPc+dTgcGg4F/t8TCGhsb4/6DXC7HTXuVSgX1ep0ts3T4sdlsSCaT3KMxHA65Y4Pa/miD\nbjQamJiYAACYTCaGJBaLRfb4GwwGno/Z7XaG+1H2hW7plDCnTgFCWzSbTQbN2e127oKmWw05AonF\nRWE1j8eDfr/Pcz6ysVIJE7nqWq0WAHC4c9Lvh6zdhvbtt+HZ2oLCahW3gI9+VMg43/qW0Pa/9S2B\njjg4EKf6hQWx0D94IBb14RD49V8XVtE/+AMxF5iZEZ0Dr78OZLPCISSXi82g1RKbyve/LzaVdBqG\nf/bP8JUvfek9l4be164hGhZfXFxwUGlqago+nw+bm5vI5XJQqVTcLEVUQRpQFQoFRihQRSGF06RS\nKev4xBfa3d1FKBTC3NwcHj58iGg0ytRStVrNyASy95G2vrGxAQBc/B2LxThxSk6GXq/HLWB08qUT\nEL2giYMSDofZJUXOGkoIn5+fY3V1FdlslpG5Op2Om7KOj4+5hJ1OaqVSiSmQrVYLwWCQ/fEWi4Wr\nDgm9sLGxAY1GwxIJDRJrtRo8Hg9cLhdmZ2f5xXjz5k04HA4ODw0GA2QyGWg0GjgcDpTLZbjdbigU\nCi69oe/XbrexvLzMqViNRsOhtmKxiFKpxHIDlb3Y7XZYLBZIpVIcHx8zbJBK78vlMjqdDoxGI8xm\nM4xGI9/ApqenWd6yWCyw2+2o1Wpcq3hycoJoNMoMezqRkgGBnEq0yFHgimB+9LNRkVGv10O9XodW\nq+XkMYXhaN5BNzEK+CmVSpyenkKr1WJ3dxd37tzhfMLk5CSMRiOsVisPwmlw3el0YDab+blKWI1A\nIIBarcYhx36/j0wmA5PJBKlUypJOq9XCo0eP3nWzpceRchVer5efjz6fjzlWhMumMFyv18Px8TFL\nbjdu3OBA4Nl1MT3d3KemphifbbPZkMlkcHBwwG2Afr+fb30ymQwmkwnLy8s4ODjgPgdqIZxwuVBY\nW8NkNgvF9DSk7bZYhPt9McyNxcQgeHtbpIQ1GhEIu3NHFM3s7AAvvCAW+1hMaP4f+5iwj/r9gi+0\nvy8+1uUSeYNEQnyOXC5mDx/6kNhErnuyUSqJz30P3/632Aio/WhychLVapWdLC6XCz6fD6lUCsVi\nEeFwmIFgdMVutVrMnWk2m8jlcohEIpBKpYjH4wgGg0w6pA3h7OwMwWAQWq0Wd+/ehdVqZaeP0+lE\nLpfDzs4OVlZWGFltNBpxfn6OUCiETCaDs7MzLCws8KmT2Owkc0xPT+Pg4OBdmAWv18uzBYPBwDWA\ngetibkpy0jCO/Pmvv/46B6okEgkymQyOj48RDAbR6XRgMpngdDqxv7/PHQQUqllZWcHJyQkvaKSf\nkyvHarXi7OwMer0ec3NzePz4MS4vL3Hz5k2o1Wp4PB5sb29zTSANCwk/QcUsjUYDer0exWLxXeXj\nJpOJbzTn5+eMOyDAXKfT4W5ckgbz+TySyST30RJV0mQy8U3K5XLxLXJ/f5+7kSlRSq4wghVSYppK\nW6j5i06bSqUSkUgEgNjwSU8nv3uz2cTNmze5BtFsNuP111/HjRs3YLVamXLpdDpxenqKsbExdDod\nTExMoN/vs7eftHOykZLOT0gU6twmrMrU1BTS6TS8Xi8kEgneeecdyGQyWK1WzMzMwOPxMHgvm81C\nr9czvrvdbmN/fx/RaBQXFxecCJ6fn+e5GzXrhUIhhEIhlu2cTicn9alb+fj4mA9dsViMw5J0oDo9\nPeXHhlrujo+PYbVaAQjaMIXnbty4gWw2i/X1dQ7VUa2lz+fjm1okEuFZktVkQn9tDZMSCdRbW0IG\nevBADHZpsU4mRU/AV78KLC09QUnPzgpK6Pq6yABYLCJZ/Au/IOygn/+86B64eRP4vd8TC9Qf/ZH4\nvLMzMTsIBIB/+A+Br39dzAWuw3wfBMp+zjfCUM/MzCCTybCWSIEdKmdxOBwIXBeNU+LV6XQyX2ds\nbAxarRaPHz/mTSEWizHfR6fT8ZB3bm6OnSgWiwUvvfQSNjc32X89MzPDpEJCIpxdUydpeEzD4XK5\nzGG12dlZ1Ov1dxFSl5eXAYAT0JeXl8jlclhaWoJEIsHCwgIqlQru3bvHKF4attFNwGw2o1arcQEJ\nAA6RPb2oqNVqLC0tcdE7ySb9fp8dGRKJhKsMS6US31pWVlawtbUFvV6PxcVFPomSZdbv97NElkql\nOGB1fHwMvV7PqWqFQoHFxUVuqSIEMnU7jEYj3myeeeYZdnqRDk25ktFoxIEs+n9a3MlaSANkGkST\nw2R1dRVarZaDc4VCgZvFtre3GStNXycYDL7LoaNWq3F8fMzNW5SOTqVSXIlKaAsKWZ2dnWE4HKLX\n6zFmm4abhD2g9jmq3AwEAixRknxDFE8KB1IJD+FP+v0+ZDIZVlZW2JXWaDRgNpuh1+txfHyMsbEx\nhEIh/hzKaty6dQuDwQDhcJjZTF6vFzqdDnt7e8hms5ienkan00Emk8Hy8jLu3r3LcuH29jYWFxcx\nGo24nIlkxGw2i729PczMzGBiYgLD4ZCR6AsLCyiVSmzBpfAi5W+63S53gBBCHADi8TgWFha4wKlQ\nKMA1GMD21a9CPTcnFuhmU5zaWy0xAP7618VJvV4H/t2/E6f/5WWBj2g2ReVkJCIGxl6v2DDcbuC3\nf1t8zic+IT7HaBSbhtstpKa5OTE0/ta3xC3g8lLME5aWxBP0g2Kan++NrpknJyfsQd/f38fLL7/M\npd2rq6tslzw7O0OhUIBSqeS6RNIt6QpJ5ES6QlMdI/UH5HI5PgWen59zSpWGrcATWYnsgFSs0mq1\n8PjxYwQCATQaDS6NIQwAOVHohE2LFADuVqZiDYr3P52VqFQq0Ol0ODk5weTkJFqt1rs6ao+Pj1Gv\n1+H3+2GxWHB2dgaz2cy8GdogqXzcZDIhnU7zvIBwxETrnJiYwN27d3Hnzh34fD7s7+8jEAjg6OgI\nwWAQDocD29vbeP755zk7QK4ZGtSvr68zpoIWIQA8WwgGg4jH45iamsLu7i5qtRrm5uZQr9dRLBZx\n48YN7nqm/EGr1cLS0hK3jJHNmJAj6XQa5+fnqFar7Hev1+uQSqXY2tpCo9HA6uoqV1Y2Gg1oNBo8\n++yzXKm4uLiInZ0dlnYkEgnbIQk/UqvVMD8/D6vVimw2C7/fz12+5N5yuVzs5acDBDXVSaVSxpBQ\nIp5wCwqFAmtra2zRlcvl8Hq9aLfbTCZ96623OC+Sz+d5fkADWboxklxJxNxMJsMdCTSkPTw8ZILn\n+fk5a+8WiwXz8/P8uBNbiga/zWYTMzMzHFIjom4kEmELs1QqZSz4yckJyuUy1Go1v54JnNhoNLC5\nuckQP3rt0u2V2FYEQtze3sZMOAyFTIY7CwvQfe1rUPzGb4iT+XW5Ejwe4LOfFcPffl8Uxrz9tlj4\njUbgv/5X4Hd+RySFn3tObCA6nRj2AkIG+slPnnQMfP7z4s//+q+BX/kV4DvfEYPif/pPBWrib/9W\nDJC//33hIgLEpvEe3wre18NiGlrdvHmTOTOUPD0+PkY0GuWTrFQqRbVaZczw5uYm7HY7OyvoiUq1\nh2SRpAFmv9/nRKdOp+MBqFKpxNjYGIeRiCdDJ19KLFOpvd1ux/7+PiYnJxkV3Ww2OQVML+Sny3Ce\nnkOQo0KtVqNYLEIul7PWarfbmXcvlUp5bkLlJ5RJ6HQ6rFHTYk+LB3Uuq1Qq7O/vM+mRUq80MCaJ\niXRih8OBe/fu4eLigpO+tDnTgI9axvL5PHvkU6kUt76Ro0atVuP8/JyH/vl8Hq1WC3K5HKFQCHa7\nHUdHRxwEpE3J6XRyMFClUiGbzTJ6gxg4Y2Nj3EZFqWatVstsf7lcjlu3bjFIkB777e1tbms7PT2F\nRqPhYhe73Q6j0cg2UIfDwb0P7XYbNpuNF/dyucw23Vwuh5mZGfT7fSQSCbTbbc6MdLtdNJtNTpzT\nKT+fzyORSGAwGCAUCiGXy7F76Pz8nDV5cv/U63UMBgMMh0MsLy8zlI0CWGQOoMeEFnBCjBMlttls\n8u8JAM9BnE4nut0uVCoVXC4Xww4rlQqsVivC4TAPnekxdblc8Hq9jDAxGo04PDzE0dERk0ppQE8/\nWzKZRCgU4sZAep7MXfcCk6TldDr5UGfW6xGsVuHodqG7uID04EDYQN1ukQhut58MfcfGxL8fPhQS\n0fq6uCncuCHkIb1elM384Afi/5NJcdK3WARYLhwWC3uhIPoGHj8WzqOlJVFmH4kIy+itW8J59OKL\n4usZDCJH8AGG+ucrpnnxxRffFe4ZDAbY2dlhjK3ZbObawMFg8C6JiHzHVFhOfH+yk1L/QDAY5JMz\nlbDHYjEOwdApvVQqoV6vIxwO81WZnCKEn6Y5gd/v5/g8oabJgUTkU0IgEy2SZBa9Xs9gMWpYI/qi\nUqlkIN1wOES32+WFhNAb3W6Xk8zkgEmn09zwViqVoFAo2IFB8xVi2ctkMpYZxsfH2Z1DLVwkg5F2\nT8M6ktSUSiXOrumcjUaDT+MOhwNvvvkm1Go1h8FoUyNePVkfiY8fj8c5N0GbOg0y6fEZDoccFlOp\nVDycDwQCbIElWFyv14PFYsFPf/pTduv4fD6YTCYcHx9jMBjA7/fz96GBL6Vc7XY7t9GZTCa+FRKb\nSKFQIBAIoN/v80yBbrTUo0yWzomJCTYTUMELyWiDwYClGyqiHxsb4xrMbrcLg8GA6elpXFxcYHl5\nmXMkhDqhGxGVwVDfQrvdRqFQ4NsXhRz39vYY0kdus0wmg2KxCLVazaEzj8fD+Yjj42OGNhL2ZG1t\nDS6XC/l8Hn6/nwfUt27dQrvd5iE12aHn5+fZehyJRDj8RgHLwWCAWq2GVqvFz32DQiFcSLUaFLRg\nBIPiNmA0itP/2pqQhno9sUDv7or8QDwuUNO9njj5/+hHIgC2vS02kr/8S7FBKBQCPxEIiAV/dla4\nhL79beAb3xCD4lxOzAjW1oCvfU3cNF5+WWwCfj9efPZZsRl9sBH87BsBAB5w+Xw+lMtl1Ot1rsfr\n9XpMFKQCj1KphHw+D41Gg3K5jEajwQ4JOuFotVo+lVSrVXa1tNtttFotXiQBsM88nU7zzYIcSeVy\nmRn2U1NTbPujReP+/fuwWq2sTz9dNk5tYdQ9HI/HYTQa4XQ6cf/+fW7HIhYPsXCGwyGmpqb408N6\n8AAAIABJREFUVERhMUJUk3uE5Km3334bNpuNsxjk7BmNRtjY2MDMzAw6nQ5bX6lvgQa7xLwh2ajb\n7TLOgU6iNCzd398HAPbFj0YjpFIp7m0IBAJotVosI/X7faRSKa5lJNiZ3+/nUzdVXF5dXTHDP5VK\nIZFI8M2BSmvod0RF7zTwpdO5VqtFMBjkW108HmdibbVaZQtkIBBgmYf8+gQKVCgUPOdxOp1c6EOy\nG/F4NjY2IJPJ+PZF+IvRaMSyDaV46RZBxTL5fJ7b6JRKJfR6PQKBAA+nKQfwNBXWarXi4cOHPEwm\neY+QDGQwoMPP7OwsDAYDy1i1Wg2Tk5NQqVRcyESbt9PpRCqV4uT45uYmrq6ucHBwwIlimlvRTZSw\n3i6XC3t7e5z6J0z8wcEBzGYzO+UKhQIHDLe3tyGRSBAIBHjeMDY2xhusRiqFcW0NE/0+VI8fi8W3\n0xGnerVa8IK+9z3xZ3t7wtc/OysW6+efFxvFSy8JiQgQG8BHPypO9Y8fC/mo1xMn/HhcWEPffFMM\nnlUqsRm0WkJSmpkRi3yjIYbTS0sCM7G7CzgcyK6vQ7+y8kGyGPj5AmVWqxVf/OIX0Ww2kUwmsbKy\nwnJBt9uFw+FALpfj0vR6vY6bN28iHA5zCxfpj+fn50zKNJvN2N7eRq/X42QlOSnoxELgKo1GA7lc\njhs3bsDn8zEcjCBk09PTzJah0yR578lBA4AdONRURX5srVbL7WeEdiAkRKPRYGsoncwoSEcMolAo\nhGw2i8vLS2QyGVgsFp4RUOiKMhZUwqPVatmjTn0AJOlYrVYolUqWnA4PD5l3Q8NHwklTT/Pu7i7a\n7TYnh4vFIt92qDiErv6j0YgLbeiGQn3NiUQCEomEJQsqsbdarVwOT4vt0929dGIlZLfRaMTMzAyf\nqCnIRZA2ks3oZ52cnGRXWSaT4Z6ITCbDKJB0Os1YbJVKhd3dXfj9fpTLZWi1WjgcDmxtbfHNkLoI\n3G43JicnGfdBbWQqlQr1ep2dZ81mk5u4aE5ANlayAFPxElkvqTWOHh86GFB7WbPZRKvVwvT0NAKB\nAGdLiFpLoD/KfdDtjRb9VqvFGGmVSvWuJr9CocCtc3SbIfw7GTuMRiP29/fRbDa5DZCgjwSNowR+\nu92GUqlke7jBYIBUKsXp6amwQ19doVerwapSwXP/PlSbm8A/+AdiI/joR4XVM58XElC3K+ScoyPA\nZBInd+oMAARfqFoVp/47d8QQWKUSsLhUSmwCNpsYFN+5IzYSrVbIPt/7niilGQzEgPmll8TQeG9P\nbCDz82IDWV2F4Zd/GV/5ylfe8xvB+3pYTC6Ry8tLxONxfuGQxZE6jQnNEIvF+GR7eXkJhUKB+fl5\nPvWQ153KykejEZ8yjEYjL+42m40Lz5/u/81kMuj3+0gmk1hYWIDP52PbqVqtxvr6Oo6Pj9FsNtnV\nUqvVuJybruatVouToNlsFg6HA4VCAVNTU3j48CGDuSh1CYDL4Kn/luyS+XweqVSK7XUAuOd2d3cX\nr7zyClQqFdLpNFKpFACwbntxcQGFQoFgMMiuFkJGmM1mLlwPBAK8QRL2ggbslUqFB5w0RCWLH1lf\nvV4vI7J3d3f51L27u8ubNenZN27cgMPhYNug1+vF/v4+++AvLy+50U0ul2N6eporSR89esQuH6vV\nyswpGnKXy2XMzs4iHo/j+PiY0dZUcE5zGCo+8Xg8CAQCiMVi8Hq98Hq9XIdJbCNCK9CMhVAPJO9J\nJBKm1FKdqtVqxfLyMkuCiUQC09PT7C5zu90sT9KNkFLdJEHSDUmv13NBjUajwYc+9CEOFBJni4pn\nKJA5MTHBrB7CVxwcHGBsbIwzG2Q7rdVqWF1dxWAw4EHz1NQUN6ORRfTg4ACJRIKRE6PRCAD4Vlmt\nVhmqSDbdZDLJVF8AeO655wAAZ2dneOWVV9Dr9bCxsQGVSoVus4m9117D85kMjHo9pFNT4lROi7Jc\nLk7yo5HQ96VScSP4N//micvnD/9QbBJer/jYv/orseC//LKYGYyPi5yAQiGooUbjk2zAj38sTvpq\ntRg+l0pCMvrMZ8Ri9dprYth8fPzEUfT974v3fYCh/vneaHBFzPEbN26g3W5jOBxib28Per0ey8vL\nXAdIbVzUVEaMeBpgKpVKrK2tMWWzVCohm81CqVTy96nVaqhWq/yCoXBNJBLhukqqary4uIDD4cBw\nOIROp8Ozzz7LcwECrFGoqVKpoFgsMtrBYrEgFothcnKSY/FqtZoH3MR0mZmZYayAWq3mOkDSzcnG\nSbORwHW5TTabhcvlYmmCUsh6vR6VSgX7+/twOBxoNpvw+XwM/CKiZOXaNUEMJuo4UFxrs9QN8TTc\ni35nu7u7UKvVmJmZ4RnKxsYGrFYr33zq9TosFgunXKmMhTZok8nEwEG32811jjS7uLi4YGsuYacJ\nc0wLjFwuh0ajgU6n47kEyVC0CIbDYcRiMZRKJQSDQWxubsLlcnGvMNU3KhQKvPHGG1xqQ6YEwpqT\nPESDcI/Hw2Uw1OOs0+nQaDS4Ie/ll1+G0WhEJpNhXX9/f5+hdBqNhpPIg8GAnxck8REOgoJXmUyG\n6arFYhE+nw9vvvkm/72urq5wdXXFvRvZbBazs7Oc/KV+6nq9zniMlZUV/hyCzE1NTSEYDMLlcrEL\nanV1lWF0er0e8XicbxahUIg3Lo/Hw+FEaqm7urrC4eEh90YTSZd+J2q1Gl6dDr6pKeg0GuDP/1xY\nPG/fFuneSgX4/d8XEs7qqmgVu0ZPoFQS7/d6hU00FBKL9dmZOMkfHYkcwfi4WLDbbTEkttnEf6+t\nCdvpwoI45Xs84v3/5b+I4Nif/Zn498c+JgbJOp3YYJpN4TYC/k4w1O/rjYBuBAB4aNnv97lTmBaL\niYkJ5HI5jEYj7O3tQXUNeKLTNvFYRqMRVlZWWN+fmprCzMwM0uk0Tk9PkU6n2VECgENo29vbWFhY\nYO6QTCZDNBpFr9fjgddgMIBGo8HOzg4WFhZYViCksMFg4BcZzTsSiQTK5TJrxYlEAi6XC06nE51O\nBz/60Y+4AnJ8fBx2ux2pVAqZTIYBanR9JqmL4vej0YhxG5ubm0gmk5iYmODFfHZ2lrnwtPiNjY0h\nnU6zk4bkrouLC0Sv7Xh+vx9nZ2fY3d3lvxeFqmizowAc3bwkEgn3OstkMq5JrFareOGFF5hLTwvE\nyckJ1Go1nE4n9vb2GJp2dXWFF154Ael0+l2byPz8PHv/XS7XuyCAjx49wurqKm/i1HNA9FMqRSHI\nHj3viHXT6/WQy+WwsrKCGzducB80+f5pXkJdGVTQTgnnzc1N5PN5OBwOTE5O4uzsjG9W2WyWZTl6\nrhFPiZxQzz//PD+Wg8EACoWCmVSA2LDD4TBKpRJr+q1Wiw8Zfr8fiUQCy8vL8Hg8bCWlZrhsNguj\n0Yhbt26hUqng4uICBoMBnU6Hb8bhcJgfu+XlZc6i0LyGUBhk+czn8zCbzfw8GB8fh8vlwsXFBdbX\n1xGJRPgmSanrqakpqNVqqFQqns30u100qlVopVJIX3sNug9/WMg2//bfPlmov/QlEQDzesXN4I/+\nSGwIdrvQ7+VysRkcHQF/7++JU/rUlFiwZ2bEx771lgiCHRyI/1Yqhf301VeFQ8hiEad/uVy4j956\nS2w2JB/NzYmZgEQiXEkLC2JwfV33iVpNfNx7+Pa+7iOgt3K5jLOzMxweHkKr1fKVXiaTYWdnBzs7\nO/wCoNRlvV5HNBplmBs9Eb1eL0O6dDodpyGfffZZ3L59m+UgKu1Ip9NwuVy4f/8+Li8vEQwGsbCw\ngFQqhfPzcx6WAmCkcKPRYHa90+lEKBR6V+iJFltqSiKuDmmmlKSmW8H8/DyXcyQSCajVanYhKRQK\nTE9Po16vo1qtspPm6uqKg2SLi4uwWq3cs0BUVjoZktw1GAwYsUw3EHI3EeHyad4LlbRTgtlms/HG\nSwlvWqC1Wi1qtRq63S6kUikCgQDDySiElc1m8dxzz+GVV17B9PQ0PB4Pt1EtLi5Cr9cjFoshcM1b\nkkgkWFpaYigc1SbKZDIeTgNCauj3+/yYUovX+Pg4zynkcjkeP34Ml8vF0kelUuEuh2q1yq4kjUaD\nx48fI51Os1uJ5C66haZSKRQKBeRyOczPz6PVarEbRqfTYXJykjciMgz0+300m01u5iKb7nA4RCgU\n4iH75uYmTk5O2JqsVqu5R2J9fZ0L3GnDpx6Ek5MTlkmr1SqOjo4gkUhQqVRQLpeZ/hqNRvnQQydz\nn8/HgUSj0YhIJIJ6vY6lpSVMTk5y13Q8HmccO/VEAELezefzGB8fx71793BycsJteicnJ8wKe+ut\nt7Czs4N2o4G54RCLvR7GPR5I/X6xEKvV4kYQjwvXzhe+IP4plcTCPDcnTuZ+v9D9f/AD4MtfFhvE\nN74hFujvf/+J7BONirTwa6+Jr/F7vyfmAd/7nrgNpNNC5snlxOf6/eLPZmYExE4iEQv9wYGYIfyr\nfyXeV6uJfwMfSEM/75tUKsXv/u7vMoxNp9Ph9PSU28BsNhtfH3O5HPr9Pi9O5DAJBoOIxWKML6By\nFdK9yX54ds0yJ/3barXC4XDg4OCAi05ocQXA4a/d3V12EwHgxi6r1YpHjx5xYOn4+BjD4RCrq6s4\nOjrC2dkZD3Cph5iksB/+8IdcHkKYaQCMaqavSQNZ2hjn5+d54SR0BaEdCBhGUgIN/QDw9yYZo9Vq\nIXCNfabBsUajQT6fZ+cVJaHp90KuLEr3UnmMVCqF2+3GW2+9hZmZGWSz2XclYqmakGyaV1dXyGaz\n7IN3Op145pln/m9YZCqrIRdTOp1GKBTC/fv3ueeZSuJPT09hs9nYiri9vc1uqeFwiFKphMXFRbaE\nkkzztORGuQka+FNBzdjYGLLZLAAgmUzCZDJBpVJhZ2cHH/nIRwAAe3t7WFhYQCaT4cdLoVCwFFco\nFJg3RY9ft9tl2F0oFEKz2eSB8MLCAsP5ZmZm+Pam0WgQDAaxt7cHm83GMxK/388yDcli09PTHHBT\nKBRIJBKMdCG3EllrK5UKt63FYjFGcRPri37PXq8Xfr8fOzs7ODg4wM2bNyGVShGLxZDP59FsNrGw\nsIBoNAqv18ugvZs3b6LVauHu3bsCJRIKwW80QvEnfwLp0pI4YUskwP/8nyLtW6uJlO+PfywK5TUa\nMRMoFoXtczAQi/T29hOAnNUqtP9f/mWxmdy9Kwa7+bzYFI6OhFTUbovPHx8X7qBIRADmaDDc7Ypb\nwsmJmEe028Af/7H4Wt2u+L4ymZCtNBp8+Tvf+btZK9/PriEAiEaj+Nu//VtUq1XMzc3BYrGwdZCc\nCAsLCwAEfTCVSsFisWBqagpra2us7zabTU7QJpNJLkkvlUqoVCqcmqSClacZ7+QtT6VSCAQCbD1N\np9PszqAE5Pj4OF+7C4UCAoEAHjx4wFhfcktQ61etVuMhODlBpqenIZFIeJZA9E3CNFDRCOELqG7S\n5/MxgpkWNeoKCIfD7Mog2YHkCHocn2bUazQayGQyDoSRQ4XyClRQQvWetJmRs4eqOIlASjMacjM5\nHA5+nLPZLILBIGcJAHD6mbIjZrMZFouFe3WJZXRxcYGtrS2WLOgWRqd00to1Gg3LMMTisVqt7L6i\nYWk4HEatVuOyF3LxEDJ5OBxydsXr9b7rBkl5F8KOkzssEonwsH5mZoZvrtTWNj4+jkAgAJ1OxzWM\nhF/QarVIJpNQqVT8uyQ+E/VJPI3Cbjab2Nvbw/n5OUuoZM31eDx866FOAZfLxRJfPp9nzhClnTOZ\nDKRSKXcVUzcGZXhisRhsNhusVivfNgi6SDKR2+3mmVCxWGSZlLItlN6XSCQIqNXCFur1Yuz2bXGq\nPjkRC3kmIzT61VUhBymVYuGVSsVm8Md/DPz9vy82iueeEyf4bFbISZ/6lDix+3xiMOzzCcnH7xey\n0ksviU3mmWdEjuDxY7ER7O4KGWhmRmwOJydCHqrXRWisXBZ21UBADKcjEfFzff3rgNmMFymt/IFr\n6Gd/u7y8xOPHj+HxeFg66Pf77LwguiLBvAwGAywWC7RaLSwWC6cS6/U6WzJpEKnRaNgjT3V/crkc\na2trzLGnoadGo0Gn04HT6UQymUQ4HMbOzg47TY6PjzE3N8fwsqurK75hjI2NMR+dGP6Tk5M4Ojri\nVDOlUovFInPal5eXcXZ2xnLH1tYW7HY7A8CWlpZ4YOr3+3F0dASVSoVEIsHsINpANjY2mNZJaVjy\n0UciEVitVpjNZjx8+BBSqRTT09O4vLxkScBkMr2r8Gd7e5tL5r1eL7a3t6FUKpFIJCCXy7lXmuYp\nqVSKw2UWiwWRSAQymQy1Wg1msxkqlQoPHz5k1w31KJycnGBhYQHT09PIZrM8H6HhaLfbRTqdht1u\nZ4osheru3buHs2vKJW2gVCVKp1iSiUqlEt+aqN+CGtKo+0Kv13NFKQX5yF6pvq4tpETx1NQU3zKf\ntunOzMywwaBSqfDsye12M16dXGcejwf7+/tYWlpCPp9nFDTlBi4uLlCr1aDRaFAsFhGLxWCxWBjX\nYTAYGPcciUTY1EC92GdnZ2i1Wjg8POTnOP2uiPBK0LtEIsEyKOEoJicneUPtdDqIRCLweDz8WiDX\nXLlcRjwe5801l8txv7bVakUoFEKlUsHh5ia8Gg18f/AHUHzqU+Ikf+OGsGSenoqF94tfFFp7LCZO\n9W+/Ld4XDou0cDwu+gP+7M/EhtFui8X/d34H+O53xYA5EhEsoE5HDIkDAfE15HJhHbXZnnQOAGKw\n/OabAjVRqYiSe6dTyEhvvSU+9k//VGwqS0sipwCI1PHeHrJ378Jz5857jph4X28EAPCrv/qrvCBf\nXl6iXq9jYmIC29vbHMI5Pz9HuVzG+fk5DAYDM2FIY6VIfzKZxIsvvgiTycSNRyQN0bDtxRdfZFgb\nYRYIFU2QNblczldpqVSKpaUl6HQ6LCwsMFnSaDSiWCwy3ZH81XSaJKfQ0tISyuUyWq0WOzXK5TLK\n5TIH42g4SZIWLTLE0i+VSgiHw1w/SclbiUTCi9bThR3D4ZC1+af1aDrZkpRCmwGlmwGht7fbbayu\nrqLRaKDf7zO+QyaTYX19nfHONEyNRqNIpVKYm5vjpPDV1RVCoRBisRgnSglzTe4VAPz/hUIBN27c\n4IYv+ns888wzXH+5t7fHA1FCedBGQXRRs9nMzP27d+9yhuOdd95hBEU6nWbYGxWpFwoFbvlqNpvc\nskW5ErIG08CXtHsabBNmBADnFILBIOr1OgqFAgPyTCYTd0tT9SNVNxqNRrRaLZRKJQYV0s2SMBYK\nhQLhcJgppIVCAVtbWyyh0e8tEAhgY2OD29aIu0ThRbPZzDcLt9uNmzdv4tGjR4jFYrzIU3Pg+Pg4\nms0mJ5sppEk91eRwGh8fh1QqhUwmg0Kh4K4GTbuNm/fvQ221Qrq8LE7xd+8K9LPdLhb1fl+c1O12\ncYIn26fDIQa0x8diJiCVCk3/z/9cDIApFHbnjlj0czmxEdy9K77P2ZlYaAIBkTd49Ei8z+0WG8TY\nmOAK/cZvAP/rf4nF/kc/EmX3r78uNhOnU3yPaFRsPg8eiK95cgLvf/gPGP37f/+er5MS8uv+//lt\ndXV19OjRo//Xn0fWvPX1dQSDQe7NJTQvFb2oVCo4HA7s7e2h0WhAq9Vi6Zr8R1WMdBLM5XLcb0r9\ntbT41mo1PvUTFZIgaY8fP4ZSqeTBJ21KZBt9WrOXyWSYmZnBwcEBLi8vWR6Ry+Vot9ssB5Enf2dn\nB8FgEIVCgcmQhGXudruYnJxEp9NBPB7HM888w3kG0v3z+TzTJ2dnZ5FKpaBSqdBsNmGxWPhjh8Mh\nEokEOp0O3G43XC4XP84PHz6EzWbjMqBKpYLhcAiDwYCdnR2WmmhBBMSc5OWXX+aCknw+z1q8Uqnk\nATRtOm63Gz/5yU8wNTWFTCbD0gW1k9EJtlar4fbt2wDA7pRut8tZhvHxceTzeQwGA8ZoEB6cUtwS\niYR1/DfeeAO9Xg83btxAtVrF5OQkD1BdLhfW19dZ5yYseTab5Rvj7u4uHA4Hb4Y0ByIQISGX6Sah\nVCo5wUxWUqVSib29Pa4CvXv3LpaWlvimRD8POXnkcjnUajW30FE1I4UCaehM8wcKHJ5d91mcnZ1h\ncXGRG+6q1SoCgQC63S5isRgWFhZwcnLCN8SFhQWcXXc+qFQqKBQKxONxvsnQYYi6CEqlEiwWCzuM\naLMkKuqPf/xjRKNRPqhMTk5y0O7i4gL7+/tYnJ6GXiqF4403oLgux0EmIxbtv/kbYcH80Y9Eeczz\nzwu3z4MHYtGPRMQGQRgJqVQsyg6HmCcoFOLPbDZRRfmJTwhN/xd/URTUu90ib6DXi+xAOCzed3Ym\n/rl9G/hP/0ks+N/6lsgsjI0JCSoYBD79aXEzSaXEzeVP/1T8PN2uANG5XEChAMnbb+PnWaMlEsk7\no9Fo9f/p497XriEaXoWvCx7oheD1etmdQkyT4XAIl8uFubk5xugCQD6f50AaWfroyt5sNpHP5/mF\nTPkEQi/Pzc1xPzKFcKiVqtFoYHp6mjsCnvb5j42Nodls8kyAeO17e3sol8sIhUKQSqUoFAowm81w\nu91cPUnWV/JVU5Ma2Q47nQ7fEujW0e/3MRgM+AZEpSQ0X6AugtPTU8hkMgaWlUol7O/vs12S6hEB\nIJVKoVwu88nWYrGwfBYKhTAxMQGbzcaW3lwux9WFer2eC4AikQhsNhs6nQ4nox0OB3fZPo12IL3Y\n7XajUCjg5OSENWkqbwHAmYangXlk4aUuCKpdJPbT6uoqu4DogEGOGr1ej06ng9nZWQACr0HhPYlE\ngtu3b7PkRI1wxKza3NzkqlSfz8c9vo1GA6VSiWccNFMABNDNbDbj/PwcR0dHSCQSzFwaHx9HNBpF\nIBDA3NwcHA4Hpqam4HQ60Ww2eXALgG8op6enWFtb402I6jFpjkI1plRUr1KpEIvFUCwWAYjuhkaj\nwRurTqfD2toaP1dpo85kMpDL5SwZEfacZhP0utLr9VhaWmIMCmHf0+k0B+AWAgHo3n4bju9/H4pv\nfvMJ5XNnR0g7jYbQ6T/9aSG7/MEfiKzA4qJYlD/8YTHo7feFBv/pTwO/9VtiYHxxIW4NNDy+fVt8\n7VpN0EHHx4UM9Ku/+qS+0mAA/uN/FANom01sSDQIBsQmoVI9gdn9t/8mMgkf+pDYjDweIRvJ5WI+\n8bu/K35WQHz8e/z2vpaGyNVyeHiIarUKiUTCfJO1tTVEIhFMTk6y5DA2NsY2ukQiAZPJhImJCQ7t\nEL+FMAmASD7SiXZ5eRmbm5uQy+XY3d3F3Nwccrkct1cRT39rawtut5uhW9TpSiXoBFczGo3w+/28\nWblcLgZz1Wo1rg80m83Y39+HRqPB3/zN32B6ehoWiwVer5fheLOzsxgbG8NgMEAqlYJcLsfp6Snj\nrWmIff/+fZa2qDgnlUrxUHI0GuHWrVsclKLFiBYrAvJRGIycUpOTk0in07i6umKf+/LyMjudiCK6\nuroKqVSKwWDAfbXdbhfRaJQtpyS5AGBPOUkjVOROILtMJoNoNMr4Z7/fj2KxiOnpaeb70KaiUCjg\n9/uh0Wh4rkRYBwD8dyPHGcmN5HCKx+OoVCoc8jOZTNje3mYZqtFoIBqNcko9kUjwpjIxMcHzIQK2\nkVe+1+vh4cOHCAQCzMByOBzw+/04ODjgx5E6oA8PDzmcuLW1Ba1Wy7ZOOthks1m+5YyPj8Pj8SCV\nSnFAjtxZ1G1B3n+dTsfPDzIP5HI5lrwIe0KupaOjI5YvyRZ8eXnJt8bDw0OYzWaujCWbaiQSgd/v\n5xKcXq+HWCyGYa8Hk0oFeS4Hh98PRSolTt7Fojj9KxRC/ikUhNSysSE8/3NzYmC7vi4kIbdbyDnx\nuDiFv/qqcO5cXYm07+WlOO2vrQmgnFotpKYf/1jMETIZcQt47jnhGMrnxWK/sCCkoNVV8b7DQ/Hz\ndLvAxz8O/OZvivlCOi2sqd2u+Fof+5iQjTKZJ4G0aynw7+Ltfb0R0Fs4HEan08G9e/cACCeR2+2G\nSqXCcDhknZ86bx0OB0KhENLpNJem0wJ1dHTEQz273c5BIwKUUd8wnZbb7TYmJiZQrVaZCgmAHRcO\nh4P9//F4nG2JCwsLvLjK5XI+LQ0GAzx69Ijj/GTHs9lsKBQKPKQjZsze3h6i0SgXuaTTaXZ8+P1+\nbhkrFArQarX8dzYajTg7O2PfPlkW6e9Jw2K/389QNUIhEMohFArxqZYWPbIsDodDPtET7ZUWmXw+\nzwC5QqHA6V6pVAq73c5IhNo194VwGZTGpVIUwh1TXwDdqigPUCgUMDExwfgJj8cDrVYrfOjtNuOj\n6UR6dXUFnU4HvV7PFtd4PA69Xs9k0sB1cTo5yqgU/Wnq59jYGCMWSKaizY/a7I6Pj9Hv92E2m/nz\n6bmZy+Wg1+txeXnJXCsaltMc5+zsDNVqlcNv77zzDm+u5XIZpVIJfr8fh4eHvGHmcjkkk0m+Kbtc\nLg41DgYDLj7SarWoVCq4ffv2u3qDb9y4gUKhgO3tbe5n7nQ6TJ2dmZnh19re3h6cTif3Q5OjSqVS\ncQCt3++zhCSTyTCo1dA+PMSURgOFWg3p5eUTYJtKJZw7gDjhv/22SOh+7GNiMJtOi1vA7/++kH9s\nNvE5zz8vFt9f+iUh2/zn/yxyAv/yX4rbQiIB/MVfiM3k9dfFTSGVEsNbmUx8r1hMuJK+/W3hEvrs\nZ8WmEw6LG8DJieAHqdUiL7CyIm4EgYA47QeDYtMyGoXTSCIRG9THP/7kRvEev72v7aOEFCB/Og3n\n6PR7eXnJ1ksKfxmNRr7GU2k6ZQw6nQ6fCgkfQAsEfW2n08m+Z9Kk6cVK+mggEMDBwQGTUAHRmPQ0\nHK7dbiOTyWB+fp4X33q9zvZUGrARZ2g4HGJubo5TzXK5nDVXcielUinGFpOFFAC7X3yRBA9jAAAg\nAElEQVQ+H/Nx6vU6F+JQNzKdtHu9HjKZDLc9eb1exm8Hg0Fks1kGidFtg7z5pP+3Wi1uf6O+Wlrs\nstksky+j0SjLbul0mu2rJO2RRv00TptyASSpkVWRFkoAnEYmGY4ew6OjI+6QoNAcLYQkiw2HQx6K\n0wwnmUxibm4OsViMF8tcLodqtYqzszNUKhW2+1J39cnJCUajEVuGiWpKFs92uw2JRAKVSoV79+5x\nroNsvgRqU6lUKBQKOD4+hsVi4a4Kkr9oE6T+BrfbDUDkFmheND8/j0gkwj0JdJMjF9TV1RXkcjnm\n5+dRqVSwtrYGiUTCN8pCocBgx6urK9y8eZP5QoVCgTcSem3QfEmhUDD8kZhM+XyeU9qlUglmsxnj\nej2sb7wB63PPQfXwIcYMBrG4m83iFC+VihN9NitO/UdHQuK5eVMs+nK5WGBzOWH9vHVLWDePj4WV\nNJUSJ/pnnxUn8nYbuHfvifXzrbfEhiGXCyfS/r446R8dia/5P/4H8K//tdg8vvtdcTMZDkUa2WIR\n3+sXf1HYTbNZ8bNWq8A/+kfi5vCjH4mh8fm5+N77+2JjaLVEH8EH9NGfL0fwwgsvoFgscqis0+lw\n/2qv1+NhpF6vRzQa5YTi9vY2uyEymQwTQy0WC/x+PwPA5HI5AtetW9VqlUvBSR8lWiZ55qmWcWFh\nAY1Gg9PKhIwgsqdKpWK2EPngDQYDa/ZGoxEmkwmnp6e4uLjgFx0A2Gw25hlR4pg2PmIMkTuKemxd\nLhf8fj8PLOlkT8UsFosF5+fnqNVqjJq2WCzQ6XTIZDLY39/nTa9arfJQMplMotFo8EJEMoDdbmd+\nv0qlwmAwgMlkws7ODiKRCAaDAWw2G0ajEbRaLe7fv4+JiQmcnZ2hXC6j1+vxIun1erkoiNAElA6m\nUyVhJpLJJJ9KbTYbZmZm2FXT6XRwcXGB4XAItVoNpVLJhEzS9sfGxmCz2VAsFtkRRjcKKqbp9/vs\nyIlGo4xVJpsndSwTOoLAatPT02g0GuynJ5eP2+1mqSkajbIcWCqVcHx8/C5LL9mIzWYzU1JJxtHr\n9Uwlpd8LDazPz8+ZlUVJ+na7zf0DV1dXDHgrlUowmUxwOByIRqMol8tMPKWaTaPRCLvdzmBDm82G\nyclJrkit1+vY3t5GtVqFSqViSQkQaJZKpQKDwYCQz4fR5SX06+uQ/vCHkOr14lQ9MSGsnd/5jjh1\ny2RiUf61XxOzAZ9PnKqVSrFRfOQjYqhLG8JbbwlZhgbAH/+4WHh/+lOxqP/Jn4gaSp9PLM4ajVjw\nP/MZ8X3IefTSS+K/w+EnGIlcTvxTrYrT/uGhkHn6feCdd8T3dDjEz/X4sbgtDIfixrG9/cTyWqng\nxc99TswSPugj+Pkw1Ht7e1zwTfA5KqrodDqYm5vD+Pg4qtUqF9UbjUZ0u10ePF5eXmJ8fJyf1HSi\nIg84XWmJdEmnfroWky9eLpejUqlw2CuZTGJ8fJxLRKghCgBTOOv1OmZnZ9lWZzQakUqlsLa2xovQ\n5OQkvF4vjo6OWLduNpsolUqwWq2w2+18Fddqtcysp4Qx0SUNBgNarRYymQwODw/55HZ4eMhDbIPB\nwEgG6lWgJDUN3Y1GI7N8bDYber0eLxyUiKaNqdvtot/vc4Ug3cA6nQ43U5EUQSdcwmLQ96xUKnC5\nXAxto9uGUqlEs9nE+fk5e9ANBgNmZmZgs9nYcdNut9mSSo81IOQ7Au3VajXEYjFcXl7C7XbDbDYj\nm81idXWVg3BkCqATLiWRA4EApFIp9vf3US6XUalUGP0tlUrZBTYYDHB4eIhbt27B6XRie3sbwWCQ\nXWPEeaJB8dl1WQzNDYixQ64s6qeo1WrMFMrn89Dr9UzHjUajbHulvgW6NZlMJpxd15V2u10Agk1E\nKA861W9vb+PmzZtwOp24vLxkk4DH48HR0RGOjo6gUCj4/TQAPzo6gsfjYXwL3dAJimdWq+HIZqHL\nZCC9d0/IL+IvJhbSxUUh2VgswCc/KW4AKyvi4777XZHmlUjEn9XrTzYLrVYMd2024fzx+Z6A3eh2\nUC6Lz9naEreHrS1hM/2VXxHfz+MRstK3vy1+jsePxfdZXxff3+sVM4B33hHvt9metJi9+qr4/jR7\n2NsTt5C33hJD68NDMUSORpH1eKC/Xm9+lrcPNgIIacjtduOzn/0sOp0OfD4fF4CTa4bwy+TrPj09\nRaFQ4KIZ0nJpgEgoavJnn5ycIJfLIRgMYmNjg5kxFouFT1zpdBrlcpkbnxwOBxwOBxNDq9UqZDIZ\ntFotXnvtNVSrVQau0bC42WzyUJokhKmpKYTDYa4odLlcXAl4dXXFaAPCY1OlJunEdrudyZzU20w3\nhNnZWbYC0u0nmUzyYzY9Pc23LGqXGo1GfCrXarUoFAqIx+MIBALc+UB/r2q1ina7zWGnWq0Gm82G\nSCTCaV2z2QybzQabzYZut4vLy8t3Ibh7vR4vdMRburq6ws7ODges6GNXVlaYc0SQQUrgUk6CJDyC\noJ2dnUGtVqNWq3H1I/0+4vE4p4wpeEe3Q0oVX15e4uTkhJvXms0mS32ESKAbn91ux/n5OctfSqUS\nbrcbgUCAsd40hKWuacqqENqECt4JvUDBOjI+qNVqzknQiZtMEA6Hgy2vWq0WmUwGgesiIK1Wy7RV\nMgyQi4uyC7S4m0wmGAwGBAIBHB4eotfr4ebNm8jn86hWqwwXDIfDmJiYYIAe1aqS5Om22+G7uIC8\n08HY0ZFYxE9OxCn9F35BLMo7O0JGiUSE3XI0EhLLq6+Kj3n+ebERzMyIAS4gFl65XEgz9+8LR1Cx\nKG4ODx+Km4PHI24IxaLYDAoFsXkQgZRQ1cOhmE/k88KaurEhcgQrK8KZ9MILYg7RaokT/vKyGDa/\n/LJwGj14IDYEnU5sPMmk+D6plLCalsswfPKT+MqXvvSeS0Pv2bBYIpGoALwJQHn9ff5iNBp9WSKR\nBAF8A4AFwGMA/2Q0Gr2n43GDwQCPx8PIW4fDwXiA4XDIDJXhcIhCoYBisYjXX38d4XAYPp+P2TTk\nyx8bG0MqlcLExAQTOakVirTw7e1t+Hw+yGQy+P1+HrTRWywWg8lk4ppCctgsLi4iGAy+a3Mgy+LE\nxATUajVMJhPD2GhxC4VCXCt4eXmJg4MDeL1ePnFSGppOlQaDAa+++io8Hg9u377NMgoVvNOLmn5O\nwjtToOfg4AButxuJRIJZ98TSIXcWdecmEglks1kOvGk0GpYkOp0O/H4/4vE4RqMRarUa99pSQC2Z\nTPIAnjYVmi+MjY1hamoKUqmUaw8dDgejiAFh56THQSqVMom0WCzCbrezhz2TyWAwGKDT6fDiRkN9\nao6Ty+XodDo8bN/Z2eF0s0ajwe7uLvL5PKxWKyqVCiYmJhAKhVCtVvnkSz77ubk5HB4e8nOv2+1y\nMc/FxQXXSBIp9NGjR7wRE2bB5/OxRGYwGLiIJxwOs6WUDAiZTIbdN/T4RiIR7O/vo9vtwuPxIBaL\nIRaL4YUXXmATgsVi4U2NwIhra2tM3u12u5DJZFhcXEQsFmNm1/j4OPdXk/RGrqSdnR3I5XIuESLX\nUaPRwMzkJBQSCaTVqjjVp9NiYQ8GxQk7k3myGL/wgliQv/Y1gYfQ6cRCHIuJ+cDBgegRWFgQ79/b\nE5LQ4eEToudgIDaGw0OxsUil4mMePBCf84MfiE3ot39bfN1IRJzY33hDWD7j8SdNY6OR+Bn0eqH9\nP3okNrFiUZz4XS7xsW++KTaqWk3kHXI54Nd/XQy53W7xd7q2guP6hvZevr2XrqEegI+MRqOmRCKR\nA3hLIpH8NYD/A8B/Go1G35BIJH8E4DcB/J/vxQ9A9tFEIsEoB7Vaze4In8+HWq3GTBca5up0OkxP\nTyOZTOLhw4eIRCIwm82cGZiZmeEX4GAw4OErXZ9TqRT3GxCkrdlsYmpqiuF1FKTZ2dnB7du3OZlJ\n3bflchlWqxVGoxFbW1vsLJmenkaz2UTgui3KbrczdIwkG4vFgsXFRV4I+/0+fvKTn2BpaQntdhsn\nJyfQ6/VYXFxkDTkUCvGpzWw282NBDWwk0VC5CbH+b9++DalUyvgO2ijn5+eh1+u5l4EWNI1G83+x\n9+bBjd/nffAHN0CAAAiABHHwAO+bXO4pr+RdrdeHbMu1k3fiNlWc1ontptNJk7fTvpNknDeJZ5pe\n02TapE7dOIldK6mbOk4dSZVlyZJ17sX7BgniIgHiIg7iIIjr/ePZ56E00847cUZO4jFmdnaXxPED\ndvk8z/fzfA7RKrAQand3V2Axj8cDm80Gv98vgS0WiwUWiwXr6+uyMB8ZGXmHH49Wq4XX68XS0pIs\nWfnkodfrcXZ2JvGVZrNZuPAej0cKnsFgwPLyMq5duyYiMwByKojH4/B6vVhbW4PFYpGQHGb8MFOr\n0WhAp9PBbrcLw4dPS3a7Haurq7LotdvtKBaLCIfDQkVlwzZOFdvZ2ZET6ujoKDKZDPR6vehHeGpv\nNpuygzAYDLhz547scR48eCBsLk7/mpycFHYXs7F4UcynE5VKhWQyKU2ZA3JcLpdYpd+4cQMmkwnH\nx8dCD+UsZt5VMBWayRjHx8eShNdoNHB0dASjRgOUStAmk1BVq1QwV1bOaZQGA8EusRjBNZEIQTGP\nPEK7gaUlYt/8u39Hhf+P//g8A7izk57D76fCn07T83/nO/T7w70XgkHSCej1pAZ+z3uoWPf3E37/\n0Y/SCeBhrComJuixf/AH9Lj3vY+UxZEIQUKxGDWN5547z0B44QW6jmCQtAu7u9Q8nn6a4K3bt+n3\nhxAf8vm/vRYTLZLDFR/+VfPwVwvALQA/+fDrXwHwa3iXGgELyvR6vdgH9PX1iXUBq2UVCgU8Ho/4\n+3Axtlgs0Ol04m8/OTkJo9GIUCiEwcFB1Go1SU1yu90SjDI2NiYTKBcknU6H1dVVSZzy+XwS9s7B\n4nt7e7IE7ujoQEdHB5aWltBqtXD16lWJHkwmk7IcXFlZkdCbQqEgdghmsxlbW1vo7OxET0+PMDEG\nBwdl6s/n83C5XEilUu+wQHA6ndjY2BCDM45fZOx/eHgYa2triMfjkvQ2MzMjltvsz69Wq+FwOJDN\nZuWEwXYIq6urspRlplMoFBLcmSEanr7VarWwotbX12W6ZifPF198EdPT05K9zKZzHNTCn0VHRwfC\n4TCMRiO6u7vFz2h9fR0WiwU+nw8mk0kETgAxW1ZXVyUsnmEq3gPVajWMjIzIqUqv12NrawsXLlyQ\nUBi1Wo1arSbU2729Pfj9fvT09CCRSEgTf/izA6PRKCp4Ph0yFNnb2wuz2Qy/3y/BQFtbW+ju7haI\n8vDwED6fT6Cfq1evIhKJyC7F7XYLPbe/vx9ra2syOAwPD6O9vR2hUEgo0syg6+7ulv0Oe1VxFsTR\n0RFmZmbktOR0OrG9vS0upny65QhOzhNQKBS4NDICw7e+BVV7O1Tvfz/BO6enBKukUlR4czliCZnN\nNHH39RHt82tfo+J75QpN4L/0S+eQzTPP0AkiEqHTgVJJxbu3l04Xt29Tk2i1zhe7sRgxeNbWzovw\nW2/R1594giypZ2aowEciRFFdW6PHvvUWXdPDND88ZAVCpaKGZbVSk6nX6RqCQVJBA3Rtt2/TdXLI\nDfCuNwHgXdYRKBQKFYAFAEMAfhdAAECu1WrVH97lAIDn//DYzwL4LADxJvnL3vhE0NXVJcUzGAwi\nEAjI5MbHZY5W5KmGIY63R+E1Gg309/ejo6NDhGLNZlMcH8fGxsRNk08bTIO8evWqLPJqtZr4yzD0\nYbVa0d/fj2q1itPTU9kf9PT0CJarVCrR1dUFhUIBv98Pu92O4eFheDwebG5uSmZALBaT5XYwGEQy\nmRSTOWayVCoVLC0t4ejoSPJ72bKa2VJsSpbP5yUYhdWhrVYLIyMj4p3f3d0tIqFcLgedToeNjQ2M\njIyg1Wrh+vXrsNls6O7uxv379wUWYr8njkrkUxJ717/xxhtIJpMy2fJED0AM+QwGA2ZnZ6F5iKMy\n9MXZ0swqKhaL79iD8M7o9PRUJlyDwYDNzU3kcjmB1nh67e3txeLiIvr7+0VJazQahQZqt9uxvb0N\nrVYrE3C5XJZTltPpxNDQEAYHByVxje0fWHB4fHws1uJsycDxpCMjI5L0xTudbDYrRoNGo1FOGuVy\nGW63+x3JcGxmCJB1uNFoFE+fg4MDdHV1iTleT0+PKNJv3LgBlUqFVCqFSCSC1157DT6fD61WS+jP\n8XgcXV1dKJfLInjkgB9W8gPA0tKSLIy1Wi0cej2UbW0w7e1BFYsR/NLWRkVyb4+WuFYrnQaefJIa\nxHe/S01gc5Ogm8uXaare2SHcv9UiCCafp8VupUJfv3mT7js5SZj9xAR9T62mX/U6TeYeD03vn/40\nXcPXv06vXa/T89y6RcV5eZngpZUVOnmk03TdySQtoP/LfyE66jPPnC+LSyV6rVqN7j86SqeND36Q\nILCTE2IgvfIKNTzgb39CWavVagCYUygUVgDfBDD+v7vb/+GxXwLwJYC8hr7fa/iFX/gF2Gw28elh\nEy+73Q69Xo/Z2VlSLD5UeAKA3++Hy+XCycmJHLetViuWlpZEbcrWCG+PMWR1K7OA4vG48NMbjYbA\nBH19faIsfTusFI1G4XQ6RVkZiUSk4CuVSrS3t8sU6fV6hYoHUI6w3W7H2dkZFhYWhIfd0dGBw8ND\naRQGg0GK34ULFxAMBlEqlSTohAsEL3N5f8E7DvbzZ9vgs7MzDA8PY3l5WVSgDGuxkrW9vV1OMByF\nyFoOZsqwDiGfzwtck0gkMD4+DqfTKfRNtqAIhUJQqVSIRqMIBALw+XzSmJke2dHRAbvdDr/fj3w+\nD4PBgI6ODqFSApATIMcz+nw+jI6O4uDgAKVSSaw2WMDF2Qq8N2o2m6Io58U2U5KZk8/7DN79AEBf\nX58ErbOmQKVS4fHHHxfyAu8+dnZ2YDKZsLW1BYVCgYGBAajVagwMDOC1117DzMwM5ufnxZKEuf3Z\nbFagHNZDMNGAozILhYKE6HD4DzvN8om60Whgb28PkUgEHo9HgoAsFguOjo6gUCgkQtLlcqFSqYho\nze124+DgALu7u2hra8PMzIxAVJZCgYzYPvc5qMplKr737tEk7HZTQaYLIF7+4SEV2I4O+vVjP0Yn\nhfv3CUoxGsnbx2Si5fCnP00NIxQi2qfHQ5YR29tUmJ9+GvjMZ0jElU6TjcTt2/TYF18ksdj8PBXl\nRIKakdNJX5+YoAL97LMEXS0tUYNZXSX4hymmXNQ56/jll+matrcJsvryl2mhHQrR7uHzn6fTw+3b\ngNOJ/zeT+X5L31/q9gPxGmq1WjkArwC4BsCqUCi4AXkBxN7N1/75n/95rKysAIDQQNnRMJ1Oi+qU\n8WbOGB4aGsLQ0JAIkfr7+9Hd3Y329nbxbGF2yM7OjizIAAheD9APPEdPcvYq5+Qyrsp2xbFYDKFQ\nCDabDfl8HqVSSWwe2EOep1jGudn6uK+vT4Rt/H5YRVwul+FwODA5OYlAICCRltwQOYPgzTffRDQa\nRTAYBAD5nHp6egSTZvXt9PS0WAww08Tj8WBychKdnZ3o6uoShTJTSSORCLa2tiTPQKlUymTObp1s\nf8HLad7pcG5yoVAQO+pAIIBGoyEnLS7o6+vrwmJiy+LZ2VmBMZjHzq6tDx48EKfLV155BcFgEJVK\nBc1mE3fu3EEoFMLW1haazSZ6enoEm3/zzTclr5gXo8z7n5+fR6VSEV1BKBQSRhob5DWbTRwcHEjO\nhV6vR6VSQTKZFCPDUCgkhoBMCuDmHgqFcP369XfYWp+cnMDn86HvoQlbd3e3eCqxEWAmk8EzzzyD\nvb09WK1WABAbDI/Hg1qtBoVCgZmZGUxOTgoh4e1GiAqFAr29vejr68POzg7q9TpqtZrYubw9zrOv\nrw/Xrl2TRX/i8BDrd+/i7D/8B6hCIagePCBIZ2qKCuVDw0A8eEAQy+goYe+hEP29q4um6pkZag5P\nPklfe/RRKrKPPgr8k39Ck3itRnuFN96g4pvPU7E+OKCm8a1v0eL2S1+i5nJwQMrgz3zmPHTmZ3+W\nGk1PD31PraZmsbVFcNKtW3SKMZtpQa3R0HXdvEnP8b73EYxUqQCf/Sw1KrOZmo9SSQ0gGDz3GfrA\nB6i5eL34NZ2Orvldvr1rjUChUHQ+PAlAoVAYANwGsAXgZQD/18O7/TSAdy2CR6VSyeLw7t27cDgc\nYgTGBaFarUoQO0MVABAIBETBarFYsLm5CYVCAYfDgZ6eHkxNTUmql9frFR92m80Gq9WKVCqFTCYj\nVryvvvoqAoEAgsEgyuUy3nzzTRweHuLo6Ah7e3uSD3t8fCxNx2QyiSKTA106OzsF62YtBHu0swHc\n1atXkUgk4PV60dbWhs7OTly9ehUAMD4+jtnZWRHIcZRgNBoVS2LGcpPJpEzWbrcb9+7dEy7+0dER\nAKBer4vQbmFhAY1GQwzw2Kwsm80iHA6j2WyK+pjtKhQKhcBdbLvM7Kd4PI7t7W0p8LxkBoBEIoHR\n0VFcvXoVLpcLNpsNuVxOBHqlUgmJRELM1EwmE4aHh4UnPzAwAKVSKawatnbgxS3ThOfn5+UEoNVq\nEQgEsLGxgXg8jvHxcVSrVREMMp2SCzfbRrOH0eDgoLCWWq0WLBYL6vU6IpEIzGYzjo+PRUSoUCiQ\nSCTg9/vFrM5sNsPpdMLv98skzo2I6bmsSi4Wi9jZ2XmHehgALl26BLfbjcHBQQni8fl8kqjHgfN6\nvV4YYmazGeVyGUajUdxbrVYrDg4O8ODBA8zMzKCtrQ0KhUICkprNJgYHB+V0dHBwAFWrBbtWi550\nGpfrdRgKBSr+VislhQ0NkdmaxULT9+c+R5N8OExTtdNJ07LXS1DQ5ibtDf7n/6TgGJ7W9/boMR0d\nBAElk5QpoFIR779cpmbw7W/T6w8PE5xULNJSV6OhZTPj9EdHtEdgy2m1mmikL79Mi9/vfQ/4lV+h\nhnXvHtlMXL1KDKCNDaKWqtUEV925QxDT0BBd65Ur1LAKBbrv8DDBQ729QCiEGC+M3+Xbu3kicAF4\nWaFQrAK4D+A7rVbrGQD/D4D/W6FQ7AGwA/jyu3UBlUoFU1NT0Ol0uHz5svynVCgUuHjxolg7z83N\nCTXS4XBIIWflMOPndrsdhUJBcE+2emCrAYPBgEgkItmxrFEYGxvD5cuXJW5ve3sbly9fxtWrVzEx\nMSFh5fV6HVNTU0gmk2LDwJ4tLpcLy8vLePDggUx+bW1t2NnZQTweh0ajgcViQSAQwM7OjrCfeDpn\nrYBGo0GxWEStVkMsFhO6KWcb63Q6lMtljI+Pw2Qyoa+vD6VSSaCmXC4ndNu5uTmcnJyIVTA3rGaz\nKQtC9j7iLODZ2Vn5rACIDxFP3PwZs0Dq0qVL6O7uhlKpxN27d7GysiKiOT41dXV1wel0ysTPjpsd\nHR2iHo/FYrh//z4WFhZQLBaRy+UExqrVahL6w+Z87EcEkILaYDAgmUxidHQUfX19UCgUAEhUmMlk\nRP/AjKu2tjYEAgEYDAbJMC6Xy3LKbDab7yAHcAYymwVOT09jaGgIarUawWBQ9kK8OB8bG4PX68Xg\n4CA6OjqgVCpFDMn0W973TE9PQ6vVIp1OC/TDOxcOpWFSAce48meysrIigjzOGYjH4zg4OIBSqUR/\nfz9WVlZQKBREnZ5Op2GxWOBwOCTvwaxUQru/j+5XX4W2WITBZqN8Xp7+o1EqkADRPZeWaBFbqxF0\nwkwehYIgpEiEgl7CYSqcr79OhbxcplPBG28QJt9o0H3v3KF9we4uTds9PcA/+AfUJF55hQry/fs0\npW9vA7//+3RtOzu0rG61aFn8+ut0rX/6p+eL65UVuk6DgeCfkxM6Zdy4Qc3hmWfIyrpapWtpNomp\nZLUSVDU+TqcHzkyemaGGYDDA8z/+x9/uzOJWq7UK4ML/5uv7AK68W6/79hs7W9brdayvr6O/vx/5\nfF7k/7w4u3btGrRarYh6zGYzms0mlpaWMDg4KN78/AMHkJc++7EzpsxRlBzZVywWsb+/j0AgID43\nbW1tslhVqVQS4VgsFqHRaLC6uiqUPVa08tGfrZt5oX1ycoJqtSoc9rOzM7S1tSEej+Pq1au4e/cu\nurq6RET09tASZoF0dXXBZDKJR33mISbpcrnQ19cnIedmsxnz8/N4+eWXodPp5HE2m008h/R6PVZX\nV0XQxpkIbP+Qy+UwMjKCTCYjNghdXV1YXV0V/jwb9KnVaoFN1tbWhGNvt9uFjstcf6vVis3NTcTj\ncaH1cmA8L147OjpwdnaGarUqNFAOYGm1WhI8xBTeSCSCgYEBEU/VajXZIW1ubsLlcuHg4EBOiExI\n4OQ7XsRzIhkXfGZoaTQasbPgYaO/vx/r6+sS+ZlKpdDV1SXhNVqtVrIGWLMyNjYmpyHe29y7dw+d\nnZ0y+atUKmFclUolWK1WDAwMIBQKCQyk1WqxsrKCy5cvA4DsFPjUBkDYb16vF2azWWA6tut2u92i\nC+ju7paIytbpKdwrKzA8+ihUnN/rdp/n/MbjVMRVKpryh4aoaPb2UpG226kJnJwQlKLR0OOPjgiy\nsVrPfX++8Q1iDdlsZBY3Pk400DffpOK8sEAFfXGRpvaRESoWPh/BQnNzwO/8DhX+vT16zuVlKtyz\nswQl2WxkS3H9Oi2EH32UXuuRR2jfcHBAjWF/nxpBvU4MqKkpet5XX6XnGhykJjE9TaeTT3yCGpvb\nTaZ0Tz5J18ZpZ+/i7YfafZRZQ2q1GvPz80gmk/D5fAAgtEK+8Q9xLBYToQ6Hsni9XvkhcDqdODw8\nxP379zE0NCRFjtW3FosFZrP5HYHnhUJBmolCoYDL5ZLiz3F/ExMT0Ol04nfEC923x/Ox4VwgEECh\nUJDowbGxMcmlZdvlzs5OOBwOqNVqWK1W7O3tCbZbKpXE+4fprK1WS8LneUp0OLXtRSsAACAASURB\nVBxiDxwIBPD+978fAwMDyOfzWF5exuXLl6FUKgVTn5mZEUiJw8m56HV2dsJgMECj0QhurFKpsLe3\nB7fbjVqtJuwWFqFZrVZkMhmBrLq7u2WJPTU1JRx0hmI4lIUFY5w+x3uG3d1dieZkWw0Wt7EfUV9f\nHzweDxYWFqTwBoPBd4TOMyuJRYocCs9Mn6GhIej1egwODqLVaiEQCEjM5+HhIRKJhLCo+P8Mi++U\nSiWWl5fR29sr6mCLxYJmswmfz4dGo4GXX35Z9iqpVEpUzvwZ+Hw++fPW1hYikQhmZmZgNBolf4Bt\nPriAp1IpESzu7e0JlDQyMgKPxyNRnxMTE9je3paTIUNMZ2dnODg4kFjLWCwGXasFVbWKkUYDhtNT\nqPb3qdifndGSdWqKGEBs5Ww2E8yytwf8m39DuPv168C//JdUbDc26PdgkAr87CwxbjY3CUe/dYvo\nmg4HLZKbTSq2Dx7QyWBkhEze7t6lBhOP0/UUi3Q90Sg1oFaLivPMDDWg69cp3azVIisLpn9+85vU\nIFwueg+9vbQ3GB+nZvX1r5/vEY6OqGl0dpKKuFql00uxSO/3Z36GTjH5PJ0KikWixAJ/6wVlf+03\nPhGwO6XZbJaYQYVCIRm/+Xxe/IB4SbaysoLx8XExCuPlI9+/ra0NDocDe3t7AAg+YL55vV7H9evX\nJcGqUqmIG+bbcwzYB+nGjRuIRCJIJBKYn5+HwWBAJpMRWiof9ff29mTyDwQCIi7TaDRic+FwOKDV\napFMJqHVasUMjSdjDhafm5uTGMl0Oo1arYbt7W0Ja9fr9aJ6ZUGWwWCAz+eTMHmHw4FisQi9Xi9h\nJ7zo9fv9mJycFAYJRw3u7u6it7cXSqUS4XBYsHGv14v29nZ532dnZ8hms9jb24PRaITBYIDT6YTD\n4cDW1hb8fr+4djLbhSGtZrOJo6MjMefj4BtOD3O5XAgEAlhYWBC2jFarhd1uRyKRQG9vL9RqNV5/\n/XVMTEyIEM9kMsFkMmF3dxf7+/swGo24du2aEA/YYvz4+Bgmk0nypDUaDdxut9hRsGsnnxTK5bLs\nIbq6unBycoKZh6Eke3t7yGQyaGtrE/2E2+3G6OiohOeUy2Ux1JubmxM1fDgcxunpKfR6vaiznU6n\nwDsMq3HYz8rKCkwmk2gxeC/W09MjbC2GK1npfnp6iuHhYaTT6XdYV+xsbOB6IgFTowE0GlD191MB\nfeIJwvKnpgg3z2apoH70owTfOBxUZNn++VOfokJ6/z4VxMFBKuRDQzQpl0oE3zz+OAnIXK5zF1KN\n5rxo1+tU+NVq8vPxeIAvfpFom9ksFXGXi6b5sTGCeVZXqZBrtcRIevppSj+bn8fDH2JqGM8/T9fx\n679O0/wXv0jP98ILBA/NztLrbm9T41Io6M9vvUXv43vfo5NIPk+2GQMD1FgWF+l1ftQI/mo3PhH0\n9vZKoInD4UA4HEZfX59MqgBBPbFYDIlEQpwTm82mTPZ9fX0Ih8NotVoSvB2NRrG7uys4bTgcluxh\nXgSyaInTt5RKpYh3BgcHpejxSYEnYYASpNiHhg3C9vf34fV6xRKAk8x4SV0sFnF8fCxWDtvb2ygW\ni3A4HBJowpGLfX19oqlgw7xWq4WbN28KVVKr1YorZywWkynb5XJJwb948SKi0agE5fAJgb3q2WyM\nFbj8q7+/X0JdQqGQLE3b29txenoKp9OJnp4eLC4uwmg0Ssh9q9XC1NQU8vk8Dg4O0NbWBq/Xi2q1\nir6+PolXZDdXbo6np6eyFB4fH0coFJIpnHOqOW2MIa2joyOJyeT8g4mJCTSbTdRqNXGZZQ8o/ncv\nFApywqhWq1JYb926JYV5YGAAGo1GijwXW7YUMZlMsNvtUtTZWjyTyWB/f18s0fnfg3MT1Gq1nHzZ\nNpt3YNx8OESIY1Xb29vh8XjQ3t6OlZUVdHd3Y2JiQgYXhjvZqZZzBMLhMIBzppzT6YRJp8N7r12D\naWuLJttwmIrw0BBh8//23xLsUSxSsf3Jn6SdgMtFJwOdjqbqVosw/Vjs3LI5k6FCvLdHp4ntbZr+\nazUqoCYTLY8nJ6mY12rUPPx+ev7DQ3pOq5Wa0eEhNYXtbdop8EL3wgW6H9NCZ2YIljo6Ipjn4kUq\n+vfu0aliYIBOJgA1hW9843z6X1mhoJpwmJqAUkl0VJeLGstbb9Fj3/Me2m/EYgSDPRRX/iB0BD/0\npnONRgOXL18WZ0p2OKxUKmIrwKHkrVZL8HI2FDs6OpKjORcJq9WKe/fuCTzBLp71el3UpHwyMBqN\n73BftNvtKJVKwuM2mUzw+/2oVCowGo3QaDTQ6XRoNBqSPWw0GsV1k20a7Ha7YOgdHR0y6be3t6On\np0d2HpVKBcPDw7ITYJiIOfa842DVtcViEffHRCIhISFvz/FljyOz2YzT01M0Gg1JW+P0qVKpBK/X\nKy6qzPbJZrMYGRmRCE/Ow+V/F95zMGOFT1Hsrmq320UoxnATm5kNDw8Lfv52EdfJyQnW1taE+8+m\ng3zSYj2A0+kU7/7Dw0O4XC6B8Rijr1ar0Ol0SKVSKBaLGB8fFy0Evwc2r+NdRzabFY8rjtQcHh4W\nW5NyuSy7GWavMeuImWv8+cfjcYyOjsq/6f7+PkZHRwXnZ70F21C0tbWJ8+7g4CACgYD4R6VSKcTj\ncdTrdezv76NQKLxDZ8LhPdlsFqOjo6L2brVacDqd2N3dFWYbNym7VguL3w99sUiF/vCQivp730sT\ndLlMhVSlInuHoSFa1E5P00lBraapOZMhjF2no6+ZzYTv5/P0+LExKpwqFT2HxwP8639NJwqvl3j+\nSiWdJPr6aOr3+ei+Wi3BS2Yzvcb6Oj33Y4/Ra+3uEsz0gQ9QYwmH6Tna26lIh8N0KtnYoCbU3k7F\nOpul/cH163SNuRw1gLU1ul42ztNq6VTS1kYL4pUVuraTk3Ml9d27dCro68PNJ574vmvnj9xHH94e\nffRRSZDy+/2S2RoMBpFKpbCzs4NmsykFh5Wg0WgUSqUSHo9HcO/d3V3x9+c4SLYw5ohDzjrgH1xe\npnFoCttBV6tVOZqXy2Ukk0kJkWHzL84fZrsLLq7lclkcNtkwDIBAKOyHz5nKhUJB4g8ZpmEKLQDo\ndDqcnJyIuyVTa1mA93bXSna0rNfrctrgiZenRfbHr9VqCAaDsNlsUlz5NMBLeT4BcNAPU2fZojmb\nzaJarcJutwvziOEJhpEajQYGBweRyWQQi8XEUI6LOusfOjo6hO+ey+XEAjwWi4ltdHd3N/b390VT\nEo/HodPpEI1GUa/XBZ4rFAq4ePEi9Ho9FhcX4XA4xOacOfmtVkusQsbGxmAwGJDNZqHX60XcZrFY\nUK1W0dbWhq6uLjEtdLlcyGQywlgKBAKisGY/Hw7d4cZ3dnaGVCoFrVYLo9EopyfOkmara1Ybt7e3\nizUJ02p5SOLPmPMpms0mFhcXxWLabrdLtCbvHgzVKtxvvQXN2hpBIouLNClfvUoT7f37VBBDIZqk\nR0eJ9vnKKwSlPPMMnRBOTqjIZjJUFEdGqAH4/VSYLRbC/O/coaIfDtPj0mkSYg0MUFF+/vlzcdbB\nARXk4WE6UcRiJBq7epUKcSxGhTebpWl/fp6KeipFFhLHx3T9V6+SFbXFcn49qRRBUwoFXff9+6Rr\neOopaiqtFn0Wjz9ORamri95jpUKnlg9+kE4d9+/TKWN1lf4eieCmyUSnEzag+0ve/trdR/8m3M7O\nzvD666/j0UcfFV67wWDA3bt3xa53fn4eGxsb4pfCRZyD5o1GIxYXF8WDnn1mGOrJZrNob2+XaZ0b\nDUc+smits7MT8XhcdgmlUklYRew8ymrbWq2G7u5umfTZ+VKr1YpCliMwNRqNnGzu3r2L6elpVKtV\nrK6uYn5+Hr29vaJxYNtpgJgvLH5aXFzEyMgI/H6/CJcqlQpmZ2eF8aTVaqHX6yX7eXh4WOiDx8fH\nWF1dxZUrVxCPx3F6eirBKWq1Gna7XSIeU6mU7CKY688+TqycZSV2KpWC3W6X52c8e3BwECcnJ7BY\nLJKPzN5JXq8XwWAQRqMR+/v7IrAyGAziwzQ0NIStrS30P7RZZuYML2c9Ho9w/XnxOjg4KEHqbIeh\n1WrF7E6tVgvlly3K2VOIKZ8cknN6eoq5uTksLS2JqC8Wi2F0dBTr6+uIRqNCKY5Go3jkkUdEk+B0\nOiXWkW/NZlP0J7wkZ4M7dnXV6/XY2NgQ4R43aV7Ct1ot9Pb2olQqwWKxwG63ixHi1taWnHZrtZrk\nR5jNZigeQn7aRALexUWofL7zgBb128qLRkNF9O5d4JOfpEl6ZYUKKhvCfeITBCH9t/9GbKKHoji8\n/jpN0TYbMXguXwb+4i+An/op4v0XCvRcX/gCFUyLhZrLjRs07b/8Mi2Zy2Uqyvk8NYXZWToFHB0R\nDNPRQYU9EiGB2VNP0fOwDuCRR+j5Egk64QDU1LxeYgJ1dVHzunaNXg841yCMjNC+IRKh08aLL1Ij\nYSuMgQHgJ36CYKJf+iU6YSQSiJnNcP8AvIZ+qE8ErOb9/Oc/L1BPpVKB0+mEQqFAMpmUzFifz4ed\nnR3Mzc3BZrOhv78f2WwWarVaJsmuri6Zjt5uW8GJUtvb2+I2ys6O+/v7mJ2dFXOt6elpHB8fY3t7\nG8PDw8hkMrKo5kB49q/J5XIIBoNoa2uT5WKlUhFbgOPjY/T19eHk5ATxeBwXL14UIdL8/DzUajVs\nNpu4P+7u7gKgk0OpVBIDM45q5MXj2dkZjEYjUqmUYNMmk0mEX0qlUnYAHOvY0dGBTCYDv98vArRk\nMomJiQkRg3GQutVqRTKZFI472zvztMrL+/39faGiejwegWe4mVmtVsnU3d/fF+fT09NTwcinpqbg\n8/nECE6hUKBarWJgYAA7OztwOp1QKpUolUoIhUIiCuvo6BD7as5XHh0dhcFggEKhgNfrFToq6z70\nej3sdjuWl5fFc6nVaknDicViQqtMp9PweDwSVcnupvx/anBwEKlUCl6vFwBksc5mhQxVJhIJjI2N\nYXBwUHyxWEvA0Z8AcHBwgIGBAQnucTqdYgQIUDOJx+MSeKNQKCT/gUNyUqkUPB4P0uk09Go1Bjo7\nob13D063G5p/9a+gNJloog0ECHq5fZsKbi5HRe+552jyn56m4vfFLxL089prVAArlXMPoL4+Ygv5\n/TTFu1xUuB9/nHQGfX1U2OfmaEJvNIhmWq0SA8jnI3aSWk0Q0SuvECyjVhM7aHKSCvLeHsExc3N0\nv91dKtqsB6hUqHkcHNB1fPnLtHg+OaFTgk5Hr+PzUSOZm6Om19ZGDWligorR/j59FlotNbuuLjqF\n5PP0nqanqWkcHhKk9tu/DYyNwfz44/i1X/mVdz2h7If6RMDQx8LCghQDjUaDaDSKCxcuYG1tDTs7\nO+IP9Oijj4qbJk9gbBvN6WAcan58fAyDwSDHcJ70Go0G5ubmRPDE1s0GgwGHh4fy54sXL2JgYACH\nh4fY29vD7Owsstks0uk0UqmU0BRVKhV8Pp9oHqxWK1wuFwYHB7GzswO1Wo1Wq4VWqyV0RC7kb731\nFjQaDTweD1KplFD+mAo7OjqK1dVVaDQa9PX1weVyicKYTyDMfEomkzg6OkI0GkVnZ6fQE5m+yS6h\nPp8PZrMZ8Xgc3d3dIujiEPKTkxPJL1haWsKDBw/w3ve+V8R3HArTbDZx6dIlyQMOhUIwm81YXV1F\nLpeDUqkUjJuN2Dgnmad2zg0+OztDLpeDy+VCMBh8R4bD2zF4ptyyd77VasXy8jJOT09hMBjkFwBJ\nT9vb20NfX58ostlwz2q1iufU3bt3US6XpSGw1oBFX6lUCmq1Gl6vVyws+HSRSCQkVpRDawDyluJY\nTi7ySqUSNptNUuC0Wi329/cxPT0ttuJMDGC/JYaV+vv736GUzuVy8n93aWkJCoUCk5OT8Pv9OCuX\nofT70Ws2w9XTA1UoRKwanY5OA+HweUD8zZtUmMNhKtT375/z5i0WmsBv3qSJ/rnngI98hH54v/3t\nc6voN96ghS/HSX784wQLVatUtLe3CZ555RWaxDMZKqof/SgV6du3aQK/devcZrq9neCagwPgYx87\n1wusr1MTaG+nab+3l04ZN27QQrevD/j5n6eJ/fSUXmtigk4p+Tw1r/e/n3QAn/gELaVPTqiQX7xI\np4N6nZ7zH/9jgq88HuDf/3uCyhIJuubr18/zEv42C8r+Jtz4hzYejyMQCMjikFXF8/PzYvdLrtnA\n9vY2BgYGkE6nxbunXC7j6tWrAsn09vYin8/jzp07uHz5MqxWqyhT+dRxenoq/jfsSqnRaJBOp7G/\nv49SqSSh6CcnJ8IoYpO7k5MTDAwMYGJiAsViUfjanH0MkCo3Eomg/2FGL0Dsp42NDfF893g8YgHR\narWwtLQEl8slvkccmlOpVKBSqcQ7n2Mun3woamF8mjn5zEJhdhVDETz5T01NCcwDkJfN1taWsEv4\n1MUBKy6XC3t7e/D5fKhWqzg6OsKFC6RHrFQqkufLYT9sH87NloPo7Xa7fKbs48RTtcViQSQSQVdX\nl6hsNRoNuru7cXp6Kt5GbJN94cIFzM3NifsoC/3S6bR8jR1f29vbsbCwILshXuS2t7dLGEtfXx8W\nFxcFPuT/Z9FoFB6PRywuyuWy2EmkUilZyodCIdlDcYb0wsKCUHb5s/R4PPJ/jBfjrP9g3US9XhcN\nCkCsoPX1deh0OhwdHWFiYgLRaBR6vR4mkwltbW3I5XLo9Xig3tpC94svQpvJkF/P8TFNwFYrFe33\nvIdYM8UiFUGXiybm01Oahp99libf97zn3LyNTdficSqUajU992OPAf/pP9Fz/e7vUoNhl87HHqMi\n+o1vEBzjcJxTTT/1KSqgb7xBTUCvp+f8whfIh+gnf5LCbHQ6orQC9B4YDnI4aHkdChH2v75Op4Vs\nlhrG88/T4vnCBWpYDx7Q+2hro+bEeckWC2UVPPbY+XL57bYR7Iw6NES/BgdpgTw6es4a+gHkESi4\nAP5Nvl26dKn14MGDv/Tj2FF0e3sbBwcHIrlnIZFGo4HNZoNSqRTWBmP4rEZlJa5CoUA6nYZKpRKH\n0M7OTigUCvHhPzs7g9lslqQttjJ49NFHxdkTgGDnAwMDCIfD4snP0xinW6nVamGR3L17FwBkWmY4\niQVkjN1GIhHRBYyPj4uQjf3rObfYZDLh9PQUgUAAFy5cQL1eFx49C7q4uIyPj0vyFBcmVhezN73J\nZBKl9OLiojhXTk1NIRaL4cqVK/D7/QKlsNcQJ5W1tbUhHA5DpVLJIlOn08FisQgjpVwuw+PxwOFw\nYGFhQejAbHDGp6Xt7W2YTCaZoNm62uFwCPySzWYFXjk7O0Nvb6+Y4bGbaa1WExiHP/vOzk4EAgHJ\nYGY78UajIcI8o9Eo7KujoyPMzc0hFovB7XYDoOCit5/K0um0RIIGAgHZVzzyyCNYX1+XxDKlUonO\nzk4JjA8EAmL/ceXKFREJ8rWwcyoztthe2263S9CQwWAQOqtGo8HQ0BDa2trE06hYLIqOQlEsottg\ngMpqhapYJGrl4SHh2+3tBJt85CNUwAwG4Dd/k5au+TxBJjs7VGhfeom+lkgQpAPQJL+wQPBKKkWF\nOBAAfvEXCb6JRqloMu2yo4MKs0pFk/7hIbF8trfpOefmKIQ+GqXmcP06QUn1+rno7FvfopD627ep\neHOK2D/8h9Rovv1tKsosFmM66/w83Xdhgb7+gQ9Q8ygWaQeg0dCJ5Ikn6HkcDrqOzk663+3b9Pnc\nu0fX81M/Rc1CraZGNzREp4dnnoHis59FK5f7vhuBQqFYaLVal/7/7vdDfSLgYsQB7GazWbJbuaCx\nEydb+HZ2dopkPpvNCnSQSCSENre0tISBgQEoFApsbW2JgpgLKdMZmQ3C9hQMo2i1WvT39wtUZDKZ\nBMPmSVepVKJcLmNzcxPHx8fIZrPweDyw2+3Y39+HUqkUK4IHDx5gaGgItVoNY2NjAq8Ui0XB7NVq\nNfr6+pBMJnF4eIipqSn09PTA6XQiGo3CYDBgY2NDoh+7u7uxtraGUCgk0Z7MVmpvb0dXVxccDoek\ntrFNw8DAgEzl8XhcFrHFYlH87pkBxct5pjKaTCYMDAwgGAyip6cH4XBYCimH5nAhv3jxIu7fvw+d\nTodcLoexsTGB5lQqFVwul9BR2aCNm6XFYsH4+DhisZjQH5mptLCwgP7+fpyeniKXy2F8fBxWq1UU\nxpxLnM1mcXBwgGq1CpvNhmw2i1KpJC6rHo8H+XweMzMzCAQCcLlcMBqNWF5eFv6/VqsVe2+/3y/s\nGwCy6+FA+pOTEzz22GNi5MfUTs4cYHYaaztCD0PnOR+D91ocxzo+Pi6QVzQalRPI7u6uhP4wzddm\ns8HWbAK//dtQLS0RRDM3R1N2OEwnAr+fit/BARXrwUHgV3+Vvre8TJP5hz5ERXFwkL7W3U2PD4UI\nHrpxg4ohL3QHB8mjp739PLWrUqGCu7lJTWV9HfiP/xH45V+maZx3E/k8NYfPfpYK8xe+QAX84x8H\nvvIV4Kd/ml5vcpKuwe8neAqgBvG5z9FJAKBTx717VIw7OqixqNX0eI2GTgQeDz3PP/2n9LU336S9\nR08PNblvfYsa1u3btDAfGKDdRr1On8nQEC2jv/pVajIANTz6x373a+UP87KYb7du3YLH44FOpxMR\nEidesR8K8/wZB67X61IkeDHLDCHmp3PYt8ViEY54JBKBVqtFPB6HyWQSl1L+HgejqNVquN1uqFQq\n2O12SQ1jhgcLhQwGA3Z3d3H58mVpSqlUSuyBWf/A09/u7i6azaYUwUQiIfbNzWZTlre8lOW8XKZ0\nMg+f6ZN6vV70BWxhwR4/R0dHksDFBYljL/f29uDxeDA2NoZ6vY7FxUVZErOdR6lUgtvtloX58PAw\n2trakMlkJATH5XIhFouhXC7LaaZcLsvOZXh4GMFgEDqdTvIJmBbJr8HNrF6vw+v1YmVlBR0dHVhZ\nWcHm5ia6urrQ3d0t1NRarSa0WyYV8L7JZrMhHo8jGo0iFothaGgIGxsbACAN12QyYXJyEgaDQUR5\nPBjw99ngMJPJwOl0YnR0VK7j9PQU/f398jg+IdVqNSwsLIhXFO+K3G43SqUSVldXkUql5JTDp122\nyhgcHARAi2O32y3/D1jvYLVaMTk5iWw2S8SCchlWsxnm9naoFhagDIXOF7O5HBWwYpEm/SefpKn7\n/e8n+uOLL56ngbEdw8WLtCCt16kxPPII4fMez7mhnFZLk/Nv/RaJuB5/nBTGd+4QXKLRUFG+dImg\nmGaTHrO9TdDS2RlBQ88/T42pt5d2ExsbZDLX1kav88YbpGOIRqnwjo3RtbN5nMlExd7rJYHarVu0\n1P7wh0nIxg6kAO0Ncjl6HoOBTgW7u/TL46GvbW5SA+jvp1OGSkUWFFeu0GcSj9Pz1evnOcnRKHDt\nGm5+6EPfd+37kY7g4e3q1avw+/1ob2+H2WyWH+re3l6kUimUSiXh61utVrEweLsHCxu+cbpYqVSS\no7rBYIDRaJSow+PjYySTSVitVoyOjgpNtK2tTdTEyWQSHo9HVLsajQa7u7tikXB0dISxsTHodDpo\nNBqxJmZbgVQqBYvFIgI5h8OBtrY2LC4uwmKxCBOGw2zi8bgokF0uF46Pj1EsFtHZ2Sm8/kKhAJvN\nhpGREeRyOaFI9vT0IBgMIpPJoFqtymS/trYm7Jnu7m4RwSmVSrjdbskPODg4kF0FC63y+TwcDodM\nu16vF52dncJYYk8ik8kk8M/k5CRqtZpkIIQexooyPz4YDOLBgwdikMZW2hz1eHx8LFkJ/G/MAkK1\nWi35u1arVbyECoUCDg8P0dXVhba2Nvj9fhwcHGBiYkKYPnwSGhoaEpuLYrEogrm2tjYJfGdfIM5R\nZnowM5DK5bJAQ4lEQuxBWPEbjUYxPDwsLqXsaZVOp0XoNjAwIP+2Pp8PxWIRRqNRbD30er0MNPx/\nkhv7zMyM7MTm+vtheeEFdKfT0PT10XRrNlMhPDujaXV+ngroyQlN9M0mFdq9PWIPzc/T9P2hD9HX\n9XrgT/6EiviHP0zFORgk3J2jHms1goQ2N+n5LlygIuvzUaHu7qYiPDVFhXl9nSbuxx6jZqFW09Rt\ntVJzyufpfiYTTf9/8Rf0+nyNb75JhVuvp8Lb308Q0vg4va/1dYJ+fD6CjzQagoxCIWqCKysEkWWz\nVMgnJmj6T6fp9Z56ihrBiy/SNe3v00mnq4uu7etfp5NOPk8nocNDOm3Z7UBnJ25+6lPft4YA+FEj\nAEA7ArYtXlpagl6vR7VaxchDx8FAIIBisQiv1yvRkzabDZlMRuiQZrNZpjmOESwWi5I4xQErzPDg\n4/7MzAz0ej3S6bQsTePxOJxOp1gbcAIa2y2wuRd75LDuoFKpYGxsDB0dHcJU4pPFnTt3YDKZJBxk\nbm4ODocDrVYLiURC2FJtbW3o6OiQXFoWL7H7JbuFGo1G3L17F5OTk4jFKDOIRVnJZBJGo1FgqOnp\naTGgGxgYkILGVhw9PT2yX2HNQr1el2Kj1WrFzbJarUoT4OB2nU4Ht9steDbDFcz35+UoJ2GVy2V5\nL6xu1mq12N3dlVB3ZoMxJOV2u3F4eCj7EzbFY3sLVlHr9Xokk0kMDAzg9PRU9jfLy8uYmpqSXN9A\nICCJZFNTU3C5XDg9PUUwGBSPJw4lYsonR6UeHR2J+2l/f78E60SjUaHODg4Ooq2tDcvLywAI/uRo\n1FwuJ82H/y3Z1jsSiWBhYUHgQ2amsViPM57feO01GAAMrq7CMjwMjdN5nv/LzpovvEAFs1Qi1oxW\nS4VcqSR7ZouFYJOXXqKlbLV6DsE89RQV2YMDmqA9HoJPrlyh4vpjP0bT8uXLNI1/+9tUcP/+3yf4\n5vXXzwVgnC386KM0ZXs8tBe4dIkWsuUy4fhvvEFFtr2d/q7TUXNpNIjBq/CoUgAAIABJREFUlMud\nNxafj6Ctb36TntvhoBNOqUTf39uj93DtGjWx6Wkq6pEINYrdXTpx2GznVtPf+Q41zkuXqJEoldQY\nfvEX6THDw3QNH/4wNYoXX6Sm++yziMViaGdK6vdx+xF99OHtypUr2N3dlYziVCqFg4MDeL1eTExM\n4Pj4WMzkvF6vRAlmMhlJ3mK7g56eHqH/nZ2dIRKJwGKxIJPJIJFIoKenB8PDw8jn88jn89jZ2RFv\noEKhINGDLpeLaHgPDdCcTicymQyUSiUODw/R09ODVColoTk+nw8bGxuSZMX0Po5ZZBuJbDaLaDSK\nUCgkS0yTyfQOzyRmF+VyOaHEjo2N4ejoSOCkW7duyQnk4OAAjUYDGxsbaDQa0kSZUptKpTA/Py+h\nKAcHB0in0xgYGBAPJb6OtbU1FItFUSCnUql3hLf4fD4JBOrt7UVnZyeWl5fhcDjE7K1YLGJxcRFz\nc3NwOp2iR1AqlVIMXS4X9vf3EQwG0d3djVqthsnJSZTLZTSbTaytrYnrp06nE6U1G+ixXz/vCL7z\nne9Aq9Vienpa/p3ZOmNkZASBQEBS4KxWK05PTzExMSEqXwCoVqu4cuWK7Kt4yc6qZY5ALZVKYpXO\npz4W7i0vL2NxcREDAwPo7OxEJBJBpVJBtVrF5OQkdDqdDA9erxc6nU4iRJvNppz2WIGdSCRETe/1\nelFIJjFRKsHdaEB7dkaTbL1ORWl4mH6gXniBGDKPP07FbXOTCvjQEBXAw0Oa2nmXMDhIBfm//3cq\n+IkE/ZqbIwjo1Vdpil9bI0HV3h5N9p/85Pn94nF67WCQhFwjI1S4y2VqFM8+S83GYKDrfOEFKvwf\n/CCJuNi3Z3ycinooRH9WqagAZ7MEO+n1BDHV69RIvv1tUj6fnZ3bSGi1VJQ1GjqxANSEfvZn6ffp\n6fPF8fo6vb+zM/p+Ok3v6Ykn6PWSSXrtnh5yH/1f/4sorb/wC6SyPjqC57/+V7T+2T971+vkD3Uj\n4GUxh5fb7Xbk83kcHh5icHBQLBU6Ozths9nEUri9vR1LS0vo6uoSPx+2AA6FQsLaaLVa6O7ulqM7\np1vpdDrx6rfb7XA6nXJNKysr6O3txYULF7C6uip2yB6PR6Cd0MM8XrPZjEQigQcPHqDZbMqC+O3h\n5XNzcwiHw+js7JTln1KpFFdObnrMhmIBETdFXppnMhmYTCYEg0G4XC6USqV3+AQVi0VEo1E4HA4U\nCgXMzMyIZTTz2JeXlzE3Nye+SZubm+Jdv7S0JKppto7gbGI2iWMGm9VqlVB6g8EglhGXLl0SOKjR\naEjIEMNnjJXrdDqxvWCRFwDRGFy8eBFnZ2dQKpXo7u5GZ2cnEomEsIOGhoaQSCRweHiI2dlZPPLI\nI3A6naLRUKvVSKfTEinJaXHczHlRr1arsby8jP7+fjidTmxsbMhJwmAw4MUXX0S5XBa45sKFC0gm\nk2IZXigUMDw8LOrs6elp2VW0t7djamoK+/v7yGQyOD4+lv1Gq9WSgUev16O7u1vM+XjHcuHCBbz5\n5pvo7++Hz+eD6fQUhpUV4Pd+DyqDgWCYdJrw8YMDKtJ/7+/RZP+Vr9BU/aUvUSG1WGj6Za+gkRHC\nzb/+dZqcZ2Zomu/ooGJ+cEBL39deO/cLevxxwvW3t+n+X/86Fdtslk4Gzz1Hxf6P//g8MKbVIq3A\nN79J13rt2vmC9803aVewsEBF+OzsPDHMaqXIyXSaGlBHB0FWs7OE//f30wmF2Ts7O5ScNjxMGoIX\nXiDdhEpFMNbqKiWpDQ9TU7pwgfYB8Th9LtksNbeZGfp8traoab3yCn3/tdfotT/2MXptgD7npSX6\n8w+APvpDDw39xm/8Bj796U8Lltvd3S0UTOaeN5tNjI+PyzGdBVkcc1mpVBCLxUSRy/mwTAFUq9WS\n4sRB5DwZsmUzq2aHh4fRbDaxvr7+Dj8eDg1huifj/Aw3MeWRowK5IJ6dnWFvb08UquFwWBbarVZL\nTOPC4bAEjPOCkINjONyFJ2822guHw7JbiEQiIl5LJpPIZDLIZrOS9czTP0+osVgMHo8HXq8X2WwW\nqVQKBoMBPT09EsRis9mEpqpWqzE4OAilUgmNRiPvn6E1ZjzxkjuTySCfzwumzwlhHOaTzWYlL4EV\n0oODg7h//z58Ph+CwSACgYAwbtRqtTwnP76rq0tovH6/H6VSCWNjY3LKOj4+RiaTkUjLjo4OeV/R\naBTAeUzl291gx8fH0Wg0kE6nharJepZQKITp6WmUSiU4HA5EIhEJPQoGg/B6vWJMyOSDer2Onp4e\nmM1maDQaiU4dGxtDrVaTkyyfcI1G43ljKxahOjuD6Y/+CKp6HcqLFwnW6eqiIqpSUYH95CepgKtU\nxPi5eZOK2fo6FdpMhiZot5sawosvUrH0+6lg379Pk/nICJ0kLl+mpS+fCt73Pvrz/ftUqG/coILr\n81GB9Xjo+bxe2jdUq4TpT03RZH7jBsFXS0v0PGNj9BoKxXlofDhM9zs9pRPCr/4qPfaRR2jSt1rp\nWlut89xh3h3k8/R9ttH+wz8kGMtmo71AT8+58dxXv0pF3+0meIztK37nd6jgLy1Roz08pEbUaNC1\nR6PUgO7coeZjs+HX793Dr33+8z+Chv4qNxYz+f1+WTxqtVr09PTIZJrL5XB0dIT5+XlEo1H09fWh\n1WpJ2lIoFEIikYDVahWral5ccuAMq375mM04ts/nQzQaxdnZGXZ2dlCpVPDYY4/h7t27chLJ5XKY\nnZ0V6iRAiWpM+ZuamgIACatpNBp4/fXXpcg6HA4JKOfFI8c8si0xUz1ZlcoWEbdv3wYAFItFNBoN\nHB4ewu12w+12S5pYOBxGMBjE4OCgKI0VCoVoGVhDEQwGBde+f/++iNwqlQoUCoWom1Uqlewr0uk0\nHA6HGORx3nEymZR9wcDAgBRhNoTjBS87rgKUOXHt2jWJ5GQTNqvVKuI0NoTb2tqCXq+H1+t9B9R3\n5coVHB0d4fnnn8ft27fFHykQCMg+5ezsDMFgUAR7Go0GAwMDsk9i6EytVgsriBtXd3e32FMrFAqh\ng7ZaLTgcDmxubuLw8FDyJbiBOBwO5HI5JJNJvPLKK3jve9+LnZ0dVKtVTExMYGxsTDQcvLRvNps4\nOztDe3s7crkc6vW6KLIdDgcOQiFEdncxmkrB+bGPQXXxIhXIl14iT6CeHuK3v/YaLWLb2mj6/7M/\no4n3hRdoCq7VaNn5xhtUFONxahCPPUZFfHubmsfVqzT9/8mf0KlgcpL+vr5ORS8SoQbj81GT2doi\n9kylQgXyIx8B/vN/pgY1NkYnEqZvbm5ScV1bIyHZSy/R93Z2aOmayRCu73YTHHPxIt3/2jVqJMkk\n7Rm++lV63Y9/nCb6D36QYKJAgAJpDAb6HGo1wvkXFuhEwtBXKAR8+tPUMA4OCH6amTlPKSsU6P14\nPLR7uH2bGsD09LmKOBY7F5aVSkSN/QHc3s3M4r/2G+OzNptNfHcmJydFkWqz2TA2Ngar1Qq/3w+3\n2y0q4UQigXg8LhRFg8EgHHCemHnq5+P1nTt38PLLL8Pv90vi1cjICIaGhmA2m2VReunSJWi1WoyO\njgqtNZvNigUDi6OYvsmnllKpJNnEGo1GFMDs3Ml7A1bVtlothMNh8Y2JxWLY3t4GAMzOzsqpKBqN\nCowSjUaRSqUEBurq6sK1a9cEvjg8PJTp9ejoCC6XCyaTCZcuXRLYhOM9y+UyXn/9dZycnCCdTkuQ\njtVqRaPRwPT0NLq6ujA+Pi5K3IODAwSDQbz11lsIBoMSQXlwcIBAICCnkKGhIZhMJrjdbly/fl0i\nGXl3w6FB7e3t6O/vR39/P3K5HHw+HwqFgjCXmGXE1Mp4PI6bN28iEAggHA6LEpojJ/f29nB8fAyH\nw4GhoSHJGNbr9UilUtja2sKDBw8Eh2e6aLVaxb1798TJNhKJoFgsotlsIplMQqVSYXp6WvKd+/v7\n5VTH7rUsXPP7/ejs7MTZ2Rm++93vYnFxEVtbWyiVSqhUKlhZWZFkMz7p5HI51Go1tGm10DQa0AcC\neMxmw8DgILS7u1TIs1kqmH/0RwTNvPYaFd7f+i0Si6VSNL1Wq7Swjcdpgvd6iab5oQ/R1M+L5D/8\nQyrKoRA1FubP//Iv03MHgzRpf+ITVMSZ1//nf06WC6xCDoep4Hs8NEX7/dRAvvpVuk+rRZDL+DjB\nS0Yj3fett6iQ5vNUXL/6Vbqmr32NmllHBxXhnh56H9evA5/5DJ1A+IRSq9HzmkwET8Xj53GX164R\n1PR7v0dNUKkkCOfmzfO85akp2i90dlLD+LM/oxNFOk202KkpamTFIp0+hobOGU6Hhz+wWvlDDw2d\nnJzgx3/8x9HZ2SlBI8wQ4ojDt2f3np6eimqU6XhsGdzf3y9Fxmw2o1arwWw24/DwULyFPB4PRkZG\nZDGbz+exsrICnU4nLBou4m1tbdDpdDIFqlQqEbdx2IxOp8PGxob45fDUzLnKbANcKBRkcc0q5d3d\nXaEI+nw+tLe3i1bg7VO90WiUydNkMqFSqUhyV61Ww+npKWKxGAYGBgRGYa0CZyiw4RunZrHjKcM1\n3Aj39/cxPDyMVquFQqGApaUlWZSyqCsUCsnjDg8P0dvbKxRO3lsoFAphHzHXfn9/X0wA6/W6ZBgE\nAgHodDokk0k0Gg1cuHBBlMTcLFn7wQFGvDdgTj7TYZkFxEZ0bAHO8Y7sjtpsNrGzs/OOTAn28ne7\n3RgeHobNZkM6ncbm5iYajYZ8bl1dXaLb4AbGUaIul0tOdyz0Y6+lcDgsAw6LINnSul6vY3J0FKWN\nDfTUarCGQjBcuQLl2dm5rcGTT1LhPz6mSf7nfo6KoslEk/LyMi1v9/dpZ8Ce/FYrFWebjWCfSoUo\nlNeu0WngiSeo0Eej5MOfy9GU7vVSYyiXiVFTLNLjw2F6bD5PxfrSJbpGDqvp66NCPztLsFK1SqeT\nixepSAcCxN45OaFCf+nSORXUYKDnKJVoSt/bo2ncaKTC63TS5P7cc/Qazz1HxeTWLToxMURjNJ4z\nhxYXqaB3d9P1x2JEU3U46PrLZdoHfPjDdAritDKfjxbxAF13fz+952aTnuOttwCtFjc/+cl33Yb6\nh7oRtFotYb4wK4gxXM6gVSgUcDgcaDQasNlsQqs7OTkRf/d8Pi+Cnnq9junpaRweHgpLhv32maPe\n1dWFVqsFs9mMUCiEra0tABAuORc0dvRUqVTwer3Y2trCycmJZBGzFz8AWRRnMhlkMhmcnZ0hk8lI\nweUkLS6wHo8HR0dHErzDMZ0cyxgOh8VaodVqweVyvUMnMDAwgEgkgkajgf39fcncnZyclMB6m80m\nIT6BQEAKKBuycegK02QZ3uL7s58+w3TxeBwdHR2o1Wq4cuUKHA4HvF6vZEhzlGgulxPbiUqlgp6e\nHhgMBqytraFQKKBQKODy5ctwuVxIJBKYnJzE0dERNBqNRHsyX5/twtmHn4sw+/fk83nodDqBWHip\nXiqVBObR6/Vwu91SoPf29lAoFKBSqQSft1gsGB0dFbfWer0OrVaLo6MjtLe3C1OJTyBsOcHGg6mH\nalNOHOO9wOHhIU5OTjA5OSnNpq+vD6+++ir0er38vzUajXCZTLCfnEDf0wPla69R8Ver6Xe7nQr0\ngwdUnDs7qeDyknNmhppBOk3FK5ejBWyjcT6N7+xQc2BWD0Anje5uahZuNz1Op6OJfHv7PMT96aep\nYL/8MhVop5MaT7VKhXFzkxrUc88Rvt7bSxnAh4f0nDYbFfg/+APgn/9zKtKpFBVQt5um82iUmsXk\nJD2/Xk+NbHCQvs8iud1dahQ//dNUuPV6ahiPPkrNQKE4h5yCQWpumQwV/9VVahK7u/Qej4/pl15P\n12ww0Gd88yZ9fktLtAAvFKi5cvzlwQGwvIybv/mb1DC/z9uPGgEgitZms4lQKCRRgFarFWtra5JP\nAEDyAoxGo7BBGEJi9efW1hYGBgZgtVoRCATgdrvR1dUl/kXM5mHsm5fTSqUSFy5cgN1ulyjJ7u5u\n2O12ZDIZRCIRKchsi82c98PDQ/T390On02F3dxc+n09sFVwuFwqFguwFisWihIhnMhnJyB0eHkYg\nEBCWTjKZFGYJ7w3YdM7tdkvoy+npqeQeu91u6HQ6aYbsxx+JRLC+vg6v1yt8er4P0yBnZmYQCoWQ\nTCYxOzsr7q2VSgUXLlwQ22rGsFUqFZRKJXZ3d8UPnxfcHo9HvIrC4TD0er0Ued7/8OnPbDbL5M6e\nQzzhn5yciLkbG7OZzWZ0dnYinU4jEAjAaDTC4/FArVbj4OBAWFYcV9poNKDX6wWSYjqoSqXCyMiI\nRHCyk2xbWxui0ah4SvEepKurC4FAQPY8DAmdnp4K/Zb9khjiYb+sra0tDA0NIZfLoVgsIp1Oi00K\n+x4V0mn0mUzQ/vmfQ5VMEoXxySepED3/PE2jY2NU1C9fpgl2epow+WvXyC66WKSv1esEIc3MEOTx\ngQ8QXNLeTlM300J7ewkSunGDCvnaGjWRN96g73ET+fKX6Yf14ICKsMVCv6tU9Fp/9+/SFJ7J0DWo\n1TTZj47Ssnl2lhpQs0kN7Wd+hgrvN75B+Hs+Tw1Np6M/379PEA7j+BwWzw3P6yWtwvExMZkODqjY\nd3VRk+rspOdSKOj9spgsFCKtQzZL0/wnP0mN88YNOlEdH9N7fu97afJnUz6FgvYnt25Ro/rKV6jR\nGo1ATw9ihQLafb533Yb6h7oRqFQqDA0N4TOf+YwIfnj6NBqN4n3DnkEMk3A0Ya1WEyyfvWBYDRqJ\nRCR2kQVCzHhJJpPCkmElcrFYRCaTgc/nk+M+c/0524B3EJFIBDMzMzCbzVAqlVhcXMTY2BiazabY\nK7jdbknE6uvrQ6VSQTAYxPT0NAoP3Q1Z5VsoFASSymQyAjFw0EypVBLsn6GzjY0NNJtNseVm76B8\nPi/NAYAEwjPNlhsoN8HT01OZptmqGiAdAnBu880MnL6+PmEoMQTE5ne1Wg12ux27u7sYHR0VDYLJ\nZILZbEZ/fz+sVitKpRICgYBM9HzS4IhPXsYODQ1JIFClUoHdbkc6ncbW1hbm5+elyLMnv9vtxvT0\ntAgQWb3NcJJSqUQ2m0VHRwdSqRSOjo7E4ZNhOc7D2HyYb9tqtZDJZGSPMjU1JfkTGo1GfJf8fr8w\n1HQ6HQ4ODmTpPDAwgEKhgGq1KvuiQi6HWrWKcY8H3W+9Bf2LL54X8OlpKt6bm9QELl+mSfXZZ2ki\n3digifftRnBqNU3d9ToV4UYD+P3fpync5zvPIFCrqbi99BKdEr74RZqi33yTsPif+An64Tw7o/uF\nQlTIBwboNZVK+nqjQYXU4aBG8J73UIFdXqapvlKhE4XdTs3g7IzuNzFBDSIep+fIZGjB63Sep4/t\n7dE19PbS955+mor48DDtEZ56iiCe6WlqGGdnNN2zhYXFQq+/t0dFe2aGinm5TAW/u5t2KCMjFLLT\n30+nkv7+c2bT8DB9rvfu0Wd3/TpRdcfG6HM8OwP29mD+uZ8j1tCP8gj+6jcW1DgcDnz3u9/FpUuX\n0Gg0YLVaRVTFxSCXy2F6ehpOpxPZbBYKhUKKXnd3t0A5TDs0mUzweDwCf7DwiNPEms2m0EHj8ThO\nTk4wMTEBv98vewBmD01MTEjACeP6wWAQFy9ehMVikebFDBGOkQyFQrIsZQaK2+1GNBpFs9nE4OCg\neAhZrVbs7u6K9XaxWJQcAubi22w2YZmUSiWYTCZhIbE53uXLlyUC0+fziQvo8vKy2EU4nU74fD70\n9fWJg2a1WhV77pOTE0lYY4FXJBLBxYsXYTKZsLy8LDqBWCyG9vZ2yVJmzcfGxgYuXryIer2OVCol\n163RaBAOh3H58mWYzWZ4vV6xeOBMZJVKhUKhgGw2i3A4LP5EnBMQDofh8/kkn4Gn9FqtBrVajY2N\nDczMzEhDZrPAWCyGtra2d2Q8N5tNpNNpmEwmJBIJXLt2DYVCAZubm+jp6RGbB5VKhUAgAIPBgGAw\nKJRU3seUSiWMjo4im81KSh0v7Xd2duC021GtVuErFOA2mWAKhUgUFYlQwd3YoGXs5CQV8H/0j6hg\nf+1rVIy6u8+x8/V1mrI/9zmCPGIxmlzffJMK4Pg4/YBNTBBE09lJ8MrRETWWP/1T4F/8C5qce3qo\n8fCyVK+nr/2dv0NFFaACWCrRNDwyQn79Gg0V1dVVer7ZWbqujg4qupOT1Iw6Oqi4vvgiQT1OJ71n\ntrTu7we+9z1iBAFUzHd36TXf/34Sc83NUQEOh6lYT0/TfZiVlEjQtb30En1ubW30eQC0XH/qKWpc\nTz9Nz3XhAl03x1WyQK1Wo6UwL4iVSmJhPfEEPebZZ4kltbpKz/2jPIK/2o3po+zL0tPTgw984AM4\nPj6W7NparYZMJiMWCDyxlkolEfLE43H09/fLycFqtYqjKCtbGVc2GAzY2dmBXq8XCIH1CW63G0aj\nEaenp7hy5YrEPjKXv1arYXNzEyMjI+jr6xOMmUVcTHtlCIPDT05OTgSe6erqQrPZxNHRkaRj5fN5\nUdl2dHSIT09XV5fYDCiVSrEnUCgUcLlcUCqV6O3txfr6uhjbVatVDA4OYnNzE4888ggsFos8P+cn\nlEol9Pb2wuFwIBwOo1Kp/H/svXl0o+d9Hvp8xEIABAhiI0ACIAnuHJJDzqqRRrNosWzZlmxZurFT\nJ07q5CR1lpueNOc66XKbtGmbpG16rk9OnDiJ2zR2nSaW7Viq7cjSaKSRNItmyOFw3wmCIEASKwGS\n2EjcP555f7DapkntqouPcQ4PCQL48L4vyOe3P48wm6ZSKZhMJjQ3N4vCWF1dnUQ2qk3S6XQKJ74S\nwEmn09DpdDh58iQKhQKam5sxPz+PmZkZ2O8P3CgDFIvFhOtfTYur6WVl0Jubm5FMJnHnzh2cOnVK\nlMZUIV0ZymQyKcYgGAwikUjAbrfj0qVLwuipaMiz2axQQasOJqWOp7Qm1CT07du3cezYMTGMBwcH\nQmVutVoxNzcHm82Gu3fvimFSxnJ3dxc+n08kRHd2djDa1wdrJILDtjYYf/M3oWtoIEi7XOyZVxOx\nTz5JT/mtt5iq2NigJ/ryywR3pRA2N1fLT9+8SSORSNA7v3mTaZg33ySYnj8P/OqvEsiffZYgPTxM\nz3p3l8954AH2ya+s8FpKx1cJyDudTN0oqoVKhWC+vk6P/fHHabyqVXrRe3vAb/0WC8V7ewT8UonG\n4etfr4nKvPkmIwmrlXv+6lcpIBMKUeNgf5+GJBrlTMGFC/TyX3yRIF6p1NJJVisfUyI83/42I5iP\nfrQ2tXz8OM9pYYHtpJ//PPddqbBTaHSUranz89yTwUAjNj7OKAhgKu2FF/hzufyuG4Pva0OgJotV\n8XZzc1N0bdXQkBJXsVqtyGaz8hq32y1538nJSQwMDIhuwcHBgXSrKO1cBeS5XE48tmg0inQ6/Q66\nhJaWFkxPTwsVtkplBAIBWCwW8ZSnp6eFCE7NBWxsbODEiRNYXFwUQ6WijWg0KrKNirAtEom8I2pR\nNYq2tjZkMhkRmtnc3ITH44HJZJIisc/nw9TUlKS2VE+9WpPf7xdtY5WGUQpm9fX1UpRV/EiDg4NY\nX1+Hy+USqcmpqSmJPhR4Ku4blZNvampCsViUOQ4ACAQCGBsbw9DQEFwul8wHqLqK0joeHh7G4uIi\n7HY7JicnhVRPpXtUqqtSqSCdTmNra0uKyG63G9vb2zLEpeYG1GS40n7I5/OibaCEcxSxnuK1MhqN\nshc1db6+vo729nZsbGwIqKu/L7vd/o75EJ/PJ3QeiqxO1Rs0TYOrsRF6AAdTU7BbLDBubLCV89o1\neu6JRG0gLBYj6DU18eeVFQKZyUSjoAqgoRDz5x/9KNNF584R2A0Ggt+JE3xuQwMBMBik0XjmGRqJ\nVIoe8quvso6Qz7PDRxVeVXFUibCMj/N9TpxgvaGpiaD66KME5OvXCbw7O4w8/H7eHx2lEfH5alHA\n/j4NRTjMuYLDQ/b5b2+ziP3pT9fE7Hd2aNjOnydIRyIEXrud6aqWFkY3sRg7fz74Qb7vV77C67/v\nfUytAUwD2e00ol4vzyEU4vXGx+np//qvMwJ6/XWmexQB3r17lKccHqYxVp/H5/7arM7/kNv3tSFQ\nEYEiAVPU0oo/X6lOOZ3Od7BRqm6Uzc1NtLW1oaGhAW63WzzBuro6aJqGaDQqU8rKWwsEAlhbW0Mu\nl5MCqOLWcTgcsFqteOCBB5DP57G5uSkFx3g8juPHj0vqQfHqt7W1yQSpGhIym80Ih8Po7OyEzWaD\n0WjExYsXYTQahZE0lUqhq6sLNpsNU1NT8Pv9wjevcuSZTEaGoQ4ODtDa2iqtsiovrhg8DQYDMpkM\n9vf3RS0rl8sJA6dK5/h8Pmxtbcmw3q1bt9DX1yc97UqvQXnnU1NT2N7eRqVSwblz52SIanl5GVtb\nW+jq6kJfX5/MBDgcDgCsMUxOTqKxsRGtra2YmZkRY6aI6JTxyGaz6O3tRTAYlM/c7/djdXVVCN6K\nxSLa2tpEchQg2V6pVMLc3JxQiauJYqUqp4a3VOut6gRyOBzv4FRS0+WK/tlut8vfY7FYhM/nQywW\nE8rz3d1ddHR0YG1tDYFAAEtLS6JZHI/HAZBHy26xYPn119F1+jSMZjN0AwP0JB0OAvVLL9HDzmYJ\ngj09BPr+fqZe7t0j8AYCLA4fHhJ8L15kGubaNXq4N27Qm/Z6ea233iJQvvpqrcCrafTyp6fpVW9t\nEbAtFl43EiFAr6/z+tevs19fDWjV1bGb5tYtfl9dpUcei9GD3trivhQRnabVWjTX1jis9sM/zDV7\nPOw4+tM/pVd+8iTB1+2mQQiHueeDA6Z+zp6tidjfvs3oYm2N0ccTT7CA/OSTvK4S4nE4GG1oGtc6\nMsLrmUw0mB/7GNeuhHp+9mdrEYriTLJYeL77+0zBORw0BDMzjFwjq3KAAAAgAElEQVT4x/6uRwTf\n18Vi1Up57tw58dZbWlqEWkD9sxaLReF3Ub3mitqhra0NPp8PuVxOBEdUSK4E7b1eL/L5PAqFAra2\ntrC3t4dgMIj6+npRq1KcN8lkUoazFHWwXq+XVI/RaJQ0RyaTQVNTk7R5VioVTE5OyjRuuVwWoZly\nuYxEIiGDY8rAZTIZdHd3C5irSEjlwtUMgKpXKJBSFBELCwuw2+1yrZGREaGTrlarYnwODw9lWCyf\nz4vmr6I+bmtrQyQSQVdXlwi6qJSK1+uF1WqFy+WSuYWWlhZsbGxI18zS/QKfmujW6/Uih5lOp2E0\nGjE5OSnc/m63W2YOyuUy6urqsLGxAbvdjmKxKPWHvb09HDt2THSYy+XyOxTgvF4vbDabCNk0NDTA\n4/HAcl8s5D9XPWtubsbS0hLcbjecTify+Tx2d3elYy0QCKCpqekd7KtqqG1ubk7qK6qld3FxEc3N\nze8gJ5yYmIDP58N+Molmnw8upxOmcBh1i4tMi+ztEZzf+94aL48qckYiBOJCgamKF16g953PE6SV\nYqHiDnI66QmPjLB4HA4zZfR3/g6vfXRU84gLBaZpGhqYZjIaCYA6HesS0SjTRpEI1zYzQ26fN9/k\n83p7WQ/w+1lrsFoJgIuLjDDeeot1gh//cXrl5TLXt7DA+11dNY2AdJqRgqpbuN3s1HnwQdYDFE3F\nyAjz8W439+J08nwUg2qxSOBXgjmaRkNlMnG/V67Q69fpuO8XX+QZZDI0nvX1jDxUV5ZqRx0cZLF9\nbY2G9c03+TkVCjzfxx6jMayvx+X3v/+7wk3gB11DANg1c+nSJeTzeWxsbKC5uVl6371eL+rr6+VL\nKTSpyEEV/VR6x263y4Tn5OQkjEYjtra2UFdXJ4L0iUQCx44dQ2NjI4xGowiblEol3LhxAwcHByJ4\nooRnFH2ymmKuVCoiOKNSPKq3fHFxUSZ3lb6w3+9HtVqF3W4Xz1rNGKysrCAWi8n8QCaTwdtvvy2C\n762trULh3Nvbi6amJumN39zcRH19PQqFAo4fPy5TuJVKBdPT08InpIbclKiLos02Go0ieq9y70dH\nRxLxjI6OCgmdxWKRgraa8F5bW4PL5XpHITUYDCKVSsHhcEhUkUgkRESnXC7D7XbDYDBgamoKW1tb\nKBaLGB4eFs4ndSZHR0dCI1JXVydDYlarFTMzM6IdrNfrZYpZNQ8UCgXE43Fks1m0t7djbW1NWoBV\n8VvNQ0QiEUkFeTweZLNZ2O127O7uCnGd1WpFMplET08PQqEQVlZWcPz4camvKF4pgDKnJ0dG0G2z\nwfXlL8OoadDdusWUik5HILt9mwD0F3/BFIzdTtBU+sE+HwHO5eL9L32JnuzDDzPFMzdXK4xub7NI\n/MAD9LQffbQmI1kuM7WhaQT3XI7vl83SsFy+zJTM1asEy4ceIog2NnKdHg+vtb7O9szBQXrtPh+/\nFwpMlaTT/P7cc9yn8uyXl+nVGwysNXz72wTvqakaqB8c0JN/9VWmrW7dIkj/yI/QE/f7eW7lMp+j\nOozCYZ7Fl79MI1qt0mi2t3N/9+5xDWoILJ3mGUWjjC5iMRqAxkYaN5uNLbtHR7zv8/F158+zLlKt\n0iiFw1zH/j6wuIjLDgcjuXeZa+j72hAcHh5KV4bX6xVGSzVkA0AANZ1OAwByuZwYjdHRUTQ2NkKn\n0wmb6O7uroTvh4eHMrilhpdUuO/xeKT3f39/HyMjIwKGDodDev8VQ6imaTKJu7W1JQpmSt7QbDaj\npaUF1WoVsVhM+Hji8fh/YcAUx7/iSFL96GqIzOv1QtM0+Hw+OJ1O+Hw+iRS2t7dhMplkDsHj8byD\n6E1JMHq9XmFCVQVQxbOjOJkaGhqwsrIi7ZBNTU3o7u4W0rx4PC6KapqmYWVlRTq32tra0N7ejmg0\nitnZWTgcDszMzGB4eFjqAru7u6KZUK1WMTAwgEqlIjoMpVLpHfxNer0eXq8Xh4eHMq2s2j+LxSJW\nV1cRiUQwMDAgA1qK0rpUKqFYLEoXmarRKKOm0oWxWAwWiwXT09Po7OxEa2ur6BkopbFCoSANC6pz\nSamaqYnxYrEorK99fX3CEtvR3IyjuTk03LoFw7Fj9DSvXKkRpO3tEQAHBggwXi+B5cd+jOB/9SpB\nvreX38+fZ778mWfolW9ssFhsNDJn/cQTBKfDQ7aSbm0RwA0GduGMjTEiePFFpp0uX+Y1lpaYInrk\nERqi+nqC3/4+QfPCBQJtKkUwb2qi4To6ogeeyRBsr18nmD/3HEH6+nXm6UdHCcLVKoFydZWPnT9f\ny7G3tjIFs7jI4bP2dq4lEGA0dOUK9/T667yvisPPPcf9pVI0KlNTfO3oKNd57Bg9+JkZ7ueZZ/j6\ncplncOsWaw9KOlPTaBBKJRaxvV4a1UceYdRw8yaNZHc36wh+P6/z2mvYXFuD7Yknvmu5yh8YAjAi\naGlpwUc+8hHEYjHpftne3kYulxOCrlgsBp/PJ+Lper1eqB6KxSJCoRAODg5kZL++vl44a1QhWafT\nwWw2w2KxoK6uDpFIROoGiqZ4c3NTCoKKVqFcLgsZWVdXF/x+v+gb+3w+7O/vQ6fTweFwIJ/PQ9M0\n9PX1CSgZjUaJPo6OjuD1euH1esWrVBKSU1NTaGlpgdPplGJnqVSCwWCQNM3W1hbi8ThCoZAUKePx\nOGZmZpDNZgWMstksgsGg5Mmz2awoes3MzAhVRiqVEq5/s9mMnp4eRKNRiRLW19elXVXVWc6cOSPR\nl1IWA9i6GwwGsby8jLm5ORnaUl67SqkoQj0l07mzs4Pm5maZTj48PJR0y/LyMiqVijCsejweAMDA\nwAB2d3elI0sNGNrtdlitVlgsFoRCITQ3N2NhYQGBQAAmkwl+v18UwZTQjKKDHhoaQj6fF3lIRbmh\nWkydTqf8nShKEkXYpwjv2s1mWLe2YA4EoFtboxedSNAz3d0lcPp8BGYlyTg2RhA+fZrgtbHBwu/2\ndo2jx+MhQD3+OO8bjXxNPF5LG5nNBKpcjkCey/G5xSIjh/p6Auzrr9PbfuQRrq+hoXaNnR0CbG8v\nJ4TX1mgslJZAPE6vWqWDfvIna5QXp07Rc9/dJaACnMg1GnmtoyOuZ2yMxurcOZ7N7duMerq7CfoT\nE1z/pUs0ZJkMawgWC4frBgdpzPx+pqYcjppM5Xvew+L6nTtc80//NJ+7uMh9b2yQd0iJ0LzvfaxN\nxGI1TQUVffj9Nb6icpnnt7DA5z/2GA1ppYLGP/gD/Oo/+2c/mCP4Xm6qWFwoFJBOp1GpVJBKpSRv\nvL29Db1eLwA9OjqKdDqNfD6P9fV16HQ6nDp1CtlsFru7u+Jd3rp1C3q9Hi0tLWhsbMT09DR6e3uF\nhycUCsmkqsPhwNLSElwul6RMFH1BQ0OD8NBsb28jEAjg1q1bePjhh4X6WNFWJBIJkcpU6mKKrE51\nC6k6hYomstksIpEIDg8PEQqFpO9eKbCp1IoSPimXy0in07h7966of/X29qK1tRWVSkX0AVpaWqS7\nRUUWqjuor68PsVgMb7zxhmgRHB0dCfVDMBjEvXv3sLKygt7eXsTjcZnpMJlMUnNQIjTpdFpYQdPp\nNAYGBkTb4ODgAIVCAVarFZqmYW5uDseOHUNbWxveeusthEIhbG5uYmJiQuRFOzo6MDIyAq/XC7/f\nD4DstIqBNJ1OSwE4FosJo6tiSFVCRSsrK0LsporW6qY8/FQqJcSGinpDpZzK5TK6urqwsrKCfD6P\nYDAobKr19fVwOByynmg0ilOtrTD/xm8Ajz8O3cwMveHOTrYmNjay8yYSIdhbrfw6dYqecShEoJ+b\nY8Hy5k2C1pkzTMt85CM1wLovXIRgkODz2mv0gL/xDeAf/ANe8340jZkZAvXXv878fDpd481fWWEU\n8eabvNYjjzAyKRa5pvZ2fqkeftWeGonQgFUqrAnU1THq+frX+b6VCj3+hQWC9soKI6BHHgH+5b+s\nFXRXVphaWllhSkbTeP/hh1lEb2mhMRgbI+jevMmZhmvXarKSV68yfTY8zDN+/XV2CwUCBPLbtxl1\nbGwQ+FdW+JiabwBoYOx2GqJikZHb0RHbRE+e5PvZbCyAd3bSYN69SwPR2wv8q3/1bsMkgO9zQ6Ba\nQc1ms+jqTk9PI5VKicC5KiyqoSaVdlFEaYrVU03hVioVABBP2Gazob6+XjqTVD7Y7/cjmUxiZ2cH\n6+vr76AJ2N/fx9raGgqFAnp6etDU1ASv1yti52q4anJyUrptDAYD+vr6cOPGDdTX1wtjaqFQQH9/\nP5qbm7G4uIhYLIZQKASHw4G7d+/C7/fLAJqikx4bG4NOpxOReYvFgnv37qGjowOdnZ1Cgra7u4tC\noYBsNovu7m5sb29LxLC0tITW1lZ0dXVhcXFRUkGKUE1FUx0dHVhZWYFer8fOzo7k5F0uF+rr63Hm\nzBmR/jSbzbh9+7Z8NmpoTInqqElnk8kEt9stoi+Hh4e4efOmiL8rkriWlhbYbDaJeBTp2+7urhhZ\n1fWl6K8HBwdFwEftMRgMYm5uTtJ4IyMj0plksVjQ2NiIarUqcyd6vf4dimVKHW99fR0LCwuS/1dp\nRDX9nE6nUa1WOXwXjyOVSuHc2bOwHh3B/OqrBIp0msXNlRWmHYaG6FUPD9ObVlO6Sju4vr6W5vjU\npwjYV6+yaKpaNw0GArBOx+vdvk3QVr3+6XSt22hqqpb2UCmmp59mSuOJJ1jM/fKXCY6BAFM1q6u8\n3uEh37O+nntQzKLr6zQWfj+vf+oUf1adO6+9xvfRND4eCDB6mZjgWs1m1g5OnSKADw5y75pW0xYo\nFGgsdnZ4PokEjcq3vsW9nT9f6/h58UV2/IyM0Pt3u2t7//SneR5LS/Tcr1zhOVWrfO+f/3lGCOUy\nu7AefpjPm5mpTQ7/2I/x8Xv3uAYV/Xz1qzQ4P/IjnIG4L5T0gzmC7/GmIgKbzQaPxyNeqM1mE8K5\niYkJtLe3Y35+XnR7VTHP6XRKr3s0GkUgEBARFIfDIWG7zWbD3t4eGhsbYbrPEqg4gnZ3d0U31mKx\nIBqNwu12y0BZsVjEzZs3pUvFZrNhbm5OpnJVD7qanPX7/Zifn5ciqqpbKN1br9creXubzQaDwQCn\n04m1tTWUSiU4HA4pNitiNOXNu91uGI1G6PV6VCoVobRQ9Q6LxSJ7dTgcQqmwt7eH5uZmrK6uIhaL\nCbme6qpyuVwIBALY3t6WfnhVmFWvV0JANpsNdXV1MtsRDocRjUaxtrYGm82GnZ0d8ZzPnj0rhdbz\n588jkUhgY2MDsVhMKLU7OjowPz8Po9EobbGKLyqRSGBiYkJScZlMBh0dHZiamoLX6xWJUdWOazQa\npV6i0jiK6nx7exvHjh1DJpOBy+XCrVu3MDw8LAX2UqmEg4MD+P1+LC8vw2g0IhKJSN1A0YYPDAwA\nu7vYffFFDK2uwh4Os6g4PMx0TCBADzOTqdEUf/SjBMtnn6UH+/nPExQffJCPz83x/osvEgRfeIGR\nQVcXAVYJxn/oQwSflRV6usEgvdWHHybghkIExAcfpMiK4uZPpdgp8/LLNW9Z0wj4/f01oFdpkG98\ng681GmuGQlFbnzxJYJyaYrTx2GPM898n3YOm0Xs2GBj1BIPMr//CL1DicW2NBufcORofTaNx/Oxn\nuXe/n8XxcBj4lV+h8TSZ+Ptvf5sG4+RJRh3f/CZTQy+9xKjjqadq4LKywjUEAjy7eJypoC98geuw\n23ntcpnGpr2dj09M8HcLC6zhfOIT3K9SYvP7aVw++EF+XsD/lMni72s9AhURKD77SqUCl8slrY/p\ndBrDw8NCwqa6cFpaWtDX14dUKiUcNwaDQbqAlEj5+vo6GhoaJOWjaBDUAJbKWauJX9WiaLVaZbJX\ntaFWq1VMTEyIkEk+nxcqBcWH39jYiKGhIfT09MDn84mKlcFgQEdHhyhQqcExJb6ez+cRCAREYjEa\njWJ9fV3aNBWD5e3btxGNRmU4zGg0SqSk9JkbGhpgtVqFXVXNA9hsNumRB8hB1Nvbi4aGBqTTaczP\nz6OpqQmrq6syLFWpVLCwsCCFXxVReDwe6HQ6rK6uykBcW1sbOjs7Ua1WYTAYEAwGYbVaxTCkUimh\niG5raxNRlnQ6jUQiIW2+TU1NWF9fF3F5dZ4qHZRMJhGNRmXWIJ/PI3ofcDOZjJDq6XQ6uN1urK6u\nYmNjQyKTQCCAUqmEU6dOyVzC/Py8zKSoGk8wGMTZs2dx+vRpjI6OihFOxWJYHxuD+8QJ2JNJphGO\nHycQrq8TgGIxtmM2NhLcolF6lrEYC7zd3Ux13L3LQaZKhWB+/jyLyT/90wTRhQUOLN2+TaBKJIBf\n/EV67RsbBMgPf5h5+dZWvndLC4HsIx8hyHd38zqLi1zf+97H1EtPD1tEX3uN7//qqwRBi4U5/nKZ\nX1tbBMzdXXrUNhtf39fHNeXz1BR4+eXaej7wARqKY8fYoROJcG+qI+qrXyU4f+MbNEa///tcq89H\n46PXcz9jY6wP3LjBtFKxSLB/73u5n6OjGpPq448z6ujvp3FZWWGqyGajAf7bf5tdQo89xrMbH2ek\ncv//AbOzNA6nTnFtlQpbcBXIv/QSI5Ll5Zr8peJE2t9/97Hy+7lYDABHR0e4fPmyiMWn02nMzMwI\nR7vNZoPFYkFbWxuSySRaW1uxuLgoxc9kMomuri6hPVCsnR0dHZLC2dvbQ6VSQX19PXw+3zt4+L9T\n1rKlpQXNzc3SZfOdOrvlchlNTU2wWq04duyYFD2LxaIMJilvVIHOwsICbDYbGhoaRBdB5fdtNpt0\nMbW3t6NQKKCxsREtLS2w2+3C3qkoIlReu1wuo1gsoq+vD5qmwWazYXZ2VtJTSiCn576YuaLOKJfL\nsNvtIsGpmEqXl5dhtVqlGF0sFuHxeESkXQ3oKYnQ7u5uiWQikQg8Hg8WFhZk8le17A4MDLxjUEvR\nLOh0Oty7dw8OhwO9vb1wOp2iQR2Px9He3i4SnXq9HrFYTKaEVT0mHo/L5G9TU5NoMheLRfT390tr\n8crKCkZHR2E0GrG0tITm5masra0hHo9LPSkajcpEu8VikU4nNU29vLyMlpYWHJVKCHo8cEajcB4e\nwvTGG+yX39wkGPr9BJXDQwJipUJP2u8n8Fy6RGNRV0egPHGC0cHduwRYr5ffZ2fpRa+s0MN/5BFe\nn4vl4/X1BFmdjsZlcZEebzLJNZw6RQOwtsZOmkqF4FhXx/vj44wSjEYCf38/c+tmM6MQNWOQTHKN\n9fX0/tfXa4yfVitBdWqKBWefj576l77E5z71FAHyC1/gc1taGDk99hjPIRymV18uc52K/vpjH2ME\noZhMH3iARkdxF01OMuJIJvn6cLhWcP/a1/i8Eyd4X01NLy/TGE1M0KtfWuJZ9/UR4B99lMbJ6WRn\nk8vFlFNfH/Av/gUN+swMjUo6zQjozBl+zjodLj/77A/YR4HvrX00GAwKe+fs7CwODw9hMBgkNaD6\nyxXtQCQSQSKRQENDA9rb21FXVydAvbOzI0RrdXV1IkzS2dkpRkBp2F65cgW7u7tCex2JRBCPx5HP\n52E2mxGLxeByuYRczOVy4dixYzg8PBRDomiS1V6UQpVKNTU2NkpLarFYhMlkgl6vR11dnZC/1dXV\nSbpJce8ojvz29nakUikZaDp58qR4zKqrKZ/PS20gl8vB7XaLEMzu7i7u3bsnimWJREIUy1ZXV0WW\ncnt7WwRVlBD94OAgTCYTBgYGRAxHsbIqY+LxeGA0GrG2tga/3y8U0U1NTVJoV7rM5XJZBuna29tF\nIyKdTstZqSK9atsNBAJC5KeKuIqBNp/PC3FgQ0ODTEAbjUahEzEajSgUCshkMhgYGJAuIYvFItrV\npVIJfr8fg4OD0qKs6gh7e3vwulzw2GywTk3BmM+jrlKhbKROR69VDYPlcgTlTIZArjRy3W6CdDRK\n8FA1g+vXmRJ6+ml6on/2ZwQbk4nPCYcJdnNzNb78zU0ajN5eXnN1lV+dnbWOlhMnasyibjfZOpUu\n8dNP01BcuUJQMxrZSplKsYBrNtekJ4+OeO1gkGtpaqKR2Nmpka2Fw7x2pUIDUyjQKKjJ6f/0n8hB\npARsbtzgGgsFFmG3t2vtokYj1768TKN16RLz8HNzvF42y/NQnVif+AQ/g50d3v/xH2ekcHDAc1pZ\noTGpr2dksLJSE7XZ2KjNWAwO1jqSFJGf3891hkI0UuvrPMtike/vcnE9Kyu4/Eu/9F23jgL/Aw2B\npmk/92u/9muLv/qrv1r4rlfzPd6+l8nitbU1tLe3o76+XoQ/Ojs7YbFYUCqVsLu7i+bmZpGIXFpa\nkqGw8fFxDA0NidD7d0YAiiLaZrMJK2U0GsXq6ioGBgakTXNxcRG5XE5y4QaDQWgblDpZKpWSyeKF\nhQVomobJyUkZRnO5XMjlcjLtq1pHFQ++mrRVxWqbzYbu7m4YDAZpQVWpFLvdLgYwHA5La2R7e7tM\nrip5TE3ThBAN4HyAavdUxVur1Yquri7JpYdCIZjNZlFMi0ajQsGgDJ+aL1haWhL2VMWKqjxngGSB\n6nXT09Po6emBxWLB5uamUGUoZTeVh6+rq0NXV5e0aaohN9UZFIvFhDpjY2NDqEQA5vkBwGQyyTCf\nqsUoQaDBwUFEo1GZS1EdT4qBNB6Pw2KxyJRyd3c3fD4fAMgU8ebmJkWDNA29lQqMs7Oou36dxcn9\n/Zp4ySuv1CgKBgaYnhgfJ/hcvkzA0+sJVoUCAahQqKmFLSzwdX/xF3xdczM97j/90xqQT07So85m\n6d0eHTF3rWlML33yk/x5f5/Pv3WrxsczPc3uJYBAWyyyWOzxMDWUzTJVVF9PgCwUagIvIyNcn9tN\nI6e6aCYna22lmkYwbmvjfjY2eK2lJXr1c3M0lk1NNBpDQwTcWIxRy+Ii1/dDP8T0WjhMsF5c5Jl9\n85s0RKdP8/1/8icZISQSNEadnbzOhQs8C8WDFIvxcZeL1xoZ4e97e7kXk4nnEY/TkGcy3Ntzz/E5\n7e18fHVVROqRyTBa2dqiwbZYgEoFmzYbbM3N3zV2/o9sH/UBeFvTtDEAnwfwl9WqmkP/3/+mirLr\n6+sIBoOSEgDYTaS8y3K5LDluRX187Ngx2O12hu73h556enqk5U/ltg8PD4XobGBgQKKCzc1NGSCz\nWq3Y3t6Gw+HA5uamTKCq1seZmRnU19ejpaVFCrZKaKajo0OKuaro3dPTI9PIra2tQnymREkApm2U\nkImqj2xtbSGbzco0dH19vWjd5vN56V6x2+0YHByUKd1CoYDz58/DYrHgtddeg6ZpaGhoQDQahdPp\nFGOzs7ODVCqFfD6P7u5ukQNdWFjA2toaTp8+LdQTKj2mmEpjsRh6e3tF/Uuv12N8fBxGo1HWrmoq\nqoajBshUi6pOp8P29jZSqRSy2ax0UzkcDuzv70sbsdPpxMjIiBTa1etVZKFU6BTrqsPhQH9/vyiD\nOZ1OkS1VUphqyG5nZ0eiJ4fDgRs3buD8+fMiKXrq+HHoDg6w+8ILMD71FIuCej21gZUoy6c+RUCI\nRtliGYnQux0YILju79MDPneO4F1fzyLu1hb/8KNRGpBXXiEgffKTTHFEo/RkrVZ6yrOzNCq//dtM\nS3g8fF1XF8F8aooAvrND0DQYWJxWHS6FAlM/AwM1AjtNIzj399Mzb2nh88xmfmkaO4sGBgjmzz3H\n9tDPfY7v63LR6Ol0XHswyLWdOcOUSmcn6Rl6egi6Ph+N23vfSy/b52Pk8LGP1WoY6+uMAgAWhRUh\nnKbRSD77LM8+m2X0US7z8d/6Lbaklko8czUQ9vDDvO7GBkH953+e19bpeM1MhtHSL/4io7GLF2ng\nTCZ+ZTLkL2pu5n4mJtguGwhw/1euAA8+CP/wMKp7e99TVPA3uf21hqBarf5DTdP+EYAnAPxtAL+j\nadqfAfijarW6/Fe9TtO0IIB/DxqSIwCfq1ar/5+maU4A/xFAB4A1AD9UrVbT3+tG/ms31TW0u7sr\nnqqS92ttbUVbWxvu3buH06dPw+l0YmZmBqlUCg0NDcJCWSgU0NvbKzKRiqFUgZSqFShemJGREYyP\njwsZXOA+jW8sFkNfXx+Ojo6E8vjatWvC16NSKKVSSVS8FDnc3NyczCmollSbzYZIJCKDVvF4HKur\nqzg6OgJQ897VbIBKySjDks/nhf9mZ2cHgUAAq6urSCQSIpM5NjaGWCwGv98vk8p6vV4mYJUYTTgc\nxsDAAJaXl4VOWqlp7e/vCx9QW1sb7t69i6OjIwSDQXR1dWF6ehoDAwMyn6DoHRwOB+bn5+HxeLC+\nvi60IEpLubGxEX6/HxMTE7BardDpdFJE1uv1Mr8Qi8XQ2NjIbpza3ybq6uqE5iEajUrqSk1mZ7NZ\nOTuXyyXi9ktLS2hqasLKyoqICTU1NUlRWhX5m5qa4Ha7RdgnnU5jb3cX7T4fDt5+G571dVgnJqC7\nfJnge/cuO0U6O5lPL5drer3z8/RA83kCyswMjcDQEMH0xg3mm7/0JXqtTz7JIu2lS7UJ4BdfpCf7\n/vcTbEMhAu/EBAG1s5O5+9/5HaY+FhZYJ3C7+Vi5TOF3t5upnmeeIbguLtaKxc8+S9B+/XV+f+WV\nmoe8sEADZrXyvtfLCOITn6BnvLtLiUmLhXutVgmU/f01QZ2vfIVF6lyORiiZrFFjK02ERx/l6wwG\nPvbHf8xUTCDA4rGmMYo4e5bRw0c+wnTPn/wJP4e5Oa5TCeI88wzXoiKfvT0akscfp1FTrKzlMvDv\n/l1NFwGg4Z6b4x4/9zneN5tZrL99m+9hMtFQBoNcx82bjIAeeYTnB7zrRgD4G7aPVqvVqqZpcQBx\nABUADgBf1jTt29Vq9f/5K15WAfD3qtXqmKZpNgB3NE37NoAfB/BKtVr9DU3TfhnALwP49Pe6kf/a\nTbX2eb1eJBIJIfnS6/WYn58XTzmRSAj1sBIxWVhYgNVqxbH3gv4AACAASURBVO7uLqLRKPb29gAA\nBoMBPT09QsBWLBah1+vxxhtvYHR0FJVKBSdOnMDU1BQymQy6urpEVWx+fh4WiwXNzc0yiKUAa3l5\nGUdHR7BYLEilUtLBogrD4+PjQmOsUk+ZTAaxWExYP5UQu+Luj0QiGBwclFbXw8NDRCIR6PV6TE5O\n4syZM+xUSaWwuroKs9kMj8cjUZHSL3Y6ncjlcjAajejo6IDRaEQ6nZb6RFdXl0zyKu1lw/1uCI/H\nI2ycra2tePnllxEKhZBOp+H3+1FfX4/V1VVks1lkMhlYLBaZ3lbkdhaLBQf3xUtSqRROnjyJZDIp\nko96vR79/f0AIG2rBwcHaGtrk5rO6uqqCMp0d3fDbDZja2sL/f390DQNoVBIaLUXFhYQDodlQljN\nDKiaj8PhQDKZRKVSkdfZbDbcvHkTyWQSAwMD0lGVvc8k6jCZEIzHYVxYgDUSga6tjWD2J3/CdMTh\nIUHqa19jdPDZz7IgWi7XUj9f+hLBraODQPTyy/Qef+RHCBomU60oe+YMDUA6TbB/9FECnd1OMLZY\n2EL65S8zbaHX04t3u+mN3rtHQAK4xpERgtzhIR97+20+t1wmsC4u8jGbjamPmRkC3N4en//ww4xW\nMhkaI0VUt79PL1qt7atfJfB6vbzW1avc61e+wte/9BLX+uijTFO9+iqL47EYU2ArK4wCPvABruGx\nx5inn57mGYZCjFKeeIIG9D/8B4Kwz8e0TShU03L+oz8im+krrzAi0OsJ1qpF9dgx7v/YMRqV48e5\nxokJRhbPPnsfCSs0FoEAzxDgGZ8/T6P2m79Jg+Tx1Ab6jh2jsQB4LTWo9y7d/tr2UU3T/m9N0+4A\n+C0AbwIYrlarnwJwCsCzf9XrqtVqrFqtjt3/OQdgFoAfwIcA/PH9p/0xgA9/Tzv4b9wUeJRKJckh\nl0ol8ThzuZwUPlVKQ3X4KMWtSqWCmZkZKfqqeoKSBVTpGwWey8vLiEQieOCBB/DQQw9hfn4ec3Nz\nCIVCaGtrk+EuxSVfKBRgsVhw9uxZWaOiR25raxMah7NnzyIYDAo/0L1799De3g6XyyXDbS0tLQgE\nApIuaWxshN1uF+PX2toqE8ePPPIIrFYrrl27hsHBQTEi3ykvub+/j/39fSwtLUlxeXl5GdPT00gk\nEpienobb7UYymcTbb78Nq9WK+fl5TE5OYm9vD7lcTsCzra1N1qiiE8W2qbqLYrGYFGlVW2wsFkOh\nUEBra6sUjBVltEor2Ww2oYK4d++eyITu7OygpaUFLpdLtIf39vawurqKVCqFlZUVAJw8n5mZkXmB\ngYEB+P1+SdEpQ6E0HbLZLDRNg9/vRyKRgF6vh9VqRUdHh0xT63Q6FJJJrNy4gctnzsC5tgZjoQDk\n82xrXl4mEN29W0tdXLtGMFpZoZfrdAL/+l/TE29oYHTwMz9D0PrWtwg0BgNBsL2dBqBcZrrn+ecZ\nEfT1MUoIhwks5TIjhq98ha81mwlcm5tM0czM8PcXLtDDvnGDReDNTQJkIsFUUksLDYiil3j/+2nY\nnn6aIPbCC7UpYLebe1Qpo7/8SxqA/X3gM5/htVIpXlvTaNzGx7mOD3+YjyvjcuMGDcfly8DP/RyN\n4tgYz+CxxxhZHByw1vC1r/E87XYagYkJPjY7yzXodPToP/hBgrjJxL309PBcRkcJ+uUy74dCXMs/\n/adcY28vz2VsjNd3OHjmi4u1SOpb3+K5aFoN2A0GpvtGRvj+P/RDNJAbG4xewmE+7/Lldwsa/4vb\n3yQicAP4SLVaDX/nL6vV6pGmaR/8m7yJpmkdAE4AuAnAW61WY/evEdM07b9aCdE07acA/BQAtCnP\n5L/zpiIClcNXbXtGoxFOp1O4hRRNscvlgsViweTkpPDaVyoVNDQ0oKmpCbdv34bH40E+n5cW0Obm\nZmSzWTzwwAOiUra0tASn04l4PC7EZuo1iuU0mUyiubkZsVgMkUhExOG/UxlLDaQFAgHhGVIdQIrB\ntK+vT5g41R7b29sxNDSEbDaLmZkZHDt2TLiSVAeNGu5SNAvVahUul0vmCA4ODjAwMICNjQ0MDg7C\nbDYDAJLJJEqlkhCpKU2CM2fOIJFIIJVKoaenR1hSZ2ZmEAgEUCgUhKpBzTccHBxAp9OJZOXIyIh0\n4SiFr42NDfh8PgwODmJnZ0e8e5VKOjw8xNTUFC5duiTcPGr4ze12Y3x8XCRE1UR0tVqVGZDd3V3E\nYjE89NBDQlI4OjqKRCIBr9crEcH8/Dz29/clwqtWq9jb24NOp8O1a9cwNDSESCRCFbadHbgMBhTG\nxnD80iXYNzaYa1fe/U//NMFoc5Peq8VCLziRIFCeO0fgi0YJVu99L73dn/kZ/mHfukWgSSZ5TU2j\nJxkM8jUf/Sift7/P93joIc4XpNMErZMnmWt/3/sIpMvLNVrnv/xL5q3ffpvpk2qVBsDlItAqSuhg\nsCZWn81y3WfP1qKET3+a793UxOu3tzMK+MM/pIH70z/lNe4X6uHxMKeuirVPPkkwP3Wqpvz1xBNM\nawWDfM3CAsF9cpLve+4c3/cLX+B5PP54Le+vWlRHR7l+v7827JZI8L7BwG6rn/gJ1gKKRUYlfX2M\nKlSdYXGRezo8JFj/4R/SOGcyfF81S/HGG9z3Sy8xUmhrqw2Y9ffXeJdUl5TbzfRSczM/B7ebv1eU\nHu/i7W9SI/h//xuPzf51r9c0zQrgeQB/t1qt7qpWxb/B+34OwOcA4PTp0991cfoXfuEXsLq6Kv/0\natJWcdirXL7T6YTL5cLCwgL6+vqEuEzND1itVvT19WF7extzc3Po7u6WVsSBgQGhflYpkObmZunB\nV1qzlUoF4XAYqVTqHeIn3d3diEaj4mna7XYZvlJpolwuh8bGRsRiMezt7QnpnYpQxsbG0NfXJ1KM\nqld+YGBApnKz2SxyuRyam5uF20ZRHStStng8jmAwKGIpSochl8sJY6tSTTMYDFhbW5NJ43w+j9bW\nVhgMBoyPj6NarUoRtlAoiBHY29tDoVAQ1TBl6DY3N1EqlXDnzh24XC44HA60tLSIUE8kEhEyuldf\nfRWNjY3o7e3F8PAwMpkM1tbWYLfbMTExgdOnT0uhvqurS4R4+vv7RVJUibz09PTIzMXx48eRTCZx\n7NgxhMNhJJNJkRP1eDxobGzEzMwMOjo6RLpSRWlbW1vo7egA7t2Dd3YWePJJGG/dqnmpZjP/yVV6\n5md/tsaZMzZGXp5olFHAL/4igUJ5ywpsX3mFADQywhrB3bv8Q5+fJ6iqga8XX+TXgw/SM//IR2gw\nNjeZphgZYeQRj9ekHycnuZ5nnyXY/fmfM7+dSJBM7cMfZmG0s5PPUQycIyM0bDdvskCbSHAN0SiB\n7cEHCWyjozRKxSIjkro65uBjsZqwe7nMs/qDP+D+Jib4++FhGq9XXuE6JieZ7kmlap7zl79M0HY6\naaRefplG4+WXGam0tNCIXrjA5549WxO3icf5+/V1ruHmTV7zQx+qDZBNTnLPW1u1AbveXqapfD4a\n2/e8h5/VmTPcs9nMdX7gAzRyMzN8TV8fjXsuR0PQ18f3PTzkGV+4ABgM+Mejo98t9P133bR3swFI\n0zQDgBfBTqPfvv+7eQCX70cDLQCuVqvVvv/WdU6fPl29rcKq/47b4eEhNjc34XA4kE6nJUWk0+kQ\niUQwNDQEo9GITCYjbX9TU1MIhULweDzI5XJYXV1FX1+fKH8pb1VpA+/s7KC+vh5ms1nEVaLRqPDr\nqLy7YpBcXV2F1WqFw+GAyWSCxWLB7OwsdDodjo6OJCeuWk8VO6UyWIqeQBUgAcj0rc/nQ2trq+x9\nbm4Oer0eU1NTaG9vl2Eyq9WKzc1N5PN5mT3Y399HNpvF1tYWOjo6UF9fLykXRY9xcHCAhoYGmX04\nffo0dDqdFJFVEbtUKok+gsvlwt7eHmZnZzE4OIhCoYBkMgmn04lSqQSn0ykKbUdHR8JIurW1Jamg\n1dVVnD17VrQhIpGISHqqWQ9FCf7WW28Jt5RSI3O73Xj99dfR1taGra0tlMtlOBwOodhWQ2VKtKaj\nowN+vx9ra2tYXFzE2bNnEQ6Hodfr0dfXh2g0Kl1Rih5jdWkJJp0OOxMTOFEowPrQQwTpwUGmM1SK\nZXKSeecrV/jPv7xca4FsayMoKqF0JS/5zW8ybaHXM32jSM0sFgqlf/CDvI7dTk+7rY0pm3//75mm\nUYXNkRE+XqkQZNfWgN/9XU7V6vW1VkaPh+B07BivWywyunj/+xkdXLlCoHvhBRZ41TxCfz+BemSE\n/4AvvkgvPZulAfL72eHU1cWI42Mf41qVMfN6mdJ6+ulaeiSRYFSgxF1ef51rffJJPmaxUHfY5WLE\nMDnJ8xsdpTf/xhsEXpX3//jHaQz292s5/nCY51UsEsgXFlhYbmpiWqe+nsXb5eVaIfzpp7m+l1/m\nfvJ5GkObjZ/P+Dif/7u/yz2qCOLKldpE8de+xtRZYyPXqSa3u7po9M6epTH90R/9rgvGmqbdqVar\np/+6571rFBMaXf8/AjCrjMD929cB/Nj9n38MwF+8W2sAIENASuJQtTuePHkS+Xwes7OzsFgsSCaT\n2NrawsWLF9Hc3Cx5Y8UvFI1Ghc9fTRiroapcLidSiqlUSpTC+vv7hVGzWq2KTsB/3rHidruFSVOp\noq2vr2N/f18KxDMzM0gkEjCZTNjY2MD8/LykVhSXUiqVwsbGBt58803E43FRGlPCLQcHB5iYmMDi\n4iLW1tbgdDqFFnt/fx+ZTAZWqxXXr1/H1NQUstks1tfXEYvFpOMomUyiqalJ+Il2d3eFX6lYLKJQ\nKCAUCsnZKDqKCxcuwGKxwGKxwOFwoK+vD16vV4RqisUiuru70dbWBpPJhEAgAJ/PB7vdDp1Oh8nJ\nSaER7+/vF23mQCCA+vp6RCIRWCwWBINBnDlzRgrcSue4r68PpVIJPp9P+KHC4TDW19eFOE6JwKi0\nnl6vpxyk3Y7jx48jFAq9Q9c6mUyiUa/HbioFRyyGzmQSpzMZWMtlphiiUXq2IyP8Bz9xgrnoL3yB\nYHRwwAjhK18hqG1vEwSGh1kPGBtjXnpri19GI4up+TwBMxZjx82dOzX5yLNnmY5IJglqvb01AEok\nCHqvvFJLgwQCLEJ7vbUJWzWT8KUvEaT0enrFn/kMwTwYpGFyuWravl4vUyTlMnPhGxv08hcW6AU/\n8wyB7tVXOQfw7LMsiF+7RgN0+zbPq7+fe1te5n2Ph+czPFxjIL11i3xKLS21bqNPfpKgfHhIrp/e\nXp7vyZME7fp6XuPGDZ7VsWM1Gu58nkZzcpLXXlnhPrNZnlciAfzGb9Cz7+qqdWV961s1jqAXXiBY\nX7rENZ06xZbSyUmetcHAz7K1lefxwgs1Btnx8ZoOs9FIo+RyAfE4Ns+e/d+na+i7vJ0H8KMAJjVN\nu2/y8fcB/AaAP9M07ScArAP4v96tBeh0Opw+fRrr6+uiBGU0GrG4uAin04mNjQ1pA1RykFarVcRF\nGhoakEgkUCwWZSI4k8lA0zQcHBzAYrGgUqnAYDAIe6gaiFL6wwCEkVQVOEulkuSs0+m0CLEAHDpS\nQ1xutxubm5tYWFgQcM3lcrDZbOjr68P09DT6+/sF7BXoWa1WIbFbWVmRdkvVXhqJRGAymTA+Pg6T\nyYT29naYTCakUikpaKvJWafTKZ1CKysrCAQCkiMv3eeFdzqdWFlZQSaTEXF49RUOh0Vuc3FxEXt7\ne8KIqorASuS9WCy+I11XLBYxNTWF/v5+8cyXl5eRy+Uk1TQ5OYlyuYyHHnoIRqNRjJoaqkun05ib\nm0N/fz9yuZxMazc0NGBgYEAI/pRxUBTTaopcscu2trYiHo9jYGAAJpMJdrsd03fuoG5zE/rjx9Fi\nNsNYLjPF8KlPEaDn5vjP/vzzBNJvfIPg9vGPE+j0enrqTU0EzuFhAo/SAVB55MZGpiQCAQLo8jLv\nHx7Wunzq6ghsBwe1lssHHyTwvPIKvd033yRAKSK1J59kdGAwECB9PoLg4CDwUz9FTz2ZZJSQz7Oe\noXiERka4vy9+kblxpaK1tcU8fbnM9/vYx/jP+NJLBMjnnqMh2NlhuqSpiSD4z/85owWrlUbQbCZ4\nd3XxzLa3ue7ubp5TsUhAvXqVBsHv5569XoK0TlfrLopEeBaq5TYS4efyzW/yu5o87u3lWf3Mz9Cr\nz+V41pubBONkkkYlnWaUlUgA/+SfcB9//+/zOcvLXEtdHfd17RrPQafjetvb+Tm1tPC8wuGa4E5b\nG/d3X+AJmgb/yZOolkr/57KPVqvVNwD8VQWBx96t9/3Om+oaUqLjlUoFe3t7kiJSLYyqS0jJSBaL\nRSSTSZnUVZ6nwWAQqUQlYhKPx6FpmjB6AgTGt956C3q9XgbQdnZ2RAs3lUqJDm+pVEJ9fb0Un0dG\nRvD222+LVoCidVY6wGoIy2g04oEHHpDIIpFISJuo6pRJJpNob29HJBIRLWCTyQRN02CxWHDixAkA\n1MpdXV1FXV0dHA6HkOjt7Oxgf38fkUgEDQ0Nki9XBm96elqeHw6HceLECZGvVHl3JbHY3t4Oj8cj\njKqK1O3u3bvQ6/VIpVLo7+9HsViUc4xEIhJxNTc3y4yHihTUHIemaTg6OkImk8GFCxdweHiIO3fu\nYHFxEYVCQSRBu7u7kUwmhXDw6OgILS0t75CxVBGLxWIRucz29nasr69Lmi3Y0oJqfT3a6+rQeuIE\ndF/7GnQeDz1lvZ5esuKjz+XoWT75JNMGqjtoeZlA94lPEIhWVujlPv00SdYGBvi6jg5OvHq9BN7f\n/32CpNtNUFc0Bz4fQWVnhyml06cZKfz2bxNgL1xghPDZz9b61w0G0jScOUOAApgSUu8VifDar71G\nYBwe5vvcvEmg39xkVNLdTa+2WAR+6Ze4/1/5lZp6WihEA/XDP0xP3OGoRQw7O4x8zp3jY2o6Wq/n\nHqamCJDpdG3A7OxZtn16vVzP0hL3qmmMur72NQL1wAB7/qNRUkQoUFeMp3fu8HtvL1twFxZq0pHN\nzVxnfz9Tb9/4Bveh6MDHxvh+H/oQ19LaynMYHORrpqZoZD0erkcNoZlMjIBU+2lrK2sFiQQ/h/l5\nnncwWPtMfkBD/b3dVKeLIj3b29vD0NAQZmdnpcccgPSVl0oljI2NiYceiUSEFrlcLsPr9eL48ePs\nDLnvPbe2tqJUKmFiYgKtra0iO+nz+eB2u6UwWi6XUV9fj+3tbdHn3djYQCKRwMWLF3FwcCBaB0qV\n6/z589je3obf78fMzAzsdjtSqRR0Op30qScSCSkEK5B3uVzY2dlBJpNBZ2cn6urqkMvlMDo6Crvd\njng8LmCvKJUPDg6EBqOrq0uEYFS9YG5uDm63G36/XwRgpqensb+/j/b2dly8eBFms1lI9kqlEh56\n6CHMzMygUChgdnYWJ0+ehNlsxsbGhhiRhoYGNDQ0oFQqoaGhARMTE3j44YehaRpOnjwpPf1OpxMA\nhGyvubkZbrdbjIii3tY0Dfv7+6KPrJhA33rrLfh8PrS1tcnw2MLCAra2tjA0NCSzC1tbWzJ1rUjr\n1IyD1+VCbHcX+Xv30ObzwRgKQfcf/2NNeGR9nUACMI3h9/Mf/9FH+Y/d1UWPt7GR/9ylEr1FoMaM\nmcnQw2xpIYgdP07Acjr52lyOOeOrV9l//vGP873DYQLlyZNcx/25CnzsYwTrL36RQF5XR5A1GPi9\nsZFdSS+9REN15Qo91iefJDB94Qu8ZiBQ4+X/wAe4ftVBE48TSN94gwYDqJGuKfqK2VmezWc/y3We\nOEGgvH2ba00ma5z+qnOmp4fpmFyO5/S3/hbX+MUvcj7B7yfg/8mf1ArGzz9PY5LL1Uj53vMefkYb\nGzzfH/7hmni91UrwtttpKK5fr+Xsn3mGUYSK9N7zHt4PBmui9mr2Ym+PRuLaNaaE+vr4HoUCo5Dj\nx2ns+/r43GiUhmRxkXvI5/m7cJiGr7W1Vif5n9A19H1NQ60miw8ODgS8VcEzGo2ira1NeOVVXl/l\nhiuVigyWLS4uolqtYmpqCm63G3a7HaVSSTzlVColoN/S0gK/3w+r1Qqz2SyA1N7eLjl9q9WKUqmE\nRCKBgYEBFItFlMtlad0cHh5GW1ubFGAPDg6wvb0tTKjDw8OiYJbNZqXtdWlpCTMzM4hGoyKakkql\nZDjL5/NhbW0N9+7dw/7+Pra2tkR/t6GhAcPDw6hWq9jc3MTBwQFOnDghUpr9/f3w+Xwol8tob2+H\n2WxGZ2endPworeVMJiO005ubm9JS29raKhPA38kN1NTUhGKxiJGRERwdHeH48eOoVquiT6B4jQKB\ngKzBYDBge3sbdrtdKDNKpZLwLymRHDX0pWkaBgYGJM2nOoi6urpEcyAQCCCRSEjayW63y1RzpVJB\nk82GytISup1OHJuagnl8HLpr1+gROhxMldz/exOQX1ujh/388wSatTUC/r/5NwQ9s5ngogzA/j69\n8IEB3n/qKRqEUIjP83hoTO7dI8g8/XStQ8fppAG4c4de9o0b7Ixpb+frf+In2IFz8SIBTuXQIxEC\n9Z079MAff5ye+vXrrG/MzxPsMhn+/otfrBVBp6e5RiXo/oEPcG3/8B/yTJqaai2inZ01TeKnnuLz\nFKXFvXtcx7VrBL/+fs4I7OwQEE+fBn7t1wi4x4/TSBgMXE8ySYPl89HoxmJMQV25wijl1VdpUGMx\nnsMv/zLPbnyc1w8E+LnEYjWG0MVFgvbv/V4tsgsEuLZAgACuBHU6O2tDdj/6o+yKun2b5xOL8XNQ\n6bflZdYx3nqrRu53/TqNldtNA9DfzzPb2amliP4PrxH8L78pQ7C8vIxQKCQet8lkEsZP1WVTKpVw\ndHSEoaEhWCwWaJomQKme7/P5kEgkZHo3FAphbW0NBoNB0jsrKysIhUJoamqCx+ORuQClEazAcW1t\nDa2trQiFQlhZWRGwW11dFbnMTCaDU6dOwel0wu/3Y3d3F263W8AKAILBoKiBmUwmSYUYDAZks1lU\nq1X09PRgeXlZaB3i8TiSySTK5TKOjo7gdDqF1XRxcRFbW1s4deqUaP6qCWulq3t4eIirV68K95Ey\njMrD/05aC4/Hg2w2K/xGOp0O9fX1IhavIptUKoVkMgm3241SqYTZ2Vmhgujs7MT4+LikvtRsh06n\nQyKRQCgUEqM8OzuL5uZmqbUowkG73Y7V1VVomiYiMFtbWxIJDQ0NIRgMSv0ll8shlUpRnlPTEAgG\noZuZge72begaGpiz7uyscd8oD/ONN+hpqzTK0hL/oZNJen3xOIHj4kWCEcDnX7rEds2nnqJnqLpG\nzGZ6tuEwPfOZGaZ5Xn2VqQxFLW00Ehjb2giqoRCN0wsvsPjY2Mjfu1wExlKJoPzRj3IvHk9NAAeg\nN377Nj33q1drWsgLC+w86uwkh47DQaA7PCSA9vbyHIxGgtsf/iENXCDA9kmABslkYj7+Ax+glzwy\nwnTLW28xnz89TfBUrKfT06w/qGv7fDU204kJRiSVCs/1+HGmcjo6mNqy29kZ5XYz5RWP01iEQjR2\n587xfT74QZ7z9esE6s5ORgxXrvCzWF+n4R8b42d2eFhr+7Va+drFRUYjyvAPDnJPdjvP8h//Y/5u\nfJz3h4ZosEdHaTgefJAG6fz5GlXF/4TU0Pc1DbUqSD700EPY29uTKVBFL1EsFoUaWRVaDw8P0dra\nKukWl8slqQtF0+z1euHxeFAoFBCLxaSlUnXX9Pf3I5VKIZ1Oi/i8x+OB3+8XEXSj0ShesqJ4UB53\nuVyGx+PB0NAQDg8PEYvFMDs7i1AoJPnwRCKBxsZGpFIpSZUo2cvDw0OZZ1CaxWowK5lMCu9RX18f\ntra20NLSgoWFBZm4Vrl6JWyv+vjz+TzpEu4TuAGQQvrExIRo/FarVZnY/k4j5nK5EA6HcfXqVWxt\nbQnVdWdnpzByGo1G+P1+mRkoFotIJBIiHtPd3Y3u7m4Eg0GZq/B4PDJTsbOzI7QfqlXX7XaLQbTb\n7SKMo7qgrFYrGhoakM1mhQywkM8jubmJSqmEtrffhnlxEboHHkDdW2/V9AFaWmp55ESC3t/p0wTe\n7m6CoEqlLC8z97y3R0Da2KiB2PIyO3TuD0CioYHXHBkhsCSTvJ7DwTzzzg49V5eLnnoux/bGxx/n\n/cnJGsvl7/wOQffaNdYUZmaYmz53jl7vwQGv39rKrqCPf5zrM5v5XrEY13z5MkG4VKIa2e4u9/WF\nLzDddPEii692O8/l7l2mieJxPr6xQU+6WCSwNTXR6B0e8jktLQTyfJ4AHQgwkvrEJ/ia3V3OD+zt\n8fXj44yOHnyQa4xGaewU62pPD8G5qYnPb2hgumt5mT/fusXP8N49rvnSJb6f283339mhoTx7loZw\nf5+va2vjPp96ivfX12k0xsaY8lpcpDNw4QIjoUyGTsKFC7XBte1tfrZ373Jvjz3Gc93a4l5GRrj+\nV14Bjo5w+bnnvmtD8AM9AtDLV0RlOzs7MJlM2NvbQ19fH+bn59HS0iIpI4fDIUpTCjydTieWlpak\nt76xsRFLS0vY2dlBOByWaeDvVBAbHBzE9PQ0MpkMmpubxdMGIL3yip7Y4XBgYmICq6urwlmjBp3U\n3MHh4SEWFxeh1+vh9/tRV1cnIjSqtVRRL7/55psiHqM8eeU1+/1+lMtl0V9uamqC3W7HwsKCiNM3\nNDQgl8vB6/UKh9HOzg48Hg9sNps8R01nKzGdUCiEYrGIYDCIhoYGGYiLx+Po6OiAyWRCpVKB3W7H\n/v4+9vb2MDAwIPWVSCSCUqmErq4uOJ1OoXVW8wAqXaWYWwGS+JVKJalx2O12aJqGXC6H1tZWOBwO\nhEIhae0NhUKoq6vDzZs3sbe3J9TeFosFR0dHMJlMqFar8Hq92FpbQ3B7G77XX0fzxYswaRq9aTWM\n1dFBEF5e5j/vn/0ZWxx7ewkK4TDBxGBgCqhY5HDRtIm/MQAAIABJREFUJz7Ba5TLBAHVe/7oo/yD\nVbni117j8954g57h5z/P3Hgux2vHYvSup6YIREdHfL90mgAeDDK9dO0ac9ThMAFuf5/vfXREb7Wu\njtcZG6Nx6OkhcPX383eKXmF/n3tbW6NBevNNfte0GiOq0UiD8/LLBLtkkp58MMhJ20ceYZG5vZ3X\nHxpiETWbJQh/5jOcU9A0npmShzSZarn+vT2ua2yMvfiK7fTXf50RwQMPEPgXFmhcslme1Qsv8PNS\n7Z/pNNNqS0s0gE89xfMtFGisFYOrMpaFAj+/jg6eQTzOz6a+no9FItzXc89xzb29XG88zsfyeZ55\nQwO/vF5GFEov4c03+Zz+fq6jrY1RhM+Hy5/61PfEM/QDQwAIfYHy/B0OB4rFovTyt7W1oVKpCOdN\nLBaTtshisYh0Oi2C5AcHBzLAZLfbEQ6HkUgkUFdXB4vFIjw9StLS4XBge3sb9fX16O7ultZIk8kk\n17ZYLNja2sLx48dxcHAAg8GATCaDbDaLvb097O3twePxCPe+uo7qdlHRQiwWQ39/v0hgKsUun8+H\nSCQCp9OJWCyGbDYLr9cr1NNqkCudTmNqakpaOZubm9HQ0ICbN2+ipaUFBwcHMJvNQo1RV1eHbDYr\n9QWlm6x4hEqlEu7duydUFclkEoVCAQ6HQ2YtlOetuqGU8fD5fNjc3ERzc7NwFx0cHKC1tRWNjY1Y\nWFhAU1MT9vb2xPNX8wv5fF4otc1mM5LJJFwulwyKxeNxZDIZEa25deuWdG1Vq1UEg0EsTU2hZ2EB\n1kuXoKurg257m6H8q6/yn1R588lkrbXz+ef5z6+ohvf3CcKHhwTMxkaCXCDACKC/n0Bw7hx/drsJ\nFAcHTBe8970EKE0j+Le316KEoSECR3MzvfSBAa5jbY1pj4cf5mtSKb5vTw9Br1AgSDY11Sgp2tro\n7Q4PE8izWRqemzcJemfOEJQB/n5qimvU6+m9373LieWrV2vG7PJlgt+zz/Ka//bfMlJSU7u3b3N/\n6TTTIeoxNSQ3Ps6oCiBQLy/T097a4plHo3yP06cJ2pubNXU2t5vA7fPxnAcHeeZ9fdxHXx/PMR7n\nZxiJELBnZpgu0zQWkoNB1kbUud+7x8igr4+v+ehHaUTf+17uaWCA51EuMyK4dYufu9HIMw4EmE67\ncIH7WljgOczOch2f/GSNYfXP/5yRQG8vsLGBzWwWtq6ud12h7Pu6RgAAvb29+Pa3vw0AaGpqws7O\nDvL5PDo7O+H1epHL5fCe97wHZrNZCsnhcBijo6OIx+MolUpYWVmBz+eTidpyuQxN02AymdDR0YFc\nLof6+npsbGygp6cH3d3dyGazWFxclHUomoimpiYEg0FMTU0hHA6ju7tbaglqjXa7HUtLS8jn82Iw\nisUiVlZWUK1W4Xa7hVSuWCwKF5DiR+ru7pbCaH9/v/ALqQ6ojY0NGAwGmUxWUpbNzc3Y3NzE7Ows\nurq6UC6XEYvFRM0tk8nAbrfj6OgIR0dHouugyPrC4bCwgBaLRezu7uLo6AgNDQ2oq6vDwsKCMJWG\nQiHMzs6itbUV/f39SKfT2N7ehslkwu3bt9HR0YHOzk6pNfT19WFtbU26oPR6vTCVAowQFGeRqtfE\n43E0NTUhm80imUxidHRUlOJOnDiB5uZmnDhxAta6OuiKRRibmmCtq4NZfWjT0wT0f/SP+E88MlLr\nBVfC6QZDLXUzPExgMBrp9XV3EzQVn7/FQo9dSSAaDASEtjYaDZW3vnKFwHr6NNM8XV2MOgAaAbeb\noJRIsJ00GuX7XbxYY8qsVAhAt28TGLe2CKCqUyUU4vX1eoJRIsHnJxI0JgCvlc/XOPvHxwlWy8s8\nl8uXuSfFLwTwfTyed5K+jYzQUJnNjAxiMUZJe3vct5ryHRujEfvGN3g2J08S7O/eJeArY6MoN5aX\neY2f/EkC6e/9Hs8wHOZZKCZPnY7nEYnQMCoRHbOZ+fmLF2mUDQaC82c+w7O4fp3r/Xt/j9d86SWm\nosbHa5KUGxtMa3m9XOPTT3NPmQw7pLq72Ur73HM0in/37zKl9vzz/Dtqb+fn39LC/XR28vNKJoH1\ndfh/7uc4R/Au376vDYEaeOrp6cHm5iai0Sg6Ozslb686eHK5HBYWFqTHPxwOS5FS9ZPv7+9jY2MD\nx48fR6VSgdlsxv7+PmZmZuB2u0XuUQnY5HI5DAwMyO81TUNnZycymQw2NjbQ2tqKVCqFO3fuYGDg\n/2fvTYMbva4z4Qc7QGwEAQIkSADc917U6o1Ut3pRy5Il2bIky7ZGtlOxx56Mp8bxODUTTzkVR66a\nSqqmUnEmS3kcb5E8lu140WK31FZLarUW9t5kc983gABJgFiIfSG+H0/f+1r/Uvan/HDEKhZJEHjf\ne89973POPctzetHc3IxcLocbN27AarVCpVLJFNf+/n5YrVaYTCbMzc3BYrEgHo9L15NarUY0GkWp\nVJKVv6FQCPX19QiFQlCr1dDr9TLts1KpIJvNYv/+/Uin01hYWCAgWixobGyULK3Nzc1wOp2yfaWo\nqRAtIrVarawLiMfjknVzYWFBBqyz2Sy0Wi2KxSKMRiM0Gg3MZjMSiYRUXnq9HjabDdevX0e1WpWZ\nQ8FgEIFAAIlEQq6niEm43W5sbGzA7/ejvr5eun9KpRLW1tYk2Z9o8Xn06FHZbEetVsNkMqG9vR35\nWAyl8+fhuZ3tYqpWuXlLJaXpyd/9HY/8AF0Cfj/dHYLD/tFHFQpkrfbdbqGpKYVTZ3SUymN2lmBd\nX09QcjgIZJ/+NO9x6xav9cUv8jrZLMH7+HEC2vAwXTC//CXdBnv28KRw9KhCIXH9OpVSQwOBvKlJ\nCchWq/yfycTfH36Y719Y4LzPnuU1Ojp4/0yGVvTBgwS64WG+PjjIcYkA7B/8AZXY7aQMtLdzbgcO\nsAp3Z4dKS6sl0J04wXF95zuMX/zyl5yHz8fPXLjA4q5gkNebnlYC7ZOTtNaPH2cg+FOf4ufq66nA\ne3vpUioUqEhE97CeHs7h+nUCd2srFYVOR5kcPap0cotGuVaileaVK5R1Lsf7WywKrbVORwUqqog3\nNijvu++mMhNd2559lp9LJKhUg0G6Ffv6qAwef5zPSUsL3VH/Rl+/14pAsI+OjIxAp9PBbrejrq4O\nJpMJWq0Wm5ub2NzcxNbWFvbu3Yvt7W00NDSgUqmgoaEBRqMR6du0wYKEzX27bdzGxgbq6+sxOTkJ\nAKipqYHBYIBOp4NarUZXVxfeeOMNWCwWrK2tYXV1Fd3d3bDZbJienoZer5eMp4lEAhqNBtvb21Cr\n1ZKnRzCdOp1OrK6uynqHyclJZLNZ2O12BINBFAoF7N+/X7bjdDqdcDqdWFpaQl1dncwUWl9fh8Vi\nQVtbm6Sb0Gq10Gq10pe+tbUli9pE9zTRgEakdQKQLrTR0VG0tbWhq6sLkUhE0jsPDAygWq2iXC7D\nYDBgZGQEPT0974p7dHR0wOl0YnJyEmazGRaLRdZrjIyMwOPxyAD3wsICKpWKbBFaLBbR19eHTCaD\nSqWCarUqacDT6TQ6OzvR0tKCqakpDAwMoFQqIRgMQqPR8H2Tk6g1GOApl6E5fRqaYJAbemyMG/rs\nWQJZd7fSL3jfPiVoV1ND8Flb42sjI1QWd97Jzb27S0CsVgnqL79Ma/6RRwhU16/zu7lZIZIrFBT/\n9F138br5PPltPvUpNjf50IcIZM8+q1TbqtUch7BqP/hBXqOxkcCbz1OpXb5MK/3gQaVI66WXCMYL\nCwTOcpmppleu8B6f/zzv//jjvMetW1RCd91FJVcuUz579igZUvk8vzUayrCmhorz7/+eYDg6SuW2\nvEyZhsP0t7tcvN7Zsxy/6B9cVwf87d8q/RmeeYaf37eP1vu999Kldvgw8OMfU4EMDHANWlo4jmqV\nYCsI5ASdtog7VKuUx+XLtN6NRoK3KP4yGpW01wMHCNJ79igntgMHKB/hGhSUIKIaWihSj4fK+oEH\nuO4uF4PFADOKHnxQOSUKgs73OGMI+D2vIxCVxXV1dQgEApI6IRaLyZaOjY2NaG9vx/z8PAqFAkZH\nR7G2tiZbPJZKJdx9993Sr37jxg2EQiEEAgFotVpZ5ZpIJFCtVqXr5DfrBUSRVTKZxPbtRiXLy8uS\nltpms8lq383NTczNzWFqagrBYFC6jATpm2DLFDTLvb29yOVyuH79OgwGAxwOB8bGxmQbRZ/PJ4PQ\nnZ2dGBkZwcLCAsrlMtrb2+HxeNDS0oLa2lrk83nZ71f4/YViMZvNGBsbw9WrV+WpR1QHi5PJ+Pg4\nJiYm0NfXh8XFRelCW1xcxKFDh2C1WjE/Pw+NRoP29naUy2XpttnZ2cHAwACKxSI0Gg2MRiOmpqaw\nsLCASCQi4ycLCwtoaGiQ9BU3btzA+Pg4NBqNdAeJYj7BIyQoMVZXV4GdHTQ5HOi9ehXNzz0HvdkM\nzegogeNf/oWWWrlM14NoOuJw0PITgDE9zVPCz3/O99bU0Lf86U/TUmxo4JHfaCQQ7e7SFdDezu+p\nKYKb6CD25S+TL0et5ndbGy3a+Xm6ZlIpAldHB0HsuecYGL3vPiqt7W2OI5ulVSss9MuXqQgmJznu\n5WXGOc6cIchsbJCo7Uc/opV71118TacjCHZ10b2Ry/E1p5Ng19FB8O/qIhC2tXFM3/8+gW51lbIS\nvXYFR1BjI8f/5JMEb1GI9Z/+E+fyR39EZfbZzzJ2MDnJef/gB5RDuUwlKvoh793Le/f0UMnMzhKc\n//qvOcfdXc7ngQcUK31+nmv9yCM80WSzzP1vaeE9rVaC+sYG1767m2s5Pk75zM5Slm1tHPuxY7yn\ncGvNz1OxeTy85twc5ZJOUxahEJ+Ll19muqrXS2U8PEz34cwMFXMgoJxCo9H3HCt/r4PFOp0OTz31\nFP7sz/4MarVaNooXnbREr1kBIp2dndL1UVtbC6vVKoOnghfHZrPB6XRKP7fX65Wpi4JLPxQKybaN\nrtuc4l1dXZiZmUFHR4ckuRMsm+VyGTabDY2NjahWq0gmkxgaGoLJZEI8Hsf29jbW19eRSqVkv12D\nwSC7ZjU0NMDpdMq8d7vdjrfffhsejwdXrlyR/X5VKhX27NkDm80Gg8GAbDaLtrY2bNy2Qn0+H3Z3\nd7G0tIT+/n5YLBa43W7E43HEYjHZArK9vR07OztQqVQyE0oEqB0Oh6zwFb0XqtUqcrkcrly5ItlY\nDQYDbDabPHmI+oRisYjGxkbk83mZvaVWq2XmklqtxsbGBrq7u2WfY5VKhZ6eHszPz2NwcFCmt4bD\nYVJUr61hfGoKfpcLphdfhL2nB7o334RasGsePkyrsaGBVnE2SzC9dUtpmLK2RvdPfz837/79dGUE\nAoof/fp1ulsSCVr3Xi+twuZmugMsFrqEikVazFYrweXmTbqcROtGjYYA6/MRYCcnaa2azQQ/j4fX\nSqUIRv39/GwuR7AUPuvubgY2T58m+I2NKdb47Kxy/9VVjvm++whGmQzfMzIC/PEf81rDw0yHdTqV\n4HQ4TFD8zGcUZdHYSGDdt4+gplZz3CMjnE9HB99bKFAptLUpdQg/+AHBVBDDBYOKZaxSUeZHjvDe\nDofSCMdupxI/fpxzHB/n3AVTqWg4c/QoFaTTqdRONDVR/qKuYmWFAHzwIGU0P885nTjBcVWrlL2o\nHPZ6qUjTaQK/KKQzGCg30ZJTZD0tLyt9o8fGqEBSKY7n1CnKv7OT952ZwVPDw/iL//E/fuuisvez\nhm5/7e7uYv/+/SiVStBoNJKawO12Y3l5WVrjpVJJgpqwzgVFs0gvFQqjra3tXZlDdrtddjkTnDbp\ndFqCZigUknnrIjZht9tlpku5XJZ1C4K+urOzE1arFcvLy9JFs729jVAohI6ODhiNRtkGUvQqEIqo\nXC5Li7hSqciiNqfTCZfLJRWReC0cDsteAKJaV6/XI5VKSQZTr9cLo9EIk8kkA8Hb29vo6OiQXdSW\nlpag0WigVqtlkDaXyyEYDMoWnhaLBbu7uzKDZ2NjAw6HA6lUCltbW8jn8zCZTJLwTnSJE8FqQRte\nLBZlVlJfXx8MBgNisZisBxDfPrMZCz/7Gey5HHqOHkVtJAKNcPEsLXGzT00RmAV3zMWLBJVMhpta\nZM74fASJcJiWXjpN0K6ro6UfDhNsbt6kFTo6qhSNiQDlW28RjMxmWp3nzvEzjz3GLJ1QSGmrePky\nAaqtjRbuxYu04CcnCWKVCgGjvZ3A+9prtE6TSbp2hDJaX1daST7xBIH4ox+lAjl3jtc4cYL3DIWY\nISUC3kajkh754IMKnbNodyk6ldXU0CWVSjH9VfQM/slPeBoQWTWHD1MGqRRdLaLCd3iYcjh1iutS\nKhE819YIyu3tBEiRMaXX0/ceDPKzABVxpcLgsd1OJTQxQSX3wgt8z4EDpK2+917Oe3OT17h5kz+1\nWiWeIE5uZrNyuvngBynXa9eo1JxOPgMGA2NFgjl0cZEutJoaynDPHv794IPKZ2pq6EpUqZQU3WPH\nOA+RAZbL4eSTT75fRwD8borg0KFDGB0dlVW58Xgcc3NzaGtrg9frlTz8/f39cLvdMl00m81ifX0d\n2WwWLS0tslp1fn5e5tC73W4Eg0FYLBak02kJgEajETMzM2hoaMDu7i4KhYLkIMpms4hGo3C73dDp\ndNBoNJIyWaQyOp1OLC4uyhPJ8vIyTCYT/H6/rMoVDWmi0Si6u7tRrVah0+mwtrYGg8EgUy67u7uR\nzWZRqVRQU1ODYDCI+fl5TE9PY2BgAKlUChsbG7BarSiVSlIRAZAFVqFQCFtbW6hUKpLBs1wuS34f\nQfzW2NiIlpYWqNVqqRAEtbMI1AsKiPX1dTQ0NKCmpgZerxezs7Pw+/3Q6/WS1VXMM5lMytfdbrdk\nShU1BIuLi7LL29bWFusKzGY0GgxoHB2Ft1hE0969MNrtUBeLBAaVihaZsP727iW43HEHN7jdzg3b\n2EhrPBKhFXjrFt8/PEwFYTbz1BAMUnlcvUrQEvw0+/ZRgezdqxQ1NTTQ7dDSQkAVufOxmNJm8bHH\n6LrQaKgARkb4WbVayfX/4Q8JltEoX3v4YSqIb36TIH79uhKkPX+eIGw2EwynpxWXw9gYQTmZ5Mmh\nWqUrzGxWGrGEQpynWs1xLC1R8X3yk1Q0uRxl5XIxu2Z7m0rmxAmF71+4lK5c4b1MJvrz//APqQT6\n+ym3S5cIqpubtPqPHaPyWF3legWD/PvYMaW3sdXKgjOHg/IXZHpbW5Sz1aqQ41mtXOfNTY7b6aQ8\nPR6F2kOQw4lajAsX+HN3l+PQajmvhgY+H1Yr175QIMBfvaq0Fd3c5ElApeLY3W6u7VtvUUGKVN5X\nXlHahn7+84DJhJN3383/vcfpo7/XikD4rXU6nQROQQBntVqRy+Wwvb2NSqUiO4Kl02k0NjYimUyi\nVCrB6XTKXHbRbUuv1yOXy6GhoUHm2YtUVLPZjFwuJ2MG6XRaBpAFe2htbS0aGxtlime5XIZarUZd\nXZ3sFibSKUV3rXQ6LZu9i0YqonAqEolIhk2XyyX9/IIJVDTLEVXUq6urMs4gUkLtdjtKpRKamprQ\n0tICj8eDYrEoe/06nU643W7Mzs7K+XV2dsLr9SIcDmNhYUES4wnepUwmg5aWFlQqFWxvbyOTyWBm\nZkbSUqtUKsTjcWxsbODQoUNIp9OoVCqysM1sNksSONFZLJVKYW5uDg0NDZLCW6PRYP/+/TAajTBr\nNMjFYrCsraHpnXegO3YMutFRaGw2MnFOTxN8jx1TMnCKRXLoxOP8fu45Ativf81NK/y94TDB4Kc/\n5c+eHgJNPM5rCupkm43XFFz1mQyLwsJhgsfMDEEzEiH4HTrE08WNGwTMlRUCQjhMECmVeP2HH6bV\n2NVFYPb5+Pv58wTBeJwW9KuvEvR2d+kWSqfpl9dqaXkuLjK+EQopQe2NDfqqr10judtvtoB0uWjR\nCheVw0GltbND15LRSFB7+22FQtpqpaL5yEc4pu1thUcnEiEQm80ERouFMmlu5k9RI7C6qtBznD9P\n11A6rdBXC5qKixd5ncuXuZ5eL+VWLitMp1ot5/riixxLNkv53rjB10WtSH09ZfGjHzELSsQxrFYC\neSzG01FzM08VsRhPQAMDPLH4fJy/cNWJ56ymRlmfcpmnPJOJbiyRDjs0xP95PJRtNIr1zk5YGxt/\na+x8XxEAUKvVaGpqwuc+9zkJLoIgrqamBul0GjU1NYhGo7KwKZ1OY2dnBy6XCx0dHZIyWuTV+/1+\nrKysvMvSvnHjBrLZLPR6vWzGXlNTI10dAwMDMBgMMJvNktAsHo/LTCFR5CYqnUXDeVHF63K5UKlU\n4PF4sLS0JEnSwuEwVldX4fP50NTUhJs3b6K7uxvlchmXL1+GXq9HS0uL/L/T6ZQnCFEz4XK5sLS0\nBAAolUrIZrOYnZ1FsViE1WpFJBKRtQQApGtHq9XKqm3B0SPSZVdXVyXlNQB5eqirq5MU3yJAXVdX\nB51Oh9raWqTTaVSrVRlbKJfLUoEIV9XU1JSMJ+zduxc2mw2ZTIa0Fvk8moeH4b5xA7W7u9B1d/N4\nbzRy837847R0jxwhOAiuHqeTgNbfT6vs9Gla8rdu0fJVqZgGWKlQAfT10RJ/4gnxoPH6Gg3Ba88e\nWpaJBDd3PM7g7x130IrPZpWG5gYD4xR+P2MOZjP93ltbvN/UFJVQfT2BtlzmaSUSodvjhz9UMoA8\nHp484nEqjYkJjvXOO6ncpqY4nxs3CFx33EEQ3L9fydBpbaUSjEaVnsl2O+XhcPDvxkaOu1ikDF99\nlfN58kkCpqi+tdk41/l5xj7cbrplpqYo664ugmA6TfmurFAZJZMEUItFcY+FQhznqVNcz+vX+bOz\nk4Ffv1850Rw/TkUm+kE4nVQu586xPajBQBBXq6l44nGudaXC/509y/kODXEN43HGT/bt4/9Ef2mx\nfk1NNBpsNn5GVJ0HAlRKb75JxaRScU6VCmMafr/SB0GkLJ87xyyi27xMtsFB/MVXv/r+iQD43VxD\nTz31FD7+8Y/DYrHAarXK9NH19XV4PB6o1WpYrVbU1NRIcBb9eN1uN2KxGOx2O0KhEDY2NqSv3+12\nw2QySc767e1ttLW1YWJiAqVSSbp6qtWqTL0UriBRGLa5uQm1Wi05hESzFUH33NzcLAOkokuZqLjt\n6upCNpvF6uoq5ufnEQgE0NLSgmq1imw2C5fLBZfLJV0/oq9wtVqVlbh+v1822PH7/TLWIE4nmUxG\nEvDV1NSgUqlgdXUVyWQSfX19uHLlilRSOzs78Pv92N3dRTqdht/vx+LiIgDm/wueH9EAPpVKyVTU\n+vp6DA8PY2BgQDK2bm5uyiY6zc3NCIVCiEQicv4ituJwONDT3g6v1Yra738fOoMBmkAA6kKBADYz\nQ9ARbppYjOBy+DD95hYLgX99nZknX/oSAc9kInh+/vME11BI4dp5+20CjsNBII7F+F1fTwAXR/7m\nZgLdxYt87/Iyre2mJqUl5PXrTGMcGaHfXq0miIVCvG9PDwHkwQc53tdeo5sCIAhZrXR3VKtUIIUC\nidRcLiWdUVQEC2VYKjFjpVikkggEqBAHBnhfu533aGmhYhS8SQYDFVpTE8Ff1CFYLBz3vn2c+5Ur\nShvKn/+c84xEaOVPT/O+29tcG5F9s7RE95DBQGV4/jxlBjAuIk5Yer1S1f366/xsIsF7iJacb7/N\n8fX0EJRXV/m+115jGqtGQxnbbATslhbK6+GHqVy2t6nsVCoq/kiEytPv5/wGBri+4TDXuKODyuz4\nccpNGBClEuWztsZThuj21tDAuW9vK0WFImY1NMRn4+c/B1IpPPXKK/iLP/kTjuu3w7/3K4vFl8/n\nw87OjsxrBwCr1Qqj0YiJiQnodDq0tLTgwIEDWFhYkKRrIq9fo9FI4AoGg2hsbMTi4iI6OzulK0hQ\nRZtMJslftH//fszPz8Nut0uf/9bWFnQ6HWpqalBXVyfHs7q6Kl00N27cQHNzM9xuNxYXF9HT0wOH\nw4FYLCargkWw9MyZM8hkMpiYmJAKrr+/Hz6fT/rpE4kEmpqaZObP/Pw8vF6v7Guwuroq/fs7OztI\nJBLyZCMYTBOJBBwOB3w+H+LxOMrlMhoaGpBOp1EsFtHW1oZkMokrV67A7/fDbrejoaEBo6Oj6Ovr\nkxlPwrUlOP+npqZw6NAhnDp1Sp6oAMi0UkHrDQCpVAoejwc6nQ6lfB47OztoqK0lIZzNpvD8C9oE\nYUXW1hJcBLe9qKRtaaFFefEiH5RvfIObXVTJPvIIrdRgkGB99So5YNrb6XsfGaGF+fbb3Nxra9z4\nhw7Ronv5ZVqE+/Yp6YGRCC1knY4po5kM/5fPE7SXl3nvgwcJFF6v0lsgHqeFDxB86+oIakNDnNfs\nLAFqaIjB2NOnCXTFIkFLr6dMikWms4ZCSrP0+XnFKr16lZ8V1dBLS5zT+jo/e+EC3SaRCK9fW8ux\nnT9PAH74YY7x/HnK/PhxgufXvsZ1mZujnI8do7vp1CnWLIgiOL+f83zrLSqYixcJzOPjlHNjI98X\nDlNef/7nlOHCAtcmEOD4u7s5x6YmjvGpp6iknE5et6ODcjp0iPL/wQ8o764uKtWlJbrRdDoG/8fG\nSI997Rqt9mee4Xi+9S1+fmGB1/T5eF2jkeuytcXX/X4qia0tyigYpOL77/+dczp/ns+ScC2pb2f3\n/w5cQ//ar99rRSBoqLVaLQK3u/0It4XVasX169eh0WiwZ88e7O7uSjrk33RliHaHNpvtXYyjws8t\n/NRerxejo6NoamqS9NWCmVT0LBaEcc3Nzdjc3JRtG4VrpLOzUzaxX15elv0JKpUKNjY2YDAY0NbW\nhnA4LBWSxWJBLBaTVrioWL569aokY7NYLJibm5OBXnFSGB0dhd1ux8LCAorFIkqlkiwME8R1Op0O\ndXV1sFgskkpapVJhZWUFNTU1Mn11YWEB2Wyq1/XcAAAgAElEQVQWAwMDGBsbg9/vh9/vRyKRwNbW\nFjweD9bX12VmTzablYFp0VB+dnYWJ06cQDqdxszMjIwXXLp0CZlMBlarFVqtFslYDKVgEIGBAXhj\nMWgiEeZqVyrMQR8YIPg++ywDjydPclNOT/PBaGsDvvpVgtzQEDd+Xx//Fv5/rZZAe+0a3RuFAgHt\n2jVaxfv3E2RcLv6dzxOYslkC5LFjin9acNrs308XwoEDVEJnzxJc9u0joC8tUTF1ddFF0NdHIL3/\nflqzonhsdZXjfu01uncA/uzqYpDUZCIYdnQoVqvVSjATmTaiT67JxGK1ixeVeQwPE/T1el7n6FG+\n78c/plvH7ebcBwcJqr/8JV0n3/0uTy533kl3yIkTVDAWC8E0lWJhWqlEv/q3v83TWijEE9riotKr\nWK+nYvvYxwiSS0s8zTz7LOd6+TLHNDVFBVIo0K1VrVJZt7QoNNXr65x/KsU1XV/niQjg/f/6r9lD\nQXAoGQxUVgBPBaUSFeehQ0rBn0gdzWYVSvKZGSo6MaavfpXGgkrFGNQf/AEVpah/UKmoWN96i8/E\nlSvvzmCLxf4tYBLA77lrqFqt4utf/zpOnz6NlZUVme4oAqe1tbUygCz4cMLhMDKZjMyfF/QIgkBu\ncnISXq8XXq8Xy8vLMBgMUKlUqK2tRXNzs6z+FYFNvV4vm7yLJunVahWhUEieCISSSafTCAaDkhoh\nHo/j4MGDUKvVsgpY0FCPj49jc3MTGo0G2WxW1iCMjIzICujm5mZsbGzAaDQiFothz549qK2tlVQR\ngtFT5P+LVp4iYCyI+kQPYUG/DQB2u13WEwgyu6amJjTeDmxVKhUUCgV4PB6k02mk02npkrJarXKN\nksmkbBYj5nbp0iW0tbW9K4U2n8uhp6MDVrMZLV4v/Pk86jc3oRPAWFtLELLZCKpeL8E0ElH82nV1\n3MCbm4pVKDbcpUsEzbvvJggdPUrF8eEPE1Dm5gjETU20TNvblWwarZbgcfw43RQ2Gzf6d75D8P/G\nN/i59nYqkpdeIuiOjBBADxwgUNntvE4kQiD953/mqcDpJJjOz3O8Fy8SaFpaeE2DgeCuVtPnXyxS\nJiKDSeTVb24SSJ98ksD5hS8QzIUrSsQampp4/b4+WreZDC1skdnzsY8pJHnf/jb97aJx+/79BG0R\nFAa4FoLCwWaj5dvdzcwoURVtt/OUVl/PE8KFCxxPNKq41e66i0DvcPDEZbfzmgsLNAIE7UUiwcwm\nn49yfPxxKti5OX4Xi7zvz35G5VIoULkdP85n4eRJgrLHo8SOLl2i+6dQUGovACpjceoLhQjq2SxP\nk3o9Qf+ll6joDh/mM/XZz1LhxGIK9faPfsTn4NQpPq+34xpP/eAH78cIxNfvoghEcLi9vR1erxcm\nkwlbW1uw2WzY3d2VbhzRuKSjo0M2jxFUz+VyWQYxRQaQ2+2Wrh5BCifSILe3t9HZ2YlMJoNEIoHx\n8XHp9qmrq0N9fT3MZjOuX78uXShjY2MwGo3Y3d3FysoKBgYGYDabZQP6ra0tmM1mOJ1Oyc0vqDK6\nurpgt9sRjUZRV1eH3d1dGAwG6b8XabGVSgXlclkqqEgkIoO1gpNoZ2cHADA3Nyd5jZqamrCzs4Pp\n6WlJ6S1YV3O5HOrr61EulzE2NgaXy4X5+XnodDpotVpEIhEpv2q1ilQqhd7eXiwuLspguMimErUV\ngUAAer1eVhXX6vVwFQroN5lQm0xCn0pBFwpB/c1vcoPH4wS9T3yCG3h2loAk2jCeO0dgFv5egBur\np4ebNJWii6daJTgLF0yxSPAMh2lBitOBCFKOjRH8Xn6ZltzWFgGmt5cb+eZN3q+rS3G9fPKTVBxm\nM8E9HCaYmky8n1arAGZHB08cy8u0dj/8YX5u/35axbkc33fpEu+r0RCYTp2i//zuu/l7by+BW68n\naAs65itX6Kq4/34qUr2egLa0RKB+5RUC5+HDSgHU0aNUqCoVXSlnztA18pv9hefnGacQHEtqNakg\nxAkiGqW8tFrO3+3m76OjvO/6Osf3+utcq1yO943HCbS1tVzTQoHrkc8zjlBby9+FRe/3UzmIvs7P\nP8/1SKeVuMxdd1G+4jRw8CDn//bbCjOpz8dTwbVrtPhffJFzjcW4FuUyFaXZzPuLYO9LL/EUkUrx\n+fuXf6Hy3tjga7kc172riy4mkf01Pc1rnTgBpFI4+eCD7ysC4HdTBKJheU1NDfR6PVZXV9HT04Ny\nuYy5uTm0t7cjGAyiqakJVqsV1WpVNirp6OhAJpPB7OwsjEYj7Ha7TK0UfX9VKhVyuRxaWlqwvb0t\n/d/FYhGZTAZ9fX1YX19HX18fyuUyZmdnZeet7u5u+P1+WXglXE39/f3IZrOYmpqSPEiNjY1Ip9PI\nZrNoamqSRV39/f2y+bqok/D7/YhGo7J3cblcRqVSQSwWw8bGhqxhACBbSwrFIgLH1WoVVqsV4+Pj\nUKlU0Ov1cDqdsFgsqK2tlb0Uurq6ZN1DoVBAIBDA5uYmksmkZAoVNNP5fB67u7uyW5zH45GV1iqV\nCgaDQfYQiMViaKyvh9toRN3UFDoyGZgOHGAdgN2uHO+3tggavb0E5/V1gl8wyKP6kSN0VWQyLCr6\n+Mdp6Y2MEAxaWxUKiVu3CB5Op5LT/8YbBBGAwKTR0PITXETJJIEglaIlWltL63RhgQpj/35a4C0t\nZJ9saeF7BWCGQvQXt7YSrMfGeC9R2zAyQmu7WuX8slmCR6XCk0Fnp6IMEgnO9epVAmdjI+Vx7RoV\nWz7POYlTksjzHx3lPG7e5M/mZlqndju/T5+mzLJZ3nNqimAlcuM7OxlMbW2l3AwGgq3VSrA+e5bj\nSaWoaMbHeZ+JCSrD2VmugQjgdnRQ0e3scA3/+I85nkiEY/B6Cczt7RyD3U55iNqOYpGuuVdeoVId\nGaHyuf9+gvDKCmUTDhOod3aUOI1azfdeuMCxWixUIBsbPDEcPkz3Xnc372+3cz5GI5XOmTNUHgYD\nx2C1Kn0fRPB5cpJrPjpKJRAOK2NeW+Pp4O67gUIBJ594gtf4Lb/eVwRg2uLo6Ciam5tl9XBHR4fs\nnOX1epHP5xGLxTA+Pi5bUS4vLyOdTsNoNEq/uqhiFUVMk5OTsuF8oVAAAEk1IVwwOzs7aGlpAcB2\nmYJjRwSdBaldPB6XLR8zmYxsuFJfXw+tVov6+nqsra1hc3MT8XgcjY2NWFpaku6t8fFxjI+Po1Ao\nIJvNoqamBplMBlqtFhcvXoTb7YZer4fD4cD29jZqa2uxu7uLtrY2NDU1yaYsarUaKpUKW1tbaGtr\nQzqdhtVqRUdHB1ZWVtDW1iZ7DcfjcRlPSCaTmJiYkHQQKysrsm2lw+FAPB6XxXEGg0F+i7iEILAT\n7Sp7e3vhs1iQGBlBIBKBY+9e6NfXaaWpVGzld++93JA+H60nkUt+9Cj/HwzSml9dpbI4dkxpAvKD\nH/Bz588TxAYH2UdYcANpNAQnPkTc1KIn7ttv01Vw7BhPIG63Qg0tqBJ++lNmB4keuq2tfK2mhsDz\nzDMEgCeeUPz0r75KMPrUp2jV33svM5I6OqigBKnb0BCBIZfjHIJBWvYDA5RDqUSFUK0STCIRjm98\nnNd0OPje6Wkqjb17aeE++CBB9t576X9/803Op7OT41pc5PXn5vieUolAZrcTJJ1Ogvjly7zur3/N\n+VUqvM7gIC3tmzfpw3/0UZ5wtFqCvc1G5edyUf7T07xPPk/ZW61cR6eT8t+zh8rptddIcZFMElwF\nzUUsRtkvLXGNRGqv4B46fZrKRQToOzspG71eqfNobeXaO508HWxscN3OnOGp6Cc/4d/ZLO9/6RLX\nOJ3mdW7dohKy22kgPP+8Um/wm+02TSZe4+hRnq4aGniCuHQJ66OjsB48+H5lMfC7pY92dXXhscce\nQ1dXF5LJJNRqtQyeFotF6PV6+P1+xGIx+R6j0Yjm5maYzWaZz97a2orx8XGo1WoZeN7d3YXX60Uk\nEpGBTcFKKnr/6vV62aReo9FgZmYGy8vLKJfL8Hq9iEajsFqtMJvNuHjxosxgWlhYQCqVkpQLbW1t\nqK+vRzQaldW7a2trkt7BarXCYrGgu7sbBoMB6XQaWq1WpmsK9tGenh7k83lMT0+jUChArVZLIK6v\nr0dnZyfq6+ulW0tQNouag2KxiOXlZahUKkk2J2ohdDqdLCITfQHy+TwMBgO8Xq8MnNtsNqysrGBq\nakrWANhsNqTicVRLJVR2dtD005/CpdHAeOAA1N/7Hi0wYbU/8QRBIZGgRd3Xx9cXFrghu7q4AY8f\np6V16BA/q9fT0vvgB+mf3ruXfx87RqAIhwmIDgetwqef5kN05IhiDf/Jnygpm319BPD1dYLN6dP0\n6adS/NzMDJXBvn0E0cFBgmomQ9C45x6l65haTet8cFA5Mfzyl0qaaUcHr2M0Ms3Vbuc143EC0uc/\nT+VlsfD9r7/O30UXrWSS9/jOdyiX9naePkTjF0HwplLRKv3oRzmvgwfpjvnoRzmG3l4G5vN5Wsdt\nbQQws5nKwmDgfQGOo6WF32+8QTfMyAgB/uhRviZ6EzzwAD/zxhsEwqEhnjwWFymTl1/mWKNRyjwc\n5v337lUK9S5coMI7dYqnDa+Xz4fDwVOOaDx/5gwB22rl3EV/5ulpyvgXvyDwtrXx+bl6lYplZYVy\n1emopEXDodVVrsebb3LtenqoNOrqqBSiUa6T6HUsqpkB3nNjg+Po6OCp1Wbjdfbuhe2//BdyDb3H\n6aO/14qgUCjgf/2v/4UPfvCDcDgcSKfTCIVCKBQK2NzcxPr6OlwuF5xOJ0wmEzKZjKRScLlc8Hg8\nUjGIhjEdHR3Q6/UIh8MwGAwy915w5Ws0GhlgFq6RYrGIUCgkfeSlUgl79uyRfn+R2qrX62W/A4/H\nI5usazQa1NbWIhaLSWI5QU4nahO0Wi1aWlqwuLiI6elp9Pf3o7a2FrlcTnIGia5dogmNaFGZSCRg\nub15xXt2d3eRzWaRzWbf9bmxsTHZKU30KCiXy+jo6JBuLBEQFtcWJ5Vbt25J9le73Q6v14tAIIDM\n1hYquRyak0n0Xb+ORosF+vV1aLRaWrQ9PYpFGwxyQ4qWiEePMiPjrru40S9coIV4/LjCTfPss3zv\n8DDBee9egk8yyU3X2Ehr+8wZWrrf/z7/L3oLiIBqLkdf9G+Cvc2mcP689BLB4+RJgvqddxJUAQLa\nxYtUXsJidbuVQPfZs7SGDx3i/3/1K45lYEDJU3/xRY7nyhXKIR4nCDY20ro+eZLXfO45yuO11xR+\n/IEBWp4qFccr2DxFPv/nPsdrXb1KygfBWmo2830qFcHS4eA8NzZ4vXic4NXaSuVQKHAdamupkP/h\nH6iglpaoEPbv53gEhbbZTMAeHqbS2dyksqhWqdw/9jGOa3WV4O5wKAH59na6t65codJaWaH7Z22N\nsrNaOa5olNd/9FGuydgY5x2LsdrcbqfyCgS4zmo1M3x8Pspq717l9PiZz3D8TU0EcyHDfJ4GhV5P\n5Z7Lcc17eznexUUW1UWj/Mzdd/P3SITz9Hr5LIv04JYWoLERT33/+/iLr3/9/RgB8Luzj37zm9+U\njUx2dnZkRy/xvbq6KhvGBAIB9Pf3SytbtEScmpqC1WpFNBqV9AjZbBY+nw8qlUq6hzQaDUwmEzQa\njfxMS0uLpItIJBLv4tIxm83QaDRYW1uDxWKR2Uhra2sykGwymRAOhxEKhQAANpsNer0ebW1t0Ol0\n0Ov1kjojn8/DYrHAaDRKiox4PI5CoYCdnR2k02mUSiWEQiEEg0HU1dXBbDZjc3MTS0tL2NjYQCwW\nk66d5uZmrK+vY2lpCVqtFvl8HltbW5LoTTSXF32MxTjS6TTW1tZkGmmlUkFTUxOCwSCi0ahs87m1\nvIyG4WG0JRJwptMwhsPQxGL0q4vUy64uJV9d0ENnMtygL7xA0BMZHZ/+NF0G584RGEIhguPzz9MV\ncMcdSnexCxfopkgmCVA/+hE/J5TI6dP8/PQ0gfDgQYLH+DjHE4nQevX5+MAdOcITxc4O7+d0Epzz\neea6P/wwgaq9naCm1xMUXC4CnHBN/exnzNppb6eCOXCAoByLEXgPHKC1/c47HKOgmWhoICh2dvKa\n4+O0mvN5AmwySWCbnqaSe+UVAmMqpaR8qtW89uXLdG/l87SeRTOVK1co7zvv5PuOHePrTU1U2C++\nSGX56qscz9WrlJXdTtmLYrfNTYXXv72dcnrnHYK3aAX6iU/w5/XrBNSeHlrZIv9fFLOVSgReESeq\nq6Nl//TTCutnocD1MJuVrK1/+ieumWB7HRqi0rnvPirtN9+k/AoFnjKcTo7VauXJ4Mc/pkLyeLiO\nZ85QXjs7Cm2FYEl1OBSyvpERvjY7y2fHYqEiHxvjScNsppz7+/HU009TEfyWX/9aRfB73Y9AfAkA\nra+vR39/PzKZDCKRiGwSv729LdtNCkCv3macdLlc0Gg0sFqt0Ol0MJvN8v2isrdaraKnpwc9PT3o\n6+uTfPo+nw/z8/OoVCqS4lkEemtqamTvX4PBgN3dXdy4cQPpdBrd3d2yBkBY9IFAAA6HAzabTfLz\niLx+0ZdZ9AkWHc/sdjtWV1dhtVolt5KoVejq6kJDQwMymYxkLnW5XAgEAtKaj8fjWFlZkf18RcaT\nYByNx+NYXFyEx+MBQCUovkRxmNvtlrUEom/x8cFB7BsYgNloxAGzGS2DgzANDEDT3s7NIvheKhUC\nU3s7Nz9Ay6mtjRt/YEBJE7TZaBW+8QbdNno9/fIPPUTr/OBBWmD5PF0O4vj/2c8qnPAHDtAF8oEP\n8NrpNIE2GOR79u7lZl1cJPg99hhBqqmJ4xsbI2CL/sV33KG0svzSlwhOf/mXbLZ++bLiu758mdZq\nb6/CWOr387Vika4gn4/uH62W1zGZOCaLhcDU3s7MnPV1Ak0mw+tbrTwxjIwoYLlnD5XE3r0E9WPH\nCGyC8dNoJJhubHA8osjpV78iYPt8BNx33iGYqVRUWK+8QvCvqaH8/uEfCJCtrbzHxARlu7PD1xob\n2YNAMJm63ZRhIMCTUSxGQ+CNN6gAy2W6y6pVjnVykvLt6eFp0Wym+2VhgWtWU8MxarU81S0vU/mL\neMgXvsA1vnmTaykYW0XQed8+zt1iodL3+/nea9cojz/6I677a69RSUxMcC3r6ngCWl9XehS8+CLn\n5vUqFeGRiBJDEg2OHnmEY3nkEeV0IAoc38OvfxcFZYVCQWbxtLS0SPZP0WTecbuUXTRxmZ6elpks\npVIJiURCZhQJCmmz2YzJyUnU1dXJAOvq6ioaGhrkdUXHsuXb1aJerxelUkla0UajEW1tbQBY9Hbf\nfffBfruK0G63S6I50Y/X6XTSit7akvPT6XTo7++XaZyJRAI7OzswmUyIRqOIxWKy0Uw+n8fy8jJ6\ne3tRKpWg1+vlyUZQTFgsFkQiEdnnOJFIIJ1Ow2QyYW1tDWazWbKcdnd3Y3d3F/l8HpVKBXq9Hj6f\nD+FwGM3NzZKmu1KpwFVbi2ouB02hgNLEBAIAsGcP9GtrSgZHtUpAEwFGjYZW1fAwAWpujsD78MO0\noN5+W3H1DA/zNCA4Y1IpAvHVq9yst/szy2yht97i5775TVqrohmK3c6NNz3NjT86yutduqQ0Rrnn\nHo7DbidQf/e7BFSvl0pmeZn3FK0OL1ygFSyKwoT7QHD2Ly8TBETLRJ+PACa4kQoFvh4MKn0PRkYY\nK9neJjhptZSd2Uwgv3GDSlRQZQMEoGSSgOR2K2yqW1sKqZqouF5fp0KbmODruRwrYM+eVYqmLBae\npIxGruH/+3+04n/1K/7d38/7/+IXlPWJEwqvfk0N51RTw/vfuMHPHD7Mca6u8ufsLIF7ZIQK4uGH\nqcwWFgiwXi8//8ADHOu5c8B/+2+89+goP2e1Uk533817PvMM10Moo64u/nz4YYX91Gql0VAqMdtr\nZ+fdhYM+H9ffZOJ1NzcVTqa1NRoKHg9/b2hQWnD+7GeU+/e+Rxfc1hbXPxBQYhbf/S7vd5sDDNns\ne15d/HvtGhLUCC0tLdDr9bLIa3FxEclkEqFQSNJHm81mzM7Owm63Y2ZmBtvb2zLNUaPRIBgMIpfL\nIZ/PIxQKIRaLyWIyo9EIt9strfVcLieb2dfU1KCzsxPZbBYNDQ1SQUSjUezu7iKRSGB7e1vSNa+s\nrEhq7Hw+L5lNy+UydnZ20NTURIK128yhZrMZRqMRo6OjsNlsMuNHUEvY7XZJ7bC1tYU77rhDZjst\nLy9LwG9ubpYxgP7+fhlotlqtsNlsKJfLSKfTyGQy6OjokPEDkRYKAA6HA1tbW7Db7bJX89bWFhLR\nKDq3t+F64QW4UynYjxyB7h//EZpkkpv9/Hkey7NZAmU6zQf/xg0C5b59SnBU9PD1++meGB7mJv/k\nJxX++IEBAtfUFAHjoYcU2uP9+7nh5uaYoWOzKT1ihd84maS1OTJCcLnrLm7mVIqbt62NYGyxEEBm\nZnjthx4iaArmze99jxtb9Ajo6CCor63xJFOpKPTK9fUKHfXaGjn1MxmF+jmZ5HsGBzmmBx5QwP7i\nRbrNrFaCT0cHwe3OO5m7LkjxTp6kO6O/n69VKjwZDA4yruDzUUGYTARtgArm9GnKP50m6G9uUsk+\n+yw/G4/zf4Jy+bXX+FpXFymdAc774kV+Ly5ynm431080drl6lQAo+j7cfTfjDYuLnL+w5J99lopq\nYUFxezU28ruvj+u1ssL3pNP8vF5PN2Imwzl4vVRQ09P8/eZNynpjg+8bGmLm0+IiTxyzszx1xONU\nXt3dXDeNhqfJbJbzuXqVshUxBPEsLSxwXhoNn7VCgQpncZEKfmND6dWsUvG0cOedQGMjTgoZ/hZf\n78cIQPbRe+65ByqVSjYqEcyXXV1dUjHodDrYbDb4/X7E43H09fXB5/Mhn8+jXC6jqalJNkfp7++X\nDWYEEIoGK+FwGG1tbbL3QKlUkkVeLS0tMBqN2NzcxOuvvw6PxyN9601NTXA4HCgWi4hEIojH45LI\nbnd3F7O3UxlF8Hd5eRmdnZ3Q6/VoaGgAAJl+ms1mAbAgTBDiWa1WOJ1O5PN52Gw2DA8PY2RkBPX1\n9bIbmM1mQzabxdraGlQqlRzX5uam7NhWLBZRW1sLg8EAvV4Ps9ksg9zlchnNzc3k/2logNlsRmhp\nCZl0Gvt3d2Evl6GemoImGIS6v58A6PPx++67FXreI0doeQmL6yMfIahXKtwwbW0EZItFoRu2WhUl\n8cILihXf10dLVKOhgjl8mMDX2MhrLy8T+KNRHsUFPfHUlEJMJhqViJNFezvBQ1h7BoNSXWow0Ipb\nW6OLoKuLSqyvj26HEyc47g98QOltKwjvAP69fz/vHQwqWUy7u4xV1NXxviqVUqnc388go2hV+cor\nVDJNTXRhfOxjvKeoet7d5Vza2giEQ0NKdbTNxvdubxPUnnmGcrp2jeB75AgBcXqa/7dYON/RUYVX\nf3SUbqCGBvq7fT4q7bo6yiid5tpbLBzDzg7X7SMf4Zrt38+537rFOTz3HOXo9VLOiQRBta6OFvyJ\nExzD4CDH9OKLBNG9e5U+zg88QMtbKOP2dspbp+PJYHGRMn/nHYWmIp3mPaJRAnsux8ylpiYq9iNH\nqISKRSoK0XNapaKRIZrTHD7MMU5PU4EfOMC1SKVoaDQ1UaY9PZSFYDS97WI7+cgjv3V3MuB9RSC/\n1tbWZDcv0YPX5/Nha2sL2WxWZgGtra0hl8vBZrOhUqlI9stgMAiXy4WZmRlkMhkEAgHZflI0jxcn\nAI/HA4fDgXw+j4aGBtk3QDSTLxaLWFpagtPpxM7OjszaESA7Pj6O2tpa2VWspqZGuoi0Wq3k+ykW\ni/D5fLIl4/DwsGQ7FTGApaUlGI1G6bKJRCKyy1dHRwf27t2LmpoahMNhdHZ2Yn5+Hmq1WvZjMBqN\n2Nrakmyi5XIZ+/fvh9frxfr6ukw9XVtbQzQafReR3uTkJLT5PCyjo+jU6WBfWeHGEkGzy5dpAT3x\nhJL3PjJCUO/u5sYQTdcDAVqNgu9fcLS89hqBsr2dm02Ql/X3K1205ucJQj09BJdcjiAXCAD/9//S\n4urq4maMRFjh+/nP06IUdA2VCoOHwSA3s8jbdzo5J5dLOcno9QTWxUW6SMxmbuJkkkD16qsKC6XV\nSiUxOkqgOHOGrz/zDOd11128V6FA5fXKKwSP69cJYC++SAUiAtXf+AZlkk4r9ROtrbQ+L1/mXNxu\nuh1On1YYVru7Kau33qKl/ItfKMVbx48rwLSxwZNPIMBxlUoE2JUVyvDQIVr73d0E7WKRcujv532W\nlykrr5dyP3CA6yoA9cYN3v+DH+Q1JifpwmptVbrE+f0KEIsWlufPU+6//CWVeibDvyMRJUCcSHAc\nt25xjB6P0mCouZlr/OSTXCMR7D1wgAygDQ08iX3iExzXfffxHi4XTwLPPae4qkQ22qOPcn3b2qjY\nwmFeJ5ulQurt5TN+551UgCdP8lkQgXPRMnNtDesvvADr4OD76aPA79aYxul04qtf/arkxIlEIlCr\n1QgGgzJu0NjYCJ/PJ3sPiMbsAoCbm5uh1Wpht9sxNzcni7uEP99kMskisGQyCbPZjMXFRZhMJsmr\nUygUUCgUJHNnJpNBKpVCMBiU462trZV9kXd2dhAIBBAKhWSLTBEPaGxsRCwWg16vx9TUlMwEEkVm\noVBIpqnm83lotVoZC+nt7ZWppKurq5L2enp6GqVSCVtbWzAYDCiXy1CpVJLvR9BMCPqKQCAgTwOZ\nTAYmkwnNzc0oFosI1NfDlUzC5nbD+Mor3Iwf/jDB1eEgcHzgA7Sw0mmlpWA2q2TSjI3Rt261Kpw+\nr7/Ojef3E5xERa/o+hSNEiCXlujzF/70xUVmgNxzDwFM0DYbjdyML79Mi/DJJzmG11+nC0CnI4hp\ntQSHvj4C3vXrHK/LRWC6915agU8/TSX8VkYAACAASURBVAB87TX+nJoiEMzOUhncuEFQu+MOJehs\nNLKIqKOD/uOGBgLUP/8z57G1ReVVKnH8Il7h81Fur75KmXZ20m3V0sJrXLpEwBE0BtPTBNDBQf7+\n+uu8llCs8Tjv63Ty/XfdxfG4XFyDI0cIqNvb/PzsLEFPVO5ms1xj0XJydpYA2tZGgEylCHAGA9f/\nRz8i6NXX84QSiRAU7XbK6rnnqGh+9SvK8vJlykgExi9fVuIUiQTf4/HQuAiFqMQMBsr5pz/lMyR6\nU9+8ybX9xCcoR1G0NjtLOcdiCh23zUb3VjjMZwWgrGw2KiuAshcd6ubmKIOVFSo9kVKbTFJpfe5z\n/Lu9XeEbEnUKo6NUhDs7MjXX9tRT+IuvfOV9Gur/P75GRkYQCARQU1Mj/ftutxtTU1OS2XNoaEi6\nf1wul/SPi+YqBoNB8uuIeIAIDotUyWg0Cq/Xi0KhIPPydTod/H4/wuEw7HY72TOTSbS2tkrXj6Cx\nXlpawrFjx1BbW4v+/n4Eg0F0dnYiGAzC4/HIgqyZmRnMz8+jq6sL6XQaHo8Ha2tr8Pl8mJmZQUsL\nW2tOTk5KUjtBhZHL5TA+Pi5rAwTF9rFjx7C8vAyNRiNPPALkd3d3cfPmTRSLRQwNDUF9mx5XpNPu\n7evD+uYmduJxuOvroZ+aIsh873u0iO+/nz+Xl2lVioYc+/ZxA129yk38oQ/xd7ebFlxLi9IUPRpl\n5s0PfsAg8YMP0iK+XdyHSITvP3yYm0YEfB9/nCBw//0Ev8VFguv99xPMRbvKQoFA7XbT4t+7l8A/\nPMz3qdUEn2iUwF+pEFTm53m/Rx5hjECn49xKJSq5v/s74L/+V4JqNsvPvfmm0kg9nSYA/+IXVCoH\nD9K6f+ghKg1BeZ1KESw6Onj9/n4C0D/+I63ad94hcN26RXB95BECV00NQezVVxkY7+wkyJw8ScsW\n4Lp84QsEdatVyVY5eJBAm05zDIcOKe6We++lsvnwhxlAHhnhPZ98kieShx5SXBrZLNcsn1fcMvv2\nURZnzypMoOfOKXEIt5vW+0MPcQyf+ITSIe7llznWvXsJmn4/X1tfp/wrFbqlDhzgffr7FSs8keD1\nxUnq0iWuhyjsOnmS11tZoayXl7mWonmQWLvRUb5+7BiNCuEKEwqpu5vP2d69SoxD9IKw2xm7OXqU\n8azxcWZG9fTwGV1Z4Zr+pgvrPf76d6EIjEYjzGYzRkZGZJvJuro6GI1GFAoFtLa2IplMIpPJIJlM\nSuZOAfSCVqJSqWB5eVkWhm1sbMDv9yOVSmHfvn1IpVKIRqOS5dRisSCfz6NYLMrr+Xw+VCoVSbPQ\n3t6Ora0thMNhSTS3tLT0LvdVLpeDw+GQqa6Tk5PQ6/XQ6/Xo6uqSvQyWl5dlYHdxcREDAwMIhUKI\nRqNoampCU1MTQqEQHA6H5A/yer1IpVJQq9W4cuUKGhsbodfrpevK5XJJWupAIIBisQiLxYJ33nkH\nDqsVDqMRu/Pz6O3pgT4chkak2j39NPCVr3ATiAYwIqe+uZmbVqulBSRS63p76Vo5f57vmZ8n+P7l\nXxJU7HYqA7GZfvITWmUWi8KcOTnJGMBzz9FCu3iRAHL8OO8nqoiPHydAPPMMx9TSwrFms7SQt7aU\nxuKLiwTHdJqWMsDNK9JbMxm6lYaGCFBuN63OQ4cIbtvbBIRXX+XmTyQYtBW9jwcHCTQiS+drX6MM\n5+aUgrrbVCVYX6eVLbhtRA58fT3/PnFCIXR7/nmlqvfIEYLV174G/M//yaK5++4jiA0PUwkXCpS5\nqLI9fJgK99YtpfWiRsN72+28RyxGsC2XuY5aLRVaucw5i9qA//yfObfWVir/qSnKoVIhQPf3E5yX\nl3nfc+eoBAYGeI2+PiXo7vFQNpOTlHWhQLl2dPAU1dXFa731luJ2WVlRLPBKRYnjXL7Mzx49SmXW\n18dnZ3eXa3LzJuUuelPceSeV1/Q079/RQfB/6CGOL52mIWGxUFYvv8z1amjgWopMsgcf5DNrt3PN\nXnqJ6xEI8Bns7OTaAL9TjOBf+/V7rQhEXns2m0UqlYJKpUJ7e7tkFK2rq4NGo5Gpjn19fRgbG0Mu\nl0MkEpEtK2trazE3NydpFkQq59GjR1EqldDd3Y1KpYJ0Oo1AICAb1ptMJkxPT2NoaAipVArFYhGz\ns7MoFAro6uoCwKwai8WCwcFBXL16FU1NTbKpTFNTE/L5vAR7j8eDhYUFDA0NYWJiAuFwWBbJ3Xff\nfdi3bx8SiQQymQyi0Sh2dnZQW1uLiYkJ2O12JJNJAMDS0hJUKhXuvPNO7O7uolgsYmFhAY2NjXC7\n3ZIe+9atW/LUIArr6urqkNveRj4ehy2bhXF9Ha7774c+FFLy8evqFNKyp5+mdXTmDAGrXOaGqK8n\nGA4OKmydV68q+dciu+PrX+d1RAvDcJiLK5qJTEwoXa5mZ5mD/a1vEdi2twlMojmN10tw0GgIfm+8\nwbEMDBC0urqUJugXLxJYRVHa4cP0GRuNBKt8ntcV1BeCwVJkx1SrvKfBQKUWDtNafvppujyOHuW8\n19d57ytX+LfIgEkmCQwiV35iQvHNF4sEHaGgzp6ljEIhAt8bbyiuo5YWyn19nWP/3/+blu/GBuX9\n6KP83I0bfE9dnVKUJqqIl5b4+6uvEtCvXuU9P/pRJQby6qtcF72esj19mkpR1HK0t3O8589z7LOz\npOtwuTi3n/2MINjeToD88z8n/9OtW3SlfetbXKdXXuFnTpyg3Kam6EJ8/HF+7sUXuY4tLVyHyUmu\nTW8vnzWViusyMkKwFhTg2SzlW6lQHnv28DlZW6Ncxsb4ujix+P1ch7Y2rtP2NpXZ9DTdnqKnhKji\njsWoDDY2GDv6m7+hUfHRj/K+99zD5/Nv/5Z/O51Kw6R/g69/FwVltbW18Hg88Hq9UKvVuH79OgC2\nUHS5XNLHLvLoV1ZWZBGaoJEolUqYn5/H/Py8dPvk83kUCgXpXtrd3ZUMpLlcDrOzszIWIZg2RQFZ\nIpGASqWSnb/q6+uxb98+NDU1Qa1WY3NzEysrK7BYLNBoNJJTSMQKHA4HnE6n7IEgOpYVi0XkcjnZ\n9lHMW3QUSyQSOHjwILq7uxG+Daputxs+nw+9vb3o6+uTNNsnTpxAuVyG0+mEx+OB2+0GYjGs/+IX\nODYygo6uLjTqdNCfP09AnZ1VaBNmZghg995LcNq7l4C5fz+BUaslgJjNtDRXV+nfPXCAqZOigGh6\nmoHAEye4MT/1Kb7n5k3+LSieVSpa5G+/TetXNDNxOLiJdTq6XJaWmKVkNFI5fe1rHHNXl9IoHlDS\nHgX//blzwJe/TEDJZHgiaG3lGEU7x0OHmMkyNEQLMpMhSESjBNhf/5oBbRHIfvllXgPgz5oanpB0\nOiqan/+c1vDODgEtm6WlGg4rHDbz86RD+PKXaSkHg5x/PE5w+fWvKVuHg6AcCnGcn/mMAsL/5/9Q\npuEw7/WlL3Fdfv1rAtKxY7SE+/upBFwuAlqppNB+Oxxcz85Oyjed5omts5PPxsyMclK4do1ySSY5\n53KZ67KyQkX6859TsfX2Emxv3eKpKJvl2P7wDwnegr4jm6XB8NZbBOjubqV2Q6fjGoqsqpUV8i01\nNPA5vHKFSuHb36ZxYrFwzC+/zNPCXXdxPqEQZTE7SyX3wANcx8VFKt5z53h/lYrP+MoKFeAHPkDF\n2NBABTQ0RKXgcinkfa+/zuf17FnulZ4eru3tDMB/i4Ky3/tgcSqVwj333CMbwqhUKsTjcdl03efz\nwWw2I5FIYH19HdlsVgZBTSYTNjY20NraCq/Xi2q1CqPRiIaGBpTLZVitVqyuriIcDsv8fdFXt1qt\nyusKLqK6ujpZ2FVTU4Pa2losLCzIAG+hUJDKRNA01NfXY319XZK2bW9vS47/RCIhUzU3NjZw8+ZN\nyQkkUjwrlQoaGhrQ2NiIjY0NyR5qNBrlWIPBINbX12XK682bNxGPxyVFdDmfx/rKCnr9flguXEBt\nXx8sb74JdakE9Zkz3BwjI9xsPh+t1JUVWr35PH+fmVFoiM+e5YPf26sEZh9/nK4CURhVLhOYh4cJ\nCoEAN6YAjI98hBtXNHPJZAg4hw9zgwcC9Nk6HNyAIqd87166FeJxgnMgQPDL5xU3y1/9lcIVUy4T\nTPbt43X/6Z+4SU+d4jzfeIOAJhqxXLpEpXL0KMcaiykUBKJwSCQIZLMc23PPcT6vvKJwGonOVZ/7\nnEKNIZTf4cME5FCIoPed73Cezz9Pi9zpJPAImom5OYJ4eztl19REAHz7bQJvbS3XsLdXGXcqxYBo\nocB1cLt5j1iMY3v8cV77wgWFBvrDH+acqlWu1WOPEQhdLn6+WFR6BYhYh9tNa7q9nQoqnSbAz84q\nKcVeL+c9OMjn5Z13FDeVqOUwGDhWUb9w7RqV1Z49fE4mJqg0H3iA8w2FlPXZs4frZzRSbiKtVpy+\n6uu5xg4HFVcoROBfXuYz+9nPUkZvvkkZCoqOjQ0qselpzq9apVFjNPKe5TKvNT+vpDrX1iqZSjMz\nQF8fU0jf5xr63QrK9uzZI90i1WoVWq0WNpsNAGMHohJ3bGwMnZ2daG9vR7VahdPplMRrosn66Ogo\namtrMTk5iWQyiWw2i2g0KvPwa2pqkE6nkUgkZMXtHXfcgXg8jp2dHZTLZUm4ptPp3lU9nEwmYbFY\noFarZXvIjo4O2O12jI+Po7W1VWYYtba2Yn19XSqXVCoFrVaL/v5+tLa2olKpwGKxyEDv0tISTCYT\nLl++jEAggEAgAJvNhsXFRYTDYdmjWbCOhsNhuGprYdHr4XG7Ub16FZ1nz8LudAKhEDTXrtHHvr3N\nh7q2luC2f7+S0dHRwf+/8YbCyd7SolD2zs7SKmxp4UYXnPiDg3zP5cvc3J/+NDf4q68SaF56iZtk\nelppLuLxULl0d3MsV64oVbQeD630/n5avMPDfM3jIdDfuEGQ0Om4qd1upb1jayvHFo8zwCo6aFWr\n/G5qUorOHnqIG39iQuGkuXyZ4xJ+X3HqCAQoq5s3eb8bNxQLeWyMm/4DH6A1ur5OBeN2EwCrVYKN\naKxz9Ch92cePE5geeYTz8vt5/9pavndlhcrutdf4u8PBAGyhQMC53QQF77xDWT/6KMdaKCiUHdks\n57y9zXu/8ALXdmGB8pufVwq00mmuqdMJ/Omf8n8nTihMpm++SeWdy/HZaG3ls7K7y3GoVATdhgaO\nv62Niker5edbW5mMIHouhEKUy+IirzczQ5mJoP6bb/JeojAxElGC1KKeZHqaz8B99yl0FCoV79Xd\nzRPOCy/w5JpKMY70xS/SZVUs8pk/eJDyaGtjHOY//AdeMxjkMyS+0mlFwajVXNdvfYun1LU1qRRP\ndnTw2X2fhvp3UwTT09Mys6ZUKqG+vh56vR5qtRqRSATT09Ooq6tDc3MzPB4PQdDlQjKZRCqVgtfr\nBQCsr6/L5jFWq1W+X3Q7E66Y1dVVmX7Z398vO4epVCpYLBbU1NSgvr5eMojOzs6iWCzCZrPJlo7R\naBQ2mw3RaBQOhwMbGxswmUyyfaaYGwBZg1Aul7G+vi7dWCqVCmazGfl8Hna7XcYs9Ho9Njc34XK5\nZEGa2WxGOp1GXV0dVpeW0NrQAH0kAvPYGBzd3bBcvQrT2hotFodDaYEo/O333UeLZnNTofLN5/nw\nFot0s5hMBJONDW7QmRlu2rvv5nvHxgi+Ozu05E0mhUDs3Dl+ZmiIoNzezv/5fASYo0cJbj09Sopm\nJqO4HTY2OJauLoVB9Nw5brhQiFbl66/T8hYnBZOJ1zh1ihv5Jz8hIFosBCNBA7GxQaXjcPB6p0/T\nBdPZSYuzvp5unXvv5fxraiij7W2eAvbsITA5nbQe9+3j+ITv/dIlhTCuXObPtja6f55/nvLP57km\nxSKBsa2NPD/33Ufgz+UIwh/4ABXEqVN0F62sUJaFAq81Ps6xxGIEfa2W1xDMmeUy5zI6qjSR9/v5\nvbOjpFiKWEkgQJnduMFTjGjOAlDG8ThTcTMZhS768mWeRER+/6lTBFzRpnJwkONOJHgd0elL5PE/\n/DDHEghwjQ4e5AnkQx+inBIJnq7efpvXf+EFKhK1mnPc2qLM29uprHd3Od833uCa7N/P+5VKXO/x\ncaXd5s4Oxzgzw/lPTHD80SjH/a1vKYymsRjB/sc/pgJLJvkMeDx8jldXAY8H66USrAMD7/mJ4D0L\nFqtUqu8CeAjAZrVaHbj9Wh2AHwNoAbAM4GPVajX+Xo0BAAYHBzE3N4dEIoFqtYrV1VVMT0+jq6sL\nWq0WjY2Nst1kNpuFTqfDyMgIGhsbsWfPHpmTL+oJhHsGAMLhMBoaGrCxsYFIJAK9Xo/W1laUSiVJ\nSyF87CIbp1KpYHR0VDat0el0Mk1VFL3lcjk0NjZicnISlUoFjY2NmJmZkcoiHA6ju7tbEuiJE08s\nFkM8HodGo8GRI0cAkN9obGwMq6ursnBMr9fDbrdjZ2cHfr8fN2/eRGNjI8KLi/Dn8/AvLwMeDzSh\nEDS7u0o2w+AgN8DiIo/7d9zBDXzhAjd0JEK/9N/8DYHis5/lxpqc5GejUfrk/+N/pOI4eJAb8t57\nuUFfeIFHd/HQz87y/3fdxU2u03Ecb75Jv/XoKMFItFMUHazq6hSLLZOh391uZwDS6aS1NzRE8P/4\nxxVunEhEoYgQRWaCKtjpJHg3NPBnOk0Q+OIXlW5k5TJBYnCQQeGJCW78ZJLupjNneAIaHaWVLGoV\nZmepVOrrCcQAA4U/+QkBrKODDdZdLn7m4kXea3GR7xWgLKqiJyd5z/V1fuaxxzh/0Uj9nXcIuoIs\n7ZFHaNXG41yHhx5inn9TE9e3oYHjnJqishJgGI9T6bS0cC1/+EPKYntbYWqtqSFpnt9PgBTZO6KJ\nTyzG/3k8vIfXy7UZH+cYh4dpBExMULHm88qJ54EH+OyJHsSXLtFyX1igrAV9tdvN6z3wAJX0/Dzn\nLZIAhoYovxs3GCs4eZIKbHBQoe1ob1diWyYTAV+n41yvXeNnVCpa711dlNOBAzwJ+Hyc78mT3EsX\nLtBQ2N5m8P3KFcoY4PP2/PO8/mc/i6aTJ1HNZN7zFNL3Mmvo+wD+HsDTv/HaVwC8Wq1W/0qlUn3l\n9t9/+l4NQGQNVatV7O7uolr9/9h77+i2zyvP+6KxgAAIdoIF7J2iKJEqFkWrWLZlS3Lv4yTOZJJM\nMpt9NyfZnMxOsmslk2SyKZvsOJPeHTuJbdmW7FiyumVZnaJIik2sYAF7BQkSIIH3j48ePJNzds+c\ntTd5Z+Y1z9EhBfx+T733e+9zn1vCkbTNIiILCwtit9slJydH/H6/xMbGRnICNTU1/dFnSUlJ0tnZ\nKZs3b46YXFJTUyOmHuVdk5CQIF6vV1wul9jtdhkYGIj43asAs+HhYUlNTY146Sgtvr+/PxLrkJaW\nJqOjozI6OirR0dFSXV0tHR0dUlBQENH2lWB5++23I5e5VqtV+vr6pL29XQpvZuyMioqKFLfPysqS\nUCgkoVCIuImhIaKPQyGxNTdLel2dRI2OwlyhEGB07ZpOKSCiCV6lbm5oQBPs7+eZdes4Tr/yCv7S\nyckw/datZGy022HyV17RtlCLhc9XVrjI7OrSRTwKC7Gfq+Ac5do3Oor239wMI9XUwFSrq4D9hz8M\nEx44ANCFQozF64XJX3oJ4ePz8c/joS9V0GRhQeS//3e0zLvu0gnlAgH6VF49p07hkqmSrx0+rCNo\nbTaeycwEjFdWWMPRUYDlyBEA+6mnAMXKSvoRQVO0WBBEKsDrySe1QIiJwRNpdBQAf+ONP7Z3z8wA\ngNnZrPdbbyFoVJqOmhoijVUm1VdeYd/Gxtjj3FwE//XrrKsKsrrjDsDqoYfYu2eeEfnyl3W1sdxc\nhLDLxdguXKDN2FgUhd5eAPLOOxHwBgPCcHWVvpqaELAHDmjXT4tF00pfH8JsyxZOYOfOcVk+MAC9\nms2sxYMPQid2uy73ePo0IBsdjcLhcnHv89BDrNmdd6Kpr67qNCavvYZgOXkS2tm5k33KyhL56ld5\nPjcXQdjRoXMFbdlCnzExuhDNsWPQcH8/gisrS+eXys1l/gsLCLZjx3jnzxBHYFAmhj9J4wZDroi8\n9s9OBB0isj0cDnsNBoNLRE6Fw+GSf6md2tra8OXLl/+P+w8EAhIdHS2vvvpqJDdPQkKCdHV1SVJS\nUsT8srS0JEtLS+L1eiU2NlaCN2/pVQH7iooKsdlssri4KEtLS5KRkSEtLS2yfv16GRwclKysLGls\nbBSbzSZr1qyRQCAgAwMDkpCQIDabTSYmJqSnp0eKiorE4XDIjRs3xGg0isvlkmAwKDabTWw2m4yP\nj0tKSoq0t7eLy+WS48ePR2olV1ZWysjISKQATHp6eiRJ3vj4uBQXF0dqD3d3d4vD4ZCCggLxeDwS\nFxcXcT/t6+uT+vp68Y2MyMTYmBgvXxbn7bdLttMpptdfF9PYGESuAq1KSjjyqgyK589jEiosxP6p\nokAdDjROlZKhqgrtKyEB7f/aNQDp+nWA58Mf1hqe3w8wKBDYtw/tdtMmtP9gEKC8eRKTlRXdZm8v\n46uqAmiUUFBBOe3tOj1FaioAtWMHzOZ08v2ZMzqTZmwsGufCgvbuKShAuyspYYwrKzDv0BAXi489\nBlBYLJxOBgd5Zn6ePl96SbuSZmdzqiktxca9b5/OvOlyAeTKdbWjg/Wx2XQU7wc/CBj/8IcIpNtu\nY66BgPZiSkkBiAYHeb+7G/DOzxfZv5/+n3qKtVbRxyUl2qXR42GdrVa0WKsVoJ6e1hfbsbE6J9Pq\nKsJflW38yU9oZ3oakHz9dTTd5GTWdeNGnUhQJRF86SWe/e532Z/779fpoD0eQPWtt5hncjIae1oa\n5raUFL3vGzZgFrPZRL74RZ1N1mLRmUQLC9nb2lrmeeUKQvHKFfr4D/+B+fr9CLzduwHy1VXmaLGw\n7yom4K//Wt+HTEywV4mJOmhtaQmFSdFDdDQ8ompbZ2SwFyriOjc3sq6G732PE8G7jCUwGAxXwuFw\n7b/03J87jiAtHA57RURuCoPU/92DBoPhYyLyMRERt9v9njpdt26deDwe8fl8kpSUJMvLy5EkcRMT\nE1JXVyc2m03S09PFbDZLQ0ODlJSURCp/LS8vR1Ite73eiFDwer2SmJgoUVFRkeL1Kj9Pwc2oQJUG\nemlpSSYmJuT69evidDolMTFRoqOj5dKlSzI3Nyd5eXnicDgkJSUlci+wfv16ycjIEL/fL42NjeJ2\nu2V8fDyS/np1dVWWlpbEYrFETEN2uz3imdTY2BjJpxQIBCJ5kUyLixJ14IBUiojp2DExrayIqbcX\nk8DyMtri5s3abNHUhM/39esIgc2bYcaJCTSZ5WUdEzAxAfM2NMBYKSkwQH4+hD8zozOFlpXxXksL\nXii5uQBkdTUnDhHA5PnnMbXs3auDrjo7Gd8dd8A8RUUwi4ooDoXQ4D72MbRRFQEcCBBEpmy3Tieg\n89Of6gpRmZnaZNXcrAG1pYU+o6N573vfg7FFiNrdsQMweuUVhMQXvqDBXQU6KYB580207IEB1uHI\nEdw4JyZ4f98+APvSJbTVgQFAef9+QHbDBgRlTw/Pvf02n//sZyIf/zggOjmJa2kwiOvsww/z7/hx\nLjLz83kuKgqAHhtDkM3McFns9WKS+tCHEDbr1iHYz5/nhPT224zhttswj3R1sWZGI2sZDALwKnW3\nqsvb2kp70dFo1y4XgmhqinabmlAwYmIAxG3bAGhVVW1hgfGp2gP9/dCZxwPtKWH+3HM6xUdxMe0Z\nDOyF16uDBVU1uu5u9n52lmeqqjhVbNjA3s/MQNN2O39fuMA+HTjA/mzdCo2++CLzfuop+KSqivfb\n25mPwQCd3bihU5B/6EOcJHfsgKY9HvZG5M8SUPavNo4gHA7/KBwO14bD4dqUlJR31YYyAQ0NDcnQ\nTROIy+WShYUFmZ6ellAoFCkgLyKSnp4u4+PjUlhYKC6XSwwGg6Snp0cKsqhi72lpaWI2m6Wnp0fM\nZrM0NTVJKBQSg8EgS0tL0tLSIkNDQ5G8RKp4S09PTyRvkfouLS1N1q1bFynsPjU1JUajMXIfoNxF\nq6urI3mDSkpKJCoqKhLb4Ha7JT4+Xubm5mRubk6ysrIi7q1btmwRw+qq+GZnxWQyyW3btkliVJSk\nr18vsT6fRJWXi0mBb2mprvyVkgJzZGSgvZw7hzZtMEC4brfI178OyO/bB/js3atzBfX1oXF95CMQ\nfTCIWeLRR9mcb34TAL98GVCtqgIQHnlElzN8+WUY6NZbAcGKCgKGjh8HLA4fhpkefJDj/Te/qbV1\nmw2mUgC1uKjTBrtcnBZeeQXNWRVvLy7GzPH1rwPWzc36QnVlBWYvKWGsCwuYZe6+G6D54AcB1rNn\nEXQ1NQiQq1f5PiZGFzbv7WVsZWXM9777aDcYxHSxezfPqzrHViugGR/P/y0WQGhxkXHl5jKfK1d0\nrYUTJ5jrb37DWqmTf3Y2ZhSbTWvW4+N8//jjrH11NYLNbOYk9O1vI0BffJG1S0xEOH/0o5h+vvtd\n7R7a1gaYKpOSxYJpbWmJ9r79bZ4tKECofPnLAK/K9WOz8XlnJ+9kZDDXlBTWs6WFtfnFLxjLrl0I\nwqoqhFJxsQ4eGxmBPq9cAeTT03V6CZeLPfb7GefEhHa9/da3EBD/+T8D+Opi+Ic/5N/ICHvz2GOc\nSlJT+Z2RwV7FxEDnNhvtd3ayF8vLPJuZiRDz+XR0tcWiBdnzz7Pft9/+XiD0/+jnzy0IRm+ahOTm\n77E/dYdf+MIXIgXY8/LyZGlpSYxGozidTomNjZWamhoJh8PS0dHxR2UcW1papKenR4LBoIyMjIjX\n640UrxcRKSsrk9TUVFlZWZHS0lIxm82SnJwsGRkZkRrIycnJYrVaJS8vTwwGg7jdbsnNzZX8/HzJ\nyMiQgoICiYmJEavVGsnyuby8LwOzcgAAIABJREFULCsrK2Kz2SJpLCYmJmRxcTFSfyAqKkrGx8cj\nfc7Ozkpvb69kZWWJiEQKw5iNRpmZmJC+s2elenZWtiUkSHp3t8j+/WIyGtFgVCphFdhSUAAQqsvB\nX/0KplA1awsK0M6sVgSAwcBxu70dYL+Zp0hWVgCns2fR6l9+GUb+x3+kv3/8R9xBfT6YSHnYvP46\nmtzly7qyVW0tTLK4iLa5fTvgEg5jR+3q0u5/qakAzs3gN/H7ETTXr8O8eXl8r5KcOZ08Ew7rdMY1\nNWihp04x97w82tq2DU1fRBdESUjAbBEfj2CaneWZcJh2fT7s2S4XAP373/NbVQwrKNAXoidP6qpi\nHR0ARH8/LqipqaxzVBTgJ4IJ5uBBtP2NGxG4NhugWFKiXSlPnxb53OdYx54eNP+0NJ1i+c03ERxl\nZYBVTAxtFBYyl09+krVZs4Z5qtKSZ88yruRkBIY68fh8aMQnTwJ669bpS/raWv6vir6srjKOf/gH\nQHt6GuEyP88p6bXXEJoq8ruoiLZuu411KiqivYUF7pFUKufZWca1dSvCZvdu6HZ6mnH4/fw/KooL\n295eBMniIvNOTcV8OTaG0HnzTRSSJ5/UfUxMsAYiCJezZ6GZwUHotbMTRUUVtXngAX3a+PnPeebT\nn6a/tjbWIzkZoZGXJ5KWJv9txw7e+RP//LlNQwdF5EMi8g83f7/6p+7wi1/8ovT19cnq6mokr86W\nLVtkdXVVpqamIvmBbDabXL16Vex2u7hcLvH5fBIdHS3hcDgCrGlpaWI0GqWhoUHWr18fSb0wNjYm\nMzMzkVoEyox05coV2bRpkwSDQQkGg2K1WiPlKDMzMyNurCpVdEJCggwNDcn09LTExMSIw+EQp9Mp\nUVFRkpSUJOPj49LZ2SnR0dESFxcXyX+kity7XC4xm81iWV0VZ1KSLLa3i3VxUW49c0ZsW7aI6dOf\nFvn+9zEPiOhkWaOjaPjLywCW3Y4WpspAnj4NeClm9vl0oReltRkMAMTAAM+oHPvhMKCjAns+8hFd\nAMbn4xi8vEx/165h0gmFdCTqyAjA95vf8FxpKWAXH48GHgoxhqUlnj95EuazWpnTyoqOK3jhBUBl\n7VoEXUkJjD85CRCWlMCUubmAtyoYMzjIe62tgO3VqwiW4WGEiccDE7vdWpMdHta287VrtQdUYSHA\nMDGBZr6wwHsqpYbJpNNw7N2L8CosZLzV1exVVxfgpX6uXgUw9+7lRDM8jIfUsWOMf906+mht1WU+\nw2HWbmUFzT45mZPDj34EuKrSjuoyfnWV/U5LQ1iXlnJCczpZ795e2uzqgjZUptPeXgSdwQA9/eEP\naLxqLXbuZG5OJ3289hptqxKQvb3QxqVLKA5f/apOQri8zP79zd9wUlDeZ+Ewp5OWFl1trLUVOj11\nir5uWgtkdRWB/sQT9L15M3uvgroaG/n+wQeZ08AAd2XBIDSal6c9k65cYa5lZfS7e7dO8Z2ZiYlv\ndBQ+iomBTs6c4f30dNo8cwZz5i9+IeLxyNMqkeGf+OdPFkdgMBieF5G/FxH3/v37P75///5ZEfmJ\niHx+//79XxSRZBH5f55++mn/v9TWe4ksvnr1asQlUwGv3W6Xrq4uMZvNMjk5KRMTEyJCqmgVS6Cq\nmyUmJkowGJT8/HxpaWmJJKdzOByRojGJiYliNpslMTFRLl++LBkZGTI+Pi4ul0sWFxclKipKkpOT\npa2tTaqrqyUhISFyGlCpsAsKCiQuLk66u7uloKBAzGZzREg4nU5ZXFyUwcFBWVhYkLy8PGltbZVA\nICATExNiMpnEFA6LyWKROY9HspqbZTEtTbISEiTh1CmJvf9+MapcJzk5OrQ+Lg4wdjphojNn0Lr2\n7tXF2XftQuu99Va09JISzCGBAEzi8wGGRiNAoerRKs1b1bQ1mWCogwdpNy0NprnzTj5rbYUpnU6e\ni40FmGZm6Ht0FO0sLw/GSEyE4R0OtNz0dLTSxkaAsbycuczOAiS1tczdZqM9jwfBMDEBUE5OwsBD\nQzo76cIC/3Jz+fyZZwDRxES0x9RU/Z0qtqKSvxmNtLN+PZqnqluQmIgg9niYa3Exv198EZCMi2N/\nVDqGsjKA9sgR5lZQgFAcH9feONHRrJ3XyxjKymCAu+8G8CYnGWdKCut18SLP3n47Y8/N5Rlljqqq\noq9AQKdErqpCIKakcDK6fBngKyriTikpSa/3XXfpfEgeD8AZGws4rl+PALrlFoTSsWMoAJmZ7KGy\n+6tkfqouQ3Mz47RaedZo5O+lJV3QZutWxmMyAfozMwgLqxUBVVenaw/U1upYhpMnGft3voPwWFyE\nHu+/Hxo2mRDmx4+z7iUlOq331BSfKXAfG+P9DRv4Tnl3TU3x2cIC873lFu7HEhIQfJmZ8ElZGbxR\nVSXS1SXDUVFiV/d17+Ln//M4gnA4/Pj/5qvb/lR9/q9+Nm3aJEePHpW1a9fK4uKimEwmCQQCEh8f\nL6FQSGJjYyMgrgquB4NBGR0dlYKCgkjyN/Wu0WiUoqIiMZvNkeLvwWBQjEajLC4uyrZt2yLa//z8\nvFitVvF4POJ2u6WoqEji4+MjcQYiIpmZmRIKhaSxsVESEhKkpKRE3G53pN7y6uqqTE5OyujoqBQV\nFUlMTEwkQG1hYUGsVqtYQiFJ9fkkIy9PMo4ckajUVIm9elVM3d0Q3NGjMMXSEhrW0aMAgLoky82F\nsAcGdP1bEU4HIhBhayuANTMDYw8Oavu5ItLqaq0h9fXBYMoOrrxDcnN1AXZ1bH7iCZ1bpaQEpgwG\nseGrylIOB9/FxABaKsJYBaPdfTdgu3cvTN7ejma3bh1Mds89Oibg+nW+X1gAjJSb5+oqbahKVMXF\nOqeO2ax9ylta0LqVp1BpKUJLFa5vbwe4n36aI/9DD7HeKo20yoHjctGWzwdw3norgKG072BQnzRU\nGce1a1nDH/yAuZpMCJBPfYo+GhuxbVut7HNBAaarV16hD4NBm1defpn9OXNG13f2+RCiKlvrM89w\n6bl+PWB65Ajzve8+3jcY2G+VRXRhAXPixz/OpbxyFjhwAKG0Zg0C2WKhn/x8Xejn9GmESmoqcxsZ\n4fvSUp2QUAldtxuhVVKiAwwbG/VdhCom873v6Whs5cX2xhsA9rZtCK2yMoTupz6l8/739ur0JXV1\npD9PSOD/Fy4wZrdbV7AbGGD/xsdZSxVrok50MTEIgOFhTh2Li+xTSwvzufNOaPDMGXioqUkkP18y\nP/lJCf/t3/7JcfL/F9lHnU5nJCV0dHR0JGBsampKZmZmIkXmHQ6HNDQ0yNzcnFitVpmdnY0UagkG\ngxIIBCQ3NzcSR2Cz2cTj8Uh+fr7Y7Xa5du2alJWVSVJSkgwPD8v09LTMzs5GCslYLBYZGhoSs9ks\nHo9HzGZzpKqZyWSS1dVVCYfDMjg4GIkfMBqNYjabZXh4WKKjo6W1tVXy8/PFZDKJPTpaAgsLkuL3\nS2ZGhkQpk4LdLqYjR0jQ9sILEKzLBaG++irC4Stf0emMPR6d1Ky1FaBR1bGGh3mvpIQ2Xn6ZI3R9\nPQyelAQxv/WWvpirqIDpVNSsCNp/T492h1xagjEKC9F+fv1rjt/KU+n6dYAiLw9g2bBBF4g5fBi7\n9aVLAEdJiXZPNBhgapWbR6UMUIm+vvMd+puY4DMR+mpt1UVVtm5F+9u9Gy3V66WNujoYfnYWoDp6\nFMFgNrNOXi9gt2EDJo9gkPaOHGEeCQkAiCp0r4quVFcDCseO6SCxlRWA5BvfYD+KihA8zz2HQEpN\n1XEJSlDs2sX/Jyb4nZaGae+NN3QMxtQU5rjXXkOQT0ywfxMTmCSOHWP95+f5+7bbEDYNDYxtakoL\nlvp6QDYvD0EgAmhbLABtIKCTvX3uc9wbHDqk6xocPAgtqLiRujrMLQ8+qFM0f+c7COWHH2YtL1+m\nL7db30c1NVGXIRDQuYPy8rQX0rlzCMYNGxCwqjpYOAx/PPEEwO9yMd6lJfZxdhbaUGunchH19LCX\nhw+zDzeDN+XQIe5qlKv1174GL3g8rPmvfgVd1tQw364ugH9khHG9/DL7/LWvIcRuZjWIuL/+CX/+\n1XoN/d/48fuxOqmsnMvLyzI4OCjp6emSnJwsBoNBYmNjZXZ2Vvx+v4RCIXE4HJKRkSE1NTWSkpIi\n5eXlkpaWFsknNDAwIHNzc5Kamio+ny8SNHblypVIQfnu7m5ZXV2VrKwsycvLE7/fL0ajUbKzsyO5\niJqbm6WlpUUaGxulvb1dsrKyJBwOR4LB+vr6xGq1SkxMjPT29kbKTy7Mz5Mawm6X9QMDUtfSIjmH\nD0tUejra5969EGNpKcT9+ONokQUFMM6GDRDf3r1oQkajzhuk/JsnJwGn2VkY4u//HtDevBnA6umB\naJ98EsbNz8fOnJDAMxs36tQRbjfC4YUX0Nja2tDYx8YYY18fJ4Pqai7QPv1p7McXL/5xmggR7LsW\nCwC9uIhGp9xVc3I46itXwrExBF5WFgJBJSHbu5fxZ2UBksqMsrICQCgQ/OhHWQ+DAWZXWUu7u5lj\nfDwAdeYMGt0bb+A5tG4dgHHhAuDZ1qZjGhYWAInZWR2YNjSEuWlyUhc3Vx43HR3a1KCiuVNTmcej\nj7KXra2sVSDAGLxe1nxmBmH22msAjroLysxkvT0eaCI+Ho+p+HiA/5FHWM/ZWfYkN1fPb2kJEMvO\nZlzJyXy3Zw8nrrw8AK2ykjXNydFZXru7oYucHPbP7dYpmRsbESwlJQB3Vhb7KgIAp6Qg/JSAmZ/n\nDuT556Er5UJbV8f69/UhZJeXoU27nf5U8sDiYtqvrtZmup4e+hdhrIuLrF0oxHps3864r1xB6KsL\n5V/8gtNOeTl04XTqlOAOB/wlwh4kJyOwr1xhvD09zE3dY8XFMbe4OISbCiz8M1wW/7vONWQ0GuVL\nX/qSfPazn5WRkREZGhoSh8MRyddvMBjEaDRKYWGhdHR0yOzsbMQ/f25uTvr7+yOFYkREkpKSJDs7\nW9xut7S3t8vy8nKkxq8KzCssLIykrjYYDJKWliYWi0WWlpYkHA6L0+mUgYEBSU9Pj9xbjIyMSEJC\ngoTDYYmPjxen0ylxcXGRkpJOp1MyUlOlzO2WlNlZyc3Pl7SFBYnNyRHLa6+J0eEAsH/6Uwj49tth\nsqgoCLW3V5cUvO027JZ33MH/33xTa3TR0RD49ev8fc89mDkuX4aBmprQXk6eBGSvXQP8PR5AIhQC\nSLu6YMDlZe2yl5gIIzz0EO04HDCAilvYupX/p6bqohxdXTxXVAQjqyC3kRHmtrSEoLhwAfD89a9h\nGosFELZYAN+pKTRPh0PnhX/oIQRJU5O+N8jLA8SuXtWFT1QiMuWCqrJ4njrFOypdQm4uY/R6SR8R\nHY1GLsL8VWGeUIjTUmwsgjAQYDzLy/Tp89FWQwNzfeIJhNHSEuaZ7Gw0zytXdB0DVaFMZRydm9MJ\n3O65h/mo9BePP84Yu7sBw7vv1gnvVPTtW29BH5mZtFNVxV6PjDCGl15iTt3df1xkvq8POnI4mMvt\nt7M3mzbp00hJCXN2OnVSu+FhbW50uVjfr36VPVb1AFZWtNeSKkZkMtFGWRl72dWFcOzvB+AtFsZ6\n773M/dAh6MVgYE8XFjghu92cbBMS4Buvl1NeOMweX7yoy2zOzOg9qa7WXlNzczp/1q9+BT2OjQH0\nJSW6VoTJxJqI8E5xMZ898ghjV4rGo4+K5OTI/u99T57+u797v2axyHsTBPv375fPf/7zYrPZ/uhy\nVbmUer1eiYqKkpycnEhKabvdLkVFRZKbmxtJJaGKwvt8vkjit7y8vIhAWVxclIKCApmdnZX09HSZ\nm5sTt9stra2t4na7JSEhQS5duiRjY2MSHR0tZrNZMjMzJS4uToaGhmRpaUkSExPl+vXrvJuRIVab\nTVKioiQUCIirs1NsFy+KY2JCLAMDYoqKQmNQZQlVlsSYGIg4Lg6i3rUL7wu7HS1EeUt0dwM4Dgfv\nXL7M/5OSYADl86yKpyhf8FdfhYDT0wGIO+6AyS5c4HkV9GOzaTCy2TCP1NTwrsUCqLvdzGF2lvEc\nO4ZZoLOTPrOyeCYjQ+e2b2gAMLxegHlpSYNHaSmMeO+9rEdsLIwWGws4rK5qG3ljI6DyzW8yB5Vh\ndO1aAHLfPtbK70fTd7l0PpsXXmANKysZc3Y2zyq/8atXCSYrLsZG/eEPM1al3V+5gpDYto1522xa\n+9++XV+iBoOA51tvARJZWeyj8lWPiWFPd+3S9wtKyFRV8X5sLMDp9zP/cBjtvrAQE091NYI8JoZ1\n6O+n/7VrEYKVlQjPwUGeSUjgmc9+lj5F0PSnp/ldXw/oHTgAPanSkNHRCNGFBfpbt46x3Xcfe3bl\nCvO6cgWaVAV90tN14aGxMYT9yAh0o1I39PbyOxDgNFlayh7FxADCBw5Ac48+ikBbXkZIjY9DZ1u2\nMM7nnoMWJybo8/p11rSykv13Ormod7uhheFh5tDXx/5PT/P5Y4+xz3v2IBC3bGF/T55kbeLidDoW\nm43T9ews8zMa4ZWlJZGGBtl/6pQ8/bWvvWvsfF8QCCahhYUF2bZtm1y+fDmSojkxMVGsVqv09/fL\n8vKyFBQUyMTEhMTExESSxg0MDEhUVJT09fVF0jgEg0GJi4uTGzduyNTUlFgsFikvLxeTySSLi4vS\n0dEhGRkZ4nQ6ZWZmRpKTk2VsbEz8fr/Y7fZIKupAIBBJPX327FlxOp0SDoclNTWVfEEmkzjHxiQ9\nLU1ifvhDiRseFsvhwyIDA2IMhQAepcFERaHVz8/D6BkZOtvmm29CrBUVgM7mzWg3586hXdXXw2CX\nL/NeTAwgnJ/PEXbnToBPRdJWVNBvRQXPKTNMbCxAZTLB4J2dOs3z0BAa08oKDP7882i6d93F9yoz\nYzgMeL31FqBjtep0CidOaFu9ysBZV8fY167VBegfegjt8/XX+VulnXjmGU5CBQX0nZ/PBevUlA7o\nqazUue+XlxFiSsuemGAcDQ0w9aOPsvaqYEhHh06JsLoKQDocAERcHGvj9XKnEAwyLhFddEVpxZs3\nM5dTp3gnP599czhY28ZGfeIR0fEKr7/OXhw5opWC2Fj2OiMD0Ny8GeBrawMcVc0IVQ/inXcA7r//\ne9a/p4c9UHmhVKxAcjL0IsJ6OZ3QWVUVgkAVl6mpgVZeeIF5qFKWS0t8/vvfM8+6OsbpcvHOvn2s\nZ1IS7TQ3o+Bs2oTQ3L1bR/9u3057DgcKy9mz0HVlJW0kJNCuqiyWkAAw33MP693djVvwwYPQfkOD\nztQ6MgIw9/bquITz56Gj1FSeu3RJBz8ODMALSvkJBHhGKWLBIG1kZEB3998PTa1bp6ufbdrECS0c\nhj/sdpHsbNl+27v3r3lfEAgngvr6epmbm5OZmRnp6+uTlZWVSCbR+fl5iY2NlfHx8YiZKC8vL1LA\nRpWKzMvLk1AoJC6XS+Lj48Xr9UpxcbE4nU7x+/0yNTUlBoNB7Ha72O12WVlZkZSUlEifSUlJ0tXV\nJdPT05HYgLS0NPF4PJKcnCyVlZVy48YNCQQCUlVWJpkDA+L0eMRy09xkrKrSrpwZGbidlZai2ba0\nANQiCIipKZhFha4vL2OTD4cB6KQk7OQeDxpXQwOMKqLz5rvdAI/dDqAok8joKMStkotFRWFWGBsD\n5BwONP6WFpj6xg2dR/+JJ3j/gQcA485OxrW4qPOvxMejhc3OYqOfnEQDGxnh2H/lCn19+tMAyzvv\nsCYeD++pY/jyMu+oQi5WK0KgpARmvn4doLNYsPGnp/OZOrrHxqJZ5+ayngsLgENdnS472NcHwx87\nFgn+kcOH6ScpibX7H/8DwTA/ryNHladUTQ39JCVpO7HfT5vT0/pCtq+P9ezvZ61VgZU33gCEz52j\nbeXKevfduq8NG3SuHaORPh9+mP2LitKJ4AoKdI2DkhLufjZtYh+efZZx3XknQrqykr8HBgC9oiLW\nW925rKwwtro6At4+8QnWWl2I5uYCwD09+tLb72dO0dGM0edDS25vJ49PMAhdud2AdkICwL1li841\ndfkyc7txA1pMSUHYWa26DkZ2NvyjChFNTECTNhvtV1YyDuW0EApBq7Oz9K28vioqGGNtLYGROTns\nv8GgzV8rK6x/Xx8Cb9Mm1nnzZmhQRepv3MhvVY1s3TrW9NgxkZkZ2b5unb47ehc/7wsC4UTQ2toq\nVqs1ks5hzZo1YjQaZXl5WSYnJ6W0tFTsdrtER0dzGXvz/iAxMVFCoZBYrVYxm83S398vHo8nYgaq\nqKiQ+fl58Xg8kZxE8fHxMj09LRaLRcbHx8XtdkeCv3Jzc2V5eVmMRmMkOExEIkXlbTabpMbFSbLd\nLpZ33hGj2w0Ru1yE8NfX6wvHnh4Y4exZiEsFs5jNEKrBQDRldjbatgiEt2ULNlOXCw3O40EzUt4V\nQ0OAq/LpNpm0Bnr8OMLnxAnGoFxHHQ7tHaNyqagYgzVr+Kds6l4vjLt9O+2eOQNj9vUBKllZOtPk\nygqMNjWlc9nccQd3CQYDWmtJCYw/PEx7BQWM+8wZXSi+thYgWFqC6Xt6AOft2+nvkUcAsoIC2vjN\nb/SpIS9Pm5J+8xv2o6ODuYkAFDU17MWhQwi7AwfYi4EBXX9A5fR//HEAanWVOfX1Aa6LizybmckJ\nIjGRv9XdTijEO4uLAI6KC1B++7fdxj+jEaFRXU3bu3bpSlxVVYzTaGQPbTbWzm5HYJaWIpzb21mn\n3l72ub4eOmpvp69t2zADpqfTv8FAnykp7IOKgq6u1gVsenoA2IUF1npiQqfzHh9nvg89hCDw+2lX\n1Xyur9emo8uXESYDAzzb08N6nDxJW4WF7Mfly6xVXh7zTE9nfwoLoc+zZ7W3mdGIwDIaoVWLhb2I\niaGvlBRotKUFQXHxIjSqak1PT/PPbkfY3XMP6zo7y1qouAOXCx6cmuJU9cgjrKtKFJicDA+omtwZ\nGSIlJTL8u9+JfcuW9+8IRN7bicDlcsmtt94qmzZtkrS0NJmfn5fJyUnJyMiQmJgYmZycjJSrVGkb\noqKiZGZmJuLL39HRIX6/X2w2WySpm9PplKGhocjfZrNZBgYGZHR0VNLT0yPlIJXbqMr/PzMzEzlJ\nzM/Oiml1VdKcTkkKBiX+pZdI/TA1BROEwwDFxo0wyJo1aAoZGbpQ9vCwDsRR5qK2NghPFejo7sYE\nojxBBgdpNzUVAjt4UFenysvjyDs+zme/+hXAYDTSzoc+xHji4+krOxuCV9W7VHEVVZBlzx6eGxsD\n5KKi6P/GDQBSmSTGxwE8VUkrORlGjIvTXiF9fcy9t5c5T0/rU5DPB7CXlqK9KfORqnm8fTv9vvkm\nTL17N+aJjAzWQaWOUCevQEADRXU141ta0l4gClzj4rA7P/kkAiMmhnV/4AHtKnv+POC9fTtzOHOG\n506cYEwqVUVXF+sfCvG8Wi9VbCU3lzU9cwaAvOkqHKmiFgqxZqqecU6ODozKyUFTf/ZZ3Ir7+6Gh\njRsx3zz8sA7iUiBcWIhW3dnJet9+O+MdGmINl5b0CWdoCEVEFdvp7GSdfvlL2hkd1emzt2yhjw98\ngHEODelTWmwsoP/KK4ByRQXKS18fYzUadc2KkyfZ/+5uaN9gQGCq7LRpafR96pROmGexQBfnz7Pv\nu3cjPJRjQ2oqgqa6mjHcuIGSoEpr+nys3aVLrFV2NnNVMRoGA2PJy8PMlZVFKvMPfhAlZt06naZl\n40booKeHvVamsNlZ9vf4cXF84Qvy9Be/+G83oOxfw48CcpVDqKOjI5IYTkXwBoNBGR8fF5PJJFVV\nVTI0NCQ2m01SUlLEZDLJxYsXI+BvMplkenpaUlNTI9XKVJK3+fl5ycrKkoWFBUlNTZXh4WE5f/68\nJCQkyPT0tIyOjoqnt1eq1q2TvJulElebm8XU0iJRKoz9ySd1psEbN2Cq3FyYoKMDJly3Dq1EBdF4\nPBCQ0aiPuRUVMMHp0zCMwwFh/fjHmABsNpjF44FgH3pIV266/37aj4lBo3a7OVUoG6ky06jLr5IS\nbOIqpfBTT+kAtC1b0My++10dzTs1xfjy89GsY2PRgvLyGOsDDzBflaQrNhbt+J13AF6VYiEUYv5l\nZTwTCAAg69cDDKGQ9ohSKSVEeH5khPaKi3nnE58A1N5+m7kODADuDQ06uK6igv5EAJYHHkDDS0jg\n2P/22zybn8+6vfwyY1i/Xue+n5ig38JC5jw9DTgqAWGx0MfrrwMowSDa8ttv853ZrPP8x8Twd3k5\nn6vIbDXHjAxMJOnprPvMjDZF+P3Md2iItsrLWdO+Pp1p9dAhwEuZmJ57DppUBdhFmNNttyFc/rl5\nLBTSNnO/H8Hl87GfJhOCYn6eNhwO5m82c9J4802C0Xp6AFl1sklMRNO/fp0xbtmik/+tXQuNTE4C\nsMGgvgS2WOCV/Hz+vn4dHlNxAMpLLBRiDBUV2gyj8lANDHAaPXmSd3fsQGDMzECPmzezn3fcwcmx\nro7+Ghrgi898hn0+eBB+WVpCWfP7GffhwyhFsbHwYG4uglYpJ3+G7KP/rgWB+nE6nTI2Nib5+fnS\n2NgoVVVVMjExIa2trZEqYzExMWIymSJxBVNTU1JeXi7hcFjcbnekGMzs7KxYrVZpbm6WmJgYKSsr\nE5PJJH19fZKXlyc+n09WV1fF7/dLTEyMZGdni91uF9vqqqTPz0u2wyFRhw7BODk5AJjZDKP09cH0\nlZUwhd8P86rw82BQ5wc6fRpASUmBaFQQzuIiz77yCtpxQgLgMjiIp4cqaJ6frwVMXx//D4fR6A8d\nos+cHBgzJgZQ+dznWNCf/QwGvuUWNJnoaAi8s5MLy85OBNPGjTDIRz/KiWB8XLuTrl2rL5MtFgBF\nmbwUkERHA9ZVVfpicuNGAG95GUFy9iwmmbg4hNjQkK5Tq/K3nDyJcFCJ7Vwu5vrkkwCoxQJD+3wI\nyZISNL5/7lHi8bDmqanb8ZUzAAAgAElEQVQc/5OTWbfoaBi3v1+n1VARyKEQa71hA3v5k5+wHunp\ntKGCk1Qqjv/0n1jf8XHW45VXODWoC+r4eL47cYLxP/EEgVRPPcV6z88DGvPzjN3no1+VmfSWW/Q9\ngHLh/epXtVkwLw+t92YK9UiaaVXJ69IlBPqPfwxNKbCLiuK0cPYs+6Y8z8rKWK8XXoCW7HbWo7ER\nwP2nfyIwcGGBfXn+eeZ48SLzV/dabrc27Sj3aKeTuy6rlbuY5mZ4oLiYPl98EWHu9dL297/Pvqsk\nghUVnCz6+lgjBf6NjQi8gwf5LDeX58+cQTAtLbHngQD9TU+zzirlxcaNtPP737N/H/kI+9zRAQ1n\nZ2shFwxCdx/9KHumTinnz2vPJRHm/CcWBv/uTUP79++XZ555Rsxms4TD4UgcQU5OjkxOTkZMNdnZ\n2ZKZmRkpTtPW1hYpY6nMR3Nzc5GEcG63W8LhsNy4cUP6+/vFYDBIVFSUzM7ORmoWuFJSJNlmk9bW\nVslobJSkmhqxnD4NyI6OArIq6KW7G3BJT4dBV1cBCIeD71Wumtdf1x4u0dHaFBMVpQtyfPWrAIfK\nk/Pzn6MpzcxAwMvLMLe6qJuZ4fRx7hya1+Iix2WVN17ZM3Nzsb0r04uIDsTyehE6GzeiYTmduuDK\nyZM60+b8PP3l5OjCHEoQvP22vugV4aRy9SrAoEL+fT5ON62tMH9aGiA9MAAzbtjAGqqUDiYTgGC1\n0m5ODozd3s6zDQ0AdmEhYFNczP6cOqXNTydP6lxGJ09qH/TTp9mfV16h/U2b+Fx5mRQVaVPDiRPa\n3dNgAOROn0bLTUxkfVQ1r8JCzFlPPaU9XFTW0KNHEQzKZ76iAtDKzGT/7Ha0TaNRZwJVCQGjozGz\nmM36fslmo1+rlXVRqSV+9jMER0UFJqU9e3RwX0EBJw6VpiEpCVCrq+P5oSF9EpqZgZaU8lJRwX70\n92N+iY/nRGKxsGZ33435U51khoZ0MOT0NLReXw+A//znrIXK5ZOXh6BRpR9TUvinPO02btTFjebm\noKmrV1E09u5lHhcu8Lu1FUVh1y5dbtTnQ9EpK9PeUjMz2j27owP6TkzULrAqBqKigj0cGNDV+Fwu\nBHtLC+sYH0+7BQXw2siI7D99Wp5++un3L4tF3ttl8Ze+9CV55JFHxOFwSCAQEIvFErnANZlMsrKy\nIuFwWK5fvy5paWkyMjIibrdbvDcvbVJSUiQcDovRaJRAICDj4+MSDoclHA6L2WyW6Oho8fv9Ul5e\nLj09PTI3NSXp6eky2N8vKUNDktrZKWnr1klsMCjG6WkIJDcXc8n27RDED37ApWZ1NUCoLkFVjd6R\nER2Jqo7DdXUQa1YWWsqmTdquvrTEd7fdBmFbLLpEo8oSabcDJnfcoVMeDw/DbH/5l/zfauX/mZmA\nk8roOTaG5qQybd52G0Ts9SK0rFZcT3fuhMkrK9HYq6t5//p1mCc5GRBSpoalJYB461YdNOT1oiE9\n/jgg/M47OkXBxo26NrHFghaWkAB4/M//CWgsLHAyGhyk8lRBAcD9sY/BxH19aF+JidiLT58GOLOz\ntSufEky//S1HeBHAcnCQ75qbeU4lRlu/XruWqqhiVZzlxg3WTlXWKiwEbObn+fyWW1hvdeGu3HLj\n4pizujdJTWUNx8f5f0YG4G8202daGvuYmMi4VJ2AuTldl3lwkLHefjvrl5fHnh46pJO1KSB2OrV9\nfNs2bY7r6NC0pGzcCws6xYayoff2au8a5ZWjzIcxMYBhVBQKy4EDCHGDASGSkIDgVrmyLBYdwGi1\nMv/MTITpwYN8pqLX16/nRKLuTVQpyspKHX2/vAzdKQGVlcW4fv1r2vZ6oYueHmJCysoQ4K2trIOq\nu6CCwVRVtdFRaHR+nnmtWQNNqoDAigr4T6VZn59HiGVn0++WLQSUffGL7wsCkfd2IggEApKcnCyt\nra2RspAGg0Ha2tpkZWVFBgYGJC8vTzIyMsRisUhubq7ExMREUkosLCyI3+8Xv98vS0tLkp2dLcnJ\nydLb2ytRUVEyPDwstthYsUVHS3FuruS3tUmW2SxZfr+kHD8upspKsVy/DoGp4uHqiJmdrTWxuTm0\ne6sVpjabdZUnZTdWF2B2Oww3NUW7992HdqJA5uMfh0nPnwfIU1Ig3vx8wCItDa3roYd0wZgXXgCE\n9u6FEY4d094c8fGkJ1bAPzDAc4rB771XuwO+9hoMde0aQm9gQCcya2zkiK0iO1dXdU75ggLG1t9P\nm1YrjFtbi+mitRUGW1hgTkNDAGhTk07vqzT11FTthqkikFWG0mvXWGuXi7lfusT8UlNh1OVl1m1g\ngL6LinRE68MPa1C+dAkQf+MN1r+wkPEWFzPvxUWdQK66mv7vugvTSkIC4KJ8/o8cQeNeXARQ1qxh\n/71eBE18PPsZHc246usR8I89xncbNugL9r179clNaaZ79wJ6Hg9g7PfrpG9DQ4D4uXM691NZGeN+\n5BFo5swZzFqqctylS1yAJiQArNnZrL3dzjMXLgDubjcCubKSZ1SNhosXoQWTCTru6kIJUQ4Nu3fr\n4EcF5ocOIYzy8xnz0aMIi6wswFXxQlaWLhYTG8saXLoELVRV6ZrAs7N8d+oU4/N6+bulhT5XV7UX\nkQqGU5XnLBZdu8DrRZnYt0+nnjh7lueVoMrIQJD5/ezB2rU6xmV+nvGqe7eyMtbuzTfZj7g42a6i\npN/Fz/uC4OZPfX29TE9Py9LSkqxbt06mp6fF5XLJ9PS0DA0NSWxsrFRVVUl0dLQEAgGZnp4Wj8cT\nuQxeWlqSwcHByCkgKysrct9gNpsl3mSS/KkpWbl2TZxut8Tk5YnxwgWJam8X49atOufO1BQAlJWl\nc+uHwxCScic8cwZiUOmEJycBAOUD3dzM+xUVEFBrqz52/uEPMEdtLYRVXEy/e/ZAtMEgBFhaqiN5\nh4YAx82bAZ4XX0RTKSxE8+7vB2Q6OwGZqSnALhQCYNLTOUaPjTG+kRE0s5YW7fp67pz2eDl5kmef\neALQaG8HyOrqGP+tt/KOyQThv/EGYK8CupT/fmIi/dpsvKvMXOXlzG10FJBNTdX1jB94AABITIQw\nVMRrUxMAk5ysfcx37oT5r1zhnXPnAJLCQgSy282+ZGczj6EhfQIrL+fytLqafb73XoDI48H0NTbG\nvlRW6otPVR4yLg4N+Be/oL9jx9hLm43TzswM4794EfpJTtZ3Jeok4HCwbiUlOrPpygpjsljoz2zW\nrpHKk0Ylk0tKAuSzswHClhbWVJ1UvvMd5pqQoPtobmZdyspYo8JCbdtPSNCVwm6/HbAsKeFS9K67\noJPWVvairIw1jItjX8fGdNR3Vhb9dHaiZTscKABqXaamEBz79qFQtLayfu3trOHqKpe8y8usgcnE\n5/Hx8EpDA/Q3MEBfRUUIaVUneWyM9VCfBYMI5JQU2vzLv4TeTCZOCyp6/dAhzHuXLukTZEkJ+zw7\ny7gGBtizy5eh/9pa3i0tle2Tk4z7Xd4RvC8Ibv6Mjo5KSkqKTE9PS2ZmZiS612aziclkEqvVKsFg\nUN555x2Ji4uTnp4e8fv9Mjo6GjkVOBwOsdvtUlBQIOPj45wqFhclNSFBEo4elZiJCbHGx4vp2Wd1\nlksRNICVFZhOFfWYn4c5NmwAgC5fhvCVvdZs1tGzV6/qKld33AE4+Xx8PjkJCMXF0UZ9vdaA3nmH\nI3JuLgwaHw9zdnVpN8OVFUBqbg7gTEiAyMfHIUx1xF1Z0WkUfD4+i4rSibV279beTL29MKTRiCfO\n7Ky+D2ltBfjq6xFIGRmAocfDM7//Pcz13HOsXUEBQuCVVwDi3bu1XbWjQ3sHXbumvT8qKzmRlJfD\ngIGA9rO3WFiXHTt0fIC6DFQeWSK6foLKAqpiB4qK0HRLSgCswUEEVEGBroebmgrIx8fTh8pFv3Yt\nALtlC2MIBADF1VUETVkZQqegAGHZ2sr3Kt2Gz8cY7roL4PF6MZ+pGg1LS7SztMT8q6q0wDQYWLv4\nePZu507oR3kuTUzw7BNPQGvHjrFGu3djTjp5kvUcHISmiosRCisrgFVamtZgKyp0fqbqau4jdu2i\nX3VfYzbrdB6XLmmXTVWhy+PRvvelpSg3Xi/8Mj/PvNX6K3OoqjW9di3tTE0BzuvXM//HH2et33hD\nl6z8wx908aOrV/lbeaNVVLBefX3w6L330t6VK1qApqVxilalO4uK2APl0KG8qG5WDZSXX8Z7KDER\nPhgYoI/KSm1+27gRc7Gqax0MyvCNG2JXl+Lv4ud9QXDzx+FwyJNPPik2m018Pp+kpKRIb2+v2O32\nSM0AZfqx2+1SWloaKfmYm5tLArjoaAmursrIyIikJCSIe2FBHAcPiqWyUoytrSIiYgyHYRKfj6Oh\nygkzOwvT/eEPbPi99wK6Imgyb74JMx8+DJEojeaWW2CAQADCz84GaF9+mbaV9hQIQHhr16LRJyYC\nEKqgSXk5jKGyV+bmQsynTgECqp5rfT3v3nMPBKpS5apSlio3TVwcYJKZiYZmseiylps2IZTUBeKP\nf6wTl5nN2Fc9HoTP2bPMc2SE73bs4ESUkgKIqDw5mzezpgMDAIly/XziCd5vakLL3LiROSuvGaOR\n9+65Bw3u4EHt7/3WW6yJ8hEPhfg9Nka/CQkw4o4dtKG8S37yE75XcQgDA6zdnj2sc3OzdmP1etmz\nEycwNXV2ApJTU9xPnDtHf8oklpHBHm3cCBBNTurU4SrCVSkOLhfmHrcboFOlEHft4pn0dNpZXmad\n6+o0DV24ABCbzVozDYe1gLfb2f/5edZAhPnn5kLL6g5IBcitXcvaPPwwgkjVlVaX+ypfk8oV1NUF\nD1y9Ck+oiObhYdpKS2PfX3sNkFQpydvbob2yMu5q4uIY8/g4PHTqFHTz4x+zvyoosq9PxxJER2tz\nTmEh4y8u5p/dDq0lJkKH+/YB5jU1rMHYGHs3Ospvq5X3ensxjx07xrh7enhG3c2oiPrWVtq4cAG+\nnZ2F/ycmyN9VUcFJoK0NmsnPF9m+XRyf+ASXxX9i05DxXbX+b+QnEAiIiIjL5Yokj1N5/mdmZmRs\nbEzGxsbEbDZLfX29JCQkSEtLizQ3N4vFYqHu78qK+NvapCwjQzbX1EheW5tEfe5zYnK76aS8HFvq\nxo2ARno6BNTXh/aisk2qCy0VBNPWhkYkAsFv366Dpc6e5bfTiabi92NW6O/XJpiODrThc+cAhqkp\nvIW2bYPAP/IRCPuXv9Q+5unp1Ib94Q91WgCl+f/oRzCncmFtaOBzlYO9uxu789KSDocPBmmnuxtG\nP38eBikqghkrKnSyu7/4C0BSgVc4rDNRqkI5ysc9LY2xZGbCLA8+SD8NDRzPY2IAlPh4kc9/nvko\nhr3lFtZyYQHzwYEDugBPfT0gdeedOrOn8rhqbUVQquRxt94KwLz4orb3FxYCeCsrgEVJibb/q7TO\nbW20W13NWBWduN2sd3k5+6W8WXw+BMzVq4CcxQJQizCe1lb2WXlKKW+Uy5eZt/IIqqjQuYHGxzFL\nvfMOnx05QvtDQzz39tu0nZ0NcKr+09PZw44O9tnjQeAEg+xRIAC9rawgLL//fTzVmpuh2Y0bAe3P\nfAa30NhYTaO33oon27ZtzH/HDtaguxvBuWkTc1FmK6cTwN62TXvSrK7icjo5CW/5fOzPxo3sgdeL\ncP6bv6G9lBT2+upV5uH3c0qIitJxJr/9LWPs6MDs5fUynmPHiM5/+236vHoV/lOpotVp7q674Jn+\nfvasoIC+R0fp32qFfr7+de6Stm6F5rxe1vjiRZ7x+xmDush/9lkEpci/7VKV/zd/3u2JwGQyyf79\n++VTn/qUiIjMzMxIbGysJCYmSkxMjKysrIjVapWEhAQxGAyyuroqExMTUlNRIbGhkCTGx4ujo0OS\nPB6J7e4WS16eGJuadBZNlW5hdJTEZvHxgPvkJFqiKrReUIDmunUrYKY2vqwMQJqZ4RlVJ6CuTtfY\n3byZv199lfd6exE0IyOaOZQLWnQ0TKTMIKrU4t13A0QDA0QK19XRr8/H+3ffDaMbDGgrk5O6LGRZ\nGX1WVMBEly7BPCI6l9CNG4Befj7gZDTyt8ul0zGry2NVOGZ6mjG99ZbOtaOSa7W3YwpTpf/sdp0b\nqbERs1MoRJ+JiQD9D36gtceODt5dWWF+H/gA40xMZDzqHuLQIeZ6//3MraND5905ehSwu+cexrBz\nJ+ava9cAErMZE8zp04BDXx+AUVen026fPct7qan6LqW9nfm8/TYAp6q+3XILgKq8cAIB6GFggEvh\nd96BphobAdSREW0eUReuwSC0cPkyQqu0lL24/36Es9ms73OSknhPpV5Wl+dDQ9q7pbWV9y9cgN5F\noJnCQuY3NQVQ5+QAiOpitq9Pp/8eGNCJ6pQ9fGGBtpUf/p497MPBg4zNaGRPy8t5z2oFFDdt4iSm\n6kkXFTGWxkZoKTaWdi5fZs4mEwWYlKlMBQeqi/OiIl3kvrxcF6T56Eeh0+ho6LC4GAF/7Bjf/+3f\nggHNzZguR0fR5uPi2F9V9rO8HGUmK4t5ulzQxMgI/3/sMZ1nq72dU5cKaHM6RYqKZP9vfvNn8Rr6\ndx1QpiKL/X6/mM1mycvLk/7+fsnJyRERXEO7urpkbGxMYmNjxT83J3OTkxL14ouS2Noqpj17RObm\nxLR9O0ypiqur5FoFBfqyLCuLC6PFRYiuqAg/55UVHXj0ox8BJisr2IC9XrTKw4cRDJ/6lM7R3t+P\nZnnoEJra/fdDXFVVMOqPfsTfZWVoZsXFPPvIIzCHYuItW3T1rvXrYabTp3X0ozJhpafrZ2trse96\nvRCo06lLUD7wAID91lswvtnM98PD2pOnqEjHORgMEH5jI6AzO8tni4toZAkJ9KdqEavEbB0dAGRm\nJmuuknNVV/PuiRNssvJLf/xx9sJk0kFYR45wYlClIVXJyZISwMJgoH0VFX3XXbqk5ugoyf3q63UM\nxKVLnNry8hjbmTO88+yz7PFnPoNmevkyQL95M+BRWKjX6b/8F/rzeNBWDx0CZOPiEFjPPktfdjv9\nNjczz8OHmVNiok6WV1TE85mZAKTFwpyjojAh3nore3L2LHT37LPa3XHzZoDp1VfRztWps7aWvVSa\neVYWtPX66+ydSj3tdBLnYLVSklNluTUY0PIvX2a8KhW4wcBnKlpXnbKWllijwUEAemgIunW5APyK\nCsa4bh00ZLMBzrt2sZ/JyezHW2+xJnV1rEFrK/9uuQXa6exkfWZmeGbrVuhG1a7o6IAnVU2HK1cY\nt6peFw6z3p/9LPvT0MD3gQBrpFJ5ezy0ee+97PPLL/NuSoqu36Gykypl4/nnwY6KCgR6TAxC0uP5\ns2Hlv+sTgQoo27dvn8zNzUl2drY4HA5ZXV2V7u5uMYbD4nQ4pLW9XSpSU2W1oUGqU1Mlsb1djDU1\ngMG2bWx6ejrEvmcPAKo8ZC5dAhz9fiT6qVMQkt+PwCgt5e/ZWQjgvvsw1yj765EjAIGKIUhLg+CC\nQZhvcBBQ3bVLA1RqKlqHYqbeXu0mGR8PaKg2lNYzPs4zKqpydhbG7+5G21leRqh4vWj8O3fS56FD\nzO/4cY7HImh2FRWYEebn0fDuuw/i7urSoKL81r/3PS77VDSryjGk8hrdcQfM8M/9wh9+GIH329/y\nvTIlnD1LKb/iYsDi2DEAe3ZWR5/euAEjut2s1fPPcxJ66y32bnYWxl+zBs04Pp75v/oqczx+HEDq\n62O8qtaB38/YcnO1oFSJ1D7yEe0iaDZjkrrlFh08FAqx/uEw7V67htDq6KA9lXk0OxtwqKkBPJ99\nlj59PpSE06dp98gR2pmb08WBQiFd+H7jRmjqyBEuScfHdYR2ZiYnT5XozO+HTq5dA4TCYWhpwwbi\nXWJimP/hw4z1zBnmcuAA+6VcbSsrWX/luHDuHIpJfz9rkJICfYgwt+3boaXZWV3eMxAArH0+9uat\nt3SlNFX4/dw5Tizf/jZ8+ZWv8N3cHLmw0tJ4/pvfRGlpa6O90lI+W16G9hobmbdyffV49EnJ7aaN\nuTldgjQ5WSs/ytVVpWM/fpw2VY1sFU9ht/NZW5tOTV5aCn5MTLB3Knp9ZUXXAvH5OBF84xvy9Oc/\n/777qMi7FwQqAOzOO++UvLw8mZ6elpaWFjKRxsVJ5uSkxM/MSFZenqR8//uSuGGDOPLy0AYGBwH1\n2FgI1uGA6NVF0XPP8dziIgQxPIy9b3ISoFOZD19/nXdUpsGaGoBHmSKKi2HKjAzMKr/7HRrRd75D\nO3v2QCQXLwJiFRX4ZptMMEQ4TJvV1foSdnISAisogEFXViBK5T6Ymsr/VY6ZRx9lwcJhjufBIO+p\nZGEmk9bOVRF1ZateXUVQqKpXDgeE7nIBqsr75/nn0VonJ1kXZepJTKQfVeCjpYXnr1wBLEZHYaSx\nMe21ojR7FY/hdALqExMIs6IiGDE6GuEwNcV7tbVaI21u5mSQk8MJYmYGRt+4kfEEAgggVWP2xAkA\nT2WZVF5FJSUIwfFxhN/4uK5JcOMGY5yYQJloamJdvF7WVJnWiopYl1OneDcnBxo7fx4aePFFfaJQ\nufnT0lj39et1Nba5OW1b37gRk84dd0ALa9ZAp7m5aMRHj7JfxcV853Syliro0eVifnNzzMvjAXTT\n09kbvx8tdmaGtTQaOeEdOaJPYDt3sp8LC9CN0cj+7NihU2crL7uCAoRvZyeauUpVkZnJmgeDjG/t\nWpSEsTEAeGaGcebnMzdlvsvMZC/uuQfa2rJFOxIUFcFPo6PwUl4ea5Cezt5mZNDXL3/J/qkqcgsL\ntPnCC7Tf1IQZae1a+Oj4cdZdRRSre4WpKV29Tt2bJScz93vugYZOnaIfu519GRnh2akp2X7PPe8H\nlIm8N6+hNWvWyPT0tExOTkpcOCyO5GQx+3xScP26xMTGivT2SkwwKJKbK6aKCpFvfYuN/I//EQEQ\nE4NW+otfAFCdnRBQKKTB1mAAsKem2EivF6ZT/t6pqRyLe3sh1JkZbdMfHaXNYBDCSUkR+au/gnBN\nJhhWFd7etEkXf1G+1Tdu8O6bb6KV3nEHTGy1wrx+v87zrtLzpqXRjwLytjYA5+hRQKumhraHhiD2\ngQFt4goGdRrrX/4SzSUtje+NRvqfmNCRlV4vjJeXB9EroFWJt7Zswbaem4ume+kSx/HKStZ1bAxg\nKCpize12vtuzB6aurtapj1XMgtJ0Y2NhpnvvZbzNzbxvMmkvmZ4egLGlBdB76SWYcutW1nx8XN8L\nqPVsasK00t/PsykptNnTw7584APscXo6wFhXB3jZbHyel8caTkwA8Kq8o9HI/HfvRqDHxkLEXi/P\nT0/rfZ2cBHyUucVqRagql+L5ecbz2msI5owMvZ6rqwBNQgLafWmpLrK+Zg1tXLqk9zUtDRPY1asI\nKaUtLy3xXH09c1MV3oJB9iQU4kRdXs5pYnoaWp+aAihbW1lzq5XvleasCiF5PFppUYV7urs1zZaU\nQJObNjGebdvYh7k51l2VflQuq2+/zZh27IBv8vOhi+JiaHx8HDBW7rhWK4C/ebMOgNu5k/aVl11q\nKqfS0lLWd+9e6GVxkT3duJG1UbWUHQ5Ojj6frm0dHY3pt7gYvBBhfDabbP/Qh95TnqH3BYFgGpoa\nGpKF6WkZGx6WtHPnxF1RIWkHDiAEMjPRTF55BeBWbp2bNsFIp06x2aEQXi83bsBkzz4LUNjtEJzd\nrouo5+ej9agSjaqYS1mZLmgdFQUYPvssoNbXB7CpYusK1GprAWW/n+9aWymEkZ4O4b/8sg4E2rcP\nAIyPBwCUdtrZCXGpGrOXLkFYqan832RinMo2Hh3NmFRqhbVraf/wYQi1ulr79Hs8urB4aytav9Kq\nXC4Y0GoF4F58kTVV/XV1IXxOn9bgZrNp3//779eFy1UA0/Xr/FZRm88+C2PGxcGcDz+so46Tk2m3\nuZm9UaeLuDjGW1OD4Nu9W0fgPvMMY8zIoN2jR1lfFYH60Y8CjAMDrPfWrToqVhU9mZlhDOritrZW\nF4lvatIaalQUgjQ6GmD60Y947tZbdYyDchAoKNCXpypIcMMG1nXTJtY7MZH1V/UgwmH6PHoUBcTt\nRtjdfTdrNTfHWB94gLE0NmqlYWhIJ9NTKS7+ecTtqVM6MnztWn7//vdcfl67xvr81V8Bsr/5jT5h\nOZ3ce7W309bsLKepsjKA9+pVfSFbW8v4VcK5UIgxKpfN8+fZs+pqxqsKIh0/rk/fqqiLctAQ4d3q\nasbQ1ISQzcqirytXAOgPfIAxnznD8yaTVqCamhC+bW3w0NWr0KUq42m3QyMqJca6dZzy7XZoyuvl\neYcDGh8chA9VYsCMDBSMfftEpqZkuLVV7EVF758IRN7DiWBxUZKysuSfcnMlx2CQ5B07xDI8LCal\nxWzYgIazcydA63DA1Fu3whR1dWzO+fMQZ1aWDudXBVVU6b3duxEUV69iO1UBLt3djGXXLk0kyu2y\np0eH38/N0Y/NBoDYbGiF/f2YoRYXcf38zGcAq3PnYLzVVYhOpU3OyYFhVKBTX5+uZXDmDM/u3Qsz\nREXpMoQ9Pfx/zx5OF4ODEKpKUldaihni+HHAdGQEhqipASzvvRcQi43V+fRvv13nUHG5aOPGDS0E\nrFaYpLYWwl9ZgaEGB/VlZnY26/H66zC3zwe4nz+PUFN75fUC9JOTzO/GDe1Gqk5RoRBjTkjQxU+a\nmmg7NZU5BIMI/QsXmHtuLvurxv/ii7qUY20tc1hdZf/8fhSB8+cZf10d5qwtW7B1K3D+679mrGvW\n8NzyMmukXFkHBzkB9fezpqdOMR+DAaE2MQHd9PSw7ysrjF/VL6ipwYtKpS759KfpLxyGvhcWWLeX\nX+b/+fki//W/arPP8jJAn5UF4FksgODyMvvU3Y0AmZzU7sfbtiEAT5zgM4uFdV5d5bM9e+ANo5E1\neeop6KCl5Y9B3rlnMbUAACAASURBVGplrCdOwJddXYwvOxulYMcOnlMBlbW1rFd9vY7SV2acN97g\nOxURf+6c9i5yONjf6Wlo2eHQAZwZGdCZikVoaGAtpqb4XVioL4dra3Vtgbo63nn1Ve0N1NysM9Wq\nU2llJeNwu+lv3TqS/G3YwF2Wygpw4oQ4PvUpefozn3m/MI3IexAEFovs379fvvyDH0hUd7cYX38d\noq2uRpPq6kJzLi4GIJQNempKewnMz6PhqBv96GidLTIQ0EFkBgO/VXCK2w2ROZ28s7TE90rLULUE\nlBYfDOqAJJV87Ngx4g6UzTIpiXG/8w6XcDMzfJabC+hWVWn3NOXBMzkJI736KkRcVcUF2smT/L26\nylhjYgARgwGGz8lh7mYzY1KeGeXlrN/8POv1yCO6/u3Fi4Cb8lyxWJjbzIxmPpV/Z2UFhsrJ4VRg\ns+kLwaUl7k9aWni2q4vn5+d17vbr1+ljYoL2w2EE4/r1jGNuDm04LQ1mVpriunXsubrI27yZtcrI\nYC9efBHzVn6+zpufnc1cVcDT7t3avDc/rzV4lU8nLo41U95Yvb36pDgxwZy2bMHckp4OAO3bBw2q\ni8qXXmJvjx9n3zZtAugefFCfAA4d0qUYx8eZQ1cXzxkMrGlVFbSkPJdUnQmXi/nX17NWSUl8/thj\n7G9zs04BfuQIgKdSWQ8O8rfRqNM1qGBAdbIcHITGVPxEWZk+FTc0MDZ1WrJYWNPlZYA0M5NxXr+O\nsHrySXjo2DHA0ueDr8rLoffxcehqwwbA32iEfv7iL5jbG28wv5wc/sXH84ziO+UdVFKiaxi0tLCf\nKlr/6lXGoE6pIjqttSpn+dJL4MTMDEpFfz9thsOsvcUCD6hYmNZWzM7Ly+BBUxNrr1KJ7Nkj+7/1\nrfeL16uf93Ii2P/Vr8rTNhtSODMTjbilBWJds4aNXFgAHFJTtY+3iNZgjx/XLnulpdqc9OCDfN/X\np3ONq2peZjMAEBODnVZdGiqPop/9DKJUWQi3bIFRKiu1rTs6mvd37NClI48dI0I3MREAVSHrZ8/C\nIOvXA5abN8MEbW0AxZ49MEx+vmZUVRDmhRd47w9/QAsrKsIl9ehRnd74yhWESloaGu8vf8l6LS/r\nvDK//jV9Kc+Ra9dgtqQktNTr1/WF5LlzrNHJkzD11BTtqmRlU1Noips20e/Zs2id997LvO+7D/NC\naytg1dvLnNX7qgpYVRVt5ecj0K9c4cTwu9/RfnExWnFt7R+D6Kuv8rutjT1Vl5633EK/+fm0lZ/P\nepWXA3AqfXRFhc72qiqnfeMbzOXYMdqanNQmmWAQzT8uDvC4915AaHBQe39lZrLW09O64PtddzHO\nqirWc+1a9nH7dujh3Dn6EUGAHDwIDywuMu8TJ9jDBx5AeClw8/kQLHNz0KIKpiovpy2fDz7Iztau\nyUYjaz47y9/KTDUxoSuQqRiRYJAx2mysWU0NAFhWpun47FnmrdYuOxs++G//DZ64dAnB/sYbzDsu\nDuWnulpfoF+6pPNllZezxjt3Mka/n/2NjaW/rVsZw40b0O5992k+VLmlVL6i1VWd+vr226El5YF3\ns+i8jI6yHrfeivLm97PmR49ixlNRzR0djGHHDvYyMZHPwmHZ/6tfydOf+9z7XkMi7+2yeP+XvyxP\n33KLth3n5rLpSUlstrIP5+RAQC0tbJ7KNHnhAmAWCukMj9XVgEZmJsCg8giZzfyOioLhVK0BlU46\nJ4cje24u/xITESDbt6PZfe97EIYK5lLH4cFBCOnWWwEJvx/zzfAwRH3hAoC5cyfvqoIkN27ASKdO\n6ZPJ9DTMl5aG0Dl/nnksLwOwgYD2qmhr00fwzEwYsqkJ5istZZ47dtDG1BR24bIygNhuZ+5jY7TT\n3c3429sBp8JCtMGUFJ7LyGBdf/hDkomFw4y1oYGTyMQEc9y8mWeHhvg8O5v3lXnlwAHG7/PpPYyO\nZjwitHv77bQxOUk727f/cVbJ5mbWNhSCIS9eJFp1dpb1uXaNNc/JAeBqawHfXbt0psmjR1l/Vcpx\n7Vqd58nn06UTT58GMMbHER7338/eKjNSWhrrqaLKw2GEy6ZN0LDKS9PXB117PNCU243Aq6/XuXde\nf10nVDtxAqDr6KD/9HTWZ2pKm0yU9h0by/9XVzVoKXfolRXaO3RIB8WpE2RvLwJmcJD93rEDXqup\nYY49PQC106m1+OVl1mxlhb+jovTlthJ2KvPn4CB7azTSvtsNLZaVQUvvvMP6rKxwqlB83tamaw+r\nEpzqYr+lRafdrqiA7ioqoP8f/lDT609+wnor92J175WUxDh++lPm++Mfc9rZulVH5VdV8cz8vE7M\nNz0NDY2MwCcXL4qkpsr+556Tp//u794XBCLvQRDcjCx++pOfRKu/6y7AUuX9UBdGubkQ0xtvIJEn\nJ2Hc9na0yAsXYPgnn9QpgEtKIFJV6NtqRQPctAkCVtpsdDSas7JHLy4CwCYTzOJ0Yo6w2RhjUxME\najTq+q0qodnOnTBqUxOfl5RodzWnEyZXdnCVjygQQJM+cQLt87HHdCK7zk4I2etlXgsLjGlpifV7\n9FE0pC1b+C4QYF02b9YeKaEQpprXXkMja23VGUBTU7WrpTKjxMZqW6m6eFUpH1wuwE8FbyUlMc9d\nu9iXwkLW4ne/47v6eoTB6ioAqOzfKkYgFEJwNzXx/muvafPdV77C2m3YwH4HgzC7KiaflAQIz83p\nQK5163Sq6KUl6GBmBjrYtg0zxuqqrnGrLtd37AD4lM1dnQDPnWOfVbqEBx7Q/uWvvopQaW6mz+Zm\nAPTCBdY1NRUgVIVp7rqLtTl9Wqfy3rCBvfjyl6EPh0OfNlVqcBVYpdJXq8yunZ38i4qiLbOZOXu9\nrHNMDOuwcSNzuu025mezIVRvv10Xjg+HtZOA3w+YqhrHDzygTw+xsbSr2ggE2EMFxqOj8Nb/296X\nB3V9ZfmeKyC7gIDsKIsgIKCIxEhUXFBjNI4xGe0kJrGTTk9eJt2ZnurXlVTXM0tPzZuZrp6X9yaV\nVGfpbBg1pt1xiTviigiyiLKI+ANBREFAUdD7/vj8Tg7N/H4GtQE73FNF8fv9vss999yz3OUsmzZB\nGfMWTXAweL26WhLSeXrK1szt25BfXpkmJ6PtqCjQZ/Vq9JVrM/AkLzcXCtliQbv794M/R46EwUlK\ngty7uWGGv2kTaDhpEsbE2Rn4BQaiT4WFklqE442SksAbS5agfU5Mac0j9vann9Jb//Iv96w7jSFg\n6OigjOZmCGZoqOznBwaCgS5ckOygHKTk54dBa2jAPSdOwEovWIBl/bBhuOfWLSi51lYwbUiI+GqX\nl2PWzOUX3d2hbHbtkqRU7e0QsqgoBLpwBaiEBAhbfT0Yg5OzVVZKamE3NygZLgofEQGm5YM5bnP8\neHhuBAZKQq/iYuA1fz4UTGUlZrUJCeLueuYM+q0UGL+sDHiMGgUh2rwZ3hUcLRkaiu2YOXOgiC9d\nghJlD4pnnpEUz1rjvZy46/JlrJSGDBHPlEuXMANevBh4JSXBKJw+DaW7Zw/e99RTuNfbG/gEBYGe\n8fG4d8sWtOPvj/fevo2ZKwcg5eeDjtevw/gMHw7DEBGB/j/+uJw5VFSg74WFoHF0tNREvnZNqmJ5\neqL92FiMwdmzUj85P1+qfk2aJEXL4+NhsEpKMMOurkb/0tNB/8BAbPk98wzG6upV8EhREZTpt98C\nf3d3SXnB5U9feAGKyMMDyjEmRvbu6+tlD725+S+3RWtqQFt2m6yvB54zZ+I9lZUwTJmZUJIWC7YH\nfXwku+mGDfh+6hQmPLxKZE+ca9dgvJqawJPM71OmCB9wbQyOWl6+HDTkyZy/v6RZOXNGUoizt5Or\nqwQvchBZZaW4nVZWwjA//LAEowUGSgrulhZxyeba00uWSExQebmUlG1sBC15W5JrNezcCTpw3q/n\nn5fV+okTeG77dozJhg3AubSUyNGRMhYtMisCovszBBnTpoGB2DOGPRKIMMC1tZhNrVsH1zouvMK5\n7GfPBuP7+Ejx8dJSGAZOKrZtm3i97NiB53NzMfgLFqCNpCTM1FtaoICjo/HO4GAwxFNPQfhcXCDY\nRUWSziAoSBJ4padj/3j4cDAw+7GzEpkxA4Jt3WOkUaPQ32efhYIaMgQ4PPmkeEKwP/qVK1BKmzdD\nWVgsiE24dQuK9tAhPLNxoxR2b29H/zhxXmkp/o8ZA4Z2doZC4ELdxcUQ+pEjobC4mtbIkVBs/Jnd\nZocPh4BwCcvqaiiPiAj87+yUILHoaNDS2RkGIDsbeDz+uOSsT0iQmIeuLiiArVuhFBwdoVh27YJy\nP38e701KktVOZyfeuWcPnv3oI7TFs//WVnzesQP0zsoCr3BBGi4H+tJLUOhBQRjD8HDQctEitMFp\nCCIiwBOOjuDP3FwoVV9f9DskBAq/ogIK8pFHwJezZ+PZb79FGwcOgHbBwZJzKT0ddKmvl3xDvBWU\nnQ2jfu6cJKC7eROKtrERvDVpEmRj3z68n0uQOjjAMFy/LkFcTk6Y8SYl4UyqoAC/VVXJ3vmECaD5\nvn3on8UCfnZwAH+lpwPPmhrwZGureKC1t8sBc1AQ3rN9O8aZ4z8mTwadi4ow3jt3QoY4qSGXWy0r\nQx+bm7Ga4y08TiyXkABaBgRIve9x48QpgR0coqKAw8GDaO/YMcg5B0tu2wZ8GhvBi+np6C+n+C4u\npgxvb1OPgOF+DEFddTV5clk7Lo7BUbYODhDa2loILVdAun0bzHPuHJjR1RWD4+AAwYuIwOzG2xvX\nOCPilCkQKt4/55xBUVFSKi8oCAyjFNpoaQGTBAXhffv2QZFy4Qyu43v0KJRJYSEY1MNDCqlYLFK9\nLDcXAhceLrVkw8OldGJMDJTK5ctY2bBrJ+/3b9gAQYiKkprA1dXAp6kJ7fB20tChkjiLD8v8/WWW\n3diI/kybBpoHBkKhpqbi3QUFEJhRo/DOAwcgNCtXSkIxi0Xw9/YGLfivrQ2H9sOHo90vv4TS2r4d\nz1RVQfDq6zFrq6qCYnBygjHjNBnx8bg2cSL6cfUqDLivLxRmUpLkrq+sxDUO6CsrA66cXoPdMbls\nY1AQxq6yEopn8mS0kZoq6bvb2sB/DQ1or7oa1yIj8Rs7JyQliedacjKMqqcnlC5vJ3Kk7+jREvjH\n9ReuXoUinzdPSk9qDcXFqTNmzoRCPXYM48dJFYnEcDU3S6RzURFWPK2t4JkJE0AnX1/QZP58Ka/J\nebTYy62sDKumxETw0rlzwGnaNPBPSQnoGREh1dl8fdEWF26aPl1yM3EA3NChaDs1Ff339MQfF+Ep\nLJTgsfPnJcirpERkPS4O73//ffA+11ieMkVWDvv3gw5cdGb7drw/JAS8FBWFSdX8+ciFlZICXuwe\nbDp0KMYlLQ08du2aTDL8/KguNJQ8Obj0HsAYAiKizk4a5u9Pby1aJKlzb96E0pgwQQ4u29rAqMOG\ngUkmTcLAcDppHx8oCl4WctzBqFHigpaYKJ418+dLpOmtWxLMRIS28/IggFyCsawMf6zUPT2l2MzV\nq3I2wGHqISFoKykJs33eOuDEak5OUHCcQZGX1BaLGKYtW4Cfjw+EasYM8f2eMQOKs64OjNrYKFti\nHFo/e7bMgDo7JSVDQABmuMHBCDKaMwe0LC+HosrLQ5/mzZOgO47uLS0F3VxcoAxOnMC7//hHKMXk\nZKlby66c7u44jGOPFo60DQsD7Y8fB61nzpRAL0dHtBkdLYfJvK3H5zu1tWgrKwu/T5kCJcxnJv7+\n2Ft2c0MfoqJAn+PHJRsmB90VFoJXuDA6RxNz8F11Nca/tBT9mjEDRmbPHvBMSIikJ795EzTlmJHJ\nk3HviRP4fc8e8WgaORKKiPmSk6txEF9oKLYOufaAtzfG+6uvMJkpLYWi9PHBmC5aBNy5QJBSoPvo\n0VCcdXUwkj4+Ut2Ntw07OzE+69ej71wbY8MG0G7+fChPJyfgWlYmLtzsCPDllzDevr7AITgY3mt8\nWH38OOTBwwP8U1ODe3jlwxMEzp7KCetcXSHXS5fK2cDt2+BDDuZjl192T87Pxzjx1s+WLRjPGTMw\nYTt2DIZv0SLQccwYoT1nAuDUFxcvgn5paeCFxMTvg1uH/fSn9NYvftHnKwLHe3r73xr8+c8YSPZ2\ncXWFYuPIyBs3oNyGDAFzc4nElStxjWvLbtsGplq/Hkzq6optnKVLv1/K0T//s+RpKS2FMhk5Ekpg\n6FC0Ex+Pz0QQnvBwMCUXgPnNb5Dq4vx5KJydOzFTDgsDsxw8iOc2boQSHD8e9yiFd//pT8D7Jz/B\nMvzWLeCdm4t22LOmuFhy4Hd2Ev3nf+JdJ07gmQULIEz5+TCO3t4wJjdv4r4tW2SGFxf3/Z4mJSRA\nKMeMAUNv3ixudS++KDnaN21CNsdDh6BsX3pJqqh9/DHSfDg5wRBxAZquLvQrKAjCduECxmnOHCjm\nn/0MRrO1VeoeT5kiaa+/+w6Kmbex0tNxPvOHPwAHi0VyzO/dC/pmZ8OQPvoo6LdhA8YmMRHv8/SE\n0oiJwVgTgQ7OztiW8vMDHu++C9w6O2GIYmKgtLdvx7hxlS6uNf3EE9iyDA4GTQMDgd/XX0PRpaWB\njnl5MMKcXK6jA4bs0iVJ65CZKYno2PWRV6mHDkEJnz6NPvv6wlhzrqqiIshJTg5+a2wEXdavBz6z\nZ4M/MjIwXqtXw7DwlkdWFviDY2keeQQTqHffBe8cPoznPDwwxjNnyr65jw987cePhxxyoSROOPjT\nn8KYnjmD34KCsMI+cQJ9JsJ487ZpSQmuc2bPmBgYqm3bwA9OTpAjIuDq4SFnJB4eoPWqVaDRjRsY\n45gY9KmqCnJFBP6ZPBn9f/pp0LamBmcDnGn10iXwn6srJkpHjmCC6uIiKdX7CX7cK4Lbt+E++vXX\nUAa8hB07FgqnthbC1tCAgeDUv4mJ4irKUalKSYDMlSsQwJgYMGtVlRTQHj5c/P05CjQmBu9i5lyw\nAAzD3giZmVCcR46Iy+OIERBsLgc5eTKucxAWp3ngWT4HXK1di3uuXcM7bt4EQy9cKAfjHHmrFNoO\nCsKsJDsbBi4tTQqAt7SgvRdfBF1KS/F7dDSUo7u7bAEdOoR3WixQzJcvY+VUViZlK52csG+dkwNG\nDw2FsnRwgBKqr4eQXbgAxXjlitQVmD0b95SWQgCdnPB7QABwnzJF/Ni5cMytW5hhsuDxVhOnkt6/\nH+MTFSUHxE1N4hro5QX67Nol9YmjosBfnDDMWk2Khg3DWPCZVEcHaLJ3LyYKkZGgP2e25T3s4GDQ\nNClJcjjFxaHfnp4w/PHxUEbDhsG4Dx8OPLKz0U5YGBQVFzNJSMDsuKoKY9fQgPtiYqRuQH09Zrcd\nHRjbkBCM2/jxkoa6pQW8nZkJPLTGfbxdFx6O62fPSkrztjYo8OZmGIt588DfQUEwnAUF4h0UHY1+\nlpTA0LW2QmmuWwdjVFsLZTl9OmSKvbna2qR2dnAweCU5WUq1hoUBd44E5zxXSUmgTUwMxrupCYaI\nPceuXRM31z9aJ9KNjZDX2FipyzBhgpx1hYWhn8nJkKuSEklrwqvQ6mpx0e3qkkJKra2Stn7mTLyf\naxls3UpvFxfDfdREFv8V3Ef9/MBQFgtm4ocOSVH45mYweU4OLPbrr4NJmpuhnNzdofB27wYj5edj\nkHlmf+oUEtJFRMjfnj3y39ERQu3hIVs7paVSYMbdXQJwDh8Gc/v6gvlranD/+vVok8sYFhRgacnb\nTlFRMhuLi8M9fIjn6Aglw4e/kZFgNp7xco6Wb7+FgO/aBaWwdy/ewfWJOb9PeTlmf7y6CAyE4Kam\nQhBmzQIOjY3o28iRoLODA1ZOkZFQss7OoPvKlbjv88+BP7sVpqSIgnVzQ9t1dRCc1FTQaMwYKLH8\nfNDG318OEDk7aFOT7NWeO4f3dnZK6om4OOCfno7ndu/GzPPIEeBx5Aie9/OTaNZz5/B38yZ8yyMj\nMT5btkBZBAQAL4sFyi8+Hs+y77uXF8Z6wQIYnhs3oGB9fDBDTk7GhGTfPiiA+fNltXr8OPrKe+Wc\n/sHFBW3HxkLxnjoldZF5O2vvXtCQz1gCA4GTUogQ53rQ7PmWmyuH1e3t4vd+9Cj45/x50JJrXX/z\nDSZZDQ3gm8BA8MMXX8CorFmD2gUPP4xZdXw8xsffH/QLDwfuycniXPHkk5hQREVBDsvLQSeuw9DQ\ngGfnzgUuR4/ivc3NsiIbPRrneFVVoD+f9Rw6JNHvfPbHWVRra6GwU1LgIXbxIuSOCGMzYQJ0xunT\n4IN589CX9HRxe01OlrMcX1/gOm4cxrysDDhyfAEnBMzJAT5WN+i3CwrorXfeMWcERPd3RvD2u+/S\nW4sXg8lGj4bQXL6Mg0k3Nywbp0+H0E+disE/dgzKpr4eApWbC+XHWwzjxonA+/jg++zZUBYVFRjE\ntWuJfvlLCCPnJrl9W7xmtIYSjI2V9MYJCfh9zhx856jH8HAYEs6LkpAAnPz9IdBNTXi3xYLZkYMD\nGDotDf2Mi4MQZGaC4fPywKx8gDxkiBgxrSFUzs7Auboas+a4ODk856jgqirMUh0dgUNTEwSDawK3\ntYHJKyowa4qJwTaDiwsil/ngmCNM+RmekRYW4vmLF/Gsl5cE3zz0EISJq25pLasIf38o85MnxU34\n5k3Qrb4e/X3sMVlN8LlGSwvG39UVSnHIECjwhgYouClT8C52v/XwkMhnjk+4dUuqekVHQ+hDQ/Hn\n6Ai+2LcPW1gNDaDXQw/BfdbZGQqK8+LPnQulxskKP/8cePv4YCujpQX9DQ/H508+kTiQ7duxvZCY\nKFHaHEF99iwUDydJ462+sjLgwy6vGzaAP11dwWeFhRLo6OKCrb2f/ARKet8+8dU/eBD4WixQ+iwz\n7MO/eTNwa2mBDFZUwBDt3Yt7uLZ0aCh47dFHgU9jI2icng4ZW7gQin/OHMhsQgJwv3QJ/dqxA3hw\n/iCOh6ipAR7NzRinqipx9jh5EoF2Li7gbT7MP3gQslNYCF7j9Oy3bmGMKiuBV3a25BcaOxbv5y2v\nri6pBz5unAQN5uWBd9vaxMXYmr797Q8+MLmGGO5na4gsFspgv3j2gb98Gcw5axaYobUVs1UuF9nR\ngUEqL4ciCQmRGeTYsXjm8GHZs+3qwqywvBwMVV0N4Q0Jwew/JASzpY4OzHRiY0W5p6SAmTZtkijK\nmhopG9jUBAZnf//ERCjaqCjsE69fDyZzd5etCs7zf/s2GDM+HjPCqioIHycK0xrMn5sLBXP0KHDY\nvBmzn2eeAT68igkPxyrBzQ1Gxtsbz5SXywG5vz+E4PRpKBdOrXzpEuhVWAiGv3IFbntFRRgTjijt\n7JSAsjVrROmnpmKFdfAg+uDsDCUxYYJkRo2NldXR+fNYjWRkYOx4ds5K+/p12ZPluBI+R1izBpOD\n0lIoBs7plJeH34YORd9u3ZKtkHnzYJA++QQ8EhcHJdjVhb5zGVGlINTDhqGPvJ0QHg4X3zFj0I+6\nOjkYLyjASqWuDm1s3ox+cf3qESNk2/PSJaw0XF1Bg9hYKaIycSLGfupUSdw2ahRofvas5Fxydwe9\nFixAex4eGB9OGnfjhtRGZl7lmhxPPYW+HjkCek6eLOk23N2BU0GB5JwaP16yynL5UU4el5wMhctl\nOauqgIOnpzgMMO/X1KBNzqHU3AyePnkShnvMGNA4KAjvLCsD3fnsYfx48OyuXVJa090dfamqAj35\n3KSuTrYTFy7ERKKkBNf37oUyj4oCXwYFob+urpCP+HgYTa71ceQI5HXoUIwnG5cRI6DDOjspY/Fi\nsyIgur+toYyMDAzw2LEgNgdaeXrKXmlxMZQoEQYtPh7CfeIErHN5ORSR1thC6ejAoEdHQ6jYzbGm\nBsrJwwNCxwUoAgJgiCwW2apJToaCeu89KA0+ZORKYYmJEo05ZAiMwI0bEConJ7SZny+VlzgSecQI\n/FZWBkaLjBQ//tJSKK6RI8HcO3ag7488AsGcMEEqQj33nOyxPvIIaBYcDMbevx8GgAuMeHpC4M6c\nkfgApWDkoqOh9JKSMOsdPVpm2MHBUOycWpj9wR0cJLPoiy+ib25uUEozZ+JeIgjp0KFQtidOQCi5\nMtuaNWLAAwNxQN49hTF7ge3diz5EReFMxssLs9HaWtzPNY4LC6GQvL2h3Dw8IPBffimHirw6iYmB\n8eIyiImJUDDt7aD3jBmSh8nPD2OVmgp6bNiA+3Jy0M7GjXhvZyfG5ORJfJ8/HzT+/e/Rtrs7cPPy\nAm/l5qKvfN+VK2hj61bgnZUFBXj1qlTdOnUKhmTqVOB58iTO0LiU5sSJMDYpKVB8XJkuN1cCszho\nkVNB82H15s1S4yIyEjSeOxf3+vvDyHd0YJxLS8U9ecQI2U6KjgYeXHO5oAAyybW/J04E3leugJYF\nBeC1hx+WILyxY8E7bm6gV16erGSbmzHBqa/Hlt/w4TB29fXg64MH8VtmpngT+vhgsnXyJO5jnCdP\nlvrM7OHGOxH19aC3gwNo5uUFB4BZs/DeqCjgERqKojT3UbzeeA1Zoe7CBQrmrIunT4P5s7PBlNXV\nYKj2dkmIdfIkZlv790Ngm5vBLB0dsjwLCwPjV1dL5PDDD+MgjL2BON96WhoY8sIFPMf7k46OmJ11\ndEi938xMKJbISAhaczOS03l54f7ZsyGIXFs3Kwt7vHPmSL4aPoybMAE4TJsG/AoLYYgsFiiG6mop\nq9faCobesQPMyPvJGRlQ8i0taCMoCO2NGQP6NTZCcXDOpqVLxWMqNBRKauFCtFdVhX7V1QFXDoLy\n9UXpybQ0GFF/fyhBLih+4ICkRHjqKSj0SZOg/NraZJmfkADBu3BBYg60Bm7Xr0N5BQdDEf72t1AW\n8fFQtL6+8LR69FH0ff16GCFWHP/2bxhvToGdk4MtES4sExCAWd6sWZJ+gCcDHJwVGwu8uX6Etzcm\nGLW1oH1neji7JgAAERFJREFUJ8atshL4aI0xDgrCTDk9HfdMmwZ6cNLCV14BDcLCgMv586C/gwPG\naccOGNKqKikGNGMG6HztGsaZV8mxsRjns2fR9u3beBd7fOXkoE8ffiipG/LzxdMlOVkioidOxHuP\nHwcdp08XH/2WFhjH2Fiif/93jPX06eKsce4c+OTmTdBx3DgpCxkQIAFonJto507w3pkzch7l6Cjn\naj4+mHnX16P95mYYryFD0L+JEzHxuH0bRuXIESlM9eabMqvXGuO2aRP62tYGeQsMRN8eekhyDm3f\njv/u7hgHIvznjMaHDsFQbtsGvluyBLqH07NblX9dTQ0Fs3NCH8KAGAKl1Fwieo+IHIjoY631/+6T\nhjo7KSQujvTOnRgALkbOgSQ8Yw4NhfvgW29hiV9TI2HyX32F+7Oy4PrF6Xh9fDCQPj5grqYmJCZj\nrxGuPvbOO2DG8HCpddzeDsbq7ASztrVBWP7jPyAMZ85IBsOAADAQu1xGRoL5MjOhpDZulD3br76C\nECxaJInw2CecM3DyXjVHmV6+LFsBXl5QdP7+cobg7g6l+ac/QWDy8zHjqaqCIt28GcqppASH5rw0\nDw6Ww9yGBii/nBw5sM3JgaA4OOA7R8lyUNHrr0u66NOn8a66OskQ29UFJc97rc7OkgGWy4c2NqLt\n8HDQYtMmrDA4tThn0mxvhxL388P32lqc30REQCk/9hjef/Einn3zTdDExQVK39kZNI2OxntDQvCe\nCxewEvi7v4MHip8feOjiReDKeaj275cDXZ5lTpokWzslJbI9Q4R+eXtLfqaMDCh8PnTs7JQtHc5/\ndeYM8IqNhaK/fh19dHLCIXdkJIwK59Zatgx0PHMGBuvyZcjQ2bPAc9IkjGFwMPrOMQVeXlg1jxkj\n0bt8XtPYCINaXw9D1tAAhcrGU2so53HjJK1KSgqMfFwcnu1eyIXr+0ZEYLxnzZKEfcnJEjsUGIgZ\n9/Tp+O3wYfAE7xZ88w0+c8Zgzi7g5QWZrK6W7a+WFuB37hxo/OqrkM3aWllRuLri84ULMJKtrdAZ\n6eng3aIimQg9/bTURVYKBoq3oLSmkOnTSXO1tD6EfjcESikHInqfiDKJyEJEx5RSG7XWpX3WaF0d\nGGP0aAx6WhoEIDMThM/MlEObuXMhXMXFIH5qKt7x3XdgQiLZCikowD4qB+RYLGBgLtFXWUn0xhvi\nU821ilevxvvZ9YzTGWstASoTJmCVERcnhTPy8qA4Dh4EPo8+CgY8cgRMPnEiBDMtDQo6IgLG4tgx\nHE56eUEZJiaC6bWGEly9GoL1zjtgzvh44LxnD1YNnACurg7fH3oIdPvwQwhNS4ucpZw+jVnNgQPo\nH+fpqaqS8xAi4PL22xLpGRwsZya8BcVudIsWQRlxKmH20V++HP3koCciKBgi+JevXg3ldvAg+uXn\nB1pxROe6dWg/IwMz48ZGvPvllyXi9I03oDReeUVmwUFBmPEtWoR9fc6LX1+PPuzdi3uLiyWR3cSJ\noPfu3ZiMFBdDCZw9KxHadXXAb+5c8I6nJ5Tfvn3gi61bYTivXwfPlJTgXs40y1HRS5YA37VrgfuY\nMTicv3QJh7K1tXjP00+DLnxQWlsL/Jctg8HPzgb/TZkCXEaPxu8ffYSxePJJKNXaWqwyoqKgJF1d\nYaiIMKHIy8N20/796FdBAVaBXV0wqByjEhkp20KLF+NwfPt28ENoqEQU798PWi1fDiVNhH6Ul4Pn\nKyqkyP3kybj+T/8EPhg3TpIXfvYZxuTiRbRRVwe+fO01yPfWrWLoiNCPmTOhsNmN1ssL1554AmP3\n3XeSuuWZZ4BHdjb4lQsNVVRIQsCzZyG7ly9DXr74AmPk4ADZ7CcY0m8tCaQRUYXWukprfZOIVhHR\nwj5piffWFi/GZz54dHKCotqzR07yn3sOM+GPPsLgLF0KJc9FVdzcxMXLzQ1bHlxGcc4c7IFHR2Pw\n4+LQztSpmEkEBmJm1NyMZz09sfS8fh33vfMOGMPbG++ZMwdG4No1yXD5/vtQGJ99hi0SrmUQGYk+\nrFwJRXDiBHAaMgRK9+JF/LER6+iAwmLhW7IE+6HLlknB9DVrQJ/r16FgR46UZf2xYxCSwkIY12ef\nhQLg4KXly6FYlJLlMnud5OdDMezZAxpt3AhFPnMmxqCrC7hv2yZKbuJE4FtRgd9GjZIYAjc3vDs1\nVWpJZ2ZKpteFC6WyWGQk+hIWBqFjZXzzJhQP5ynq6oJBGDsWgsgCm5uLmf3y5TAof//3mPmyUl61\nCsajshKrmfh4mbGmpKDtGzew2jx8GCuDoCAoJvbkmjSJ6He/A04BARivnByM09mz4mLJxWbmzoWR\n4DOK114D/9XViSvl11+jnz4+kq0zIAC47t4NRcpBlocOAaczZ6C82HX08mXZpktJAW1SUrCF1t4O\nIxAfj3ZLSoBvRYU4aISHg34jR6Kt7mOyZQt4yclJYhFGjMAWYHU1xvDll/G+5GTQ+uc/xzh+9x2U\ne0eHFMdhnldKaiuUlUnZS877w6nNk5JAjy+/hOEMDgZt6urAXwcPwsDwueDo0bg+dCjOgjo7wQd5\neYKLi4sEvLFbNNecyMtDf/LyIDdhYbh3+XLcExoK3g0PF5ntD9Ba9+sfET1J2A7i78uI6L9s3Pcy\nEeURUZ6Xl5cmov/2V1tbq7XWesWKFXavE5H960VFWh84oFf87Ge2r1dXa334sF7xm9/Yvr5+vdaN\njfbfX1Gh9aFD9t9fVKR1QYFe8dvf2r7+wQd4/5tv2r5+6pTW7e32r2/dqnVzs17x61/bvp6VpfUX\nX+gVzz9v+/q6dXi/vf5XVOD6iy/avv7ee6Dvr35l+/o339yZfh98APzt0W/HDly3R7/8fK1Xr7aP\n/6pVwM8e/Xj87OGflaX1p5/ap9/atVrX1dmnD+P/+OP2+aOuTq+YPt3++Dc22u//qlVanztnv39Z\nWei/Pf5Yvx742Xv+s8+0/vnP9YrXX78zf9ijf3W11nv32n//q6/emT9+/3utKyr0iieesE//jz/W\nK5Yts3396FGts7Ls4//rX4N+9vDftAn9W77c9vXPP9d6+XK94tVX7Y/f4cP2+79pkya6g/7qnf7L\n641eVlal22+glHqKiOZorV+yfl9GRGla69fsPZOamqrz8vLutT36vo8tLZIbiEhSK/BnzjXf/ZSe\nc/fwf3u/8e+dnX+5n9fz/bzXz+30fC/fSyT397zW877uYAtPW/gxDj370p0O3duw1+fuuHXHryc9\ne+Jsqw893839t9cnW/3jtrr3s+f+avf77ganns/ZwqH72PXsuy3e6Eknxpd5legvP3d/5k77xvb6\n1n3c+fmefNAd7iQLvG/u52f7Ws+xtMfzPfm9O67cb1v07znG9vi9Oy/bkzFbcti9fVvXe77TFr1/\niD62+tTZ+b2eUkOH0v3oaKXUca116g/dNxCHxRYiCuv2PZSI6vqqsRUrVsgXHlRbgktkW7B6KkR7\nv/F3W7/1fH/3duzhcjf32WvvTvh1VwL28LT1Xltt2+uzPfx7+56eON7pc08cbeFg6767welOvNAT\nbPW9N3Tiz90VYPfPd+qXPby7f+/+LlvXe8Nb3f/zAbuta92hN7zcc7x74mqvDVt8wt9/aIzvxGO2\n6G6vnZ7Av/0Qfe5ENyenv9RffQgDsSJwJKIzRDSTiGqJ6BgRPa21tpth6X5WBAYMGDAwWKG3K4J+\nPyzWWncR0T8S0XYiOkVEa+5kBO4X6ur6bLFhwIABA30K/aW/BiSOQGudTUTZ/dFWSEjIfe2xGTBg\nwMBAQX/pr4FwHzVgwIABAw8QGENgwIABA4McjCEwYMCAgUEOxhAYMGDAwCCHfncfvRdQSjUS0bl7\nfNyPiC79FdH5a4HB6+7A4HV3YPC6O/ix4jVSa+3/Qzf9TRiC+wGlVF5v/Gj7GwxedwcGr7sDg9fd\nwWDHy2wNGTBgwMAgB2MIDBgwYGCQw2AwBD9Ypm2AwOB1d2DwujsweN0dDGq8fvRnBAYMGDBg4M4w\nGFYEBgwYMGDgDmAMgQEDBgwMcvhRGAKl1KdKqYtKqWI715VS6v8qpSqUUieVUikPCF4ZSqkWpVSB\n9e9/9RNeYUqpPUqpU0qpEqXUL23c0+806yVe/U4zpZSLUuqoUqrQitfbNu5xVkqtttLriFJq1AOC\n1wtKqcZu9Hqpr/Hq1raDUuqEUmqzjWv9Tq9e4jUg9FJKVSuliqxt/rec+30uj/1dqrKPyl9OJaIU\nIiq2c30eEW0lIkVEk4joyAOCVwYRbR4AegURUYr1syehPkT8QNOsl3j1O82sNPCwfnYioiNENKnH\nPf+DiD60fl5KRKsfELxeIBulYPuJbr8iopW2xmsg6NVLvAaEXkRUTUR+d7jep/L4o1gRaK33E9Hl\nO9yykIi+0IDDROStlAp6APAaENBaX9Ba51s/txLqQoT0uK3fadZLvPodrDRos351sv719LJYSESf\nWz+vJaKZSin1AOA1IKCUCiWix4joYzu39Du9eonXgwp9Ko8/CkPQCwghovPdvlvoAVAwVnjYurTf\nqpRK6O/GrUvy8YTZZHcYUJrdAS+iAaCZdTuhgIguEtF3Wmu79NIovtRCRL4PAF5ERIut2wlrlVJh\nNq73BfwfIvqfRHTbzvUBoVcv8CIaGHppItqhlDqulHrZxvU+lcfBYghszTQehJlTPiEXSDIR/T8i\nWt+fjSulPIjoWyJ6XWt9tedlG4/0C81+AK8BoZnW+pbWehyhxnaaUmpsj1sGhF69wGsTEY3SWicR\n0U6SWXifgVJqPhFd1Fofv9NtNn7rU3r1Eq9+p5cV0rXWKUT0KBG9qpSa2uN6n9JrsBgCCxF1t+yh\nRDTgNSy11ld5aa9Rtc1JKeXXH20rpZwIyjZLa/1nG7cMCM1+CK+BpJm1zWYi2ktEc3tc+p5eCnW5\nvagftwXt4aW1btJa37B+/YiIJvQDOulE9LhSqpqIVhHRDKXUVz3uGQh6/SBeA0Qv0lrXWf9fJKJ1\nRJTW45Y+lcfBYgg2EtFz1pP3SUTUorW+MNBIKaUCeV9UKZVGGI+mfmhXEdEnRHRKa/0HO7f1O816\ng9dA0Ewp5a+U8rZ+diWiWURU1uO2jUT0vPXzk0S0W1tP+QYSrx77yI8Tzl36FLTWb2itQ7XWowgH\nwbu11s/2uK3f6dUbvAaCXkopd6WUJ38motlE1NPTsE/lcUBqFv+1QSn1NcGbxE8pZSGiFYSDM9Ja\nf0iojzyPiCqI6BoRLX9A8HqSiF5RSnUR0XUiWtrXwmCFdCJaRkRF1v1lIqI3iSi8G24DQbPe4DUQ\nNAsios+VUg4Ew7NGa71ZKfUOEeVprTcSDNiXSqkKwsx2aR/j1Fu8fqGUepyIuqx4vdAPeNmEB4Be\nvcFrIOgVQETrrPMbRyJaqbXeppT6B6L+kUeTYsKAAQMGBjkMlq0hAwYMGDBgB4whMGDAgIFBDsYQ\nGDBgwMAgB2MIDBgwYGCQgzEEBgwYMDDIwRgCAwYMGBjkYAyBAQMGDAxyMIbAgIF7AKXURGtiMhdr\nZGiJjTw/Bgz8TYAJKDNg4B5BKfU7InIhIlcismit/3WAUTJg4J7AGAIDBu4RlFJDiegYEXUQ0WSt\n9a0BRsmAgXsCszVkwMC9w3Ai8iBUU3MZYFwMGLhnMCsCAwbuEZRSGwnpjCOIKEhr/Y8DjJIBA/cE\nP4rsowYM9DcopZ4joi6t9Upr9s+DSqkZWuvdA42bAQN3C2ZFYMCAAQODHMwZgQEDBgwMcjCGwIAB\nAwYGORhDYMCAAQODHIwhMGDAgIFBDsYQGDBgwMAgB2MIDBgwYGCQgzEEBgwYMDDI4f8DvG33noLz\nPAIAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fe4f45b5ad0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "area = get_MC_area(x, y, f, N=10**5, plot=True)\n", "print \"Area is: %.3f\" % area" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can observe, the number of points which fall inside the region of interest, are proportional to the area of the region. The area however, marginally close to the true area of $81.38$. Let us also try with a higher value of $N=10^7$" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Proportion points in space: 0.489\n", "\n", "Area is: 81.398\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEaCAYAAAAcz1CnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xuc3HV97/HXZ6+z99wJSYjxghUVBY3UaqsIWpVa4OCl\n3sEbWAT1aIvSWrP20VNtz3lYe7cc7ZGCCla0GiDGGANCCoGEhCUXDAmQkOySZJPs/TY7+zl//GaS\nYZzdnd2dmd/Mb97Px2MeuzO/y/cz3539feZ3+fy+5u6IiEjlqgo7ABERCZcSgYhIhVMiEBGpcEoE\nIiIVTolARKTCKRGIiFQ4JQIRkQqnRFABzOwCM3vAzH5lZt83s9qwYxKR0qFEUBmeAS5y9zcATwOX\nhRuOiJQSJYI5MrPFZrbBzE6a2bfN7Ktm9tkcl33IzF5W6Bjdvcvdh5NPx4CJQrdZCGb2tJm9Oew4\nZsPM3MwGzex/FbidX5rZiJndX8h2JFqUCObuRuAJd58PfBH4MPBvOS77f4C/LFRgmczsecDvA2vz\nsK5bzazLzPrMbK+ZfXzuEZYPM6s3sz8zs0fN7JiZdac9rpxksVe6+5+nreM6M9tqZqNm9p0c270n\nuaEfSD5+nT7d3S8CPpnjuuYnE9QDGa//m5n9XS7rmGb9k74/M1tgZj9OJscDZvb+fE0Pc93lqibs\nACLgzcBnkr9fBdyd9u17Oj8FvmlmZ7p7VyGCSzGzVuAW4Cp3j08zbzuAu7dPMdtXgY+5+6iZvQS4\nx8y2u/u2WcaXS5slwczqgU3ALuCd7r5vlqvqBP4KeCvQMIPlrnP3b82yzXTnAc8CL834DJ4H/Ese\n1j/V+/tngr3TM5Lt3WVmj7r7rjxMD3PdZUl7BLNkZnVm1gucC6w1s8eAtwP3ps3zt2b247Tn/9vM\nNqZO1rr7CLCN4Fv6XOOZtC0zqwFuA77i7r+efC25c/dd7j6aepp8vDCXePLRfnKdT5vZn5hZh5n1\nmtntZhabS/s5LvcF4FF3/8QckgDu/iN3/y/g+GzXkQsz+xczy7ZhPw/YCmwALk3OW03wmd4+13Yn\ne39m1gS8E/gLdx9w9/sJvhR9aK7Tw1x3OVMimCV3HwN+Bzjq7s3ufi7BP1D6hvZvgDeZ2Xlm9kng\nbcAVGd/I9wCvzFy/md1pZj2TPO7MEtJUbb0P+G3gLyw4tPBHeeiC1AZmCHgc6ALunuF7z4f3JNf9\nfOAVBHtlc2k/l+U+ABT0WP80vmrBIajNZnbhdDO7+7Xufm2WSecDO4D/Ai5PvvYSoJrgc3nKLD6P\nU3kxkHD3vWmvPQq8LA/Tw1x32dKhobk5j+CDkDIP6E89cffjZvYN4D+ANuB33b03Yx39wJmZK3b3\nd8wkkKnacvdbCA4L5ZW7X2tm1xMkxAuB0bRpubz3fPgHd+8EMLO1BH+TWbef43IrgZ1mNtlq/qe7\n/79ZvZvpfQHYTXB44r0Ee6Pnufv+WazrPOAnwC8JDlG2JF/bmZkwZ/p5nEYzkNmnvUBLHqaHue6y\npT2CuclMBCf5zQ/FdoI9hRvd/Zks62gBevIUz3RtTSr9Gx/BSe8v5vKNz90TyV3kFcAfzySe2baZ\n4dm034cI/llzan8K0y13GHiFu8+b5FGoJIC7b3H3fncfdfebgc3AJTNdT/I8xznADnc/CTxEcGgz\ntZdQSANAa8ZrrZz+EjWX6WGuu2wpEczNK3luIugg2H0EwMzOBf4VuBn46CTrOCdjHall19npK0My\nH+uyzJ9LW5Ny93ekNmTA14CvpW3Ycvk2WMNzzxFMG08e2pzUbPsjx+VuJ7harBQ4MOmuyRReDgwD\nTyafpw4PnU+W8wMz/TxOYy9QY2Znp732SoKT73OdHua6y5e76zHLB8G30XPTnn8OuCn5+3KC4q1L\ngUbgCHBhxvL1wAlg2RzjmLatGa6vHWifYvoSgsMSzQTHk98KDAKXzTae6dpMzvM08OYpnrcDt+bY\n998BvjObfgSaCJL3N4AzcuxTB16U8VoNECO4AuuW5O81U8Q3L9nXseSyH0j2+29lzHcVcP807/Xj\nwH1pz59HsGd6guBwWD7+P6Z6f7cB30/25esJDrG8LG3ZWU8Pc93l+gg9gHJ9AEsJjonXpr22CDhE\ncGz5UeDTadP+BNicsY53Az+aYxytubQ1w3W2M3UiWExwdVQP0Ac8BnxiLvFM12ZynqeZPhH8KMe+\n35iKeTZxEyTBvwUOJPsh/fGRLPNnSwTtnL7iKvVozxZfWr8/THAoogd4EHhLlrau4rmJINu6/gn4\nx4zXdhAUG7bk6X9kqve3gGAvZBA4CLw/Y9lZTw9z3eX6sOSbkzwxs78muJLoGznMu4XgWvydhY9M\nUsysjmCj/wrP/1VMk7U5QvDF4R/c/S8KFZ+ZbQBeCzzk7heH8V6l/CgRiIhUOJ0sFhGpcEoEIiIV\nTolARKTCKRGIiFS4srjFxKJFi3zVqlWzWrazs5Nly5blNyARkSKY6/Zr27Zt3e6+eLr5yuKqodWr\nV/vWrVtntayZUQ7vUUQk01y3X2a2zd1XTzdf5A8NrVmzJuwQRERmpVjbr8jvEYiIVCrtESR1dnaG\nHYKIyKwUa/sV+USwfPnysEMQEZmVYm2/Ip8IRERkakoEIiIVTolARKTClUVB2Vz953/+J3V1ddTU\n1DAyMsL4+DjDw8PMmzeP3t5e6urqqKurY8GCBfT29tLX10dDQwPuzujoKGZGLBajrq6OkZER6urq\nGBoaYmJigqamJkZGRkiNXzs4OMiyZcsYGhrCzJiYmKCqqoqBgQFisRg1NTW4O/F4nPnz5zM2NkZP\nTw/V1dW4O2NjY6fmGx4epqamhvr6empraxkaGqK2tpZjx44xf/58RkZGqK+vp66ujoGBAWpra0+9\n51gsdioudycWi9HX18eqVas4efIk8Xj81L3I4/E4NTU1NDY2nnp/ZsbAwADNzc2MjIyQSCSor68H\nYHx8nPr6eqqrqxkeHuaMM87g6NGjJBIJampqqKqqOtWHo6OjzJ8/n9HRYDjjVJ/W1tbi7tTX19Pf\n309DQwM1NTX09vbS0tJCIpGgqqqKiYkJhoaGTrWXSCRoaGggHo8zOjrKxMQEZkZrayvDw8OnlnN3\nqqqqaGpqAuD48eO0tbVRV1dHb28vTU1NjI6O0tbWxpEjR5g3bx7j4+MMDg7S1tZGS0sLJ0+eZGRk\nhLGxMebNm8fg4OCp9zQ+Pk5dXR1LliyhpycYabS6uprq6mri8fip6Z2dnSxevJh4PE51dTW1tbWY\n2akYUu+vsbGRoaEh5s+fT09PD01NTSQSiVPvub6+npMnTzI0NERLSwsrVqygq6sLgLGxMRobGzEz\nRkZGaG1txd0ZGhpibGyM5uZm3J2JiQlqa2tP/V1TMff391NfX09jY+OpNnt7e099hubPn093dzd1\ndXW0trYyMDBwqk/6+/uJxWK4O3V1dYyNjZ1aZ+p/ZmxsDAiuia+qqqK/v594PE4sFjvVZ6nPRupz\n3tTUxODgIABtbW0MDQ0xPDxMa2sro6OjVFdXn/p/iMVijI2N0d/fz+LFizEz+vv7qaqqorm5mXg8\nfqrtkZERYrEYExMTz3mk/t/HxsZwdxKJBK2trQwNDeHujI+PU1VVRSwWI5FInOrzeDx+qv9qampO\nfYaWLl3KkiVL6OzsJJFIMDAwQFtb26nPxfDwMC0tLQwODlJfX8+JEydYsWIFPT09xGIx4vE48Xjx\n7hpeFpePLlu2zFMf+nSHDx9m2bJltLe385WvfOU3pt977718+ctfPvV7ps997nO0trayadMmTdd0\nTdf00pr+6U+zbft2zlyyhNvuuOM3pk+3/Tt8+DDLly/P6fLRskgEs60j+Pu///tT39ZERMpG2t7A\nG370I960e/esVqM6AiCRSNDX1xd2GCIiuUslgZ4envfjH/OmPXsK3mSkE8H4+Dhf//rXww5DRCQ3\nqSRw4ADXfPe7fGSWewIzFemTxVVVkc5zIhIlqSTQ0cGN69ZRNz5etKYLvqU0s2oz225mdyafP9/M\ntpjZE2Z2e3JwbRGRyhSPPycJrFm7tqhJAIpzaOgzQPpBrr8B/s7dzwZOAh8rVMOxWKxQqxYRmbtU\nAnBn1X//N2vWrg0ljIImAjNbAfwB8K3kcwMuAn6YnOVm4PJCtV9TE+kjXyJSztJOCl9y++1cuWlT\naKEUekv5DeAGoCX5fCHQ4+6p/Z5DQNa7KpnZ1cDVACtXrpxV40eOHOGNb3zjrJYVESmYtENB12/a\nxIKBgayzFWs0lYLtEZjZO4Cj7r4t/eUss2YtZHD3m9x9tbuvXrx42pHWslq0aBFvetObZrWsiEje\nZTkfMFkSAGgvTlQF3SN4PXCpmV0CxIBWgj2EeWZWk9wrWAEU7Ibb3d3d9PX10draWqgmRERyk1Yk\ntrCjg+tyOB/QCRRjxPWC7RG4+43uvsLdVwHvBX7p7h8ANgHvSs52JfCTQsWwYMEC1RGISPhSSaCr\niwvvuCOnJACTHDcvgDDOpn4BuM3M/grYDny7UA2lblolIhKatENBN6xfT0PyJnylpCiJwN3vAe5J\n/v4kcEEx2hURCU363UOT5wNKVaSvr0zdGlpEpKjSksCyrVv5xPr1IQYzvUgngra2trBDEJFKk3Y+\n4JJ77+U1+/eHG08OIp0IhoeHVUcgIsWTSgJ793L9unVTXhqai2LVEUQ6EfT396uOQEQKL+N8wJfu\nuovqiYk5r7Z9zmvITaRvz9nS0qLxCESksFJJIB7nnI0bWbN2bV6SABSwyCpDpBNBY2Oj6ghEpHDS\n7hd0xe23854HH8zr6qNcR1A03d3dYYcgIlGUcShoqvsFlYNIJ4KFCxeGHYKIRE0Z1QfkKtKJ4MiR\nI2GHICJRkkoCiQSv2LCB/7Ft29Tzl4lIJwLtEYhI3qTVB7zrF7/gZQcPhhtPHkU6EQwODqqOQETm\nJuNQUDHvF6Q6gjxYuHCh6ghEZPbSksD8jg4+XeTzAe1FaifSieDZZ5/VeAQiMjupJHDgAG9+6CFe\nv3dv0UMo+/EISkEikVAdgYjMXPqto3/wg1CSAKiOIC80eL2IzEgELw3NRaS3lBN5KvMWkQqQSgLd\n3ax+4AH+oKMj3HiKKNKJYNGiRWGHICLlIO2uoZ+96y7ahobCjafIIp0I+vv7ww5BREpZge4aWm4i\nnQhaWlpURyAi2aVVCb9840be+fDD4caTheoI8uDo0aOqIxCR35R2VdAHt23jhZ3FuuHzzLQXqZ1I\nXz561llnaTwCETktHn9OElizdm3JJgHQeAR50dXVpToCEQmknQ9Y8dBDZXFpqOoI8kB1BCICPKdK\n+JIHHiiLAeWLKdJbytra2rBDEJEwhXjDuHIS6UQwPDwcdggiEpZUEhgfZ+Hu3VxXBoeCwhLpRGBm\nYYcgImFIqxK+4mc/49wDB8KNp8RFOhEsWbJEdQQilSTjUNDnN2ygeWQkvHjmSHUEedDd3a06ApFK\nkXYoaNmOHXxi/fpw48mD9iK1E+lE0NDQwLFjxzQegUjUpd0r6IObN5d0bcBMaDyCPDAz1RGIRFlG\ngdiX7rgjMkkAVEeQF7oNtUiEpRLAxARn33cf77///nDjKWORTgRDFXYrWZGKkbYX8N7t2/mtQ4fC\njafMRToRVFVF+siXSOWp0BHECi3SiaC6ujrsEEQkX1JJoKeH8zdv5tIdO8KNJ0IinQiamppURyBS\n7jL2Aq7ftIkFAwPhxVNEqiPIg7GxMdURiJSztCRQ3dHBlyrsUFB7kdqJdCIYHx+nr69PdQQi5SiV\nBA4f5nUPP8xbdu0KN54QqI4gDyYmJlRHIFJuMmoDbvje9yoyCUAE6gjMLAb8CqhPtvNDd19jZs8H\nbgMWAI8AH3L3gtwXNp5+bFFESl/aOMIveOABPnTvveHGUyEKeWhoFLjI3QfMrBa438zWAZ8D/s7d\nbzOzbwIfA/61EAHo8lGRMpFxQvj9jzzC2YcPhxdPhSnYltIDqVP7tcmHAxcBP0y+fjNweaFiqK+v\nL9SqRSRfUknAndpkbYCSQHEV9GSxmVUD24AXAf8M7Ad63H08OcshJjkMZmZXA1cDrFy5clbt9/f3\nz2o5ESmStJvFvefBBznnmWfCjadCFTQRuHsCOM/M5gE/Bs7JNtsky94E3ASwevXqrPNMp6WlRXUE\nIqUo41DQjevWUTc+Pvn8FSpSdQTu3mNm9wCvBeaZWU1yr2AFwRVSBdHW1qY6ApFSk0oCg4OctXMn\nH/3FL8KNp4S1F6mdQl41tBiIJ5NAA/Bm4G+ATcC7CK4cuhL4SaFiOHTokOoIREpFxl7ARx94gLO6\nu8OLpwxEoY7gTGCTmXUADwMb3P1O4AvA58xsH7AQ+HahAqivr1cdgUgpSEsCC5MnhJUEplf2dQTu\n3gGcn+X1J4ELCtVuOl0+KhKy9L2AvXt52/bt/Pa+feHFI1lF+hYTw8PDYYcgUrkyDgV96a67qNZg\nUSUp0omgubk57BBEKlMqCXR18botWyr2FhHlItKJoKYm0m9PpPRk7AXcsH49DWMFuYOM5FGkt5T9\n/f2qIxApllQSGBpi1Y4dXLlpU7jxRECk6gjC0tjYqDoCkULL2Au45r77WNrTE148EdJepHYinQiG\nh4dVRyBSSKkk0N/P0iee4Jp168KNJ2KiUEcQukQioToCkULIGDPg47feqiRQAGVfR1AKzCzsEESi\nJ5UADh7krK4u3SIiAiKdCBobG8MOQSQ6Ms4FfH7DBppHRsKLR/Im0olgTJetieRH2shhdbt2cWOF\nDSIfdZFOBLW1tWGHIFLeNHJYRYh0ImhsbFQdgchspSWB6o4OvqS9gKJTHUEexONx1RGIzFT6XsCB\nA1y6eTPnP/VUePFUsPYitRPpRNDT06M6ApGZSEsCNR0d/KlGDguV6gjyoKamRnUEIrnIqAu4/Lvf\n5c/XrlUSCJnqCPKgrq4u7BBESl/GCeE1OhdQcSKdCDQwjcgUMhLAJbt385r9+8OLR0IT6UQwMDAQ\ndggipUl7AZIm0olAt5gQyZCRAH53/34u3r07vHikJEQ6Ebi76ghEUlJJwB0ee0x7AWVAdQR5EIvF\nVEcgkrEX8J4dOzjnmWfCi0dy1l6kdiKdCKqrq1VHIJUtlQTGx5m/ezef1l5AWVEdQR40NTWpjkAq\nU0ZdwPtvvVVJoAypjiAPxlUMI5Um/TDQwACLnnySTykByDQinQjcPewQRIon41zAxzdvZvmJE+HF\nI2Uj0olApCJk3CTuxU89xfs2bw4vHik7kU4EIxo9SaIuYy/ghvXradCATDJDkU4ENTU1qiOQaMpI\nAO/YtYtXP/lkePFIQaiOIA8SiYTqCCR6UklgbIz6xx/nT++6i+qJiXBjkoJoL1I7kU4Eo6OjqiOQ\n6MjYC7hqyxaed/RoePFIwamOIA8SiYTqCKT8pdcEjIyw+NFHWbN2rZJABVAdQR4sWbIk7BBE5kaX\nhEoRRDoR6KohKVsZCeC8Q4e4bPv28OKRSIt0Iujr6ws7BJGZSyWBiQkW7NzJ9aoMlgKLdCJobm4O\nOwSR3GXsBbz/kUc4+/Dh8OKRihHpRDAwMKA6Ail96Qmgq4uX7NnDHz3wQHjxSMlQHUEeNDQ0qI5A\nSlvGXsD1mzaxQEOsSlJ7kdqZNhGY2XXAd939ZBHiyatEIqE6AilNGQng8sce45VPPx1aOFKaSqmO\nYCnwsJn9wMzeZmU0EHBNTY3qCKS0pNcEHDjAC+6/nzVr1yoJSFbFqiOYNhG4+5eAs4FvA1cBT5jZ\nX5vZC6dazszOMrNNZrbHzHaZ2WeSry8wsw1m9kTy5/w8vI+shoaGCrVqkZnL2Au48bbb+NC994YX\nj0hSTpXFHtzY/9nkYxyYD/zQzP52isXGgc+7+znAa4FPmdlLgS8CG939bGBj8nlB6JCQlISM0cJe\n8bOfsWbtWuo0cJKUiFzOEXwauBLoBr4F/Km7x82sCngCuCHbcu7eBXQlf+83sz0EezqXARcmZ7sZ\nuAf4wpzexSRURyChSt8DGBqiad8+/kQ1AVKCcrlqaBFwhbsfSH/R3SfM7B25NGJmq4DzgS3AGckk\ngbt3mVnW+0CY2dXA1QArV67MpZnfoFtMSGgyDgNdc999LO3pCS8ekSlMmwjc/ctTTNsz3fJm1gzc\nAXzW3ftyPdfs7jcBNwGsXr16VmNO9vf3q45AiisjAfz+44/zO088EV48UtYiUUdgZrUESeC77v6j\n5MtHzOzM5N7AmUDBbqHY2NioOgIpDg0XKQXQXqR2CpYIkpeZfhvY4+7p13D+lOCcw9eSP39SqBji\n8bjqCKTwMq8GWrdOJ4IlL0qpjmC2Xg98CLjIzHYkH5cQJIC3mNkTwFuSzwtC4xFIQWVcDXTFrbfq\naiDJq7Ifj8Dd7wcmOyFwcaHaTdfW1laMZqTSpO8B7NnDuQcPcsXWreHFIzJHkb7XUGdnZ9ghSJSk\nJ4CeHuYdPMgf6zCQRECkE4H2CCQv0hMA6HJQiZxIJ4JEIhF2CFLuMk4Ev/app3jrzp3hxSNSAJFO\nBLFYTHUEMjsZl4Oes28f73nwwfDikYoUiTqCsHV3d6uOQGYm47YQ7NvHDevX0zA2Fl5MUrHai9RO\npBPBihUr2L17t+oIZHqJBExMnH7e0cHHN29m+YkT4cUkFS8KdQShO378uOoIZHrx+Okk0NHBq+68\nkzVr1yoJSOjKvo6gFOhksUwp40Tw0vFxrlm3Lrx4REIS6UQQDKMgkiE9ARw6xOLjx7n2zjvDi0ck\nZJFOBHV1dWGHIKUkSz3AZzdupE0j2UmFi3QimEg/+SeVLeMw0BUdHZx74MDk84tUkEgngrGxMdUR\nVLqMBPC7+/dz8e7d4cUjMgOqI8gDjUdQwTISwItPnND4AFJ22ovUTqQTgZlpPIJKk54AurtZ9vTT\nfGL9+vDiEZkD1RHkQVNTk+oIKkX62ABDQ9R1dPD5m29WEpCypjqCPOjr6ws7BCm0LFcCqSJYZGYi\nnQh01VCEZUkA73r0UV528GA48YiUsUgngnjmxkKiQbeGFsmrSCeCpqamsEOQfMpIAK88fJjLH3kk\nvHhEIiLSiWB0dFR1BFGQkQBeduQI73roofDiESkS1RHkgburjqCcpSeAvXt50bPP8oH77gsvHpEi\nay9SO5FOBK2trezfv191BOUmPQEcPcriri6uuftuqnXyXyqM6gjy4MSJE6ojKCfptQAHDjCvo4PP\n33IL1955p5KAVCTVEeSBLh8tE+l7AD09cPAgN65bR934eHgxiVSQSCeCxYsXhx2CTCU9AfT3U/3U\nU1xz770sViGgSFFFOhEMDg6GHYJkk54Axsbg8ce55r77WNrTE15MIhUs0olAQ1WWmIw9AJ56io8+\n8ABndXeHF5OIRDsRuLvqCEpBlj2Aa3UISGRaqiPIg9HRUdURhCk9AcTjsGePbggnMgPtRWon0omg\npaWFw4cPq46g2LIkgA8//DDPf/bZ8GISKUPFqiOIdCLo7+/n61//Ou3t7WGHUhmynAP44LZtvLCz\nM7yYRMrYcsCL0E6kE0Fzc3PYIVSGjFHB6OzUOQCRMhLpRDAwMBB2CNGWngCGhmDfPq7ftIkF6neR\nshLpRCAFkp4Aurrg2DGdBBYpY5FOBIsWLQo7hGhJTwAHDlDf28t1GzbQPDISXkwiMmeRTgSqI8iD\nzFHeurqoO3aMz+teQCIFpzqCPDh+/LjqCGYry5jAC4GPrV9Pw9hYKCGJVJr2IrUT6UQQi8U4evSo\n6ghmIksCOCOR4KM//7n2AESKrOzHIzCzfzezo2a2M+21BWa2wcyeSP6cX6j2ISgo03gEOUofCwCC\nISE3bGDN2rV88u67lQREQlCs8QgKOTDNd4C3Zbz2RWCju58NbEw+L5je3t5Crj4apkgAGhdYpDIU\n7NCQu//KzFZlvHwZcGHy95uBe4AvFCqG6urqQq26/KVv/BMJ2LWLS3bv5jX794cXk4iEotjnCM5w\n9y4Ad+8ysyWTzWhmVwNXA6xcuXJWjZnZrJaLtCx3An3v9u381qFD4cUkIqEq2ZPF7n4TcBPA6tWr\nZ3W7jdHR0bzGVNYybgMxv7OTP9SN4ESE4ieCI2Z2ZnJv4EzgaCEbq6mpqew6gixXALUCH924kbah\noVBCEpHcRbWO4KfAlcDXkj9/UsjGFixYUJl1BFkSwAt7e3nf/fdTPTERTkwiMmPtRWqnYInAzL5P\ncGJ4kZkdIkhuXwN+YGYfAw4C7y5U+yl9fX2VUUeQufEH6OjgVQcP8oePPlr8eERkzsp+PAJ3f98k\nky4uVJuZjhw5Ev3xCDITwMgI7N3LhU88wRsffzycmEQkLzQeQR64F6MLQ5KZAPbuJTYywgd1F1AR\nmaFIJ4Kamgi+vSzH/1/+7LNcvm2bjv+LyKxEcEt5WqQKyrIUgJ3b1cUVW7eGF5OIREKkE0EsFgs7\nhLnJcgtojh1TAZiI5FWkE0Fvb2951hFkOfyz2J2P/PznugW0SAWJah1BUbl7+dQRZG78JyZg507O\nO3SIy7ZvDycmEQlVe5HaiXQiKIvxCCY5/POeHTs455lnwolJREpC2dcRlIqSrCOYpPirCfikxgAW\nkSTVEeRBPNsGN0yZ8SSv/nnp0aO8e8uWcGISkYoX6USQSCTCDiGQ5eRvC/CHjzzC2YcPhxKSiEhK\npBNBqHUEkxz+0clfESk1kU4EodxiIjMBdHdDZ6dG/xKRkhX5RFCUOoJJvv2vGhjg8i1bdO9/EZkV\n1RHkQW1tbWHrCLLc+I2REd6wbx9v2rOncO2KSEVoL1I7kU4EVVVV+R+PYJJv/8vGxvjgpk2q/BWR\nvFEdQR40NTXlr45gksKv1z35JG/ZtWvu6xcRyaA6glIwybf/RcBH16/Xt38RiYRIJ4Le3t7ZLZjl\nuv8G4NX793Px7t1zjktEpJREOhHMqI5gkm//K4eG+MjGjfkLSkSkxEQ6EYyOjk49wyQbf0BX/ohI\nxYh0IgCy1xFkJoDeXjhwgPOfeYZLd+woTmAiItNQHUEetLS0nK4jmOTb//P7+3n7I4+wuK+vuMGJ\niEyjvUhBXE6lAAAJ00lEQVTtRDoRuDt9J07Q2tJy+sVk0ddFe/fye7/+dXjBiYhMQ3UEeXDBvffy\nhrVraf/Up+DgQRa7c83dd1M9MRF2aCIi01IdQR783s6dAFx7yy069CMiMomqsAMoqOQhISUBEZHJ\nRTsRqPJXRGRa0U4Ew8NhRyAiUvKinQgaGop2Ha6ISL4Va/sV7UQwOlq063BFRPKtvUjtRDsRVFfT\nGXYMIiKzVKztV7QTQSLB8rBjEBGZpWJtv6KdCOrqwo5ARKTkRTsR6PJREZFpRTsR1NeHHYGISMmL\ndiIYGgo7AhGRkhftRLBwoeoIRKRsqY4gH2Ix1RGISNlqL1I7kU8EqiMQkXIV6ToCM3ubmf3azPaZ\n2RcL1tDBg6ojEJGyFdk6AjOrBv4ZeDvwUuB9ZvbSgjSWbXhKERF5jjD2CC4A9rn7k+4+BtwGXFaQ\nltraCrJaEZEoCSMRLAeeSXt+iCx7QGZ2tZltNbOt+/btw8x+49HZGRxBa29vzz79BS8IpgOW5ZE6\n/qbpmq7pml6y01/84tlt/zpzP8Ng7sUYETOtQbN3A291948nn38IuMDdr59smdWrV/vWrVtn2x5+\n9tlQUwMTExCLQWsrHD4c/D4+DmedBSMj0NgIzzwT/Dx5EubNC5YZHwczaGoKqpVbW4P1HT0aNDI2\nBlVVwTwLF8KxY1BdDYlEUNSWSMDy5cH8VVXB+hIJGBgI1tXQEKxjeDhYzixYrqoKBgdPr2N4OGjX\nLJiWXjnd1BS8tmwZ7N4dLNPUBKOjwToaGmD+fGhuhscfh0WLgvdZVRW81/Hx0+2MjASvp+JKfUbi\ncVi5Ep56Kpje1BTEMn8+nDgRrK+7O3g9tb7x8WB9q1YFfZua5h68197eYPnU2BHuwd8lFoOeHnjR\ni6CvL1jH8HAQ66JFQb/19QVt9vYGyw4OBu38+tfB7UXq64P1DQwEe4exWPB+zIJ5U3/PhoagX4aG\n4Pjx4G+Y6oO6umD5oaHgs1BXBy95SdD28eOn+yUeh8WLg3mGh4M2RkeDz1ZXV/BeFi0K2l2wIHik\nPoN9fadG02NsLFjX/PnB37q5GZ54As44I5ivtjbog5e8BJ59NuhD96A/jhyB5z0PnnwyiH3VKjhw\nIOiH6urgPaT+JsPDcOaZwTqWLj3d3729QexLlwbve3g4+EycPAkvfGHw/ru7g9jicXj1q+HgwWDd\n6f2V+ixWVQXx1NcHn5HW1iCWlPHxYJnh4WD9J04E76OhIXitoSF4362tQRxnnAGHDgXrTa1nbCxY\nh9npx8REMH3hwiCe8fHgtdRneXg4+H358iD2WCz4m/f3B+9r1apgmYGB4O84MhK8Z/fgeWtrEAME\n0xoagvji8eC9dncHr9XWBuuurg7+9hMTwTyLFp3+TDU3B5+l2tpg2YULg/c0NIRt28ZcttFmts3d\nV083XxhjFh8Czkp7voICnhxfs2YNtLcXavUiIgWzpkjbrjD2CGqAvcDFwGHgYeD97r5rsmXmskcg\nIlKpct0jKPo5AncfB64D1gN7gB9MlQTmaibHyURESkmxtl9hHBrC3e8G7i5GW8uXL5/TMTYRkbAU\na/sV7cpiERGZlhKBiEiFUyIQEalwSgQiIhWu6JePzoaZHQMOzHLxRUB3HsPJF8U1M4prZhTXzEQ1\nrue5++LpZiqLRDAXZrY1l+toi01xzYzimhnFNTOVHpcODYmIVDglAhGRClcJieCmsAOYhOKaGcU1\nM4prZio6rsifIxARkalVwh6BiIhMQYlARKTCRSIRmNm/m9lRM9s5yXQzs38ws31m1mFmryqRuC40\ns14z25F8fLlIcZ1lZpvMbI+Z7TKzz2SZp+h9lmNcRe8zM4uZ2UNm9mgyrq9kmafezG5P9tcWM1tV\nInFdZWbH0vrr44WOK63tajPbbmZ3ZplW9P7KMa5Q+svMnjazx5Jt/sY99wv+/+juZf8A3gC8Ctg5\nyfRLgHUEI8C9FthSInFdCNwZQn+dCbwq+XsLwfgQLw27z3KMq+h9luyD5uTvtcAW4LUZ81wLfDP5\n+3uB20skrquAfyr2ZyzZ9ueA72X7e4XRXznGFUp/AU8Di6aYXtD/x0jsEbj7r4ATU8xyGfAfHngQ\nmGdmZ5ZAXKFw9y53fyT5ez/BuBCZ40YXvc9yjKvokn0wkHxam3xkXmVxGXBz8vcfAhebmZVAXKEw\nsxXAHwDfmmSWovdXjnGVqoL+P0YiEeRgOfBM2vNDlMAGJul3krv268zsZcVuPLlLfj7Bt8l0ofbZ\nFHFBCH2WPJywAzgKbHD3SfvLg8GXeoGFJRAXwDuThxN+aGZnZZleCN8AbgAmJpkeSn/lEBeE018O\n/NzMtpnZ1VmmF/T/sVISQbZvGqXwzekRgnuBvBL4R+C/itm4mTUDdwCfdfe+zMlZFilKn00TVyh9\n5u4Jdz+PYIztC8zs5RmzhNJfOcS1Fljl7q8AfsHpb+EFY2bvAI66+7apZsvyWkH7K8e4it5fSa93\n91cBbwc+ZWZvyJhe0P6qlERwCEjP7CuA0MewdPe+1K69B6O21ZrZomK0bWa1BBvb77r7j7LMEkqf\nTRdXmH2WbLMHuAd4W8akU/1lwbjcbRTxsOBkcbn7cXcfTT79v8CrixDO64FLzexp4DbgIjO7NWOe\nMPpr2rhC6i/cvTP58yjwY+CCjFkK+v9YKYngp8CHk2feXwv0untX2EGZ2dLUcVEzu4Dg73G8CO0a\n8G1gj7t/fZLZit5nucQVRp+Z2WIzm5f8vQF4M/B4xmw/Ba5M/v4u4JeePMsXZlwZx5EvJTjvUlDu\nfqO7r3D3VQQngn/p7h/MmK3o/ZVLXGH0l5k1mVlL6nfg94HMKw0L+v8YypjF+WZm3ye4mmSRmR0C\n1hCcOMPdv0kwPvIlwD5gCPhIicT1LuCPzWwcGAbeW+h/hqTXAx8CHkseXwb4M2BlWmxh9FkucYXR\nZ2cCN5tZNUHi+YG732lmfwlsdfefEiSwW8xsH8E32/cWOKZc4/q0mV0KjCfjuqoIcWVVAv2VS1xh\n9NcZwI+T329qgO+5+8/M7JNQnP9H3WJCRKTCVcqhIRERmYQSgYhIhVMiEBGpcEoEIiIVTolARKTC\nKRGIiFQ4JQIRkQqnRCAyC2b2muSNyWLJytBdWe7zI1IWVFAmMktm9ldADGgADrn7V0MOSWRWlAhE\nZsnM6oCHgRHgde6eCDkkkVnRoSGR2VsANBOMphYLORaRWdMegcgsmdlPCW5n/HzgTHe/LuSQRGYl\nEncfFSk2M/swMO7u30ve/fO/zewid/9l2LGJzJT2CEREKpzOEYiIVDglAhGRCqdEICJS4ZQIREQq\nnBKBiEiFUyIQEalwSgQiIhXu/wPUuZd9z8UBAgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fe4e41c4950>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "area = get_MC_area(x, y, f, N=10**7, plot=True)\n", "print \"Area is: %.3f\" % area" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above figure, shows that for $N=10^7$, the region covered by the sampled points is almost as smooth as the shaded region. Furthermore, the area is closer to the true value of $81.38$.\n", "\n", "Now, let us also analyze, how the value of the calculated area changes with the order of number of sampled points. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2 88.0738917212\n", "3 74.327056357\n", "4 80.2320526499\n", "5 81.0771326803\n", "6 81.2459063119\n", "7 81.4131110967\n" ] } ], "source": [ "for i in xrange(2,8):\n", " area = get_MC_area(x, y, f, N=10**i, plot=False)\n", " print i, area" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Clearly, as the number of points increase, the area becomres closer to the true value.\n", "\n", "Let us further examine this change by starting with $10^3$ points and then going all the way till $10^6$ points. " ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "CPU times: user 36.4 s, sys: 3.63 s, total: 40 s\n", "Wall time: 40 s\n" ] } ], "source": [ "%%time\n", "N_vals = 1000 + np.arange(1000)*1000\n", "areas = np.zeros_like(N_vals, dtype=\"float\")\n", "for i, N in enumerate(N_vals):\n", " area = get_MC_area(x, y, f, N=N, plot=False)\n", " areas[i] = area" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean area of last 100 points: 81.380\n", "Areas of last 10 points: [ 81.41165876 81.31764473 81.57499032 81.35316251 81.40445249\n", " 81.41623796 81.46210595 81.4105668 81.4002441 81.34190896]\n" ] } ], "source": [ "print \"Mean area of last 100 points: %.3f\" % np.mean(areas[-100:])\n", "print \"Areas of last 10 points: \", areas[-10:]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x7fe4e41d6c50>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0FGXW+PHvJQlLZIAoqAEZFmFAYXCLGJVBBZTRcTu4\nIS7ggLghjvKqwKAoOO6jKKIDgsLMi44b8xMdl/giriAYAQMuaBBFFjGAiCBbyP390VVldXd1pztS\nCXTu55ycdNf6VFd33XrWElXFGGOMAahT0wkwxhiz57CgYIwxxmNBwRhjjMeCgjHGGI8FBWOMMR4L\nCsYYYzwWFIwxxngsKBhjjPGEGhRE5HoR+URElojI0yJSXyL+JiJfiMhnIjI0zDQYY4xJXXZYGxaR\nFsBQ4FBV3SoizwJ9AQFaAh1VtUJE9q9sW02bNtXWrVuHlVRjjMlIH3300TpVbZbOOqEFBd/2G4jI\nTiAXWA3cAfRT1QoAVf2+so20bt2a4uLiUBNqjDGZRkS+SXed0IqPVHUVcD+wAlgD/KiqRcDBwAUi\nUiwir4pI+6D1RWSws0xxWVlZWMk0xhjjE1pQEJE84CygDdAc2EdELgbqAdtUtQB4HHgiaH1VnaSq\nBapa0KxZWrkfY4wxVRRmRXMvYLmqlqnqTmAGcBywEnjBWeY/QJcQ02CMMSYNYQaFFUChiOSKiAA9\ngc+A/wf0cJY5AfgixDQYY4xJQ2gVzao6T0SeBxYA5cBCYBLQAJguItcDm4FBYaXBGGNMekJtfaSq\no4HRMZO3A38Kc7/GGGOqxno0G2OM8WR0UFi0aBEvv/xyTSfDGGP2GhkdFD7++GNee+21mk6GMcbs\nNTI6KACoak0nwRhj9hoZHRQiLWGNMcakKuODguUUjDEmdRYUjDHGeDI6KBhjjElPRgcFyykYY0x6\nLCgYY4zxZHRQAGuSaowx6cjooGBNUo0xJj0ZHxQsp2CMManL6KBgjDEmPRkdFKz4yBhj0pPRQQGs\notkYY9KR0UHB6hSMMSY9GR0UjDHGpCejg4LlFIwxJj2hBgURuV5EPhGRJSLytIjUF5GpIrJcRBY5\nf4eHuH8LCsYYk4bssDYsIi2AocChqrpVRJ4F+jqzb1TV58Pat58FBWOMSV3YxUfZQAMRyQZygdUh\n7y+KNUk1xpj0hBYUVHUVcD+wAlgD/KiqRc7sv4lIiYg8KCL1gtYXkcEiUiwixWVlZVVKgxUfGWNM\nekILCiKSB5wFtAGaA/uIyMXACKAjcDSwL3Bz0PqqOklVC1S1oFmzZlVNg7utKq1vjDG1TZjFR72A\n5apapqo7gRnAcaq6RiO2A08CXcNKgBUfGWNMesIMCiuAQhHJlcjVuSfwmYjkAzjTzgaWhJUAyykY\nY0x6Qmt9pKrzROR5YAFQDiwEJgGvikgzQIBFwJVhpcGXlrB3YYwxGSG0oACgqqOB0TGTe4S5zwTp\nqO5dGmPMXinjezQbY4xJXUYHBZflFIwxJjUZHRSsotkYY9JTK4KCMcaY1GR0UHBZTsEYY1KT0UHB\nio+MMSY9tSIoGGOMSU2tCAqWUzDGmNRkdFAwxhiTnowOCpZTMMaY9NSKoGCMMSY1GR0UXJZTMMaY\n1GR0ULDiI2OMSU9GBwVjjDHpqRVBwXIKxhiTmowOClZ8ZIwx6akVQcEYY0xqakVQsJyCMcakJqOD\ngsuCgjHGpCbUoCAi14vIJyKyRESeFpH6vnnjRWRzyPsHLCgYY0yqQgsKItICGAoUqGpnIAvo68wr\nAJqEtW9fGsLehTHGZJSwi4+ygQYikg3kAqtFJAu4D7gp5H17LKdgjDGpCS0oqOoq4H5gBbAG+FFV\ni4AhwExVXRPWvl2WUzDGmPSEWXyUB5wFtAGaA/uIyKXAecD4FNYfLCLFIlJcVlZW1TRUaT1jjKmt\nwiw+6gUsV9UyVd0JzABuB9oBpSLyNZArIqVBK6vqJFUtUNWCZs2aVSkBVtFsjDHpCTMorAAKRSRX\nIlfnnsADqnqgqrZW1dbAz6raLsQ0ABYUjDEmVWHWKcwDngcWAIudfU0Ka3/GGGN+vewwN66qo4HR\nSeY3DHP/VnxkjDHpsR7NxhhjPBkdFCynYIwx6akVQcEYY0xqMjoouCynYIwxqcnooGDFR8YYk55a\nERSMMcakplYEBcspGGNMajI6KLgsKBhjTGoyOii4OYWRI0dSVFRUw6kxxpg9X60ICgCvvvpqDabE\nGGP2DhkdFIwxxqQno4OCP6dQUVFRgykxxpi9Q0YHBWOMMenJ6KBg/RSMMSY9tSYoWLNUY4ypnAUF\nY4wxnowOCsYYY9KT0UHB6hSMMSY9tSYoWPGRMcZULtSgICLXi8gnIrJERJ4WkfoiMkVEPhaREhF5\nXkRCfU6zy4KCMcZULrSgICItgKFAgap2BrKAvsD1qnqYqnYBVgBDQkxDWJs2xpiMFHbxUTbQQESy\ngVxgtapuApDIFbsBENotvBUfGWNMekILCqq6CrifSG5gDfCjqhYBiMiTwHdAR2B8WGmISU917MYY\nY/ZqYRYf5QFnAW2A5sA+InIxgKpe5kz7DLggwfqDRaRYRIrLysqqmoYqrWeMMbVVmMVHvYDlqlqm\nqjuBGcBx7kxV3QU8A5wTtLKqTlLVAlUtaNas2a9OjOUUjDGmcmEGhRVAoYjkOvUHPYHPRKQdeHUK\nZwCfh5UAq1Mwxpj0ZIe1YVWdJyLPAwuAcmAhMAl4U0QaAQJ8DFwVVhpi0lMduzHGmL1aaEEBQFVH\nA6NjJh8f5j6NMcZUXUb3aPZTVTZs2MAjjzzC9u3bazo5xhizR8rooBDb+ui5557jww8/pLi4uIZS\nZIwxe7aMDgqJWP2CMcYEy+igkKj1kQUFY4wJltFBwU9VrTObMcZUotYEBWOMMZXL6KCQrPPazp07\nef3119m1a1d1J8sYY/ZYGR0U/PzFR6rKK6+8wlNPPcXbb79dwykzxpg9R0qd10SkM3AoUN+dpqr/\nDCtRu0uynMLWrVsBrM+CMcb4VBoURGQ0cCKRoPAKcCrwHrDHBwW/2KBgLZCMMSZeKsVH5xIZzO47\nZ8jrw4B6oabKGGNMjUglKGxV1Qqg3BnI7nugbbjJ2j1im6C67z/99FPLKRhjTIBUgkKxiDQBHgc+\nIjLq6fxQU7WbJOqXMHfuXNauXZt0GWOMqY0qrVNQ1audl/8QkdeARqpaEm6ywuEPANu2bYubZowx\ntV2lOQWJuFhEblXVr4GNItI1/KT9enbBN8aY9KRSfPQocCxwofP+J2BCaCkyxhhTY1Lpp3CMqh4p\nIgsBVPUHEakbcrpCUVFRUdNJMMaYPVoqOYWdIpIFKICINAP2iqtrbPHRzp07K13GGGNqs1SCwsPA\nf4D9ReRvRDqu3RlqqkJSWTPUoqIiXnzxxWpKjTHG7HkqDQqqOh24CbgLWAOcrarPhZ2wMFRWfDR9\n+nRmzJgBwJYtW5g5c6b1ZzDG1CpJ6xREpA5Qoqqdgc/T3biIXA8MIlL0tBi4DJgCFAA7ifR3uEJV\n48t1QuAPCskCxMSJE5kzZw4ArVu3pkuXLqGnzRhj9gRJcwpOT+aPReS36W5YRFoAQ4ECJ6hkAX2B\n6UBH4PdAAyJBo1r47/rdoBBUp+AGBIh0dHP7NBhjTKZLpfVRPvCJiMwHtjjTVFXPSnH7DURkJ5AL\nrFbVInems82D0kxzymIv+P6g4D5HwV1m1apVgduYM2cOzZo1o0+fPiGl0hhj9hypBIXbfa8F6MYv\nfRYSUtVVInI/sALYChTFBIQc4BLguqD1RWQwMBjgt79NO6PibiPqfVDxkbvMyJEjE26nTp1a89gJ\nY0wtl0pF89vAj8CfgKlERkz9R2XriUgecBbQBmgO7CMiF/sWeRR4R1XfTbDfSapaoKoFzZo1q2x3\nKQkqPkpFdnZKj50wxpi9XsKgICK/E5FbReQz4BHgW0BU9SRVHZ/CtnsBy1W1zKlIngEc52x7NNAM\nuOFXH0EaUq1oTrZeMo8//jivvvpq1LTXX3+dlStXprwvY4ypSclugT8H3gXOUNVS8FoTpWoFUCgi\nuUSKj3oSGXF1ENAb6OlUZIcmWfFRbJ1CMqk2S33vvfcAOPXUU731nnrqKbKzs5kyZUpK2zDGmJqU\nrPjoHOA7YLaIPC4iPYnUKaREVecBzxMZanuxs69JRIqeDgDmisgiEbm1qolPl//ink7/g6oOj+EG\nnvLy8rTX3b59uw3LYYypdgmDgqr+R1UvINJ89C3geuAAEXlMRE5JZeOqOlpVO6pqZ1W9RFW3q2q2\nqh6sqoc7f2N2y5EESJYLSNYkNVZVO7D5h9VYunSp1zEulW0PHjy40tzFkiVLePTRR+0508aY3SaV\niuYtqjpdVU8n0nx0ETA89JTtBrEXfPfOHaLv/iu76Kd7x75161YgOodw5513xg2h8e677zJgwAA2\nbNgQNX3Hjh3AL8VRiRQVFTFv3jy+/PLLtNJnjDGJpNXWUlU3qOpEVe0RVoLCFFSnoKqVXvQrKirY\nuHEj69atS2k/V155JRA8AJ8/AM2dOxeA1atXRy1TVlYW9f7777/n559/9t7v3LmTbdu2edPSLZ4q\nLy9nxowZXvAyxhhXrWqAv2zZMu+1GwhUNSoHEaSiooLrrruOYcOGsWDBAqZOnRq3TFBuw71Y+3Ms\n/kCRlZUFELf/0aNHR72/8cYbGTVqFJ9/Hhlp5LbbbuOKK67w9llZ+mPNmTOHF198ca8c/O/xxx+n\nf//+NZ0MYzJWrQoKfm5QqKioSCmn4HrooYeYPXt23DJBuQJ3mj9g+Ke5neJ27NjBxo0bmT17Nt9/\n/33gttavX89dd93F2rVrvSau7naD0r9mzRr69+8fWLTk1kG4xVQAmzZtYs2aNXHLJrNlyxa+/fZb\n772qplz/8tVXX3nLbtmypZKlf+EvUisqKuKmm25KuOwnn3wSlbsrLy9nxIgRLFy4MOX97U4LFy4M\n/O4ks23bNp5++umoc2VMmDI6KKRS0fzmm29yxRVXJN3OBx98EDfNvTtftWoVw4YNY/369XHLBBXr\nuD/uyZMns2jRIgBefPFFrrvuOqZOncqNN96YNC333ntv3DFUVFQwZcoUxo//pfvIkiVLgF/GcSot\nLfX6ULhBxd9T+7rrrmP48MRVRRUVFRQVFfHjjz9GpWXUqFHe+4kTJzJgwIDA9cvLy73iqpKSEm6/\n/XbeeustVq1axdVXX80777yT9LghkkPymz59OmvXrmXJkiUsWLAgbvl7772XESNGeO83b97M6tWr\n4yrwVZXFixfvthFx165dG9dfBWDcuHGBucxkXnvtNV577TX+7//+b7ekLcinn37qHbuqsnDhQhsd\n2LFz504qKiooLy+vNZ9JrQ0K7kU9tjw/iP9C6Nq+fTszZ85k5MiRrFu3zrvAu6699loWL14ct56b\nC/Df8frvtv1atGgRNy32zhcix/LOO+9QXFzsTXMv+Nu2bWPDhg2MHTuWf//73wC89dZbQPTnU1lu\n6d1332X69OnMmjXLm/b1118DMGbMGG666SavjiToxzNhwgSvrsWtM/nmm2+8MaemTJlCeXk5S5Ys\n4b777ouqQ/npp58AWL58eWDa7rvvPh566CGKioriWmL577DddMXmxN566y3uv/9+L/1+GzZs8C6a\nqsqGDRt48MEHWb9+PaNHjw7smHj//ffz73//m82bNwem11VRUcH3339f6TLucXz22WesWLGCRYsW\n0b9//6jPKFaq9UUlJSXcc889XhCbN28e48aN44033khp/WS2bdvmnbvdobS0lO+++y7t9crLy6uU\njvLycgYNGsTdd9/NwIEDee2119LeRlXs2LGD4uLiatlXkIwOCsn82qi/fft2XnjhBe99/fr1o+Zv\n2rSJ556Lf+xEUNFQw4YNA/dR2d2JW+ziv6Bv3LgR+OWCP2fOHCZOnOjNnzlzpvd67dq1PPbYY7z8\n8svetETBwf0xuvUgfsuWLWPt2rXee/cY3VzA4sWLvTv58vLyqLoUf2CaNWsW9913H0uWLPGa7374\n4YcMGTKE0tLSqH36j8k1ffp0r57En0ubPn16VLFceXk527ZtY9OmTd7nAHitwEpKSpg5cyZvvvkm\no0aN4p577mHAgAHMnDmTl156iUWLFnHDDTfw9ddfe+d4x44d/O///i9btmzxgkFlgfall17ixhtv\nZPXq1Tz55JOUlJTEFRO5n1V5eTl33303t9xyi3cOE/WUX7lyJVdeeWXUaL+J/PDDDwA888wzbNq0\nybt4pnKzBJEL9YIFC9i2bVvUdwAi44kNGTJkt3XcHDt2LDfffHPgvKVLl1JeXs769euZMWNG1O/m\n6quvZsiQIWnVvc2aNYuBAwd624bIzcMrr7wSd5wQ+bxS+bxT8eyzzzJ+/Pgaa1VYawf1+bUdw0pK\nSqLeu8U1lVm1ahX77bdf1LSgQAGRi2ayL3JQUBg2bBjXXHMN06ZN86b5L5D+QPbxxx8D0cVjP//8\nc1yQ2rVrl1c85h9GXEQCg9bWrVupW7cuM2fOZMuWLVFFH5s2bfLucGOPzb9t98LqlsGPHTs2atlE\nP8D//ve/nH/++VGfaVFREUuWLPEqqMvLy70iw2nTpnmfX0lJCaeffjp///vfA7f9xhtvcPzxxwem\n+d133+WNN94gKyvL+0xKS0tp164djRo1ilrnnXfeoXv37nz00UcALFq0iLfeesvLwZ188smUlpZy\nww03RAUFlzsW19q1a/nd734HRC7uw4YN45JLLvHWWbx4Mccdd1zUvn/++WcvEO/YsSMqKM+ePZt9\n990X+KXeac6cORx44IG0bduWFStW8Nlnn9GqVSs6duwI/HJeOnbsyOeffx71vXO/M++88453gfV7\n6aWXyMnJoX379uTl5Xn7fv/99/n222/p27cv8+fPZ+nSpVxyySVx6//888/e9+nOO+8kLy8PEWHD\nhg107tyZH374gblz53rH8t133wXmvoP885//jJv23Xff8cwzz/DMM8/w5JNP8vDDD3PooYdyyimn\nMGrUKHbt2kWrVq281n2NGzfmwgsvpEGDBkyaNInDDz+crl27ApHvfp06dQJLM9yc9O7MZaUjo4NC\nKsVHVfXEE09EvU81uzdhwgQ6deqUUlrWrVsX+GNyuV/22PUfe+yxqPf16tVLKW0QuahecMEF3vs1\na9ZE1TW4xRJlZWUJczEjR47kzDPP9IKNPwhOnjyZTz75xEt3om18//33vPrqq96y6RgzZgw9e/aM\nmrZ69WruuuuuuGVff/11Lyi4d4SJbN68mZycnKhp7jlwg4Oqep/RQw89xH777ce9994blcOaOXMm\nhYWFXuBbsWJF1Dbdops5c+Z4+/PXUbhFg5MnT+aYY46hbt26vPvuu+zatYupU6fSr18/b7nNmzfT\nsGFDpkyZQtOmTZkxYwZZWVnsu+++cU2fN2/e7BVnbd26lR9++MHLkXXt2pVPP/3US/PNN9/MoYce\n6q3rtoyrqKigTp06gR0qt27dyscff0xhYSFbt27l+eef9+aJiFffMmnSJAC6d+/OhAkTAKIC686d\nO8nOzuZf//oXc+bM8eqx3FwPRHJ9sb+Dxx9/nMGDB7Ns2TIaN25Mp06dWLduHXXr1qVBgwZcccUV\nnHfeeRx55JFxaY+1atUqFi5cyMKFC9m4caP3G4wdbfm7775jxIgRvP/++7z//vts3ryZo48+miFD\nhtCjRw8KCwtZuHAhF1xwQdz1as2aNahqtT9HPqODQjI1WWkUe6GryjAYfkVFRVHvY3NB6fR4ju1I\n9/7770e937JlC19++WVUhXeszZs389RTT3nvt23bRnZ2NuXl5VHH/sEHH8TlUlzLli2LakKcjmXL\nlqVc9uxPJyS/O1PVuJZSmzZtYtasWd5n7BZJudavX8/AgQM54IADvGl16tThjjvu8O6kg+oy3G3l\n5eXFTfcHmC1btvDWW29F5QDdOrD33nuP9957j2nTpkVV5O/atSsuIEDkvLk5sO3btzN9+nRv3vz5\n82nQoIH3/sUXXwwc0n7Hjh3s3LmTIUOGxM2bNm0ac+fOJT8/P+5GRVX54Ycf+Mtf/uJN8zcS8I8G\nMGjQIE477TQvdx50roM6fi5fvpy77rrLO0eFhYXe9+/www8H4Lnnngss9o3lb2Dx3//+N+FyS5cu\njfr9TZs2zaubePPNNykpKWHdunWUl5dz8cWRQaTdIPDss8+iqpx++umVpmd3yuigsLsjbFBxSVZW\n1q/OdfxalZX/phMUPvzwQzp37swf/vAHIL7Ccv78+cyfPz+t9L3//vspnYugCv2qSqeZq1+iSn/X\nvHnzot6vX7+ef/7zn7jDu8fOd/nLoXft2sU333xTaVoSXWz8rcZKS0ujLt4QX9cQG9gT8RfJffrp\np3HzW7Vq5eUIPv/8c6655pq4ZW677bbAps1Tp071guDWrVsDn2bob8RQmVdeecXLPQRVAAc18oDo\noO2/IYltKLI7jRkTPZKP/7vgNhx54403OOmkk2jRokVUk+kPPvjAgsKeLCh3ccIJJ/Dmm2/u9n3V\nq1dvt41pVFkrGL9du3YxefJkNm7cyIwZM3bboHyp5MyCKvCqm1t0kUiiYOPeeafyeaXaMz4Rf2X0\nI488Ejc/tpVWZceUqi+++KLSZRL1dfH3z6ioqAj8Tr700ktppSc2V7anSvRUx1gbNmwgPz8/atrK\nlSvZtm1bXEOWMMne0Pa2efPmGvRlW7VqFc2bN+e2227j9ttvj5tfXFzMww8/zKJFi+IqhgHOPfdc\ncnNzqzz/iSee4Oyzz+bEE08MZfs2P9z5N998M2vWrGHt2rW8/vrre1z6bP6eP3/ixIn06tUrsENk\nqtsvLS0NbDhx3nnn0aBBAxo3bhzVB8lV2fVv1apVtGjR4iNVLYibmcReERQKCgq0Ku12V61alfQx\nm7/WVVddRefOnQOz0X6DBw+Ou1vr169fXHm2X+PGjXdrccru0Lx585SbKlY3EeGSSy4JbDUCkXM1\ne/Zsr/ijffv2lJeXs3z5cgYOHEj37t3jhs/o1KmTVwfSsGHDtHJc6XrggQe44YbIM6duueUWZsyY\nUaVKdtell17KJ5984rVwch1xxBFp9egO+5wfcMABtG3bNmG9imvcuHHk5eWlNcTJwIEDq9wc9rLL\nLuPJJ5/03nfr1i2wnmLatGl89NFHPPzwwylv+29/+xsTJkzwPtfHHnuMq666Km65++67jxdeeIHT\nTjuNVq1aVeEoQETSDgoZ3U8h7Fr7rKysuEd1HnHEEXHLBWX9/BWPQYLWOfDAA2nSpEmaqdx9Um3O\n59e5c2fq1q2b8vKxrXsgctyJnHvuuV5v8J49eyZsrdW0aVMuv/xyLy3+cnm3bLpv375R61x99dXe\n66AK393J37omqBlrt27dot4fcsgh/P73v0+4vaZNmzJ06FCuvvpqzjrrLCDyOV533XWcccYZQOR8\nTp06lXvuuSfhds4999xK096nTx/vtf/iVdl3HCK9zivbx/jx473P/4477kjY63/gwIFR5/8Pf/gD\nffr0qfSmLTs7m0cffZTLLrvMa2rrfk9yc3N54IEHuOyyy+LWO+WUyBME/BXwQdwKZNdBBx0UNb5Z\n0PqXXnop+++/P1dddVWVA0JVZXRQCFtOTk5cUGjTpk3gcrEqe+5zUCexSy65hDFjxng/8ljdu3cP\nbPWRTMeOHTn44IMD55188slRzVP32Wcf77V7V1uZE044Ia1xe/z9C8455xwmT56csMMSQIcOHaKa\nEHbv3j3u4g6Rc9C0aVPvjszfaMA9rl69ekWt4z/eQw45pNK0BzX97dChQ+CyI0aM4NRTT+Wxxx5j\nzJgxXnv99u3bBy4f+x0qLy/36ibcJr9jxozxLmZum/9jjjmGPn36MGXKFO655x5EhG7dulG/fn2u\nvfZaRIQDDzwwar8HHXQQELkAx6andevW3H333VHT/Bf/xo0be8d97733Mnr0aA477LCoO/b9998/\nan3/DdBJJ50U1dT1kUceiQqQLVu2pHPnzvTp0yfqt3bmmWfSvXt3unfvTu/evenduzciwllnnUXX\nrl2jgkXs972wsJB99tmHE0880UtLdnY2EyZM4IEHHmC//faL+73WrVuXiy66yFsW4De/+Q133HFH\n1HLjx4/n5JNPjrtB9R+z2xx33Lhx3jQ3ONWEjA4KYecU6tSpE3fx9t+BJktH0HJ+QYEkNzeXxo0b\nR92Z+RUUFAQ2E0wmPz+fv/71r/Tv3z/ux5qfn89pp53m3aX6jyNRjsW9GB166KFMmDDB66xTmaDc\nRI8ePcjJyfHmBeWegi7Ep556alQnKvjlh+v/cbvbc89hTk4OBQW/5LT9x+ufHsstovztb39Lhw4d\nqFu3Lvvttx8NGjSI6uPRvXt3Ro4cyahRo+jYsSN9+/YlNzfXuxMcNWqU19TRX1R17LHHcthhhwG/\nfL7+AQxHjRrFtGnTaNWqFWPHjqVHjx40b9488PghkmOYOHFiVKWmv1jm1ltvZcKECbRs2TKuI+MV\nV1xBfn4+t912m/e5+c/LxRdfTL9+/bzg27ZtW2644Yao/d93332cfPLJDBs2LG79AQMGcPPNN9Ot\nWzcKCgr4zW9+E/iZn3XWWd5YWI0aNYr6TfTr18/rq+Hq3r27F+z8x3rZZZd5F3f4Jaj99NNPNGzY\nMOou/sYbb/QCiv/367Y869+/PwcddBAXXnghAwYM4IknnvAC2v333x93DK1ataJly5ZA5LuWl5fH\nsGHD6N27d5Vy5btLrWx9lKgnbiL9+vVjyZIlXmXRb3/7W1asWEFFRQUiwsiRI7nzzju9bccKapGS\nbk6hoKCAtm3bJj2GnJycwGDiGjdunNcOvFGjRmzatIkGDRqQlZVFjx49vP4O1113HWVlZZx44olA\npCgCoofjaNGiBQ888ADPPfdcVHnw0KFD+fDDDzn33HMrDXyuXr16ceKJJ0a1/YZfPiP3mNq1a0fn\nzp1p2bIlDz74IOXl5Wm3ynDTJCIMGjSIWbNmRd1xFhYWUlxc7HWIatiwIV26dPEC07HHHktpaWlU\nO3//cbpYzLD3AAAUo0lEQVRt64O+B8k6Isa64IILyM7O5sADD+TMM88kNzeXRx99lNWrV3PHHXew\nY8cOzjzzTGbOnBlVtHXggQdWaWjxli1bMm7cOESEevXqecG2Tp06jBgxwuv45wabNm3a8Oc//5nH\nH388KqdwwAEH0Lt378B9jB8/3uuT4y9Syc7OplWrVlHrXX755SmlOzb4J3PIIYewcuXKqByg+x13\nFRQU8Pbbb3sXa7/OnTvTqVMn7r77bv70pz950/Py8qLS8cc//jFu3aZNmzJ48OCoprixTVUBunTp\nQpcuXVI+pjDUyqCQk5OTVpFG7969qaiooKSkhDZt2tC4cWMvKEAkq3zTTTdRt27duDF6ILg5ZqIL\npnuxjw0KsU3VsrKy4jq91a1bN2mwycvL4+GHH2bu3LmsX7+eoqKiqDuhJk2asGbNGvLz86OKZNwK\nb//FJysrK264DojcNZ1//vkJ0xCrSZMmXHLJJd6YTX5uMKhXrx6jR48mPz/fS697/Kn21g4KzE2b\nNo0qHgM4+uijueuuu7zP2+1RC5EGA0ceeaR3hzp8+HCaN2/udbpr3bp1YDA46aST4uoIKtOyZcuo\njlwQKc5yt7N9+3bOOecczjnnnLS2m0yiepOOHTsGXsC6devGMcccQ05ODr179/bumBNJ9hkEbX93\n69u3LyeccAJNmzalR48egZ0ju3TpwmOPPUZubm7gNkQkqlNdOmKHSNlThVp8JCLXi8gnIrJERJ4W\nkfoiMkRESkVERaRpyPsPnB5UXl8Z9yLesmVLb7v+i32nTp1o37594MXendapUyfvIpbo4h1UzAHx\nQ1nEHsMZZ5zBwQcfHLVeUAVV48aN+eMf/+iVFbdr186bd/XVV3PppZfGBaAzzzyTo446KmocHfcz\niP2Mk1Uq33LLLd5rd3whNzg3atSILl26RNVV+I+xbdu2UQHMLZZKNafgFgvEpj9I8+bNA+cff/zx\nNGjQwDuf9evXp3HjxuTn53PLLbcE1mVApEgkUZFfutwLa3U/X6FVq1aB3yc3cPfr14+TTz65WtOU\nruzsbC8H0L9//4SBKFFAqC1CyymISAtgKHCoqm4VkWeBvsD7wMvAW2HtuzLJgsLhhx8e2LvRzfY1\nbNiQXr16sXr16sDKIP/F5I477vDKlvv06UOvXr0YPnw427dvJzs7m1GjRrFx48aoDkjuxT82KMSO\n5ZOdnR3Vuc1twZGbm8uQIUPo0KEDjRo1SliU0LVrV9q2besVDUHkghO7H4iUYw8dOjRwO65u3bpR\nXl4eWHzl5n722WcfLr/8cioqKrwfnntxq1OnjlfGnIoBAwZw9tlnJw0KN9xwA99++y09e/aMa+Hx\na+qb3O+P/wbAH1zDVL9+fTp16uS1fDFmdwu7+CgbaCAiO4FcYLWqLoTwK4GT7SNZUOjYsWNgUHAr\n9Q444ABatWqVcOwff+4hJyfHu/i5LYbci31WVhbt27ePK1oaPnw47733XlRvzXbt2kVdvGOPIfZC\nfPTRRyc8Pr/Ybabiqquuimo/76bjkEMOiWs26XKDQr169bxl3ON2h9NIV3Z2dqXpP+yww7wKWpdb\nJt69e/cq7Rd+CQa7q7d3OkQk6dPmjPm1QgsKqrpKRO4HVgBbgSJVLapktWqRLCgkKlc9/PDDmTt3\nbqWVQP4mlcnqEvwVnn4dOnSgQ4cOUcM3BzUZbdasGZs2beLaa6+NqoAOW2FhIYWFhd77888/n5yc\nHI455piE69SpU4eKioqooiURYdKkSYE5i6ZNm/7qoSAS2XfffdOqnAyS6NnaxmSCMIuP8oCzgDbA\nRuA5EblYVf83xfUHA4OBtJtZViZZZWyiVkmFhYUcc8wxleZwKgsK7gUl6C7T38mmZcuWlJSU0L17\n98CK26FDh1JSUpK0qWR1SFZE5crPz+fbb7+Nq29IVEk8duzYpE8Vq2lu/USqrauM2ZuEWXzUC1iu\nqmUAIjIDOA5IKSio6iRgEkSGuahKAiorPurcuXPcw3GSNVVNpcirsqCQl5fH2rVrA7flb9N/zjnn\ncOSRRyYsq27SpElKRSC33HILY8eOrdGe0DfeeCOlpaUp92zOzc3doyv7Bg0axNy5cwM7Khqztwsz\nKKwACkUkl0jxUU+gWh88mugi7uYUgppU/tqxoPzPSI7tQASRFj7FxcVJh26ASODaHZWX7dq1222P\nQ6yqxo0bc9RRR9VoGnanhg0b7vEtbYypqjDrFOaJyPPAAqAcWAhMEpGhwE3AgUCJiLyiqoPCSkeQ\n2HJ9v18bFNzWNBdffHFgUGrcuHFcC59bb7014XOad4fKOsoZY4wr1KuFqo4GRsdMftj5C11lxUdB\nF0tVpU2bNnFj0qfKLT5K1rM4VqKxh4wxprrVypoyN4cQ1AqpWbNmDB8+nAcffLBK23aLj9IZGdQY\nY/YUtbJcIajzEUQGFnN7+lb1SUd9+/YlJycnpYd/G2PMniajg0Ki4iN3emxOYXeMW56Xl8egQdVa\nRWKMMbtNRgeFRNygEFunEBsk/v73v//qimdjjNmbZHRQqKxfQWzxUez7qgwDYYwxe7NaWdHs3v3H\n5gyqYzwmY4zZk9W6oOAf98ZffBQ7dr0xxtRGtS4o+PlzBkcccUQNpsQYY/YMGR0UEhUHucVH1tPX\nGGOiZXRQSMSCgjHGBKvVQcEqlo0xJlpGB4XKLvqWUzDGmGi18qrob5Lap08f66BmjDGOjA4KlVU0\nZ2Vlec9ONsYYU0uLj9yRTBM9DtIYY2qrjA4KibjPPLDhrY0xJlpGFx/53X333d5w2Lt27QIsp2CM\nMbEyOij4i4/y8/O915ZTMMaYYLWy+MjqFIwxJlioQUFErheRT0RkiYg8LSL1RaSNiMwTkS9F5BkR\nCe12PVFFs+UUjDEmWGhBQURaAEOBAlXtDGQBfYF7gAdVtT3wAzAwrDQk4jZJzcnJqe5dG2PMHi3s\n4qNsoIGIZAO5wBqgB/C8M38acHbIaYgzcuRIzjjjDMspGGNMjNAqmlV1lYjcD6wAtgJFwEfARlUt\ndxZbCbQIKw2Jio9atWq1W57HbIwxmSbM4qM84CygDdAc2Ac4NWDRwDEmRGSwiBSLSHFZWVlYyTTG\nGOMTZvFRL2C5qpap6k5gBnAc0MQpTgI4CFgdtLKqTlLVAlUtaNasWZUSYKOgGmNMesIMCiuAQhHJ\nlcjVuSfwKTAbONdZpj/wYohpMMYYk4bQgoKqziNSobwAWOzsaxJwM3CDiJQC+wFTwkqDMcaY9ITa\no1lVRwOjYyZ/BXQNc78uKz4yxpj01MoezcYYY4JZUDDGGOPJ6KBgxUfGGJOejA4Kxhhj0mNBwRhj\njCejg4IVHxljTHoyOigYY4xJT0YHBcspGGNMejI6KBhjjEmPBQVjjDGejA4KVnxkjDHpsaBgjDHG\nk9FBwRhjTHosKBhjjPFkdFCw4iNjjElPRgcFY4wx6cnooGA5BWOMSY8FBWOMMZ6MDgrGGGPSE1pQ\nEJEOIrLI97dJRP4iIoeJyFwRWSwiL4lIo7DSYIwxJj2hBQVVXaqqh6vq4cBRwM/Af4DJwHBV/b3z\n/saw0mCMMSY91VV81BNYpqrfAB2Ad5zpbwDnhLVTq1Mwxpj0VFdQ6As87bxeApzpvD4PaFlNaTDG\nGFOJ0IOCiNQlEgSecyb9GbhGRD4CfgPsSLDeYBEpFpHisrKysJNpjDGG6skpnAosUNW1AKr6uaqe\noqpHEck9LAtaSVUnqWqBqhY0a9asGpJpjDGmOoLChfxSdISI7O/8rwOMAv5RDWkwxhiTglCDgojk\nAicDM3yTLxSRL4DPgdXAk2GmwRhjTOqyw9y4qv4M7Bcz7SHgoTD3a4wxpmqsR7MxxhiPBQVjjDEe\nCwrGGGM8odYp7AkuuugiDjnkkJpOhjHG7BUyPiiccsopNZ0EY4zZa1jxkTHGGI8FBWOMMR4LCsYY\nYzwWFIwxxngsKBhjjPFYUDDGGOOxoGCMMcZjQcEYY4xHVLWm01ApESkDvqni6k2BdbsxOXsDO+ba\nwY65dvg1x9xKVdN6StleERR+DREpVtWCmk5HdbJjrh3smGuH6j5mKz4yxhjjsaBgjDHGUxuCwqSa\nTkANsGOuHeyYa4dqPeaMr1MwxhiTutqQUzDGGJOijA0KIvJHEVkqIqUiMrym05MKEWkpIrNF5DMR\n+URErnOm7ysib4jIl87/PGe6iMjDzjGWiMiRvm31d5b/UkT6+6YfJSKLnXUeFhFJto9qOu4sEVko\nIi8779uIyDwnLc+ISF1nej3nfakzv7VvGyOc6UtFpLdveuD3INE+qouINBGR50Xkc+d8H5vJ51lE\nrne+00tE5GkRqZ+J51lEnhCR70VkiW9ajZ3XZPtISFUz7g/IApYBbYG6wMfAoTWdrhTSnQ8c6bz+\nDfAFcChwLzDcmT4cuMd5fRrwKiBAITDPmb4v8JXzP895nefMmw8c66zzKnCqMz1wH9V03DcATwEv\nO++fBfo6r/8BXOW8vhr4h/O6L/CM8/pQ5xzXA9o45z4r2fcg0T6q8ZinAYOc13WBJpl6noEWwHKg\nge+zH5CJ5xnoDhwJLPFNq7HzmmgfSY+hOn8I1fXnfGiv+96PAEbUdLqqcBwvAicDS4F8Z1o+sNR5\nPRG40Lf8Umf+hcBE3/SJzrR84HPfdG+5RPuohmM8CJgF9ABedr6864Ds2HMJvA4c67zOdpaT2PPr\nLpfoe5BsH9V0zI2IXCQlZnpGnmciQeFb5yKX7Zzn3pl6noHWRAeFGjuvifaRLP2ZWnzkfgldK51p\new0ny3wEMA84QFXXADj/93cWS3ScyaavDJhOkn2EbRxwE1DhvN8P2Kiq5QFp9I7Lmf+js3y6n0Oy\nfVSHtkAZ8KREis0mi8g+ZOh5VtVVwP3ACmANkfP2EZl/nl01eV7TvhZmalCQgGl7TTMrEWkIvAD8\nRVU3JVs0YJpWYXqNEJHTge9V9SP/5IBFtZJ5e9vnkE2kiOExVT0C2EIky5/I3nZ8UZzy7bOIFPk0\nB/YBTg1YNNPOc2Wq43jSXidTg8JKoKXv/UHA6hpKS1pEJIdIQJiuqjOcyWtFJN+Znw9870xPdJzJ\nph8UMD3ZPsJ0PHCmiHwN/JtIEdI4oImIZAek0TsuZ35jYAPpfw7rkuyjOqwEVqrqPOf980SCRKae\n517AclUtU9WdwAzgODL/PLtq8rymfS3M1KDwIdDeaXlQl0hl1cwaTlOlnJYEU4DPVPUB36yZgNsC\noT+RugZ3+qVOC4NC4Ecn6/g6cIqI5Dl3aacQKUtdA/wkIoXOvi6N2VbQPkKjqiNU9SBVbU3kHL2p\nqhcBs4FzA9LiT+O5zvLqTO/rtFppA7QnUiEX+D1w1km0j9Cp6nfAtyLSwZnUE/iUDD3PRIqNCkUk\n10mPe7wZfZ59avK8JtpHYmFXutTUH5Fa9y+ItEr4a02nJ8U0dyOStSsBFjl/pxEpG50FfOn839dZ\nXoAJzjEuBgp82/ozUOr8XeabXgAscdZ5hF86MAbuoxqP/UR+aX3UlsiPvRR4DqjnTK/vvC915rf1\nrf9X55iW4rTISPY9SLSPajzew4Fi51z/PyKtTDL2PAO3A587afoXkRZEGXeegaeJ1JvsJHKXPrAm\nz2uyfST6sx7NxhhjPJlafGSMMaYKLCgYY4zxWFAwxhjjsaBgjDHGY0HBGGOMx4KCqXEioiLyd9/7\n/xGR23bTtqeKyLmVL/mr93OeREY7nR32vipJx9ci0rQm02D2bhYUzJ5gO9BnT7uYiUhWGosPBK5W\n1ZPCSo8x1cGCgtkTlBN55OD1sTNi7/RFZLPz/0QReVtEnhWRL0TkbhG5SETmO+PNH+zbTC8ReddZ\n7nRn/SwRuU9EPnTGmb/Ct93ZIvIUkc4+sem50Nn+EhG5x5l2K5GOh/8Qkftils8XkXdEZJGzzh+c\n6Y+JSLFEnjFwu2/5r0XkThGZ68w/UkReF5FlInKlL43viMh/RORTEfmHiMT9lkXkYufzWCQiE51j\nznI+0yXOccR95qZ2y658EWOqxQSgRETuTWOdw4BDiIyL8xUwWVW7SuThRNcCf3GWaw2cABwMzBaR\ndkSGCPhRVY8WkXrA+yJS5CzfFeisqsv9OxOR5sA9wFHAD0CRiJytqmNEpAfwP6paHJPGfkSGKPib\nk/PIdab/VVU3ONNmiUgXVS1x5n2rqseKyIPAVCJjRNUHPiHyTAA3jYcC3wCvAX2IjKHkpvUQ4ALg\neFXdKSKPAhc522ihqp2d5Zqk8kGb2sNyCmaPoJHRYP8JDE1jtQ9VdY2qbifSjd+9qC8mEghcz6pq\nhap+SSR4dCQynsylIrKIyPDk+xEZSwdgfmxAcBwNvKWRgd3KgelEHqqSNI3AZU4dye9V9Sdn+vki\nsgBYCHQicoF3ueN0LSbyUJSfVLUM2Oa7iM9X1a9UdReRoRW6xey3J5Hg9aFzjD2JDPnwFdBWRMaL\nyB+BZKPwmlrIcgpmTzIOWAA86ZtWjnPz4gwC5n+c4nbf6wrf+wqiv9uxY7m4wxBfq6qv+2eIyIlE\nhrIOEjQMcVKq+o6IdAf+BPzLKV56F/gf4GhV/UFEphLJCbj8xxF7jO5xBR1TbFqnqeqIuIMQOYzI\nQ26uAc4nMs6OMYDlFMweRFU3EHl84kDf5K+J3PFCZEz+nCps+jwRqePUM7QlMpja68BVEhmqHBH5\nnUQedJPMPOAEEWnqFPtcCLydbAURaUXkmRGPExkB90giT17bAvwoIgcQ/GyBynSVyKigdYgUE70X\nM38WcK6I7O+kY18RaeVU5tdR1ReAW5z0GOOxnILZ0/wdGOJ7/zjwoojMJ3KhS3QXn8xSIhfvA4Ar\nVXWbiEwmUsS0wMmBlAFnJ9uIqq4RkRFEhmMW4BVVrWwo5hOBG0VkJ7AZuFRVl4vIQiLl+18B71fh\nmOYCdwO/B94B/hOT1k9FZBSReo86REbtvAbYSuSJb+4NYVxOwtRuNkqqMXsZp4jrf1T19JpOi8k8\nVnxkjDHGYzkFY4wxHsspGGOM8VhQMMYY47GgYIwxxmNBwRhjjMeCgjHGGI8FBWOMMZ7/D/DCeqFv\ncgrdAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fe4e41cedd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(N_vals, areas, color=\"0.1\", alpha=0.7)\n", "plt.axhline(y=np.mean(areas[100:]), linestyle=\"--\", lw=1., color=\"k\")\n", "plt.ylabel(\"Area\")\n", "plt.xlabel(\"Number of samples\")\n", "#plt.xscale(\"log\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can observe from the figure above, for lower number of sampled points, the estimates of MC integration are quite noisy. However, for larger number of points this value converges to the true estimates. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
mackst/myPyTutorialNotebook
21 类实战(1).ipynb
1
30736
{ "metadata": { "name": "21 \u7c7b\u5b9e\u6218(1)" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "point = Point(2, 3, 4)\n", "point.x # 2\n", "point.y # 3\n", "point.z # 4\n", "\n", "uv = Point(.2, .3)\n", "uv.u # .2\n", "uv.v # .3\n", "point = uv\n", "point.x # .2\n", "point.y # .3\n", "\n", "point * 1.0\n", "point *= 1.0\n", "point + 1.0\n", "point += 1.0\n", "point + uv # Point(2.2, 3.3, 4)\n", "point += uv" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point = Point()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point.x, point.y, point.z" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point = Point.One()" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point.x, point.y, point.z" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " def __getattr__(self, name):\n", " print(\"get: \" + name)\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point = Point(1, 2, 3)\n", "point.u\n", "point.x\n", "point.y\n", "point.z" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " def __getattribute__(self, name):\n", " if name == 'u':\n", " return self.x\n", " elif name == 'v':\n", " return self.y\n", " \n", " return super(Point, self).__getattribute__(name)\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point = Point(.2, .3)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "print(point.x, point.y)\n", "print(point.u, point.v)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point.u = 1" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "print(point.x, point.y)\n", "print(point.u, point.v)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " def __getattribute__(self, name):\n", " if name == 'u':\n", " return self.x\n", " elif name == 'v':\n", " return self.y\n", " \n", " return super(Point, self).__getattribute__(name)\n", " \n", " def __setattr__(self, name, value):\n", " if name == 'u':\n", " self.x = value\n", " elif name == 'v':\n", " self.y = value\n", " \n", " super(Point, self).__setattr__(name, value)\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point = Point(.2, .3)\n", "\n", "print(point.x, point.y)\n", "print(point.u, point.v)\n", "\n", "point.u = 1\n", "point.v = .5\n", "\n", "print(point.x, point.y)\n", "print(point.u, point.v)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " def __getattribute__(self, name):\n", " if name == 'u':\n", " return self.x\n", " elif name == 'v':\n", " return self.y\n", " \n", " return super(Point, self).__getattribute__(name)\n", " \n", " def __setattr__(self, name, value):\n", " if name == 'u':\n", " self.x = value\n", " elif name == 'v':\n", " self.y = value\n", " \n", " super(Point, self).__setattr__(name, value)\n", " \n", " def __mul__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x *= other\n", " self.y *= other\n", " self.z *= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point1 = Point(1, 2, 3)\n", "point1 * 2\n", "print(point1.x, point1.y, point1.z)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " def __getattribute__(self, name):\n", " if name == 'u':\n", " return self.x\n", " elif name == 'v':\n", " return self.y\n", " \n", " return super(Point, self).__getattribute__(name)\n", " \n", " def __setattr__(self, name, value):\n", " if name == 'u':\n", " self.x = value\n", " elif name == 'v':\n", " self.y = value\n", " \n", " super(Point, self).__setattr__(name, value)\n", " \n", " def __mul__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x *= other\n", " self.y *= other\n", " self.z *= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rmul__(self, other):\n", " return self * other\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point1 = Point(1, 2, 3)\n", "point1 *= 2\n", "print(point1.x, point1.y, point1.z)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " def __getattribute__(self, name):\n", " if name == 'u':\n", " return self.x\n", " elif name == 'v':\n", " return self.y\n", " \n", " return super(Point, self).__getattribute__(name)\n", " \n", " def __setattr__(self, name, value):\n", " if name == 'u':\n", " self.x = value\n", " elif name == 'v':\n", " self.y = value\n", " \n", " super(Point, self).__setattr__(name, value)\n", " \n", " def __mul__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x *= other\n", " self.y *= other\n", " self.z *= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rmul__(self, other):\n", " return self * other\n", " \n", " def __div__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x /= other\n", " self.y /= other\n", " self.z /= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rdiv__(self, other):\n", " return self / other\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point1 = Point(8, 8, 8)\n", "point1 = point1 / 2\n", "print(point1.x, point1.y, point1.z)\n", "point1 /= 2\n", "print(point1.x, point1.y, point1.z)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " def __getattribute__(self, name):\n", " if name == 'u':\n", " return self.x\n", " elif name == 'v':\n", " return self.y\n", " \n", " return super(Point, self).__getattribute__(name)\n", " \n", " def __setattr__(self, name, value):\n", " if name == 'u':\n", " self.x = value\n", " elif name == 'v':\n", " self.y = value\n", " \n", " super(Point, self).__setattr__(name, value)\n", " \n", " def __mul__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x *= other\n", " self.y *= other\n", " self.z *= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rmul__(self, other):\n", " return self * other\n", " \n", " def __div__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x /= other\n", " self.y /= other\n", " self.z /= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rdiv__(self, other):\n", " return self / other\n", " \n", " def __add__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x += other\n", " self.y += other\n", " self.z += other\n", " elif isinstance(other, Point):\n", " self.x += other.x\n", " self.y += other.y\n", " self.z += other.z\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __radd__(self, other):\n", " return self + other\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point1 = Point(1, 2, 3)\n", "point1 + 2.\n", "print(point1.x, point1.y, point1.z)\n", "point2 = Point(3, 2, 1)\n", "point1 = point1 + point2\n", "print(point1.x, point1.y, point1.z)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point1 = Point(1, 2, 3)\n", "point1 += 2.\n", "print(point1.x, point1.y, point1.z)\n", "point2 = Point(3, 2, 1)\n", "point1 += point2\n", "print(point1.x, point1.y, point1.z)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " def __getattribute__(self, name):\n", " if name == 'u':\n", " return self.x\n", " elif name == 'v':\n", " return self.y\n", " \n", " return super(Point, self).__getattribute__(name)\n", " \n", " def __setattr__(self, name, value):\n", " if name == 'u':\n", " self.x = value\n", " elif name == 'v':\n", " self.y = value\n", " \n", " super(Point, self).__setattr__(name, value)\n", " \n", " def __mul__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x *= other\n", " self.y *= other\n", " self.z *= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rmul__(self, other):\n", " return self * other\n", " \n", " def __div__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x /= other\n", " self.y /= other\n", " self.z /= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rdiv__(self, other):\n", " return self / other\n", " \n", " def __add__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x += other\n", " self.y += other\n", " self.z += other\n", " elif isinstance(other, Point):\n", " self.x += other.x\n", " self.y += other.y\n", " self.z += other.z\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __radd__(self, other):\n", " return self + other\n", " \n", " def __sub__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x -= other\n", " self.y -= other\n", " self.z -= other\n", " elif isinstance(other, Point):\n", " self.x -= other.x\n", " self.y -= other.y\n", " self.z -= other.z\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rsub__(self, other):\n", " return self - other\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point1 = Point(1, 2, 3)\n", "point1 - 2.\n", "print(point1.x, point1.y, point1.z)\n", "point2 = Point(3, 2, 1)\n", "point1 = point1 - point2\n", "print(point1.x, point1.y, point1.z)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point1 = Point(1, 2, 3)\n", "point1 -= 2.\n", "print(point1.x, point1.y, point1.z)\n", "point2 = Point(3, 2, 1)\n", "point1 -= point2\n", "print(point1.x, point1.y, point1.z)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "print(point1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "str(point)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " def __getattribute__(self, name):\n", " if name == 'u':\n", " return self.x\n", " elif name == 'v':\n", " return self.y\n", " \n", " return super(Point, self).__getattribute__(name)\n", " \n", " def __setattr__(self, name, value):\n", " if name == 'u':\n", " self.x = value\n", " elif name == 'v':\n", " self.y = value\n", " \n", " super(Point, self).__setattr__(name, value)\n", " \n", " def __mul__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x *= other\n", " self.y *= other\n", " self.z *= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rmul__(self, other):\n", " return self * other\n", " \n", " def __div__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x /= other\n", " self.y /= other\n", " self.z /= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rdiv__(self, other):\n", " return self / other\n", " \n", " def __add__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x += other\n", " self.y += other\n", " self.z += other\n", " elif isinstance(other, Point):\n", " self.x += other.x\n", " self.y += other.y\n", " self.z += other.z\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __radd__(self, other):\n", " return self + other\n", " \n", " def __sub__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x -= other\n", " self.y -= other\n", " self.z -= other\n", " elif isinstance(other, Point):\n", " self.x -= other.x\n", " self.y -= other.y\n", " self.z -= other.z\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rsub__(self, other):\n", " return self - other\n", " \n", " def __str__(self):\n", " return \"(%d, %d, %d)\" % (self.x, self.y, self.z)\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point = Point(1, 2, 3)\n", "print(point)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "class Point(object):\n", " '''This is a Point in 2/3D space.\n", " You can use .u ro .v for a uv point'''\n", " \n", " def __init__(self, x=0, y=0, z=0):\n", " self.x = x\n", " self.y = y\n", " self.z = z\n", " \n", " def __getattribute__(self, name):\n", " if name == 'u':\n", " return self.x\n", " elif name == 'v':\n", " return self.y\n", " \n", " return super(Point, self).__getattribute__(name)\n", " \n", " def __setattr__(self, name, value):\n", " if name == 'u':\n", " self.x = value\n", " elif name == 'v':\n", " self.y = value\n", " \n", " super(Point, self).__setattr__(name, value)\n", " \n", " def __mul__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x *= other\n", " self.y *= other\n", " self.z *= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rmul__(self, other):\n", " return self * other\n", " \n", " def __div__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x /= other\n", " self.y /= other\n", " self.z /= other\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rdiv__(self, other):\n", " return self / other\n", " \n", " def __add__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x += other\n", " self.y += other\n", " self.z += other\n", " elif isinstance(other, Point):\n", " self.x += other.x\n", " self.y += other.y\n", " self.z += other.z\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __radd__(self, other):\n", " return self + other\n", " \n", " def __sub__(self, other):\n", " if isinstance(other, int) or isinstance(other, float):\n", " self.x -= other\n", " self.y -= other\n", " self.z -= other\n", " elif isinstance(other, Point):\n", " self.x -= other.x\n", " self.y -= other.y\n", " self.z -= other.z\n", " else:\n", " raise TypeError(\"must mul with int or float type\")\n", " \n", " return self\n", " \n", " def __rsub__(self, other):\n", " return self - other\n", " \n", " def __str__(self):\n", " return \"(%d, %d, %d)\" % (self.x, self.y, self.z)\n", " \n", " def __repr__(self):\n", " return \"Point(%d, %d, %d)\" % (self.x, self.y, self.z)\n", " \n", " @staticmethod\n", " def One():\n", " return Point(1, 1, 1)" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "point = Point(1, 2, 3)\n", "print(point)\n", "point" ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "# -------------------------------------------------------------------------------- \n", "# Copyright (c) 2013 - 2014 Mack Stone. All rights reserved. \n", "# \n", "# Permission is hereby granted, free of charge, to any person obtaining a copy \n", "# of this software and associated documentation files (the \"Software\"), to deal \n", "# in the Software without restriction, including without limitation the rights \n", "# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell \n", "# copies of the Software, and to permit persons to whom the Software is \n", "# furnished to do so, subject to the following conditions: \n", "# \n", "# The above copyright notice and this permission notice shall be included in \n", "# all copies or substantial portions of the Software. \n", "# \n", "# THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR \n", "# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, \n", "# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE \n", "# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER \n", "# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, \n", "# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN \n", "# THE SOFTWARE. \n", "# -------------------------------------------------------------------------------- " ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\u89c6\u9891\u4e0b\u8f7d\u5730\u5740\n", "\n", "http://schi.iteye.com/blog/1938511\n", "\n", "Notebook\u4e0b\u8f7d\u5730\u5740\n", "\n", "https://github.com/mackst/myPyTutorialNotebook" ] } ], "metadata": {} } ] }
mit
Neuroglycerin/neukrill-net-work
notebooks/Checking resumed 40aug and 16aug models.ipynb
1
981797
{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using gpu device 2: Tesla K40c\n", ":0: FutureWarning: IPython widgets are experimental and may change in the future.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Welcome to the HoloViews IPython extension! (http://ioam.github.io/holoviews/)\n", "Available magics: %compositor, %opts, %params, %view, %%labels, %%opts, %%view\n" ] }, { "data": { "text/plain": [ "<matplotlib.figure.Figure at 0x7fc692f8d910>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "<matplotlib.figure.Figure at 0x7fc692fac2d0>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "<matplotlib.figure.Figure at 0x7fc692fac0d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pylearn2.utils\n", "import pylearn2.config\n", "import theano\n", "import neukrill_net.dense_dataset\n", "import neukrill_net.utils\n", "import numpy as np\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import holoviews as hl\n", "%load_ext holoviews.ipython\n", "import sklearn.metrics" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "m = pylearn2.utils.serial.load(\n", " \"/disk/scratch/neuroglycerin/models/resume_40aug.pkl\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<center><img src='' style='max-width:100%'/><center/>" ], "text/plain": [ "Curve.Valid_y_nll (y)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import neukrill_net.plotting as pl\n", "pl.monitor_channels(m, [\"valid_y_nll\"], x_axis = \"epoch\")" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "m = pylearn2.utils.serial.load(\n", " \"/disk/scratch/neuroglycerin/models/resume_40aug_recent.pkl\")" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<center><img src='' style='max-width:100%'/><center/>" ], "text/plain": [ " Valid_y_nll\n", " I : Curve.Valid_y_nll (y)\n", " Train_y_nll\n", " I : Curve.Train_y_nll (y)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import neukrill_net.plotting as pl\n", "pl.monitor_channels(m, [\"valid_y_nll\"], x_axis = \"epoch\") + pl.monitor_channels(m, [\"train_y_nll\"], x_axis = \"epoch\")" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "m = pylearn2.utils.serial.load(\n", " \"/disk/scratch/neuroglycerin/models/resume_16aug.pkl\")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<center><img src='' style='max-width:100%'/><center/>" ], "text/plain": [ "Curve.Valid_y_nll (y)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import neukrill_net.plotting as pl\n", "pl.monitor_channels(m, [\"valid_y_nll\"], x_axis = \"epoch\")" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "m = pylearn2.utils.serial.load(\n", " \"/disk/scratch/neuroglycerin/models/resume_16aug_recent.pkl\")" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<center><img src='' style='max-width:100%'/><center/>" ], "text/plain": [ " Valid_y_nll\n", " I : Curve.Valid_y_nll (y)\n", " Train_y_nll\n", " I : Curve.Train_y_nll (y)" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import neukrill_net.plotting as pl\n", "pl.monitor_channels(m, [\"valid_y_nll\"], x_axis = \"epoch\") + pl.monitor_channels(m, [\"train_y_nll\"], x_axis = \"epoch\")" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def make_curves(model, *args):\n", " curves = None\n", " for c in args:\n", " channel = m.monitor.channels[c]\n", " c = c[0].upper() + c[1:]\n", " if not curves:\n", " curves = hl.Curve(zip(channel.example_record,channel.val_record),group=c)\n", " else:\n", " curves += hl.Curve(zip(channel.example_record,channel.val_record),group=c)\n", " return curves" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "text/html": [ "<center><img src='' style='max-width:100%'/><center/>" ], "text/plain": [ " Mean_update_h1_W_kernel_norm_max \n", " I : Curve.Mean_update_h1_W_kernel_norm_max (y)\n", " Mean_update_h1_W_kernel_norm_mean \n", " I : Curve.Mean_update_h1_W_kernel_norm_mean (y)\n", " Mean_update_h1_W_kernel_norm_min \n", " I : Curve.Mean_update_h1_W_kernel_norm_min (y)\n", " Mean_update_h1_b_norm_max \n", " I : Curve.Mean_update_h1_b_norm_max (y)\n", " Mean_update_h1_b_norm_mean \n", " I : Curve.Mean_update_h1_b_norm_mean (y)\n", " Mean_update_h1_b_norm_min \n", " I : Curve.Mean_update_h1_b_norm_min (y)\n", " Mean_update_h2_W_kernel_norm_max \n", " I : Curve.Mean_update_h2_W_kernel_norm_max (y)\n", " Mean_update_h2_W_kernel_norm_mean \n", " I : Curve.Mean_update_h2_W_kernel_norm_mean (y)\n", " Mean_update_h2_W_kernel_norm_min \n", " I : Curve.Mean_update_h2_W_kernel_norm_min (y)\n", " Mean_update_h2_b_norm_max \n", " I : Curve.Mean_update_h2_b_norm_max (y)\n", " Mean_update_h2_b_norm_mean \n", " I : Curve.Mean_update_h2_b_norm_mean (y)\n", " Mean_update_h2_b_norm_min \n", " I : Curve.Mean_update_h2_b_norm_min (y)\n", " Mean_update_h3_W_kernel_norm_max \n", " I : Curve.Mean_update_h3_W_kernel_norm_max (y)\n", " Mean_update_h3_W_kernel_norm_mean \n", " I : Curve.Mean_update_h3_W_kernel_norm_mean (y)\n", " Mean_update_h3_W_kernel_norm_min \n", " I : Curve.Mean_update_h3_W_kernel_norm_min (y)\n", " Mean_update_h3_b_norm_max \n", " I : Curve.Mean_update_h3_b_norm_max (y)\n", " Mean_update_h3_b_norm_mean \n", " I : Curve.Mean_update_h3_b_norm_mean (y)\n", " Mean_update_h3_b_norm_min \n", " I : Curve.Mean_update_h3_b_norm_min (y)\n", " Mean_update_h4_W_kernel_norm_max \n", " I : Curve.Mean_update_h4_W_kernel_norm_max (y)\n", " Mean_update_h4_W_kernel_norm_mean \n", " I : Curve.Mean_update_h4_W_kernel_norm_mean (y)\n", " Mean_update_h4_W_kernel_norm_min \n", " I : Curve.Mean_update_h4_W_kernel_norm_min (y)\n", " Mean_update_h4_b_norm_max \n", " I : Curve.Mean_update_h4_b_norm_max (y)\n", " Mean_update_h4_b_norm_mean \n", " I : Curve.Mean_update_h4_b_norm_mean (y)\n", " Mean_update_h4_b_norm_min \n", " I : Curve.Mean_update_h4_b_norm_min (y)\n", " Mean_update_h5_W_kernel_norm_max \n", " I : Curve.Mean_update_h5_W_kernel_norm_max (y)\n", " Mean_update_h5_W_kernel_norm_mean \n", " I : Curve.Mean_update_h5_W_kernel_norm_mean (y)\n", " Mean_update_h5_W_kernel_norm_min \n", " I : Curve.Mean_update_h5_W_kernel_norm_min (y)\n", " Mean_update_h5_b_norm_max \n", " I : Curve.Mean_update_h5_b_norm_max (y)\n", " Mean_update_h5_b_norm_mean \n", " I : Curve.Mean_update_h5_b_norm_mean (y)\n", " Mean_update_h5_b_norm_min \n", " I : Curve.Mean_update_h5_b_norm_min (y)\n", " Mean_update_h6_W_col_norm_max \n", " I : Curve.Mean_update_h6_W_col_norm_max (y)\n", " Mean_update_h6_W_col_norm_mean \n", " I : Curve.Mean_update_h6_W_col_norm_mean (y)\n", " Mean_update_h6_W_col_norm_min \n", " I : Curve.Mean_update_h6_W_col_norm_min (y)\n", " Mean_update_h6_W_norm \n", " I : Curve.Mean_update_h6_W_norm (y)\n", " Mean_update_h6_W_row_norm_max \n", " I : Curve.Mean_update_h6_W_row_norm_max (y)\n", " Mean_update_h6_W_row_norm_mean \n", " I : Curve.Mean_update_h6_W_row_norm_mean (y)\n", " Mean_update_h6_W_row_norm_min \n", " I : Curve.Mean_update_h6_W_row_norm_min (y)\n", " Mean_update_h6_b_norm \n", " I : Curve.Mean_update_h6_b_norm (y)\n", " Mean_update_softmax_W_col_norm_max \n", " I : Curve.Mean_update_softmax_W_col_norm_max (y)\n", " Mean_update_softmax_W_col_norm_mean\n", " I : Curve.Mean_update_softmax_W_col_norm_mean (y)\n", " Mean_update_softmax_W_col_norm_min \n", " I : Curve.Mean_update_softmax_W_col_norm_min (y)\n", " Mean_update_softmax_W_norm \n", " I : Curve.Mean_update_softmax_W_norm (y)\n", " Mean_update_softmax_W_row_norm_max \n", " I : Curve.Mean_update_softmax_W_row_norm_max (y)\n", " Mean_update_softmax_W_row_norm_mean\n", " I : Curve.Mean_update_softmax_W_row_norm_mean (y)\n", " Mean_update_softmax_W_row_norm_min \n", " I : Curve.Mean_update_softmax_W_row_norm_min (y)\n", " Mean_update_softmax_b_norm \n", " I : Curve.Mean_update_softmax_b_norm (y)\n", " Train_h1_kernel_norms_mean \n", " I : Curve.Train_h1_kernel_norms_mean (y)\n", " Train_h2_kernel_norms_mean \n", " I : Curve.Train_h2_kernel_norms_mean (y)\n", " Train_h3_kernel_norms_mean \n", " I : Curve.Train_h3_kernel_norms_mean (y)\n", " Train_h4_kernel_norms_mean \n", " I : Curve.Train_h4_kernel_norms_mean (y)\n", " Train_h5_kernel_norms_mean \n", " I : Curve.Train_h5_kernel_norms_mean (y)\n", " Train_h6_col_norms_mean \n", " I : Curve.Train_h6_col_norms_mean (y)\n", " Train_h6_row_norms_mean \n", " I : Curve.Train_h6_row_norms_mean (y)\n", " Train_y_col_norms_mean \n", " I : Curve.Train_y_col_norms_mean (y)\n", " Train_y_row_norms_mean \n", " I : Curve.Train_y_row_norms_mean (y)\n", " Valid_h1_kernel_norms_mean \n", " I : Curve.Valid_h1_kernel_norms_mean (y)\n", " Valid_h2_kernel_norms_mean \n", " I : Curve.Valid_h2_kernel_norms_mean (y)\n", " Valid_h3_kernel_norms_mean \n", " I : Curve.Valid_h3_kernel_norms_mean (y)\n", " Valid_h4_kernel_norms_mean \n", " I : Curve.Valid_h4_kernel_norms_mean (y)\n", " Valid_h5_kernel_norms_mean \n", " I : Curve.Valid_h5_kernel_norms_mean (y)\n", " Valid_h6_col_norms_mean \n", " I : Curve.Valid_h6_col_norms_mean (y)\n", " Valid_h6_row_norms_mean \n", " I : Curve.Valid_h6_row_norms_mean (y)\n", " Valid_y_col_norms_mean \n", " I : Curve.Valid_y_col_norms_mean (y)\n", " Valid_y_row_norms_mean \n", " I : Curve.Valid_y_row_norms_mean (y)" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "means = [c for c in sorted(m.monitor.channels.keys()) if \"mean\" in c and \"norm\" in c]\n", "make_curves(m,*means)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.8" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
linncy/Tester-Automation
cm22c.ipynb
1
2489
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "No Device Found.\n", "Error\n" ] } ], "source": [ "import visa\n", "rm = visa.ResourceManager()\n", "if len(rm.list_resources())==0:\n", "\tprint('No Device Found.')\n", "else:\n", "\tprint('Device Found:', rm.list_resources())\n", "try:\n", " cm22c = rm.open_resource(\"COM3\")\n", " print(\"COM3 Successfully Connected\")\n", "except:\n", "\tprint('Error')\n", "\texit()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "ename": "NameError", "evalue": "name 'cm22c' is not defined", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-6-0013e21ad0ee>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mstrInsId\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcm22c\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mquery\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"*idn?\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;31mNameError\u001b[0m: name 'cm22c' is not defined" ] } ], "source": [ "strInsId=cm22c.query(\"*idn?\")\n", "strTempInputA=cm22c.query(\"input? a\")\n", "strTemUnitA=cm22c.query(\"input a:units?\")\n", "strLoopOnOff=cm22c.query(\"control?\")\n", "if(cm22c.query(\"input a:units k;:*OPC?\")):\n", "\tprint(\"Input A Unit set to K\")\n", "if(cm22c.query(\"LOOP 1:SETPOINT 273;:*OPC?\")):\n", "\tprint('LOOP 1 Setpoint set to 273')\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
jimthompson5802/kaggle-BNP-Paribas
src/sandbox/test_model_parms_retrieval.ipynb
1
2616
{ "cells": [ { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/Users/jim/Desktop/Kaggle/BNPParibasCardif/src/sandbox\n" ] } ], "source": [ "import pandas as pd\n", "import os\n", "\n", "work_dir = \".\"\n", "print os.getcwd()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "parmdf = pd.read_csv(work_dir+'/py_parms.tsv',header=0,sep='\\t')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>n.tree</th>\n", " <th>max.depth</th>\n", " <th>alpaha</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1000</td>\n", " <td>20</td>\n", " <td>0.5</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " n.tree max.depth alpaha\n", "0 1000 20 0.5" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "parmdf" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'alpaha': {0: 0.5}, 'max.depth': {0: 20}, 'n.tree': {0: 1000}}" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "parm_dict = parmdf.to_dict()\n", "parm_dict" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
jdvelasq/machine-learning
old/ML-00-scraping.ipynb
1
46289
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Aprendizaje de Máquinas -- 0 -- Scraping\n", "Notas de clase sobre aprendizaje de máquinas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Juan David Velásquez Henao** \n", "[email protected] \n", "Universidad Nacional de Colombia, Sede Medellín \n", "Facultad de Minas \n", "Medellín, Colombia \n", "\n", "[Licencia](https://github.com/jdvelasq/machine-learning/blob/master/LICENCIA.txt) \n", "[Readme](https://github.com/jdvelasq/machine-learning/blob/master/Readme.md)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Software utilizado**\n", "\n", "> Este es un documento interactivo escrito como un notebook de [Jupyter](http://jupyter.org), en el cual se presenta un tutorial sobre la extracción, transformación, visualización y carga de datos usando **Python** en el contexto de la ciencia de los datos. Los notebooks de Jupyter permiten incoporar simultáneamente código, texto, gráficos y ecuaciones. El código presentado en este notebook puede ejecutarse en los sistemas operativos Linux y OS X.\n", "\n", "> Haga click [aquí](https://github.com/jdvelasq/guias-de-instalacion) para obtener instrucciones detalladas sobre como instalar Jupyter en Windows y Mac OS X.\n", "\n", "> Haga clic [aquí](http://nbviewer.jupyter.org/github/jdvelasq/ETVL-IPython/blob/master/ETVL-IPy-1-uso-interactivo.ipynb) para ver la última versión de este documento en nbviewer.\n", "\n", "> Descargue la última versión de este documento a su disco duro; luego, carguelo y ejecutelo en línea en [Try Jupyter!](https://try.jupyter.org)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Contenido" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Bibliografía**.\n", "\n", "> [The Python Tutorial](https://docs.python.org/3/tutorial/index.html) by Python Software Fundation\n", "\n", "> [IPython in deep](https://github.com/ipython/ipython-in-depth/blob/master/examples/Index.ipynb) at GitHub\n", "\n", "> [IPython wiki](https://github.com/ipython/ipython/wiki) at GitHub" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Web Scraping" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ejemplo 1" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# importa las librerias\n", "import urllib.request\n", "import urllib.parse\n", "# import urllib2" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "b'<!doctype html><html itemscope=\"\" itemtype=\"http://schema.org/WebPage\" lang=\"es-419\"><head><meta content=\"text/html; charset=UTF-8\" http-equiv=\"Content-Type\"><meta content=\"/images/branding/googleg/1x'\n" ] } ], "source": [ "google = urllib.request.urlopen('http://google.com') \n", "google = google.read()\n", "print(google[:200])" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "b'<!doctype html><html itemscope=\"\" itemtype=\"http://schema.org/WebPage\" lang=\"es-419\"><head><meta content=\"text/html; charset=UTF-8\" http-equiv=\"Content-Type\"><meta content=\"/images/branding/googleg/1x/googleg_standard_color_128dp.png\" itemprop=\"image\"><title>Google</title><script>(function(){window.google={kEI:\\'xkK4WJSRG8yymwGYzZ24Dw\\',kEXPI:\\'18167,1351828,1351903,1352240,1352623,1352995,3700284,37'\n" ] } ], "source": [ "url = 'http://google.com?q='\n", "url_with_query = url + urllib.parse.quote('python web scraping')\n", "web_search = urllib.request.urlopen(url_with_query)\n", "web_search = web_search.read() \n", "print(web_search[:400])" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "200\n", "b'<!doctype html><html itemscope=\"\" itemtype=\"http://schema.org/WebPage\" lang=\"es-419\"><head><meta content=\"text/html; charset=UTF-8\" http-equiv=\"Content-Type\"><meta content=\"/images/branding/googleg/1x'\n", "{'Date': 'Thu, 02 Mar 2017 16:06:18 GMT', 'Expires': '-1', 'Cache-Control': 'private, max-age=0', 'Content-Type': 'text/html; charset=ISO-8859-1', 'P3P': 'CP=\"This is not a P3P policy! See https://www.google.com/support/accounts/answer/151657?hl=en for more info.\"', 'Content-Encoding': 'gzip', 'Server': 'gws', 'Content-Length': '4579', 'X-XSS-Protection': '1; mode=block', 'X-Frame-Options': 'SAMEORIGIN', 'Set-Cookie': 'NID=98=s6YBZCZgKy3lIWCYYXCzoa0rxmueIipaGfKsAuvBly3OKk7Sq0ncGjmi7yzZv_uvQGj0zVxvYTUTNFbAitFkjahnfytwxL3T7xW12Kf-W5g0zB8yvKQPUHaeFOkAwMxl; expires=Fri, 01-Sep-2017 16:06:18 GMT; path=/; domain=.google.com.co; HttpOnly'}\n", "[('NID', '98=s6YBZCZgKy3lIWCYYXCzoa0rxmueIipaGfKsAuvBly3OKk7Sq0ncGjmi7yzZv_uvQGj0zVxvYTUTNFbAitFkjahnfytwxL3T7xW12Kf-W5g0zB8yvKQPUHaeFOkAwMxl')]\n" ] } ], "source": [ "import requests\n", "google = requests.get('http://google.com') \n", "print(google.status_code)\n", "print(google.content[:200])\n", "print(google.headers)\n", "print(google.cookies.items())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ejemplo 2" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from urllib.request import urlopen\n", "from bs4 import BeautifulSoup \n", "import requests" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<a href=\"http://www.allitebooks.com/code-generation-with-roslyn/\" rel=\"bookmark\">\n", "<img alt=\"Code Generation with Roslyn\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/03/Code-Generation-with-Roslyn.jpg\" width=\"351\"/> </a>\n", " \n", "<a href=\"http://www.allitebooks.com/code-generation-with-roslyn/\" rel=\"bookmark\">Code Generation with Roslyn</a>\n", " \n", "<a href=\"http://www.allitebooks.com/beginning-power-bi-2nd-edition/\" rel=\"bookmark\">\n", "<img alt=\"Beginning Power BI\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/03/Beginning-Power-BI.jpg\" width=\"350\"/> </a>\n", " \n", "<a href=\"http://www.allitebooks.com/beginning-power-bi-2nd-edition/\" rel=\"bookmark\">Beginning Power BI, 2nd Edition</a>\n", " \n", "<a href=\"http://www.allitebooks.com/cisco-lan-switching-configuration-handbook-2nd-edition/\" rel=\"bookmark\">\n", "<img alt=\"Cisco LAN Switching Configuration Handbook, 2nd Edition\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/03/Cisco-LAN-Switching-Configuration-Handbook-2nd-Edition.jpg\" width=\"392\"/> </a>\n", " \n", "<a href=\"http://www.allitebooks.com/cisco-lan-switching-configuration-handbook-2nd-edition/\" rel=\"bookmark\">Cisco LAN Switching Configuration Handbook, 2nd Edition</a>\n", " \n", "<a href=\"http://www.allitebooks.com/data-visualisation-with-r/\" rel=\"bookmark\">\n", "<img alt=\"Data Visualisation with R\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/03/Data-Visualisation-with-R.jpg\" width=\"332\"/> </a>\n", " \n", "<a href=\"http://www.allitebooks.com/data-visualisation-with-r/\" rel=\"bookmark\">Data Visualisation with R</a>\n", " \n", "<a href=\"http://www.allitebooks.com/pro-mongodb-development/\" rel=\"bookmark\">\n", "<img alt=\"Pro MongoDB Development\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/03/Pro-MongoDB-Development.jpg\" width=\"350\"/> </a>\n", " \n", "<a href=\"http://www.allitebooks.com/pro-mongodb-development/\" rel=\"bookmark\">Pro MongoDB Development</a>\n", " \n", "<a href=\"http://www.allitebooks.com/html5-for-flash-developers/\" rel=\"bookmark\">\n", "<img alt=\"HTML5 for Flash Developers\" class=\"attachment-post-thumbnail wp-post-image\" height=\"493\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/02/HTML5-for-Flash-Developers-400x493.jpg\" width=\"400\"/> </a>\n", " \n", "<a href=\"http://www.allitebooks.com/html5-for-flash-developers/\" rel=\"bookmark\">HTML5 for Flash Developers</a>\n", " \n", "<a href=\"http://www.allitebooks.com/microsoft-windows-server-2012-administration-instant-reference/\" rel=\"bookmark\">\n", "<img alt=\"Microsoft Windows Server 2012 Administration Instant Reference\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/02/Microsoft-Windows-Server-2012-Administration-Instant-Reference.jpg\" width=\"332\"/> </a>\n", " \n", "<a href=\"http://www.allitebooks.com/microsoft-windows-server-2012-administration-instant-reference/\" rel=\"bookmark\">Microsoft Windows Server 2012 Administration Instant Reference</a>\n", " \n", "<a href=\"http://www.allitebooks.com/learning-concurrent-programming-in-scala-2nd-edition/\" rel=\"bookmark\">\n", "<img alt=\"Learning Concurrent Programming in Scala, 2nd Edition\" class=\"attachment-post-thumbnail wp-post-image\" height=\"475\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/02/Learning-Concurrent-Programming-in-Scala-2nd-Edition-400x475.jpg\" width=\"400\"/> </a>\n", " \n", "<a href=\"http://www.allitebooks.com/learning-concurrent-programming-in-scala-2nd-edition/\" rel=\"bookmark\">Learning Concurrent Programming in Scala, 2nd Edition</a>\n", " \n", "<a href=\"http://www.allitebooks.com/ebay-commerce-cookbook/\" rel=\"bookmark\">\n", "<img alt=\"eBay Commerce Cookbook\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/02/eBay-Commerce-Cookbook.jpg\" width=\"389\"/> </a>\n", " \n", "<a href=\"http://www.allitebooks.com/ebay-commerce-cookbook/\" rel=\"bookmark\">eBay Commerce Cookbook</a>\n", " \n", "<a href=\"http://www.allitebooks.com/beginning-c-2008-objects/\" rel=\"bookmark\">\n", "<img alt=\"Beginning C 2008 Objects\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/02/Beginning-C-2008-Objects.jpg\" width=\"378\"/> </a>\n", " \n", "<a href=\"http://www.allitebooks.com/beginning-c-2008-objects/\" rel=\"bookmark\">Beginning C# 2008 Objects</a>\n", " \n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/jdvelasq/anaconda/lib/python3.6/site-packages/bs4/__init__.py:181: UserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system (\"lxml\"). This usually isn't a problem, but if you run this code on another system, or in a different virtual environment, it may use a different parser and behave differently.\n", "\n", "The code that caused this warning is on line 193 of the file /Users/jdvelasq/anaconda/lib/python3.6/runpy.py. To get rid of this warning, change code that looks like this:\n", "\n", " BeautifulSoup([your markup])\n", "\n", "to this:\n", "\n", " BeautifulSoup([your markup], \"lxml\")\n", "\n", " markup_type=markup_type))\n" ] } ], "source": [ "html = urlopen(\"http://www.allitebooks.com\") \n", "bsObj = BeautifulSoup(html.read())\n", "titles = bsObj.findAll(\"a\", {'rel':'bookmark'})\n", "for x in titles:\n", " print(x)\n", " print(' ')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<title>All IT eBooks - Free IT eBooks Download</title>\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/jdvelasq/anaconda/lib/python3.6/site-packages/bs4/__init__.py:181: UserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system (\"lxml\"). This usually isn't a problem, but if you run this code on another system, or in a different virtual environment, it may use a different parser and behave differently.\n", "\n", "The code that caused this warning is on line 193 of the file /Users/jdvelasq/anaconda/lib/python3.6/runpy.py. To get rid of this warning, change code that looks like this:\n", "\n", " BeautifulSoup([your markup])\n", "\n", "to this:\n", "\n", " BeautifulSoup([your markup], \"lxml\")\n", "\n", " markup_type=markup_type))\n" ] } ], "source": [ "page = requests.get('http://www.allitebooks.com') \n", "bs = BeautifulSoup(page.content)\n", "print(bs.title)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[<a href=\"/\" title=\"All IT eBooks\">All IT eBooks</a>, <a title=\"All Categories\">Categories</a>, <a href=\"http://www.allitebooks.com/web-development/\">Web Development</a>, <a href=\"http://www.allitebooks.com/web-development/asp-net/\">ASP.NET</a>, <a href=\"http://www.allitebooks.com/web-development/cms/\">CMS</a>, <a href=\"http://www.allitebooks.com/web-development/html-html5-css/\">HTML, HTML5 &amp; CSS</a>, <a href=\"http://www.allitebooks.com/web-development/javascript/\">JavaScript</a>, <a href=\"http://www.allitebooks.com/web-development/jsp/\">JSP</a>, <a href=\"http://www.allitebooks.com/web-development/php/\">PHP</a>, <a href=\"http://www.allitebooks.com/web-development/python/\">Python</a>, <a href=\"http://www.allitebooks.com/web-development/ruby/\">Ruby</a>, <a href=\"http://www.allitebooks.com/web-development/rails/\">Rails</a>, <a href=\"http://www.allitebooks.com/web-development/xml/\">XML</a>, <a href=\"http://www.allitebooks.com/web-development/services-apis/\">Services &amp; APIs</a>, <a href=\"http://www.allitebooks.com/web-development/other-web-development/\">Other</a>, <a href=\"http://www.allitebooks.com/programming/\">Programming</a>, <a href=\"http://www.allitebooks.com/programming/c/\">C &amp; C++</a>, <a href=\"http://www.allitebooks.com/programming/c-programming/\">C#</a>, <a href=\"http://www.allitebooks.com/programming/delphi/\">Delphi</a>, <a href=\"http://www.allitebooks.com/programming/java/\">Java</a>, <a href=\"http://www.allitebooks.com/programming/net/\">.NET</a>, <a href=\"http://www.allitebooks.com/programming/objective-c/\">Objective-C</a>, <a href=\"http://www.allitebooks.com/programming/opencl/\">OpenCL</a>, <a href=\"http://www.allitebooks.com/programming/perl/\">Perl</a>, <a href=\"http://www.allitebooks.com/programming/powershell/\">PowerShell</a>, <a href=\"http://www.allitebooks.com/programming/scala/\">Scala</a>, <a href=\"http://www.allitebooks.com/programming/swift/\">Swift</a>, <a href=\"http://www.allitebooks.com/programming/visual-basic/\">Visual Basic</a>, <a href=\"http://www.allitebooks.com/datebases/\">Datebases</a>, <a href=\"http://www.allitebooks.com/datebases/big-data/\">Big Data</a>, <a href=\"http://www.allitebooks.com/datebases/data-analysis/\">Data Analysis</a>, <a href=\"http://www.allitebooks.com/datebases/mongodb/\">MongoDB</a>, <a href=\"http://www.allitebooks.com/datebases/mysql/\">MySQL</a>, <a href=\"http://www.allitebooks.com/datebases/nosql/\">NoSQL</a>, <a href=\"http://www.allitebooks.com/datebases/postgresql/\">PostgreSQL</a>, <a href=\"http://www.allitebooks.com/datebases/oracle/\">Oracle</a>, <a href=\"http://www.allitebooks.com/datebases/sql/\">SQL</a>, <a href=\"http://www.allitebooks.com/game-programming/\">Game Programming</a>, <a href=\"http://www.allitebooks.com/graphics-design/\">Graphics &amp; Design</a>, <a href=\"http://www.allitebooks.com/graphics-design/3d-max/\">3D MAX</a>, <a href=\"http://www.allitebooks.com/graphics-design/cad/\">CAD</a>, <a href=\"http://www.allitebooks.com/graphics-design/coreldraw/\">Coreldraw</a>, <a href=\"http://www.allitebooks.com/graphics-design/dreamweaver/\">Dreamweaver</a>, <a href=\"http://www.allitebooks.com/graphics-design/flash/\">Flash</a>, <a href=\"http://www.allitebooks.com/graphics-design/illustrator/\">Illustrator</a>, <a href=\"http://www.allitebooks.com/graphics-design/maya/\">Maya</a>, <a href=\"http://www.allitebooks.com/graphics-design/photoshop/\">Photoshop</a>, <a href=\"http://www.allitebooks.com/graphics-design/premiere/\">Premiere</a>, <a href=\"http://www.allitebooks.com/operating-systems/\">Operating Systems</a>, <a href=\"http://www.allitebooks.com/operating-systems/windows/\">Windows</a>, <a href=\"http://www.allitebooks.com/operating-systems/linux-unix/\">Linux &amp; Unix</a>, <a href=\"http://www.allitebooks.com/operating-systems/macintosh/\">Macintosh</a>, <a href=\"http://www.allitebooks.com/operating-systems/android/\">Android</a>, <a href=\"http://www.allitebooks.com/operating-systems/ios/\">iOS</a>, <a href=\"http://www.allitebooks.com/operating-systems/windows-phone/\">Windows Phone</a>, <a href=\"http://www.allitebooks.com/networking-cloud-computing/\">Networking &amp; Cloud Computing</a>, <a href=\"http://www.allitebooks.com/networking-cloud-computing/cloud-computing/\">Cloud Computing</a>, <a href=\"http://www.allitebooks.com/networking-cloud-computing/network-administration/\">Network Administration</a>, <a href=\"http://www.allitebooks.com/networking-cloud-computing/network-security/\">Network Security</a>, <a href=\"http://www.allitebooks.com/networking-cloud-computing/networks-protocols-apis/\">Networks, Protocols &amp; APIs</a>, <a href=\"http://www.allitebooks.com/networking-cloud-computing/wireless-networks/\">Wireless Networks</a>, <a href=\"http://www.allitebooks.com/administration/\">Administration</a>, <a href=\"http://www.allitebooks.com/administration/cloud-virtualization/\">Cloud &amp; Virtualization</a>, <a href=\"http://www.allitebooks.com/administration/infrastructure/\">Infrastructure</a>, <a href=\"http://www.allitebooks.com/administration/mail-servers/\">Mail Servers</a>, <a href=\"http://www.allitebooks.com/administration/microsoft-platform/\">Microsoft Platform</a>, <a href=\"http://www.allitebooks.com/administration/monitoring/\">Monitoring</a>, <a href=\"http://www.allitebooks.com/administration/task-automation/\">Task Automation</a>, <a href=\"http://www.allitebooks.com/administration/web-servers/\">Web Servers</a>, <a href=\"http://www.allitebooks.com/administration/other/\">Other</a>, <a href=\"http://www.allitebooks.com/computers-technology/\">Computers &amp; Technology</a>, <a href=\"http://www.allitebooks.com/computers-technology/computer-science/\">Computer Science</a>, <a href=\"http://www.allitebooks.com/certification/\">Certification</a>, <a href=\"http://www.allitebooks.com/enterprise/\">Enterprise</a>, <a href=\"http://www.allitebooks.com/enterprise/business-applications/\">Business Applications</a>, <a href=\"http://www.allitebooks.com/enterprise/communications/\">Communications</a>, <a href=\"http://www.allitebooks.com/enterprise/erp-crm/\">ERP &amp; CRM</a>, <a href=\"http://www.allitebooks.com/marketing-seo/\">Marketing &amp; SEO</a>, <a href=\"http://www.allitebooks.com/hardware/\">Hardware &amp; DIY</a>, <a href=\"http://www.allitebooks.com/security/\">Security</a>, <a href=\"http://www.allitebooks.com/software/\">Software</a>, <a href=\"http://www.allitebooks.com/software/mac/\">Mac</a>, <a href=\"http://www.allitebooks.com/software/office/\">Office</a>, <a href=\"http://www.allitebooks.com/software/windows-pc/\">Windows &amp; PC</a>, <a href=\"http://www.allitebooks.com/web-development/\">Web Development</a>, <a href=\"http://www.allitebooks.com/programming/\">Programming</a>, <a href=\"http://www.allitebooks.com/datebases/\">Datebases</a>, <a href=\"http://www.allitebooks.com/graphics-design/\">Graphics &amp; Design</a>, <a href=\"http://www.allitebooks.com/operating-systems/\">Operating Systems</a>, <a href=\"http://www.allitebooks.com/networking-cloud-computing/\">Networking &amp; Cloud Computing</a>, <a href=\"http://www.allitebooks.com/administration/\">Administration</a>, <a href=\"http://www.allitebooks.com/certification/\">Certification</a>, <a href=\"http://www.allitebooks.com/computers-technology/\">Computers &amp; Technology</a>, <a href=\"http://www.allitebooks.com/enterprise/\">Enterprise</a>, <a href=\"http://www.allitebooks.com/game-programming/\">Game Programming</a>, <a href=\"http://www.allitebooks.com/hardware/\">Hardware &amp; DIY</a>, <a href=\"http://www.allitebooks.com/marketing-seo/\">Marketing &amp; SEO</a>, <a href=\"http://www.allitebooks.com/security/\">Security</a>, <a href=\"http://www.allitebooks.com/software/\">Software</a>, <a href=\"http://www.allitebooks.com/code-generation-with-roslyn/\" rel=\"bookmark\">\n", "<img alt=\"Code Generation with Roslyn\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/03/Code-Generation-with-Roslyn.jpg\" width=\"351\"/> </a>, <a href=\"http://www.allitebooks.com/code-generation-with-roslyn/\" rel=\"bookmark\">Code Generation with Roslyn</a>, <a href=\"http://www.allitebooks.com/author/nick-harrison/\" rel=\"tag\">Nick Harrison</a>, <a href=\"http://www.allitebooks.com/beginning-power-bi-2nd-edition/\" rel=\"bookmark\">\n", "<img alt=\"Beginning Power BI\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/03/Beginning-Power-BI.jpg\" width=\"350\"/> </a>, <a href=\"http://www.allitebooks.com/beginning-power-bi-2nd-edition/\" rel=\"bookmark\">Beginning Power BI, 2nd Edition</a>, <a href=\"http://www.allitebooks.com/author/dan-clark/\" rel=\"tag\">Dan Clark</a>, <a href=\"http://www.allitebooks.com/cisco-lan-switching-configuration-handbook-2nd-edition/\" rel=\"bookmark\">\n", "<img alt=\"Cisco LAN Switching Configuration Handbook, 2nd Edition\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/03/Cisco-LAN-Switching-Configuration-Handbook-2nd-Edition.jpg\" width=\"392\"/> </a>, <a href=\"http://www.allitebooks.com/cisco-lan-switching-configuration-handbook-2nd-edition/\" rel=\"bookmark\">Cisco LAN Switching Configuration Handbook, 2nd Edition</a>, <a href=\"http://www.allitebooks.com/author/david-hucaby/\" rel=\"tag\">David Hucaby</a>, <a href=\"http://www.allitebooks.com/author/david-jansen/\" rel=\"tag\">David Jansen</a>, <a href=\"http://www.allitebooks.com/author/steve-mcquerry/\" rel=\"tag\">Steve McQuerry</a>, <a href=\"http://www.allitebooks.com/data-visualisation-with-r/\" rel=\"bookmark\">\n", "<img alt=\"Data Visualisation with R\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/03/Data-Visualisation-with-R.jpg\" width=\"332\"/> </a>, <a href=\"http://www.allitebooks.com/data-visualisation-with-r/\" rel=\"bookmark\">Data Visualisation with R</a>, <a href=\"http://www.allitebooks.com/author/thomas-rahlf/\" rel=\"tag\">Thomas Rahlf</a>, <a href=\"http://www.allitebooks.com/pro-mongodb-development/\" rel=\"bookmark\">\n", "<img alt=\"Pro MongoDB Development\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/03/Pro-MongoDB-Development.jpg\" width=\"350\"/> </a>, <a href=\"http://www.allitebooks.com/pro-mongodb-development/\" rel=\"bookmark\">Pro MongoDB Development</a>, <a href=\"http://www.allitebooks.com/author/deepak-vohra/\" rel=\"tag\">Deepak Vohra</a>, <a href=\"http://www.allitebooks.com/html5-for-flash-developers/\" rel=\"bookmark\">\n", "<img alt=\"HTML5 for Flash Developers\" class=\"attachment-post-thumbnail wp-post-image\" height=\"493\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/02/HTML5-for-Flash-Developers-400x493.jpg\" width=\"400\"/> </a>, <a href=\"http://www.allitebooks.com/html5-for-flash-developers/\" rel=\"bookmark\">HTML5 for Flash Developers</a>, <a href=\"http://www.allitebooks.com/author/matt-fisher/\" rel=\"tag\">Matt Fisher</a>, <a href=\"http://www.allitebooks.com/microsoft-windows-server-2012-administration-instant-reference/\" rel=\"bookmark\">\n", "<img alt=\"Microsoft Windows Server 2012 Administration Instant Reference\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/02/Microsoft-Windows-Server-2012-Administration-Instant-Reference.jpg\" width=\"332\"/> </a>, <a href=\"http://www.allitebooks.com/microsoft-windows-server-2012-administration-instant-reference/\" rel=\"bookmark\">Microsoft Windows Server 2012 Administration Instant Reference</a>, <a href=\"http://www.allitebooks.com/author/chris-henley/\" rel=\"tag\">Chris Henley</a>, <a href=\"http://www.allitebooks.com/author/matthew-hester/\" rel=\"tag\">Matthew Hester</a>, <a href=\"http://www.allitebooks.com/learning-concurrent-programming-in-scala-2nd-edition/\" rel=\"bookmark\">\n", "<img alt=\"Learning Concurrent Programming in Scala, 2nd Edition\" class=\"attachment-post-thumbnail wp-post-image\" height=\"475\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/02/Learning-Concurrent-Programming-in-Scala-2nd-Edition-400x475.jpg\" width=\"400\"/> </a>, <a href=\"http://www.allitebooks.com/learning-concurrent-programming-in-scala-2nd-edition/\" rel=\"bookmark\">Learning Concurrent Programming in Scala, 2nd Edition</a>, <a href=\"http://www.allitebooks.com/author/aleksandar-prokopec/\" rel=\"tag\">Aleksandar Prokopec</a>, <a href=\"http://www.allitebooks.com/ebay-commerce-cookbook/\" rel=\"bookmark\">\n", "<img alt=\"eBay Commerce Cookbook\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/02/eBay-Commerce-Cookbook.jpg\" width=\"389\"/> </a>, <a href=\"http://www.allitebooks.com/ebay-commerce-cookbook/\" rel=\"bookmark\">eBay Commerce Cookbook</a>, <a href=\"http://www.allitebooks.com/author/chuck-hudson/\" rel=\"tag\">Chuck Hudson</a>, <a href=\"http://www.allitebooks.com/beginning-c-2008-objects/\" rel=\"bookmark\">\n", "<img alt=\"Beginning C 2008 Objects\" class=\"attachment-post-thumbnail wp-post-image\" height=\"499\" src=\"http://www.allitebooks.com/wp-content/uploads/2017/02/Beginning-C-2008-Objects.jpg\" width=\"378\"/> </a>, <a href=\"http://www.allitebooks.com/beginning-c-2008-objects/\" rel=\"bookmark\">Beginning C# 2008 Objects</a>, <a href=\"http://www.allitebooks.com/author/grant-palmer/\" rel=\"tag\">Grant Palmer</a>, <a href=\"http://www.allitebooks.com/author/william-barker/\" rel=\"tag\">William Barker</a>, <a href=\"http://www.allitebooks.com/page/2/\" title=\"2\">2</a>, <a href=\"http://www.allitebooks.com/page/3/\" title=\"3\">3</a>, <a href=\"http://www.allitebooks.com/page/4/\" title=\"4\">4</a>, <a href=\"http://www.allitebooks.com/page/5/\" title=\"5\">5</a>, <a href=\"http://www.allitebooks.com/page/692/\" title=\"Last Page →\">692</a>]\n" ] } ], "source": [ "print(bs.find_all('a'))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[<p class=\"rteright\"><input name=\"organization_KEY\" type=\"hidden\" value=\"51595\"/> <input name=\"chapter_KEY\" type=\"hidden\" value=\"314\"/> <input name=\"email_trigger_KEYS\" type=\"hidden\" value=\"28321\"/> <input name=\"object\" type=\"hidden\" value=\"supporter\"/> <input name=\"Receive_Email\" type=\"hidden\" value=\"1\"/> <input name=\"link\" type=\"hidden\" value=\"groups\"/> <input name=\"linkKey\" type=\"hidden\" value=\"152258\"/> <input name=\"redirect\" type=\"hidden\" value=\"http://www.enoughproject.org/eloqua/thank-you-signing\"/> <input class=\"salsainput\" id=\"Email_4\" name=\"Email\" placeholder=\"email address\" title=\"enter value\" type=\"text\" value=\"\"/> <input type=\"Submit\" value=\"Sign up\"/></p>, <p>Thank you for your committment to ending genocide and mass atrocities. We will be updating this page shortly with additional actions.</p>, <p style=\"padding:0\"><a href=\"http://www.facebook.com/enoughproj\"><img name=\"Facebook\" src=\"http://www.enoughproject.org/files/icons/facebook.png\" style=\"margin:0 10px\" title=\"Facebook\"/></a><a href=\"http://www.twitter.com/enoughproject\"><img name=\"Twitter\" src=\"http://www.enoughproject.org/files/icons/twitter.png\" style=\"margin:0 10px\" title=\"Twitter\"/></a><a href=\"http://www.youtube.com/EnoughProject\"><img name=\"YouTube\" src=\"http://www.enoughproject.org/files/icons/youtube.png\" style=\"margin:0 10px\" title=\"YouTube\"/></a><a href=\"http://www.flickr.com/photos/enoughproject/\"><img name=\"Flickr\" src=\"http://www.enoughproject.org/files/icons/flickr.png\" style=\"margin:0 10px\" title=\"Flickr\"/></a><a href=\"http://instagram.com/enoughproject\"><img name=\"Instagram\" src=\"http://www.enoughproject.org/files/icons/instagram.png\" style=\"margin:0 10px\" title=\"Instagram\"/></a></p>, <p><strong>Enough Project</strong><br/>\n", "1420 K St. NW, Suite 200, Washington, DC 20005<br/>\n", "Phone: (<span style=\"color: rgb(38, 50, 56); font-family: arial, sans-serif; line-height: 16px;\">202) 580-7690</span></p>]\n" ] } ], "source": [ "print(bs.find_all('p'))" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['\\n', <meta charset=\"utf-8\"/>, '\\n', <title>All IT eBooks - Free IT eBooks Download</title>, '\\n', <link href=\"http://gmpg.org/xfn/11\" rel=\"profile\"/>, '\\n', <link href=\"http://www.allitebooks.com/xmlrpc.php\" rel=\"pingback\"/>, '\\n', <meta content=\"width=device-width, initial-scale=1.0\" name=\"viewport\"/>, '\\n', ' This site is optimized with the Yoast WordPress SEO plugin v2.1.1 - https://yoast.com/wordpress/plugins/seo/ ', '\\n', <meta content=\"Free IT eBooks Download\" name=\"description\"/>, '\\n', <link href=\"http://www.allitebooks.com\" rel=\"canonical\"/>, '\\n', <link href=\"http://www.allitebooks.com/page/2/\" rel=\"next\"/>, '\\n', <script type=\"application/ld+json\">{\"@context\":\"http:\\/\\/schema.org\",\"@type\":\"WebSite\",\"url\":\"http:\\/\\/www.allitebooks.com\\/\",\"name\":\"All IT eBooks\",\"potentialAction\":{\"@type\":\"SearchAction\",\"target\":\"http:\\/\\/www.allitebooks.com\\/?s={search_term}\",\"query-input\":\"required name=search_term\"}}</script>, '\\n', ' / Yoast WordPress SEO plugin. ', '\\n', <link href=\"http://www.allitebooks.com/feed/\" rel=\"alternate\" title=\"All IT eBooks » Feed\" type=\"application/rss+xml\"/>, '\\n', <link href=\"http://www.allitebooks.com/comments/feed/\" rel=\"alternate\" title=\"All IT eBooks » Comments Feed\" type=\"application/rss+xml\"/>, '\\n', <link href=\"http://www.allitebooks.com/wp-content/plugins/wp-to-twitter/css/twitter-feed.css?ver=4.1.1\" id=\"wpt-twitter-feed-css\" media=\"all\" rel=\"stylesheet\" type=\"text/css\"/>, '\\n', <link href=\"http://www.allitebooks.com/wp-content/themes/allitebooks/css/bootstrap.css?ver=4.1.1\" id=\"bootstrap-style-css\" media=\"all\" rel=\"stylesheet\" type=\"text/css\"/>, '\\n', <link href=\"http://www.allitebooks.com/wp-content/themes/allitebooks/css/font-awesome.min.css?ver=4.1.1\" id=\"fontawesome-style-css\" media=\"all\" rel=\"stylesheet\" type=\"text/css\"/>, '\\n', <link href=\"http://www.allitebooks.com/wp-content/themes/allitebooks/style.css?ver=4.1.1\" id=\"classPlus-style-css\" media=\"all\" rel=\"stylesheet\" type=\"text/css\"/>, '\\n', <link href=\"http://www.allitebooks.com/wp-content/themes/allitebooks/css/custom.css.php?ver=4.1.1\" id=\"custom-css-css\" media=\"all\" rel=\"stylesheet\" type=\"text/css\"/>, '\\n', <script src=\"http://www.allitebooks.com/wp-includes/js/jquery/jquery.js?ver=1.11.1\" type=\"text/javascript\"></script>, '\\n', <script src=\"http://www.allitebooks.com/wp-includes/js/jquery/jquery-migrate.min.js?ver=1.2.1\" type=\"text/javascript\"></script>, '\\n', <script src=\"http://www.allitebooks.com/wp-content/themes/allitebooks/js/superfish.js?ver=4.1.1\" type=\"text/javascript\"></script>, '\\n', <script src=\"http://www.allitebooks.com/wp-content/themes/allitebooks/js/bootstrap.min.js?ver=4.1.1\" type=\"text/javascript\"></script>, '\\n', <script src=\"http://www.allitebooks.com/wp-content/themes/allitebooks/js/jquery.autosize.js?ver=4.1.1\" type=\"text/javascript\"></script>, '\\n', <script type=\"text/javascript\">\n", "\twindow._wp_rp_static_base_url = 'https://wprp.zemanta.com/static/';\n", "\twindow._wp_rp_wp_ajax_url = \"http://www.allitebooks.com/wp-admin/admin-ajax.php\";\n", "\twindow._wp_rp_plugin_version = '3.5.4';\n", "\twindow._wp_rp_post_id = '26687';\n", "\twindow._wp_rp_num_rel_posts = '4';\n", "\twindow._wp_rp_thumbnails = true;\n", "\twindow._wp_rp_post_title = 'Code+Generation+with+Roslyn';\n", "\twindow._wp_rp_post_tags = ['.net', 'c+%26amp%3B+c%2B%2B', 'system', 'write', 'busi', 'learn', 'comput', 'code', 'innov', 'gener', 'softwar', 'logic', 'tree', 'tabl', 'data', 'design', 'book'];\n", "\twindow._wp_rp_promoted_content = true;\n", "</script>, '\\n', <script async=\"\" src=\"https://wprp.zemanta.com/static/js/loader.js?version=3.5.4\" type=\"text/javascript\"></script>, '\\n', <link href=\"http://www.allitebooks.com/wp-content/themes/allitebooks/images/favicon.ico\" id=\"site-favicon\" rel=\"shortcut icon\" type=\"image/x-icon\"/>, ' ', ' Mobile Specific Meta ', '\\n', <meta content=\"yes\" name=\"apple-mobile-web-app-capable\"/>, '\\n', <meta content=\"black\" name=\"apple-mobile-web-app-status-bar-style\"/>, '\\n']\n" ] } ], "source": [ "header_children = [c for c in bs.head.children] \n", "print(header_children)" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "ename": "AttributeError", "evalue": "'NoneType' object has no attribute 'descendants'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-31-569213ddd6da>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mnavigation_bar\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mid\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"globalNavigation\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0md\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mnavigation_bar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdescendants\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0md\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAttributeError\u001b[0m: 'NoneType' object has no attribute 'descendants'" ] } ], "source": [ "navigation_bar = bs.find(id=\"globalNavigation\") \n", "for d in navigation_bar.descendants:\n", " print(d)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<ul>\n", "<li id=\"navAbout\"><a href=\"/about\" title=\"About\"><span></span>About</a></li>\n", "<li id=\"navBlog\"><a href=\"/blog\" title=\"Blog\"><span></span>Blog</a></li>\n", "<li id=\"navConflicts\"><a href=\"/conflicts\" title=\"Conflicts\"><span></span>Conflicts</a></li>\n", "<li id=\"navReports\"><a href=\"/reports\" title=\"Reports\"><span></span>Reports</a></li>\n", "<li id=\"navTakeAction\"><a class=\"selected\" href=\"/take_action\" title=\"Take Action\"><span></span>Take Action</a></li>\n", "<!--<li id=\"navShop\"><a href=\"/shop\" title=\"Shop\"><span></span>Shop</a></li>-->\n", "<li id=\"navDonate\"><a href=\"/donate\" title=\"Donate\"><span></span>Donate</a></li>\n", "</ul>\n", "\n", "\n" ] } ], "source": [ "for s in d.previous_siblings:\n", " print(s)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n", "<h2><a href=\"\">Please Check Back Soon For Our Latest Actions!</a></h2> <a href=\"\">Please Check Back Soon For Our Latest Actions!</a> [<p>Thank you for your committment to ending genocide and mass atrocities. We will be updating this page shortly with additional actions.</p>]\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/Users/jdvelasq/anaconda/lib/python3.6/site-packages/bs4/__init__.py:181: UserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system (\"lxml\"). This usually isn't a problem, but if you run this code on another system, or in a different virtual environment, it may use a different parser and behave differently.\n", "\n", "The code that caused this warning is on line 193 of the file /Users/jdvelasq/anaconda/lib/python3.6/runpy.py. To get rid of this warning, change code that looks like this:\n", "\n", " BeautifulSoup([your markup])\n", "\n", "to this:\n", "\n", " BeautifulSoup([your markup], \"lxml\")\n", "\n", " markup_type=markup_type))\n" ] } ], "source": [ "from bs4 import BeautifulSoup \n", "import requests\n", "page = requests.get('http://www.allitebooks.com') \n", "bs = BeautifulSoup(page.content)\n", "ta_divs = bs.find_all(\"div\", class_=\"views-row\")\n", "print(len(ta_divs))\n", "for ta in ta_divs: title = ta.h2\n", "link = ta.a\n", "about = ta.find_all('p') \n", "print(title, link, about)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from lxml import html" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "ename": "ImportError", "evalue": "cssselect does not seem to be installed. See http://packages.python.org/cssselect/", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m/Users/jdvelasq/anaconda/lib/python3.6/site-packages/lxml/cssselect.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 12\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mcssselect\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mexternal_cssselect\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 14\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'cssselect'", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-37-0b427fa23b52>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mpage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mhtml\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mparse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'http://www.enoughproject.org/take_action'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mroot\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetroot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mta_divs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcssselect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'div.views-row'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/Users/jdvelasq/anaconda/lib/python3.6/site-packages/lxml/html/__init__.py\u001b[0m in \u001b[0;36mcssselect\u001b[0;34m(self, expr, translator)\u001b[0m\n\u001b[1;32m 430\u001b[0m \"\"\"\n\u001b[1;32m 431\u001b[0m \u001b[0;31m# Do the import here to make the dependency optional.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 432\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mlxml\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcssselect\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCSSSelector\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 433\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mCSSSelector\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexpr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtranslator\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtranslator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 434\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/jdvelasq/anaconda/lib/python3.6/site-packages/lxml/cssselect.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m raise ImportError(\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0;34m'cssselect does not seem to be installed. '\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m 'See http://packages.python.org/cssselect/')\n\u001b[1;32m 18\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mImportError\u001b[0m: cssselect does not seem to be installed. See http://packages.python.org/cssselect/" ] } ], "source": [ "page = html.parse('http://www.enoughproject.org/take_action')\n", "root = page.getroot()\n", "ta_divs = root.cssselect('div.views-row')" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "ename": "SyntaxError", "evalue": "Missing parentheses in call to 'print' (<ipython-input-38-4cc9c52e6889>, line 1)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"<ipython-input-38-4cc9c52e6889>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m print ta_divs\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m Missing parentheses in call to 'print'\n" ] } ], "source": [ "print ta_divs" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ES-DOC/esdoc-jupyterhub
notebooks/nasa-giss/cmip6/models/giss-e2-1h/aerosol.ipynb
1
84302
{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "source": [ "# ES-DOC CMIP6 Model Properties - Aerosol \n", "**MIP Era**: CMIP6 \n", "**Institute**: NASA-GISS \n", "**Source ID**: GISS-E2-1H \n", "**Topic**: Aerosol \n", "**Sub-Topics**: Transport, Emissions, Concentrations, Optical Radiative Properties, Model. \n", "**Properties**: 69 (37 required) \n", "**Model descriptions**: [Model description details](https://specializations.es-doc.org/cmip6/aerosol?client=jupyter-notebook) \n", "**Initialized From**: -- \n", "\n", "**Notebook Help**: [Goto notebook help page](https://es-doc.org/cmip6-models-documenting-with-ipython) \n", "**Notebook Initialised**: 2018-02-15 16:54:20" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### Document Setup \n", "**IMPORTANT: to be executed each time you run the notebook** " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# DO NOT EDIT ! \n", "from pyesdoc.ipython.model_topic import NotebookOutput \n", "\n", "# DO NOT EDIT ! \n", "DOC = NotebookOutput('cmip6', 'nasa-giss', 'giss-e2-1h', 'aerosol')" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Authors \n", "*Set document authors*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_author(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Contributors \n", "*Specify document contributors* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_contributor(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Publication \n", "*Specify document publication status* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set publication status: \n", "# 0=do not publish, 1=publish. \n", "DOC.set_publication_status(0)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Table of Contents \n", "[1. Key Properties](#1.-Key-Properties) \n", "[2. Key Properties --&gt; Software Properties](#2.-Key-Properties---&gt;-Software-Properties) \n", "[3. Key Properties --&gt; Timestep Framework](#3.-Key-Properties---&gt;-Timestep-Framework) \n", "[4. Key Properties --&gt; Meteorological Forcings](#4.-Key-Properties---&gt;-Meteorological-Forcings) \n", "[5. Key Properties --&gt; Resolution](#5.-Key-Properties---&gt;-Resolution) \n", "[6. Key Properties --&gt; Tuning Applied](#6.-Key-Properties---&gt;-Tuning-Applied) \n", "[7. Transport](#7.-Transport) \n", "[8. Emissions](#8.-Emissions) \n", "[9. Concentrations](#9.-Concentrations) \n", "[10. Optical Radiative Properties](#10.-Optical-Radiative-Properties) \n", "[11. Optical Radiative Properties --&gt; Absorption](#11.-Optical-Radiative-Properties---&gt;-Absorption) \n", "[12. Optical Radiative Properties --&gt; Mixtures](#12.-Optical-Radiative-Properties---&gt;-Mixtures) \n", "[13. Optical Radiative Properties --&gt; Impact Of H2o](#13.-Optical-Radiative-Properties---&gt;-Impact-Of-H2o) \n", "[14. Optical Radiative Properties --&gt; Radiative Scheme](#14.-Optical-Radiative-Properties---&gt;-Radiative-Scheme) \n", "[15. Optical Radiative Properties --&gt; Cloud Interactions](#15.-Optical-Radiative-Properties---&gt;-Cloud-Interactions) \n", "[16. Model](#16.-Model) \n", "\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "# 1. Key Properties \n", "*Key properties of the aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 1.1. Model Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of aerosol model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.model_overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.2. Model Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Name of aerosol model code*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.model_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.3. Scheme Scope\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Atmospheric domains covered by the aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.scheme_scope') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"troposhere\" \n", "# \"stratosphere\" \n", "# \"mesosphere\" \n", "# \"mesosphere\" \n", "# \"whole atmosphere\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.4. Basic Approximations\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Basic approximations made in the aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.basic_approximations') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.5. Prognostic Variables Form\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Prognostic variables in the aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.prognostic_variables_form') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"3D mass/volume ratio for aerosols\" \n", "# \"3D number concenttration for aerosols\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.6. Number Of Tracers\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of tracers in the aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.number_of_tracers') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.7. Family Approach\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Are aerosol calculations generalized into families of species?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.family_approach') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 2. Key Properties --&gt; Software Properties \n", "*Software properties of aerosol code*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 2.1. Repository\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Location of code for this component.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.software_properties.repository') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.2. Code Version\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Code version identifier.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_version') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.3. Code Languages\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Code language(s).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_languages') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 3. Key Properties --&gt; Timestep Framework \n", "*Physical properties of seawater in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 3.1. Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Mathematical method deployed to solve the time evolution of the prognostic variables*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Uses atmospheric chemistry time stepping\" \n", "# \"Specific timestepping (operator splitting)\" \n", "# \"Specific timestepping (integrated)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.2. Split Operator Advection Timestep\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Timestep for aerosol advection (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_advection_timestep') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.3. Split Operator Physical Timestep\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Timestep for aerosol physics (in seconds).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_physical_timestep') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.4. Integrated Timestep\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Timestep for the aerosol model (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_timestep') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.5. Integrated Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Specify the type of timestep scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_scheme_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Explicit\" \n", "# \"Implicit\" \n", "# \"Semi-implicit\" \n", "# \"Semi-analytic\" \n", "# \"Impact solver\" \n", "# \"Back Euler\" \n", "# \"Newton Raphson\" \n", "# \"Rosenbrock\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 4. Key Properties --&gt; Meteorological Forcings \n", "**" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 4.1. Variables 3D\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Three dimensionsal forcing variables, e.g. U, V, W, T, Q, P, conventive mass flux*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_3D') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.2. Variables 2D\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Two dimensionsal forcing variables, e.g. land-sea mask definition*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_2D') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.3. Frequency\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Frequency with which meteological forcings are applied (in seconds).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.frequency') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 5. Key Properties --&gt; Resolution \n", "*Resolution in the aersosol model grid*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 5.1. Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.resolution.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.2. Canonical Horizontal Resolution\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.resolution.canonical_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.3. Number Of Horizontal Gridpoints\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Total number of horizontal (XY) points (or degrees of freedom) on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_horizontal_gridpoints') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.4. Number Of Vertical Levels\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Number of vertical levels resolved on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_vertical_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.5. Is Adaptive Grid\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Default is False. Set true if grid resolution changes during execution.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.resolution.is_adaptive_grid') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 6. Key Properties --&gt; Tuning Applied \n", "*Tuning methodology for aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 6.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *General overview description of tuning: explain and motivate the main targets and metrics retained. &amp;Document the relative weight given to climate performance metrics versus process oriented metrics, &amp;and on the possible conflicts with parameterization level tuning. In particular describe any struggle &amp;with a parameter value that required pushing it to its limits to solve a particular model deficiency.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.2. Global Mean Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List set of metrics of the global mean state used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.global_mean_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.3. Regional Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List of regional metrics of mean state used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.regional_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.4. Trend Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List observed trend metrics used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.trend_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 7. Transport \n", "*Aerosol transport*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 7.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of transport in atmosperic aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.transport.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.2. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method for aerosol transport modeling*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.transport.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Uses Atmospheric chemistry transport scheme\" \n", "# \"Specific transport scheme (eulerian)\" \n", "# \"Specific transport scheme (semi-lagrangian)\" \n", "# \"Specific transport scheme (eulerian and semi-lagrangian)\" \n", "# \"Specific transport scheme (lagrangian)\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.3. Mass Conservation Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Method used to ensure mass conservation.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.transport.mass_conservation_scheme') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Uses Atmospheric chemistry transport scheme\" \n", "# \"Mass adjustment\" \n", "# \"Concentrations positivity\" \n", "# \"Gradients monotonicity\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.4. Convention\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Transport by convention*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.transport.convention') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Uses Atmospheric chemistry transport scheme\" \n", "# \"Convective fluxes connected to tracers\" \n", "# \"Vertical velocities connected to tracers\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 8. Emissions \n", "*Atmospheric aerosol emissions*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 8.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of emissions in atmosperic aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.2. Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Method used to define aerosol species (several methods allowed because the different species may not use the same method).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.method') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Prescribed (climatology)\" \n", "# \"Prescribed CMIP6\" \n", "# \"Prescribed above surface\" \n", "# \"Interactive\" \n", "# \"Interactive above surface\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.3. Sources\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Sources of the aerosol species are taken into account in the emissions scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.sources') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Vegetation\" \n", "# \"Volcanos\" \n", "# \"Bare ground\" \n", "# \"Sea surface\" \n", "# \"Lightning\" \n", "# \"Fires\" \n", "# \"Aircraft\" \n", "# \"Anthropogenic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.4. Prescribed Climatology\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Specify the climatology type for aerosol emissions*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Interannual\" \n", "# \"Annual\" \n", "# \"Monthly\" \n", "# \"Daily\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.5. Prescribed Climatology Emitted Species\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of aerosol species emitted and prescribed via a climatology*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology_emitted_species') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.6. Prescribed Spatially Uniform Emitted Species\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of aerosol species emitted and prescribed as spatially uniform*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.prescribed_spatially_uniform_emitted_species') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.7. Interactive Emitted Species\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of aerosol species emitted and specified via an interactive method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.interactive_emitted_species') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.8. Other Emitted Species\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of aerosol species emitted and specified via an &quot;other method&quot;*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.other_emitted_species') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.9. Other Method Characteristics\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Characteristics of the &quot;other method&quot; used for aerosol emissions*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.other_method_characteristics') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 9. Concentrations \n", "*Atmospheric aerosol concentrations*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 9.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of concentrations in atmosperic aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.concentrations.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.2. Prescribed Lower Boundary\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of species prescribed at the lower boundary.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.concentrations.prescribed_lower_boundary') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.3. Prescribed Upper Boundary\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of species prescribed at the upper boundary.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.concentrations.prescribed_upper_boundary') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.4. Prescribed Fields Mmr\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of species prescribed as mass mixing ratios.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.5. Prescribed Fields Mmr\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of species prescribed as AOD plus CCNs.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 10. Optical Radiative Properties \n", "*Aerosol optical and radiative properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 10.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of optical and radiative properties*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 11. Optical Radiative Properties --&gt; Absorption \n", "*Absortion properties in aerosol scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 11.1. Black Carbon\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Absorption mass coefficient of black carbon at 550nm (if non-absorbing enter 0)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.black_carbon') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.2. Dust\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Absorption mass coefficient of dust at 550nm (if non-absorbing enter 0)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.dust') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.3. Organics\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Absorption mass coefficient of organics at 550nm (if non-absorbing enter 0)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.organics') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 12. Optical Radiative Properties --&gt; Mixtures \n", "**" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 12.1. External\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there external mixing with respect to chemical composition?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.external') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.2. Internal\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there internal mixing with respect to chemical composition?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.internal') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.3. Mixing Rule\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If there is internal mixing with respect to chemical composition then indicate the mixinrg rule*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.mixing_rule') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 13. Optical Radiative Properties --&gt; Impact Of H2o \n", "**" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 13.1. Size\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does H2O impact size?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.size') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.2. Internal Mixture\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does H2O impact internal mixture?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.internal_mixture') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 14. Optical Radiative Properties --&gt; Radiative Scheme \n", "*Radiative scheme for aerosol*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 14.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of radiative scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.2. Shortwave Bands\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of shortwave bands*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.shortwave_bands') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.3. Longwave Bands\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of longwave bands*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.longwave_bands') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 15. Optical Radiative Properties --&gt; Cloud Interactions \n", "*Aerosol-cloud interactions*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 15.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of aerosol-cloud interactions*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.2. Twomey\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the Twomey effect included?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.3. Twomey Minimum Ccn\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If the Twomey effect is included, then what is the minimum CCN number?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey_minimum_ccn') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.4. Drizzle\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does the scheme affect drizzle?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.drizzle') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.5. Cloud Lifetime\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does the scheme affect cloud lifetime?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.cloud_lifetime') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.6. Longwave Bands\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of longwave bands*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.longwave_bands') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 16. Model \n", "*Aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 16.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of atmosperic aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.2. Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Processes included in the Aerosol model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Dry deposition\" \n", "# \"Sedimentation\" \n", "# \"Wet deposition (impaction scavenging)\" \n", "# \"Wet deposition (nucleation scavenging)\" \n", "# \"Coagulation\" \n", "# \"Oxidation (gas phase)\" \n", "# \"Oxidation (in cloud)\" \n", "# \"Condensation\" \n", "# \"Ageing\" \n", "# \"Advection (horizontal)\" \n", "# \"Advection (vertical)\" \n", "# \"Heterogeneous chemistry\" \n", "# \"Nucleation\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.3. Coupling\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Other model components coupled to the Aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.coupling') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Radiation\" \n", "# \"Land surface\" \n", "# \"Heterogeneous chemistry\" \n", "# \"Clouds\" \n", "# \"Ocean\" \n", "# \"Cryosphere\" \n", "# \"Gas phase chemistry\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.4. Gas Phase Precursors\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List of gas phase aerosol precursors.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.gas_phase_precursors') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"DMS\" \n", "# \"SO2\" \n", "# \"Ammonia\" \n", "# \"Iodine\" \n", "# \"Terpene\" \n", "# \"Isoprene\" \n", "# \"VOC\" \n", "# \"NOx\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.5. Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Type(s) of aerosol scheme used by the aerosols model (potentially multiple: some species may be covered by one type of aerosol scheme and other species covered by another type).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.scheme_type') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Bulk\" \n", "# \"Modal\" \n", "# \"Bin\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.6. Bulk Scheme Species\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List of species covered by the bulk scheme.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.bulk_scheme_species') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Sulphate\" \n", "# \"Nitrate\" \n", "# \"Sea salt\" \n", "# \"Dust\" \n", "# \"Ice\" \n", "# \"Organic\" \n", "# \"Black carbon / soot\" \n", "# \"SOA (secondary organic aerosols)\" \n", "# \"POM (particulate organic matter)\" \n", "# \"Polar stratospheric ice\" \n", "# \"NAT (Nitric acid trihydrate)\" \n", "# \"NAD (Nitric acid dihydrate)\" \n", "# \"STS (supercooled ternary solution aerosol particule)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### \u00a92017 [ES-DOC](https://es-doc.org) \n" ], "cell_type": "markdown", "metadata": {} } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.10", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }
gpl-3.0
ES-DOC/esdoc-jupyterhub
notebooks/cnrm-cerfacs/cmip6/models/cnrm-cm6-1/seaice.ipynb
1
99821
{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "source": [ "# ES-DOC CMIP6 Model Properties - Seaice \n", "**MIP Era**: CMIP6 \n", "**Institute**: CNRM-CERFACS \n", "**Source ID**: CNRM-CM6-1 \n", "**Topic**: Seaice \n", "**Sub-Topics**: Dynamics, Thermodynamics, Radiative Processes. \n", "**Properties**: 80 (63 required) \n", "**Model descriptions**: [Model description details](https://specializations.es-doc.org/cmip6/seaice?client=jupyter-notebook) \n", "**Initialized From**: -- \n", "\n", "**Notebook Help**: [Goto notebook help page](https://es-doc.org/cmip6-models-documenting-with-ipython) \n", "**Notebook Initialised**: 2018-02-15 16:53:52" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### Document Setup \n", "**IMPORTANT: to be executed each time you run the notebook** " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# DO NOT EDIT ! \n", "from pyesdoc.ipython.model_topic import NotebookOutput \n", "\n", "# DO NOT EDIT ! \n", "DOC = NotebookOutput('cmip6', 'cnrm-cerfacs', 'cnrm-cm6-1', 'seaice')" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Authors \n", "*Set document authors*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_author(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Contributors \n", "*Specify document contributors* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_contributor(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Publication \n", "*Specify document publication status* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set publication status: \n", "# 0=do not publish, 1=publish. \n", "DOC.set_publication_status(0)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Table of Contents \n", "[1. Key Properties --&gt; Model](#1.-Key-Properties---&gt;-Model) \n", "[2. Key Properties --&gt; Variables](#2.-Key-Properties---&gt;-Variables) \n", "[3. Key Properties --&gt; Seawater Properties](#3.-Key-Properties---&gt;-Seawater-Properties) \n", "[4. Key Properties --&gt; Resolution](#4.-Key-Properties---&gt;-Resolution) \n", "[5. Key Properties --&gt; Tuning Applied](#5.-Key-Properties---&gt;-Tuning-Applied) \n", "[6. Key Properties --&gt; Key Parameter Values](#6.-Key-Properties---&gt;-Key-Parameter-Values) \n", "[7. Key Properties --&gt; Assumptions](#7.-Key-Properties---&gt;-Assumptions) \n", "[8. Key Properties --&gt; Conservation](#8.-Key-Properties---&gt;-Conservation) \n", "[9. Grid --&gt; Discretisation --&gt; Horizontal](#9.-Grid---&gt;-Discretisation---&gt;-Horizontal) \n", "[10. Grid --&gt; Discretisation --&gt; Vertical](#10.-Grid---&gt;-Discretisation---&gt;-Vertical) \n", "[11. Grid --&gt; Seaice Categories](#11.-Grid---&gt;-Seaice-Categories) \n", "[12. Grid --&gt; Snow On Seaice](#12.-Grid---&gt;-Snow-On-Seaice) \n", "[13. Dynamics](#13.-Dynamics) \n", "[14. Thermodynamics --&gt; Energy](#14.-Thermodynamics---&gt;-Energy) \n", "[15. Thermodynamics --&gt; Mass](#15.-Thermodynamics---&gt;-Mass) \n", "[16. Thermodynamics --&gt; Salt](#16.-Thermodynamics---&gt;-Salt) \n", "[17. Thermodynamics --&gt; Salt --&gt; Mass Transport](#17.-Thermodynamics---&gt;-Salt---&gt;-Mass-Transport) \n", "[18. Thermodynamics --&gt; Salt --&gt; Thermodynamics](#18.-Thermodynamics---&gt;-Salt---&gt;-Thermodynamics) \n", "[19. Thermodynamics --&gt; Ice Thickness Distribution](#19.-Thermodynamics---&gt;-Ice-Thickness-Distribution) \n", "[20. Thermodynamics --&gt; Ice Floe Size Distribution](#20.-Thermodynamics---&gt;-Ice-Floe-Size-Distribution) \n", "[21. Thermodynamics --&gt; Melt Ponds](#21.-Thermodynamics---&gt;-Melt-Ponds) \n", "[22. Thermodynamics --&gt; Snow Processes](#22.-Thermodynamics---&gt;-Snow-Processes) \n", "[23. Radiative Processes](#23.-Radiative-Processes) \n", "\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "# 1. Key Properties --&gt; Model \n", "*Name of seaice model used.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 1.1. Model Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of sea ice model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.model.model_overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.2. Model Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Name of sea ice model code (e.g. CICE 4.2, LIM 2.1, etc.)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.model.model_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 2. Key Properties --&gt; Variables \n", "*List of prognostic variable in the sea ice model.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 2.1. Prognostic\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List of prognostic variables in the sea ice component.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.variables.prognostic') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Sea ice temperature\" \n", "# \"Sea ice concentration\" \n", "# \"Sea ice thickness\" \n", "# \"Sea ice volume per grid cell area\" \n", "# \"Sea ice u-velocity\" \n", "# \"Sea ice v-velocity\" \n", "# \"Sea ice enthalpy\" \n", "# \"Internal ice stress\" \n", "# \"Salinity\" \n", "# \"Snow temperature\" \n", "# \"Snow depth\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 3. Key Properties --&gt; Seawater Properties \n", "*Properties of seawater relevant to sea ice*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 3.1. Ocean Freezing Point\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"TEOS-10\" \n", "# \"Constant\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.2. Ocean Freezing Point Value\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If using a constant seawater freezing point, specify this value.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.seawater_properties.ocean_freezing_point_value') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 4. Key Properties --&gt; Resolution \n", "*Resolution of the sea ice grid*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 4.1. Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *This is a string usually used by the modelling group to describe the resolution of this grid e.g. N512L180, T512L70, ORCA025 etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.resolution.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.2. Canonical Horizontal Resolution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.resolution.canonical_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.3. Number Of Horizontal Gridpoints\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Total number of horizontal (XY) points (or degrees of freedom) on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.resolution.number_of_horizontal_gridpoints') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 5. Key Properties --&gt; Tuning Applied \n", "*Tuning applied to sea ice model component*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 5.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.tuning_applied.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.2. Target\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What was the aim of tuning, e.g. correct sea ice minima, correct seasonal cycle.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.tuning_applied.target') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.3. Simulations\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Which simulations had tuning applied, e.g. all, not historical, only pi-control? *" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.tuning_applied.simulations') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.4. Metrics Used\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *List any observed metrics used in tuning model/parameters*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.tuning_applied.metrics_used') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.5. Variables\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Which variables were changed during the tuning process?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.tuning_applied.variables') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 6. Key Properties --&gt; Key Parameter Values \n", "*Values of key parameters*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 6.1. Typical Parameters\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *What values were specificed for the following parameters if used?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.typical_parameters') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Ice strength (P*) in units of N m{-2}\" \n", "# \"Snow conductivity (ks) in units of W m{-1} K{-1} \" \n", "# \"Minimum thickness of ice created in leads (h0) in units of m\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.2. Additional Parameters\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *If you have any additional paramterised values that you have used (e.g. minimum open water fraction or bare ice albedo), please provide them here as a comma separated list*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.key_parameter_values.additional_parameters') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 7. Key Properties --&gt; Assumptions \n", "*Assumptions made in the sea ice model*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 7.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *General overview description of any *key* assumptions made in this model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.assumptions.description') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.2. On Diagnostic Variables\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Note any assumptions that specifically affect the CMIP6 diagnostic sea ice variables.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.assumptions.on_diagnostic_variables') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.3. Missing Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List any *key* processes missing in this model configuration? Provide full details where this affects the CMIP6 diagnostic sea ice variables?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.assumptions.missing_processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 8. Key Properties --&gt; Conservation \n", "*Conservation in the sea ice component*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 8.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Provide a general description of conservation methodology.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.conservation.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.2. Properties\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Properties conserved in sea ice by the numerical schemes.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.conservation.properties') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Energy\" \n", "# \"Mass\" \n", "# \"Salt\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.3. Budget\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *For each conserved property, specify the output variables which close the related budgets. as a comma separated list. For example: Conserved property, variable1, variable2, variable3*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.conservation.budget') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.4. Was Flux Correction Used\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does conservation involved flux correction?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.conservation.was_flux_correction_used') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.5. Corrected Conserved Prognostic Variables\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *List any variables which are conserved by *more* than the numerical scheme alone.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.key_properties.conservation.corrected_conserved_prognostic_variables') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 9. Grid --&gt; Discretisation --&gt; Horizontal \n", "*Sea ice discretisation in the horizontal*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 9.1. Grid\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Grid on which sea ice is horizontal discretised?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Ocean grid\" \n", "# \"Atmosphere Grid\" \n", "# \"Own Grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.2. Grid Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the type of sea ice grid?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.grid_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Structured grid\" \n", "# \"Unstructured grid\" \n", "# \"Adaptive grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.3. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the advection scheme?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Finite differences\" \n", "# \"Finite elements\" \n", "# \"Finite volumes\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.4. Thermodynamics Time Step\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the time step in the sea ice model thermodynamic component in seconds.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.thermodynamics_time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.5. Dynamics Time Step\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the time step in the sea ice model dynamic component in seconds.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.dynamics_time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.6. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Specify any additional horizontal discretisation details.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.horizontal.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 10. Grid --&gt; Discretisation --&gt; Vertical \n", "*Sea ice vertical properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 10.1. Layering\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *What type of sea ice vertical layers are implemented for purposes of thermodynamic calculations?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.vertical.layering') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Zero-layer\" \n", "# \"Two-layers\" \n", "# \"Multi-layers\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 10.2. Number Of Layers\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *If using multi-layers specify how many.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.vertical.number_of_layers') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 10.3. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Specify any additional vertical grid details.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.discretisation.vertical.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 11. Grid --&gt; Seaice Categories \n", "*What method is used to represent sea ice categories ?*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 11.1. Has Mulitple Categories\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Set to true if the sea ice model has multiple sea ice categories.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.seaice_categories.has_mulitple_categories') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.2. Number Of Categories\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *If using sea ice categories specify how many.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.seaice_categories.number_of_categories') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.3. Category Limits\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *If using sea ice categories specify each of the category limits.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.seaice_categories.category_limits') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.4. Ice Thickness Distribution Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the sea ice thickness distribution scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.seaice_categories.ice_thickness_distribution_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.5. Other\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If the sea ice model does not use sea ice categories specify any additional details. For example models that paramterise the ice thickness distribution ITD (i.e there is no explicit ITD) but there is assumed distribution and fluxes are computed accordingly.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.seaice_categories.other') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 12. Grid --&gt; Snow On Seaice \n", "*Snow on sea ice details*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 12.1. Has Snow On Ice\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is snow on ice represented in this model?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.snow_on_seaice.has_snow_on_ice') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.2. Number Of Snow Levels\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of vertical levels of snow on ice?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.snow_on_seaice.number_of_snow_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.3. Snow Fraction\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe how the snow fraction on sea ice is determined*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.snow_on_seaice.snow_fraction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.4. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Specify any additional details related to snow on ice.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.grid.snow_on_seaice.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 13. Dynamics \n", "*Sea Ice Dynamics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 13.1. Horizontal Transport\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the method of horizontal advection of sea ice?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.dynamics.horizontal_transport') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Incremental Re-mapping\" \n", "# \"Prather\" \n", "# \"Eulerian\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.2. Transport In Thickness Space\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the method of sea ice transport in thickness space (i.e. in thickness categories)?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.dynamics.transport_in_thickness_space') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Incremental Re-mapping\" \n", "# \"Prather\" \n", "# \"Eulerian\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.3. Ice Strength Formulation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Which method of sea ice strength formulation is used?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.dynamics.ice_strength_formulation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Hibler 1979\" \n", "# \"Rothrock 1975\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.4. Redistribution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Which processes can redistribute sea ice (including thickness)?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.dynamics.redistribution') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Rafting\" \n", "# \"Ridging\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.5. Rheology\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Rheology, what is the ice deformation formulation?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.dynamics.rheology') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Free-drift\" \n", "# \"Mohr-Coloumb\" \n", "# \"Visco-plastic\" \n", "# \"Elastic-visco-plastic\" \n", "# \"Elastic-anisotropic-plastic\" \n", "# \"Granular\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 14. Thermodynamics --&gt; Energy \n", "*Processes related to energy in sea ice thermodynamics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 14.1. Enthalpy Formulation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the energy formulation?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.enthalpy_formulation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Pure ice latent heat (Semtner 0-layer)\" \n", "# \"Pure ice latent and sensible heat\" \n", "# \"Pure ice latent and sensible heat + brine heat reservoir (Semtner 3-layer)\" \n", "# \"Pure ice latent and sensible heat + explicit brine inclusions (Bitz and Lipscomb)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.2. Thermal Conductivity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What type of thermal conductivity is used?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.thermal_conductivity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Pure ice\" \n", "# \"Saline ice\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.3. Heat Diffusion\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the method of heat diffusion?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_diffusion') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Conduction fluxes\" \n", "# \"Conduction and radiation heat fluxes\" \n", "# \"Conduction, radiation and latent heat transport\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.4. Basal Heat Flux\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method by which basal ocean heat flux is handled?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.basal_heat_flux') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Heat Reservoir\" \n", "# \"Thermal Fixed Salinity\" \n", "# \"Thermal Varying Salinity\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.5. Fixed Salinity Value\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If you have selected {Thermal properties depend on S-T (with fixed salinity)}, supply fixed salinity value for each sea ice layer.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.fixed_salinity_value') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.6. Heat Content Of Precipitation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the method by which the heat content of precipitation is handled.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.heat_content_of_precipitation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.7. Precipitation Effects On Salinity\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If precipitation (freshwater) that falls on sea ice affects the ocean surface salinity please provide further details.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.energy.precipitation_effects_on_salinity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 15. Thermodynamics --&gt; Mass \n", "*Processes related to mass in sea ice thermodynamics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 15.1. New Ice Formation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the method by which new sea ice is formed in open water.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.mass.new_ice_formation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.2. Ice Vertical Growth And Melt\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the method that governs the vertical growth and melt of sea ice.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_vertical_growth_and_melt') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.3. Ice Lateral Melting\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the method of sea ice lateral melting?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_lateral_melting') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Floe-size dependent (Bitz et al 2001)\" \n", "# \"Virtual thin ice melting (for single-category)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.4. Ice Surface Sublimation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the method that governs sea ice surface sublimation.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.mass.ice_surface_sublimation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.5. Frazil Ice\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe the method of frazil ice formation.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.mass.frazil_ice') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 16. Thermodynamics --&gt; Salt \n", "*Processes related to salt in sea ice thermodynamics.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 16.1. Has Multiple Sea Ice Salinities\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does the sea ice model use two different salinities: one for thermodynamic calculations; and one for the salt budget?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.has_multiple_sea_ice_salinities') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.2. Sea Ice Salinity Thermal Impacts\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does sea ice salinity impact the thermal properties of sea ice?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.sea_ice_salinity_thermal_impacts') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 17. Thermodynamics --&gt; Salt --&gt; Mass Transport \n", "*Mass transport of salt*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 17.1. Salinity Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *How is salinity determined in the mass transport of salt calculation?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.salinity_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Prescribed salinity profile\" \n", "# \"Prognostic salinity profile\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 17.2. Constant Salinity Value\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If using a constant salinity value specify this value in PSU?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.constant_salinity_value') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 17.3. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe the salinity profile used.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.mass_transport.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 18. Thermodynamics --&gt; Salt --&gt; Thermodynamics \n", "*Salt thermodynamics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 18.1. Salinity Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *How is salinity determined in the thermodynamic calculation?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.salinity_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Prescribed salinity profile\" \n", "# \"Prognostic salinity profile\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.2. Constant Salinity Value\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If using a constant salinity value specify this value in PSU?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.constant_salinity_value') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.3. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe the salinity profile used.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.salt.thermodynamics.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 19. Thermodynamics --&gt; Ice Thickness Distribution \n", "*Ice thickness distribution details.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 19.1. Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *How is the sea ice thickness distribution represented?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.ice_thickness_distribution.representation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Explicit\" \n", "# \"Virtual (enhancement of thermal conductivity, thin ice melting)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 20. Thermodynamics --&gt; Ice Floe Size Distribution \n", "*Ice floe-size distribution details.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 20.1. Representation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *How is the sea ice floe-size represented?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.representation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Explicit\" \n", "# \"Parameterised\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 20.2. Additional Details\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Please provide further details on any parameterisation of floe-size.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.ice_floe_size_distribution.additional_details') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 21. Thermodynamics --&gt; Melt Ponds \n", "*Characteristics of melt ponds.*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 21.1. Are Included\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Are melt ponds included in the sea ice model?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.are_included') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 21.2. Formulation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What method of melt pond formulation is used?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.formulation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Flocco and Feltham (2010)\" \n", "# \"Level-ice melt ponds\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 21.3. Impacts\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *What do melt ponds have an impact on?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.melt_ponds.impacts') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Albedo\" \n", "# \"Freshwater\" \n", "# \"Heat\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 22. Thermodynamics --&gt; Snow Processes \n", "*Thermodynamic processes in snow on sea ice*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 22.1. Has Snow Aging\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Set to True if the sea ice model has a snow aging scheme.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_aging') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.2. Snow Aging Scheme\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe the snow aging scheme.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_aging_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.3. Has Snow Ice Formation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Set to True if the sea ice model has snow ice formation.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.has_snow_ice_formation') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.4. Snow Ice Formation Scheme\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe the snow ice formation scheme.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.snow_ice_formation_scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.5. Redistribution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the impact of ridging on snow cover?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.redistribution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.6. Heat Diffusion\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *What is the heat diffusion through snow methodology in sea ice thermodynamics?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.thermodynamics.snow_processes.heat_diffusion') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Single-layered heat diffusion\" \n", "# \"Multi-layered heat diffusion\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 23. Radiative Processes \n", "*Sea Ice Radiative Processes*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 23.1. Surface Albedo\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method used to handle surface albedo.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.radiative_processes.surface_albedo') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Delta-Eddington\" \n", "# \"Parameterized\" \n", "# \"Multi-band albedo\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.2. Ice Radiation Transmission\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Method by which solar radiation through sea ice is handled.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.seaice.radiative_processes.ice_radiation_transmission') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Delta-Eddington\" \n", "# \"Exponential attenuation\" \n", "# \"Ice radiation transmission per category\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### \u00a92017 [ES-DOC](https://es-doc.org) \n" ], "cell_type": "markdown", "metadata": {} } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.10", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }
gpl-3.0
ledeprogram/algorithms
class9/homework/Kandrach_Sasha_9_3.ipynb
1
4467
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn import preprocessing\n", "from sklearn import cross_validation\n", "from sklearn.tree import DecisionTreeClassifier\n", "from sklearn.feature_extraction.text import CountVectorizer" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "########## STEP 1: DATA IMPORT AND PREPROCESSING ##########\n", "\n", "# Here we're taking in the training data and splitting it into two lists: One with the text of\n", "# each bill title, and the second with each bill title's corresponding category. Order is important.\n", "# The first bill in list 1 should also be the first category in list 2.\n", "training = [line.strip().split('|') for line in open('../data/bills_training.txt', 'r').readlines()]\n", "text = [t[0] for t in training if len(t) > 1]\n", "labels = [t[1] for t in training if len(t) > 1]\n", "\n", "# A little bit of cleanup for scikit-learn's benefit. Scikit-learn models wants our categories to\n", "# be numbers, not strings. The LabelEncoder performs this transformation.\n", "encoder = preprocessing.LabelEncoder()\n", "correct_labels = encoder.fit_transform(labels)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "########## STEP 2: FEATURE EXTRACTION ##########\n", "vectorizer = CountVectorizer(stop_words='english')\n", "data = vectorizer.fit_transform(text)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "########## STEP 3: MODEL BUILDING ##########\n", "model = DecisionTreeClassifier()\n", "fit_model = model.fit(data, correct_labels)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# ########## STEP 4: EVALUATION ##########\n", "# Evaluate our model with 10-fold cross-validation\n", "scores = cross_validation.cross_val_score(model, data, correct_labels, cv=5)\n", "print(\"Accuracy: %0.2f (+/- %0.2f)\" % (scores.mean(), scores.std() * 2))\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# ########## STEP 5: APPLYING THE MODEL ##########\n", "docs_new = [\"Public postsecondary education: executive officer compensation.\",\n", " \"An act to add Section 236.3 to the Education code, related to the pricing of college textbooks.\",\n", " \"Political Reform Act of 1974: campaign disclosures.\",\n", " \"An act to add Section 236.3 to the Penal Code, relating to human trafficking.\"\n", " ]\n", "\n", "test_data = vectorizer.transform(docs_new)\n", "\n", "for i in range(len(docs_new)):\n", " print('%s -> %s' % (docs_new[i], encoder.classes_[model.predict(test_data.toarray()[i])]))\n", " " ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Overall, this model make a good amount of sense to me. The concept of keeping the information in order while separating it by title and corresponding category is something that I think could be useful in a variety of ways. \n", "\n", "The code seems pretty straight forward, however, the last step gets a bit confusing. I understand everything prior to the for loop and then the for loop I understand to an extent. If we could maybe go over the last step in more detail I think that would be helpful.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
google/starthinker
colabs/cm360_segmentology.ipynb
1
15783
{ "license": "Licensed under the Apache License, Version 2.0", "copyright": "Copyright 2020 Google LLC", "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "CM360 Segmentology", "provenance": [], "collapsed_sections": [], "toc_visible": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "8b181d27-001" }, "source": [ "#CM360 Segmentology\n", "CM360 funnel analysis using Census data.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8b181d27-002" }, "source": [ "#License\n", "\n", "Copyright 2020 Google LLC,\n", "\n", "Licensed under the Apache License, Version 2.0 (the \"License\");\n", "you may not use this file except in compliance with the License.\n", "You may obtain a copy of the License at\n", "\n", " https://www.apache.org/licenses/LICENSE-2.0\n", "\n", "Unless required by applicable law or agreed to in writing, software\n", "distributed under the License is distributed on an \"AS IS\" BASIS,\n", "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "See the License for the specific language governing permissions and\n", "limitations under the License.\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8b181d27-003" }, "source": [ "#Disclaimer\n", "This is not an officially supported Google product. It is a reference implementation. There is absolutely NO WARRANTY provided for using this code. The code is Apache Licensed and CAN BE fully modified, white labeled, and disassembled by your team.\n", "\n", "This code generated (see starthinker/scripts for possible source):\n", " - **Command**: \"python starthinker_ui/manage.py colab\"\n", " - **Command**: \"python starthinker/tools/colab.py [JSON RECIPE]\"\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8b181d27-004" }, "source": [ "#1. Install Dependencies\n", "First install the libraries needed to execute recipes, this only needs to be done once, then click play.\n" ] }, { "cell_type": "code", "metadata": { "id": "8b181d27-005" }, "source": [ "!pip install git+https://github.com/google/starthinker\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8b181d27-006" }, "source": [ "#2. Set Configuration\n", "\n", "This code is required to initialize the project. Fill in required fields and press play.\n", "\n", "1. If the recipe uses a Google Cloud Project:\n", " - Set the configuration **project** value to the project identifier from [these instructions](https://github.com/google/starthinker/blob/master/tutorials/cloud_project.md).\n", "\n", "1. If the recipe has **auth** set to **user**:\n", " - If you have user credentials:\n", " - Set the configuration **user** value to your user credentials JSON.\n", " - If you DO NOT have user credentials:\n", " - Set the configuration **client** value to [downloaded client credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_client_installed.md).\n", "\n", "1. If the recipe has **auth** set to **service**:\n", " - Set the configuration **service** value to [downloaded service credentials](https://github.com/google/starthinker/blob/master/tutorials/cloud_service.md).\n", "\n" ] }, { "cell_type": "code", "metadata": { "id": "8b181d27-007" }, "source": [ "from starthinker.util.configuration import Configuration\n", "\n", "\n", "CONFIG = Configuration(\n", " project=\"\",\n", " client={},\n", " service={},\n", " user=\"/content/user.json\",\n", " verbose=True\n", ")\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8b181d27-008" }, "source": [ "#3. Enter CM360 Segmentology Recipe Parameters\n", " 1. Wait for **BigQuery->->->Census_Join** to be created.\n", " 1. Join the [StarThinker Assets Group](https://groups.google.com/d/forum/starthinker-assets) to access the following assets\n", " 1. Copy [CM360 Segmentology Sample](https://datastudio.google.com/c/u/0/reporting/3673497b-f36f-4448-8fb9-3e05ea51842f/). Leave the Data Source as is, you will change it in the next step.\n", " 1. Click Edit Connection, and change to **BigQuery->->->Census_Join**.\n", " 1. Or give these intructions to the client.\n", "Modify the values below for your use case, can be done multiple times, then click play.\n" ] }, { "cell_type": "code", "metadata": { "id": "8b181d27-009" }, "source": [ "FIELDS = {\n", " 'account':'',\n", " 'auth_read':'user', # Credentials used for reading data.\n", " 'auth_write':'service', # Authorization used for writing data.\n", " 'recipe_name':'', # Name of report, not needed if ID used.\n", " 'date_range':'LAST_365_DAYS', # Timeframe to run report for.\n", " 'recipe_slug':'', # Name of Google BigQuery dataset to create.\n", " 'advertisers':[], # Comma delimited list of CM360 advertiser ids.\n", "}\n", "\n", "print(\"Parameters Set To: %s\" % FIELDS)\n" ] }, { "cell_type": "markdown", "metadata": { "id": "8b181d27-010" }, "source": [ "#4. Execute CM360 Segmentology\n", "This does NOT need to be modified unless you are changing the recipe, click play.\n" ] }, { "cell_type": "code", "metadata": { "id": "8b181d27-011" }, "source": [ "from starthinker.util.configuration import execute\n", "from starthinker.util.recipe import json_set_fields\n", "\n", "TASKS = [\n", " {\n", " 'dataset':{\n", " 'description':'Create a dataset for bigquery tables.',\n", " 'hour':[\n", " 4\n", " ],\n", " 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Credentials used for writing data.'}},\n", " 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','description':'Place where tables will be created in BigQuery.'}}\n", " }\n", " },\n", " {\n", " 'bigquery':{\n", " 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Credentials used for writing function.'}},\n", " 'function':'Pearson Significance Test',\n", " 'to':{\n", " 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}}\n", " }\n", " }\n", " },\n", " {\n", " 'google_api':{\n", " 'auth':'user',\n", " 'api':'dfareporting',\n", " 'version':'v3.4',\n", " 'function':'accounts.get',\n", " 'kwargs':{\n", " 'id':{'field':{'name':'account','kind':'integer','order':5,'default':'','description':'Campaign Manager Account ID'}},\n", " 'fields':'id,name'\n", " },\n", " 'results':{\n", " 'bigquery':{\n", " 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Credentials used for writing function.'}},\n", " 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}},\n", " 'table':'CM360_Account'\n", " }\n", " }\n", " }\n", " },\n", " {\n", " 'dcm':{\n", " 'auth':{'field':{'name':'auth_read','kind':'authentication','order':0,'default':'user','description':'Credentials used for reading data.'}},\n", " 'report':{\n", " 'filters':{\n", " 'advertiser':{\n", " 'values':{'field':{'name':'advertisers','kind':'integer_list','order':6,'default':[],'description':'Comma delimited list of CM360 advertiser ids.'}}\n", " }\n", " },\n", " 'account':{'field':{'name':'account','kind':'string','order':5,'default':'','description':'Campaign Manager Account ID'}},\n", " 'body':{\n", " 'name':{'field':{'name':'recipe_name','kind':'string','suffix':' Segmentology','description':'The report name.','default':''}},\n", " 'criteria':{\n", " 'dateRange':{\n", " 'kind':'dfareporting#dateRange',\n", " 'relativeDateRange':{'field':{'name':'date_range','kind':'choice','order':3,'default':'LAST_365_DAYS','choices':['LAST_7_DAYS','LAST_14_DAYS','LAST_30_DAYS','LAST_365_DAYS','LAST_60_DAYS','LAST_7_DAYS','LAST_90_DAYS','LAST_24_MONTHS','MONTH_TO_DATE','PREVIOUS_MONTH','PREVIOUS_QUARTER','PREVIOUS_WEEK','PREVIOUS_YEAR','QUARTER_TO_DATE','WEEK_TO_DATE','YEAR_TO_DATE'],'description':'Timeframe to run report for.'}}\n", " },\n", " 'dimensions':[\n", " {\n", " 'kind':'dfareporting#sortedDimension',\n", " 'name':'advertiserId'\n", " },\n", " {\n", " 'kind':'dfareporting#sortedDimension',\n", " 'name':'advertiser'\n", " },\n", " {\n", " 'kind':'dfareporting#sortedDimension',\n", " 'name':'zipCode'\n", " }\n", " ],\n", " 'metricNames':[\n", " 'impressions',\n", " 'clicks',\n", " 'totalConversions'\n", " ]\n", " },\n", " 'type':'STANDARD',\n", " 'delivery':{\n", " 'emailOwner':False\n", " },\n", " 'format':'CSV'\n", " }\n", " }\n", " }\n", " },\n", " {\n", " 'dcm':{\n", " 'auth':{'field':{'name':'auth_read','kind':'authentication','order':0,'default':'user','description':'Credentials used for reading data.'}},\n", " 'report':{\n", " 'account':{'field':{'name':'account','kind':'string','default':''}},\n", " 'name':{'field':{'name':'recipe_name','kind':'string','order':3,'suffix':' Segmentology','default':'','description':'Name of report, not needed if ID used.'}}\n", " },\n", " 'out':{\n", " 'bigquery':{\n", " 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}},\n", " 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}},\n", " 'table':'CM360_KPI',\n", " 'header':True\n", " }\n", " }\n", " }\n", " },\n", " {\n", " 'bigquery':{\n", " 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}},\n", " 'from':{\n", " 'query':'SELECT Id AS Partner_Id, Name AS Partner, Advertiser_Id, Advertiser, Zip_Postal_Code AS Zip, SAFE_DIVIDE(Impressions, SUM(Impressions) OVER(PARTITION BY Advertiser_Id)) AS Impression, SAFE_DIVIDE(Clicks, Impressions) AS Click, SAFE_DIVIDE(Total_Conversions, Impressions) AS Conversion, Impressions AS Impressions FROM `{dataset}.CM360_KPI` CROSS JOIN `{dataset}.CM360_Account` ',\n", " 'parameters':{\n", " 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','description':'Place where tables will be created in BigQuery.'}}\n", " },\n", " 'legacy':False\n", " },\n", " 'to':{\n", " 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','description':'Place where tables will be written in BigQuery.'}},\n", " 'view':'CM360_KPI_Normalized'\n", " }\n", " }\n", " },\n", " {\n", " 'census':{\n", " 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}},\n", " 'normalize':{\n", " 'census_geography':'zip_codes',\n", " 'census_year':'2018',\n", " 'census_span':'5yr'\n", " },\n", " 'to':{\n", " 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}},\n", " 'type':'view'\n", " }\n", " }\n", " },\n", " {\n", " 'census':{\n", " 'auth':{'field':{'name':'auth_write','kind':'authentication','order':1,'default':'service','description':'Authorization used for writing data.'}},\n", " 'correlate':{\n", " 'join':'Zip',\n", " 'pass':[\n", " 'Partner_Id',\n", " 'Partner',\n", " 'Advertiser_Id',\n", " 'Advertiser'\n", " ],\n", " 'sum':[\n", " 'Impressions'\n", " ],\n", " 'correlate':[\n", " 'Impression',\n", " 'Click',\n", " 'Conversion'\n", " ],\n", " 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}},\n", " 'table':'CM360_KPI_Normalized',\n", " 'significance':80\n", " },\n", " 'to':{\n", " 'dataset':{'field':{'name':'recipe_slug','kind':'string','suffix':'_Segmentology','order':4,'default':'','description':'Name of Google BigQuery dataset to create.'}},\n", " 'type':'view'\n", " }\n", " }\n", " }\n", "]\n", "\n", "json_set_fields(TASKS, FIELDS)\n", "\n", "execute(CONFIG, TASKS, force=True)\n" ] } ] }
apache-2.0
aborgher/Main-useful-functions-for-ML
.ipynb_checkpoints/NLP-checkpoint.ipynb
1
67248
{ "cells": [ { "cell_type": "markdown", "metadata": { "toc": "true" }, "source": [ "# Table of Contents\n", " <p><div class=\"lev1 toc-item\"><a href=\"#Correction-with-enchant\" data-toc-modified-id=\"Correction-with-enchant-1\"><span class=\"toc-item-num\">1&nbsp;&nbsp;</span>Correction with enchant</a></div><div class=\"lev2 toc-item\"><a href=\"#Add-your-own-dictionary\" data-toc-modified-id=\"Add-your-own-dictionary-11\"><span class=\"toc-item-num\">1.1&nbsp;&nbsp;</span>Add your own dictionary</a></div><div class=\"lev2 toc-item\"><a href=\"#check-entire-phrase\" data-toc-modified-id=\"check-entire-phrase-12\"><span class=\"toc-item-num\">1.2&nbsp;&nbsp;</span>check entire phrase</a></div><div class=\"lev2 toc-item\"><a href=\"#tokenization\" data-toc-modified-id=\"tokenization-13\"><span class=\"toc-item-num\">1.3&nbsp;&nbsp;</span>tokenization</a></div><div class=\"lev1 toc-item\"><a href=\"#Word2vec\" data-toc-modified-id=\"Word2vec-2\"><span class=\"toc-item-num\">2&nbsp;&nbsp;</span>Word2vec</a></div><div class=\"lev1 toc-item\"><a href=\"#Translate-using-google-translate\" data-toc-modified-id=\"Translate-using-google-translate-3\"><span class=\"toc-item-num\">3&nbsp;&nbsp;</span>Translate using google translate</a></div><div class=\"lev1 toc-item\"><a href=\"#TreeTagger-usage-to-tag-an-italian-(or-other-languages)-sentence\" data-toc-modified-id=\"TreeTagger-usage-to-tag-an-italian-(or-other-languages)-sentence-4\"><span class=\"toc-item-num\">4&nbsp;&nbsp;</span>TreeTagger usage to tag an italian (or other languages) sentence</a></div>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Correction with enchant\n", "- install via pip install pyenchant\n", "- add ita dictionary: sudo apt-get install myspell-it myspell-es\n", "- Tutorial at: http://pythonhosted.org/pyenchant/tutorial.html" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:47:39.947813Z", "start_time": "2017-09-10T12:47:39.941138Z" }, "collapsed": true }, "outputs": [], "source": [ "import enchant" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:47:44.713145Z", "start_time": "2017-09-10T12:47:44.692481Z" }, "collapsed": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[<Enchant: Aspell Provider>, <Enchant: Ispell Provider>, <Enchant: Hspell Provider>, <Enchant: Myspell Provider>]\n" ] }, { "data": { "text/plain": [ "[('en', <Enchant: Aspell Provider>),\n", " ('en_CA', <Enchant: Aspell Provider>),\n", " ('en_GB', <Enchant: Aspell Provider>),\n", " ('en_US', <Enchant: Aspell Provider>),\n", " ('es_MX', <Enchant: Myspell Provider>),\n", " ('es_BO', <Enchant: Myspell Provider>),\n", " ('es_CO', <Enchant: Myspell Provider>),\n", " ('es_VE', <Enchant: Myspell Provider>),\n", " ('es_UY', <Enchant: Myspell Provider>),\n", " ('es_PR', <Enchant: Myspell Provider>),\n", " ('es_EC', <Enchant: Myspell Provider>),\n", " ('es_CU', <Enchant: Myspell Provider>),\n", " ('es_ES', <Enchant: Myspell Provider>),\n", " ('es_PA', <Enchant: Myspell Provider>),\n", " ('es_NI', <Enchant: Myspell Provider>),\n", " ('es_CR', <Enchant: Myspell Provider>),\n", " ('es_PE', <Enchant: Myspell Provider>),\n", " ('it_CH', <Enchant: Myspell Provider>),\n", " ('es_GT', <Enchant: Myspell Provider>),\n", " ('es_PY', <Enchant: Myspell Provider>),\n", " ('es_SV', <Enchant: Myspell Provider>),\n", " ('it_IT', <Enchant: Myspell Provider>),\n", " ('es_HN', <Enchant: Myspell Provider>),\n", " ('es_CL', <Enchant: Myspell Provider>),\n", " ('es', <Enchant: Myspell Provider>),\n", " ('es_DO', <Enchant: Myspell Provider>),\n", " ('es_AR', <Enchant: Myspell Provider>)]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# The underlying programming model provided by the Enchant library is based on the notion of Providers. \n", "# A provider is a piece of code that provides spell-checking services which Enchant can use to perform its work. \n", "# Different providers exist for performing spellchecking using different frameworks - \n", "# for example there is an aspell provider and a MySpell provider.\n", "## no need to check brokers while running enchant, this is just a simple check if all is installed\n", "b = enchant.Broker()\n", "print(b.describe())\n", "b.list_dicts()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:47:54.862556Z", "start_time": "2017-09-10T12:47:54.851131Z" }, "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "['en',\n", " 'en_CA',\n", " 'en_GB',\n", " 'en_US',\n", " 'es_MX',\n", " 'es_BO',\n", " 'es_CO',\n", " 'es_VE',\n", " 'es_UY',\n", " 'es_PR',\n", " 'es_EC',\n", " 'es_CU',\n", " 'es_ES',\n", " 'es_PA',\n", " 'es_NI',\n", " 'es_CR',\n", " 'es_PE',\n", " 'it_CH',\n", " 'es_GT',\n", " 'es_PY',\n", " 'es_SV',\n", " 'it_IT',\n", " 'es_HN',\n", " 'es_CL',\n", " 'es',\n", " 'es_DO',\n", " 'es_AR']" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "enchant.list_languages()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:48:32.886297Z", "start_time": "2017-09-10T12:48:32.848584Z" }, "collapsed": true }, "outputs": [], "source": [ "d = enchant.Dict(\"it_IT\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:48:33.036465Z", "start_time": "2017-09-10T12:48:33.025864Z" } }, "outputs": [ { "data": { "text/plain": [ "(True, False)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d.check('Giulia'), d.check('pappapero')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:48:37.997355Z", "start_time": "2017-09-10T12:48:37.218697Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['potrei ma', 'potrei-ma', 'potrei', 'impomatare']\n", "['marame', 'marea', 'maremma', 'Carema', 'ma rema', 'ma-rema', 'mare ma', 'mare-ma', 'Maremma', 'remare', 'remar', 'mare']\n", "[]\n", "['vanno', 'vano']\n", "['duellatole']\n" ] } ], "source": [ "print( d.suggest(\"potreima\") )\n", "print( d.suggest(\"marema\") )\n", "print( d.suggest(\"se metto troppe parole lo impallo\") )\n", "print( d.suggest(\"van no\") )\n", "print( d.suggest(\"due parole\") )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Add your own dictionary" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:49:12.131328Z", "start_time": "2017-09-10T12:49:12.128663Z" }, "collapsed": true }, "outputs": [], "source": [ "# Dict objects can also be used to check words against a custom list of correctly-spelled words \n", "# known as a Personal Word List. This is simply a file listing the words to be considered, one word per line. \n", "# The following example creates a Dict object for the personal word list stored in “mywords.txt”:\n", "pwl = enchant.request_pwl_dict(\"../Data_nlp/mywords.txt\")" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:49:12.583454Z", "start_time": "2017-09-10T12:49:12.575641Z" } }, "outputs": [ { "data": { "text/plain": [ "(False, [], False)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pwl.check('pappapero'), pwl.suggest('cittin'), pwl.check('altro')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:49:19.107158Z", "start_time": "2017-09-10T12:49:19.102634Z" }, "collapsed": true }, "outputs": [], "source": [ "# PyEnchant also provides the class DictWithPWL which can be used to combine a language dictionary \n", "# and a personal word list file:\n", "d2 = enchant.DictWithPWL(\"it_IT\", \"../Data_nlp/mywords.txt\")" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:49:34.145022Z", "start_time": "2017-09-10T12:49:34.097786Z" } }, "outputs": [ { "data": { "text/plain": [ "(False, ['cittadino'])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "d2.check('altro') & d2.check('pappapero'), d2.suggest('cittin')" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:49:42.086244Z", "start_time": "2017-09-10T12:49:41.074963Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10 loops, best of 3: 24.1 ms per loop\n" ] } ], "source": [ "%%timeit\n", "d2.suggest('poliza')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## check entire phrase" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:50:25.871039Z", "start_time": "2017-09-10T12:50:25.868833Z" }, "collapsed": true }, "outputs": [], "source": [ "from enchant.checker import SpellChecker\n", "chkr = SpellChecker(\"it_IT\")" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:50:26.105785Z", "start_time": "2017-09-10T12:50:26.030779Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "picclo\n", "['picco', 'piccolo', 'picciolo', 'epiciclo', 'ciclopico']\n", "esmpio\n", "['espio', 'empio', 'esempio']\n" ] } ], "source": [ "chkr.set_text(\"questo è un picclo esmpio per dire cm funziona\")\n", "for err in chkr:\n", " print(err.word)\n", " print(chkr.suggest(err.word))" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:50:26.224793Z", "start_time": "2017-09-10T12:50:26.220167Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "esmpio 19\n" ] } ], "source": [ "print(chkr.word, chkr.wordpos)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:50:27.683652Z", "start_time": "2017-09-10T12:50:27.678472Z" } }, "outputs": [ { "data": { "text/plain": [ "'questo è un picclo pippo per dire cm funziona'" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "chkr.replace('pippo')\n", "chkr.get_text()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## tokenization\n", "As explained above, the module enchant.tokenize provides the ability to split text into its component words. The current implementation is based only on the rules for the English language, and so might not be completely suitable for your language of choice. Fortunately, it is straightforward to extend the functionality of this module.\n", "\n", "To implement a new tokenization routine for the language TAG, simply create a class/function “tokenize” within the module “enchant.tokenize.TAG”. This function will automatically be detected by the module’s get_tokenizer function and used when appropriate. The easiest way to accomplish this is to copy the module “enchant.tokenize.en” and modify it to suit your needs." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:50:35.437831Z", "start_time": "2017-09-10T12:50:35.426129Z" } }, "outputs": [ { "data": { "text/plain": [ "[('this', 0), ('is', 5), ('some', 8), ('simple', 13), ('text', 20)]" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from enchant.tokenize import get_tokenizer\n", "tknzr = get_tokenizer(\"en_US\") # not tak for it_IT up to now\n", "[w for w in tknzr(\"this is some simple text\")]" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:50:40.168971Z", "start_time": "2017-09-10T12:50:40.161116Z" } }, "outputs": [ { "data": { "text/plain": [ "[('this', 0),\n", " ('is', 5),\n", " ('span', 9),\n", " ('class', 14),\n", " ('important', 21),\n", " ('really', 32),\n", " ('important', 39),\n", " ('span', 50),\n", " ('text', 56)]" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from enchant.tokenize import get_tokenizer, HTMLChunker\n", "tknzr = get_tokenizer(\"en_US\")\n", "[w for w in tknzr(\"this is <span class='important'>really important</span> text\")]" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:50:57.403831Z", "start_time": "2017-09-10T12:50:57.399961Z" } }, "outputs": [ { "data": { "text/plain": [ "[('this', 0), ('is', 5), ('really', 32), ('important', 39), ('text', 56)]" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tknzr = get_tokenizer(\"en_US\",chunkers=(HTMLChunker,))\n", "[w for w in tknzr(\"this is <span class='important'>really important</span> text\")]" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:50:57.625939Z", "start_time": "2017-09-10T12:50:57.614942Z" } }, "outputs": [ { "data": { "text/plain": [ "[('send', 0),\n", " ('an', 5),\n", " ('email', 8),\n", " ('to', 14),\n", " ('fake', 17),\n", " ('example', 22),\n", " ('com', 30),\n", " ('please', 34)]" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from enchant.tokenize import get_tokenizer, EmailFilter\n", "tknzr = get_tokenizer(\"en_US\")\n", "[w for w in tknzr(\"send an email to [email protected] please\")]" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:50:57.814020Z", "start_time": "2017-09-10T12:50:57.804621Z" } }, "outputs": [ { "data": { "text/plain": [ "[('send', 0), ('an', 5), ('email', 8), ('to', 14), ('please', 34)]" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tknzr = get_tokenizer(\"en_US\", filters = [EmailFilter])\n", "[w for w in tknzr(\"send an email to [email protected] please\")]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Other modules:\n", "- CmdLineChecker\n", "\n", "The module enchant.checker.CmdLineChecker provides the class CmdLineChecker which can be used to interactively check the spelling of some text. It uses standard input and standard output to interact with the user through a command-line interface. The code below shows how to create and use this class from within a python application, along with a short sample checking session:\n", "\n", "- wxSpellCheckerDialog\n", "\n", "The module enchant.checker.wxSpellCheckerDialog provides the class wxSpellCheckerDialog which can be used to interactively check the spelling of some text. The code below shows how to create and use such a dialog from within a wxPython application." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Word2vec\n", "- pip install gensim\n", "- pip install pyemd\n", "- https://radimrehurek.com/gensim/models/word2vec.html" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:52:27.414784Z", "start_time": "2017-09-10T12:52:26.990904Z" }, "collapsed": true }, "outputs": [], "source": [ "import gensim, logging\n", "from gensim.models import Word2Vec" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:54:12.165301Z", "start_time": "2017-09-10T12:52:30.863143Z" }, "collapsed": true }, "outputs": [], "source": [ "model = gensim.models.KeyedVectors.load_word2vec_format(\n", " '../Data_nlp/GoogleNews-vectors-negative300.bin.gz', binary=True)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:54:14.052138Z", "start_time": "2017-09-10T12:54:12.166233Z" } }, "outputs": [ { "data": { "text/plain": [ "'brian'" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.doesnt_match(\"breakfast brian dinner lunch\".split())" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:56:19.105300Z", "start_time": "2017-09-10T12:56:19.098142Z" }, "collapsed": true }, "outputs": [ { "ename": "TypeError", "evalue": "evaluate_word_pairs() missing 1 required positional argument: 'pairs'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-35-8fd5a98fc876>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# give text with w1 w2 your_distance to check if model and w1-w2 have give the same distance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mevaluate_word_pairs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: evaluate_word_pairs() missing 1 required positional argument: 'pairs'" ] } ], "source": [ "# give text with w1 w2 your_distance to check if model and w1-w2 have give the same distance\n", "model.evaluate_word_pairs() " ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:56:27.887161Z", "start_time": "2017-09-10T12:56:27.884606Z" } }, "outputs": [ { "data": { "text/plain": [ "3000000" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(model.index2word)" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:34.190063Z", "start_time": "2017-09-10T12:56:28.138790Z" }, "collapsed": true }, "outputs": [], "source": [ "# check accuracy against a premade grouped words\n", "questions_words = model.accuracy('../Data_nlp/word2vec/trunk/questions-words.txt')\n", "phrases_words = model.accuracy('../Data_nlp/word2vec/trunk/questions-phrases.txt')" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:34.200556Z", "start_time": "2017-09-10T12:57:34.191292Z" } }, "outputs": [ { "data": { "text/plain": [ "[('BOY', 'GIRL', 'STEPFATHER', 'STEPMOTHER'),\n", " ('BROTHER', 'SISTER', 'STEPFATHER', 'STEPMOTHER'),\n", " ('BROTHERS', 'SISTERS', 'STEPFATHER', 'STEPMOTHER'),\n", " ('DAD', 'MOM', 'HUSBAND', 'WIFE'),\n", " ('DAD', 'MOM', 'STEPFATHER', 'STEPMOTHER'),\n", " ('GRANDFATHER', 'GRANDMOTHER', 'HUSBAND', 'WIFE'),\n", " ('GRANDFATHER', 'GRANDMOTHER', 'STEPFATHER', 'STEPMOTHER'),\n", " ('GRANDSON', 'GRANDDAUGHTER', 'STEPFATHER', 'STEPMOTHER'),\n", " ('GROOM', 'BRIDE', 'NEPHEW', 'NIECE'),\n", " ('GROOM', 'BRIDE', 'STEPFATHER', 'STEPMOTHER'),\n", " ('GROOM', 'BRIDE', 'UNCLE', 'AUNT'),\n", " ('GROOM', 'BRIDE', 'BROTHER', 'SISTER'),\n", " ('GROOM', 'BRIDE', 'BROTHERS', 'SISTERS'),\n", " ('HE', 'SHE', 'HUSBAND', 'WIFE'),\n", " ('HE', 'SHE', 'STEPFATHER', 'STEPMOTHER'),\n", " ('HIS', 'HER', 'HUSBAND', 'WIFE'),\n", " ('HIS', 'HER', 'STEPFATHER', 'STEPMOTHER'),\n", " ('HUSBAND', 'WIFE', 'BROTHER', 'SISTER'),\n", " ('HUSBAND', 'WIFE', 'DAD', 'MOM'),\n", " ('HUSBAND', 'WIFE', 'FATHER', 'MOTHER'),\n", " ('HUSBAND', 'WIFE', 'GRANDFATHER', 'GRANDMOTHER'),\n", " ('HUSBAND', 'WIFE', 'HE', 'SHE'),\n", " ('HUSBAND', 'WIFE', 'HIS', 'HER'),\n", " ('KING', 'QUEEN', 'STEPFATHER', 'STEPMOTHER'),\n", " ('MAN', 'WOMAN', 'STEPFATHER', 'STEPMOTHER'),\n", " ('MAN', 'WOMAN', 'HUSBAND', 'WIFE'),\n", " ('NEPHEW', 'NIECE', 'STEPFATHER', 'STEPMOTHER'),\n", " ('PRINCE', 'PRINCESS', 'STEPFATHER', 'STEPMOTHER'),\n", " ('PRINCE', 'PRINCESS', 'DAD', 'MOM'),\n", " ('PRINCE', 'PRINCESS', 'HUSBAND', 'WIFE'),\n", " ('SON', 'DAUGHTER', 'STEPFATHER', 'STEPMOTHER'),\n", " ('SONS', 'DAUGHTERS', 'STEPFATHER', 'STEPMOTHER'),\n", " ('STEPFATHER', 'STEPMOTHER', 'GRANDFATHER', 'GRANDMOTHER'),\n", " ('UNCLE', 'AUNT', 'STEPFATHER', 'STEPMOTHER')]" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "questions_words[4]['incorrect']" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:34.209759Z", "start_time": "2017-09-10T12:57:34.204123Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.660332138317\n", "0.458195260447\n", "0.177056094484\n", "0.760945708978\n" ] } ], "source": [ "print( model.n_similarity(['pasta'], ['spaghetti']) )\n", "print( model.n_similarity(['pasta'], ['tomato']) )\n", "print( model.n_similarity(['pasta'], ['car']) )\n", "print( model.n_similarity(['cat'], ['dog']) )" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:34.481775Z", "start_time": "2017-09-10T12:57:34.213291Z" } }, "outputs": [ { "data": { "text/plain": [ "[('welcome', 1.0),\n", " ('welcomed', 0.7077772617340088),\n", " ('welcoming', 0.7071465849876404),\n", " ('welcomes', 0.6647579669952393),\n", " ('warmly_welcomed', 0.6219103336334229),\n", " ('warmly_welcome', 0.5892778038978577),\n", " ('Welcoming', 0.5658251047134399),\n", " ('greatly_appreciated', 0.5299198627471924),\n", " ('warmly_welcomes', 0.521955132484436),\n", " ('invite', 0.5170012712478638)]" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.similar_by_vector( model.word_vec('welcome') )" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:34.739154Z", "start_time": "2017-09-10T12:57:34.485640Z" } }, "outputs": [ { "data": { "text/plain": [ "[('welcomed', 0.7077772617340088),\n", " ('welcoming', 0.7071465849876404),\n", " ('welcomes', 0.6647579669952393),\n", " ('warmly_welcomed', 0.6219103336334229),\n", " ('warmly_welcome', 0.5892777442932129),\n", " ('Welcoming', 0.5658251047134399),\n", " ('greatly_appreciated', 0.5299198627471924),\n", " ('warmly_welcomes', 0.521955132484436),\n", " ('invite', 0.517001211643219),\n", " ('delighted', 0.5136862397193909)]" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.similar_by_word('welcome')" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:34.762615Z", "start_time": "2017-09-10T12:57:34.744872Z" } }, "outputs": [ { "data": { "text/plain": [ "array([ 0.00704956, -0.07324219, 0.171875 , 0.02258301, -0.1328125 ,\n", " 0.19824219, 0.11279297, -0.10791016, 0.07177734, 0.02087402,\n", " -0.12304688, -0.05908203, 0.10107422, 0.01074219, 0.14355469,\n", " 0.25976562, -0.03637695, 0.18554688, -0.07861328, -0.02270508,\n", " -0.12060547, 0.17773438, 0.04956055, 0.01721191, 0.07958984,\n", " -0.0456543 , -0.18847656, 0.18945312, -0.02319336, 0.06298828,\n", " 0.09765625, -0.01904297, -0.07910156, 0.15234375, 0.17382812,\n", " 0.1015625 , -0.16308594, 0.11474609, 0.10058594, -0.09277344,\n", " 0.109375 , 0.05883789, -0.02160645, 0.06347656, 0.04199219,\n", " -0.0088501 , 0.03222656, 0.10644531, 0.06445312, -0.11865234,\n", " 0.03051758, 0.06689453, 0.12207031, -0.08300781, 0.171875 ,\n", " 0.07861328, 0.09521484, -0.00778198, 0.02319336, 0.0234375 ,\n", " -0.0168457 , 0.15527344, -0.10986328, -0.17675781, -0.11621094,\n", " 0.0234375 , -0.01062012, 0.05273438, -0.13378906, 0.07958984,\n", " 0.07373047, 0.04394531, 0.11523438, -0.02062988, 0.07470703,\n", " -0.01153564, 0.08056641, 0.04174805, 0.08007812, 0.3515625 ,\n", " 0.09667969, -0.21289062, 0.16503906, -0.078125 , 0.06982422,\n", " -0.00139618, -0.09130859, 0.12988281, 0.25195312, -0.01611328,\n", " 0.09326172, -0.14648438, -0.00151062, -0.15136719, -0.02685547,\n", " -0.15722656, 0.02636719, 0.0859375 , 0.07177734, 0.07714844,\n", " -0.0390625 , 0.05444336, -0.12792969, 0.09130859, -0.18457031,\n", " -0.03759766, -0.0279541 , -0.08984375, -0.11669922, -0.09863281,\n", " 0.0480957 , -0.16210938, -0.10888672, 0.08496094, -0.0456543 ,\n", " 0.15820312, -0.03808594, -0.08203125, 0.203125 , 0.08642578,\n", " 0.06933594, 0.03222656, -0.16015625, 0.09472656, -0.0246582 ,\n", " 0.05419922, 0.0279541 , 0.04492188, 0.16992188, 0.07275391,\n", " -0.03637695, -0.01025391, -0.01708984, -0.10742188, -0.0007019 ,\n", " -0.07373047, 0.25390625, 0.05664062, 0.03515625, -0.00860596,\n", " 0.18554688, 0.02148438, 0.26367188, -0.02380371, -0.09912109,\n", " -0.04125977, -0.06933594, -0.11376953, 0.05004883, -0.05883789,\n", " 0.04614258, 0.08740234, 0.10546875, 0.10644531, 0.0279541 ,\n", " 0.09472656, 0.11621094, -0.17285156, -0.03491211, -0.20800781,\n", " 0.05957031, 0.10400391, -0.00179291, 0.05859375, -0.02978516,\n", " -0.03759766, 0.04858398, -0.06396484, 0.07958984, 0.06933594,\n", " -0.10498047, -0.14453125, 0.04345703, -0.06884766, -0.03564453,\n", " -0.01171875, 0.01367188, -0.06591797, 0.11914062, 0.03125 ,\n", " -0.04638672, -0.00196838, 0.00735474, -0.05664062, 0.02783203,\n", " 0.08251953, -0.01348877, 0.07177734, 0.14453125, 0.12792969,\n", " 0.04223633, 0.14160156, -0.01806641, 0.02160645, -0.09179688,\n", " 0.13378906, -0.1953125 , -0.05029297, -0.0378418 , -0.09619141,\n", " 0.10302734, -0.10693359, -0.14746094, 0.09960938, -0.23046875,\n", " 0.22753906, -0.07519531, 0.06494141, 0.09179688, 0.046875 ,\n", " 0.06298828, 0.06982422, 0.04614258, 0.09716797, -0.20214844,\n", " 0.19921875, 0.18652344, -0.11962891, -0.14257812, 0.15039062,\n", " -0.03369141, -0.14550781, -0.00069046, -0.07324219, 0.13378906,\n", " 0.03564453, -0.02294922, 0.02770996, -0.07910156, 0.20703125,\n", " -0.08349609, -0.04956055, 0.03149414, 0.1484375 , 0.05566406,\n", " -0.04492188, -0.07958984, 0.00476074, -0.02075195, 0.06005859,\n", " 0.00476074, 0.01116943, 0.17285156, -0.13476562, 0.03076172,\n", " -0.07958984, 0.09033203, 0.06103516, 0.07714844, -0.05029297,\n", " -0.09228516, -0.26757812, 0.10791016, 0.0859375 , 0.06298828,\n", " 0.10791016, -0.0267334 , 0.10205078, -0.12060547, 0.05297852,\n", " 0.09472656, -0.16503906, 0.04418945, 0.07226562, 0.04125977,\n", " 0.42578125, -0.10302734, -0.16015625, -0.09033203, -0.06396484,\n", " -0.0480957 , 0.14453125, 0.06542969, 0.04931641, 0.05419922,\n", " 0.13574219, -0.01928711, -0.21582031, -0.07421875, -0.14648438,\n", " 0.01147461, -0.16503906, -0.10498047, 0.00320435, 0.13476562,\n", " -0.00396729, -0.10351562, -0.13964844, 0.10449219, -0.01257324,\n", " -0.23339844, -0.03637695, -0.09375 , 0.18261719, 0.02709961,\n", " 0.12792969, -0.02478027, 0.01123047, 0.1640625 , 0.10693359], dtype=float32)" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.syn0[4,]" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:34.775518Z", "start_time": "2017-09-10T12:57:34.766603Z" } }, "outputs": [ { "data": { "text/plain": [ "'is'" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.index2word[4]" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:34.803979Z", "start_time": "2017-09-10T12:57:34.781263Z" } }, "outputs": [ { "data": { "text/plain": [ "array([ 0.00704956, -0.07324219, 0.171875 , 0.02258301, -0.1328125 ,\n", " 0.19824219, 0.11279297, -0.10791016, 0.07177734, 0.02087402,\n", " -0.12304688, -0.05908203, 0.10107422, 0.01074219, 0.14355469,\n", " 0.25976562, -0.03637695, 0.18554688, -0.07861328, -0.02270508,\n", " -0.12060547, 0.17773438, 0.04956055, 0.01721191, 0.07958984,\n", " -0.0456543 , -0.18847656, 0.18945312, -0.02319336, 0.06298828,\n", " 0.09765625, -0.01904297, -0.07910156, 0.15234375, 0.17382812,\n", " 0.1015625 , -0.16308594, 0.11474609, 0.10058594, -0.09277344,\n", " 0.109375 , 0.05883789, -0.02160645, 0.06347656, 0.04199219,\n", " -0.0088501 , 0.03222656, 0.10644531, 0.06445312, -0.11865234,\n", " 0.03051758, 0.06689453, 0.12207031, -0.08300781, 0.171875 ,\n", " 0.07861328, 0.09521484, -0.00778198, 0.02319336, 0.0234375 ,\n", " -0.0168457 , 0.15527344, -0.10986328, -0.17675781, -0.11621094,\n", " 0.0234375 , -0.01062012, 0.05273438, -0.13378906, 0.07958984,\n", " 0.07373047, 0.04394531, 0.11523438, -0.02062988, 0.07470703,\n", " -0.01153564, 0.08056641, 0.04174805, 0.08007812, 0.3515625 ,\n", " 0.09667969, -0.21289062, 0.16503906, -0.078125 , 0.06982422,\n", " -0.00139618, -0.09130859, 0.12988281, 0.25195312, -0.01611328,\n", " 0.09326172, -0.14648438, -0.00151062, -0.15136719, -0.02685547,\n", " -0.15722656, 0.02636719, 0.0859375 , 0.07177734, 0.07714844,\n", " -0.0390625 , 0.05444336, -0.12792969, 0.09130859, -0.18457031,\n", " -0.03759766, -0.0279541 , -0.08984375, -0.11669922, -0.09863281,\n", " 0.0480957 , -0.16210938, -0.10888672, 0.08496094, -0.0456543 ,\n", " 0.15820312, -0.03808594, -0.08203125, 0.203125 , 0.08642578,\n", " 0.06933594, 0.03222656, -0.16015625, 0.09472656, -0.0246582 ,\n", " 0.05419922, 0.0279541 , 0.04492188, 0.16992188, 0.07275391,\n", " -0.03637695, -0.01025391, -0.01708984, -0.10742188, -0.0007019 ,\n", " -0.07373047, 0.25390625, 0.05664062, 0.03515625, -0.00860596,\n", " 0.18554688, 0.02148438, 0.26367188, -0.02380371, -0.09912109,\n", " -0.04125977, -0.06933594, -0.11376953, 0.05004883, -0.05883789,\n", " 0.04614258, 0.08740234, 0.10546875, 0.10644531, 0.0279541 ,\n", " 0.09472656, 0.11621094, -0.17285156, -0.03491211, -0.20800781,\n", " 0.05957031, 0.10400391, -0.00179291, 0.05859375, -0.02978516,\n", " -0.03759766, 0.04858398, -0.06396484, 0.07958984, 0.06933594,\n", " -0.10498047, -0.14453125, 0.04345703, -0.06884766, -0.03564453,\n", " -0.01171875, 0.01367188, -0.06591797, 0.11914062, 0.03125 ,\n", " -0.04638672, -0.00196838, 0.00735474, -0.05664062, 0.02783203,\n", " 0.08251953, -0.01348877, 0.07177734, 0.14453125, 0.12792969,\n", " 0.04223633, 0.14160156, -0.01806641, 0.02160645, -0.09179688,\n", " 0.13378906, -0.1953125 , -0.05029297, -0.0378418 , -0.09619141,\n", " 0.10302734, -0.10693359, -0.14746094, 0.09960938, -0.23046875,\n", " 0.22753906, -0.07519531, 0.06494141, 0.09179688, 0.046875 ,\n", " 0.06298828, 0.06982422, 0.04614258, 0.09716797, -0.20214844,\n", " 0.19921875, 0.18652344, -0.11962891, -0.14257812, 0.15039062,\n", " -0.03369141, -0.14550781, -0.00069046, -0.07324219, 0.13378906,\n", " 0.03564453, -0.02294922, 0.02770996, -0.07910156, 0.20703125,\n", " -0.08349609, -0.04956055, 0.03149414, 0.1484375 , 0.05566406,\n", " -0.04492188, -0.07958984, 0.00476074, -0.02075195, 0.06005859,\n", " 0.00476074, 0.01116943, 0.17285156, -0.13476562, 0.03076172,\n", " -0.07958984, 0.09033203, 0.06103516, 0.07714844, -0.05029297,\n", " -0.09228516, -0.26757812, 0.10791016, 0.0859375 , 0.06298828,\n", " 0.10791016, -0.0267334 , 0.10205078, -0.12060547, 0.05297852,\n", " 0.09472656, -0.16503906, 0.04418945, 0.07226562, 0.04125977,\n", " 0.42578125, -0.10302734, -0.16015625, -0.09033203, -0.06396484,\n", " -0.0480957 , 0.14453125, 0.06542969, 0.04931641, 0.05419922,\n", " 0.13574219, -0.01928711, -0.21582031, -0.07421875, -0.14648438,\n", " 0.01147461, -0.16503906, -0.10498047, 0.00320435, 0.13476562,\n", " -0.00396729, -0.10351562, -0.13964844, 0.10449219, -0.01257324,\n", " -0.23339844, -0.03637695, -0.09375 , 0.18261719, 0.02709961,\n", " 0.12792969, -0.02478027, 0.01123047, 0.1640625 , 0.10693359], dtype=float32)" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.word_vec('is')" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:34.821734Z", "start_time": "2017-09-10T12:57:34.809618Z" } }, "outputs": [ { "data": { "text/plain": [ "array([ 0.00374603, -0.03891977, 0.09133173, 0.01200026, -0.07057451,\n", " 0.10534285, 0.05993645, -0.0573418 , 0.03814138, 0.01109213,\n", " -0.06538521, -0.03139528, 0.05370928, 0.00570823, 0.07628275,\n", " 0.13803546, -0.01933015, 0.09859675, -0.04177389, -0.01206513,\n", " -0.06408789, 0.09444531, 0.02633571, 0.00914615, 0.04229282,\n", " -0.02425999, -0.10015354, 0.10067248, -0.01232459, 0.033471 ,\n", " 0.05189303, -0.01011914, -0.04203335, 0.08095312, 0.09236959,\n", " 0.05396875, -0.08666135, 0.06097431, 0.05344982, -0.04929838,\n", " 0.05812019, 0.03126555, -0.01148133, 0.03373047, 0.022314 ,\n", " -0.00470281, 0.0171247 , 0.0565634 , 0.0342494 , -0.06305003,\n", " 0.01621657, 0.03554672, 0.06486628, -0.04410907, 0.09133173,\n", " 0.04177389, 0.0505957 , -0.00413523, 0.01232459, 0.01245433,\n", " -0.00895155, 0.08250991, -0.05837966, -0.09392638, -0.0617527 ,\n", " 0.01245433, -0.00564337, 0.02802224, -0.07109345, 0.04229282,\n", " 0.03917924, 0.02335186, 0.06123377, -0.0109624 , 0.03969816,\n", " -0.00612986, 0.04281175, 0.02218427, 0.04255228, 0.1868149 ,\n", " 0.0513741 , -0.1131268 , 0.08769922, -0.04151442, 0.03710352,\n", " -0.00074191, -0.04851998, 0.06901773, 0.13388401, -0.00856235,\n", " 0.04955784, -0.07783955, -0.00080272, -0.0804342 , -0.01427058,\n", " -0.08354778, 0.01401112, 0.04566586, 0.03814138, 0.04099549,\n", " -0.02075721, 0.02893036, -0.06797986, 0.04851998, -0.09807783,\n", " -0.01997882, -0.01485438, -0.04774158, -0.06201217, -0.05241196,\n", " 0.02555732, -0.08614243, -0.05786072, 0.04514693, -0.02425999,\n", " 0.0840667 , -0.02023828, -0.04359014, 0.1079375 , 0.04592533,\n", " 0.03684405, 0.0171247 , -0.08510457, 0.05033624, -0.01310299,\n", " 0.02880063, 0.01485438, 0.02387079, 0.09029387, 0.03866031,\n", " -0.01933015, -0.00544877, -0.00908128, -0.05708233, -0.00037298,\n", " -0.03917924, 0.13492188, 0.03009796, 0.01868149, -0.00457307,\n", " 0.09859675, 0.01141647, 0.14011118, -0.01264893, -0.05267143,\n", " -0.0219248 , -0.03684405, -0.06045538, 0.02659518, -0.03126555,\n", " 0.02451946, 0.04644426, 0.05604447, 0.0565634 , 0.01485438,\n", " 0.05033624, 0.0617527 , -0.09185066, -0.01855176, -0.11053215,\n", " 0.03165475, 0.05526607, -0.00095272, 0.03113582, -0.01582737,\n", " -0.01997882, 0.02581678, -0.03398993, 0.04229282, 0.03684405,\n", " -0.055785 , -0.07680168, 0.0230924 , -0.03658459, -0.01894096,\n", " -0.00622716, 0.00726502, -0.03502779, 0.06330949, 0.01660577,\n", " -0.02464919, -0.00104597, 0.00390819, -0.03009796, 0.01478951,\n", " 0.04384961, -0.00716772, 0.03814138, 0.07680168, 0.06797986,\n", " 0.02244373, 0.07524489, -0.00960021, 0.01148133, -0.04877945,\n", " 0.07109345, -0.10378606, -0.02672491, -0.02010855, -0.05111463,\n", " 0.05474715, -0.05682287, -0.07835847, 0.05293089, -0.12246755,\n", " 0.12091076, -0.03995763, 0.03450887, 0.04877945, 0.02490865,\n", " 0.033471 , 0.03710352, 0.02451946, 0.05163356, -0.10741857,\n", " 0.10586178, 0.09911568, -0.06356896, -0.07576382, 0.07991526,\n", " -0.0179031 , -0.07732061, -0.0003669 , -0.03891977, 0.07109345,\n", " 0.01894096, -0.01219486, 0.01472465, -0.04203335, 0.11001322,\n", " -0.04436854, -0.02633571, 0.0167355 , 0.0788774 , 0.02957903,\n", " -0.02387079, -0.04229282, 0.00252979, -0.01102727, 0.03191421,\n", " 0.00252979, 0.00593527, 0.09185066, -0.07161238, 0.0163463 ,\n", " -0.04229282, 0.04800105, 0.03243314, 0.04099549, -0.02672491,\n", " -0.04903891, -0.1421869 , 0.0573418 , 0.04566586, 0.033471 ,\n", " 0.0573418 , -0.01420572, 0.05422821, -0.06408789, 0.02815197,\n", " 0.05033624, -0.08769922, 0.02348159, 0.03840084, 0.0219248 ,\n", " 0.2262536 , -0.05474715, -0.08510457, -0.04800105, -0.03398993,\n", " -0.02555732, 0.07680168, 0.03476833, 0.02620598, 0.02880063,\n", " 0.07213131, -0.01024887, -0.11468359, -0.0394387 , -0.07783955,\n", " 0.00609743, -0.08769922, -0.055785 , 0.00170274, 0.07161238,\n", " -0.00210815, -0.05500661, -0.07420703, 0.05552554, -0.00668123,\n", " -0.12402434, -0.01933015, -0.04981731, 0.09703996, 0.01440032,\n", " 0.06797986, -0.01316786, 0.0059677 , 0.08718029, 0.05682287], dtype=float32)" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.syn0norm[4,]" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:34.831845Z", "start_time": "2017-09-10T12:57:34.826363Z" } }, "outputs": [ { "data": { "text/plain": [ "300" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.vector_size" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.079426Z", "start_time": "2017-09-10T12:57:34.836351Z" } }, "outputs": [ { "data": { "text/plain": [ "[('Goofy', 0.796820342540741),\n", " ('Minni', 0.7049012184143066),\n", " ('Mickey_Minnie_Goofy', 0.5468583703041077),\n", " ('Mickey_Goofy', 0.5395780205726624),\n", " ('Pluto_Goofy', 0.5347572565078735),\n", " ('Mickey_Minnie', 0.5343326330184937),\n", " ('Daisy_Duck', 0.5236194729804993),\n", " ('Sora_Donald', 0.5230178236961365),\n", " ('Mickey_Mouse_Goofy', 0.5048299431800842),\n", " ('nephews_Huey_Dewey', 0.5034050345420837)]" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "model.similar_by_vector( (model.word_vec('Goofy') + model.word_vec('Minni'))/2 )" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.402374Z", "start_time": "2017-09-10T12:57:35.083676Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.3741233214730024\n" ] } ], "source": [ "import pyemd\n", "# This method only works if `pyemd` is installed (can be installed via pip, but requires a C compiler).\n", "\n", "sentence_obama = 'Obama speaks to the media in Illinois'.lower().split()\n", "sentence_president = 'The president greets the press in Chicago'.lower().split()\n", "\n", "# Remove their stopwords.\n", "import nltk\n", "stopwords = nltk.corpus.stopwords.words('english')\n", "sentence_obama = [w for w in sentence_obama if w not in stopwords]\n", "sentence_president = [w for w in sentence_president if w not in stopwords]\n", "\n", "# Compute WMD.\n", "distance = model.wmdistance(sentence_obama, sentence_president)\n", "print(distance)" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.411055Z", "start_time": "2017-09-10T12:57:35.403743Z" }, "collapsed": true }, "outputs": [], "source": [ "import nltk\n", "stopwords = nltk.corpus.stopwords.words('english')\n", "\n", "def sentence_distance(s1, s2):\n", " sentence_obama = [w for w in s1.split() if w not in stopwords]\n", " sentence_president = [w for w in s2.split() if w not in stopwords]\n", " print(sentence_obama, sentence_president, sep='\\t')\n", " print(model.wmdistance(sentence_obama, sentence_president), end='\\n\\n')" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.425796Z", "start_time": "2017-09-10T12:57:35.412421Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['I', 'run', 'every', 'day', 'morning']\t['I', 'like', 'football']\n", "2.3376889762187165\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['I', 'run', 'since', 'I', 'born']\n", "1.820895138922882\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['idiot']\n", "3.3750919594666007\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['Are', 'idiot?']\n", "3.976704031329918\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['Is', 'possible', 'die?']\n", "3.1081644990045545\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['Is', 'possible', 'die']\n", "3.1858849239788394\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['I', 'run', 'every', 'day']\n", "0.5563409008898735\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['I', 'eat', 'every', 'day']\n", "1.2005782773353697\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['I', 'breakfast', 'morning']\n", "1.711929159530717\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['I', 'breakfast', 'every', 'day', 'morning']\n", "0.6631782969713211\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['Each', 'day', 'I', 'run']\n", "1.1626442679190636\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['I', 'run', 'every', 'day', 'morning']\n", "0.0\n", "\n" ] } ], "source": [ "sentence_distance('I run every day in the morning', 'I like football')\n", "sentence_distance('I run every day in the morning', 'I run since I was born')\n", "sentence_distance('I run every day in the morning', 'you are idiot')\n", "sentence_distance('I run every day in the morning', 'Are you idiot?')\n", "sentence_distance('I run every day in the morning', 'Is it possible to die?')\n", "sentence_distance('I run every day in the morning', 'Is it possible to die')\n", "sentence_distance('I run every day in the morning', 'I run every day')\n", "sentence_distance('I run every day in the morning', 'I eat every day')\n", "sentence_distance('I run every day in the morning', 'I have breakfast in the morning')\n", "sentence_distance('I run every day in the morning', 'I have breakfast every day in the morning')\n", "sentence_distance('I run every day in the morning', 'Each day I run')\n", "sentence_distance('I run every day in the morning', 'I run every day in the morning')" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.435685Z", "start_time": "2017-09-10T12:57:35.426717Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['I', 'run', 'every', 'day', 'morning']\t['Each', 'day', 'I', 'run']\n", "1.1626442679190636\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['Each', 'I', 'run']\n", "1.804157856150221\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['Each', 'day', 'run']\n", "1.7262934209024152\n", "\n", "['I', 'run', 'every', 'day', 'morning']\t['Each', 'day', 'I']\n", "1.716070718874115\n", "\n", "['I', 'every', 'day', 'morning']\t['Each', 'day', 'I', 'run']\n", "1.4545022893238069\n", "\n", "['I', 'run', 'day', 'morning']\t['Each', 'day', 'I', 'run']\n", "1.0145831108093262\n", "\n", "['I', 'run', 'every', 'morning']\t['Each', 'day', 'I', 'run']\n", "1.1818685887026787\n", "\n", "['I', 'run', 'every']\t['Each', 'day', 'I', 'run']\n", "1.3422707755860321\n", "\n" ] } ], "source": [ "sentence_distance('I run every day in the morning', 'Each day I run')\n", "sentence_distance('I run every day in the morning', 'Each I run')\n", "sentence_distance('I run every day in the morning', 'Each day run')\n", "sentence_distance('I run every day in the morning', 'Each day I')\n", "sentence_distance('I every day in the morning', 'Each day I run')\n", "sentence_distance('I run day in the morning', 'Each day I run')\n", "sentence_distance('I run every in morning', 'Each day I run')\n", "sentence_distance('I run every in', 'Each day I run')" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.448516Z", "start_time": "2017-09-10T12:57:35.436914Z" }, "collapsed": true }, "outputs": [], "source": [ "def get_vect(w):\n", " try:\n", " return model.word_vec(w)\n", " except KeyError:\n", " return np.zeros(model.vector_size)\n", " \n", "def calc_avg(s):\n", " ws = [get_vect(w) for w in s.split() if w not in stopwords]\n", " avg_vect = sum(ws)/len(ws)\n", " return avg_vect\n", "\n", "\n", "from scipy.spatial import distance\n", "def get_euclidean(s1, s2):\n", " return distance.euclidean(calc_avg(s1), calc_avg(s2))" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.455703Z", "start_time": "2017-09-10T12:57:35.450671Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Astrology:', 'I', 'Capricorn', 'Sun', 'Cap', 'moon', 'cap', 'rising...what', 'say', 'me?']\t[\"I'm\", 'triple', 'Capricorn', '(Sun,', 'Moon', 'ascendant', 'Capricorn)', 'What', 'say', 'me?']\n", "2.49434997539555\n", "\n", "0.8109230127174104\n" ] } ], "source": [ "# same questions\n", "s1 = 'Astrology: I am a Capricorn Sun Cap moon and cap rising...what does that say about me?'\n", "s2 = \"I'm a triple Capricorn (Sun, Moon and ascendant in Capricorn) What does this say about me?\"\n", "sentence_distance(s1, s2)\n", "print(get_euclidean(s1, s2))" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.466581Z", "start_time": "2017-09-10T12:57:35.456745Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Astrology', 'I', 'Capricorn', 'Sun', 'Cap', 'moon', 'cap', 'rising', 'say']\t['I', 'triple', 'Capricorn', 'Sun', 'Moon', 'ascendant', 'Capricorn', 'What', 'say']\n", "2.0696045677228887\n", "\n", "0.9102963209152222\n" ] } ], "source": [ "# same questions as above without punctuations\n", "s1 = 'Astrology I am a Capricorn Sun Cap moon and cap rising what does that say about me'\n", "s2 = \"I am a triple Capricorn Sun Moon and ascendant in Capricorn What does this say about me\"\n", "sentence_distance(s1, s2)\n", "print(get_euclidean(s1, s2))" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.473424Z", "start_time": "2017-09-10T12:57:35.467803Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['What', 'best', 'way', 'make', 'money', 'online']\t['What', 'best', 'way', 'ask', 'money', 'online?']\n", "0.9525941046914722\n", "\n", "0.5846541179497374\n" ] } ], "source": [ "# same questions\n", "s1 = 'What is best way to make money online'\n", "s2 = 'What is best way to ask for money online?'\n", "sentence_distance(s1,s2)\n", "print(get_euclidean(s1, s2))" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.480354Z", "start_time": "2017-09-10T12:57:35.474342Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['How', 'Darth', 'Vader', 'fought', 'Darth', 'Maul', 'Star', 'Wars', 'Legends?']\t['Does', 'Quora', 'character', 'limit', 'profile', 'descriptions?']\n", "4.066483587027646\n", "\n", "1.7708145158159805\n" ] } ], "source": [ "# different questions\n", "s1 = 'How did Darth Vader fought Darth Maul in Star Wars Legends?'\n", "s2 = 'Does Quora have a character limit for profile descriptions?'\n", "sentence_distance(s1,s2)\n", "print(get_euclidean(s1, s2))" ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T12:57:35.490536Z", "start_time": "2017-09-10T12:57:35.481434Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4.066483587027646\n", "4.066483587027646\n", "4.066483587027646\n", "4.066483587027646\n" ] } ], "source": [ "# the order of the words doesn't change the distanace bewteeen the two phrases\n", "s1ws = [w for w in s1.split() if w not in stopwords]\n", "s2ws = [w for w in s2.split() if w not in stopwords]\n", "print(model.wmdistance(s1ws, s2ws) )\n", "print(model.wmdistance(s1ws[::-1], s2ws) )\n", "print(model.wmdistance(s1ws, s2ws[::-1]) )\n", "print(model.wmdistance(s1ws[3:]+s1ws[0:3], s2ws[::-1]) )" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "conclusion:\n", "- distance work well\n", "- the order of the words is not taken into account" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Translate using google translate\n", "- https://github.com/ssut/py-googletrans\n", "- should be free and unlimted, interned connection required\n", "- pip install googletrans" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T13:24:04.307396Z", "start_time": "2017-09-10T13:24:04.300177Z" }, "collapsed": true }, "outputs": [], "source": [ "from googletrans import Translator" ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T13:24:20.243136Z", "start_time": "2017-09-10T13:24:20.236702Z" }, "collapsed": true }, "outputs": [], "source": [ "o = open(\"../AliceNelPaeseDelleMeraviglie.txt\")\n", "all = ''\n", "for l in o: all += l" ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T13:24:28.331327Z", "start_time": "2017-09-10T13:24:28.328841Z" }, "collapsed": true }, "outputs": [], "source": [ "translator = Translator()" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T13:24:30.379798Z", "start_time": "2017-09-10T13:24:28.968707Z" }, "collapsed": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " ranuncolo e facendosi vento con\n", "una delle sue foglie. - Oh, avrei voluto insegnargli dei giuochi se... se fossi stata d'una statura adatta!\n", "Poveretta me! avevo dimenticato che avevo bisogno di crescere ancora! Vediamo, come debbo fare?\n", "Forse dovrei mangiare o bere qualche cosa; ma che cosa?\n", "Il problema era questo: che cosa? Alice guardò intorno fra i fiori e i fili d'erba; ma non poté veder\n", "nulla che le sembrasse adatto a mangiare o a bere per l'occasione. C'era però un grosso fungo vicino\n", "a lei, press'a poco alto quanto lei; e dopo che l'ebbe esaminato di sotto, ai lati e di dietro, le parve\n", "cosa naturale di vedere che ci fosse di sopra. \n", "Alzandosi in punta dei piedi, si affacciò all'orlo del fungo, e gli occhi suoi s'incontrarono con quelli\n", "d'un grosso Bruco turchino che se ne stava seduto nel centro con le braccia conserte, fumando\n", "tranquillamente una lunga pipa, e non facendo la minima attenzione ne a lei, né ad altro.\n", "\n", "\n", "\n", "\n", "CONSIGLI DEL BRUCO\n", "Il Bruco e Alice si guardarono a vicend\n", "\n", "ranch and getting wind with\n", "one of her leaves. \"Oh, I wanted to teach him some jokes if ... if I had been of a suitable stature!\n", "Poverty me! I had forgotten that I needed to grow again! Let's see how do I do it?\n", "Maybe I should eat or drink something; but what?\n", "The problem was this: what? Alice looked around in the flowers and grass roots; but could not see it\n", "nothing that seems fit to eat or drink for the occasion. There was, however, a big fungus near\n", "to her, she pressed as high as her; and after looking at it below, at the sides and behind, it seemed to her\n", "natural thing to see that it was above.\n", "Standing to the tip of his feet, he sprang to the brim of the fungus, and his eyes met with those\n", "a big turquoise Bruco sitting in the center with his arms folded, smoking\n", "quietly a long pipe, and not paying the least attention to her, or to anything else.\n", "\n", "\n", "\n", "\n", "BRUCO ADVICE\n", "Bruco and Alice looked at each other\n" ] } ], "source": [ "for i in range(42, 43, 1):\n", " print(all[i * 1000:i * 1000 + 1000], end='\\n\\n')\n", " print(translator.translate(all[i * 1000:i * 1000 + 1000], dest='en').text)" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T13:24:45.955157Z", "start_time": "2017-09-10T13:24:45.593413Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Languge: it with confidence: 0.21400356\n" ] } ], "source": [ "## if language is not passed it is guessed, so it can detect a language\n", "frase = \"Ciao Giulia, ti va un gelato?\"\n", "det = translator.detect(frase)\n", "print(\"Languge:\", det.lang, \" with confidence:\", det.confidence)" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T13:24:49.682076Z", "start_time": "2017-09-10T13:24:48.959670Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[la] veritas lux mea\r\n", " ->\r\n", "[en] The truth is my light\r\n", "[pron.] The truth is my light\r\n" ] } ], "source": [ "# command line usage, but it seems to don't work to me\n", "!translate \"veritas lux mea\" -s la -d en" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T13:24:55.594612Z", "start_time": "2017-09-10T13:24:54.604695Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The quick brown fox -> 빠른 갈색 여우\n", "jumps over -> 점프하다\n", "the lazy dog -> 게으른 개\n" ] } ], "source": [ "translations = translator.translate(\n", " ['The quick brown fox', 'jumps over', 'the lazy dog'], dest='ko')\n", "for translation in translations:\n", " print(translation.origin, ' -> ', translation.text)" ] }, { "cell_type": "code", "execution_count": 67, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T13:24:58.701988Z", "start_time": "2017-09-10T13:24:58.612950Z" } }, "outputs": [ { "data": { "text/plain": [ "('Ciao Giulia, ti va un gelato?',\n", " 'Hi Giulia, do you go ice cream?',\n", " 'it',\n", " 'Hi Giulia, do you go ice cream?',\n", " 'en')" ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "phrase = translator.translate(frase, 'en')\n", "phrase.origin, phrase.text, phrase.src, phrase.pronunciation, phrase.dest" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# TreeTagger usage to tag an italian (or other languages) sentence\n", "How To install:\n", "- nltk need to be already installed and working\n", "- follow the instruction from http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/ \n", "- run TreeTagger on terminal (echo 'Ciao Giulia come stai?' | tree-tagger-italian) to see if everything is working\n", "- download the github to get the python support from: https://github.com/miotto/treetagger-python\n", "- run /home/ale/anaconda3/bin/python setup.py install and everything should work (note that you need to specify which python you want, the default is python2)\n", "\n", "Infos:\n", "- The maximum character limit on a single text is 15k.\n", "- this API does not guarantee that the library would work properly at all times\n", "- for a more stability API use the non-free https://cloud.google.com/translate/docs/\n", "- If you get HTTP 5xx error or errors like #6, it's probably because Google has banned your client IP address" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T13:25:29.915440Z", "start_time": "2017-09-10T13:25:29.675724Z" } }, "outputs": [ { "data": { "text/plain": [ "[['What', 'WP', 'what'],\n", " ['is', 'VBZ', 'be'],\n", " ['the', 'DT', 'the'],\n", " ['airspeed', 'NN', 'airspeed'],\n", " ['of', 'IN', 'of'],\n", " ['an', 'DT', 'an'],\n", " ['unladen', 'JJ', '<unknown>'],\n", " ['swallow', 'NN', 'swallow'],\n", " ['?', 'SENT', '?']]" ] }, "execution_count": 70, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from treetagger import TreeTagger\n", "tt = TreeTagger(language='english')\n", "tt.tag('What is the airspeed of an unladen swallow?')" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "ExecuteTime": { "end_time": "2017-09-10T13:25:30.963426Z", "start_time": "2017-09-10T13:25:30.420851Z" } }, "outputs": [ { "data": { "text/plain": [ "[['Proviamo', 'VER:pres', 'provare'],\n", " ['a', 'PRE', 'a'],\n", " ['vedere', 'VER:infi', 'vedere'],\n", " ['un', 'DET:indef', 'un'],\n", " ['pò', 'ADV', 'pò'],\n", " ['se', 'PRO:refl', 'se'],\n", " ['funziona', 'VER:pres', 'funzionare'],\n", " ['bene', 'ADV', 'bene'],\n", " ['questo', 'PRO:demo', 'questo'],\n", " ['tagger', 'VER:infi', '<unknown>']]" ] }, "execution_count": 71, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tt = TreeTagger(language='italian')\n", "tt.tag('Proviamo a vedere un pò se funziona bene questo tagger')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" }, "toc": { "colors": { "hover_highlight": "#DAA520", "navigate_num": "#000000", "navigate_text": "#333333", "running_highlight": "#FF0000", "selected_highlight": "#FFD700", "sidebar_border": "#EEEEEE", "wrapper_background": "#FFFFFF" }, "moveMenuLeft": true, "nav_menu": { "height": "153px", "width": "252px" }, "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 4, "toc_cell": true, "toc_section_display": "block", "toc_window_display": true, "widenNotebook": false } }, "nbformat": 4, "nbformat_minor": 2 }
gpl-3.0
ES-DOC/esdoc-jupyterhub
notebooks/nerc/cmip6/models/ukesm1-0-ll/aerosol.ipynb
1
84294
{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "source": [ "# ES-DOC CMIP6 Model Properties - Aerosol \n", "**MIP Era**: CMIP6 \n", "**Institute**: NERC \n", "**Source ID**: UKESM1-0-LL \n", "**Topic**: Aerosol \n", "**Sub-Topics**: Transport, Emissions, Concentrations, Optical Radiative Properties, Model. \n", "**Properties**: 69 (37 required) \n", "**Model descriptions**: [Model description details](https://specializations.es-doc.org/cmip6/aerosol?client=jupyter-notebook) \n", "**Initialized From**: -- \n", "\n", "**Notebook Help**: [Goto notebook help page](https://es-doc.org/cmip6-models-documenting-with-ipython) \n", "**Notebook Initialised**: 2018-02-15 16:54:26" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### Document Setup \n", "**IMPORTANT: to be executed each time you run the notebook** " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# DO NOT EDIT ! \n", "from pyesdoc.ipython.model_topic import NotebookOutput \n", "\n", "# DO NOT EDIT ! \n", "DOC = NotebookOutput('cmip6', 'nerc', 'ukesm1-0-ll', 'aerosol')" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Authors \n", "*Set document authors*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_author(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Contributors \n", "*Specify document contributors* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_contributor(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Publication \n", "*Specify document publication status* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set publication status: \n", "# 0=do not publish, 1=publish. \n", "DOC.set_publication_status(0)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Table of Contents \n", "[1. Key Properties](#1.-Key-Properties) \n", "[2. Key Properties --&gt; Software Properties](#2.-Key-Properties---&gt;-Software-Properties) \n", "[3. Key Properties --&gt; Timestep Framework](#3.-Key-Properties---&gt;-Timestep-Framework) \n", "[4. Key Properties --&gt; Meteorological Forcings](#4.-Key-Properties---&gt;-Meteorological-Forcings) \n", "[5. Key Properties --&gt; Resolution](#5.-Key-Properties---&gt;-Resolution) \n", "[6. Key Properties --&gt; Tuning Applied](#6.-Key-Properties---&gt;-Tuning-Applied) \n", "[7. Transport](#7.-Transport) \n", "[8. Emissions](#8.-Emissions) \n", "[9. Concentrations](#9.-Concentrations) \n", "[10. Optical Radiative Properties](#10.-Optical-Radiative-Properties) \n", "[11. Optical Radiative Properties --&gt; Absorption](#11.-Optical-Radiative-Properties---&gt;-Absorption) \n", "[12. Optical Radiative Properties --&gt; Mixtures](#12.-Optical-Radiative-Properties---&gt;-Mixtures) \n", "[13. Optical Radiative Properties --&gt; Impact Of H2o](#13.-Optical-Radiative-Properties---&gt;-Impact-Of-H2o) \n", "[14. Optical Radiative Properties --&gt; Radiative Scheme](#14.-Optical-Radiative-Properties---&gt;-Radiative-Scheme) \n", "[15. Optical Radiative Properties --&gt; Cloud Interactions](#15.-Optical-Radiative-Properties---&gt;-Cloud-Interactions) \n", "[16. Model](#16.-Model) \n", "\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "# 1. Key Properties \n", "*Key properties of the aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 1.1. Model Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of aerosol model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.model_overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.2. Model Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Name of aerosol model code*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.model_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.3. Scheme Scope\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Atmospheric domains covered by the aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.scheme_scope') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"troposhere\" \n", "# \"stratosphere\" \n", "# \"mesosphere\" \n", "# \"mesosphere\" \n", "# \"whole atmosphere\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.4. Basic Approximations\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Basic approximations made in the aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.basic_approximations') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.5. Prognostic Variables Form\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Prognostic variables in the aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.prognostic_variables_form') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"3D mass/volume ratio for aerosols\" \n", "# \"3D number concenttration for aerosols\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.6. Number Of Tracers\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of tracers in the aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.number_of_tracers') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.7. Family Approach\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Are aerosol calculations generalized into families of species?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.family_approach') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 2. Key Properties --&gt; Software Properties \n", "*Software properties of aerosol code*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 2.1. Repository\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Location of code for this component.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.software_properties.repository') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.2. Code Version\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Code version identifier.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_version') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.3. Code Languages\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Code language(s).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_languages') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 3. Key Properties --&gt; Timestep Framework \n", "*Physical properties of seawater in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 3.1. Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Mathematical method deployed to solve the time evolution of the prognostic variables*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Uses atmospheric chemistry time stepping\" \n", "# \"Specific timestepping (operator splitting)\" \n", "# \"Specific timestepping (integrated)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.2. Split Operator Advection Timestep\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Timestep for aerosol advection (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_advection_timestep') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.3. Split Operator Physical Timestep\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Timestep for aerosol physics (in seconds).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_physical_timestep') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.4. Integrated Timestep\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Timestep for the aerosol model (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_timestep') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.5. Integrated Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Specify the type of timestep scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_scheme_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Explicit\" \n", "# \"Implicit\" \n", "# \"Semi-implicit\" \n", "# \"Semi-analytic\" \n", "# \"Impact solver\" \n", "# \"Back Euler\" \n", "# \"Newton Raphson\" \n", "# \"Rosenbrock\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 4. Key Properties --&gt; Meteorological Forcings \n", "**" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 4.1. Variables 3D\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Three dimensionsal forcing variables, e.g. U, V, W, T, Q, P, conventive mass flux*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_3D') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.2. Variables 2D\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Two dimensionsal forcing variables, e.g. land-sea mask definition*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_2D') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.3. Frequency\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Frequency with which meteological forcings are applied (in seconds).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.frequency') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 5. Key Properties --&gt; Resolution \n", "*Resolution in the aersosol model grid*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 5.1. Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.resolution.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.2. Canonical Horizontal Resolution\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.resolution.canonical_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.3. Number Of Horizontal Gridpoints\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Total number of horizontal (XY) points (or degrees of freedom) on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_horizontal_gridpoints') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.4. Number Of Vertical Levels\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Number of vertical levels resolved on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_vertical_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.5. Is Adaptive Grid\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Default is False. Set true if grid resolution changes during execution.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.resolution.is_adaptive_grid') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 6. Key Properties --&gt; Tuning Applied \n", "*Tuning methodology for aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 6.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *General overview description of tuning: explain and motivate the main targets and metrics retained. &amp;Document the relative weight given to climate performance metrics versus process oriented metrics, &amp;and on the possible conflicts with parameterization level tuning. In particular describe any struggle &amp;with a parameter value that required pushing it to its limits to solve a particular model deficiency.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.2. Global Mean Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List set of metrics of the global mean state used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.global_mean_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.3. Regional Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List of regional metrics of mean state used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.regional_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.4. Trend Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List observed trend metrics used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.trend_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 7. Transport \n", "*Aerosol transport*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 7.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of transport in atmosperic aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.transport.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.2. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Method for aerosol transport modeling*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.transport.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Uses Atmospheric chemistry transport scheme\" \n", "# \"Specific transport scheme (eulerian)\" \n", "# \"Specific transport scheme (semi-lagrangian)\" \n", "# \"Specific transport scheme (eulerian and semi-lagrangian)\" \n", "# \"Specific transport scheme (lagrangian)\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.3. Mass Conservation Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Method used to ensure mass conservation.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.transport.mass_conservation_scheme') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Uses Atmospheric chemistry transport scheme\" \n", "# \"Mass adjustment\" \n", "# \"Concentrations positivity\" \n", "# \"Gradients monotonicity\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.4. Convention\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Transport by convention*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.transport.convention') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Uses Atmospheric chemistry transport scheme\" \n", "# \"Convective fluxes connected to tracers\" \n", "# \"Vertical velocities connected to tracers\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 8. Emissions \n", "*Atmospheric aerosol emissions*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 8.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of emissions in atmosperic aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.2. Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Method used to define aerosol species (several methods allowed because the different species may not use the same method).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.method') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Prescribed (climatology)\" \n", "# \"Prescribed CMIP6\" \n", "# \"Prescribed above surface\" \n", "# \"Interactive\" \n", "# \"Interactive above surface\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.3. Sources\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Sources of the aerosol species are taken into account in the emissions scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.sources') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Vegetation\" \n", "# \"Volcanos\" \n", "# \"Bare ground\" \n", "# \"Sea surface\" \n", "# \"Lightning\" \n", "# \"Fires\" \n", "# \"Aircraft\" \n", "# \"Anthropogenic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.4. Prescribed Climatology\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Specify the climatology type for aerosol emissions*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Interannual\" \n", "# \"Annual\" \n", "# \"Monthly\" \n", "# \"Daily\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.5. Prescribed Climatology Emitted Species\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of aerosol species emitted and prescribed via a climatology*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology_emitted_species') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.6. Prescribed Spatially Uniform Emitted Species\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of aerosol species emitted and prescribed as spatially uniform*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.prescribed_spatially_uniform_emitted_species') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.7. Interactive Emitted Species\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of aerosol species emitted and specified via an interactive method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.interactive_emitted_species') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.8. Other Emitted Species\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of aerosol species emitted and specified via an &quot;other method&quot;*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.other_emitted_species') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.9. Other Method Characteristics\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Characteristics of the &quot;other method&quot; used for aerosol emissions*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.emissions.other_method_characteristics') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 9. Concentrations \n", "*Atmospheric aerosol concentrations*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 9.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of concentrations in atmosperic aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.concentrations.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.2. Prescribed Lower Boundary\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of species prescribed at the lower boundary.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.concentrations.prescribed_lower_boundary') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.3. Prescribed Upper Boundary\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of species prescribed at the upper boundary.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.concentrations.prescribed_upper_boundary') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.4. Prescribed Fields Mmr\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of species prescribed as mass mixing ratios.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 9.5. Prescribed Fields Mmr\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *List of species prescribed as AOD plus CCNs.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 10. Optical Radiative Properties \n", "*Aerosol optical and radiative properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 10.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of optical and radiative properties*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 11. Optical Radiative Properties --&gt; Absorption \n", "*Absortion properties in aerosol scheme*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 11.1. Black Carbon\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Absorption mass coefficient of black carbon at 550nm (if non-absorbing enter 0)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.black_carbon') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.2. Dust\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Absorption mass coefficient of dust at 550nm (if non-absorbing enter 0)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.dust') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.3. Organics\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Absorption mass coefficient of organics at 550nm (if non-absorbing enter 0)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.organics') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 12. Optical Radiative Properties --&gt; Mixtures \n", "**" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 12.1. External\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there external mixing with respect to chemical composition?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.external') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.2. Internal\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there internal mixing with respect to chemical composition?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.internal') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.3. Mixing Rule\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If there is internal mixing with respect to chemical composition then indicate the mixinrg rule*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.mixing_rule') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 13. Optical Radiative Properties --&gt; Impact Of H2o \n", "**" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 13.1. Size\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does H2O impact size?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.size') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.2. Internal Mixture\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does H2O impact internal mixture?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.internal_mixture') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 14. Optical Radiative Properties --&gt; Radiative Scheme \n", "*Radiative scheme for aerosol*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 14.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of radiative scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.2. Shortwave Bands\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of shortwave bands*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.shortwave_bands') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.3. Longwave Bands\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of longwave bands*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.longwave_bands') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 15. Optical Radiative Properties --&gt; Cloud Interactions \n", "*Aerosol-cloud interactions*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 15.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of aerosol-cloud interactions*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.2. Twomey\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the Twomey effect included?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.3. Twomey Minimum Ccn\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If the Twomey effect is included, then what is the minimum CCN number?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey_minimum_ccn') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.4. Drizzle\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does the scheme affect drizzle?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.drizzle') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.5. Cloud Lifetime\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Does the scheme affect cloud lifetime?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.cloud_lifetime') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.6. Longwave Bands\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of longwave bands*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.longwave_bands') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 16. Model \n", "*Aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 16.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of atmosperic aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.2. Processes\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Processes included in the Aerosol model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.processes') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Dry deposition\" \n", "# \"Sedimentation\" \n", "# \"Wet deposition (impaction scavenging)\" \n", "# \"Wet deposition (nucleation scavenging)\" \n", "# \"Coagulation\" \n", "# \"Oxidation (gas phase)\" \n", "# \"Oxidation (in cloud)\" \n", "# \"Condensation\" \n", "# \"Ageing\" \n", "# \"Advection (horizontal)\" \n", "# \"Advection (vertical)\" \n", "# \"Heterogeneous chemistry\" \n", "# \"Nucleation\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.3. Coupling\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Other model components coupled to the Aerosol model*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.coupling') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Radiation\" \n", "# \"Land surface\" \n", "# \"Heterogeneous chemistry\" \n", "# \"Clouds\" \n", "# \"Ocean\" \n", "# \"Cryosphere\" \n", "# \"Gas phase chemistry\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.4. Gas Phase Precursors\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List of gas phase aerosol precursors.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.gas_phase_precursors') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"DMS\" \n", "# \"SO2\" \n", "# \"Ammonia\" \n", "# \"Iodine\" \n", "# \"Terpene\" \n", "# \"Isoprene\" \n", "# \"VOC\" \n", "# \"NOx\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.5. Scheme Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Type(s) of aerosol scheme used by the aerosols model (potentially multiple: some species may be covered by one type of aerosol scheme and other species covered by another type).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.scheme_type') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Bulk\" \n", "# \"Modal\" \n", "# \"Bin\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 16.6. Bulk Scheme Species\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List of species covered by the bulk scheme.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.aerosol.model.bulk_scheme_species') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Sulphate\" \n", "# \"Nitrate\" \n", "# \"Sea salt\" \n", "# \"Dust\" \n", "# \"Ice\" \n", "# \"Organic\" \n", "# \"Black carbon / soot\" \n", "# \"SOA (secondary organic aerosols)\" \n", "# \"POM (particulate organic matter)\" \n", "# \"Polar stratospheric ice\" \n", "# \"NAT (Nitric acid trihydrate)\" \n", "# \"NAD (Nitric acid dihydrate)\" \n", "# \"STS (supercooled ternary solution aerosol particule)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### \u00a92017 [ES-DOC](https://es-doc.org) \n" ], "cell_type": "markdown", "metadata": {} } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.10", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }
gpl-3.0
qinwf-nuan/keras-js
notebooks/pipeline/pipeline_10.ipynb
1
27682
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using TensorFlow backend.\n" ] } ], "source": [ "import numpy as np\n", "import json\n", "from keras.models import Model\n", "from keras.layers import Input\n", "from keras.layers.convolutional import Conv2D\n", "from keras.layers.pooling import MaxPooling2D, AveragePooling2D\n", "from keras.layers.normalization import BatchNormalization\n", "from keras import backend as K" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def format_decimal(arr, places=8):\n", " return [round(x * 10**places) / 10**places for x in arr]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### pipeline 10" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'weights': [{'shape': [3, 3, 2, 5], 'data': [-0.41301916, -0.06548232, -0.27373104, 0.03463608, -0.45993658, 0.4865354, -0.19660301, -0.15413411, 0.07321166, 0.4660147, 0.03787414, 0.28148745, -0.48925452, 0.03053849, 0.46427825, -0.3340367, 0.49428242, -0.11228813, -0.37041425, -0.07633279, -0.42790588, 0.15693558, 0.49303097, 0.19876782, 0.04950603, 0.05806109, 0.08003724, 0.22830494, 0.49597338, -0.2804305, 0.42939438, 0.24273274, -0.45638821, -0.02349228, 0.17600165, 0.49173199, -0.45981763, -0.30585715, -0.0128569, -0.30422846, -0.35850094, 0.13143687, 0.33597551, -0.12145981, 0.08471007, -0.36319988, 0.11638593, 0.43377726, -0.0844127, -0.04048088, 0.41488413, -0.19283021, 0.31081145, -0.40510823, 0.39260834, -0.41011489, 0.40955659, 0.4535928, 0.4187157, 0.32875932, 0.3839722, -0.22723331, 0.39733175, 0.27852637, -0.46359521, 0.06622387, -0.1612151, -0.02176895, 0.07599637, -0.33743003, 0.38440459, 0.37484185, 0.29285209, -0.16604515, 0.26451534, 0.34501492, 0.36699692, -0.06173546, -0.1354522, -0.42280472, -0.0312215, 0.26075881, -0.02264135, -0.49086194, -0.14262083, 0.41873643, -0.07520476, -0.20732579, 0.39650289, -0.12683894]}, {'shape': [5], 'data': [0.36415093, 0.40228923, -0.41342038, 0.31929504, -0.17413196]}, {'shape': [5], 'data': [-0.45418954, -0.25829741, -0.07535405, -0.2309887, 0.36984941]}, {'shape': [5], 'data': [0.05203284, -0.2282396, -0.35603683, 0.1004984, 0.23607177]}, {'shape': [5], 'data': [-0.24926131, 0.02676308, 0.42653452, -0.42498293, 0.45429329]}, {'shape': [5], 'data': [0.23396634, 0.49746282, 0.41449719, 0.23837308, 0.10884336]}, {'shape': [3, 3, 5, 4], 'data': [-0.32984696, 0.47667503, 0.41403308, 0.03666963, -0.19412715, -0.24840993, -0.40496129, 0.03660749, 0.29243463, 0.29830495, 0.10882022, -0.09587598, -0.3183394, -0.18497127, 0.13730758, 0.32157827, -0.26656768, -0.46705981, 0.33862105, 0.11091295, 0.19265623, 0.37372817, 0.19199249, 0.02155339, 0.10171669, -0.4826839, 0.28003499, 0.37792047, 0.11955514, 0.22555801, 0.43038393, 0.00184438, -0.48824852, -0.19885654, 0.21829358, 0.18568121, -0.02327062, -0.36759491, -0.04478865, 0.11610227, 0.02350683, -0.26872255, 0.21650337, -0.12238978, 0.36748367, 0.15407914, 0.1833139, 0.41281641, 0.13005483, -0.22536095, -0.37669456, -0.18686398, 0.48098633, -0.123995, 0.16281004, 0.4997067, -0.33633231, 0.3298246, -0.15480855, 0.01605908, -0.42416607, 0.19373578, -0.15397204, 0.4133844, 0.09166544, -0.26641872, 0.43155853, 0.096551, 0.43605089, -0.35910366, 0.33532992, 0.37443155, -0.38333826, -0.01121068, -0.05620997, 0.21153868, 0.15370288, 0.28821034, -0.31319713, 0.30139598, -0.42570563, 0.43577762, -0.14749772, 0.23223807, 0.45626921, -0.02057325, -0.38266994, -0.33146502, 0.20948562, -0.18023638, 0.22777793, -0.4624728, 0.29732272, 0.08637754, 0.17760315, 0.40201963, -0.34451109, -0.43698252, -0.06942968, -0.01791114, 0.03190695, 0.06678995, -0.37920887, 0.33367153, 0.29843381, -0.34495439, 0.0754699, -0.20899213, -0.05651504, 0.39585042, -0.1309725, -0.05379819, 0.15665921, -0.34729283, 0.38109683, 0.35082446, 0.14603315, 0.19461494, 0.1979055, 0.05714051, 0.14534243, -0.00067989, -0.06555058, -0.23327284, -0.28780677, 0.2184984, -0.25476665, 0.33463066, -0.44992038, 0.43142554, -0.40677167, 0.10367638, -0.37280188, -0.29361127, 0.2491136, -0.28364498, -0.15834379, -0.03511265, -0.47800264, -0.35562599, 0.43660106, -0.21992596, -0.06738925, 0.04653624, -0.44014709, -0.03874882, -0.27221907, 0.25014181, -0.22596707, 0.3528869, 0.19415611, -0.15745483, -0.21340616, 0.07034828, -0.26263207, 0.41301672, -0.12015526, -0.24869657, -0.00723887, -0.45790538, -0.07566161, -0.12397337, -0.26520277, 0.1398717, 0.1955606, 0.44415327, -0.01972396, -0.22779471, 0.39357159, -0.37083373, 0.41529126, 0.00931896, -0.31345203, -0.04374553, 0.40463345, -0.20504796, -0.04813367, 0.08729579, 0.03945389, 0.16083067]}, {'shape': [4], 'data': [-0.09204122, 0.23119569, -0.49651266, 0.04577851]}, {'shape': [4], 'data': [-0.11027103, 0.13158462, 0.0246635, -0.03649735]}, {'shape': [4], 'data': [-0.49715631, 0.46995029, -0.00952293, 0.08436793]}, {'shape': [4], 'data': [-0.46930028, 0.19226734, -0.4448976, -0.31781987]}, {'shape': [4], 'data': [0.22643748, 0.26675454, 0.26990377, 0.24828169]}, {'shape': [3, 3, 4, 3], 'data': [-0.15640219, -0.02746415, 0.10527622, -0.47852924, 0.14125583, 0.36056272, -0.49911331, -0.41875285, 0.31040522, -0.31053001, 0.15627362, 0.01127547, -0.30663122, 0.32955299, 0.11102011, -0.31784038, 0.2954715, -0.299956, 0.17943158, -0.24261784, 0.46913432, -0.29917043, 0.00532614, -0.11720019, 0.22542166, -0.38746509, -0.2125259, -0.05629071, 0.27469078, 0.44000785, 0.06253906, -0.28611662, -0.15816073, 0.14902118, -0.06360207, 0.26361608, 0.36859329, 0.45594308, -0.42836989, -0.11290058, -0.49215642, -0.02135871, -0.43724358, 0.38777965, 0.19725203, 0.3625543, -0.19239383, 0.38672415, 0.31773277, -0.21655368, 0.10479253, 0.4903532, 0.09039112, -0.09628988, -0.41485567, 0.20733506, 0.23916592, -0.14443579, -0.21013391, 0.26205573, -0.04019815, -0.05424262, -0.07177221, 0.14218874, -0.18685103, -0.34189708, -0.12215504, -0.15872924, 0.05644055, -0.28076302, -0.44715451, 0.08351167, 0.48874677, 0.01870303, -0.42820514, 0.20610998, -0.37699391, 0.44920591, 0.39123808, -0.32348623, -0.24196254, -0.11526256, 0.14915693, -0.08671374, -0.09045303, 0.00417425, 0.15131685, -0.46018798, -0.16401771, -0.15217165, 0.10009151, 0.04688004, 0.08192027, -0.48553928, -0.25631688, 0.09676949, 0.4135524, -0.21019863, 0.33354406, -0.18350767, 0.03966393, 0.20965159, 0.26149962, 0.16654661, -0.30834802, 0.10279464, -0.3359057, -0.24036052]}, {'shape': [3], 'data': [-0.39532788, -0.32755898, 0.45650485]}, {'shape': [3], 'data': [0.08725845, 0.11414433, -0.27048277]}, {'shape': [3], 'data': [0.28123794, 0.14008539, 0.15848495]}, {'shape': [3], 'data': [-0.02361958, 0.09716654, 0.35439068]}, {'shape': [3], 'data': [0.24438752, 0.47677346, 0.45580899]}, {'shape': [3, 3, 3, 4], 'data': [0.38999223, -0.00485649, 0.30329345, 0.36825193, 0.38471301, -0.18783431, -0.20545727, 0.24651893, 0.20975408, -0.4582056, -0.30891728, 0.44113691, 0.39121796, 0.11693109, 0.39416235, 0.42192497, 0.42874912, -0.11300614, -0.26887847, 0.43652057, 0.2564509, 0.40008859, 0.29260048, -0.46160982, 0.15349586, -0.3691588, -0.17646493, 0.41222089, -0.41703288, 0.03910386, -0.30959991, 0.06491607, -0.07401101, 0.253842, 0.49244562, -0.44450396, -0.17429663, -0.13485832, 0.31062571, 0.46347555, 0.49596449, -0.24458812, 0.08500207, -0.28575837, -0.03996987, 0.42492438, 0.21273802, -0.49918088, -0.15511097, -0.29204409, 0.10028431, -0.1975815, -0.14379673, -0.01683905, 0.10978483, -0.40835883, 0.34302975, -0.10569794, -0.31769004, 0.06931692, -0.31241656, 0.27025811, -0.28674881, 0.03107318, -0.13468323, -0.32672691, -0.28409442, -0.04103884, -0.12246521, -0.04754089, -0.38565118, -0.25783654, -0.16888376, 0.14048922, 0.21463725, 0.16513464, -0.34763229, 0.34244006, 0.10064735, 0.24674537, 0.11763517, -0.09045559, -0.06253999, 0.28380461, -0.24170101, 0.35860588, 0.48693659, 0.47041505, -0.48009267, -0.13129122, -0.15329779, -0.32615339, -0.0288511, 0.48542069, -0.2435659, 0.32507247, -0.1235399, 0.09609411, 0.32152719, -0.41140514, -0.02451938, 0.15677153, -0.2816171, 0.14283823, -0.20214377, 0.08156554, -0.16343383, 0.28548783]}, {'shape': [4], 'data': [-0.11165831, -0.1079104, -0.21553367, 0.34881606]}, {'shape': [4], 'data': [0.23549706, -0.23226959, -0.30428747, 0.44306579]}, {'shape': [4], 'data': [-0.43370279, -0.46937641, 0.19772084, -0.12772498]}, {'shape': [4], 'data': [-0.46203008, -0.41492207, -0.06504652, -0.06781807]}, {'shape': [4], 'data': [0.31003341, 0.29014284, 0.35805159, 0.13118507]}, {'shape': [3, 3, 4, 2], 'data': [-0.40677367, 0.47586871, -0.04740775, -0.43232133, -0.1056076, 0.41150896, 0.07953007, 0.07919412, -0.3713563, 0.05691832, 0.47031414, 0.00942043, 0.1602868, 0.26178192, 0.46296194, -0.03144408, -0.11952705, 0.26681484, -0.05300264, 0.16774379, 0.12129931, 0.23723094, -0.11353842, 0.49640083, 0.21749213, -0.05203755, 0.15573911, -0.29284554, -0.07625518, 0.42209938, -0.23366962, -0.47133622, -0.22970858, -0.44600847, -0.3093829, -0.4121238, -0.14138566, -0.20441095, 0.39614968, -0.20126133, -0.10797807, -0.42581485, -0.05478691, -0.04565391, 0.02821994, -0.09418995, 0.16077138, 0.00968192, 0.35454778, 0.17358882, 0.26811062, 0.08160452, -0.38545712, -0.19653542, -0.24515864, 0.40234098, 0.32753208, -0.01400066, -0.45171829, 0.46315238, 0.0712278, 0.41641071, 0.43632559, 0.00098648, -0.18226762, -0.33641785, -0.27264541, 0.22226361, 0.3570469, 0.21814369, 0.1184784, 0.21969704]}, {'shape': [2], 'data': [0.23469275, -0.10722625]}, {'shape': [2], 'data': [-0.27970142, -0.05953101]}, {'shape': [2], 'data': [-0.24626762, 0.13961548]}, {'shape': [2], 'data': [-0.40271084, -0.46918207]}, {'shape': [2], 'data': [0.38538645, 0.37367422]}], 'input': {'shape': [24, 24, 2], 'data': [-0.82603833, -0.13096464, -0.54746208, 0.06927216, -0.91987316, 0.9730708, -0.39320602, -0.30826822, 0.14642331, 0.9320294, 0.07574828, 0.5629749, -0.97850904, 0.06107697, 0.9285565, -0.6680734, 0.98856484, -0.22457627, -0.7408285, -0.15266559, -0.85581175, 0.31387115, 0.98606195, 0.39753564, 0.09901205, 0.11612217, 0.16007448, 0.45660988, 0.99194675, -0.560861, 0.85878876, 0.48546548, -0.91277642, -0.04698456, 0.3520033, 0.98346397, -0.91963525, -0.6117143, -0.02571379, -0.60845692, -0.71700187, 0.26287375, 0.67195102, -0.24291961, 0.16942015, -0.72639976, 0.23277185, 0.86755452, -0.1688254, -0.08096177, 0.82976826, -0.38566042, 0.62162291, -0.81021647, 0.78521669, -0.82022978, 0.81911317, 0.90718561, 0.83743139, 0.65751865, 0.7679444, -0.45446663, 0.79466351, 0.55705274, -0.92719041, 0.13244773, -0.3224302, -0.04353791, 0.15199274, -0.67486006, 0.76880917, 0.7496837, 0.58570417, -0.3320903, 0.52903069, 0.69002984, 0.73399383, -0.12347092, -0.2709044, -0.84560945, -0.062443, 0.52151761, -0.04528269, -0.98172388, -0.28524167, 0.83747286, -0.15040952, -0.41465158, 0.79300578, -0.25367788, -0.86961993, -0.7143939, 0.75972198, 0.23964349, 0.69206169, 0.24932983, 0.43020974, 0.99294004, -0.63022653, -0.77898226, -0.99050229, 0.95949654, -0.35682611, 0.68640556, -0.26578804, 0.82510516, -0.73237143, -0.11305386, -0.10993288, -0.63776461, 0.38332089, 0.16795156, -0.56626847, 0.76241806, 0.00333043, 0.28228024, 0.56378468, -0.5839801, -0.54105223, 0.30544327, 0.3724745, -0.645694, 0.00805129, -0.63550558, -0.06388475, -0.47078536, -0.068132, 0.5045015, 0.7449024, 0.96200228, 0.8100647, -0.3685048, -0.82160738, 0.39196063, -0.03074081, 0.793353, 0.37199876, 0.73180589, -0.10536613, -0.01370263, -0.31972425, -0.20730178, -0.48132496, -0.18478201, -0.46630919, -0.96893619, 0.62810221, -0.55108253, 0.48101722, 0.60366761, 0.3606246, -0.50902873, 0.02111305, -0.6288284, -0.37492558, 0.30647775, 0.24823465, -0.06566859, 0.30705072, -0.29182136, -0.93374464, 0.29532748, -0.53001332, 0.92699088, 0.31875421, 0.78281256, -0.34067166, -0.54086865, 0.87904323, -0.96473892, 0.26631592, -0.26393781, 0.75552184, -0.23799586, -0.190742, 0.2874423, -0.55036338, 0.38108647, 0.84253313, 0.00976179, 0.75384451, -0.77374152, -0.68553518, -0.18241331, -0.66075321, 0.37103012, 0.4021849, 0.65882469, -0.71071108, 0.76073393, -0.6380888, 0.26318094, -0.10682218, 0.77856505, 0.89038816, -0.62462272, -0.26178805, -0.89349034, 0.84342388, 0.70538743, -0.44505846, 0.67926814, -0.03573406, 0.12521276, -0.42370387, -0.77026185, 0.05310233, 0.00490482, -0.60078811, -0.91795913, 0.03009541, -0.72178911, 0.8331429, -0.87376786, -0.44822928, -0.09279648, 0.18152921, -0.83407492, 0.94921531, 0.11416123, 0.62560045, 0.19067556, -0.23717171, 0.89499579, 0.55731076, -0.78463088, -0.04329275, 0.27290336, -0.57591831, -0.07864426, 0.3238054, -0.11181014, 0.19369645, -0.47850106, -0.0056769, -0.95955339, 0.17458301, -0.83217416, 0.18414615, -0.56258265, -0.81400352, 0.12795238, 0.39143404, 0.13993307, -0.93289893, 0.87874544, 0.28062293, 0.79291684, -0.72086271, 0.55297382, -0.55425301, 0.40460552, 0.62111079, 0.30789674, -0.14145143, 0.55103305, 0.69114205, 0.39010925, -0.47054084, 0.34825716, 0.00790379, 0.66557139, -0.01250755, 0.62228883, -0.4217995, 0.70211475, -0.71172108, -0.65377351, 0.86850315, -0.38760257, 0.34950285, 0.84827493, 0.72667616, 0.23475093, -0.55850182, -0.04782195, 0.99432862, 0.40933945, 0.06120931, -0.59961316, -0.19507317, -0.40294719, 0.55828879, 0.34338436, -0.07474555, -0.16917446, -0.01610377, 0.76300856, -0.51591773, -0.02524371, -0.1636733, 0.37381786, -0.75886949, -0.88332428, -0.07399728, -0.00169522, 0.79422446, 0.84192834, 0.53851786, 0.16053535, 0.73630846, 0.11855384, -0.48726972, 0.15607844, -0.83207867, 0.86342299, 0.28832868, -0.81971701, 0.06852399, -0.11409834, 0.98519521, 0.07238126, 0.73708715, 0.61618635, 0.62653754, 0.73869941, 0.35459732, 0.68986115, -0.34380559, 0.20693211, -0.10619374, -0.75911849, -0.38429728, 0.10754408, 0.04697893, 0.30756016, 0.13514621, -0.64676487, -0.53255601, -0.80009673, 0.20167486, 0.46575034, 0.08572316, 0.46988287, -0.05069229, 0.00790549, 0.01003173, 0.80044435, 0.83161943, -0.0995879, 0.06782259, 0.95275963, -0.58178434, -0.29582562, -0.73594229, -0.40683332, -0.35507954, -0.92663419, 0.68726858, -0.00478801, 0.64322765, 0.78332288, 0.54804598, 0.61862293, -0.50287124, 0.83402948, -0.87334377, -0.55930962, 0.1367568, 0.06703942, -0.51506208, 0.48165814, 0.42230724, -0.14477578, 0.46297352, -0.61743724, -0.04857921, 0.66421417, 0.04923253, -0.35587259, -0.35986345, -0.86597937, -0.40701032, -0.66532125, 0.35734985, 0.03880887, 0.93282328, 0.79100709, 0.48832435, 0.87330014, 0.49496435, -0.82950106, -0.35691117, 0.84154154, -0.87181414, -0.31886679, 0.27827334, 0.60510102, -0.34856963, 0.07848324, 0.20327735, 0.32794064, -0.77191, 0.8359221, -0.340859, -0.70935903, 0.1829014, 0.290669, 0.92097964, -0.03551396, -0.08815947, 0.6248324, 0.85322848, -0.05680283, -0.35498452, -0.51160877, -0.48412745, -0.41585824, 0.93606416, 0.90993218, -0.26116773, 0.98782053, 0.05354171, -0.04971585, 0.19934791, 0.00790815, 0.5840446, -0.04660718, -0.31621629, -0.43157719, 0.35139426, 0.25419153, -0.40485577, -0.81625849, 0.21739551, -0.62730134, 0.00575841, 0.23016077, 0.11121829, 0.12147199, -0.79856242, 0.52442687, 0.85226082, -0.47467447, 0.00286789, 0.37495641, 0.57664407, 0.90916639, -0.57075077, -0.61669158, -0.8208092, 0.71475094, -0.43899087, 0.10104882, -0.30294957, -0.71606867, -0.2370588, -0.97103893, 0.59202193, 0.97658706, 0.99963381, -0.46818823, -0.37262552, -0.17314187, -0.98991569, -0.3114812, 0.29877849, -0.53053618, 0.91759399, -0.64692173, 0.09372522, 0.60024931, -0.97186711, 0.10888726, -0.6895695, -0.49322987, -0.97871603, 0.87155414, 0.09843955, 0.96114316, 0.04514516, 0.86212483, 0.73173911, 0.02284462, 0.37366816, -0.32910703, 0.50406217, 0.05396065, -0.5660752, 0.66071206, -0.66239177, -0.68623549, -0.43751792, 0.92579925, -0.70815038, -0.22657949, 0.06296668, -0.50893131, 0.96504696, 0.78351318, 0.32183006, 0.06762182, 0.95266734, -0.26770906, -0.21396114, -0.04908317, -0.58700135, 0.85777008, 0.30586169, -0.46163604, -0.92361962, -0.8176457, -0.13309356, 0.78253851, 0.12727106, 0.68954939, -0.29049454, -0.19219861, 0.70180787, -0.15084912, -0.44430616, -0.72686682, -0.76822832, -0.38998231, 0.91181968, -0.94000668, -0.80786118, -0.74724433, -0.67849463, 0.49841497, -0.74729604, 0.26693091, 0.86274158, -0.80427631, 0.90163215, 0.04029213, 0.91953834, 0.85452004, -0.97872434, -0.43619111, 0.13044651, 0.05209664, -0.3972997, 0.2037326, 0.46427822, -0.63308285, 0.8114176, -0.79276233, -0.80430869, -0.55430841, 0.67925045, -0.98282878, -0.42862075, 0.76944815, 0.6064559, 0.04159172, -0.46833065, -0.86472583, 0.15220931, -0.1401678, 0.28490795, 0.73087149, -0.71371328, -0.47345478, 0.93889122, 0.75238704, 0.64786561, 0.77617311, -0.73821932, -0.42940018, -0.70112985, -0.1632199, -0.52774687, -0.21229779, 0.40157296, -0.17086508, 0.92556426, -0.2850343, 0.3530399, -0.50955094, -0.37181431, 0.72745507, 0.1413673, 0.30159895, 0.14603869, -0.78887043, 0.02456768, -0.97064044, 0.37356868, -0.7253777, -0.52076616, -0.4167877, 0.88898708, 0.31434094, 0.66059931, -0.1054491, -0.54194941, -0.57562137, -0.09962318, -0.37069404, 0.21186834, 0.61617885, 0.40315778, -0.43317843, 0.89497702, 0.74787274, 0.31838641, 0.25640876, -0.41844552, 0.6275263, -0.81701332, -0.68878508, -0.46419624, -0.66110007, -0.46598949, -0.97263863, 0.47370482, 0.44774142, 0.6692852, 0.63301705, 0.08513352, 0.90048893, -0.75943322, -0.31023123, -0.54797572, 0.60214546, 0.64228981, -0.642168, -0.97409273, -0.99066582, 0.34107397, -0.27939802, 0.16156164, 0.95290724, 0.72840182, -0.73146947, -0.29344182, 0.17185604, -0.11162506, -0.928958, -0.7281772, 0.24879728, -0.65555855, 0.48892074, 0.40779497, -0.10581159, -0.99360314, -0.43798163, -0.27816046, 0.05284592, -0.94713651, -0.24960637, -0.24948098, -0.63654652, 0.79529038, -0.94162159, 0.47851524, -0.49005876, 0.57984938, 0.92650678, -0.08794787, -0.68986886, 0.99151895, -0.72133188, -0.3123501, 0.74190322, -0.77461026, 0.45796329, -0.57644306, -0.8397129, -0.13002605, -0.34632534, -0.19551361, -0.85147512, 0.61675052, -0.47599913, 0.72025297, -0.43688073, -0.16667027, -0.37606361, 0.77684494, 0.11253284, -0.60134021, 0.57759153, -0.36555101, -0.76343796, 0.70818167, 0.48443241, -0.34127767, -0.16099768, 0.3263443, -0.48168595, -0.06365813, 0.51478172, 0.0335012, -0.32519089, -0.17412401, -0.55017408, 0.32794919, -0.7012895, 0.87668184, -0.69384138, 0.5147139, 0.07282544, 0.48248023, 0.49865562, -0.77606146, 0.78551031, -0.70860069, -0.04933939, -0.61242246, 0.31346362, -0.27041372, -0.61158729, 0.88682417, 0.43041756, 0.57639414, 0.63676516, 0.76406892, 0.3753746, 0.96164559, 0.13188882, -0.04675627, 0.87951116, 0.79278089, 0.09452128, 0.42095302, 0.42331606, -0.65789989, 0.52789602, -0.78803846, -0.99966373, 0.92696635, 0.96302853, 0.11880799, -0.47039306, 0.94981809, -0.48549904, -0.79987695, -0.29760038, -0.55163387, 0.20348608, -0.19601682, 0.3951984, 0.28235468, -0.58349366, -0.84479326, -0.67387493, 0.66122699, -0.97895066, -0.01624241, -0.97843628, -0.45031033, -0.18230258, 0.00594667, 0.17949129, 0.03720607, 0.65333631, -0.60325757, -0.68567796, -0.2890286, 0.22142224, 0.72091349, 0.39768661, -0.4188249, -0.18257646, -0.80993503, -0.0551552, 0.28611555, 0.46437853, -0.16351689, -0.3229502, -0.73744834, 0.5455045, 0.15948346, -0.45445168, -0.39791366, 0.49459222, -0.29347796, -0.371366, -0.13394278, -0.23114653, -0.82749368, -0.19870463, 0.29428287, 0.90579806, -0.42516196, 0.90793803, 0.975542, 0.90337827, -0.59775418, 0.76408764, -0.14950906, -0.01373453, -0.76994099, 0.16468887, -0.97926104, -0.23849418, -0.72386133, 0.84639151, -0.30958268, 0.61045685, -0.54263275, 0.98414904, 0.450509, 0.70410507, 0.3436203, 0.39440044, -0.00284086, -0.09657835, -0.54912787, 0.54213639, -0.91664145, 0.79060274, -0.60428595, 0.64932362, -0.55256733, 0.35881804, -0.55316788, 0.46395104, 0.93994266, -0.69152194, -0.55352526, 0.14072547, 0.98304054, 0.63807915, -0.51144115, 0.57271058, 0.61731406, -0.41591733, 0.09592848, 0.75056662, 0.25621165, 0.61720275, -0.31380824, -0.22274306, -0.43706214, -0.94416585, 0.4324897, -0.40000183, 0.77437671, -0.05198882, -0.65829181, 0.02421801, 0.0815735, 0.80616693, -0.18483535, -0.57535407, -0.10983156, 0.62431378, 0.12963698, 0.67555769, -0.09629461, 0.52611463, 0.33241578, -0.01016324, -0.0680069, -0.45452804, -0.12916927, 0.17379373, -0.82926423, -0.12954161, 0.30690532, 0.84708617, 0.32285889, 0.14720782, 0.17996479, 0.88661989, -0.78028994, -0.13587125, 0.63703576, -0.97170985, -0.16898291, 0.3470872, -0.21297267, 0.9794218, 0.45299194, -0.33859128, 0.56459432, -0.45694667, -0.29233799, -0.64214237, -0.83508777, -0.4884001, -0.67657286, -0.15257206, -0.50981246, -0.19491886, 0.9934169, 0.74814942, -0.38347909, 0.34603462, 0.33034796, -0.42000893, 0.17798984, 0.93675125, 0.26206101, -0.20979034, -0.99770511, 0.88287631, 0.47800299, 0.81673298, -0.45042436, -0.24825374, -0.3183967, 0.09516295, -0.65549842, 0.18031854, -0.44332453, 0.17965435, -0.26986997, 0.87244592, -0.18583517, 0.60598198, -0.85484798, 0.87947657, -0.70507408, 0.2763704, -0.98232885, 0.46066041, -0.61570766, 0.23972579, 0.3742597, -0.44732814, -0.2564419, -0.20208596, -0.34391833, -0.4745966, -0.43068835, -0.25450671, 0.6113527, -0.84089297, -0.25401281, -0.00936695, 0.84432887, 0.59374823, -0.97268183, 0.62442069, -0.72186775, -0.06727134, 0.58831368, -0.27483071, -0.78850385, 0.05505796, 0.59665485, -0.0432563, -0.73422372, 0.9114502, -0.44814538, -0.87606376, -0.78105927, -0.48462925, 0.77052814, 0.42939269, 0.71650587, -0.17078479, -0.22877736, -0.53788601, -0.05752285, -0.56406667, 0.77380201, -0.43546576, -0.60699587, 0.63716112, 0.41354209, 0.99668071, -0.40065768, 0.72319371, -0.75842286, 0.7562754, 0.38802236, -0.56224889, -0.47556502, 0.08826268, -0.73156864, 0.06266839, -0.16488875, -0.66147052, 0.79997358, -0.60075262, 0.65577625, -0.49855946, -0.39359605, -0.49393347, -0.09016229, 0.18656243, 0.60341061, 0.56537163, -0.07369294, 0.58825432, -0.09382222, 0.41011131, 0.97200283, 0.85093461, 0.32159828, 0.67608332, -0.31222369, 0.79253055, 0.46032151, 0.48142789, 0.87327207, 0.46833658, -0.5584723, 0.76603477, 0.97678253, 0.01528128, 0.83877172, 0.38431356, -0.22805101, -0.22351683, 0.44111894, -0.49345637, -0.46367623, -0.73179044, 0.22700461, 0.50533759, 0.4838265, -0.43724024, 0.97715973, -0.44745182, -0.14855094, 0.67320144, 0.2353737, 0.72608404, 0.87912242, -0.112663, -0.18336504, 0.90462021, 0.33355815, 0.10967073, -0.31873185, -0.56696899, 0.8172631, 0.80435686, 0.14743914, 0.65475306, 0.26523191, 0.02262875, -0.46316707, 0.0134135, -0.30335847, 0.31684352, -0.00986265, -0.28692807, -0.03733324, -0.2560267, -0.8879127, 0.04243062, 0.97186426, -0.46314339, -0.27426642, 0.450112, 0.2864991, 0.93572986, 0.00209061, -0.54393344, -0.61655051, 0.10972604, 0.18845884, 0.4045002, -0.4525549, 0.80459949, 0.96196072, -0.92142522, 0.12627213, -0.9018517, 0.96332191, -0.79386124, -0.99905024, -0.12894161, 0.33744022, -0.25064722, -0.64959701, -0.07689778, -0.55339333, -0.69249379, 0.43061933, -0.80536806, -0.51879168, 0.34574073, -0.72090303, -0.63374439, 0.80451826, 0.41393262, 0.97379709, -0.57895503, -0.73915427, 0.6737996, 0.68883576, -0.56470176, -0.42810125, -0.24823211, 0.62394168, -0.19126338, 0.47085511, -0.34365487, 0.91524969, 0.6255311, 0.25095381, -0.9823589, 0.70994743, -0.20257635, -0.11653914, -0.51498191, -0.15030402, -0.77526879, 0.40534996, 0.3313457, 0.47204681, -0.82145351, 0.42543606, -0.90171958, 0.03443627, -0.26339692, 0.41487262, 0.12954197, 0.16541129, 0.47539047, 0.43403193, -0.49353984, 0.83407137, -0.81255179, 0.46812387, 0.47295565, -0.17013796, 0.84897978, -0.17299331, 0.61865334, 0.26604814, 0.98319564, 0.00888366, 0.70878429, -0.08634435, -0.68167581, 0.6814779, -0.87846374, -0.67810693, 0.51097247, 0.85375437, -0.47049519, -0.3370149, 0.03683555, 0.20874076, -0.46373424, -0.35484567, -0.68557246, -0.23030547, -0.22318676, -0.26829927, -0.08639185, 0.25801868, -0.12501729, 0.37867492, 0.04590355, -0.46139934, 0.63055799, -0.84571702, 0.65960319, 0.31657999, -0.18741285, 0.11709874, -0.48004723]}, 'expected': {'shape': [1, 1, 2], 'data': [-1.23473299, 0.05060276]}}\n" ] } ], "source": [ "data_in_shape = (24, 24, 2)\n", "\n", "conv_0 = Conv2D(5, 3, 3, activation='relu', border_mode='valid', subsample=(2, 2), dim_ordering='tf', bias=True)\n", "bn_0 = BatchNormalization(mode=0, axis=-1, epsilon=1e-3)\n", "conv_1 = Conv2D(4, 3, 3, activation='relu', border_mode='same', subsample=(1, 1), dim_ordering='tf', bias=True)\n", "bn_1 = BatchNormalization(mode=0, axis=-1, epsilon=1e-3)\n", "conv_2 = Conv2D(3, 3, 3, activation='relu', border_mode='same', subsample=(1, 1), dim_ordering='tf', bias=True)\n", "bn_2 = BatchNormalization(mode=0, axis=-1, epsilon=1e-3)\n", "pool_0 = AveragePooling2D(pool_size=(2, 2), strides=None, border_mode='valid', dim_ordering='tf')\n", "conv_3 = Conv2D(4, 3, 3, activation='linear', border_mode='valid', subsample=(1, 1), dim_ordering='tf', bias=True)\n", "bn_3 = BatchNormalization(mode=0, axis=-1, epsilon=1e-3)\n", "conv_4 = Conv2D(2, 3, 3, activation='relu', border_mode='same', subsample=(1, 1), dim_ordering='tf', bias=True)\n", "bn_4 = BatchNormalization(mode=0, axis=-1, epsilon=1e-3)\n", "pool_1 = AveragePooling2D(pool_size=(2, 2), strides=None, border_mode='valid', dim_ordering='tf')\n", "\n", "input_layer = Input(shape=data_in_shape)\n", "x = conv_0(input_layer)\n", "x = bn_0(x)\n", "x = conv_1(x)\n", "x = bn_1(x)\n", "x = conv_2(x)\n", "x = bn_2(x)\n", "x = pool_0(x)\n", "x = conv_3(x)\n", "x = bn_3(x)\n", "x = conv_4(x)\n", "x = bn_4(x)\n", "output_layer = pool_1(x)\n", "model = Model(input=input_layer, output=output_layer)\n", "\n", "np.random.seed(11000)\n", "data_in = 2 * np.random.random(data_in_shape) - 1\n", "\n", "# set weights to random (use seed for reproducibility)\n", "weights = []\n", "for i, w in enumerate(model.get_weights()):\n", " np.random.seed(11000 + i)\n", " if i % 6 == 5:\n", " # std should be positive\n", " weights.append(0.5 * np.random.random(w.shape))\n", " else:\n", " weights.append(np.random.random(w.shape) - 0.5)\n", "model.set_weights(weights)\n", "\n", "result = model.predict(np.array([data_in]))\n", "\n", "print({\n", " 'input': {'data': format_decimal(data_in.ravel().tolist()), 'shape': list(data_in_shape)},\n", " 'weights': [{'data': format_decimal(weights[i].ravel().tolist()), 'shape': list(weights[i].shape)} for i in range(len(weights))],\n", " 'expected': {'data': format_decimal(result[0].ravel().tolist()), 'shape': list(result[0].shape)}\n", "})" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
google-research/google-research
prime/prime_colab.ipynb
1
109093
{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "PA8SSKskdEyX" }, "source": [ "\n", "Copyright 2022 Google LLC.\n", "\n", "Licensed under the Apache License, Version 2.0 (the \"License\");" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "WQAPD6-tdHXF" }, "outputs": [], "source": [ "#@title License\n", "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "JXTGE2CLeZ5H" }, "source": [ "# Instructions to use this colab\n", "\n", "This colab implements the [PRIME](https://arxiv.org/abs/2110.11346) model for learning conservative models for offline model-based optimization. PRIME trains a surrogate model (in this case a transformer model) to predict the objective value for a given accelerator using feasible and infeasible data. The objective to train PRIME is based on a supervised regression objective on the feasible data, and then PRIME applies an objective to push down the predicted value on infeasible points.\n", "\n", "In this colab, we implement the PRIME model, and show how it can be trained on dummy data. If you are interested in using the model and training procedure for PRIME or modifying it and want to dig into the code, please check out the section in the colab titled ``PRIME: Model Definition and Loss computation''. \n", "\n", "Running this notebook in google colab does not require installation of any dependencies since tensorflow and tensorflow_probability are installed by default, but you might need to install them if you run this notebook locally. The latest versions should work." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "MrTtvT9Nc6aD" }, "outputs": [], "source": [ "from absl import app\n", "from absl import flags\n", "from absl import logging\n", "\n", "# These tensorflow installs are automatically provided by the\n", "# Google colab runtime. If you want to run this code locally,\n", "# make sure to install tensorflow and tensorflow_probability.\n", "import tensorflow.compat.v2 as tf\n", "import tensorflow_probability as tfp\n", "import numpy as np\n", "import os\n", "import pickle\n", "import csv\n", "from typing import Optional, Dict, List\n", "from copy import deepcopy\n", "\n", "gfile = tf.io.gfile.GFile\n", "\n", "# Default area constraint for the models we train\n", "AREA_THRESHOLD = 27.0" ] }, { "cell_type": "markdown", "metadata": { "id": "cfZA-5GDE4wn" }, "source": [ "# PRIME: Model Definition and Loss computation" ] }, { "cell_type": "markdown", "metadata": { "id": "Z6W-wFO7FK0O" }, "source": [ "## Transformer Utils" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "2vu05EjgE8QW" }, "outputs": [], "source": [ "#@title Basic utility functions for training transformers\n", "\"\"\"\n", "Code largely taken from https://www.tensorflow.org/text/tutorials/transformer\n", "\"\"\"\n", "\n", "def get_angles(pos, i, d_model):\n", " \"\"\"Get angles for using tansformer.\"\"\"\n", " angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))\n", " return pos * angle_rates\n", "\n", "\n", "def positional_encoding(position, d_model):\n", " \"\"\"Obtain positional encdoing for training the PRIME Transformer.\"\"\"\n", " angle_rads = get_angles(np.arange(position)[:, np.newaxis],\n", " np.arange(d_model)[np.newaxis, :],\n", " d_model)\n", " \n", " # apply sin to even indices in the array; 2i\n", " angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])\n", "\n", " # apply cos to odd indices in the array; 2i+1\n", " angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])\n", "\n", " pos_encoding = angle_rads[np.newaxis, ...]\n", "\n", " return tf.cast(pos_encoding, dtype=tf.float32)\n", "\n", "\n", "class SplitEmbeddingLayer(tf.keras.layers.Layer):\n", " \"\"\"Layer for embedding individual components in a split way\"\"\"\n", " def __init__(self, softmax_splits=None, output_size=32):\n", " \"\"\"\n", " Initialize the layer to split the input and generate embeddings for\n", " each field.\n", " \"\"\"\n", " super(SplitEmbeddingLayer, self).__init__(trainable=True)\n", " self.softmax_splits = softmax_splits\n", " self.output_size = output_size\n", "\n", " # create layers\n", " self.dense_layers = []\n", " print (self.softmax_splits)\n", " for idx, val in enumerate(self.softmax_splits):\n", " self.dense_layers.append(\n", " tf.keras.layers.Dense(\n", " self.output_size, name='insidelayer_' + str(idx)))\n", "\n", " # Add position embeddings\n", " self.pos_encoding = positional_encoding(position=200, d_model=output_size)\n", "\n", " def call(self, x):\n", " \"\"\"Call the Split embedding function.\"\"\"\n", " split_x = tf.split(x, num_or_size_splits=self.softmax_splits, axis=-1)\n", " modified_splits = []\n", " idx = 0\n", " for param in split_x:\n", " out = self.dense_layers[int(idx)](param)\n", " modified_splits.append(tf.expand_dims(out, axis=1))\n", " idx += 1\n", " out = tf.concat(modified_splits, axis=1)\n", " # print ('Out shape before: ', out)\n", " out = out + self.pos_encoding[:, :len(modified_splits), :]\n", " # print ('Out shape after: ', out)\n", " return out\n", "\n", "\n", "def scaled_dot_product_attention(q, k, v, mask):\n", " \"\"\"Scaled dot product attention in transformer.\"\"\"\n", " matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)\n", "\n", " # scale matmul_qk\n", " dk = tf.cast(tf.shape(k)[-1], tf.float32)\n", " scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)\n", "\n", " # add the mask to the scaled tensor.\n", " if mask is not None:\n", " scaled_attention_logits += (mask * -1e9)\n", "\n", " # softmax is normalized on the last axis (seq_len_k) so that the scores\n", " # add up to 1.\n", " attention_weights = tf.nn.softmax(\n", " scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k)\n", " output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)\n", " return output, attention_weights\n", "\n", "\n", "def point_wise_feed_forward_network(d_model, dff):\n", " return tf.keras.Sequential([\n", " tf.keras.layers.Dense(dff, activation='relu'),\n", " tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model)\n", " ])\n", "\n", "\n", "class MultiHeadAttention(tf.keras.layers.Layer):\n", " \"\"\"Multi Head Attention for the model.\"\"\"\n", "\n", " def __init__(self, d_model, num_heads):\n", " \"\"\"Initialize the multi-head attention model.\"\"\"\n", " super(MultiHeadAttention, self).__init__()\n", " self.num_heads = num_heads\n", " self.d_model = d_model\n", "\n", " assert d_model % self.num_heads == 0\n", "\n", " self.depth = d_model // self.num_heads\n", "\n", " self.wq = tf.keras.layers.Dense(d_model)\n", " self.wk = tf.keras.layers.Dense(d_model)\n", " self.wv = tf.keras.layers.Dense(d_model)\n", "\n", " self.dense = tf.keras.layers.Dense(d_model)\n", "\n", " def split_heads(self, x, batch_size):\n", " \"\"\"Split the last dimension into (num_heads, depth).\n", " Transpose the result such that the\n", " shape is (batch_size, num_heads, seq_len, depth)\n", " \"\"\"\n", " x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))\n", " return tf.transpose(x, perm=[0, 2, 1, 3])\n", "\n", " def call(self, v, k, q, mask):\n", " batch_size = tf.shape(q)[0]\n", "\n", " q = self.wq(q)\n", " k = self.wk(k)\n", " v = self.wv(v)\n", "\n", " q = self.split_heads(q, batch_size) \n", " k = self.split_heads(k, batch_size) \n", " v = self.split_heads(v, batch_size)\n", "\n", " scaled_attention, attention_weights = scaled_dot_product_attention(\n", " q, k, v, mask)\n", "\n", " scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) \n", "\n", " concat_attention = tf.reshape(scaled_attention,\n", " (batch_size, -1, self.d_model)) \n", "\n", " output = self.dense(concat_attention) \n", "\n", " return output, attention_weights\n", "\n", "\n", "class TransformerLayer(tf.keras.layers.Layer):\n", " \"\"\"Define the transformer layer to be used in the PRIME Transformer model.\"\"\"\n", "\n", " def __init__(self, d_model, num_heads, dff, rate=0.1):\n", " \"\"\"Initialize the transformer layer.\"\"\"\n", " super(TransformerLayer, self).__init__()\n", "\n", " self.mha = MultiHeadAttention(d_model, num_heads)\n", " self.ffn = point_wise_feed_forward_network(d_model, dff)\n", "\n", " self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)\n", " self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)\n", "\n", " self.dropout1 = tf.keras.layers.Dropout(rate)\n", " self.dropout2 = tf.keras.layers.Dropout(rate)\n", "\n", " def call(self, x, training=True, mask=None):\n", " attn_output, _ = self.mha(x, x, x, mask) \n", " # (batch_size, input_seq_len, d_model)\n", " attn_output = self.dropout1(attn_output, training=training)\n", " out1 = self.layernorm1(x + attn_output) \n", " # (batch_size, input_seq_len, d_model)\n", "\n", " ffn_output = self.ffn(out1) # (batch_size, input_seq_len, d_model)\n", " ffn_output = self.dropout2(ffn_output, training=training)\n", " out2 = self.layernorm2(out1 + ffn_output) \n", " # (batch_size, input_seq_len, d_model)\n", " return out2" ] }, { "cell_type": "markdown", "metadata": { "id": "ll-Ud813QwND" }, "source": [ "## Utility and Helper Functions for Loss Computation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "PCzXIHNoQtoM" }, "outputs": [], "source": [ "#@title Helper functions for MSE/Huber Loss computation\n", "\n", "def weighted_mse_loss(input, target, weight):\n", " \"\"\"Compute weighted MSE Loss\"\"\"\n", " mse_loss_val = (tf.squeeze(input) - tf.squeeze(target))**2\n", " return tf.reduce_mean(mse_loss_val * tf.squeeze(weight))\n", "\n", "\n", "def weighted_huber_loss(input, target, weight):\n", " \"\"\"Compute weighted Huber Loss\"\"\"\n", " mse_loss = tf.keras.losses.Huber(\n", " reduction=tf.keras.losses.Reduction.NONE)\n", " return tf.reduce_mean(mse_loss(\n", " y_pred=tf.squeeze(input),\n", " y_true=tf.squeeze(target)) * tf.squeeze(weight))\n", "\n", "\n", "def weighted_approx_loss(input, target, weight):\n", " \"\"\"Compute weighted Approximation Loss\"\"\"\n", " abs_diff = tf.abs(tf.squeeze(input) - tf.squeeze(target))\n", " ratio_diff = abs_diff / (tf.abs(tf.squeeze(target)) + 1e-6)\n", " return tf.reduce_mean(ratio_diff * tf.squeeze(weight))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "b5aLcKscR0T-" }, "outputs": [], "source": [ "#@title Helper functions for ranking loss computation\n", "\n", "def ranking_loss(input, target, context=None):\n", " \"\"\"Compute measures of ranking for the PRIMETransformerModel.\"\"\"\n", " if context is not None:\n", " # Compute ranking loss per context, and then average it.\n", " unique_contexts, indices = tf.unique(\n", " tf.squeeze(tf.cast(context, tf.int32)), name='None')\n", " all_corr = []\n", " for idx in range(unique_contexts.shape[0]):\n", " curr_context = unique_contexts[idx]\n", " locations_idx = tf.squeeze(tf.where(tf.equal(indices, curr_context)))\n", " input_tmp = tf.gather(\n", " tf.squeeze(input), indices=locations_idx)\n", " target_tmp = tf.gather(\n", " tf.squeeze(target), indices=locations_idx)\n", " input_ranks = tf.argsort(input_tmp, axis=-1)\n", " target_ranks = tf.argsort(target_tmp, axis=-1)\n", " input_ranks = tf.cast(tf.argsort(input_ranks, axis=-1), dtype=tf.float32)\n", " target_ranks = tf.cast(tf.argsort(target_ranks, axis=-1),\n", " dtype=tf.float32)\n", " std_input = tf.math.reduce_std(input_ranks)\n", " std_target = tf.math.reduce_std(target_ranks)\n", " cov = tf.reduce_mean((target_ranks - tf.reduce_mean(target_ranks)) *\\\n", " (input_ranks - tf.reduce_mean(input_ranks)))\n", " pearson_corr = cov/ (std_target * std_input)\n", " all_corr.append(pearson_corr)\n", " print (all_corr)\n", " pearson_corr = tf.reduce_mean(pearson_corr)\n", " else:\n", " input = tf.squeeze(input)\n", " target = tf.squeeze(target)\n", " input_ranks = tf.argsort(input, axis=-1)\n", " target_ranks = tf.argsort(target, axis=-1)\n", " input_ranks = tf.cast(tf.argsort(input_ranks, axis=-1), dtype=tf.float32)\n", " target_ranks = tf.cast(tf.argsort(target_ranks, axis=-1), dtype=tf.float32)\n", " std_input = tf.math.reduce_std(input_ranks)\n", " std_target = tf.math.reduce_std(target_ranks)\n", " cov = tf.reduce_mean((target_ranks - tf.reduce_mean(target_ranks)) *\\\n", " (input_ranks - tf.reduce_mean(input_ranks)))\n", " pearson_corr = cov/ (std_target * std_input)\n", " return pearson_corr\n", "\n", "\n", "def ranking_trainable_loss(input, target, context=None):\n", " \"\"\"Compute a differentiable ranking loss, that can be used for training.\"\"\"\n", " if context is not None:\n", " unique_contexts, indices = tf.unique(\n", " tf.squeeze(tf.cast(context, tf.int32)), name='None')\n", " all_corr = []\n", " for idx in range(unique_contexts.shape[0]):\n", " curr_context = unique_contexts[idx]\n", " locations_idx = tf.squeeze(tf.where(tf.equal(indices, curr_context)))\n", " input_tmp = tf.expand_dims(tf.gather(\n", " tf.squeeze(input), indices=locations_idx), 1)\n", " target_tmp = tf.expand_dims(tf.gather(\n", " tf.squeeze(target), indices=locations_idx), 1)\n", " input_transpose = tf.transpose(input_tmp, [1, 0]) # 1 x B\n", " target_transpose = tf.transpose(target_tmp, [1, 0]) # 1 x B\n", " diff_true = input_tmp - input_transpose # B x 1 - 1 x B = B x B = y_i - y_j\n", " diff_pred = target_tmp - target_transpose # fx_i - fx_j\n", " product = tf.sign(diff_true) * diff_pred # sign(y_i = y_j) * (fx_i - fxj)\n", " bce_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(\n", " labels=tf.ones_like(product), logits=product))\n", " all_corr.append(bce_loss)\n", " bce_loss = tf.reduce_mean(all_corr)\n", " else:\n", " input_transpose = tf.transpose(input, [1, 0]) # 1 x B\n", " target_transpose = tf.transpose(target, [1, 0]) # 1 x B\n", " diff_true = input - input_transpose # B x 1 - 1 x B = B x B = y_i - y_j\n", " diff_pred = target - target_transpose # fx_i - fx_j\n", " product = tf.sign(diff_true) * diff_pred # sign(y_i = y_j) * (fx_i - fxj)\n", " bce_loss = tf.nn.sigmoid_cross_entropy_with_logits(\n", " labels=tf.ones_like(product), logits=product)\n", " return tf.reduce_mean(bce_loss)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "2GVLIu49SUo2" }, "outputs": [], "source": [ "#@title Helper function for Kendall correlation\n", "\n", "def kendall_correlation(input, target, context=None):\n", " \"\"\"Compute Kendall's correlation over the input, target and context.\"\"\"\n", " if context is not None:\n", " unique_contexts, indices = tf.unique(\n", " tf.squeeze(tf.cast(context, tf.int32)), name='None')\n", " all_corr = []\n", " for idx in range(unique_contexts.shape[0]):\n", " curr_context = unique_contexts[idx]\n", " locations_idx = tf.squeeze(tf.where(tf.equal(indices, curr_context)))\n", " input_tmp = tf.expand_dims(tf.gather(\n", " tf.squeeze(input), indices=locations_idx), 1)\n", " target_tmp = tf.expand_dims(tf.gather(\n", " tf.squeeze(target), indices=locations_idx), 1)\n", " input_transpose = tf.transpose(input_tmp, [1, 0])\n", " target_transpose = tf.transpose(target_tmp, [1, 0])\n", " diff_true = input_tmp - input_transpose\n", " diff_pred = target_tmp - target_transpose\n", " product = tf.sign(diff_true) * tf.sign(diff_pred)\n", " positive_pairs = tf.where(tf.greater_equal(product, tf.zeros_like(product)),\n", " tf.ones_like(product), tf.zeros_like(product))\n", " n = tf.cast(tf.shape(input_tmp)[0], dtype=tf.float32)\n", " total_positive = tf.reduce_sum(positive_pairs) - n\n", " ratio = total_positive/ (n * (n-1))\n", " all_corr.append(ratio)\n", " ratio = tf.reduce_mean(all_corr)\n", " else:\n", " input_transpose = tf.transpose(input, [1, 0])\n", " target_transpose = tf.transpose(target, [1, 0])\n", " diff_true = input - input_transpose\n", " diff_pred = target - target_transpose\n", " product = tf.sign(diff_true) * tf.sign(diff_pred)\n", " positive_pairs = tf.where(tf.greater_equal(product, tf.zeros_like(product)),\n", " tf.ones_like(product), tf.zeros_like(product))\n", " n = tf.cast(tf.shape(input)[0], dtype=tf.float32)\n", " total_positive = tf.reduce_sum(positive_pairs) - n\n", " ratio = total_positive/ (n * (n-1))\n", " return 2 * ratio - 1.0" ] }, { "cell_type": "markdown", "metadata": { "id": "CyYBvUsEGPln" }, "source": [ "## Code for the PRIME surrogate" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "ziT-hyEYFthV" }, "outputs": [], "source": [ "#@title Definition of the PRIME surrogate model, training procedure\n", "\n", "class PRIMETransformerModel(tf.keras.Model):\n", " \"\"\"\n", " The transformer model used by PRIME. This class implements ability to \n", " instantiate a transformer model, and train it via the PRIME training objective\n", " (Equation 3 in https://arxiv.org/abs/2110.11346). \n", " \n", " Additionally it also implements the ability to train a contextual model,\n", " conditioned on the context. \n", " \"\"\"\n", "\n", " def __init__(self,\n", " num_outputs,\n", " num_inputs,\n", " optimizer,\n", " layers=(256, 256, 256),\n", " penalty_weight=10.0,\n", " negative_sampler=None,\n", " contextual=False,\n", " params_dict=None):\n", " \"\"\"Initializes the PRIMETransformer model.\n", "\n", " Args:\n", " num_outputs: the dimensionality of the output of the PRIME surrogate. \n", " Typically set to 1, but you can increase it to model multiple cost\n", " functions together.\n", " num_inputs: the dimensionality of the total number of inputs to the model.\n", " optimizer: the optimizer to optimize the trainable model.\n", " layers: hidden layer sizes for the feed-forward layers after extracting\n", " the transformer embedding.\n", " penalty_weight: the value of alpha in Equation 2 in PRIME.\n", " negative_sampler: an instance of a negative sampler. A negative sampler\n", " is basically an optimizer that can take in the current snapshot of the\n", " this PRIMETransformerModel, and optimize the predictions of the current\n", " model snapshot w.r.t its input. In the paper, we utilize an evolutionary\n", " optimizer to optimize the predictions. For this code release, we present\n", " a simple gradient-descent based optimizer for optimization as a\n", " demonstration. Users are encouraged to pass in their relevant\n", " negative sampler here.\n", " contextual: bool, indicates whether we are training a contextual model\n", " or a non-contextual model. Contextual is used for multi-model and\n", " zero-shot experiments. \n", " params_dict: dictionary. Can store additional parameters and their values.\n", " This dictionary provides an easy and convenient way to add new hyper-\n", " parameters, via keys of this dictionary. \n", " \"\"\"\n", " super().__init__()\n", " self.num_inputs = num_inputs\n", " self.num_outputs = num_outputs\n", " self.optimizer = optimizer\n", " self.params_dict = params_dict\n", " self.penalty_weight = penalty_weight\n", " self.contextual = contextual\n", "\n", " # Setting the following variable to True shouldn't cause issues since\n", " # it is not passed into the GradientTape, but better to be safe, and set\n", " # it to false if the variable is not used.\n", "\n", " # This variable determines the alpha multiplier in Equation 2.\n", " self.log_cql_alpha = tf.Variable(tf.math.log(self.penalty_weight + 1e-6),\n", " trainable=False)\n", " self.cql_alpha_value = tf.Variable(self.penalty_weight, trainable=False)\n", "\n", " self.negative_sampler = negative_sampler\n", "\n", " # In the paper, we use an evolutionary optimizer for obtaining adversarial\n", " # examples. However, unfortunately, this optimizer is proprietary, and so\n", " # we provide the example negative sampler that uses gradient ascent, similar\n", " # to conservative objective mocels https://arxiv.org/abs/2107.06882.\n", " self.num_gradient_infer_steps = 0\n", " if 'num_gradient_steps' in params_dict:\n", " self.num_gradient_infer_steps = params_dict['num_gradient_steps']\n", "\n", " self.opt_lr = 1e-3\n", " if 'opt_lr' in params_dict:\n", " self.opt_lr = params_dict['opt_lr']\n", "\n", " # the multiplier beta in Equation 3 in the paper.\n", " self.infeasible_alpha = 0.01\n", " if 'infeasible_alpha' in params_dict:\n", " self.infeasible_alpha = params_dict['infeasible_alpha']\n", "\n", " # Since the input to the model is a concatenation of one-hot values\n", " # representing each field, using the input_splits parameter, we partition\n", " # this big input vector into a list of one-hot vectors, one corresponding \n", " # to each discrete parameter. \n", " self.input_splits = None\n", " if 'input_splits' in params_dict:\n", " self.input_splits = params_dict['input_splits']\n", "\n", " # We use an architecture which resembles a mixture of experts, and so the\n", " # following parameter decides how many parameters we wish to have.\n", " self.num_votes = 1\n", " if 'num_votes' in params_dict:\n", " self.num_votes = params_dict['num_votes']\n", "\n", " # Whether to add dropout or not, in intermediate layers of the model, as \n", " # a means to prevent overfitting.\n", " use_dropout = False\n", " if 'use_dropout' in params_dict:\n", " use_dropout = params_dict['use_dropout']\n", "\n", " if self.contextual:\n", " \"\"\"For contextual version of PRIME\"\"\"\n", " self.num_contexts = 0\n", " if 'num_contexts' in params_dict:\n", " self.num_contexts = params_dict['num_contexts']\n", "\n", " print ('Infeasible alpha: ', self.infeasible_alpha)\n", " print ('CQL Alpha: ', self.log_cql_alpha)\n", " print ('Num votes: ', self.num_votes)\n", "\n", " self.input_layer = tf.keras.Input(num_inputs)\n", " temp_num_inputs = num_inputs\n", "\n", " # The following layer splits the input into a list of embeddings for \n", " # each parameter. Check the SplitEmbeddingLayer class for details.\n", " x = SplitEmbeddingLayer(softmax_splits=self.input_splits,\n", " output_size=64)(self.input_layer)\n", " if use_dropout:\n", " x = tf.keras.layers.Dropout(rate=0.1)(x)\n", " \n", " # Now feed the split embedding layer output into TransformerLayer\n", " x = TransformerLayer(d_model=64, num_heads=8, dff=256)(x)\n", " x = TransformerLayer(d_model=64, num_heads=8, dff=256)(x)\n", " \n", " x = tf.keras.layers.Reshape(target_shape=(640,))(x)\n", " \n", " if self.contextual:\n", " context_input = tf.keras.Input(self.num_contexts)\n", " out_context = tf.keras.layers.Dense(640, use_bias=False)(context_input)\n", "\n", " # Pointwise multiply the contexts to make sure that the context\n", " # conditioning is done properly. From https://arxiv.org/abs/1912.13465.\n", " x = x * out_context\n", " self._base_network = tf.keras.Model(\n", " inputs=[self.input_layer, context_input], outputs=x)\n", " else:\n", " self._base_network = tf.keras.Model(\n", " inputs=self.input_layer, outputs=x)\n", "\n", " self.optimize_networks = [self._base_network,]\n", "\n", " # Now feedforward layers to finish the model\n", " layers = list(layers)\n", " layers[0] = 64 * len(self.input_splits)\n", "\n", " \"\"\"Voting based routing\"\"\"\n", " num_networks = self.num_votes\n", " self._all_networks = []\n", " for jdx in range(num_networks):\n", " # Make each of the networks used in routing\n", " new_network = tf.keras.Sequential()\n", " for idx in range(len(layers) - 1):\n", " new_network.add(\n", " tf.keras.layers.Dense(layers[idx+1], input_shape=(layers[idx],)))\n", " new_network.add(tf.keras.layers.LeakyReLU(0.1))\n", " if use_dropout:\n", " new_network.add(tf.keras.layers.Dropout(rate=0.1))\n", "\n", " new_network.add(tf.keras.layers.Dense(\n", " num_outputs, input_shape=(layers[idx],)))\n", " self._all_networks.append(new_network)\n", "\n", " self.optimize_networks.extend(self._all_networks)\n", "\n", " # Now make the network that decides the contribution of these\n", " self.voting_network = tf.keras.Sequential()\n", " if self.contextual:\n", " self.voting_network.add(\n", " tf.keras.layers.Dense(layers[1], input_shape=(2*layers[0],)))\n", " else:\n", " self.voting_network.add(\n", " tf.keras.layers.Dense(layers[1], input_shape=(layers[0],)))\n", " self.voting_network.add(tf.keras.layers.LeakyReLU(0.1))\n", " if use_dropout:\n", " self.voting_network.add(tf.keras.layers.Dropout(rate=0.1))\n", "\n", " self.voting_network.add(\n", " tf.keras.layers.Dense(self.num_votes, input_shape=(layers[1],)))\n", "\n", " if self.contextual:\n", " # Add the vote generation network input again\n", " self.embedding_network = tf.keras.Sequential()\n", " self.embedding_network.add(\n", " tf.keras.layers.Dense(256))\n", " self.embedding_network.add(tf.keras.layers.LeakyReLU(0.1))\n", " self.embedding_network.add(\n", " tf.keras.layers.Dense(layers[0]))\n", "\n", " self.optimize_networks.append(self.embedding_network)\n", " self.optimize_networks.append(self.voting_network)\n", "\n", " print ('All networks: ', len(self.optimize_networks))\n", "\n", " @tf.function\n", " def call(self, inputs, training=True, with_logging=False):\n", " \"\"\"Function to call one forward pass on the PRIME Transformer.\"\"\"\n", " extra_dict = dict()\n", " if not self.contextual:\n", " transformer_embedding = self._base_network(inputs, training=training)\n", " else:\n", " # TODO(aviralkumar): Fix the hardcoded 77 input dimensionality in code\n", " if not isinstance(inputs, list) and not isinstance(inputs, tuple):\n", " inputs = (inputs[:, :77], inputs[:, 77:])\n", "\n", " transformer_embedding = self._base_network(inputs, training=training)\n", " \n", " # Get all outputs from each expert\n", " all_outputs = []\n", " for idx in range(self.num_votes):\n", " all_outputs.append(\n", " self._all_networks[idx](transformer_embedding, training=training))\n", " \n", " # Get the voting probabilities\n", " if self.contextual:\n", " vote_input = self.embedding_network(inputs[1])\n", " vote_input = tf.concat([transformer_embedding, vote_input], axis=-1)\n", " vote_logit = self.voting_network(vote_input, training=training)\n", " else:\n", " vote_logit = self.voting_network(transformer_embedding,\n", " training=training)\n", "\n", " # Append all_outputs in a list and compute average score\n", " all_outputs = tf.concat(all_outputs, axis=-1) # [B x num_votes]\n", " vote_prob = tf.nn.softmax(vote_logit, axis=-1) # [B x num_votes]\n", " vote_entropy = tf.reduce_sum(\n", " tf.nn.log_softmax(vote_logit, axis=-1) * vote_prob, axis=-1)\n", " extra_dict['vote_entropy'] = tf.reduce_mean(vote_entropy)\n", " fwd_model_pred = tf.reduce_sum(vote_prob * all_outputs, axis=-1)\n", " fwd_model_pred = tf.expand_dims(fwd_model_pred, axis=-1)\n", " \n", " if with_logging:\n", " return fwd_model_pred, extra_dict\n", "\n", " return fwd_model_pred\n", "\n", " def compute_loss(self, data_batch, loss_type='mse', training=True,\n", " ranking_penalty_weight=0.0, inp_batch_type=None):\n", " \"\"\"\n", " Compute the loss function and additional logging metrics for training.\n", "\n", " Args:\n", " data_batch: A dictionary of various input fields, and their corresponding\n", " tensor values. The keys for this dictionary are:\n", " - design --\u003e denotes the input (accelerator config in this case)\n", " - objective --\u003e denotes the objective value for the given input\n", " - context_id --\u003e denotes the context vector for the case of contextual\n", "\n", " loss_type: string, either mse or mse+rank. It essentially computes the\n", " training loss used to train the PRIME model. We can optionally add some\n", " ranking regularization for training if needed. Though, we did not find\n", " this to be essential. \n", "\n", " inp_batch_type: string, either 'valid' or 'mixed'. Mixed indicates that\n", " the batch consists of both valid and invalid samples, whereas valid\n", " indicates the samples are only valid samples.\n", "\n", " ranking_penalty_weight: float, the weight on the ranking loss function\n", " in addition to the PRIME objectives. This is not needed for PRIME, but\n", " can help in some cases. So, leaving the facility here.\n", " \"\"\"\n", " loss_dict = dict()\n", " if loss_type == 'mse':\n", " fwd_loss = weighted_mse_loss\n", " elif loss_type == 'mse+rank':\n", " fwd_loss = weighted_mse_loss\n", " ranking_loss_fn = ranking_trainable_loss\n", "\n", " loss_dict['y_values_max'] = tf.reduce_max(data_batch['objective'])\n", " loss_dict['y_values_mean'] = tf.reduce_mean(data_batch['objective'])\n", "\n", " data_batch = data_batch.copy()\n", " weights = tf.ones_like(data_batch['objective'])\n", " \n", " if self.contextual:\n", " model_pred, extra_dict = self(\n", " inputs=[data_batch['design'], data_batch['context_id']],\n", " training=training, with_logging=True)\n", " else:\n", " model_pred, extra_dict = self(\n", " data_batch['design'], training=training, with_logging=True)\n", "\n", " loss_dict.update(extra_dict)\n", "\n", " if self.negative_sampler is not None:\n", " # This branch of the code will not run off-the-shelf, since it assumes \n", " # access to a negative_sampler. A negative sampler is simply any kind of\n", " # optimizer that can take in the current PRIMETransformerModel and\n", " # optimize its predictions.\n", " negatives_batch = self.negative_sampler.run_inference(\n", " num_iters=2, model=self)\n", " negatives_pred = self(inputs=negatives_batch, training=training)\n", " else:\n", " negatives_batch = self.infer_negatives(data_batch)\n", " if self.contextual:\n", " negatives_pred = self(\n", " (negatives_batch['design'], negatives_batch['context_id']),\n", " training=training)\n", " else:\n", " negatives_pred = self(negatives_batch['design'], training=True)\n", " \n", " negatives_pred = tf.clip_by_value(negatives_pred, clip_value_min=-4000.0,\n", " clip_value_max=4000.0)\n", " \n", " cql_loss = tf.reduce_mean(negatives_pred)\n", " cql_loss = tf.clip_by_value(cql_loss, \n", " clip_value_min=-4000, \n", " clip_value_max=1e6)\n", " loss_dict['negatives_dist'] = tf.reduce_mean(negatives_pred)\n", "\n", " mse_loss = weighted_mse_loss(\n", " model_pred, data_batch['objective'], weights)\n", "\n", " if loss_type == 'mse+rank':\n", " if self.contextual:\n", " avg_ranking_train_loss = ranking_loss_fn(\n", " model_pred, data_batch['objective'],\n", " context=data_batch['raw_context'])\n", " else:\n", " avg_ranking_train_loss = ranking_loss_fn(\n", " model_pred, data_batch['objective'])\n", " else:\n", " avg_ranking_train_loss = 0.0\n", "\n", " # Only used for logging, measures how big the MSE error is relative to\n", " # the output of the model. \n", " avg_approx_loss = weighted_approx_loss(\n", " model_pred, data_batch['objective'], weights)\n", " passed_context = None\n", "\n", " if self.contextual:\n", " passed_context = data_batch['raw_context']\n", " \n", " avg_ranking_loss = ranking_loss(\n", " model_pred, data_batch['objective'], context=passed_context)\n", " avg_kendall_loss = kendall_correlation(\n", " model_pred, data_batch['objective'], context=passed_context)\n", "\n", " train_loss = mse_loss\n", " loss_dict['mse_loss'] = mse_loss\n", " loss_dict['avg_approx_loss'] = avg_approx_loss\n", " loss_dict['avg_ranking_loss'] = avg_ranking_loss\n", " loss_dict['avg_ranking_train_loss'] = avg_ranking_train_loss\n", " loss_dict['avg_kendall_loss'] = avg_kendall_loss\n", " loss_dict['cql_loss'] = cql_loss\n", " loss_dict['negatives_pred'] = tf.reduce_mean(negatives_pred)\n", " loss_dict['model_pred_average'] = tf.reduce_mean(model_pred)\n", " train_loss = train_loss + ranking_penalty_weight * avg_ranking_train_loss\n", " train_loss = train_loss + self.cql_alpha_value * cql_loss\n", " \n", " if inp_batch_type is not 'valid':\n", " weights_negatives = tf.ones_like(data_batch['objective'])\n", " if self.contextual:\n", " model_pred_invalid, invalid_dict = self(\n", " inputs=(data_batch['invalid/design'], data_batch['context_id']),\n", " training=training, with_logging=True)\n", " else:\n", " model_pred_invalid, invalid_dict = self(\n", " data_batch['invalid/design'], training=training, with_logging=True)\n", "\n", " for key in invalid_dict:\n", " loss_dict['invalid/'+key] = invalid_dict[key]\n", "\n", " ## Conservatism training\n", " loss_dict['y_value_infeasible'] = tf.reduce_mean(model_pred_invalid)\n", " loss_dict['y_value_infeasible'] = tf.clip_by_value(\n", " loss_dict['y_value_infeasible'], \n", " clip_value_min=-1000, clip_value_max=1e6)\n", " train_loss = train_loss + self.infeasible_alpha *\\\n", " loss_dict['y_value_infeasible']\n", "\n", " mse_loss_invalid = weighted_mse_loss(\n", " model_pred_invalid, data_batch['invalid/objective'], \n", " weights_negatives)\n", " avg_approx_loss_invalid = weighted_approx_loss(\n", " model_pred_invalid, data_batch['invalid/objective'], \n", " weights_negatives)\n", " mse_loss = mse_loss + mse_loss_invalid\n", " loss_dict['mse_loss_invalid'] = mse_loss_invalid\n", " loss_dict['mse_loss_overall'] = mse_loss\n", " loss_dict['avg_approx_loss_invalid'] = avg_approx_loss_invalid\n", " return loss_dict, train_loss\n", "\n", " def perform_training(self, batch, loss_type,\n", " ranking_penalty_weight=0.0, **kwargs):\n", " \"\"\"\n", " Actually perform training by computing loss, and then taking gradients\n", " through it. Makes sure to backpropagate through all networks.\n", " \"\"\"\n", " with tf.GradientTape(\n", " watch_accessed_variables=False, persistent=True) as tape:\n", " tape.watch(\n", " [v for net in self.optimize_networks\\\n", " for v in net.trainable_variables])\n", " loss_dict, loss_train = self.compute_loss(\n", " batch, loss_type, training=True,\n", " ranking_penalty_weight=ranking_penalty_weight)\n", "\n", " grads = tape.gradient(loss_train,\n", " [v for net in self.optimize_networks\\\n", " for v in net.trainable_variables])\n", " gen_grads_op = self.optimizer.apply_gradients(\n", " zip(grads, [v for net in self.optimize_networks\\\n", " for v in net.trainable_variables]))\n", " return loss_dict\n", "\n", " def measure_stats(self, batch, batch_type=None, **kwargs):\n", " \"\"\"Simply make a forward pass through compute_loss to measure losses.\"\"\"\n", " loss_dict, _ = self.compute_loss(batch, loss_type='mse+rank',\n", " training=False,\n", " inp_batch_type=batch_type)\n", " return loss_dict\n", "\n", " def infer_negatives(self, batch):\n", " \"\"\"Run gradient descent to obtain negative examples\"\"\"\n", " temp_batch = dict()\n", " log_probs = batch['design']\n", " if self.contextual:\n", " contexts = batch['context_id']\n", " for _ in range(self.num_gradient_infer_steps):\n", " with tf.GradientTape(\n", " watch_accessed_variables=False, persistent=False) as tape:\n", " tape.watch(log_probs)\n", " if self.contextual:\n", " model_pred = self((log_probs, contexts), training=False)\n", " else:\n", " model_pred = self(log_probs, training=False)\n", " grad = tape.gradient(model_pred, log_probs)\n", " log_probs = log_probs + self.opt_lr * grad[0]\n", " temp_batch['design'] = tf.stop_gradient(log_probs)\n", " if 'context_id' in batch and self.contextual:\n", " temp_batch['context_id'] = batch['context_id']\n", " return temp_batch" ] }, { "cell_type": "markdown", "metadata": { "id": "1RPktU1SVbIK" }, "source": [ "# Data Loading and Problem Definition" ] }, { "cell_type": "markdown", "metadata": { "id": "uvF6OMaCVlaf" }, "source": [ "## Hardware Optimization Problem \u0026 Offline Data" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "mg6CWNYlVkqO" }, "outputs": [], "source": [ "#@title Define the hardware optimization problem\n", "\n", "class HardwareOptProblem:\n", " \"\"\"\n", " Problem for loading the task dataset and training\n", " \"\"\"\n", " def __init__(self,\n", " config: dict,\n", " data_file: dict, \n", " params_dict: Optional[dict] = None):\n", " \"\"\"Initialize a hardware optimization problem.\n", "\n", " config: a dictionary of various input fields and their corresponding\n", " possible valid number of discrete values. \n", " data_file: a dictionary of a list of various input fields.\n", " params_dict: a dictionary of additional inputs to the HardwareOptProblem.\n", " \"\"\"\n", "\n", " # Batch size for the batch sampling\n", " self.batch_size = 256\n", " if 'batch_size' in params_dict:\n", " self._batch_size = params_dict['batch_size']\n", "\n", " # Whether to train on infeasible points or not\n", " # use 'valid' for feasible points, and 'mixed' for both infeasible and\n", " # feasible points\n", " self._batch_type = 'valid'\n", " if 'batch_type' in params_dict:\n", " self._batch_type = params_dict['batch_type']\n", "\n", " # Add any area constraints or not: this flag enables filtering the data\n", " # basedn on whether the area constraint is not satisfied\n", " self._add_area_constraints = False\n", " if 'add_area_constraints' in params_dict:\n", " self._add_area_constraints = params_dict['add_area_constraints']\n", "\n", " self.dataset = PRIMEDataset(config=config,\n", " data_dict=data_file)\n", " self.feasible_probs,\\\n", " self.infeasible_probs = self.dataset.get_feasible_probs(\n", " add_area_constraints=self._add_area_constraints)\n", "\n", " # Choose what kind of batch to provide while training the model\n", " self.get_training_batch = None\n", " if self._batch_type == 'valid':\n", " self.get_training_batch = self.get_valid_only_batch\n", " elif self._batch_type == 'mixed':\n", " self.get_training_batch = self.get_mixed_batch\n", " else:\n", " self.get_training_batch = self.get_all_batch\n", "\n", " def get_all_batch(self,):\n", " \"\"\"Sample i.i.d. from the entire dataset.\"\"\"\n", " indices = np.random.randint(1, \n", " self.dataset._top, self._batch_size)\n", " batch_x, batch_y = self.dataset._get_batch(indices)\n", " batch_dict = dict()\n", " batch_dict['design'] = batch_x\n", " batch_dict['objective'] = batch_y\n", " return batch_dict\n", "\n", " def get_valid_only_batch(self,):\n", " \"\"\"Get only valid samples in the batch.\"\"\"\n", " indices = np.random.choice(np.arange(0, self.dataset._top),\n", " size=self._batch_size, p=self.feasible_probs)\n", " batch_x, batch_y = self.dataset._get_batch(indices)\n", " batch_dict = dict()\n", " batch_dict['design'] = batch_x\n", " batch_dict['objective'] = batch_y\n", " return batch_dict\n", "\n", " def get_top_batch(self,):\n", " \"\"\"Get only the top scoring batch for eval\"\"\"\n", " indices = self.dataset._tf_dataset['argsort'][-self.batch_size:]\n", " batch_x, batch_y = self.dataset._get_batch(indices)\n", " batch_dict = dict()\n", " batch_dict['design'] = batch_x\n", " batch_dict['objective'] = batch_y\n", " return batch_dict\n", "\n", " def get_mixed_batch(self,):\n", " \"\"\"Get both valid and invalid samples to train in a batch\"\"\"\n", " # Should be called when training with invalid samples as negatives\n", " valid_indices = np.random.choice(np.arange(0, self.dataset._top),\n", " size=self._batch_size,\n", " p=self.feasible_probs)\n", " invalid_indices = np.random.choice(np.arange(0, self.dataset._top),\n", " size=self._batch_size,\n", " p=self.infeasible_probs)\n", " batch_x, batch_y = self.dataset._get_batch(valid_indices)\n", " batch_x_in, batch_y_in = self.dataset._get_batch(invalid_indices)\n", " batch_dict = dict()\n", " batch_dict['design'] = batch_x\n", " batch_dict['objective'] = batch_y\n", " batch_dict['invalid/design'] = batch_x_in\n", " batch_dict['invalid/objective'] = batch_y_in\n", " return batch_dict" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "b1WllMw1K-Ad" }, "outputs": [], "source": [ "#@title Define the dataset\n", "\n", "class PRIMEDataset(tf.Module):\n", " \"\"\"\n", " Load the dataset to be able to train the PRIMETransformerModel. \n", " \"\"\"\n", " def __init__(self,\n", " config,\n", " data_dict: dict,\n", " **kwargs):\n", " \"\"\"Create a dataset for training PRIME.\"\"\"\n", " self._config = config\n", "\n", " self.data_dict = data_dict\n", " self._design_space_dict = {}\n", " self._segment_lengths = {}\n", " self._max_ctr = 0\n", " self._eval_metric_keys = ['area', 'runtime', 'score']\n", " self._validity_keys = ['infeasible',]\n", "\n", " self._active_training_keys = ['param_1', 'param_2', 'param_3',\n", " 'param_4', 'param_5', 'param_6',\n", " 'param_7', 'param_8', 'param_9',\n", " 'param_10']\n", "\n", " self._tf_dataset = {}\n", " self._top = 0\n", " if self.data_dict is not None:\n", " self._setup_dataset()\n", "\n", " def _setup_dataset(self,):\n", " \"\"\"Main function to setup the dataset\"\"\"\n", " self.load_or_refresh_config()\n", " logging.info('Loading dataset..')\n", " self._convert_to_tf_dataset()\n", " self.get_score_function()\n", " print ('Loaded dataset....', self.size)\n", "\n", " def get_input_splits(self,):\n", " \"\"\"Get the splits of input of the dataset.\"\"\"\n", " lengths = []\n", " for key in self._active_training_keys:\n", " ctr_idx = self._design_space_dict[key]['ctr']\n", " lengths.append(self._segment_lengths[ctr_idx])\n", " self._active_lengths = lengths\n", " return lengths\n", "\n", " def get_score_function(self,):\n", " \"\"\"Get the objective function which is being maximized\"\"\"\n", " runtime = self._tf_dataset['runtime'].numpy()\n", " area = self._tf_dataset['area'].numpy()\n", " scores = -runtime\n", " self._tf_dataset['score'] = tf.convert_to_tensor(\n", " scores, dtype=tf.float32)\n", " print ('Score stats: ')\n", " print ('--------------------------------------------')\n", " print ('Max: ', scores.max())\n", " print ('Mean: ', scores.mean())\n", " print ('Min: ', scores.min())\n", " print ('--------------------------------------------')\n", "\n", " # Since we need top batch for eval, store top scores\n", " self._tf_dataset['argsort'] = np.argsort(\n", " self._tf_dataset['score'].numpy())\n", " return scores\n", "\n", " def _convert_to_tf_dataset(self,):\n", " \"\"\"Convert the dataset to a tensorflow dataset, easy to read from.\"\"\"\n", " tf_dataset = {}\n", " for key in self._active_training_keys +\\\n", " self._eval_metric_keys + self._validity_keys:\n", " tf_dataset[key] = []\n", "\n", " # Load the data from the data file. Note that most of the fields are\n", " # actually not one-hots, and essentially corresponds to the original data\n", " # with field-value pairs for each field, and the value is a discrete value.\n", " tf_actual_dataset = {}\n", " parsed_dataset = self.data_dict\n", " for p in parsed_dataset:\n", " tf_dataset[p] = parsed_dataset[p]\n", " tf_actual_dataset[p] = tf.convert_to_tensor(tf_dataset[p])\n", "\n", " if key in self._active_training_keys:\n", " tf_actual_dataset[p] = tf.cast(tf_actual_dataset[p], tf.int32)\n", "\n", " self._design_space_dict_copy = deepcopy(self._design_space_dict)\n", "\n", " # Now convert the dataset to actually use one-hot representations. This is\n", " # used for training, and so it is important to use this.\n", " tf_actual_temp_dataset = {}\n", " for key in self._active_training_keys:\n", " design_space_map = dict(\n", " self._design_space_dict[key]['mapping_one_hot_to_value'])\n", " data_val = tf_actual_dataset[key].numpy().astype(np.int32).tolist()\n", " out_vals = []\n", " for x in data_val:\n", " out_vals.append(design_space_map[x])\n", "\n", " tf_actual_temp_dataset[key] = tf.constant(out_vals, dtype=tf.int32)\n", "\n", " ## Finally load the tf_actual_temp_dataset into the tf_dataset\n", " for key in tf_actual_temp_dataset:\n", " tf_actual_dataset[key] = tf_actual_temp_dataset[key]\n", "\n", " self._tf_dataset = tf_actual_dataset\n", " self._infeasible_np = self._tf_dataset['infeasible'].numpy().astype(\n", " np.float32)\n", " self._top = self._infeasible_np.shape[0]\n", "\n", " def load_or_refresh_config(self):\n", " \"\"\"Load config file with specifications.\"\"\"\n", " self._design_space_dict = {}\n", " self._segment_lengths = {}\n", " \n", " try:\n", " # The case when the config is a file to open\n", " with gfile.Open(self._config, 'r') as f:\n", " line = f.readline()\n", " line = line.replace('\\n', '')\n", " # print ('Line: ', line)\n", " ctr = 0\n", " while line:\n", " ind_field = dict()\n", " split_line = line.split(':')\n", " ind_field['data_type'] = split_line[0]\n", " ind_field['value_range'] = [int(x) for x in split_line[-1].split(',')]\n", " index_vals = np.arange(len(ind_field['value_range']))\n", " ind_field['mapping_one_hot_to_value'] = zip(\n", " ind_field['value_range'], index_vals)\n", " ind_field['ctr'] = ctr\n", " self._design_space_dict[split_line[1]] = ind_field\n", " self._segment_lengths[ctr] = len(ind_field['value_range'])\n", " self._max_ctr += 1\n", " line = f.readline()\n", " ctr += 1\n", " except:\n", " # When config is a string of the contents of the file\n", " lines = self._config.split(\"\\n\")\n", " lines = [line.replace('\\n', '') for line in lines]\n", " ctr = 0\n", " for line in lines:\n", " ind_field = dict()\n", " split_line = line.split(':')\n", " ind_field['data_type'] = split_line[0]\n", " ind_field['value_range'] = [int(x) for x in split_line[-1].split(',')]\n", " index_vals = np.arange(len(ind_field['value_range']))\n", " ind_field['mapping_one_hot_to_value'] = zip(\n", " ind_field['value_range'], index_vals)\n", " ind_field['ctr'] = ctr\n", " self._design_space_dict[split_line[1]] = ind_field\n", " self._segment_lengths[ctr] = len(ind_field['value_range'])\n", " self._max_ctr += 1\n", " ctr += 1\n", "\n", " split_lengths = []\n", " for key in self._active_training_keys:\n", " split_lengths.append(\n", " self._segment_lengths[self._design_space_dict[key]['ctr']])\n", " total_length_split = 0\n", " \n", " if total_length_split \u003e 0:\n", " split_lengths.append(total_length_split)\n", " self.split_lengths = split_lengths # later used to split input when needed\n", " self.continuous_or_not = (total_length_split \u003e 0)\n", "\n", " @property\n", " def size(self,):\n", " return self._top\n", "\n", " @property\n", " def input_properties(self):\n", " \"\"\"Get the total length of the vector to be fed as input to the model.\"\"\"\n", " length = 0\n", " for val in self._active_lengths:\n", " length += val\n", " return length\n", "\n", " def get_feasible_probs(self, add_area_constraints=False):\n", " \"\"\"\n", " Get the probability of points that are feasible, meaning they don't\n", " violate the area constraint and also obtain the feasibility result. \n", " \"\"\"\n", " feasible = (1.0 - self._infeasible_np)\n", " print ('Number of feasible points: ', np.sum(feasible))\n", " if add_area_constraints:\n", " print ('Min area: ', tf.reduce_min(self._tf_dataset['area']))\n", " feasible_area = (\n", " self._tf_dataset['area'] \u003c= AREA_THRESHOLD).numpy().astype(np.float32)\n", " feasible = np.clip(feasible + feasible_area - 1.0,\n", " a_min=0.0, a_max=1.0)\n", " print ('Number of feasible points due to area constraint: ',\n", " np.sum(feasible_area))\n", " print ('NUmber of feasible points after area constraint: ',\n", " np.sum(feasible))\n", " probs = feasible / np.sum(feasible)\n", " infeasible_probs = (1.0 - feasible)/ np.sum(1.0 - feasible)\n", " return probs, infeasible_probs\n", "\n", " def valid_invalid_data_size(self, add_area_constraints=True):\n", " \"\"\"Get the size of the valid and invalid dataset compositions.\"\"\"\n", " feasible = (1.0 - self._infeasible_np)\n", " if add_area_constraints:\n", " feasible_area = (\n", " self._tf_dataset['area'] \u003c= AREA_THRESHOLD).numpy().astype(np.float32)\n", " feasible = np.clip(feasible + feasible_area - 1.0,\n", " a_min=0.0, a_max=1.0)\n", " return np.sum(feasible), np.shape(feasible)[0] - np.sum(feasible)\n", "\n", " def _get_batch(self, indices):\n", " \"\"\"Sample a batch from the dataset.\"\"\"\n", " all_train_elements = [] # this is the training elements in one-hot form\n", " all_test_elements = [] # this is the evaluation fields (area, runtime, score, etc)\n", "\n", " # Discrete training input keys\n", " for key in self._active_training_keys:\n", " all_train_elements.append(\n", " tf.one_hot(tf.gather(self._tf_dataset[key], indices),\n", " depth=self._segment_lengths[\n", " self._design_space_dict[key]['ctr']]))\n", "\n", " # Eval keys\n", " all_test_elements = tf.expand_dims(\n", " tf.gather(self._tf_dataset['score'], indices), 1)\n", " return tf.concat(all_train_elements, 1), all_test_elements" ] }, { "cell_type": "markdown", "metadata": { "id": "X3XTzmx2XEmu" }, "source": [ "# Training loop and training" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "id": "KZt31sS_Xcuz" }, "outputs": [], "source": [ "#@title Defining the function that runs training\n", "\n", "def train_eval_offline(\n", " # Data flags\n", " config=None,\n", " training_dataset=None,\n", " validation_dataset=None, \n", " # Train flags\n", " train_steps=int(1e6),\n", " summary_freq=1000,\n", " eval_freq=1000,\n", " # Train hparams\n", " add_summary=True,\n", " save_dir=None,\n", " loss_type='mse',\n", " layers=(512, 512, 512),\n", " opt_lr=1e-4,\n", " opt_betas=(0.9, 0.999),\n", " with_ranking_penalty=False,\n", " ranking_penalty_weight=0.1,\n", " batch_size=256,\n", " batch_type='mixed',\n", " # params of the model\n", " use_dropout=False,\n", " num_votes=1,\n", " # PRIME parameters:\n", " cql_alpha=1.0,\n", " infeasible_alpha=1.0):\n", " \"\"\"Training loop for the PRIME model. \n", " \n", " Most of the input arguments are primarily hyperparameters for training the\n", " PRIME model, and self explanatory. Other arguments explained below. \n", " \n", " save_dir: the directory where the store the saved model, and the training\n", " summaries. Can be a string or None.\n", " training_dataset: a dictionary of fields in the training dataset, and their\n", " corresponding values used to train.\n", " validation_dataset: a dictionary of fields in the validation dataset, and\n", " their corresponding values to measure cross-validation. \n", " \"\"\"\n", "\n", " # First create the training dataset, note that the dataset below is a\n", " # dummy dataset, that is only well-suited for training as a representative\n", " # example. You can plug in the dataset from the other colab that provides\n", " # the data for training, or you can add your own dataset here. \n", " params_dict = dict()\n", " params_dict['batch_size'] = batch_size\n", " params_dict['batch_type'] = batch_type\n", " params_dict['add_area_constraints'] = True\n", " # Defining the problem automatically does dataset loading\n", " train_problem = HardwareOptProblem(config,\n", " training_dataset, params_dict)\n", " \n", " # Now define the validation dataset (or val_problem)\n", " val_params_dict = dict()\n", " val_params_dict['batch_size'] = batch_size\n", " val_params_dict['add_area_constraints'] = True\n", " # Only validate on the valid samples in the validation dataset\n", " val_params_dict['batch_type'] = 'valid'\n", " val_problem = HardwareOptProblem(config, validation_dataset,\n", " val_params_dict)\n", "\n", "\n", " # The dimensionality of each parameter. this input_splits parameter goes\n", " # into the PRIMETransformer, as it enables us to pass in inputd as a big\n", " # vector of concatenated one-hot vectors for each discrete parameter, and\n", " # then unpack it in the model training. This gives the flexibility of actually\n", " # being able to use the input one-hot vectors in any way as needed. \n", " input_splits = train_problem.dataset.get_input_splits()\n", " print ('Input splits: ', input_splits)\n", "\n", " # Number of inputs in all: the total dimensionality of the input is given by\n", " # the sum of number of possible values each discrete parameter can take\n", " input_properties = train_problem.dataset.input_properties\n", " print ('Loaded validation dataset..', train_problem.dataset.size, \n", " val_problem.dataset.size, input_properties)\n", "\n", " feasible_size,\\\n", " infeasible_size = train_problem.dataset.valid_invalid_data_size()\n", " print ('Feasible/Infeasible size: ', feasible_size, infeasible_size)\n", "\n", " fwd_optimizer = tf.keras.optimizers.Adam(learning_rate=opt_lr,\n", " beta_1=opt_betas[0],\n", " beta_2=opt_betas[1], name='opt')\n", "\n", " training_dict = dict()\n", " training_dict['training_type'] = batch_type\n", " training_dict['use_dropout'] = use_dropout\n", " training_dict['infeasible_alpha'] = infeasible_alpha\n", " training_dict['input_splits'] = input_splits\n", " training_dict['num_votes'] = num_votes\n", " training_dict['infeasbile_multiplier'] = float(feasible_size)/(\n", " float(infeasible_size) + 1)\n", " training_dict['num_gradient_steps'] = 20\n", "\n", " model = PRIMETransformerModel(\n", " num_outputs=1,\n", " num_inputs=input_properties,\n", " optimizer=fwd_optimizer,\n", " layers=layers,\n", " penalty_weight=cql_alpha,\n", " params_dict=training_dict)\n", " \n", " rand_num = np.random.randint(10000)\n", " \n", " # summary writer\n", " if save_dir is not None:\n", " save_dir = os.path.join(save_dir, str(rand_num))\n", " summary_writer = tf.summary.create_file_writer(logdir=save_dir)\n", " summary_writer.set_as_default()\n", " else:\n", " tf.summary.create_noop_writer()\n", "\n", " print ('save dir : ', save_dir)\n", "\n", " # Now start the training\n", " for step in range(train_steps):\n", " batch = train_problem.get_training_batch()\n", " # This is just to build the models.\n", " if step == 0:\n", " _ = model.measure_stats(batch)\n", " loss_dict = model.perform_training(\n", " batch, loss_type=loss_type,\n", " ranking_penalty_weight=ranking_penalty_weight)\n", "\n", " if step % summary_freq == 0:\n", " # regular logging\n", " print ('-------------------------------------------------------')\n", " for key in loss_dict:\n", " tf.summary.scalar('train/' + key, loss_dict[key], step=step)\n", " print ('Step: ', step, 'train/' + key, ':', loss_dict[key])\n", " print ('-------------------------------------------------------')\n", "\n", " if save_dir is not None:\n", " if step == 0:\n", " model.save(save_dir)\n", " if step % 5000 == 0:\n", " model.save_weights(os.path.join(save_dir, \"ckpt-\"+str(step)))\n", "\n", " if step % eval_freq == 0:\n", " val_batch = val_problem.get_training_batch()\n", " # validation batches are only valid batches\n", " val_loss_dict = model.measure_stats(val_batch, batch_type='valid')\n", " print ('-------------------------------------------------------')\n", " for key in val_loss_dict:\n", " tf.summary.scalar('val/' + key, val_loss_dict[key], step=step)\n", " print ('Step: ', step, 'val/' + key, ':', val_loss_dict[key])\n", " print ('-------------------------------------------------------')\n", "\n", " print ('Finished Training')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "sjN3ZcR3kLnt", "outputId": "b92be4a6-c5e2-42a1-c5c2-e5b1ba31dc51" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Keys in the dummy dataset: dict_keys(['param_1', 'param_2', 'param_3', 'param_7', 'param_8', 'param_9', 'param_6', 'param_5', 'param_4', 'param_10', 'area', 'runtime', 'infeasible'])\n" ] } ], "source": [ "#@title Creating dummy data\n", "\n", "\n", "def create_dummy_data(dataset_size, config_dict,\n", " remaining_fields=('area', 'runtime', 'infeasible')):\n", " \"\"\"\n", " Create dummy data for training PRIME.\n", "\n", " dataset_size: int, the number of samples in the training data.\n", " config_dict: dictionary, specifying the design space to sample the dataset.\n", " remaining_fields: tuple, a tuple of float values specifying additional fields\n", " to sample in the dataset. Default includes float parameters 'area' and\n", " 'runtime', and also includes a boolean field 'infeasible'\n", " \"\"\"\n", " data_dict = {}\n", " for key in config_dict:\n", " allowed_values = config_dict[key]['value_range']\n", " sampled_values = np.random.choice(allowed_values, size=dataset_size)\n", " data_dict[key] = sampled_values\n", "\n", " for key in remaining_fields:\n", " if 'infeasible' in key:\n", " sampled_values = np.random.choice([True, False], size=dataset_size)\n", " elif 'runtime' or 'area' in key:\n", " sampled_values = np.random.uniform(low=0.0, high=100.0,\n", " size=dataset_size)\n", " data_dict[key] = sampled_values\n", "\n", " return data_dict\n", "\n", "\n", "config_str = \"\"\"discrete:param_1:float64:true:1,2,4,6,8,10,12,14,16,32\n", "discrete:param_2:float64:true:1,2,4,6,8,10,12,14,16,32\n", "discrete:param_3:float64:true:4,8,16,32,64,128,256\n", "discrete:param_7:float64:true:256,512,1024,2048,4096,8192,16384\n", "discrete:param_8:float64:true:8192,16384,32768,65536\n", "discrete:param_9:float64:true:2048,4096,8192,16384,32768\n", "discrete:param_6:float64:true:4096,8192,16384,32768,65536,131072,262144,524288,1048576,2097152,4194304\n", "discrete:param_5:float64:true:262144,524288,1048576,2097152,4194304,8388608,16777216\n", "discrete:param_4:float64:true:1,2,4,6,8,10,12,14,16,32\n", "discrete:param_10:float64:true:5,10,16,20,25,30\"\"\"\n", "\n", "# Generating dummy data\n", "temp_dataset = PRIMEDataset(config=config_str, data_dict=None, params_dict={})\n", "temp_dataset.load_or_refresh_config()\n", "dictionary_to_generate_data = temp_dataset._design_space_dict\n", "\n", "training_data = create_dummy_data(1000, dictionary_to_generate_data)\n", "validation_data = create_dummy_data(1000, dictionary_to_generate_data)\n", "\n", "print ('Keys in the dummy dataset: ', training_data.keys())\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "_V1oRa25sRYV", "outputId": "2dfc8315-1abd-47f1-f12e-0a6072bc99f7" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Score stats: \n", "--------------------------------------------\n", "Max: -0.6129692603849213\n", "Mean: -51.45989737306953\n", "Min: -99.96909843043453\n", "--------------------------------------------\n", "Loaded dataset.... 1000\n", "Number of feasible points: 511.0\n", "Min area: tf.Tensor(0.06833098587071262, shape=(), dtype=float64)\n", "Number of feasible points due to area constraint: 295.0\n", "NUmber of feasible points after area constraint: 153.0\n", "Score stats: \n", "--------------------------------------------\n", "Max: -0.04601063577058806\n", "Mean: -49.507973451263794\n", "Min: -99.947081272807\n", "--------------------------------------------\n", "Loaded dataset.... 1000\n", "Number of feasible points: 500.0\n", "Min area: tf.Tensor(0.037564213198348906, shape=(), dtype=float64)\n", "Number of feasible points due to area constraint: 255.0\n", "NUmber of feasible points after area constraint: 123.0\n", "Input splits: [10, 10, 7, 10, 7, 11, 7, 4, 5, 6]\n", "Loaded validation dataset.. 1000 1000 77\n", "Feasible/Infeasible size: 153.0 847.0\n", "Infeasible alpha: 0.05\n", "CQL Alpha: \u003ctf.Variable 'Variable:0' shape=() dtype=float32, numpy=-2.302575\u003e\n", "Num votes: 1\n", "ListWrapper([10, 10, 7, 10, 7, 11, 7, 4, 5, 6])\n", "All networks: 3\n", "save dir : None\n", "-------------------------------------------------------\n", "Step: 0 train/y_values_max : tf.Tensor(-0.9038583, shape=(), dtype=float32)\n", "Step: 0 train/y_values_mean : tf.Tensor(-51.291016, shape=(), dtype=float32)\n", "Step: 0 train/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 0 train/negatives_dist : tf.Tensor(0.731879, shape=(), dtype=float32)\n", "Step: 0 train/mse_loss : tf.Tensor(3536.3372, shape=(), dtype=float32)\n", "Step: 0 train/avg_approx_loss : tf.Tensor(1.0531151, shape=(), dtype=float32)\n", "Step: 0 train/avg_ranking_loss : tf.Tensor(0.030993937, shape=(), dtype=float32)\n", "Step: 0 train/avg_ranking_train_loss : tf.Tensor(16.001637, shape=(), dtype=float32)\n", "Step: 0 train/avg_kendall_loss : tf.Tensor(0.027144551, shape=(), dtype=float32)\n", "Step: 0 train/cql_loss : tf.Tensor(0.731879, shape=(), dtype=float32)\n", "Step: 0 train/negatives_pred : tf.Tensor(0.731879, shape=(), dtype=float32)\n", "Step: 0 train/model_pred_average : tf.Tensor(0.70406383, shape=(), dtype=float32)\n", "Step: 0 train/invalid/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 0 train/y_value_infeasible : tf.Tensor(0.7113452, shape=(), dtype=float32)\n", "Step: 0 train/mse_loss_invalid : tf.Tensor(3873.5989, shape=(), dtype=float32)\n", "Step: 0 train/mse_loss_overall : tf.Tensor(7409.936, shape=(), dtype=float32)\n", "Step: 0 train/avg_approx_loss_invalid : tf.Tensor(1.0299487, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 0 val/y_values_max : tf.Tensor(-0.80804974, shape=(), dtype=float32)\n", "Step: 0 val/y_values_mean : tf.Tensor(-50.549976, shape=(), dtype=float32)\n", "Step: 0 val/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 0 val/negatives_dist : tf.Tensor(0.089412, shape=(), dtype=float32)\n", "Step: 0 val/mse_loss : tf.Tensor(3385.7322, shape=(), dtype=float32)\n", "Step: 0 val/avg_approx_loss : tf.Tensor(1.0002624, shape=(), dtype=float32)\n", "Step: 0 val/avg_ranking_loss : tf.Tensor(-0.014705883, shape=(), dtype=float32)\n", "Step: 0 val/avg_ranking_train_loss : tf.Tensor(16.795597, shape=(), dtype=float32)\n", "Step: 0 val/avg_kendall_loss : tf.Tensor(0.0042892694, shape=(), dtype=float32)\n", "Step: 0 val/cql_loss : tf.Tensor(0.089412, shape=(), dtype=float32)\n", "Step: 0 val/negatives_pred : tf.Tensor(0.089412, shape=(), dtype=float32)\n", "Step: 0 val/model_pred_average : tf.Tensor(0.017796617, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 10 train/y_values_max : tf.Tensor(-0.9038583, shape=(), dtype=float32)\n", "Step: 10 train/y_values_mean : tf.Tensor(-49.595383, shape=(), dtype=float32)\n", "Step: 10 train/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 10 train/negatives_dist : tf.Tensor(-5.4266176, shape=(), dtype=float32)\n", "Step: 10 train/mse_loss : tf.Tensor(2678.9875, shape=(), dtype=float32)\n", "Step: 10 train/avg_approx_loss : tf.Tensor(0.9219241, shape=(), dtype=float32)\n", "Step: 10 train/avg_ranking_loss : tf.Tensor(0.041989733, shape=(), dtype=float32)\n", "Step: 10 train/avg_ranking_train_loss : tf.Tensor(14.9530525, shape=(), dtype=float32)\n", "Step: 10 train/avg_kendall_loss : tf.Tensor(0.03296566, shape=(), dtype=float32)\n", "Step: 10 train/cql_loss : tf.Tensor(-5.4266176, shape=(), dtype=float32)\n", "Step: 10 train/negatives_pred : tf.Tensor(-5.4266176, shape=(), dtype=float32)\n", "Step: 10 train/model_pred_average : tf.Tensor(-5.489807, shape=(), dtype=float32)\n", "Step: 10 train/invalid/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 10 train/y_value_infeasible : tf.Tensor(-5.4988065, shape=(), dtype=float32)\n", "Step: 10 train/mse_loss_invalid : tf.Tensor(2921.0833, shape=(), dtype=float32)\n", "Step: 10 train/mse_loss_overall : tf.Tensor(5600.071, shape=(), dtype=float32)\n", "Step: 10 train/avg_approx_loss_invalid : tf.Tensor(0.8700904, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 10 val/y_values_max : tf.Tensor(-0.80804974, shape=(), dtype=float32)\n", "Step: 10 val/y_values_mean : tf.Tensor(-48.882214, shape=(), dtype=float32)\n", "Step: 10 val/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 10 val/negatives_dist : tf.Tensor(-6.0133524, shape=(), dtype=float32)\n", "Step: 10 val/mse_loss : tf.Tensor(2728.4995, shape=(), dtype=float32)\n", "Step: 10 val/avg_approx_loss : tf.Tensor(0.8313758, shape=(), dtype=float32)\n", "Step: 10 val/avg_ranking_loss : tf.Tensor(-0.25672352, shape=(), dtype=float32)\n", "Step: 10 val/avg_ranking_train_loss : tf.Tensor(21.984526, shape=(), dtype=float32)\n", "Step: 10 val/avg_kendall_loss : tf.Tensor(-0.1670956, shape=(), dtype=float32)\n", "Step: 10 val/cql_loss : tf.Tensor(-6.0133524, shape=(), dtype=float32)\n", "Step: 10 val/negatives_pred : tf.Tensor(-6.0133524, shape=(), dtype=float32)\n", "Step: 10 val/model_pred_average : tf.Tensor(-6.4133196, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 20 train/y_values_max : tf.Tensor(-0.9038583, shape=(), dtype=float32)\n", "Step: 20 train/y_values_mean : tf.Tensor(-52.60445, shape=(), dtype=float32)\n", "Step: 20 train/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 20 train/negatives_dist : tf.Tensor(-11.829678, shape=(), dtype=float32)\n", "Step: 20 train/mse_loss : tf.Tensor(2489.3354, shape=(), dtype=float32)\n", "Step: 20 train/avg_approx_loss : tf.Tensor(0.967807, shape=(), dtype=float32)\n", "Step: 20 train/avg_ranking_loss : tf.Tensor(0.009140394, shape=(), dtype=float32)\n", "Step: 20 train/avg_ranking_train_loss : tf.Tensor(16.383146, shape=(), dtype=float32)\n", "Step: 20 train/avg_kendall_loss : tf.Tensor(0.013235331, shape=(), dtype=float32)\n", "Step: 20 train/cql_loss : tf.Tensor(-11.829678, shape=(), dtype=float32)\n", "Step: 20 train/negatives_pred : tf.Tensor(-11.829678, shape=(), dtype=float32)\n", "Step: 20 train/model_pred_average : tf.Tensor(-11.771761, shape=(), dtype=float32)\n", "Step: 20 train/invalid/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 20 train/y_value_infeasible : tf.Tensor(-11.7452755, shape=(), dtype=float32)\n", "Step: 20 train/mse_loss_invalid : tf.Tensor(2442.1533, shape=(), dtype=float32)\n", "Step: 20 train/mse_loss_overall : tf.Tensor(4931.489, shape=(), dtype=float32)\n", "Step: 20 train/avg_approx_loss_invalid : tf.Tensor(0.91133654, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 20 val/y_values_max : tf.Tensor(-0.80804974, shape=(), dtype=float32)\n", "Step: 20 val/y_values_mean : tf.Tensor(-51.03371, shape=(), dtype=float32)\n", "Step: 20 val/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 20 val/negatives_dist : tf.Tensor(-12.448181, shape=(), dtype=float32)\n", "Step: 20 val/mse_loss : tf.Tensor(2303.6575, shape=(), dtype=float32)\n", "Step: 20 val/avg_approx_loss : tf.Tensor(0.93867505, shape=(), dtype=float32)\n", "Step: 20 val/avg_ranking_loss : tf.Tensor(-0.40264937, shape=(), dtype=float32)\n", "Step: 20 val/avg_ranking_train_loss : tf.Tensor(23.87465, shape=(), dtype=float32)\n", "Step: 20 val/avg_kendall_loss : tf.Tensor(-0.2642157, shape=(), dtype=float32)\n", "Step: 20 val/cql_loss : tf.Tensor(-12.448181, shape=(), dtype=float32)\n", "Step: 20 val/negatives_pred : tf.Tensor(-12.448181, shape=(), dtype=float32)\n", "Step: 20 val/model_pred_average : tf.Tensor(-13.260455, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 30 train/y_values_max : tf.Tensor(-0.9038583, shape=(), dtype=float32)\n", "Step: 30 train/y_values_mean : tf.Tensor(-50.5356, shape=(), dtype=float32)\n", "Step: 30 train/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 30 train/negatives_dist : tf.Tensor(-20.171307, shape=(), dtype=float32)\n", "Step: 30 train/mse_loss : tf.Tensor(1624.793, shape=(), dtype=float32)\n", "Step: 30 train/avg_approx_loss : tf.Tensor(1.0920005, shape=(), dtype=float32)\n", "Step: 30 train/avg_ranking_loss : tf.Tensor(-0.12022346, shape=(), dtype=float32)\n", "Step: 30 train/avg_ranking_train_loss : tf.Tensor(16.979572, shape=(), dtype=float32)\n", "Step: 30 train/avg_kendall_loss : tf.Tensor(-0.07285541, shape=(), dtype=float32)\n", "Step: 30 train/cql_loss : tf.Tensor(-20.171307, shape=(), dtype=float32)\n", "Step: 30 train/negatives_pred : tf.Tensor(-20.171307, shape=(), dtype=float32)\n", "Step: 30 train/model_pred_average : tf.Tensor(-20.278915, shape=(), dtype=float32)\n", "Step: 30 train/invalid/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 30 train/y_value_infeasible : tf.Tensor(-20.135735, shape=(), dtype=float32)\n", "Step: 30 train/mse_loss_invalid : tf.Tensor(1957.1533, shape=(), dtype=float32)\n", "Step: 30 train/mse_loss_overall : tf.Tensor(3581.9463, shape=(), dtype=float32)\n", "Step: 30 train/avg_approx_loss_invalid : tf.Tensor(1.0983152, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 30 val/y_values_max : tf.Tensor(-0.80804974, shape=(), dtype=float32)\n", "Step: 30 val/y_values_mean : tf.Tensor(-55.31862, shape=(), dtype=float32)\n", "Step: 30 val/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 30 val/negatives_dist : tf.Tensor(-21.205795, shape=(), dtype=float32)\n", "Step: 30 val/mse_loss : tf.Tensor(1850.8827, shape=(), dtype=float32)\n", "Step: 30 val/avg_approx_loss : tf.Tensor(1.027076, shape=(), dtype=float32)\n", "Step: 30 val/avg_ranking_loss : tf.Tensor(-0.32453153, shape=(), dtype=float32)\n", "Step: 30 val/avg_ranking_train_loss : tf.Tensor(21.168787, shape=(), dtype=float32)\n", "Step: 30 val/avg_kendall_loss : tf.Tensor(-0.20484066, shape=(), dtype=float32)\n", "Step: 30 val/cql_loss : tf.Tensor(-21.205795, shape=(), dtype=float32)\n", "Step: 30 val/negatives_pred : tf.Tensor(-21.205795, shape=(), dtype=float32)\n", "Step: 30 val/model_pred_average : tf.Tensor(-22.451515, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 40 train/y_values_max : tf.Tensor(-2.018335, shape=(), dtype=float32)\n", "Step: 40 train/y_values_mean : tf.Tensor(-49.35659, shape=(), dtype=float32)\n", "Step: 40 train/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 40 train/negatives_dist : tf.Tensor(-31.2863, shape=(), dtype=float32)\n", "Step: 40 train/mse_loss : tf.Tensor(1105.0841, shape=(), dtype=float32)\n", "Step: 40 train/avg_approx_loss : tf.Tensor(1.0003604, shape=(), dtype=float32)\n", "Step: 40 train/avg_ranking_loss : tf.Tensor(-0.05272517, shape=(), dtype=float32)\n", "Step: 40 train/avg_ranking_train_loss : tf.Tensor(16.813736, shape=(), dtype=float32)\n", "Step: 40 train/avg_kendall_loss : tf.Tensor(-0.029595613, shape=(), dtype=float32)\n", "Step: 40 train/cql_loss : tf.Tensor(-31.2863, shape=(), dtype=float32)\n", "Step: 40 train/negatives_pred : tf.Tensor(-31.2863, shape=(), dtype=float32)\n", "Step: 40 train/model_pred_average : tf.Tensor(-31.335064, shape=(), dtype=float32)\n", "Step: 40 train/invalid/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 40 train/y_value_infeasible : tf.Tensor(-31.414925, shape=(), dtype=float32)\n", "Step: 40 train/mse_loss_invalid : tf.Tensor(1292.1438, shape=(), dtype=float32)\n", "Step: 40 train/mse_loss_overall : tf.Tensor(2397.228, shape=(), dtype=float32)\n", "Step: 40 train/avg_approx_loss_invalid : tf.Tensor(1.2672777, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 40 val/y_values_max : tf.Tensor(-0.80804974, shape=(), dtype=float32)\n", "Step: 40 val/y_values_mean : tf.Tensor(-47.77986, shape=(), dtype=float32)\n", "Step: 40 val/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 40 val/negatives_dist : tf.Tensor(-32.540966, shape=(), dtype=float32)\n", "Step: 40 val/mse_loss : tf.Tensor(1008.05023, shape=(), dtype=float32)\n", "Step: 40 val/avg_approx_loss : tf.Tensor(1.0481693, shape=(), dtype=float32)\n", "Step: 40 val/avg_ranking_loss : tf.Tensor(-0.2252382, shape=(), dtype=float32)\n", "Step: 40 val/avg_ranking_train_loss : tf.Tensor(20.3955, shape=(), dtype=float32)\n", "Step: 40 val/avg_kendall_loss : tf.Tensor(-0.1397059, shape=(), dtype=float32)\n", "Step: 40 val/cql_loss : tf.Tensor(-32.540966, shape=(), dtype=float32)\n", "Step: 40 val/negatives_pred : tf.Tensor(-32.540966, shape=(), dtype=float32)\n", "Step: 40 val/model_pred_average : tf.Tensor(-34.131866, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 50 train/y_values_max : tf.Tensor(-0.9038583, shape=(), dtype=float32)\n", "Step: 50 train/y_values_mean : tf.Tensor(-48.05492, shape=(), dtype=float32)\n", "Step: 50 train/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 50 train/negatives_dist : tf.Tensor(-43.863987, shape=(), dtype=float32)\n", "Step: 50 train/mse_loss : tf.Tensor(712.9634, shape=(), dtype=float32)\n", "Step: 50 train/avg_approx_loss : tf.Tensor(1.8901846, shape=(), dtype=float32)\n", "Step: 50 train/avg_ranking_loss : tf.Tensor(0.08773533, shape=(), dtype=float32)\n", "Step: 50 train/avg_ranking_train_loss : tf.Tensor(13.866482, shape=(), dtype=float32)\n", "Step: 50 train/avg_kendall_loss : tf.Tensor(0.067892194, shape=(), dtype=float32)\n", "Step: 50 train/cql_loss : tf.Tensor(-43.863987, shape=(), dtype=float32)\n", "Step: 50 train/negatives_pred : tf.Tensor(-43.863987, shape=(), dtype=float32)\n", "Step: 50 train/model_pred_average : tf.Tensor(-43.911087, shape=(), dtype=float32)\n", "Step: 50 train/invalid/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 50 train/y_value_infeasible : tf.Tensor(-43.836414, shape=(), dtype=float32)\n", "Step: 50 train/mse_loss_invalid : tf.Tensor(924.3006, shape=(), dtype=float32)\n", "Step: 50 train/mse_loss_overall : tf.Tensor(1637.2639, shape=(), dtype=float32)\n", "Step: 50 train/avg_approx_loss_invalid : tf.Tensor(1.7017825, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 50 val/y_values_max : tf.Tensor(-0.80804974, shape=(), dtype=float32)\n", "Step: 50 val/y_values_mean : tf.Tensor(-47.65081, shape=(), dtype=float32)\n", "Step: 50 val/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 50 val/negatives_dist : tf.Tensor(-44.91657, shape=(), dtype=float32)\n", "Step: 50 val/mse_loss : tf.Tensor(808.4212, shape=(), dtype=float32)\n", "Step: 50 val/avg_approx_loss : tf.Tensor(1.5485595, shape=(), dtype=float32)\n", "Step: 50 val/avg_ranking_loss : tf.Tensor(-0.17357378, shape=(), dtype=float32)\n", "Step: 50 val/avg_ranking_train_loss : tf.Tensor(19.457308, shape=(), dtype=float32)\n", "Step: 50 val/avg_kendall_loss : tf.Tensor(-0.113051474, shape=(), dtype=float32)\n", "Step: 50 val/cql_loss : tf.Tensor(-44.91657, shape=(), dtype=float32)\n", "Step: 50 val/negatives_pred : tf.Tensor(-44.91657, shape=(), dtype=float32)\n", "Step: 50 val/model_pred_average : tf.Tensor(-47.15584, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 60 train/y_values_max : tf.Tensor(-0.93947476, shape=(), dtype=float32)\n", "Step: 60 train/y_values_mean : tf.Tensor(-49.415802, shape=(), dtype=float32)\n", "Step: 60 train/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 60 train/negatives_dist : tf.Tensor(-52.542496, shape=(), dtype=float32)\n", "Step: 60 train/mse_loss : tf.Tensor(816.1859, shape=(), dtype=float32)\n", "Step: 60 train/avg_approx_loss : tf.Tensor(2.075222, shape=(), dtype=float32)\n", "Step: 60 train/avg_ranking_loss : tf.Tensor(0.04479072, shape=(), dtype=float32)\n", "Step: 60 train/avg_ranking_train_loss : tf.Tensor(15.618368, shape=(), dtype=float32)\n", "Step: 60 train/avg_kendall_loss : tf.Tensor(0.0363971, shape=(), dtype=float32)\n", "Step: 60 train/cql_loss : tf.Tensor(-52.542496, shape=(), dtype=float32)\n", "Step: 60 train/negatives_pred : tf.Tensor(-52.542496, shape=(), dtype=float32)\n", "Step: 60 train/model_pred_average : tf.Tensor(-52.71419, shape=(), dtype=float32)\n", "Step: 60 train/invalid/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 60 train/y_value_infeasible : tf.Tensor(-52.58152, shape=(), dtype=float32)\n", "Step: 60 train/mse_loss_invalid : tf.Tensor(929.5502, shape=(), dtype=float32)\n", "Step: 60 train/mse_loss_overall : tf.Tensor(1745.7361, shape=(), dtype=float32)\n", "Step: 60 train/avg_approx_loss_invalid : tf.Tensor(2.5227823, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 60 val/y_values_max : tf.Tensor(-0.80804974, shape=(), dtype=float32)\n", "Step: 60 val/y_values_mean : tf.Tensor(-50.25917, shape=(), dtype=float32)\n", "Step: 60 val/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 60 val/negatives_dist : tf.Tensor(-53.560272, shape=(), dtype=float32)\n", "Step: 60 val/mse_loss : tf.Tensor(931.7635, shape=(), dtype=float32)\n", "Step: 60 val/avg_approx_loss : tf.Tensor(2.0073552, shape=(), dtype=float32)\n", "Step: 60 val/avg_ranking_loss : tf.Tensor(-0.1795484, shape=(), dtype=float32)\n", "Step: 60 val/avg_ranking_train_loss : tf.Tensor(20.243542, shape=(), dtype=float32)\n", "Step: 60 val/avg_kendall_loss : tf.Tensor(-0.11832106, shape=(), dtype=float32)\n", "Step: 60 val/cql_loss : tf.Tensor(-53.560272, shape=(), dtype=float32)\n", "Step: 60 val/negatives_pred : tf.Tensor(-53.560272, shape=(), dtype=float32)\n", "Step: 60 val/model_pred_average : tf.Tensor(-55.736107, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 70 train/y_values_max : tf.Tensor(-0.9038583, shape=(), dtype=float32)\n", "Step: 70 train/y_values_mean : tf.Tensor(-51.05237, shape=(), dtype=float32)\n", "Step: 70 train/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 70 train/negatives_dist : tf.Tensor(-53.52229, shape=(), dtype=float32)\n", "Step: 70 train/mse_loss : tf.Tensor(747.3913, shape=(), dtype=float32)\n", "Step: 70 train/avg_approx_loss : tf.Tensor(1.7664852, shape=(), dtype=float32)\n", "Step: 70 train/avg_ranking_loss : tf.Tensor(0.004579853, shape=(), dtype=float32)\n", "Step: 70 train/avg_ranking_train_loss : tf.Tensor(15.55942, shape=(), dtype=float32)\n", "Step: 70 train/avg_kendall_loss : tf.Tensor(0.009129882, shape=(), dtype=float32)\n", "Step: 70 train/cql_loss : tf.Tensor(-53.52229, shape=(), dtype=float32)\n", "Step: 70 train/negatives_pred : tf.Tensor(-53.52229, shape=(), dtype=float32)\n", "Step: 70 train/model_pred_average : tf.Tensor(-53.431484, shape=(), dtype=float32)\n", "Step: 70 train/invalid/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 70 train/y_value_infeasible : tf.Tensor(-53.6995, shape=(), dtype=float32)\n", "Step: 70 train/mse_loss_invalid : tf.Tensor(960.54016, shape=(), dtype=float32)\n", "Step: 70 train/mse_loss_overall : tf.Tensor(1707.9314, shape=(), dtype=float32)\n", "Step: 70 train/avg_approx_loss_invalid : tf.Tensor(1.8934901, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 70 val/y_values_max : tf.Tensor(-0.80804974, shape=(), dtype=float32)\n", "Step: 70 val/y_values_mean : tf.Tensor(-48.484962, shape=(), dtype=float32)\n", "Step: 70 val/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 70 val/negatives_dist : tf.Tensor(-53.476532, shape=(), dtype=float32)\n", "Step: 70 val/mse_loss : tf.Tensor(930.3341, shape=(), dtype=float32)\n", "Step: 70 val/avg_approx_loss : tf.Tensor(2.1871474, shape=(), dtype=float32)\n", "Step: 70 val/avg_ranking_loss : tf.Tensor(-0.29353473, shape=(), dtype=float32)\n", "Step: 70 val/avg_ranking_train_loss : tf.Tensor(21.765175, shape=(), dtype=float32)\n", "Step: 70 val/avg_kendall_loss : tf.Tensor(-0.19185048, shape=(), dtype=float32)\n", "Step: 70 val/cql_loss : tf.Tensor(-53.476532, shape=(), dtype=float32)\n", "Step: 70 val/negatives_pred : tf.Tensor(-53.476532, shape=(), dtype=float32)\n", "Step: 70 val/model_pred_average : tf.Tensor(-55.997845, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 80 train/y_values_max : tf.Tensor(-0.9038583, shape=(), dtype=float32)\n", "Step: 80 train/y_values_mean : tf.Tensor(-47.936115, shape=(), dtype=float32)\n", "Step: 80 train/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 80 train/negatives_dist : tf.Tensor(-50.614216, shape=(), dtype=float32)\n", "Step: 80 train/mse_loss : tf.Tensor(785.9317, shape=(), dtype=float32)\n", "Step: 80 train/avg_approx_loss : tf.Tensor(2.087608, shape=(), dtype=float32)\n", "Step: 80 train/avg_ranking_loss : tf.Tensor(-0.057850055, shape=(), dtype=float32)\n", "Step: 80 train/avg_ranking_train_loss : tf.Tensor(16.756374, shape=(), dtype=float32)\n", "Step: 80 train/avg_kendall_loss : tf.Tensor(-0.032169104, shape=(), dtype=float32)\n", "Step: 80 train/cql_loss : tf.Tensor(-50.614216, shape=(), dtype=float32)\n", "Step: 80 train/negatives_pred : tf.Tensor(-50.614216, shape=(), dtype=float32)\n", "Step: 80 train/model_pred_average : tf.Tensor(-50.539318, shape=(), dtype=float32)\n", "Step: 80 train/invalid/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 80 train/y_value_infeasible : tf.Tensor(-50.425545, shape=(), dtype=float32)\n", "Step: 80 train/mse_loss_invalid : tf.Tensor(987.44763, shape=(), dtype=float32)\n", "Step: 80 train/mse_loss_overall : tf.Tensor(1773.3794, shape=(), dtype=float32)\n", "Step: 80 train/avg_approx_loss_invalid : tf.Tensor(2.67552, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 80 val/y_values_max : tf.Tensor(-0.80804974, shape=(), dtype=float32)\n", "Step: 80 val/y_values_mean : tf.Tensor(-50.924248, shape=(), dtype=float32)\n", "Step: 80 val/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 80 val/negatives_dist : tf.Tensor(-50.346638, shape=(), dtype=float32)\n", "Step: 80 val/mse_loss : tf.Tensor(828.5458, shape=(), dtype=float32)\n", "Step: 80 val/avg_approx_loss : tf.Tensor(2.064958, shape=(), dtype=float32)\n", "Step: 80 val/avg_ranking_loss : tf.Tensor(-0.11538826, shape=(), dtype=float32)\n", "Step: 80 val/avg_ranking_train_loss : tf.Tensor(18.36464, shape=(), dtype=float32)\n", "Step: 80 val/avg_kendall_loss : tf.Tensor(-0.064828455, shape=(), dtype=float32)\n", "Step: 80 val/cql_loss : tf.Tensor(-50.346638, shape=(), dtype=float32)\n", "Step: 80 val/negatives_pred : tf.Tensor(-50.346638, shape=(), dtype=float32)\n", "Step: 80 val/model_pred_average : tf.Tensor(-52.72599, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 90 train/y_values_max : tf.Tensor(-0.9038583, shape=(), dtype=float32)\n", "Step: 90 train/y_values_mean : tf.Tensor(-51.69957, shape=(), dtype=float32)\n", "Step: 90 train/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 90 train/negatives_dist : tf.Tensor(-48.031395, shape=(), dtype=float32)\n", "Step: 90 train/mse_loss : tf.Tensor(794.3457, shape=(), dtype=float32)\n", "Step: 90 train/avg_approx_loss : tf.Tensor(1.991349, shape=(), dtype=float32)\n", "Step: 90 train/avg_ranking_loss : tf.Tensor(-0.05236754, shape=(), dtype=float32)\n", "Step: 90 train/avg_ranking_train_loss : tf.Tensor(16.758024, shape=(), dtype=float32)\n", "Step: 90 train/avg_kendall_loss : tf.Tensor(-0.03039217, shape=(), dtype=float32)\n", "Step: 90 train/cql_loss : tf.Tensor(-48.031395, shape=(), dtype=float32)\n", "Step: 90 train/negatives_pred : tf.Tensor(-48.031395, shape=(), dtype=float32)\n", "Step: 90 train/model_pred_average : tf.Tensor(-48.295383, shape=(), dtype=float32)\n", "Step: 90 train/invalid/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 90 train/y_value_infeasible : tf.Tensor(-48.175266, shape=(), dtype=float32)\n", "Step: 90 train/mse_loss_invalid : tf.Tensor(927.43634, shape=(), dtype=float32)\n", "Step: 90 train/mse_loss_overall : tf.Tensor(1721.782, shape=(), dtype=float32)\n", "Step: 90 train/avg_approx_loss_invalid : tf.Tensor(1.9503968, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "-------------------------------------------------------\n", "Step: 90 val/y_values_max : tf.Tensor(-0.80804974, shape=(), dtype=float32)\n", "Step: 90 val/y_values_mean : tf.Tensor(-49.71262, shape=(), dtype=float32)\n", "Step: 90 val/vote_entropy : tf.Tensor(0.0, shape=(), dtype=float32)\n", "Step: 90 val/negatives_dist : tf.Tensor(-48.144753, shape=(), dtype=float32)\n", "Step: 90 val/mse_loss : tf.Tensor(898.52563, shape=(), dtype=float32)\n", "Step: 90 val/avg_approx_loss : tf.Tensor(1.6679305, shape=(), dtype=float32)\n", "Step: 90 val/avg_ranking_loss : tf.Tensor(-0.162691, shape=(), dtype=float32)\n", "Step: 90 val/avg_ranking_train_loss : tf.Tensor(19.78121, shape=(), dtype=float32)\n", "Step: 90 val/avg_kendall_loss : tf.Tensor(-0.102757335, shape=(), dtype=float32)\n", "Step: 90 val/cql_loss : tf.Tensor(-48.144753, shape=(), dtype=float32)\n", "Step: 90 val/negatives_pred : tf.Tensor(-48.144753, shape=(), dtype=float32)\n", "Step: 90 val/model_pred_average : tf.Tensor(-50.337814, shape=(), dtype=float32)\n", "-------------------------------------------------------\n", "Finished Training\n" ] } ], "source": [ "#@title Running training\n", "\n", "# A toy example of running training PRIME. \n", "train_eval_offline(\n", " config=config_str,\n", " training_dataset=training_data,\n", " validation_dataset=validation_data,\n", " train_steps=100,\n", " summary_freq=10,\n", " eval_freq=10,\n", " add_summary=True,\n", " save_dir=None,\n", " loss_type='mse+rank',\n", " layers=(256, 256, 256),\n", " with_ranking_penalty=True,\n", " ranking_penalty_weight=0.01,\n", " use_dropout=True,\n", " cql_alpha=0.1,\n", " infeasible_alpha=0.05\n", ")" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "m5KUS8rq3SQf" }, "outputs": [], "source": [ "" ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [ "Z6W-wFO7FK0O", "ll-Ud813QwND" ], "name": "[PRIME, ICLR 2022] Colab Demonstration", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "name": "python" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
UCBerkeleySETI/blml
gbt_cluster/simple_feature_clustering.ipynb
1
9712776
null
mit
FourthCohortAwesome/NightThree
Night3_DTK.ipynb
1
4446
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Similar type issue from last weeks problem\n", "3 File protocols now\n", "\n", "Protocol1 = 7Col x 3Row --> Alt1\n", "Protocol2 = 2Col x 9Row --> Alt2\n", "Protocol3 = 4Col x 7Row --> Alt3\n", "\n", "File rows might not be in the same order, need to retain the order from the original to the destination\n", "\n", "Output files naming schema - Dest_DTK_alt<#>.csv\n", "\n", "Pseudo Code -\n", "Identify file type\n", "write out appropriate file in the correct order" ] }, { "cell_type": "code", "execution_count": 95, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/xianarchangel/anaconda/lib/python3.6/site-packages/ipykernel/__main__.py:18: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support sep=None with delim_whitespace=False; you can avoid this warning by specifying engine='python'.\n" ] } ], "source": [ "import csv\n", "import sys\n", "import pandas as pd \n", "\n", "if sys.argv[1] == None:\n", " print(\"Export and run this: python3 <filename>.py <file to process>\")\n", " quit()\n", "\n", "# Need to open file and peek at structure to make decision\n", "argfile = sys.argv[1]\n", "\n", "#debug code\n", "#argfile = 'source.csv'\n", "#argfile = 'alt2.csv'\n", "#argfile = 'alt3.csv'\n", "\n", "with open(argfile, 'r') as infile:\n", " df = pd.read_csv(infile, sep=None) \n", " # extract number of cols\n", " #print(df)\n", " colNum = len(df.columns)\n", " if colNum == 2:\n", " print('logic for fixing the alt2 type')\n", " # read data from each row, if present, replace data in second column\n", " # if data is not present in first col then read second col and replace col 1\n", " \n", " # dictionary of all possible outcomes\n", " type1 = ['1', '3']\n", " type2 = ['2', '4']\n", " type3 = ['3', '6']\n", " \n", " for i, row in df.iterrows():\n", " if row['ONE'] == 1 or row['TWO'] == 3:\n", " df.loc[i] = type1\n", " elif row['ONE'] == 2 or row['TWO'] == 4:\n", " df.loc[i] = type2\n", " elif row['ONE'] == 3 or row['TWO'] == 6:\n", " df.loc[i] = type3 \n", " else:\n", " # What have you given me?\n", " print(\"The world is on FIRE!\")\n", "\n", " df.to_csv('Dest_DTK_alt2.csv', sep='\\t', index = False)\n", " \n", " \n", " elif colNum == 4:\n", " #print('logic for fixing the source.csv')\n", " data = ['a', 'b', 'c', 'd']\n", " rowdata=[data]*7\n", " df = pd.DataFrame(rowdata, columns=['One', 'Two', 'Three', 'Four'])\n", " df.to_csv(r'Dest_DTK_source.csv', sep='\\t', index = False)\n", " elif colNum == 7:\n", " #print('logic for fixing the alt3 type')\n", " data = ['1', '2', '3', '4', '5', '6', '7']\n", " rowdata=[data]*3\n", " df = pd.DataFrame(rowdata, columns=['One', 'Two', 'Three', 'Four', 'Five', 'Six', 'Seven'])\n", " df.to_csv(r'Dest_DTK_alt3', sep='\\t', index = False)\n", " else:\n", " print(\"System Error Deleting File System.....Standby...\")\n", " quit()\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
asimihsan/pydata-ldn2014-writeup
00 - Summary, Highlights, Readings and Order.ipynb
1
20180
{ "metadata": { "name": "", "signature": "sha256:2c00f0ddb7215d7c4cea19200a00bf8d1c743b2cbb0d2fadb582c83fab517cbf" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Intro\n", "\n", "Below is:\n", "\n", "- A *summary* of key points that cropped up again and again.\n", "- A set of *proposed readings by topic*\n", "\n", "Note that these notes haven't been edited or extended with audio recordings I've made, and some need updating with significantly more material. See the \"Proposed Readings by Topic* section or ask me for more details.\n", "\n", "## Summary\n", "\n", "- **Both the financial and academic worlds are increasingly adopting Python** for the same reasons.\n", " - They're often encumbered with extremely large, heterogenous, legacy systems.\n", " - Old work isn't discarded. Incremental additions, re-use over interfaces.\n", " - Think COBOL/Excel/VBA for finance, FORTRAN/C in academia.\n", " - They're both seeking **one** paradigm as an end-to-end high-level solution for all users.\n", " - Neither can sacrifice performance, yet are finding the time-to-market and development lifecycles too long with legacy homogenous systems.\n", " - Python has long had a reputation for being unable to deliver performance, but this is now commonly acknowledged to no longer be true.\n", " - Python easily serves as a glue to high performance wrappers such as NumPy and SciPy, file formats such as HDF5, and heterogenous computation backends such as shared-memory parallelism (SMP) (OpenMP via Cython), GPUs (CUDA) and FPGAs (OpenCL).\n", " - Achieving C/C++ performance can be done with significantly simpler code and designs, yet requires sophisticated knowledge of memory cache hierarchies, disk I/O patterns, and SMP issues.\n", " - The financial industry has long relied on Python as an interface to core, high-performance components, but are paranoid and extremely closed and the only way knowledge gets shared is by stealing employees from other financial companies.\n", " - More information:\n", " - [\"06 - Python in the Financial Industry (KEYNOTE)\"](06%20-%20Python%20in%20the%20Financial%20Industry%20%28KEYNOTE%29.ipynb)\n", " - [\"15 - Building a Cutting-Edge Data Processing Environment on a Budget\"](15%20-%20Building%20a%20Cutting-Edge%20Data%20Processing%20Environment%20on%20a%20Budget.ipynb)\n", " - [\"20 - Python for High Throughput Science\"](20%20-%20Python%20for%20High%20Throughput%20Science.ipynb)\n", "\n", "- **IPython Notebook** is universally used and loved.\n", " - Most technical talks used IPython Notebook either for all the content or to host demos/examples.\n", " - Of those talks around half provided direct links to a pre-initialised IPython Notebook, so attendees could either download and follow in real-time, or download later.\n", " - Deep and expanding integration with entire scientific Python ecosystem, e.g. `matplotlib`, `pandas`, `numpy`, `bokeh`, `sympy`, ...\n", " - Good examples are:\n", " - [\"04 - Visualisations Using Bokeh\"](04%20-%20Visualisations%20Using%20Bokeh.ipynb)\n", " - [\"16 - presenter notes\" (for \"Generator Showcase Showdown\")](16%20-%20presenter%20notes.ipynb)\n", " - [\"18 - presenter notes\" (for \"Measuring Similarity and Clustering Data\")](18%20-%20presenter%20notes.ipynb)\n", "\n", "- **No clear future for visualisations in Python**.\n", " - `matplotlib` is universally used for publication-quality charts. API is difficult to use but powerful and well engineered.\n", " - It's clear that web-based visualisations are the future, and very important even for publications.\n", " - In order to reach the browser it's also acknowledged that JavaScript is the ideal interface, rather than static images.\n", " - But how to reach browser? Many different perspectives:\n", " - IPython Notebook - use `matplotlib` magic incantation to draw charts, no interactivity, no JavaScript.\n", " - Other libraries build on top of `matplotlib` of course work just as well: `ggplot`, `seaborn`, `prettyplotlib`\n", " - [\"04 - Visualisations in Bokeh\"](04%20-%20Visualisations%20Using%20Bokeh.ipynb): people love `ggplot` in R because of the Grammar of Graphics, and people love Python because it's a one-stop stop\n", " - So use Python with a ggplot-like grammar to auto-generate HTML5-canvas backed web visualisations using JavaScript.\n", " - HTML5-canvas is an investment and should reap rewards over SVG-based libraries like d3.js for very complex visualisations.\n", " - [\"12 - Getting it out there - Python-JS-web-viz\"](12%20-%20Getting%20it%20out%20there%20-%20Python-JS-web-viz.ipynb): forget Python, just code front-end in JavaScript and defer back-end and data cleaning to Python.\n", " - d3.js, nvd3, crossfilter, rickshaw, ...\n", " - Lightning talks\n", " - One presenter uses Python over a websocket bridge to Angular.js to create an RShiny-type interactive chart environment.\n", " - Another presenter showed off IPython version 2 (coming end of April 2014) functionality with interactive widgets, dynamically recreating charts based on user input.\n", " - There is no clear conclusion, except `matplotlib` is fantastic work and stood the test of time.\n", " - Bokeh seems very exciting but rough around the edges with a large and difficult to install set of dependencies, worth exploring the tutorials in full (!!AI which I will, and post a new article).\n", " \n", "- **Cython is almost universally used, but more agile methods are being sought**\n", " - Cython is a strict superset of Python that, with annotations, allow it to reach C-like speeds.\n", " - These annotations no longer allow Python compatibility. Can the Python community do better? Perhaps, with Shedskin, Pythran, or Numba. PyPy may eventually reach the Holy Grail of numpy compatibility.\n", " - See:\n", " - [\"10 - The High Performance Python Landscape\"](10%20-%20The%20High%20Performance%20Python%20Landscape.ipynb)\n", " - [\"15 - Building a Cutting-Edge Data Processing Environment on a Budget\"](15%20-%20Building%20a%20Cutting-Edge%20Data%20Processing%20Environment%20on%20a%20Budget.ipynb)\n", " - [\"03 - Faster Python Programs through Optimization\"](03%20-%20Faster%20Python%20Programs%20through%20Optimization.ipynb) (!!AI there is a significant quantity of missing information, I will type up soon).\n", " - [\"11 - Shared Memory Parallelism with Python\"](11%20-%20Shared%20Memory%20Parallelism%20with%20Python.ipynb)\n", "\n", "- **Everyone uses `scikit-learn`**\n", " - Well thought out, very opinionated design, strong and diverse set of core contributors.\n", " - Stands out amongst Python packages as having > 10 contributors who equally make the same volume of contributions.\n", " - At the very least prototype in `scikit-learn` and `nltk`.\n", " - If you hit scalability issues people usually scale vertically (bigger boxes) or use Cython.\n", " - See:\n", " - [\"15 - Building a Cutting-Edge Data Processing Environment on a Budget\"](15%20-%20Building%20a%20Cutting-Edge%20Data%20Processing%20Environment%20on%20a%20Budget.ipynb)\n", " - [\"22 - Correcting 10 years of messy CRM data\"](22%20-%20Correcting%2010%20years%20of%20messy%20CRM%20data.ipynb)\n", " - [\"19 - Gradient Boosted Regression Trees in scikit-learn\"](19%20-%20Gradient%20Boosted%20Regression%20Trees%20in%20scikit-learn.ipynb)\n", "\n", "- **MapReduce/clusters have less hype and traction than you'd expect**\n", " - Certainly there are some who use it for their data processing pipeline, e.g. \"07 - Hierarchical Text Clustering in Python and Hive\".\n", " - Given a large data set that cannot fit onto one disk, prefer to create large RDBMS clusters. See:\n", " - [\"05 - Databases for Scientists\"](05%20-%20Databases%20for%20Scientists.ipynb)\n", " - [\"08 - Massively Parallel Processing with Procedural Python\"](08%20-%20Massively%20Parallel%20Processing%20with%20Procedural%20Python.ipynb)\n", " - [Presenter Notes](08%20-%20presenter%20notes.ipynb)\n", " - Given a large data set that cannot fit into memory prefer to use e.g. HDF5 to disk-back it, or create additional abstractions on top of NumPy/HDF5, a la \"23 - Manipulating massive disk-backed arrays\".\n", " - `scikit-learn` core contributors strongly prefer shared-memory parallelism to clusters, and are actively creating OpenMP-style abstractions (with better debugging and NumPy array performance).\n", " - [\"15 - Building a Cutting Edge Data Processing Environment on a Budget\"](15%20-%20Building%20a%20Cutting-Edge%20Data%20Processing%20Environment%20on%20a%20Budget.ipynb)\n", " - Fantastic lightning talk on end used [FireDrake](http://firedrakeproject.org/index.html) to easily switch computing backend from SMP to GPU, but again no mention of clusters.\n", "\n", "## Proposed readings by group\n", "\n", "### Culture, industry background\n", "\n", "- [\"06 - Python in the Financial Industry (KEYNOTE)\"](06%20-%20Python%20in%20the%20Financial%20Industry%20%28KEYNOTE%29.ipynb)\n", "- [\"14 - Panel Discussion - Shouldn't companies be doing more data science?\"](14%20-%20Panel%20Discussion%20-%20Shouldn%27t%20companies%20be%20doing%20more%20data%20science%3F.ipynb)\n", "\n", "### Case studies\n", "\n", "- [\"07 - Hierarchical Text Clustering in Python and Hive\"](07%20-%20Hierarchical%20Text%20Clustering%20in%20Python%20and%20Hive.ipynb)\n", "- [\"09 - Measuring the digital economy using big data\"](09%20-%20Measuring%20the%20digital%20economy%20using%20big%20data.ipynb)\n", "- [\"17 - Adaptive Filtering of Tweets with Machine Learning\"](17%20-%20Adaptive%20Filtering%20of%20Tweets%20with%20Machine%20Learning.ipynb)\n", "- [\"20 - Python for High Throughput Science\"](20%20-%20Python%20for%20High%20Throughput%20Science.ipynb)\n", "- [\"22 - Correcting 10 years of messy CRM data\"](22%20-%20Correcting%2010%20years%20of%20messy%20CRM%20data.ipynb)\n", "\n", "### Technical - software engineering \n", "\n", "- [\"03 - Faster Python Programs through Optimization\"](03%20-%20Faster%20Python%20Programs%20through%20Optimization.ipynb)\n", " - Needs updating with significant amount of presenter material we didn't cover.\n", "- [\"10 - The High Performance Python Landscape\"](10%20-%20The%20High%20Performance%20Python%20Landscape.ipynb)\n", "- [\"11 - Shared Memory Parallelism with Python\"](11%20-%20Shared%20Memory%20Parallelism%20with%20Python.ipynb)\n", "- [\"15 - Building a Cutting-Edge Data Processing Environment on a Budget\"](15%20-%20Building%20a%20Cutting-Edge%20Data%20Processing%20Environment%20on%20a%20Budget.ipynb)\n", "\n", "### Technical - mathematical\n", "\n", "- [\"02 - Introduction to Action Recognition\"](02%20-%20Introduction%20to%20Action%20Recognition.ipynb)\n", "- [\"13 - Python for Optimization\"](13%20-%20Python%20for%20Optimization.ipynb)\n", "- [\"18 - Measuring Similarity and Clustering Data\"](18%20-%20Measuring%20Similarity%20and%20Clustering%20Data.ipynb)\n", " - And presenter notes: [\"18 - presenter notes\"](18%20-%20presenter%20notes.ipynb)\n", "- [\"19 - Gradient Boosted Regression Trees in scikit-learn\"](19%20-%20Gradient%20Boosted%20Regression%20Trees%20in%20scikit-learn.ipynb)\n", "\n", "### Technical - other\n", "\n", "- [\"01 - Interactive Financial Analytics with Python and IPython\"](01%20-%20Interactive%20Financial%20Analytics%20with%20Python%20and%20IPython.ipynb)\n", " - Presenter's tutorial where I followed along with exercises are here: [\"01 - YH_PyData_Eurex_Tutorial\"](01%20-%20YH_PyData_Eurex_Tutorial.ipynb)\n", "- [\"05 - Databases for Scientists\"](05%20-%20Databases%20for%20Scientists.ipynb)\n", " - Needs updating with presenter's material.\n", "- [\"08 - Massively Parallel Processing with Procedural Python\"](08%20-%20Massively%20Parallel%20Processing%20with%20Procedural%20Python.ipynb)\n", " - And presenter notes: [\"08 - presenter notes\"](08%20-%20presenter%20notes.ipynb)\n", "- [\"16 - Generator Showcase Showdown\"](16%20-%20Generator%20Showcase%20Showdown.ipynb)\n", " - And presenter notes: [\"16 - presenter notes\"](16%20-%20presenter%20notes.ipynb)\n", "- [\"23 - Manipulating massive disk-backed arrays\"](23%20-%20Manipulating%20massive%20disk-backed%20arrays.ipynb)\n", "\n", "### Visualisations\n", "\n", "- [\"04 - Visualisations Using Bokeh\"](04%20-%20Visualisations%20Using%20Bokeh.ipynb)\n", " - I need to significantly update with the rest of their tutorial examples.\n", "- [\"12 - Getting it out there - Python-JS-web-viz\"](12%20-%20Getting%20it%20out%20there%20-%20Python-JS-web-viz.ipynb)\n", "- [\"21 - Winning Ways for Your Visualization Plays\"](21%20-%20Winning%20Ways%20for%20Your%20Visualization%20Plays.ipynb)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from IPython.core.display import HTML\n", "def css_styling():\n", " styles = open(\"styles/custom.css\", \"r\").read()\n", " return HTML(styles)\n", "css_styling()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<style>\n", " @font-face {\n", " font-family: 'Noticia Text';\n", " font-style: normal;\n", " font-weight: 400;\n", " src: local('Noticia Text'), local('NoticiaText-Regular'), url(http://themes.googleusercontent.com/static/fonts/noticiatext/v4/wdyV6x3eKpdeUPQ7BJ5uUBa1RVmPjeKy21_GQJaLlJI.woff) format('woff');\n", " }\n", " @font-face {\n", " font-family: 'Noticia Text';\n", " font-style: normal;\n", " font-weight: 700;\n", " src: local('Noticia Text Bold'), local('NoticiaText-Bold'), url(http://themes.googleusercontent.com/static/fonts/noticiatext/v4/pEko-RqEtp45bE2P80AAKRGYIVA-f1n-gQW6IKoy_-M.woff) format('woff');\n", " }\n", " @font-face {\n", " font-family: 'Noticia Text';\n", " font-style: italic;\n", " font-weight: 400;\n", " src: local('Noticia Text Italic'), local('NoticiaText-Italic'), url(http://themes.googleusercontent.com/static/fonts/noticiatext/v4/dAuxVpkYE_Q_IwIm6elsKISNse2zJAGBOX1vGC0HDBk.woff) format('woff');\n", " }\n", " @font-face {\n", " font-family: 'Noticia Text';\n", " font-style: italic;\n", " font-weight: 700;\n", " src: local('Noticia Text Bold Italic'), local('NoticiaText-BoldItalic'), url(http://themes.googleusercontent.com/static/fonts/noticiatext/v4/-rQ7V8ARjf28_b7kRa0Jusr_TVbVq9Kr5jxArfkA4r0.woff) format('woff');\n", " }\n", " @font-face {\n", " font-family: 'Source Sans Pro';\n", " font-style: normal;\n", " font-weight: 400;\n", " src: local('Source Sans Pro'), local('SourceSansPro-Regular'), url(http://themes.googleusercontent.com/static/fonts/sourcesanspro/v7/ODelI1aHBYDBqgeIAH2zlBBHWFfxJXS04xYOz0jw624.woff) format('woff');\n", " }\n", " @font-face {\n", " font-family: 'Source Sans Pro';\n", " font-style: normal;\n", " font-weight: 700;\n", " src: local('Source Sans Pro Bold'), local('SourceSansPro-Bold'), url(http://themes.googleusercontent.com/static/fonts/sourcesanspro/v7/toadOcfmlt9b38dHJxOBGAE-U1AYRUXXE0Dth8uKIE0.woff) format('woff');\n", " }\n", " @font-face {\n", " font-family: 'Source Sans Pro';\n", " font-style: italic;\n", " font-weight: 400;\n", " src: local('Source Sans Pro Italic'), local('SourceSansPro-It'), url(http://themes.googleusercontent.com/static/fonts/sourcesanspro/v7/M2Jd71oPJhLKp0zdtTvoM1xDqsnd7zNt-b9r25av6rY.woff) format('woff');\n", " }\n", " @font-face {\n", " font-family: 'Source Sans Pro';\n", " font-style: italic;\n", " font-weight: 700;\n", " src: local('Source Sans Pro Bold Italic'), local('SourceSansPro-BoldIt'), url(http://themes.googleusercontent.com/static/fonts/sourcesanspro/v7/fpTVHK8qsXbIeTHTrnQH6L7TcrrtjxQtUk4wnkGIFYE.woff) format('woff');\n", " }\n", "\n", " div.cell{\n", " width: 80%;\n", "/* margin-left:auto;*/\n", "/* margin-right:auto;*/\n", " }\n", "\n", " .rendered_html p, .rendered_html li {\n", " font-family: 'Noticia Text', Verdana, sans-serif;\n", " line-height: 1.6em;\n", " /*max-width: 840px;*/\n", " text-align: left;\n", " }\n", "\n", " .rendered_html h1, .rendered_html h2, .rendered_html h3, .rendered_html h4, .rendered_html h5, .rendered_html h6 {\n", " margin-bottom: 0.5em;\n", " }\n", "\n", " h1, h2, h3, h4, h5, h6 {\n", " font-family: 'Source Sans Pro', Verdana, sans-serif;\n", " font-style: normal;\n", " font-weight: 400;\n", " border-bottom: 1px dotted black;\n", " }\n", "\n", " div.prompt, pre {\n", " font-family: 'Inconsolata', monospace;\n", " padding: 0.4em;\n", " }\n", "\n", " .warning{\n", " color: rgb( 240, 20, 20 )\n", " }\n", "</style>\n", "<script>\n", " MathJax.Hub.Config({\n", " TeX: {\n", " extensions: [\"AMSmath.js\"]\n", " },\n", " tex2jax: {\n", " inlineMath: [ ['$','$'], [\"\\\\(\",\"\\\\)\"] ],\n", " displayMath: [ ['$$','$$'], [\"\\\\[\",\"\\\\]\"] ]\n", " },\n", " displayAlign: 'center', // Change this to 'center' to center equations.\n", " \"HTML-CSS\": {\n", " styles: {'.MathJax_Display': {\"margin\": 4}}\n", " }\n", " });\n", "</script>\n" ], "metadata": {}, "output_type": "pyout", "prompt_number": 23, "text": [ "<IPython.core.display.HTML at 0x2fe9590>" ] } ], "prompt_number": 23 }, { "cell_type": "code", "collapsed": false, "input": [ "%autosave 10" ], "language": "python", "metadata": {}, "outputs": [ { "javascript": [ "IPython.notebook.set_autosave_interval(10000)" ], "metadata": {}, "output_type": "display_data" }, { "output_type": "stream", "stream": "stdout", "text": [ "Autosaving every 10 seconds\n" ] } ], "prompt_number": 19 } ], "metadata": {} } ] }
mit
minh5/cpsc
reports/neiss.ipynb
1
37331
{ "cells": [ { "cell_type": "markdown", "metadata": { "toc": "true" }, "source": [ "# Table of Contents\n", " <p><div class=\"lev2 toc-item\"><a href=\"#Are-there-products-we-should-be-aware-of?\" data-toc-modified-id=\"Are-there-products-we-should-be-aware-of?-01\"><span class=\"toc-item-num\">0.1&nbsp;&nbsp;</span>Are there products we should be aware of?</a></div><div class=\"lev2 toc-item\"><a href=\"#Could-be-useful-to-compare-stratum-types---Do-large-hospitals-see-different-rates-of-injury-than-small-hospitals?\" data-toc-modified-id=\"Could-be-useful-to-compare-stratum-types---Do-large-hospitals-see-different-rates-of-injury-than-small-hospitals?-02\"><span class=\"toc-item-num\">0.2&nbsp;&nbsp;</span>Could be useful to compare stratum types - Do large hospitals see different rates of injury than small hospitals?</a></div><div class=\"lev2 toc-item\"><a href=\"#Do-we-see-meaningful-trends-when-race-is-reported?\" data-toc-modified-id=\"Do-we-see-meaningful-trends-when-race-is-reported?-03\"><span class=\"toc-item-num\">0.3&nbsp;&nbsp;</span>Do we see meaningful trends when race is reported?</a></div><div class=\"lev2 toc-item\"><a href=\"#Conclusion\" data-toc-modified-id=\"Conclusion-04\"><span class=\"toc-item-num\">0.4&nbsp;&nbsp;</span>Conclusion</a></div>" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "ExecuteTime": { "end_time": "2016-12-10T20:21:04.527279", "start_time": "2016-12-10T20:21:04.442399" }, "collapsed": false }, "outputs": [ { "ename": "ImportError", "evalue": "No module named 'statsmodels'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-1-190991a72cdd>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpandas\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mstatsmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformula\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapi\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msmf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mstatsmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapi\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0msm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mImportError\u001b[0m: No module named 'statsmodels'" ] } ], "source": [ "import pandas as pd\n", "import statsmodels.formula.api as smf\n", "import statsmodels.api as sm\n", "import numpy as np\n", "\n", "import neiss\n", "import plotly.offline\n", "\n", "plotly.offline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:32.601254", "start_time": "2016-10-22T17:48:51.892930" }, "collapsed": false }, "outputs": [], "source": [ "#loading in data and preparations\n", "raw = pd.read_csv('/home/datauser/cpsc/data/processed/neiss/neiss-2015.csv')\n", "cleaned = neiss.cleaner(raw)\n", "data = neiss.query(cleaned.processed_data, cleaned.crosstab)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This analysis was done by DataKind DC on behalf of the Consumer Product Safety Commission. This serves as a preliminary study of the NEISS dataset. We have been been contact with the CPSC and figuring out what questions of importance that we can offer insight to. The questions that were analyzed were:\n", "\n", " * Are there products we should be aware of?\n", " * Are there differences between the sizes of hospitals?\n", " * Are there differences where race was reported or between different races?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Are there products we should be aware of?\n", "\n", "To answer this question, I approached it two ways. One way is to tabulate the total number of producted queried by hospitals and another is to look at the top items reported by each item.\n", "\n", "The top ten producted reported by hospitals are listed below. It appears that 1842 and 1807 are the top products that most hospital report." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:32.645880", "start_time": "2016-10-22T17:49:32.602508" }, "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "product_1842 28712\n", "product_1807 28351\n", "product_4076 16784\n", "product_1205 14147\n", "product_5040 12787\n", "product_1211 11664\n", "product_4074 8271\n", "product_1884 7783\n", "product_1893 7723\n", "Name: product, dtype: int64" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.data['product'].value_counts()[0:9]" ] }, { "cell_type": "markdown", "metadata": { "ExecuteTime": { "end_time": "2016-10-20T20:38:37.995745", "start_time": "2016-10-20T20:38:37.993333" } }, "source": [ " Looking further, I examine what hospitals report this the most, so we can examine hospitals that report these products the most." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:32.684787", "start_time": "2016-10-22T17:49:32.647058" }, "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "hosp_21 2132\n", "hosp_95 1762\n", "hosp_38 1171\n", "hosp_3 1104\n", "hosp_51 920\n", "hosp_61 920\n", "hosp_31 914\n", "hosp_17 777\n", "hosp_42 721\n", "Name: hospital, dtype: int64" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.get_hospitals_by_product('product_1842')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:32.718774", "start_time": "2016-10-22T17:49:32.685822" }, "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "hosp_21 2281\n", "hosp_95 2043\n", "hosp_17 1679\n", "hosp_89 1598\n", "hosp_14 1495\n", "hosp_63 1109\n", "hosp_73 1071\n", "hosp_2 946\n", "hosp_42 785\n", "Name: hospital, dtype: int64" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.get_hospitals_by_product('product_1807')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also view these as plots and compare the incident rates of these products through different hospitals" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:33.825124", "start_time": "2016-10-22T17:49:32.720670" }, "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\" seamless=\"seamless\" src=\"https://plot.ly/~minh5/138.embed\" height=\"525px\" width=\"100%\"></iframe>" ], "text/plain": [ "<plotly.tools.PlotlyDisplay object>" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.plot_product('product_1842')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:35.044897", "start_time": "2016-10-22T17:49:33.826736" }, "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\" seamless=\"seamless\" src=\"https://plot.ly/~minh5/140.embed\" height=\"525px\" width=\"100%\"></iframe>" ], "text/plain": [ "<plotly.tools.PlotlyDisplay object>" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.plot_product('product_1807')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Looking at these, it appears that there are some overlap between the hospitals. Hospital 17, 21, 42, and 95 are the 4 common hospital that are in the top ten of both these products. We will turn to a hospital examination down the road." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:35.137659", "start_time": "2016-10-22T17:49:35.046585" }, "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'hosp_17', 'hosp_21', 'hosp_42', 'hosp_95'}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "set(data.get_hospitals_by_product('product_1842').index.tolist()) & set(data.get_hospitals_by_product('product_1807').index.tolist())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Could be useful to compare stratum types - Do large hospitals see different rates of injury than small hospitals?\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another way of examining product harm would not only to count the total numbers of products but also to see what is the top product that is reported for each hosptial. Here we can look at not only the sheer number which could be due to over reporting or awareness but also to see if there are geographic differences for product harm. However, after examining this, we see that 70 out of the 82 hospitals surveyed have product 1842 and 1807 as the top product.\n", "\n", "However an interesting finding is that product_1267, product_3299, and product_3283 are in the top ten list of top products by hospital but not in the top ten overall. However, the number is small as it only affects 5 hospitals and 14,844 reported cases. It would be interesting to see where these five hospital are at and why these products are the top of their product harm.\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:37.166861", "start_time": "2016-10-22T17:49:35.138905" }, "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "product_1842 42\n", "product_1807 28\n", "product_4076 3\n", "product_1267 2\n", "product_1211 2\n", "product_5040 2\n", "product_3299 2\n", "product_3283 1\n", "dtype: int64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.top_product_for_hospital()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another way of approaching would be to fit a Negative Binomial Regression to see if there are any meaningful differences between the sizes of the hospitals. I use a negative binomial regression rather than a poisson regression because there is strong evidence of overdispersion, that is, the variance of the data is much higher than the mean, as shown below. This also occurs across all stratum (only shown for small, medium, and large)." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:37.255777", "start_time": "2016-10-22T17:49:37.168012" }, "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "variance of product 1842 counts: 139451.173706\n", "mean of product 1842 counts: 350.146341463\n" ] } ], "source": [ "counts = data.data.ix[data.data['product'] == 'product_1842',:]['hospital'].value_counts()\n", "print('variance of product 1842 counts:', np.var(counts.values))\n", "print('mean of product 1842 counts:', np.mean(counts.values))\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:39.591013", "start_time": "2016-10-22T17:49:37.256951" }, "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variance: 5805.36033951\n", "Mean: 90.0277777778\n" ] }, { "data": { "text/html": [ "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\" seamless=\"seamless\" src=\"https://plot.ly/~minh5/142.embed\" height=\"525px\" width=\"100%\"></iframe>" ], "text/plain": [ "<plotly.tools.PlotlyDisplay object>" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.plot_stratum_dist('product_1842', 'S')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:40.932873", "start_time": "2016-10-22T17:49:39.592717" }, "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variance: 18568.6666667\n", "Mean: 423.666666667\n" ] }, { "data": { "text/html": [ "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\" seamless=\"seamless\" src=\"https://plot.ly/~minh5/144.embed\" height=\"525px\" width=\"100%\"></iframe>" ], "text/plain": [ "<plotly.tools.PlotlyDisplay object>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.plot_stratum_dist('product_1842', 'M')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:42.644230", "start_time": "2016-10-22T17:49:40.934589" }, "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variance: 68488.9795918\n", "Mean: 645.142857143\n" ] }, { "data": { "text/html": [ "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\" seamless=\"seamless\" src=\"https://plot.ly/~minh5/146.embed\" height=\"525px\" width=\"100%\"></iframe>" ], "text/plain": [ "<plotly.tools.PlotlyDisplay object>" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.plot_stratum_dist('product_1842', 'L')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:42.837925", "start_time": "2016-10-22T17:49:42.645911" }, "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>counts</th>\n", " <th>hospital</th>\n", " <th>stratum</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>38</th>\n", " <td>2132</td>\n", " <td>hosp_21</td>\n", " <td>V</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>1762</td>\n", " <td>hosp_95</td>\n", " <td>V</td>\n", " </tr>\n", " <tr>\n", " <th>0</th>\n", " <td>1171</td>\n", " <td>hosp_38</td>\n", " <td>V</td>\n", " </tr>\n", " <tr>\n", " <th>42</th>\n", " <td>1104</td>\n", " <td>hosp_3</td>\n", " <td>L</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>920</td>\n", " <td>hosp_51</td>\n", " <td>L</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " counts hospital stratum\n", "38 2132 hosp_21 V\n", "13 1762 hosp_95 V\n", "0 1171 hosp_38 V\n", "42 1104 hosp_3 L\n", "2 920 hosp_51 L" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df = data.prepare_stratum_modeling('product_1842')\n", "df.head()\n" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:42.868479", "start_time": "2016-10-22T17:49:42.839212" }, "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<table class=\"simpletable\">\n", "<caption>Generalized Linear Model Regression Results</caption>\n", "<tr>\n", " <th>Dep. Variable:</th> <td>counts</td> <th> No. Observations: </th> <td> 82</td> \n", "</tr>\n", "<tr>\n", " <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 77</td> \n", "</tr>\n", "<tr>\n", " <th>Model Family:</th> <td>NegativeBinomial</td> <th> Df Model: </th> <td> 4</td> \n", "</tr>\n", "<tr>\n", " <th>Link Function:</th> <td>log</td> <th> Scale: </th> <td>0.572368368102</td>\n", "</tr>\n", "<tr>\n", " <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -534.00</td> \n", "</tr>\n", "<tr>\n", " <th>Date:</th> <td>Sat, 22 Oct 2016</td> <th> Deviance: </th> <td> 43.333</td> \n", "</tr>\n", "<tr>\n", " <th>Time:</th> <td>17:49:42</td> <th> Pearson chi2: </th> <td> 44.1</td> \n", "</tr>\n", "<tr>\n", " <th>No. Iterations:</th> <td>7</td> <th> </th> <td> </td> \n", "</tr>\n", "</table>\n", "<table class=\"simpletable\">\n", "<tr>\n", " <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[95.0% Conf. Int.]</th> \n", "</tr>\n", "<tr>\n", " <th>Intercept</th> <td> 6.0488</td> <td> 0.268</td> <td> 22.587</td> <td> 0.000</td> <td> 5.524 6.574</td>\n", "</tr>\n", "<tr>\n", " <th>stratum[T.L]</th> <td> 0.4206</td> <td> 0.392</td> <td> 1.073</td> <td> 0.283</td> <td> -0.348 1.189</td>\n", "</tr>\n", "<tr>\n", " <th>stratum[T.M]</th> <td> 9.835e-05</td> <td> 0.368</td> <td> 0.000</td> <td> 1.000</td> <td> -0.721 0.721</td>\n", "</tr>\n", "<tr>\n", " <th>stratum[T.S]</th> <td> -1.5487</td> <td> 0.296</td> <td> -5.227</td> <td> 0.000</td> <td> -2.129 -0.968</td>\n", "</tr>\n", "<tr>\n", " <th>stratum[T.V]</th> <td> 0.3891</td> <td> 0.313</td> <td> 1.244</td> <td> 0.213</td> <td> -0.224 1.002</td>\n", "</tr>\n", "</table>" ], "text/plain": [ "<class 'statsmodels.iolib.summary.Summary'>\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: counts No. Observations: 82\n", "Model: GLM Df Residuals: 77\n", "Model Family: NegativeBinomial Df Model: 4\n", "Link Function: log Scale: 0.572368368102\n", "Method: IRLS Log-Likelihood: -534.00\n", "Date: Sat, 22 Oct 2016 Deviance: 43.333\n", "Time: 17:49:42 Pearson chi2: 44.1\n", "No. Iterations: 7 \n", "================================================================================\n", " coef std err z P>|z| [95.0% Conf. Int.]\n", "--------------------------------------------------------------------------------\n", "Intercept 6.0488 0.268 22.587 0.000 5.524 6.574\n", "stratum[T.L] 0.4206 0.392 1.073 0.283 -0.348 1.189\n", "stratum[T.M] 9.835e-05 0.368 0.000 1.000 -0.721 0.721\n", "stratum[T.S] -1.5487 0.296 -5.227 0.000 -2.129 -0.968\n", "stratum[T.V] 0.3891 0.313 1.244 0.213 -0.224 1.002\n", "================================================================================\n", "\"\"\"" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model = smf.glm(\"counts ~ stratum\", data=df,\n", " family=sm.families.NegativeBinomial()).fit()\n", "model.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the model, we see that there are only significant differences between Medium and Small hospital. Given the coefficients, the log count difference between Medium and Small hospitals is -1.55. Other than that there doesn't seem to be any other signficant differences between hospital sizes for Product 1842. \n", "\n", "We can do the same to examine the 2nd most reported product, Product 1807. Below I check the assumption to fit a negative binomial regression, that the variance is far greater than the mean. In this case we see that it is the case." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:44.292443", "start_time": "2016-10-22T17:49:42.870454" }, "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variance: 36427.9183673\n", "Mean: 112.285714286\n" ] }, { "data": { "text/html": [ "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\" seamless=\"seamless\" src=\"https://plot.ly/~minh5/148.embed\" height=\"525px\" width=\"100%\"></iframe>" ], "text/plain": [ "<plotly.tools.PlotlyDisplay object>" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.plot_stratum_dist('product_1807', 'S')\n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:45.471198", "start_time": "2016-10-22T17:49:44.294273" }, "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variance: 193238.469136\n", "Mean: 522.555555556\n" ] }, { "data": { "text/html": [ "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\" seamless=\"seamless\" src=\"https://plot.ly/~minh5/150.embed\" height=\"525px\" width=\"100%\"></iframe>" ], "text/plain": [ "<plotly.tools.PlotlyDisplay object>" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.plot_stratum_dist('product_1807', 'M')" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:46.754253", "start_time": "2016-10-22T17:49:45.473527" }, "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Variance: 177492.77551\n", "Mean: 658.714285714\n" ] }, { "data": { "text/html": [ "<iframe id=\"igraph\" scrolling=\"no\" style=\"border:none;\" seamless=\"seamless\" src=\"https://plot.ly/~minh5/152.embed\" height=\"525px\" width=\"100%\"></iframe>" ], "text/plain": [ "<plotly.tools.PlotlyDisplay object>" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.plot_stratum_dist('product_1807', 'L')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The assumptions have been met and after building the model, we see very similar results as the previous model, that there are only significant differences between the small and large hospitals. For future research, we can use similar techniques to see significant differences between hospital sizes for all products." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:49:46.957282", "start_time": "2016-10-22T17:49:46.756045" }, "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<table class=\"simpletable\">\n", "<caption>Generalized Linear Model Regression Results</caption>\n", "<tr>\n", " <th>Dep. Variable:</th> <td>counts</td> <th> No. Observations: </th> <td> 82</td> \n", "</tr>\n", "<tr>\n", " <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 77</td> \n", "</tr>\n", "<tr>\n", " <th>Model Family:</th> <td>NegativeBinomial</td> <th> Df Model: </th> <td> 4</td> \n", "</tr>\n", "<tr>\n", " <th>Link Function:</th> <td>log</td> <th> Scale: </th> <td>0.572368368102</td>\n", "</tr>\n", "<tr>\n", " <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -534.00</td> \n", "</tr>\n", "<tr>\n", " <th>Date:</th> <td>Sat, 22 Oct 2016</td> <th> Deviance: </th> <td> 43.333</td> \n", "</tr>\n", "<tr>\n", " <th>Time:</th> <td>17:49:46</td> <th> Pearson chi2: </th> <td> 44.1</td> \n", "</tr>\n", "<tr>\n", " <th>No. Iterations:</th> <td>7</td> <th> </th> <td> </td> \n", "</tr>\n", "</table>\n", "<table class=\"simpletable\">\n", "<tr>\n", " <td></td> <th>coef</th> <th>std err</th> <th>z</th> <th>P>|z|</th> <th>[95.0% Conf. Int.]</th> \n", "</tr>\n", "<tr>\n", " <th>Intercept</th> <td> 6.0488</td> <td> 0.268</td> <td> 22.587</td> <td> 0.000</td> <td> 5.524 6.574</td>\n", "</tr>\n", "<tr>\n", " <th>stratum[T.L]</th> <td> 0.4206</td> <td> 0.392</td> <td> 1.073</td> <td> 0.283</td> <td> -0.348 1.189</td>\n", "</tr>\n", "<tr>\n", " <th>stratum[T.M]</th> <td> 9.835e-05</td> <td> 0.368</td> <td> 0.000</td> <td> 1.000</td> <td> -0.721 0.721</td>\n", "</tr>\n", "<tr>\n", " <th>stratum[T.S]</th> <td> -1.5487</td> <td> 0.296</td> <td> -5.227</td> <td> 0.000</td> <td> -2.129 -0.968</td>\n", "</tr>\n", "<tr>\n", " <th>stratum[T.V]</th> <td> 0.3891</td> <td> 0.313</td> <td> 1.244</td> <td> 0.213</td> <td> -0.224 1.002</td>\n", "</tr>\n", "</table>" ], "text/plain": [ "<class 'statsmodels.iolib.summary.Summary'>\n", "\"\"\"\n", " Generalized Linear Model Regression Results \n", "==============================================================================\n", "Dep. Variable: counts No. Observations: 82\n", "Model: GLM Df Residuals: 77\n", "Model Family: NegativeBinomial Df Model: 4\n", "Link Function: log Scale: 0.572368368102\n", "Method: IRLS Log-Likelihood: -534.00\n", "Date: Sat, 22 Oct 2016 Deviance: 43.333\n", "Time: 17:49:46 Pearson chi2: 44.1\n", "No. Iterations: 7 \n", "================================================================================\n", " coef std err z P>|z| [95.0% Conf. Int.]\n", "--------------------------------------------------------------------------------\n", "Intercept 6.0488 0.268 22.587 0.000 5.524 6.574\n", "stratum[T.L] 0.4206 0.392 1.073 0.283 -0.348 1.189\n", "stratum[T.M] 9.835e-05 0.368 0.000 1.000 -0.721 0.721\n", "stratum[T.S] -1.5487 0.296 -5.227 0.000 -2.129 -0.968\n", "stratum[T.V] 0.3891 0.313 1.244 0.213 -0.224 1.002\n", "================================================================================\n", "\"\"\"" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df2 = data.prepare_stratum_modeling('product_1807')\n", "model = smf.glm(\"counts ~ stratum\", data=df,\n", " family=sm.families.NegativeBinomial()).fit()\n", "model.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Do we see meaningful trends when race is reported?\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the top items, we don't see any meaningful differences between the top ten items for people who have race reported and race not reported. Even among the data where we do have race reported, there doesn't seem to be much variation when it comes to the top ten products causes most harm." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:55:26.068807", "start_time": "2016-10-22T17:55:25.961121" }, "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "product_1842 17393\n", "product_1807 15691\n", "product_4076 10108\n", "product_1205 9108\n", "product_5040 7939\n", "product_1211 7872\n", "product_4074 5142\n", "product_1884 4877\n", "product_1893 4874\n", "Name: product, dtype: int64" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.retrieve_query('race_reported', 'reported', 'product')" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T17:55:28.333203", "start_time": "2016-10-22T17:55:28.229390" }, "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "product_1807 12660\n", "product_1842 11319\n", "product_4076 6676\n", "product_1205 5039\n", "product_5040 4848\n", "product_1211 3792\n", "product_3299 3715\n", "product_4074 3129\n", "product_611 3018\n", "Name: product, dtype: int64" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.retrieve_query('race_reported', 'not reported', 'product')" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "ExecuteTime": { "end_time": "2016-10-22T18:10:37.784074", "start_time": "2016-10-22T18:10:37.546588" }, "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "white\n", "product_1807 11719\n", "product_1842 11388\n", "product_4076 6523\n", "product_5040 5026\n", "product_1211 4125\n", "product_1205 3867\n", "product_4074 3560\n", "product_464 3104\n", "product_4057 3008\n", "Name: product, dtype: int64\n", "black\n", "product_1842 4389\n", "product_1205 4267\n", "product_1211 3048\n", "product_1807 2615\n", "product_4076 2302\n", "product_5040 1882\n", "product_1893 1462\n", "product_1884 1332\n", "product_4057 1039\n", "Name: product, dtype: int64\n", "hispanic\n", "product_1842 936\n", "product_1267 798\n", "product_4076 730\n", "product_1807 639\n", "product_5040 555\n", "product_1205 484\n", "product_1211 389\n", "product_1884 352\n", "product_4074 310\n", "Name: product, dtype: int64\n", "other\n", "product_1807 13378\n", "product_1842 11999\n", "product_4076 7229\n", "product_1205 5529\n", "product_5040 5324\n", "product_1211 4102\n", "product_3299 3887\n", "product_4074 3381\n", "product_611 3199\n", "Name: product, dtype: int64\n" ] } ], "source": [ "races = ['white', 'black', 'hispanic', 'other']\n", "for race in races:\n", " print(race)\n", " print(data.retrieve_query('new_race', race, 'product'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conclusion" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The analysis here is still preliminary and exploratory. Most of the analysis revolved around two product, Product 1842 and 1807, because they vastly outnumbered all the other reported products. Future analysis could include running more negative binomial or Poisson (if the mean and variance are similar) regression and more standard hypothesis tests to see evaluate statistical significant differences. One question that I could not answer is to figure out any regional differences because we do not know the exact location of the hospital. \n", "\n", "We have also attached a document that conducts a much more comprehensive break down of product harm by various segments. This document serves as a starting point for all the analysis done here and will be a value reference for any future research on the NEISS dataset." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "nav_menu": {}, "toc": { "nav_menu": { "height": "99px", "width": "252px" }, "navigate_menu": true, "number_sections": true, "sideBar": false, "threshold": 6, "toc_cell": true, "toc_section_display": "none", "toc_window_display": false }, "toc_position": { "height": "40px", "left": "119px", "right": "20px", "top": "118px", "width": "263px" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
JAmarel/Phys202
Integration/IntegrationEx02.ipynb
2
11908
{ "cells": [ { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "# Integration Exercise 2" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true, "nbgrader": {} }, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import seaborn as sns\n", "from scipy import integrate" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "## Indefinite integrals" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "Here is a [table of definite integrals](http://en.wikipedia.org/wiki/List_of_definite_integrals). Many of these integrals has a number of parameters $a$, $b$, etc.\n", "\n", "Find five of these integrals and perform the following steps:\n", "\n", "1. Typeset the integral using LateX in a Markdown cell.\n", "1. Define an `integrand` function that computes the value of the integrand.\n", "2. Define an `integral_approx` funciton that uses `scipy.integrate.quad` to peform the integral.\n", "3. Define an `integral_exact` function that computes the exact value of the integral.\n", "4. Call and print the return value of `integral_approx` and `integral_exact` for one set of parameters.\n", "\n", "Here is an example to show what your solutions should look like:" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "### Example" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "nbgrader": {} }, "source": [ "Here is the integral I am performing:\n", "\n", "$$ I_1 = \\int_0^\\infty \\frac{dx}{x^2 + a^2} = \\frac{\\pi}{2a} $$" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "nbgrader": {} }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numerical: 1.5707963267948966\n", "Exact : 1.5707963267948966\n" ] } ], "source": [ "def integrand(x, a):\n", " return 1.0/(x**2 + a**2)\n", "\n", "def integral_approx(a):\n", " # Use the args keyword argument to feed extra arguments to your integrand\n", " I, e = integrate.quad(integrand, 0, np.inf, args=(a,))\n", " return I\n", "\n", "def integral_exact(a):\n", " return 0.5*np.pi/a\n", "\n", "print(\"Numerical: \", integral_approx(1.0))\n", "print(\"Exact : \", integral_exact(1.0))\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "nbgrader": {} }, "outputs": [], "source": [ "assert True # leave this cell to grade the above integral" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Integral 1" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "nbgrader": { "checksum": "e034fc7ac9c38bbb9c7c87db4b6c8e4e", "grade": true, "grade_id": "integrationex03a", "points": 1, "solution": true } }, "source": [ "$$ I_1 = \\int_0^a {\\sqrt{a^2-x^2} dx} = \\frac{\\pi a^2}{4} $$" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "6cff4e8e53b15273846c3aecaea84a3d", "solution": true } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numerical: 0.7853981633974481\n", "Exact : 0.7853981633974483\n" ] } ], "source": [ "def integrand(x, a):\n", " return np.sqrt(a**2 - x**2)\n", "\n", "def integral_approx(a):\n", " # Use the args keyword argument to feed extra arguments to your integrand\n", " I, e = integrate.quad(integrand, 0, a, args=(a,))\n", " return I\n", "\n", "def integral_exact(a):\n", " return 0.25*np.pi\n", "\n", "print(\"Numerical: \", integral_approx(1.0))\n", "print(\"Exact : \", integral_exact(1.0))" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true, "deletable": false, "nbgrader": { "checksum": "b998cb1faa45ae86f0728d51dfa0e45c", "grade": true, "grade_id": "integrationex03b", "points": 1 } }, "outputs": [], "source": [ "assert True # leave this cell to grade the above integral" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Integral 2" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "nbgrader": { "checksum": "c3191d99083f6d7cf804f95876e8a624", "grade": true, "grade_id": "integrationex03c", "points": 1, "solution": true } }, "source": [ "$$ I_2 = \\int_0^{\\frac{\\pi}{2}} {\\sin^2{x}}{ } {dx} = \\frac{\\pi}{4} $$" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "6cff4e8e53b15273846c3aecaea84a3d", "solution": true } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numerical: 0.7853981633974483\n", "Exact : 0.7853981633974483\n" ] } ], "source": [ "def integrand(x):\n", " return np.sin(x)**2\n", "\n", "def integral_approx():\n", " I, e = integrate.quad(integrand, 0, np.pi/2)\n", " return I\n", "\n", "def integral_exact():\n", " return 0.25*np.pi\n", "\n", "print(\"Numerical: \", integral_approx())\n", "print(\"Exact : \", integral_exact())" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": false, "nbgrader": { "checksum": "4e20de120f0c45ba666f10ba9a6c82d8", "grade": true, "grade_id": "integrationex03d", "points": 1 } }, "outputs": [], "source": [ "assert True # leave this cell to grade the above integral" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "### Integral 3" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "nbgrader": { "checksum": "c65f5242f7fa5525523b89899f6ca251", "grade": true, "grade_id": "integrationex03e", "points": 1, "solution": true } }, "source": [ "$$ I_3 = \\int_0^{2\\pi} \\frac{dx}{a+b\\sin{x}} = {\\frac{2\\pi}{\\sqrt{a^2-b^2}}} $$" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "6cff4e8e53b15273846c3aecaea84a3d", "solution": true } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numerical: 0.6283185307179587\n", "Exact : 0.628318530718\n" ] } ], "source": [ "def integrand(x,a,b):\n", " return 1/(a+ b*np.sin(x))\n", "\n", "def integral_approx(a,b):\n", " I, e = integrate.quad(integrand, 0, 2*np.pi,args=(a,b))\n", " return I\n", "\n", "def integral_exact(a,b):\n", " return 2*np.pi/np.sqrt(a**2-b**2)\n", "\n", "print(\"Numerical: \", integral_approx(10,0))\n", "print(\"Exact : \", integral_exact(10,0))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": false, "nbgrader": { "checksum": "8c60d256fe8559e423cf8946ae70ba8d", "grade": true, "grade_id": "integrationex03f", "points": 1 } }, "outputs": [], "source": [ "assert True # leave this cell to grade the above integral" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "### Integral 4" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "nbgrader": { "checksum": "3a5d3b2070c78b64152c96681e8e6585", "grade": true, "grade_id": "integrationex03g", "points": 1, "solution": true } }, "source": [ "$$ I_4 = \\int_0^{\\infty} \\frac{x}{e^{x}+1} = {\\frac{\\pi^2}{12}} $$" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "6cff4e8e53b15273846c3aecaea84a3d", "solution": true } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numerical: 0.822467033424113\n", "Exact : 0.8224670334241131\n" ] } ], "source": [ "def integrand(x):\n", " return x/(np.exp(x)+1)\n", "\n", "def integral_approx():\n", " I, e = integrate.quad(integrand, 0, np.inf)\n", " return I\n", "\n", "def integral_exact():\n", " return (1/12)*np.pi**2\n", "\n", "print(\"Numerical: \", integral_approx())\n", "print(\"Exact : \", integral_exact())" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "collapsed": true, "deletable": false, "nbgrader": { "checksum": "88acfb75979c6551c8b3af758cd86acc", "grade": true, "grade_id": "integrationex03h", "points": 1 } }, "outputs": [], "source": [ "assert True # leave this cell to grade the above integral" ] }, { "cell_type": "markdown", "metadata": { "nbgrader": {} }, "source": [ "### Integral 5" ] }, { "cell_type": "markdown", "metadata": { "deletable": false, "nbgrader": { "checksum": "9dbb9f1159b3c089e60dd167d973cc59", "grade": true, "grade_id": "integrationex03i", "points": 1, "solution": true } }, "source": [ "$$ I_5 = \\int_0^{\\infty} \\frac{x}{e^{x}-1} = {\\frac{\\pi^2}{6}} $$" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": false, "deletable": false, "nbgrader": { "checksum": "6cff4e8e53b15273846c3aecaea84a3d", "solution": true } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numerical: 1.6449340668482264\n", "Exact : 1.6449340668482262\n" ] } ], "source": [ "def integrand(x):\n", " return x/(np.exp(x)-1)\n", "\n", "def integral_approx():\n", " I, e = integrate.quad(integrand, 0, np.inf)\n", " return I\n", "\n", "def integral_exact():\n", " return (1/6)*np.pi**2\n", "\n", "print(\"Numerical: \", integral_approx())\n", "print(\"Exact : \", integral_exact())" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "deletable": false, "nbgrader": { "checksum": "34f6cf778698f4b90fdadc09c2a0f120", "grade": true, "grade_id": "integrationex03j", "points": 1 } }, "outputs": [], "source": [ "assert True # leave this cell to grade the above integral" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.0" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
ES-DOC/esdoc-jupyterhub
notebooks/inm/cmip6/models/sandbox-2/ocean.ipynb
1
164407
{ "nbformat_minor": 0, "nbformat": 4, "cells": [ { "source": [ "# ES-DOC CMIP6 Model Properties - Ocean \n", "**MIP Era**: CMIP6 \n", "**Institute**: INM \n", "**Source ID**: SANDBOX-2 \n", "**Topic**: Ocean \n", "**Sub-Topics**: Timestepping Framework, Advection, Lateral Physics, Vertical Physics, Uplow Boundaries, Boundary Forcing. \n", "**Properties**: 133 (101 required) \n", "**Model descriptions**: [Model description details](https://specializations.es-doc.org/cmip6/ocean?client=jupyter-notebook) \n", "**Initialized From**: -- \n", "\n", "**Notebook Help**: [Goto notebook help page](https://es-doc.org/cmip6-models-documenting-with-ipython) \n", "**Notebook Initialised**: 2018-02-15 16:54:05" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### Document Setup \n", "**IMPORTANT: to be executed each time you run the notebook** " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# DO NOT EDIT ! \n", "from pyesdoc.ipython.model_topic import NotebookOutput \n", "\n", "# DO NOT EDIT ! \n", "DOC = NotebookOutput('cmip6', 'inm', 'sandbox-2', 'ocean')" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Authors \n", "*Set document authors*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_author(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Contributors \n", "*Specify document contributors* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set as follows: DOC.set_contributor(\"name\", \"email\") \n", "# TODO - please enter value(s)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Publication \n", "*Specify document publication status* " ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# Set publication status: \n", "# 0=do not publish, 1=publish. \n", "DOC.set_publication_status(0)" ], "outputs": [], "metadata": {} }, { "source": [ "### Document Table of Contents \n", "[1. Key Properties](#1.-Key-Properties) \n", "[2. Key Properties --&gt; Seawater Properties](#2.-Key-Properties---&gt;-Seawater-Properties) \n", "[3. Key Properties --&gt; Bathymetry](#3.-Key-Properties---&gt;-Bathymetry) \n", "[4. Key Properties --&gt; Nonoceanic Waters](#4.-Key-Properties---&gt;-Nonoceanic-Waters) \n", "[5. Key Properties --&gt; Software Properties](#5.-Key-Properties---&gt;-Software-Properties) \n", "[6. Key Properties --&gt; Resolution](#6.-Key-Properties---&gt;-Resolution) \n", "[7. Key Properties --&gt; Tuning Applied](#7.-Key-Properties---&gt;-Tuning-Applied) \n", "[8. Key Properties --&gt; Conservation](#8.-Key-Properties---&gt;-Conservation) \n", "[9. Grid](#9.-Grid) \n", "[10. Grid --&gt; Discretisation --&gt; Vertical](#10.-Grid---&gt;-Discretisation---&gt;-Vertical) \n", "[11. Grid --&gt; Discretisation --&gt; Horizontal](#11.-Grid---&gt;-Discretisation---&gt;-Horizontal) \n", "[12. Timestepping Framework](#12.-Timestepping-Framework) \n", "[13. Timestepping Framework --&gt; Tracers](#13.-Timestepping-Framework---&gt;-Tracers) \n", "[14. Timestepping Framework --&gt; Baroclinic Dynamics](#14.-Timestepping-Framework---&gt;-Baroclinic-Dynamics) \n", "[15. Timestepping Framework --&gt; Barotropic](#15.-Timestepping-Framework---&gt;-Barotropic) \n", "[16. Timestepping Framework --&gt; Vertical Physics](#16.-Timestepping-Framework---&gt;-Vertical-Physics) \n", "[17. Advection](#17.-Advection) \n", "[18. Advection --&gt; Momentum](#18.-Advection---&gt;-Momentum) \n", "[19. Advection --&gt; Lateral Tracers](#19.-Advection---&gt;-Lateral-Tracers) \n", "[20. Advection --&gt; Vertical Tracers](#20.-Advection---&gt;-Vertical-Tracers) \n", "[21. Lateral Physics](#21.-Lateral-Physics) \n", "[22. Lateral Physics --&gt; Momentum --&gt; Operator](#22.-Lateral-Physics---&gt;-Momentum---&gt;-Operator) \n", "[23. Lateral Physics --&gt; Momentum --&gt; Eddy Viscosity Coeff](#23.-Lateral-Physics---&gt;-Momentum---&gt;-Eddy-Viscosity-Coeff) \n", "[24. Lateral Physics --&gt; Tracers](#24.-Lateral-Physics---&gt;-Tracers) \n", "[25. Lateral Physics --&gt; Tracers --&gt; Operator](#25.-Lateral-Physics---&gt;-Tracers---&gt;-Operator) \n", "[26. Lateral Physics --&gt; Tracers --&gt; Eddy Diffusity Coeff](#26.-Lateral-Physics---&gt;-Tracers---&gt;-Eddy-Diffusity-Coeff) \n", "[27. Lateral Physics --&gt; Tracers --&gt; Eddy Induced Velocity](#27.-Lateral-Physics---&gt;-Tracers---&gt;-Eddy-Induced-Velocity) \n", "[28. Vertical Physics](#28.-Vertical-Physics) \n", "[29. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Details](#29.-Vertical-Physics---&gt;-Boundary-Layer-Mixing---&gt;-Details) \n", "[30. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Tracers](#30.-Vertical-Physics---&gt;-Boundary-Layer-Mixing---&gt;-Tracers) \n", "[31. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Momentum](#31.-Vertical-Physics---&gt;-Boundary-Layer-Mixing---&gt;-Momentum) \n", "[32. Vertical Physics --&gt; Interior Mixing --&gt; Details](#32.-Vertical-Physics---&gt;-Interior-Mixing---&gt;-Details) \n", "[33. Vertical Physics --&gt; Interior Mixing --&gt; Tracers](#33.-Vertical-Physics---&gt;-Interior-Mixing---&gt;-Tracers) \n", "[34. Vertical Physics --&gt; Interior Mixing --&gt; Momentum](#34.-Vertical-Physics---&gt;-Interior-Mixing---&gt;-Momentum) \n", "[35. Uplow Boundaries --&gt; Free Surface](#35.-Uplow-Boundaries---&gt;-Free-Surface) \n", "[36. Uplow Boundaries --&gt; Bottom Boundary Layer](#36.-Uplow-Boundaries---&gt;-Bottom-Boundary-Layer) \n", "[37. Boundary Forcing](#37.-Boundary-Forcing) \n", "[38. Boundary Forcing --&gt; Momentum --&gt; Bottom Friction](#38.-Boundary-Forcing---&gt;-Momentum---&gt;-Bottom-Friction) \n", "[39. Boundary Forcing --&gt; Momentum --&gt; Lateral Friction](#39.-Boundary-Forcing---&gt;-Momentum---&gt;-Lateral-Friction) \n", "[40. Boundary Forcing --&gt; Tracers --&gt; Sunlight Penetration](#40.-Boundary-Forcing---&gt;-Tracers---&gt;-Sunlight-Penetration) \n", "[41. Boundary Forcing --&gt; Tracers --&gt; Fresh Water Forcing](#41.-Boundary-Forcing---&gt;-Tracers---&gt;-Fresh-Water-Forcing) \n", "\n" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "# 1. Key Properties \n", "*Ocean key properties*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 1.1. Model Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of ocean model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.model_overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.2. Model Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Name of ocean model code (NEMO 3.6, MOM 5.0,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.model_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.3. Model Family\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of ocean model.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.model_family') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"OGCM\" \n", "# \"slab ocean\" \n", "# \"mixed layer ocean\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.4. Basic Approximations\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Basic approximations made in the ocean.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.basic_approximations') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Primitive equations\" \n", "# \"Non-hydrostatic\" \n", "# \"Boussinesq\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 1.5. Prognostic Variables\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *List of prognostic variables in the ocean component.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.prognostic_variables') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Potential temperature\" \n", "# \"Conservative temperature\" \n", "# \"Salinity\" \n", "# \"U-velocity\" \n", "# \"V-velocity\" \n", "# \"W-velocity\" \n", "# \"SSH\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 2. Key Properties --&gt; Seawater Properties \n", "*Physical properties of seawater in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 2.1. Eos Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of EOS for sea water*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Linear\" \n", "# \"Wright, 1997\" \n", "# \"Mc Dougall et al.\" \n", "# \"Jackett et al. 2006\" \n", "# \"TEOS 2010\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.2. Eos Functional Temp\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Temperature used in EOS for sea water*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_temp') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Potential temperature\" \n", "# \"Conservative temperature\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.3. Eos Functional Salt\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Salinity used in EOS for sea water*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_salt') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Practical salinity Sp\" \n", "# \"Absolute salinity Sa\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.4. Eos Functional Depth\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Depth or pressure used in EOS for sea water ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.eos_functional_depth') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Pressure (dbars)\" \n", "# \"Depth (meters)\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.5. Ocean Freezing Point\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_freezing_point') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"TEOS 2010\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.6. Ocean Specific Heat\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Specific heat in ocean (cpocean) in J/(kg K)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_specific_heat') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 2.7. Ocean Reference Density\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Boussinesq reference density (rhozero) in kg / m3*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.seawater_properties.ocean_reference_density') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 3. Key Properties --&gt; Bathymetry \n", "*Properties of bathymetry in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 3.1. Reference Dates\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Reference date of bathymetry*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.reference_dates') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Present day\" \n", "# \"21000 years BP\" \n", "# \"6000 years BP\" \n", "# \"LGM\" \n", "# \"Pliocene\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.2. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the bathymetry fixed in time in the ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.3. Ocean Smoothing\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe any smoothing or hand editing of bathymetry in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.ocean_smoothing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 3.4. Source\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe source of bathymetry in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.bathymetry.source') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 4. Key Properties --&gt; Nonoceanic Waters \n", "*Non oceanic waters treatement in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 4.1. Isolated Seas\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe if/how isolated seas is performed*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.isolated_seas') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 4.2. River Mouth\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe if/how river mouth mixing or estuaries specific treatment is performed*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.nonoceanic_waters.river_mouth') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 5. Key Properties --&gt; Software Properties \n", "*Software properties of ocean code*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 5.1. Repository\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Location of code for this component.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.software_properties.repository') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.2. Code Version\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Code version identifier.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.software_properties.code_version') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 5.3. Code Languages\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Code language(s).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.software_properties.code_languages') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 6. Key Properties --&gt; Resolution \n", "*Resolution in the ocean grid*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 6.1. Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.2. Canonical Horizontal Resolution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.canonical_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.3. Range Horizontal Resolution\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Range of horizontal resolution with spatial details, eg. 50(Equator)-100km or 0.1-0.5 degrees etc.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.range_horizontal_resolution') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.4. Number Of Horizontal Gridpoints\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Total number of horizontal (XY) points (or degrees of freedom) on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_horizontal_gridpoints') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.5. Number Of Vertical Levels\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Number of vertical levels resolved on computational grid.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.number_of_vertical_levels') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.6. Is Adaptive Grid\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Default is False. Set true if grid resolution changes during execution.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.is_adaptive_grid') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 6.7. Thickness Level 1\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Thickness of first surface ocean level (in meters)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.resolution.thickness_level_1') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 7. Key Properties --&gt; Tuning Applied \n", "*Tuning methodology for ocean component*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 7.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *General overview description of tuning: explain and motivate the main targets and metrics retained. &amp;Document the relative weight given to climate performance metrics versus process oriented metrics, &amp;and on the possible conflicts with parameterization level tuning. In particular describe any struggle &amp;with a parameter value that required pushing it to its limits to solve a particular model deficiency.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.2. Global Mean Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List set of metrics of the global mean state used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.global_mean_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.3. Regional Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List of regional metrics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.regional_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 7.4. Trend Metrics Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *List observed trend metrics used in tuning model/component*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.tuning_applied.trend_metrics_used') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 8. Key Properties --&gt; Conservation \n", "*Conservation in the ocean component*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 8.1. Description\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Brief description of conservation methodology*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.description') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.2. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.N\n", "### *Properties conserved in the ocean by the numerical schemes*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.scheme') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Energy\" \n", "# \"Enstrophy\" \n", "# \"Salt\" \n", "# \"Volume of ocean\" \n", "# \"Momentum\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.3. Consistency Properties\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Any additional consistency properties (energy conversion, pressure gradient discretisation, ...)?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.consistency_properties') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.4. Corrected Conserved Prognostic Variables\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Set of variables which are conserved by *more* than the numerical scheme alone.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.corrected_conserved_prognostic_variables') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 8.5. Was Flux Correction Used\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Does conservation involve flux correction ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.key_properties.conservation.was_flux_correction_used') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 9. Grid \n", "*Ocean grid*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 9.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of grid in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 10. Grid --&gt; Discretisation --&gt; Vertical \n", "*Properties of vertical discretisation in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 10.1. Coordinates\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of vertical coordinates in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.vertical.coordinates') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Z-coordinate\" \n", "# \"Z*-coordinate\" \n", "# \"S-coordinate\" \n", "# \"Isopycnic - sigma 0\" \n", "# \"Isopycnic - sigma 2\" \n", "# \"Isopycnic - sigma 4\" \n", "# \"Isopycnic - other\" \n", "# \"Hybrid / Z+S\" \n", "# \"Hybrid / Z+isopycnic\" \n", "# \"Hybrid / other\" \n", "# \"Pressure referenced (P)\" \n", "# \"P*\" \n", "# \"Z**\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 10.2. Partial Steps\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Using partial steps with Z or Z* vertical coordinate in ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.vertical.partial_steps') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 11. Grid --&gt; Discretisation --&gt; Horizontal \n", "*Type of horizontal discretisation scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 11.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal grid type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Lat-lon\" \n", "# \"Rotated north pole\" \n", "# \"Two north poles (ORCA-style)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.2. Staggering\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Horizontal grid staggering type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.staggering') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Arakawa B-grid\" \n", "# \"Arakawa C-grid\" \n", "# \"Arakawa E-grid\" \n", "# \"N/a\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 11.3. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Horizontal discretisation scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.grid.discretisation.horizontal.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Finite difference\" \n", "# \"Finite volumes\" \n", "# \"Finite elements\" \n", "# \"Unstructured grid\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 12. Timestepping Framework \n", "*Ocean Timestepping Framework*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 12.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 12.2. Diurnal Cycle\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Diurnal cycle type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.diurnal_cycle') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Via coupling\" \n", "# \"Specific treatment\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 13. Timestepping Framework --&gt; Tracers \n", "*Properties of tracers time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 13.1. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Tracers time stepping scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.tracers.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Leap-frog + Asselin filter\" \n", "# \"Leap-frog + Periodic Euler\" \n", "# \"Predictor-corrector\" \n", "# \"Runge-Kutta 2\" \n", "# \"AM3-LF\" \n", "# \"Forward-backward\" \n", "# \"Forward operator\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 13.2. Time Step\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Tracers time step (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.tracers.time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 14. Timestepping Framework --&gt; Baroclinic Dynamics \n", "*Baroclinic dynamics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 14.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Baroclinic dynamics type*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Preconditioned conjugate gradient\" \n", "# \"Sub cyling\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.2. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Baroclinic dynamics scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Leap-frog + Asselin filter\" \n", "# \"Leap-frog + Periodic Euler\" \n", "# \"Predictor-corrector\" \n", "# \"Runge-Kutta 2\" \n", "# \"AM3-LF\" \n", "# \"Forward-backward\" \n", "# \"Forward operator\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 14.3. Time Step\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Baroclinic time step (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.baroclinic_dynamics.time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 15. Timestepping Framework --&gt; Barotropic \n", "*Barotropic time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 15.1. Splitting\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Time splitting method*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.splitting') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"split explicit\" \n", "# \"implicit\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 15.2. Time Step\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Barotropic time step (in seconds)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.barotropic.time_step') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 16. Timestepping Framework --&gt; Vertical Physics \n", "*Vertical physics time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 16.1. Method\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Details of vertical time stepping in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.timestepping_framework.vertical_physics.method') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 17. Advection \n", "*Ocean advection*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 17.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of advection in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 18. Advection --&gt; Momentum \n", "*Properties of lateral momemtum advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 18.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of lateral momemtum advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.momentum.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Flux form\" \n", "# \"Vector form\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.2. Scheme Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Name of ocean momemtum advection scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.momentum.scheme_name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 18.3. ALE\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Using ALE for vertical advection ? (if vertical coordinates are sigma)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.momentum.ALE') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 19. Advection --&gt; Lateral Tracers \n", "*Properties of lateral tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 19.1. Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Order of lateral tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.2. Flux Limiter\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Monotonic flux limiter for lateral tracer advection scheme in ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.flux_limiter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.3. Effective Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Effective order of limited lateral tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.effective_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.4. Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Descriptive text for lateral tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.5. Passive Tracers\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.N\n", "### *Passive tracers advected*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers') \n", "\n", "# PROPERTY VALUE(S): \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Ideal age\" \n", "# \"CFC 11\" \n", "# \"CFC 12\" \n", "# \"SF6\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 19.6. Passive Tracers Advection\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Is advection of passive tracers different than active ? if so, describe.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.lateral_tracers.passive_tracers_advection') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 20. Advection --&gt; Vertical Tracers \n", "*Properties of vertical tracer advection scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 20.1. Name\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Descriptive text for vertical tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.vertical_tracers.name') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 20.2. Flux Limiter\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Monotonic flux limiter for vertical tracer advection scheme in ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.advection.vertical_tracers.flux_limiter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 21. Lateral Physics \n", "*Ocean lateral physics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 21.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of lateral physics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 21.2. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of transient eddy representation in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Eddy active\" \n", "# \"Eddy admitting\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 22. Lateral Physics --&gt; Momentum --&gt; Operator \n", "*Properties of lateral physics operator for momentum in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 22.1. Direction\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Direction of lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.direction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Horizontal\" \n", "# \"Isopycnal\" \n", "# \"Isoneutral\" \n", "# \"Geopotential\" \n", "# \"Iso-level\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.2. Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Order of lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Harmonic\" \n", "# \"Bi-harmonic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 22.3. Discretisation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Discretisation of lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.operator.discretisation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Second order\" \n", "# \"Higher order\" \n", "# \"Flux limiter\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 23. Lateral Physics --&gt; Momentum --&gt; Eddy Viscosity Coeff \n", "*Properties of eddy viscosity coeff in lateral physics momemtum scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 23.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Lateral physics momemtum eddy viscosity coeff type in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Space varying\" \n", "# \"Time + space varying (Smagorinsky)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.2. Constant Coefficient\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant, value of eddy viscosity coeff in lateral physics momemtum scheme (in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.constant_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.3. Variable Coefficient\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If space-varying, describe variations of eddy viscosity coeff in lateral physics momemtum scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.variable_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.4. Coeff Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe background eddy viscosity coeff in lateral physics momemtum scheme (give values in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 23.5. Coeff Backscatter\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there backscatter in eddy viscosity coeff in lateral physics momemtum scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.momentum.eddy_viscosity_coeff.coeff_backscatter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 24. Lateral Physics --&gt; Tracers \n", "*Properties of lateral physics for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 24.1. Mesoscale Closure\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there a mesoscale closure in the lateral physics tracers scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.mesoscale_closure') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 24.2. Submesoscale Mixing\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there a submesoscale mixing parameterisation (i.e Fox-Kemper) in the lateral physics tracers scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.submesoscale_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 25. Lateral Physics --&gt; Tracers --&gt; Operator \n", "*Properties of lateral physics operator for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 25.1. Direction\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Direction of lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.direction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Horizontal\" \n", "# \"Isopycnal\" \n", "# \"Isoneutral\" \n", "# \"Geopotential\" \n", "# \"Iso-level\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 25.2. Order\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Order of lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Harmonic\" \n", "# \"Bi-harmonic\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 25.3. Discretisation\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Discretisation of lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.operator.discretisation') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Second order\" \n", "# \"Higher order\" \n", "# \"Flux limiter\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 26. Lateral Physics --&gt; Tracers --&gt; Eddy Diffusity Coeff \n", "*Properties of eddy diffusity coeff in lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 26.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Lateral physics tracers eddy diffusity coeff type in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant\" \n", "# \"Space varying\" \n", "# \"Time + space varying (Smagorinsky)\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.2. Constant Coefficient\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant, value of eddy diffusity coeff in lateral physics tracers scheme (in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.constant_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.3. Variable Coefficient\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If space-varying, describe variations of eddy diffusity coeff in lateral physics tracers scheme*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.variable_coefficient') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.4. Coeff Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe background eddy diffusity coeff in lateral physics tracers scheme (give values in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 26.5. Coeff Backscatter\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there backscatter in eddy diffusity coeff in lateral physics tracers scheme ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_diffusity_coeff.coeff_backscatter') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 27. Lateral Physics --&gt; Tracers --&gt; Eddy Induced Velocity \n", "*Properties of eddy induced velocity (EIV) in lateral physics tracers scheme in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 27.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of EIV in lateral physics tracers in the ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"GM\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.2. Constant Val\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If EIV scheme for tracers is constant, specify coefficient value (M2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.constant_val') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.3. Flux Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of EIV flux (advective or skew)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.flux_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 27.4. Added Diffusivity\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of EIV added diffusivity (constant, flow dependent or none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.lateral_physics.tracers.eddy_induced_velocity.added_diffusivity') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 28. Vertical Physics \n", "*Ocean Vertical Physics*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 28.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of vertical physics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 29. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Details \n", "*Properties of vertical physics in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 29.1. Langmuir Cells Mixing\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there Langmuir cells mixing in upper ocean ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.details.langmuir_cells_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 30. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Tracers \n", "*Properties of boundary layer (BL) mixing on tracers in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 30.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of boundary layer mixing for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure - TKE\" \n", "# \"Turbulent closure - KPP\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Turbulent closure - Bulk Mixed Layer\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.2. Closure Order\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If turbulent BL mixing of tracers, specific order of closure (0, 1, 2.5, 3)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.closure_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.3. Constant\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant BL mixing of tracers, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 30.4. Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Background BL mixing of tracers coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.tracers.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 31. Vertical Physics --&gt; Boundary Layer Mixing --&gt; Momentum \n", "*Properties of boundary layer (BL) mixing on momentum in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 31.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of boundary layer mixing for momentum in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure - TKE\" \n", "# \"Turbulent closure - KPP\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Turbulent closure - Bulk Mixed Layer\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.2. Closure Order\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** FLOAT&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If turbulent BL mixing of momentum, specific order of closure (0, 1, 2.5, 3)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.closure_order') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.3. Constant\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant BL mixing of momentum, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 31.4. Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Background BL mixing of momentum coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.boundary_layer_mixing.momentum.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 32. Vertical Physics --&gt; Interior Mixing --&gt; Details \n", "*Properties of interior mixing in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 32.1. Convection Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of vertical convection in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.convection_type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Non-penetrative convective adjustment\" \n", "# \"Enhanced vertical diffusion\" \n", "# \"Included in turbulence closure\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.2. Tide Induced Mixing\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe how tide induced mixing is modelled (barotropic, baroclinic, none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.tide_induced_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.3. Double Diffusion\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there double diffusion*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.double_diffusion') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 32.4. Shear Mixing\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is there interior shear mixing*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.details.shear_mixing') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 33. Vertical Physics --&gt; Interior Mixing --&gt; Tracers \n", "*Properties of interior mixing on tracers in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 33.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of interior mixing for tracers in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure / TKE\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 33.2. Constant\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant interior mixing of tracers, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 33.3. Profile\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the background interior mixing using a vertical profile for tracers (i.e is NOT constant) ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.profile') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 33.4. Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Background interior mixing of tracers coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.tracers.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 34. Vertical Physics --&gt; Interior Mixing --&gt; Momentum \n", "*Properties of interior mixing on momentum in the ocean *" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 34.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of interior mixing for momentum in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Constant value\" \n", "# \"Turbulent closure / TKE\" \n", "# \"Turbulent closure - Mellor-Yamada\" \n", "# \"Richardson number dependent - PP\" \n", "# \"Richardson number dependent - KT\" \n", "# \"Imbeded as isopycnic vertical coordinate\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.2. Constant\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If constant interior mixing of momentum, specific coefficient (m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.constant') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.3. Profile\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the background interior mixing using a vertical profile for momentum (i.e is NOT constant) ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.profile') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 34.4. Background\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Background interior mixing of momentum coefficient, (schema and value in m2/s - may by none)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.vertical_physics.interior_mixing.momentum.background') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 35. Uplow Boundaries --&gt; Free Surface \n", "*Properties of free surface in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 35.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of free surface in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 35.2. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Free surface scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Linear implicit\" \n", "# \"Linear filtered\" \n", "# \"Linear semi-explicit\" \n", "# \"Non-linear implicit\" \n", "# \"Non-linear filtered\" \n", "# \"Non-linear semi-explicit\" \n", "# \"Fully explicit\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 35.3. Embeded Seaice\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the sea-ice embeded in the ocean model (instead of levitating) ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.free_surface.embeded_seaice') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 36. Uplow Boundaries --&gt; Bottom Boundary Layer \n", "*Properties of bottom boundary layer in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 36.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of bottom boundary layer in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.2. Type Of Bbl\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of bottom boundary layer in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.type_of_bbl') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Diffusive\" \n", "# \"Acvective\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.3. Lateral Mixing Coef\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** INTEGER&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *If bottom BL is diffusive, specify value of lateral mixing coefficient (in m2/s)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.lateral_mixing_coef') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 36.4. Sill Overflow\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe any specific treatment of sill overflows*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.uplow_boundaries.bottom_boundary_layer.sill_overflow') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 37. Boundary Forcing \n", "*Ocean boundary forcing*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 37.1. Overview\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Overview of boundary forcing in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.overview') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.2. Surface Pressure\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe how surface pressure is transmitted to ocean (via sea-ice, nothing specific,...)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.surface_pressure') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.3. Momentum Flux Correction\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.momentum_flux_correction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.4. Tracers Flux Correction\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers_flux_correction') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.5. Wave Effects\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe if/how wave effects are modelled at ocean surface.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.wave_effects') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.6. River Runoff Budget\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe how river runoff from land surface is routed to ocean and any global adjustment done.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.river_runoff_budget') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 37.7. Geothermal Heating\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Describe if/how geothermal heating is present at ocean bottom.*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.geothermal_heating') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 38. Boundary Forcing --&gt; Momentum --&gt; Bottom Friction \n", "*Properties of momentum bottom friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 38.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of momentum bottom friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.momentum.bottom_friction.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Linear\" \n", "# \"Non-linear\" \n", "# \"Non-linear (drag function of speed of tides)\" \n", "# \"Constant drag coefficient\" \n", "# \"None\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 39. Boundary Forcing --&gt; Momentum --&gt; Lateral Friction \n", "*Properties of momentum lateral friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 39.1. Type\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of momentum lateral friction in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.momentum.lateral_friction.type') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"None\" \n", "# \"Free-slip\" \n", "# \"No-slip\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 40. Boundary Forcing --&gt; Tracers --&gt; Sunlight Penetration \n", "*Properties of sunlight penetration scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 40.1. Scheme\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of sunlight penetration scheme in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.scheme') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"1 extinction depth\" \n", "# \"2 extinction depth\" \n", "# \"3 extinction depth\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 40.2. Ocean Colour\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** BOOLEAN&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Is the ocean sunlight penetration scheme ocean colour dependent ?*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.ocean_colour') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(value) \n", "# Valid Choices: \n", "# True \n", "# False \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 40.3. Extinction Depth\n", "**Is Required:** FALSE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 0.1\n", "### *Describe and list extinctions depths for sunlight penetration scheme (if applicable).*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.sunlight_penetration.extinction_depth') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "# 41. Boundary Forcing --&gt; Tracers --&gt; Fresh Water Forcing \n", "*Properties of surface fresh water forcing in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "source": [ "### 41.1. From Atmopshere\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of surface fresh water forcing from atmos in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_atmopshere') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Freshwater flux\" \n", "# \"Virtual salt flux\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 41.2. From Sea Ice\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** ENUM&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of surface fresh water forcing from sea-ice in ocean*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.from_sea_ice') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# Valid Choices: \n", "# \"Freshwater flux\" \n", "# \"Virtual salt flux\" \n", "# \"Real salt flux\" \n", "# \"Other: [Please specify]\" \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### 41.3. Forced Mode Restoring\n", "**Is Required:** TRUE&nbsp;&nbsp;&nbsp;&nbsp;**Type:** STRING&nbsp;&nbsp;&nbsp;&nbsp;**Cardinality:** 1.1\n", "### *Type of surface salinity restoring in forced mode (OMIP)*" ], "cell_type": "markdown", "metadata": {} }, { "execution_count": null, "cell_type": "code", "source": [ "# PROPERTY ID - DO NOT EDIT ! \n", "DOC.set_id('cmip6.ocean.boundary_forcing.tracers.fresh_water_forcing.forced_mode_restoring') \n", "\n", "# PROPERTY VALUE: \n", "# Set as follows: DOC.set_value(\"value\") \n", "# TODO - please enter value(s)", "\n" ], "outputs": [], "metadata": { "collapsed": true } }, { "source": [ "### \u00a92017 [ES-DOC](https://es-doc.org) \n" ], "cell_type": "markdown", "metadata": {} } ], "metadata": { "kernelspec": { "display_name": "Python 2", "name": "python2", "language": "python" }, "language_info": { "mimetype": "text/x-python", "nbconvert_exporter": "python", "name": "python", "file_extension": ".py", "version": "2.7.10", "pygments_lexer": "ipython2", "codemirror_mode": { "version": 2, "name": "ipython" } } } }
gpl-3.0
mmckerns/tutmom
solutions.ipynb
2
16237
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Solutions to exercises" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "**EXERCISE:** Solve the constrained programming problem by any of the means above.\n", "\n", "Minimize: f = -1*x[0] + 4*x[1]\n", "\n", "Subject to: <br>\n", "-3*x[0] + 1*x[1] <= 6 <br>\n", "1*x[0] + 2*x[1] <= 4 <br>\n", "x[1] >= -3 <br>\n", "\n", "where: -inf <= x[0] <= inf" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " pcost dcost gap pres dres\n", " 0: 5.0678e+00 -9.4861e+00 1e+01 5e-17 3e+00\n", " 1: -2.0709e+00 -5.9266e+00 4e+00 3e-16 1e+00\n", " 2: 9.5642e+00 4.5499e-01 9e+00 4e-16 1e+00\n", " 3: -9.7286e+00 -1.7466e+01 8e+00 1e-16 1e+00\n", " 4: -1.0434e+01 -1.2174e+01 2e+00 1e-16 3e-01\n", " 5: -2.1723e+01 -2.3939e+01 2e+00 5e-16 3e-01\n", " 6: -2.0193e+01 -2.2545e+01 2e+00 3e-16 5e-16\n", " 7: -2.1980e+01 -2.2014e+01 3e-02 1e-16 1e-15\n", " 8: -2.2000e+01 -2.2000e+01 3e-04 6e-16 1e-16\n", " 9: -2.2000e+01 -2.2000e+01 3e-06 5e-16 2e-16\n", "Optimal solution found.\n", "[ 1.00e+01]\n", "[-3.00e+00]\n", "\n" ] } ], "source": [ "import cvxopt as cvx\n", "from cvxopt import solvers as cvx_solvers\n", "Q = cvx.matrix([[0.,0.],[0.,0.]])\n", "p = cvx.matrix([-1., 4.])\n", "G = cvx.matrix([[-3., 1., 0.],[1., 2., -1.]])\n", "h = cvx.matrix([6., 4., 3.])\n", "sol = cvx_solvers.qp(Q, p, G, h)\n", "print(sol['x'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**EXERCISE:** Use any of the solvers we've seen thus far to find the minimum of the `zimmermann` function (i.e. use `mystic.models.zimmermann` as the objective). Use the bounds suggested below, if your choice of solver allows it." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 7. 2.]\n" ] } ], "source": [ "import scipy.optimize as opt\n", "import mystic.models\n", "result = opt.minimize(mystic.models.zimmermann, [10., 1.], method='powell')\n", "print(result.x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**EXERCISE:** Do the same for the `fosc3d` function found at `mystic.models.fosc3d`, using the bounds suggested by the documentation, if your chosen solver accepts bounds or constraints." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-0.21501755 0.24035588]\n" ] } ], "source": [ "import scipy.optimize as opt\n", "import mystic.models\n", "result = opt.minimize(mystic.models.fosc3d, [-5., 0.5], method='powell')\n", "print(result.x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**EXERCISE:** Use `mystic` to find the minimum for the `peaks` test function, with the bound specified by the `mystic.models.peaks` documentation." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimization terminated successfully.\n", " Current function value: -6.551133\n", " Iterations: 3\n", " Function evaluations: 77\n", "[ 0.22827892 -1.62553492]\n" ] } ], "source": [ "import mystic\n", "import mystic.models\n", "result = mystic.solvers.fmin_powell(mystic.models.peaks, [0., -2.], bounds=[(-5.,5.)]*2)\n", "print(result)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**EXERCISE:** Use `mystic` to do a fit to the noisy data in the `scipy.optimize.curve_fit` example (the least squares fit)." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "target parameters: [3, 2, 1, 0.7853981633974483]\n", "Optimization terminated successfully.\n", " Current function value: 4.698514\n", " Iterations: 9\n", " Function evaluations: 908\n", "solved parameters: [ 3.34271079 1.89338122 1.02510143 0.69305712]\n" ] } ], "source": [ "import numpy as np\n", "import scipy.stats as stats\n", "from mystic.solvers import fmin_powell\n", "from mystic import reduced\n", "\n", "# Define the function to fit.\n", "def function(coeffs, x):\n", " a,b,f,phi = coeffs\n", " return a * np.exp(-b * np.sin(f * x + phi))\n", "\n", "# Create a noisy data set around the actual parameters\n", "true_params = [3, 2, 1, np.pi/4]\n", "print(\"target parameters: {}\".format(true_params))\n", "x = np.linspace(0, 2*np.pi, 25)\n", "exact = function(true_params, x)\n", "noisy = exact + 0.3*stats.norm.rvs(size=len(x))\n", "\n", "# Define an objective that fits against the noisy data\n", "@reduced(lambda x,y: abs(x)+abs(y))\n", "def objective(coeffs, x, y):\n", " return function(coeffs, x) - y\n", "\n", "# Use curve_fit to estimate the function parameters from the noisy data.\n", "initial_guess = [1,1,1,1]\n", "args = (x, noisy)\n", "estimated_params = fmin_powell(objective, initial_guess, args=args)\n", "print(\"solved parameters: {}\".format(estimated_params))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**EXERCISE:** Solve the `chebyshev8.cost` example exactly, by applying the knowledge that the last term in the chebyshev polynomial will always be be one. Use `numpy.round` or `mystic.constraints.integers` or to constrain solutions to the set of integers. Does using `mystic.suppressed` to supress small numbers accelerate the solution?" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Differential Evolution\n", "======================\n", "Generation 0 has Chi-Squared: 18689.689184\n", "Generation 0 has fit parameters:\n", " [5.0, -54.0, 25.0, 5.0, -33.0, 88.0, 26.0, -17.0, 1.0]\n", "Generation 50 has Chi-Squared: 264.494065\n", "Generation 50 has fit parameters:\n", " [247.0, -9.0, -419.0, 28.0, 203.0, -23.0, -23.0, 6.0, 1.0]\n", "STOP(\"CollapseAt with {'tolerance': 0.0001, 'mask': None, 'generations': 2, 'target': 0.0} at {5}\")\n", "Generation 100 has Chi-Squared: 37.659874\n", "Generation 100 has fit parameters:\n", " [150.0, 15.0, -296.0, -15.0, 179.0, -0.0, -32.0, 1.0, 1.0]\n", "STOP(\"CollapseAt with {'tolerance': 0.0001, 'mask': {5}, 'generations': 2, 'target': 0.0} at {7}\")\n", "STOP(\"CollapseAt with {'tolerance': 0.0001, 'mask': {5, 7}, 'generations': 2, 'target': 0.0} at {1, 3}\")\n", "STOP(\"VTR with {'tolerance': 0.0001, 'target': 0.0}\")\n", "Generation 143 has best Chi-Squared: 0.000000\n", " 8 6 4 2\n", "128 x - 256 x + 160 x - 32 x + 1\n", "\n", "Actual Coefficients:\n", " 8 6 4 2\n", "128 x - 256 x + 160 x - 32 x + 1\n", "\n" ] } ], "source": [ "# Differential Evolution solver\n", "from mystic.solvers import DifferentialEvolutionSolver2\n", "\n", "# Chebyshev polynomial and cost function\n", "from mystic.models.poly import chebyshev8, chebyshev8cost\n", "from mystic.models.poly import chebyshev8coeffs\n", "\n", "# tools\n", "from mystic.termination import VTR, CollapseAt, Or\n", "from mystic.strategy import Best1Exp\n", "from mystic.monitors import VerboseMonitor\n", "from mystic.tools import random_seed\n", "from mystic.math import poly1d\n", "import numpy as np\n", "\n", "\n", "if __name__ == '__main__':\n", "\n", " print(\"Differential Evolution\")\n", " print(\"======================\")\n", " ndim = 9\n", " random_seed(123)\n", "\n", " # configure monitor\n", " stepmon = VerboseMonitor(50,50)\n", "\n", " # build a constraints function\n", " def constraints(x):\n", " x[-1] = 1.\n", " return np.round(x)\n", "\n", " stop = Or(VTR(0.0001), CollapseAt(0.0, generations=2))\n", "\n", " # use DE to solve 8th-order Chebyshev coefficients\n", " npop = 10*ndim\n", " solver = DifferentialEvolutionSolver2(ndim,npop)\n", " solver.SetRandomInitialPoints(min=[-100]*ndim, max=[100]*ndim)\n", " solver.SetGenerationMonitor(stepmon)\n", " solver.SetConstraints(constraints)\n", " solver.enable_signal_handler()\n", " solver.Solve(chebyshev8cost, termination=stop, strategy=Best1Exp, \\\n", " CrossProbability=1.0, ScalingFactor=0.9)\n", " solution = solver.Solution()\n", "\n", " # use monitor to retrieve results information\n", " iterations = len(stepmon)\n", " cost = stepmon.y[-1]\n", " print(\"Generation %d has best Chi-Squared: %f\" % (iterations, cost))\n", "\n", " # use pretty print for polynomials\n", " print(poly1d(solution))\n", "\n", " # compare solution with actual 8th-order Chebyshev coefficients\n", " print(\"\\nActual Coefficients:\\n %s\\n\" % poly1d(chebyshev8coeffs))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**EXERCISE:** Replace the symbolic constraints in the following \"Pressure Vessel Design\" code with explicit penalty functions (i.e. use a compound penalty built with `mystic.penalty.quadratic_inequality`)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimization terminated successfully.\n", " Current function value: 5804.376208\n", " Iterations: 839\n", " Function evaluations: 33600\n", "[ 0.72759093 0.35964857 37.69901188 240. ]\n" ] } ], "source": [ "\"Pressure Vessel Design\"\n", "\n", "def objective(x):\n", " x0,x1,x2,x3 = x\n", " return 0.6224*x0*x2*x3 + 1.7781*x1*x2**2 + 3.1661*x0**2*x3 + 19.84*x0**2*x2\n", "\n", "bounds = [(0,1e6)]*4\n", "# with penalty='penalty' applied, solution is:\n", "xs = [0.72759093, 0.35964857, 37.69901188, 240.0]\n", "ys = 5804.3762083\n", "\n", "from mystic.constraints import as_constraint\n", "from mystic.penalty import quadratic_inequality\n", "\n", "def penalty1(x): # <= 0.0\n", " return -x[0] + 0.0193*x[2]\n", "\n", "def penalty2(x): # <= 0.0\n", " return -x[1] + 0.00954*x[2]\n", "\n", "def penalty3(x): # <= 0.0\n", " from math import pi\n", " return -pi*x[2]**2*x[3] - (4/3.)*pi*x[2]**3 + 1296000.0\n", "\n", "def penalty4(x): # <= 0.0\n", " return x[3] - 240.0\n", "\n", "@quadratic_inequality(penalty1, k=1e12)\n", "@quadratic_inequality(penalty2, k=1e12)\n", "@quadratic_inequality(penalty3, k=1e12)\n", "@quadratic_inequality(penalty4, k=1e12)\n", "def penalty(x):\n", " return 0.0\n", "\n", "\n", "if __name__ == '__main__':\n", "\n", " from mystic.solvers import diffev2\n", " from mystic.math import almostEqual\n", "\n", " result = diffev2(objective, x0=bounds, bounds=bounds, penalty=penalty,\n", " npop=40, gtol=500, disp=True, full_output=True)\n", " print(result[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**EXERCISE:** Solve the `cvxopt` \"qp\" example with `mystic`. Use symbolic constaints, penalty functions, or constraints operators. If you get it quickly, do all three methods." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 0.25000001 0.74999999]\n" ] } ], "source": [ "def objective(x):\n", " x0,x1 = x\n", " return 2*x0**2 + x1**2 + x0*x1 + x0 + x1\n", "\n", "bounds = [(0.0, None),(0.0, None)]\n", "\n", "# with penalty='penalty' applied, solution is:\n", "xs = [0.25, 0.75]\n", "ys = 1.875\n", "\n", "from mystic.math.measures import normalize\n", "\n", "def constraint(x): # impose exactly\n", " return normalize(x, 1.0)\n", "\n", "\n", "if __name__ == '__main__':\n", "\n", " from mystic.solvers import diffev2, fmin_powell\n", "\n", " result = diffev2(objective, x0=bounds, bounds=bounds, npop=40,\n", " constraints=constraint, disp=False, full_output=True)\n", " print(result[0])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**EXERCISE:** Convert one of our previous `mystic` examples to use parallel computing. Note that if the solver has a `SetMapper` method, it can take a parallel map." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Generation 0 has Chi-Squared: 1613.748959\n", "Generation 10 has Chi-Squared: 9.454376\n", "Generation 20 has Chi-Squared: 0.303547\n", "Generation 30 has Chi-Squared: 0.008984\n", "Generation 40 has Chi-Squared: 0.002842\n", "Generation 50 has Chi-Squared: 0.000096\n", "Generation 60 has Chi-Squared: 0.000083\n", "Generation 70 has Chi-Squared: 0.000002\n", "Generation 80 has Chi-Squared: 0.000000\n", "Generation 90 has Chi-Squared: 0.000000\n", "Generation 100 has Chi-Squared: 0.000000\n", "STOP(\"ChangeOverGeneration with {'tolerance': 1e-06, 'generations': 30}; VTR with {'tolerance': 0.005, 'target': 0.0}\")\n", "[ 0.99994559 0.99988963 0.99978792]\n" ] } ], "source": [ "from mystic.termination import VTR, ChangeOverGeneration, And, Or\n", "stop = Or(And(VTR(), ChangeOverGeneration()), VTR(1e-8))\n", "\n", "from mystic.models import rosen\n", "from mystic.monitors import VerboseMonitor\n", "from mystic.solvers import DifferentialEvolutionSolver2\n", "\n", "from pathos.pools import ThreadPool\n", "\n", "\n", "if __name__ == '__main__':\n", "\n", " solver = DifferentialEvolutionSolver2(3,40)\n", " solver.SetRandomInitialPoints([-10,-10,-10],[10,10,10])\n", " solver.SetGenerationMonitor(VerboseMonitor(10))\n", " solver.SetMapper(ThreadPool().map) #NOTE: evaluation of objective in parallel\n", " solver.SetTermination(stop)\n", " solver.SetObjective(rosen)\n", " solver.SetStrictRanges([-10,-10,-10],[10,10,10])\n", " solver.SetEvaluationLimits(generations=600)\n", " solver.Solve()\n", "\n", " print(solver.bestSolution)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-3-clause
williamdjones/protein_binding
notebooks/Neural Network (In Progress).ipynb
1
17477
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using TensorFlow backend.\n" ] } ], "source": [ "import time\n", "import glob\n", "import tensorflow as tf\n", "import numpy as np\n", "import pandas as pd\n", "import keras\n", "import keras.backend as K\n", "from keras import initializers\n", "from keras.models import Sequential\n", "from keras.layers import Dense, Input\n", "from keras.layers.advanced_activations import LeakyReLU, PReLU\n", "from keras import optimizers\n", "from keras.utils.np_utils import to_categorical\n", "from utils.input_pipeline import *\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import Imputer, Normalizer\n", "from keras.objectives import kullback_leibler_divergence\n", "\n", "from sklearn.pipeline import Pipeline\n", "\n", "imputer = Imputer()\n", "normalizer = Normalizer()\n", "pre_processing_pipeline = Pipeline([('imputer', imputer), ('normalizer', normalizer)])" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#load_data_t0 = time.clock()\n", "#df = pd.concat([pd.read_csv(filename, index_col=[1,0], na_values=['na'], engine='c', header=0) for filename in glob.glob(\"data/parser_output/csv/*.csv\")],axis=0)\n", "#df = pd.read_csv(\"data/parser_output/csv/new_mol2_full_feature_-017.csv\", index_col=[1,0], na_values=['na'], engine='c',header=0)\n", "#load_data_t1 = time.clock()\n", "#print (\"data loaded in ~\", ((load_data_t1 - load_data_t0)/60), \"minutes.\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from utils.input_pipeline import load_protein" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "890\n" ] } ], "source": [ "with open(\"data/preprocessed_features.csv\", \"r\") as input_file:\n", " feature_list = []\n", " for line in input_file:\n", " line = line.strip('\\n')\n", " feature_list.append(line)\n", " \n", "print(len(feature_list))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# the generator is probably the only valuable thing in this notebook, put this in the input pipeline module\n", "def data_gen(file_path, batch_steps,categorical=False, sample_size=None, features_list=None, mode=None, conformation=None):\n", " #decide upon receptor versus protein for naming conventions\n", " receptor_list = list(h5py.File(file_path,'r'))\n", " while(1):\n", " random.shuffle(receptor_list)\n", " \n", " X,y = load_protein(file_path, protein_name=receptor_list[0], sample_size=None,\n", " features_list=features_list,mode=mode, conformation=conformation)\n", " X = Normalizer().fit_transform(Imputer(strategy=\"median\").fit_transform(np.nan_to_num(X)))\n", " y = y.flatten()\n", " \n", " positives = X[y==1,:]\n", " negatives = X[y==0,:]\n", " for step in range(batch_steps):\n", " negatives_to_keep = np.random.choice(negatives.shape[0],sample_size,replace = True)\n", "\n", " X_batch = np.vstack((negatives[negatives_to_keep],positives))\n", " X_batch = np.vstack((X_batch,positives))\n", " y_batch = np.hstack((y[y==0][negatives_to_keep],y[y==1]))\n", " y_batch = np.hstack((y_batch,y[y==1]))\n", " if categorical is True:\n", " yield X_batch, to_categorical(y_batch)\n", " else:\n", " yield X_batch, y_batch\n", " \n", "#using for debugging purposes\n", "#next(data_gen(\"data/full_26_kinase_data.h5\", 10))\n", "\n", "def precision(y_true, y_pred):\n", " \"\"\"Precision metric.\n", " Only computes a batch-wise average of precision.\n", " Computes the precision, a metric for multi-label classification of\n", " how many selected items are relevant.\n", " \"\"\"\n", " y_true = K.cast(K.argmax(y_true),'float32')\n", " y_pred = K.cast(K.argmax(y_pred), 'float32')\n", " true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n", " predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))\n", " precision = true_positives / (predicted_positives + K.epsilon())\n", " return precision\n", "\n", "\n", "def recall(y_true, y_pred):\n", " \"\"\"Recall metric.\n", " Only computes a batch-wise average of recall.\n", " Computes the recall, a metric for multi-label classification of\n", " how many relevant items are selected.\n", " \"\"\"\n", " y_true = K.cast(K.argmax(y_true),'float32')\n", " y_pred = K.cast(K.argmax(y_pred), 'float32')\n", " true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))\n", " possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))\n", " recall = true_positives / (possible_positives + K.epsilon())\n", " return K.cast(recall,'float32')\n", "\n", "def f1(y_true,y_pred):\n", " y_true = K.cast(K.argmax(y_true),'float32')\n", " y_pred = K.cast(K.argmax(y_pred), 'float32')\n", " return K.cast(2*((precision(y_true,y_pred)*recall(y_true,y_pred))/\n", " (precision(y_true,y_pred)+recall(y_true,y_pred))),'float32')\n", "\n", "\n", "def load_myloss(weights=None):\n", " if weights is None:\n", " class_weights = [0.25, 1]\n", " else:\n", " class_weights = weights\n", "\n", " def balanced_loss(y_true, y_pred):\n", "\n", " loss_prelim = K.categorical_crossentropy(y_true, y_pred)\n", "\n", " weight = K.cast(K.sum(y_true * class_weights), 'float32')\n", "\n", " # apply weight and average \n", " loss_final = K.cast(K.mean(loss_prelim * weight), 'float32')\n", "\n", " return loss_final\n", "\n", " return balanced_loss\n", "\n", "\n", "def my_loss():\n", " \n", " def custom_loss(y_true,y_pred):\n", " #kl_loss = kullback_leibler_divergence(y_true,y_pred)\n", " #total_loss = kullback_leibler_divergence(y_pred,y_true) + kl_loss\n", " #return total_loss\n", " return K.log(-K.dot(y_true,K.transpose(y_pred)))\n", " \n", " \n", " return custom_loss\n", " " ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X_train = np.loadtxt(\"data/random_forest_features_x_train.txt\",delimiter=\",\",dtype=np.float32)\n", "X_test = np.loadtxt(\"data/random_forest_features_x_test.txt\",delimiter=\",\", dtype=np.float32)\n", "y_train = np.loadtxt(\"data/random_forest_features_y_train.txt\",delimiter=\",\",dtype=np.float32)\n", "y_test = np.loadtxt(\"data/random_forest_features_y_test.txt\",delimiter=\",\",dtype=np.float32)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(14884, 1260) (14884,)\n" ] } ], "source": [ "X_train_pos = X_train[y_train == 1]\n", "X_train_neg = X_train[y_train == 0]\n", "balanced_X_train = np.random.choice(np.arange(int(np.floor(X_train_neg.shape[0]/2))),size=X_train_pos.shape[0])\n", "X_train_neg = X_train_neg[balanced_X_train]\n", "X_train_prime = np.vstack((X_train_pos,X_train_neg))\n", "y_train_prime = np.hstack((y_train[y_train==1],y_train[y_train==0][balanced_X_train]))\n", "print(X_train_prime.shape,y_train_prime.shape)" ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": false }, "outputs": [], "source": [ "model = Sequential()\n", "model.add(Dense(400, input_dim=1260, kernel_regularizer=keras.regularizers.l2(0.))) \n", "model.add(PReLU())\n", "model.add(Dense(50))\n", "model.add(PReLU())\n", "model.add(Dense(1,activation='sigmoid'))" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [], "source": [ "model.compile(loss='binary_crossentropy', optimizer=optimizers.adam(lr=1e-5), metrics=[\"accuracy\",f1])" ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<keras.callbacks.History at 0x2abc53666400>" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit(X_train_prime,y_train_prime, shuffle=True,epochs=1000,verbose=0)" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "ename": "ValueError", "evalue": "Can't handle mix of binary and continuous", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-64-307d8d4e5ffa>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmetrics\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0maccuracy_score\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf1_score\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mf1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mf1_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0macc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maccuracy_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"accuracy:\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0macc\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\"\\tf1-score:\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mf1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/global/common/cori/software/python/3.5-anaconda/envs/deeplearning/lib/python3.5/site-packages/sklearn/metrics/classification.py\u001b[0m in \u001b[0;36mf1_score\u001b[0;34m(y_true, y_pred, labels, pos_label, average, sample_weight)\u001b[0m\n\u001b[1;32m 690\u001b[0m return fbeta_score(y_true, y_pred, 1, labels=labels,\n\u001b[1;32m 691\u001b[0m \u001b[0mpos_label\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpos_label\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maverage\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maverage\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 692\u001b[0;31m sample_weight=sample_weight)\n\u001b[0m\u001b[1;32m 693\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 694\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/global/common/cori/software/python/3.5-anaconda/envs/deeplearning/lib/python3.5/site-packages/sklearn/metrics/classification.py\u001b[0m in \u001b[0;36mfbeta_score\u001b[0;34m(y_true, y_pred, beta, labels, pos_label, average, sample_weight)\u001b[0m\n\u001b[1;32m 804\u001b[0m \u001b[0maverage\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maverage\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 805\u001b[0m \u001b[0mwarn_for\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'f-score'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 806\u001b[0;31m sample_weight=sample_weight)\n\u001b[0m\u001b[1;32m 807\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 808\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/global/common/cori/software/python/3.5-anaconda/envs/deeplearning/lib/python3.5/site-packages/sklearn/metrics/classification.py\u001b[0m in \u001b[0;36mprecision_recall_fscore_support\u001b[0;34m(y_true, y_pred, beta, labels, pos_label, average, warn_for, sample_weight)\u001b[0m\n\u001b[1;32m 1001\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"beta should be >0 in the F-beta score\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1002\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1003\u001b[0;31m \u001b[0my_type\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_true\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_pred\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_check_targets\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_true\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1004\u001b[0m \u001b[0mpresent_labels\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0munique_labels\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_true\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1005\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/global/common/cori/software/python/3.5-anaconda/envs/deeplearning/lib/python3.5/site-packages/sklearn/metrics/classification.py\u001b[0m in \u001b[0;36m_check_targets\u001b[0;34m(y_true, y_pred)\u001b[0m\n\u001b[1;32m 80\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_type\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 81\u001b[0m raise ValueError(\"Can't handle mix of {0} and {1}\"\n\u001b[0;32m---> 82\u001b[0;31m \"\".format(type_true, type_pred))\n\u001b[0m\u001b[1;32m 83\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[0;31m# We can't have more than one value on y_type => The set is no more needed\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: Can't handle mix of binary and continuous" ] } ], "source": [ "from sklearn.metrics import accuracy_score, f1_score\n", "f1 = f1_score(y_test,model.predict(X_test))\n", "acc = accuracy_score(y_test,model.predict(X_test),y_test)\n", "print(\"accuracy:\",acc,\"\\tf1-score:\",f1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#model.fit_generator(data_gen('data/full_26_kinase_data.h5',categorical=True,\n", "# sample_size=1000, batch_steps=20000, features_list=feature_list),epochs=10,steps_per_epoch=20000)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#from sklearn.metrics import accuracy_score, f1_score\n", "#preds = model.predict(X_test)\n", "\n", "#print(\"accuracy:\",accuracy_score(preds,y_test), \"\\t\",\"f1-score:\",f1_score(preds,y_test))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "deeplearning (3.5)", "language": "python", "name": "deeplearning3.5" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
Krastanov/cutiepy
examples/Lindblad_Master_Equation_Solver_Examples.ipynb
1
108040
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Table of Contents\n", "\n", "1. [Rabi Oscillations](#Rabi-Oscillations)\n", " 1. [Simulating the Full Hamiltonian](#Simulating-the-Full-Hamiltonian)\n", " 2. [With Rotating Wave Approximation](#With-Rotating-Wave-Approximation)\n", " 1. [With $\\gamma_1$ collapse](#With-$\\gamma_1$-collapse)\n", " 2. [With $\\gamma_2$ collapse](#With-$\\gamma_2$-collapse)\n", "2. [Coherent State in a Harmonic Oscillator](#Coherent-State-in-a-Harmonic-Oscillator)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from cutiepy import *\n", "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "# TODO: implement sparse Lindblad operator\n", "cutiepy.operators.SPARSITY_N_CUTOFF = 60" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Rabi Oscillations\n", "\n", "$\\hat{H} = \\hat{H}_0 + \\Omega \\sin((\\omega_0+\\Delta)t) \\hat{\\sigma}_x$\n", "\n", "$\\hat{H}_0 = \\frac{\\omega_0}{2}\\hat{\\sigma}_z$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/latex": [ "$$\\text{Ket }{| {{0}}_{{\\tiny N\\normalsize 2}} \\rangle} \\text{ on the space }\\mathbb{C}^{2}\\text{ with numerical content: }$$\n", "$$\\begin{equation*}\\left(\\begin{array}{*{11}c}1.0\\\\0.0\\\\\\end{array}\\right)\\end{equation*}$$" ], "text/plain": [ "'{0}_{\\\\tiny N\\\\normalsize 2}'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "initial_state = basis(2, 0)\n", "initial_state" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/latex": [ "$${\\left( {{0.5}\\tiny\\times\\normalsize{\\hat{σ}_{z}}}+{{0.005}\\tiny\\times\\normalsize{\\operatorname{sin}\\left( {{{1.002}\\tiny\\times\\normalsize{t}}} \\right)}\\tiny\\times\\normalsize{\\hat{σ}_{x}}} \\right)}$$" ], "text/plain": [ "Add(Mul(0.5, 'σ_z'), Mul(0.005, sin(Mul(1.002, 't')), 'σ_x'))" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ω0 = 1\n", "Δ = 0.002\n", "Ω = 0.005\n", "ts = 6*np.pi/Ω*np.linspace(0,1,120)\n", "H = ω0/2 * sigmaz() + Ω * sigmax() * sin((ω0+Δ)*t)\n", "H" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Generating cython code...\n", "Compiling cython code...\n", "Running cython code...\n", "Starting at 10/25 15:52:02.\n", "Finishing at 10/25 15:52:03.\n", "Total time: 0 seconds.\n", "Formatting the output...\n" ] } ], "source": [ "res = mesolve(H, [], initial_state, ts)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "σz_expect = expect(sigmaz(), res)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/latex": [ "$$\\text{Anonymous }\\text{Operator }{\\hat{\\tiny\\boxed{{O}_{30e67746...}}\\normalsize}_{}} \\text{ on the space }\\mathbb{C}^{2}\\text{ with numerical content: }$$\n", "$$\\begin{equation*}\\left(\\begin{array}{*{11}c}0.151 & (0.031-0.356j)\\\\(0.031+0.356j) & 0.849\\\\\\end{array}\\right)\\end{equation*}$$" ], "text/plain": [ "'30e67746-c19b-469d-85c5-b359cd71330e'" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res[20]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEPCAYAAABMTw/iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXecVNX5/9/PLkX6Iih1pYP0KlWkKIgNbIgS40+TGGNL\nYuI3aqLRNJOYYoyaxMTERGMBjRUQAaWoILDALr2JSO8sben7/P44d3FYZnZndu7MLXPer9d97cyd\nc895btnPfc5zmqgqFovFYgkvWV4bYLFYLJbUYoXeYrFYQo4VeovFYgk5VugtFosl5Fiht1gslpBj\nhd5isVhCjhV6i8ViCTlW6C0WiyXkWKFPAyKSJSI/rOCxIiL/57ZNFoslc7BCnx4uB2ZV5EA1Q5cr\ni8hZ7ppksVgyBSv06aGPqs5P4vjXgBvdMsZisWQWlbw2IOyISFtgVTJ5qOo6EfmGSyYljIjkAA8C\nG4G9QGdgpqpOjpK2FtBYVZM651J5rge+oaofxZn+TseGR8pJd8rWRM4xAbuvBjoAxcBmVX2pjLS9\ngYtV9deJHusmabgmY4FGQG/gLVV9zdkf9XzjvQ7JHh96VNVuKdyAnwCVXcjnMmCAB/ZnAXOBGyP2\nZQN5wFVR0n8TaOKyDV9gRDCetJWAl4FCoHY5ab8JNE70HOO0ow6wIOL7HKB+Gdd4MvDTRI9Nwf1O\n5TVpDdzrfK6PeXk0j3G+9eK9DskenwmbDd2kEBGpARxX1eMuZDcZGFFGWQ+IyOul9j0lIk9F/L5J\nRPaLyEoRGVpGXh+KSEltbwjQWR3PC0BVTwLjgPujHJ6rqpvjP61TZT4oImsd+5Y5nhgi8hJwHvCe\niBwQkWhlRnI9xgtdDNxVTtpcVd1C4ucYDxcByyO+FzjlRGM0MA2QChzrNqm8Jh2BHzl57QLWAhcQ\n/XyHxtgf7Toke3zosaGb1HIT8IobGamqisgOEWmoqtuiJHkV+KmI1FTVgyKSjRGQq0WkHXA30EtV\nt4nIecS49yLSBBBVPeHsOgfYHyVpEVCr1LHnAysrdILmn/5Cx74bgP+KSCtV/bqIXAh8U8sJ3YiI\nYGoTG0XkceDfIvInVT0SJW2krYmcY0vg9jLM+ExV3wGaYmoVJRQCbaLYcQ5wEtgJ1HB2x3Ws26Th\nmkzC1ExL7lUjYA3Qj+jnuyfG/tLEul7xHh96rNCnlmaquilyhxOz/yXmH6kXMAOYqKp/iyO/icCV\nwPOlf1DVDSKyELgGeAnj0RSp6jwRaQ1UBTqKyG5V3RAtcxEZhvmH3SYiX1cTz/wMOFtEaqjqoYjk\nbYGPS2UxCnjSyasO8Ecn3XEgB9gMfKKqv41i/xsRn8eLyEOYOO575V2UCK4E3nXymCwim4FvAH+J\nkvaUrYmco6quAx6Kw5YcIPIFcwyoGSXdtcDfgVsi9tWN89jTEJGawEWqOqnU/nnAKFXdWk4WKb0m\nTs12qfP1CiBPVfNF5HKin6/G2F+aWNc63uNDjw3dpJaNIpJb8kVEzgb+BtyiqkOAD4Gb4xR5MP8c\nE0Xka04Y44CITIz4/RVMLQJgLCZWjaquBb4PPAZsF5FXRaRR6XxUdSpwAviDI/Ko6nrgn8CwUrYM\nBP4QcW7ZmLaIY86uC4A7gH8Dw4H/qOpV0UTeOf4WEVkkIntFZC/QCRPHTYQ2qrom4vvjwP2ObZFl\nnWZrvOeYIAf4KhQDUA3jYUba0ReYqyaAHJl2f3nHxmAI8L6Td8+I/W9hGiNjkqZrUlJWDnArcLOz\nK9b5lnsNHWKli/f40GM9+tTyMnAPUCJudwPPRoQSqmKqwuUiIllAA8cre9nZSvMG8Acn/HI10Lfk\nB1V9FXjV6VXxHPBbVb0lMh+nOt1dVRdE7KsJPAI8Crzt7GuNaTOI/Ke5BJgSUd40J21LVT0hIk3L\nOLdmGK92KDDHCVMt4qt/0nKXQXPaHKaW2v0m8AvMy++/sWxN4BwTCVN8jqmxlVAfWFgq7QVAdRG5\nFBgAVBORUXEeG41KzksD4AHgBufzHuCYiDwA7AAWR95jh3Rck5Jn7EHgW06IsVmU863nnG8h8V2H\nZI8PP163Bod9Ax4GqjifnwDaO587Ar9PIJ/LiaPXDSYOOpXTexu0xYhoVaAK8C/ghSjHdgTedD7f\n6Py9wTnm+xHpvoGpLt8cse/RKPldDNzlfJ5ahs0dgMOOndnAbZhwzzec3+cAt5dz3j/B/IPXL7V9\nH1hSKu2jpb7HdY4J3vcakeViGgLPdT63wrSDRKZ/rMSuco79d7R75/z2c+fvMOCfzufRwEjgPkwo\nrBLwcpRjU35NnDy+C/QEGjr2DAKqRzvfeK9hrHRlHZ9pm+cGhH1zxOtm53ML4HvAdc7fSqXSlnhQ\nD0XJ51dxlnczppr+w4h9nTFd5fYDuzFx7IZRjm0IvIDxgBs5+3oDBzHe0VnOvl9jGg/fdb7nAN+N\nkt+LOF0tMWItZdj9S8e2nZjQwHS+EvqRwJeY7ng/iHJsL+ecY20ngSti2RrPOVbw3n8d86L/KfC1\niP0LMTWnku83OPsWANeXc+w0TMN0tPIeA9ZjHIqXgXXA95zfnsb0qAF4v9RxabkmwIXOvYi8L03K\nOd94r2FCx2faVvJGtKQQEfmFljN4x0mXDfwceEJV90Xsb4VpZHshhWZWGBG5HXhPo/cG8hVBsrU0\nIlIFWAR0UdPVMZFjn8U4C1tEZJKqXh7xW2CviSU+km6MFZF/ich2EVlSRpo/i8gaESkQke7JlhlA\n5okZ+RgTJ3b5MPAMJsQSyRhM90m/0jhAIhEkW09DVY+pasdERd5hFdBAzJxJpbtNBvaaWOLDjV43\nL1D2QJ7Lgdaq2gb4NvBXF8oMGhMwvRXK4hJgJqb6faqvr/MCOKZR+oL7AachbrHXdsRDkGxNAS9j\nnrFbgKdKdmb4NckYXAndiEhzTNWvc5Tf/gZMV9VxzveVwCBV3Z50wRaLxWIpl3T0o2+CmRSphE2Y\nkWwWi8ViSQPpGjAlpb7bFmCLxWJJE+kYMLUZyI343tTZdxoiYsXfYrFYKoCqlnamz0iQ9IaZanRJ\njN8uByY5n/tiRslFS6cbaLqwJ/P3Pc6DqqAK47zuf+rWBjzmtQ3x26pjm7KhqJDaJfdhSzHo09z9\neS32HZnCJQsUJinkBO3cgn7vQLNB37mC9zYVm3szT2HKXupofz7Z14O8zYXUnhV5f4J0fkG/f6A9\nQbf/lTsWasT9+ZR+Wpfdx1ux5roUnJ+Wm8aFQl4FtmAmDNqIGT13B3BHRJpnMLMTFgA9YhoLOcs5\n/6P67NA59FkS74MahC0o/0yg7UF3zuCijyMe1GYK4xRynuLeFd1ZoMfJ1pIXcVDOLej3DlRAnwH9\ncDLDzym5J842bj49613M1J0P83NNxFHyy/kF/f4tptPLOew59g++uSDyf6bk/nRi8fBa7Dtc2lFy\n4fy03DRe34QzjIWcX/CTedkcXwxaxWu7XDy/x7y2obxtN3X/1YLPD/2aBxaf9qBGpDmJTBrMR/oL\nfrLeevTp3Z7hrsnnsb5oO+dMiSUSK2n70dns0rW0XGQ9+vSe3/WM3/IQv9KyXrK/5wcrBzFdi12M\nWART6NV4Lj2Z/+XdPL3ezTefx+c32Gsbytvu54l1oxlX9kMIOZ/Sb5JwchdoyTQJvj+3oN87UOnI\nkv2vc52W6a1Dzq38a3k1Dr0SpPML+v0DbV2bwmO7qatOLTiqZh2l8vttWKXvcNWKzPbone1zWszO\nYY86Fy40sXq/bqBV6rHzSAGdtawHtWS7iZcXXcbE7WF5Eft9Ax2ay5cHT5BV7v0BrQ26DbR7uuzL\n9A30xTrsfTxaLfi0DXKe4P45lTj2GWjMuZ8SKxstN43XFyimsTDpa7ykP+WxDVZI0nH99ebKHJ1R\n7oPqbIXUnlWfHfo5LdS+iNNyf6Y1ZMud8d4f0Ds7sXjzSWSGfRmn/N50AN0BWuYaxRHps0GXg45w\np3y0vDS+mdRMRFQjuwiJ5LzDyDeu5c0WxWS3US174QRLxRFBMDMnPqzKpPLSOwdN+j5PXnaS7C1P\n892OqBaWf5ClIojQBxgPtFYlrvWHRajUkK0HJ3F51e7kA4xHdUwq7cxURBgP5KnyRALH3NCSz59Z\nQ5vlWWgRMLai/0NnaGcU/LvClGrh1bwzrJjsA5g5OiypYxBmTvDJCRwz9hre+uBZ7kbQgymyy2J4\nCHgiXpEHUOXE1by98UWzQuF8TE84i8uI0LgGB0cWUudKRCZhVs+KhzeKyaoxm/6DMOvoPpdCM30s\n9IAqCjwL3OW1LSHnPuDJhGpNqoWDdOYIJWsjcGnKLMtw8qXbK3UovGI/ta5KQEQAWEvrMS9w29FZ\nDLzc1rhSxphhTN1bh/0DSUCwVSkexTubXjUrf6b8RexroXd4BRgownleGxJGFkn3V3LYe9k+al+T\nqJA4PA98y227LIbXGd17NK9XqsXBS0nQ65uqwxbuI2fBIGb1LT+1pYKMvYlXNzifExLs1bS94b/c\nnJYXse+FXpVDV/PWlu/w148TrBpZ4uB/XNf7et6oXJsDCQuJwzhgsAgNXTbNArzFNfVvYDxU3Ot7\nETM1scVlRGgLNO3MksswbSjDExHsSXp5wX7qLBrErF7lp04O3ws9wPf509FpXHKepiGWlWm8y8iz\nr+VNqKCQqHJgOB9s/xG//dS+iN1FhOYrOf/EIGa+ToIiEsF4YLgIdV02z2KW3BzXXlfsQXVMBe/P\nq8BYl+06g0AI/UA+3nGYauTTbQm2Uck1RGi4lE5ZFzHrDSouJHyPpw5P4vKW2Bex21yvZL1ZRY/d\nUNF7o8peYApmXVqLSzg91cZiQsvJMB64SoRqyVsVm0AIfRY6tjfz1l7Mh2/YRiVXGaVkTaqhh0Yn\nc12HMXXrNhqyhtYF2Bexm9wAvJ5sJs9yV+0uFDxha1yu0gPIxtSEK4wq24A84Ao3jIpFIIQe1cK3\nuPaevZw93GtTQsa1YOI2yVCZE2O7s+jLAXz6on0Ru4MILYAWwPRk87qVf1f7gha1d1HP1rjcYyzw\nitMzMCke4edVhvLhX1P5Ig6G0BtmAJ1EONdrQ8KACDlAPxLrOx8d1cKpDH9wJ+cOTTovSwnXA2+q\nciLZjKpz+NBgZvA/rvscW+NyhXPZfvun9L/MDXG+l6ez59G7fhHVUvYiDozQq3IUmEqKqzgZxJXA\ndFXcGuz0AXBRqmONmUIr1v7fG1zX1yUvb2wXFi+8jyfn2RpX8ojQ6iTZVfsxpxcutEudw6793chn\nEpevIkUv4sAIvcO7wEivjQgJroRtSnAa/fKBIW7lmamIUG8rjc6+ive64EYDt2rhr3h49GGqDxUJ\n3P+8HxnWl892OnMOuDHYaWxHli29jRempupFHLSbPgkYar3G5BChylkcvnILjW53OS44EVvjcoMh\nXSnYU8XMeODKqElV1gH7gK7J5mVh+EJ6/IwK9J2Pimrhc3zn9oPUGuSKdVEIlNCrsrsDyw69xM3z\nbA+CpOjTnPVHG7FtAO52iZwIXOF0PbNUnItX0e5PuCUkXzEZGOFSXhmJCJWAIVtp/G4SfeejkQc0\nFaGRS/mdRqCEHuAq3js8lz6dsH22k2FIH+budD67Oc/GMswz1cGl/DKVS/ZQb6LLQgJW6N2gN7Be\nle1uZuo0uk8nRRM4Bk7ohzB920wGgZ2RLxmGzOKiB3DZY1RFr2DCwQf4zbu2xlUxRGgG1AGWpCD7\nmUAPEeqkIO9MYThmAFoqmAIMS0XGgRP6ahwetZbWJ77Pk257OxmB075xwRe0nJwCj5FrebO4gK52\nlGzFuRj4KBXrL6hS1JX8wn/yDTtdRcVJpdBPBYalIvQZOKG/SGftOkz1D5/i+7ZRqWL0A5aociAV\nmQ9j6rbZ9OcE2bbGVTEuBj5MVeZX8d7RufTpiH0RJ4wz9qQT8Gkq8ncazA85ZbhK4ITeYSYw2Gsj\nAsoQXBhtGYtcNl1fm/0H+jHnflvjSgzHk7sYmJaqMi5h2tZZXAQ29FkRhgCzVTmSqgKuYMKxH/Or\nt9yucQVV6GdgVkWyJM5QUij0qBZuIvfVPC7onrIywktHoEiVL1JVwLnsGLWB847fyV9usi/ixLiS\n9375EI+3SWXY61reLF5Az1a4XOMKqtDnAa3s1KuJIUJNTD/qlFQ9I/gYjNtoSYiUevMA7XXFniJq\nTP8bd7oeHgg7q2jXbBTvpLT9aThTtn5GX9dDn4EUemftzLnAhV7bEjAGAItUKUpxObMwq4LZ/vQJ\n0Ju59/2FOy9MQ0PpJ5hnwRInItTeSO5Z3VkEKQx7NWXz6JocPDCQj+9zs8YVSKF3mIkN3yTKEOCj\nVBeiygbgMNA21WWFBRFkNW0bX8mE9qS+ofQTrJOUKH1OUGluFY67PYjtdFQLN9P0f5/Rr7Ob2QZZ\n6GdgG2QTog2rb3uLq0elqWvdLGz4JhFaVuLEyVw2QeobSucBXe1UIgnR/wSVP05Fl+QofAr0dzPD\nIAv9fKCdHfwRHyJU3Uhu/UuY1pX0dK37GBiY4jLCRL8D1JqC+9MenIEqhzCjmC9IVRkhZACpb9sq\nYTZW6A2qHO3Ekv2vcJNdNDw+ujVh86GaHIL0dK2zHn1i9DvKWbPS5DGCjdPHjQjZQB9gTpqKXAnU\nE6GBWxkGVugBBvDpiVW064wd/BEPfbfS6A3S4DE6rKrF/garpe0c+yKOi36kT0jAxukToROwVZVd\n6SjMGRU9Bxe9+kALfS/yds2jN9jBH/HQt4gaafMYVdELmH8wj159sS/iMhGhBtAOWJjGYj8F+tv5\n6eOiPyackk5cjdMH+ibP4qKxn3DhsULqpMNDDTp9MF1S00Z3Fu22L+K4uAAzLUXKRlyWRpXtDdiW\nNYe+c22Nq1wGkH6hdzVOH2ihf1FvWXWA2jvqUljPa1v8jBPrOxtYlc5yJ3Dl/VMYvpv0hIqCTLrD\nNk6hc4ry6ebKcnghpz/pa4gtYT7QTYSqbmQWaKF3mIvxVi2x6QPMTcWMiGWxivNnraDDWYIeSme5\nAcQToe/BQhv6LAdnIZAc0uwkqXKwBeuKJnOpK21cYRD6eZjFACyx6QN8lu5CVdkPbMDM4WKJgjN6\n2BOhf4dR93zE0H3YGldZ9AfmpNtJMgXPPrqEzt1xocYVBqG3Hn359CXN8fkI7Iu4bFoBR1XZmO6C\nF9Brzpc0ryLo8XSXHRRu5NVHvsefOnjRjtGLvF1zjbQlXeMKg9AvALqIUMVrQ/yI0wf4ArwT+vnY\ngTll4Yk3D6DKMWAp0M2L8oPAF7Q4bxhTm+NBO8a7jPzWxww8hAs1rsALvSoHgXVAF69t8SntgW2q\n7Pao/PlYjz4mo3j7gYd4vIeHPV/ysC/iqIggy+lQsycLwIN2jOkMXbidhsWCJq3TgRd6h7lYMYlF\nXzyIz0dQALQRobqHNviWL2iRO4ypXi69OB/o5UG5QaDFQWrubMj2dA0yPA2nXWAR0DPZvMIi9DYO\nHIMRvP/Dn/HTfl55jKocxcyrYhciKYUI2atpWyPVU9+WQx5W6GPRS8man8ZpKaKRhxX6U9gG2Ris\np3nTYUxtjbd9pe2LODrtjlFlQw77PPEYHVYATe3kgFHpiWkD9JIFuPAiDovQL6vKkdY75ZxP7Ci/\nrxChyhe0qN6FxeBtX2nbIBudnsVke+oxqnICyAd6eFG+z+mF8ai9xHr0Jahyoi2ri5bRcQB2lF8k\nHU5QaXUNirz0GMEKfSx6kN75bWJhwzelcMY39MB7j34tcLYISY3+D4XQA7RnReEiEwa2o/y+ovtJ\nKuV5HGMEWHkWh5ttk4a2xnU6fggNgO15E41WwAFVdnhphFsNsqER+hkM/v1kRnyJHeUXSQ/MQ+Ip\nqpzswPKipXSyNS4HZ9bIbvjDo7c9b87ELy9hcCF8Exqh30GD2VO49IAV+dPwS2iAdqzam2/G5dga\nl6ENsFuVPV4bAqypRlHTLdL4U1vjOoUf4vMlJN0gm7TQi8gIEVkpImtE5IEovw8WkX0issjZHk62\nzBgsBVrbdTANzojYrpiGNs+ZzpDffcClG7A1rhL8EP8FTHigA8sPLaFzf2yNqwTr0ZcgItnAM8AI\noANwk4i0j5J0pqp2d7ZfJlNmLJz+2qsxq8FYoC1mRKwvRHUbjWZPY9hBK/Kn8JOQ0J4VhbbGZXDC\nar55EQOfV6OoUTI1rmQ9+t7AWlVdr6rHgdeAUVHSSZLlxMsi7MCcErrjk7CNw3KghR0hewrfhNUA\npnHJb6cyzNa4DK2Afars9NoQOFXjKkqmxpWs0DeB02bd2+Tsi0SB/iJSICKTRKRDkmWWhRX6r/BF\nQ2wJzgRaq7A1rsiue74R+m00mv0hlxyyIg+/4/6/DGZ6DT+1V3Rg+d6FZqhDhWpcyQq9xpFmIZCr\nql2Bp4G3kyyzvLKs0Bt8JSQO+diZEsF4jPv94jE6rASa2xoXrKNl20HMrIeP2iucGtdGKljjqpRk\n+ZuB3IjvuRiv/hSqeiDi8/si8hcROVtVz+htICKPRXydoaozErSnAOgsQiVnxF9G4niM3fGRR+9g\na1zA77j/rxO5ojoydBIw1g9etCrHRE7VuOZ5bY+XFNC12v38HnzUXrGVxnO20vgQqoUiMhgYnMjx\nyQp9HtBGRJoDW4AxwE2RCUSkAbBDVVVEegMSTeQBVPWxZIxRZb8IW4B2mIm0MpXmwEGvB3tEIZ9S\nz0cmso6WbS9iVqTHOMZjk0ooqXFltNB/Rt9jzVk/EbjZDy9hh5VAMxGqOQ7wjJIfROTR8g5OKnSj\nqieAe4APMI1t41R1hYjcISIlb8LrgSUikg/8CbgxmTLjIOO9xj/wg78PYkY1P8UYHUpqXNleG+Il\ni+lyVlcKwEceo0M+pktuxiJCvWKya/dg0UgfiXxJG1eFexUm69Gjqu8D75fa91zE52eBZ5MtJwFK\nhP6/aSzTV6yjZZtSMUZfeIyq7BNhO2aw0Eqv7fGKOfTzo8cIRuhv8NoIj+kKFHixRmwclNS45id6\nYGhGxkaQ8R79YrpU88GMlbHIJ4Pvjwh1i8nO6clCX3mMDosxy3KGURfipSum5ulHCqhgjSt0N3QN\nrb9Wi/0DiyXLb2GLtPEpA44048tJ+LNP9CIyu+dNF2CJHz1GVfYCuzG9gjIVK/RBoDWf51bjcKUt\nNPZN16h0IkKdYrLrXUCeHz1GsF0s/SwkYO+Pb6YNiUIBpsaV8ADU0Ak9UNSFxXzKgNX4L2yRDjoD\nS1U56bUhMVhUi/0XFUvWDB82FqcDK/Q+RYQqmB57S722JRqq7AYOYHrVJUQYhX7sOexc9R3+9qpP\nPdpU0wUTa/UrW7IorrSdBoPw0YCUNBIEoc/UnjfnA1+qcthrQ8qgQi/i8Am9auGrjP11IXXbeG2K\nR/ha6FXRlqzbv4TO4M/G4pQhQiXM5H9LvLalDArqsmcwIplY4/L7SxgqGKcPn9AbFmMELxPx/cO6\nmrbjJzOiAH82FqeSNsAWVQ56bUgZrD9O5bN2Uj8Ta1zd8G98vgQr9BGswMxNX9VrQ9KJ0y2uE/72\nGDlEzQVP8oOCDBN5CMBLOJNrXATg/gAF57Dj4kRrXKEUelWOAOswMbdMogWwxy9z0JfBYkyjcaYR\nBCFhLa3f/IBLF5FBNS6nJ0sQ7s/aA9SqsY/aCdW4Qin0DpkYvumKj+PzESwDzndi1plEEISEImos\neIIHFmaKyDs0rMmBWifJesXPbROqnGzBFwcWG2mLu8YVZqFfQuYJfRcCICSqHMLMfJppDea+biiP\nYAmZV+Pq3I5Vh7NQ37dNrKf5u1MYvoAEalxhFvpMDA8ERUggw17EG+S8/9TgYMOTZD3rV28xgqVA\nxwybCqFzG9bscz77um3iMNUX/JJH5iVS4wrzjbShG3+TUS/iRXTv2pWC7CzU194igNPGswfT5pMp\ndP6IoX8ExuP/tomEa1xhFvqNQHURzvHakHQgQi2gIbDGa1viJKM8+jx6Ve5sOkP52luMIKNexEDn\nHTSYh+oYn4s8OEKfyFQIoRV6VZQMeljf4LqXzmdFsSLvBSA0ABl0bwD+yA/m1WP3QvzvLZaQMS9i\nZ32E9gRksSJnCcojQNN4jwmt0DtkTPhmLa3b9+Wzmvi8ISmCdcC5ItT22pB0UESNdo/zkx8EROQh\nsxpkWwPbVDlQbkr/sIQEFiEJtdA/xONdruatB/zcXcot8ulWNUihAWfStWVUcMWcIOFUsX0/kK0U\nmST0Qbs3YBrM474/oRb6QcysuZHchgTHy60w/+O6DeewcybBCQ1A5oQHzgMOqBJ1rWSfsgpnjVKv\nDUkDnQme0Cf0Ig610Pdkwa4VtOckWYHwciuKCHKcKu1v4aWbAiTykDlx+s74dOrbWDhrlK7FxK7D\njhX6IFOf3TfU4FDRlUz4dsAEMFHOxdzLbV4bkgj/4ZZh3Vj0tQwIrQUxNAD2RexnlgHtRKgcT+JQ\nCz2qhTs5d/pkLmvutSkppmSxEfXakEQYykd119O8joY/tBZEjxEyIE4vQnUgF1jttS2JoEoRsIk4\nR5eHW+gNSwl/g18gPcambN5XhWN8QYt8Qhxaw9yfoHmM/IU7B/VlzjdCXuPqAKxW5bjXhlSAuF/E\nVujDQSCFBBjbmC07hjPlF2ENrTlV67bAcq9tSZShfJSznuZ1CXeNK6i1LUigi2WmCH2oq58E9WFV\nLcyn+6uf0zrMQ+3bAht9vjxdVNqwZm8R1dlGg0WEt8YVzP8dw9LezP16PAkzQehXAi3DugiJM/FU\nRwIyqi8KYa9xBTKsBpCFjm3Kpl1D+ejhsNa4CPD9AZZspkmDeBKGXuidRUjWYzyrMNIc2BuAxUZi\nEXahD67HqFq4nI5vrqBDc69NSRU57B2wknaPBLQdYu3x+DrdhF/oHcIcvgmyRwImdt0+xFPiBrHr\nXiShfRGLUO84lau2ZXVfAtgOocqJ7TRsFE/asP5zlSa0DyvBbYgFQJX9wC6gpde2pIJz2T5kAT3+\nL6AeI4T7f6djC77Y70wBGcxBlXbhkdNIaAKggBHc0MBXhFJMRKixjzo1ulLQmwB6jA5LgU6JTIkb\nIDqto+WZDzvRAAAgAElEQVQ7BGMO+qTIFKEPpZA4BNqjdwjr/emQy8aD2RRDQD1GZ0rc40BcIYKA\n0amIGgsDMgd9UmSK0H8ONHQW5wgNRVL9+Soc7XCAmr8OaFighLAKfadNNH2f4HuMob0/BN9JiouM\nEHpnStyVmFFwoWEJnbu04Iusmhy6lGCGBUoIrZAcodqiEHiMobs/EVNHW6EPGaGL08/ngsqdzHMa\nyLBABCuBViJU8doQlwmLkIRO6DGhqONOaCr0ZIzQ38Wz7b7Oiz8LcO+HM/gJv5p6NnuWEeywQJjH\nOlih9y9huTdxkTFCfyGfVN9KoyYEt/fDGeynTpt/8O3HgizyEYRKTESoC9QCNnhtiwssAzqEbKxD\nJ4I7mjxhwnTjyqQHC3ctNToS9DBHJKHxSm7lhRZ38pffhqjG1RFYFrSpo6PhjHXYjRmFHRZC878T\nDxkj9A3Yfu1+ah+/lz/fGAYP2JlHuylmFaDAM4BPz9pMk/MIT40rbEISqhoX4bs/ZZIxQp+jhYVF\n1Jj/DPfmem2LS7THzKN9wmtD3KAb+btDVuMKm5CERuidEFQHbOgmtITmYSV8QnLtJpqefJa7rg5D\njYuQ3Z+f80jvEbz/vZCE1poDe1TZ57Uh6cIKfXAJlZD00rzdx6i65B6ebeK1LckSxj7ag5hZaxNN\nzyUcobVQ3Zt4sEIfXML4sIbl/jQAFNjhtSFu0Z1Fu9bSmiNUzSP4obUw/u+USUYKfUgmaArjwxoW\noe9ESHrclFCLgzfWY/eBYUy9N+ihtYuY+Y0/ct9VIQlDxUVGCb0zCu4Y0NhrW5JBhBygLvCl17a4\nTJiEPlwvYdXCzTSd+gkDm3ltSrJspknDQcw8n3CEoeIio4TeIQxiUtJHu9hrQ1wmDPcGwij0hiUE\nfAEfESpvJLdae1ZAeHp4lYsV+mDSkXAKyQaglghne21IMrRmzVUTufyOEIYGwvC/0/YEldZV40jQ\nZxRNCCv0wSSUHqMT015GgO+PCFmbaVKvP7O7Eb7QQCj+d4rJXhyCGUUTwgp9AOnEkuvGM/rWEHqM\nEPz706wmB4/nmC7aYQsNrAWaiFDDa0OSIAwrsiVM0kIvIiNEZKWIrBGRB2Kk+bPze4GIdE+2zCQJ\n9ARNIsgmmp4zgE+7ED6PEYI/nXTnfdT5mOAvNnIGzijsVQR7XYdQ1obLIymxE5Fs4BlgBObm3yQi\n7UuluRxoraptgG8Df02mzGSJWIy6hZd2JEGDk2TTiK0QPo8Rgu/Rdz5G1fwQhwYCf3+wHn3C9AbW\nqup6VT0OvAaMKpVmJPAfAFWdC+SISIMky02KHiyQf3HbOwENfXQ+wlnzJIQeo0PQxzp0ItxCEtga\nlxNyaoRZWjSjSFbomwAbI75vcvaVl6ZpkuUmRU8WsJkmHQlm6KPzcaqEYXm6qKiyAzhBcBej7ky4\nQwNB9ug7AKvCMhFgIiQr9PGO/CvtnXk6YrADy/csMd2Bgxj6CLvHCAEVE2cpxFZgOmmHlKUEty99\nRoZtAColefxmIHLa31yMx15WmqbOvjMQkccivs5Q1RlJ2heVcYy5ezNNJhHM0Edn4B9eG5FKRvH2\nuR1Z9hfk4dXA2ADdo3bAemdpxLCyAagpQj1VdnttTIKEoiFWRAYDgxM5JlmhzwPaiEhzYAswBrip\nVJp3gXuA10SkL1CoqtujZaaqjyVpT1x8Rr/5QBVBDwdpMhIRssmAebT7MafyCtq3wnjHz2GeqyAQ\nCiEpC1VUhGWYQXuzvLYnQToD07w2IlkcB3hGyXcRebS8Y5IK3ajqCYyIfwAsB8ap6goRuUNE7nDS\nTALWichazD/tXcmU6QaqHMM0yLQvL63PaAnsdHoOhZYuLN4d0NBaRoQGLmVyzi94+PkAdmbIhLBn\nVJL16FHV94H3S+17rtT3e5ItJwUsAboA+V4bkgAZISRL6HzDUjqtz6PnZb00LyhhGzD35wWvjUg1\nffms0iaatgbaEJAalwj1gWqcGVrOCAI5aMglgjhBU0Z4JD/SJzYdo+qXF5B3jte2JEhG3J/OLAli\njasTsDRMU0cnghX6YJERHr1DoO6PCLWAc4F1XtuSamYweOwiup8opE6QOjN0IuRtW2VhhT5YhL2P\ndiSLMaG1oNARWKHKSa8NSTVP673rDlN9R10KAxOfH8H7d/+Ch4cEsF3BFTJZ6L8kQFPiilANaIaZ\nayQTCNqLOJNqWxCwF/EmmjYZzIw2BHOQZNJkrNA7sbogDf5oD6x1egxlAiWN5YFgFG9/78f8amAG\neYyBeRGLkLWW1tU7m/dwkNoVXCNjhd4hMA8rmecxrgUaOrFv37OJ3KZDmN6KzPEYg+TRtzxGlS11\n2B/W+aHKxQp9QIR+NON/cD+/65spHqMzH8kKTOzb14ggq2hbowuLIXM8xiAJfZdissM8o2i5WKEP\niNBvJDd3EDNbkDkeIwRHTJoeosbuc9mZSR7jSqC503bkd7pgnqWMxQp9QKbEXUW7Gl0pgMzxGCE4\nL+KuSlZBJnmMTlvRWoIxutwKvdcGeIkqe3LYm72c9nP8HBIRoUEhOUVN2JxJHiMER+gzVUiCUuPK\n1PtziowWeoAOLD+ymrZ98HdIpKuSlZ+lxRnjMTosBroEoMbVFUx1K8PwvdCLUBOztsFar23xkowX\n+vasKCygK/g7JJKRQqLK9lrsr7aWVp/6ucZF5nqMi/F/jasTZiBbxi02EknGC/1kRvxqKsM24++Q\nSEYKPUB7VhxZTdt++LTG5TRGNsc0TmYaQRjrkKkv4dPIeKHfTNPZnzDwqI9FHjJY6M9n5d58uoF/\na1wdgdUZNJAtks1AZRE8XQO6HKzQY4UeYA1mYE5trw2JhghVgdaY+f4zjqkM+80Uhm/EvzWujH0J\nq6IdWHZkPKOn+Di0ZoUeK/Q4k1Atxb9V0A7A5yFfni4mW2k8ewZDDvtU5CHDhaQnC4q/pFkXfBha\ncxrxu5BZI8qjkvFC71AAJj7gQ7qSwUKCmcQt1+k94Ucy1qMH6MTSPYvoDv4MreUCRars9NoQr7FC\nb8jH/MP6kS5ksJCochwTtvJd744IjzFjX8T/47q7P2bgfnwYWnuae/7Rj9ln+TislDas0Bv87tFn\nrNA75OPP+9MUOKZK1MXuM4F59Jm7kfMqC+q7xug1tGk7iJl18WFYKd1YoTcsBjqIJL+Grps4HqMV\nev8KfUZ783BqKoSV+LDGlU+3aj1YCP4MK6UVK/SAKgeArUBbr20pRWOgGNjmtSEe40uh/ybPP/Yt\n/nG+DQ2QDyZQ7yc+4cLjLVk3CR+GldKNFfqv8GOcvitQkKkLGkewGDP5nK9qXF/QovklTMvFhgYW\n4TOhF6F+Mdm1e7HgqkwXebBCH4nv4vS38/fHbuNfGe8xqrIfH9a4ltGxhg0NAD4Ueow9+aoUe22I\nH7BC/xW+8+jX0bLFMKY2xXqMYMTENy9iEeptp8GJFnyRaTOKRqMA6OizGld3zDNjwQr9KfLpemNd\n9gz1k/e8lE41erIArMcI/ovTdwdZVElPZNqMomfgtHFtBtp5bUsE3cFUtyxW6E/RmSVNsiiuvIVG\nvvCeHY/xeEvWWY/R4Deh7wnmLWwB/Ncg2wPr0Z/CCr1DFlrUizw+Yuga/OE997Qe42nk12L/wGLJ\nmuGTWlcPrMcYiW/i9M6C8k0xaw5bsEIfydjGbFl+N8++5RNhtR7j6WzJ5mT2FhoPwh9tFlboT8dP\nbShdgWWZPgd9JFboS1AtfIFv/GQ/dfwy8MMKfQSq6PmsLJzPBeBxm4UIdTCrFq3yygYfsgjo7pPV\nwGxDbCms0J9OHtDLJw+rFfpSLKfDC+8ycgXet1l0AxY7M59aMKuB5bC36grOn+2D0JptiC2FFfrT\n2YwZiZrrpREi1APqYebKtzjsp84n/+a2TT4IrfXAvoTPoCsFh5fRsS/eh9ZsQ2wprNBH4IxAzcN4\n017SA1hkB3ucwXz8UeOy8fkodGHx7nn0Bg9Da85CPe2wc9CfhhX6M8kDenlsgw3bREGVbcAhoJXH\nplihj8IkLn9oMiN24GFo7S2ufq0Nq08q8j8f9MzyDVboz8QKvb+ZD6ZF1gtEqIFZDDwjl3Ysi89p\nPWMxXasJesArG/Lp1mkI02vgffjIV1ihP5MFeB8esEIfG0+F/jXGvNKBZScVecd6jKejyh5gO3C+\nVzZ8Rt/qfZgLdjT5aVihL4UqW4HDGK8t7YhwNlAfWO1F+QFgPh7WuAro2uliPqyF9RhjMQ9MoN4L\npjLsaFtWT8b7nlm+wgp9dBbgkZj8i9te6s7CYkUmWI8xKnmY/trZXhT+GX2r92MOWI8xFp4JvTM1\ncb2BfHKlFfnTsUIfHc/i9AV07TCMqXWwHmNUVCnETFncPt1liyAzGKwdWD4R6zHGwkuPvjeQZ8c3\nnIkV+ig8x7f7X8C8b3sx8GMufWr0ZzZYj7EsvIrTN1WysrtRYBeziE0+0F6Eah6U3RtMgN5yOlbo\nozCSd2ut5PycE2Sn1asWIWsufap0peAdrMdYFnl4I/R9gc/sil+xUeUwZjIxL+a96YMV+qhYoY9C\nQ7bvb8omPqPvMtLrVbdXsnY11/VXW5GPzWuMGdye5Td7UOPqByZAbymTtIdvnF5y1qOPgRX66Ixt\nxefrrubtF9MsuP3AxG0ssbmM9+tu4LxaRVRLdztGX+CzNJYXVLyI07cGDjqD6iylsEIfDdXCCVz1\ni93U75HmkvtjPcZyqc2Bg51ZwodcvJI01bicofVdMWEjSxl8xJDLm7LxmjTXuGzYpgys0MfmU2BA\nmsvsj/Xo42Fsa9au/DovvZnGGldXYI0qB9NUXmAZyMfnHKBWtR2ck84alxX6MrBCH5u1QFURzktH\nYc6MlY2BpekoL9CoFv6Xr/9oHznpbJC18fk4qcTJogF8ykSuWEv62ris0JeBFfoYOD0r0unV9wXm\n2T7AcTMb6CtCpTSVZ+Pz8TO2NWsX38vT09JR4xKhZlWOdD9Azcd9MBe+L7FCXzafABemqSwbtkkA\nVXYDG0hfNz4r9PGiWvhnvnfHIWr2S1OJ/Tuy7FBNDg3EDjSMSoWFXkTOFpGpIrJaRKZIjLeoiKwX\nkcUiskhE5lXcVE9Ip0dvQwOJ8zFpeBGLcF4t9jc8QfZz1mOMmwVAKxHqpqGsIb2Zt9P5bAcaRiEZ\nj/5BYKqqtgU+dL5HQ4HBqtpdVT2b7KiCLARai1A7lYUclar/qEbRRVtpeJ8VkYT4GBiYhnKG9Gf2\ngWyK/bIwue9R5TimBpSOGvHg6Qy5DxiPHWgYlWSEfiTwH+fzf4Cry0jr9YpAFUKVYxix75vKcmYy\nqGcrPs9uyPZhWBFJhE+AgWmYUnroAD7d7ny2HmP8zAIuSmUBItQEOq/i/A9RHWNFPjrJCH0DVS15\n+LcDDWKkU2CaiOSJyO1JlOcJN/FKrbt55u+prLJP4Moaw5gKVkQSQpUNmCml26SqDOclMnQWF/0/\nrMeYKDOBQSkuYwCwwJl6wRKDMoXeicEvibKNjEynqgox5/8YoKrdMVXeu0UkHVVt1xjFO1n5dGtG\nCqvsf+M7OzuzZBZWRCpCqsM3rQGmMWyR9RgTZh7QQYRaKSxjMDAjhfmHAjEaXYEDRVZiYu/bRKQR\nMF1Vy1xZRkQeBQ6q6h+i/KbAzyJ2zVDVGc5+iyVwqGogQ5ZuIsJM4HFVPkhR/nOAH6syPRX5+xER\nGYx5wZXwaHnPWjJC/wSwW1V/KyIPAjmq+mCpNNWBbFU9ICI1gCnAz1R1SpT8NJqxsfanDZGcnuSt\n3Mk592/Q8/7rfvZcBjygetqNs8TJYukydwSTe2+mCQLjUR3jZv4ijAcmqPJiYsd5/Nz6hK/LSwtr\ncrDeX7lrGTDWzRqRE5/fBpyTyaGbeJ61ZGL0vwGGichqYKjzHRFpLCITnTQNgY9FJB8zam1CNJH3\nNaqFC+n5u42cl6rwwDBgWoryDj1dWLK7BoeYQz/XZxoVIQsYApnjLbrN1bydvZgu55Ga0KeNz8dJ\nhT16t/GtRw+I0AmYALRwey5yERYDt6va4dsVQiTnBsbNm8qwV/dq3UfdzZouwBuqtE38WO+fWz9w\nUGpObsLmS1fRblFDtg912aP/NXBMFVfve9BItUefSSwDKuFy7w4RGgK5mMElloqgWvg6N9xbSN2h\nKch9KPBRCvLNGGpy6MZOLN3cg4V/c7shuzlf3P4uV420g9jKxwp9HDhe/BTgUpezvhiYocoJl/NF\nRB4SkX8kmUdzESkWEU+fExGZISLfLCPJTKBrCkZhXowV+uRQLZzNgEe30vhiN7MVodle6ta5jPe7\nYQexlYsV+vj5APeF/hIwHejdRlV/raqBG7cQg1Pdd0XkVhH5+LQflSOYwTnD3CpQhBrVKLp0Kw2/\naz3GpJkIDBehiot5jryIWdsqmTkA7fiTcrBCHz/TgIucBSiSRoSsHPbesJDu/89tIRGRbLfySqDM\ndM0iGYtJwOUu5ndZVwoONmT7AKzHmBTOqk9rcHe8w9UFdH0QO4gtLqzQx4kqu1uz5sibXDO3RJid\nCdt+KCIFIlIoIq+JSFWI7nk6YZCW5lvzCcXcVeUn5PeuBZd1gjUi0lBEnhKRvSKyQkS6RRzbWET+\nJyI7RGSdiNwb8dtjIvKGiLwkIvuAW519L0WkuVBEZjt5bxCR/+fsv8KZcG6fsz/uhi3n/H8kIouB\nAyKSJSJ9I8rJF5FBEelvFZHPRWS/cw5jI+yPtDVqyEhEzgf+BvQTkQMisifi5/eBy5yeMm5w3ZVM\n2Ox8th5j8rwHXOlGRk6I7oINNHvLDmKLDyv0CXAV7x36iKFd+crDU2A0JqTTAugC3Bpfbi1bHOVd\n+RWwA/JWw3LMJFDzgbOBN4A/AjiC9x6wCLM4ycXA90VkeESGI4HXVbUO8DIRI5VFpBnG430KqI+Z\n2jff+fkgcLNz3BXAnSIyKu6LAjdirkcO0AjTO+nnqloXuB/4n4jUc8ZRPAWMUNXamNk6S2yIqyeT\nqpYsHThHVWup6tlf/cYXwB4g6eUfRTgLuOxLml2D9Rjd4j3gKpfmJboC+EiVIhfyygiCLfQif0dk\nRlKhjwTyuJV/rx/HGI5SJY+vPLw/q+o2Vd2LeZjLnR/dLJbRuDnUeLs7jK8Gw47D68AhVf2vM6XE\neKC7c8gFQH1V/aWqnlDVL4DnMSJbwmxVfRdAVY9w+kRyYzEzjY5T1ZOqukdVC5y0M1V1mfN5CfAa\n8c9Pos75b1bVo8DNwCRVnezkNw2zxuoVTtpioLOIVFPV7aq6vOSSxFlemWmv443j9/D0Gy6EwoYD\ni/6u315rPUbXKACqAmWOno+Tq4F3XMgnYwi20ENbjCglE0ONO48uLLnmHHbuas+K30X880euOn8Y\nqBlHmYPgyKGj7FwRISRHgB0x8moGNHbCIXtFZC/wEHBuRPpNZZSXC6yL9oOI9BGR6U5IqBDzAqsX\nxzmUsDHiczNgdCk7BwANVbUIGAN8B9giIhNEpF0C5ZTL3Tx7fCJXNCtGko2pXw/8zyWzLJiea1cw\n4cAD/GZCMi9ip7Y1DFNztMRJ0IW+pOqWTAw1/jxUC5fT8ZEvaHlNHPkeAqqXfBGRhhG/jYFNUYU3\nBhuBL1S1bsRWW1VLYp5lTSoHZiWmVjF+ewV4G2iqqjmYGHgiz0VkuRuAl0rZWUtVnwBQ1SmqOhwz\nYnolUNL987Rr5fweT3mnMYiZ22tykElcXhLiSRinZ8iVwFsVOd4Sm2/yz2OTuLylJueYXQzkq7Kz\n3JSWUwRd6MeSfAw10TxexzT6lbcYSQHQUUS6ishZwGNmd9NKwLWw6ssEbJyHaez8kYhUE5FsEekk\nIr2c38sLfbwCXCIio0WkkhMz7+r8VhPYq6rHRKQ35npUdPTvf4GrRGS4Y+NZIjJYRJqIyLkiMsqJ\n1R/HiHvJ+rj5wEUikisidTC1lVhsB5qKSOXSP2ShYy/lg/zRvJ6fxPMwFFihyuZyU1oSYiTvbjlM\nNT7k4hVU8EU8kFlPPcpjjW2X18QIttCrFiYdQ00wD2et0hlANK/+lGetqquBn2O6Za7CTKer8NsB\n5nvhQU4X1GheeUleJzFeZjdMCGYn8Hc49bKJdWzJ8RswXQ9/COzGNOp2cdLdBfxcRPYDjwDjotkQ\nD6q6CRgF/BgThtrglCmYZ+0+YLNjw0DgTue4qU65izE1q/fKKPdDzEjlbSKy47RfVAt/z/8NP0K1\neF7EURnCR39+mF80sELiPtkUj72SCQUjebdCL2IRGufTrdl9PNka2+U1IexcNxVAhOuBO1QTH6Az\nRKavGcRMHuNna3B5Nj+LQYQ3gfdVSWhksAhNarF//XqaVzqbvZDEbJh+fG79gAjnYPrUt1A1FzmB\nY382mvG3jmfMeRiHwPaGws51k0om1ODgwLXSek4inp8IzRfSo/l3+bP1SFLLC8BtFTjue1cyYZMj\n8rbvfApwYuuTgFsSOc5pO/n2NhregO3ymjBW6CuAKkdG8/rOJ7mvL4kJ9oNjGPelFZKU834dCrvl\nSa958b6InVDPNw9ScxRWSFLNc8AdCfapHw0sm6UXzbVdXhPHCn0F+QWPrBzHGJbScTFxCLYIucDo\nqhwdjhWSlKLKiW/yz22/4cELiP9F/G1gyrs6crEVkpQzqzGbG73DyIUJ1IjvBZ5OtWGhRVV9seEs\nPRvvfs83yLmTZ5ecRdEb8Z2fPgP6W8/tzpBtPzUnN2edvsNVK9SsflbWvakCuhG0h1vl+/a59cn2\nB+5b2ZP5epxsVRhXVtrxXP9OIzYfPkalSeXdy0zc4nnWPDeyPGP9/A8DWgN0S3kCAdoEdA/ouV7b\nnDEb5DzLnZ9kc3w5aKWy0t7PE5/05rO9Cq4JiZ+fWz9sJ5FJFzNVH+bnG8q65qA1zmN90WvcoApa\n3kshEzcr9GmxW+8CnQIqMX6v1Ic5X3yD5ze4KSR2i+veCOhU0HvLSNMnhz3HlnO+uikkfn9uPd8g\nZyHdJggnd4O2LuP+/P0K3tvk3Jt59v8n2jVCy0tjY/TJ83wL1nW/iVc2HZfKp8Ubncam5wSt8xfu\nysX2tEkrRk/4Xi32P/GZ9J1fOh4sQiPgjT/ww8XtWQm2gTx9qBZ210VXKlm/7MjSWcWSdcZ8UyJc\nA1zcjzn9sO1ayeH126i8t1Ks/X7adnH2x0P4UK9nvB6gxuvGbhXQP4DO2UPOB9Yj8W57intX1GeH\nPsftehIZ59yfJqCzQR9RyFEY5+a9CcJz64cNNLsHeYVDmaYFdFaFcaBVf87D0+uy+9hELptt/2fK\nu4ZouWm8NrI8YwPxDwOTjlBFr+bNI7l8ebg56w7UpvBwG1Yd3EqDKQrN3BYSuyV2f1bQTjuy5HgP\n8vY1YeOhmuw/8nX+s+kEWSkJpwXiufXJdpTK7z/LnXo2u473ZfaGuuw+NpRpx6Zwidq4fPlbPM+a\nHRnrBqa6+dwJspvMo/eAWhygPrt2ncuO+tkUQxIjLP2CiLQBOmGmTnhPVRd6bFL8OPfnENWbvsOo\n/p1YSkeW7cym+Bwnhev3JxDPrV9w7s+D/PpHNTk4dTSvt2nH6pJf7QjYcojnWbNC7yYikzBx+PlA\nIWY61VA8qCJyH/ApsAJ4TlXHemxS4qTx/gTqufUTX92jhZi5km4L+v9OqrFCn24cz4SvGvTM5xA9\nqCLSAfiaqv7ExTzTU1tI4/0J1HPrJyLvUYj+b1KJFfqAIyIt1KwmFU/aK4Dpahb4SLbcRsC+aHmJ\nyE+AJ90oJyLPuGsLXl2TiDxjXptS6TL2ubWkFzupWYBxFhHvm8AhfwCyXSp+J/CjKDaNBP4MNHGp\nHABU9UlVnYdZCSumiHt8TUqIem0sFj9TyWsDwoCIdMMssH1/gseNxSyo3Rt4S1Vfi/j5DlV9wEmX\nAzyIWWlqL9AZmKnO2qwi0hb4VFUPlFFWLaCxqq4qLz9VPSEiE0XkFlV90Tn+Gsw88/di5uP/VRzn\nlwWsBobF6YVfU06+rl6TGDZHXqcz7k+0a2Ox+B6vuwaV10Uo1n6/bMAPgDeBFxI8rjVwr/O5Pkas\nWjjfu0b8lgXMBW6MODYbs+j2Vc73O4De5ZT3TaBxPPlF7H/RhetzDVA5jnQjgVpAmxi/u35NyrhO\nTcq6P/FcG78/t3YLzxbPs2ZDN0miqn+kYivSd8QJAajqLmAt0NP57UrgI+fzEKCzRnj7alacGgeU\n1CDqqAl9lEWuqm6JM78SdopI60RPLBJVfUtVj5eVxqktPIJ5Yd4QI5lr10REPhSRWLXZXFXdTNn3\nB1y4NhZLurBC7w4VaXQr6UaGiAgmRLDW+e0CYLnz+Rxgf5TjizAeMOosvh3TOJHzMYtxx5VfBAWc\nLm5lldFVRG4XkWtF5B1n38UislhEBojILSKy09l3o4j8W0SaOfa/paoXqOowVY0VunHlmohIE0wn\nhBNRfou8TmXdH0jg2lgsXmOF3h0S7rqkqsdVdanz9QogT1Xzne/V1amTAZ8BZzuLakfSFrMObTyM\nwnjLiea3F2gaZxnfAiar6pvABABV/RCzPm22mnj2CqCK44kvBK6PM29w4ZqIyDDgScx6s1+PkuTU\ndSrn/kBi18Zi8RTbGOsO0bqF/gioFiP9f1R1vZMuB7gVuDni91M9RVR1vYj8EzO45+2INAOBq8s1\nTCQbEyM/VoH8DgNVyivD4S0gT0Q+xohpCcURn0/ylce8D2geZ97gwjVR1akichvwB1VdEPlb6esU\nsT/a/YHEro3F4imBF3qRxL3paKhWKPxy6vAz8ys7nAKnQgIPAt9S1YMi0kxVvwRORKSpiYlfP4oj\nak5seDKwJw7bLgGmVDC/OnGWAbAe6ABcDvxDRIao6vYo6U7GmV9pkr4mzvXuXlrkHU67ThHpo90f\nSOzaWCyeEvjQjSrixpakGRU9/l7gdeAsEenNVx7uNkfMwAjnfuDziOMuAp4gDo8e6FuqUTKR/ErH\npfLqQW0AAAWPSURBVMviTuCgqr4EPOUcC+baRF4fKfU3Xty4Jh0w4SNE5MZSv5W+ThD7/kBi18Zi\n8ZTAe/ReIyL3YHqK5IrIo5hRo9EaCksfdyEmxFEieAqc53yeiem7/RHGU94DnBCRv6nqEaANsAaY\nA/y3jDJyMLHkSBLJrxvwfHnn4nAU+JaIFAI1VTVfRC4D+gHVnUbQ9sCDIvIccBNQR0QmqmpeHPm7\ncU12A/tE5CbMWAAg+nUq5/5AYtfGYvEUOwWCD3GE535VfTjJfG7HzB2zrQLHngU8rqo/SMYGt3Dr\nmsTIO6HrFM+1ycTn1uINdgqEgKJmMqddIlI/yawaV0TkHW7ER6thuXhNopHodfLVtbFYysMKvX95\nCjOqtEI488IsruCxucBeVV1V0fJTRFLXJBqJXicfXxuLJSY2dGOxpAD73FrShQ3dWCwWi8UKvcVi\nsYQdK/QWi8UScqzQWywWS8ixQm+xWCwhxwq9xWKxhBwr9BaLxRJyAjHXjYj4o7O/xWKxBJAKC72I\njAYeA84HLlDVhTHSjQD+hJlP/HlV/W0i5dhBJxaLxZIcyYRulmCGo8+KlcBZzOEZYARmitibRKR9\nEmUGFhEZ7LUNqSLM5wb2/IJO2M8vHios9Kq6UlVXl5OsN7BWVdc7C0S/hlmuLRMZ7LUBKWSw1wak\nmMFeG5BiBnttQIoZ7LUBXpPqxtgmwMaI75ucfRaLxWJJE2XG6EVkKtAwyk8/VtX34sjfNqJaLBaL\nxyQ9e6WITAd+GK0xVkT6Ao+p6gjn+0NAcbQGWduzxmKxWCpGeZ1W3OpeGauQPKCNiDQHtgBjMEvI\nnYHtXWOxWCypocIxehG5RkQ2An2BiSLyvrO/sYhMBFDVE8A9wAfAcmCcqq5I3myLxWKxxItvFh6x\nWCwWS2rwfAoEERkhIitFZI2IPOC1PW4iIv8Ske0issRrW1KBiOSKyHQRWSYiS0Xku17b5CYicpaI\nzBWRfBFZLiK/9tomtxGRbBFZJCLxdK4IFCKyXkQWO+c3z2t73EZEckTkDRFZ4TyffWOm9dKjdwZU\nrQIuATYD84GbwhLeEZGBwEHgRVXt7LU9biMiDYGGqpovIjWBBcDVYbl/ACJSXVWLRKQS8Alwv6p+\n4rVdbiEiPwB6ArVUdaTX9riJiHwB9FTVPV7bkgpE5D/ATFX9l/N81lDVfdHSeu3Rh3pAlap+DOz1\n2o5UoarbVDXf+XwQWAE09tYqd1HVIudjFcw0HqERDRFpClwOPE/sDhVBJ5TnJSJ1gIGq+i8w7aGx\nRB68F3o7oCokOD2rugNzvbXEXUQkS0Tyge3AdFVd7rVNLvIk8H9AsdeGpAgFpolInojc7rUxLtMC\n2CkiL4jIQhH5h4hUj5XYa6G3LcEhwAnbvAF8z/HsQ4OqFqtqN6ApcFFY5k0RkSuBHaq6iJB6vcAA\nVe0OXAbc7YRSw0IloAfwF1XtARwCHoyV2Guh3wzkRnzPxXj1loAgIpWB/wH/VdW3vbYnVTjV4olA\nL69tcYn+wEgnjv0qMFREXvTYJldR1a3O353AW5hQcVjYBGxS1fnO9zcwwh8Vr4X+1IAqEamCGVD1\nrsc2WeJERAT4J7BcVf/ktT1uIyL1RSTH+VwNGAYs8tYqd1DVH6tqrqq2AG4EPlLVW7y2yy1EpLqI\n1HI+1wCGY2bcDQWqug3YKCJtnV2XAMtipfd04RFVPSEiJQOqsoF/hqzHxqvAIKCeM7jsp6r6gsdm\nuckA4GZgsYiUCOBDqjrZQ5vcpBHwHxHJwjhFL6nqhx7blCrCFkZtALxlfBEqAS+r6hRvTXKde4GX\nHSf5c+C2WAntgCmL5f+3YwclAAAwEMP8u56KY1ASEX0U4r7XDQBjQg8QJ/QAcUIPECf0AHFCDxAn\n9ABxQg8Qd/oGiC/bRyvvAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd5a66159b0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(ts*Ω/np.pi, σz_expect, 'r.', label='numerical result')\n", "Ωp = (Ω**2+Δ**2)**0.5\n", "plt.plot(ts*Ω/np.pi, 1-(Ω/Ωp)**2*2*np.sin(Ωp*ts/2)**2, 'b-',\n", " label=r'$1-2(\\Omega^\\prime/\\Omega)^2\\sin^2(\\Omega^\\prime t/2)$')\n", "plt.title(r'$\\langle\\sigma_z\\rangle$-vs-$t\\Omega/\\pi$ at '\n", " r'$\\Delta/\\Omega=%.2f$, $\\omega_0/\\Omega=%.2f$'%(Δ/Ω, ω0/Ω))\n", "plt.ylim(-1,1)\n", "plt.legend(loc=3);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## With Rotating Wave Approximation\n", "\n", "$\\hat{H}^\\prime = e^{i\\hat{H}_0 t}\\hat{H} e^{-i\\hat{H}_0 t} \\approx \\frac{\\Delta}{2} \\hat{\\sigma}_z + \\frac{\\Omega}{2} \\hat{\\sigma}_x$" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/latex": [ "$${\\left( {{0.0025}\\tiny\\times\\normalsize{\\hat{σ}_{x}}}+{{0.001}\\tiny\\times\\normalsize{\\hat{σ}_{z}}} \\right)}$$" ], "text/plain": [ "Add(Mul(0.0025, 'σ_x'), Mul(0.001, 'σ_z'))" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Hp = Δ/2 * sigmaz() + Ω/2 * sigmax()\n", "Hp" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Generating cython code...\n", "Compiling cython code...\n", "Running cython code...\n", "Starting at 10/25 15:52:10.\n", "Finishing at 10/25 15:52:10.\n", "Total time: 0 seconds.\n", "Formatting the output...\n" ] } ], "source": [ "res = mesolve(Hp, [], initial_state, ts)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "σz_expect = expect(sigmaz(), res)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEPCAYAAABMTw/iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXecVNXZx7/PLkX6UqVKBylLlSZSFexYsZDEaHwTY0ui\nMdFETYxGE31fY2xJLNHYBSyxoYJKB4UFFpbeRJp0lt553j/OHRiW2d2ZnTtzy5zv53M/u3Pn3HOe\nW+Z3n/OcJqqKxWKxWMJLltcGWCwWiyW1WKG3WCyWkGOF3mKxWEKOFXqLxWIJOVboLRaLJeRYobdY\nLJaQY4XeYrFYQo4VeovFYgk5VugDgohkicivy3isiMhv3LbJYrEEAyv0weECYFJZDlQz/Lm8iJzi\nrkkWiyUIWKEPDr1UdWYSx78NXOOWMZbwICLzRaS/13ZYUkc5rw2wlI6ItAGWJJOHqq4UkZ+4ZFLC\niEgOcA+wBtgO5AITVfWzGGmrAQ1VNalzLpLnKuAnqvpVnOlvdmy4v5R0x2xN5BwTsPtSoD1wFFin\nqq+VkLYncLaq/iWRY1W1YxL2rQLqAUeAPcA44FZV3SkivwP6qeoFUemXActi7LtXVUdF7ZsAdALq\nq+rBstpncVBVu/l8A+4FyruQz/lAXw/szwK+Aa6J2pcN5AEXx0h/I9DIZRu+xYhgPGnLAW8AhUD1\nUtLeCDRM9BzjtKMGMCvq83SgTgnX+DPgD4ke68J1Hez8fyqQDzzmfD7TuYbifG7gpF8PZEXtO4oR\n9EiezYC9wGLgynQ/r2HcbOjG54hIFeCQqh5yIbvPgPNKKOtuERldZN+TIvJk1PdrRWSniCwWkcEl\n5PWliERqjIOAXFV9O/K9qh4BRgJ3xTi8iaqui/+0jpV5j4gsd+xb4Hi0iMhrwGnARyKyS0RilRnN\nlRjPfB5wSylpm6jqehI/x3joDyyM+jzXKScWw4EvAEn0WBFZFbmXzv+/FpG5IlIoIm+LSMV4jFXV\njcBYoIOzKw8oD3RxPvcDxgNLi+xboaoborK6zjmX14Afx1O2pWRs6Mb/XAu86UZGqqoisklE6hf5\nYUV4C/iDiFRV1d0iko0RkEtFpC1wK3CGqm4QkdMo5vkRkUYYL+6ws6susDNG0r1AtSLHno7x5MrC\ncuAsx76rgNdFpKWq/khEzgJu1FJCNyIimNrEGhF5BPiPiPxdVffHSBttayLn2AL4aQlmfK2qHwCN\nMR5xhEKgdQw76mJCJ5uBKs7uuI51KDpX+XDgXOAAMBW4HniuBHvFsaMxxpF4B0BVD4rIN8AAYA7m\n5TMZ49H3B2Y7fycWye864I/ADOCPIlJPVTeVUL6lFKxH73+aqura6B0i0kZERonIeMdD/UhEfh5n\nfp8AF8X6QlVXY358lzm7BgN7VXUGRkgqAh1EpLyqrlbVlUXzEJEhwBPABhH5kbP7a6CWUzuJpg3m\nhx/NJcB7Tl41ROTfIjJZRL4SkdnOud5djP3vRF5gauK9y4CexV+KmFwEfOjk8RmwDiiubeOYrSRw\njqq6UlV/V8L2gZM0B4h+wRwEqsaw43Lg3SL7asZ5bFEUeEpVN6jqduAjjnvfsRDgvyKyE1gNrAD+\nHPX9RIyYA5yF6Tk2OWpfP6KE3nkhNwI+VNVlmFrJiDjstpSAFXr/s0ZEmkQ+iEgt4F/Adao6CPgS\n+KGq/ivO/C4EPhGRHzgviV0i8knU929iahFgfmBvAKjqcuBXwAPARhF5S0QaFM1HVccBh4HH1Wn8\nU9VVwL+BIUVs6Qc8HnVu2Zi2iEjjWw/gJuA/wFDgFVW9WFUfjXViInKdiMwRke0ish3oCNSJ87pE\naO0ITIRHgLsc26LLOsHWeM8xQXZxPBQDUAnYVsSO3sA3qqpF0u4s7dgSiK7t7aPkF4QCl6hqdWAg\nxjk4I+r7ScBZIlITqKuqKzDtBWc6+zpwYrfhHwNjVXWX83k0NnyTNDZ043/eAG4DIuJ2K/BsVCih\nIiY8UCoikgWcqqrfO/m+ESPZO8DjTvjlUqB35AtVfQt4y+lp8hzwqKpeF52PE/roqqqzovZVBe7H\nVMf/6+xrhWkziBafczAx3kh5XzhpW6jqYSc0UNy5NQWexwjNdCdMNYfjYlfqUmpOnHpckd3vAQ9h\nXn6vF2drAueYSOhmBSeKZh1MjSuaHkBlETkX6AtUEpFL4jw2HuJegk5VJ4nI05hnNdIe8DWmYfin\nmDAQanrkrAd+BqxX1e8ARKQScBWQJSLfO8dXBHJEpJOqziuD/RasR+97VHUPZrBTBWdXNZxGNhHp\nACxIoKH2PODTUsrbDEzAeNEr1eni6ISLBjsNcwcwYYEjMbJoDyxyjon0278A42GuiErXH3gM8zKJ\n0NsJEx1DRM7GhE+g5BBCFYwobcEIxQ0Yjz7CRqBlCccD9AHWi0idyAbUxrxAioaLitoa7zkmErqZ\nBHSPOrQbpgaHiLQUEVHVp1X1UaeWMxuY4hxf7LEJIqUnOYG/Az1FpBeAqu7DNMreyYme+xRnX3R8\n/lJMbbAd0NnZ2mFCPdeVwXaLgxX6YDAK4+kA/BMYKiJXYLzKe6ITisj9IvJHMX2Yi9JXVafGUd6b\nwNmc2AhcEfgLpsHve4yHGKuMrcAOEbmW4z/iVRiv9gE5Pjq3NSaGfpVjdw6m73lRfgxEhK+qU2M4\nCVVdiAmRTMeEHjpixCTCX4D7nLDOnUWPF5EzMJ77ZmBTke1vQHsRubAEW0s9x0RxXvKPich9IvIH\nTLfFSKPkaKJefE7j8zBgmIhcWcqxCZlBYl79FuAVTnwxTsQ0Vkffj8mYZyha/K8DXlLVtaq6ydk2\nAs8AI5waqaUMRPq3WnyOiDykpQzecdJlAw9iftg7ova3BPqr6sspNLPMiMhPgY+K6Q3kK4Jkq8UC\nLnj0IvKSiGwUkYIS0jwlIsvE9M3tmmyZGcoMMSMfi8Xxdu/DeEBF+z5fjek+6VcaBkg4g2SrxeJK\n6OZlSh6EcwHQSlVbYxpf/ulCmZnIx5geHCVxDqaa/ABRfaadF8DBWH3B/YDTOBmIhrYg2WqxRHAl\ndCMizTBV2dwY3/0LGK+qI53Pi4EBTuzNYrFYLCkmHY0bjTCTPEVYixm1Z7FYLJY0kK5W7KI9JWwL\nsMVisaSJdAyYWgc0ifrcmOP9oo8hIlb8LRaLpQyoasnjHYpOZ1mWDTOtaEEx310AjHH+740Z9Rcr\nna6m8ezuzNzxCPeogiqMdMM+P2zAA17bEL+tOqIxq/cWUj1yH9YfBX2aW1dUY8f+sZwzS2GMQk7Q\nzi3o9w40G/SDC/lo7VFzb2YojN1ODT2TKTu6kbeukOqTou9PkM4v6PcPtDvoxn9y02yNuj9T6aM1\n2XqoJcuuSMH5aalpXCjkLcxsdAcxsfifYOYnuSkqzTOYmQXnAt2KNRZyFnL6V3XYpNPpVRDvgxqE\nLSg/JtB2oJsn0H9y1IPaVGGkQs6T3L6oK7P0ENkaeREH5dyCfu+OIM+P4PV13Zm5ZT7tW0XuibON\nnEn32mczbvN9PKiJOEp+Ob+g3795dHwjh20HX+DGWdG/mcj96ci8odXYsa+oo+TC+Wmpaby+CScZ\nCzkPce+MbA7NA63gtV0unt8DXttQ2raVmi81Z8Wev3D3vBMe1Kg0R5AxA/lKH+LeVdajT+/2Kj8s\naMNi3U4NLU7EF9Pmq1ps0eW0mGM9+vSe35WMWv87HtaSXrL/x52LBzBej7oYsQim0KsCKt2Z+d2t\nPL3KzTefx+c30GsbStvu4rGVwxlZ8kMIOVPpM0Y4sgW0QVDOLej3DlTasaBwNFeoU8uK/ZuAnOt5\naWEl9rwZpPML+v0DbVWdwoNbqVni/TlA+U9bs0Q/4OJFme3RO9sKmk/LYZs6Fy40sXq/bqAVarN5\n/1xytUQhcbZreWPO+XyyMSwvYr9voIOzOLz0IOVGlXa9QauDbgDt6rXdmbKBvlqD7Y/EqgWfsEHO\nY9w1vRwHvwYVd8pGS03j9QUq1lgY8wNe0z/wwGorJOm4/vrD8hyYUOqD6myFVJ9Uh026guZqX8Rp\nuT9fgP44gfQ3d2TeuiPIBPsyTvm9aQ+6CbTE9YWj0meDLgQ9z53y0dLS+Hk2uBHDGf3ln7nvkKCx\nlmizuIQIAtx5iAqPoXo1qoWlHVODnbt/wBs8wR3rMY3vlhQhQi/MlBaJLCn5whbq1J5L5wGYReFL\nWgrQkgR9mfLR3fx1lyJvY2Y2LRFVjgAPtGDFq0clawIiY+I5Lim8fhuW9FYCFdB80KFe2xfmDXQg\n6GLQrLiPg5wJ9P9MOLIOtJzX5xDaDZ4fyFdb/sAD8xP1yn/OP5b9ir9pPKE4u5VtA21YjR2HdlNZ\nE+vppFnNWLlnMn0TOi52Xmhpafzs0aOKAs8Ct3htS8i5A3hClaNxH6FaOEAnnqdkrcEsJG1JAYtp\nm1tAbu17+GsHEvTKl9Pq6pe54cAk+l1AHLU0S5m4ehDjN1Qxi7zNJM7arSpHL+GDtW+ZVTvjPq6s\n+FroHd4E+olwmteGhJE50vXNHLafv4Pql5Wx+vgi8D9u22UxvMwNOZfxPpXYn7AYjNMhs3eQM2sA\nk3qXntpSRkYsot1tmMWBhibyQl1Km6te54dpeRH7ZuERsypa7GG8l8n7BfXZUP2f3LIAGGG9E/e4\nT/68fCOntnyBnwGMQvXqRI4XoRqwGminip2j3WXKy6G8l7lh9w9549KyPPci3AScrVq2Va4sxSNC\nG8y04I1VYy6rGU8e04E/qfJZ2e0oXjsjBMGj51f8/cAXnHOa2kYl1/mQYbUu5z0oY/VRlV1D+Xzj\nb3l0aloalTIIEZodpnzTH/H6OUk4N6OAoSLUdNM2C2AWjB9ZVpF3eAsY4ZI9xRIIoe/H5E37qEQ+\nXQqwPTxcQ4T68+mY1Z9J75BgtTOaX/LkvjFc0AL7InabK4H3VTlc1gxU2Q6MpYzr1lpi4/RUG0Fi\nPaFiMQq4WIRKyVtVPIEQ+ix0RE9mLD+bL9+xYRtXuUTJGlNF9wxP5roOYdz3G6jPMlrNxb6I3eQq\nzCLgSfEst1TvxNzHbI3LVboB2ZiacJlxwp15wIVuGFUcgRB6VAvf5/LbtlNrqNemhIzLwcRtkqE8\nh0d0Zc53fZn6qn0Ru4MIzYHmwPhk87qe/1T6lubVt1Db1rhc4greeflWnimnyCfJvjzv58EKg/ny\nn6l8EQdD6A0TgI4i1PPakDAgQg7QB8reCHQM1cJxDL1nM/UGJ52XJcKVwHvJhG0iVGbfnoFM4F2u\nWIGtcbnC1/Ru/TOeb4oL4crbeTp7Bj3r7KVSyl7EgRF6VQ4A40hxFSeDuAgYr8pul/L7HOif6lhj\nptCS5b95hyt6u+TljejEvNl38MQMW+NKHhFa7qOS5FIALvSBr8uWnV3IZwwXLEk2r+IIjNA7fAgM\n89qIMNCb6Q/9jTvauFVddBr98oFByVuX2YhQ+3sa1LqYjzrhRgO3auHD3Dd8H5UHiwTuN+9Hhuyj\n0ntShr7zxTCiAwvm38DL41L1Ig5EP/rjaagNrATqq7IvPZaFDxEqVGbP3tWcll2bbVCG/vPF5Hs3\ncJoqtyZtZAYjwpV9mPaPafSti/EY3RATRFgCXKPKnKSNzGBEeA94V5U3XMyzN/C8Kp0SPzYk/egj\nqLK1PQv2vMYPZ9geBEnRqwlrdjsi7+bw60+AC52uZ5ayc/YS2v4d9zzGCJ8B57mUV0YiQjlMrfUL\nl7POAxqL0MDlfIGACT3AxXy07xt6dcT22U6GQeto9CruC8kCzDPV3qX8MpVztlH7E+KcSTQBrNAn\nT09glSob3czUaXQfD5zjZr4RAif0gxi/YSIDIA0TAYWYQbup9pnbQqKKXsjHu+/mrx/aGlfZEKEp\nUANMS5/LTAS6iVAjBXlnCkMxA9BSwVhgSCoyDpzQV2LfJctpdfhXPOG2t5MROL1iegCTU5H/5bx3\ndC6d7SjZsnM28FVCM4nGiSp7gWmA7QZbdlIp9OOAIakIfQZO6PvrpC37qPzlk/yqs9e2BJQ+QIEq\nu1KR+RDGbZjGmRwm29a4ysbZwJepyvwXPFl9OKOetTWuxHHGnnQEpqYif1VWAnucMlwlcELvMBEY\n6LURAWUQLoy2LI4mrL2yOjt39WH6XbbGlRiOJ3c27jf0HWM475QvILcBtsaVMH/nl6P6MO2wIu+l\n8CU5DlNrcJWgCv0EMIF6S8IMJoVCj2rhWpq8lUePrikrI7x0APaq8m2qCujF15vW05D1NJiDrXEl\nxDf06nA579UkhS/Jv/PLln2Ydq/bNa6gCn0e0NJOvZoYIlQFOpOiqmcUk4H+KS4jdPyKJ56/ktGn\npDKsUp7DI1qzbMOZTPs/W+NKjBn0rNbPNG2lLCw5nNFVFtK+5hGyXH2ZBFLoVTkEfAOc5bUtAaMv\nMMdplEslkzCrgtn+9AmQT5c2V/BuasMqqoWzOOMf39GsS0ryDykiVF9By6xOzEtqSu/SaMj3O05l\nIzPpMR8XXyaBFHqHidjwTUJcw1uP3sbTTVLdEKfKamAf0CZVZYQNEWQOXav1NZWtVDdkT8E6SYnS\nC2R2Jd2X1JTecTCiJStWDePDl9wsJ8hCPwHbIJsQC+jQ/HLec2XGvTiYhA3fJEKLnVTf0oS1bg9i\ni8UMoLOdgC4hzsR0TU0tqoWfcsHDm6nnahtXkIV+JtDWDv6IDxEqLqVNlR5mnYR0dH2cDPRLcRlh\noo+SNT0Fo2FPQpU9mFHMPVJZTsjoS+rbtiJMw7xYXCOwQq/KgY4U7HyTayfbPsFx0eUw5RZVZU86\nPEawHn2i9AGmp7G8KRjxspSCCNlAL9J3fxYDtUU41a0MAyv0AH2ZengJbXOxfYLjofcRyk1Nh8fo\nsASoLEKTNJQVBrwQehunj4+OwPeqbElHYc6o6Om46NUHWujPIG/LDHqCnfcmHnoDX6erMFW0N9P3\nPMOtn9saV8mIUAVoC8xOY7FTgTPt/PRxkZ74/IlMxQq9YRL9R0zhrIOF1EhHKCLo9MJ0SU0bA5h4\ndBmt22FrXKXRAzMtxf50FejMvrgFO9NoPPQl/ULvapw+0EL/ql63ZBfVN9WksLbXtvgZJ9ZXCxNO\nSRs9mLnZ1rjiIt1hGwDOYdzRh/n9e7bGVSpnkr6G2AgzgS4iVHQjs0ALvcM3GG/VUjy9gG9SMSNi\nSSzm9OFz6Hp4Ev0usDWuEvFE6AfzFctp1Rpb4yoWZyGQHNLsJDlrOS8GurmRXxiEfgZmMQBL8fQi\njfH5CPfqw2v2U2nZACY1TnfZQcEZPeyJ0PdkxuaZpoelrXEVw+Pc+epZTFZFPk53rWcYH1T8HY+8\n7kaNKwxCbz360ulNmuPzUdgXccm0BA6osibdBR+m3GVLaXPkWW651Na4YrOY09sOYVwtPKj1nMMX\nWcto7craDmEQ+llAJxEqeG2IH3H6APfAO6GfiR2YUywPcv8LQxhbwYs4+bn6+eaDVJx9G882T2e5\nQWIOXSt3ZxZ4UOvpw/TNs+juStmBF3onlrUSEl89PUNoB2xQZatH5c/EevTFspQ2rYcyti7excnz\nsC/imIggs+iefTqLPyQ9gwxP4FQ2XrqB+ofv4n+vSrbswAu9wzdYMYnJvfz52Yv5sLqHPSvmAq1F\nqOxB2b4nny6eeYwOM4EzPCg3CDRXsva01BWXeBHaaqJrtu+j8rTHuat1snmFRehtHLgYltC29VDG\nnopHHqMqBzDzqtiFSIogQvZ8OlZox6L38cBjdMjDCn1xnIG5Pl6SByZ+kwxhEXrbIFsMBeR67TGC\nfREXR1uQDfV1w+UeNoYuAhrbyQFj0h3TBugls3DhRRwWoV9Qkf2tNkvdKXbwx3FEqLCEthVOZ/G7\neOcxgm2QLQ7PhUSVw0A+LvXXDhnWo/cTqhxuw9K9C+jQFzv4I5r2IN/W1O1Xetx9zgp9bLqR3vlt\nisOGb4rgjG/ohvce/XKglghJjf4PhdADtGNR4RwTBraDP47TFX8IyeJT2Nd0g9S3Na4T8dyjd7A9\nb06mJbBLlU1eGuGMZp9Dkl59aIR+AgP/7zPO+w5vQxR+oxvmIfEUVY60Z+He+XS0NS4HZ9bILvjj\nRWx73pyMX17C4EL4JjRCv4lTp43l3F1W5E/AL6EB2rJkez5dwNa4IrQGtqqyzWtDgGWYhS7qeG2I\nj/BDfD5C0g2ySQu9iJwnIotFZJmI3B3j+4EiskNE5jjbfcmWWQzzgVZ2HUyDMyK2M6ahzXPGM+h/\nP+fc1dgaVwQ/xH8BEx7owPw9b3P1lza0doxQefTlkjlYRLKBZ4BzgHXATBH5UFUXFUk6UVWHJVNW\naahyQISlmNVgZqayrIDQBjMi1heiuoEG0zbQYLcV+WP4SUg4g7wjq2jWCTPC/Dngao9N8gwnrOab\nFzGwAsgRoU5ZV7lK1qPvCSxX1VWqegh4G7gkRjpJspx4mYMdmBPBLw2xERYCze0I2WP4JqwGkEvB\ntrl0BhtaYzq93zyVDaco8oofajdOjWtvMjWuZIW+EZww695aZ180CpwpInNFZIyIpHJFGyv0x/FF\nQ2wEVQ5i5vTu6LUtXhPVdc83Qv8OV94yhbN2YkNrzKNTbm++roiPOg70YOaRlbToRBltSlboNY40\ns4EmqtoZeBr4b5JlllaWFXqDr4TEIR/T0ySj+Zpeb/nJYwT4mj4z13BaeUEPem2L18yie8UupmnL\nN7WbXAq2JlPjSipGj4nLN4n63ATj1R9DVXdF/f+piPxDRGqp6km9DUTkgaiPE1R1QoL2zAVyRSjn\njPjLSByPsSs+8ugdbI0LmEvnoh6j5/FwVQ6KHKtxzfDaHi/5D9cvf4I7NgAX+aV2M5rht66l8afA\nUIEuiAxM5HhRjccpL+ZgkXKY6vjZwHrMA3JtdGOsiJwKbFJVFZGewChVbRYjL1XVpGP5IiwDLlVl\nQbJ5BRURmgOTVE94CXuOCP2BR1Xp47UtXnKTPLe8Phta/okHZuKjUIkILwPTVXnea1u8RIQ1wABV\nVnptSwRnvY1CoLYq+078rnTtTCp0o6qHgduAzzGNbSNVdZGI3CQikerFlUCBiOQDfweuSabMOMh4\nr/Fx7nx+ABMq+bCrXKTGle21IV7yH65fVo9NU/GRyDvkY7rkZizOVAM1gFUem3ICThtXpFdhwiTl\n0buJix7974A6qvzaBbMCyW3yzKrabG36Jx4AGIWq56GBCCKsAC5UZbHXtniFCKuBQaqs8NqWaEQY\nADyiSl+vbfEKEQYDf1Kln9e2FEWE/wBTVXnhxP0p9uj9yPP8tN8ZzPyJD73ZtDGPTpU6MQ981JgU\nRT4ZXOMSoSZQE/jWa1tiMA+zLGfodCEBOmNqnn5kLmWscYXuhp7L5zVW0DJHfdQ1Kt1Mpe/+pnw3\nBv+FBsCE1jK5500noMCZrMpXqLId2IqZ0CtTsUIfBE5jzY7yHGIlLfLxnzebckSocZTs2j3IG+ZD\nkQfbxdLPQgL2/vhm2pAYzMXUuBIOcYdO6IERjVi3cQjjHvGp0KWaXGC+Kke8NqQY5lRjZ/+jkjUh\nQ8NrVuh9itOzpS1m3izfocpWYBfQLNFjwyf0qoVz6PbGt7TI1OpnJ0ys1a+sz+JouY2cOoDMDK8F\nQegztefN6cB3Rbsv+owyvYjDJ/SGeRjPNhPxtdCroi1YubPA3B4/NhanDBHKAe2BAq9tKYG5ZKhH\nj/9fwlDGOH2Yhb6T10Z4hO8f1qW0GfUZ583Fn43FqaQ1sF6V3V4bUgKrKrG37lppPDUDQ2td8G98\nPoIV+igWYeamr+i1IenE6RbXEX97jOyh6qwnuHNuhok8BOAlrIq2Zcm+pbQ5k8wLrfn+/mCF/jiq\n7AdWYmJumURzYJtf5qAvgUwNrQVBSGjNsh2ZFloTQaqxs+8KWtzv85rM8gocaLJF6kxOxM5QCr1D\nJoZvOuPj+HwUC4DTnZh1JhEIoZ/AwCfHMeRbMiu0Vj+Lo+Wa820ffFyTUeVIa5btW0S7s0jAzjAL\nfQGZJ/SdCICQqLIHM/Npa69tSTO+biiPsJl6Mz7hos0ZJPIAuS1YudPpoO7rmkwrlu+Yb6a8idvO\nMAt9JoYHAiEkDhn1Il4tp71Shd31j5D1rI/DAhHmAx0ybCqE3KW0GQ2Mwuc1mSmc9ew4hiwnATvD\nfCNt6MbfZNSLeA5dO3dmbnYW6tuwQASnjWcbps0nU8jdQ9VZqF7tZ5EH2EqdGe9z+YZE7Ayz0K8B\nKotQ12tD0sFmqfvyKexrdpDyfwuAxwgZ5tHncUb5XNMZytdhgSgy6kWMOVdf91aLogAz3XfcUyGE\nVuhVUTLoYZ1Nt84dWJBVnsO+9xgdMubeAPyNO2fUZutsfB4WiCJjXsTO+gjtIBiLFamyGdgPNI73\nmNAKvUPGhG9m0T1oHuNKoJ4I1b02JB3spUrbR7j3zoCIPDheo9dGpIlWwAZVdpWa0j8UkMAiJKEW\n+t/xSKdLef9un/eLdYVH+P3U2mzNJyAeozPp2gLKuGJOkHCq2L4fyFaETBL6oN0bMA3mcd+fUAv9\nACZWXUOT+vi4X6xb7KFqm8e56+4giHwUmRIeOA3Ypco2rw1JgCVAUxEqeW1IGghSfD5CQi/iUAt9\nd2ZtWUQ7jpAVlHBGmXA8xiA+rJkSp8/Fp1PfFoezRulyTOw67ATxt2OFPkIdtl5VhT17L+LjnwXM\n002Ueph7ucFrQxLhFa4b0oU5P8iA0FoQQwNgX8R+ZgHQVoTy8SQOtdCjWriZeuM/4/xmXpuSYiKL\njfhjpfc4GcxXNVfRrEYGLPsYRI8RMiBOL0JloAmw1GtbEkGVvcBa4hxdHm6hN8wn/A1+gfQYG7Nu\nRwUO8i3Nw77sY0eC5zFCZrShtAeWqnLIa0PKQNwvYiv04SCoQjKiIes3DWXsQ2ENrTlV6zbAQq9t\nSZR8Oo+ozZYBIQ+tBbW2BQl0scwUoQ919ZOgPqyqhfl0fWsFrcI81L4NsMbny9PFJJeCRocoX2Er\ntcIcWgvmb8cQt7ZlgtAvBlqEdRESZ+KpDgRkVF8Mwl7jCmRYDSAL3duR+XxDr8WENLTWmfyr3mBE\nUDsEFNTGnVOPAAAgAElEQVRj4+B4EoZe6J1FSFZhPKsw0gzYHoDFRooj7EIfZI9xRB22rPgxr7wY\n1tDaWhrXPYspuQSzQ8ByQSvEkzD0Qu8Q5vBNYD1Gh4VAuxBPiRvErnsG1cIPueTJLdRt6bUpqUCE\n2vuolNWENRCcqUOOocrhDTT4Kp60Yf1xFSXMXmNQG2IBUGUnsAVo4bUtqaAeGwfNottvAhoagHD/\ndjocpMIsCcAc9CUwIp5EmSL0CU0AFDCCHBqIEEoxEaHKDmpU6czcngQzNADOvUlkStwA0fEw5ecG\nYQ76YrELj5xAKIXEIdAevUNY70/7JqzZnc1RCGBoAI5NiXsIaOC1LSkgDL+duMgUoV8B1BehmteG\nuMleqfxiBQ6030XVvwQ0LBAhrELfcS2NPyXYoQEI8f3BCn14cKbEXYwZBRcaCsjt1Jxvs6qy51yC\nGRaIEFoh2U+lOYEODRhCd3+ipo62Qh8mBvNl1cf4zSsBbhQ7iZn0KN/RPKeBDAtEsRhoKUJcXcUC\nRFiEJHRCjwlFHXJCU6EnY4S+JzOy19GoLcFtFDuJe3l4XC22LSDYYYEwj3WwQu9fwnJv4iJjhL4D\nC7YtoAME3/s9xk5qtH6Bnz0QZJGPIlRiIkJNoBqw2mtbXGAB0D5kYx06EtzR5AkTphtXIv/l0utn\n0X0/Afd+ixAar+R6Xm5+M/94NEShtQ7AgqBNHR0LZ6zDVswo7LAQmt9OPGSM0L/LlQu3U+ugoOW8\ntsUNnHm0G2NWAQo8fZl6yjoanUZ4QmthE5JQ1bgI3/0pkYwResezmo/xtMJAO8w82oe9NsQNupC/\ndb7RkbCE1sImJKEReicE1R4bugktoXlYCZ+QXL6Wxkee5ZZLQxJaC9X9eZD7e57Hp78MSWitGbBN\nlR1eG5IurNAHl1AJyRmat/UgFQtu49lGXtuSLGHsoz2AidXW0rge4QitherexIMV+uASxoc1LPfn\nVECBTV4b4hZdmbNlOa3YT8U8Ah5a+ynP33cjL3YMSe0kLjJS6EMyQZMVev/SkZD0uIlQjd3X1Gbr\nriGMuz3oobW1NG7aj8lNCEftJC4ySuidUXAHgYZe25IMIuQANYHvvLbFZcIk9OF6CasWrqPxuCn0\na+q1KcmyhLaVcs2Er2Fp+C+VjBJ6hzCISaSP9lGvDXGZMNwbhvL5zx/m90NDGBooIOAL+IhQfiUt\nyrdi+buEa0xNiVihDyYdCJvHaFgNVBOhlteGJMN6Gjbsz6TWhC80EIbfThuQ1dV155WZIvJghT6o\nhC80wLGxDgsI8P0RIWsFLSuHZLK5otjfTkCxQh9AOlJwxSiGXx/C0AAE//40PUDFDTnsCPoc9LFY\nDjQSoYrXhiRBGFZkS5ikhV5EzhORxSKyTETuLibNU873c0Wka7JlJkmgJ2gSQdbSuG5fpnYifKEB\nCP6yj7lHyZ4XgjnoT8IZhb2EYK/rYD36RBGRbOAZ4DzMzb9WRNoVSXMB0EpVWwM/A/6ZTJnJErUY\ndXMv7UiCU4+QTQO+h/CFBiD4Hn0u4RaSMNwf69EnSE9guaquUtVDwNvAJUXSDANeAVDVb4AcETk1\nyXKTohuz5CVu+CCgoY/c/ZwyI+Ar15dE0Mc6dCTcQhLYGpcTcmqAWVo0o0hW6BsBa6I+r3X2lZam\ncZLlJkV3ZrGORh0IZugj9xAVwrA8XUxU2QQcJriLUVuP3r+0B5aEZSLAREhW6OMd+VfUO/N0xGB7\nFm4rMN2Bgxj6CLvHCAEVE2cpxJbAIq9tSSHzCW5f+owM2wAkOzf7OqBJ1OcmGI+9pDSNnX0nISIP\nRH2coKoTkrQvJiO5+tZ1NBpDMEMfucALXhuRSi7hv/U6sOAfyH1LgREBukdtgVXO0ohhZTVQVYTa\nqmz12pgECUVDrIgMBAYmckyyQp8HtBaRZsB64Grg2iJpPgRuA94Wkd5AoapujJWZqj6QpD1x8TV9\nZgIVBN0XpMlIRMgmA+bR7sP08oto1xLjHT+Hea6CQCiEpCRUUREWYAbtTfLangTJBb7w2ohkcRzg\nCZHPIvLH0o5JKnSjqocxIv45sBAYqaqLROQmEbnJSTMGWCkiyzE/2luSKdMNVDmIaZBpV1pan9EC\n2Oz0HAotnZi3NaChtYwIDZzLZzkPcd+LAezMkAlhz5gkvayeqn4KfFpk33NFPt+WbDkpoADoBOR7\nbUgCZISQFJB71Xw6rsqj+/lnaF5QwjZg7s/LXhuRanrzdbm1NG4FtCYgNS4R6gCVODm0nBEEctCQ\nSwRxgqaM8Eh+q4+tPUjF73qQV9drWxIkI+5PLgVBrHF1BOaHaeroRLBCHywywqN3CNT9EaEaUA9Y\n6bUtqWYCA0fMoevhQmoEpjPDr/m/h4czqkUAw02uYIU+WIS9j3Y08zChtaDQAVikyhGvDUk1T+vt\nK/dReVNNCgMjmN/RtPlAJjQgmGNnkiaThf47AjQlrgiVgKaYuUYygUC9iH/Pw49dyvuNMshjDNSL\neCHtK3ViHgQr3OQaGSv0TqwuSIM/2gHLnR5DmUCksTwQrOa0FmcxpT6Z4zEG5kUsQtZC2pdvw9L3\nCebYmaTJWKF3CMzDSmbF58FMiVvfiX37nvl0rNSZuZA5HmOQPPoWIFvq6abLM1HkwQp9YIR+OKPu\nvIv/7Z0poQFnPpJFmNi3rxFB5tI5uxXLPyBzPMYgCX0njL0ZixX6gAj9Gpo0GcDE5mROaACCIyaN\nlax9zXTVpRki8gCLgWZO25HfsULvtQEeU0BApsRdQtsqGRYagOC8iDuTYULitBUtJxijy63Qe22A\nl6iyLYft2QtpN93PIRERTi0kZ28j1oV1DvriCIrQZ6qQBKXGlan35xgZLfQA7Vm4fylteuHvkEhn\nJSs/S4+Gcg76EpgHdApAjaszmOpWhuF7oRehKmZtg+Ve2+IlGS/07VhUOJfO4O+QSEYKiSobq7Gz\n0nJaTvVzjYvM9Rjn4f8aV0fMQLaMW2wkmowX+s847+FxDFmHv0MiGSn0AO1YtH8pbfrg0xqX0xjZ\nDNM4mWkEYaxDpr6ETyDjhX4djadNod8BH4s8ZLDQn87i7fl0Af/WuDoASzNoIFs064DyIni6BnQp\nWKHHCj3AMszAnOpeGxILESoCrTDz/Wcc4xjy17EMXYN/a1wZ+xJWRduzYP8oho/1cWjNCj1W6HEm\noZqPf6ug7YEVIV+erli+p+G0CQza51ORhwwXku7MOvodTTvhw9Ca04jficwaUR6TjBd6h7lg4gM+\nJOP6aBdhCdDE6T3hRzLWowfoyPxtc+gKPgyt5dP59dpsqaTIKz6tbaQNK/SGfMwP1o90IoOFRJVD\nmLCV73p3RHmMGfsifpcrbp1Mv534MLSWT5dOZ5BXAR/WNtKNFXqD3z36jBV6h3z8eX8aAwdVibnY\nfSYwg17frOG08oL6rjF6Bj0rdmUO+LC2kW6s0BvmAe1Fkl9D100cj9EKvU+F/h/c/HxvplfwcUNk\nynF6Gy3GhzWuf3PjsgZ8Pw0f1jbSjRV6QJVdwPdAG69tKUJD4CiwwWtDPMaXQr+M1qf3Z1JNbGgg\nH0yg3k8c4JTcX/LUjzNd5MEKfTS+i9P/i5te7MXX5RT5JFM9Rod5mMnnfFXjmk23St2YDTY0MAef\nCb0IdYAaZMAavvFghf44vovTL6N127OYkvEeoyo78WGNazL9DrZkxRhsaMB3Qo+xJ1+Vo14b4ges\n0B/Hdx79LLpX7s4ssB4jGDHxzYtYhNpHyc7pQd7FGS7yYJykDj6rcXXFPDMWrNAfI5/O19Rk22A/\nNaxNor/1GI/jtzh9V2CO9RiPtXGtA9p6bUsUXcHE1SxW6I+RS0GjLI6WX08DX4RJHI+xRi9mWI/R\n4Deh7w6mumUB/Ncg2w3r0R/DCr1DFrr3DPL4isHL8EeYpDvWY4wmvxo7+x2VrAk+qXV1w3qM0fgm\nTu8sKN8Ys+awBSv00YxoyPqFt/Ls+z7xoK3HeCLrszmSvZ6GA/BH47QV+hPxUxtKZ2BBps9BH40V\n+giqhS/zk3t3UsMvAz+s0Eehip7O4sKZ9ACPG6dFqIFZtWiJVzb4kDlAV5+sBmYbYotghf5E8oAz\nfPKwWqEvwkLav/whwxbhfeN0F2CeM/OpBbMaWA7bKy7i9Gk+CK3ZhtgiWKE/kXWYkahNvDRChNpA\nbcxc+RaHndSY8h9uWOuD0Fo37Ev4JDozd98COvTG+9CabYgtghX6KFRRjFff3WNTumEbYmMxE3/U\nuGx8PgadmLd1Bj3Bw9Dabqn6YgUO5O6k2oM+aLD3DVboTyYPOMNjG2zYJgaqbAD2AC09NsUKfQzG\ncMHvPuO8TXgYWptOn67tWJRVjd3n4n2DvW+wQn8yVuj9zUwwLbJesE1qvXQK+07fT8W/Wo/xRFbQ\nasI8OlcSdJdXNkxkwCm9+AbsaPITsEJ/MrPwPjxghb54PBX6r+ndNZeCrIocPA/rMZ6AKtuAjcDp\nXtnwOL9e0IQ1M/G+wd5XWKEvgirfA/uAZl6UL0ItoA6w1IvyA8BMPKxxTWDgKb35OmKH9RhPZgaY\nQL0X7KdSt/v58w1W5E/ECn1sZuGRmLzEDa91ZfZRRT62oYGY5GH6a2d7UfhT/GJpM1Z9jfUYi8Mz\noXemJq6LWQjFEoUV+th4FqefS+f2QxhXA++7qPkSVQoxUxa3S3fZIsgBTjnj1/xthBX5YvHSo+8J\n5NnxDSdjhT4Gz/GzM3sw42deDPz4hl5VzmQa2NBASXgVp28MlANWeVB2UMgH2olQyYOye4JpibWc\niBX6GAzjw2qLOT3nMNlp9apFyPqGXhU6M/cDbGigJPLwRuh7A1874y0sMVBlH2YyMS/mvemFFfqY\nWKGPQX027mzMWr6m9wLS61W3U7K2NNNVl1qRL563uXpgOxb+0IMaVx9gehrLCyppD984veSsR18M\nVuhjM6IlK1Zeyn9fTbPg9gETt7EUz/l8WnM1p1XbS6V0t2P0BtPlxlIiXsTpWwG7nUF1liJYoY+F\nauHHXPzQVup0S3PJZ2I9xlKpzq7duRTwJWcvJk01LhEqYqa/zUtHeUHmKwZd0Jg1l6W5xmXDNiVg\nhb54pgJ901zmmViPPh5GtGL54h/x2ntprHF1BpapsjtN5QWWfkyuu4tqlTZRN501Liv0JWCFvniW\nAxVFOC0dhTkzVjYE5qejvECjWvg6P/rtDnLS2SBr4/NxUo4je/sylU+4cDlpqnG1ZPnVn3CBF+02\ngcAKfTE4PSvS6dX3BmbYPsBxMw3oLUK5NJVn4/PxM6IVy+fdztNfpKPGJULV9TSsPYjxXbDjT2Ji\nhb5kpgBnpaksG7ZJAFW2AqtJUze+Omy+cBbdbrEeYxyoFj7FL2/aQ9U+aSrxzLYsKazEfrDjT2JS\nZqEXkVoiMk5ElorIWCnm4ReRVSIyT0TmiMiMspvqCen06G1oIHEmk4YXsQinHabcKV3I74n1GONl\nFtBShJppKGvQSlq8AIzCjj+JSTIe/T3AOFVtA3zpfI6FAgNVtauqejbZURmZDbQSoXoqCzkgFV+o\nxN7+31P/DustJsRkoF8ayhl0Bnlbssw4KesxxoEqhzChrnTUiAfupMbnqF5tRT42yQj9MOAV5/9X\ngEtLSOv1ikBlQpWDGLHvncpyJjKge0tWZNdn4xCst5gIU4B+aZhSevBcOj+G9RgTZRLQP5UFiFAV\nyMW2n5RIMkJ/qqpudP7fCJxaTDoFvhCRPBH5aRLlecK1vFntVp55PpWx2Y+5qMoQxoH1FhNCldWY\nKaVbp6oM5yUyeDP1PrEeY8JMBAakuIy+wCxn6gVLMZQo9E4MviDGNiw6naoqFDv/R19V7YqJbd4q\nIumoarvGJXyQlU+XpqQwNvsvfr45l4JJWG+xLKQ6fNPK+bs8hWWElRlAexGqpbCMgcCEFOYfCsRo\ndBkOFFmMib1vEJEGwHhVLXFlGRH5I7BbVR+P8Z0Cf4raNUFVJzj7LZbAoaqBDFm6iQgTgUdU+TxF\n+U8Hfq/K+FTk70dEZCDmBRfhj6U9a8kI/WPAVlV9VETuAXJU9Z4iaSoD2aq6S0SqAGOBP6nq2Bj5\naSxji9ufNkRyupO3eDN171qtp73ufvacD9ytesKNs8TJPOn0zXl81nMdjRAYherVbuYvwijgY1Ve\nTew4j59bnyDCQ0CWKvemIO+qwAagbiaHbuJ51pKJ0f8VGCIiS4HBzmdEpKGIfOKkqQ9MFpF8zPDk\nj2OJvK9RLZxN9/9dw2mpCg8MAb5IUd6hpxMFW6uwh+n0cX2mURGygEGQOd6i27zM9d06Mfe2FLVx\n2fh8nJTZo3cb33r0gAgdgY+B5m7PRS7CPOCnqnaejjIhknMVI2eMY8hb27XmH93Nmk7AO6q0SfxY\n759bP7BHqkxqyPp+K2lBbba5WuMaIW/Oqc3Wmk/zi4VAxq76lWqPPpNYgFlZyNXeHSLUB5pgBpdY\nyoJq4Wiuur2QmoNTkPtg4KsU5JsxVGHv7kGMZyRXr8TlGtdsurUazuiUdpQIC1bo48Dx4scC57qc\n9dnABFUOu5wvIvI7EXkhyTyaichREfH0ORGRCSJyYwlJJgKd3R6FeQYz7/gXN/Wz0x4kxYjuzJp5\nJ3+b66bHLULT72lQ0S67GR/pmhAqDHwO/Ah42sU8zwHTgd5tVPUvqcjXI4513xWR64EbVfVYm4kq\n+0WYhGnvGOVGgSJUqUK7RsMZnQ20x3iMrjb0ZgSqhX8QhgGLRKjgDEJ0g2GHKD+6HEfKATdlatgm\nXqxHHz9fAP2dBSiSRoSsHLZfNZuuP3bbYxSRbLfySqBMr52GMcAFLuZ3fgcWbK/FdrAeY1I4qz4t\nw93xDpfuo/JoO4gtPqzQx4kqW1uxbP97XPZNRJidCdt+LSJzRaRQRN4WkYpgPE8RmRydhxMGaWE+\nNfv4KLdUuJf8ntXg/I6wTETqi8iTIrJdRBaJSJeoYxuKyLsisklEVorI7VHfPSAi74jIayKyA7je\n2fdaVJqzRGSak/dqEfmxs/9CZ8K5Hc7+uBs0nfP/rYjMA3aJSJaI9I4qJ19EBkSlv15EVojITucc\nRkTZH21rzJCRiJwO/AvoIyK7RGRb1NefAuc7PWXc4Ipvaf5n7LQHbvERcJEbGTkhuh6YcKolDqzQ\nJ8DFfLTnKwZ35njjjwLDMbH75kAn4Pr4cmvR/AAfysPAJshbCgsx83XMBGoB7wB/A3AE7yNgDmZx\nkrOBX4nI0KgMhwGjVbUG8AZRI5VFpCnG430SqIOZ2jff+Xo38EPnuAuBm0XkkrgvClyDuR45QANM\n76QHVbUmcBfwrojUdsZRPAmcp6rVMbN1RmyIqyeTqkaWDpyuqtVUtdbx7/gW2AYkvfyjCKcA52+m\n3lvWY3SNj4CLXZqX6ELgK1X2upBXRhBsoRd5HpEJSYU+Esjjev6zaiRXc4AKeRyvyj+lqhtUdTvm\nYS51fnSzWEbDZlDlv11hVCUYcghGA3tU9XVnSolRQFfnkB5AHVX9s6oeVtVvgRcxIhthmqp+CKCq\n+zlxIrkRmJlGR6rqEVXdpqpznbQTVXWB838B8Dbxz0+izvmvU9UDwA+BMar6mZPfF5g1Vi900h4F\nckWkkqpuVNWFkUsSZ3klpr2Cdw7dxtPvuBAKGwrMUWVTEnlYTmQuUBEocfR8nFwKfOBCPhlDsIUe\n2mBEKZnuVXHn0YmCy+qyeUs7Fv1vlJcXver8PqBqHGUOgP17DrB5UZTHuB9OEJbovJoCDZ1wyHYR\n2Q78DqgXlX5tCeU1AVbG+kJEeonIeCckVIh5gdWO4xwirIn6vykwvIidfYH6qroX05j5c2C9iHws\nIm0TKKdUbuXZQ59wYdOjSLLd7a4E3nXJLAum59qFfLzrbv76cTIvYqe2NQRTc7TESdCFPlJ1S6ax\nLP48VAsX0uH+b2lxWRz57gEqRz6ISP2o766GtTGFtxjWAN+qas2orbqqRmKeJU0qB2YlppbFfPcm\n8F+gsarmYGLgiTwX0eWuBl4rYmc1VX0MQFXHqupQzIjpxUCk++cJ18r5Pp7yTmAAEzdWZTdjuCAS\n4kkYESpgYsnvl+V4S/HcyL8PjuGCFpqEY/YPbn6/G7NUkVdsl9f4CbrQjyD5xrJE8xiNafQrbTGS\nuUAHEeksIqcAD5jdjcsBl8OS7xKwcQamsfO3IlJJRLJFpKOInOF8X1ro403gHBEZLiLlnJh5Z+e7\nqsB2VT0oIj0x16Oso39fBy4WkaGOjaeIyEARaSQi9UTkEidWfwgj7pH1cfOB/iLSRERqYGorxbER\naCwi5Yt+kYWOOJfP84czOj+J52EwsEiVdWU83lIMw/hw/T4q8SVnL6KML+IPGdbtx7xSAztIKiGC\nLfSqhUk3liWYh7NW6QQglld/zLNW1aXAg5humUsw0+kqPNrXfC7czYmCGssrj+R1BONldsGEYDYD\nz8Oxl01xx0aOX43pevhrYCumUbeTk+4W4EER2QncD4yMZUM8qOpa4BLg95gw1GqnTME8a3cA6xwb\n+gE3O8eNc8qdh6lZfVRCuV9iRipvEJETY+iqhf/Hb4bup1I8L+KYDOKrp+7joVPtICn3yeboiIv4\neO4wPizTi1iEhlPpW/PHZr0j2+U1AexcN2VAhCuBm1QZkuixg2T8sgFM5AH+tIwMnp8jlYjwHvCp\nKgmNDBahUTV2rlpFs3JO//kyz83ix+fWD4hQF9OnvrmqucgJHPunyuxptIeq1bCDpI5h57pJHR9X\nYXe/5dJqeiKenwjNZtOt2S94qhW26plKXgZuKMNxv7yIj9faQVKpQ5XNmK6+1yVynNN28rO9VPmb\n7fKaOFboy4Aq+4czevMT3NGbxAT7nqsZ+Z0VkpTzaQ0Ku+TJGTPifRE7oZ4bd1P1EuwgqVTzHHBT\ngn3qhwMLVFlYakrLSVihLyMPcf/ikVzNfDrMIw7BFqEJMLwiB4ZihSSlqHL4Rv694a/c04P4X8Q/\nA8Z+qMPmWY8x5UxqyLoGHzBsdgI14ttxd56pzEJVfbHhLD0b737PN8i5mWcLTmHvO/Gdnz4D+qjn\ndmfItpOqnzVjpX7AxYvUrH5W0r2pALoGtJtb5fv2ufXJ9jh3LO7OTD1EtiqMLCntKK78oAHr9h2k\n3JjS7mUmbvE8a54bWZqxfv7BgFYBXV+aQIA2At0GWs9rmzNmg5xnuXlKNocWgpYrKe1dPDalJ19v\nV3BNSPz83PphO4KMOZtxeh8Pri7pmoNWOY1Ve9/mKlXQ0l4KmbhZoU+L3XpLZ+asPYJMiCUUoOV6\nMf3bn/DiajeFxG5x3RsBHQd6ewlpeuWw7eBCTlc3hcTvz63nG+TMpsvHwpGtoK1KuD/PX8hHa517\nM8P+fmJdI7TUNF4bWZqxfv/BgFY4nYW7buEZPUyWRguFIzT/7s20bfupoNYj8eT+tK/Gjn3T6TWz\n6IsWtAHomn9zQ57bQuL359YvG+gdHShYH8tRAr0MdMWf+X0ThZFW5Iu7hmipabw2sjRjg/CD2Uzt\nsYP4Us/l021vc9Wpxm4V0MdBp28j53PrkXi3Pcnti+qwSZ/jp3oEGamqLKDd67nM3XEbTy1VaOq2\nkAThufXDBprdjbzCwXyhc8lVhZGgFR/kvvE12XrwE86fZn8zpV1DtNQ0XhtZmrGB+MFAzm4qj+7H\nxG8bs3pvM1buqk7hvtYs2f09p45NhZDYLaH7M2YRbbUDBYe6kbejEWv21GD7oV/wdz2CaCpqWYF4\nbn2yHaD8p89ys9Ziy6HeTFtdk60HB/PFwbGco7YWXPoWz7NmR8a6yGEpN2EGPQdUYxd12LKlHpvq\nZHMUkhhh6RdEpDXQETN1wkeqOttjk+LHdN97bg+VG3/AJWd2ZD4dWPB9NkcbYMYzuN7VNUjPrec4\n9+ce/vLbquweN5zRrduyNPJtSu5PmIjnWbNC7yYiYzD9tmcChZjpVEPxoIrIHcBUYBHwnKqO8Nik\nxDnx/gwHHiNFQ+kD9dz6ieP3aDZmrqQbgv7bSTVW6NON45lwfACV+T9ED6qItAd+oKr3uphnemoL\n0fcnxfckUM+tn0jjPQoLVugDjog0V7OaVDxpLwTGq1ngI9lyGwA7YuUlIvcCT7hRTlSecdcWvLom\nUXkWe22KpMvY59aSXuykZgHGWUS8dwKHPA5ku1T8ZuC3MWwaBjwFNHKpHABU9QlVnYFZCatYEff4\nmkSIeW0sFj9TzmsDwoCIdMEssH1XgseNwCyo3RN4X1Xfjvr6JlW920mXA9yDWWlqO5ALTFRnbVYR\naQNMVdVdJZRVDWioqktKy09VD4vIJyJynaq+6hx/GWae+dsx8/E/HMf5ZQFLgSFxeuGXlZKvq9ek\nGJujr9NJ9yfWtbFYfI/XXYNK6yJU3H6/bMCdwHvAywke1wq43fm/DkasmjufO0d9lwV8A1wTdWw2\nZtHti53PNwE9SynvRqBhPPlF7X/VhetzGVA+jnTDgGpA62K+d/2alHCdGpV0f+K5Nn5/bu0Wni2e\nZ82GbpJEVf9G2Vak74ATAlDVLcByoLvz3UXAV87/g4BcjfL21aw4NRKI1CBqqAl9lEQTVV0fZ34R\nNotIq0RPLBpVfV9VD5WUxqkt3I95YV5VTDLXromIfCkixdVmm6jqOkq+P+DCtbFY0oUVencoS6Nb\npBsZIiKYEMFy57secGze7brAzhjH78V4wKiz+HaxxomcjlmMO678opjLieJWUhmdReSnInK5iHzg\n7DtbROaJSF8RuU5ENjv7rhGR/4hIU8f+91W1h6oOUdXiQjeuXBMRaYTphHA4xnfR16mk+wMJXBuL\nxWus0LtDwl2XVPWQqs53Pl4I5KlqvvO5sjp1MuBroJazqHY0bTDr0MbDJRhvOdH8tgON4yzjf4DP\nVPU94GMAVf0Ssz5ttpp49iKgguOJzwaujDNvcOGaiMgQ4AnMerM/ipHk2HUq5f5AYtfGYvEU2xjr\nDpXZl5YAAAbTSURBVLG6hf4WqFRM+ldUdZWTLge4Hvhh1PfHeoqo6ioR+Tdm8NV/o9L0Ay4t1TCR\nbEyM/GAZ8tsHVCitDIf3gTwRmYwR0whHo/4/wnGPeQfQLM68wYVroqrjROQG4HFVnRX9XdHrFLU/\n1v2BxK6NxeIpgRd6kcS96Violin8cuzwk/MrOZwCx0IC9wD/o6q7RaSpqn4HHI5KUxUTv/4jjqg5\nseHPgG1x2HYOMLaM+dWIswyAVUB74ALgBREZpKobY6Q7Emd+RUn6mjjXu2tRkXc44TpFpY91fyCx\na2OxeErgQzeqiBtbkmaU9fjbgdHAKSLSk+Me7gZHzMAI505gRdRx/THD90v16IHeRRolE8mvaFy6\nJG4Gdqvqa8CTzrFgrk309ZEif+PFjWvSHhM+QkSuKfJd0esExd8fSOzaWCyeEniP3mtE5DZMT5Em\nIvJHzKjRWA2FRY87CxPiiAieAqc5/0/E9N3+CuMpbwMOi8i/VHU/0BpYBkwHXi+hjBxMLDmaRPLr\nArxY2rk4HAD+R0QKgaqqmi8i5wN9gMpOI2g74B4ReQ64FqghIp+oal4c+btxTbYCO0TkWsxYACD2\ndSrl/kBi18Zi8RQ7BYIPcYTnLlW9L8l8foqZO2ZDGY49BXhEVe9Mxga3cOuaFJN3QtcpnmuTic+t\nxRvsFAgBRc1kTltEpE6SWTUsi8g7XIOZXMoXuHhNYpHodfLVtbFYSsMKvX95EjOqtEw488LMK+Ox\nTYDtqrqkrOWniKSuSSwSvU4+vjYWS7HY0I3FkgLsc2tJFzZ0Y7FYLBYr9BaLxRJ2rNBbLBZLyLFC\nb7FYLCHHCr3FYrGEHCv0FovFEnKs0FssFkvICcRcNyLij87+FovFEkDKLPQiMhx4ADgd6KGqs4tJ\ndx7wd8x84i+q6qOJlGMHnVgsFktyJBO6KcAMR59UXAJnMYdngPMwU8ReKyLtkigzsIjIQK9tSBVh\nPjew5xd0wn5+8VBmoVfVxaq6tJRkPYHlqrrKWSD6bcxybZnIQK8NSCEDvTYgxQz02oAUM9BrA1LM\nQK8N8JpUN8Y2AtZEfV7r7LNYLBZLmigxRi8i44D6Mb76vap+FEf+thHVYrFYPCbp2StFZDzw61iN\nsSLSG3hAVc9zPv8OOBqrQdb2rLFYLJayUVqnFbe6VxZXSB7QWkSaAeuBqzFLyJ2E7V1jsVgsqaHM\nMXoRuUxE1gC9gU9E5FNnf0MR+QRAVQ8DtwGfAwuBkaq6KHmzLRaLxRIvvll4xGKxWCypwfMpEETk\nPBFZLCLLRORur+1xExF5SUQ2ikiB17akAhFpIiLjRWSBiMwXkV94bZObiMgpIvKNiOSLyEIR+YvX\nNrmNiGSLyBwRiadzRaAQkVUiMs85vxle2+M2IpIjIu+IyCLn+exdbFovPXpnQNUS4BxgHTATuDYs\n4R0R6QfsBl5V1Vyv7XEbEakP1FfVfBGpCswCLg3L/QMQkcqquldEygFTgLtUdYrXdrmFiNwJdAeq\nqeowr+1xExH5Fuiuqtu8tiUViMgrwERVfcl5Pquo6o5Yab326EM9oEpVJwPbvbYjVajqBlXNd/7f\nDSwCGnprlbuo6l7n3wqYaTxCIxoi0hi4AHiR4jtUBJ1QnpeI1AD6qepLYNpDixN58F7o7YCqkOD0\nrOoKfOOtJe4iIlkikg9sBMar6kKvbXKRJ4DfAEe9NiRFKP/f3v2zRhXEURh+j0bBiCAoiOAWaaw1\nWBlQEBUEsbYQwcJKxFYt/AxWNhKCf0KaSEQQRNQvoBgQtLMyIWJqO/FY3IlYuGAxy+BwnmbvXaY4\n1eG3szt34ZWkd5Kutg5T2QywKWlB0ntJ9yVNj1vcuujzTXAHyrbNMnCjTPbdsP3T9hHgEHCil+em\nSDoPfLO9SqdTLzBn+yhwDrhWtlJ7MQXMAvdszwLfgZvjFrcu+nVg9Mf9iGGqj/+EpB3AE+Cx7aet\n80xK+Vj8HDjWOkslx4ELZR97CTgl6WHjTFXZ3iivm8AKw1ZxL9aANdtvy/0yQ/H/Veui/32gStJO\nhgNVzxpnin8kScA88Mn23dZ5apO0X9Lecr0LOAOstk1Vh+3btke2Z4CLwBvbl1vnqkXStKQ95Xo3\ncJbhibtdsP0V+CLpcHnrNPBx3Pqmfzxi+4ekrQNV24H5zn6xsQScBPaVw2V3bC80jlXTHHAJ+CBp\nqwBv2X7RMFNNB4EHkrYxDEWPbL9unGlSettGPQCsDLMIU8Ci7ZdtI1V3HVgsQ/Jn4Mq4hTkwFRHR\nudZbNxERMWEp+oiIzqXoIyI6l6KPiOhcij4ionMp+oiIzqXoIyI6l6KPiOjcL2siy3LKVo4xAAAA\nAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd5a320e8d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(ts*Ω/np.pi, σz_expect, 'r.', label='numerical result')\n", "Ωp = (Ω**2+Δ**2)**0.5\n", "plt.plot(ts*Ω/np.pi, 1-(Ω/Ωp)**2*2*np.sin(Ωp*ts/2)**2, 'b-',\n", " label=r'$1-2(\\Omega^\\prime/\\Omega)^2\\sin^2(\\Omega^\\prime t/2)$')\n", "plt.title(r'$\\langle\\sigma_z\\rangle$-vs-$t\\Omega/\\pi$ at '\n", " r'$\\Delta/\\Omega=%.2f$ in RWA'%(Δ/Ω))\n", "plt.ylim(-1,1)\n", "plt.legend(loc=3);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### With $\\gamma_1$ collapse" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/latex": [ "$${{0.03162277660168379}\\tiny\\times\\normalsize{\\hat{σ}_{-}}}$$" ], "text/plain": [ "Mul(0.03162277660168379, 'σ_-')" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "γ1 = 0.2*Ω\n", "c1 = γ1**0.5 * sigmam()\n", "c1" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Generating cython code...\n", "Compiling cython code...\n", "Running cython code...\n", "Starting at 10/25 15:52:17.\n", "Finishing at 10/25 15:52:17.\n", "Total time: 0 seconds.\n", "Formatting the output...\n" ] } ], "source": [ "res = mesolve(Hp, [c1], initial_state, ts)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "σz_expect = expect(sigmaz(), res)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEjCAYAAAA8IcqvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4XFWZ7/HvL4FG5oggEIggKCooikOIIJiWQQgKeFtk\nuDSiXi9Ni/d2iwo4pu2+zTXPYzteFRQVkUFEoUEQGSQQbYUgBJRBGUyTEBLSmjBrGN77x16Vs0+l\n6pyqU1VnD/X7PE89p2rXHtauc867V71r7bUUEZiZWX1NKboAZmY2WA70ZmY150BvZlZzDvRmZjXn\nQG9mVnMO9GZmNedAb2ZWcw70ZmY150BfEZKmSDp5gttK0kf6XSYzqwYH+uqYA9wwkQ0ju/15fUnP\n62+RzKwKHOirY8+IWNjD9hcAR/WrMFYfkn4rad+iy2GDs17RBbDxSdoF+F0v+4iI+yW9t09F6pqk\nacCpwBJgFfAq4PqIuLLFupsC0yOip3Nu2udi4L0R8bMO1z8xleGT46y3tqzdnGMX5T4c2BV4Dngw\nIs4ZY92ZwH4RcXo320bEK3so32LghcCzwBPA1cAHIuJRSacB+0TEnNz69wD3tFj28Yi4MLdsPrA7\nsE1ErJlo+SyJCD9K/gA+Dqzfh/0cDOxdQPmnADcCR+WWTQVuBt7eYv33Adv1uQx/IAuCnay7HnAu\nsBrYbJx13wdM7/YcOyzH5sCvc69/CWw5xmd8JfCpbrftw+f6lvR8a2ARMC+93it9hkqvt03rLwOm\n5JY9RxbQG/vcEXgSuBt452T/vdbx4dRNyUnaGHg6Ip7uw+6uBA4a41inSPpB07IvSvpi7v2lkh6V\ndLekt4yxr2slNb4x/jXwqoi4oPF+RDwLfB/4cIvNZ0TEg52f1tpjnirp3lS+O1KNFknnAC8CLpP0\nmKRWx8x7J1nN/Hbg78dZd0ZELKP7c+zEvsCdude3peO0cgRwDaBut5W0uPG7TM9PlnSbpNWSLpC0\nQSeFjYgVwFXAbmnRzcD6wGvS632A64DfNy27LyKW53Z1XDqXc4B3d3JsG5tTN+V3NHBeP3YUESHp\nYUnbNP1jNZwPfErSJhHxuKSpZAHkcEkvAz4AvD4ilkt6EW3+fiRtR1aLeyYt2gp4tMWqTwKbNm37\ncrKa3ETcC7wple9dwPck7RwRfyvpTcD7YpzUjSSRfZtYIulfge9I+kJE/LnFuvmydnOOOwHvH6MY\nv4qIfwe2J6sRN6wGXtqiHFuRpU5WAhunxR1tmzSPVX4E8FbgL8AvgOOBM8Yor1I5tierSFwEEBFr\nJN0IvBm4lezis4CsRr8vcEv6eX3T/o4DPg3cBHxa0gsj4uExjm/jcI2+/HaIiKX5BZJ2kXShpOtS\nDfUySX/X4f4uB97W6o2IeIDsn+8dadFbgCcj4iayQLIBsJuk9SPigYi4v3kfkg4APg8sl/S3afGv\ngC3St5O8Xcj+8fMOA36U9rW5pLMkLZD0M0m3pHM9pU35L2pcwCLL994DzGz/UbT0NuDStI8rgQeB\ndm0ba8tKF+cYEfdHxGljPP49rToNyF9g1gCbtCjHfwN+2LTs+R1u2yyAL0XE8ohYBVzGSO27FQGX\nSHoUeAC4D/iX3PvXkwVzgDeR9RxbkFu2D7lAny7I2wGXRsQ9ZN9Kjumg3DYGB/ryWyJpRuOFpC2A\nrwPHRcRfA9cCx0bE1zvc3yHA5ZL+e7pIPCbp8tz755F9i4DsH+xcgIi4F/gHYC6wQtL5krZt3k9E\nXA08A3wuUuNfRCwGzgIOaCrLPsDncuc2lawtotH49gbgBOA7wIHA2RHx9oj4bKsTk3ScpFslrZK0\nCnglsGWHn0vDS1OAafhX4MOpbPljjSprp+fYpccYScUAbAj8qakcs4AbIyKa1n10vG3HkP+29xRj\nXyACOCwiNgNmk1UOXp97/wbgTZKeD2wVEfeRtRfslZbtxuhuw+8GroqIx9LrH+D0Tc+cuim/c4GT\ngEZw+wDw/3KphA3I0gPjkjQF2DoiHkr7PbfFahcBn0vpl8OBWY03IuJ84PzU0+QM4LMRcVx+Pyn1\nsUdE/Dq3bBPgk2Rfxy9Jy15C1maQDz77k+V4G8e7Jq27U0Q8k1ID7c5tB+BMskDzy5SmupWRYDfu\nVGopT3110+IfAf9MdvH7XruydnGO3aRu7mN00NyS7BtX3huAjSS9Fdgb2FDSYR1u24mOp6CLiBsk\nfZnsb7XRHvArsobh95OlgYisR84y4H8CyyLiPwEkbQi8C5gi6aG0/QbANEm7R8TtEyi/4Rp96UXE\nE2Q3O/1VWrQpqZFN0m7AHV001B4E/GSc460E5pPVou+P1MUxpYvekhrm/kKWFni2xS52Be5K2zT6\n7c8hq2Hel1tvX2Ae2cWkYVZKE60laT+y9AmMnULYmCwo/RdZoHgPWY2+YQWw8xjbA7wRWCZpy8YD\neAHZBaQ5XdRc1k7PsZvUzQ3A63KbvpbsGxySdpakiPhyRHw2fcu5Bfh52r7ttl3S+KuM8gVgpqQ9\nASLiKbJG2Q8xuub+87Qsn58/nOzb4CuAV6fHK8hSPcdNoOyWONBXw4VkNR2ArwEHSvobslrlqfkV\nJX1S0qeV9WFutndE/KKD450H7MfoRuANgNPJGvweIqshtjrGH4FHJB3NyD/xYrJa7VyN3J37UrIc\n+rtSuaeR9T1v9m6gEfg2Sd8Y1hERd5KlSH5Jlnp4JVkwaTgd+ERK63yoeXtJryerua8EHm56/Buw\nq6RDxijruOfYrXSRnyfpE5I+RdZtsdEo+QNyF77U+HwocKikd46zbVfFoLta/X8BZzP6wng9WWN1\n/vexgOxvKB/8jwO+FRFLI+Lh9FgBfAU4Jn0jtQlo9G+1kpP0zzHOzTtpvanAZ8j+sR/JLd8Z2Dci\nvj3AYk6YpPcDl7XpDVQqVSqrGbhGXyU3Kbvzsa1U2/0EWQ2oue/zkWTdJ8tqeoUCZ5XKauZAXyE/\nJuvBMZb9yb4mzyXXZzpdANa06gteBqlxshINbVUqq1mDUzdmZjXnGr2ZWc050JuZ1ZwDvZlZzTnQ\nm5nVnAO9mVnNOdBbX2mcaemUjXe+3ySUY0N5jlwzwIOaWZ9F07R0WncKv65uqZ+IdHfw3PT8tIh4\nbkDHWUwX0xMOqAwdTRco6Riy2ZxmAhc3JkjRAKY/tPJxoLdBax4+dzLMJhv3ZgrZKIoTGcyrE0Wc\n21qSNgc+GRGvS69/KeknabyZ/HovAV4QEZ9LA7XdI+lXZOPH/xT4fC7wTwVuTHMOXDapJ2QD49SN\ndUTSeyRdmnt9j6T8ZM5LJL1ao6ela57C7yNp9T00ganqOhUR16YBsZZHRE9BXv2bnnAQOp0ucDfg\no7B20LF7yYYwHsT0h1ZCrtFbp+aTjeKIpOlkc4HOSq93Ihsm+HZyaZlWU/hJ+gDdT1VXpJ6nJ+xW\nF+PVdzpd4BVkE8M3hsPYluy8Xk6H0x9atTnQW0ci4g+p5roH8DKyr/yvVjaX7F7ADWmyj3F3RZqq\nDkBS26nqJG0GfJNsLPWLI+IjymbbenFE3NBmm13IprLbiqzWOh+4vIsZuEYXNuKi3PML0/DPM8mm\n2BvTRMqfjnM/rYeAbtbRVINpvoLfppeHADdHxCJJq0nTH6ZhjRtaTfFoFeZAb924niz//ZL0fDXZ\nxM9vZN0JnsfSPFXd9DbrHQd8MCJWSDpc0l7A9mk+2HVoZJrFORHxZ0mXAO/OD9fcLUnHAf8I7JgW\nbULn0xN2Vf4JeIxsYpSGDckmWGkpNbweDxwL2fSHkhrTH16SW3UfmiZLsWpzoLduXE82ucWOwP8h\nC/THkqVwvtxmm/F62Iz1/tdSzpiIuETSqcANqRFyP+BlEXF6bv0JT7PYinqfnrDb8jeO28+pBhv7\nFFnvmv8REY+nc/sjHU5/aNXmQG/duB74PPBQRCyT9DjZPKpTgFvbbNOYwq9dHrttrqcRJHNeHBH/\nF0DSr8m6Aub1Ms1iK83TEx5H6+kJW57bBMrf2K7T1M0NZFMVNryWNLNTmmjm/hgZnvaDZLNSPS/N\na7AhsCdZgG83/WF+jlyrMPe6sY5FxD1k6YIF6XVjjtRf5AJKs/wUfiezbi24m371C8d5f8xpFrvV\n6/SELYxX/m7L19FUg6nR+PPp+MvIzudeBjD9oZWTx6O3Skhzum4dEZen1zsAx0fEP3W4/ZZk7Ql5\nf4yI+X0taPvj91R+s144dWNVsRtwUe51Vzcqpf7jP+xribrTU/nNetFz6kbStyStkPSbMdb5UrrB\n5rbUPc+sKxFxdqMLoKRNgL8BXifplWNvWQ5VL79VW8+pG0n7AI8D342IdRqXJM0BToqIOZL2BL4Y\nEbN6OqiZmXWs5xp9RCwgGwypnUOBs9O6NwLTJG3d63HNzKwzk9HrZjuykfEalpLdum1mZpNgsrpX\nNjc8uauPmdkkmYxeNw8CM3Kvt0/LRpHk4G9mNgERMWYvrskI9JcCJwEXSJoFrI6IluNxRHZDx4FE\nrG71fpVJmhsRc4suxyDU+dzA51d1Q3B+41aSew70ks4nuxFlS0lLyMbNWB8gIs6IiCskzZF0L/AE\n8J4xdlfLIG9mVqSeA31EHN3BOid1uDMHeTOzPvNYN5NnftEFGKD5RRdgwOYXXYABm190AQZsftEF\nKFppxrqRFOM1KJiZ2WidxE7X6M3Maq58g5pJZ5JNZfYkcIzz9mZmvSljjX4Xsl48B1PeCaPNzCqj\njIG+MfXbQuCEIgtiZlYH5WuMzSYwPgM4wWkbM7OxddIYW75Ab2ZmHXOvGzMzc6A3M6s7B3ozs5pz\noDczqzkHejOzmivfnbENvkPWzKwvylyj9x2yZmZ9UOZA7ztkzcz6oLw3TPkOWTOzcfnOWDOzmvOd\nsWZm5kBvZlZ3DvRmZjXnQG9mVnMO9GZmNedAb2ZWcw70ZmY150BvZlZz5R3ULM8DnJmZTVhVavQe\n4MzMbIKqEug9wJmZ2QRVY6wbD3BmZtaSBzUzM6s5D2pmZmYO9GZmdedAb2ZWcw70ZmY150BvZlZz\nDvRmZjXnQG9mVnMO9GZmNedAb2ZWc9UYvTLPI1mamXWlijV6j2RpZtaFKgZ6j2RpZtaF6g1q5pEs\nzczW8uiVZmY159Erzcys90Av6SBJd0u6R9IpLd6fLekRSbemxyd6PaaZmXWup+6VkqYCXwH2Bx4E\nFkq6NCLualr1+og4tJdjmZnZxPRao58J3BsRiyPiaeAC4LAW6zn3bmZWkF4D/XbAktzrpWlZXgB7\nSbpN0hWSdu3xmGZm1oVe74ztpMvOLcCMiHhS0sHAJWQ3PZmZ2SToNdA/CMzIvZ5BVqtfKyIeyz3/\niaSvStoiIv7UvDNJc3Mv50fE/B7LZ2ZWK5JmA7O72qaXfvSS1gN+B+wHLANuAo7ON8ZK2hp4OCJC\n0kzgwojYscW+3I/ezKxLncTOnmr0EfGMpJOAnwJTgbMi4i5JJ6T3zwDeCZwo6Rmy4QuO6uWYZmbW\nHd8Za2ZWYQOv0RfOQxabmY2r6kMgeMhiM7NxVD3Qe8hiM7NxVDtH7yGLzWzIeZhiM7Oa8zDFZmbm\nQG9mVncO9GZmNedAb2ZWcw70ZmY150BvZlZz1R4CwXrnYSTMas+B3hrDSADcjLQUB32zWnGgH1Yj\nNfnG1I4LgTU46JvVjnP0w6tRk9+KbN7fA4FH03sLgeV4wDizWqhPoJfORJqPdEUaA8ea5T+jrPYO\nWVDfPdXYjwEuZN2g7wHjzCqsPmPdSPMZSTtcSMSR/ShXrYz+jC4GnqbdgHD5AeNgHm6wNSul+k88\nMpqHLB5f/jN675gBO3svu1hK+QbbM9YuN7NKqE/qJp92cI2znYl+Rr6ImlVYfVI31lo/+sl73H+z\n0vJ49Nb/tgvfYGVWKh6P3qD/aRfP02tWMQ709dfvtgvn680qxqkb647z9Wal4hz9sJqMPLpz9Wal\n4Bz98JqMPLpz9WYV4UBfT5ORR3eu3qwinLqpo8nIoztXb1YKztGbmdWcc/RmZlarQc0y7g0y+fyZ\nm5VaHWv0w9kbpNjx+IfzMzeriDoG+mHtDVJksB3Wz9ysEuoY6Id1uOIig+2wfuZmleBeN3Xh7o5m\nQ8ndK83Mam7YphK0MnAPHLPSqWOO3orlHjhmJeMafZWVs/bsHjhmJeMafbWVsfbsHjhmJeMafbWV\nr/acBffe5qU1s75yr5sqc5dKs6Hn7pVmZjXn7pVWrHI2FpsNHTfG2iCVsbHYbOg40Nsgla+x2GwI\n1TtHX9fUQVXOy43FZgM3KTNMSTpI0t2S7pF0Spt1vpTev03SHr0eswt1TR1U47wiVhNxpIO8WbF6\naoyVNBX4CrA/8CCwUNKlEXFXbp05wEsi4qWS9gS+Bszq5bhdqGvqoK7nZc1Gf3t7GNiRsn+Ts9Lp\ntdfNTODeiFgMIOkC4DDgrtw6hwJnA0TEjZKmSdo6Ilb0eOxOHEM9UwfVO6+qpJvKYuTzehWwRVq6\nEtgqPb8ZaSn+PK0DvQb67YAluddLgT07WGd7YPCBvq53aVbzvBrpJsguUlUr/+CNvhhuBuyde3ch\nsBo4ID1fw8jn6aBvY+o10HfaktvcUFCOFmCbTE43tdI+uD+Uft4CPAC8J73OvsnBeel1c9D3RdTW\nFRETfpDl2q/MvT4NOKVpna8DR+Ve3w1s3WJf4Ud9H5tDXJB+Fl2WMj2ug4j0eDD9vBHiReN8XvnP\n8/Lcdt9O+7zcn/VQPcaL1T11r5S0HvA7YD9gGXATcHSLxtiTImKOpFnAFyJincZYD4FgQ2N0LX49\nRtIxRwDz6LbtJd+NFS5hpHZ/IRGu3dfcwIdAiIhnJJ0E/BSYCpwVEXdJOiG9f0ZEXCFpjqR7gScY\n+QpqNqzy7RUXkw3r3Aju3Qfm/HZSPkX2FNJ8nLsfevW+YapO3GulPqQryO6BWEi/x+137X7oeFCz\neqlPr5VhvGiNPucTmUiKphPta/duAB9iDvTVUad/2vpctDqXP+d5k1S7btxv8RRwSQr8w3FhtVE8\nqFl11GmKvjpdtDo1+efcGIIiu5v2zZR9yAwbGOfobfIN02BnIymbNTQ6I0z2OY9uE7gTD6NQK5My\nqFllSGcizUe6IgUaK8pwDXbWSNkcAKwp6JxHvg26dj+UhilHP4x5YSte8WkqN9AOveGp0ZfhH86G\nUdnaVvK1+3n+ljschidHP0x54aqoazfLqpxXdjOV+9lXnHP0eVXMC9e/XaEaE6h0ryrn5W+5Q2KY\ncvRVVPd2hboGmqqc18i8Blkap/zfQorUfhKYxvOdyEYafZSSTRIzPKmbKhrkrfJlUKd02mTd+Too\nTuO01n4Y6fwkMPnntFh2H9k8HAMJ+p3ETgf6MqtTIKy7qgfKulcqujH2HAHbsu4kMI3njwCbt3h/\nTW4ffQ/6Huum6qo5k9Swqkq6ph2ncVpP39iYAGb0MNKZM5qef7TN++0miZm0mcFco7dyqEpPlXbq\n9O2r6t9OujH+9I0TmyNg9DHyI4qex8g3p3xNfyVwMxP423fqxqqjisGl6hendoYpjTP6766RmhmZ\nvrHf59466D8GbJrW6Dq140Bv1VHF4FLFi1MnRoLRU5So50jf9HuGr4mXo/E5P58e8vkO9FYdVUx9\nVPHi1I06Xcjap2guBp6myL+7zlI7bT9/B/r2B6vnV26bXFW8OHWjThey1ima8p1X+6DfdtRRB/r2\nB5tPWWsqvgiV2zD9fkYHnXlU7bzLkqKZqPbTQo5K6QhWOdC3Plh5ayplvghNljIH02H9/VTxvEeX\nufgUTS9Gx6xReXzBzh7rprWyjSiYV/X+2P1Q5rFihvX3kz/vp0o7BlN+fKgsIEJW5vdWbqyr0fKj\njj6ali0Elney8XDW6Mus7nnfTpT7G9dw/n7apxHKVbuvUy2+naY8vuBgp26sesoYTMucTppsZZya\ncOT3syvZGDPlqyQMgjTNOXqzfqlijnpQylK7b99lcgmwe+2DfOKxbqz6ylOTHtbc/LraT034VLog\nTtbvKj+Md35MmvrX5Ls0rI2xVh1laZgtcwN+kSZ34vH2ja1vxL+ftpy6sXIrsmG2PN8mqmHkd7US\n+D1Z75DeP7cy39VaAr5hqiocUNorsmHWefnujPyutqPX8dc7GxPetXeco6+Suk8ZOHGj88GTfUF0\nXr4bjd9VVrOHscdfbzUVX/75+GPCO8h3zIG+HLVpB5TODP6CWPUpAcshP4lJu0k32k3F1zwtX6vg\n7opQl9wYW47GPjf0dWYyLoj5v4d5Fb+bshgRq3OfW7s7OheN8/wWsq6bBxLxn/499MY5+jLfhWmj\nTUa+3n8PgzO6/z3jPvdn3xE3xnZ24PLdhWlj63e6zekaqzAHequnfveGce8aqzD3urG66v1uzNG1\n+PyNN24Mt9pxY2yR8nf5lW2413Lrx92Y+UbXx3FjuNWYa/TFcv/5iZjoWCvta/HvdYC3OnOOvkju\n4dG7zqZba3UTjm+ft1pwY2zZucdPf7Wfbq3VTTi+sFotdBI7naNvKCJfPvrGEuvdeDfn5G/C8Wdu\nQ8M1+pECzMdd7Oqj3c05DvBWM07ddFcA58vNrHIc6LsrgPPlZlY5DvRlVI7RMs2sJtwYW05lGC3T\nzIaIA/3k89jzZjapnLqZbG4LMLM+GmiOXtIWwPeBHYDFwLuiReCStJisT/OzwNMRMXOihTUzs9EG\nnaM/Fbg6InYBrk2vWwlgdkTs0S7Il44HGzOzGukl0B8KnJ2enw0cPsa6Vaup97fB1BcOMytQL4F+\n64hYkZ6vALZus14A10i6WdL7ezjeZOp3g6l72phZYcYcpljS1cA2Ld76eP5FRISkdsn+vSPiIUlb\nAVdLujsiFkysuJNmZBb7/jSYuqeNmRVmzEAfEQe0e0/SCknbRMRySduSDQXbah8PpZ8rJV0MzARa\nBnpJc3Mv50fE/LGLPyD58c77o98XDjMbUpJmA7O72qaHXjfzgD9GxGclnQpMi4hTm9bZCJgaEY9J\n2hi4CviniLiqxf7c68bMrEuT0b3yQuBF5LpXSpoOfCMiDpG0E/CjtMl6wLkRcfpEC1sID1lgZiXm\nsW76YaLDF/sCYWaTwGPd9MdEG1Ld08bMSsGBfnwjsxZ1Vyt3TxszKwWnbroxXjpm9PsnAvNwTxsz\nG6BOYueY3SttHY10DGTpmOZ8ff79eZ6O0MzKwIG+O/l0zFOpofZJsnsIdgR2zb3vdI2ZlYJTN90Y\nPeH0JYzU3lcCW6XnS4Ddna4xs8ngXjf9FrGaiCNTEM/X7hflnjvIm1mpuEY/UaNr9+AhDsysAL5h\nysys5py6MTMzB3ozs7pzoDczqzkHejOzmnOgNzOrOQd6M7Oac6A3M6s5B3ozs5pzoDczqzkHejOz\nmnOgNzOrOQd6M7Oac6A3M6s5B3ozs5or/VSCksoxjrJVioe8NhtR+kAP/qe17rhyYDaaUzdmZjXn\nQG9mVnMO9GZmNedAX1OSTpP0jR73saOk5yQV+nciab6k9xVZBrMqq0RjrHUvIk4vugx9FOmBpOOB\n90XEPoWWyKxCXKOvIUlTCzimKw1mJeVA3wNJiyWdLOk2SaslXSBpg/Te8ZIWNK3/nKSd0vPvSPqq\npCskPSZpgaRtJH1R0ipJd0l6TW7b6ZJ+KOlhSfdL+mDuvbmSLpJ0jqRHgOPTsnNy67xJ0n+kfT8g\n6d1p+SGSbpX0SFr+6S7P/6OSbgcekzRF0qzccRZJenNu/eMl3Sfp0XQOx+TKny9ry5SRpJcDXwfe\nmD6zP3VaVrNh5kDfmwCOAN4KvBjYHTi+i+2PAD4ObAmsAX4FLAS2AC4C/g0gBbzLgFuB6cB+wD9I\nOjC3r0OBH0TE5sC5qWyk7XcArgC+mI71GmBRevtx4Ni03SHAiZIO6+IcjgIOBqYB2wI/Bj4TEc8H\nPgz8UNILJG2cjn9QRGwGvDFXho76vUfE3cAJwC8jYtOI2KKLcpoNrWoHeulMpPlIVyBNK2gfX4qI\n5RGxiiwYv2a8DZIAfhQRt0bEX4CLgSci4nsREcCFwB5p3TcAW0bEv0TEMxHxB+CbZEG24T8i4lKA\niPgzkL/J7Bjg6oj4fkQ8GxF/iojb0rrXR8Qd6flvgAuAN9OZSOf/YDqHY4ErIuLKtL9rgJvJLiAB\nPAe8StKGEbEiIu5M++nmhjjfPGfWpWoHetiFLCgdDJxR0D6W554/BWzSxbYP557/uel1fl87ANNT\nOmSVpFXAacALc+svHeM4M4D7W70haU9J16WU0GqyGvMLujiHJbnnOwBHNJVzb2CbiHgSOBL4O2CZ\npB9LelkXxzGzCap6oH8y/VxIFqCK2kcrTwAbNV5I2qaHfS0B/hARz889NouIt6X31/ZKaeMBYOc2\n750HXAJsHxHTyHLg3fxd5I/7AHBOUzk3jYh5ABFxVUQcCGwD3A00un+O+qzS+50cz8w6UPVAfwxZ\niuNAIlYXuI9WbgN2k/RqSc8D5ja9300K4iayxs6PStpQ0lRJr5T0+g73dR6wv6QjJK2XcuavTu9t\nAqyKiDWSZpJ9HhMNpt8D3i7pwFTG50maLWk7SS+UdFjK1T9NFtyfTdstAvaVNEPS5mTfVtpZAWwv\naf0JltFs6FQ70EesJuLIngJ0P/aR21t6EBG/Bz4DXAP8DljA6ADaXAtvVStv7OtZ4G1k+f/7gZXA\nmcBm42zb2P4BYA5wMvBHskbd3dN6fw98RtKjwCeB77cqQyciYilwGPAxsjTUA+mYIvtb+0fgwVSG\nfYAT03ZXp+PeTvbN6rIxjnstcAewXNLDbdYxsxxl7X7FkxStRqlst9ysHf/N2DDp5O+92jV6MzMb\nlwO9mVnNOdCbmdWcA72ZWc050JuZ1ZwDvZlZzTnQm5nVXCXGEJdUjs7+ZmYVNOFAL+kIstv6Xw68\nISJuabPeQcAXgKnANyPis90cxze+mJn1ppfUzW+AdwA3tFshzXT0FeAgYFfgaEmv6OGYlSVpdtFl\nGJQ6nxv4/Kqu7ufXiQkH+oi4O43nMpaZwL0RsTginiYb67ybSS3qZHbRBRig2UUXYMBmF12AAZtd\ndAEGbHYswapwAAADf0lEQVTRBSjaoBtjt2P0eOVL0zIzM5skY+boJV1N67HBPxYRl3WwfzeimpkV\nrOfRKyVdB5zcqjFW0ixgbkQclF6fBjzXqkHWPWvMzCZmvE4r/epe2e4gNwMvlbQjsIxsKrmjW63o\n3jVmZoMx4Ry9pHdIWgLMAi6X9JO0fLqkywEi4hngJOCnwJ3A9yPirt6LbWZmnSrNxCNmZjYYhQ+B\nIOkgSXdLukfSKUWXp58kfUvSCkm/Kbosg5DmeL1O0h2SfivpfxVdpn5Kc97eKGmRpDslnV50mfot\nze17q6ROOldUiqTFkm5P53dT0eXpN0nTJF0k6a709zmr7bpF1ujTDVW/A/Ynm0t0IXB0XdI7kvYB\nHge+GxGvKro8/SZpG2CbiFgkaRPg18Dhdfn9AUjaKCKelLQe8HPgwxHx86LL1S+SPgS8Dtg0Ig4t\nujz9JOkPwOsi4k9Fl2UQJJ0NXB8R30p/nxtHxCOt1i26Rl/rG6oiYgGwquhyDEpELI+IRen548Bd\nwPRiS9VfEfFkevpXZMN41CZoSNqebNL4b9K+Q0XV1fK8JG0O7BMR34KsPbRdkIfiA71vqKqJ1LNq\nD+DGYkvSX5KmSFoErACui4g7iy5TH30e+AjwXNEFGZAArpF0s6T3F12YPnsxsFLStyXdIukbkjZq\nt3LRgd4twTWQ0jYXAf871exrIyKei4jXANsD+9Zl3BRJbwMejohbqWmtF9g7IvYADgY+kFKpdbEe\n8FrgqxHxWuAJ4NR2Kxcd6B8EZuRezyCr1VtFSFof+CHwvYi4pOjyDEr6Wnw58Pqiy9InewGHpjz2\n+cBbJH234DL1VUQ8lH6uBC4mSxXXxVJgaUQsTK8vIgv8LRUd6NfeUCXpr8huqLq04DJZhyQJOAu4\nMyK+UHR5+k3SlpKmpecbAgcAtxZbqv6IiI9FxIyIeDFwFPCziDiu6HL1i6SNJG2anm8MHEg24m4t\nRMRyYImkXdKi/YE72q1f6MQjEfGMpMYNVVOBs2rWY+N84M3AC9LNZZ+KiG8XXKx+2hs4FrhdUiMA\nnhYRVxZYpn7aFjhb0hSyStE5EXFtwWUalLqlUbcGLs7qIqwHnBsRVxVbpL77IHBuqiTfB7yn3Yq+\nYcrMrOaKTt2YmdmAOdCbmdWcA72ZWc050JuZ1ZwDvZlZzTnQm5nVnAO9mVnNOdCbmdXc/wdAm0jC\nGQGJJQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd5a6e315f8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(ts*Ω/np.pi, σz_expect, 'r.', label='numerical result')\n", "plt.ylim(-1,1)\n", "plt.title(r'$\\langle\\sigma_z\\rangle$-vs-$t\\Omega/\\pi$ at '\n", " r'$\\Delta/\\Omega=%.2f$ in RWA'%(Δ/Ω) + '\\n' +\n", " r'with $\\gamma_1 \\hat{\\sigma}_-$ at $\\gamma_1=0.2\\Omega$')\n", "plt.hlines(0,0,ts[-1]*Ω/np.pi)\n", "plt.legend(loc=3);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### With $\\gamma_2$ collapse" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/latex": [ "$${{0.03162277660168379}\\tiny\\times\\normalsize{\\hat{σ}_{z}}}$$" ], "text/plain": [ "Mul(0.03162277660168379, 'σ_z')" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "γ2 = 0.2*Ω\n", "c2 = γ2**0.5 * sigmaz()\n", "c2" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Generating cython code...\n", "Compiling cython code...\n", "Running cython code...\n", "Starting at 10/25 15:52:24.\n", "Finishing at 10/25 15:52:24.\n", "Total time: 0 seconds.\n", "Formatting the output...\n" ] } ], "source": [ "res = mesolve(Hp, [c2], initial_state, ts)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "σz_expect = expect(sigmaz(), res)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEjCAYAAAA8IcqvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm4XFWZ7/HvjwSROSLIGEFUVBARBwggkJbBAAp4r0y5\nNIK0l7bFe9sZnMjVvk3DfZy9CigKIlNEoEEiMsgB7GaUBJTBZooQhoSWhFnD8PYfa1XOPkXVqflU\n1T6/z/PUc3bt2sPadc55a9W71l5LEYGZmZXXSv0ugJmZ9ZYDvZlZyTnQm5mVnAO9mVnJOdCbmZWc\nA72ZWck50JuZlZwDvZlZyTnQDwlJK0n6dJv7StJnu10mMxsODvTDY2/gmnZ2jHT788qSXtndIpnZ\nMHCgHx7bR8RNHex/DnBwtwpj5SHpD5J26Xc5rHem9rsA1pikLYA/dnKMiLhP0ke6VKSWSZoGHAM8\nCCwFtgaujohLa2y7JrBRRHR0zVXHXAh8JCJ+0+T2H8tl+HKD7VaUtZVrbKHc+wNbAi8BD0XEGeNs\nux2wW0Qc38q+EfHWDsq3EHgN8CLwDHA58PGIeFLSscDOEbF3Yfu7gbtrrPtiRMwtrBsB3gZsEBHL\n2y2fZRHhx4A/gC8CK3fhOHsBO/Wh/CsBNwAHF9ZNAW4GPlBj+yOBjbtchvtJQbCZbacCZwLLgLUa\nbHsksFGr19hkOdYGfld4fh2w7jjv8aXAV1rdtwvv63vz8vrAAuDE/HzH/B4qP98wb/8wsFJh3Uuk\ngF455mbAs8BdwIcm+u+1jA+nbgacpNWB5yPi+S4c7lJg1jjn+rykn1et+7akbxdeXyTpSUl3SXrv\nOMe6UlLlG+PfAFtHxDmV1yPiReBc4DM1dp8eEQ81f1krznmMpHty+W7PNVoknQG8FrhY0lOSap2z\n6EOkmvltwD802HZ6RDxM69fYjF2AOwrPb83nqeUA4ApAre4raWHld5mXPy3pVknLJJ0jaZVmChsR\ni4HLgK3yqpuBlYG35+c7A1cB/1G17t6IeLRwqMPytZwBfLiZc9v4nLoZfIcAZ3XjQBERkpZI2qDq\nH6vibOArktaIiKclTSEFkP0lvQn4OPCuiHhU0mup8/cjaWNSLe6FvGo94Mkamz4LrFm175tJNbl2\n3AO8J5fvQOBnkl4fEX8r6T3AkdEgdSNJpG8TD0r6Z+A0Sd+KiL/U2LZY1laucXPgo+MU4/qI+Fdg\nE1KNuGIZ8MYa5ViPlDp5DFg9r25q36x6rPIDgPcBfwX+DTgcOHmc8iqXYxNSReI8gIhYLukGYFdg\nPunD51pSjX4X4Jb88+qq4x0GHAfcCBwn6TURsWSc81sDrtEPvk0jYlFxhaQtJM2VdFWuoV4s6e+b\nPN4lwPtrvRARD5D++T6YV70XeDYibiQFklWArSStHBEPRMR91ceQtAfwTeBRSX+bV18PrJO/nRRt\nQfrHL9oPOD8fa21Jp0q6VtJvJN2Sr/Xzdcp/XuUDLFK+925gu/pvRU3vBy7Kx7gUeAio17axoqy0\ncI0RcV9EHDvO41/zptOA4gfMcmCNGuX4b8Avqta9qsl9qwXwnYh4NCKWAhczWvuuRcCFkp4EHgDu\nBf6p8PrVpGAO8B5Sz7FrC+t2phDo8wfyxsBFEXE36VvJ7CbKbeNwoB98D0qaXnkiaR3gJOCwiPgb\n4Erg0Ig4qcnj7QNcIul/5A+JpyRdUnj9LNK3CEj/YGcCRMQ9wD8Cc4DFks6WtGH1cSLicuAF4OuR\nG/8iYiFwKrBHVVl2Br5euLYppLaISuPbu4GjgNOAPYHTI+IDEXFCrQuTdJik+ZKWSloKvBVYt8n3\npeKNOcBU/DPwmVy24rnGlLXZa2zRU4ymYgBWBR6vKscM4IaIiKptn2y07ziK3/aeY/wPiAD2i4i1\ngJmkysG7Cq9fA7xH0quA9SLiXlJ7wY553VaM7Tb8YeCyiHgqP/85Tt90zKmbwXcmcDRQCW4fB/5/\nIZWwCik90JCklYD1I+KRfNwza2x2HvD1nH7ZH5hReSEizgbOzj1NTgZOiIjDisfJqY9tI+J3hXVr\nAF8mfR2/MK97A6nNoBh8difleCvnuyJvu3lEvJBTA/WubVPgFFKguS6nqeYzGuwaTqWW89SXV60+\nH/ga6cPvZ/XK2sI1tpK6uZexQXNd0jeuoncDq0l6H7ATsKqk/ZrctxlNT0EXEddI+i7pb7XSHnA9\nqWH4o6Q0EJF65DwM/E/g4Yj4E4CkVYEDgZUkPZL3XwWYJultEXFbG+U3XKMfeBHxDOlmp1fkVWuS\nG9kkbQXc3kJD7SzgVw3O9xgwQqpF3xe5i2NOF703N8z9lZQWeLHGIbYE7sz7VPrt702qYd5b2G4X\n4ETSh0nFjJwmWkHSbqT0CYyfQlidFJT+kxQojiDV6CsWA68fZ3+AHYCHJa1beQCvJn2AVKeLqsva\n7DW2krq5BnhnYdd3kL7BIen1khQR342IE/K3nFuA3+b96+7bIjXeZIxvAdtJ2h4gIp4jNcp+irE1\n99/mdcX8/P6kb4NvAbbJj7eQUj2HtVF2yxzoh8NcUk0H4AfAnpL+O6lWeUxxQ0lflnScUh/majtF\nxL81cb6zgN0Y2wi8CnA8qcHvEVINsdY5/gw8IekQRv+JF5JqtXM0enfuG0k59ANzuaeR+p5X+zBQ\nCXxr5G8MLxMRd5BSJNeRUg9vJQWTiuOBL+W0zqeq95f0LlLN/TFgSdXjG8CWkvYZp6wNr7FV+UP+\nRElfkvQVUrfFSqPkzyl88OXG532BfSV9qMG+LRWD1mr1/wmcztgPxqtJjdXF38e1pL+hYvA/DPhx\nRCyKiCX5sRj4HjA7fyO1NlT6t9qAk/S1aHDzTt5uCvBV0j/2E4X1rwd2iYif9LCYbZP0UeDiOr2B\nBsowldUMXKMfJjcq3flYV67tfolUA6ru+3wQqfvkoNpoiALnMJXVzIF+iPyS1INjPLuTvibPodBn\nOn8ALK/VF3wQ5MbJoWhoG6aymlU4dWNmVnKu0ZuZlZwDvZlZyTnQm5mVnAO9mVnJOdCbmZWcA731\nhBpMT6c07vluE1COVeW5cm2S86Bm1hNRNT2dXj6VX0u31rcj3yU8Jy8fGxEvdfHYC2lhasJeUBNT\nBUqaTZrFaTvggsrEKOrBtIc2uBzobaJUD6M7EWaSxr9ZiTSaYjuDetXTj+tZQdLawJcj4p35+XWS\nfpXHmqls8wbg1RHx9TxA292SrieNG/9r4JuFwD8FuCHPNXDxhF+Q9ZRTN9YSSUdIuqjw/G5JxUmd\nH5S0jcZOT1c9ld9n8+bbqo0p65oVEVfmgbEejYiWgrzqTEuYX2t1asJeaGaqwK2Az8GKwcbuIQ1d\n3ItpD22AuUZvrRohjeaIpI1Ic4LOyM83Jw0XfBuFtEytqfwkfZzWp6ybSLWmJXxD/tBoemrCVrQw\nTj00N1XgPNKE8JVhMDYkXdebaXLaQysHB3prSUTcn2ux2wJvIqUAtlGaU3ZH4Jo86UfDQ5GnrAOQ\nVHfKOklrAT8ijal+QUR8VmnWrddFxDV19tmCNKXdeqRa7AhwSbMzcUXEeYXluXnY5+3I0wyOp53y\n5vPcR+2hn2tpOM1gnqfgD/npPsDNEbFA0jLytId5OOOKWlM7Wgk40Fs7riblv9+Ql5eRJoDegZdP\n9Dye6inrNqqz3WHAJyJisaT9Je0IbJLnhX0ZjU63uHdE/EXShcCHi8M2NyLpMOCTwGZ51RqkSUia\n0VJ52/RUVXlWJU2u8jK54fVw4FBI0x5Kqkx7eGFh052pmiTFysGB3tpxNWmSi82A/0sK9IeSUjjf\nrbNPox42473+g5xDJiIulHQMcE1ubNwaeBtpfPjKVHltT7cITU1L2O3yVs7bSuqmqakCc8rmGODv\nIuLpfG1/pslpD60cHOitHVcD3wQeiYiHJT1Nmk91JWB+nX0qU/nVy2nXzfVUgmbB6yLiXyR9kpTb\nv4KU25+dX+9kukV4+bSEhzF2WkIY53raKG9lv1ZSN9eQpimseAd5Vqc8ycx9ecLwT5Bmo3plns9g\nVWB7UoCvN+1hcW5cKwEHemtZRNwt6SlyPjdP9nwvsCTqj3t9PPBdSSeScufV27XSr/6mfN5vAkja\nEri/8PoPSFPqbUlqtHzZdIukD6XlEXF8jeu7Q1JlWsKXgJ8ydhq86uv5WkR8o4PytiwinpF0oqQv\n5WupnmbwSEmrkz6QixOkv5aUJnsceEHSSfmbT2Xaw+twoC8dj0dvQ0Vpbtf1I+KSwrovkvqEN5We\nqTfdYi90o7xmnXI/ehs2W5F60AAgaV/gO8DGzezcYLrFXuiovGbd0HGgl/RjSYsl/X6cbb6Tb6y5\nNXfLM2tLRJxe6RIo6YOkRsXzgQObPETN6RZ7pQvlNetYx6kbSTsDTwM/jYita7y+N3B0ROwtaXvg\n2xExo6OTmplZ0zqu0UfEtaRBkerZFzg9b3sDME3S+p2e18zMmjMROfqNSSPkVSwi9YQwM7MJMFGN\nsdV9pN3Vx8xsgkxEP/qHgOmF55vkdWNIcvA3M2tDRIw7uNREBPqLgKOBcyTNAJZFRM0xOSLdWLIc\n2CmvmkvEQRNQxp6TNCci5vS7HL1Q5msDX9+wmwTX17CS3HGgl3Q2aUCrdSU9SBo/Y2WAiDg5IuZJ\n2lvSPcAzwBHjHG5P4Ky8fBNwVKflMzOb7DoO9BFxSBPbHN3kwZaRpj47GTiKiGWNdjEzs/EN3lg3\nKbgfhHQKaUzxZ4HZJQj6I/0uQA+N9LsAPTbS7wL02Ei/C9BjI/0uQL8NzFg3kmJMg4I0QkoJQYly\n9WZm3fSy2FnDII91Uxnwybl6M7MODHKNfhrO1ZuZjauZGv3gBnozM2to2FM3ZmbWBYPX66YW6RTS\nDPVl6YFjZjZhhqVGvwWpB85epLy9mZk1aVgCvXvgmJm1aTgaY90Dx8ysJve6MTMrOfe6MTMzB3oz\ns7JzoDczK7nh6Edf5D71ZmYtGcYavfvUm5m1YBgDvfvUm5m1YPi6V7pPvZnZCu5Hb2ZWcu5Hb2Zm\nDvRmZmXnQG9mVnIO9GZmJedAb2ZWcsN3Z2yR75I1M2to2Gv0vkvWzKyBYQ/0vkvWzKyB4b5hynfJ\nmtkk5ztjzcxKznfGmpmZA72ZWdk50JuZlZwDvZlZyTnQm5mVnAO9mVnJOdCbmZXccI91U+Rxb8zM\naipTjd7j3piZ1VCmQO9xb8zMaijPEAge98bMJiGPdWNmVnIe68bMzBzozczKzoHezKzkHOjNzErO\ngd7MrOQ6DvSSZkm6S9Ldkj5f4/WZkp6QND8/vtTpOc3MrHkdDYEgaQrwPWB34CHgJkkXRcSdVZte\nHRH7dnIuMzNrT6c1+u2AeyJiYUQ8D5wD7Fdju4nrHy+dgjSCNC/fRGVmNql1Gug3Bh4sPF+U1xUF\nsKOkWyXNk7Rlh+dsxGPemJkVdDp6ZTO31d4CTI+IZyXtBVxICsa94jFvzMwKOg30DwHTC8+nk2r1\nK0TEU4XlX0n6vqR1IuLx6oNJmlN4OhIRI22UaTYe88bMSkrSTGBmS/t0MtaNpKnAH4HdgIeBG4FD\nio2xktYHlkRESNoOmBsRm9U4lse6MTNrUTOxs6MafUS8IOlo4NfAFODUiLhT0lH59ZOBDwEfk/QC\nKa1ycCfnNDOz1nj0SjOzIebRK83MzIHezKzsHOjNzErOgd7MrOQc6M3MSq7TG6YGm3QK6S7cZ4HZ\nvoHKzCajstfoPe6NmU16ZQ/0HvfGzCa9ct8wlYYp9rg3ZlZazcTOcgd6M7OS852xZmbmQG9mVnYO\n9GZmJedAb2ZWcg70ZmYl50BvZlZyDvRmZiXnQG9mVnLlHtSsyAOcmdkkNZlq9B7gzMwmpckU6D3A\nmZlNSpNnrBsPcGZmJeRBzczMSs6DmpmZmQO9mVnZTZ7ulda+sV1TlwCbAZsDDwBP4u6qZgPNOXqr\nbWxwXwvYKb/yGLBe1db3AovwPQpmE66Z2OkavdVTue8A4JH88yZgGbAH8ASwdl63vLDtycBBE1dM\nM2vEOXobJZ2CNII0jxS8IQXyHYC5wJ7AgXl5m8K6JwvbPrfiGKlLq5n1mVM3NkoaYbRmfgHwPM3c\nd1C8RwEuLBxjLhGu3Zv1kFM39Xjcm1Fj34tiLf4jTb8vabuD8vGKdyA/lz88/D6b9dFkTd143JtR\nxffiaSrpmPaD8mxGUzqb4ffZrO8mZ43e494UFd+L5mvx9dSv3U/299msbyZnjt7j3hRTNsuBZ4Aj\nuv5ejM3dn4jTZWZd57FurL6xDa+9bzSd6POZTRIe68bGM9FpFadxzPrENfrJaqLTV07jmPWEUzc2\n1qB0K3Uax6xrnLqxaoPSrdRpHLMJ5EA/uQxKgK30tb8DuNDDJZj1llM3k8mgdSt1CsesYx4CwcYq\n3sw0GAblG4ZZqblGPygNlL0yyNfnnjhmHXOvm+ZOPEKZ0wfDcn3DUk6zAeNeN80pe/pgWK5vWMpp\nNnRcox+0BspuG5brcxqnNbXn8a23XJzft/i639sScOrGhpPTOLU1N49vvWVqrCvO9esPgCE1Ib1u\nJM0CvgVMAX4UESfU2OY7pJt0ngUOj4j5nZ7XxjHIDbDNcRqnon5wrzWPb73l4vy+xdeLc/0WPwBu\nRvJk72USEW0/SMH9HlJNYGVgAfCWqm32Bubl5e2B6+scKzopix+FB4wERH6c2/fytF7+aQHn5p+n\n5OuZFzCt72WbuPegct1/LvwuH84/bwzYtPAeTWuwXG/beYXjXVZY/m3hnEvydqdNyt/DEDyaiZ0d\npW4k7QAcFxGz8vNj8ln/pbDNScBVEXFufn4XsGtELK46VoRTN92RJvfei1Rr62S2qP6bTGmc+rV3\nSL/LA0jtF91pbxnbLkJh+SzS389TwJr5tXopH9f4+2wiUjcbAw8Wni8i1dobbbMJsBjrldkMQwNs\nc8qdxmmcmrmF1JBamRimex90Lz9eZWawyt/Pq6idEiqmfCZnmqd2Y3i9Ru92G8ubXW6o00Df7NeB\n6k+bwWgBLqvBuwO2E6MfWnAi0jC3PSTN5d27W3tvReXvZ/waf6Wc5Q769Xs31WsMn15jXTPL7e73\nWFPX0WFuaAZwaeH5scDnq7Y5CTi48PwuYP1aeSY//BjvcRVE5Mc5A1CeblzHQ/nnDRCvzde19gCU\ncbzH2oVyXlIo/7WF61qcX/tJvt5LBvS6Ti6Ur1LWP+VruaTGNdX6vV2Wl5fWWNfMcqv7/T+I4yD+\nDuLQfB0NY3WHgX4qKV+3GfAKGjfGzmBQG2OHvdFv2Mvf3DUWGw+H6xrH/n6KDZ+bRqVxtN9lbO+6\najXuPlkJiJEacyvL9xTeg9N6/vc69j0/rc5ydcNzVD2KDeC1f2+NG73bbSxvarmZ2NlxP3pJezHa\nvfLUiDhe0lE5cp+ct/keMIs8CXVE3FLjOBH9bIwd9ka/YS9/M0ZTCc8xLH2+R7/6bw2sk9deADxP\nOdpQRo3+fsbL7ddKd9Tqz9+NfHcz9xo8AmxI/e6ooym0ZODavpqKnX2vEeQH/a/RD29tsQzlb+1a\nRwo1rsHuPjq2rJPl91Ov9tlsd86oeixpcbnyqFcbb75m3u/3solHM7HTd8aOFmA4hgqoZ9jL34qx\n3UfvYNBq92Mb8KaSaonVvWcmn8bdOZu5yauVm8Nq18aLyyX4XbhG70c5H2NriYNXux9bpvOHqXY4\nAL/P7uW7+31dE/RoJna6Rj/Mhn+og84NSu2+di1++G9Ys4HnQc3KbjI0wDYyNh1wIRP5ftTvD1/O\nxlYbSJ5KsPzKfddoM4o3h0nF9+O5/EHY3dp9czc7fcQB3gaJa/TDbDI1wDajfu2+87FZaneTLHbN\n69+drDapOXVjk9fY3H11/+2baSbgT/QgY2ZtcKC3yWts7b7WaIz1Jt2oN55JpfbubpI2UBzo2zXo\nvVkGvXyDpvYdm/Xu0qx316Rr7zaQPDl4+7Yg5Xf3IgWIQTPo5RssEctyD5wDgbnAnqRb5CEF8QV1\nlndYsX3En4g4yEHehpF73dQ26L1ZBr18g2lsD53i8MfUXC7XcM82iTl1U8ug92YZ9PKZ2YRxjt7M\nrOScozczM+foh4Z72phZm1yjHx7uaWNmbXGNvpHBqUm7p42ZtcU1+sYGpSY9m9E+3U7bmFnTXKNv\nbDBq0u7TbWZtcvfKRtxn3cwGmPvRD7vBaR8wswHlfvTDb1DaB8xsiDnQD7bBaB8ws6Hm1M0gc/uA\nmTXgHH23OWduZgPGOfru633OXDoFaQRpXq7Rm5l1xIG+NRORM3cDrJl1lQN9aybi7lQ3wJpZVzlH\nP2jcAGtmLXBjrJlZyTUTOz3WTbu62QPHvXnMrIeco29fNxtN3QBrZj3jQN++bjaaugHWzHrGOfp2\ndaPRdDRlsxx4BjjCaRsza4Vz9L1UHB++/Rx7JWUDMNdB3sx6wamb7mg3x+6UjZn1nGv03dF8wB5b\n+/8YcCLuM29mPeQcfTeM5uufAzZjvBSONMLYdI2nBzSztvmGqYk2NojfCywiBf0ljH4ATAX2INX+\nPdG3mXXEjbETr5jCWc5o0H8MWC8vX0AaL8fpGjObEG6M7a7RQc/gybzuJmBBYfkjRBzkIG9mE8Wp\nm14p9rNPPFCZmXWdc/RmZiXnGabMzMyB3sys7BzozcxKzoHezKzk2u5HL2kd4FxgU2AhcGDU6FEi\naSGpq+GLwPMRsV275zQzs9Z1UqM/Brg8IrYArszPawlgZkRs6yBvZjbxOgn0+wKn5+XTgf3H2dbd\nJs3M+qSTQL9+RCzOy4uB9etsF8AVkm6W9NEOzmdmZm0YN0cv6XJggxovfbH4JCJCUr07r3aKiEck\nrQdcLumuiLi2veKamVmrxg30EbFHvdckLZa0QUQ8KmlD0giNtY7xSP75mKQLgO2AmoFe0pzC05GI\nGBm/+GZmk4ukmcDMlvZpdwgESScCf46IEyQdA0yLiGOqtlkNmBIRT0laHbgM+D8RcVmN43kIBDOz\nFvV0rJvcvXIu8FoK3SslbQT8MCL2kbQ5cH7eZSpwZkQc325hzcxsLA9qZmZWch7UzMzMHOjNzMrO\ngd7MrOQc6M3MSs6B3sys5BzozcxKzoHezKzkHOjNzErOgd7MrOQc6M3MSs6B3sys5BzozcxKzoHe\nzKzkHOjNzErOgd7MrOQc6M3MSs6B3sys5BzozcxKzoHezKzkHOjNzErOgd7MrOQc6M3MSs6B3sys\n5Kb2uwCNSIp+l8GGT0So32UwGxQDH+jB/7TWGlcOzMZy6sbMrOQc6M3MSs6B3sys5BzoS0rSsZJ+\n2OExNpP0kqS+/p1IGpF0ZD/LYDbMhqIx1loXEcf3uwxdFPmBpMOBIyNi576WyGyIuEZfQpKm9OGc\nrjSYDSgH+g5IWijp05JulbRM0jmSVsmvHS7p2qrtX5K0eV4+TdL3Jc2T9JSkayVtIOnbkpZKulPS\n2wv7biTpF5KWSLpP0icKr82RdJ6kMyQ9ARye151R2OY9kv49H/sBSR/O6/eRNF/SE3n9cS1e/+ck\n3QY8JWklSTMK51kgadfC9odLulfSk/kaZhfKXyxrzZSRpDcDJwE75Pfs8WbLajaZOdB3JoADgPcB\nrwPeBhzewv4HAF8E1gWWA9cDNwHrAOcB3wDIAe9iYD6wEbAb8I+S9iwca1/g5xGxNnBmLht5/02B\necC387neDizILz8NHJr32wf4mKT9WriGg4G9gGnAhsAvga9GxKuAzwC/kPRqSavn88+KiLWAHQpl\naKrfe0TcBRwFXBcRa0bEOi2U02zSGu5AL52CNII0D2lan47xnYh4NCKWkoLx2xvtkAVwfkTMj4i/\nAhcAz0TEzyIigLnAtnnbdwPrRsQ/RcQLEXE/8CNSkK3494i4CCAi/gIUbzKbDVweEedGxIsR8XhE\n3Jq3vToibs/LvwfOAXalOZGv/6F8DYcC8yLi0ny8K4CbSR8gAbwEbC1p1YhYHBF35OO0ckOcb54z\na9FwB3rYghSU9gJO7tMxHi0sPwes0cK+SwrLf6l6XjzWpsBGOR2yVNJS4FjgNYXtF41znunAfbVe\nkLS9pKtySmgZqcb86hau4cHC8qbAAVXl3AnYICKeBQ4C/h54WNIvJb2phfOYWZuGPdA/m3/eRApQ\n/TpGLc8Aq1WeSNqgg2M9CNwfEa8qPNaKiPfn11f0SqnjAeD1dV47C7gQ2CQippFy4K38XRTP+wBw\nRlU514yIEwEi4rKI2BPYALgLqHT/HPNe5debOZ+ZNWHYA/1sUopjTyKW9fEYtdwKbCVpG0mvBOZU\nvd5KCuJGUmPn5yStKmmKpLdKeleTxzoL2F3SAZKm5pz5Nvm1NYClEbFc0nak96PdYPoz4AOS9sxl\nfKWkmZI2lvQaSfvlXP3zpOD+Yt5vAbCLpOmS1iZ9W6lnMbCJpJXbLKPZpDPcgT5iGREHdRSgu3GM\nwtHyg4j4D+CrwBXAH4FrGRtAq2vhtWrllWO9CLyflP+/D3gMOAVYq8G+lf0fAPYGPg38mdSo+7a8\n3T8AX5X0JPBl4NxaZWhGRCwC9gO+QEpDPZDPKdLf2ieBh3IZdgY+lve7PJ/3NtI3q4vHOe+VwO3A\no5KW1NnGzAqU2v36T1LUGqWy3nqzevw3Y5NJM3/vw12jNzOzhhzozcxKzoHezKzkHOjNzErOgd7M\nrOQc6M3MSs6B3sys5IZiDHFJg9HZ38xsCLUd6CUdQLqt/83AuyPiljrbzQK+BUwBfhQRJ7RyHt/4\nYmbWmU5SN78HPghcU2+DPNPR94BZwJbAIZLe0sE5h5akmf0uQ6+U+drA1zfsyn59zWg70EfEXXk8\nl/FsB9wTEQsj4nnSWOetTGpRJjP7XYAemtnvAvTYzH4XoMdm9rsAPTaz3wXot143xm7M2PHKF+V1\nZmY2QcbN0Uu6nNpjg38hIi5u4vhuRDUz67OOR6+UdBXw6VqNsZJmAHMiYlZ+fizwUq0GWfesMTNr\nT6NOK93qXlnvJDcDb5S0GfAwaSq5Q2pt6N41Zma90XaOXtIHJT0IzAAukfSrvH4jSZcARMQLwNHA\nr4E7gHPEEiqTAAAC+0lEQVQj4s7Oi21mZs0amIlHzMysN/o+BIKkWZLuknS3pM/3uzzdJOnHkhZL\n+n2/y9ILeY7XqyTdLukPkv5Xv8vUTXnO2xskLZB0h6Tj+12mbstz+86X1EzniqEiaaGk2/L13djv\n8nSbpGmSzpN0Z/77nFF3237W6PMNVX8EdifNJXoTcEhZ0juSdgaeBn4aEVv3uzzdJmkDYIOIWCBp\nDeB3wP5l+f0BSFotIp6VNBX4LfCZiPhtv8vVLZI+BbwTWDMi9u13ebpJ0v3AOyPi8X6XpRcknQ5c\nHRE/zn+fq0fEE7W27XeNvtQ3VEXEtcDSfpejVyLi0YhYkJefBu4ENupvqborIp7Ni68gDeNRmqAh\naRPSpPE/on6HimFXyuuStDawc0T8GFJ7aL0gD/0P9L6hqiRyz6ptgRv6W5LukrSSpAXAYuCqiLij\n32Xqom8CnwVe6ndBeiSAKyTdLOmj/S5Ml70OeEzSTyTdIumHklart3G/A71bgksgp23OA/53rtmX\nRkS8FBFvBzYBdinLuCmS3g8siYj5lLTWC+wUEdsCewEfz6nUspgKvAP4fkS8A3gGOKbexv0O9A8B\n0wvPp5Nq9TYkJK0M/AL4WURc2O/y9Er+WnwJ8K5+l6VLdgT2zXnss4H3Svppn8vUVRHxSP75GHAB\nKVVcFouARRFxU35+Hinw19TvQL/ihipJryDdUHVRn8tkTZIk4FTgjoj4Vr/L022S1pU0LS+vCuwB\nzO9vqbojIr4QEdMj4nXAwcBvIuKwfperWyStJmnNvLw6sCdpxN1SiIhHgQclbZFX7Q7cXm/7vk48\nEhEvSKrcUDUFOLVkPTbOBnYFXp1vLvtKRPykz8Xqpp2AQ4HbJFUC4LERcWkfy9RNGwKnS1qJVCk6\nIyKu7HOZeqVsadT1gQtSXYSpwJkRcVl/i9R1nwDOzJXke4Ej6m3oG6bMzEqu36kbMzPrMQd6M7OS\nc6A3Mys5B3ozs5JzoDczKzkHejOzknOgNzMrOQd6M7OS+y/PgWCrGhx9ngAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd5a69bb898>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(ts*Ω/np.pi, σz_expect, 'r.', label='numerical result')\n", "plt.ylim(-1,1)\n", "plt.title(r'$\\langle\\sigma_z\\rangle$-vs-$t\\Omega/\\pi$ at '\n", " r'$\\Delta/\\Omega=%.2f$ in RWA'%(Δ/Ω) + '\\n' +\n", " r'with $\\gamma_2 \\hat{\\sigma}_z$ at $\\gamma_2=0.2\\Omega$')\n", "plt.hlines(0,0,ts[-1]*Ω/np.pi)\n", "plt.legend(loc=3);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Coherent State in a Harmonic Oscillator\n", "\n", "\n", "$|\\alpha\\rangle$ evolving under $\\hat{H} = \\hat{n}$ coupled to a zero temperature heat bath $\\kappa = 0.5$" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/latex": [ "$$\\text{Ket }{| {{\\tiny\\alpha\\normalsize 2.50}}_{{\\tiny N\\normalsize 40}} \\rangle} \\text{ on the space }\\mathbb{C}^{40}\\text{ with numerical content: }$$\n", "$$\\begin{equation*}\\left(\\begin{array}{*{11}c}0.044\\\\0.110\\\\0.194\\\\0.280\\\\0.350\\\\\\vdots\\\\3.661\\times10^{-08}\\\\1.525\\times10^{-08}\\\\6.270\\times10^{-09}\\\\2.543\\times10^{-09}\\\\1.018\\times10^{-09}\\\\\\end{array}\\right)\\end{equation*}$$" ], "text/plain": [ "'{\\\\tiny\\\\alpha\\\\normalsize 2.50}_{\\\\tiny N\\\\normalsize 40}'" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "N_cutoff = 40\n", "α = 2.5\n", "initial_state = coherent(N_cutoff, α)\n", "initial_state" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/latex": [ "$$\\text{Operator }{\\hat{{n}}_{{40}}} \\text{ on the space }\\mathbb{C}^{40}\\text{ with numerical content: }$$\n", "$$\\begin{equation*}\\left(\\begin{array}{*{11}c}0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\cdots & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 1.0 & 0.0 & 0.0 & 0.0 & \\cdots & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 2.0 & 0.0 & 0.0 & \\cdots & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 3.0 & 0.0 & \\cdots & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0 & 4.0 & \\cdots & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\\\\\\vdots & \\vdots & \\vdots & \\vdots & \\vdots & \\ddots & \\vdots & \\vdots & \\vdots & \\vdots & \\vdots\\\\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\cdots & 35.0 & 0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\cdots & 0.0 & 36.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\cdots & 0.0 & 0.0 & 37.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\cdots & 0.0 & 0.0 & 0.0 & 38.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\cdots & 0.0 & 0.0 & 0.0 & 0.0 & 39.0\\\\\\end{array}\\right)\\end{equation*}$$" ], "text/plain": [ "'{n}_{40}'" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "H = num(N_cutoff)\n", "H" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/latex": [ "$${{0.25}\\tiny\\times\\normalsize{\\hat{{a}}_{{40}}}}$$" ], "text/plain": [ "Mul(0.25, '{a}_{40}')" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "κ = 0.5\n", "n_th = 0\n", "\n", "c_down = (κ * (1 + n_th))**2 * destroy(N_cutoff)\n", "c_down" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Generating cython code...\n", "Compiling cython code...\n", "Running cython code...\n", "Starting at 10/25 15:52:31.\n", "Finishing at 10/25 15:52:32.\n", "Total time: 0 seconds.\n", "Formatting the output...\n" ] } ], "source": [ "ts = 2*np.pi*np.linspace(0,1,41)\n", "res = mesolve(H, [c_down], initial_state, ts)\n", "a = destroy(N_cutoff)\n", "a_expect = expect(a, res, keep_complex=True)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUIAAAEkCAYAAABaADjbAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xe4VNW5x/HvzwYqWFASCwgmYsGWGFus2LgQNUpiiaBY\nkliuCTFGgiUFb/TqTeJNsUSvLUavvSW2RCxcjdhRFHtDwQ6KEWwgv/vH2kfGwylzzpQ95f08zzzn\nzN579n7nnNnvrLX22mvJNiGE0MwWyzuAEELIWyTCEELTi0QYQmh6kQhDCE0vEmEIoelFIgwhNL1I\nhCGEpheJMITQ9CIRhqJIWkzSTzrZRpLGViumEMolEmEo1jeAuzrawOk2pSUl9axOSCGURyTCUKwt\nbD9YxHaXA9+pdDAhlFMkwtApSWsDz7SxfOnWpT/bLwJrVSu2EMohEmEoxt7AFYULJC0OjAdOlNT6\nc3SPpK2rFFsIJYtEGDokaVlgnu15rVYNAU4Dfgfs0Grd34Fh7exvnKSrWi37g6Q/tNpmhqR/SXpa\n0o4dxHe7pCWKf0chLCo+QKEz+wGXtl5o+/aCp2+0WmdJb0laxfYbrV56GfALSb1sz8lKlnsDewJI\nWgc4EtjU9huS1qCdz6mk1QHZnt/dNxcCRIkwdG6A7RmFCyStLelXkr4h6RJJu7XxupuARZbbfgWY\nDIzIFu0IfGD7gez5p0APYH1JS9p+JWt3/BxJu5BKo29IOqDb7y4EIhGGzk2X1L/lSVZVvhI4zfbN\nwGrAA228blfgJkmjJL2fPW7K1l1KKmkCjAT+t+VFtp8HjiK1P74p6TJJq7bej+0JwPwsjovL+5ZD\ns1GMUB06kiW+H9j+r+z5AcBQ2wdkV4zvsr15q9csBvyH7Z+1s8++wMvAIGAqsKXttq5K9wbOAebb\nHt1qnYAnba9X8psMTS9KhKFDtueSOkkvlS1aGZiS/b4zcJ+k1hdGhgG3dLDPt4GJwJ+BFwuTYFbt\n3lFSD+Bj4CNSdbm1wcBT2Wui32IoSSTCUIwrgX2y3y8D+kkaDvQFFgArtNp+a9v3dLLPS4GdWPRC\nTA/gFOBt4HVS4j2ujdfPAt6TtB/wf0W+jxDaFFXjUBRJv7L98yK2+zKwne0LqxBWCGURJcJQrAck\nbd75ZuxLKjWGUDciEYZi3Qhs29EG2QWMT2x/VJ2QQiiPqBqHEJpelAhDCE0vEmEIoenV5b3GkqI+\nH0JObCvvGMqtLhMhVOafIWm87fHl3m8lRcyVV2/xQuVibtRCSFSNQwhNLxJhCKHpRSL8vIl5B9AN\nE/MOoBsm5h1AF03MO4BumJh3APWkLvsRSnIjNtiGUOsa9dyLEmEIoelFIgwhNL1IhCGEpheJMITQ\n9CIRBiQNkrRVmfbVW9LVhfOcFPGa02Ie5JCnSIQBYBxQ8twfkr4LHA18CyjqyqKk7YFRwOKlHj+E\n7opEGCDNPXJrqTuxfb7tE4vdXtLywEZkc49US14lYEmjJZ0g6buSji7H8UN51O29xqF02XzEw0ml\nsdGS7rJ9d7ZuRWAsHZfs5gMnljDB+veBP5JKkC0xLQacCWxDmhPlXdKcKLOBybZHdfNYhcYB9wKT\nStlJVgLuR4q/w8Qm6RBgLdvHSxoAPCvpz7bfKSWGUB7RobrJSTqQNJ3mEV1/LYsBywK9Ch69QRPh\n5iNh+MefX04voCfwJvxsRVhjKhw6CXqcAZ+eYM+/K0sY9wLPA0cApwPjbJ9a+rttiVvTgG1tTy/T\n/hYAA7PJ69tavxTwKrBJyzElDbQ9rRzHr6ZGPfeiRBiGADe3t1JCpFLPZtljc9JUmsuRktoHwJzP\nPyRYY1fgrYLl75NmpfsYHl0LegyGQ78E/DtssS6cOEHiFfD0FNNve0KP6bD0v8P/LC/RF5hp0+1v\n7hxLwFsBKwFrSvo6sCkwAZhWpRJw6ESUCJucpOeBLUnTY/YBC9gMXtwO/nMvWH5VQDD7dZj5Orz2\nGrzyNsz5CD78CDy+dWIoooR0ELAKfJbUxkCPv8P298M/XgT6waZHwz33waVfhTdWheOWJk31eTep\nPfNW4MmuJsZSSsAd7LOz9zsSuATYxvYkScuQSogbAP9GhUvA5dSw557tmnoA/YE7gSeAqcCYNrZx\n3nE2wgMOGQDLvgweC6feDy+9Ap4Nvh18Kvjb4DXA6uL/cAEwoNWynYCN29n+JWD7gueDgeuz3/cB\nzk6/u08W0zngaeBXwReC9wP3LTK2C4G9y/t3ZAGwRgfrd8226VGw7DXg8ILnu5NKhYOBI/P+bHTw\nXpx3DJV41GLVeB7wY9uPSuoFPCxpgu2qXllsVBIDJrLd1T34eL2bWL7nnmw1ex4nDIXF74SBFwLP\n2Szo3r41knQyGzhV0j9tn5mtPhKYDEwp2H514Eek0uHRknrZvgkYycIpQacChwPYvANcA1yTVdnX\nAoYC3wHOlniehaXFSTYftxHmtsDYbMa9PrZnZbH0AY6h46rxp8B4d71q/Gj2s7CLkFs9HwXsT6q6\nN16Jq8bVfNVY0vXA6bZvL1hmN2LxvEIklgFGAAcDX3mCwR8P5qnVstVXYu+bX3TlIbEkqYo/NHus\nR1aNfo1Vt1qFN774OsxbA9aYb68jaTRwh+0ZpR9bC4A1bb9csGwnYKbtKdnzO4BTbd8qqS+pKrye\n7dckDQb+0/aekvYBdrR9eKlxVUKjnns13Y9Q0kDgq8D9+UZSfyQksaXEOcAMUmnjf4B+g3mqpVT2\nIHBYXjGWk808m7ttfm6zBTCQVA1e/0XW3EOw/Sqw8/awtKSDgddLTYKSRko6i4Ul4CMLVh9Jqu62\nGA3sLeko4CTgm7Zfy9a1LgGvXUpcoetqtkSYVYsnAifZvr7Vuob8VioHidWAA4CDSFWvC4G/2Lxa\nsNEKwDnAYdizcwizqizdLBj+JOv+axvumfsuff4InGPzbt6x1ZtGPfdqMhFKWhK4EbjF9u/bWG+g\n8A6GibYnVim8miPRg1T6OBj4Oqkd7c+kdrLa+wdXW0HiFx5A6vy8O3Ax8Hubl/IMr5ZJGkLqYtXi\nl5EIqyBrxL4ImGX7x+1s05DfSl0lsRYwBtgPeJxU+rvWZm6ugdUBidWBHwLfA+4ATrOjCaYzjXru\n1WIb4dak9qwdJD2SPYblHVQtkVhe4jfAfcB7wOY2O9pcHEmwODav2hwLrAncA1wucbfEHtkdM6GJ\n1FyJsBiN+q3UGYklgO+SmgVuAH5u80a+UTWG7G/7LVIXmhWA/ya1rX6Qa2A1plHPvUiEdUJiJ+B3\nwDvAUfZnfdNCGWX9E7chJcQtgZ+SEmL9nSgV0KjnXiTCGicxCPgt6XasY4Dr46SsDomvAhcAbwCH\n2pRlkIZ61qjnXrSF1CiJFSROI92Heg8w2Oa6SILVY/MIaZCJe4DJEodmJcbQYCIR1hiJJSQOB54m\nDV21vs2v27ldLFRY1lH7JFIXku8Bt0l8Kd+oQrlFIqwhEjsDjwD7AsNsDrV5M+ewAmDzBGk4rVuA\nByTGxNXlxhFthDVAYnngPNLthMcAf40qcO2SWBs4nzQ4wndtnsk5pKpptHOvRXyj5UxiXdK91G+R\nqsFxMaTG2TwLbA9cDtwj8dOs+02oU1EizJHEN0klwWNtLsg7ntB1EmuS/oe9gUNspuYcUkU1yrnX\nWpQIcyCxmMQvSUO07x5JsH5l9ynvDJwL3CkxJueQQjdEibDKJJYD/gKsDOwVd4Y0DokBpIspN5BK\n+fV3cnWins+9jkSJsIok1iG1B74O7BhJsLHYvEwaAXs74IJoN6wfkQirRGI30ojJ/21zhM0neccU\nys9mFqmq/EXgumx08FDjIhFWWNYe+DPgbGAPm3PzjilUVjYC0B6kqTknSPTJOaTQiUiEFSTRG7ga\n+AZpqKx7cw4pVInNPNIo4ZOAuyT65RtR6EgkwgrJBku4D3gb2MHmtU5eEhqMzQKbsaSBhv+Z9RkN\nNSgacysguygyERhvc07O4YSc2fxG4i1gosQeMRJ27YnuM2WWDQF/D/Af0T8wFJLYlTSXzAE2f885\nnG6p5XOvFFE1LiOJFYG/A2dHEgyt2dxEuohykcSovOMJC0UiLIGkQZK2Sr+zNPA34Dbgv7qxr96S\nrpbUv5PttpB0tKTxkm6VtF23gg+5sJkE7AicIvHdvOMJSbQRlmYccK/EA6Qb8F8BftLVOwokfRfo\nR5oz4+gOtlsG2NP2cdnzvYBbJA0qmCw81DibJ7KpF+6ReNrmnrxjanbRRlhaHNOgx7bw0XhgdeCb\npXSUlrQAGGj7lXbWbwQ8Cqxl+0VJywGzgX1sX93d44Z8SAwnDdiwuc2recdTjFo598otSoTdIGk3\nYDiwOOx9MdzyBRi+uc0nklYExkKHQ7rPB060Pb8rx7X9mKStbL+YLWrpm/acpMVIgzhsA/QldeZd\ngZQoJ9uONqkaY3OLxJnANRLbdzYKuaRBQF/bk0o9tqTepHmwf2y73blYJA0AdgXmke6WaUhRIux+\nDAfC1t+Hf64MbGMzswz77LBE2Mb2FwNv2B4r6RDS/CbPA0cApwPjbJ9aalyhcrI5UK4ifWF9v6Nm\nFUnnAffaPr+0Y37WFPNLOvm8STqlpSkme577uVcJcbGk2zY4GA5fF/i3ciTBrso+zK/aHgtg+wLb\nTwHDgMnAesD71Y4rdE2W+A4CtgAO72TznYFbSz+mz7d9YpGbf1vS4FKPWeuiatwNEkNh7jbQYwjo\nFYmVbM9K69SHNNx+R9+anwLju1o1Xnh87QossH2spB7AKrZfzlaPAvYnVd0b7pu7EdnMkdgTmCQx\n1ebuwvWfb4phtKS7bN+dratYU0zmLGCypN8DcwpiaqymGNt190hh53Vsbw5vvQ3LTMtiGQ30K9P7\nWgAMaLVsJ2DjgufbA4eQ2mtWAUYAW2brBgPXZ7/vA5yd9/8qHl36bA0DvwZe5PMEHAj8qbzHYwGw\nRifbfAG4BHgBeLXl3Ms+g+sBSwJjSIn42Lz/ht19RImwC95W38v+ydrf6se0x9flg5ckHQzMsD2j\nlP1KGkn6ZjVwqqR/2j4zW30kqao7RdKXSIN+9ip4uYHls99HApdlv0+l86pWqCE2f5f4I3CtxHY2\nHxWsHgLcXM14JPUC/kSqZRg4DvilpDVsX5BtszsN0BQTF0uKPiaLPcTXZn2NyStki67E3reaMYTG\nl108uQKYS5oDxWm5nge2BGYBfVyGppgiumuNIJUY/1CwzKTuWldlzy9nYVPMANtndP1d5y9KhMU7\ndC7Ltvz+IHBYjrGEBmVjiUNIw3cdCZwhaSVgnu2ZkkYDdyzc3u8Ax5dwyM8lUEk7ATNtTyH1QPhm\nG6+5L9t2MNDT9nxJSwMblBBHruKqcREk1gBOOoXjhgNXAkOxZ+ccVmhQNnOAERdy0K9naqVH5sPF\nPWFq1hTzejmaYiSdxcKmmCMLVh8J7J7i8OOkO5d+K+koSeOy5S39Dls3xaxdSlx5iqpxp8dCpAl5\n7rY5uRrHDAHgTX3xsS/y1obZ05poiol+hM3rQNKVs1/nHUhoLl/krRkAM1h9BtEUU1GRCDsgsRop\nAR7iNPR6CNU08h1WvHkjHltGuGfewTSyqBq3ewwEXA9MsflFJY8VQkckfgssb/P9/GNpzKpxXDVu\n377Al0kdk0PI00nA0xJfsXk072AaUZQI29w/fYHHScNqPVCp44RQLInDge+QJgLL7aRt1BJhTbYR\nSrpA0puSHs8phNOBv0QSDDXkPKAPsGfegTSimkyEpHHShuVxYIkRwCakIYpCqAk284EfA7+V6JF3\nPI2mJhOh08ga71b7uBJ9gDNIV4k/rPbxQ+iIze2kjstj8o6l0dRkIszRb4Grbf6ZdyAhtOMYYJzU\nuKNF5yESYUbiS6T7Kn+WdywhtMfmOeAi4Fd5x9JI6rb7jKTxBU8n2p5Y4i6PAs6163coodA0fgU8\nI3FWpbvTSBpCGgKsodVs9xlJA4EbbG/YxrqyXsLP2gafBzawiWkxQ82TOALYy2an6h43us9UjaTL\nSMMQrS1pejbqRiUdBvwtkmCoI+cC60g0/Hwi1VCzJcKOlPNbKeuK8BJpEqa8+i2G0GUSpwBL2Iyt\n3jGjRNio9gMejyQY6tCFwP4SS+YdSL1r6kSYDazwE+C0vGMJoatsngVeJKebDxpJUydCYChplN4J\neQcSQjddCFS6Db3hNXUbocQE4BKbi8oQVghVJ7Ec8AowyObtyh8v2ggbisTGpHmAL+ts2xBqlc2/\nSFO8jsw7lnrWtImQ1DZ4us0neQcSQomielyipqwaS/QDHgO+bFd/cIcQykliMeAF4Fs2j1T2WFE1\nbiQ/BC6OJBgagc0C0v3HUSrspqYrEUr0JnWg3szmpfJGFkI+JNYEHgD62XxcueNEibBR7AlMiiQY\nGkn2eZ4K7JZ3LPWoGRPhUODmvIMIoQLiokk3NVXVOLuT5HVgK5sXyx9ZCPmRWBZ4lXQRcFZljhFV\n40awITAnkmBoRDZzgUeAzfKOpd40WyIcCtyadxAhVNCDRCLsskiEITSWB4hE2GVN00YosTTwFql7\nwXuViSyEfEkMAO4DVqvERPDRRlj/tgWmRBIMDe4VYHFg9bwDqSfNlAijWhwaXlYKfBDYPO9Y6kkk\nwhAaT1ww6aKmSIQSqwL9gIfyjiWEKohE2EVNkQiBXYA7bObnHUgIVfAgsGk2Kk0oQrP8oaJaHJqG\nzVvAe8BaecdSLxo+EWbfirsQ85KE5hLV4y5o+EQIbAS8F6PNhCYTibALmiERbgvcmXcQIVRZJMIu\naIZEOIA0jHkIzeQh4CsSi+cdSD1ohkTYD5iRdxAhVFM2u92nQK+8Y6kHzZIIp+cdRAg5mEMkwqI0\nQyLsT5QIQ3N6n0iERWnoRJi1j6wKvJZ3LCHkIEqERWroRAh8AXi3krN6hVDDIhEWqdET4Wftg5IG\nSdqqHDuV1FvS1ZL6d7LdppL+IOkASWdL+nI5jh9CkSqaCMt1TnXlPKnUObVEOXZSwwrbB8cB9wKT\nStmhpO+SEuy3gKM72K4HcDWwhe03JT0FXEYMjxSqp9IlwpLPqa6cJ5U8p4pOhJKWBUYBG5AGfuwJ\nLCD9se8DrrK9oNSAyqyw68zOwIml7tD2+QCSftnJptsBc2y/mT1/GFhP0kDb00qNI4QiVDoRluOc\n6sp5UrFzqqhEKGkXYDBwo+3/abVOwMbA0ZJus/1oKQGVWT84pZd0/Jmk5D1a0l227waQtCIwFuho\n6PH5wIm2uzpyzUBYOKWibUt6F1hf0ivAmcA2QF/gXWAFYDYw2faoLh4rhLbMAXqXe6eSdgOGU55z\naiDtnCfAtFava3fbUs+pThOhpJ7AS7bbHLTAadKTR4FHJW3Y2f6KIWkY8HvSH/o82//VzV31g+Nu\nhuMXBxazfXLhStvvAseXFm27VgY+aLXsI2A54CDgj8AY4AjgdGCc7VMrFEtoThUpEdq+UdJKlOec\nau88aSuBV+yc6vRiie2PbD/f8lzSAEkjJG2XPd+rYNvHizloRyQtDpwBDCOVQveTtF43d9efdLFk\nCHBHqbF10WwW/VbsBbxt+wLbT5He42RgPVKfrxDKqZJV4yGU55xq7zyZ2YVtSz6nunOxZBnShYLN\nJM0lNZRe3Y39tGdz4PmWOr+ky4E9gKe6sa+WNsJtgbFZNb6P7VnZvvsAx9BxMf5TYHw3qsZPA4e1\nPJG0BNAHeLlgm1HA/qRqRsPNDBZyN4fKTeJUrnOqmPOkRcXOqe4kwhHAj2y/I2kZYIdu7KMjq/P5\nW+JmAFt0dSfZOISrwbAPgXm2Z0oaTcG3mO13KK1q/Lk/tKSdgJm2pwB3A30l9bc9HdgeeML2c9m2\ng4GetudLWpp0ESqEcqrInSVZtbhc51Rn50lVzqnu9COcnr1ZbH9A+UsyZZmLdTbLX3QX22g+/ziv\nJ0yVdDDwuu2SbreTNFLSWVmcp0o6smD1kcDuANm33QHACdmHZX9g34JtR5Iu/QNMBdYuJa4Q2lDW\nqvEsrXRp9uu7wCPlOKeKOE+qck51eYJ3ScOBA4H/Jc2hOtT2b7q0k473vyWp2Dwse34csKDwgokk\n8/nL9hNtTyzcz/vqdX9v5rb0L7oSu/APFkLDk9gM+Ibd/S4ukoaQ2gM5lOXG/A//WrERJ3jvciIE\nkLQOKRkuBZxr+5myBZTq/c8AO5HuEX4A2C9rCG3Zxp39M+ZqmduX5cMdSQNUDsWeXa4YQ2hGU7TR\ni1/h8TWbMhFmvbl7227rKk7rbdew/UrJQaVSZ0v3mfNtn9JqfaeJ8DT9pP9Apr34ba7tG0kwhNKt\nojeueZNVv9WUiRA+60C5HHCd7Q/bWL8isDfwVEvHykoqJhFmI898Aixhl6fdMYRmJvFP0NZNmwgB\nJPUDRpNGdOkJLEm6DP4B6cruubbfq1CcrWPpNBGm7fgA6GsztwphhdDQJKaBBjRiIuxK95kf2D62\ncEE2+soHLX2IalDLVbNIhCGUIKthrZZ3HJXSle4z62f9Bgu9Rbq1pVbFCL0hlMcXSN1mGlJXSoSf\nAhdlPcknArfZflrSyhWJrDxiYMoQyqPlLq0v5B1IJXQlET5s+1eSViV1bflpdpGkltsLIhGGUB4t\niXCTvAOphK4kwjckLWv7deAS4BJJSwFXVSa0sohEGEJ5NPS0uF1pI7wG2LFwge1PgMfKGlF5RSIM\noTxaRnJqSEUnQtvv2L6hjVWnlTGecotEGEJ5RImwI67tuzYqMkJvCE0oEmEdi+4zIZRHJMI6FlXj\nEEqUje25OvBq3rFUSiTCEEJn+gLv2ywyzkCjaPRE+Bpp5qsQQvf1o4GvGEPjJ8KHgM3yDiKEOvcl\n0iDMDavRE+FLQA+pcW8WD6EKdiDNF9KwGjoRZuMQRqkwhNIMBW7NO4hKauhEmHmQSIQhdIvEl0kX\nHEues7yWRSIMIXRkF+DWRh/lvVkS4aZSTY+SE0KtavhqMTRBIrR5nTSdwJfyjiWEeiKxBOlCyW15\nx1JpDZ8IM1E9DqHrNgNetnkj70AqLRJhCKE9TVEthuZKhJvnHUQIdaZpEmHR03nWkmKn81y4PSuQ\nRs5YwWZ+5SILoTFk58x00nS4Hy1c3rVzr140RYnQZjbpvuP18o4lhDqxA3BPYRJsZE2RCDPRThhC\n8ZqmWgyRCEMIbYtE2KAeALbMO4gQal12W93SwBN5x1ItzZYIV5FYN+9AQqhxQ2mC2+oKNU0izK4W\nXwwclHMoIdS6pqoWQ5N0n1n4OgaTbhdaI7rRhLAoiRWBF4B1bN5edH10n6l7Nk+S+kbtkncsIdSo\nQ4Eb20qCjaypEmHmQuDgvIMIodZILAWMAU7LO5Zqa8ZEeDkwVKJP3oGEUGO+AzxpMyXvQKqt6RJh\ndpfJLcDIvGMJoVZk43UeA/w271jy0HSJMHMhcfU4hEI7A6LJrha3qKlEKGlvSU9I+lTSJhU81O3A\nFyU2rOAxQqgnxwCnNVPfwUI1lQhJE8SMAO6q5EFsPgUuIi6ahIDERsCGwGV5x5KXmkqEtp+2/WyV\nDncRMEpiySodL4RadTRwus3HeQeSl5pKhNVk8xzwLLBr3rGEkBeJ1YBvAufkHUuelqj2ASVNAFZp\nY9Xxtm+ocjgtF02ur/JxQ6gVPwQusXkn70DyVPVEaLssd3VIGl/wdKLtid3YzVXAf0t8weatcsQV\nQr2Q6AV8nw6msZA0BBhSpZByU5P3Gku6EzjG9sPtrC/b/Y4SFwFP2Py6HPsLoV5IjAG2tdm7+Nc0\n5r3GNZUIJY0A/gisDLwHPGJ7eBvblTMRbgDcAazb7NWD0DyyOYufBUba3Ff86yIR1oxy/zMkzgLm\n2fyoXPsMoZZJ7A38yGabrr0uEmHNqEAi7As8CWxn81S59htCLcpup7sPONXmuq69tjETYdN2nymU\nDTl0Ck16n2VoOqOAHsDf8g6kVkSJ8LN9shRpjoYf2vy9nPsOoVZIrAJMAYbbTO766xuzRBiJ8HP7\n5ZvAqcDGNvPaOfYgoK/tSaUdS5sCBwAPAVsDv7H9QjvbDiB1/J4HfBG40fajpRw/NCeJq4FnbE7o\n3usjEdaMCibCltE3/mpzRjvHPg+41/b53T+OegDPAFvYfjNLimfZbrM/l6RTbB9X8Pxi2wd09/ih\nOWUXSE4ENunuxO2NmgijjbBANvLG0cAvOhi4dWdKH6poO2CO7Tez5w8D60ka2M7235Y0uOB5094T\nGrpHYmVS17RDupsEG1nV7yypdTaPS1wD/AI4qmW5pN2A4cDiwGhJd9m+O1u3IjCWNJ5be+YDJ9qe\nDwwEZi08pi3pXWB9YFobrz0LmCzp98Ac4PTsuIsBZwLbAH2Bd4EVgNnAZNujuvr+Q8P6A3BpV/oM\nNpNIhG37BfCkxNk2TwPYvlHSSsBitk8u3Nj2u8DxXdj/ysAHrZZ9BPRuZ/tLgU2BvYGeLBym7CDS\nt/wY4AhSghxn+9QuxBIaWGrT/o8R8PMtgI1K2E9LmzaSzqbjNu0tSO3eywFbASfZrujQeqWKRNgG\nm7clTiVNYlM4Os0Q4OYyHGI2i5YeewEzW28oqRfwJ1KXBwPHAX+VtLHtC7JtdgcmA+sB75chvtAw\nlv45rLQbMMJe5Mu3KFmb9tXAFqQv3fNIYxcu0qYtaRlgz5Y2bUl7AbdIGmT7tW6+iYqLRNi+04HD\nJYYVdKfZFhgrSUAf27MAJPUhjfDbUdX4U2B8VjV+GjisZYWkJYA+wMttvG4X4C7bLe064yUtSfpQ\nvpItGwXsT6q6N1xDdijFsiNgm2tt/q+EnXzWpp0++gvbtG1Pa7XtWsA4SefafpHUnr40qWR4dQkx\nVFQkwnbYfCJxDGl0mttAywPzbM+UNJp0f3K2rd+ha1Xju4G+kvrbng5sDzxh+zkASTsBM21PAZ4n\njRdXqOXOALKLKD1tz5e0NLBBt95waCipTXu9Q2HJpWGbadL721ajTdv2Y5K2ypIgQL/s53O13KYd\n3Wc6PA66ir2mb8LDHw1g2rO9YO5HqWo8w/aE0vatHYF9gEnADsDJtp/P1l1L+mCclD3fh1QNmUG6\nI+BB23eF8Yu1AAAPnklEQVRk604CHrd9RZYUz7C9Yymxhfon0RvOeRF+f5/91O6l7UvHAdvZHt5y\n7kl6FviF7cs7ee3FwBu2x0o6BLiX9OVeU23akQg7MUe97u/F3Ja2kCux963GcUMohcSZMHQXmHCC\n7atK25eOAPawPawgEb4GjLZ9Wwev+y4wyPaxrZbvTioNvgPsYPvMUuIrh6gad6IXc2cBPMJX5p3B\nD8Z3uxd1CFUisT2wB9z+CXBnldu0W7bZFVhg+9jsYssqtlu2r7k27UiEnRsJnDOC6559mYF/vkBs\nHx1SQ62SWAY4Hx4YBwt+Vu427ex5R23aSNqedCvoTZJWAb4OvA68XKtt2pEIO2PPBvZ9Od1+Nxg4\nU+J7zTr/a6hdErqRXR/pzyu912fqqF4wVdLBpDbtGd3db5a0DoDP7k/eHyhsIjqS1H1riqQvATeQ\nuoN9tgtg+ez3kSycNnQqcHh34yqnaCPs0nHpTWrsPcvmrGofP4SOSPzXA2x2+GY8tFy2qOxt2o16\nr3Ekwi4fm7VIV3q/bXN3HjGE0JrE0cD3PqTnqz35eGfgQWBoVqMp43EiEdaMvP8ZEsOAC4DNbbpd\n5QihHCQOAE4GtjZ6nzRH8WHlToLpWJEIa0Yt/DMkjgNGkIb3j4snIRcSw0nzc+9o82Tlj5f/uVcJ\nkQi7HQMCriSNBnNIXDwJ1SaxBenCxB4291bnmPmfe5UQ4xF2U5b4Dga+RrpqFkLVSKwH/BU4qFpJ\nsJFF95kS2MyRGAFMknjMpqaHGgqNQaI/8Hfgp3ZZRkNqelEiLJHNC8Bo4IrsAxpCxWQjp/8dON3m\nL3nH0ygiEZaBzT+A3wG3SKyedzyhMWV3jdwI3GzH1LPlFFXj8vkN6YvlHol/s3km74BC45BYknRx\n7jlgXM7hNJxIhGWSXTw5VeItYKLEN20ezDuuUP+yHgrnZk+/Z7Mgz3gaUSTCMrO5QGImcLPEKLvk\nGe9CE8uS4K+BtYGd25tvO5Qm2ggrwOZvwLeAiyX2yzueUJ8klgYuBnYCduvunCOhc5EIKyS7D3ln\n4NcSY/KOJ9QXiQHAPaTx+raxeSfnkBpaJMIKsnmcNOHTkRInZ9WcEDoksQNpTppLgP2jJFh5cYtd\nFUj0BW4CHgMOt5mfc0ihBmVflGNIU7aOsrk955AWUW/nXrEiEVaJRC/gGuBDYD+bD3MOKdSQrD3w\nbGBjYE/787PD1Yp6PPeKEVXjKrGZA+wOfAD8Q2KFnEMKNUJiDdJw+EsBW9VqEmxkkQiryOYT0jDn\njwB3SayWc0ghZ9lES/cDlwMjoz0wH5EIqyzrDHsUad6GByR2yzmkkAMJSfyQdLfIaJvfxlBu+amp\nNkJJvwF2Az4BXgAOtv1eG9s1RDuFxBDgPNIVwh/ZzMo3olANEj1J7YGbkNoDX8w5pKI1yrnXWq2V\nCG8F1re9MfAs6epZw7KZSGocfwuYKrFXvhGFSstGKLobWBr4ej0lwUZWU4nQ9gTbLfdR3g/0yzOe\narCZa3M06U6UX0lcLfHFvOMK5ZVVhfckfa6vAr5jMzfnsEKmphJhK4dA8ww6mY0y/FVSSfgxiVHR\nAbsxSGwM3A6cRLog8utoD6wtVW8jlDQBWKWNVcfbviHb5gRgE9vfbmcfBk4sWDTR9sRyx5oXia+R\nJuR5mdQB+9WcQwrdkJXsfwV8ExgPnFdvneklDQGGFCz6ZSO2EdbUxRIASQcB3wd2st3m7HCN2mBb\nSGIpUhvpD4BjgQuiFFEfJHoAPwJ+CvwZOMmm7FNr5qFRz72aSoSShgGnAdvbntnBdg35z2iLxEak\nOZTfBb5fzs62kgYBfW1PKnE/mwIHAA8BWwO/sf1CB9uPBvoDbwDL2/7vUo5fK7KmjBGkQXqnAsfY\nPJdvVOXVqOderSXC50i961tG2rjX9r+3sV1D/jPaI7EE8BNgLPBL4E/lGJxT0nmkv/H5JeyjB/AM\nsIXtN7OkeJbtzdvZ/hBgLdvHSxpAahNd1XZdj64i8VXSdA0rAT+2uS3nkCqiUc+9mkqExWrUf0Zn\nJNYFzgd6k0rOl2V3q3Rzf5oGbGt7egn72AX4ne0NsucC/gVsaHtaq22XAl4ltf9Oz5YNbL1dtZVS\nMpZYhXQRZDc4/wI4rBd8+iBFlIwLjn8acK3te7p6/Gpr1HMvRqiuIzZPS2wDDCWVEP9T4nTgHJt3\ni92PpN2A4cDiwGhJd9m+O1u3Iqnk2dGHfT5wou35wEBY2BHctiW9C6wPi1TjtyKVmNaU9HVgU2AC\nME3SYsCZwDZAX1JTwArAbGCy7VHFvr9uGAfcCxSdCLNO0UcBxwAXwjUbwvceZGHJ+CnS3UNtlowX\n7kfbA6NIcxSHvNiuu0cKO/848n6ANwZfBH4H/Afwml34Gx4I/KkM/4vjgFtaLXsW+E4b244EFgBb\nZc+XISW81UndpdYDliQNRSXg2Cp9nqYB/Yv8my8O3hv8Ivg68FrZPnYBphbsU8D7wMAOjrs88EPg\nTmC7vD9PRf6tnHcMlXhEibCO2UwBDsymEP0h8KDEHcBpNvd38vIhlKef5mwWLT32Atq62NVyu+TD\nALY/kPQhsLvtswEk7Q5MJiXF98sQX7u6VjLuvyJsuhEM3AA+mgOTJsKUF4BppIv5Aym+ZNzi+8Af\nSZ3pW2LKs2TctCIRNgCnfobHSpxMKlldITGd1I54g82nbbxsW2Bs1qbXx/YsAEl9SNW9jqrGnwLj\nnarGTwOHtayQtATQh9QHsrVHs5+LF4bf6vko0gg9wzuJoWS2b5S0ErCY7ZNbrXtX4hRgH+BgYBBp\nxOjDnEYeb21lWGTkmI9I7bmLyBL+zbY/Sf+CzxxESo5jgCOA04Fxtk/t4tsLXRCJsIHYvA/8QeJM\nUinjeNKcKb8DLnI2xFN28s+zPTPrynLHwn34nex1xbob6Cupv9MFkO2BJ2w/lx1rJ2Cm7Sm2X5U0\nkVTauVVSX1Lp8bps28FAT9vzJS0NbND9v0bRhlBQMpZYLHsPB5M6Qk8kdYe52R3PIFd0yVjSasAK\ntp8sXAxg+4Jsm6qVjENcNW5oWb+2bUkXVr5+B0Omb8EDn/Tgw3d7wdyPUgKYYXtCacfRjqSS0yRg\nB+Bk289n664lVelOyp73I3UBeoJ0kl9q+/+ydScBj9u+IkuKZ9jesZTYioj9eWBL+LAXzDgc1toH\nmAPPXgFf7wvvdDSS+GclY0k7kK6efyXb7xJpP2zY8qVQcMyDSHdXtZx8Y4Abgb/avjnb5nIWlowH\n2D6jXO+5FA177uXdSNmdBw3aYFvZv5nXmcrg1ww2eBJbPgveFdwr79jy+5t8ux+s8Cr4DjjvfXjs\nQvDXwOr6vliC1DWof/Z8J+DhgvU7ARu389qXSDcRtDwfDFyf/b4PcHbef6uC2Jx3DJV41PKgC6GM\nbJ5ZnycfBXifXk/sx2WXkkqKr0vcKXGcxNeyqmHDkljmOQ26YarWf+1m3ntxSb66GIx8Csbta294\nsM3DdtdvZXRqLz0AOCFrbtgf2LdgkyNJUzUUxKLVJf2aVDo8WtKu2aqRpK43kO5QWbur8YSuiapx\nM5FWAM4BDsOenRbRC9iO1DdxKOlK5W2ksSEn2MzIKdqSSSwJbAhsVvAYdD+bzd+ch1ouYlyJvW97\n+wif16jnXiTC8DnZwKG7kJLizsCbpKR4K3CXa3QMvawkuzYLE97mpCQ4DXiw4DHF6DpS29uDwNCW\nL4XQuUY99yIRhnZJLE4aI7GltPg10hQKM7LH9ILfZwAzqpEos4tAa/D5kt7XSP34CpPeZLuNK65t\nlIxDcRr13ItEGIqWVaMHkUYO75/9bP34mDYSZMGyN0kDa/QmdS9p/WhveeG61Ul3qBQmvQftNjtx\nhzJq1HMvEmEom6yk1odFk2Nh0lyF1NF4Dql/3Jx2Hu2te580x8tr3bmoEUrTqOdeJMIQQtEa9dxr\n6K4SXZUNS15XIubKq7d4oT5jzlMkws8bkncA3TAk7wC6YUjeAXTRkLwD6IYheQdQTyIRhhCaXiTC\nEELTq9uLJXnHEEKzasSLJXWZCEMIoZyiahxCaHqRCEMITS8SYSuSfiPpKUlTJF0rafm8Y+qMpL0l\nPSHpU0mb5B1PeyQNk/S0pOckjcs7ns5IukDSm5LaGpq/5kjqL+nO7LMwVdKYvGOqF5EIF3UrsL7t\njUmzsR2XczzFeBwYAdyVdyDtkbQ4cAYwjDTw6H6S1ss3qk5dSIq3XswDfmx7fWBL4Mg6+BvXhEiE\nrdieYHtB9vR+0v2xNc3207afzTuOTmwOPG97mu15wOXAHjnH1CGnGe2Kni86b7bfsP1o9vsc4Clg\ntXyjqg+RCDt2COWZ8jKkEWOmFzyfkS0LFSBpIGkItc6mdQ006Sx2kiaQRkFp7XjbN2TbnAB8YvvS\nqgbXjmJirnHRT6tKJPUCrgZ+lJUMQyeaMhHa3qWj9dksY98gTbhTEzqLuQ68ShqOq0V/qN9pAGqV\npCWBa4BLbF+fdzz1IqrGrUgaBowF9rD9Ud7xdEOt9vp/CBgkaaCkpUgTG/0t55gaitJM8ecDT9r+\nfd7x1JNIhIs6nTQK8gRJj0g6K++AOiNphKTppCuFN0m6Je+YWstmefsB8A/gSeAK20/lG1XHJF1G\nmqt5bUnTJR2cd0yd2Jo0e94O2Wf3keyLPXQibrELITS9KBGGEJpeJMIQQtOLRBhCaHqRCEMITS8S\nYQih6UUiDCE0vUiEIYSmF4kwhND0IhGGqpPUo4N1PasZSwgQiTBUmaTdgN4dbNJPUr0PMBHqTFOO\nPhPKT9IywK7ADsBGpFGzBwHvAaNtz5W0KrCc7Znt7cf285J2lTTJ9txqxB5ClAhDuYwFJgBTgb/Y\nPsL2zkBPYI1sm4OB64rY143AqIpEGUIbokQYysL2iQCS1gUuzX5fAXi5YJSZL9j+sOU1koYDK5PG\nJrwO+MD2y7ZfkPSjqr6B0NQiEYZy2xD4SNLvgKeBowrWfXYhRNI6wIG2vyOpD/AH4Frg5WyTxasU\nbwhRNQ7lI2kl4DXS3CTfAJ62/UnBJksW/H4g8L8Att8BNgNmFayPq8ehaiIRhnLaHbjK9izgJODn\nAJI2kLQy8GnBtksBr2TrlwHm2i6cjnQBIVRJJMJQTluwcNa/S4HlJf0e+FJ2pfiDgm3PBYZm3Wl2\nACZJ2gs+G3I+Jh0KVRMjVIeqkXQMcL7tDucKlvQVYB3bV1QnstDsokQYqulcYO8ittsZuKrCsYTw\nmUiEoWpsvwc8JWmN9raRtCFwm+1oIwxVE1XjEELTixJhCKHpRSIMITS9SIQhhKYXiTCE0PQiEYYQ\nml4kwhBC04tEGEJoepEIQwhN7/8BF/rOJ+qk9AwAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd5a2b22278>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(4,4))\n", "plt.plot(np.real(a_expect), np.imag(a_expect), 'b-')\n", "for t, alpha in list(zip(ts,a_expect))[:40:4]:\n", " plt.plot(np.real(alpha), np.imag(alpha), 'r.')\n", " plt.text(np.real(alpha), np.imag(alpha), r'$t=%.1f\\pi$'%(t/np.pi), fontsize=14)\n", "plt.title(r'$\\langle\\hat{a}\\rangle$-vs-$t$')\n", "plt.ylabel(r'$\\mathcal{I}(\\alpha)$')\n", "plt.xlabel(r'$\\mathcal{R}(\\alpha)$')\n", "l = abs(a_expect[0])\n", "plt.xlim(-l,l)\n", "plt.ylim(-l,l);" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.2" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
Gorgel/minkpy
analysis/notebooks/V3_analyser_xibox.ipynb
1
270297
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from __future__ import division\n", "import numpy as np\n", "import scipy as sp\n", "import matplotlib.pyplot as plt\n", "import pylab\n", "from scipy.signal import argrelmax, argrelmin\n", "import pickle\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Load all data into memory" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from IPython.html.widgets import interact #import interactive tools\n", "filenames = np.loadtxt('../datafiles/xiboxnames.txt', dtype='str')\n", "\n", "def data_selector(filename):\n", " \n", " global plotname\n", " plotname = filename\n", " global data_dict\n", " #open pickled object\n", " with open('../datafiles/'+ str(filename), 'rb') as infile:\n", " data_dict = pickle.load(infile)\n", " \n", " return data_dict\n", " \n", "interact(data_selector, filename=filenames.tolist())" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [], "source": [ "with open ('/home/gorgel/Dropbox/simon/plugg/masterarbete/redshift_files/xion_redshifts.txt', \"r\") as myfile:\n", " redshifts=myfile.read().splitlines()\n", "\n", "#set upper value and lover value of redshifts\n", "z_upper_limit = 17\n", "z_lower_limit = 5\n", "\n", "# selects redshift indexes between the limits\n", "indexes = sp.where( (np.array([float(z) for z in redshifts]) <= z_upper_limit) & \\\n", " (np.array([float(z) for z in redshifts]) >= z_lower_limit))\n", "\n", "#use the above indexes to select the desired redhifts\n", "redshifts = redshifts[indexes[0][0]:indexes[0][-1] +1]\n", "\n", "thresholds = data_dict[str(redshifts[8])]['thresholds']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### V3 as function of threshold $\\theta_{th}$" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<function __main__.plot_explorer>" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAI7CAYAAACazLb4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecZGld7/HPr7onzy67y4qyi4KgLIgiXliiwAAGQEAU\nUMIKiKByWZKAFwMwoF7CRUHSlbvknEGCCBKGuGQkKEHCssISdtgwOXTX7/7xnOqpPl3V6dSZ7qr+\nvHkdTvUJT52q6p4933pSZCaSJEmStFqdtb4ASZIkSePNUCFJkiSpEUOFJEmSpEYMFZIkSZIaMVRI\nkiRJasRQIUmSJKkRQ4UkTaiI2BUR3Yj44Fpfy6SIiJdV7+kDVnFuRMQfRcSnIuJARFweER+MiN9u\n41qbiohrVa/122t8HedExCMj4lUR8dXqmroR8VvLOHdHRPxtRHw9Io5ExA8i4g0R8Usn49qra9hT\nXe9tl3n8unjfpZUyVEjS5MraWotY4c3cat7TlwAXANcD3gN8DLgF8NaI+KtVlHeyrPXvz0OBZwH3\nBX6+2pYscV0RcRXg48BfAluAtwLfBO4JfDoibt/WBQ+w5PUOOUcaG4YKSZpcn6LcwN5/rS9kTLQW\nwiLivsADgO8A18/Me2TmXYBzgX3A30TETUf9vBPiS8AzgN+jhIoPA7GM8/4P8EvAu4Gfz8z7ZOat\ngD8ENgOviYgd7VzyAsu5XmmsGSokaUJl5uHM/Hpmfnetr2VMtHnj9+fV+n9l5vd6GzPzS8BTa8eo\nT2a+ODMfn5lvysxvLeeciDiTEh6OAw/JzGN95b2cUlN0teoYSSNgqJCkMRERL6ma57xxwL7piPhY\ntX93tW3RPhURceuIeFtE/CgijkbEdyPilRFxgyHHdyOiWz3+g4j4TEQciojLIuKNEXHthq9vKiLu\nHxEfjYjvV23gvx8Rn6zaxW/pO3butUXE1oh4akR8qzrnaxHxiL5jf6V6nZdW1/vhiLhZ7bl3A70b\n1l4zqN4ysDlURFwvIt4cEXur5/1sRPzegON+BrghcITSBKfuddX6NyNi00reswHP9YtVv4+Lq890\nb0S8c7H2/BHxP6pjroiI/RFxYUTccxnP9RtVf4Fe/5B/i4jbLOP37poR8fyI+Eb1vl0eER+IiN9p\n8tpr7gxMAR/NzEsG7O+958vuzxIRu6vX9aSIuHZEvLb62zkSEf8eEX+y0ouMiKdUZf5nRFxzpedL\n64mhQpLGx/nAV4F7RMQf1/Y9hdI+/8PAk2v7FjTniYiHAx8C7gZ8HXgjcClwP+AzEXHXIdeQEfG/\ngRcBlwHvBA4C9wA+EhFnrOJ19bwUeBnwy8C/A2+iNH35KeAvgKsMOGcz8H7gwcBnqtd0LeDZEfHX\n1c30x4BrAv8GfAP4VeD9EXFOXzmfB95cPT5YXUdvWRDigBsDnwbOAd5bnf8rwOsi4j61Y3+lWn85\nM4/XC8rM7wCXA9ur8lYlIs4DPkdp7rYXeBvwFeA3gQ8MuumNiDtQ+h3cmdI06+2U35c3AI9a5Lke\nCPwrcBvgi8C7gKsCH6D8TsHg37tfo3ymDwWOAe+gvHc3B94cEX+3slc9VO89/+yQ/b3tv7yKsq9N\n+V27JfA+YA9wfeD/RsQLl1NA9SXAi4G/prz/t6p+D6TxlZkuLi4uLmOyUNqIH6Lc+P5Cte0OwCwl\nFJzdd+wuoAt8oFbGjYAZyjfnd67te1h1zhXA1Wr7utXyg95zV9t3ABdW+56wytd1zer8bwNXHbD/\n5sC2Aa+tS7mR3dG379eq7QeA7wLn9+0L4FXV/pcMuYZvLXKdL+t73sfW9j2m2v7N2vZHVNvfvEi5\nX6iOufOwY5Z4/25EuUm/DLhdbd/Nqu1Hgev2bd8OXFI97+Nr59yz+h1Z8H4AP139/s0A96ztO7//\nc6ntO4sSno4Av1fbd0712Xfr1z/gte5Z6r0C3lId8/Ah+0+v9s8C25f5Hu/ue22vAaZrf5d7q313\nHXK9t+n7e3lXte2twJba8dda6vfQxWU9LtZUSNIYydIG/zHANuD1VZOJV1W7H5R97fUX8QhKTfXL\nM/NfauU/n/Jt/6nAQ4ac/8TM/M++cw4Cz6x+3LXMl1J3tWr9+cz8cX1nZn4iMw8POG8W+JPqGnrH\nvo9S07GdcmP2vL59Sen0C1BvErSSPhUXZuYza9v+kRLGrlU1eerZWa0PMtyBan3KCq6h318C08Cj\nM3Nes6PM/CTwN8AmoL+24p6UWqAvZ+bTaue8iVLTMciDKL9/76iO6z/vecAnh5z3KEpt01Mz8w21\n874G/Fn14/lDzl+Jpd7zA32PV/qeH6QE1Znehurvsvd79chhJ0bETwAfBO4EvBD43cw8usLnl9Yl\nQ4UkjZnM/L+Ub2JvQGl68pPA8zLzHcss4jbV+uVD9r+kdty8p6eMplP39Wp91jKvoe4rlBu9u0TE\nn0fENZZ53ncy878GbO/1j3jvIvtWe61Qmv7MU91kfpsSTq7eoOwViYgOpYnTDIP7bAB8pFr39yXp\nharXDjnnlUO2934vXj9k/7Dy7kT5/XnTkP2DrnE9em9mXjZgey/c36L6TOp+jtLU6caUYP7QKuRK\nE8FQIUnj6cHAlZRvWf8DeOwKzj2bcnM3bD6Gb/cdt0Bm/veAzfur9ZYB+5aUmQeAB1KCxdOAiyPi\nOxHx6oj4vYiYGnLqsJGtDgzbXz0XlP4YqzXoPYDB70Pv+RYbvrT3zfr+RY4Z5qqU34Np4IpaJ/Ne\n5/pPVcf+RN95vc/3oiHlDmvjf/YS+y8esv3alMD1pSHX+KMB17haS73nO/ser/Q9v2jI9u9TRpva\nSvlM6v4JuA7w9Mz82xU+p7TuTa/1BUiSVuXOnOi4fA3Kjd5Fa3Y1I5CZb4mI9wO/Bfw6cGvgPtXy\npYi4dWbuq53WXaLYpfav1krKvaha//Qix1yDEvRW01m3F7iOUdr6L2bvKsofZti37MPem951vppy\n892m3vs47D3v1YRdlpmHWr6WnlcDfwA8NCL+uWqWJk0MQ4UkjZmIuA7lW8/jlCYo5wGvjYhfzczZ\nZRTxPcq3xtehfLtad+2+406qzLyScmP8GoCIuD6lmdZNgMdT+g6Mm89X61+MiM3ZN2cClJm8KR2H\nDwFfW0X5eymdsKco/UuWe8Pe+3yvNWT/sO2XANeldGz/xArO+2/K79YTM3M5s5Y38blqfZMh+29c\nrf99FWVfa8j2syj9Vo4AC/oFUUY3+0C1fm9E3DkzP7aK55fWJZs/SdIYqeYxeB2l+cYTKLM0f5DS\nDn25TSo+VK2HzbT9h7Xj1kxmfgV4dvXjL7X8dL2b/ZF+4VY1F/sCpVnMoLkY7l2t393f+XcF5c9Q\nhsudHlL+ML3P995D9t9vyPYPV+vfH7J/WHnvpjR/utfSl9bYv1A68d8qIgY14+td47DO6Iv5jSFD\nJ9+3Wn88MwfW1mTmKylfAmwD/jUidq3i+aV1yVAhSePlqZRvWf8tM59RdfQ8j/Jt9Z9X8wAs5TmU\nG64HRMSd+ndExEMpHXivpMxFcVJExI2qvhNbatuD0tQLhrfVH5VLKbU/PxkRp4247N7IQE/v74Qe\nETekzMHRPyrVajyF0lH7BRGxYEK3KBML3q426d+bKMMD/1JE/Hnt+N9leEB5MXAY+O3quP7zHkoZ\n/neQZ1L6L+yOiAfVOzNHce4yf4dhkdG6qhHEXkKpObggIub6z0TEA4DfAH5IqTXov4azI+KrEfGV\niBjWkX8H8Jzom6gwIn4R+F+Uz/G5i110Zr6OEmo2A+9aweuV1jVDhSSNiYi4I2XYzR9R2mYDkJnf\np9QuBPCKatjKoTLzC8CjKd9svyvKDNavjojPA8+nNN+4f2b+aLFyRuxalBqYvRHxoYh4TUS8hdI2\n/r6Um98mN91LqpoNvZNyI/r56j15UUQ8dQRlv5bSjOtngP+MiLdGxLsoE+jtpDQJ+nSD8j9D6ei+\nA3hrRPxXlFmyX1P1U7mUMkngL/edc4hSW3UUeFpEfLE6/uOUwDHw5riqeXl49eOboszA/ZqI+Fx1\nTu+8Y7XzLgZ+l/L79SLgooj41+p9/ldKU7xPArfvPy/KjN+f6C2cmNjumX3b3zLgUh9HmWjvjsA3\nIuL1EfExSpA4CtxvQH+KTZSmXecwvMbqlZSRrL4REa+rrv2zwBmUuU/+ech5/e/FWygTRnaAt1d/\n29JYM1RI0hiIiJ/ixMRrD6zf8Gfmuyg1ED/J8KFi+49/HmVOibdTbqLuQRl159XAuSsYnnZULqT0\nl/gI5cb77pShS/dSvoW/Yc6fcXipoThzGccM8hDKN/EdSjOdBzG/mc9S5Q7dn5l/WJX/VcoEfbei\nvO7fyczGM0ln5msoTcReQKmJ2gXchdIp+cPVc7+xds77KDOM/wulU/NdKK/9PpxodjbouV5CqUH6\nCPCLlJvsyygd7HvhaEGn8Mx8P2Uo5GdQJsK7FfDblOFW/50yx8NzaqedAtwUOLdadlLe4+v2bbvR\ngOfaR5ll/n9TgszdKP2I3kT5Hf/AsNfH4p/xN6vr+QQlAN2GMiTywzJz0NwuA38nMvOdlN9zKEHw\nLos8p7TuhUMkS5KkUYmIC4A/osw4/g9rfT2jEhG7gScCuzPzKWt8OdK6Y02FJElakYi45qBmdhFx\nf0rtzlGGT4InaQI5pKwkSVqpuwLPrvpRXEzpdHx9SvOiLvDIqq+PpA3CUCFJGrmIuDsn2osv5SuZ\n+fQ2r2ecRMSvUmZMX45LM/NxbV7PEB8CXkXpE3EOZQbxvcBbgGdn5kfX4Jrattp+OtKGYJ8KSdLI\nRcSTgCdRbsKGDv1Z7f9QZt5+kWM2lGrI05ey9HsHcFFmXnuJYySpdYYKaUQiwj8mSZI0NjJzqS8u\nls3mT9IItR3Su5n84NgxOsBPbdmy5PFavt27d7N79+61vgytkp/f+PKzG29+fuvXoeOHuOLIFWye\n2s6xqW1sjuDMK6/kG9+5iKve/tc5Y/+VI30+R3+SxkgvsnRiZF8sSJKkCRRV68ns7wrU4v2DoUIa\nI72aECOFJElaTMwFiOz7f+hEO7f/hgppjHSrtaFi9Hbt2rXWl6AG/PzGl5/dePPzW/+yFiqAVm4k\n7KgtjUhEZNt/T0e7XX58/DhbOx3O2LSp1eeSJEnj6+jMUX58+MdsmtrC8amdTEdwtX37+NZ3vsPp\nt78DZ+y7cqQdta2pkMaIzZ8kSdJy9Jo/9e4dsmxsrVuFoUIaIzZ/kiRJyxHM71PRNkOFNEYc/UmS\nJC3HgpqKeU20R38fYaiQxojNnyRJ0spYUyGpxuZPkiRpOaJ2t9DrU9EWQ4U0Rmz+JEmSliOG3CsE\nwejGfDrBUCGNEZs/SZKk5ajPqN12IyhDhTRGbP4kSZKWo7+j9sm4bzBUSGPE5k+SJGklkjwpg8sa\nKqQxYvMnSZK0XPXO2v17Rs1QIY0Rmz9JkqTlqnfWTtobAMpQIY2JzGS2qqmw+ZMkSVrKoM7aw0aF\naspQIY2JY1n+SdgcYaiQJElLmgsQvdm0IwwV0kZ3pFsaP23t+GcrSZKWrz6sbBsdtr07kcaEoUKS\nJK1Er/nT8A7bo+PdiTQGjne7zGYyHcG0oUKSJC1D/1wV0KuhaCdieHcijYHD1lJIkqQVmosPcaJP\nBUC20K/COxRpDNj0SZIkrdSCmopsb/o771CkdW6m22Umkw6w2VAhSZJWrM25tAvvUKR1zloKSZK0\nGvWO2kl7nba9S5HWOUOFJElajXrzJyJoayAo71KkdaybyfFMAthiqJAkSStQ76jdZiMo71KkdexI\nt0tSAkVbM2BKkqTJ1mYH7R5DhbSO2fRJkiStVu8Lyd7XknMzarfwPaV3KtI6lZkcNVRIkqRVOtFB\nu2r+1GKrB+9UpHXqaNX0aXMEHZs+SZKkFZprOt1+6ydDhbRe2fRJkiQ1saCmIpOIdu4rvFuR1qmj\nVacqQ4UkSWpkQUft0beA8G5FWoeOdbvMZjIdwbShQpIkrcLcPBX2qZA2Jps+SZKkpuZm1D4JXTO9\nY5HWIUOFJElqqj6jtpPfaUOLiO0R8a2I6EbEcwfsPyci3hYRl0XEgYj4cETcbkhZnYh4dER8NSIO\nR8TFEfHMiNg+5Phllz0qM90uM5l0gM2GCkmStEpRn6EiotRaOE+FNqinAGdWj+eF7Ii4DvBx4GbA\n04HHATuB90TEHQaU9Szg74EvA+cDbwQeAbwjalNWr6LskbCWQpIkjVTOW7ViusWypcYi4n8Aj6Tc\n0P/DgEOeCpwK3Dgzv1id8wrgP4DnA9frK+sGwMOBN2fmvfq2fxt4DnBv4LWrKXuUDBWSJGkU6h21\ngdbmvvKuRetWREwBFwDvBt46YP8O4G7Ant5NP0BmHgReBFw3Is7tO+U+1frZtaIuAA4B5zUoeyS6\nmRzLJIAthgpJktTAXEft6ucTfSscUlYby6OBcyjNlAb99t8Q2AxcOGDfJ6v1Tfq2nQvMAp/qPzAz\njwJfqPavtuyR6NVSbOl0CGfRliRJDdQ7arc5DJShQutSRPws8GTgyZl58ZDDzqrW3xuwr7ft7Nrx\nezPz+JDjz4yI6b5jV1L2SNj0SZIkjcpcR+1w9CdtXP8EfIPB/Sh6eiM2HR2w70jtmN7jQccOOn6l\nZTeWmRztdgkMFZIkaXROxpCydtTWuhMR5wG/Btw6M2cXOfRQtd4yYN/W2jG9x2cOOLZ3fPYdv9Ky\nAXjMX//13ONb3uY23PK2t11wcr3isb+ZUwKbI1rrRCVJkjaO3j1GAB//0If49Ac/yOyVVxKHDo78\nuQwVWlciYgulduJdwA8j4ueqXb2mRqdVQ73uBS6p7evX29bffOkS4HoRsWlAE6izKU2jZvqOXUnZ\nADzmCU+Y9/OgbwQWbMv5W7ZPTQ04S5IkaWV6zZ+S5Ja3vS23v8UtOHbxxUy9/o0888jhkT6XoULr\nzTZKbcJdqqXuvGp5LPBCSvOkWw447ubV+jN92z4F/Dpl3omP9jZGxFbgRsCevmO/tMKyAThry6CK\njROyFiAGhQ5rKSRJ0ijMtYbINhs+FYYKrTcHgHux8H77asALKMPLvhj4YmYejIh3AL8bETfsm0ti\nJ/Bg4OuZ+em+Ml4P/CXwKPpCBfAQSph5dW9DZh5YYdnLUh/RyfggSZLaFARJGQgmM5nqdMgWvsA0\nVGhdqZofvbm+PSKuVT38Zma+pW/XXwB3AN4bEc8C9lNCwtWB36qV/eWIeD5wfkS8mRJQrk+ZEG9P\nZr6m9rTLLluSJGm9CmJBa4lRM1RorGXmNyPiVsDTgMdT5pb4LHDHzPzAgFMeBVwE/DElGFxKmU37\niSMoW5IkaV2JiLnpKdqooZh7nrZTi7RRRET69yRJktaTHx74IUe6M0xtPoOtx2fI736XvPVt+ckf\nX0pmjixlOBi+JEmSNKEiyhhQmenkd5IkSZJWrn9Y2TYZKiRJkqQJNldT0WKfCkOFJEmSNKEWDmff\nTrAwVEiSJEkTKqoYkZyYhHd03bNPMFRIkiRJE6pXU2FHbUmSJEmrcqKmImFuzorRV1UYKiRJkqQJ\nZ02FJEmSpFUpM2q3N+pTj6FCkiRJmlAnRnuypkKSJEnSKpyopcjaz6NlqJAkSZI2iLZqKwwVkiRJ\n0oTqNX/qzVFRbRw5Q4UkSZI0oXrNneY1gmqhusJQIUmSJE2ouZqKap4KgGyhX4WhQpIkSZpQ9Y7a\n9qmQJEmStCo5N/pTO+UbKiRJkqQJNTdPRZ7Y0gZDhSRJkjSh5s1L0eLM2oYKSZIkaUIF9qmQJEmS\n1ECvpqI3T4WhQpIkSdIqtRUnCkOFJEmSNKHq81QkzlMhSZIkaQXqM2q3xVAhSZIkTaiox4mWRoAy\nVEiSJEkTqt5ROwwVkiRJklan9Kkg2+mwbaiQJEmSJtSC5k8tMVRIkiRJE+pEcyfnqZAkSZK0SkGU\nIWVbZKiQJEmSJlhEaQSVWFMhSZIkqYE2aysMFZIkSdIEi+p/Pc6oLUmSJGlF+ueqsPmTJEmSpBXr\n1VNkb66KFhgqJEmSpAlmTYUkSZKkxnqjP7VUUWGokCRJkiZZEHNhoo1O2mCokCRJkiZaf/Onthgq\nJEmSpAnWG07WeSokSZIkrcrCmgrnqZAkSZK0Qr26iq59KiRJkiStVLRQM1FnqJAkSZImWMSJye+y\nbBj5cxgqJEmSpAlmR21JkiRJjQVRZtS2T4UkSZKklZob/anMqd3KcxgqJEmSpAnWP6N2BGQLucJQ\nIUmSJE2wE/NU0FqvCkOFJEmSNMGCE6M/2fxJkiRJ0qoEZUbttkaAMlRIkiRJE2x+R21oo7bCUCFJ\nkiRNsOibU9s+FZIkSZJW7ERH7WxlNm0wVEiSJEkTLfrm1CbCIWUlSZIkrU5mW42fDBWSJEnSRIsI\nIoL2xn4yVEiSJEkTLfpHe7JPhSRJkqSV6nXUJh1SVpIkSdIq9HXTnrceJUOFJEmStCFkC3UUhaFC\nkiRJmmDzZtSOaKP1k6FCkiRJmnQxv7v2yBkqJEmSpAkXUUJFW3NVGCokSZKkCVfvrD1q0y2VK21I\nV17ZvIzp6bJs2gQdY78kSRqRoISKNrprGyqkETp4cLTlTU2VcNELGb3HkiRJKxEtTXrX4+2JNEKn\nndbs/EyYmYHjx8t6drYs/aan4cwzrcWQJEnLF0QVLNppAGWokEZo+/bRljc7WwJGL2QcO1bW+/fD\nVa4y2ueSJEmTa66moqUKC0OFtI5NTZVl69by88wMXHopHDoEO3bYFEqSJC3P3ICygfNUSBvd9HSp\nDcmEffvW+mokSdK4cUhZSQCcckrpT3HkCBw9utZXI0mSxkFvnoq2GCqkMdPpwM6d5bG1FZIkaTlO\nzFORZAsjQRkqpDG0c2dpCnX8eOlfIUmStJi5GbVbKt9QIY2pU08t6/37Sx8LSZKkYfprKtpgqNC6\nEhHXjYinRMQnIuJHEbEvIj4fEX8ZEQsGbI2IcyLibRFxWUQciIgPR8TthpTdiYhHR8RXI+JwRFwc\nEc8cVO5Ky14LW7fC5s1l2Nn9+9f6aiRJ0noX0FpVhaFC682DgEcB/wU8GXgs8DXgb4GPR8TW3oER\ncR3g48DNgKcDjwN2Au+JiDsMKPtZwN8DXwbOB94IPAJ4R9SmmVxF2WuiN1fFwYMLJ8mTJEnqiQh6\ndzvZQpftaGtYKWk1IuLGwNczc39t+98AfwU8PDOfX217A/A7wI0z84vVth3AfwBHMvN6feffAPgS\n8ObMvFff9vOB5wD3y8zX9m1fdtl95+Ra/D1dcUXpV7FtG5x++kl/ekmSNAb2H93P9w5fAQdn2HqL\n2/Oz/30RmTmydGFNhdaVzPxsPVBU3lCtbwBzN/h3A/b0bvqr8w8CLwKuGxHn9p1/n2r97Fq5FwCH\ngPN6G1ZR9po69VSIgMOHy4zbkiRJdXMdtTOd/E4b2jWq9Q+r9Q2BzcCFA479ZLW+Sd+2c4FZ4FP9\nB2bmUeAL1f6elZa9phxiVpIkLcWO2trwImIKeAJwHHhNtfmsav29Aaf0tp3dt+0sYG9mHh9y/JkR\nMb3Kstfczp0wNVVqKg4fXuurkSRJ61EQzqitDe3ZwM2BJ2bmf1XbeiM2DZpT+kjtmN7jYfNP149f\nadlrLuLEELP79jnErCRJmm9uTJqIVuoqppc+RFo7VQfthwEvzMyn9+3qTfm2ZcBpW2vH9B6fOeRp\ntlIGWDvUd+xKyp6ze/fuuce7du1i165dQ55y9LZtK6NAHTtW1r0mUZIkSR/50Ed45/vew+yxGTZd\nccXIyzdUaN2KiN2UEZ9ekpkPre2+pFoPaobU29bffOkS4HoRsWlAE6izKU2jZlZZ9pz+ULEWTj0V\n9u41VEiSpPluu+u2XPsmN+DogSPseMs7ec6+0QYLmz9pXaoCxROBl2Xmgwcc8iVK86RbDth382r9\nmb5tnwKmKPNO9D/PVuBGtWNXWva6sXkzTE+XOSscCUqSJPVrYdCnOYYKrTsR8URKoHhFZj5o0DGZ\neQB4B7ArIm7Yd+5O4MGUuS4+3XfK6ylNnB5VK+ohwDbg1Q3KXle2Vg207LAtSZJ62h79yeZPWlci\n4mHAbuBi4P0RcV7tkB9k5vuqx38B3AF4b0Q8C9hPCQlXB36r/6TM/HJEPB84PyLeDLwbuD7wcMp8\nFK9hvmWXvd5s3w4HDsCRIydm3JYkSRtb/4zabTBUaL25CaVG4aeBlw/Yvwd4H0BmfjMibgU8DXg8\nZW6JzwJ3zMwPDDj3UcBFwB9TgsGllNm0n1g/cBVlrxvT07BpExw/DkePwpZB3c0lSdKGEn2Nn7KF\nhlDR1li10kYTEble/p4OHChDy27fDqedttZXI0mS1tpMd4bv7P8BB/Yf4pRfvRPX+c63yMyRpQv7\nVEgTaNu2sj5yxDkrJElSYUdtSSsyNVVGgup2SxMoSZK0sc01f0poo3OFoUKaUL3aCkeBkiRJEWFN\nhaSV27atfBFhEyhJktSLFN2WkoWhQppQnU5pApVZgoUkSdq4Sk1FQNLKTBWGCmmC2QRKkiT1S7KV\nHtuGCmmCbd1amkAdPVo6bUuSpI2r0+Lsd4YKaYJ1OmXyO5tASZKkIBjdzBTzGSqkCWcTKEmSBKWm\nIiJamVHbUCFNuP4mULOza301kiRprUSv+VOMvqu2oUKacBElWIBNoCRJ2sicp0JSIzaBkiRJQVTJ\nwuZPklZh69bSafvYMZtASZK0UTn6k6TGek2gDh1a2+uQJElro1PVUDj5naRVswmUJEkbW1hTIamp\nLVtgagpmZuD48bW+GkmSdLJFRBnBpQWGCmkD6TWBsrZCkqSNJ3odtFsIFoYKaQOxCZQkSRtXRIkV\n9qmQ1MjmzaUJ1OxsGQlKkiRtHNHiTBWGCmmD2b69rA8cWNvrkCRJJ1dEtNZZ21AhbTA7dpSmlEeO\nlE7bkiRJTRkqpA2m0zlRW3Hw4NpeiyRJOnmi+l8bDBXSBrRzZ6mtOHQIut21vhpJknQyOE+FpJGa\nmirDy2ZaWyFJ0kYRBNEJsoXaCkOFtEHt3FnWBw+WcCFJkiabNRWSRm7TpjLLdrdbmkFJkqTJ11as\nMFRIG9h3U39vAAAgAElEQVSOHWVtEyhJkibfXDftFpKFoULawLZuhenpMrSss2xLkjTZIqKM1NIC\nQ4W0wfX6VjgZniRJk603nGwbXSkNFdIGt317GQ3q+HE4dmytr0aSJLWtjboKQ4Wkub4V1lZIkjS5\nIkpdRbbQBMpQIYkdO8pM20eOlP4VkiRp8gT2qZDUoojSDAqsrZAkaVL1airamKDKUCEJKLUVEWUU\nqNnZtb4aSZI0atHaLBWGCkmVqakyxGym81ZIkjSp7FMhqXW94WUPHWqlZlSSJK0h56mQdFJs2gRb\ntkC3a22FJEmTJoi2MoWhQtJ8/ZPh2bdCkqTJEb1E0UKwMFRImmfLltK3otuFyy6zGZQkSZOk01Jn\nbUOFpAVOPx2mp8ss21deudZXI0mSRiWindt/Q4WkBSLgjDPK+tChskiSpPEXdtSWdDJNT8Npp5XH\nV15Zai0kSdJ46xBkC02gDBWShtq2rXTcziz9K7rdtb4iSZLURHRs/iRpDZx6KmzeXEaCuvzytb4a\nSZLURFuzahsqJC3pjDPKjNtHj8K+fWt9NZIkab0xVEhaUqdTRoSKKPNXHDmy1lckSZJWoxNBGxNV\nGCokLcvmzaUpFMAVV8DMzNpejyRJWjmbP0laczt2wPbtTownSdK46nTaCRXTrZQqaWJd5SpleNnj\nx2Hv3hP9LVYjuwkJ2UsnvZDSvw6ITdHauNqjlpkLXseC1weL1zx3q/emvs5qX1XevPekv7yqZjs6\nAZ3quM6Jn4mybe5aq2Xez7Xrzf4EWXsdEXHi+WPAtkHn9Zfbe12915rzX/vAcgf8PPd6O9W26nG0\n9B9QSRpHQZAt/LNoqJC0Ir2J8S67DI4dS370w9LfYssWFt5E924MZyFnc25htu8mebnPOx1l2VSW\nzqYOMdXezWJ2k5yZvyy48R50I34S5Vo86Rpb9WuOvrDRH0g68x9HJ2BqfkAxlEiaJO30qDBUSFqm\n7vEueSzn1qccT/ZdWTptX/pD2HlKaRq1EjFV+4a7b937Bjq7SR7vu7Hv7yTegc6mTjlnsRt+Fn57\nXV/XQwSrmZOj71/quVqE+utbTjH9NQoDrrX3eufU7rMHfvvfqxUa8O3/3PUOqgGov75B+t/vvp+H\n3v/Xy+l7XYNqG+rPM/CzHlbLkX2vfXb+BS07oAz7HAas59673uvs/1mS1oEIayoknSQ5m3SP9YWI\n4wtrFaIDVzkDpg/AgYPB/oMw04VTr1JqM+ZuqKZibqFT+3kFujPdE+HieLXMJt2jy7v777+hXNbN\nZKevdqS39H3TXW/y443j+tYfQuaFrv7ts7UmZ7M57zGzzWpK5gJc/+/RkMf1ZmgLAlu9uRtLNIcb\ndtxyrrt+/YMCaMe/AWlcdFrqqG2okASUG6nu4S6zh2fJY/UEwYlmR5s7xOagM12+Qt4CbD9SRoQ6\n3oX9U6U51Gr7WQzTme4s+BerV4vRu8bFbvizmwv6Kcz75j5YGCA0Mfp/J1Yz8sm8gFGr9VnQ76Uv\nENRrVKA6rlfuJDVhq4WjuZDUU6s9nBeclqixnFf+Uv1qBj028Ehz2hpS1lAhbWCZSfdIl+7hbvnG\nv/cf+A50tnROhIglOkpv3QpnntnrZ1E6cJ9+ehmGtk3RCWLL8v5htG28mlhN7VrdgtqS7pDHfTUR\ng26q5xc64PGgDvaLNJcbfsEDyqjXnvTX+PQHdUYTmEYWupYRSGpPvODxvMEKlmuRJoDLupbFPrfF\nglS92WD9cf+25dRqGc4mSltDyhoqpA1o9shsCRJH+oJEQGdbpyxbOiv+j8f0NPzET8Dll5d+Fj/+\ncRkpaqX9LKRJ1bS2ZBzM69PSFzAW3DAPuEFdbBS4QSOTDexXs9Tj2p35WtYUjW0t1WIhaFAY6bfY\nS16sqd2w513iOuZ+HNQ0cAOHpCAWfjYjYKiQNpDMZOaymXn9EDpbOnNhouk/sL2RofbtKzNvX3EF\nHD4Mp502+uZQktafiCijZ62iVqftoDWwX0395/57zwaDLSww6OZ6sWvpP3VYX5kh4WngyHqL3ewP\nqompNVFb0IxvQECb//LGLDANChqDgkv/sfXHnDh3yYDMEr9fg34PBz1nh6HN/wjmmikveLmx/ArL\nlTBUSBvIzOUlUMRUMLVzis7WdoZlPfXU0vTpyivh6FH40Y/glFNg586RP5UkLctGqCk6Ger9Yobe\nQNcf1w0IWks2tauHHGrbBj3nYk3ZBt30D7joNkLSyQhenW0dNp2+aeH2aGfua0OFtEEcv+J4ae7U\ngemrTg/9BmNUtm4twWLfPjh0qKx7tRabFv4bJ0kaA/XhpicloA0KNIvWIi0WXmB47ceQc5bV/6l+\n/LDmf1kGMeke6ZKZC2o72mr2ZaiQNoCZK2foHiqBYtNVN7UeKHo6nRIitm0rtRa9Wbh37Cg1Fxu0\nOaskaZ0ZdOM/zoHp+I+P0z1a+k5ObZvf/rgzcHSC5k7OnYWkNTOzf4bZg7MQsOmMTWWyuJNsy5bS\nibvX/OnAAbj00tI0SpIkjVZnW/lvfffwkLmcWshLhgppgs0enGV2fwkU06dP09m8dn/yEaWvxZln\nluZPMzNlhKjeMLSSJGk0Ols7ENA92l3Q+b/TUjMBQ4U0oWYPzTJz5QwA06dNM7V1fQy/tGlTqbU4\n9dQSNI4cKU2i9u4tjyVJUjPRKfNMkZT+lP37nKdC0nLNHukLFFeZXtCecj3YubPMYXHwYOnIfexY\nqbWYni59LrZvt8+FJEmr1dnWKf0qDs/vV9FWTYWhQpow3aNdZi6fgYSpU6eY2rH+AkVPp3NiqNnD\nh0tfi5mZ0ql7//4SLnbsKMdJkqTlqzeB6nVGD4JsIVgYKqQJMntklpkrqkCxc4rpnePxJx5Raia2\nby9NoA4eLJ249+8vQWPz5jKC1NatBgxJkpaj1wSqPgpURDsNoMbjjkPSkmb2z5RO2cDUjimmTx3P\nP++tW8ty/HgJFEeOlIBx9GgJHwYMSZKWZ1ATKOepkDRQZpaZso90IWDqlPGpoVjMpk1w+umQWYLF\n4cMnwkU9YGzZAlPrt5WXJElrYlATqGhpnorxv/OQNrDuTJeZy2bImSwT252+ic6Wyfr6PqIEh23b\nhgcMKLUWmzeXMNJbDBqSpI1sUBMoayokzTPXf6ILsSnYdMYmYmqyh0saFDCOHCkjR83Onvi5Z2rq\nRMDYvLksjiglSdpIho0CNWqGCmkM9fef6GzrMH3adGvfPKxX/QEDSqg4fvzE0gsavbDRO6c/YGze\nbL8MSdJkW9AEynkqJGU3mbli8vpPjMLUVFm2bj2xrRc0jh0rS//jnl7I2LSpzJExPW3QkCRNjkFN\noLKF/855NyKN0MyBmeaFdEt46F+T1eOsjpnQ/hOjVg8amSVYHD06P2gcPz7/vE6nhIv+oDE9bR8N\nSdJ4qjeBirSjtrSuze6bbfcJOtDZVDV3mvD+E23ojRi1efOJbb3ai+PHy8R7MzPQ7S6s0eiZmiqh\noxdY+pfe9g3WEk2StM7Vm0C1wVAhjdDUKc2/yo5OlJHeOtXjah0d71Tb0OvI3a/bPREw+pdeH41e\ns6phIhYGjfra8CFJOlnqTaDa+A+QoUIDRcTVgZtSGt98LDMvW+NLGgvTp/gnNQl6w9P212j0dLvz\nw8Xs7Pxt3e78ULKYXvgYFDwGLZIkrVZ/Eyhn1NbIRcSfAY8AjgFPycxXRcRDgOcAW6rDDkfE4zLz\nBWt1nWshIjrAI4E/Aa4JXAq8AXhiZh5ay2vT2und4NdrN/plzg8b9XU9fKz0uYctEQt/7i2SpI2t\nvwlUGwwVG1hE3AV4JvAj4BDw0og4ArwAuBB4DbAN+CPguRHx5cz88Fpd7xp4FvBw4C3A/wF+gRLA\nfiUifi3bapSosRdROnYvJXNw8FhqWc319JZ6+KgHkUGhpFeGJGl89TeBihZyhaFiY3s48BXgppl5\nMCKeB7wY+BywKzO7ABHx/4CvUm6oN0SoiIgbUN6fN2fmvfq2f5tSi3Nv4LVrdHmaEP19L5ajP1j0\nAsmwJfPEMb3HUIJLk+ut137Ua0TqP690kSS1p7O1hIo2xpQ1VGxsNwCen5kHq58vAP4n8OJeoACo\nAscrgfuvwTWulftU62fXtl8APA04D0OFTrImfSv6A8ZioaR/ey+M1Je2LDd0LPa4fz1o23LWSx0j\nSeOqs60D+3BIWY3cTwDf7/u59/iiAcd+G7ha2xe0jpwLzAKf6t+YmUcj4gvVfmls9GpFmhoWNOq1\nIv0/L3XeoOPXu3rAWEngWG5wqpe7nMfDrmXY9Y0qiEkaD70mUG0wVGxsVwCn9/3cq50Y1HX0FEq/\ni43iLGBvZg4aOPR7wC0iYjozRzDbnTQ+2m6mNCyk9O9b7HHv5/51fVt9/3LW9bLq4WdcwlCblhNQ\nltq2nJ9HEegWezzsvCbWQ/Bay9fX9utv8vzr4bM52TpbO0QL4z8ZKja2bwI/3/shM/dGxKkMDg/X\nodxMbxTbgaND9h3pO2bfybkcaWPov7kblxnMVxIolltzM+j4Qc837PFyrm2x52kSvAxY0uitJvwM\nHYSDDi300zZUbHAfBm7WvyEzD9QPiojNwD2Bt5+k61oPDgFnDtm3FUg2Vs2NpCFW+k35pFuqpmix\nbcOOWe7Py72u5YahpgFpPQSs5QbLlewbxXOPwlLlt/36ToYmYb03hPlCQbeFN8BQsbHtzswjSx/G\ndspcDV9s+XrWk0uA60XEpgFNoM6mNI1a0PRp9+7dc4937drFrl272rxGSVp37Gshrb3+ZqS9Zc+e\nPXz4w3vIhEu7x0b+nOFQ+xtXRFxOGcHoxZn52bW+nvUkIv4G+CvgNpn50b7tW4EfA3sy87dq5zh1\nhSRJGgsRQebohoFqp/u3xsUVwJ8Cn46IL0TEIyLijLW+qHXi9ZQmTo+qbX8IZULAV5/0K5IkSVqn\nrKnYwCIigNsBfwjcg9JX4Cil78RLMvM9a3h5ay4ingOcD7wVeDdwfcqEeB/NzNsPON6aCkmSNBZG\nXVNhqBAA1ahP96YEjF7n7f8GXk4JGBet0aWtmYjoUGoq/hi4FnAppQbjiZm5oJO2oUKSJI0LQ4Va\nFxHXAx4E/AHwk5RmQHso4cJmP0MYKiRJ0rgwVOikiYgp4E7Aw4DfBDIzx2Tk+JPPUCFJksaFHbV1\nMt0UuBtwy+rnYZPBSZIkaQNzngrNExE/Bdyf0rfinGrzvwMvxhGPJEmSNIChQkTEJkqNxB9SmjlN\nUYabfQFlDovPr+HlSZIkaZ0zVGxgEfHLlCBxP+CqlA7ZH6TUSrwlM23uJEmSpCXZUXsDi4hu9fC/\ngZcBL92IQ8eOih21JUnSuBh1R21rKja2NwMvAt7r3bAkSZJWy5oKaUSsqZAkSePCIWUlSZIkrSuG\nCkmSJEmNGCokSZIkNWKokCRJktSIoUKSJElSI4YKSZIkSY0YKiRJkiQ1YqiQJEmS1IihQpIkSVIj\nhgpJkiRJjRgqJEmSJDViqJAkSZLUiKFCkiRJUiOGCkmSJEmNGCokSZIkNWKokCRJktSIoUKSJElS\nI4YKSZIkSY0YKiRJkiQ1YqiQJEmS1IihQpIkSVIjhgpJkiRJjRgqJEmSJDViqJAkSZLUiKFCkiRJ\nUiOGCkmSJEmNGCokSZIkNWKokCRJktSIoUKSJElSI4YKSZIkSY0YKiRJkiQ1YqiQJEmS1IihQpIk\nSVIjhgpJkiRJjRgqJEmSJDViqJAkSZLUiKFCkiRJUiOGCkmSJEmNGCokSZIkNWKokCRJktSIoUKS\nJElSI4YKSZIkSY0YKiRJkiQ1YqiQJEmS1IihQpIkSVIjhgpJkiRJjRgqJEmSJDViqJAkSZLUiKFC\nkiRJUiOGCkmSJEmNGCokSZIkNWKokCRJktSIoUKSJElSI4YKSZIkSY0YKiRJkiQ1YqiQJEmS1Iih\nQpIkSVIjhgpJkiRJjRgqJEmSJDViqJAkSZLUiKFCkiRJUiOGCkmSJEmNGCokSZIkNWKokCRJktSI\noUKSJElSI4YKSZIkSY0YKiRJkiQ1YqiQJEmS1IihQutKRJwdEX8RER+KiEsi4kBEfDkinhERZww5\n56yIeEVEXBoRhyLi0xFxz0We4/4R8fnq2B9ExAURceYoypYkSdqIIjPX+hqkORHxp8CzgXcCHwX2\nAzcDHgj8ADg3M3/Yd/wZwGeAM4F/AL4L3A+4LfCgzHxZrfxHA38P7AFeA/w08GfAd4CbZuahBmWn\nf0+SJGkcRASZGSMrz5sgrScR8QvA3sz8UW37HwEXAH+fmY/r2/4M4LHAXTPzXdW2DnAhcB3gmpl5\nsNp+JiU8fAm4RS8BRMRdgLcDf5WZT11N2dU+Q4UkSRoLow4VNn/SupKZ/1kPFJU3VOsb1LbfF/hG\n76a/KqMLPBc4A7hz37F3B7YBz+2/+8/MdwLfAs5rULYkSdKGZajQuLhGte5v+nR14CzgEwOO/2S1\nvknftnOr9YVDjr9eRGxfZdmSJEkblqFC4+LJ1frlfdvOqtbfG3B8b9vZteNzkeOjr8yVli1JkrRh\nTa/1BWgyRcRVgEev4JR/zMzLh5T1GOCewAszc0/fru3V+uiA047Ujpl7nJnLOX6lZUuSJG1Yhgq1\n5XTgiZSagaU6ASXwCmBBqIiIBwPPoIwGdX5td2+kpi0DytxaO2bucURsGRAs6sevtGwAdu/ePfd4\n165d7Nq1a8DpkiRJJ9eePXvYs2dPa+UbKtSKzLyIhs3rIuJBwP8D/hW4R2bO1g65pFoPaobU29bf\nfOkSSsA5m9Ixu358t6/MlZYNzA8VkiRJ60X9y84nP/nJww9eBftUaF2qAsWLgPcCd8/M4/VjMvP7\nlBv7Wwwo4ubV+jN92z5VrW855Piv9eapWEXZkiRJG5ahQutORDyQMifF+4Dfzsxjixz+WuA61VwT\nvfOngIdTmlP9S9+x/wwcBs6v5pvoHX9X4GeBVzcoW5IkacNy8jutKxFxN+CtwJXAn3OiU3TP/sz8\n577jzwA+C1yVMuv1JcB9gNsAD87Ml9bK/zPgmZQZtV9Hacr0GMqkeOcOmFF7JWU7+Z0kSRoLzqit\niRYRTwKexPAO3hdl5rVr55wFPA24E7AT+A/g6Zn5xiHP8QDKyFTnUMLLO4HHZ+beAccuu2xDhSRJ\nGheGCmmdMlRIkqRxMepQYZ8KSZIkSY0YKiRJkiQ1YqiQJEmS1IihQpIkSVIjhgpJkiRJjRgqJEmS\nJDViqJAkSZLUiKFCkiRJUiOGCkmSJEmNGCokSZIkNWKokCRJktSIoUKSJElSI4YKSZIkSY0YKiRJ\nkiQ1YqiQJEmS1IihQpIkSVIjhgpJkiRJjRgqJEmSJDViqJAkSZLUiKFCkiRJUiOGCkmSJEmNGCok\nSZIkNWKokCRJktSIoUKSJElSI4YKSZIkSY0YKiRJkiQ1YqiQJEmS1IihQpIkSVIjhgpJkiRJjRgq\nJEmSJDViqJAkSZLUiKFCkiRJUiOGCkmSJEmNGCokSZIkNWKokCRJktSIoUKSJElSI4YKSZIkSY0Y\nKiRJkiQ1YqiQJEmS1IihQpIkSVIjhgpJkiRJjRgqJEmSJDViqJAkSZLUiKFCkiRJUiOGCkmSJEmN\nGCokSZIkNWKokCRJktSIoUKSJElSI4YKSZIkSY0YKiRJkiQ1YqiQJEmS1IihQpIkSVIjhgpJkiRJ\njRgqJEmSJDViqJAkSZLUiKFCkiRJUiOGCkmSJEmNGCokSZIkNWKokCRJktSIoUKSJElSI4YKSZIk\nSY0YKiRJkiQ1YqiQJEmS1IihQpIkSVIjhgpJkiRJjRgqJEmSJDViqJAkSZLUiKFCkiRJUiOGCkmS\nJEmNGCokSZIkNWKokCRJktSIoUKSJElSI4YKSZIkSY0YKiRJkiQ1YqiQJEmS1IihQutaRHQi4sKI\n6EbEO4Ycc1ZEvCIiLo2IQxHx6Yi45yJl3j8iPl8d+4OIuCAizhxF2ZIkSRuRoULr3f8EblA9zvrO\niDgD+Chwd+D5wCOAA8AbIuKBA45/NPAy4PLq2BcC9wb2RMT2JmVLkiRtVJG54D5NWhci4hrAfwBP\nAv4BeGdm3q12zDOAxwJ3zcx3Vds6wIXAdYBrZubBavuZwHeALwG3yOqXPyLuArwd+KvMfOpqyq72\npX9PkiRpHEQEmRmjKs+aCq1nzwe+CTxnkWPuC3yjd9MPkJld4LnAGcCd+469O7ANeG7/3X9mvhP4\nFnBeg7IlSZI2LEOF1qWq38JdgD+tbuQHHXN14CzgEwN2f7Ja36Rv27nV+sIhx1+v1wRqFWVLkiRt\nWIYKrTsRcRVK7cQ/ZeanFjn0rGr9vQH7etvOrh2fixwffWWutGxJkqQNa3qtL0CTqQoGj17BKf+Y\nmZdXj59Rrf9iiXN6HauPDth3pHbM3OPMXM7xKy1bkiRpwzJUqC2nA0+k1Aws1QkogVcAl0fErYEH\nA+dl5r4lzjtUrbcM2Le1dszc44jYMiBY1I9fadkA7N69e+7xrl272LVr14DTJUmSTq49e/awZ8+e\n1so3VKgVmXkRq2te9zzgC8CnIuLnavt2RMR1gCsy88fAJdX2Qc2Qetv6my9dQgk4Z1M6ZteP7/aV\nudKygfmhQpIkab2of9n55Cc/eaTl26dC683PADcC/gv4et8CcLtq+5MAMvP7lBv7Wwwo5+bV+jN9\n23r9M2455PivZeahVZYtSZK0YRkqtN7cH7hnbblXte8z1c8v6jv+tcB1qrkmAIiIKeDhlAnu/qXv\n2H8GDgPnV/NN9I6/K/CzwKtr17KSsiVJkjYsJ7/TWIiILoMnvzsD+CxwVcoEeZcA9wFuAzw4M19a\nO/7PgGcCe4DXUZoyPYYyKd65vZqKVZbt5HeSJGksjHryO0OFxsKwUFHtOwt4GnAnYCdlFu6nZ+Yb\nh5T1AMrIVOcAVwLvBB6fmXublG2okCRJ48JQIa1ThgpJkjQuRh0q7FMhSZIkqRFDhSRJkqRGDBWS\nJEmSGjFUSJIkSWrEUCFJkiSpEUOFJEmSpEYMFZIkSZIaMVRIkiRJasRQIUmSJKkRQ4UkSZKkRgwV\nkiRJkhoxVEiSJElqxFAhSZIkqRFDhSRJkqRGDBWSJEmSGjFUSJIkSWrEUCFJkiSpEUOFJEmSpEYM\nFZIkSZIaMVRIkiRJasRQIUmSJKkRQ4UkSZKkRgwVkiRJkhoxVEiSJElqxFAhSZIkqRFDhSRJkqRG\nDBWSJEmSGjFUSJIkSWrEUCFJkiSpEUOFJEmSpEYMFZIkSZIaMVRIkiRJasRQIUmSJKkRQ4UkSZKk\nRgwVkgTs2bNnrS9BDfj5jS8/u/Hm56ceQ4Uk4X8Yx52f3/jysxtvfn7qMVRIkiRJasRQIUmSJKmR\nyMy1vgZpIkSEf0ySJGlsZGaMqixDhSRJkqRGbP4kSZIkqRFDhSRJkqRGDBWSJEmSGjFUSJIkSWrE\nUCENERGdiHh0RHw1Ig5HxMUR8cyI2L6CMu4cER+PiAMR8eOIeENEXKu9q1ZPk88vIk6LiEdGxHur\n8w5V5bwwIq5xMq5/IxvF316tvNdHRDcivjTqa9VCI/q3czoiHhERn6v+/bwiIj4bEX/c5rWr+edX\nfXYPjYhPV//d2xcRX46IJ0TEKW1f/0YWEX8REW+MiG9V/+Z9e5XlrOrexdGfpCEi4h+BhwNvAd4N\n/EL180eAX8sl/ngi4neBNwGfBy4ATgMeBcwCN8nM77d39Wry+UXEHYF3AO8DPgDsBX4J+BPgGHDL\nzPxKqy9gA2v6t1cr6y7A24CjwDcz84ajv2L1G8G/nZuBtwO7gFcBnwCmgesChzLzr1u7eI3i83sJ\n8EDg/ZS/vePA7YDfBz6Zmbdo7eI3uIjoAj8GPgfcBLgyM6+9wjJWf++SmS4uLrUFuAHQBd5Y235+\ntf0+S5y/Cfge8G1ge9/2XwZmgBeu9Wuc5GUEn981gZ8dsP0Og8p1WT+fXe2cncDFwLOrv8UvrvXr\nm/RlFJ8f8DeUG9HbrvXr2WjLCP7t3Fr9N+7TA/a9sirjhmv9Oid1Aa7V9/jLwLdWeH6jexebP0mD\n3adaP7u2/QLgEHDeEuffFrg68KLMPNTbmJlfAPYAvx8RU6O5VA3Q6PPLzO9k5oJq48x8P3A55T+8\nakfTv71+fwcE8IRqrfY1+vwiYgfwSOBtmfmhKGwyc/I0/fs7TqkV/OGAfb1vuA+u+uq0qMy8qGER\nje5dDBXSYOdSqvo+1b8xM48CX6j2L3U+wIUD9n0SOJVSla92NP38BoqIqwCnMPg/mBqNkXx2EXFT\n4GHAozNz/6gvUkM1/fxuTalh+lzVDGcfcGVE/Cgi/s4vY1rX6PPLzFngKcAdI+LPI+LnIuJaEfFA\n4KHAKzPzm61cuUah0b2LoUIa7Cxgb2YeH7Dve8CZETG9xPm9YwedD3B2g+vT4pp+fsP8FaVt98ub\nXJwW1fizq/a/CHhPZr6phWvUcE0/v3Oq9aOA3wEeC/we8P/bu//gy+q6juPP17Dr8kuMyUopKBQa\nQRkhTAoIdDWMcAiaDaxkBQN1LBtpYkEnzWXUBMGSwYgsfqwWwy/XccJSfkmCKWKABeiisJSGCq6w\nS/ww3E9/fM5l717O97v3u59794c8HzN3zvd7zuecz+fez5zv9/O+nx/nC8A7gL+fYFn1dM33Xynl\nDGoAsRRYAdxDrbcPlVLeMOHyarKa2i4b809VeibYntqF2+fxoTSrZzmfGa7x+EgaTV5r/T1NkkXU\nBs4/l1IuaiqdZjOJujsFeCFw5ATLpfG01t9gqNPOwItLKXd3v1+R5DpgcZIPlFK+NpHSalTz/Zdk\nCfAX1Mm+V3a7FwHvSvJEKeX9EyqrJq+p7WJPhdTvUWDBDMe2BUqXZrbzmeEa246k0eS11t96kvwm\n8A/Al6krmGh6muouyR7UORTvncD4Ys1d6733WLf94lBAMbCs2x668cXTBrTef/tQA4pLSynHllIu\n60sA6FwAAArJSURBVF7HAJcCpydx6O+Wq6ntYlAh9fsfajfv/J5jP0vtHn5yA+cP0vadD/3di5qM\n1vp7Sre87CeA/wAOK6U8Mrliqkdr3Z0NrAI+2Y3n3qMLNOYBC5K8MMnzJ19sdVrr77+77Xd6jg32\n7dxQPs2utf4WUhdFuLzn2BXUdudBzaXUtDS1XQwqpH43A9sABwzvTLItsC9wyxjnAxzYc+xXgIep\nY001Ha31N0j/G9R11u+krs/+8ITLqadrrbvdqOOC76DeY4PXLsCewN3A+ZMtsoZM6m9n30MmB/u+\n11JAzaq1/gbBSN/w+nmzHNOWoantYlAh9buU2s379pH9JwHbUYfCAJDkeUlelGS7oXQ3UJfPO7Fb\nInGQ9qXUBzpd3q2SoelorT+SHAYsB+4CXlVKeWi6RVante7+lDp+e/j1O8AD1GdWLKIOz9B0NNVf\nN2TtJuCAJPsNpd2mu8b/AZ+dWunVev8NGqV9E7IH+748obKqwTTaLj5RW5pBknOoD/xZTn2q6F7U\np4reWEpZOJTuImAx8MpSyg1D+xdR/0DfTl2JZifgZOpyffsXn6g9VS31l+Rl1KfHApxGfULpekop\nH59m+Z/JWu+9Ga65ElhdfKL21E3gb+e+1Pvvh8A51OFsx1K/PV1aSlm6ad7JM9ME6u8q4HBqHS7v\ndv82cDBwWSnldZvgbTwjJTmO+vBWqHU2H/hQ9/vK4f9b02i72AUlzeztwErgTcAR1G86zwHePZKu\nDL3W7SzliiRHAn8GfJC6msI1wKkGFJtES/29mDpRrQB/2XPtAhhUTE/TvTcDv0HbdFr/dt6W5EDg\nvd21tqUOQTy+lLIMTVvr/Xc0dQW232Vdr+AKYAnrGriajjeybiGDQb2c3m0/x/r/tybedrGnQpIk\nSVIT51RIkiRJamJQIUmSJKmJQYUkSZKkJgYVkiRJkpoYVEiSJElqYlAhSZIkqYlBhSRJkqQmBhWS\nJEmSmhhUSJK2OklekWRtkjds7rKMmmbZknwuyb2buxzjmkt5JW3d5m3uAkiSlGTtHJL/wtDPZcJF\nmaRplW2u193cn9Hmzl/SJmBQIUnaErx+5PdDgDcB5wOfHzn2IPCCTVEoSdJ4DCokSZtdKeUfh39P\n8ixqUPFvo8e64815Jnl2KWVN84UkSc6pkCRt1ZLkhCR3JHk8ycokp/QkWpnk+iT7JflMkoeA24eO\n75nkY0nuT/JEknuTnJlk+5Hr7JrkgiT3dfl9N8lNSRZvbNm6hEd113kkyZokNyY5cg4fwm8luTXJ\nY0n+K8npwPwxzz2jm3uxT8+x53TXXD6079gknxr6DB5Isrzv/BnyW5nk+p79vXNAkixI8s7uc3ws\nyQ+6/PcdJz9Jm4Y9FZKkrdlbgJ8B/g54CDgOOCPJt0oplwylK8BuwLXAZcDlwI4ASfYHrgNWAecB\n3wb2Bf4YOCjJoaWUJ5PMA64GdgE+AqwAngO8FDgYWLYxZUvyVuBc4C5gKRDgeOCTSd5cSvnobB9A\nkqOBK4F7uvN/BJwAvHYDn93ARcApwOJuO+wYYEGXZuAPqUPQzge+A+xB7VW6KckvlVK+sYH8CrPP\ns3jqWJL5wL8Av0r9fM8BfgI4qcvvkFLKVzaQn6RNwKBCkrQ12xXYazCMKcmFwH3A24DhoCLA7sCJ\npZQLRq5xATWQ+OVSyv8+dUJyLfAJ4PeBi4G9gV8ElpRSzppE2ZLsDJwJfAM4oJTySLf/POBW4Owk\nl5VSHu7LIMk2wIepjfyXl1JWdfvPB746RhkppdyV5Bbg95KcWkoZnjS/uLv2VUP7XlNKeWykHMuA\n24CTqUHHbOYydu2PgEO7PK8eyu+vgf8EzgJeOYfrSZoShz9JkrZmFw7Pi+gau18C9uxJ+33gwuEd\n3ZCdfaiN/O2SPHfwAm4CHgUO65IPGvYLk/zUhMr268D2wDmDgKJLu4b6rfyOwKtnyWN/4Oe6vFYN\nnb8a+JsxyjhwMfD8rjwAJNkdOBC4pJTy5Mj7INVO3Wf1ILXn5uVzyHMcr6f24Pz7SN0sAK4BDk6y\nYMJ5StoIBhWSpK3ZPT37vg/8ZM/+b5ZSRofd7NVtlwLfG3l9l9rg/2mAUsp9wPuoQcb9SW7p5iO8\nrKFsu3fbO3rS3jmSps9gFayv9Ry7a5bzRl0C/JDaMzGwmNqrsN6wrm5eyj8Bq6nDugaf10uAneeQ\n5zj26l4P8PT6OYHajnnuhPOUtBEc/iRJ2pr9aA5pH+3ZNxiKcxZ17H6fHwx+KKW8K8kFwBHArwEn\nAqckObOUclpD2TarUsqqJJ8GjkqyQzcM7DjgzuE5C0l2A/6VGkycDnwdGAwZ+ytgh3Gym2F/X5sk\n1GFcfzLL9R4cI09JU2ZQIUl6JlvRbdeWUq4b54RSyr3UidXndkNvPgMsSXJWKWWuDdxvdtuXAKMr\nIu3dbft6PEbP36vn2N49+2ZzMXAUcEySFdRekFNH0hxNDRxeW0q5YfhANyzpMTZsFf09SX3PHllB\n7Sm6vqeXSdIWxOFPkqQfR2M1QEspt1In/L6lm0OwniTzusnUdPMH5o+c/wTrhh6NO/RnuGxXU7/p\nf1uSHYfyfTZ1QveaLs1MvgJ8CzghyVMN9SQ7UVefmourqN/6L+5ea4GPj6QZ9L6s135IchJ1patx\nfB14UZJdhs5fQP8E72XA85ihpyLJuHlKmjJ7KiRJP47mssLQcdQlZb/aDW26kzqXYg/qN/OnURu3\nC4G/TXIF9Rv0R6gTpf8A+GIp5e65lq2U8nCSJdQlar+U5CLWLSn7AuDNPQ/oGz5/bZKTqcvk3pzk\no9SG/xupAcKuY5aJbtncS6grLu0PXF1KuX8k2aeBDwAfS3IudRjUQcDh1F6TmYYwDTsXeB1wTbdK\n1bOoE7L7hqd9mDp5/INJFlJ7c1ZTlwd+FbVnZOG471HS9BhUSJK2RBt6lgGzHO87d8ZrlVJuT7If\n8A7gSOo3/GuAe6mrRV3bJb2N+jyIV1CXmd2GukTs+4CzN7ZspZTzktxPfUbEnw/ldXQp5VNjnH9l\nkkXAu4H3UCeYXwR8HvjsTO97BhdTe0h24OnP3aCUck+Sw4H3A++kBjA3AodQA6OfH6O8X0hyfHf+\nmdSelvOovS7XjqR9MskRwFupwd97ukPfBm7uyitpCxCHKEqSJElq4ZwKSZIkSU0MKiRJkiQ1MaiQ\nJEmS1MSgQpIkSVITgwpJkiRJTQwqJEmSJDUxqJAkSZLUxKBCkiRJUhODCkmSJElNDCokSZIkNTGo\nkCRJktTEoEKSJElSE4MKSZIkSU0MKiRJkiQ1MaiQJEmS1MSgQpIkSVITgwpJkiRJTQwqJEmSJDUx\nqJAkSZLUxKBCkiRJUhODCkmSJElNDCokSZIkNTGokCRJktTEoEKSJElSE4MKSZIkSU0MKiRJkiQ1\nMaiQJEmS1MSgQpIkSVITgwpJkiRJTQwqJEmSJDUxqJAkSZLUxKBCkiRJUhODCkmSJElNDCokSZIk\nNTGokCRJktTEoEKSJElSE4MKSZIkSU0MKiRJkiQ1MaiQJEmS1MSgQpIkSVITgwpJkiRJTQwqJEmS\nJDUxqJAkSZLUxKBCkiRJUhODCkmSJElNDCokSZIkNTGokCRJktTEoEKSJElSE4MKSZIkSU0MKiRJ\nkiQ1MaiQJEmS1MSgQpIkSVITgwpJkiRJTQwqJEmSJDX5f4/fBZ9/0PEVAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa2f55b07d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.html.widgets import interact #import interactive tools\n", "\n", "#setting plotting visual parameters\n", "pylab.rcParams['figure.figsize'] = (10.0, 8.0)\n", "pylab.rcParams.update({'font.size': 18})\n", "\n", "#define function to use in ipyton interact widget\n", "def plot_explorer(plotnr, ylim_pos=5000, ylim_neg=-5000, local_extrema='True'):\n", " \n", " # plots all data\n", " for z in redshifts:\n", " \n", " V3 = data_dict[z]['CV3']\n", " thresholds = data_dict[z]['thresholds']\n", " plt.plot(thresholds, V3, linewidth=2, alpha=0.1)\n", " plt.xlabel('Threshold value')\n", " plt.ylabel('V3')\n", " plt.ylim(ylim_neg, ylim_pos)\n", " plt.xlim(0,1)\n", " \n", " #selects redshift to highligt from plotnr parameter\n", " z = redshifts[plotnr]\n", " V3 = data_dict[z]['CV3']\n", " thresholds = data_dict[z]['thresholds']\n", " #plots highlighted redshift curve and annotates it\n", " \n", " plt.plot(thresholds, V3, linewidth=2, alpha=1, color='red')\n", " plt.title(str(plotname))\n", " plt.xlabel('Threshold value')\n", " plt.ylabel('V3')\n", " plt.annotate('$z = ' + str(z) + '$', xy=(thresholds[20], V3[20]),\n", " xytext=(0.5, 0.1), textcoords='axes fraction',\n", " arrowprops=dict(facecolor='black', shrink=0.05, width=0.5, headwidth =10),\n", " horizontalalignment='right', verticalalignment='top',\n", " )\n", " \n", " if local_extrema == 'True':\n", " \n", " V3_maximums = argrelmax(V3)[0]\n", " V3_minimums = argrelmin(V3)[0]\n", "\n", " for maximum in V3_maximums:\n", " plt.annotate(str(thresholds[maximum]) + ' , ' + str(round(V3[maximum])), xy=(thresholds[maximum],V3[maximum]), xytext=(-20,20), \n", " textcoords='offset points', ha='center', va='bottom',\n", " bbox=dict(boxstyle='round,pad=0.2', fc='white', alpha=0.3),\n", " arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5', \n", " color='black'))\n", "\n", " for minimum in V3_minimums:\n", " plt.annotate(str(thresholds[minimum]) + ' , ' + str(round(V3[minimum])), xy=(thresholds[minimum],V3[minimum]), xytext=(20,-40), \n", " textcoords='offset points', ha='center', va='bottom',\n", " bbox=dict(boxstyle='round,pad=0.2', fc='white', alpha=0.3),\n", " arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5', \n", " color='black'))\n", " \n", " plt.savefig('V3_threshold.png')\n", " \n", "interact(plot_explorer, plotnr=(0,len(redshifts) - 1,1), ylim_pos = (0,5*10**6,1000), ylim_neg = (-5*10**6,0,1000), local_extrema=['True', 'False'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### V3 as function of global ionization fraction $x_{glob}$" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqYAAAIOCAYAAABqNM8cAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXe4HVW5/z/vlN33KUlOAgklIaGHGhClJBQRBIIIwlUR\nIsRyRQFBRC6gIIIi1594BQUvRVAMVQRCEBECAYKg9BK6lPScvvveM7PW7481e5+Sc9IIlwDzeZ7J\nzpm1ZmbNmjnP+e53vUW01kRERERERERERER80Fgf9AAiIiIiIiIiIiIiIBKmERERERERERERGwiR\nMI2IiIiIiIiIiNggiIRpRERERERERETEBkEkTCMiIiIiIiIiIjYIImEaERERERERERGxQRAJ04iI\niNUiIvuKiBKRBz/osXxUEJHrwjmdsQ7HiojMFJF/ikhBRLpF5EER+dz7Mdb3ioiMD+/1rQ94HFuL\nyKkicoOIvBKOSYnIoWtwbFpELhSR10SkIiLLROQWEdnh/2Ls4RgeCsc7bQ37bxDzHhGxNkTCNCIi\nYk3Qgz4jVsFaCoJ1mdNrgauAbYC/AfOBTwF/EZFz1uF8/1d80O/Pt4BLgS8DW4b7NKsZl4g0A48B\nZwNx4C/Am8AXgH+JyP7v14CHYLXjHeaYiIgPBZEwjYiIWBP+iRFBx3/QA/mQ8L4JeRH5MjADeAfY\nVmt9lNb6MGB3IAf8REQ+sb6v+xHhBeAS4BiMMH0YkDU47r+BHYC/Altqrb+ktd4LOAGIAbNEJP3+\nDHkl1mS8EREfWiJhGhERsVq01mWt9Wta60Uf9Fg+JLyf4uHM8PMHWuvF9Z1a6xeAnw3qE9EPrfU1\nWuuztNa3aa3/vSbHiMgojAD1gK9rrWv9znc9xmI9OuwTERHxHomEaUTExxARuTZcar51iDZHROaH\n7eeH+1bpYyoi+4jIHSKyQkSqIrJIRP4oItsP01+JiAr/f5yIPCkiJRHpEpFbRWSL93h/togcLyKP\nisjS0CdwqYg8EfoJxvv1bdybiCRE5Gci8u/wmFdF5JR+fXcJ77M9HO/DIrLHoGufD9RFT31Jv74N\nubQvItuIyJ9FpCO87lMicswQ/TYDdgQqmOXkwdwUfh4kIu7azNkQ15oc+sG+Gz7TDhG5e1X+jSKy\na9inR0TyIvIPEfnCGlzrM6H/ZN1f9u8iMnUN3rvNReQ3IvJGOG/dIjJXRD7/Xu59EIcANvCo1nrJ\nEO31OV9j/14ROT+8r/NEZAsRuTH83amIyLMi8s21HaSIXBCec4GIbL62x0dEbChEwjQi4uPJd4BX\ngKNE5BuD2i7A+Cs+DPx4UNtKS9MicjIwDzgceA24FWgHjgWeFJHpw4xBi8hPgauBLuBuoAgcBTwi\nIiPW4b7q/B64DtgJeBa4DbOMuxHwX0DzEMfEgAeArwFPhvc0HviViJwbCrL5wObA34E3gL2BB0Rk\n637neQb4c/j/YjiO+rbSFwFgCvAvYGvgvvD4XYCbRORLg/ruEn6+qLX2Bp9Ia/0O0A2kwvOtEyLy\nFeBpjOtGB3AH8DJwEDB3KOEkIgdg/DAPwbgZ3IV5X24BvruKa30VuBeYCjwPzAFGAnMx7xQM/d59\nGvNMvwXUgNmYufsk8GcRuWjt7npY6nP+1DDt9f07rcO5t8C8a3sC9wMPAdsCV4jI79bkBOEXyWuA\nczHzv1f4HkREfDjRWkdbtEXbx3DD+MyVMOJpu3DfAUCAEZbj+vXdF1DA3EHn2BnwMRa8Qwa1fTs8\npgcYPahNhduy+rXD/WngH2HbD9fxvjYPj38LGDlE+yeB5BD3pjBiKN2v7dPh/gKwCPhOvzYBbgjb\nrx1mDP9exTiv63fdMwa1fS/c/+ag/aeE+/+8ivM+F/Y5ZLg+q5m/nTFCrwvYb1DbHuH+KrBVv/0p\nYEl43bMGHfOF8B1ZaT6ATcP3zwe+MKjtO/2fy6C2sRgBXgGOGdS2dfjs1eDxD3GvD61uroDbwz4n\nD9PeGrYHQGoN5/j8fvc2C3AG/V52hG3Thxnv1H6/L3PCfX8B4oP6j1/dexht0bahbZHFNCLiY4o2\nPonfA5LAzeHy3w1h84m6n//iKjgFs/Jyvdb6nkHn/w3G6tgEfH2Y43+ktV7Q75gi8Ivwx33X8FYG\nMzr8fEZr3Tm4UWv9uNa6PMRxAfDNcAz1vvdjLK4pzB/3y/u1aUwgDcDg5e218TH9h9b6F4P2/Q9G\n0I8Pl+/rZMLPIsNTCD+zazGG/pwNOMBpWusBS+ha6yeAnwAu0N9q+gWMNfpFrfXFg465DWNxHYoT\nMe/f7LBf/+MuB54Y5rjvYqzeP9Na3zLouFeB08MfvzPM8WvD6ua80O//azvnRcyXHb++I/y9rL9X\npw53oIi0AQ8CnwV+Bxypta6u5fUjIjY4ImEaEfExRmt9BcYitD1mGXUMcLnWevYanmJq+Hn9MO3X\nDuo34PKYKOfBvBZ+jl3DMQzmZYxYOExEzhSRTdbwuHe01q8Psb/uL3rfKtrWdaxglrEHEAqVtzAC\nd+P3cO61QkQszHK9z9A+rACPhJ/9fWvrwvzGYY754zD76+/FzcO0D3e+z2Len9uGaR9qjBsi92mt\nu4bYX/+C+KnwmQxmEmbZfgrmy923wi9KEREfeiJhGhER8TWgF2PteQk4Yy2OHYcRCMPl63yrX7+V\n0FovHGJ3PvyMD9G2WrTWBeCrGHF6MfCuiLwjIn8SkWNExB7m0OEyDhSGaw+vBcY/dV0Zag5g6Hmo\nX29VqYnqFr78KvoMx0jMe+AAPYMCt+oBa/8M+7b1O67+fN8e5rzD+TyOW037u8Ps3wIj2l8YZowr\nhhjjurK6Oc/0+//azvnbw+xfiskCkMA8k8FcCUwEfq61vnAtrxkRsUHjfNADiIiI+MA5hL5goE0w\nYuHtD2w06wGt9e0i8gBwKHAgsA/wpXB7QUT20VrnBh2mVnPa1bWvK2tz3rfDz01X0WcTzJeFdQmA\nqYv2Gsb3cVV0rMP5h2M4a99wc1Mf558wAu79pD6Pw8153SLfpbUuvc9jqfMn4DjgWyJyZ+hiERHx\nkSASphERH2NEZCLG+uJhllO/AtwoIntrrYM1OMVijPVqIsbKM5gt+vX7P0Vr3YsRV7MARGRbjMvB\nbsBZGF/KDxvPhJ+TRSSm++XUBFNxChOMUwJeXYfzd2ACm2yMv+2air768x0/TPtw+5cAW2GCxR5f\ni+MWYt6tH2mt3+9ym0+Hn7sN0z4l/Hx2Hc49fpj9YzF+vBVgJT9pTNaJueHnfSJyiNZ6/jpcPyJi\ngyNayo+I+JgS5rm8CbMU+UNMNaEHMX55a7o8OC/8HK4i1AmD+n1gaK1fBn4V/vh+1zevC8b1+uU/\ndH14DrPEO1Suzi+Gn3/tH1CzFuf3MamwnGHOPxz15/vFYdqPHWb/w+HnfwzTPtz5/opZyj969UN7\nz9yDCYzbS0SGckmpj3G4AK9V8Zlh0qJ9Ofx8TGs9pNVYa/1HzBfJJHCviOy7DtePiNjgiIRpRMTH\nl59hrD1/11pfEgZPfAVjNTszzBO5On6N+aM9Q0Q+279BRL6FCYrpxeQq/T9BRHYOfUnjg/YLxm0B\nhvddXF+0Y6zQY0SkZT2fux6x/fP+gV0isiMmR2v/bAHrwgWY4KffishKSePFFC/Yb1Bhgdswqb92\nEJEzB/U/kuFF7jVAGfhc2K//cd/CpPYail9g/DnPF5ETBwcIiWH3NXyHYRVZFMLMDtdiLJhXiUjD\nn1hEZgCfAZZjrJf9xzBORF4RkZdFZLjguDTwa+lXDEFEJgM/wDzHy1Y1aK31TRhhHAPmrMX9RkRs\nsETCNCLiY4iIHIxJqbMC46sGgNZ6KcbKKcAfwpQ0w6K1fg44DWNhmyOm0tKfROQZ4DeYpcjjtdYr\nVnWe9cx4jCW4Q0TmicgsEbkd4yv4ZYyAei/CbbWES+B3Y8TMM+GcXC0iP1vNoWty7hsxLgmbAQtE\n5C8iMgeTpD+DWd7+13s4/5OY4LE08BcReV1MNadZod9uO6YQwU79jilhrOZV4GIReT7s/xhGtA4p\nsEIL8Mnhj7eJqRQ1S0SeDo+pH1cbdNy7wJGY9+tq4G0RuTec53sxbiVPAPv3P05MZarH6xt9yfN/\n0W//7UMM9fuYZP4HA2+IyM0iMh8jRqvAsUP4l7oYN4WtGd5y/kdMhoE3ROSmcOxPASMwuXHvHOa4\n/nNxO6YohQXcFf5uR0R8aImEaUTExwwR2Yi+5O5fHSwatdZzMJbQMQyfBqp//8sxOUfvwvwhPgoT\nDf0nYPe1SD21vvgHxn/0EYx4OwKTlqgDYw3cUQ+sjLO6NDt6DfoMxdcxFkELs+R8IgOXrFd33mHb\ntdYnhOd/BVMEYC/MfX9ea/2eKx5prWdh3B1+i7GI7wschgn0eTi89q2DjrkfUwnrHkyg0GGYe/8S\nfS4UQ13rWowl+xFgMkaodWGC1uoCe6VAK631A5g0Z5dgku3vhSkLOgnj73kq5j3uTxb4BLB7uGUw\nc7xVv307D3GtHKYa2k8xYvhwjF/1bZh3fO5w98eqn/Gb4Xgex4joqZh0Z9/WWg+V+3fId0JrfTfm\nPQfzZeKwVVwzImKDRqLUZxERERERGyIichUwE1MZ65cf9HjWFyJyPvAj4Hyt9QUf8HAiIjYoIotp\nRERERMQHhohsPpTLiIgcj7EyVxk+0X5ERMRHjChdVERERETEB8l04FehX+m7mECebTFL5Qo4NfR9\njoiI+BgQCdOIiIgNGhE5gj7/udXxstb65+/neD5MiMjemMpea0K71vr77+d4hmEepgTnXphAoTjG\np/R24Fda60c/gDG936yr33JExEeeyMd0A0REoocSERERERER8aFBaz1s2rW1IbKYbqCszReGv/7p\nVl5b8CqJkSOI2S5to8cw9cB9KGRTOCKMrlSgUEBnMiyTIgBxbyMqFSGRqFCpdBGLxchmTZGXWGwj\nTMrH4VGeIigGqLJqfO+XmGCnbezkcKXIhycoBvg5HzTYaRuneeCrqZSP73eidYBIDNcdQf/UhbVa\nja6uLpRSJJNJWltbG20dHVCrQTIJ9d0Vv0JXuQtBaEu34VgOKAXt7RAE0NQEGVMCu71Ww9OarG2T\ndRyCSoDf5YMFsdExxBJqtQ60rnHRRZdxwQU/w/M82tvbERFGjx6NbduUy9DdDZYFo0ebz0AFrCiu\nQKMZlRpFzA5TJHZ3Q7kMqRS0mDSYtWqN++55kJpW7PuZqYzIpKnVOlCqiu5OY+kkzggHO2HmX2uN\n561A6wDHGQFVF7/HBxe6g26UUrS1teG6JoXiihVQ8zS1TI1EXKO9bqzOTtqcJpzWkZBeVXn2jwbn\nn38+559//gc9jIh1JHp+H16iZ/fhZnWaYW3YoIRpmAB7JDAilUo5juOsvzv9ECEivPzyy2vc/+13\nF7K8s524quHiUvY9Xnr1FWqZFEnLojOXA9+nlk3To4q4lktQ7EEpiMXy1GplUqkYsVgNcInFeoa9\nVlAJCMpBX3VqCQVp0saKWSbD4WpQoei2Br3IQTUgyAWgzTmdZmfAy651gOf1YLLX2LhuCyJ9Itjz\nPHp6etBaE4vFaAkFXRBAVxdoDdmsEagAuWqOil/h3/JvRqTC4iu1GvT0gIgRhK5LTSl6fB8BWh0H\nx7Lwejx0TSPvCG6Ti1Ievt9De/syXnrpBSzLIZfLUalUePvttxtj6ekxl3j3XTMWgGKtSNEr8pa8\n1TeO/oNubYVQPJarRZYtW8H99z/IfnvtQWtrGq1rkKpCMUmQCxrCVESw7Sy+30MQ5HGTo0yqew+S\nySTFcpFCodAQ8dksdHcLQdmChAI7gU6nKOaLNJeSHwthGhERERHxwbLBCFMRcbbddtv9p06dusXu\nu++uk8nkx3Y5++qrr25YsdaE0WM3QhybWDaDhUVTcxNuKoUTi5EWwY3FIB7HT8ZJ+ZqYlaAWuFgW\nWJaL4wjptIOIg2UlsO2B19ZKo2oKVVXYysZ2bYiDFbOwYhZir9n3B18pqkrhYbK3p2wb1+qzerqu\ni0oYSywKqIKTdhCrfn4X1x2N7xcxhWmq2HYGy7Ibx8fjcQqFAkopPM8jlUrhujBqFBSLxihqWWDb\nMMIZQb6WJ1ABPj5JN2kEoAhUq0YcJpO4IojjUFUKX4Sk4+CMcPDzoYUXGzfu4jgwceKW2LaP4xir\nbT6fRynVGN+IEZDPG70pAo4DzU4zVs0iUAEKRdyNm3G0tkKlYsaRSgGw5VZbIJYQVGs889JLJCyL\nXXedgJsAXfHBdwhKAXbKzIltpwiCAlp7KFXBSjqokiJpJSlJiXK5TDabxXEckknI5cD1bSpVRSKW\nQBJJKrkC2VoVq1aDWKPoTURERERExHpngxGmo0eP3v7EE0+ceMYZZyz6oMfyQXPjjTcyadKkNe7f\n9fYSHLGIN7fgIDSPaGXz8ROwMklalcIqFCAWo9dV+MonThPVsksspqjVurEsi0zGAnxsuwnLMsJU\nBQpVVuia7nPTd8BKhIJ0DU33tSCgojXeIPcEAVKWRcIeuPSvA21EnzGMYmdtLLtPwGqtCYI8priO\nhW1nsay+V9n3fXK5HFprMpkM8bipTFkoGL3pOGalXgT8wCdXzaHRNMWbcG3XqMbe3oYwJZVCa02P\n76OAjGURt22CUujK4IDb7KK15oADCkycuBmWlcG241QqFYrFIo7j0NzcDECpZFbpHQfCXdSCGvlq\nHkssmhPNWGKZcfT0GDWdyUB4HzErRm+xxJgJm5BrX87rry9iu+02R9JVyDkE+QAr2fd8jNW0myDI\n46RGoUoKKpBOpykUCuTz+YbVNJOBoNeityQk4hZixVCpJKVKiUyx+JEXpvvuu+8HPYSI90D0/D68\nRM8uos4Gk8d00qRJWx9xxBErVfeIWBOM4FONT9AiOIDl+2afbeMrH0HQQd0iatbjbdvGqEBBxCGo\nGX/PoCdAV3Vjad1usnGbXey4vVpRqrWmGgT0eB55pfC0xgKSlkWL45CyLDRQVIpiEAw4VmzBaXJM\nQb8AglyA8lRfe7hEbUqhK4Igh1Jeo91xHNLhsnOpVCIIz59OGzHo+0YcAji2YyylQKFWQGllFGsm\nYz7LZfA8RIRUaN0tKYXS2lglbcA3Lg4iwo47TjHzrUporUkkEti2je/7VCoVwGhd2zbjCHcRs2PE\n7BhKK0peqX6jDUsppZIRqkDbRm3YIvS2dzF2wgSWLw9dL9wauEbYB4W+ObXtJCIuWvtou4I4gg40\nKSeFiFAul/HD9ySVMhZlx7eoeZjl/FSSUlBGl8tGrH+Eif44friJnt+Hl+jZRdTZYIRpPB5vGT9+\nfOWDHseHEaVC8agEdH2ZWHAsCzwj2PzQKOnYDqEGCS2ORqwZcevg53xUXqE9DRZYSQunxcHJOlju\n6l8XpTWlIKDH9ykoVTd6kq4LUtvGFiFp22QtCwEqSpHz/YbvKYBYgpN1kJiAgiAfENT6RJGI4DiZ\nUJwaC2oQVBvt8XiceDyOUopCoYDWeoDerFSMrydA0k3i2i5KK4q1Io1JqTujFgqgNXHbJiaCAkqh\nQLPTZmJVWaEDjW3HMYpaoVQZoCGSy+UySilE+tw1y2VjEAVIuSkEoepX8QO/fiNmWV8p0xkY2TaS\npOtQLZTwNFRqHiIxQGFlzDMNigFa9c2nbRuH1iDIY6XMc9QV3RhbPp8P59XMUVJsSkXQ4uA4cYKY\nS8Ur9yn6iIiIiIiI94ENRpgC4jgbjGfBhwwjQMSyQARfNAi4WhsLl2XhhRmoLO2ilLHYKWXET2Ml\n3bON66YFVtoIUjtlr5EPaaAUBd+nx/cpK4XCyLOsZdHiuiTsla2sMdumybaxAE9rcr5PoAZaRp2s\ng5WwQIPKK4LKQIud42SwrCSgUapAEPR9t0mn0ziOg+/7FIvFxr3WRWGx2GcATLtpLLGoBTWqfihw\nk8k+URgen7JtBKhqjacUlmsh8VA8l0OxaqcAQakKSgW4rkssFkMpRSkUdq5rNKdSfVrPtmwSbgKA\nkt9PANatpqG/qWVbNI9owbGE7uUdVLVGxIhobZfNfIVivo5tJ0KraQDxCgioqiKdSq9kNU2nwbEF\naqHV1Eqi0yljyY2EaURERETE+8iGJEyHpFqtykEHHfS5pqamK2zbvi2VSl07ZcqUE9555501dnb7\n6le/uvc222xzamtr668ty/qLiNx55513jhqu/4svvpjaaaedvpFMJq+zbfu25ubmyw8//PCDB/d7\n7rnn0gcffPD0sWPHXpBKpa51HOe2pqamK7bffvuT7rnnnpGrG9fll18+vj6emTNn7jm4fd9998Wy\nrCG3p59+eqXzvfHG6/zop+dx2GEHsdmYNnbdaSf+53e/Q9k2Xn2pO1zG17rKVVddxYEHHsjYseMZ\nOXI8O+/2CS76xUUUgyJ2YvXL9QBeaO3sCQKqocUzLkKzbdPkusT6+Y8OdR8xx2GzESPqq/bkggAv\nFKevvvoqRxxxBG2bttG6eSv7H7Y/c++dS1AaKE5tO8Ull/yWL37xRLbcchssy2LChAmICJlMBhGh\nWq1SrRrB+bOfnU9bm8XIkRaua8bhOi4j0yP57a9/S7FWJFDmGq8uWsSx//mfbLvrrrS0tNCUybDH\n9ttz5imnsOCNN9D1JX0LdFWjPMXrr7/JF74wgzFjJtLU1MzUqVN54oknGuPwQit2MmmWzavVhmGb\npJPEEovOrk5O+vZJjBs3jmQ2y+R99uHKa69tWE1HjWkjLhbFrh48pfCIARZae0hGgUBQCtBBn9XU\ncZoAULpoxLQe3mqaSkHKsimWQNsx7HgSz4ZqtdQYQ0RERERExPpmgzdR7rHHHl977rnnDhs/fvw/\nDjzwwNvffvvtTZ955pnpn/zkJycuXLjw3DWxst57772f7ejo2Kq1tfWtTCazNJ/Pjx2ub2dnpzNt\n2rSfdHd3T9hll11mjx8/ftHTTz89Zfbs2d/ae++9Wx599NGb6n2vvfbare+7774Tx44d++yee+45\nu7W1Nffmm2+Of/755w8+4ogj9rniiiu+P3PmzCGDuarVqpx//vnfsW275vt+Yrik+m1tbVx66aUr\n7Z8wYcKAn198dQE//sXFZDMZvvCF/2C7Hbfn0Qfu57Rzz+WlN9/kZ5ddgiUWOjDzdcop3+BPf/oj\n++47ja9+9Sxc1+Wh+x/ngp9fwN8e/Bv/ePwfq5zTahBQUYpwwRkLiFsWccvCXoWgnTp1Kt/4xjcG\n7HNdl6zjUAzFbT4IWPbGG+yz557EYjF+8IMf0NTUxFX/exWHHnMos2+ezQEHHoCd7hPPP/zheYwc\nOZJddtmB3t4c9SHYtt0I8qkHIdX52c9+RUvLKMKkBQBss8M2aDSFWoHmRDOLly1jWUcHR02fzibj\nxuFkszz/wgv8/ve/58833cRj//oX202ahJW0UEXFay++xl6f3otYLMYZZ5xKU1Oaa6+dxSGHHMKd\nd97JJz7xCYrFIs3Nzdi2kEgYI2SxaLJTiQguLkdNP4oXn3+Rk08+me2224575szhpDPPZHl7O+dd\neCGpTIpkJo2Xz5Pr6iYXBIxyTAQ+VgUrmUKVFH7Ox201X0YsK45IDK1rSLwClTiqpMiMylAsFqlU\nKvi+j+M4ZDJQLFrkq0LN16ScJLVUimKhSLxY7HNziIiIiIiIWJ9orTeIbb/99vum1np6/+3KK6/8\nNqAmTJjwaP/9hxxyyJWAOvbYY/978DFDbXfdddcJlUrlcK319B122OFuQN1xxx0nDNX3sMMOuwJQ\nhx566BX9948fP36+ZVle/+Nuv/32E2+55ZavDT7H97///XOGGnf/7aCDDvpfx3FK++yzzw2Amjlz\n5k/7jUFrrfW0adP0hAkT9OqY/9f79fhNN9OJREJf97vr9CMPP6FzxbLWXV36mzNmaBHRc+6fo3OV\nnO7s1HrRorK2bVvvvPPOuljs1bVah65VenWto6a/fMyXtYjo5557bqXrBErpku/rrlpNd4RbV62m\nS76vlVKrHaeI6BNmzNA6l9M6n9c6CFbqU/R93VGr6c8ddZR2HGfAOAqFgt588831VltupWsdNV3r\nrWkVmOu+9dZbZoxBTW+33TZ6woTNte8XG8fm83nd0dGhu7u79Y9+9CMtIvrNN9/RnZ1ad3RoXauZ\nfkop3V3u1h3FDl2s9R2ve3pMx6LZd9PNN2sR0Weee672w/uo9dT0UZ/rG7fvV3St1qG7uxfqzTff\nXG+99da6p6dHd3R06GKxuNKpSyXz829+8xstIvrnv/y5LlQLjX5HHXGEjsVi+p0XXtBaa92xrEM/\n/4+n9c8vuVQvLJV03qvqSmWxrlSW6sALdGVJRVcWV3RQ65vnIOjrU1katlcD3dPToxcvXqy7uroG\njOu1hZ5+ub2iO6pVvTS3RC99/RntLXynb8IiIiIiIj72GDm5fvTgBr2Uf911100FOP744+/qv//3\nv//932zbrs6bN2/fNTnP9OnTO+Lx+BrlRX3iiSemOY5Tuf766+/rv//444+/UyllX3bZZfvU933+\n859vP/roo5cPPscll1zyfCwWK3R2dm421DVmz5496oEHHvjKfvvtN2ujjTZaZSaC+oOqpz8ailw+\nzzuLFjJ5ux0YM3o0FiBKgVJ89ctfBmDWH2chykVrSCZNvs+2trY+/9LQkrrxxhsDfQE7YPxHi2FA\nUyn0H3UwaZNaXZfkEP6jKxEuo+taDa9YpNDZaZJmDoryTtk2Ui5z7913s9e0aYzfbrvGfafTab72\nta/x+huv8+RzT4IHfs5HB5rx48cDJi9rvSKUUmWCoNY41nEcgiBoLKXbtsbzcvi+T6Fg/D1FhIyb\nQRDKXhkvCNfY0+m+qCnfZ0J4PTcWa2QVqFDh7nvvZtpe05i8/eRGIFQ6neTEE2fw2muvsWDBAkSE\nSqXSyBZQdyGtB73PmjWLdDrN8SccPyAQ6rvf+x6e53HzbbdBpULrqFYc14Vqjd7uXgqBbgRBaak0\nArOCXN8cW1YMyzLZDHTcLMkHpYBsNtsYV93XNJMxy/mVMlQCTcJNoZNJEyAW+txGRERERESsTzZo\nYfruu+9oLUBYAAAgAElEQVRuKSLqu9/97mv9948ePdofMWLEW+3t7Vuuz+tVq1Xp6uqaOGLEiH+P\nHDnS79/27W9/+3VAv/XWW6u95osvvpjyPC+ZTCaHLKF00kknfSuTySydPXv2XUO192fx4sVkMhla\nWlrIZrMcddRRvPrqqwP6eJ4RX/FYHAQ0Ar4RI8mwvNDT/3oalFnSdV0444wzmDt3Lr/85aW88ca/\nefvNhfzhxj/wu2t+x3HHHcfEiRPxlCIf+o9WlElGFROhybZpdl3i9mpKj2pthFxPj4lsB26bPZvU\nppvSNGECY7bailNOOolcx0Bt/upLL1Gr1dh9jz3wtKbX9wlCcbrHHnsA8MzLzxh1HBhxqnzV7wwS\nbqBUMSxjavxNLctqCK8dd9yRjTduYZNNkhx88F7ccce9wNAppKpBQEehwKLFi7lv9my++c1vstlm\nm3HcCSfgYVwbXlzwIrVajT122wNVNOMxgVCw++47AvDss88Sj8fRWjcCsuqBUFpDoaB4+umn2WWX\nXWhKN6HRjUCo3XffHRHhyWefhXIZS6B5ZAuOQNfbi022AG18EoKgiJ01vq+qaooj1LFt42tKvIzG\n5KoVhFSYr7UQPivbhlRSiGFRKILYpvpTxa+gSsVG+qqIiIiIiIj1xQbtY1osFkfE4/FcS0vLSskT\nM5lMZ3t7+zb5fN7KZrNqqOPXlueeey4TBIGbzWY7B7eNHj3aj8fj+Xw+v9qgphNOOOEYrbU9derU\nuYPbZsyYsfeiRYumXHTRRWeuzoq7xRZbsM8++7Djjjti2zaPP/44l19+OQ888ACPPvookydPBmBE\nayvZTJZXXnuZWtVDbAvxPLDggUcfAYzAVUG9hrrHKaecwqhRIznzzB9wzjk/Boy18JxzzuGc886j\n1/Ma/qOC8R9NiGBba/BdRikjSKvVvlxIts0ndt+dY/7jP5g0aRK53l7m3HUXl191FfPmz+exBx8k\n3dYGwJIlS8z9b7opDiZRQM73ydg248aNM32WLsFpcggKAbqmCXIBOqOxY3WxLIjE0bqK7xdwnCZs\n2yaVStHS0sKMGTOYNm0ao0aN4uWXX+HSS3/F0UcfypVXXsvXvz6DpJvEUx5e4FGsFbn+qus55ZRT\nGre426678sgjjzBm443JK0VJKRYtXgzAuHHj0J4mqAbYcQel4owdu3HjOaRSKWq1Gp7nUa1Wicfj\npFImAGrFim4qlYoJenKSVP0qXuBR9U2/kSNHsnj58kb6qJFj2kCEakcXfs2jHIsRx8LSHlr7OFkH\nv9fHz/nE2ky8oGW5WFYCRQXllBE/jSorMpkMpZKpBpXJZBq+psmiTW9ZUclCIp6mEu+lVC2SKZWi\nMqUREREREeuVDVqY+r4ftyzLG6rNcRwPYOHChfHttttuvYQJL1++PA5g2/aQ17Qsy/N9P76qc5x4\n4ol7Pvnkk5/fZJNNnrrlllse6N/2zDPPpG+++eZvTJ48+W9nn332a8Odo86111474OcjjzySww8/\nnH333ZfTTz+d++4LvQ20ZvpnDmbW7bdy4c9/wjdPOoVmR/HY/Ee54KKf4jgO5VIZ3ycMCvL49a9/\nzYUXXsiRR07n80ccAZUYt999OxdeeCHKdTntrLOwgEQY0DS4rv2QBEGfIK1b01wXEgmIxXj8iScG\ndP/Kccex409+wjnnncf//M//cPYPfgChOAJIJhI0OQ6FIKAWBkVJWKq1VCo10kn5Bd9ExBcU9NNJ\ntp0OraM+QVDEcUwVqFNPPZVKpYJt2zQ3N3PYYYdx/PEnstNOkznzzNM4+ugv0NKSJu2myakctaDG\nIdMPYbvttqPQ08PTjz/OZVdfzbRp07j//vtp22wzalrTE1oaExmT8kmVFFbMwrZTJBKhBbaQR0RI\np9Pk83lKpRKu62JZFqkUlMvm3uPxuEnq76Yo1AqUvBIxO0YikaBUrTbKpsabE6QyaawgoGfRUkZt\nsRlF5ZK1qgRBETfdYsS7pwnKAXayXqq0CaUqxmrqJQlKAbF0jFQqRbFYpFAo0NLSgutCc8oiXxBy\nRc1GWZM6qtydI10oIJEwjYiIiIhYj2zQS/mO41SVUkMWjfd93wX0pptuWh2qfV0YM2ZMFSAIgiGv\nqZRyHccZ9nonn3zylOuvv/6MkSNHvv7ggw9eMrj92GOPPVFE9I033nj9uo5x7733Zp999uHBBx9s\npD/SWvP5Qw7ni0d/iedffIGvf30GO3xyD8447zwuuvgimpubyTY1obXJG//CC89z4YUXcvTRRzJr\n1jUcfcQxHH3E0fzhjzdyxNFHc/GPf8zSN95o+I+uVpT6vlmq7+01wlRrU7qyqclsqyhj+f3/+i9i\nsRj33H+/yXify5FKGGFXrVYREbKOQzKsFNUditZU3TETcDIOVjLMdVpQpvQVfRWiQNC62kjA39/f\ntL6cPmbMCL7+9f+kt7eHuXMfQ2uTVzTlmuu0jm5l2r7TOPzIIzn/Rz/ioTvvZMmSJZx22mmN3KZu\nGKnuKa+eYx9VUohY1GpmDpNJU7o0FoutlNs0HoemJnO9YtGMNe7EG8n/y36ZSqVi7r2+9l8s0jzS\nlBMtLl5mcqxKEk+ZBP9aa+ym0Nc039/X1MGyklgJQVFEeybVVT29VrlcbvjAZjKmYlexCJ62iaWy\nBLZQqRQavsMRERERERHrgw1amKbT6a5qtdrU09OzkjNjoVAYGY/Hc+trGR9gp512Kti2XRtquX7F\nihVOtVptGmqZH+DUU0/d9be//e3ZLS0tbz/00EM/mjRp0oAqVr/85S+3ePnllw/Yfffd5zz//PPN\ns2bN2njWrFkbd3Z2NgMsW7asNfx5tVbs8ePHEwQB3d3dgEmvLwLHH3sCN/3xZq664hoenD2H5f/+\nN4cfdTidnZ1steXWAIj4zJs3D601Rx11uDlhGPjkW3D4kUeilOJfjz+++gnzPBPA1NvbJ1DicZP3\nKJs11tLV4DgOG2+8MR09PY16oWObjA/k4nBpHExQVMayWBou84/caKMBwWB2ysbKWMbHVut6zQEs\ny8ayjFVPqWKjqEDd37RarTZKhU6atDkAnZ2djdieuBMnbscHlgpNp9lh8mR2njyZefPmYYflSjca\na7KQLVq0yAQehUnsla9YtqwdgHHjxhAEYbL+VGql3KZjx7aSTCZZvHhxIy4s5ZiKUL2FXjo6Oow7\nQ712qOfRlE4SSyaoFsuU27sQsSkoG1N0oISdtBFX0L4mKPZPuh+K9lgFrQNUSTXcHbTWjbymsRg0\nx220hu6iIumYIKiSV4qCoCIiIiIi1isbtDDdbLPNXtNaW5deeulW/fcvXbrU7erq2qKtre2N9Xm9\neDyuR4wY8WZnZ+fEwQLxsssu2wpgwoQJrw8+7tRTT9318ssvP6e5uXnh3Llzfzh58uSVyuO88sor\nbYA88sgjxx577LFX1re5c+fOAJgzZ843jz322Cuvv/76ISP5+/P666/jui4jRozo26nNlkzE2X6b\nbdh9191wMynuv+9+AA488FDTTXsNEeT7HmCBLyDgO7oRGFT/BLjoootob2/vu1a1asRoLmfEqWWZ\nvJYtLca8toqgqLrAK3vG+6JSqbBo0SLGjBljrKvxODtssw3xeJzHHn10wLFx2+aFf/0LgMlTpphK\nUf3Fadw2AT/hfNRFmG3HsawEpnSpKU9az28Kxi3A931ef9082jFjxlCt9tWxT8VSA6tChTVFy5WK\n8blVioRts8PkycTjcR597DEs22pUrApKAY+HQn/KlF3QuopSHrZtkwytrMViMbSkWuy00648//zT\ndHeboDbHdog7cZ568ikAdtttt74s+ADlMhttanxvc+8uxRbBt1JUgoAgMK+i0xR++cj7DUFft5ra\nKcH3iwTlAK31kFbTpqwQFxMEpa0YVjqDp32qxZUzK0RERERERKwrG7QwPf744x8B9B/+8IfP9d8/\nc+bMg4IgiE2dOvWh/vvnzp3bcu21145btGjRGleFGswee+zxcBAE8eOPP/6g/vtvuOGGwy3LCk4+\n+eRH+u8//fTTd7788svPbmpqWvjAAw+cs9NOOw1pQjrmmGNeO/HEE38+c+bMi/tvO+644xyA3Xbb\n7S8zZ868+IADDlgOkMvlGqKgP3PmzOGxxx7jwAMPJBYukfeviQ5gKVP5Z1l3JxeefyGj2kYxY8Z/\nNvxLd9111/CebjKVoDQoC7QIN99wA2AiwOssWLDAJKavVKC72yzb+74RpOm0EaR1C94wtHe0U6wV\n6Sn3UPbKlLwSuWqOc889lyAImD59eqNQe6atjekHHcRDDz/M848/3vBXLRQK/P6aa9hqq634xG67\nNYKivH5lTC3XapRQVRVFUK2L0zTgEgQ1urqMJTYWi5FMJtFa88orr3DFFVcwatQo9tvPFOEqlWDx\n4uVYYjWW9EteiUAFPDh/Pi++/DIHTJ3asBqOaW7moEMP5ZF583jm2WeNe4EFhe4CV191tRn3J/YC\nTNS853m88847LFu2jCAIKIcVlY499kuUSiWuueZ/G4bolJvid7/5Ha7r8vkvfN7sjMeNlVkpxo1q\nwXIcejq7cGselpWgoECpGkrVsOIWVjwsVVroe68cJ4s4FjgVlO+jykNbTRMJaIrZBAo6S4p0IotO\nJChFqaMiIiIiItYjMlxuzP9r9t9//2/OnTt3yeD9O++88zeee+65Q8ePH/+PXXbZ5al33nln02ee\neeawMWPGLFi6dOm5/ftuvfXWp7722mv7n3322edcdNFFL9b3n3vuuds//PDD2wMsWLBg987Ozq2m\nTJlyRyqVKooI8+bNu6Xet6enx544ceIl9cpPm2+++aKnn356t3feeeeTe+65583z58+fVe/73//9\n35POOuusiwEOPPDA60eMGJEfPP5Zs2Y9tKr7PuaYYw649dZbT5k5c+bFV1999T8Apk+fftfMmTM5\n/fTTOfzww5kwYQKO4/DPf/6TG264gVGjRjF//nwmTZoEwLzZf+W+B+Zy99y/M2WnnRm78cYoFXDd\njTeQ681x8y238ck9DsZ1wfe70Fpz3HFf5t57/87ee+7F5z57BIGj+cvdd/LE/Pkcc8wx3HSTKXBV\nq1b54pe+xG1XXdX3LcZxIJHguhtv5MQTT+S8887jvPPOG/L+AhVQ9st8//Tv89STT7H31L3ZbLPN\nyOVz/P3evzP/kfnssccePPTQQ8TjfXFlb778Mp/Yay9c1+W0k04iO3IkV11zDS+99BJz5szh05/+\ndCMoSoA7Zs1iycKFAFx22WV4nsep/3kqABO2nsDxM45H64COjoVstdXOHHHE4Wy77WRaW1t5/vnn\n+cMf/kC5XObGG2/kqKOOolg0OnzGjM/T2bmM/fffnzEbj6FQLvDCsy9w+223M3LkSObfcw8TNt3U\nuC7EYrzw2mtM+9SncF2X0087jXQyzdVXX82CVxZw9+y7+cxBn8HzegGfd99dwZZbbs/UqVP585//\njIjQ3NyMUopPfWpPnn/+Ob7xjVPYaadt+Otf7+GOO+7ge2d9j7N/eDYtiRaTO9bzmHPLLXx2v/14\neWE77cuWM27SeFq2HE/Vz5HSJbKxJly3BeUpvHYPBGJjYohlBLzv91Ir5FG9MWLpFmKjYgRBwIoV\nKwAYPXo0tm1TLsPr7TXE0Ww5xqEntwTa2xmVGY2z8bh6ZF1ERERExMcMEUFrvV7+CGzQUfkATzzx\nxFXTp09f/vjjjx9855137h6Px3t32WWX2bfffvufBvcNk7zrweU9H3rooR3mz5//pfBHDeinnnrq\niH4/N4RpS0tLMG/evB8ee+yxX1mwYMG0Z599NpvJZJYedthhv5s9e/Y9/c/75JNPbhYGZ+m//e1v\nXxti+Hp1wrTfGAawzTbbsPvuu3P33XezfPlyPM9j00035aSTTuLss89uJMKvM2ZUG/FYnDvnzCZf\nyNPW1sa0/aZx2pmnsd3E3ahWADy01jiOw623Xs//+3+XcfONd3DuhUbfT9xyS3568cWcecYZjQj7\nwvLlZNJpI0pd1yzZh76jdWvaJptsstIN+YFPxa9QC2poNHtP25s3XnuDW2bdQmdnJ7ZtM3HLiZx7\n/rmcdMpJMGj1f+K22zL/kUc468wzufjSS6l5HlN23ZV7772X/fffH4Cs41AKAspKce3vf89jDz8M\nNN4DfnyxSYM1be9pHHfccYhlk822ceSRh/PPfz7FnXfeTaFQoK2tjf3224/vfOc77L333oAxAPs+\nHHnkl7n11j/wxz/+kfb2dkSEzcdvzre/823+66z/oq2pyViQi0VwXSZvuSV/feghfnzOOVx88cXU\najV23XlX7r75bvbfy4zbttMEQQ6ljDnUsiwSiQSVSoVisUhTUxMPPHA/Z555Ln/+841cfXUnkyZN\n4vLLL+crM7+CF3iU/bKx4rqu2ZRi4xFZ2pctp33xMjbbZiIdKkXRy5MMSjhOM5ZrmdKpZUWQD3Ca\nnXA8WaxEkaC3QlCpoXwH2zFuBqVSiXw+T0tLC8kkZGMW3bWA7rIilWyiHOulWMnTXC73uRZERERE\nRESsIxu8xfTjyPTp0++aPXv2GvXVWvPw7Hvo7Ogh3bYxeGVGjmxl2522pxLzsS0bqbbg++C6JTyv\nTDzuEo97oG3Ip0EgnzXquBWwqlUTIa81nT09fO+CC7jummuMpbQfRx55JC+99BILFizADv1KvcBr\nCFIAQYg7cRJOAtta2fe0v79p3ImTdtMDq0gpZYSf5zV8O4kPzNhVDQKKYQGAuAjpfpWovJwHHogr\nDT/LICihVBmwcJwmRGw8zyOXy5ksANksrusSBMaNVinjOhuPQ9WvUqgVsMSiKd5k7qnuaxuPQyZD\nLQjIK4UFNDsOosDv9UGD3WRjuRZBUDTpmnBx3Sa01vT09KCUiYyPx+MEgXHlBeN+6zhG8PdWexGE\n5kQztmUz5667+OyUKVgiPPHC65QrVbaZsiOxMSMpVjtIikdrYiS2nUb5odUUcNtcLMfYwX0/R7Wr\nF12OkWgdaXLEDmE1zRc0b3TVcF3YerRNR+e7WD29tLWOw2obvUbvbERERETER4v1aTHdoH1MI1ZP\nIwLdErRWhHWf8JURH464/fKXmoCmhr70Q6HmmFM4SmHl830R9okEOptFLGslUer7Pg8++CAXX3wx\ntm3jBR65ao5c1eT9tMQi6SZpSbaQjqWHFKVgfCczsQyWWFT9KrlqjkD18621LKPKksl6aaSVfBrj\ntk3WtrGAqtYDgqKcjAMWJo9nqe5vmmqU7vT9evUlt+FvWigUUEqZykehEbBUMgJ1uCj9el5RPI+Y\nbRMTMZWYggCxxfibYgKytNZYVgrz6+cRBBWTszS8WKlUalw/kTC3HWaUagRCaXTf9W3bKGdg4xHN\nACx+eyFNto1lpyirgJpncqxajoWdsk1QVr5/hH4GK+WgVRW/UAn32QPmBCCTFlKORc2DfA0S2Va0\nJZQKPUacR0REREREvAciYfpRIIzIr9u+RSw8HUbVh2lgnTDi3uT2DHuqvjRRAK7v9+UgbWmBdBot\nMtCCGeI4Dt3d3Rx6+KH0VnrJVXN4gdcQpM2JZlKuiWZfHXEn3rA++spvnGsAqZQRX/V69XVTZohr\nWTTZNjZ9laICpRBLsDNh6qayIqj1D4ayMcKwL32T67oopRr5TeNxMx1K9enhlaL0bdsIZzCdtCbV\nTyh7SpnE9i4QmHGY52DEpMk3GhCPx1fKbZpMNrJCDQiEql+/MU9hNoSxo0dgK0W+u5dqsUzGTaOx\nyfkVlDJW7Eap0rJCearxzriJDOKC7xUIKmaestksIkKpVCIIAkRgVMZ8yViRU6RjaXQqRdkvo0Px\nGhERERERsa5EwvQjgG78U68QT5/VMWiYRxtpkiAwPb0w8bpjDnbrKaLi8UaEvVJDp4mt+lV6Kj3k\nq3l85WOJRdpN05JoWaUgVcpY/8qDanXZlk1zvJmYHUNpRb6abyzxNzAZ6PuUWi5nHEEb57Bodhzc\n0FqZD0LrpGthpcL7KSpUYJLeG2EoKFVpJN+v5zet1WqNKPl02lyyVjPicKgofZJJY1UOAiiXsUVI\nhnNYDMfRyG1aMYLQslxE4oBqpHUanNu07r0AfVZbSyySTphmygvVsgg0NeG4DiOyaVCKRW+9S9a2\nse0UVa0o+0Y4iiVmLECQG8pqWsMvlMN9K1tNR2QtYpZQqmpqvoObbSZAUc53DfiyEBERERERsbZs\nMMLU87zCe0nz9HFFBapf6JRGIygUWsCxHPy6ORRjWTOuoNr4lypAILAF0RqnvubfLzF+KpWiUDC5\nP7XWVLwK3eVuCrUCgQqwLZtMLENrspWEmxjSugpGrxWL0NNjRGmpZHRl/4xYIkI2nh0g+vLV/IBE\n+jgONDebMdadQPtVHxIRsraNg5HfhfACdsJG4mLSJeXry+nOoOT7AZZlDcjj6XleIysWmHsIgtUs\n6Vcq4PskbLtuJKWs1MDcpsU+twKw0LpGEFRXym0KxmJbt9rWl/QTbgLHciiWinjKw6rnko3F2Gzc\naKRSoX3xctCa5lgTIPTW8qG7B8aKbIUFAKp1q6ngZrPmO0shjw7MvA9lNR2RNu9Vey4gnWhCx2KU\na6W+AUZERERERKwDG4wwfeutt1695557Rn3Q4/jwUTeVCgJoMVZOEbDFBPBYlkmsD+C6oXD0jcXM\nd7TxLw0CY211nAFpf7LZLPF4nCXLl9BT6aHoFVFa4VgOmViGlkQLcWdgMFJ/6oK0f7XSeNwI5LrR\nc7BrYtJNko1nG8vVvdXeof1O62U5C4UBgkhEyDgOFlDTmlJdnKZt6oq1nsvTtuOh1VITBEYEu65L\nIpEY4G8aiw2oAgoMsaQfptHq36lerrSiFL5Sxr+zPoZSgIgV+puCUiW0ViSTyUbJ1FKjBOsAN1az\nz02x8N2FpFpTffPT3Ey2OUvadfArFZa8s5iME8O1EvhaUQh9TUUEJxu6cuT6rM6Ok8FOOWjtUcuX\nwjla2Wo6usnGEuitKGwSWJksnvKo9nYN+y5ERERERESsjg0mXdTixYtfvPLKKzdZsmTJ2F122aWW\nTCY/tmuClUqFJUvWLEGB73l0dHXS3ZOnjEBQwwuqxJemSCV9qmUX11V4Xo8RbBkLCKCSAs+mloSq\nA8lajUK1aqxuofhQWlH1q2SyGZ548gm22nYrXMsl7sSJ2TGKDJ9YPcw2VQ/uR8RY/RIJI67q1r+a\ncXskmexz02ycQwUUa0V87WNhfFdXEsGVijHB1n1j61ZLwFOKQhCggYxlEbNtdKDx8z4osJIWdtJG\na43v5wEfkXYcx5hH8/k8nuexYsUKstksWhuBrVTfeKt+laJXxMKiKdGEhfSZgjs6IJmkHKa0agey\nrovyVJ8wbrKxbAvfz6O1h0gHjpPG8zzy+TwiQlNTUyOPaLkM7e2QSvmsWLGCFe0r2H7K9uSqOVqT\nrcaSnEoxdtxGvPbmOyx5exGbTNiU5liWjkqZXC1HxjUWUDttm2CsMDDMTtkNq2lQ7MbL54i3mLnI\nZDKUy2VKpRKZTAbHtmlNWXQWFStyAS3ZERR6eyhV8sQrFfOgIyIiIiIi1pINRphqrSsiMueZZ57Z\naMKECWPj8fjqC61/RHn77bdZunTpGvX1ax6vvfIqHZ09pNtGY/k1mkY2YWUtUjFFrSY4ThXfz+M4\nNqlUaFnLN4GGQsZUfWopFnGCAJqbCWyLsl+m4pno7GXty3hk3iOMHT0W13YpMHyQi+8PFJxgNEoy\n2Rez1J9Sv9Vfx+lzIa2jtaZQKxiLJGYJOxPLDDxJ3fSqtTHFZrONLALlIKAYWoObHQfHslA11bAS\nOk0OVsxC6wDP6wE0tp3GtpMopRopnFKpFKlUilqt7x5aWsxleiu9eIGHa7s0J5oZ3EnbNt2+j9Ka\nlGWRchz8go+qKMQW3FY3vH53OA9NWFaMQqFApVLBcRxaWloAU3grCCCbtdlkk9HssOMOdNe6TV5T\nP2WEe1MTG22yEW+/+Talrm56u3tpbm0mVnWoaY+cV6Y5Zqy0dtbG7/YJ8gFW0jLCNJml6ubQnodX\nKuGmUjiO08hrWigUaG5upq3Jpquk6C4pNmpOU0xnqPb24Od7cSJhGhERERGxDmwwwhRAm/XmheH2\nsUVEmDJlyhr1rRTLvDr/SRxcmjcah/aLjB47ml122Rlbjzf+kPFeqtUi6bRLIuFBEIOeLMqG7haw\ntGajri4Qobc1RckroUMXgYST4PV9X+eJx5/gk5/45LDjqNWMobVeX75eyj0MFl8ltVqf4LJtaG01\nxs/+lLwSvZVeNJq4Hac12TowwCoIoKvLiFTLMicJ8532eB4lpXBEaHNdRAS/4JvAHwtibTHEFoKg\ngu93AYLrjsSyYlSrVf4/e28eZ9tZl/l+3/ddw5537ZoOGQiEqaHRELmiGEVBRq/IbbvFodvhaqvd\n2qh0ixN9ZegLtF4bBxQb7Ra9Ktp2DFcEtY2KEXIVZ0D4IEJChEynpj3vtdda73D/eNdae++qOgnB\nvh9ykvXkU6lzqlattadKnv38fs/zHB8fI4Rgd3eXMAwZj6s8ffb2vLJ8MD/AOsugMaAZNv0y7WLh\nb8PODqm1HOc5AtgLQ5QQ5Ic5TjtUTxF0ArSeYcwEIQLCcA+Ag4MDjDEMBgOazSZpCsfH/i7u7RVJ\nUXSYpBPG6Zj9YB+kRPZ77FzY4567D7jzYx+nP/hM+lGPw/SEaT6lEzZRQqCaCjMrVNO58fFaQNTt\nkZ4MyadjwiLGal017Xa7tEJJOxbMlo7hzNHobZNMJ8ynJ/QHO2cixmrUqFGjRo37w4Nmx7TGpwqH\nwCGKHFNnHUI4AtmoiF7pOC89TUL7PxQxpkTF0uJSucrl3Qpb7Lf32W5u8+KveDHveMc7qv3CdWSZ\nJ0pHR56USunJ6IUL3qN0KVK6bmiKIk+y4tjzy+PjapugQitssdvaRQlFalIO54ebkVJKwe6ul2at\n9RD7g0kAACAASURBVCS1YMn9ICASAu0cJ4WLP+gE3ohkIT/Ji8SCBkp1AYfWQ5yzxHFMp9OpAvCd\nc1XYfSnUSiHpxz4/dJyOsc6u7nyawmJBLCUtKXHAqIjtKpuXzNRgtSUIOggR4pzGmNUYH2A8HmOt\nJY5Xd7EUZTtRxxvdrGaWFQ9cp8Mjr30kwmpO7riTPMtphB0aUmFtwiRfSdpV8cDMVM9L2O0gpMIk\nObowdwVBUO3elq1f+33/n5DjuaEVdqHRZKmX2HkdHVWjRo0aNR44amL6EIBb+yycRCDJM79nGQQW\nrTVSSoIiFsrlnpjmof97XMzd04JEduMuW40tAukJy4ULF/iCL/gC3vrWt1bXTFNPRo+Oiggl6Sfo\n+/tnx/HV7SzMM/feey8HBweka256KWFnx58DPOk6OZU+FKqQvfYesYoxznC0OGKere25CuGV0m7X\nj/WHQ8hzhBAMCpUytZZJSU4HASIQuNz5ZiYgCLpIGeOcQWs/Wi+boFbtUP4yQnjlNMu8YasRNLDO\nMlqO/Df7/dWdsZZ+EKCEIHOOuTHIuIixcqBH5fW3AFE0Q+U0m03iOMZay6Rgov2+f7ySZBVIUBLj\nWTbzxBhoXfkIeltbmOmUu+74BEIoemEbgWOu5+TFgytjiYxllVgAPlIqaPt1j3y62r9Yd+hba+lF\nikYMibEsFpK4v+3D/0dH/jmoUaNGjRo1HgBqYvoQQPn/f4cnf0II0qx01pdqqcI5DUjIPAPNIn9M\nXCimaaGgxuqsy/4bvuEb+IVf+AWWS2++OT72hKw0yF+44PngfRHSixcvMplMsNZijOH4+LhS3kp0\nu7C97cXG8lrrrn0pJDutHTpRB4djnI4ZLUebkVLdrjdBOVexWyUEgyBA4COkEmO8arntm6HswlYR\nTkEwQAiFtSla+5rSra0thBDM53PSNCUMvTLsnJ/aOwdbjS2kkCz10mewNhr+w1oYefPZVjHenmiN\ntpagHyCUwGXegCRlWIT/O7T2faTltReLBVmWVW8CwJuxnPPxVc2giXWWSVoQyUaDK659JDjHvR/+\nqH8dqDYtqbB2zmQtq0v1ilzTualioqJuGyECzDyrclbXVdPZbIYUgp2uV4KPZoZWsw9RRJLNcXV0\nVI0aNWrUeICoiellDp1rXPFPVQElJTY/TUyLv5oQHFjlsAKUMQTWYoRvgJJCEqqzvrPnPOfL+Nu/\n/Tt+67f+iDz3xLHf94S0LGQ6jfMIaRzH7O7u0uv1EEIwnU45Pj7eCPKPYz/aj6KVuf1UCym9uMeg\n4fdMF/mCo8XRZqRUv7/aDTg5AeeIigB+8OP03FpkIAm2VrFJNvPh+0GwjVcuZxizJAxDugUbLA1R\n3a5/XLW+j5H+1pZn68slLJfnjvRVX1XXd8ahVBchVJFtOkcptXFt8Ly7vHa59tCLewgEi3xBZrwK\n/oh//ASiZoPlyZCju+5FqQadIEJiWOoly4KcylD62lSHTy3AK6kq6uA05MmkIv/lbZnP51hr2Woo\nohDm2qLTiKDbxzhDMj46+6KoUaNGjRo17gM1Mb3s4cmCYNX65BAYK1AKtD5FTMsxfqmWFmPttKgp\nPa2WLhZwcACLRczrXvfTfM/3fDNRtODChY1kps1bdB+EdGdnhyiK6HQ67OzsoJQiTdNzR/u7uytV\ncjz2k/l1YbQZNtlt7RLIgNzmHC4OK/c+4OftQeCl3YLQtZSirRQOOCmc8qqhfE2nAz3UOOuQMiQI\n/H6n1iOs1XQ6HeI4xhjDeDyuLlGO9NP0nJF+KSlDlTV1eqSvGsqTQgt6XOyfBlvFtac4Z3xEUxCg\nta52fctNgdnME1QlFd3Yk8bx0t8+goAL114DDu750EcAX8faOUc1DXpBVd1qtX+jEHZbCBFi5jnW\nrlTT9VzTWEp6HYHGcTyxtHu7oBTJYrIZz1CjRo0aNWrcD2piermjWjAV1Z+NBYEgCAzGGJRSKFUo\nklm4/mk1xi/2S+MgrvLhL170fE5rz+++6qtexNOf/jR+6Idecf5N+SQI6TqiKGJvb49Go4G1luPj\n42qPskSv50f75U7l6dF+IAP2WnsVGTxJTpimxXqAlJs/XKwNlGYo4xzDct+0GyBjiTOO/KRsyWoj\nZROwaO2J7dbWFlJKkiQhSZIq4gr8Y2XtOSP9Vmul3o7HZ0b6xjlvhJK+rtQkBinjtWuvRvrg81WN\nMUSRP3VJ3AHaYbsi6uX+7dVPfiIyDDm+6x6WwxFKtWmqAOVScuvjtACEKqpK3aqqVLUUKuhgE0ee\nX1o13W5KwgBm2uDyJrLVqQP3a9SoUaPGA0ZNTB9S8KP8XKtCyvTqYRD4nE6Qfl4vIA9OGZ+K/VK9\njDk48ETHGK+0Dgbe1NRswhve8Abe8pa3cNNNN62ueg4hjaLokoR0HVJKtre3q9H+bDbj6OgIs6bk\nNRqr0b7WfrS/vr4ohGC7uU0v9gxxmk05SU48iQqClaw5nXqCCmyvmaHGp81Q2boZagshApzL0HqK\nUop+IVWOx2OMMbTbG7zzvkf6SXL+SF+uXPp67FXbIOgDEmuXGJMQRRGtVqtKCICV0SxN/baAEKK6\n9jSbYp0lbjcZXPUIcI47P/jhom0qpqsUzi6YFsoxrFWVLq1fa1CCoNlAEGITgzHz4nHZVE1bStFu\nQ+osk6mjNdgDIVhMTznYatSoUaNGjftATUwvc2itK6XUORD4kbAUAuc8MS15odCRH1crcEIQGoN0\njlw4rBRYHTCbKozxP7O97QnheiPT7u4uv/3bv81LXvISfumXfon5fM7BwcEGId3Z2WF3d/dcQuqc\nRespWm/GCa2P9rMs4/DwcGO0X6ZBlZ6m0WhlOqrOEXXYbm5XauVw6V31xPGmrJnnSCHYLsxQc2NY\nGOPJ4cCPs83cFJWhYs0pP8PajGazSbO5CuCHTd6ZJOeM9JU6I62WI/3UWj/Sb6oqwsqP9GVBTsGY\nCc5Zer0eUkrSNCVJkjObAqURqrx2aYS68kn/CFTAwZ334KZTlGoTSUnolli8IQy8G191VjuvALIl\nUUEXO7cYMztXNcU5tloSpWCaG5TrIhpNUr1ET8f38QquUaNGjRo1VqiJ6WWOkiQIJbDOUTTeowKB\nKQww5X7pmZioU258p/1+aafjSeClynuuv/563v72t/N93/d9vPGNbyzGyp6Q3njjjbznPe8593Zq\nPSXLDjBmijETsuyoUHI9PpnRfr/vBVApvWp6eOhV1BJxELPb2q3IaeVQb7c3nfrGEEpZjdTHWpNZ\niwzXzFBjjc0tUkYo1WGVb+ro9/vVfux8Pt/gnWVt6bkj/VMu/X4R9Do9PdJPLGZpUKq5Fl81QUpZ\nKbblm4FWa2UUK0MO+nG/MkLlJmfnwg7NvR2yZcrFj9yOJESIgI50OJsyNwZTqqZttUoKWBaEOQjB\nxNjcYIx/U3FaNW0XqmliLbOZoNHfAfDRUTVq1KhRo8YngU87MRVC2Et8TM859h8JIX5DCHEihJgJ\nId4lhHjWJc4rhRD/Vgjxt0KIRAjxcSHEfxJCtC5x/IPi3A8Urvy3AyEcxrgz+6VCFOTv1H5pdCq/\nlIKYXoqQOucqhfTKK6/kxhtv5E1vehMvfelLybKMOI550pOexFd+5Vfypje9qfoZrWdk2UWMmQIW\nKRvVeDzLDjEmqa5Rjvb7/f4lR/vNpifOpSv98LCa0AN+73S7uY1AMMtmLIqA+POc+k2l6BRmqLI2\nVDVVtWupT8qxehchooIgjpFSVjufk8kErfVp3nnp4P3SpZ8kNJSiJSWWYqSvxCrwfuwD70vF1toF\n1qZVtqkxporb2tpambBKI1RZ3TpOvWJ54bGPgjDk7jvvhckEKVsEUtIQKQ6qfFchhDeDcWrXVLV9\nrJaZ4Yqs1E7HX2M+nxMCnZbAScc8s4ThNiKMSNIZNqmjo2rUqFGjxv3j005MC7wL+NpTH9+0foAQ\n4rHAHwOfC/ww8D1AB/hdIcSzzznnjwGvBz4AvAS4EfhO4O1CbHrJH2TnfuDwAaZ4y5P/ty5akcJQ\nABZcAFr4MXUoEM4R5zkOyAKBswJpY6Q8Wwe6TkjLvcooivjsz/5sPvCBD/D4xz+e6667jp/8yZ/k\nGc94Brfeeis/8RM/wbd927cyn9+JMRM8IY0Jwz3CcJsw3Fsz9wzJ880s0na7ze7u7sZof1n2neJX\nR3d3V+af4XA1ygaIVMRWwxPH8XK8cutvb69qm8o9zSAglhLjHCeFihz0A0QkcMahh7p4LAf4nc8F\nxiTEcUy73cY5x3Do1wbW06EWi0uM9Es7fSGt9tZG+gtjUC21uvZYI4QqGqlA63Gl2Ja5qlmWEQSb\naw7gVxuUUGQmY5EvuOpRVyO7XSajCfOLhygbAoIWOcJZEmvJin1Q1VJ+31YX+aotiZQhpDHO2Uo1\nDcNwI9e0JSWtFiysIVkowt4WDsd8ePCpvLJr1KhRo8bDDA8WYnq7c+5XTn3ceOqY/wj0gOc7537Y\nOfefgWcAdwNvXD9QCPFk4DuAm5xzX+Gc+znn3HcD/w54FvDVD8Zzfyow+UpJdIDxN5IsLcf4BU/O\nvQqX+xhTQq0RQCYdToDVvkN+nZReipCWO6RxHNNqtXjta1/Lu9/9bm666SY+4zM+g7e97Sbe+taf\n5447buOFL/xqhsM5Ybhb9M+H5eNIGA4KNdCTvTw/xNqV5T4MQ/b396vR/snJycZoXwhPBNfVwqMj\nL4iCJ4XdqIvDMVwO0Vb7A89x6g+CgKCIcBoV5DTcDv2KRGrRU08QVxFSY5wz9Ho9giCoWqGk9LcH\nfLapMZsj/UW+8JLvmrQq10b6lUt/q4huWlhserauNAiCSq0so6u6Xc97s8yTYiEE/UYx9k8nqFCx\nc9UjIIq48857EJMpUjaQAloira5fogrdnxqEEohIIEUbuwRj5tUaRrlrulgsaAhBuwW5sCRLR9za\nAylZzsebOxc1atSoUaPGOXiwEFMhhAiFEJ1LfLMNvAi4xTn3/vLrzrk58F+BJwghnrb2I19TfP7x\nU6f6L8ACr8g+GM/9KaAc5nsVVOCQQmAKxbQimtV+qf/r6f1SjB/jx0WM6f0R0tN40pOexO///jt4\n4xt/iPe+9y/5vM97Ps1mi93dR3DDDc/nQ0WG5mko1SIMdyvSledHlfMbCsf9/Yz2Wy1v0iqF0MND\nr1iCr1ctG5FOkhM/Tj/HqV+aoSSwKMxIG2aomcFmFqValdKb50NfdzoYbKiXjYa/TdZ6JXd9pD9J\nJ74I4JS02lCK5tpIXwayGqfrsd4Y6Zd1pd1utyLFs9kMIVZ7rkULKo2gQaxirLNM0ylXX3sNNJsc\nHp7g0hRVNIQ1SKts1aR4bFVjpdyauVdypQxgGQHujGpqrWW5WNBQkmYTls6SJjFBq4txhsXo8NzX\nQI0aNWrUqFHiwUJMvwJP6iZCiItCiDcIIXpr378OiIA/Oedn/7T4/NlrX3saXjz8s/UDnbepv6/4\n/oPx3A8Yzl/ctzk5B86boJwDpRSgAQGZZ6gVMb3EfqkxCy5evFgR0jAM75OQlj/jd0gnfP7nP403\nv/k/87GPfYTnPe9L+cQn7uQTn/gET3nKU3jLW94CzmF/+2bszX9Q/byUAVG0t2YwGpPnJ9UeI6xG\n+0EQXHK0XyYIWOtXSMtIqa3GFpGK0FavYqTieDVSL5z6wZoZalKaoSLpXepl+L7zMU5lM5PWM8Iw\npNPpVDFOftS+Ui9nM6/elgS5Ct4vr19Iq/1TI/2gEyDCYpw+PV1XuspVhVW2abPp75q1a0aoxsoI\n1eq3aPd6aBlw1533ImcpAgUYOsIrmhNjqrWKat91ZhCxAAnStHHaP++nVdP5fE5TCFotSJxhuYS4\nuw/AYnK8GaNQo0aNGjVqnMKDgZj+GfBK4J8BXw+8E7+3+e5CcQS4svh81zk/X37tqrWvXQkcOefy\nSxy/K4QI1o59sJz7U8Sq/Qkc1mgQEEUCcAgX+DVT6aOipHNExmAF5IHAGokiwpiM2WxUEdLt7W32\n9vbug5AmZNkBWo9wziBEyHIZccstf8XrX+/zTj/4wQ9y/fXX86IXvYjHnoywn3sD8kufj3z+c7Df\n8C9x05XHLQh6RRWoz+70o/1Vc1AYhuzt7VVRTScnJ9UYG7wAOhhsrnCm6SrnNJABmck8MQQva55y\n6jeU8vmewEme+7F6d23fdFTGOG0Vj8G0Ui+jKEJrzXg8rtYMwBNErT1BVEKRmtSH3zebKyZ9PyN9\nMy8V225hHMsxZr6RbVo+Fv3+arUhz70ZrB21cTjG6ZgrH301xBH3XDwGY5CJfwMQkVbFA2Xovoxk\nFWFl5xbVVJ6UL2M8QZ5Wz02pmuokIVSCsOnInMWYLjJuonVGOhk+8Jd3jRo1atR42ODTTkydc093\nzv2oc+43nXO/7Jz7GuDfA58JfFdxWOl2T885xfLUMeWfzzv2vOMfTOd+wDBaF+qW/3BO+GxTIc7G\nRBWh+lE5xpfFGoD2aqpz/ia12+0qtunca1aEdIhzGiFCbrvtiGc844VcddWjec1rXoMQgle84hXc\ne++9/OkbfopfH055+ne+BPnn78Ft7+LiGPmLb4anfBb2T/60OrdSDaJov4pIyvPjivwA1eh83fxz\nerTfbvt9y9IUled+nF5mnCY6WbVDnePU7wYBjWKsfpLnOOcIB+Eqxmnhm5lOR0htbW0hhGCxWLBc\nLonjFe8tR/qlIWuSTvzOaymtpinM52dH+uGaYlvVlXrmrfWk2nOVUrJcLqs2qmL9tDJCdaNuZYTa\numJAGEXMtWEymqAWFqzF2iVd5f+TMDNmFbrfUxU5FrF/+yPzFj4pIMFar7Suq6YNoF2opkkCcW8P\noB7n16hRo0aN+0Rw/4d8WvAjeBX1fwVehx/zA5wn3ZXsaT2PZgHsXuLcDTyLW6wd+2A5d4VXvepV\n1Z+f+cxn8sxnPvMSlyxQtAg56W+BFIKgIKJkK+MTnG17KvdLS/7cXE/UX4MxS4yZUorFQgQo1UWp\nJtdc0+THfuzHeOpTn1oRWvu+v4Gv+VrkO94GgOv2sC/9buTLXoq7/Q7cP/8XyA99AL7wCzAvfwXq\nFS8HpRBCEoY7aD0rMk+nWJsShgOE8Ipiu90miiKGw2E12t/a2qqu3e16rrlYeL65uwuBChg0Br62\nNJuipKIVtrwZquw6HQ5he5tBEHCY5+TOMdKaQRgS9AP0UHuCGAmCoIe1aaFeTgiCPv1+n9FoxGg0\nYn9/n15Pkqb+1NMpdLsx7bDNPJ8zTIbstfc8OT058SP9RoN+EJBmWTXSb3UD7NLicoeeaoJujJQt\nrF2g9Zgw9M1Zo9GIyWRCo9Gg0xEkib/ufA7ttqAX9xguh8z0jO0r9rj493fxicMTnrzVQ84ybE+i\n3JKmjEmsZVqsF8hAIpvSG7GW1q8X5BKRN3BhgjFTpBxUqulyucQtlwRxjIgtJnM4sYMM7iFN5+hk\nTtBsn/MKq1GjRo0alwNuueUWbrnllv9fzv2gJKbOOS2EuIcVAby7+Hze2Lv82vq4/G7giUKI8JyR\n+1X4UbxeO/bBcu4K68T0vlBFLDnACZy1OGcJwgAhLCBwmW84yiKvdlXGJ1Ws/GlvjpEyL5z5m3lR\n5xPSDkqtxN5Op8MNN9zgb8pHbsP94CsR//1XEM7hGk3ct38H4uXfi9rxoevi+uvgr/4c+7LvR77x\nJ1D/4RXYm29GvOWXEI95NABB0EHKqFAkfeZpEGyhlCef5Wh/NBqRJAknJye02+0qgH5ry5PTNF2R\n0ziI6Tf6jJYjxssxgQyIVAQ7OyvX1GSC6PXYDgKO8pzEWiJjaDcVNrXYhUUPNdFeRBAMyPNDjJkj\nhE8pWC6XLJdLRqMR29vbDAY+LWA2K0qo4h6pScltzjSd0m10/VrBYgHDIXJ3l34QMNSaidbEUhL0\nA/LjHDMzyKYkCHpk2bKqK221WiRJQpqmTCYT+v0+/T4cH3tC3Gz6Pdd5PiczGYNH7nDw8bs5mSZo\nY1EWbJ5hxYJe2GaZZSyMoS0lgZQE3YAsybALi2xJXO4gbUG4LFTTDlKGdLtdf/8XC6JGg1bLsUwt\nKlE0Otuko4sshof0amJao0aNGpctTgtmr371q/+nnfvTPso/D0KIBnA1cLH40t/g5bwbzjn86cXn\nv1j72p8BCp8devq815869sF07gcMYwzW+jG+dQ5rDEKUbU8OTIBwAiMdVoIyhsBatHAYJTBaoUSA\ntSlSsrFPam1Klh2h9QnO5UVc0hZRtL9BSku4O+/CfvO/hn/8ROSvvQWCAPst3w4f/Sjy9T+MKEhp\nhUYD+VM/jn377+AuXIF8z61w/VOwP/9L1SFSRoTh/lrm6UmV5Qmr0X45Rp/P5xweHlaj/e1t/1jk\nuSenAK2wRSfq4HCcJCd+pK6UP1gIzyCT5IwZKrfW55sGwquXE42UwVqE1AjnLFtbW9VofT6fE4Z+\ntL7KGBVsNbaqAoDc5Jx2SzXXRvpjrb0Jq70yYa3XlfrHw57JNo3j1QpruYpbXtdFjtZWF2MMd52M\nkTJGTBd+NcNltIs923FZVaqEvz7gtAMBLgNZbKL48oTNXVNbrBWYyPi63HAfhCCZj7D6vBXtGjVq\n1KjxcMenlZgKIbYv8a3/E0/+3g7gnJsVf36mEOK6tZ/vAN8M/J1z7s/Xfv7X8BriS0+d91uAJvCW\n8gsPsnM/cDiH8+f0O5A4hBQIWYi2xfxeF2pptKaW+m/ExW3yY/w4jitCmufHOJcVhLRPFF04n5Ae\nHmG/62Xw+Mchf+5n/L7iP/96+NCHkT/7RsRVV24cn1tLbleOe/nCF8D734d94f+GmE6Q3/T12Bd/\nDa4Ird/MPPVxSXl+VO02ArRarcq1n+c5h4eHZFlWxZaWa5zlzmUv7p2NkYqiTad+ltFQqiJpwyKH\ncyNCKrUo1UbKBmVZwHmtUN2uP73WniRGKqrI8XA59Pa1U26pfhFftSyD97tqRYpnuqor9dednJtt\n2uutIlvT1BuhWmELh6P9CL8Tes/hCQQB0oSQJBizoKsUEkitJS1D9zsKJLjME1MciKxFaVYrjWrl\nbTBJggQaLW+CWqYhUXsL5yzzete0Ro0aNWqcg0+3YvqDQog/FkK8Vgjxr4UQLxNCvBP4buA9wE+u\nHfsDwBi4WQjxfUKIbwfeDVyBD7yv4Jz7AD68/p8KIW4SQnyzEOL1+LamW5xzv3Lqdjwozv0PggBh\nhVempIBymyA/FRNVkKtUFSsAa/ulzjmknJ8hpGG4X8QUbcJNJpj/41XwmMcg3/B6xHKJfdE/xb33\n/ci3/N+Ix167cXxuLSd5zmHxMamMWyD295C/+f9g3/gzuGYL+ev/Da67HvvOP6p+3mee7hWZp3kx\nQl+t6J7n2tdaV2KolH5aXgYBbDW2CGVYxUgBfqReypvDYRXjFAqBds6rl+FaxuiorCzdQgiFtSnG\nzGk0GpVbfjQqo528ILtY+I2Bbtytrj9JJ2y4pUqX/ppi6/CNVOBD7622Z+pKO53ORrapUisjVKma\n9uKeN2JdMYBQspwnnKQaJZowm2FNAngTWHlt8K8r1SlUU+OfN5u46rVRqqZRFBVvcLxqGoZgQ4O1\nQOSjo5aTkzOvpxo1atSoUePTTUz/EJgA34Cv+XwVsAW8HHhmkQ0KgHPuNuDz8YT1+/EGqSnwAufc\n751z7pcCLwOeDPwU8JXAG4AXnj7wQXbuB4SqjdSVmaayiI0ygITcE4msMEKt55daC9LGGKNRyiBE\njpQakCjVqwjpqZZV3GKB/aH/BNc+FvXaVyNmU+yzn499z58h33YT8jOfvHG8tpZhQUaX1iLxgtvM\nGG8wKtVTIZDf/q3wl3+Fvf5/Qdz5ccRzvxj7PT/gZ/H4zNMw3N3I88zz4ZnR/npblLWWMDyTqY8Q\ngp3WTuVWr2Kkej3fzLTm1B+she8nRcaojOVGhJRSK7e8tZp+v1/lrk6nU4JgU5C1FgbNAQLBPJ/7\n2tRez4eyro30G+su/VgiW9JvaYzNmbpSoNqxLbNNOx2/zqC131IQwhuhAJoXOjjgrnuPEI0m0oUw\nm2LMgrZSBEKQO8eiDN1vK98CJQQ2tzjtELpUTVOs9b+ypUPfJQk4h2xarHPkpk0QNTE687mmNWrU\nqFGjxhrEej95jQcHhBDuk31e7vjwR7n5xrcxmS0ItndIpwseee1VPON5T2V/sAPjLkY5RluCQGv2\nx2NSDMddhc5CgnQPY+YoNSYMc3q9kCDon6uQkufYn/k5xOteg7jHe7bs59wAr3st8tnPPHO4cY6p\n1iTW+nUDoK0UHaUwhds9dw4BdJSqFLrqWi9/JeL1P4RwDvtZn434lbcgnviE1fnNsgiat4W6O0DK\nMvrKcXx8TJZlhGHI7u5uEeXkSaEQ3u8URaCt5mhxhHWWXtyjExWK6dGRJ8SNBmxvszDGk0NgL4qQ\nDrKDDKxXMlVbofW4MEKFhOEueZ5zfOwJ2O7uLmEYcnLiFdPitMyyma8MFYq99h4y1/7aQsDuLjYI\nOMgyLL46tSEl+UGOMz7nVLUUWXaIczlKdQgC79BfLBY0Gg22t7fJstUp9/f9asPR4ojpbMqH/98P\n0ggafN6zPo9wfEhuh4idfaLWVSyN4URrlBDsh7621iwMeqSxqfVEuSkR3RRjJggREUXes3h8fEya\npuhWi6DZJBsFREYRi2Py6d8TxC12H/XET+p1XqNGjRo1HrwQQuCcE/d/5P3j062Y1vgHomxH8qJm\nqRpa//f7qyEt9kvL/NLS9yTEqXQra7G/8Mu4JzwR+R3fhrjnLuxnPAX7tncg33PrGVJqnWOiNQdZ\nxqJQQ9tKcSGK6AUBUghCKdmLIjpFoPzUGI6yDF2qp2GI/JHX4X7/D3FXX4P867+Ap34W9qd/tmoP\n8pmnewgRnck8LatMy7H2SeF8Wp/Un5x4FTGQPkZKIJikE5I8oVpOLWtDp1Naa4akYZ77ytItVz2b\nWgAAIABJREFU/2DqicZqi1K9tQD8KVEUVa1Qw2GZd+qJ4XLpo5w6UYdYxRhnGC/Hni1fYqQ/Lkb6\nqq+q6zpztq50Pdt0uVwSRf6+O7ca6ffjPnEzJup71fyuO+9FdgYIp3DTEdamNJQiltK/yShV05ZC\nhAIRCmziI6SkaFVtWMb411OpmtrFwq+JtPzPG7mNUiE6XZAms0u+tmvUqFGjxsMPNTF9KMEWgfnO\n+vF7wUjPi4kCwMQ45xAiwzlNGPpWHykL5uoc5td/A/sZT0F+49ch7rgd97gnYH75vyHf91fIF31p\nyYiLw71CepBlzAoS05KS/SjyRh5x9s1ULwjYCUOCoqf9MM+r1iEA+cVfBO9/L/YrvhqRLJD/5l9h\nX/TluMMjAIRQRNFuNc42ZlrsyBqklOzs7KCUIk3Tatez11u51Y+P/ec4iKvx9mg5IjOZZ4/l/H82\ngyxjKwiq2zrRGtVQG255gCAY4EniDGtTut0uYRhWrVCn20i19vuuZfh/kierkX4RgHp6pK8aCtn0\njUx6rM/UlUop6fX8/RmPfYpBaYRaLv1HqEJaYYsLj7qCRbbg3o/fhet0kEEb0hSz8GS+V7x5mBuD\nKd8UdBVCFuN863BLVxQOnN01jYA0SQgih1UWbQQi8gkNdeB+jRo1atRYR01ML3O46nO5aOoAT8rQ\nCocjDxzCOaI8x+LIQ4nRAuV8DalSDqUsUsrCXQ72d38f+7Sno1785cgPfQB39TXYN/1XxIc+iPoX\nX+UZTnlt55hpzcUsY2oMFmhIyV4YshWGqHVCaq1nY5NJpXxGxbFVRJHWHBd1oABiMEDe+KvYN/8i\nrtvzgf2feR32t363Om0QdAnDncqAlGWHWJujlGJ7exspJYvFgmnhfNra8sKkMZ6cOgftqE079NWd\nw2SIscbLyGtmKFHsm5Y7sqm1qJ4qQucdZlJ22pd7nz5CajAYVK1QSZLQaGy2QimpKmI8TsdY3Mot\nNZtBnrO15tJPjPFGKAl2aTGJ2agr1XpGq9UiiiKMMUwmE6T0fBe8auqcN0LtXNhFtUKm8ykH9x6h\nevuAwI6PcM4QSkmrKHAojVCqoRCRQEYSMzeYhSn2kUu1OAHOUU2b/k2HDfYRCNLZCK1XtbM1atSo\nUePhjZqYXuawxnqGUTigDBonJFJHXsULha8nLXYjU2FBCJyJClOTN6tUmfp/+n7sFz0b+YLnIv/y\nz3C7+9gf+XHER/8O+a/+pVfx1rAwhoM8Z1IQ0rggmdthSLBGXnHOu44ODjzRms18oH1hxhLFuHo7\nCFBCkFrLYZaRrKun3/h18NfvxT798xEX70G+8AXYf/NdXv6jzDzdW4tuOvHEKgwrYjidTlksFtWk\nvhQli2Qq+o0+jaCBcYaT5MSbqsqsJ2NgNCKUkm6hIo5Kt/xap71ZmqIcwNeqaj0iCILKlDQejzHG\nbIiik4nPV20EDayz3oi1PtIfDpGwOdIXK5e+HmtwVNmmvhDBbNSk5nlOq7W6K9Opr0ntRl12r9wn\nyRPu/NjHEZ0uMuqAyTFTr2h2CzKerEV9Bb0A2ZC+dCC12NxeUjWNgWSxQMQWIR3aBchoAM7V0VE1\natSoUaNCTUwvczhb7pVKhBPgBFKKyo1/f/ulZUxUGArcBz6Metazke96J66/hXnla+D2jyJf9l2r\nBdQCiTEcZBkjrTHOEQnBThiyE4aE8tTLaj6Hixc9E7LWu35Km/jR0YZ62lCKvTBc7XJqzTDPq952\n8dhrkbf+EeYV/wGnFPKn34B96tOw731/9TiE4TZSNqq9U+cscRxX2aLj8ZjlcomU3gBVjrfL3ctB\nY0AoQ3Kbr2KkBoPVgfM5ncKEZJxjWERIBb2CJK5FSJUZn8YsaLVaVZTVcDhEiNWmwHzuOXo50l/q\nJYt84SXO8rE6b6TfVMjG+kjf15WWI/0y23Q9tqrfX11Ta68UX33tI0HC4eFF5tM5qv8IAOzkEKxF\nCVHtA48L1VRG3vikYoWZGczcoFSrUE11FeXV6XRQQpAnCdY5VMsTW1eopsvJiVena9SoUaPGwx41\nMb3M4XBe1XMr4VQIELkncnlYjMvXYqIAMD5n0teQaqIoRN30O4g8xz73S+D221Cv+veIYhRbYmkM\nh1nGUGu0c4RCsB0E7EYR8WlCmiReIR2Pi0XO2PeCbm/D3p5XIstRddlVD0ghGIRhFdGUWOujpkr1\nVCnUq38Q965bcdc+FvmhDyCe/jnYH/nxiuAGwaAwRemCnDqazSa9Xq8yIuV5jlKenJZErYxT2m5u\no4QiNak3JCm1CsCfTKrReqnuzrRGtddI4lBXObDgo5zKCCmlFFmWMZvNzrRCCSRbjYJAL8eesJUj\n/YK99i810k9sodb2KOObjEk2sk3LJqrTRqjd3i5be9ss0zkfv/0OZLOLaLRxNseMvaLZUQpV7NeW\nz4XqKmRLehPU3OKcW9v39camOI69cuoci8UCYoOUoGULGXRxOmd8Urb31qhRo0aNhzNqYvqQQKEm\n4nxkg3VgBU6ACQTCWiKt0VhMqDBaEYiwqiENioxT+fs+zN59y7cgtjdLuTJrOcoyToqIp0AIBkHA\nXhTRUGrz5qSpJ5rDoZfkwtCzvzKfqUS364nqunpapt8DTaXYKwivcY4TrRnleZVZKm94Orzvr7Ff\n942INEV+77/FPvdLcHffU7RFba/tXHrls9Pp0G63qzgprXWVcQqecy6Xfudzu7ldZYzOs7lXetf2\nTSVUlaVTY3xl6VaAUAKb2rV2ppWCud4KNZ1OyfP8TCtUI2hU7UzD5ZDT7FXhTWNQjPQlBN0ieH9s\nALFBiMFVawSTyaRaIyjbsJLEN1E9+nGPwQEfv+MOTzC3rgAhsPNjyHOEENUKw6QgpjKQBN0AEQry\ncY5NLEo1ixIEjTHz4qnu0pCSNEnInSVsFmkSjauQQpKNjkmz5JN6tdeoUaNGjYcuamJ6mcMYu/Y3\ngQVKq5EOvCUqKkhFKgur1KmYqDB0uJMh8i//AhcEyOc/uzpjbi3Hec5RnpM5hyp2QfejiOZpQprn\n3kl07IkMQeAZ397exiqAc64il4Sh/35ZTzSdelJbmmyKFYF+seO4KNTTrNhzFN0u8hffjPnVG3GD\nbeQf/C585nWYX/+NYqy/MkTluV8k7ff7ZwL4G42VU3449GP1UIUMmp6xTtKJ77RfH62PRsRS0lmv\nLBVUEVJmarC5JQj6BUHO0HpCHMdnIqTKTYHFwhPFftyvgv9n2cyT+PK6kwmttZH+uFBrRSR84P+4\nJMTlrq2/ZrPZxDnHeDxGiJURqtykuObKa2j1uiySGXfc/jFk2IFWG2tT3KiI21KqasGalc9RoZq6\npb82sKGaOucq1TRyjiRJEE2DEJDRJG5ug7VMj++5n1d7jRo1atR4qKMmppc7nCd6SHzDjhM4K5BS\nno2JKvdLN2pIDXEcIH7vVoS1uM+5AdHrbbQ1pUVbU08p9gv3/Aa09qGgh4degivzkPb3fS5TeVOd\nY5bNuDi/yMX5RR+LVKLX84pq6QY6PPRz9QLtYvc0KkjRUVFpWkJ99VfA+96H/aJnI06OUC/+cuyP\n/1QxTt/Bj7aTqh1pMBgQRRFaa05OvMmp3V55jcqM00bQWDn1l0XDVJlvmiSwWNALgup2le1MqnPf\nEVK9Xq+6/ng8RqlNx7y1ohrpT9OpJ8WnFlL7a6sOS2MqA5ZdeDOSV01XdaX9fn8j27TZ9O8XjPHk\nVArJYx73OABuu+0jCCGRvT2QEpOO/f1lpdbOjME6h5CCcDf0RWPHeZHn2qjyZddV06YQLOZzltbQ\nbBW1pvGVBCpEz8Yskskn+cKvUaNGjRoPRdTE9DJHpTz61gWcAFHwtdPGpywQWAvCxGidEwQWKQ1K\nKdTv3QqAfd7zGRWENLEWAXSLcPxOEGzWkxYudQ4P/fxbSq/sXbjgGd4akjzhYH7AJJ1gncU6y3A5\n5CQ5wRYlAUSRV09LdjiZ+PF+QUADKdmNIrpKrSpNs6xyiYtHXo18582YV7/O//3ffSf2F3+lqDHd\npgyg13q2EcCfZRnDYamm+om9tZ6cWuud+pGK0FZ7t7xSK3l1PAatGYRhRRIXxhD0/HjbabeWM7oZ\nIbW1tVXFWCVJQqu1uvZo5LNVO1EHh/PXDQL/+MLZkb4xoASqWwTvj321rN839SN9IcSZbNPSCLVY\n+PcDj33s44jimOnJiLsP7vbZqJ0O1iaVtBpLWam1Zeh+0A28apq5NTJ+VjVtxjHKORZJgmz6Ioil\nDojb++Ac08O7Vq/pGjVq1KjxsENNTB8ScBT+J5x1PvM+kBgF0hhCa8kwWCWxOkQKCaQIAWEovNL6\nB+8EYPicZ51pa+qeJqRlFunBgWc04Mnk/v7K0FQg1SmH80OGyyHGGUIZstPc2XCfH8wPVuqpEJ70\n7ex4AphlnvjO59U5u0HAbhHKnxfqaTlWRkrUK34A88rXIJxDfPP/jn3H/0DKaE21nGDMYiOAf7lc\nVq71wWC183ly4jnyoDGoAvDn2dwrwaWDaDhEsRnlpK0lGKwUTJOcjpAaEgTBBlE0xlStUGnq73I3\n6hLIgNzmTNKJX3lYW0htrTUzjbUm6KwIsZmW2aJRse85PZNtGgSr9wHjMUglueZR1wJw20c+CiJA\ntHq4UGHyeaVi94o3Bwtj0NYXOsQXvBKfXcx8ZqmMkTIGbGWEKlXT+XzO0unq2qncIwoauGXCdHb8\nD/t1qFGjRo0aly1qYnqZwxpTuPILlck5cAp9OiaqnL6vxURBsV/6N3+LvOdu7N4++VOvJxLi/LYm\n5zwxKbNInfMEbX/fk8k1V35uco4Xxxwnx+Q2r2o/99p7xEFMK2yx396vcjtL9bSKDYpjf951+/jx\nsVdpwVeahmG13zk5VWmqXvly7EteishzxFf+M+ytf4xSjQ1TkDHLcwP41zNOs8yrl0qqarRe7Zv2\n+xtBpE2lqiD6odYIJTZyRn116KDaeS1D8NcjpKTcNP8bI6q61Hk2941UpUt/sYA0rYL3T4/0zXy1\n47peV3o627TbXb0HWCzgMY9/HJGKObn3kOPpMUq1oNvBusQ/78YQSElr7bEHn6kqm141zYf+dbfa\nNZ1XsV29QhaeLBbEbeuvrSVB60oEgsXxvWi7WtOoUaNGjRoPH9TE9HKHc0VElEAKh8MTM10Q0fP2\nS1c1pDlxHKJufrc/5lnPhcLMs9HWBJ6xHBx4tlRmke7teXlxbefUWMMwGXK4OCQ1KVJI+nGf/fY+\nzbC5cUopJNvN7UqNXOolh4tDn98Jnnxtba3U09LtX6i0Qgh6hXpaxhhVlaZCIH/i9div/lpEskC8\n6Muw7/8ASrUKsuTQeoi12bkB/FJurpJOp37ftBytD5dDn4Wwvb3a+1wu6ReVpblzTIxBtVbVofkw\nRwhZ5Jv6EPqSKJYRUtPplDjebIUKVbgx0nfrC6nnjfQDsdpxHZ2tKw2CoEomGI1GlUgN/ultttvs\n7z8Cl2vuuP1jaBdAGGNjibPefAV+xaOMrUqLNwThvn9HlF8sor9kVJmwNlRTKZnP5yysqe5KQp9G\n1IEsYzK6+Em8+GvUqFGjxkMNNTG9zOEKQuBwWOvH8kJCWgTvx0W8Uq7EOTWkPl5K/p6PiUqe82wE\nbOaRLpeekI5GXq2MolUWaRhWh1lnGS/HfiyvEwSCbtTlQvsC7Wi1b1qKrqXgCtAMm564Bs2q9eiM\nerq3tyq4H41WC6D4StP9MKzUyrHWnOQ5TgjkL74Z+4IvRQxPEC94Ae72OwiCbkXU8vwEazVxHG80\nM6VpWoUKCOGJaZr6Cs9y33S4HHrFtGR1oxHC2qqydG6MVzD7PkLKZQ499SH4viHJk2OgIsaz2Yws\ny860QnXjbnXdcTr2zLWscDpvpN8NEIGvSdVTfaautNvtbmSbNhqr/dbJBK5+zKNohE0OP3GRSTpB\nyiZ0OhiWnqlnGXItdL80ooXbISIS2MSiJ6cd+ivVtB/HGGs5mc1oNJw3YVmBa1zp46OGR6T58h/0\nu1GjRo0aNS4/1MT0oQDnwHmFU0iBsSCUJNAa5RypMDglz9SQhiG4+QL5nj/BCUH6/OcQCuGPyTJv\nPCrt6UHgyeju7kYWqXOOaTrlYH7APPd7oK2wxYXOBbpxd2M3tSyAmkz8R2niB6+eDpqDS6unUnqW\nWMqYJWEunOJCCLbCsKo0XRYxVy4IEDf9d+zTvwBxz13wvOfhLh4QBH1PtrBofYxzhlarRbfbxTnH\nyckJeZ4Txyu/0XDoeeD6bZxnc79uUJLm4ZBQykrBHGmNFVT7pmZqCsd8r9r91HpEFEWnGppcRYpn\ns1UrlECwyBcs9XLFmhcLWC4vPdKfmWKNYFVXCrYi4tPpFGPMhhFq58IV9Np9siTl4PCApXGgFLZZ\n/CejSOZvK1UpxAtjEEIQ7fnXR3ZQ7pqGxWPtqqrSfrdLLASz+ZyFtdW1E9emEW2BMUxO6vioGjVq\n1Hi4oSamlzlspZj6FFPPUf3TGl1iv9S5ZaFcScQf/gkiTTHXfRbuwj6xMZ6MHh15NlQ2Hu3ve0lt\nDYt8wcH8gGk2xTpLI2iw196rjE0lziuAKiM5j4+9AFrcjXPV0+PF8Uo9bTRWt6UgggyH1QnKStOg\nGO2faA3NJuK3fxP75OsQt30E9/wvwY3HBMFWZUbKcx8Z1e12abVaFTk1xtDpbDr1pdjcN632Psul\n1MmE9lrO6DDPkZFcOeaLytIwHFDGWBmzoNvtVhFSo9GIMNwkxUoE9OLCLLUcY6XYyJhSztFdH+mH\nAtVaH+lv1pWW2abW2iqyqrzeeAz7V19BK2xx8WP3MNcpDoVrNTAi91LuYrERuj8t9p2DQYCIBGZu\nMLOiIUp18XuuC5wzNBoNelGEsZbD6XTDhJVHVxLIADMdM1+uChdq1KhRo8ZDHzUxvdxRxUWtvmRw\nSCnP7JcKE2OMQSkN5IRhgLr5XQAkz3kuaE1jOFxFP/V6KwPSGkon/Wg5wjhDpCJ2W7tsN7cJZFAd\nd18FUHt7/vSlQnd4WImflXq6Xgt6uDj06iRQLYCWqfRJsoqswlea7hR7p6m13og0GCBu/h+4Rz8G\n+b6/wr3wnyDSlCDYLlqK8qq6dGtri0ajgTGG4+NjrLUMBqvRetnOVO2bJkMsjg2JszAllbuv08Ix\nL2PpQ/AvUVk6GAyQUpIkCUmSVCb8MpmrHbWJVYxxxleltturMNLxmPbaSH+iNaqn/Eg/c+iZLpRa\nVdSVLs5km3Y6q/u5tX8NsQpZDmekacpca98E1S1WOKZTcI6mUkRCYJxjZgwykgTbARjIj3KcdUgZ\nVKqp1p5s7vX7BMB4NmOhdWXCSl1EEO6CtcyO71nFidWoUaNGjYc8amJ6mcNRcFMhwDoozE84R5zn\nGGfRoULnErVWQxqGnsnKP/D7pcvnPw+ZZYSwUiU7nY3op8xkHC2OOElO0FYTyIDt5ja7rV0itRrv\nny6AUurcAig6HX+ZklcNh16RNKU4WiiwrbDld1jT8aZ62myuTloqvaMRFA1VO2ud8sM8R1x5Bdx8\nM27/Echbb8G++GsQ1lbtUL6ZabXzuR7AD67yOS0W/qPcNzXO+JzRUxKndK7aN50ZQ1ZESFWVpdPT\nlaVDlFIbu67GmA3+nSRUinSiEx+ztbW1ccDWWktWam2VDGCmBqxAqTLbdFI0QJ3NNgXQtkFvd49Y\nNrj49/ewNKCtxobgosA/5kWF7OnQ/bAfIhoCszD+upS5pgJrk0o1HTQaGGu5e+yrU8uHLw32CVWM\nW8yZzoef/C9EjRo1atS4rFET08scVhckjaJFB4GTksj5tqZUWs+mzGZMVBQ5uP3jyNs+guv1yW/4\nXOIs84e0WhvRT9pqTpITjhZHZCZDFaPsMu6pREkuTxdAXbiwUQBFmqakxXKpUl5BLbnVcrkZWyqF\nZKuxtaGeHswPVurp6ROU6QFpSiAlO2vB92OtEY9/LO53fgfX6yPf8RvYb/pWBGKtHWpZhdGvB/CP\nRiOCYBXlNB570r2+bzrLZmzM/YdDolOVpW5933RmsNl6ZWmO1mOazeZGhNTpViicoh8X5DUdYwRn\nRvrrLn0RCWRLViP9zbrS8Ua2aZkKUK7MdgZXoYRkds/Em7MKFd60g1UagdZEUtIszGcTrZFNSdAL\nvPlqprHaIoTy0VM4tPbO/iu2t4mEYLpYME5TWq1CIRYBMnwEwkFyfLGOj6pRo0aNhwlqYnq5Yy2/\ndH3gGeb+f+Tn5Zdaq4miAPG7Xi1Nv/BZoBSNYlRbyprljufh/JClXiKFpBf32G/v0wpX431rPWEq\nvUhCnF8Alec5x8fH1cdwOMQU8mirtWowLc+3VvpEI2hU13U4xumYo8XRirC0Wl49Lefex8cwnxNK\nyXYYVi75idbIp16P+43fxDWa3rX/su8v2qF2WLVDTZFSVhmnSZIwn89pNjejnKRQDBoDwFeHVvum\nZbzVdEo3CKrx+khrv2+6Xlnq1itL5xizPBMhte6vGo38Lu76Hu7p2qj2aZd+f6XUmoUpVgj8fqu1\naZVtOp/PyfO8iqVt9/eQQQOh4eSeYzQBSZ5gVb7KmC3io3prSq3GodoK2ZC+YGBS7pp2KFVTazVB\nEHChMJzdNRxutFEt1YBQtSFdMpkcfsq/IjVq1KhR4/JBTUwvczgs1oGQEh8a5fdLg7X9UmtB2lUN\nqVJlDWkZE/VcyDJigCjC4UnWxdnFyhXfDtvst/fpRJ3Kae+cn+QeHKwUzpJgrhdAGWMYDoccHh6S\npilSyorsHR4eMi9+eN14v176VEyLvfO+scVOcwclFJnJOJwfeqUS/A/t7m7Ki4sF0Ro5nRnDTGvk\ns74Q96u/hlMK+aP/F/Y//ghShmvVpVOMmRMEAVuFTDqZTMiyjH5/Vb40HPrq0G7UXe2bClYh+IWl\nfrCWFjAr4pzW902lDNfqQ0eAPRMh1e9vtkL1G/1KRZ5n803Z+dRIP3MO1S/MVxMNVlaVoVqPUEpV\n2abj8bhqlwVobz8SgNnBFCFCZnmCsTmmHa6ul6YoIWiX8VFFhqvqKGxqsUuLzUrVtF28LvwTu9vv\n01SKNM+5OJsRhgXnFRIbXrGKj9Lpp/6LUqNGjRo1LgvUxPQhAIfDWZClA8o50JrcGWwYYHWAFArn\n1mpI8xz5rlsBSL/kuYRFLuVCGi7OLzLNpjgczcC75PuN/obTvpyYT6ebefulWAg+MWAymXBwcECS\nJN7B3e1y4cIF9vf3NxzhR0dH6EIeLVdcS2WyJL/lpkEcxOy392mHbRyOSTrZVE87nc0u+yQhlrLa\n95wYw9wY5D/5MtzPvhkA+fLvxf6Xn0fKuArA13qCMUsajUYVI1WqvOXe53LpuWc37lampNFy5FXn\nTqeSVqVzFVGcGuN3P9f3TWcapdprI/bNCKnhcIgQbqMVyhq5kQ6gsRv3W1m7EVslY1mF/euxXqsr\nNRgzrbJNsyxjPp/Tbvu12d0rribLA5bDBS5zIBrMs5lvglq38bMK3U+tJQscMpI+1zRbzzXtsFJr\nc4QQXD3wqvPF8ZjcGLpd//hmQZdA9iHPGQ/r+KgaNWrUeKijJqaXOWwRpA9gnUM4gXBeNU1V8b21\n/VLnHGHo4Na/QMym6Cc8Cfuoa2hkGZnJGLHEOkusYvZaewyaA5RcNTvdV95+wYFwzjGbzTg4OGBW\ndKu3Wi329/fpdn22qZSSwWDA9vZ2NbI+PDxkMpkUzVSeY+3urqKljo48/ymbrvqNPjvNHQIZnFVP\n222vnDrnb+xySUOpjT77xBjkN3099od/FADxbd+CfevbUKpZGIRW7VDdbrdy6pd7n6fD9wfNAUqo\n1b5pt7thqY/X9k1H5b7p1sqY5PdNt9YqS6dVhJQxhtFodKYVKlJxRdCHydDP+9dm/u01x3w50keC\nXVpMYgoSLorwe30m23RrC8IoJG7vYrRlfOcQKVskekmaz3Cthn/itYb53L/5KB7jiTHIpkS1FS5z\nuMxhlgYh5BnVtNtqsVUaoYpq1pLz6vAKlAiwkzHzdPY/49emRo0aNWo8SFET08scVVpUOTd3gNEI\nNvdLyxpSyInjCHlzsV/6xc8GrYmdI3U+SL8Tddhp7RCqVbPTJ5m3T5IkHBwcMJlMsNbSaDTY29ur\ndib9bTY453cOG43G/8femwfLtt31fZ+11h567tNnepJ4EkgIMVVcwcEVJxhsIT0xBOEyiQcKpyiH\nYMcTBFyESpxypTIUIZFtXEAgJlPFLiXGEBwgxAymZDBgMJUUhFlggab33jmnp93du/fea8ofa+/d\nve+9TwJbFPe+2t8qlaR7zu0+fYa63/P9fQdub2+ZTCYA7Pf79uQP4bFvbk7WgMMhEOO6GYo0CgT6\nXD29P9wH9XQyCX+xYXFlyeiMnG6MobAW+R99De7r/hOEtYgv+1O4f/QeomjSrjM161CLxaIThmrK\n95uH9062Jfit3/RcWj0cOn7Tda1iqum531Sc+U33OFd1KqTyPO+sQu12oR0gkhHaaXbljtYgWpaQ\n592TPr5N6ZutQdCc1h/vNs2yjDgORPj2+TdwOMD6xYew5CVSdlWwO7QqbS2fN6X7xnuKNIw+CCXw\nzrcJ/ZNqWuBckMKfv7xECsEqz8nLslVsTTRAiiuwlv3qpb4+qkePHj1exeiJ6bMO72i8pTiPUCCd\nwyOoomaGNMWYkijyRFEgseqH3wNA/o5QE5UIQVErrOdJe2N+e337ZVlyf3/fnrrjOObq6qpNtgN4\nH1LgVXVHVd1hzK4mzILZbMb19TVxHGOMacNRzYDAdNrNNq1Wp179Rj29Hl23BK0JbDGdnk7qqxVU\nFWOlmJ4l5UvnkN/4X+L+zFciigLxx/4o7mf/H6JodrYO1VRGXSKEIM9z8jx/NIRPGqXdflMp6Nzf\ntW79pqVzod/03G+6MUiZdCZLpRStkhkIv31kFUq0hHhf7dHedp4zOkvpb4xBDiRycH5wTFSgAAAg\nAElEQVTS786VNt2mx+ORoiiYTuHy5oJkMGOfVexf3hOrKdpW5OUq2BaaT0JTH1X/ErL3dSvAUOK1\nx2uPzcNCVHiNtAn9JIq4nc3wwAdWK+DEeavkllik+P2O3XH7L/lD06NHjx49nlb0xPRVAo+vu0wt\neNBYfKRwJn5khtTjX7xD/sL/hx8M0Z/7OaHv1Fl0opBChm7OutC96a1/pb7986S91pooilgsFtzc\n3JCmzdKUx5g9VXUXFLYa1u7Q+h7nmo8t5ubmpkOM7u7uyPMQwIqioNA2gmCzKFW/mUQlHfV0fVwH\ncjqbne7fqxVozTSK2rP6Smsq75Hf8W24L/4SxC5DfOEX4n/1vfVpvZkOXXfCUNvtFq11W75fVcFq\ncO43XR/XgbSdkePzftNzv2lzYg9F+NPW/9lUSI1Go7ZC6rwydbOBSCSMk/p1F2v8eefTIyf9zNrT\nSf/o6onUi/ZrIkRYwGpeoxCe2QyuXvdajgV8+Dc/yHx4BSImK7cYk3fXEoxhULcCOCBvnCS1gm93\nYSEqeFxDf6y14Yv4mtmMJIo4aM0qy0iSOggVxXh529dH9ejRo8erHD0xfcZhbVAUXd20L7xHCaji\nJhJ/7i+1JIlE1jVR+t/4Q5CmpFpTugrSlFikZFmX8DVF+Od9+43n8TxpP5/P21DT6eM7ovUd1maA\nQ8oBcXxDHF/Xi0sGrZdovW7P++PxmJubGwaDAc45NptNJxw1Hgf19KwdieUyKKmNenqeki9NGdjs\naBT+Qt38P4siRnX35kprtBDI73w37g+/DXH/MrzjHfDhF4njyzPfZyCJTShptVrhvWsVzMMhEObG\nb1raMpzXZ7OT3Fv3mzZTnmutcQLiRbBONH7TRydL5/N5ayXY7XadVajtNpz0YxljnCErMx6N8Tcn\n/YO1VMITTWt/69YiRNyZKx2Px51u09EIPv4TX49UCfcvbtEHzTC+wHlLVtzR2RStg1AzpRDAMfY4\nCTKSeOHx1mMPjWraLF9leO+QQvC6Ogj14XpgYDarg1DJJRFjOOZsdw8fk5+fHj169OjxdKEnps86\nnCcMP8maNAqQIpxzedIMaYz8kR8H4PjCqSaqlB7nBbvNgP0+8Ium+qkhBhDUzyZpn9db6ZPJhNvb\nW8ZnpaXOlVTVPcYEwilEQhxfE8eX9TxlTJLcdPo0q+q+VVSVUlxeXj4WjtrtdrXaFjyuTbVUWQYy\nXWetmKbT9qS+Oq5O/aKNirhcgjFcxDHDWtlbGYOJY8T3fQ/uMz4T8f7fxL/webDeEEVNjdQBa3Nm\nsxlpmrZhqDg+nZ03m5CYXwwX7Xm9NGX3g93tmEQRg/q511oHv2mn31SeNQRs8d62faNNhdSjq1DN\ncx70gdLp0weVZUTOtWR4YwxyFBLz3nrM9slzpefdppdXksvX3FKV8P7f+AAXo9cghOJQrtG2tk00\nr68oiM9K9w9x+AVKRuEbye4t3nmUGnTK/gEWgwGT4ZDKe16ug1CTCaAUVj7X1kcVpvgY/RD16NGj\nR4+nBT0xfebh2wSUd0ExFQK0txgtiUTSnSF1DvWj7wGg+PzPI66q4HdU4WQfkRLHj1c/ARwOB15+\n+WX2+z3e+zZpP5vNkDVzdc6g9arendcIERFFC5LkGilDSsoZh9OBqCg1Jkluz7ycW6rqvg3ENOGo\npmNzt9txf39PVTVvP9kLmq73+/sQDJqls/asv8yXpzBSI7XWMusijhnUgaSlMbjJBPEPfwD/SZ+M\n/OVfwH/+FyGOVYckNqEkpRRlWZJlGaNR1zEQy6Qlx5tiE/pNH4nyL6KISAiqets+mkUnsrgxKDU4\nCyetieP4kQop12nGEj5imoYz/KbYhJN+88nZbJhEUfekfxFWqFzu8BWdudIo6nabRhG88ZNeDwh+\n6713CCcYJ4ugTOcvnZYVIHwham+rBMqBQDuHtx6RCnCBnAKdX06sLRBC8LqLC6QQPOQ5RVEwmdTh\n/+EMaWeIqiLb3n3sfox69OjRo8dTgZ6YvgpQa6YgACkw3iGkwJsmLn/mL/1nP4dYLbHPvwH7qW8h\nrSpKU+LSGGdipJBMJiEN3aDxem63W5xzpGn6hKS9Q+tN7RktAEkUzUmSW5QKp31vPXqt0Xcafa/R\nGx3ItJDE8aLerA8hHK0f0HqD9y6c5+fzTjjq4eGBzWaDcw5R54uur09p9YeHoCDOB/N2LWp1XKGt\nDsplmoYb+MNDIKdnafml1viba/ihH8J/3OuR/+yn8F/25SiRdkJJQpzCUPv9nuPx+Fj5/mN+0yQ5\nkbf1GuFc6zfdW0thbTjpN5VOB4tSs9r2oLE261RIbbfbRxuimCST4BNuOlWbk35VwX7fOelrSWgF\nIAShpOwqmNPptFWsD4cDr3v9lMnFnKrQ/PqvfJD58DVIoSj0JiiYo9Gp3+twQNal+yIS7JUDB6K2\nmdiDDURVqLbs39ot3nsmcczFbIYBXjxbhEIIbPIcihi33ZzqwXr06NGjx6sCPTF9xmFtmLSEcIrH\ne6wPpeXn/lLnNGkaI3/ox8KffO4LYC2pc1RYfBQjzOB8kZSqqnh4eGC9XmOMaZP2V1dXxDVzDcGm\nHVX1Ms4FU6pSk5qQjk/vkxmquwp3dIFA1ypddVdh86CcSZkSxzcoNSXMVuZ1YCo8bpIk3NzcMJvN\n2mR8U94f3h6U3iZntNkEcnoxuGAUj3DesTwuHyenyyXCey5rNdE05PTjX4//gR/AT2fI//O7cX/1\nP6uT+gO8t2i9IoqiNjG/2WzaMNR5+f653zQrs/ABNkxytSIWopOad/LUb2oygzf+scnSRyukzu2k\n+z0sBgukkBzNkaMpTin93a5z0t8agxorRCzwJtQ5nSuY3ledblPvHW/+tLAE9VvvfREhEqaDC/CO\ndf4S3vtufZS1TJRCCYEZCgpr8ZVHjmSwLOya0v3zsv+Q0n/NZEISx2Rak2UZTZ7LDsZ4ewHGcFjf\n9fVRPXr06PEqQk9Mn3X4+j+IZveJ2nSKdClaV0SRQ8p6hvRHQvApf+HtiLOaqKqCWIYzvnOG1WrF\nw8MDVVWhlHosaQ9g7aEONu0Aj5RDkuS29irWXsLcou90ONt6kCNJcpuQ3CanyqKNoXqocDqoo1E0\nJY5vkDKlWUGqqgdcncRuPK1pmrYp9eVyibUWIYIn9rxbvyGnzbb88rjEeBvIaSNvPjwEchrHxEKg\nvWelNeJf+XT83303Xkrkf/1f4P7O/0YULc7qlTaMRqP25N2c188v9rrq+k2Lhig28m6WMVbq5HV9\ngt80qIpNUGiDlLSEMSjZ5px74qxiloaz/Lbc4pK408w/OSPh5yd9e7B4Izpzpefdptvtlje86TkG\no5Q82/Fb71szSW+IVYKx+6BgJklgkPVslxAiBKEGkr0PLQBqqMIvJ0eHM4FYnpf9O1cxUIrriwuc\nENzt92it2/C/SW+QLsXvMnZF9jH/serRo0ePHr836Inpsw7vAYcX4PB45/HCYYxEiaidIU0Sgd9s\nkT/7s/goonrhraRVhfMOHUt0FWqiimLL/f09RVEgpWQ2mz0haV/UPaQhkNMonXG8QIigxLnSUd1X\nmI3BW49MJfFNTHwRI1QoXI8vY6LLMMvpK49+0JitwXuPlBFxfFWTwFAppPV9nd72KKW4urrq+DzP\nl6Ymk8fJ6WK4YBANAjnNa3J6dXU6PS+XSO+5iuPW97kyBvHOL8R/w7sAEH/238P/05+pw1BBVWy6\nP5MkwRjTlu+fK7eKpCWKm2JzIsZNlL8uwo9qUpxZe/KbmsZvOmq9uFqv2wqphhA/+pzDaNS+3k2x\n4dFm/vOTvlGciPDm0bnSrPURH49HtNG88S2vQQh43698AGOGzNI53lXsyg3W2W59VFUxVIpEStxA\nkFsbyOk4PJ/NGsU8Ous23QBwmaaMhkMO1rLebFCqDkINBnh/g3Ce4+ouqOA9evTo0eOZR09MXw3w\n1E3zoWhfCIlwTft9mCFNEoH44X+CsBbzmX8Q5nNSYyhtVZ+0U4qiaFPxjSo5mUzaVSnnNFX1gDEr\nvDd1sOmSOL5CynDad8ahlxq91HjtEZEguoyIr2JkHL7dDvVWPYAaKOLbOJAigmKn7zT22CwEDYnj\nky3A2n2t0oZE9nA45ObmpiVoWZa14agnkdPL4SWDaID1lmW+xHp3Iqdah55R4CqO2xL8tTHIr/sP\ncV/+FXUB/x9DfPDFus5JYG3WnteVUhRFwW63YzoNOau6IYpxMm4tBavjCt+sFQBstwhjuDwji8dz\nv+kx+E2byVLvK4zZtRVSuj53T6enl5JlQSmWQlKYgtwcT8+33xNZ20npq0nwgnrtMTtzpmDmCOE6\n3aYf/0lvYDAQbJf3LB8MaTxjFI+wLmdbbjkxSMIHAsyjCDmSHKzDHGz4mp/NowJ1f2tc98buSKTk\nejZDSMmqKNpRgygCO1qAHkF+IMvXH5MfpR49evTo8XuLnpg+4zCu3iQN7BSBQEqBNapWHjXeVyRJ\njKr9pce3vR20rmuiHMZJlB9gTFkXt087Sfvgp1yj9T3eV/VZ+aL2kQYC7J1Hb0KoyZUOJETziOQ2\nQQ0C+Sms5a6q2BrD1hjuqorS1ef7WUR8E58WkNYGvdQ405z353X3aVM6v0LrVa3YSi4uLri+vm5J\n2sPDQ0tiHlNOB4s2kPSQP2DxgZw2LfnLJQq4qhPlhXOhXulv/3e4z/rDiJdfxL/zjyJyXfthg8In\nhGexWCCEYLfbURRFe7Fvyvfn6bztGl0X9bb92Yk9EqIzmWqF/wh+0x3eV+1zhgqpkouLkxCrqzCT\nCpCVGTZSHVl1EkXETzrp7y04eRb2Ct2mTfhMW81rXn+NwPKBf/4BjscR42SC8CVHfQx2hcnkFLrK\ncxIpGaYRPhbstcFVjmh2mkf19fdyY1kIk6yGeRQxm804es96u8V7x2wGxDFe3SJcXx/Vo0ePHq8W\n9MT0GYdzDufBC9V2mloP1gm0DjOkcVwH9tuaqBeIypKoromqKkhVSpPeH9Rbo2FCNKOq7nDuCAiU\nmtYK5qh+H4/Z18GmvK6AmiiS55JwqgW0czxUVegJ9Z5YiJYMLbVmrTXWe2Qkia9iokU477vSoe91\nIGTe192n12fhnMZSEM73SZJwe3vbKnubzYbD4fAYOS0KweXwsiWny+PyRE4bIrVaEQnBVRy3O/N7\nKRHf8134T3gT8uf/X/yXfTmRHNXF9GG2NI4DiWqe3znTKd9vnrtRMffVnkej/COl2uL/tTHBbzo+\n95vGHUIcRarzmpVynVWoRA5apXZdrEMrwNlJf3F+0o9Ajc5P+pPOXGnTo3o4HLh9/jlGI3j48Ac5\nHGKkGDCOR3hfkJVZsD7Xnwt2u1AfpRRqLDlaR7UzqJHqzKMC9SRrU5G1IZKSy9GIJE3ZGkOWZQwG\ndevXeAZ6gigKsv0yhK969OjRo8czi56YvkrQZKCkAO9FXbh/VhP1i7+G/NAHcdc3mH/tM8Lakylx\ngwSrY6wJJfxKKZRSZxOigfRJOSJJnqtPrXXdz7E+u2cWHMhhCDZFswhRd2VutOa+nvxUQnARRdwk\nCTdJEk67wNE57qqKfb3spIb1eb8mtnZfP0/RnPfPu0891mad7tPpdNqZDf1I5DRRCcYZlsdl2LW/\nvj7F29drYilZ1ArmzlrKywX+e783JPW/9//A/cd/jSiad2ZLx+NxGxZarVZEkX+kfF+xGIQw1K7c\nhfL9R6L881rJ1N6zNYZoHrXJebMxRNEEKdNaPd4wmUzawv/NZsNkciodaJRaJRSVrdjrw6lPtT7p\nT86L96cynPQr39oHIMyVKiXaoFcySpjMBnhbcP/SA/v9iFE8QnmNcSaQ7uHwNE+12xFJyXgS4wVk\nucZb35lHPX2NZ2dzpQemSjGfzSiB7eFAVVXBxhopfHoLNsZt1hz0afK2R48ePXo8e+iJ6TMPj/d1\nA5MPfabGSKQQeF/inCFJ1Kkm6o+8DbwntZbKG3wUI+0ArSvSNJDYJ0+IXrRJe1fVwaZ1CDaJRBBf\nx8SLEGzy3rOrT/W5cwhgqhS3cczorLF/rBS3SdKqg1l96m/P+/OI+Do+Fc6vDHql6+7Lj9x9OhqN\nOuR0v98zmQSx8JycXg2vTuQ0r8np1dWJJK7XDJRiplSrYNpP/1T8u//3kNT/b/4r/P/67sdmSy8u\nLtqz92azeUL5ftqW76+LNfaR8n1RVSxq4p47R24t8eWZ3zS39Uk/KMfWHri4uEBKSVF7MS8uzleh\nRHvS35U7tKRjIZgq1arYe+cCWSTMowp/miu1ttttenFzyXAIdx/6AEUxpKok02SA94GYWmdP9VGH\nA1jLLIpQQ0npPMe9RijRnvTt1tbdtudzpTsEjnkcMxmP2dUztVEU3AJuNAF7AVXFPnvo66N69OjR\n4xlGT0yfcXhrafRSDwgP3gmc8yhlECL0j6ofDjVRxxdeQJQlqRAUURAGY5nWYSKNUnk9IRoTx1ft\nhCjUwaaVRj/UwSYliBYRyXWCTMK30tFa7rRmZy0eGErJbZIwjYKKijGBma1WYAxSCC7imOu6pqk5\n76+a834sSa6T4H2sgzLVXYXZNef9tPa6Pt592pBTIQRZlrHf75lOu+S0LINyGssY7XQgp0qeyOnx\n2HoxGwK9Mgb+rc/Hf+PfAED8ua/A/+RPd2ZLnTtyeXnZJtn3+317sW/CUNN02qbmV8cVPkk6/s8I\nWr/p1hiM8C1hNFuDt3Bao8oQwnXIuPfmfJGUSKTtElab0m8aCR5N6cecukY3plaFA/F27thWVU2v\n5qhIovMlZVGy3w+JVcJAhu/IrMzCczTrU9stUghmszD+sM2Cyq1G6uQvzppu00FnEWyiFNPxGK8U\nh6pqf9lQkcAPr/B6AFkWnrNHjx49ejyT6InpMw5fq0NSKpyXGC8QCJwrUSpwAp/nyJ/8KQDKz3s7\nidZtTVSYLY1QSuN9SZqm9dm+6RENwSaTmRBsKkKwSc3qc/swKKCVc9xXVVAUvScRgps4ZlGn23Eu\n3JTv74MSWRThf2+34ByJlJ3zflGf93cmEFA1UqH7tCZLdmdPQStCmjuc95vVog3GbB8jp01aviGn\n6zVUpeRqdNUhpz6KTuQ0zyHLuIjjzjqU+Nq/jPszX4koS8SXfAni/S92ZkuFsJ0wVFmWXF6enAJZ\nFoJYkYzQToc0+3mUf7ViqBTjM7VWDs78piuDlN01qjRNOxVS56tQ63WYaW2eLysz2qTUfk9sDJP6\nuTbGoGaq9fq6oztTMDPSNGEwGKAiRToeMkgcy5c+gHNjDgcYxxECwdEcg1VhNjup0GXJdBgTxQJt\nPPs8VD21v3zkp5P+uZ/YuYJpFDGdzdg7x263wzkbLBrDEcJfgrYcNw99fVSPHj16PKPoiemrBN65\noJt6F07uIvzDnCQg3vNPEWWB+X2fgX/utvWXNjVRZVkSx44oak6oo/Zx7cGGdaZ611yNA0GMJicf\n6VprHrRG1z7SRRRxnSTEdaqf/R7u7sIpF4Iq2FQJHQ7hbXlYd3r0vL+zlnutw3lfCuKLOJz3a7+l\nXmr0WrfTlnF82VlJMmbLcDhsyelut/uI5LQhbctjTU6brtH9HvKcy7Ou0bW1yP/+W3Gf/VbE3Uv4\nd34x8mg7RDFJIqbTaUsUvbedhzwPQ+U6J9d5IItNCCvLmJ+V4beEsfGbbk09aNBULG0fq5A6f7jD\nQbT+1kN1oJL+9LXYbB476at5PVeaGSRpZ650Pp8jpWR+s6DShsP6Q4DicEhwFiZRqBDblttASptE\nVlMfNQ2qabbTOF8r8NOzk74Plo0oCgEqazNGUjBKEqLhkPxskjVNwY0XuGqE2O/ZHvv6qB49evR4\nFtET02ceobvUeRBYBAIhwRuNcyVpmqB+sK6JevsLoDUDoFS+rYmytiKKLGmqAImUCbYIhNRsTQg2\nDUJBfjSPEDL4SLPaR3p0DgnMah/psPGRFkUgnVkWJLvBIGyGNtNMNzc1o6hH3u/voao++nk/kSQ3\nSSc0U91XmH1zAh4Sx6ezutYbhsNhR71sOj8fI6fDQE4rWwVyGsfdrtGq4iqOW1U3EwLxPX8f/8ZP\nRP7Cz+G/9N8lkpPObOlHC0N5GzFP6xWnYos+L9/f7+F4ZFE/59E5cueIFmfqYsdvmuNc8ViF1GIR\nnm+3A1zc+ls3xQY/mZxO+lnWOem7RCCHp9T8+Vwp6BA0u7rAC4+3Fbv1iwgxYreDVNFWY+2rffC0\nNm0AhwOjaUyiJOZo2RThFyk1VidP8bb5eo7Ogl4ZU6WYTibkwPF4pCgK5nMQgxQhr/FaoLdrjvr4\nu/Qz16NHjx49frfQE9NnHM6GehwRck91m6nHeo9SHikl8h+9B4DiHS+gquqxmijvi5bE4mL0UmNW\noTNTxIL4Kia+jJHRqSD/5apiX5fkj2of6aTxkWoNy2XrIyWOw1n88hKiCG11OLU25/L6z9EaHh7q\n6Ppv47xfq7cNcbKZpbqvcJWr16iuaMia1msGg0GHsD2JnOpKcTW8ahPsq+MKPxh03klZy2VdI7W3\nluPFRUjqz+bI7/8HuK//Tx+bLW3CUFpr1ut1Jwy1XkOqhi1ZXB1XuEidQkPbLcpaLmq/aWYMtu6J\nhbpmycmzydItUSQ7FVJR5Fr76noNk2Tahr625ZbzTqtY6/akv64V2sbf6wrauVJrg1UijmMuX3tD\ncTyyW30IpYaUpaQoKqZJUN/31T6EkprXtNsh8CzmCcLDYV1xrL+fmi5Vl7szq0Yo+3cuJxWGVClG\nkwm592y3W5Ty4fM5neOqCSLPyfJ1Xx/Vo0ePHs8YemL6jMMFJooTDrzD47HGoKQI/tL3fQD56+/F\nT2foz/qDpFUVaqLSuK2JimOLlBaJxK4UrnThrHoRkdwkyDR8m5S1j3RrDA5IpeQ6jrmIY2TjI22U\nz7IM9+OLi1YZtc6yPq65z++5z+9ZHVchtd0oqdPpacby7i6ohbzyeb+wNpz3FzHxVdyuFukHjd7o\nNsDVKHxarxgMBlxeXrbkdLvdPpGcXo+uUUJR2vLU/Tkahde4XJJASxS3xqA/7VPw7/57eKWQ7/oG\n/P/ydzuzpdYe2jBUswz1SH0ps3TWdquuj+vwfM1zrtcMpGwJ48oYxECeAkprg5SDtlNV69VjFVLn\nWadmFUogyHVOgeG8/LRz0veuQ4KlGHXmSi8uLnjdGz6Oyhiy5ZJI5ggxJMtAYRhGQ5x3bIttUMgH\ng/CadjuSacQ0ifClZ32ocHWfrZrWFoKNqU/66qy7dctUKYbDIZVSGGNae4ZKI2R6jS0j3HYTlNoe\nPXr06PHMoCemzzp8qIsK/tJaNnUgJCSJQP7D9wBQfs5bQcpTTVScIO2AqipJklDC7woXfIQDGYJN\no5ocOMdKa5a1jzQSgsso4iqOg4/U+5OPNM8DuZxM4PYWmqnQMuPucMfRHJFCtgXzd4e7Uxn7dBr+\nTpPWybLwmEXxxPP+ypjTeT8NHapqplq1TS81guiMnBZovSJJkpacHg6HVySnV6OgnBamCETx4uIU\nq18uGUrJtFEWtcZ9wQunpP6f/0r4yZ/pzJaCfmwZ6rEw1HDREuKszILC2GyMbjbMar+prf2mbb+p\n9u2p/aTUZp0KqcPh0Cn7tzpilgb/5rbY4saj0+vbbrsn/VR0ivDP50qVgsl0wuLmisMh5+HDv8lg\nMK6/hEemybQNQlW2CjaO+hcQ4SzTi4RUCkxm2dRdttEkak/6NmuCUJPWSxv5A6mUTGczDt5zOBww\nRoev4WQKZg7Hgv2+/uWnR48ePXo8E+iJ6TMO78I/5MKDQIDwYf/da5IkQf7IjwNhhlRUVaiJUr6t\niXKuBCoGgwR0hBAh9S2EwNXl7vdaU9Q+0nkUcZskDBof6fHY9ZEOh4Fc1uQj1zl3hzv21R6PZxSP\nuB3fcju+ZRSfzrx3h7sQ/FEqnJWvr0/y3lm91Ec770eTMIPaFMSfyOl1XXdUYMzj5HSz2TxGTk0V\ncTW6QgrJ0RzZlbuu7WC9ZhpFDKXEUddIfc1fwn3Fnzsl9X/rpc5KUxyrV1yG2u+hLCSXw0sEgn21\n52iKU/n+8QiHQ+s3LZzjYG3wmzan78Kdhb/2CGHaCqksywDTjjFtNjCMxq1Kuy22p5R+nhNXVdsI\n0JDgxtPrK9GZK53NZrzujc9jjeZD73s/04lAiIQ8d1hTMU3D52BbbMPnr/ExbLeosWI+iBHak+/1\nYyd9e7C4qnvSt/bARDiiKILhEOMc2+2W0QiSgUSOL7HlALHbsat2vys/ez169OjR42OPnpi+SiBF\n1E6SCiFQMQhjUD9WF+t/wQvEVRVmRmPV1kRJWeF9RRzFCJOAAJEI9nWw6VCThOacPm4IaeMHXa+D\nwhbHgUwuFqCCP/P+cM+m2GC9JVUpN6MbLgYXrWJ6MbjgenTdEqNNseH+cB9UtSQJ5/35/FQzdH8f\nCLD3H/m8r8QpuV+f9oVXRNFV28Wp9ZIkSbi6ukJKSZ7nLTk992KaKjqtNFU7clt0C/jrsFBypuLK\nb/tm3Od8LuL+Zfw7vxh19J3Z0tFoyGg0OgtDuU4YChczH4Q/2BQbjOQUwMoylNYsao/rzlrMY35T\n1SHDaZq0a03B3+rbVajNhvZrcjRHjl6fZkS3W2ZStgtUe287qfnzuVJrDzz/hucZzWfsdzvuPvxB\nJpNxXcmaM0kmbePBoTqE3wCkDFJxURDPImaRwu0sm7OJ2kdP+lLG7VypcBkjKRmPxxyFoKoq8jwP\nn8vxGOkusLkmz5Z9fVSPHj16PCPoiekzDleHOzweIQBnEXgi5eEnfhax22He/Mm4N35CWxPlByne\nhJqocMb3+MojxAAdee61JrMWBwyk5CaOg0IpxInN1An6jo80SVof6UP+gHaaSEZcDi9DT6iK26D+\n3V0QAGMVczW64nJ42RKXh/yB9XEdTrDjcVBgx+PwghvLwPH4Ec/7ThB8p0ldK3+jPe8AACAASURB\nVPWgwclWOfW+QutlCO7U3s88z1mv18xmXXLqTdoSxW2xpfSmk5oXec5l3ddaec8GQlL/TW9G/uLP\n47/0TxPJaWe29OLigiRJMMY8MQw1UGHeswlD+TTtfFApdAJKYlj7TV3wmyo1bpsBjFkzm83aCqnd\nbteuQhUFlIU6tQKUW+xw0NkzbU76e2txQ9E5sZ/PlSZJxPNvfD3ee977i7/KfD5AKUlZVuS5aZ9j\nV+1w+BMBzjLUQDIcRgy8wO4d2/OTfl2NZXfNXOm0JcRDgs0jnkww3pNlGUo5RmMB0wW+GiN3e7bF\n5nf3B7FHjx49enxM0BPTZx5BJfXO4wDvg8IkFe0MafG2t0NVhZoo6TBOEjHAmBKlDGka4yuB9YpN\n5DDeEwvBVRxzGcdEjY90t+v6SBtP6Cv4SGfpjNvxLYNogDHdoH4T+Hl4CPx2EA24Gd0wS2etetf6\nT4UIyun1dXc66eEBtH7F837pHfFV3C4K6QeNN6Imp1FNTh+I46iz0vQkcqrciGkybSdETSQ7Kqas\nKq7OJkT3s1lI6s8vkP/X9+K//q8+Nlt6eXmJUoqyLNlut4+FoebpvK1bWhfrQOQawljbCJrC/3Xj\nN60DYA1pbJ7P2kOnkcCYsrMKlchhG1LaFBvO90wfO+mfndjRUatgWrvlLZ/2yURJTLZac/fiy8xm\nwa6x2RxIVNouXWVlFoJdzQvebolmEdMogoPlaCz5K5z0hRBtAwFuz0hCmqboOMY517YtyPEQJS8w\nR9DZpq+P6tGjR49nAD0xfcbR1EU1fab4ENOXSiF/pJ4hfcc7kFVFLARlJCjLUBMF5akmSscUziFS\nyagmemlTkN/4SHe78PiNj7RO0Z/7SIHWRzpJJp3Bp7IMXOfiotsh3zgCnBNMkknrP/X4rv/0EbsA\nVRUeuK6XevS8vzaGo3NEl1Eb3NFLjdeCOL5qVbegnEbtWf+VyOlQTVvytsyXuEHaMaVG1nZO7OWn\nvOWU1P/r34j/n/5OZ7bU+6Ljc83zvBOG2u1O5fuFKYLHtXnt4R1YRBFKCErn2FtLdHlG4grfUTSV\nolMhlabuPPTPfDBvg1cHW3BuRp0K0Q4LHHCnE/vWIOW0JcBSad7w5jcC8Ou//GuMx8Oaex7Zbj3z\ndN42AWirO55W6SqikWImw0k/q1fEZCxRE9XOozZTtMEe4Rn4HRJIJhM0kOc5xlRhEWp2AdUE9gey\n46avj+rRo0ePpxw9MX0VwHuPkw48uDoApe6XqJ//OXw6oHrrZ7dnfJfGOBNjtCGOLVHkEFYg/QCt\nQCjBqPGRnrNGa4O69VF8pNej69az2Iw6nQ8+PffcqQXpjNt2MlSC4D+9Gd2QqORx/+kjxLitlzoc\n2vP+7EzhO1gbeliHZ+S0apTTuCanD0SR6pDT1WrFbHYqCVguYZ4u2o9pmS9DOX3D7lYrUu+Z1TVS\nG2Mwn/92/Lu+CQDxF/4s/JOf7syWKuU7+/bW6k4YqipV63HdV3tKp0+do7sdsixZ1Kf2nbXoR/ym\nwiedJarxeNypkJrPz1ah9rK1LGRlhhkk7QCCOCve31uLH8n2xO723bnSN3/qJ6GimOVL92w3e+bz\nBCEch8MRZxWTJCxNbYpNCEKdeVqjiSSNFGkB1vhTSn/6+Ek/LF4p8BVDUaGUwg+H4bE3G0YjiMcJ\nKl1gjhEu2/b1UT169OjxlKMnps84gsc0nPPDahN4YRj+458CoPo3/xAiTRkY8wo1USG97kiwqQjK\nUyMRNnf286R87SNdHVcf1Ue63T4++OScZb1es16vsdYwnZ7IatM69fLLgWvGKuZ6dM1iECqUOv5T\n705WgqYX80yanURRS6QyG9S3eBG3O/N6pXGlr5XTUEEUyKlsyWlRFKxWKy4u/HlLFIvByQ+7Luoa\nqebEvloxlrKzb++/+i/ivvLPI6oK8SVfgvytl+twkq+7VRMmkwne+yeGoRQp0/RkI7CR6qiZifdM\n618m1lrDUJ5I+ErXBK7xt25YLBbt68vzQ4cIKz9o1epHT/pJWb7iSV+4pJ0rTQaa177+dXhreO8v\n/SpSpjW5z9luYZJM2q9nrvNgrq0/f2K3RY0UU6UQO0tZNw/AIyd9HaZ3lQqfh9TtkXiS0QgjJcYY\n9vs98zn46QxhZrj9kX2+6eujevTo0eMpRk9Mn3XUl0nhBcI5EA4pFMN//BMAFG9/AZ5QE+V9ifcF\ng0GCLyMq7xEDQdqoj8dj10c6HHZ8pIUpPqqP9HzwSakQTLm7u+N4PHI8Hrm/v2e73QLuvIe/7em/\nuwsX62E85HZ8+5j/dFfu8FKGJ7i6OtU4LZewXjMSolUT9zakvaN5dDoLrw3u6GvlNKnJ6ZIoklxf\nX6OUasnpYuHbh99uZLsOVZgiVCA9UiM1jyIGtf9zpTXiW/8W7q0vIJb3+C96Jyr3LZHTesV0Om2V\nzNVqxXDoW7K+WsEomrT+zNVxhR+NTlLuasVEKQZ1bdVaa6KLk9/UbE3dpxrK/r0vOhVSUppO8GqW\nzNtZ1p3JO4pm56QvXOfEfj5X+vybXkeSDrj/0B1ZVjCdSoSoKEvN8Sg6yqzzjvM0llIlUgkmWuBK\n1z3pj0/PB2F+VsoBQniGPkjzchIU2d1uh1KW0SxCjea4YgBZFvytPXr06NHjqURPTJ9xOGfBgyes\nPgnnEd4y/ImamH7eO4i17tREKRRSasAQyQjhUkrhEd4wOBwCQ3nk1p7rnJcPL7en0HE8/og+0vn8\nRDTzPOfu7o59s+Q0HjOpycPhcODu7o7dbkcU+c5CaUN0l0uw9nH/6a7anfynaXrqT206P5dLBtDO\nh+bOBdI2i0IRf01wXO5q5TRplVMp4erqqg0nZdmm0xK136m2b/SgD+z1oVsjtd2yiKK2amkNiO/+\ne/g3vwX5y7+A/xNfSiRmrZXAmDWLxYIoiqiqiu122/b5N2GoxWDRKrXbsu4cbdlySM83zQC7s35T\ne7C4ks5kaZJEnQqp6dS3tbG7nWhXofbVHp3GrSotHknp+7E8Ba72vp0rvXouZb64QJclL33oRaqq\nUczzOmw1IFUpzrvgnVWnCVax36GGglQpBnvfDhgAqKk6Ee5dfeavCfFAlEhXIeMYn6b4eq50NgMx\nmyLdDLOrOB42wRLSo0ePHj2eOvTE9BlHHXlCoergk+fqAx9ErZbYj3s99tM/pZ0h9WmCNylVVZGm\nZzVRJJgYRFkyaFTSOp1UmrL1kTrvWh/pfDB/RR9p0+6ktebh4YHNZoO1liRJuL6+Zj6fM5vNuL29\nZTgc4pxjt9txd3dHnucMBuExmgrTsjxlnPBP9p8+5A+BbEwmgRE3a0kPD6TOcVWX0h+dY6k1aqw6\nXky7t8TxFVKmdcXSsiWnjed0v99ydXVaTqqKmMVwAQTlr/D6VCN1OHRqpArnyKZT+P7vx18skD/4\nA/iv/XriuJktLXBu36muapaanhSGynXOQeen58tz5PHI5RlprKQnmtWvcWOQDNrAkDFrptMpcRyj\ntSbLss4qlNMJ42Tc2gf8WZ9sUhSPn/QBu7cIP2znSm9eO2M4GPLSB15kvzfEsSNJjljrybIQtmqI\nfWnKoADXKrDSGUIJJl4iCkflPXtjQiK/Oenvm5O+agnxSOxDOGo8RghBURRUVcF0LpGzC1wR6qN6\n1bRHjx49nk70xPSZRyCjErCEk/7zv/RLAJSf+3Yw5lQT5RURA7QukFLXNVES7SUMJElZIoSol3QM\nq+OK5XH5RB9pWb6yjxQcm82G+/t7qiqEUhaLBdfX18RxjLUHrD0gpWz/PEmSNpBzf39PWZaMx8F/\nWourbcZpv4dIdv2nla1O/lNB8MM2vs+HBxJrua5JYlmTUzGSJ1VxZ7E7SxRdtv2fQTn1neR8We5Z\nBC7KdguYQdvPuT6uqRTdMvyybMniwVryN78J/53fhY8i5Df/Dfy3/881OW2WmnTnzG5M2fGAmiri\nYlC/vcyohDs933ZLbG0nfMXozG+61p3JUud2XFxctK/NmOL8as8knrV1VZnec94vNYXTSV+6zom9\nWWd63RsvSQYx1S6nOGoOh4rp1AFH8hycidpFqOYXnyaNJaoKJQuEEExyga9VYOMcMnnSSX+MEAmp\n8Ch/wAvRnvTDIpRHzcYk8Zwyc+jdNijtPXr06NHjqUJPTJ9xeF+n8sP/wwt4/ld+EYD8hRdCTRRQ\n1qpbqlKEOK+JSii9R0jDwHu8lGQ25/5w/4o+0tUqnNeNCZfk8/P7fr9vlU8hBNPptFVGrS2oqjuM\n2WLMFq3vsDZvldTmlK21ZrlcslqtsDZMaNY213p//WSDbfyn53vsd4c7dtU+fFBNMOrhgUhrruOY\nqD53L7VGDM7I6d5iM0scX575P5dEkWBRs9Esy/D+2HK09RoSMWYcj9syfJsmgaHXps3YWhY1WcyM\nQb/tj+D/1rcCIL76L8CP/sTZmX1Dkiim02l7ZlfKdmZEIwZMkklQM4/rUFt1ZhIdS3maST33m1a+\nJd9NZZWUtp1I3W63DIeuswq1GC5OqmYs2y9Cc9KH+qQ/Ee1zuByUmhAnMfOrAYNhUE2LwmNtyWh0\nqJ8vBKE6k6hNnxigzAEhHIkXDAvRKrTwyEl/35z0AyEeU+KcxicJURxjrWW329VBqDlCT/DZnl2R\n9fVRPXr06PGUoSemzzh8nTB2BLU0Lkqee99v4JWiesfnkpQlla3amihdaeLYoZQFA5KUKvKIqiLG\nc293H9VHWhQnH+ntbRAmi6Lg7u6OLMtwzjEcDrm9va0JlkXrJcas8N4gRNyee43ZUFX3OFe2f2c2\nm7Wp8SYgJYQ7LwZ4pGNfME2nj/lPV8Uav1hwniJSRdEuRWnvedAaUkl8Gbd+TL3WNTkd0pDTJFHM\naza62WyI46rlgsslTOJ5G05aHpe48ajzvANoK6zWWuP+g38f9xe/GqE14k/8ceRvfLgtqjdmxWQy\nam0Oq9WK0cift1IxTWYtoVsdVzzazn8RRa2imZ37TfcWXwmiKJBRYzaMRgMGg0GrWC8WJ6tsVXRV\nTT+btd6C5Hg8nfStba0RdmdRIsyVvuYNV0DJYZ0hxIDd7sBwWKGURuugAp9PorZ+4fqTG7lwch8f\nQXkeP+nXz+eMQ8oIpSYkEmK/xxGCUI0iLKVmuBiQDOZUe4XbZX19VI8ePXo8ZeiJ6TOOtl5fOBzw\niR94H9I5in/198NsxsDaUBOVpEg7QOuKJHGkqcKXYInxA0lUVRhTYtKIWMbcjG9e0Ud6vhJqjGnV\nTWMMcRy36qeUolZGA/EESRRdkCQ3JMk1UbTolNxrvcQ5zWQy4fb29okBqTj2j3XsN1WreMXF4ILr\n0XWbmF8el7j5rFOEL/Oc6zhu9+0ftMbFYcIUCe7o6pqliw45HQ7TTq3TeGxaQXa5hHmyaE/fq+Pq\nsRqpiVKMaiVzaQx807twL3wBYr2Ed74Ttfetx1XrNfP5vPWArtfrx5ahFsOTjWFbbDlnlOJwaBsJ\nDtZSPuY3HZ2pwmEitWkhOB4P5+4ABnLS+nm3enc66e92zDid9HPlwizq2Un/6vaSdCiRwPp+hbUx\nh8OBySRvHgL8aRI1K7NQ5zSbQRQhhUVWB/AwPYrwdz7CST+KwlzpRFqsPaClJK2XyZoglJ/NiewU\nsz6wL7K+PqpHjx49niL0xPQZh7e07NQD1+sHAI6f8Rmnmijp2poo5wq8LxkMUnwVUTqHiDwDYyhc\nBWnKJJkQyagNHTU+0jQNPtL5HIQI/9A3flApJRcXF9zc3NR+0QNVdYe1gc0qNSFJnkOpEfZosUeL\nUkOS5PasZqhE63u0XiOE/4gBqaZj/zyE3xT0xzLhenTdVh495A/Y8ehEqLZbxH7PVRy3k54PWmOi\nQE6FErjCYVamJqeBwBmzYjqdtB/PcrlkNrNtmn29FlyNrlqyuD6ug52gCWKt11zUhNh6z8o5+M53\n4z7l0xC/9iv4f/tPEtHswFdYu23DUEVRsN/vWkJeFKEQ/7wZ4OiqTvl+rDXz+ty+NQY/FKcFrLVu\nJ0u9r3Du0CrCYW9et4LvZhMaAZrQVRHRjgqIzaY96e+shakMn7/S4QuFUmNe84bnsDYn3+yQckie\nHxBix2Dg8T58fw3jIaN4hPMudMMK0b4WpQrQGlV4Rv606gWgZgqhgoXg/KQfCUHqc6wzMByilKKq\nKsoyZ3oZo0YzzDHUR22Kze/yT2mPHj169PjtoiemrxYIwHtkXUbuhyOisgTvMEmErkJNlFIG0KEy\nyg+opEc4TSoEVSQQCCIGrY9U6+AdPa8KzfOcl19+mUMtoY7HY5577jlGoxHOlVTVPcaEflIpB8Tx\nDVE0w2tP9VBh1gazNlR3FbawKDWuSesUEDh3rL2oGVKKVwxIVVXZaQGAU0F/cVRcj65bBfMhf8AM\n0w5xE9stV3Hc+jGXWqMVRFdRS670UqPkRafn9OLiou0cXa9XXF76Vr3dbiRXo6v2NJ1VO9qd0bpG\n6vLM57odjxHf9334y2vkj/4Q/qv+Su0BbTpHj+3G/W63Q+vi/CVgddx2gm6KDSZWHXV4BK1KuzYG\nNT8RObtzRNGCJniVJLKtkNpsNsxmobu1qiA/KGbprH0eN5u2kvX5SX9rLWpez5VmBsmU177hdSjp\n2K1XCB8BMVm2YTo9tpaBPId5etafWu4CoZ9MkAqU3oHzjA6+VWh3r3jST1BqzFQJrM0ovGdUT7Fm\nWcZw6FCLGamcUa0rymLfB6F69OjR4ynBU0VMhRAjIcQ/F0I4IcQ3P+HtnyyE+AdCiJUQYi+E+DEh\nxFtf4bGkEOJrhBC/IoQ4CiHeL4R4lxBi9Arv/1Q89u8U3taxJ+/wApQP/58kZlDPkPo0AZtSliVp\n6kmSWtEiwaQCWZY4W+IGCWWe8PAgHvORDgZQVRX39/dsNhucc6Rpys3NTa20haJ4rZd4rxEiIoou\nieNLBAq90egHHeqpVB2UMR6zMlQPFV6HDswkua0rjcDafU1Q9x2LwKMBKedMpze18cNuN5Lr0XXr\nxXzIH6gS1alYYrViEUUtsVppTSk88XXchnnMyhCpxVnn6IrFYtGe2TebVVthejzC8RB1ZkRzV3Zq\npOThwGUUtfVV+094A/67vhufJMhv/xb4lr9dF+IHYhVFvg0obTYbpDSdMFQiRq23dnVc4cfjU+ir\nLvtvPLWZs0SXJ78pOupMlk6nk/Z17XZZO2W/30PMqPXRbpoeVYAsY+Z9S7aPkW+bAGxmGQyvuXrt\nNdbmbO6XRNGEqqrI8/tzERtru/2pla0CyY5j1MDBYY8vPTMn20os7RwylR0LAYBSM5SMGEuLtUeq\nOGYwGNTKe8ZsoRDjKbKawjo7Ff336NGjR4/fUzxVxBT4z4Hr+n934rJCiE8EfhL414FvBL4OmAA/\nKIR42xMe628Cfx34BeAvAX8f+Crg+4QQ4il+7N8RXJ3KV16Bg6ghqlFE6j2lsGgXaqKMKZGyJE0j\nqBSVF4hEkGpNaSsKn2KKAdD1kQZlcM3DwwNaa6Io4vLysi2gNyajqu5wriD4SOc1wUwx+6CMutyB\nCGnq+DYmuU1CWrxW7/SDRq803gri+II4vmlP6NZmdYL/+BEDUlK6tiGgIYmrlWAxuGQYDUMwKV9S\nKkKKqpHrVivmSjE56+Y84gI5jevk98rWnliFc2V7Zm8K+He7dVfJrNJWydwWW0rhaHumsoyoqljU\nxf87ayk/57Pw3/Lt4Xvma78KfvjHOwGl4TCtFWlXL0O5ThhqlsxJVIJx5jSTWsudIstY1EQ4d45C\netQ0qJp6rVFi0npbrd22Cu3hcMC5gsnktAo1T0NQqTAFubRtwEtst61toDnpI8EVDqqY59/0RsDz\n0vvfx3x+CyiybE0cl61lYL2GRCVt48Cm2ITU/GKBUBIlCihK5N51elQBovnpe8keLEIIlJozkQJn\n9xRWM5hOEUKQ5zlSVqTXU+JkgskUfr/vT/o9evTo8RTgqSGmQojfD3w18Nde4V2+AZgBn+e9/0bv\n/bcBnw18GPjWRx7r04G/DHy39/7f8d7/j977vwJ8LfBW4E89jY/9LwaP9x7hwQuQNvxDLZQKNVGR\noKogkQlClHivSaIEYVMqPFKcek5LLUnVgOn05CNtfJ3H4xEpZev7DCnuvCaMIdks5YgkuUWpMbaw\n6HuNzSw4kEMZyOg0QntP6RxqFEiqmqmWxOh7jd5ohFfE8eXZlr3FmHWb4G8CUuP6hn8ekErTEJBq\niumXS8E8XXRUxSOGzjs9PDCTsk3Ob4zh4GzwnDbLRmtPFF1xOrPvOwX8ZZl1FEDlRkyT08a9js82\n7tdrUmtbMrcxBvMVX477mq9DWIv4k38c+WsfrNXj4G+dz2ckSYIxpg1DNf7WzUa0PtDCFOz0gfPG\n/KgsO35TRvIxv2lT9C9E2VFox2N3WoXKZKdH1U4n7Uk/zfPTSd/ZzoDB4up5JvMpRh+5//CHGAzm\neO/YbF5iPj8NWGUZTNNpS7K35Ta8cTZDjQQi3+ELy6jipALXJ/1zC4G3HqUGKDViqsCYHQfvmdYn\n/c1mw/xCwHxO5Gboh5yiPHDUx3/5H8kePXr06PEvjKeCmAohFPAdwP8NfM8T3j4Gvhh4j/f+55s/\n994fgP8BeIsQ4g+c/ZUvrf/7mx55qO8AcuBPP6WP/TuGr4VlJwAPqvaYKiXRToeaKJ08VhMFCbpe\ne8JWuDTBmRglFYMBHI/Hluh57xmNRm1S3rmq9pFu8N4iREIcXxPHF3gLeqkxK4M3HhEL4uuYeBFj\nRdiNf9CapdY8VBXae6JJRHKbhN11wOWO6q7CZAZBQpLcPDHBD5b5fM7Nzc1jAamqyrm+PhGehweY\nRBcdonhwJY++00SIdnIzs5ZdQ05rz6nd+rNC/ANw8oDu93u8P5xbPBmqaRvqWR1X2NHw1Dm6WjGC\nVqldaY3/b78B94XvRGw38EVfRLRzZ/7WVUelzbJtx76aH1RrIdhVu6DSNkx5s2Ho/cmy8KjfdO9r\ncgrGZAyHSXv6Xq9PanCeA2ZwCiqVm9NJf7dj5n07i3qMfUt+beZ4/k2fBMCHfvPXWSxeW6uXK6qq\nOyJQlt2w1VEfYTxGDAaooYdsh9u79ut0sJbKOdRAPXbSj6I5YxUhKUMv73BIFEUYYzge98xuUsRw\njD+O8dtdf9Lv0aNHj99jPBXEFPga4JMJZ3HxhLf/PiABfuoJb/vp+r8/8+zP/gBhCOlnzt/Re18C\nP1e//Wl87N85nK2nSME5h3LhH1WlFJXT+DhBurSuibKkaYQvwfgIUkFSVWhbUcqUmAHea7bbJev1\nujMjGhaCPFqv0fqh9pEqomhBklwjiDBbg77XuNKB/P/Ze9NY2db8vOv3DmuoedjD6dvXdtvd7niK\nGhTAQKLIDUEiDB6TQCzHQIwtxZYSIiAEgj+0hQwiwYSYIGyEgUR2sJ146iRKBBI05EMiHMCKg6fu\ndtSDu/vsvatWrbVqWMM78GGteqvq3HN7cre7b7se6dx97j511qpatffZz/r/nwH0XBPfxYhIUBjD\nY9tSOYeEQF6e2pZ122Lo4ozi+7gjF3QayOahwWwNUqav4+DfoNTLDVJluQm5p8Z05DSVkxBNlNc5\nhdnx4oOGzoWopa215M6gb3SIkrKFOCOnJVqbi7amKKrCmn21gmk8v8gc9dNppwHtY6SmSpEeDVjW\nwv/8o7iveQfi19+H/+Y/RMQkuOetLV5ootpfSAi8SULuaFZl2DS5yFOdSknUx2Tlzl40XwkTn2Wp\ndnFVRxJcVdsLXeskmoX0ga1oA9l+mUv/eN1eedOXEsUp201BmT8wmSwBT5Z9BK09/TCTzQYEJ7NV\nXuddpNN8jhpphK3w5QGxdxfyC++7r6FwE7G3CCHRespESqwrKIwJ6QPddN2S3M9IohHtymEPu2td\n6RVXXHHF5xCfc2IqhPgy4PuA7/Pef/B1Hvbm/uNvvOTPjp979YXHP3nv29d5/K0QQn8eHvtThu8a\nSVFKAQJ1zGSMIirlqRtxERMVx1HX9uQcQtmgQ62tRqHZ7VbUdY1Sivl8HmpEjSl7HemhO4+aEEX3\nKDXA7joCaXf9tHasiJ/FqKFiby3Pm4ZtP8kdKcV9HHMfRUyVQgKVczy2LVnbYoUnmkdEd9HZtM3S\nPrTY/bmDf0zn4N8HB38U6bMM1a5vfrPpXPPneaPajy7MSZum6CIHjmRxtSK1lmUUBV1m4bvJKaKb\n6LqdupgwxrFgOp2GtqbhsAkRpqsVLNIlkYxoXdtlnC4Wpxip3oB1JIzZYID46+/G3z1D/p//G/67\n/wRaLcLrlbIJRDjPc6C5II2pHAdNbSDC/S5e9KkAR+PVQZ30pmZjkGLSSydMqCyFjsTFcRuuY56L\nsNIv6xIzHobJc7LbMZRdrFPuLXrSfTv4reeVL3krAB947/sYjxdoHdE0W/I8ZzzmonVqGA3D69hU\nm240PJuhxxLKApu3jKUK1620FiFfttIfMooGaBx1W9AqxfAs23S2kIjphMjNaB+27Jsdtal/M9+W\nV1xxxRVXfJr4nBNT4IeA9wH/5cd5zNHt/rKfFtULjzn+/vV+srz4+M+nY3/q8N0yv6tWFKje/EQU\nYSJF20ikl0SRRYgWjUaQ0EQC0TZob/s4KYVtLHHsSNOU+/t7hsMh1h56HWkJeKQ8Zo9O8I2neWww\nuel0pKkkuovQ005H+tg0bIzBAYmU3EURMymRRYEoCsZCcB/HjJVC0BGlx7Zl07Z4JYiWUWdAigXe\nesymN1LVDq2nr+vgT9M0GLOqqmK1emI+vzQLYQYsB8uwLr5oieoZbNI0F+R0K9ypIaq0UMUoNeU4\nYRwO4xC3tF6vmU5NUAlsNoLlYIkSitrWnav9uIev60AYlRDUzlF88av4n/5pfJIg/4f/Dv78f9tH\nO3VEOElkCPvPsow0tRevb5bM0VLTuvZ0rt4Rpvb7MNUsjMEPJTKReOuxSfd1jAAAIABJREFUGxsi\npJzbo7W7OM9s5oNnzNRJqGLNqn6l3+/jZ2cr/SolvIdvvnsLSg1YP6xp6i3z+Q1CWLbbFfv9/qJ1\nareDWToL12zbbGEwQM5HyAjIcuzWhpX+9nyl36cCmPzo0p8xVQrnDxSmYjyZBPNc0xyYvGmESgew\nH+Lz7cl4dcUVV1xxxW8p9Cd+yGcPQog/AvwLwO/13n+8+pVjyGDykj9LX3jM8fe3L3ns8fH+7PGf\nT8cOeNe73hV+/853vpN3vvOdLz2hdd0PTw/gQLnuB3GrBT5NoOhiouLYEUUCX3usj/CxIGoarG1o\n4wTdpjRN58DuyJWhbXO8bwAQIkbrKVLGeOtp87ZzXANCC/RMI5MurD5rWw69pEAL0a2qleqYRll2\n7Algv0eORkzHY8ZKUVrL3lr2znFoGkZKMY4U8W2Mrboe+2PElI0teqqJ4jnOjbG2wLmq/7hDqSm3\nt7esVivatuXp6anXZ2rKstN/TqcJN4MbVodVaIm6md0gpOzEjllGPJuxSFPWbcvWWqSCwVx3Way5\nQS8GqMhh7Za2XTOZ3GCtpaoqsmzNYnHLei2pKlClYjlesjqs2Ld7lFBMlstupLrfo7RmORzy1Lbs\nrEX/s/80gx/67xF/9NsRf/rfha94O+pf+r1YW9K2GePxLW3bUtc1WZaxXN7QtuJEhOdLnvZPHMyB\nWMWM5vOOtRYFaRQxVoqttWTGcDvX+CePqx1ip9DDGcZsMCZnMrmjrmvatmW7LZjPZ8fDcHs7pbY1\nrWspfMV0NILtFpHnzG9uWLUthTHcTjV+ZUhIWCxeYbX6IL/xgQ/zli//MqbTCXm+ZbPZcH8fM5/r\ncPw47sxWq8OKsi5JVEI0m6H2Ne6hwT6WxKN5+PrZGMNdFKFnmqZucFW30ldDzTCasbMZtcnZqYTp\ndMpmsyHPc+7uYuK7GXyk5fC0QowqCl2EZIUrrrjiiitOeM973sN73vOez8qxP2cTUyFEQjcl/ZvA\ncyHElwshvhx4S/+QuRDibUKIGZ2DHV6+9j5+7nxd/hG6lXr0Oo9/8t6bs8d+vhw74F3velf49Xqk\nFI6ZWh5c91GZjvS1kQ4xUdZ2MVFpGuNrReNBRC60PdU+RhOhVIsQIOWh15E2vY503ulIRYQp+qll\n1etIZ50uVMSdjvShaTj0OtJpv7ZPjelqmY4VUmnaTSahI4APD8jtlln/+KHsviy31vLQNJTGIBP5\nuhFTWPlSB79zZdCdGmN4enoiSZo+caAjPoddFCpMjy1RbjLu3PN97VFyVu9ZWEsVc3KcbwzSji/c\n8/P5yT2/2axYLPzRHE99iC4MSnva06SxKIjqmsXZNLP59m/F/Qf/McI5xLd9K/KXPhBqUrtzzdFa\n0zRNMEMdJ46Hnb5w0DeR5Dz7aSplqGXdnOtNtxZh07M61uwiQgqqs1YoEV7PrtnRDJPTSn+7Pa30\nsUEycLd4E1IO+NgHPob3hjQdMxjEWFuSZRlJ4oM/rIuQSkKEVFZleCGQtwtkKqDYYtY1E63Dayn6\nlX54jwqDdx6tx0x1F4tVtAXJYBAMXpvNhtlthBiPiO2U5qFk1+66LNUrrrjiiisu8M53vvOCp3wm\n8blc5Q/oJo//KvBe4Nf6X/97/+d/pP/8vw38A7p1+O9+yXH+mf7j3z/73P8FKLrs0AAhRAr84y88\n9hc/j479KcE5h6fjNJ1lzIeJqU3js5ioBu8bIhUhfEIjuranCGi0oKklvvXEsUGIAue6Ia5S415H\n2tWItg9tF8ruQQ47oqhGnY70oZ8oerqmofs4ZgyECiljOp3jMWh0Pu8S8Y+ixbKE589Rux1zrbmL\nomAIKo86VWOQA/lxIqZODv7OILXH2ozlchkIyGq1QqnqwgVe5jq0RLWu7VqihumJMJYl6X5/EbfU\npF0mKx7adYvy05AF2gXwz0MRwHZ7crUXBbj2hYxTLTgXiabWXsRW2e9/F+4bvgVRFohv+AbUuj3T\ngZ5qS/f7PVW1C1n+ZQmY9ETqDllHuo9Czixj0UsVKufYS9clI3gwmUHJWahHhf1FhNR4bINModpH\np+zROscfr9tux8y5sNKvBwIRCe7v7onFkKbyPD1/xHvHZDJDqZamOVAUBWeyWIoCpsk0tHgVdQFJ\ngn7TBITHfWyNay5d+rVzqIEKOuWjS38QLxhKibF78rZiPp+fGbx2TN48QUUJvozx5f660r/iiiuu\n+C3G55KYboE/BPzBF359T//nf6v//3f38Up/HXinEOIdxwMIIcbAdwK/5r3/+bNj/wTdMPFPvnDO\n76IjxD92/IT3fvt5dOxPAx6PwOPxQqD7NblL44uYqCjy+MbjSULbE67BxgnSJzRNjdYVaRohRNzr\nSKd4c6oR9dYjYkF0FxHNI1o8T72O1HpPLAR3UcRca2RZwuMjFxVSd3fYSLOpNl19pqQjqeeVTUUB\nDw/oqmIZRdz1ffaOblr50MsELiKmxGXElBRpPz3twvCNWbFYzIL+s0sc2F20NW0yxXJwE/IzV/sV\nbRJdVJgOD4fL3NGhQI1O5FRyqi49EuKjzrWqNufJTa/NOE3jixipsRChSnTtHP7H/hLuH/tdiA/8\nI/jmP0jkx/3rq4D9RSqA9/WFGWqophepACwWQduqypJF1A3/S2txo5frTa3dMhjoQPDzfHPRCpWI\nyYk4ukOYzIo8Z666SWlhDGLWvV+3iztwCR/94CNCeLroryneb9ntdlTV4TyGlaqCxaCfzLY7KlMh\n5jPUNILWYD6So6Vk0p8ruPTnOtzA2INFyoh5PEHgKZsNDoJLvygK4sQS380YqDH18wpjmk7besUV\nV1xxxW8JPmfE1HtvvPc/5b3/6fNfwN/uH/L+/nPv6///PwJy4H8RQvxpIcT3AH8HeIUu8P782P+Q\nLrz+W4QQPyWE+E4hxA/QtTW9x3v/V154Op8Xx/5UYc2ZLNd3LVCyd+V71cVENU1NFLUkSYRvBK2X\nXduTMVS2phYpmm6qCjVpmnaOdy+7GtHHU42oXmji2xivBVmfR9r0JpeF1tzGMVFVdWX12/6HeV8h\n5YdDyrrkYffAvt2zb/c87h7ZVBuskt0k9eami2062rIfHojqmpso4iaKiIXAes+mlwxU3r1uxJTb\nCaLoNtSItu0Tk8kwOOfzPKeqiouM/fVKskhuSHWK9ZbVYdVNM89W7aOqYtJPMzNjcBN5qt9cW7Q8\n5a16fznNtLa8yDhN5QsZp5Mx5/EBc6VIZK/bjWN498/i3/Rm5N/9O/jv/B60mnMkjVHkmEwmr2uG\nmqeLIFfIm5LzkXHSNBevSc5ViFxy+y6BAboGqtlsGiaMTbMNyoDNpjvHkTjWgziMPM9d+oXoprJv\nfvWLELWgXBnqqgEEUjrG4wTnavI8Rwh7QeaF16cIqSrH4VGvLrsChGyLLSrG/Urfek9uTLfSn56C\n/r3zxHrKWEU435I1JWmaBpf+ZrNh9ixFDAfEdkLzULJttrT2ZSEcV1xxxRVXfKbx+eDK/6TgvX8/\n8HuAvwf8h8CfA0rg93vv/9eX/JU/Cfz7wNcAfxH414AfpJMOfD4f+9OD9xcB+42IiGSC9zXeN8RR\nhDAJtfcI0XYxUdJTNxIMxLEljjtNgNurl9aIylRSnulIBTBRivsoYmBtNyHdbDo2lCTdJHQ242Br\nHnYPlE2JxzOMhoyirrFp3+552D2QVzk20l2m6HJ52uNmGTw+kjQNt3HMUmv0MVbJGB6bhuZlEVOl\nxawdWt+EFXvbrhgOo4tA/O12c5Gxv1oJZvHygjBWkeC80mnStqeg+raFmQpTRrO2aLUM01rYhvOV\nZYlS+wvCOIleyDidz0+vvY+ROnbQ56+8Cf8zP4NPB8gf/Z/gz/5gn+sKxuSMRkkoGuhSAXw4VL6R\nLAfLQBwPwl7IByZCBBK8cbabNNJdR+mG4Ro6l19ESKVpGyJgd+WJOG6qDW42Pbn0+5V+7RzVAAbT\nAZPpHHfwfPSDBUJIvHekaUySmPAahsMTV99sYBSPwvXaVBtEkqCedXpg+6E1eB9W+nvnqKxFDc9W\n+nnXEjVPFkhg2xZUtmU2mwWt7n5fMvmiGVonuI3EHqprXekVV1xxxW8RxFU/9fkHIYT/ZN6Xtm74\nsb/wQ3z4g7+BH0/YbRv+xE/8MG9+euDXfvJnSb72X6Ztn0jTDcvJGIoJa61R+sBsX7CJPetqjjxo\nRqMVk7EnacZo38USyYEMgeUHaymsxfbPayAlU627QP+i6PbhEOojSVMa23Smm95AEquYWTIjUt3q\n2DpL2ZQc2kMvSBCM4hHjeIwU/Y69LDvWA900dTqFOGZvLeXZ84mFYKo1sZS4xp2kB1oQ3UQYl/fa\nWYHWM4xRZFmGc44kSZjPl2RZV9+qVMeND65g22wRdJmdg8Z1Bi4hYLFgoxT73uh1ozV+bfFt13al\nb0TfTuVQakTTRGw2G4ToygD2+5Sq6i7XzY1nXT3RupZEJdyki47k266L3kynPLUtjq4lavQTP4X6\nI38YLwT+p34W9/XvxNptb1S7YbXKaNuWNE2ZzZY8PnbEbjIBlXa6SYHodLXFtrvOUYS7ueGxl2VM\nlGJw6IP3lUDfKox9wnuLUlP2e8d2u0VrzWJxx9OTwPvuuu3citrWDPSAhY26rw+tqW5uWBvTXS80\nj7/ynH/4C7/A4HbIP/nPfQ1StbRtjtZTNpsG5xJGoxGTySxcjskERmPHw+4B5x2zZMYoHtH88kfx\nhxb9pjHqzUt21pIbg+rlJcJB89iAA73UqFSxqVZk7Y5IxLw6ekbbtqxWKwBub28pP9ZQP2zY6w2D\nL5szTWeM4/Fn4lv8iiuuuOILCkIIvPcvK0j6lPGGmZhe8XJ41+WYCi/AmzAx9WpIXddEkSWOJb72\ntD6CRBLVNa1tqERCLLqpKlTERAibdGSurxE1otORZmc60tsoYqE1qnfUczh0Ys3ptNORxhHZIeNp\n/0RjG5ToqjJvh7e0dcTz5/Cxj8Fhr5glc+5Gdwz0AI9n22x5vn3eVUOmCdzfd9PKvo+dp6euytM5\nnsUxM61f0yJlNV3+aSTwpnPvK6b9StpjzAalmpB1Wtc16/UTi4U7z9gnYco0mXamnmrDIZYnt36W\nMXcuGLTW1iKXulsrtx6bcVFdGsfuIoB/NGrCpDHLBIv0LOP0GPgvJez36N2OZRSFrM76D/9B7Pe+\nC+E94tu/DfmL/wgp05BGcCwYqKqK/b68aIaSdniWPZp1U81+XCyL4qLxyo5kyB+1uQuFAtaWjMeD\nvnjBsNvlFyv3aTxHCsnBHDgkKrRqpb1L3wGFdNx/6T2T8YRqveeD73tCCI1SaS950IBnt9vRNJdm\nNdPKi7QB4wz6S25ACMzDFl9VjM5kEIUxHbnuV/o2t3jnmSVLYqlpfcOmzonj+EKHPH1liEwTomZI\n9bjtigSc4Yorrrjiis8ersT0DQx7JKEehOgmjsfmJxEPLmOi2ojGe4SypNC1PRmFsF34vtYe0Qqk\nSDu3eSTYtC2PZzrSea8jjeu6I6Rl2Z18OOx0pKMRZbPlYffAwRwQCCbxhPvRPcoPwqbf2gufE/VB\nM08X3I/uLwjqw+6Bsi7x/fGZTk9ZSI+PkGWMvH9pi9TGGdSNRqbdir19ahFm2JMr0RcGbLm9vQ3u\n+aenR6ZTc7FqV3Z8QU6rVJ8il9ZrFs4FArS2BrU8q8TMxZl5qGAwkGfE5xTA3zRQ5Ooi8L+0hwvj\nVVzXF6kA9l3fi/sD/zpit0V84zeinpozbWsZakvLssT76sIMNdKzYPK6CN/f74nPNLQbY1Bn5iG3\nV33jVlco0NXUCvb7PVJWp4CFQl3UvtrpJLiYptaGlX49grd99VeAg4/88gepD3Eg2EK0jEaif84b\nlLIXetZEpSeCfciQoxh5M+1kHB9eg+tc+sdyhLDSP0ouim6lf5t08oa8LWlszXQ6PSPcBZMvmhHr\nFLf22KYlr/Lfou/uK6644orfnrgS0zc8PFIKHF3707H5yeoYKVu8b9BCd857LRBtjXQtNo6wRmNb\nSxRVJHGMNxohJXvteGga9i/oSIfOdRPLLOvYZRx3OtL5nL2tXqMjfTZ+xlBP2GwET0+dhlPrjm+d\n+5zyvCOoTaVZDBbcDe9IdYrzjrIpeb57zrbd4XsjFeNxR3QOB3h8ROT5S1ukVsYg5io4583a4A9x\nP8mUOHfAuQ03NzfEcYy1lqenJ4bD5jzuE9GOTw76Q0Y1PDnoRZax7CfJxnvWzqCXOvTD+62+0IGO\nxycdaJatmM9t4Nr77QsZp9JyPoocWhu64dfG4P7Sj+D+ia9FfOgD8I3fgjbD8LqkrEO8U5cNahgM\nzsxQSWeGqkzVkeAzDe3Ye9Kj6coZokUvvSgt0o1D8gBsg6N9s9kwmViU6l6LawanOlGz7XbwgMxz\nZr1zvrSWxdtuuH/lFdqD5Vf+719F6xlaT7C2JI4tSaL7a5UxmYThazeZTaah3aqoC9QrE0hibGnw\n6w2ql3cA5Nbizl36e4etLIlOmUTde7uqnvDeX2S2qtQRL0aM5ITqI1tqW7NvX9qJccUVV1xxxWcA\nV2L6Rob3OO+Ov0V4HyamLb5ve6Jve4pxMei+7amWCREpxlRIWRHLLuN0haF0DkenI72PYyZSIvK8\nm1IeRZiLBdze0kh/ctd7S6xi7oZ3zJI521K+ZtN/e+v7+tCS5dJxc9N5fc6M+LR1xHKw5HZ4S6IS\nnHcUdcHD7oGdOXQHevasI4cA+30X0l+WTPvnfCSKT22LncgubF2ALSy2kL1jvzMoWbtiuZwHwrha\nrYjj6pyrQTO5yAOtR2moLxXrNUshiISg9Z61N6ew+p3F7y+rS2ezEUmSYK3tA/hdiEVqDi9knMbq\nYkI7hZN8IIrwP/cz+Fe/GPnzfxe+448RnU2E0/TUCd+ZodwpGzRXIX6pbMrO4HWWaj+XMkgktuoy\n37RLA+gIcJIQrltRnCKxiqKbzB7lCbtYhDuRtCwZHFf6wvEVX/tV6EiTfWjFw2/kKDVByhRrN4zH\nAqVUXyBQhMrSwwGq6hTuv222tKJFvmnRr/R3cDgwPFvp58eV/uRspe89y2SGFjGVs5T1Gq01k55I\nbzYbpq+OULEmqlKq1YGiLrDu4xXVXXHFFVdc8eniSky/gGDxnRkJaARo3fQxUZLGC6R2JNZS+5ba\nx2GNL6VDWkntY1wq0EcdaRShdruOLe733ZRyMoH7e2wSBx1p69qX6kiPiVHHTbxSBx4fHyiKgrIs\neXh4oGlKbm/9hRH/SFBtE3MzvOGmzxe13pLXOc+3z9nbqpvy3d+/pkVKbbfcaB3Iz7ptqVICWXR7\nh808Wh/jpAzGrJjNxhcaQ9hd6jPbaSCn68OaejzgOIaU6zU3QgQH/UY6omXUkdPSIuoBSo0AT9uu\nmc8nYWVcluvQDlWWQPtCxunodB7WaxZSEh0bm+7v8D/3c/jhCPkTP4b/T34ArbtJqTEZ0+norIUq\nu2iGqvfxhYveTEZhJCnz/EJvakbiTG/qz6bABZPJKGh1jdkGfptvZCDZRV1gZv1Kf79n1huTaudw\nk4gv/eq3gYf3/r1fQcopWs/7JIUn5vNhSFEwpr64YZBETJJJeA1y1pnvXOVxT51u5LjSPzjHwVrU\nSIXXcnTp36SdHjhrd7Rmz3g8DjcP5bZg/OqMRKXYxxbTGvL6utK/4oorrvhs4EpM38C4zDHtWqCO\n5ici8L4miWKETajxCAwaRxsp2kbije/W+ImGWtF4gUi7kPK4aTp2WBQdIRoMOh3peEzRlEFHKoVk\nmky5H90j3eA1iVG3tzAatazXT32wvSWO4xDUXpYlz58/x5gtt7eexaJb9x+Toh4euqak2+EtN4Mb\nIhmFqKCH3QMH17y0RUo8PLBwLuglc2PYat+ZonoNqFlZtLwJusa2fWI8Ti6yTtu2OI8xRbbToG1c\nH9Y00xFHx5Rcr7npJ421c+TyFLtkcoNox6Hmswvgn59FFGUXhCvmhYzT6WmPLbKMm970VTtH8Y7f\nifsf/zJeCNT3fS/81b8VSPCxhepIHLfb/IJsKzcKK/fskHVxVf0+Pt7twip8YwzyTG9KFYca1hcj\npAaDNsRvNfuUYTTsNLptGSKqZFEw66tnc2P44nd8KZPFhGp/4Nd+/leJohuUmuD9AefWYYLZyRJc\n0AFnGYzjcbhxKdoCdde9Jybv7nIuVvrGnFb64rTSH+qYUTTrbmTqDO8t8/kcKSWHwwEx8CSzlJEc\ns/vwlspUHNrDZ+k7+4orrrjity+uxPQNDO891nqc84C/WOXLQYSUFmEEXiTYuGt7Eral1QnKp7Rt\njdY1sYyAhFaD9I40yzoh4rFG9PYWFgv2rssj3TbboCO9H92TyjFZJlitTjrSrnXUsttteHx8pGka\nlFIsFgtub29ZLpfc3t6SJEm/Bi54/vw51m65u3stQX18BG8S7kZ3LAdLtNQYZ8iqjMfdIxXmtS1S\n6zWTvnv+WFWZYdE3unPstx6zMijmPcnqVu2DgbjIOq2q7IKcajsLZGt9WNNOTzWfar3mpjdiHZyj\n1O7U2b4xKDcLmaDWZiwW8+Cgb5pNCOBfr2GkzjJOqwx/vChNg8xzlmfmnsO3fAPuXd/fvfff8W8i\n/5/3nZ1nE8xQu90Oa/dHySebDYz1PNSxbtqS80qnkTFh8rxx5kS0C4P0k2C4UqpiPB73IfUZ87kP\n8oSBmKGlprENpXbhWqVlGYL3M2t5+z/1VQgJH3nfhzisa5LkzQgRYcyaJDHhZibLOhIfjGMFLNJF\nSAKokxqxmOKtwOYH2O0YKhUkEBtjkFqegvc3XbTYTTJByZS9s+zqFUqpoNPN85zxq2N0pEmqiMOm\nJq/zIKW54oorrrjiM4MrMX0jo8/wFHjwArwPE1MRKZJE4WswXiNiTm1PJCivUaoFWrTXGB8jtCNZ\nrxFN0+17+0lko3ipjnQazykL+ZLmUU/bdqv6/X6PEILJZML9/T1xDE3znKZ5jlLtSwnqw8MDzu24\nu/McB3ht25G1x0cQNuV+dM8iXQTzy/qw5nH3SC1c56w6xjrlOYOy5DaKwoTxyRnkC459aSdnOtCc\nKGpDa9PhcOBwWNMPBclziOw8TDRX1Zp2dppo6jNyuneOXeK7pINjdak7VZe+2A4FJcPhiZzO4mUg\njet6c3LQHw5E220Iky+spf0zfwr3rd+OOOwR3/xNqOeHs677XZhq5nlOHDdBHbDZCOZnxG4nDOcV\nVfMzicJW+6A3tRuLCu1TO0ajOMgT9vv8zEUvmCXzkxZ0MgqvYWZMkCXIuxnP3vZmrLH8f3/vFxE2\nIYruAU9df5jpdHI2+S1fiJA6JQGUTQkTCdMZdtvHPxgTVvrV2Ur/GLzfZm2XPBEvEEKyMRXGlAyH\nw0CIi13J+JUJqRpgnzcYY68u/SuuuOKKzzCuxPQLAL7/r/QeCTgh8NIRxxGYKLQ9xd7RKELbUxQ1\nJInG14LaKwQNKXSr6WfPsGnC+rAOOlItdTAlNVXEw0M3EYPQPIqUBx4eHvqYIs9gMOD+/p7RKKVt\nVxjTrUm7zM2ctn1AqZabm5sLd3ye5zw8POD9jmfPuCCoq1UXDiDdgPvRPfN0jhKK1rWsDiue9k/U\nadSRuF7TGK3X3CoVSNBT2+JfcOxTpRfd8FLuA2msquql5PS4Bl9Va8xi1k2Y25Yoyy40mtWA07my\nbkp7nDYKUYbopbIsiaJdyFNdrwXz5Czj1Gwv6kTTug798Jm12B/5YdzX/m7ERz4M3/DN6DalMyrt\niSIbppqdy90eny7bQl9kgzaDOEgjxGZzMXUOelPjcYU407RumM9ngWRrfQjJC4dtzCju453aAt+P\nbEWeszyL+nrzO95ONNZsntZ87Fc+RqTv+pV+Q9t+5GKS7X1zMflN1CkJoJAFYpTg4yF2ZyHLkEJc\nRm71K32hBL7xmNIwjSJSPaf1grwpcK5hPj9JIfwQknHEiCG7jx44mAOVqT6b395XXHHFFb+tcCWm\nb2Acc0zB4z3IPirKKY2UhkhE4GMa5ZFtA7bBxgnSJTRNTRTVxCpCuJRGgbQNqRD44TDoSCtTBR3p\n3fAOTMrDQ0fMzptHh8NLHWkURdze3jKfT3GupG0f8b7p24kWRNFNbzzqCGrTPEdry+3t7WsI6vPn\nz4H9a7L2V6vul/ZdNNUsmYU++NVhRSGaTobQ/wX19MStEGE1vWpbmrEIq3ZbWPw2IopuOLrOoWC5\nPAXWV9UlOU38IpChp8OqI6e9wDI5I6eFtdRjgRz0lamZQ8tTdalShzDRLIqCwaAK0Uj5RrEc3Jwy\nTmku452sDSvxtVL4n/tp/Be/Bfn//n349u9Eq1n/9VIyHidniQAZi4UPLndTpRexWPYYvt80RGUZ\nSN3GGMRMhUgsqhQpU8AB5cX6ezq1x4hUIjclkhHGGUptA/FVec6iLxBoYs0rX/NWpBa8/5d/FZMZ\nkuRLAIUxK4Q4XJDr4dAdlQFsNoSblMY2HJIDTMaYSuKbBsqSgVLh/c+NQUhxSlDYWlzjWMZDlBxS\nWkvdZgghQixWURSMXh0TRZp4KziUhrzKuTboXXHFFVd8ZnAlpm9gHH8UStkZfHTfSmOVIoroDD4+\nRqSSqGlC21MkYoRogIbIRxhiROSJrKVyNQ8mZ9t0lvpzHel6LYL0tKvShMXCsd1e6kjn8zm3t7dI\nWdM0D6EKVKkJWt/h9xFuq4j0LVovzwjqhqZ5CAR1uVwSRVFPojY8Pj4g5eEia7+uu+npagWxGHE/\numeaTMPaeNUWuNtTaKpYrVhYexEiv0t8lz3axzvZjeiJ83ENnrNczl9KTjebjpwec1dXVXYip01D\nutmE3M7cGMxUBgmBWTu0OmWqRlETjFebTcZ43AQdZZnry4zTiNes20PQ/3KB/7l348cT5M/8VXjX\nfx5kCm2bMZ9Pg+nqRTNUzCToWrN6c5rO7nYMm+akN/X2pJ0tDNJ+iMwrAAAgAElEQVRPA8mOY3sW\nIZWFcP88h0l0WunXozREBCS7XZj8zt/6xQzuR1T1gV//5ffjd4o4fhMAdf0hRqM0kOss6/S/IQt2\nL0IM1l7uMZGF8RS7p9v5ty2zs5X+3lpkLC/isCIE03gKImLTNhizIU3TEL2V77dMng0ZqAHtRw+0\n1lLUxWfr2/yKK6644rcVrsT0DQzXR0MJ70B4pDuG62uiKEI0ES0CIU3X9iQdVavwLcSxIY4FNILW\nawQNyrXk1FhvSVTnhD/Xkdb1SUd6fw9tu73QkY7HY+7v70kSQds+9O1KHikHxPE9ohnSPrTY0mK3\nluZ5g9/pFwiqCQQ1ijx3d3eBoBpjyLKMx8cHlDrw7NklQe3KoASJGHM7vA3r76dqjVnOOa90mlTV\nxao9V64zRSmBqxxm5dHy5ixM/rXk9LyGM/XLQOhW9Qa76LUHdc2wKC6mjWZ6WoWbte/JaafTTFN/\nZiJaM522IbT+sH0h43QQn2KkViuWUqL7LNXN7/wq/I/+FbyUqO//PuSP/42LRICj6Wq/39O223OO\nyzReBLNSbvcXIf9zCOcotQvyBLtxZ3rTLZPJIOSPdpmq3dPclWfxTm3ZpQD0rHh8ZrS6+Yq3IYeS\n3/jAB9k/7VHuJqz06/ojF+v1w2EbbhSKAqSPQ6zXNt7iI431Kd50Nn4JzPv3oziu9Cf61Aq1MUy1\nJonmVB72Zoe1B2azWWgJM0NBMlRM/IDy+YFdu6OxzWfvm/2KK6644rcJrsT0DQ4POE8fFXVc5Suw\nIHxMLT3CNgjbYOMYbyLapu1ionSMcAm18AjXgKnxacI4HnMzvKE+XOpIx+NjHmnFw0OXR+qcCzrS\n8fhSRypETBTdodyM9sliNgYcyER2K23PSwjqop9UGozJLgjqYrFAax0I6tPTI1pXPHvWDQ/P20q3\nRcTN4C5Ubz7tn6jGaUeyenv9oChC7FLlHGss8sKxb1EsenJqeZGc1vX6IuJpwImcPtVZR077JzUq\nitOU1lrcQoXz2A1n2taS0UiFiWOer5nNTutwW72QcTodn6bBfYzUcRq4/Vd+P/4//bMAiO/6o8if\n/9Uzol1eRDxFUX0yQ2WSedJNHXftrpvO9o4skWUse0K/d452LLrXYTyukKGy9BghddSDDofNkacj\n2lO8U07FuVB0DkRCMH3TLembbiD2vPeXfxWbWyL1Su/S32DtZUSVlM15PwDjeNKdQ1m2agvjMaZW\nfbtAQXq20l+3LdDn3PZxWH7vmOkYrSbkxtG2G8CdXtNux/CVIZHWJDkcdo5Ntbmu9K+44oorfpO4\nEtM3MKyxwZmPB+W6H7BWKTAe42NcLFB921O3xk/wvkaImogI42N8DFHbYnwLSYIwg4sI0zQ96kgN\nWbZivV5jjHlBR1rQtk8XOlItl9gNtKsW33qEFt3KfKFgpojuo0uC+tDgdxGRvnspQY1juL+/DwS1\nbVvW6zVPT49EUfWattLVk2Sibi7yQEvtLpztcZYFU1TrPU+2xS/POtVXBmnnn5CcdgEAggHLQLpW\nbX4ip4cDk+02VIpmxuAXCqE7443bKLTuiJYxOdPpaV1dFCtmM3fKHrUvZJzOT9IBtdmw7PWaW2up\n/r1/B/dvfAeiqpDf8i3oj+7Cyl3rOkgHsixjPDbBDLUro2CGyqucdjwMDQg6z8PEcdPXvh71pqIZ\nhmsl5T5Mf7tWqO5rtShgohdBM1ul+tSi1RNfCbzyNb8Dm0iy/InsMcMX3Y1Ol5zwhNaGyWRy9vxd\neP5F0elNBYI6raltjYsnOEN3p1XXzLUO09+j3vRYv2oKQ+oEAz3Ei5TCGto2I47jUMKQ1wfGtwlD\nNaB+XtEY0yUCXHHFFVdc8WnjSkzfwPAXHx26zzB1SiHRtF4htCO1lhpD7SKwgji2RJFAtILGRwga\npDe0kabII8o8ChGmNzcwnzt2u5zHx0fqukZK+RId6YELHekuon1suzB2CWqqUHcRhXI8ti2PbUvm\nLX6miO6iENsTCOr+9QjqI3EsuL+/D+vcI0Fdr59Ikppnz0JUJuu1IHZzZsks6DMzt8ff3JzI3NMT\nt5xVfRqDmUvkUIZYJNnOQy7oy8jpKZ1KMOQmTGpXpsAdyel+z3S3O8vuNLBQIfDfFfqsUWnDfD4K\nEobdbs102r3TeQ4pZxmn9abLOO2ns3EfIwVdR7z54f8G93u+DvH8o/D134SqYo7SgcFAhulslq0v\nzFC2HoQygazenF7H4cDgcDi9Dm9R004fanKDEjOOutnhUIXmqcNhE6aaRa4uWqfsZByIr9psmGtN\nOkyZvuVV7EDw/ve/F9962HWxXtbuaNuM0Sg9M8ptziWxmEYzS2cIJShViZUC6/uWsM0G4f1F2sDB\nWmRyqTedaU2kpxy8oLE1xnTmruP70g4FSSqYthHlY8Ou2dHa9rP4XX/FFVdc8YWNKzF9I8N78L4j\nph6E6cxPTimkSbqYKN+gvMVECtsqXOuIoopYR2BjGgGSFmkbKhKETc8jTDFmx8PDA7t+nz8ej3n2\n7NlLdKTDSx3ptiPJatQRz0MKD03DwTkE3Rde7RxPbUuGxc9fIKjlGUGN7tD6FK9kzJqmeSRJJM+e\nPWM2mwU942q1Yr1+Yjyuz3I0od2PWA6WIavzqdlgl4vAYMVqxdKYi4nmYSw6wuW7XnXRzF6XnDbN\nJTkdiZvgQF+ZEjefBcY0r6qwRs68RSxOE0e/TVBqwjHsf7E4GZXqOgvnyDKY6LOM07Y4xWNttwyq\nKkgH1kJgf+on8V/6VuQv/gLi274DLY8RTznT6TAQraLILsxQqZgFkp01RWeGAihLZs6F+K0y8ie9\naXZeWZozm01CHmwUHUIrlDkML+K2/GIRWqfS3gz1Rb/jrZg4pnJ7PviBD0ClkWaKlEOsLTBmHSKq\nupuEXTBbbTaQqiGpTmEMRVPgogGOqLtryXMiKS8ipIxz6KkOGmByy1hrlJqzsQ5rtzjXhNiqXVWR\n3sXEOiLaWPb7bqV/xRVXXHHFp4crMX2Dwx/npk6gfUcGrdIIKbExqKaLiWpkghYp1tZIWRGLCOtj\nXOTRbYv1LQdSUj1gOgWlah4eHsjzHOccaZpyd3fX60ifXqIjnb5GRxrdRbRjwaM1lNbigYGU3EcR\nz6KIaZ9f+QkJ6vMGv4/PCKq6IKhpqri/v38NQfX+5Djf76HcJCyTu0DmHqsVzXzCuThxejiE0Pqt\ntRSJD9NAm1tEfUlOF4vZBTk9mog2G8FI3oRzrez2RE7LkkVdkx5d9Fjk4pQKwH4Qmqg6o1L3uqqq\nwpjT1HG9FkyjU8ZpZnecu4Am1p4I8GKOe/dfx09nyL/xs4g/8/1BD9oR4PPXUV6YoWbx6RwlTUgD\nEJsNi7OWq3rESW9a6lCL6n0RKkWLoouQOgbjD+U8EPisLS4yWidtyzDSfMlXv52tt3z4ox+gbVrY\nDpGM8d5h7QHvy4uorThug9kqy7qVvpYaMzTsmh1GjsPkl8OB4ZneNDMG73230u9vFoY1xCrGiWGX\n42o2F61QhTOM5oqRSKkfamrThlSLK6644oorPjVciekbGNZa8C6s9JXpl/pSYYTo2p6spXbdNBQj\n0NqglEcaSeNjhGhRztAoiTUa6QX7/ZrVahV0pDc3NywWM7wvex1p+0npSNfOkPWu51gIbqOIRdOg\nHh4QDw+MD4dPTFCTFwjqISaK7l9DUNt2xWCgub+/ZzqdhvrN3e6J5dKF2KVsrZjq21O8037FbqBP\npqiyZNiboo4moix2yFlPTotLcipEcUHq2vZETvONvCCna7/Hn5mvFnUdIp4yYVFneZqiHodsUO83\n4RxdAkIRiFe+USzSmzAJLuULrU39tTfes/nKt+N/7MfxSiH/i/8M+Zd/NpzDuTxMAcuyROvq0gx1\nFlVVDaIwadZZdnK4WwvHfNO9g3rUJy20JIkJkoHtNjvzOwkWaUd8K1NR+OoiBWDhPc9efcZouWCP\n4dc/8H4ECvIUJaf9BLNCa3ORbzqb+WC22u8k83SOHEl2bkfTWqwedefIc7D2Qm9aWItQl/m2EyRa\nj9k6hXUtxuSMRqOgA26GgnQgmdSKfGUo6xLTx7ddccUVV1zxyeNKTN/A8N7jvUcgcEKg7XFiqmic\nR0iDdpZGC9pW9W1PFUnfCNUgOn2pbahIkV5TFE80TYWUktlsxu3tLUo1n5SOVM806i6i7HWkjfco\nIVhoza33xE9Pp2R+56AsPy5BXXuDWyii2zOCWrxIUGc9QW1o2xVtu2I47ExZxxX4ZvPIdNpc6E4T\ntwzu9rzO2aj20hS1XnOnVCArWeS6UHm650A1/ZTI6TF+acUe30/aRFGwbJpAHDNpUTPVkdPCIprp\n2XS2YD6fBZd7HO9OAfyZDi76sinZp+rSTCRlqGMt/sXfh/9zf747/3d/F/Lv/lIgj1LuwhQwyzJG\nozaYifZlfKEJNbNJKC5IdztGx8QBTnpTW9heb9rpWSeTNEy0vS9DK1RZqJA9um22HCIRptgiy1gq\nxVvf8ZW0QvLR7GMUuwLhR7hSotQIaw99eUAa9KxFsQnD47IE6RNG0QgxEeR1jjEx/mysKoQIaQNH\nvakaqKAzVrkjFQKppuQWnNtjbVeKIKXkYAzxXJDoiCi37A/+utK/4oorrvg0cCWmb2SEaBoHCFSf\nY+q0xmqFaLuYKKNTpE9o286JfVrj06/xO8c+rSBJPGmacn9/T5q+TEf6DFG/XEe6TzwPTcO+15FO\nlOJeCAZ53iXgnyfz392F5p/XI6iN96zaljUfj6AmaH33GoLaddDPz4LYV6TpLuhO8xzsYcIiXXZh\n7O2eJ1t2Yfy9CFKtVh2hPk4cj+RUgCvdJySn4VwbyfiMnK5FdUlO+7741ns22l0QO2FmId9Vyt1Z\nA1HOYHDSa+6K5MJFX48HYaope3In6SKe9n/8u3Hf+ccQTYP8A38A/aGCzqxUkSQuBMln2ZrZzIWt\nt29GQROa1XmnCe3X7jNjwnUqIn9mHKMP96ePeJoGcj0aNeHYzSEOGa2bakMzHoQYLJ1lvHk+5f4t\nb+ZgLO/70PuQWiLaMW6v+m8FhzFZ0JseDges3Yf3IMtgEk9JhglOO8p9idWTYIAjz9Ev05vOTvFh\nox1oqWnFiNo5jMn7XN/ueZfCM5rCxMUcHmuqtjNDXXHFFVdc8cnjSkzfwLDW9rmJAuEdql8dOqlQ\nA03cNLSuoSJGOYXWBiEMyilaHyNUN1FtlaA1Gtc60tQzGEQYs8KYzUt0pAaTfxI6Uq2Z7HaIp6cu\nXLRP5m9vFqxs18hUT0efNkEVsQgE1TyaC4IKEu8brF0zn49CpFCe571m04dc0F2eskhuQ43lY7Wm\nXc45ltXL9Zqbtj1NNV8kp4fXJ6fGnJNTxVjenPSgquHoZJJ5zo1zaCFovCeP/cl0tbEod0wmaIii\n6oycbhiP67CyrneDy4zT2SSQ7KiPeDrWozb/9Z/Hfd3vQzw9wNd/E/qgOeaoTiZJcLqXZXbud2Ig\n5kGasLE7zp1GCyGC/KE+5pu2Hr+NQ7i/ELuzCKmM+dwflQ1IOwzB+Nkh62KwjlPZ7Zav/pqvQA8S\nnmcZH9l8BKUG+L1C2ATvW7y3eF+E65PnOcOhOZr9KYquFUpNFXuz55BX+Nn8ZOPv9abDM70pECpL\nOXiGrUCpAaXrIrHaNmMwGHQyBe+pYkeaCqaVJM8cZVNi3bE6+Iorrrjiik+EKzF9A+Poxsd3Pzel\nOzM/tS2J9zTSUxuNNxBFNUmioVE0SISvEa5f4zuNlAbvC6Qsf/M60sfHUzL/aIS7u2WjWh73j9S2\ny5VcHVY8tfmnRVD9UhPddATVWx8IKlVKFN0HImTMmsHAs1wuwyRtu31isbBhWLZZR8yiu1M4/mHF\nYTLgyCpFnnNzrgfVDqayI6fbIzlNPzlyqm6CnjJTbdCDyizjxrnTyj3xp9iizTHoX+FcRRw3F+Ru\nMmkD0aY5yzitslMDVVWRbrdM+4lgJgTmr/04/st/B/KX/yHiW/8ttBgDx6iqSWhWqqr8wtQ1i0/p\nBtvIh/apY8wT0N2kHAn83iHaSZhoDwYE4ns4bAK3zTIYyOlrY7COaQbW8Navejvewy+993341KPk\nrLtR8t15nauJIhOyRtfrNfP56UakrTWz8QyRii6fdc+FphXTR0Sd5ZtKLYPeNNl6tAPUhK0TeN9g\nzDYY72op0WNLqiJUbtjtHXmdfxb/Fbjiiiuu+MLClZi+0dG3Pnnn0X3zk9EKZQ24BhPFCBdj2q7t\nKRYRngQbgTIt3tYcSBBGEEV7kgRAotT0dXWk+pPVkaYp/vaW7UDxcHhi3+4RCCbxhFkyC1PKI0Gt\npsNPSFBVP1VctS1r8VqCanKDeTTIZtpPT7uKTKV23Nx01aZt25Jlj0yn9cm9vZak/uaU21llFAmd\ny10IRFmyPBwCOd1E/jQ53TrYTz4uOQ35nRvNRJ/MSpk2QU+pNhtuvD81Nw36lbgDs3ZI5pzyQT3D\n4RDnHGW5Dk73soTInjJOV80luRtVVdCDZtMp9t3vxs8XyL/9NxF/6vuCk965DYvFPJjIlNpfGK5m\nSd+6VJc0kz58v21JyzJEbm2wyDNZguT0fsxmw3CjIOXhLGmgSwHQUp+mskexaJ7zla8+Y7KYUVcN\nv/jr70UPEqQfYHND989Zd/zxODnLgM0D+c1zSNWIwWKAw5FlGS5KOX8CAkK+6d65Tm86VF0ZhIPR\n1iOFpBZTjKeXutgwqd0qwXBkmRrNftWybyoO7eGz++/AFVdcccUXCK7E9I2Ms/rD80pSqzXaGFzf\n9qR9hBANQrRERDQuQkhDZA2NEhgX9RPVA2maoPUEUQ9enkf6ejrSzeY1OtLDZMBDvaaoC5x3DPSA\nu+E9NBNsNeImvb8gqOvDmsdm83EJ6r3WzPoa0U9EUN0mRqub0HTkfcZyOQ3u8PV6RRSdopHyHNxh\nxiyZByPOWlShz11styz3+1PMk+pd6ALcziE+zuTU2hfIqTqR003ig1lJZxk3cNKDjkUgRC4TaHms\nLt0xHmvSNMVay3a7Yjrt3v+igKFYhhimtSlP+aNFwcyY0/T3bV+G+/GfxGuN/MEfQP7IXzszXJUX\na/HRqAma1mqbnskGNtjZ9FQi0Bu6rPeU8Ylcu/xUWep9yXTaWfM3mw3DYRvMaVnWOfUvkgb6sbPc\nbPhd7/gqhJJ86AMf5smV6HiGbwWmbBAipovZyoPetEsyOISUgSyD5XiJGilqU5M/5J0k4bjzzzK0\nlBftVsY59Fx324JWEO89QkaUPuUYuZUkSTeplZKDNgxSyeTQfV3ldY7z7rP5r8EVV1xxxRcErsT0\nDQzXa+A6lSlIfwzYl6Q4agyVjcAI4rgliiS+ETReI2gQtu1D9TXQoJQhEjFmpV5XR1pYi+MlOtK6\nvtCRPtmSrMqw3hLJiNvhLbFb8PSoKMsuw/LxUWAOlwS1de0nJKij/f7jElS91KFNya5A+ZtAtoxZ\nM53GIVKqLEva9rLxaJ8PmSenlfujKzviJQRitwvk1AHZGTm1W4vYn8jpizmn1q6P/JMyj5joZajl\nzFMRVuJRlrEU4uQQn4hQkWozgVZzOnJaMJ0mwYm+36+YTHxYuU/0mabVHzhP5196f6rj/Oe/Dv9f\n/UUAxB//buT/8Q/ONK11kA1sNhmzmQ3XSbQTUp1ivSUz5cVkcwkoIaicoxrRVa+2HnaD8F5EUX2x\ncp/NbCC+Za5ZnEdUDeOg+11i+bK3vIpwnl/8hV+CuUapMW5vsVV7dv0vifV4bIJ8Y7eVLO+W/z97\n7xYrW5ee5T1jjHmoWTVrVtVaa+9N027ajgPGJoAwCYqQcpcLLkiQHWJCAkQQkUSRQiTLIgIigpJY\nCpGSG3IgkMhSHEQA0QGUmyQKUpASLiwbFA6ddmNM2+1D77Wqap7PY4xcjFmjav3/3+CA2/Ru13dl\nX/Tcc9Vee/3v+r73fV4IoG5q2qK7Uhn63pUULH7TS+ECXP2mmxbEaDFyQ2fU0kxWkGWuEGGKY9Rq\nYC1DZD65k35/P+nf5z73uc8/aO7C9AMee/t/Gwj0IlRliBWaOQyxc8g0ujN+rCIwK+YQ5DxiTU8v\nYoQWhGFHpAJ0IWAWX9VHGn41H2maop8evY901CNKKParPVv1hvwY+Qt/HLsFIbj/+fOzcM1M8c+P\nQD1LjXm86bs/OfbotVGpII4nDoeDF41V9cx+P3thVJwiturJbx1fTM28z/xJ/KFprlB25birF0D+\nRZw6WsJrcWrt2W/uqjxiGzgqQDM1lGvlv8ZowTz5zvsM30akz+om6V6y262dGJomxvG6mc3Pkl10\n3cyWoXmFYXqU8mob+Lf+Dcy/8/sQ04T8nn+Z4O+dudoGpN/MluXJd95XFazFwdMGCobrZvN8Zn95\nf2Nefz5TxoUCkKbBDTnhxMOD9dpwaGOPqDp3Z6Ys9WGu7/j0O9JkRZOXfOEnv0y43yEImIsOq5Xf\nkofh5C0PTlhbD/dXNmH3tMNiOb2cmI191WzFOH7cbxpK1wwlBOvKYo2lFVuMdQgpY3r2+8UCEUiS\nZCKbFE1uaMaOfu6/Vj8O7nOf+9znG2LuwvQDHmst5kadqoVjaqRknCd6EaMIgREhRkJCJiKE0kRG\nMykYdYgZLVHUE4sIyQq5lp/oI90HAW+M+UQfaRWLj/lID9FbunLN6eQupGEIDw+W1aohCGrevLFe\noLYtvLwIxmbD4+rdP7JAPemZJgOZLtiiUmPLFYE6cBFcUpY8Ph78xvF8fiZNu1deypV5uoaidMW0\nv56sD3XtxWkuX4tTmu1HxGnmPZXwWpxm4YO3DlTrwGOe4vOZ/bI5rYxh3EmfdDd56IW2g+Nfw0rW\n5v75xTlgF10Zoe36CsdX57Nnd9Za0/8X/xnmn/9NiPMR/sXvImgE181s4sVv3+evwlBZePDiuk0C\nj3mKi+Kr+E0NgbxUlpbs91vv/S2K022zKmLesA7XTjz2Z8xhD1IS6pnv+OZPowT8xBd+jJOYCNM9\nWBhPBVJmXPym2+3q5t3L1wipdEeyddaO5595xkbRq4ICYS2HpWyhNYZWa9RGIVeSFZKgNCAUrQ+O\nFYShcpvgMKRXE0ks2HbWnfT7YiFp3Oc+97nPfT5p7sL0gx7rK0mtsKjlP3hGSWahGWwEsyAMJ6JI\nICbpz/jMzn8qbQhMKDUR2RDB6mM+0nTxka7znFcq88ZHWo0VFksSJDwlb9HdluNR+Av/fg9p2lEU\nrua0LEteXr6CUhVPT4bNUsTTdfD+PYzNhof4HfvV/h9KoF6ERL6y1y763qCPikA8ejaoMScOh40/\nKef5GaWuKfSqEsjhkVgtTVG6cjWmyz37UFVXvJDUmMM1if5anJYfE6eX16+LmO0i7qqppk4jLvT8\nJM/ZSffPtDSaeScRSmBHiy1X3rNpTMF+v/WeSilLD7Cvi9iHlYp+CZktYaXoJklfAOOf+VOYb/t2\n5Bc+j/iefx1lE+DKIL28vxD19eMvwlfPny7w/WFgexMYKyPr/bI6V/7dtXZBq4uw7rrCB+WLwtWW\nRipySf2p9JaBTz9kvNumzP3A3/n836HfrpDhCjtrprxZhLujDBwOOx/kCoLOfzZ5Do9vH51w7SfO\n+dkJ08U2wOn0yXzTvbOLbGeJbjQDMTMxjgSRk2WZE9tJggxbNlZBbahbfU/p3+c+97nP32fuwvQD\nHjNf+IjOZRrM1+YnGyn0HGBn69L4KsLqiEmCnAcwvaspnfBnfGMCzhhqaV/5SLNP8pE+7F/5SCMV\n8Zg8EczOR9q27s3SFA6HkbZ94Xw+o7UmDEPiOF4S5RXH43uEKHnzxpCmblvWdfD8DH21/ocSqE9h\n6E+wR6nRD+oajDoa5HjwffTzfGaz4XqCbRqG4YX9/gqXp3tgpRxc/jiVDLvU+xH3VcVm8SLmYhGn\nl1rOeuvRVR8Vp1LmXv80xYpt6EJX5VjRbFc+jLO+EaeF1ei9E6emN9gqWb4OgxCVB9g3TU0U1d6a\n0FUJWZz5sNKteEyqiu1ls7nZoP/iX8Q+PCH/j/8V+b1/2D8fSnY7d1qvqor1evDPH5rEEw1OQ47Z\nXyteD1p7DFaX3vpN1wgRLb8gXCtRm6bBmNpvNi9J/UtILqf3W81v+/RbUil5/omf4n1RwcMBpGBu\na+jDm1rX137TLNPeMtD1ksd3jw78f6yp+9qJ34WhSlmSKOVpBqd5BuH8pkoK1h2YyVCz8RaCea7d\n1yMlbSCJ44FdD3VhqYeWYR6+1j8e7nOf+9zng5y7MP2AZ0GY4qJPIJfmJ60UMwHSRhgzIuVARMhs\nI1Ca0GhmYRlNtASjeiJCRhujY0Fw8ZEOw8d9pG+eOMvxlY/0sDqwEU/kx4iqcmIiSeDxUaP1mePx\nhXEcUUqx3+85HBJ2u4inp0dWq9XSn17z/PwVrC14etKkV93H8zN05ZpD9MkCtdsmHxOowfv3PM2z\nD6/kVtPuBHJzPe1Tb1DqWpkZBC2Pjwdfm1lVrsr0ArA37YGVWs7Kc0W/Tz0jdFeWr8Sp3kknTjsD\ndfpKnN5uNoXIfRq9KRLScBFPY0mbJX6zuSkKtpfn48Tp5fmiTX3gR8rai8e6LlmvO//+c5tez+Jj\n4QD2QkDbsu37q2f2Wz6L/rN/DhuGyP/mj6H++J/2AjIIOrIs89vlLJu9eA/0zm82z7px4hGQC3z/\n4jfVO+ktD1LvfNBKiMaL07IsiaL+Fc7rktRvp5YmlpAk7A8Zn9qlJMCX/sb/S4lAZc7i0OdHpLk+\nP4pmT2RwcH/3bV2WQBBz2B3AQP4+Z7QzrzwFXUemFOGlBWyekZFEpYpUKERhmA30wn3NWldIaV3F\na5Iw0LOOIL2c9If7Sf8+97nPfT5p7sL0Ax73HzYL1mLNtflJK8UwSaSRBIHrOxeTYLAhUria0l7F\nCBNgzEgQuDP+aGJkIsnm2flIy/LjPtL2mW7uvI90H76lzimSA0cAACAASURBVBPOZyeuoggeHy1K\nlRyP75fNoGS73fL4mBIEFVqXaF1h7ZksC3h6eiRJEqy1NE3Dy8t7rC14fNRsl6v5MMDLixOo+9AJ\n1Avr8tyfXwvUOHY98XnOvmk4KOWZlHliEXvlRZ05hSjx4MWLtTmPj5kP5BTFkSRpfJpbN3vWwdJO\nNFV02dpvHndFQbqIx0KaV+LxVpy6zeZ22Zy2KFV4cdqVa9LgIk6X5y9/+LYsr89Hw62ntdveiMfW\nd95XVc5mM3jAvBz3Pkl/nMvrZrMs2d80XOX/3G/E/pd/HADxvb8P9Zf/mt8Grlb6RuBdw1BlCRv5\n4EkAZWiuYa48Z6ucx7RAI7aL37QwCwLL+X6DYPTvfj6fSdPJU5yqIvS1q+VQutrVMORX/BOfIZ0m\nhnPB+5/+ClW8QW4CrBmYTg1KXigGV7/pOI6MY3lrJ2W137CJN5jecMyPaCW59RQIrb3ftFv8psE2\nQMaSDMlczjRGgXQs2Hk+s16vieOYOU1BVGyNxDaWqpmpxupr98PhPve5z30+0LkL0w95lo2LXU75\nl/CTVhK9hJrcGT8EHbozvhlBD3Q29tvSUCqMDZmVQDUl8fn8D/SRPq7eMjXORzpNTpsdDpAkDefz\nV6jrGoD1es3T04447tG68BWnlxOr1jXWnthuJW/ePLJe0lAXgap1zuPjTJZdBerx6JBOmXr7yQI1\nW3swPm1LcjrxRgh/2j+p5bQfLin3I8jp4eadcna7yGOS6rogisrL8pKxylgrx/DM55p2dxWPWZ6z\nFcKJR2GYb8Vp9XFxKoSgbRuUKi62UvpqwzZ0afF8LOl3Gy9+s1tPq9BOZC+QfznuFu/sRBT1N+/v\nBN5l+Rfpw5VxaltfKyqKgocl6DZaS/m7fyfm3/s+xDwjf/tvQ33xmct2ebsNPcC+685XFmwuyW7C\nVv028Un6tGk8ZquMjPebzmdLEFz4rM67evH8ns8OI3WtXb3hpw458z4jXMV85pvesR5HfubzP8Zs\nodtsEZFkngpMIQiCC8Wg8HaHuq4Jw/7KNy0Eu0fnZ51yt5FnvfaMWU4nAiFe+U2nxW8aKclqFMyt\npmbtPczzXLDf75FhyBAFhGHHboC6ElR9w6SnX4ifFPe5z33u88HMXZh+wKON9c1PcG1+MkohidB6\nIghc29NsIwgMgdbMwjDaGLv4S2MRMdkYwUg8jgilYL9nfNh93Ee6eoOaDhxfFH3vxGKWQZb1VJUL\nNhljiOOYx8cDm41B6/NScRqg5B7Z7xFdRiCfFqEGWjcY41BHT08PXqC2bcvz83um6czDw0SWXa1/\npxM0+ScL1Pe2ZnzYeZ9mcDzyNI5e1OVW0+6Fg79b0IVL0l8CM1pXJMns24/atkap3G/vxnrLJnCe\nzXxaPKGLANsWBdmy2SyFYbqI0/4iTp0AFqLyoZy2bQiCqzjtyg2bYBFg4+JpXWwD+xsawFkt9ai4\ntLucdzfVn7NHJTXNie3W/eJSVYKNfPSezbMcPUZK3mCkWmNo/+h/gvlNvxmRn5G/5btRpfGfz36/\n8RgsqG7CXBHbyAnBfCheYbYO40iwCN/2xm9qCkkQuG3oPJekaewRVUXhOLOXSns5b0kC5/c9jQV2\nv+eXfctn2ASKsG74yc//HUaRMGxDkJqpK7FNfGOnqNhur3D/7Vb7XzrKUXHIDiir6PPesUd31+8j\n8vyV3/Q8z64RbR+QSYWpNd0wMwlHBTCmBSZ2ux12s2G0HWtlWPeQF5a8z782Pxzuc5/73OcDnbsw\n/YBnyeAjEGANyntMQ6wRKDUhpUFpxWijBao/0MsItMKa6eaMHyHlRCIEOt1wFgMv7csrH2linzgf\nQ5ZlKJsNHA4Tw3DkfD4xzzNBEPDwcGC3C7D2jDE9l4pTOT6gjwpda3StmV8sNCmBfFwCNhcW5InN\nxvL09MBms0EIQdd1vLw8M44nDoeJ3c7ptGm6CtStvArU2cwcx4I6u9ZNirJkX9fsb0/7a3vdOrYG\nc45RYu976ZWq/dm971uUOl83m2VKuoipYq6ptrH3hKbn8ytxOt+QAai2N+K09Bu8tm0Iw/KV+L3Y\nBk63gauu47BsH3096gXFVFikvlSX9mw2eIHXtkfS1PjN5m01arkS/uwenE7e/lACw5/+Qcx3/GrE\nj30R+Vt/F8q4tiNjSi+sq6pitep8GGruHObJWMNpKrHLSVyUJQdrXXmAubE79AZTBQuf1Z3Bd7vU\nY6Sq6vTKE5qI/XXraxrIMr71l38zQd/R/MRPMXQ9nUyZM4G2NXM1IebtYtmYWK209zefz9eChb6H\nIVgsAy3UbU0738D3uw6a5mN+U7VShNuATCjmQlMZPGt2nnNWq4gkSdBpChRkk0X3grKZqIb7Sf8+\n97nPfS5zF6Yf8txCTBEo4zZis1CM40wYDsShO+OPQiCZEHpkIAYtljP/csaXAmUnpqnlvale+Ugz\n9ZbqnLwC5D88aKzNOR6fGYbBB5seHtYIUaC1C0wptUHpR8wpcoEjA3Il3aYSJwbnFwv1hkA+LV3t\nYEyHMUfWa82bNw+kaeq3cy8vz/T9kcNhZL/3i0rOZ6jPa1LxljRygq4cK47h7PmXdB3r45E34JuP\n/Gl/2d7pk0TOB+/ZlLLy3e593yHEiSiyaO0sBalaUE9zQ5mGfruWns/shAumFWimg/Jp+ltxKuXr\nNP1FnE4TTHVGojZenHpUVdtyaBpf/ZlHBnFhtuag7MW32bLdKs9qHYYj67X11ai3DNVmE/l3j4uC\n7FLJmSTMf+kvYp/eIv/KX0b+u38QKa5b38v2sShyttvJ+1mDeefFYy4G/wtCWBRkF7+p1ciH4IrY\n6lbL94Blnk8cDjuPkRqGj/JTb/ysgebxs9/E05sHVFHxs3/zC0gZ08gI1qBNiS40Slz8pg1ZtvLC\ntyzPHA5L1qmTEMdkUYYutENgYbhVxmKaeAhD7zdttCbIAjZxQGRgKCYaYv93PM85u90OlSSMgSIM\nWva94/iXfc28+MPvc5/73OcX+9yF6Yc81mINaAsGS7AIUx1E6Nm1PV3O+Da0BNPEzLxgogRR1BER\nMZkIISbsPFDLCStgHa45RG8Z6y3ns3gFyI+iitPp/ZIqF6RpyuPjliCo0brEia0VAY+YPEHnBjtb\nRCiQDwFtJlwH/FOA2jiBYjrD/Gyw5ZpAvFkYlwJjerQ+kiQTT097tlu3vRyGgZeXF9r2hd1u4HBw\nAnW5ttIXGVt1reR8r0v6w9bD34PTiTfDcAXko2kP4oazaZHd3oskKRv2+2QRST1CnIhjizHQlgmb\nRZzWc0uRhp5Dulkg+QAlmmEnXolTIWI+Kk7btiaKKi+4dbtjHWw8DWDabV09atvy2HV+c1es7NWa\nkINit3yGDbtd7CHzWp9et0+FS6BorF75WTdVdT1Zf+bT6D//57FxjPzv/1vkH/tB76OM45H1eo21\nlrI8kWVuc19VglRdO+/rRF0/l7J89dkHeydOdaUR49XuYIxjnF4pBrW3fBa5Yh9fhXW7Dvkn/6lf\niRQw/L0v0zyfINhRxWCjHqMn97nctGZd2Kx93zOO1cVuSzkrwjBhzRpda07dCRNH3NL5lbWeAVsu\nftPwIWQXBNjeUtYjVmY+NGZMy36/x263TKZlzUQyyftJ/z73uc99buYuTD/g0XrGWgNYJCD15ZQv\nUaFFypnAKCbrhKewE4OKQAdYMxMEE/GCiXJp/QGbrEjDDPo9p6NiGJxO2e9hs2kpivdUVYW1liRJ\neHo6sFqNaJ1j7YwQIYF8gHrLfLTY0SKUQO0Uw0HyImYarWm05tnMlGuLeBOg0uWc3hvmF40tEgLe\nLJ5PiTEDWp+I44E3b/ZkmRMU4zhyPB5pmheyrOdwuNoB6yJmZd6wClbej1ikIXYRF6KqOJSlr85s\njSHfWMTumnY3eYISDj8khBN414alI3FsMMZxSDdyqRedW/KN8g1L6/MZt6eDSphX4lRU2Stxuttt\nl81pRRxXngYwNzuSYO0h/16cNg2PfX/tvV9fIfYmV0ic0jKmYr9f37z7+UoCqBK20cI4HYpX7Va7\nrvOWgfM/+xsw//WfAED+/u9F/W8/5C0PaSqJogit9aswVFkostDVfFZDxbBdX/mvN++dB4Zg50Te\nXMwLRsptrC+d91eMVOftFLdJ/WIoEb/kkV/2rZ+FeeLlr/0NQqHQYk2zsRhZYieLrSPPZrW29Iiq\nqqqQsmO9BmsFlQlIoy1BGzBPswtDZZn/e+V8ZvUJftPVPiSVirnSnMfZe2e1rghDyWa7RW82WFuw\nH2HuBUU90ozN1/6Hxn3uc5/7fJ3PXZh+A4wALMZvTGcpCYKRKFQwBwxIhB2QlzP+LFz7zc0ZX9oJ\nyUyjV5THhLZ1Z800hd1uoGmeyfMcrTVRFPH09ECagjGnhUGpUHKH7A/ML8Kl0AWorWJ8lBxDQ6U1\nFgfuTxcPY28ML3qmSCz2TYDaLl7MwTAfNSaPCeybZcslsXZknk9EUcfT086dRxfu6Ol0oq6f2W57\nv/lqaolpHkiDna/NfFED82HnN4Pr04knY66n/UCjD9Kd9keLPkVI48IsQrTs95FHDhlzZLVyvs2m\njNlI59ts545zIl6L08VbWQlDfxGnw2txqlT9SpxeNqfjCKbdXyH/pmZexKmsa55uQkVl6uwSVlts\nHqKE+zCsrTgcUm9JUKq4kgbq9ArIn0r0LrsC8qfp2hf/O3875vv+AMIY5L/625Gf/xkuafrdLvHC\n15jiWh5QxqThEuS6PBsQdc3jQgEYjKEMjfv7tzDnM4q9x3gFQe8xUkWRk6aj/1yGJvHWjdOQ85lf\n/6tJ1muG45nyb3+RQG0ZrKTfTGg6TGsQY+oJBlI2/tl5nrNeT26xLiXlqNitdlDCqEcXhjoc/PcO\nZckuCK6YrXlGJYpsExBYQXeeac215Wqez2y3W4Lt1lEwKNlNiqqCc1uizaU04z73uc99fnHOXZh+\nyGPthRiFtOIafhLSIYNEiLYRNrCE84y2E92Sxn91xsexTTsbMHQxUiiSBB4eZub5xOl0ZJomgiDg\ncDiw30dLsKkDBEptkeMj+higa/cfVrmWmCfFKTaUWqOtJZaSN9ZyqCqyouCdMWyVQgKDMZz0TB4b\nzJNCZU6g2tEyn2bMOUKZJ4Lgkjqf0PpMGLY8Pm69QJ2midPpRNu+J8uu4qUtNmzEk0/uP88l7X7j\nhWN4PvOm667nZWHcaX912T6GSO3EKXTsdoH3J87zC0miF3EasWYJFemeUwJ24aomee7Faf1zFKdt\nWxHHtddBtjtc61FNg84WiH1Z8jhNV5GXWmTsxKnJI6Rwwsjakv0+9WGrKLo+23S7K+PU1Jjl2bcY\nqd4Y6u//I5h/4bsQVYn6Ld+NOjvkkTHXZzdNQxy33o5g+q3fXJ9t67fWKs95XL4HOmNoE/e9gwF9\nfs04jWN9Ux3rMFKezzpl1834XPEt3/mrAfiZv/WjbIYRqba0wjCta6y16FKjuIbE4th8BFFlXLgu\nUrSdYid32NbSTA2dHrgaUmvoew4f8ZuG+5B95JrX8nxEqK23PjgLwR52O7Rp2cwd8RxQlPeT/n3u\nc5/73IXphzyLMDVYrDU+/KSVQqiZkNCl8cWEMBODCrE6AKMJQ3fGH2yMlJNjm7JipRLS1CBlwen0\nTN/3SCnZ7XY8Pm6QskDrGue7XKPME+YUX4NNsUQ8BpQbOBvNbC2BEDwIwWNdE55OS/R5QJ7PbE8n\n3s0zmVKen3nWmnNk0E+KYOc6ye1k0WeNPoYo/UQQXLZpE1rnhGHD09OW/X5PEATM80xZHlmtKu+n\nrMuQcHxDEqw9I/S8ltjt9Sx+KAp2S0tRawxFamHxbZoiQE473D+bnt3uGioaxxeSZHbitApZ84QS\nil4PTpwuifckz30qvRaG7quI0yBoyLKLyCtZra4CUvQPxCpGW82LvYpTVRQ8zrMT+tZSb61ntdpy\n5StYhbjdypYkSesD52q8YZyKHrsEltT5jCONQm0t3Q/+AObX/DrEl34c+S/9TpSOXj0boCwL0nT0\n4jHSBwIZuM1jZHwffXA+8xAE7tlaM6TCb3znkyVQV8ZpmgY+TV8UR3Y7c+kHIOHgf/EIP73j4Zs+\njZ4nvvRXf5hdsMGKkFJNmKR1Ptzz7bMr0jS6KVY4sd9bpBR0UqHHkM24wRonHiclPP+VPEdp/cpv\nOlvL5ikikZKp1ZyawbNajWlRypDu95j1ejnpG+ZRkdfDPaV/n/vc5xf13IXpBzzaWCwWay3Gylep\n/CRSMElGAgSDa3uyLo0fBB2hlBgboqVw0H0zMYgEM1qq6j3NUkO62Wx4fMwIw4Z5LnBeyBhlH7HF\nGn1+HWyqM3ixM4MxKCHYS8nbrmN1PDrlI6WrqrzE6ecZURSkxyNvx5G9UlffodYcQ830pFC7JTU/\nW+bzjD4GqPmRIDgsAnVmnnOCoOLxcUOapgDUdYXWL2y3ehFfgqnasw2uoZz3onVp9wWQujmdeNLa\nn8bPicFshBOnpUIMTpxa6ywDF2/lMLyQJBPWQl0GrOw1fHVcGUzixOnqRpw2X0WcWqsJw/Yj4rS5\noEyhu4rTo+j8djMoCh61dts7a2l3wlsSKDeIJU1/Eb4ATVOw2QwLJ1T49x71SB4ZLso+ynP20v3I\nKFcrxr/0F7DvPoX8v/8K8t/+/UgRYa0mCDq/fayq8yt+aqqcD7edWtpN5IsJoqLgsIjTUmumTCCi\npQAhF0t1rGOcZlni4f5te77Rh4LsBoH1qV//bcg45viz75l//Eusw4OrdI0qCIzbJpeSILg8O2e3\n23ibRtcV7HYgV4pqkAQmYdWunGWgO2HWCVc6/5nVYlG5+E2FEjweYiRQnycGLV79WWm6JjgcMBKU\nztnPIXUlOLcV/dx/bX5o3Oc+97nP1/nchek3wEghsFajLoD9SKGEQpsIE1gCPWPsSC9WMAmHkRIx\nowkRjKBHehGhJxiHGiEMq9WKx8c96/WMMZdgU+BOq3WGPvEq2NQvwabOGASwlZK3w8D6eHRUdIDN\nhma/4WdFw8+aknK3cpWYYQhaI8qS9csLb4eBg5TXtPk8cwwN44NE7W8Eaj6jXxRqugjUEGs181yw\nWnXs9xvvP22aZ9br9hqMylck5o3vdj/OFdXuKjTCPOdN27ISwp32V5Z5K0CAraUrCVhA9tutJY4j\njDELjmkEoKkCVubJbwmPkb6K0/OZh+WzaoSh3X91cbrdOoRW0xSsVs3SgCUQ/QORipjNzIvoMOkV\nx3R5dms/Yhmot0h5eXZHmm6WdqgTm407yVelZC1uGKeJ9Gn6pCjYLnzW/Je8Y/7c57CrFfIHfwD5\nn/+A32Kv1+aGn3oiTd12vyoCTwEoxiXEtajtVVV5RFWhNebydz1abBl6xqnWOYdD5v2s05RfSFQU\nuQtbCQRTMPH07d8KUvHFv/EFHtuRUK2ZraHclD6AZpvIe0CNKTgcdp4CYEzNZgMiCyhKWOuUYArQ\nVnPuzu4XrItRd0FsXfym53km3ATs1iFYeDl2SJm8QkgdDgfsbocxLeuxZCM25Dmcu/zuN73Pfe7z\ni3LuwvRDHuMS+ca6+qeLx9QqgRlhIkaICaknRqHQs3Kbr2hY0vgrl8Y37ozPLFitLGm6YbuVWJtj\nzABIlMyQ/QPzi/xYsOkl0NRLsGktJW/nme3phKgq946rFd0+5X0wUEwVxhqMNdRjzVd0SbGNXBgp\nihaGUUXy8sKbvudBSs/qLLXmRWmGB4k6BO5MrS1zMTM/S+R4IAgeljS3RsqawyHyp9+6zgmCM5uN\nE0lNrRDdE5vAbRurqeYl1u40vuCYHoqC1LrS1zKyjJl09IBGQLNDiACY2G4tq5UTp113ZL1eNpC1\nIpqfCGXIZCZeohmdrMBa4jznQWsnIHktTim3XpxGUfdqu3k5vfe9QPaP/vR+VCNmswZrifKch4tl\nAEcCuIDsbX31O65WE0mSYK2lbY9sNo6nWZeB327WU0OTxn67ub1tnvqnvxPzJ38AAPmH/n3U//J/\ncfGEbrfBDaIq92Govk7YhNfiAM+YbVs2TcN22Trmeob9TTFBc2Wcan1+JSClrHxYvilj3zy1++YH\n1OOOtmn4ib/9RZ70ComgMy1dOjn6Qq0R4wYpV1irsbb0FABXHDAQrwR2HZDnkI0ZEun4qWPl/KYX\nv0LTeL9pv/hNd48xcSCZR8s5HxYbilr+bfVkT0/YJMGagmwYCEg454ZTd8JeTOT3uc997vOLZO7C\n9AMeuwgmKwRC4FP5RkqUFkz2shEd6EWC0BKl3BlfG4UWIO0EVtMTI7QgCGqCoFqqFEGpFDU9oY/h\nVw02GXDBJmPY5zmqKJxCiCKG/ZbnWHOeK2YzE8qQx+SRN+s3JIGrI22mhue55LxRTIed8x5aC3XN\n6uWFp7blUQjiRQxVWvMsZ7qDRD4EiEi4sEypmZ8FctijpGN4WtuRpjO7navP7LqOvn/Pdjt6z2ZX\nbEnV9Xz9TOOYp0tyJzufyeYZC1SBoc+cyLOdgGoHuC1hmhrW6xXWWrruRJL0CAFtIwmmGwEZzeh1\n4sRpUbwSp80O56kd7d9HnOavxKkaH73wPYUz1vGOiG/CVtVNNartLKLb+cR7mhov3vv+yHrtKAN1\nEflmq3Kq6bO1LynYd911M/g9343+Q/8hwlrk7/pdqL/9ZZyXsvbFBF3XEYa1D6PZPvNWhPNcY/d7\nHyba9r2vjj3Z2QP4daOh3/iNI5Ts91cBmSTX5qmx2bAJNwglePjln8Ika37ix38STgUH6TbQpc0x\nS53rFVHlkvpB0LHdbpcw1JksmwlTxYygzgXZlHl+amenV/B9Nc8f85s+PsbOC1tNTIN9hZBKkojo\n6QkjINDPPEySeQwo6oliKL4WPzruc5/73Ofrdu7C9AMerZ1QtMYC9hp+kgFSrpmVRekJ7ETHJY3f\nuzS+ddtU9EhnQ8wESvaE4YBSEikTlHnEnFavgk08BhRr64NNoRA8Ao9lSXg+O1UQBMy7LaeNdMxN\nM6GEYr/a82bzhjiICVXIITnwdvOWTeiEQjd3PM8Fx5VleNjB2tWU0rbELy88VhVvcLgpCzRa8yJm\n56N8UO79jIO062OAmi7b05kgaDkcVt4PWtdH4rj0/e5VHhHNb3zi/TS5Ta5NnIBMy5LDNLnTe2C9\nL9QOQLnzG8j1emK9jhdxeiZJOoSArpUE49P19B6MzJurOL2EljphnTgNPlmcXs/6N+K0c8L3ahmY\n3XsvYavd8v1SCsPsN74WMez85i5Nr17ZaTqyWt2UBwQL43SqmLLUbZPrmodp8j7c6g//Qcx3fw+i\nqVG/5beiXi4eyYosc+9c1xWbzXANQ5mD9+CebXtNupcl+2liddnKolEXAH+pEWN208rVfKR5avTV\nomLcEauYw6cekI9r5iDgRz//Y6zLmQ3OhpHLFpbGrDmfl2Yol9RfrQzr9RpjDHl+Yr83qF1A28F4\nVmyl+3PzPmeOgit8/3RiJYT3m57mmTBSZFmIBV6OPYLoFUJqdzjA4cA4DUTjew4moakledPSTu3X\n4KfHfe5zn/t8fc5dmH7I4yL5SCROmF4A+wETEilnlJ4YhUTrAGHsx874mJ6OlUdIJckKaVNssUGf\n7ceCTUc7My7ooL0QvGlb4uPRrR6lRG9T8izi2dT0c48UkizOeLt5yzpcf+xLUNJxIt+l79hGW6Rw\nJ9LjVPAcTnSHrauyFAL6nvB45FCWvLWW9RLEaY3hKDR1Bjwqj3jSJYh6t6CSAFqyDNLUvUfb1hjz\nwmYze/HomKd7D8p/iWbm1G0gk7Lkoe/ddlNaqgxQwAQ2zxA4AZkkE2m6Ws7jZ+8L7Tp3evehJXUV\np1FZ8jBNXpzW2SeL0zjuvTht2+Ijwve69T3FxpMA1rfiVBn0RZxWICcnxFyQS3kElrUnfxof6/Ta\nPGUa9NZ9nrIseTAGCbTWUv/An8R85z+D+MkvIb/rX0NOCrAEQct2m/owVJoudoFKsl3CSv3ck9PD\nbnnTouAwz9etrNIOIYYTp8pcGadxPJGm7vlFcSLLZk9yiq1L6n/6238ZXSx4PuVU54J9C5EQTHNB\nERvEatm6nz9KAQg9eaGuzxyeJHKjqErgHLEO1z4MZbfXZjHOZ+831Qvf9JDFhLFk0IbyOBAEmf+F\nBhr2b99is4xpqlkPJ1LWFAWc24JJTz8fPzHuc5/73Ofrfu7C9AMfZy81aCsIFmFqZIi2IOQEZgk9\nzQKlegIhMTZACxB2BGMYRIzUkigaCCaFPgY+2CQ/EmySLMGmpXP+QuK3mw3lPuE9jd/wpFHK243r\nrRdLLedXGykk23jLu807dvEOJRSTmThPJV9RPc0hdexLl/whOJ3Y5zlvtWaz9K53xnBEU27B3ngT\nzSlG6lsh03M4rH36um1dMOpyBm7yNRvxxp/Hn0VHt4lBCOKm4anrHJJJWqq9gACYgWIL1uGe4nhg\nu1259+oK4rj2p3eXqHe80Bc1MN2I08dFnPY/B3HqhG/uxWnfOT+r30ImeCTTJs9x/VVQBAa9df/0\ndQFyvtoesiz0oSIhzj7Xo9sbxulN0CrIcw4LXquOY/r/+c9jf+k3IX/or6J+7/chCJd3HkmSBGMM\nbXvyPt+qCNhHSynB1FKqmUttlFh8sr7VKrI3AP5bDqlra7p6iU9st0stailJ1QPbbMv+lz7QR5If\n/eKXUDrgoZ1QwjDMBVWKpwCY4prUd8zR1H8m41iQ/ZIAGwjyoyXpU78FP/dneHi4wver6mN+08fH\nFUIK8m5irCaPkNK6IQwhffsWs1phdE7WN8QknHPLuT/f/ab3uc99flHMXZh+wGMup3zkEn5a/n+p\n0KFE6nHhk8YwQxh2xCJitDGCEWkmehFhJgjDnlBI5BgjpEJtFcOD4LgEmwA2SvF2mtgej4imcap4\nvabZb/iK6qinBotlHa55u3lLFmdI8f/vW0wIwSbaZdQzRAAAIABJREFU8C59x2HlmJraaoqp4iuy\npdqvMdvU/cd/mlB5zm5hoaa3sH6laQ8CEYsFkC+h2SNlAhiEaNjvFUniNptNk6PUybc41WWAGp5I\nlNsUnuVAs4lACMK25alpUMCIpdgBCy9UFFuESQC3nc6yFUIIuq4kispFswhs+3BtcVIDY+r8tmFZ\n8jiOPydxmqbrxTKQ32xOFeHsNqf93HNe4UsEtkVBKoQLcoUGu4hTU0qUceIUWvb71at2qIvOorth\nnAaT38jGeU62bK+Ld2+ZPvc5bLJG/k//I+o//ROeXrDZ4DFPWl8rUesyZB8fvGezjgWXmL08n3kU\nwhcHVCt7A+BnAfC77WaWRX672fcnf1kvc0cC+Oy3fQs6hNM48uWf+grBFPMwTmAaOt3TZtfwmalC\nf2p3FICdLw4Igpb1mwCj4fRlzU7t/eddTc3VklBVqGHgEIaA80YrKUj3IUbAuRhhlgSBC2o5hNSG\n+N07xyLWRx4GAzriXCzC9z73uc99vsHnLkw/4LnsTwQuCBUsuKg5UKgAAj0xScmsQ9D4M/60nPGt\n7mnNtQkqJkKKhCkVnGJDZQwGWEnJG63ZnU7IsnSmzDim26d8JRgo5hpjDbGKebN+w361R0n1j/z1\nJWHCm80bHhN3/jbWUE01X6Gh2K1cen5hocqiIDseeTeOZEvdaYflvMUFXIQL/djzBmkuHNKBzWby\nAZ1h6JmmZ++D7HvBWO1IhNueFWKg2AQgJUHf81RVhLhl6TmzmAhXA1qsEdqlx8OwJ8sihBD0fU0Q\nFBdcKqY9sFJrJ05Fz3ARp1XF4zB4cVrdiFObp16crlbDR8SpC1v1bUCkr+1T50R43FNWFKwvCKzI\nYBc+q84V0myXT75lt0uWd25ebXtvvaz5Cv/cTVGwWby/51/3a9E/8IMAqD/yH6A+938un3fHbhcv\nordHqdKHoZoyZr9y4rQcSpok8OgudTrxKKVvVupuAPz6LJagmwsS7XZrjwjT+uw9xE2xIkt2fPpX\nfJbWdPzdn36P0YKokxy0wc45jdFXekFroF/fBK0qdovNoCgKtoeZMFNMIxRfNhwS9+7VWNFL47a+\nAHlObO0rvuluHRJsFK0xNMcRKdY3CKkzh8MB+fTEbDWBfuYwKrpWktc99Vj/I/+7us997nOfr+e5\nC9MPeawLPQlrEOIafhqVQuoZ5pFOrGCGIOgXqH6AxiKY3BlfxkgtCIOBWEbks6IIzDXYZC0PRUGQ\n5w4AGoYMu5TnleGsa7TVPmn/uH4kVOHP+5cZBzGP62uS3+KqId/bmvM2dCzMCwu1qkhfXngzDN7f\ndw4N/UH6FiSTB8j+4HmeLhgV+fBP07hg1MUu2FcbYuPQSY2YOG8UVkrUOPJUFEQ46VJswSxeRVus\nELPzYgbBQJaFCCEYhgalzl6Q6Wbvt7In0dNvE7eVrWueFnE6COvC/wqYceKUqzjdbJKbsJUTp10T\nEN+I03yjPG9zXxQkizgtEm6arUIkbksoZctut16qS0tWq9Z7WSP94J9bbgKPkdrVNSsp3Wf+Xb8Z\n/Ue+HwD5e3436q//3eVbtmG/3yzPrVmvuysdoVq5XnqgGAq6dOW3vcHpxMPyC0etNf2W699nEaCU\nMyo4DmnmSQBBUHl27VinfPO3fDPJbstpqPjCT/4MSiREVUdmZ4wuqIXBZOoatJovPtCJMOxvkvon\nDt8EMhS0haU/KrLYbT7zPmder67w/dOJTCn//VhpzSGLEKEgn2am8/QKIaV1xeHxEbvfM04dq+nE\n3q6oSsG5qRjm4ef939h97nOf+3y9zF2YfsDjcFEWRzO9SeUHimDWjk9qY5gFYdgREbozvpgQeqQj\nwo444L4MGG2EjiWBkhyAN3VNfDo5BaUU03bDcSM5mton7Q+rg0/af63nNsl/CVJ1c8ezqThuJMMu\ndULGGIK65inPyW4g9sUO1+AEmAZsvkWyxe2ce7LMkqbJcnqvsfbZ14wOzYpwXoQeE8eNwAQKMc88\nns+slu1yvrHMa7eFtGWMGN3zg2BktwuQUjKOHVKeCALLNMFU70iU43qe6b2fNahrnvrenbFZ/KwX\ncVqkN2Gr8ZU4Xa0u4jQkNk5EtnPntr2LkfZQlqwuwZy1xV4Edb5C4ra9SnVst8vn3BUkiUvat3VA\nwsI4nVvHOF0wUoe2Jbx4Qv/A92H+ld+B6FrUd/825M+6KlshGh9Aq6qcLJt8o9VQr9nFTpzmfc6Q\nbfxWNjqffTtUZQzzXt4A+K+MU2sL9vsMIQR17TBS3o7Q7/gVv+ZXYoXlx3/2p6hmQyh3rMqatWnR\npqdQGpsuHtzFy+pEY0+SWO9lraozh29yl4HiZ2bUvCYJnD3j1J2wu53/vCkKHm78pgDrfcgsLGU3\nY1p74zetkXL2Yah5Lkn7krVdkReWU3e+w/fvc5/7fMPOXZh+wKNn54cEsMb4VL4JAgI7MwqYrTvj\nh2HPavGXfhSqH0UtMRGjiRGxIGsakkunvZTodOOS9jQMekAKyS52SfokTH7Bv+5ABuxXe96l70ij\n9JrkNzXPK0O3T7msydI852kYvFjKV5Zhv9R0ThZzihaslNuKxXHPfr/yYPi+fyaKGoSAsYuQ/RMS\nxYjmZe1+CRDG8FAUrI1x/s3EMi0ncltFiN6JU6UmdrtgOTX3CHEkDK3b5lUZidxiseRioE0Xcdo0\nPLYtSgjGTxSnkRenF4Zq359JErdV6+qISLszc6M7yjT0G85DWV7LC1IgFosVIUEK58UNw+4jG1nX\natVWEYlYGKe6dYxTIRBNw8M0oYSgt5bqv/vjmN/wGxE//WXUd/8ORG+5hMPWa2dDKMsT+/2lMham\ndsM2cp/FqT8z7lIv8FZ5fm2HMq4d6grgvzJOpazJlprWqspJ09ExZVvBU/ZZ3n36U0zTyI984UcR\nyYaANWlZEZsKbQ1FbBHLJlmf7YKRunhZY08vGGzB9kliNRy/NLMN996Hex5yF4ZyfzCy6175Tdeh\nItgpaqPpiwl08KqyNI4D1k9PmCTB6DP7vkfOEefc3P2m97nPfb5h5y5MvwHGIpHG9aNrIRAWhJ3p\nRezT+JczvsGl8bXW9DZCaEMUjCgRMtsA1ZxYtS5Vb9YJ5W7Fe9HSzh0CQRqlvNu8YxNt/rF+zYBH\nUb3bvCOLs2uSX9e8X1uGJAJwZ/E89w1OtbQUO+tP2LoEyp3fFErZsd9LL/TGsUCpHClhHgNk/wZF\nyGw1L4llCl2j1j7P2S4g/nJlGS4Vpk2IaJ2vVcqR3U4ipWSaRqx9IQzNgmXakkjHDM3p3SZSCIK2\nfSVOy9uzfrH14tQxVG8B/06c9k3Myi4bTt1RpREohRhHHqvqWv2aWn8et8UGgSMMJMnEeu3E6TCc\nWK3cFrmvE/++Z90wLRgrVZa+NKAJArrP/TnsZz6L/JEfQv2e70UQYO3MZqOJ4xitNUVx9OK0bcH0\nWzbhYnEYcqZ95tPum7K8tkPZpR3KA/i3nnEahj2bzWbBVJ3Ybq+Yqm//ju8kiEJOx2d+9Pk9Kt4h\njSSrckJboa2lWFuX1NcWnQuUep3Uv3hlZdayWoPuDMefNhxWDx6BVZv+Ct8vCmKt/bs3xpAmIXIt\nKfTMfJ4dP3jZ/M7ziSzbEj49YQIF+sjDYJnHgLwaKfo7fP8+97nPN97chekHPRasxRqQF4apVAhr\nmOz8ik/q0vgRQow3CCl3xo9kwGQjpJhIAKKIepfwPhioZydSb5P2/yD00y/0CLEI5vQd+9WeQAau\nYSkYKTYBVrmTe3Y+8zSOKCGYgHPi2pAuTUvmvELOe58iT5KR3S5BSsk8twhxRCnLPElon1A2RmM4\nJpYhDsBatmXJbnRbxTqydBdx2iloMkAixMR+L1FKMc8TxrwQhhqtYajSa9iKnjqNvDh9ahr37gIn\nThdM1UfFaZLEy+b0xGp12ZzGrFgCOrql3rrzuxgGHuuaQAhHvMosBGAniy3Tm+KA2Z+wp+lIFGmM\ncb7NlXQC8kiLXipRw6JgkWOUT4+Mf+EvYDcp6nN/FvUf/1feT5llyifpy/LIfm9clWvjAPn+ND4W\nrrZ2Watum8a3Q+XSIBcAv6kMcr62Wq3X5hWmKk3dlWHo13zbr/q1AHz+b/4tjsIShA8wzmyrF6Tp\nmexN8Gyy2PKa1Hde1iWp3zYkTxNBCMNZU+aSwxLkqoaKIZSeMsD5zFZK4sWLO1tLnIWMCtpxZs5n\ngmDna3Xn+czDwwPi8RGNJjJn9qOirgXnpqGbul+4f2j3uc997vMLMHdh+gGPtRd3Kch5SeRLCQi0\nMEw2QmhBGPZXqD4jQjvv6UW0rmzEQIJgAD3wXvWUusVYwypY8Wbz85e0/1rPKwG9hJWeNzCtIscK\nrSreliVrllJLZaj2wAUrVSio9wjhTsJB0JFlbsOp9QC8oJRGa4FtHwmsS9WfIk27UmAtm6riMAwO\nvhTaix6FXiFqtzkVYma3gzAM0HpexOmMMTDUGxLhIP8lg9twSonqOp4WETkJKDM+UZxuNrMXp8Nw\n8uf3vl4R2+W5uqXZrkBKZN/z2DTuuUC1c1YHJm5arSY2G+0DYtaeiCKL1jA3OyLpGrOOwYhJVr51\narvgqc6/6tuZ/4c/hRUC9f3/EfLP/O+42tKW/T65EacvXpzWNQTz4cpPHQv0fsdFue77/hq2Uhq5\nXQD8hUGZK+M0TaV//jieSBLXarU/fCuf+sxnMdPMD//wjzAd9gRBhux7du17hDUM1rV8ebtAe03Q\nC1GRZS7wVE8V2weNsJbm/czYxWxjZ0c492dXSrB4ZclzDkHgfsmwFmEtwU5RotGtZq5nwvDBi3dj\nljDU4cA0N6yngkxHFAWc2pzZzL9Q/7zuc5/73OdrPndh+gGPMQYsCCyBvdSRSgSGSbltqT/jE+Kk\n64g2lt6GSGOJghEpI6yVWDHS6wYdKp+0f0geCGTwj/PL/IeaNEp5s3GQ/NlqXsLp1Ql7fz7zsNSA\nDljOqWXeOgFie+CcIrVTlEo5ERkEEq0nrH0hCCaMcan6QC/e0FBTJQqEIKlrHtrW6dEA10olwQ7S\nrTutQghNllmiKEBrjTFHwtA9t6/WrHAismJw3lApUX3vN5yTgCID+3MQp6vVuIS4EuKlB6owLW2W\neNF7axeoM/wmmTpDiACYyDJx0w51JAicR9a2B0LpQPOn2GAXpMG2KK6997/5N2G+/48CoP7N34v6\noS8Cl9P42jNO6/rIbmcuKFDC+UCkIidOdYU57D0n9LDQF2ZrySOD9PWidgHwC4xp2O1iX6gAudeI\nn/2WX8823dGcC/763/p/sId3SLlCNhVZ/+zsCBimnUOO6fpSieo2yVE0eLtAQ0mWGegNxYshMOnr\nMNR+z6UvVdY1+yXIpfn/2Hv3YFmzs7zv967v3l/f9t7nSBpd0UigK5hr4TixI+KEOGCDY2OCEzAF\ngUrKlWCHJOWkKn9QqUq5XInLqSQunAokhRNctjAgkAFpRtjCshGSwJIYgW4WujEaSXN2d399+e5r\nvfljff31PqMjkIRm5ozUT9XUmb1Pn6U+vXdvPfOu9/k9EIQGmQcUarE7i2uUMLzkCN8Pgp751RU6\nn+PcllldEvcR683QOnWG75911llfIjob02e4FEAc4TA1sSbAqtLZALGGOK7vusYX11EPwP3x9/DA\nfWyNpulo6p6KpP2TqdCE3M5vM4uHEIy0PD6BPonAOdKi4FmHA0dSZREr5VL8nqVV3CbC1BdAgDGO\nxQLiOMA5i7V3CMMaVejLGUE3mMjQssnEt0RVFVfD9XsTjH4UOgPFAtEIsMxmbjSn1l4Tx+24w3m8\nft/riaEaDAzVEOiHyeloTjd3m9M0jXHO0bYrkmQwp/sJiQ7m1JZUA6IqKEuu6nrkpx4nvVqDlPNh\nxcFfvwdBQNe1GLMeug4E01yeGKeZjIGl5W53Qnf96I/gvu8HkLom+K7vIXhsh4fYFyyX+Wh6D4dr\nFgsd/KeQ6dUJ7u8OPvEOyHbLZd+P7VDbjBHA7zaGYFiLcG4/8mqrqiKKdoQhKBEvesk3EAcJj37o\n43z4+hOY5fMBQ7i7Ztbu/PeOGapcuVmJ6pP6eQ5JkuDEUZst+VRxu571WpmGy7FBbNPtTvD9/Z6k\n60a+qQNMbGgmcLCWftODCwhDvxDR9wVZFpNeXmLTFHTDZd2jbcC66NnUmyf77XTWWWed9ZTobEyf\nwdLhGl8RjD3umBoQR2eDgV9anaD6x2t8UujEX+MT02qK0GBci04y8ujpDzZ9MTVLZlxNPBi+w/J4\n3LPPo/Ea+3KzYTlMTytR1guw06FP/gAUS3AR4JjNlDQNUFWsXRNFPrFv6wmm8QGjMnCsJoKKENU1\nt7ZbQkY/igsBK+hmfuNcR5KEN3Y4G1Q92/MYXDrQspmGEASYpjkB/m+aU3u3OZ1O7WhOu25Fmnao\nQnvISRiCVu6Uqg/3+xHuXxmlnPsdWVcKVONOAotFNKCvasKw8E2xtSFoB8apO015qWsuy5JQhBYo\nfvx/x/2JP4V86jHMd/5lTCUc9zaXy3wkIpTlNfO5nwQWhTCRE9x/RYUO1+imKLhybmyH2udgEjP8\nx0VIYI5lrDsWi+nQ4LQjTUuMgXxxm2c95ysJNOCD73wf19QEs+cMu7KfYOqGQFt4KiToNw7DMal/\nYD73E1kbWyw7skjpt5b1WlimF/416Sv20o2Vq6zXzERIjPElGUCYh+wTpe4d/arHSDrutfb9isVi\nTnh1RR8IRtdcNUJVGtb7ikN7eKreUmedddZZT5rOxvSZLNUh/6QjKqo3AVYFcWa4xpchja9AS2+V\n2gUEOOKwBxOjTrHUBFFInEyeEbukn6/iIOb25PaY9N6ajju5YKMQrGVSFNwuy3Gyt0kc1Q00E8Uc\n6f1sNc8dee7NadcVBIE3ZrZNkMrjpGrjPOvUyAjij1SxMphT70f9Xbzz6ffp1JFl4XDuijj2wZZq\nn5C4oU9eW9YT483pMVWPN6fF52BO2/aaJBnM6X5KrMMepCtpZpMR7n/Ztr49K1Dq+ZEuYJDGo69E\nahaLZCwNiKIdItBUIbE9EQCOZAFTllwOVatVGHL4x/8I/YoHMb/9ToLv/c8JXMopVDQdr92r6mRO\nt4UhF1+32tiGddBy7B0NNhuuYGyHKuc3AfwJxkzwxIU987kvPjgcCvK8QQQe+IpXME1v01UtH3jk\nfRRJhMkuwPVkq4+NbVlFBqTHmttT65RzO5bL3Jv1uCUIDwSdpascu8LjzQAfhkojxkqqgc0aiGBE\nECCYBRSBpe0s/br3e69DGcQYhrq8xNIR2YJFLWy3sDpsaW37pL+XzjrrrLOeTJ2N6TNYvXU49YY0\ntKcdU3UB2nt26c2rerEtNQnS+2mpB+7HnmtqGzTLRnD9l6JEhEW64Crz5qbF8njmKCeRv8quqrug\n/KVRNsvRN6LbHGk9yidNLfN5gIjQ9wdEVhijuD6C8haiIa047kzw062+51ZRkBxB/DOlHyujpqPp\nnUwsk0k0mNMNcewbl+pDTHwD8L/Kb5jT7ZYIvOl9ojnVe01Or4ljb067w4wYD/dfaUmTpwDEux0X\nXTcgn5Rmijen+xDTzQHBmIr5/GhOdyTJ6bkmOjBOtaae+jPD3Y6LASO1u7ygft3r0PkC80u/iPme\nHyZwCTfN6bFatGlWTKfqe++LgGlwNeKYNrGDycSXKqxWXA7m7uAczRDi8nuyJ8ZpFFVMp8Ne6GHN\nfN4ThIbnvPirScyM699/nMc+9Ri7fI7EKc5WzNaPnZivud6zdUp1x2Ixw8SGgzuQpQ0ceuoa2jId\n2azreo1dzEeerNlux+IABYwIwTJkjaWrLX3RE4YXI2ngGIZyyyVOD0xtRd4GHr5frsefCWedddZZ\nz0SdjekzWUPewWgwXuX3QeALR60ljo9Q/RQjHdwF1T9d4ysNofaQZaRh+jT+hZ4aJWHCs/JnjcGU\nTdCxmga4KByh/LfrmkgEC2ym0PiBG7pLkcobsyiyzOeCiGBtjU/sO5wNvDl1Mb0odzKlDUCs5aoo\nyJxDRdjOoLthemkzQMmynjwPB4bqhjDce8NXRoTtYMq043oiaBBguo6rJ0xkNRJvTot7m9O+P5nT\n/jAn0lMtajv1pQnpbsey730NaAztdGjN2oV31a1Op34XuWkK4ti3Q/mQ1Xxss2rzFFRJioLFENTZ\nvPyraH/pl705/cWfw/xHd5vTy8sZQRDQNA19vz4OR9luQmaDOS27km1mxglkvF5zMVyN79TRL4xP\n1FcODifGaZp2I/5qv79mOrUsr5Ysbz9IojkffeT32NcHytklBCF9s+ZiuxnJBTfDYbpPMcYXEgTB\ngel0ipkaDvWWPOnQynrCgJuRhp5esKrXPgw1EAbiphmLAwCMEWQRsHI9/f7uZijnSsLQMru8xM5m\nqBYs2g5pDKuNZV2d4ftnnXXWM1dnY/oMlsNf5TvnkCPHVAyKRaQlFHAa+l1Ubel7aDQglJ7IOJzE\n4ByqDRJHpPEEI18e3xIiwkV2wcWw/1fT8+nMUWe+mSc8HLhdFCcofwbl0F6qZQQD9ikMHculEASC\ncx2qjxMEPeoMlFeITXEC15lP5+McF5sNedf5rcfp6EdhN0Ga40S2ZzoNERG6bksQbH37VB0Rtrf8\ndTY91xO8Oe17bm23xPiUdzHXz9GcekSVLRdETLw5NQ1dnoEq2XbLoh/A9PGNRqttjFj/XOO4YTo9\nlhGsx/BWd5gSMxjeoMWmCagyKQqmw195/U3fgP2VN3hz+vqfx3z3D91zclrXNX2/GnGguyJiGgzB\nsHbvd4aTBKz17VDGfx8XDO1QAq50SDMfJ4+zmYyA/6q6Zjp1vPArX4oES0wd8nuPfIjSOer50ify\nq0+fSAvcwEiVDuoT8zVNW/I8hxwOhw2ZtqhVNhuYBhd+19l1FK6EIcTFZkOuSj6EoVAliAy6MKxd\nT7/tobs7DJXnCenFxfC6brjVKF0lrHcN22b7pL+HzjrrrLOeDD2tLkREXiYiPy0i7xWRjYgcROQD\nIvJ3ReTFn+XxrxORlYjsReSfi8i3fJazjYj8VyLyPhGpRORjIvK/iMg976rvl7M/L6kbp6bRkMrv\njUFVCaP27mt813iofgdheLriN6YF26CT7GmpF326lUUZz8qfdZpkhR2bqYfy03XM1+uRSVrFAztU\ngCYYk0zHxH4UGZyzqN4hCBpUBapL6HJUYJ0JhwhQZbHbMW/box+lHvJmuk+h9vfmSdIzmx3XBfbj\nLmtbhwTNrXEd4ToXXOhLBK42m9Gcbv4Ac5okEc45rL0e+an2sCRUP0W+Dhr6wZxOtlvm1vrnmird\nYKR1myLOf5Ak7Yin6vvV3YZXBsZpYnFxBNYy325Jh73N1Td+PfYNb0QXS8w/eR3mu/9TAhvhr8e3\nXFycWpacWx9v7tkXCbPIm9Ntu/P7rFEEXUdeFMyMQYFCLCwGc7pTTO//o8K5ivk8HBmnTXNNnisP\nvvqr6bqU8lMHHn/00xw0pJlPUTpkf2fcvz2Io5ubE9jfLkb2aJ5DOktxkaOtC1LbD3knYZlcjtPe\nQ6gn+P5qxSIISI1BhxKLMAnoJkLR93TrDtHkRhhqzXI5J7i8xIYQaMFFpez3wmq/p+7rp+6NdNZZ\nZ531RdLTPR57HvAc4GeB/w74a8AbgL8C/Kub5lREXgL8OvDNwN8C/ltgCrxRRP70Pc7+O8DfBt4D\n/BfAzwA/ArxenlBddJ+d/bnLDoB9cYTdccc0wDnF0N0F1TeupRLPNk2SkpiI3iU4KkJ6TDb5srjG\nv5eMGC6zS5bp0hsGOl9pOrQ5Zfs9t/Z7AqAL8XunAdAPMXsbIaLM50qSGJxzOLciDEtUgXoBjb/W\nLlLYxYAq092OZV17k5OeJrIcEmT4IIp6ZjMz7rIas/bmtAkw9S0CCWm15zrDm1NrvTlV9buscx0o\nAHebU08BiG7wU72RdOUFEUdz2tJP/BX8dLtl5txopO0QANJiAur3EW7iqay9Jgx9m5U7XBDKwDjN\nQAeM1MV2O9ahrr7h6+hHc/oLfnJ6lzmdjagn2JBl3pweipR86Jcv2i3VfDLubs52u1M7VOiQEcDP\nAOD3jNP5PB5JAH2/4ur2hAde/BLaOuZT7/8kTdOwI6SbTujdjnC7ZjnsdO8C5wkOgN0oRo/nliwW\nCdEyou1btC4IrX89tptTGGrbbP2aQxR5sOoQhoqGYgIBomlIlSiH3tKveoJghjHpGIZaLpdwcYGl\nIdWKeakjfN86+2S/fc4666yzvqh6Wo2pqv5TVf3Tqvo/qOrfU9WfUNUfAX4AWADff+PhfxOYA/++\nqv4tVf1x4E8CnwD+7s1zReRVwH8J/Kyqfpeq/qSq/tfAjwLfAnzPE57KfXH25yunPhCixmGG/wPq\njd95DAODEg1AqY62F5oeImOJRVCTItqjrkXSlOxLOPT0uWoSTbg9ue1h7jiu495XmooQNY1P1juH\nNbBZKP3NZH3rU+U+WS/D5HAzXsHTTqG+ABV2CWxSQITJ4cBFWY4T2f0xZFRFsJ8B5q5d1r6vMMYH\nrbrWm9NQIjosdzLFHs1pUZAM5vSEqLo7EPVEcxqGJ3MaMrQthZ2/KnaOWVGQD+Z0myt2CG/JXdNY\nRxxHQzvUNUHgsNZPjgMJaV3HeiJj0cGtgYTQq7L++q/15nR54QNRf+k0OYWTOS3LEpENaQrWQrWd\nMB3M6abd0iymEARQ1ywPh7EdahM7JPcAflsIRv34W3XPcpmN+6yw5sGXvYjp4oqyMDz6nkcRE1MI\n9JOU3m3JimI06tvYoZlfcXAbuYudenE5JZgHlGVJ2OwworQtNAfPC/ZhqI1vtBrQWrLdchVFBMNE\nWYBwHrIzjqr15vQUhuoQKVleXuKWS5QdU9sR18pq7c7w/bPOOusZp6d7YvrZ9LHh1xZARHLgO4A3\nq+pvHx+kqgfgJ4CvEpFvuvHn//Lw6//6hHPyIiWHAAAgAElEQVT/L6AEvvf4ifvs7C9IAoTuFH4K\njBIH4Qmc75oBqi8jVL9xyQDc//K9xr+XAhNwa3LrVGlqeh7PfbI+6HtubTakfe/DS3NovB+FXQ5V\nDgiTiTKdHkNRe4xZI6LQZWh1CWooI7hOvLFJq4qr3c63UN21LhDBzn8Qho7FQjDG0Pc1cD2YUwPV\nFQERPY7rCaM5vdxsRgrAaE7dZ6b1j3B/1Wui6MaUkwSrljtxj038PvKiKJgMhnc789grtTq0Tvkd\ny9lMPdPT9oisCAKl7wxSX47BrWLiG7KkLLm60d60+vqvpf+VN3hz+suvx/zFH8T04fFFZrn0HNKy\nLDGmOK6VUu9y8tCn3ldtQbuYeqNXllzcML9FppjMDNPeiEA8C9Wb08m4MmDMhpd/3aswQczq0ZLr\nj12DmVKEFpsaertntt2SHV+LHIiHYoYixJjjFu2e5bPnSCwcdjsyVx3zToR2PtatrrstXF6OYShz\nOHAZhhgG+L4I4TJkg6Wpe+zODs1QBudK4tiRL5dDGGrDRaO4SlkVHUVTPHVvoLPOOuusP6LuC2Mq\nIomI3BKR54vItwL/J96c/uTwkK8BYuCt9/jjbxt+/cYbn/sm/Jrd228+UFUb4N3D7x91P539eUpB\nFYsieuSYGnAW0wutJiNUvySB3hCFJbGJ6W2AlYrIQJjlxEH8hT+NL0HdVWkqyp2JDy+JKpfbLdOm\n8bYjh9L7UShTOBz3Q5XZTAdzWiFyjYhDbIIersAFNJFwJ1OcQNy23Npux3WBYgFqgPZYGWUIAsd8\nrhgjONcCdzDGedNX3fLX5eonp30UIM5xWRSkR0TV8Vr/hjk9wv1PzVN3CEOLc4I7XBIwVIGmDjeY\n02VRjIasmN9NADiCXxcLIQxD+r5FxK8f9G1I0J7KAg557M3pbsdV05AMk83VcXJ6cYl5wz8h+K4f\nxHQBvp9+f8OcHgjD7Vgv2uxmZMEQtup3dIuZP/9w4LJpTu1Q05sA/ugGgH8/7rNWVcl03vLgK1+G\n7eFjjzyOrS1OctahpQ9bXN+wLApioFdlO1MIQTuFXTYm9aOoYv48b5q3j1+Txx0ARQETsxxLAwpX\nnZqhtluipuEiik4YqUAIlj6p3+56tJYbYagts1lKvFjgJinChqsaqj2sdiVlVz5Vb52zzjrrrD+S\n7gtjCvww8Gm8GX0D0AF/UlU/Nfz+c4dfH73Hnz1+7nk3Pvdc4I6qdp/l8bfEl3/fb2d/Xup63/uk\nCOFwle8w+DvFYGiFaml7Q+eEOOhIg4CeGCMWXAtpShaep6X30rHSdBJNcCir7LQfOt/vT1fwKeyO\n+6F1jG7noIYo8qFrn9hvEbmDSO+rSMtbqA3pQvGsU1HCruNWURA6R3/MVgVAd/ogCPTGmR3enFr6\nXtDDlZ9y4rhOn2BOrUVF2MwVO6wg3Muc+vDW9WhOKa8I8Puh16mO4aWL7fa0KjDTYed2qKDCAB2z\n2WnCa8wGEejqmLD3ZqqQhjpPRnN6WVXjtfvq6/4Y/RsfGszpLxH8xZM5NebAcjkbGpz2xPFuXNHs\nDwvSYOint3vPCxXB7HZcdd3YDrWb3WCRbhKM8YQB3w6VD8Z3zwsenHH1wHNo654PveNR4jDHSsQm\nUXpz8JPp3W7ESB3mQ1K/dlBORzzVZGqZ3JqgTjl86g6TiUMVio1hPgS4Dt2BMnAwNFqx2ZB03V0Y\nqSAyyDxgZXu6TYfYeOSodt2ai4sFZrnERRDqnkVpB/h+QWfv9SPrrLPOOuv+0v1iTH8e+HeBPw/8\nj8BLgF8TkQeH3z8uQDb3+LP1Ex5z/Pd7PfZej7+fzv6CZFw4AvZ7E2AI6M1wjW+PaXzPLk3EB6LQ\neqwg/VKG6n8xtEyXLJIFgt8PXafewmRVxdV2S6BKG52MpAwjT71hJMNQcK4H7iDSggZIdQvtY3oD\nd3KhM/h1gaIgHnZZiwXYQDl+oC7AmJvmtEf1Dsb0WOunnCEpFsedTOmiAJzjcrsd+anF7G5zerMW\nNYoCrO2H/VCLtYKWlwT4vvfrVNHBBV4O00J7rEQ1QGeQAaVlTMdiEQ7mtCQMfTtUV2VE1u9hrqWh\nHRqnZL+/y5xef82r6R96GL24wjz0y4M59ZfbxuzHetH9fkeS7BkyVbjygiQYdmT1gJ155mqw3XJl\nrcc9qcc9SShop2iR3WiHOjCf54Px3fLKr38RcZaweXzHo7+zIQqWtOooMkdPhWlbLvd7f64o1bHG\n9eAw3Smpv3hOSJRFdHVHt7ke1xD224hFMpj1uvChuyO0db0md47pDYxUmBjcRFjbnm7VEch0LA+w\ndjOGoTRomGhHfrCsN8p1uTrD988666z7XveFMVXVR4cg1C+q6o8Br8FPG//O8JDjPVRyjz+ePuEx\nx3+/12OPj9cbj7+fzh71Yz/2Y+M/b37zm+/9v6bOh5vcKfxkA4MoWAmGa/yWSvx+aRTWBBJjbUBv\naqIwIE7zL8kK0i+28jjnMht64CO4M/GGLB6mnNEw5dzMlT6EISEFXTwm9qNIUXX4/dAa1CDVFa71\nrNM7E6gDxTjH1bDL6gZgfhcBTvyZvacAHBFVqnY4s8M5byRH7FOmtLE3pxdFQTZMTm+aU1+L6j/w\nz9ObU7gmDB3OGrS8whDS6cBODcMxZBWpYs1pWKqNgYMfIRvTMpsdeaw7wtD3ufdVzn7V8cEPfJAV\nFe0891fY+z2XZUk2pOmvv/pV9A89dDKnf+EHMa1whNmfzOl2NKdtC1peEJmBBCA1buaNXrjZcKnq\n4QfqaJfm1A61zRE5tUPNZp7h1fUlr/yGlyIifOR9H6dZRUThksq1bLMWJ5awrrkYCAtloHQzD+ew\nW4exp6T+xQsnmMBQrSuMK8bn25bZ2Ay1qlY+qX/kYq1WzEVOGCkRollIG0PRDeY0WI5hKGNK5ssl\nbrEA2THrFXPoWReWTb15yt4zZ5111peu3vzmN9/lU76Yui+M6ROlqo8A7wL+1PCpTwy/3uva+/i5\nm9fln8BfqUef5fF3VLW/D88edfML/prXvOZeDwG8r8ApwXFiKgFOBMThaOisobNCEnUkEmDFt0AZ\n16Jpep6Wfh5KwoTbE7932gXweA6N8a/9rc2GtOtQIxRzpY0VUfF3/HWKCMznfvdUVXFuhTEHQDDN\nJa4ZWKcTQxnquMs66TpUhN2c8UwtZqPhnc2UOJbxCt6Y1oeXyouTOU0cTWS8Od1u7zKnd5EFhgXU\nm+bUM1m9OZXqFgafrB/Nad9ztdsRAn2A37MUoA6R8hjcapnN/Nul77dEUY0q/N8//v/xXd/2l/xz\ndAeaozk9HLg4HO4yp93DD6OXtzAP/wrBf/gDd5nTm9PNND0QBNC2gqmv/NfKdayCFp1MQJV4s8F3\nKMFWLd3SIIHgGofsTyimOK6YTieoKmlueMFLno2o5Xfe9j5SnoUxOXtXsUtrFEgOBxat76rfRYod\nyghswZjUl7Bk+cDUT98/WZBl1TGjheln5FE+mtN+Ph1LA7i+5sKYESOFKtEipAyUfdNjNzfDUBVJ\nomTz+TAt3nDZGrqtZbWt2TW7p+w9c9ZZZ31p6jWvec2XlzEd5JMDXo/gr8P/xD0e98eHX3/zxufe\njk9hfPPNB4ofh3ztEx57P539eanvrb+ORU+p/AEqHgQOGa7xtVWiqCKVmEYToCFwHUy+fNmlX6iO\nqf009FPOVW443DCS06oCEXYzocx8MxeH3P+DMJ0K+QDTd65ApEAETLvAVZ51usmEXehAleVuNwat\ndjOhTkEYDG+bDOYU4lhQdYM5bUbsU+CGNqdUqWMzTk4nR7LAXeZ0cZc5DUNzlzm1/dBmpQGt9qxu\nVqIO5rQL5QgSQKtwKAuAKGrJ82jAaK0Jw5bXvvanePzTn6bedv45ugP1Ij+l6ff7kUN6/epX0h7N\n6a++8S5zGoblON3c7wuyrCQIoGkE01yN4aJVbDkCUNPNhvmAHN6qpT+a09qhuynGJKha0rRlMslQ\nVR548S1my4SmPPCet3+IPHg+SMTW7Tlk3pBO9numfe8xUqkeEa+4TYgRn9QP5xXT5QQ62H5qRZ77\n3c/tFlJZjFW51+W1x0gNqxOyXnMVhgQiqAhGhGgZssVSlj3uAFHkLbe1O+bzjGg+R/MEw5ZlDfut\nsi73NP1n20Y666yzznp69XQ3Pz37s3z+W4BXA78KoKp74PXAa0Tka248bgr8EPABVX3HjSP+Ed4S\n/PUnHP3DeMP708dP3Gdnf2EKlMB5VmEfBCCGoO8R23LQGOOEOKwJggTtwUpNmMQkyZdPBekXUyLC\nZXY5Xr0WmbBJFESYlyXL/R5RpZoIu6n6dYs6he0UVV/rPpv5szw5bAUopp/iyqVnnWaGTezGoNWi\nqgDvb6uj4d1NofHNS7MZpKnnp6quEKkGc7okcH4Kt06UOgm84b0xjS1mOqwKcE9z6ndjrzHG4axn\npxoCGu1Y5waCgKBtudrvCURowxOPlUOMNN6cpmnPZOLN6Uc+8i4ee+zjTKdz3v32D5MFA9PTHjwk\n3xioKpYDJF+B1ateQfumN6FXt705/c7vR2qHv3q/aU434ySyqQ1Bc+UrXG3DKh2+ANaSbzYsju1Q\nWLqhYlRrRfezU3Bp0pOmKQi88OXPJUnh8Ucf49EPlUyj5/tJt25oUuO/XrvdiVowBYaQlW5TjMkQ\nUbJbHVmWYneWw+6aycQeV0qZhhckgUd1Xdcr3OUFwxgYUxRc3cRIBR4jtdbeG/wmHMNQfb/h4mKB\nLBa4yBFTM9t3rNfKdbk+w/fPOuus+1JPtyv5eyLyVhH5n0TkPxORvyYifx+fzP8U8DduPPa/Bwrg\nIRH5GyLyV4G3AA/ggfejVPU9eHj9XxCRnxWRHxKRv41va3qzqv6DJzyP++Lsz1/KsGVKOFSSWjF+\ncoaltSG9E+KwIzUxncYY03l2aXYOPf1RNUtmXGYef1TGwp3U4QQmTcNVUWCco02E7QKcAbqY4wdx\nDPO5IqKo1iNOytgJrhxYp4lhlfqvb16WXBwOfodxIuwnAzR9P4HKh3byXElTBqD6BmN885QrF4TW\nm+h17KiO5nS3I+86GCan3QDMP5pTvxvLMDntEPHm1PYBVFcInkm6ngzmtGm4GkJATQyH3D9H3SfQ\negOdZZYkCXn961+PqtK2De9617+i3c3JzPAc7Z5yMTlB8rdb8qM5feXLaR56yJvTf/Yw4Z//gdGc\nJkk9mtPDYcNkcjSnAWF35Rmqfc0mE46MqXyzYT4Ei7bisEvjzWmlSDlHJEK1Yzp1JElCPsu59bwF\ncWT56Pt/l3IzIw1uo+p4XO7QJZFHat2oht3O1J/ZKrrPEYmR2DG9BXEU0606+n5NmirOwfU1zKNL\njypzPatmg15ejmY93O3uwkiFkSGY+aR+s+4wOhlRVc4VLJdLdLlEoppcId42rNaOdb1+it4pZ511\n1lmfu55uY/oPgDvA9+GB9X8T+HrgfwP+mKp++PhAVf0Q8G8Cv4GvL/2fgR3wZ1T14Xuc/deB/wZ4\nFfB/AN89nPtnn/jA++zsz1nqFJzf6TPDVb41BkQx2lFLivRCHJckGtFqgqMm0B7JsvM1/hdBaZhy\nazL01ofC45nSiRJby+2iIOw6+lDGdL30Q2LfBkSRsFiAMYqq55JCj3Gedao2oI6E64F1mtU1l0cQ\nf3ZjGltm6LAqkOc+M+P3WDeI7FEFW80I7Xwwp5Yy8dO9xW5H3rbD+gGjOdXNfDCn7i5zOk5O+xAZ\nzGlFxyYPwBjCuuaqLH1CPRG/wQDeQHf+Xns6dfzMz7yWpmlo24Z3vOMtWOs5pBMzNDj1e/azhOFO\nnkVRMB3M6fpVr6B5+GH01rMwb37TaE5VLUlSj3uh3pzWiEBThUSDOS37im0e+ivyrmO62TA7Tk7F\n4ZaBT9WXilSLIVTUDisTMc9/yQvIpoLtaj7w27+L1s8nMlOca7kTFrg4GjFdIdAJHI7T2EqReo5I\ngEw7pguDcYa6qMc2K593EpbJjTWEJwD4k7JkMWCkFAizACaGVd/TXXcEshhNdRCUzBYL7GIBUrC0\nAbptWBUtRX2G75911ln3l+RcV3f/SUT0c/m6/NxP/L+8++3vZNX1fMfb3sK/99538XNf8828/1u/\nnT/znX8Ke/FCXGW4ml+zCJeU/RRnrkkix+TZz2eRLp6Cv82Xh5z6+sfWtojCslIy64MqqzynSY+d\n85D04g3lbIvEvgZ0t1P6XvD/rXgJxCgWza4xYU9olatKCBS6KOJ6NsOJELbKbAcGQZMG8j0iUNdQ\nljJMT6f4VlwIswN96M3IojXkjfMT0+mUfRwjwGyrRJ2goshyC6ZH1VAUirWKMRFwC+cEE3Zodo3i\nyIlZHHpwjjbLuJ5MUGBSKlnlEUrMd/z+Jz/Cq171bw31n/C85z2Pd73rY7StwRhIZyWVK1CUWTBh\ntm89pDSK2C0W7IZU/fK97yf91m9FHv8U7t/+d+hf9/+gWYhIQFXFHA4VIkKeX3I4JKhCMmlogxWK\nMo+mTLe1PzuO2S4W7J3zZ7sAs7GgYKag6WagHyRst47NasP7f+s9WJvzole8mgdecBsbv5/etaTR\nbW5XMWItfZJwZzrFAXkvpFu/hmEWigvX2Mpi1ynFrkYuhdl8TtfNaBoIQ7i4tKzqO1i1ZGHGhWSw\nWvlvuosLtlHE3lpk+HnRbnriDq7SmPDK0HV38CGxGdttR71eY4qKnjl3UmV+O+KB5cW5+e2ss876\nI0lEUFX5Ypz1dE9Mz/ojSNU3PxmEwJ04pipKLzHWGdK4JTEhrSQY6cCeK0ifDBkx3Jrc8qlqgfVE\n2Ebe5FwdDuSHA4iwXwhVogiC7BZQJxjjE/tR5K+k4RrVCsGzTl0X0wcexN+JEg2IqsA5+ljYLTxJ\nSpoE2c3HPdY8981TsEfEm9G+ygm6gZkZO3aJjHuR07b1q6tzoYsGAsBmDtZPThcLGcH+/lpfcX2E\n1Kc2p2PVaFxVXFTVuHpQDyA13U553c+9EWNOP78++clPUpa/T5JYnINqOyFl6ZPrtqTIQ46Q0llR\nMBuS6ZtXvIz64YfR28/G/No/JfyO70eqHlVLlrXkeTZMTldMJo2fnJYJsfNA+223p5xnHJlN8xtT\n2Y2x6GKYnO5BGs9mhYb5PGBxseDZX/E8RPY8+qEPUB4cpnkhRkLqfsVqIhAEhE0zFjEcQqXL/d/b\nbYWABUFmkLRmlqfoTgcm62Fss9qsAy5SP+mt+oqCxrc2AGw2zJ27GyO1CGkMbOoOW+hnhKHC2QzN\nI0JKlpVju7ZcHzb0ruess846637Q2Zg+g6XOoerrSI+pfBsIvSiNRp5dGpWkxPQ2opeS2Oi5gvRJ\n1CJdsEy9qdqnpx3RRV2z2G4RVcqpsM+Gifhhih6yASdlSBILKCJrVPcIBlNfYZsUazzrtDFKOKwK\nRNaeVgVEPfC0mIMKSQKz2bDnqQdgjQjYekLQeXO2i5Vt6s3SfLdjdiQAzIX2aE6LzzSn1rb4a33F\ndTEczal0/ppchLQsWQ5sz0MOTQKiwt//qddSVfX4mk0mEx555BH6/g5J0qMK9T4jZWhEcjWb6enq\nfTYk6hVYv/yrqI7m9C1v/gxzOpmkqCpluWIy8cn55pASuWFloNt9hjk97rNuAoubG29Od4Jpl/gf\nmTWLRcQLX/IiJrMc12/48O++B+fmBO2zMUDZX7OZGBAhqSoWtf/77hLFZh4j5TYhgcwIF4IJayZh\niqsd260nCwx/XYp1yEV6ObZD7SM9AfhXKy6AeHg9RCC6CDjg2B063CEgDP203NqCxWIG8zmaWBIc\n+b5jvXZclyvOt2dnnXXW/aCzMX0Gy/UOUNQpgR2MqQSoOroexDrioEeDFHEK2iJpSnYOPT2pmkQT\nriZD2CYSHp8ovSh513G52WCco5kIxdSH16SeoDuf2J9Og6GuUhHZoloAQtBe0lcT1AiriVAGDuOc\nb4nqOtzQWtobReyxhsrXos59KydQoeoJALbOkMYbv32kFIM5ne33zGrP5dzP5QY79WRO5/NTzSpc\n+wBXl4yT07107CbenGaHA4vhyv4whY+vHuP9H3z/Xa+XtT3vfe97sdbS99ekaYcqVLuUVIe9UFv7\nkNUwSpxuNiwG3NPm5V9F+aY3oc96jjenf+77kbJD1TKZdKM5raoVk4lHM3XlhPizmNNFUYyYqiJ0\n6Mz/mHQ7wXQDC4uK+TzipV/9MhTHfvP7PPbRj+DsFaa9AFezd/vxdZgcDky7zoesJoqLQa3iioQg\nmhDMII4apuSoVYrCh7eObVa7TcwyHSa9zZYyC0f0laxWXBpzwkgFxmOk1HIoOujSMQwlsmOxWAxh\nqJLcGcymYrXpz/D9s846677Q2Zg+g6XDP6gQHpufTOC7IVXIkpZUYlo8u1S0PV/jP0WKg3iE8R+v\n4RtxJM5xa7Mh6Dr6IbFvRZE2GSD3QpaZYdKpiBxGMxn2S/pyhgpsJoZd4HcLr7Zb0rZFAz857ULA\nBkPI6mhOFWPAN+H681ybnq7hI2WTAiLMDgfmVeXN6UxonmBOjdG7zKnIChHFdQnUwyTWdOyPpmy/\nZz6sCfzjf/Z6gvDuprGyrHj3u99BksRYa2nba7KBC1rtYxI7XGW7xrNTB65nvl6zHM4oXvaVHB5+\nGH32A5h/cTSn7WBOe7IswTlHXV+TZd74dmVOovc2p8uiIBPBAZvopjkNML03p8bUPPuBBS962Uuw\nfc2nPvZe6rLF9VeEdonaHVtpvYnET6Qza3HAdgYagnYKuynhNIXEEZqaST9BnbLdenM6kKKodum4\nF17UBfUsGwH8ZmCcGvzPhCA2BNOAteupVi1Gj4SBniiqyadT3HKBBDuWNqJb1ax2Fft2/2S8Hc46\n66yzPmedjekzXQoOHVP5vRFUQa2/xo8lou8DWqmIjRBnU0ITPs1P+stDRxh/FmY4Ix7GbyyhKre3\nW+K6xg7X8H1wmnRqb0gSw3yu+ClXDVwDjtDOsIeBdToJKEKLAJe7HXldgxG2c6UJ1TOqigXaB4Sh\njHgqaFD1oRhvJi8RDGUE64HHOi1L5mX5h5pTY8C5ZjSn2qXQ+FWGrek4DKZsutsx6zr+4U/9FGX5\nmS28b3/7bzGbKWka3zCQfi+0OkTEvScf1LbxrVNxDNYyWa9ZDmGo7cu+ksNDD3lz+i9/jfDPHs1p\nT57b8eymuSbL/MpAe8hJOZnTwywdmaEXu93JnMYOpsa/37YhYj2I1piKl77ihVw8+zZNteWj73s7\nQZDTNzMCm+PsliLoaZLQI7qKglgVi+9IOEL9pZwTXcYQ9UTizalzjt1uQ57XR3IWzX7CPBnoCtWa\ndjEdVxzC9foujFQ0CZBMWPU97aonDC7wzVA1eW6IJxN0kSPsWLaG3Z2W1WFHa9sn9X1x1llnnfUH\n6WxMn8HyF8GA6DgxPTY/QUssDg1SDA5DC1lGFp6npU+lRISL7MLD+AWK3JtJA1zt92SHwzjprEPl\neCevbUAUGZZLwRgHeJyUak/gJtjDBc4KhyxgFVtUlcXhwKwsTyGrSBE143lBIMN5ikg3mFOLdglU\n3pxWER5CL8K0qlgMJnI/E+p7mNPFQj7TnLYZWg+TvaCjnPg60uYjH+G9jzxyz9fpwx/+GF1XMZ1a\nsixBVanrFWlaecpAGRK2A5bLdZ4Zm8TgHJPN5m5z+qaH0ec8F/Pr/5zw2/8KcmhQ7ZlOHWnqJ6dt\ne02aenPa7HPSYfZa9HsO82zEVF3sdqRHc5oqOtSMahFhBnMahjVf+8e/mihN2K4+xSc++h6MucDW\nOaYPsK5inTi6KPANYUVBoEpnYDfVEU0VdBdEVzEEHRE1WefDW7vdmum0OWJM6csp09gXEqzqNd1i\nNj7fpCjuwkjF8wgXCddtR7eyRNElxzDUYjEhyHNkHhPSMDv0rO/0XB/WOHX3/DqdddZZZz3ZOhvT\nZ7CsHYypQjBMTDtjUKsEYUtqYlpNUeqxgvR8jf/06CaM/5AFXMcWFbioa6bbLeBZl2WiCAZ2C7SO\nCAIZAkcW6PHmtCXQFMpbOGuok4Dr1OFQZlXFYrfzafj58Tzx5zURxjCcp4j4ulHVHu1jKK9ADXUI\n10ewf1WxOBz88/ss5vTuyakPWNFNoDma054qDfmFN76RKLz3tD6JEz74gY+Oe6F5ftwLXZMkB5+o\nrwOC5hahCem09+Y0TcA5ss2G5YB62n7lS9m/6WH0gedh3vqWJ5hTO64MdN01WWYHczoh0Xub08vB\nnFpVigzIh8lpESMuB5Rs0vOqb3wlAB//4Pto6xUic1w9Rboe63pWqWLDAGMtV0ce7am1FbtTQi6J\nbiWodMQ0pL1/Hbbb1WhOyxK0njOJJh5T1hbYi+UI4J8cDkyH0gBUiZcBvYFV3WG3MoahnNv6MNRs\nhmQ9mRjiTcn1qmdVrb64b4CzzjrrrM9RZ2P6TNbgSoMgGHFRzoQ4VQyWkBDbGTpq4jgiSfNzBenT\nqJsw/iYJuJMpPY5517EsCsQ5qqmwGypH5TBHDynGCIuFIYosIg6Ra5yrMERIeRvbhbSxP8+i5G3L\nxUAAqKbCLnUeT7Wfo1V8w5w6RCwi16h2qI2Q6haiAU0Iq8x/i+V1zfKGOa1upvX7kCDghjn1O6wi\nQJtD46+dN5HlJ3/mtRzucY1/1Dt//V8jQ7l8mrbMZr4Aoq4L4niHMdA2vhI1FN+KdCex2Bvm9GIw\np7uXvuRkTn/jXxB+2/fBrh7NaRxHwz7rnbEOtD3cbU738/Q0Od1uSQZzuskUJmaYnKaI881bz33B\nnOc9+ALUWt7/zreRpiGQ4Kop0rdYnC9LMELYdVzs98fWVjp/BP3aEcpgTumIXUNik2FyumI6bY+M\nfYJuSRqmvrq0K3AXS59y2++ZNw3ZgJESY4gvQmqU9a6FOsWYCeAwZs9sNkWXS0xcMpcEXR1YFS3b\nZvtkvRXOOuussz6rzi7lGS3PMVXVEWMzhswAACAASURBVBfVi0HFEQIuzDBiCWjPFaT3iaIg4nZ+\nmziI6UPDnVxosEys9TWmfU87EbYzhsR+ju4mgDCfByRJDyjGrLF2j+CNmm2H8ybQ4Ui7zp+nSpsb\nthPfEiXlDC0TRBjMrgJHc9qiNkTLK3DenF5PQEWY1DXLwUiVc6E6Tk63n2lOVW+a0ynazNhsNvzW\nO9/1WV+X/WHPO37rHVDMEJcCjjhumM8zRISm2RFFhV//bAxS3SIysTencU+fJaBKutlwaf3e7e4l\nD7J708Poc5+Pedu/JPr274VdDVhmMx3NadPcYTLpR3Mau2FHtj+M7VPStlxut8THyelEITO+JavI\nxuf86m/4CmbLOdX+wPve/TbSdIqqwR4SxFl6nA9wiZA0DYuqAmCXMWKk+rUjCi6JriKUjsR1JOrN\n6X6/YjrtEIHdDqL+wn8vuZ7rfoceGadFwbLvTxipAKJ5yEEdxaYhcHNEYlR7kqRlkue45Rwxey5c\nTPV4xZ3tnrqv7/0FO+uss856knQ2ps9kqYI6VCGwx1Q+GHFkQUTrEqxWvoJ0MiEJkqf5CZ8FHsZ/\nlV2dQlHTgIP0xAP+KWxb+mQIRYkibQbFFHUwnYZMJv5rHQRbrC1G1mlfp9hAuB7MbjyY3cBaukzY\n5gOeqpri9unAThXi+CbYvwEXQnkLXEgb4K/MBSZNczKnM6H8LOZURAdz6q/1pZ3x0OvfQhRHf+Dr\n8tbfeitqFS1ypPcjxCiqmc+TwZweCMPNgFAS9HBFJAlWLXeijm4wp0lRcNn3CLB/yYNsH34Ifd4L\nMG9/K9G3/SewrYD+Ceb0lNa/y5za8i5zerXbEYvQq1LkCqn4l247BU0wAXztv/FS4jjm07//GI8/\n9q9JkhxVwe4DRA2tONYZnlhQlmOxwXZymsT2a0cU3SJcRqhrSW1HYvx+7OFwTZ4fzamQ6qVfb3Ad\nKyp05ndfZbPhUpVwwEgFqSGYGgpr2V03BLJEJMC5hjwXoiyD5QTRknkDu8ebM3z/rLPOesp1NqbP\nYLnh+l6Rcce0NwZxIdYJ2gkaNIRxTBpPhhags+4HfUYoahpSBD0hcGu7JakqXOhxUl2giE2GhL2Q\nZQHTqcVXTR6w1k8nw+6SrpyMBIBSeiJrvdnte/rUUMx8S5Rp/CRWVZnNDEniEFFEVt5Uqm+dwoV0\noXAnU5xA1jQsdzu/JvCHmtOKozl97U//Qw77wx/4mrzvg++n8zf56DZDer+/GYY1i0WCMYamKRFZ\nEQS+wtUdLokkxanjOupoJ4M53W656joMcLhpTt/xG59hTo87p01zPXJOm0NGZE/mdDeNvTltGq52\nO6LBnG6nQCKoVaSYIRozW+Y8+MoHCIOAD/3OB+i7HVEU4yzYvUEw1MGJHTvf70m7znNTJzrusPZr\nR5RcEc5DnG1Ju44k8Oa0LK/Jc28Yd1vDhCu/ImIb1mEHee5b4dZrLkVGjFSUh5hUWPc99aonMEtA\ncO7AYpFhJhPMIiTGke4bVnc6VuX6DN8/66yznjJ9wcZURB4Qke8UkT8nIpdfzCd11ucm30iqKHa8\nyu8IwUBPjDE94jy79HyNf39qlsy4GMDph0nIddSDwFVZMtnt0MCb0zpUxIVQLHCtIUmCoZnSEgQ1\nzl2j6ojsku4ww4mwyQP2pidQ5VZREHUdLhaKud9FlTZDt0ewvyFNT61TzpWoM35yak8sVouSDSil\nozk9xHfvnHo01cmc7nYf4zd/89f/0NdCgN95/MO0GUN9aYo0M0AIAt+2ZIyh62qMWRFFirWDOSXz\n5jRoaQZzGm+3XLatN6cPvpji4YfQ578Q85tve4I5PaX16/p6bIhqy4ywH6pRXXVPc9qpUkwVYhmm\nvTNEIx58xQu5/cAU2/W8/92/izHOc1/73jd9IRxCx36ohL3Y7YitpR92WHXir/XtRokmtwjyENd7\ncxqHHntVVdfjCsJuG5CbodShr9kkOgL4w9WKiyA4YaTmIUTCddPRbYQw9Nf/qjsWiyk6nWImHVOJ\nCa73XK9biqZ4Er77zzrrrLM+U3+oMRWRHxWRj4jIB0Tke4fP/TDwe8DPA78AfFxE/uqT+1TPeqKc\nG0IyKIEecVEQOsVJRK8lIZZwMj1XkN7HyqLsFIpKQ+6kjh7Hsm2ZbzagymEh7GNFCJDdEq1DwtCw\nXBqMsRjjcVLO9UTOs05VDdvcT2INwyS2rnEDO7UTxfQpFDPUQZ4HZJk3p8ZssHYP6vc5sTH9UIna\ni5J23WhO66M5ZTCn3d3m9Fd/9ZfG6f4fpDAMeeTd72Y3gXoIA+k+RmpvTo1pWCxCgiCg6zyLNYoc\n1oI9XBCTe4RS0FLnfm0l3u24ahpfE/rgi9k8/BD6ghd5c/of/MdQlGMg6gjhr6oTQ7Wrsv+fvXcN\nti07y/Oeb4wx51xzXeZa+3JaEt3o1kJGyDJgAjFJOY4IYEzFBHEJRVGYpAhxoGIqCS6IU7m4IBRO\n7EqIgyEJ5dgBYsoOIbaDIRhLJo5TiQ0BDALLQkLdtKS+nL33WnNd5n2MLz/G3GufI0AtoKXmSOv9\n0XX26dOz59p7z7Of9Y3vfV8Sf/Yb4NQ8ODkFtgtFEgFP/Byo4/d9+utZLBzb6zXPPvNBrPUYA0NX\no3URp7GpUidyLErIVMcdVgizOzhN55eY3BH6jrz3pMmDU95o3tqVjrm5QBCqvmKX29iU5T3Zes3S\nxmIDESFdOYIRrqqOsEuwNk6nrT0wn8/Q1RJJKhYyYXhhx/W24tB9+In3SSeddNJLoQ8LpiLyrwJ/\nAZgQs2r+ioh8BfC9wM8A3wR8C/A+4L8VkX/po3u7Jz0sfaD5aTzKtw4Vgw0DmB57qiB9JHRrikpM\nwpDY2BSlA3PvOS9LxHvahbA9OvaX6D4d46QM1g6IxDipEDqcPpB1OnXcuB5UuTgcyOsaHdcEOhMQ\nn8I2tk5Np5bZLH4vxR3WHaoSo6R8FndYp3IHp6P7v1kIhzGaSrcPw+krXvEY3/It38I3fMM38ra3\nfQ1/5I/80ePrvvfYPWazGcYYdrsd7/m5n4tO9RyqyKPoIUGqJWAwphtfr2UYekK4Ikk8IcBwWJIS\n8z3XpqOapSBCst8f4bR+3WsjnD7xasz/949JvvhrkM1hDOEfPiRDtUEEumqCG+7gdDtPwJgjnDoR\neqAs7uCUbcFsXvC6T/tk8lx45t2/Rl31ONciEvBtc4zT2kygtSAhcF6WTCDC6UTv4LRU0sUFJrOE\nriXvB5IkeaApK8LpfpuwcDGWbNfvOcwzbntNp2V5jJESgWRl6UW5v2uRdj6aoTx5PjDJczgvMKai\nCCn7Zw9cH7b0vv8YPhUnnXTSJ6Lkw+0OichPAk8An6OqBxH5HuBrgXcBn6saU5hFZDb+3j9S1a/4\n6N/2x7dERD+Sna7/8b/4i/zqr7yLUg3f8SN/lYv6wLd90VcxedOb+JK3fRHnj6VkFyseO//kU9vT\nIyJVZdNsqIcaCUpxGJiR0ItwM5/j0xTbKsUeDEJIDshidHbvBvo+QVUIYYW1OYN2yPQG6wJpO3De\nWQxCOZlwmM0gKLMtTLyA8eiiRJzSNJ7DwQDCMMzG415FJ2skaTBBuaggUaF1jpvFAjWGyV6ZtRIT\nAIotJAN9H9jtzLh6MkVkxeOPC+cXF/zS+34RK5azztLfbOj7nsnjj7POMhTIepjviGfQEw+zLRBQ\ndWy3MAwD1lqMuaDvHSKQzve0xKijZUiZVRHKh9mM6zzHqzJ56mnOvuALkWeeJnzaWxh+/IfRV8Zm\npLpOqKoWEWEyOaNpJqiCmzT4ZI2izM2EYtdBCPjJhOv5nEGVFGFRanwb7wIsS37x//0n3Dy/w+UL\nPvUPvhljaoZhhsgSOw1ossMgXByUJADOsS4K6nE3dNkazD6AgJlDW16hvcfkKZW19H2Pcw7nLmka\ngzEwW9bshjUAZ0lBXh7Ae5hOWc9m1GOslm88femZGcPFZYY316h6jJmyXncM+z3hqqXBUi0S7j0+\n5RWLe6fYuZNOOukhiQiq+pIYWV7sb5c3Az+kqrdnON8PLIC/fAulAOO//0HgD70UN3XSR6r4JXDm\nbmIajIAoIXRkVkinixOUPkJ6yBRlJJqipCdR5XK3I6lr/AOOfdPP0HIOKhRFQpb1xHzKNcOwx0kK\n1SVD5+gyF3M/NbBsGordDgT2S6hciK1T2yXaGyYTy2KhRPPRgWFYA4JpzwndhGCE6yl0EsiGgfPt\nFgmBZi7s0/DQ5DRJDItFiA59qYC4r/hJr3o12scczpt0wN07Z7VcMtnvuajrGECfwG5JXEBtLLJb\nAhaRgeWSo6ve+yvSdHTV7+ekYQz3Nx37WQIiuMOBi6rCitC89jWs3/52whveiPmVXyL5l78Eed9z\nQCDPe2az28np+tg+NTQTbB8np/vQHCentmm42O+xInQou6WAJe7VbAs+9TM/lSQzDPWWZ59+Fu8t\n1u5R3RHqKfRTAsrNzOCdhWHgrCyZqsbGqSzgb+tQd5AVF4i1hLpjRiBJEoZhYBiuyLJACFBtc2b2\nrmq1LWbcpvOvquoYI2Uzg50ZDiGwuemwckY0Q1UslxMkz7ErSy6WdFtxc91xXV2fmqFOOumkj5pe\nDEzvAc8+8PHtr5/6Tf7s+4DHXoJ7OukjVYwxhWCw4w+K2sRObsQjpwrSR1ZHU5QYDvOEa9thVLk8\nHJjs98c90dYEjJ9AWaADzOcJ0+mAiOLclmEoseKw7SV9mzCkjqtc6dUz7zpW22084l4a9okiGuE0\ndIY0NRSFjteqGYYbQtARTvOj+7+VQOY9FyOctgvzW8JpHH3G97mvec2TmPYc48cGI9NSLSYgQlpV\nXB4OEfZiSytqQDszfuC4NS5lWUIIgWG4Jss6VKGvZneRT9KxnbkIpw9ct3n1E9y84+2EP/CZyFO/\nRvLWP4788vu4Dfifz7Nj+9RkUt3BaRePyvfaUs7cEU4vH4DT/VIQJ9Bb0u4eb3jLGxATWD/3DG2t\neO+xdk8Ia6RdoUMWA/in4BMH3rPabJiF2O5WZoFhHocRYS+ki3PEGPy+ZW4CzjmGYSCEa9I07t02\nuxm5HatLhx19MQcR5HDgvOuOMVLJ3GEnhu3gOVwH7Ai0cKAoZuh8jkw7FmaK3N9zdRPh9OTUP+mk\nkz4aejEw3QBnD3x8+zb5Nwu2WwC/da3LSS+5wjglVQnHiak3BhMUS4A8P1WQPsJ6yBQ1TbmfDXgC\n523LbLsFA7uVUNuAhGR07AvTacJ87lH147TzJu4ht5d0dYZPbMw61YHpOJ2TEGgLYZcGUBkNVpYk\niXAKHucaQrhBVTHtGb6ZEgRupkIrIeambreYEU53D8Cp9vYIp7dGqNe85ol4vF+vMMMiNkTRRIOR\nMbim4XK7xQHDCKfBAYNAWSCaEMPyA5NJhNOuuyZNm2Me6a1xaS/9HUTWNZf7PU6E7rF7XP+9nyR8\n7h9Gnvsgyed/CeYf/QqgZFmEU4C63hyrUYc2w7RjvSzdQ3B6OzltRdkVIFags7yieJLHHn8FGno+\n8J5fxZiCYThgTIn3B6Q+jwYz9bERLEsgBJZlydz7mHOaKf0iwqnWhnR2gRjDsG2ZJ4pzjr7vRzhV\nvId+XzCxUxTlOuwZith/anY7zr0/xki5wiJOuOl6utIezVBJUjOd5rAqIKlY2Rnh+R3X647r+gSn\nJ5100kuvFwPT9wKfcvuBql4BBfDTv8mffRL4wEt2Zye9qELQeKSmHCtJ1ViUgKQJWT4/7YI94kps\nwuX0MpqisuRoilr2Pcux2alaGXZJQHARKGtLlrkxTmrAuQbvrwAlHS5i1qk13MwtNQOT29Yp7+kW\nhu3oiGe/JNTR/b9cCiIea9tjNJXtV/hmhhrhZio0JsLp+Qin3cKwyyKc3k1hLSI7AC4uFsAWVQj1\nAtON0Uy0bOYOrMV2HZdlSaqKN1AW4B3gBd0U4KNhZzbzTKcpqkrfr0nT6s641I8QKT3rqbmbcO52\nJEBfFNz/8b+N/8IvRtY3uC9+G+btP8stnC4WEU6bpiTL9oiA735zOHUjnBqgFWV/hFPHG1//mWT5\nhOZQ8sL7n8GYghC2iNxH1SP1BVbHwoDM049wWpQlxTBEOE2VbiHRFNYZ3DhV92XLYsLRFKZ6TZIo\nwwD+sCI1Y9arVvh5zDh1mw1nqgjEKfXKgRGuDh3+MMWYDFXPdOpJswy5KLDJgXMzxz+/5+oEpyed\ndNJHQS9GLf8AeNODv6Gq+wf3SwFEJAW+AnjxsMKTXmIJGpTkmGMqgGDy7HSM/3EiayyX08vYFOVs\nDM+nZ+Y95+s1pu/pCkOZa3TQH5aEvSNJLKuVQaTHuR7v78c4Kb+i288JIqznlr30x9Yp2/cMU6Gc\nKSpgqiV6SI5waozH2g7vrwjBY/slvp6jRlhPDbXcNU4Z7+nmd3AquxWhM1RVPMpfLgtgj7VbRCC0\nU6Q5RzBU2nE9FdQ5zDBwsdkwCbGBqiyUPmVsXFogQ6wDzfOe6TRBVem6DUkSJ5x9k+H6mPFZyxAr\nQR9w1aci+Dzn6kf/BsNXfDVy2OPe9pWY/+3vAzpWo6aICE2zJU13GBPhNN5vhNPNzN7B6eGAARqj\n7BcKBqyf8IYn/wAiws0Hn2HoOiAnhDXwQvza1Rc4jZmsV+lAm8XVnPl2y7KPjvhdqrRzQEC8wyZn\nCIZh3bCYyhin1QE3OKf0PWh1Rmoi9N7YjjDNYxHBZsPtwb1YIVlZvMD9soV2gYhFtaMoLDZN8asZ\nNjlwxhT/3I7rTcdNfXOC05NOOukl04uB6Z9V1bd+BNeZAn8S+K7f/S2d9JFKx3/eTku9CGoVNZAm\nCRM3eTlv76SXUA+ZoqxhM3ds6ciI+aS2bSNQLiCgmHZJ2GYYI6xWFmM6nPOoXuF9R6oF/X5JCIbt\nPKGUHqcaj867Dp8byjl4DUhTEPYp1hqWS4MxA84NqF5HOB0Khio2WK1nhsp4khDisf4Ip9sH4HR9\nFSemjz02BxTv9xizRkQJfQbVBaKWliGG+ifuGKU09R4VYbeA7tgSNYNuAih5PjCfx+rTritJkt0I\npymmGQPoxd/BaddxcRvR5BxXP/CX6b/hG5Guw33Nn8D+lb8FQJJ0LBbJWI26I0m2GAOhzzBtvG5F\nf4TTpGm4qKoIpxaqAjBwWXwSr3rFk3gfeObd7yZL56haQnhhzI6FUJ3hNB6/36SeehLhdLbdsuq6\nWLWaQjPCqRGHNStEDX7dUMzlmPV625LV9wL1OU6SWF2aejTLIASmZcliNEMZJyRzS49yf9NhQmyG\nUq1ZLieYNGVY5rgRTvtnd1xtWtbN+mP7QJx00kkft3oxMH1WRL5XRD7rw/0hVd2o6t9U1V97Ce/t\npA+jEMJY/QRO7+pI0RhqPpmcKkg/HvWgKWq/SLkxHVaVe7sdaVURsgfC8/s5Wk4RDKtVgnMd1gZE\nrhmGmpQZ/nCGH4TDPGFt+miw2u1I6zpeq4ABxbQLwnaCCKxWFmt7rB1QjaH+zi/w1RJF2EwNBxke\ngtN+hFMUts/GN1L37p0f3fre14hcY0xAfQLVJRISeh2iWSt1EAKrsmTe9yiwm0M7tkSxmyFt3IvM\nsv4IkV23w7lyDLZPMM0lBksrnuuZoNYifc95WZKrEozh6i/+V3Tf+h8hIeC+8Zuw//UPAEKSdBTF\nLZzuj9f1XQr1+W+E07rmfJyc1haqIh7BP/maT2OWnVPvK5799V8jz1eoBobh10nTlhDi8bsL0bi0\nSTzVNML2dLdj1bYx6zWFejzWNy7BsEKCwd80FIs7ODVmjbXQdYJpL3DG0fmOdU4M4B8GFmVJPpqh\n7NTipoY2KOsbj5U4UxWpODtbfAic5nTP7bnaNNzUNx/z5+Gkk076+NNHYn76d4CfEZF/IiLffKof\n/b0hP8SGHgXsrfFJDEYFMY7UJS/r/Z300dODpqhmlnI/7VGUi6oi326P4fmNCRg/hc0c9bBcpmRZ\nh0jA2jV9vyeRCVpdMPSGepZwnfSggYvDgUlVoalhWyjdbTTVdgoKy6XDuR5r4xR2GDqsnxGqFYpQ\njnWoye2KwDBEOJ0omzLGRRWzFWkaq1WNgRBie5UxAxpshFMfj5+vJ+F4rF3sdizbFoD9FKpZ/Lzo\nfnIcI6ZpT1E4RIS+P2DMeoRTh2kuseLo8FxNISTuGNE0CwEV4frb/1Oa7/rzALg/82ew/8l3xzeB\nLh5rR+g94NxmnJxGOBUinK5zAWNIm4bzwwEBaqvUhWCc4Y1PfgZmmPD808/SHDak6YwQBrruvWRZ\njL3yVYHzRYRT27OfxmSBfL/nrK4RoEqU6hZOE4cJS/AGv25ZLBjhtDm+/q41mOYifu/4ls3UHAP4\nV9vtMUbKzS0mFfaDZ3sjGBOhX2TP+fkKk2UMxQTnKs51QjPC6bo+TU5POumk351eDExfD3w+8D8T\nTVDfDXxARP66iPzRD/tfnvRRl6KICMaPdaTWxh9QVrEnMP241kOmqEnK/Ymnx3PW98w3GxBlvxIO\nNiCaRcd+C/N5ynTaIxJIki19X+IkRepLutbS5SlXmSegnNc1090OTQy7JbQSMMMU3cbc1OUyIUn6\nB6awLTZMCVUMqt/OHFsTVwQuttu4vzo3PFuNwe/uCbSzWAvLZeSjEOIU1pjuuHMpwxgnlXqqfDzW\nfgDO6gkc5hqzTg8ZHCKcOtdTFBZjDMNQY8wNxihDH6HXktAzuuATC96zLEsWY0TTzb//p6i/7/tR\na3F//r/EffO3Q1CcG47X7boKa+NEMvQpUl8gGGrjf1M4rZxSL4TirOCJx9+I9gnvfed7mU1znEsZ\nhoameS95HuF0qOa4YYy9sgPbqQURJlXFeVXF158ohwWIEUyaIP0SeiGUHUUhGGPo+/oBOLXYbpzw\n+jGP1Vqk6zg/HO5ipFYOY4WyG2i2E4yZoOqBkrOzJWYywS8nOHvgImQ0zx24Kms2zeZleipOOumk\njwd9WDDVqHeo6tcCryROT38B+ErgJ0TkaRH5dhF57Uf9Tk/6ECkaAvqAI38QQwAEwZqTG//jXQ+Z\notKE66lQaUcRAqvNBuM9za1jXx2yXxFqw3SajnFSA0lyoOtuMFhce4+2Ht3/k0CvnlXXMX8wmuo2\nN3UzJ3ilKBKSpMNaxZgbhqHBhhx/OEODsJ/d7a9e7HbYvmfdjK1MixXslmiXYAwURTxZVg2oXmNt\nfYyTkn6Mk3IDu9vJYVUdj8qbLO6dKgpNCrvYZxohUkY4bRC5xlrFDwatLrDcRTTdrgssNhtWw4AA\n63/za6l+8IfRNMV+/3+P+xPfAr0fr2uO0CcSoTcMSdyR/RA4zZrmCJJVojRzeN0bXk+RPUa7V979\ni+/m7GxFkqR4X1FVTx8rUYd6iunG2CszxCmnCFldHxMAmgT2i2hgspMEaQu0gbBrH3j9NcZsYlpB\nk2Bvr+lr9mNEl6lrzpsm/mAQITlzIHB96Oir2dGpL7J9CE6tqbgIKfVzFfc31QlOTzrppN+xPmJ6\nUdWtqv4Pqvq5wKcBfwFIgf8YeK+IvF1EvuajdJ8nfaiUoxPW+LsMU1HBGIt1p7anTwQ9ZIpyNpqi\ntGWqGp3xbfuAY98ghxVhb8myZIyAGkjThr6/QoC0v6Q9ZPjUcT1GUxV9z3K7RVAOK+FgbqewMdS/\nKD50RaDC6oRQnRN83F8tzZ25qrx/HwC9t4g70bsCbeL+6mIBk4miqni/xphoXtJmgbRjnJQd4WwE\nvovdDgt0Y0uUSvxAtwUgWOtZLuPOpfdxXcDaQPAGqgscMUrpKvM0o9Fout2y6mPGRfllX8LuR/8W\nOptjf+Sv477s34a6wdphNINF6L2dyMYd2Q+B0xEkz0Y4PaTQzOBNb/n9uGHG1ftLnn//FWdnBZNJ\nivc76vo5sizGXvl2gjTjlNP4Y+xV2rZ38VTJyOMWzCSJprUDUPUsFoz3WWFteZdWMEQ43Yaaap7F\nEoL9nvPxtWOFdOlQgauyI3TFh0xOC0yeE5YZ1lScD47q+YqrsqJsyo/9A3HSSSc98vodjdVU9V2q\n+q3AE8CXAH8XeCvwAy/hvZ30YeS9j6aPAM7HvgMvBiuCdYI51ZB+QuloijKWfZGxlvZYY+qqCj8z\nbI6O/RVhexsBZRDpSNOeYbhPCJ4sXNDuc7yN0VS19szGHUyjSr0SdtZjNI3h+Z0wn6fkeaxDtXZD\n1x2wmt3B6Syaqyzw7LvfDYCsUrZTjSsphxl6mAHCbCbMZvFNVwg7ROKUT7sp3MZJGc91DmoMyZh1\n6lTpx0asYEB6d6yMMsaP6wIW73sinHq8F8LhnERnKMo6uVsXyLfb4/Rw//lvZfvjP4GenWN/6v8g\n+eKvg3KPMQNFcQt97XEiewunaITTm2mE00lds7qF0wzMK6a87sk3QDPhvb/0FF3rmc9zptME7zfU\n9dUxnuqYWDAC7/H1ty2XD8G5YFKDzVKkKfA7RbqBxSK+kRmGwzGiq68nOD/Wt2pDM4uZrelux2pc\nETKZIZlbPHD/psWEJcbEiC7YRjidTglFijU1Z53l8HzN/fLAtt1+zJ6Bk0466eNDv9vz3s8hgum/\nMH7c/i6vd9JvS4pKwI4T08EaVDROTBP7Mt/bSR9rPWiKqucZV65DUC6rinS3Q0fHfjQyFehmgkFY\nrRzGtCTJnZEp0zO6/RwvJmadakseAuebDdZ7upVlmwQkONgVhE6YzVJms2HcXy3puj2ODK0uCD6a\nq9a2531PPw2A6zqGaYylCgLSTNAy7q9OJsJioTHfNFSIXCMS0D5DD2OclAkxTsoIdhi4LEuSEPC3\nLVFWY2XUZokGi4inKJQksXgfd1mdGwgBhsOSJDywLpDHXc7scOCirjHA4Z//bDZ/7x3oKz8J8//8\nQ5Iv+Cp44QZrA8slWGvGieyD6QIRThsTuMmJKwgPwOk+Uy4/7ZM5v7jA71L+6T/+NazNyXPLbOYI\noaRptiRJGfdYhwSpL4+v/3oKornU3gAAIABJREFUwQiu6+Ieryq9g3KhSG7izmlV4Esw/kE43WNt\njO3qqynWx9e+lpZumkUwf2Df1uYGlxt6VZ57oUaGAmNy7uB0gZnNYJmSmJqz1rB/oeZ+uWfX7l6W\n5+Gkk056NPXbBlMReaWIfKuI/FPg/wb+LWJD1J8CPuklvr+TfkvFqKhAwN7GRUncPbMSd8pO+sTT\ng6aofppxPxsY8Fx2HdOyRG087q4lYMI8gmAQVqsU51qs9Yhc0/c1GWPWqVq2i5SttmS3Rqauoy8M\nZRZQtchuSWgMeR7rUG/NVW27xZKihwv8YKinCU99MBbEXex2uLbFZ0JZKIMoMqRQLlFvSFNhuYzx\nZyG0wBUiHkKCHsY4KYlwOjiD8Z7LzYbMe4KBzRIGRxyfbmJllEgY4dQQgieEK5KkQxX6w4LEj+sC\nzlPm8XlKqorLwwEL1G/+VK7//jsIr3sS84u/QPJ5Xw5PP4sxgaK4g9Pb6CtCBEnU0FjlJo8HHXld\ns6xig/N+orz+c96Mc47ygy3v++UXsLYgy5TZDFRL2vaAMTGTNAwuJhaoo5M7OHd9H3NoVRkSYVso\nZmoxSQKHOcMaLIH5/BZOdxgToTHUC2yIU+Mb1zPkEU4XY4yWiuAKR5IbOlWev2qQfvEAnO44O1sg\nI5xaKs4aw+6FhhfKHftu/zI8DSeddNKjqI+IXkQkEZEvF5EfA54B/hzwCuB7gc9S1T+oqn9JVU8b\n7x8jDd1wm7CPuzU/GYtBsMZi7Wli+omqW1PUxE0IWcp1DlVoWQ0DRVmCeg5nwt4GjE5gW6AdLJcZ\nWdaN7U5r2nZPJjHrdPCGfZGxkQ4XQlwRaFv8wlLmSlCD7JeEyjCZRDgFT5bt6boSKxHQ/GB57rnn\nATCq3NvvyZqG4IRyBa1VjiPP3mEtrFaCtQHVAbiPSAcanfX4DC/KVa60TpBxtzbve1Qi8PaJImrQ\nsuC2MqooIMssIQSG4ZokqYE4PTxWmNoxiF8EN1aYOqB73Wu5fsfbCZ/2Fsx73k361i+Fd70PY8K4\nLmAeWBcIqL8FSUtjlfU0RjJNH4DTdpXy+n/uzQjwgXc+R/lBj3NnJIkfjWoVfX9r3gp3cVohYRCN\ncG4fnhwPLr5+WViMSWA3Z7hREnsHpyHsMGYfa2GrJSbE1qnrZMCnsRL1bLslJf51kxSOdBbh9IWb\nBukWGDPlbnI6R+ZzzCrFUXFWC/urluc3Ww7d4WP6HJx00kmPpj4smIrIp4vIdwMfBP4X4I8B/yfw\nNcCrVPXfVdWf/+jf5km/pYLgwl3AvhjFpQ6R08T0E1kiwnl+zjydo4ljs0jYacs8hLgr2ve0KzMe\nxyejY19YLLIxTsqTplvatiSRCVQX9J2hmqes7V0Qf1LXhJmhnGlMhKjuzFVFocBAmh5o2zWiNh5t\nA/ceuzdmpioXhwOzqgIj7JbRtS5q4v5qk2IMLJeGJAnENuRrRGpUBakv0D4nEKeRdWpAlbPdjlnb\nggi7QmgzEBXYLdAuwul8Hshzh6rS92uSZH80Bdn2EiEewV/PhGAEO+6ypkD/qldy/x0/hf/sP4R8\n8P2kn/elyM/+ynEia608EH3lITi0uoBgH5qczh6A0+y1l1x+yhN4DbzrZ96D38xx7gxrB+bzAyI9\nwxDNW855NJgRzlO8KNdTobcxPu7idq3BjZPTlUPEwXbOcB1IXGA20xFOt4gcYgJCdfZQduxtxuv5\ndosDPODmjmRuacMIp+0ca2POKew4P18giwVmmeCoWB6U3f2W5zblCU5POumkF9WL0cvPA98MVMB3\nAE+q6uer6g+r6mmf9GWWKhgE84D5KYSAte50lH8SAEVWHE1Ru0XKmobJCJW2aegLwyZXgtrRsW+Y\nTrNx4tmTZREqLbE1qW1iqP9V0qMauDwcyA4HNDds5rctUSvC1pGmjqJgvE5N160xxEn+4088ETNT\n04GAsqxrVrtdbEkqhN0ktkTJYYEeckSgKAxZ5lFVVNeIxEmfNGdoG1uS1llgnwmostzvKeoaBfZz\nqCc6pgAsoIkVptOpZz5PxiD+LdZuji1RUl9ieOC43BrMMHCx2ZCFgF+tuP8TP8bweV+I3FyRfNGX\nIT/9s4joODmNcHpbGkBwUEc4bR0PwWlRVSjwis/6faT35rRNwz/7ufcg+0usWWKMZzbbYm14YD+2\nj1mv1QUMEzxx57RzggmBy82G1Hv8aAiTM4vg0HLBcBNIU2U6jW9qVUtEKlSJRQEhxmhdTxS1FtP3\nXOz3OBE8YGcWV1haVe6vG6hnWBsrZlXHyWlRYApHQs2qCuyuOp4vS6q++lg/BieddNIjpBejl/+V\nOCV9rar+Z6r61Ef/lk76SKRj61NAMUM8yvcm7sQZK6c60pOOypOci+kF1jjqxYRr22GC53K/J9nt\n4sRzrnhAmhW+vIuTgm6EymtEDa69pK0S+jGI3xO4aBry7RYmhm0BrQZMvySUKc5ZlkszXqeh62Jt\n5aufeCNd4+gnSQy4JzDtOs7LEhMC3XhPAUWaKbqbowrzuWU6jd/vqlsgOvalK6AZg+hTZTMBRJhX\nFavbcPuZcBhbojjM0Cr2mcYKUzvuXVbH2KfbXU6j43F5rvRWkHEimYdAmM+5/zd/hOFf+wpkvyP5\n0q/C/O8/jYhSFJAkQgieaIgaHpqctg5uJvE5no+TUwEe/5zfz1BYrq9e4IPvew67fxWGBSI9s9lm\nXBXwhHCNcy0gSHMOQ5wcX+fQJHdrDdkwECxslwJnFgkOXS8Y1spkIkc4hfI4idbqHIKjZ0wUsBbb\ntlweDiRjO5TJLbYwNCj3Nw1U0yOcxp3TGbJcYhYWpw3LQ2B7P8Jp3dcfi2/9k0466RHUiwXsf6Wq\n/qTeBmae9HtGfvAjmvLQUb7FIMacjvJPekipTY+mqG4WTVFeBy7blklZRsd+AS2KHVaETYYzltXK\nAi1Z1tH390GVdLik2Wf4ScpVrnQ6cNb3zMoSEmG/hIaAGRaEMsMaw2rlEOmOu5yvec2TuO6SrkkY\nnOFqJrQSyLzn3maD63v8xFAWRFNUF3NTCUKe29FgBVCheo2IQj+2TqlQJXcTyWnTcLbbIao0E9jP\nx4iqeoqOLVFJ8nAmqUg8go9Zp5eYkI3H5dA6ibuXZclsGNA05f5f+5/ovu7rkabBffXXIT/4txFR\nFgslTSOcxmP9HtEIvOotbSJcT8JxcnpW18wXM1755jdQT+F9730PVdlgdk8gYYpqx3S6ZjKJ+7He\n3+BcPU46z9BujL2aQD3C6XlZMul71Am7laDnFgZLuJoxlIE8N0ynYcxF3iDSgMaMV4KlZThmsZq6\njikPIghgJhazsDQoV2WL7nOsXRA/8/sIp6sVdmFItKY4eDb3O54rNzRD83I8CieddNLvcZ3o5RHW\nEUzHuKheDKCkziGno/yTPkQPmaImGdc51NpxPgzMNhuwyv5MqPDYsEDLKaKGs7MEkZosiy72YeiY\n6AXNLsc7x/VUqEPHchhYbDZgYb8ar+MXaJkfY6n2+2sAlssJGpSku2RocoIRbmaGvRmwqtzbbqMp\nKonH0K0JiE/QzRLtDVlmKYqASCCm1F0BHvET9HB53OW8msYoqskYp2RUabO4d4qANBk8FMT/oVmn\nPSHEalQbpne7rEmE0+V2y6LvUWu5+u++h/bf+9PIMJB+wzdivueHjqUBSXLXaHVr3pI6wmmXmCOc\nTsYEgMdf8wSLVz3GLvH8yrveiajgDq9GhwmqNVlWkucWVWUY1iTJIU6O2yXajtFPE+WQxKbW892O\nvOtQJ+zPI5zK4PDPz/A7Jc8Nee5HOF2j2kSDWX2BBkMtA+VYhypVxcVux0QEI4LJBApLTeB616G7\nCdYW3E1Op5jzc+xcSELDcj+wuep5rlyf4PSkk076DTrRyyMuBazeuvINWMEmQpxnnHTSw3rIFJUm\nbOaOXWhYhsCyLDFhoDo37IzH6BTKOfRwfp7jXI1zHpEbuq5mwhntbo43lvXccggtixBYlSWGQHVm\n2EnAhBlazkAFkTgxPT+f4/0VIXhcf4aviujrnjk2ib8zRR0OYOOkr3IhGqi2K7R1Y0GAYIxHtUfk\nCugRTcaJpKO3cH8Kg4F0dKzbEOgTKAtFDdA72KxQb0Zn/V2cVKxGbQkBQrXCDPMj9N3usi62W5aj\n0er6z/3n1H/2OwFI/vS3Yb7je0ADRSHHulW4wZi7ZAH1LsJpHmOZkqbhcrvlTZ/+JpJ8wv1+x7uf\neg+CJak/GbqcEPZk2Z7ZLO7s9n15DM2XboE2Y2j+BHYpR0PYtGlQK+wvDXoW4XR4doqvlOnUMpkM\nqCoia1TbcfXgHA3CwQzsFhkYg7Qt57sdU2OwxmBTQQtDTeBm36HbbIRTgD2r1QRzcYGbQxIail3P\n+n6E03Y42RVOOumkO53A9BFVUEWDgio23O2YKoY0SU47pid9WB1NUdaxKzLWWjMdj6dt29KdWcok\ngGawXxFqWC5zsqzF2mGMkzowkZh1OqilHJ3/0xA422wwwdOeCVvjMZrDZs76JjYBrVY5aRonsN73\nWD8nHM7RYKgmNjrCUZZNw2qcdNZLwzYbTVH7JVqlWCusVnYsB/DEyWlzhL7Qp3gDV1PoLDjvY5yS\n9zFOaTUG8XsD5Qr6hLs4qWgmDOEGa6MxKNQFpl8ed1m3k/iczfZ7zuoaAdb/4bdw+G/+UoTM7/wu\n7H/wnRA8iwVk2YOT0xYhJhWod3RO4oTXGmzf84r9jjd9+ptQY3jv88/w3P4aQ4qtXwH1DO93ZFnL\nYmGOofkia4wB6WdoHdcadhmUsdCJ1eHArK7BCvvHDKEQpHcM758SGmU2c2RZDygiN6h2GE2PKxI7\nbSKcWgtty2qzYS6CMwaXGsLSUBFYHzq0zLB2OX7HHVguM8zlJW4OaWhZ7DrWVwPPbW/ofPexfQBO\nOumk37M6gekjqqGPOaaq4B6YmFoMziUv892d9CjoIVNUkXMtDYkGLvZ77OHAUJiYURpGx/5OWCwm\nzGYDxgwkSUldl8es095H5/9GGybARVli+55uZdhYj2jG5pkIII8/folzDc5FmOz7GqvxGN73ji61\n3M+VnsC07+MxvPf089toKkXqBbqLBqaisGTZQDxDuEF1j2AwzQWhywlCXF2wig2Bi7Ik7Xu8xCD+\nPtUxTqqANiPGSSnTqUFV8X6DMXEiGZoZ0saO+X0S9zkRIa8qzkejVfknv579X/0hNElw3/d92K//\nNhgG5nPIMh2PzG8QaY5wGgZHbzS+bitICLzeCa979eMQlF/8Z7/MNu2wdoZpV7Cf0vcbkmSgKGSM\nfqqJRitFhpxQncVpZwrrTEGEZVWxqCqwwuGTHP0iwmn/zIzQwXyekKZ3cBpCh9UJvlpFOA01m7mL\n+wl9T7HZUADOGGxiGJaGSpR11RE2CdYsAUGkYrlM4+R0FshCx3zXsr72PFee4PSkk06KOoHpIy0F\nUayPu6Z+NDzZ1L2cN3XSI6SHTFGLnPtpj+rAvbom2W4JU6GcKwOCtGf40jCZpMznAZGOyeRA06xJ\nx6zTrrNUxYQbGpIxlsq1LX5l2SSBzTbmWBZ5wXI5GQP9A86t6botBodpLhnaDD+aoioZSL3nXlni\nug6fGzYL6FGkm0K5QAPM547pNEaniWxRLQHBtGeEZo4KrKfC3gXM2GA17TpUhN1CaHLlmC1VTQEl\nz8NxIhlCnEiKKKGbQD321ifEWCURsqbhYoy92n3Vl1P+jR9F8ynuh/8a7l//Jmha5nNhMtHjPifU\nCBbb3IsZomNgfpMaCIHP+KRLHpvl+LbnF375nRwKcMkKGWbobsrQb3EujGsNcmzJMiZgwuRuTzSV\nYwrAoq4pDgcwQv2Eo52BdJb+6Sk6wGKRkCQ9EMbJaY8NOTTn0VwWWm5mBk2SCNzrNStVMmNwiaFd\nCpVRyrr/EDitWa7i5DSZBbKhI19X3FwPPFfe0Pv+Y/8QnHTSSb+ndALTR1h622M9HuX3xoLxOHsC\n05M+cj1kisonXE+UJrRcdh15WUImbAtoUOxwRtgkZGnCcmkQaZlMaprmGjtCZVNbmjGWSsZYKldV\nhKXl2WoNwFnyBKGGxSJjNhsQCaTpnq67RgO47oK+mhFE2MwsW9NHU9Rux6Su0VTYLqGVgPgs1pgO\nQp67MYM1jKHxN4Bi+gJfLUGFbW4ok4AAq93umHV6mAqHuUa3UJ3HMH6FNA3HjvnbiaRIQIf02OjU\nOrjKFS+Qdh2XY2999ce+gM2P/R10ucL++N/B/fF/A93umc2EPA/jPueGmC4QTVbGj9WgWWA37rF+\n1qe8hoUGDvfXvOepp9gtBZecI0OKlhl9d8Da2DxlDITQo3ofkQEJsRJWvaVxxF1WYN40LHc7xAjt\nqxOayQin75uiHooiwmk0mF0TQg9DhtRji5VvuZ5CyFIIgelmw1kITIwhdYa6gINVyqYnrB3OrLiD\n0xS5vCSdefIwkG/qCKfb6xOcnnTSJ7hOYPqIKpooQAOY8ddBBMSd6khP+m3rIVNUlrKZO/ah4cx7\n5us1yFhjiseGJbqeYIkxUFCT5x1ddwUBku6S5hBjqa7SASXEiKH9nrKN3eyzxVlcDzgIeR5bokQG\n0rTF+/t435P4JcN+RQiG/Szh2sVQ//OqYr7fg4XdSjjYgAQH5ZLQRcf+cgkiAZEG1StUPdbP7o62\nJ4abLL6xm1cV5+OUs8mEcjGaoroUtksIhiTRI/SpxvYlYzzqHXqI1aC9jbusgyH21pclLgTqf/Fz\nufnJn0LvvQL7f/0D0i/8avT+DdOpOcJpjGk6HKtBpYt7rLs0rgpk0wlvecOrWbQNz737fVxtS7Yr\ng53ESKewMfiux5jbcH+OO7ciHYYErS4Ig427rLkSBGZdF4sNBNrXOupUobP0T+VHOHWuO8Kp6oD6\nZARyRxd6riYBP8kgBCabDefDQG4MmbMcFhFOt92Av7FYuZ2cNixXyRFOs75jUtZcX3ue214zhOHl\neRBOOumkl10nMH1E5cdQfTSQ+LsdUxHFpqcd05N+ZyqygtVkhbgkmqJCxUI1GpCGjubcsDUe0Rm6\nnSPecH4+wZiaLOvx/go/DGT+kmqX4vOMq8wz6MBF01B+4APxf/SqRVwPqM/wO0uSxMxUYzqS5G7v\nNGGKVhf4wdLmCVeTwECgaNt4TyjNWK2KGmS7ItS3jn0wZkAkRj+p9vFou7okeEOTmjjxG+OkbkFy\nSITNErxVZHDopkAHi7XKaiU4JxHQ9P4x+ulYDXprtDKKvTVahUD7GW/h6h3vIHzyazC/8HOk/8pX\nwvufYzo1D7UvORdrUbWdQXN+tyowEy5fdY9X3btgttvz9M/+Es0wsF06JF8iahjWAd8KxkBRQJrK\n0WgFDQaH1HGHtx/h1AtMRzi1Ruhen0Q4bRzDr8dPznKZYm0bVwPMNSIDGuJrlpAyhIGrdKCfTkCV\nrCy56DqmxpA7y76AvQ3s+oGwdli5nZy2FCOcTuaeSdeRrQ8RTssTnJ500ieqTmD6KEsBY7C3YGot\nTgzOpS/vfZ30SGuaTLmYXmCso15OuaYmCz6aouqafnTsi05gV6ANnJ3FOKk0HcY4qYZcL6i3OT5N\nuc6h1Z4PvPe9AJipo1xAp4rtVoTNBEE4O0tJ04f3Ti0pUl3SNylD6uL+JQPTYeCiLDHDcKxWVQFT\nLQn7FGsNq5XF2h6RCLshNIgmSHWPMDi6MU6qM4obhljj2fcEA+US+kRjRFW5RLtkbHTSYy5pPNZv\nHqgGHY1WU6GxeqwGzYaB/lOe5P473k5445sw734XyVu/DH71KfLcMJuNJRnDbS2qon12N5kcTVFP\nvvlJ5pOM9OqK9//8OwnArpjipzME8JueUCVjfqoymUA0Ma2BCsFimkt8lzLYCKeDKHnfc7bdYgW6\n1yXsrUcrS/9MDkFYrTKsbR+YwrZoMOhhrENVz7XraGcTAJLdjsumYWYtuTHs5srWBfb9gL8xWCKc\nGtM9BKd535NtKq6uB57fXuPHNaWTTjrpE0cnMH2E5YkGChui+WkQgxchcacv60m/O6U25d70XjRF\nFVOuXQ++47KqcNstfmnZ5EoIDjms8DtYraZjnFSPtWua5kAuZzTbGYNNuJkZ3vP0UwDMNxvEKfsV\n1BIwfgabBdrDYpEym/WAH/dOb0AF113QHXKCNTGMX3rSELhXliRtS5gZNvNoijLtglDmoMJqdbsr\nqRizJoQDQgy4D32GNxEkK6eY0bA1bRpUhG0hNBNFEGRXoFWGCGOcVHz+4h7rHpC79iWB9dTENYPR\naJX3Pf6Tn+D5t/8U/jM/G/PM06Sf9zb4+V9hMjEsFnqsRRW5fmhVAB/v82ZheP1nvhFrDN2vPcX2\nvU+hQLVY0s1SEI/f9+h+CsBsBtOpHtcFYHdMKxjaDG9jRFUvymQYON9usQb861N21qN7y/CBuHO6\nWmUkSX/MYoWKYx1qPyVo4Ma0VPMMRHCHA5eHAwvnmFrLbg6bJHAYPH5tsHoGmAinZyOczgaypiUr\nK65uPM/vTnB60kmfaDoRzCMqDbfHf4q7zTEVQyKCS07mp5N+93rQFDXMoimq8w2XXUe62aA5lHOl\nx2DaM3wpzOcxTsranizbUlUluVnS7wt6dTzz7LMAFCFQlCVI4LASdtZDSGC7IlRCnqcslwA9adow\nDPfxfiANZ3S7AsWynSesTX+EyUlVoZmwLZSWgBlGx/64K5nnPaoeY0q8L4+Apm107G9yGbNbldXh\nwHK/R4DDTNjPbmtM5+huiirM58J0etvWvCV2zY/tS02BopRTw86FY8D9rG3Re5e88Hd/nOEPvxW5\n/wLpF30l/MOfJU2F5RKsFby/3WPt4opCfYF2U1Sgf+WCxz711aBw/+feSXazRoBmdk41sygtvupg\nG81beS7MZrf3uUN1g0gE/dvWrev/n713D7Itu+v7Pmut/d77PLt77oyk0UgaiYfBiuzIBcZOEDGV\ngAMkphwMLl7FwxgbCMEOJhCIcGwn4BgbG/ADhbKdQimbMsYFcUSE8QBBEo4SxSCQQMgajTSv24+z\n9z5nv9cjf6zdfe9MjSqSLGnuyOdbNXV6Tu9e95zuPXe+/ft9H3dVwp7UNUEgMA9F1Mpga4l5Kr/5\nPibJhLUWT3RrX4far28ap0oxcCgiv83pOk73e5ZKkUvJPvfktNUGsxNIs8aT04nlJkCcnpItDHE3\nEJQN55eap/eX2FlHf8QRR3zy40hMX6AwWvsQU8SNK1+rufkpOJqfjvjY4BmmqCSmLAIa03FqDFlZ\nQujYL6EH5LTBlgFpEs/Tv4E0bWiaK2LhjUcXF5dIKSltR+GcD/Q3mnGtKBOHdRLRbrC114luNl53\nGkV3dKcRBabZYrSky0MuwgmLY9t1FPs9BIL9RtBIi7DRvIYXZFnIYmG9EUo1GOMd+2Jc3oTRN4nk\nMpmNQcPAtqp8jWnikwmcADGmvhHLCtJUsFhck747KQBiKu4E3KeSMvLkdHU4sOh73GLB7Z/7Gab/\n9EsQVUn0RV+O+N9/CaW8eSkMxV3NUz7cXwxrGLwpavlpLyF60QZjNO972zu8gQmBTrccFgJLgxk0\nVEuwgiQR888EhGhvXmcwbZjaDCvgKpf00hIZw0lVEUZgHwyppMGUAnte4AzkeUieX2fGHvCRV843\nTnVrXz7AQJUHoBRyGDita9ZKUUhJnTmuIktrDLYSSH1NTjXLbQgnJ6S5JmkGgqqdyenFkZweccS/\nIzgS0xcwnAUEqPkvbC0kUjhUeDQ/HfGxxY0pKozYrxJ2+sDqeuqJ9o59YVF2jd3FhDJgtZJAT573\ndN0lgfPa5/vuv0W7SrlyHYlznNY1QddhC0lZOEYcclrhqgzcHd2pUgaldozjngCvvxz7gCmNuEgs\no9Msx3GuRHV0a0EVWLAK9mtcp4jjYHbsG5Tyjn0wCJ3iGt9dP4TCh9wLRzzrTgOtb0xRWjqEiXHV\nEqfFPOl0SAmeol8A1p/ZbcFJ2vhOCsCiaVg1DcQx5//ojQxf/lWIviP8sq9BvPHnZh2rn3TeCff3\n01jG/ObMF//7n8qwiKnrmg/+xrt9ZqwIMNGaegmTqHCaOUpLEkWC5dK/Tq+LvcQ5S2jWjE2BxcsP\nWmkIreW0qohi4CURlTToK7AXS9wkSdOQxcIABuhmg5VF6OymJaph9FmnSiGmiW1ZspGSQin2qeMq\nsXTGYGuB0huEUEipWZ9GiNMTskKTHHpU1XL7QnP7ODk94oh/J3Akpi9o2HmV7/+yNlIiRYgKjqv8\nIz72eIYpap1z6VpSa9jUNXLsGTaSShqkK3B1hnIBm00ItGTZyDheAvDiF72MvlX0y5RLOSCd5axp\nSOsa4nnaKSzSZFAtscO17lTPkVJ7xvEK4STheMbYJpgo4DKXtG4kM4aTskRpjV7JeRIroFnhDiFh\nqFitBEJMCOHzPp0bEC6E9gwzRjfay05agpmkxcOAVb65dAjcHFG1xg6SILgmfRbwZ4L2BLbxkU59\nJG+qVvO+Z3M4IIKAy5/4u/Tf/K2IaSL6um9C/YUfBKPJMkdR+MpTaxuE8PmpaE/KwyDlwde8ijqG\nD3zwCfZPPu1fp4ixQUG9dIzyCmeEj72aAoJAzGkFzicK4KO0IrtEN0ssUOaKgzIE8y8NYWzggYhK\nGPSVxV0tcUNAFAWsVgKYbs4CgzA++cBZSe8mLnOBDRTCGLZVxamU5EpRx47LxNIbi6lAjmuEUAih\nWZ/FiJMtWT7N5LTj9uXE7f3lrJc94ogjPllxJKYvUDjnQ7Kxvv8bQEuFU4LwSEyP+DjhxhSlIsZV\nzqUaUXbipGkI2ga98Q1PuAzqAjEIttsUKRuSxAenv/TBVxBOp7SHgLFIOI8NE4bNNLGqKiSWbnM9\n7QwR+zW2kXfpTsdn6k7NlvFQYISkXITUjETOcVbXhH3vJ7G5ReMQwxJbx0gp2GwCgsAHyEt55Zud\nkKjhFNPnOCnY5ZI6MEiwpyzpAAAgAElEQVTg5HAgb1sQgsNK0MUOgfSvrw1QSrBaCYLA3qQAXBNe\nP40NGEPpY5pwpMPApq4RQnD1Qz/I4a/8IE4pgh/+YcIv/Bq42BHHbm50AmsHhLhASg02gPaU5foW\ntx5+CXXo+PV3/Q626zktS3KXgoipC0MXeBLv6iVuCJGSWctqEULj0womQlegD2ucFdSZolYaNet3\n48zCrZAqsIxXGsolro1muUWAUhOgZ5I/er1wO79np7nIwIQBGMO6LLkFN+T0dmborcXUIPo75HQ1\nk9M8n0j2HWImp+fNkZweccQnM47E9AUKq7WXeAlQ9k7AvhSO8FhJesTHEc8wRRUpl7HFmIHTvies\nKuzSTymNi6BdYxvYbHK8QQgefPAW4zCQ2FPaOkZHIZeZoHEj+axvDMbRTzszh0Eg+w22igiUYrMJ\nkHK40Z2OY0fklujDBm0kh0XElRwRznJ6OJAcDpAq6hX0WORU4KocnGC1CklTjXMWKWus9dpLNa0w\njSdph1RxGRksjlXX+bYk52gLwT7zTVGyW2H33rG/WknCUHNd52mtj2miPcVOETqQ3gmPJZkmH3kF\n1N/xbVQ/+89xJ2fIX/6XRJ/9R+Ht7yQIrvNTwVqNcxcI0YPzJPrBl38G6WpB6Sbe/lvvQjjHdr9n\noVOcCNhnI4do55MFDktc54m5f52eRAtxibUDIRm6WWON4JAFlGpCwUxODZwE1LGjvxxwdY7bp/N7\nDm6C+P1ZHcL53FSrQ7QzXKSOKQpgloC8yDlypdiHjqczzeAs9gCiWyNEgJSG1X0x4mRDXkwkdYuo\ne546H7loro7k9IgjPklxJKYvaPip6fUqf5KKQIVEwVFjesTHF88wRaUJu1zS6pbTaSLZ7SB13rHv\nFLLfYCrwekQ4OVkQBCVD35KJE4Z9gRaKahGyEwOhtZzt90RNg8sk1XImlHqBK3Owgs0mJooGlDIE\nwY5h2BOJ1OtOB0WfR1zEBoNlOwwUVQWB4LD2WlhpUtwcT5VlAYuFBQxS9lh7jnMaZbObtqQhVjeZ\nn/k4si1LpDGMqaBa+JB+ORaerFlYLgOSxAAOKUusvRPTZIYEo2YnPIZoDuJX1tL+R5/L+VvfgnnN\naxEffIzo8/8zxN//aYTwk1MfUWVx7goh9jjnV+Av/9TXIqOQp+qKdz7+mE8WaDs2Q4RA0MQd+7QB\nAaItbgjlcinn7FlPoo3pCEmx7RatBW0Wsgs0Ejg7HMgyA5uAKoPmasQdElxVzCQ/Io7HmeTvsPYA\nTiK7U8wY+6zTxDLEAThHUde8xBgKKTmE8ERqPDltgGY5k1PL6r4EsV1TFJq4bKDuefJ8OJLTI474\nJMWRmL5A4bimpdxx5UsQzqKOcVFHfIJwY4qKYvarhNI0bKwlL0tEYNmvoHMgpy1Xj/k60rOzgiAY\niaKapqlIxBJz2DKOiq6IOY8mjDOc9j1FWUIAh41gLwzCJr56tIfFIibPJ4TQxPGeYbhCOkUwnDG0\nEToOfRi/m1hqzboskVj6jaBSBjHHU7lOEUWK9Vog5TS3RfkwfukiROd1p9eTzl4Y4ll3GkwTJhJU\nsylK6tTnsWrIc0WWefe6lHuM2QECNW7RXYaVgqtc0gpNYAxnVUVsDPqlD3L7kV9g/MqvRfQ90Z/+\nVtS3/HcwjTcRVUIInNsjxA4hHEVyHw++7PcjkLz3scd5dKiwOBaD4aRTfsIb1JT56MnpmOHqAmdh\nsQhIEn2T86r1gYAY0Z6iJ0mXBlyGvoXppGlYxiNyHdAsBdVugHZOPtCCoojIsgnwE2hjSv+ehxNM\nP2edRoYu8eQ02+95qTHkUtKGjg+mmhGL6wQcVggRenJ6K0VsVhT5RFI2uH3PUxcDl+3u+br1jzji\niI8TjsT0BQrnrHflO3vjyrcyhCAgOE5Mj/gE4sYUFYTeFGUbCmu8XtSOtFvJHsOh8tefbrcsFiBl\nT5Y1dN0VARGqP6NvInQScZFBaweWxrApSx8ptVWUkcW5AHHYYPaSJLnWnQ7Ecc80nWONITan9PsM\nLZUP47cDmbWcVBVqmtBrRRnbOZ5qjd1HSClYr4M5RN4g5RXG1De607vJ5F5qglnHGnedN0WtYFAO\n4SKoV9gB0vR6GmtRqsNa74QP9BrdLnBSeLOR1Mj59RXjiEsSLt7wd2j+xo/gwpDgDW8g/PyvwD1x\nmzQVFIX11aWuwzcxGW7d/zJW61ehB8u7fut3uR0btHBkWnHaOKQ1DGJHuTRYCWKKuR735nlAlmmE\ngCComaYKJUJEd8o0KoYk4DK+I2c4UR2qkAwryVU9YBvhf2EYJFkWURTGT51VizGXeHnEGt0WOBy7\nUHPIAhCC5HDgZeNIISV9CI9lMzntgf0SmCen96fIrSen8dUeux948rznsjmS0yOO+GTCkZi+QGG1\nn5Jad9cqXymUEgRH89MRn2Bcm6ICFTKuCy5FT2gnNvs9qm8Zt4rH91cArIJTQhGwWimgJU17xvEc\nozWJPfVNUTKgXIRUDCTW+kiptsUuFWVuGR2ocYMtYwKp2GxChOiIY4NzXneasGY6rDAuoF5GlNyR\nCYRdh12oO/FU4wJXFvMa/jqn06LUAWPuIpPNCuck+zzgKvRZwidtS3E4gIDDWtBEzusrDxtsK4ki\ndRNRJeWAc94JH5gFpvEZnnUeUCl/3nK/Z9O2SKD609/A7uffjLv/RchfeyvxH/xC+NX/hygSrNeg\nlMM5nwIgxMirPuPVJMH9NLuJ3/6t93KRwSAsqUs5PYwEZmJ0O8qVwyh3J+dVC9I0oCgMYAnDhmna\noUSA6n0s1xgHXKZgBGTjyH00BJnALBVX3YjumI1gijgObwoSlBqw9vo9L9HNCpygVpoqlSAEcdfx\n8mEgl5JBeXI6CYsbQOyvJ6eO1QMZartkWRjiqz3mMPDEecfVcXJ6xBGfNDgS0xcw7Bywf938pBEI\n4c0pRxzxiYaSirPszJuiljlXocHZkZOuI9jX7LQ3P62W9+PqAjUpttsEKVviWCPlFX1/IBEr9GHD\nOAU0i5hLNYLVnLUtaVVBIn2kFAZlF9gyB+3d/2HYEwT6Rnfqg/29TKC9Octw2jQk+70/a4WPp7IJ\nolxjB0GahiyXjmti5dw51k4ENsc2Jxgt6ZOA88SgsSyHgXVdI6ylXwjq1IET8zTWlwWs1/JGKnDt\nhFc2wzQbrBE0WcBV4gU6add5qYC19J/z2dx+61vQn/2HEE8/RfQFX4r8sZ9EzrrTMPQTWbhEqo5X\n/t7XoOyK80dLnnriNle5pJGGmCUndUM0NGhbUa5gCh3X4147SuJYze/bEoYd03SJQBKMpwxtyBQI\nzjPHIB2RMdzvDkSxweaKq2Fk7Ayy8xPoIFCs1xIhBqSccO7i5nt4856VYZdJnBCEfc/DXUcxk9NH\nU80oLG4EVy0ReHK6fCAj2C5Z5proor4hp7uufN7u/SOOOOJjhyMxfaHD3e3KB6kCpDpOTI94fnC3\nKcrmKbtMMOiOs2mimetI5X1rrIuhXeFa2Gwy0nREqZE4rum6K0JiZH9K34SMecxF6ujtyEZrlmWJ\nxNBtJaUyCJfAfoVpYblM5rzTiSja0/dXKBei+jOG1p91nvh4qu04sixLhHQ+niq0OKcQ+81N3ulm\no1BqREqDEBdo3aKIEO0Z0xCio8DrTtFkWnuH/TQxZd4U5aRAjitslSCA9frave7PM6ZHuQTXzmQ3\nFJznvrs+0JqzsiSdJswD93P7zW9i+FN/BjFNhN/xnaiv/07E0LNcStLUzkagimJpePCVD6NMzvv+\n9VO0XU+VK+rAEKo166YlbX1aQL28jr1SiP0a1wdzzisIoQnDAa0vwDkifcrYJl7OkAkOgUU5xy3X\nkAYDpIqd0TTt5CfQdYYUis0mQqlh/h569//1e7ZG0knDZS5wUhKMIw83DYUQjAoezTSjdDBdk9MI\nKWHxQIZaF6wLQ3heoQ8jj99uKbvqeb3/jzjiiH97HInpCxTGOqx1cHfAvgpQUiDV8cd6xPOLG1NU\nnFAvI2rdoHd+3bq6taQqHIMLkP0WUwmyNGK5BOhvVvtWe61oV2dMKmS3CKhtTzFrMYNhwKwVZeqw\nTiHbDaZSs+5UIERPkviznLVE+pRun2CiyMdTmZ7iOp5qmtBLSZm7O3mnZYpAsl57tzkYgqBkmko/\nRRxOmdoUq6TXsYqJyNqb/FQTC8qFZRIOqXNc5R37q1VEFF0bhK7QukERIbsznI7QEi5yQaMswjk2\ndc2qbRFhyOXf/CHqv/cTuCQleOMbCV/3x3Hvf5wskxSFBRxCtDzwUMFyewK94nfe9gRGQ5MF7CJQ\ncsGi68jrJ3F2oC0Eh9T5OKlmhWt8Pulq5Se8YThhzAXWmjkzdoFxUKeSXWRBCM7UyEJ2iFCwx1K1\nI1JnUPoa0/U6Jgx7fPLBnfdMe4qeFKOwPutUCpTWvLJpWAjBJOHRbGKUFjS4coFwnpwuX1ygVjnr\nwhLeLpkOIx+83VD19fN23x9xxBH/9jgymBcozByq77hTSTpIgQyOxPSIewM3pqgwol1nvP/2EwDc\n0hqhDM0KWgdKb7G7mEAottsIpVrieEKIS/r+QCrWTPs1gw44rBIu6FDWcHY4EO33uExQLnwZqNJr\n3C5BCclmEyGElwl43WlPypahXjChqJaRD+OfyWTctrhUUq+gxSBNhisX2AGKIqIoNGAIwxatL+Y6\nzw3jfolDURchOzUhnbvJT3WhpF5DrxzSplAtcSMsFiFp6slpEFRMU4VAIftT3FDgBFSZJ34OyLuO\nk7pGOcfhq/8kl7/4CPbBh5D/7zuI/+AXIv7FW4hjyWrl5uinkZf/njOCKKDftTz26xVGexPTVRbh\nZEY2Dix2jyGsZsgEdeFwOES/wNbJjRlMqZEw9NpdY0Yit8Acthgt6WLJRWIxODahZisapHB0wnHV\njTBrWO3gp9lpOuKcnt9zjSRA9WfoMWSayakOJNIYXnk4sHSOScD7soleOTCenGLnyemLC4JVekNO\nx2biA08fjuT0iCNewDgymBcwnHMg7kxMrZAIqVDqqDE94t7AjSkqiPjdJzwxzZxhXddI3dNt79SY\nUi1xnWC99qv9IBhJkj1te3mz2u+agHGRch5rRjtyOo5zNJWj2Qj2GITNoVzAKNhuM6Loju607/ck\ncoFpNgyT4rCIOFcDDsdJ17GoKlDQbuVdzVMbbHMnAUCIYXbun6P1QESBaWailoVcRBqLu5OfiuOw\ngiZ0SBfBfoXtBHkesVgYnDOEYYPWPpdTjEtcuwXnid95atHCEU0TZ2VJpDXj7//3ePotv4p+3ecj\nri4Jv/hPIP/qjxMoMYfxG5Is4OW/5z5g4ulHH6d+PEQPETpUlEXBRECsR1ZXjyK1ZooF1XKWBE05\nrvYlBOt1RBCMBIFFyku0bgmFrx0d+4AplJzn3mRVxI4zcUBZzSThYpiwVs3tXYI8j2fH/kQYHpim\nHTiB6k+Z+hgjHBepYwwEwloebhpW1qKF4NF0pA8cWBD1ElyMUoLFS5YEy4RNYYme3t2Q07rfP6/3\n/hFHHPHR4UhMX6hwFtx1wL6fnholCYRCiuOP9Yh7B9emqA++/4MAXAYTQvdsmwbVHtAbxVXiMITI\nboveSbIknlf7LVk2ME0X2MmQmDPaKmUKY64Kxd50rKxlU5ZIMzFsJWVoccSIwxpzgOUyJcsmpByJ\n4/0zNaxtwJTFnKeWzo4stOakLH2k1E3zFL4koIxQUj5DM6nUFdN0nfvpdadTEnqDkNMstWZTVUhr\n6ZeCOrHgFKJZYw+SOL5jsgqCfnbsa4RJcIcz35oUSM4zaKVBzgkFedfhzk65/b/9M9pv//MIawm/\n9/Wor/gWRNuyWiniWLO9b8uth1Y42/C+d/4mdr9k6rz8oF5u6XAoM7DePUY4TZjwWZms1QJnuAnP\n9xPeEq0rlAgIx7M7utNccpCaJBHcUi3B0GMFXOmJCYHoNphaze8ZnBsIww6tfZxUOJ14aQSOyxS6\nAIRzvKJp2BiDEYL3pxNdYHHGQVmAncnpgyuCRcSmsIS3d4yt5gO39xzGw/N23x9xxBEfHY4M5gUK\nM8dFibvMT0aFiFAijxPTI+4xCCF44nE/MbVFxi4TTLrjbBiIyhJSR72EFkdgN9gyIXDB7NpviOPx\nxrWfyQ3TfsVgQvarhEvXElnjtZ1ti10pyswyIZG9J7ppErNaSe5oWC8QFmJ9RlenaBWwWwRUDDer\n/ahtb5qnOizKLPwkdhKs1zFpOgKaMKwZx6sb3enYJthAcVUoDoyk1/mpw8CUS8rC4YRADhts5U1W\n67VCiBEhpjnc39eYivYU0+c3eadlaHDWsmpbNvs9QkrK//EvUf4v/ysuLwh+5meI/vB/Du95H0Xh\ns0lf+sqHKFYhQ3fO+971LkK9YWoWOClpVqdzcUHHpnySZBiemclqI1y1xE1iljP4OKkgaDDGyxki\ns2XcL9EW6jxgF2iCWHAr6kmaA87Czmj6OcvUVhFhELBeK6AnDEeMucAY7aURTYF1jl0KTSQQwMva\nlq3WaOCxzNCG1gcRVAVCJ56cvnRNUIRsc0vw9CVDa3j/UzXN2Dxft/0RRxzxUeB5JaZCiE8RQvxF\nIcTbhBC3hRC1EOIdQojvFkJkz3H9pwohfkYIcSWEOAghflkI8Xkf4mwphPivhBDvFkJ0QojHhBD/\n03Odey+d/ZHBYZ6RYyqJRIA4TkyPuAdxdXVFFEXeFJWk1MuI/XTgRGsWux3CTTdOe1wO+zWukfNq\nf0KpniTZ0zSXhCTI/pS2CRiWGRfBiLETZ103R0qJWStqCewGV6YovIbV604nrL1gmnpSsWHarxm1\nolnEXAQjDstp181VptBsBLUyXjO5X2Fbv5ZeLCzOjURRj9bndwxC+wUGQV2ElGIktJbT/d4T50RS\nLh2jcEi9xO0SJILNJrzLFFVibenj36bVTbxSm8zVqFjSceSsqgi0pv0v/hgXv/Qr2Ic/Bfnu3yL6\nw1+E+NlfJE0D1ht41atfRRA6rp5+D0889j5Cu0AfNjgX0S9P2MkJbfas60vytgUpfGtX6JAunAsD\nBEkSsFoxT4tHnDvHGC9ncO3JTVPURWIhkZzmhuJQw2SpMdROo8wSV2ZI1KwD7ggCH6FlzEhkl0yH\nFdZCFTvqGATwUNtyMgxo5/hAajjM5NTVOUwJSklPTvOAk9whnzinbzSPPlXRTu3zfPcfccQRHy6e\nbwbzdcC3A+8Bvh/488BvA38JeIsQIrm+UAjxMPAW4LOAHwD+a6AAfl4I8Uee4+y/Dvw14J3AtwA/\nBXwb8LNCCHH3hffY2R82jHOIuzWmTiGURMjn+8d6xBHPjRe96EVkYcY23SKjmHbjm6JSZzjZ7wkO\ne8xKUmaW0SnksMWWAWkczRO2hizr76z27RlNlTAmKVez0/4mUkrYGw0rNvMtR8O17rQjCKZZd1oR\niRTZndE3oV/tJ9Y3T2nNtixRemJaK3aJwziJaDfYKiAKAzYbhRA9Yahx7pxp6ojwBiGtFW0RcRGM\ngOO0bUnqGhd44tdLi3QFtsxx2puirsP9pWyx9nzOO02hPcNMXtN5kQs6YW6qTJNhYPrMT+ept/wK\n4xd8EaIqCb/sq5F/8YcJleD+F6U89CkvQUnDB9/zDurykpAU15xiTY4utlxGmsHsWLYHVvs9EmiX\ngkNs5zipDba7zmRVBMGEUj5ZYJr2Xs7QnTL2IVOkOM8cU+xYLwXrQ43oJjrhKIUB62UCTILNJiEI\nurkK9nL+/vmsU6MFhwh2sUNIyUuHgZO+xzjHE6lhH1nvAN3nMCaoQLF4aINKJWcLUE9d0reGR58q\nj+T0iCNeIHi+GcxPAS92zn2Vc+5HnXN/zzn35cBfBl4NfP1d1/4PwBL4T5xzP+Cc+9vAfwA8Afzo\n3YcKIT4D+Fbgnzjn/rhz7n92zv054DuAzwO+/Fmv4544+yOBdeb6A4KbSlJJEAT45dcRR9x7eOih\nhwCIg/jGFDWuC87DCa177htH0t0OQsthIzgIizQrXJmjtOLkJCMIWqJoQMoruvZALv0quXcR9Srm\nyjRkdo6BGnr0xtePGhcimg1mD4tFOhPAgSRpGMcLsO4mnkqr8KZ5Kr6OgGoaXCEpFzAIh9QrXJkh\nnGSz8XFIShmU2jGOe0KRzETN61gvEuvzU6eJRVkClsN6zgMl9VPJ/noq6W7C+H3eaYMkQHZnXiMq\nBbtCUSmNALaHA8vDAbFccvHT/5jme14PQPhXfpDgS78Rud/zaa9+CacPrHFm4n3v/jWmqUaJENmd\noqc1Nim4SAytviAbhhtt7FBI6syBANmucPsUgNUqJE01QljCcM80XSFRhOMpwyHFSB+j1caaYi3Z\nHvbIumfEsgsM1obeFNXBapUSxwO+0GDHOB48cb6ewkaCy9hHUz04jpy2LdpankwMVWw8OT3kMKao\nQLF8+QkqFZzmDvnkBV1jeP/TFd3UPQ93/RFHHPGR4Hklps65/9s591zWyX88P34GgBAiB74EeMQ5\n9+t3fX0DvAH4FCHEH7jr679ifvwbzzr3x4EW+MrrJ+6xsz9sGG1wDpTz/66FgNASxopnDW2POOKe\nwcMPP3zz8bUpKg9zXJZSLkNK07CyhnVVIYeWYesjk6xLEM0GuxesVhlZNqFUR5YdOBwuiEgR3Qlt\nG9Kvcy5ED2bkrGmI6hpXSKoF9Ii7prDxPO3siKIR5y4YhpZUrJ/RPHURjFhnOOt78qpChHDYiFmb\nOUdA9WIO959uwv3H8QrhJOF4xtAk6DDw+al2YHFt2NKaYSWpYgvXNab7cDZZhcTxBBiUqjDmCnCE\neoM+rG/aoi5ig8FRDAPbqkI5R/W938Xup/4pbrVGvelNRJ/zxfDO3+b3fc6ns1iHdFXN+3/nHWi9\nQyAJx1P0cAsXJlxlhr25IJkzXpXWTKnwXiMBYsz8e9aCLAtYLAw+RqvHmHOs1cRuw3hYYpykLkKq\nRJNuJKd9Q3B5wBhHmVhGJ5HtFrMXN78sCDHNut2KQESe3A+KIRRcpA6k4MVac1/TYJzj6dhSJRZn\nHewzGDJUoFi9/JQwg7PcIZ88p20M779d0uv++br9jzjiiA8Dz/fE9EPhJfPj0/Pjq4EIeOtzXPtr\n8+Nr73ruDwAG+Fd3X+icG4B/PX/+GvfS2R8RnANxXUcqJcKFqODY+nTEvYdxHAF42cte9oznhRCs\nkpVf7YcR3abgQvQoM3LWdURVhcv91rdzAjlusVcRaRSzXgfAgTwfnrHaP1QxQ5ZxmTg603M6TXOk\nlKVZ+0gpaVbYMkUayWaTEEU9Sk3EcUXf7+7EUx1CxtQ3T7V2YKU1m3m1P279JNbawE9ia3kT7g/9\nje5U64nYbpkOC7Tw+akVAylwWteovkcXkqpwPqppXOLKAjdCUYQz8dMo1c+azpHAZbjmFD0GjPPa\nvBeG2BhOq4poHOm/6Au4/X/+KubTPxP5b95L/LlfQvDTb+LVn/XpZAVcPPEku8v335iYYnuC6R/E\niIAy05T2ymtjq4pwHLGxoFrDpBzChFCtcb0iigLWa4FS041WdJpa4jlGaxx8jNZlbgk2khMzklxU\n2M5QFY7OOeSwuTGpLRYOGIiihnH0U1jVnzJ0cyVq6rASHrCWs/0eay23I0OVze1XhxS6DBkoli8/\nI0wtZznw+G2ag+HRp3cMevhE3v5HHHHER4B7jpgKIRTwvcAEvHF++kXz4+PP8SXXz734rudeBFw4\n56YPcf2pECK469p75eyPAA6svRMVJRRWQKjCj+64I474OKKqfFXkZrN5zs8nQcJ9+X3EKkYvMi4z\naHXLqdYUux1CTD5bVFqEW0C1QI6Kk5OcIDgQRR1K7fxqX2zp64JexFSLkJ0+sDTGr6b1wHiiKAML\nLoM5X3O5TGcC2JMkHdN0jjOWxJ7S1zmT9Kv90vUkc2RT2DTYhfLSVUBNm2eE+0vZEYYaKS8Zhsbr\nTpsNk5Y0i5hLOaCc5fRwINzvsYmkWkMfOKRLoF5jGx8ptV7Lm2pUpS6Zpj1K+KrV6/inq1xSywnl\nHKf7PXnbYl71ME//yiMMX/pliLYh/ppvYvMDP8YrXvkgeer4wG//LkYfuDYexayhfxnGKup05JK9\nLwyoa5Kuw0qoV8w1pnKOvYrnMH5v3pLSzg1ZFaGIb+pgpzjgYgl241hhyC8rqCaalaB2BmXW2DIm\nVAGrlcS5jijyemIcRNMpQxNjlPBB/Arud86TU605Dy1lbrE4aFNoZ3L6ivsIU8N9ObgnZnJ6++o4\nOT3iiHsU9xwxxa/IPxv4Pufce+bnrt3uz/Vrbv+sa64//lC/Ej/7+nvp7A8bbs4xvTY+aSmQzhLG\nR2J6xL2HsiwBWK/XH/IaKSQn2QmreIWIEw7r1BujrOakrgmaPWYjuYotk4uQ3RZbSVaLgjw3SNmS\npgea5pKYDNduafqIbp1zQUtgJs4OB08o14oysWiUr0XdhURByGYTImU7EyxPKFO5why29ENAu0y8\na98ZTruOrKogul7t2zvh/oNgs0mJ435e7VcMQ+XTBLozhi5gyGPOI411htNhIKsqnHCeqKUOJySy\n32B3MQLxjGpUr+mc26f0ZnaxSw65D/g3zrLqOjZVhcgyLn/yH7D/yz+IU4rwh3+Eh7/9ezgNJKHS\n/O5v/iZC6Jvw/EiuEcNLmSZFk3ScB50vDGhbr2MF2mJuihIgh+Im73SxCO9qyGqYpgsEEOlT+n2K\nUYqrlWLYGArpWF+UcN4ybiSlMAhb4KocZb1jHxrCcMRaHycV2xN/jhBcpn56ews42+9xWnMRWMrc\neXLapbhDhgwCli+/jyjV3MrAPXHOfm9431O7oyHqiCPuQdxTe18hxH8P/Fng7zrnfuCuT13/7RE/\nx5clz7rm+uPTD/HHJHipfHvXtffK2Td4/etff/Px6173Ol73utc94/NGO8AhzUxMhUSo4Nj6dMQ9\niWti+qEmpncjj5yJeqYAACAASURBVHLiIGbX7RjXkou2Y9VrzkZBudvRLxbsY0VcQ6E32N2BeGGJ\nto6yrMnzgr6/RIgliTxjX+3IFoKLoWM1aM56KLWmWy6pY0hqS2GX2LJH5Ac2m4zDoaPvFXHs6LqB\nKFrDeEard6QFXAQTy3ZgrQVRWVIVBcMmRO8tyzFGNiFGlxRFQhhOHA4DcQzDMBEEG8LplN7siHO4\nUJpVO7LWgng+a8oiqshR7B2hLbBlhM33FEVEFGn2e00YgjHnaL0mDHJ0E2KSHcRwrgybzpBqCMuS\nq8WC/Z/7NsbXvJrNV38V6pd/id/33vfy9u/4Lylf+iBPf+C93HrwFShVMk0TUbhlHCyDeRLSlttS\ncTIqigEirdktFkyxYqcciwOEJsaVAbaoSZKQILDU9UQYgtbnwIYk2DDsQ1S2Z7+WaDmQXUo2uwPV\nZDAPLtkdLMsxQe0VZDXbbUZZtkCK1heM44Yk2tDvJVHRsMsEy9ZwHxL2ey7znMsogkXAcu8IhhSH\nQBYNy1fconrv09wi4PZTFzT3n/Jvnih56H7LIi4+vv8BHHHEJxkeeeQRHnnkkY/L2fcMMRVCvB74\nHuAnnHPf/KxPPzE/Ptfa+/q5u9flTwCfJoQIn2Pl/mL8Kl7fg2ff4G5i+lxwzuHcHUe+kRIHxNFx\nYnrEvYcPZ2J6NwIZcJqdUg81TQZlpEnqA+sgp6sq6jRl2GZMlWGpc2QdQbJnuy3Y71ucC9Ha0LU5\nRX5CU9WEObhiYto3rMkJy5L9YkG/DZj2hsUQoZoNZqzJFwlRNFHXLWkKw3AOrMjiU7q6JsgOVEvF\neOhYuZiorrlKU/Qyp+wMxUEQDVusromXEKwNVdUSxzCO5wi7IQlP6Pc1YX6gXEj0YWCJP6tMEoY8\np1pDcnDkQwiHLXasCQvHZiOp6wHnIuCKacoJwxW2P2PUJVHWc5U7inZi4ULO6ppdmtL/kddx+61v\n4fRPfAXBO97Oa7/7v+U3v+7ruf0ffx7b+1aE8XaedGoCtUFoy9CcQ95ymS1ZtSOZiTgrS8qioI9j\nqpUjPTjyUXlpxLhHFSObTUBdj0CEtVeM44I4KhibkCHewTJmUgOL24LNoaN+n0a/bEOlHEUbELcb\njC7ZbHLqusW5COd2DMOSJF4xHBQ2q6lyhWk1Z1ohDgcu85yrGFgoFnsIhwTnBKI4sHrFfVTvfZr7\nZcjTT17Q33/Co0/WvOQ+wyZbfbxu/yOO+KTDswdm3//93/8xO/ueWOXPpPT7gL/vnPuG57jkN/Dr\n8M95js999vz49rue+1eAwmeH3v3nJMBrnnXtvXT2hw/HXEd6vcqXKCAMjxPTI+49fKTEFO4Yo07S\nE1QY028XnIsOZQZOu46wrnBLQZk5esIbt/0izygKi1IHsqyhaS5JRI5tN7RjTLPOuLQNiZnuaEWX\ninJ27SvtA/kDF3BykqKUXycHwY6uq0jEAtts6fqAbplyoUas03fC/WPBfiNohEXZFbbMkEay3aYo\n1RKGE0Jc0vcHErH0CQBacVjGN3mnJ8PAqiyRxjAsBGXhMALk5KOzhJas1zFZdt0+1TCO5zh7p4nJ\nOMm+CLkMJhyObdexrGvcS17M7X/5C3Rf+bXIYeD3/u0f41U/+gY+8BvvmdfwI2E44NwlUq6I3QnD\nIWBynY/QkhPCOR9RNeed9gtBlVu/2h+XuCrHWV9lmiReGxtFNeO4IyAkGM7oDiE6jylfLNChZj1o\n4vdeQGDZLwWtFahxiykFiyIlTac5L7ai72tiUXjN7iQ4ZAGH0HCqFKdNg+h7dtJSLx0DFjHGsC8Q\nYcTq4VuEieZWbgmfvKBvRj7wdMP5fvfxuPWPOOKIjxDPOzEVQnwfnpT+Q+fc1z3XNc65A/CzwOuE\nEK++62sL4BuA33HO/V93fck/wvO2b3/WUd8IpMBP3qNnfwRwWHc3MVUIBTKKPrrjjjji44jdzv9P\n/yMhpteIg5iz/IwkSDCLnKtM0OrGu+13O0SgaddQY5F2jStTYmK22wQhavK88zmlkyPSp9R1TL8s\nuFQjWvc+Bmq38679raCUBmdnY9TBx1P5GKiONG3o+wukVUTTGU0dMaYJlym0dmCjtSeUdqK/abFK\nb0xWd1qsRuK4put2RMK3WPWtYkwjbmeOxo3k1nJWVZ44z8aoTlmkmzNPD4Isi1mtwLvYJ7wjviOi\nwDYnTKNiSEPOY8OIoZgmtmWJDAJ2b/g7VH/9b+HCkJf+ws/zmd/5vTz6yNvZbAKkHFBKI8QO5zJi\nlgy1YpxGmjzkPNZMzlCMI6dz+5ROJOUKRmGRJoXKt0Xl+XWV6UQUdWh9gbPeWNZWKSYIqR8M6cKR\nhXbkj14h7US3EdTOIqY1tgzIkpiicEBHHB9uvneu9c7/Ng2oIsNWSrZti2waSmE5rIQnp1MMdYEI\nIpavuJ8wNZwtHOn5jv7Q8/jtjqfrK+/sP+KII543PN+VpH8WeD3wGPAvhBBf+ax/Pv+uy/8boAL+\nDyHEXxBC/BngV4AH8IH3N3DOvRMfXv+lQoh/IoT4BiHEX8O3NT3inHsjz8Q9cfZHAqM9IVU3GlMB\nThDI4yr/iHsPH83E9G5IIdmmW19nGid+6ukaMqvZ1jWqOzBtJbvQYlwGzRoaxXZbEAQtcdygVEnf\nNhTihKbMaMPMh9TrhqUxnJQlQd9hNooyvat5aheShDGbTQg0JMmAcxdMY08uThnqBb0LqZYRV7Yl\nteamftSs/VneZOUjkbIkZrEA5zrStGMYLsAIYn0fY5NhpI+UupIjwvr81KIswRnataRMLE7412Z2\nEUpIttuIMOyRUhMEO8axQuFd+0MTY6KAy1xyYCR2jrOqIuo6mm/+Ri7e9GbMrQfY/M67+dSv/SYu\n/+mb58KAASEMSh3QWhDLFHcIGTuHjkMucsGBkXBun0q7DhcI6o3gMFeZiv0GewhukgWkHIkiHyk1\njh2Z3DDul2gX0rw0oY4HEu1YPLpDth3TiaKUFuwKVybEKmK1UjjXkKYdfX9JQIgcTug7xZAElIll\noyTrvifY76kw7NeCTliEjqFeIFTI6uEHiArLtrDklyVj3fDE7Z7Hd5fYWSJ1xBFHfOLxfE9MX4uf\nPj4I/APgHz7rn+++vtA5917gDwFvA74L+KvAHvgC59ybn+Psb8dXnH4G8CPAlwF/E/iiZ194j539\nYcHNu3yFl7lqIZFCEBxd+Ufcg3jiCS+3zrKPKoTiBlmYcZafEQYx03rhHeim52wcSXY7yCxV4Wid\nRE0nuDJkmecsFqDU/sa1n5Bj2zXt6GtRz2l9IH/b+nMS7jRP2SWuKhCjvKvOdCCKKtp2Ryxy6E7o\nupB+lfnV/pzDmpQlpIJ6BS2OwHqXfSgCttsIIRrieMSYc8axJ7JrzGHLNCr6POI8c3R2vCHOqu8x\nuaRcOgZhUXYB5RI33An4h5Eoapimc6wxxPaEoV6gnaBeRFypEeEsp21Lvt8zfc5ncfttb6V5zWtJ\nyh0v+uo/xfRDP85yEZFlI0IYksSi9YhEIHtJv1cYIf15csQ5y6ZtWdU10jmGpaDM5tX+sMLuEqTw\nTvsoGlDKEIYlfV8RixzXbhmGgOmlOWUxIY1h/fie4LLCbiRlYLEux9UFgQ7YbhOcO5Akg5+GG0E4\nntI1AVMcUKWOlRIsx5Gwrqmtpll7eYUwEa5aAgGLlz1AshJsF4ZVvWeo9pxfjTx2cYGZo/iOOOKI\nTyzEcW1x70EI4f7/fi6/8s/fzJt+6p+xePe7+K63/SLvWp/xt/7oH+Mrv+lP8jn/4ed+gl7pEUd8\nePjiL/5ifu7nfu5juiath5rDeACtSeqOlcrohGSfptgkQ5WGpVNAB+kBFzvK8oBzBX0fIcSSKI5p\n7I5sMRKYgaLRLIKMTgjqLMMkCWJvWQ6CQDhsUCEXlmEa2e8NUmb0fYCUK4IwpHU70mIgMBOLRlME\nKQch2BcFNggJastSS2DEpTUql1RVwzjGOBegdUEULXA4tKoIsw6BI21GVjZEICjDkG6xwAlBvHfk\no0DgsGGNXGiMNdT1hLUJxkiMWRLHOZMbsNGOOLEEo2bT/3/svfuzbWt+1vV533G/zjnmXGufe3ef\n090hkaShY2I3UKSUlIYIAdRgEjVlWQolGLwQ1ECogBiwiGglalGkNFgiJSKlIoIayiaXzqVDX5J0\nkk76lnO6z+lzzt5rzjnu9/G+rz+MufY5p9NSSLp7723Pzx8w19hrjtr1Xc/3+zyPwBEWnZSUaYrR\nGv3t/zpP/821eG/+1m9B/6U/xygs6toghMs8DxhjI6WNli4yVNiOQk4z2wF84TALQR7HLK6LmDVR\nDZ6RaDFBVCM9GIaJppEIYTMMLo6TgYBRngjiGW56ktzgSodmZzPdyTAdRD14UmG8EhFBnrcYEzFN\nNkJk2I7DIE4E8YSlFHGrabSgtSyWNCW2HfzSEGuJEQrSGmErhlfu0R1nms7i4AZ4uw2bxOLNd/bY\n8qHxCF+48NAihMAY83mpnXzQiumFf0TMqpli3d6YWhaWtHAurvwLDyHPP//85/0zUy99gzHqIAes\nZViNUXWJ3gpyVzFrD9nvEI3NLktx3fVG0bIK+q4mljvmekO3+DRZyMG02Oc6U6+qIBaUKbSApXbo\n3MMVDrudhxDNueP9yNC3xHLPVKcMxqXaeJxUS6gV+7rG7m9X+4YFB9mvxp40ub1hHfC8hmm6QasF\nV2fMdcY8W/Sxxz1vYTQz2bKQ5TnWNDGlkiKBWQisZYspQqS22O0CXHdAyjVDdRhyLLOajobWZXZs\nDpGgNROh1lwVBbbW6P/+L/Nz/+53oVwX53/869hf98/jvnL3XN064jg+ljWzLD1ST5jGXk8FHIdT\nbFExYWvNdVURtC3GkdTn1b7Q59V+uzZkbbcCIUZ8f1WMtVoIzHp3qvcB5bVNp0aSXBG+ekL4miYV\ndNpCjhm6EuyyGNtezWlCnJjGgcDs6SqfRVrUkSS0DKFSuGVJs8wMW0FlKYSxoNxgRhv/iTuEd3zi\ncOZxNTDdnCiqhV999cCsPleXyoULF75QXAbTRxS1KIzWb3Dlrzeml7/uLzx8vPjii1+Qz701RgV2\ngEoi8kjeN0aFeY7wFPVGUBkQc4bOXZIgIk0lllURhi19f0AsFu5yTVW6DHHM0dP3m6eS0wnJamY6\nyQVjIqg3mFaSZRG+P2HbA0FQ03VHXAJEv6dtHfpNxI01Ys6rfa8oVi9UCj23g657vmG1gTXcX4gD\nw1C9Fsjf+ijX5ZTYlIz458Yjr64xLlRbaC2N0AGiWk1bn6vNSiuFr68Y65jZSMrEoRAT9rktKh4H\n3O/8d/jx7/0LdFePYX345/F+6z+L9SM/fV7DT0jp4bqSZSkwusOeDVOdsGiLJnE5ODMKTTYMbIsC\nqTVjKihDgwbkkKEK935DlmUNOI5CyhPj2BJZGXO9QcUe7RM+pR7wC0V6N8cyI0MmKA3IOUPlkjRe\nvwPLGrDtgmFoieSOoYpYhEUb2/hS42uNVxR088y8tShctdY6NxtM5+Lf2ZM8leJ7A0/Kifnugape\n+PjLB4b5UmF64cIXi8tg+ohjn2/0FyHWhhX3MpheePioqoogCL4gny2FJAsytv4W6QevM0bNZFWF\nPa7GqMLWmHOdqbO47PcRllURBC1CnBi6lkReMZQJnQmotwEH1eDrZTUzNTVma1FEhsHYWNMenduE\nnsdmI4GGIBjWAXBWBOaatvQZvYBjCK3q2StFkucIlnPFqkKYBFNGyEmy34cEwYiUE75/q54qPL1j\nqrbMi02beNxzJhazsJ8m0jxH6oVhKykCg0YihuwNbVZCtPfbrG5jqnS7Yxwtutjlxp3RaHbjyDM2\nBF//T/Ke7/t+bt7xjyNOR9zf821Y/+lfIokdkkRhWRaeFwMl81xiqQ7TbpkGhzlwuQkMrR4Jz8Yo\nexhQoaTcsN7GqgRTxDALtlufIJiQcsHzKoYhxxUB9DtG22V6IuQkRmQxsz3U2EPLsrfIhUGYDF04\nRJ5PFGmk7PG8irYtCK0Nc5MyKUGfOjhS4RmDVxT0w4BKLMrIoIxG9Am69rG3KembdrjeyNOeQt89\n0nYLn3j5RDv2X5D398KFC2/kMpg+otze6lnnA30lJcY2WPZlML3wcPLUU5+rZ+LzR+iEXIfXuI7P\nvE04ugq19FxPE16RY2JDGRp64yCHHaa02KYJYaiw7ZowbGjbG2ztYs9XVJVLn8Qc3IXpbLCKTieE\nregyQSU0Qm8wZYy12Oz3Ebbd4rrDmnna1URn13mvPOqNz1E1hFqxqyrsvmPJLHJPo42P6DJUKQgD\nj+1W8tnqqSsCZL+u4hff4xhLKj0Qab1GNjUNOhQUGxikwdIpFMnZtBXh+yNSjufh73R/td/VDrO3\nDpOdmUi05p2P7wmfeJyf+BN/iue/5dsRWuN8z/difesfxu07tluJ42hse4Nt98zzEbPkWEPCWEcs\n0qZMXXIxIrXiumkI6xpjC+qtoLYUwnhwVnejyCNJNEJMZ3X3iNQSb7mmMx7qsZCjq5jzgazoccsC\nkwlyS6FNiqkCPFzSdP0DIQw7uu6ES4hqM8ZJMqUu0lpwjMErS4a+RwfrKcSEQU4Rpoqw4oTNW66x\nnZ6nAoV49UDXTXzy5Zyqb7+g7/CFCxcug+kji8ZgXp9jKiS2sHC9S47phYeTN7/5zV/wn2FJi6vw\nisRNIAypNh7FUpNpRVKWSAb6TFAYjdA7TBkQCJ/9PkTKdbVvzJGx64jFFUMV04lgjW9SDZFe2JUl\nVt+w7CQnV7FoF9mt96KbJCKKFEK0hGFL1x1wjIc9XdE0LsMm5mBPGL2u9t2igEhQJjAgsZYdOg+Q\n86qe+v6AlONZPT3cX8VP9YZZ2zQbf/08s6x5rEUBKNpMUDoag4doM1QpiUKfNAXo8P1V2V3mmcBc\nMVQRs7DXAH0x4RrDu557Gk/Az33zt/LR7/t+TBRj/29/C/er/2nke36SzWbNJ7XtFNcVaH3DPL+K\no21Us2Oa1tvYG3dhMgvbaSIrCiytmM63thqBGDJ06eA6NtuthZQDnjej9YF5Gom4YlAxKgsoQkmT\n92T1TFAUiNhQ+YZRB9Am2JNNlvkYUxEEPX1/xMFFDDuGwUKlPtgL8nY4rSqMK6g3MAiNXAIoE4QX\nsn3rk7j+yBOhwr57oGsHnn+l5NRWX/D3+MKFL2Uug+kjil70uflpVU7XuCiJY1/MTxceTt7+9rd/\n0X5W4iXswz226zPuUg5ywF4G9n2P3ZSoTJDbikUFiC7DVBa7bUoYKhznNlbqgK08rPGKuvHoN8k5\nCmrkzjji5zkiMFQbQW3MfWOULz12Ow+oCMMBpQ6oaSbimrYMGNyAUyholo4rpYjzHCEX2p2gtBSY\nENHuUIUkCnyyzAJaXHd8TT0lRHSrejoFHocQGj2ssVJlid33LKmkiA3j69uscNjtfKRs8bwZyzox\njg2B3LA0GeNo0cbrnagfebzz2Wfw+p5ffuuX8cm//X+y/KavRr78Gbxv+lasf+tP4qv5rJ76uG6I\nlCeG4SWkHrDHOwyNx+K5HGNJbUaCs7rrdB06khQpjMIgl3RttFKSLPNxnAHHWXCcgr6vCOUGbTKm\n2KdJXE5lR9qsf2wIZ6ZNoDMuYtxCvSrEt7//cTwglMSa9nSNhUl8RGCQAvy+ZyoKlDQ0W0ErNUK7\nUG5A+KTPPYUbzDwea4LDia7u+PSrDfeq4ov2Ll+48KXGZTB9VNEGoxXSrKv8WUqEENgXV/6Fh4xh\nGAB45plnvqg/17VcrsPPMkbNDVfLsqptgaJKV2OUVDt07hMI/1wdWhFFLVofmfqBiCvaIqS1QorU\noVgaNmphW5ZYS8+0t8jPWZs0G2gl+32C4/Q4TofjFHRdQSg2LM2GfvFotgGHpSY6r/atvmPZWhSR\nZhQCS2Vn9dRiv39tFX+rnhq1tieNVcKMS73xOcgBqReuu46gKMAxNJmglgqhQ6g2mG41bQXBfFYn\n61XZxcUar+hqh8l3OQSG7RNbnn3smqCu+Hg78sqP/T3qP/49GNvG/qH/FvdrvgHrJ95PlnmEoY1l\nxbhuxzR9mnm6WW9j65TF2NSpx0EMoJc1Q7UswV7zYitLIbQP9QbVcs5kXZByIgjas/LpY8trBtdl\n2ATcazqcaiarayzVM2aC0kjEkqELwW6bYFktvr/+caBnhaeuaCobE7iYEDAab5pQpxNKK/qtoLQ1\naGtt61pc0ueexo8N17EmyQu6quUz9zo+c7q0RF248IXgMpg+ohhzDtg/D6ZaWghLYluXG9MLDxdl\nWQKQZdkX/WcLIciCjMzPkH5Al0UcdUOsZ7ZVhT01zHvJyVbMelVPqW2yTUIQLLhuTRDUNM0BVweI\nYUfdeXTbNZ4KNaxu+7JYb1gjQ28srPkKfbJJwpA0FUBNGHZrnamysecr6tpl2CTrKl6N3On7NwyT\nha0wJkC0GUsuCH3v16infb92xov+iqFzmaKAQ2Do1ECmFNuiwJoGpswiDwwKCznsULlF4Llstxar\naWtkWW5YpnW131chk7DJE5snvvwpsjDEuTnwqZ/9Jeo/9Se4+fGfYPmKr0S+8Dzu7/wXkH/0zxBZ\nht0uwLYjXNcAL9P3L+ASQHfF0NlMsc+Nr+nNxGZZ1tX+cnbJBwZtrHOMloXvuWy3EiEGwnBinm9A\nGQL3MTrhMUUBN/OEKkeuhuGshEsKAahVcd7EMa474Dg9sMZJhVzRlh7acSCRKGZcpTB5zjzPLBtJ\n4Ru0EYhmix48ojc/SbgV7OKFrKloTwV3jwOfPhwvw+mFC59nLoPpI4oxGj7rxtSyLCzbesBPduHC\nG/n11pF+Pgic4L4xasnSszGq43qaCPIcEayxUqUBoXaYIniDehrHHVqfWIaJ0FzRlgGtE1FEFvXS\nsFMLSVEgGel3kkIojE4xZYSjXK6uIqSs8f0eODIPA7FYV/udHZBHkmbp2C4Lu6JYM083FsU5VsrW\nu3XVPUn2+wjPG5ByIAgaxvGAWQyeWm9iZ8uj2vocdIurF67bFrcsMQFUG2iFxtJbTPFG05bjnE1b\nfUUgNszNln606LKA6696M7YUzJ96kVd/5oPM7/hK7r3vJ2n+vX8fhMD5iz+I87XfiPWBn2e/jwmC\nCCnBdXP6/mOgFrzlmr4KWWyXInEozICnFddVhdM06EhSpjAIg6W2mCJAGovdzsOyOjxvQYgj09iT\nBHcYZcxk+5yMoT11XCuFV+aYjaG0Nebs2I/dkCjSWFaL45T0XUMk92tkFjbW1mdhxtEaO8+Zug4d\nS8rYoDDIYYNuPPynniC+8tgEI4/NPc3hyCEfef7u4VJheuHC55HLYPqIYrQ+B+yviukiBUIIrMuN\n6YWHjDzPgQc7mMJrxqjUSyEMqTc++VKTqHOs1FCz7AS5o5h0gOx3r1NPZ1y3wvdr2uaEpyNMn1EP\nPt025oYOR43su+5+uH/hGybjI/sMXQq2aUwQzNh2t35OeyIUKbrf0k7eGu4veqSeudP3awKAVHR7\nSe4otPGR3Y7lJIl8/5x7ehvwf2AcG3yRYNo9fecwbSJu3IVBDWsea54j9JrHmjsKY1ZjlK4km/TW\ntNURBKtpy9YO9nRFW9u4T16x/co3o4Wh+tUX+cx73oseBqr/5D/m8H//PdRbvwz58Y/hff3vQ373\n95H6NlmWIQS4bs88f5RxzAnEdr1lnWy61OfGnlBm4XocifIcpKbNBNX904MU3cN2GxIEE7a9Rkr1\nfUEUbDFOxmA8KtvmeGrYaU1YlohIU/mGySTQhHjaZbOxEOL2fjjHFwmqzRhGiZ0FLNYMRuNUFWNV\nYfx1UB6NRs4ppgxxH7tD8lhM5PU8pUf6mwOncuSTrxxY9PJA3+8LF/7/wmUwfUS5XR856mx+khaW\nJZHWRTG98HDxMCimryd2Y67CK2zXZ9qlHJ2FRa2xUmso/0KzEZT8WvXUtiviuGVZjiz9TGiuqYuA\nzos5hYL+9eH+zky7gQqQao8uPALLO+eKVkRRxzQdELPAU+dw/zDkEEKlexKtVqNQ06ATeVY7WdXO\nMkKMq8nH8wYsa8D3a8bxAAp8dU1fRky2T7nx7sdUXdU1Tl2jkzUmaUCckwA8fNtjt3MRon6DaSs0\nq7K7e/YZHnv3b2TxLNpjwYs/8tPMn3ye5V1fy6vvfx/tv/kdoDXOf/YDOL/ld+P+8se5vn4M17Ww\n7RnLeoGuexEH7xxT5bIEPsdQ0KiBjdZr4sE0MmcWuW9Q2l4TD0pJGKyRUlIOhGHPOB5xXB8nvKYd\nXDrH517ZkhhFWlUI0dMm0GofOWywB5vt1gNKwrCj7w9Y2sYar2hrCzsN0L5GGYXX90ynE8aGOhN0\nKKSOMEWMvduzeSoj9HueEhPjzQ1FPfLxzxyZlktL1IULv14ug+kjigG00VjnFdIsBdgW1mUwvfCQ\n8bANpgCO5XAdXhO7MSZa1dOTaQnVxK6ucbqSZQsnRzHeqqeVTZau6qnnVevtaX3CNzG629JMAc1m\nrTQNzp9j9TVzJsgdjdIRotkgOotdFmNZLa7bImV+P9x/qlP6xaPdhtzIAaVGrseR+HRCmLPa6WkU\nPrLfo3KLyPfv34reqqe3Ifqm29P3DuM25saemJdzHmueIyy1JgFIhTAxlClisMiy6Gza6rHtYg2r\nFxvmekOwveK53/HV6OuYquv49Id+if4XP4JtDOX3/wWO/8cPo970FuQv/RLeb/9dyD/7X5IlGUkS\nATOue8M4fhy1zISsZQYTDtXG40iPc848desaE61VsL0xWEuGzj0cabPdOgjRnatMD2g00fYOTePS\ny4B7zYilJ3Z9jz01TFtBaSyYM0RjkW0ihFjPKpblgJoWAnNNXbhI34dYMqkJd56ZTycMmi6T1FIh\njQ9Vioy2bN90B9/recZeUPduqJuBj33mSD9dWqIuXPj1cBlMH1WMAcz9G1MtLGzbQsrLV3rh4eJh\nHExhNUalEymBNQAAIABJREFUXspVeIVzG8rva8alZb/MREWBdCa6raAwBlR2P/d0vT0tSZKWeT6i\nBoWvrqhKny5cP2c637D6eQ7+QpVAi42cdujCZhPFxLHBsm7D/Q/Y2sOd71AXHoMXkic2uWqJzmqn\nW1WY1VxPI8xZPY2Rg/U69bTH92uG4YBQAl/doStDJi+gSB1y1RKrcx5r164h/75mZi0e0IVNEoWk\nKUjZvE5ddHCnO+hlw3PvegfBWx+nVhOf+uVPcvrQLxAcj8xf99u4+8H30/2r/wZinnG/989j//bf\nR/jCPa6u9ljWjG3XwCfouhxfxtCtpwdjEnDjLUx64mqazjFaam3IErfD821hQIjr9rjujOMUjEtH\nenWHvg1oF4/DsP7+r+YZpy1RW0EhJGbJMKUkS1dTlOt2WFZO3zUk1hVdGWKki7V1Gc2EqxT6cEDP\nE1NmUdgKtINotuCkZM89ief3POMrzL0jTdPzic+caMfhQb/eFy48slymmEeUZVrvmaxb85MU2Bis\ny2B64SHjYR1Mb3Esh+vomtRLEUFIm0Wc6PGWgX3bYrclagu5pxlep57uNim+P+H7FZ5X0dQ5gUmZ\nm5RmCak3ASfdkOiZTVVhzS1jJsilwegNpozwtMtuFyDEul425sA4tMRyh2oz2t6j38bcc6a1fWpZ\nSIsCOQ9Me4uTb1iMhxzP6qnns93aCNHg+wPGrOppIDaoZscweQxZzMEa1ySAYcA/ncA31FuouTVG\nRbjnZ5NyDavX+sg49IRijx6uePrLv4LHfvPbqT3Dp198iRc+8GGiV17FtiyKH/yvOPwvfwv1xFNY\nP/uzeL/1G3F+4K+yzx4jDDXQ4Lov0vev3D89aIuAyfbIE5tCdSRasy9LrLFn2a0NWcq458IASJKA\nOF7Oq/2WfsqJ9xlmTOk6j1K5VGdjmlfmkChKG5Q+m6KcgCQBKde706Y5EoiEpdkwzQ7u1qdnwDIG\nURTM3WpIKwOD0hLRbjE6ZvvcM7jewNPhgnVzoK5bPvFSTtFeWqIuXPhH4TLFPMIYzetW+RZYDlJe\nVvkXHi5eeuklAIIgeMBP8g8mdmPuRHfwnIBlE6+5p0vDfp6IiwIp19ao3BjMWT0NRcB262HbJWna\nMs8nzLg65MvKp4tTTo5Cn9VTt8whNZSBYTAectjBOdzf80YsqyUIGobhBmYIzDVtEa7tUxtvddqr\niTtdh5fn4GvqTFBJgzyrp6K/vT0dse1VPe37NWTeXa7pyoDRD8lji3Jp2Oo1Vup22M3d1ypSaSx2\n2TqAu26H71f3jVHufIdk9xzPvvMdLLuIl/IjH37/z2G/9DJxnjN/w9dz90MfoP+WfxkxDrjf/R/h\nfP23kdydyLIAIRoc5y7GvMwwNIRyNUYNk0O3DTnIAaFnrrsO73UNWb0BOe/QuYNnu2SZjRAdcTwx\n6yPO1sc2GXVhUy8+J9WyRRNVFdKfqQIYdAxtjDM59+9Oo+i1OC9r3NM0NkEW01sTWi/YVcVc12t6\nQAIzIIYtaghJnn0GL5h5Mlrw85y6bnj+lZJDVT/o1/rChUeOy2D6iGIw5+an1ZWvhMS1JeKimF54\nyPjEJz7xoB/hHxpLWuzD/f3c036XcBA9zjJwNQw4dYHeGApP0+sA0WfI2nmdelriuhVtXRCxZaoT\narPesK7VqAtxniPpz9WoBqH36NwjsgN2OxcpKzyvXaObugKfeG2fql36OOLga9qlY3ebUzp2LJkk\n9zUTHta0ZqiGrndWT2uCYECII+PQ3nfG97NHn62JAlKN6wBYlpgIygQ6I84DoEvkBa9ztferEts3\nRDIjCp/lzV/5TvzH9hyWkQ9+6MMUL7zELs+xXZf8v/shjv/D/4S+voP1vvfhvet3EvzQ32GXbfD9\nASFucN179P0RS9s40zVt5TKGAccAejWwV4okz5FyWVf7UiPOcVxykmdlt8X3J5AndGgIrD310aWd\nQm4Y8NTIpm2x6ehTQW1cmDJEbbPbxEjZEAQdxpyYh4nQXFMVDl4cMfuGSc/Ybct8OoG31piOwmAt\nW3QbEb/pacJE8ng0k5Y5dVnx4r2aV/LyQb/WFy48UlymmEcUpRcw+v6NqbIkwpYIcflKLzxcPP/8\n8w/6Ef4/EzgBd6I7hG6E3iQUiU01lWznkaQssUTPsIVcCIzevUE9dZxVPR3HI2YEZ9lTVD5tknKQ\nI5Ye2Q8Ddl2gNobcVswmQnRbRGOzTWPiWCNlTRi2zPMN8zASi2uGMqFTAU0WckOHuA3mz3Pw1qil\n0jIYnSKq9L7RalVju/vqqVQW7nxNWwWM4Zoo0C4t+3OslGSi30sKqTB6ve20RpvdLsJ1B2y7Iwga\n+v4GsQi2/jO86cv/CdInn6T1JR/+2Mf4+Ec+xq5piPOc8Zu+kbsf/CD97/1mRNfifud34//uP0x8\nGkgSgzF3cd0DWh+YxoFIrI1Wo/BWY9Q5VWBXlth9i7q/2veh26KqNVJqVXYn/LBm8nsSL6PPA5rK\n5+SBVj27ccTuV3NbISVG7dClzcaPCYIFx2lw3YqurYjY0VUBlhNgYotBTzjzzHw4YISm2QoaobF0\nimkT/CceJ84c9uHAVV9THU+8fNPw4iF/0K/0hQuPDJcp5lFl9T69LmBfYDsOQogH+1wXLnwWt6v8\nRw0pJFt/yz7YY/sh09WWkz0jlo79MOBWOaSawjd0n0M9DYISx6loq5LQbBnqiFpGlIlDPVfslomo\nLBHOSJMKKi0RyxpP5SqP/X51x7tuSxDUtO0NlnJwl2uqwqfzo3Udr1pSdQ7m72rURlBEhgEHa96j\nTjahs6qnUBEEA3BkHDpCkTE3WwYdrEkAusFVE/umwakr9FZShIYRFznuMaVDHAT3I698v0fKE11b\nElobnn37u9k//XYW3+UTd1/lfe//WZym5aqqsKKQ/K//VU5/+a+gtzusH/txwnf9XsK/9iNsNx62\nfUTKG1y3oGmOuITQ7Wlbh2ETc7AntJ64Hob1jCGEKoHeyPXfmVuEvnc2bfXEycDoV/h2hGlTqnsu\nVeTSLg1XasGvCkSsKD3DpFNoQ3zlkaYWUhaEYUvbrqkLS5titI+18aiXDlsp1PEIy8SQCUprzV01\nzQZn9xib65iN1/H43NOcDtw7dTz/6qUl6sKFfxgug+kjijZrlqlk/Y9OCRvPunydFx4+uq4jjuMH\n/Rj/yHi291q0VBJTb3xKVZOqaVVPTcu4MZyEQOt1sAxZ1VPXvVVPT4jRwp73FI1Pm6Yc5Yi7DGRd\nh90VLNkaTzWZEDnsMLlD7K1DoJQlYdgi5Ymhq4nEFtVm1L1Hu4m5sUaUGrhzm8UqZ7qdJLc0xqSI\nOkW0FvsswfNuFc+arjtgqXV93tQ+Y7ImCgxzy9XtZzmKdgsVGqE2UKSI3maXJUTRgmU19zNZ9aR4\n7i3v5Om3fw3GC7mZe37sAx/idLjHdd8T5TnD7//nuPuhDzJ8w+9C1DX+d3wX4b/4H5I0HVHUY8zL\nRFHPPL8W5dSVAaMXkMcWtVrPGNKiWJXdnaQUer2xLQJsZZNlLlI2RPGETktA4IwZ+adt2jgmpyfV\nC0lVYcmeLhVUxodpi9U6ZJvo3PjVMk1HxGwhpx1j7xLsYirTI7RCFwW671m2FoWrAR+6DJles308\nI/ZantITzeHAoez4xMsHlL60RF248A/iMsk8ohhjMAac843pbEmw3Qf8VBcufG6eeeaZB/0Ivy7e\nEC3lBsy7DSdXoeeG/Tjg1QUiXigDQ6t9GDJk5bBLU3x/JAzLtQ6zrgl1RldFNHZMkdj0c81umQmK\nHOFMtFvIhUHrFFFvEO3aPrXWalZEUcs43mAmTcQd2iKktcLXgvTVxL6ucZoKkwrK2NDhIOc9KrcJ\nbf916ulakToOHZHYM9cbehPSbAOOev2sXVliDS3zTpL7hgkHOe7QJw9feOz3Ibbd4LoNrlvQtieu\nd0/xFe/4p5DOjsZofuYjH+Ujz3+SZFlW9TRNOP2vf4P8L/4gJkmx/+57iN/1LYR/80fZbiXwEo7T\nYtsFXVu+VpE6u7TbkAMdnprZNw12W7NkgpOjUCaEdoNpBVkW4bo9vj/iXDUseiTSGeXzNq0bcXAX\npBrYDQNOX6I2hkJYGLWDymEbJrjuiOfVCJEzdQO+3tOULtEmobEnlJqQVYUqS3RqUYYGjb0mN/h7\ndk9fE3ktzzDQ37uhqHs+9tKBRakH/EZfuPDwchlMH1G0UudK0vONqbRwPPvBPtSFC/8vPPvssw/6\nET4v3EZLbbwNRBFtFpGrmmgZ2NQ11lIzbSGXAqUzTOnfV08dpyBJGsbxhJxs5LijaAPabUouegI1\nsmtbnLrAJJoiMtRYiGWPKQI87d3vtXfdGs8raZsjrg6wxivKyqNLEg6eYly6NQv0dEKakWEvKRyz\nqqfNBtGs6qnv3yYBrOqpVA7OfE3TBAzpmigwLx3Xw7DmsXqKJhPr7amJ1krTUpLGEZuNRMqaKOpQ\n6oAlBV/9tV/PNn2OfpJ89DOv8FO/8ossU8/1MBAVBf23/0vc/cAHGL/udyCKnPAPfBf+v/LdpGOL\n798gZUkU9WuqwCxx5mvqymWMIw6eYlZrYUBQFIjQrEO4sbCmPSqXxGFAHGscZyB6cqBfKiJS+k/5\nNKNHma6r/f15tU84UXow6g00AaHwSRKBbRf4fkNbl8RiR1sG+H7C4MOwjFh9z3I6YXwoYpiQWNMO\nI3dsn3qM0O95szMy3txQNR0ffenAOF8qTC9c+FxcBtNHFgO8Zn4yto0lL/elFx4ubm/q3vrWtz7g\nJ/n8ErnRGi3lhqjdlsKHcarYTyN+XSDCmSqERgeIcfdr1FPbLunrhkBvaauQxk3II0mvWnZqJi1L\n7KlmPq/3h/MNK4VL4of31/tR1GLMkbHrSORqGGqWkPqsKjpq5KrrcIscE2mKBBos5LJHnRxCyyfL\nHG7VU2OOTENPJPaMVUIr10SBfKlJ1UxWlth9g84sitjQIrDUDlNE2LNzNkf1OM467PbDkee+4qt4\n69u/lnn0eeVuyXs/8hHuNqe1crWqkPsdx//rb5P/5/8FJoxw//cfJnr3txL88E+QJC1C3BCGI0Kc\nGLqWWFzRlzG98CkTh+IceZWWJZYZGTJJgUbotS3KFc7599WyeUYxUmArF+5tKO7adNuEIx2Rnkjb\nFkt09ImgMgFi2OL0LtkmxLIKkqSlbY94OmRpEywRolOHaumw5xl1PCJsTb2BHoNcMozZsXn6SQJ/\n4s3ugD4cKKuGj710oBunB/0qX7jw0HEZTB9RjD7HRZ1zTJUAz/Ue7ENduPBZDMPagPPUU0894Cf5\n/PP6aCkRRQz7lJNp8eeObdNgTyXzxnASsOgMqvX2dJO6uO5ZPR1y5OjAkFF0Ac0m4WDPGNVzPc9E\neY6Ua7TUyYJFJffX+7tNQhguOE5FFDV03Q1ysfD1NXUV0PprFmtzDplPyxJr6Zh2ktw1KBMj2s2a\nVbqN8f0R227x/fp+C5U9XdF0Af12w9GaUHPHnXEkPh6RTAx7ycnTzMZHDnvMOVpqHQQrwrBDiBOb\n/ZaveufX4cg9p3sd7//or/Lx/FW0Gl9TT//Av8bdv/9+pnf/NuTNgfjb/xjBH/zTxEuO655wnJ4w\nbGmaA472EcOepvPos4Qb0WOfh3CnrVCZILcVykSIOoVOsNuF2HZL/MSCiErUOBM0W6pPObRuzMk3\nmKUjGwacvkAlmkLaaLVDVA5ZnOA4HXHcsCw5ZhRY045l9LGziHxpEGpBnU4Ivd74NkJjmS16zkie\nepIw0jzjD8jTgapu+fhLR6ru0hJ14cLruQymjywGo1/vyrewrcsq/8LDRZ6vMTkPa+vT54P70VJe\njM42lJFFd46WCuoCGUzUEdQ6gHGH1bhkSUIQjERRhWWV9FVLaHZ0ZURtQqpNwIEWV49cjSNeeUIE\nM1UC5e16vwzwtccuW288g6Beu+3rAl8n6G5LNQSrOUr0iGVdoftFDoGi2gjqs3qqc5dAeGe3/W0L\n1ZGpHwjNnqGK6ZyYauNxUDWuGrlu23PdqqbZQiE0RieIeovobHbbdXC27bVy1fEnfsM7voar7Dnq\ng+IXfvEFfuHmVfKlWdXTskQ+ds3hPX+X4s/+eYzn4/2Nv0P87m8l/LH3kiQtUjbE8YhSR+Z+IuSa\npvAZ/IhTKOjPJwxhUSBCTRVDaxysaY8uBGkcEgQTfjYRPd4xjCX+FDG/GFH1AXXq06iGTM34TQnB\nSOUKRrOF2ie2QoJA4fsFtl0yNB2B3jPVPl6aUugOvUyoPEcMPeNOUlgKSYKZ9oR3niRKLJ4JR7zi\nQFlV/OorOae6e9Cv8YULDw2XwfQRRS8GzOtuTG2J618U0wsPFw97HennizdES4Ux09WWQgw4c8u2\nbbGHgmWjKSRMOkPUIaEJ2KQOnleQpg19tzr33eWKqgxo3IQitqmWmkRNbJsGZ6hQG03uaTodwLCD\n0iX1IzYb67xubliWI0s/E5or2nI1WpWJQzFXpGpmW5bYY8O8E+SuZjYxcsigtthtEnx/uj/stu0R\nR6+KaNOdb08DqOeajZrJiuK83pcUkaE1Fta8lgb4eOx2Abbd4PsNYdzx1NvewtNPfRmqD/j4z7/I\nz73wMq+YlkUNXI8jUVnS/ZE/xL2feh/TO78G+cpdot//R/D/7T9DIk64bovnDfh+TV2dCEhZmg3t\n7NNsA066JdELm7LE0utwmBsNaocuHALbY7u1kH5H8oxiIUeM4B62FPdcus2GkxgI1UjadVg09DHU\nJkIMKf7ks0nWm+EoamjrgsBsmJoAL9pQ2wvTMqKrCqoKtbUoPI0xAUxXeLvHiFOXJ4KetMop8pxP\n3S24mzcP+jW+cOGh4DKYPqIYFGBeU0ylhXNpfbrwkPGlMpjecj9ayksw2w116tEuFZt5IKxLhDvQ\nRoZS++hxi6zXFbHvD0TR6txv6xx3CRHDjqIOaOKUo68Zl4bdPJIUxf2IqlyuGZyi2SA75/5Q6brF\namhqj9iLhzXtKeqANt1wdBaWueVqHAnyHOEttFtBhUSoPbrwCPDYblf1NIo6tD4yDyMRV0zVhk6F\ndFnCQY4sS8f1OK5GK0bGveTkaGYdIvs9lA6bKCZNBZZVkm56nnrbFU+9+W2EzhWvfDznAx/6JC/L\nmVy1xGphX5bwpqc4/PiPUP7JP41xHLy/8j8TvuubCX/mvaSpwrJa0nRkGA4wCzx1TVV59GnCwZoQ\nanytrSsTFLZm0QnUMXKw2O1CvKAnfGLGTWuGtiasU9oXPWo7Jg8Fy1yTzdO62k81hXTRKsNqXbI4\nxrZrkqRm6HPcJUB1MbYV04eCdu4QfY85HjGRoIwMi3ARyx3s5DHSLOQ67LgaaorjiZduSj51t3jQ\nr/CFCw+cyyTziLJ6Sl4bTJW0cEP/gT7ThQufzZfaYApvjJZyg5h5v6WwZ8RUs+07nKFEbwylJVf1\ntAmJCMm2Hp5XkiQ1kJ/NURvmJqUcI5pNwtGaEKrnapoIqhzhjbQJFEbCsocyJDA++12E49REUY2U\nOUPTEJq1IrXUqznqpBtCNbKra+x2bULKPc1oIuR4W9W5DrqO07zOuW/jqzt05brer7cBB9PiLAPX\nXYefnyBQNFtBgcHoLaaMsUf3fo6q69a86W0xT7/tTST+jv5g+MCPfpRP9QM31siiBu6MI1FV0f4H\nf5R77/1J5t/4DqwXP0P4e/4g7h/7HrbegOt2hGGPZRW0dUVoMvoyorVCisSmWRr2y7yu9oOFOobO\neIghQ+eSOAhIU3CygfiJiWE8YbUOvJquiQmbmGqp2ahpXe37A5UrGdQW0fhsvQTfn4miAmNKGMCe\nt8glRm188qnGTCPmeATXUCUwYmGZxxDh42yutmRey+NzTX08cK+oz3FSl6zTC1+6XAbTRxVj0Lxm\nftLSwratB/tMFy58FreDaZZlD/hJvvg4lsNVeMXG3yI2G7ptSL1UJFNHVBVIp6eLoTirp6Ky2YYJ\naSrO6/2aZTkxtxOB3tFVMRUx1SbgZJo1XqrvcdscnSoK39BoH8Y9lC4bPyZNJbadE8c103RCDwZf\nXVGWAU2QcvIN/dKwm6fVaGWN9Jmg4FzVmXuE+PfV0yDokPJI35V4RNjjNU0T0oVrqkAxlSRqOrv3\na3QmKENDh4uc9ujCPScBuFhWyeNPW7z9nW8hDGPs2eNXfvoFfvn5A0XicFINkT6rp8+9hZufei/V\nd34XSIn/X/81/Hd/E9GHf3YdLJ2WJOnpuiPW4iKGHVXn0W1jjqYjVBPbusZaWsYtFAKMzjBlgD3b\n7HYBbtIRP70grIK5GvGPG6qDTxtvKewFb+nZ9D2WqRliqE2M6WPCJSCNHTzviOtWDHWPp7boNkRs\nUnLVopYJczwimGm3glaAba4R7mNsrjI2fs8zoqU7HjiVNb/y4g39OD/oV/jChQfCZTB9RFGLAm3u\n35jOtoXlXgL2LzxcfCkqpp9N5EZch9f4QYK62lF6Bj1VbIcety8wiaK0JaPOoEmwOof9JiWKVpNN\nHDeMwwnTg7vsKcuQ2k3JY4vmrOZt6hp7qZg3mtwyDCqBJsXqXPbbNabK9wt8v6KtczwVYfrtqsSm\nMSfR4y4D+65bc1Q3hiqAgQiG7TnuajUzSVkThi3LcsPYd4Rk6HZHPYb02ZajszAtLVfT7Xp/YNwJ\ncscw6xjZ785qbEoYKuJ04De9+1k2Vwlytrn3Kyc+9FMvUPgBB3tmXnruTBNR09B8zx/n5j0/wvy2\nL8P65KcI/plvw/ueP8cukjhOSxwPwBqGH5qrtbo1TDh5GqV6rqfp/r+v9A2DDpDDDl0INnFEvFF4\njw9EWU/fFrhFwPhqSElMGdmMc8V2nnCGEpUoSrGu9u3OZRtFuG5JHFf0TYWvEkwbYsVbCgbGZcDk\nOWJoGTJJJQ3S7BDO42yvrom9iWftFpW/FieV1/2Dfn0vXPiicxlMH1GMAWP0a4qpsHBs5wE/1YUL\nb+TWlb/ZbB7wkzxYLGmxC3ZkfoZMUoZdQqUqwqklaSosq6OPocBmmXeYMsCbPHabiCAYCILzzWiT\nY0/rKjqvQ6pos8Y1ne9Po7pEOgN9CrmwUMsOytVotcsCbLskSSqgYGwGAr2jqSIqO6FIbOq5YjuP\nxEWBpGPIBIWUGLPDlD6ectjvQly3u7/eH4Yb9KSIzDVDmdCYiGYbcaDDWnqu+/683l9oNoLSgFFr\ndaunXHZZiOu1fPlvfpxn/7EnMWphuNvxCz/6Ce7WUG58DqomUBP7qsJ8xW/g5u+/j+oPfQcYg/cD\n/w3ub/lG0k9+kjhWeF5HFHU09Qlfrz33tQqpU49irsjUTFwUCLHGcOXGrM9T+njGZb/3cfYtyWMT\nWhVQaOxjSt4GtGlKZVriuSdoSvB6SsdiUBlWF5xX+wNJUjBP5fpddTHC2VC7hm7uoW0RVcm8FZSO\nQYgMYz9OcvUYcWh4k9PhlUeKouBXXznxyql+0K/vhQtfVC75Qo84t4OpsQS2cxlMLzxcvPDCCwB4\n3iUxAtZoKc/2qMaKzrapux6nLUlNTCcn5jim0S5W4xHNPlbZEXoQZlC3NUJYLMtCVzsEQYLuNLmQ\nRIliHFqiGa4GqBiYoohae1iNRzx6yLlhGwhmOVPXJxwnousmLBljyYBirAgTh2XqiKaJ/QDlODIn\nCcUi8NuQaAzQU03oG4LM0DQ1nufw/7D3ptG6bWld32+t2a/mbfZpbt/VvdUhBWUgdIMBKIKxARGN\nIBlBRzBqggwJUA2FUiIqROmicUSNxgQ1yoAQwIZhmxGDIiAQqL4ut6puc849556z937f1c4152ry\n4d3nVpFuaExxzql6fx/2xz3mHnuOvX/vM5/n/8BE27ZIWaLFVZqqQtqUyQVUvadMLVm1UEnJtC3Z\n9wumd2SDZQ4V67wgJhEe1xSrp3n/L3yY/rzhuZ/5MNXrH+HRp9aMY0fuA1eAahxpvvtP43/Hl3Hy\nh/5T5PufxX7hlyO+5RvQb/8j7Lua1crRdRNLyDHZJXbVjmItGbuG9Si47BN2IRDXBTs/43pH1hvm\nYc92XdDqHkQkns/480AeVzTRE1Yp89yS+ZaVh0aO+LwgtgWFVxQCVBZIkjOGYWbsHIYVfZrQZh2x\nrVjPBck8M2827LqFVV+QJAqzlgh1Slo1nPUzt2NkXmb6IfLkA1vS4xKVI58EHCum9y2HjTp3hp+C\nVCh9FNMj9xbPPffc3T7CPcfHRkuJoiScrKmXDhtb1nWN8jvm9UTlEuolYx4OkVClzNmsFdbuWa9r\nlmV36Gcc1/imYEfJvrSczzXZ6Nm0LWrYMa9n9iqhn0po18jOcGm9wlpPlu1QakdXVZixZGhKdkvB\nvrTsxopyGlhVFWJsGLZwrhLivCL1JyR7xcrmh+ildEeWNQhxTtfuMHOOGC5TdTndasO5WehDxUkc\nKM7PSZP+8LwvFsZ5TdKsEL3i0qbk8gOST/+8Jzm5Yumripvvfp4Pv+s2uzGjWrlD9XQcDtXTX/9m\nbv7sz1L9/q8lGUf0d38/5gu/gu21a2RZxLn2sEq02pMtG7p9RquKQxtErDkZI+V+jxAXG6OWhGU8\nOeS6pobtAwp1pabYeHx7hrwtWHYl52NBXTr8WLGKw2GgrZjYY5imDXowrDKLtec4VxFajxtXpEPO\nkOecxYrJd3D7NpiJfbEwYhDpw4jsQTYna05Mx8PTnubWLW6dV3zw2m1CnO729T1y5OPOsWJ6nzKO\nE8u0IC9WPk6JRKvj54wj9xbPP//83T7CPYuRhiviCk1oaISk9j2y2VOMhmWeadKUaV2w8wIzlGR+\nJvUV60wQkkNFTmtH30cmb7HZliq2KCsZxYBpKtapJdQTrdb4IsO3gnw6wVQ9uV5w65mq2SOloe8n\npsHi8hP2VY3NJdPc4fqGkyWjDoFQFLSZoa8T8mmDaiJJWrMtS8IcaJo9UmYMw8A4ZOTZCaEZ8CIl\n21rfepHXAAAgAElEQVRC25CPCZd7qLxnyHOaxOArQR4vsexbCgvuwQltHuKFZ2/z0odOufH+DxOb\nwINveJRivWZaerK+5TILdZJSf/9/Rf87fiuX/vP/AvlL7yL9/N9C+o63YL7x69jVFet1TtNMpGlB\nkp5QpXvmjSK0LatRcKlP2HlPXB+quc7nZJ1lkXsuX15Ru45FREI1E2463Mma/dSSFZKpryiiJCwL\nvbVUo8OGLa6v2RhBLVrSNNI0E0YXxEUSspQzX7GOM+bsDNZr6q3B7hPy9EEmY9hcUcjzM1TfcO10\n4nSciOPEax46IbfHeYIjn7gcxfQ+ZWFBLIdPz2OSIMWCOg4/HbnHuHbt2t0+wj1NkiSUpsQpx07s\nCNZSdT2y3bFKLeM00SpFXOXs+gQbN7g2otKGk8Lg54EkOWeec7puIMGR4DinweWGOHfYvmFLRhcj\n3llaHH138bwfajZZykBgWU5ZloKmGdC6BJ9xTkosI0PXUE6KvIFa9IxFTrUoZC0o5ktQ9UixcLLW\ndEPPPPcYM9H3nmXJybIrdFVDqlOmLNLVFSsMebOwl55xk7P3C9bnOG9Jh5pL6w3Zmy02T3nx2dvc\nfvHD+LrhyU97I36VMZYjQ9tSLgrXLOw+94u48bP/K+tveQflD/0I+p1/GvH3/iGX/9r3Uz0ogEAI\nM31tyIst7b5DuoTZRUxds00d/X5P6xz92hGqlCKesOxqyjzDPBLY6wa1n2lPA3ZYM0yawSbMusd1\nNSULrYgMrmDsVxRDz0omdLYnSU7puokkZhhKvBHsxooiTOR7SIoCf5Ix7mfKcQtSU24VSt1GNjXX\nzyfOYmCcZh67subyOr/b1/fIkY8LRzG9jxGvriNNIU1R5iimR+4thmH4pIyK+rdFppLL2WX86KnT\nmugs+65HdXtWsyPGSG8Mg3X4TuKmLbb2aAG6VPTRkyQd0xTpWo1WOTNwlqTkxcgwtORjQtYvVIkn\nFjn7qNG+JG8ntKg5WSnaoQN6YhzpK4PL1rSNxxvBKDy2q9ksjlhNNFIybQp2cUG1hny0LLsWZxay\nk4S6bZnnBJhomw6lViiRU9V7tJNM9Ohmz2bOGGKktZZhkzNcVGN17bESXv8pT1KuM5795Reo9zd5\n779qePpNnw5XM7QTTEmP7WouU1AnGfv/5s/T/Y7/gMt/9FsRP/evST/7S1l/xzsY/uDXUDU1Ss00\nTUTKkjS9xN7vyVeK2LcUAU562KcDcVOy7xLcUB4+DMiayw8qdqaGU03oZuaXM8wDG861YCwVtqko\n5oxumhizgr13FFHiUpDuTt/phG8zsqWgTaHSLdFXbJcFMQxMmw27fqbsM6R8BFNIhDxF1B236onT\nEBiniT6MPHblk3uo8MgnJkcxvU9Z5hlx8Yw/pikp6XEq/8g9yaOPPnq3j3DfYKXFSksfe2pREzJH\nbFq0r1jNjiEEvDH0wuE7gxsttulxAtwamr5BiJQQIr4xGFvi25FeCmIR0W1NuWjmDpq0ZywLzjtB\nNm6xdU+hE9x6omp2aG3pupFldohky/lSkReWMHZY79nOlmE30ip1UfFM0H1GFjKW0FDYhWwzUzd7\n8lwzTRNtrbG2ZPE5eyqytSUOLc57TlhoQmDIMprEIGtNHg1pVfPI1QdYf0HOu3/uA5zfrvmV//1n\nuPr463jija/hNEkpS0PoalaLxrWG89/wpVz/6Tez/eY/QfHjfw/91j+O+ImfRP2V72V/AkUhiXGm\nqzRZtsZXA4NOmMqArivWqWPYTRfV04xQSYp4QlJVbFcruqynvl4z9TPd9UB+eUMz9wQnmGJFFgMT\n0GtNPeXYuMUNNRsjqdIKIQJtuyIzOX4RNFnL1O3ZzAXqbGZaraiUxFaSXD0CiWEtXgH26G7kxq2J\neZoYwshTD20Rx61/Rz6BOIrpfcoyzYj54ik/TUnEgjyK6ZF7kKeeeupuH+G+wymHU44udtSpZMgj\noW4wQ896zukTT3CODovvLVk0qKqjNAljOdJ0e5TShDAyNgrjVlTRI41klB7THvpPh2miM4Y+cfje\nkg8GGRu2TtAvHjhlmgra2mFMwdgur6YA+NAdhHJx9DHSGUPYZgwdhyqjz0iGmrVLiWmkac4pCkcI\nkeANWbYlNAO9TJk2I76uKSdF1sxU0jNuCvZ9gh1WuC6Si5TP+cLP4D2/9H5eeu4Gt196L219xhve\n/Bl0y4jXKaPocW3F5aWgNpc5+2+/j+7LfzOX3vJOxE/9S9LP+hI23/VOhv/4K6mbGq0zmiaSJDk6\nvcQ+7C+SCVpyH7jkE3bDQFyV7HuBCytcE3ASzBMT5zcqRG3pT0dkv2a5vOZcpExZh+32FEtBJ0YG\nWzD6NcXQsZbQ2p4kuU3bbjGTJS4pXaaYQk3pR4ppYspz/ElO3E2U4gqJ1WxONFKeotod12+N3Bwn\nhjjx9MMnWH38d37kE4PjTb5PWZYFMd3pMU1JhTxO5R+5p1guKvrPPPPMXT7J/UumMpx0tLGlERI/\nRoa6wcaF1TLRp57gLM3iSPucYsgQoWFjJcEF2u7sovIZSRZLsqw4TyTWGeLSYf3AlpmWgcE56ski\nfUnejdg0xZSaduhI054QRobakGUbfB1oRUpcTXjf4cLMpWWmHQZ6a/GbDN8kuLjGtuNFT6zGzwPL\ncobWBX0fWJYM5y7T1A3CCCYxoJuK1WwZ9xON1gyrDF8L8nGLqXt+3evfwOUrJ7znF9/H0LzIu/5V\nw5NvfDObKyecIwiFIfiacpJcXQynv/k3cv3zPpOTb/x28n/4jzHf8BbEj/0k+s//KZqrKcuSMM8L\nTeVxbkWoI14lTKuIryvKxBCrmdZa+lVOqBVF3JKMey5dXVNnLcvNijHMDC863ENrdpMgzzVZtyef\nLX6eiS5/9Wk/FykqC6Tpbdp2g+gyckoakTKlLYOvOFkWkhCY12t27UzpV0hjKNYSKW8jqorrt0du\nx8PT/pMPblnnx7XUR+5/jmJ6n7LM86tRUVOSItLkWDE9ck/Rti0ADz744F0+yf1NkiQUuiBXOU1o\naKWijwFf1WQhxc0TbeoZ84z9ZFB+RdZHVNKwdZp+8STJGdOU03UWKTJmHKeJIM9H3HCYlM881OnA\nWOTsB4mJa7LGU6oUW0bq9hxjLN5HxqixbkNXB1opCOVI37fkY8olv9AOA95a+tzRN5J82qKbAS3g\n0lrThZ5l6YBI1/UIUSCTjP1SYQvDOLaYvmK75HQh4LOMFotvLEUwXC0E+edmvPuX38f56S2ef+9P\n0z3+eh5+7Bl8G+hlymh7bFdxRRZUGZz+4A/Q/chPcuntfxL5T/8Z4jO+mPSbvh73zX+Qva9Yry19\nPzH6QzJBVdeY7CKZoGs4SWAfArEs2HuJCxtc6yk12Kciu5f2yDDSXgvYSxv8ohm0YFpqnK8Qy4JX\nmnrOseMWN1cIk5Ik5wxDxHclK1vSCkGT9Yz9of9WTxNTWVJpjasNmXkcg+JE3EY3Hdd3kdMYiePI\no1c3PLgt7/aVPXLk34mjmN6nLEA6ffQpHwRCHn+dR+4djutI///lzgR/rj8qqG0YSOsaFwXpMtOm\nPVOes48KM2xwbcCKBJsb+tkjREcIAd9apMrwy0wnBCEPmK6iGDXTPNNKScgyQm/JgkWPDVsrGdJA\nkpxijMP7wDSag6COA52SRBfRfUseU7J5pkl6Qp7TpBZRK7J4gqp7MgluvdD0DZAehrbu9J/2C+ek\n5GUk9A1ZTNguC5XwjKuc3SCxfk0uHZ/xZssHf+VZrr90nVsf+SXG0HDl4ddhizW7UeIywxhqikli\n+5ndl30x17/wc9h+258j//EfR/+Z70H+nR9Fft930n3BZ7MsFcZMNE1A65Kld+zSlHEdGeqKEsNY\nz7TG0Bc5Q2Mog0bGPZcfl+xeqYFA3C8sfY66uuGMlFXe4bo92ZLjxchgSqJfU4SWjUyp0xYhBtp2\ngxOOcZG0VjHFiqKPrOaZyTn8tiDuEkr9CDI1rNObJEnFaXvKrVdGpmnCDyNPPLAhSY5h/EfuT44m\nc58yzTPpnan8NEWKhPTYAH/kHuIoph8f0iRlZVbkKqdWNb02tINH1BXZIlnmiU5IYp4xDBo7alzn\ncSLBljPt0KJ1xzCU+EajbUE9BTqtiOJQZVzPDp+O9NbQLo5+KCn8iE1bbG7wy0CSnDLPDu8H5tli\n3IY69KRaEsuIamuKRZE3C3XaMZYF9aQQjaWIjjQ2lCZhWh2GrcrSEOPE0Gic2+I7Ty8loxtQzZ5y\nskzzTKMUYZUxtJo8ucqve11ObnKef+l5zq59gODPeejJT8PaDWNiOU0F0fXYruNksbT5xOlf+TM0\nv+/3cPLW70D9ygcxX/EfIb78t2H/3LezXy2UpSKEib7WZPmGuupQTjDTYbqaLQtVjMRVceg9jVts\n07HdJvT5wP7lc9Ip0r/ocA+sqWZJcIoi7LEhEpeFaCxVzCmiZC1SfDYgxG36fsXc5ZRLQS1Sou4Y\n/I7tPCFCYFqv2bVQLpcRmWWdvoyUZ6jqnJdvBq6NEz6OPP3QCUqKu31djxz5t+Yopvcpy8LH5Jim\nIEAc/wgduYe4I6bHuKiPDyIVbOyGQhfUsqY3hqbvkW1FHhXzONIrxZDn+N7iosGOHYVKmIqJRuzQ\nWtH3BctgYMrZCYlxljC3uMGzYaZNAtE6qtGgxzVZEzAixRaHKmyaHgS17zNYLCrZsg8d0iiiHNBt\nRZlalnqhFoJxnbGPCtUV5ENGGhq2VhDSQNOeopSj7wPz7LDZCVVsUE4z06G6HZs5p48Rby8yWduc\nx554E5kt+NCHnqXev8IL7/uXPPb6T0PGy5hsxX6UeKsZp5osaFwXqD7zjbz8Uz/G6r/+26y/93uR\nP/H3Ef/kf0G89Rvxf+T3USX7i7WtIyLJSVLLKSllGQltRXmnumwMvc4YWkcxaGxao54Q7F5uECHi\nb06ozYo5MZwJyVrWGL/DzCWDGg9P+5PCzTXKSNK0Yhg8fb+hkBm9EtRWMg6HDwzufGYqCiptcE1B\nlj1JnihEchtVV7x8K3IzBsZx5qmHtscw/iP3HUcxvV+Z54/mmKYJUghEehTTI/cOx4rprw0ylWzd\nlmI6CKp3jrbrEe2efLKMMeKNwScW7zOymGHGlrUWBBMQ4oxxdHRdRrJYptlwmgoyF8ljQz6muGWm\nFQPRZZyHiypsE7AifbWCmqanTFNG3x1C/lPW7IceZQ0x7dHdnnI0h9goIRjXBTufYoYVrh9RSc02\nU/SzB85Ylpy29QiRkyYZZ4vE5ZYYG1zwrOfpcKby0BNbXHmGN+UnfOA9v0g91Hz4XT/LI697HUI8\niSBjTgyniSBkHts3lPPIOLXUf/h30/6e3872bX+K7Cf/LvpP/BnE//jD6O//U9T//ptJEk+ME12t\nsG5F3wa8Fsxpj+kqNhTUSSAWBZWXmLghmztOHkppdj3szxjrSOhz7OX1oU3BdeRDjV1GgpwYdEEM\nG4rQsRWCNuuQ8hZtu8b0jmlOqaVkpKbwgfU8kziHX+fESlC6x7GJ4pK8hawabpzf4JUYCePIEw9s\nubTK7vY1PXLk35ijmN6nLPP06vDTmAhEkpKKo5geuXc4Pz8HjmL6a4USihN3QpgCtagZnKVtO2S3\np5gdUQS80XRJRu8LssGikxZtNV4fxDLGjL7PEcIyLIZeSLzxuKGiGA3zNB36T7XDXwiqaQesEIcK\n6uRJ045pyvB9Rprc2USlMM4ROQjqSljGcaTV+vAs34tD1mcXcGmKK2fa0JEkHTEG+tpgTMGUZJwn\nklgM6K4mHxX2oid2yHNIT3j9r/8Cnn/fL3K2u8krH3qW/uo5Dz/xKQxthjIF9aLw1jDRorqKzTzg\ny5Tbf/3P4v7517J9y9uQH3wW8du+Cvm7voLhu9/BPhuR8jActQSHSraczYfJ++hr8klgl4VWawad\nEbuMYtCUucCYgf2tGjFH+pdH9JUVPZqgFatpjx4io5wYdcZ+yshGTZ6maD0gxI6+H+j7ko3NqUTK\nqDrisGMzj8g7T/tNQqEfRgvHCddRquLG7iZnIRJjpLuyPYbxH7lvOIrpfcqyLMjpYio/TZBKkSTH\nHtMj9w7HiundQQvNpewSwzhQiYqYDYxNi/I78ukgqMFamtkihjV5H7FJg3GazvQo1R/6T1uL1BnN\nqOi0IYoe4/esJsskRlohCDrDB4MZDbYZcOIgld3YI0THNOX0nUOKDHCcJRKbWeLSofuKzZIxhEBn\nDN5m+Fbhxi228eQiwRUTja9RqiOEEV8brFvRzgOdUoyix1xsxxqmid4agnE88qbPIvvQr/DSC++n\nvXHO8/7nefINb2ActyTBklByhsAVjhjO0UPFloXms17DjX/5jyn//F9n9QPfg/yffgzxj/4p6lu/\niebrvpokGZimkbYZMLog9BNeSkZzyC1dLTldGgl5zt4r7LjBJQ0nDwjq8wa8J9yOLFlJut5wimCt\nG+ywxywzQUd6keOHDcXcspECmXUI4em6DTmGYAR7pRinitUUyZeFKc+ptcV2J2Rryyp5iTQ5w9S3\nuXkj8uIxjP/IfcRRTO9TZhYkH11JmqjjH5sj9xZ3Kqbr9bFSczcw0nBFXsGPnkpqwhiIdYMePPkU\nCMITraWaHSpscb0nSxOcm+l0g1INw7AitoZ0yjiXEm0sIenRdwT14lk+KscQ7wiqJxMprpguBLVl\nHHP61iFlxrw4TpG4LBKmFuM7NkuOD+EQMZU6fGfJRotuO9ZKELJAk5yjlDn0n3qLyTbsUNjMMk4N\nxnvWc06XDsQ8Z/X6Z3iiWHPtA79MPG350C+/h0de9xh58SBt61AyJzLTJ4I8Lwn+Bm4eSJaZ5hu+\nhu6rfzebt7wN90/+Ifod38H6b/4w7ge+k/2b3kiaSkKYGVuNzTfs4iEBIIaKPAzoeabTmkHnhK6k\nxLDepPRtT9PsmPqADyX2ZMV+lgxWU8YaN0SinA6DUWOOHTVFKtDWI+XpoR+4K5DGUWtJTBoGv2M9\nTwgTGFYlsbKU69dQSoNMX0E1e66/PHAtBMJ4COM36viv/8i9y/F23qcsMx99yk9ThBTHeJAj9xQf\n/vCHAVDqmK97N7mz5rSLHbVQDHEgqRtM6FFzZBAD053hpmhwc08hUmw+0qodxii6roTBME2KM6HQ\nNjsIan8Q1DEd6aW8EFR7+D7TQC4E2YWgStkS40UlVjpGHKfJQVCzscEFWC8TPT3hIre0bzPyYFGx\nZWsVA4e4qmm6aDlIHEtyEN0sG8iGGhdTzDLTCUnx5CUeyz+H6+95L353k2vvfoGrrx3YXr7KOEb6\n1qBNSb9YOqkZ0x2yf4V8Cowbx/nf/Gu0//RfsHnbW5DvfS/uS38X8vf+h3Tf8S1UNqBUTttGlMgZ\nMZyJQwKA6yuKxeHFSMgy9kEfsktziZKKqmpIxoHhNCLKFTFR3BaKTdocBqOmgkEOeFUSwpZ8btgK\nicxapOxp2y2rydDolHPZMQ57VlPExMi0WrNrUkr3KC7VXElvokTN9VvXuBEjIY489dDJMYz/yD3L\nUUzvQ8Y4sizLx8RFCZQ4VkyP3Fs899xzd/sIRz6GTGVkKqMNLY0y+OAPguo7mCJBaqJzhJhhosFN\nPWspCVkgTU8ZR0ff5ySLYZ4050IhjWNIevRQUUyGSYwXEU+O/a8S1BSXT3Rji1I1IZQMrUOpnHFZ\nOE0kmYtkscWN4NpDJmssMqpRI/uS3E8YLloOlp40vX2oxDYZWueExdILRWl6rD/0xMZpIrlseOJz\n38wLv/hB2lvXuPHuG8zPTFx5fEQpg/cjc6tRtqRKFdIVTNN19LAjX0b8538ar/z0v6D4vr9A+Rd/\nAPW3f5jVP/hH2G9/K9XXfMXFcNRI35rD6tdJ4Y2mnGvcMKCXmU4qBpsT/JrCGLbrlKbtSYbTw2BU\nKLHlmvNE4lxPEWpskIxiYtSOeiywo2YlJEp3CHGbrluR9zmDzjjTijBXrH2gWBbmLKNaHI4HcdJx\nkryIknuun1/ndoiEGHjiwcs8sC3u9rU8cuT/wlFM70OWZblYSXrnKT9BymMkyJF7ixdeeOFuH+HI\n/w25zg+CqlsabfCDJ60bdN+hVCRIRbAZQ8ix0WLHlq1WeD0g5SnT5Og6B4thHh07qUiVoxQ9ZqjI\nJ80iJzohGK1lP94RVE8hBC4b6XSD1jUhrPCNRZuCYZnoUkXuAm5oyEZBtsy0qWAsMvajRvs1WR/I\n0oPotmOHlB3DEIiNvchk1XTKUNJihz3lnOGF5pnPeoYXP5Bz67kPc/MDp3S3O55685M4d4Yxlq7L\nSWZDwoZdorHZGXG4hY09Rnu6b/kG+q/5Ktbf/BbsP/9nmG/+Nk5+8Ifov/c72L3+GZRydN1IOjtg\nzWkqKW2HG/bkk2MQI8FlVMFilaIoK1Ta0/gKETxDtUa5FRHDrVSzTmps2GOYGETAy5IwbMhTiRYd\nIq/ohx76LXIytOaEmLR4f852HpEm4ouS0Kwot8+w3r+ASM+4uXuF0+uB58YJHyKPXz2G8R+5tziK\n6X3KsizI5WNWkh4rpkfuMa5du3a3j3Dk/4E7a04zldGohlYbvO8RTYPxKbOMDFIxpDlDWGGHiKXF\nuomBgJRnjKPB+5xl0GAy9lKTyIOg2rAni4pFjfSpYLSO/ejQ0eImTyklUzbSqgqta4ahZGwsSuf0\n0+FZ3etDGkC2KJjnQ8RUkbMfNCZqbO8PLQdZpJX7V3til8GSuJLzVGHdQD7WWN+j54knnt6SbxzP\nv/tXOLvd0/9vz/LUmx5l85AmSU4Zx4y+zxCJZVwe5jzNydRN7HBGPnZw5QrnP/S30D/5j1m/4+3I\nX/pl8i/5SszXfg31H/ujLK5nmlZ07UG2m0nTa8NqrrDBky8zvQoMMicMW/KVYYOgCR1JuM20BELI\nMVnJPpH0pmc17jHjwCQnRuOoxxI7a7ZCoW2L1rdomhVJZ+l0zpmSjKFmPUXsODLnJfveUKxfw0pZ\nJDex7Y7rL3mej5E+HMP4j9xbHMX0fmVZPibHNEVrc5cPdOTIr2YcRy5fvny3j3Hk/4U7W6QKXVCr\nms46hq4jbSrsqJjVSFCangwft2R9wKY9VhsGc0dQFcNQMDYaaTIqqamko0h73FjhFglqOgiquaig\nBosbe1ZSMrpI9zGCOrUOZXI6ZWmFoZD+UHUcNfM40inFUByWBthosONFy0EeaMQp42jpuoI0zRgX\nw2mqyF1PFmqyUfHwxlF83hv50HtfoLpxzgd+4ToPPdrx9JseZzABIbpDL2znEHJNJzM6+QoxOccM\nL5LNl4i/6Yt45Tf8C4rv+QHKv/wXUf/D32L7d38S9863sftdvxUpe/p+hGBJWXGaCHLTkw97sskR\n5EiwGXXMsCtN2UliGGjCHjF1DPMaoUuWxHA7UZSywYUdehmJYjhUT+OGPBXotCMtdnTeQr8mzpZz\nLYlTRdkdMk9n56jnDLsc+k6vpjeQacX1Gy9wPQRCGHn6kUvHMP4j9wRHMb0PmaaRefnY4SeBsMdf\n5ZF7j8cee+xuH+HIvwFpkrK261cFtc8yQtuSNjvsaJlEICpDi6OLa9wwYugwSjHoSK/OiVEcBLU1\nCO2olaaRjjz1ZGOFnQWoES8ko7TsR4cKlmz0rKQiukCnKmJs8L5kaizKFtSjoVWWMu2xQ0U5HzJQ\nO60ZjGPoHS5azJ2WA3NoOQihp28LpHL0s6GThlXaYYc9J8JRvukJPrRxXH/uZT7yQsXu/Fne8KmP\nsb2c0+oGpdrDOXqLMI9QpRlSnxHnHa6vKM1DdN/6Fvrf+1Ws3/JW7E//FO6Pvg39gz9E+z3vJHn6\nNYxjRtdlKJkxYOmlZk1NFvZky4SXAz7NCdklctOyaST95Fn8LZalx4+rQ3uCUPTasJ4rdBgOuafK\nUc9rzKzZpBLlOpR6hbbdkI6S1m4ISU/056zniNKRwRVEHqCQjivJC2hR8dLZi9wcAkOMPP3IZU7K\nYxj/kbvL0WbuQ5b50GP6alxUmmKO2XRH7kGeeuqpu32EI/8W/Oo1p5Y+c8xNi+j3mMkyi4GoDT2O\nPpSYMGGTHiM1MY90ek+MKcNQEDoL0tJqQyscmerJ5hob048KqjDspwtBTXvWQhFdRModMQq8L1m8\nIzE5e6VplKVMOmzYU0yWUQR6o+mTDO9LspDhkgZjAp28k8la4JsMaTL2WtNqS7k02OB5/cNbNpnm\n2Q++yFnn+bmf+wivff3DPPbolsmNSLknxpauK0nnFYvOOU9fwZuOLL5IETekjz/K+Y/8EPrH/wGb\nd34b4ud/gfKLfyf2P/ladm/9z0iLnBhHfGtRbsV5IvG6p4w1dtSMaiIYRz3m2LXDdXt0ouimDjH1\nDMuGRBRg19xONYVoyMIOJSOTDAyiIIyXyFOFFh2yPKftM5K2oDeW20oSQ816jGRmYnYFlS/JT17L\ntnoBJc+4trvJ7iXP+2PkiYeu8Mjl1d2+ikc+iTmK6X3K8n9aSWqMu8snOnLko8wXd/OZZ565yyc5\n8v+FV9ec6oJKVgx5T9K0yH6Pmy2TGAhKMSQOHwtMmDHxIJajG+l0RQgVIRT41pFKQ6f1QVC1J59q\nTEgwOmdIPaOy7OcMFR3Z1LMRiuACSu2JsTnkdw6OxWTspEbqcCGXe8rZEdLAYC3NYkn9mtwHilTi\nbKSRh0zWvl+xNBmTyTiTCmsD+dRwuUzYfPpreP8HX+T0vOZ973+R07PAp7z+YdZWMrhAmp4Ro6Xv\nC5LlQfxc0aeKQfZkwwsU4irxt/9mbn7JF1H+2e+j+Gt/Gf1X/3su//jfp/8Tb+P8y74UKQ8tBgJH\nQHMr1ayoycIOO0eCCgwqZ2CD0wNlKxnGAYYzZt3Rd2ukymi1opeazVIhh4FUHaqnzbhGJ5pNIpGu\nQ8oB0W0YRsXObghLw6o/ZzWNJDajmXPs+jWU0vI4N9DVjlsvDTwXIz5EnnrwhDQ9DkUd+bXnKOO0\nqGQAACAASURBVKb3Kcsyv/qUPyUCZY49pkfuHZqmAeCBBx64yyc58u+CEopL2SXCFKhURSg8Y9uR\n9ntsVMxyYJSaIC1+ytFjhps9ZSqZ7EivW4xpGIaMoc9JUkNvNG1qLwS1wYYErSJBeEZp2C8HQXVj\nx0ZqBhsuKqiHJ36CYx4PcqlNoJgbbOgp54hPPdE56skiB002eFapYLyowobQ0vcrGCzjbDgVCmcD\nWaz51Dc+xI3rOR968Qav3HqJfV3zhje+lqubnK2UeB1Q6jbDkOP94WdppnNaOTBwi2JwFGpN/+3v\noPu9X83mrW/F/OufIf/6b8H+zc9m/11/jOTJJxnHgq7NkCankopedqymCjMOzGpk0IZOZYjUYPqa\njRe0oyeZbzIma6axJLGrV6unRdyj58goA2HJidMlcqHQdKjVKU1bIFpLZXKCDMRQsZoj1owMuiQs\nj1IIwyPpdVS958b1j/B8CPQh8tpHLh/D+I/8mnO8cfchUxxh4dWK6ZSmmGPT+pF7iOM60k8stNBc\nzi4TpkCjG3zRM/eepK1RMUXKjFFqRqWpFouIDjf1FKliNiOd7DGmJYTDilLSQ9bnQVAHirnBeNAq\nI4iBURqq6UJQk56t1Hg7oNT5qxXUJGSvBv6bi+9hQ4eZR7zwjO6wNEBFQzZ3bIWidx4pb19UP0uS\nxDJMml5oMus5eRxcJvjwcy9Tdbd417s6HnriNTz16EO4tMNoTSd7tO7wvsD7SyS6YS96OhVYTafk\nY0b69BOc/egPY370J1j/yXcifvpn2P6m30n+B34/p9/4BxDlCu9XJL1jdmtuJ5oybcjCOW7KiCoS\nraWTK7SxFFVFwNP1e4Rq6fsNQuR0RtGlhu2yRw7+UD0VlnreYFLNCS0yb2iDJ+02NApuG0WIh3Wm\npZmYdUadXCGTjoeTFzDyjGu3PsLLw8AwRF732FXK7Fj4OPJrx1FM70OWi6+vimmSkh7joo7cQxzF\n9BMTLTQn7oTRjLS6pcsygu9J2g7lW4SwLHJgNIZmPqwytYOnSCSzHvFqQOuGELJD1RFFryW9shjp\nKecGE1uUzIjSMC6aar4jqB1bafBuuEgDaA4bqRZLtIrbQuP0QDHVWJ9cCKq6CPvPMdEeEgWUptcD\nSt0mBEff3ankKjppyK9mvH5luPaBa7xyq+L6s++iqc95+rWfQjnP5KnAmZFWNmjd0nUr5iCJY8up\nGg+CGne4xDD/zi/j5pf+Rlb/5feS/+B/h/lLf5UHf+zv0X7H2zn70i9imgu6rkCqjEZpOmlZUeO8\nR6qCQXiiK4jyMqZtWPcN/TiQxFtM2cDQlQhTcCo0WdpQxj0qDUwyEpaMOJ9QColSDbK8Rdqu6VvJ\nuV0x4In+nNUUEWakTXP0pWe4LF/AiNu8tH+ZsxcH3h0CTz/2AFc3xzD+I782HMX0PmVaeDXHdBQp\nSh7XPh65dzg/PweOYvqJikwla7umNOVBUF1HCJ6kaRG+QwvLLCyjNHSLpR+3mCHg0h6n4oWg3iJG\ng/cFczAMOsdLi5HDoX/UdwdBFQMjhmrOkSHDpR1bcaigSnlKjJq+X5EshsEqvDQ43VNMDSammItB\nq2DzV5cGuKTDqgGvB7S+zTA4fF+QCE1nNK1yXP60EvuRj3DtQzfoXn6R99RnPPHGN7FdXcENPaUQ\nWHNoMxgGSd/nTLGn0xO9nlmLiTzuyZyj+8530n31V7F++9sxv/QLlH/oG3Ff8PmcfefbSB9/khDW\nTJ0jtSvOEo2THcVYY0bJrCaCsvjSIbTF1hVm8jRdQ6pafNjAktHbNX166D3VYSBRI1NqqeYNViou\nzQ2q2CO9QXY5e22IShKGhvUccWYkqJJx/TSFsjyRXOdadcrZiz3vj5H+kQd5/Or6GMZ/5OPOUUzv\nU5blY4efBMocn/KP3DscK6afHKRJSmlKSlPSxY7WZMToSdoO4ffoSV8IqmLA4ac1Jo7YpMfJgV4O\naH1KCOogqIMjaMGpsihxqKDa2CJVxigGxtRQzzkyugtBNfTWI+WtV5/nSQy9kXTCUqiefKywUR7C\n/qViSDKGUGJj9qqg9tKj9SuEkNG3BanUtFqSPPFGHr90hRvvfi/t/oznf/5naZ95DQ8//lr6uCW/\nI8nZgNY1fW/ouoUlwLkZaYxmk4y44Enf+DTnP/E/Y/72j7D6ru9E/vOf4spv+hn8H/46bn/970cX\nm4vpf0t0G24lliJpKeIeOwZGFYjO0ektqvGUrSDEQDqeMrmOvt+QqoydMRhqVqFCpgOpGglLRkgM\npVQo21DLM2S/oRoFt0xJCC2r6Yy1mVhkRlM8SiYtT6YvYZsdN689x3Mh0A8P8swjl5HHF7ojH0eO\nYnofMo3jr9r8FFOBPYrpkXuIo5h+8pGpjExlDONAoxuG8SCoaVehomCWnkloAo5hLtDRYZIelwa8\nHdD6nBhrvC+YgiPqjFNpUGKgnFtsbBEyY5IXgjrlyHiooDox0AmPUrcOz/N9QSIMrVa00pGn3aF6\nORpmOeK1wicZfigxMSNLOpzy9GpA61cuhrVKkmCYzINc/swt4tn3UL10nVvvex/96S2e+NRPZRFr\nRHRkactWKEzhMWai62DoE2KI3DICZzLWc4eZEuav/kpe+S1fQvldf47i7/wN3F/4Szzyo3+X6k++\nnfSLv4Bxyum6HCkcndZ06Z3n/TO0KhilIa4LgrmCrSrWo6LrOlL9MsO8ZmxKvF3hhWE977HDOYmK\nTImjmTZYqbmc1FTiHOktdec4NzkDI2N/xkpHlIo05gRzyfJI+jxanHLt5od5cfD4IfDax64ew/iP\nfNw4iul9yLIsMH20x3QWCfI4lX/kHuIopp+8GGkw0jDOI41u6Iuepe9I2w41dMxiYFGWuGiGOUdN\nOZaOrRwYTECrHXGs8L5g7HJGlXGmLFIMlHODG3qEcMzSEvlYQW1x6UDvhgtBzfB9AamiNStaaSno\nyOOOfLJMIuKVZEgyfCgxo8MmHU4NdNLjzU2GIcN3JQjLyTP/HsnqKme/8n6qm9f5YF3x+Ke8gdXV\nh6mmAj06XNJi5YBZebrB07YLsVF0sWWwOaVayMcKUxi67/7OQzj/t34r+r3vYvN130DxuZ/D7o9/\nE+JT3niI2uoyUp2zk5pWdKynGjV6hBoZjWW4VJI2FtsKdBhIY8XoevywYU4M5+YSlpZ1qBFiIJE5\nYc5YUsMqrVCmQck9qi05HyU3zIrBN6ynQGZGgi4YL7+OK/J5THqLF+vr3PqIp/fDse/0yMeNo5je\npywsyOUwBjUi0Or4tHLk3uH09BSA9Xp9l09y5G4hU8nGbliZFa1uabOW0R/yUEXfkl7I5ZRomtmS\nxhyb9mxSQ9ADWtaEscb7nLErmKTjTGlkGijnFufPMMIxScuIoZ4L5PgxFVT30ed535cgDLVWNDKj\nTDqyuLuooEa8lIdK7rTCjCMu6XDSX7Qa3GQYcoauYLt5DPtpW1764HuJ1St86Bd+gatPnfLoa1/L\nmDiqZYWOgSxVWGswqqftK7zXjPXM3jgae8I67cjinuRNr+Ps7/8E5m/8HVbf92eRP/2vuPxbfw+r\nr/xyzr7l61EPPYL3K5Y+Y9Ilt6UlSy6GnEbPpAJT6fg/2LvzMM2SusD334g4J876rplZmVVZWy/V\n3bj2CC4P3uu0y3NFnYE7KCoqOKCiIDio4+P13rnqPI7KoI7igo76gAvuIsq4jHLVRoYBkVWbrZeq\nru6qrFzf9exLxP0jq5u2p0F4BCqr+3z+ebc4UZF5zpP1e3+/ExG5N8ZZpPQahyItkN4ute5RZn1K\nr8eu8um3cwIzBafCipDUDPFcl7FY4sQz3CJmlin2vIjKFgzNlL7fYmXEcngDsQ64SV7m0nLK9MGc\n95UlyxPrnN0YoboNXjofR9f0ahJCfJ8Q4veEEOeFEEYIceGfaH+rEOIPhRATIUQihPgbIcQXfpi2\nUgjxnUKIDwghciHEA0KIHxdCPOZ+a0el74/WI7ckNUqidZcx7Rwd58+fB0ApdY1H0rnWHroPdT1a\nZzhYR60do1kdYdwWWU5w6imKGaiUDM2sGWOaAX36DFyPfpTS623jiiWk0BY+03bEjhyTmhZZTtHN\nDC3nGFWxNBFJM8IzA8aqR8+v6Pd38JwZNjPYzGNRD9iRK0yFoqnnBMWCoFmg5JzKMSzoUzQjgrbP\n2I3phwX9/g6unOOJgBuf9GSC47cwFyEP3PcAH3jrW2nTHZScUytY2BF1ffgzrEZrDPotgTeHckm9\nmHFQBOw5IwpR4zRL2ud8Dbtv+hsW3/YSrNboP3g961/4r1l/+U8R1ReJoj1EXSAyl7wdsiNWyKxF\nFhPcdo6jl7QrPmm4git6DKoIP0mJ3G1kXWJyhzljDkwP6hTRTnGchBqf0lljqAeM/IxVL6Ofw6z2\n2WkCdpdTymaGEglpuI5Yu5EbRitsujXtlXu5cP5+/uG+LbKyutaXWedxRNirWbdr8o8LYYAD4J3A\nU4C5tfbGD9P2JuBtQAX8FLAAvgX4NODLrLV/+aj2rwBeAvwB8GfAp1x9/SbgS+wjfvCj1PfVY+xH\nOi+7l7d5xff/CM/6w9/l9skOP/GUf8m/+rWf49YnfeqHPabT+WR66lOfylve8hau5d+XztFVNAVp\nlVLWhxlUmRcY62DdACs0Bh9hPTQFnsgxsiIzOZUxh9nLMgYlsdogZU2PlNAWIH2sG9JYjTE+DgZf\npChZkdqc0rQPHy8cB6EtVjVEIiMyGa6VGCegVi5GBNhWo22DLzKQ5WEfbUueR1RVzHw24fL992Cq\nlJ5uufncaVY3T9IoD2NDaB18keGrgswmLKtdisKlqnrg9JFBQOgU9GyCtgrjhLRbO/Re/uNEf/j7\nAJjRiOylL+Tg2c+kYkBRxFjpYHWLK3L6dokrwLoxrQxoah81L/HrlIqCXBc0fkheDEELcBv6Zk4g\nKlo3AhvRWg8tEqiWzJqSJI84EA7GNYxlTl8L+rqHNTHCWoLpRaaLfa5kBUWwQry+2ZX2n+CEEFhr\nPy5LNlzrwPSstfb+q8/vAsKPEJj+LvBvgCdba//+6nsR8F6gsNbe9oi2nwr8A/Baa+2zHvH+i4Gf\nBr7eWvtbR63vRxzzEQPTnUtXeMV/+E88+/W/x6dP9/ixz/linvUbP8/Zm8992GM6nU+mzc1Ntra2\nusC08xHVbU1ap+RVBlmGSFOslRjlg/Ixxger0dR4MgdRktmCyraUZUBZ9jBCgrZIVRPbqwGq8rBO\nQMthHwpDIBKkqMgoqDEURUBZRljhgrbgtIQiI7IZ2gqsEx4GqAQY84gAVRRXA1RDnscsZopL999N\nms7QouHkiR7nzp1G6B6t9DAmAOsQiAQtS5Zml7RaHC4v1a5gdQ8ngJ7KidoUR2haJ4B/eD/9H/pP\n+H/7ZgDas2dYfO+/Y/G0L6Ioe4fBtZYYtyGwCX2bIqSHcUNa69OkLjpN0TYjEwVVZCjMgLoNsV6L\nFgUDu0QqB+tEWBNhhUE3U7I6Y1m7TEqPRMNA1QxUySDs49gIY33C7ArVdItLyyUzEaCPneb05jpn\n1rvS/hPRxzMwvaZXz0NB6T/laiD3dODOh4K7q8enwC8DtwghPvsRhzz76uNPPaqrXwIy4BuOaN8f\nNWs/NPmpcSWe35XyO0fH1tbWtR5C5zrgKpehP+RYvE40Ogbr69h+iBLlYZnfzJByRi1aFqZPbsYE\nDBnJmL5f0+ttE+gpomgwuWZhDsvcaSugmOI0UxwxxVKS2B6JGeHbPkMRMQhq+v1dQn+CrCpIHdIy\nZo81DmRE2WTocoZuZ7hqQSMbFrZPYcaEDBk7EcM449jGjNs+/QbWVk9R1ZrzlzLe8s4LJIt9nGqG\nI+ZImZATsGxHBGyy5m0yjEvC8EFkfYlm0TDPQ3bFKnOhoJ4jbruB+W+/hv1f/lXqG8+h7r/I6IXf\nxeZXPY/x+/4ncbyLMikiVeRNjx1WycxheV+1c9wooVkJSJ0xvu3RW3qEzZTQ20eVlqoK2JerZI1E\nVlOEmCJtQ6nW8P0RK9pyzF8wrlvmpWKnCdlbLsjbKUomZNEGHLuZG0drnFCHpf3z913gvReukJf1\ntb60Otex62Xy02cAGnjLY3z2t1cfnwL83dXnnw20HJbQH2atLYUQ77n6+VHs+2PyyOWiHKcLTDtH\ny8bGxrUeQuc6oaSi7/Xp6R6ZzkijlKbIDsv8ZYJVAdINaM3hOqaKCF9khKok83I8vU9ZeZRlTItm\nqV2WKiZuU8J6hnI8pBNgrE9ie6jWXj2+JhcF2t2nbg7XUm2TgNwNKXSAKwp6bYp3dakq45Q01qNq\n+ziiIRQekVvi9XPCzwwZrd7E/e9/kPlBzlvecYmbzm1ww3qLEjnSKWmlT2JiHAJ6KiCQu6TOgrzK\nKItj1OWYqQ5J/YCYlKiZY7/w89i/48/wf/u19H/yx3De8S7Wnvkc+l/+pRx8z7eTn7qJPB/QVC4L\nf0wiCgbNEm0KhFNjVnyydIBKPHqVS1nnqHCHkgFVHrFw+xTWp18sUG6FVBGtibB+wEhO0CLFrz32\nCpcrbkiZlQy9A/q6pHV7ZGu3sO7cj784YGvyINt5RpoVnDu9weogutaXVuc6dL3k209cfbz8GJ89\n9N7mo9rvW2sf62vbZWBVCOE8ou1R6fuj0tb14az8qxlTqySuvl6+Y3SeKE6dOnWth9C5zgghiHTE\nsegY48EG7to6dm0F4YEsJojmACWmWDIyG7BsV3AZM5J9hh70430ifx9Vl9jMZdH02FPHSFqFqBbI\ndnr1+IKMiHkzRtgBQzlgoB360Ywo2sG1GTYRVEXAfjtmVwzJ2xqRH+A2M1w1x4iGpemRtiMiMWSs\nQk6fdvgX/9txxqMezbLhg+95kLd+YMq0FlAtUPUUR80xNCR2jOFG+nKdoScZ9C7juXcjiox66TAp\nY3blmMy2KJNQfd2/Yfdv3sji21+K8QO8P/1zjv8fX8nxH34Z/eoeQn+GKCxt6XMgVpiaEFsukPUM\nN1rAiiRxhsi2T38ZEpVLIn8Xp24pS82+XCGtHWQ1AzFF2pbaWSMIR6zqlhM6p19Z9muP7dJjL5tT\n2ilSlGTjm4jXTnFzv8egOGD54N3cdc9FLlyZYEx3O0/nY3O9BKYPzXYvH+Oz4lFtHnr+WG0fq/1R\n6vujYq3FNObh5aKMdHDcbkvSztFy0003XeshdK5jvuOzGq6y1j+Ov7KOXT+GDF1Us4BmgmCCYElu\nHObtCoIRQzVk4Ep60YQo2MNtS0zmkJg+O2KVpHUQ5RLVTJFMkCwprcu8GdG2A/piwMj16EdL+v1t\ntFgiMkGVaw7a4WGg2F5dTaCZ4sgZVtQsTUxqx4QM2IiGPPmpp7jpST1cYZie3+adf3ee86lHahRk\nE1R7eGwjDKk9hZQ30Fcjhj4MehfwnPOIvKZaOuxVPXbliLKtkG5N+l0vYvfOO0m/6muhaQhf/euc\n+sKns/Erv0hfP4DvJMhMUrYxe3KNrJXIcoZigR7n1P2QTI4I6h7xTBG7e4TuEjLB0sYc2CFtUYKZ\nIOXycMJTtM7Y12x4KRumJssNl6uAnbRk0U5AzKiDNdr1c5wdrXCcmnbrXu677zx3XdjqSvudj8n1\nkmbLrj4+Vr3af1Sbh56vfpi+fMA+ov1R6vthP/iDP/jw8zvuuIM77rjj4dcPTSh56B5T6zrdsjyd\nI8NcvS5vvvnmazySzuOBq1xGwYjW65P6KVkvRV2dKNW2GUL5COFTGp/CjvBUyVDkVG5B7sypzZI8\n71GXPqnukboRfpsRtwmOShEqwEqP2npUZogjakKRIWVFHhaUQUJZBhR5TC1cpnrAwmkPbxNopih1\n9TYBDm8TkEQEIuXTbvZYHe9z9/suMJ9NufvNdzG/5Qwbp4/RrzOidop0AoQTUBufyp7DFQcM1AGe\nl1HoeyjKIWW2Tlk57OoBodvQaxP02Gfx8h8ief7zGPzIj+L/jzvp/+hPEP/abzP9nhcz/4qnkRVD\n6ipgofukMqBfLfGdAhWEWC8gmw9wKk1v6eI6OW4vIy9GVLVmTw+Jy4xYzrBehTQxrbNCFCf4xZKg\nhr1Ksy0dCgtDZ8bQr9E2oly7hWPuRYL5hMv7D3KlyMnygptPdaX9x5M777yTO++88xPS9/USmD40\nk+Kxyt4PvffIcvkWcJsQwn2Mkvsmh6X45gj2/bBHBqaP1rYNxoJ79R7TVnSBaefomM/nAKysrFzj\nkXQeT/7RfaheRhIliDxFpRmmymilj1Q+lfEpGeKKir7MachxozmNXZBlMXUZkuuYQse4JidqMzyR\nIB0fe3UlgJQ+AoMvckJRkHslvrdHWXkURURbaeZun6UbE7UpUTtHygzhBljjkdoYISLWV3xWP3fI\nXe/7ALu7Ew7ursgmCZtPOsvSC+mXCYGcIJ0QlE9je1RmhCt2GYgZnpdS6rspqhWqfJWscsm8IZGq\n6NUJnDvOwa//MvqNb2XwIz+Mvvv9rLz0+xi86jc4+L6XsnzK55JlAxqrmXgj/Lag3yZIVeKOQ9rM\nJ01G6NqhPy1R0ZRKe6Rpn8SNKKXHIF8i9AQhI2wbI8KAUTnFEzlRpdkpJKnjUbUFA78kFn2KwVkC\nL+bm6RUeXOyyeCDh77OcG0+f4PSxEVJ+XCZvd66hRyfM/uN//I8ft76vl1L+P3BYDn/qY3z2eVcf\n3/6I994GKOBzH9lQCOEDtz+q7VHq+6NijcVag7oamBrHQXbLc3SOiG470s4n0kP3oa7H64yGx3GO\nbcDqCEcbZD3FmgMQB7S2ZWn6VKzSk2OGwmcQJvR72/hiicwOZ6ZP7IhdOyarQOQzaA8QHCBsTtH6\nLMwKkiFD2WeoYdA7IPIPcJqSNlEsmphtscrCaGyxQLRTpJgiTE7ahpTuOp9x+5P5tHPniMKSenYf\nF9/+LqbbKQdtj307pKwqRDlBmimOWtKKEZm9ASlXGaiYgTejF92DJyeIFJJMs2PHzG0IVUL91M9k\n70//iMnLfoLm2AbO39/F+rO/mVPf9h2Mt99G6M1xSkle+ezLVZJaQTFD6jnOOKPWEbkZEKd94tQw\niPfwRUmVO+zRZ1l5UC1AzZDGYPUxwt6IjaDljCrwasvlwmErFeyVExo1xXhD2tUbOT1e5bipMVfu\n5Z577uOuC1sUVVfa73x410U0Y61NgP8G3CGE+IyH3hdCxMA3A3dbax85s/13OCypv/RRXX0LEAC/\ncUT7/qhYLGBxrt5UblyJ7DKmnSOiC0w7nyyBG7AarrI6OI6/dhxxbA3XVzj1HNPuY+w+1hYkTUgu\n1gjVmJEI6Xsl/d42kZ7iVDVtoVnaAbtqjWXjYfIU2gPgAMmSyrgsmhGGIQM5ZOwqBvGcfryHNiUm\nESRVwA6rzFsfUyQIM0XIKaLNyJqI/plP5fbP+mzW4j5OO2Hn7rcyuf8B8lSyb/r/OEC1UxynwLBG\nak4jxJiB8hn6+wx65/HEAru0LDPNthmztB6iTcmf+aXs/NUbmH/n92DCCO8v/5rNL/8aTv3QDzAs\n3kugcmwqSWyPPcbUVYO0M+Rogey3LG0fW/eJZwE9EgbxDKeCZeOzbwbUeYW1E2COMCEyWGMUBZzR\nJeu2ZVHC5Vyzk2Sk6gDrCurxTYzX1jnruTj7D3Dlwn28++4HmCwf8y62TufalvKFEM8Bzlx9uQa4\nQoj/cPX1/dba1zyi+fcBXwz8hRDiJ4Elh8HgceArHtmvtfYuIcTPAS8WQryWw92ZnsTh7kx3Wmt/\n81FDORJ9fyyM+dByUcJxEOK6+I7ReQLoAtPOJ5tWGh1oWq9P4idkZYKbZZCm1CbHOj60PjkByOiw\nDC0KSl3iOVNqIymKiKrwSZ2QVAd4TUlkc7TKwPFBeDQmYGEHOPJwt6ieU5FFKYWZUxQxZRaQOj6p\n6xG2FVGd4ro5qBxpfJxonRs/e4Xte+5if2uL5eX3Uxc7HD/7GRTSp9B9XAy9MsWXBwg3wHF8TLtO\nZiscDuiJDB3sUnhTinKVKg1ZuD6J9uiLnEhlLF/0b0mf/Sz6P/mzRL/zGqLf/F3CP/oTFt/6PPb/\n7deRmQ2q2uNAD/Cbin6dIHSBsxbSzgPqcoSfpeiiwOkdkNUReRmyr/tEZUXMEhNUCBuBWiHoZ2xm\nM6LCsN1qtowibywjf8rADSHaxPNibjq4zOX5HvMy5d1Zzg2njnN2Y4wQXWm/8yHXeuenvwb+5dWX\nDw3koSv0TmvtFz2q/W3Ay64eo4F3AD9orf2rx+hbcpjVfAFwFtjjMNv5/dba/+Wr2lHp+2r7j7jz\n033vez8/+4M/xo++9tfwTcv3ft238J9/4xc/bPtO55Ppda97Hc985jN517vexe23336th9N5AjLW\nkNUZaZVi0gSRZdR1i1E+kgCsj0XjqgotCmxTkIuS0jRUdUBVhTQ4hztK0RCT49sctIuVPooQYz2E\nEnikOJTkpqCwDUUZUBQhrRLgGgLZENsMR7VYJ0AYH2sDdnZ22bvvvdRlDp5g47Yb8IOTFLUDnsWR\nhr7I8SnAC0D42FbTUuEwwbU5JQ2l9SnKEWUdYl2L60HPpgSiwDg+zn2XGb7s5QR//YbD383GOpPv\nfBEH/+oZFPWIykrQhtjmRCLDah9RBTQLH2lrPJlRBwWFZ8jyIaWVCKdlYDN8XWNUgGN6GAmmmVOm\nGVcah70WAiVY1Q2D0CFqB4i6Riy2OJjO2LcWu7LJ+onj3Hp6A8+9Xqa8dB7L42ZL0s5j+6cC07ve\n9nZ+6eU/x0/8wa/iWMv/9bzv4GWvesUncYSdzof36le/muc///ncf//9nDlz5p8+oNP5BMrrnKRK\nqPMEkaQ0ZXW45anQKBtgrEYoiScKHHKKtqCkompdyjKkrD1wLTiGyJaENkdqsMpHGh/wsULhqRKX\nnNKW5KakqDzKMqJGgbZ4oia2Oa5TY1WAsD7p3HD+3nuolwcoWqKNmJWTJxBqhbzSWNfg20t7aAAA\nIABJREFUOJYeBYEoENoDGWBbSWNyXJleDVAtpfXJiz5lHYAHjmMYkOLJCuMEBG95N4OX/Sj6vYeb\nENa33crB934H08+9gzSLMQ442tJrl/huQ6sCxDygyR20KnCcgiIuyIxPVoQ0CnxVMyBFegJhYzAB\nVhW0+ZxJ1nLFSkohGUvDKIShE6NKF1Hskh3scaUsqPpr9NdPcuvZ44x7H/PqiZ0j4uMZmHZfUa5D\n6XIJxj68jqlV3WnsHB1dKb9zlARuQOAGVP6AJEqw+RIny7H5ksZmWOUhjE9pPXKGuE5DjwJjc3J/\nSeXPKauQMg9JVEDievhNQ1RlOCrFOj4Sn6oNKewQx6kZqJzIK8j1lLJ1KIqIonbJPYXXGOI6w5UT\ngmHAp37mzVy6N2Z3e4fFdkG+fy/DzSnjkyvUTZ8i95k4hyX9XlkSiBm4Lo4TYNohqfFwZUEsCjz/\ngFx7lFWPMvM50D08p6VXppSfcxtXXvfb9F7/F/T/y4/jfuCDbDzv2xn+75/P7ve8hMUN/4I8D5i4\nPfympl8liH6JDEKauU9VewRLjecV6HhCUcWkpWbPGxAXJaFaYN0Cp+2Bv8aquyBKUq40gv0G0kRQ\n6AWjQBOINYKNkLMHV9ie77MoU96d59x05nDWflfaf2LrIprrUL5IEFfvL22EwOl2feocIXt7ewD0\ner1rPJJO50O00oyDMY3XJ4sy8iqDPEVmOU2Z0kqNFR6mDchMCCrClyWRySi9kkLvUbWasowoWpdC\nD1BNTdSU+GIGXoIVPraJSEwP6UZEMieyBXm0JG8tZRmT5y4HboxDS68o8cSck7cNGZ2I2bpnh8Ui\nYe/ilOXunLWzxxiu9ijriLwImDkBC6WJ24qQOcJ3UcrDGIfc+riyYKBKSq+m0B5FGR8ucaV7+DQM\nbEr69DtYPO0ORr/yO/R+4Wfx3/RmTv2P/0n6lc9g9yXfRjI8R15qCndAXFREYoEdF8hlQJ4HyFYT\nVxlemOOGGVnRZ4lPahTDpgA9ARugbJ9gGHAmmxPnLVtGsFUKiqpi3JvRUzHOymk2vR386YyDrfu4\nu8xYJJvccnq9K+0/gXVn/jpUpjmqOVwqtZES6XW7PnWOjvvuuw+gW8KscyQ50qHv9el7fYqgIOtl\n2OJw0X7ylKpNr2ZRPao2wDDGcRp6ZFgK8mBOYaCqQ4rKY+ZESOUTFTUhKbWbYR0P0YTkhFgV4smc\nQBSU6jALmxchee4xcUKU8ugVFYFuOffkDQ62U7Yv7LFcVqTv32E4nHPizCrjQUBRB+RFwEL5LJRL\nv2wIbIrwFdK6GOOToXFlRc8WBEFL1iqKskdeOhRen6Bq6JmE2bd8LbNnPZ3xz/4S8W/9GvHv/yHR\nH/935s9/DrvPfx7L6jiJ9Mkcl36ZoaMFBBViEZKVPXSrGegcHU5Ja4+siNh3IoKypq8yGq9EtTGO\nHrPqpUSLhMu1YFcIkpllLVww8jU+Jxg5Hnq6z+72RbbKnCQreNINJxjGwbW+XDrXQBeYXoeKvEDR\nAtAIiXK6AKBzdDwUmHY6R53v+PiOj/GHh1nUOsdmS0SW05YzGpFg8JC1T2EjrBPhyZKgzahVSa6X\nlE1AWQYs8Vi6Ll7VElcFVh0gtIdsfGpCKhXiyoKhyAnDksxLKOuAvAyYyQAhXXpFy2jYMnzKKba3\n5hxcPGCyVzGbb7F2rMfJ02uEvYKsdinKiJnVLLRDlB+uEiB9hbCCtlHUQuOokr6qCIIFuRHkRY/M\nOuR6QFw3hEHLwf/775g/92sZ/9hPEf7FnzJ85S/R+90/YPLib2XnGV9DVg6YODG6rhnYFDuqIPdo\n0oi69fCaHM/L8XsTsjIirVwKGzOwNVrNQHm4dUQ09LkhnxEnLTvW8kAKWV4w7tf05Iie9PCWe2xP\n9pgXCe/sSvtPWN3kpyPoI01+WsymvOE3X8c7/vjP+ZE/+11mrsfPf/f/zff96Pd/kkfZ6Ty29fV1\ndnd36f62dK5HdVuT1Rl5lWLTFLKMsmmx0gOjcQgx1kG5LQ45ps4pqSiNpKxDstLBaoFLTSxqXFGg\nAhdjPDQxBhflNmib0bYFORV57VEUIZUFoS0eLT0yalOw9eAB8ytz2kaiPIcTZ1bYPDGmFg2FUeRF\nTGkFwrVEoiUmRWhJS4NqLUa4OG6Dag21VRRGkpcxpZFIDbE4zPRa3yF4+wcY/+eX473nHYe/i5tu\nZO+7X8L+U7+UrPKx2hJRE4kU6TrYRQClDw54bkobliSiJcv6FAg8p6FPgfQtwgS4xqOWOeliyeVS\nsJCGyErWYsHI9fEyMPk+k4MZE2kQqyfZOLHJrWfW0U6XRzvKuslPT2CLyQwDqKv/5zdS4rpdKb9z\ndOzu7nYZjs51y1UuAzX4UKm/zrD5YRbV5EtqMlrhQh1giA5L9arCq1MameO7NWVzWOafChehNFHa\nEoqMSudYpRFVRE4P4caEpISUFO6MvBGUVUxeK3K3hxY+J89ErK3NufLgDvNJxqW7d9jdmnPypg3W\nx5owWpC3grwMSVpF4vYJy5aYDKsNVpSYStDgoFxLLCx+sCBrDzOoC6FZOop+XsOn38zl33k18X9/\nI6Of+HHc+85z4kXfyfhznsKVf/9SZjd/HmmrybRDr64IwiUmKJHLgCKPUY3P0E/xwwVp45IWAXsq\nJMoaIiel0CW6iun3NL6/YG/RsmVbLi4sqZsyjl16YpVV5eLNpuxtPcDlMiMrSm49c7wr7T9BdIHp\ndSZfpLTGosRhZNoIiet1p7FztGxubl7rIXQ6/yxCiIdn9Lf+kCzOyOsMmSaIPKcsp9RiCY2HqAMs\nQ4Rn6ZmMWBQUzoyidSiqgGXrkrguXl4Ri4pKH4CrkbUPxFgV4jsVASmlk5KblrIKyEvNgdJI7XLq\n1jGj/SvsbG2TLmecf0/OlcGAM7eeYNRzCVVG2hqqOiItFYkbE5QtfVHQOhVGZojSpRUOjlb0gCCY\nk13Nus6kj1QOQ1ORfMlTWX7J6xj9xusYvPJn8N/2dm746m8g+ddfxpWXvIT5+Bbm+CRSMZAVzmCO\nLTUiDcmbProuGQUFXjgna0KS0iGzEcOmAj1DEeDLAesrBcE8YbsS7DYt6bTkWM8wjPoM0Gh3wt7+\nPtMi5Z1pys1nT3Jqbdh98X2c6yKa60w6n2OsfXgXgkYKXOVf0zF1Oo/WrV/aeTxRUtHzevS8HqU/\nJG8Ol5vSWYbJMipzmEVVpY+1ITgBvtvgVRmxykjbhqqNyGvFvtNDFSX9qkXJOa2fImof0cRYOUY5\nDUOZ0VCQuxl5oynKkGkpEOPTnBxskGw9wN7uDsvFNh9825T+sQ1O3brJ0LO0osBzGqo2JCkUuRvh\nGY8+JY1OQeRQ+CBclKfpt4IwnJO2iryMOZABrnEZiIrJ1/+fzJ75NFZf+av0XvMrxP/tz7j5z/+S\nxdd8FVvf9AKW0UkObIi2Ln1ZIAZzTObRFDGm0gRBge9luDInq2ImJkCXioEsqP0CXUWsxGPCdsnO\nXLBNy8VlSaoaViKPvlhlw1UcTJbMHribD5YZi+Qkt57ewHW6bbgfr7rA9DqTLlMsFuehjKlUuH5X\nyu8cLTfeeOO1HkKn8wnhOR6e4zHwBuRxTlZniHSByHIqFjSk2NaD3AfbB8/Qdw53lypkSm5cijpg\nYhyEdAmXNYFMMX6GQONWIa2NwY2IVEmkCgpnQdpaqiomazVy82aOr50gvfQAk/0dDvbuZ3Gwy+rG\nJpvnNul7LabO8FVN0fqkhcueE+HmLn1ZY905qByKgFa4OF7IQLaEckbaOuRVxL4M8axLLBW7//7b\nmHz9V7L2k68k+pM/YvDrv0nvtX/I7Llfx9Y3PJ+lu8qeExGYhl6QU/sVIvGpliFULgM/J/ATksYh\nrXx2jWSQNVhniVIav43YHFcEScZ2Idi1NemsZS3WjOQK6ysO/nLJ3uUHuFRmJFnBbWe7WfuPV11g\nep3JsxQAVR/Oym+R+J6+lkPqdB7WXF3G7IYbbrjGI+l0PrGEEIRuSOiGNP6QrJ8hiwSTpdgso6gz\nGuEgaw9MhHV8/KjBr3IaJyVrWiobkZQuiaPx0oqeammdCcp3ofYQdYxVPtpr8OqU1ilImpraBKRN\nQHDjkzi2vkFy8UGS+T5bWx9kf/8yJ0/dxLFTa8R+Q1hlhHJJZjRZ6bGPi1O6DGSFVRNQYPMKKX2U\n12PQVIRyTtq65FXIgRPjFRXx6BiXX/4D+N/0jay94ucI3viXjH/hlxn81u8x+aZv5MqznsNSDshV\nRCxq/CjFtCUqDyjLCCf0GfkJvrcgaUMWtUZayaCpqb0lXhOy3hsR+wlbczgQLQ8scjLtshoP6AkX\n112wu7vHNMt4R5pxenOdG0+sorql6R5XusD0OlOkOVhwr9byGynxwq6U3zka5vM5ACsrK9d4JJ3O\nJ88/Whs1Kh7OopJl1EVKZTNMq9F5gKB3eC+qm2PrkoCaAk1eafaRyNYhqlq8h7KoRmPzEEEf4Vn6\nKsfWOUGQkRtN7vdRt34aznTC8uL9lNmc8/e9mys7Q86euYXB6oggbPCqlEglZK06DFBNgGs36NUZ\nxp0hZYaTB0gR4XgDBk1OIGbkVpNVPvsyIshrzJmzXPr5Hyd4x/tYfcVP47/9b1n7Lz/N+Nd/i70X\nfBPbT382S+uTKMVA1rjREsoC0hBb9PB7NZ6b4cmMpI44MB5BLhEqp3YVPgE3jF2iJGOnlGzXJWlV\nsdYLGMshm0pyMMtYXPwg92VzJvOEc6c3uu1MH0e6wPQ6sphNaZoWRzm4bQVALQWu7kr5naOh2460\n80T3yLVR835OVqW4yWGQmldTGuEgSg/XBOD4hD2DX6b0nZS0htIELBuHhXTRy5q+qmncCdJzUIWH\nS4xwfEKvxq8zYichayEYDwjjz2Q62SO59ADZdMb7ln9Hf2XMjWduJYoHeL7Bq1NilZM0gqzyOLAR\nygb0q4TWmSHcFLeIcEQP7Y9x64RALMiMR1ZpCreHn1W0n/Ik0l95Jb03v5OVn3oF3vvvYuOHX8bK\nr76G3Rd+C1tf/EymQuNIRd+tsGqBLDX1JEQEfXpRSejnLBpJUvnsGcmgbjBBhjKa40GfyE+5NBMs\nREU+T0m0y1o84phwicqcg8uXmCxnvGOx4PTmcW48sdrde/o40AWm15HFZEZrLV7gP7zzUysk2vWu\n8cg6nUMPBaaj0egaj6TTubakkEQ6ItIRdTA6zKLmC2ya0uQ5RZthjIuTejiyh9SWvltim5KirimM\nS9G67LUOyhjCssV3Mmovw2k9TB0i5QDHMwyajJ4qSN2WXjBmPhizd+UKyc4W0ysT3jN9Kysn1jm9\neQOB7qH8iKHK6KuSpDVkjc+06SNMQK9eYpw5lZug8xhHjnG9kH6d4oslufHIG02mIoK8wjzlySx+\n71cZ/MWbWPmZn0FfuI/N/+cHWHv1r3PlRS9k+/OfxgE+nmjoeTWtM0WWAbYIkZFmGGR4OiFpPBat\ni8oVPVnTeBV+5XNu2HAlh/1csVsV5HXDWhyx4mhOapf9Rcbigbu5kM2YzE9yy5njrPSja336O/8M\nXWB6HckXKQYIPP3wPaaNkOigu8e0czR0GdNO53/1j9ZGjQuyKkWlc0gzSrWksBJKD20ChNIEoUU3\nGb0mJ6uhNB6pcVjWDrpqiGVF7RVIx8HJPFwRI9yAvq5pqoyoXzPqrTI7NuLKA9ssJrtU53eYbu2y\nduMJTqyeInB64IX0KYirnFS2ZMZn0YywdURcz2idBVImuHkPrcZ4vsCtU0KxJLceaeWSOxo/KzFf\n8AXMvvipjF7/BlZf+Ur0vfdy5ru+m/VPexWXv/3F7H7WF7CHT+jUhDanaQt0GqKyEH/o4/spflWx\nbHymRhNmNcYrcaRi04/p6ZRLy5CkLSmWKYnnshqOWBWKqEzZ295lmix5x2LOqZMnuHnzWJc9vU51\ngel1JJ3PMcbg+R7KHGZMGynRXpcx7RwNXWDa6Xx4/2ht1GBENshwygQ/WWKyjLzJaeyHSvY4lp7f\nEFcZVd2Qt4rcuEyMQuSGKG/x3YzSy9CNh1uFCDnADwxek9Ebt4z7G+ztr/DgxctMkwXZey9z0Ntj\n/aYN1lc20cZHap+eVxGWGblqyFuPpF4jqTLCaonvzinlEq8YosUQ17eoOiMgITf6cKKUdfDbGvNl\nX8b0K76Yld95PSu/9F/x73ovN73whRz/3M/m8otewvYtTyZTkp5qsCQIHLxJiHJ7RIOKQGUsaknS\navLSENNQ+zlhHXBrr2GrgIPcsFMXpGXLShQxdDSn1JKDpGR+8Tz3pzMOpktuPXuCtWF8rU9752PU\nBabXkWSeYI0hinsIc7hcVCsFupuV3zkiptMp0AWmnc4/5ZFro1bRClmdobLDUn9dHJb628bBzQ9L\n/V5ocU1JXJeUtSFrXTKrWFQKrzLEsqLyC6Q4PMYVMdKL6OuC3vGCjdUzXLmScPH+bfYXBfN3P8DB\naMrGzeuMhmN0FiKdAVHUEpQJkVORNpqkWiWtEsIqxToTSn+Gl4/QYogKDKrJCWRKbhzSRrNvFT6S\n5qu+ir1nfjnHXvP7jH/lVYR/+3ec+9vncvwL7+DiC17M/pnbEJ4irmpatcBtXfRuiOgPGIY5QV2w\nqF2WxsHNFdapUVqwaQN6XsluHrFoGi6lCXPlsBaPGauEqMjY29tnsVzwzmTGyc2TnDu5jna77On1\nogtMryN5nkJr6PVDaB8q5Sv6QZcx7RwNXca00/nYaaXRSmO9AUWvIK8z3GSOTVOKMqGwAioPt9U4\njoeMGry6oKkLilaSG83ECEQqCWkJdEahU9zi8PYA6fqEUcNNZ1w2Vj0uXpqwvTXlykHK/uwC68cm\nnDy3ga9CdObjqAFB0OLVGT1VkpqQZRWQNUv8ZYFRBxT+BF2M8BmivBBlMjybUlqX1Gj2a0NIhHnu\nc9n9mqez8arfYvSbryH+6zv5lDvfyOLLnsbFb34xk41TOMoQlzW1mqMTH3fp44191sKUJG9JjGZa\nOwRVQ+3XeGhuDgQ7Jmc/iZi3JVmaMNceq5HHppRM8oLZ+fNcXM44mM259exJ1ke9a32qOx+FLjC9\njhRZgRIQhgHyasa0lhLf65aL6hwNOzs7AMRxVz7rdD5Wjyz1m2BENsxwi4QmvVrqrwvyVqEKjUOE\n7wlcURI3JUXRkhuHHIdlZfHKllAWVEGJtA5e7uHImHAQcWscc2pjwP3nd9g9WHDp8pTt/QUnTqyx\neWoFJ9T4mY8rYnQQotqcSJZkbY9lHXPQLtFpSSQPKLwZfjPEawf4QYhjC7wqpWwVSavZqyyhGNF+\n67ey/fVfyYlf/DWGr/09Bn/6Z3z6X7yB6TOewflv/FYmK+u4piEuCkpR4B8EuDokHluCJmFRSBLh\nUJaGSLTUvmW1Dhj1WrZKmGUOu3VOYiXjeMSaSujpnO29CcliwbuWM06cOMmtZ47juV3oc5R1Z+c6\nsZhNaeoG13Gx0oA1wGEpP/C7wLRzNNx7770A3V7Wnc4/kxSSWMfEOqaOVsibHCdbYNKEOs8p2oK6\nVriVxpU9wrjFNyVxVVI2kswoZlahUoNvaxrdID1wcw8Pn94g5FOfvMKp/X0u3Psg01nOgxeusL03\n59SpNTbWhkg/w809tPXRXoAjSsIyp2hikjZkZlKcrKIRBxT+HN0M0E1MoIc4ukSXOWWjyKzLfiMI\nvGM03/VdXHnu17L5C6+i/yevZ/za1zL84z9m/1lfzYWv/yYmvQFBabAmo2wc/Cs+btxn0C/xspxl\n45Lg4mYG49RIV3CGgBWv4kqiWNY1l/IlifJZCzxOigWzvGRy4QKXlnOm8znnzpzixOrgWp/izoch\nrLXXegydRxFC2Eefl0vnL/DW/+9NRNrn1s+6kTc959v5xr9/G3968mZuf/NfcuL06Ws02k7nQ26/\n/Xbe85730P1d6XQ+McqmJKszimR2tdRfUbTmsNTfOLjaoZElpq0p84ayVWRCUhuDj8UTBjeUSOWg\na412Xayq2bt8hUvnL7HMSgoj0aM+x0+sc3wcIzyLFi5u4+O4EuPWmCqnrA2LpqFoc4St8W2L52uU\n08NrYzxXUcqStiypWklqHApjCawl1AbvwQucfOUv0vurNwDQxhE7X/ccLjzrGyi8gChtcIXAdRyC\nNkCuAG5BmrckrUNmLb5pCTxwpMSpGg5Mw15mKdsC2VYMHZ9jTYWTL9nJSirXRR0/zsbmaW47ewJf\nd/m5jwchBNbaj0tGogtMj6DHCkzvefddvOutb2dtZcypc+u85Tkv4Tl3/R2vP3MLn/+2N7Fy7Ng1\nGm2n8yErKytMJpMuMO10PsGsteRNTl6mVMn8sNRf1ZS1QNUa1zoIF1oq6rKkrCE3DqUEmpZQgPZA\nuALParTVGNFw5fIlth+4RFY01MLBW1vh+IkNRqGL44FSCt14aOVg3Ya2KaiqlqwpSU2BMQ0BFle7\nKDcmbGO0o6hUSVvXlBUkVlFZi28hcA3h3e/n1Cv/K9Fb3wxAMxpx5bnP58IznkUjFGHSoLVCo/Fc\njVwBY3KSwpIah9K0eNagtcUTCpqa7aphmlsam+FbWMFhpVqQFgWT0sCoT3jiDLecPc3mWpc9/efq\nAtPHuccKTN/9xjfzgfd+kFOnNlk7u8I7vvoFPPsD7+J1Z2/ji971FgbdZJPOESCEQGtNWZbXeiid\nzhNGa1ryJifLF7TJkjrPyZuWurpa6lcSoxpaU1PkNXWrSBHUtsWzAk8aVCDR0kU3DqZp2Lr8AHvb\nO5RlTat8guNrrG0cI1YKXwMOhwEtGulBY0rKIqdqa5amoG4bfMB3HITuERKihaJRFU3bUJWHQWWB\nITAWz7X0/+FdnPy5nyf8+3cDUB07xuXnvYCLX/50KAxBDiqQRCJAhxrbr6nLnLySJAjqtsW3BtcX\neK2lbBuu5C1J1WJNRix81tuKqJyxk7bk7v/P3p2H2VXVid7/rj2eoeaqVKUyVuaEEAhhCHMUguDA\nqLRXW6S97fDat5368VVvK41Tt93OaDctYivYrSgqIqIIygwRDBCZEjInldRcp868573X/eNUyiSE\nsSpUBdbnefZTqbX3XrX2WTmnfrVGA7NzOu0z57B8/mzVejoOKjB9lTtUYHr/LbfTs3sPi49ZTN20\neh6/+H9z6ZY/8/N5R/HGJx8mm1WTTZTJJ4Sgq6uLnTt3TnZRFOU1KYxDnNDBrRZIKhU8z8eLExLf\nxAw1LMsgED5RGBH44Mbg6QKiiDQCKyUQhkZaWvgln4G+PeTzOTw/xLCzZGbOoK61iawmsEWClhKj\n3fwGdsok1ILacleBQ1X6+EmCGUtszcJI1ZEyUtixjjRjojjEdRI8YeDKBCuOSVuCpj/9kdlX/yep\nrZsB8GfPZtd7/z/2rDkboyxJJwIjpZORKax6g7guJPQ8nECjAsgoxtYlpqWTihLykc+gA14coCcu\nTdKiPagSeA65QKI1NZCeNZuFXV3M6VC71r0cExmYqj8PjhDVahlIyGRSRJqOEdcmP4WajmGoalSm\njrlz5052ERTlNWvfLlONqUa8Rg83cPDK+VpXvx9QDQJEYGCRws5IUjLA92IiTacioeInWE5IoEcY\nDTozGufTONDCUN8AFaeE272dcDBLMH066dZmdAdSMsBMhTiRTzqysI06zLoU6djHdypUhY9DiObk\nCLFxM/XYkU06SWHVxaTikLSX4Gg6hSjBWXkSI/+1mrZ772L2Nddg7+lmyZWfZs7C69jxvr+jZ9Vq\nbFcSJhUMDLLlFKmGOsyGENv1cRIdR4PQjQh1QdpKs0APGQwkI47BSFylYtq0C5sZRoFcMU+5XOGp\nYp6BWV0snz+bTMqc7Kp8zVIRzREgjmI8x0WXgnR9ipLUMOJai2qiq8BUmVoWLFgw2UVQFAVIGSlS\nRook3YQXedhembBcJHRdnMAjDHQMz6TOsoi0iFQS47kQaDpVQJYDbBGRak7T0TKPup4R8oM5gsCl\n1L0TZ7Cf5s5OaGyk6iVYMqkFtJqGFZqk4hRWNoWduHh+mYCAqgyQziApMrh2BlPaZDGxMmAlISkX\nPGFSSiLc017P0Omvo+OO25j1X9eS3raV5Z/8GHNXHMuu97yPvmNWYVYCQhlhSJ1sKUW2MUuqMSBV\nDXHQqMoE3QuxDI0WM0VDg8egk6USJnRTpV40M114ZP0Cud176CsUKRRHWDxvPnOnt0x2Fb4mqYjm\nCFCtlEliiakbCC3BC02MpNZiGgkNTVM7WiiTLwgCAObNmzfJJVEUZX+a0MiYGTJmhijbihu6pJwi\nUbmE5/m4YUTim1ixiZ2BSISk/YRQmjhJQsGPMBOB3dpAR3sdpd4CztAIoRswtGMH6cY6Wto6IFtP\nBYGoRqRkjJfW0AODjLSpt1OEONhBmUBCFQ/Hd7BlisCsxxQmmcSgIQ1pLcSuCgKpURYx3trz6H/9\nOcy89WZm/PAH1D35OEf/w98zf9ESut9xGXtPOwPD0YlkjJ7oZIs2dQ0ZUo0+tgNuouElIUEksW2b\nGRlJOfEYrtRRlB6OZdAqptGulSgW81QrFZ4qjDAwZz7L588hm1a7K76SVGB6BCjl8iRJQipjIzQI\nA20sMI0NodaMVKaEYrEIQHOzGqOlKFOVoRl/2Qq1IcAJqniVAlGlgheEuF6CCHQyuoGok6STEN8z\n8CU4JMhQkpnWRLo5SyFXwBnO4w5X6C85pFvraG5tx0rXURVQdSNsGRIYOrrQSWOT0dPYWRc7LuO7\nPg4elcjDCNL4egYDk6zUaUwZhFqE5ej4iU7FFGw7/2L2nvcmZv/qZjp/9hMyWzez9POfYV5nJ3sv\n/Wt2nX0ewrEICdFjk3rNpKHRIFUf4FQMqpqkGoRYCFJmmjn1AfnAZsRN0U+Vgl5HOynSUZGRXXvo\nK5Yo5HMsnDefrs42NE39rn0lqMD0COCWq8RJgpm1AR0NEyOJAEiEqkJlalDbkSoTLoEPAAAgAElE\nQVTKkcXSLay0hUw14TV5uH6FoFwkcKo4QUjgCfTAoMHSiFIhmVAj8C18meCbGnXtrWTrGxkZHMIt\nlfF6izhDVRo6Gmjt7EATNp6UlOIEoxzgawZGSscSNllhkcpGpGQB1/UJ8agkLkY1RaBnMaROWmg0\nWDphKsJ2dTyhU7YEW976V+y+5K3MuPMPzLzhf7D3dLPgW19l7vXX0nvhpWx/04XIaj2hMDBjizrd\npKFJYmshTtWiKmOCwEeXGg1mmqzhkXNtip5kT7pKo9dAi+ZRKeSolByeHhmhf24XxyxaQF1GtZ4e\nbiqqOQJUikVknGCmLEJh1UJTWQtMI1Ob5NIpSk0+nwdUYKooR5oDtkId7epPO0XCchHP9XCDkNg3\nSGuSdAYiLcT3BUFg4aUNmufOIFMqUh4sUqmUqe4ZoThQoqWjhbZZLWSkjY+FIxMSx8eSAY6hYdk2\nWVppSoUEFEj5EV7k4RGAYxJoWaq2QQqNeluQsSNs38QPwRER29eew9615zHtT+uY8+P/IbvxKeb8\n8HvM/Ol/M3De+Ww//1KqSTuBZmJFFlnToKkRUshagCoSnNDDFCbTMjb1pkPOraOghZQDaJUmjWGZ\nQvdeBosl7h/JsXDBIhbMaletp4eRCkyPAOVihdqM/DShNECKv7SY6qoKlalBtZgqypFPExpZK0vW\nyhI1tNeWnirnCStlPD/A9WJkYJDVBZmsJCTE80yChlbSjc2UC3lKvYOUqi6lPb0MDIzQ2dnKtBmt\nZDQNP7BwkwQnjvArZTzdwrANUrSSNQPSdrm2UYD0cQnxPItA2jiWhS0MGkxJbEd4gY6T6Pgipnv1\nyfSdeDKtmzYy9yc/pumhB5jxq5/T+eubGFpzNtsu/CsqHQvxdBPbM6hLmTQ3xKQScJwUVQIC38fS\nbTrqJdUgYURrps9wyLqCaXi45RzVZ6psyucZyM1jxaKFNNap7cAPBxXVHAEqlTLEMel6izDRiYIE\nU8ZAbVa+okwFKjBVlFcXQzNosBtosBvwm3zc0fGoQbWKH4S4bgKBQYMpiO2YUCbUa220NrQwnC+Q\n6+mhUqmydZvDnr4cndPb6OxsJZPS8HwTNzDwkhjpVPGkRtkwSFmtZIVLKl0lIwM8L8ZLAqq+jY+J\na+jYpk2dLknVJQSxwPNTuCJmYNkyhj/3BRq699D1i5/S9vvf0X7372m/+/eMHHciOy58O/mFK/F9\nG8s1yaYNmhti7NDE8SzcxENEMSktTUd9RMnRKVGHawiaHJ16v0Jpzx4GiiWKw8PMX7iIJXNnqNbT\nCaYC0ykujmIC10WTgnRdhopmQeRijAamUlNrrSlTgwpMFeXVyzZsbMNGppvxW/yxrVADp4rr+QSe\nQAtMGixIbEmd3UBnawuDg8MM9vdRKRfZWiqxp2+IGXNm0tlST3NGI0oEjp/GI8YNA4LAo2pYmGYz\ndZpHnV0lRYQXJHhxiBfZBEGAZ9nouk5WGDSkEjISXD9FNY4ZmTOH/Ec+Rt273sOcX91E560307Jh\nPS0b1lOev4gdF/4vBo87A9ezSDkp6rIGqWxINbSp+pJQOkhfo8HOkrE8itU6hrWItK7R4vkEpQKV\nZypsLhQZHO7imCWLaW5IT3YVvWqowHSKq1bKRGGMZupIYUCiIWWAkdTWMY3VFmrKFKECU0V59RNC\njK2PKjMt+LGP61UIqiX8fUGqq2MIjZQmqZvTRGdHI/29eYYGhqhUymx/6ml6Gutpm97J9LYWGqyE\nOj3B9Q28UMeLQsKwiC9MdLOBtBFRZzikbR/P9/GCFH4sIEzw0dF1k5RpkDFiMrbECXS8wKTUZvL0\n/34P2/7XO5hz22+Z/YufUr9jK8d+4wu4HZ3sfPOl9J5yNp7bgFVJ0VAHqWyM42WpyJgoqqInFk11\nglTkUNQb6bFdGkoaWb9CuXs3QaHIAyM5FixaxJK5s9B11Xo6XiqqmeL2LRVlp2yk1CEGoUWYsrZc\nVGKqKlSmht7eXgAymcwkl0RRlFfCWJBal0JmWw8IUj2nWptt72qkhGT+nDZmzqyjv6fAQO8IlZLD\n3tJWhvsztLZPp7mtjXpDpzkdEiVQ8TK4EkLfIfChqqXQLYtGzSOVdgmlhxfYBImFH0qC0KUqTAzL\npE5I0pmIIBZUvRR+xmbzxRey4y0XMOvuu5n7i5+Q3tvNUd//Fgt/dj27z72IPa97E0NN7Ri2RVMD\npDIJFbceR/oQedhJmpZMjOdLSthUfYPmSoW4VKC8scQzIyMMDA5yzNKltDZlJ7tqjmgqqpninFKF\nJE6wshYxFnGYoAsXYzQwRU1+UqaI7du3A6h1dRXlNeg5g9RKcTRIDYhdg9nzM0xvb2RoMEd/X4Fq\nKaCn1M3wQB+tHR00NLSQsi3q7YQ6zcfzUzgRBHEElQDfMDENk4wVUW/4JIaDH+j4UQZfxoSuRyAM\ndN0iZeo0WAGJJnH8DI4Q7DznbHaf/Tqm/+kx5v/8x9Q/s5FFP7+e+bf8hL2veyO7z7mQwY65WGmb\nhvqETFaj7GZxRYSehKT0FHqdj2tmGTRTpMsFsk4Vp7sbP1+kNDTEvCXLWL5gjmo9fZlUVDPFlUtF\nIMFK2YQYyBg0zcWQta58zbInt4CKMmrbtm2TXQRFUaaAQwWpnlfBKxfwXAe3XqejqY6W6W2M9Awy\nNJSjWokYqPaSr8/TOK0ep74Jw8yQ1gWNdkgCuH4WN06IQw/fF+i6iWnopM2YRqtEyOh41dgkDl2C\nMKGq2ZimRdaMyeo+rmfjJBo9q0+iZ/UqWp/eyoJf/pS2h9cx946bmfOHW+g76Ux2nnsxg/OPJpWy\nqW+IyKQFZbcOX3iIJEZYGSwjoGK0kLPS1JfLUCpQ2FRm80iegYF+Vi5fzrSWusmujiOOCkynuEqx\nAmGElbIJEoFOgtAl+ugYU9IqMFWmhq6uLnzfn+xiKIoyhTxnkFrK4zbb1LXX05jrZGR3H6XhHJVy\niZGyR6kxoK2jnsA20DQbQ7eoMyFrxHiJhRfq+GFEFAa4boRumNhmQsb0qUuVCQIbN8zgxzFhVMYV\nAl1Lk7WgSfMJdYEbZMktX87wsk/TuKeHBb+8iY57fs+Mh+5hxkP3MHTUcew8760MHX0idiZFY0NM\naOkU3To06aIlkjrbJtAEedvCLltki0Uqe7vxRgo8kBti3tJlLF8wD1OtOf6iCTna8qZMHUIIua9e\nfvOjn1Pq62PeiUcjWuaRIQF/L22vO5/OaolvvvO9fPRH105yiRVFURTlxZNSHhikOg65wRI92/qo\nDOUIA49YNzHrm6hrayFtQywkmkxjmwZpPUFLfLxYw4t1gjhCky7oIbqhkTYgbcQgwQ2yeKSJ4wCZ\nROhiXx4REOD4Nr6UJIlLOjfC/FtvZc7tv0Z3XQCKcxaw/byL6D/hLFL1GTKNCZ6UVANBJB38RMNP\nJFHs41UDsqUCVEuEQiczbRrNSxZx9NIlzOpomdwX/TASQiClnJCxC6rFdAqLo5jAcZAI0nVNuLFA\nt3xkIDCS2hhTLa0W+FUURVGOLIdqSW3uKDOzazqDPQPs2d5Drj9PUhqhXBkhamsj3dBGYkpcr4Sj\nCXSRxtI16qwYkUi8OIMbawS+T+RWqBgJhqGRNhwatSKRbuGHdXixxPFKuEJH11OkNUlK8/FCE69t\nJk9ddjnPvPVi5t9xJ/N+/Qsau7ez6rtfw7npf9i+9kL2nnEeZkszTQ0hfmQjpMQULo5poTfoVE0d\nrDR1xRzl3r14hTylnh5mLl7CMcsWU59VPZ3PRwWmU1i1UiYOIzRLA91ERgma7ZEg0EcDU5lW65gq\niqIoR66xILU+RVP9NJrbZzN36RL6tu9i95adjAwWqQ7n8fNFsm111DdOI9ZSRHGEEzs4MkGIFLah\n0WDGSClwowaCRMPzXHxRxtAEhhmR1vNk9QQvrsONM4ShSyBGW1F1nQY9JNahShvPXHgxW998HrPv\nfZBFt/yMTM9eVvzkuyz59Q3sfP2b2H3WhciOdprqAtzYQosFfhwQ2yaxUU8pZZHKF5DVPCPPbMUd\nGGawZy+LjlrG0nlzMAzVvX8oKjCdwkq5PHGcYGRsggiEjLE0iZOYY4GpZaqB1YqiKMqrx1iQunIa\n845ewd7tO9i1cQv54RyVQgW3HFDfkKa+IU2iZwilQZjI2s5UANhYpk69FiGlgRu1EkQSPyzhai66\nZmCZDlmjArqBH9XjJ5JKVKaKwNCzpIwIjQRPy7Lrdeewc83pzHhkA4tv+TlNW55hya0/ZeHtv6T7\n1LPZcc5bkV2zacyGOCKNEUW4WoTI2vhGC0kmTapYIMgP0/fnIpX+fvYsWMixxxzNjPbmSX61px4V\nmE5h5UIJSYJuZohisE2JJQwGo3hs5yejQa0ZqSiKorw6pYwUC5ccxfyFS9nT3c3uZzYzMjSE41Sp\nVBx0s0xjQ4Y620CaNkFi4EcJbuDiJTFCMzF1nTotBLK4YT1RHBEGeTw9RtMtUkZEvSaJ4jRenCWM\nHIIgQtMsbA3qrJggMuk58VR6TzyB1k0bWfzrX9Hx6MPMu/c2uu67nZ5Vp7DtDZfA8qOoTwn0yEaP\nI3RDI2isx0vZUEqTKhcp7d6DM5yn0NPDnOVHsfKopWQz1mS/1FOGCkynsGqljAwirFSKGA1d9xCJ\nRhRK9NF1TI202gZNURRFeXXTdI2587qYOWsWQz2D9Pf0MDI8RLVUpFgsIoTAsFOksymaUiZSajiR\nQRAJvNDDlxECE13TSGsCQRPVGOLIw/fL6EJDNxNszSEtDLw4SxAJKomDHmoYRoqMHhDHMLR0BUNL\nl1PfvYMlv/kNsx64h1mPPsisRx9kcMkKtp5zCd7xJ9KU1amEOkES4tkmfkszlXQGs1RClgoMPbMF\nZ2CAgV27WLLyGJZ0qe59UIHplFYpVkiSEMNMkyAwpI/UG0mC8tjkJ6uhfpJLqSiKoiivDMM06Oya\nQWfXDJyyQ25gmKGePoqlAtVKgWqhiGPoGGaK+sYsdVYCUqPs2QSRJEhCfOmjxRaGZaALSGIbP/aI\nE59AeGjSxLB80oYOMkU1MQl8H08E6FhYRoSOpDJrHuvf93948m1vZfHtd9D1h9/RvvlJ2jc/SWFm\nF5vXXkxwxhmk6w3MIMGQoKctfL0Zz7axSwWquTyVQolCTz+7lixm5XErmNnROtkv86RSgekUVi2U\niGWMnkojkwQTiKVBFFXHFtjPqMBUURRFeQ3K1GfI1M9h9sI5lEZKjPQPM9w/QKVaxqlWKA0XwBTY\nqTT1zXXoUUQUQcW18KQgCEKkFiESDV1LI6RFEtkEMiCKfXwtRsPBNE10wyRKsoRRghNHCDR0DQwR\nETRP4/FL/5qn3nw+i+66k4V3/Iamnl2svv4bVG/5H7ae9Rb2nL0Ws84kJTWqOviNWVzbJrTrsMt5\n8t3dlIdzjOzZzfwVx7LymKNes937KjCdouIoxnOqJEjMTD2GSDB1A+kn+GERgFBomBnVla8oiqK8\ntjW0NNDQ0sCcJV0UhguMDA6TH8pRrZTxfZfy4AjYOinbprmtDqKIyAuoulANJWEUI0WCkLUtT0Vk\nE0chIVXC2EXDrW0HrlmIxCZAEIYRAQmG0NBETJTK8PSbLmTTOecy748PsuS2X1Pf38vKX/yAo37z\nE3auPosd574RvWMafqKhmyZ+U5ZqykCk0lDM0//MVkp9/ezZsY1jjj+epYu60LTX1tamKjCdoqqV\nMkkYg2aRILFFRKIZJG5IVHUAiIVGKqXWMVUURVEUqI1FbelooaWjhSiMGBkYITcwSDGXx/d8vMCn\n7JYRlsDOpmlttGiVEr9aoVIJqfoRYSCQgMBEoxnwSaRHmAQI4aEhECKFLmwSaRPGIUmSoAmBpkmk\nbrD5tDVsOfkMZj/xGEvvuI1pWzex5N7fsOi+39Jz9AlsO/uNDC5bjIOGbln4rU04toVeLFIplak+\n+meKe3rZvnwZx5+0ihntr53ufRWYTlGlXJ44CdFNC0mCQQKJhicC4mJt28dIEzTUqxZTRVEURTmY\nYRq0z2qnfVY7nuORHxxhuG+ASqlM4AdE5Yiy7mKlNOzmBrItOjJOcMtlqmWfkhcTBDFSmujCQJMx\nQvoESRUhHDSqaJqJkBYGNkGsIROJJkFoGkKT7FxxHLtWHEfrnl0su/P3zFn/ILOfXM/sJ9czMmMu\nW15/LttPPAnHMjGzWRzLxi9X0Mp5hnt7KY+MMLBjF4uPX8nxxx1DNvPqX5xfbUk6BQkh5NN/eowN\n9z2IyDbQsWwxbbZOvZ1lyK+y7d6H+OtPfZiCZbP34Yc5euWxk11kRVEURTkiVIoVRgZz5HoHcByH\nKAxJAC2lY6d1so1pSCD2Q5xSmXLJoVwNcP0YpETXJFJ6tVZUGSASDUMXIC1EkiJGJ6k1uaJLDU2T\nJDIhSjSylTxH3Xcfi+77A6lKCQC3roGtp5zFpjPPJNfYgC8Erh8QlcuISgnp+dQ31NO2aAHHnbKa\noxbPn3Ld+xO5JakKTKcgIYR8+O772bx+PWbzdNoWzmdGvQGBzrDnsPvBh7nsin9gOJWh/MQTzFu0\nYLKLrCgviu/73HjjjVx99dVcffXVHHfccZNdpMOuWCziui5RFBHHMfs+c9PpNB0dHZNcOkV5bSsM\nF8gP5MgNDOJ5HlEYgqZh16VJN1jUN6YI/ZDA8XEqFcrFCsVyQNULSGKJKSOkViVOfOJYgq5hJBoa\nKRKZIpAJoGNJiaZBLCGUCVoUsfSx9Sy7+/e09HYDEOs6u45dzRNnnsXu2XOJzIRq2SMp55GOgx5L\nmltbmbViOSeffjIzprdN7ou3n4kMTFVX/hRVLZSIo4SUaWLJBJKESiJwPQfTjQCIhEamTi2wr0xN\nmzZtore3l7PPPnss7cYbb+Sqq67iscceo63tlflQ/e1vf8tPfvITli1bxtNPP825557LZZdd9rz3\n3Hfffbz3ve/l1FNPpbW1lWKxyJYtW/j3f/93jjnmmBed92c/+1k+//nPH/JnvO997+Oaa64BII5j\nrr76ajZs2MDMmTMRQvCe97yHefPmjV3/ox/9iDvuuIO5c+eye/duLrnkEi688MKx82EY8u1vf5u9\ne/eye/duent7+fCHP8w73vGOl/W6KcprQVNbE01tTcxdOo/CcIHhvgEKuTxe1cMvVSn1G2Qa68g0\n1zOjvZUgDAgqDtVShXKxSr5cpVISJEkaQ/MBjzCOiJICmtAwhA1JCl8ayDgmkTqWniA1eHLViTy+\n8nhmb9/Gsfffw+yNG1jw2DoWPLaOgbkL2XDGWWxccQx+axtuyiUs5hkYHqZ47/30bdvBspNOYPXJ\nx7/quvdVYDpFOcUifiypS+mIRCKjmKrrE0cxVlLbdC0SgoaUGmOqTE2f+MQnmDt37gGB6WWXXUah\nUKBcLjN79uzDXoZ169Zx+eWXs3XrVpqamqhWqyxdupRsNssll1zynPclSUK1WuXmm2/GNE3OPvts\nvve977F48eKXlPfAwAA/+tGPSKVSaJqGEIIoivjSl77EV77ylbG83v/+99PU1MT3v/99AFasWMEz\nzzzDjTfeCMBVV13FN77xDZ5++mmy2SyO4zBv3jza29s55ZRTAPjc5z7HZZddxpIlSwC49dZbueCC\nCxgeHuZDH/rQxL6wivIqc6hJU0M9/ZSLBaojJSq5AiMpm/qWRhrb22nr7MQPPKrFEk6xTKlYIV+s\nUio5oHnYmksiA7zYRcoqMrGwNRMSiyARBEmCKXQsXdC7YCG7582nfjjHqnX3s+SRB+jYvY3zdm/j\ntMYWHj/lTB46aTXVtnaCcplKuUhl5y5KAwNse2ojJ7/+dI5evmTKde+/XKorfwoSQsif/fu1DA3n\nmb1qBa3ZBmxNMFAtEoUWPHA753/ty+yqa6RjsI+02v1JmWKSJKGtrY3vfe97zwoAL774YmbMmMF/\n/Md/HPZynHvuucydO5fvfve7Y2mf/OQnueOOO9iwYcNz3nfvvfeye/du3v3ud48r7yuvvJLPfe5z\nB9z3hS98gTPPPJM1a9YA8Itf/IKPfvSj7N69G02r7fryiU98gpUrV/LOd74Tx3Ho7Ozkne98J//5\nn/85ls+ll16KEIIbb7yRcrlMe3s7l19+Od/5znfGrjnppJPYvn07uVzuxbxciqIcZN+kqYG9vTiV\nKmEQIKXEyqRoaGth2oxpWLZGGLqU80UqxRKlfJmRQpFysYjrOWjSIYkkQQxxEgE2NiZxYuPLBKSO\nZUoMwPVDjMDj2Ec2cMzD99CYHwIgNC2eXnkSD5xyKv0trQSFEolbRZPQ1tDIrBXLOfPsM5k1c3KG\nB6mu/NeAMAxIhIaOhi4CCp5O4PnYJJRqq0URazqWaU5uQRXlEB5//HGKxSJnnnnmAelJknDvvfeO\ntQweTr7vc/fdd/PVr371gPSjjz6ar3zlK+RyOVpbn3sJluf7o/3F5v3xj3/8gPMPPfQQjuOMBaUA\nX/7yl3nzm988FpTuS9tn48aNY4Hn/mbNmsV1111XW6ZG0+js7KRcLh9wzfz583nkkUcYGhpi2rRp\nz/k8iqIcWiqTGttpat+kqeHefpyqw3B3L8N7+0ll0jR3tNIxczYds3SiwKFYKFDO5ymNlMjny+QL\nQ+A5EFVJwoAg9ohkEbDRsEkCnVIUg9TR7TQbTj2FP554PIs2beXE9fcza/cWVq5/gJXrH2D7gqXc\nd/LpbJo1h7hUpLdQIH//Ono2b2HF6SdzxppTyR7Ba5yrwHSKCsMIoenIWEOGAVUnIYpMTOETuBUA\nEl1DN1QVKlPHTTfdxC9/+Usef/xxpk2bxsc+9jEaGhrGWkcfffRRSqUSruvyuc99DsuyePDBB7nm\nmmuYOXPmhJZl586dRFFEQ0PDAen7vt+5c+fzBqZbtmzh4x//OPX19WzdupXzzz+ft7/97S8p7/r6\nv+zMFkURV155Jb/61a/G0nK5HI888gjnnnsu3/nOd8jlcmzevJk1a9bwt3/7twDYdm382MGBchiG\nFItFuru76erqYseOHc96hm3bttHS0vK8z6koyotT11hHXWMdcxbNrS3i3z9MbnAIz3Xp295N3869\nZBrraOloY/rMmXTOnEcYOJTKeUojeUojRUZyBYqFYSqVAmHgEIceQejiRQKw0ISFH+r4UYKh62xb\ntoTNixcwrXeYkx55kGWbHmXB9mdYsP0Zhlo7uO/Ek1m/cClV16Pc20fp5lvZsuEpVp52EsefeBzZ\nzJG31rmKaqaoOAzRTAOJpOoLfL+MiHVcKYlcF4BA6JNcSkU50CWXXMIll1zCRRddxJo1a/j2t799\nwPk777wTy7LIZDJceeWVALz1rW/l61//Ol/72tcmtCwjIyMAZLPZA9Lr6uoAXrB7e+PGjdx0000I\nISiXyyxcuBDbtrnoooteVt7XXnsta9asOWBTjJ07dyKl5NZbb+X2229n2rRpJEnC8uXL8X2fv/u7\nv2P58uXMmjWLvr6+A/J76qmnABgeHqarq+tZP++JJ55gw4YNfOMb3zigNVZRlPHbN2mqK57PyOAI\nuf5B8kM5vGKVvfkSvdu6qWtqoG1mO23tHXS0zyWMfJxqkeJIgWJumPxIgZFcP8XyCIHjE3o+fuQQ\nBgIDizgyCWOQCAY7WrnlzRfwu1Nfz+rHH+O4px5iWm6At/7uV7wxdQfrVhzPA0uOYgBBfssWBnft\nYv3dD3DM6hM46dQTaWysm+yX7EVTgekU5YcRmm0jIp+yLwncBIOIMEow4xiA+NUxzll5lYnjmHvv\nvZdrr732WefuvPNO3vOe9xwwm7xYLKLrz/1H1uWXX87g4OCL+tnTpk3jhz/8IQDGaG/CwXkHQQDU\nWjCfy6pVq7j++usRovYmq6+vZ82aNXzmM5/hoosuesl5J0nC17/+dW644YZnpQMsWbJkrKtd0zTW\nrl3LlVdeyfve9z5M0+Tqq6/mgx/84NgQgXXr1hGG4SHLsC/fD33oQ7ztbW/jwx/+8HM+p6Io46Pp\nGm2dbbR1thF4AfnBEYb6BigXipRzBUrDI3SnbLKN9TS0NNLe2c7MOa3Mmb8Y361QKOYpjQyTG+hn\nODdMsTCIU3bxPR/fd/ClhkwMwtgiiRLCbIq7TjuZu487kRWbt7D6qT8yc2gva9c/wOsfWcfjC5Zw\n17Kj2dbYSm7HDvr3dPPYPQ+y+ITjOOP1p9HW1jTZL9kLUoHpFBWEESnNQMYhjuPh+RGWAD+OmDVU\nazlJdFV9ytTz6KOPHnJ8qe/7rFu3jn/8x38cS3Mch4ceeoiPfexjz5nf9ddf/7LKsW9M5r7gb599\n4zCbmp77A3r/Lvh9MpkMGzdupFAovOS877nnHrZv387y5csPSN+3ZNb8+fMPSG9qaiKXy/Hkk0+y\natUq3vKWtzB9+nS+8pWv0NzczNFHH82pp57KQw89dMCSUvt86lOfYvHixQdMzFIU5fCyUhYdc6bT\nMWc6nuMx3DfEUG8/btWhNDhCcWCYnq27SdVnqG9qYFpnO83NHUyfPodoSYhTLVIYHiE32M3Q0AAj\nuUHKxQpexaXiFfETgYwtZKIRa/DoUQt5bNFCZu/t57RN61m262lWbdvEqm2b6G9q5Y8LFvPHufPZ\n5kX09ffz+IPrWLJqJWeefSYzJ2mS1IuhIpspKghC6vQU1YqD4wcQxFRJmPvUk6y97w8AbJg5j5WT\nXE5FOdhdd93FkiVLnjVZZ926dcRxzKmnnjqWdsstt2DbNm94wxsmvBwzZswgk8kwMDBwQPq+bvb9\nl37aX7lc5phjjuHiiy/m61//+lh6qVRCCIFpmi857zvuuINMJvOsFTRmz55NOp1+ztZbY78x5Cec\ncAInnHDC2PfXX389J5544rOC4G9+85vU19ePTaDq7u5m+vTpWJZ1yJ+hKMrES2VSzFowm1kLZuOU\nHYq5ArmBISrFIl7JwcmXGNi5F7suQ6ahjtb2NprbmpnV1VJrTfWrFPI5RmUcRM0AABiNSURBVIb3\nMNi7h+HhIYojZSrlEtWKj+tC4EMidbbNbGVbx3m0FM7klGc2cMKOx5leyHHxo3/kwkf/yKbO2TzY\ntZBHZ3cxeOcITz28ngVHLWPNG89iwfy5k/1SPYsKTKeoOIxA03C9gEqlSlrXaNm8mbXXX4MuJb+e\nv5x1C5fynskuqKIc5K677hqbdR4EAf/2b//GFVdcwZ133snJJ588NpkH4LrrruPyyy/HNE2+/OUv\n84lPfOJZ+b3crnzLsjjnnHPYuHHjAdc8+uijHHfccc85S13TNHzfH1sPdJ8tW7awevXqsXGlLyXv\nRx999JCtsKZp8oY3vIHdu3cfkN7X10dra+tYC+tHPvIR7r77bp544gmg9rree++9fPOb3zzgvh//\n+MdomsYVV1wxlvad73znORf5VxTl8MvUZ8jUZ+jsmkHgBZTyJfJDOQrDI/ieR6FviHzvILppka7P\n0DStmbaOabS0djK9cy5Ljoool4fJD+1lsLebvv5+8rkCpWKFSsGn7CT4iWSw0eBXJ57Eb485iWU9\nezh+51Mc1bed5X17WN63B3e9yfpZ83hg3kIeyhfYuOHPLFi0iNPPO5sVxy6b7JdpjApMp6gYieuW\nkVFMHESYe3dzwX9/FyMKefioY/nJ3KNps9RSUcrU09/fzwUXXADUWu/27YR05513ct555x1w7bp1\n6/jCF77Arl27DpgUtL+X25UP8IEPfIB3v/vdfOlLX6KhoYHh4WFuuukmfvCDH4xdc9ttt/Hud7+b\nG264gbVr15LNZvmbv/kbzjrrrLFr/vSnP7Fjxw7uv//+l5T3/q/Jc7VYXnHFFbzxjW8cGz+az+e5\n7bbb+OIXvzg2frRcLrN69eqxe/7pn/6J008//YBdnW6//XauuuoqLrnkEv71X/8VqM3k//Of/3xA\ny6uiKJPHSlljY1KTOKFSrFAYzpMfGqZarlDNl6iMFNi7dTepTJr6lkamdbZT39hI18IO5i06AdfN\nU8j1MjSwm549fQwPjZDPFSnnPSrliCoJj8ydzmMzppN11nBC9zZO2LOJrnw/Z+7awpm7tjCYqeeB\nuQv4Y38/mzZtYtasOZxx7utYfdpJk75Qv1pg/xUghNCAjwAfAOYCQ8CNwD9JKZ1DXC8//6FPUdcy\njbLv0JHL8a4fXUvWqfL0kuV89+SzqFQqtHe086X/+NdX9mEU5QXccMMN3HDDDaxatYq1a9dy+umn\nAzBv3jxuvvlmjj322LFrP/3pT1MoFGhsbOSf//mfxyYbTaTrrruO2267jWOPPZbHH3+c888/n3e9\n611j52+77Tbe+c53csMNN4wFzkEQ8C//8i8MDAxg2zaDg4N88pOfPKDsLybvfS644AI0TePmm28+\nZBl/97vf8d3vfpc5c+bQ09PDBRdccMDWpr29vXz2s58llUpRLBaZO3cuV1xxBeboOsa5XI6uri4c\nx3nWslIXXXQRN91008t78RRFecV4jkdxuEB+OEdxpIDv+SRxbZiPkbKpa2qgeVoLbR1t2LaNrutE\nsUOl1M/w4B56uvvo7+kjN1igUHRwKyHlUoTvxSQBzMkXOal7Cyf2bqbZq4793GdaO3igaxFPzFtI\n46wZrFn7es48Zw3WS2j8msgF9lVg+goQQlwFfAi4CbgNOGr0+/uBtfKgShBCyE9/4OOk6uowR4Z5\n/89+SHOlxJbZXfzX2ovxo4QoCehaPJ+P/9PHn/XzFEVRFEU5ciVxQmG4QGmkwMjgEE7VIY4ipJRo\nhkGqPkNTazNt06eRrctiWSZJ4uJ7IxQLwwz099PX089wTx9DuRLlgku54OC5MWEpZln/ECfv3cpx\ng7uwk1rw62s6j3TOZd38hQwuOZqTzjyVt7ztzaTTL7wWqgpMjyBCiOXAk8AvpJSX7pf+98C3gL+W\nUt5w0D3yo5d/hIbE54O3/JTpxTw72qbzrdedT2Dq2CmTprYmVp98Iuddcv4r+0CKoiiKoryiKsUK\npXyRXP8QlWKJMAhJktrSkXZdhvqmRpqntdAyrQXLMoAYKQMCv0SxMERvbx993Xvp293HyEiBfKGE\nWwohF7Kqu5uT9+xgSbF/7OeN2BkemDOfDUtXMPPss3jbZZfS1NL4nOVTgekRRAjxReAfgTOklA/u\nl24DOeBeKeWbD7pHfuTCy/jofbfRlR9mb30zXzr9jUT1WZpaG5ndNYuVx69g1cknkckeOYvmKoqi\nKIoyPvsmUI0MDo9NoIpHV/bYN4HKStvYKRs7ncK2bey0gWULktilUhpm795u9u7cy97dPeSGCpRy\nZeoGi5ywbTcn9+ykw/3L9sbbG1tZ17WI4bPO4tIPfZBZ82Y9q0wqMD2CCCFuB84CMlLK8KBzDwKL\npJTtB6XLJ1vbOTo3yEA6yxdPP5ekfTqzuqZz0qnHc8Kpq2lsUlsMKoqiKMpr2b4JVPmhEXIDg7hV\nhyiMkDJ59sWahmGZ6IaObmpYtoEQEb5XZmCgj/6ebnp7BygOFJjVPcAJ23dwQt9eMlEtdImExoZp\ns3hs+bGsuuJTnPj6vyz9pwLTI4gQ4kmgTUrZeYhzNwJvAywpZbRfupRA3krxxdPOw1y6kJNPP4nX\nnXc2TS0tr1zhFUVRFEU5YniOR6VYIfB9fMfD92pH4AWEQUCSJCRxMjYMYH+JjEmSgGqpwMBAD3u6\n91DqHWTp9p2ctncvR+eH2Le5ccm0ebCzi961b+Bvv3cVQtNUYHqkEEJsB3QpZdchzv0QeBfQJKUs\n7Zcuy4bJv5x6HtPOeQNrz/8rWqe1H3y7oiiKoijKi5LECVEYEfgBoe8TBj6+6xH6LmEQjKZ7RFEM\nMiZJYhIZkR/pp697G9XNmzh28zOcOdTLLKcylu/vZi3gjXu3T1hgqha3O/wcoO05zqUAOXrNAS6c\nOY95C+fj54fZvHUjp6rAVFEURVGUl0nTNSzdwkpZwHPPT4nCiCiM8FwX33UJA59lx51G4Pr4bplf\nb93I+hu+T7BrM7OrZR4/cJTiuKkW08PsRYwxXSil7Dgo/eAVpBRFURRFUaYMz/Eo9PXR0NpKtrlx\nwlpMtRe+RBmnPwE6sHr/RCFEClgJPDIZhVIURVEURXm5UpkU0xfMI9PUMKH5qsD08Pspte76jx6U\n/j4gDfzoFS+RoiiKoijKFKS68l8BQohvAX8P/JLazk/LqO389ICU8qxDXK+68hVFURRFOSKo5aKO\nMEIIjVqL6fuBLmCIWkvqP0kpnzXxSQWmiqIoiqIcKVRg+iqnAlNFURRFUY4UExmYqjGmiqIoiqIo\nypSgAlNFURRFURRlSlCBqaIoiqIoijIlqMBUURRFURRFmRJUYKooiqIoiqJMCSowVRRFURRFUaYE\nFZgqiqIoiqIoU4IKTBVFURRFUZQpQQWmiqIoiqIoypSgAlNFURRFURRlSlCBqaIoiqIoijIlqMBU\nURRFURRFmRJUYKooiqIoiqJMCSowVZQJdM8990x2EZRxUPV3ZFP1d+RSdafsowJTRZlA6sP1yKbq\n78im6u/IpepO2UcFpoqiKIqiKMqUoAJTRVEURVEUZUoQUsrJLoNyECGEqhRFURRFUY4YUkoxEfmo\nwFRRFEVRFEWZElRXvqIoiqIoijIlqMBUURRFURRFmRJUYKooiqIoiqJMCSowVRRFURRFUaYEFZi+\nAoQQmhDiY0KIZ4QQrhCiWwjxVSFE5iXk8SYhxDohREUIkRNC3CiE6Dp8pVb2GU/9CSGahBAfEULc\nMXqfM5rPNUKIWa9E+V/LJuK9d1B+PxVCJEKIJye6rMqBJuhz0xBCfFgI8djoZ2dBCPGoEOL9h7Ps\nyvjrb7TuPiiEWD/6O68khHhKCHGFEKL+cJf/tUwI8X+FED8TQuwY/bzb+TLzeVlxi5qV/woQQlwF\nfAi4CbgNOGr0+/uBtfIFKkEIcQnwc2ADcC3QBHwUiIETpJR9h6/0ynjqTwhxHvBr4A/AXcAwsAL4\nABAAp0opNx3WB3gNG+9776C83gLcDPjAdinlMRNfYmWfCfjctIBbgNcB/wM8BBjAYsCRUn7msBVe\nmYj6+z7wN8Cd1N53IfB64O3Aw1LKUw5b4V/jhBAJkAMeA04AilLK+S8xj5cft0gp1XEYD2A5kAA/\nOyj970fT3/EC95tAD7ATyOyXfiwQAddM9jO+mo8JqL+5wLxDpJ99qHzVMXXq7qB76oBu4Juj78Un\nJvv5Xs3HRNQd8AVqwcyayX6e19oxAZ+bqdHfb+sPce6/R/M4ZrKf89V6AF37/fspYMdLvH9ccYvq\nyj/83jH69ZsHpV8LOMC7XuD+NUAn8D0ppbMvUUr5OHAP8HYhhD4xRVUOYVz1J6XcLaV8VjeIlPJO\nIE/tA1w5PMb73tvfPwMCuGL0q3J4javuhBBZ4CPAzVLKe0WN6v595Yz3vRdS65kYOMS5fS1t1Zdd\nOuV5SSl3jTOLccUtKjA9/E6k1nT9p/0TpZQ+8Pjo+Re6H+CPhzj3MNBArWtKOTzGW3+HJIRoBOo5\n9AevMjEmpO6EECcB/wf4mJSyPNGFVA5pvHV3BrVW7sdGu5RLQFEIMSiE+Gf1x/xhN676k1LGwOeB\n84QQnxBCLBRCdAkh/gb4IPDfUsrth6XkykQYV9yiAtPDbwYwLKUMD3GuB2gTQhgvcP++aw91P8DM\ncZRPeX7jrb/n8mlq492uH0/hlOc17robPf894HYp5c8PQxmVQxtv3S0Z/fpR4GLg48BfAeuA/wv8\n1wSWVXm2cb/3pJT/Ri0I/RywBdhBrd6+LqW8fILLq0ysccUtL+cXqvLSZKh1SRyKt981pee5n+fI\nwzvoGmXijbf+nkUI8TZqvyhvk1JeN67SKc9nIuru/wcWABdMYLmUFzbeutvXbd8MLJdSbh39/udC\niLuAdwsh/lVK+cyElFY52Ljfe0KITwBfojaB5hejyW8DrhBC+FLKf5mgsioTb1xxi2oxPfwcwH6O\ncylAjl7zfPfzHHmkDrpGmXjjrb8DCCHeBPwIWE9tdqly+Iyr7oQQC6mNKf3iBIy5Ul6a8b7v3NGv\nD+0XlO7zw9Gva15+8ZQXMN733gpqQelPpZRvl1LeOHr8FfBT4PNCCDWEbeoaV9yiAtPDr5dat4V5\niHMzqXV3RC9w/75rD3U/HLq5XJkY462/MaNLR90EPAm8QUpZmbhiKocw3rr7GjAC3Dw6xm3haLBq\nALYQYoEQonPii60w/rrbM/q1/xDn9qU1j6N8yvMbb/2dRW2S4c8Oce7n1GKX08ZdSuVwGVfcogLT\nw+9PgA6s3j9RCJECVgKPvIj7AU49xLmTgSK18TfK4THe+tt3/XnU1uLbSG0Nv+IEl1N5tvHW3Rxq\nY6WepvYe23fMABYBW4FrJrbIyqiJ+tw81CYW+9IGx1NA5XmNt/72BbSHGm5oPM85ZWoYV9yiAtPD\n76fUui0+elD6+4A0tW5dAIQQ04UQS4UQ6f2uu5fa8hjvHV0CZd+1x1JbOPpnozMYlcNjvPWHEOIN\nwC+BTcDZUsrC4S2yMmq8dfdxamPa9j8uBYaorWn6NmrdjcrEG1fdjQ69eBBYLYQ4br9r9dE8QuCO\nw1Z6ZbzvvX2BzaEmOe1LWz9BZVXG4bDELZO9kOtr4QC+RW1B4F8A76XWRRgAdx103XWj1605KP1t\n1JbeeAz4O+BT1JYZ6gU6J/v5Xu3HeOqP2q4Z7ujxEWrr9x1wTPbzvZqP8b73niPPXagF9qd83VFr\nmStT28HmSmq7Dj0weu2Vk/18r/ZjAurvN6Pp91ILcD8K3Dea9pPJfr5X8wFcBnxm9BigNqRp3/fv\nOujaCY9bJv0FeC0c1Fqm/wF4htqMtD3AV9lvR4TR634wWpFnHiKPN1NbE6w6+p/kRg6xo5A6plb9\nUfvrPhlNTw5xxJP9fK/mYyLee4fIU+38dITUHbXtf39FbTMLF3gUePdkP9tr4Rhv/QEWtWX1nuIv\nf9w/Tq0nQ5vs53s1H8Dd+/+OOuj318F/WEx43CJGb1YURVEURVGUSaXGmCqKoiiKoihTggpMFUVR\nFEVRlClBBaaKoiiKoijKlPD/2rvfGDuqMo7j319sY4pdG0RQo5LSWBIIJqDAC6PYqIBoRKpRU4y1\nlCDaiDEGWKPYWoPBokbSKJJo3AVJTKVAg4mmQbsSxVhe+GeTSkS7XQWpaWmktFgs7T6+OOeys8Ps\nZe7+4c6Q3yeZbHruOWfOPE1unnvmzBknpmZmZmbWCE5MzczMzKwRnJiamZmZWSM4MTUzMzOzRnBi\namZmZmaN4MTUzF6yJI1LGulX+y79LpU0IWlDjborct2q94a/aCSdIGmzpH9KOiZpTz/HU6UpsTKz\nmVvQ7wGYmc2jyEe/2tfpvwnjqGMQ+CzwTWCU9B76F52ks4HLgKGI+EdFlSbEysxmyImpmb2Uqc/t\n58IDwCLgWJ/HcSEwGhGDfR7H2cB6YAdQTkybEiszmyHfyjcza7BIjkbERJ+H8lrgP3UqShqY57FA\nxY+GBsXKzGbIiamZtUpen3m3pKckHZS0LZfVXg8q6TJJD0o6LOmQpN9KurRL/bdI2pHrHpA0LOnk\nUp3Fkm6UtFPSfknPSPqbpJskLZrF9Vaum5T0itz37nyuvZJul3TqdO0lXSFpV64/Lum6GudfI2kC\nWAq8M/c1IWl9/nxc0oikcyRtl/Qk8Of82UAvMVFyVa5/KB+jkjbmz78K/ChXHymMZagJsTKz2fOt\nfDNrDUknAb8BTgZuAx4GLgBGgBOosbZQ0jrgu7ntRtLM2xpgm6SrI+IHpSZvBH4JbAV+CrwVWAuc\nK+m8iDiS670BuDLXu5N0O3kFcD1wDvDemVxzwXPXJmkhsB14G3AXad3n6cBngIsknRsR/yq1/zTw\nGuCHwJPAJ4BNkh6LiJ90Oe8Due53gP3A13P5aGFcpwK/IsXnLmBx/uz19BaTHwOXA78HbszjPAP4\nMLABuJs0c/upPI6Hc7vdpX76FSszm62I8OHDh49WHMDNwASwqlS+KZfvKJWPF8uAE4HDwCPA4kL5\nAPB34ClgSan9BPC5Ur+fz+WDhbKFwMsqxvy1XPe8QtnSXLa+xjWvyHVXF8quymXfKNV9Xy6/o6L9\nY8BAoXwRsA/4Xc3YT4llRYzWVnzWS0w+mstuf4FxrMn1LmhqrHz48DHzw7fyzaxNPgA8Hs+ftfpW\nzfYXkmZWN0fE4U5hRBwCNpNm+t5TanMQuLVUdispiV1Z6OPZiDgOIGmBpBMlvZo0kwhwfs0x1rES\nOA7cVCyMiJ+TbqN/sKLNUL7OTt0jwE5g+RyM5wAwVC7sMSYfJ810XjsH4ylqWqzMrAsnpmbWJqeR\nZjaniIj9pASyTnuAXRWf/aVUp2MsIqY85R0RR4E95bqS1kkaBZ4hJWv7SMsMIM3WzpXTSAl61TXv\nAgZyAlg0VlH3AHDSHIxnd0RULqPoISbLgb35/3IuNS1WZtaF15iamc0BSV8gzdxuB24BHgeOktae\nDtP/iYDj89j3f6sKWxCT6cxnrMysCyemZtYm48BySSrO0Ek6BVhSo33nIZmzmJy16zgz/y3Pli2T\ntDAini2c7+XAMiZnWSE9ILMnIi4pNpY024eeqowBF0taUjETeCZwMCKemIfz9qqXmDwCXCrplIjY\n16XPXjfPb0uszIzm/lo1M6tyH/A6YFWpvO66xPuBp4FrJHWeHO/su3kN6W1G95faLAHWlcrWkR6Y\n2lYoO5b7eu57VdIC4Is1x9aLe0nf31P6lnQJaQP6+3roaz7fktRLTO7Mf2+WNGWP0tK/O2uD695W\nb0uszAzPmJpZu2wibSc0JOl84K/AO0hbAT3BCyQOEXFQ0vXA94CdkoaZ3C5qGXB18aGXbDewQdJZ\nwB9I20VdQdqqaHOh3lbSAza/kHQv8Mo81qMzvdguhoFPAoOSlpK20HoTKWH+N/ClHvqaz7db1Y5J\nRGyVtAVYTZoV/xlpQ//TgYuAN+eqD5GenP+ypFeRfmiMRcRD04xhmHbEysxwYmpmLRIRByS9Hfg2\naS/RAH4NvIuUsBwpN6no4/uS9gLXkfbGBPgTsDIiyrNnATwKfCSfcxXwP9Ls3rUxuYcppP0xRdq3\n8xZgL7CFlBgVb/nPxJTriIhjki4GbgA+BnyIlMRtAW6I5+/LOV3C3st75bv1MZ1eY3I5KXG8EvgK\naa3nGGl/1HSyiEclrQUGSbsjLMz9dRLTJsTKzGZI0zxIaWbWGnnj/f3AbRFRvu1uZmYt4TWmZtYq\nVa+yZHL9YHl9qJmZtYhnTM2sVSSNkJ7O/yPpx/W7gfcDD5LeBuQvNTOzlnJiamatkvfGXE16reci\n0hrQe4CNEfF0H4dmZmaz5MTUzMzMzBrBa0zNzMzMrBGcmJqZmZlZIzgxNTMzM7NGcGJqZmZmZo3g\nxNTMzMzMGuH/JdUTZAKtLUIAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fa2f56c5a10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from IPython.html.widgets import interact #import interactive tools\n", "\n", "#setting plotting visual parameters\n", "pylab.rcParams['figure.figsize'] = (10.0, 8.0)\n", "pylab.rcParams.update({'font.size': 18})\n", " \n", "#define function to use in ipyton interact widget\n", "def plot_explorer(threshold_value, ylim_pos=5000, ylim_neg=-5000, local_extrema='True'):\n", " \n", " i = 0\n", " for th in thresholds:\n", " V3 = np.array([])\n", " ion_frac_vol = np.array([])\n", " for z in redshifts:\n", "\n", " V3 = np.append(V3,data_dict[z]['CV3'][i])\n", " ion_frac_vol = np.append(ion_frac_vol,data_dict[z]['ion_frac_vol'])\n", "\n", " plt.plot(ion_frac_vol, V3, linewidth=2, alpha=0.1)\n", " plt.xlabel('redshift')\n", " plt.ylabel('V3')\n", " plt.ylim(ylim_neg, ylim_pos)\n", " i +=1\n", " \n", " #selects redshift to highligt from plotnr parameter\n", " th = thresholds[threshold_value]\n", " V3 = np.array([])\n", " ion_frac_vol = np.array([])\n", " for z in redshifts:\n", "\n", " V3 = np.append(V3,data_dict[z]['CV3'][threshold_value])\n", " ion_frac_vol = np.append(ion_frac_vol,data_dict[z]['ion_frac_vol'])\n", " \n", " #plots highlighted redshift curve and annotates it\n", " \n", "\n", " plt.plot(ion_frac_vol, V3, linewidth=2, alpha=1, color='red')\n", " plt.title(str(plotname))\n", " plt.xlabel('global ion fraction')\n", " plt.ylabel('V3')\n", " plt.annotate('$th = ' + str(th) + '$', xy=(ion_frac_vol[8], V3[8]),\n", " xytext=(0.5, 0.1), textcoords='axes fraction',\n", " arrowprops=dict(facecolor='black', shrink=0.05, width=0.5, headwidth =10),\n", " horizontalalignment='right', verticalalignment='top',\n", " )\n", " \n", " if local_extrema == 'True':\n", " \n", " V3_maximums = argrelmax(V3)[0]\n", " V3_minimums = argrelmin(V3)[0]\n", "\n", " for maximum in V3_maximums:\n", " #print V3[maximum], ion_frac_vol[maximum]\n", " plt.annotate(str(ion_frac_vol[maximum]) + ' , ' + str(round(V3[maximum])), xy=(ion_frac_vol[maximum],V3[maximum]), xytext=(-20,20), \n", " textcoords='offset points', ha='center', va='bottom',\n", " bbox=dict(boxstyle='round,pad=0.2', fc='white', alpha=0.3),\n", " arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5', \n", " color='black'))\n", "\n", " for minimum in V3_minimums:\n", " #print V3[minimum], ion_frac_vol[minimum]\n", " plt.annotate(str(ion_frac_vol[minimum]) + ' , ' + str(round(V3[minimum])), xy=(ion_frac_vol[minimum],V3[minimum]), xytext=(20,-40), \n", " textcoords='offset points', ha='center', va='bottom',\n", " bbox=dict(boxstyle='round,pad=0.2', fc='white', alpha=0.3),\n", " arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5', \n", " color='black'))\n", " \n", " plt.savefig('V3_global.png')\n", " \n", "interact(plot_explorer, threshold_value=(0,len(thresholds)-1,1), ylim_pos = (0,5*10**7,1000), ylim_neg = (-5*10**7,0,1000), local_extrema=['True', 'False'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-2.0
zzsza/Datascience_School
도커 Tip - 컨테이너의 파일 백업.ipynb
1
6913
{ "cells": [ { "cell_type": "markdown", "metadata": { "school_cell_uuid": "da230397189449d98d3f2f9b8d3da5ae" }, "source": [ "# 도커 Tip - 컨테이너의 파일 백업" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "ba6f3bd3fa4e40b3846186c8a6019abf" }, "source": [ "도커 이미지나 컨테이너를 업데이트 하려고 컨테너를 삭제하면 기존에 컨테이너 안에 만들어 놓은 폴더나 파일은 사라진다. \n", "\n", "폴더와 파일을 호스트 컴퓨터에 백업해 놓으려면 다음 두 가지 방법 중 하나를 사용하면 된다.\n", "\n", "1. `docker cp` 명령을 사용하여 복사한다.\n", "2. 도커 실행시에 미리 shared data volume으로 지정하여 실행시킨다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "f15fe9fc2c8d476c922066db42340014" }, "source": [ "## `docker cp` 명령을 사용하여 복사하기" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "a4b5e765b1d74f319213dc8b2d654b44" }, "source": [ "이 방법은 미리 shared data volume을 지정하지 않은 상태에서도 쓸 수 있다.\n", "\n", "호스트 컴퓨터로 나온 다음 Docker Quickstart 셸에서 다음과 같이 명령한다.\n", "\n", "```\n", "$ docker cp 컨테이너_이름:컨테이너_폴더나_파일_이름 호스트컴퓨터의_폴더\n", "```" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "d713e22d44c54dd6874d625bc07879cd" }, "source": [ "예를 들어 rpython 이란 이름의 컨테이너 내에 있는 /home/dockeruser/notebook 폴더를 통째로 호스트 컴퓨터의 d:/ 라는 폴더 아래로 복사하고 싶으면 다음과 같이 명령한다.\n", "\n", "```\n", "$ docker cp rpython:/home/dockeruser/notebook d:/\n", "```\n", "\n", "만약 data 폴더 안에 untitled.ipynb 라는 파일만 있었으면 다음과 같이 notebook 폴더가 만들어지고 그 아래에 untitled.ipynb 파일이 있는 것을 볼 수 있다.\n", "\n", "```\n", "$ dir d:/notebook/\n", "untitled.ipynb\n", "```" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "20d5b0865afd439a86addf8243039f8f" }, "source": [ "만약 datascienceschool/rpython 이미지를 사용하고 있을 경우에는 /home/dockeruser 폴더를 통째로 복사하지 않도록 주의한다. 이 폴더 아래에는 Anaconda 설치 파일도 같이 있기 때문에 필요없이 많은 파이썬 실행 파일과 패키지 파일까지 복사된다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "3f269013f6db4ff7ac8546c7b4dc5876" }, "source": [ "이 방법의 단점은 아직까지 * 등의 wild card를 지원하지 않는다는 점이다. 따라서 정확한 파일이름이나 폴더 이름을 지정해야 한다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "c514369a52c04c03b0d2b5d660667958" }, "source": [ "반대로 호스트 컴퓨터에 백업해 놓은 파일이나 폴더를 컨테이너 안으로 복사하려면 다음과 같이 파일 인수를 바꾸면 된다.\n", "\n", "```\n", "$ docker cp d:/notebook rpython:/home/dockeruser/\n", "```" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "6a8cac3532dc446ba298b84b01cbbfef" }, "source": [ "다만 이 경우에는 호스트 컴퓨터의 사용자와 컨테이너의 사용자가 다른 경우 permission 오류가 발생할 수 있으므로 도커 컨테이너 안에서 다음과 같이 폴더 소유자를 변경해 주어야 한다.\n", "\n", "\n", "```\n", "$ docker attach rpython\n", "\n", "dockeruser@bbbd63bfa054:~$ sudo chown dockeruser:dockeruser -R /home/dockeruser/notebook\n", "```" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "7eeaff59c5b04f29ae13eed46083b65c" }, "source": [ "## shared data volume 지정하여 실행하기" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "19edf5ec216541068b808af916d688c3" }, "source": [ "이 방법은 호스트 컴퓨터와 도커 컨테이간의 공유 폴더를 설정하는 방법이다. 다만 이 방법은 리눅스 호스트에서는 편리하나 윈도우즈/맥 호스트에서 Docker Toolbox와 가상 머신을 사용하는 경우에는 사용하기 힘들다. 공유 폴더가 boot2docker가 설치된 가상 머신과 컨테이너 사이에서만 공유되고 그것을 다시 윈도우즈/맥 호스트와 공유하려면 또 VirtualBox와 호스트 컴퓨터 간의 폴더 공유를 설정해야 하기 때문이다. 또한 이 방식은 최초로 docker run 명령을 사용하여 컨테이너를 실행하는 시점에서만 사용할 수 있고 이미 실행되어 있는 컨테이너에 공유 폴더를 추가할 수는 없다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "cf57292234fb459e8fa66f795beb54f2" }, "source": [ "사용 방법은 다음과 같다.\n", "\n", "`docker run` 명령을 사용할 때 `-v` 라는 옵션을 사용하면 호스트 컴퓨터의 특정 폴더를 컨테이너 이미지 안에 링크시켜서 컨테이너를 실행한다. 링크된 폴더안의 내용은 실제로는 호스트 컴퓨터에 바로 적용되며 해당 컨테이너를 지운 다음에도 변하지 않는다. 사용 방법은 다음과 같다.\n", "\n", "```\n", "docker run -v 호스트_폴더:컨테이너_폴더\n", "```\n" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "9e26a28c63e24467a33331dc55ee3b68" }, "source": [ "만약 리눅스 호스트에서 datascienceschool/rpython 이미지를 rpython 이란 이름으로 실행시키면서 ~/rpython/notebook 이라는 폴더를 rpython 컨테이너 안의 /home/dockeruser/notebook 라는 폴더로 공유하고 싶다면 다음과 같이 도커 컨테이너를 생성한다. \n", "\n", "```\n", "docker run -Pit --name rpython -p 8888:8888 -p 8787:8787 -p 6006:6006 -v ~/rpython/notebook:/home/dockeruser/notebook datascienceschool/rpython\n", "```" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
TANAV/predictorsAndDB
predictorNotebooks/SGDClassifier_Jewelry.ipynb
1
12531
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import cPickle\n", "from scipy.io import loadmat\n", "from sklearn.linear_model import SGDClassifier\n", "from sklearn.cross_validation import StratifiedKFold, train_test_split\n", "from sklearn.metrics import confusion_matrix\n", "from sklearn.grid_search import GridSearchCV" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load processed data" ] }, { "cell_type": "code", "collapsed": false, "input": [ "productCategory='Jewelry'\n", "tfIdfArr=loadmat('/home/hencrice/Downloads/AsterixDBClassData/processedData/TfIdf_{0}.mat'.format(productCategory))['data']\n", "scores=load('/home/hencrice/Downloads/AsterixDBClassData/processedData/score_{0}.npy'.format(productCategory))\n", "scores.shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 2, "text": [ "(20442,)" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Split data into training+validation (used gridSearch to pick hyper-parameters), and test set (evaluate model performance)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "tfIdfArr_trVaSet, tfIdfArr_teSet, scores_trVaSet, scores_teSet = train_test_split(tfIdfArr, scores, test_size=0.1)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "hist(scores_teSet)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "(array([ 446., 0., 292., 0., 0., 452., 0., 409., 0., 446.]),\n", " array([ 1. , 1.4, 1.8, 2.2, 2.6, 3. , 3.4, 3.8, 4.2, 4.6, 5. ]),\n", " <a list of 10 Patch objects>)" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEACAYAAAC9Gb03AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFCxJREFUeJzt3W9sE/cdx/GPM0oqWOigrCZScgtlmR2n0Dib7WhdlzSa\npoiVJlUnVUywakmlzhMKo7QPJk0qSFMrWlVZMy1OHsx7MIb2oE9KERpbspoqoNmeRnkAjpbQTqEb\nbRLWDqeFicLtAeCShsTOH3OXX98v6aTEd+f7+Jvw6fVsxx7btm0BAIxV4nQAAEBxUfQAYDiKHgAM\nR9EDgOEoegAwHEUPAIYrqOirqqq0adMmBYNBhcNhSVI2m1Vra6ssy1JbW5smJydz23d3d6u6ulqB\nQECDg4PFSQ4AKEhBRe/xeJRIJHTixAmlUilJUiwWk2VZGh4eVkVFhXp7eyVJY2Nj6unp0cDAgGKx\nmDo7O4uXHgCQV8GXbj77vqpUKqWOjg6Vlpaqvb1dyWRSkpRMJtXS0iLLstTY2CjbtpXNZhc3NQCg\nYAWf0Tc3N6utrU0HDx6UJKXTafn9fkmS3+/Pneknk0nV1NTk9vX5fLl1AIDbb1khGx07dkzl5eXK\nZDLasmWLwuHwtDP82Xg8nnkHBAAsTEFFX15eLkmqqanRI488otdff12hUEiZTEbBYFCZTEahUEiS\nFIlE1N/fn9t3aGgot+6Gr371qzpz5sxiPQYA+FzYsGGDRkZG5rxf3ks3H3/8ce4a+/j4uI4cOaKW\nlhZFIhHF43FdvHhR8XhcDQ0NkqRwOKwjR45odHRUiURCJSUlKisrm3KfZ86ckW3brl+ee+45xzOQ\nk5xLNSM5F3+Z7wly3jP6999/X48++qgk6e6779bu3btVWVmpaDSqbdu2yefzqb6+Xvv27ZMkeb1e\nRaNRNTc3a/ny5err65tXMADA4shb9OvXr9dbb7017faysjK99tprt9xn586d2rlz58LTAQAWjHfG\nzqKpqcnpCAUh5+JaCjmXQkaJnG7hsW37tn/wiMfjkQOHBYAlbb7dyRk9ABiOogcAw1H0AGA4ih4A\nDEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8Ahivow8GB\nz5NVq9Yom/3A0QxlZat14cJ/HM0Ac/DBI8BneDweSU7/fvJvBNPNtzsdO6P/2tdCTh1akrRyZamO\nHj2sVatWOZoDAIrNsaIfHu5x6tCSpDvvfFgffvghRQ8gLzdczlsIB6/RO3tG/4UvlDp6fABLx7WS\nd8OlNM+89uJVNwBgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9ED\ngOEoegAwHEUPAIaj6AHAcAUV/ZUrVxQMBrVlyxZJUjabVWtrqyzLUltbmyYnJ3Pbdnd3q7q6WoFA\nQIODg8VJDaDoVq1aI4/H4/iyatUap0ex5BVU9K+88ooCgcD1j1iTYrGYLMvS8PCwKioq1NvbK0ka\nGxtTT0+PBgYGFIvF1NnZWbzkAIrq07/B7uyylD/wwy3yFv27776rw4cP68knn8x9VmEqlVJHR4dK\nS0vV3t6uZDIpSUomk2ppaZFlWWpsbJRt28pms8V9BACAWeUt+l27dumll15SScmnm6bTafn9fkmS\n3+9XKpWSdK3oa2pqctv5fL7cOgCAM2b9KMFDhw7pnnvuUTAYVCKRyN0+l08hv3G5Z7o9N33ddH0B\nAHwqcX1ZmFmL/vjx4zp48KAOHz6sS5cu6cKFC9q+fbtCoZAymYyCwaAymYxCoWuf/xqJRNTf35/b\nf2hoKLduuj0LDg8AZmvS1JPgvfO6l1kv3Tz//PM6e/as3nnnHf3hD39Qc3Ozfve73ykSiSgej+vi\nxYuKx+NqaGiQJIXDYR05ckSjo6NKJBIqKSlRWVnZvIIBABbHrGf0n3XjMkw0GtW2bdvk8/lUX1+v\nffv2SZK8Xq+i0aiam5u1fPly9fX1LX5iAMCceOy5XHBfrIN6PLr20innrFxp6fTpQVmW5WgOuI8b\nfj8lz5yeCytKAlfMQWIWN5vfLHhnLAAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBw\nFD0AGI6iBwDDUfQAYDiKHgAMR9EDgOEoegAwHEUPAIaj6AHAcBQ9ABiOogcAw1H0AGA4ih4ADEfR\nA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0A\nGI6iBwDDUfQAYLhZi/7SpUuKRCKqq6tTQ0ODurq6JEnZbFatra2yLEttbW2anJzM7dPd3a3q6moF\nAgENDg4WNz0AIK9Zi/7OO+/UG2+8obfeektHjx7Vb37zGw0PDysWi8myLA0PD6uiokK9vb2SpLGx\nMfX09GhgYECxWEydnZ235UEAAGaW99LNihUrJEmTk5P65JNPVFpaqlQqpY6ODpWWlqq9vV3JZFKS\nlEwm1dLSIsuy1NjYKNu2lc1mi/sIAACzylv0V69e1f333y+v16sdO3bIsiyl02n5/X5Jkt/vVyqV\nknSt6GtqanL7+ny+3DoAgDOW5dugpKREJ0+e1D//+U9t3rxZDzzwgGzbLvgAHo9nQQEBAAuTt+hv\nqKqq0ubNm5VMJhUKhZTJZBQMBpXJZBQKhSRJkUhE/f39uX2GhoZy66bbc9PXTdcXAMCnEteXhZm1\n6CcmJrRs2TJ96Utf0vnz5/WnP/1Ju3fv1oULFxSPx/Xiiy8qHo+roaFBkhQOh/Xss89qdHRUb7/9\ntkpKSlRWVjbDve9ZcHgAMFuTpp4E753Xvcxa9OfOndMTTzyhK1euaN26dXrmmWdUXl6uaDSqbdu2\nyefzqb6+Xvv27ZMkeb1eRaNRNTc3a/ny5err65tXKADA4vHYc7ngvlgH9Xgk3fbDTrFypaXTpwdl\nWZajOVatWqNs9gNHM0hSWdlqXbjwH6djuIIbfj8lz5yeCytKAlfMQWIWN5vfLAq+Ro/iuFbyzv8C\nZbM8aQ6Yij+BAACGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0A\nGI6iBwDDUfQAYDiKHgAMR9EDgOEoegAwHEUPAIaj6AHAcBQ9ABiOogcAw1H0AGA4ih4ADEfRA4Dh\nKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0AGC5v\n0Z89e1YPPfSQamtr1dTUpAMHDkiSstmsWltbZVmW2traNDk5mdunu7tb1dXVCgQCGhwcLF56AEBe\neYv+jjvuUFdXl06dOqVXX31VP//5z5XNZhWLxWRZloaHh1VRUaHe3l5J0tjYmHp6ejQwMKBYLKbO\nzs6iPwgAwMzyFv26detUV1cnSVq7dq1qa2uVTqeVSqXU0dGh0tJStbe3K5lMSpKSyaRaWlpkWZYa\nGxtl27ay2WxxHwUAYEZzukY/MjKiU6dOKRwOK51Oy+/3S5L8fr9SqZSka0VfU1OT28fn8+XWAQBu\nv4KLPpvN6vHHH1dXV5e++MUvyrbtgg/i8XjmFQ4AsHDLCtno8uXLeuyxx7R9+3a1trZKkkKhkDKZ\njILBoDKZjEKhkCQpEomov78/t+/Q0FBu3VR7bvq66foCAPhU4vqyMHmL3rZtdXR06L777tNPf/rT\n3O2RSETxeFwvvvii4vG4GhoaJEnhcFjPPvusRkdH9fbbb6ukpERlZWW3uOc9Cw4PAGZr0tST4L3z\nupe8RX/s2DHt379fmzZtUjAYlCS98MILikaj2rZtm3w+n+rr67Vv3z5JktfrVTQaVXNzs5YvX66+\nvr55BQMALA6PPZeL7Yt1UI9H0m0/7BQrV1o6fXpQlmU5msMNs7jGM6fnXUzmjp+J8z8Pd8xBYhY3\nm98seGcsABiOogcAw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoe\nAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9EDgOEoegAwHEUPAIaj6AHA\ncBQ9ABiOogcAw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABgOIoeAAyX\nt+jb29vl9Xq1cePG3G3ZbFatra2yLEttbW2anJzMrevu7lZ1dbUCgYAGBweLkxoAULC8Rf+jH/1I\nf/zjH6fcFovFZFmWhoeHVVFRod7eXknS2NiYenp6NDAwoFgsps7OzuKkBgAULG/RP/jgg1q9evWU\n21KplDo6OlRaWqr29nYlk0lJUjKZVEtLiyzLUmNjo2zbVjabLU5yAEBB5nWNPp1Oy+/3S5L8fr9S\nqZSka0VfU1OT287n8+XWAQCcsWw+O9m2XfC2Ho9nhjV7bvq66foCAPhU4vqyMPMq+lAopEwmo2Aw\nqEwmo1AoJEmKRCLq7+/PbTc0NJRbN92e+RwaAD5HmjT1JHjvvO5lXpduIpGI4vG4Ll68qHg8roaG\nBklSOBzWkSNHNDo6qkQioZKSEpWVlc0rGABgceQt+q1bt+qb3/ym/vGPf6iyslK//e1vFY1GNTo6\nKp/Pp3/961/68Y9/LEnyer2KRqNqbm7WT37yE73yyitFfwAAgNl57LlccF+sg3o8km77YadYudLS\n6dODsizL0RxumMU1njk992Iyd/xMnP95uGMOErO42fxmwTtjAcBwFD0AGI6iBwDDUfQAYDiKHgAM\nR9EDgOEoegAwHEUPAIaj6AHAcBQ9ABiOogcAw1H0AGA4ih4ADEfRA4DhKHoAMBxFDwCGo+gBwHAU\nPQAYjqIHAMNR9ABgOIoeAAxH0QOA4Sh6ADAcRQ8AhqPoAcBwFD0AGI6iBwDDUfQAYDiKHgAMR9ED\ngOEoegAwHEUPAIaj6AHAcBQ9ABiOogcAwxWl6N98803V1NSourpav/rVr4pxCABAgYpS9Dt37lRf\nX5/6+/v161//WhMTE8U4TNElEgmnIxQo4XSAgiydebrf0pllwukABVk685yfRS/6//73v5Kkb3/7\n2/rKV76i7373u0omk4t9mNti6fzwE04HKMjSmaf7LZ1ZJpwOUJClM8/5WfSiT6fT8vv9ue8DgYD+\n+te/LvZhAAAFWubUgVet2uLUoSVJH388rpISnosG8DlgL7IPP/zQrqury32/Y8cO+9ChQ1O22bBh\ngy2JhYWFhWUOy4YNG+bVy4t+Rn/XXXdJuvbKG8uy9Oc//1nPPffclG1GRkYW+7AAgBkU5dLNL3/5\nSz311FO6fPmyOjs7tXbt2mIcBgBQAI9t27bTIQAAxVO0ZyPb29vl9Xq1cePGGbf52c9+pnvvvVdf\n//rXNTQ0VKwos8qXM5FI6K677lIwGFQwGNQvfvGL25zwmrNnz+qhhx5SbW2tmpqadODAgVtu5/RM\nC8np9EwvXbqkSCSiuro6NTQ0qKur65bbOT3LQnI6PcubXblyRcFgUFu23PqFFk7P84bZcrplnlVV\nVdq0aZOCwaDC4fAtt5nTPBfwvOus3nzzTfvvf/+7fd99991yfTKZtB944AH7/Pnz9oEDB+zvfe97\nxYoyq3w533jjDXvLli23OdV0586ds0+cOGHbtm2Pj4/b69evty9cuDBlGzfMtJCcbpjpRx99ZNu2\nbV+6dMmura21h4eHp6x3wyxtO39ON8zyhpdfftn+wQ9+cMs8bpmnbc+e0y3zrKqqss+fPz/j+rnO\ns2hn9A8++KBWr1494/pkMqnvf//7WrNmjbZu3apMJlOsKLPKl1OSbBdc3Vq3bp3q6uokSWvXrlVt\nba3+9re/TdnGDTMtJKfk/ExXrFghSZqcnNQnn3yi0tLSKevdMEspf07J+VlK0rvvvqvDhw/rySef\nvGUet8wzX07JHfOUZs8x13k69kLyVCqlQCCQ+/7LX/6yzpw541ScGXk8Hh0/flx1dXV6+umnXZFx\nZGREp06dmva/dG6b6Uw53TDTq1ev6v7775fX69WOHTtUWVk5Zb1bZpkvpxtmKUm7du3SSy+9NON7\nU9wyz3w53TJPj8ej5uZmtbW16eDBg9PWz3WejhW9bdvT/ovl8XgcSjOz+vp6nT17Vul0WoFAQDt3\n7nQ0Tzab1eOPP66uri6tXLlyyjo3zXS2nG6YaUlJiU6ePKmRkRH19PToxIkTU9a7ZZb5crphlocO\nHdI999yjYDA461my0/MsJKcb5ilJx44d08mTJ/XCCy/o6aef1nvvvTdl/Vzn6VjRRyIRnT59Ovf9\n+Pi47r33XqfizKisrEwrVqzQHXfcoY6ODqXTaf3vf/9zJMvly5f12GOPafv27WptbZ223i0zzZfT\nTTOtqqrS5s2bp/09JrfM8oaZcrphlsePH9fBgwe1fv16bd26VX/5y1/0wx/+cMo2bphnITndME9J\nKi8vlyTV1NTokUce0euvvz5l/ZznuaBnDPJ455138j4ZOzExYf/+97939MmZ2XK+99579tWrV23b\ntu3XXnvN/s53vnM7o+VcvXrV3r59u71r164Zt3HDTAvJ6fRMx8fH7Q8++MC2bduemJiwN27caP/7\n3/+eso0bZllITqdn+VmJRMJ++OGHp93uhnnebKacbpjnRx99lHsBw9jYmB0IBOzR0dEp28x1nkX7\nWzdbt27V0aNHNTExocrKSu3du1eXL1+WJD311FMKh8P61re+pW984xtas2aN9u/fX6woC8r56quv\nKhaLadmyZdq0aZNefvllR3IeO3ZM+/fvz73kSpKef/55jY6O5rK6YaaF5HR6pufOndMTTzyhK1eu\naN26dXrmmWdUXl6uvr6+XEY3zLKQnE7P8lZuXEJw2zw/61Y53TDP999/X48++qgk6e6779bu3btV\nWVm5oHnyhikAMBx/vhEADEfRA4DhKHoAMBxFDwCGo+gBwHAUPQAYjqIHAMNR9ABguP8D5Z1Qr/ra\nnN0AAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x2a86290>" ] } ], "prompt_number": 4 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pick hyper-parameters for SGDClassifier using grid search:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "hyperParam={'n_iter':range(5, 20, 5),\n", " # strength of regularization\n", " 'alpha': logspace(-5, -3, 10)\n", " }\n", "clf = GridSearchCV(SGDClassifier(loss='log', class_weight={1:0.45, 2:0.6, 3:0.05, 4:0.1, 5:0.25}), hyperParam, n_jobs=8, verbose=1)\n", "clf.fit(tfIdfArr_trVaSet, scores_trVaSet)\n", "bestClf=clf.best_estimator_\n", "clf.best_params_" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fitting 3 folds for each of 30 candidates, totalling 90 fits\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "[Parallel(n_jobs=8)]: Done 1 jobs | elapsed: 0.6s\n", "[Parallel(n_jobs=8)]: Done 50 jobs | elapsed: 8.0s\n", "[Parallel(n_jobs=8)]: Done 76 out of 90 | elapsed: 11.5s remaining: 2.1s\n", "[Parallel(n_jobs=8)]: Done 90 out of 90 | elapsed: 13.2s finished\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 16, "text": [ "{'alpha': 1.0000000000000001e-05, 'n_iter': 15}" ] } ], "prompt_number": 16 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Prediction accuracy of each class:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "te_cm=confusion_matrix(scores_teSet, bestClf.predict(tfIdfArr_teSet))\n", "te_cm.diagonal()/sum(te_cm,1,dtype=float32)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 17, "text": [ "array([ 0.83632287, 0.63013699, 0.18584071, 0.43031785, 0.90358744])" ] } ], "prompt_number": 17 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Save the resulting model:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "with open('/home/hencrice/Downloads/AsterixDBClassData/models/clf_{0}.pkl'.format(productCategory),'wb') as fp:\n", " cPickle.dump(bestClf, fp, -1)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 18 } ], "metadata": {} } ] }
apache-2.0
albahnsen/ML_SecurityInformatics
notebooks/14-KaggleCompetition.ipynb
1
31809
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# 14 - Kaggle Competition\n", "# Fraud Detection\n", "\n", "\n", "## https://inclass.kaggle.com/c/easy-ml-class\n", "\n", "by [Alejandro Correa Bahnsen](albahnsen.com/)\n", "\n", "version 0.1, May 2016\n", "\n", "## Part of the class [Machine Learning for Security Informatics](https://github.com/albahnsen/ML_SecurityInformatics)\n", "\n", "\n", "This notebook is licensed under a [Creative Commons Attribution-ShareAlike 3.0 Unported License]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```pip install tqdm```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Fraud Detection" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "import zipfile\n", "with zipfile.ZipFile('../datasets/fraud_transactions_kaggle.csv.zip', 'r') as z:\n", " f = z.open('fraud_transactions_kaggle.csv')\n", " data = pd.read_csv(f, index_col=0)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>date</th>\n", " <th>card_number</th>\n", " <th>type</th>\n", " <th>merchant</th>\n", " <th>amount</th>\n", " <th>fraud</th>\n", " </tr>\n", " <tr>\n", " <th>ID</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2011-01-01 08:00:06</td>\n", " <td>1942</td>\n", " <td>2</td>\n", " <td>8328</td>\n", " <td>65.16</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2011-01-01 08:00:16</td>\n", " <td>5629</td>\n", " <td>2</td>\n", " <td>42588</td>\n", " <td>260.84</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>2011-01-01 08:01:28</td>\n", " <td>408</td>\n", " <td>2</td>\n", " <td>15622</td>\n", " <td>6010.05</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>2011-01-01 08:01:43</td>\n", " <td>859</td>\n", " <td>2</td>\n", " <td>45192</td>\n", " <td>348.46</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>2011-01-01 08:01:48</td>\n", " <td>3786</td>\n", " <td>2</td>\n", " <td>35549</td>\n", " <td>1160.35</td>\n", " <td>0.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " date card_number type merchant amount fraud\n", "ID \n", "0 2011-01-01 08:00:06 1942 2 8328 65.16 0.0\n", "1 2011-01-01 08:00:16 5629 2 42588 260.84 0.0\n", "2 2011-01-01 08:01:28 408 2 15622 6010.05 0.0\n", "3 2011-01-01 08:01:43 859 2 45192 348.46 0.0\n", "4 2011-01-01 08:01:48 3786 2 35549 1160.35 0.0" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>date</th>\n", " <th>card_number</th>\n", " <th>type</th>\n", " <th>merchant</th>\n", " <th>amount</th>\n", " <th>fraud</th>\n", " </tr>\n", " <tr>\n", " <th>ID</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>199995</th>\n", " <td>2012-12-31 17:04:18</td>\n", " <td>4069</td>\n", " <td>2</td>\n", " <td>35828</td>\n", " <td>91.22</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>199996</th>\n", " <td>2012-12-31 17:04:51</td>\n", " <td>9</td>\n", " <td>2</td>\n", " <td>46923</td>\n", " <td>390.95</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>199997</th>\n", " <td>2012-12-31 17:05:38</td>\n", " <td>1481</td>\n", " <td>1</td>\n", " <td>-1</td>\n", " <td>0.65</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>199998</th>\n", " <td>2012-12-31 17:05:55</td>\n", " <td>1481</td>\n", " <td>1</td>\n", " <td>4535</td>\n", " <td>390.04</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>199999</th>\n", " <td>2012-12-31 17:25:02</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>8322</td>\n", " <td>308.44</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " date card_number type merchant amount fraud\n", "ID \n", "199995 2012-12-31 17:04:18 4069 2 35828 91.22 NaN\n", "199996 2012-12-31 17:04:51 9 2 46923 390.95 NaN\n", "199997 2012-12-31 17:05:38 1481 1 -1 0.65 NaN\n", "199998 2012-12-31 17:05:55 1481 1 4535 390.04 NaN\n", "199999 2012-12-31 17:25:02 0 1 8322 308.44 NaN" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.tail()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ " 0.0 171048\n", "NaN 27909\n", " 1.0 1043\n", "Name: fraud, dtype: int64" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.fraud.value_counts(dropna=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Estimate aggregated features" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from datetime import datetime, timedelta\n", "from tqdm import tqdm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Split for each account and create the date as index" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 8087/8087 [00:20<00:00, 390.15it/s]\n" ] } ], "source": [ "card_numbers = data['card_number'].unique()\n", "data['trx_id'] = data.index\n", "data.index = pd.DatetimeIndex(data['date'])\n", "\n", "data_ = []\n", "for card_number in tqdm(card_numbers):\n", " data_.append(data.query('card_number == ' + str(card_number)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create Aggregated Features for one account\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "res_agg = pd.DataFrame(index=data['trx_id'].values, \n", " columns=['Trx_sum_7D', 'Trx_count_1D'])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "trx = data_[0]\n", "\n", "for i in range(trx.shape[0]):\n", " date = trx.index[i]\n", " trx_id = int(trx.ix[i, 'trx_id'])\n", " # Sum 7 D\n", " agg_ = trx[date-pd.datetools.to_offset('7D').delta:date-timedelta(0,0,1)]\n", " res_agg.loc[trx_id, 'Trx_sum_7D'] = agg_['amount'].sum()\n", " # Count 1D\n", " agg_ = trx[date-pd.datetools.to_offset('1D').delta:date-timedelta(0,0,1)]\n", " res_agg.loc[trx_id, 'Trx_count_1D'] = agg_['amount'].shape[0]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Trx_sum_7D 1054.881429\n", "Trx_count_1D 0.640693\n", "dtype: float64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res_agg.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "All accounts" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "100%|██████████| 8087/8087 [04:26<00:00, 30.33it/s] \n" ] } ], "source": [ "for trx in tqdm(data_):\n", " for i in range(trx.shape[0]):\n", " date = trx.index[i]\n", " trx_id = int(trx.ix[i, 'trx_id'])\n", " # Sum 7 D\n", " agg_ = trx[date-pd.datetools.to_offset('7D').delta:date-timedelta(0,0,1)]\n", " res_agg.loc[trx_id, 'Trx_sum_7D'] = agg_['amount'].sum()\n", " # Count 1D\n", " agg_ = trx[date-pd.datetools.to_offset('1D').delta:date-timedelta(0,0,1)]\n", " res_agg.loc[trx_id, 'Trx_count_1D'] = agg_['amount'].shape[0]" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Trx_sum_7D</th>\n", " <th>Trx_count_1D</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Trx_sum_7D Trx_count_1D\n", "0 0 0\n", "1 0 0\n", "2 0 0\n", "3 0 0\n", "4 0 0" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res_agg.head()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data.index = data.trx_id" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data = data.join(res_agg)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>date</th>\n", " <th>card_number</th>\n", " <th>type</th>\n", " <th>merchant</th>\n", " <th>amount</th>\n", " <th>fraud</th>\n", " <th>trx_id</th>\n", " <th>Trx_sum_7D</th>\n", " <th>Trx_count_1D</th>\n", " </tr>\n", " <tr>\n", " <th>trx_id</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>4082</th>\n", " <td>2011-01-16 16:26:53</td>\n", " <td>3558</td>\n", " <td>2</td>\n", " <td>13505</td>\n", " <td>528.82</td>\n", " <td>0.0</td>\n", " <td>4082</td>\n", " <td>307.85</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>23677</th>\n", " <td>2011-04-04 08:13:41</td>\n", " <td>1162</td>\n", " <td>2</td>\n", " <td>9417</td>\n", " <td>117.29</td>\n", " <td>0.0</td>\n", " <td>23677</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>30074</th>\n", " <td>2011-04-29 13:09:07</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>56997</td>\n", " <td>21.29</td>\n", " <td>0.0</td>\n", " <td>30074</td>\n", " <td>14171.9</td>\n", " <td>2</td>\n", " </tr>\n", " <tr>\n", " <th>65426</th>\n", " <td>2011-09-09 10:11:24</td>\n", " <td>4420</td>\n", " <td>2</td>\n", " <td>57849</td>\n", " <td>29.70</td>\n", " <td>0.0</td>\n", " <td>65426</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>72272</th>\n", " <td>2011-10-04 10:43:00</td>\n", " <td>2114</td>\n", " <td>2</td>\n", " <td>5109</td>\n", " <td>2170.65</td>\n", " <td>0.0</td>\n", " <td>72272</td>\n", " <td>131020</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>74456</th>\n", " <td>2011-10-11 17:17:22</td>\n", " <td>2148</td>\n", " <td>2</td>\n", " <td>1341</td>\n", " <td>2150.19</td>\n", " <td>0.0</td>\n", " <td>74456</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>84660</th>\n", " <td>2011-11-19 17:06:58</td>\n", " <td>1521</td>\n", " <td>1</td>\n", " <td>35294</td>\n", " <td>651.59</td>\n", " <td>0.0</td>\n", " <td>84660</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>117167</th>\n", " <td>2012-04-01 12:33:33</td>\n", " <td>1471</td>\n", " <td>1</td>\n", " <td>-1</td>\n", " <td>650.94</td>\n", " <td>0.0</td>\n", " <td>117167</td>\n", " <td>4381.21</td>\n", " <td>1</td>\n", " </tr>\n", " <tr>\n", " <th>119737</th>\n", " <td>2012-04-09 14:27:12</td>\n", " <td>2723</td>\n", " <td>1</td>\n", " <td>38616</td>\n", " <td>13.03</td>\n", " <td>0.0</td>\n", " <td>119737</td>\n", " <td>13614.2</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>132467</th>\n", " <td>2012-05-27 16:43:11</td>\n", " <td>4857</td>\n", " <td>2</td>\n", " <td>45373</td>\n", " <td>41.70</td>\n", " <td>0.0</td>\n", " <td>132467</td>\n", " <td>634.13</td>\n", " <td>10</td>\n", " </tr>\n", " <tr>\n", " <th>134858</th>\n", " <td>2012-06-03 17:05:21</td>\n", " <td>2114</td>\n", " <td>1</td>\n", " <td>18692</td>\n", " <td>26.06</td>\n", " <td>0.0</td>\n", " <td>134858</td>\n", " <td>175202</td>\n", " <td>7</td>\n", " </tr>\n", " <tr>\n", " <th>142133</th>\n", " <td>2012-06-29 16:21:37</td>\n", " <td>7588</td>\n", " <td>2</td>\n", " <td>35991</td>\n", " <td>92.53</td>\n", " <td>0.0</td>\n", " <td>142133</td>\n", " <td>1151.21</td>\n", " <td>4</td>\n", " </tr>\n", " <tr>\n", " <th>158154</th>\n", " <td>2012-08-20 10:55:23</td>\n", " <td>4420</td>\n", " <td>2</td>\n", " <td>53353</td>\n", " <td>182.65</td>\n", " <td>0.0</td>\n", " <td>158154</td>\n", " <td>121.77</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>176418</th>\n", " <td>2012-10-16 14:23:04</td>\n", " <td>1595</td>\n", " <td>2</td>\n", " <td>25985</td>\n", " <td>15397.58</td>\n", " <td>NaN</td>\n", " <td>176418</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>186433</th>\n", " <td>2012-11-20 11:04:00</td>\n", " <td>4923</td>\n", " <td>2</td>\n", " <td>36010</td>\n", " <td>217.89</td>\n", " <td>NaN</td>\n", " <td>186433</td>\n", " <td>573.4</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " date card_number type merchant amount fraud \\\n", "trx_id \n", "4082 2011-01-16 16:26:53 3558 2 13505 528.82 0.0 \n", "23677 2011-04-04 08:13:41 1162 2 9417 117.29 0.0 \n", "30074 2011-04-29 13:09:07 0 1 56997 21.29 0.0 \n", "65426 2011-09-09 10:11:24 4420 2 57849 29.70 0.0 \n", "72272 2011-10-04 10:43:00 2114 2 5109 2170.65 0.0 \n", "74456 2011-10-11 17:17:22 2148 2 1341 2150.19 0.0 \n", "84660 2011-11-19 17:06:58 1521 1 35294 651.59 0.0 \n", "117167 2012-04-01 12:33:33 1471 1 -1 650.94 0.0 \n", "119737 2012-04-09 14:27:12 2723 1 38616 13.03 0.0 \n", "132467 2012-05-27 16:43:11 4857 2 45373 41.70 0.0 \n", "134858 2012-06-03 17:05:21 2114 1 18692 26.06 0.0 \n", "142133 2012-06-29 16:21:37 7588 2 35991 92.53 0.0 \n", "158154 2012-08-20 10:55:23 4420 2 53353 182.65 0.0 \n", "176418 2012-10-16 14:23:04 1595 2 25985 15397.58 NaN \n", "186433 2012-11-20 11:04:00 4923 2 36010 217.89 NaN \n", "\n", " trx_id Trx_sum_7D Trx_count_1D \n", "trx_id \n", "4082 4082 307.85 0 \n", "23677 23677 0 0 \n", "30074 30074 14171.9 2 \n", "65426 65426 0 0 \n", "72272 72272 131020 7 \n", "74456 74456 0 0 \n", "84660 84660 0 0 \n", "117167 117167 4381.21 1 \n", "119737 119737 13614.2 0 \n", "132467 132467 634.13 10 \n", "134858 134858 175202 7 \n", "142133 142133 1151.21 4 \n", "158154 158154 121.77 0 \n", "176418 176418 0 0 \n", "186433 186433 573.4 0 " ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.sample(15, random_state=42).sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Split train and test" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X = data.loc[~data.fraud.isnull()]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "y = X.fraud" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [], "source": [ "X = X.drop(['fraud', 'date', 'card_number'], axis=1)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": true }, "outputs": [], "source": [ "X_kaggle = data.loc[data.fraud.isnull()]\n", "X_kaggle = X_kaggle.drop(['fraud', 'date', 'card_number'], axis=1)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>type</th>\n", " <th>merchant</th>\n", " <th>amount</th>\n", " <th>trx_id</th>\n", " <th>Trx_sum_7D</th>\n", " <th>Trx_count_1D</th>\n", " </tr>\n", " <tr>\n", " <th>trx_id</th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " <th></th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>172091</th>\n", " <td>2</td>\n", " <td>13273</td>\n", " <td>208.51</td>\n", " <td>172091</td>\n", " <td>120165</td>\n", " <td>14</td>\n", " </tr>\n", " <tr>\n", " <th>172092</th>\n", " <td>2</td>\n", " <td>34472</td>\n", " <td>525.05</td>\n", " <td>172092</td>\n", " <td>71042.4</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>172093</th>\n", " <td>2</td>\n", " <td>37909</td>\n", " <td>802.24</td>\n", " <td>172093</td>\n", " <td>120374</td>\n", " <td>15</td>\n", " </tr>\n", " <tr>\n", " <th>172094</th>\n", " <td>2</td>\n", " <td>35167</td>\n", " <td>130.32</td>\n", " <td>172094</td>\n", " <td>90638.1</td>\n", " <td>9</td>\n", " </tr>\n", " <tr>\n", " <th>172095</th>\n", " <td>2</td>\n", " <td>35073</td>\n", " <td>9696.96</td>\n", " <td>172095</td>\n", " <td>0</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " type merchant amount trx_id Trx_sum_7D Trx_count_1D\n", "trx_id \n", "172091 2 13273 208.51 172091 120165 14\n", "172092 2 34472 525.05 172092 71042.4 0\n", "172093 2 37909 802.24 172093 120374 15\n", "172094 2 35167 130.32 172094 90638.1 9\n", "172095 2 35073 9696.96 172095 0 0" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_kaggle.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Simple Random Forest" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true }, "outputs": [], "source": [ "clf = RandomForestClassifier(n_estimators=100, n_jobs=-1, class_weight='balanced')" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.metrics import fbeta_score" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "KFold cross-validation" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.cross_validation import KFold" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [], "source": [ "kf = KFold(X.shape[0], n_folds=5)\n", "res = []\n", "for train, test in kf:\n", " X_train, X_test, y_train, y_test = X.iloc[train], X.iloc[test], y.iloc[train], y.iloc[test]\n", " clf.fit(X_train, y_train)\n", " y_pred_proba = clf.predict_proba(X_test)[:, 1]\n", " y_pred = (y_pred_proba>0.05).astype(int)\n", " res.append(fbeta_score(y_test, y_pred, beta=2))" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "count 5.000000\n", "mean 0.078145\n", "std 0.032472\n", "min 0.054945\n", "25% 0.057692\n", "50% 0.062500\n", "75% 0.082713\n", "max 0.132877\n", "dtype: float64" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.Series(res).describe()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Train with all" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Predict and send to Kaggle" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',\n", " max_depth=None, max_features='auto', max_leaf_nodes=None,\n", " min_samples_leaf=1, min_samples_split=2,\n", " min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=-1,\n", " oob_score=False, random_state=None, verbose=0,\n", " warm_start=False)" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "clf.fit(X, y)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": true }, "outputs": [], "source": [ "y_pred = clf.predict_proba(X_kaggle)[:, 1]" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [], "source": [ "y_pred = (y_pred>0.05).astype(int)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": true }, "outputs": [], "source": [ "y_pred = pd.Series(y_pred,name='fraud', index=X_kaggle.index)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "trx_id\n", "172091 0\n", "172092 1\n", "172093 1\n", "172094 0\n", "172095 1\n", "172096 1\n", "172097 1\n", "172098 0\n", "172099 1\n", "172100 0\n", "Name: fraud, dtype: int64" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_pred.head(10)" ] }, { "cell_type": "code", "execution_count": 108, "metadata": { "collapsed": true }, "outputs": [], "source": [ "y_pred.to_csv('fraud_transactions_kaggle_1.csv', header=True, index_label='ID')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Main Issues" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* Class imbalance\n", "* Feature creation\n", "* Model selection\n", "* Threshold selection" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
GoogleCloudPlatform/vertex-ai-samples
notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb
1
33506
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "id": "copyright" }, "outputs": [], "source": [ "# Copyright 2021 Google LLC\n", "#\n", "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "title:generic" }, "source": [ "# Vertex AI Pipelines: AutoML text classification pipelines using google-cloud-pipeline-components\n", "\n", "<table align=\"left\">\n", " <td>\n", " <a href=\"https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb\">\n", " <img src=\"https://cloud.google.com/ml-engine/images/colab-logo-32px.png\" alt=\"Colab logo\"> Run in Colab\n", " </a>\n", " </td>\n", " <td>\n", " <a href=\"https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb\">\n", " <img src=\"https://cloud.google.com/ml-engine/images/github-logo-32px.png\" alt=\"GitHub logo\">\n", " View on GitHub\n", " </a>\n", " </td>\n", " <td>\n", " <a href=\"https://console.cloud.google.com/vertex-ai/notebooks/deploy-notebook?download_url=https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/official/pipelines/google_cloud_pipeline_components_automl_text.ipynb\">\n", " Open in Vertex AI Workbench\n", " </a>\n", " </td>\n", "</table>\n", "<br/><br/><br/>" ] }, { "cell_type": "markdown", "metadata": { "id": "overview:pipelines,automl" }, "source": [ "## Overview\n", "\n", "This notebook shows how to use the components defined in [`google_cloud_pipeline_components`](https://github.com/kubeflow/pipelines/tree/master/components/google-cloud) to build an AutoML text classification workflow on [Vertex AI Pipelines](https://cloud.google.com/vertex-ai/docs/pipelines)." ] }, { "cell_type": "markdown", "metadata": { "id": "dataset:happydb,tcn" }, "source": [ "### Dataset\n", "\n", "The dataset used for this tutorial is the [Happy Moments dataset](https://www.kaggle.com/ritresearch/happydb) from [Kaggle Datasets](https://www.kaggle.com/ritresearch/happydb). The version of the dataset you will use in this tutorial is stored in a public Cloud Storage bucket." ] }, { "cell_type": "markdown", "metadata": { "id": "objective:pipelines,automl" }, "source": [ "### Objective\n", "\n", "In this tutorial, you create an AutoML text classification using a pipeline with components from `google_cloud_pipeline_components`.\n", "\n", "The steps performed include:\n", "\n", "- Create a `Dataset` resource.\n", "- Train an AutoML `Model` resource.\n", "- Creates an `Endpoint` resource.\n", "- Deploys the `Model` resource to the `Endpoint` resource.\n", "\n", "The components are [documented here](https://google-cloud-pipeline-components.readthedocs.io/en/latest/google_cloud_pipeline_components.aiplatform.html#module-google_cloud_pipeline_components.aiplatform)." ] }, { "cell_type": "markdown", "metadata": { "id": "costs" }, "source": [ "### Costs\n", "\n", "This tutorial uses billable components of Google Cloud:\n", "\n", "* Vertex AI\n", "* Cloud Storage\n", "\n", "Learn about [Vertex AI\n", "pricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storage\n", "pricing](https://cloud.google.com/storage/pricing), and use the [Pricing\n", "Calculator](https://cloud.google.com/products/calculator/)\n", "to generate a cost estimate based on your projected usage." ] }, { "cell_type": "markdown", "metadata": { "id": "setup_local" }, "source": [ "### Set up your local development environment\n", "\n", "If you are using Colab or Google Cloud Notebook, your environment already meets all the requirements to run this notebook. You can skip this step.\n", "\n", "Otherwise, make sure your environment meets this notebook's requirements. You need the following:\n", "\n", "- The Cloud Storage SDK\n", "- Git\n", "- Python 3\n", "- virtualenv\n", "- Jupyter notebook running in a virtual environment with Python 3\n", "\n", "The Cloud Storage guide to [Setting up a Python development environment](https://cloud.google.com/python/setup) and the [Jupyter installation guide](https://jupyter.org/install) provide detailed instructions for meeting these requirements. The following steps provide a condensed set of instructions:\n", "\n", "1. [Install and initialize the SDK](https://cloud.google.com/sdk/docs/).\n", "\n", "2. [Install Python 3](https://cloud.google.com/python/setup#installing_python).\n", "\n", "3. [Install virtualenv](Ihttps://cloud.google.com/python/setup#installing_and_using_virtualenv) and create a virtual environment that uses Python 3.\n", "\n", "4. Activate that environment and run `pip3 install Jupyter` in a terminal shell to install Jupyter.\n", "\n", "5. Run `jupyter notebook` on the command line in a terminal shell to launch Jupyter.\n", "\n", "6. Open this notebook in the Jupyter Notebook Dashboard.\n" ] }, { "cell_type": "markdown", "metadata": { "id": "install_aip:mbsdk" }, "source": [ "## Installation\n", "\n", "Install the latest version of Vertex AI SDK for Python." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "install_aip:mbsdk" }, "outputs": [], "source": [ "import os\n", "\n", "# Google Cloud Notebook\n", "if os.path.exists(\"/opt/deeplearning/metadata/env_version\"):\n", " USER_FLAG = \"--user\"\n", "else:\n", " USER_FLAG = \"\"\n", "\n", "! pip3 install --upgrade google-cloud-aiplatform $USER_FLAG" ] }, { "cell_type": "markdown", "metadata": { "id": "install_storage" }, "source": [ "Install the latest GA version of *google-cloud-storage* library as well." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "install_storage" }, "outputs": [], "source": [ "! pip3 install -U google-cloud-storage $USER_FLAG" ] }, { "cell_type": "markdown", "metadata": { "id": "install_gcpc" }, "source": [ "Install the latest GA version of *google-cloud-pipeline-components* library as well." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "install_gcpc" }, "outputs": [], "source": [ "! pip3 install $USER kfp google-cloud-pipeline-components --upgrade" ] }, { "cell_type": "markdown", "metadata": { "id": "restart" }, "source": [ "### Restart the kernel\n", "\n", "Once you've installed the additional packages, you need to restart the notebook kernel so it can find the packages." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "restart" }, "outputs": [], "source": [ "import os\n", "\n", "if not os.getenv(\"IS_TESTING\"):\n", " # Automatically restart kernel after installs\n", " import IPython\n", "\n", " app = IPython.Application.instance()\n", " app.kernel.do_shutdown(True)" ] }, { "cell_type": "markdown", "metadata": { "id": "check_versions" }, "source": [ "Check the versions of the packages you installed. The KFP SDK version should be >=1.6." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "check_versions:kfp,gcpc" }, "outputs": [], "source": [ "! python3 -c \"import kfp; print('KFP SDK version: {}'.format(kfp.__version__))\"\n", "! python3 -c \"import google_cloud_pipeline_components; print('google_cloud_pipeline_components version: {}'.format(google_cloud_pipeline_components.__version__))\"" ] }, { "cell_type": "markdown", "metadata": { "id": "before_you_begin:nogpu" }, "source": [ "## Before you begin\n", "\n", "### GPU runtime\n", "\n", "This tutorial does not require a GPU runtime.\n", "\n", "### Set up your Google Cloud project\n", "\n", "**The following steps are required, regardless of your notebook environment.**\n", "\n", "1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.\n", "\n", "2. [Make sure that billing is enabled for your project.](https://cloud.google.com/billing/docs/how-to/modify-project)\n", "\n", "3. [Enable the Vertex AI APIs, Compute Engine APIs, and Cloud Storage.](https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component,storage-component.googleapis.com)\n", "\n", "4. [The Google Cloud SDK](https://cloud.google.com/sdk) is already installed in Google Cloud Notebook.\n", "\n", "5. Enter your project ID in the cell below. Then run the cell to make sure the\n", "Cloud SDK uses the right project for all the commands in this notebook.\n", "\n", "**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$`." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "set_project_id" }, "outputs": [], "source": [ "PROJECT_ID = \"[your-project-id]\" # @param {type:\"string\"}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "autoset_project_id" }, "outputs": [], "source": [ "if PROJECT_ID == \"\" or PROJECT_ID is None or PROJECT_ID == \"[your-project-id]\":\n", " # Get your GCP project id from gcloud\n", " shell_output = ! gcloud config list --format 'value(core.project)' 2>/dev/null\n", " PROJECT_ID = shell_output[0]\n", " print(\"Project ID:\", PROJECT_ID)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "set_gcloud_project_id" }, "outputs": [], "source": [ "! gcloud config set project $PROJECT_ID" ] }, { "cell_type": "markdown", "metadata": { "id": "region" }, "source": [ "#### Region\n", "\n", "You can also change the `REGION` variable, which is used for operations\n", "throughout the rest of this notebook. Below are regions supported for Vertex AI. We recommend that you choose the region closest to you.\n", "\n", "- Americas: `us-central1`\n", "- Europe: `europe-west4`\n", "- Asia Pacific: `asia-east1`\n", "\n", "You may not use a multi-regional bucket for training with Vertex AI. Not all regions provide support for all Vertex AI services.\n", "\n", "Learn more about [Vertex AI regions](https://cloud.google.com/vertex-ai/docs/general/locations)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "region" }, "outputs": [], "source": [ "REGION = \"us-central1\" # @param {type: \"string\"}" ] }, { "cell_type": "markdown", "metadata": { "id": "timestamp" }, "source": [ "#### Timestamp\n", "\n", "If you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append the timestamp onto the name of resources you create in this tutorial." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "timestamp" }, "outputs": [], "source": [ "from datetime import datetime\n", "\n", "TIMESTAMP = datetime.now().strftime(\"%Y%m%d%H%M%S\")" ] }, { "cell_type": "markdown", "metadata": { "id": "gcp_authenticate" }, "source": [ "### Authenticate your Google Cloud account\n", "\n", "**If you are using Google Cloud Notebook**, your environment is already authenticated. Skip this step.\n", "\n", "**If you are using Colab**, run the cell below and follow the instructions when prompted to authenticate your account via oAuth.\n", "\n", "**Otherwise**, follow these steps:\n", "\n", "In the Cloud Console, go to the [Create service account key](https://console.cloud.google.com/apis/credentials/serviceaccountkey) page.\n", "\n", "**Click Create service account**.\n", "\n", "In the **Service account name** field, enter a name, and click **Create**.\n", "\n", "In the **Grant this service account access to project** section, click the Role drop-down list. Type \"Vertex\" into the filter box, and select **Vertex Administrator**. Type \"Storage Object Admin\" into the filter box, and select **Storage Object Admin**.\n", "\n", "Click Create. A JSON file that contains your key downloads to your local environment.\n", "\n", "Enter the path to your service account key as the GOOGLE_APPLICATION_CREDENTIALS variable in the cell below and run the cell." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "gcp_authenticate" }, "outputs": [], "source": [ "# If you are running this notebook in Colab, run this cell and follow the\n", "# instructions to authenticate your GCP account. This provides access to your\n", "# Cloud Storage bucket and lets you submit training jobs and prediction\n", "# requests.\n", "\n", "import os\n", "import sys\n", "\n", "# If on Google Cloud Notebook, then don't execute this code\n", "if not os.path.exists(\"/opt/deeplearning/metadata/env_version\"):\n", " if \"google.colab\" in sys.modules:\n", " from google.colab import auth as google_auth\n", "\n", " google_auth.authenticate_user()\n", "\n", " # If you are running this notebook locally, replace the string below with the\n", " # path to your service account key and run this cell to authenticate your GCP\n", " # account.\n", " elif not os.getenv(\"IS_TESTING\"):\n", " %env GOOGLE_APPLICATION_CREDENTIALS ''" ] }, { "cell_type": "markdown", "metadata": { "id": "bucket:mbsdk" }, "source": [ "### Create a Cloud Storage bucket\n", "\n", "**The following steps are required, regardless of your notebook environment.**\n", "\n", "When you initialize the Vertex AI SDK for Python, you specify a Cloud Storage staging bucket. The staging bucket is where all the data associated with your dataset and model resources are retained across sessions.\n", "\n", "Set the name of your Cloud Storage bucket below. Bucket names must be globally unique across all Google Cloud projects, including those outside of your organization." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "bucket" }, "outputs": [], "source": [ "BUCKET_NAME = \"gs://[your-bucket-name]\" # @param {type:\"string\"}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "autoset_bucket" }, "outputs": [], "source": [ "if BUCKET_NAME == \"\" or BUCKET_NAME is None or BUCKET_NAME == \"gs://[your-bucket-name]\":\n", " BUCKET_NAME = \"gs://\" + PROJECT_ID + \"aip-\" + TIMESTAMP" ] }, { "cell_type": "markdown", "metadata": { "id": "create_bucket" }, "source": [ "**Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "create_bucket" }, "outputs": [], "source": [ "! gsutil mb -l $REGION $BUCKET_NAME" ] }, { "cell_type": "markdown", "metadata": { "id": "validate_bucket" }, "source": [ "Finally, validate access to your Cloud Storage bucket by examining its contents:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "validate_bucket" }, "outputs": [], "source": [ "! gsutil ls -al $BUCKET_NAME" ] }, { "cell_type": "markdown", "metadata": { "id": "set_service_account" }, "source": [ "#### Service Account\n", "\n", "**If you don't know your service account**, try to get your service account using `gcloud` command by executing the second cell below." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "set_service_account" }, "outputs": [], "source": [ "SERVICE_ACCOUNT = \"[your-service-account]\" # @param {type:\"string\"}" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "autoset_service_account" }, "outputs": [], "source": [ "if (\n", " SERVICE_ACCOUNT == \"\"\n", " or SERVICE_ACCOUNT is None\n", " or SERVICE_ACCOUNT == \"[your-service-account]\"\n", "):\n", " # Get your GCP project id from gcloud\n", " shell_output = !gcloud auth list 2>/dev/null\n", " SERVICE_ACCOUNT = shell_output[2].strip()\n", " print(\"Service Account:\", SERVICE_ACCOUNT)" ] }, { "cell_type": "markdown", "metadata": { "id": "set_service_account:pipelines" }, "source": [ "#### Set service account access for Vertex AI Pipelines\n", "\n", "Run the following commands to grant your service account access to read and write pipeline artifacts in the bucket that you created in the previous step -- you only need to run these once per service account." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "set_service_account:pipelines" }, "outputs": [], "source": [ "! gsutil iam ch serviceAccount:{SERVICE_ACCOUNT}:roles/storage.objectCreator $BUCKET_NAME\n", "\n", "! gsutil iam ch serviceAccount:{SERVICE_ACCOUNT}:roles/storage.objectViewer $BUCKET_NAME" ] }, { "cell_type": "markdown", "metadata": { "id": "setup_vars" }, "source": [ "### Set up variables\n", "\n", "Next, set up some variables used throughout the tutorial.\n", "### Import libraries and define constants" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "import_aip:mbsdk" }, "outputs": [], "source": [ "import google.cloud.aiplatform as aip" ] }, { "cell_type": "markdown", "metadata": { "id": "pipeline_constants" }, "source": [ "#### Vertex AI Pipelines constants\n", "\n", "Setup up the following constants for Vertex AI Pipelines:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "pipeline_constants" }, "outputs": [], "source": [ "PIPELINE_ROOT = \"{}/pipeline_root/happydb\".format(BUCKET_NAME)" ] }, { "cell_type": "markdown", "metadata": { "id": "additional_imports" }, "source": [ "Additional imports." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "import_pipelines:gcpc" }, "outputs": [], "source": [ "import kfp" ] }, { "cell_type": "markdown", "metadata": { "id": "init_aip:mbsdk" }, "source": [ "## Initialize Vertex AI SDK for Python\n", "\n", "Initialize the Vertex AI SDK for Python for your project and corresponding bucket." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "init_aip:mbsdk" }, "outputs": [], "source": [ "aip.init(project=PROJECT_ID, staging_bucket=BUCKET_NAME)" ] }, { "cell_type": "markdown", "metadata": { "id": "define_pipeline:gcpc,automl,happydb,tcn" }, "source": [ "## Define AutoML text classification model pipeline that uses components from `google_cloud_pipeline_components`\n", "\n", "Next, you define the pipeline.\n", "\n", "Create and deploy an AutoML text classification `Model` resource using a `Dataset` resource." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "define_pipeline:gcpc,automl,happydb,tcn" }, "outputs": [], "source": [ "IMPORT_FILE = \"gs://cloud-ml-data/NL-classification/happiness.csv\"\n", "\n", "\n", "@kfp.dsl.pipeline(name=\"automl-text-classification\" + TIMESTAMP)\n", "def pipeline(\n", " project: str = PROJECT_ID, region: str = REGION, import_file: str = IMPORT_FILE\n", "):\n", " from google_cloud_pipeline_components import aiplatform as gcc_aip\n", " from google_cloud_pipeline_components.v1.endpoint import (EndpointCreateOp,\n", " ModelDeployOp)\n", "\n", " dataset_create_task = gcc_aip.TextDatasetCreateOp(\n", " display_name=\"train-automl-happydb\",\n", " gcs_source=import_file,\n", " import_schema_uri=aip.schema.dataset.ioformat.text.multi_label_classification,\n", " project=project,\n", " )\n", "\n", " training_run_task = gcc_aip.AutoMLTextTrainingJobRunOp(\n", " dataset=dataset_create_task.outputs[\"dataset\"],\n", " display_name=\"train-automl-happydb\",\n", " prediction_type=\"classification\",\n", " multi_label=True,\n", " training_fraction_split=0.6,\n", " validation_fraction_split=0.2,\n", " test_fraction_split=0.2,\n", " model_display_name=\"train-automl-happydb\",\n", " project=project,\n", " )\n", "\n", " endpoint_op = EndpointCreateOp(\n", " project=project,\n", " location=region,\n", " display_name=\"train-automl-flowers\",\n", " )\n", "\n", " ModelDeployOp(\n", " model=training_run_task.outputs[\"model\"],\n", " endpoint=endpoint_op.outputs[\"endpoint\"],\n", " automatic_resources_min_replica_count=1,\n", " automatic_resources_max_replica_count=1,\n", " )" ] }, { "cell_type": "markdown", "metadata": { "id": "compile_pipeline" }, "source": [ "## Compile the pipeline\n", "\n", "Next, compile the pipeline." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "compile_pipeline" }, "outputs": [], "source": [ "from kfp.v2 import compiler # noqa: F811\n", "\n", "compiler.Compiler().compile(\n", " pipeline_func=pipeline,\n", " package_path=\"text classification_pipeline.json\".replace(\" \", \"_\"),\n", ")" ] }, { "cell_type": "markdown", "metadata": { "id": "run_pipeline:automl,text" }, "source": [ "## Run the pipeline\n", "\n", "Next, run the pipeline." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "run_pipeline:automl,text" }, "outputs": [], "source": [ "DISPLAY_NAME = \"happydb_\" + TIMESTAMP\n", "\n", "job = aip.PipelineJob(\n", " display_name=DISPLAY_NAME,\n", " template_path=\"text classification_pipeline.json\".replace(\" \", \"_\"),\n", " pipeline_root=PIPELINE_ROOT,\n", " enable_caching=False,\n", ")\n", "\n", "job.run()\n", "\n", "! rm text_classification_pipeline.json" ] }, { "cell_type": "markdown", "metadata": { "id": "view_pipeline_run:automl,text" }, "source": [ "Click on the generated link to see your run in the Cloud Console.\n", "\n", "<!-- It should look something like this as it is running:\n", "\n", "<a href=\"https://storage.googleapis.com/amy-jo/images/mp/automl_tabular_classif.png\" target=\"_blank\"><img src=\"https://storage.googleapis.com/amy-jo/images/mp/automl_tabular_classif.png\" width=\"40%\"/></a> -->\n", "\n", "In the UI, many of the pipeline DAG nodes will expand or collapse when you click on them. Here is a partially-expanded view of the DAG (click image to see larger version).\n", "\n", "<a href=\"https://storage.googleapis.com/amy-jo/images/mp/automl_text_classif.png\" target=\"_blank\"><img src=\"https://storage.googleapis.com/amy-jo/images/mp/automl_text_classif.png\" width=\"40%\"/></a>" ] }, { "cell_type": "markdown", "metadata": { "id": "cleanup:pipelines" }, "source": [ "# Cleaning up\n", "\n", "To clean up all Google Cloud resources used in this project, you can [delete the Google Cloud\n", "project](https://cloud.google.com/resource-manager/docs/creating-managing-projects#shutting_down_projects) you used for the tutorial.\n", "\n", "Otherwise, you can delete the individual resources you created in this tutorial -- *Note:* this is auto-generated and not all resources may be applicable for this tutorial:\n", "\n", "- Dataset\n", "- Pipeline\n", "- Model\n", "- Endpoint\n", "- Batch Job\n", "- Custom Job\n", "- Hyperparameter Tuning Job\n", "- Cloud Storage Bucket" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "cleanup:pipelines" }, "outputs": [], "source": [ "delete_dataset = True\n", "delete_pipeline = True\n", "delete_model = True\n", "delete_endpoint = True\n", "delete_batchjob = True\n", "delete_customjob = True\n", "delete_hptjob = True\n", "delete_bucket = True\n", "\n", "try:\n", " if delete_model and \"DISPLAY_NAME\" in globals():\n", " models = aip.Model.list(\n", " filter=f\"display_name={DISPLAY_NAME}\", order_by=\"create_time\"\n", " )\n", " model = models[0]\n", " aip.Model.delete(model)\n", " print(\"Deleted model:\", model)\n", "except Exception as e:\n", " print(e)\n", "\n", "try:\n", " if delete_endpoint and \"DISPLAY_NAME\" in globals():\n", " endpoints = aip.Endpoint.list(\n", " filter=f\"display_name={DISPLAY_NAME}_endpoint\", order_by=\"create_time\"\n", " )\n", " endpoint = endpoints[0]\n", " endpoint.undeploy_all()\n", " aip.Endpoint.delete(endpoint.resource_name)\n", " print(\"Deleted endpoint:\", endpoint)\n", "except Exception as e:\n", " print(e)\n", "\n", "if delete_dataset and \"DISPLAY_NAME\" in globals():\n", " if \"text\" == \"tabular\":\n", " try:\n", " datasets = aip.TabularDataset.list(\n", " filter=f\"display_name={DISPLAY_NAME}\", order_by=\"create_time\"\n", " )\n", " dataset = datasets[0]\n", " aip.TabularDataset.delete(dataset.resource_name)\n", " print(\"Deleted dataset:\", dataset)\n", " except Exception as e:\n", " print(e)\n", "\n", " if \"text\" == \"image\":\n", " try:\n", " datasets = aip.ImageDataset.list(\n", " filter=f\"display_name={DISPLAY_NAME}\", order_by=\"create_time\"\n", " )\n", " dataset = datasets[0]\n", " aip.ImageDataset.delete(dataset.resource_name)\n", " print(\"Deleted dataset:\", dataset)\n", " except Exception as e:\n", " print(e)\n", "\n", " if \"text\" == \"text\":\n", " try:\n", " datasets = aip.TextDataset.list(\n", " filter=f\"display_name={DISPLAY_NAME}\", order_by=\"create_time\"\n", " )\n", " dataset = datasets[0]\n", " aip.TextDataset.delete(dataset.resource_name)\n", " print(\"Deleted dataset:\", dataset)\n", " except Exception as e:\n", " print(e)\n", "\n", " if \"text\" == \"video\":\n", " try:\n", " datasets = aip.VideoDataset.list(\n", " filter=f\"display_name={DISPLAY_NAME}\", order_by=\"create_time\"\n", " )\n", " dataset = datasets[0]\n", " aip.VideoDataset.delete(dataset.resource_name)\n", " print(\"Deleted dataset:\", dataset)\n", " except Exception as e:\n", " print(e)\n", "\n", "try:\n", " if delete_pipeline and \"DISPLAY_NAME\" in globals():\n", " pipelines = aip.PipelineJob.list(\n", " filter=f\"display_name={DISPLAY_NAME}\", order_by=\"create_time\"\n", " )\n", " pipeline = pipelines[0]\n", " aip.PipelineJob.delete(pipeline.resource_name)\n", " print(\"Deleted pipeline:\", pipeline)\n", "except Exception as e:\n", " print(e)\n", "\n", "if delete_bucket and \"BUCKET_NAME\" in globals():\n", " ! gsutil rm -r $BUCKET_NAME" ] } ], "metadata": { "colab": { "name": "google_cloud_pipeline_components_automl_text.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
lasersonlab/pepsyn
workflows/metagenomic_shotgun_single_end.ipynb
1
231979
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Shotgun metagenomic single end library" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from os.path import join as pjoin\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import scipy as sp\n", "import pandas as pd\n", "import skbio\n", "import skbio.diversity\n", "import seaborn as sns\n", "import random" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": true }, "outputs": [], "source": [ "plt.style.use('seaborn')\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Dataset" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "CONFIGURATION (edit the following cell)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": true }, "outputs": [], "source": [ "raw_reads_path = '/Users/laserson/Downloads/BaseSpace/Metagenomiclibraries-39688650/2-48080086/mms500_S2_L001_R1_001.fastq.gz'\n", "analysis_dir_path = '/Users/laserson/tmp/phip_analysis/phip-7/phip-7-meta'\n", "sample_prefix = 'mms500_S2_L001_R1_001'" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": true }, "outputs": [], "source": [ "vector_depleted_reads_path = pjoin(analysis_dir_path, 'vector_depleted', sample_prefix + '.fastq')\n", "centrifuge_aln_path = pjoin(analysis_dir_path, 'centrifuge', sample_prefix + '.centrifuge_aln.tsv')\n", "kraken_report_path = pjoin(analysis_dir_path, 'centrifuge', sample_prefix + '.centrifuge_kreport.tsv')\n", "clustered_read_counts_path = pjoin(analysis_dir_path, 'clustered_reads', sample_prefix + '.clustered.counts.tsv')\n", "aligned_clustered_read_counts_path = pjoin(analysis_dir_path, 'clustered_reads', sample_prefix + '.aligned_clustered.counts.tsv')" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Statistics" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Number of raw reads" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2784264" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "_ = !cat {raw_reads_path} | gunzip | wc -l\n", "raw_read_count = int(_[0]) // 4\n", "raw_read_count" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Number of non-vector reads" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2774446" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "_ = !cat {vector_depleted_reads_path} | wc -l\n", "non_vector_read_count = int(_[0]) // 4\n", "non_vector_read_count" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fraction non-vector reads" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.9964737539256335" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "non_vector_read_count / raw_read_count" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Number non-vector reads successfully aligned by centrifuge" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1464878" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "_ = !cat {centrifuge_aln_path} | wc -l\n", "aligned_read_count = int(_[0]) // 2\n", "aligned_read_count" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Fraction non-vector reads aligned by centrifuge" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.5279893715718381" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "aligned_read_count / non_vector_read_count" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Diversity" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [], "source": [ "clustered_read_counts = pd.read_csv(clustered_read_counts_path, sep='\\t', header=None, usecols=[0]).values.ravel()\n", "aligned_clustered_read_counts = pd.read_csv(aligned_clustered_read_counts_path, sep='\\t', header=None, usecols=[0]).values.ravel()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Observed**" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "14853" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(clustered_read_counts)" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "7907" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(aligned_clustered_read_counts)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Chao1**" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "68222.442748091606" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "skbio.diversity.alpha_diversity('chao1', clustered_read_counts)[0]" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "29560.926174496642" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "skbio.diversity.alpha_diversity('chao1', aligned_clustered_read_counts)[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Shannon entropy effective population size**" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "416.16611571375267" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2 ** skbio.diversity.alpha_diversity('shannon', clustered_read_counts)[0]" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "329.18536381797173" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "2 ** skbio.diversity.alpha_diversity('shannon', aligned_clustered_read_counts)[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Distribution of \"clone\" counts**" ] }, { "cell_type": "code", "execution_count": 49, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAD3CAYAAAAOq2P8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFNNJREFUeJzt3WGMXNdZxvH/2hvbCVpbC10TIQKhpbyESqElKE4TO7aQ\nixsXCKoUqEzVQMGkVmgaiJS0jaMqyCW0KikxpQ7aEMVpgpBIWkEtOYmgENkLrQVKJYemb2WXqh9o\n0RI29kaubewsH+5dMiyT3bN3ZzzX8f/3aebMmTvPnVnvs+femfHQzMwMkiQtZNmgA0iSzg8WhiSp\niIUhSSpiYUiSilgYkqQiw4MOUGpycnpJb+caHb2EqakTvYrTU2Zrrs35zNZcm/Odb9nGxkaGerX9\nC2aFMTy8fNARXpPZmmtzPrM11+Z8F3K2C6YwJElLY2FIkopYGJKkIhaGJKmIhSFJKmJhSJKKWBiS\npCIWhiSpiIUhSSpy3nw1yFL94h1/3XX84Q//3DlOIknnJ1cYkqQiFoYkqYiFIUkqYmFIkopYGJKk\nIkXvkoqIdcAnMnNTx9g24IOZ+fb6+nbgFuAMsCsz90XExcBjwFpgGrg5Mycj4hrggXruM5l5bw/3\nSZLUBwuuMCLiTuAhYFXH2NuA3wSG6uuXArcB1wFbgPsiYiWwAzicmRuAR4Gd9SYeBLYB64F19fYk\nSS1WckjqKPDu2SsR8QPAHwC3d8y5GpjIzFOZeQw4AlxJVQhP1XP2A5sjYjWwMjOPZuYM8DSwecl7\nIknqqwUPSWXmkxFxOUBELAf+HPg94Hsd01YDxzquTwNr5ox3jh2fM/eNC+UYHb2kL//94NjYSM+3\n2URbcnTT5mzQ7nxma67N+S7UbIv9pPdVwJuBPVSHqH4qIv4Y+BLQmXIEeImqGEbmGescn1e//tP1\nycnpvmx3McbGRlqRo5s2Z4N25zNbc23Od75l62WBLKowMvMQ8BaAetXxl5l5e30O4+MRsQpYCVwB\nPA9MAFuBQ8ANwIHMPB4RpyPiTcA3qc55eNJbklquJ2+rzczvAruBA1Srjbsz8yTVSuQtEXEQ+G1e\nLYYPAI9TFclzmfmVXuSQJPVP0QojM78FXDPfWGaOA+Nz5pwAbuqyvS/P3Z4kqd384J4kqYiFIUkq\nYmFIkopYGJKkIhaGJKmIhSFJKmJhSJKKWBiSpCIWhiSpiIUhSSpiYUiSilgYkqQiFoYkqYiFIUkq\nYmFIkopYGJKkIhaGJKmIhSFJKmJhSJKKWBiSpCIWhiSpyHDJpIhYB3wiMzdFxFuBPwHOAqeA92Xm\nf0TEduAW4AywKzP3RcTFwGPAWmAauDkzJyPiGuCBeu4zmXlvz/dMktRTC64wIuJO4CFgVT30APDB\nzNwEfB64KyIuBW4DrgO2APdFxEpgB3A4MzcAjwI76208CGwD1gPrIuJtPdsjSVJflKwwjgLvBj5X\nX39PZn6n4/4ngauBicw8BZyKiCPAlVSF8Ml67n7gnohYDazMzKMAEfE0sBl4br4Qo6OXMDy8vHjH\nSo2NjfR8m020JUc3bc4G7c5ntubanO9CzbZgYWTmkxFxecf17wBExLXA7wDXU60qjnXcbRpYA6zu\nGO8cOz5n7hsXyjE1dWKhKY1MTk73ZbuLMTY20ooc3bQ5G7Q7n9maa3O+8y1bLwuk0UnviPhVqsNK\n78rMSaoC6Ew1Arw0Z7zbWOe4JKnFFl0YEfFeqpXFpsz8Zj18CNgQEasiYg1wBfA8MAFsrefcABzI\nzOPA6Yh4U0QMUa1ODixxPyRJfVb0LqlZEbEc2A18G/h8RAA8m5kfi4jdVL/4lwF3Z+bJiNgD7I2I\ng8BpqhPdAB8AHgeWU71L6is92RtJUt8UFUZmfgu4pr76/a8xZxwYnzN2Aripy9wvd2xPknQe8IN7\nkqQiFoYkqYiFIUkqYmFIkopYGJKkIhaGJKmIhSFJKmJhSJKKWBiSpCIWhiSpiIUhSSpiYUiSilgY\nkqQiFoYkqYiFIUkqYmFIkopYGJKkIhaGJKmIhSFJKmJhSJKKDJdMioh1wCcyc1NE/DjwCDADPA/c\nmpmvRMR24BbgDLArM/dFxMXAY8BaYBq4OTMnI+Ia4IF67jOZeW+vd0yS1FsLrjAi4k7gIWBVPXQ/\nsDMzNwBDwI0RcSlwG3AdsAW4LyJWAjuAw/XcR4Gd9TYeBLYB64F1EfG23u2SJKkfSg5JHQXe3XH9\nKuDZ+vJ+YDNwNTCRmacy8xhwBLiSqhCe6pwbEauBlZl5NDNngKfrbUiSWmzBQ1KZ+WREXN4xNFT/\noofqMNMaYDVwrGNOt/HOseNz5r5xoRyjo5cwPLx8oWmLNjY20vNtNtGWHN20ORu0O5/Zmmtzvgs1\nW9E5jDle6bg8ArxEVQAjC4wvNHdeU1MnGkRd2OTkdF+2uxhjYyOtyNFNm7NBu/OZrbk25zvfsvWy\nQJq8S+q5iNhUX74BOAAcAjZExKqIWANcQXVCfALY2jk3M48DpyPiTRExRHXO48AS9kGSdA40WWHc\nAYxHxArgBeCJzDwbEbupfvEvA+7OzJMRsQfYGxEHgdNUJ7oBPgA8DiynepfUV5a6I5Kk/ioqjMz8\nFnBNffkbwMYuc8aB8TljJ4Cbusz98uz2JEnnBz+4J0kqYmFIkopYGJKkIhaGJKmIhSFJKmJhSJKK\nWBiSpCIWhiSpiIUhSSpiYUiSilgYkqQiFoYkqYiFIUkqYmFIkopYGJKkIhaGJKmIhSFJKmJhSJKK\nWBiSpCIWhiSpyHCTO0XERcBe4HLgLLAdOAM8AswAzwO3ZuYrEbEduKW+fVdm7ouIi4HHgLXANHBz\nZk4ubVckSf3UdIWxFRjOzGuB3wc+DtwP7MzMDcAQcGNEXArcBlwHbAHui4iVwA7gcD33UWDn0nZD\nktRvTQvjG8BwRCwDVgP/DVwFPFvfvh/YDFwNTGTmqcw8BhwBrgTWA0/NmStJarFGh6SAl6kOR30d\neAPwC8D1mTlT3z4NrKEqk2Md9+s2Pjs2r9HRSxgeXt4w7msbGxvp+TabaEuObtqcDdqdz2zNtTnf\nhZqtaWH8LvB0Zn4kIi4DvgSs6Lh9BHgJOF5fnm98dmxeU1MnGkad3+TkdF+2uxhjYyOtyNFNm7NB\nu/OZrbk25zvfsvWyQJoekpri1RXCfwEXAc9FxKZ67AbgAHAI2BARqyJiDXAF1QnxCarzIJ1zJUkt\n1nSF8Wng4Yg4QLWy+Cjwz8B4RKwAXgCeyMyzEbGbqhCWAXdn5smI2APsjYiDwGlg21J3RJLUX40K\nIzNfBn6ly00bu8wdB8bnjJ0Abmry2JKkwfCDe5KkIhaGJKmIhSFJKmJhSJKKWBiSpCIWhiSpiIUh\nSSpiYUiSilgYkqQiFoYkqYiFIUkqYmFIkopYGJKkIhaGJKmIhSFJKmJhSJKKWBiSpCIWhiSpiIUh\nSSpiYUiSigw3vWNEfAT4JWAF8FngWeARYAZ4Hrg1M1+JiO3ALcAZYFdm7ouIi4HHgLXANHBzZk4u\nZUckSf3VaIUREZuAa4HrgI3AZcD9wM7M3AAMATdGxKXAbfW8LcB9EbES2AEcruc+Cuxc4n5Ikvqs\n6SGpLcBh4AvAF4F9wFVUqwyA/cBm4GpgIjNPZeYx4AhwJbAeeGrOXElSizU9JPUG4EeBXwB+DPgb\nYFlmztS3TwNrgNXAsY77dRufHZvX6OglDA8vbxj3tY2NjfR8m020JUc3bc4G7c5ntubanO9Czda0\nMF4Evp6Zp4GMiJNUh6VmjQAvAcfry/ONz47Na2rqRMOo85ucnO7LdhdjbGykFTm6aXM2aHc+szXX\n5nznW7ZeFkjTQ1IHgXdGxFBE/BDwfcDf1ec2AG4ADgCHgA0RsSoi1gBXUJ0QnwC2zpkrSWqxRiuM\n+p1O11MVwjLgVuDfgPGIWAG8ADyRmWcjYjdVISwD7s7MkxGxB9gbEQeB08C2HuyLJKmPGr+tNjPv\n7DK8scu8cWB8ztgJ4Kamjy1JOvf84J4kqYiFIUkqYmFIkopYGJKkIhaGJKmIhSFJKmJhSJKKWBiS\npCIWhiSpiIUhSSpiYUiSilgYkqQiFoYkqYiFIUkqYmFIkopYGJKkIhaGJKmIhSFJKmJhSJKKWBiS\npCIWhiSpyPBS7hwRa4F/Ad4BnAEeAWaA54FbM/OViNgO3FLfvisz90XExcBjwFpgGrg5MyeXkkWS\n1F+NVxgRcRHwZ8D36qH7gZ2ZuQEYAm6MiEuB24DrgC3AfRGxEtgBHK7nPgrsbL4LkqRzYSkrjE8B\nDwIfqa9fBTxbX94P/DxwFpjIzFPAqYg4AlwJrAc+2TH3noUebHT0EoaHly8hbndjYyM932YTbcnR\nTZuzQbvzma25Nue7ULM1KoyI+HVgMjOfjojZwhjKzJn68jSwBlgNHOu4a7fx2bF5TU2daBJ1QZOT\n033Z7mKMjY20Ikc3bc4G7c5ntubanO98y9bLAmm6wng/MBMRm4G3Uh1WWttx+wjwEnC8vjzf+OyY\nJKnFGp3DyMzrM3NjZm4Cvgq8D9gfEZvqKTcAB4BDwIaIWBURa4ArqE6ITwBb58yVJLVYL99Wewdw\nb0T8E7ACeCIzvwvspiqELwF3Z+ZJYA/wlog4CPw2cG8Pc0iS+mBJb6sFqFcZszZ2uX0cGJ8zdgK4\naamPLUk6d/zgniSpiIUhSSpiYUiSilgYkqQiFoYkqYiFIUkqYmFIkopYGJKkIhaGJKmIhSFJKmJh\nSJKKWBiSpCIWhiSpiIUhSSpiYUiSilgYkqQiFoYkqYiFIUkqYmFIkopYGJKkIsNN7hQRFwEPA5cD\nK4FdwNeAR4AZ4Hng1sx8JSK2A7cAZ4BdmbkvIi4GHgPWAtPAzZk5ubRdkST1U9MVxnuBFzNzA/BO\n4DPA/cDOemwIuDEiLgVuA64DtgD3RcRKYAdwuJ77KLBzabshSeq3poXxV8A99eUhqtXDVcCz9dh+\nYDNwNTCRmacy8xhwBLgSWA88NWeuJKnFGh2SysyXASJiBHiCaoXwqcycqadMA2uA1cCxjrt2G58d\nm9fo6CUMDy9vEndeY2MjPd9mE23J0U2bs0G785mtuTbnu1CzNSoMgIi4DPgC8NnM/IuI+GTHzSPA\nS8Dx+vJ847Nj85qaOtE06rwmJ6f7st3FGBsbaUWObtqcDdqdz2zNtTnf+ZatlwXS6JBURPwg8Axw\nV2Y+XA8/FxGb6ss3AAeAQ8CGiFgVEWuAK6hOiE8AW+fMlSS1WNMVxkeBUeCeiJg9l/EhYHdErABe\nAJ7IzLMRsZuqEJYBd2fmyYjYA+yNiIPAaWDbkvZCktR3Tc9hfIiqIOba2GXuODA+Z+wEcFOTx5Yk\nDYYf3JMkFbEwJElFLAxJUhELQ5JUxMKQJBWxMCRJRSwMSVIRC0OSVMTCkCQVsTAkSUUsDElSEQtD\nklTEwpAkFbEwJElFLAxJUhELQ5JUxMKQJBWxMCRJRSwMSVIRC0OSVGR4UA8cEcuAzwI/DZwCfisz\njwwqjyRpfgMrDOCXgVWZ+faIuAb4I+DGcx3i/X/4pa7jD3/4585xEklqt0EWxnrgKYDM/HJE/OwA\ns/w/Fokk/V9DMzMzA3ngiHgIeDIz99fXvw28MTPPDCSQJGlegzzpfRwY6bi+zLKQpPYaZGFMAFsB\n6nMYhweYRZK0gEGew/gC8I6I+EdgCPiNAWaRJC1gYOcwJEnnFz+4J0kqYmFIkopYGJKkIoM86d13\n5/rrRyLiIuBh4HJgJbAL+BrwCDADPA/cmpmvRMR24BbgDLArM/dFxMXAY8BaYBq4OTMn63eRPVDP\nfSYz711CxrXAvwDvqLfXpmwfAX4JWEH1uj3bhnz167qX6nU9C2ynJc9dRKwDPpGZmyLix/uVKSI+\nBryrHr89Mw8tMttbgT+pn79TwPsy8z/akK1jbBvwwcx8e319INm6PHdrgXFgFFheP3dHB5Hv9b7C\n+N+vHwE+TPX1I/30XuDFzNwAvBP4DHA/sLMeGwJujIhLgduA64AtwH0RsRLYARyu5z4K7Ky3+yCw\njerT8esi4m1NwtW/+P4M+F491KZsm4Br68fdCFzWonxbgeHMvBb4feDjbcgWEXcCDwGr6qG+ZIqI\nn6F6TdYB7wH+tEG2B6h+GW8CPg/c1aJs1M/9b9bPG4PK9hr5Pgk8npnX14/3k4PK93ovjP/z9SNA\nv79+5K+Ae+rLQ1StfRXVX8oA+4HNwNXARGaeysxjwBHgys68s3MjYjWwMjOPZuYM8HS9jSY+RfWD\n8+/19TZl20L1WZwvAF8E9rUo3zeA4XrFuhr475ZkOwq8u+N6vzKtp/qrdCYzv10/F2OLzPaezPxq\nfXkYONmWbBHxA8AfALd3zBlUtv+Xj6oUfjgi/hb4NeAfBpXv9V4Yq4FjHdfPRkTfDsNl5suZOR0R\nI8ATVO0+VL9IUC0R13TJ1W28c+x4l7mLEhG/Dkxm5tMdw63IVnsDVaHfBHwAeJzq0/9tyPcy1eGo\nr1MdGthNC567zHySqrxm9SvTa22jOFtmfgcgIq4Ffgf4dBuyRcRy4M+B36vvO2sg2ebmq10OTGXm\nZuDbwF2Dyvd6L4xz/vUjEXEZ8PfA5zLzL4BXOm4eAV7qkqvb+EJzF+v9VB+U/AfgrVTL1bUtyQbw\nIvB0Zp7OzKT6C7Tzh3eQ+X63zvYTVOfD9lKdZ2lDtk79+lnrSdaI+FWqFe67MnOyJdmuAt4M7AH+\nEvipiPjjlmSb9SLwN/XlL1L9YTWQfK/3wjinXz8SET8IPAPclZkP18PP1cfnAW4ADgCHgA0RsSoi\n1gBXUJ2k/N+8s3Mz8zhwOiLeFBFDVIduDiw2W2Zen5kb62PIXwXeB+xvQ7baQeCdETEUET8EfB/w\ndy3JN8Wrf4n9F3ARLXld5+hXpglgS0Qsi4gfofrD6z8XEywi3ku1stiUmd+shweeLTMPZeZb6n8X\n7wG+lpm3tyFbh4Mdj3k98K+Dyve6fpcU5/7rRz5K9U6GeyJi9lzGh4DdEbECeAF4IjPPRsRuqhdt\nGXB3Zp6MiD3A3og4CJymOkkFrx6iWU51zPErPcp7BzDehmz1Ozyup/qHsAy4Ffi3luT7NPBwRByg\nWll8FPjnlmTr1LfXs973f+LV16ZYfdhnN9XhlM9HBMCzmfmxQWd7LZn53RZluwN4KCJ2UP3hsi0z\npwaRz68GkSQVeb0fkpIk9YiFIUkqYmFIkopYGJKkIhaGJKmIhSFJKmJhSJKK/A/U0HHKNiuUDwAA\nAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11da347f0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "_ = ax.hist(clustered_read_counts, bins=50)" ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD3CAYAAAD7VehMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADv9JREFUeJzt3X+s3Xddx/Hnvb1jteaW3MgZasQsEX2LJm64SdtZRjOp\ngxLs0oSwzG2yOWAEgclMNxEkGhRGLMjQITAaZ4cxYaPiMGzEIWTrnAuLM1P0bVqd/CHgFS9tWVm3\n/vCP8y07NLfbOd9+zjnf6+f5+Ot8v/2ez/fVc+69r/P5fs8535njx48jSarT7LQDSJKmxxKQpIpZ\nApJUMUtAkipmCUhSxeamufPFxYOt35q0sLCGpaVDJeMU1eV8Zmuvy/nM1l6X8y2Xrdebnyk1/oqd\nCczNrZp2hGfU5Xxma6/L+czWXpfzjTvbii0BSdLpswQkqWKWgCRVzBKQpIpZApJUMUtAkipmCUhS\nxSwBSarYVD8xfDpeff1nll2/88aLJpxEklYuZwKSVDFLQJIqVrwEIuL5EfHl0uNKksorWgIRMQNs\nB/6z5LiSpPEoPRO4Frgd+E7hcSVJY1C6BDYDbwReEhGvKTy2JKmwod8iGhHrgJsyc1NEzAK3AOcA\nh4FrMnNvZm5rtr09Mz81lsSSpGKGKoGI2A5cATzerLoEWJ2ZGyJiPbAD2Hpi+8y8fJhxFxbWFL9g\nQq83X3S809GlLCczW3tdzme29rqcb5zZhp0J7AO2Abua5Y3A3QCZ+WBEnN9m5+O4nNvi4sHiY7bR\n6813JsvJzNZel/OZrb0u51suW8lSGOqcQGbeCTw1sGotsH9g+WhErNhPH0tSrdqeGD4ADFbRbGYe\nKZBHkjRBbUtgD7AFoDkn8GixRJKkiWl7CGc3sDkiHgBmgKvKRZIkTcrQJZCZjwHrm9vH6H8wTJK0\ngvkFcpJUMUtAkipmCUhSxSwBSaqYJSBJFbMEJKliloAkVcwSkKSKWQKSVDFLQJIqZglIUsUsAUmq\nmCUgSRWzBCSpYpaAJFXMEpCkilkCklQxS0CSKmYJSFLFLAFJqpglIEkVswQkqWKWgCRVzBKQpIpZ\nApJUMUtAkipmCUhSxSwBSaqYJSBJFbMEJKliloAkVcwSkKSKWQKSVDFLQJIqZglIUsXmSg4WEecB\nbwFmgO2Z+Y2S40uSyio9E1gNXAf8NbCh8NiSpMKKlkBm7gFeBPwG8EjJsSVJ5RUtgYj4OeBh4JXA\n20uOLUkqb+hzAhGxDrgpMzdFxCxwC3AOcBi4JjP3AmuBncCTwMfGkFeSVNBQJRAR24ErgMebVZcA\nqzNzQ0SsB3YAWzPzXuDesSSVJBU37ExgH7AN2NUsbwTuBsjMByPi/DY7X1hYw9zcqjZ3PaVeb77o\neKejS1lOZrb2upzPbO11Od84sw1VApl5Z0ScPbBqLbB/YPloRMxl5pFRdr60dGiUzYeyuHiw+Jht\n9HrznclyMrO11+V8Zmuvy/mWy1ayFNqeGD4ADKaYHbUAJEnT17YE9gBbAJpzAo8WSyRJmpi2nxje\nDWyOiAfofzr4qnKRJEmTMnQJZOZjwPrm9jHg2jFlkiRNiF8gJ0kVswQkqWKWgCRVzBKQpIpZApJU\nMUtAkipmCUhSxSwBSaqYJSBJFbMEJKliloAkVcwSkKSKWQKSVDFLQJIqZglIUsUsAUmqmCUgSRWz\nBCSpYpaAJFXMEpCkilkCklQxS0CSKmYJSFLFLAFJqpglIEkVswQkqWKWgCRVzBKQpIpZApJUMUtA\nkipmCUhSxSwBSaqYJSBJFbMEJKliloAkVcwSkKSKzZUcLCJ+AbgUWAO8PzP/seT4kqSyipYA/T/+\nbwDOBX4RsAQkqcOKHg7KzLvoF8FbgdtKji1JKq9oCUTE84APA7+dmf9dcmxJUnlDHw6KiHXATZm5\nKSJmgVuAc4DDwDWZuRf4ANAD3hsRf5mZd4wj9DO5+n1fOOW/7bzxogkmkaTuG6oEImI7cAXweLPq\nEmB1Zm6IiPXADmBrZl45ys4XFtYwN7dqlLucll5vfmL7msb+RmG29rqcz2ztdTnfOLMNOxPYB2wD\ndjXLG4G7ATLzwYg4v83Ol5YOtblba4uLBye2r15vfqL7G4XZ2utyPrO11+V8y2UrWQpDnRPIzDuB\npwZWrQX2DywfjYjS7zSSJI1Z2xPDB4DBKprNzCMF8kiSJqhtCewBtgA05wQeLZZIkjQxbQ/h7AY2\nR8QDwAxwVblIkqRJGboEMvMxYH1z+xhw7ZgySZImxC+Qk6SKWQKSVDFLQJIqZglIUsUsAUmqmCUg\nSRWzBCSpYpaAJFXMEpCkilkCklQxS0CSKmYJSFLFLAFJqpglIEkVswQkqWJVXRf46vd9Ydn1O2+8\naMJJJKkbnAlIUsUsAUmqmCUgSRWzBCSpYpaAJFXMEpCkilkCklQxS0CSKmYJSFLFLAFJqpglIEkV\nswQkqWJVfYHcqfjFcpJq5UxAkipmCUhSxSwBSaqYJSBJFbMEJKlivjvoGfiuIUn/341lJhARF0XE\nreMYW5JUTvESiIgXAi8GVpceW5JUVvESyMy9mbmj9LiSpPI8MSxJFRvpxHBErANuysxNETEL3AKc\nAxwGrsnMvWPIKEkak6FLICK2A1cAjzerLgFWZ+aGiFgP7AC2ntg+My9/tjEXFtYwN7dqtMQd0OvN\nF91uGszWXpfzma29LucbZ7ZRZgL7gG3ArmZ5I3A3QGY+GBHnj7rzpaVDo96lExYXDz7rNr3e/FDb\nTYPZ2utyPrO11+V8y2UrWQpDnxPIzDuBpwZWrQX2DywfjQg/dyBJK8jpnBg+AAzW0WxmHjnNPJKk\nCTqdEtgDbAFozgk8WiSRJGliTufwzW5gc0Q8AMwAV5WJJEmalJFKIDMfA9Y3t48B144hkyRpQvyw\nmCRVzHfzFOS3jkpaaZwJSFLFLAFJqpglIEkVswQkqWKWgCRVzBKQpIr5FtEWTvVW0FG3962jkqbN\nmYAkVcwSkKSKWQKSVDFLQJIqZglIUsUsAUmqmCUgSRWzBCSpYpaAJFXMTwxPkZ8kljRtzgQkqWKW\ngCRVzBKQpIpZApJUMUtAkipmCUhSxSwBSaqYJSBJFfPDYhoLPwgnrQzOBCSpYpaAJFXMEpCkilkC\nklQxS0CSKmYJSFLFLAFJqpglIEkVK/phsYi4AHhjs/i2zPxWyfElSWWVngm8gX4JfAJ4beGxJUmF\nlS6BVZn5BPA14IcKjy1JKqx0CRyKiDPpF8DXC48tSSps6HMCEbEOuCkzN0XELHALcA5wGLgmM/cC\nHwM+CpzB0+cGJEkdNVQJRMR24Arg8WbVJcDqzNwQEeuBHcDWzHwYeN2wO19YWMPc3KrRElfgVN/A\neSp37di67PpXX/+ZU27f682PnKuEYfY7rWzDGjXfMz0PpXX5setyNhhfvhLP/zgfu2FnAvuAbcCu\nZnkjcDdAZj4YEee32fnS0qE2d9NJFhcPTuQ+JTzbfnu9+allG0bJfKX/n11+7LqcDaaTb9j9LZet\nZCkMdU4gM+8EnhpYtRbYP7B8NCK8NoEkrTBtTwwfAAaraDYzjxTII0maoLYlsAfYAtCcE3i0WCJJ\n0sS0PYSzG9gcEQ8AM8BV5SJJkiZl6BLIzMeA9c3tY8C1Y8okSZoQv0BOkipmCUhSxSwBSarYzPHj\nx6edQZI0Jc4EJKliloAkVcwSkKSKWQKSVDFLQJIqZglIUsUsAUmq2Iq7BsAzXNpyXPs7A9gJnA2c\nCbwH+Arwp8Bx4J+AN2fmsYh4Pf3Lah4B3pOZn42I7wNuB84CDgK/kpmLzbevfqjZ9vOZ+TunkfEs\n4GFgczNel7L9JvBLwHPoP29f6kK+5nm9jf7zehR4PR147E66jOsLx5UnIt4NvKpZf11mPtQi37nA\nh5vH7zBwZWZ+Y1r5BrMNrLsMeEtmbmiWp56t+X39OLAArGoet33TyrYSZwLfvbQlcCP9S1uO0+XA\nNzPzpcArgD8CPgC8s1k3A2yNiB8E3gr8PHAx8N6IOBN4E/Bos+2fAe9sxv0T4DL6V2lbFxEvbhOu\n+WP2UeA7zaouZdsEXNDs92XACzqUbwswl5kXAL8L/N60szWXcb0VWN2sGkueiPhZ+s/HOuBS4I9b\n5vsQ/T+wm4BPAzdMK98y2Wge+19tHjs6lO39wCcz88JmXz85zed1JZbA91zaEmh1acsRfAp4V3N7\nhn7Dnkf/FS3A54CXAy8B9mTm4czcD+wFfmYw74ltI2ItcGZm7svM48A9zRht/AH9H4j/apa7lO1i\n+tea2A3cBXy2Q/n+DZhrZpZr6V85b9rZTlzG9YRx5dlI/9Xj8cz8avM49FrkuzQzH2luzwFPTDHf\n92SLiB8Afh+4bmCbTmSj/4f+RyLib4BfBr44xWwrsgQmemnLzPx2Zh6MiHngDvpNPNM8+NCfoj13\nmVzLrR9cd2CZbUcSEa8DFjPznoHVncjWeB79kn4N/a8e/yT9q9B1Id+36R8K+lf6U/ObmfJjt8xl\nXMeV51RjjJQvM78GEBEXAL8GfHBa+QazRcQq4BPA25v7njD1bI2zgaXMfDnwVeCGaWWDlVkCE7+0\nZUS8APhbYFdm/jlwbOCf54FvLZNrufXPtu2orqZ/cZ8vAufSny6e1ZFsAN8E7snMJzMz6b9SHPyh\nnGa+X2+y/QT980u30T9v0YVsJ4zr56xYzoh4Lf2Z6Ksyc7Ej+c4Dfhz4CPAXwE9FxB92JBv0fy/+\nqrl9F/0XSlPLthJLYKKXtoyI5wOfB27IzJ3N6n9ojncDvBK4D3gIeGlErI6I5wIvon8y77t5T2yb\nmQeAJyPixyJihv5hk/tGzZaZF2bmy5pjso8AVwKf60K2xv3AKyJiJiJ+GPh+4N6O5Fvi6VdN/wuc\nQUee1wHjyrMHuDgiZiPiR+m/kPqfUcNFxOX0ZwCbMvPfm9VTz5eZD2XmTze/F5cCX8nM67qQrXH/\nwP4uBP55mtlW3LuDmPylLd9B/yz+uyLixLmBtwE3R8RzgH8B7sjMoxFxM/0nYxb4rcx8IiI+AtwW\nEfcDT9I/mQNPHx5ZRf843t8Xyns98PEuZGve3XAh/R/wWeDNwH90JN8HgZ0RcR/9GcA7gC93JNsJ\nY3sum//33/H08zKS5pDLzfQPZ3w6IgC+lJnv7kK+5WTm1zuS7Xrg1oh4E/0XIpdl5tK0svlV0pJU\nsZV4OEiSVIglIEkVswQkqWKWgCRVzBKQpIpZApJUMUtAkir2f+wo/5aoCK1lAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11dc85c18>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "_ = ax.hist(clustered_read_counts, bins=50, log=True)" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0, 1),\n", " None,\n", " (1.0, 154701.99999999991),\n", " <matplotlib.text.Text at 0x11d93b9b0>,\n", " <matplotlib.text.Text at 0x11da5e4a8>]" ] }, "execution_count": 51, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEaCAYAAAAMg9w+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFKBJREFUeJzt3XuUnHV9x/H3LgEiTYJS1lu1xutXJRIpAQJE8YZH8RZR\nW0WqoBGoF+qVUttapXoUDvGCghKFxoptD6KxCoq1IFUInEIUDQrfc6INx9N6CYJcFBI22f7xPGum\n4+7O7GV29rfP+/UPM/Pcvr8fm8/85jfP88zAyMgIkqRyDfa7AEnS9BjkklQ4g1ySCmeQS1LhDHJJ\nKpxBLkmFM8hFRDwjIm6axvZrIuKNM1lT2/73j4hZO082Ii6NiBNm63hjHP+QiPhUl+veExFLI2JF\nRFwy1f22bh8R6yPinZOvXP2yoN8FaF5YBUz5jUC/5wDgEZPZIDNvAF4+1f12ub3mKIO8YSLidcA7\ngJ3AbcBr25avB27KzLPbn0fEXwCnADuA+4CTgQBeDBwdEfdm5rkR8TfAy6g+8W0F3piZ/xsRVwG3\nA08EPgn8E/Ax4CnAnsAVwLsyczgijgU+APwWuH6C9mwH/g1YDrwa+E29zz8E9gDOycwLI2IQ+Aiw\nElgMDABrMvOaiHg48Fng4cCtwIPHOdYi4OPAkcAw8GXgb4AlwLnAU4ER4OvAu+t2jABDmXlbvY8R\nYAhYVrfvJ/XjvYE3AVuAM4B9I+IfM/PEthqeVtcwUvfLYP36M4BPZOayiFgFfLhu/wjwQeC/Wvdb\nt/djdX/9AXAasDYzl9WHWhURL6/b9u/AOzNzeLz/D+ovp1YaJCKWA2cCz8vMA4GvUAVRN9vuAXy0\n3vYQYB2wKjM31Pv5SB3ir6EK5kMz86nA14DPtOzqjsx8cmZ+nCpYN2XmwcBBwP7A2yPiIcCFwMvq\nZbdOUNpewFczM4AbgUuA0+vtjgLeGRErgcOogvrwzHwyVZCdXu/jXOC6zDwAOJXqjWYsZwALgSdR\nhfaR9THOAX5Vt3sF1ZtKN1MTh1GF50HABcB7M/OnwHuA74wR4nsBXwDeUW/zLeABY+z3fcCH6z54\nHfCscfa7DHhVZi4Htrft4xHAs+t2Lgfe0EV71CcGebM8G/hG/Y+azPxoZp7SzYaZuZMqRDZGxCeA\nO6nCp90LqUa9N0TEjcBbqEbto77Ttu7J9XqbgEOpwnAVsDkzf1Svd36H8kb3+QTgscCF9T7/kyro\nDsrMa4G/rY93NtU0wqJ6u+cA6+t2bgGuHOc4zwEuyMydmbkjM4/KzKuA51ONhkcyczvwqfq1Tm7N\nzBvrx98F9uuw/lOA+zPzirrWfwHuHmO9i4FzI+LzwMHAu8fZ308zc7w3yc9l5m8ycwdwEXB0h9rU\nR06tNMsw1UdtACLiAcCj2tYZoZp2GLXX6IPMPD4illEF2l8Brwde0rb9HsCZmfnJ+hh7Aw9qWX5P\n27qvyMyb63UfWB//2W01dPpIP7rPPYBf158ERtv4EODOiHgB1VTCWqqpmFuA48dp83jHa++/R1JN\n/bQPiAappopGDdTr79W23r0tj9trGMtY6/xerZl5fkR8FXgu8DzgvRFx4Bj7u2eM10btbHk8ANzf\noTb1kSPyZvkW8JyIeFj9/GTgrLZ1tlFNDxAR+wNPG30cET8FfpWZH6Ua3S6vtxlmd3B9A1gTEUvq\n52cAnxunnm8Ab4uIgTrwvwK8mWqEfUA9FQRwQpftS+C+iDi+rvmRVF/CHkw1ovxq/QZzPbCaKvgB\nLgdOqrf5Y+CZ4+z/P4DXRsRgXe8lVFMr3wDe1NKOk4Bv1tv8rj+BY7tsR2t/ttoMDETEMXWtL+b/\nv0lSv76R6lPI+rqWB9brjbffsbwyIvaOiIVU/f/1LrdTHxjkDZKZm4F3AZdHxPepRmvtUysfBx4W\nEQl8Hriq3vY24P3AFRGxCfgQsKbe5uvAqRHx11Tz4ZcC10XED4EDGT+IT6X6om0z8IP6v2dl5jbg\nOODzEfFd4NFdtm8H1SeENRHxA6ov6f4uM6+hmu44qn79WuDHwKPrL0HfBDw5Im6mmi66ccwDVHPP\nO4DvA98DvpaZX6rb8eC6/s1UbygfaGnjuXU7DgJ+1kVTrgWeGBEb2tp3P9Ub0D/UU0fHAr8cY/vT\ngDMi4ntUb97vy8yt4+13HP8NXF2389tU3ylojhrwNraSVDZH5JJUOINckgrXVZBHxGH1xRztr78o\nIq6PiGsjwvNMJakPOgZ5RJxG9QXWwrbX96S6oOO5VN/cn1Sf6iVJmkXdnEf+Y6pvx9tPIXsSsCUz\n7wCIiKuBp1NdNDKukZGRkYGBTqfLSirN0qVL+13CvLZ169Zxg7NjkGfmFyNi6RiLllBd3TfqbmDf\nTvsbGBhg27axLkZrjqGhxY3ug6a3H+Z+Hxx88LLOK03D4OAAu3bN3BlzmzaVd8+2mfwbmM6VnXdR\n3Xxo1GLg19MrR9JM6nUgt5pMmM71N7LSTCfIbwYeHxH7UV3q+3Tg7BmpStKEeh3QJY5wm2zSQR4R\nxwGLMnNdRLyd6vLkQeDCzPyfmS5QaqqZCGsDuRn6cWXnSNM/UjX9Y2XT23/wwcumPUdcekA3/W8A\nJt8HQ0OLp/5lp6Tpm8rouvSw1uwxyKUZ0m1Yb9p0kyNSzSiDXJqEqc5bO7pWLxnkUhvDWqUxyCUm\nNy0izTUGuRrDsNZ8ZZBrXjO81QQGuYpnWKvpDHIVyfCWdjPINWcZ1lJ3DHL1laf6SdNnkGvWLV26\ntKv7jBjWUncMcvXERCPtwcHd9/4xrKXpM8g1ZVOdFtm6dav3GZFmkEGuCTmHLc19BrkAb7Mqlcwg\nbxDDWpqfDPJ5wJ8Ek5rNIC+EYS1pPAb5HOIXi5KmwiDvMy9DlzRdBvksm+gX1A1rSVNhkM+CiUbd\nhrek6TLIe2S88PYX1CXNNIN8hjjqltQvBnmPGN6SZotBPkkTTZlIUj8M9rsASdL0OCLvoH0E7shb\n0lzjiFySCueIHM84kVQ2R+SSVDhH5DjqllQ2R+SSVLhGjcg9B1zSfNQxyCNiEDgPWA5sB9Zk5paW\n5a8G3gHsBC7MzE/2qFZJ0hi6GZGvBhZm5uERsRJYC7ykZfnZwAHAPcCPIuJfM/OOmS91+hx5S5qP\nupkjXwVcDpCZ1wEr2pb/ANgXWAgMAL9/o21JUs90MyJfAtzZ8nxnRCzIzOH6+U3AJuA3wJcy89ed\ndjg0tHjShc43Te+Dprcf7IOmtx9mrg+6CfK7gNajDY6GeEQcCLwAeDTV1MpFEfGKzPzCRDts+r24\nm34/8qa3H+yDprcfJt8HE4V+N1Mr1wDHANRz5Jtblt0J3Avcm5k7gV8CD+q6MknStHUzIt8AHB0R\nG6nmwE+MiOOARZm5LiLOB66OiB3Aj4H1Pau25q/NS9JuHYM8M3cBp7S9fEvL8k8Bn5rhuiRJXSry\ngiBH1pK0m5foS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINckgpnkEtS4QxySSqcQS5J\nhTPIJalws37TrKVLl7Jr1/R+Dc6bZknSbo7IJalwsz4i37p1a+N/4kmSZpIjckkqnEEuSYUzyCWp\ncAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINckgpn\nkEtS4QxySSqcQS5JhTPIJalwBrkkFa7jjy9HxCBwHrAc2A6sycwtLcsPAT4MDAA/B47PzPt6U64k\nqV03I/LVwMLMPBw4HVg7uiAiBoBPAydm5irgcuBRvShUkjS2jiNyYDSgyczrImJFy7InAL8C3hYR\ny4DLMjM77XBoaPFUap1Xmt4HTW8/2AdNbz/MXB90E+RLgDtbnu+MiAWZOQzsDxwBvBnYAlwaETdk\n5pUT7XDbtrunWu+8MDS0uNF90PT2g33Q9PbD5PtgotDvZmrlLqB1D4N1iEM1Gt+SmTdn5v1UI/cV\n7TuQJPVON0F+DXAMQESsBDa3LPsJsCgiHlc/fxrwwxmtUJI0oW6mVjYAR0fERqozU06MiOOARZm5\nLiJeD/xz/cXnxsy8rIf1SpLadAzyzNwFnNL28i0ty68EDp3huiRJXfKCIEkqnEEuSYUzyCWpcAa5\nJBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINckgpnkEtS\n4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuEMckkqnEEuSYUzyCWpcAa5JBXO\nIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXALOq0QEYPAecByYDuwJjO3jLHeOuD2zDx9\nxquUJI2rmxH5amBhZh4OnA6sbV8hIk4GnjLDtUmSutBNkK8CLgfIzOuAFa0LI+II4DDg/BmvTpLU\nUcepFWAJcGfL850RsSAzhyPiYcDfAy8F/rTbgw4NLZ5clfNQ0/ug6e0H+6Dp7YeZ64NugvwuoPVo\ng5k5XD9+BbA/8DXgocA+EXFLZq6faIfbtt09hVLnj6GhxY3ug6a3H+yDprcfJt8HE4V+N0F+DfAi\n4OKIWAlsHl2QmecA5wBExAnAEzuFuCRpZnUT5BuAoyNiIzAAnBgRxwGLMnNdT6uTJHXUMcgzcxdw\nStvLt4yx3voZqkmSNAleECRJhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuEMckkqnEEuSYUz\nyCWpcAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINc\nkgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuEMckkqnEEuSYUzyCWp\ncAa5JBXOIJekwi3otEJEDALnAcuB7cCazNzSsvxVwFuBYWAz8MbM3NWbciVJ7boZka8GFmbm4cDp\nwNrRBRHxAOD9wDMz80hgX+CFvShUkjS2jiNyYBVwOUBmXhcRK1qWbQeOyMzftuzvvk47HBpaPNk6\n552m90HT2w/2QdPbDzPXB90E+RLgzpbnOyNiQWYO11MovwCIiLcAi4Bvdtrhtm13T6XWeWNoaHGj\n+6Dp7Qf7oOnth8n3wUSh302Q3wW07mEwM4dHn9Rz6GcBTwBelpkjXVcmSZq2bubIrwGOAYiIlVRf\naLY6H1gIrG6ZYpEkzZJuRuQbgKMjYiMwAJwYEcdRTaPcALwe+A5wZUQAfCwzN/SoXklSm45BXs+D\nn9L28i0tjz0XXZL6yBCWpMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSS\nVDiDXJIKZ5BLUuEMckkqnEEuSYUzyCWpcAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmF\nM8glqXAGuSQVziCXpMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiD\nXJIKt6DTChExCJwHLAe2A2syc0vL8hcB7wGGgQsz89M9qlWSNIZuRuSrgYWZeThwOrB2dEFE7Al8\nBHgucBRwUkQ8pBeFSpLG1k2QrwIuB8jM64AVLcueBGzJzDsycwdwNfD0Ga9SkjSujlMrwBLgzpbn\nOyNiQWYOj7HsbmDfDvsbGBpaPLkq56Gm90HT2w/2QdPbDzPXB92MyO8CWo82WIf4WMsWA7+ekcok\nSV3pJsivAY4BiIiVwOaWZTcDj4+I/SJiL6pplWtnvEpJ0rgGRkZGJlyh5ayVA4EB4ETgT4BFmbmu\n5ayVQaqzVs7tbcmSpFYdg1ySNLd5QZAkFc4gl6TCGeSSVDiDXJIK180FQT0VEUcAJ9dP/zIzG3ke\nekQ8CzguM9f0u5bZFhHPBl4J7AOclZnf73NJsyoiDgbeQnVW2GmZ+Ys+l9QX9e09LsvMFR1Xnmci\nYjnwceAnwGcz81uT2X4ujMhPogryC4A/63MtfRERjwMOAhb2u5Y+2Yfq7+Bsqvv2NM1C4K3AZcDh\nfa6lLyJiADgNuLXftfTJYcDPgZ3ADye78VwI8j0y8z7gZ8DD+l1MP2Tmlsxc23nN+Skzv0oV5qcC\nn+1zObMuM6+hum/RO4Eb+1xOv5wCXATc2+9C+uRq4A3AmVR/B5MyF4L8txGxN1WI/7zfxWj2RcT+\nVB8r35OZv+x3PbMtIg4BNgHPB97e53L65WiqT+aHRsQr+l1MHzyVKo/vYApT3j2dI4+Iw4AzM/MZ\nE9zXfB1wPrAnu+fK540u+2De6rL9HwaGgA9GxJcz85L+VTyzumz/EuBCYAfVv4d5pZs+yMxj63Uv\nyswv9LHcGdfl38BWqsHM/cAZkz1Gz4I8Ik4D/hz4Tf3S7+5rXt+zZS3wkszcBJzQqzr6qds+GF0/\nM4+f/Sp7ZxJ/A6/pV429NIn2XwFc0acye8p/A13/DWwENk71OL2cWvkxcGzL84nuaz5fNb0PbH+z\n2w/2way0v2dBnplfpPqYMGrM+5r36vhzQdP7wPY3u/1gH8xW+2fzy86J7mveFE3vA9vf7PaDfdCT\n9s9mkE90X/OmaHof2P5mtx/sg560fzY/0mwAjo6Ijey+r3nTNL0PbH+z2w/2QU/a7/3IJalwc+GC\nIEnSNBjkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAGuTRJEfHoiLig33VIowxyafIeBTy230VI\no7yyU/NS/RuQHwJeCgxT/XjJ16l+uGE/qvtDn5qZ10fEeuCqzFxfbzuSmQMR8V7gj4DHU4X3ZzLz\nAxHxA+AxVD+S+6ZZbZg0Bkfkmq9eDhwJPAU4lOqeFpcC52TmgcDbgEvqnxmcyIFUPwh9GHB6RDyQ\n6rdFbzDENVcY5JqvjgIuzsztmXkP1Q3998/ML8Hvbup/OxAd9vOtzNxR/5bo7cC+vSxamgqDXPPV\n/W3PH0N1t7lWA1R3AB0ZXRYRe7atc1/L49+tJ80lBrnmq28Dx0bEnhGxD3AxMBIRoz/yuxJ4KHAT\ncBtwQL3d6i72Pczs3gJampBBrnkpMzdQ3cT/u8D1wMeAI4BTI2Iz8Ang2MzcAXwSOKr+EvNI4Gcd\ndn8z8MCI+Fyv6pcmw7NWJKlwjsglqXAGuSQVziCXpMIZ5JJUOINckgpnkEtS4QxySSrc/wGrAn74\nYiHq7QAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11d8f37f0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hist, bin_edges = np.histogram(clustered_read_counts, bins=np.logspace(0, np.log10(clustered_read_counts.max()), 100))\n", "cdf = np.cumsum(hist) / hist.sum()\n", "fig, ax = plt.subplots()\n", "ax.hlines(cdf, bin_edges[:-1], bin_edges[1:])\n", "ax.set(title='clustered read count distrib', xlabel='count', xlim=[bin_edges[0], bin_edges[-1]], ylim=[0, 1], xscale='log')" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD5CAYAAAAp8/5SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAE6BJREFUeJzt3X2MXNdZx/Hv2hu/ofWyUsdElSLK6yOrklvkKkDtjS3k\n4NoCDIhUKBTcRrhuZCkFRaJN7CCCXIWXEsBCdWFLsIPpP3UpUEtOghpq7KVgtQTJFukTGYr4A1Va\nwnq9ZWu7tpc/7l26L7M7E+/utHvm+5Es3Tn3zJ17Hnl/c+bMnZmeyclJJEnlWvWtPgFJ0vIy6CWp\ncAa9JBXOoJekwhn0klQ4g16SCtfbqkNE3AOcBN4C3AYOALeAE8AkcBk4lJl3IuIAcLDefzQzz0TE\neuAUsAkYB/Zn5sjSD0WS1ExPq+voI2If8AuZ+e6IeBD4AHAP8Gxmfj4iPg68CHwB+FvgHcA64EK9\nfQjYmJm/ERE/D/xoZn5wocccGRm/64v7BwY2MDo6cbd3L471mMl6zGQ95lrJNWk0+nqatbezdPMa\n0BsRq4CNwDeArcC5ev9ZYBdwPzCcmTcycwy4AmwBtgMvzOq7bHp7Vy/n4Vcc6zGT9ZjJesxVYk1a\nLt0AX6Natvky8CbgJ4AHMnNq1j0O9FM9CYxNu1+z9qm2BQ0MbFhUsRuNvru+b4msx0zWYybrMVdp\nNWkn6H8VeDEzn4iI+4CXgTXT9vcBV4Fr9fZC7VNtC1rMy6ZGo4+RkfG7vn9prMdM1mMm6zHXSq7J\nfE9Q7SzdjPLNGfn/UK3PvxIRO+u2PcB54CIwGBHrIqIf2Ez1Ru0wsHdWX0lSh7Qzo/994LmIOE81\nk38S+CIwFBFrgFeB05l5OyKOUQX5KuBwZl6PiOPAyYi4ANwEHl6OgUiSmmt51c23wmKuulnJL7uW\ng/WYyXrMZD3mWsk1WcxVN5KkFcygl6TCGfSSVDiDXpIK185VNyvKTz7+103bn/vwj3X4TCTp24Mz\nekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCX\npMIZ9JJUuJZfUxwR7wXeW99cB7wd2A78ATAJXAYOZeadiDgAHARuAUcz80xErAdOAZuAcWB/Zo4s\n8TgkSfNoOaPPzBOZuTMzdwJfAh4Dfh04kpmDQA+wLyLurfdtA3YDz0TEWuBR4FLd93ngyLKMRJLU\nVNtLNxHxDuCtmfknwFbgXL3rLLALuB8YzswbmTkGXAG2UM3+X5jVV5LUIW/kF6aeBJ6ut3syc7Le\nHgf6gY3A2LT+zdqn2hY0MLCB3t7Vb+DUWms0+pb0eCtJN4+9Gesxk/WYq7SatBX0EfGdQGTm39VN\nd6bt7gOuAtfq7YXap9oWNDo60c5pvSEjI+NLfsyVoNHo69qxN2M9ZrIec63kmsz3BNXu0s0DwOem\n3X4lInbW23uA88BFYDAi1kVEP7CZ6o3aYWDvrL6SpA5pN+gD+Pdptx8Hno6ILwBrgNOZ+VXgGFWQ\nvwwczszrwHHgrRFxAXg/31z+kSR1QFtLN5n5u7NuvwbsaNJvCBia1TYBPLSIc5QkLYIfmJKkwhn0\nklQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9J\nhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIK19ZvxkbEE8BPUf0Q+MeAc8AJYBK4DBzKzDsRcQA4CNwC\njmbmmYhYD5wCNgHjwP7MHFnqgUiSmms5o4+IncA7gW1UPwh+H/AscCQzB4EeYF9E3As8VvfbDTwT\nEWuBR4FLdd/ngSPLMA5J0jzaWbrZDVwCPgN8FjgDbKWa1QOcBXYB9wPDmXkjM8eAK8AWYDvwwqy+\nkqQOaWfp5k3AdwM/AXwP8DfAqsycrPePA/3ARmBs2v2atU+1LWhgYAO9vavbOf+2NRp9S3q8laSb\nx96M9ZjJesxVWk3aCfrXgS9n5k0gI+I61fLNlD7gKnCt3l6ofaptQaOjE22c1hszMjK+5MdcCRqN\nvq4dezPWYybrMddKrsl8T1DtLN1cAN4VET0R8WbgO4DP1Wv3AHuA88BFYDAi1kVEP7CZ6o3aYWDv\nrL6SpA5pOaOvr5x5gCrIVwGHgK8AQxGxBngVOJ2ZtyPiGFWQrwIOZ+b1iDgOnIyIC8BN4OFlGosk\nqYm2Lq/MzF9r0ryjSb8hYGhW2wTw0F2dnSRp0fzAlCQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqc\nQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0\nklS4tn4zNiL+GbhW3/wK8BHgBDAJXAYOZeadiDgAHARuAUfrHxZfD5wCNgHjwP7MHFnSUUiS5tVy\nRh8R64CezNxZ/3sf8CxwJDMHgR5gX0TcCzwGbAN2A89ExFrgUeBS3fd54MgyjUWS1EQ7M/q3ARsi\n4qW6/5PAVuBcvf8s8OPAbWA4M28ANyLiCrAF2A78zrS+Ty3d6UuSWmkn6CeAjwKfAH6AKqx7MnOy\n3j8O9AMbgbFp92vWPtW2oIGBDfT2rm7n/NvWaPQt6fFWkm4eezPWYybrMVdpNWkn6F8DrtTB/lpE\nvE41o5/SB1ylWsPva9E+1bag0dGJNk7rjRkZGV/yY64EjUZf1469Gesxk/WYayXXZL4nqHauunkE\n+D2AiHgz1Qz9pYjYWe/fA5wHLgKDEbEuIvqBzVRv1A4De2f1lSR1SDsz+j8FTkTEBaqrbB4B/hsY\niog1wKvA6cy8HRHHqIJ8FXA4M69HxHHgZH3/m8DDyzEQSVJzLYM+M+cL5x1N+g4BQ7PaJoCH7vYE\nJUmL4wemJKlwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0\nklQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMK18+PgRMQm4EvAg8At4ATVD4VfBg5l\n5p2IOAAcrPcfzcwzEbEeOAVsAsaB/Zk5suSjkCTNq+WMPiLuAf4Y+Hrd9CxwJDMHgR5gX0TcCzwG\nbAN2A89ExFrgUeBS3fd54MjSD0GStJB2lm4+Cnwc+K/69lbgXL19FtgF3A8MZ+aNzBwDrgBbgO3A\nC7P6SpI6aMGlm4h4LzCSmS9GxBN1c09mTtbb40A/sBEYm3bXZu1TbS0NDGygt3d1WwNoV6PRt6TH\nW0m6eezNWI+ZrMdcpdWk1Rr9I8BkROwC3k61/LJp2v4+4Cpwrd5eqH2qraXR0Yl2ur0hIyPjS37M\nlaDR6OvasTdjPWayHnOt5JrM9wS14NJNZj6QmTsycyfwL8AvAWcjYmfdZQ9wHrgIDEbEuojoBzZT\nvVE7DOyd1VeS1EF3c3nl48DTEfEFYA1wOjO/ChyjCvKXgcOZeR04Drw1Ii4A7weeXprTliS1q63L\nKwHqWf2UHU32DwFDs9omgIfu9uQkSYvnB6YkqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqc\nQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwrX8\nzdiIWE31W7ABTAIfAK4DJ+rbl4FDmXknIg4AB4FbwNHMPBMR64FTwCZgHNifmSPLMBZJUhPtzOh/\nEiAztwFHgI8AzwJHMnMQ6AH2RcS9wGPANmA38ExErAUeBS7VfZ+vjyFJ6pCWQZ+ZfwW8v7753cBV\nYCtwrm47C+wC7geGM/NGZo4BV4AtwHbghVl9JUkd0nLpBiAzb0XESeBngJ8DHszMyXr3ONAPbATG\npt2tWftU24IGBjbQ27u6rQG0q9HoW9LjrSTdPPZmrMdM1mOu0mrSVtADZOb+iPgQ8E/A+mm7+qhm\n+dfq7YXap9oWNDo60e5ptW1kZHzJj7kSNBp9XTv2ZqzHTNZjrpVck/meoFou3UTEL0bEE/XNCeAO\n8MWI2Fm37QHOAxeBwYhYFxH9wGaqN2qHgb2z+kqSOqSdGf1fAn8WEX8P3AP8CvAqMBQRa+rt05l5\nOyKOUQX5KuBwZl6PiOPAyYi4ANwEHl6OgUiSmmsZ9Jn5v8C7m+za0aTvENWlmNPbJoCH7vYEJUmL\n4wemJKlwBr0kFc6gl6TCGfSSVDiDXpIKZ9BLUuEMekkqnEEvSYUz6CWpcAa9JBXOoJekwhn0klQ4\ng16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIt+JuxEXEP8BzwFmAtcBT4V+AEMAlcBg5l\n5p2IOAAcBG4BRzPzTESsB04Bm4BxYH9mjizPUCRJzbSa0b8HeD0zB4F3AX8EPAscqdt6gH0RcS/w\nGLAN2A08ExFrgUeBS3Xf54EjyzMMSdJ8WgX9p4Cn6u0eqtn6VuBc3XYW2AXcDwxn5o3MHAOuAFuA\n7cALs/pKkjpowaWbzPwaQET0AaepZuQfzczJuss40A9sBMam3bVZ+1RbSwMDG+jtXd3mENrTaPQt\n6fFWkm4eezPWYybrMVdpNVkw6AEi4j7gM8DHMvOTEfE703b3AVeBa/X2Qu1TbS2Njk600+0NGRkZ\nX/JjrgSNRl/Xjr0Z6zGT9ZhrJddkvieoBZduIuK7gJeAD2Xmc3XzKxGxs97eA5wHLgKDEbEuIvqB\nzVRv1A4De2f1lSR1UKsZ/ZPAAPBUREyt1X8QOBYRa4BXgdOZeTsijlEF+SrgcGZej4jjwMmIuADc\nBB5ellFIkubVao3+g1TBPtuOJn2HgKFZbRPAQ4s5QUnS4viBKUkqnEEvSYUz6CWpcAa9JBXOoJek\nwhn0klQ4g16SCmfQS1LhDHpJKpxBL0mFM+glqXAGvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqc\nQS9JhTPoJalwrX4cHICI+GHgtzNzZ0R8P3ACmAQuA4cy805EHAAOAreAo5l5JiLWA6eATcA4sD8z\nR5ZhHJKkebSc0UfErwGfANbVTc8CRzJzEOgB9kXEvcBjwDZgN/BMRKwFHgUu1X2fB44s/RAkSQtp\nZ+nm34CfnXZ7K3Cu3j4L7ALuB4Yz80ZmjgFXgC3AduCFWX0lSR3UcukmMz8dEW+Z1tSTmZP19jjQ\nD2wExqb1adY+1dbSwMAGentXt9O1bY1G35IebyXp5rE3Yz1msh5zlVaTttboZ7kzbbsPuApcq7cX\nap9qa2l0dOIuTmthIyPjS37MlaDR6OvasTdjPWayHnOt5JrM9wR1N1fdvBIRO+vtPcB54CIwGBHr\nIqIf2Ez1Ru0wsHdWX0lSB91N0D8OPB0RXwDWAKcz86vAMaogfxk4nJnXgePAWyPiAvB+4OmlOW1J\nUrvaWrrJzP8AfqTefg3Y0aTPEDA0q20CeGjRZylJumt+YEqSCmfQS1LhDHpJKpxBL0mFM+glqXAG\nvSQVzqCXpMIZ9JJUOINekgpn0EtS4Qx6SSqcQS9JhTPoJalwBr0kFc6gl6TCGfSSVDiDXpIKZ9BL\nUuEMekkqXFu/GbsYEbEK+BjwNuAG8MuZeWW5H3e2R37r5abtz334xzp8JpLUWZ2Y0f80sC4zfxT4\nMPB7HXhMSVJt2Wf0wHbgBYDM/MeIeEcHHrNt8830l4qvGCR9q/VMTk4u6wNExCeAT2fm2fr2fwLf\nm5m3lvWBJUlAZ5ZurgF90x/TkJekzulE0A8DewEi4keASx14TElSrRNr9J8BHoyIfwB6gPd14DEl\nSbVlX6OXJH1r+YEpSSqcQS9JhTPoJalwnXgzdtl9u3zNwnKKiHuA54C3AGuBo8C/AieASeAycCgz\n70TEAeAgcAs4mplnImI9cArYBIwD+zNzpL4S6g/rvi9l5tMdHdgiRcQm4EvAg1RjOEF31+MJ4KeA\nNVR/E+fo0prUfzMnqf5mbgMH6NL/I6XM6LvhaxbeA7yemYPAu4A/Ap4FjtRtPcC+iLgXeAzYBuwG\nnomItcCjwKW67/PAkfq4HwcepvoE8w9HxA91cEyLUv8h/zHw9bqp2+uxE3gn1Vh3APfR3TXZC/Rm\n5juB3wQ+QpfWo5Sgn/E1C8C31dcsLJFPAU/V2z1Us4mtVDM2gLPALuB+YDgzb2TmGHAF2MK0Gk31\njYiNwNrM/LfMnARerI+xUnyU6o/uv+rb3V6P3VSfU/kM8FngDN1dk9eA3voV/0bgG3RpPUoJ+o3A\n2LTbtyOiiGWpKZn5tcwcj4g+4DTV7KKn/s8G1UvLfubWoln79LZrTfp+24uI9wIjmfnitOaurUft\nTVSTnIeADwB/QfVJ9G6tydeolm2+DAwBx+jS/yOlBH1XfM1CRNwH/B3w55n5SeDOtN19wFXm1qJZ\ne6u+K8EjVB/E+zzwdqqX1pum7e+2egC8DryYmTczM4HrzAyhbqvJr1LV4wep3r87SfXexZSuqUcp\nQV/81yxExHcBLwEfyszn6uZX6nVZgD3AeeAiMBgR6yKiH9hM9abT/9doqm9mXgNuRsT3RUQP1Uv/\n8x0Z0CJl5gOZuSMzdwL/AvwScLZb61G7ALwrInoi4s3AdwCf6+KajPLNGfn/APfQpX8zpSxvdMPX\nLDwJDABPRcTUWv0HgWMRsQZ4FTidmbcj4hjVf75VwOHMvB4Rx4GTEXEBuEn1ZhJ88yX+aqorCP6p\nc0Naco8DQ91aj/pKkQeogmsVcAj4Ct1bk98HnouI81Qz+SeBL9KF9fArECSpcKUs3UiS5mHQS1Lh\nDHpJKpxBL0mFM+glqXAGvSQVzqCXpML9HxAc6SUnQyeGAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11dcab978>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "_ = ax.hist(aligned_clustered_read_counts, bins=50)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD6CAYAAABebNdxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADVVJREFUeJzt3W+MXXldx/H3TGfZWjMlk3AXNSEx0fgNTyyESqdrgWa1\nAk2wmyZEY7ZASYEaIqhr6opgosFgjcW4miqgDWsXn7BNJYuhS7KoWdpUw0ZMjfo1baxP/DfBoS0t\n2+0/H9xb9l62M3PnzJl/3/t+PbrnzLm/87vfzP3c3/2de84Zu3PnDpKkGsZXuwOSpPYY6pJUiKEu\nSYUY6pJUiKEuSYUY6pJUiKEuSYW0HuoR8eqI+Frb7UqSFjbRZmMRMQYcAv5jmO1nZq40PvNpamoT\ns7PXmj69JGsyyHoMsh6D1nM9Op3Jsbn+1vZI/SDwJPDtltt9mYmJDcu9i3XHmgyyHoOsx6Cq9Wg7\n1HcBHwDeGBHvbLltSdIChp5+iYhtwOHM3BkR48BRYAtwHTiQmeczc29v2ycz8/PL0mNJ0pyGCvWI\nOATsA672Vj0MbMzM7RExDRwB9tzdPjMfGabdqalNS/oK1OlMNn5uVdZkkPUYZD0GVazHsCP1C8Be\n4HhveQdwCiAzz0bE1iY7X8pBik5nkpmZK42fX5E1GWQ9BlmPQeu5HvN9GA01p56ZJ4Abfas2A5f6\nlm9FRKu/pJEkLV7TA6WXgf6PivHMvNlCfyRJS9A01E8DuwF6c+rnWuuRJKmxplMmJ4FdEXEGGAP2\nt9clSVJTQ4d6Zl4EpnuPb9M90WjVvOPRL9xz/bHHHlrhnkjS2uEFvSSpEENdkgox1CWpEENdkgox\n1CWpEENdkgox1CWpEENdkgox1CWpEENdkgox1CWpEENdkgox1CWpEENdkgox1CWpEENdkgox1CWp\nEENdkgox1CWpEENdkgox1CWpEENdkgox1CWpEENdkgox1CWpEENdkgox1CWpEENdkgox1CWpEENd\nkgox1CWpEENdkgox1CWpEENdkgox1CWpEENdkgox1CWpEENdkgox1CWpkIk2G4uINwC/AIwBhzLz\nf9psX5I0v7ZH6huBXwT+CtjectuSpAW0GuqZeRp4LfArwNfbbFuStLBWQz0ifgx4Hng78Mttti1J\nWtjQc+oRsQ04nJk7I2IcOApsAa4DBzLzPLAZOAa8CHx6GforSZrHUKEeEYeAfcDV3qqHgY2ZuT0i\npoEjwJ7MfBZ4dtidT01tYmJiwyK7PL9OZ7LV9tabUX/93816DLIegyrWY9iR+gVgL3C8t7wDOAWQ\nmWcjYmuTnc/OXmvytHnNzFxpvc31otOZHOnX/92sxyDrMWg912O+D6Oh5tQz8wRwo2/VZuBS3/Kt\niGj155GSpMVreqD0MtD/UTGemTdb6I8kaQmahvppYDdAb079XGs9kiQ11nTK5CSwKyLO0D17dH97\nXZIkNTV0qGfmRWC69/g2cHCZ+iRJasgLeklSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6\nJBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBVi\nqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtS\nIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIRNtNhYRPwH8LLAJ+N3M/Mc225ckza/VUKcb5u8H\nXgf8FGCoS9IKanX6JTOfphvsHwKeaLNtSdLCWg31iHgV8IfAb2Tm/7bZtiRpYUNPv0TENuBwZu6M\niHHgKLAFuA4cyMzzwCeBDvCJiPjLzHxqOTotSbq3oUI9Ig4B+4CrvVUPAxszc3tETANHgD2Z+a7F\n7HxqahMTExsW85QFvfd3vjLn354+sqfVfa1Fnc7kandhTbEeg6zHoIr1GHakfgHYCxzvLe8ATgFk\n5tmI2Npk57Oz15o8rbGZmSsrur+V1ulMln+Ni2E9BlmPQeu5HvN9GA01p56ZJ4Abfas2A5f6lm9F\nRNu/pJEkLVLTA6WXgf6PivHMvNlCfyRJS9A01E8DuwF6c+rnWuuRJKmxplMmJ4FdEXEGGAP2t9cl\nSVJTQ4d6Zl4EpnuPbwMHl6lPkqSGvKCXJBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtS\nIYa6JBUyUldWnOta68cee2iFeyJJy8ORuiQVYqhLUiGGuiQVYqhLUiGGuiQVYqhLUiGGuiQVYqhL\nUiGGuiQVYqhLUiGGuiQVYqhLUiGGuiQVYqhLUiGGuiQVYqhLUiGGuiQVMlJ3PpqLd0SSVIUjdUkq\nxFCXpEIMdUkqxFCXpEIMdUkqxFCXpEIMdUkqxN+pN+Dv2iWtVY7UJakQQ12SCjHUJamQZQn1iHgo\nIv50OdqWJM2t9QOlEfHDwOuBjW23vdLmOiAqSWtV6yP1zDyfmUfableStDDn1CWpkEVNv0TENuBw\nZu6MiHHgKLAFuA4cyMzzy9BHSdKQhg71iDgE7AOu9lY9DGzMzO0RMQ0cAfbc3T4zH1mozampTUxM\nbFhcj9ewTmdytbuwJvqwlliPQdZjUMV6LGakfgHYCxzvLe8ATgFk5tmI2LrYnc/OXlvsU9a0mZkr\nq7r/Tmdy1fuwlliPQdZj0Hqux3wfRkPPqWfmCeBG36rNwKW+5VsR4WUHJGkVLeVA6WWg/+NiPDNv\nLrE/kqQlWEqonwZ2A/Tm1M+10iNJUmNLmS45CeyKiDPAGLC/nS5JkppaVKhn5kVguvf4NnBwGfok\nSWrIk48kqRBDXZIKMdQlqRBDXZIK8WShFnnvUkmrzZG6JBViqEtSIYa6JBViqEtSIYa6JBViqEtS\nIYa6JBViqEtSIZ58tIrmOllpsTy5SdJdjtQlqRBDXZIKMdQlqRBDXZIKMdQlqRBDXZIK8SeNK6Ct\nny5K0kIcqUtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBViqEtSIYa6JBXiyUcFtHlyk9dml9Y3R+qS\nVIihLkmFGOqSVIihLkmFGOqSVIihLkmFGOqSVIihLkmFGOqSVEirZ5RGxIPAB3qLH87Mb7bZviRp\nfm2P1N9PN9T/DPiZltuWJC2g7VDfkJkvAP8FfH/LbUuSFtB2qF+LiPvpBvp/t9y2JGkBQ8+pR8Q2\n4HBm7oyIceAosAW4DhzIzPPAp4FPAffx0ty6JGmFDBXqEXEI2Adc7a16GNiYmdsjYho4AuzJzOeB\n9wy786mpTUxMbFhcj7WsFnsZ36eP7Lnn+nc8+oVFbd+W1dpvE3P1dS5tvIZOZ3LJbVSyEvVY6f/J\nYUfqF4C9wPHe8g7gFEBmno2IrU12Pjt7rcnTtIbMzFxZ1u3bslr7bdNSX0OnM1miDm1Z7XosZd/z\nfRgNNaeemSeAG32rNgOX+pZvRYQ33JCkVdb0QOlloP+jYjwzb7bQH0nSEjQN9dPAboDenPq51nok\nSWqs6ZTJSWBXRJwBxoD97XVJktTU0KGemReB6d7j28DBZeqTJKkhL+glSYUY6pJUiKEuSYWM3blz\nZ7X7IElqiSN1SSrEUJekQgx1SSrEUJekQgx1SSrEUJekQgx1SSpk3V0DfZ5b6ZUREfcBx4AfBO4H\nPg78M/BZ4A7wT8AHM/N2RLyP7q0DbwIfz8wvRsT3AE8CDwBXgHdn5kzvipp/0Nv2y5n5myv6wpYo\nIh4Angd20X0Nn2VE6xERvwb8NPAKuu+Hv2VE69F7vzxB9/1yC3gfI/z/sR5H6t+5lR7wGN1b6VXz\nCPCNzHwT8Dbgj4BPAh/trRsD9kTE9wEfAn4ceCvwid6Nv38eONfb9s+Bj/ba/RPg5+jeuWpbRLx+\nBV/TkvTeuJ8Cvt1bNbL1iIidwIN0X+dbgNcwwvWgexnwicx8EPgt4LcZ4Xqsx1AfuJUe0OhWemvc\n54GP9R6P0R0pvIHuaAzgS8BPAm8ETmfm9cy8BJwHfpS+Gt3dNiI2A/dn5oXMvAM802tjvfg9um+y\n/+wtj3I93kr3HgYngaeBLzLa9fg3YKL3LX4z3bu0jWw91mOol7+VXmZ+KzOvRMQk8BTdkcNY758L\nul8RX8nLa3Gv9f3rLt9j2zUvIt4DzGTmM32rR7YewKvoDmbeSfcS2J+je/exUa3Ht+hOvfwr8Bng\ncUb4/2M9hvpI3EovIl4D/DVwPDP/Arjd9+dJ4Ju8vBb3Wr/QtuvBe+nelOVvgNfR/Yr8QN/fR60e\n3wCeycwXMzOBFxgMnFGrxy/RrceP0D3W9gTdYw13jVQ91mOol7+VXkS8Gvgy8KuZeay3+h96c6kA\nbweeA/4eeFNEbIyIVwKvpXtQ6Ds1urttZl4GXoyIH4qIMbpf4Z9bkRe0RJn55sx8S2buBL4OvAv4\n0qjWA/gq8LaIGIuIHwC+F3h2hOsxy0sj7f8D7mOE3y/rcdpiFG6l9xFgCvhYRNydW/8w8HhEvAL4\nF+CpzLwVEY/T/WcbB349M1+IiD8GnoiIrwIv0j3YAy99Vd9A92j+363cS2rdo8BnRrEevV9svJlu\nSI0DHwT+nRGtB/D7wLGIeI7uCP0jwNcY0Xp46V1JKmQ9Tr9IkuZgqEtSIYa6JBViqEtSIYa6JBVi\nqEtSIYa6JBXy/8jiP6wQgzU+AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11d5e2cf8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "_ = ax.hist(aligned_clustered_read_counts, bins=50, log=True)" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[(0, 1),\n", " None,\n", " (1.0, 154701.99999999991),\n", " <matplotlib.text.Text at 0x118c98eb8>,\n", " <matplotlib.text.Text at 0x118cb6d30>]" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEaCAYAAAAMg9w+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFspJREFUeJzt3XucXGV9x/HPLgEjJkEt+/JajRb5oSKoCRAuilax3tAA\nXlGpaARUoHijWFtrvdSiouIFJSjGitYqGF8qAipiVWIsxJcaLPzaaGO19RJEAygkbLL945xJxmF2\nZnazu7PPzuf9euWVnTnnPOd5np39zjPPuczQ2NgYkqRyDfe7ApKkXWOQS1LhDHJJKpxBLkmFM8gl\nqXAGuSQVbl6/K6D2IuJxwAcyc/9Jbr8C2CMzz5vSiu0sf29gU2YOdVjnEuBI4AGZ+Yem5zcCz8rM\na9tsMwaMZOaN9ePlwKuAewG7AZuAt2TmZfXyVcAyYElm/r6pnFuB/TNzY72/LcBtLbt7RWauqfd5\nHbANaLTnE5n5rp46YwpExHXAqZn5jZnaZ8v+nwYckplv7LLejt97RDwDeGJmnj6Zcpu3j4hvUL3e\nL96lhgwog3zuOoIqnPoiIu4LPBZYC5wAfHgSZZwEnAE8JzOvq587ELg8Ip6RmdfUqy4GzgVWdCju\nBe3eOJo8vunNY2/gSxExlpnnTLTehToIuOdENsjMLwBfmGy5PW6vHhjks0BEvAR4DdWI8EbgL1uW\nrwKua4wQmx9HxMuBU4CtwO3AyUAAzwCOiojbMvODEfEG4Diq6bSNVKPR/6tHQjcB+wEfAv6ZKhQf\nAewOXAm8LjNHI+JY4G3AH4BGiI7npHrbi4G3RMT5mdnz1WcRsQfwj8CTGyEOkJk/iIiTqUbnDecC\nJ0TEcZl5Sa/7GE9m3hgRrwYuiYh3N9c7IhYD3wKup3oDORJ4EHA2cDdgO/CmzPxSRNyNqk/3pQqz\nW4DjMzMj4mHAhcCewA31tu364d5Ub4L71WV/ODPfFxH3r8teTPUp4uOZ+c66ftdl5oKm+l6XmQsi\n4sXAMXU5D6F6zZxQ7/sUYLeI2JyZb2ipQ9vfe13eszLz6fU6f1uXvQ14HdWnoB3lAv8FvLTe32bg\n443t6yKPiYiz6j75ZGa+rV2f6M6cI++zeoR5NlVgHUA1QnlD5612bLsb8N5624OAlcARmbm6Luc9\ndYifQBXMB2fmI4EvAx9pKuq3mfmwzHw/8B5gXWYuAR4F7A28OiLuRRU8x9XLftqhXvOAlwEXAV+k\nmhZ5cm89ssPDgKF2o+jM/EJmrm16ahPVm9/KiPjTccr7ZER8v+nfd7vs/wfAvana3+r+VNM7+1K9\neX4MeFFmPprqDfRDEfEA4CnA7zJzWb3uNcCpjfoAF9S/83OBB45Tj/OA/8zM/YBDgZMiYp96+6sy\n8xHA4cALI+J5XdoE1RvPafWU3dVUb9LfpXqz+Nc2Id7r7/2dVIODpcDfAY8bp9yH18se36aMRVTT\nZMvq9jylh/YIR+SzwROAKzLzZwCZ+V7YMUfeUWZui4jPAmsi4lLgK8Cn2qz6dOBg4NqIgGo0u2fT\n8m+1rhsRL60f37X+/whgfWb+R/34fKoRczvPrPdxeT2S/zTVPPdl3drUZAj4oxF8RHwLWFjX6d8z\n80WNZZn5lfqTykUR0S4kuk2ttGrsu3VeHWAU+E7986HAfYDP133b2PaAzLw4In4SEacB+wCPA74T\nEX8CHED16YfMvLqeI2/nicCZ9Xqbgf3rkf7hwJMaz9dtfwrVVFYn6zLz5/XP3wOO7bJ+r7/3TwOr\n69fhV4F3jFPeDzPz5nGWfSQzR4GbI+Ji4Cgm9poZWI7I+2+UpsCKiLtGxH4t64yx8yAcwB6NHzLz\nhcDRwAbgr4HPtdnHbsDZmfnIekS+lCoIGm5tWffZTeseQjWKbK3DaIc2vZwqbDfUBxqXU03zPLzD\nNq2uB4YjYsfB3sx8TF2ntwP3aLPN66mC/m8msJ/xHAT8d2be2mbZljpwoOqv6xv9VddvGXBFPe31\nUaopiU8B/8Ifv0H10p+tr48HUw3AWg8yD1NNhY37Wqk1vzG1rttOT7/3esR9OHAt8GKqN6x2+dKu\nPxu2Nf08BNzRpW6qGeT9dxXwxIi4T/34ZO48mtlEFb6NA3GPafwcET8DflOP5P8WOLDeZpTqDxvg\nCmBFRCyqH78Z+MQ49bkCeFVEDEXEXaimaE6lGrU/vJ4KguqP9U4iYl+qkeejM3Nx/e++9fZndOqI\nZpl5O9Ub0yfr+eRG+SNUI7VtbbbZCjwfeC07P0lMWH2g9mygl7NW1gIPiYjH1ts+kmou+L7AXwCr\nMvOjQFK94e6WmTcB66gPzkbEo6mmvtr5GnBivd5eVMcd9qn3+8qm50+gGgn/Dtijqc+O6bHZza+X\nZl1/7xExr37Dvltmfhh4BfDQurzxym3nhPp1dw/guTga75lTK32Wmesj4nVUZ2IA/AJ4CdUBsob3\nUwVaUh2o/Ea97Y0R8Vbgyoi4jeqPpnHmxmXAB+oyzwbuB6ytT7X7H8YJYuB0qjnb9VR/gF8D3pGZ\nd0TE8XU9tgL/Ns72LwdWZ+aPW57/B6ozQV5fP/5mRGxvWn5m66mSmXlBRPwcOLcO8GGqEeIXqI4N\n3El9IPG1wAUtiz5Z91GzD2Rm41jBVRGxjeoNYgy4sJdTNzNzU0QcB7wzIubXdXxRZv40It5FNW9/\nYl3uOnYG9vOBj9Wj9g1Un0DaOZVqzv2Hddlvz8x1EfEC4IN12XtQzZmvysyxiDgTuCwifg18tlsb\nalcCn4uIrZl5Wkv7Ov7e6+mzM4BPRcQdVAc8X5KZWyJiR7l1+zvZXK9zV+D9/ToVs0RD3sZWksrm\n1IokFc4gl6TC9RTkEXFIfeFI6/NHR8Q1EfGdiHjZlNdOktRV1yCvD5x8BJjf8vzuVBePPInqIoOT\n6osHJEkzqJezVn5MddFA6+lqDwU2ZOZvASLi21T31uh4lHxsbGxsaKjbqauS5pLFixf3uwrF27hx\n47jB2TXIM/OS+n4NrRZRnS7UcAuwV7fyhoaG2LTplm6rzWkjIwsHug8Gvf1Qbh8sWTKpm3HeyfDw\nENu3T88Zc+vW9e1ecRMyla+BXTmP/Gaqq+gaFlJdjCCpMFMV0ONpDddS38hmq10J8uuprmi7J9Vl\nt4+ltyvhJPXBVIR1KaPdQTPhIK+v8lqQmSujutXnFVQHTS/MzP+d6gpK6syAVj+u7Bwb9I9Ug/6x\nctDbD7veB5MJ79kU1r4GJt4HIyMLJ3+wU1J/9BrWsymg1R8GudRHk50WMbzVzCCXZtiSJfv3dPqd\nYa1eGeTSNHBaRDPJIJemyETC24N9mkoGuTRJnYLbkbZmkkEuTYDhrdnIIJdaOL+t0hjkEoa3ymaQ\na2CNF96GtUpjkGtgOL+tucog15xmeGsQGOSaUwxuDSKDXMUzvDXoDHIVyQOV0k4GuYrgqFsan0Gu\nWWMit3Q1vKWdDHL1lRfiSLvOINeMW7x4cdt7cRvW0uQY5Jp2raPu4eGdXz1oeEu7ziDXlOl1mmTj\nxo3ei1uaQga5Js35bWl2MMjVkWeSSLOfQa47caQtlcUgF+CVklLJDPIB4khbmpsM8jlmInPazQxv\nqVwGeYEMa0nNDPJCOC0iaTwG+SxiWEuaDIO8zwxvSbvKIJ9hS5bsz/DwkDeNkjRlDPI+M7wl7SqD\nfJp0usBmZGShN42SNGWG+10BSdKu6Toij4hh4DzgQGALsCIzNzQtfwHwGmAbcGFmfmia6jqrtY7A\nnTKRNFN6GZEvB+Zn5qHAWcA5LcvfBTwROBx4TUTcY2qrKEnqpJc58iOAywEyc21ELG1Z/kNgL2AU\nGALufDrGHOLNpSTNNr0E+SJgc9PjbRExLzNH68fXAeuA3wOfy8zfdStwZGThhCs6WzR/TVmzibap\n5D6YCoPefrAPBr39MHV90EuQ3ww07224EeIRcQDwNOBBwK3ARRHx7Mz8bKcCSz5j45pr1rd9fiJt\nGvSzVga9/WAfDHr7YeJ90Cn0ewnyq4Gjgc9ExDKgOck2A7cBt2Xmtoj4NTCn5sg9iClptuslyFcD\nR0XEGqo58BMj4nhgQWaujIjzgW9HxFbgx8CqaautJOlOhsbGZvzY5JgfqQb7Y+Wgtx/sg0FvP0xq\naqX9ATq8shPofOMqp1IkzXZe2SlJhXNEjqNuSWVzRC5JhRuoEblXZUqaixyRS1LhBmpE7shb0lzk\niFySCmeQS1LhDHJJKpxBLkmFM8glqXBFnrXS6d4onXjWiqS5yBG5JBWuyBG5I2tJ2skRuSQVziCX\npMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuFm/O6H\nixcvZvv2sV0qw7sfStJOjsglqXAzPiLfuHEjmzbdMtO7laQ5yxG5JBXOIJekwhnkklQ4g1ySCmeQ\nS1Lhup61EhHDwHnAgcAWYEVmbmhafhDwbmAI+CXwwsy8fXqqK0lq1cuIfDkwPzMPBc4CzmksiIgh\n4ALgxMw8ArgceOB0VFSS1F4v55E3AprMXBsRS5uW7Qv8BnhVROwPXJqZ2a3AkZGFk6nrnDLofTDo\n7Qf7YNDbD1PXB70E+SJgc9PjbRExLzNHgb2Bw4BTgQ3AlyLi2sz8eqcCB/2CoJGRhQPdB4PefrAP\nBr39MPE+6BT6vUyt3Aw0lzBchzhUo/ENmXl9Zt5BNXJf2lqAJGn69BLkVwNPBYiIZcD6pmU/ARZE\nxD7148cAP5rSGkqSOuplamU1cFRErKE6M+XEiDgeWJCZKyPipcCn6gOfazLz0mmsrySpRdcgz8zt\nwCktT9/QtPzrwMFTXC9JUo+8IEiSCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINc\nkgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuEMckkqnEEuSYUzyCWp\ncAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINckgpn\nkEtS4QxySSrcvG4rRMQwcB5wILAFWJGZG9qstxK4KTPPmvJaSpLG1cuIfDkwPzMPBc4CzmldISJO\nBh4xxXWTJPWglyA/ArgcIDPXAkubF0bEYcAhwPlTXjtJUlddp1aARcDmpsfbImJeZo5GxH2AvweO\nAZ7T605HRhZOrJZz0KD3waC3H+yDQW8/TF0f9BLkNwPNexvOzNH652cDewNfBu4N7BkRN2Tmqk4F\nbtp0yySqOneMjCwc6D4Y9PaDfTDo7YeJ90Gn0O8lyK8GjgY+ExHLgPWNBZn5PuB9ABHxYmC/biEu\nSZpavQT5auCoiFgDDAEnRsTxwILMXDmttZMkddU1yDNzO3BKy9M3tFlv1RTVSZI0AV4QJEmFM8gl\nqXAGuSQVziCXpMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIK\nZ5BLUuEMckkqnEEuSYUzyCWpcAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAG\nuSQVziCXpMIZ5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCzeu2QkQMA+cBBwJb\ngBWZuaFp+fOBM4BRYD3wiszcPj3VlSS16mVEvhyYn5mHAmcB5zQWRMRdgbcCj8/Mw4G9gKdPR0Ul\nSe11HZEDRwCXA2Tm2ohY2rRsC3BYZv6hqbzbuxU4MrJwovWccwa9Dwa9/WAfDHr7Yer6oJcgXwRs\nbnq8LSLmZeZoPYXyK4CIOA1YAHy1W4GbNt0ymbrOGSMjCwe6Dwa9/WAfDHr7YeJ90Cn0ewnym4Hm\nEoYzc7TxoJ5DfwewL3BcZo71XDNJ0i7rZY78auCpABGxjOqAZrPzgfnA8qYpFknSDOllRL4aOCoi\n1gBDwIkRcTzVNMq1wEuBbwFfjwiAczNz9TTVV5LUomuQ1/Pgp7Q8fUPTz56LLkl9ZAhLUuEMckkq\nnEEuSYUzyCWpcAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFM8glqXAGuSQVziCXpMIZ\n5JJUOINckgpnkEtS4QxySSqcQS5JhTPIJalwBrkkFc4gl6TCGeSSVDiDXJIKZ5BLUuEMckkqnEEu\nSYUzyCWpcAa5JBXOIJekwhnkklQ4g1ySCmeQS1LhDHJJKpxBLkmFm9dthYgYBs4DDgS2ACsyc0PT\n8qOBNwKjwIWZecE01VWS1EYvI/LlwPzMPBQ4CzinsSAidgfeAzwJOBI4KSLuNR0VlSS110uQHwFc\nDpCZa4GlTcseCmzIzN9m5lbg28Bjp7yWkqRxdZ1aARYBm5seb4uIeZk52mbZLcBeXcobGhlZOLFa\nzkGD3geD3n6wDwa9/TB1fdDLiPxmoHlvw3WIt1u2EPjdlNRMktSTXoL8auCpABGxDFjftOx64CER\ncc+I2INqWuU7U15LSdK4hsbGxjqu0HTWygHAEHAi8GhgQWaubDprZZjqrJUPTm+VJUnNuga5JGl2\n84IgSSqcQS5JhTPIJalwBrkkFa6XC4KmVUQcBpxcP/yrzBzI89Aj4s+B4zNzRb/rMtMi4gnA84A9\ngXdk5g/6XKUZFRFLgNOozgo7MzN/1ecq9UV9e49LM3Np15XnmIg4EHg/8BPg45l51US2nw0j8pOo\ngvyjwHP7XJe+iIh9gEcB8/tdlz7Zk+p18C6q+/YMmvnAGcClwKF9rktfRMQQcCbw037XpU8OAX4J\nbAN+NNGNZ0OQ75aZtwO/AO7T78r0Q2ZuyMxzuq85N2XmF6nC/HTg432uzozLzKup7lv0WuD7fa5O\nv5wCXATc1u+K9Mm3gZcBZ1O9DiZkNgT5HyLiLlQh/st+V0YzLyL2pvpY+cbM/HW/6zPTIuIgYB3w\nFODVfa5OvxxF9cn84Ih4dr8r0wePpMrj3zKJKe9pnSOPiEOAszPzcR3ua74SOB/YnZ1z5XNGj30w\nZ/XY/ncDI8DbI+LzmXlx/2o8tXps/yLgQmAr1d/DnNJLH2TmsfW6F2XmZ/tY3SnX42tgI9Vg5g7g\nzRPdx7QFeUScCbwI+H391I77mtf3bDkHeGZmrgNePF316Kde+6Cxfma+cOZrOX0m8Bo4oV91nE4T\naP+VwJV9qua08m+g59fAGmDNZPcznVMrPwaObXrc6b7mc9Wg94HtH+z2g30wI+2ftiDPzEuoPiY0\ntL2v+XTtfzYY9D6w/YPdfrAPZqr9M3mws9N9zQfFoPeB7R/s9oN9MC3tn8kg73Rf80Ex6H1g+we7\n/WAfTEv7Z/IjzWrgqIhYw877mg+aQe8D2z/Y7Qf7YFra7/3IJalws+GCIEnSLjDIJalwBrkkFc4g\nl6TCGeSSVDiDXJIKZ5BLUuEMcmmCIuJBEfHRftdDajDIpYl7IPBn/a6E1OCVnZqT6u+A/CfgGGCU\n6stLLqP64oZ7Ut0f+vTMvCYiVgHfyMxV9bZjmTkUEW8C7gc8hCq8P5KZb4uIHwIPpvqS3FfOaMOk\nNhyRa656FnA48AjgYKp7WnwJeF9mHgC8Cri4/prBTg6g+kLoQ4CzIuLuVN8teq0hrtnCINdcdSTw\nmczckpm3Ut3Qf+/M/BzsuKn/TUB0KeeqzNxaf5foTcBe01lpaTIMcs1Vd7Q8fjDV3eaaDVHdAXSs\nsSwidm9Z5/amn3esJ80mBrnmqm8Cx0bE7hGxJ/AZYCwiGl/yuwy4N3AdcCPw8Hq75T2UPcrM3gJa\n6sgg15yUmaupbuL/PeAa4FzgMOD0iFgPfAA4NjO3Ah8CjqwPYh4O/KJL8dcDd4+IT0xX/aWJ8KwV\nSSqcI3JJKpxBLkmFM8glqXAGuSQVziCXpMIZ5JJUOINckgr3/0jzxomizCicAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x118c5b438>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hist, bin_edges = np.histogram(aligned_clustered_read_counts, bins=np.logspace(0, np.log10(clustered_read_counts.max()), 100))\n", "cdf = np.cumsum(hist) / hist.sum()\n", "fig, ax = plt.subplots()\n", "ax.hlines(cdf, bin_edges[:-1], bin_edges[1:])\n", "ax.set(title='clustered ALIGNED read count distrib', xlabel='count', xlim=[bin_edges[0], bin_edges[-1]], ylim=[0, 1], xscale='log')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Taxonomic distribution" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": true }, "outputs": [], "source": [ "names = ['pct_reads_clade', 'num_reads_clade', 'num_reads_taxon', 'rank', 'tax_id', 'tax_name']\n", "converters = {'tax_name': lambda x: x.strip()}\n", "td = pd.read_csv(kraken_report_path, sep='\\t', header=None, names=names, converters=converters)" ] }, { "cell_type": "code", "execution_count": 56, "metadata": {}, "outputs": [], "source": [ "all_colors = sns.husl_palette(1000)\n", "state = random.getstate()\n", "random.seed(0)\n", "random.shuffle(all_colors)\n", "random.setstate(state)\n", "\n", "def top_hits(df):\n", " return df.sort_values('pct_reads_clade', ascending=False, inplace=False)[:20]\n", "\n", "def plot_distribution(df):\n", " fig, ax = plt.subplots()\n", " left = 0.2\n", " heights = df['pct_reads_clade'].values\n", " bottoms = [0] + list(np.cumsum(heights))[:-1]\n", " colors = all_colors[:len(heights)]\n", " labels = df['tax_name'].values\n", " for h, b, c, l in zip(heights, bottoms, colors, labels):\n", " if h > 0:\n", " ax.bar(left, h, width=0.4, bottom=b, color=c, label=l)\n", " ax.set(xlim=(0, 1))\n", " ax.legend()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Species" ] }, { "cell_type": "code", "execution_count": 57, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pct_reads_clade</th>\n", " <th>num_reads_clade</th>\n", " <th>num_reads_taxon</th>\n", " <th>rank</th>\n", " <th>tax_id</th>\n", " <th>tax_name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>11</th>\n", " <td>49.81</td>\n", " <td>1459206</td>\n", " <td>1459206</td>\n", " <td>S</td>\n", " <td>28116</td>\n", " <td>Bacteroides ovatus</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>4.94</td>\n", " <td>144700</td>\n", " <td>144700</td>\n", " <td>S</td>\n", " <td>818</td>\n", " <td>Bacteroides thetaiotaomicron</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>4.27</td>\n", " <td>124995</td>\n", " <td>124995</td>\n", " <td>S</td>\n", " <td>821</td>\n", " <td>Bacteroides vulgatus</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>2.47</td>\n", " <td>72277</td>\n", " <td>72277</td>\n", " <td>S</td>\n", " <td>1796613</td>\n", " <td>Bacteroides sp. I48</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>1.56</td>\n", " <td>45653</td>\n", " <td>45653</td>\n", " <td>S</td>\n", " <td>246787</td>\n", " <td>Bacteroides cellulosilyticus</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>1.31</td>\n", " <td>38427</td>\n", " <td>38427</td>\n", " <td>S</td>\n", " <td>823</td>\n", " <td>Parabacteroides distasonis</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>1.12</td>\n", " <td>32889</td>\n", " <td>32889</td>\n", " <td>S</td>\n", " <td>357276</td>\n", " <td>Bacteroides dorei</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>0.81</td>\n", " <td>23662</td>\n", " <td>23662</td>\n", " <td>S</td>\n", " <td>817</td>\n", " <td>Bacteroides fragilis</td>\n", " </tr>\n", " <tr>\n", " <th>32</th>\n", " <td>0.53</td>\n", " <td>15634</td>\n", " <td>15634</td>\n", " <td>S</td>\n", " <td>28118</td>\n", " <td>Odoribacter splanchnicus</td>\n", " </tr>\n", " <tr>\n", " <th>98</th>\n", " <td>0.29</td>\n", " <td>8537</td>\n", " <td>8537</td>\n", " <td>S</td>\n", " <td>1834196</td>\n", " <td>Lachnoclostridium sp. YL32</td>\n", " </tr>\n", " <tr>\n", " <th>101</th>\n", " <td>0.26</td>\n", " <td>7751</td>\n", " <td>7751</td>\n", " <td>S</td>\n", " <td>301301</td>\n", " <td>Roseburia hominis</td>\n", " </tr>\n", " <tr>\n", " <th>103</th>\n", " <td>0.20</td>\n", " <td>5786</td>\n", " <td>5786</td>\n", " <td>S</td>\n", " <td>39491</td>\n", " <td>[Eubacterium] rectale</td>\n", " </tr>\n", " <tr>\n", " <th>108</th>\n", " <td>0.10</td>\n", " <td>3057</td>\n", " <td>3057</td>\n", " <td>S</td>\n", " <td>292800</td>\n", " <td>Flavonifractor plautii</td>\n", " </tr>\n", " <tr>\n", " <th>141</th>\n", " <td>0.10</td>\n", " <td>2814</td>\n", " <td>2814</td>\n", " <td>S</td>\n", " <td>97478</td>\n", " <td>Lactobacillus mucosae</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>0.08</td>\n", " <td>2204</td>\n", " <td>2204</td>\n", " <td>S</td>\n", " <td>376805</td>\n", " <td>Bacteroides salanitronis</td>\n", " </tr>\n", " <tr>\n", " <th>303</th>\n", " <td>0.08</td>\n", " <td>2457</td>\n", " <td>2457</td>\n", " <td>S</td>\n", " <td>1834205</td>\n", " <td>Burkholderiales bacterium YL45</td>\n", " </tr>\n", " <tr>\n", " <th>589</th>\n", " <td>0.03</td>\n", " <td>959</td>\n", " <td>959</td>\n", " <td>S</td>\n", " <td>10710</td>\n", " <td>Escherichia virus Lambda</td>\n", " </tr>\n", " <tr>\n", " <th>583</th>\n", " <td>0.03</td>\n", " <td>977</td>\n", " <td>977</td>\n", " <td>S</td>\n", " <td>32630</td>\n", " <td>synthetic construct</td>\n", " </tr>\n", " <tr>\n", " <th>35</th>\n", " <td>0.02</td>\n", " <td>658</td>\n", " <td>658</td>\n", " <td>S</td>\n", " <td>214856</td>\n", " <td>Alistipes finegoldii</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>0.01</td>\n", " <td>310</td>\n", " <td>310</td>\n", " <td>S</td>\n", " <td>397865</td>\n", " <td>Barnesiella viscericola</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pct_reads_clade num_reads_clade num_reads_taxon rank tax_id \\\n", "11 49.81 1459206 1459206 S 28116 \n", "12 4.94 144700 144700 S 818 \n", "13 4.27 124995 124995 S 821 \n", "14 2.47 72277 72277 S 1796613 \n", "15 1.56 45653 45653 S 246787 \n", "22 1.31 38427 38427 S 823 \n", "16 1.12 32889 32889 S 357276 \n", "17 0.81 23662 23662 S 817 \n", "32 0.53 15634 15634 S 28118 \n", "98 0.29 8537 8537 S 1834196 \n", "101 0.26 7751 7751 S 301301 \n", "103 0.20 5786 5786 S 39491 \n", "108 0.10 3057 3057 S 292800 \n", "141 0.10 2814 2814 S 97478 \n", "18 0.08 2204 2204 S 376805 \n", "303 0.08 2457 2457 S 1834205 \n", "589 0.03 959 959 S 10710 \n", "583 0.03 977 977 S 32630 \n", "35 0.02 658 658 S 214856 \n", "25 0.01 310 310 S 397865 \n", "\n", " tax_name \n", "11 Bacteroides ovatus \n", "12 Bacteroides thetaiotaomicron \n", "13 Bacteroides vulgatus \n", "14 Bacteroides sp. I48 \n", "15 Bacteroides cellulosilyticus \n", "22 Parabacteroides distasonis \n", "16 Bacteroides dorei \n", "17 Bacteroides fragilis \n", "32 Odoribacter splanchnicus \n", "98 Lachnoclostridium sp. YL32 \n", "101 Roseburia hominis \n", "103 [Eubacterium] rectale \n", "108 Flavonifractor plautii \n", "141 Lactobacillus mucosae \n", "18 Bacteroides salanitronis \n", "303 Burkholderiales bacterium YL45 \n", "589 Escherichia virus Lambda \n", "583 synthetic construct \n", "35 Alistipes finegoldii \n", "25 Barnesiella viscericola " ] }, "execution_count": 57, "metadata": {}, "output_type": "execute_result" } ], "source": [ "species = td[td['rank'] == 'S']\n", "top_hits(species)" ] }, { "cell_type": "code", "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAF0CAYAAAA3lhJuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3X1cjfcfx/HX6f4+qZN75SZnSe5ijCZ3w5jbGX42c5/l\nLoYkqRC5mWGFSpnczJh7li0zjI3Z5t44hFKEim4Uneqc3x9x0kqlcnd8n4/H7/Grc53re32u77FP\n17nOdd6XRKVSIQiCIGgOrVddgCAIglCxRGMXBEHQMKKxC4IgaBjR2AVBEDSMaOyCIAgaRjR2QRAE\nDaPzMjaSk5Orun8/82Vs6rVnYWGEmIs8Yi7yibnIJ+Yin1RqKinLeiU2dplMNgwY9vhXA6Ap4Aws\nA1TAeWCcXC5XPnMjOtplqU0jibnIJ+Yin5iLfGIuyq/EUzFyuXytXC5vL5fL2wP/ABMBH8BbLpe/\nD0iA3i+0SkEQBKHUSn2OXSaTtQAc5HJ5KOAEHH68aB/Q+QXUJgiCIJTB85xj9wJmP/5ZIpfLn2QR\npAPmJa0slZo+Z2maS8xFPjEX+cRc5BNzUT6lauwymawSIJPL5QcfP/T0+XRTIKWkMRIT05+/Og0k\nlZqKuXhMzEU+MRf5xFzkK+sfuNKeimkHHHjq91Mymaz9458/BI6UaeuCIAhChSvtqRgZcO2p36cA\nq2UymR5wEdha0YUJgiAIZVOqxi6Xyxf/5/fLgMsLqUgQBEEol5fyBSVBeJG6/x5WoeNFth1V7PKT\nJ//Gx2cGtrZ1AFAoFEyd6kmDBu8813Z27dpOjx690NEp+3+Gy5cvYeDAT6latar6sdjYGBYvnk9Q\nUGiZxy2vbds28/HHA1/Z9t92L6Wx/7HC6WVs5o1w5VUX8BqRjvvnVZdQZk5OLZg9OwCAEyeOExYW\nzKJFy55rjPXrv6Vbtx7lauzu7lPKvO6LFBGxRjT2V+ilNPaplhtexmaEN8wfr7qACpKenkalShYA\nnDr1D99+uxqlUsnDhw/x9fWndm0b1q4N48iRw+Tm5tKnz8fo6Ghz714yfn5eBAQsYcmSJRw79idK\npZKBAz+lY8fOjB/vioVFZdLS0li8eBkLFszl1q2b5ObmMmjQp3Tq1IXx412ZNs0LY2MT5szxRqVS\nUbmypbq2U6f+ITR0Jdra2lSvXgMPj5ncunWTgIDZaGvroFQq8fX1p0qVqk/tTzpz584iIyOD3Nxc\nRo92w9y8EsuXf0VgYAgAHh6TGDXqC27ejGf79h/IyclBIpEwf/5X7Nq1jbS0VL76agENGzoQGxuD\nm9sEsrKy+PTT/mzduoft239g3769aGlpYW/fkEmTpr3cF03DvZTG/oXi05exGeGNc/JVF1Bm//zz\nN+PHu5KdnU109GUCApYAcP36NXx85mJlJWXdujUcPPgL773Xlj///IPQ0LUolUqCg4MYP34Sa9eG\n4+c3n2PHfic+Pp5Vq8LJyspizJjhtGzZCoDOnbvi4tKBbds2U6lSJXx85pKZmcGIEZ/h5PSuup51\n68Lp3LkrvXr15cCBKHbs2IpKpWLhwnmsWhWGhUVlVq9eRWTkHrKzs7G3d2DsWHfOnDlFRsaDAvsW\nERFOixatGDDgfyQm3mXs2FFs2bILhULB7dsJ6OjokpKSQoMG73D8+B8sXrwcAwMDFi2ax4kTxxg6\ndCTbtm1h6lRPIiP3FDl/kZF7mDJlOvb2DuzYsZWcnJxyvXMRCnopMzng5IiXsRnhTfP5qy6g7J4+\nFXPjRgxjxoxg585IpFIpy5YtxtDQiMTEuzg6NuHGjVjs7R3Q1tZGW1ubCRMmFxjr2rVoLly4wPjx\nrgDk5ORw+/YtAGrXtgEgJiaGFi3yGrmRkTG2tnW4eTNePUZc3A169uwLgKNjE3bs2EpKyn2Sk5OY\nNcsTgKysLFq2bMXQoSPZuDGCKVMmYGxswpgx4wrUExt7nS5dugEglVpjZGTM/fv3+Oij3vz004/o\n6urSvXtPACwsKuPv74uRkRGxsTE0atS4mFnLv7+yl5cPmzZtICFhOQ4OjqWfeKFUXkpjb9N578vY\njPCGOcn4V11ChbCwyD/1sXDhPLZs2YmRkTH+/r4A2NjYsnPnNpRKJUqlkqlTJ7Jo0TIkEi1UKhU2\nNra0atWKiRM9UCqVrF0bRo0aNQHQ0sr7qomtrS1nz57CxaUDmZkZXL16lerVq6u3a2tblwsXzmJn\n14CLF/8FwNy8EtbW1ixY8DUmJiYcPXoYQ0Mjjh49TJMmzRgxwpX9+39i48YIvLx81WPZ2NThzJnT\nNGjwDomJd0lPT8PMzJxOnbrg7u6GlpYWS5cG8eDBA8LDQ9i2Le+/78mTx6FS5TXvJ/+vp6dHcnIS\nAHL5JfU2du/eydSpM9DX1+fLL8dz7twZmjUTn8VVlJfS2Htl3n0ZmxGEl+bJqRhtbW0yMzOYMGEy\n+voGdO36IWPHjsbQ0AALC0uSkhKxs5PRqtV7uLmNRKlU0rdvf/T09GjSpClTp04kMDCES5fOMXbs\nKB4+zKRduw4YGRkX2F6vXv1YuNAfN7eRZGVlMWLEaCwsKquXDx06kjlzvPnllyiqV68B5P1RcHef\nyrRp7qhUKoyMjJk1azaZmZn4+/sSERGOUqlkwoQvC2zr88+HExAwh0OHDpCVlYWHx0x0dHTQ0dGh\nfv0G5ObmYGRkjEqlwtGxCV98MRxtbR1MTU1JSkoEwNa2DnPmzGLyZA927tyGm9tIZDJ7jI3z9qte\nvfqMGzcaIyMjpFIpDRs2epEv11tH8uQv64vkt6X5i9+I8MbxG3BSfHX8MfE1+nxiLvKVNY9d3EFJ\nEARBw4jGLgiCoGFeyjn2fdriGlWhML9XXYAgaKiX0th1H4lYGUEQhJdFnIoRBEHQMC/liP2R6ZKX\nsRnhjSP+XQjCiyC+wyu88Xr/Gl2h4+3qWL/Y5Zqe7piWlsrx48fo0qUb8+b50alTF1q3blPierdv\n3yY6+jLOzu2KXJ6cnMS334YxdarnM8fYtm0zX3xRfLpmWRQ1T5pMnIoRhDJwcmpBUFAoQUGhjBr1\nBWFhwc89xvr135Kbm1uuOtzdp1R4s4qOvsLvvx8u+Yn/cfLkX5w7d+aZyy0trYpt6pCXCvkivIh5\nep29lCP2sakHS36SILyhNC3dcd26NURHX2HXru1A3juL775bx4MHD5g61ZOGDRuxdev37N//MxKJ\nhE6dutCv3yds2LCWR48e4ejYGGNjk0LzoKuri6+vF6Gha/nrr+OEhq5CX18fMzNzZszwYfv2LaSl\npeLn58ewYWNYsMCfBw/SSUpKpF+/AfTt25/Lly+xdOlitLW10dPTw8PDG5VKiY/PDKpUqUJCQgKd\nOnXh+vWrXL4sp00bZ8aMGaeeJzMzc+bN8+XBgweoVCq8vWcTFbWP8+fP8vDhQzw9Z3Hs2O8cOBCF\ntrY2TZo0Y+zYiYSHh5CQcIv79+9z504CEyZ8SatW773cf2jPQZyKEYQy0OR0x88/H8GuXdvo3bsf\n58+fRSZ7h2HDRhEZuYfIyL0YGhpx4MB+Vq7Mu8HJ5MnjaNWqNZ99NozY2BicnV3Yvv2HQvPQpcuH\nQF6OzKJF81m5Mgyp1JotWzYRERHO+PGT2LZtC35+fhw9+hedO3fBxaUjSUmJjB/vSt++/Vm4cB6e\nnt7Y2ck4cuQQQUFfM27cJBISbrJ06Qqysh7xySe92bkzEn19A/r371kg5CwiIhxn53b06dOfc+fO\ncPHiBSAvH2fSpKlcvRrNr7/uJzh4Ddra2syc6cHvv+fd0llXV48lS77hr7+Os2nTRtHYBUHTaHK6\n43/JZPYAVK5sSVbWI65du8qdO7dxd3cD8vLb4+LiCqxT1Dw8kZKSgpGRMVKpNQBNmzYjJGRlgfUr\nV67Mli3fcfjwQYyMjMnJyQFQZ+8ANGnSnODgIACqVauBiYkJurq6VK5cGTMzcwAkkoLfyL9xI5Ye\nPXqp58nRsQnh4SHqeY6NjcHBwVH9uUeTJk25fv0qAA0a5G3X2roqCkVWsXP2qolz7IJQTv9Nd/Ty\n8mXmTD+srKRAXrrj5ctylEolOTk5TJo0FoVCUSjdMSgolG++CaZjx87PTHcEik13BIpMdwwKCmXo\n0BE4ObVUpzsuX76KDh06sXFjRIH90dLSQqnMj3f6b3OsXdsGW9u6BAaGEBQUSvfuH1Gvnh0SiQSV\nSvnMeXiiUqVKZGZmkJSUl/p4+vRJatWqDeSnQn7//QYaNWqMj89cOnbsrH7cykpKdPSVQuv9t8Zn\nsbW15dKlf9Xrr1z5zeN9lqhfq3//PU9OTg4qlYrTp09Rq5bN422UahOvBXHELghloMnpjjVq1OTa\ntWi2bPmuyH23s2tAixYtGTt2JApF3mkdqVRKvXr1WbduDQ0avFPkPDwhkUjw8JjJzJnT0NKSYGpq\nhpeXH5CXCjl16lQ++KAHS5cu4sCBKExMTNDW1kahUDB9+kyWLl2ESqVCW1sbT89Zz/W6DRkygoCA\nOfz8cyQSiQRPz1n89NOP6uX16tWnY8fOuLmNRKVS0bhxE9q1a0909OXn2s6r9lLSHVtv3SvSHYVC\njvf/SKT4PSYSDfOJucgn0h0FQRAEoJSnYmQy2QygF6AHrAQOA2vJu9fVeWCcXC5XvqAaBUEQhOdQ\n4hG7TCZrD7QB2gIuQC3ga8BbLpe/D0iA3i+wRkEQBOE5lOZUTFfgHLAD2APsBZzIO2oH2Ad0fiHV\nCYIgCM+tNKdirAAb4COgDrAb0JLL5U8+EE0HzF9MeYKmk0pNX3UJrw0xF/nEXJRPaRp7MnBJLpcr\nALlMJntE3umYJ0yBlBdRnKD5xNUPecSVIPnEXOQr6x+40jT2o4C7TCb7GqgGGAMHZDJZe7lcfgj4\nEBBhMMIrc35b+wodr9HHh4pdrunpjs+jf/+ebNy4FX19/VKvk5WVRVTUPnr27PMCK3u7lfgvSi6X\n75XJZO2AE+Sdkx8HXAdWy2QyPeAisLW4MQKSfCugVEHzfPSqCyizpyMFTpw4TlhYMIsWLXuuMdav\n/5Zu3XqUq7G7u08p87qvyr17yezZs1M09heoVP+i5HK5RxEPi/vdCQKal+44cuQQ/P0XUq1adQ4e\n/IUzZ05jamqKpaUlffr0L/IdQXx8HPPm+aGjo0PVqtVISLhFUFAo27Zt5vDhgzx8+JBKlSoxf/5X\nrFu3hpiY6+p5+u+4mzdvIiRkBadO/UNubg4uLh357LNhL+311AQiUkAQykCT0x0/+qg3P/30I8OH\njyYycg9ubhM4ePBAsfOxYsVyPv98OO+958zu3TtISLiFUqkkNTWVZctWoqWlxZdfjufixQt8/vkI\nrl6NZvjw0YSHhxQ53v79PxEYGIKlpRWRkXvK81K9lURjF4Qy0OR0xw8+6Ma4caPo2bMPGRkZ1K1b\nv0BjLyqGJDb2Oo0a5SU4NmnSjKiofWhpaaGrq4uf30wMDQ25e/euOqWxKE+P6+Mzl+DgQJKTk0t1\n9yahIBEpIAjlpGnpjiYmJshk9nzzzdd0794TAD09fZKTkwG4fPlSoTmoW7ce58/nbf/ChXNA3p2Y\nfvvtEHPmBDB5soc6+TFvv5XPHFehUHDw4AH8/OYTGBjCvn17uX074XlflreaOGIXhDLQ5HRHgJ49\n+zBlykRmzPABoFOnD/DxmcGpU/+o89mf5uY2kYCAOXz//QaMjU3Q0dGhZs1aGBoa4uY2Asi7NV5S\nUiIODo5kZ+ewcuU39OnzcaFx9fT0MDMzw9V1GPr6+rRs2brAZwBCyV5KuuPBYCeR7igU0uGLf8T1\nyo+96dduR0Xto2HDRtSsWYs9e3Zy7twZvLzKdjXcmz4XFams6Y7iiF0QhHKztq6Cr68XBgYGaGlp\nPXdOulCxRGMXBKHcmjZtTnj4+lddhvCY+PBUEARBw4jGLgiCoGFEYxcEQdAworELgiBomJfy4elM\ni7CXsRnhDfNHBY3T8/Dhkp/0HPa4FB+DJNIdi5eQcAtfXy9CQ9eqH4uK+olt2zYTEvItAJs2bWD/\n/p/Q0tJiyJDhuLh0eCW1aipxVYwglIFIdyy9y5cv8eOPu9SRAenp6fzwwyY2b97Jw4cPGT58sGjs\nFUw0dkEoJ01Ldzx79jRBQcvQ0dHBwMAAf/+FHDr0K0eOHCIzM5OUlBSGDx9F+/adSpyb1NQUQkJW\nMnHiFBYu9AfA0NCQqlWr8fDhQx49eqiOTRAqjmjsglAGmpzueOTIYTp27MyAAYM5evQ30tLyvgX6\n8OFDli5dQUrKfUaPHoqzs0ux7zZyc3NZsGDu47iFgjfisLauwpAhn5Cbq2TIkGEV8ZIITxGNXRDK\nQJPTHYcMGc66dWtwd3dDKrWmYcNGQN6XkLS0tKhc2RJTUzNSUlKwsrJ65hzJ5ReJi4vjq68CUCgU\nxMRcZ/nyJTg5tSA5OYktW3YDMGXKBBwdm6i3I5SfeA8kCOWkaemOUVGRdO/+EYGBIdSpU5fdu7cD\nIJfnpS/eu5dMRkYGFhYWxc5Lw4aN2LBhC0FBocyePR9b2zq4u0/B1NQMfX199PT00NfXx8TEhAcP\nHhQ7lvB8xBG7IJSBJqc72ts3YsECfwwNDZFIJHh4zOT06ZPcu5eMu7sbDx48YMqU6Whra/P99xuo\nWbMWzs6lv6FakybN+PvvE7i6DkNLS4vGjZuqTz0JFeOlpDu22XxKpDsKhfwxsJlI8XvsdU80jIzc\nQ2xsDG5uE174tl73uXiZypruKE7FCIIgaBhxKkYQhBI9uZOS8GYQR+yCIAgaplRH7DKZ7CSQ9vjX\n68A8YC2gAs4D4+RyufJFFCgIgiA8nxIbu0wmMwAkcrm8/VOP7Qa85XL5IZlMFgz0Bna8sCoFQRCE\nUivNEXsTwEgmk0U9fr4X4AQ8SV7aB3RBNHZBEITXQmkaeybwFRAG2JHXyCVyufzJJYzpgPmLKU/Q\ndFKpabnHWLO+eQVUkm/EkJPFLv/zzz+ZNGkS9evXR6VSoVAo8PPzo2HDhs+1nc2bN9OvXz90dXWB\nss3FvHnzGD58eIEvK129ehU/Pz/Wr3/xt6pr27Ytv//+O0OGDMHPz4969eoV+byOHTuyb9++QtEC\nzyKVmjJ58mQWLlyIj48P3bt3p127doWel5WVxe7du/nkk0/Yvn075ubmdOpUcoaNpitNY78MRD9u\n5JdlMlkyeUfsT5gCKcUNkK1/qMwFCprs9byOvaSaUlIyadbMqUC64+LFS5473XHlylW0bdsJfX39\nMl+77eo6sVDN9+9nolDkvJS5VSpVJCamo1DkcP9+5jO3mZurJDExHX19RYljPpkLL685pKZm8ehR\nNqmpD4scOyHhFt999z3t23fj/fc/AEp+/d4kZT3wKU1jHwE4AmNlMll1wAyIkslk7eVy+SHgQ+Bg\nmbYuCBpA09Id79+/z7x5vjx48ACVSoW392wsLCqzYMEcUlNTAZg0aRr16tUvNBfh4SFYWlrSp0//\nInPhExJuERAwh9zcXCQSCe7uU7Gza8D8+bOJj497/K3aYbRt24n+/XuyceNW9bp+fjPp0uVD2rRx\nJibmOitWLMPKSkpMzHX1nFtaWtK798csXbqIixcvkJ2dw8iRrhgbm7Br1zb1H+Nevbqye/fPHD78\nKxs2RKCjo4OVlZTZs+drRNpkaRp7OLBWJpMdJe8qmBFAErBaJpPpAReBrcWsLwgaR5PTHSMiwnF2\nbkefPv05d+4MFy9eIDr6Ck5O79K3b3/i4m4wf/5sVq0Kf+55W7FiGZ98Moj332/PlStyFiyYS2Bg\nMKdPnyQkZC0SiYRLl04XuW6vXn3ZsWMrbdo48+OPu/noo940aPAOV69GM3z4aMLDQwD47bdDpKam\nsHr1OtLS0ti8eSNOTi2LHHP//p8ZPHgIHTp0Zt++vWRkZGBqWv7Tg69aiY1dLpcrgMFFLCp9OIQg\naBhNTne8cSOWHj16qcdydGxCVNQ+Tp78mwMHooC8dyklKSquJCYmhiZN8j4TsbOTcffuHYyMjJk4\ncQqLFs0jMzODjz/uW+R4zZo5sXTpIu7fv8+JE8cZM2YciYl3Cz3vxo1YHBwaA2BmZsbo0W6cPPl3\nkbVNmDCZ9evXsm3bFmxsbGnXrn2J+/UmePPfcwjCK6Zp6Y62trZcupQ3xunTJ1m58htsbGwZMGAw\nQUGhzJ27gC5dPixyLvT09ElOTgby7pz0X0/vx5UrcipXtiQpKQm5/CIBAV+xaNEyFi9eTE5OTqF1\nJRIJXbt2Z9myxbz7bmt0dHQez6Gy0Dae1P/gwQO+/HJ8gbpu304gLS3vlNLu3TsYOdKVoKBQVCoV\nv/12qMj9etOISAFBKANNTnccMmQEAQFz+PnnSCQSCZ6eszAxMWHBgrns3r398akg1yLnpVOnD/Dx\nmcGpU/8gk9kXWj5u3CQWLvRn06YN5OTkMGPGLCwtLbl3L5kvvhiBlpYWI0aMeOYNPLp370m/fj2I\niPgeAAsLC7Kzc1i58hv1FTfOzi78/fcJ3NxGkpuby/Dho3nnHXtMTEwYPXootrZ1qFYtb47s7R3w\n8JiEkZExhoaGtGnjXJqX/7X3UtIdW+5cKtIdhUL+6jNZo65gKA+RaJivuLlITLyLv78vy5eveslV\nvRoi3VEQBI12+PCvTJkygZEjx7zqUl574lSMIAhvBBeXjri4dHzVZbwRxBG7IAiChhGNXRAEQcOI\nxi4IgqBhRGMXBEHQMOLDU+GN9+Exvwodb997xY938uTf+PjMwNa2DgAKhYKpUz1p0OCd59rOrl3b\n6dGj1zOv2S6N5cuXMHDgp1Stmp/1UlRGS1lVxFjHj//BnTu36d27X7nrEUpHNHZBKIOnIwVOnDhO\nWFjwc6c7rl//Ld269ShXY3d3n1LmdV+W1q3bvOoS3jqisQtCOWlaumNSUlKRY/3113FCQ1ehr6+P\nmZk5M2b4cOWKnFWrAtHV1aVXr75UqVK10PaiovYRGxuDm9uEl/eivOVEYxeEMtDkdMdnjbVo0XxW\nrgxDKrVmy5ZNRESE06aNMwqFgtWrI1CpVPzvfx8X2l553pEIZSNmXBDKQJPTHYseKwUjI2OkUmsA\nmjZtRkjIStq0cVbX+Kzt1axZqyKmXHgOorELQjn9N91xy5adGBkZ4+/vC+SlO+7cuQ2lUolSqWTq\n1IksWrSsULrjxIkeKJVK1q4Ne2a6o4tLh2LTHe3sGhSZ7mhiYsLRo4cxNDRSpzuOGOHK/v0/sXFj\nBF5evsWOValSJTIzM0hKSsLKyorTp09Sq1btxzVKit3enTu3X9TUC88gGrsglIEmpzsWNZZEIsHD\nYyYzZ05DS0uCqakZXl5+XLsWrV7vWdsTjf3lE+mOwisj0h3ziXTHfGIu8ol0R0EQBAEQjV0QBEHj\niMYuCIKgYURjFwRB0DCisQuCIGiYUl3uKJPJrIF/gA+AHGAtoALOA+Pkcrny2WsLgiAIL1OJjV0m\nk+kCIcDDxw99DXjL5fJDMpksGOgN7HhxJQpC8fpGVeylcTu6mBa7XNPTHdPS0pg0yQ0zM3OWLVtZ\n5tq8vKYxf/5idZ7NhQvnMDMzw9nZpcxjCqVTmlMxXwHBwK3HvzsBhx//vA/o/ALqEoTXmpNTC4KC\nQgkKCmXUqC8ICwt+7jHWr/+W3NzcctXh7j6lQFOvCNeuRVOtWvVyNXWA+fMXF/i9e/eeoqm/JMUe\nKshksmFAolwu/1kmk814/LBELpc/+cJROmD+AusThNeeJqU7Zmdns2zZVyQlJRIeHsLt2wmkpqaS\nlpbKwoVfs2pVIHfv3iE5OYm2bdvh6jqW+Pg45s3zQ0dHh6pVq5GQcIugoFB69erK7t0/q2sJDw/B\n0tISF5dO+PrOQKlUolAomDZtBnZ2spf7omm4kt4DjgBUMpmsM9AUWAdYP7XcFEh5QbUJbwGptPjT\nHqVTsadiSqqpUiUjTp36hy+/HItCoeDSpUusWLHi8Tcmb7Js2ddUqVKF4OBgTpw4gqGhFv/88yc7\ndmwjNzeXr7/+munTp7N+/besWBHI8ePHiY+PZ+vWLWRlZTFgwAA+/LATeno6fPxxHz744AM2bNhA\ntWrWBAYu48GDB/Tr148uXTqgp6eDhYURGzeup2/f3gwYMIDIyEg2bdqElZUJS5YE8N1332Fpacmy\nZcs4cmQ/2dnZNG/ejGnTpvH333+jp6cqsM8+Pt58//33eHpOxdPTk6ZNnRk2bBjx8fG0bt2STz75\nhKysLNq1a8fMmdPx81vBhAnjcHFxYcuWLezZswep1BQtLQlSqam6RmNjfUxMDLh16xpSqSWLFi0i\nOjqarKysQnNeMf8u3l7FNna5XN7uyc8ymewQ8AWwWCaTtZfL5YeAD4GDL7JAQbO9jl8dL6mmlJRM\nmjVzKjLd0dDQDB8fvwLpjmfO/Iud3Tvcu5cJwMiR40hKekBurpLExHROnTrHhQsXGDjwfwA8eqTg\n/PnLKBQ5mJtbk5iYzvnzl2jR4l11bbVq2XD2rByFIof79zO5fDmazp17kJiYjo1NAxSKHK5cucGd\nO3cZO3Y8UDjdcejQ4ep0x6f3OSUlk6ysbBIT03n0KJvKlauQmJhOTo42J078w+HDRzE2NiYrS0Fi\nYjqXL1+hVi07EhPTqVvXHoViB4mJ6SiVKhIT09U1ZmRkYWDwCHv7ZshkckaNckVHR4ehQ0cW2L6I\nFMhX1j9wZbnccQowWyaTHQP0gK1l2rIgaIj/pjt6efkyc6YfVlZSIC/d8fJlOUqlkpycHCZNyjvS\n/2+6Y1BQKN98E0zHjp2fme4IFJvuCBSZ7hgUFMrQoSNwcmqpTndcvnwVHTp0YuPGiGL3TyLJqyEy\nci8mJqb4+vozaNBnZGU9QqVSUbduPc6fz9v2hQvnSpyvU6f+wdLSiqVLVzB06EhCQlaUPMnCcyn1\nx/Fyubz9U7+KT0CEt5ompzs+i5NTS2bP9ubChXPo6upSs2YtkpIScXObSEDAHL7/fgPGxiYlXuVT\nv74dvr5e7NixldzcXIYPH/2csy+URKQ7Cq+MSHfM9yaffoiK2kfDho2oWbMWe/bs5Ny5MwXy3Z/X\nmzwXFa3e6gzsAAAgAElEQVSs6Y4ij10QhHKxtq6Cr68XBgYGaGlp4ek561WX9NYTjV0QhHJp2rQ5\n4eHrX3UZwlNEVowgCIKGEY1dEARBw4jGLgiCoGFEYxcEQdAw4sNT4Y330W97K3S8ve0+Kna5pqc7\nPo8nWTU2NralXufKFTlHj/7G8OGjOXz4IA4OjdRf5iqLyMg9IjXyP0RjF4QycHJqoY4UOHHiOGFh\nwSxatOy5xli//lu6detRrsbu7j6lzOu+KnZ2MnXo1w8/bMLW1qtcjb17954VVZrGEI1dEMpJk9Id\nAc6ePU1Q0DJ0dHQwMDDA338hKpWKBQv8efAgnaSkRPr1G0Dfvv3V69y9e4evvlqAQpFFcnISo0eP\npV279gwdOoimTZtz9Wo0AAsWfM3ly5fYtWsbXbv2IDr6Mv7+PsyaNRdvbw/MzMzp3LkjDRs2ZenS\nxWhra6Onp4eHhzcqlRI/v5lYW1fh5s14GjZ0YOrUGSI1sgiisQtCGTyJFMjOziY6+jIBAUsAuH79\nGj4+c7GykrJu3RoOHvyF995ry59//kFo6FqUSiXBwUGMHz+JtWvD8fObz7FjvxMfH8+qVeFkZWUx\nZsxwWrZsBUDnzl1xcenAtm2bqVSpEj4+c8nMzGDEiM9wcnpXXc+6deF07tyVXr36cuBAFDt2bEWl\nUrFw4TxWrQrDwqIyq1evIjJyD9nZ2djbOzB2rDtnzpwiI+NBgX07cuQwHTt2ZsCAwRw9+htpaemk\npqbQuXMXXFw6kpSUyPjxrgUae2xsDIMGfUrz5i04d+4M4eEhtGvXnoyMDDp37srkyR7Mnu3N8eO/\nq//wtGnjTP36DZg2zQtdXV3u3UsmPHwD1atXplevPnh6emNnJ+PIkUMEBX3NuHGTiIu7wdKlQejr\nGzBgQG+Sk5PUNVy8eAEzM3NmzZrN9evXefjwIW8r0dgFoQyePhXzdLqjVCpl2bLFBdIdb9yIxd7e\nAW1tbbS1tZkwYXKBsa5di+bChQuMH+8KQE5ODrdv593XpnZtGwBiYmJo0SKvkRsZGWNrW4ebN+PV\nY8TF3aBnz74AODo2YceOraSk3Cc5OYlZszyBwumOU6ZMUKc7Pm3IkOGsW7cGd3c3pFJrGjZsROXK\nldmy5TsOHz6IkZExOTk5BdaxtLQiIiKcH3/cBUgKLG/QIO+o2dq6CgqF4plzWq1adXR1dQHUGTsA\nTZo0Jzg4CIAaNWqqc3QsLa0KjNe6dRvi42/g6TlFnRr5thJXxQhCOWlaumNUVCTdu39EYGAIderU\nZffu7Xz//QYaNWqMj89cOnbszH8zpsLCgunWrQezZs2lefMW/5mhZ8edaGlpoVTm3TL5SYokgJWV\nlOjoKwCcPn2SWrVqP37Os8cSqZH5xBG7IJSBJqc72ts3YsECfwwNDZFIJHh4zOT27QSWLl3EgQNR\nmJiYoK2tXeBouUOHTqxYsZwNG9YilVqTklK6++80atQYf39fPDxmFnh8+vSZLF26CJVKhba2dqny\nZ0RqZD6R7ii8MiLdMZ9INMwn5iJfWdMdxakYQRAEDSMauyAIgoYRjV0QBEHDiMYuCIKgYURjFwRB\n0DCisQuCIGgYcR278Ma7ubF9hY5X49NDxS7X9HTHJ9krffr0r9DnCi+POGIXhDJwcmpBUFAoQUGh\njBr1BWFhwc89xvr135Kbm1uuOtzdpxRo6oIApThil8lk2sBqQAaogC+AR8Dax7+fB8bJ5XLliytT\nEF5fmpbuCHDkyG8cPHiA1NRURo36Amfndvz66y9s3rwRLS0tGjduipvbBPXzVSoVS5cu4uLFC2Rn\n5zBypCvvv9+ewMClnD17GoAPPujGgAH/Iz4+jnnz/NDR0aFq1WokJNwiKChUPb6+vi729o64uU0g\nPDyEhIRb3L9/nzt3Epgw4UtatXqvzPv1tijNe8CeAHK5vK1MJmsPzCMv/MFbLpcfkslkwUBvYMcL\nq1IQXjOanO4IIJVK8fScxcmTf/Pdd+to3LgJa9aEEBa2HgMDA+bOncVffx1XP/+33w6RmprC6tXr\nSEtLe/wHQJuEhFuEhq4lNzcXN7eRODm1JCwsmM8/H8577zmze/cOEhJukZaWqh6/Vi0pEydOUo+v\nq6vHkiXf8Ndfx9m0aSPvvtu6zPv1tiixscvl8p0ymezJLWpsgBSgM3D48WP7gC6Ixi68RTQ53RFA\nJrMH8hIUHz16RHx8HCkp95k6dSIAmZmZBbZ/40YsDg6NATAzM2P0aDe++24dTZo0RSKRoKOjg4OD\nIzEx14iNvU6jRk0AaNKkGVFR+wqMr6enQ0pKmnr8/HTIqigUWeXar7dFqT61kcvlOTKZLALoC/QH\nPpDL5U/yX9IB8xdUn6DhpFLTco9xswLqeFpJNVWqZIS+vq76efr6NmhpSbCyMmXx4vns378fExMT\npk+fjpGRHk2bOvDjjzuxtDQmNzcXV1dXQkJC0NHRxtLSGEdHe5KT7zB37lyUSiUrV66kceN30NPT\nwdLSBKnUlEaN3uHKlQv079+LBw8eEBNzDUfHBujp6WBhYYS9vYzY2Mu0aePE6dPH0dPToX79WlSr\nVpWwsFBMTU05cOAARkZGnD17gnbt2jB9+hT27t3Ltm3fERAQoN4/Y2N9TE0NkEpNSUszQk9PB0dH\nGdWrV2fDhnXo6uqyfft27O3t+eWXXzAxMaBOnVr89NNPSKWmpKenM2nSJD777DO2b9+OVGpKdnY2\nly6dZ/DgAdjbv0Nc3BVcXFw4cuRKieP/t5ay7tfbpNQfx8vl8qEymWw68Cdg+NQiU/KO4gXhub2O\nYU8l1ZSSkskffxxj4MD/qdMdx42bRHp6Nh980I2BA/+nTnfMzQUrq5o0b/4u/fsPUKc7pqZm0ahR\nE4YNG0FgYAgnTpzgk08GqtMdHz5UoVDkcP9+JomJ6XTs2J2FC/3p338AWVlZDB06CqVST/2cAQM+\nZ84cb3bu3E316jVQKHJITs5g/PgvGT58ZIF0R0PDSvj7+6KrG6ROd3x6nzMysjAweERiYjr372ei\nUOSQm6vLxx8PYtCgweTm5lKtWnVatnxf/dxOnd7l118P07//AHWyYqNGLTh06Cj9+vUnOzubjh07\nY21dmxEj3AgImENIyGqMjU1QKikwvpYWWFlVKTD+07WUdb/eRGU98Ckx3VEmkw0Basrl8gCZTGYG\nnAGigXlPnWM/KJfLNz9rDJHuKBRFpDvme5sSDaOi9tGwYSNq1qzFnj07OXfuDF5evurlb9NclKSs\n6Y6lOWLfDnwrk8l+A3SBScBFYLVMJtN7/PPWsmxcEIS3j7V1FXx9vTAwMEBLS6tUWevC8ynNh6cZ\nwIAiFrlUfDmCIGi6pk2bEx6+/lWXodHEF5QEQRA0jGjsgiAIGkY0dkEQBA0jGrsgCIKGEemOwhtv\nxcGK/Rx/XIfDxS5/Ot1RIpGQlZVFly7d6N9/UJm3GR8fz4QJ7oSGri3zGIcPH8TBoRFWVtIyj7F+\n/VqcnFrQsGEj9WNZWVl8+ml/tm7dU+ZxixqrqGTKp58XFbWPnj37lHubzxIZuQczMzOcnTXvOhDR\n2AWhDJ6OFFAoFAwe/DFdu/bA1LT836Qtqx9+2IStrVe5GvuQIcMqrqASuLtPeeaye/eS2bNn5wtt\n7N2793xhY79qorELQjllZmaipaWFtrZ2kemOurq6TJ8+GTMzc957ry0NGzYq9JwqVSqRknKf6dMn\nc+/ePdq2fZ9hw0Zx7Vo0gYFLUSqVpKSkMHWqJ46OTdi7dyc7dmxDqczF2dkFe3sHoqMv4+/vw8qV\n4ezatY39+39GIpHQqVMXPvlkEPPm+ZGamkpaWiqLFi0jIiK8UPLivHl+dOrUhcaNmzJnjjfp6enU\nqFFTva9Xr0azbNliVCoV5ubmzJjhS3Z2Nr6+M1AqlSgUCqZNm4GdnazA/BQ11pNkytTUFIKClqGj\no4OBgQGrVq1g3bo1xMRc59tvV9OjRy+++moBCkUWyclJjB49lnbt2hMSsoJTp/4hNzcHF5eOfPbZ\nMC5fvsTSpYvR1tZGT08PDw9vVColfn4zsbauws2b8TRs6MDUqTPUWfIuLp2Krf9NJBq7IJTBk3RH\nLS0tdHR0mDx5GkZGRkWmO3bp8iH37iUTHr7hcQ7KD4WeM2hQfx4+fMisWXMxNDRk3LjRtG3bjhs3\nYhg/fjL16tUnKuonIiP3ULNmLTZsiCAiYhN6evoEBwfRtGlz6tdvwLRpXsTHx3HgwH5WrgwDYPLk\ncbRq1RrIe6cxcOCn/P77kSKTF5/YuXMbderUY8yYcVy4cJ6TJ/8GYOFCf2bM8KFOnbrs3buTjRsj\ncHRsgpmZObNmzeb69es8fPiwwFw9a6wnjhw5TMeOnRkwYDBHj/5GWloan38+gqtXoxk+fDR//fUn\ngwZ9SvPmLTh37gzh4SG0a9ee/ft/IjAwBEtLKyIj9zyubx6ent7Y2ck4cuQQQUFfM27cJOLibrB0\naRD6+gYMGNCb5OQk9fYvXrxQbP1vItHYBaEMnj4V87Si0h0BqlWrjq6ubrHPqV/fDhMTEwDs7R2I\ni7uBlZU1a9eGoa+vT2ZmJsbGxty8eZM6deqhr28AUCAXHeDatavcuXMbd3c3ANLT04mLiwPy0yJj\nY68Xmbz4RFzcDdq0aQuAg0Mj9V2eYmOvs2TJAgByc3OoWbM2rVu3IT7+Bp6eU9DR0WHo0JEF6nnW\nWE8MGTKcdevW4O7uhlRqzfvvtyqw3NLSioiIcH78cRcgIScnBwAfn7kEBweSnJxM69ZtAEhKSlQf\nbTdp0pzg4CAAatSoiZGRsXo8hUKhHr+k+t9E4qoYQahACxfOw8vLl5kz/Qqc65ZItEp8TmxsDJmZ\nmeTk5PDvv+epU6cuy5cvZuTIMXh7z6ZevfqoVCpq1KjJjRsx6ubk7e1BYuJdtLS0UCqV1K5tg61t\nXQIDQwgKCqV794+oV8+uQB02NnXUp2FycnI4f/4sNWvWVtdSp04dzp8/B8Dly5fUzbR2bRu8vecQ\nFBSKm9tE2rRx5tSpf7C0tGLp0hUMHTqSkJAVBebkWWM9ERUVSffuHxEYGEKdOnXZsmULEokWKlXe\nvXvCwoLp1q0Hs2bNpXnzFkDe5xoHDx7Az28+gYEh7Nu3l9u3E7CykhIdfQWA06dPUqtW7cf7/ezI\nlZLqfxOJI3ZBqEBdu37I2LGj1emOSUmJpX6OqakZvr4zSEm5T8eOXahTpy5dunzIrFnTMTU1Qyq1\nJjU1BQsLCz79dCjjx7sikUho2/Z9pFJrGjVqjL+/L0uXBtGiRUvGjh2JQpF38wmptOAHqm3bvs+p\nU/8wZsxwdfKiTJZ/z9bevT/G398XN7eR2NjYqt9tTJkyA39/H3Jzc5FIJHh6zsLc3BxfXy927Niq\nTnZ82rPGesLevhELFvhjaGiIRCJhwYL5SCSGZGfnsHLlN3To0IkVK5azYcNapFJrUlJS0NPTw8zM\nDFfXYejr69OyZWuqVKnK9OkzWbp0ESqVCm1t7VLl0NSvb1ds/W+iEtMdK4JIdxSKItId84lEw3xi\nLvKVNd1RnIoRBEHQMKKxC4IgaBjR2AVBEDSMaOyCIAgaRjR2QRAEDSMauyAIgoYR17ELb7wPj82t\n0PH2vVf8tc9PpztC3pdlpk71pEGDd4pdr6KUlEr4JIPll19+xtLSkj59+pdpO76+M/D2nlPouvPy\nKCo9siRP9sfGxrbC6tB0orELQhk8HSlw4sRxwsKCWbRo2UvZ9stKJSwqMqG8XmZ65NtMNHZBKKf0\n9DQqVbIAKFW647Fjv2NnJ+PatatkZj5g7tyFSKWmbN36faFExsOHf2XDhgh0dHSwspIye/Z8vv12\ntfpIPDg4iDNnTqFUKhk48FM6duxcqL7c3FwWL57P3bt3SE5Oom3bdri6jlUvj46+wvLlXxEYGAKA\nh8ckRo36Ai+vaWzcuJXjx38vVENqairz5vny4MEDVCoV3t6zsbCozIIFc0hNTQVg0qRp1KtXn48/\n/ggbG1tsbeuQnp5Op05daNasOfPnz+b27dtkZ2fz5ZcevPNOQ+bPn01i4m0ePVIwaNCndOrURV3n\n3bt3ikx5FAoTjV0QyuBJumN2djbR0ZcJCFgCUKp0x2PHfsfe3gF39ymEhKxg//6fMTTUKjKRcf/+\nnxk8eAgdOnRm3769ZGRkqGs4dux3EhJusmpVOFlZWYwZM5yWLVsVqvXu3Ts4ODji6TmLrKws+vXr\nXqCx169vh0Kh4PbtBHR0dElJSSlwWqmoGiIiwnF2bkefPv05d+4MFy9eIDr6Ck5O79K3b3/i4m4w\nf/5sVq0K5+7dO6xZswFz80rMm+cH5CU+Vq1andmzA4iLu8GxY0eRyy9SqVIlAgOXERt7mxEjPsPJ\n6V11HbGxMUWmPAqFFdvYZTKZLrAGsAX0AX/gX2AtoALOA+PkcrnyhVYpCK+Zp0/F3LgRw5gxI9i5\nM7JU6Y4ADRrkJRBWqVKF5ORkLl++XGQi44QJk1m/fi3btm3Bxsa2QCO7di0aufwS48e7AnlhXrdv\n3ypUq5mZGRcvXuDkyb8xNjZGocgu9JyPPurNTz/9iK6ubqFTPUXVcONGLD169ALA0bEJjo5NiIra\nx8mTf3PgQNTjfUgDwNy8EubmlQqMeeNGrDqRsVat2tSqNZglSxbSokVeIzcyMsbWtg43b8ar13lW\nyqNQWElH7J8ByXK5fIhMJqsMnH78P2+5XH5IJpMFA72BHS+4TkF4bVlYWKp/XrhwHlu27MTIyBh/\nf1/140+nO+b9XjACpG7dutja1mXJkm+QSCRs3ryRevXs2L17ByNHumJhUZlFi+bx22+H1OvY2NjS\nrFkLpk+fiVKpZO3asAI3sngiMnIvJiameHjMJD4+jt27d6BSqQrU0KlTF9zd3dDS0mLp0qAC6xdV\ng62tLZcu/YudXQNOnz7JH38cxcbGli5dGtKlSzfu37/Hnj07AdDSKnzxnY1NHS5e/Jf332/PzZvx\nrF69CkfHxpw9e4r+/XuRmZnB1atXqV69unqdsLBgevbsw3vvteXHH3ezb9/e4l6Wt1pJjf0HYOvj\nnyVADuAEPLkp5D6gC6KxC2+ZJ6ditLW1yczMYMKEyejrG5Qq3bEo77zzTpGJjPb2Dnh4TMLIyBhD\nQ0PatHFm69bNALRt245Tp/5h7NhRPHyYSbt2HdSZ409zcmrJ7NneXLhwDl1dXWrWrEVSUiJSqbX6\nOUZGRtSv34Dc3JxCYxRVQ+vWbQkImMPPP0eqUx5NTExYsGAuu3dvJzMzgxEjXJ+5v7179yMgYA7j\nx7uSm5uLu/sU6tWzY+FCf/73v//x4EEmI0aMxsKisnqdolIehaKVKt1RJpOZAruB1cBXcrm8+uPH\nOwIj5HL5Z8WtL9IdhaL81Wfyqy5BEF53ZUp3LPHDU5lMVou8I/KVcrn8O5lMtuipxaaA+LMplJmI\nZ80jomrzibnIJ5WW7eboxX7zVCaTVQGigOlyuXzN44dPyWSy9o9//hA4UqYtC4IgCC9ESUfsXoAF\nMEsmkz35Op478I1MJtMDLpJ/Dl4QBEF4DRTb2OVyuTt5jfy/iv4usyAIgvDKiRAwQRAEDSMauyAI\ngoYRkQLCGy9yX8WeGez+4eFilz+d7iiRSMjKyqJLl2707z+oyOcnJNzC19eL0NC1pdp+r15d2b37\nZ3USYkzMdWJjY3Bzm/C8u6K2bdtmPv54YJnXryjLly9h4MBPqVq1aqnXuXJFztGjvzF8+Ogil3t5\nTWP+/MUVVaJGEI1dEMrg6UgBhULB4MEf07VrD0xNy3Z5WlGeJCHGxFwv91gREWtei8bu7j7ludex\ns5NhZyd75nLR1AsTjV0QyikzMxMtLS20tbWfme74RP/+Pdm4cSv6+vqsWhWIjY0tXbt2x8vLi4sX\n5dSoUROFQgHAvHl+6nTDCxfO4e7uRkZG3jc627Rx5uDBX9i+/QdycnKQSCTMn/8V5ubmLF26iIsX\nL5CdncPIka5cu3aVtLRUvvpqAZMmTWXx4vnEx8ehVCoZPdqN5s1bMGTIAGrVskFXV6dAXO/48a7Y\n2NgSGxsDwOzZ84mNjWHVqkB0dXXp1asvlpaWhIauQl9fHzMzc2bM8OHKFTnr1q1BS0uL5ORkevXq\ny8cfD1Bnq1eubMncubPIyMggNzeX0aPdcHJqydChg3jvvdacP/8vAAsWfM3ly5fYtWsbs2cHsHfv\nTnbs2IZSmYuzswsjR45Rv8P599/zfP31IoyMjLCwsEBPT5+ZM/2KTM2cN88PXV1dbt9OIDk5CS8v\nP2Syd/j111/YvHkjWlpaNG7cFDe3CZw9e5qgoGXo6OhgYGCAv//CIr/h+zoRjV0QyuBJpICWlhY6\nOjpMnjwNIyOjZ6Y7Fue33w6SlZVFaOhabt++zaFDBwo9x8DAgMWLl5OSch9X12G0bt2GuLgbLF68\nHAMDAxYtmseJE8fQ1zcgNTWF1avXkZaWxubNGxk92o1t27YwdaonO3Zsxdy8EjNm+JCamsK4ca5s\n2LCFhw8fMmzYyCJvFtKoUWOmTfNi+/YfWL/+W9q164BCoWD16ghUKhUDBvRm5cowpFJrtmzZRERE\nOG3aOJOUlMiaNRtRqZR8/vmgApHCERHhtGjRigED/kdi4l3Gjh3Fli27yMjIoEePHnzxxSRmz/bm\n+PHfqVw5L4vn/v17bNgQQUTEJvT09AkODiIzM1M95ldfBeDtPYe6desRErKCpKRErl+/VmRqJkDV\nqtXw8JjJ7t072L17O2PGjGPNmhDCwtZjYGDA3Lmz+Ouv45w48ScdO3ZmwIDBHD36G2lp6aKxC4Im\nevpUzNOele5YlCdxHnFxN2jcuDEAVatWxdq6SqHnNm7cFIlEgoVFZYyNTUhNTcXCojL+/r4YGRkR\nGxtDo0aNuXMnFgeHvLHMzMwYPdqtwDhXr0Zz9uwp/v33PAC5uTnqzJXatW2fsa8tAXB0bMzRo4cf\nP9cGgJSUFIyMjNW5M02bNiMkZCVt2jjTqFFj9PT0AKhbt16BpMbY2Ot06dLt8ZxZY2RkzP379wBo\n2LAh6enZWFtXUb97Abh58yZ16tRDX98AoNBnDklJSdStWw+AJk2aceBAFNeuXS0yNRNQn96xtq7C\nuXNniI+PIyXlPlOnTgTy3ondvBnPkCHDWbduDe7ubkil1s9196dXRVwVIwgVaOHCeXh5+TJzph9W\nVtJCy/X09EhOTkKlUhEdfRkAW9u6nD59GoCkpEQSEwsHh128mHdqIjk5iYcPM9HV1SU8PITZs+cz\nfbo3+vr6qFQqdeoiwIMHD/jyy/FA/h8RGxtbOnfuSlBQKEuWfEOHDp0xMzMDCidOPiGXXwTg7Nkz\n1KlTFwAtrbznVqpUiczMDJKSkgA4ffoktWrVBuDKlcvk5uby6NEjrl+/Rs2atdVj2tjU4cyZvH1O\nTLxLenoaZmbmxdZRo0ZNbtyIUTd7b28PEhPvqpdbW1fh+vVrQN6pK8j7A2RrW5fAwBCCgkLp3v0j\n6tWzK3I71arVwNq6CsuWrSQoKJT+/Qfi4OBIVFQk3bt/RGBgCHXq1GX37u1F1vc6EUfsglCBSkp3\nHDz4c6ZNc6dq1erqD1rff9+F8+dPMnr0UKpWrUalSpUKjZuVlcXEiV/w8GEm06Z5YWxsjKNjE774\nYjja2jqYmpqSlJRI9+49+fvvE7i5jSQ3N1d9JYmtbR3mzJmFp+csFi70Z/x4VzIyHtC37ydFxuo+\nLTJyL5s3f4eBgQGzZs3h6tVo9TKJRIKHx0xmzpyGlpYEU1MzvLz8uHYtmpycHKZOnUhqaipDh44s\nsF+ffz6cgIA5HDp0gKysLDw8ZqKjU3w7srCw4NNPhzJ+vCsSiYS2bd8vkFA5Zcp0AgLmYGhohK6u\nDlKpNXZ2DYpMzXzW+AMHfqpOnKxWrTodO36AQpHNggX+GBoaqvf3dVeqdMfyEumOQlH+6jNZhD09\n9roGX5X1RtInT/6t/sDzeZV1LrZt20LHjh9gYWFBaOhKdHV1n3mJ5JtCKjV9MemOgiAIb4LKlSvz\n5ZfjMDQ0wsTEhJkz/V51Sa+MOGIXXhlxxJ7vdT1ifxXEXOQr6xG7+PBUEARBw4jGLgiCoGFEYxcE\nQdAworELgiBoGHFVjPDG6/rnJxU63s+tfijxObdu3WTFimWkpqaSm5tDvXoNGDt2QqGvmh8//gcH\nDkSV+gqNJ0mFZb3M8Inbt28THX0ZZ+d2ZVq/NMLDQ7C0tKRPn/7lHutJ3ktp+PrOwNt7ToEMHqEg\nccQuCM8pK+sRnp5fMnjwUIKCQlm1ag0ODo3w8yv/F1cqKqnw5Mm/OHfuTIWM9bqZPTtANPUSiCN2\nQXhOf/xxlKZNm+PgkJ8Z8uGHH7Fjx1Zu3bqJQqEgIGAOBgaGGBoaYGqa95X9qKh9bNmyCV1dXWrV\nqo2Hx0yiovbx44+70daW8Pnno5gzZ5b6yDUsLJjU1BR0dfXw9p6NmZkZixfP5+7dOyQnJ9G2bTtc\nXccSF3eDhQv9yc7OxsDAAF9ffzZsWMujR49wdGxMtWo1WLZsMSqVCnNzc2bM8OXy5UsFEhq7desB\n5H3D1cfHk4yMDB49eoSr61jefbc1n3zSm4YNHbh1K546derh6TlLve+5ublF1vWsBMWiEhoVCgV+\nfjO5c+c2UqklPj7ziYgIJyHhFvfv3+fOnQQmTPiSVq3eUydk3r17p8B++/nNZ+XK5XTq1IXWrdsU\neLc0f/5s4uPjyMrK4pNPBqn3V1OJxi4Iz+nWrZvUqFGz0OPVqlXn9u0Evv9+A6NGjaFly9Zs2LCW\n2NgYUlNTCA8P4dtvN2JkZMw33yxh165tGBoaYWpqSnj46kLXbru4dKBz565s3/4DGzZ8S//+g3Bw\ncMTTcxZZWVn069cdV9exrFixjM8+y0t8PHr0MNHRV/jss2HExsbg7OyCq+swZszwoU6duuzdu5ON\nG3OkaqoAACAASURBVCNo2bKVOqHxaTdvxpOamsqSJd9w//594uJiAUhMvMPo0UHUrFmLWbM8OXLk\nkHqdu3fvFFkXFE5QHDXqiyITGh8+zGTMmP+3d+bxVo3rA/+eZs0jRaPiISU/Q0iICBkyS1xSqEjI\nRYjSLUqTEpVuClfSzVQh3FBJSTI1PZcolGgeT3O/P553n7PPbu8zN+37fD8fn3P2Gt71rPfoWc9+\n13q/626qVDmSzp3v4r//XQRA4cJF6N9/MF99NYvXX3+N008/M+24sef9448a9++1Zctmvv12LsOH\njyYlJYXZs2fl/I9+iOGJ3XFySKVKh7Ngwfy9li9b9jtHHFGZX3/9leOPt2q+fv2TWLp0CcuXL6NW\nraPTxuAbNDiZr76aRd269dJMibGcdNLJoY0TmTnzc0qXLs3ChfOZO3cOJUqUYPv2HQD8+utS6tUz\no2PjxvY2qfffn5jWztKlv9C/f2/AbI4RGVe84x59dG1atLia7t0fY+fOnWlvhTriiMpUrVotLZ5f\nf12atk+iuGBvg2IiQ2Pp0mWoUuVIACpWrMjWrVsBOPbYyP6V2b59W4ZY4533xx9PTlsfmXxZvHgJ\nOnV6gGee6cWWLZuz1CgnAz7G7jg5pHHjc5kz58s09S3AxInvUKZMWY46qiq1atVi3rzvAVi0yC4A\nVaocxZIlv5CamgpktCCmpMT/Zxi5eHz33TfUqlWb99+fRMmSpejWrSctW97Mtm1b2bNnDzVq1GLh\nQtv2o48+YPz4saSkpLBnz27AEnjXrj0YMuRFOnToRKNGjYF0Q2M0ixf/xJYtm+nbdxCPPfYkzz5r\nY/4rV65k9WozOEZbHoGEcdm5ZTxGIkNjIqNjgsUAcc87Ys8E0qr+VatWobqQp5/uxzPPPMvQoYPZ\nuXNn4oaTAK/YHSeHFC9enD59BjJ4cH82bFjPzp27qFPnGLp37wVAx47307NnN15//VXKli1LkSJF\nKVu2LG3atKNTp3akpBSgatVqtG/fkSlTPkp4nOnTP2PcuDGUKFGCxx57klWrVvLkk12ZP/8HChcu\nTNWq1Vi1aiV3330vffvamHSxYsV44ol/sGLFH7zyyksce+xxPPDAI/Ts+QS7du0iJSWFLl0e38s6\nGaFq1WqMGvUin3zyH3bv3k3btu0AKFKkMAMHPsOff9qwy1lnnYOqJc5TTjktblzxyMrQmBPinffy\n5ct4+ukefPTR5LQLZ4UKFVizZjXt27ehQIECtGx5c5YmyUOdbLliROR0oI+qNhGROsBoYA8wD7hb\nVXdntr+7Ypx4uCsmnYPdj5KTxxHzysHeF/uTfeaKEZGHgH8CxcKiAUBXVT0bSAFa5ObAjuM4zr4h\nO2Psi4Groz6fAkwNv38AXLDXHo7jJBX7q1p38ocsB5pU9U0RqRm1KEVVI0MrG4Ey+yIw53+DSpVK\nHegQDhq8L9LxvsgbubmDED2eXgpYl0+xOP+D+Fiq4ePK6XhfpJPbC1xuHnf8RkSahN8vAabn6siO\n4zjOPiE3FfsDwAgRKQIsBMbnb0iO4zhOXshWYlfVJcAZ4ff/Aufuw5gcJ0dc9dGGfG3v7Wals7Xd\na6+9zLhxYxg3bgJFixZNMzLOn/8DpUuXTpsNGcu7777FpZdewS+/LObzz6fl+wuXX3hhMF9++QWX\nXnoFmzdv3qcvdO7Vq3uamyXCtm3buOmmaxk/fiKDBvXnhhtuYu7crzLtEyd/Se6n9B1nH/LRRx/Q\ntGkzpkz5iObNL09bHv17PF59dRQXX3wpxxwjaVPu85NPP53Cyy+P2UshfCC4994HgKz7xMlfPLE7\nTi6YO3cORx5ZlSuvvIYePZ7IkLginvJzz21Kt26PsHv3brZv386DDz6C6kLWrFlN9+6Pct11N/Lu\nu2/y5JNP07RpU0TqZrAnbtmyhd69e7B+/XoA7rvvQWrXrpOpqXDUqBGsXr2SBx+8j5tvbs3kyZN4\n8smnadnyKurXb8Cvvy6lfPny9Oz5DHv27KFv36f4/fff2L17N3fc0YGTTz6VGTOmM3LkMEqUKEmp\nUqWpXbsObdu247nnBvL9998CcOGFF3P99TemHXfLli306NGVjRs3ZhCkRb7F/Oc/H+abu93JGnfF\nOE4umDTpXS6//EqqV69J4cKFmT9/3l7bLFw4n9Kly9C//2A6d36Y1NRULrvsSsqXr0D37k9l2PbP\nP//kjjs6MGLEK6SmpjJ9+me88spLnHJKQ557bjgPPfQY/fo9nWYq7NWrL/37P0eBAgUztHPbbXdQ\nvnwFBgwYQtGiRdOWL1++jNtvb8/w4aNYt24tCxcuSPPbPP/8CHr37s+AAc+wa9cunn22H/36Dea5\n54antTFjxnT++GM5L744mqFDR/Lxx5NZvPintPbfeedNatWqzfPPj6BFi2vys6udXOAVu+PkkA0b\nNjBz5gzWrl3D+PFvsHnzJt566429tjvjjEb8/vuvdOnyAIUKFeLWW9smbLNKlSp72RN//vkn5s6d\nk+aT2bhxQ65NhWXKlOWIIyoDZlrcvn0bixf/xPfff5MmM9u1ayerV6+iRIkSlC9fAYAGDU5i9erV\nLF36Cw0anERKSgqFChXihBPqs2TJz2nt//bbrzRqdBYAJ5xQL+ldLAc73vuOk0M++uh9LrusBXff\nfS8AW7du5brrrqBMmbIZtvvmm6+pUKEiAwc+z7x53zN8+PM899xwUlIKEOto+vNPe0lFhQoV+f77\n77j44uasW7eWZs3q0qzZxaxdu4aJE9/JYCrctm0b11xzKRdd1DzLRBrPnlijRk0OP/xwbrmlDdu2\nbeXll1+iYsVKbNmymbVr11KuXDnmz59H5cpVqFGjFu+/P4EbbriJnTt3Mm/e91xyyWXAFwDBaPkD\nZ5/dhP/+d1HS2xMPdjyxO04OmTjxXR5/vEfa52LFinHuueczadI7GbarU+cYunV7lLffHs+uXbvS\nnk5p0OAk/v73TrRpc2fatkWKFNnLnli/fgN69/4HEya8xZYtm2nT5s58NRW2aHE1ffr0pGPHO9m8\neRNXXXUdBQoU4P77H+LBB++lRImS7Nmzm6pVq3HWWWfzzTdf067dbezYsYPzz78AkeOi2rqGnj27\n0aFDW2rUqOmvrjvAZMvumFfc7ujEw+2O6Vx55cW8887krDfcD7z66ihuuOEmihQpQo8ej3PaaaeH\n6nz/4DNP08mt3dErdsdxMlC8eHHatWtNsWLFqFz5SJo2bXagQ3JyiCd2xzkImDFjxkFTpV5zzQ1c\nc80NBzoMJw/4446O4zhJhid2x3GcJMMTu+M4TpLhid1xHCfJ8JunziHP5Z/Nztf2JjZpmOU2y5cv\n4/nnn2X9+vXs2rWT2rWP5a677sm2eOvVV0dzyimnUrv2MXz00Qe0afO3NMdMdnwq778/kaVLl9Ch\nwz3ZOl483nzzjWzfJH3//Yn7xM74xx/L6dbtUV58cXSG5ZH+qVu3Xo7ai5gzc/ts/9y5c9L8Pbkl\nnvFyf+MVu+PkkG3bttKlS2datbqVIUNeZOjQlzjhhHp07/5Yttv4299aU7duPdasWc3Eie9kvcM+\n4OWXX8r2ts2bX75flbuR/skpr746il27du2DiA4tvGJ3nBzyxRefc9JJJ3PCCemJ55JLLuPtt8ez\nfPkyRo0awfr169mwYT033vg3Jkx4m8KFC7F8+TKaNm3Grbe2Tavqpk79hCVLfmHIkCEATJ8+jU8/\nncL69eu5/fb2NG58Dh999AHjxr1O4cKFqVatOg89ZBeQ+fN/4N57O7B5s81KbdSoMZ9++h/eeuvf\n7Ny5k5SUFJ56qh9lypRh4MBnWLhwPjt27KRt2zv5+efFbNiwnn79enPffX+Pa3n829+up1q1GhQu\nXIjq1WtSoUIFqlevmaGiveKKi5gw4UN69epOoUKFWLHiD3bs2EHTps2YMWMaf/65gt69B2QwPo4c\nOZx5874nNTWVLl0eZ926tTzyyAOsWrWKOnWOoV+/Pmn9s2bNambOnMG2bVtZtux3brrpVpo3v5z/\n/ncRAwf2pWDBghQpUoSHHurKnDmzMpgzhw59jsKFC3PFFVdRtGjRbPVLiRIl+e2333jggU6sXbuG\ns846m7Zt27F48U88+2xf9uzZQ5kyZXjkkW4cdthh9O37FH/9ZTqIs846hzvvvCvtPHfu3Bm3X/cH\nXrE7Tg5ZvnxZhkQVoUqVI1mx4g8ATjnlVIYNe4lSpUrx559/0LPnMwwfPpoxY17JsM8tt7ShZs1a\ndOzYEYBKlSoxaNBQOnXqzDvvjGf9+nWMHDmcwYOHMnToSEqWLMm7774JmMrg2WdfoG/fZxk48Bl2\n797Nb7/9St++gxg6dCQ1a9Zi9uyZTJv2GevXr2PEiFcYPHgYixYt5NZb21K6dBn+/vcucS2PAKmp\nqbRu3TbbwxKVK1dh4MDnqVGjJn/8sYx+/QbTpElTZsyYtte2NWrUYtiwlyhatChbtmzmkUe6MXz4\nKObM+YrVq1dn2Hbz5k0888yz9O49gH/9azQAffr0onPnhxgy5EWuuupahgwZsJc5c/v27bzwwj+5\n+OJLs90vkf2efrofL7zwT956a1w4Xk86d36YIUNe5Mwzz+K1117mr79M/zBgwBBefPHltL9LhET9\nuj/wit1xckilSoezYMH8vZYvW/Z7mkGxevUaacuPProOhQoVolChQhQtWizTtkWOB6BChYps3bqV\n5cuXUavW0Wlj9w0anMxXX82ibt16nHii2RbLlStPiRIlWb9+PeXKladnz24UL16cpUuXUK/eifz5\n51JOOOFEAEqXLs0dd3TIcMx4lsd169aF86iZabzRSpJjjzV3TMmSpahRw/YrVaoU27Zt32u/6P6p\nUuUoSpe2t1aVK1eO1NTUDNvWqXMsELFSWlurVq1Me0lJgwYnM2zYkEyPkd1+mTt3DkcfXZsiRYoA\nULCgpcilS3+hf//eaf1TtWp1SpcuzcKF85k7dw4lSpRg+/YdGY6fqF/Lls0oi9sXeGJ3nBzSuPG5\nvPLKSyxYMC9tHDhSnUUq+ZSU9C/DccSKUesKsGfP7oTbVqlyFEuW/EJqaiqHHXYY3347l2rVqgOw\ncOECAFavXkVq6hYKFy7MyJHDefPNSQDcf//d7Nmzh5o1a/Lpp1MA2LRpE0880YUBA4akJeV4lsdI\noo21QhYpUjStol6x4g82bFgfFXv2tSYFCqRvm9V+8dZXrFiJn376kTp1jsnQJ9HmzMgxNm3alO1+\nufnm1nH/XtWr16Br1x5UrlyZ77//ltWrV/H++5MoWbIUDz30GL///hsTJryd4UKXWb/uazyxO04O\nKV68OH36DGTw4P5s2LCenTt3UafOMXTv3ivHbZUrV44dO3bSt29fYO+MUrZsWdq0aUenTu1ISSlA\n1arVaN++I1OmfMS2bdvo1Kk9qalbePDBRylRogT16zegffvbKFiwEKVKlWLVqpU0b345c+bMpkOH\nthkskzVr1qJHj8fp0uXxuJbHeBx33PGULFmSO+64lZo1a1GlylE5Puf84OGHH2PgQHsLVMGCBenS\n5XEgvjkzp/0SjwceeISePZ9g165dpKSk0KXL49SoUYsnn+zK/Pk/ULhwYapWrcaqVSvT9klkz9wf\nuN3ROWC43TEdNxqm432RTm7tjn7z1HEcJ8nI1VCMiBQAXgAaANuA21X1p8z3chzHcfYHua3YrwSK\nqeqZQBegf/6F5DiO4+SF3Cb2xsBkAFWdBeyfp+4dx3GcLMntUzGlgfVRn3eJSCFVjfsG26+uvD9X\nNwCc5KdSpVIHOoSDBu+LdLwv8kZuK/YNQHTPF0iU1B3HcZz9S24r9hnA5cA4ETkD+CH/QnKcnLH1\nviH5+jhtsWc7ZvoNU0SaAO1VtWVu2s/r/pm02x1YoarDcrBPeeBiVR0Ts/wk4ApV7RGzfCwwDCgG\nVFfVF/MceB4RkX5AKVVtFz4XxHLUk8DpxOkTEbkbaA3sAfqp6jgRKQP8CxuRKAJ0VtWZ++1E8pHc\nVuxvA1tF5AtgIHB//oXkOM5+5ETgitiFqvptbFKPWT/5YEjqga7AWSJyQfj8IPCVqn4Qb2MRqQh0\nABoBTYH+IpICdAamqOq5WNJ/fl8Hvq/IVcWuqruB9vkci+Mc0ojItcDdQGGsErwKWA08BzTEqsBu\n2P2pY0TkA+BwYKKqdheRz4BvgXpY1Xidqi4VkQeAlsBOYJqqPiwilYCXgbLYlNVbYmLpjz3kADBG\nVQeJyNXAw8AOYHlo8zGggYjciSW6CuG/vsANqtoyVLe3A3+EeBGR1sBxWPU+VlXPCMtnhXZbA3WA\niqG954FrgGOBW8NDF5FYjwVGhfMrALQCaofYdgOVgRdVNW6iVdWtInIL8LqIXAdcB5wV949k268S\nkZNUdaeI1AS2quoeERmIPb4Nlhu3JmrjYMcnKDlO/nEscKmqNgYWABdhjwZXVNWGwHmkP0FWLKw7\nG+gY1cZsVb0A+Bi4UUTqA9djSbcRdkG4DKtSJ6hqI+AB7MIBQFhfCzgDS+6tQjs3An1DfJOwi0cv\n4JOo6vuT0Oba0NYRwL2hrRbYxSm7pKrqxcCbQHNVvRzojSX+aC4EZgMXYBe+MmH5Udi3iTOA+0Xk\n8EQHUtW5wGvAFKCNqmaalENS7wjMwoZfUNV1qpoqIpXDskdycK4HFZ7YHSf/+At4WURGYUMchQEB\nZgKo6lpVfTxsO09Vt6nqFqxSjfBN+PkblvyPA2ap6g5V3QNMB06IafcLVX0tqo3jgemqukdVd2DJ\nqy421HC+iEzFLhK72RuN+VwbmB9i3YEl4MyIvj8xN/xch13owC4YsYrLkWGbydhFLtIfX4TjpgLz\nQiyZ8QqwWFW/y2I7AFR1CFAFOEdEzgMIF8ApwKOqOjU77RyMeGJ3nHwg3Hh7EqtGbwdSsSS3EDgt\nso2IfBh2SXTDN3b5IuB0ESkUxoHPAf4b0+45ItInap+FhGEYESmMJfEfgTuB7mEMOQUbKtpNxjwQ\nm+x/BE4QkcPCTcn/i1m/FThcRAqKSFnsm0Kic0lEC+xC1BT4NzZcBHBSaLc4djH7MZvtZYoYb4X+\n3IENv+wWkbrh+K0Sjc8fKuSr3TEr1YCIXA48gV2RX1LVEfl5/IOJbPTFjcB9WF/8ANwV7l0kHdlV\nUIjIi8AaVe2yn0PMDc1EZE7U55uwJzFmYn/TtcCRwGjgAhH5HPv31gOrnBuFMfXbY9qtJyIjsEpy\nOzZ0MS60XQD4HHgn/HxJRG7GEmhbwji7qk4SkSYiMhMbOhmnqnNF5ChgkohsBDZhwzHFgPoicl+8\nk1TVlSLSG/gCWAlsjlm/QkQ+Br4CFgPZVotE/X/REKgtIgvCOd+PDRNVCv1YEBgfxsZbASVzeOP2\nERGJ9PNGVT1PRL7D/lZ7gA9UdaqIvIv1xyARAVivqi1ycJw8ISKnA31UtUnM8hznzXy1O4abM1eo\nauvwGOQjkY4JlUOkytiM/Y96mar+mW8BHERk0ReHYV8t66vqFhF5HXhdVSccwJD3GZn1RdQ27bAb\nblMPkcSeK7L4/yIFG4q5VlV/CslouqrGDo8kBVn0RRPgA2ycfRM2lHOaqq49UPHuS0TkIeBvwObI\njeiwPFd5M7+HYjJTDRwP/BTGGbdjFcc5+Xz8g4nM+mIb0CiMr8Ihfgc+G2SqoBCRRtjzxsP3f2j7\nncz64ljsKZr7wzh4+WRN6oGs1CTrsBupxbCho2TWfy8Gro6zPFd5M78Te1zVQIJ1G0m/+52MJOwL\nVd0dueKKyD1ASewpiGQlYV+ISBXsSYiO8XZMQjL7N1IRGw8fgj0h0lREzt/P8e1PMvs38hkwBvga\nmA9MUtV1+z3C/YSqvomN98eSq7yZ34k9M9VA7LpS2BU5WclUuyAiBcKMuQuBa8ITD8lKZn1xHZbQ\n3sdMoa3CM9LJSmZ9sRqrzhaGJ1Amk9yCvYR9ISInApdiN2NrYjdor9vvER54cpU38zuxzwCaA8RR\nDSzEnsEtLyJFsK8Th+R03WySWV+ADTsUA66MGpJJVhL2haoOVtVTwg2j3thkmtEHIsj9RGb/X/wM\nlBSROuHz2Vi1mqxk1hfrsSeLUlV1F/Yoabn9HuGBJ1d5M79vnkbucp+IjYndBpxMuIsddXe3AHZ3\n95CdspsVmfUFMCf8N530ccNBqvr2AQh1n5PV/xdR27UGjkvym6dZ/Rs5H7vApWDPcd97wILdx2Sj\nL9oDbbAnZRYDd4Rx5qQkzIIdq6pnRD/9k5u8uV/eeeo4juPsP/L1OXbHORC88srJ+Vqd3HLL3OzY\nHcdhj+DtwW5w/QzclB8VpYisUNXKudivNTYPIMvHZkVkCfbtKM9PY4nIxWRiesxJXE7+4IndcXLH\nJxql3RWRMZjXZPyBCuhA3ZtQ1clZrB+9n0JxAp7YHSePhJtaVUgXZ2XXrFgK86RUCNt2UtUfgKJi\n3vNqwPfAXdgjoStUdZiIHAcMU9UmIjIPUwxsx/QDK4AR2M35aiGuCaraNU7oQ0UkogC4CpsINAo4\nGpvtOUBV3wgzZL/DrJObsHtDF2FmyWaYEiBienwd89zUxoRmHSR44jEZ2BvYWHExzEn/bQ662skm\n7opxnNxxvoh8FqbBzwXeVtUpkjOz4qOY//s8zOMyNLR9GPCwqp6FJf3LM4mjJPAPzfjSjmqYOOwi\nbLp+IsX2yPA00hLssdt2wEo1u+MFQE8xdzlYkm4KFAW2qOqF2FDUuTFtHovpDRoCzcVMiREaYo90\nXoLpjUtkcl5OHvDE7ji545OQFM/GquVfwvKcmBXrA21CRTwCKB/a+FVVl4bfv8BMjtHE3gOInZ26\nBjhNRF7DXoRTNME5fB1+rgCKh9inAajqRixxR4yK2TU1/qSqG8Mjin/ErP8Ae8TxXcyZk5RupIMB\nT+yOkwdUdTVwM/DPMIs2J2bFRcDAcIG4nuAFB6qGtghtzcOUE5FlJ8eEEZsgWwPrVPUmoD9QPHho\nYom96bwQu1AhIqWwC88vCbZNRGbbNQH+UNVmQE/gqWy26eQQT+yOk0dUdQEwGBisqpOAX4JZcRZm\nJZyLecwnicgU7I1Ak7CXXFwfKvbJWAIHG64YHNpYqqaQfQMb2viMvRN7LFOAi0VkGja88yNmmsyK\nF4EKwUT5GfCkqv6Vjf2yy3fA7eEc+gJP52PbThT+HLvjOE6S4RW74zhOkuGJ3XEcJ8nwxO44jpNk\neGJ3HMdJMjyxO47jJBme2B3HcZIMd8U4hzyNxi7M12d2v2h5fFZ2x9bYzMlnMTVAK8z/EuFjVe2V\nyb55cs6LSEdVHZLNbVuTB7OiiPQEbgdaZyX7ymZ752CTp75PsL41Se7k3x94Ynec3DFGVQcEwdUA\nVR22H4/dFXsvapbk1ayoql1FpGpe2oihDTAWk5s5+whP7I6zj4j2qgdbYyT5nxlmoJbGNAPvici1\nmBirMDYt/ypsBupzmDyrCGZ4rAeUF5EXgHtDm8dgw6pdVfWzBMbHRZhNsWV0bCIyGjNO1sCcMmMx\n6Vh1oIWqLk5wbp9hr6srj72b9IU4cVwWYk7BXDPDgYuBk4M87QrgakwGtiqcc/Qx7sG+De3B3iw0\nOHs97/gYu+Pknc7B9Bj578Istt+M2RMvBYaEV8QdC1wa7I8LMC3ulUBFVW0InAecGoZ41qjqXdgQ\nySpVPQdT50ZemRbP+JgZS4K/ZSFQS1WbY4rdzKySAK+r6gVYFZ4hDhEphH2ruFRVTwV+AlZi6oSH\ngN8xc+UFqno6VmSeFmlYROoCN2CunLOBK0UkVobmJMArdsfJO9kZioket/9cVfcAf4nIeizB/QW8\nLCKbMLf5TMzqOBNAVdcCj8e0WR84W0ROD58LRWl2Y42PmcUTbW5cFH6PZ26MJXKMveLAfDhrI64Z\nVX0GIJKbVXW3iGwHXg/nXBX7thKhHvYtYkr4XA77RpDVeTl4xe44+5LCIlIyvIjjhKjlpwEEV3lJ\nbMjkSezlG7cDqVjiXRi1bRkR+TDsH0nKi7CquQnmOP83puyFvY2PaXZIEalBuiIYsm9ujCVyjHhx\nLAfKikj5cMzBItIw7FNARE4ErlTVG4B7sFwUfbFRYD5wXmh3ND4un228YnecvNNZRKKHPVRV22FP\nzczC3oe6NGr9YSLyCZbU2wEbME/5TGAnVi0fiSWzC4JtsRCW/AEWiMi/sBdajAiO99LAC6ESjhfj\nHGCdiHyJXTB+ibdRLhmeII67gPdEZBfwDfAV8H9Ab+zFI5tFZEZo4w+iDJSq+l24D/G5iBTF7JjL\n8jHmpMbtjo6TQ/7XHskLN1jH5sfjjs7+wYdiHCd3tBKRzgc6iH1NeI794gMdh5MzvGJ3HMdJMrxi\ndxzHSTI8sTuO4yQZntgdx3GSDE/sjuM4SYY/x+4c8pw57st8fQJg5vWnZ2V3rIlNlpkbtfgTYBpR\nPpb8JkxoekJV7xKRq4BngOdy61AJbXypqsuz3Dh77S3BHgPdmoN9igE3q+o/IyZK4FfgClXtkR9x\n/S/iid1xcseCMCMyDRFpEn/T/EFVVwB3hY+XA51VdWIemrwXaE9G5fD+pjI22/afMSbKbw9MOMmB\nJ3bH2QeISEf2NheOBQap6lQRORVzv1wLjAKOBgpi3pk3gj3xW8yZUhq4DptyPxZ4CmgOnCoiq8Ky\nRZg8bCQwILRVEeigql+ISFugQ1g+AZvJeRLwiog0xqb1t8Rmvk5T1YeDkrgRNkO2raouDOfWGhOU\nlQrH6KGqb0ade70EMcSzXd4E1BWRJ7Ch4b1MlE7O8TF2x8kddWOMjkdFVgRbYzxz4Qjg1rDZbeFz\nO2ClqjbCjI89o0Res4M98WNsCj4A4aUZk4GHVHUmUA1opar3Y06aB1S1KdAHuE1EDge6YJbEkzE9\n71TswnELJhu7HkvijYBjgnIXYKGqNook9ShKABcCzYABweYYYa8YMunHXti3Hx92yUe8YnecffFb\nTgAAGERJREFU3BFvKOYYyNRc+CHQN4ixzgY6AYOB/4T9NgZPee3Q5Dfh52/YkEUiVqnq6vD7MuBx\nEUnFKuoN2LeBeaqaGrbpEuKN7H8cMEtVd4Tl00mXliWyKU5V1d3AnyKyFqgUtS5eDLFkeh/DyRte\nsTtOPpPIXBgS4b+BocA7qroLE3KdHfYrhSlwI4Ku7N4UjjY5Dga6qeqtwA9YAl0MHBdkWojI+PAN\nY3eIbRFwuogUEpEU4BzsRR2xbUdzSmjrCGyo6K8sYoD4tstIDE4+4h3qOPnPT6SbCz8mo7nwJWzs\n/aXw+UWgQjA4fgY8GXGY55J/Af8OVfexwJGquhIbEpkqIjOBuaq6DPgCeAWrsMdhhsnZwBLgnSyO\nUznYF98D7goXqYQxhOUR2+V40m2XfwFFRKRP7k/ZicVdMY7j5Ij/NbvloYhX7I7jOEmGV+yO4zhJ\nhlfsjuM4SYYndsdxnCTDE7vjOE6S4YndcRwnyfCZp84hT2r7mfn6BMBhw87Mjt1xrKqekck2dwKj\nIrM5s4OIVAcaqOpEEXkW88b8mmDbscAtqro9u+3vK4JTZoWqDsvGtmk2x2xsm2azTLA+X/tARGYB\nLVV1SX60dyDxxO44+4ZHsck/2U7swPnY9P6JqnpfZhsewoKsNJtjVhvG2CzjrT9U+2Cf44ndcfJA\nAgvjBVgCGwtcKSJPY9qAiL3x3yJyFyYE2w18BdyPOVyKi8gXQGdMqdsSqAUcDtQA7lfVDyPuc8yQ\nuCOsKxqOeTlQHWihqotFpD/QOIQ8RlUHichoYBtQE6gCtFbVuQmslDUxA+VObPi2lar+FtMVV4nI\n9UBxoJOqzs6GzfEi4E5VnS8il4S4/yLKKIl96zkjSMm6YXqCuaFvfo7qgxRMhlYSE5ttBSYCq4H3\nsRnAzwG7wro7VPVXEekFXIz5eCqGWLsTvoGIyHHAMFVtkiCGszGR2S5M3dAunGPz0Be1gT6qOjr2\nb66qndhH+Bi74+SdDBZGVR2J6WdbhoRVS1UbA+cBj4lIWcx42FFVz8R8MSlAbyzxTohpf5uqXoL5\n0++Pc/wlqtostFNLVZsDbwKXh2RUCzgDS+6tRKR+2G+pql6EJbw7M7FSXoipBi7AEluZODH8oqrn\nY8k4syGZaJvjP0m3XbYhvYpfGGyXqQDBHDkEuFRVT8WUDVVj2l0cjt8dewEJ2MW1mao+g5k0O6rq\nucALmJHyVMyLcxp2MSiVKOgEMVQL7V4d2l0GtA67lFHVy4ArCNI1Yv7mMUbMfMUTu+PknWgLY7GY\ndfWBU0JlPxmzPNbE/pHfLSJTsWo7s3H9zNqH9Dc5rcOc7ABrw7bHA9NVdU8Y758F1I3XbpCURayU\nI0m3Uo4MbU8GOmKVeyzTAFR1PvFNlPHObxxwRdAKV1XVyHnEGiUrAmsjDh1VfSbOvYdPws8vMA0x\n2MUmMv5+pKpGXt4xDZOQHQvMUdXdqroBE5YlinuvGLALTxVgXPj7NsP+lpD+opDov1lO/uZ5whO7\n4+SdeDdvo82JnwbF7/lYMlsM3IG9TOJc4P+w4YdEpsOsbg5ntn4hYRhGRAqH4/wYb79EVkqgBXZx\naIrZKR+Oc5yGoY362KvtIAubo6puBj4FBmHiMKK2ieYvoGzQHSMig0WkYcw2p4SfZwHz47SzPJwf\nwLmYvXIB0FBECohICdIveFuxhA3mr48bA3aB/h0b8mqCfRuJXGDi/U3i/c33CZ7YHWffMB0b250I\nbAqmw6+BPaq6EasOp4vIJ1jS+DIsayEi+XZTUFUnAb8Eq+MsYHxUZRxLIivlHKBHiLU9NnQTS62w\nfhg2zgzZszmOwC4cr2VyDruxm6jvBQtmCnZfIppLwvEfAh6I08wdwJDwd7gXu1fxLfBBaGss6erh\nN4DmoQo/OYsY7g3Lvgjr5yU6D+L/zfcJ7opxHOeAISKnAfeo6i15aGM09vjp5HwL7BDHn4pxHOeA\nEJ7AaYu9ls/JR7xidxzHSTJ8jN1xHCfJ8MTuOI6TZHhidxzHSTI8sTuO4yQZ/lSMc8gz/YVT8vUJ\ngLPv+joru2MTbKJJrp83F5GOqjokk/WfhWMsymX7XbDJMnVJ96lkaqR0kgev2B3nwNB1Xzauqr1V\ndfa+PIZz8OIVu+PkEyJyLXA35lfZg5kRV2MzNRsCRTCJVj2gvIi8gM1cHAUcTbr98Y3QZA8RqYhZ\nGG8B1gDDMflUFWCCqnYVkWMwgVYRYAtmhOyLzaaMF+cS4DhV3SoivTHtwXvYjMsCmNukfZRbBRFp\njdkXDwvHHoTNGK0H/F1V301gc/wynF+NEF9HbCbrXuccz34oIvWAAWG7ikAHVf1CRK7DDJi7gM9V\nNSLacvCK3XHyk2Mx+19jzENyEXAlUFFVG2J2x1NVtRewJrxAoh2wMtgMLwB6hmQO8FYwFk4EHsES\n+qxgZGyITe8H6Ac8HayBgzAPSU5piF2ELsEuTiXibFMqmCP7AB0wve+dmNwqEe0x++SZ2AXn9EzO\nOZ798ATggeCp6QPcFnwtTwJNQ18fJSIX5uKckxZP7I6Tf/wFvCwio4ATscpdgJkAqrpWVR+P2ed4\n0s2IG7ELQu2wblr4GTEWrgFOE5HXgIGYf52YY0xQ1Y9yEHPkfsIHwAzgXaAHe4u4IN0GuQ5T6+4h\n3SKZqN3o2H5U1WdJfM7x7IfLgMdF5GXgWqxP6wCVgPfDvYi6pPeZgyd2x8kXRKQMVkW2xN4QlIol\npoWY7xsRKSMiH4ZdIolvIfayBkSkFKb5/SWsixgMz8bkUq2Bdap6E9AfeylH7DFuEpF7sgh3K1Al\n7HtSWNYE+CN43XsCT8XZL6ub1PFsjtGxHS0iYzI553j2w8FAN1W9FZNopYRtfwMuDFbF5zDZmBPw\nMXbHyR3NRGRO1OebsIp3JuYrX4uZEUcDFwQjYCEs+QMsEJF/YS+YGBHWHwY8qap/iQjY25fuAzZg\nY89HAmNE5Exs3P3HsOxBYLiIdMXG2G8mXWMbj2cw8+SSECfAd8BYEekQ4uyRiz6J2Bx/Jt3mOBx4\nKVThBYH7gO8TnHPEfrgRq9S/xHS+/xaRtZgit6KqrhSRAcBUESkYzmNcLuJNWtwV4ziOk2T4UIzj\nOE6S4YndcRwnyfDE7jiOk2R4Ynccx0kyPLE7juMkGZ7YHcdxkgx/jt055HluzMn5+szuPa3mZmp3\nBBCRE7DnwYsDJbHnwruH2Zj7FBGpSR5NjSJyFfClqi7PxrYnAVeoam6ebd8viMhbqnr1gY7jYMEr\ndsfJISJSFhNs3aeq5wFnYLMn2x3QwHLGvUDp7Gyoqt8ezEkdwJN6Rrxid5yc0wL4RFV/BFDVXSJy\nC7AdQET6A43DtmNUdZCIjAYqhP++A+ap6vMiUg74D/AA8HBo42isIu8lItWAF7EZmqmYdAugkohM\nAI4AJqnqPzIxIbbFpF0FgQnAbEwl8IqINMYuSK0wZcBYVR0cE29f4AZVbZnA4FiTLMyPkY4LGoNY\n2+Uk4lsrrw59sgNYjukaSgEjQ1wAnVT1h+i4HK/YHSc3HIlNm09DVTep6nYRuQyohVXxjYFWIlI/\nbPZJMBr2xTS8YAn1tfB7DeCasO9DYVk/YHBwovQDeoflJYG/YT6VS0SkAfFNiIcDXTA3y8mYOGwq\n8G2IoQ5wQ4j1bExjIDHxRrQDmZFd8+NetksSWytvBPoGg+Mk7BvGo8CU8E3pTmBoNmL7n8MrdsfJ\nOUuxJJmGiNTCEtTxwPQw1r5DRGZh9kEABVDVn0Vko4jUxRwzV2DV7Q+quhPYKSKpYZ/6wKMi8jAm\nwNoRln+nquvDsWdjyuCICTEVq2w3YNX/PFWNtNcl7BMJvR52QZkSPpcDjomONxOi70XsZX4MfpdY\n82MG22WItzRmrTwvxByxVnYGHglSs4XAO6E/zheRG8I25bOI8X8Sr9gdJ+dMAi4WkdoAIlIYGwKp\nhyWgxlHLG2GyLsiowh0BPA78rqqrwrJ4N14XAQ+Hir0d8O+w/PhgUiyEOc7nE9+EuBg4TkSKhpjG\ni8hRIZYCWPKeD5wXjjEak3TFxhshnsExUezxiGe7bE18a+Wd2A3pc8O5XBX6Y2CI9XpMEubE4Ind\ncXKIqkZsiyOCD3wWNm4+VFUnAb+IyMywfLyqzo3TzNvYSyZGZnG4vwPdgh3xFdKT7hrsjUdfhGMs\nIN2EOB2r4I9U1ZXY8MjUENNcVV0W9nsF099OAT4PtspjsMo/ERGD43jSDY45YQKwNpgdPwztTcEu\nlNOwoZWItXI2MElEpgCVsQtqL+D60O+TMZ2xE4PbHR3nACAixbGx7tNVNV5l7Di5xit2x9nPiEgj\nzDXex5O6sy/wit1xHCfJ8IrdcRwnyfDE7jiOk2R4Ynccx0kyPLE7juMkGT7z1Dnk+eL5U/L1CYBG\nd3+dqd1RRJoA44AF2MSZopiX5ZvM9ova/zOgvaouymxZJvuPxpwuk6OWFQMWqWrNbMYwFrhFVbcn\nWJ9r94qItAaOU9Uuudk/tNFRVYfk4HhrVHVCbo8X2ikIzAAGqerrYVlVYBqmW3iNBH+joG74GrhQ\nVReJyP9hz91HJqcNVdU38hJfTvDE7ji54xNVbQkgIs2AfwCXHdiQsk8k9oOYrkC2Eruqjs6PAwaZ\n263AxyLyiar+ic0QflBVl0VpGDIQZhgPxyRtEU4BBqhq//yILad4YnecvFMO+AsyVt4i0h6bMTka\nmAisxrzthG0vx3woV4VF3UTkCKAEcGNwyuxliozavyRWRZYDfopaXh/TC6SEY7YB/g+bgbods0X+\nAzgOk4DtZYTMoq0i2KzXApgLpr2qfhvTJ2eGGaOlMS3AeyJyLXA3UBhTEFwV2oy1PdYDyovIC5he\neBg2I7YA0FVVPxORecB/w/ksAlaEn+2jLrgrVLVy+IazA3PiFMWUy5cD1YEWqro4ErSqqoj0BQaJ\nyHvAclV9k8zpF2J8JGrZKRaCtMCq9vtUdWMW7eQbPsbuOLnjfBH5LEzTH4Uli8yoDDRT1WfC56uB\njsBlqrouLHtPVc8HPgCuzcIUCWZBnKeq52AVY4QRwN3Bp/I+6abIYqp6tqq+GrXtXkbImLjjtdUQ\nS8iXYIm6RJzz3YwpEy4FhohIAUxzcGmwNS4ALiKO7VFVe2FDK3cBtwOrwjm2AJ4P7ZcE/pGDbx5L\nVLUZ5qqpFUyUb2IJPpYh2EXufuzCkpAwDLRSVT+MWTUbq/TPwUyg3bIZZ77gFbvj5I7ooRgBZga5\nVjTRY/W/xIxnN8Wq2R1Ry74OP1dgF4LMTJFgifI9AFX9UkQibR0PvBCGDgqTPs4bz9YYzwgZTby2\nPsAq6HdD/D3jtPt5iPsvEVmP+dP/Al4WkU3Yt4WZxLE9xrRTHzhbRE4PnwuJSMVMziea6P6P+HrW\nYZU9mI441j5JMFP+C7tPsCmLY7QB9ojIBaQ77q8A3o66YL+NfSvZb3jF7jh558+o37diL4uAjGrf\nWHXA3ZgEK/rNRLE3gTMzRYJVvWeG9f+HJV6whHdLqLIfwm7ixYsB4hsho4nXVhPgj1AB9wSeitNu\nxOBYGauutwNPYi/LuB0bj04hvu2RqDgWAa+H41+C2S3XJDiftL4XkRpkVPrukyn2qnqOqp4b4vsW\n66sVwIci0jBs1pT0i/Z+wSt2x8kd54fx9F1YpdtZVVNFZDBW4f5K5pZEsKQ+W0QmxVupqpNEpEkY\n7ikCjFPVuVE38YZhFeLnWALcFpZ3CMsLYQmtLWZLjEfECLkW+B0bgogmXlurgbEi0gHLIfFem3eY\niHyCJfV22DeBGVh1vhOrlo/E7j9cEM6hEJb8ARaEqrktZtGcin3DeUFVdye4kTkHWCciX2IXjF8S\nnHNeGC8iW8Pvn6nq3xNs1wF4LnyLWkH6m6/2C+6KcRzHSTJ8KMZxHCfJ8MTuOI6TZHhidxzHSTI8\nsTuO4yQZntgdx3GSDE/sjuM4SYY/x+4c8pz1+k/5+szujBvrZGp3zCsiUh1ooKoTc2h1rA+UU9Vp\nWdkZ9yUiUh64WFXH5KGNtD7Iv8icCF6xO87+53zgrFzsdw1BKaCqLQ9EUg+cCFyRxzZy2wdONvAJ\nSs4hz/6u2EXkWEz8tRMrjlphMw2XqerzIlIO+A/wAPAwNp3+aEwU1huYDxTHJGCdgT+AWKvj05gD\nvCBmX/wCm7m5HbgZ88EfB1QD/onNTN0CtFTVlVGxXoYJqFIwX0p7bIp7T2wKfsTYeFJsrKraS0Su\nDst3AMsxJcCHQANMrdsI88BUAPoCN8SxKx4TE2MrYGqkD/LqUXf2xit2x8k5F2L2vguwpFkGS1y3\nhPWtMJ0umCr2GszQ+JCq7sKS+5iohBZrdbwEMxA2xoyHj2G2xNGY43t2VCz9gKdV9UxgEKbnBSBo\nAIZgRsVTMbVvNUzbe7Wqnosl2K7xYg3LbgT6hlgmYdP6e2EStBfDNp+oaiNMExCP2BgbxOkDJx/x\nxO44OWckZgmcjFXdO1X1Z2CjiNQFbgJeCdv+oKo7VXUzGV/EEE201bE4ZjQ8JYy/T8bkXjUT7Btt\nR5ygqh9FrasIrFXVv8L6Z7CKeYOqRjw20zB1b6JYO2NenKlYdR5PJJbIshj55pNZjM4+wBO74+Sc\nFphOtylmG3w4LB+BaWd/V9VVYVm8YaLdZPy3F7vNIuDTYAw8Hxt2WRxnP8hoR7xJRO6JWvcXUDbc\n7CQIyo4GSotIxEB5LvbCikSx3om9KONcLFFfFSeOSLJPZFeMF2O8c3HyCe9Yx8k5c4AewV7YnnTX\n9tvY8MzILPb/AWghIoleEjER2CQi07Fqfk94+87XQEcROS9q2weBR0J1fxPpQ0Co6m7gLuC9YE9M\nwYaQ7gDeEpEZId5/ZBLrbGBSeBtSZWw4ZjFQX0Tui9k22q74JOl2xXgxZtUHTh7wm6eOk0+ISHFs\nzPr0kFQd54DgFbvj5AMi0gj4EujjSd050HjF7jiOk2R4xe44jpNkeGJ3HMdJMjyxO47jJBme2B3H\ncZIMtzs6hzzrbtucr08AlB1VIitXTBNs0tCCqMUrVfW67B5DREZjPpbJOYlNRE4CrlDVHgnWr1DV\nyjHLWgNrcjt9Pz9Nkrk97wRtNcHMmAmfhReR9kBlVe2e1+MdSnhid5zc8UlmCWVfoarfAt/mcJ/R\neTymTyI6xPDE7jj5iIjcBdyKTZn/SlU7xbEbRhJlOxF5CJOIdVDV2WG6fStsev9YVR0cqty9DIoi\n0hazShYEJqhqN6CoiIwBqmPmxmsxidgKTHkwHBOBVQn7RARgiMiJwCBVPS98noQpEt7GTJLD4sUR\nto2YHPeyQWb1XL+IFIwXVzjvHZicrChmx7w8nFuLsPsxIvJhiGmoqo4UkcaYbGwtZuCcFY7zNHBq\n2PY7Vb0ts7gOZXyM3XFyx/ki8lnUfw+G5bdhKtozgYXBsJjIwPh1sDo+B7QOArEbgMaYsvdKEZGw\nbQaDoogcDnQJ252MJfSSQEng0WBjLBN1LLDEOUtVLwIaYjqENFT1e6CYiNQILpmKqvpNzHlnZXKM\nZ4PMisziWqKqzTDfTC1VbQ68iSV4MEHa5aEfHhaRSsBQTH98AUFrICKlMSHahVhyP0NEjspGbIck\nXrE7Tu5INBRzG/B3EamFGQ1TiLEbAohIK/a2OtbDqtMpYXk54Jjwe6xB8WhgnqpGLIxdQrtrVHVJ\nTLsR1gCnBdfMBqwKjmUkph/ehjnnY8nK5NgZ88LcgyXjdxJsH01mcc0NP9dhcjSwi0qx8PusyNi/\niCzALJhHqGpEbDYDqIPZKg8XkdeBTdgFsHA2Yjsk8YrdcfKXO7Abeudi1XIjEhsYY2/6KvYSjvOC\n2XE08H1YFzucsRg4TkSKhnbHhwo0sxvJrYF1qnoT0B8oLiKxN4rHApdhFsd4r77LyuQYzwaZFZnF\nldWN8f8TkUIiUgI4HuuXZSJyfFh/Wvh5CVBNVW8EHgUOI/1ilHR4xe44ueP8YCuM5hLMWjhdRDYC\nyzB/zIPAcBHpio2x3wycEtugqn4XLIqfh4Q9O7SxF6q6UkT6AFNFZA8wUVWXpY/cxGUKMEZEzsQq\n8h+BI6OPoaqbROQ7oFAwSiYi2uS4kHSTY8QGuRGrjCfF2XewiGyIHBJ4KkFc2WEr9oKSstgFZY2I\ntANeCcfYiFX4s4HHRWQadrH4ORzjl/jNHtq4K8ZxHCfJ8KEYx3GcJMMTu+M4TpLhid1xHCfJ8MTu\nOI6TZHhidxzHSTI8sTuO4yQZntgdx3GSDE/sjuM4SYYndsdxnCTDE7vjOE6S4YndcRwnyfDE7jiO\nk2T8P5sZAyVvnD2XAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11dcc37b8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_distribution(species)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Genus" ] }, { "cell_type": "code", "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pct_reads_clade</th>\n", " <th>num_reads_clade</th>\n", " <th>num_reads_taxon</th>\n", " <th>rank</th>\n", " <th>tax_id</th>\n", " <th>tax_name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>10</th>\n", " <td>65.06</td>\n", " <td>1906011</td>\n", " <td>271</td>\n", " <td>G</td>\n", " <td>816</td>\n", " <td>Bacteroides</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>1.31</td>\n", " <td>38427</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>375288</td>\n", " <td>Parabacteroides</td>\n", " </tr>\n", " <tr>\n", " <th>31</th>\n", " <td>0.53</td>\n", " <td>15634</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>283168</td>\n", " <td>Odoribacter</td>\n", " </tr>\n", " <tr>\n", " <th>97</th>\n", " <td>0.29</td>\n", " <td>8541</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>1506553</td>\n", " <td>Lachnoclostridium</td>\n", " </tr>\n", " <tr>\n", " <th>100</th>\n", " <td>0.26</td>\n", " <td>7751</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>841</td>\n", " <td>Roseburia</td>\n", " </tr>\n", " <tr>\n", " <th>107</th>\n", " <td>0.10</td>\n", " <td>3057</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>946234</td>\n", " <td>Flavonifractor</td>\n", " </tr>\n", " <tr>\n", " <th>140</th>\n", " <td>0.10</td>\n", " <td>2827</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>1578</td>\n", " <td>Lactobacillus</td>\n", " </tr>\n", " <tr>\n", " <th>588</th>\n", " <td>0.03</td>\n", " <td>966</td>\n", " <td>6</td>\n", " <td>G</td>\n", " <td>186765</td>\n", " <td>Lambdavirus</td>\n", " </tr>\n", " <tr>\n", " <th>34</th>\n", " <td>0.02</td>\n", " <td>658</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>239759</td>\n", " <td>Alistipes</td>\n", " </tr>\n", " <tr>\n", " <th>197</th>\n", " <td>0.01</td>\n", " <td>256</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>1716</td>\n", " <td>Corynebacterium</td>\n", " </tr>\n", " <tr>\n", " <th>109</th>\n", " <td>0.01</td>\n", " <td>252</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>1392389</td>\n", " <td>Intestinimonas</td>\n", " </tr>\n", " <tr>\n", " <th>47</th>\n", " <td>0.01</td>\n", " <td>415</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>28250</td>\n", " <td>Ornithobacterium</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>0.01</td>\n", " <td>186</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>346096</td>\n", " <td>Paludibacter</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>0.01</td>\n", " <td>310</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>397864</td>\n", " <td>Barnesiella</td>\n", " </tr>\n", " <tr>\n", " <th>413</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>497</td>\n", " <td>Psychrobacter</td>\n", " </tr>\n", " <tr>\n", " <th>416</th>\n", " <td>0.00</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>286</td>\n", " <td>Pseudomonas</td>\n", " </tr>\n", " <tr>\n", " <th>376</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>629</td>\n", " <td>Yersinia</td>\n", " </tr>\n", " <tr>\n", " <th>406</th>\n", " <td>0.00</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>338</td>\n", " <td>Xanthomonas</td>\n", " </tr>\n", " <tr>\n", " <th>402</th>\n", " <td>0.00</td>\n", " <td>12</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>231454</td>\n", " <td>Dyella</td>\n", " </tr>\n", " <tr>\n", " <th>397</th>\n", " <td>0.00</td>\n", " <td>22</td>\n", " <td>0</td>\n", " <td>G</td>\n", " <td>662</td>\n", " <td>Vibrio</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pct_reads_clade num_reads_clade num_reads_taxon rank tax_id \\\n", "10 65.06 1906011 271 G 816 \n", "21 1.31 38427 0 G 375288 \n", "31 0.53 15634 0 G 283168 \n", "97 0.29 8541 0 G 1506553 \n", "100 0.26 7751 0 G 841 \n", "107 0.10 3057 0 G 946234 \n", "140 0.10 2827 0 G 1578 \n", "588 0.03 966 6 G 186765 \n", "34 0.02 658 0 G 239759 \n", "197 0.01 256 0 G 1716 \n", "109 0.01 252 0 G 1392389 \n", "47 0.01 415 0 G 28250 \n", "26 0.01 186 0 G 346096 \n", "24 0.01 310 0 G 397864 \n", "413 0.00 3 0 G 497 \n", "416 0.00 2 0 G 286 \n", "376 0.00 3 0 G 629 \n", "406 0.00 0 0 G 338 \n", "402 0.00 12 0 G 231454 \n", "397 0.00 22 0 G 662 \n", "\n", " tax_name \n", "10 Bacteroides \n", "21 Parabacteroides \n", "31 Odoribacter \n", "97 Lachnoclostridium \n", "100 Roseburia \n", "107 Flavonifractor \n", "140 Lactobacillus \n", "588 Lambdavirus \n", "34 Alistipes \n", "197 Corynebacterium \n", "109 Intestinimonas \n", "47 Ornithobacterium \n", "26 Paludibacter \n", "24 Barnesiella \n", "413 Psychrobacter \n", "416 Pseudomonas \n", "376 Yersinia \n", "406 Xanthomonas \n", "402 Dyella \n", "397 Vibrio " ] }, "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ "genuses = td[td['rank'] == 'G']\n", "top_hits(genuses)" ] }, { "cell_type": "code", "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD3CAYAAAAJxX+sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8TGf7x/HPZJfIVmKNLLZTjYgWT1XslFZtLbpqqVQI\nQRVtrBEillD73lRsT0vtPLRUUVSrJK3aDhGJLUhCFklMMpn5/RESfrbIyvR6/5U5c859rtzxuua4\n58x3NAaDASGEEMbDpLQLEEIIUbSksQshhJGRxi6EEEZGGrsQQhgZaexCCGFkzEriJDpdtuHmzfSS\nONUzz9HRGpmLHDIXeWQu8shc5HFystUU5LgnNnZFUXoDve88tALqA02BWYABOA4MVFVV/8iTmJkW\npDajJHORR+Yij8xFHpmLwnviUoyqquGqqrZUVbUlcBQYDIwDxqiq2gzQAF2KtUohhBD5lu81dkVR\nGgIeqqouARoA++48tQNoWwy1CSGEKICnWWMfBQTd+Vmjqurdj6ymAvZPOtjJyfYpSzNeMhd5ZC7y\nyFzkkbkonHw1dkVRHABFVdU9dzbdu55uCyQ9aYz4+NSnr84IOTnZylzcIXORR+Yij8xFnoK+wOV3\nKaY5sPuex5GKorS88/ObwP4CnV0IIUSRy+9SjAJE3/N4GLBUURQL4BSwrqgLE0IIUTD5auyqqob+\nv8dngBbFUpEQQohCKZEPKAkhileHg98U6XjbvT8r0vFEyZJIASFEgUREHKFjx9fx9/fF398XX9/e\nnDlz+qnG2Lx5AzqdrlB1zJ49g6tXr963LTY2Bn9/30KN+zwrkSv2219MQm5eynEbZC7u+np0aVcg\nCqlBg4YEBU0G4PDh3/nmm0VMmzYr38evXLmMN954CzOzgreiIUOGFfhYY1Uijb3la41L4jTiOfN7\naRcgilRqagoODo5ERh5l2bKl6PV6MjIyCAwMxsXFlfDwb9i/fx/Z2dl07doNMzNTbtxIZPz4UUye\nPINFi+bx99+RmJpqeOed92ndui3+/r44Or5ASkoKoaGzmDJlIleuXCY7O5v33/+INm3a4e/vy4gR\no7CxKcuECWMwGAy88EK53LoiI4+yZMkCTE1NqVKlKl9+OZorVy4zeXIQpqZm6PV6AgODqVixUinO\nXtEqmRAwy+0lcRrx3GlT2gWIQjp69Aj+/r5kZWURFXWGyZNncP58NOPGTaR8eSdWrPiWPXt+5rXX\nvPnjj99YsiQcvV7PokXz8Pf/nPDwMMaPD+HQoYPExV1m4cIw7OwseOed7jRq9CoAbdu2p0WLVqxf\nvwYHBwfGjZtIenoaffr0pEGD/+TWsmJFGG3btqdz57fZvXsnGzeuw2AwMHXqJBYu/AZHxxdYunQh\n27dvJSsrizp1PBgwYAh//x1JWtqt0prCYiFvngohCuzepZgLF2Lo168Po0aNY9asUMqUsSY+/jqe\nnl5cuBBLnToemJqaYmpqyqBBQ+8bJzo6ClU9jb+/LxYWZuh0Oq5evQKAi4srADExMTRsmNPIra1t\ncHNz5/LlS7ljXLx4gU6d3gbA09OLjRvXkZR0k8TEBMaODQBAq9XSqNGr9Orlw+rVyxk2bBA2NmXp\n129g8U5UCSuRxm6R0bMkTiOEKEWOjjnLH1OnBrN27WasrW0IDg4EwNXVjU2b1qPX69Hr9QwfPphp\n02ah0ZhgMBhwdXXj5Zcb8tVXoylXzobQ0JlUreoMgIlJzj0ebm5uHDsWSYsWrUhPT+PcuXNUqVIl\n9/xubtU5ceIYtWrV5tSpkwDY2ztQoUIFpkz5mrJly3LgwD7KlLHmwIF9eHm9TJ8+vuza9SOrVy9n\n1KjAkpyuYiVX7EIYgdK6PfHuUoypqSnp6WkMGjSUc+fOMmBAX8qUscLRsRwJCfHUqqXw6quv4efn\ng16v5+23u2NhYYGXV32GDx/M3LmLiYw8yoABn5GVpaVJk+ZYW9vcd67Ond9h6tRg/Px80Gq19OnT\nF0fHF3Kf79XLhwkTxvDzzzupUqUqkPOiMGTIcEaMGILBYMDa2oaxY4NIT08nODiQ5cvD0Ov1DBr0\nRYnOW3HTGAyGJ+9VSE3WRBb/ScRz57f3XpZMkDskHyWPzEWegn7RhtzHLoQQRqZElmKyLPeWxGnE\nc+fl0i5ACKMkV+xCCGFkpLELIYSRkcYuhBBGRm53FMIIdPklqkjH29y6ZpGOJ0qWXLELIQrk3nTH\nQYP64evbm3Xrvi/weHFxV/D17V2omvbt20NCQnyhxli5MpyTJ4/ft02r1dK9e6dCjVuS5IpdCFFg\n90YKZGZm8uGH3Wjf/i1sbUsnw/SHH77DzW0U5cs7FXiMjz/uXXQFlRJp7EKIIpGeno6JiQlRUWce\nSHc0Nzfnq6+GYmdnz2uvefPSS3Ufuk9S0k369+/P1avX8fZuRu/enxEdHcXcuTPR6/UkJSUxfHgA\nnp5ebNu2iY0b16PXZ9O0aQvq1PEgKuoMwcHjWLAgjM2b17Nr109oNBratGlHjx7vM2nSeJKTk0lJ\nSWbatFksXx7GsWN/AfD662/w7rsfMGnSeNq0aUe9evWZMGEMqampufEGAOfORTFrVigGgwF7e3tG\njgwkKyuLwMCR6PV6MjMzGTFiJLVqKaX1p5DGLoQouLuRAiYmJpiZmTF06IiHpju2a/cmN24kEha2\nCnNzczZs+OGh+2RkZBAaGkpaWjYDB/bF27s5Fy7E4O8/lBo1arJz549s374VZ+dqrFq1nOXLv8PC\nwpJFi+ZRv/4r1KxZmxEjRnHp0kV2797FggU53yw1dOhAXn01Jz68QYOGvPfeRxw8uJ+4uCssWRJO\ndnY2fn4+NGjQKPd327RpPe7uNejXbyAnThwnIuIIkJOFM3LkONzdq7Nt2yZWr16Op6cXdnb2jB0b\nxPnz58nIyCj5P8Y9pLELIQrs3qWYu/bv3/tAuiNA5cpVMDc3B8DJyemh+9SsWQtbW1tu306lTh0P\nLl68QPnyFQgP/wZLS0vS09OxsbHh8uXLuLvXwNLSCgA/v0H31RAdfY5r164yZIgfAKmpqVy8eBHI\nS4uMjT2Pl1d9NBoNZmZmeHh4EhMTnTvGxYsXaNLEGwAPj7q5XwYSG3ueGTOmAJCdrcPZ2YXGjZtw\n6dIFAgKGYWZmRq9ePkU0wwUjb54KIYrU1KmTGDUqkNGjx9+31q3RmDxxn9jYGNLS0tDpdJw8eRx3\n9+rMnh2Kj08/xowJokaNmhgMBqpWdebChRgyMzMBGDPmS+Ljr2NiYoJer8fFxRU3t+rMnbuYefOW\n0KFDR2rUqHVfHa6u7rnLMDqdjuPHj+Hs7JJbi7u7O8eP/wPAmTOnc7/Cz8XFlTFjJjBv3hL8/AbT\npElTIiOPUq5ceWbOnE+vXj4sXjy/OKY23+SKXQgj8Czdnti+/ZsPpDvmdx9bWzuGDh3K9evxtG7d\nDnf36rRr9yZjx36Fra0dTk4VSE5OwtHRkY8+6oW/vy8ajQZv72Y4OVWgbt16BAcHMnPmPBo2bMSA\nAT5kZuZ8qYaT0/1vqHp7NyMy8ij9+n1KVlYWrVu3RVFezH2+S5duBAcH4ufng6urW+7/NoYNG0lw\n8Diys7PRaDQEBIzF3t6ewMBRbNy4juzsbD79tG8xzvCTlUi6Y6NNMyXdUTzgz65DJcXvDkk0zCNz\nkaeg6Y75umJXFGUk0BmwABYA+4BwwAAcBwaqqqovSAFCCCGK1hPX2BVFaQk0AbyBFkA14GtgjKqq\nzQAN0KUYaxRCCPEU8nPF3h74B9gI2AEjgL7kXLUD7ADa3XleiKfi5FQ6H2R5Fslc5JG5KJz8NPby\ngCvQEXAHtgAmqqreXTdPBeyLpzxh7GQtNYesK+eRuchT0Be4/DT2ROC0qqqZgKooym1ylmPusgWS\nCnR2IYQQRS4/jf0AMERRlK+ByoANsFtRlJaqqu4F3gT2FF+JQognOb6+ZZGOV7fb3iIdT5SsJzZ2\nVVW3KYrSHDhMzputA4HzwFJFUSyAU8C6Yq1SCPHMiYg4wrhxI3FzcwdyQsCGDw+gdu0Xn3Bk4W3f\nvhU7OzuaNm3x0Of9/X0ZMWIUP//8E+XKlaNr1+7FXtOzJF+3O6qq+uVDNj98RoUQ/xr3RgocPvw7\n33yziGnTZhX7eTt0eH4idEuDfPJUCFEkUlNTcHBwJDLy6BPTHQ8dOkitWgrR0edIT7/FxIlTqVSp\nMuvWfc/evT+j0+lzExn37fuFVauWY2ZmRvnyTgQFhbBs2dLcK/FFi+bx99+R6PV63nvvI1q3bvtA\nbdnZ2YSGhnD9+jUSExPw9m6Or++AUpilkiGNXQhRYHfTHbOysoiKOsPkyTPyle546NBB6tTxYMiQ\nYSxePJ9du36iadPm7N69izVrviM+PjU3kXHXrp/48MOPadWqLTt2bCMtLS33/IcOHSQu7jILF4ah\n1Wrp1+9TGjV69YE6r1+/hoeHJwEBY9FqtbzzTgdp7EII8TD3LsVcuBBDv359GDVq3BPTHQFq187J\nK69YsSKJiYm5iYy9e/cmM1OXm8g4aNBQVq4MZ/36tbi6utG8ecvcMaKjo1DV0/j7+wI5YV5Xr155\noE47OztOnTpBRMQRbGxsyMzMKq4peSZIYxdCFAlHx3JATl752rWbsba2ITg4MPf5e9Mdcx7fH4Ny\nN5FxxYplJCTcYs2a1dSoUYstWzbi4+OLo+MLTJs2iV9/3Zt7jKurGy+/3JCvvhqNXq8nPPyb+74U\n467t27dRtqwtX345mkuXLrJly0YMBsMDNRgLaexCGIHSuj3x7lKMqakp6elpDBo0lHPnzj4x3fFh\natWqTcOGjfjggw9IT7+dm8hYp44HX375OdbWNpQpU4YmTZqybt0aALy9mxMZeZQBAz4jIyOd5s1b\nYW1t88DYDRo0IihoDCdO/IO5uTnOztVISIjHyalCkc7Hs0LSHUWpkXTHPPJpyzwyF3kKmu4oX7Qh\nhBBGRhq7EEIYGWnsQghhZKSxCyGEkZHGLoQQRkZudxTCCHTat+/JOz2FrS0kCup5JlfsQogCiYg4\nQseOr+Pv78ugQf3w9e3NunXfP3TfuLgr+Pr2zvfYnTu3B2DlynBOnjzO9u1bWbhwbqHqXb9+TaGO\nf57IFbsQosDujRTIzMzkww+70b79W9jaFs1X2338cW8AYmLOF3qs5cu/pVu39wo9zvNAGrsQokik\np6djYmJCVNSZh6Y73tW9eydWr16HpaUlCxfOxdXVjfbtOzBt2iTOn4+menU3MjMzAZg0aTxt2rQD\n4MSJfxgyxI+0tDT69PGlSZOm7NnzMxs2/IBOp0Oj0RASMh17e3tmzpzGqVMnyMrS4ePjS3T0OVJS\nkpk+fQqffz6c0NAQLl26iF6vp29fP155pSEff/wu1aq5Ym5ulvti9bySxi6EKLC7kQImJiaYmZkx\ndOiIR6Y7Ps6vv+4hMzOTJUvCycpK5aeffnpgHysrK0JDZ5OUdBNf3940btyEixcvEBo6GysrK6ZN\nm8Thw4ewtLQiOTmJpUtXkJKSwpo1q+nb14/169cyfHgAGzeuw97egZEjx5GcnMTAgb6sWrWWjIwM\nevf2KZEvCilu0tiFEAV271LMXfv3731ouuPD3I00uXjxAnXqeABQpUoVKlSo+MC+9erVR6PR4Oj4\nAjY2ZUlOTsbR8QWCgwOxtrYmNjaGunXrce1aLB4e9YCcVMe+ff3uG+fcuSiOHYvk5MnjAGRn60hK\nyvnaZhcXt4JNxDNG3jwVQhSpqVMnMWpUIKNHj6d8eacHnrewsCAxMQGDwUBU1BkA3Nyqc+LEMQCu\nXbtGfPyDwWGnTp0EIDExgYyMdMzNzQkLW0xQUAhffTUGS0tLDAYDbm5unD6ds++tW7f44gt/IO9F\nxNXVjbZt2zNv3hJmzJhDq1ZtsbOzAx5MnHxeyRW7EEbgWbo9sX37Nx+b7vjhh58wYsQQKlWqkvsm\na7NmLfjzzz/o27cXrq7VcHBweGBcrVbL4MH9ychIZ8SIUdjY2ODp6UX//p9iamqGra0tCQnxdOjQ\niSNHDuPn50N2djafftoXADc3dyZMGEtAwFimTg3G39+XtLRbvP12D0xMjOsaV9IdRamRdMc8kmiY\nR+Yij6Q7CiGEAKSxCyGE0cnXGruiKBFAyp2H54FJQDhgAI4DA1VV1RdHgUIIIZ7OExu7oihWgEZV\n1Zb3bNsCjFFVda+iKIuALsDGYqtSCCFEvuXnit0LsFYUZeed/UcBDYC7qUM7gHZIYxdCiGdCfhp7\nOjAd+AaoRU4j16iqevdOl1TAvnjKE8bOyaloMkWMQWHmouGWYUVYCRzpPKNIx3ta8u+icPLT2M8A\nUXca+RlFURLJuWK/yxZIKo7ihPGT29pyPGu3+OWnlitXLjN//iySk5PJztZRo0ZtBgwYhLW1Te4+\nv//+G7t372T06PH5Ou+oUSNYunQR7733ASNGjMLV1a1A9V+9epWoqDM0bdq8QMc/Kwr6Apefu2L6\nADMAFEWpAtgBOxVFaXnn+TeB/QU6uxDiuaTV3iYg4As+/LAX8+YtYeHCb/HwqMv48aMLNW5ISGiR\n1BcR8Sf//PN3kYz1PMrPFXsYEK4oygFy7oLpAyQASxVFsQBOAeuKr0QhxLPmt98OUL/+K3h41M3d\n9uabHdm4cR0xMeeZPHkCVlZlKFPGClvbnI/r79y5g7Vrv8Pc3Jxq1Vz48svR7Ny5g//9bwt6vR4f\nn35MmDCWQ4d+A+CbbxaRnJyEubkFY8YEYWdnR2hoCNevXyMxMQFv7+b4+g7g4sULTJ0aTFZWFlZW\nVgQGBrNqVTi3b9/G07MelStXZdasUAwGA/b29owcGciZM6dZuHAu5ubmdO78Nm+88VapzGNxeWJj\nV1U1E/jwIU89O59hFkKUqCtXLlO1qvMD2ytXrkLfvp8QEhJKo0aNWbUqnNjYGJKTkwgLW8yyZaux\ntrZhzpwZbN68njJlrLG1tWXKlK8fGKtFi1a0bdueDRt+YNWqZXTv/j4eHp4EBIxFq9Xyzjsd8PUd\nwPz5s+jZMyft8cCBfURFnaVnz97ExsbQtGkLfH17M3LkONzdq7Nt2yZWr15Oo0avkpmZydKly0ti\nukqcZMUIIZ6ak1MFTp488cD2y5cvkZWVRZ06OVfynp71iY2N4cqVy7i7V89df/fyeoU///ydl16q\ni4uL60PPUb/+K3fGqMehQwews7Pj1KkTREQcwcbGhszMLAAuXIilbt2cNMemTXOuN7dv35o7Tmzs\neWbMmALkJDk6O7sAPPK8xkA+eSqEeGpNm7bgyJE/cqNvAbZu3YS9vQOvvebN8eM5SY2nT+c0/8qV\nqxITc56MjAwA/vorgmrVchqsRvPwNnT3hePvvyNxd6/B9u3bKFvWlsDAYN5/vyda7W0MBgOuru6c\nOpWz786dO1i37ns0Gg0GQ85nJl1cXBkzZgLz5i3Bz28wTZo0BcDExDiSHB9GrtiFMAI7Xhtfouez\ntrZm6tSZzJkzg5SUZHS6bGrWrMX48ZNISUkmODiQ775biYODAxYWljg4ONCnTz8GD+6HRmOCs3M1\n+vf3Z/funY88x/79e1m79r/Y2NgwenQQCQnxBAWN4cSJfzA3N8fZuRoJCfEMHDiE0NAQli8Pw8rK\ninHjJnL1ahwrVnxL7dovMmzYSIKDx5GdnY1GoyEgYOwDiZPGRtIdRamRdMc8z9rtjqVJ5iKPpDsK\nIYQApLELIYTRkcYuhBBGRhq7EEIYGWnsQghhZOR2RyGMwNs7i/Yuko3tJF3xeSZX7EKIQlm9ejld\nurRHq9UC4O/vS2xsDNu3b+XAgX2PPG7z5g3odDrOnlVZtmxpSZX7ryCNXQhRKDt37qBNm3YPfNio\nQ4dOuR/xf5iVK5eRnZ1NrVoKn37at7jL/FeRpRghRIFFRByhShVnunbtxoQJ4+jQoVPuc2FhiylX\nrhwtWrQhMHAker2ezMxMRowYiaqe4saNRMaPH0WPHh+wefN6goIm06NHF155pT7R0edxd69BQMBY\n0tPTmTJlAsnJyQB8/vkIatSoSUhIEJcuXUSr1dKjx/tGl9BYGNLYhRAFtm3bZjp16oqLixvm5uac\nOHH8gX1OnTqBnZ09Y8cGcf58Tl5Mx45dCQ8PY/z4EE6c+Cd33/j4awwZMgRr6xcYOzaA/fv3cuLE\ncRo0+A9vv92dixcvEBISxIwZc/jrrwgWLw5Ho9Fw+PDvJflrP/OksQshCiQlJYVDhw5y8+YN1q1b\nQ1raLTZsWPPAfo0bN+HSpQsEBAzDzMyMXr18HjlmxYqVcHV1JT4+FU/Pely4EEt0dBQREUdyl3pS\nU1OwtrZh8OBhTJs2ifT0NNq1e7PYfs/nkTR2IUSB7Ny5nY4duzBw4BAAbt++TY8enbG3d7hvv8jI\no5QrV56ZM+dz/PgxFi+ez9y5i9FoTPj/WVXx8fHEx8cDVhw79jdvvNGBpKSbtGv3Eu3avcHNmzfY\nunUTCQkJqOopJk+ejlarpVu3t2jfvgNmZtLSQBq7EEahNG5P3Lp1M2PHTsh9bGVlRYsWrdm2bdN9\n+9WsWYvAwFFs3LiO7Ozs3DdKvbzqM3z4YPr08c3d18LCnIkTJ3LhwiU8PDzx9m6Op6cXU6ZMZMuW\nDaSnp9Gnjy/lypXjxo1E+vfvg4mJCe+/31Oa+j0k3VGUGkl3zCOJhjk6d27PoUO/yVzcIemOQggh\nAGnsQohnyJYtP5V2CUZBGrsQQhgZaexCCGFkpLELIYSRydf9QYqiVACOAq8DOiAcMADHgYGqquqL\nq0AhxJNdXt2ySMer+tHeIh1PlKwnXrErimIOLAYy7mz6GhijqmozQAN0Kb7yhBDPqitXLjN69Aj8\n/X3x8+vD9OlTSE9Py9exK1eGc/LkcbRaLVu35tz3Hha2mE2b1uXr+O3bt7Jw4dwC1w6wfv2Dn5J9\n3Pkel1T5rMnPUsx0YBFw5c7jBsDd33AH0LYY6hJCPMO02tsEBHzBhx/2Yt68JSxc+C0eHnUZP350\nvo7/+OPevPRSXW7cSMxt7CVt+fJv873vk5IqnzWPXYpRFKU3EK+q6k+Kooy8s1mjqurdDxylAvbF\nWJ8wck5O8oUOdxVmLi4XYR3w5Fp+/PEgr73WmJYtX8vd9sknH7Bt20amTw8mOTmZpKQkfHx8WLNm\nDebm5ly6dIkOHTrg5+dHQEAAHTp0YOfOncTGnmfNmuXY2Fjyxx8HOXBgL0lJSQwZMoTWrVuzZcsW\nli9fjoWFBW5ubkyYMAFbWyvOnDnJ8OH+3Lp1i0GDBtGyZUt+/PFHVq9ejU6nQ6PRMG/ePBwdHZk4\ncSLHjh0jKyuLQYMGcfbsWVJTU5g/fwajR48mMDCQ2NhY9Ho9n3/+Oa+++iodO3bEzS0n3Kx69eqU\nL1+e6tWr8/333zNz5kwAvL29OXjwIAEBAZiZmXHlyhUyMzPp0KEDe/bsIS4ujgULFuDi4lLEf6HH\ne9Iaex/AoChKW6A+sAKocM/ztkBSMdUm/gXkE4Y5nrVPnj6pltOno3jhhQoP7Fe+fEV+//0PevR4\nn/fe+4iIiCNcvHiJ8PDvyMrKomvXN+jevSe3b2eRnJzBu+9+zIkTp3jvvV6EhS3G3v4FZsyYxk8/\n7WH58hW4uNRi1qzZLFu2GmtrG+bMmUFY2HLKlLHG1NSc0NDZJCXdxNe3N2vWvMyJEyohIV9jZWXF\ntGmT2LHjZywtrbh69ToLFy4jJSWFNWtW07evHytWrGTgwGEsW7YKS0sbZs1aRHJyEgMH+rJq1VpS\nU2/xwQe9qF37RcLCFmNldZukpHS02qzc31uvNxAfn8rt21k4O1diyJCvCA0N4ezZaEJCviYsbDFb\nt+7g3Xc/LNDfoaAv9o9t7KqqNr/7s6Ioe4H+QKiiKC1VVd0LvAnsKdCZhRDPLSenCpw8eeKB7Zcv\nX8LL62VcXFxzt1WvXhMzMzPMzMywtLR67LiKUgeAcuXKc/v2ba5cuYy7e3WsrW0A8PJ6hT///J2X\nXqpLvXr10Wg0ODq+gI1NWZKTk3F0fIHg4ECsra2JjY2hbt16XLsWi4dHPQDs7Ozo29fvvnOeOxfF\nsWORnDyZEzmcna0jKSnnetXFxe2x9d4byVK79osAlC1ri6trznG2trZotZmPHaM4FOR2x2FAkKIo\nhwALIH/vdgghjEbTpi04cuSP3GYIsHXrJuztHTAxMUGjyWstmsekneQkPOofuW/lylWJicnJcAf4\n668IqlXLWdY4deokAImJCWRkpGNubk5Y2GKCgkL46qsxWFpaYjAYcHNz4/TpnH1v3brFF1/4A3lN\n2dXVjbZt2zNv3hJmzJhDq1ZtsbOzu1PP/QVZWFiSmJgIwNWrcaSkJN9Te4FiXYpFvuPQVFVtec/D\n5+ddBCH+BUr69kRra2umTp3JnDkzSElJRqfLpmbNWowfP4k5c2bkexxHR0eysnQsWDAHS0vLB553\ncHCgT59+DB7cD43GBGfnavTv78/u3TvRarUMHtyfjIx0RowYhY2NDZ6eXvTv/ymmpmbY2tqSkBBP\nhw6dOHLkMH5+PvelS7q5uTNhwlgCAsYydWow/v6+pKXd4u23e2Bi8vBr3hdfrEPZsmXp27cXbm7u\nVK5ctWATWMwk3VGUGkl3zPOsrbGXJpmLPJLuKIQQApDGLoQQRkcauxBCGBlp7EIIYWSksQshhJGR\nb38Vwgh02nu4SMfb2vI/RTqeKFlyxS6EKJCIiCMEBo588o5FfOzjPE1C5F0pKcns3PnjA9vPnlVZ\ntmzpA9sDA0cSEXGE33//jc2bNxS41uIkV+xCiH+1qKizHDy4j3bt3rhve61aCrVqKY88rnHjJsVd\nWoFJYxdCFJk9e35mw4YfctMVQ0KmY29vz8yZ0zh16gRZWTp8fHyxsSnLxYsXGTZsMDdv3sDbuxk+\nPv3w9/elXr26nDhxmvT0W0ycOJVKlSrz3Xer2L17J6ampnh5vcyAAYO5efMmkyYFcuvWLQwGA2PG\nBN1Xy9y5Mzl27C8AXn/9Dd599wP27fuFVauWY2ZmRvnyTgQFhbBixbdERZ1l8+YNHD9+jOTkZFJS\nkvngg4/BeqOBAAAgAElEQVT55ZedBAVNZv36tWzbtoly5cpz8+ZNICejPTY2hq5duxEYOIolS8IB\n8PXtTVBQCNu3b+Xy5UskJSWRkpLMO+/0YO/eX7h4MZbRo4OoW9ez2P4O0tiFEEXm4sULhIbOzk1X\nPHz4EJaWViQnJ7F06YrcdMUGDRqRmZnJ5MnT0ev1dOv2Fj4+/QCoV68evr6DWbx4Prt2/USTJk35\n5ZddLFr0Laampowe/SUHD+7nzz//oGnT5nTt2p1//vmbU6fyQskOHtxPXNwVliwJJzs7Gz8/Hxo0\naMSuXT/x4Ycf06pVW3bs2EZaWhqffNKHzZvX06XLOxw/fowGDRrmJlMC3LiRyA8/fM+KFd9jYmKC\nj0/PfM+HpaUlX389l5Urwzl06CDTps3kf//bwu7dO4u1scsauxCiyNxNVwwJCeLcuSh0Oh0XLjw8\nXbF69RpYWFhgZWWFqWneNeZLL70EQMWKFcnM1BIbG4OHhydmZmZoNBq8vOpz/vy5+8b19PSiXbs3\nc8eIjT2Pl1dO+qOZmRkeHp7ExEQzaNBQjh49gr+/L8ePH8PE5MFP7N+bTAk5iZXu7tWxsLDAzMyM\nOnU8HjsHD0t8tLUti5ub+52f7cjM1OZvQgtIGrsQokjcunXrqdIV8xuG6OrqxsmTx9HpdBgMBv76\nK5Jq1VzvG/evvyJYsGDOPce45y7D6HQ6jh8/hrOzC1u2bMTHx5d585ZgMBj49de9mJiYoNfnNeN7\nkykBnJ1dOH8+Gq32NtnZ2Zw5o973vIWFBTdv3iQ7O5vU1FTi4q7cM1Y+J6+IyVKMEEagtG5PPHz4\nD3x8PgZyrlRfeqluvtMV86tGjZq0bt0WPz8fDAYD9ep50bx5S+rVq8/kyRP46aftaDQaAgLG8uOP\n/wPA27sZkZFH6dfvU7Kysmjdui2K8iLx8df58svPsba2oUyZMjRp0pTMzEyio6NYu/a/Dz2/o6Mj\nPXv2on//Pjg4OFKmTJn7ni9XrjyNGv2Hvn0/oUoVZ5ydqxVgJouWpDuKUiPpjnkk0TCPzEUeSXcU\nQggBSGMXQgijI41dCCGMjDR2IYQwMtLYhRDCyMjtjkIYAdvJc56801NIHTm4SMcTJUsauxCiQCIi\njjBu3Ejc3NzRaDSkpaVRpUpVAgODMTc3L9TYnTu3Z8uWn576uO3bt2JnZ0fTpi0Kdf7n3RMbu6Io\npsBSQAEMQH/gNhB+5/FxYKCqqvriK1MI8Sxq0KAhQUGTcx+PHz+aAwf20apV21Kpp0OHTqVy3mdN\nfq7YOwGoquqtKEpLYBKgAcaoqrpXUZRFQBdgY7FVKYR45mVlZZGYmICtrV2+kxXT09OZMmUCycnJ\nAHz++QicnF4mMzOTwMCRXL9+jRo1ajFsWADffruEcuXK0bVrd2JjYwgNDWHevCV8/PG7VKvmirm5\nGS4ubpQrV45Ond4mNDSE69evkZiYgLd3c3x9B5Tm9JSoJzZ2VVU3KYqy7c5DVyAJaAvsu7NtB9AO\naexC/OvcDdRKSrqJRqOhc+d30Gq1+U5WXLlyGQ0a/Ie33+7OxYsXCAkJYt26tWRmavHzG0ylSpUZ\nOzaAgwd/fWQNGRkZ9O7tQ+3aLxIWthiA69ev4eHhSUDAWLRaLe+800Ea+/+nqqpOUZTlwNtAd+B1\nVVXvxgSkAvbFVJ8wck5OtqVdwjOjMHNxuwjrgPzV4uBgTZMmrzFz5kxu3rxJnz59ePHFGkRHR+Pt\n3ZgKFewAaNjwFW7ciGP8+LEsXryYLVvWU716dd55pxOXLsVw7FgE+/f/AkB6+i0AqlSpgqdnbQAa\nN25EYuJVbGwsKVvWCicnW1JSrLGwMMPJyRZTUxNeeaUuZcqUyd2nevWqrFt3lilTxlO2bFmysrL+\nVf/W8v3mqaqqvRRF+Qr4A7g3BceWnKt4IZ6aZILkKGw+SlG3rPzUkpSUjlabdWdfM0aOHM/gwf0Z\nOHAI+/fv5a23uqHT6fjzz6O0bNmeZctW8uGHn+Lo+ALTpk1iw4atVK7sTMuW7WjX7g1u3rzB1q2b\nAIiLi+PUqfOUL1+eQ4f+4K23uhAVdZbY2MvEx6fy++9HyczUER+fSna2nsTENCwtdaSlabGyus2K\nFd9hampJQMAILl26yNq1a7l+PQVNacUtFlBBX4zy8+bpx4CzqqqTgXRADxxRFKWlqqp7gTeBPQU6\nuxCiSDwLtye6u1ene/f3OHDgVypXrpqvZMUmTZoyZcpEtmzZQHp6Gn36+AJgb+/ArFmhxMdfp27d\nerz2mjeurm6MGzeSyMijKEqdx9bSoEEjgoLGcOLEP5ibm+PsXI2EhHicnCqUxFSUuiemOyqKYgMs\nAyoB5sAU4BQ5d8pY3Pm5r6qq2Y8aQ9IdxcNIumMeSTTMI3ORp6Dpjvl58zQNePchT/27bxQVQohn\nlEQKCCGEkZHGLoQQRkYauxBCGBlp7EIIYWQkBEwII7Dpp6K9l6Fr+31P3kk8s6SxCyEKJC7uCr16\nfUDt2krutgYNGhETE31fMFhRSkxMYNmybxg+PIB9+/awcOEcunV7jx493i/QePv27cHDoy7lyzsV\ncaWlSxq7EKLA3NzcmTdvSe7jiIgjxMREF9v5ypUrz/DhAQAcPPgr/v5Dadq0eYHH++GH73BzGyWN\nXQgh8mP9+jXs27eHjIwMHBwcCAmZTmDgKHr0eJ+XX27A6dMnCQ//huDgaYSEBHHlymWys7Px9f2M\nRo2a4e/vS61aCtHR50hPv8XEiVMxGAwEBo7ik08+5ffff0NVT+Hg4EBg4ChcXd1wc3OnY8cuzJ07\nE71eT1JSEsOHB+Dp6cW2bZvYuHE9en02TZu2oE4dD6KizhAcPI4FC8JYt24Nu3fvxNTUFC+vlxkw\nYDBhYYs5fvwYGRkZBASMxc3NvbSnNV+ksQshCiwm5jz+/r65jzt3fhsAvV5PcnIys2YtwMTEhC++\n8OfUqRN06tSVHTu28fLLDfjf/7bSqdPbbN68HgcHB8aNm0h6ehp9+37C/PmeANSp48GQIcNYvHg+\nu3b9RNu27QBo2rQF+/btoU2bdtStW4/r16/x7bersLd3YPfunfj7D6VGjZrs3Pkj27dvxdm5GqtW\nLWf58u+wsLBk0aJ51K//CjVr1mbEiFFcuBDLL7/sYtGibzE1NWX06C85eHA/AK6u7nz++fASntnC\nkcYuhCiwhy3FAJiYmGBubs748aMpU6YM169fR6fT8eqrr7FgwWxSUpI5diySzz8fzqxZ02nY8D8A\nWFvbUKNGDS5fvgSQu35fsWJFEhMTH1mHvb0D9vYOAJQvX4Hw8G+wtLQkPT0dGxsbLl++jLt7DSwt\nrQDw8xt03/GxsTF4eHhiZpbTEr286nP+/DkAXFxcCz1PJU1udxRCFLmoqLP8+uteJkyYzNChX2Iw\n5HzBmomJCa1atWX69Ck0a9YSU1NT3NzcOHYsEoD09DTOnDlDlSpVAPKdxmhiktfKZs8OxcenH2PG\nBFGjRk0MBgNVqzpz4UIMmZmZAIwZ8yXx8dcxMTFBr9fj6urGyZPH0el0GAwG/vorkmrVXO+M/Xwl\nQoJcsQthFJ612xOdnatRpkwZ/Pz6ADlveiYkxAPw1ludeffdLnz/fc5383Tu/A5Tpwbj5+eDVqvF\n398fR8cXCnzudu3eZOzYr7C1tcPJqQLJyUk4Ojry0Ue98Pf3RaPR4O3dDCenCtStW4/g4EBmzpxH\n69Zt8fPzwWAwUK+eF82btyQq6kzhJ6MUPDHdsShIuqN4GEl3zCOJhnlkLvIUNN1RlmKEEMLISGMX\nQggjI41dCCGMjDR2IYQwMtLYhRDCyMjtjkIYgTd+71Wk4/3YeHmRjidKllyxCyEKJC7uCr6+vR/5\n/ObNG9DpdE815tWrV/nll18AmD17BlevXn3kvoGBI8nKynqq8f8tpLELIYrFypXLyM7OfqpjIiL+\nJCIiAoAhQ4ZRqVKlR+4bFDQZc3PzQtVorGQpRghRKA9LYTxy5A9u3Ehk/PhRTJ48g0WL5vH335Ho\n9Xree+8jWrduy4YNP7BjxzZMTEyoU+clBg36glWrwsnKyqRGjRf5/vvVjBgxip9//om4uCvcvHmT\na9fiGDToC1599TW6d+/E6tXrmD59MmZmZly9GkdWVhZt2rTj4MFfuXbtKlOmfE3Vqs7MnTuTY8f+\nAuD119/g3Xc/YNKk8Zibm3P1ahyJiQmMGjUeRXnxoamUcXFXmDw5CFNTM/R6PYGBwVSs+OgXndIm\nV+xCiEKrU8eD2bMX0LDhq+za9RMdO3blhRfKMX58CIcOHSQu7jILF4YxZ84iVqz4ltTUVLZv38oX\nX3zJ4sXLcHV1x2Aw0LNnbzp27EjTpvd/I5S5uQUzZsxhyJBhrFnz3wfOX6lSZWbOnI+rqxtxcZeZ\nPn0OLVu24eDBXzl4cD9xcVdYsiSchQvD2LXrR86di8o97uuv59Gt23ts2bLhvlTKpUuXk52dzalT\nJ/jzzz+oU8eDWbMW4OPTj7S0WyUyrwX12Ct2RVHMgW8BN8ASCAZOAuGAATgODFRVVV+sVQohnmmP\nS2GMjo5CVU/nxvvqdDquXr3CqFHj+O67VcTFzcbDwzNf41eoUInMTO1Dnn8RgLJlbXF1dQPA1tYW\nrTaT2NjzeHnVR6PRYGZmhoeHZ+6XgdSqdXfcivzzz9+PTKXs2LELq1cvZ9iwQdjYlKVfv4EFnKmS\n8aQr9p5AoqqqzYA3gHnA18CYO9s0QJfiLVEI8ax7WAqjRmOCwWDA1dWNl19uyLx5S5gzZxGtW7el\nalVntmzZxPDhI5k3bwlnz6r888/faDQa9PoHrxOfFPL4uBRIV1f33GUYnU7H8ePHcHZ2eehxj0ql\nPHBgH15eLzN79kJatWrD6tXP9l1DT1pj/wFYd+dnDaADGgB3o+R2AO2AjcVSnRAiX57F2xO9vOoz\nfPhg5s5dTGTkUQYM+IyMjHSaN291J3e9JgMH9sXa2honJydeeqkuNjY2rF4dTrVq1YusDm/vZkRG\nHqVfv0/Jysqideu2KMqLD933UamUHh6eBAcHsnx5GHq9nkGDviiy+opDvtIdFUWxBbYAS4HpqqpW\nubO9NdBHVdWejzte0h3Fw/zZdWhplyDEs65A6Y5PvCtGUZRq5FyRL1BV9b+Koky752lbIKkgJxYC\nkHjWOySqNo/MRR4nJ9sCHffYNXZFUSoCO4GvVFX99s7mSEVRWt75+U1gf4HOLIQQolg86Yp9FOAI\njFUUZeydbUOAOYqiWACnyFuDF0II8Qx4bGNXVXUIOY38/2vxkG1CCCGeAfIBJSGEMDISKSCEEei8\n568iHW9Lq/pFOp4oWXLFLoQokIiIIwQGjizw8evXr3ns8/7+vsTGxhR4/JUrwzl58jjbt29l4cK5\nT0yjNCbS2IUQpWL58m+fvFMhfPxxb156qW6xnuNZJUsxQogis2fPz2zY8AM6nQ6NRkNIyHTs7e2Z\nOXMap06dICtLh4+PL9HR50hJSWb69Cl8/vlwQkKCuHLlMtnZ2fj6fkajRs0A+OabRSQnJ2FubsGY\nMUHY2dkRGhrC9evXSExMwNu7Ob6+A7h48QJTpwaTlZWFlZUV48eHsGDBbNq0affQOu8mQ1paWrJw\n4VxcXd147bWmBAaORK/Xk5mZyYgRI3OzZJ430tiFEEXm4sULhIbOxsrKimnTJnH48CEsLa1ITk5i\n6dIVpKSksGbNavr29WP9+rUMHx7A+vVrcHBwYNy4iaSnp9G37yfMn58TCtaiRSvatm3Phg0/sGrV\nMrp3fx8PD08CAsai1Wp5550O+PoOYP78WfTs2ZvGjZtw4MA+zp5Vn7r2U6dOYGdnz9ixQZw/f56M\njIyinp4SI41dCFFkHB1fIDg4EGtra2JjY6hbtx7XrsXi4VEPADs7O/r29bvvmJiYGBo2/A/AnQyZ\nGly+fAmA+vVfAcDTsx6HDh3Azs6OU6dOEBFxBBsbGzIzc75B6cKFWOrWzTnH3cjfXbt+zFfNd2NV\nGjduwqVLFwgIGIaZmRm9evkUZipKlayxCyGKxK1btwgLW0xQUAhffTUGS0tLDAYDbm5unD59Mnef\nL77wB/IaqpubG8eORQKQnp7GmTNnqFKlCgAnT54A4O+/I3F3r8H27dsoW9aWwMBg3n+/J1rt7TsJ\nku6cOpWz786dO1i37vvH1mphYUFiYgIGg4GoqDMAREYepVy58sycOZ9evXxYvHh+Ec9QyZErdiGM\nQGndnnj48B/4+HwM5DTql16qS//+n2JqaoatrS0JCfF06NCJI0cO4+fnQ3Z2Np9+2hcANzd3JkwY\ny8iR45g6NRg/Px+0Wi3+/v44Or4AwP79e1m79r/Y2NgwenQQCQnxBAWN4cSJfzA3N8fZuRoJCfEM\nHDiE0NAQli8Pw8rKinHjJqKqpx9Z94cffsKIEUOoVKkKtrY5eSw1a9YiMHAUGzeuu6/O51G+0h0L\nS9IdxcP82XWohD3dIcFXeWQu8jg52RYo3VGWYoQQwshIYxdCCCMjjV0IIYyMNHYhhDAy0tiFEMLI\nyO2OQhiBznsji3S8LS1fLtLxRMmSK3YhRIFER59jxIghDBrUj88++4SwsMWUxO3TRZHSuG/fHhIS\n4vO179mzKsuWLS3U+UqaNHYhxFNLTU1l/PhRDB48jLlzF7N48TLOnYti8+b1pV1avvzww3ekpaXl\na99atZTn7sNKshQjhHhqBw7s45VXGlGtmgsApqamjBkThLm5OXPnzuTYsZwv/nj99Td4990PmDRp\nPMnJyaSkJFOzZi3c3WvQrdu7pKSk8PnnA/D3/5zVq1dgbm7G9etXadGiDb16+XDt2lWmTQtBq72N\npaUVX345CoCkpJt89dVQbty4gbd3M3r3/ozo6Cjmzp2JXq8nKSmJ4cMD8PT0Ytu2TWzcuB69Ppum\nTVtQp44HUVFnCA4ex4IFYWzevJ5du35Co9HQpk07evR4/756P/jgY375ZSdBQZPp3Lk9W7b8BEBg\n4Ei6dOnG1atxHDz4K1qtlsTEBHr0+ID9+/dx/vw5Bg4cQrNmLUv87yONXQjx1BIS4qlSpep926yt\nrTl4cD9xcVdYsiSc7Oxs/Px8aNCgEQANGjTkvfc+4vLlS4wfP5pu3d5l164fadfuDQCuXYsjPPw7\n7O0tadq0Kb16+TB//my6d3+P117z5siRwyxaNA9f3wFkZGQwduxEypQpw8CBffH2bs6FCzH4+w+l\nRo2a7Nz5I9u3b8XZuRqrVi1n+fLvsLCwZNGiedSv/wo1a9ZmxIhRXLp0kd27d7FgwTcADB06kFdf\nbXxfvRERR544H+np6cycOZ+ff/6JNWv+y5Il4URGHuWHH76Txi6EeD5UrFiZM2fuz2K5cuUyqnoK\nL6/6aDQazMzM8PDwJCYmGgAXF1cAqlZ1xtrahvPno9m160emTPma6OgoqleviZmZGdbW1lhaWgEQ\nHR3FypXLWL16OQCmpjktq2bNWpQtWxaAOnU8uHjxAuXLVyA8/BssLS1JT0/HxsaGy5cv4+5eI3c8\nP79B99UcHX2Oa9euMmRITuJkamoqFy9evK/eR7n37YS7ue1ly9ri5uaORqPB1tYWrTbzKWa16Mga\nuxDiqXl7N+WPP37LjdfV6XTMnTsTW1u73GUYnU7H8ePHcHbOWa7RaPLaTefOXQkP/wYnpwo4ODjc\nef7B87i4uOHnN4h585YwYsQoWrVqA0BsbAzp6enodDpOnjyOu3t1Zs8OxcenH2PGBFGjRk0MBgNV\nqzpz4UIMmZk5DXbMmC+Jj7+OiYkJer0eFxdX3NyqM3fuYubNW0KHDh2pUaPWA/XepdPpSE9PJysr\ni/Pnz+Vu1zys+FIkV+xCGIGSvj3RxqYso0cHMXVqMHq9nvT0dLy9m9G9+3tcu3aVfv0+JSsri9at\n26IoLz5wfPPmrZg5cxpjx0587HkGDhzCjBlTyMzMRKu9zZAhwwGwtbUjMHAkSUk3ad26He7u1WnX\n7k3Gjv0KW1s7nJwqkJychKOjIx991At/f180Gg3e3s1wcqpA3br1CA4OZObMeTRs2IgBA3zIzMyi\nTh0PnJycHlnPu+9+QL9+valSpSqVKlUu3CQWo3ylOyqK8iowVVXVloqi1ATCAQNwHBioqqr+ccdL\nuqN4GEl3zPNvSzS8ffs2/v6+LFkSjonJ/VfG/7a5eJxiS3dUFOVL4BvA6s6mr4Exqqo2AzRAl4Kc\nWAjx7/TPP3/j69uLjz765IGmLopGfpZizgHvACvvPG4A7Lvz8w6gHbCx6EsT/wZOTralXcIz498y\nF61bN6V16+2P3effMhfF5YmNXVXV9YqiuN2zSaOq6t2llVTAvjgKE/8O8l/uHLL8kEfmIk9BX+AK\n8v+ge9fTbYGkAp1ZCCFEsShIY49UFKXlnZ/fBPYXXTlCCCEKqyC3Ow4DliqKYgGcAtYVbUlCiKdl\nM/JSkY6XNtm5SMcTJStfV+yqqsaoqtr4zs9nVFVtoarqa6qq9lFVNbt4SxRCPIsiIo4QGDiySMbq\n3r0TWq32kc9rtVq6d+/0VGMmJiYwffqUwpb2XJJ7jYQQRqlcufIMHx5Q2mWUCvnkqRCiyOzZ8zMb\nNvyATqdDo9EQEjKd6OgoVq0Kx9zcnOvXr9GlSzciIo4QFXWGHj0+4O23uwMQGhrC1atxVKpUgREj\nxpCdrWfChDGkpqZStWre0lBk5FGWLVuKXq8nIyODwMBg/vjjEKmpKfTp40tmZia9e3/AlClfExwc\nyJIl4Xz88btUq+aKubkZLi5ulCtXjq5duxMbG0NoaAjz5i1h8eL5REYeJTtbR4sWrenZs3cpzWLh\nSWMXQhSZixcvEBo6GysrK6ZNm8Thw4coX96J69evEx7+X06fPsW4cQGsWbOJ+PjrjBo1Irexd+3a\nnbp1PVm2bCFbtmwiKysLd/ca9Os3kBMnjuemLJ4/H824cRMpX96JFSu+Zc+en3n77R4MGPAZn37a\nlwMHfqVJk2aYm5vn1pWRkUHv3j7Urv0iYWGLH1r7rl0/MnfuYsqVK8/27VuLf7KKkTR2IUSRcXR8\ngeDgQKytrYmNjaFu3XoAVK9eAzMzM2xtbalSpSrm5ubY2tqRmZmzrm5mZk7dup4AvPLKK/z88150\nOh1NmngD4OFRFzOznHbl5OTErFmhlCljTXz8dTw9vbCzs6N2bYVjx/5ix46t+PsPfaA2Fxe3B7bd\nG6kybtxEFi2aS2JiIo0bNynSeSlp0tiFEEXi1q1bhIUtZv36bUBOtvndxvmk8EOdLouzZ1Vq1VI4\ncuQI1avXICsrk+PH/6FZs5acOXManU4HwNSpk1i7dhPW1jYEBwfmjtGpU1fWrv0vWq0WV1c34uKu\n3HeOuwmMFhaWJCYmAuRGD2dmZrJnz27Gjw8BoGfPHrRt2/6ZDvp6HGnsQhiB0ro98fDhP/Dx+RjI\nufp96aW69O//KaamOVfnCQnxVK5c5YnjmJubs27dGi5duoirazV69epHdnY2wcGB+Pn54Orqlru0\n0r79mwwY0JcyZaxwdCyX+92lL7/cgGnTJvHJJ30ee642bV5n3LiRREYeRVHqAGBhYYGdnR2+vr2x\ntLSkUaPGVKxYqTBTU6ryle5YWJLuKB5G0h3zyMfo88hc5Cm2dEchhBDPF2nsQghhZKSxCyGEkZHG\nLoQQRkYauxBCGBlp7EIIYWSksQshhJGRxi6EEEZGGrsQQhgZaexCCGFkpLELIYSRkcYuhBBGRhq7\nEEIYGWnsQghhZKSxCyGEkSnQF20oimICLAC8AC3wmaqqUUVZmBBCiIIp6BV7V8BKVdXXgABgRtGV\nJIQQojAK2tibAj8CqKr6O9CwyCoSQghRKAX9zlM7IPmex9mKopipqqp72M5/dh1aoK93EsbPycm2\ntEt4Zshc5JG5KJyCXrGnAPfOvMmjmroQQoiSVdDGfhDoAKAoSmPgnyKrSAghRKEUdClmI/C6oii/\nARrg06IrSQghRGFoDAZDadcghBCiCMkHlIQQwshIYxdCCCMjjV0IIYxMQd88fagnRQ0oitIJGAfo\ngG9VVV1alOd/luRjLj4APidnLv4BBqiqqi+NWotbfiMoFEVZAtxQVTWghEssMfn4d9EI+JqcmxKu\nAj1VVb1dGrUWt3zMxUfAMCCbnH6xsFQKLSGKorwKTFVVteX/2/7UfbOor9gfGTWgKIo5MBNoB7QA\nfBVFqVjE53+WPG4uygDBQCtVVb0Be6BjqVRZMp4YQaEoSj/As6QLKwWP+3ehAZYCn6qqevfT3a6l\nUmXJeNK/i+lAW8AbGKYoimMJ11diFEX5EvgGsPp/2wvUN4u6sT8uaqAOEKWq6k1VVTOBA0DzIj7/\ns+Rxc6EFmqjq/7Vzx65RBFEcx78GEYuzCSLYRVB/Vim0UAI2ESsbUdKkCkLAQhH/AlsLG0WLWFmJ\njdiIjZUI2mgjSvgV2isEIoIBg2IxCznkdk7OzWwY3weu2NuDfbzdfTc7u/v8vVneDVQ5KmtkW1BI\nmgNOAivlQysul4ujwBpwXdILYNq2y4dYzLjWJO9Ig569pCuYmh/h+whcGPH9RHWz68I+stVAy7pv\npJ1Wq9Zc2P5l+zOApKvAAHhePsRiWnMh6SBwA7jSR2A9yJ0j+4E54C5ppHpG0nzh+ErK5QLgPfAW\n+AA8tb1eMriSbD8GNkesmqhudl3Yc60G/ly3D6h2RzGm7YKkKUm3gLPARds1j0ZyuVggFbRnpMvx\nRUlLZcMrKpeLNdLobNX2Jmk0W3ODvdZcSJoFzgGHgBnggKSF4hH2b6K62XVhz7UaWAWOSJqWtId0\nOfG64+3vJOPaLqyQLjHPD03J1Ko1F7bv2D7R3DC6CTy0/aCPIAvJHRefgIGkw83yadJotVa5XHwF\nNoAN2z+BL0C1c+wZE9XNTt88HbrLPctWq4HjwMD2/aG7u1Oku7v3Otv4DpPLBfCm+bxka97wtu0n\nPdbqjq8AAABxSURBVIS67cYdF0O/WwKO/SdPxbSdI/OkP7hdwCvb13oLdpv9RS4uA5eAH6Q56OVm\nnrlKkmaAR7ZPSVrkH+pmtBQIIYTKxAtKIYRQmSjsIYRQmSjsIYRQmSjsIYRQmSjsIYRQmSjsIYRQ\nmSjsIYRQmd99XZZM/00cOwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11dc04470>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_distribution(genuses)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Family" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pct_reads_clade</th>\n", " <th>num_reads_clade</th>\n", " <th>num_reads_taxon</th>\n", " <th>rank</th>\n", " <th>tax_id</th>\n", " <th>tax_name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>9</th>\n", " <td>65.06</td>\n", " <td>1906011</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>815</td>\n", " <td>Bacteroidaceae</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>1.33</td>\n", " <td>38948</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>171551</td>\n", " <td>Porphyromonadaceae</td>\n", " </tr>\n", " <tr>\n", " <th>96</th>\n", " <td>0.75</td>\n", " <td>22080</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>186803</td>\n", " <td>Lachnospiraceae</td>\n", " </tr>\n", " <tr>\n", " <th>30</th>\n", " <td>0.53</td>\n", " <td>15634</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>1853231</td>\n", " <td>Odoribacteraceae</td>\n", " </tr>\n", " <tr>\n", " <th>139</th>\n", " <td>0.10</td>\n", " <td>2827</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>33958</td>\n", " <td>Lactobacillaceae</td>\n", " </tr>\n", " <tr>\n", " <th>587</th>\n", " <td>0.03</td>\n", " <td>966</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>10699</td>\n", " <td>Siphoviridae</td>\n", " </tr>\n", " <tr>\n", " <th>33</th>\n", " <td>0.02</td>\n", " <td>658</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>171550</td>\n", " <td>Rikenellaceae</td>\n", " </tr>\n", " <tr>\n", " <th>46</th>\n", " <td>0.01</td>\n", " <td>423</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>49546</td>\n", " <td>Flavobacteriaceae</td>\n", " </tr>\n", " <tr>\n", " <th>196</th>\n", " <td>0.01</td>\n", " <td>256</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>1653</td>\n", " <td>Corynebacteriaceae</td>\n", " </tr>\n", " <tr>\n", " <th>396</th>\n", " <td>0.00</td>\n", " <td>22</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>641</td>\n", " <td>Vibrionaceae</td>\n", " </tr>\n", " <tr>\n", " <th>432</th>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>444</td>\n", " <td>Legionellaceae</td>\n", " </tr>\n", " <tr>\n", " <th>424</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>72275</td>\n", " <td>Alteromonadaceae</td>\n", " </tr>\n", " <tr>\n", " <th>415</th>\n", " <td>0.00</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>135621</td>\n", " <td>Pseudomonadaceae</td>\n", " </tr>\n", " <tr>\n", " <th>412</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>468</td>\n", " <td>Moraxellaceae</td>\n", " </tr>\n", " <tr>\n", " <th>405</th>\n", " <td>0.00</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>32033</td>\n", " <td>Xanthomonadaceae</td>\n", " </tr>\n", " <tr>\n", " <th>401</th>\n", " <td>0.00</td>\n", " <td>12</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>1775411</td>\n", " <td>Rhodanobacteraceae</td>\n", " </tr>\n", " <tr>\n", " <th>436</th>\n", " <td>0.00</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>72276</td>\n", " <td>Ectothiorhodospiraceae</td>\n", " </tr>\n", " <tr>\n", " <th>375</th>\n", " <td>0.00</td>\n", " <td>5</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>1903411</td>\n", " <td>Yersiniaceae</td>\n", " </tr>\n", " <tr>\n", " <th>392</th>\n", " <td>0.00</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>1903412</td>\n", " <td>Hafniaceae</td>\n", " </tr>\n", " <tr>\n", " <th>388</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>F</td>\n", " <td>1903414</td>\n", " <td>Morganellaceae</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pct_reads_clade num_reads_clade num_reads_taxon rank tax_id \\\n", "9 65.06 1906011 0 F 815 \n", "20 1.33 38948 0 F 171551 \n", "96 0.75 22080 0 F 186803 \n", "30 0.53 15634 0 F 1853231 \n", "139 0.10 2827 0 F 33958 \n", "587 0.03 966 0 F 10699 \n", "33 0.02 658 0 F 171550 \n", "46 0.01 423 0 F 49546 \n", "196 0.01 256 0 F 1653 \n", "396 0.00 22 0 F 641 \n", "432 0.00 1 0 F 444 \n", "424 0.00 3 0 F 72275 \n", "415 0.00 2 0 F 135621 \n", "412 0.00 3 0 F 468 \n", "405 0.00 0 0 F 32033 \n", "401 0.00 12 0 F 1775411 \n", "436 0.00 0 0 F 72276 \n", "375 0.00 5 0 F 1903411 \n", "392 0.00 0 0 F 1903412 \n", "388 0.00 3 0 F 1903414 \n", "\n", " tax_name \n", "9 Bacteroidaceae \n", "20 Porphyromonadaceae \n", "96 Lachnospiraceae \n", "30 Odoribacteraceae \n", "139 Lactobacillaceae \n", "587 Siphoviridae \n", "33 Rikenellaceae \n", "46 Flavobacteriaceae \n", "196 Corynebacteriaceae \n", "396 Vibrionaceae \n", "432 Legionellaceae \n", "424 Alteromonadaceae \n", "415 Pseudomonadaceae \n", "412 Moraxellaceae \n", "405 Xanthomonadaceae \n", "401 Rhodanobacteraceae \n", "436 Ectothiorhodospiraceae \n", "375 Yersiniaceae \n", "392 Hafniaceae \n", "388 Morganellaceae " ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" } ], "source": [ "families = td[td['rank'] == 'F']\n", "top_hits(families)" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD3CAYAAAAJxX+sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVHX7x/H3sC+ylWPugtvJFJfU1NzNx8rS0ix7Sssl\nMRTDJVdQRAnFfUHFrVCz0lxySZ+fZmpampmWuR1XEHdQNgHZZn5/DIImCuIAerhf19V1zZw5c87t\nF7rny3fmfEZnNBoRQgihHRbFXYAQQgjzksYuhBAaI41dCCE0Rhq7EEJojDR2IYTQGKuiOElGRqYx\nNja5KE71xHNzc0DGwkTGIoeMRQ4Zixx6vZOuIM/Ls7EritIL6JV11w6oD7QAZgFG4CgwUFVVwwNP\nYmVZkNo0ScYih4xFDhmLHDIWjy/PpRhVVcNVVW2jqmob4E/gM2Ac4K+qaktAB7xVqFUKIYTIt3yv\nsSuK0giorarqIqAhsDvroa1A+0KoTQghRAE8yhr7GCAw67ZOVdU7l6wmAi55PVmvd3rE0rRLxiKH\njEUOGYscMhaPJ1+NXVEUV0BRVXVn1qa719OdgLi8jhEdnfjo1WmQXu8kY5FFxiKHjEUOGYscBX2B\ny+9STCtgx133DyuK0ibr9uvAngKdXQghhNnldylGAc7ddX8YsFhRFBvgBLDG3IUJIYQomHw1dlVV\np/7r/imgdaFUJIQQ4rEUyQVKQogH6/jrErMeb0vzT8x6PPH0kUgBIUqYQ4cO8uab/8HHxwsfHy+8\nvHpx6tTJRzrGhg3ryMjIeKw6Zs+eztWrV+/ZFhkZQc+ePR/ruKKIZuyNNo4oitOIp8zBzlOKu4QS\nq2HDRgQGTgLgwIH9LFkSxpQps/L9/BUrvuK1197AyqrgLcTXd1iBnyseTpZihCjhEhMTcHV14/Dh\nP/nqq8UYDAZSUlIICAiicuUqhIcvYc+e3WRmZvL22+9gZWXJzZs3GD9+DJMmTScsLJS//z6MwWCg\ne/cPadeuPT4+Xri5PUNCQgJTp85i8uSJXL58iczMTN5//0NeeaUDPj5eDB8+BkfHUkyY4I/RaOSZ\nZ57Nrmvnzp9Yt+57MjIy0Ol0BAdPw8XFhZkzp3DixDHS0zPo29eLli3b5FrDg/49a9Z8x/bt/4dO\np+OVVzrw7rvvF+PoF44iaexWaa2K4jRCiHz688+D+Ph4kZ6ezpkzp5g0aTrnz59j3LiJlC6tZ/ny\nL9m58yeaNWvO77//xqJF4RgMBsLCQvHxGUx4+FLGjw9m375fuXLlEgsWLCU1NZX+/XvTuHETANq3\nf5XWrduydu0qXF1dGTduIsnJSfTp04OGDV/KrmX58qW0b/8qnTt3YceObfz44w8AREVdYOrU2djZ\n2TFlyhccOLAPW1s74uPjWLx4OQkJCaxatRIrK+tca8jt39OqVVt27NjO/Pmm9zWGDBlIkyZNqVzZ\nvch/BoWpSBr7pJiAojiNeOq8WdwFlFh3L8VcuBBB//59GDNmHLNmTcXe3oHo6Ot4etbjwoVIatWq\njaWlJZaWlgwaNOSe45w7dwZVPYmPjxcAGRkZXL16GYDKlasAEBERQaNGpkbu4OCIu7sHly5dzD5G\nVNQFOnXqAoCnZ73sxu7m9gxBQQE4ODgQGRlBnTp1uXYtktq16wLg7OxMv37erFy5LNca9Hr9ff+e\nc+fOcu3aVXx9vQFITEwkKipKGntB+LmZ911/oQ2/FXcBAgA3N9PyR0hIEKtXb8DBwZGgINNkrEoV\nd374YS0GgwGDwcDnn3/GlCmz0OksMBqNVKniToMGjRg50g+DwUB4+BIqVKgIgIWF6bMZ7u7uHDly\nmNat25KcnMTZs2cpX7589vnd3aty7NgRatSoyYkTxwG4desWS5cuZO3azYBpZm00GnF3d2fnzh3Z\n+4wbN4quXd/NtYYhQ3xYvfqHe/49lStXwd29KtOnz0Gn07Fq1UqqVatRBKNctGSNXYhitqX5J0V+\nGf2dpRhLS0uSk5MYNGgIZ8+eZsCAftjb2+Hm9iwxMdHUqKHQpEkzvL37YjAY6NKlGzY2NtSrV5/P\nP/+MuXMXcvjwnwwY8AkpKcm0atUWBwfHe87VuXNXQkKC8PbuS2pqKn369MPN7Znsxz/+uC8TJvjz\n00/bKF++AgCOjo54etbj0097Y2lphZOTEzEx0XTs2ImDBw/g7d2XzMxMevfuR9OmL+daw6uvvp7L\nv6cmjRo1ZsCAvqSlpVOrVm30en2RjXtR0RmNxrz3ekwvrzpc+CcRT53fujeQTJAsko+SQ8YiR0G/\naEM+xy6EEBpTJEsx6ba7iuI04qnToLgLEEKTZMYuhBAaI41dCCE0Rhq7EEJojHzcUYhi9tbPZ8x6\nvA3tqpv1eOLpIzN2IUqYu9MdBw3qj5dXL9as+e6xjhcQMNqMFRatyMiI7KtWtUJm7EKUQHdHCqSl\npfHBB+/w6qtv4OQkXyKtBdLYhSjhkpOTsbCw4Ny5M4SFhWJpaYmNjQ0jRvhjNBoYOXIIzs4uNGvW\nnH37fqVKFXciIyMACAwMBiAqKophwz4jNvYmzZu3pHv3D+nT50O+/XYdlpaWzJ8/B0Wpxfr13+eZ\n+tizZ08qV67K+fNnsbe3p27dBhw4sI9bt24xY0YoDg4OBAcH5poWWaOGwrlzZ0lOvsXEiSGULVuO\nsLBQTp48TkJCPNWr12TMmABiYmI0nSgpjV2IEuhOpICFhQVWVlYMGTKcOXNmMGqUPzVqKOzZs4vQ\n0BkMHDiYmzdvsHTp11hbW7Nv36/UqVOX4cPHsG7d96xY8RWtWrUlLS2NSZOmYTAYeOedN+jbtz91\n69bnwIF9vPRSM37//Tf69fNm/frv85X6+MILtRk8+HOGDh2EnZ0ds2bNJygogL/+OkR09LUHPq9W\nrdr4+g5j4cJ5bN/+f3Tt2g0nJydmzZqPwWCgZ8/3iI6+zooVX92TKLl+velrm7WSKCmNXYgS6O6l\nmDsmTw6iRg0FgHr1XiQsLBSAcuXKY21tfddzGwPg6VmXvXt3A1C1ajVsbGwAsLQ0tZVOnbqwZs13\nGAxGGjV6KfsY+Ul9rFnzeQCcnErh7u6RdduZtLTUPJ5nqv+5557jxo0b2NraERsbS0DAGBwcHEhJ\nSSEjI+O+RMk7jV0riZLy5qkQAoDSpfWcOXMagL/+OkSlSpUB0OnubROqegKAI0f+xsOjatY+9x+v\nXr36XLp0kc2bN/DGG29lb/936iNwX+qjLrcDZnmU5+3f/yvXr18jMDAYL6+BpKbezkqJNCVKAvcl\nSgYGBjNypD+2trbZiZInT+bsM3SoT3aqZWjoIubMCaNdu/ZUqFCRkJAvGDMmAD+/8ZQubQoXu5Mo\nOXfuQkJDF9Gx45uFnigpM3YhitmGdtWfiOCrkSP9mDlzCkajEUtLS0aNGpvrflu2bGbVqm+ws7Nj\n7NgJnD374I9rdujwGjt37qBq1Wr3PZZX6uODPMrzatWqTXj4UgYO7IdOp6N8+QrExERrPlGySNId\nG/8wU9IdxX3+eHtIsTezJ8WT0Njz487X2VWp4p6v/b/5ZjnOzi68+eZbee+c5WkZi6JQ0HTHfM3Y\nFUUZDXQGbID5wG4gHDACR4GBqqoaClKAEEKbvvhiPDEx0YSEzCzuUkqcPBu7oihtgJeB5oAD8Dkw\nA/BXVXWXoihhwFvA+kKsUwjxBAgNXZTvff38xhdeIeKh8vPm6avAP5ga9yZgM9AQ06wdYCvQvlCq\nE0II8cjysxRTGqiC6ZuHPYCNgIWqqnfWzRMBl8IpT2idXi9XOt4hY5FDxuLx5Kex3wBOqqqaBqiK\notwGKt31uBMQVxjFCe2TN8lM5A3DHDIWOQr6Apefxr4X8FUUZQZQDnAEdiiK0kZV1V3A68DOAp1d\nCMHRtW3Merw67+wy6/HE0yfPNXZVVTcDh4EDmNbYBwLDgEBFUfZh+qTMmsIsUghhXpcvX8LPbzg+\nPl54e/dh2rTJJCcn3bPP/v2/8cUX4/N9zDFjhgOmj0TeyZIpWG2X2bv3lwI/X+Tz446qqo7IZXNr\nM9cihCgCqam3GTVqKCNHjqV27ToAbN26mfHj/ZgyZVaBjxscPNUs9e3fv5+jR0/SokUrsxyvJJIr\nT4UoYX77bS/167+Y3dQBXn/9TdavX0NExHkmTZqAnZ099vZ2ODk5A7Bt21ZWr/4Wa2trKlWqzIgR\nfmzbtpUff9yIwWCgb9/+TJgwlo0b/w+AJUvCiI+Pw9raBn//QJydnZk6NZjr169x40YMzZu3wstr\nAFFRFwgJCSI9PR07OzsCAoJYtGgRSUnJeHrWpVy5CsyaNRWj0YiLiwujRwdw6tRJFiyYi7W1NZ07\nd8HW1lYTiYzmJI1diBLm8uVLVKhQ8b7t5cqVp1+/jwgOnkrjxk35+utwIiMjiI+PY+nShXz11Uoc\nHByZM2c6Gzasxd7eAScnJyZPnnHfsVq3bkv79q+ybt33fP31V3Tr9j61a3syatRYUlNT6dq1I15e\nA5g3bxY9evSiadOX2bt3N2fOnMbLyytrxt4aL69ejB49Dg+Pqmze/AMrVy6jceMmpKWlsXjxMgCW\nL/9SE4mM5iSNXYgSRq8vw/Hjx+7bfunSRdLT06lVyzST9/SsT2RkBJcvX8LDoyoODo6AKfnxjz/2\n88ILdbKTGv+tfv0Xs45Rl3379uLs7MyJE8c4dOggjo6OpKWlA3DhQiR16piSE1u0MK3u7tmzPfs4\nkZHnmT59MgCZmRlUrGgKJrv7vFpJZDQnaexClDAtWrRm+fIvOX78KC+8YGrimzb9gIuLK82aNefo\n0SM0bfoyJ0+amn+5chWIiDhPSkoK9vb2D01+vOP48WO0atWGv/8+jIdHNbZs2UypUk6MGOHHxYtR\nbNy4HqPRSJUqHpw4cYzGjZuwbdtWEhLiKVdOj9FoSiipXLkK/v4TKFu2LEeO/MWNGzEAWFiYIlTu\nJDKuXbsZMM2s7yQy7ty5I3ufceNG0bXruzRo0IiRI/0wGAyEhy+hQoWKDBniw+rVP+Dg4EhQUED2\ned3dqzJ9+hx0Oh2rVq0s9ERGc5LGLkQxq/POriL97LaDgwMhITOZM2c6CQnxZGRkUr16DcaP/4KE\nhHiCggL49tsVuLq6YmNji6urK3369Oezz/qj01lQsWIlPv3Uhx07tj3wHHv27GL16m9wdHTEzy+Q\nmJhoAgP9OXbsH6ytralYsRIxMdEMHOjL1KnBLFu2FDs7O8aNm0hqagKhofOoWfN5hg0bTVDQODIz\nM9HpdIwaNZaYmOjs82gpkdGcJN1RFBtJd8whF+XkkLHIUdB0R/miDSGE0Bhp7EIIoTHS2IUQQmOk\nsQshhMZIYxdCCI2RjzsKUcw67d6d906PYFNriXEq6aSxC1HCHDp0kHHjRuPu7oFOpyMpKYny5Svw\nwQc9+f33ffTu3Y/OnV/Nzn0xly1bNhEZGcHbb79DQMAYFi0KN+vxRQ5p7EKUQA0bNiIwcFL2/fHj\n/bh27Sq9e/crxqqEuUhjF6KES09P58aNGJycnAkIGH1Pw1+4cB63bt1i6NAR7Ny5g1WrVmJhYUHd\nuvXx9h7E0qULuXLlMrGxsVy7doVBg4bSpEkzDh/+k0WL5mNpaUn58hUYMcIv13Pv3PnTfcmMpUuX\nYsaMkBKbzGgO0tiFKIH+/PMgPj5exMXFotPp6Ny5KxYW936WIjR0FhYWOoYNG0lCQjxffrmQJUtW\nYGdnx8SJY/njj/0AWFvbMH36HP74Yz/ffruSl15qSkjIFyxYsAQ3t2dYvHgBW7Zswsrq/nYTFXXh\nvmTGiAi3Ep3MaA7S2IUoge4sxcTHxzFkyEDKlSt/z+M3b97g7NnTVKhg+nrjixejiIuL5fPPPwMg\nOTmZS5cuAlCzpgJAmTJlSUtLJS4ulhs3Yhg7dhQAqampNG7chIoVK/FvuSUznj9/vkQnM5qDNHYh\nSjAXF1fGjp3IZ599ymefDc3e/swzzzJjRiiDBvVn//7fUJRalCnzHLNmzcfKyootWzZRo0ZNfvll\nFzrd/ccsU6YMkyfPoFSpUuzduxt7eweuXbt6z34PSmasWrUqGzZszt6npCUzmoM0diGK2abWrYs1\n+MrDoyrdunVn9uxpNGzYOHv7nTTFYcMGsWhRON27f4iPjxeZmZmUK1eedu3+k+vxLCws8PX9nOHD\nfTEajTg4ODJ2bOB9jf1ByYwff/wBP/+8u8QmM5qDpDuKYiPpjjkk0TCHjEUOSXcUQggBSGMXQgjN\nkcYuhBAak683TxVFOQQkZN09D3wBhANG4CgwUFVVQ2EUKIQQ4tHk2dgVRbEDdKqqtrlr20bAX1XV\nXYqihAFvAesLrUohhBD5lp8Zez3AQVGUbVn7jwEaAnci6bYCHZDGLgpAr3cq7hKKXaONw8x6vIOd\np5v1eMVBfi8eT34aezIwDVgC1MDUyHWqqt75CGMi4FI45Qmtk4+1mV9eY3rlymU+/vi/2VeMAjRs\n2JiIiHP35MQUlI+PF8OHj6FKFfcCPT89PZHffz9Mixat8rV/QMBo/P0nYG1tXaDzPckK+gKXn8Z+\nCjiT1chPKYpyA9OM/Q4nIK5AZxdCFAt3dw9CQxdl3z906CAREeeKsaIc+/fv5+jRk/lu7OZ4MdKa\n/DT2PoAnMEBRlPKAM7BNUZQ2qqruAl4HdhZeiUKIorR27Sp2795JSkoKrq6uBAdPIyBgDO+++z4N\nGjTk5MnjhIcvIShoCsHBgVy+fInMzEzef/9DXnmlAwBLloQRHx+HtbUN/v6BODs7M3VqMNevX+PG\njRiaN2+Fl9cAoqIuEBISRHp6OnZ2dgQEBLFo0SKSkpLx9KxLuXIVmDVrKkajERcXF0aPDuDUqZMs\nWDAXa2trOnfuwpIlYaxcuYZLl6KYO3cmBoOBuLg4Pv98FJ6e9di8+QfWr1+LwZBJixat6du3Pz//\n/NN9SZXXr19j2rTJpKWlcuNGDP36DaBVqza5JlXmFmj2JMlPdUuBcEVR9mL6FEwfIAZYrCiKDXAC\nWFN4JQohzC0i4nx2oBZA585dADAYDMTHxzNr1nwsLCwYOtSHEyeO0anT22zdupkGDRry44+b6NSp\nCxs2rMXV1ZVx4yaSnJxEnz49aNjwJQBat25L+/avsm7d93z99Vd06/Y+tWt7MmrUWFJTU+natSNe\nXgOYN28WPXr0omnTl9m7dzdnzpzGy8sra8beGi+vXowePQ4Pj6ps3vwDK1cuo3HjJqSlpbF48TLA\n9CICcP78OXx8hlCtWnW2bfsfW7ZsomLFSnz99TKWLfsWGxtbwsJCuXr16gOSKnW8//6HvPhiI/75\n52+WLl1Iy5atc02qvDNeT6o8G7uqqmnAB7k8JN+/JcRTKrelGDDlvFhbWzN+vB/29vZcv36djIwM\nmjRpxvz5s0lIiOfIkcMMHvw5s2ZNo1EjUyN3cHDE3d0jO/Gxfv0XAfD0rMu+fXtxdnbmxIljHDp0\nEEdHR9LS0gG4cCGSOnVMSY4tWphayp4927Priow8z/TpkwHIzMygYsXKgCno699Kly5DePgSbG1t\nSU5OxtHRkUuXLuHhUQ1bWzsAvL0Hcfz40VyTKuvWbcCyZUv58ccNgI6MjIwHJlU+6Z7svyeEEEXq\nzJnT/PLLLhYvXsbt27fp27cHYGr4bdu2Z9q0ybRs2QZLS0vc3d05cuQwrVu3JTk5ibNnz1K+vCn+\n9/jxY7Rq1Ya//z6Mh0c1tmzZTKlSTowY4cfFi1Fs3Lgeo9FIlSoenDhxjMaNm7Bt21YSEuIpV06P\n0Wi6LKZy5Sr4+0+gbNmyHDnyFzduxGTVc3+EyuzZUxk3Lgh3d4/sLwCpUKEiFy5EkJaWho2NDf7+\nI/DxGZJrUuWSJWF06vQ2zZo158cfN7J16+YHJlU+6aSxC1HMtjYb/8QEX1WsWAl7e3u8vfsA8Oyz\npYmJiQbgjTc68957b/Hdd6ZPNnfu3JWQkCC8vfuSmppKnz79cHN7BoA9e3axevU3ODo64ucXSExM\nNIGB/hw79g/W1tZUrFiJmJhoBg70ZerUYJYtW4qdnR3jxk0kNTWB0NB51Kz5PMOGjSYoaByZmZnZ\naZN36vm3Dh1eZ+zYkTg5OaPXlyE+Pg43Nzc+/PBjfHy80Ol0NG/ekrJly+WaVNm27SvMmzebr78O\nR68vQ1xc3AOTKp90ku4oio2kO+Z4Uhr7k0DGIoekOwohhACksQshhOZIYxdCCI2Rxi6EEBojjV0I\nITRGPu4oRDF7fd9Esx5va7OxZj2eePrIjF2IEubQoYMEBIwu8ucWREDAaNLT04vsfFohM3YhxBNL\nkhsLRhq7EIKdO39i3brvycjIQKfTERw8DRcXF2bOnMKJE8dIT8+gb18vHB1LERUVxbBhnxEbe5Pm\nzVvSt29/fHy8qFFD4dy5syQn32LixBDKli3Ht99+zY4d27C0tKRevQYMGPAZR478RWjoLKysrLCz\nsyMoKIRdu35mz55dJCcnc+tWAj179qFNm1fo1q0TK1euYdq0ScTHx5OQEE9IyAwWLJibZ1Lk+PHB\npKWlMmVKMKmpt7G1tWPEiDE891xZwsJCOXnyOAkJ8VSvXpMxYwK4desWkydPID4+HoDBg4dTrVr1\nYv7JFIw0diEEUVEXmDp1NnZ2dkyZ8gUHDuzD1taO+Pg4Fi9eTkJCAqtWraRhw8akpaUxadI0DAYD\n77zzBn379gegVq3a+PoOY+HCeWzf/n+8/HILfv55O2FhX2JpaYmf3wh+/XUPf/11iHbt2vPeex+w\nd+8vJCSYrjJNSUlh5sx5WFqm07XrO9mhYHc0bNiI7t0/5MqVy/lKijx9WmXz5g1069adZs2ac/Dg\nAcLCQvn881E4OTkxa9Z8DAYDPXu+R3T0db7//jsaNnyJLl26ERV1geDgQBYsWFrkPwtzkMYuhMDN\n7RmCggJwcHAgMjKCOnXqcu1aJLVrm5IXnZ2d6dfPm0OHDlK1ajVsbGwAsLTMaSF3vpHpueee48aN\nG0RGRlC7tmd2dnm9evU5f/4sPXv2ZvnyL/H19UavL8MLL9QBTImQFhYWlC5dGicnZ+Li7v3+njuJ\njo+SFDlnznRWrPiKlSuXZddra2tHbGwsAQFjcHBwICUlhYyMDM6dO8OhQwfZsWMbAImJCWYe5aIj\njV2IEu7WrVssXbqQtWs3AzBkyECMRiPu7u7s3Lkje59x40bRo0cvdA9IL9H964EqVdz57ruvycjI\nwNLSkr/+Osxrr73Btm1b6NjxTXx8BrNixVds3LiOsmXLoaonAYiJiSEpKQk3N7d/Hd/0WY9HSYqs\nXNmd//63B56e9YiMjODw4T/Zv/9Xrl+/xoQJk4iNjeWXX3ZmPd+dDh1eoEOH14iNvcmmTT+Yc5iL\nlDR2IYrZ1mZjizz46sCB3+nbtycARqORF16ow6ef9sbS0gonJydiYqLp2LETBw8ewNu7L5mZmfTu\n3e+RzlGtWnXatWuPt3dfjEYjdevWo1WrNhw/fozJk4Owt7dHp9MxYoQff/11iJs3b+Dr683t28kM\nGzYSS0vLXI/bsGHjfCdFNmvWgunTJ5OWlkZq6m18fT+nXLnyhIcvZeDAfuh0OsqXr0BMTDQffdSH\nyZMnsnHjuqwvDvHK9fxPA0l3FMVG0h1zlPREwy1bNhEZGYG396ASPxZ3k3RHIYQQgCzFCCGeAB07\ndiruEjRFZuxCCKEx0tiFEEJjpLELIYTG5GuNXVGUMsCfwH+ADCAcMAJHgYGqqhoKq0AhtO7G8jbc\nMOPxnv1olxmPJp5Gec7YFUWxBhYCKVmbZgD+qqq2BHTAW4VXnhDC3B43oXHt2lUPfdzHx4vIyIgC\nH3/RokUcP36ULVs2sWDBXK5cuYyXV68CH68kys9SzDQgDLicdb8hsDvr9lagfSHUJYR4Qi1b9mWh\nHt/Lyys7ZkAUzEOXYhRF6QVEq6r6f4qi3HmJ16mqeueCo0TApRDrExqn1zsVdwnFzpzLMJD3mLq6\nOmBra33Pfv/73/9YuXJldrpjaGgobm5uTJw4kSNHjpCens6gQYM4ffo0iYkJzJs3HT8/P0aPHs3F\nixezrkztTceOHbGxsWLFiiXExsZiY2PDlClTcHFxYdy4cVy9epXr16/Trl07hgwZQkREBP7+/tmJ\njDNnzmTUqFF07NgRJyc7HBxseOYZR6ytLdHrnfJdZ/v27Zk+fToHDx7EYDDQq1cvXn/9dQ4cOEBo\naChGo5GkpCSmT5+Oh4cHK1asYPPmzeh0Ojp27MhHH31k5p9K0cprjb0PYFQUpT1QH1gOlLnrcScg\nLrcnCpEfcoWh+eU1pnFxyaSmpt+z37FjKsHBM7LTHbdu/QlbWzuuXr3OggVfZac79uvnzfLlKxg4\ncBhLly7D3r4Uc+cuzroEvwc1aniSlpZB06Ytad/+Vdat+55Zs+bSrdv7VKv2PIMHj8pOZOzR4xMm\nTvyC7t17Zicy7tv3JwDx8SkkJt4mOTmNmzeTSE/PJDo6Md91JidncPbseebMWURqair9+/dGUepx\n+PBRRo8eT+nSepYv/5K1azfQqlVbNmzYRGjoIsCUlVO7dgMqV3YvtJ9RfhV04vPQxq6qaqs7txVF\n2QV8CkxVFKWNqqq7gNeBnQU6sxDiiZHfdMe7RURE0KjRSwA4ODji7u7BpUsXAVNSI4CnZ1327dv7\nSImMe/bseOw6V65chqqexMfHlPeSkZHB1auX0ev1zJo1FXt7B6Kjr+PpWY9z585y7dpVfH1N/77E\nxESioqKeiMZeUAX5uOMwIFBRlH2ADbDGvCUJIYrSnXTHwMBgRo70x9bWNjvd8eTJ49n7DB3qA5hC\nwwDc3d05cuQwAMnJSZw9e5by5csDcPz4MQD+/vswHh7VshMZAwKCeP/9HqSm3r4nkRFg27atrFnz\nnVnqrFLFnQYNGhEauog5c8Jo1649FSpUJCTkC8aMCcDPzzRrB1McsLt7VebOXUho6CI6dnyTatVq\nmHuYi1S+IwVUVW1z193WD9pPCPFonv1o11OV7uju7sGECWMZPXocISFBeHv3JTU1lT59+uHm9gwA\ne/bsYvUqYMhOAAASfElEQVTqb3B0dMTPL5CYmOh8JzIuXhyaa82Ojo54etbLV51Nm77M4cN/MmDA\nJ6SkJNOqVVscHBx59dXXGTCgH/b2dri5PUtMTDQ1atSkUaPGDBjQl7S0dGrVqo1ery+aH0QhkXRH\nUWwk3TGHJBrmkLHIIemOQgghAGnsQgihOdLYhRBCY6SxCyGExkhjF0IIjZFvUBKimHXavdesx9vU\nuoVZjyeePjJjF6IEOnfuLMOH+zJoUH8++eQjli5dSFF89NkcSY27d+8kJiY6X/uePq3y1VeLH+t8\nTyNp7EKUMImJiYwfP4bPPhvG3LkLWbjwK86ePcOGDWuLu7R8+f77b0lKSsrXvjVqKNkXVpUkshQj\nRAmzd+9uXnyxMZUqVQbA0tISf/9ArK2tmTt3JkeO/AXAf/7zGu+991+++GI88fHxJCTEU716DTw8\nqvHOO++RkJDA4MED8PEZzMqVy7G2tuLy5Uu88koHPv64L9euXWXKlGBSU29ja2vHiBFjAIiLi2Xk\nyCHcvHmT5s1b0qvXJ5w7d4a5c2diMBi4dSuBwYNH4OlZj82bf2D9+rUYDJm0aNGaWrVqc+bMKYKC\nxjF//lI2bFjL9u3/h06n45VXOvDuu+/fU+9//9uTn3/eRmDgJNauXcXu3TtJSUnB1dWV4OBpGAyZ\nBAcHcvXqVdLT0xk6dATPP/8CU6cGc/FiFAaDgX79vHnxxUbs3PkT69Z9n50sGRw8DVdXV8LCQvn7\n78MYDAa6d/+Qdu2KP8lcGrsQJUxMTDTly1e4Z5uDgwO//rqHK1cus2hROJmZmXh796Vhw8YANGzY\niO7dP+TSpYuMH+/HO++8x/bt/6NDh9cAuHbtCuHh35Kens7bb7/Gxx/3Zd682XTr1p1mzZpz8OAB\nwsJC8fIaQEpKCmPHTsTe3p6BA/vRvHkrLlyIwMdnCNWqVWf//l1s2bKJihUr8fXXy1i27FtsbGwJ\nCwulfv0XqV69JsOHj+HixSh27NjO/PlLAFMqY5MmTe+p99ChgwAYDAbi4+OZNWs+FhYWDB3qw4kT\nxzhx4hhly5YnMHASUVEX2LdvL6dPn8LFxZXRo8cRHx/HwIFefP31aqKiLjB16uzsZMkDB/bh5OTM\nlSuXWLBgaXaKZOPGTXByKt44amnsQpQwzz1XjlOnTt6z7fLlS6jqCerVq49Op8PKyoratT2JiDgH\nmIKyACpUqIiDgyPnz59j+/b/MXnyDM6dO0PVqtWxsrLCysoKW1s7AM6dO8OKFV+xcuUyACwtTe2m\nevUalCpVCoBatWoTFXWB0qXLEB6+BFtbWzIz07CysuXSpUt4eFTLPp6396B7an5QKuPd9d5hYWGB\ntbU148f7YW9vz/Xr18nIyODChUiaNn0ZgEqVKlOp0gdMmzaZI0cOc/z4UQAyMzOIi4vLNVny3Lkz\nuaZIOjkpj/Uzelyyxi5ECdO8eQt+//237IjdjIwM5s6diZOTc/YyTEZGBkePHqFiRdNyjU6X0yo6\nd36b8PAl6PVlcHV1zXr8/vNUruyOt/cgQkMXMXz4GNq2fQWAyMgIkpOTycjI4Pjxo3h4VGX27Kn0\n7dsff/9AatasidFopEKFily4EEFaWhoA/v4jiI6+joWFBQaD4aGpjHfXC3DmzGl++WUXEyZMYsiQ\nERiNpq9pNqVLmpIh7/w1UqWKO+3bv0po6CKmT59D27btsbKyyjVZ8kEpksVNZuxCFLNNrVsUafCV\no2Mp/PwCCQkJwmAwkJycTPPmLenWrTvXrl2lf//epKen065dexTl+fue36pVW2bOnMLYsRMfep6B\nA32ZPn0yaWlppKbextf3cwCcnJwJCBhNXFws7dp1wMOjKh06vM7YsSNxcnKmUqUKxMRE4+bmxocf\nfoyPjxc6nY7mzVui15ehTp26BAUFMHNmaL5TGStWrIS9vT3e3n0AePbZ0sTERPPWW12ZNGkCPj5e\nZGZm4us7jKpVqxMSEoSPjxdJSbfo0uXdhyZL5pYiWdwk3VEUG0l3zPE0JRrevn0bHx8vFi0Kx8LC\n/H/0P01jUdgk3VEIUej++edvvLw+5sMPPyqUpi7MQ5ZihBD55ulZj+XLVxV3GSIP8pIrhBAaI41d\nCCE0Rhq7EEJojKyxC1HM1n9jASRhrnlWlw8MZjmOeHrJjF2IEmjFinB8fQfg4+PFoEH9OXnyBLNn\nT+fq1asPfE7nzq8+1jkDAkaTnp5+z7YHpS8GBIzOjgMQj05m7EKUMOfPn+PXX39hwYKl6HQ6Tp9W\nCQoaz7Jl3xbqeQMDJ923rUYNhRo1ivfyey3Ks7ErimIJLAYUwAh8CtwGwrPuHwUGqqoqf/8J8RQo\nVaoU165d5ccfN9CkycvUqKGwePEyfHy8GD58DD/99H9cuBBBbGwsiYmmpMV69eqTlpbG+PF+XLt2\nFRcXF4KCppCSksLEiWNJSkoiMzOTfv28cXFxZfbsacyduxCAESMG88knnzJmzHBWrlzDtGmTHpC+\nuJrNm3+gXLmyXLtmyltPSrrF5MlB3LqVSExMNF27vkeXLt04e/YMs2ZNxWg04uLiwujRAdn5MyJ/\nSzGdAFRVbQ74A18AMwB/VVVbAjrgrUKrUAhhVnp9GSZPnsGRI3/Tv39vPvjgHX77bc89+9ja2jFn\nThhjx05kxowQAFJSkunffyALFizl1q1bnDp1kmXLltKoURPmzVvMxImTmTx5ItWqVSctLY2rV68Q\nExNDXFwcNWveG03QsGEjwsK+zE5BvHnzBt9//x0LF4Yzf/58MjJMSzYXL16kffsOzJw5j5kz57Fq\n1UoAQkKCGDp0JKGhi2jWrHl20JgwyXPGrqrqD4qibM66WwWIA9oDu7O2bQU6AOsLpUKhaXp98cab\nPhny96UR+ZXXmEZGRlKpUhlmzpwGwD///EO/fv3Q6/W4uTng6GhLmzYt0eud0OvrExd3E73eCVdX\nV+rWNS2blC9fFjs7C65ciaJ793ey9nXC2dkJC4s0/vvf7vzyy3ZsbGzo3v1d9HonLC0t0OudsLOz\nxtOzVtYxHbC1tSYp6SbPP1+TChWeBaBBg/q4ujrg7l6ZjRu/Z//+PZQqVQqj0YBe78SFCxHMnWuq\nPz09HXd3d/lduku+1thVVc1QFGUZ0AXoBvxHVdU7+S+JgEsh1Sc0TjJBwNyfYchrTP/44y82bFhP\nSMgMrK2tcXIqjaNjKYxGiI1NJikplYMHD/Pyy+04d+4Mzz5bmujoRIzGnGOnpqYTF5dMuXKV2LXr\nV/T6SkRHXyc2No70dEteeqkVvr7eWFhYMHNmKNHRiWRmGoiOTuT27XQSEm4THZ1IXFwyqanplCpV\nmpMnT3HxYjTlyj3DkSNHadWqPfPmhVG9ei26dOnGoUMH+fnnnURHJ1KpUmVGjBhH2bJlOXLkL27c\niNHk71JBX6zy/eapqqofK4oyEvgdsL/rISdMs3ghRAF0+cBQpMFXrVu3IyLiPJ988hEODvYYDEYG\nDPBl9epvsvc5dUrF19eblJQURozwf+CxPvqoN5MmTWDXrh2kpqYyYoRfdi579eo1yczMyFfaoZub\nGz16fMynn/ahTBk99vamFtO8eStmzpzCjh3bKFWqFJaWlqSlpTFs2GiCgsaRmZmJTqdj1Kixjz8w\nGpJnuqOiKD2BiqqqTlIUxRn4GzgDfKGq6i5FUcKAnaqqPjBAQtIdRW4k3THHk5RouHTpQp599lne\nfrtbsZz/SRqL4lbQdMf8zNjXAV8pivILYA0MBk4AixVFscm6vaYgJxdCCGF++XnzNAl4L5eHWpu/\nHCFEcevbt39xlyAek1x5KoQQGiONXQghNEYauxBCaIw0diGE0Bhp7EIIoTHS2IUQQmOksQshhMZI\nYxdCCI2Rxi6EEBojjV0IITRGGrsQQmiMNHYhhNAYaexCCKEx0tiFEEJjpLELIYTGSGMXQgiNkcYu\nhBAaI41dCCE0Rhq7EEJojDR2IYTQGGnsQgihMdLYhRBCY6we9qCiKNbAl4A7YAsEAceBcMAIHAUG\nqqpqKNQqhRBC5FteM/YewA1VVVsCrwGhwAzAP2ubDnircEsUQgjxKPJq7N8DY7Nu64AMoCGwO2vb\nVqB94ZQmhBCiIB66FKOq6i0ARVGcgDWAPzBNVVVj1i6JgEuhVig0Ta93Ku4SnhgyFjlkLB7PQxs7\ngKIolYD1wHxVVb9RFGXKXQ87AXGFVZzQvujoxOIu4Ymg1zvJWGSRschR0Be4hy7FKIryHLANGKmq\n6pdZmw8ritIm6/brwJ4CnVkIIUShyGvGPgZwA8YqinJnrd0XmKMoig1wAtMSjRBCiCdEXmvsvpga\n+b+1LpxyhBBCPC65QEkIITRGGrsQQmiMNHYhhNAYaexCCKEx0tiFEEJjpLELIYTGSGMXQgiNkcYu\nhBAaI41dCCE0Rhq7EEJojDR2IYTQGGnsQgihMdLYhRBCY6SxCyGExkhjF0IIjZHGLoQQGiONXQgh\nNEYauxBCaIw0diGE0Bhp7EIIoTHS2IUQQmOksQshhMZIYxdCCI2xys9OiqI0AUJUVW2jKEp1IBww\nAkeBgaqqGgqvRCGEEI8izxm7oigjgCWAXdamGYC/qqotAR3wVuGVJ4QQ4lHlZ8Z+FugKrMi63xDY\nnXV7K9ABWG/+0kRJoNc7FXcJTwwZixwyFo8nz8auqupaRVHc79qkU1XVmHU7EXApjMJEyRAdnVjc\nJTwR9HonGYssMhY5CvoCV5A3T+9eT3cC4gp0ZiGEEIWiII39sKIobbJuvw7sMV85QgghHle+PhXz\nL8OAxYqi2AAngDXmLUkIIcTjyFdjV1U1AmiadfsU0LoQaxJCCPEY5AIlIYTQGGnsQgihMdLYhRBC\nY6SxCyGExkhjF0IIjZHGLoQQGiONXQghNEYauxBCaIw0diGE0Bhp7EIIoTHS2IUQQmOksQshhMZI\nYxdCCI2Rxi6EEBojjV0IITRGGrsQQmiMNHYhhNAYaexCCKEx0tiFEEJjpLELIYTGSGMXQgiNkcYu\nhBAaY1WQJymKYgHMB+oBqcAnqqqeMWdhQgghCqagM/a3ATtVVZsBo4Dp5itJCCHE4yhoY28B/A9A\nVdX9QCOzVSSEEOKxFGgpBnAG4u+6n6koipWqqhm57fzH20N0BTyP0Di93qm4S3hiyFjkkLF4PAWd\nsScAd4+8xYOauhBCiKJV0Mb+K9ARQFGUpsA/ZqtICCHEYynoUsx64D+KovwG6IDe5itJCCHE49AZ\njcbirkEIIYQZyQVKQgihMdLYhRBCY6SxCyGExhT0zdNc5RU1oChKJ2AckAF8qarqYnOe/0mSj7H4\nLzAY01j8AwxQVdVQHLUWtvxGUCiKsgi4qarqqCIuscjk4/eiMTAD04cSrgI9VFW9XRy1FrZ8jMWH\nwDAgE1O/WFAshRYRRVGaACGqqrb51/ZH7pvmnrE/MGpAURRrYCbQAWgNeCmK8pyZz/8kedhY2ANB\nQFtVVZsDLsCbxVJl0cgzgkJRlP6AZ1EXVgwe9nuhAxYDvVVVvXN1d5ViqbJo5PV7MQ1oDzQHhimK\n4lbE9RUZRVFGAEsAu39tL1DfNHdjf1jUQC3gjKqqsaqqpgF7gVZmPv+T5GFjkQq8rKpqctZ9K0CT\ns7IsD42gUBTlZaAJsLDoSytyDxuLmsANYIiiKLuBZ1RVVYu+xCKTVzTJEUyTHjtMf8Fo+SN8Z4Gu\nuWwvUN80d2PPNWrgAY8lYvqhadUDx0JVVYOqqtcAFEUZBJQCthd9iUXmgWOhKEo5IADwKY7CisHD\n/h8pDbwMhGKaqb6iKEq7Iq6vKD1sLACOAn8Cx4DNqqrGFWVxRUlV1bVAei4PFahvmruxPyxq4N+P\nOQGa/UGRR+yCoigWiqJMA/4DvKOqqpZnIw8bi3cxNbQtmP4c/0BRlF5FW16RethY3MA0Ozuhqmo6\nptmslgP2HjgWiqLUBd4APAB3oIyiKO8WeYXFr0B909yN/WFRAyeAGoqiPKMoig2mPyf2mfn8T5K8\nYhcWYvoT8+27lmS06oFjoarqHFVVG2a9YTQZ+EZV1fDiKLKIPOz34hxQSlGU6ln3W2KarWrVw8Yi\nHkgBUlRVzQSuA5pdY3+IAvVNs155ete73HXJiRp4ESilquqiu97dtcD07u48s538CfOwsQAOZv23\nh5x1w9mqqq4vhlILXV6/F3ft1wt4voR8KuZB/4+0w/QCpwN+U1XVt9iKLWT5GItPgT5AGqY16H5Z\n68yapCiKO/CdqqpNFUX5gMfomxIpIIQQGiMXKAkhhMZIYxdCCI2Rxi6EEBojjV0IITRGGrsQQmiM\nNHYhhNAYaexCCKEx/w8LvQKw6bwGLQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11c60b2e8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_distribution(families)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Order" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pct_reads_clade</th>\n", " <th>num_reads_clade</th>\n", " <th>num_reads_taxon</th>\n", " <th>rank</th>\n", " <th>tax_id</th>\n", " <th>tax_name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>8</th>\n", " <td>66.94</td>\n", " <td>1961272</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>171549</td>\n", " <td>Bacteroidales</td>\n", " </tr>\n", " <tr>\n", " <th>95</th>\n", " <td>0.87</td>\n", " <td>25405</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>186802</td>\n", " <td>Clostridiales</td>\n", " </tr>\n", " <tr>\n", " <th>138</th>\n", " <td>0.10</td>\n", " <td>2858</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>186826</td>\n", " <td>Lactobacillales</td>\n", " </tr>\n", " <tr>\n", " <th>300</th>\n", " <td>0.09</td>\n", " <td>2600</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>80840</td>\n", " <td>Burkholderiales</td>\n", " </tr>\n", " <tr>\n", " <th>586</th>\n", " <td>0.03</td>\n", " <td>969</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>28883</td>\n", " <td>Caudovirales</td>\n", " </tr>\n", " <tr>\n", " <th>45</th>\n", " <td>0.01</td>\n", " <td>423</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>200644</td>\n", " <td>Flavobacteriales</td>\n", " </tr>\n", " <tr>\n", " <th>195</th>\n", " <td>0.01</td>\n", " <td>260</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>85007</td>\n", " <td>Corynebacteriales</td>\n", " </tr>\n", " <tr>\n", " <th>88</th>\n", " <td>0.00</td>\n", " <td>13</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>191411</td>\n", " <td>Chlorobiales</td>\n", " </tr>\n", " <tr>\n", " <th>477</th>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>204441</td>\n", " <td>Rhodospirillales</td>\n", " </tr>\n", " <tr>\n", " <th>357</th>\n", " <td>0.00</td>\n", " <td>55</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>91347</td>\n", " <td>Enterobacterales</td>\n", " </tr>\n", " <tr>\n", " <th>395</th>\n", " <td>0.00</td>\n", " <td>22</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>135623</td>\n", " <td>Vibrionales</td>\n", " </tr>\n", " <tr>\n", " <th>400</th>\n", " <td>0.00</td>\n", " <td>12</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>135614</td>\n", " <td>Xanthomonadales</td>\n", " </tr>\n", " <tr>\n", " <th>411</th>\n", " <td>0.00</td>\n", " <td>5</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>72274</td>\n", " <td>Pseudomonadales</td>\n", " </tr>\n", " <tr>\n", " <th>423</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>135622</td>\n", " <td>Alteromonadales</td>\n", " </tr>\n", " <tr>\n", " <th>431</th>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>118969</td>\n", " <td>Legionellales</td>\n", " </tr>\n", " <tr>\n", " <th>435</th>\n", " <td>0.00</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>135613</td>\n", " <td>Chromatiales</td>\n", " </tr>\n", " <tr>\n", " <th>440</th>\n", " <td>0.00</td>\n", " <td>26</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>356</td>\n", " <td>Rhizobiales</td>\n", " </tr>\n", " <tr>\n", " <th>470</th>\n", " <td>0.00</td>\n", " <td>11</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>204455</td>\n", " <td>Rhodobacterales</td>\n", " </tr>\n", " <tr>\n", " <th>481</th>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>204458</td>\n", " <td>Caulobacterales</td>\n", " </tr>\n", " <tr>\n", " <th>338</th>\n", " <td>0.00</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>O</td>\n", " <td>206351</td>\n", " <td>Neisseriales</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pct_reads_clade num_reads_clade num_reads_taxon rank tax_id \\\n", "8 66.94 1961272 0 O 171549 \n", "95 0.87 25405 0 O 186802 \n", "138 0.10 2858 0 O 186826 \n", "300 0.09 2600 0 O 80840 \n", "586 0.03 969 0 O 28883 \n", "45 0.01 423 0 O 200644 \n", "195 0.01 260 0 O 85007 \n", "88 0.00 13 0 O 191411 \n", "477 0.00 1 0 O 204441 \n", "357 0.00 55 0 O 91347 \n", "395 0.00 22 0 O 135623 \n", "400 0.00 12 0 O 135614 \n", "411 0.00 5 0 O 72274 \n", "423 0.00 3 0 O 135622 \n", "431 0.00 1 0 O 118969 \n", "435 0.00 0 0 O 135613 \n", "440 0.00 26 0 O 356 \n", "470 0.00 11 0 O 204455 \n", "481 0.00 1 0 O 204458 \n", "338 0.00 2 0 O 206351 \n", "\n", " tax_name \n", "8 Bacteroidales \n", "95 Clostridiales \n", "138 Lactobacillales \n", "300 Burkholderiales \n", "586 Caudovirales \n", "45 Flavobacteriales \n", "195 Corynebacteriales \n", "88 Chlorobiales \n", "477 Rhodospirillales \n", "357 Enterobacterales \n", "395 Vibrionales \n", "400 Xanthomonadales \n", "411 Pseudomonadales \n", "423 Alteromonadales \n", "431 Legionellales \n", "435 Chromatiales \n", "440 Rhizobiales \n", "470 Rhodobacterales \n", "481 Caulobacterales \n", "338 Neisseriales " ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "orders = td[td['rank'] == 'O']\n", "top_hits(orders)" ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD3CAYAAAAJxX+sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVXX+x/HXZVEWQUmxcYesOWOGVupk4p7Z5KRtTjWT\njVti6DU1l1xQxHDX1KRyQUPLmRZNcxztp22aTWUuaZodU8F9wxJIlO3y++MiaKLglQt0ej8fjx6P\ne88593s+fdX3PXzvuR9subm5iIiIdXiUdQEiIlKyFOwiIhajYBcRsRgFu4iIxSjYRUQsxqs0TpKd\nnZP788/ppXGqci8oyA/NhZPmooDmooDmokBwcIDNldeVyhW7l5dnaZzmN0FzUUBzUUBzUUBzceOK\nvGI3DKMH0CPvqQ9wJ9ASmAXkAruA/qZpOtxTooiIXI8ir9hN00wwTbOtaZptga3A88BYIMo0zVaA\nDXjYrVWKiEixFXspxjCMpkBD0zTnA02ADXm71gId3FCbiIi44Ho+PB0FxOQ9tpmmebEXQRpQuagX\nBwcHXGdp1qW5KKC5KKC5KKC5uDHFCnbDMKoAhmman+ZtunQ9PQA4W9QYp0+nXX91FhQcHKC5yKO5\nKKC5KKC5KODqG1xxl2JaAx9f8ny7YRht8x4/CHzu0tlFRKTEFXcpxgAOXPJ8CLDAMIwKwB5gWUkX\nJiIirilWsJumOe1Xz/cCbdxSkYhct05fxJfoeGvCny3R8aR0qaWAiLhk27YtPPTQ/djtEdjtEURE\n9GDv3h+ua4wPPnif7OzsG6pj9uwZnDhx4rJtBw8mYbdHXPU127ZtITp65A2dtzwrlZYCTVcNKY3T\nyG/Mli4zyroEuUFNmjQlJmYSAJs3f0V8/FymTp1V7Ne/+eYb/OUvf8XLy/UoGjhQ+fJrpRLsImJ9\naWmpVKkSxPbtW3njjQU4HA7Onz9PdHQsdevWIyEhns8/30BOTg6PPPI4Xl6e/PTTGcaNG8WkSTOY\nOzeOHTu24+lp47HHnqJ9+w7Y7REEBd1Eamoq06bNYvLklzh27Cg5OTk89dTT3HdfR+z2CIYNG4W/\nfyXGj48iNzeXm26qml/Xp59+xPvvv0d2djY2m42JE6dfVvcnn3zEO+8sxcPDg0aN7iQycgA7d35L\nXNwsvLy88PHxITZ2Cn5+/qU9pS5TsIuIy7Zu3YLdHkFWVhb79u1l0qQZJCYeYOzYl6hWLZglSxbx\n6acfce+94Xz99f+YPz8Bh8PB3Llx2O2DSEhYyLhxE/nyyy84fvwor7++kMDACjz2WFeaNbsHgA4d\nHqBNm3YsX/4OVapUYezYl0hPP0evXt1o0uTP+bUsWbKQDh0eoEuXR/n443WsWOG8p+Pw4UNMmzYb\nHx8fpk6dwObNX1KtWjAAqakpLFo0j/j4N/Hx8eGll8bwzTdfsXnz17Rv34EnnvgHmzZtJDU1TcH+\nazZH7dI4jYiUskuXYg4dSqJv316MGjWWWbOm4evrx+nTpwgLa8yhQwdp0KAhnp6eeHp6MmDA4MvG\nOXBgH6b5A3Z7BBUqeJGdnc2JE8cAqFu3HgBJSUk0beoMcj8/f0JCQjl69Ej+GIcPH6Jz50cBCAtr\nnB/sQUE3ERsbjZ+fHwcPJnHHHY3yX3PkyGHOnv2ZoUOfByA9PZ2jR4/wzDM9WbJkEQMHRhIcXJ3b\nb7/DHdPnNvrwVERKRFCQc/ljypRYRo2KZvTocflXxvXqhbB3r4nD4SA7O5tBg/qRmZmJzeZBbm4u\n9eqFcNddTYmLm8/ixYtp374DtWo5Lwg9PJwxFRISws6d2wFITz/H/v37qVmzZv75Q0JuYffunQDs\n2fM9AL/88gsLF84jJmYiL74YRcWKFcnNzc1/TY0atahe/WZmzXqNuLj5dO36JA0bhrFu3Ro6dXqI\nOXPmERp6C6tWve/m2StZWooRsYCyuj3x4lKMp6cn6ennGDBgMPv3/0i/fn3w9fUhKKgqycmnue02\ng3vuuZfIyN44HA4efbQrFSpUoHHjOxk69HnmzJnH9u1b6dfvWbKyMmjRovUVSx9dujzGlCmxREb2\nJiMjg169+hAUdFP+/u7dezN+fBQffbSOmjVrAeDv709YWGOee64nnp5eBAQEkJx8mho1nG8IQUFB\nPPnk09jtEeTk5FCjRk3at7+fzMwsJk+OxdfXF5vNxvDho0tvUkuA7dJ3L3dptnKm+08ivznfPDJY\nXx3Po6/RF9BcFCjXv2hDRERKj4JdRMRiFOwiIhajYBcRsRgFu4iIxeh2RxELePiTfSU63gftby3R\n8aR06YpdRFxy/PgxOnZsk9/d0W6P4I03FpRY10S7PYKDB5Ncfv2JEyfYtGljsY+Pjh5JVlbWVfd3\n6fKAy7WUNl2xi4jLQkJCiYubn/9827YtJCUduMYrSs+2bd9w8GASLVu2LtbxF1sjWIGCXUTcYvny\nd9iw4VPOnz9PlSpVmDhxOtHRo/jb357irrua8MMP35OQEE9s7FQmTozJ79oYEfEszZq1AiA+fi4p\nKWfx9q5AVFQMgYGBTJs2kVOnTnLmTDLh4a2JiOjH4cOHmDIllqysLHx8fIiOjuWttxK4cOECYWGN\nqFGjFrNmTSM3N5fKlSszcmQ0e/f+wOuvz8Hb25suXR4lPn4uS5cu4+jRw8yZMxOHw8HZs2cZOnQE\nYWGN8/+/9u/fd8VYWVlZREePxOFwkJmZybBhI7ntNqOspl7BLiKuS0pKvOwXWnTp4mzC5XA4SElJ\nYdas1/Dw8OCFF+zs2bObzp0fYe3a1dx1VxP++9//0Lnzo3zwwfLLujb26fNPXn01DIA2bdrRocMD\nvP/+e7z11ht07foUDRuGMWLEGDIyMnjssU5ERPTj1Vdn0a1bD5o3b8GmTRvYt+9HunXrkXfF3oaI\niB6MHDmW0NBbWL16JUuXLqZZs3vIzMxkwYLFgPNNBCAx8QB2+2Dq17+Vdes+ZM2a/1wW7FOmxF4x\nVlhYYwIDKzNmTAyJiYmcP3++tP4ICqVgFxGXFbYUA87GXd7e3owbNxpfX19OnTpFdnY299xzL6+9\nNpvU1BR27tzOoEFDmTVr+mVdG+vXr5/ftfHOO+8GICysEV9+uYnAwED27NnNtm1b8Pf3JzPTuSZ+\n6NDB/K6NLVs6f2vnmjX/ya/r4MFEZsyYDEBOTja1a9cFCjpHXqpateokJMRTsWJF0tPT8fe/vGdN\nYWM1b96CI0cOMWLEELy8vOjevfeNTOsNU7CLSInbt+9HNm78jAULFnPhwgV69+4GOAO/XbsOTJ8+\nmVat2uLp6ZnftbFNm3akp59j7969+V0bv/9+N61bt2XHju2EhtZnzZrVVKoUwPDhozly5DCrVq3I\n6w4Zyp49u2nW7B7WrVtLamoK/v6VyM11AM4Aj4oazx/+8Ad27vyWM2eS8+q5shXL7NnTGDs2lpCQ\nUBYunMfx48cu21/YWNu3b6Vq1WrMnPkqu3btZN68V5kzZ547p/iaFOwiFlDebk+sXbsOvr6+REb2\nAqBq1WokJ58G4K9/7cITTzzM22+vAK7s2mi32/O7Nn7++We8++6/8Pf3Z/ToGJKTTxMTE8Xu3d/h\n7e1N7dp1SE4+Tf/+A5k2bSKLFy/Ex8eHsWNf4sSJ4yxZsog//vFPDBkyktjYseTk5GCz2RgxYkx+\nPb/WseODjBnzIgEBgQQHVycl5exl+wsbq3LlykRHj2LFimXk5OTQs2cfd01tsai7o5QZdXcsoI6G\nBTQXBdTdUUREgGIuxRiGMRLoAlQAXgM2AAlALrAL6G+apsNNNYqIyHUo8ordMIy2QAsgHGgD1AFe\nBqJM02wF2ICH3VijiIhch+JcsT8AfAesAAKBYUAfnFftAGuBjnn7Ra5LcHBAWZdQbmguCmgubkxx\ngr0aUA94CAgFVgEepmle/EA0DajsnvLE6vQhmZM+MCyguSjg6htccYL9DPCDaZqZgGkYxgWcyzEX\nBQBnC32liJSKB78cV6Ljrb23ZMeT0lWcu2I2AX8xDMNmGEZNwB/4OG/tHeBB4HM31Sci5diBA/sZ\nNmwgAwb05dln/8nChfPYtm2LSx0ely9/p9Dto0YNu2LbypXLWLhwHmfOJDN9+uSrjulqLb91RV6x\nm6a52jCM1sBmnG8E/YFEYIFhGBWAPcAyt1YpIuVOWloa48aNYsKEadSpU5ecnBzGjBlB1apVXRpv\n8eJFPP74k1dsnzhx2lVfU7VqNYYOHeHS+aysWLc7mqY5vJDNbUq4FhH5Ddm0aQN3392MOnWcfVc8\nPT2Jioph166dbN++FYB169by7rv/xtvbmzp16jJ8+GiOHTvKpEkxeHp64XA4iI6O5cMP/0tqagrT\np0/mnnua8Pbb7+JwOOjduy/jx49h1ar/Y8eOb5k9ezoBAYF4enrSsOEdHD9+jOjoUcyfn8Cnn37E\n+++/R3Z2NjabjYkTp19W7yeffMQ77yzFw8ODRo3uJDJyADt3fktc3Cy8vLzw8fEhNnYKfn7+V/y/\n/taopYCIuCQ5+TQ1a9a6bJufnx9eXs5YSUk5y8KF83jjjaX4+fnzyisz+OCD5YCNBg0a0q/fQHbs\n2M65c7/QvXtvli9/l6FDR/D55+sJCAhg8uSXLxt7xoxJxMZOpW7dekyffmXv9MOHDzFt2mx8fHyY\nOnUCmzd/SbVqwQCkpqawaNE84uPfxMfHh5deGsM333zF5s1f0759B5544h9s2rSR1NQ0SwS7vnkq\nIi65+eYanDp18rJtx44dZceO7fmPQ0NvyQ/Kxo3vJjHxAA899DCVKgUwZMgAli9/F0/PK68vC+u6\n+NNPP+Vvv7SN7kVBQTcRGxvNxIkx7N+/j+zs7Px9R44c5uzZnxk69Hns9ggSExM5evQIzzzTk+Tk\nZAYOjOSzzz7Of1P6rVOwi4hLwsNb8vXX/8tvsZudnc2cOTOpXLkKADVq1CIpqaA3+bffbqNOnbps\n2rSBxo3vYvbs12nX7j6WLnX2Q7+0b5XNdmU0BQcHk5SUCMCePd9ftu+XX35h4cJ5xMRM5MUXo6hY\nseJl49WoUYvq1W9m1qzXiIubT9euT9KwYRjr1q2hU6eHmDNnHqGht7Bq1fslOENlxxpvTyK/c2Vx\ne6K/fyVGj45hypRYHA4H6enphIe3IiQklB07tlGlShV69erL88/3xWbzoHbtOjz3nJ3k5NPExkaz\nePFCHA4HAwa8ADh7u48fP4Z27Qr/VXbDho0iNjYaf39//Pz8CAgIuKQWf8LCGvPccz3x9PQiICCA\n5OTT1KjhbP8bFBTEk08+jd0eQU5ODjVq1KR9+/vJzMxi8uRYfH19sdlsDB8+2v0TVwrU3VHKjLo7\nFtCXcgpoLgqou6OIiAAKdhERy1Gwi4hYjIJdRMRiFOwiIhaj2x1FLOChjatLdLzVrR8q0fGkdOmK\nXURccqOdE6/WzfEiuz2CgweTXB7/zTcT+P77XaxZ8x9ef30Ox48fIyKix1WPt1InSAW7iJSJxYsX\nuXX8Z57pwe233+HWc5RXWooRkRJTWIfFypUrM3PmVPbs2U1WVja9e0dw4MD+/G6OgwYNZeLEGI4d\nO0pOTg4REc/SrFkrAOLj55KSchZv7wpERcUQGBjItGkTOXXqJGfOJBMe3pqIiH4cPnyIKVNiycrK\nwsfHh3HjJvLaa7O5776Oxa7zUr/1TpAKdhEpMYV1WKxY0YeUlLMsWLCE1NRU3nlnKX36ROZ3c1y+\n/B2qVKnC2LEvkZ5+jj59/smrr4YB0KZNOzp0eID333+Pt956g65dn6JhwzBGjBhDRkYGjz3WiYiI\nfrz66iy6detB8+Yt2LRpAz/+aF53nVbqBKlgF5ESc7HDop+fHwcPJnHHHY04efIgDRs2AiAwMJA+\nfSIve01SUhJNm/4ZAD8/f+rXr5/fWOzOO+8GICysEV9+uYnAwED27NnNtm1b8Pf3JzMzC4BDhw5y\nxx3Oc7Rs6fxVEevXf3hddV50aSdIgPT09PxOkEuWLGLgwEiCg6uX62UerbGLSIm4WofFkJAQfvjh\n+/xjXnjBDhR0cwwJCWHnTmer3/T0c+zdu5eaNZ3Nu77/fjcAO3ZsJzS0PmvWrKZSpQCio2N56qlu\nZGRcIDc3l3r1Qtmzx3nsunVrWbbs7euu8yIrdILUFbuIBZTV7YmbN39N797PAM6gvv32O67osNip\nU2e2bNlMZGRvcnJy6NmzD1DQzXHkyLFMmRJLZGRvMjIysNvtBAXdBMDnn3/Gu+/+C39/f0aPjiE5\n+TQxMVHs3v0d3t7e1K5dh+Tk0/TvP5Bp0yayePFCfHx8GDv2JUzzh0Jr/j10glR3Rykz6u5YQB0N\nC2guCqi7o4iIAAp2ERHLUbCLiFhMsT48NQxjG5Ca9zQRmAAkALnALqC/aZoOdxQoIiLXp8hgNwzD\nB7CZptn2km2rgCjTND8zDGMu8DCwwm1ViohIsRXnir0x4GcYxrq840cBTYANefvXAh1RsIuUmTVr\n25ToeJ0e3FD0QVJuFSfY04HpQDxwG84gt5mmefEWxjSgsnvKE6sLDg4o+qDfifI0F8Wt5ccff2Ta\ntGmcP3+e9PR02rRpw4ABA7DZXLpLr9jnP3LkCC+88ALvvvuuy+dYv349jRo14uabby7y2D179vDx\nxx9jt9sL3f/+++9z4MABhg4d6nI9Jak4wb4X2JcX5HsNwziD84r9ogDgrDuKE+vT/cpO5e3e7eLU\nkpaWxvPPD2TChGnUqVOXnJwcxowZQXx8Ao880tXlcxdnLn766RxZWTk3NGfx8YsYNmwUHh5+RR5b\nrVptnnyy+1XPl5Z2gfT0zBL/M3T1zb44wd4LCAP6GYZREwgE1hmG0dY0zc+AB4FPXTq7iPxmbdq0\ngbvvbkadOnUB8PT0JCoqBm9vb+bMmcnOnd8CcP/9f+GJJ/7OhAnjSElJITU1hVtvvY3Q0Po8/vgT\npKamMmhQP+z2QSxdugR/fx+Skg5y330d6d69NydPnmDq1IlkZFygYkUfhg8fBcDZsz/z4ouD+emn\nnwgPb0WPHs9y4MA+5syZicPh4OzZswwdOoKwsMasXr2SFSuW43Dk0LJlGxo0aMi+fXuJjR3La68t\n5IMPlrN+/f9hs9m4776O/O1vT11W79///gyffLKOmJhJLF/+Dhs2fMr58+epUqXKFZ0hly17+4qx\nNmz4hLfeWoyXlxfVqgUTEzMRDw/33ZRYnGBfCCQYhrEJ510wvYBkYIFhGBWAPcAyt1UoIuVScvJp\natasddk2Pz8/vvjic44fP8b8+Qnk5OQQGdmbJk2aAdCkSVOefPJpjh49wrhxo3n88SdYv/5DOnb8\nCwAnTx7nv/9dzbFjP/HII3+he/fevPrqbLp2fZJ77w1ny5bNzJ0bR0REP86fP8+YMS/h6+tL//59\nCA9vzaFDSdjtg6lf/1bWrfuQNWv+Q+3adXjrrcUsXvxvKlSoyNy5cdx5593ceusfGTZsFEeOHObj\nj9fz2mvxAAwe3J977ml+Wb3btm0BwOFwkJKSwqxZr+Hh4cELL9jze9QAJCYeKHSs9ev/j3/84xna\ntevA2rWrOXfuHAEB7lt6KzLYTdPMBP5RyK6S/bRGRH5Tbr65Bnv3Xt6P5dixo5jmHho3vhObzYaX\nlxcNG4aRlHQAgLp16wFQq1Zt/Pz8SUw8wPr1HzJ58sscOLCPW265FS8vL3x9falY0QeAAwf28eab\nb7B06WIAPD2dsXXrrbdRqVIlABo0aMjhw4eoVq06CQnxVKxYkfT0dPz9/Tl69CihofXzx4uMHHBZ\nzQcO7OfkyRMMHOjsOpmWlsbhw4cvq/ciDw8PvL29GTduNL6+vpw6dYrs7OwixxowYDBvvpnA8uXv\nUq9eCK1bt72BmS+avqAkIi4JD2/J11//L7/FbnZ2NnPmzCQgIDB/GSY7O5tdu3ZSu7ZzucZmK4ic\nLl0eISEhnuDg6lSpUiVv/5XnqVs3hMjIAcTFzWfYsFG0a3cfAAcPJpGenk52djbff7+L0NBbmD17\nGr179yUqKob69W8lNzeXWrVqc+hQEpmZmQBERQ3n9OlTeHh44HA4qFu3HiEhtzBnzjzi4ubTqdND\n1K9/2xX1Auzb9yMbN37G+PGTGDx4OLm5jl/VWvhYq1atoHfvCOLi5pObm8vGjZ/d4Oxfm7o7ilhA\nWdye6O9fidGjY5gyJRaHw0F6ejrh4a3o2vVJTp48Qd++PcnKyqJ9+w4Yxp+ueH3r1u2YOXMqY8a8\ndM3z9O8/kBkzJpOZmUlGxgUGDnTeeRIQEEh09EjOnv2Z9u07Ehp6Cx07PsiYMS8SEBBIcHB1UlLO\nEhQUxNNPd8duj8BmsxEe3org4OrccUcjYmOjmTkzjqZNm9GvX28yM7No0KAhwcHBhdZSu3YdfH19\niYzsBUDVqtVITj6dv/+22/5Y6FgNGjRk+PBB+Pn54+vrS4sWLV2d9mJRd0cpM+ruWKC83RVTGi5c\nuIDdHsH8+QmXfZD4e5yLq1F3RxH5zfjuux1ERHTn6af/6da7Q36vtBQjIqUuLKwxS5a8U9ZlWJbe\nKkVELEbBLiJiMQp2ERGL0Rq7iAUETv9biY6XOvS9Eh1PSpeu2EXEJdu2beGhh+7Hbo/Abo8gIqLH\nFd9EvRq7PYKDB5OK3HY1EyaM46uv/nfZtoyMDLp27Vys1wNER48kKyvrqvu7dHmg2GOVN7piFxGX\nNWnSlJiYSQBs3vwV8fFzmTp1VhlXVTwX67YiBbuIlIi0tFSqVAnCbo9g2LBR1KsXwsqVyzhz5gyd\nOnXmxRcHExhYmXvvDc9/zaZNG3nnnaX5HRIXLZrPK6+kkJr6C+PGTaBWrdqFdoq8KD09nfHjo0hL\nS6NWrdr52/fv38esWdPIzc2lcuXKjBwZzd69P/D663Pw9vamS5dHiY+fy9Klyzh69HChHSGvNVZW\nVhbR0SNxOBxkZmYybNhIbrvNcPcUF5uCXURctnXrFuz2CLKysti3by+TJs1gyZJFhR77009nWLjw\nLby9vfnyyy/YsOETvv12G1OnzsLX1xeAFi1a0q3bk0yePJ3PPvuYkJBbrtopEmDlyuWEhtanb9/+\n7N69K78L45QpsYwcOZbQ0FtYvXolS5cuplmze8jMzGTBAmczsfj4uYCzI+OvO0JeGuyFjRUW1pjA\nwMqMGRNDYmIi58+fd8v8ukrBLiIuu3Qp5tChJPr27UXt2nXy91/asaRGjZp4e3vnP9+69RvOnTuH\nl1dBDBlGAwCqVq3KmTNnOHgw8aqdIgEOHz5EixbOnwAaNrwjf6yDBxOZMWMyADk52flNyH7drREo\ntCPkpQobq3nzFhw5cogRI4bg5eVF9+69r3Pm3EsfnopIiQgKqgpAQEAAZ84kA1z2YeqvOyW+8MKL\n/PnPzfOvnJ3HXN4apV690Kt2igQIDQ1l167v8s91sYVu3br1iIoaT1zcfCIjn89vuuXhcWXrlcI6\nQl6qsLG2b99K1arVmDnzVbp37828ea9ex0y5n67YRSygrG5PvLgU4+npSXr6OQYMGExQUBAzZkzm\n5pv/QLVqhXdJvKhnzz706dOdFi1aFbo/PLwV27dvvWqnyIcffpzY2GgiI3tTr15I/k8EQ4aMJDZ2\nLDk5OdhsNkaMGHNZF8ZLFdYR8lKFjVW5cmWio0exYsUycnJy6Nmzz/VMm9upu6OUGXV3LKCOhgU0\nFwXU3VFERAAFu4iI5SjYRUQsRsEuImIxCnYREYsp1u2OhmFUB7YC9wPZQAKQC+wC+pum6bj6q0XE\n3Tpv+LREx/tPm3YlOp6UriKv2A3D8AbmARe/M/syEGWaZivABjzsvvJEpDw7cGA/w4YNZMCAvjz7\n7D9ZuHDeFV/wuR7R0SP5+uuvr+s1s2fP4MSJE8U6duHCeaxcucyV0n5TirMUMx2YCxzLe94E2JD3\neC3QwQ11iUg5l5aWxrhxo3j++SHMmTOPefPeYP/+fXzwwfJSrWPgwCH84Q9/KNVzlnfXXIoxDKMH\ncNo0zf8zDGNk3mabaZoX35LTgMpurE8sLjg4oKxLKDfK01wUp5ZNmz4iPLwFd9/dMH/brFkz8Pb2\nJiYmhhMnTnDq1Cnat2/P4MGDGTFiBJ06daJ169Zs3LiRNWvWMHnyZJYuXcp7771HcHAwZ86cAaBK\nFR9GjhzJkSNH8r7Z2ZPmzZvz9NNPs2bNGmw2G+PHj+fee+9lyZIljBs3jjVr1rB9+3bS09OZMGEC\nK1euZNeuXZw9e5Y//elPTJo0CX//ilSq5ENwcAAzZsxgy5YtOBwOevTowYMPPsjSpUtZuXIlHh4e\nhIWFERUV5bY5dqei1th7AbmGYXQA7gSWANUv2R8AnC3shSLFoW8YOpW3b1sWp5bExMMEBVW/4tjj\nxxOpX/9PDBo0goyMDB57rBPduj3LhQtZpKSc5/TpNFJSznPhQhammcSiRQksWfI2Hh4e9O7dDYCF\nCxfj61uJOXMWkJ5+jl69ujF37huEhNTno482cvvtd/DFF1/Sp88AMjMX8fPP6Zw7l0GNGnUYNGgo\n5879gqdnRaZOfQWHw8EzzzzB99/v59y5DHx8LrBq1Yfs35/IK6/MJyMjg759e2IYjXn33WUMGfIi\nDRo0ZMWKZRw//vNlTcpKm6tv9tes2DTN1hcfG4bxGfAcMM0wjLamaX4GPAiU7Kc2IvKbcPPNNa74\njUnHjh3l1KmT7Nmzm23btuDv709m5pW/pejiOvzRo0cIDb2FChUqANCggfPqPykpiaZN/wyAn58/\nISGhHD16hM6dH2Ht2tWcOXOGli1bXxG6F7s3Vqzow88//0x09Cj8/Pw4f/58foMwgAMH9mGaP2C3\nRwDOBmMnThxj1Kix/Pvfb3H8+GwaNgwriWkqE67c7jgEiDEM40ugAmD9TyJE5Arh4S35+uv/cfTo\nEcAZjnPmzOTHH/dSqVIA0dGxPPVUNzIyLpCbm0uFChWu6PpYu3ZdEhMPkJFxgZycHPbuNQEICQlh\n587tAKSnn2P//v3UrFmTpk3/zI8/mvz3v6vo3PmRK2q62L3xq6++4NSpk8TETCQion9+DRfVqxfC\nXXc1JS5mppm+AAAJjElEQVRuPq+8Mpf27TtQq1ZtVq1aydChI4mLm8+PP5p8990O902gGxX7ZwzT\nNNte8rRNyZciIq4qi9sT/f0rMXp0DFOmxOJwOEhPTyc8vBVNmjQjJiaK3bu/w9vbm9q165CcfJrO\nnR9h0qTxrFv3IXXqOFvvBgUF0a1bd557rhdVqgTl/8KNLl0eY8qUWCIje5ORkUGvXn0ICroJgLZt\n72PLls2X/cakX2vQoCEJCQvp378PNpuNmjVrXdbdMTy8Ndu3b6Vfv2c5fz6d1q3b4efnT/36t9K/\nfx/8/PwIDg7m9tvvcOMMuo+6O0qZUXfHAuVtjb0saS4KqLujiIgACnYREctRsIuIWIyCXUTEYhTs\nIiIWo2AXEbEYBbuIiMUo2EVELEbBLiJiMQp2ERGLUbCLiFiMgl1ExGIU7CIiFqNgFxGxGAW7iIjF\nKNhFRCxGwS4iYjEKdhERi1Gwi4hYjIJdRMRiFOwiIhajYBcRsRivog4wDMMTWAAYQC7wHHABSMh7\nvgvob5qmw31liohIcRXnir0zgGma4UAUMAF4GYgyTbMVYAMedluFIiJyXYoMdtM0VwIReU/rAWeB\nJsCGvG1rgQ5uqU5ERK5bkUsxAKZpZhuGsRh4FOgK3G+aZm7e7jSgspvqE4sLDg4o6xLKDc1FAc3F\njSlWsAOYptndMIwXga8B30t2BeC8ihe5bqdPp5V1CeVCcHCA5iKP5qKAq29wRS7FGIbxjGEYI/Oe\npgMOYIthGG3ztj0IfO7S2UVEpMQV54r9feANwzA2At7AIGAPsMAwjAp5j5e5r0QREbkeRQa7aZrn\ngCcK2dWm5MsREZEbpS8oiYhYjIJdRMRiFOwiIhajYBcRsRgFu4iIxSjYRUQsRsEuImIxCnYREYtR\nsIuIWIyCXUTEYhTsIiIWo2AXEbEYBbuIiMUo2EVELEbBLiJiMQp2ERGLUbCLiFiMgl1ExGIU7CIi\nFqNgFxGxGAW7iIjFKNhFRCzG61o7DcPwBhYBIUBFIBb4HkgAcoFdQH/TNB1urVJERIqtqCv2bsAZ\n0zRbAX8B4oCXgai8bTbgYfeWKCIi16OoYH8PGJP32AZkA02ADXnb1gId3FOaiIi44ppLMaZp/gJg\nGEYAsAyIAqabppmbd0gaUNmtFYqlBQcHlHUJ5YbmooDm4sZcM9gBDMOoA6wAXjNN81+GYUy9ZHcA\ncNZdxYn1nT6dVtYllAvBwQGaizyaiwKuvsFdcynGMIybgXXAi6ZpLsrbvN0wjLZ5jx8EPnfpzCIi\n4hZFXbGPAoKAMYZhXFxrHwi8YhhGBWAPziUaEREpJ4paYx+IM8h/rY17yhERkRulLyiJiFiMgl1E\nxGIU7CIiFqNgFxGxGAW7iIjFKNhFRCxGwS4iYjEKdhERi1Gwi4hYjIJdRMRiFOwiIhajYBcRsRgF\nu4iIxSjYRUQsRsEuImIxCnYREYtRsIuIWIyCXUTEYhTsIiIWo2AXEbEYBbuIiMUo2EVELEbBLiJi\nMV7FOcgwjHuAKaZptjUM41YgAcgFdgH9TdN0uK9EERG5HkVesRuGMRyIB3zyNr0MRJmm2QqwAQ+7\nrzwREblexbli3w88BryZ97wJsCHv8VqgI7Ci5EuT34Pg4ICyLqHc0FwU0FzcmCKD3TTN5YZhhFyy\nyWaaZm7e4zSgsjsKk9+H06fTyrqEciE4OEBzkUdzUcDVNzhXPjy9dD09ADjr0plFRMQtXAn27YZh\ntM17/CDwecmVIyIiN6pYd8X8yhBggWEYFYA9wLKSLUlERG5EsYLdNM0koHne471AGzfWJCIiN0Bf\nUBIRsRgFu4iIxSjYRUQsRsEuImIxCnYREYtRsIuIWIyCXUTEYhTsIiIWo2AXEbEYBbuIiMUo2EVE\nLEbBLiJiMQp2ERGLUbCLiFiMgl1ExGIU7CIiFqNgFxGxGAW7iIjFKNhFRCxGwS4iYjEKdhERi1Gw\ni4hYjJcrLzIMwwN4DWgMZADPmqa5ryQLExER17h6xf4I4GOa5r3ACGBGyZUkIiI3wtVgbwl8CGCa\n5ldA0xKrSEREbohLSzFAIJByyfMcwzC8TNPMLuzgbx4ZbHPxPGJxwcEBZV1CuaG5KKC5uDGuXrGn\nApfOvMfVQl1EREqXq8H+BdAJwDCM5sB3JVaRiIjcEFeXYlYA9xuG8T/ABvQsuZJERORG2HJzc8u6\nBhERKUH6gpKIiMUo2EVELEbBLiJiMa5+eFqooloNGIbRGRgLZAOLTNNcUJLnL0+KMRd/BwbhnIvv\ngH6maTrKolZ3K24LCsMw5gM/maY5opRLLDXF+HvRDHgZ500JJ4BupmleKIta3a0Yc/E0MATIwZkX\nr5dJoaXEMIx7gCmmabb91fbrzs2SvmK/aqsBwzC8gZlAR6ANEGEYxs0lfP7y5Fpz4QvEAu1M0wwH\nKgMPlUmVpaPIFhSGYfQFwkq7sDJwrb8XNmAB0NM0zYvf7q5XJlWWjqL+XkwHOgDhwBDDMIJKub5S\nYxjGcCAe8PnVdpdys6SD/VqtBhoA+0zT/Nk0zUxgE9C6hM9fnlxrLjKAFqZppuc99wIseVWW55ot\nKAzDaAHcA8wr/dJK3bXm4o/AGWCwYRgbgJtM0zRLv8RSU1Rrkp04L3p8cP4EY+Vb+PYDjxWy3aXc\nLOlgL7TVwFX2peH8Q7Oqq86FaZoO0zRPAhiGMQCoBKwv/RJLzVXnwjCMGkA0YC+LwsrAtf6NVANa\nAHE4r1TvMwyjfSnXV5quNRcAu4CtwG5gtWmaZ0uzuNJkmuZyIKuQXS7lZkkH+7VaDfx6XwBg2T8o\nimi7YBiGh2EY04H7gcdN07Ty1ci15uJvOANtDc4fx/9hGEaP0i2vVF1rLs7gvDrbY5pmFs6rWSs3\n2LvqXBiG0Qj4KxAKhADVDcP4W6lXWPZcys2SDvZrtRrYA9xmGMZNhmFUwPnjxJclfP7ypKi2C/Nw\n/oj5yCVLMlZ11bkwTfMV0zSb5H1gNBn4l2maCWVRZCm51t+LA0AlwzBuzXveCufVqlVday5SgPPA\nedM0c4BTgGXX2K/Bpdws0W+eXvIpdyMKWg3cDVQyTXP+JZ/ueuD8dPfVEjt5OXOtuQC25P33OQXr\nhrNN01xRBqW6XVF/Ly45rgfwp9/JXTFX+zfSHucbnA34n2maA8usWDcrxlw8B/QCMnGuQffJW2e2\nJMMwQoC3TdNsbhjGP7iB3FRLARERi9EXlERELEbBLiJiMQp2ERGLUbCLiFiMgl1ExGIU7CIiFqNg\nFxGxmP8HpQGQZh+aV7cAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11daddc88>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_distribution(orders)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Class" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pct_reads_clade</th>\n", " <th>num_reads_clade</th>\n", " <th>num_reads_taxon</th>\n", " <th>rank</th>\n", " <th>tax_id</th>\n", " <th>tax_name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>7</th>\n", " <td>66.94</td>\n", " <td>1961272</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>200643</td>\n", " <td>Bacteroidia</td>\n", " </tr>\n", " <tr>\n", " <th>94</th>\n", " <td>0.87</td>\n", " <td>25406</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>186801</td>\n", " <td>Clostridia</td>\n", " </tr>\n", " <tr>\n", " <th>137</th>\n", " <td>0.10</td>\n", " <td>2896</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>91061</td>\n", " <td>Bacilli</td>\n", " </tr>\n", " <tr>\n", " <th>299</th>\n", " <td>0.09</td>\n", " <td>2604</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>28216</td>\n", " <td>Betaproteobacteria</td>\n", " </tr>\n", " <tr>\n", " <th>194</th>\n", " <td>0.01</td>\n", " <td>266</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>1760</td>\n", " <td>Actinobacteria</td>\n", " </tr>\n", " <tr>\n", " <th>347</th>\n", " <td>0.01</td>\n", " <td>227</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>1236</td>\n", " <td>Gammaproteobacteria</td>\n", " </tr>\n", " <tr>\n", " <th>44</th>\n", " <td>0.01</td>\n", " <td>423</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>117743</td>\n", " <td>Flavobacteriia</td>\n", " </tr>\n", " <tr>\n", " <th>293</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>475962</td>\n", " <td>Caldilineae</td>\n", " </tr>\n", " <tr>\n", " <th>546</th>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>204429</td>\n", " <td>Chlamydiia</td>\n", " </tr>\n", " <tr>\n", " <th>540</th>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>203683</td>\n", " <td>Planctomycetia</td>\n", " </tr>\n", " <tr>\n", " <th>534</th>\n", " <td>0.00</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>414999</td>\n", " <td>Opitutae</td>\n", " </tr>\n", " <tr>\n", " <th>524</th>\n", " <td>0.00</td>\n", " <td>13</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>203692</td>\n", " <td>Spirochaetia</td>\n", " </tr>\n", " <tr>\n", " <th>502</th>\n", " <td>0.00</td>\n", " <td>8</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>28221</td>\n", " <td>Deltaproteobacteria</td>\n", " </tr>\n", " <tr>\n", " <th>486</th>\n", " <td>0.00</td>\n", " <td>28</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>29547</td>\n", " <td>Epsilonproteobacteria</td>\n", " </tr>\n", " <tr>\n", " <th>439</th>\n", " <td>0.00</td>\n", " <td>39</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>28211</td>\n", " <td>Alphaproteobacteria</td>\n", " </tr>\n", " <tr>\n", " <th>257</th>\n", " <td>0.00</td>\n", " <td>10</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>31969</td>\n", " <td>Mollicutes</td>\n", " </tr>\n", " <tr>\n", " <th>263</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>188787</td>\n", " <td>Deinococci</td>\n", " </tr>\n", " <tr>\n", " <th>251</th>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>1497346</td>\n", " <td>Thermoleophilia</td>\n", " </tr>\n", " <tr>\n", " <th>246</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>84995</td>\n", " <td>Rubrobacteria</td>\n", " </tr>\n", " <tr>\n", " <th>237</th>\n", " <td>0.00</td>\n", " <td>14</td>\n", " <td>0</td>\n", " <td>C</td>\n", " <td>84998</td>\n", " <td>Coriobacteriia</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pct_reads_clade num_reads_clade num_reads_taxon rank tax_id \\\n", "7 66.94 1961272 0 C 200643 \n", "94 0.87 25406 0 C 186801 \n", "137 0.10 2896 0 C 91061 \n", "299 0.09 2604 0 C 28216 \n", "194 0.01 266 0 C 1760 \n", "347 0.01 227 0 C 1236 \n", "44 0.01 423 0 C 117743 \n", "293 0.00 3 0 C 475962 \n", "546 0.00 1 0 C 204429 \n", "540 0.00 1 0 C 203683 \n", "534 0.00 2 0 C 414999 \n", "524 0.00 13 0 C 203692 \n", "502 0.00 8 0 C 28221 \n", "486 0.00 28 0 C 29547 \n", "439 0.00 39 0 C 28211 \n", "257 0.00 10 0 C 31969 \n", "263 0.00 3 0 C 188787 \n", "251 0.00 1 0 C 1497346 \n", "246 0.00 3 0 C 84995 \n", "237 0.00 14 0 C 84998 \n", "\n", " tax_name \n", "7 Bacteroidia \n", "94 Clostridia \n", "137 Bacilli \n", "299 Betaproteobacteria \n", "194 Actinobacteria \n", "347 Gammaproteobacteria \n", "44 Flavobacteriia \n", "293 Caldilineae \n", "546 Chlamydiia \n", "540 Planctomycetia \n", "534 Opitutae \n", "524 Spirochaetia \n", "502 Deltaproteobacteria \n", "486 Epsilonproteobacteria \n", "439 Alphaproteobacteria \n", "257 Mollicutes \n", "263 Deinococci \n", "251 Thermoleophilia \n", "246 Rubrobacteria \n", "237 Coriobacteriia " ] }, "execution_count": 65, "metadata": {}, "output_type": "execute_result" } ], "source": [ "classes = td[td['rank'] == 'C']\n", "top_hits(classes)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD3CAYAAAAJxX+sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVeX+9/H3ZgsyKypWjpDZypwy86dmOWX206Opzc85\nVqaFE6aWGiKKGDmhOUSKU2LZZKlpHj2Pz+mYR8sGwzSn5YiaQ4IDoiAIm+cPEDAHtshgi8/ruryu\nvdfea63vvsEPN/de+4stKysLERGxDpfSLkBERIqWgl1ExGIU7CIiFqNgFxGxGAW7iIjFlCuJk2Rk\nZGadOZNSEqe67fn5eaKxyKaxyKOxyKOxyOPv72MrzH4lMmMvV85eEqf5S9BY5NFY5NFY5NFY3LoC\nZ+yGYfQCeuXcdQceAB4BpgNZwHZgoGmajuIpUUREbkaBM3bTNGNN02xrmmZb4BfgdWAMEGaa5qOA\nDehWrFWKiIjTnF6KMQzjIaC+aZpzgabA+pyH1gAdiqE2EREphJt58zQUiMi5bTNN83IvgmSgQkE7\n+/v73GRp1qWxyKOxyKOxyKOxuDVOBbthGBUBwzTNdTmb8q+n+wBnCzpGQkLyzVdnQf7+PhqLHBqL\nPBqLPBqLPIX9AefsUkxr4Jt897cYhtE253YnYEOhzi4iIkXO2aUYAziQ7/6bwDzDMNyAXcCXRV2Y\niIgUjq2E2vZm6VerbPo1M09ZH4vO380v0uOtbvVqkR6vtJT174v8busPKInI7SEubjNdujxOcHAQ\nwcFBBAX1Ys+e3Td1jBUrlpGRkXFLdcyYMZUTJ05cse3QoXiCg4MACA8fyaVLl27pHGVZibQUeGjl\nmyVxGvmL2fzk1NIuoUxq2vQhIiImAPDTTz8wf34MkydPd3r/jz5ayP/+798oV67w8TF48I0z4XJ9\nUjglEuwicntKTj5HxYp+bNnyCwsXzsPhcJCamkp4eCS1atUmNnY+GzasJzMzk+7dn6ZcOTunT59i\n7NhQJkyYSkxMNFu3bsHhcPD88/+gffsOBAcH4edXiXPnzhEVNZ2JE9/m2LGjZGZm8sIL/+CxxzoS\nHBzE8OGheHl5M25cGFlZWVSqVDm3rmee6crHH3/J0aNHeO+9aTgcDs6ePcuwYSE0bNi4FEfsr0HB\nLlLG/PLLZoKDg7h06RL79u1hwoSpHDx4gDFj3qZKFX8+/PAD1q37Ny1btuLHH79n7txYHA4HMTHR\nBAcPITZ2AWPHjmfTpu84fvwos2cvIC0tjb59X6FZs+YAdOjwBG3atGPp0s+pWLEiY8a8TUrKBXr3\n7knTpv+TW8uHHy6gQ4cnePLJHnzzzVqWL7/yOoyDBw8QHDyUOnXuYe3af7F69dcKdieUSLDbHDVK\n4jQi4oT8SzGHD8fTt29vQkPHMH16FB4eniQknKRhw8YcPnyIevXqY7fbsdvtDBo09IrjHDiwD9Pc\nnbsunpGRwYkTxwCoVas2APHx8Tz0UHaQe3p6ERAQyNGjv+ce48iRw3Tt2gOAhg0bXxXsVapUJTZ2\nPuXLlyclJQUvL69iGBHr0ZunImWYn1/28sekSZGEhoYzatRYqlTxB6B27QD27DFxOBxkZGQwZMgA\n0tPTsdlcyMrKonbtAJo0eYjo6LnMnBlD+/YdqF49exLn4pIdLQEBAWzbtgWAlJQL7N+/n2rVquWe\nPyDgbnbs2AbArl07r6pvxowo+vTpS1hYBHXq3EMJXcX3l6elGJFSkv/yxJK8xO/yUozdbicl5QKD\nBg1l//69DBjwGh4e7vj5VSYxMYG6dQ2aN29J//59cDgc9OjxDG5ubjRu/ADDhr3Oe+/NYcuWXxgw\n4FVSU1No3bodnp5XzqiffPIpJk2KpH//PqSlpdG792v4+VXKffzll/swblwY//73WqpVq35VrR07\ndmL06Lfw8fHF378qSUkFfshdKKHr2Jt9NU0/ZuUqP3cfquuVc+ja7Twaizy6jl1ERAAFu4iI5SjY\nRUQsRsEuImIxCnYREYvR5Y4ipaTbf/YV6fFWtL+nSI8nf12asYuUIcePH6Njxza53R2Dg4NYuHAe\n4eEji+T4wcFBHDoUX+j9T5w4wX/+8x+nn3+5C+RHH8Wyc+f2Qp/XajRjFyljAgICiY6em3s/Lm4z\n8fEHbrBHyYmL+5mEhGM0bNjMqedfbo3w4ou9irGqvx4Fu4jkWrr0c9avX0dqaioVK1Zk/PgphIeH\n8uyzL9CkSVN2795JbOx8IiMnM358xFVdGwHmz48hKeksrq5uhIVF4OvrS1TUeE6e/INTpxJp1ao1\nQUEDOHLkMJMmRXLp0iXc3d0JD49k8eJYLl1Kp06d+7jrrupMnx5FVlYWFSpUYOTIcPbs2c3s2e/h\n6urKk0/2YP78GD7++EumTJnAY491pGHDRkycGMn588kkJibw1FPP0aPHM6U8qiVPwS5SxsTHH8xt\n3AXw5JPZTbgcDgdJSUlMnz4LFxcX3ngjmF27dtC1a3fWrFlFkyZN+ec/v6Zr1x6sWLH0ul0b27Rp\nR4cOT7Bs2RcsXryQZ555gfr1GxISMpq0tDSeeqozQUEDeP/96fTs2YsWLR5m48b17Nu3l549e5GQ\ncIxHHmlDUFAvRo4cQ2Dg3axa9RUff7yIZs2ak56ezrx5i4DsHyL5/f7773To0JE2bdqTmJhAcHCQ\ngl1ErO9aSzGQ3bjL1dWVsWNH4eHhwcmTJ8nIyKB585bMmjWDc+eS2LZtC0OGDGP69CnX7dr4wAMP\nAtCwYSM2bdqIr68vu3btIC5uM15eXqSnZ/9lpMOHD9GgQSMAHnmkDQCrV3+dW9ehQweZOnUiAJmZ\nGdSoUQvI6xx5LZUqVWLJkk9Yv34dnp5et/yXnv6qFOwiAsC+fXv573+/Zd68RVy8eJE+fXoC2YHf\nrl0HpkyZyKOPtsVut+d2bWzTpt1VXRt37txB69Zt2bp1C4GBdVi9ehXe3j6MGDGK338/wsqVy3O6\nQwaya9cOmjVrztq1azh3LgkvL28cDgeQHeBhYeO488472bbtV06dSsyp5/rtUz77bDENGjSiR49n\niIvbzKZNG4t51G5PCnaRUpL/8sTbofFVjRo18fDwoH//3gBUrlyFxMQEAP72tyd57rlufPbZcuDG\nXRs3bPiWJUs+wcvLi1GjIkhMTCAiIowdO37D1dWVGjVqkpiYwMCBg4mKGs+iRQtwd3dnzJi3OXHi\nOB9/HEvNmnfz5psjiYwcQ2ZmJjabjZCQ0bn1XE+rVq2ZNm0y33yzFm9vb+x2O+np6bi5uRXbuN2O\n1N1RSo26O+a5HYL9dqGxyFPY7o5OzdgNwxgJPAm4AbOA9UAskAVsBwaapukoTAEiIlK0CvyAkmEY\nbYGHgVZAG6Am8C4QZprmo4AN6FaMNYqIyE1w5pOnTwC/AcuBr4FVQFOyZ+0Aa4AOxVKdiIjcNGeW\nYqoAtYEuQCCwEnAxTfPyunkyUKF4yhOr8/f3Ke0Sbhsaizwai1vjTLCfAnabppkOmIZhXCR7OeYy\nH0B/iFAKRW+SZdMbhnk0FnkK+wPOmWDfCAw2DONd4C7AC/jGMIy2pml+C3QC1hXq7CJlWKdNY4v0\neGtaFu3x5K+rwDV20zRXAVuAn8heYx8IvAlEGIaxiewrZb4sziJFpOgcOLCf4cMHM2hQX1599SUW\nLJhDXNzmQnV4XLr082tuDw0dftW2r776kgUL5nDqVCJTpky86XOJ85y63NE0zRHX2NymiGsRkWKW\nnJzM2LGhvPNOFDVr1iIzM5PRo0OoXLlyoY63aNEHPP3081dtHz8+6rr7VK5chWHDQgp1PnGOPnkq\nUoZs3LieBx9sRs2a2X1X7HY7YWERbN++jS1bfgFg7do1LFnyKa6urtSsWYsRI0Zx7NhRJkyIwG4v\nh8PhIDw8kn/965+cO5fElCkTuf/++vzznytxOBz06dOXceNGs3Ll/2Xr1l+ZMWMKPj6+2O126tdv\nwPHjxwgPD2Xu3FjWrfs3y5Z9QUZGBjabjfHjp+iN0yKgP7QhUoYkJiZQrVr1K7Z5enpSrlz2HC8p\n6SwLFsxh5szZzJ69AG9vb1asWMrPP/9IvXr1mT59Fn369OXChfO8/HIffH0r5M6+fXx8mD17QW5z\nMICpUycwduw7zJgxK7eXTH5HjhwmKmoGs2cvICAgkJ9+2lSMr77sULCLlCF33HEXJ0/+ccW2Y8eO\nsnXrltzbgYF34+npBUDjxg9y8OABunTphre3D2++OYilS5dgt1/9y/61ui6ePn06d3vDho2vetzP\nrxKRkeGMHx/B/v37ymw3xqKmYBcpQ1q1eoQff/w+t8VuRkYG7703jQoVKgJw113ViY8/SGpqKgC/\n/hpHzZq12LhxPY0bN2HGjNm0a/cYH3+c3Q89f68pm+3qOPH39yc+/iAAu3btvOKx8+fPs2DBHCIi\nxvPWW2GUL1+ekuhdVRZojV2klOS/PLGkrt328vJm1KgIJk2KxOFwkJKSQqtWjxIQEMjWrXFUrFiR\n3r378vrrfbHZXKhRoyb9+gWTmJhAZGQ4ixYtwOFwMGjQG0B2b/dx40ZfsfyS3/DhoURGhuPl5YWn\npyc+Pj75avGiYcPG9Ov3CnZ7OXx8fArs3ijOUXdHKTXq7phHH8rJo7HIU9jujlqKERGxGAW7iIjF\nKNhFRCxGwS4iYjEKdhERi9HljiKlpMfa/Fd+3PpVIMs76qP4kk0zdpEyJC5uM126PE5wcBDBwUEE\nBfViz57dTu+fvzPjM890JS0tjXfeGcsPP3zPDz98z4oVy4qrdLkJmrGLlDFNmz5ERMQEAH766Qfm\nz49h8uTpTu17o86MLVo8XGQ1yq1RsIuUYcnJ56hY0Y8tW35h4cJ5OBwOUlNTCQ+PpFat2sTGzmfD\nhvVkZmbSvfvTNG/eMrcz45+tXv01hw7F07//oJJ/IXIFBbtIGfPLL5sJDg7i0qVL7Nu3hwkTpnLw\n4AHGjHmbKlX8+fDDD1i37t+0bNmKH3/8nrlzY3E4HMTERPM//9OitMsXJyjYRcqY/Esxhw/H07dv\nb0JDxzB9ehQeHp4kJJykYcPGHD58iHr16mO327Hb7QwaNJTjx4+VcvXiDL15KlKG+fll/+WkSZMi\nCQ0NZ9SosVSp4g9A7doB7Nlj4nA4yMjIYMiQAVy6lF6a5YqTNGMXKSX5L08sycZXl5di7HY7KSkX\nGDRoKPv372XAgNfw8HDHz68yiYkJ1K1r0Lx5S/r374PD4aBHj2dwdXUrkRrl1qi7o5QadXfMo46G\neTQWedTdUUREAAW7iIjlKNhFRCzGqTdPDcOIA87l3D0IvAPEAlnAdmCgaZqO4ihQRERuToHBbhiG\nO2AzTbNtvm0rgTDTNL81DCMG6AYsL7YqRUTEac7M2BsDnoZhrM15fijQFFif8/gaoCMKdpGb8v66\nNkV6vIHt1hf8JCkTnAn2FGAKMB+oS3aQ20zTvHwJYzJQoXjKE6vz91er2aJyM2M5b948Fi1axDff\nfEP58uWv+RzTNDl37hzNmjVj6NChTJo0CTc3569jX7ZsGQcOHGDYsGFO73PZ5deyePFievbs6fT5\nKlSowGOPPXbT57MaZ4J9D7AvJ8j3GIZxiuwZ+2U+wNniKE6sT9crF52bGcvly7+iXbsOfPbZUjp3\n7nqd53xN5cqVCQi4j9DQcSQlpQFpTp8jOfkiKSnpN/01zn8d+/vvz+KJJ7o5td+jjz4OWOt7qrAT\nH2eCvTfQEBhgGEY1wBdYaxhGW9M0vwU6AesKdXYRKXFxcZupVq0G3bs/zbhxY+jcuSs7dmxn5syp\nOBwO/P2rMnTocNasWUW5cq7ce+99jBkzko8//pIpUybg6urKiRPHOXUqkdDQsRjGfaxdu4YlSz7F\n1dWVmjVrMWLEKAB27PiNwYP7c+HCBXr3DuLhhx9h3bp/s2zZF2RkZGCz2Rg/fgoVKlRg2rTJ7Nq1\ng6wsBy+//CoHDuzn3LkkpkyZyJAhw4iKGs/vvx/B4XDw2mv9efDBh3jxxeeoWbM2rq7lqFUrgMqV\nK9O1aw+iosZz8uQfnDqVSKtWrQkKGlDKo16ynAn2BUCsYRgbyb4KpjeQCMwzDMMN2AV8WXwlikhR\nWrVqBV27dqdWrQBcXV3ZsWM7UVHjGTv2HQICAlm16itOnz5Np05dqFy5Mvff3+CK/e+88y5GjBjF\nypXLWblyGUFBA1iwYA4LF36Mp6cXM2dOZcWKpXh4eOLu7k5U1AzOnj1DUFAvWrR4mCNHDhMVNQN3\nd3cmT36Hn37aRPny7iQlnWXevA9xc3Pw/vtzeO21/ixduoRhw0JYvvxLKlSoyMiRY0hKOsvAgUEs\nXryE1NRUevXqw7333seCBXMAOHnyD+rXb0hIyGjS0tJ46qnOCvY/M00zHfj7NR4q2nd+RKTYnTt3\njk2bvuPMmdN8+eXnXLhwnmXLPuf06VMEBAQC0KVLdwA2brz2m7F16xoAVK16B7/9tpVjx44SGHg3\nnp5eADRu/CA///wD99/fgEaNHsBms+HnVwkvL2+SkpLw86tEZGQ4np6eHDoUT4MGjfjjj0PUr98I\ngAoVKvDaa/2vOOf+/fvYtm0LO3duByAzM4OzZ7NXgGvVCrjiub6+vuzatYO4uM14eXmRnn6pCEbu\nr0VNwETKkLVrV9OlSzcGDhwMwMWLF3n22Sdxd3fnyJHD1KxZi8WLY6lZszYuLi44HFe3ebLZrmxf\nctdd1YmPP0hqaioeHh78+mscNWvWAmDXrp1A9p/US01NwdXVlQUL5rB06SoAhg4dSFZWFgEBAaxb\n9w0AycnJvPFGMO++G83lXla1awdQtWpVXnqpN2lpF1m06AN8fX2vWc/q1avw9vZhxIhR/P77EVau\nXE5WVtZVz7MyBbtIKcl/eWJJNb76+usVjB49Lve+u7s7bdq0p1KlSkyYMA4XFxcqV67Mc8/9HVdX\nV2bNmpE7k7+eihUr0rt3X15/vS82mws1atSkX79gvvlmLWlpabz+ej9SU1MYPjwULy8vGjZsTL9+\nr2C3l8PHx4fExAQ6d+7K5s0/0b9/H1xcoGfP3gAEBAQybtxoQkJGM2lSJMHBQVy4cJ4ePZ7FxeXa\nH5xv2rQZERFh7NjxG66urtSoUZPExAT8/asW3UDe5tTdUUqNujvmUUfDPBqLPOruKCIigIJdRMRy\nFOwiIhajYBcRsRgFu4iIxehyR5FS4j16a+7tVMD7Fo93/u3Gt3gEsQrN2EXKkLi4zXTp8jjBwUEE\nBwcRFNSLPXt2X/f5S5d+Xmy1FObYcXGbCQ8feUvnXbFiGRkZGU4994cfvmfFimW3dL7SoGAXKWOa\nNn2I6Oi5REfP5dVX+zF/fsx1n7to0QfFVkdxHvtGPvpoIZmZmU49t0WLh+nW7alirqjoaSlGpAxL\nTj5HxYp+7N+/j+nTo8jKyqJChQqMHBnO0qWf53ZX7N8/mIkTIzl/PpnExASeeuo5evR4huDgIGrX\nDuDQoXgAIiLGc+hQPLNnv4erqytPPtmDypUrM3fubMqXL4+vbwVGjhzDsmVLrtu5cfjwN7n77vv5\n+ecfrtoP4MiRI7zxRjBJSUn06PE0Xbp0Z8uWX1i4cB4Oh4PU1FTCwyOpVas2sbHz2bBhPZmZmXTv\n/jTlytk5ffoUY8eGMmHCVGJiotm6dQsOh4Pnn/8H7dt3IDg4CD+/Spw7d47HH+/IkSNH6N9/EDEx\n0ezevZNz55K45557CQ0NL8Wv3I0p2EXKmF9+2UxwcBCXLl1i3749TJgwlUmTIhk5cgyBgXezatVX\nfPzxIvr2HZjbXdE0d9OhQ0fatGlPYmICwcFB9OjxDAANGjRi+PBQli37go8+Wkjr1u1IT09n3rxF\nZGVl8dxz3Zg1az7+/lVZsuRTFi1aQHDwkOt2bhw8uB8LF37K5Mnjr9rv4YcfITMzg0mTpuFwZPLy\ny3+nVas2HDx4gDFj3qZKFX8+/PAD1q37Ny1btuLHH79n7txYHA4HMTHRBAcPITZ2AWPHjmfTpu84\nfvwos2cvIC0tjb59X6FZs+YAdOjwBG3atGP16q8BuHDhPD4+PkyfPguHw8GLLz5HQsLJ27ZNgYJd\npIxp2vQhIiImAHD4cDx9+/bm4sVUpk6dCGR3TqxRo9YV+1SqVIklSz5h/fp1eHp6XbFG3bRpMwAa\nNmyU2xGyVq3aAJw9exZPT6/cAHzggSbMmTPrimP/uXNjRkbGdfd7+OFHuP/+hri6ugKuBAYGcuLE\nMfz9/Zk+PQoPD08SEk7SsGFjDh8+RL169bHb7djtdgYNGnrFeQ8c2Idp7iY4OCj3vCdOHLui/svK\nl3fnzJkzhIeH4unpSWpqqtPr9KVBwS5Shvn5VQagTp26hIWN484772Tbtl85dSoRILe74mefLaZB\ng0b06PEMcXGb2bRpY+4xTHMXVavewbZtWwkMvBsAF5fsFicVK1YkJeUCiYmJVKlS5YrOj9fr3PjF\nF4vx9fW97n5795pkZGRw6dIl4uMPUr16DYYPH8KSJV/h6elFZGR47nG/+mopDocDh8PBsGGvM3ny\ndGw2F7KysqhdO4AmTR7irbdG4XA4iI2dT/XqNXLqv/Ltxx9++I6TJ/9g3LgJnDlzhv/+dx0l0Wer\nsBTsIqUk/+WJJdn46vJSjN1uJyXlAoMGDeXuu+8hMnIMmZmZ2Gw2QkJGA3ndFbt06ca0aZP55pu1\neHt7Y7fbSU9PB7Lb5H7++Se4u7szevQ49u/fl3sum83GiBGjGDVqOC4uNnx8fAkNHXvFsf/cufGl\nl17Ebrdfc78DB/bh5ubGsGGvc/78eXr3DsLXtwJPPNGJAQNew8PDHT+/yiQmJlC3rkHz5i3p378P\nDoeDHj2ewc3NjcaNH2DYsNd57705bNnyCwMGvEpqagqtW7fL7Sn/Z/Xq1Sc2dgEDB76GzWajWrXq\nJCYmUK1a9eL9YhWSujtKqVF3xzx/1Y6GwcFBDB8eSu3aAUV2zL/qWBQHdXcUERFASzEicguio+eW\ndglyDZqxi4hYjIJdRMRiFOwiIhbj1Bq7YRhVgV+Ax4EMIBbIArYDA03TdBRXgSJWNf+L/POqC9zq\nPOvVZ/XfULIV+J1kGIYrMIfszqIA7wJhpmk+CtiAbsVXnogUtaNHfycsbARBQb14/fV+DB8+mAMH\n9pd2WTflZjo0Xnb8+DGCgnrd0nnXr19HYmKCU8/du9dk4cJ5t3S+wnJmijAFiAGO5dxvCqzPub0G\n6FAMdYlIMbh48SIhIW/wwgs9mTs3lpkzY3jlldd4991JpV3aTbmZDo1F6YsvPuXChQtOPbduXYNX\nXnmtmCu6thsuxRiG0QtIME3z/xqGcbkJss00zcsfOEoGKhRjfWJx/v4+pV1CKXIuIJzlzFiuXr2B\nRx5pRbt2rXK3tWnTktatW7B3714mTpxIZmYmZ86cYezYsTz44IM8/vjjNGnShPj4eFq2bElycjLb\ntm0jMDCQqKgoQkJCKFeuHMeOHSM9PZ3OnTuzbt06jh8/zqxZs6hevTpjxozhxIkTnDx5kvbt2zN0\n6FBCQkLIysri+PHjpKSkMGnSJMqXL0/Xrn+nYsWKtG7dmlatWvH2229jt9spX748b7/9Nt999x2n\nT59i/PgxzJo1i6lTp7J582YcDge9evWiU6dO7Ny586r9KlXyIjk5idGjh3Pq1Cnatm3LwIED2bNn\nzzVf9xdffMGnn36Kw+Ggffv2NGrUiP379zJxYgSffPIJn3/+OatWrcJms9G5c2deeuklQkJCOHv2\nLGfPnqVPnz6sXr2aadOmsXjxYtauXUtqaip+fn5ER0fj5uZWpF///ApaY+8NZBmG0QF4APgQyN/O\nzAc4W0y1SRlQtj9hWLTXLjgzlrt376dSpTtynxsS8gbnz5/n1KlEXnqpN0FBg6hT5x7Wrv0Xn3zy\nOTVr1uXo0aO8++4sqlSpQqdO7Zk7N5Z+/Ybw3HPdOHDgGBcvXqJGjTsZPPgtoqLGs3fvAcaPf5cF\nC+bw9ddrePTRttSpcx9DhoSQlpbGU091pmfPV7l48RLVqlVn2LAwNm3ayDvvTGDIkOEkJCQwZ84i\nXF1d6dPnRUJCwqhb12DDhm+JiHibyMjJREe/T2joOFau/Bf79x9k5sy5uR0aDaMxISGhV+03cOAQ\nzp+/wFtvhePh4cHAga/RpEkLDh+Ov+p1e3tXJiZmDosWfYqbW3liYqIJDKxHnTp1GT48lF9/3cWK\nFV/nXsc/dOhA6tdvwsWLl2jQ4AGef/4fxMVtJi3tEn/8kcTRo38QFfUeLi4uvPFGMBs2/EijRg8U\n+PUq7MTnhsFummbry7cNw/gW6AdEGYbR1jTNb4FOwLpCnVlEStwdd9zB7t07c+9PnPguAEFBvahW\nrQaxsfMpX748KSkpeHll903x9a3AnXfeCYCHh0duoy8vL2/S09MAuPfe+wDw9vbJbS/g4+NDWlo6\nvr6+7Nq1g7i4zXh5eZGefin3/A8+mN0ZskGDxsycmV1LjRo1cro3ktvzBaBx4weJiYm+4vVcr0Pj\n9fa75566eHtn/xHCevXqc+TIYapUqXrV6z569CiBgXUoX94dgP79B/3pvPv5448TDB7cH4Dk5GSO\nHDkCXN0Z0sXFBVdXV8aOHYWHhwcnT54s9s6QhZkyvAlEGIaxCXADvizakkSkuDzySBs2b/6J7dt/\ny932++9HSEg4SWTkGPr06UtYWAR16tyT273QZiu4XcmNnrN69Sq8vX0ID4/khRd6kpZ2MffYprkL\ngN9+20pgYB3gys6KVar4s2/fXoArOjz+uUNjdPRcZs6MoX37DlSvXuO6+x06FE9KSgoZGRns3Lmd\nwMC7mTEj6qrXXb16DQ4fjs9tdBYWNoKEhJO4uLjgcDioVas2AQF38957c4iOnkvnzl2oU6dubm35\n7du3l//+91vGjZvA0KEjyMoq/quXnG4pYJpm23x32xR9KSJlS/7LE0uq8ZWnpyeTJk0jJuY9YmJO\nkZmZgYuLnUGD3uDkyROMHv0WPj6++PtXJSmpaFZZmzZtRkREGDt2/Iarqys1atTMvbLkhx++Z+PG\n9TgcjmvAqIjiAAAJO0lEQVT+RaK33hrFtGmTycrKwm6353adLKhD4/X28/HxJTx8JGfPnqF9+44E\nBt5Nx46drnrdfn5+/OMfLxMcHITNZqNVq0fx969KgwaNiIwMZ9q0aB56qBkDBvQhPf0S9erVx9/f\n/5qvv0aNmnh4eNC/f28AKleu4vSVNYWl7o5SatTdMU9Z7Gj4zjtjeeyxjrRo8fAV28viWFyPujuK\niAig7o4iUkpGjRpb2iVYlmbsIiIWo2AXEbEYBbuIiMUo2EVELEbBLiJiMQp2ERGLUbCLiFiMgl1E\nxGIU7CIiFqNgFxGxGAW7iIjFKNhFRCxGwS4iYjEKdhERi1Gwi4hYjIJdRMRiFOwiIhajYBcRsRgF\nu4iIxSjYRUQspsA/Zm0Yhh2YBxhAFtAPuAjE5tzfDgw0TdNRfGWKiIiznJmxdwUwTbMVEAa8A7wL\nhJmm+ShgA7oVW4UiInJTCpyxm6b5lWEYq3Lu1gbOAh2A9Tnb1gAdgeXFUqFYmr+/T2mXcNvQWOTR\nWNyaAoMdwDTNDMMwFgE9gGeAx03TzMp5OBmoUEz1icUlJCSXdgm3BX9/H41FDo1FnsL+gHP6zVPT\nNF8G7iV7vd0j30M+ZM/iRUTkNlBgsBuG8aJhGCNz7qYADmCzYRhtc7Z1AjYUT3kiInKznFmKWQYs\nNAzjv4ArMATYBcwzDMMt5/aXxVeiiIjcDGfePL0APHeNh9oUfTkiInKr9AElERGLUbCLiFiMgl1E\nxGIU7CIiFqNgFxGxGAW7iIjFKNhFRCxGwS4iYjEKdhERi1Gwi4hYjIJdRMRiFOwiIhajYBcRsRgF\nu4iIxSjYRUQsRsEuImIxCnYREYtRsIuIWIyCXUTEYhTsIiIWo2AXEbEYBbuIiMWUu9GDhmG4Ah8A\nAUB5IBLYCcQCWcB2YKBpmo5irVJERJxW0Iy9J3DKNM1Hgf8FooF3gbCcbTagW/GWKCIiN6OgYP8C\nGJ1z2wZkAE2B9Tnb1gAdiqc0EREpjBsuxZimeR7AMAwf4EsgDJhimmZWzlOSgQrFWqFYmr+/T2mX\ncNvQWOTRWNyaGwY7gGEYNYHlwCzTND8xDGNyvod9gLPFVZxYX0JCcmmXcFvw9/fRWOTQWOQp7A+4\nGy7FGIZxB7AWeMs0zQ9yNm8xDKNtzu1OwIZCnVlERIpFQTP2UMAPGG0YxuW19sHATMMw3IBdZC/R\niIjIbaKgNfbBZAf5n7UpnnJERORW6QNKIiIWo2AXEbEYBbuIiMUo2EVELEbBLiJiMQp2ERGLUbCL\niFiMgl1ExGIU7CIiFqNgFxGxGAW7iIjFKNhFRCxGwS4iYjEKdhERi1Gwi4hYjIJdRMRiFOwiIhaj\nYBcRsRgFu4iIxSjYRUQsRsEuImIxCnYREYtRsIuIWEw5Z55kGEZzYJJpmm0Nw7gHiAWygO3AQNM0\nHcVXooiI3IwCZ+yGYYwA5gPuOZveBcJM03wUsAHdiq88ERG5Wc7M2PcDTwEf5dxvCqzPub0G6Ags\nL/rSpCzw9/cp7RJuGxqLPBqLW1NgsJumudQwjIB8m2ymaWbl3E4GKhRHYVI2JCQkl3YJtwV/fx+N\nRQ6NRZ7C/oArzJun+dfTfYCzhTqziIgUi8IE+xbDMNrm3O4EbCi6ckRE5FY5dVXMn7wJzDMMww3Y\nBXxZtCWJiMitcCrYTdOMB1rk3N4DtCnGmkRE5BboA0oiIhajYBcRsRgFu4iIxSjYRUQsRsEuImIx\nCnYREYtRsIuIWIyCXUTEYhTsIiIWo2AXEbEYBbuIiMUo2EVELEbBLiJiMQp2ERGLUbCLiFiMgl1E\nxGIU7CIiFqNgFxGxGAW7iIjFKNhFRCxGwS4iYjEKdhERiylXmJ0Mw3ABZgGNgTTgVdM09xVlYSIi\nUjiFnbF3B9xN02wJhABTi64kERG5FYUN9keAfwGYpvkD8FCRVSQiIrekUEsxgC+QlO9+pmEY5UzT\nzLjWk3/uPtRWyPOIxfn7+5R2CbcNjUUejcWtKeyM/RyQf+RdrhfqIiJSsgob7N8BnQEMw2gB/FZk\nFYmIyC0p7FLMcuBxwzC+B2zAK0VXkoiI3ApbVlZWadcgIiJFSB9QEhGxGAW7iIjFKNhFRCymsG+e\nXlNBrQYMw+gKjAEygA9M05xXlOe/nTgxFv8HGEL2WPwGDDBN01EatRY3Z1tQGIYxFzhtmmZICZdY\nYpz4vmgGvEv2RQkngJ6maV4sjVqLmxNj8Q/gTSCT7LyYXSqFlhDDMJoDk0zTbPun7Tedm0U9Y79u\nqwHDMFyBaUBHoA0QZBjGHUV8/tvJjcbCA4gE2pmm2QqoAHQplSpLRoEtKAzD6As0LOnCSsGNvi9s\nwDzgFdM0L3+6u3apVFkyCvq+mAJ0AFoBbxqG4VfC9ZUYwzBGAPMB9z9tL1RuFnWw36jVQD1gn2ma\nZ0zTTAc2Aq2L+Py3kxuNRRrwsGmaKTn3ywGWnJXluGELCsMwHgaaA3NKvrQSd6OxuBc4BQw1DGM9\nUMk0TbPkSywxBbUm2Ub2pMed7N9grHwJ337gqWtsL1RuFnWwX7PVwHUeSyb7i2ZV1x0L0zQdpmn+\nAWAYxiDAG/h/JV9iibnuWBiGcRcQDgSXRmGl4Eb/R6oADwPRZM9UHzMMo30J11eSbjQWANuBX4Ad\nwCrTNM+WZHElyTTNpcClazxUqNws6mC/UauBPz/mA1j2C0UBbRcMw3AxDGMK8DjwtGmaVp6N3Ggs\nniU70FaT/ev43w3D6FWy5ZWoG43FKbJnZ7tM07xE9mzWyg32rjsWhmE0Av4GBAIBQFXDMJ4t8QpL\nX6Fys6iD/UatBnYBdQ3DqGQYhhvZv05sKuLz304Karswh+xfMbvnW5KxquuOhWmaM03TbJrzhtFE\n4BPTNGNLo8gScqPviwOAt2EY9+Tcf5Ts2apV3WgskoBUINU0zUzgJGDZNfYbKFRuFuknT/O9y92I\nvFYDDwLepmnOzffurgvZ7+6+X2Qnv83caCyAzTn/NpC3bjjDNM3lpVBqsSvo+yLf83oB95WRq2Ku\n93+kPdk/4GzA96ZpDi61YouZE2PRD+gNpJO9Bv1azjqzJRmGEQB8ZppmC8Mw/s4t5KZaCoiIWIw+\noCQiYjEKdhERi1Gwi4hYjIJdRMRiFOwiIhajYBcRsRgFu4iIxfx/phAMg10MiqIAAAAASUVORK5C\nYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x118f69208>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_distribution(classes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Phylum" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>pct_reads_clade</th>\n", " <th>num_reads_clade</th>\n", " <th>num_reads_taxon</th>\n", " <th>rank</th>\n", " <th>tax_id</th>\n", " <th>tax_name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>6</th>\n", " <td>66.96</td>\n", " <td>1961757</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>976</td>\n", " <td>Bacteroidetes</td>\n", " </tr>\n", " <tr>\n", " <th>93</th>\n", " <td>0.97</td>\n", " <td>28375</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>1239</td>\n", " <td>Firmicutes</td>\n", " </tr>\n", " <tr>\n", " <th>298</th>\n", " <td>0.10</td>\n", " <td>2907</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>1224</td>\n", " <td>Proteobacteria</td>\n", " </tr>\n", " <tr>\n", " <th>193</th>\n", " <td>0.01</td>\n", " <td>285</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>201174</td>\n", " <td>Actinobacteria</td>\n", " </tr>\n", " <tr>\n", " <th>86</th>\n", " <td>0.00</td>\n", " <td>13</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>1090</td>\n", " <td>Chlorobi</td>\n", " </tr>\n", " <tr>\n", " <th>256</th>\n", " <td>0.00</td>\n", " <td>10</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>544448</td>\n", " <td>Tenericutes</td>\n", " </tr>\n", " <tr>\n", " <th>262</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>1297</td>\n", " <td>Deinococcus-Thermus</td>\n", " </tr>\n", " <tr>\n", " <th>275</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>1117</td>\n", " <td>Cyanobacteria</td>\n", " </tr>\n", " <tr>\n", " <th>292</th>\n", " <td>0.00</td>\n", " <td>3</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>200795</td>\n", " <td>Chloroflexi</td>\n", " </tr>\n", " <tr>\n", " <th>523</th>\n", " <td>0.00</td>\n", " <td>13</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>203691</td>\n", " <td>Spirochaetes</td>\n", " </tr>\n", " <tr>\n", " <th>533</th>\n", " <td>0.00</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>74201</td>\n", " <td>Verrucomicrobia</td>\n", " </tr>\n", " <tr>\n", " <th>539</th>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>203682</td>\n", " <td>Planctomycetes</td>\n", " </tr>\n", " <tr>\n", " <th>545</th>\n", " <td>0.00</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>204428</td>\n", " <td>Chlamydiae</td>\n", " </tr>\n", " <tr>\n", " <th>557</th>\n", " <td>0.00</td>\n", " <td>90</td>\n", " <td>0</td>\n", " <td>P</td>\n", " <td>7711</td>\n", " <td>Chordata</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " pct_reads_clade num_reads_clade num_reads_taxon rank tax_id \\\n", "6 66.96 1961757 0 P 976 \n", "93 0.97 28375 0 P 1239 \n", "298 0.10 2907 0 P 1224 \n", "193 0.01 285 0 P 201174 \n", "86 0.00 13 0 P 1090 \n", "256 0.00 10 0 P 544448 \n", "262 0.00 3 0 P 1297 \n", "275 0.00 3 0 P 1117 \n", "292 0.00 3 0 P 200795 \n", "523 0.00 13 0 P 203691 \n", "533 0.00 2 0 P 74201 \n", "539 0.00 1 0 P 203682 \n", "545 0.00 1 0 P 204428 \n", "557 0.00 90 0 P 7711 \n", "\n", " tax_name \n", "6 Bacteroidetes \n", "93 Firmicutes \n", "298 Proteobacteria \n", "193 Actinobacteria \n", "86 Chlorobi \n", "256 Tenericutes \n", "262 Deinococcus-Thermus \n", "275 Cyanobacteria \n", "292 Chloroflexi \n", "523 Spirochaetes \n", "533 Verrucomicrobia \n", "539 Planctomycetes \n", "545 Chlamydiae \n", "557 Chordata " ] }, "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ "phyla = td[td['rank'] == 'P']\n", "top_hits(phyla)" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD3CAYAAAAJxX+sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHHlJREFUeJzt3Xt0lNW9xvHvhARDQggBkyoIhKpsrYKeRmorarAiiuUi\nUq23KmIJIlFkCQga0CByEcRruQhosNBzVBAEFvTQspSCtQcRvIB0K2gAuSgBApHgQDJz/pjJRYVk\nMslk0t3ns5ZrzbzzvvP+/Bmf2dnvOzsev9+PiIi4IybaBYiISN1SsIuIOEbBLiLiGAW7iIhjFOwi\nIo6JrY+TlJSU+g8dKq6PUzV4KSkJqBcB6kUF9aKCelEhNTXJE85x9TJij41tVB+n+begXlRQLyqo\nFxXUi9qrdsRujOkP9A8+jQcuBi4HngX8wGZgiLXWF5kSRUSkJqodsVtr86y1Xa21XYEPgAeAsUCO\ntfYKwAP0iWiVIiISspCnYowxlwAXWGtfAjKANcGXVgLdIlCbiIiEoSYXTx8BcoOPPdbasrUIioDk\n6g5OTU2qYWnuUi8qqBcV1IsK6kXthBTsxpjmgLHWvh3cVHk+PQkorO499u8vqnl1DkpNTVIvgtSL\nCupFBfWiQrgfcKFOxVwJrK70fJMxpmvwcQ9gbVhnFxGROhfqVIwBvqj0/CFgtjGmMbAVWFjXhYmI\nSHhCCnZr7ZQfPP8MyIxIRSJS765/d06dvt+KLn+o0/eTmtGSAiISFRs3bqBnz2vIzs4iOzuLrKz+\nfPbZv2r0Hm+99SYlJSW1quO5555m375939u2Y0c+2dlZpzzG6/WybNmSWp03kuplSYG3Z2bUx2nk\n38xV934Q7RIkyjIyLiE3dyIA69f/kzlzZtKlS+eQj//Tn17huut+Q2xs+FE2dOhDNT7m4MEDLFu2\nhF69bgj7vJFUL8EuIlKdoqIjNG+ewvr163nmmefw+XwcO3aMxx4bT9u27cjLm8PatWsoLS3lhhv6\nERvbiIMHD/D4448wceLTzJz5Ih99tAmfz8fvfnc7v/51N7Kzs0hJacGRI0eYMuVZJk16gj17dlNa\nWsott9zO1Vd3Jzs7ixEjHiExsSnjxuXg9/tp0aJleV2bNn3ASy9Np1GjRrRq1ZqRIx/l1VdfJj//\nS155ZTY33XQrkyaN4/DhwwA8+OAIzj77HCZMyOWrr3bh9Xq56aZbuO6639RbLxXsIhI1H3ywgezs\nLE6cOMG2bZ8xceLTfP7554wd+wSnn57Kq6++zNtv/41f/aoL//d//+Cll/Lw+XzMnPki2dkPkpc3\nl8cfn8B7773L3r27mTFjLl6vl0GD7qZz50sB6NbtWjIzr2LRotdo3rw5Y8c+QXHxUQYMuIOMjF+U\n1/Lqq3Pp1u1aevfuy+rVq1i8eCF+v5/Jk59kxow5pKS0YPbsGaxYsYw77xzA9u3buPvugUyf/jwZ\nGb+gb9/fsmvXTiZMyOXpp5/nww83MmtWHh6Ph/Xr/1mvfa2XYB95xh31cRr5N/N+tAuQqKs8FbNz\nZz6DBg1g0qSJPPvsFJo0SWD//m/o2PEidu7cwfnnX0CjRo1o1KgR998/7Hvv88UX27D2X+Xz4iUl\nJezbtweAtm3bAZCfn88llwSCPCEhkfT09uze/VX5e+zatZNevfoC0LHjRSxevJDCwkMcOFDAmDGj\ngMDcetkHRuVzb9y4gdWrVwGB3zwSEhJ54IGHeOqpJykuPkr37j3qtG/V0YhdRBqElJTA9EdOTg6v\nvbaEhIRExo9/DIB27dJZsmQRPp8Pn8/H8OEP8NRTz+LxxOD3+2nXLp3/+q9LePjhR/H5fOTlzaF1\n67MAiIkJ3COSnp7Oxx9vIjPzKoqLj7J9+3ZatWpVfv709J+yZcvHnHtuB7Zu/RSA5OTmpKWlMWnS\nNJo2bcq6dWto0iQheF5feW3du/+M7t2v49ChgyxbtoSCggKs3crEiVPxer306/cbrr32+lpdC6gJ\nBbuIRO32xLKpmEaNGlFcfJT77x/Gnj07uO++gTRpEk9KSksKCvZz7rmGSy/9FYMH34PP56Nv39/S\nuHFjLrroYoYPf4AXXpjFpk0fcN99f+DYsWKuvPIqEhISv3eu3r1vZPLk8QwefA9er5cBAwaSktKi\n/PW77rqHceNy+NvfVtGqVWsg8KEwdOhwRowYit/vJyEhkTFjcklISOTEiRKmT3+eO+8cwKRJT7B0\n6ZvBKZ4sWrZsycGDB7j33gHExMRwyy131FuoA3j8fn/1e9VS5yXPRP4k8m/n/RuG6avjQfoafQX1\nokKD/kMbIiJSfxTsIiKOUbCLiDhGwS4i4hgFu4iIY3S7o4iweVHXOn2/C/u9U6fvJzWjYBeRqNi7\ndw933XUrHTqY8m0ZGZ1JSGjM7353V43e6/PPLevW/Z277x4Y8jFer5dVq1Y22IW8akPBLiJRk57e\nnhdffOl728K5j/3ccw3nnmuq37GShr5CY20o2EWkwdi4cQN/+ctSHnlkHP369aRdu3TS09tTVFRE\nbGws+/bt5cSJE1x9dXfefffvfP31PiZNmsbXX+/jrbcWkZs7keXLl7B48SJ8vlIuvzyTe+4ZRO/e\n17J06f8C8Nhjo+nTpx9//etfGvQKjbWhYBeRqMnP//J7f9Cid+++5Y+/+eZrXn55PsnJzXnyycc5\n44wzefjhHKZMmcDevbuZOvV55s6dxbvv/p1zzukAwKFDB5k/fx7z5v03jRufxsyZL1JcXHzSczf0\nFRprQ8EuIlHzw6mYjRs3lD9OTm5OcnLz8ucdOpwHQNOmSbRrlw5AUlISXu/x8n12795N+/Znc9pp\n8QAMHnz/j855slVUGuIKjbWhYBeRBqlsVcYyHk/1y6a0bn0WO3fmc/z4cRo3bkxOzkiGDh1OSUkJ\nxcXFxMXF8eWX24Pv17BXaKyNhl+hiEScK7cnpqSkcPvtd5GdnYXH46FLlytITU3j5ptvZdCg/rRq\n1ZozzjizfN+GvEJjbWh1R4kare5YQSsaVlAvKmh1RxERAUKcijHGjAZ6A42B6cAaIA/wA5uBIdZa\nX4RqFBGRGqh2xG6M6QpcBnQBMoE2wDQgx1p7BeAB+kSwRhERqYFQRuzXAp8Ai4FmwAhgIIFRO8BK\noHvwdZEaSU1NinYJDYZ6UUG9qJ1Qgv10oB3QE2gPLAVirLVlF0SLgOTIlCeu00WyAF0wrKBeVAj3\nAy6UYD8A/MtaexywxpjvCEzHlEkCCsM6u4g0CL3WrKl+pxpYlplZp+8nNRPKXTHrgOuMMR5jTCsg\nEVgdnHsH6AGsjVB9IuK4BQvm0afPtXi93lPus337Nj78cCMQWOvlxIkTNTrHihXLmDHjhVrVuWjR\nazU637p1dfthWRPVBru1djmwCVgPLAOGAA8BucaY9wjcKbMwkkWKiLtWrVrJ1Vd3L/86/8m8885q\n8vO/ACA3dyJxcXH1VV65efNeDnnf66/vxeWXR++3lpBud7TWjjzJZv2uJSK1snHjBlq1OosbbujH\nuHFjuf76Xnz00Ufk5j6Bz+cjNTWNYcNGsHLlcmJj4+jQ4TzGjh3NggULmTo1EPD79u3lwIECHnnk\ncYw5j1WrVvL66/9NXFwcbdq0ZeTIRwHYsuUThg4dzNGjgW+WXnbZ5bz99t948803KCkpwePxMGHC\nVJKTk3nmmafYunULJ06UcM89WXzxxXaOHDnM1KmTePDB4UyZMoGvvtqFz+dj4MDB/Pznl/D7399M\nmzbtiIuLpW3bdFq2bEmvXn2ZMmUC33zzNQcOFNCly5VkZd0X8b7+e3w/VkSctHz5W/TqdQNt26YT\nFxfHli2beeaZSeTkPEF6enuWL1/CwYMH6dGjJy1btuRnP7vwe8efccaZjBz5KEuXLmbp0jfJyrqP\nuXNn8corC0hISOT555/mrbcW0aRJAvHx8UyZ8hyFhYfIyurPL395Gbt27WTKlOeIj4/nqaeeZP36\n9zjttHgOHy5k9uxXOXLkCK+9toCBAwezaNHrDB8+isWLF5Kc3JzRo8dy+HAhQ4ZkMX/+6xw7doz+\n/e+hQ4fzmDt3FhBYofKCCzoyatQYvF4vN954vYJdRNx15MgR3nvvXQ4dOsjCha9x9Oi3vPnmaxQU\nFJCe3h6Anj0DfwTjVPPVZX9cIy3tJ3zyyUfs2bOb9u1/SkJCIgAXXfRz3n//n/zsZxfSqdPFeDwe\nUlJakJjYlMOHD5OS0oLx4x8jISGBHTvyufDCTnz99Q4uuKATAM2aNWPgwMHfO+f27dv4+ONNfPrp\nZgBKS0soLAzcP9K2bfr39m3WrBlbt25h48YNJCYmcvx4za4NhEvBLiJRsWrVCnr27MOQIUMB+O67\n77jppt4kJDRh166dtGnTlvnz82jTph0xMTH4fD9ecuqHKz6eeWZr8vO/5NixYzRp0oQPP9xImzZt\nAdi69VMADhwo4NixwEqPc+fOYtGi5QAMGzYEv99Peno6b7+9GoBvv/2WsWNHMW3ai5Stq9WuXTpp\naWnceecAvN7vmDfvZZo1a3bSelasWE7TpkmMHPkoX321i6VLF+P3+0NaqbI2FOwiEpXbE5cte4sx\nY8aVP4+Pjycz89e0aXMmEyeOIyYmhpYtW3LzzbcRFxfH9OnPlY/kT6V58+YMGDCIBx4YhMcTw1ln\nteHee7NZvXoVXq+XBx64l2PHihkx4hESExPp2PEi7r33bho1iiUpKYmCgv1cf30vNmxYz+DB91Ba\nWlr+d1TT09szbtwYRo0aw+TJ48nOzuLo0W/p2/emHy0xXCYjozO5uTls2fIJcXFxnHVWGwoK9pOa\nmlZ3jTwJre4oUaPVHSvoSzkV1IsKWt1RREQABbuIiHMU7CIijlGwi4g4RsEuIuIY3e4oIuxe0LVO\n36/17e/U6ftJzWjELiJRsXHjBnr2vIbs7Czuv38QWVn9Wbjwf0I6tvJqjzWRnZ3Fjh35NT6uzL59\n+1i37u8h7x/OSpR1QSN2EYmajIxLyM2dCMDx48e57bZ+3H777wj8xc1Te+ed1bRs2ZKLL/55PVRZ\nYePG99mxI5/LL78ypP3L/t3qm4JdRBqE4uJiYmJi6N+/P2lpZ3LkyBGmTHmWSZOeYM+e3ZSWlnLL\nLbfTqdPF31vt0ev18tJL02nUqBGtWrUuX81xwoTc7x139dXdAZgzZyaHDxcSF9eYnJxcmjVrdtIV\nGHft2snkyeM5ceIE8fHxPPbYeObPz+O7776jY8dOnHlma559dgp+v5/k5GRGj36Mzz77FzNmvEBc\nXBy9e/dlzpyZLFiwkN27d/HCC8/g8/koLCxk+PBRdOx4UcR6qWAXkaj54IMNZGdnERMTQ2xsLMOG\njeCNN/5Mt27Xkpl5FYsWvUbz5s0ZO/YJiouPMmDAHcyc+Ur5ao/nn38Bt97ajxkz5pCS0oLZs2ew\nYsUyTpw4/qPjMjJ+AUBm5lV063Ytb775BvPnv8Jvf3vLSVdg/OMfn+WOOwKrQK5bt4Zt2z7njjv6\nB0fsmWRl9Wf06LG0b/9Tli9fwoIF8+jc+VKOHz/O7NnzgMCHCMCXX35BdvYwzj77HFat+gsrVixT\nsIuImypPxZR5440/07ZtOwDy8/O55JJAICckJJKe3p7du78q37ew8BAHDhQwZswoALxeL507X0pR\nUdEpjyubvunYsRPvvbfulCsw7ty5gwsvDKzyWPZHM1asWFZ+7h07vuTppycBgRUezzorsNhYWe2V\nnX56Gnl5czjttNMoLi4mMTEx7J6FQsEuIg1O2aJa6enpfPzxJjIzr6K4+Cjbt2+nVatW5as9Jic3\nJy0tjUmTptG0aVPWrVtDkyYJ5Od/cdLjAD79dAtXXtmVjz7aRPv2Z59yBcZ27dqzdesWOne+lFWr\nVnLkyGESE5vi9/uAQIDn5IzjjDPO4OOPP+TAgYJg7T++PvDcc1MYO3Y86entmTt3Fnv37olo/xTs\nItJgb0/s3ftGJk8ez+DB9+D1ehkwYCApKS0w5vzy1R6HDh3OiBFD8fv9JCQkMmZMLp06XXzS4wDW\nrn2H11//M4mJiTz6aC4FBftPugLjkCFDmTJlAvPmzSU+Pp6xY59g3769vPrqy3TocB4PPTSa8ePH\nUlpaisfjYdSoMRQU7D/pv0f37j0YM+ZhkpKakZqaxuHDhRHtm1Z3lKjR6o4VtKJhBfWiglZ3FBER\nQMEuIuIcBbuIiGNCunhqjNkIHAk+/RJ4EsgD/MBmYIi11heJAkVEpGaqDXZjTDzgsdZ2rbRtKZBj\nrX3HGDMT6AMsjliVIiISslBG7BcBCcaYVcH9HwEygDXB11cC3VGwi4g0CKEEezEwFZgDnEsgyD3W\n2rJbGIuA5MiUJ65LTU2KdgkNhnpRQb2onVCC/TNgWzDIPzPGHCAwYi+TBET2bntxlu5XDtC92xXU\niwrhfsCFclfMAOBpAGNMK6AZsMoY0zX4eg9gbVhnFxGROhfKiH0ukGeMWUfgLpgBQAEw2xjTGNgK\nLIxciSIiUhPVBru19jhw20leyqz7ckREpLb0BSUREcco2EVEHKNgFxFxjIJdRMQxCnYREcco2EVE\nHKNgFxFxjIJdRMQxCnYREcco2EVEHKNgFxFxjIJdRMQxCnYREcco2EVEHKNgFxFxjIJdRMQxCnYR\nEcco2EVEHKNgFxFxjIJdRMQxCnYREcco2EVEHBMbyk7GmDTgA+AaoATIA/zAZmCItdYXqQJFRKRm\nqh2xG2PigFnAseCmaUCOtfYKwAP0iVx5IiJSU6FMxUwFZgJ7gs8zgDXBxyuBbhGoS0REwlTlVIwx\npj+w31r7v8aY0cHNHmutP/i4CEiOYH3iuNTUpGiX0GCoFxXUi9qpbo59AOA3xnQDLgZeBdIqvZ4E\nFEaoNvkPsH9/UbRLaBBSU5PUiyD1okK4H3BVTsVYa6+01mZaa7sCHwJ3AiuNMV2Du/QA1oZ1ZhER\niYiQ7or5gYeA2caYxsBWYGHdliQiIrURcrAHR+1lMuu+FBERqQv6gpKIiGMU7CIijlGwi4g4RsEu\nIuIYBbuIiGMU7CIijlGwi4g4RsEuIuIYBbuIiGMU7CIijlGwi4g4RsEuIuIYBbuIiGMU7CIijlGw\ni4g4RsEuIuIYBbuIiGMU7CIijlGwi4g4RsEuIuIYBbuIiGMU7CIijlGwi4g4Jra6HYwxjYDZgAH8\nwL3Ad0Be8PlmYIi11he5MkVEJFShjNh7AVhruwA5wJPANCDHWnsF4AH6RKxCERGpkWpH7NbaJcaY\n5cGn7YBCoBuwJrhtJdAdWByRCsVpqalJ0S6hwVAvKqgXtVNtsANYa0uMMfOAvsBvgWustf7gy0VA\ncoTqE8ft318U7RIahNTUJPUiSL2oEO4HXMgXT621dwEdCMy3N6n0UhKBUbyIiDQA1Qa7Meb3xpjR\nwafFgA/YYIzpGtzWA1gbmfJERKSmQpmKeRN4xRjzdyAOeBDYCsw2xjQOPl4YuRJFRKQmQrl4ehS4\n+SQvZdZ9OSIiUlv6gpKIiGMU7CIijlGwi4g4RsEuIuIYBbuIiGMU7CIijlGwi4g4RsEuIuIYBbuI\niGMU7CIijlGwi4g4RsEuIuIYBbuIiGMU7CIijlGwi4g4RsEuIuIYBbuIiGMU7CIijlGwi4g4RsEu\nIuIYBbuIiGMU7CIijomt6kVjTBzwMpAOnAaMBz4F8gA/sBkYYq31RbRKEREJWXUj9juAA9baK4Dr\ngBeBaUBOcJsH6BPZEkVEpCaqC/Y3gDHBxx6gBMgA1gS3rQS6RaY0EREJR5VTMdbabwGMMUnAQiAH\nmGqt9Qd3KQKSI1qhOC01NSnaJTQY6kUF9aJ2qgx2AGNMG2AxMN1a+2djzFOVXk4CCiNVnLhv//6i\naJfQIKSmJqkXQepFhXA/4KqcijHG/ARYBTxsrX05uHmTMaZr8HEPYG1YZxYRkYiobsT+CJACjDHG\nlM21DwWeN8Y0BrYSmKIREZEGoro59qEEgvyHMiNTjoiI1Ja+oCQi4hgFu4iIYxTsIiKOUbCLiDhG\nwS4i4hgFu4iIYxTsIiKOUbCLiDhGwS4i4hgFu4iIYxTsIiKOUbCLiDhGwS4i4hgFu4iIYxTsIiKO\nUbCLiDhGwS4i4hgFu4iIYxTsIiKOUbCLiDhGwS4i4hgFu4iIYxTsIiKOiQ1lJ2PMpcBka21XY8w5\nQB7gBzYDQ6y1vsiVKCIiNVHtiN0YMxKYA8QHN00Dcqy1VwAeoE/kyhMRkZoKZcS+HbgR+FPweQaw\nJvh4JdAdWFz3pcl/gtTUpGiX0GCoFxXUi9qpNtittYuMMemVNnmstf7g4yIgORKFyX+G/fuLol1C\ng5CamqReBKkXFcL9gAvn4mnl+fQkoDCsM4uISESEE+ybjDFdg497AGvrrhwREamtkO6K+YGHgNnG\nmMbAVmBh3ZYkIiK1EVKwW2vzgV8GH38GZEawJhERqQV9QUlExDEKdhERxyjYRUQco2AXEXGMgl1E\nxDEKdhERxyjYRUQco2AXEXGMgl1ExDEKdhERxyjYRUQco2AXEXGMgl1ExDEKdhERxyjYRUQco2AX\nEXGMgl1ExDEKdhERxyjYRUQco2AXEXGMgl1ExDEKdhERx8SGc5AxJgaYDlwEeIE/WGu31WVhIiIS\nnnBH7DcA8dbaXwGjgKfrriQREamNcIP9cuAvANbafwKX1FlFIiJSK2FNxQDNgMOVnpcaY2KttSUn\n2/n9G4Z5wjyPOC41NSnaJTQY6kUF9aJ2wh2xHwEqdz7mVKEuIiL1K9xgfxe4HsAY80vgkzqrSERE\naiXcqZjFwDXGmH8AHuDuuitJRERqw+P3+6Ndg4iI1CF9QUlExDEKdhERxyjYRUQcE+7F05OqbqkB\nY0wvYCxQArxsrZ1dl+dvSELoxa3AgwR68Qlwn7XWF41aIy3UJSiMMS8BB621o+q5xHoTws9FZ2Aa\ngZsS9gF3WGu/i0atkRZCL24HHgJKCeTFjKgUWk+MMZcCk621XX+wvca5Wdcj9lMuNWCMiQOeAboD\nmUCWMeYndXz+hqSqXjQBxgNXWWu7AMlAz6hUWT+qXYLCGDMI6FjfhUVBVT8XHmA2cLe1tuzb3e2i\nUmX9qO7nYirQDegCPGSMSann+uqNMWYkMAeI/8H2sHKzroO9qqUGzge2WWsPWWuPA+uAK+v4/A1J\nVb3wApdZa4uDz2MBJ0dlQVUuQWGMuQy4FJhV/6XVu6p60QE4AAwzxqwBWlhrbf2XWG+qW5rkYwKD\nnngCv8G4fAvfduDGk2wPKzfrOthPutTAKV4rIvAfzVWn7IW11met/RrAGHM/0BT4a/2XWG9O2Qtj\nzJnAY0B2NAqLgqr+HzkduAx4kcBI9WpjzK/rub76VFUvADYDHwBbgOXW2sL6LK4+WWsXASdO8lJY\nuVnXwV7VUgM/fC0JcPY/FNUsu2CMiTHGTAWuAfpZa10ejVTVi5sIBNoKAr+O32aM6V+/5dWrqnpx\ngMDobKu19gSB0azLC+ydshfGmE7Ab4D2QDqQZoy5qd4rjL6wcrOug72qpQa2AucaY1oYYxoT+HXi\nvTo+f0NS3bILswj8inlDpSkZV52yF9ba5621GcELRpOAP1tr86JRZD2p6ufiC6CpMeac4PMrCIxW\nXVVVLw4Dx4Bj1tpS4BvA2Tn2KoSVm3X6zdNKV7k7UbHUwM+Bptbalypd3Y0hcHX3j3V28gamql4A\nG4L/rKVi3vA5a+3iKJQacdX9XFTarz9w3n/IXTGn+n/k1wQ+4DzAP6y1Q6NWbISF0It7gQHAcQJz\n0AOD88xOMsakA/9jrf2lMeY2apGbWlJARMQx+oKSiIhjFOwiIo5RsIuIOEbBLiLiGAW7iIhjFOwi\nIo5RsIuIOOb/AWHIrRIcaDE3AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11923d4a8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_distribution(phyla)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
apache-2.0
zzsza/Datascience_School
16. 과최적화와 정규화/02. 교차 검증.ipynb
1
23090
{ "cells": [ { "cell_type": "markdown", "metadata": { "school_cell_uuid": "055ab3178a6042cd8c1b1bed67bfde5b" }, "source": [ "# 교차 검증" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "5cf508ad9cfd4b0cb2e234c79e3cd000" }, "source": [ "## 모형 검증" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "8a837fee3c654352998622ac3153f539" }, "source": [ "예측 모형의 최종 성능을 객관적으로 측정하려면 모수 추정(parameter fitting) 즉 트레이닝(training)에 사용되지 않은 새로운 데이터, 즉 테스트 데이터를 사용해야 한다. 모형의 모수 갯수를 증가시킨다든가 커널 모형, 신경망 모형과 같은 비선형 모형을 사용하게 되면 트레이닝 데이터에 대한 예측 성능을 얼마든지 높일 수 있기 때문이다. 이러한 방법에 의해 과최적화(overfitting)가 일어나면 트레이닝 데이터에 대해서는 예측이 잘되지만 테스트 데이터에 대해서는 예측 성능이 급격히 떨어지는 현상이 발생한다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "5177fe7d5a7b4b88bd3155e6b69c4e54" }, "source": [ "## 교차 검증" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "32072beaf81e49579d871d9dc88edf0a" }, "source": [ "위에서 지적한 바와 같이 모형 성능을 정상적으로 검사하려면 테스트 데이터가 별도로 있어야 하기 때문에 현실에서는 확보한 데이터 중 일부를 떼어내어 테스트 데이터로 사용한다. 그런데 테스트 데이터를 어떻게 골라내느냐에 따라 모형의 성능이 달라지므로 한 개의 테스트 데이터만 사용하는 것이 아니라 각기 다른 방법으로 서로 다른 테스트 데이터를 여러번 골라내서 복수의 테스트를 실시하는 것이 일반적이다.\n", "\n", "이러한 테스트 방법을 교차 검증(cross validation)이라고 한다. 교차 검증을 통한 모형 성능은 보통 다음과 같은 두 가지 값으로 나타난다.\n", "\n", "* 오차 평균(mean performance): 트레이닝에 사용되지 않은 테스트 데이터(test data)에 대해서 평균 오차의 크기가 얼마나 작은가?\n", "* 오차 분산(variance): 트레이닝에 사용되지 않은 테스트 데이터(test data)에 대해 오차의 크기가 얼마나 달라지는가?\n", "\n", "이 중에서 오차 분산을 계산하려면 테스트 데이터 셋이 최소한 세 개 세트가 있어야 한다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "46326e3027fc4652870b2aeec56375b1" }, "source": [ "## Scikit-Learn의 교차 검증 기능" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "c4083e1d7f8e462f999da9bcf7fc65d1" }, "source": [ "Scikit-Learn에서는 교차 검증을 위해 전체 데이터 셋에서 트레이닝용 데이터나 테스트용 데이터를 분리해 내는 여러가지 방법을 제공한다." ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "60dfe864a00d4ba58f9ff0cddd4cb7bc" }, "source": [ "* data를 train set과 test set으로 단순 분리\n", " * data splitter\n", " * `train_test_split()` 명령\n", "\n", "\n", "* 복수의 test set 준비\n", " * cross validation iterator\n", " * `KFold`\n", " * `StratifiedKFold`\n", " * `LabelKFold`\n", " * `LeaveOneOut`\n", " * `LeavePOut`\n", " * `LeaveOneLabelOut`\n", " * `LeavePLabelOut`\n", " * `ShuffleSplit`\n", " * `LabelShuffleSplit`\n", " \n", " \n", "* 복수의 test set 사용하여 평가 과정 반복\n", " * cross validation calculator\n", " * `cross_val_score()` \n" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "f734e1ca3289467890c30c34b3a5b22c" }, "source": [ "### 단순 데이터 분리" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "0b0203e7ddc9457994e7e6b859109b75" }, "source": [ "`train_test_split()` 명령은 데이터를 단순히 트레이닝 데이터와 테스트 데이터로 분리한다.\n", "\n", "\n", "* 인수\n", " * arrays : 데이터\n", " * test_size : 테스트 데이터 사이즈\n", " * train_size : 사이즈\n", " * random_state : 난수 시드\n", "\n", "* 반환값\n", " * 배열 리스트" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false, "school_cell_uuid": "4c3832e557984aee8852ee4abbb8fa2e" }, "outputs": [ { "data": { "text/plain": [ "array([[0, 1],\n", " [2, 3],\n", " [4, 5],\n", " [6, 7],\n", " [8, 9]])" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X = np.arange(10).reshape((5, 2))\n", "X" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "school_cell_uuid": "070f95ebcf5d4879b71441a044ed9509" }, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 2, 3, 4])" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y = np.arange(5)\n", "y" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true, "school_cell_uuid": "90e72c84142a4fc290d08e8989af57da" }, "outputs": [], "source": [ "from sklearn.cross_validation import train_test_split\n", "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "school_cell_uuid": "338f2ee3049747cdaa037b26852a29fd" }, "outputs": [ { "data": { "text/plain": [ "array([[4, 5],\n", " [0, 1],\n", " [6, 7]])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false, "school_cell_uuid": "028786d2784b4a68ab1fd7994e0d1e66" }, "outputs": [ { "data": { "text/plain": [ "array([2, 0, 3])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_train" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "school_cell_uuid": "474efafa7f624560ba21016b9acb15fb" }, "outputs": [ { "data": { "text/plain": [ "array([[2, 3],\n", " [8, 9]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_test" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "school_cell_uuid": "89629adfb6b24c51baa49a4dd2690747" }, "outputs": [ { "data": { "text/plain": [ "array([1, 4])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_test" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "443b4419f68e4706a530e5682a5884b0" }, "source": [ "### K-fold CV" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "22487434c26f4088a9a7f156e8c447d5" }, "source": [ "K-fold CV(cross-validation) 방법은 데이터 셋을 K개의 sub-set로 분리하는 방법이다. 분리된 K개의 sub-set 중 하나만 제외한 K-1개의 sub-sets를 training set으로 이용하여 K개의 모형 추정한다. \n", " \n", "<img src=\"https://docs.google.com/drawings/d/1JdgUDzuE75LBxqT5sKOhlPgP6umEkvD3Sm-gKnu-jqA/pub?w=762&h=651\" style=\"margin: 0 auto 0 auto;\">" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "4b72b8e8fe234b1aab94d86459d72c62" }, "source": [ "Scikit-Learn 의 cross_validation 서브 패키지는 K-Fold를 위한 `KFold` 클래스를 제공한다." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false, "school_cell_uuid": "92a46e5d49074eeca371b639dd7296b8" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "X:\n", "[[ 0 10]\n", " [ 20 30]\n", " [ 40 50]\n", " [ 60 70]\n", " [ 80 90]\n", " [100 110]\n", " [120 130]\n", " [140 150]\n", " [160 170]\n", " [180 190]\n", " [200 210]\n", " [220 230]\n", " [240 250]\n", " [260 270]\n", " [280 290]\n", " [300 310]\n", " [320 330]\n", " [340 350]\n", " [360 370]\n", " [380 390]]\n", "y:\n", "[ 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 3. 3. 3. 3. 3. 4. 4. 4.\n", " 4. 4.]\n" ] } ], "source": [ "N = 5\n", "X = np.arange(8 * N).reshape(-1, 2) * 10\n", "y = np.hstack([np.ones(N), np.ones(N) * 2, np.ones(N) * 3, np.ones(N) * 4])\n", "print(\"X:\\n\", X, sep=\"\")\n", "print(\"y:\\n\", y, sep=\"\")" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "school_cell_uuid": "556dab2a12f4433088c4a56d7cade7c1" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "test y: [ 1. 1. 1. 1. 1. 2. 2.]\n", "................................................................................\n", "train y: [ 2. 2. 2. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4.]\n", "================================================================================\n", "test y: [ 2. 2. 2. 3. 3. 3. 3.]\n", "................................................................................\n", "train y: [ 1. 1. 1. 1. 1. 2. 2. 3. 4. 4. 4. 4. 4.]\n", "================================================================================\n", "test y: [ 3. 4. 4. 4. 4. 4.]\n", "................................................................................\n", "train y: [ 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 3. 3. 3. 3.]\n", "================================================================================\n" ] } ], "source": [ "from sklearn.cross_validation import KFold\n", "cv = KFold(len(X), n_folds=3, random_state=0)\n", "for train_index, test_index in cv:\n", " print(\"test y:\", y[test_index])\n", " print(\".\" * 80 ) \n", " print(\"train y:\", y[train_index])\n", " print(\"=\" * 80 )" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "dbc25e3141ff45df8d288b3a0f5f143a" }, "source": [ "### Stratified K-Fold\n", "\n", "* target class가 어느 한 data set에 몰리지 않도록 한다\n" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "school_cell_uuid": "e98009c7f37b40cd9e4bb8aa1a25869d" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "test X:\n", " [[ 0 10]\n", " [ 20 30]\n", " [100 110]\n", " [120 130]\n", " [200 210]\n", " [220 230]\n", " [300 310]\n", " [320 330]]\n", "................................................................................\n", "test y: [ 1. 1. 2. 2. 3. 3. 4. 4.]\n", "================================================================================\n", "test X:\n", " [[ 40 50]\n", " [ 60 70]\n", " [140 150]\n", " [160 170]\n", " [240 250]\n", " [260 270]\n", " [340 350]\n", " [360 370]]\n", "................................................................................\n", "test y: [ 1. 1. 2. 2. 3. 3. 4. 4.]\n", "================================================================================\n", "test X:\n", " [[ 80 90]\n", " [180 190]\n", " [280 290]\n", " [380 390]]\n", "................................................................................\n", "test y: [ 1. 2. 3. 4.]\n", "================================================================================\n" ] } ], "source": [ "from sklearn.cross_validation import StratifiedKFold\n", "cv = StratifiedKFold(y, n_folds=3, random_state=0)\n", "for train_index, test_index in cv:\n", " print(\"test X:\\n\", X[test_index])\n", " print(\".\" * 80 ) \n", " print(\"test y:\", y[test_index])\n", " print(\"=\" * 80 )" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "e389cca9f65a4c6a95c5936d83d26e43" }, "source": [ "### Leave-One-Out (LOO)\n", "\n", "* 하나의 sample만을 test set으로 남긴다." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "school_cell_uuid": "0325efaf66ad4b478286b903af2fbd18" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "test X: [[ 0 10]]\n", "................................................................................\n", "test y: [ 1.]\n", "================================================================================\n", "test X: [[20 30]]\n", "................................................................................\n", "test y: [ 1.]\n", "================================================================================\n", "test X: [[40 50]]\n", "................................................................................\n", "test y: [ 1.]\n", "================================================================================\n", "test X: [[60 70]]\n", "................................................................................\n", "test y: [ 1.]\n", "================================================================================\n", "test X: [[80 90]]\n", "................................................................................\n", "test y: [ 1.]\n", "================================================================================\n" ] } ], "source": [ "from sklearn.cross_validation import LeaveOneOut\n", "cv = LeaveOneOut(5)\n", "for train_index, test_index in cv:\n", " print(\"test X:\", X[test_index])\n", " print(\".\" * 80 ) \n", " print(\"test y:\", y[test_index])\n", " print(\"=\" * 80 )" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "7e06bb87256c4d2fb47e49b495e02347" }, "source": [ "### Label K-Fold\n", "\n", "* 같은 label이 test와 train에 동시에 들어가지 않게 조절\n", "* label에 의한 영향을 최소화\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "school_cell_uuid": "8be593f50b424978b911ba57ea98cb82" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "test y: [ 1. 1. 1. 1. 1. 4. 4. 4. 4. 4.]\n", "................................................................................\n", "train y: [ 2. 2. 2. 2. 2. 3. 3. 3. 3. 3.]\n", "================================================================================\n", "test y: [ 3. 3. 3. 3. 3.]\n", "................................................................................\n", "train y: [ 1. 1. 1. 1. 1. 2. 2. 2. 2. 2. 4. 4. 4. 4. 4.]\n", "================================================================================\n", "test y: [ 2. 2. 2. 2. 2.]\n", "................................................................................\n", "train y: [ 1. 1. 1. 1. 1. 3. 3. 3. 3. 3. 4. 4. 4. 4. 4.]\n", "================================================================================\n" ] } ], "source": [ "from sklearn.cross_validation import LabelKFold\n", "cv = LabelKFold(y, n_folds=3)\n", "for train_index, test_index in cv:\n", " print(\"test y:\", y[test_index])\n", " print(\".\" * 80 ) \n", " print(\"train y:\", y[train_index])\n", " print(\"=\" * 80 )" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "a7f299b590f64ab6a6ebb210030e6172" }, "source": [ "### ShuffleSplit\n", "\n", "* 중복된 데이터를 허용" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false, "school_cell_uuid": "7643b1bcf3b749c2b8103ae803bdf9cc" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "test X: [[80 90]]\n", "====================\n", "test X: [[ 0 10]]\n", "====================\n", "test X: [[ 0 10]]\n", "====================\n", "test X: [[60 70]]\n", "====================\n", "test X: [[60 70]]\n", "====================\n", "test X: [[80 90]]\n", "====================\n", "test X: [[40 50]]\n", "====================\n", "test X: [[20 30]]\n", "====================\n", "test X: [[ 0 10]]\n", "====================\n", "test X: [[40 50]]\n", "====================\n" ] } ], "source": [ "from sklearn.cross_validation import ShuffleSplit\n", "cv = ShuffleSplit(5)\n", "for train_index, test_index in cv:\n", " print(\"test X:\", X[test_index])\n", " print(\"=\" * 20 ) " ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "a4974220558345148bbc4fcc897a5c7e" }, "source": [ "## 교차 평가 시행 \n", "\n", "CV는 단순히 데이터 셋을 나누는 역할을 수행할 뿐이다. 실제로 모형의 성능(편향 오차 및 분산)을 구하려면 이렇게 나누어진 데이터셋을 사용하여 평가를 반복하여야 한다. 이 과정을 자동화하는 명령이 `cross_val_score()` 이다.\n", "\n", "\n", "* `cross_val_score(estimator, X, y=None, scoring=None, cv=None)` \n", " * cross validation iterator `cv`를 이용하여 `X`, `y` data 를 분할하고 `estimator`에 넣어서 `scoring` metric을 구하는 과정을 반복\n", "\n", "\n", "* 인수\n", " * estimator : ‘fit’메서드가 제공되는 모형\n", " * X : 배열\n", " * 독립 변수 데이터\n", " * y : 배열\n", " * 종속 변수 데이터\n", " * scoring : 문자열\n", " * 성능 검증에 사용할 함수\n", " * cv : Cross Validator\n", " * None 이면 디폴트인 3-폴드 CV\n", " * 숫자 K 이면 K-폴드 CV\n", " * Cross Validator 클래스 객체\n", "\n", "* 반환값\n", " * scores \n", " * 계산된 성능 값의 리스트" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false, "school_cell_uuid": "baa8622e9ef042e5bf0088551b72fab8" }, "outputs": [ { "data": { "text/plain": [ "array([ 301.58271911, 341.91498985, 410.58098438, 499.68109613,\n", " 461.00979825, 384.106544 , 434.90159273, 377.65506997,\n", " 366.60959935, 371.14031438])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.datasets import make_regression\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import mean_squared_error\n", "X, y, coef = make_regression(n_samples=1000, n_features=1, noise=20, coef=True, random_state=0)\n", "model = LinearRegression()\n", "cv = KFold(1000, 10)\n", "\n", "scores = np.zeros(10)\n", "for i, (train_index, test_index) in enumerate(cv):\n", " X_train = X[train_index]\n", " y_train = y[train_index]\n", " X_test = X[test_index]\n", " y_test = y[test_index]\n", " model.fit(X_train, y_train)\n", " y_pred = model.predict(X_test)\n", " scores[i] = mean_squared_error(y_test, y_pred)\n", "\n", "scores" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "school_cell_uuid": "3b69e154c0fa4e42a800c9b799bf6aa5" }, "outputs": [ { "data": { "text/plain": [ "array([-301.58271911, -341.91498985, -410.58098438, -499.68109613,\n", " -461.00979825, -384.106544 , -434.90159273, -377.65506997,\n", " -366.60959935, -371.14031438])" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.cross_validation import cross_val_score\n", "cross_val_score(model, X, y, \"mean_squared_error\", cv)" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "9902d917f85242f1949582aa8daa5c04" }, "source": [ "### 회귀 분석에 사용되는 성능 함수들" ] }, { "cell_type": "markdown", "metadata": { "school_cell_uuid": "609ee1e16a88478681dc0754f979da46" }, "source": [ "* `r2_score(y_true, y_pred[, ...])`:\tR^2 (coefficient of determination) regression score function.\n", "* `explained_variance_score(y_true, y_pred)`:\tExplained variance regression score function\n", "* `mean_squared_error(y_true, y_pred[, ...])`:\tMean squared error regression loss\n", "* `mean_absolute_error(y_true, y_pred)`:\tMean absolute error regression loss\n", "* `median_absolute_error(y_true, y_pred)`:\tMedian absolute error regression loss" ] } ], "metadata": { "kernelspec": { "display_name": "Python [Root]", "language": "python", "name": "Python [Root]" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
brschneidE3/LegalNetworks
python_code/ipynb/case_class.ipynb
2
8641
{ "cells": [ { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import os, sys, io\n", "import json\n", "#import simplejson as json\n", "from pprint import pprint\n", "import datetime" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "data_path = '../../data'" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "\n", "# Given the juristidction, file type and root path to data\n", "# Returns a list of case ids in that jurisdiction\n", "def get_cases_in_jurisdiction( juris_abv = 'nced', file_type = 'opinions', data_path = '../../data'):\n", " \n", " # path leading to the jurisdiction files\n", " path = data_path + '/'+ file_type + '/' + juris_abv + '/'\n", " \n", " # TODO: throw an exception\n", " # Check that the directory exists\n", " if not os.path.isdir(path):\n", " print 'not a legal path'\n", " return []\n", " else:\n", " return [int(f.split('.json')[0]) for f in os.listdir(path)]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "nced_case_ids = get_cases_in_jurisdiction('nced')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "cl_file = data_path + '/clusters/nced/1361899.json'\n", "op_file = data_path + '/opinions/nced/1361899.json'" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "\n", "# Open the cluster and opinion json files\n", "with open(cl_file) as data_file: \n", " cl_data_temp = json.load(data_file)\n", " \n", "with open(op_file) as data_file: \n", " op_data_temp = json.load(data_file)\n", "\n", "# TODO: do this more succinctly\n", "# Convert to utf8 from unicode\n", "cl_data = {}\n", "for k in cl_data_temp.keys():\n", " value = cl_data_temp[k]\n", " if k == 'opinions_cited':\n", " cl_data['opinions_cited'] = [v.encode('utf8') for v in value]\n", " elif type(value) == unicode:\n", " cl_data[k.encode('utf8')] = value.encode('utf8')\n", " else:\n", " cl_data[k.encode('utf8')] = value\n", " \n", " \n", "op_data = {}\n", "for k in op_data_temp.keys():\n", " value = op_data_temp[k]\n", " if k == 'opinions_cited':\n", " op_data['opinions_cited'] = [v.encode('utf8') for v in value]\n", " elif type(value) == unicode:\n", " op_data[k.encode('utf8')] = value.encode('utf8')\n", " else:\n", " op_data[k.encode('utf8')] = value\n", " \n", " \n", " " ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "case_data = {}\n", "\n", "for k in cl_data.keys():\n", " if k == 'case_name':\n", " case_data[k] = cl_data[k]\n", " \n", " if k == 'citation_id':\n", " case_data[k] = cl_data[k]\n", "\n", " if k == 'date_filed' \n", " date_explode = cl_data['date_filed'].split('-') # make sure date is always in this format\n", " file_date = datetime.date(date_explode[0], date_explode[1], date_explode[2])\n", " case_data[k] = file_date\n", "\n", "# Get the case text \n", "text = op_data['html']\n", "if len(text) == 0:\n", " text = op_data['html_with_citations']\n", "elif len(text) == 0:\n", " text = op_data['plain_text']\n", "elif len(text) == 0:\n", " text = op_data['html_lawbox']\n", "elif len(text) == 0:\n", " text = ''\n", " print('case ' + str(i) + ' has no text')\n", " \n", " \n", "case_data['case_text'] = text" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [], "source": [ "class Case:\n", " def __init__(self, op_file, cl_file):\n", " \n", " # Open the cluster and opinion json files\n", " with open(cl_file) as data_file: \n", " cl_data_temp = json.load(data_file)\n", "\n", " with open(op_file) as data_file: \n", " op_data_temp = json.load(data_file)\n", "\n", " # TODO: do this more succinctly\n", " # Convert to utf8 from unicode\n", " cl_data = {}\n", " for k in cl_data_temp.keys():\n", " value = cl_data_temp[k]\n", " if k == 'opinions_cited':\n", " cl_data['opinions_cited'] = [v.encode('utf8') for v in value]\n", " elif type(value) == unicode:\n", " cl_data[k.encode('utf8')] = value.encode('utf8')\n", " else:\n", " cl_data[k.encode('utf8')] = value\n", "\n", " op_data = {}\n", " for k in op_data_temp.keys():\n", " value = op_data_temp[k]\n", " if k == 'opinions_cited':\n", " op_data['opinions_cited'] = [v.encode('utf8') for v in value]\n", " elif type(value) == unicode:\n", " op_data[k.encode('utf8')] = value.encode('utf8')\n", " else:\n", " op_data[k.encode('utf8')] = value\n", "\n", "\n", "\n", "\n", " for k in cl_data.keys():\n", " if k == 'case_name':\n", " self.case_name = cl_data[k]\n", "\n", " if k == 'citation_id':\n", " self.case_id = cl_data[k]\n", "\n", " if k == 'date_filed': \n", " date_explode = cl_data['date_filed'].split('-') # make sure date is always in this format\n", " file_date = datetime.date(int(date_explode[0]), int(date_explode[1]), int(date_explode[2]))\n", " self.date = file_date\n", "\n", " # Get the case text \n", " text = op_data['html']\n", " if len(text) == 0:\n", " text = op_data['html_with_citations']\n", " elif len(text) == 0:\n", " text = op_data['plain_text']\n", " elif len(text) == 0:\n", " text = op_data['html_lawbox']\n", " elif len(text) == 0:\n", " text = ''\n", " print('case ' + str(i) + ' has no text')\n", " \n", " self.text = text\n", " \n", " def __repr__(self):\n", " return \"Name: \\t %s \\n\"\\\n", " \"Id \\t %s \\n\"\\\n", " \"Date \\t %s \\n\"\\\n", " % (self.case_name, self.case_id, self.date )\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true }, "outputs": [], "source": [ "case = Case(op_file, cl_file)" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<bound method Case.__repr__ of Name: \t Stott v. Martin \n", "Id \t 1334670 \n", "Date \t 1992-02-12 \n", ">" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "case.__repr__" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
ehsteve/ipython-notebooks
Reading HSI Obssum fits .ipynb
2
345801
{ "metadata": { "name": "", "signature": "sha256:812f6911db3213f05b4e1efc3eccc85dc59f4e59303959ea9c767ff1ffdf7fd4" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "WARNING: pylab import has clobbered these variables: ['datetime']\n", "`%matplotlib` prevents importing * from pylab and numpy\n" ] } ], "prompt_number": 87 }, { "cell_type": "code", "collapsed": false, "input": [ "from astropy.io import fits as pyfits" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "file = '/Users/schriste/Downloads/hsi_obssumm_20131217_012.fits'" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "fits = pyfits.open(fpyfits)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[0].header" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "SIMPLE = T /Written by IDL: Tue Dec 17 10:28:40 2013 \n", "BITPIX = 8 / \n", "NAXIS = 0 / \n", "EXTEND = T /File contains extensions \n", "DATE = '2013-12-17' / \n", "ORIGIN = 'sundog ' /Usually the CPU used to generate the file \n", "OBSERVER= 'hessiops' /Usually the name of the user who generated the f\n", "TELESCOP= 'HESSI ' /The High Energy Solar Spectroscopic Imager \n", "OBJECT = 'Sun ' / \n", "DATE_OBS= '2013-12-17T00:00:00.000' / \n", "DATE_END= '2013-12-17T11:37:40.000' / " ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[1].header" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 5, "text": [ "XTENSION= 'BINTABLE' /Written by IDL: Tue Dec 17 10:28:40 2013 \n", "BITPIX = 8 / \n", "NAXIS = 2 /Binary table \n", "NAXIS1 = 84 /Number of bytes per row \n", "NAXIS2 = 1 /Number of rows \n", "PCOUNT = 0 /Random parameter count \n", "GCOUNT = 1 /Group count \n", "TFIELDS = 3 /Number of columns \n", "EXTNAME = 'HESSI OBS SUMMARY ID TABLE' /Extension name \n", "TFORM1 = '1I ' /Integer*2 (short integer) \n", "TTYPE1 = 'VERSION NUMBER' /Label for column 1 \n", "TFORM2 = '80A ' /Character string \n", "TTYPE2 = 'OBS SUMMARY ID' /Label for column 2 \n", "TFORM3 = '1I ' /Integer*2 (short integer) \n", "TTYPE3 = 'INFO VERSION NUMBER' /Label for column 3 " ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[2].header" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 6, "text": [ "XTENSION= 'BINTABLE' /Written by IDL: Tue Dec 17 10:28:40 2013 \n", "BITPIX = 8 / \n", "NAXIS = 2 /Binary table \n", "NAXIS1 = 164 /Number of bytes per row \n", "NAXIS2 = 1 /Number of rows \n", "PCOUNT = 0 /Random parameter count \n", "GCOUNT = 1 /Group count \n", "TFIELDS = 4 /Number of columns \n", "EXTNAME = 'HSI_OBSSUMMINFO' /Extension name \n", "TFORM1 = '80A ' /Character string \n", "TTYPE1 = 'SUMMARY_START_TIME' /Label for column 1 \n", "TFORM2 = '80A ' /Character string \n", "TTYPE2 = 'SUMMARY_END_TIME' /Label for column 2 \n", "TFORM3 = '1I ' /Integer*2 (short integer) \n", "TTYPE3 = 'SIMULATED_DATA' /Label for column 3 \n", "TFORM4 = '1I ' /Integer*2 (short integer) \n", "TTYPE4 = 'CONCAT_FLAG' /Label for column 4 " ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[3].header" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 7, "text": [ "XTENSION= 'BINTABLE' /Written by IDL: Tue Dec 17 10:28:40 2013 \n", "BITPIX = 8 / \n", "NAXIS = 2 /Binary table \n", "NAXIS1 = 200 /Number of bytes per row \n", "NAXIS2 = 1 /Number of rows \n", "PCOUNT = 0 /Random parameter count \n", "GCOUNT = 1 /Group count \n", "TFIELDS = 11 /Number of columns \n", "EXTNAME = 'HSI_FILEDB' /Extension name \n", "TFORM1 = '1I ' /Integer*2 (short integer) \n", "TTYPE1 = 'VERSION ' /Label for column 1 \n", "TFORM2 = '80A ' /Character string \n", "TTYPE2 = 'FILE_ID ' /Label for column 2 \n", "TFORM3 = '1J ' /Integer*4 (long integer) \n", "TTYPE3 = 'ORBIT_START' /Label for column 3 \n", "TFORM4 = '1J ' /Integer*4 (long integer) \n", "TTYPE4 = 'ORBIT_END' /Label for column 4 \n", "TFORM5 = '1D ' /Real*8 (double precision) \n", "TTYPE5 = 'START_TIME' /Label for column 5 \n", "TFORM6 = '1D ' /Real*8 (double precision) \n", "TTYPE6 = 'END_TIME' /Label for column 6 \n", "TFORM7 = '1I ' /Integer*2 (short integer) \n", "TTYPE7 = 'STATUS_FLAG' /Label for column 7 \n", "TFORM8 = '1J ' /Integer*4 (long integer) \n", "TTYPE8 = 'NPACKETS' /Label for column 8 \n", "TFORM9 = '1E ' /Real*4 (floating point) \n", "TTYPE9 = 'CLOCK_DRIFT_START' /Label for column 9 \n", "TFORM10 = '1E ' /Real*4 (floating point) \n", "TTYPE10 = 'CLOCK_DRIFT_END' /Label for column 10 \n", "TFORM11 = '80A ' /Character string \n", "TTYPE11 = 'DATA_SOURCE' /Label for column 11 " ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "parse_time(fits[3].data['START_TIME'][0])" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 58, "text": [ "datetime.datetime(2013, 12, 17, 0, 0)" ] } ], "prompt_number": 58 }, { "cell_type": "code", "collapsed": false, "input": [ "parse_time(fits[3].data['END_TIME'][0])" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 59, "text": [ "datetime.datetime(2013, 12, 17, 11, 37, 40)" ] } ], "prompt_number": 59 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[4].header" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 8, "text": [ "XTENSION= 'BINTABLE' /Written by IDL: Tue Dec 17 10:28:40 2013 \n", "BITPIX = 8 / \n", "NAXIS = 2 /Binary table \n", "NAXIS1 = 86 /Number of bytes per row \n", "NAXIS2 = 1 /Number of rows \n", "PCOUNT = 0 /Random parameter count \n", "GCOUNT = 1 /Group count \n", "TFIELDS = 4 /Number of columns \n", "EXTNAME = 'HESSI OBS SUMMARY RATE ID TABLE' /Extension name \n", "TFORM1 = '1I ' /Integer*2 (short integer) \n", "TTYPE1 = 'VERSION NUMBER' /Label for column 1 \n", "TFORM2 = '80A ' /Character string \n", "TTYPE2 = 'ID STRING' /Label for column 2 \n", "TFORM3 = '1I ' /Integer*2 (short integer) \n", "TTYPE3 = 'INFO VERSION NUMBER' /Label for column 3 \n", "TFORM4 = '1I ' /Integer*2 (short integer) \n", "TTYPE4 = 'DATA VERSION NUMBER' /Label for column 4 " ] } ], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[4].data['ID STRING']" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 93, "text": [ "chararray(['HSI_OBS_SUMM_RATE: 2013-12-17T00:00:00.000 TO 2013-12-17T11:37:40.000'], \n", " dtype='|S80')" ] } ], "prompt_number": 93 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[5].header" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 9, "text": [ "XTENSION= 'BINTABLE' /Written by IDL: Tue Dec 17 10:28:40 2013 \n", "BITPIX = 8 / \n", "NAXIS = 2 /Binary table \n", "NAXIS1 = 876 /Number of bytes per row \n", "NAXIS2 = 1 /Number of rows \n", "PCOUNT = 0 /Random parameter count \n", "GCOUNT = 1 /Group count \n", "TFIELDS = 8 /Number of columns \n", "EXTNAME = 'HSI_OBSSUMMRATEINFO' /Extension name \n", "TFORM1 = '1D ' /Real*8 (double precision) \n", "TTYPE1 = 'UT_REF ' /Label for column 1 \n", "TFORM2 = '18B ' /Integer*1 (byte) \n", "TTYPE2 = 'SEG_INDEX_MASK' /Label for column 2 \n", "TFORM3 = '1J ' /Integer*4 (long integer) \n", "TTYPE3 = 'N_TIME_INTV' /Label for column 3 \n", "TFORM4 = '1E ' /Real*4 (floating point) \n", "TTYPE4 = 'TIME_INTV' /Label for column 4 \n", "TFORM5 = '1I ' /Integer*2 (short integer) \n", "TTYPE5 = 'N_ENERGY_BANDS' /Label for column 5 \n", "TFORM6 = '10E ' /Real*4 (floating point) \n", "TTYPE6 = 'ENERGY_EDGES' /Label for column 6 \n", "TFORM7 = '80A ' /Character string \n", "TTYPE7 = 'DIM1_UNIT' /Label for column 7 \n", "TFORM8 = '720A ' /Character string \n", "TTYPE8 = 'DIM1_IDS' /Label for column 8 \n", "TDIM8 = '(80,9) ' /Array dimensions for column 8 " ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[5].data.columns" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 10, "text": [ "ColDefs(\n", " name = 'UT_REF'; format = '1D'\n", " name = 'SEG_INDEX_MASK'; format = '18B'\n", " name = 'N_TIME_INTV'; format = '1J'\n", " name = 'TIME_INTV'; format = '1E'\n", " name = 'N_ENERGY_BANDS'; format = '1I'\n", " name = 'ENERGY_EDGES'; format = '10E'\n", " name = 'DIM1_UNIT'; format = '80A'\n", " name = 'DIM1_IDS'; format = '720A'; dim = '(80,9)'\n", ")" ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[5].data['UT_REF'][0]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 52, "text": [ "1103241600.0" ] } ], "prompt_number": 52 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[5].data['TIME_INTV'][0]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 53, "text": [ "4.0" ] } ], "prompt_number": 53 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[5].data['N_TIME_INTV'][0]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 55, "text": [ "10465" ] } ], "prompt_number": 55 }, { "cell_type": "code", "collapsed": false, "input": [ "file" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 12, "text": [ "'/Users/schriste/Downloads/hsi_obssumm_20131217_012.fits'" ] } ], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "from sunpy.time import parse_time" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[5].data['UT_REF'][0]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 50, "text": [ "1103241600.0" ] } ], "prompt_number": 50 }, { "cell_type": "markdown", "metadata": {}, "source": [ "start time" ] }, { "cell_type": "code", "collapsed": false, "input": [ "parse_time(fits[5].data['UT_REF'][0])" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 51, "text": [ "datetime.datetime(2013, 12, 17, 0, 0)" ] } ], "prompt_number": 51 }, { "cell_type": "markdown", "metadata": {}, "source": [ "end time (calculated)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "parse_time(fits[5].data['UT_REF'][0] + fits[5].data['TIME_INTV'][0] * fits[5].data['N_TIME_INTV'][0])" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 56, "text": [ "datetime.datetime(2013, 12, 17, 11, 37, 40)" ] } ], "prompt_number": 56 }, { "cell_type": "markdown", "metadata": {}, "source": [ "end time (as declared)" ] }, { "cell_type": "code", "collapsed": false, "input": [ "parse_time(fits[3].data['END_TIME'][0])" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 60, "text": [ "datetime.datetime(2013, 12, 17, 11, 37, 40)" ] } ], "prompt_number": 60 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[3].data['START_TIME']" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 15, "text": [ "array([ 1.10324160e+09])" ] } ], "prompt_number": 15 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[2].data['SUMMARY_START_TIME']\n", "''.join(fits[2].data['SUMMARY_START_TIME'])" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 46, "text": [ "'2013-12-17T00:00:00.000'" ] } ], "prompt_number": 46 }, { "cell_type": "code", "collapsed": false, "input": [ "parse_time(''.join(fits[2].data['SUMMARY_START_TIME']))" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 47, "text": [ "datetime.datetime(2013, 12, 17, 0, 0)" ] } ], "prompt_number": 47 }, { "cell_type": "code", "collapsed": false, "input": [ "from pandas import date_range" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 61 }, { "cell_type": "code", "collapsed": false, "input": [ "start_time = parse_time(fits[5].data['UT_REF'][0])\n", "end_time = parse_time(fits[3].data['END_TIME'][0])\n", "n = fits[5].data['N_TIME_INTV'][0]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 63 }, { "cell_type": "code", "collapsed": false, "input": [ "time_array = date_range(start=start_time, periods=n, freq='4s')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 76 }, { "cell_type": "code", "collapsed": false, "input": [ "time_array.shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 77, "text": [ "(10465,)" ] } ], "prompt_number": 77 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[6].data.columns" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 78, "text": [ "ColDefs(\n", " name = 'COUNTRATE'; format = '9B'\n", ")" ] } ], "prompt_number": 78 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[6].data['COUNTRATE']" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 79, "text": [ "array([[24, 17, 10, ..., 30, 26, 1],\n", " [26, 17, 12, ..., 29, 26, 1],\n", " [24, 16, 9, ..., 30, 25, 0],\n", " ..., \n", " [ 5, 11, 8, ..., 31, 28, 0],\n", " [ 6, 10, 8, ..., 31, 27, 1],\n", " [ 4, 11, 8, ..., 31, 28, 1]], dtype=uint8)" ] } ], "prompt_number": 79 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[6].data['COUNTRATE'].shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 80, "text": [ "(10465, 9)" ] } ], "prompt_number": 80 }, { "cell_type": "code", "collapsed": false, "input": [ "import pandas as pd" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 81 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[6].data['COUNTRATE'][:,0].shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 82, "text": [ "(10465,)" ] } ], "prompt_number": 82 }, { "cell_type": "code", "collapsed": false, "input": [ "det0 = fits[6].data['COUNTRATE'][:,0]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 40 }, { "cell_type": "code", "collapsed": false, "input": [ "data = pd.DataFrame(fits[6].data['COUNTRATE'], index=time_array, columns=['Det1', 'Det2', 'Det3', 'Det4', 'Det5', 'Det6', 'Det7', 'Det8', 'Det9'])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 94 }, { "cell_type": "code", "collapsed": false, "input": [ "data" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Det1</th>\n", " <th>Det2</th>\n", " <th>Det3</th>\n", " <th>Det4</th>\n", " <th>Det5</th>\n", " <th>Det6</th>\n", " <th>Det7</th>\n", " <th>Det8</th>\n", " <th>Det9</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2013-12-17 00:00:00</th>\n", " <td> 24</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 13</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:04</th>\n", " <td> 26</td>\n", " <td> 17</td>\n", " <td> 12</td>\n", " <td> 12</td>\n", " <td> 13</td>\n", " <td> 25</td>\n", " <td> 29</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:08</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:12</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:16</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 11</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 24</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:20</th>\n", " <td> 26</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 13</td>\n", " <td> 24</td>\n", " <td> 30</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:24</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:28</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:32</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:36</th>\n", " <td> 24</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 25</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:40</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:44</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 8</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:48</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:52</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 11</td>\n", " <td> 10</td>\n", " <td> 13</td>\n", " <td> 24</td>\n", " <td> 29</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:56</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 11</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:00</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 26</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:04</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:08</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:12</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:16</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 11</td>\n", " <td> 10</td>\n", " <td> 13</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:20</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 13</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:24</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 13</td>\n", " <td> 22</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:28</th>\n", " <td> 26</td>\n", " <td> 17</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 13</td>\n", " <td> 24</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:32</th>\n", " <td> 26</td>\n", " <td> 17</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 13</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:36</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 8</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:40</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:44</th>\n", " <td> 22</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 8</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 27</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:48</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:52</th>\n", " <td> 24</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:56</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:00</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 8</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:04</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:08</th>\n", " <td> 24</td>\n", " <td> 15</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:12</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:16</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:20</th>\n", " <td> 24</td>\n", " <td> 15</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:24</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:28</th>\n", " <td> 24</td>\n", " <td> 15</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:32</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 8</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:36</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:40</th>\n", " <td> 24</td>\n", " <td> 15</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:44</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:48</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:52</th>\n", " <td> 24</td>\n", " <td> 15</td>\n", " <td> 10</td>\n", " <td> 8</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:56</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 30</td>\n", " <td> 24</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:00</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 11</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:04</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:08</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 27</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:12</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:16</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:20</th>\n", " <td> 26</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:24</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 24</td>\n", " <td> 28</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:28</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:32</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 27</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:36</th>\n", " <td> 24</td>\n", " <td> 17</td>\n", " <td> 11</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:40</th>\n", " <td> 23</td>\n", " <td> 15</td>\n", " <td> 8</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:44</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 30</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:48</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:52</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 8</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 27</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:56</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th></th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>10465 rows \u00d7 9 columns</p>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 95, "text": [ " Det1 Det2 Det3 Det4 Det5 Det6 Det7 Det8 Det9\n", "2013-12-17 00:00:00 24 17 10 11 13 23 30 26 1\n", "2013-12-17 00:00:04 26 17 12 12 13 25 29 26 1\n", "2013-12-17 00:00:08 24 16 9 9 12 23 30 25 0\n", "2013-12-17 00:00:12 24 16 10 12 11 23 29 25 1\n", "2013-12-17 00:00:16 25 16 11 11 12 24 30 25 1\n", "2013-12-17 00:00:20 26 17 10 10 13 24 30 26 1\n", "2013-12-17 00:00:24 23 16 9 10 12 22 30 25 1\n", "2013-12-17 00:00:28 24 16 9 10 12 22 29 26 1\n", "2013-12-17 00:00:32 25 16 9 10 11 23 30 25 0\n", "2013-12-17 00:00:36 24 17 10 10 12 25 28 25 1\n", "2013-12-17 00:00:40 25 16 9 11 12 23 29 25 1\n", "2013-12-17 00:00:44 23 16 8 10 12 23 30 25 1\n", "2013-12-17 00:00:48 23 16 9 9 11 22 29 24 1\n", "2013-12-17 00:00:52 24 16 11 10 13 24 29 24 1\n", "2013-12-17 00:00:56 25 17 11 9 12 23 30 25 1\n", "2013-12-17 00:01:00 24 16 10 11 11 23 29 26 0\n", "2013-12-17 00:01:04 25 17 10 10 12 23 28 25 1\n", "2013-12-17 00:01:08 24 16 9 10 12 22 29 25 1\n", "2013-12-17 00:01:12 25 17 10 10 12 23 28 25 1\n", "2013-12-17 00:01:16 23 16 11 10 13 22 28 25 1\n", "2013-12-17 00:01:20 25 16 10 10 13 22 29 25 1\n", "2013-12-17 00:01:24 23 16 10 11 13 22 30 25 1\n", "2013-12-17 00:01:28 26 17 9 11 13 24 30 25 1\n", "2013-12-17 00:01:32 26 17 9 10 13 23 29 25 0\n", "2013-12-17 00:01:36 24 16 8 10 10 23 29 25 1\n", "2013-12-17 00:01:40 24 16 9 10 12 23 30 26 1\n", "2013-12-17 00:01:44 22 16 9 8 11 22 27 25 1\n", "2013-12-17 00:01:48 24 16 9 11 12 22 28 25 1\n", "2013-12-17 00:01:52 24 17 10 11 12 23 28 26 1\n", "2013-12-17 00:01:56 23 16 9 10 12 23 29 26 1\n", "2013-12-17 00:02:00 24 16 8 9 11 23 29 25 1\n", "2013-12-17 00:02:04 24 16 9 11 11 22 29 25 0\n", "2013-12-17 00:02:08 24 15 10 10 12 23 30 24 1\n", "2013-12-17 00:02:12 25 16 9 10 12 23 29 25 1\n", "2013-12-17 00:02:16 24 16 9 10 12 23 29 25 1\n", "2013-12-17 00:02:20 24 15 9 10 12 23 28 25 1\n", "2013-12-17 00:02:24 25 16 9 9 12 22 29 25 1\n", "2013-12-17 00:02:28 24 15 10 11 11 23 28 25 1\n", "2013-12-17 00:02:32 23 16 8 9 12 23 29 25 1\n", "2013-12-17 00:02:36 25 17 10 11 12 23 29 25 1\n", "2013-12-17 00:02:40 24 15 9 11 12 23 28 24 1\n", "2013-12-17 00:02:44 25 17 10 10 12 23 29 25 1\n", "2013-12-17 00:02:48 25 17 9 10 11 23 29 25 0\n", "2013-12-17 00:02:52 24 15 10 8 11 22 28 25 1\n", "2013-12-17 00:02:56 24 16 9 10 12 22 30 24 0\n", "2013-12-17 00:03:00 23 16 11 9 11 23 28 25 1\n", "2013-12-17 00:03:04 25 16 9 10 12 22 29 25 1\n", "2013-12-17 00:03:08 24 16 9 9 11 22 27 25 1\n", "2013-12-17 00:03:12 24 16 9 11 12 22 29 24 1\n", "2013-12-17 00:03:16 25 17 9 11 12 23 29 25 1\n", "2013-12-17 00:03:20 26 17 10 9 11 23 29 25 1\n", "2013-12-17 00:03:24 23 16 10 10 12 24 28 26 1\n", "2013-12-17 00:03:28 24 16 9 9 12 23 28 25 0\n", "2013-12-17 00:03:32 23 16 9 9 11 22 27 25 1\n", "2013-12-17 00:03:36 24 17 11 9 12 22 28 25 0\n", "2013-12-17 00:03:40 23 15 8 9 12 22 28 25 1\n", "2013-12-17 00:03:44 25 16 9 10 12 22 30 24 1\n", "2013-12-17 00:03:48 24 16 9 11 11 22 28 24 1\n", "2013-12-17 00:03:52 25 16 8 10 11 22 27 25 1\n", "2013-12-17 00:03:56 25 16 9 10 11 22 29 25 1\n", " ... ... ... ... ... ... ... ... ...\n", "\n", "[10465 rows x 9 columns]" ] } ], "prompt_number": 95 }, { "cell_type": "code", "collapsed": false, "input": [ "data.plot()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 96, "text": [ "<matplotlib.axes.AxesSubplot at 0x1083cae10>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEMCAYAAADknlzeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd81PT/x1+566Z70NIWKRQKMovsXUZRREDcCFhcCKg/\n1K8IiF9FRSzil+FWLIioLHEgCrJ6LZRtKQXKKpTRXdpe97q7/P5Ic5fcJbnkel34eT4effSSfJK8\ns9755P15D4qmaRoEAoFAaDWomlsAAoFAICiDKG4CgUBoZRDFTSAQCK0MorgJBAKhlUEUN4FAILQy\niOImEAiEVoYsxX3p0iX07dvX+Ofl5YVPPvkERUVFiI6ORkREBMaPHw+tVtvY8hIIBMK/HkqpH7fB\nYEBISAhOnDiBTz/9FP7+/njjjTewYsUKFBcXIzY2trFkJRAIBAJsMJXs378fnTt3Rvv27bFz507E\nxMQAAGJiYvDbb7/ZXUACgUAg8FGsuLds2YJp06YBAPLy8hAYGAgACAwMRF5enn2lIxAIBIIFikwl\ntbW1CAkJQVpaGgICAuDj44Pi4mLjcl9fXxQVFTWKoAQCgUBgcFDSePfu3ejXrx8CAgIAML3s3Nxc\nBAUFIScnB23btrVYx9/fH4WFhfaRlkAgEP4lhIeHIz09XXCZIlPJ5s2bjWYSAJg8eTI2btwIANi4\ncSMefPBBi3UKCwtB0/Qd//fOO+80uwzkGMlxkuO8c47x6tWrorpYtuKuqKjA/v378dBDDxnnLVq0\nCPv27UNERAQOHjyIRYsWyd3cHUdUVFRzi9Do/BuOESDHeSdxpx6jYndAxTugKDTyLggEAuGOQ0p3\nkshJAoFAaGUQxU0gEAitDEVeJfbE19eX50pIMOHj40PcKgkEgijNZuMmtm9xyLkhEAjExk0gEAh3\nEERxEwgEQiuDKG4CgUBoZRDFTSAQCK0MorgFCAsLg5ubGzw9PeHj44Nhw4bh66+/ljVgqNFo0L59\ne968c+fO4d5770VAQABUKnLKCQRCwyBaRACKorBr1y6Ulpbi5s2bWLRoEVasWIFnn33Wpu05OTnh\niSeeQFxcnJ0lJRAI/0aI4raCh4cHJk2ahK1bt2Ljxo1IS0tDTU0NXn/9dXTo0AFBQUGYO3cuqqur\nUVFRgQkTJiA7OxseHh7w9PREbm4uIiIi8PTTT6N79+7NfTgEAuEOgChumQwYMAChoaFITEzEokWL\nkJ6ejjNnziA9PR1ZWVl477330KZNG+zZswfBwcEoKytDaWkpgoKCmlt0AoFwh0EUtwKCg4NRVFSE\ndevWYdWqVfD29oa7uzsWL16MLVu2AAAJnCEQCI1Os4W8y4GiGr4Ne+rRrKws6HQ6VFZWol+/fpx9\n0DAYDPbbEYFAIEjQonvcNN3wP3tx8uRJZGVl4cEHH4SrqyvS0tJQXFyM4uJiaLValJaWAmAGNgkE\nAqExadGKuzlhTR6lpaXYtWsXpk2bhpkzZ6J37954/vnn8corr6CgoAAA0xPfu3cvAKacW2FhoVGR\ns1RXV6O2thYAUFNTg5qamiY8GgKBcCdBkkwJ0LFjR+Tl5cHBwQEqlQo9evTAjBkzMGfOHFAUhZqa\nGrz33nvYsmULbt++jZCQEMybNw8vvfQSAODZZ5/F77//DoPBgLS0NFRXV6NTp04ATMcdFhaGa9eu\nCe6/JZ8bAoHQNEjpAaK4WyDk3BAIBJIdkEAgEO4giOImEAiEVgZR3AQCgdDKIIqbQCAQWhlEcRMI\nBEIrQ7bi1mq1eOSRR3D33Xeje/fuOH78OIqKihAdHY2IiAiMHz8eWq22MWUlEAgEAhQo7vnz5+P+\n++/HhQsXkJqaim7duiE2NhbR0dG4fPkyxo4di9jY2MaUlUAgEAiQ6cddUlKCvn37WgSMdOvWDQkJ\nCQgMDERubi6ioqJw8eJF/g6IH7diyLkhEAgN9uPOyMhAQEAAnn76adxzzz14/vnnUVFRgby8PAQG\nBgJgQr3z8vLsJzWBQCAQBJGluHU6HZKTkzFv3jwkJyejTZs2FmYRiqLumARL9i5dtnHjRvTv3x9e\nXl5o3749Fi5cCL1e31jiEwiEOxxZaV1DQ0MRGhqKAQMGAAAeeeQRfPjhhwgKCkJubi6CgoKQk5OD\ntm3bCq4/a9YshIWFAQC8vb0RGRlpH+kbCbZ02ZgxY1BWVgaNRoP58+fj+PHjWL9+veLtVVVVYe3a\ntRg0aBDy8/MxefJkfPzxx1i4cKHVdTUaDQAgKiqKTJNpMn0HT2s0Gnz33XcAYNSXYsjOVTJy5Eh8\n++23iIiIwNKlS1FZWQkA8PPzw8KFCxEbGwutVivYE29tNu6OHTsiLi4OY8aMMc47efIkBg8ejLNn\nzyI8PBxLlizB9u3bUVNTg6lTp2L16tXQ6/Xw9/dHbW0t3NzcQFEULl++bFEFZ/Xq1YiPj8fOnTsF\n99+Szw2BQGgapPSA7EIKn376KaZPn47a2lqEh4djw4YN0Ov1eOyxxxAXF4ewsDBs27bNbkK3NLil\ny9atW4eMjAycOXMGDg4OePLJJ/Hee+9h+fLl2LNnD2bMmIFbt26JbishIQE9e/ZsQukJBMKdhGzF\n3adPH5w8edJi/v79++0qUEuGW7osNTUV3t7eAIDFixdj+vTpWL58udWe8vr165GcnGyTyYVAIBCA\nll667N2GD3bS79jP5NDQ0mW//fYb3nzzTRw4cAC+vr52k4tAIPy7aNGK255Kt6FwS5etWLECaWlp\naNeunUU7Mc+aPXv2YPbs2fjrr7/Qo0ePxhaXQCDcwZBcJSLYs3TZwYMHMX36dPzyyy/o379/0x8M\ngUC4oyCKW4RJkybB09MTd911Fz788EP85z//wYYNGwAAK1asQOfOnTF48GB4eXkZw/4BJpp02rRp\n6NSpE3x9fZGTk4Nly5ahrKwMEyZMgIeHBzw8PDBx4sTmPDwCgdCKIaXLWiDk3BAIBFK6jEAgEO4g\niOImEAiEVgZR3AQCgdDKIIqb0CDeeAPYvr25pSAQ/l2QwckWSGs6NxQFjBwJJCQ0tyQEwp0FGZwk\nNCqt5B1DINwxkB53C6Q1nRs2UJQV99dfgaoq4Mknm08mAuFOQEoPEMXdAmlN58Zccbu5MYq7lYhP\nILRYiKmEQCAQ7iCI4hbA3qXLtmzZgm7dusHLywv+/v546KGHkJ2d3VjiNytVVc0tAYFw50MUtwBs\n6bLS0lLcvHkTixYtwooVK/Dss8/atL1hw4YhMTERJSUluHHjBtzc3PDaa6/ZWWoCgfBvgShuK3h4\neGDSpEnYunUrNm7ciLS0NNTU1OD1119Hhw4dEBQUhLlz56K6uhoVFRWYMGECsrOz4eHhAU9PT+Tm\n5qJ9+/bGepw0TUOtVgumhCUQCAQ5EMUtE27pskWLFiE9PR1nzpxBeno6srKy8N5776FNmzbYs2cP\ngoODUVZWhtLSUmO9ycOHD8Pb2xuenp64efMmVqxY0cxHZCfccwCnsuaWgkD4V0EUtwK4pctWrVoF\nb29vuLu7Y/HixdiyZQsAiNrBhw8fDq1Wi8zMTDg6OmLBggVNKXrj8Xow8PD05paCQPhX0aIr4ECk\nmowi7OiX1tDSZQCj/N9//33cd999WLt2rd1ka1bcc5pbAgLhX0XL7nHTdMP/7AS3dJmrqyvS0tJQ\nXFyM4uJiaLVaY8UbsdJlXOrq6uDm5mY32ZodSt5Li0Ag2IeWrbibEXuWLvvpp59w69YtAMCNGzew\nZMkSPPzww018RPanuLj+R3Bys8pBIPzbIIpbBHuWLktLS8PQoUPh7u6OqKgoDBkyBB999FFzHp5d\nEPLZrh+LJRAIjYjskPewsDB4enpCrVbD0dERJ06cQFFRER5//HHcuHEDYWFh2LZtG7y9vfk7ICHv\nimkt5yYnBwj+hjEN0e8w8gYFAXl5JOSdQGgodgl5pygKGo0Gp0+fxokTJwAAsbGxxt7m2LFjERsb\nax+JCa2Ck2fKLeZ16sT8d3dvYmEIhH8Rikwl5tp/586diImJAQDExMTgt99+s59khBbP6bR6O36N\nSUuPHs38r6hoBoEIhH8Jinrc48aNQ//+/bFu3ToAQF5eHgIDAwEwg3J5eXmNIyWhReLkWH/7qPTN\nKwiB8C9Dth93UlIS2rVrh4KCAkRHR6Nbt2685RRFyXKFI7Q8ysvPIivrE3Ttuk7Rem5uFFAEQF3T\nOIIRCARBZCtuNrdGQEAApk6dihMnTiAwMBC5ubkICgpCTk6OMR+HObNmzUJYWBgAwNvbG5GRkQ2X\n/F+CRqMBAERFRTXadHb2NwgO3oyuXdcpWr97NxVwCHDIHGWU98YNTf2vxpOXTJPpO3Fao9Hgu+++\nAwCjvhRDlldJZWUl9Ho9PDw8UFFRgfHjx+Odd97B/v374efnh4ULFyI2NhZardZigJJ4lSinqc/N\n1asLcOvWx4iKUrbPfUm3MX5/AJwuTkfN5h8AAEuWAMuXM8vJ5SUQbEdKD8jqcefl5WHq1KkAAJ1O\nh+nTp2P8+PHo378/HnvsMcTFxRndAQmtD5rW2bTeqasZAIDa8F852zItr60FnJwaJBrhDqOg4Dek\np7+MIUNuNbcorRpZirtjx45ISUmxmO/r64v9+/fbXShC02Kr4n7z2iCAAuBYKbj86FFg1CjBRYR/\nKefPT21uEe4ISOQkATRto1cIrZZcLDPvFoFAUAhR3ALYu3QZl7Fjx0KlUsnOJtgU2Nrjhkp6PT3x\nErQ7en0lzp17BBUVF5pblAZRWLinuUVo1RDFLYC9S5ex/Pjjj9DpdC3ObdLWHrdDWUeBbZl+e3jY\nKhFBDK1Wg9u3d+Dkye7NLYpNODsznZqzZyc0syStG6K4rWCP0mUAUFJSgvfeew8fffRRi/OmsbnH\nrXeWXOzQsrO9t0ooSto81dLx95/S3CLcERDFLZOGli578803MW/ePGOkaUvCZhu3qk5yMTGVNAat\n+5HldhJqa2+LtjMY6qDXC6SfJABo7XdBE2Nr6bJTp07h6NGjePnll5taZFnY2uMOp8ZJLm9BZvw7\nkpqarOYWQTFqtcl+duRIgGi7Cxdm4sgRUlBbjBb9MUvVRxU1BLo+Qske2FK6zGAwYN68eVizZg1U\nKhVvnZaCrYp7QMgAXCr92mxbpt+kx90YmE5wa+yRqlSustpVVp6HXl/SyNK0Xlq04ran0m0o3NJl\nK1asQFpamjENABfzgcfS0lL8888/ePzxxwEA+nptFhoaip9//hnDhg1rfOGtYKvi1hukNTNR3I0L\nRd25H8wU1aJVU7Nz5175BmKv0mXe3t7IycnBmTNncObMGfz1118AgOTkZAwcOLAZjkwI2zSsgZa2\nhRBTSeNy/Hh4c4vQYDQaChkZ/zVOFxbugUZDobw8xbhcq01oLvFaLERxi2Cv0mW5ublo27at8c/f\n3x8URSEwMBCOjo7NeYhGbB2c1Bv08KnpA3X2EN78Dz9k8nKTHnfj4OMT3dwiNIj27d/gTRcU7DD+\nLis7ZdG+rIzUNDWHfI8IkJGRIbnc2dkZH3zwAT744APB5XFxcYiLixNcFhYWZjSXtBRsVty0ASo4\n8Kq8szZutZr0uJsCmta3OhdBiuJ3WAyGGs4yyxgHm72e7mBIj5tg84NhoPVQwQE0+AOtFAXs3w98\n8409pCPw4Z/rhATpvpdGQ+GffwY1pkCK+OabJISH8zs81dXXoNFQ9WaTtyzWqam50VTitRqI4ibA\nVhu33mDZ4+by888NkYkgDoW77losu3VZ2YlGlEUZsbEHFK8jZD75t0MUN6EBphI9VJQDzHuBhMbH\n0VHcB/pOw+bI3jsYorgJyM2txO+/K1/PQOuhhqOgjZvQOBQWlmDTputQqUyJzjUaCrW1BcbpyspL\nRtMDt01Lih0oUeCiXVZ2igxQmkEUNwHbtmVjzRrl65kGJ1uOQrjT+f33Q/jf/y6jXbvnePPz87cY\nf1+8+LTgujRd26iyyeGZZxh7++XLC9G9+3bRdi4uYbzpS5dmN6ZYrQ6iuAnQ621z/2AHJwH++i0s\n+eEdBet1oVI5m803Pcrmy1hagsnBz68NAECn80Lbto+Iths8OAOOjv6cOaRzwIUobkIDFLcBasq2\nHjdNA4mJNu32X01lZTUAy5QJhYV/AgCqqzOh1WoE183JEXZRbVoYud98802sW7dO9lrl5cnELZAD\nUdwEmxW33qCHCmpRrxIprlwhZc1s4f33mSCwtLQ0RER8ZZxfVLQbAHDsmHgRj/T0+Y0rnEJmz54N\nF5cHLeZ36fIFAKBnz98REmKS+fbtP5pMtpYOUdwEGAy2fYYyPW5Hnh+33PGvFhaD1Gqoq2PMHbW1\ntQgOfkGybXDwHERFtSwTg/n90bXrep6MffseRkjIXACAl9dQdOmyhrOudBrhfxNEcQtg79Jl3333\nHdRqNTw8PIx/iS3ITqDTKR+00uur0cHrOpzVsOhxt3Qbd2npKdTU5DS3GDbB2rgPHTpksSwz8xOz\ntpYpFaRyYDcHtbX8e4+WyH9TV5ff4P1lZ6/DrVurUVdX1OBtNSdEcQvQGKXLhg0bhrKyMuPfyJEj\n7Shxw9DplA9anTzZHc/3+xEx3Y/CloGj5vRMS04egKNHg5tPgAYwezZTQWb+fMaE4OtrKgFmbgpp\n2/ZJAICz813GeVI5sJsDNjumm1s3uLp2hZtbN9G2V6681KB9lZWdxuXLs3H16mtISvJr0LaaG6K4\nrdDQ0mU5OUzPriX50JpD08pvg+pqJp+Lv2u5TTZugm2MGNGHN92791/o0uVLwbZeXoMBAEOG3EDP\nnjsbXTa5zJ07wvj76tWrAICBAy9g0KCLcHKyfLG4u/ezmGcLOt2dk99b0ROr1+vRt29fTJo0CQBQ\nVFSE6OhoREREYPz48dBqtY0iZEvA1tJl7dq1A0VROH36NAICAtC1a1csW7bMLommaJo2vhAa8mKw\nZXCS/QynQPG8SuSK0dLNKS0V7nU2/bZ+L7WU3N223af2GRBpaUW6G4Kiq7l27Vp0797deAJiY2ON\nKU3Hjh2L2NjYRhGypWBr6bKRI0fi/PnzKCgowI4dO7B582asXLnSZjlu3PgQSUltkZCgQkKCChoN\nhYQEFVJTJyAlZbTi7en1yh8mP7+JAIBQj9vg+nGvbxOBP+tMaTvNIzI1GgrFxRrF+2sMrl9fJrut\nRkPh9OmWY94CAJVKBYqi0KZNH4tlvr4TedOurl2Mv/PyNje6bFKYK1AhhUpRlDHfvZ/fZON8bjSo\nUhwcvHnTZWX/2Lwta2g0VKPa0WWndc3MzMRff/2FJUuWYNWqVQCAnTt3IiGBSXIeExODqKgouypv\nDaVp8Dai6KgGb4PFltJlANCxY0fj7549e+Ltt9/GypUrsWjRIpvkKCk5jLq6Aov5RUV7bNqelOxi\ntG37BG7f/o2Z4PS4i1VXkK4/gF27gAceAM6cAaaYFfauqroElSrKJlntSXHxfoSFWWajE6OkxHJA\nsOmxfMl6ew9Hly5f4MqVeQAg6Eni5hZh/F1WdhKBgdMaT0QZ0DRttQdcUlKCgIAAdOz4Lm7ceK/B\n+zRX3NXV1+HhYR8zjBA6XQkcHX0bZduyFferr76KlStXGiu7AEBeXp6xanlgYCDy8vLsKpw9lW5D\nsbV0mRgNMW3Y+7PXlh43DzMbtwE61NV7btWKOKyoWsCXO03XWG/USlASFSnkbdISsaVD0bJovHEt\nWY/Prl270LZtW/Tt21dU4VAUdUfZkOxVugwAdu/ebXypXbx4EcuWLcODD1oGHnDRaCjodGUW88+c\nuQ+FhbvscowstniVcHmxB/+TMMeQCk/PtvD1zUF9YSAely/PQVZW898rpaXHcOWK9aAU82RNDflc\nbyycnORXRL916yPU1SkfjyovP2c8fo2GQnX1LcXbsKY/uHqka9eugjqlqGifrH3l5f2E8+efEF1+\n/vwjdnUL5Z4bALh1a5Xdtm2OLMV95MgR7Ny5Ex07dsS0adNw8OBBzJw5E4GBgcjNzQUA5OTkoG3b\ntoLrz5o1C0uXLsXSpUuxZs0aaOxQvb2xsVfpspycHBw8eBB9+vSBu7s7Jk6ciIcffhhvvvmmVRnq\n6gqg0Wh45ys+/m+kpJjapKTAYprb3nx9oeniYihqz51OSQHCyzgvmAzmT6UqQEhIOpKSLNtz5T14\nUNn+7DHN3f+ff36iqL25/E0hL3f6woXr6N3bCxMmTOC1CQh4GEOG5ECn+0N0/WHDio3y19RkKt5/\naWkS7/grK9MUy3/rlhZZWcxL4/ZteT7lGo0GI0aUA2D2vWvXWln7y83dgH37thqnaZpGSgqQnz/H\n2H7fvm12vT7c85Od/bmi9TUaDWbNmmXUl1JQtMJv9oSEBHz88cf4448/8MYbb8DPzw8LFy5EbGws\ntFqthY2booTTSYrNJzDnJj4eGDjwCtzcOvOWyentKY2WGzqUwtGjysw3eXlbcOGCyU7K7pN6l5Ev\nfhTw8suHUFIyHDdvmtbjyj96NI2aGsDJlKG0SUhMdIXBUG2ctna+hM55c0Ukbtr0X8TFfYNBg2bh\no48+AqDsurHH0r9/CtzdLQc1pcjOXofLl01Z+nr1+hN+fvcr2sZ//hOF6moan3/OjI3J+Upnj4+V\nPShoFrp122B1vZSUcdBqDxivVVXVdaSkRKFr13VITR0PAOjTJx4+PlGKjkFYRgMSEixLyDXkPpHS\nkTZZGtmTvWjRIuzbtw8RERE4ePCgzYNtBGFOnOiC6mqmZ3Tr1hpZSlspen1Vo9aGpGnAYNDhxInu\nFvLHx1M4coRq8mg+iuIP7ZSWCleIuXp1keg5z8xcKzi/KaAowM3NjTNN4dKlS4Jt58yZg8rKSov5\np05FKjaXcJU2AJw9OxEpKaNRUPCLou0ohaIoZGdnG6dzc7/D0aPtYTCIm/jOn38UWq15tR1GCarV\npnN3+bJ02gA55OdvF1TaQMO8YKRQrLhHjRqFnTsZZ35fX1/s378fly9fxt69e+Ht7W1lbYJSCgqY\n+l9Xr75qsczFJRyRkYno0OFtuLtH2rT9qqp0m/OGZGj9rbSg0KcPoNeXoLLygmgrrfagbQLYiLt7\nJLy9xxinr19/V7DdrVsrRLeRnv6K3eVSwpIlS3jTX34pHITz9ddfIz093TjdsaPJBbK09GiD5dBq\nNTh//mHZ7c29SVauXAlXV1er6/3yyy/o2fM343RNTSb0+lLR9uxzYw5FUfD0HIo2bXoBAKqqBAZh\nFJKW9liDt6GUFjC2T5BGrDuswuDB6fD2HoGOHd9F//6nbdo6RTna3OMuqGhjtY1eb9nDbX4ohIW9\nw5uWQ/fuWxtHHBtwcOCf0+rqapGWfHOEj894zpLm8drgWkdef/11Y/Qkl27d+KHvtbW18Pfn+5VK\n5TURpt6cR1EID/9Y4bry6dGD/wXSGCZhorhbOFev/kfwc0uOS2BZWYrR1CIObaPiNq/tzuDpAHT3\nrG9BU7h+HUhJiZLcUlra47hy5WUYDE3lnseXvKjoT6Snvwadrtw4z2CwzERHUfzP4YyMpS1mnObr\nr7/GE088gbS0NHTp0oXnndG7d29j7mtuTuuzZx/AoUPeOHPmPty+vQs6nWUPtrz8DHJzf8CFC09J\n7p/xMrF2rwH5+Z2xc+cKnpuokFeTk9nAx1tvWfrbHzkSANaL4+LFZ1FSkoTa2nxcvvyihASU2X8g\nKSkApaUnJeUuLPwLJ050R0rKaJSXnwEA6PUVIgFv/Oe1uHiv5La51NbmQ6OhUFOTLdmOKO5WSNu2\n03DPPZY3Wpcun/Gm//mnL86dmyS5raKiv2w2lQgprTnhwOd9md8URePiRaC8PIXXRqXysVgvK+sz\n5Oc3ZY+WgkrlYpzKzFyNrCyT3bqggF9Wy909Er6+/IG4GzfeRV1d09rnub1M8+jbrVu3okePHjzT\nCMvs2Yx92jzgRK8vQXHx3zh3bhJu3rQMnjt1KhIXL85EXt4mq7JJ5QJn+fHHONy8OYgXURsSEoLH\nHnsM8+fPx7x58xAaGoodO3bwCi1UVVVJbjc3dz1Onx6Oy5fnIDv7C6tyeHubomDr6m4jOXmgZPuz\nZyeisvICtFoNTp1izJI3b34kWLTC1/c+9O1rMkOlpt5nVR6W5OShAIBLl56TbEcUdwuFmyTfnO7d\nf4KHh6VNOyDgcTg48LOecb0nhDAY6mw2ldAAjmXz7ZtyjA6dOhVh9Gga48fzH8amzrc8fDjfT57b\ny9brTb3vUaP06N//NNRqVwsvgebIAcL2pF9//XXF66pUjrxsgVzkVpgZOPAK+vdPVbxvLo6cGCCV\nSoWtW7dizZo1+Pzzz3Hr1i107twZzz0nrbyE4V8fJ6dgwWUqlTNGjWqYqci8hueoUXpERdFQq13g\n5TUYLi7hirfJXltrz0KT33UlJcd4n6QEYexVpqmy8iJycuJEP+mLiv6ETqcGYL23ZAkNlZni8uCY\nXj/+eBzmz7f8bGVfFHpPfgBHfv4WlJQ0fMBMLuZK98aNd3Hp0gtISRnL8zaQUs62pxmoQU1NFvT6\nSlRWXkZ+/nZUVl6xaVty+fjjj+vzXwu/Xm/d+gi3bq1GXt6PgmYTFmbMomFK76gNl/mXX6x7rxjT\nMBgxN4vpUV7O6J+GBAxmZX1u8YVifp+o1aYxIINBXs77qqr0+m0J1w1laXLFffr0EBw7FtbUu211\nsEmcLOdLmz6EwmwvXXoORUV/C7YuKTmMwsJXANwUXC61Hxo08qt68OYO4ziaODtX48EHTZ+trq5d\n0KlTLKO4vTNgeDmCt25x8X6cPj200WsLsi8xIYWck/ONIi+XCxdm2CRDRsZbOHo0FJcvz8GJE12R\nlvYYTpyIsL6iGd9//73stgsWLMD7778vOTB39epruHBhBs6eFb7/AMDJKQguLp0UyckSHMz01Otd\n0K3C7XU//PDD8PQcpmh/Li4djL9pmsbEiTfxxBPC0ZQVFRdlb1dObnDueU5Le1L2tgHAy2u45PJm\nMZXodIXNsdtWhYtLB0RF0cZP80GD0hEVRaNXL/G8ylI9CIPB0peXRacTjni1Bg2gRu+PcpkWjkGD\nLuOuuxYZMeCnAAAgAElEQVQyilvN9ED8/S2VpHJvAVuQ19vq0OFti3lRUTQcHW07Zyy1tUw1l5qa\nrAZtZ+bMmTwfZ2vk5eWhbdtHeBn3hKiuvm4xz9//IXTrthFqtQscHDx496dcwsKUdbXXrVuH1atX\nG6fvuecwoqJo9OuXLLleVBSN3r33QqWy9HzKzDQNonbp8jlniXiHITRU2v2T62bJ4usbbfxdU6Ms\nPYCTU6DkcmLjFsDepcsA4Nq1a3jggQfg6emJgIAALFy4UJFMDfVeqK3Nh05XWv+/DDpdCerqiuu3\nLRw8YE2eynJ9vfeCsnWZwVCq/rflcbH2ZTbAwmDQgaYNxv/M/g319vka6PUVgl4gYtTUGKDT6WSd\nUzEzCdfDhNm/vE9hg6EOen0ldDomv0ttrXylC7CZKNUW8+RSUVFRn7xJep26ukKBl4p9PWjKLFPx\nCMLtkJiCieTIYn5jMusUFBQY3Se5X3cNSb5lzeVVpyux+iWp13M7V9KdF6K4BbB36bLa2lpER0dj\n3LhxyMvLQ1ZWFmbMUPaJ7egot9SS8A195cpcHD7shSNHAnH4sCcOH/ZGUhKTctJgUO5nvXVrIpbP\nzcG2ZfK+ebn5oD/7DICx6o7lAE5Ski9KSo4hMdERWu1hJCY64vTpkUhMdMSZM0wv5tixTkhMdEJi\nogsOHXJHYqL8uPmhQ48iIGA0li1bBl9f6RF/b2/h/OYhIS8bfzP7dza+CKVITHTCoUNtjInCKivl\nf56zJCRk8fLLeHp6WrR57bXXAADPP/88b/5PP/2ESZMmwd9fOsmZwVCFo0dDzebSkPpSETtXYnh6\nAvVZoSUZMmSI8XebNm2QnJwMZ+cQmXsxPQ/XrjHmwOzsbGPQj4fHAOPyhihuT8+hksurqi4hIUH8\nOauquopDh0xfB9ZexkRxW8Eepcu+++47hIaG4pVXXoGrqyucnJzQq1cv2TIwn+aWLnSW8B+qdu3k\njcrb0uPOz2fCpfNu3ODN/+GG8C01aJApQi01FQDNjp4zJqEuXfguXOwgDZsMqbQ0CYApyrKmhr9f\nWzh9+jR6995t/OTv1o1xeWOno6JontsYlw4dFlvM0+tldiFFCAyMkd22osL0293d3VgNif373//+\nB5qm8c033/AqJQHAwYMH0a7dM7zjtIZK1UZUmURF0QgMnImgoFkyJKfQr99PximB2BsLBg7ku+pl\nZWXBySmQJ7/5H8D21E0yl5RYDrh6eQ3G0KEF9e2lOzDh4at4Ob1Hjqzj3CcjBNcZLePFBIBXdCEo\nyHoHkShumTSkdNmxY8fQoUMH3H///QgICMDo0aNx7ty55j4kI7b0uB0cTMqe+7qg5H5O1/e4TT7k\n/PVYm3xjpgq23HbDBkWV5MRuTmzPcy3d45ZrSqE4hTfE8rVLSiHbNMSX1dmZ/1XGlg9kzV7mAVaC\nW6ScOL/teW8q2xZR3AqwtXRZZmYmtmzZgvnz5yMnJwcTJ07ElClTUFcnbpfl5ia+du0annrqKYuc\nxeZ/Tk5+GDHC+ue6OTU1ynvcHh6m/BITTWMwcKItP9vNYWIpmBuVDZpzcQnjtWHd8dLSLD0A7JW4\nx9y9zNlZ3CUyMzPT6oN6/Hg4uDmZhf6ksa6Q9u5lzAZr1lhtKkptbS3i4+MVrWPeexVoYZMsc+cq\nrz86ZcoUq9fi9OnTCAubDK7M3M4GM810WFQq62a2xYv34a67XoO39yjB5cnJyRbP46+//mrRTqOh\ncOyY5X2SnDzArKX0vdDSkkjwsMcDas/0m7aWLnNzc8OIESNw7733AmACJ5YtW4aLFy/KMplcvnwZ\nmzZZj1wzh6YZE0Tbto+DpvXIyVmHjIwliIxMREoKYwIYOPAyVKrjiqMnPTzchOcbOmDD9VRsvQXs\nGVGNt9+modHwHxiuSbZOZwCggp/f/Rg+vAyVlWlITh6kTBjAIqpRirZtnZCfb9nV8/EZg5EjhbuA\nQvk0Ro6sRV1dPs6dexhlZcflCwvmvFOUIxwcPEBRDsjP3y6rNFpiIvOAb9gAfKww3caePXtw332M\nTX/fvn0YPdpkkx45shY0rasP2DKApvWgaQNUKidQlCOOHg0GYL3cmDXYfk1QEFCfyl8WOp0OWVlZ\n6NChg/XGAP755x+UllbwOlJ6vR4hIY744oufMYVTT0+tbgNHR39IKcuffz4PAOjefQsuXHBAfv5m\ncF9WJ05YZpjcsWMH0AUooSLgRZtMhdXV10T306XLlygvt14Ls0Ur7ubKeSxEQ0qX9e7dG0lJScZp\npR4iDXlYKMrRWPeO7VG6uJgi59zcuoCmhdOaSiNSyQSAngZqDICzszNqay3LlDGHw6xfW6cH++Hn\n4OCuqJILf5vyB5Y8PR0EFTfARBYKIXTNmCjEELi6hitW3G5uXXjTYvs1R6djzpVETilRuPk/zO8p\nZv+OUKvFMvWxuaHF70UlJgwHhZpHrVYjODiYN0+qbqXQfL1eD2dniuf1xW6DawKRgqJUHFs4xZlv\nub/aejuQQYFhQ/z88yGmEhHsWbpsxowZOHbsGA4cOAC9Xo81a9YgICAAd999tyxZ2F5SQ3FwYLq6\n5oMwBoNtt4Haiq6hYcDxen0WFxdn/ITcu5cCtJ2ApYAmkd/Vl2NnFEKu4gMAFxfT8bIyCSU6Ki4u\nxqhRo0BRlLF3yrbn1leVMrEow7ric3VlEnFVVgIeHsq27uJiys2yfPlyUBRl/AqUw/33H0RQ0HTj\nOXj55Zc5S5V0LmiY6WBQlPDfM8+Y2qjV/HuDrXLP/cvIyIC/v78xcGfUKKbDtG3bNnz55Q9Qqyne\neWC3UVcn1z5PoXv3TRg9mr//OXPmWLTdvn07sBRIOOxiuSER1GovfPZZMo4ckfY2anLF7eQUjPDw\nxqvFZi/sVbosNzcXERER+OGHHzBnzhz4+vrijz/+wM6dOy1Sc3L59ttvJeV7+eWXsXz5coSHM+50\n//3vfwVa8W9GP7/JGDQoHc7OIejRYweGDGH8dG1R3DRNo2tfy7Bc7h6r60zZ/sTyTqxZa64wGVnc\n3HqgXbsXEBLyMhwdxYMROnX6CG3a9IZabd22zuLoaKlkKrhuGvWkpqYiMTFRcBtHjhwx/u7Y8V10\n7LgMXl7CHihcQkNfQd++SQJL5Cm+6GjTuuUKM0cMHjwYcXFxvHlsh8M6FLKy+LllPvvsM5G21vn7\nb+CgjADVDZxCNxRF4c8//5Rs/9dff6Gw0BTgV1bG3F8vvvgivvtuO1Qq4O6778bnn3/OW6+01GC3\nTI/m9WS/+PUeRESsQ0iIdH3T8PDV8Pefgs8+S8aXX0pfl2bocdNo27bpE48rISMjA5WVlSgtLYVW\nq0VSUhLmzp1r/BxydnbGBx98gKtXr6KkpARpaWl46SVTCGxcXBxu376NoqIiBAUFAQCmTp2KK1eu\noKSkBAcPHrTa25byGV+7di0++eQTLF68GFeuMPkthBU3/xOOoii4ujKKPiDgITg7s90e2yxmFEVj\n3COP8udxVbeaeWik7Oc6kVSuvXr9jq5dv0KXLp+gU6flxvlubvw8zXfdtQChof8HpcEhkydH8ab1\nAkKqJErRc8c0VCpndOiwBH37Wvf96tx5Nby8xHx+rR+Dg4Ptni8UReGZZ55B165dbd6GNNblp+vd\nQL29gdGjAWfplBwW3H+/9FiG2DVjr69azex/3rx5Zsvt5yFiPihZp1cjOPg5dOkiPaIcGvp/ss2i\nzWQqaXlVslsT3J46e6GFLviZM/m4ckW6ijVzQ9tmngAsP1/Tjmvx4zMAPgLGDvcEY88Uv95VWn9Q\nFIUXX3zRzMvDtA43BJ6bilUot7J8ufm3vp+fHyiKwqOPPorU1FR89NFHGDlSvAf9yCOPoKamqfKH\ni0NRgEIHEQvlZu4J8csvv6CsrMyYB2XRokWIjhZOOkVRFGJiYnDiRC4yM+WlsuDeqm2s1+IARQFF\nRdbbAZYKmZ1XXB+xlJYmPDgwdWpu4+VWzzpivQ0AgGIGNCFjvIBuZMx3kZQURFdXZ1nMJ5hgz822\nbdtoMN0YGgBNURS9cuVKurKyktf+999/p2mapt9+ezHvvAKgQ0P9JPd16tQpGviDVno5vvhiLt19\nkBP9wcbvLfbZkL+amlw6Ph50ZeU14zZ1ukq6sHAPXVx8iK6pyacvXnyOrqi4SJeXX6Bpmqazs+Po\nCxeeli17ZKQHvWPHqgbLumvXLottl5ScpM+cmUBnZn5Bx8eDPno0nI6PB33p0hy6oOB3UZlycr6n\n09JmWJV9zpwfaH//PTTjn2H6U0JOTo7VY3v//feN11Xu+Rg7trfVfQ8e/A09YMAPxunsbNriWIT+\nnnrKtI3Tp0/Tffr0sfm6sQwcOJA3Pzv7rKjcTz7ZS9a2V65cSdM0TW/YsEFwnwUFf9CZmZ/RqalT\n6IQEN/rYsa50fDzoU6cG8c71009HSerIZvIqIT1uOTz66KOyegGTJzMJg2bOfAJffcVPNWltfSZn\ng62mEsDV1VVWr4krD+W2Dah6XPY6arUrfH1Ng2hdu64TaKWst+Tq6oLr168jLCxM9jq0mReDkAuo\np2d/9O79FwAgJGSuIpnkXGsAUKlq8OuvwNSpijZvJCgoCK6urpLFCaTMRGI4OChfp107wPywKQq4\neRO4i5M2nHuqIyMjkZJiKs5RXl4OD6UjtQB2794NPz9TKgmVSlwvubs7YeHCiVixwtLGLnTdZs2a\nhV27dhl70Cz+/g8AAEJCpKr0AP7+0mM2xKuklUPT9SHkYEwo+fk0cnJM5pGsrCI4OTlhyZIlOHny\nJC5duoQLFy5g48aNAIDc3FzYaiqhQcPRwcHiwbOKSjzwaNWqL3DgAKDs5d48HYHJkyeLFulVTsOO\nYc8evjkhOxv45htg2jQgP19gb1ZsqWwx4scekz8eZW5+EkLuvWI+bv/DD/wwfy7yI0E7AhhoHHMx\nD4Cz5WUlBVehT5kyBSUlJZLt09LSjL+tmbqbXHHL7VUQ5HH8ONCnD/ObtX2bZyesq6vD8uXLMXDg\nQHTr1g3du3fHrFmzALCDoLb0uJnraPGwytE/Dj0AfwD9LBctXvweli0DMjOlbfP2QMgPXwy2Z27u\nMTBv3rwGhJDbzgiz1BgTJgATOSm0w8KAF14AtmwBAgWccn77zbzggDDbt5tKuHl6MvfJO++8Y7x/\nuCQknJe1TW7IuxAzZwL+/vzjAYD6vFkWtDH75BNKusVwDcBxsCnMfX19eUvT0sQrvrN6qw/7sMlg\n8WJTPpudO3daFEA2p0cPU257d3dpF0IyONnK4X7tsgOFQh4SYjC9AFvSujL/HVT8dYdODJBYh13J\nDXgJwCTgrY8t6yMCQG2tsjJmSjoEdH0giZOTk0UCJqG2NE0jIyMDAOMxUGQ2Uma/zoj87fgJJIu8\nzSl/KZFNAQAQHR1t9djN6dbNA3Fxr2Hp0qXYsGGDxbo1NfbJ1fL990xps127+POFvhwA5r5nj4Wm\naZSUlICmaaxZs0CwPetG6ejoyDsHUikoAOYrpWPHjrx5Uuevf//+wJumaTbuQw5SZhtApuKurq7G\noEGDEBkZie7duxvfJEVFRYiOjkZERATGjx8PrVYrY2ukx21PuPcN18PD2k0IAAnGnJruNu2bgqXi\nlqUHKNOLRSfyksnJyUNRUREMBgPKy8uNf+KSKMOeCYLy8/ONUXJyqaurQ25uLqqqqpCfn4/CwoZl\nFgSYTHtXrgACtYJx8SLQUCeYsrI6SXOCXm/9y4N1B7SFkhJxc4kw7L5cAdxjnJueLuyiak1ZAja8\npDkfs3q9Hnl5ecjOzrYofsEN6AKAwkJpJ31ZitvFxQXx8fFISUlBamoq4uPjcfjwYcTGxhqDT8aO\nHYvYWMsq0UI0Zsa3fxtiinvy5Mnw95f+3IqKiqr/dY9UM/F9g7ZI3CMG688OAFCZemZ1ImaG6OjH\n4Ofnh4EDB8LDw8P4t3OneAWghtCpk/xSXOZfNMHBwXBW6JD8yCOPoF27dnBzc0NgYCB69rR0YxOC\ne71fecVyWUQE0IUfTQ8AuPtuwEV+AJ8gFy6U4+JFfiWXJ580leSaOlW6UjqLksefG7cVHw+4K+hj\nmF4ylQBM+T8++YQZFDXH39/XcqYZ06ZNM/7u2bOnDCH4k0FBQQgJCUFISAgv/xDv+QCwerV0oJFs\nU4mbG5NUqLa2Fnq9Hj4+Pti5cydiYmIAADExMTLtZqTHbU+4DzK3N5ScnIx77pEuf9Sw/TIK11Gt\nNutl07j3kR7mrXkDplzFrTNIR6z98w8/4Q637JT5PuQitDs2iRSbXuD48eOictnDps31iuBIJmNN\n2qj4Vq+WP9gnuUWOmcEaWi2/y/vjjz+CpmlMnhyOESO6y9mbItnWCTkQycTJSTwNgrnVwt9fBXcr\nbwWKovD4449j/HhmDOns2bPyBBEZQmKD58yZOdP6C0G24jYYDIiMjERgYCBGjx6NHj16IC8vD4H1\nIx+BgYEW3X1xWnaP296ly+bMmcPrNbq4uEgMoNiOysxswUaJNRoU4KAWuCutDolzTCU6ZZGAQtfA\nli84sc9idvtS6QjsYdO2twdDUyF23lriV7R5cJh15F1XudffWjux5XLOpey7R6VSISUlBZmZmUhM\nTLTI58tGXokJwi4bPrwA3brJ+6RqLuxduuyrr75CWVmZ8W/atGmK3Kyk4F57bva3/Px87N593S77\nECI+fiyupR6Hg1UXMIHK5bNNuYd1BmWK+6WXXgJFUdi+fTuGDh0KiqLQrt0sdO8uv9q5GAEBAcYy\nWW3bihcDZstemcONQDTvxMybN4+3/Pr16xbr9+ix2XbhZWIlBY5VGq6gm07Bd+oUCuAu0eWffsqd\noiQVLXeZ3Pc2zb4IBExXALBs2TLMnj3b4px+/731nrzi176XlxcmTpyIf/75B4GBgfV+wEBOTo7k\nzQ4AS5cuBQBkZDS87FRT0dDSZblmSYcrKiqwY8cOo4nJGhqNBhqNRnT69GkNAA1omhklN2fSpAHo\n27ev5D4cVb/L3h87fe5cT1RX3IMLZ86Am1iv5HYtivLL8eCWB7EjbQeArwHw10eGqf3Nq8frt69o\n1AmJiYk4etSyYrgc+cvLdYLL8/PzMWrUKMTHxyM0NFR0/eTkZNA0jd27d4vKl1/vAsGuz4aPW8Oa\n/NnZF1Bbe5a3fM8e03LmXItPf/WV9Pbj4+MRHx9vNJ2w06b9F4quT9O0VflLSy+htDRNdLnQdHw8\n/3jk3J8A0L9/T7z+ek/R87F1q/z7HWBeWhqNBkVF1bLa0zTN3OsDgaNHhXNwr7PVFiQaU8mhoKCA\nLi4upmmapisrK+kRI0bQ+/fvpxcsWEDHxsbSNE3TH374Ib1w4UKLdWEW9mk+3RIJCwujDxw4YDH/\nrrvuor/88kv6lVdeoadMmUIXFxfTZWVl9KRJk+jFixfTNE3TGo2GDg0NFd32xo0b6fDwcMn9Kzk3\nu3YxIcE6HU3X1ZVahODOmzeBHjFihGSYrpNDEa30cnTrdo4GaHr3iRO0i4tp5SH3+9P3PdqLfnjr\nw/S2c9uMIcu841sK49/MRcfrj7lSUdjyiy++KBrKbI3evdvQf//9tbIDFmDv3r2i8qWmpvLaurm5\nyToua8yevYkODOSHzldVyQsbB2h69GjbjtV0P00RXP7gg13oVatmWd3OgAHr6MGDv7dh/8rD+0tK\njtPr1z8tei6GDze19fdX0+npx0S39dxzfek335xM0zRNjxkTLOta1enrjPd5YuIVRfe3tftBVo87\nJycHY8aMQWRkJAYNGoRJkyZh7NixWLRoEfbt24eIiAgcPHgQixYtktyOuf9ra8PW0mVcNm7ciKee\nesrqvv73P+nl334LfPihyV+XcRCx/AzNzCyUEdat3I/79m3GX9tRxa8yyR6+zqDD7crbliuasekH\nfX0lF2UymKflVApFNdzG7OMjXsC5d+/ePNNIZWVlg/fHIGTjl792fDywb5/te5eOjmwaxwOxQBxL\nKLz00qeiSw8f5k9LDTqfOjUH588zSccOHuS78tG0cC5xri5wcFCYBtEKskLmevXqheTkZIv5vr6+\n2L9/v+ydiY2iimGPAQ9rilQJtpYuY7l58yYSEhIsciIL8frrwH/+I778zTeZkfGff2am2Zvwiy9c\nMG+e6VPu+PHLuHnzEGbMmIF7770XmzdvRklJCXx8fHDr1i2EhYVhxjT5RQhYbt9mzGLmg5MUaIAC\nXB1d4aSWUVVEpceCBQDghIiIbFy+HGxtjRZD//79m2Gvls+EkCfi118D99/PuM9t28ZEUbJ8+CEQ\nHW25jhyCg/2FpeJUNZLGtmc6KQkYNoz5vXo1sEpmSv/KSlNU5eHDl/Hll0fx448mMyVX6UqRkjIb\nN29mCS4TUzF6jk4ICmqPr7/+Gi9wL4QAWVlZCAkJkRYGLbx0mT2VbkNpSOkylk2bNmH48OGKEhuJ\nwTolmL8vevTg94j0egOcnJwwfvx4AIzvqbn/6XTa9sgMFYSVvoeTB3QGGZF0nGAcW8uWKaUF3VY8\nPD3lvkCtH8Ds2fzfn30GyPVek0Lcb79xBx2HiqUwl4QvU+/elbjnnlM8xW0wAHKdTwwG4Ybiitu0\nwGAAZs+ebVVxm5dnE6NJfZIGDx7clLtrEOxLwx6ly1i+//57wRwPYggVGKmqAubPB1inBa5zyooV\nTvj992cBmAaJnZ35ykDIDc3QgGi2yWO68vQI+1NNqTHnzzmAJ+N3LaosOa6BTeVRVlLyAK5ftx5s\n0dQ0pksd1xEmPt62mpWAtG+0nBeirZ0xzvgfAHlV7s+ds/T+Uav5PZ1PPuFOSX81a7VB9fdoKoDb\nWLkSSEiwTIjF4u7iAlQwXyh6vdLjlm7fOp1JmwB7li4DgKNHjyI7OxuPPvqo6D7N4ZX0q+fECfOb\nzcRbbzlh1apP4OpqisJbuPBh4+/4+HjByjsyhzp49O59GgCgLba8aymKgpr1KR/5vvSGKL474K5d\nTFKjiIjOimWSy82bW/Dpp0Pssq3Tp0/bvO6sWbNw9913G8c8Bg+WEzAl/EAfOgTExgJjxgBmmUQB\nWNq1/7FeSJwH2yt99NEoweVKTCW2vJ84BekBAK++an2dRx81+eFdusT8HzToKCZNMrVh7eXKZOoF\nwA9vvMGOLUlwiEkPUicjfxAbXLZ+/WSrbVu0qaS5YBMKicGWLvvggw8El8fFxVnYsYcMGYKysobn\no5DDmDFRYEvz+fiYbHxRIneZLT1uJydTl40dp6coGJ9dNVv0tz4TnHG5OSr+DT1iBKNQjx/fD2/v\nDo3WC7XXZiMjI9GtWzdcvChd3NUc857nwIHu2LNHOsyZWU94/vDhzN/ChcLLPT2BefOAL75QJKaR\nJ590w6ZNlXB0lApMsm3bjQX3GkdEAGVlNNRqA37+WXnJNJsxOAB6x/qcPPxz98wzz2D9+vXGada2\nPWyY9eLTpMfdwhk3Dli7Fti7F0hOBuR02NPSOoG9tPI+X5XfBtwCwwbDBNOCekV9q7Q+p4XZS+HY\nMQBZ/QGdE3BzCK/HTVGmaDd7eH1Icf26uEdI8yFP89n60uHmwRLpc8jYZ9NHTupEhkrmzQN+/BEw\nzx6g0wHLlgFZWZaD4xRFWZg2TpwAaNqpccbUTvwfKFqNWgURwoWF1hOyEMXdwjlwgEkmdO+9QL9+\nljkWhMjIaI+ePZl8koMHS+cABgDahoGljh1NKeh0ur/MllL49SJTMNXfn/8CGTIEwLqTwN+rgPVH\nLGzcbKg5VxFYCyB69NHh8PVV1oUqLW1gxiUOP/zwg6L2Yu6g8l6ytitIbsLI3bv5aWCtMWWKG157\nLVSyjRzFZ4tyZD2nzPnyS2DGDMD89ti2DRCunc3s23yYZ9AgoKpKWbUiJVBQG7NgLl++HAcOHMDm\nzZt57tNvvPGG8ffQodaT9TWJ4v71V9srUxNs45133kda2gx4eAiHZ1uiLJeykxM/janxeTR7LsPC\nRBRNVX2P18zGzeZbYR9wmqaNkYrsX1JSknEZTdMYMuRujBpl3YWqsejXrx9PPpqm4eXlJdj20qVL\nxupDXJR9YdjWMzQ3syrRoYGBakyb1hZS3iPylHLjj0BLZ9hl9n/smPl8+9lOHo8xS29tcDCmdli8\neDHGjBmDJ554Al26dMGa+lHWFStWKNpHk9i4k5MpMAEWRIE3FWlpQGioKyRiRHhQsLTBSSP+kHK/\nmtksggYDcO4cp9G5+nSgHBcrbg9QKrezkGeMLT258+eBHuaJDAW4fh346y9G0U2ZAoRKdzwB2JpB\nUM4x2P45by7SH38ADz4IXMvWItCnDdqHiHuMUBSFlJQ+2Lu3IwIDAS8voHNnoFs3Jl2sbFOJAdCX\n1KHyUiVcI1ytrqfTMaYMa2zezNix/fwA8ewCpnNnvlu9vp3dTCUWl76wK2rN7D0FBUBAgOV9KyON\nPoAm6nG//z4FQPDbhdBIvPMOMGTIN5Dbw6Ht1OOgab7pJTSEeRl8/DEQGSmwwmXTCHpWfXyDnx/g\n4iL+pdClSxd07drVOG2rfbVnT6C42Hq7jh2BF18EXnoJaG993AgA8P77wt404uXSZF6nBigXcwvN\ns88y53rADh/c9Yx01HNmZgc8//x6LFnSA889x4y19O3L1LRUIltNTg10t+twotsJ3P7duq3m1VeZ\ngBtrPPkk0L8/c63M8t9hHi/VOXOeO5s5LVVVvQypl6JKZT3WYeFCACHHMXUav8dt+Po4cvNM287N\nBdi0TuPGjeM5DUgF3fHkkdfMHkw3/tJqhSOQCMoZPpz5b6Wcnd2hacDTf5vVdv4+TI86R3YJSQo/\n/ww4OopHXfr5+Vl4cShRaBRlegglCp03iPnz51uYT2ialqxGLv8QbHtR3XsvIBp57y2d+K2mRvhF\nWp/G3Cbq8q13LxU66wgilB3BV6Ebf+fO0gU8aBpY/qEBeH4w+vSvtLiWFZWmbjjXZNWzZ09eEi+5\nwSc3UIIAACAASURBVOVNqLhNN5vyPLkEMdjOpoIyk3aBCQoz3YzcG5WrVmiRASF7orTHTVEm7SXm\nsdDUUBTVJO501q6DmAxqtfANxj7Kci+B0sFVe9ZhtvZyb6ipxFBvFtQLpCrW6UwHwmZfFtqd3Pux\nCRV3OAAmGEUqST1BGV533QCWUugnUDEdANq1m4HzEsW35ZgKhKBpGpTKssd04eQv+GvLaWApDeT2\nRlAbxjSwdq2VDboUAb1N3hmN6V6mVpsOukMH8XYpKcIKSU5ui8airqAOhko9NJQGGe9kQENpUH5G\nuD7h2Ulncf4J/sUX7DMtpYGEt0BRjGIXOrbp0xMF95GSwtj9AeWK7/ILpqrqV165gn8GMFFBGkpj\n/PvvQY2ibZozbtxuVFZegUZDITl5AMrLTTmXnn6a3zY3V0ZuHQlYhf3Lb8z/QcNMX3YvxphMZMNX\nzQSWUjAvobp5MyA39VMTuwMykWFEcVuHjXTjmHItot+GDwf8e54BAEyWCLYSrfYFgI3Md3RQlgCM\npmlQlKXiLi0aZZoo7oQQD5lG4WpfOHU8wVHYyjSjEp2hVsvLUtkQM4BtWD8IfYWpN3f7F8ZGXH1d\nOH69cFchbv/KtyM7OADXhFJD5wkNQMhj5075L1qVs3C7ot1FKDtl3wA1Dw89PvhgAWpqhE2znNgX\nAECxQBQwl/vv/xo0DZw9+xDi4yleklgA0NPMtTlxiuk2f7lR2Hf3sgvTQTHvXSdy3o3ffGNW4t6M\nZvLjbnlljrjYu3QZwAxWtW/fHt7e3hg9ejTS0tIE1jbB7orbQ7IcCQcMBmam1CeWvGdK2TeprN4V\nrQIo+dtlPzUZ5N8jjdU7b8pIQEXHwEajskmMpFYVOIbmtFSKmkoaYBIR6wc6ODBpreW6WkqbG2mr\n14i9fw31Clxnxc5jvljJLdAsilvExbXFYO/SZTt37sRXX32FQ4cOoaioCEOGDMHMmTMl12EHT3r1\nMs0zH0g7ehSoNTAzpW66e+8V/7w3eQUoe3KYm860QUElt20HXhxuPfc4i27nZ8jPt00JN8Q+KZRL\nmaKsR6lSFPD779Jt5Msg08btYDo/lWn1tnqBU6ahNAAAuo42mh1Y6ut+W5GH/2eNbdvScPz4aOsN\nzWpWsrJVpVfx5OYSDw32QwM/CHt2CBR+AgD06VONyso0pKSM4s0v+NXUE+Y6+UgfJ3/kBgCq6qrg\nFWtSZqyphPXZNndpNZ7LLCYdsLni/vJL028fH+lR8yZR3KNGmbwPtm5t06Dor6amoaXLcnJycO7c\nOWM6V5VKhenTp1vtcffrx9ifuT6pQj6elQbG9UivB4qLa7BvnyP27RMvqWWOqfqX0qK9AEDj4iVl\naeY+/xzArBFYuyldcPnVq2x3sDF73BQ++kh+HnmWX36xnPfjj4o3I4jcQ1A5N/yR9feH5LiHGGPG\n/A0AuHkTEErnk5j4gNVtqJwoUJTyl6waQOL3wuXt2HP34YemeTdvAjt23BJsn7vRVE7w6lWAzRPm\n5yfu8if0UtVWa1FaY8oCyppK2B633mCAarqADfMKkyJCqkM+aJC0512TKO7Bg00h0RLeUC2aAQMG\nIDQ0FImJiVi0aBHS09Nx5swZpKenIysrC++99x7atGmDPXv2IDg4GGVlZSgtLUW7du0wbtw4HD16\nFFeuXEFdXR02btyICRMmWN2nt7dpBBoQfrjZl6BezyQScnDQoWfPQsXHRykwaTD7pY0yApYpbMXo\n0weAez7G3yds22EfECXK2BaPDA8PyfA6QaZOtZzXlF4P9a3ssq/u3ZWvM2UKk7mxfXvG/9scBweZ\nLhE2mraCgoTns6eNvT6BgYyMzs7C54rWmea7ujLxBSpVttVrSRkTptH10/zjMPa4aeY8GAy0sJul\n3ql+ufT+pGgSxe3sbHK/uv/+8lbV4+Zia+mygQMHIiYmBl27doWbmxt27NiBVTJKeOh0fFOJUJrX\nPxJuAgC2/mTAlf9jBhgvXhQ3w4h/Aiu7i+pKdGhT4wa1Sn4yK2M7ioZKxO44alQbjB5NIytL/q15\n/nwP5ObKL+lCG2hc2aesOLEYO3bIyw3NZdcuJmoRAO6+m7kOL7ywGvn5Y22S4dzkc0h0TUTJkRIA\nwLHOFvHcABgzBK04L7QJR0dTj1ToenOXi0JTNg9xpY5PBbpbJi6pqmKy/bG2e9NLRWQg9M8iXH/v\nurlgiuXRmke219u429Tk4UbsDegMBlBCMhx6C1hKIziYufbz5lm+y65elc5b2ySKe+RIfoJguQ+5\nmO1RyZ89MS9d5uPjAx8fH0yYMAG3JTL2fPbZZzhw4AAyMzNRU1ODt99+G2PGjEGVleiP27f5YeKC\n3iFhGgBAcoIOOV+bolwOHfoKnTpJuJNYoFBxX+X2WOWd6H376m2KlAEqSoXnNi4Xbbt9u/wRtG++\neQGnTimplk3B8XC+RYSdGOvXA6dOMb+3bLEs+yUnNzSXSZNMXkDcAJOUFOsl7cQ6PYZqA9JfYcxP\n1VfFzVc6ralX3OO5VUA3AfuPACqVHn37nsCBA8xLwdOTOS/jxpnaDBx4wOp2aNBw9FIjZH4I/B4Q\n6LZb47FHsWOH5RfDli1AeDgTvZgo7LnI4/o71y1lk627mYZJSWY97noTyUStCzIWZ8BgMIByqoLr\n2JWSW+PatgEgLm6YVQmaRHGr1Qa89dY06w3NkF+7WvzPXnBLl7m6uiItLQ3FxcUoLi6GVqs1VrwR\n+sTfs2cPpk2bhuDgYKhUKsTExKC4uBgXLlyQ3Kes0X+jvZCveNu3L8IffyyQc2jshhS0BZjSkjRg\n1oNzcBQ304wbx3weOjgyPRG/YHETS2N/lalAITxcXtunn4bRT/7xx5kUu42DPFOJ6JmRccpoTjmt\n0FF7gSfqC230+1pyvQ8+eAEURSMy0uSy9/TTfBdVlUp+9EiXNV3Q649eks3aPtEWNQIq6qGHgO++\n48/z9WU6arGxVnrc+QEie6NlmKr42zMbZzWaSuh6s6POYABFq+DWT97LEWBkj4iQ1gtAE3qVODiY\nRtbq6uyXUrOxsGfpst69e2Pbtm3Iz8+HwWDApk2boNPp0Nk8YQKHQ4csq1CzOEGPabiB/dAgfv0y\nxC+Nx6/gfx7fuLG8UWt2UvXbPhrEjG6asvlJv23i44H7U0eiel813LPF8w4vWOBoNCN8/DHjK/za\na0yAwv/+B0yYwCRIoijxWoDWOLFfnp07Jy4HGkqD01GncWuN8IBX585MqbmrV5mw8hUrTD7yLKmp\nTBFfFvN3PE0rL9rMpexEmaBXBpcjbY/AUMsolsJyjt80JT04TdM5qKq6gtrCapydchYpY1OQ8d8M\nlKeWc9rYLLogKWcA8/F473JvZB7ORFoJP/NUdjYsEBwn4XQILjx1gfcik0KoI0FzxoW0CVpov9Ui\nfmk8eu5mXMLopGpQUEFFyb8/VSpAp7MeFddkinvQINMApcHQ8gNw7Fm67K233kLXrl3Ru3dv+Pj4\nYO3atdixYwc8PT1F9z9yJNOzEJQN2ZiNDFjcDpyby2CogE6nxZIlKeatRFDa4+be8BQzEAPAt61l\nTgeuu9YLL9B4dd8sFDxRgKHPDAV6bwRCjgvugjUjLFjAROetXs2YKV5/Hdizp+GueCXPWD83hw4B\nl55j6l6VJJTg6qtMVE4vs87i1avMGETfvowCX7SISebPpU8fYM6chskMAFABXTd0td5OhPwt+QCA\nU3lHmBntDwNRSyXXueeegwCAa9t+QuHOQmgPanFj2Q2c6nMKP/3EtJGnuPlWX+8ob4sWvff1RnpM\nT7x2oRNeG3iItyzuyzikj0jHrKRBvPnTBD7o9Xq+KdLf/yFgiamCRN6mPJQklcgRuh7+AZ4pYz43\naBpIiUpB4ev8r02X/ysBoIIKaoycIhT1ZMmRI/IkaRLF7eNzL1xcqjBzppX6gy2EjIwMVFZWorS0\nFFqtFklJSZg7d67xDc6WLrt69SpKSkqQlpaGl156ybh+XFwcbt++jaKiIgQFBcHNzQ3ffvstcnNz\nUVJSglOnThmrrtvCc7Pkdm30mDPnktVW7ipbBuqYQSaV+eejugI9+q0CTQPrkzcg5tdZ2LzZNOLP\nveFUehXgdxV4fjCwtAkHrOtfcM4y7PpsEi/e6gYaqanC7bm5oGtkjNXZAkVRaDerHaLoKMl2gTMD\nEUVHIYqOglt3k/O2vtKsd/3sCMCd+Xp0dLTMnDdwIODszNjNDQIfKdOmAR07ynyLmt26kfGRRhkB\nYOClgfAd54v8CH/kwQVX/PLwd5+/je0d9PI7fQaDSXF36rQSPXvuAK6aHVz9LaDMRZFpyw5GSr2w\nKJrpcQ+IzpCVnlbiI5yHLMV969YtjB49Gj169EDPnj3xSX212qKiIkRHRyMiIgLjx4+H1nyY1Uj9\ngRqaKVCzFTIGeeiACgxEITxRBw/UYSzysBqn4fKdyNvb7OYrLt4P1FpPf6ey2cWMXY8y/aZVgAGo\nvlENFVS4rr0OvR44/Ws5rn14EzPAd4+aku+FcanjGCXepFAIgXUfdK7PL8u5h86h9Liwfb6mBmAz\num7aBCxdygycsUVpG4ySS8V5F1Icg+yVuVegTdCi+63uUOvVCNTWFyl2KhccV3F0MO1Ul2cpwM2V\nN2GoMYC2wb0tL89UyBcAqPoAI6MybJMHivMl6VnNfKVOSJ6AcJQhHOVQm72Aq29W4/q715HxPtdW\nLCxc5ieZKNrLpEAwSJpNaKCORm1eLapus04AFPxL/VH4p/i4ztNJk9C+IBB1ej3PtbehyHp9OTo6\nYvXq1YiMjER5eTn69euH6OhobNiwAdHR0XjjjTewYsUKxMbGIjbWsuxO+/YLUFy8F1FR2/Djj0vs\nJ/0dzH/BH6DQgYKDtadWb/nUXd8fB3f3WRYJbbg84HEIP1cGK5LP4KsCKgFWk7BZAN1qnOB5uxrH\nwo4haXESEpwTEP5PNTbgFG6+CZjl9cEr5/sB5/uhz/U++M73LAqLpAes7M1TuI5UeCEFlhUnXsYV\nXJxlGQhR+HshCn8vBBAluE32XBcXA+++a0dhBfB7wA+Fu4QVR8hLpqpAnWI74ewDZ43TKVEp+Byf\nY+OojYhJiMGUBVNQOm0SHkc8ysuZMPJHHmHadi7gbF/gHrv2xjUYfPSoybE+ZmB+B7O+2TQNeA7z\nhFM7Mx/nntvwh0dPjE/lf6G+sfMNAExSqm/QEZvRAaWljLfLsQ714z1evkB9TJCf3yTBMZ/bv9xm\ncr6oOknLradRnlqBI0FHgPhTxoPZvmo7zq86K7re46fG4fFT47BtVZXVwfCQEPkRwLK6OUFBQYis\nz4Lv7u6Ou+++G1lZWdi5cydiYmIAADExMfjtt98E1/f1HYf+/c+ic+dUeHnJKJpIsMCq0gaY3u7/\n8dPw6ekylJVJe950cbyluM9tcFVDp9LXWywp4w2nogG1jukh1ZUxQ0tVZda33q64Hfp13IF4l92I\nj29ss4lp+0/jOlaDSdRlfl4egnT0mr0H49p6bbXaxrxT2OuPXoiio+Dgw++DRdFR8BxgGkPxm+gn\naFrxKWdeWA4GB/iFX0dk5P+3d97xUVTr/3/P7qZBAgQICYSONKUkIIgIAgpiVwQRbCjWa7tYEL16\nFSyA/SreK3qvvWBvXwUsSECQ3kSqYiBAIEAoCam7O+f3x5ndndmd2Z3dhOZvP7yW7Myec+Y5Z848\n85znPEVm+NmwQa4cHn8czszUbWJWWSfc8G16xooeC3rgTJEvBn0Ih99a/cbZ/7S2cW+gbWGGhH04\n1AAGzWXgQEHdup3lW0PBUsUU9n6qZnPS/jz1eL2kpsprjH7+FakaVKQVzobtRQihmfv6VDee8J6K\nUa9Pt27dyqpVqzjttNMoKioiM1MuszIzMykqKgpTU46q3rokjiOAYF1dVRLCqwvmrwYF97e5qx4K\nobHs0LO+cw7hQFEVEpyRr5FWkUZCDNnmY0WwesiBQK1SUT0qQsjvkeCtOFap+ELH05ES29gleOXO\nsVN1oqhyHHxOOkIIOR5u3fUsGLeCsK3GCdUnh1Z0uwFd2GDVYX0/klBxoaJWevFWWt8ToYowHE9E\nTDcXTLfw2mfcbrfHL9z4r6O159Ro0s87RYRXhkRl3nH48GGGDx/Oiy++GJLJQ1EUSzfl6667jhYt\nGrN9O7RuPZbi4vBpkuIIYDXS8iGHHHvHBcWwOpAmbNXyala5XqRHSg/UCpXVrEZJVuhe2d1ff2u9\nHSD6ADK6IeBPp2R1LCFYy2qgAiHOAqCieiOH1DKgG9f8+xq60hV4DSLRvzuH+3Z3YHXCEjAYe/iu\nNzDscVJCeyDbFv2qGghh67v+HGB+cnTj/XMdvcVDePrCHbfiMO7kznhQItJfVLyJKncqMNzwe8vr\nW1LwZIGfvoGY1w/uT9PVTVnNaj5+4WPt9xdpA+zpfyUbrt7AKrcM5JGjaSpWL0kEVoeMB2SjJDoi\n0n+4fJPRe7PVJM2iRRjKT/6iGB4ZAb6YKG0wpX81q2nFan4gh7XNLO5XnnZ9NXDsQ4D+Nqb0+o49\npR7wzQ/t+Rpxawvb82XMP3LIL8unYHABu37fBE2Bsx6G9Q1ZvLA97S+/jBcdLzKb2dA1i6yUDMDa\nLFARNpUqbrebCy+8kPPOO49x48YB0vQtLy+PrKwsdu3axaBBg0JSSsk4EprN76JWVFUVcMmgKkpI\nOqJ2xicyFEVhLuHd+p6/4HlenPY1bUdOhwv/Bt89R/m7f2PNkDX0+dPHhBWYeR48c3/YtuY13syT\nh/pQXd3NNo2Der/Epj8b8P3V/ej6YlNKDztIrZtEu8Zv0zzxEJN2Wbc14qkR/FL3FwrvMDG+Ta6A\nWefDoLl0ntGZDaM3+Je206bBXXfJYkLA7nd3s/HajTyXtZ4VlfUpPHBVaHsmSEpcRcf0rby0x2Ym\nZQ2d3upE1pisEFvpfqX9+CZtCcOI7PHWpAl8tCcv5PxLWetZWNGYooMjw9a/6sL/8dOidHYVD4+G\n9BBEsvdu9Wgrtk3SbSTP1SL/DZpL/TPrc2i+0YxuTPoeunTZxbfz/x623S7tXqd+isrC324CQBnw\nBJz1T8SjRl6gnPUIDDBaoSW6E/nuye+IBg0GNiBnrmSi3kovCxosYEDlAMA4BoMdbfj6/7Zy/vkD\nTNtp3WgGbZN38kjhqYaxCMbCjgt5ePTDlN4rWJ6WZ/itXp969FjUg8uefpEvKsb5z2+8cTcdszND\n7skgBlnySFvrKyEEN9xwAyeffLKfaQNcfPHFvP322wC8/fbbXHrppRHaOU7yRP0VoEC1Ww3Eu1a8\n4CRU9WHHzEkoUYdqEEKLKaAGltUQ2KoMB1WoYLWPpaM3OBJe8BzWW0qE8Sc0uwgxWcJaVVHBW8MY\n89Iu5/iJ4aM4Y6DF7hwyREi1uI5J0DMRQ1RBA+NTjXMmqCSROqDY8Ob1OnwhXUN/U91avO4glUws\nwaZsqUoWLlzIe++9R7du3cjNzQVgypQpPPDAA4wcOZLXX3+d1q1b8/HH4ZPHpqX1orj4K7orB/g5\nLmzXCLvr72a/ujUwwSsa8swzCkOCJ0xBSxutmWmrw6OsTE70pFZJSA1n4IaaBtbRUJJUxoHKA6R0\nsMjirns4110mY4/6JJESGgFdDed81EdLvxKDCWRSC3P97oL6C0iwqXU8aY9VTBu7Hnyh5RRF6oRr\nM7HU1ke2Wv6WmptK6bJS1IoAx4n5lXP2w+bn+00JOeWN4N1pBv0LKFjHXbd7XcrWBHwYPKU1Fyw3\nNZO2jWvWhN6nwysOk6fkMY5cxulW1EUTN1AUZEXmauiCMImabN3qfv36WSruf7SbJA3o0uUz5tX5\nnoliA7HFQfv/B6M5jRkYPQqzf+jFrJK3eHDZ/ZQnl7PfsYFnnvMyfg5Q3JFp/1EY3FQ3YYZ8D57I\ntzgWJlZWLus0vToL7vP454fXYd3W5ZzO/gnSEaTFsBYsX7KcMZ+NQREKXz2jOXCEkar6Ucx3zKc2\nQpt26KBw9p4zaUQ1H2MeTe9aerMpX8GZ6sSV5vKvAPqV9mPPh3vYfFMgZ2I9PHzHfKpw4EXxO/d0\nmJnDivN/oyHVHMZFWogTtw9KaPALq3ImqKqKjnH3r+hP8wvvIbnj17z5nzcjVzh3Fg2G1KfxSy3I\nvj2bdk+3Q7jlRqZaraJ0/ap2rWxMNiNVp8ol4y8hd2suEz+ZyFV3XsWmmzaxvNtyrqE3/8v6jaTd\n5Zy69lSSWySz7+t97JmxR9eAUeLuubwnokrIxApjKvCGYdxKks4Mcsj3kCS9q35r/htd3zmPM3q1\n4sulv/DBfOlGunS5h6mPjMJZIvjoX5GthfRodEkjGp7TEG63LnNUvR4UxQmVKccqX5pt1Hbqsqqq\nKu6++26ys7Np2LAht99+O54I6Zx3EyqRth9cF9HMQ3myDJNb7a3G6dQmeEI5XoJUJZ4EaiAL2YOv\necPQmI/TPpIM1gGJDRIprVNKSV378bwTUUk0aT9aVUlikoKKg71Yx83ZTh1SWqeQ2DjRoLZxpbpI\naRt6fxJRScNDA9yk4CUFL43TVZpQhQtBA9yhYQp8FMWgBtAjWqbpTHayO7WErWlWTnNBqErGodbF\n1cCF4lBwJDpw1nXiqucisXGi/Ze/UMKuyCKhpG4JB+tKmgsbFZKQIa1idlCHsubSYCK1Syqu+i4S\nMhIMz0OwxO1wyT4kNZcrqYjPt6+uJwHKZJydbRnbcNeTc8KdovqfB4/qoTKxgj0N9pi3FQaJWYkR\nH9vjnYceE9R26rKpU6eycuVK1q1bx+bNm1m5ciVPBAeysIG8rXmM+y6wx3DZx5dR4dE8I9MKJfOK\nwUJNiUFV4jTMHCVo0ttrq36ySQ67GKICKjHUs+vF5nNCCYYz1V7goFWnr7JVTkm0+SiKAJM/cCAQ\nqCotDa6ytzcbQO5bkBjGMyv40l4R5tYqtiI6ehGUq+GFlq82fgVJmTBgLjQ6PeT3aldggyTruUB2\nBU+a8aYqimJ0mLTQcTtTnGBjm8dhovc/WPcg1R4tgYJOsV3m2BWUQ9U+7CQROfrRnnTe0ScCfKnL\nsrKy6NOnD/fddx/t2rXjoYce4pNPPqGqqophw4bxwgsv4PV6Oe+886iuriYtLQ1FUdi0aRPffPMN\nEyZMoIFMF8Ndd93FhAkTmDhxouV1X30V7ln0ECXJRWSUZFCSUkLZl6ExRXaVBmJwqygGCaPJlU0Q\nbkGjCxpRNKMIR4KD6t3VJDZNpO4pddn/3X5cDVwsSquCmSFNRxgX2F8q8OVD8E1SryJQXSrNbm/G\nofmHuK/TfVS7qnlx8GwIeu+d0SJghXHtHddy0u6TOO3TfzP02rejIwZQopzJbdoEvl8x7gou/e+X\nnN4glVN7K9TpWIdhU2WEt88+M6+f1iuNHst6sLLXyqhpBWgxoQV4ocGgBuCAui8WwJLoXj6rgt4J\nH3wQfSq1Jq72ZM3L4qNbP2Jdi3XUqapDx8KOjBk/hm2PbSO1Zyppp6ax/entkvFZMBVFEYZ9Diu4\nhYrqDc/Q7ph1B2ScKQ863MfBM89mf8V+kl3JbC7ezMC3BnLtHTKX6cHUg3RZ04W2w6DuuDZ0vVcX\ntMqBgddY2XGn9U4D9uFIDv8yTmyaSNfpXfnzgT8p+7WMg9e4eKPNG5zvlgHZPaqXlN2DqMiaS3nG\nfNStkpH/a/w3DH1nEJ2L6oZtHyD7rmxEdWSb+KPOuJNbJ1OZH12ewuMB+tRl//3vf8nPz2fNmjW4\nXC6uvPJKHnvsMSZPnszs2bO5+uqr2b7dGP5TL5GqqsqOHTsoLS0NsYf34eab4d7iXzlcfZgtWTIi\nXbaaHVKu2qtJH84qVDDYyDrTnKR2TyVrTBZZY0LzPrWdIt18d91iET82DIzPr/FhrkpV6fByBwDm\nT5JR7XuPrR/CuPVMYHvj7WxvvJ3Vn7Zj6PZwjlxGtH68NanztyFWRqcq0dO/p8EeXktLZv/pXblO\nZufi19DIDSG01zu1Htl3ZrNzWngPy2CkD02n3VSj/7Pj33Zr66xuamG9nJZYj05ndmLiFRMN5x+8\n6UGa3RQIg7DzxZ2S8YUbZhsSt5VU7vUG4s87FAc4NOnZkUi9pHr+1VnTtKagyPnig6uDi27doNrr\noNHFgeQMisMoyFhJ3L55GNG6Q4FG5zVi95u7Kfu1jAPXJKD+ovolbq+qoqiS7kpPlT/3ZFXLCl65\nMJ+XXu8S4QKQmiM3fiMx7qOiKlEmKSiTFOb8OQe398T1nIw1ddm5557Liy++yL59+9i9ezcvvfQS\niqJQXl4eUtaHm//vZg5XG5exO0tDGcRrK1+TX5ovQQ1WlWguvpGgKtFvTwqZSUEncftaqJlOXWT8\nFrmQDopDsWfyGIQyj+bG7bPKabSZQ3rT5I5fQbd3gfBR/mLxPFVc5mNkR9VQrap4hCDt55/54ovQ\n333psP61ci/9V61CyctDycuj8YIFfLonVN/qEjZSvoPkFF5MOYYQoHrtLaRVbU52+GUpQ/M2QMZA\nAA5XqHy+V9JckPM2tLlRIzAVx7x5YfXP6U+ls6vRh4R0T8GgKhGqoApBtSmHjrRiCHUw9AWl2lgg\nw3i4vV4UbYDeXf0BbiGFqgSn06BGCQfFKaNuRtK3H1Ud9+B3B1N0uIiHr7AwAQrCXyV12UMPPURu\nbi45OTn069ePYcOG4XK5/OECzPDfldGk4gJy35QSdxAjsaMvE7GIbobLKIgY9XkhGCPtjbr/2J3M\nazNpeG5DWj3Sivr96pM+OJ2U9ikkZCaQ3C6Zjq93JPvObKmjj1LH/e2Ot2Rs7Hqa5Hb5KH82FyGA\n0ZfCZXI57ssPaYY2k9rQYkILmt0eGqTL1cjlD5qUPiSdJqOa0GZKGzr+NzSWtl3qt2jp7g57vWhB\nOg3YpWnO7i5ZxwLdm6jY4+Hy9etDynu/ewqAz0d+zjXdruHCBg+QXtU9tGFFrubM5lNpKbg93Tlr\nmQAAIABJREFU2OLcKgIFwe/V5XxPEZz8KABz9h5i+DojzXq4dYxs6Y1LmXDGBMPvS1qMDo1s6Ai1\n4z7g9fDDAXOPxPAvYTM7b3n82HwZSczj9aJo28+lDQP50xJdLtxeL6d8doqh9uGkgGDW4OwGdP2m\nKxkjM2ypk4+6qkQRCn9k/WGr7PHkWKlPXfbUU0+xfv16mjZtGlLObGInJyczbdo0pk2bBsBrr73G\nqaeeegSoDNphsTl+qi0zNCN8wrzDETzLlKiEbpfDhUe3WeVzskg5KYXOb3cOFJxk3YaiRGdVIjQy\nX3kFpr8XapttUzgCIKFRgl/t4VMPHUkotSlrlTQjDTmHh3UexrDOw/jb9PeoXxWa5UdxKJabk1KA\ntbm8s4DDNIiT7ho6ZtAruxdOh5OnFj5lKBPioBW8OSlAdZhTGWnN6ZszgQMdTVpMFY/qxYET/hgK\nJwU8PBNcTjyqh4zLMlj7teCulWcZ2l54+VZyTm5lpPt4UJXo4fF6jriFWm2gNlOXFRYWUlhYiBCC\nxYsX88QTTzCpJvE+HcnQ5Gw46e9wymPQ8iroMR31kXV4grN42xhrt8tlr6AOUsIOON54tQ0ngflD\nsGTHEkjbCQ17Q4fxvFZYyIayMrwpLULKAuyJKohktG94BZIaU+U1t25w67V5rkr2HFR5bvt23tq1\ni+e3b2ddWe1kiDdQZPNJNLxjv3kL3n0Lnh0HwxfC6fugcRXct9yy/sziYg74OlivkDpJxheXU3GY\nW0MooHoFe9zVFFZV8eS2bezX2ikuBhmkyaaXbjC6Ps2YndahUQEuWLuWV3YGVIVmqoRqNWjvzGRz\nUiiyrT4rVvBncLLuiOQHqUp8QaPSpdONV1Wp7tQLck+Bel2gjmTGVeIwB4V8GbpNLGpCfGSOS4k7\nyMvueMVFF12Ey+XC4XBwyimncO+993Krlnfqqaee4rHHHqNPnz7s27eP7OxsbrvtNs455xxD6jJV\nVVm/fj1btmzh2muvZc+ePbRs2ZKnnnqKwfr02NGi/d8h69zAceP+AIgz9uOJQeKORaXkdoBQHKwu\nPQykEiJ1B6HP633g8R7Q9TkAbtFSvXHqG7D8RijbopEs2+nZC/bapN+hRG/OSMYARix8n1FXDuZD\n7dQtt8i/BhP7K4Zx+8Z/wUkB6517t2xBaEGIahN2Vg319fqAuq2hLtC8NfR0A5H3By5YKxlkyeky\n+/GdtxnzXDoUB8Is6YACOyureP6PP5i/SK6YpxcWsv300znpJGjeEEpK7NwDk5vasBclavhlzk8H\nD/LTwYNck5lJqstFx8ah6qb/K3mM25kcIDloc3JHeSW+XC5LSktpt2SJ4T6GXeGb/OZ/wdWRLo4e\n1Utlrs9S6iL5Z94gvtg+HToATAvouteOgq5y5nlDwlQcZzpukKqSWGIOHE3Uduqy/v37k5+fT1lZ\nGRs2bGC0WYK8CHj5vJf93y85xdxgVwTt0wkRwQrAj+gZn9BUIhX4JG3h+8GA4vt1QfidFm7ujkQu\n7RQc5yYKemyaogWj1OPh6acDTKpHD/nXoCpJ3Q2pRz7Gjp29CIDE2jAlAb96qu/pRsWww6GYMm7F\noeD1GMd4d7Ux4Iwt1abwQrBkHAbDGzc2HPtuTWpiKuJRYQhOVS6CnImCNicVEW4rxE6W96AaQeW9\nJjq2rGpj7juP6qFh8fmwq0egXgwS9zFxwDkRJO7jDX5HG2C/hdelUKSnsOF5ssMPYlJdyc2axSWH\nCHbA0XsBJjh0El2CicONhkRnooGWqLY6lSg3J7WyJe4K9pYFdDL79smxq9TzlUQvpIdGxNofJo5E\n7LDRB1E7m+4+aTE5yPHHqTjMn08llPF5hGBbZaXMnmHDgcWPKB7/4HlQGcZmTz8HK7xeSlSvQZp1\nqQrB2RP1Fibh+LY+zrw/rrb+ehVQZUKby2k09/WoXhzCBb7Y86oz5AVwXOq4FRHd5lUc0Da9LZUe\njZvUac3PFjvvvocq22fubeMBWV1aaq9gEKo1ZeujBdvkpQzmgIEbnODUGHeTs6HjeMv2ru12reE4\nGoqUGDbGVIfCqqQu9PwyQNNDD0GXLmDYc77sJegeOt6NLqndTE4K2Op0sIlorHhvk9yTqZMSJHFb\nqEoUh0KF2xvC+FovXgxz5kGiN6pN3YjYNYtL67oZmZFhOJ0VJg36Hq+Ms17u9VLn5585Z+2vLC8J\nZO8RQoS839su1sepCX8Dgl+YeoZbpw68UD/UV2LHWffTMk36S5SVSYlbwUmdgdoKWnUZXgDyQhFJ\nOTqMW7+cOVF03McLxp02ji13bfEvbRvUs05cJxRwqlJylCciL8F3V1cjopVYCdXH+jZY5O67icSd\nbJ3T8pcbFnFBhwu0+tHbg9dIAk0xWgb9/rtFuWBkVdaq1ZPsQ+SOuFWvfXOreYPkZ8GFIT9tOSSd\nnBJcRhbgcDjMTTsVUD0Rrmt3DtlRlW59nS96DWFUGJPZYJSpUi3nk6J9K1A/eSohL56duuVpTVUl\nhx3mnpcPnDoF1o2guhq8qhcHLsqTtgKgCBceE1VJXMf9F4GPcTsc1vvJps9NhGdJ2CkUEYrlkdM3\nmcNwV7PZELVDULQxTvzFY3wElNo3V7XTnA1hzKThUFG4SrM+cipGZuN0WG9OYiKxBn4WtgNl2btT\n0Q+u74Xjqxm856N6remXBaK7XoikbIGkhERwulFVn8TtIsmpBTdTXSYx9CO3edQYd4NkLYZAYkNE\nX4sAEHEEMGAuAF0zZfzpH5LPgAFz2d8+TNo33w3PXoSiwJtvwj8eDC+RpjqdxPKQOIVAb8xhpSoB\nwJEEra+3bOsMzcMPAnbcauYa27RIW/JoGLeubJuxuoZ0doBtbvTfA1PctgXn/Dy8NeTePs/GxaUl\nthiBEKr9SHz+SqF7Iq85c2HAXP+KTMmTfVEU4+bkTwcOUO/nn1EcivSODDPMaqINzic06j3hVT4P\n5FXCBXIV5gqawEpeHpf9Ji1oSj0eeZ8SG1LYXybKtmLc23PX0Kog9Fpy7kUe0+CuF6PKaw+YC3Pz\nLOsdFirU38ann0rG7cBJokOaYSrCqCqpUlWe276Db/cVWzUHHEXGfWCC9FaKC9v2IR4VjM2VjGVp\ndahFxrddu/LxyScbzqkKOLICSRt3R4gqWd8fxDk6idWpCvBvVgXZ/gbfZCtrknDI2BC5TA1g2luH\njsE1sRcxvqaM24jI98B/uXmDYN0j1gXn6egXHlm+dFNIMYfOgNwrRMjm5LLSUkq9XtDUDuGsMrzO\nKETWhRdJmg6uCvRH97nuFxfMlJHP3AMGsLJnT0P1LzR94CHfRn1CIA2dj3rVYc5vUg5vDD0ZyQ7d\n5Kf9Nh+ZunUzwZvITz9pqhLhwoncjJeMOzBuFV4vQoGfD5jvY/lwDFQloXqmOGJDgqJoNswBCJ2u\n1I5k5hUCRyyxYH1PcPDkNU2DFr0qJmrVR60g+mvaXS7X6qWVkC8mMGGiEWgV+DYnA/PBL+06THMb\n6GhSbKmOBNhSqQTPXasa/vNqQFftuyfBEnegcRNddASa5N6N8aK2HI6AOokpkFCB16tJ3IpR4tZb\nvlQZUgBa46g44Oz9bC/ONCe3zb7Nb1Lkqpto23b1/ze46tXDA371gRXqu1why0ihgEPIxa7SvAJx\nVRGcuwklDz70ns4vLQt4aedOHmrZkifatqXHihW0D6M3t4aQ9tN+VYlvQ0ihNNFJhyVL+N3nmdb3\nc3tNDpiL2LoQAPX8etLKL8IMfqaggBWlJXhFvShoV4ySo08lMn0jXHQT9PkPJIdaCJgh5eefaZOc\nzJ99+ti+eq8VK1heWhpyPuqck94oPTgrC6FeJ8OpoWvWcG5DGcK25aJFJGYk405J5fxff2Vmt27c\nt0U6Rm2sqCApgsStxmJ0UBlqnZPshg6HfUHA5CSoY2K/bng+er8Tck4o0O7P0MTIFYcLoG774Nao\ndFtHExPAXrcxQN70/W9Ag1ss6/gw9WAFZK6lfLsbj+pFES7qJ6Wzp2qHlLi1zcnN5eV0XLqUmxW4\n5TX8jmFmOCqy7+93/s6OF3dw+eLL/S82z3/HwURoVP9rrrnoX9JUJ8pPdrO36Hryv5ir/WNu0KfP\nCzAR+UktDHwPLjd3Lsz+2N+O/h8Toeft1/NsD63cG0sAwdtvCz7cuYXkpCXcfvWUqGlvm/0KPVo/\nK6f6RMgvL/fT4vnqK1vj2rtePQY2aMBvp54Ky6QOWcZi0J6uk42ZZR7/pISXNLfhJwt0yj5FiZ5p\nAIo+VK3vu/Yi+T3YnTgIX3fpwvgWJu7ujTXPszOtbb71uP/PPzUhP9bNSR1O+QayV0LbMAwx/43Q\nU5XRhSk2Z9pRQCucUrQfVt5m3Hzc8h9YYpFRYcOTsGW64dT3Bw5wj8ac97jd7Eh04G7UnFlBhuo+\nC41wq2V7gcaCBv735+AXo/NVhsnwd6pbl/vM5ksYWL5kNj/Npamhq8z9FebBp0DO79Jge8esC6wv\nPj/A5H+tkt8rRSleIXXcd/f7G2DUcX8rYwfYMs45OmFdXYHls9+IXycp1mRZbFvtEml5VmSdO1NR\ndBKa9tfjAbcW6yImSQPQP66tU6LTA9+QleWn7ZTUVCjfGqDXpyqxSVYsOSf9CBn/CHb6h34F4MwG\nDbguy1qqjWpKKLqXlU2YMnpPmLQ4hzR38l1fR3Udu1BicNtv6u4DpRtor+he0Ds+kZK1KVTYYSf/\noVmG9YCqpJ7mdn+D/v4pMRr5qtXgNupzQ+69JpEOTk8nGljyBrWaRkHaEgWBI+qXf5jyjw4JOeVV\nPVLHrbhIS5KOOVLiliNXrVPxRMJRUZVUba+iartchvgZd9a5sPMLYnE1tY0JCjSYC3++Bhf8DTo/\nDPW7mZc1MZkCuPmHm1mVowYGs3U5dFrHrEOZ7Cz4A4VG1NicLobuJ/uWjkuXGlz9Et1wn7uAyRMV\nWDjXMAnWjVpnaCNgyRH99YNftsIQZCoMNLPGSLphoQAfzEbJS2ZkRgZzDhxgcHo6l2VkcHq9ety6\neTMzfVKhmVo9fOvm5Sf2BuZY0B3qPamHkpdHoqJwUcN65P3xLRN7Xce7RUUMTk9nckEB/zrpJPa7\n3Ty2bZslTbY7ob2RXVq+zATFvO6otfDe53D/EKhwQeNyeHxg5ObLeg7z98lPnQKNi2WO3JLyPZDU\niI371gNSzaJoXagpRq2FGcFGZ6oKjqjZquW8Pr0AXl/5KrS7zXDeG+ZB8AotwV9eHpP2wpkAKaGJ\nTSzR7FIONMxnS2oqDpzUSdDioAsnXqEihOCBP/8EoKWJ5Uswjo3Lu298er6qfYmN8Tk1ZnHPc5A3\nbBEsD0qx0kCLK9z2Zuj0tbQUSMrAFNs/MD09euHo0Dfr3bP5NPc3Frl9QehjmLEiICN+eqHUzy3M\nzbVV9bNTTuHJttIbi7POggEDWHXLKlgrTQWHrA287e0z5RjugSJICjYHjOQZu+6ffN+tG+kJCXSu\nUydkAvp15grQVDKmj/fupdjj4aO9e7li/Xoe27YtwLSDK9qAiFo+BzY8Ab/eJ6XDAvO5Ui0EnxUf\noji9H3f+8QdLS0uZrKmkxv3xRximTUxeRD33/osfrvmB+X3OpUXVH1IVosOMz8Ap4Lnv4T8z4bE8\n7Ye980PaigTf8J66cDesuAn++DcLfxrF1ToHGTujquDAEYbthDBt8AePOTs9nSYJCSYFwtMcjF/e\nAAqD1ZGCgxFSqkV8ynd8Bs8k8Okpp/Dqq4B+Ed/+72w+eznzs9vhwMUlHS/h9l634/AmI4QwuMv3\nt5GQ6phYlRgRu8StCLlBtqoH7GxbTOeU0NjKtuENp5MNWlcF28XW0AJieCcp4fStX5/KM88MW1YM\nHMhlGRkBMz5t7Do26hhYzmuwqyoRNZgFD7ZqBYBxzltceN4g8JYzRNsMUxSFtzt1Mi0abkjNYkJE\njWj77D4AB1bI74ftxZOPCopNLb1uaBNFPQa3HUyjpDoUDL0R9vzInGvncHabCKaM6x+Nmjz//Sjb\nIcdi56cg3Lzb2Rcz3Z6qRAgFRbfQ79+yf+RKGuN2KgpFZ5wRobBNmKygIsUED3uDtrwGW16GmWcw\nPCODm28G8cRAY3V/ajYnToeTl89/GQUHqjB1eQoLW9N37NixZGZm0rVrV/+5/fv3M2TIEDp06MA5\n55zDwYMHw7QQQN3yoIdScdSKB1pRejqnbCmxLtDbXEryoWUY8p+YPtx4ouNpugNR8+wv6wIqjIQY\nLW2cDidZpYGBvHSp3PA50lZ1sn2VqFcdqgrLlhkymwTaC0/3u0VBOSlj0A9HO+USDe/qIzOodli3\nTxWVcdhcSBdCoAqVpFrOEJiq+csEXzJnek5U7ShAgurhH5rQb4vd3303rFgR1XUAXGGCOg5fF3xG\nRMzh6d/mMiNZyM9FfA3btsGyZVKNqUNlS5kBR3Wo3LF5M7uqqnB3OIuvRBUXrg0fjzwYthj39ddf\nz+zZsw3npk6dypAhQ9i8eTNnn302U6dGyK6qg/6hVBTYUx1ef2iNwAP7f2ecwScvhEnamhKarcaP\n3x5i27+gtIV5APpEj4teVrHpo9avmkBnShZslx0RGuNLcCSw+L+BF8jfZ/6dujZfpj03biJqZqR1\nelSTJtph+FFo7NnL+L7jef8yLQ35nDnQuzcXNmpkOgmj25yMqFkPrkBXxQWbn7dV+pNHH2WcPhbR\ngWVw0L5np12a7ECtTEAR8P278M9/Gn+bcMYEemf35pkhz7Dw0HDzBnxYF53UnaW9K1PLjavaNUVr\nIP91FEXgiiSxAk5VJcHr4cmfYHrbx3n+nOdRRIStttdeA13GqN4WCbYNKNlASqm1E8unnwC/PWQ4\nF17iDsxvU8b96rV0eus/fM0l0Lo19O4Np51mUhA2n/wn/y4spNmiRbhPPo/PnB7m2nxW/bTaKdS/\nf3/Sg3Z0v/76a8aMGQPAmDFj+PLLLy3rHwyy7Ap+KIOTttiFabXixWZnrTFvEBTLiGPuetFl6w4Q\nEoODSYQHNSXo9X9rs2Zhg/crikKTIG2Pw2NP7DprzSpb5UIhaJYsH2SvN+A4EHxfhqans3fw5Tw9\n5Gmu7HqlPKll4M1ITMQ7cCBi4EDyTzvNP5TROWlFsbGnIdPhgF1hkkki1VLMG8SI+fNJ1ktvnlJY\nMy66C5ph8wsBb8HyAntd0ArVrwLfNocPUwdPJS0pjZ7NetKz7knh29kX0HMvsLm3AhZ67IL3tM19\nO89BoMz13UfQK7sXT6e6YaL9G7ikZ0+ENme61K0b+GHT0/Lv/HNg1W2w5VXzBnwoNkYaDJsWLoxa\n4I2OHRHLziVp2+khv33dJTSze01Ukz7E3ERRUZE/2W1mZiZFwctXHTxhX6gCtSbr+eDXn5lXVLjq\nKjQ57KMkurq+WrFHO9TV27zZb/YEkBRu3SYEbN0Kv/wiAwED/P47jiA7095rGofWrUUogDJzFgZ2\nLZTQ8Jcg+5afD3/+KUPwaane0CVu1TtkRTMlZMTJI6sTalYKXYrgmtVw1p9QN0zm95jgwGanZZk2\nB4GVK80Dgy9cCO+/b1o720QIjYYJKJpWrEsRQeoYs1e2RRtaH5wb18GmTaTuL6AZOzkjzN4tAOXl\nIacMT6yqEaRZiCkRPBu77tYfibD7w0JnNBvMctzV1bBjB934NbRefn5oYxkDwtJlB7ViDqgooanr\n9bgnYypnFUubz1RS8a49CXpL3Vi1+1cO7g9IunmaCdJATbqMdFx2+A9YDeTI9hJ+eh/3SQn+Y1Zr\ncTvMjj2HuWwW3LFMnpp2dS6XPih/z0GWX43xOLg9r3clWwv+jJp+AK/Dge9oYMeO8Mor5HXqxFWF\nhfQ680xpPuZzxmnWLFB/0SIG/uMf8thXv0MHnA6HgV6HUOg0YzU/Zlj0XzveVLEfH0OwS7/T68Eh\nYMHwy4DZqGpzANzV6zhcWgzk+tvv26oVzJsHf/97gF7feDVsCHPnMnDgQDISEvD+KnsgFBv3Tzsu\nPbAFaGubflUtQEHh8UGP889lS0hwJuDO6WFsv5Mc797VvcljKbesgFtWYKBfOccefabHnVtIm3b/\ncy0ZXyT63fvXUeWze+7ZU9KjjR9A3jvvwJgxgfHV0Qvw3gswbCQcPBka/e6iuGw5e9xu8FlrmNFb\n9AMg45bPaP1/XDoLvlgKP7WGs/U8SCgR6a+o2kSJIul3XjGCPKATsBPgzVB6DccdOpD33nuG9s4t\nKGDN9u2S3pLfJL35KrSBnY33hDy/L/VbDQtke79Oh4z6n7Iv6yRgCKUl1vPH73qyejV/HoIzdPwg\n8cEHYfFi3jEZ74pzzoFHHzWZD4SO9+rVMHs2U4Eswnvuxsy4MzMz2b17N1lZWezatYsmmq7TDNtf\neYAFf8D/bpLHTzXYRqr2W2JCN+qnB/RmvgGzd6zQ1NGMrb5BAeqmruHgobthx23Q/HI4dA8M+ClQ\nJScHVt8F8+RmQF9nYJAX9chg3lxpmzl3kFacQNu4SwI3QIPL2YOMRgExxj79v6M6FAy/bt/OwFtv\nNZybNG6cwZ524MCBUtr2HevKOoQw0gsMKm7Py4cuhHlAu9shZ4RcmqvfgSMR5/676ZQcMB+0S78i\n5MbLAEUBBqCqMpB1QsIpNK6zgz999Xx/77svhF7/sVamjtPJpuuuYtsD6wLCZ04ObJiMf6YHjT8d\nGpKashNfLDU79DuUjaAs5eEzH+ZhzYhHmaRAt+fAx8B/GQbnjmTJk0tgckAoCaY/hJ4Ixyk5XaiY\nNwR8Gr022t98ACUi/Y3qtGBPWefA7wA6S6SBQUHHgukdCDTMgoNAv2/78eWXMrWWT4h8vSqZG5N0\nnqBtE+DQTHyMe/PZh7lN8k66Feno1/Z6ItGfktSReimByHdm9Fke79wZ0t7U4cOZinb/ACrv9tN0\nKLWEHHK4/g3Y6qOTHD4fFKj/cN6/GXceoKyl2h2O/o+16jm080VXmDcIni3kuuoJlvRfcfAgHTZu\npEeOxfzVH+fkQHYJD3wn7+fbvI0VYlaVXHzxxbz9tmz47bff5tJLg3MGWsPhCSzpFQvnAbsI9vpL\n8DXtz6Zcm849VtvJtdSUXTM3CzWKw0QPl1Stezfr04j5lqsi9kmgV1Co+o2Kmmgt/K7zNstry+No\nVSWmQ6hPtW7hkFVTWFKp2Lv3pvX1KjIbOSld2qUSzRxFg/UAIXNK4AsC6IzFfeFoBg+z4YloyNEa\ni3GYIiI+t6I2zFeDYOuZHT16NH379mXTpk20aNGCN998kwceeIAffviBDh068NNPP/HAA2HiRAOH\ndBuUzjtuo6lu1ni9sVqVhGLPs5DggbYuKTV0bdI1tFCVDAnZs2lP7olmL3Pfz7B/WcjpWK0BQ7RL\ndixz+vYFbVPYDub21IWwLNkIHi0QxN75sHc+X3wIBOKz2oYrKO9lwCRSkHbYxCxzT5j4sooiPxMm\nkKxFTTOMc3kY5ef+xcTy8mz9xSewe7fx5IGVULZVfvdWQm5uWMeY9N1r5Zjaxf5llBcarbPEREjX\nVLd2Xj5uxWSRnJgYGMOg8Kdm2KRlzTJzGXAoSsBBp2xrwHZdwzfvC79qMb1S0i8mQoIqcERwYPGj\nJrGdJ06EESPgSm2Te+xYuDA0ww/ADzMk0ykJE3/srqXwhOYs63RZ0yV8hktlW+m7SHe+NFvGvwiD\nJtlReFge+pUN5q4NBthSlcyYMcP0/I8/Wsf3CMa+DBg0V373nlVNYd++PDHje15CRfVGF6THBxWF\n6oQExKBBhvPVD5bJJHAAA3/l9V27uHHTJrm0QTLzXydo8RxuCTwsA9as4YdevYAArfc9AxfIsMCM\ncG3j07XPofT5DJHUMHDBGIQI/0O6dKk0HbKLRYvC/jxoLnTYBK/eKo+7fXoFD64rYsqCKVA0W34A\nNj4BwPl/wButo3+QfBs/MtCUftVkYVN9wDqAjx/ffEOdCY9p9E0Gt85Eat4g8zoA3But/aCksKgI\ntHgbLwx9gbu/u5sulav4bc9vfDbyM3g0vEndTaPLeXqiTmBJ6wg9pkegNRQNK5BDZuM2VCWEiadi\nBp/EfOmloA9eNlFwo4nPWYLTFdZBRwljXRFpMxBAtWPuGpKDUVfnk09g/XpwOuGDD+Tx4cOk927N\nAbHVUO1AWhoj5xqbKhw+XFo0JQXUs+f/nMNjCQJH2HjiChx2w/LrAa3RifbMUJv7zALX3Avdn7Mu\nqM2b2165Qx6HmUbHxOXdd/P9aZNqUVUCEJy1NLiTVhupwq4NdcjqsQZWJRHe1jVFcNhXSzqifvvI\n8r57qR8BxWzZ77RhseP14vA3ZH9MFUcs9AvDPPFZOvhyZNpx33YT5H4d4zyQqgubfRBKTO7xZrSZ\naVUSHOFdyh0Wy36ZSTYyXTVWlPjumY8Of67TUNWWmepQKErIXPTzkIgv/xifc98zHqXFWzgcG8YN\n8PLL7HPvIDamoYPZWNarB5Mmyay5ikKmP3uunJidGneSS8qgB6CpiWlVkS5X6ScjP2VgPojyLbHT\nG4xgZwLfktf30STVlpMm2X5gy3SmrfnPPMO4O4ymYV/MgIEmVkrRQEZ4FH6JW3h9ErgS6EeXLoF+\n2AlVu2kTziwZSyZ3p2xv1rsyKFA4tNsfvTGgItTAHFAUum08SNfdMONfO2hWAsNOvixiG89zL2Ii\nXOmzAouQjsuHrz4IqBgANv4bukXIVOSnW7EQViKhTRvDoUAhMSnoJdC8OeneUMbtoxOgwDJ5rz1z\nQEHNNCVs0rL4CCHnl2Yi2IxA8Djf2Jq9ZBI8npA3Vg5rkGbJ1pdVgEz3Yb59L3DO9qy76CL5tzp8\n/PR3PzOOdTgcFcZd4FNb6HH33eSX+7zPamLHDWSYBI6aOBH+kDElzlu1ir19+1J8fzHF9xfzzqXv\nSBvYIFyj5bH78d57Gaq5q75/FYx9HUbNkG/N77yjpcfVgvM5+52LqMlyQQE5+Uxo8aN1BsXXAAAb\nUUlEQVSggAMXXsj9H4YLq27EzuZw02sw/FNYmp5Ok40F7L8/8FK6dBOMWK+nI/o+VCf4JFMJv3Aj\ndGqTdSF+xQFY2BkniHIu+RI+T72Nj85ezrlb4OLQjFsGJHmj2/Qye+AGriwmr8XDdNy4lw397I81\nwJ3fakrJykJYeIn8PsPcIe3uPndz8WYzouwJMA6nzRk3Y4bR7vmZZyLX2bmTltXJpj9d/jGM/AjW\ntGtn+rv2HrcFj8sBy5fDhx/Ck8bAWL5n1oCiItBUmAbo5tdlSaEqiMSg1exPd99NxowZ8mV1UqiD\nUkjSXh18K8vz/4DJU1dx+ccWBdesgcJC+OYbw+nV3ix4cDn8Q8BdXVjZs6dMx7bochlLf8mVXK15\nvaea2KsH46gw7hZmOlxVxak4UZSahHXVJrqV8l8E9LCNExNpmNKQtKQ0klzmwahEA5nQuPeGDQxb\nIEN0qU7IbwuH0uVSLNGVBMIN3grqVNiTsCIinOea10uDsjKcZkvUxpqDTceOIT/90R72NwpIHekp\n4WIZ21vmGms4DEeqjj5bLwLf5lIQnKpKSX1okFqHkf3kRpsjQnOxvPadQXNOARrWaQRAveRosumA\nq6oubNQYtqcEDraETZeYlr291+2m5+2/PG2WGzUK9DHebUbVs1Ij7suAvU0wn4cQZegHbRP1iisC\nG+0dOsi/ZhJ9kyayP2HgVEL759Spws5cs4ZBq1fL1ThAjx5BpUVk6w+tg9VJCvssgozSrRs0bSoT\nHesEyvoeBTwpsGgQrG1MbloauWlpUL1PxtKv3OUva2cf4JioSgBQVT655VntLR2bxO2fKFaxC959\nV/697jrJ3O+6K7B0N0GCZuniEIKUKqNrXKVvM+Ott/xLsSvCCJT2YGOqh7MS8C359G6/QajyPbCK\ngpgInkny8PZlgWWZowYmWn4dt35zsiYLKN/L9qmn/Pfp/l/g2/ckvSN/g9e+DiyHZR9qweRz2jQZ\nzAjg/POjqnoqKxAffsVZf8JJxVD50nY2055zdMLjP+ZLWts1MndFt/0c1KZ1q//igWei43ltDWMb\nvHSvVxZuuW9TR6+HT9+sCU2W+wSmtosBTJzQLoTeBB3j9tH9znsOioow5RnhJG49Fpq4sZtCd43W\n53biYnTqwgcfhMJC/pmnXVtHd73ycpIixG86aoz796uu4oWXX+a8xUb7OwVIVqLcKQ/G55/LJdaa\noMA/r7wS+F5YKB9OM5x0EqxZw4CpU5n24ovUHTiQK3/8kbFalmkrXLUWW4lPbeHGG6OvoyjShXzW\nLNiwAe66i9a7dhmKbA5K92Rme6tEHVQS+YApoLwq40HoJ33Yx/eUUwKR3t56y4QW7W/QA3y+xgQ/\n+hRuWhlcJ/oVQ1To1CmgepsxA15/3bTYZ++mce+rV5KkCtrzB9/p9KFP/mRaRYco/RkWL7ZctVjR\nx/+Fj81iBw9//rl0AFu8WN5LP+ypekK6mJUl2/rmG2klYiWE3Xxz1LQOWhWIwfPpxIkAjJneh08/\nBZ5/nqWJQSFiw0jcgkAoB4/LwhivIGgzZsECOW80fIX0dXnqKaTp7wsvBGKk67D81lv5/eqrLWmB\no8i4TyosZNxnnzHzwQdNfo3xofO9vRs3hnbt5DIlFvz+O3TrhqNxY+748kv45BNcXi+v29ELEpsQ\nJHWyun7/+9/RVJZ/FUVuOjVpIpnLiy/yr6B2nMF58iwR2z1QLrwQEHg1h6eIDHTo0MAydcyYGljk\n6GiI+g5E2deXXpJuy+3aySX72LGmxVxCJUENZTx39b4r4iUctl+e2gifdprcJ3j22dAiFvRx4YUh\noUajRfKTT0KrVvL6v/3mD8UAUdzK4OE/7TSpVhg92rpOYqJ1vyzgsyoZuGoVSX51pJaNvl49Lmm4\ngMKd/s2ZmjnK1K0LwTkxmzaFO+8MKerX7Fqs/LP37aPF3tAkynocldRlYaGImB1YfPVrHdGaW8VK\nv552Gx5vofVt6MJsPE01entrqhjb99Dm2No2zQw0HFVpRzTzxiYtqZRxg8cYkU5MhJIG/418CWHX\nSiHobkVrTmr7RW6B4CW8f5P6SOhwghBjrHpFCDZvVNG06Nx5J8yfD2638bGLzLfD9NFqDyHI9FCg\ngE+Y1gTDR4Nsze3g6Om4fdHg7rlHWlJoUABHdS1GfR82LLrywRt7Tz8dcN5p1YoF2hvzncmTLRqI\nPnuFKezYOQM8IR1nmDMHvg5NXDt4xQo662KZfGu6wjGiDHNLgsgQ4HIhTan0qhKLCX7//fL+B+P1\n1w3nn54+nTQbO+uG6x0pV+r+/aGGWVfqHQyf8T46BCWtuEFL1+dTO+mW5qaIIoSrHk3276fJ/v1w\n/fXGH774gl+zz5WUKXbYSQ3u0yOPRFd+wAC+/sc/eHH975xb8hF38aL/p08+geLiAONWFAFq+Jea\npW1/nz4yIqMZbMQOnzjPePzlY78ymvCJX46exD1kiHEt5X97ihqslk2G8vPPoVEj83CXwaiuDn1T\njh8f+L51K2eMHRvwzNy6VQZJD0ZM9AdR7huP4mLpHt45EEiI0aPh3ntlMPmHtODvZ51l2mrdigrW\nKwqPXH89j197LW2DdN5meDVxVCg9EeDvsjbzfZmqBYpFhpAwg+RbAj8vExuM/8hOJvIAFCVavq2w\na8i5sOW7yEXnz7f+rWdPaaMbiVmaIWg8Sgc/DttjYGqNGwfashMKISlJ0jtxovR51/evfn04ZJ58\noGj4cDnnLguyb8/N5fnBs1DnvBJFUOQYH/iWLbW9FfvelxcBZWWQ/zpMI1RlpW8q5pV/OG9mh0Pe\nI50vSVgIwf434EO6AhZ7GBwPqpIjAbtvAqtNBj30d9ZyZ7sWl4lOZyhdXm/UumCPXQkeiGXh5R8V\njXEbqDsS6qtwtIjoJW4lFtVUMGoj554GOyotqAFzMYPbHf44CJWH3Tz7hNTRlpXJYHYdOsD27Rpt\nRzgmejQ4dEiGqt+8Gd55x7qcYRqE25wUCjE/51HOtW+/tdFkbJTUHhQEam08RHpYWY+EXNzGRLvu\nusD3dDNb6Bo64OjRrZvc5GjWTEpzEybIjaCbb5aWL7oUZ5EwYt48rvapp5LDq0Ji31xFG0O9qsRk\ngt9yi71G77gjBkoIvZ4NKAADBsBtt8mQs8G7+E8/HRqCU4+HH5YmXSNGRH1tU3qiyZtZU/7oUyeO\nHw/6MLD/+1/Yaucvncg//ykXSHfeKbVImZnw00/aqsfm5Y8Ge+/aVe4NDhhgbWQDGk/VNtgj5Y71\nsYsrfTGazjnHnmPTyy/bohnku+PzzyOXO3aMWwgW/CxNyqLfiNKasJoqV12lefAJc6nI6rwZ+vcP\nlE9OBiH44GqjmWDMUlBwt9eskdJ2nTrSs2zqVKmeOftsaecaIcBUgCBBj82beXfyZEl3RQUIwTlD\nBN/N1vV90CAWLvCZoUV/DxTwSxNe3XhWptQ1jv/06fYanDbN3r3Rty0E5dkZ0dOvKJCXJ615nnlG\n2vzr2x0/HlaFSen2+OOSaZ9ySoDeYcP833e88n90aG/Sj337TPtnl/HVCtPr1k3SMGyY9D586SV5\nfvRothcIPqoTpMcWgtP7COZirp6LCrWxSAm6/wjB6/8T3DA2cOxbBUSCw4HfTFKN4PNenpQCQvD+\nE0/ItHbffeePMx8Wl18eoNXnH2KmXvvxR6psZlY6phK3j1/Xqo77KMApgkKaxtDGsVhWJiUFGQV4\nvZSVxf7iBLSZr/OcFEfJwkAHSX4UfRAKOI7A+OvG0ekQtgw4fGXs9+EI0K17AOXtDL1/kftiT11V\nA3+7sFCUgKYjGsOZwC0ThA1WEqWZvSV8alAzVabTaZadzRTHAeOu4XDY0ad26QL9+tXsOjocbCy9\n37bSqkYOOEebwX3zDVx8sVzlL+AM7p1/MUOHUjOLDJ+ayx8lsBafyjBOCPo4XEU2AzTp4ajJy8oM\nXbrAeef5D9V27U0t9eo0TjHQ7nLJv7t3YUuCEbr/aw09evgZiaLA/MTBABTTkAqSURRYFhqG3oCj\nPZeDcffd0rDGN6Z2YdRxhy9bK1PGd8HTQxMLtx7U2h/FIhKO6eakzrDkyGLt2lptriS7s3+i1mVe\njCuGYzfRv/8enmRB4ES0Eis66n06bp2UUysT3Deo776Loki1/86d4YrHoCqpTejnmBCwUzOxFjIJ\nbdeumtbqN/Pqkmcco829fv389uAOB3yWfBX/OXRVDA0doxUDUGKSu0MPqxDfRok7vOdkrcFHjBAM\nGwbXXCPjaG27zX4Tx1zirlHqsmDvw6MEvQVhzJLG0UzhFISQveBYdPRC+89nDmjYnKx9RHaOiOa6\nSu0z7iC4XEbfGCHCGxfYV/od2Re+XuUQXUVqECzu2MFgoVw7HhlRweGITVV8XJgDetXYH6JaixUS\nBUJt7U+MCdumDeTnw5IlxvOlFVmoqlWc5TBQ8DNAuwF6YsXu3bXLa62i4NUWXC5pju+7zG8WkrYf\nNsO6YrtUbEhKggje1mFgl/7anysNG9pz3QhGQNWs4I00h4/AwH/+uT0rkmAcU4lbaFKbIdHsCYBg\nh0U1xhfP0Za5rcJjl5Y3BWIM9KWpSgymVEf9ZRrDSB7hwY/KjB6ifCsdOeJ9QfqsUFAgGaTbLefT\nhg3yc6x13Pn5oec++QRKS+UnGBUV8sXqi3yrRNqcPIrYutXSD8qPYypx13RldawM/o1Lydg6cSxo\nT0mRsag2BuW3jY0WYx2vR785efw4YphDqR0HnDCIZoMMAPXEWLfp4yjpTcAljp2OO8kkxH63bpCa\nal4+OdnEveHoC9ymaNUqcpljKnH7DRJirO/x1mHxbw/ynQ3P5dqEZfamaHEM+FvTpmZnY10x+O6c\nAK9OoXuUJW5BDC+f407idmCLqGO4NxIOUaksj0AXzF6UEfzOjFDCb07C8fViPaYSd8+eUJO4+5VV\n8tV0882wbVutkRURGzZIJ0ZFgW351OCOHv2p8Pnn0llQCKkX7N8fXn5BYV/Non0GdNxHoEszZ8rQ\n6gcPShtdp1NzWBHSmfVQAUQ7i5xHWMedkgJTpkjnSpBJ1vPzZbiPoiLpI3bggPStevttWDFLwJ92\nWhYc6XnzxhvSvO7ll2HXLhnSJDExbL4OSdkx5GxOpwx1s3at9Hdp2VJ+okEkR7paNyFFhtNv21Z+\nv/BC6XNnBzVm3LNnz2bcuHF4vV5uvPFGJkyYYLtuQgI1jOwmR9qut1FtIS0toC9Oq3vkH6TaRIMG\nMl69HtOn1XxC6r1Ya9st6rzzDCbSIRg+mOhvwRFm3AAPPCAZ9/33a8HzLTBhAoz6znHcSNPXXx8a\nBNAebDrgHCH4EhjFjkgSd+1T36ZN4Pt99wXlpgiDGqlKvF4vd9xxB7Nnz2b9+vXMmDGDDRs2hJQL\nTlzu+/zjH+DxRniNh7u+KhVYRUWyvSFDokvysWgRfPGFNX36T0qKlESCV1NuT1Pc3mjXxeB212fF\nxntRFPkCe++9yHV+/FE6z/TpI+339fRlZhqPp02ToT+++MLYxvr1oTruP/KbRE+/J5lDZSfz9NMg\nN5j17mqhE3zUKGje3HxsX3hBJkFxu+XDd/CgPRr8G2MOiEbi9qoN+fibgTKFlQ4ej9x4FkIy3ffe\nkxJyo0YBWuvVC3y/9VaZfKgiQtRWlwsqK+XKAaQku2SJzIEwe7aUFDfv6IXX29AG7S4K913Fww/L\nEDCHdWlPhZAxRG68UUr0weOcmip11DfdFDGelAE7d8qXj76tnBx5HUWREXkPV7SI3BBQWZnNHzsu\n4YsvAhL6tm1yfvhWUlafSZPsu2R8+aUMZGjn2ZaJsqLLfTtnjsxjsWiR1BxYtd24sczTYgd798o6\nAwbYkCtEDfDLL7+IoUOH+o+nTJkipkyZYiiDdBa1/LicB8WpnZ6I6fp1kjeZtmkX4eiy+qxcGajv\n9cpzg3pPj5r2RNfeqOmOhd7gdkEIp9O83WjQsN4a3TUOivff/UYIIUSj+l+Ks3o9FhPtX38t/06Y\nYI8GEEJRhBhxziRRJ/ln27T7rjd8uPF8Xp48X1UV3fi+9pr1tWbNEuLAASHeeScwxnbvlRnaNJtl\nKD91auC34mL7NH/9te3hEr1722uzfYt/R2xLX37PHnmue/fY57Od69j5JCctEddfMMmyvYz0T8WA\n3Mdjaj8lJTytH38sxIcfCtGpU3Bd687WSOLeuXMnLXTbzM2bN2dnOPc2UxybeCOxQi9x+yQtVXWS\nl5cXVTte1TzT/JFAcOwG81gOImI7Vn1UgqSVWO+nb7M6mlgTQvhssqO/arBhie842nsZbk/r3HOl\neqq2NDOqalzd6ccqGkMZVbXfT7u0R9vFWGKLRI88m+WEnUcgJkRakV1+uUx4H82Gdo103LXhxODx\n1mNLYR9OPfnDqOtWVZ9jer4WcqJa4ocfZN5hCLjZrv/jZK68/HmaZey23Y5XHRVy7kjR/dVXofki\nQq+lRLwHhXs/9fexpHyI/7zAxZSJJbww5UNKy3PYe7Aipr4s0LzwlyyJbiwK97ansrpFFHNIjv2a\nNcbr/Pqr/Pu//+UBA21f/+efDakXTfHLL/JvpH5F6sOeA8bQvgsWBNoMm4A9CHl5sHt3HqWlAyOW\njeg8pGFXcQ8b9yAw72fNkmqo9evtte9DdHMrDzv30uttwNwV3SzpP3S4G/sOeWJ+Ru3UM9EyW8Pe\nwsMcixYtMqhKJk+eLKbq125CiGbNmgkg/ol/4p/4J/6J4tOuXTtL3qsI/Ro3Sng8Hjp27MicOXNo\n1qwZvXv3ZsaMGXTWp92KI4444oijVlEjVYnL5eLll19m6NCheL1ebrjhhjjTjiOOOOI4wqiRxB1H\nHHHEEcfRR1RWJbNnz6ZTp060b9+epzSPgv379zNkyBA6dOjAOeecw0ELI1yzutHUP5owo3X8+PF0\n7tyZ7t27c9lll3HIIgrMid5PH5577jkcDgf7LUKunSj9tKJz2rRpdO7cmS5dulg6jZ0ofQRzWpcu\nXUrv3r3Jzc2lV69eLLPIhnCi9HPs2LFkZmbStWtX/7m/Iv+xBbsbkR6PR7Rr107k5+eL6upq0b17\nd7F+/Xoxfvx48dRTTwkhhJg6daqYYGKEa1VXCGGr/tGEFa3ff/+98Hq9QgghJkyY8JftpxBCFBQU\niKFDh4rWrVuL4uLiqOoeT/20ovOnn34SgwcPFtXV1UIIIfb4DIpt1BXi+OqjENa0DhgwQMyePVsI\nIcTMmTPFwIEDbdcV4vjr5/z588XKlStFly5d/Of+avzHLmwzbjNnm8mTJ4uOHTuK3bt3CyGE2LVr\nl+jYsaOtuj5HHTv1jybsOBV9/vnn4qqrroqq7onUzxEjRog1a9ZYMu4TpZ9WdI4cOVLMmTMnprpC\nHF99FMKa1tGjR4uPPvpICCHEBx98cMLPWSGEyM/PNzDuvxr/sQvbqhIrZ5uioiIytXB5mZmZFGl+\nxIWFhVxwwQVh6wKW9Y8V7DgVvfHGG5x//vnAX6+fX331Fc2bN6dbt26G8idiP63o3Lx5M/Pnz6dP\nnz4MHDiQ5cuXAydmH8Ga1qlTp3LPPffQsmVLxo8fz5QpU4ATt59m+KvxH7uwzbjNnG2CzymK4j/X\nrFkzvv32W9NyQgjL9o50ZpJIiHT9J598ksTERK688krgr9XP8vJypkyZwqRJk/znhLZ3fSL20+ra\nHo+HAwcOsHjxYp555hlGjhwJnJh99NFghhtuuIFp06ZRUFDACy+8wNixY4ETt5+R8FfgP3Zhm3Fn\nZ2ezfft2//H27dvJzs4mMzOT3bulN92uXbto0iQ0YFFw3R07dpCdnQ1gq/7RhFk/mzdvDsBbb73F\nzJkzef/9923VPdH62aZNG/Lz8+nevTtt2rRhx44d9OzZkz179oSte7z202rONm/enMsuuwyAXr16\n4XA4KC4uDlv3eO0jWPdzyZIlDBs2DIARI0awdGlo7N4TqZ9m+KvxH9uwq1Nxu92ibdu2Ij8/X1RV\nVRk2J33eklOmTDFV7lvVFULYqn80YUXrrFmzxMknnyz27t0bdV0hTpx+6mGl4z5R+mlF5/Tp08Uj\njzwihBBi06ZNokWLFrbrCnF89VEIc1rXrVsncnNzRV5enhBCiB9//FGceuqptuoer/0UIlTH/Vfj\nP3YRlcv7zJkzRYcOHUS7du3E5MmThRBCFBcXi7PPPlu0b99eDBkyRBw4cEAIIcTOnTvF+eefH7Zu\nuPrHEma0nnTSSaJly5YiJydH5OTkiL/97W9CiL9eP/Vo06aNn3GfqP00o7O6ulpcffXVokuXLqJH\njx5i7ty5QogTt49CmNO6bNky0bt3b9G9e3fRp08fsVILbXmi9nPUqFGiadOmIiEhQTRv3ly88cYb\nf0n+YwdxB5w44ogjjhMMxzTnZBxxxBFHHNEjzrjjiCOOOE4wxBl3HHHEEccJhrCM2yw2wKhRo8jN\nzSU3N5c2bdqQm5trWve6666jbdu25OTk0LFjR8aMGRNDdpw44ogjjjiCEZZxX3/99cyePdtw7sMP\nP2TVqlWsWrWK4cOHM3z4cNO6iqLw7LPPsnr1ajZt2kRubi5nnXUW7miylMYRRxxxxBGCsIy7f//+\npKenm/4mhODjjz9m9OjRlvX1Bivjxo0jKyuLWbNmAfD999/Tt29fevbsyciRIynT8i4tW7aMM844\ng5ycHE477TQO69NYxxFHHHHEEbuO++effyYzM5N27drZrtOjRw82btzIvn37ePLJJ5kzZw4rVqyg\nZ8+ePP/887jdbq644gpeeuklVq9ezZw5c0hJSYmVxDjiiCOOvyRizoAzY8YMf7wOu/BJ4EuWLGH9\n+vX07dsXgOrqavr27cumTZto1qwZPXv2BCA1NTVW8uKII444/rKIiXF7PB6++OILVq5c6T83duxY\nVq1aRXZ2Nt988w0QGtxl1apVDB48GCEEQ4YM4YMPPjD8vnbt2ljIiSOOOOL4/woxMe4ff/yRzp07\n06xZM/+5N954I6ScT8IWQjBt2jR2797Nueeey4EDB7j99tvZsmUL7dq1o6ysjMLCQjp16sSuXbtY\nvnw5p556KqWlpdSpUwen0xlj9+KII444/noIq+MePXo0ffv2ZfPmzbRo0YI333wTgI8++ijspqQP\n48eP95sDrlixgrlz5+JyucjIyOCtt95i9OjRdO/e3a8mSUhI4KOPPuLOO+8kJyeHoUOHUllZWTs9\njSOOOOL4iyAeqySOOOKI4wRD3HMyjjjiiOMEQ5xxxxFHHHGcYIgz7jjiiCOOEwxxxh1HHHHEcYIh\nzrjjiCOOOE4wxBl3HHHEEccJhjjjjiOOOOI4wRBn3HHEEUccJxj+Hy3ZZZUjMoaJAAAAAElFTkSu\nQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x10843b710>" ] } ], "prompt_number": 96 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[7].header" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 41, "text": [ "XTENSION= 'BINTABLE' /Written by IDL: Tue Dec 17 10:28:41 2013 \n", "BITPIX = 8 / \n", "NAXIS = 2 /Binary table \n", "NAXIS1 = 86 /Number of bytes per row \n", "NAXIS2 = 1 /Number of rows \n", "PCOUNT = 0 /Random parameter count \n", "GCOUNT = 1 /Group count \n", "TFIELDS = 4 /Number of columns \n", "EXTNAME = 'HESSI MOD VARIANCE ID TABLE' /Extension name \n", "TFORM1 = '1I ' /Integer*2 (short integer) \n", "TTYPE1 = 'VERSION NUMBER' /Label for column 1 \n", "TFORM2 = '80A ' /Character string \n", "TTYPE2 = 'ID STRING' /Label for column 2 \n", "TFORM3 = '1I ' /Integer*2 (short integer) \n", "TTYPE3 = 'INFO VERSION NUMBER' /Label for column 3 \n", "TFORM4 = '1I ' /Integer*2 (short integer) \n", "TTYPE4 = 'DATA VERSION NUMBER' /Label for column 4 " ] } ], "prompt_number": 41 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[8].header" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 42, "text": [ "XTENSION= 'BINTABLE' /Written by IDL: Tue Dec 17 10:28:41 2013 \n", "BITPIX = 8 / \n", "NAXIS = 2 /Binary table \n", "NAXIS1 = 266 /Number of bytes per row \n", "NAXIS2 = 1 /Number of rows \n", "PCOUNT = 0 /Random parameter count \n", "GCOUNT = 1 /Group count \n", "TFIELDS = 7 /Number of columns \n", "EXTNAME = 'HSI_MODVARIANCEINFO' /Extension name \n", "TFORM1 = '1D ' /Real*8 (double precision) \n", "TTYPE1 = 'UT_REF ' /Label for column 1 \n", "TFORM2 = '1J ' /Integer*4 (long integer) \n", "TTYPE2 = 'N_TIME_INTV' /Label for column 2 \n", "TFORM3 = '1E ' /Real*4 (floating point) \n", "TTYPE3 = 'TIME_INTV' /Label for column 3 \n", "TFORM4 = '1I ' /Integer*2 (short integer) \n", "TTYPE4 = 'VARIANCE_NBIN' /Label for column 4 \n", "TFORM5 = '2E ' /Real*4 (floating point) \n", "TTYPE5 = 'ENERGY_EDGES' /Label for column 5 \n", "TFORM6 = '80A ' /Character string \n", "TTYPE6 = 'DIM1_UNIT' /Label for column 6 \n", "TFORM7 = '160A ' /Character string \n", "TTYPE7 = 'DIM1_IDS' /Label for column 7 \n", "TDIM7 = '(80,2) ' /Array dimensions for column 7 " ] } ], "prompt_number": 42 }, { "cell_type": "code", "collapsed": false, "input": [ "fits[9].header" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 43, "text": [ "XTENSION= 'BINTABLE' /Written by IDL: Tue Dec 17 10:28:41 2013 \n", "BITPIX = 8 / \n", "NAXIS = 2 /Binary table \n", "NAXIS1 = 2 /Number of bytes per row \n", "NAXIS2 = 10465 /Number of rows \n", "PCOUNT = 0 /Random parameter count \n", "GCOUNT = 1 /Group count \n", "TFIELDS = 1 /Number of columns \n", "EXTNAME = 'HSI_MODVARIANCEDATA' /Extension name \n", "TFORM1 = '2B ' /Integer*1 (byte) \n", "TTYPE1 = 'MOD_VARIANCE' /Label for column 1 " ] } ], "prompt_number": 43 }, { "cell_type": "code", "collapsed": false, "input": [ "from sunpy.instr import rhessi" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "from sunpy.time import TimeRange\n", "f = rhessi.get_obssum_filename(TimeRange('2003/03/02', '2003/03/03'))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Downloading file: http://hesperia.gsfc.nasa.gov/hessidata/dbase/hsi_obssumm_filedb_200303.txt\n" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "f" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 3, "text": [ "'http://hesperia.gsfc.nasa.gov/hessidata/hsi_obssumm_20030302_146.fit'" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "r = rhessi.parse_obssumm_file(file)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "r" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 6, "text": [ "{'data': array([[24, 17, 10, ..., 30, 26, 1],\n", " [26, 17, 12, ..., 29, 26, 1],\n", " [24, 16, 9, ..., 30, 25, 0],\n", " ..., \n", " [ 5, 11, 8, ..., 31, 28, 0],\n", " [ 6, 10, 8, ..., 31, 27, 1],\n", " [ 4, 11, 8, ..., 31, 28, 1]], dtype=uint8),\n", " 'labels': ['3 - 6 keV',\n", " '6 - 12 keV',\n", " '12 - 25 keV',\n", " '25 - 50 keV',\n", " '50 - 100 keV',\n", " '100 - 300 keV',\n", " '300 - 800 keV',\n", " '800 - 7000 keV',\n", " '7000 - 20000 keV'],\n", " 'time': [datetime.datetime(2013, 12, 17, 0, 0),\n", " datetime.datetime(2013, 12, 17, 0, 0, 4),\n", " datetime.datetime(2013, 12, 17, 0, 0, 8),\n", " datetime.datetime(2013, 12, 17, 0, 0, 12),\n", " datetime.datetime(2013, 12, 17, 0, 0, 16),\n", " datetime.datetime(2013, 12, 17, 0, 0, 20),\n", " datetime.datetime(2013, 12, 17, 0, 0, 24),\n", " datetime.datetime(2013, 12, 17, 0, 0, 28),\n", " datetime.datetime(2013, 12, 17, 0, 0, 32),\n", " datetime.datetime(2013, 12, 17, 0, 0, 36),\n", " datetime.datetime(2013, 12, 17, 0, 0, 40),\n", " datetime.datetime(2013, 12, 17, 0, 0, 44),\n", " datetime.datetime(2013, 12, 17, 0, 0, 48),\n", " datetime.datetime(2013, 12, 17, 0, 0, 52),\n", " datetime.datetime(2013, 12, 17, 0, 0, 56),\n", " datetime.datetime(2013, 12, 17, 0, 1),\n", " datetime.datetime(2013, 12, 17, 0, 1, 4),\n", " datetime.datetime(2013, 12, 17, 0, 1, 8),\n", " datetime.datetime(2013, 12, 17, 0, 1, 12),\n", " datetime.datetime(2013, 12, 17, 0, 1, 16),\n", " datetime.datetime(2013, 12, 17, 0, 1, 20),\n", " datetime.datetime(2013, 12, 17, 0, 1, 24),\n", " datetime.datetime(2013, 12, 17, 0, 1, 28),\n", " datetime.datetime(2013, 12, 17, 0, 1, 32),\n", " datetime.datetime(2013, 12, 17, 0, 1, 36),\n", " datetime.datetime(2013, 12, 17, 0, 1, 40),\n", " datetime.datetime(2013, 12, 17, 0, 1, 44),\n", " datetime.datetime(2013, 12, 17, 0, 1, 48),\n", " datetime.datetime(2013, 12, 17, 0, 1, 52),\n", " datetime.datetime(2013, 12, 17, 0, 1, 56),\n", " datetime.datetime(2013, 12, 17, 0, 2),\n", " datetime.datetime(2013, 12, 17, 0, 2, 4),\n", " datetime.datetime(2013, 12, 17, 0, 2, 8),\n", " datetime.datetime(2013, 12, 17, 0, 2, 12),\n", " datetime.datetime(2013, 12, 17, 0, 2, 16),\n", " datetime.datetime(2013, 12, 17, 0, 2, 20),\n", " datetime.datetime(2013, 12, 17, 0, 2, 24),\n", " datetime.datetime(2013, 12, 17, 0, 2, 28),\n", " datetime.datetime(2013, 12, 17, 0, 2, 32),\n", " datetime.datetime(2013, 12, 17, 0, 2, 36),\n", " datetime.datetime(2013, 12, 17, 0, 2, 40),\n", " datetime.datetime(2013, 12, 17, 0, 2, 44),\n", " datetime.datetime(2013, 12, 17, 0, 2, 48),\n", " datetime.datetime(2013, 12, 17, 0, 2, 52),\n", " datetime.datetime(2013, 12, 17, 0, 2, 56),\n", " datetime.datetime(2013, 12, 17, 0, 3),\n", " datetime.datetime(2013, 12, 17, 0, 3, 4),\n", " datetime.datetime(2013, 12, 17, 0, 3, 8),\n", " datetime.datetime(2013, 12, 17, 0, 3, 12),\n", " datetime.datetime(2013, 12, 17, 0, 3, 16),\n", " datetime.datetime(2013, 12, 17, 0, 3, 20),\n", " datetime.datetime(2013, 12, 17, 0, 3, 24),\n", " datetime.datetime(2013, 12, 17, 0, 3, 28),\n", " datetime.datetime(2013, 12, 17, 0, 3, 32),\n", " datetime.datetime(2013, 12, 17, 0, 3, 36),\n", " datetime.datetime(2013, 12, 17, 0, 3, 40),\n", " datetime.datetime(2013, 12, 17, 0, 3, 44),\n", " datetime.datetime(2013, 12, 17, 0, 3, 48),\n", " datetime.datetime(2013, 12, 17, 0, 3, 52),\n", " datetime.datetime(2013, 12, 17, 0, 3, 56),\n", " datetime.datetime(2013, 12, 17, 0, 4),\n", " datetime.datetime(2013, 12, 17, 0, 4, 4),\n", " datetime.datetime(2013, 12, 17, 0, 4, 8),\n", " datetime.datetime(2013, 12, 17, 0, 4, 12),\n", " datetime.datetime(2013, 12, 17, 0, 4, 16),\n", " datetime.datetime(2013, 12, 17, 0, 4, 20),\n", " datetime.datetime(2013, 12, 17, 0, 4, 24),\n", " datetime.datetime(2013, 12, 17, 0, 4, 28),\n", " datetime.datetime(2013, 12, 17, 0, 4, 32),\n", " datetime.datetime(2013, 12, 17, 0, 4, 36),\n", " datetime.datetime(2013, 12, 17, 0, 4, 40),\n", " datetime.datetime(2013, 12, 17, 0, 4, 44),\n", " datetime.datetime(2013, 12, 17, 0, 4, 48),\n", " datetime.datetime(2013, 12, 17, 0, 4, 52),\n", " datetime.datetime(2013, 12, 17, 0, 4, 56),\n", " datetime.datetime(2013, 12, 17, 0, 5),\n", " datetime.datetime(2013, 12, 17, 0, 5, 4),\n", " datetime.datetime(2013, 12, 17, 0, 5, 8),\n", " datetime.datetime(2013, 12, 17, 0, 5, 12),\n", " datetime.datetime(2013, 12, 17, 0, 5, 16),\n", " datetime.datetime(2013, 12, 17, 0, 5, 20),\n", " datetime.datetime(2013, 12, 17, 0, 5, 24),\n", " datetime.datetime(2013, 12, 17, 0, 5, 28),\n", " datetime.datetime(2013, 12, 17, 0, 5, 32),\n", " datetime.datetime(2013, 12, 17, 0, 5, 36),\n", " datetime.datetime(2013, 12, 17, 0, 5, 40),\n", " datetime.datetime(2013, 12, 17, 0, 5, 44),\n", " datetime.datetime(2013, 12, 17, 0, 5, 48),\n", " datetime.datetime(2013, 12, 17, 0, 5, 52),\n", " datetime.datetime(2013, 12, 17, 0, 5, 56),\n", " datetime.datetime(2013, 12, 17, 0, 6),\n", " datetime.datetime(2013, 12, 17, 0, 6, 4),\n", " datetime.datetime(2013, 12, 17, 0, 6, 8),\n", " datetime.datetime(2013, 12, 17, 0, 6, 12),\n", " datetime.datetime(2013, 12, 17, 0, 6, 16),\n", " datetime.datetime(2013, 12, 17, 0, 6, 20),\n", " datetime.datetime(2013, 12, 17, 0, 6, 24),\n", " datetime.datetime(2013, 12, 17, 0, 6, 28),\n", " datetime.datetime(2013, 12, 17, 0, 6, 32),\n", " datetime.datetime(2013, 12, 17, 0, 6, 36),\n", " datetime.datetime(2013, 12, 17, 0, 6, 40),\n", " datetime.datetime(2013, 12, 17, 0, 6, 44),\n", " datetime.datetime(2013, 12, 17, 0, 6, 48),\n", " datetime.datetime(2013, 12, 17, 0, 6, 52),\n", " datetime.datetime(2013, 12, 17, 0, 6, 56),\n", " datetime.datetime(2013, 12, 17, 0, 7),\n", " datetime.datetime(2013, 12, 17, 0, 7, 4),\n", " datetime.datetime(2013, 12, 17, 0, 7, 8),\n", " datetime.datetime(2013, 12, 17, 0, 7, 12),\n", " datetime.datetime(2013, 12, 17, 0, 7, 16),\n", " datetime.datetime(2013, 12, 17, 0, 7, 20),\n", " datetime.datetime(2013, 12, 17, 0, 7, 24),\n", " datetime.datetime(2013, 12, 17, 0, 7, 28),\n", " datetime.datetime(2013, 12, 17, 0, 7, 32),\n", " datetime.datetime(2013, 12, 17, 0, 7, 36),\n", " datetime.datetime(2013, 12, 17, 0, 7, 40),\n", " datetime.datetime(2013, 12, 17, 0, 7, 44),\n", " datetime.datetime(2013, 12, 17, 0, 7, 48),\n", " datetime.datetime(2013, 12, 17, 0, 7, 52),\n", " datetime.datetime(2013, 12, 17, 0, 7, 56),\n", " datetime.datetime(2013, 12, 17, 0, 8),\n", " datetime.datetime(2013, 12, 17, 0, 8, 4),\n", " datetime.datetime(2013, 12, 17, 0, 8, 8),\n", " datetime.datetime(2013, 12, 17, 0, 8, 12),\n", " datetime.datetime(2013, 12, 17, 0, 8, 16),\n", " datetime.datetime(2013, 12, 17, 0, 8, 20),\n", " datetime.datetime(2013, 12, 17, 0, 8, 24),\n", " datetime.datetime(2013, 12, 17, 0, 8, 28),\n", " datetime.datetime(2013, 12, 17, 0, 8, 32),\n", " datetime.datetime(2013, 12, 17, 0, 8, 36),\n", " datetime.datetime(2013, 12, 17, 0, 8, 40),\n", " datetime.datetime(2013, 12, 17, 0, 8, 44),\n", " datetime.datetime(2013, 12, 17, 0, 8, 48),\n", " datetime.datetime(2013, 12, 17, 0, 8, 52),\n", " datetime.datetime(2013, 12, 17, 0, 8, 56),\n", " datetime.datetime(2013, 12, 17, 0, 9),\n", " datetime.datetime(2013, 12, 17, 0, 9, 4),\n", " datetime.datetime(2013, 12, 17, 0, 9, 8),\n", " datetime.datetime(2013, 12, 17, 0, 9, 12),\n", " datetime.datetime(2013, 12, 17, 0, 9, 16),\n", " datetime.datetime(2013, 12, 17, 0, 9, 20),\n", " datetime.datetime(2013, 12, 17, 0, 9, 24),\n", " datetime.datetime(2013, 12, 17, 0, 9, 28),\n", " datetime.datetime(2013, 12, 17, 0, 9, 32),\n", " datetime.datetime(2013, 12, 17, 0, 9, 36),\n", " datetime.datetime(2013, 12, 17, 0, 9, 40),\n", " datetime.datetime(2013, 12, 17, 0, 9, 44),\n", " datetime.datetime(2013, 12, 17, 0, 9, 48),\n", " datetime.datetime(2013, 12, 17, 0, 9, 52),\n", " datetime.datetime(2013, 12, 17, 0, 9, 56),\n", " datetime.datetime(2013, 12, 17, 0, 10),\n", " datetime.datetime(2013, 12, 17, 0, 10, 4),\n", " datetime.datetime(2013, 12, 17, 0, 10, 8),\n", " datetime.datetime(2013, 12, 17, 0, 10, 12),\n", " datetime.datetime(2013, 12, 17, 0, 10, 16),\n", " datetime.datetime(2013, 12, 17, 0, 10, 20),\n", " datetime.datetime(2013, 12, 17, 0, 10, 24),\n", " datetime.datetime(2013, 12, 17, 0, 10, 28),\n", " datetime.datetime(2013, 12, 17, 0, 10, 32),\n", " datetime.datetime(2013, 12, 17, 0, 10, 36),\n", " datetime.datetime(2013, 12, 17, 0, 10, 40),\n", " datetime.datetime(2013, 12, 17, 0, 10, 44),\n", " datetime.datetime(2013, 12, 17, 0, 10, 48),\n", " datetime.datetime(2013, 12, 17, 0, 10, 52),\n", " datetime.datetime(2013, 12, 17, 0, 10, 56),\n", " datetime.datetime(2013, 12, 17, 0, 11),\n", " datetime.datetime(2013, 12, 17, 0, 11, 4),\n", " datetime.datetime(2013, 12, 17, 0, 11, 8),\n", " datetime.datetime(2013, 12, 17, 0, 11, 12),\n", " datetime.datetime(2013, 12, 17, 0, 11, 16),\n", " datetime.datetime(2013, 12, 17, 0, 11, 20),\n", " datetime.datetime(2013, 12, 17, 0, 11, 24),\n", " datetime.datetime(2013, 12, 17, 0, 11, 28),\n", " datetime.datetime(2013, 12, 17, 0, 11, 32),\n", " datetime.datetime(2013, 12, 17, 0, 11, 36),\n", " datetime.datetime(2013, 12, 17, 0, 11, 40),\n", " datetime.datetime(2013, 12, 17, 0, 11, 44),\n", " datetime.datetime(2013, 12, 17, 0, 11, 48),\n", " datetime.datetime(2013, 12, 17, 0, 11, 52),\n", " datetime.datetime(2013, 12, 17, 0, 11, 56),\n", " datetime.datetime(2013, 12, 17, 0, 12),\n", " datetime.datetime(2013, 12, 17, 0, 12, 4),\n", " datetime.datetime(2013, 12, 17, 0, 12, 8),\n", " datetime.datetime(2013, 12, 17, 0, 12, 12),\n", " datetime.datetime(2013, 12, 17, 0, 12, 16),\n", " datetime.datetime(2013, 12, 17, 0, 12, 20),\n", " datetime.datetime(2013, 12, 17, 0, 12, 24),\n", " datetime.datetime(2013, 12, 17, 0, 12, 28),\n", " datetime.datetime(2013, 12, 17, 0, 12, 32),\n", " datetime.datetime(2013, 12, 17, 0, 12, 36),\n", " datetime.datetime(2013, 12, 17, 0, 12, 40),\n", " datetime.datetime(2013, 12, 17, 0, 12, 44),\n", " datetime.datetime(2013, 12, 17, 0, 12, 48),\n", " datetime.datetime(2013, 12, 17, 0, 12, 52),\n", " datetime.datetime(2013, 12, 17, 0, 12, 56),\n", " datetime.datetime(2013, 12, 17, 0, 13),\n", " datetime.datetime(2013, 12, 17, 0, 13, 4),\n", " datetime.datetime(2013, 12, 17, 0, 13, 8),\n", " datetime.datetime(2013, 12, 17, 0, 13, 12),\n", " datetime.datetime(2013, 12, 17, 0, 13, 16),\n", " datetime.datetime(2013, 12, 17, 0, 13, 20),\n", " datetime.datetime(2013, 12, 17, 0, 13, 24),\n", " datetime.datetime(2013, 12, 17, 0, 13, 28),\n", " datetime.datetime(2013, 12, 17, 0, 13, 32),\n", " datetime.datetime(2013, 12, 17, 0, 13, 36),\n", " datetime.datetime(2013, 12, 17, 0, 13, 40),\n", " datetime.datetime(2013, 12, 17, 0, 13, 44),\n", " datetime.datetime(2013, 12, 17, 0, 13, 48),\n", " datetime.datetime(2013, 12, 17, 0, 13, 52),\n", " datetime.datetime(2013, 12, 17, 0, 13, 56),\n", " datetime.datetime(2013, 12, 17, 0, 14),\n", " datetime.datetime(2013, 12, 17, 0, 14, 4),\n", " datetime.datetime(2013, 12, 17, 0, 14, 8),\n", " datetime.datetime(2013, 12, 17, 0, 14, 12),\n", " datetime.datetime(2013, 12, 17, 0, 14, 16),\n", " datetime.datetime(2013, 12, 17, 0, 14, 20),\n", " datetime.datetime(2013, 12, 17, 0, 14, 24),\n", " datetime.datetime(2013, 12, 17, 0, 14, 28),\n", " datetime.datetime(2013, 12, 17, 0, 14, 32),\n", " datetime.datetime(2013, 12, 17, 0, 14, 36),\n", " datetime.datetime(2013, 12, 17, 0, 14, 40),\n", " datetime.datetime(2013, 12, 17, 0, 14, 44),\n", " datetime.datetime(2013, 12, 17, 0, 14, 48),\n", " datetime.datetime(2013, 12, 17, 0, 14, 52),\n", " datetime.datetime(2013, 12, 17, 0, 14, 56),\n", " datetime.datetime(2013, 12, 17, 0, 15),\n", " datetime.datetime(2013, 12, 17, 0, 15, 4),\n", " datetime.datetime(2013, 12, 17, 0, 15, 8),\n", " datetime.datetime(2013, 12, 17, 0, 15, 12),\n", " datetime.datetime(2013, 12, 17, 0, 15, 16),\n", " datetime.datetime(2013, 12, 17, 0, 15, 20),\n", " datetime.datetime(2013, 12, 17, 0, 15, 24),\n", " datetime.datetime(2013, 12, 17, 0, 15, 28),\n", " datetime.datetime(2013, 12, 17, 0, 15, 32),\n", " datetime.datetime(2013, 12, 17, 0, 15, 36),\n", " datetime.datetime(2013, 12, 17, 0, 15, 40),\n", " datetime.datetime(2013, 12, 17, 0, 15, 44),\n", " datetime.datetime(2013, 12, 17, 0, 15, 48),\n", " datetime.datetime(2013, 12, 17, 0, 15, 52),\n", " datetime.datetime(2013, 12, 17, 0, 15, 56),\n", " datetime.datetime(2013, 12, 17, 0, 16),\n", " datetime.datetime(2013, 12, 17, 0, 16, 4),\n", " datetime.datetime(2013, 12, 17, 0, 16, 8),\n", " datetime.datetime(2013, 12, 17, 0, 16, 12),\n", " datetime.datetime(2013, 12, 17, 0, 16, 16),\n", " datetime.datetime(2013, 12, 17, 0, 16, 20),\n", " datetime.datetime(2013, 12, 17, 0, 16, 24),\n", " datetime.datetime(2013, 12, 17, 0, 16, 28),\n", " datetime.datetime(2013, 12, 17, 0, 16, 32),\n", " datetime.datetime(2013, 12, 17, 0, 16, 36),\n", " datetime.datetime(2013, 12, 17, 0, 16, 40),\n", " datetime.datetime(2013, 12, 17, 0, 16, 44),\n", " datetime.datetime(2013, 12, 17, 0, 16, 48),\n", " datetime.datetime(2013, 12, 17, 0, 16, 52),\n", " datetime.datetime(2013, 12, 17, 0, 16, 56),\n", " datetime.datetime(2013, 12, 17, 0, 17),\n", " datetime.datetime(2013, 12, 17, 0, 17, 4),\n", " datetime.datetime(2013, 12, 17, 0, 17, 8),\n", " datetime.datetime(2013, 12, 17, 0, 17, 12),\n", " datetime.datetime(2013, 12, 17, 0, 17, 16),\n", " datetime.datetime(2013, 12, 17, 0, 17, 20),\n", " datetime.datetime(2013, 12, 17, 0, 17, 24),\n", " datetime.datetime(2013, 12, 17, 0, 17, 28),\n", " datetime.datetime(2013, 12, 17, 0, 17, 32),\n", " datetime.datetime(2013, 12, 17, 0, 17, 36),\n", " datetime.datetime(2013, 12, 17, 0, 17, 40),\n", " datetime.datetime(2013, 12, 17, 0, 17, 44),\n", " datetime.datetime(2013, 12, 17, 0, 17, 48),\n", " datetime.datetime(2013, 12, 17, 0, 17, 52),\n", " datetime.datetime(2013, 12, 17, 0, 17, 56),\n", " datetime.datetime(2013, 12, 17, 0, 18),\n", " datetime.datetime(2013, 12, 17, 0, 18, 4),\n", " datetime.datetime(2013, 12, 17, 0, 18, 8),\n", " datetime.datetime(2013, 12, 17, 0, 18, 12),\n", " datetime.datetime(2013, 12, 17, 0, 18, 16),\n", " datetime.datetime(2013, 12, 17, 0, 18, 20),\n", " datetime.datetime(2013, 12, 17, 0, 18, 24),\n", " datetime.datetime(2013, 12, 17, 0, 18, 28),\n", " datetime.datetime(2013, 12, 17, 0, 18, 32),\n", " datetime.datetime(2013, 12, 17, 0, 18, 36),\n", " datetime.datetime(2013, 12, 17, 0, 18, 40),\n", " datetime.datetime(2013, 12, 17, 0, 18, 44),\n", " datetime.datetime(2013, 12, 17, 0, 18, 48),\n", " datetime.datetime(2013, 12, 17, 0, 18, 52),\n", " datetime.datetime(2013, 12, 17, 0, 18, 56),\n", " datetime.datetime(2013, 12, 17, 0, 19),\n", " datetime.datetime(2013, 12, 17, 0, 19, 4),\n", " datetime.datetime(2013, 12, 17, 0, 19, 8),\n", " datetime.datetime(2013, 12, 17, 0, 19, 12),\n", " datetime.datetime(2013, 12, 17, 0, 19, 16),\n", " datetime.datetime(2013, 12, 17, 0, 19, 20),\n", " datetime.datetime(2013, 12, 17, 0, 19, 24),\n", " datetime.datetime(2013, 12, 17, 0, 19, 28),\n", " datetime.datetime(2013, 12, 17, 0, 19, 32),\n", " datetime.datetime(2013, 12, 17, 0, 19, 36),\n", " datetime.datetime(2013, 12, 17, 0, 19, 40),\n", " datetime.datetime(2013, 12, 17, 0, 19, 44),\n", " datetime.datetime(2013, 12, 17, 0, 19, 48),\n", " datetime.datetime(2013, 12, 17, 0, 19, 52),\n", " datetime.datetime(2013, 12, 17, 0, 19, 56),\n", " datetime.datetime(2013, 12, 17, 0, 20),\n", " datetime.datetime(2013, 12, 17, 0, 20, 4),\n", " datetime.datetime(2013, 12, 17, 0, 20, 8),\n", " datetime.datetime(2013, 12, 17, 0, 20, 12),\n", " datetime.datetime(2013, 12, 17, 0, 20, 16),\n", " datetime.datetime(2013, 12, 17, 0, 20, 20),\n", " datetime.datetime(2013, 12, 17, 0, 20, 24),\n", " datetime.datetime(2013, 12, 17, 0, 20, 28),\n", " datetime.datetime(2013, 12, 17, 0, 20, 32),\n", " datetime.datetime(2013, 12, 17, 0, 20, 36),\n", " datetime.datetime(2013, 12, 17, 0, 20, 40),\n", " datetime.datetime(2013, 12, 17, 0, 20, 44),\n", " datetime.datetime(2013, 12, 17, 0, 20, 48),\n", " datetime.datetime(2013, 12, 17, 0, 20, 52),\n", " datetime.datetime(2013, 12, 17, 0, 20, 56),\n", " datetime.datetime(2013, 12, 17, 0, 21),\n", " datetime.datetime(2013, 12, 17, 0, 21, 4),\n", " datetime.datetime(2013, 12, 17, 0, 21, 8),\n", " datetime.datetime(2013, 12, 17, 0, 21, 12),\n", " datetime.datetime(2013, 12, 17, 0, 21, 16),\n", " datetime.datetime(2013, 12, 17, 0, 21, 20),\n", " datetime.datetime(2013, 12, 17, 0, 21, 24),\n", " datetime.datetime(2013, 12, 17, 0, 21, 28),\n", " datetime.datetime(2013, 12, 17, 0, 21, 32),\n", " datetime.datetime(2013, 12, 17, 0, 21, 36),\n", " datetime.datetime(2013, 12, 17, 0, 21, 40),\n", " datetime.datetime(2013, 12, 17, 0, 21, 44),\n", " datetime.datetime(2013, 12, 17, 0, 21, 48),\n", " datetime.datetime(2013, 12, 17, 0, 21, 52),\n", " datetime.datetime(2013, 12, 17, 0, 21, 56),\n", " datetime.datetime(2013, 12, 17, 0, 22),\n", " datetime.datetime(2013, 12, 17, 0, 22, 4),\n", " datetime.datetime(2013, 12, 17, 0, 22, 8),\n", " datetime.datetime(2013, 12, 17, 0, 22, 12),\n", " datetime.datetime(2013, 12, 17, 0, 22, 16),\n", " datetime.datetime(2013, 12, 17, 0, 22, 20),\n", " datetime.datetime(2013, 12, 17, 0, 22, 24),\n", " datetime.datetime(2013, 12, 17, 0, 22, 28),\n", " datetime.datetime(2013, 12, 17, 0, 22, 32),\n", " datetime.datetime(2013, 12, 17, 0, 22, 36),\n", " datetime.datetime(2013, 12, 17, 0, 22, 40),\n", " datetime.datetime(2013, 12, 17, 0, 22, 44),\n", " datetime.datetime(2013, 12, 17, 0, 22, 48),\n", " datetime.datetime(2013, 12, 17, 0, 22, 52),\n", " datetime.datetime(2013, 12, 17, 0, 22, 56),\n", " datetime.datetime(2013, 12, 17, 0, 23),\n", " datetime.datetime(2013, 12, 17, 0, 23, 4),\n", " datetime.datetime(2013, 12, 17, 0, 23, 8),\n", " datetime.datetime(2013, 12, 17, 0, 23, 12),\n", " datetime.datetime(2013, 12, 17, 0, 23, 16),\n", " datetime.datetime(2013, 12, 17, 0, 23, 20),\n", " datetime.datetime(2013, 12, 17, 0, 23, 24),\n", " datetime.datetime(2013, 12, 17, 0, 23, 28),\n", " datetime.datetime(2013, 12, 17, 0, 23, 32),\n", " datetime.datetime(2013, 12, 17, 0, 23, 36),\n", " datetime.datetime(2013, 12, 17, 0, 23, 40),\n", " datetime.datetime(2013, 12, 17, 0, 23, 44),\n", " datetime.datetime(2013, 12, 17, 0, 23, 48),\n", " datetime.datetime(2013, 12, 17, 0, 23, 52),\n", " datetime.datetime(2013, 12, 17, 0, 23, 56),\n", " datetime.datetime(2013, 12, 17, 0, 24),\n", " datetime.datetime(2013, 12, 17, 0, 24, 4),\n", " datetime.datetime(2013, 12, 17, 0, 24, 8),\n", " datetime.datetime(2013, 12, 17, 0, 24, 12),\n", " datetime.datetime(2013, 12, 17, 0, 24, 16),\n", " datetime.datetime(2013, 12, 17, 0, 24, 20),\n", " datetime.datetime(2013, 12, 17, 0, 24, 24),\n", " datetime.datetime(2013, 12, 17, 0, 24, 28),\n", " datetime.datetime(2013, 12, 17, 0, 24, 32),\n", " datetime.datetime(2013, 12, 17, 0, 24, 36),\n", " datetime.datetime(2013, 12, 17, 0, 24, 40),\n", " datetime.datetime(2013, 12, 17, 0, 24, 44),\n", " datetime.datetime(2013, 12, 17, 0, 24, 48),\n", " datetime.datetime(2013, 12, 17, 0, 24, 52),\n", " datetime.datetime(2013, 12, 17, 0, 24, 56),\n", " datetime.datetime(2013, 12, 17, 0, 25),\n", " datetime.datetime(2013, 12, 17, 0, 25, 4),\n", " datetime.datetime(2013, 12, 17, 0, 25, 8),\n", " datetime.datetime(2013, 12, 17, 0, 25, 12),\n", " datetime.datetime(2013, 12, 17, 0, 25, 16),\n", " datetime.datetime(2013, 12, 17, 0, 25, 20),\n", " datetime.datetime(2013, 12, 17, 0, 25, 24),\n", " datetime.datetime(2013, 12, 17, 0, 25, 28),\n", " datetime.datetime(2013, 12, 17, 0, 25, 32),\n", " datetime.datetime(2013, 12, 17, 0, 25, 36),\n", " datetime.datetime(2013, 12, 17, 0, 25, 40),\n", " datetime.datetime(2013, 12, 17, 0, 25, 44),\n", " datetime.datetime(2013, 12, 17, 0, 25, 48),\n", " datetime.datetime(2013, 12, 17, 0, 25, 52),\n", " datetime.datetime(2013, 12, 17, 0, 25, 56),\n", " datetime.datetime(2013, 12, 17, 0, 26),\n", " datetime.datetime(2013, 12, 17, 0, 26, 4),\n", " datetime.datetime(2013, 12, 17, 0, 26, 8),\n", " datetime.datetime(2013, 12, 17, 0, 26, 12),\n", " datetime.datetime(2013, 12, 17, 0, 26, 16),\n", " datetime.datetime(2013, 12, 17, 0, 26, 20),\n", " datetime.datetime(2013, 12, 17, 0, 26, 24),\n", " datetime.datetime(2013, 12, 17, 0, 26, 28),\n", " datetime.datetime(2013, 12, 17, 0, 26, 32),\n", " datetime.datetime(2013, 12, 17, 0, 26, 36),\n", " datetime.datetime(2013, 12, 17, 0, 26, 40),\n", " datetime.datetime(2013, 12, 17, 0, 26, 44),\n", " datetime.datetime(2013, 12, 17, 0, 26, 48),\n", " datetime.datetime(2013, 12, 17, 0, 26, 52),\n", " datetime.datetime(2013, 12, 17, 0, 26, 56),\n", " datetime.datetime(2013, 12, 17, 0, 27),\n", " datetime.datetime(2013, 12, 17, 0, 27, 4),\n", " datetime.datetime(2013, 12, 17, 0, 27, 8),\n", " datetime.datetime(2013, 12, 17, 0, 27, 12),\n", " datetime.datetime(2013, 12, 17, 0, 27, 16),\n", " datetime.datetime(2013, 12, 17, 0, 27, 20),\n", " datetime.datetime(2013, 12, 17, 0, 27, 24),\n", " datetime.datetime(2013, 12, 17, 0, 27, 28),\n", " datetime.datetime(2013, 12, 17, 0, 27, 32),\n", " datetime.datetime(2013, 12, 17, 0, 27, 36),\n", " datetime.datetime(2013, 12, 17, 0, 27, 40),\n", " datetime.datetime(2013, 12, 17, 0, 27, 44),\n", " datetime.datetime(2013, 12, 17, 0, 27, 48),\n", " datetime.datetime(2013, 12, 17, 0, 27, 52),\n", " datetime.datetime(2013, 12, 17, 0, 27, 56),\n", " datetime.datetime(2013, 12, 17, 0, 28),\n", " datetime.datetime(2013, 12, 17, 0, 28, 4),\n", " datetime.datetime(2013, 12, 17, 0, 28, 8),\n", " datetime.datetime(2013, 12, 17, 0, 28, 12),\n", " datetime.datetime(2013, 12, 17, 0, 28, 16),\n", " datetime.datetime(2013, 12, 17, 0, 28, 20),\n", " datetime.datetime(2013, 12, 17, 0, 28, 24),\n", " datetime.datetime(2013, 12, 17, 0, 28, 28),\n", " datetime.datetime(2013, 12, 17, 0, 28, 32),\n", " datetime.datetime(2013, 12, 17, 0, 28, 36),\n", " datetime.datetime(2013, 12, 17, 0, 28, 40),\n", " datetime.datetime(2013, 12, 17, 0, 28, 44),\n", " datetime.datetime(2013, 12, 17, 0, 28, 48),\n", " datetime.datetime(2013, 12, 17, 0, 28, 52),\n", " datetime.datetime(2013, 12, 17, 0, 28, 56),\n", " datetime.datetime(2013, 12, 17, 0, 29),\n", " datetime.datetime(2013, 12, 17, 0, 29, 4),\n", " datetime.datetime(2013, 12, 17, 0, 29, 8),\n", " datetime.datetime(2013, 12, 17, 0, 29, 12),\n", " datetime.datetime(2013, 12, 17, 0, 29, 16),\n", " datetime.datetime(2013, 12, 17, 0, 29, 20),\n", " datetime.datetime(2013, 12, 17, 0, 29, 24),\n", " datetime.datetime(2013, 12, 17, 0, 29, 28),\n", " datetime.datetime(2013, 12, 17, 0, 29, 32),\n", " datetime.datetime(2013, 12, 17, 0, 29, 36),\n", " datetime.datetime(2013, 12, 17, 0, 29, 40),\n", " datetime.datetime(2013, 12, 17, 0, 29, 44),\n", " datetime.datetime(2013, 12, 17, 0, 29, 48),\n", " datetime.datetime(2013, 12, 17, 0, 29, 52),\n", " datetime.datetime(2013, 12, 17, 0, 29, 56),\n", " datetime.datetime(2013, 12, 17, 0, 30),\n", " datetime.datetime(2013, 12, 17, 0, 30, 4),\n", " datetime.datetime(2013, 12, 17, 0, 30, 8),\n", " datetime.datetime(2013, 12, 17, 0, 30, 12),\n", " datetime.datetime(2013, 12, 17, 0, 30, 16),\n", " datetime.datetime(2013, 12, 17, 0, 30, 20),\n", " datetime.datetime(2013, 12, 17, 0, 30, 24),\n", " datetime.datetime(2013, 12, 17, 0, 30, 28),\n", " datetime.datetime(2013, 12, 17, 0, 30, 32),\n", " datetime.datetime(2013, 12, 17, 0, 30, 36),\n", " datetime.datetime(2013, 12, 17, 0, 30, 40),\n", " datetime.datetime(2013, 12, 17, 0, 30, 44),\n", " datetime.datetime(2013, 12, 17, 0, 30, 48),\n", " datetime.datetime(2013, 12, 17, 0, 30, 52),\n", " datetime.datetime(2013, 12, 17, 0, 30, 56),\n", " datetime.datetime(2013, 12, 17, 0, 31),\n", " datetime.datetime(2013, 12, 17, 0, 31, 4),\n", " datetime.datetime(2013, 12, 17, 0, 31, 8),\n", " datetime.datetime(2013, 12, 17, 0, 31, 12),\n", " datetime.datetime(2013, 12, 17, 0, 31, 16),\n", " datetime.datetime(2013, 12, 17, 0, 31, 20),\n", " datetime.datetime(2013, 12, 17, 0, 31, 24),\n", " datetime.datetime(2013, 12, 17, 0, 31, 28),\n", " datetime.datetime(2013, 12, 17, 0, 31, 32),\n", " datetime.datetime(2013, 12, 17, 0, 31, 36),\n", " datetime.datetime(2013, 12, 17, 0, 31, 40),\n", " datetime.datetime(2013, 12, 17, 0, 31, 44),\n", " datetime.datetime(2013, 12, 17, 0, 31, 48),\n", " datetime.datetime(2013, 12, 17, 0, 31, 52),\n", " datetime.datetime(2013, 12, 17, 0, 31, 56),\n", " datetime.datetime(2013, 12, 17, 0, 32),\n", " datetime.datetime(2013, 12, 17, 0, 32, 4),\n", " datetime.datetime(2013, 12, 17, 0, 32, 8),\n", " datetime.datetime(2013, 12, 17, 0, 32, 12),\n", " datetime.datetime(2013, 12, 17, 0, 32, 16),\n", " datetime.datetime(2013, 12, 17, 0, 32, 20),\n", " datetime.datetime(2013, 12, 17, 0, 32, 24),\n", " datetime.datetime(2013, 12, 17, 0, 32, 28),\n", " datetime.datetime(2013, 12, 17, 0, 32, 32),\n", " datetime.datetime(2013, 12, 17, 0, 32, 36),\n", " datetime.datetime(2013, 12, 17, 0, 32, 40),\n", " datetime.datetime(2013, 12, 17, 0, 32, 44),\n", " datetime.datetime(2013, 12, 17, 0, 32, 48),\n", " datetime.datetime(2013, 12, 17, 0, 32, 52),\n", " datetime.datetime(2013, 12, 17, 0, 32, 56),\n", " datetime.datetime(2013, 12, 17, 0, 33),\n", " datetime.datetime(2013, 12, 17, 0, 33, 4),\n", " datetime.datetime(2013, 12, 17, 0, 33, 8),\n", " datetime.datetime(2013, 12, 17, 0, 33, 12),\n", " datetime.datetime(2013, 12, 17, 0, 33, 16),\n", " datetime.datetime(2013, 12, 17, 0, 33, 20),\n", " datetime.datetime(2013, 12, 17, 0, 33, 24),\n", " datetime.datetime(2013, 12, 17, 0, 33, 28),\n", " datetime.datetime(2013, 12, 17, 0, 33, 32),\n", " datetime.datetime(2013, 12, 17, 0, 33, 36),\n", " datetime.datetime(2013, 12, 17, 0, 33, 40),\n", " datetime.datetime(2013, 12, 17, 0, 33, 44),\n", " datetime.datetime(2013, 12, 17, 0, 33, 48),\n", " datetime.datetime(2013, 12, 17, 0, 33, 52),\n", " datetime.datetime(2013, 12, 17, 0, 33, 56),\n", " datetime.datetime(2013, 12, 17, 0, 34),\n", " datetime.datetime(2013, 12, 17, 0, 34, 4),\n", " datetime.datetime(2013, 12, 17, 0, 34, 8),\n", " datetime.datetime(2013, 12, 17, 0, 34, 12),\n", " datetime.datetime(2013, 12, 17, 0, 34, 16),\n", " datetime.datetime(2013, 12, 17, 0, 34, 20),\n", " datetime.datetime(2013, 12, 17, 0, 34, 24),\n", " datetime.datetime(2013, 12, 17, 0, 34, 28),\n", " datetime.datetime(2013, 12, 17, 0, 34, 32),\n", " datetime.datetime(2013, 12, 17, 0, 34, 36),\n", " datetime.datetime(2013, 12, 17, 0, 34, 40),\n", " datetime.datetime(2013, 12, 17, 0, 34, 44),\n", " datetime.datetime(2013, 12, 17, 0, 34, 48),\n", " datetime.datetime(2013, 12, 17, 0, 34, 52),\n", " datetime.datetime(2013, 12, 17, 0, 34, 56),\n", " datetime.datetime(2013, 12, 17, 0, 35),\n", " datetime.datetime(2013, 12, 17, 0, 35, 4),\n", " datetime.datetime(2013, 12, 17, 0, 35, 8),\n", " datetime.datetime(2013, 12, 17, 0, 35, 12),\n", " datetime.datetime(2013, 12, 17, 0, 35, 16),\n", " datetime.datetime(2013, 12, 17, 0, 35, 20),\n", " datetime.datetime(2013, 12, 17, 0, 35, 24),\n", " datetime.datetime(2013, 12, 17, 0, 35, 28),\n", " datetime.datetime(2013, 12, 17, 0, 35, 32),\n", " datetime.datetime(2013, 12, 17, 0, 35, 36),\n", " datetime.datetime(2013, 12, 17, 0, 35, 40),\n", " datetime.datetime(2013, 12, 17, 0, 35, 44),\n", " datetime.datetime(2013, 12, 17, 0, 35, 48),\n", " datetime.datetime(2013, 12, 17, 0, 35, 52),\n", " datetime.datetime(2013, 12, 17, 0, 35, 56),\n", " datetime.datetime(2013, 12, 17, 0, 36),\n", " datetime.datetime(2013, 12, 17, 0, 36, 4),\n", " datetime.datetime(2013, 12, 17, 0, 36, 8),\n", " datetime.datetime(2013, 12, 17, 0, 36, 12),\n", " datetime.datetime(2013, 12, 17, 0, 36, 16),\n", " datetime.datetime(2013, 12, 17, 0, 36, 20),\n", " datetime.datetime(2013, 12, 17, 0, 36, 24),\n", " datetime.datetime(2013, 12, 17, 0, 36, 28),\n", " datetime.datetime(2013, 12, 17, 0, 36, 32),\n", " datetime.datetime(2013, 12, 17, 0, 36, 36),\n", " datetime.datetime(2013, 12, 17, 0, 36, 40),\n", " datetime.datetime(2013, 12, 17, 0, 36, 44),\n", " datetime.datetime(2013, 12, 17, 0, 36, 48),\n", " datetime.datetime(2013, 12, 17, 0, 36, 52),\n", " datetime.datetime(2013, 12, 17, 0, 36, 56),\n", " datetime.datetime(2013, 12, 17, 0, 37),\n", " datetime.datetime(2013, 12, 17, 0, 37, 4),\n", " datetime.datetime(2013, 12, 17, 0, 37, 8),\n", " datetime.datetime(2013, 12, 17, 0, 37, 12),\n", " datetime.datetime(2013, 12, 17, 0, 37, 16),\n", " datetime.datetime(2013, 12, 17, 0, 37, 20),\n", " datetime.datetime(2013, 12, 17, 0, 37, 24),\n", " datetime.datetime(2013, 12, 17, 0, 37, 28),\n", " datetime.datetime(2013, 12, 17, 0, 37, 32),\n", " datetime.datetime(2013, 12, 17, 0, 37, 36),\n", " datetime.datetime(2013, 12, 17, 0, 37, 40),\n", " datetime.datetime(2013, 12, 17, 0, 37, 44),\n", " datetime.datetime(2013, 12, 17, 0, 37, 48),\n", " datetime.datetime(2013, 12, 17, 0, 37, 52),\n", " datetime.datetime(2013, 12, 17, 0, 37, 56),\n", " datetime.datetime(2013, 12, 17, 0, 38),\n", " datetime.datetime(2013, 12, 17, 0, 38, 4),\n", " datetime.datetime(2013, 12, 17, 0, 38, 8),\n", " datetime.datetime(2013, 12, 17, 0, 38, 12),\n", " datetime.datetime(2013, 12, 17, 0, 38, 16),\n", " datetime.datetime(2013, 12, 17, 0, 38, 20),\n", " datetime.datetime(2013, 12, 17, 0, 38, 24),\n", " datetime.datetime(2013, 12, 17, 0, 38, 28),\n", " datetime.datetime(2013, 12, 17, 0, 38, 32),\n", " datetime.datetime(2013, 12, 17, 0, 38, 36),\n", " datetime.datetime(2013, 12, 17, 0, 38, 40),\n", " datetime.datetime(2013, 12, 17, 0, 38, 44),\n", " datetime.datetime(2013, 12, 17, 0, 38, 48),\n", " datetime.datetime(2013, 12, 17, 0, 38, 52),\n", " datetime.datetime(2013, 12, 17, 0, 38, 56),\n", " datetime.datetime(2013, 12, 17, 0, 39),\n", " datetime.datetime(2013, 12, 17, 0, 39, 4),\n", " datetime.datetime(2013, 12, 17, 0, 39, 8),\n", " datetime.datetime(2013, 12, 17, 0, 39, 12),\n", " datetime.datetime(2013, 12, 17, 0, 39, 16),\n", " datetime.datetime(2013, 12, 17, 0, 39, 20),\n", " datetime.datetime(2013, 12, 17, 0, 39, 24),\n", " datetime.datetime(2013, 12, 17, 0, 39, 28),\n", " datetime.datetime(2013, 12, 17, 0, 39, 32),\n", " datetime.datetime(2013, 12, 17, 0, 39, 36),\n", " datetime.datetime(2013, 12, 17, 0, 39, 40),\n", " datetime.datetime(2013, 12, 17, 0, 39, 44),\n", " datetime.datetime(2013, 12, 17, 0, 39, 48),\n", " datetime.datetime(2013, 12, 17, 0, 39, 52),\n", " datetime.datetime(2013, 12, 17, 0, 39, 56),\n", " datetime.datetime(2013, 12, 17, 0, 40),\n", " datetime.datetime(2013, 12, 17, 0, 40, 4),\n", " datetime.datetime(2013, 12, 17, 0, 40, 8),\n", " datetime.datetime(2013, 12, 17, 0, 40, 12),\n", " datetime.datetime(2013, 12, 17, 0, 40, 16),\n", " datetime.datetime(2013, 12, 17, 0, 40, 20),\n", " datetime.datetime(2013, 12, 17, 0, 40, 24),\n", " datetime.datetime(2013, 12, 17, 0, 40, 28),\n", " datetime.datetime(2013, 12, 17, 0, 40, 32),\n", " datetime.datetime(2013, 12, 17, 0, 40, 36),\n", " datetime.datetime(2013, 12, 17, 0, 40, 40),\n", " datetime.datetime(2013, 12, 17, 0, 40, 44),\n", " datetime.datetime(2013, 12, 17, 0, 40, 48),\n", " datetime.datetime(2013, 12, 17, 0, 40, 52),\n", " datetime.datetime(2013, 12, 17, 0, 40, 56),\n", " datetime.datetime(2013, 12, 17, 0, 41),\n", " datetime.datetime(2013, 12, 17, 0, 41, 4),\n", " datetime.datetime(2013, 12, 17, 0, 41, 8),\n", " datetime.datetime(2013, 12, 17, 0, 41, 12),\n", " datetime.datetime(2013, 12, 17, 0, 41, 16),\n", " datetime.datetime(2013, 12, 17, 0, 41, 20),\n", " datetime.datetime(2013, 12, 17, 0, 41, 24),\n", " datetime.datetime(2013, 12, 17, 0, 41, 28),\n", " datetime.datetime(2013, 12, 17, 0, 41, 32),\n", " datetime.datetime(2013, 12, 17, 0, 41, 36),\n", " datetime.datetime(2013, 12, 17, 0, 41, 40),\n", " datetime.datetime(2013, 12, 17, 0, 41, 44),\n", " datetime.datetime(2013, 12, 17, 0, 41, 48),\n", " datetime.datetime(2013, 12, 17, 0, 41, 52),\n", " datetime.datetime(2013, 12, 17, 0, 41, 56),\n", " datetime.datetime(2013, 12, 17, 0, 42),\n", " datetime.datetime(2013, 12, 17, 0, 42, 4),\n", " datetime.datetime(2013, 12, 17, 0, 42, 8),\n", " datetime.datetime(2013, 12, 17, 0, 42, 12),\n", " datetime.datetime(2013, 12, 17, 0, 42, 16),\n", " datetime.datetime(2013, 12, 17, 0, 42, 20),\n", " datetime.datetime(2013, 12, 17, 0, 42, 24),\n", " datetime.datetime(2013, 12, 17, 0, 42, 28),\n", " datetime.datetime(2013, 12, 17, 0, 42, 32),\n", " datetime.datetime(2013, 12, 17, 0, 42, 36),\n", " datetime.datetime(2013, 12, 17, 0, 42, 40),\n", " datetime.datetime(2013, 12, 17, 0, 42, 44),\n", " datetime.datetime(2013, 12, 17, 0, 42, 48),\n", " datetime.datetime(2013, 12, 17, 0, 42, 52),\n", " datetime.datetime(2013, 12, 17, 0, 42, 56),\n", " datetime.datetime(2013, 12, 17, 0, 43),\n", " datetime.datetime(2013, 12, 17, 0, 43, 4),\n", " datetime.datetime(2013, 12, 17, 0, 43, 8),\n", " datetime.datetime(2013, 12, 17, 0, 43, 12),\n", " datetime.datetime(2013, 12, 17, 0, 43, 16),\n", " datetime.datetime(2013, 12, 17, 0, 43, 20),\n", " datetime.datetime(2013, 12, 17, 0, 43, 24),\n", " datetime.datetime(2013, 12, 17, 0, 43, 28),\n", " datetime.datetime(2013, 12, 17, 0, 43, 32),\n", " datetime.datetime(2013, 12, 17, 0, 43, 36),\n", " datetime.datetime(2013, 12, 17, 0, 43, 40),\n", " datetime.datetime(2013, 12, 17, 0, 43, 44),\n", " datetime.datetime(2013, 12, 17, 0, 43, 48),\n", " datetime.datetime(2013, 12, 17, 0, 43, 52),\n", " datetime.datetime(2013, 12, 17, 0, 43, 56),\n", " datetime.datetime(2013, 12, 17, 0, 44),\n", " datetime.datetime(2013, 12, 17, 0, 44, 4),\n", " datetime.datetime(2013, 12, 17, 0, 44, 8),\n", " datetime.datetime(2013, 12, 17, 0, 44, 12),\n", " datetime.datetime(2013, 12, 17, 0, 44, 16),\n", " datetime.datetime(2013, 12, 17, 0, 44, 20),\n", " datetime.datetime(2013, 12, 17, 0, 44, 24),\n", " datetime.datetime(2013, 12, 17, 0, 44, 28),\n", " datetime.datetime(2013, 12, 17, 0, 44, 32),\n", " datetime.datetime(2013, 12, 17, 0, 44, 36),\n", " datetime.datetime(2013, 12, 17, 0, 44, 40),\n", " datetime.datetime(2013, 12, 17, 0, 44, 44),\n", " datetime.datetime(2013, 12, 17, 0, 44, 48),\n", " datetime.datetime(2013, 12, 17, 0, 44, 52),\n", " datetime.datetime(2013, 12, 17, 0, 44, 56),\n", " datetime.datetime(2013, 12, 17, 0, 45),\n", " datetime.datetime(2013, 12, 17, 0, 45, 4),\n", " datetime.datetime(2013, 12, 17, 0, 45, 8),\n", " datetime.datetime(2013, 12, 17, 0, 45, 12),\n", " datetime.datetime(2013, 12, 17, 0, 45, 16),\n", " datetime.datetime(2013, 12, 17, 0, 45, 20),\n", " datetime.datetime(2013, 12, 17, 0, 45, 24),\n", " datetime.datetime(2013, 12, 17, 0, 45, 28),\n", " datetime.datetime(2013, 12, 17, 0, 45, 32),\n", " datetime.datetime(2013, 12, 17, 0, 45, 36),\n", " datetime.datetime(2013, 12, 17, 0, 45, 40),\n", " datetime.datetime(2013, 12, 17, 0, 45, 44),\n", " datetime.datetime(2013, 12, 17, 0, 45, 48),\n", " datetime.datetime(2013, 12, 17, 0, 45, 52),\n", " datetime.datetime(2013, 12, 17, 0, 45, 56),\n", " datetime.datetime(2013, 12, 17, 0, 46),\n", " datetime.datetime(2013, 12, 17, 0, 46, 4),\n", " datetime.datetime(2013, 12, 17, 0, 46, 8),\n", " datetime.datetime(2013, 12, 17, 0, 46, 12),\n", " datetime.datetime(2013, 12, 17, 0, 46, 16),\n", " datetime.datetime(2013, 12, 17, 0, 46, 20),\n", " datetime.datetime(2013, 12, 17, 0, 46, 24),\n", " datetime.datetime(2013, 12, 17, 0, 46, 28),\n", " datetime.datetime(2013, 12, 17, 0, 46, 32),\n", " datetime.datetime(2013, 12, 17, 0, 46, 36),\n", " datetime.datetime(2013, 12, 17, 0, 46, 40),\n", " datetime.datetime(2013, 12, 17, 0, 46, 44),\n", " datetime.datetime(2013, 12, 17, 0, 46, 48),\n", " datetime.datetime(2013, 12, 17, 0, 46, 52),\n", " datetime.datetime(2013, 12, 17, 0, 46, 56),\n", " datetime.datetime(2013, 12, 17, 0, 47),\n", " datetime.datetime(2013, 12, 17, 0, 47, 4),\n", " datetime.datetime(2013, 12, 17, 0, 47, 8),\n", " datetime.datetime(2013, 12, 17, 0, 47, 12),\n", " datetime.datetime(2013, 12, 17, 0, 47, 16),\n", " datetime.datetime(2013, 12, 17, 0, 47, 20),\n", " datetime.datetime(2013, 12, 17, 0, 47, 24),\n", " datetime.datetime(2013, 12, 17, 0, 47, 28),\n", " datetime.datetime(2013, 12, 17, 0, 47, 32),\n", " datetime.datetime(2013, 12, 17, 0, 47, 36),\n", " datetime.datetime(2013, 12, 17, 0, 47, 40),\n", " datetime.datetime(2013, 12, 17, 0, 47, 44),\n", " datetime.datetime(2013, 12, 17, 0, 47, 48),\n", " datetime.datetime(2013, 12, 17, 0, 47, 52),\n", " datetime.datetime(2013, 12, 17, 0, 47, 56),\n", " datetime.datetime(2013, 12, 17, 0, 48),\n", " datetime.datetime(2013, 12, 17, 0, 48, 4),\n", " datetime.datetime(2013, 12, 17, 0, 48, 8),\n", " datetime.datetime(2013, 12, 17, 0, 48, 12),\n", " datetime.datetime(2013, 12, 17, 0, 48, 16),\n", " datetime.datetime(2013, 12, 17, 0, 48, 20),\n", " datetime.datetime(2013, 12, 17, 0, 48, 24),\n", " datetime.datetime(2013, 12, 17, 0, 48, 28),\n", " datetime.datetime(2013, 12, 17, 0, 48, 32),\n", " datetime.datetime(2013, 12, 17, 0, 48, 36),\n", " datetime.datetime(2013, 12, 17, 0, 48, 40),\n", " datetime.datetime(2013, 12, 17, 0, 48, 44),\n", " datetime.datetime(2013, 12, 17, 0, 48, 48),\n", " datetime.datetime(2013, 12, 17, 0, 48, 52),\n", " datetime.datetime(2013, 12, 17, 0, 48, 56),\n", " datetime.datetime(2013, 12, 17, 0, 49),\n", " datetime.datetime(2013, 12, 17, 0, 49, 4),\n", " datetime.datetime(2013, 12, 17, 0, 49, 8),\n", " datetime.datetime(2013, 12, 17, 0, 49, 12),\n", " datetime.datetime(2013, 12, 17, 0, 49, 16),\n", " datetime.datetime(2013, 12, 17, 0, 49, 20),\n", " datetime.datetime(2013, 12, 17, 0, 49, 24),\n", " datetime.datetime(2013, 12, 17, 0, 49, 28),\n", " datetime.datetime(2013, 12, 17, 0, 49, 32),\n", " datetime.datetime(2013, 12, 17, 0, 49, 36),\n", " datetime.datetime(2013, 12, 17, 0, 49, 40),\n", " datetime.datetime(2013, 12, 17, 0, 49, 44),\n", " datetime.datetime(2013, 12, 17, 0, 49, 48),\n", " datetime.datetime(2013, 12, 17, 0, 49, 52),\n", " datetime.datetime(2013, 12, 17, 0, 49, 56),\n", " datetime.datetime(2013, 12, 17, 0, 50),\n", " datetime.datetime(2013, 12, 17, 0, 50, 4),\n", " datetime.datetime(2013, 12, 17, 0, 50, 8),\n", " datetime.datetime(2013, 12, 17, 0, 50, 12),\n", " datetime.datetime(2013, 12, 17, 0, 50, 16),\n", " datetime.datetime(2013, 12, 17, 0, 50, 20),\n", " datetime.datetime(2013, 12, 17, 0, 50, 24),\n", " datetime.datetime(2013, 12, 17, 0, 50, 28),\n", " datetime.datetime(2013, 12, 17, 0, 50, 32),\n", " datetime.datetime(2013, 12, 17, 0, 50, 36),\n", " datetime.datetime(2013, 12, 17, 0, 50, 40),\n", " datetime.datetime(2013, 12, 17, 0, 50, 44),\n", " datetime.datetime(2013, 12, 17, 0, 50, 48),\n", " datetime.datetime(2013, 12, 17, 0, 50, 52),\n", " datetime.datetime(2013, 12, 17, 0, 50, 56),\n", " datetime.datetime(2013, 12, 17, 0, 51),\n", " datetime.datetime(2013, 12, 17, 0, 51, 4),\n", " datetime.datetime(2013, 12, 17, 0, 51, 8),\n", " datetime.datetime(2013, 12, 17, 0, 51, 12),\n", " datetime.datetime(2013, 12, 17, 0, 51, 16),\n", " datetime.datetime(2013, 12, 17, 0, 51, 20),\n", " datetime.datetime(2013, 12, 17, 0, 51, 24),\n", " datetime.datetime(2013, 12, 17, 0, 51, 28),\n", " datetime.datetime(2013, 12, 17, 0, 51, 32),\n", " datetime.datetime(2013, 12, 17, 0, 51, 36),\n", " datetime.datetime(2013, 12, 17, 0, 51, 40),\n", " datetime.datetime(2013, 12, 17, 0, 51, 44),\n", " datetime.datetime(2013, 12, 17, 0, 51, 48),\n", " datetime.datetime(2013, 12, 17, 0, 51, 52),\n", " datetime.datetime(2013, 12, 17, 0, 51, 56),\n", " datetime.datetime(2013, 12, 17, 0, 52),\n", " datetime.datetime(2013, 12, 17, 0, 52, 4),\n", " datetime.datetime(2013, 12, 17, 0, 52, 8),\n", " datetime.datetime(2013, 12, 17, 0, 52, 12),\n", " datetime.datetime(2013, 12, 17, 0, 52, 16),\n", " datetime.datetime(2013, 12, 17, 0, 52, 20),\n", " datetime.datetime(2013, 12, 17, 0, 52, 24),\n", " datetime.datetime(2013, 12, 17, 0, 52, 28),\n", " datetime.datetime(2013, 12, 17, 0, 52, 32),\n", " datetime.datetime(2013, 12, 17, 0, 52, 36),\n", " datetime.datetime(2013, 12, 17, 0, 52, 40),\n", " datetime.datetime(2013, 12, 17, 0, 52, 44),\n", " datetime.datetime(2013, 12, 17, 0, 52, 48),\n", " datetime.datetime(2013, 12, 17, 0, 52, 52),\n", " datetime.datetime(2013, 12, 17, 0, 52, 56),\n", " datetime.datetime(2013, 12, 17, 0, 53),\n", " datetime.datetime(2013, 12, 17, 0, 53, 4),\n", " datetime.datetime(2013, 12, 17, 0, 53, 8),\n", " datetime.datetime(2013, 12, 17, 0, 53, 12),\n", " datetime.datetime(2013, 12, 17, 0, 53, 16),\n", " datetime.datetime(2013, 12, 17, 0, 53, 20),\n", " datetime.datetime(2013, 12, 17, 0, 53, 24),\n", " datetime.datetime(2013, 12, 17, 0, 53, 28),\n", " datetime.datetime(2013, 12, 17, 0, 53, 32),\n", " datetime.datetime(2013, 12, 17, 0, 53, 36),\n", " datetime.datetime(2013, 12, 17, 0, 53, 40),\n", " datetime.datetime(2013, 12, 17, 0, 53, 44),\n", " datetime.datetime(2013, 12, 17, 0, 53, 48),\n", " datetime.datetime(2013, 12, 17, 0, 53, 52),\n", " datetime.datetime(2013, 12, 17, 0, 53, 56),\n", " datetime.datetime(2013, 12, 17, 0, 54),\n", " datetime.datetime(2013, 12, 17, 0, 54, 4),\n", " datetime.datetime(2013, 12, 17, 0, 54, 8),\n", " datetime.datetime(2013, 12, 17, 0, 54, 12),\n", " datetime.datetime(2013, 12, 17, 0, 54, 16),\n", " datetime.datetime(2013, 12, 17, 0, 54, 20),\n", " datetime.datetime(2013, 12, 17, 0, 54, 24),\n", " datetime.datetime(2013, 12, 17, 0, 54, 28),\n", " datetime.datetime(2013, 12, 17, 0, 54, 32),\n", " datetime.datetime(2013, 12, 17, 0, 54, 36),\n", " datetime.datetime(2013, 12, 17, 0, 54, 40),\n", " datetime.datetime(2013, 12, 17, 0, 54, 44),\n", " datetime.datetime(2013, 12, 17, 0, 54, 48),\n", " datetime.datetime(2013, 12, 17, 0, 54, 52),\n", " datetime.datetime(2013, 12, 17, 0, 54, 56),\n", " datetime.datetime(2013, 12, 17, 0, 55),\n", " datetime.datetime(2013, 12, 17, 0, 55, 4),\n", " datetime.datetime(2013, 12, 17, 0, 55, 8),\n", " datetime.datetime(2013, 12, 17, 0, 55, 12),\n", " datetime.datetime(2013, 12, 17, 0, 55, 16),\n", " datetime.datetime(2013, 12, 17, 0, 55, 20),\n", " datetime.datetime(2013, 12, 17, 0, 55, 24),\n", " datetime.datetime(2013, 12, 17, 0, 55, 28),\n", " datetime.datetime(2013, 12, 17, 0, 55, 32),\n", " datetime.datetime(2013, 12, 17, 0, 55, 36),\n", " datetime.datetime(2013, 12, 17, 0, 55, 40),\n", " datetime.datetime(2013, 12, 17, 0, 55, 44),\n", " datetime.datetime(2013, 12, 17, 0, 55, 48),\n", " datetime.datetime(2013, 12, 17, 0, 55, 52),\n", " datetime.datetime(2013, 12, 17, 0, 55, 56),\n", " datetime.datetime(2013, 12, 17, 0, 56),\n", " datetime.datetime(2013, 12, 17, 0, 56, 4),\n", " datetime.datetime(2013, 12, 17, 0, 56, 8),\n", " datetime.datetime(2013, 12, 17, 0, 56, 12),\n", " datetime.datetime(2013, 12, 17, 0, 56, 16),\n", " datetime.datetime(2013, 12, 17, 0, 56, 20),\n", " datetime.datetime(2013, 12, 17, 0, 56, 24),\n", " datetime.datetime(2013, 12, 17, 0, 56, 28),\n", " datetime.datetime(2013, 12, 17, 0, 56, 32),\n", " datetime.datetime(2013, 12, 17, 0, 56, 36),\n", " datetime.datetime(2013, 12, 17, 0, 56, 40),\n", " datetime.datetime(2013, 12, 17, 0, 56, 44),\n", " datetime.datetime(2013, 12, 17, 0, 56, 48),\n", " datetime.datetime(2013, 12, 17, 0, 56, 52),\n", " datetime.datetime(2013, 12, 17, 0, 56, 56),\n", " datetime.datetime(2013, 12, 17, 0, 57),\n", " datetime.datetime(2013, 12, 17, 0, 57, 4),\n", " datetime.datetime(2013, 12, 17, 0, 57, 8),\n", " datetime.datetime(2013, 12, 17, 0, 57, 12),\n", " datetime.datetime(2013, 12, 17, 0, 57, 16),\n", " datetime.datetime(2013, 12, 17, 0, 57, 20),\n", " datetime.datetime(2013, 12, 17, 0, 57, 24),\n", " datetime.datetime(2013, 12, 17, 0, 57, 28),\n", " datetime.datetime(2013, 12, 17, 0, 57, 32),\n", " datetime.datetime(2013, 12, 17, 0, 57, 36),\n", " datetime.datetime(2013, 12, 17, 0, 57, 40),\n", " datetime.datetime(2013, 12, 17, 0, 57, 44),\n", " datetime.datetime(2013, 12, 17, 0, 57, 48),\n", " datetime.datetime(2013, 12, 17, 0, 57, 52),\n", " datetime.datetime(2013, 12, 17, 0, 57, 56),\n", " datetime.datetime(2013, 12, 17, 0, 58),\n", " datetime.datetime(2013, 12, 17, 0, 58, 4),\n", " datetime.datetime(2013, 12, 17, 0, 58, 8),\n", " datetime.datetime(2013, 12, 17, 0, 58, 12),\n", " datetime.datetime(2013, 12, 17, 0, 58, 16),\n", " datetime.datetime(2013, 12, 17, 0, 58, 20),\n", " datetime.datetime(2013, 12, 17, 0, 58, 24),\n", " datetime.datetime(2013, 12, 17, 0, 58, 28),\n", " datetime.datetime(2013, 12, 17, 0, 58, 32),\n", " datetime.datetime(2013, 12, 17, 0, 58, 36),\n", " datetime.datetime(2013, 12, 17, 0, 58, 40),\n", " datetime.datetime(2013, 12, 17, 0, 58, 44),\n", " datetime.datetime(2013, 12, 17, 0, 58, 48),\n", " datetime.datetime(2013, 12, 17, 0, 58, 52),\n", " datetime.datetime(2013, 12, 17, 0, 58, 56),\n", " datetime.datetime(2013, 12, 17, 0, 59),\n", " datetime.datetime(2013, 12, 17, 0, 59, 4),\n", " datetime.datetime(2013, 12, 17, 0, 59, 8),\n", " datetime.datetime(2013, 12, 17, 0, 59, 12),\n", " datetime.datetime(2013, 12, 17, 0, 59, 16),\n", " datetime.datetime(2013, 12, 17, 0, 59, 20),\n", " datetime.datetime(2013, 12, 17, 0, 59, 24),\n", " datetime.datetime(2013, 12, 17, 0, 59, 28),\n", " datetime.datetime(2013, 12, 17, 0, 59, 32),\n", " datetime.datetime(2013, 12, 17, 0, 59, 36),\n", " datetime.datetime(2013, 12, 17, 0, 59, 40),\n", " datetime.datetime(2013, 12, 17, 0, 59, 44),\n", " datetime.datetime(2013, 12, 17, 0, 59, 48),\n", " datetime.datetime(2013, 12, 17, 0, 59, 52),\n", " datetime.datetime(2013, 12, 17, 0, 59, 56),\n", " datetime.datetime(2013, 12, 17, 1, 0),\n", " datetime.datetime(2013, 12, 17, 1, 0, 4),\n", " datetime.datetime(2013, 12, 17, 1, 0, 8),\n", " datetime.datetime(2013, 12, 17, 1, 0, 12),\n", " datetime.datetime(2013, 12, 17, 1, 0, 16),\n", " datetime.datetime(2013, 12, 17, 1, 0, 20),\n", " datetime.datetime(2013, 12, 17, 1, 0, 24),\n", " datetime.datetime(2013, 12, 17, 1, 0, 28),\n", " datetime.datetime(2013, 12, 17, 1, 0, 32),\n", " datetime.datetime(2013, 12, 17, 1, 0, 36),\n", " datetime.datetime(2013, 12, 17, 1, 0, 40),\n", " datetime.datetime(2013, 12, 17, 1, 0, 44),\n", " datetime.datetime(2013, 12, 17, 1, 0, 48),\n", " datetime.datetime(2013, 12, 17, 1, 0, 52),\n", " datetime.datetime(2013, 12, 17, 1, 0, 56),\n", " datetime.datetime(2013, 12, 17, 1, 1),\n", " datetime.datetime(2013, 12, 17, 1, 1, 4),\n", " datetime.datetime(2013, 12, 17, 1, 1, 8),\n", " datetime.datetime(2013, 12, 17, 1, 1, 12),\n", " datetime.datetime(2013, 12, 17, 1, 1, 16),\n", " datetime.datetime(2013, 12, 17, 1, 1, 20),\n", " datetime.datetime(2013, 12, 17, 1, 1, 24),\n", " datetime.datetime(2013, 12, 17, 1, 1, 28),\n", " datetime.datetime(2013, 12, 17, 1, 1, 32),\n", " datetime.datetime(2013, 12, 17, 1, 1, 36),\n", " datetime.datetime(2013, 12, 17, 1, 1, 40),\n", " datetime.datetime(2013, 12, 17, 1, 1, 44),\n", " datetime.datetime(2013, 12, 17, 1, 1, 48),\n", " datetime.datetime(2013, 12, 17, 1, 1, 52),\n", " datetime.datetime(2013, 12, 17, 1, 1, 56),\n", " datetime.datetime(2013, 12, 17, 1, 2),\n", " datetime.datetime(2013, 12, 17, 1, 2, 4),\n", " datetime.datetime(2013, 12, 17, 1, 2, 8),\n", " datetime.datetime(2013, 12, 17, 1, 2, 12),\n", " datetime.datetime(2013, 12, 17, 1, 2, 16),\n", " datetime.datetime(2013, 12, 17, 1, 2, 20),\n", " datetime.datetime(2013, 12, 17, 1, 2, 24),\n", " datetime.datetime(2013, 12, 17, 1, 2, 28),\n", " datetime.datetime(2013, 12, 17, 1, 2, 32),\n", " datetime.datetime(2013, 12, 17, 1, 2, 36),\n", " datetime.datetime(2013, 12, 17, 1, 2, 40),\n", " datetime.datetime(2013, 12, 17, 1, 2, 44),\n", " datetime.datetime(2013, 12, 17, 1, 2, 48),\n", " datetime.datetime(2013, 12, 17, 1, 2, 52),\n", " datetime.datetime(2013, 12, 17, 1, 2, 56),\n", " datetime.datetime(2013, 12, 17, 1, 3),\n", " datetime.datetime(2013, 12, 17, 1, 3, 4),\n", " datetime.datetime(2013, 12, 17, 1, 3, 8),\n", " datetime.datetime(2013, 12, 17, 1, 3, 12),\n", " datetime.datetime(2013, 12, 17, 1, 3, 16),\n", " datetime.datetime(2013, 12, 17, 1, 3, 20),\n", " datetime.datetime(2013, 12, 17, 1, 3, 24),\n", " datetime.datetime(2013, 12, 17, 1, 3, 28),\n", " datetime.datetime(2013, 12, 17, 1, 3, 32),\n", " datetime.datetime(2013, 12, 17, 1, 3, 36),\n", " datetime.datetime(2013, 12, 17, 1, 3, 40),\n", " datetime.datetime(2013, 12, 17, 1, 3, 44),\n", " datetime.datetime(2013, 12, 17, 1, 3, 48),\n", " datetime.datetime(2013, 12, 17, 1, 3, 52),\n", " datetime.datetime(2013, 12, 17, 1, 3, 56),\n", " datetime.datetime(2013, 12, 17, 1, 4),\n", " datetime.datetime(2013, 12, 17, 1, 4, 4),\n", " datetime.datetime(2013, 12, 17, 1, 4, 8),\n", " datetime.datetime(2013, 12, 17, 1, 4, 12),\n", " datetime.datetime(2013, 12, 17, 1, 4, 16),\n", " datetime.datetime(2013, 12, 17, 1, 4, 20),\n", " datetime.datetime(2013, 12, 17, 1, 4, 24),\n", " datetime.datetime(2013, 12, 17, 1, 4, 28),\n", " datetime.datetime(2013, 12, 17, 1, 4, 32),\n", " datetime.datetime(2013, 12, 17, 1, 4, 36),\n", " datetime.datetime(2013, 12, 17, 1, 4, 40),\n", " datetime.datetime(2013, 12, 17, 1, 4, 44),\n", " datetime.datetime(2013, 12, 17, 1, 4, 48),\n", " datetime.datetime(2013, 12, 17, 1, 4, 52),\n", " datetime.datetime(2013, 12, 17, 1, 4, 56),\n", " datetime.datetime(2013, 12, 17, 1, 5),\n", " datetime.datetime(2013, 12, 17, 1, 5, 4),\n", " datetime.datetime(2013, 12, 17, 1, 5, 8),\n", " datetime.datetime(2013, 12, 17, 1, 5, 12),\n", " datetime.datetime(2013, 12, 17, 1, 5, 16),\n", " datetime.datetime(2013, 12, 17, 1, 5, 20),\n", " datetime.datetime(2013, 12, 17, 1, 5, 24),\n", " datetime.datetime(2013, 12, 17, 1, 5, 28),\n", " datetime.datetime(2013, 12, 17, 1, 5, 32),\n", " datetime.datetime(2013, 12, 17, 1, 5, 36),\n", " datetime.datetime(2013, 12, 17, 1, 5, 40),\n", " datetime.datetime(2013, 12, 17, 1, 5, 44),\n", " datetime.datetime(2013, 12, 17, 1, 5, 48),\n", " datetime.datetime(2013, 12, 17, 1, 5, 52),\n", " datetime.datetime(2013, 12, 17, 1, 5, 56),\n", " datetime.datetime(2013, 12, 17, 1, 6),\n", " datetime.datetime(2013, 12, 17, 1, 6, 4),\n", " datetime.datetime(2013, 12, 17, 1, 6, 8),\n", " datetime.datetime(2013, 12, 17, 1, 6, 12),\n", " datetime.datetime(2013, 12, 17, 1, 6, 16),\n", " datetime.datetime(2013, 12, 17, 1, 6, 20),\n", " datetime.datetime(2013, 12, 17, 1, 6, 24),\n", " datetime.datetime(2013, 12, 17, 1, 6, 28),\n", " datetime.datetime(2013, 12, 17, 1, 6, 32),\n", " datetime.datetime(2013, 12, 17, 1, 6, 36),\n", " ...]}" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "import pandas as pd" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stderr", "text": [ "/Users/schriste/anaconda/lib/python2.7/site-packages/pytz/__init__.py:29: UserWarning: Module _imaging was already imported from /Users/schriste/anaconda/lib/python2.7/site-packages/PIL/_imaging.so, but /Users/schriste/.local/lib/python2.7/site-packages is being added to sys.path\n", " from pkg_resources import resource_stream\n" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "pd.DataFrame(r['data'], columns=r['labels'], index = r['time'])" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>3 - 6 keV</th>\n", " <th>6 - 12 keV</th>\n", " <th>12 - 25 keV</th>\n", " <th>25 - 50 keV</th>\n", " <th>50 - 100 keV</th>\n", " <th>100 - 300 keV</th>\n", " <th>300 - 800 keV</th>\n", " <th>800 - 7000 keV</th>\n", " <th>7000 - 20000 keV</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>2013-12-17 00:00:00</th>\n", " <td> 24</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 13</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:04</th>\n", " <td> 26</td>\n", " <td> 17</td>\n", " <td> 12</td>\n", " <td> 12</td>\n", " <td> 13</td>\n", " <td> 25</td>\n", " <td> 29</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:08</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:12</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:16</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 11</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 24</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:20</th>\n", " <td> 26</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 13</td>\n", " <td> 24</td>\n", " <td> 30</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:24</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:28</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:32</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:36</th>\n", " <td> 24</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 25</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:40</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:44</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 8</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:48</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:52</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 11</td>\n", " <td> 10</td>\n", " <td> 13</td>\n", " <td> 24</td>\n", " <td> 29</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:00:56</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 11</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:00</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 26</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:04</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:08</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:12</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:16</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 11</td>\n", " <td> 10</td>\n", " <td> 13</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:20</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 13</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:24</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 13</td>\n", " <td> 22</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:28</th>\n", " <td> 26</td>\n", " <td> 17</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 13</td>\n", " <td> 24</td>\n", " <td> 30</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:32</th>\n", " <td> 26</td>\n", " <td> 17</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 13</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:36</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 8</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:40</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:44</th>\n", " <td> 22</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 8</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 27</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:48</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:52</th>\n", " <td> 24</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:01:56</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:00</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 8</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:04</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:08</th>\n", " <td> 24</td>\n", " <td> 15</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 30</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:12</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:16</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:20</th>\n", " <td> 24</td>\n", " <td> 15</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:24</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:28</th>\n", " <td> 24</td>\n", " <td> 15</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:32</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 8</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:36</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:40</th>\n", " <td> 24</td>\n", " <td> 15</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:44</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:48</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:52</th>\n", " <td> 24</td>\n", " <td> 15</td>\n", " <td> 10</td>\n", " <td> 8</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:02:56</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 30</td>\n", " <td> 24</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:00</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 11</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:04</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:08</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 27</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:12</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:16</th>\n", " <td> 25</td>\n", " <td> 17</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:20</th>\n", " <td> 26</td>\n", " <td> 17</td>\n", " <td> 10</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 23</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:24</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 10</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 24</td>\n", " <td> 28</td>\n", " <td> 26</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:28</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 23</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:32</th>\n", " <td> 23</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 27</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:36</th>\n", " <td> 24</td>\n", " <td> 17</td>\n", " <td> 11</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 0</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:40</th>\n", " <td> 23</td>\n", " <td> 15</td>\n", " <td> 8</td>\n", " <td> 9</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:44</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 12</td>\n", " <td> 22</td>\n", " <td> 30</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:48</th>\n", " <td> 24</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 11</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 28</td>\n", " <td> 24</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:52</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 8</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 27</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th>2013-12-17 00:03:56</th>\n", " <td> 25</td>\n", " <td> 16</td>\n", " <td> 9</td>\n", " <td> 10</td>\n", " <td> 11</td>\n", " <td> 22</td>\n", " <td> 29</td>\n", " <td> 25</td>\n", " <td> 1</td>\n", " </tr>\n", " <tr>\n", " <th></th>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " <td>...</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>10465 rows \u00d7 9 columns</p>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 11, "text": [ " 3 - 6 keV 6 - 12 keV 12 - 25 keV 25 - 50 keV \\\n", "2013-12-17 00:00:00 24 17 10 11 \n", "2013-12-17 00:00:04 26 17 12 12 \n", "2013-12-17 00:00:08 24 16 9 9 \n", "2013-12-17 00:00:12 24 16 10 12 \n", "2013-12-17 00:00:16 25 16 11 11 \n", "2013-12-17 00:00:20 26 17 10 10 \n", "2013-12-17 00:00:24 23 16 9 10 \n", "2013-12-17 00:00:28 24 16 9 10 \n", "2013-12-17 00:00:32 25 16 9 10 \n", "2013-12-17 00:00:36 24 17 10 10 \n", "2013-12-17 00:00:40 25 16 9 11 \n", "2013-12-17 00:00:44 23 16 8 10 \n", "2013-12-17 00:00:48 23 16 9 9 \n", "2013-12-17 00:00:52 24 16 11 10 \n", "2013-12-17 00:00:56 25 17 11 9 \n", "2013-12-17 00:01:00 24 16 10 11 \n", "2013-12-17 00:01:04 25 17 10 10 \n", "2013-12-17 00:01:08 24 16 9 10 \n", "2013-12-17 00:01:12 25 17 10 10 \n", "2013-12-17 00:01:16 23 16 11 10 \n", "2013-12-17 00:01:20 25 16 10 10 \n", "2013-12-17 00:01:24 23 16 10 11 \n", "2013-12-17 00:01:28 26 17 9 11 \n", "2013-12-17 00:01:32 26 17 9 10 \n", "2013-12-17 00:01:36 24 16 8 10 \n", "2013-12-17 00:01:40 24 16 9 10 \n", "2013-12-17 00:01:44 22 16 9 8 \n", "2013-12-17 00:01:48 24 16 9 11 \n", "2013-12-17 00:01:52 24 17 10 11 \n", "2013-12-17 00:01:56 23 16 9 10 \n", "2013-12-17 00:02:00 24 16 8 9 \n", "2013-12-17 00:02:04 24 16 9 11 \n", "2013-12-17 00:02:08 24 15 10 10 \n", "2013-12-17 00:02:12 25 16 9 10 \n", "2013-12-17 00:02:16 24 16 9 10 \n", "2013-12-17 00:02:20 24 15 9 10 \n", "2013-12-17 00:02:24 25 16 9 9 \n", "2013-12-17 00:02:28 24 15 10 11 \n", "2013-12-17 00:02:32 23 16 8 9 \n", "2013-12-17 00:02:36 25 17 10 11 \n", "2013-12-17 00:02:40 24 15 9 11 \n", "2013-12-17 00:02:44 25 17 10 10 \n", "2013-12-17 00:02:48 25 17 9 10 \n", "2013-12-17 00:02:52 24 15 10 8 \n", "2013-12-17 00:02:56 24 16 9 10 \n", "2013-12-17 00:03:00 23 16 11 9 \n", "2013-12-17 00:03:04 25 16 9 10 \n", "2013-12-17 00:03:08 24 16 9 9 \n", "2013-12-17 00:03:12 24 16 9 11 \n", "2013-12-17 00:03:16 25 17 9 11 \n", "2013-12-17 00:03:20 26 17 10 9 \n", "2013-12-17 00:03:24 23 16 10 10 \n", "2013-12-17 00:03:28 24 16 9 9 \n", "2013-12-17 00:03:32 23 16 9 9 \n", "2013-12-17 00:03:36 24 17 11 9 \n", "2013-12-17 00:03:40 23 15 8 9 \n", "2013-12-17 00:03:44 25 16 9 10 \n", "2013-12-17 00:03:48 24 16 9 11 \n", "2013-12-17 00:03:52 25 16 8 10 \n", "2013-12-17 00:03:56 25 16 9 10 \n", " ... ... ... ... \n", "\n", " 50 - 100 keV 100 - 300 keV 300 - 800 keV \\\n", "2013-12-17 00:00:00 13 23 30 \n", "2013-12-17 00:00:04 13 25 29 \n", "2013-12-17 00:00:08 12 23 30 \n", "2013-12-17 00:00:12 11 23 29 \n", "2013-12-17 00:00:16 12 24 30 \n", "2013-12-17 00:00:20 13 24 30 \n", "2013-12-17 00:00:24 12 22 30 \n", "2013-12-17 00:00:28 12 22 29 \n", "2013-12-17 00:00:32 11 23 30 \n", "2013-12-17 00:00:36 12 25 28 \n", "2013-12-17 00:00:40 12 23 29 \n", "2013-12-17 00:00:44 12 23 30 \n", "2013-12-17 00:00:48 11 22 29 \n", "2013-12-17 00:00:52 13 24 29 \n", "2013-12-17 00:00:56 12 23 30 \n", "2013-12-17 00:01:00 11 23 29 \n", "2013-12-17 00:01:04 12 23 28 \n", "2013-12-17 00:01:08 12 22 29 \n", "2013-12-17 00:01:12 12 23 28 \n", "2013-12-17 00:01:16 13 22 28 \n", "2013-12-17 00:01:20 13 22 29 \n", "2013-12-17 00:01:24 13 22 30 \n", "2013-12-17 00:01:28 13 24 30 \n", "2013-12-17 00:01:32 13 23 29 \n", "2013-12-17 00:01:36 10 23 29 \n", "2013-12-17 00:01:40 12 23 30 \n", "2013-12-17 00:01:44 11 22 27 \n", "2013-12-17 00:01:48 12 22 28 \n", "2013-12-17 00:01:52 12 23 28 \n", "2013-12-17 00:01:56 12 23 29 \n", "2013-12-17 00:02:00 11 23 29 \n", "2013-12-17 00:02:04 11 22 29 \n", "2013-12-17 00:02:08 12 23 30 \n", "2013-12-17 00:02:12 12 23 29 \n", "2013-12-17 00:02:16 12 23 29 \n", "2013-12-17 00:02:20 12 23 28 \n", "2013-12-17 00:02:24 12 22 29 \n", "2013-12-17 00:02:28 11 23 28 \n", "2013-12-17 00:02:32 12 23 29 \n", "2013-12-17 00:02:36 12 23 29 \n", "2013-12-17 00:02:40 12 23 28 \n", "2013-12-17 00:02:44 12 23 29 \n", "2013-12-17 00:02:48 11 23 29 \n", "2013-12-17 00:02:52 11 22 28 \n", "2013-12-17 00:02:56 12 22 30 \n", "2013-12-17 00:03:00 11 23 28 \n", "2013-12-17 00:03:04 12 22 29 \n", "2013-12-17 00:03:08 11 22 27 \n", "2013-12-17 00:03:12 12 22 29 \n", "2013-12-17 00:03:16 12 23 29 \n", "2013-12-17 00:03:20 11 23 29 \n", "2013-12-17 00:03:24 12 24 28 \n", "2013-12-17 00:03:28 12 23 28 \n", "2013-12-17 00:03:32 11 22 27 \n", "2013-12-17 00:03:36 12 22 28 \n", "2013-12-17 00:03:40 12 22 28 \n", "2013-12-17 00:03:44 12 22 30 \n", "2013-12-17 00:03:48 11 22 28 \n", "2013-12-17 00:03:52 11 22 27 \n", "2013-12-17 00:03:56 11 22 29 \n", " ... ... ... \n", "\n", " 800 - 7000 keV 7000 - 20000 keV \n", "2013-12-17 00:00:00 26 1 \n", "2013-12-17 00:00:04 26 1 \n", "2013-12-17 00:00:08 25 0 \n", "2013-12-17 00:00:12 25 1 \n", "2013-12-17 00:00:16 25 1 \n", "2013-12-17 00:00:20 26 1 \n", "2013-12-17 00:00:24 25 1 \n", "2013-12-17 00:00:28 26 1 \n", "2013-12-17 00:00:32 25 0 \n", "2013-12-17 00:00:36 25 1 \n", "2013-12-17 00:00:40 25 1 \n", "2013-12-17 00:00:44 25 1 \n", "2013-12-17 00:00:48 24 1 \n", "2013-12-17 00:00:52 24 1 \n", "2013-12-17 00:00:56 25 1 \n", "2013-12-17 00:01:00 26 0 \n", "2013-12-17 00:01:04 25 1 \n", "2013-12-17 00:01:08 25 1 \n", "2013-12-17 00:01:12 25 1 \n", "2013-12-17 00:01:16 25 1 \n", "2013-12-17 00:01:20 25 1 \n", "2013-12-17 00:01:24 25 1 \n", "2013-12-17 00:01:28 25 1 \n", "2013-12-17 00:01:32 25 0 \n", "2013-12-17 00:01:36 25 1 \n", "2013-12-17 00:01:40 26 1 \n", "2013-12-17 00:01:44 25 1 \n", "2013-12-17 00:01:48 25 1 \n", "2013-12-17 00:01:52 26 1 \n", "2013-12-17 00:01:56 26 1 \n", "2013-12-17 00:02:00 25 1 \n", "2013-12-17 00:02:04 25 0 \n", "2013-12-17 00:02:08 24 1 \n", "2013-12-17 00:02:12 25 1 \n", "2013-12-17 00:02:16 25 1 \n", "2013-12-17 00:02:20 25 1 \n", "2013-12-17 00:02:24 25 1 \n", "2013-12-17 00:02:28 25 1 \n", "2013-12-17 00:02:32 25 1 \n", "2013-12-17 00:02:36 25 1 \n", "2013-12-17 00:02:40 24 1 \n", "2013-12-17 00:02:44 25 1 \n", "2013-12-17 00:02:48 25 0 \n", "2013-12-17 00:02:52 25 1 \n", "2013-12-17 00:02:56 24 0 \n", "2013-12-17 00:03:00 25 1 \n", "2013-12-17 00:03:04 25 1 \n", "2013-12-17 00:03:08 25 1 \n", "2013-12-17 00:03:12 24 1 \n", "2013-12-17 00:03:16 25 1 \n", "2013-12-17 00:03:20 25 1 \n", "2013-12-17 00:03:24 26 1 \n", "2013-12-17 00:03:28 25 0 \n", "2013-12-17 00:03:32 25 1 \n", "2013-12-17 00:03:36 25 0 \n", "2013-12-17 00:03:40 25 1 \n", "2013-12-17 00:03:44 24 1 \n", "2013-12-17 00:03:48 24 1 \n", "2013-12-17 00:03:52 25 1 \n", "2013-12-17 00:03:56 25 1 \n", " ... ... \n", "\n", "[10465 rows x 9 columns]" ] } ], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "from sunpy.lightcurve import RHESSISummaryLightCurve\n", "from sunpy.time import TimeRange" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stderr", "text": [ "/Users/schriste/anaconda/lib/python2.7/site-packages/pytz/__init__.py:29: UserWarning: Module _imaging was already imported from /Users/schriste/anaconda/lib/python2.7/site-packages/PIL/_imaging.so, but /Users/schriste/.local/lib/python2.7/site-packages is being added to sys.path\n", " from pkg_resources import resource_stream\n" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "from sunpy.instr import rhessi" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "lc = RHESSISummaryLightCurve.create(TimeRange('2003/03/02', '2003/03/03'))" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "http://hesperia.gsfc.nasa.gov/hessidata/metadata/catalog/hsi_obssumm_20030302_146.fits\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "/Users/schriste/Dropbox/Developer/python/sunpy/sunpy/lightcurve/lightcurve.py:228: RuntimeWarning: Using existing file rather than downloading, use overwrite=True to override.\n", " warnings.warn(\"Using existing file rather than downloading, use overwrite=True to override.\", RuntimeWarning)\n" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "from matplotlib import pyplot as plt\n", "%pylab inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "plt.figure()\n", "lc.data.plot()\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "text": [ "<matplotlib.figure.Figure at 0x10799e250>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEMCAYAAADZDD24AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdcFNcWx3+zFOnSBBFQbKigokaTWFDUYA2JPXYsiTEY\n0xM1NkwsmKoxMSZ5do1YY4tiC4skRqyggkpURKnSe1l27vtjdmd32cqyuIve7/vwsjNz750z6+yZ\nM+eeew5DCCGgUCgUSqNFYGwBKBQKhVI/qCKnUCiURg5V5BQKhdLIoYqcQqFQGjlUkVMoFEojhypy\nCoVCaeRoVOSzZs2Cu7s7unTponTs22+/hUAgQH5+Pr9vzZo1aN++PTp27IjTp08bXloKhUKhKKFR\nkc+cORNRUVFK+x8/fowzZ86gVatW/L6kpCTs3bsXSUlJiIqKQlhYGFiWNbzEFAqFQlFAoyIPDAyE\nk5OT0v6PPvoIX331lcK+I0eOYNKkSbCwsICPjw/atWuHS5cuGVZaCoVCoShRZx/5kSNH4OXlha5d\nuyrsz8jIgJeXF7/t5eWF9PT0+ktIoVAoFI2Y16VxeXk5Vq9ejTNnzvD7NK3wZxhGf8koFAqFohN1\nUuT379/Hw4cPERAQAABIS0vDCy+8gLi4OHh6euLx48d827S0NHh6eiqN4erqiry8vHqKTaFQKM8X\nbdu2xb1791QfJFpISUkhnTt3VnnMx8eH5OXlEUIISUxMJAEBAaSqqoo8ePCAtGnThrAsq9RHh1Oa\nBMuXLze2CDpB5TQsVE7D0hjkbAwyEqJZd2r0kU+aNAl9+vRBcnIyvL29sXXrVoXj8q4TPz8/TJgw\nAX5+fhg+fDg2btzYqF0rQUFBxhZBJ6ichoXKaVgag5yNQUZtMBJN//ROyDAa/eoUCoVCUUaT7qQr\nOykUCqWRQxU5hUKhNHLqFLVCoVBkODs7o6CgwNhiUJ4xnJycFFKf6AL1kVMoekLvZUpDoO6+oj5y\nCoVCeYahipxCoVAaOVSRUygUSiOHKnIKhWJwZsyYgaVLlxpbjOcGqsgplGeUqVOnwsPDAw4ODmjT\npg1WrVpVr/HEYjGWLFkCT09PODg4oEePHigqKlLZlmGYOq/sjoiIwIABA5T25+bmwtLSEklJSXrJ\n/TxAFTmF8oyyaNEipKSkoLi4GCdPnsSGDRtUForRleXLl+PixYu4ePEiiouLsWvXLlhZWaltX9eI\nnmnTpuHChQt4+PChwv7IyEgEBATAz89PH7GfC6gip1CeUfz9/RUUrbm5Odzc3PQaq6CgAOvXr8dv\nv/0Gb29vAFx+pSZNmmjtW1JSgoEDB+KDDz4AANy5cwfBwcFwcXFBx44dsX//fgCAp6cnBg0ahJ07\ndyr037FjB6ZPn66X3M8LVJFTKM8wYWFhsLW1hb+/P5YsWYIePXroNc7Nmzdhbm6O/fv3w8PDAx06\ndMDGjRs19mEYBnl5eRg8eDACAwOxbt06lJWVITg4GFOnTkVOTg4iIyMRFhaG27dvAwBCQ0MVFPnd\nu3eRkJCAyZMn6yX38wJV5BTKM8zGjRtRWlqKs2fPYsmSJXqXX0xLS0NRURH+++8/PHz4EAcOHEB4\neDjOnj2rtk96ejqCgoLwxhtv4IsvvgAAHD9+HK1bt0ZoaCgEAgG6deuGMWPG8Fb5qFGjkJ2djX//\n/RcAZ42PGDECLi4uesn9vEAVOYXSgDCMYf7qJwODoKAgjB8/Hnv27FHZxt/fH/b29rC3t8c///yj\ndNza2hoAsGzZMjRp0gRdunTBxIkTceLECZXjEULw559/orKyEm+//Ta/PzU1FXFxcXBycuL/fv/9\nd2RnZwMAbGxsMH78eOzYsQMAsHv3bupW0QGaa4VCaUBMaQW/SCRSa9kmJiZq7Fu7Rq8UdZEpDMPg\nrbfeQkFBAUaMGIGoqCjY2NigZcuWGDBgAE6fPq32XKGhoRg1ahRGjx6N0tJShISEaJSNQi1yCuWZ\nROp/Lisrg1gsxqlTp7B//368/vrreo3Xtm1bBAYGYtWqVaiursbt27exd+9evPrqqyrbSyNWfvzx\nR3To0AEhISGorKzEyJEjkZycjF27dkEkEkEkEuHy5cu4c+cO3zcwMBCOjo54++23MWnSJJibU3tT\nG1SRUyjPIAzDYNOmTfDy8oKLiwuWLl2KnTt3olevXnqPuWfPHqSmpsLFxQWvvvoqVq5ciYEDB6o9\nv9Ra//XXX+Hl5YVRo0bB0tISp0+fRmRkJDw9PeHh4YFFixahurpaof/06dPx6NEj6lbREZr9kELR\nE3ovUxoCmv2QQqFQnkOoIqdQKJRGDlXkFAqF0sihipxCoVAaOVSRUygUSiNHoyKfNWsW3N3d0aVL\nF37fp59+ik6dOiEgIABjxoxRSGO5Zs0atG/fHh07dtQY8E+hUCgUw6FRkc+cOVMp7eWQIUOQmJiI\nhIQE+Pr6Ys2aNQCApKQk7N27F0lJSYiKikJYWBhYllU5bnxWvIHEp1AoFIpGRR4YGAgnJyeFfcHB\nwRAIuG4vvfQS0tLSAABHjhzBpEmTYGFhAR8fH7Rr105tgp7jyccNITuFQqFQUE8f+ZYtWzBixAgA\nQEZGBry8vPhjXl5eSE9PV9lvaTQtAUWhPM8IBAI8ePDA2GI8M+ityFetWgVLS0uNeYLrWuqJQqEY\nlsjISHTq1Al2dnZo164d/v77b73HmjNnDjp27AgzMzNs375d4dj27dvRs2dPNG3aFN7e3liwYAHE\nYnF9xVegY8eO2Lp1q9L+9evX1yv1wLOAXtlotm3bhhMnTuDcuXP8Pk9PTzx+/JjfTktLg6enp+oB\n/gDCSTgAwNHREd26dUNQUBAAQCgUAgDdptuNYtuUOXPmDBYuXIh9+/bhxRdfRGZmZr1SCnTr1g0T\nJ07EggULlIy0iooKrF+/Hi+99BKePHmC1157Dd988w0WLFhQ38vgmTFjBnbs2IGZM2cq7N+5c6fS\nvmcBoVCIbdu2AQB8fHw0NyZaSElJIZ07d+a3T548Sfz8/EhOTo5Cu8TERBIQEECqqqrIgwcPSJs2\nbQjLskrjASAI13paCsXk0eHnY1R69+5NtmzZYvBx+/XrR7Zv366xzXfffUdCQkLUHmcYhty/f58Q\nQkhsbCzx9vYmMTExhBBCNm/eTDp16kScnJzI0KFDSWpqKiGEkMePHxNzc3N+mxBO71haWpK8vLz6\nXpbJoO6+0nS/aXStTJo0CX369MHdu3fh7e2NLVu2YP78+SgtLUVwcDC6d++OsLAwAFz9vgkTJsDP\nzw/Dhw/Hxo0bqWuFQjESYrEYV69exZMnT9C+fXt4e3tj/vz5qKysfCrnj4mJQefOnbW2i4qKwuTJ\nk3Ho0CH0798fR44cwZo1a/DHH38gNzcXgYGBmDRpEgBu3m3gwIEKpeB27tyJkSNHwtnZucGupVHQ\nUE8VdYBa5JRnBCP8fHQmPT2dMAxDevXqRbKyskhubi7p27cvWbx4cb3H1maRb968mXh7e2u0khmG\nIatXryatWrUiiYmJ/P5hw4aRzZs389tisZjY2NiQR48eEUII2bVrF+nQoQN/rGXLluTw4cP1vSST\nQt19pel+oxnbKZQGhFlhmLdSsrxuvm1pabb58+fD3d0dAPDRRx9h5cqVWLlypVJ7f39/PHr0CABn\nJfft21cvOQ8fPozPP/8c586d02ol//DDD5g+fTr8/Pz4fampqXj//ffx8ccfK7RNT0+Ht7c3Ro8e\njbCwMMTFxaGsrAzl5eUYOXKkXrI+S1BFTqE0IHVVwIbCyclJIRxYG9pKvelCVFQU5syZgxMnTsDf\n319r+/3792PWrFnw9PTEe++9BwBo2bIlli5dyrtTamNjY4Nx48Zhx44dqKiooBWEJNBcKxTKM8rM\nmTOxYcMG5OTkoKCgAN9//3296l+KRCJUVlaCZVlUV1ejsrKSj4L566+/MGXKFBw6dAg9e/bUabwW\nLVrg3LlzWL9+PTZt2gQAmDt3LlavXo2kpCQAQFFREfbv36/QLzQ0FJGRkTh48CBCQ0P1vp5nigZy\n86gF1EdOeUYwws+nTohEIhIWFkYcHR1J8+bNyfvvv0+qqqr0Hm/AgAGEYRgiEAgIwzCEYRg+0mTg\nwIHEwsKC2NnZ8X8jRoxQO5ZAIOCjVlJSUkirVq143/jOnTtJly5diIODA/H29iazZ89W6t+mTRvi\n7++v97WYMuruK033m1FKvSHceK+cFIqhoKXeKA0BLfVGoVAozyFUkVMoFEojhypyCoVCaeQYTZHf\ny79nrFNTKBTKM4XRFPm1zGvGOjWFQqE8UxhNkVeLq411agqFQnmmMJoiT85LNtapKRQK5ZnCaIp8\na7xygngKhUKh1B2jKfK04jRjnZpCoZgw27ZtQ2BgoLHFaFTQ8EMK5Rnlxx9/RM+ePWFlZaVUQefi\nxYsIDg6Gi4sL3NzcMGHCBGRlZel9Lm2l3oKCgmBtbQ17e3vY29ujU6dOep9LFRcvXoSdnR3KysqU\njnXv3h0bN2406PlMDarIKZRnFE9PTyxduhSzZs1SOlZYWIi5c+ciNTUVqampsLe3r1e5NGmpt7y8\nPMTFxeHcuXP45ptv+OMMw+Cnn35CSUkJSkpKcPv2bb3PpYqXX34ZXl5eOHDggML+W7du4fbt22qz\nKT4rUEVOoTyjjB49Gq+//jpcXFyUjg0bNgxjx46FnZ0drK2tMW/ePPzzzz96n2vu3Lno27cvzM3N\n0aJFC0yZMkVpPH3z0nz66acIDAxESUkJioqKMHv2bLRo0QJeXl5YunQpWJYFwGVF3LFjh0LfHTt2\nYOTIkXByctLvwhoJRlXkNOEQhdLw6PI7O3/+vE6l2XRFVam3RYsWoVmzZujXrx9iYmK0jkEIwVtv\nvYVbt27hzJkzsLe3x4wZM2BpaYn79+/j+vXrOH36NP73v/8BAKZOnYrz588jLY2bf2NZFnv27Hku\nUt0aVZGfTz1vzNNTKM8F2mrn3rhxA19++SW+/vprg5xvy5YtuHbtGj755BN+39q1a5GSkoKMjAzM\nmTMHISEhePDggdoxRCIRJk6ciMLCQhw7dgxWVlbIzs7GyZMn8f3338Pa2hrNmjXDBx98gMjISACA\nt7c3goKC+Jqe586dQ1VV1XNRQcioinz3zd3GPD2F0vAwjGH+6oEmi/zevXsYMWIEfvjhB7Xl3WJj\nY/lJyi5dumg8l7TU28mTJxVKvb344ouwtbWFhYUFpk+fjr59++LEiRMa5Tp27BiWLVvGVwBKTU2F\nSCSCh4cHnJyc4OTkhLlz5yInJ4fvFxoayivynTt3YtKkSTAzM9Mo87OAURX5b9d+M+bpKZSGhxDD\n/NUDdRZ5amoqgoODsWzZMkyZMkVtf6l/uqSkBDdv3lTbTlrq7fjx4zqVetNEp06dsGXLFgwfPhzJ\nydziQW9vbzRp0gR5eXkoKChAQUEBioqKFGQaPXo00tLSEB0djT/++OO5cKsAdLKTQnlmEYvFqKys\nRE1NDcRiMaqqqviQwPT0dAwaNAjvvvsu5syZU+9zaSr1VlRUhFOnTvGy7N69G7GxsRg2bJjGMSdO\nnIjVq1fjlVdewYMHD+Dh4YEhQ4bgo48+QklJCViWxf3793H+vMxFa2tri3HjxmHmzJnw8fFBjx49\n6n1tjQLDFinSDiSl3qR/FEpjxQg/nzqxfPlyviSb9G/FihWEEELCw8MJwzAKpdns7e31PpemUm9P\nnjwhvXr1Ivb29sTR0ZH07t2bnD17Vu1Y27ZtI4GBgfz2b7/9Rlq1akVSU1NJUVEReeedd4iXlxdp\n2rQp6d69O9m7d69Cf6FQSBiGIV999ZXe12NM1N1Xmu43jaXeZs2ahT///BNubm7860t+fj7eeOMN\npKamwsfHB/v27YOjoyMAYM2aNdiyZQvMzMzwww8/YMiQIUpjSku98Q8SWvKN0kihpd4oDYHBS73N\nnDkTUVFRCvsiIiIQHByM5ORkDB48GBEREQCApKQk7N27F0lJSYiKikJYWBgf30mhUCiUhkOjIg8M\nDFQKpD969Cg/gRAaGorDhw8DAI4cOYJJkybBwsICPj4+aNeuHS5dulRngcSsGLdzDLvqi0KhUJ5l\n6jzZmZ2dDXd3dwCAu7s7srOzAQAZGRnw8vLi23l5eSE9PV31IEfVR6v8fvN3+G30q6tYFAqF8txS\nr6gVhmE0LjZQeyxpnNo+6SWc8q+qqaqPaBQKhfLcYF7XDu7u7sjKykLz5s2RmZkJNzc3AFyCnseP\nH/Pt0tLS4OnpqXqQyg+AaO7juqbr0K1bNwQFBQEA/jn/D5ACFFQWoLldcwiFQgDgj9Ntum1K2xRK\nQyEUCrFt2zYAgI+Pj8a2GqNWAODhw4cICQnho1Y+++wzuLi4YMGCBYiIiEBhYSEiIiKQlJSEyZMn\n49KlS0hPT8crr7yCe/fuKVnl3DYBwrn9taNW5v05DxuvbETWx1lwt3Ovw2VTKE8XGrVCaQj0iVrR\naJFPmjQJMTExyM3Nhbe3N7744gssXLgQEyZMwObNm/nwQwDw8/PDhAkT4OfnB3Nzc2zcuFFrjgdV\nCBjO20NAfyAUCoWiC1otcoOfUItFHvZnGH6+8jPyPsuDs7WzihEoFNOAWuSUhsDgceQNSo2lyt35\nFfkAAJbQGHSKIrGpsbD40sLYYlAaGFrqre4YT5EnTAegnJmtiXkTAFw8OYUiz9+P/kYNW2NsMRoF\n1dXVmD17Nnx8fODg4IDu3bsrLO57+PAhBAIBn9XQ3t4eq1at0vt827Ztg5mZmcJ48jlQ8vPzMXr0\naNjZ2cHHxwd79uyp1/XVhpZ6MxaESy15NfOqwu5eLXoBAI7cPfLURaKYNqti9Vc0zxs1NTVo2bIl\nzp8/j+LiYqxcuRITJkxAamqqQrvi4mI+s+HixYvrdc6+ffvyY5WUlKB///78sXnz5sHKygpPnjzB\n7t278c477yApKale55OHlnozAp07AyCcjzzjiWK8uJ2lHQCgXFT+tMWimDhlImVri6IaGxsbLF++\nHC1btgQAjBw5Eq1bt8a1a9cU2hkyjYY6/21ZWRkOHTqEL7/8EjY2Nujbty9ef/11Pm+4NmipN+0Y\nRZHLr9y/m6x4I0ldKtRHTqEYjuzsbCQnJyvlCW/VqhW8vb0xa9Ys5OXl6T0+wzC4fv06mjVrhg4d\nOmDlypV8ytzk5GSYm5ujXbt2fPuAgAAkJiZqHJPQUm86YxRFbm0N4FE/AABLFH3hUgVOfeQUimEQ\niUSYMmUKZsyYAV9fXwBAs2bNcOXKFTx69AhXr15FSUmJxuIS2ujfvz8SExORk5ODgwcPYs+ePXzp\nuNLSUjg4OCi0t7e3R0lJiUaZaak33anzyk6D8YQrzFpQna2wWyxR7Hdy7zx1kSgUQ8NIVoLWF6Ln\nSlKWZTFt2jRYWVnhxx9/5Pfb2tryRRfc3Nzw448/wsPDA2VlZbC1tVUYIzY2FiNGjADArTBUVSWo\ndevW/OfOnTtj2bJl+Prrr7Fw4ULY2dmhuLhYoX1RURHs7e3Vyn3v3j3cuHEDcXFxKku9yV+f1H0E\ncO6V1atXY9GiRc9VqTfjKXIJUbm/IQJv8NtSS3xL/BZsfn2zscSiUAyCvgrYIOcmBLNnz0ZOTg5O\nnDihk0JT5TOX+qf1OT8A+Pr6oqamBvfu3ePdKwkJCejcubPavp06dcK8efMwfPhw/PXXX/D19VUo\n9SYQqHYmjB49GmFhYXypt5iYmDrL3Rgxeqm3hMvWCttiQl0qFIoheOedd3Dnzh0cPXoUTZo0UTh2\n6dIl3L17FyzLIi8vD++99x4GDhyo0UrWxMmTJ/lMqHfu3MHKlSsxatQoAJz1P2bMGCxbtgzl5eX4\n+++/cezYMUybNk3jmLTUm+4YTZGPnyD5UOmosF/qI5dGr1AolLqTmpqKX3/9FQkJCWjevDkf2y2N\n337w4AGGDx8OBwcHdOnSBdbW1vWK7f7rr78QEBAAOzs7jBw5EmPHjsXnn3/OH9+4cSMqKirg5uaG\nqVOnYtOmTejUqZPKseSzqk6fPh3Lli3DoEGD8OjRI+zYsQPV1dXw8/ODs7Mzxo8fj6ysLIX+oaGh\nePToEaZPn6739TQ2jLJEnxCCP09V4tWL1sDNiSAHZDfQtxe+xSdnPkETsyaoXFL5NEWjmDjMCtVp\nHYwFXaJPaQga1RJ9r+ZW3IcukQr7v/n3GwDUxUJRDw1NpVAUMbqPvDZZpdxrEl2KTVGHSCwytggU\niklhNEUuFzGkgNQ3/nq78U9RGkpjQsRSRU6hyGM0RS6/YrZKbpX+m50/BAAU5hs9MpJiotzPzDW2\nCBSKSWESrpXkZNnnxETO/xmTb9jsaJRnhzWHDxlbBArFpDAJRS4PrQxE0UZFDY1molDkMQlFXl0t\n/5kqcooa/vkUAFApqtLSkEJ5vjAJRS6XAgKXLlNFTlEHd2/k5FOLnEKRxyQU+bZtss8iEY0RpqiB\n4e6N67cqjCwIxZgEBQVh82aah0kek1Dk8rB0pRxFHRJFDgENP9SFoKAgWFtb88vzay+JP3fuHDp2\n7AhbW1t+Cby+3Lp1C0OHDkWzZs1UJrTSVuqtLrLIL+HXlblz56rMS56QkAArKysUFhbWaTxTw+QU\nectWVJFT1CBV5GZUkesCwzD46aef+NJrt2/f5o/l5uZi7NixWLVqFQoKCtCzZ0+88cYbGkbTjKWl\nJSZOnKjWUtZU6s3QsqhixowZOHToEMrLFSuP7dy5EyEhIXB0dFTTs3FgGorcXObzdHGRKXK6FJui\nAEMf8nVFXW6OQ4cOoXPnzhg7diwsLS0RHh6OhIQEJMvHAtcBX19fzJw5E35+fkrHtJV6q48smZmZ\n6Nq1K7799lsAXBHmPn36wMnJCd26dePT2L788svw9PTEwYMH+b5isRh79ux5JpJr6a3I16xZA39/\nf3Tp0gWTJ09GVVUV8vPzERwcDF9fXwwZMkT31xWXu/xHD0+Z8i6tLtVXPMqziNQi/2+EceVoRCxa\ntAjNmjVDv379FHJzJyYmIiAggN+2sbFBu3btcOvWLYPLoK3Um76ypKSkICgoCO+99x4+/vhjpKen\n49VXX8WyZctQUFCAb775BmPHjuVL2E2fPl2hpufZs2chEon4ohmNGb0U+cOHD/Hbb7/h2rVruHnz\nJsRiMSIjIxEREYHg4GAkJydj8ODBiIiI0G3ADscwZgwwYgRw4YLMgsjIpBYYRQ6pIh8+37hyNBLW\nrl2LlJQUZGRkYM6cOQgJCUFKSgoAzkquXX7NwcEBpaWGN560lXpTdVybLImJiRg0aBC++OILvPnm\nmwCAXbt2YcSIERg2bBgA4JVXXkHPnj3x559/AuBqesbExCAjIwMAV5h5ypQpz0QFIb3WwTs4OMDC\nwgLl5eUwMzNDeXk5WrRogTVr1vBP/dDQUAQFBemmzHv8hj/WLeE+DyNAzBJgwEpER7PoOFMfCSnP\nJC2ucP91yDCuHHVAyAgNMk4QCapznxdffJH/PH36dOzZswd//vkn3n333TqVX9Ol1Jsm1J1Lqrzt\n7e3rVAqOEILdu3ejffv2GDt2LL8/NTUV+/fvx7Fjx/h9NTU1GDRoEACgZcuW6N+/P3bu3Il58+bh\nyJEjiI2NrdO1mCp6KXJnZ2d8/PHHaNmyJaytrTF06FAEBwcjOzsb7u7uAAB3d3e+Yog6YmfGInBr\nIOAom6Hu0YPg2l/OAICwdwR4hypyihTPy8aWoM7oo4CfBv7+/ti+fTu/XVZWhvv378Pf31+prb6l\n3qSoK/UmPVddZAG4SdwVK1bg5MmTmDx5MiIjIyEQCNCyZUtMmzYNv/76q1pZQkNDsXbtWjRv3hyt\nW7dG9+7d9b4uU0Iv18r9+/exbt06PHz4EBkZGSgtLcWuXbsU2ugSItSvZT+lffYOLPr2kbzqtHo2\nnpZ1ZfaR2fjlyi/GFoPSiCkqKsKpU6dQWVmJmpoa7N69G7GxsbzbYfTo0bh16xYOHTqEyspKrFix\nAt26dYOvr6/e56ysrES1ZJl2VVUVqiTZ8LSVetNHFgsLC+zfvx9lZWWYPn06CCGYOnUqjh07htOn\nT0MsFqOyshJCoRDp6el8v7Fjx+LRo0cIDw/HjBkz9L5Wk4PoQWRkJJk9eza/vWPHDhIWFkY6duxI\nMjMzCSGEZGRkkA4dOij1BUBCQ0PJ8uXLyfLlywmGgiAUBCAEIKTLW6NIlwnzCcJB8OrbJDo6mkRH\nR/P9n4dthIIE/BxgMvKYyjbCJfdKKPTqb3B59Pv5PBVycnJIr169iL29PXF0dCS9e/cmZ8+eVWhz\n9uxZ0rFjR2JtbU0GDhxIUlNT9T5fSkoKYRiGMAxDBAIBYRiGtG7dmj+en59PRo0aRWxtbUmrVq3I\nnj179JYlKCiIbN68mRBCSGVlJXnllVfIzJkzCcuyJC4ujgwYMIA4OzuTZs2akVdffZU8evRIof+M\nGTOIhYUFr6tMDel9FR0dTUJDQ3l9qel+06vUW0JCAqZMmYLLly/DysoKM2bMwIsvvojU1FS4uLhg\nwYIFiIiIQGFhoZKPvHa5Imn5LoRz+/qumgeLok4Q2swH8tuArL+v5yOq8cKsYNDVvSsS5iYYWxST\ngr9XYBrl3mipN0pDoE+pN7185AEBAZg+fTp69uwJgUCAHj16YM6cOSgpKcGECROwefNm+Pj4YN++\nfXUemyUEZtKVYc4P9BHvqfPVP19hRPsR6OzW2WBjUgVBoVB0Re/qDZ999hk+++wzhX3Ozs44e/Zs\nvQQSsywEgrotvzU2C84uwH95/+G3134ztijPBxc+NrYEFIpJYTpleCaPBMwrwZJ2MGtkihwABIxh\nF8nefFK3EK/niioH7W0olOcI01HkvicAACzbttFZ5ABQKaapVRuapk+Go0iUK1sYRKFQAJhKrhU5\nCgrkfOSNiB0JO7Q3qgPeDt4GHe9ZoKiYBVgzqsgplFqYnMasEbON0rXi5eBl0PEeFz826HjPBgTw\nvggM+NLYglAoJoXRFXm35t0UtkU1pFG6VsZ2Gqu9EaV+UEucQlGJ0RV5Roli3oysLNIoLXIaLvgU\noGlsKRSmvnRxAAAgAElEQVSVGF2RV9auiM4o+sgbi36kudOfAtQip2jh4cOHEAgEYNnn614xuiJX\nUoCMoo+8sfx7EBj4iVNkWJ/7s0EjeaqbCD/++CN69uwJKysrzJypnH1OW3m1BQsWwNXVFa6urli4\ncGG9ZJk6dSo8PDzg4OCANm3aYNWqVUaTpTaVlZVwdHREdHS00rEPP/wQ48ePN+j5GgKjK3JzQe0I\nSAIzM5kif+edpyuPvhjcIi9vZtjxngXkXCuN5U3NmHh6emLp0qWYNWuW0jFt5dV++eUXHDlyBDdu\n3MCNGzdw7Ngx/PKL/oncFi1ahJSUFBQXF+PkyZPYsGEDoqKijCJLbaysrDBx4kSFohMA+DoLjSG5\nltEVubJFrjjZqeIhaZIY3EdOCwwrI+daoYpcO6NHj8brr78OFxcXpWPayqtt374dn3zyCVq0aIEW\nLVrgk08+wbZt2/SWxd/fH1ZWVvy2ubk53NzcGlyWgwcPonXr1khKSgIhBBEREWjXrh1cXV3xxhtv\noKCgAACX3vbgwYOoqKjg+546dQosy2L48OF6X/fTwuiKfEngEsUdDAtzM5lYYvFTFkhPDG6Ruxu+\n5FbjR66eayNxuZkCqowMdeXVpOXXkpKSFI537dqVP6YvYWFhsLW1hb+/P5YsWYIePXo0mCyEEGzd\nuhULFy7EuXPn4Ofnhx9++AFHjx7F+fPnkZmZCScnJ8ybNw8A0Lt3b3h4eODQoUP8GDt37sSUKVMg\naATrWowuob9b7eTxBNVVMovc3HTWnmrE4D5y0vgidxoaeweZ9qaKXHdU1QVQV+pNvvxa06ZNFY7V\ntwzcxo0bUVpairNnz2LJkiW4dOlSg8ny/fff45tvvkFMTAzatGkDgHPRrFy5Ei1atICFhQWWL1+O\nAwcO8BOj8jU9i4uLcfToUYSGhtbrmp8WRleTL3i8oLiDIaiqlN14cm9jJo3BXSsVzoYd7xmANEKL\nXCg0zAM5KEj/+0vVvamt1Fvt40VFRbCzs1M5/ty5c7F7924AwOLFizVORjIMg6CgIIwfPx579uzB\niy++aFBZpHz77bdYunQpWrRowe97+PAhRo8erWBhm5ubIzs7Gx4eHpg6dSpWrFiBzMxMnDx5Eu3a\ntVN4EzBljK7Ina2dEeIbgmPJ0jp7BObmDCBxqcjNeZg0BrfIbfIMO94zAAGL9tYv4b+KuEbjcquP\nAjYUqixybeXV/P39ER8fj549ewLgahB07qw6TfOmTZuwadOmOskkEol4370hZZFy+vRpDB06FM2b\nN8eYMWMAcDU7t27dit69e6vs06pVKwQGBmLXrl04efJko7HGARNwrViYWeDopKPcRqkbwLDIeSJA\nYMtAAIDk7cvkkbd6HhY+xMwjT6fYaPGlYtz/7PkovlHmFAdfh+5AykBIanxTNCAtd1ZTUwOxWIyq\nqiqIJU9AbeXVpk+fju+++w4ZGRlIT0/Hd999p3f0Rk5ODiIjI1FWVgaxWIxTp05h//79eP311xtM\nFn9/f0RFRWHevHl8Mea5c+fi888/50Mbc3JycPToUYV+oaGh2LBhAy5cuIApU6bodb1GocHqFalB\n3SnP3D9DrJa5EkwYS1wC95Ed8Tu40l6mW02LB+EgMw/P5Lc3xG0gCNdfcIRD5/5J05JINKKV9rMs\nSypFlXrLYIogHMR7bUeCGf1Jly7Glsa0S70RQsjy5cv58mvSvxUrVvDHtZVX++yzz4izszNxdnYm\nCxYs0FuOnJwcMmDAAOLo6EiaNm1KevXqRY4cOaLQxlCypKSkEIFAQMRiMSGEkCtXrhB3d3cSFRVF\nWJYl3333HenQoQOxt7cnbdu2JYsXL1boX1paSuzs7MiIESP0vt76ou6+0nS/6VXqrT6oK1eUnJeM\nDj92AG6PRvOcyfhunQiTD00GVohBWKO/OGiEWcFgRrcZ2Pr6VgDA9/9+j49Of6R3OTJpSTNd+t98\n7SbyjuUpVWvfen0rZh2dZRIl0QwFs4JBoO1sxCbdxbDMWJw8aWR5aKk3SgOgT6k3k9GQvIACEczN\nBBATiRPUvEJ9JxNC/gsWsQaIAS9sqVMzQRPV/4T3C55Bd0tOJ3gxLwECMRwdjSvKv4//Na4AFIoc\nJqPI27u05z6YVcPKisF4P8myWO8LxhOqDshPdorEBlDkOiaIImLV7cwYs/rLYGowLMwZC4Ax/kxn\nny19jC0ChcJjMoqcL5XW7jR6dGfQxLwJt+173HhC1QH5whIrY1fWf8Cmj3WKzCA1al61DFx6rqHI\ny4vChQsttDcEOEUusAAEYrqyk0KRwyR/7RMmyIVLeVw3niB6opTRUQViVozEJ5pXp+mkyNVY5Czb\nOBYUFRScRXV1pm6NGTEsBBaAewIkK6spFApMVJFbyC3Rh1m18QRpQCJvRaLzz5pjYWtqtI+jTpFf\nvaqPVE8fli3XqV1+PgCGRZb4NmBWg9OnG1YuCqUxYZKKXKFCULmr8QRpQMpEZVrbPHyofRx1rpXq\nau477NsXKNdNVxqF6uosndqJRAAYFk2aNJIlnRTKU0RvRV5YWIhx48ahU6dO8PPzQ1xcHPLz8xEc\nHAxfX18MGTIEhYWFeo3NgFNCXhZdgPjGs7pKSnCbYIOMo0vmR3WKXMqFy2XI0k1XGgWGsdCpnVgM\ngGHRob1u7SmU5wm9Ffn777+PESNG4Pbt27hx4wY6duyIiIgIBAcHIzk5GYMHD0ZERIReY0uXFJsV\ntQVYo2cRqDMuNsppQ/WhUrurnU9lUBuBdFn2YjtUsCUGkachIES3CJ8xYwAIxI2yniuF0tDopciL\niooQGxvLJ6w3NzdH06ZNFbKFhYaG4vDhw/oJJYm4qK5mAIbl/KONCGlMeb0Wi1TbIiVFh3Op8ZHL\nI9ZRWRoDQnSYCAAQFweAYWFh1vge7JSnBy31VgdSUlLQrFkzzJw5Ez169MBbb72FsrIyZGdnw93d\nHQDg7u6O7OxsvYSSulZatWIAhuB//9NrGKMhjSnXlEhLFyX/0086nEuNa0X6HQIwaStWV0UOgPOR\nm0tdKzT+UBumVF4tLS0NISEhcHFxgYeHB+bPn8/nfXnastTmuS31VlNTg2vXriEsLAzXrl2Dra2t\nkhuFYRiVWdd0oaKGW815segQ0OcbVFXpNYzOxDaNRe7xXION17QJlztZWmxCyAhRlaF4EbpkS3TW\nIZNtXqWaqB65rz4pUX9FLmSEKL5crL2hnujiWtl+9jIQzr2dtXLkVrz27PV8WVz6YErl1d577z24\nuroiMzMT8fHxiImJwcaNG40iS22e21JvXl5e8PLyQq9evQAA48aNw7Vr19C8eXNkSWbWMjMz+VJO\ntZkxYwbCw8MRHh6OdevWQSgUAgDcbN2AFODKhSuyxqI43L4t5DeFQiHf3lDbV4uvoiSuRO/+SAFQ\n2IrfLr3LRaSwhIVQKEQ84lH9pFqn8aKjo7nxQDB2rPb2FwuvIB7xSsd51Z0CnDwRq/f3E494nP3j\nrN79tW1fvpyDeJn4KtvvObqP27DJQ0lyMZAC9OnHNog8dd02ZYxVXk0ViYmJeOONN2BpaQl3d3cM\nGzYMSUlJDS5LYy71JhQKMWPGDF5fakTfDF2BgYHk7t27hBAuy9qnn35KPv30UxIREUEIIWTNmjUq\ns5RpOuUXwi8IwkF+v/E711aSBbBVK32l1I1oRJOU8BS9+yMcBB+05LeHf/sZQThIhaiCH7/0VqlC\nn58v/6wyw2GNuIYbb7EVmTlT6bASB9udV5n9cMSaVfz3tywit24XJEc0osl/H/+nd39tXL3al0RH\na74Nx0f8yl9L0pMk7rOZcTM7cpk5TTv7ISGEvPPOO8TGxoaYmZmRn3/+md//3nvvkbCwMIW2Xbp0\nIYcOHSKEENK0aVNy6dIl/tiVK1eIvb293nLMnz+fTJs2jZSXl5O0tDTSuXNncvjwYYPLkpKSQhiG\nITU1NWTLli2kXbt25P79+4QQQtatW0d69+5N0tPTSXV1NXn77bfJpEmT+L6+vr5k165d/PbEiRPJ\nhx9+qPc164u6+0rT/aZ31MqGDRswZcoUBAQE4MaNG3xlkDNnzsDX1xd//fVXnX1Z7ZzbAVBOhF9U\npK+UdaC+qUkcZT698irO75tdKjdHoOP4fHw5w8LGRnt7Ro2HQf4rrG89UfOmDTfBqIuP/N5DWfgO\nn3pAcuFj9o5BfFa8qm4UPN3yapoIDw/HrVu34ODgAG9vb/Tq1YvPR05LvdUfvRV5QEAALl++jISE\nBBw6dAhNmzaFs7Mzzp49i+TkZJw+fRqOdUxRJ1U48hN1AECIfvHodYExM9yEYLWIm8RJyLopG9+8\n9jWp9pFnlkiWq5tXo29f7edi1OhB+Ychy9ZvYtDhZQftjfSEZUXQph+uJ8me5OYCyUNFosj/uPMH\njt09pqqbSSCdK6rvX31lkC+vBhi+1Ju9vT3s7e1VhhwTQjB06FCMHz8e5eXlyM3NRX5+PhYsWGBw\nWaR8++23mDdvnspSb05OTnBycoKfnx9f6g3gJoejo6ORmZmJAwcONKpSbya1slOaurb2jXv4sBMK\nCnRYHVMPDKnIWXDataxCpmWVFLmayc4aVtanuFr7A0ygJvxQ/its5VM/i9yQ301tDh7MRkiIlkZO\nD/iPvCIXyCIe6qvoGhJCiEH+DIFIJIKtrS0Azn+ekJDAH1NXXk2KtlJvJSUlKCkpUfkWnpubi6tX\nr+Ldd9+FhYUFnJ2dMWPGDJw4ccLgskg5ffo0Vq5ciUOHDvH7WrZsiaioKBQUFPB/5eXl8PDwAKBY\n6m3Xrl2NxhoHTE2RsxJFDuUfpkiU06DnNqgilzyQRDUs/yOsPX6FmjTr8gr+Srz2XOy6ZHS1sK/f\nG03th5AhSU52AKClLJ61bCGBzCKXU+Qq7pfnHWOUV1OHq6srPDw88PPPP0MsFqOwsBDbt2/nrd1R\no0bRUm/1xLQUuRqLHAAEAh0cxvXBgOm7xRKLXFQjli3YqXVJN26o7utiLVsV+r8t2v3HjBqLXCD3\nHV7KP6V1HI3naEBFnpj4NoAtmhuVuvMfG5tFbiwYhsGmTZvg5eUFFxcXLF26FDt37uQjzVxdXXHw\n4EEsXrwYzs7OuHLlCiIjI/n+b7/9NkJCQtClSxd07doVISEhmDNnjt6yHDp0CMeOHYOrqyvat2+P\nJk2a4PvvvwcANGvWzKCySO+Hrl274vjx43jrrbdw6tQpvP/++3jttdcwZMgQODg4oHfv3vycgZSx\nY8eioKAAgwcP5tfENAZMaplcB5cOAGQWVkfXjriTewcAYGZm26DnrrdFLpblABGzYkAAVNeIteZC\nURqGZYHiFoBDBiyttcdYq7PI5ZWbk5lnnWTgZSmTPFgb0LVSXa3DLShXZMPOUuIbpRa5RlxdXbWG\nSQ4ePBi3b99We3zt2rVYu3atQeR56aWXEBsbq/a4oWTx8fFRWGj0wgsv8CHRALfA58MPP1Tb39bW\nlp9kbUyYlEXetyU3uydVQiuCVgCJ4wAAAoFlw524fTKIuS6JTTRgJlO6FZKoleqaGhCRRAnV0ufq\nfeRiQBJMNHaC9hS+thVlQOsHSvvlLfJmFq21jqNSlmLuOsR6rqK88Fh7dafSUtVrDRSQC82xtbQF\nSjwAgdz8A7XIKc85JqXIpZaVlTm3iMFcYM6/QjNMk4Y78a9vo9D113oPI/WHJ9/jlExL2/You6E6\nXa10/iq/QjGRjKiGBQjn59mzS4dMf2//AmyZrbGJqEbPyU6JjOcK617FoUJUgb5bdAi70YHmVf0V\ndxAzRdcKtcgpzzmmpcglllWrptwqyeS8ZKDTHwCA8vIGTl9qVv8l3zWSyVrpa7+AWKqNONiV/y4A\n2QSvlJJSiUWe105BWanFRnWy8bBun+O3F7jPYrF+18ZWS/o1YFoTsVj7m5a7cy23mkMa0EK2+pda\n5JTnHZNS5ACQFJYEfzcu7CgmNQYWkt9oRkbD/lh1zYutCWn8uPS1v7JaDAtXybhqlKF0gldKdg4L\nsGaAVZFu1ZHMVCt7M4EY7STuZJGYBctWoaZG/cqqqiqgVigvSBUntLkKRVktrkZhpfpoGF2Vqy6K\nvHegiugduVqu1CKnPO+YnCLv1KwT/1nACGAliSapqGjYbHcMo9+8L29xi6zx978Sv63Ekt5/gAWp\n1ix3bYtcVCOxyG1zgO5aojkAtYpc4RxiFsnJYfj7b/ULtKZPB1xqpVGXWuSqFPn7J9+H01onteNJ\nlau2VaUsq/0BWsWqmL8QyOYkqEVOed4xOUUuj42FDax5Ra66TUlJPHJyDqk+WAf0tchZwgKsALCo\nwKK927idHY8AADIyWbBVLDBrM9haysjXDhjYTNkiZ4nMRw47HYoSO6n2Xw8cSHDvnh0iugAJ8UXI\nyuIeCrducZPHU3d+iNfWLwIhBJ+d+Qx37yrXCK3O4N4ILFQoygeFyhOs8kgnc9f/wCItTX07luXm\nPpYsUd9GoErZN5FFFlCLnPK8Y9KK/JPen/AWuaua0p0pKZ8jMXFsvc8l0FORi4ksyuS6x7sKx2rE\nEkU+bRcqqhVDq5Z0cMcyP2WL3NZeMl6FE3BThwUJrPp/wq+/HomXnIHy/L/5fbm5BwEAux+sw7HC\nCBAQfH3haxAoW841RTUACMwZ5XPoqjw/+pjF5s0axJco8lqpshUQqyoSIJcmiFrklOcdk1bkZaIy\n9HcFBg4E7t+/p7KNmRnnCNbk/9UJgfJX8d9/83H16ssauylY0LUo77AFohzOBZBby8Xibcfld7j3\nQFGR14hZWJiZQZDRB4AsukUtFupjzZOTuUUVn89Zo7A/O3s3/1nqGrpxU9lFIy4TA9GDYM7s0iKE\nBhgW588rpgyQRySSxbjHxKhuI1aVK0YuJLGuFjmzgsGVjCvaG1IoRqa09CaEQgZCoeZ73GQUeUrK\nUqSkhCvsK6wsRCcHAOiHtDTV1YZsbbmJ0bIy9YsJdMGMUU7Ck58fhZKSOI39OEWu+DW6V3PKP9/m\nIu+eKCVWSn0BoCr/U/5zYeHfsC7qhtNjbmBA9+uAfbpalxIgKfOmQZEDQFycP/85KIhTiLdvT5WN\nIZ2Ftc8A/PYjp0yWCqEkgXNfMALF1W+AohX8+PG3EAoZVFfLinPwcwcMCw3rPMAwXNRNQIAQiYmq\n26j0s+uSm0AD0oVmlOeL8PBwTJs2zdhi6Exp6XWd2pmEIq+pKUVq6kqkpq5Q2M+AwfkcAIhFYqLq\nRS3SpftJSRP1OrdU4QjMlKMnzMy0Z/1TpcilyjEzS4yaUs7xbMEojr/7H07Z21nI6prGxwfyn5d1\nzwBC5moscycuFwPmmpfxL1x4S+V+e8ncbmGRRElODgEmTEDoYVmioIz9lwEA5kQ5q5W8FXz//icA\ngAsXmimfiGE1vlUQydvMunUDIVLzTBKzLBxrOuD8jPOynUmy8lv6uFZ239ytvVEjx5TKq9nZ2fEZ\nEu3t7WFubo733nvPILI8fPgQAwcOhK2tLTp16oRz586plUOfeyUyMhKtWyvrn5qaGri5ufHJvxoC\nW9uuOrUzuiKvrs7G33/bqzzmZuuGSsl9Z6ZmmbhAwPlYq6pSlY5JX0mEQgaxsarPIc2Fkl6tbPXZ\n2HApA1hWOQzw4sW2qKxMU6PIJWOVeKJKzMllWcvPnFcuy68sFDKoqspCbWwYRuNEYXV2NdBGe4Xm\ngbMP8ta4lNck2T0Z6fJ3N07hV4nlStIR7jtniGz15X//fQChUJZaVd0rH2/pMyyylC+Nh2VlbqkP\nPgCuqzBAxCwLr5ogBLbiHnQ9bEOASkekp3PHn2TX/TaWzzKpikePvsaDB5/XeVxTwpTKq5WWlvIZ\nErOysmBtbY0JEyYYRJZJkybhhRdeQH5+PlatWoVx48YhN1d16UZ9MkmOHj0ahYWFiKnl+4uKioKZ\nmRmGDRtW5zF1RdcV7UZX5OXl/6k91tu7Nxwkc5CWOlwPy6p3M4jFpRCLlcPYpEvo/ytX/mGbM+6S\ncRX7VVc/QWXlAzx6tEq1IicEqHDElI5zUFoZLxlLcewWzVmcktPBDx8uVzq/640wlYpNSk2eJmUk\nU8hNq37GkiWb8NZbG/HSS5yl86bEwGB5FwiBrRkgkI+iYaRFpGXKNj19PXdIV7+0usoXPPLzCwQq\n6t9CzLKyghKQFJdgxEhKAlwsgRTtzzKdycjg/vvgwWd49GiN5sYmjrHKq2njwIEDcHd3R79+/eot\nS3JyMq5fv44VK1agSZMmGDNmDLp27YqDBw9qlUMkEmHSpEkYN24cRCIRMjIyMHbsWLi5uaFNmzbY\nsGEDAKBJkyaYMGGCUk3PHTt2YPLkyRComF8zFNnZOcjRIfGr0RV5RsZGtccEjAB2Eg1oaaldcdy5\nM4P/zLLKFZtv3FB+cvKrF1XkD8vdXCORUdESuXDBXbJ/E6pFeSotckGVMxiGoPhklWSfoiUg3Hsb\nEbNk25mZyikCfnz7J5w9q7Sb5/6C++oPylGUfhirVs3F//4Xhpkzf+L3t7XlJlelHOgNhNjKpWUc\nKsmaqMKK0fkVVasvW6bIzc1FKidFxSyrcD4XZwHAsPj5Z07mlg5193dLVw/LQwjg6akchtlYGTp0\nKH7//XdUVFQgPT0dJ0+e5K3HxMREhaIJNjY2aNeuHRIlExVJSUkKx7t27cofqy/bt2/H9OnT+e36\nyJKYmIg2bdrwedYBruiNNlkrKysxatQoWFtbY//+/TAzM0NISAi6d++OjIwMnDt3DuvWrcPp06cB\ncOltDxw4gMpKzqgrKirC8ePHGzxnedu2QZC8uGjEKIq8vJyLQKmuzsGTJ3s0tpVWt7G0VP1KFBd3\nD2fOcJ+fPPkdT57sQ01NMc6fV55cLCpSDovYfIlT0gxRkQNd4hJ48OAztfLl5+xR7SMn5mhmdwt4\nVbICsZYyLM7lZjFrR9bdTQvEK1sHAQDs1UREsqwIQiGDiqq7auUCAAikM6Wym3zvXpnf/3895Sxy\nAFZmQNumJbJZ8uk7lYY0N+dWDX3scRzRA5RPWVPDLQ8lcpb+yy//iX37uOiU9PSfcO1aH7ke6hU5\nISyEQgaOVhkwk7PI7W3NAIaF9O3ZUqA9S2RtHJooz39UiUTAiHfx7791Hs4kedrl1XQhNTUV58+f\nV1CA9ZGl9rHafWvDMAyKi4sxdOhQtG/fHlu2bAHDMLh8+TJyc3OxZMkSmJubo3Xr1njzzTf5dLp9\n+vSBu7s7/viDSxmyb98+dOjQAV276ubD1p9VAPZpNOgAIynytLTvAAAFBaf5fR4eb6FJExVWksSr\noc61snTpQaxeLdtOSnoDJSWXdZbli3NLAcj5iuVQET6tRNajpaotcmKBfm22AAPOq+xXmMNFa9zP\n/1lhf5H1p4CWmPbqau7933yhhgBtMDCfo+omU/T7imvlM7e1UDZH5d8mWrdeqVG2goK/aonBYs2a\nV9GsGSfzf/+9i+JimaYkRF6RVytEgUrfqnq0iFZ0rQg4i1w6bydG3dcAqPKVZpfmAi/+xFtAZmaq\n51XqAsMY5q+uPM3yatpKvcmzc+dOBAYGolUr2W+9PrKo6ltYWKj0YJBCCMHFixdx69Yt/rsAuAdM\nRkYGXwbOyckJa9aswZMnT/g28jU9d+7cqfBW0XB8DmC8xnUWgJEUeUbGz0hMnKAQBteq1WJAMkl4\n5coLuHuXSxz/hnRSLk/ZVQIAt29nKO1LSHiF/9y69Rq4u6v/wv0dpXVCVSDnvpVO6qma3Gtjp+g+\nIGDBEHM422TI7VOkqvxzAFn4OyZdYb+YCNDUQfbPYm6uaqLVBwBQnshlVqwuUJMK1l51yGZ8vCyT\n5IM79jjbHyqta1WYm2uO5ElMHA1AXvmrfpN69OgbySdFi1zeHxgby0UkdW1+UcEPuS9xHzD0I1RX\nc4aAmJW9fQmFDMrLNb+pRA8AXrdap/RveSKO65eVxcksFtc/LzUhhvmrK0+zvJq2Um/y7NixQ8kd\nUR9Z/P398eDBA4W3hYSEBL5vbRiGwZAhQ7Bw4UIMHjyYV9QtW7ZE69atFcrAFRcX4/hxWU6fqVOn\n4ty5c/j3338RFxdnUhWEjOYjz8nZz39u3/4nAGYgkom20tJryMz8DQBQLdFjAhWTkRzeAHqoPU+r\nVgvRqdN2frt27c/urty4Kifvau3KzJTlPunVS+aD29w/H5Zl3OyhWAyUlhGIqmr53Gv9GsU1PQG4\nY8ePK2Fr2wUAF+ctErMQyCm3M2eaoKLioeqL68NZtqxIzeuKeSUQrnxdDx9+qbDdgHUj1E52Pnjw\nKc47noeiIq+GpA6u0roAP9eHigM4ZGDgwL0AAALFFMeVlYqha2cfnFUbpUIIwd+P/kZZdRnOJUqU\niVndXTWmhjHKq2njwoULyMjIwPjx4xX216fsnK+vL7p164YVK1agsrIShw4dwq1btzB2rOrV3tI3\nsU8//RSTJ0/G4MGDkZeXh169esHe3h5fffUVKioqIBaLcevWLVy5Ils45uPjg379+mHSpEkYMmQI\n3Nx0yKVvMLprPGr0yU4AcHefAoYxA1QsE08v5n7ojKpl2gCAjQCuIiBAedFK586yenxt23IWYELC\nIIU2I9pxLg5GheVYu8TZ3buyvN/W1r7w89sr3xoAIBIBNTUswCoq8tqjO7nJjvv5RSIggHOC1YjF\nYBgBvpEzKuPiZDGsqlwC1QXNFba5yTq5K3JPUDi+YYP6CcgHhcqvz4rn1M08lF8QJI+Ly+v8Z1Zc\nBPlJZnNzEZ+K4fJlP4V+oV0OozYjRnAPVkGtB1Htie7gncE4dveYSjlFolwEbg3E9xe/x8GSj7id\nkuyVLi7aqkKbLk+7vJou7NixA2PHjlWYmATqX3YuMjISV65cgbOzMxYvXoyDBw/CpXYGOLnvRTpx\nvmTJEowaNQqvvPIKSkpKcPz4ccTHx6NNmzZo1qwZ5syZo+S2CQ0NxePHj5+SWwUw4zOgXtPYziQU\nuQbvfZMAACAASURBVLl5UzCMgLfIpQiFDG6lcb9stok6UV8FAHTvPh5eXh8pHHF1lf0QrazaKowr\nFDIK/lxVRqm4sAaI6a/iCCAQmMPNTTadfGoEl0RKJAIXtsfWjoJRVIAVZe0kn/wRE/MQTk6DuXOy\nnEV+rVaGWKkbID4+SEkWUivfisynKjlnsyQQAmRmcuYuyy5Uu/imVGQBO7vuaH6G8+2Xp3ZQOB4Z\n2QYrVsh+ZG3bfq80RnGxbDVs9FEvhWNNm8oVm2h3D/K3YOfO/2DNGqCgQKhaODUIas1v3LqlrIBF\nktDU2g/C5OS3AUjiygXcQ8cpgAtds7T0qJMcpoa0vFpBQQFfjLlZM9miLWl5tfLycvz1119o2bKl\nQv+1a9ciLy8PeXl5Wn3furBp0yZs375d5bH6yNKqVStER0ejvLwct2/fxqBBisaaPMuXL1cII/zy\nyy9x/fp1ODo6wsPDA7///jsyMzORn5+PCxcuKI0VGhoKsVis9FbRUHh66haRVS9FLhaL0b17d4SE\ncD+c/Px8BAcHw9fXF0OGDEFhofbq7V5ekvp5rABErGwpulb4AAAYK82ipqY+4q1ugLOY5VEVLpeQ\nMFh2XN3A2boXYJ3tA2RnH4C1RQ36e9fKSljLkC0r8pF8CsGsWVwcYkZGBhKvxKNGJEBWpbJEd+++\njaIi5cnT2opMCYZL3iWIlY05/qgrPlNRANpMYkFnrRYDwyUr1uSWyO/d6wOh8A28c2o4hscC9vay\nV74OHbhlqNeuvYz0R19gkIqFngpvXd9/BMi5RV58MQoAkJd3hN/3wgtX+c/SdQBv9XgLOPUtv1+g\nZjZQLK6ULbSqTEJFxX2whEW0bP4Kubl/KPVr/QKXTZNhBKiqUp6DoVCeFk9Fka9fvx5+fn68koyI\niEBwcDCSk5MxePBgtU9x779kroAWLTiL6ElkLmqKuVdic3NZ3myBoFa1AyWkimE1GIaBp+f7AICO\nHbfWaqfZEazKZWHmwLl1PD3fU9jfqZNsebfAUuYCmNoKSEsbjxUvp2NFUJJMwkorJYeEt6809e4a\nZEscw56enjiy/kvkPSiTVYuXQyHWPEdNOkgeBj1SJHMHDIt/e8cjaYJMpqIfm+JyAZBfINO21Sxg\nJiDgv6tKa251p5zwKSmPAQClNU1QyQLy36ujo+zBmJX+DZbKeUekea80raxLSuLSFqSlreP32dvL\n5j/u3ZsPgEtvDLlwUXUPsnv33sO//3rAzhxwK1mBuLh2ICAQE0CYKLOo+rsqyvV2EFdrNCNjE/79\nV7/C1RTK00RvRZ6WloYTJ07gzTff5H8ER48e5WekQ0NDcfiwsl8TAJpuFCEoiCAoiMDGpgPyTuTh\n3rwH/EpCV9fRfFvp2KoS4AFASxep72ghJkyYgPbt1yEoiKBp0z649ectCBkhhIwQieMSNRaPsFSx\nOiu27CFG/O8PtG+/npc3KIjA3X0y38bOSzkXei93xfJrbGlTpTbuDklyW33QpInUMhUCp05C9K8I\nA9VkAwQATNgPDIzGL/fWKj2ipDppxf5l2LV+F5anOkN0vfYDkYvlHzvtFgbGAANjgI33ATOGoPSa\nXLRGrcErKrjvKe/oB/y+jz4CBg7cAQsLH7XiPpG4rdnqGuDw67WOVmPtWuD99+cjOlp2woAAzvV1\n8jb3epuZyVn8AkaAti1kuQtUGeTFxXH8hPkxOW8OS1gIGOBBusxt4m6lGGLp25wz2adN4zJvUijG\ngoh0K9OotyL/8MMP8fXXXyuEhWVnZ8PdnXNFuLu785ZmbY7n5ckEJQQ3R94EK+Zye3OKm/DJYqqq\nVGcNlNK2lSxmfP/+/QqW1X+L/oMYnLuGVAFmAtVxsIBqe31x5HFUiGpUWpGEEBAxQY1IjHeiW6ro\nLWH2/wACkFpPIodi+UiTn1FdXQ3un0MSB3iS+88vvylGmAAAPvlau/AAQBh4FngiqEg2ubQVF+WO\n8/8HAKhhAVZM+EVYR16TNpO1KS3l5hoqkgcABKiuZnH9ugDANOQ8YRXmIuQRgPvOqjIrgVI74Nir\nckfFiIpS7uPoGARCCM4kyzQxIWIwACb155T8jUJAAFaF73uu6q+EEAgYoEYM+Ppyi8GaNVH9psDl\nuWmCykqi0J8Q1jQmlyjPPDUlumX51Ot+PH78ONzc3NC9e3e1r8rys8O1mQtu1Vl4eDjmC+YjHvEY\nXPUqXgmpgkAgQFxcBu87v3vXHICQX4EoFAohFAr5sQpL7wKQbQsEAgiFQlSlV+Hyzct4Ba/gL3A/\n+priaiQmukIuJBXx8UD8v1YQQPX4AODpLnu9lh6PEcQgxjwGF9qdxt2bRHE8+fEflCAhsVqpv8wb\nIASQD2ACALFkW/oHRO57QVneq9ybhe8vvsi+ex8378qsbaFQiJgYIaTaPV7yPymZuCT7vlZYA+J/\nAEmuktI8YO74Yxj8DmfJHh4F3LhdhusJN/n+Vla/yfUn4J7bXLa5Fp4C5OV9rCxvPLDpe6BTp06I\nWnkV8elPgM3SCCAhgDhIHyjy319xXDHWC9bjeoHsYbZ+vTm8b3+PwQFcIzbKF+HTv8bEiRMV+peW\nxiuNJ/1+HiUBaRkELVrMQXw80D4XcCDcl+DzRL49ARAFa+sYZGVxD5H16wVYv94M53SMu6dQ9EUo\nFOJe9loAMwCEa2yrV6HKCxcu4OjRozhx4gQqKytRXFyMadOmwd3dHVlZWWjevDkyMzPVxllWARg2\nbBhefvllhK4IxYf4EDLLsAcCWjii9FopgkYSzJn0PoAggHCRBEFBQQpjOTn4cscBAGUAuiM/Px+v\njnsVZzEAwDF8iVG4n9oPbwlY9OnTEd27x/L9y4b+CdsVXyJPovgUx/cDMBqZObJlVUFBQYh9Ixa/\n4lfMwix0Qzf0EfXGB3eckZCdwC+sOZUFDJ0UjW4Aavwt+euTjr+SXIJn031IL5JGvgTV+i/w7r53\n8WOTF/DaawRt2kjPDwg/FAIAWsxpAbfNbdG1RpZZKygoSBJ+KAZA0A3dFL6v3ugqd45yoHIuUGyD\nTudaISb2B/7YUuRg8oASdGVsYd9cthDExZmgrEz+O5L/DPilDMPIDwgKyouQcMkR3boBX217GdGn\n3QD8jmqvTejWPAkoclTZv5tEXHeXWbje9Tq6oRu+iPsCmLFM4Th/vpb2ABKwf/+v2LsX6ObpCjTL\nVRoPAJo27Y8OnQORluqO6WfcEOsQi258hOpuNYuiOPnCwlJx4EALpfNTKA1FUFAQvLxeg4+PNeLj\nFwNYobatXhb56tWr8fjxY6SkpCAyMhKDBg3Czp078dprr/HhRdu3b8eoUaPUjtG7d28AwA7sqHXk\nGgqF+UhfL1nSnfUImiAKOVJsANzF2LFjcfbiWQBLwIUnBuH3zBhJeJniJe/rsw9Q2islEQC3JJ3I\nLWVfuG8hdmEXMsDJuPL4O0jI5mK133wzHj/fB36VWLnl37UACKO0Oq/SRvsrkzBJCPT4DZs2yV8v\nUfFZzVtRrdQBXh9woYDDIZ9ScRPwx1u4HXsbgGxF7N9ohmpCQGr5bTrUaE5D+ct8zl0hZgn+SAd2\npAKfHVoE4AgAWyw49zH+evAyOmzpoGEUAcpuyDJOBt4JxJUzr6hsee5aAYCuIORHbofGCB4Clvyf\nvfeOs6o4H//fc+/dvrCNtvTeq0gRRHdtARV7VGIUsSBYsURRoyKW2BIsMYmKFVti1KDGgmWXDtJW\neluW3tne771nfn/M6efcCzHmI9/Xz8cX7j3TzsycmWeeeapGl0MdIRokWhUlobqbf9GVTgOMjz/u\nwLHq0P8Cv8BPCUJIzmNP3DI/CavPYKFMnTqVr7/+mu7du/Pdd9/FMdeVtnon4d4g+Y9vAykoFIWA\n4pHHVnaIlfGU7fc3wBfkj26kYm4FhaKQaE2UQlHIhMIJgNeoxAk3EQgFmCPm8KH4kEU6tftbkngb\nFQatYFoBBdMKuLlY4x+74cP7lAVp5cgU334aqt/3EFu9aC2vUDB/JGc/XWgKbecGlAS09eTW1Gsa\n0scmVc2V4L7L7zfTKgnRdUZXBhQM4DpqXTWe9fQP4JmbvRe2xOSgJ80OL7ODQlFIpFpj/pxBXHV1\nARsane08ufB6cifkImSqIz2S/x1z3ruNgNaK6qXO0EgnPn4/Hljdj6c+tHx2CAG793V2lrnqTcgv\ngNuepWJ+uTr8Apr5AcIPTPYdx53v/OBJW7v2F0T+C/zfgpDKj9DtxHb3DT8BIj/11FP55BN1P83O\nzuabb75h8+bNzJkzh8zMzDg13wYeABb55N1CVaOiyE7EoOr9N5GUgi45bi99c4DfudJGA/2oqFRS\n4CVdLKHf/tIGohEvhZyVZUTX+TPQgsu5nJu4GzDedwmv8popUAUYSAWPvGuxYvbmgr/dqAQh+RX7\nuYBdZup5Z1xB4q2GRsVwXsDrHTJMmIIBBVTr/lbdogiDUi/qWsTZ957NBcOXcAFKYJiVl8XIt7vS\nB5eeux982cHoqQmhlkm0zvy7f3mgjEeRSLYO3sCf3lLO0WaHs7zlyiStdzjN8BuIkCcPEamrh6g6\nMFZgi8U6+gua1CubhWfeGQxTngXXje7LuRfAuHethF26IFoKEIoiJ6CZ7VPkb/q8cqUSjI8ffxag\n/GZ/+eUvQZ7//wyFhYW0a9fu//SdCYGWsL/VUcv9jML3K4DpMfKmcN48hQSWoyKF1DW6qUgLgoka\nt7HZlnJmjJKrueAhJbgLH7BMG8c9XcRnX3j9RDZvtsL2dIAyyjjANMB+HX+HL3GqXJy82XLTWmk4\nt44lFAYu1lk0N7KVdb2KSWlmIYyPeIlNOJ1Avcu7TJo0iYcfecTFWnKClFCXVEfF6HsdLJKcsTlM\nZHvMes5GhKPvh8oCCDRO4SA5zOb8bLf6ZReWsYzIXmt+v9JO8jSbnS34TTPD2EYd2nWESZQQ0Boh\nGmQHqdzF+WzVVSVpSKbqxgvgw4u4a+Yz+tidlqPvfHgfuVf7aBHpiFwiqU+usa5EAI+5IgE9NA24\nBICzz14CurD4nntsbKV5ozje4XgJr3Y0WLJkCWeeeSY5OTm0aNGCSy+9lP2usFL/TV/effddOnTo\nQHp6OhdeeCFlZRYR09DQwDXXXENGRga5ubmmC4OfCvbs2UNCQgLbtm3z5F144YX87ndugtMHtKMT\nEMeNFlVjWZimTY/YUjZRgOXgqkHzRvcBhWNESPCs7O6b71OD3/Aw+eRThaEvPYNNW7y836TkUk9d\ncAduHcczPMNO/Hn5daaPGC8ijwQjPDk5ypjPulJAIS/KrhRvHkHn/Xc5yk3iDPLJZx3ruI7reIPX\nAcnCtTWxmsbv0xp+20NNQ9w27QQKbNo+BhQUCM480/JTce416xwvqG2ACILdd9/GkWkXMGic1yvl\nPczlXN11Qj6xFbGXpxvfVB12q6hSCDYUYfeRFK5mKADXM471hmpNSWf4szIMOox/OK/0E2N7aIxG\na/liy2n8santlvDNmYr9YvybdyqgXAS3aFHF1VfXeBt6KBYRcvzA8RJe7WhQXl7OpEmT2LFjBzt2\n7KBJkyZMmDDhJ+nLunXrmDRpEu+88w4HDhwgNTWVG2+80aw7bdo0iouL2blzJwUFBTz11FN89dVX\nP2ocftCmTRtOP/10Zs1ycg1KS0v54osvjuqITCIIJAXIk3lxyx0XiHz6dBABwfv97YPtznSeIDtB\nKVTHdeWp8xaWL9XI72nxVvNu+BdcfSrPPuusvI9zgRALWEoFNcAUflg7AA8cM0s0i5eavuTQt65o\nUc+UX8+grLFRCTvdTeuU9JdfaWSfnc3QjQppEapj1Yognzp8PHUBsrmXxynGOlyKNgwlGgl6BHyG\nRf3vT72f0zpZviLucxGeU8ZPYfTgB83nMwc8BMBdd7kPMAsaG3X5hv4sbMKFJk2MQ+vf1JDCNmoA\nywJ13LgRgJ8fDMWamk1QzVVCmE832C0q05iF18f8Yt2RUHb2Kk4+uauZHmybBDe+CBd9SNYZOsKW\nAgKS4i2LeP75F/l68aW0+rI9mo+jNjt06fIMv/2tK3HKT0u1/V/A8RJezQ9Gjx7NxRdfTHp6Oikp\nKdx0000sXLjQzP9v+vLOO+9w3nnncfLJJ5OWlsYjjzzCRx99RE2NOpzfeustHnjgATIyMujZsycT\nJ0485pB2zz//PH369GHv3r00NDRw11130aFDB1q1asXkyZPNaELjx4/3IPL333+fPn36xHS3awc/\nxqwbfhZEPl/nORpw992qJ2mrTuCxx+wOjxooDStprTtUmgGl4TANmkIEg4cG+G5Dipk36MJ50HEe\nN93srnsnEOYpHuUCzgEgPXW4p+14k7Pa4aeklEWVizk/T1ksFrco5vEhf+OHDz7h44d1lSHPSaQM\nnxAqjFlqD13wN+RvMOIZvH5/jlDFHrAhcjaP46PJt7Nms78b3xYpzTlUYzn4djuQ/KHTD3w59hEY\nNxZaFtEip5gDi4boQTxuM8t9v7LEVksPyKwfnvZL30MP2WfsENdyDmC9f+LExSQm2twI1xqCU3Ub\nSm/TDqRAhKL8Y50zgMUSvCEBZ6CQ9A03TOORR4ox5CK5w7vDht5Qls2Arwewvfl21g+opSJ7B8MG\nKZZJQ2MavUZ35vwEt5WpE9q1u5OgTb5bva8N/PD/ng7i8RBe7Vhh3rx5Dt/n/01f3OPs3LkzSUlJ\nbN68mbKyMvbt2/ejQtpNnz6dt956i3nz5tG6dWumTp3K1q1b+eGHH9i6dSt79uxh+nR1a7vgggs4\nfPiw43CaNWvWsYWJO0Zn9D8LIj+ZhQ6n+UlJOmWnwX33ud2NXhe3rUYNoq7BGu2aFnlC442/x7bq\nBGiS7hXIgaBNm7c8c9mpE/Tr5zQ0AY2qwgPkU8N1BwN8/+/PgRkc/vvtfP6dz9XcQIE2N6+mR8KM\n3aSmAq29rnn94PlZl/mmH6g9wJqDujFPm6XUJe7wb6DHZzBZCf2kLgT8rnSamb15i9V/oQtpzeuK\nDZPfeWfsPj6RpoJAqFurzlIpcPoRX7pnGPlvzCI/3z8KUcqSjuTJPK5//nryH8wHVAi+s85SwvbJ\nk59xlN+RtYPp06cz4aYJ/GXN+1wwzhvJujr8CfnT8smfls/+DMWXrdAFrBmJ6gAbMmQDmZmq7v6D\nrciTeeRP+3/Hdv/nDq/2n8Dq1at55JFHePppy3r5P+1LkyZNzPyampqYfTXKuNuONw4pJXfccQff\nfPMNBQUF5OTkIKXklVde4U9/+hOZmZmkp6dz7733mq54U1JS+PWvf216XdyyZQsrV67kN7/5Tcz3\nmO87xiDnPw9rJTXVmxawzNh/ne8VPMoYateC2KGwlq9Q7UW1KK991Z1HHz0vZpdOHBjf369dDrRI\nV7Tp189dKgU4B5gAjAGmAMOY8XKFjwWseh49xkLkepxXkreMUz8uPTZXmXsOnu6b/tgCWwy864ez\nfajldje5rrNPDcygFs/u3g2DpwGQk22xOcxRGOeQa+4feKACP+gorPSTu+lyhmcUOykQsLtyaA9Y\nqoYzZljhAIcPV0KqJ894Enwca55rs/o/8YcTubrsah56SLGL1q1ZhVNIbYCFkO8cfydbH97N5bkq\n8stNvdXJmpranaefPhuA9z86+uazg3hY/CT//hv4ucOrGULXpk2bsnv3bt8yAFu3buXss8/m+eef\nZ+TIkY76/0lf3OOoqKjwzTfacLdt1PWD8vJyZs6cydSpU81yhw4dora2lsGDB5th4saMGeOQGYwf\nP54PPviAhoYGZs2axejRo2nW7GiO73Q4mndTfi5EPtzLxjAocoDH+nTw5MeCeEOsrjEcbmnUNgYZ\n/OSNPNVxq2/Z5KQ6T5o9nGW7dhal30rXBgoE4N25Sz31FMy2/ZaUlDgXk3HSfvm1pd0x/UNlnJSZ\nrFMImTt9I/zs2xfjlVbjMdKttkIR/01Xu7M9VOSoJp7JIzGhiGDQ5e/c/tsV2HT69AzcMq/M357q\n0NPPaus27rF3eLsjp3//s6CLYdE2CCGyuLj3RfD8n8wyjQ055Obe4KAPtgf2YrKvpq3APSktOv3b\nepim8vZm76XFha2p36cotUNFAXOMHTsqav3beU6f90cD+ZD8Sf79N/Bzh1czhK6VlZW0bdvWt8yO\nHTs488wzefDBBz0h1P6bvrjHWVxcTGNjI927dycrK4vc3NxjDmkHkJWVxWeffcaECRNYpFN0zZo1\nIyUlhfXr15th4srLyx0HxMiRI8nOzmb27Nm88847x8ZWAceejQc/DyJfv96bZqPIAUpm2E/usNL/\n9QE1AP+FXl1tIXIpJGiCvMxyysvh8GF/CtmZIn3T7RCVkuTJ/sEn7LBjl4uElDqboo11EHx/RFGf\n7dt6NWhmzYKyMqisVAfJ69v3wAdfcOZpr5PRxKn+GCuYkl1VMRT2j6BSumAUyff9i5AQ3NymDe7x\nJyY6F5Zf0OqcHPhk/jaYmgr3phBqsR4hBaecUk/G/E3ktnRbdfov1nBYMns2cJqd3WaojilfPP2T\nivlh+ct07/5XTjmlkW7dFgDw9NMLbXWcMoTfd3mcrkP/gF0OwDfAngT6Zlm+d1NsgtDBg60gJOvW\nrYPYhOVxBcdDeLWjwZ49ezjttNO4+eabfaMQ/Td9ueKKK/j0009ZsGABNTU1PPDAA44oRVdddRWP\nPvoo5eXlbNiwgZkzZx5Vk+SUU07hnXfe4aKLLmLZsmUEAgGuv/56pkyZwiE96OyePXuYM8e6TQoh\nuOqqq7j77rupqKgwYzj8VPDzIHKXjig4KXIpJaEgvPgiNG8OiQmbKI2BULU4J1Zl0+/1MhoSSaQ+\nhAhARgbk5Ahu0/dxMHjEVx87QRx9ejRNEgiF6XCUS0RmRpp/xiibz3Y9qlCfnq6o8On7EAIyM8G4\n9U0o2QLNUmjeXCLiaF4MamUZvNTbLh0yVh0ZIKAl8vHhw7y0V+l52x03GjKl7SWGsNN/jkKJUUgM\nQ1I9Urc/DQSSONAYVURGp+dtpb1zP7LLAkIhwYABvtkmXNBkBVIGEUIQCCRwy+nKWOmttyb4lr/j\nvnJSgqjr6olfWxkLhsErYQb2toy57K9t0mSw+btv374wM3afjic4HsKrHQ1mzpxJSUkJ06ZNM3Xe\n7Wya/6YvvXv35m9/+xtXXHEFLVu2pK6ujr/8xRKcP/zww3Tp0oUOHTqQn5/PPffcw1lnnRWzr4aQ\n/4wzzuC1115j7NixFBUV8eSTT9K1a1eGDx9ORkaGGZfBDldddRW7du3isssuIyEhwa/5Hw0/ymnW\n/wQEyt2rlIoIFHDjjepfSrKX7eGoGoOHJANKqGZS8zLg2J3PPgvPtW5PyvQ38KO8g0IghOTZZ6F1\na7j0Uk8RolENEGzfjsXLjCTyh0EfcV/FYeQ16goVCrqn2gc76YdJ8xwXRZ5dTCRi+c82jYwweNTO\nttTNRqWd2flMVu03hHxWuYoKCdnu1yuEW6trAWWEQlQJ560kQR9GJGK4WfCf+3AkSmJNZxqbbEYT\nGkIfW0md/i1f66/Y0y3Wog17HPHZc0ipglwUFAg+u0LJSXJyMGNo+kFuYimV0rJ8G1rg1hW04A+s\n5pyJWXz2gUAKSWBICpoZW1dZ+lbFcMUeCjUFngHuwpqP49/S8292Rz0uMMKrxYInn3ySJ5980jfP\nCK/2U8BDDz1kyjL+F30ZN24c48aN881LTEzk1Vdf5dVXXz1qP/Py8hxGU2effbbDcOmxxx7jscce\n86sKqODNUZ8oaPHgWJlqx4UeOegnnY7MzWcbaB5hoYJQLEmnrQ1NaiAgKJ16zwD4ROIxQX/l7bfD\nLbf4F9Gk9LrrDTUSEALZqQNM+Ju9qfigO7lKDrlO685fO2Jsbqi1rFz9hm9M1SV93SePoN5YSDEQ\nsJCwt1G53W3Q1CHlsCxzvy/GrSUc0RAyaNYxEPmW2jqT7ffx7DWknHEfDNbdENydza3D36Fq+sNU\n7+1IaSnk5kIwFOWLZbERjh20WBFIgGY0EIlqCAQSybBU/80dC371K29YuF/gF/hfw1FDOXIcIXLA\n4pN7+i2JxBiLMYB4IcT27o/q13vpRUTN8wDpq65pFm1Xw8GD3nxQXv68bqvUIRKoKoWrehIQe7w8\nfokXmSYp4cjpnZUWSocMnV8jNFbZNOdm7NplqxTwqChVR6OARknra5yHTJ9TSJk/32zTDRJJhHoa\n9cmY3rEjIGMgR4O14j/vCmEaEgxrjg42WifSBef1IyXXRgKnltE1q5pwgRp/Tg5Eo5CQHKVd+9js\nI/u321LvbwFs9DhqrC+hAl3Hgj69XvWMbcwYr5n1L/AL/E/huBZ2gmP3ra6uRhQWEhUoPrnFGTBB\ni0nTqoLVPlcWIYD2VzBkx3pkizwCCC8iT26jKDSf5k2+efNGd5fZsAEWLDAoQO9kB4QgUF3Khc2a\nEducyVkvEFKI5aS2yjfJTUNu0otJh6bKF6WWUZDfaR3W52JFOIk1gXaQczIMfhUG/co2jlgyB4uN\nMaVdO28583363xgrKByJWohcSJMiF9K5NjVhvE+1t768yNFkNAqIKMFA0PONhr0yHOk6hIWEUAuv\nWk/nvn/T25MmRR6JRn21ggA6dZrNgP7OtAEDvLKdX+AX+F+DBL48ciRumeMCkQ9YrhiVUWHTXHHs\nL0laDH5kUE//vNRrVp6ZIaDTddShIduchxBelg2HviUWoo1qOg84RSGbcpviydixMGqUQuT+Aj9B\nJLcrH+u6eF6C3Duefn1VWkJQsVbMAMxCw35OVeoPa4cM0RtzHQi2wXwe6AN9H4F0S29cStXmRU3/\n4NNrLxHgPeSshFhRoBRFHtRLuwy2BHymK+FLEXHlSR3NKjAQuTEXn39ulV26Z6mng0JC5ngXIu/6\nBQTUjEd0KlwKSViLzXsXAWKddb/AL/B/CmEpGbNmTdwyPx8i15HRAyUlZpIWADQnm8TgjYuYnTYF\ntgAAIABJREFUrBOJEPC2T3zQw52cKle+FLkpCI1D8Z+l2rbjrOKZhVBQSFRqvqyVoJ13LLzsiUhQ\nIITTt3djZjacWsBKXeLWs1lPlTHwDQeP3IA+aWkghOdQMOKexoLgvEIQkuygU9VGCgkiwYXIY7Xl\nNdG3QzhqUeR2HrkhkThH1yqIBN1BofX4nvrvA7V7qU8tprJBlRszBsaOldCh0Pe9QkKoncVeWVN8\nCH57NlJoCJ1NZPSl3nCRO/o2v6Y8SyI9ZViM0f4Cv8D/BsKajCkftMPPh8h17YVHd1hm49KHIq/R\nEX6ssRjJnx05wr4G5Ykvommsra6muqXlPlX3YurFPAmZxOeRS+juNNk11PIA7koD6SPwMyjVIU2a\noKvjOPKjQteg6XwDW2vrWLZKY3d7Zek4eMUKen3/PSM65KnCTfZ5jGzM9/h8QRlD594BLdpRH3IJ\nekNNQSiNmQybgxH7GaRJCWZWgPkV1jXliR07TGHq+g2aaSUqAwkIHYWfmZnF0KaW5VzrRMOKR9f5\nFxppKXpkoqaN/HO5kgfUNFpuAj75RMAE3SIzmOxZ6IHsRigopLERFqxthKTmGLGOIlENEUhENj+F\neqFfV0M64n/QGrNMSCcacM5j/07zuCvtdziDlvwCv8D/DiJSHseWnQBneEN3GRS5nQD895EjutAp\n3mBUXuvFiwF468AB+i1f7iwhdJaDG5H3nBpbfdEoHFL5Bntjkk0/tFEIGgac46kb0BH5NboZqBu3\nKnfYAtpdTrfvlzL00b1UZVpWbxtra5lSbN1Wlnmd/9nAOahoLMmwHc6azOyuzZ1p7cchU9sgBXyk\nW7cJ4TyEDofqEQEJHdtD81MpbrDc2N5bUsIfdPWsZ5/TiIR1Hnn7yxFBHWG7voHEKdtQ/HT9fU+s\n4YNR6sBPCjn9sgAQSIS0TjFXxmuvweQDO2H4P/Qwf7pMI2Mg5J5D1JAHdP8URj4BAY2zzgJGPons\nPJEdzV3sOgknJ53M1ddEIde5vn6BX+B/AfHvvRb8LIhcFBQwePJkhCtavUGRf1taxrTt23nvwAHG\n6XqusYhMtyGPKCzk+k2bvOWEf3kDYmmtCSGhmaLw/rqkzNNngMZOg6l1CVurdUTeJikJPx68px+3\neF0HvHHAqyqz1OVXQh0YLtbKMVikAlQlAk10K8tWYwAQAeU98hTTkZD0mTMJ546G3g/ihunGDUtE\nMe1u213iqGrvrsONbOYgs4zsWQm99JvQqQU87yfr6aOca1XbeF4JwN+6K58qH6+pgpaKJyVP+w6R\n1Ug4qpkC170XXwvtfwtN98GZ9wK6U68zpyIF1Cc6+VlSSgQZPPeXm+CGIYTSQgghfvn3y7+f9F9W\nluXATxzXTrOAlZ06OZ6f7drVpMi31dWzPxzmGgMhH+1q4dFwiQ0V4SgLystZXV3NQtOZTgyK3JX8\nSMDHtYAOBeXlnNTpbAgkQ21bvk8wGTN6W85eOXPjQEZ/2H4DdKyhLhrlfj3SyEMOU1KXMFF//qq/\nTe2i+K/w9uN4oM9j0GwU9Lhb75hiL4QC1tKIx6MTPutsY00NCA0pEzi7t/KbYX1C6ULkUSu92x1o\nSRmgSeSJTpcG75TWelVMs5Ww96DNSk5I6JOurBi/GrYemurCza6XI9IjOo/cJtDtdC2E0kFYbKZJ\nJ0529VlBVFNqsDWRKCS1JDK9GxQU8FK3ArqnHwEk9Xvq+Wd2ARQUsLW2lm3bo4wbJ+HuHN6cP4fk\nzwv4IqkAKaXjX9m8Mj4dvBpx40gOhzJpPHKEyycWcMNlBdj/u0Ts4Pe5G6kKh9m1S5e9TAP+9TbP\nnFDA++9vNcuuGLkCKSULmi9gUWEtd9whuf9+ybw5e3k38z3a3tqWt1tbbUspuXbEJC4ddT0VFZL1\n1dVQUMAd05fy17GLPH3ecNMmCqeXYMlRHuGPHTZRVVTF5r/v5clTCvnbZ1v4uPcCpJQs6b6ETQW1\nHGhooNt1fyEpcRlSSv75z0WEQmvMditXVlLYd4mtXevfshOWmf397sgRCijgQzGPS9hJ05vPgml4\n+jly5MuccMLbSCmZ33oh+7ZVMWOGq+1/PExBjP9qIhGYBunX9vW0LaUkGNzIpee8yeUT1XfnuSHq\n74t56m9BAeeOf8wxz2+2K6D9GwUk3D2CtNRCzjvvj2Z7pTbFDSFsxjVx4LjRI7+seXOPv5V6m55v\nTDuPo+lZVqyGqc3NYqsbqxlVVMSA5cs52a6cfQw4tTHFR+Kow7lr1rC4/e9g1BcwZhb/0n2S9E9L\nw48HH4ijw+yAgc/B+Mvh9WWkzp/Pt7rqzLm6sFAIL3VvCFbPys6mqcHr3vMxRBvh2xbO9pNyoI8V\n7UZICAXt7UnH3CRpAZwnp3fiei1bBh2j1Pc5h8+bX2fJJ1CHo722Jmw3mdS2yNbnEtWk72e1y1PM\ntwtI1mxt2Cn+dpZFsExVLK6IjSI3YeSn0NdynftdWanv+42DpPWyH2D4+3CCzUe6MT5b37suXcoz\nDVt57z0g9QjJicmOuXA2DtsajyB//Sj93nuFrLVrkQKSXFSKGLOX0pH7aLJgAW3b2g7SjDYW+1CH\nyoXq9lYf1RhTtpQ//hEefRQuPbwJkdSKECEz4l3aAMuEPyGhlqZN4VNd5a1fejppPsKY1/ft47lD\n283nxORHGJWhPH1qYQ0tJAiEhEVZSWibK2m5aBHSZpjnVgTYUF3LpoY6uMsZmLxP84PssbHyEnRi\n40DmPhLRCKb4h4OU0rJA3t/QSL/ly5kyBQbrXhfE+e/61jMgzbC9iEEdSymcFE1/XYbS+yEzqTFi\nWYQ27FNjkALCYx6LHzjiGDWnjhtEHhBCbQDNq2sMxBnQUdgIRbfB1hCyRLew9PsWQsYwKDq2a008\n6JiSgh8iD0pJrLvDecfgs+JE3ReFH0WsaZagoWLUKJibD1I/hB7t7a2gQywkY09KkE5NGy2WP5qH\ngZ5Dve1KZ6c1D4/cZGd74MHt2xGFhYq9dWqBmZ5kQwRC+s+JkVdTE2OtZA+DUwsQhYVsbjsJgFHz\nYcutVvRyDf/1I4VlGCVda/cve/fCq8vg1AIuq1V+ZpIaoVAUooWtge6vbzDr7WvWjBpNQwpoF3C6\nawg2azTL3b9tG6NWrYJTvjX74fc1qiPqvcbcGfWHbBxCu92woQ/U/KCEySIlF9pehigs5B799ieE\ntQZqt9Zy+BMleW+I6odWQSEUFBL+4kvW1tYgNUnpjL0M/04jqEHmRrX2qiIRrt1kR87WRNnlVJWN\nYdXuOTa9/YJCLum9nqSdlsqogcgTQyCvLzEMo2OA9S5jLsJ/XUbbRYuRU1orguYoIHyRh9FofJrS\nTrA07PaGR4xlaQIQECDz8uL27bhA5OuHDEGgBIBSk/RJTT1GFTgAQVLAfxgtK3RPeYGoydqINdn+\nDtzjSIwLn4Dl15EQPvqRKXDeNMBGRR+a5yz85tfM7NGDu48xWrefMCQ2J0TPeD9224n1TqrGLWiW\n9nbAMT93xHBR6phzD488anuPJZQ+RoM2VcczYG9lLaC6uniJBC1y1PalgPQa2PPCHquNGNdCKUBE\nA3oZzdt25xpHWQNqN1lz/ZBNDddetts2Z2OZ5dKkoh/fuZMFFRUO1aWIz8f3I4yEhBvnqNiVvewB\ncVqeAgkuf9w26rn4rmLWnr/WbMPRXwQRFAuqYYUac/LWRjP/QEOY+Q4Zj85gdLEdo5o1RqavhRet\nWAHJVdZLDZKiy6EWSr52DAoR9j6vrqlht0HhNz16yLXYi0bQKsGttusqYcvc/8Z+Eo9xzx4jQf7z\nI/Lb27alV1qaZYii+ftPiTlQqdydTv3Bq+M7sESnplIPxeWzCx/1QNDZOTKG0ciREqgpJvwX7+nq\n08sYrCEJ6x+C23bDUt0H84Eqmicm8mSXLsfQrkF9+rNWvIX1DVPQwj8fteAcC1JIp1tcKRVp+ueX\nYW4+vUstzZc/du1KLDA0UaSLt+KOmWkKpY0ylzWDnStitgtw/sNZ7H15b9wylvqphojUQMlrcGRJ\nzPLZPmFL3dS2mU4UcdXp/IHVFN++7ZgPoWCKdbvpnuwmXhRkLFWqkZ3/qAy6hqyKv7Vb/sbyryva\nK2o+oDn7HevmVbOxxhfpL961mH2VysjqyGyn1Nmvz401FvVpaG/Vbql1lrdhHjdrMMmeOeow9Pba\nGoAPnoilfWZr3/e2/xNASiAYt92AzV+RVqcRwt6PeKyVYxN3/ihEvmvXLvLz8+nTpw99+/bl+eeV\nS9LS0lLOPPNMunfvzllnnUV5uU8YF0DLz0fm5yPLy/mTvvmFEGQfgcVtFpN0wG1uH++sVeb18z9I\nQeblOf4lhHVqoMM8pLAo8v0jRgDQMzVVsR3wp8iVJ0YNxvaAG4/A6x0BaByZB810FcR1UZos+Idv\nzwJHDJ5urBuF/s4es6F+L9xbhP1+WDdqlPox1xkByH7Niq1H7vM+Y6FvbgJz81ndK0eNf24+Mi+P\nrMpKum5LouPm+MhC2DaQm219U+vWnvIft+3g3GN2RO6x7NT/lu5SfQvVQcldMfuSWaq+cXlhuTVE\n+1X0gUwoVbqbItpIeYVEaCFaV54Pa++FzX/yaRXa7fKmaTF491LAr4rOYDillH58OCZryD4+1SHr\n54D0dK9Fre05Y5jSIuq8C4tadff5iJUxbxTInRY1HA+R/1VxkqiYX+HtI1BctoVhhZlsuW2LI90P\nKUoB4Qr1Tfe1F4hE1afSL10noxBYE+DcHxmBYMwxRk6yoocEbeswEoLYag7SwW47FkR+wg+DiWY5\n2YjxKPIkEeCMrCzKhrni5659AObmkxix2tr/+n6Q0FxvLtpys6UK6wZNEohKav3Z/yb8KESekJDA\njBkzWLduHUuWLOHFF19kw4YNPPHEE6Yf3tNPP50nnnjCt745HZdf7tuR5vPqyU1K5IWuXWmpayTE\ncoplpDY2evNMbYvTHjTrSwHNEhJ4r1cvXtad6PvxsB09vas1XHYJfNkKXuqMQwNRaCSU+YfsSVz1\nkU9PrUdzHvr802zLjsgTAwHY/U9AMw+Ry5q7dL/xUjRuLRPLZ4tzodeEXbFEpSS5wb0kpEv10/mu\nGtcCu93FEjo5I0OpVdl45HYaw06R5wStvZKg+51h+HMAfNDbn7ff+oCiOg++p1Q1hcT0cDlqV3vY\nEYCSl5GHvkNImDVLWeJ26qi/6PB833ZHf+VN810iSx9HCjj/+7PNpOaH4bSSTr7tOhBqxIm83Hii\nc0qy+Tt9oBVzNhY+aVVizeW/ddMGKaUH4UoB9tiJ3+gmHZsnbvaXkeh19zy/x5HeOjHRty87bi0G\nIHenpGGEUmfdeuvWmJdizSX4j3dg0qga+ejqgAeRu293Zj0XRe4L6x5yPM7NqeNwgpOgFHGY8Kkl\nYUQAGsNRqNoC217RB6Nu7Ilhp/Fd5n7JaYQQ5XuoGz+JPTn+oSZlhUYwooTU8eBHIfJWrVoxcKCK\nJJ6enk6vXr3Ys2cPn3zyiRnCaPz48fzrX//yb8DwEWKTQLu/28V/l9zcti37R46k4YobqQn53HUB\nY3v5GczYPQ4m6CeirAkSFILLW7ZkVGam7d3eL6zkcrb0IwF4vz1n/cr2gYWkdF/EvAUYFO7rkSQC\nVQfMMvHcq5ow/Fk4aYb5GBACil9UD2915Ej/PN53hdMSfpI916u6ZCk2TVqanqF7WWyMOk+/Hht9\njG7czUlJLAMqgC4pKaxrkWfOw/xBgwgEIDEsKBSFHh55Lca1WbL7pOHISuVTItHoit7XS1q0MKls\nQ2PHuE0BBJsGrc7q7V9Z3xnCGlRvRR4qQABZWpQBG1JJT9OXfrhctbPHclH7nItFVCgK0Ro0NF2Q\nemRYf/jmbFWv5DB9NrgoN2Do5g5w+qme9Dkd2pu/pS2WYEBCVkKIpMpSeuzciWzXjgGbrO25QVoa\nOEP8ogva5gJgRwf1t2FXA0EJm4cNNdfo3Rl1ND9i9bnUJuezI/3TMzOReXn0KPGy4qSU5CYmMjYn\nmwTbGpQCwjvUvo4GQWRbCCw5IHinTy9kXh7jc1uaCNZNiEgNUkIBx80zJRCgZ2mI0Ao1Dx9dH3Kw\nVlTMcB9qzhiXvmaDAuYPGmi2fV1uLqG5o+GwJavKL4Bn9u+lpW7GYZSNFUQFBIFGRZlFNA1WToRd\nuiZMWN1yqlKdMRVCEWhZDSkFL6h3CDcXwgl18UMy/Pc88u3bt7Nq1SqGDRvGgQMHaNmyJQAtW7bk\ngI//E8DCurbgo26ElLLVUvXT2q2mLGUnvmBbBG5Ojv2kb1KrqJvsyhiUvXZ0hEiy/oKgbcGkHMF9\nDJ2Qe4JH/9Nf29D1ggyf+/zRwJdH7mStFGxXGh69+uqLJUPxQwIuvszAomTcIMBfQJFYZS8BqFB0\nW7fCN984yzvieroQedAV20TqGy5iXDUDTpXP0pEj+WefPuw76SRHeqvxVnAJYynl5GDeQqRQjOLL\natS3CwZd37v4r7DqFlYOHqyHuHNCtDrqPIz1aE5oXiQOKiQfmoCJg2HNVFg/nYMjRpBQbbl7OPLp\nEWrWOW9FXQs+ZPkNN0A0SuvPrOvOpzbvd92LYd2QIaw+8US+P+EEWH6t5/2H9a1VtaxK3YJsw12x\n37JKvcUVdyLp8DaoKGLtkCF8qdsh/PrbQbghWh1FasoX/57hQ2DRBVy9FVJsXoTf/l0CAZsiQlKN\n9emF7f8eVqAmrYvphK6w4mH2jxhB7mqL/RAUwkmRb0+DhkOefrpBaTWpeqUjR/Lnbt2I+HA15lX5\nsIXj8GREVM1Fvc1NM4sugmrFgv168HIumuk0+kvZbflpimWoCEqGFwlUxcyH/xKRV1dXc/HFF/Pc\nc895Ik8bVkp+cDXKhmFaRQXPPvsshYWF5gcu0v8zoLCwEEpAyJD5XGjjbVTXbqa+Qak0ZWU586NS\ngxKgBEK6VkHV3pWO+pRAOGoFZ3W2L6iv36TaAB2pFOr/dBhwDRyyqUmVwMpFKwkGAkgkhYWFSGkY\nN1jtS1t5s3392d6/azKvUfkd5hGNese/b99GIlHnfH2/ZKHjuWyD0t5ZvneZ6nvtakD3ruh6v3v+\no9EV7N5rWcoeqVpDfeNa6PEZADU168z5yM6Gbt0Kue02K75lYWEhq5cvNp/X717Gpl0WIomUhNX7\nBSQEEth/cDNFFFEX0ZHY6jaO/v2wcCGL582jVVKSo7/JndQhtK6xiMVLFLtESqDxexJ2KuvaoAY9\nqpdTRBGZxQnmfFMCyDBUrqVixQrmzZ3Lqxcsd7Rft7UOCawNF7Fg3gLQ1TCb1tQ45ssob0YT27IC\nViyFQwU0T0zk4KiTKaKIUHaIbfds45W+r+hrRBWv27Gb5fX1pj+IIoq484oiaqJRdjTbYbbfOy2N\nfunp1KxcCWu3ed4f1c+Z+UXzWR0tQugHV2FhIRsXWy4mSqqKaLHOUlvp9G0lB/avp09aGqFAgMLC\nQr7OWuBpv2FPA0jYVLKMVQsWQLiCnAaN0p3W+pnToo5Zf11gPqeVS35YvlDtdx3BFxYWsn69Zc9R\nWFjI8qJFIOCHH4BD86FoIU11v0DG+4NCEBLCfB64WqpD27V/CgsLqajYhLH/1oSLWKavj6yEBBbP\nmwfbLSrrqTOKoKjIPBSKKOLb7/T1LIVn/6lvt5Tk/Sp4zfx5c631Gi5DlASgBGRAozwzyqbLDprz\nUdlFEN1dBSVQkbbLbM9ov7CwkH2Vb1Bc9ibzVtxMPPjRod7C4TAXX3wxV155JRdccAGgqPD9+/fT\nqlUr9u3bR4sW/toRb1iNwJQpAFRHIpxbKPgsT7Fsok3Uh87Ly4O5ILbbnm2QntqdgLSG0aNHHrl6\nVDRNaqCzKoMlqv5ABjrb6AQJof5Itvm2n5zcw2yD7GKoyoNQmaM+WobzGf3UFxp5eXkIsRlNrnO1\nv1wdXm5WaidnH1659RVem/4afH+I0lJv/9q26UUoaF3X8/LyyFq/z/HcobQDC9bom/GeC2HeAwAk\nBhM97x/IQMdzMHgCbXItSj0lrT311RbFmpbWF7D3Kc9xY8nLy4MtuwDFN+3V5kQa0q0DPtjJ+HaS\nYCBIz+S+DKQnwdWHeLsfTHhEo7z+Qmd7Pv0NZap2+iYMZPBJytJjU80SuGUyTVNykJUazY8k0Fwv\nv7yiFFpijn/CwAm8XvS62f5te/fyaMfd/P5ZVT5SHkHLDtEncSAjR/WDAjWGyu4bHHPmnj841THH\noxJC5H7RiW/HRMzyg5IGsYxypIAmbVqo2dSvcAMZyO3XQXJ5Oe9f/AgzX1LBQhsbITHR2h+x3n9i\nxomki2yTIs/LyyN9oRUUODBsMAnBIAZbYiAD2Zpg3TLy8vL4ttdWWORsf1mvZXBpGj26DGHUKV1h\nATQ0ao73723dwN4PT2HofdvhcXXzGDz0ZEb2b8GShbMBocKnbdNAKhYWwAkfDueHQIlyFJc8GLI6\neMYXFILUQIAOGf3JqgiwpF7F5XXvn7y8PNITtyAbFCLvHxxItxGDHPl8q3BDfoF6gx0GMpCBQ0bA\nfEAGPOtP7e9twCKEgB79TgSbOudTV7zO7xYpdrMMNdB+/KWk/F2NszZXEmqbCdkQPRy2+mNrO7fp\nBLKCUc6Z2I3Vc98iFvwoilxKybXXXkvv3r2ZoiNigPPOO48333wTgDfffNNE8B4Y6F7sCvFpQtDs\nwmasvj+D9fPaO/IDMa6weo/MX7NmWal2Hvn83NhMpliWVR4e+Sg9Hp87hqSPEETYvGoLhP/VyZ20\n8Xyu7T3FkWSyP4JhPo4RaczN+XD7Wrl12K1WZko5/OpOQAVmtgseq9N9+HTCqTpp6H13Suujv9tP\nO8bZTiBR8OcbaozOOe75bgHVr79Srnv7bVFC3deLXrf8srugeWpzbnxyExtPqjcVFuweLu8vUeyX\nlIQUgi41iKVJ3zuenz7zaVbdYFGGQQTNjlim/0ltk3Q/7uYgzbx3LqtjSfcVTLp+Evsf7cttj9vW\naoJLL1+6+BzAqhGrzLaFsWajUeZ+m8uWk5Sxz6LKSopbFZt1ttpu6ZmVSgtrxu1eGcehDw45BMAA\nXRlq/g4JQUowSOoaS/ZyfoFTsPzCRUv5/NQdnrbR1L411nnJduu7L+m5BkI1EBWsutgyarK2k9Wf\nuuI67Os1uqUeKfRLSbABos5xNdsygCBKGWDym6qdoASk/zppONBI+KAuj3PNRTy4+QV447wQS1dV\n6X2Px/4AAoJlK518+m93f4L5YuC552DgvIE8/zfltdPguzev6Bm3L1EZn4f+oxD5woULefvttyko\nKGDQoEEMGjSIL7/8kqlTp/L111/TvXt3vvvuO6ZOnerfwJgxniSDo9x36GcUV7xGNMeJuAMxPpIb\nj9xzj/XbjsijtqFec83R21GJ5v8UhPTFEHSZ6tc2ww0BB488luWoC2qa0zc3xgcNNnDvvd5kX/VD\nF0M+KegvxBRCEAxY87xsmP9h54jAAyAkJTWK7BB9fVQvAy5pP4LPz1Jz1+6lStrOsvh9Mhrb7YEB\nH6z/wDd9RLsRbOhWQ8/FyWy6bhOFopDMUjwH5O7K3TSEnPr+CX0yHM9ZKVkMbGURGIIAIdt5vazv\nMrb0WOnLJp15TR33jn+MTW028dz8pqzuLaD3P+GhAAx7wVHW0KfXhEb+tHzm91TX/OArh3VErk92\nNEpdhxBHOhbbKls/7TZwWfqNbOkQ9S2vuPUKmJvPou6LqPreyyMvT1Dzv735LoJCsLWujj8Ky0Fb\nQtS592pSG3lpnPIzlD8tn/xpSrDa9p81CGHts39njzbrvJf/JSRWQLP17LSxrkWtTtwELT/6whWi\ntmHqbmRA19S4sT+0WOfIr2sRpLS6msSWLSnPVBOxvEOEcGIMPrK+HQpFIelVMRQEfGBdX3jzokRm\nvmkw/mPVU+SQEPDO8k8dOU4iRNCtuyRzVCZbTgiy9PBXVGWr7y+0+PhN+18g8pNPPhlN0ygqKmLV\nqlWsWrWK0aNHk52dzTfffMPmzZuZM2cOmbpWiAce9zpvEujU3b33In3460LGpshFQINWq0whngH1\n9TaEFkkivwDy397H66/jEnBIX90yj255M928eOz1zvRUr2s+t7DzWFyE06mAFK+8UUHHwjgV3cJO\nt7Ax9sIN2oJb/P2qcr49Nb5lp8D5HRxvEhq0W+i5sQgBkZDVh+T91qKUpp8U1VK1kpVz7l/e93Z2\n5071z6whadLgM7H6qxKEdYCVNq0gf/Z28tsHyX9/OyePPQVQhwF4Bb9BAqTUe7dHi/36jce9XvQ5\nXrIUJRRrvUyRn70+chYDpBAkbVd9e/DyBylPLScwp0o39bcocvSyJvR/mvxX/kz+3Sn8+9+wbx8U\nlxZTE1BGQA31qlN7s5Vx1P2/uV/NQwQCNip0b2OQ/NkbmXD7FCKly2FuPp/uXEmbW71CXtUJ0AKS\n9W0tp3EbW6u9EHAFgjFgdZetULsTBp/DxvX/ovWNrc3xO2cDSAhAk0OMu20cv7/89wC02axhujjR\n4eV1LSjZ24Ondu2i08GDJJaXE5aS/Dfe5h+j9sa5tfu+9dggqLF0uY7Ij6KAHqrUKGl03vRCAf2U\nkhIy+pHdTRFLmtT47oC1xmNS+wL9Vhwfgfzslp0GBISw0a8Q0DXgqxr0U9ZPqwRd2htsgEknwM29\nnG0GbYM3GtcNUN534Qlfelm62C7puhZO98+d5bpaSsfjB4znpXNfIhCwBSwTPnrqfi/MLubNH970\n6wkMesM3WeEfl/qWK0JQz2Y9GZw72L++DVEI4PS5qZ4ydo2eIC7ySdcKadbyH9B2MVx7soe1EhTC\nFL4B7B1n6US7WSurX2jGpu6S2iQfi9m+fcGmT/7E6U9w0i7vRAZ0I5TRWVbknyv7X6EcO+rOWEL6\nTWTRrkXe96CiSX1zsr9BmwLbnNt5LgJFAabocpQ2SkNrZLuRoGm6szTBya+fbFaffslIVj6wAAAg\nAElEQVR0s66p6h+NImyHFgBZJ6q/Oeu56y741a+g6wtdOZii5B/l5ZIHpsforQ2RL1seVQePCFK+\nUrHy6r6/ira3KxcLM65wuo1QBI3gputuMtMmT1QeInM+rnaY6y06J8i6G4NqYW58FEQ1jZXT6PB7\nxecOdlUHmP1gEYkQvu0s9mftZ2FPJahPL5OQ5nTjHEAFdfnnoUOIsjKCxs0zEIIes0mL4S4jmB50\n7JCAh7US57bc5AC79ilEHohFFOtIuP3TZTQ7eIkj645RN/L0mU+bz9P7KURfVl/uuOqKWBZQIZX+\nP2Gt/C/AWP8AWiBgXjENXed4Z6G5kBLqoPM3ao0KWPq9Rk7JRL2Q3oJOPV95pf3l/hS574unxT+V\n37jgDSYOnqgoPJvLPzfVIqQk4HPKpiWmedJMCDbidmcS14D3VyrYcmIwkeUT/QMh9G/Zn+453c0+\nVae5++SmyNWmdkPzFvsVEge4wWndFhACzbZ5Do22Dgs3IVI7OJVJf5NIP/PIqiqosdT1ejXv5RsC\nMKDrlDcLdTTTbhl6ixpFqyJAEBLxZC7q8DmYtsVkJfzpXMsC1EuB2hG5VIPq66QUFlyzAP79b4SU\nyMR0R96qzoo332VhxKLIdV3aukCjqZPPtldABKExBc68mzVNnna0g9RYoOU7km6+Rmk7OC5lMgqR\nZCh3rrWUjinkv/4xn+Svo/nTluFZNFRKJOid58NNDiM0JwvzrfsSean5aug8yVG2vEk5dyxLJ5is\n5t0eE/WIdKopG6wbxjhD8AkhVLza2t0sPXQTYhpoc/NVgBF3RBobrLpyMkWTbjDbDcT/9LDkMut3\nksIpEH+vGa4tAg1ZcKSbmd4lpwN3jbiLuROc1wuT+7n+ovhtJwhqsgVR7XhF5AajWh+RyVq58UbF\nWnEh8tj2NMI5CXnTbFkaRw7q12uTqowl2PSmx4s2fzQQ9qNJeFsJalEEsGayM6jqr3v/mpiQUMue\nPd5kT8xOY5XMmeMtrEPh+ELzryHkE8BVrxzhwY9t/B2XsFMQdN5S/IyDMp2UpNBP1sErBrPkq1zK\nT7EQeVhnREud+lJlAzGEFl4IaBoLrv03g1cMZuDcgfz+lZCpahewsYFMxD3iGRCa6QMkFgQJ0lhp\nqVF+eqKT94kUHL7ToNj1voaaQoIEopDkw6+dNUt9qUh17Bcb4w4EIBDgYIrtZrLrXZJScqEhA0Y+\nDWfd7a7saW5de52/7CBJo0AQUrZ736/Py+FaZ2zB+iSvsvWm1ps4dE2G42CLhmFN6QpIcMogtpRu\nQZOSslJYsrKaiC3w9faoN6gKYB6GL4xRcoYAulOwitXOcoFERSzFMlSzpUskwaZufrRrLaweBisn\n61lBGKjfkuOY6M+9LMSKjR1VQO9Sy6DMOOTsLrn//sV+C7cYvPH4rhuRcaMs/JyIXKcWuVmnGNCX\nYWKiom/0xdEQ1X33xkPA9g/Y3tKhRmhQpfv+aKenx/S+Ffsj/RhwsFaQHu+H5t53aWS4ebVH62Mg\nIDzpUc1JRfvB8LbDAaXRkZqgEKsAwomCsjZHI1l8IM40GUizyQlNqOnm9vumQN452NXMsflrD0hJ\nY0qUJic0IfOUTLb2slpIENaBkRhMUK1n7IKkmmPYGIJIrddZV42NmM5MsSErIWDkbLhiB6Tv99RT\njeo3zYVjPVmmhpOxPsNhRCDAS2OdYQQbWl8AHb+J0WtrTK3bnet8tePgsqI3+YPP2qm3uaHo+wcA\n/njBDGoHJzv2ZjAgIRSF5RMc1UOBEBI443TBSa8N5cMNH2J87TrpchXhgpZpSnAigI7JyabZuwmN\nZarPxxDbcs6AOfF3dKQGenwKVbo8TARhm+7DIA6PfHtPAckBItGohZyB7JRs1awN71xe/y6HKmtV\nn7UEd1MOMIi045e1Ypia//WvqiMGjzwaRQphBl4wzcj/YwSMQuSN6d76qYraqK6GaQWKD67FQHw/\nCo3PnMnQ++/0UAKObsdouUliE990AMbcCr+6g6FDrfihvq3Yx3q3m2qLDUJKqnOasdbGvhDgwqnu\ncegI6BijOKlwaUctdozSYUWRf9jkc8TDAvGwcLRh940RNPhteomjaREFfQ7UfRvquWlOkm3MRl9t\nrJWx+2L33bau3aDprCRT/TASgWAQand4CyfEoOibWjz99y6a5chyCLxFFLcKJMCnxd84NLKmfmNo\nnUmosWnP5CgioCzlCNHWCURtY4qGgea2UIvNlcO3u2d9wuatQIdvofkGSuuPxEVS961oav42iBsh\nBJtqa6HMdcBGqgFJ8BjcYPz5zoPe25hdo6niB2ceAXX7UT3wbVM74T0qI7sICEEwIWIi8rtH3G0S\nSQ73wlknKEJCSuhYoN4Sw2dWVErCUvvfaK38JOBygmRS5JqmeOT64miIHIub2BggpO3KYhOl9lC6\nncuWwUNz9WSf/aUWWoDnRj/3n733+utpXfC1+U6B2/GUsSQkPXJ6ONIv7XNp7HYHvgUnzWDZMt0E\nHGM/urRW7Co5T1t81J1TLJaHXzDjWHw6+/6Ij4b9IWjzdGdDeb5g5dmovDj87ICUrE/yxmgFda1t\nXTOGzTdvdsU2FaYP7B1TdvDWBV5DC+nzzps/vcqGBARCwMqJK8lt0op2GR3stWN0NuAY++Ibi+nT\nXBE01V934N2ZTax84xvu8DMCiXFQdPSbPXjmAeeXPemkiKKadejZTx32F8528qSfXPik3piEMiW0\nTR/5oZkvhBIiRmzOv0oPSUi2UdhlSjYzP/Ii9Q0SRht2EladNnQEYPPNm7mol8EztsC4tQaAnQ0N\ncMR26wbYp6yMg8fAjgtXbYm5/jYNHQobXY7+7OsgFvtj7L3sbfgYAZw1OkJaSojVk1bz4KkPWu91\n982g2psqDaPEen88Z9Q7filyt3qh/iwuuYRXzj2XQ2FFGcxarVMWWowjC/BsnBNmKqHkkL9ak29i\nUgnnK98Us2fr74618XTtD4dBjV+xacB33/nlmH9jrTGPmqUPpWRcz5zl3D/sb3WxVnQKu11GO3o2\ni214EPCdB1dbLrmB6R7YVSshos8Lxqa0IfI4/Gkzz7Zwbxh8g7OQLdD17KFOJ2K1Oy29dk1qJEWb\n0S2nm67/bi335qlK9z83PZcrB1yJGzaneeeitPaQLssx+gqDcgeREEhgV6+nrILJrTx1ufJKePdd\nh3D2pHU7WZemqNulafPZPSTBosjDYSU/qvMRisQCI+5oRn+6JFtyjsIznIh88aIoJFm2D01DymAn\nmq77wI+DEKsD1o1RyigBIYjYnH81iFIYZNOdj+rqrJrlHM36q68MfY92y+nGlGG6Fk31drOJbjlK\neOheNWMMr7rRWpAS7RhYKw2H5jva2XjYiljUPTUVIjbZxtx8CNkEwnFu/xWRhQjgzwcuo6bjB/Rr\n2c+huNDgvollZQAaYV3L6Gg9dwffcMNxo7XC4sWOx/26o2tDPUzEkNpKCSH3BI+wqNDk9HpnXoru\nZjWhlucMQlvEWrvHGsMasMf/NPoW5/PY3ycfcpV77TVYYwlBO2V2cuZ3LDTxt7rJuISd7o/+2Wew\ndClUV7Phpg3qfStWKC9XNvAdq0d1UrpmxX+MCbYuBAMCEpvQZuECFqx+gUik3reOow+2l754ju4B\n8nTdL7t9U9Q5A0pU7bP4x5rUMCznAkJAShvoeB007UWr9JbIhyQJQX8e5b5Em6HSiE/MnwEhPHr6\nO+trlXBsbj6UedcBAF9+qcbnXmjpCkmt3KkIAZOoiEQ44seGqVwPoQxvOkCpHiij72O0TU4mrYlC\nzJp0C3cjkGAh+qJiRdGy71N8V0GCxeZwW6AJIByx+tkgnWyfi9fa5jFzF37rJSgCiINKQDiqg/LB\nX3l4OR2DSse/VzOlVjzPDJauIORi+TWE/Ndiq6LzabrP4gDYCYltZZafmoKSAm9l23jjhnojPoFS\n6eeZS0qiBt0S95oqj2OK3A16sAcD/pKhFmu9vuljosTGRhKjrtxmllOgZucY1IH+1ZN1i5OT/2Cr\nIH1ZBhJMPvfXV37tyFswYQGLr7UdPn7h5oR1C3D7XDZBj5h938n3mWqAXHst6J7nAN6+6G1nnavz\nna91+yN3f/PLL4fhw+Gxx6y0E0/08M9rExM5FrDP1TEayQGw93AR8394luWb3/PN16RmW5CSjKQM\nbhtmu+4bc2xHhiWvOBupWm9uKA3N9LxodrPDFc7nGKBVW2sIm0DapMjtc162whKOrb7D09bZ3c42\nXTYH3IhcD6v21Xr1je3Czpdta+a7N/Qfq26C1k5BpgnrH7b1EoaOUGs/WrnesdFbtXIukMaqtdZD\nYg6e3dZ5ou3Buc4DOFkrkZYtIWpZCP/TbpSbWGPTyrEocj/WdvGaP9AjqCxFje+5xeXL9Y92n/Gh\nJnH0FSSpFZaffPsI7ETJaW+dFqMBBfE8FLrbdcNlLVrAJpe6aDCFiLGkYzUtFUvw/w1E7sce0Ddt\nizTleCvuxULA2x96k0dvgTdm6qGvgi797FMfNXXChcThG92AQCRKik5tnNH5DEfeyPYjGd52uEVN\n+2I0I8+rRx7SNEV96WyCx05/jE03+/N6/dgh9WHVX3HI67pTxtJaeeIJsPu/CTvN4ytTUzxVBO6+\nO8eZmegNdOFpQwgIV0HRLQB89v3D7K7c7SkXjob5xHDX2uJ07h91P8+OftYqENT5lYtsRjwe4RRU\n6kZkUlpuQt1f52jqhyYyanOxrqes18MbuIM19zifdztdCozuMlq55gQOprpWsk1NT+ASdtogb3v8\n7jpAP7wK6tX3bNz0jGP8+zs+7yxvj07TIh8PlNqc/bvmTUrNwVoB4LCLh21AansslVzNwl6a+m0G\n1tYhJFMY3Og6GJdfZ/7sZg9RkDmQ+gR/f+QSaAzbKGtb3lvLfRCHHWx+3mP7IzdeFPsGnpWQAPs/\nV+3VWrKqqA9t4gaB5LqXX4r76uMDkQOHU+HTKeOdiTU1jOtl6FXHUj9UA71ijTfvkvVw+ib1cbPD\nMa6joBBtvfe6L1wWklcPvDp2GzVeFSona8W5AQIGn/drJ6V/rFDVoF9h9+7xtO32taL6AstbQ/ST\n2WAgf9emLEvT1fUajrCj3EdbAqOapGLyTqqvK2FgSj8zPVaIs0Y0D8Jdc8D7wcJamGVVOo+yaS/u\nHHGnaxD6fBrCDUenLKp5e6Vit9idEkVdO+VAVXzec1bpBvUj9xyHwOtgY6PO2YlzEBT/xfF489Cb\nzdvElmy9Hx2uUn9TnGbxJpvXhsjH7spxvu1oQr2g60CuKUEAeyr3UFxarMaj6UgvtbP6G7DbDlhz\nKaWE3brcIdemCnni6wDUN1aws8LlR3+v+j43rtJddGTa/JkbkbrsYu0Y44nKqFfQrWvPHH5LySG6\nBPNUekZ/gjGEkW4WpxCCPZXq+3+4ZZZfFX84CkV+sKI4Zl5d2Hab2KqzCmXYpMhjgZZYS32T/QxZ\nET9u7XGDyJvfDWMvtE6qAVu3wtlnE240/Bz85+qHRo3MOljz1MaY5QQS6RMrTrqMjSaeoK6YM8fO\n9Dby+99bv1P0jSRsWiuu/kcN6vKKK2L2Kx6E9YNA+AhB/DbGvA4wZCI8Pwww3Au7yqUZgQGXXELH\n5zoarSErncYtQU3StGV70tp2ovu3utWbgBtthNvdI35n/s4KJcC6BxxtVDbYAurq33DlPme4K49O\nvXGDeMXFTgHoZc3/txv/oQ/P4pHXuw63c17pFVcjqmz/39UPl+CybM/nx2qrZOrqCyFMRP7aQL0f\nzUZ5yldXbrF45OGwGV2m/3Ynb5g9H/Gfwr82fkzbGW3p+oJurLJCZ5eE9RtQup4uJXSxrDKffHuZ\nqXlC0KZEH1K/731vGGM+HO58WaVi1UzQo/mkR+xuH4w9ETWReWXYX5FBk1ECMTSWcmpUO/kbdP32\nvf/ysq10aNSkWmPtlVB7ztYvaDtDmUjHYll4XFFYXY8Jj37oc5vRodUfbeuo7HtoOAL1B00euRaD\nMNgz/lZKRj/mm2eH4wKRf2uX5c3Nh2gDQzZuhHnzeH/pq3pGvFnUT/lp0M9mi5FZD1n3wPmbYGWO\n17GVowVfHVQJaKau+0ntTkI+JPltlwtNveW9ZTu91c45x1bfv/2o3YRfCHj8cWoSVZtiGvzxJOA9\nf14yQO/XdV5/OBzDstP5vrwJ6u8do6HB2BtvvqkcW0+aBPPm0ezIHsdV8skFTyod+4i12INR58IX\nQsJJf2L9BVNoasOLD+U9ZP5O8XEbevmHVrxWQxXLgdyBpxc+jXhYsHDnQrjuOjio+97Qbz8OR0LN\nT4UOV+v9ftTMDxCAW29FMw6pTU+ZY0x+LJaHMhsY1K1xUOx828ta8YFl1y9j8bWLLdabjsjfGaAX\nWHE97/Xs7qhzqKGGTmX6ofnKK1CvFnOLaheiO+ATUNQG9hBpZts1dr8lmqmf/tGsCp75ChP50ugM\nqfjFeptpud1aU6faGyJOJ2t2OHG3WhCnf6+zWsKVDmrfagtfgiwqtZiI3GBJnrBDF9gf+DomTaeM\nBjHZRn9dqth1teFa0y2zG2Z28GHTHMX6EuByH84AUnrWNksuIamh3mStHIsxUzz4eRG5Hq5rosvQ\n7dMpVzHjRXX9+Lpcv1LEun652ANT9fgJAQ1O2QnlKfDmQPh1HMt3kDRIP3eqQic1b3Sk7lzxrfn7\no+U+VzNT8GmpWml1fpoatr7ffz+bbbET7/oV8JvfxOu0epXPAWcKVl9+2bfOnqb2hz3w0kswaRJ/\n+JOTHzn1W90gxBa+KrHBucCFxPRv/vgp8N7F77FgwgLrex0L+ap7reuS1cUMtg1w9zdKGDvlyynw\n6qvgYn+V1+sGMAmK/0yH3zryo+iGLy+8QD/Dgff+L47eHz9onqf+1u3WhxT/mj3+Xy42oY8wvH9Q\n39wdlTrshto6frNGJwzWrOH2l9T4J+s3nc8NmXe1M5p9frPL8YOB6TbnZHYJuE2l8cKNcKddYczQ\nfNFhnrR5Km1n80GSGMOzqQ88vEpfcOWrTOGuAkNGZQk+AWiqVEoVRW7N21oj1i+YrKfrF+kHVNUG\nokdDhqkdAZi/Q2mn2FUP3TDWa3wbG5EfsnyrvPch9C+/35nvp7ECdCrHYq38P43Ix49ndg/Y5lKT\nHnvJQa4Z69y0sVT5tl53E6uvsXipv1mrKPPodGhp3e6pT4Dpr71G/wT/63Qk6H/ym1ddwzJQCLrP\nt4x2bllkY6kIoVT69E074sh2nQ/t7buflswJkzxJJvX5+GnWhjL1sx8WLGjxrU8lHa5X7nYXOQPb\n08Vu99FZ55Fu2MCUs7xzE+75Xdy70O1XOj1BJlw6jpHtR9q0EwLkPpflW9fyt6HmIrx8KVfoMV9P\nEhalt3zfcn53Jh6B9FMLdd3t9vqBZ6Peev65J+9X3MKWNMXLFUJ4AhQDpDzmFfA6O1nrabvLX1qb\nZvjL91rOyB44xWIfrT+0Xt0kDPBB5AmBIJc2b26xWVZOoirRciA1Y4hC9IYq5+B97hb095490fFs\nWLhObt0amihBueHq4qiw+Rmo3GA9p9godBGgdWIid7o9t9mhynbI6G6sB2zRD6yNf4AG1d62bt8R\nfUDdSDxW1W2UUVCBnEY5Ft+5d6qNRaNT5HaNQy0Qy1hDGgYMjuTBL1seQQfYbvI3LINUrxPQOOB8\n7w/POlkhk6/P9a11KBUbayU+zOkSP//nReQ33MDFl/tTNh/0UadVH/NGGP/Ecud+7+Na+Yl2s1h5\n+TX8f+2deXgUVbrGf9VZITHILiEEJCFhCSTBsARBgoAgasKmRJYZJC6X0RlxABlcLgEhhE0EhHFc\nIlxHIaIgDmJg2HUUAUFQgpgBYsK+EyCBTtLn/lHVXVXdVU0iXBLm1vs8/UBX1Tn15XTVd875lvcT\n6bg+l/3hSsdPDD3eZf7FXKmfrzuW5VmHlve1BY+OHXNx5C74Ejo+BfaX4z1CrITbQ1Vg4Iu9//dA\ncDA0b87EPq9RlAGnZsLzKn8/X7fLpbRLlr5vRzmuERGCZ4aF4A4jVuBCAxlKHpmOx+pTWT3sMng+\nBw9BfmFC5Ht6/Grd1Vjds391MgrKV9mffII5b7/N1ebh7MvRc4zMvheunNA41TZtcmUePvnxQu75\nZZzOpHDg7AGanYPZOVcpCgBpnT681YmrZVc5uHaZmioLjFs3DoAVy4B/PWRoqnjxa6CwkL8uHCn/\nBZMEU3pMQfy3+kpqqWqx21nr9jIG+gaS3aYNBDV1HattHmJPAxNKkh53qxNUgGZj+XRoKETJf8uL\n68e7NzPH7j94HJIEsKUHR7t0YXZkJFnR0Z7tQK4g74RHNfRr+oQb52HFEiiSkmQulQZqGOAZSZlU\nPvuMf7bQqKtLl2D+fNXfA5SbeNtlugXvO6g9igm7bx4kHJPdXNrf0isk9bpcZxCXJEHNmpx4OIm3\n7lbNutqckbNBUOKdagX/s/Kk+Ww/79dVuY3c23boy0jYZ+yX80CuWxRcp6c8ryn2hx3oE0hmdYHi\nLss4FenpFT7d4R8cfEQfqpWW4tnvKG1Fu9dVutPY0bBDmVCMiIG0GaVNX/Dsd5PTd3D4MJSUcIcd\nxvaB+W6+pfLu+tAkd2fnT4Fu9jnge+NFgiFEDXXVWu6jPjLuCZdG0Jlxwh7j+6ef5g3FujHrcyVs\nT3kGSm3ArFl8OPIeigzM169113y5X33ZQ4twVTp6SvMzPnAIXngQXk/0LmPktsfl0EwFc76dA0Bf\nDSnfJ230GaQz1gPh4WT5K+yCzhjnSwashwCHDtFXSSDtpEReOh1texISXJf1POxdViecGZCg/71/\n5xaN+Xknk5hzd3yphnk+0uT3Hqc3L9Z/f7R+fQhqrj+oULICdAztgCHKjaK7ZI52gNVt29IuSA0V\nPiEpCVYDBtBHGb8vBinO3hUrVL8JUG62IkcoNBHXx9v/AOmUkjx0Tu8vMDV/SPDIv5MAaPOs5nhJ\nCU/cucX19Z3P8cCHStCXmX2/RoGcT/LvusbnnahSRe7cAjpxbaae/yNZZyL2rsljNAP4mZfyd4lP\ngpSufqYkycdtBixkF1vJBncpXf7ebrR5v64+w7Nc/9fBTfwDvd8kf3QaB42tDrp+r/mo/X8Q6/16\nUCoERa5Hmiyx6mc1VK/sVdVW11GzcLoYoJd3mpu15mxN1aZ6+u4f+HV0GrZJmKJYM5RNtGb3Ix/T\nPi+PBxUFOce1SJYHp4vy26R1Ny7oMKMr7FZWTlp5r/hD6B0yy2WGRva3Ff04OclcVidOzp8OksS2\nJuozWUNj2hxUvz73361OHr/Wgu4jNR04/RJu0TFOp/hyDbXQ8L2QNw8Xx3Q7jS17dRSMfsjg+XHD\nG9+pitc2RX2Na7iZYx+p31D3PU0z0TnHDEB8p04M/yhc4nG/aD2rLcG+vmR0kmO6m5+Td7d+q1VO\nosFBHakotM7jNkFB7NHYwsd8A7zzjm48kn5UJkvF9pxwXRYDIZMva3ZWIVfVXbkWTYog7WiuvKJ2\nM+WZLiYlBw9/b8x4maOaz3lSCcqqp4mEmupanJh0blICzh1VosifW/McU7boS5lc+PNp/IuvkbnR\nxEttxjWgqS/45MfDeHv1ZAYY+368ouYV71Ney+fgR807UdBlOcdnV7x/9zCn4nqyUyvyeei6UF+I\noegv+hX0KINdgDcI4YB+st+gf7a6XfCx+TCo1SDX9xHvPkT/VLdVBLLD+KIm8fVYiGozPdvsB/ke\nXhY4jz4KczvDSM1O5cwM9f9R7gFEJiud+lfg2mvw9Xvqsa5p0Ffj05y9FqjVgj4RMi1yPfMgCgD2\nJn/JpQwomQrvacLRBz8GqYPlid6JazY/nnCoM+ebD77p+v+QR2FrM03HTodWaSkXtEnDCh7TcKE9\nux0iz+ufCWdW7yND4S2Txez1sGQlPPdDCFPjxxmeb30KjmjMZ788oacT6NbYOLNx02JoaGDWSWss\nr/YP1YHxvcExVi2YPq5AsaOHy8fMKlSB0/+leaA0GvONLjAxW+8DqDlH2SUHyAu/1zbhFdqnK7tA\n3s4WBcLHbeTf3RRbt5Ks9YeaWg8EvhpbZWZXWBynRJ4pSHRaBQ8d4vg4t7h7KhYT4A1VosgX7ljI\npM36JV2tINnjOWSvCaeKSV93HFK3pe/lfsgzO/X9PhP/lG4bagbJwCPtU6J62A+41Vdu0msQd42u\nuN3R4TAvMvyv02r89PJHl3NHwB0ufgmAj9oZtYK5OSYdCgF18g1PvdTtJdf//37kC1a11Js/MtfJ\n2dPaUMJaJaodxh7stt00wJooOcxxicZ3UNeZD9G1q2EbIyz7BPzLZZulE8V+sFbl7Wfoj1DHFq4r\nVOANbe+MJtgOgWWQonlJv24K2TH6awMcpWRNUW0VTWqpXuPvNP6+/1mBqsjLyrjDOMHQBecrLzRc\nNwv7LTS89l2hD5+Y4SV/7IGD0OJEES+nGK8wchvox65GXf1qfUqvVzGC0xRUt4Z+sVO7hfpgzr4X\nyjVVhCSnKaqJPGYz/cyNvB7cQEuX8rAmyTlTE3L/UFC8zBMErloGHbQr8jLvRufeH6lROUMehU9b\ne7n48cd1ET3mFAAObCHqSzSxFzzRX4k8U5ARoqxqIiLw9fGteJCKVDE7fZXbyAGuvXLN5dVvdgHK\nIwyoO02mLN8i8xRxMUnwVvLbzO07F9Hra68yGFUXCT7c3uBKmNlrprz1mjnT8LwWH30i/+ueWWiG\nwa3lmn+5z+Z6vU6kw5htMHxDN6T8BP05g3s5nSztGxn/TU5McGa/C4GYJPA52ooAu+rCt5Vfxztz\nHZlJTgbgZ11xeU95j82G+w/KnM0BZeZj1+gyvPTxBhp985PpNbr7/7dCLbpiBXWLBfflG1/7mgGZ\nZbBfEH3zPI+P2AvUqyc/E6Gh2ARszfK8DuCA5u8WV9Vsv14hcQZXQ1r65zBggOnyOdcAABRUSURB\nVOv7i/+CfxuwKocWwV0mNOUPGzM/4G5STrrbM6oHVHPNmQn6rZSfiY5JqNXa9Ts7FXnXp17TXTN1\nRTyclHch5Q70WvLMGV7QR0G6sPodzdZAWRTU1VKwFBkwT6JyqnhzJmt3jU7cZ57grOncgdSmrddL\nknppnHaShGOym1nHS3WjgKLrGMipJorc30dP1mT7bjs/jf6JGb1mMOHeCfj8GmfOJCgJap7wjM2p\nX9NNwfv6cmw2PHS6NjV8AmkaIm/5ml0JR7IHGio/38ueBuxW9fSp4/kjviez08seq5WUu+WY25xu\n8oPlcFsx1irUO89A5rbW4v2U9z2uAWi6/CTTn4gl75lH8WnazGPWdv4tDYIa0KlxJ1YOWak7f/BP\nnqnEkXUiyTHKVhY2yjX918uT94t1a9TloRYP8btzf3SdOznupEdzgHUPa/gsyspg5Eii/zyN1w9H\n0Sa/qUv+uDqt6XwEXtkCje5P1oWL/f2RxYZ9O/HwK+r5Q2/An7ZB2EWIuBRNS+qz9QNfOZLm70ow\nttL3ly3SDfub+JXBQbud7E/0h/5sXLuZrn+azct79WFAkeV3ErVCdX45tHHxBw9qIrRkbLhDXnGy\neDHMVlfZEedlP0bvg9B/P8Qdh/0feEYmOfHpx57HDppQ7G862I2wi9DkopwR/ea8B0z7BZhsYNb4\n+phmKfq+/Az7l8tj+mAeFL4OpQ0ba5SX27vXqRM9DJy+Tx2uA79oyMzqqdvkz5ZC+1/rYRid4laT\nd6DBGqnrtUb6CUGDHxdBwPm7POV09Q8+5WUs/NaTbhrg+NjjcMSTW4iVK5nZIwPfwrZeEtcF9Q/d\nQ0PfKOMLFNx0RZ6Tk0PLli1p0aIFM2YYTHFu+OTRTzwP9utHmwZtePHeF8nslelKGDGEJAg+3sLj\n8AcD3LRSSQmNLsPqhecpfqWE/Bd+RUwSDLH9in9BO12VEyeE5KDe3p66Y7nP5uqSFJo2b8+EvlM5\n86LeG5TR9S0AtkQFwIVGONwqywde1G9rQea21uL3sZ7RA690ewV/ewM23ns3Pz3/OFLdeh4kJ45y\n+fuJsSfY9uQ2+rfsrzvfvHZzJtyrJ3rK+2MefYyoIoQNXVk0IRG8vxtnXjzD6qGrqaEpp9YgqAFp\n8Wm65qsfX8390Q+qzUtLISwMXnqJFxYfQFxTzDbnmrD7j/v49l3F5vm53sU/rP3v6RvZV3dsctJk\n1/8va4it7r4A83Lg88+b83DZz+yfdIpuy77VhRjSSjZd1XxpEncF61dx+/6wD/wN4suvXSPkmjxB\nODFnrfEbKI0dy9RPL5AcnUzmGXm1vX3iITVuHzh9RKM5JIkV2fo+Ep5V4pFDQmCsnnfmpUnrWfcB\nrMyG3X+DkD2qnehYgJ4gzl/z6O1VaGCaaxmMnatnIOmDryicCwVz4XziZ3x2j/cs0jT92gORDgGz\n5qoHNLzoGRtgzYcQlvo0l+ITXRO4R6ZsuVzP1n0yfXuJxqw3cKDuXMoBGLLzbozgJAVw4qldntcs\nGqI4eEM8J8SYyX+l1uFYDCcJkE0rZYLTDYINT98VfBfEGey4atdm/H0Tkew1MJ8kBJKw0S7Qe/xh\nxVyiFUR5eTnPPfcc69evp3HjxnTo0IHk5GRatWqlu86Df9t1wnwLLZmEzAtkHoX9QwQtvUSruHNv\nu/qVAIfNkJReKINoKq/79Zrrjh0DXi/k/NhO4PDB4Zba7ldci+B9SVz62NxTI0mS4b2n5oFPgS9l\nncvkFGa3ScJRVgYOH6/8yJm9MuVJ8jqQHD56G6ZUrtsG29xSrt9Nfpd3k/VcNLo58uNsGDTY9VVO\nkqzY+H45zCgrU/aJ1L10SV3B5+fzysF3+P67AFo6V7mX3ewOmjjo42M9M23ONY+nzn5luS1J0L49\n5ORQXqc21+reSeDUQ5SYrOC0WJW6ClLBNW0Wq2yV3QcoyuiZZ2DgQEprh9AlbwXjB/fUkVQaomdP\n0/cl9NoVdSw++ICSenfS/dJ9nF27irYnQezYAelKVIm2SoYT06bBS7Iv5Z8p6PWX9rq0NDJPLiFw\nThE/7a5BRAQuRlFApn8AmeJitBLytX8/tGyJ38uzXAsQIeR3mDp1XO/pgVb12dtxDtMDRvAXZ8U5\nbd9PKw7QOnVcYYInHuoPJW8ZjIiAUjs89hhX69fh+cS2kL7Zc/jcDzj/1v/6L0TOKsyVrQOfbd9i\nj3PAW7tZ//c4F3W+Cx076scBVO4gr2RcDiSHxD//5Z1i5KauyLdv305kZCTNmjXDz8+P1NRUVhkx\n1VUakiFnMciKXBKSR8inBx58UM40c9pInT1LsqOz3Ih8Sku1WVmJJaDcj6LLpXL/uDnjJHFdonpv\n+HmfL6WOUjnZwW1FXuYoq3DYkhbd2Op5UNhwaEwrQhK6MfFRKtY3yu3u0dQJSYJ3kVfq0r5c/fYY\n9IrcWaBjvVmBYT1GYmB+8vVVzEuSmlCpdbK28TRrueN/+nzEmJoT1QO7dsG1awh/f06fkvRsAePH\ny463jAxo2hRGjTLvODLSkyDpb3+DOXMo85EQDps5x/vevSYnZBzBIAtuxAhspWX8eMCXn5xuhPYG\nfpJdmmWq0/ykYN8qkyr3X3xBsRBcLbbhZ+Q6cR783e8MTvm7VuTO30q72AooKQXhNhZzlZX+XXep\neQTO52X3bnNqYodDfsSWL8d28TLnr1TQz9O5s8xDBPLO1PR1lfO0h2w5A8KGr9mrN2KELLsT3dV3\nxrS4vBBIDglivbM03lRFfvToUZo0UT37YWFhHD1aiVJVJpCE5NUZABLXrYkQGCg/KJMn6w5Pn47y\nwOj737x5M9gcSOI3VJTHudL3g6DT4PDxmCjcFWKl0XYZw1YMY/2utR5jUy5+myI/36YbQ8OfodSm\nxj/jsFHq0IRhKLsU11fkgfcv8R4Q/xRqzODMgmWu/h2urpSxiIuTV0YeSxpjLGGkx7E688PI+DqD\nnCvT1PwsX1+5XyFQNZonNit82HXbNyXHN0l/skkTfE+cdKXnq3/QTFiwACZOhPx8mRfGDDYbPka7\ny3XriD1wkW93XzA0pwLQti00awbDh7vk1InHESY38tyCB1y8TGmYSiWAj486Fk7Ea8x6bore1iKC\nJr4GHtMTJ+h2pByEzfP9U7ZhmzdvlvPdnfGXdWVfkq/Nz7WTdJR7Rhw1y7/AF18XqqtxgDFjZJmP\nH1cnifBw+VhcnFJExEhPqOGN/nY7xdH6RYLRWAJy1TKFME+eI8xX5DYHbGpxFYJOceaM8WUEBcmy\nO8feNfuZFpuUHalIUGQwSWtwU00r3rbyN4qDnCOhvyfla3FwEYFFdZwhpb8NwsaJGhd0/R/7eS9X\n7gkh4ErFyYG0uHoVKFeebocPa4/s0/V/rsZFfH+DsnXHldMXEHEOXd/F5aUQU/k5+scfwXZfE1Zq\nS1gKGz87Trv6P1vjIr6q9sXXyVHjxToiSTB+/GbqXa1FkM9Fjpj75SqN0lK4FBTIHfarzJ++kGln\nn+W802zv5yVEwQSbN28mKSmJ4cPhjrCWhK6ozRzpGR5foDFD+V8nWP06uHgRGrzYhUdCupD+6ec0\nOaTZodQq4KA5rTXk5YHNxuYpU0hyow6w2+HxzBTify1iaNtRhJw7wzNTZOItUduApdMdpaVw9izU\n1wcKtGoFqz6VIAXmT1+IPSCQcX+Wd1jJBwAk9f27elX2RSi6wDmefPSR7LRVsoT9/fzAv4SE/sM4\nKoqQGsC8GYt4foKGHuAuk7J5JpBsNlefWlwJvkzNojqseuIPpLy/iCtuusIlozcIuBJ0yVAH0crO\nnETYFg18XCSbVSsDAQW284Z9l4QUUXq+PrxxGPCyWhU3Ed9++63o06eP63tGRobIzMzUXRMaGipk\n0a2P9bE+1sf6VPQTERFhqnslYVae4zegrKyM6OhoNmzYQGhoKB07dmTp0qUezk4LFixYsHDzcFNN\nK76+vrz55pv06dOH8vJy0tLSLCVuwYIFC//HuKkrcgsWLFiwcOtxw1ErRglA586do3fv3kRFRfHA\nAw9wwZ2X2EvbyrS/UTlfffVVYmNjiYuLo2fPnhQWepLZ3Eo5ze6zYMECWrVqRUxMDBMmTKhU21s1\nlnv27CExMZF27dqRnJzMJRM611sl56hRo2jYsCFt26qp0+PHj6dVq1bExsYycOBALl68aNj2Vo6l\nkZzp6emEhYURHx9PfHw8OTnGpDpVLef27dvp2LEj8fHxdOjQgR07dhi2vZVyFhYW0qNHD9q0aUNM\nTAzz58sEW8uXL6dNmzb4+Piwa5dBRlAVyHpTcSPOzbKyMhERESEOHz4s7Ha7iI2NFbm5uWL8+PFi\nxowZQgghMjMzxYQJEyrcVghRofY3Q86ioiLXNfPnzxdpaWlVJqfZfTZu3Ch69eol7Ha7EEKIU6dO\nVZmM3u6VkJAgtm7dKoQQIisrS7z66qtVKufWrVvFrl27RExMjOvYunXrRHl5uRBCiAkTJlT5c2km\nZ3p6upgzZ47XdtVBzu7du4ucnBwhhBBr1qwRSUlJVS7n8ePHxe7du4UQQly6dElERUWJ3NxcsX//\nfnHgwAGRlJQkvv/+e8O2t1rWm4kbUuTffPONLkpl+vTpIiMjQ0RHR4sTJ04IIeSBjY6OrlDb6dOn\nCyFEhdrfqJzOezmRkZFh+OPcKjnN7vPYY4+JDRs2/Ka2N1tGs3tlZGSIWrVquY4VFBSI1q1bV6mc\nQghx+PBhneLRYsWKFWLYsGFVLqORnOnp6WL27Nle21QHOVNTU0V2drYQQoiPPvqo2oynFikpKWL9\n+vWu794UeVXLeiO4IdOKWQLQyZMnaajUXmzYsCEnT8pkSseOHeMhpcK8t+Qhs/Y3W06Al19+mfDw\ncJYsWcJflOyDqpDT7D6//PILW7dupXPnziQlJbFz584qk9HsXseOHSMmJsaVxbt8+XKXmaqq5Lwe\nsrKy6NevX7WVccGCBcTGxpKWlubaxlc3OTMzMxk7dizh4eGMHz+e6dOnVys58/Pz2b17N506dTK9\nprrIeqO4IUVulADkfkySJNex0NBQvvjiC8PrhBCm/d1oopG39tOmTaOgoICRI0fywgsvVJmcZm3L\nyso4f/4827ZtY9asWTymZMhVt7F87733WLRoEQkJCVy+fBl/JdWvquT0hmnTpuHv78/QoUOrpYyj\nR4/m8OHD/PDDDzRq1IixCmFWdZMzLS2N+fPnU1BQwNy5cxmlUBNUBzkvX77M4MGDmTdvHsHBxmRW\n1UXWm4EbUuSNGzfWOQgLCwtp3LgxDRs25MQJOY35+PHjNNAUSDVre+TIERo3ltNQK9L+RuUMc6sE\nPnToUENnza2S02wsw8LCGKgwvXXo0AGbzcbZs2e9tq2KsYyOjmbt2rXs3LmT1NRUIiI8qYVvpZxm\nWLx4MWvWrOHDDz80PF8dZGzQoIFLWTz55JNs3769Wsq5fft2Bihc6YMHD642cpaWljJo0CCGDx9O\n/+uyj1WtrDcLN6TIExISyMvLIz8/H7vdTnZ2NikpKSQnJ7NkiUwLuWTJEsPBNGqbrNBpVqT9jcqZ\nnJxMXp5aJWDVqlXEx8dXuO3NltNsLPv378/GjXKVg19++QW73U7dunWv2/ZWj+Xp0zKrn8PhYOrU\nqYzWsrxVgZxGyMnJYdasWaxatYrAQIPqztVARpAVhRMrV67URYpUJzkjIyPZskXmV9+4cSNRUZ6c\n2bdaTiEEaWlptG7dmjFjjCuDCZOI6+owpr8ZN2pkX7NmjYiKihIREREiIyNDCCHE2bNnRc+ePUWL\nFi1E7969xfnz54UQQhw9elT069fPa1tv7W+2nIMGDRIxMTEiNjZWDBw4UJw8ebJK5TS6j91uF8OH\nDxcxMTGiffv2YtOmTVUqo9m93njjDREVFSWioqLExIkTXddWlZypqamiUaNGws/PT4SFhYn33ntP\nREZGivDwcBEXFyfi4uLE6NGjq1RGMzlHjBgh2rZtK9q1aydSUlJcTrbqJGdWVpbYsWOH6Nixo4iN\njRWdO3cWu3btqnI5v/rqKyFJkoiNjXX9zmvWrBErV64UYWFhIjAwUDRs2FD07du3ymW9mbASgixY\nsGDhNke1KPVmwYIFCxZ+OyxFbsGCBQu3OSxFbsGCBQu3OSqtyI24CCrKYTFy5EiCgoK4rKmfOGbM\nGGw2G+euW6vNggULFiwYoVKK3FlcOScnh9zcXJYuXcr+/ft54IEH2LdvH3v27CEqKsqV4eUOSZJo\n0aKFKwPQ4XCwceNGj5ju68FhUPHeggULFv6/olKK3Ky4cu/evbEpVW47derEEdOigzBkyBCys7MB\nucRS165d8fFR62IOGDCAhIQEYmJieOedd1zHg4ODGTduHHFxcWzbtq1Sf6QFCxYs/CejUoq8IsWV\ntRwWRoiKiuL06dNcuHCBZcuWkZqa6tF+586d7Nixg/nz53NeqaxdXFxM586d+eGHH+jSpUtlxLZg\nwYKF/2hUSpFfj1/AncPCDAMHDmTp0qV89913dOvWTXdu3rx5xMXFkZiYSGFhoSv70sfHh0GDBlVG\nXAsWLFj4f4FKlXrzxlni5LDYsGGD6/yoUaPYvXs3jRs3ZvXq1YA8GQwZMoR77rmHkSNH6iaHzZs3\ns2HDBrZt20ZgYCA9evTg6lW5EnpgYGC1I6qxYMGCheqASilyLRdBaGgo2dnZLF261MVhsWXLFh2H\nRVZWlkcfQgjCw8OZNm0avXv31p0rKiqidu3aBAYG8vPPP1u2cAsWLFioACqlyM2KKycnJ2O3212K\nOTExkUWLFhn24VxVP/300x7H+vbty1tvvUXr1q2Jjo4mMTHR4xoLFixYsKCHxbViwYIFC7c5rMxO\nCxYsWLjNYSlyCxYsWLjNYSlyCxYsWLjNYSlyCxYsWLjNYSlyCxYsWLjNYSlyCxYsWLjNYSlyCxYs\nWLjNYSlyCxYsWLjN8b/xJpl7VcNCSgAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x10799e890>" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "lc.peek()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stderr", "text": [ "/Users/schriste/anaconda/lib/python2.7/site-packages/matplotlib/figure.py:371: UserWarning: matplotlib is currently using a non-GUI backend, so cannot show the figure\n", " \"matplotlib is currently using a non-GUI backend, \"\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEQCAYAAAC0v9O7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYFFcXh3+zFGlLR0WaXRGxxF4QsNcoEg0WBDWxm6Ix\nikbBaDRGE2P3i7GiwR6xgagU0QjYC3akKCAovbPsnu+PlYFhd4GlKOq8zzMPO7eeGe7MmdvOYYiI\nwMPDw8PD8xbB+xaAh4eHh6duwSsGHh4eHh4OvGLg4eHh4eHAKwYeHh4eHg68YuDh4eHh4cArBh4e\nHh4eDrxi+MjYs2cP7Ozs3rcYaNu2LS5duvS+xeDh+WRwcHDAzp07a6SsT04xNG7cGFpaWhAKhWjY\nsCFcXV2RmZnJxru7u2Pp0qWcPDExMRAIBJBIJGyaevXqQSgUskfHjh3Z9Dt37oS1tTV0dXXRsGFD\nDBs2DNnZ2QCAly9fwtnZGSYmJtDX14etrS327t0rtx55nD59Gl27doWOjg6MjY0xceJExMfH19j9\nqSnu37+PPn361Hi5hYWFmD9/PiwsLCAUCtGkSRN8//33NV5PXSQzMxPfffcdrKysIBQK0bx5c3z/\n/fdISUmp1Xor87Hh4OAATU1NCIVCGBsbY+TIkXj58mWlyg8ODoaFhUVNiFohhYWF8PLyQsuWLaGj\no4MmTZpg6tSpiI2NfSf1K6Iyz35FMAwDhmFqRJ5PTjEwDIPTp08jKysLd+7cwb1797By5UpOfEU3\nl2EYLFy4EFlZWexx69YtAEBISAiWLFmCgwcPIjMzEw8fPoSLiwub19XVFVZWVoiLi0Nqaiq8vb3R\noEGDSsl+9OhRTJgwAfPmzUNKSgoiIyNRr1499O7dG+np6VW4G1WjqKjondVVltWrV+PmzZu4du0a\nsrKyEBwcjE6dOr03eaqKsvewsLAQ/fr1w8OHD3Hu3DlkZWXh6tWrMDY2RkRERC1JWXkYhsGWLVuQ\nlZWFqKgo5OfnY968ee9bLBm++OILnD59Gj4+PsjMzMSdO3fQuXNnXLx4UemyxGIx55yIUN39wnVm\nvzF9YjRu3JguXrzIni9YsICGDh3Knru7u9PSpUs5eaKjo4lhGBKLxQrTFLN27VoaNWqUwvp1dHTo\nzp07cuPK1lMaiURClpaWtHbtWpnwtm3b0rJly4iIaPfu3dSrVy+aM2cO6enpUevWrTnXu3v3bmra\ntCkJhUJq0qQJHThwgI3buXMnWVtbk4GBAQ0aNIhiY2PZOIZhaMuWLdSiRQtq0qQJzZw5k3744QeO\nLJ9//jmtX7+eiIisrKzYej09PWnMmDE0adIkEgqFZGNjQ9evX2fz3bhxgzp06EBCoZDGjBlDY8eO\npZ9++knuPRo+fDj9+eefcuOK5YyKimLP3dzc2LKCgoLIzMyMfvvtNzIxMSFTU1P6999/6cyZM9Si\nRQsyNDSk1atXs3k9PT3piy++oIkTJ5JQKCRbW1t68uQJrVq1iurXr0+WlpYUEBDApt+1axdZW1uT\nUCikpk2b0v/+9z82rrjuNWvWUMOGDcnV1ZXatm1Lp06dYtMUFhaSkZER3b59W+a6duzYQQ0aNKCc\nnByF1/7gwQOyt7cnfX19srGxoZMnT7Jx9vb29Pfff7Pnu3fvpt69e3Pu2/bt26lFixakr69Ps2fP\nZsvU0NAgFRUV0tHRIQMDA7l1Ozg40M6dO9nzLVu2UJs2bSq8N9nZ2aShoUECgYB0dHRIKBRSYmIi\nSSQSWr16NTVr1oyMjIxo7NixlJqaSkREeXl5NGHCBDIyMiJ9fX3q0qULJSUlKbwvxZw/f540NTXp\n5cuXCtPEx8fTiBEjyNDQkJo3b047duxg4zw9PcnZ2ZkmTpxIurq69Pfff5O9vT0tXryYevbsSZqa\nmhQVFUUPHz6k/v37k6GhIbVq1YoOHz7MlpGbm0vz5s0jKysr0tPTIzs7O8rLyyMLCwtiGIZ0dHRI\nR0eHwsLCiKj8ZzIgIIBatWpFenp6NGfOHJn/cXX4JBXDhQsXiIjoxYsXZGtrS8uXL2fj3d3dZV5K\n8hSDohdXaGgoaWpqkqenJ12+fJny8/M58f3796devXrRwYMHOf9kefWU5uHDh8QwDMXExMjEeXp6\nUo8ePYhI+sCrqqrSn3/+SUVFRXTo0CHS09OjtLQ0ys7OJl1dXXry5AkREb169YoiIyOJiOjEiRPU\nvHlzevToEYnFYlq5ciX17NmTrYNhGBo4cCClpaVRfn4+Xbp0iSwsLNj41NRU0tTUpMTERPY+l1YM\nGhoa5OfnRxKJhDw8PKh79+5ERFRQUECWlpa0ceNGKioqouPHj5O6urpCxbty5UqytLSkrVu30t27\nd0kikXDiyyqG0ko8KCiIVFVVacWKFVRUVEQ7duwgIyMjGj9+PGVnZ1NkZCRpamqy97hY7oCAACoq\nKqJJkyaRlZUVrVq1is3fpEkTtq4zZ87Q8+fPiYgoJCSEtLS06ObNm5y6Fy1aRIWFhZSXl0e//fYb\nffnll2z+EydOULt27eRe95dffknu7u5y44ikSqVZs2a0evVqEolEFBgYSEKhkP1fl31xy1MMI0aM\noIyMDIqLiyMTExPy9/cnIqI9e/Zw0srDwcGBfSm9efOG+vXrR5MnT67UvQkODiZzc3NOeX/++Sf1\n6NGD4uPjqbCwkKZPn07jxo0jIqLt27fTiBEjKC8vjyQSCd28eZMyMzPLlY+IaOHCheTg4FBuGjs7\nO5o9ezYVFBTQ7du3ycTEhAIDA4lI2h7U1NTI19eXiKQKyt7enqysrOjBgwckFospPT2dzM3Nac+e\nPSQWi+nWrVtkbGxMDx48ICKiWbNmkaOjIyUkJJBYLKarV69SQUEBxcTEyDz75T2Tr1+/JqFQSMeO\nHaOioiJav349qaqqcv7H1eGTUwxWVlbslwnDMDRq1CjOP8PNzY00NDRIX1+fPXR1dUkgELDp5KUp\n/dD6+fnRiBEjSF9fn3R0dGjevHls3rS0NFq0aBHZ2NiQiooKdejQga5du0ZE5SuG0NBQYhiGCgoK\nZOK2bdtGLVq0ICLpA9+oUSNOfNeuXcnb25tycnJIX1+fjh07Rrm5uZw0gwcP5jQqsVhMWlpaFBcX\nR0TSF0dQUBAbX9yDuXTpEhER/fXXX9SvXz82vqxiGDBgABtX/AImkr4kzMzMOLL07t1boWIQi8W0\nZcsW6tWrF9WrV48aNWpEe/fuZePlKYbSPQZNTU1WmWRmZhLDMBQREcGm79SpE/vge3p60sCBA9m4\nkydPko6Ojkz+jIwMubKOGjWKNmzYwNatrq7O+f/Fx8eTjo4OZWVlERGRs7OzTI+wmAEDBpCHh4fc\nOCKiS5cuUcOGDTlh48aNIy8vLyKqnGK4cuUKez527Fj69ddf5aaVh729PWlpaZGenh4xDEPdunWT\naWOlKXtvyioGa2trTk83ISGB1NTUqKioiHbt2kU9e/aku3fvlitTWb766itycXFRGB8XF0cqKiqU\nnZ3Nhnl4eLDPtqenJ9nb23PyODg4kKenJ3t+8OBBsrOz46SZNm0aLV++nMRiMWlqasqVW96zr+iZ\njI2Npb1797Ifg8WYm5vXmGL4JOcYfH19kZmZieDgYAQGBuL69euc+AULFiAtLY097t69yxn7k5dm\n9+7dbPzgwYNx8uRJpKWlwdfXF3v27MHff/8NANDX18fq1atx//59JCUloUOHDhg1alSFchsbGwMA\nEhMTZeISExNhYmLCnpuZmXHirayskJiYCC0tLRw6dAjbt29Ho0aNMHz4cDx+/BgAEBsbi2+//RYG\nBgYwMDCAkZERAHAmtktPEDIMAxcXF/j4+AAA/vnnH0yYMEGh/KXnUbS0tJCfnw+JRIKEhAQZeS0s\nLBSOtQoEAsyaNQuXL19GRkYGlixZgilTprDXURFGRkbsHJKmpqaMbJqamuxCAQCoX78+J87Y2Fgm\nf3F6Pz8/dO/eHUZGRjAwMMDZs2c5E8MmJiZQV1dnzxs1aoRevXrh6NGjSE9Ph7+/v8J7aGRkhISE\nBIXXlZCQIDOBa2VlVW6esjRs2JD9raWlhZycnErnZRgGmzZtQnp6Ou7evYvY2FicPXuWja/o3pQl\nJiYGTk5ObHts06YNVFVVkZycDFdXVwwaNAguLi4wMzPDwoULKzVnY2xsLPf5KSYhIQGGhobQ1tZm\nwywtLTnPgLm5uUy+0vc9NjYW4eHhrNwGBgb4559/kJSUhJSUFOTn56NZs2YVylpclqJnMjExUUaW\nmpzA/+QUQ2n69OmDuXPnYuHChZzwsi8lRS+pytC3b1/07dsXkZGRMnFGRkaYP38+EhISkJaWVm45\nrVq1grm5OQ4fPswJl0gkOHbsGPr168eGlV2lFBsbi0aNGgEABg4ciICAALx69QqtW7fG119/DUD6\nAPz1118cZZeTk4Pu3buz5ZSdlB83bhyOHj2K2NhYREREwNnZuRJ3hIupqamMvHFxcZVaXVGvXj3M\nmjULBgYGePDgAQDpCy03N5dNk5iYWGMrNcqjoKAAzs7O+PHHH5GcnIy0tDQMHTpU5oOiLG5ubti/\nfz+OHDmCnj17wtTUVG75/fv3x7lz5zjXVppGjRrhxYsXnPpiY2NZpautrc150b969arS11bZ+1dc\nd9u2bbFixQosWrQIRFThvZFXvqWlJfz9/TntMTc3F6amplBVVcWyZcsQGRmJ//77D6dPn8a+ffsq\nlK9///6IiIhQuIqvUaNGSE1N5XwYxMXFcV7A8mQtHWZpaQl7e3uO3FlZWdiyZQuMjIygoaGBZ8+e\nlVtG6bLkPZM9evSAqakpXrx4waYlIs55dfmkFQMAfPfdd4iIiEB4eDiAyikBKmf1wcmTJ3Ho0CGk\npaWBiBAREYGQkBD2Bbtw4UJERkaiqKgIWVlZ2LZtG1q0aAEDA4Ny62QYBuvWrcPKlSvh4+OD/Px8\nvHr1Cl999RWys7M5SzaTk5OxceNGiEQiHDlyBI8fP8bQoUORnJwMX19f5OTkQE1NDdra2lBRUQEA\nzJgxA6tWrWJfsBkZGThy5Ei5MnXo0AHGxsb46quvMHjwYOjq6lZ478rSo0cPqKioYPPmzSgqKoKv\nry+uXbumMP2GDRsQEhKCvLw8FBUVYe/evcjOzmaXC3fo0AEHDhyAWCyGv7//O9tLUVhYiMLCQhgb\nG0MgEMDPzw8BAQEV5nNycsLNmzexceNGTJo0SWE6V1dXWFhYwNnZGY8fP4ZEIkFKSgpWrVrFfo1r\naWnht99+g0gkQnBwME6fPs2uiOvQoQOOHz+OvLw8PHv2rML17qXbeIMGDfDy5UuIRKJK3w83Nzfk\n5ubi8OHDFd6bBg0aICUlhbNsfMaMGVi8eDHi4uIAAK9fv8bJkycBSJe33rt3D2KxGEKhEGpqamw7\n9vLygqOjo1yZ+vXrhwEDBrD3vPgZ3L59O3bv3g0LCwv07NkTHh4eKCgowN27d7Fr1y5MnDixwntV\nzPDhw/HkyRPs378fIpEIIpEI165dw6NHjyAQCDBlyhTMmzcPiYmJEIvFuHr1KgoLC2FiYgKBQICo\nqCjOPVD0TA4dOhSRkZH4999/UVRUhI0bNyql7Cvik1cMxsbGcHNzw5o1awAoXq5aOoxhGPz222+c\nfQzFQw4GBgbYsWMHWrZsCT09Pbi6uuLHH3/EuHHjAAB5eXlsF7lZs2Z48eIF2+DL1lOWsWPHwtvb\nG+vXr4exsTFsbGxQUFCAK1eusIqFYRh0794dT58+hYmJCZYuXYqjR4/CwMAAEokE69evh5mZGYyM\njBAaGopt27YBAEaNGoWFCxfCxcUFenp6sLW1xblz5yqUa/z48QgMDMT48eMVyi3vnhafq6ur4/jx\n49i5cycMDAxw4MABDB8+nDPkUhotLS3Mnz8fpqamMDExwbZt23Ds2DE0btwYgFRxnDp1iu3COzk5\nya23ouuqSO6y50KhEBs3bsTYsWNhaGgIHx8fjBw5ssK6NDQ0MHr0aMTExGD06NEKZVFXV8eFCxfQ\nunVrDBgwAHp6eujWrRtSU1PRvXt3qKmp4dSpU/Dz84OJiQnmzJkDb29vtGzZEgDw/fffQ11dHQ0a\nNMDkyZMxceJEmTat6Nr79esHGxsbNGzYkDO0Ju9+FaOmpoZvv/2WfU7KuzetW7fGuHHj0LRpUxga\nGuLVq1f49ttv8fnnn2PgwIHQ1dVFjx492GW5r169wpgxY6Cnp4c2bdrAwcEBrq6uAIAXL16gd+/e\nCmU8evQohg4dii+//JLdR3Tz5k0MGDAAAODj44OYmBg0atQIo0ePxs8//4y+ffvK3BNF162jo4OA\ngAAcPHgQZmZmMDU1hYeHBwoLCwEA69atg62tLbp06QIjIyN4eHiAiKClpYUlS5agV69eMDAwQERE\nRLnPpLGxMY4cOYJFixbB2NgYz549K/e6lYWh6oyT1DKPHj3Chg0bkJKSgkGDBmHq1KnvWySed0C3\nbt0wa9YsuLm5vW9R3gkrVqzA06dPKzUcwlM+HTt2RGBgYIU9cJ7yqdOKoRiJRAIXFxeZ8XWej4NL\nly6hZcuWMDY2xoEDBzBr1iw8f/680hv/PmRSU1PRqVMneHt71+gXHw9PdXjnQ0lTpkxBgwYNYGtr\nywn39/dH69at0aJFC3ZYBwBOnTqFYcOGcXYP83xcPH78GB06dICBgQHWr1+Po0ePfhJKYceOHbC0\ntMSQIUN4pcBTp3jnPYbQ0FDo6Ohg0qRJuHfvHgDp1vJWrVrhwoULMDMzQ5cuXeDj4wNra2s238iR\nI+Hr6/suReXh4eH5JFF91xXa2dkhJiaGExYREYHmzZuzE4guLi7w9fVFcnIyjh8/jvz8fIUrDXh4\neHh4apZ3rhjkER8fz9mcYW5ujvDwcNjb28Pe3r7C/GZmZkpt5OHh4eHhAdq3b4/bt2/LhNeJ5arV\n3YCUkJDArruuy4enp+d7l+FjkJGXk5ezrh8fipx37tyR+06tE4rBzMyMs2vvxYsXcree8/Dw8PDU\nPnVCMXTu3BlPnz5FTEwMCgsLcejQIXz++edKleHl5YXg4ODaEZCHh4fnIyI4OBheXl6KE9A7xsXF\nhUxNTUldXZ3Mzc1p165dRER09uxZatmyJTVr1oxWrVqlVJnv4TKqRGnrpHWVD0FGIl7OmoaXs2b5\nUORU9O78IDa4VQTDMPgILoOHh4fnnaLo3VknViXVBF5eXnBwcICDg8P7FoWHp8oYGhpWaGmXh0dZ\nDAwMkJqayp4HBweXO/TO9xh4eOoQfFvmqQ0UtStF4XVi8pmHh4eHp+5Q4VBS8R6BYoKCgiq0T87D\nw8PD8+FSoWK4du0a9u7di/bt2wOQGjyri4qBn2Pg4eHhqRw1Msfw6tUr1h9scnJyuc463gf8uCzP\nxwLfluXj7u4OCwsLrFix4n2L8kFSK3MMxUrh6tWrdU4p8PDwvBsmTpwIU1NT6OrqomnTpvjll1+q\nVZ5YLMZPP/0EMzMz6Orq4rPPPkNGRobctIq8p5XHr7/+KtfW2ps3b6Curs66zOSRRanJ59I+WXl4\neD4tPDw8EB0djczMTPj5+WHTpk3w9/evcnmenp4ICwtDWFgYMjMzsX//fmhoaChMr2xPytXVFf/9\n95+MNeeDBw+iffv2aNOmTVXE/iTgVyXx8PBUChsbG86LW1VVtcojCGlpadiwYQN27NjBWlZu06YN\n6tWrV2HerKwsODo64rvvvgMgdQE8YMAAGBkZoXXr1jhy5AgAqQ22vn37wtvbm5N/3759mDRpUpXk\n/lT4aBQDbyuJ52OHYWruqCqzZs2CtrY2bGxs8NNPP+Gzzz6rUjn37t2Dqqoqjhw5AlNTU7Rq1Qpb\nt24tNw/DMEhJSUG/fv1gZ2eHP//8Ezk5ORgwYAAmTpyI169f4+DBg5g1axYePnwIAHBzc+MohseP\nH+POnTsYP358leT+WKgxW0kSiYRiY2OraJGjdlHiMnh46jTltWWg5o7qIJFIKCgoiIyMjCg8PLxK\nZRw4cIAYhqGvvvqK8vPz6e7du2RiYkLnz5+Xm97d3Z2mTJlCbdu2pXXr1rHhBw8eJDs7O07aadOm\n0fLly4mIKCcnh3R1dem///4jIqLFixfTqFGjqiTzh4yidqUoXKkew9ChQ6uho3h4eKpDTaqG6sAw\nDBwcHDBmzBj4+PjITWNjYwOhUAihUIgrV67IxGtqagIAli1bhnr16sHW1hYuLi44e/asgmsnnDlz\nBvn5+Zg+fTobHhsbi/DwcBgYGLDHP//8g6SkJACAlpYWxowZg3379gEADhw4wA8jVYJK20piGAad\nOnVCREQEunbtWpsy8fDwfACIRCIYGRnJjYuMjCw3b7t27eSGK1p5xDAMvv76a6SlpWHo0KHw9/eH\nlpYWLC0tYW9vj4CAAIV1ubm5YdSoUXByckJ2djZGjBhRrmw8Ss4xhIWFoUePHmjatClsbW1ha2ur\n8B/Mw8Pz8VA8fp+TkwOxWIxz587hyJEjGDlyZJXKa9asGezs7PDLL7+gsLAQDx8+xKFDhzB8+HC5\n6eltN2fz5s1o1aoVRowYgfz8fAwbNgxPnjzB/v37IRKJIBKJcO3aNTx69IjNa2dnB319fUyfPh3j\nxo2DqupHYzu01lBKMZw7dw5RUVEICgrC6dOncerUKZw8ebK2ZFMKfvKZh6f2YBgG27dvh7m5OYyM\njLB06VJ4e3ujS5cuVS7Tx8cHsbGxMDIywvDhw7Fy5Uo4OjoqrL+4N/HXX3/B3Nwco0aNgrq6OgIC\nAnDw4EGYmZnB1NQUHh4eKCws5OSfNGkS4uLi+GGkt1Q0+ay0ddXbt28jNDQUDMPAzs6ONZXxPuF3\ni/J8LPBtmac2qFXrqhs2bGCXhSUlJWHixInYuHFj1aXl4eHh4alzKNVjsLW1RVhYGLS1tQEAOTk5\n6N69O+7du1drAlYG/iuL52OBb8s8tUGt+2MQCARyf/Pw8PDwfBwoNT0/efJkdOvWDaNHjwYR4cSJ\nE5gyZUptycbDw8PD8x5QevL5xo0buHz5Mjv53LFjx9qSrdLw3W+ejwW+LfPUBsoOJSnVY1i4cCHW\nrFmDTp06yYS9b3hHPTw8PDyVo0Yc9RTTsWNH3Lp1ixNma2vLTz7z8NQQfFvmqQ1qpcewbds2bN26\nFVFRUbC1tWXDs7Ky0KtXr2qIy8PDw8NT16hUjyEjIwNpaWlYtGgR1qxZw2oYoVCo0FbKu4T/yuL5\nWODbctUQCAR49uwZmjZt+r5FqZPUynJVPT09NG7cGAcPHoSVlRUaN26Mxo0b1wmlwMPD8+44ePAg\nrK2toaOjg+bNm+Py5ctVLmvatGlo3bo1VFRUsHfvXk7c3r170blzZ+jp6cHCwgILFy6EWCyurvgc\nWrdujd27d8uEb9iwoVqmPj4GlNqI4ObmhrS0NPY8NTWVX67Kw/OJcP78eSxatAh79+5FdnY2QkND\nq/WF3qFDB2zduhWfffaZjFXVvLw8bNiwASkpKQgPD8fFixexbt266l4CB3d3d9Ycd2m8vb3h7u5e\no3V9cCjj7KF9+/aVCnvXKHkZPDx1lrrclnv06EG7du2q8XJ79+5Ne/fuLTfNH3/8QSNGjFAYzzAM\nRUVFERFRaGgoWVhYUEhICBER7dy5k6ytrcnAwIAGDRrEOhx78eIFqaqqchyQRUZGkrq6OqWkpFT3\nsuoUitqVonCllqsSEVJTU2FoaAhA2mOo6e4dDw+PfJjl1fDJWQbyVG4eQywW48aNGxg5ciRatGiB\n/Px8jBo1CmvXruX4ga4tQkJC0LZt2wrT+fv7Y9q0aTh+/Dg6d+4MX19frF69GqdPn0aLFi2wevVq\njBs3DleuXIG5uTkcHR3h7e2NJUuWAJD2FoYNG8a+4z5VlBpKmj9/Pnr06IGlS5fip59+Qo8ePbBg\nwYLakk0peLPbPDy1R1JSEkQiEY4dO4bLly/j9u3buHXrFlauXFnrde/atQs3b97EDz/8UG66Q4cO\nYcaMGfD390fnzp0BANu3b4eHhwdatWoFgUAADw8P3L59Gy9evADA9QktkUjwzz//wM3NrXYvqA5Q\nYz6fi7l//z5t2rSJNm3aRJGRkcpmrxWqcBk8PHWSutqWU1NTiWEY2rdvHxt27Ngx6tixo9z0bdq0\nIR0dHdLR0aHLly+XW3Z5Q0n//vsvNWjQgO7fv19uGQzDUMOGDenHH3/khFtbW5OOjg7p6+uzh5aW\nFl29epWISnxCh4WF0cWLF8nY2JhEIlG5dX2IKGpXisKVGkqSSCS4efMmUlNTsWzZMsTFxfGuPnl4\nPgEMDAxgbm5e6fQVufasDMXDQmfPnoWNjU2F6Y8cOYIpU6bAzMwM33zzDQDA0tISS5cuxbhx4+Tm\n0dLSwhdffIF9+/YhLy+P9/BWjDJaZ/r06TRz5kxq3bo1ERGlpKRQp06dlNRdNY+Sl8HDU2epy215\n2bJl1KVLF0pOTqbU1FTq3bs3LVu2rMrlFRYWUl5eHvXs2ZN27NhBeXl5JJFIiIjo4sWLZGhoSKGh\noZUqq3jyOS4ujpo2bUrbtm0jImmPo23btuzoRnp6Oh0+fJiTNyQkhAwNDUlXV5euX79e5eupyyhq\nVwrDlSm8Q4cOnL9ERO3atVOmiFqhLj9MPDzKUJfbskgkolmzZpG+vj41bNiQvv32WyooKKhyefb2\n9sQwDAkEAmIYhhiGYVcSOTo6kpqaGjscpaOjQ0OHDlVYlkAgYFclRUdHk5WVFe3cuZOIiLy9vcnW\n1pZ0dXXJwsKCpk6dKpO/adOmZGNjU+VrqesoqxiUspXUrVs3/Pfff+jcuTNu3bqF169fY+DAgTL2\nk941/G5Rno8Fvi3z1Aa16qhn7ty5cHJyQnJyMhYvXoxevXrBw8Oj6tLy8PDw8NQ5lPbH8PDhQ1y8\neBEA0K9fP1hbW9eKYMrAf2XxfCzwbZmnNlC2x6CUYpDne6Eu+GPgHyaejwW+LfPUBrU6lBQQECAT\ndvbsWWWK4OHh4eGp4/D+GHh4eHh4OFTJHwMgtZvE+2Pg4alZ+LbMUxvUqj+Gf/75B5cuXcLevXvR\nuHFj5OSL/0y5AAAgAElEQVTkICIiovpS1wC8rSQeHh6eylGRrSSlJp9nzJgBgUCAwMBAPHr0CKmp\nqRg4cCCuX79eE7JWGf4ri+djgW/LPLVBrU4+h4eHY+vWrdDU1AQAGBoaQiQSVVFUHh4entpnz549\nsLOze99ifFAopRjU1dU5/hdev34NgUCpInh4eD5QNm/ejM6dO0NDQwOTJ0/mxIWFhWHAgAEwMjJC\n/fr1MXbsWLx69arKdVXk2tPBwQGampoQCoUQCoU1vp8qLCwMOjo6yMnJkYnr2LEjtm7dWqP11TX4\nnc88PDyVwszMDEuXLpXrzjc9PR0zZsxAbGwsYmNjIRQKZZSHMlTk2pNhGGzZsgVZWVnIysrCw4cP\nq1yXPLp37w5zc3McPXqUE37//n08fPhQobXWjwWl7MtOnDgRnTp1QmBgIIgIvr6+dWLnMw8PT+3j\n5OQEALh+/TpevnzJiRs8eDDnfPbs2XBwcKhyXTNmzGB/N2rUCBMmTEBQUBAnTVXnYhYsWICwsDCc\nPXsWEokE8+bNg5+fHwQCASZPnozly5dDIBDAzc0N+/bt4zju2bdvH4YNGwYDA4OqXdgHQqV6DL//\n/jt7+Pn5IT8/HwUFBfDz88Mff/xR2zLy8PAAAMPU3FENKvNCvnTpUqVccVYWea49PTw8YGJigt69\neyMkJKTCMogIX3/9Ne7fv4/z589DKBTC3d0d6urqiIqKwq1btxAQEIC///4bgPRD+NKlS6wSlEgk\n8PHx+SQ8vFVKMWRlZSE7Oxs3btzAtm3bkJCQgPj4eGzfvh03b96sbRl5eHjqEEwFiuXu3btYsWIF\n1q5dWyP1yXPtuWbNGkRHRyMhIQHTpk3DiBEj8Pz5c4VliEQiuLi4ID09HadOnYKGhgaSkpLg5+eH\n9evXQ1NTEyYmJvjuu+9w8OBBAICFhQUcHBxY158XL15EQUEBhg0bViPXVadRxqZ37969KTMzkz3P\nzMyk3r17K1NEraDkZfDw1Fk+hLa8ZMkScnd3lxv39OlTMjMzo/379yvMf+nSJdbHQtu2bcutq7Ku\nPQcPHkybNm2SG7d7924yMjIiTU1Nunv3LhseHh5OAoGA4/ZTV1eXI5O3tzdZW1sTEZGrqyt98803\n5cpRV1HUrhSFKzXHkJycDDU1NfZcTU0NycnJNaqoeHh46jaKegyxsbEYMGAAli1bhgkTJijMb2dn\nh6ysrArrUda1Z3lYW1tj9uzZGDJkCAIDA9GyZUtYWFigXr16SElJUbi60snJCbNmzUJQUBD+/fff\nSg1ZfQwopRgmTZqErl27YvTo0SAinDhx4pMYb+Ph4QHEYjFEIhGKioogFotRUFAAVVVVqKioID4+\nHn379sWcOXMwbdq0atcVGBiICRMmwNfXF507d+bEZWRkICwsDPb29lBVVcWhQ4cQGhqKTZs2lVum\ni4sLCgsL0b9/fwQHB6Np06YYOHAg5s2bhxUrVkBbWxvR0dGIj49Hnz59AADa2tr44osvMHnyZDRu\n3BifffZZta/tg0DZLsn169dp/fr19Oeff9LNmzeVzV4rVOEyeHjqJHW5LXt6erIuOIuP5cuXExGR\nl5cXMQzDccUpFAqrXFd5rj2Tk5OpS5cuJBQKSV9fn3r06EEXLlxQWNaePXvIzs6OPd+xYwdZWVlR\nbGwsZWRk0MyZM8nc3Jz09PSoY8eOdOjQIU7+4OBgYhiGfvvttypfz/tGUbtSFK60o566CG9GgOdj\ngW/LPLVBrZrEqMvwDxMPDw9PzfDRKAbT303ftwg8PDw8HwVKTT6/a3x9fXHmzBlkZmZi6tSpGDBg\ngMK0STlJ71AyHh4eno+XD2KOIT09HT/88AO7I7EsDMMAXoBkmaTCzTc8PHUZfo6Bpzao83MMU6ZM\nQYMGDTguQgHpmuXWrVujRYsWrJe4YlauXIk5c+ZUWLbg549mZIyHh4fnvVHhm7TY/EXxsX///mpV\nOHnyZPj7+3PCxGIx5syZA39/fzx48AA+Pj54+PAhiAgLFy7EkCFD0KFDh0qVf+7ZOZmw52nPUSQp\nqpbcPDw8PJ8KFc4xXLt2DXv37kX79u0BAI8fP8bEiROrXKGdnR1iYmI4YREREWjevDkaN24MQLoR\nxdfXFxcuXMDFixeRmZmJZ8+eYfr06RWWP/jAYJBnSdfo55Cf4RnsCQCccB4eABBLxFARqLxvMXh4\n6hQVKoaRI0eiW7duaNiwIQDUigmM+Ph4WFhYsOfm5uYIDw/Hpk2bMHfu3MoV8i8AfenPP/X+RIcO\nHeDg4CBVCtHcpMW+oYvNAvPnn+b5a5PXGHt0LEbVG4Vvu3/73uWpjplqHp7KEBwcjD179gAA+yEu\nD6Umn69evYoePXpUVzbExMRgxIgRuHfvHgDg2LFj8Pf3x44dOwAA+/fvZxVDZSiefC4mZ4EEWlrS\nSWhmeclkdN6SPGioalRbfp6Pg9Jto670JvnJ55pnz5492LlzJ0JDQ9+3KO+NWp18zszMrLpk5WBm\nZoYXL16w5y9evIC5ublyhUT1Z39qN7nP/u5l0Zv97XPPp+pC8vB8whQWFmLq1Klo3LgxdHV10bFj\nR85cYUxMDAQCAetqUygU4pdffqlyfXv27IGKigqnvEuXLrHxqampcHJygo6ODho3bgwfn5p9tj91\n1551Yh9D586d8fTpU8TExKBRo0Y4dOiQ0v/o1je74JHgAtAEwPROAAoBAFdeXGbTHLhxEpM7Vt3d\nIM/HS6FIDHU1fq5BEUVFRbC0tMSlS5dgaWmJM2fOYOzYsbh37x6srKzYdJmZmTW2ZLxXr14cZVCa\n2bNnQ0NDA8nJybh16xaGDRuG9u3bo02bNjVSd2nXnqUNhX4srj2Dg4PZIUx5vPP1nePGjUPPnj3x\n5MkTWFhYYPfu3VBVVcXmzZsxaNAgtGnTBl9++aXSLkMf3FslVQoAoCLCzp1Aejo3zcX4EzVzETwf\nHScCUt63CHUaLS0teHp6wtLSEgAwbNgwNGnSRMZRl0QiqbE6FQ2p5eTk4Pjx41ixYgW0tLTQq1cv\njBw5knWoUxELFixgTX9nZGRg6tSpaNSoEczNzbF06VL2Gopde5bmY3Ht6eDgAC8vL4XxSvUYyu49\nqAqKegJDhgzBkCFDqlxu2Y+Ur75LxFdfmQKu/YFmF9jw3FxAS6vK1XyQxKbH4k7SHXze6vP3LUqd\n5cvvbmLssMEVJ3yPMOV84SkLVXOiOykpCU+ePJHxk2BlZQWGYTBgwACsXbsWRkZGVSqfYRjcunUL\nJiYmMDQ0hKurKzw8PKCiooInT55AVVUVzZs3Z9O3b9++3C9gQKpopk2bhpcvX+L8+fPQ0NCAk5MT\nGjZsiKioKGRnZ2P48OGwsLDAtGnTMHHiRCxbtgwvX76Eubk569pzy5YtVbqmDwmlegyNGjWqLTlq\nnh8aAWbhgIqIE6xv+VJBhrrDofuHsDRwaY1NQjbe0BgjD47E+ajzNVLeR0mn/71vCT4YRCIRJkyY\nAHd3d7Rs2RIAYGJiguvXryMuLg43btxAVlZWuc56KqJPnz6IjIzE69evcezYMfj4+LCuQrOzs6Gr\nq8tJLxQKy3X+w7v2VA6legyHDx/G4MGDoaurixUrVuDmzZtYunRpnXBe4eXlhXN25zDo8qCSwK+7\ny6QT9f0ewJF3J1gVcDnmAgBwsnbCZ6Y1d2//uf8PBjRTbG/qkybDquI075nqfuXXBBKJBK6urtDQ\n0MDmzZvZcG1tbfY9UL9+fWzevBmmpqbIycmBtrY2p4zQ0FAMHToUgHTJZPHqxNI0adKE/d22bVss\nW7YMa9euxaJFi6CjoyOzECYjIwNCoVCh3M+ePcPdu3cRHh4OVVXpay82NhYikQimpiUGOCUSCTtc\nBkiHk1atWgUPDw94e3tj3LhxUFH58OeianSOYcWKFdDV1cXly5dx8eJFTJ06FTNnzqyujDWCl5cX\n+vftX3FCm6O1L0wNkZGfUaPl7b9zoEbL+6jovuF9S1DnISJMnTqV/YqvzAtS3pxD8fh+VlaWXKVQ\nXv0A0LJlSxQVFeHZs2ds3J07d9C2bVuFea2trbFr1y4MGTIET548AQCOa8+0tDSkpaUhIyODI5OT\nkxNevnzJuvb8WDxWVjTHoJRiKG4Ip0+fxtdff43hw4ejsLCwWgLWJAKmcpfz/HktC1JDaKlVfzKk\n9HBU0TP7apf3UZFj/L4l+KCYOXMmHj16hJMnT6JevXqcuIiICDx+/BgSiQQpKSn45ptv4OjoWO5X\nfHn4+fkhKUlqMfnRo0dYuXIlRo0aBUDaOxk9ejSWLVuG3NxcXL58GadOnYKrq2u5Zbq4uGDVqlXo\n378/nj9/DlNTU9a1Z1ZWFiQSCaKiojgroT5V155KKQYzMzNMmzYNhw4dwrBhw5Cfn1+jqxCqg5eX\nV4WTT8Uo8ZHyzpFQyf0Mjw8HAKTmpcJxryNuJNxQurxcUW7JScM7FabPj83H4xmPkReVxwknIjx8\n/RBiiVhpGeos2m/etwQfDLGxsfjrr79w584dNGzYkN1bULyY5Pnz5xgyZAh0dXVha2sLTU3Nau0t\nCAwMRPv27aGjo4Nhw4bB2dkZixcvZuO3bt2KvLw81K9fHxMnTsT27dsVrmRkGIZdQjtp0iQsW7YM\nffv2RVxcHPbt24fCwkK0adMGhoaGGDNmDF69esXJ7+bmhri4OEyaNKnK11PXCA4OLrfHoNTO55yc\nHPj7+6Ndu3Zo0aIFEhMTce/ePQwcOLAmZK0ypXfvZRVkQfdX3fIzeBHq6ubSgqICaPwi3Z3dzKAZ\nnn3zrFo7dFNyU2C8tuTLuKL84S3Dkfc0D1o2Wuh6vysbviViC+b4zcH0TtOxffh2pWR4l0gkhUhL\nuwh9/T5QUdFWmC4/n6C5ptR30bOBeLXuHBo0eAdCymH7FR/sv3UQV+ae5Hc+89Q4tbrzWVtbG87O\nzmjRogUAsF2xuoSwnhDkSVg3YB0nfFKrb0pOdOvuyqTSVmCj0qIqnS8qNQrtt7fH8YfHOeG5hQVK\n1Z/3VNpTyI3M5YSvDZWOwf/vxv9w+7ZSRb5TXrz4A/fuDUVMzIpy0z19XsbabvMA1IIZsEoz88J4\nXEk5+f4E4OEpxUfrwGBiO64FWM9B35acCONrvf6qfvVVxjw4EcmUP8dvDu4m3YXzYWdOeGYOVzFU\ndeQv+VXJRGPHn6q+4ECe7DVJdLQHAODFizXlpmv3WZ5M2LFjtSISD88Hx0erGEy0TTjnagK1khPV\nfKSl1V7d9z6/h2s21yApUv4tLJKIyo2XFElwrc01RDpHcsI5cwmlyMrjLg548KByckgs1bjn4lJN\npcv2Kg/FhQhCECIIea/DJX8evAN46MmEZ2VJFVfpeR4enk8RpRTD4cOH2fXDK1asgJOTk8yW+PdF\n2cnnsiuUVAUlWza6j5uPmJjTtSZLyqkU5D7MRX5UvtJ55fUYVCUlY+W5D3KR+ygXb/7lTpwqetHG\npL7gnKupyU0mQ7QqV0EV5HPvZ1UWoxUmlWQiUe0ohtxc4NAhICOjocI03z+W7/Rp925ggPcAtNzU\nknfsxPNRU9Hk80e1j6E8e/bFikEAYPWgG8jIGFHrMgm0le+QyXshFaFk2EOcJX9VUI78DgP2Rf7F\nOY+Lq5wc+ZplAgTcenMV1FcekoJSX+K15Jp79uwV2L6d4O5e/lCSPNLSgIvRFxGVFoW4jEreKB6e\nD5BPah9DWYw0S+y0qKlIP5X11Wu3TolIAsz7HfjzWzBVsF2bWVC+afO857Jj4wDwKOGF3PABjcZy\nzn/+uQIB2t4DDoyHZhtuT3Ba14dYYQNovG0xmQoUVHm8OVHSy1F2KCmnMAftt7fH8uDl5aaLifkJ\nAJCeXr2lhaV7mDw8nxofzT4GefxveIn9Gx11HQCAST1FqaWIxXnIyPgPRFVbry/JlQAjTgPt7yJf\nVPlVRcVciftPNlBUMpSUdDAJaJgIGKRykuSqx8gt785Nria8fLmCF/Kmb4BGiWgy7Uc2KD39MhpG\nNQYeNYSfnbTRPI3ph+BgBjdv9gSRBNn5+TgQeAtiMeHfh//Cxy8WdnbA202mAAAV/ZKXbWEZxXD1\nxVXY7bbDvST5m0wORx7G3aS78Arxqv4Gxfgu8sPrlew0V2E+fLMHPDxVRWlbSefOncOCBQugr6+P\nxMRE1rBVXUMszsHwZt3RybQTBjUbxH4BNtECvL1VoanJQN7IU1TUPCQkSNfpOzgoPw5elF0yNq8i\n0OHEpadfQkLCX2jZchtUVeXvCG1rzB3/nrXxBFCvxDhYVsNCwGf827MS+boZAr/aAk+zACIJGEYg\nXQFUeBM2usDrAiC5AIBeHAD5doFIUlIelfpkiI19g59/lvpHnTy5Oy5OCgckIQCAzMyrCAlRwaA9\nQ1HY5Czmn/gCSUZvzY6EZ8PtK+DqJaliS7mVCZweBuRqQYBETt12u+0gJjFGHRqFqG+ikJv7GGpq\nDaCmpv/2Sktka9YMGDMG+PFHoHNnuZcChklFr14GuHJFzphVjD1gdk02XPs1+1MZP9CrQ1dDRaCC\nH3v9WHFiHp73iFicg9BQ6XupRYttCtMp1WPQ1NRETk4Ou6NRJBJBX1+/GmLWHMWTzxJJEYKDGYSG\n6uDqVXOsa3kDv/STepJqY9IGcyyAXbteY8uWGLnlFCsFAEhOPsSJS009h+Bghj1EovSy2SHKKTUU\nVOar8/ZteyQnH8Dly7Ib8N68OYXU1PPIzefOMWx7tKxMOjk9CkiVAgC0EAIhISoQidIQEiLAZPvl\n2NwRONQd8O0JQD8GYgWdoey72exvibikp3HpUslLeffuMIwdu18m7zn3swBQohQAYIkOwvrpsOP1\nb05dArRzAZM3kIilCrSoKAMvX26EUFUqlL3eSwQHM4iIaI0rVwyQmyvtcjBlJiWOHAG6KPjwBwAV\nlTR06TIH69bJiRSU3OOGOqUmqVVKlvZWtsdQJCnC4sDFWHhhYbmrmfLzY/Hy5WaIxcovSOCpXRwc\nHLBz5873LcY74dEjdwDA7dvAkiWK54eVUgyzZs1CWFgY/vnnHwCAjo4OZs2aVXUpaxAvLy/Y29sj\nPLy5wjS9LXrj1kshAH0A8k2IFxXVx/nz0vX+Dx64ICFBOnn7+vUx3L3Ltdd/5YoBioq4cwIpCbHs\n79cFiudfJKWWpQYHM7h//3PcvTsQKollfGo3KBlaUWEA/XGr5ZYXnQns3Qu8NS+DK1cMZdLoqgFq\n7Q7ipZz9fa9eeSPGt2RznKpayVwGEbdj+fr1BDg6EnsUK5oge6BeqRb1uSmwtSNw/poLIiKsgSWy\nrh6vX++EZ8++xb89gf71gUlW3HsWEdEKAHeVmUBQhEGD9kJNrQBicT6ePfsBYnEuZ95CVTUZo0Zt\nxYIFQGlDnJmZ4WhumsCe355eardekQZ+bAV4tAaKRJV7NJKyk9jfIjF3JVdhIaDX7BEGf56FsLDG\nePZsLmJjZTfefSg7nR0cHKCpqcmawyhrguLixYto3bo1tLW1WZMTVeX+/fsYNGgQTExMIBDI/i8q\ncu2pjCylTWZUlhkzZsg1qHfnzh1oaGggvayXsDrCyZPacHRsj/x8oDx7gEophvDwcGzZsgWamtIl\nK4aGhhCJyl93/64IDmYQEiJAQUGsTFx6eiieP1+COV1nIu5R+T2cAQOSsWoV0K+f9PzJk+kIDmYQ\nGfmF3PSXL3PXw8/3LzHklSsu8wWZVTK0dOmSOkSiVNy+7ShTZlAZW3eMRDpxvryVAGiYJJMeAL6b\nCuzZA7i4yI1mCZi3Hd3LWCMPDlbFo0eTkGLvzoaJRSUG/NTUyjdJ3b9/yeYIfzup/BMsge9bAta6\nQDPVq8jNfQQ0iZHJm59fMg+zRIHTvvT0UIhKvahPnDDGokXuCAjQQGioJl6+/B2hodqQSEq++NXV\nS5ZN5b3VcdeudcDNm92xw+0wRpgCXZK2oYFOiQ0Mw/oxGNIQGNgAEBVJexXx8VuQlKTY5k+BuADj\nLKTXfPWyBoqKSuYpfjsQjsxJ1jjXqaSHGB+/SaaMivau1BUYhsGWLVtYy6gPHz5k4968eQNnZ2f8\n8ssvSEtLQ+fOnfHll19WuS51dXW4uLgo/JIv7drzwIEDmDlzJh683aRT07LIw93dHcePH0dumeV5\n3t7eGDFiRJ0ZSSnL4sUTANyGh8dC+PoqTqeUYlBXV4e41DjE69ev5WrzuoSh4TDcvt0HcXGrkPKw\nI3Jfl0zkyv9SmwkgC0CzSm/iCg5m8PjxdGRmRmDu4JLZVnVBma+QAK75kCtXjJCeHiy3zCB7QPft\nhzoxRWAA9GqgeKgi8406gEAAg/HWCCXLsMvccx8fBtevfwaxOB+Fha8ByI4tJT8ew/52c7MGZjQC\nen+voHZr3L/PvdavmihIWgZNzd548KAbxGLF7ej27T5ITpKWr6cGCIXyzZGHhpassVVVLd3jESM4\nmEFOTokRwXktgZF2dzn5j20vMdsukYhQVJSBp0/n4OHD8aC3w0REhMH7B2PUQelNzi/Kx7SmJWVc\nvqwP9xPu6L2rN5bGSTWwZqlRKXPzUjvw35JboJzZkveJot7N8ePH0bZtWzg7O0NdXR1eXl64c+cO\na+JaWVq2bInJkyfL9eFckWvP6siSmJiIdu3a4ffffwcAhIWFoWfPnjAwMECHDh0QEiKdW+vevTvM\nzMxwrNR2ebFYDB8fnzpubK/YH8uv2LBBsZsCpd7qc+fOhZOTE5KTk7F48WL06tULHh4e1ZGy1mhl\nJR3uKsrmavT4+EHykpdiKwAdAM9QypgjS7Nm62Bnly0Tnpj4F27e7MYJk5nZ3zy3grq5+PaSKohp\nTQmBFVrMfgrAEYAfMjLUEBgIhIQAjo5A7mXZ1NnZtxAaqon//qsvtzRBqTF9jXqqOLDvf/ghRxUY\n6C43/dy5EijTeSx+vUybth2zZ4fhjz/+KDd9Tx1XBNkDJ3pWrnxVVen/nWEk2L5dfjeql+k2xcM4\nVMSJCwlRQX5+HJ4++wHXX5zDKKEvgoMZ5OY+k8nqrr8XV15cYc9Hm5XExcdvQ34+d1gjv7ByK+CC\nmeAaO6qKh4cHTExM0Lt3b/YlCQCRkZFo3749e66lpYXmzZvj/v37Va5LEYpce0ZGRlZLlujoaDg4\nOOCbb77B/PnzER8fj+HDh2PZsmVIS0vDunXr4OzsjJQUqX/wSZMmcXxCX7hwASKRiHVCVPdR7NFR\nKcUwceJErFmzBh4eHmjUqBF8fX0xduzYijO+Y3Q2HUbY8Gc4fBj47zD3IUxPN1OQS5awsK9w7lzJ\nuWqSCw5bAn6qQcDfUyvMr1Jm3HIGZsDREZgxQzatudl8tEmWP0w0zlI2jHLL+moonagQK1ZYwcvL\nHAAB5wiOjudRjudDGUr3dkJ/T0WjXCGG3RqGoAB3BCEYgQhGAC5w8gwc+I1ML+vaNT3s3t0fuNMO\nOMq14wQAd+9KfQafPfstzgUPxtWrXeHoOBmOjoQvvvhXoXxEwLkngLHuOLnxYrEexGIVBAaqwMFB\nsXOmkBABuhoC00r1cFJTgdiY5yi96gsAwsKskBD/B472ABq/7XhmR4+UW65hqVXCxb0nR0d12Nl9\nCWvrXcjIkJZdWJiMe/di4WIBDFW8WbtOsGbNGkRHRyMhIQHTpk3DiBEjEB0tXa2Wk5Mj425TV1cX\n2dmyH1HVpSLXnvLiK5IlMjISffv2xc8//4yvvvoKALB//34MHToUgwdL5xb79++Pzp0748yZMwCk\n78OQkBAkJEjnrPbt24cJEybUaQ9vKioplUqn1HLVhQsXYs2aNZxJp+Kw982QwcC/J4Dzc0fgj2dj\nATwHHiwFcA6dLo3Huj+k6/5LTxYTAeXPOe3Ar78OxK+/joVj97YICtMAMB/AIOBAAHyGAw2VeJgf\noxDABTx+7IqXTzvCvIV0JY9a9LeY4XgbI+CD9iaHgMMVj4dSEfdf1041GneLSo/fxJTJ0R+ffz4N\nQUF/QS6vjQET+f4J4lNUZKbqGQBqMs1nA/r23QCgHxYsCMTatdsBTAcA7NsH7EcYzEadAFTFZd+5\nAIBfl/txzlNSRmHp0kFYseKcTNqxYzvjzZtrOGy2BXN/iEeHDpc4BgJTUgbBy+tvrFgxmZtxxElg\n2c9Al+ts0BrbkmiRCHB2PgOgL/77L1re7ZAhOV0D9fW5q42O9ZCXUjpkFBMD6OsDSUmxePCgMdQA\nTH87HHW2nHocyKFS8tQWXbuWmGGfNGkSfHx8cObMGcyZM0cpd5uVce1ZHorqKlYGQqFQKdefRIQD\nBw6gRYsWcHYu+XiJjY3FkSNHcOrUKTasqKgIffv2BQBYWlqiT58+8Pb2xuzZs+Hr64vQ0FClruVd\n06TJbTx71q/CdEr1GAICAmTCzp4trym/O/ILOmDIEOCPZ2GQvnWKX5KDcONWCs6fB5BfD/fvl28D\nZ9rksssJxwD4/a1S2P027BwAwrhx9co3MSHz8nsOoB+ABLhOOwtHR6DA0R+9p/jgIi7gO3wLx9cu\nEDsq7uJhsXRlD8NwC+9SVJkJkf/hC8eWQBh3yAt/fA+MPQI4BuH6LdmeUEq6Yu15DpfkhF7E2rWE\nYqVQzER0h4hVaJWbwLl82V/GLlNSki7evJHuQ3gePxvffx+CsAVbkJurUiavOzdjSB8gWwiskjNG\n+JaBA50ASF9aPXs2gaNj+XKKRaaon2sgPZkgu4y3GF9f2XvYoEHd9zNdWWxsbHDnTskcTk5ODqKi\nomBjYyOTtqquPYtR5NqzuC5lZAGkk+rLly+HkZERxo8fz27atbS0hKurK+v2My0tDVlZWfjxx5L9\nKm5ubvD29saxY8fQpEkTdOzYUenreZe0afP47a9gAF4K01VKMWzbtg22trZ4/PgxbG1t2aNx48Zo\n165dtYWtGW5B+rKRb1R/1ar9SJr+M4B5bJhEIvvQ/2+Xhpzc8wDI2RCFfLi5/YjH24Ygw/EExI4X\nADGxsoIAACAASURBVMcg/L5KC999V6+CZYgEYCgG418ApYeQJOiPAShw9Accg6Qvm4ABwK8Lpef3\n5fu1ndk5DUEIhgHKN1GSgsdw9CjCS8f9KHD0R57jWYSeMoEj5sIRQyCRowMs5QxlFaMOCZxwV3GC\nMgwcwlW85jhTYZ5Bgw4jxfEo8PdUFBQALi6yk88e12chOdlETu4S7p93gCM6wTk9Hrkbp8nESxXQ\ncZnwiIiuMmHFqPh1BgkzkZenBRSqA/flv3z+/FP+su7sbFkrr3WRjIwMnDt3Dvn5+SgqKsKBAwcQ\nGhrKDrM4OTnh/v37OH78OPLz87F8+XJ06NABLVu2rHKd+fn5rMmdgoICFLydpK/ItWdVZFFTU8OR\nI0eQk5ODSZMmgYgwceJEnDp1CgEBARCLxcjPz0dwcDDi40vM9js7OyMuLg5eXl5wd3ev8rW+K77/\nfjaCghgM+ywL5SkGUCVIT0+n6Oho+vLLLykmJoaio6MpOjqa3rx5U5nstQ4Akg4MKXeIREUyZeUU\nFVGQ59MqlOdMQEdqCzc27OypAK6cWnlKlNeYvOBFQQiiIATRBVyg6ZhO6zVXUlAQKPCkkFP2o68f\nURCC6CKCqBdeseUYIZ+adV6poA4fAk5zwuwc/iUfHys6vmUyW3ZSVCF1G9+NbKbYUNvJbWlyn8nU\nY1wPAoiioyUUOT6SeiG+0tdWv/4VysnOISIiYwRU6X9X2SPolx4UFATq3n2mTNyh+psoKAjsMdR0\nqMJyAgPfpjuhK/2fDJ8nzTO0Ral0F2gu5lLQcX1OuUFBZdvnFq6MnHSVeiTfOa9fv6YuXbqQUCgk\nfX196tGjB124cIGT5sKFC9S6dWvS1NQkR0dHio2NrXJ90dHRxDAMMQxDAoGAGIahJk2asPGpqak0\natQo0tbWJisrK/Lx8amyLA4ODrRz504iIsrPz6f+/fvT5MmTSSKRUHh4ONnb25OhoSGZmJjQ8OHD\nKS4ujpPf3d2d1NTUKDExscrXW9sUt6swv+7SttZpLQUhSGF7U7oVpqamUnh4OIWEhLDH+0aeYujT\nvoC++WZ2uS+NwkKRTFk9b9wgBAXRkahXJBBIqvVS2rvrElfOoQlVKOfa2792BLi+/d2KTh/U4ZQd\n5RFFB/QO0pDPh5D74Of0X6cb9GRLIjHLGIKX8opz1+opbNmPXj+SllH2sD5Ka9dK06gvUaczCCR1\nFHHKmT/flVau1JEpP/utYpiB27QfZ2mU/Xiq96MmGekfq2Hl8BkBXypWHAiiIMEFCkRgueUMsttC\nR46AOgs60GEcpjlt+hLwt9y0X+NnClL3p6B6fhSkfYpOCo5z4v/3P+7/IygIFOQyrdwHlYenOhS3\nq5e7n1CQ0JfuudwisUissL0pNcewY8cO9OnTB4MGDYKnpycGDRpUrunW94WHB3B8dRacNn6BY1vs\nlcr739tJq80ZCRCLGRAB69dL43RmDAK8GGBZ5W5bgwZcW0lY8BjYcV1uWmNjUlBKsTGgSwCKl8Y9\nwnCXVZxUTVc1xYSp8+H3mR/S6quix/XP8OPNTJBAWq7XiT2VkrmYKR4lG/WuJ8iXGV9+gYcF0pVJ\nhWqFGObVF4VeqsD35kCn7ZjdfCOG9z2KXr2yYWPTmpO14K3pj0QYIwbmiDd/igKtPACVN8q4ZUsr\nzJ9f0Y7VGwAOKox1RCocJQHoC+6kfFAQA6Bkxd250FkYM2YArktuYSzuYPODiwDkr0zbgaUoKKwH\nFGgAOTr4XFIyqb/YKRpdu3I3Nd45PhY4KH91FQ9PTSKQ6ABZulDV0IBAVfF7TCnFsGHDBkRERMDK\nygpBQUG4desW9PTqxhgpNW/BfoOtWgXW3n+zkxsxxVH+skdS9C4GEJJRMo793XfStNnqb3fpCgiu\nI0bjjz9kdy2XRiDgVlBfTQ1ong0EBePVq5Lwdu2A168ZhTaM5CNnT4SudOzTN0L6Ij9RbzQb5dDE\nDpgn3wyIfEqs09VTVWyS9pVEztpwvXhgxEwY1nsDHJKusFo0oS3QcxGbRCyW3htfmOEn2OJaC3lz\nOMBvv8lfYztUyx9t2jzB8OFAs2bDK7waxYwGsAZAye5mY+MbAICzZ4+USVu8+GJlhaUOhgMc4Yhl\nTTcC+JoNTwith/btL2Du3JLNjt9tOvR/9s47PIqq7cP3bDokhBQIoYbQOxKULk1BUUBQRBBBeS2I\nIIogqCAB22tX5FNUlI4gTYovoGIoioCgiIhKC0hvoZO6e74/ZsvslC3JbrLg/q5rk50zZ848Mztz\nnvN0OiZ0pCOun6cggigybFOSm/WUV4whMjLSng4jJyeHunXr8vfff7s5qpiwTxtoBICAYZYUPmer\nT0+XkxvKDSMn8C3riQr1bJXbKzHR/v2ZZ+DKFZnh2BwoTCYY/tkMaP1G0Yi7z8oQyjvKfyYmSlDm\nuCzx3OlseF32PzOMd2aeqY0cCQTrl9NGn9qQk2OtI31Vm5sJgPn3wfhJHFo7GF65DfAu/cPo0TEy\nAy/lcCqo3fExRl+N5NjinhzZcTsfH1EEhsTvhXvvhmT9yoKhocBzrnOvz7YcICFpHmlpiwgL06ZY\n0cMkftVpFWw84GzMPnMGJMnE8OGq/B9nrRrRIIIoDviSMVSpUoVz585x1113ceutt9KjRw9SUlKK\nQJ3/YE+KZX3fqnOVgyvPMfvLwtVZACDsiqYpFMH2+/9GCDkwij6z7fvUr/kgRdDD3Lmgl3+wwGyB\nLmOo9OBoSN7uvDNSv0iPJ4gprYg5aP4phF0hJ0dmTOMTf4FOcZCxjqS0DwHn+I6UuJrQPkP+KLOO\nlkphe6NUPsu4DJJ2UhOSgLwI+KEdBfnqgDy5f6NGzq2Gz2udlTJTS5eIrSRPwqdX3Mnu/z1LSG40\n7R63lmrtNhzqLyG0t3Nuq2ef7cxdHKGgAAhz7bIcmVWOyMgOlEvozYJ4rYu2Ep1K/cLc2C9oxwUS\n7u3ksm8S2YRY71P16tqEgkEE4W8IV2oSBbwKcFu6VF5V2spoXrx40e6uVtJIBzqsW0eHDh1YduYM\nL+/cxZvA6bw8EqzZQWOjJSq3vgjIfud67qq1o6LYk20wAcecgCbvQdkmWE5j1yxI1ijhuDhgaBWk\nRacQQptq4th5Z6Y0c6ac+A5gwwZ47TUo1VaWPsLLnoPHVMUG2mcQPXc3l6cNRc7npB+wo4ek0knO\nDSH55OdDRATsvKJleEq8f1RRO+Hm7+Din1BGXvFeAB5lG0iupSZhMONHuCmcZEPLVmY2W79brOeS\nkOz8KCIuGhb/D7bLaRoKymXC+FAe/3wmvWruI+z/nmYPgGQGkwWeLwWvauuT3iMdxGYaPp+XT9zJ\nWoY0deI4LULO2tOHhCX/adgX4HO28UcbOZItNDSaunU78ddf33t2A4IIwhewvi9T9nyH5flZht0K\nnQGvQ4cOdO/e3c4sShrpyDRtPH+eu3btsk9EOy5fcdKrxYaG4jBwahnDy9Ud0cMa7hp3I5RtggbK\nSe+cvgoDYNEsxWpbZX9ob1nH6jHrWPK9/JOYDH6a8OblrKd0jlf46cIFaPAyRCgYUlicvMq/YYrW\nThCSh17uthidAjX56vtQRicNanJbXXqNYLRyEQYyQ/UaZkUf+VhJhGBS8KPnm9aFcEWcRFIbUiKP\nEra+PVyJxowEUefkfeHZZGVpaXjEtMd2ErsRyoR+krvx/I2keIaEJGCUfu4pgFKYqVXDsf3qqxmG\nfYMIwh/IypNVuZGxDfmoSxfDfh4xhsuXL/P2228zdOhQPvzwQywWC0uXLqVBgwbMnTvXNxT7CDfv\nkPPr2xiDcuJAgjOKTG96k1NzRdi8af16LhQUcCovj/t374bGDt2/cgUsKbOo5ilKbqrGD/nHkdmV\nVo6cJdK6dY728anQPsOp/oAnaP3rr5DYBlougPYZ3Dn2ArS26rfLNJDP0V4xEaV+S45OzZgIdUZY\noLQnuV8aj4J64yDEkeFURDoCzoQEIyo58lRJ4fJ5Bv7fWciw0hYWqyludMO2bQgBCxcpGEOENaWx\nyZGQKDJEcmLqFIRBg4l26QLAnJQL78+TGSYQFyeRnQ0Nm1tz59/fDWFljAKBTaB81aSI7pbMMGoW\nne6W7TgSYDLJajJRpQ9EO6rA6aFAUcwnOU4/GC6IIPyFSYc8s5l5NPsMHDiQ33//nSZNmrB27Vpa\ntmzJu+++y7x581i+fHmRCPUV6s2Y4TTBmq3zS4gZzli55LaLl+iy0xGlq1dwKzncuUZy2R9+IGnT\nJuadco6otijvnPJ7kiOVrVCd4PetCs3dy7tg/B/csE3fFfRCqipKs2xT3X5G+Po2PWMoUMGa+THq\nHJ98AnuuatUpatSJinLbB4DynaGtNUVKqRSIdUTFCwmeq1bNvm1jpk9eVaREaP0V6tDrHZcv8+7m\nMxRYFIyh/ngAzLEVqREhR6rfXyHJudhKaL71vA7mbH7wH6jZWGaY7TM4nZdHZCT838Jd8Ewy3FHf\nzpiEcDwfN4SEwfur4cV1sHYj3FEVqe4w+TrCQQqRc/SIyndDqyVwj9aNtW4V2Q1tb5jD262WZT3P\nJD0GeJbYLIggioqcAs8cZTyyMezbt4+d1gn14YcfJjk5mUOHDtk9lAIBfykmHXAwBpMF/r5ylYbA\n0wf2QyPtsUpEFiIz4sfHj/PuuuNu+11QZ3LodJodBgkfTzVsBmRA5jRZPdVEDqbIs2bsKLT/Sp3R\n8qc9TPpnC5O2Ouwpqxo1Ij1EdsktHeLgdvFhYd6dwyqZCIXdVkiQFB6OO68kpSopKvQ82cAzubvg\npjgILQNN3kZYHdAkhSOPugKXdDle1gYltpIzkuN4Jmwov2kTokMHwkNDZftRsrPbq5NE2dg5VYrF\nWodEqhUK+xzXSHgcDH0AGj0OBdPgnzYQmkfns6/CYTge6mDEv126wh0n7yOkzte88agJchuDcRqn\nIEoABw8eJDU1lYKCgoCvPeMJ2saWAS4a2vxs8OhKlWlkQ0JCqFSpUkAxBT3YJoFY/JMCVykxGN1k\nqZTz7fXQIcAZ1R+GZh9qz+tdJUJ9VHU2sncoW5YwqyolVKHKMiR77/senyo21Pl38MQ7okYThZqy\ndxVoswyia9rvgZMjlOpJlswyM1P+Nhadp11at44HD+dCs4+d+hdYLAirLsnVS2SKMNnVlfZ+EnBz\nX+j0LXTrBwNexXY7W67JxWJdtZ3Jy0dCIqlUVWhWGVplacYPJEyZMoXmzZsTGRnJQw89pNnvrpzm\nmDFjSExMJDExkbFjx2qO9wYDBgwgOTmZMmXKkJqayiuvOHt5FSctauTk5FC2bFkyMrQ2pKeffpo+\nffroHFU8qG6VsH3CGHbu3Gmv8xoTE8Pvv/9u/67Oex4osDGGULNjAnF3MzzGxtvdTDhWo2WU8454\nA1d/X6BPOdcJ5DyBkbRUJSKC8dWq8Unt2ixt0ACOLIbtj8Gxr+AdY08c5T2KMmAMN8eoSyAqDgrR\ndy12sh9Z7CKDcyezLAwrfxu1xGDD37kCYpxVdxazg5HrPTfKcV0+X+XrOO2reNDMpgqbAIj00o5U\n0qhUqRLjx49n8ODBmn3uyml+/PHHLFu2jJ07d7Jz505WrFjBxx9/XGhannvuOTIzM7l48SKrVq3i\ngw8+YPXq1SVCixqRkZHcd999TkV8QK7wNn/+/IBItucTxmA2m+1pci9dukRBQYH9uzrveaDg3dqy\n+4fJLAizTjbqm2G0ah24XDeZvoydz4IlB3HWkXfdU4bT/NYDIFzEUZz8znifGqqTtouNhbM/6XYt\n8+tZr+Um5a2pGhnJpOrVeaRiRe4qVw72T4HLVu+d056VpXRQa2Wa1om8XrQLydPgvjpdukEkp0lo\nV/tGjEFv7Kzm+zFfNhvSoefc4Oo5SFIk0C04K8dRlA/VSjWBjF69etGzZ08SEhI0+9yV05w5cyaj\nRo2iYsWKVKxYkVGjRjHD5qtdCDRo0IDISId6LzQ0lPLly/udFlt67d27dyOE4L///S81a9YkMTGR\nvn37cu6c7PU2aNAgFi9eTLbC9X3NmjVYLBZuv/32Ql93kWF9X+pGRSE6dDDs5lUcw7WC/JtvZv1P\nsrGvwh4LtrAy7QuoP1PMejcCpreGpZuc2qUrhxHnftaM5emL/WfcW7B5AbRarN25/TF5sv1nDtw4\nw3CMpP17ydRpH165Mn9tvcSH661pFcLioPFbcGwp5Tb34PxTvTEpSjGq8aLVRqOu8+ARBjaHWQb5\nlKyIPeps9AqzrpbtZ9vzDhxfAeIrt6ez3e+Q3GwkIbvhqgWGMK5SgA5j+PtNkExQ+xndsaNsnlpX\nBZfXXbCfr0np0vymF+8hBJLFDIQizqyHeP3cXO10yqu6kkj0sG6d7zhIhw6Fj7LWW1AZldP8448/\nqF27Nrt373ba37hxY3spzsJi6NChzJw5k9zcXKZMmUKzZs38RosQgunTp/Pqq6+ydu1aUlNTef/9\n91m+fDkbNmygXLlyDB8+nCeeeIJ58+bRqlUrkpOTWbJkCffffz8As2fP5v777y9RW0Wp7+VnWLog\nuE+/4i1QhDiGQIPo2FH+nD1LqMmEKdNFXYIKv0LSb1j03JJsOB/OK5s6IDo4PlFbxjjOp9C8W0zQ\nNNqaMG/7o4o+aiJDZHfW9R3lzx654DjflHKswK8egl0vGJJV6rx+lTWA6BjFGfPPwfb/wPGVNGks\nG2d3NLXGH2QfczquW3w8E5Wunt4iZJvjmhSfiEsOy3ql31xHG+vhSn4cT1eurGkPtd7ZevuiKHXC\ntqp3njTLRcmusU4qv2Nfwon/wfGVnhEQ4pA0f7JOOgAcnm9XJYVknyTugry+EidXywzOA1zd4zBC\nXysSgw1qQz8Yl/ZUlttU5lXzRdnPDz/8kMuXL/Pdd98xbtw4tm7d6jda3n33Xd566y3Wr19Paqoc\npPjxxx/z8ssvU7FiRcLCwpgwYQKLFi2yF/pR1oS+ePEiy5cvZ9CgQUW65qKi9HcyY6i9OocFC4z7\nXX8Sg9X1R2/h+0JuEhUbJ9FpiCwKmyQdR35l/xfgeYWXiEk4XFkb7lNEEh+OYkuzZhzPyyNl/V67\nZ43JpNKfW1QSyvGVMPFLKLcYeinaz26C6T+x4PUH6PvtqyDyIeckXPgNyXKXIb25Zv2I7d9CPwMe\noUnZJNjcCPIvyMvVr4/z7SqJznFxrm6De9TVrvI7Ve9E+83ROp2dMapKFVL3JzH27I8AhIc51ir5\nBVG8XaMG6xf8xS9Vv4bQaNhZl9sLqmF7dMtZK/Kp1fURhPJa9D9kkwzIKhuzUu+z4RbeePAAzx44\nYEibFGmdACWICgmhycTW/HZxOfT4GJFVEbiZNtsdaU4EZlnqKbgM9V90ed1b62wlfLFczN4EsHsS\nGPx+NhRlle9L6EkM7kp7qvdfuHCB6Gj952PIkCH2+KgXXnjBpXFYkiQ6dOhAnz59+OKLL7jpppt8\nSosNb7/9NuPHj6diRUciyoMHD9KrVy8nCSA0NJSTJ0+SnJzMgAEDmDhxIsePH2fVqlXUrFnTSVIJ\nZHglMYwZM8ajthKFrQ5kuHZVU35PAW1iHQ+A63rPMhTlXgkRjujhegccEa4dd+USbjJRLdLZpdFk\nUrt56tzuY1FQTidD6dFL3FWuPBz4CDKnUerEj3D1H1w5qhpJQPtztjg2ck+DJU9mNlsTuCU+3mkF\nGBISY/3vflKXIaDKj5rWn4/qZ0tV48/D3zHlzyb2wMCwcGd1jckk8cu8bDgwFfa8BZuOEZOl88Op\nmkIIo3xIARZFjW+zSWHfEWZGV63KxqZNeTM1lUnVKsMvzsmrpNLWmAbr2H1uCQdrTIzI10puwhZM\ndzoDfnJ4nnSL0VdZ2ibYKEmSj8narNsv0KAnMbgrp9mgQQN2WINPQS7F2bChfjXCqVOn2m2YnnoM\n5efnU7p0aZ/TYsM333zDyy+/zJIljqSIVatWZfXq1U6lP69evUpycjIA1apVo127dsyZM4c5c+aU\nuLSgwXhjN/TrpuZzOnIVU6wrAamDNo+QSI1g1ymdSdgFevRwfC+TX8f+PczsuHWJV/QnZPXKSjIs\nf6Ez2QsTYQrGclVkWXsaM4ZHmj1iuM+GnnV6utwfFpZo/a81MOritpFQSWtf6JzqvuA4QM/5PTly\n2eFKGBrucNm0B6cpJvSGjSAvSnsP1HNViAjhnvr3EGp27FAyhgql5ZV+27JlGVW1KqOrVIZLzh5W\nwmzzeJL/XZVOwz39rbRpr0Uoa0nknbGr1L5q2pJp92klE6FjIA9k2MpbFhQUYDabyc3NxWzNFe+u\nnObAgQN55513OHbsGEePHuWdd94ptHfO6dOnmT9/PleuXMFsNrNmzRoWLlxIz549/UZLgwYNWL16\nNU888QQrrKvFIUOG8Pzzz9tdYU+fPq0J+B00aBAffPABmzZtstsaAgE/hf0CG4zVu9dNzed0oAPA\ntGkAhESYGPeSqlPtCKfJ1lOctQamHi7lEB+21zvi9TiS3u2O3weXdOokRFzQXZmZCowDxJKik3Tb\nb6zg8LJ6ru1zCoIsXtaA8ByRoXq1sx0wmTzInme7fJPjAQ4LE1zSuUxJlcrDJEIpE1GG9psdPsJl\nrjg8oB5Jc2aioSatVtVSYJ24rduv5jukxApntW7aAu3N7Fy9M2EhYSy7U2Jbmqp/YGiGPMZLL71E\nqVKleP3115kzZw5RUVH2+IHExEQWL17MCy+8QHx8PNu2bWP+fEeBpMcee4zu3bvTqFEjGjduTPfu\n3Xn0UW3dbU8gSRJTp06lcuXKJCQkMH78eGbPns2NN97oF1ps72Hjxo1ZuXIljzzyCGvWrGHEiBH0\n6NGDLl26UKZMGVq1amW3c9hw9913c+7cOTp37kxSkv77WRK4wXQDrsp/eGRj6N+/P7fffjtjx47l\n9ddft7fHxMQQ70/n/MJgrxzmKkkSP7aFy3GC6HMSq7tCx3YxlMIxyehNvEZDqj30ptz3Iz3WO3Ld\nyPYm5zdd/eILvepkZQ7DKZ1w7Bx9vb/ZKnXokR4i6assJnV26LtDlEnyJDN//22ivnG5BV2kJaex\n/fh2l33MFh9wHNs1hihdYgWn6kn82hRu2KHomu98s01m7axb5rKDWZ264pzixMYYnnrzMu+NltVo\nx3v+BUC0Tq2gmMtaxpcdngMKM8GU26dwX8P7rJciqPuXc3/zvVYp4hqRGNLT011WbOzcuTN//mkc\n1/L66687zR+FRWJiIuuU+cX8SEtKSopdKgJIS0vjhKLK1tNPP83TTz9teHzp0qXtRu9AQmSu64fO\nI4khNjaWlJQUZsyYwQ8//MCcOXOYMWMGH3zwAZMmTfIJob6G7bJfeWk3r7y5jdfHym35FseK29Bt\nLDQHYv+BsgcBePZZbZd8RU7/H2uGMH++tZYCYGQHMKPjKSVZoLxWvRWerx+wlm83YGtpD9HJjApQ\nJsKxunViHqE5mnoInqBtVfeZVM3CzIw+RYvkPZUkIPYQhDs8Rm5qaUECNtzs3Dciw9k2IV3VOhb8\n2NhRVOrj7R+D2QwHDzr1+a2xZ95Ta1r9rmmzmJyZ4RM3PUFCKeuKQgiiXWc3DyKIgIFXXkk9e/ak\nbNmypKWlOQWXBCJsjEFIEsK6vJaAPLNjcjb02X+8ESRYE+DM+R8bN+oHpHT8HmIuwaXNYXA/3NXb\ntW5gq2WqtrHJLGiqzYseWWmv7hi6UocV4SHhuu2SYknqxDw6TMTyzVv653FxKVXKVDHeaYXZYmbJ\nHRd4cKG+ROmJGiU/AXg6xantFL8Tzc2aoGgR78wUL5fVrtIuRF8GJb/o3x++/BKWLIFevagYU5GC\ny54lGTuZcJ6uqyHxr43kla1GVuWq8IuxlCQJyI5UxEko0GCLgBKMeQoiCDW8Mj4fPXqUBQsW8Oyz\nz/LMM8/YP4EII8aQW+BQSxhqkhIUZUIHyNlIH3oIOJfiaBcCJLhUBgiVx/znsPOkEqo6gVkvgZwO\nUwAIryMXcHmg8QMA9Cj1X9c05+VRasESyuu4Y1/MdXjmOKXzbi3HURQoFsmG42dnw+zZkJXF0BuH\n6urklZAkyUBD4oVifaDWAP6/vf9DkiTCVLfyyhAVA7Je5qzpsqfKx4/qnPvLL+X/VpXCtw98a4+Y\ndgshyIuAYxVyOJNosXoiuz72wc/z6Zje0f4JIojixpFpssfUe8+cd9nPK8bQunVre5bVQIct5YJF\ncpRSkSSJQxcU+chDPFTuRlyQK60dV1oPFZNAJdkdtF494bQvLlx/Be8JSkfJE++sXrMQEwRRUqx1\nZIPJ54034IEH+PEz7S6lUTqxVKJmv04+NC1Gj4aBA6FnT6LCosgfr28ELxUm1yZonty8CClgrQjX\nqsZyzblISPxTVbUj3plR2Qz9p5pF0DED5vcDJUFK9Rpb5N+vfrn6mCyeSQxOuThszNZFwKQkBKf2\n93Jq+6mWfgqTIILwFy7dFk3HDNie5jqGyyvGsHHjRtLS0qhdu7bdMylQvJLUMJIY3K10dRFnMxIa\nvPjRx1zvt6Kz9LLHp0yIV0+K9ivSP2DtWgBqntPualDOYSSvEF1Bs3/OHA8IWmmNFv5BJ7eDjYSB\na9n1+C4m3zaZUa1HIQH3fQFHK8Lcr9TJ8mR0qeFcRUooXXr3faB7jARsagPnY2TVzevPah0J9kb8\nzc6TO53bFdLAuHbjdMc2CcGzKpvkJxNkT7Z4augcIeH2t8EacGl2NjL8Xk1rpwgiiOKB61WbV7Pk\nqlWrikRKseHqVV3GYAIKLN6nZmBIM0gXcvUuO4T2u5s8Q2GU8viUv534zWlbcjf5uFCBeFsNThce\neHB1qt4JgOEthltpgpMVYMBcuKecvptwRIiz26oTYyjQWmvrJNSx34s+nx2kZ70WrD5zBm2+T3gx\n40WkBkqfZcc9shuFVTBZLPx8E+SszqfWzW2puWUL1SNlJp1AbbLY7zyWhEcSgx6W3rSUR797fdIQ\nUgAAIABJREFUlJ1t5OuJON+QXLyLswkiCG8gVP+N4NWMkZKSovsJCHRU6GyvXrWvFEVkJBabxCBJ\nhWMMNiglAqHHGCz03u3YVAe4uTIcq2FWZmHdsoWp6aOocdZ1gJsRjLyVABhZGSIusGGDcReEcPbe\n+dWgOlwhYLOh2CC5ub46iXWceJRBclUAruRfUbU7xlYzJBtMQsDxr7l9cxdqvlEKcs/ax0jGkS+p\nfGmb15iE4zVyJTFo9+WE5/BrYzMzJviyyEYQQRhjl14iSB14JTFMnDhR0yZJEi++6DovTLGgY0ew\nFcaYOROTNWBFrUpSMgZPisU4wWQgMQggJI9QkcfiL+WcrXoswOvz2dCyJbHImpUaj3kvMbhEmaMw\nIpX27c8aD7Fxo/N2s2Zen291lr7r6i2pt+i2G0EIYZUYBMqJVC8mRZsixEGzoRRlscA+hafW5nuQ\nuv5kPdpxfPPkNOSYf8khTbmQGC4mV4FD2vaRY76mcXhv21UYHh9EEL7AR8dktffRChVgj3E/rySG\n0qVLEx0dTXR0NCEhIaxatYqDKj/wEsM99zi+//mn/RXbUaUKP1jtIGrG4GmAGwCN50AtI1WagFJn\nCJOcaxN4FOCmg4YnIe2o0V4fMwaAUm7iDY7qE3P8GdflTJWatcsGIdYupRnVtXY6AAmnlVKAa/nJ\nbDE7T7WKe2R0ZF6Y9pWwS5/W36+CuIF+DfvZduJ4jeT9fRv05dBTzlzAHG4Q6X31oIPGayU3xr8I\nBw8exGQy2TOmXjdwM/d5xRhGjRpld1EdN24c69evZ//+/e4PLA4oPYDMZvJ0JkoJKDjvmAS90r33\nfkDVoBr/8UaKmVB/0rFNRq0so12e6vePYNunQI6x54DQVh1yOWaREKovWOoZsj2FTXoyir1Qo/lR\nWDsLpo/43sHQlR5naCUEszCrmL/jHlWM0UlDAhwzaXMa5V8+aD3amu5b9CEixGYzUUoM8v7598yn\naqzKberUWhdX50ohFjgIpHKaR44coXv37iQkJJCcnMzw4cOdIpSDpT2LhiJZJa9cucJRg9VksUM5\neVksXNVZoUqSREHWabdDhXtihlDbGEplIUmu00DYJhbJU4Z09aqmSbjxfAL4+E5VmUIhHFlnCwO9\n1b4QYDbz8yM/ExkayW+P7XAOiMCzaS4yNJLWVVorB9bt19SRhcBRSjMsErM5H4QsGajTcFiERSUx\nOO5d+2r6BXW4oHXHzr9iW/1bfz9lyKApDExysGf5UuV4r+t7+uOe1k4S9uux/w9sxhBI5TSffPJJ\nEhMTOX78ODt27GD9+vV8+OGHJUKLGtdCaU938IoxKBPoNWjQgDp16jBixAh/0eYdwhReL/PmYdEJ\nvDNv2ECB2c2s/5//kPsyfO3OhTMq2fG9jJyyVzIZJ7gDENaJyeMJQFcKMJAMFEalR9NUCcFMJoiI\ngF0uPF7aOa/+nPmezjlNJqhQgeYJjch+IZvGj6fLRa0VBU/yo4zLdiqHHNREmY5Y6HdSwLZAN4dZ\nWPFVM9hwCxaLmewC53oGGlWS0xgGe06v1zQdu3DASo6NMZgcVCa0hjA5k+/Ox3cwoqXB+3D1sH77\n8f8pXEUCmzGUVDlNPfzxxx/07duX8PBwkpKSuO2229i9e7ffabnmS3t6CK8Yw4oVK1ixYgUrV67k\nm2++4dixYwwfPtxftJGZmcnDDz/smeiVrJioCwrI15kEj773HgX5DjuA7rTz+ecAdNunt1OBiopg\npTJ15f+xOtZFBewSAyYmdtAa8sffPF7lBaul0FBhpPIUqhZbDYCRLUc6Gp94AoAPu32oPb6z7Nev\nO1/W0PPfB86cAVtJxK++gkuXnAzVl5P1VE3aK+hao6vL/WrYGeuRhY5z5Wbx52nnpGkaicFqA7it\n5m3Gg+ee1LYdnm+lzMrYJYkz+dpFgMuXKVvBGEpXV5CktEu5ZgySJPnsU1gMHTqU0qVL06BBA8aN\nG+dROU3A56U9u3btyrx588jOzubo0aOsWrWK2267zW+02Ep7jh07lrVr11K/fn0mT55sL+15/Phx\n4uLieML6jilLe9oQCKU9PYXX7qrnz59n+fLlLF261M6h/YXq1aszzZpG2y1UD3t+iNaoaTaZOJ1t\nXBpTM6RKa1M2G4ZvhoQr2vMBSA92cjlevX8O8ucHEHs1mxfbaz25JnWchBivkGh0DV6e2RIOPnUQ\nMUHwdte3HY3WLI/danUzPtA24elMfLpIS7OPW1go7QzhYZ44ykmyWui4I/f9t7vnaFyRzcLMBaUa\nTAjWP7ieVfd7GY+Tb639rFAlhej8/nptukho47QpXSM2BijecpqukJ6ezq5duyhTpgxVqlThxhtv\ntNdjCJb2dI/I3BxiXRQM9IoxvP/++wwYMIDTp09z8uRJBgwYwOTJk70iaPDgwSQlJdFIldZz9erV\n1K1bl1q1avkkNW+1k9qVn8VkIs+VE4wKT6kKan2+DCavhsVfAiYPjKannFM7/9/0adQ9CyvffNf4\nGCUz0NHtex3HsEfhk2aVKlyO8btVx75XkcTPnWHbRdphTxAd7mm1OBlHwwQcXerUNnfLa8RGxjq1\nmS1mvjunCAWPKEflMtoa0oDmt9KDw0Yk8ZvOROLxy1TGuVqYpzYGIYTPPkWBupwm+L60Z0xMDDEx\nMfz3v//VvQ9du3alT58+XL16lTNnzpCVlWWvJumv0p5PPPGEbmnPuLg44uLiqF+/vr20J8jG+oyM\nDI4fP86iRYsCqrRniEXw+TLj/V4xhmnTprFlyxYmTZrESy+9xObNm/n000+9Iuihhx6yG6xsMJvN\nDBs2jNWrV7N7926++OILl7nUPUGjzExCVcZQk8VC6UhtgRUjtFTV4rnV6oDV3kBjZDOK2h6xaC+q\n4HSv3V3+ojymQM8e4uVLfVzrUupyYjhjlaguKV4sd656yui4QqgpYiJiWDtwLdN7Tic8wr2kct4E\nXNSqCstGOqfdUHspDb5pJKlxqfqDnjvnngEqbAxHcnM1u00eSwwtDMYPfIlBCX+V03RX2vPMmTNs\n376dYcOGERYWRnx8PA8++KC9mmSwtKd7mE0murhwKPVa2aXUjxVGV9auXTviVMXnt27dSs2aNUlJ\nSSEsLIz77ruPZcuWkZWVxZAhQ9ixY4fXUsQnaVDw461wyZGDXwLMea6TRymR7KWka3utbYkvbC+N\nEeIiHffB7t6oZAzZWlnPI4nhnXcUB+jZKVyMoWvv1jaejwQpHVo+jLN0oYdDc2B9R346bJA0buFC\nOj04kQf/u5ooZCN6peTZ9PlDn85QgNPrNO1qRvD7KedcRPUS6xrTaDa7ZYB2GwOSMxMQFtj7Hot2\nfeHyeCMcvwZUSSVRTtMIiYmJJCcn89FHH2E2mzl//jwzZ860r8bvuuuuYGlPI+z7P1jfkZzzG4h2\nsQbzKvL5oYceokWLFvTu3RshBF999RWDB+tlqfEOR48epUoVR47/ypUrs2XLFuLj45k6VaeGgQ4e\nfPBBUqzfywJP2xYAvwyBWFl1E2o2U7B1M6gmfFs1qA4dOsjb1vYONtfnTFV/oOrq1fxjNXaxY4fc\nx2r/zmUTkABUch5fcTzr1jGmzRjGrh0LmVCzTk15p9nsOP+nn8Kbbzq2AXnmXod8EXfqj//MM9Cs\nmXw9yvGs/3/a+JNMr80G6nR98vgXcfjzr9u+XUP/FKsmcEtlmBMDlS8p9qura2XIKV9bf94aucTZ\nOn7YmMud3WWj87p777WPH1KrEbCO3Nw/6fE3/BwKB8/DMYVpqNz2nbr0220Mtuux7beuDoVVN6z7\ne3z3HR1q1dI/PhNWf7fazlDPZu4j/OdYqG7tsPFLOLCM/xxbxuCmD2ifp3XrnOm1PS/W7eO/bJO3\nywQuY7CV03z88ccRQlC7dm3dcprDhg1jwIABtGzZUlNO88CBA3YV8iOPPFKk0p5Llixh1KhRvPba\na4SGhtK5c2fefVd+z8uVK+dTWtSlPe+44w5mzpzJiBEjEELQpUsXjh07Rvny5bnvvvvooSgUf/fd\nd/PEE08ETmnPHxbBDoBXSXfRzSvGMHLkSNq3b88PP/yAJEnMmDGDG264oShkAl5GIBtgxowZMHOm\nfftpheMHTZsCELZkCQVXLjleUCtsL7B9Wz24uj+wYuFCmtgYQ9OmcAEk6wJ/Be+QTxjx8Z8aj9+h\nA+1Fe+6ofQeRoZHUjLcyBovFcX6r3tu2nRMCUlg2kE7p0lHYGIPR+JrxrGjRtgUonZhU1wcdKIPD\nwNJh4ECoWxe6dLGP/6miVk+TKGhksz8L4aDHxiAU44cB+XSgY0eHmkxNH3QgIuIwEj9TKl8+vqIi\nOLt1veZ8qVzcW8fPN+frX4/197cdYqcvPBzy8uTzN2zokIzUx1eHNu3aIDZ+DUC51NqENW/uKAZe\nr6KTpKX5PTp0AKUXrPV5cWw3hkvA2cBlDMVZTtMTtGjRgo3qVC1+oOW6K+1ZHfvznf4baH0jZXjE\nGPbu3cvJkydp27YtaWlppKXJdQl++OEH9u/fTw0jd0YPUalSJQ4fdrjzHT58mMqVDYyEHuD38qqG\nv16Dus9hsljYZDrm1VgiHaQJgASl8qHnfbC8LvT/8wyYc0GRjM32Wrdhk/zFVb37ggKk0FAalm9I\n/tXLJEyIIsuUQ4/oNOw2IZVnkJzI0wysJ1S4ydQqSeSEQtQ4sC0Nzr4O8Xl5hjaGr/76SnU2K2Jj\n4dZbnfrOU2Rb7zwITr1p3fjsMzlnVUoK1EmFH5x9tqWoLMiuSIjNa0wve1+rdzja9RkGADdnancb\nYfdp115yOw+uQpo+BACzeRwmZdCfEFhcxLjsy9qHbfbvtWkdK26sBVFRcGwZ7HUEtX2y/RNtHIk7\nWBMmSteYjSGI6xceGQmeeuopjfsXyG5eTz31VJGJaN68OXv37uXgwYPk5eWxYMECJ3HME6Snp9tV\nJo2Hqnae/AaAJvv3s0mRqcBTD5/WVp51prTMFADm1bsIRxY49VNn3T5y2QUTetlRm2H6+w+SZZJt\nH8svb+eSzeFJFa0sCah9ylp5SScqWo2RXZ23h9wJ/N//ORXuUaLXAmUhGc+N3KeVppTFi+HNN+WY\nicPzNX0Lev3HuaG9TgRyV0dwYpR1ro5TGJZ/u/S9Lh29v+yt227DvIwh9u9LFqtqY1gsfHPgG8d2\nmQYQ6/AgafZJMyzCQvnL8PCapQy0ecvsdY50fmzlY5rz7jmrk60sSfHj7LV5qQUZQxDFhExcqpI8\nYgwnT57ULcjTuHFjMjO9WNIB/fr1o3Xr1uzZs4cqVaowffp0QkNDmTJlCl27dqV+/fr07duXevXq\neTVuenq6jkrCgZ2DB1NdIQKC/mt4MFbbFm9VEeWo5aucE07/Taq59IrkIsp6nyOC7vh5Z/enfJtL\nrY7EEGcuYCEwExV0Jtj9zjZ+fkkGDhxwrl6mwpN8xUjuYXRpHV+2H380PE4PA5Zry5bGJq9jIfc4\nBaq7wt4EOfDvpY6OugqXCtwk/fMAJ3X8AjLPH3Rs1BwOTdRuxYIo60/S22WecmdcztPxYqisCNq8\nYnuHgowhiGJCddeMwSNV0vnzxvVBc1wketODze9Zjdtvv92voeJlsrQMTM+9MCMFql6ETpmO13TF\nF7CgAWSpMzzYolbN8n/1aFKYi1iHuXNhzBgQgvzfd4CeB+NffzmlujAJiM7+gXt0utKqFax3TudQ\noGL75yKBTG18R3Qu3Pk3fFMD6sb9Tbdzf0N8FU0/WrfWtrmA0ClcdC4mh3tYLOcm10F2jHMuqwPx\nMKnDRNinCHS8fNaj84dKoRix5r3qOj0WC5dyFbpgKUTjervftIpYW/4+gALP3NZ04xOEgjLhuVtz\nEEEUBzySGJo3b84nn3yiaf/000/t9oZAwett9NtTnoYN1dwfP7gX3DII6qgyffT9A24Youp8yqrS\nyJWNxOp5UHLnztu4MTRpwistnH3ib7d5te3ZAwmOGSxEwLQVBmMlaCuSfa9y2c8qBSxcqOl36TWY\n3xiySkONEZBZFjhskNsHmKzDxH7SMQnNNaj6anGxMP6tx/uaNvMg58y2iy5ONx5AeZwyEvqCs+vq\n+y1hb7yi4cknGbNREY1uikSNC5IqgOXH7rrnXXdwndN2/hmdNBuSgjNekT3AriYal00NIghfw1Ww\nr0eM4b333mP69Om0b9+ekSNH2r2TPvvsM957zyCbZDEjPT2dddOnM/ZW4z4LGkCIh2nVNStKA9yb\nkQF/vwHoSAyFVA1sVU6yOoFUurDmaPEU/+2sjSi1YaMrBvrmm4zQEew+vNHzc6slGXe4umCudwdY\nISTYYFOBHvtKs/97pffRHpUdoJS+84MnlpePtn3ktC3tdagNG0ZZbSyli+awEUQQRUImjHMxPXn0\nilaoUIFNmzYxYcIEUlJSqF69OhMmTGDz5s32KL+SRnp6Oh3cBKlIwM3KRZ8PahgsmDSJDzpPkMf3\nY0kEt3CRyVQPNyQX0s141CjdZn861LiSMIiu7fLY1qWiEB060G/zFq/OWWNJR/5XSRtg6Mllqut8\nKJ0cxs75DNZ3LFSEeBBBFBUpV62uktXhOReGBI/jGCRJolOnTnTq5DpRXCBjdzmrmqQQOKfVLACw\nowIMazGcYdZtswRfNoA6ZyFGtb7MN8HmytDiKIRb1cp7DCSTnFCIVCnIz0XCix1hSgv4dSo0dUGv\nxlCuGCNOkmhVqxqnjkJsLsxRqXwG9YK+u1x726rhiZrOhvORUF4IzeR4xsAD91wUxBYyGMry1JNI\no57li1RtrdsVdeCx7frHSUCoyfkmRuTDuPWQHQq9++ofBzB/13y+qDsOrCkYfr7sooaiFS0PQ+WL\nsMhtzyCCKDxCFFPSxQjAwEQc+PlffYiM6nAwzn0/PcQbFHlS2x3+2xb63wNpj8HVfGeX0rG3wM2D\n4QlFclO1LcOGxGf1aZjSQv+8akSN02+3XUfM3kOUuwojboMHdLw8I8e7Hl+NwzreXEZIMihgV07n\nmgGqKzyiv1OnOiqlqpSmgmXaND7rqy9VfF0bLrjgfuqyo7lh8GhPKDUOVtdyeVo2dmsI1jrXwzKn\n2NtbG5huvpmta/4JIsCRnp7OAw+oqzsGLmpecTzwKS5yX143jCE9Pd1tZGZx4HOFhuaK2VkV8V4r\neYU8zQN7/RXPKl4648knvT5kqhe2AXCTgK8YsLyO83ZSXH/iXKQPNptgYQPj/ScNkmpKAkIkL1Lx\nqrCmJrq1sitYHZnmqNyxT7tOqxUQCKRymtHR0fYMrDExMYSGhvKk4vkvCi0HDx6kY8eOlC5dmnr1\n6rF2rXFZ1sJkbZg/fz7Vq1fXtBcUFFC+fHl7MkB/4IV9VtV/JmBcVNAzxvD222/bP++8847T93eU\nCdtKEOnp6ZpUBCUBpT48RFLrc/zMhwvxsnlrFzGXsGulmt4T/QZrVuE3HYHS1thAi+TaRuFqX6gp\nlJGbCkcnoGvDyg2BhKgE7lflzSlZdusZAqmc5uXLl+0ZWE+cOEFUVBT3WnNuFZWWfv36kZaWRlZW\nFq+88gr33HMPZ87o13EpzEKpV69enD9/nvUq9/LVq1cTEhJiLzjkD5S2eX5UBzoa9/Noprp06RKX\nL19m+/btfPTRR/ashFOnTuWXX37xAbnXD5QTTZhKR+33mr6FeEjDvJzn1cVwAgFqTzOTcAQbmiX5\nYwQjxiAhG5HDi8IH9RiDge3nWsiGUVLlNN1h0aJFJCUl0bZt2yLTsmfPHn799VcmTpxIREQEvXv3\npnHjxixevNgtHfn5+fTr14977rmH/Px8jh07xt1330358uVJTU3lgw8+ACAiIoJ7771XUxN61qxZ\n9O/f368V3jxlZB5RkJ6ezoQJEzh8+DC//PKLXVrYvn07hw65LmdZnJAm+vbtetLqlvmrXoVK5XnT\nHZ9/FMbtUJWO2qyIhH6zNbzazvNxpXTXfT/e9jHSp5WQ0t2vPl9tJ8dKSOmQ56H7we7Tu5EmStT6\nwFi5PsNqDb8S5p5eG9ZW9+z6bJjcUtsWorrgzVXgklWVWvY5WKeV2u1oYPXyrWqgb40oJGN45Wag\neXP2Jjg/kzmh+lJX0yHwTivXY0qS7z6FQXGX0/QUM2fOZODAgfbtotDyxx9/kJqa6pQyv0mTJm5p\nzcnJ4a677iIqKoqFCxcSEhJC9+7dueGGGzh27Bhr167lvffe45tv5LQrgwYNYtGiRfYA4QsXLrBy\n5Ur/12zwJWOw4dSpU4QpchmEhYVxyoPKV8WB9PR0TXrsShd1u9rhjnt+YDX0NnNj6DWCKx31s13g\nhc6FG1cPQ752ELkv3kVH5PO6M56q0fyT5gAcuXjEsM9Dd8n/pzZ3P15OgfxC3OKD96BX0Wo6cT7S\n2XiedkxWWUWHR3P/ziIMXFBAbZXZZ0ZTmHqHNpX8lXB4pqumOaBQ3OU0PcGhQ4fYsGGD04RaFFrU\n+9THqiFJEhcvXqRr167UqlWLzz//HEmS+Pnnnzlz5gzjxo0jNDSU6tWr8/DDD9vTf7du3ZqkpCSW\nLpUrEX755ZfUqVNHN/WQL1G35R3yF1/YGGwYOHAgN910k12CaNGiRcBUJUpPT9ekSz7iC/OHohKU\nt/BWdfThykKfygmWL52T+z3f9vkij5ld4MLCq4LacL5gIcx1L4l7DUu6/L+xTmCxEaZ/Bbep6gqp\nVU0brIHVIaYQanmQlmnf+1AwESp4kF25Qbm36NtQ1nePbm3gnmUAIXz38RbFWU7TXWlPJWbPnk27\ndu2oVs3hL10UWvSOPX/+vG4SUZDvy+bNm9m1a5f9XoDMsI4dO2Yv+xkXF8drr73mtJBW1oSePXu2\nk9TjL5SumCJ/8YWNwYYXXniB6dOnU7ZsWeLj45kxYwbPP1/0ScefCC+qStzPHFyJym4kHE8RckMz\np23DcpZ+gtpAHJujYweQiq5Htc3n6uSFrpBwFWqqJnu1nSHUIo/tqT62xjlZnVXjnPu+pUyOwBW/\n25x8iOIsp+mutKcSs2bN0ixOi0JLgwYNOHDggJM089tvv9mPVUOSJLp06cLYsWPp3LmzfeKvWrUq\n1atXdyr7efHiRVaudKz+BgwYwNq1a/npp5/YsmVL8VR484cqCeRCFU899RQjRozwSZEefyO/8B6H\nxQ5vJjhXUKuw1IFa/oY2NYj22kpqUjSbtPTpMgZ/uQlZHAP7okBVcaEkymm6w6ZNmzh27Bh9+vRx\nai9KmdHatWvTtGlTJk6cSE5ODkuWLGHXrl3cfffdujTYFg+jR4+mf//+dO7cmbNnz3LjjTcSExPD\nG2+8QXZ2NmazmV27drFt2zb7sSkpKbRt25Z+/frRpUsXypdXF5IpOXjFGCwWC7Nnz2bSpEkA/PPP\nP2zdutUvhHkLI8NzUb09fG3QdnkuH42TOtlZQigqY/DGJU9Kh/Gq4HhJ6Fybl/oMbwzUrmCWtMb5\nCiqNTmEZtCaJYrq2T7dFg+GkrPvyhdRUXLCV01yxYgWJiYnUqlWLiIgITTnNF154gfj4eLZt26Yp\np9m9e3caNWpE48aN6d69e6FLe9owa9Ys7r77bk1tdVuZ0cLSMn/+fLZt20Z8fDwvvPACixcvJkEn\nSaXtvtgY/Lhx47jrrru45ZZbuHTpEitXrmTHjh2kpqZSrlw5Hn30UY2aatCgQRw+fLhY1EiAx++d\nVzPG0KFDMZlMfP/997z44otER0czdOhQJy5YYsgAUtDYGfr9Dl80KgF68LwQkA0pxtnNi4Q6iXXc\nd3KBWb9p6yrYkBqXyoFzBwz3A1S74FFdoUKjvDbbhSFSzxmn3lCiMEy62174wUVqkFq2bOEVKoAQ\nNAspfJXCkkBxldP0FK7qwReFlmrVqpGR4cIyq8CECROctl966SVeekmuHVK2bFnmzZvn8vhBgwYV\nr53WxhgygYPG3bxasmzZsoUPP/yQKGvCtvj4ePJVxWRKDB1xYgoX7pSLykzXJtV0QId7zu412+Vp\nRtZ8gGndp1HOXWlNL/FXq3nU/67whm5XaF6xOa/f4v6FnLXE8X14gSM8e8tR/QR0F8ZeYNfju9yO\nW/ssND0Bbf5x29UrrKwFG24sT5KHjKH733DDCbjVNR+zwxPGfv41x/dn3dQx2vSZ8/bdkc30OwYR\nhL/hS+NzeHi4Uwj86dOn/RqMURTYqpRFmGGZfm0gXQxoPMDl/rfvn8V/mv2HU2VectkP8CqctcLN\n3fxq6G5V2bWT/OM/wwM74WVr9H+MIoWekSqqTEQZosI8y+r6V9c0fvhMEOrDwGmLBJdKybSNNV7I\n2rH8C0AIhKJ6nhE8tTHEKrKih2x3HewZoXKEcFuvI4ggfA0hqHLBfTevnszhw4fTq1cvTp06xfPP\nP0+bNm147rnnCkuif6F46bzN/+8RfGw49LchsijjF7fx2lPItgDvDQIW4WFRDm/h7UR/DRmfg7h+\n4Mkb49UbP2DAANLS0uxJpZYtW+Z1beZig+Klc5USwRfj+wL+NkS68wJSG1yVahRfMAbhh0nQVEif\nfE8YQ6GoDU70QQQ6hPDIIcerN37MmDG8/vrrTszA1hZwUKzezNeAxOB3xuCGXhtj0OsVqN4zIQIK\nrAzMm1/DI8YgCpEgLSgxBBHoEJ65xHj1JNvyfCjhzxSxRYKSMVwDEoO//frdTe5RfvYhqLRjv8/H\n7Lof7thwAvDOxdSTV2PnVJCyDaqYGMENY9Cs1E6c8G78IILwATyqQujJQB999BGNGjXi77//plGj\nRvZPSkqK33N7eIwMnHMlxTkq8vT6CyqX1pYg9dadNDxEketBknjGy5TMyQWtDfdFhsol4vpGeVkg\nwQ2+6iu7ZTWv6DqB0cifjPd1qdFF0zahvcNNLy7SuPrRpO/l/2VO6IcFf93/a5d0GeG9Vc7bIzY7\nvjc5AdF6pbIrVQKgToKx++6zPzi+x6yTf+C7d7vvC0C5csxYajg0MWqasrKYFyzZFkSDab6uAAAg\nAElEQVRxQghWzcE3uZL69+/PihUr6NmzJytXrmTFihWsWLGC7du3M3du4Qq1+xwKd9UtD29xqoFc\nKh8O99+GmCDkz0QJkW6sO4+cru82uvk/itlHknjrGxDpII4+4hh7giDRwH2yz8UfYeECTbuYIOyq\nnvnPbkVMEOSO05vZHKh82fmnG5Kmn+mvZ105yVmoKdR4Et74HBWeLIOUDgWdtT5snap3cro+MUGQ\n3iHdvj9rjH5CIZEO4zcYXIBVTdOtVjencW/52RFhapQ7alnMDEaoPGjLTZ7GyZFneWIL7JgKn6xu\nKI+5vbv8G6UDr7wCyDmQxAT9RUHzYwoSrUurRV9iH+PzdzvyThmBqDad179THWwyMWiH/rjZL+uv\n1Pq59/YNIgjfQQganYI39wDZHxh284gxxMbGkpKSQlhYmP17SkoKJpOJwYMH+4pkn0EIAaGh6kbv\njteBk57e6LtyHD2JRPLMI8YfqiWzxchX9FooE6OASefeSBIWvVvrwe/kNLTyVuj0l2z3Sm8sF6ok\nXVVX0Mbwr8a6deuoUqVKiZzbnQHaKxvDzp07KVvWUXAgLi4uIAv1CHQYg+6sYQBPnNhdTDhG91wI\nQPLMkd+dTaAwU7lh9TVJBCRvMHx29SZUSdLn/V4yBnc9JNswXjIG3UfqGmMMgVJO0x02b97Mrbfe\nSkJCAuXLl+fee+/lhMqeUxRa5s2bR7Vq1YiOjqZXr16cO+dQk+bm5jJ48GBiY2NJTk62pwzxFY4e\nPUpYWBgHDmijNHv16sXo0W4y9ipfEhfcwSvGIIQgK8uhNsjKynIKeAsUCCG0L6k3EgP6TMRpFe/l\nhGOHybP75Y+4BmNvnADkCi5gMZLQfMEY3NwKk+0eGjAn4+N0Gku4fra3CJRymu5w/vx5hgwZwqFD\nhzh06BAxMTE89NBDPqHljz/+YMiQIcydO5eTJ09SqlQphg4daj82PT2d/fv3888//5CRkcEbb7zB\nmjVrCnUdeqhUqRKdO3dm9mznDA1ZWVmsWrXKfWJC6zPn7snzijE888wztGrVivHjxzNu3DhatWrl\nnkOVACzCon1JvXoJiyYxGI7qhcTgD1WSIWPwUL3lS3hr+HdCiHtVkqRoR++7AZQTuJ5K0aXE4OG4\nihN4NUYgIVDKaerhtttu4+677yY6OpqoqCieeOIJfvzRka+kKLTMnTuXHj160LZtW0qXLs1LL73E\nkiVLuHJFNizOmjWL8ePHExsbS926dXn00Uc9LmE6efJkGjRowLFjx8jNzWXUqFFUq1aNChUq8Pjj\nj9urvQ0aNEjDGObPn0+DBg0M04Or4U6V5FUcw8CBA0lLS7MnmFq6dCn169f3Zohige4E6IUqSRhM\nlIY2Bm9g8qxAhDuJoVCqJCMbg6SaUf04X/mC3Qm99YxVlaR54H2uSnJhY3Ax0euO6416E99m+jUy\nvnsKb8pp1q5d2y/lND3Fhg0bnGo/FIWWP/74w84MAVJTU4mIiGDPnj2kpKRw/Phxzdi2Km2uMGnS\nJJYvX86GDRtISEjg6aefJjMzk99++43Q0FD69+/PpEmTePXVV7nrrrt4/PHH+fHHH2nTpg0gF/rx\nKBmf0zPqI1WSxWLhl19+ISsri2HDhhEdHR0wabeV0F2N6r20hi+yly9Nlgdlvmyn81CV5A8YSwyB\nuXI1IkvoGZ8xmGePHvXqnE4re4OJ22davmtUYijpcpreYOfOnbz00ku8+eab9jZvaYmJibHvv3Ll\niiGttj7qsV1dhxCCkSNH8t1335GRkUFCQgJCCD799FPeeecdypYtS3R0NM8995w9dXhUVBR9+vSx\nV3/bu3cvv/zyC/379/f4vrh78gqVdjsjIyOg026nlE3R7o9XFEKWJNcv5QV9T4HkaEUshDIt74IF\noMj3brvrZ8/qTCxHdKrZ+wCdqndi6nbjNMQADcvrV8zi0M1ww2f6+0oQ5rAQQMtIE0N0ilpLkv7D\nvkXh1zpnDrh5eeoo1NoHD2qyuLM0ugU3A3zyifbgyEiXY2tgUNrSCEVd5fsKJV1OMzo62l4HYffu\n3VSurJ++fN++fXTr1o3JkyfbV9aFoUV9HRcuXNDdbxvj4sWLJCYmao7Vw/nz55k2bRrz58+39zt9\n+jRXr14lLc2R4VgIgUWxUBk0aBA9evRg8uTJzJ49m9tuu81+TpewznsHLgBZxjFEhUq7HWl9AQIx\n7fZbt75F1diqctu338r/33wTFN5U7iBdSYbp650YwaI+iyhXupyj00kXhYatK8ocVeCsEMCJpvQu\n5fBUODbyGEb4cfCPjGo1imdaPcM7FU7BzLX0PyRHn6tVJvfUv4d3u77LK51eoVypctSIq8E/Tzl7\nhTRKasSq+1fRq24vZveazZTbp/D5nbPgr57G1+IhLj93mR51eti3T47yohCzAtXL17R/P9y5OWdG\nn6FtVVl0r1ymMh92+5DouBpux2lYsZa28eBBp82sZ50lvdGtRzvVeJauOhjQhUa1+appRxZffUJu\n2LlTO36EnJH28NOHaRpbl8TwOFpUasFvQ5zjYt7H6sljjbXZMxnq/XYDicd7u72uQEBJl9O0GcEv\nXrxoyBQOHTrErbfeyosvvqgpmVkUWtTXuX//fvLy8qhduzZxcXEkJyd7XMIUZM/OlStX8tBDD7Fp\nkxxQmZiYSFRUFLt377aXBT1//rwTw2rTpg3x8fEsW7aMuXPnel7TwcoYqpcFKt7pqp/nuOmmm0RB\nQYFo2rSpEEKIU6dO2b+XJLy8DCFMJrkmekGB7u6wMHl3To6LMTp2dK6vrkC50QjSEWvWfOfUPnSo\n3HXKFO/IFUKITz+Vj314wA5BOiJ5tMn7QXSQl2e9hLFlBOmIiRM7CtIRz41rVfTB1TXohRBh4+V7\nk5tzRfeQ50e+K0iX+4wZ31q3zy+LD2jHnjVLZJ48K4Z2s24PHaqloWFDr2jeMmax/D0kRAghxLBh\n8ubkyUKI6Gjd6/Nk3Ld5Wm5bsUIIEFmt7xAgRMuWhXiWixk//vijKF26tLh8+bJT++nTp0VsbKxY\nvHixyM7OFqNHjxatWjmeoalTp4p69eqJo0ePiiNHjoj69euLjz/+2L6/ZcuWYtSoUSI7O1ssXrxY\nlC1bVpw5c6ZQNB45ckSkpqaKt956S3d/UWj5448/RJkyZcTGjRvF5cuXRb9+/US/fv3sx44dO1a0\nb99enDt3TuzevVtUqFBBrFmzRpeOjIwMUblyZSGEEN9++61ISkoSW7duFUIIMWLECHHvvfeKU6dO\n2a9JPc7EiRNFtWrVREJCgsjLy3N5T+zP1SuvCAHilbYImn9o+Lxdv2m3iwCblsmlLtkjRbOz6F8U\nlbLGyarwQ3k0bpG8hjyB0c3w5LReuoraEVK0AuBOJBfBTdtA6XVNIBDKabrDtGnTyMzMJD093R5z\noVRLFYWW+vXrM3XqVO6//36SkpLIzs7mww8/tB87ceJEatSoQbVq1ejYsSNjxoyhSxdtShkbbE4m\nt9xyC59//jndu3dnx44dvP7669SsWZOWLVsSGxvLrbfeavfwsmHgwIEcPnyYvn37EhYW5tnN8dD4\n7LGNQQjBzTfffO2k3fYBCssY3Nlyi2K89F+yPUnxN0BgQIwobLZXbxmDwQpBkvApY7iW2EQglNN0\nhwkTJmhKbvqSln79+tGvXz/dfeHh4Xz22Wd89pl7m12HDh2cggC7devmFIj3yiuv8Io1jYseUlJS\nvI8js8Ux+NJdtVu3buzateu6Zgbg4cq+ELO7L5xQhI+n7kAOvjViglKIvruq2xtcxIppTsMXeOZ2\nrEuGUQBlAP8WQVxf8FmAmyRJpKWlBaR7qr9Q1BfV6HhfTADCRy6m1+JkVGjm6DVjcCExeBmD4HT8\nNSUjBHFdwcOUGF5JDJs3b2bOnDlUq1bNrmOUJImdeh4a1zACWWLwtbLnWmQMhhKD2wO9u1hJpUry\nVdhBkDEEUdLwmSpJWIMuqlatWlSarhkU3fjs80Mdk9O/YW7xxsZglERPiSKqkhSnKtrxBj/etcik\ng7jG4OHqxusAt127rv8E8r6SGNQ9fOKVZP3vSd1Wr8YNQBga2gudjqSQjCEoMQRxvcApiZ4PUmIE\nbQze7LT1KfyhxkMG8ExeTCi0KslX5/e1xBDkE0EUM3zqlfRvsDF8/31g2hjy8uT/S5YCgZfQ1k8w\nSK9toEpyCy8lhhvflFNKk+u6mp63eJypIDncPn+yFgbMyZEjYf2Rcj2IfzfirKWOzSuWEwIkXMUl\nd/DqTVmzZg379+/n+++/t5f3XL58eVHo9RnS09NZt25dkcfp3Nnx3eX7qcjBjiIPiyc52wrz3qud\nYK75RaYHXPLOW4bqtu8/ZZx7xiWKGIzpRLKHqZRt+CDkKcN9FusLarFA1unTCND/CKH5HPhotXH/\nEyeoVUve+vtv7bEiJMTRt3177X6jcYFDVAEEPXoIxOrVWjqrVnVuW7PGo3EF0JlvAYO+QiDef1/T\n9sAjN0I6dB5UFpGZqTvumpRHAcHChS7GbtnSsX3ggO49Vx93PgLo/rCDZr2P2ew4JjLSuF9WltPY\nbdgICDIzdfpOm6Z/DVFR8vcrV+x9bXV0QrbLhdUa/gycWGL4THolMaSkpHjTvViRnp7ueecfrFXc\ni2KMvPNO+PVXOHQIejhyBOXkQPy5MpS7cpFKNVOcDvFNHINvDKjFAQmL1/RK7SuDNdVM67b36fbJ\nLghjmOktplhGKQ6UJ9fF9eDX+Bg2PfOM3G42w+zZkJIC7du7PX8EOeTiOhmeJAGDBsm5jpYvh7p1\n3TKdJ83vAAUMZ4prAkJC5Dxcf/0F5crB4cNw9arTM6bE+RZd6cRavqezdqe7PGZ5eY6gP0WqaBuS\nOMFJKrgeA6BrV9i4EebOhfffl9v27wdlNK5iZdO+nYX3N95AU/Rrqxvi6lX5/5NPwogRxv1s4rUK\nwvqM2BdmV6/ChAlQoQLYShRv2gTTpkHDhlBdnUJRHx691iYTHDsGq1aBomiQBqqANZvaUXcx+Z//\nQIMGsH69PA+9/LLcnpEh329r7i49dACocjscW6273yvGALBjxw42btyIJEm0a9fOKff4NYNWrTzq\n5nZl37Sp/FFACPgrLgqiL1K6jH72zGtCU+Aj19ojVKIyWjFKGHHJJFlFGWkpZUyagKOWVN19J2Pg\nVGgYpFr3m0zyJO4h8jB+mTQk33uv/PEIEoeo5rqH7bkoX17+ALgJJhUCMuikv9Nicb0YUS6MdB7K\nUyS5PLfTYW3byh8bXJTWtQiJlxnHIvrojmkYp2JNOug5UW7GjYqCN97QHvvII56dxzaup+9zcrKD\nARnB28mhZUv5o0SLFt6NoQOvlnPvv/8+AwYM4PTp05w8eZIBAwYwefLkIhNxPcGpipg6D5EvvJJs\nY/mNufh2YPXL6Iu4PCHAon50rwHjs4Zmf0PxwLml2d/3T0GLEK6DFIsc3e/mWgJ6YaYiznYv/EKz\ni8qNXkkM06ZNY8uWLXbD89ixY2nZsqVTQfB/O5wnf9/5qzviFwL5qS4+6DEGX7mTGqGo4/s6nYn7\nE3pBcCFnHo8PU9BShKBx96dBeC4x+OycPkSxci1jyr1ewpgU4qfJRwFD1xMsFuyTty8lBvsY1ofb\nX3OgI37ON2fw+mVUxWvojulmxelvFPbdLQmaPX7m/M0YFLBYfC8x2Ny4JQ+I8vXc69O1muoHs+XV\n8o/EYPxweCUxPPTQQ7Ro0YLevXsjhOCrr75isDud2b8Myt/VP7mS/DS5CMWL5cthvR7RfX8jVZK/\nU4X7WyIpDFzSVAyqpMJIDO7uY2EYgyeTswhK2yoUkTHs3buXkydPMnLkSNq3b88PP/yAJEl88MEH\nVKxY0WdkXg9w9dAH4sTib/hrlWzGVQpt/04AAa2jVqIYVEkewwtVUpGfGQNNhsYryUfw52vt0iup\nyIMXUZX01FNP2QtdpKWlMWLECJ588knKli3L008/7RsirxO4Mj67a/cG1wqP8QdjEEKHMRTDbO1v\nxu7zS3DnleSDk3t8mNIryY0qqcgwIspPv58siPjnevyaPsWF8dkjxnDy5EkaN26saW/cuDGZmZmF\nJ+w6hL+8khxjXFt2HX9NANeiV5I7FOb5uBZVSX6XGIyMz36SGPwJv0oMRTU+nz9/3nBfjrri/b8c\nnnhcXEsPpt9QBC5Z0sZnXyMgrsVLR5KiuFGWmLuqvyQGnw7mPJp/JYYiMobmzZvzySefaNo//fRT\n0tLSCk/YdQhXjMGXqohrxY7mL1VSSUgMRf393L3kPr8EIfyuSvIYXhif/UaCv2wM/tSKlZDE4JHx\n+b333qNXr17MnTvXzgi2b99Obm4uS5cu9Q2N1wk8KcEakF5JfkJxqpKKa8K5ZiS+oCpJRcK18sM5\nUFI2Bo8YQ4UKFdi0aRMZGRns2rULSZK488476dTJIBT/Xwx/SwwBoXbwAsUmMRQDAtGrzFMbQ4lD\nxRj8qkpyoxYLeiXZBvdBHIMkSXTq1CnIDNyguGwMAfTKu0SxuateB8bnwsDl3B/AXkl+RXFHPheD\nKsk/8FGAW3HjypUrDB06lIiICDp06ED//v1LmiS38LuN4RoUh32NkjI+B9IC3AZPJ2a3/QqZxeCa\nMj57trtkYfCQBWQcQ0lhyZIl3HvvvXzyyScBU/fBHVwxhhMn1gG++pH9M0tlZp7z6Xj+UiVd4Bfn\nxgCVGHxRI6TQ8IKTrTt0qFCnKO7I56Lcz+LMleSr372kJIZiZwyDBw8mKSmJRo0aObWvXr2aunXr\nUqtWLV5//XUAjh49SpUqVQAICXEV6Ro48IQxFA3+zZV08GDgMwaAiyXAGAojMSgnCH94JbmzMXhK\nc2EZg8fwURI9jyZcN6qk4vBK8jVjuO4lhoceeojVq52LQ5jNZoYNG8bq1avZvXs3X3zxBX/++SeV\nK1fm8OHDAFj8rpj0DYJeSc7wl8RQkvchkFQRPgtwKyQK65XkV1XSdYR/jcTQrl07e/1RG7Zu3UrN\nmjVJSUkhLCyM++67j2XLltG7d28WL17M0KFD6WFQwSrQcMstju/qpG6//174cZcts34ZkSKP7et3\nJ0oOYsw8d1Ae31fZVSMu2r9LEx1EWyzuOKjr86snjzu+6E6tT8vJ+6LOekekB5DavMnMmfL3Dz7w\n7dg9WAHA9u2+HZfGjVl0qLlnfb3kHNX4B4B58zw8QKVKqoaxhJLMca9ocToNwLZtuvt6HXwXgD//\nLPTwuqh0CYj1j8Ql9e8GeLbg9H5wlwbR4kdmZqZo2LChfXvhwoXi4Ycftm/Pnj1bDBs2zOPxatSo\nIUC3zGvwE/wEP8FP8GPwadKkie6cGhBeSVIR5dx9+/b5iJIggggiiCACwiupUqVKdlsCwOHDh6lc\nuXIJUhREEEEE8e9FQDCG5s2bs3fvXg4ePEheXh4LFiy4ZmwKQQQRRBDXG4qdMfTr14/WrVuzZ88e\nqlSpwvTp0wkNDWXKlCl07dqV+vXr07dvX+rVq6c5VgRihJEOgnT6FoFOZ6DTZ0OQTt/jWqLVG0ji\nGriyqVOn0rJlS1JTUylTpgxCiCLbJfyBIJ2+xbVCp9lstsfZBCqNEKTTl7hWns3CIiQ9PT29pIkw\nwh9//EGXLl04ceIEe/bsYcWKFdx1110B9wME6fQtrhU6582bx4MPPshff/3FxYsXadCgQcDRCEE6\nfYlr5dksMjz2CS0BZGRkiCFDhgghhLh06ZK48847xahRo4QQQpjN5pIkzQlBOn2La4HO3bt3i2bN\nmol169aJ5cuXi5tvvlnMnTtXCBE4NAoRpNPXuBaeTV8goBjDuXPnxJYtW0ReXp4QQoiPPvpIDB8+\n3L4/MzNTxMbGiiNHjgghhLBYLEE6g3QWG5QvfkZGhnjyySft219//bWoWLFiSZClQZBO3+FaeTZ9\njYBhDB9//LEoV66c6Natmxg4cKA4fPiwOHz4sEhKShJnzpyx93vqqafEwIEDg3QG6SxWpKeni8cf\nf1wsWLBACCHEtm3bNMFBt912mxgzZowQouRWj0E6fYdr5dn0BwLCXTU7O5uffvqJjRs38vXXX1O1\nalVee+01Yv6/vXMPiqr8//gbREFT1HAAQ50mLpoILPJVBMXLeFtFScTikoqXvOCKimLgNadEETNQ\nSLQyBaQcdVK8hFBeSYREQRsVUkMFXNGR4aII7ML798f+ONMWNWUuu47P6y/OOc+z58XZc/bzPOc8\n5/N06oSgoCDMnTtXKjtt2jQ0Njb+7TzUwlN4vkjWr1+P7OxsyOVyJCQk4NNPP4WbmxtsbGywevVq\nqVxMTAzOnTuHqqoqGD9nGmvhaRieL8u5qSsMIjC0b98eFy5cwMOHDwFoDrSFhQUSExMRExODK1eu\n4MCBAwCA27dvo2vXrujSpYvwFJ46R61WIysrC5s3b4aPjw/Wr1+P+/fvIzU1FYmJiUhMTERpaSkA\nwMLCAs7OzjAyMmr1YYzC88XyMpybukSvo5Ia/z8zlJGREWpra3H58mWMGTMGFhYWqK+vR05ODtzd\n3eHq6or09HTExcUhLS0NQUFBcHZ2bjVPtVptsJ5qtVpqTb0sx/Nl8VSr1TAxMUF+fj5u3LiBUaNG\nwcbGBk+fPkVmZiZ8fX0BAKmpqWhoaMDevXtRWlqKqVOntmqaeOH54mhqapKGnhryualrWjUwJCcn\no7KyEl26dIGZmRmMjY2lYV5GRka4cOECOnTogLfeegvGxsY4dOgQBg8eDA8PD4wdOxZvvPEGoqKi\n8L///cOMkc/Jnj17UFZWBjMzM3Tu3NlgPePi4hAbG4s+ffrAysrKYD337t2LmpoadO7c2aC/97q6\nOpiYaNKHNTY2Sn8bGRnh/PnzcHBwgLW1Ndq0aYMbN27AwsICgYGBMDc3R1paGkxNTbFz506YmZnp\n1DMvLw+dOnWCqakpAEgNA0PzVCqV6NChA4yNjaWgYGieRUVF6Natm7RsZGRkkOdmq6PrhxhNTU0s\nKyvjsGHDOGLECM6ZM4eBgYF8+PAhSTI8PJz79+9nZWUlExIS6O/vT5VKRZIcN24cT548qWtFiays\nLA4ePJhjxoxhWFgYp0yZwqqqKpJkZGSkwXjW19czMjKSo0aNYl5entY2Q/K8ffs2PT09OW7cOK5c\nuZLBwcEG+b2fOHGCcrmcH3zwAZOSkqT1Fy5c4OnTp1ldXc2PPvqIH374obTNx8dHGk5JUhq1okt+\n+OEHDh48mPPnz+eTJ0+k9bm5uQbp6evry7lz50rrDel45ufns1evXrSzs+Nvv/2mtc2QriF9odPA\n0PzlFhYWMigoiCSpUqmoUCg4adIkkuSjR4+k8hUVFQwICKCfnx/lcjm9vLxYUlKiS0WSpFqtZkND\nA1euXMmDBw+SJIuKihgaGsr6+nqS5OPHj/Xu2Xw8a2tr6e3tLY2MqKyslMr8frSEvj2PHj3KFStW\nSOtnzpzJwMBAkvr/3puamqhSqRgdHc3+/fvz2LFjTE1NZWBgIA8dOkSSzMzM5KlTp0iSFy9e5Pjx\n47llyxZWVFRw3LhxPHbsmE4dmz3VajUTEhJoZWXFb7/99k9lDMGzmWvXrtHNzY0HDhzggwcPKJfL\n+eOPPxqMp1qtJkkmJyczMTGRU6dOZWxsLOvq6qQyFRUVWn/r4xrSNzoJDGq1msuWLWNoaCjPnDnD\nw4cPc+bMmVrbLS0teebMGZKUojGpaQ2fPXuWO3fu1IVai54KhYLnzp3TOjlmzZrFPn36MDU1lTdv\n3jQIz9DQUGZmZvLhw4dcsmQJCwsLGRERweHDh3PmzJk8f/48Se2hffrwXLhwIXNycrh27VqpQUCS\n0dHRNDMzY3Z2Nkn9Hc/GxkbpByI1NZVFRUUkyerqaoaHh0tDKP84Jj0/P5/BwcF0cnLi6tWrW9Vz\n9+7dDAsL44MHD0hqxvlXVFS02LLWh2fzOZeUlCS9AFZVVUU/Pz+WlJRIDSx9earVakZGRjI8PJyn\nT5+mUqkkSWZnZ3P48OG8fPnyX9ZtzXPTUHjhgaGxsZHz589nUFAQk5OT6e3tzZiYGHbr1o1XrlyR\nym3fvp3Dhg2Tlr/77jvm5OS8aJ1/5JmSksJRo0YxPj6e9fX13Lt3LxctWsS0tDSGhYVRLpcbjKdc\nLueWLVs4ZMgQrl27lsuWLWNFRQU3bdpEd3d3g/BMSkqij48Po6OjaW5uzp07dzI+Pp4KhYKLFi3i\nhAkT9Oa5a9cuWltbSz2Zp0+fsrGxUfqBDQgI4K5du/5Ur/mWYn19PWtra1vds7y8nGvWrOGECRPY\np08fvvPOO3zvvfe4atUqg/K8ceOGdFuuZ8+e9PLyYlBQEN9//329eZ45c4YuLi6cP38+v/zySw4Y\nMEBqlJKa9xCWLl0q9RSaGwStfW4aEi88MFRWVnLQoEGsrq4mSR45coSbN29mv379OGrUKJKa6K1U\nKjllyhQWFxeTJA8dOsTr16+/aJ1/7Jmenk6FQsEDBw5olXv8+DFHjhzJX375xSA8jx49yqioKI4d\nO5ZOTk784osvpLKOjo5MS0szCM8jR44wOjqaM2bMYHJyMidPnsycnBwWFRVRoVBI5VrTs6amhj4+\nPoyNjaVMJpN6gs3U19fT19eXV69e1Vq/bds2btiwoVUcW/Js7tGcOHGCCoWC+fn5JMmrV6/S2dlZ\n8k1ISNCrZ2FhIUnNrc6oqCiphf3s2TNaWFhIPdr4+PhW9Tx79iyTk5Ol5dDQUEZGRkrLJSUlHDp0\nKH/66SeSmredSfLgwYOteg0ZEjq5lRQQEMCtW7eS1LQMkpKSuHz5clpaWnLnzp1samrixYsXGRAQ\noIvdP5dnTU0Nv/76a4aEhEjdTFLT1QwODpa69PqgpeO5dOlSenp6MjY2lqWlpXz27BmnTJnypx87\nfXru3r2bISEhWs8T9u3bx6VLl+pLkXfv3iVJRkRESM87mluIDx484NixY0mSpTXIurcAAAghSURB\nVKWlUiOhNVref+fp7+9PUtMra25pk5pnOcHBwVJPXN+ezdezSqWih4eH1kNahULBo0eP6sWztraW\nz549k67hb775hsuXL5dcSc10whMnTuT48eMZHBzcqn6GiE5ecJs8eTIKCgqgVCphbm4OBwcHdO3a\nFR9//DEKCgowceJEBAYGon///rrY/XN5duzYEc7OzjA1NUVZWRmKi4sRFRWFkJAQuLm5tep477/z\nNDc3R+/evdGlSxcoFAqoVCqEhYXB3d0dDg4OsLOzMxhPJycnmJqa4s6dO3j8+DHWrFmDFStWwMPD\nQ2+OvXr1AgAsWbIEN2/eREZGhjQ8sbi4GJWVlYiLi4O3tzcePHgAQPOykz49b9++jYyMDBgbG+O1\n116TysTExGjNdqhvz1u3buH777+HiYkJvL29ERYWhsLCQmzYsAFZWVno27evXjzbt28PMzMz6RrO\nyMiQjlnzENpr164hPT0dLi4u2LNnT6v6GSS6iDb379/n8uXLtbqLHh4evHjxIkny1KlTBvFkvyVP\nT09PXrp0iTt27GBwcDDv3bunR0MNf3U8m+9/5uXlafVy9MVfHc/c3Fzm5uYyMjJSunVoCOzYsYNe\nXl7ScmxsLNu0acN58+ZJLWFD4I+eR48epZeXFwMDA6XkbYbAjh07OGTIEGm5eYhyQECAQVxHKpWK\narWacrlc6llfv36deXl5/OSTTwzq3NQ3JroINt27d8ekSZMQEREBW1tbDBgwAGZmZtIbxCNGjNDF\nbv81LXm2bdsWJiYmmDNnDubNm6dvRQAte7Zv3x5NTU0AADc3Nz0bamjJs127djAxMUH//v0xcOBA\nfStKkMS8efOQmZkJhUIBCwsL2NjY4NSpUxg6dKi+9SR+77lw4UJ07NgRMpkMcXFxeu9x/57fey5Y\nsABmZmYIDAyEk5OTzl+k+6eYmJigrq4O3bp1w9WrV7F48WJYW1tj8+bNWjmaBNDtC27Hjx/njBkz\n2Lt3b8bHx+tyV/8J4flieVk8nz59yiFDhtDCwoJxcXH61vlLXkbP5mdNhkZ2djaNjIw4ePBgfvXV\nV/rWMVh0PrVnQ0MD2rRpo9d79P8E4flieRk8t2zZgnv37iEmJkZKL2GICM8XR2lpKZKTkxEeHo52\n7drpW8dgeSnmfBYIdEFTU5Ne0k7/W4SnoLURgUEgEAgEWojwLhAIBAItRGAQCAQCgRYiMAgEAoFA\nCxEYBAKBQKCFCAwCgUAg0EIEBsErRUlJCUaMGAFHR0f069cP27ZtAwBUVFRg9OjRcHBwwJgxY1BZ\nWSnV2bhxI+zt7dGnTx9kZmZK6+VyOWQyGRwdHTF79myoVKoW93np0iU4OTnB3t4eixcvltbv2LED\nzs7OcHV1hYeHB65cudJi/fr6evj7+8Pe3h6DBg3C3bt3AQAFBQXw9PREv3794OLigv379//n4yMQ\nAND91J4CgSGhVCqltNU1NTV0cHDg9evXuXz5cm7atImkZkKhiIgIkpoZyVxcXNjQ0MDi4mLa2tpK\n2Vhramqkz/Xz82NKSkqL+xwwYABzc3NJaqaGTE9PJ0kp9TipSVM+cuTIFut//vnnDAkJIanJTtuc\nbfXXX3/lrVu3SGryVHXv3l0r+6pA8LyIHoPglcLa2hoymQwA0LFjR7z99tsoKyvDkSNHEBwcDAAI\nDg7G4cOHAQBpaWkIDAxE27Zt8eabb8LOzg65ublSfQBQqVRoaGjQmlS+GaVSiZqaGilP1PTp06XP\n7tSpk1TuyZMnLdYHoOXm5+eHkydPAgDs7e1ha2sLQJOnytLSEo8ePfoPR0cg0CACg+CV5c6dO8jP\nz4e7uzvKy8thZWUFALCyskJ5eTkA4P79+1KKZgDo0aMHysrKpOWxY8fCysoK7du3h1wu/9M+ysrK\ntOrb2Nho1d++fTvs7OywdOlSbNy4sUXPsrIy9OzZE4AmEVznzp1RUVGhVebnn3+GSqWSAoVA8F8Q\ngUHwSvLkyRP4+flh69atWi13ADAyMpLmaGiJ32/LyMiAUqlEfX09kpKS/rXHggULcOvWLXz22WeY\nNWvWv64PaHol06dPx+7du5+rvkDwR0RgELxyqFQq+Pn5Ydq0aZg0aRIATS+heWIepVIJS0tLAJoW\nfklJiVS3tLQUNjY2Wp9namoKPz8/XLx4EU1NTZDJZHB1dcW6devQo0cPlJaW/m19APD398fly5cB\nAKtWrYKrq6uUVtvGxgb37t0DAKjValRVVeH1118HAFRXV2PChAnYsGGDQaU1F7zciMAgeKUgidmz\nZ6Nv375YsmSJtN7Hx0dq8SclJUkBw8fHB/v27UNDQwOKi4tx8+ZNDBw4EE+fPoVSqQSg+bE+duwY\nXF1dYWxsjIKCAuTn52PdunWwtraGubk5cnNzQRIpKSnSZ9+6dUva//Hjx+Hs7AwAiIqKQn5+vhQo\nfu928OBBjBw5EoAmg62vry+mT5+OyZMn6/KwCV419P30WyBoTbKysmhkZEQXFxfKZDLKZDKmp6fz\n8ePHHDlyJO3t7Tl69GhpQniSjIqKoq2tLXv37s0TJ06QJMvLyzlgwAA6OzvTycmJ4eHh0milP5KX\nl8d+/frR1taWoaGh0vrFixfT0dGRMpmMo0eP/sv5uuvq6vjuu+/Szs6O7u7u0kxjKSkpbNu2rfR/\nyGQyaf5ngeC/ILKrCgQCgUALcStJIBAIBFqIwCAQCAQCLURgEAgEAoEWIjAIBAKBQAsRGAQCgUCg\nhQgMAoFAINBCBAaBQCAQaCECg0AgEAi0+D/quw5RSiC3MgAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x107f3da10>" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "for item, frame in lc.data.iteritems():\n", " print(frame.values)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[ 97 97 100 ..., 22 21 20]\n", "[115 116 119 ..., 20 19 20]\n", "[38 39 42 ..., 9 9 9]\n", "[24 25 26 ..., 26 25 25]\n", "[37 37 38 ..., 38 38 39]\n", "[45 46 45 ..., 48 46 48]\n", "[39 40 39 ..., 42 41 41]\n", "[38 38 38 ..., 40 41 39]\n", "[4 5 4 ..., 4 4 4]\n" ] } ], "prompt_number": 20 }, { "cell_type": "code", "collapsed": false, "input": [ "lc.meta" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 7, "text": [ "OrderedDict([('SIMPLE', True), ('BITPIX', 8), ('NAXIS', 0), ('EXTEND', True), ('DATE', '2014-04-14'), ('ORIGIN', 'shade'), ('OBSERVER', 'hessiops'), ('TELESCOP', 'HESSI'), ('OBJECT', 'Sun'), ('DATE_OBS', '2003-03-02T00:00:00.000'), ('DATE_END', '2003-03-03T00:00:00.000')])" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "timerange_a = TimeRange('2008/06/01', '2008/06/02')\n", "timerange_b = TimeRange('2004/06/03', '2004/06/04')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "lc._get_url_for_date_range(timerange_a)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "http://hesperia.gsfc.nasa.gov/hessidata/metadata/catalog/hsi_obssumm_20080601_068.fits\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 9, "text": [ "'http://hesperia.gsfc.nasa.gov/hessidata/metadata/catalog/hsi_obssumm_20080601_068.fits'" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "lc._get_url_for_date_range(timerange_b)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "http://hesperia.gsfc.nasa.gov/hessidata/metadata/catalog/hsi_obssumm_20040603_110.fits\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 10, "text": [ "'http://hesperia.gsfc.nasa.gov/hessidata/metadata/catalog/hsi_obssumm_20040603_110.fits'" ] } ], "prompt_number": 10 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
bsd-3-clause
phuongxuanpham/SelfDrivingCar
CarND-Camera-Calibration/camera_calibration.ipynb
1
875797
{ "cells": [ { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<style> code {background-color : pink !important;} </style>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%HTML\n", "<style> code {background-color : pink !important;} </style>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Camera Calibration with OpenCV\n", "===\n", "\n", "### Run the code in the cell below to extract object points and image points for camera calibration. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "import cv2\n", "import glob\n", "import matplotlib.pyplot as plt\n", "%matplotlib qt\n", "\n", "# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)\n", "objp = np.zeros((6*8,3), np.float32)\n", "objp[:,:2] = np.mgrid[0:8, 0:6].T.reshape(-1,2)\n", "\n", "# Arrays to store object points and image points from all the images.\n", "objpoints = [] # 3d points in real world space\n", "imgpoints = [] # 2d points in image plane.\n", "\n", "# Make a list of calibration images\n", "images = glob.glob('calibration_wide/GO*.jpg')\n", "\n", "# Step through the list and search for chessboard corners\n", "for idx, fname in enumerate(images):\n", " img = cv2.imread(fname)\n", " gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)\n", "\n", " # Find the chessboard corners\n", " ret, corners = cv2.findChessboardCorners(gray, (8,6), None)\n", "\n", " # If found, add object points, image points\n", " if ret == True:\n", " objpoints.append(objp)\n", " imgpoints.append(corners)\n", "\n", " # Draw and display the corners\n", " cv2.drawChessboardCorners(img, (8,6), corners, ret)\n", " #write_name = 'corners_found'+str(idx)+'.jpg'\n", " #cv2.imwrite(write_name, img)\n", " cv2.imshow('img', img)\n", " cv2.waitKey(500)\n", "\n", "cv2.destroyAllWindows()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### If the above cell ran sucessfully, you should now have `objpoints` and `imgpoints` needed for camera calibration. Run the cell below to calibrate, calculate distortion coefficients, and test undistortion on an image!" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x1180908d0>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABkIAAAJfCAYAAAAjNsrHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsvXm4JVdV8P1bVefce3tKekjISLoDBAggIIFAQEwgmuAL\nyiyKCDjB44CCsyIoikwf6KuigL4CnyA4MPjhJwrKJERmCfNoCEMCIXO603c4p2q9f+y9q3btU3WG\nO3bfrN/znL596uxh7XmtPZWoKoZhGIZhGIZhGIZhGIZhGIZhGNuRbKsFMAzDMAzDMAzDMAzDMAzD\nMAzD2ChsIcQwDMMwDMMwDMMwDMMwDMMwjG2LLYQYhmEYhmEYhmEYhmEYhmEYhrFtsYUQwzAMwzAM\nwzAMwzAMwzAMwzC2LbYQYhiGYRiGYRiGYRiGYRiGYRjGtsUWQgzDMAzDMAzDMAzDMAzDMAzD2LbY\nQohhGIZhGIZhGIZhGIZhGIZhGNsWWwgxDMMwDMMwDMMwDMMwDMMwDGPbYgshhmEYhmEYhmEYhmEY\nhmEYhmFsW2whxDCMYw4ROSgiZfR59VbLBCAiFyZyPXerZdpMROTKKO1XbLU8hmEYhmEYhnG8MatN\nYTq4sd6IyHujOlVstTyGYRibRW+rBTAMY3MRkXngPsA5wMnAArAIXAN8EbhcVYdbJ2ED3WoBOjhW\n5dpolNtu2g3DMAzDMAxjPZlWrzYd3FhvQp2SrRbEMAxjM7GFEMO4jSAijwR+Cvh+YH6M01tF5F+A\nV6nqezZFOON4Y8MUZhG5EjgrenSRqv7nRsVnGIZhGIZhrC8i8hTgNdGj96rqQ1cZ1oVAbJNcqap3\nWIt8xzE2aW2sJxtan8yuMwzjWMSuxjKMbY6I3EdEPga8FXgEMBf93La7aCfww8C7ROQ/ROSOmyNp\nK8KxqfAfizJtFzT5GIZhGIZhGMcn66nP3dZ1wy21P0TkNcl1XmdN9nV8YtdGrRtm1xmGccxhCyGG\nsY0RkacBHwS+m6byocBR4Argo8CVwHKLm4cCnxCRH9wMeROOVcXpWJNnu2KLTYZhGIZhGEbMbVk/\nPBbsomNBhs3gtpDGzeS23G4NwzjGsKuxDGObIiLPAl5GrcQJUAKvB/4GeI+qauS+B1yCuz7rUd69\nAruBt4jIE1T1LZshu6p+Dcg3I65ZUNX3cQzKZRiGYRiGYRjG9kRVz95qGTxhQvu2sEhgk/eGYRjb\nEDsRYhjbEBF5KPBSmosgXwMuVNWnquq740UQAFUdqurbVfWxwA8B11IvhuTA34jInTctEYZhGIZh\nGIZhGIZhGIZhGOuALYQYxjZDRPYB/2/8CPgm7uVkl00Thqr+C/Aw4ObwCNgBvMGfHDEMwzAMwzAM\nwzAMwzAMwzgusIUQw9h+vAA4w/9fgCHwQ/66qalR1U8AT6I+Fiy4d408c53kNAzDMAzDMAzDMAzD\nMAzD2HBsZ7dhbCNEZD/wZNwJjnCt1ctV9fLVhKeq/yIi/4R7Z0gI8xki8keqWq5BzvOAOwGnAQvA\n11T1jasNryOO04EHAafjTrNcC1yuqh9fz3jWgoicDDwYOBvoA9cBnwM+tMb87QPn+s8puPe83Arc\nAHwB+G9VLdYm/fGBrwf3A84E9gDXAJep6pem8Ht37/cUYAX4BvBuVb1hDfJkwF1wZXO6l2kZVzZf\nAT6iqiurDT+J6044+U/HjfffAj6mqp9bj/CTuDLgvrh2fTtgHtfmvorL73VJk2EYhmEYxloQkROA\n78XpLDuA63E62AfWqq/4k/MXAncATsLp318G3q+qR9YS9hpkOgW4D3AIOAG3GfYo8B3gCuAzqnrr\nVsjm5TsZeCBwKrAfdyPBNcCHVfWbGxDf6cB5OP34AHAT8BZV/fZ6x9US94bryyJyCLg/bmNkH/g2\nTv//7FrD3mrMrjO7zjDWBVW1j33ss00+wG/hXohe+L9LwP41hnmPJMwC+OEx7p/i3YXPk/3zBeA5\nwP8kv5fADUkYB5PfXz2DvPcD3hfJm36uAH4ycv/a5PezxoR9YeL2uRNkuTKON3p+DvAW3GmdNhmv\nBZ4F9GZI90nAzwP/BhzpCDd8DgN/Bdxxxrrw1Shfr5jF7yrjKIDvXWUePwB4OzDoyIN3AXftCPOx\nwGc6/A2AV8/SrnBK8VOAfwJunFA2i8A/AN+9hjy8FPjvMXF8CndKLLh/b/RbMWNcB4G/xi3idcV3\nBPgb4NBG1Bn72Mc+9rGPfexzbH2o7YHCf969hrAujMKaqIN26TW4ifZX4+yjLv34D4Cdq5BxAXjh\nGH1oEXgVcKAlTQWrtCkm+Hk8cNkEvTPoth/H2Wl7O8px1s9EGXEb7T5It81WAp/EbfKTGcoi9v/u\n6PnDgf9g1P4qcO/H/N1VpnVi3WYT9GXgggnl/Wng0ZH798R5sEH9gNl1ZtfZxz7H3MeuxjKM7cVj\n/N9wGuSfdQ27HABU9TO4wVeix4+dxqv/ICJn4RTs5+FOPzR+nyaMaRCR38Qp1N8zJpxDwP8Rkb/z\nJyc0+UzDtG5HwhWRxwGX45T/rCUsxe2GehnwFhGZmxSJiOzF7Qr5M+ASYGdL/HEcO4GfAj4jIk+Z\nIh3HMm15/LPA+3HvucnT3/3/HwJ8SEQeEPkTEflL4B+BuyXhh/9nwFOBD/gdbNPwVeA1OCPrxBa5\nY9nmgMcBHxOR35oy/AoReTnwr8C9GE1z+H4P4J9E5GUtv80S1+8AXwR+AtjXERe43ZZPAr4gIj85\nazyGYRiGYRgzMKLXiMiDcZOhT8XpWqkOpjj9+NnAe7xuPRUicjZuMvI3cPpQHGb4zAM/A3xSRO6x\nhjRN1NdEZE5E3gL8PW4CuU0fjJ9luOuPfw93cmRc/F0yzSLfCSLyDtymsPPHxKM4nfW1OJ391Elh\nd8krIn8G/DPwUNrtr06/ybO2ejOWzdCXReS5ONunq7wB7g68WUT+9yxhbzJm10WYXWcYG4NdjWUY\n2wQR2UU9SIZFizevU/BvxinGIewHTSOSd38i8E7gztSD6HeAq3BGwcH1EFBEfg33fpQQR4j/JuBr\n/vtBL4/gdkndHLmFVSgN04rnZfxfwBupFfABTpm6CXfs9FAi+8OBlzD5vSw5tWIYKICv49K4jEv3\n2bg8D8wDrxaRQlVfv7qkHTOEPH488HL/THG7Vq7EHYG+A7CXOn9PwC023U1VbwJeAfw0dT5ehzs2\n3cOd4lmI/N4FeD1ul84k5hlVXr+J20V0FLez6GzqBazAH4pIrqrPnyIOROTPgZ+lbqdBcb0OVxfm\ncXVsl//9mSJyXfA+TRw+ngy3e+rJLem6Hte2V3BX350R/d7HLULuUdU/mTY+wzAMwzCMGan0GhG5\nD24ycQdOVylx+vf1uAm/O3n3QXe6L27y/VETIxE5DXg3cBZN/WtIreOf7j/4v/8K/Mpa0zWGv6Z5\nrXHQB4P9tYzTPW8HhMnfcTbQrPZR50SsiOzD5Vdsswb3X/cy7sfpq1n0+/2Ay0TkIlX9xizCiMgL\ncKfmg0yLONvwVpyeGi+wzJLWsW43S18Wkd/GLWKlNvANuHTO4+yMHdTXXF87Kdwtxuw6s+sMY+PY\n6iMp9rGPfdbng9vhEh8bL4Bz1insS1rCPtjh9imRmwJ3UiF8/1vgHon7HLg0eXYwCWPs1Vg45XiQ\nyHc58H1ER6lxSsEluF1bwW18VVfBdFdjTXuM/auR2xtwykSBU0qfDOxK3N8ReFuS1wPg3AnxHPBu\nP4TbjXZvoN/iLsPtmHl7JFeJWyw5Y4p68FWmvJZgDXUtjmOaI9RpHt/o//954AeJrhfz5f84nAIZ\nx/ES4AnR97cD903i2YG7MqBI/D58ijQdBj6LM1LuDyx0uDvft5E4jhXgvCnieDSjbfQ9wPmJu77P\ngyu9m2WcMj31EWrcya44riXcCaaRI+k4Q+AvcBMCwf0y8ICNqD/2sY997GMf+9hn6z9s7dVY70ni\n/or/fi3wi8C+xP2puMWDVI+6dArZ/jXxtwj8DnBS4u5c3M70INMVNO2PaW2KsenHLeLE8izjrvu6\nfYf7k3E3CrwGN8n80OT3U3A25kNx1+/GMv9o9Fv6uaAjvje15PMrgLNbyuQPvfxxWb6fCddkJe6v\niXTQL+D05bnE/d1wE8qHIvkvT9L6kDFpbb32iE3Ql3HvVkltk48AD07cLeBOPnzHuwnvyDjWrsYy\nu07NrrOPfTb6s+UC2Mc+9lmfD/BzySB2yzqGfXLLYPywDrep4RP+/wszxDfrQsjHI7cF7gTK3Bj3\n8yT3okZ/N2ohJFZOD4zxk3mFLZbtZRPiWUgVoyny+HeStLxwCj/H+kJI8PM+YPcYP9+bpP0G4Gr/\n/5dOiO93E79vmSJNY9PQ4v7HkzjeOMH9HG63TpwHr53gZx/uiojYz0SFGWdwxcrvNUxx7y3ww5G/\nAvjERtQf+9jHPvaxj33ss/Ufjq2FkLDx6dAEf69K/L15gvsfTuQ6Clw4wc/vt8i2ngshL6ZpQzx5\nhnzex3gb5TVJ2J02U4f/x6Y6J/DUCX5+ADfRGvv5xQl+2vL3Pczw7hfW+P6MzdCXcQsBqS7/NiAf\n4+f2uAWQmfT/1X4wuw7MrrOPfY65j70jxDC2D/uT79esV8Cqei1ucBwXXxvhGOcbVfXlkxyvBhF5\nIO5e2xDf9biXua90+VHVZdzuiRvZuOuw2rgFeIyqXt/lQFVL3IvSoT4K+wPjAlXVJVX9yCyCqDuW\n+37qqwCeOov/Y5gbceV/pMuBqv4nbldbODa8F7fj7f2q+qsTwn8RzSvVLhGRscePfXxTo6qvwx3P\nDmXzGBHZM8bL43HHlQNfxB0FHxfHjTiDdMhsbeC51FcVFLiX831ikidV/Qfc7qKQpnuKyENniNcw\nDMMwDGNWBKfrPE5Vr5zg9jdwu6GDv0smuH8mzWtrfltV3zfOg6o+F/h3Zri6ZkbuHP3/CPC6aT2q\n6o3jbJR14Jdp5tefqeprJ8j0r7id+8FPuAJolvy7EXiCqh5djdCrZDP05e+nfvcFuFsYflRVizHh\nfwP4Eer8PNYxu87sOsNYd2whxDC2D+nCxM2trlbPLRPiG8dz11OQhCf7v0Ghe4m6e0HH4hX9l7Jx\nhkhMkO0VqvrNSY5V9Yu467sC54hIes/oevC30f9vJyJ32IA4NouQx3+hqtMsAr6t5dnvTfLkF9He\nSV1vduDulV1v4ne29HDXv3Xx4/5vyIPnqupwUgS+nr2WKduAiNwVNymg/vN3qvrhafx6XkxTQX/s\nDH4NwzAMwzBmIehFb5pycu8mmjreTq/7jAbsnj8genQV8GdTyvVrU7pbDTui/5eqekxMdovIucAF\n0aNbmd4+/CPcKYbAQSYvUkFd/i9X1e9MGdea2UR9ObyoOqTzD1T11kmBq+plwD+xOTbwajG7zuw6\nw9gwbCHEMLYP8c4CxSmY60ka3ridDDEfVdUr1lmWmO+hufPhjTP43ewXhP/DDG4vp1ZkMpovJ1sv\nrky+f3ebo+OMN03p7jPJ9xtV9b1T+v108v2sKf3NwpX+b6jbrWXjdy1dELm7lXZjoItZ2kA4mRTq\n5dS7DAFU9QbcNXZh99CDZ/FvGIZhGIaxCmbVv2Nu3+Huouj/YRKxcyd+jKp+qiWe9eLq6P8niMgj\nNiieWbkw+r/iriBKN9m14ieBX0dzgvd7Z4j772Zwux5slr58EbX+PwD+foZoXjuLTFuI2XVm1xnG\numMLIYaxfTgc/V+AXescfhre4VZXTRT3TowNQUR2AfFOrW+o6lXT+vfHg6d2v0YGwCdncJ/uXDpx\nGk8i0hORR4jIn4rI+0TkGyJys4gUIlLGH9wx4ngR6aQZ5DsWGTCqzHYRH/1XYOJOwQ6/ACdM40kc\nDxGRl4rIv4vIlSJyo4gMW8rmC9RXAEB32dyFelFSgf8edy1cCx/B7eaZhlTB/fgM8QS+Hv2/dZel\nYRiGYRjGOvKxGdxOq3+f7/8GPe29swjk3W/Ejvx/93+DDvkGEfllEZnKjthA7u//hjS/e0b/7/J/\ng93ygC6HCYdV9QszxrVWNlxfFpGzgNtFjz41zY0IEWOvcDtGMLvO7DrD2BB6Wy2AYRjrxg3J9/VW\neFOlII0vJRzn/Oo6yxFzKm5BNxzp/Pwqwvg8G3PaIuWGGY+npydwdrS6ihCRnwL+kKZiHAh5NI69\n04l2zDJLHqf3BF87Qzyp32nK5pG4o/1nt/y8lrJJ6+5MbUBVl0XkSuCOUzg/l1pOAa6d7YrmOlrv\nPxeRPao6zaKqYRiGYRjGapjlWqRp9e9Un0t3pE8iTPCu99VV/wg8m/rdEbtwVwG/QETeh1uA+ADw\nMX8t0GZxMPn+qVZX3cSbyYTpd+1/bcZ41oPN0JfPTtzNVP9U9WYR+QZw5moE2yTMrjO7zjA2BDsR\nYhjbh3Rhom0yfFWIyMmM9heTFkICUx17XiWpErGa96LMsntmLSxNdjKWTs3E70h5HfBXwMnUSo0y\nnTIWmF+ThFvPWvJ4LX7Hao0i8gLgrcAh1r9sNrMNHGh5pjN+oJlfW71D0TAMwzCMbcyMO6pTunS8\nvTR1uFlfMr4hLyX310j9IKM70Pu4l2u/EHg/cJOIvFtEfklE1s1mHMM+mvl13Sye/TU8ZRLeRG9s\nrB3axWboy6n+v5r6tCF1cB0xu87sOsPYEOxEiGFsH76YfN8tIndS1a+sQ9ht91hOu0NhsA7xd5Eq\nEasxdDZzN9RG8Vzgx6gNHsUpTu/FHXP9Bk4pWqJZHvfG7RIzNggReQrwmzTL5ijOCP0I7kjxdbh6\nGNffU3Avs5+kUK9XG5hmC1CqnK9mF2PqxzZkGIZhGMb2I72eZS2bbRaS7xtpW0zL7uR7uqt8Euv9\nLscKVf2qiNwHeCbwc9S7zOOFkTncOyYuAl4sIq8Cnq2qRzZIrDS/VpP+RWCn//+076rcirqyGfry\nWusfuDI4ll+Yfsxhdt0IZtcZxyW2EGIY24cPAQXNAei+wHoshJyXfP+Wqm7FUeOUdJdEqhROw1T3\ngB6r+F1cv05TIXsB8EJVHasUi0gYA9b7WL4BiEgfeBHNsvlr4DdU9cYJfu88ZTTr1QZi47iLozjD\nM6TlYbg+Zy18e43+DcMwDMM49oh3JQur008C6aT3Zp3mHkc6kb+z5dk41vtdjg1UdQmng75IRB4E\nPBS36HF/Rq/+6QPPAC4RkQer6kynNaYkXWDZBYzVhVuI5T6Wr9/ZDH25rf7Nyi6m0/8NzK6bErPr\njOMCWwgxjG2Cqt4qIp8E7hM9fizwd+sQ/GP93zBQXrYOYa4H8fVcApy+ijBO5/hWAh+JMwzCEdVX\nqepzpvS7f8OkMsAZnKdQl807VPVpU/qdtmzSK+pW0wZOm9LddTQnIz6xQcayYRiGYRjHN+lixSlr\nCCu+uklbwt4KbqJpO5zEbAshbdfSbAiqehnOdvsDEclxG+UeBjwRuBO1fXdn4LXAIzZAjBtp5tcB\n4JvTehaR/dTvhQzhHatshr6ctoGul2+PY9Pq4DbhIsyuM4xtgR1dMoztxZv93zCx/4NecVw1InIP\n3OJKfGrgLWsJc71Q1W/RVITvISJT92veGLj7ugu2uTzA/w3GxStm8BvSfrwuAh3rrEfZTOLzNO9o\nbbvGrhMROYPpjaev0qwrd5olLsMwDMMwbjNcmXw/eQ02SaoTpWFvBVck3+8xo/97+r+bqoOraqGq\nH1bV56nqXYCfp373hgA/ICJ32YCo05sE7jWj/9i9toR3LLEZ+nJc/4QZ65+InAjcfl0l2v6YXWcY\n2wRbCDGM7cVf0nw5WB/4nTWG+fvJ96uAf1xjmOvJx6gH8R3AxTP4vZTRe4ePN9Iddum7Ysbx0PUU\nxBhhPcpmrIGsqjfRvP7uTiJyzgzxPHIGt+9Jvlv9MQzDMAxjBFW9itEd/w9aZXAPonl6+4OrlWsd\n+aj/GyYtL5zR/4Ww9VfTquorgTfQ1De/p8N5mXyfZRHnQyFK/3dWHTLViz/U5XCdSNM6CxuuL6vq\n14HvRI++S0TSdz6MY9b6aphdZxjbBlsIMYxthKpeD/wN9RFnAX5BRGbaTRAQkUcAj4rCUuBPVXUt\nyuF68zb/NyjWPz+D319YZ1m2glShmpvKk8i9gQs4Boywbcxqy+Z2wGOYvmzeRt0+Yco24E9PPX2G\neP7N/w39wdP8qSrDMAzDMIyU/6Spn/zIrAGIyN2oT08E3r9GudaD90b/F+BHptWJRORewL03QqhV\nkl553LWjfC3vpXhf9H8BHi0iU73w3L/T8Mdp6qvv63C+XjTSKiLpe1XGsVn68vuobY0+s7Wvn1h/\ncbY9ZtcZxjbBFkIMY/vx28C3qAfQHvD/icihWQLxiyevozmYXg7873WRcv14PbDo/x+uA3v0JE8i\n8iO4+3GP94WA9KVkXbu4Kryi9BcbI44RMXPZeF4OzM8Qz19F/xfgZ0Xk/Cn8/TrwXdNGoqr/jds9\nFAyB2wPPn9a/YRiGYRi3KVL95PF+EWAWXpR8f4+q/s/axFo7qvp54MPUOtEZwC9O6f3/2RChVk+6\n8NH1/o30/QVnTxuBqn4B+C/q/NoNPG9K788Ezoq+X6mq/z5t3KtkLWndLH351SFKH9fviMiuSZ5E\n5HtwJweOdxt4szG7zjC2CbYQYhjbDFW9AXgKtXKjOOX8PSLy4GnC8CdB3gGcEB7hFht+TFWH6yvx\n2lDVm4GX0TwF8wYReUKXHxF5IvAa6pedHc/8l/8b0v4HItKpbPlFkNfg7jk93tN+rJOWzW9Ouh9b\nRJ4PPI4ZykZVv4RbEAxtoA+8XUQe0hGHiMivAH/I7G3gObjrAkKafl1EnjODf0TkTBF5iYicN4s/\nwzAMwzCOH1T1fdRX2CqQA28SkakmlUXkD3Av7o5Ppr90Y6RdFWFzWJDvD0XkonEefJq+jw3SwUXk\n9SLyvTO43wf8dCLPxzucf9b/DW4fN6N4L4v8C/CLIvLjE+S7FDc5G9eBP54x3tWw1rRuhr78Ttw7\nJUK+nAb8nT9B0xXmQeCNmA24Gsyua4/f7DrjuMMWQgxjG6Kq/wH8hv8aVvkPAu8Vkb8RkYemLxUX\nkZ6I/C8ReQvuSOaByP8QeKrfzXMs8nzgc9RpnQPeKCIfEJFnicgPicgjReSXReQynHIxh9vZ8bbI\n3/HIW4HD/v8KnIcr58bOERHJvTHxYerj5UF5NjaG9+Fe5hgU2bOA/xKR70sdisgDReTfcSe6VlM2\nzwSuieLaB7xLRP5VRH5ORB4hIo8Rkd8GPkm9G/HTuLu2p4pLVf8LeHbi/nki8lEReULb/cQikonI\nXUXkZ0Tk33AvePwVYOKuNcMwDMMwjmueChyl1hvuCHxCRJ4jIndIHYvIgog8TETeh9M34gnw16jq\nv6V+tgpV/XvgP6jlmwf+TUSeKyKNUxYicjcReRN1mq5kY3Twh+PsgM+KyO+JyAParnXy+fx43Ls2\nDkY/Xa6qXQsh7wUGIQjgqSLyZhH5CV9mF0efB6aeVfWtwJtpbl57rYi8Il0cE5FTReQFwD/jJoJD\nXl0G/PlUObE24hMnAjxXRF4tIk8SkUuTtN4n9bwZ+rKqKqNXIT0c+KCINN4BIiI7ROQncO+2OQNn\n21+F2YGzYHYdZtcZ24PO1WLDMI5vVPWlInIE+BOabf1J/rMoIlfjjv6eBJxOfWwzfiHhEeBJqvo2\nZmPTdpqo6oqIPAynoJ9NrTQ80H/aOIrbofG05PkxdeJlEqp6g99d9pLwCLg/8CERuQb4Ou6F8Aep\nT/gEhew3cQtBtitodYzNN1UdisivAf9AXSfPAd4pIjfiFMccp0jHO4q+jTNs3j8pjiiuG/xC17t8\nWCG+S/2njWtxbSA+gl1MEdeLReRk4FnU/cR5uB1mpYh8HbjeP9+L26GW3iNtdc4wDMMwtjmq+jkR\neQruut0F/3gP7lqk54nId3ATfos4/eX2jNojipuEnOXdfrEtsyrRp3T3E8AHqBcT+sDv4a4p+ipw\nE04POjPy802cDv73M8QzCwqcCzzXfwoR+SbO5lvB6WZ38LKG+AX3Xoyf7AxU9VoReV3i5tH+k3Kl\njyPlabjFsHtRl+3TgaeLyJU43XQ/zp7LaJbj/+BuJ9hwHVJVLxeRd9N8yfVT/SflvbS8aHoz9GVV\n/YCI/C7w+5H783A3QVyPm7ifx5XFjsjN7wGX0KyXt3XMrjO7zriNYCdCDGMbo6qvxC0EXM7oALWA\nU0Tvh1M20xd+Ke7eyPusYhEE1meHiUwbjqp+E3gw8P/TPhhr9LkCeKiqfhB3R23MzVPKNS0bvtNG\nVV8KvJKmsaDAKbjy/S6aiyCfwim/4STJMZWeVcSxFpmmrmOriVdV34TbDVQmfvbhlMx7UyvLijNY\nvg9nJM8kn6p+CngQ7uj2pDbwCeB7VPUrNNvANPUfVf1V3BV8NyZxCXAIl7bzcH1MrCyH+G/BTQ4Y\nhmEYhrGNUdU3AxfhdJxUP7kdTk89H7gTo3fpF7gTAN+vqkszRLtWfXVa3esq4GLgKzT18Bw3SXo/\n6slmxel3DwO+swo5Z3Eb53OGW6j5btxmqbvgFkFCmAp8A7hYVT85Idxn4q5kinXK6YVSvRG4EHfi\nIvarOP3xfjjdMaQ1yPdhnN76jSmjWot+H/hx3DVh8XXTM7EZ+rKqPh+3sFgmPx0A7gPcneYiyJ+o\n6gtnTcsaMLvO7DrDOKawhRDD2Oao6sdV9TzgMcDbgWWaCp0m328F/hH4PlW92A+oM0fLKpTFjjCm\nDktVv6Wqj8Ttyvk/uFMPt+B2P12NS/9PA3dT1Y96b/GOjVJVb51SrmlZlaEwq19V/TngybjdUm3l\nq7gdd78DnK+qVydu1l2mNTBrHKuVaeY61uJ3skPVF+GOqn+yJc7wuRl37/U9/Qs4VyWfqn5JVR+M\newniG4Av4051LeNOB70FeAJw36ht74/Cn0ph9nG9HqccPwf4YhRGVxpvAN6Eq6eneQXfMAzDMIxt\njqp+BLcw8DO4yeWCbn1Bgetw77S7h6r+oqpO3NmcRskM+lOH3+kcq14B3BN4MU7XadOHloC/BO7d\noufNKtfljwqeAAAgAElEQVQ4P/fFXVPzTpwNNEk3+zLONrirL6PxAqgeUdWH4RZzXo3bbHc9ztaa\nSm9V1cM+jMcAH6GeVG6zSz+Nu575AlW9ZpJ8HWldFar6Ldw7FR+P06k/i5soHswSx2boy6r6PNyG\nwA+OCfezwGNU9Zdjr9OkYY2YXbdK+cyuM4yNQTbhZKFhGMcQ4l6kfR7OGDkZt/NqCTdJ/kXgE8fa\nC9E3En8k/wBux8NXVfWOWyzSmhGRe+HK+CRcur4DfAb42GYcJze6EZG74Hbj3Q53Zd31uAW7D21F\nuxORPTijLuxOeq+qXrzKsE7D7eS7Ha5NlTgj/Crg86r6P2uX2DAMwzCM4x2vf9wfdzXvAZw9chNO\nL/qcqn52jPdjFnEvqr4QdxXRSbgNZl8G/nOKzVYbIc+dgTvjrhwLp8MP43Szy1X1a5stU4q/lueB\nwKm4nfW34OzSD/sT/9uKjdaXReQQbgHndNzJn2/jbMDjsk0dy5hdZxjHJ1u6ECIiPw/8Km7Q+yTw\njGiXtmEYxoYiIvekeW3Ym1T1CVsokmFsKiLySOCt1G3gpar6G1sokmEYhpFgNpNhGIZhGOMwu84w\npmPLrsYSkScALwN+F3df5SeBd4jISVslk2EYtzl+yf8NuyYu2ypBDGOLeIb/a23AMAzjGMRsJsMw\nDMMwpsDsOsOYgi07ESIiH8Idd/wl/11wL+n6U1V9yZYIZRjGbQYReRjwL+Er7q7NM1X1+q2TyjA2\nDxF5OvAK3K4hwR2dv/0q7uE2DMMwNgizmQzDMAzDGIfZdYYxPVtyIkRE+rj7698Vnvl76/8DuGAr\nZDIM4/hGRH5dRP5ERO4wwV3mFYW3hkc4heF1tghiHM+IyB+LyPP8na7j3M2LyHOAP6dWlhV4uSnL\nhmEYxw5mMxmGYRjGbQ+z6wxj4+htUbwnATnuJVgx1wB3SR2LyAHgUuBK3EudDcMwUu4APA14hoh8\nDvhv4Cu4Fy8CnAjcFfhe4AxqRQFc3/M6EbnPpkpsGOvLHYAfBJ4tIpfjrk+5ArgZN+buA+6Be4nn\nAZpt4AvAO60NGMYxxwJwCHiHLdbfJpnJZgKzmwzDMAxjG2B2nWHMxtQ201YthMzKpcDfbrUQhmEc\nN9zdf8Yh0f9PA/5z48QxjE0lx+0gPm+Cu7gN3A2wF+8axrHLjwFv2GohjOMCs5sMwzAMY3tgdp1h\nzMZEm2mrFkKuAwrglOT5Kbi77FKuBPjt33o2tz/r9hRDd8Jrbm6O4XBIeM9JnudoWYIqvV6PuX6P\nXbt2cfPNN5NlgjT6BlAUQVCc//C7iPgwFZGMLMuqOMJfEYncQZaLC8FHkWX1rWMidbhZlpGLC09V\nQRXyHICyLKpwc4RSlX6/T5ZlFEVBJoKGsAWQDNAqrrIY0Ov1KAv3c97rUZZDelkGImSZsLK8wtLS\nEkcO30yv16PX69Pr91hcvJWyLOn1euzcuRMtlbKkSnNRFuzZvYfhcMhwOKTX61X5J1nmZXLp6/d7\nCMKwKBgMVvjd57+Q5//ucyjLkrm5OVRhsLJC3ssRyaL8cdmhqj4f4vwTqgfUblCh1+8zNz9P3ssp\nw/OEtPziMp2Fqsyq764eZQ3ZqOqUqlKWZZQmQUtFMqEsikpWVa3SF+pk8FMUhavXXu6iLCnLsqoX\nIuLqvq9TWZZRejcujS6uslTyPCfPc0otnPtSGQ6HDIaDkbhf8KIX86u//CwAenndVQyHRRWvayW+\nTWQZAhSFa59F4dwpkImrzwKN/AgyhxwVoPR5XIYKCBQt5Vq1Ic9ll13Gm9/85oa/cYgI97znPbn0\n0ktYvOlmPvOpyxmWZVXNilIptSQL7RWXX5WgUV2NZSq1rPK21+t5vz6vGumO6kVSdiLiwikFyTPf\nLspK7igX/KfuU6742te5w8GzGm7LsgSFPNS3TFw5RHnh6jZJ2C6xrm3Wm0w0dthoD3WZuH5p1H1I\nX/AnUV9ZlV1LWTfSHuVjCCc0oSBOI4jwQ9o3qNb+vBtpib+STxUkyJL57Hd+4vjLJAipcqIpS6hP\ninLV1d/i9qefXnvoSFOcX36YqvLl2uuv49rrr2/tA9vI85z7nHcel1xyCfMLCz4/3LhX19W6PcX9\nlSJVwkLdidPpakvUNqpxluhZSK7rH0IaZyGtG3FehfEkrtZSe0TaxoH0e1QAGZK4V97wxjfwxCc+\nMXk+Ws/CHzec5ZCcVFcFyerxQct6DKj6JOr8CXVfQtpDU5DaX3AXj3+qimZw6+Fb+OgHP8hwaZnl\noSvjslTXDlCyZmdQtbdGnyLi+kfUtw3x+eTKtEDd/7184NJYpzmE5/pXqdpgSHPWcBc+7lnUH/q4\nnYx1fvZ6uQtHnRy9nhsnMxE+++X/4d53P5eyLBgMC07cu5dDZ9+RAwcOVLpXWZZI5vSzIqpnTo9z\n+of6ih9SJVlGWRRkee77W220UwnNN+qO8jynKAryvOf0mLL0Abo4r7rqKv74T14OXhc2bnPMajOB\nryuP+P6HctL+/Y0fQjvKgu5O6BtKQmXOsrqdBT0WMrJIZwcoyoKyqMeI0C7V/6NaIpmQ55kbDxrj\ncIZkGSfu3cupp5/Brj27mZubczaF5LVcTui6ryPuprUaZ7R6oqT2Xow2/Pi+vdLzmlQ6aZx3jbBq\nd/FYPUmOhu6fhPVnL385v/SMZ1TytOmZqf7jA23YpWkcbTp0eN4WVj1ujY4Fbc9T+zgQ9LpYtvC9\njPX/jsHfdYXOVRnL3BJvSjxOVukK4UX/L73boMOMpM1/0nKI433lK1/J05/+9NY0tPkJunCaJ/GY\n3TaOt8nQFU/1l9Lpm2XJcGXAt771LT796U8xWF5q5EXd1gEySpRMwqDaXeaJluufKEXUKmM/Eg+E\nON2jzoNRNcyJ5Md5rys4m8zFmUtte/lIIHMy1XkQwq3lFOCrX/86Zx88OFrPabZ9lyOZ6xOZTKml\n7y+kki1tGyGetLxiGpplR/1I3avXb32gVTwNd6FtBD24SyfGlY+Ij08EpYSyRHwfDrh5ihYbywvq\nxwStxgZw44ybF4ns9hCHNutMOm/zzauu5swzTq/SlralOD/aepY4j9y8hK8yXhcP/QJJ2LXNHvT5\nZr+b9hPi65yIMBwO+a573ZO7nHsuc3NzkGVIPjpfGPt95zvewQfe//7Otp4S7Lrvf9ilLMzNN/tr\n9Yaan1Nr6+u84+b3JI3RD6NuabOVfJELvP71r+NJT3rSSL/XjL77t9BBVFXLj7Lp6N3RM7Y8E+JZ\no/SdEbWFMp5qDtnHE8aMSbTZyashlrtzXIiNlYb7dPx2z127d9//9vWv50ef+GOIn/McN9cawonz\noDE/MKEuN/SH5LeRd3qo62tjrr76Kl71qr+EKWymLVkIUdWBiHwcuBh4G4C4VF8M/GmLlyWAM888\nkzufc2dvMOZkWcZgMEBEmOv3GRYF4jvLnTt20MszDh8+zOmnndapbDQ6q+g3LydZlo31q6pkeW2g\nB7+9Xq8xSQ1UYWXaVGoQodCyMkp6vR7D4dAZBGUtY4gvhFf6CSg3CV6QZxlaluTk5HlG6ML7/T6L\ni4scPXqUI0eOUAxW6N3+DPbu3ctgMGAwGLAyWGbXrp30+32KomA4GLKwsJM8z1laWqI/N8fS4iIi\nwsLCgpsIyHMnk1fosixjYWHBFdjSEktLS/R6Pfbt3ct97n0vsizzC1fNvI0Ht3TRKJQD4CdoqjpU\nTXosLOxgfscON4kclcs0ymIbkzrnoLy2KSRNJbIpa1mW1SJBlmXkfiEjhBHqcq/Xq5SNoCCExYNq\nElmEwWCAqlZ1LW4Xw+GwIadPDagyLIasrKxUssRu8txNwqysrLBr507udu65LCwsUJYlw0HRWGBR\nVQot64UwqOINspZlWdXX+Fko/yB3XN4hn+J8LaIyUXWTWsFwCc/ueMc78qhHPYqPf/zjfP5zn+Nr\nX/8611xzDbfeeisrKyvs2LGD3bt3c9ppp3GPe9yD888/nzNOPYWVwYCvffkrfPuqb7C8shwKvlpw\nCmUX0pzma0hjnL4gU6/XqxYcalNMfRsoQ6n4Qb25EAKgpVTtPK5LTdwERZCv3+uxZ/fukTqoquRe\nOSnDIBcp5o26THc7SI1P/2XkmfMjkMgfJiI1SnPcOtVrl+mzVJmLZYwnQ2OqPjrK17S9tg3WbXmA\nN9qRsEKcVe6C20b4WdY0AsrRhaw4XXkvZ8eOhVq2JA1xWuoAaolFhN27DnLGKadyyumnc+vSIt/+\n9re5/vrrOXr0KMPh0LeBPZxxxhmce7dzue9978eBk05CtWzkr6vzIa4OhUqiX1QJCyHxo/ZJg6ab\nOG21+9TYro1jkdF2EI8HgbROl5G7jNF4wyRIaoDFZZppaG3hR2Xnzp0cOnQoaaM+39QrtppOUGVV\n+x/RQ2R0giS00WFD2dOmYllZbM2+MvxtfDJYXlrkG1dcwY3XfIe+9+IWq4Nso0ZFXP+C0duYqPGG\nVazsxmN8OhHghjKntyhh0qDOh1jlrfQNVaCs+s1YRytUyfOeryda+REUypK5/hygFEXBXL/PCbt3\n+fqQkYnwra9fyeKRW7jruXdj7759zC/scJF73aJEybNeLb9K1QEE3bMnGQWKDguU0o/1OSCVrhjy\nL+RFGCcAMi/zysoy/blewyjBrji6TbIKmwl8XTn5wAFOOfmkVh0i6O2hDaW2hvuifvIq6AZ5pe9E\n8lV/C785LUwyqSpKZAtVhrVbLs16PXbvPZGzD53FgZNv5xdNeuRZjtLsAyudONHng+zjNsF02QBx\nmsOUR3NSdlTPj/Ov+axtgnJ0siAda2MZVZXdu3Zx5zvfufGszV/cp8c26KgMtD5ry6O2fGrL7y53\no328NPIpdhv0nCLRqTvLSuvJpca405K2NH+y6DnQ1LNJRrtEv4zdjLMrd+3axTnnnNNaXqmfOA+n\nyfM4rQ0dkGb7S3Xl5m8FWpQMV1aY6/f49tXfZPHorSPl4zbf4XRe/DRhi6yN/5dQL244BEVFqzmC\nVOdK82AkbyIdU8t6gyqiZF7HCm01I62/bhND0DErvRac8lrJ6Db67d61a7SeM24hZLRNNMqiI6/a\n2l/nZDTNejliB3XQsGci3TaNuWGDhf9HtkcscxE2vlTzMmUUprcrk/QFHc0HQrDd1D8XGZ3nqWQe\nk/ZAnufs3LkToNpwExZWU12+7YXIsbzVvIQ3NEKexAshabrSvq6SdcQtCC6ti4uLnHrqqRw8eJD5\n+Xno5Y3NbWlYmcLTnv50Hvf4x/PpT32KL33pS1x91VVcd911Tbtuj7Pr7nq3c7nf+eez/8ABF55G\nctAs05E6O6Z+pe01+qVOd9XXSmNzcPjNWRXKzh07OXjobOISHslD7f6t/t0/17r9B/cN+7T21Sp7\nWteyxIUojLb4Wra0bgY7MZ77GCUspE0e98ZT++laCHHTBJnXbjpCGaPjhDYabF1Q8rZ635BfKp0t\ntHelHofHpbWhO4T2HPUfTRux3lgcwk3kmmgzbeXVWH8EvNYr9x8BngXsBF7b5UGkVjzDDjpwu817\n/jRIr99nfm6Ofi/n8OHD9HrNJMadY1sFjp+FybMwkRv/HjpJZ0C4ndaqXpZezjCaHE0nW1Spwg4F\nm2UZea9H3y+C9Pv9qlOOK0VIj4igZeENA9yOLC+z2ydRVgsq11xzDUtLSwyHQ3btWCBfmK/Ss7Ky\ngoiwd+8+hoMBR48uoWXJ7t276wWXsmRxaYmdu3aR+wbR6/VcGQyHIML8/HwVXyijnTt3ucUcb/S4\nibV6wjikI87bWMFLO8JMpLErE6gmGVIFfloFtK2xB7epkhbcxqcv4vDTNKm60xaxchnKsCgKlpaW\nGgbowsJCZTSUpVMyVgaDWpGgngxaGQyqEzzVKZ08R3CnbTRSNqjSpdUiQ1gwCX+Xl5dR1WphLMja\n7/cZ+LjKol4ICPnR6/XcDtioXcb1KizqhLyKFxGKoqjaV7x4EOdjaCdhOja0F6I2EZflnj17uOii\ni7j4IQ+hKEGjteS4zKqyK4ZVOZV+UQfVSvlNd6DExqZ4hUmSsg/lG9cJp/RVwZAJDCMFpUzqW1WH\nRBsGW5rm0J/gJxHdokKtoIU+KshRaInQ7PfajLFx9b+NNuMwGDLVzsuQp7HCECnggDtVFBtxUZ43\nyiCSqVLQWk6TTEpj9f8oLRr9jZXH6rSZKm4RZHTsCG6zaBEkNrYbskitLLp6TbUo1DUupYZtfIox\n0O/3OfvQIc6/4AFk/kRhHQYj7kM62oxT77py1+xDodpckug0bTqOi3P0h7ZxuBmWi6gOsz2chmLs\nabSdeCxu5IlX3rU2YNK8aOS/jMqQttuqmlAbl83JiXIkz1N50zwpy9IvIDqVvDKeW9pHmi+NZ+Lk\nkiznpJNP5uZrr4XhEMl6iNYmweRwmm0rjNFlWVJqc4Gi6h+jPHfZ6Bde/ERLKJs6TxTIfFRKWRaA\n0M+zagwRcROsw+GQXNzOc1Uhy9zJmkyk0o/KsmgsMg19nma5kOUZC/kctx6+hY999MPsP+lkDh06\nm5Nvd0qln0ls4AV9y5+uy0PfpdATQebdokuab6F/yPJw6sqNDXnu+umidCdu5xfmnEGZZ93Wi3Fb\nYmabKVBN6kQbNUL7GQwGjY1NaX/k3ELo8+IuILaVwvdK94z1PgUthxRFQS8LuqeAOLttsLLCitc7\n+3nf9Z9hl2fSv00yoNOxfpLukroLsrn8Gp1kT8fHOvxRm6BL7rYwUzfpWBCHmaanoQe15E+b7ZOm\nfZy8XeE10989YRWPn6nbMCa0jTfhFHmczjbSsklld+O2NPS5xu9pvIk96AMfO2EdE9v3bXr9uPo4\niVQnieVOwx6pP1rLl+duoTHotfEioog/bRFUqijsNI+rMpXRetr4S2TD0T7xNlpuNKYfq7S5+a/G\n76Um9ry4E2hKM456+1LSHrTWqSq9jDq6IHsZeiZv37jOqj4Fl5Z3lU5VsmROqKsettX5rn4l/Fa2\nlH+cz+HGhqYe2ow/1ilTJG0PbdvKx1HpfDKySNFaDyL3MGo/Nep5/D0qNyI/ba02rXOu3lNt1Cs1\nsvsSf3HY6fOGdeAqafU93MpR6e4d+ZjadwcOHODCiy7iwosuGm37EK/tNcdB1C2GdIwRbbbxtLRV\nlWAjadT21GfK+DElyD65rqfhhDbt3LrbbwrUBzpbukbaXrUpYtTuTOtB0P8rO7Ez6vo0S8NvR7gj\nvtN2K5HcVT5mfm6prOYypsmJaiz2Y4KmBYyfw4n7uWo5NO4x8f2vj1nE25ejaewiPi06mubarg8p\ni/Nxlvq8ZQshqvoPInIS8Pu4492XA5eq6rVdfsIRnXjneNhZH5T5LMsohkMGK8vOwBUZncyEkcmD\nSK5GRqZXXKWTNpKFCYCsrolKdSVO8BfCqXYMRicDVJVelpP7CdSw2FEURXUlUVmW9Pv9Kt5wVVaJ\nUhbDeoEiyxB1x9VvuP56jh69lVKVXpax58QTqlMHCwsLHDlyBHBXjLkrklx8e/buQURYXl5mcXGR\n/twcOxcWUFVWBgN27XK7KIfRIoiqVicURMTL6k4mhDwIHViYiA/prCYGImOtrVMIiwP4wcrFlZRL\nMvmSDvptimhb4+lakAl5H+RRrU/oxHKGdMb+09/D1RuB+MRI+O4mTKIrAtRN2mtcH1Tpzbvjj6F8\nwXVW7hosra+p8nkdFqxCnCGvhsNhVY6KK9Mgewg3XuBDnCKdnpioTkIkCnOcp0GWNP/bFJ2QnnhY\nC6dCYkJ+tNFlKISyissiVtjjq8ZiOYV6QEhPp0wyDIPCjHcbJvJSQ6Ou48HvuLpcr4pDiWpWGTiV\n8g1+ws7L6TWZVPmP0x/nU8ibNM81NaK6ysAPydLlLtKswoRjehqoqw3Hz+KFpS6lKjxvvZpBa6Mo\n1PNK2S7byzaEF5+Aiv+25kcItxaws/6mxr5USnRzkr3X77O4eBT1C4jNMJryZpn4LB81DOurUSpV\npCmLKoTj5I0xtrGDvZlejetyqHPZSF6GMOrybspXLSBVrkfrpSa7ersUpKC8utqpjatf2pUvd6Jq\nNG/HG0cjRm+i/Kb9R2u9UQ06ZTPOSOtuM3Kacri0ZnnO3v37XPlJlIOxUh2Fk+pRbddLVgvdPqK2\ncTxKMYJQFEOyTBq7zNNj183JEGeUhxMVof+OJzo0E4pyiKhUJxbDIkboa1XdtR29Xg/NMrc7sCwR\nP6bfdMP1fPbIYU444UTudM457N6zm/kdO+hltdqc93IK386cvpaT5z3C9WTBoAfo+c0tw2LFXbmI\nuKsRfL65zSXepMv97q3S1ce5fh/jts1qbCbwV1dFG1DCSdy0n4j1hPg5NPuwdCNQ0PfBnQgOYQdd\nvDrplPVcvxXp51nurnpdWRmwsrxSXSUDVAvOsa6Q9o0hTXE86bib9oHpZFD6t9GXZE39aVLepHk6\nThfqkjXoh13ydenKabpiGdL4Uv/p2DPNJEUg7ePb0jxOpjSsVv1/jB43LoxGvNQ65YgupTpiS7Tp\npuNkT/225X1qU3TJ35aO1E5KbyZokyENV8VZTapK3uu5RfbIbWMzn4AWJVpdK16XS1t8/txlLID7\nE/RlFbJqB7Y2xvQ07VVeRXqOxrZP1qJbR/kW2wFxuD7y0WcdCIJoPRno9PV6oTcN1Mmcuz4u7nND\nnkV9Qlx2Vf9W1gsqlX7V0Ua70l/lQ/R70Nc18t+mJypN3a9NfxufX6Ptu62/HpE9Ia7vsW4/Wbet\nCrfVXeontXNDGioZGE13sEa6pU/sZ1XciXAX1sLCAnm8Qbslj+v0xxIlsoib/6tk6khz8DepX05/\nb+uL0zGnjWAvp5fHjSvvad01f3MlkZ4+UdXk5Px0SPI3hCWxg5a+o2uc6DSCaTHxxZ9UC7bTGNrq\nqwQbXpvPNSxAMH5ehqh/8BW1SkPcj0CYG43GgjLpr2JZgwxJPM2o2+WqxsesXrqOy6N1DBozHo5j\nS1+Wrqp/AfzFtO7DXYLxNQLuubtOKssyisGAoT+yF3YkxsRKRvwsFHom7Z12+n98JyXgrj1QbZwc\ngdFj540BLxoIRaR6v0me507pKEt2zM2jeAO77++OribK3ZCVZ4JI7u+/7jFYWeHG629gMFip7kxz\n7+1w12Pt2rWLsiy55ZZb3BViO3dWJwDC+0HyPGd5eZk8z91kfdT57fZX7oTrfnb4BZJUURsOC/K8\nOSkYJuP7/X5yzYVLTXg3REo6sIb3TSD14BKXaXXSBhoLTnF9SJXQYEhNUnQreYNbmg0yTmdcvlX5\nQ71YE+3OCzLFcoSOJRiXoZ6khl8euUvrWHVCJ/ITL4qET7/fZ2VlpVr46PndryHvXCbRmLDPsszt\n4ouudYsXYmLihYTwe7ygGdp0uouqy1ioyqnFQKrLpL3ttyo+ZX3VSu3efS2LAnx5hMWYsnQ7mEtV\nt2MgGzVeOhU+709F6qP+2jRA43oYrlDrMuDruhBdtRXlE9RXnqkqJW7kCoZGo79rze3xdA1IUI/L\n7rvrM8PAGdpAqEuBeAdOMFKrU00dym9DYaFpBIS2FPtr5F1iLAAj4wBRXQsn0OK0N4yvltNuabyN\nvPPjzjjFCZqKRpX2sjmWhEw4fMthhoMhvf48SHPxSJUR+duMiuA2TUOVp9SbZZw7d1qhywiKZe9S\nptuU8Tr8+ne3Iy8yWlz0DXkzGDmirnEYEp7447pShdQoy/hETdxHxD1Ml8HYSE9HnzSu/bQSlWeU\nU5FfqkWg1vz37gbDIfv27Wd+YZ7h4iLxKZU2+Ub6Wa94h7yM221XGTf1Kfcsy6ShI1VvFtKw8UUo\nirLWjyRcW+g2eITTV5LViyK9nkDWIxf8u8gELerxJ5yEnJubc+0v8ycvSnfvdaklC/MLKHD01lv5\n+Ec/yu1OOYWz73AHTjjhRPq9Pnm/D2VRLZxkuVvIcNcBed3Lp1PD6pKWzOVz1c74kBdhU0PIg6Io\nyfP6mtT0yhHjtsmsNhOA0NztHcbDeoGi7t/C3zadPh1vm/q+0wmDrhqfiIyvwM38ruTSnw5xO26F\nYjDk6NGj7v1IIu60pO9hU3upa2LL6YujJ1bC33QsCT1hPR40/aU6WR1eeB4mBEb1vFSPi7v4VC+M\n/3aNBW2ypGls+y2VfZpxN3aXxts1Pkyj66Qyp37ansUTXOPSX+loItW40RVuV1rQ0Q0xsZtxixcx\n6XVpk/J6XJmm/tr+nz5rq0e13kQ1ydXr9ejlPfK8x3Cw0nDn7JtaXwLq056Rfd2QJahTIQ3+Ub3I\nVE/IlTTD6JIXahvf2Un+gpqyVv4EQTLxN/h19xVBprAZS5OybK2T9Y+VDZ1u+koCaV3gSePpejba\n1zTjadPFgty57ze7+pG4fgd/k/qcMYlohBnX8xG5U5tlzNjSHd2oPptF9TLYe8Geaq2fLf1fWz5W\n31tkj+nKo2DPhzid49pP3usxNz8/euKsJeywcIhq3bwi3X9S3+FsliR/OvxN87yt/6vHuFFbuJal\nqy6FDW+jcaX2SNymXYoaF0FV8SWtuiPeUWLrrFE3o1Dq/AnxJXLH5dQhQyjDWg1pKB4jPpr1l6o8\naal7cSwK1SfoUe0u63mItn5TRupMI9EEfWgqWrul8f2hxN9bgkz1o7Q+TsOWLoTMiirVhH3aIHu9\nHgN/vU+eja5MTSJkeJyR8W71OLy8OmLo3Peikwxh0WFQFtXx03ino5uAprFjPrwQPe5s5ufnGRaF\n2xWVuXt03TUOfjKu55SyXt5DfLi33nKYq6++ml4/Z9euXSwtLSHiTmyEOMIdhXNzc9XL5ldWVjjx\nxBOZn58nz92VYmXp3hOR5Tl79+2rDJyQRlV1MkaT9CGv3EvY6/x7zCN/qFa8er2RCltovROiMsqS\nshkZkHxv02aopANterojHYTbjMK2ATL4K4uC4XDor8VwL0YNV7XFVw/EVz7F6Rn6q6ZUtbEgFNyH\nunrHkJsAACAASURBVFD4eEK6G1cchQUe7ycum7qe+fC9v3DaI4Qb8i68ByYspIAzbB926SWVfGGx\nYnl5uXGSJMtz+nP96nsIM8id7j6MF0NCuCPXI40xeNpouJ3Q7juVMa90DNUPHWHswb1Xg6htEvoF\ncO/cyASy0R2J8cR1+jeue+F53P7jPEgnGAPuhNSoUXXSgX2+TuGNmTqt4aRaUQwq41EpEfyCJXVd\nHWf0dpXXuEHN7ZKmVuTC4JtODif5EfpmYOQ9QbGfLtL61iiDqN+v8jAOs8W4aDPawnPV5s75tjJt\nM4JLYP++va0Kfyx77M/JX9v/YTwaqnL06CKU4fRdvZs8DT8t4zZj0Bl/EM/FhnQ6t+LqmUrjRdhp\nXrXVmyinR2jKRZWPqoomtUaqUKLJguplh3V+V8ZDknYNypw6BTySolWOWKN7wAMe0JrWEaIxK87n\n2F9qHDXqZaV0RuOZD9htDPDlUkZyxg06EiPDjU8LO3cwt2MHR5eWnF91b2QOccd1dugnOGuZ6hec\nioTFvObVhuIXADSKeyRbonoRwknH6LReiuSIlIRbqoNhEOStTuBG7S+Lnud5zpmnnQpl6a68Et+3\n+3FOVenP5czP7eDo0UUW5uYoVlb4wqc/zSmnnsqZZ53F7nw3ZBm5ZPR7edWvFf66xSxzp4TdmCH0\n8h7DYbRxJ+q741OWvV6PPm4nPzByvathzELQJeOxqa1dtY0H6W/xxqZQV9t01Vi3jK9/rSdSfT9e\nuA0hWV6wvLzMsBg6facsKTO/+3pkvGDke20PKvUESXOcrfuypj6WjrU13RNnzl/tzqWtXfd0Y//o\ntbttumj4fvFDHjJio7TpVm26V5fu3DbON/vU7snBNjur7W8a5zga+o3XBVP9vWXqpSFnYx5A/TsK\nxtkJ1ULc+BPMbbraJL0P4KKLLmqkL9T5eszvyo123asrD1M9vKsujdRb9xTxY1Cv12u8ZLYRZqRj\nqdY6UqpDjqt3gbBkWNsyYSExTmN7WFUcoR5W42Zs9wkizbSHfqcsy+bu9KDnha+49yi15Xep2rgS\nqto0FckWCdq5OSZ8D/67yrWtjaX/b2uzbe5G3IwJb1yYgXTaWRi1TTWJJ5UtraepXauuc26VI7UH\nBdi3b2+V72mYjXhb0qa+bFvLIrIRqrTp5PcbBBuj0V9RaaiUZUkusODn2sC3q2gxPdhxbnO0VvZp\nsIuruMd1Ji1yxekf1991jQOjYY6GHz1piQNC67jggQ+MykITN+6ZZII2uvdmGxYJZZvW3fHjThRI\n81ujj4zDnja8SFaJQxqNt+2XuJ4mv4zIOLUcLXHAmL66kjsamyOpHnDBBZFbp0uN6/ebPSJVO217\nf0wqV9ovdcbRMWbMwnFlYYVJ1aBY9Ho95v1OuqWlJW/c+/d6JLucpqHq7JITHOG36vfqWVOucCol\nyBfv3g9GQp7n9LP6/SbxdVdhInxuzu0YzIFhFL7bkV7vou/3+6DK4VtuYenoIocPH2bXzp3MLcyx\nuLhInufs2bOnIcfi4lF6eX2dlYiwa9euaqHkyJEjLv9yt5gyt7BQTZqHK7GWl5fZsWNHY9I+yA3N\nzlpVedyjHzU6AEk9MISJixBOrPRUfooSomO8ble7L4fk5E9QkNtO6KTlHYy42E2sYKcKcVnWO1Pj\ntIycPMmaL2cuwgReMlgPh8NqESVWnONrmMI1YsHYHAwG1Wkd/AAZ5B4sLVNQLwAVRcHQnwBJF2lE\npFoMi2UPRtcjHv5wgOqUyHBQNN4ZMjc35/LeX7UV2k58nRbQSFt4nuZv3K7T8gnl0Wa8xe+NSct2\nmtXn0F5XwnVgqqi64+DAiIKV53k1MU41KUul1MdpbTOe49/KsqxeEhnqVpz/4RPu23dhuNeNiYSL\nwbLIoHBpOvmk/VUeqFJd7xAIV9PFi39aNgeo1AhM868x+GhzJ10jvYz2wWForPJCm0fYK6WPZv2Y\nNBkQXlDWpuS1GbIhzzVyIyRtvqXs2sKu5E4U+3GkdX3/vn1NYyWWyedHmyKe1rMw3gwGAxb27B7R\nl2t5R9MR8mQ0DUJYIIjjC3XMHVBW3+/pSJhp/DGN00CNCYp6Z31TbsEdamruFqyn8GP3VIZzVTZp\n/o1I2JxoqBTujnp8//vfvzON6fhRp635LPTV4bf4b5ds/ktDcY/Da7TbZCJAS7dhJOv3ObB/P4dv\nvtn1v9F9g3EeqNZX4qQLtWGsAdx1VESnccuu/ZHuFaxpWkWkuhe+cWLQbyoJaRpEmy8A+nN9Mi2r\nsaD0CxyogroTH6Hcg65z8MzT3YvVUcSfaix9Wno9976UpcUjqArz8wuIluxYmOfGG67nxhtvZO/+\n/Rw8eJCdu3ZHpyabGy/yDET8FSQ+z3q9HisrK/T8+9OqMlNp5G3IB5e/0+uxhpESX4cK9fVPUPe5\nob2nO99Td/FiYnqaRFWrxZF400GsUwdduKrRZUlZFAxWVlhaWmKHP5VOsiM07UPTPrk5rtVGenDS\nppO1hVvHOToJMkkvSqkfJxMCE/xefPHFjTjjv+P8hu9tmzGmJY4n6KPhe5uukcbdNe63yR9/17Js\nvB9KmRBmSz6Ek9rjboPoij8u7UnjdRcXXnjhSHyN8KTWP7rqddez9PdxZTEJETfGzc3PU5bR6fRE\nz82yjGHoKxJ9MdbNXXuu63ibvuSTT7Dv47DGnrSJ2pBEm9Li9Ku660qDtlGVl4h75vUkV5ebJ7QA\nTj7pQGuf1yb/iHgadoF3TWSOZ5bya81Tn9b4it8OzyMLOCNtJPl9WnkqPXGM27hvalyvGP2uqiNX\nzlbhk7TVYDO1yZP6p6M9jknTyPOW9Eyycaqw4s6lVHri3+XrjjGN2FpV+Gm4nVK342zYWvZp+rHp\n+6P29h7spZhgJwYueOADpxC++6eGLUd7u5yF0ZE+xDNRlCScrpDGR5b2u202Oh0bLZycozkQv2Q8\npRFX2DCSbC8UcO+WibggXgiZgpGymaFf6aqnk+rwtH1XzHG1EKLeIO7n7oqoPMv8NQajb7AvtXky\nxA3k0W6G0In53/KsuWMn/BWRaiesakk0DgP1Tr74/Raa1buhVN2u3H5W76yH2pgIg0KQucDthnIv\nMiuQon4Jp2qB4HfnIyzecpjDh29meXkRVaHXz5nfMV/FHb/wfGlpyZ9O6bGwsFAZ4zt37qx2QC4u\nLlYT83Pz89W7KcKL0YP8/X6/sfs/uCnFGfPBcG9OxFANZLn4vMQbXUm+p4aXiCC9Ov6g4IgIea8P\nWT1xEJdLHGYgGHnpyYkwESX4o5axQh4UqqjOxIps7K6qC964C7+H68XCyYpglAYDNTZMg5whvvBi\n9fi3MNkZrrlKd+TFRm18V3O8ABcWQeJFunhRKMhQuaNkaeBOXWX9+qRJsVK/GyYsgsTXeokQTWLV\nCz1RRG7SV/yx42RAKMt6giudxGykN1FMwk0nkcN6Iaga4ZyysVKsuCv1RFDcy2mzLKMshpSilBJ2\ncynlMAwcVG29uipN6pNQsZyhXsWdR+HTXsmVZZRuOrkaPZz9Ed/xnTsZSrcI4s0/Muo+SEtwL+At\nvaIF4h5SFAN6vbwqo8KfOstFquHQxZFO5irqFx4bL8qq/FHlSfxbHrdLdddlVHN6cRl4QyveYRSf\nmmpMuCQKdyjzIeomT6rn9dUz6cmj4Ke6AitMBhEZqi6xlDqs+n0RKAo/OUk9yKeTw3H+dZEq0uF7\n29UKsZtaSRrdwSMqiJYsLy+xvLLCzmERjR9hUrV9rGvW36Q/ztyu1rReV1qdv7O5KOoX1oe8jPvG\nKrxGPjRPUjV+d0cigaJ5WkKq2+gi/y3vNVE31rvE10q6RGNQVWcjWcPiYvhbTcpXWwmjyeqq7oak\ne7M4xEvtnshIkCxzC/yeuI53Xa9Wv4TQUeqo4aFZvYDmnoe0S/U9z3qoFgwl54S9+xC+Wi2O+iZW\n5WOjH5N4MtEtnGSZO1VWGbr+ms+6H84bYWRZ6Mf8d3CnXUMeC+5KAJHq2inw7woKY3OhiKjXn4RM\nlEJLxL9rRNQZmZJJ9S6uULdXBgPKgY9PSj9xm5Hl7tqC+bk5ylJZ8RtA5hZ6DIolhqXQkzl279hF\nURTcfNN1fO7ITZx5+7O44x3PYWll4CaX5uaBetwkE/IsdxsWej20KOnnPXLJKn0g6CHxxph+r4cS\nNptgGKsi3mQSb/SJNzLB6Mu54z4o3ZwRb/iK/aYLsHEYzf7d7RF347nrz1aWl1k8epQTTjzRvddH\ntbGTu9kPBXnCgmqzb4rN73TCNA0rJh5b3Xeqv/GkH4lcsX7RDF+oJ17r9I+Oo+MnRNvcphMCTbkn\nn2CdFEfsNq4P6e/j5J4UfttvjRIUf2NAS1oaVxuFson+35ZnVf2lmd9V3qk27Mg0f3XK36RDBuie\nJkuvb43jScNrmwyKdbhxePXFjXXz827ndVHrvHHdrScaa9strWfxhFp88imVQvA6T+U21V9j3amO\nP05feE+sz4RG/+MUMGnogGWpIFm9EUTr02KNPI7ytJG2rG6rirdrI3kg6g9Cxnble9DJGF8/qvwa\nV4dG+imt7CJJ2kLQAyXyG6czjAuS2KdxPF1yjPQ5tceoXtRpTnXbcIIrrndxGrzDRtsNz0jqelon\nR9uIenOlxL89vLXNCjSuxYp/j/ucrrYW5zVlieR5SBVhPifUo67aUiWzlryWoconV+dGbM6QTMJ+\n/NExoY2ucm7Lo/bfJy8MtaU4LtLYrSvDCTKIuKYX1Z06iu60dssXB133M0HIUdu3gzE/jUTl60t6\nSiK4rWzWpnDu95Eo67rRqPkjdTnyLVJdDR/s9fYzK7F/qRs2HfWiJe7Kbg3xjKlbbfWxa1wM3yfp\nd10cVwsh4S5ptN4hHSvg4I3zoNj4hZIqg1oGb5Hmi3Zihba6tsgbo2UyWRbvoK8m1rKsnlANSpdI\ntYAROsJ+v191+GGHtogwl/fJBEp1E9thd1X14uCiYGV5mcHyMkvLSxTeTa83x/zCAgBHjhxhx44d\nhImawWDAwsJCQ8ayLNmxY4dLT6ksryxXp0DC5DniJtvn/X2G6eJHyL+Qb249sf1FsyH/RYTSLzOG\n5jaivCcDo0Rpr4y3KP7KsIsaQmPAaBkY0xMG1f+jeFW1sTCg0d+qw/CyxQsb8amAUK5xPiwuLlZ1\nIJyuiBdmoL4OI4TX9y9ajT/huqtwBVqYMA6TK+H/w+HQXbOmWj0HWFlZqa74AmU4LBpyhnxZWVnx\nSmFzUjB9AXtRNE8IuXzUxnfXhmqFKMuyRrnF+QxeIckypEwmS5P6Ed7d0ahvbXUrQiI/hZvdpvTX\nfZVaG34hfUH+YITHV5iFPqhRX+L6BQ0DK44/NWqlduBHTTcR7MIMi2shb92kdaFltRjcZbAGxTNt\nFwgjeRfS0za4VOEnymKXIdalHFX4ib5SR9tr2o4hUhhCmGl6gkKWyJDKE8qwIWuUltRvnb7MLYLE\nY0hLv5PmQWpokdb7pM62yRznS3jeWFz3wQ0GAxYXF9kfydN2BV2It3nlkTYUsLh/SuXqkr3qv1sV\nsNG86VJqglIW2lzj95b4x+V90XGiJa1j8YRW11VVjbSj1SpIePH7aHraFbewAaOtHrQRDOlaHio5\nO9tJJKeTrRneifv2ecVWq7JvaPLRb7G/YGi3nZ6M62h8MrLekdn0k+46Tq+2itPnFp+0OinprpnC\nXavj4+p5/SXoZ/EVlGEMVFXm+26RJc9zSi2qMXQ4DO+60krv2LFjhxuzh4Pq9OuB/fu59trvcN31\nN3Do0CH2HzgZ1XqzSJZl1YvPM3H9XJb3mJubq8b+wWBQvWx6ZOJYat3JMFbDYDBgMBg02hjUtgc0\nT3fEOmasX8dtO+hz8QaeVDcNxGNL2n/GcQyHQ1aWV/xmmDAJ0Oz767466CL+1J9kfgLUTwFp9zjV\nZhekaW+jTX90UYTJ1+YJOqIFmjSMNhtp3O/p37YJgUl6V0PHjPrmcWlNddPYf9zft8k1Ltyu9Mfu\nqrjLsqlram1LkobXIiuM6j4lzfEx1r3DGNumy7U9a9Mjg9vYhlD1G1Wy+krJWPbUb/CX6oGxbQXi\nrwBtLmSO07kl/CvuRoBYZ/MTGy5NIohk5NJ8x2Oc7rjuxSfAqvAi+Ud0NkbLKdIsqvG3fu9c82Rk\nrKs7e9Bv2JLodEuJe38IkT7i/bWVf5x3I+2lpd9IcxWvX3W1u2lI21gcZ9o/jbjVMPkd5+RoGmPZ\n4t9T/TKNY6y8fr4tbEhE0/c1jJLWbdL60xJ/1vA32hbTZDpbsKynhsXPPWntp2EHtPSbqWypv/hZ\nfB1rHY5rS9WtD3nugmvpt0MBhjmmalyl/er2arMXSXmH8Yd6Aadr/K3zrjnup/lYZWAlaNgg2lU/\n6vMGQnhvmF+a0bo8kGbNaxvLom/N8klsq7rfaBEnCiMNf6R9lFpdr+zEHbVlR+KY2M6TtNNeJv5/\nzSBF6j46kV3KOi+V7sMjbUWURf1yPP5NQ6ijQe6GnsZo/ap90boIMk4vaIunze0sfW3guFoIEcRN\n6AdFO+pEyrJEFCSjUmzTl1qJSL0SRTPz2wz4+v/N76L1dUVxJQ4Gd1HU10iISPXCo7DzL+z6U6ku\nt6kNEYGydC9n7uU5uUj1guqjt97K4tIiw5UVHzf0+j16eY5S7/hfWFior4USYfeePSwvL7swe71q\nQlt92EePLrJz567Gbo8wKIYFFGfUh+OMdZ5qZbD4K3qSDqnREEZK1HWKYcAICmUon3jyGZqTJK6x\nq3s5aVDCIjepAukDaDUEYnfpzrZ4ElD9YkuR3IUc3IUdtfH1U+GdHMFoDBMz4RROiCv4CZM0Idyw\nCBHSH/6G8IqicLt6xF1ZlmVZtWgS4g4TzNXOWi9HkNm5HTauTArhx9dmDYvmFVfxQB/vOKzenyL1\nvclV5yRhRxDVSZD45Ex1H6s0J/TjgT6uT6Ge1kU8nREbP1ffbjIRNDk1EJerKgijpwr+L3tv2yS3\nrqMJPiAlZWa92Mc+290bPRGz//8/7X7p2Z2I6dv3tn3sqspMSeR+AAGCEJVZ9syH9YZ541xXSiIJ\ngiDxSrArNHf63SimQCPsRSIgE1bWIFx7VdnY7k8t//WnobyQ4Gle/1b5pqcwr5DETLkzF/qtGWPO\nJrrOMTpbR5xj+p3BqYW/p4wrUyQbjSqC422le3d/auaIQLnW55M7hfZ2FENga0C3/Ve+0PKgdVOj\nLT1lbIOfzHAFIlzOZ82B6/G3dXxsJDpw2rUt/NvvWkWWOnNY29gKY3nnW9NkHb98T9AUgFKClxB9\nMyJI7r3r7LO3BDOFySgu+m3hhVu17raw54tfh3kzgq0AqTxJmLOML9W5yuX0BIjw+PiE6XDA9eWF\n+R1FJLcmqASgeAHUKtuBSFP9bb4T2Ymq8bDhHfbEF+p8CJ9qabzys1hOBy9pBREQQmSZIPPJFOGn\ny7KwnBUCxnHS04/jyCkmY4xYEwd9pDUjxqE5+QrwyZYhjhgiYZ6vmKYJGRn/5b/8K+ZlxcvLd/zt\n73/Hf/2v/wf+/PynnqRdM0erxiGy3LLWIBebeoaKPCaOF7l43Z8W/V1+lx8psr962UHkUPtb5L6e\ngQeoJ6qtDCjPrSzcyACpTVPr9yrR1eZ5xuVyUf7BmtN2f+NTcRmBguH5gOxEObd7uK1vx2P3JIsn\nW/ZkOd+G/8bqjXvtyW9bp7d39vnoPs/08l1vHHv7iZWJejKGP03a42HvlcGr7Ncv0r7s+cHAgsz3\nWbHIbE4ONHIfUGkib3BW2PbunO/Jnb74ObNtbMaErdxsx7tXfzNnVMeo2RUiNTn1e3B5GOUeglxk\nlZzMugg1zWkoco7X/YRHV5j310vihzd52RYHVr8Q+bERSqtcQnzSNOeMNbH8GuI2IFLa9ifgLH15\nWRmo+qZta6PTiWwjzjv5VsDFdl48nd3Cxz0atDqlr++f9WjMILn7TQ8mDweZ9ejvVGnq2HVr+8dW\nq6j0Lrjc7sXmY30ma20rN4NtEamdB3Tabt7J/mfsHV6eb3QSF6CdMzgLyzhoV5Tb+1eIyknvOpQG\nDlmr0pdPX6TPRSdJLd331oO2bzCVzXrzfLjFl7cDyB+lfi4/kux99cMezu/Junv7eNv5trxnjdWH\nFVZ70r/FWV1togcSUXsfketf2s7umd+b9EMLEu3gxuOjMy+3UNpr8x7vaLoXGAqMRhP+Kb3F7r9b\nnGy/9TC/F25bfi1HCLGnXyPtnBAJgwCLjMag7jbq7gZt6oTIpxxspF40yqsUMZaKMdm2E6kKCuIs\n4fYYRjZkA1mu/sz1jpGUEr5//QsvLy+4zheM04gYA4YxYJ5ZYeFLq1mpfn19xacS4Sk5qOeZUzZY\nA/nhcMAwDHh7e8PT01Nj8L5er8VZw7/riYNhQ5jCCFjhb4WJLqOF2xA6RC/FGkBsqq2UViwpYRjG\nxuGkNELU1NXnoeZK0hMKOTfG/2xOddjTQSklLGKgcCcj5G97GkSML3ZcAo84tqSePVHgI2/s/SG2\nTWnP0uXDwwNyZueJOpTKurCKrK0riq8dg/QvEavDMLATpPQj8FjlOsahcQBZhVrn0whaPeHPzp0V\ntD0OPX11lcLST68PmX8ryK6LcWygpWs7T3Zc2Y2DiPO/p56QZP5TWCDCjmkLJZ2UOJAqh28dQ46m\nQgh8mqUTuS/fiMHxlpKVRfrp7KVW+Pfte6XIvtfxdxi2zq/5jmgbwWLx7JUIQFLpiNDLaQV78oil\np65C4r6xf3vngZUuejRmHZz2O8+o9Vne5rZeHbwCX88hxm3U31++fMEyzxgOUwObX0s+nUmFPSsP\n6BlX/Hi5DRZLiUjTT3SF5E5RxQVGAHew2me+rqSp2gqspW+QXgzaa0ejBmmf5qVu8x6W1vnf7r1F\nBlZ0/m6+7axRO19V2N6uC4WPaMOPtTtiCT8Q4XA64en5Ga/lpKLKUh4/RM14+XRaew+X/bZZ/4bP\n2uhpbReejtqx2xKI+IJlo2QCnNIrRsJQZAUrJ/L6BaZpKLAnjFPE8XhEzhkvLy/48PEZz8/POL+d\nNcXbOI74+PEjvn79ihgjHh4esC5XPRFyPp8xLwv++OMTDocjEoAvX/4T//xP/6yOlBgjJBVDjOUE\ncRlSSgnH41HlDcDwfGQMJSWoTd36u/wuP1Kssw0wvMT8J89lvYijrief+b3GBr/YYtu3cvSerLDM\nMy7nM87nM56e+YSU3YYUllz2aOSmbS+XSdnjHUTbkyA+9U8vtZePyrXyD5HnW9v9y++L/rmH0Z4y\nluL5v22vKw+77/ZkyT14vAPEyuq98fTG3JW3HK/uwV1ebMS5hAwSe3Oo8h9/KzBujYe9MXaf3cCP\nH4//d0/vKEPZvN8O97Yxh4y8+55i5WzmtdCgueRoxq4h/q/wb6c72rYZjm0AlfB2UGv0JtQ0uA2e\nYIzWxcLZk4W07Y483dNRbLFp0ew3PZw3a7E+3Kx9FBOyGLX9XqgtGzzfWke98b633KOIW3K86qid\nddiDo5lv2R87tK36kvyr67TTnl0r5T+ydwVaeJ2cDiq3FUr/QiO2JyqG/bydeyIq6aT7Dm4AakOS\n/q3+ZOvYU8i2SGp6gOm9ZzOjDm4sPgCUMIG+k8fud6qZ7I2n/BaLJAUJGCtyOqojpIVk2y63xVUp\nt/AR+jBk3KdZu8dY3cEA0XxbT5G1bfTa7ZVAVddubDZ2X2uq8o8EBpHQ39/fv5Q9r9mms5a/CZKu\nHIqH93EFN3eyHwmgmU/XWZgaGEpKU+TkcITKZGD0Rv233S8sLIJvObBwC+49PdG2897yazlCYC4U\nLouiKuVZlWkv8DapPW4Ihz2jh2xy3rlBVKP3DocD5nLZcoyxpHphZeI4Tnwxpkl1JIJEGCLGYSwn\nHFY25inBJFzOb/jyjy94e3vD8XTA8XDAvF5xOp0wz7M6LI6HI3KJ4v78+TNv/qjCsijtcoHu8/Mz\nUkq4Xq84HI5614TcGyIRksKgRaGXFA5WIbB4yTlrBLL8Xs3fweBfF0ZqT4LUuqkx0ANRlQIiwjjw\nReHWuCt1ZdySekqPRRclTNJYTdPERudi4K59oTGiSBsNrZW5FqeGT4sUQsDhcMC6rvj+/TvTQmGA\nEvUWQsDlwnduWPqQcYqCKUWUUwDqpJC5JiJcrlfFrbynMj6JuJWx9y7LDKFedC4Kqxj2ZVOxJ15k\n/fCdJ2vTjsBhiwi/Us8rxVYZ9XRi++sJv15RUyEbZfsuEc2yhzRwETXOpnUnSk36tjQvOPHKPmsa\nhCwM0TJWo5TIZe+iaKTsFE1UZcTjg/ut9znYtAC2NAwV9ULxlqkb5cOczhD8hSFqHuE9pbXbnu/f\nKz5l/IJRK7T1+ukr94UXmFeEYSMgemG1p7R6uN+rrPrUC3vz4HF2S5EGgEEi4ss+pwb2IvR7gSLn\nel/W9xLhj8zCbW/c8psFLaGzmos557QLW0/ptQ7+LX20+KhrGZCZlzSSRDBOwPZ7O1/6dxEEOeWF\npD9oFeyUe8p7LXxPOIvlZHBbrtmpY7x1p8lO8WmqFGfm2Zqqc1zbN6eR1LGWMwcGmLrWaS/tExHy\nmkAUQdTuzSkXHhcjhmnE5z//xN///nfkwivsng9Aczm3Y+ATQ3Zvkr6DmyN5b2lFnX7lpKW8E9lj\niBHrsmg94UUpJYzTxGPJfHJiXRPGcVA5BgAmSBDBihiByZwECSHg7e0NU2lnmia+9+PrVwxxAMCB\nBYfDAa+vr0gp4fn5meep3Nn16dMnPD8/4/HpCd9fXnC9Ms+dDiwjjePIASWx3AVDqCceU+V5fv9R\nfkJG9nwHjf0uv0uveL7jZS55BlSZ3qZW9fK50Ki0aXUFv/9YXQlo7yuxdYkIiThd6/VyRXpMIOK9\nS0orO7T3FXhZ9hYu9mQJi4v3GFH6xfLGrW651/7NFh2/7bX5Hhh78o5v/9bYvWxk8b4nl++N0VD9\nMgAAIABJREFUpQdvT7bLuY1ybwwuIE1dQlwBABsI1x4sfk46MPi+90pP9vXOgd026ceMNN0+VUQ3\ntLEZbkvPG52JCEMMmIaIHAjzOmNNbPhsDfnGLOrw6uW75GglywtT9nBLkJuDeKpI5FHq192T372e\nsdufwPWOtX1Lr9JxmuebtUTbvcDvB/fW8nt1ER3PO/DucdSstR/Yp1QGh5v72nnVJWWvviM/q+5O\n0JMbPp2Z35PUqbBprDyngID2Plnfa0oZyGEzH17XAtqTkDIWO/cVRtLvh2HQezZ7Y/f1lZ4hpyFF\n4wXD06MVbQsbB0R/1NwgeZ7VdYK0XfbopFenO9abUN2mecVvcdbUMd9NyNa0bfEMgDML3WmhwmBw\n8c5KPb1xz3ay98zud9UJsk0v/t4i+67QFa+9Xn3q/FmRwGvEvBYElWdyivPWnuvv6PJQ7O3tPytf\nAb+aI8QJvVb42d1MrcDv66LdyIiqsTKEgDjUe0iAqqBLO1JHjNXiJIhFYbeXdNpNW5R6Io6aTSkh\nRMJajNBIrJB//foV4zjh4fGEnBLe3t5wejyqInI8HjGNnJ5hHMaqRBdFRqIdJUUSwN5owYsY8YnY\naSC4kHzV8p2MPYR6+bBV4u38bNLuANVBJW2Wf2v0aZ0vMaQFi+/mHRvzw0B6+bssFWtAIiJ1TlnF\nTRagnRur1HklSSI6NZdycXjYC+albzl5czgc+CTP9+/q9BAjjpzWsE4He2+HjFOcVnZxS2o1GZfM\nQ3ApuUQY0BRJqFGmNe1G/S0wWMXW3v+xFqNY7zJ1SRllN2p7+brgvlRQerdrQb7rKVK31rW830S0\nl83XC0lw9JpzxrrUkz4hlJM6uTUS2Mj+Hjy9aMtUEF9l7dpWziV6UaKVC1z1/o4qoCdjiAbak1GV\nNlrYCC1+ZP9Rw0FuHZZtqYK7ZTIpJRBclFNHIfLGiR4D9/DLngozRz+ipMrOkhPjwh8h7fZnnitN\ndxQoP8694pVg4SF7ys4tYcjjyT6ryjTjTAQhHVuoCvnr66s+k/atYcv22/ZF0jys0HgLN/IuhlCd\nf7bFznx0v8lQBxYLRPLtfp+bMRRast+n3F+/Wh9GEEWL/2jEellbG2UbcoS6jkmdDoa/2LFvlAe3\nbvh9a+Szwnom6F7uhXnpIxMQcntvUS7aUZR9CsCHPz7qfWPz0olONHui5e5MJ+bE684YbfoMfmac\n4Kh8wM5RIEIocok3vEJpg40lIXBqUaFqljdq+p8QUWWuYuw9HA66L3748AGH44TzmU+DxFDvFXl8\nfMTj4yNOpxOWlPDHx2d8//5dT7i8vr4ixojT44PKTpLSUnj9OB2Ypy+z9u+VXeHvistAWNZFZbXf\n5Xf5mSKBTr20RntygpepbDBZI0+70pMJxDFpn++dqnj5/h3X66XInWuzt5Ta9f87PMXDYnmuLb3+\nPdy955aneNzt4aLHy22b78Wjb8vrOz2ZwtbzffWe2ec9WHp99L73/LHH7/bKLXnLyq2pGAYrTyz1\nMt/HtKY2lS+KfNHIBQACciOns65A0tRNGa2BbYc2WrzIj93R455FjfFahmNsftsY8C3MBCAZOePh\n4QFxGDBfLghGByEDKKdazQC2d/UIn5W+Y+Q7wFQPMPgQ2Wo1cp0DFBKpL++369zjoY9n+7eOxAR3\n3JJH99a5x6kdl6gvP+Ph6q3BXXnO9Onh763vblHi6fe5B98t+btp19X1dW6VZlxAIQBuN2DrCNH2\nyzMJw7LrVv5fv+nsSVaXzjkhUKvr2j1kQ9N5m77d041ALRk2oKc0/cmC2p+0ZcJO697/Tqu7/eoW\nj/TN6XiT3VfeR9zdtcgTYlrKqr/uwbR9t9XddO2Wt3r65AaddUi//T7nJh60V1r+vP9dt/0fKLLX\n7/dtbD4dGO+ut4780/TdPrkJJ7eHRj/UxXiDp1t4k1tXfv+3sHq5y+6PouO+t/xSjhCgGksYx7ka\nPIiFH5swz24mrJSaiz0D+8DsphVJrT+gUA2sNqopBM5nG4YBQOZ82mnFaJRsaW8sjgN70bU17ked\nyBWROJf0t7/+wtevX7EsCx4eHpoo0OcPH5CR1Rg6jSPSuuJwOmK+rhq1OJQox3meseaMtC5Ahuas\nljEBhHGM+gxAE90FVPq1RLcX+aJGJHmHdnFy/UKoKemiobIz5Vw9+shVISMiPcmgi7vgUpgvEW0u\n3dbj+rkqbpLWbFmWzWkWqWOZo1f6rGMLqMaVnLNePn+9XnEtpzOsU0lKSgnn81nrS58+Qs/eOUJE\nzX0hgpdQxmBhXMr8rAVnQtOCO2nXXja7LIu2L32KohXNGKWIgccLpraePXmSqZ+uzOK+EZZ2mKSt\nZ5WtRul07do53rDWQkvLsmAp0ccw8+4NeERt5GNP8LSOEzumVC5kDyG0cyLfOQXNjlWKNXyyU0vw\n6QQCxyzqmi9pvrygpv30T0f4MfaUfyLCMEheYT6eyvdMlDYdrjYKLOp+0CoZW46mz3Ktl81frEvd\nj8K0fQhO7PjtvMszieYBTN5jB5cVyO3e1tCPNUxRL4amM16060aVPAOzzPPXL1+QTET9vmDUE6Pa\nvvxalVpWENN9HFsFpQqogD023Iwrt/PEJzSg9ayRgLtKsv03ZU+ok39772UmauRZHyOCczndKPNr\nlRUiQgT0BGKDJ7Lrq96NYxW3bp/UU87bgIT9PUmUuNKn6Ub25g8fPyIOA9Z5ZiOStGn6y3wkrCMc\n1z7s+hGY7EXM9flWEe3tJ+KQH0JoIgjjEBCJkHPhUZHv+phiFWllr4xDvTTdOpOE9x2PR0zTpMEl\n1wunDo0x6mleqf94OgF5xcPDAx4fH3G9XjGNI+Iw6clbInaoS7DFPM8qp4i8QBkYx4HvHFsXEISf\nE5a58qFxHFk+6FLG7/K73C8prSrven5oZX3v6JC/1SCTalrZ3skLv/blX3u6Wdak5VPS/po4sOj8\ndmbZi6pBtX7b6nW2r5uGnk7Zk93s7z2Zwf5nZSwUxyzXu+2ckOLf7Y1jry2Ph3vt2HH22r/1vNeX\nldd8G3t8qQe/navuWEUucDyv2Nhac10G9D4/SGRzbeN+kdZuG4e7cowbcyNzqKxu+LKtB5GT+3Ps\noDCwbQWWrqxj2smABkCu6wqQ2EjcHIYAmGCKjf6VCq1LHDFlIJRT+WBbSk4J9oivl3esrn2v9Nat\njK1HQ66yvtO1frfHLT163Dbzk7fPbumLvl3//S1a28VFfxDt3539gmeynR9Pwz38Nrr1LX1tB1Zd\nm2acEdAgV9FpvRNDZVRt+AYezBrc29f5dT8NEQDV4aydyAZJ7ulpgu7s+GrdjwXzLX/LipzOnnhr\nrApDq29t+RVU1mwi+XPWAE1f96cKkS7/Ho+Qzu/xiL3n2sY7YMx5S7vahm6nvAdX/vLzEvi9uq08\nk2UZmLFBYbHf89MydZb/3dsHpF9Zs27fRObgtJWq0++nSq/eDVQoV3Q8ylbxsOyewqRbp7625Zdy\nhAitN2gq+wcRIa18sqLHYCvTy9qWXxBEBJBE2UuqkEp8SpghMHPP3B6FoAorE1TANI6a/kCKGATE\nOJxSwhgjUsr46z+/4N//9u+IkZX10/GI03HC5cptjiYy8nqZcTycsC4LpsMBRAHDwBfJj+OIBDbo\nx2HAfL0gxnKherZRyjwWmwLK4svipRd51Fsc3knQpFCCZVaZnSB2w3cbdDJzJicjpF8bTSlRw7Jh\n2b4He6IkZ1Wscs5NiilrrLGbvghm8r6C325IohiK0UbgtXeEWGVOTlpYmjkcDuqgsekDZJw21ZXA\nxinV6hjsPAL1Tg7BlyiiEiUr7Vyv16ZPoJ5SWVO9r0OYv+DKOwRkjJY29FSIw5kdRxPpbOilVGjm\nVscXghqhVZgoNGbpc4959wTvQAHZGdyElm4pfj3h1RZR6jVaOps0N4InaZ/ay7Y8/ERR89czGuqh\nRoXJweiZhawb3Re9UARu0kZXWPzb/zyu17WledumN2BYR2f5kIfiFLFeSQZOqR8AveTZXL++EXpu\n7WEWTvtb6qrAL+Mra4zMt4pv24/Us32Ub2Tsqjg6pcjC3oO42UNLNJ7c/yRptTK1Dp33FJWPDZ1b\nXAT/cVvb/L8oOlAYFQeFX7aXFtY0ZxZc/rbtZfu7b6iR+r5YpULGQSTpuXaMIGbMDV9zxe8P3VKJ\ntKlnX+7RaQCwolXqN9+EgHIgaMOfRQEKMeL08IBlWTCFiDlXeCzk+/uoGa9719sDYPYVKvviavYp\nz8eG4oQIZc3YNiW4gwgYKDSpKqdpKqk+DxoEk3PGNE3qkPjw4UOVxcYJl8tFT4C8vb1pEMvlcsHh\ncMBSZLZ/+qd/LnLaAygEHMrp22EYQQUO4fPSl+wZRIRIAbnca2IvdB9i/VtOKcqpz9/ld/mZwins\n7vC0jqwgMkoNetmeBNnjKfaZvf/GynsiF9U1wc9eX15wvVwxHQ8IZI0x2/3QyxT+fdd4cIMf2Pf2\ndKvFlS8eh1wHAPb3/r2+977xfVs5wwbr+HatXmDlhJSr0cjO+958ej3tFny+jQ3Pwb5x6B5e9ubw\nJm9Hnzak8MXEPT6/fer7643nJn15y07zStrqpxbu1rnzjaeJhobAtozmEnorm1M5PY7QpN3d9pmQ\nsxiks+phcgo3aHCSXYv1Quhm7Uoga67wS+06JqG3OibFuRmbf7eHk3vyoR13BKfw22QIsHoIuTS5\nXLn93sC3B5f9preP7c2rH9deX926RpexxevAvdJ7y9tgbsk+l6Awn5WggyOWKZmy9uap/X77zP7O\n3ToWv+X/8g6+ylgsTwRambW3RwrNSokhgrLdT3dwu4vyVo62Y6lf7M/XZg30cO/buzH/76XjHhxA\nv4/tvO7vdT3dsP9dbaeRCSA4yKxYFdU+5z5+36NH733T6qiVtrP0fwPmto1qL+i5j+/BqEGGYD5g\nv87vQabvL98g19ryBqf8dDtyu2YJt/c7a48CJIPJ+8sv5QgBVBTePO8JgCIEymbDzD1AHCflS1UU\niNhryadBamTEUO6CiHEwG3PtY4gRGcC6JhwOE8TyYPu3RnCAN8ZAhPl6wbe/vuL79+9ct5DE09ND\n4wAYxxEZNRqcQsA0TjieDlhTQpwGgIpjoBg355UN19M0YSnpscSITcQOGTmxYIVlm56hCrVMjjnn\n5tSIVxLE++wJV2ZNjR8hIKW15HiFeVbvBpEUVGJUIKpGfYneLjyLYTEKgaUJcS5YZ4ac2LALUvq2\nzE0i2KQdAOay+7aeRL3ZZwKzdeqw0WXcpFTTEwmmXat42hRS0t5S2pN0GxLFau9XkbmqihM1gty6\nrtq3xdG6rlhMOq1gckfLCQqvZMvf9lSIPk8JqzllYd/7ubgl4OfKoZp6cvRZ6c9XNBur4FHyrzMt\nh8bgH0LAUgz7oeTDT0V6bwXSKrCn5qx6bjZxeyKgxVkoazc5JwzBRo3L2EVh0TVG9QuGo+5tOWdd\nF4FCuQ9HEcLMvjFCi2Dgjh2mrQFbBHxZ1wB0jxR0p9zqfjruDs3knFg4FEHFz5/0Y/FuI9FFeNFZ\ntlPR5xlq4KkStPYh9LRhwkBzmZ28t3jR/bAjUCgvMN9YQXsPZts+CYLdOqBCDERUUvEsOBq4RboT\nYV7wXpt5j/jAdJkNDbZGB3vHiDmxVMJWUhb6lzHmpu1W7S1VG+eg/ZY/sMLVHt7lXcWnoaESAURm\nb/JKUzY00mDD0qQA2PDOlj6aeqauHbTwxWTmN6VUUo8VWjDtEvGJsxij3iOjNAIgNyn26ooksBwy\nHiZ8+vwZf/39HwAFpW8rtOeUG/oMMejcVtRQg4/enPDeGnkvSglUciYLj9Cou3VBTiL78FAI5V6B\nEmXKF7hytOkwDtr+NE0AAQ/jA2IAQuGN83wtQQAM77ouJY1KQsornp8/KM//+PGjnup4eXkBhYBh\nHPHx+RlrWvH09Awi3vO+vbzg8eEBRBEhBry8vuD0csTj4yOGITL/sDyRyp5axiqygsBuA2aEn/0u\nv8vPlBjrXX5WtrG/Lb/qpdDq/e6dnrDGIbv2Reaxp1LWdUUiPiVVNmLkxKnmlmXBIZxQT/hvnar3\nDJf+uR1D79uGD7s6tmx4tmuz922vDf/+luHiHix77fu/5VvLV2zte8abW/3Id54u5HmPB+6153Fr\nea+nyV4bDd+68z2Et9Wfyl+tfHkLRq8L7/ZNrYzdgIEiAkjey07p9ePh2cgre8MOAUMcamCb7baB\nu+rzjbwhzs0qJbfte3lVW9vKmlYvgH2lsqOVFbfG42zGvjlhXtrZrnX+Qvhrl8RFr7OR/Nji2Qcx\nyXPRC/GOOdnTUfb2JK9jWL27VzbGTmx1Gw+LpSm/dnPBtZX5xLlhZcBGxv3BorwmbscVxPbAnZQx\ntQZxnn+rm9g3nf2owLqRZ9Hiqjcnfq78ug9EyIkzbAzDuGm/fm+DDM2SEFhZydj03fwr86Ff3of1\nFv/xY7bF088ejffkgtr2dr8UHfFef/d0rPb7sqtnFCdvtW/KuX6e5+4QdsfynuLJzM7M/XtN9gGS\nmvdgajT07HXs2ye67hVJkFiba+mJg7b7Dt1NWzfkGVtv77uMDARCDO8fxy/lCCGC5KTgRe4Wsijm\nvU2b65O2o8gMbNSRCHm9HLq8jzHiME7SCfcbQ2MkDyFiWVOJ6ifkdQVCwFhSJQDsm0iJnSrAinm+\n4q/v3/Dy/TvGYcCyXDGGAdf5iqenJyRkzOuCdeGUS2J8FxgRimIdBs7fKeMOAbPJjTpNE5aUMK8J\n0zjpBmxPgljB1ToCrPJUELAlboPjIQTkRKBMIMoYQsDschOzgb4YoYcAInZEseOgOgJsTmM1xIdQ\nHBiE6zzj8fEROUPvUcilTjKOHHEmSfonm7rMRlLJaQdVFIrjwN+lId9I5On1elWnhzg2LP4Eh3r8\nuLQhd4VIX/ZODiv0R/ONZ3ZixM/lvThZbPoBAHrfiNQR0dRenJ5S0tQezYWWgEZvhCIwixMpljQk\nlmY8/hTm4qEVp2Evmg2ARqq1gvh2Y7WCp1c2BO5k5kvhQMsEpK6MoSqInKM6BBlPOcWVV474QQKo\nOv5yIhW2iUgvuZZ5tMYAS3/8N5mjjS3T5iFbZxEbNZojwmC4VODLNYKS3xmjPfGBY94/G5nK9FkE\nEL3ahRDCwEZKm+IGVZiWv7Nhh832S9VwK11SOdUTqSSSClBNbKtW1fkqUhOwWqEcWJEhTgAf0d9j\nmvrM8hEDI0Jfobco08P1RA29BS9YFrj3lOjaVr/o97mmD/Q4EiEgSDoyJFznWUWUnDlaz56cEh1F\n0i1KAIAVxEUwdxDVyTc4ykVBlc8Hk9Kkjt2mSTJpLiBKtR1vUWwt3Zk+q7D8/mPbbf16eTj37qiO\nsJlLCkGV7SaSFih72/5F2C2M5eSj7UxfEf+M5ZkYzQF1hiRUpSilhEgBSBkDGb5clkuGpbka0JBS\nYqdHjPj0v/2Jb1++AOsKopqHWE5ZUapzZ5VooSOmfUlH0qYwsWNmfAUeR64pCAMRECNCQDkZW2kU\noTpLIwWsy8rpqyiAQsYYB4zjiHmecTwe+WRmmhGJ8PD8jBgjXs9njNOoaa9CCFjnGfO64PnjRwDA\nw+mhruEQ8OXLFzw+PuLpwwecTicOHjlyGq2v375yeq1xwnQ8gIao8uMwEoYpYpzG5g4fppdcHDNb\nQ7LgQ+eGCNMw1BODv8vv8oMldQIdrEHTR7d6vUnuGOzdqyEG0T3DkJfzKkzmhMi6IsRYeDbw7ds3\nXC5nHJcTwhQ3+3rPgNPj0fL31riyf7LD/r03Ptuv7eeWcr/Xz54xas+45HWuHm4sTu4ZqTKqU4Tl\n29yeEDBt2v6kbfvc7nF78taewc3KheWBVFJ+ko3M7+HbtOPGuScL6jy3XxdxjRpbQS/Vxt6Ydo08\nqHrCzluuX/5nnSW9+dzoNzdgLD8aWOuJShYSKLfyodhapG1P483f3RGjwW+1JLDhkTLgse/r9n8b\n4ZP4VKnIUiqbF5kS1Ab+8b/bPYGoBvAQsWOIjK7G/QNZ04RR+/9FdU1GX2sMnFZ32Fnrt/QVQNZW\naaX8m5HB8b0CQ+9EgnM03ejr1jzavwUvzRro0MjeeG7twY1ullm/rt+LnFlI0+iW3b2gGVRxZLn1\nojDn/qn7tK6NHHcLfurSW6FRynx3LwCEvq3SiOm1zRCMQm1o3xUq+lfdP1vYLEx23Pd0pz3+9h5+\nZ7+91U+/7T6st/rd4BMQY5DqNC6MsdNIffyePt9Xdtbb3XbvvHfrGqhYazQvsx5afdDUEznA17kx\ndwTnfN7hz8Q/mncWHvttb3z2zU0cEiGgOjPfU34pR4gtFtkyeb0F7n9b4YaIGkO1F9olhZA/NiyX\nU0sUfqDA6adCFZrjUI3EFDKWeQVAGKYRLy9v+PLlC9b5iufnZ3z58gUxRkwHjmKUUxoxRhymSdM0\nxHFEXldMh3IKxNwPYfERYpsPOyc++TFNk+JBHD9apxjq7bg8vvcWrG0n5fYYfBCDfM4atSFG9+qk\ngBrYr9criDjNlzga5nlWZY2ZTMbj4yMb7nMbDWwvGLdzJidCcs76d01lVunARmbmnJuTI3KCZpom\nvL29NamvRFG0eJc2QgiqTEpfgu/D4aDjs/i0wr84FARWmR97esbCL2PkCOJBYbOOLXFUyFx5WvIX\npkt9i4+UVlWy/QkQwY3MmbRjN2jZGO19FTnnJirYKtO22HsaegKlCGX+uadb+S+lhIzVMJVqJBAc\nK/6JkHLtOzuGSTfgkufNfOsmv1Vo/IYvgrp16BFxfu0o+LJykPlbGWAXGwZvcOIBoYmYs/jTvzvP\nbvVhFRYVEHZcAY2iB4ubppFtydv3PSOCbeaeIrInCBNlRITN3S5WAfX1NkolsGH2XhDpGT62RZxu\nEee3N6ScMFIsEVxQUXCDhxuC5j1lu1f2hOdb30v7VfD6nxU+f75YxcsWdjq0a5yIFXFxOvrLiffw\nIPu8bavp382N8lCtIx+37er3OTfg+zkmYqdhoIB//dd/xb/9n/9XHQ8crQaqhpScUawYttfm+z36\nFcOL8BjFg8Lb3ukRQkAOrUHydDox/8orxjCoTCZ3haTEKayenp4QhwHPj4+cXqrIV09PTzifzzgd\nDnh6/oicM15eXnA6nfD29obT6QQi4uCWYcDDw4PeKbKmRWWoaZqQQZhLIIXw8hgjLpcLPn74A+M4\nYk08tnFkfvz29obHh4dm3vn92MgnRMQnkodfVlT/Xf4/Uuxa9CeG7Xq9JYNYGVSKPaksxdbxThar\nT+kJdwNnMoFHuWwxgbZ8x+uAHkb/zc+UXr0ez92TG97T7548YN/3eK+dr/cYmO7Bpv3k3MzZXtt7\n8yH6ChG1d5+ZcdyEF9Zuyfwgp2SY3c+Ve8a+bh2tC0ioQ0aNwfG6JoCuvnKvKF50WeWNQHiPlu7p\n5/I3oRpmh3GsaZINf23lBGs47PeVqVw7b3i4FKuLOciKkZpPvXObqhmavrb4tJJhz+h3E9acu6Rk\nM33wfJv+ZB8Rb8cGnuokNmF2BkpUWjbBXpv2d9bUVp8o7RksNLpeZ0/slfd802vPp4+WOb6nv/5o\nscZTC7OXLbN7v6V5Q486D319xuuDvi0PS9OPWz+2zZQ51enp9NCkhfTtueWzW2wf9/Ssn+V/ti/b\nzo/Max1Tb6z9fcX38z69V9qw9g/SVNu3IfaGgv85uu2VH5ENfkRuyUA53VLq9r651Ve3we366MkZ\nvb2939c+ne5B5tePf9ejASKCnDy5f8qmll9OuxJG7je+fQPVduIkuts6PGy6IlFG9WJLMncdmEj3\nmqaKAMqYZzb+TsOAnBNHlBMQKSCFgHWZ8d//7/+By+WMcRxxOh3w17evyEh4/vAB87wircA4HBiO\nIeDp6Qmvr6/IYAX+8PSE6/WKy+WC4/HIUfpjjeog4uN3mqIpc5TDNNW7Gmxkl02dZJUcuxCt11+e\n+f+kSDuhXDYvub+HGJWYx3HCPC/ImSM/7SXdEq0p8/Ht2zfkzF70t7c3EBFOpxMyeIzDOPKJnJKq\nyTtwxCFgoywBqMFC7gqxCoUdk/ye53qB6l9//dWkrRDnyzRNpo2EZbkWhULSrJHChDKfcqJkU4i9\nrGJgEfjlb5lfvzYEj0KfvF74BIOeejA0LPDaCNScMy7Xq9JKMEYrmytanCACk6UhSw92TSpeDcxk\n33EYsEYhZ6CcGtie7EBnvhQXW4w2ONLfgeG36b+sc4gVQ9IGCYRlSbrOUgYCxZISK23gsXTUO7Zs\nBeeeMWILO8kPEdvZgVMKERWtLXc97ZK6yytw+zlgXVoCfdovdv73/gaw3cMlUq6Mzbcp7xq8qHIq\n9ev7lDhdDtNvuc8Gt6Ia9sf0HmGX/00a3SYzbe3UG14kwssPCD1+3jZ4tfjOGefzK5CMclpwxlGf\nLZ1aIXxPkWrWjiyL5jtLX7nZI/ZKCBZL/vv+zGzpiUCpjgEAUqdLgatXevOcMzsWqW4BRdiqc2sj\nRWX9Eban3mzb/K3FQdCUVvXDLXx6uosMLLkVFHcVvB1lgkAIMeDjhw8auMAn87ApFi9AaxRNqUYJ\n+pN+AO+nwxBVNiDDi2TvY1mDv+dL0vmUxbquGIdR21/XlZ0VmZ0Gp4cHxDDg5eVF+4rDgKenJ3Zm\noN6b9vj4CADs3CjywuVywefPn/HH5884XS5Y1xWPj4+IMXJarBgQxwFxHIGVeeC8LMhF5jsejyq/\n6IlMc6IUVE//jeOoPMeeyp3nmWUaczp5XdfNGvtdfpcfKT1jmpUVrbzf2yMkHapPCWvb6RmnbLFy\no9fXTINFX1nx+vKCj58+I45soE3Ul516xcK093yPH3nd8ZaBaS9NkW2/Z9DYlVlv8H+7794yIPnf\nuwakwujtGFRW78g3P2poU9rgypvvQ6ctNaZ22rNpj+/p93tw3hwD+URVAoOlgffNmcj9pYBxAAAg\nAElEQVTTHr5KTyKDcPuNTGWNoAYgT1+3+u+Vjd5TDJNTCezT9wQVdrivakSWJL298Ykeo/KSGbP2\nqSP2f9xeyxYVDT5zRi8T/D0joujn9W+V7Aw8gofeqV4O49ruIftrvT6vgSSsW+7vG3u0pUsYThdJ\n2NS1Ab694vvd2196ZUOHOTdy8c+WBq9UDa0ezr16fu+z918QqOgt2z1E6d8ZwanT1z39qOEdZu1R\nIEzlPtiMcjdigKtT9UgtqaT1N/3t7QkWdXaMezaFXvE89Na+9z7e0OKqTc25B8sWv71xCp9hS1dd\nw8ovdyGDfuu4DdsbOnt4D9f39pu94vnrjxYy/727VCW2eWazifCZ9f6+vMnkckNP3PzdUb3vYqyQ\njg2EuI9n6gbu3iq/lCNEJmtvs/XEZAV8eR9jRF6TCviikIqRWZRPMZCzkloF1xACpmFsBMghRCwl\n77koDBwhwdF85/MZ57dXvL5859y3B1YsLtcLgIzPnz8B4CPh//Iv/4IYI0cMPj5q9ODHT58wTQes\ny4Lz+YxpmvDw8MApYSRqsigafPqkTTs0DJzaRpR0ADpGoC5w6xixDpC9zVbarwy1ZViaHsPMiW2b\nUzZlhRGopxr+8Y9/IJaozuV61VRTl8sVQzndApCeXLCbq+Ai56zvNpH95ZnMq1XUBA6B9XQ6IefM\nTqmcm7r2HhNpe12X5s4OSf8lRiJJY9XD7WrSVYngKXQq31YjfW43NUP3OcM4TJjJW7zY+WtSFZR+\nbbSgV4gs3Bb/XlmTtu0Y/IkZK4wRFSaE28IOdcZtGZJcBn6vhMLw5uIctfhYl8ROTvNMDOzVoWgd\nBS0uLT32nERE1DACK7AqfrgB87x6unPhgnJKBMROmTVlFSC9IOCV8HsY8nttg1OjPMp82bVv+4Nr\ng4jaI/hZ6u0IZuCIs0YYTgnZRJNR8Ipnmwfdt79R6G7sb3bsXeGl/ElGgdrgy4y/1y7QT33RW3MK\nu6Ehmaty7kt5RxbaK33lUBX7bakz7gXhnuJHdE+JbWnBv6eUkUP7Xj6T+ZLUXvt9MNw53xYoPe2/\nR/b0+x/3yYKipiiT/QoyXGr2bW+EsOMkInUIZPRpiusXenX0y9OYeHt3pwqFH0vqyB7+pYQccHp4\nwHQ84vz6irys3TWheyvqvUkWn2TSctnTkTb9zrqW/WvlFKFEQdMyAkAcggYJDOLMJ9IAFSKOZJ1i\nRAavg8vlgunA/Tw8POB6vWJZr+Wy9JEvOZ8mHI9HPD9/wLdvf6mz43R8wMPDA06nE759+4Zpmsp9\nIjNe395AIeBY+L+cWhVnyuFwUMfFOI4aoCL8SU6Rhjhs044aPplz1svd/QlOKxv9Lr/LjxavlPp9\n3ad9tX/b/6w8J9/Y9uVfH/yip7qcnCdt1hPBRWa9znh7fcO6LkgpYw0ZscMB7hkoPJ/dM6L03nkj\nk+UBvXYFL1ZPvFdaXtQP5rN6VO87/62FUfhJ6LTr/25Kj087GvAynofDwpLM3Oi32BoYs8j0vecO\nlhbc/vh8sXrJRiYFmpRgTZ/8sPltZRRPF5D31Eg/79JHkKsRSmXrjuzgn7+76NgKDy/3PkrbRIS0\n1lNbKSUElNPEFFSvsvMptFZlMDTvyrAaOqjv5W07pua7jgRIRCU9sgSHsS7sZSiBwaf1s3KKPGc5\nzsHi9soK23vWt5BNtYsoHVhYO/RoYd/qC1Bds1nvudaTb70T5JY+sqdz275F1t2TbYUAurK+o5le\n8TYcXXtUgosEb2jXh71/reExRV5t9qRUgg8dO7ilf+7ho1c2e5QZd8oZ4zCUlPy5OjwICOWXpqJF\nmyMhv2MuAYv7li90+V8BT22rnb331nzZOnvfyRr3cPhvbX26E/iwkT3ctzrWuig2Ohpk/ygWeqtH\n7/Gge7zvXtmTN3rfaB+98by3yPDLiqk7NfgKA2yWwS4cCo+hT+mkJxP1ZI2Gf6Gz2nQScrkeri9T\n7OFdflmafk/5JbUrGZ4lykap7+amRpOKwSqZYrC2SjsATYslE2Av+pO+5e6JhIwpDgiRMIwB1+sC\n5Ixv3/7Cy/fvSHlFRkKIhBhq3w8PD5gOB3z/9g0f/viIWJTp6XjEME2crqGkgcqZoxCnacLhcFCD\nlggyNlWSpNeSKEX5ezRCj5Q94dZvPCLsE5FJCyVtJKzrNqp8XTnCURazPaEh7UqKKr00fJ5xOZ8R\nADw/PuJ6uTCOC8MLISIW5WpdV6ypnlqx7YsA5KMu7UkQoQVbxxqyo4kYFeZsFT35bRUgvv+D69u7\nRzjvecL5fNbxquMs18vSZR5zbo3YIfCl2qHcEWEdI/q+wHW5XJSNqlAAguQ3TWvBGTiSRIyRPhWW\n0D3DlMqYtqds/EZlacgrUfb+EinWOSZGQduOvTI8F8LrMaSek0dwYp+tK6fB4ktyy0Ye2vtlhFlK\nfaGhZU6NYsp/8P/Z/UL+84qyvNfczBC6rWnZ9BswQ2gjKMRJ0gp5YBlvg3ddaw4ffk0331IAoRWC\neoKOvnNOU/NB3a9RFXRVThS/vIdY+OzpnGwu2Nb1qTAJjTvDQW4jvzS6wMxpMxZDd739sUdPjDvZ\nB4sga2TsnsBj27DzYPHnf/cEMVFKLN8SY0IuOPj73/9ekFsVBp/ruieA+nQn4vTrjaG+x2ZvtOvE\njg0ogn4grGjXLH9j2yaktaWNjaKFSl+9cXm4+e/2e8uTbN095aCHBxH6OVoPLf2Z7xrYUtH1otsv\nU+I1COipFGRs6SLL6LHBIwglwkeBY5y6sbAsM+J0POLt+3cMMWJJ7SlJKxsREeQiY48LPgUkPJHT\nARBlxEgQcNd1RQAwjAMIoaGbOPAJz1iMFcMwYFmvoJCBlFgGIMKaSvrFGHF64FOih+OI6TDgfHll\nhwTxfVzCh3n/ntXp8Pb2huPhhNPDA1LhddM04a+//mInR4wqZ4n8J+vseDzq6Q7B+9PTE4+7OJLE\nMQKgpiCRfc4J9Sklvd8EaGXUn0m38rv8LgDvRj2ZVX7bsqdgyv16fl+U9SDyoHeSyG/rbJHUsNpH\nzliLjJOJsJ7POL++Yp0X5BOfs2zPeW9LTxb0f/fGeE9W9Pz4Fq7sNzZ1qS8WR/f4le+rNx6BYcOL\nAI2k3PDLIifYuo1csSfndXjwLXwToBco+/GoPGjbviFr9mCReyF6/Lgrj3bakeIN9a2MbowsnbHu\n9iG1hNUb+ZrrdAyNws5Np3t0soennoxkmy4fAQCGsV7cbECtMi4yMm3XSWtu5b9CqHK4xb2HR2RX\nmfKeTFxLG4xaYRNjmWa/2co/rpAI63ndvGtxYBwL269uro/+nFTcWloClVTLRm+0sOzJpztmxGYM\nHq7uXmSgy4bWu/K6nb9QYu99gJ+RFT0Mvg3/XvSFPfhBNUpf4Ox9Z+eAxwVwhoSi31ErM1e4supK\nZBwKjY7d6dP+3pt/7lf03cy5HinpuGS5M3h9p5HXTYnaE30FLRs83+Qx1H5j9Qo/F71yb73Zfu2/\nLW316OP23rp5ZvhZQ7sAp/TdtqB2JFBd623P2MzDPRrYK16G97939/Ccda0x1PvtN+1kP5L6XQaK\nDlLpXOvR7Z4aWiv/9ewJm3FRPcmm7/iDtl7dGM2C6NOPLzlnXd/stP//cWosKV5wk+INL3ZjlOeh\npFvYE+qJSNNkST17isIfJyYi9vKCL13n1FVn/Md//AcCMRNHLvmrhxHLMiOVC80fHh7w7ft3TvFE\n1VEjx9Fz5khB/hsAOAVTHKfCCyv8PSeIHT/3sW8c8sKutFHxw8/kwnO76cspGts0n4oYkMy9G5IG\nS9oTR8U4jjifz+zYKErX4XDA5XLRi8VzSljWFYdDqE6ThdNO2BMflgbk5IUoXzHWVBvX61UdWXJy\nw6YYk3HP86y4kTtMpFjhzMPghXF7wsTSj3WkzPOsjLeXWsXfDWHXglzYPgwDDtMBKeXGESPODFC9\n7N2ezJG2BU8WB8uyYF0T7L0okoudTHt+vfVSKUj9niDRCrr1uWeg9hvdAF3pMXF5Vh1nS8F/UdSx\nVQQ2+0RwvRGQUytY+zr+ec65uQCa57iN6NbneTtu3duyrbYvtIhS14sO7CuMuWmuKxAVWuF0Fq0D\nSPbS7OZfFGDb7poDQvtwI4DE0lZGa4yhQEWa3+K6ZeY1usgry5vTOn59m297gqKJ6+Hqhh7t2gNu\nn/jwa8cW+5091ddzYoEIFBjP37/+hWVdEPMIytbQUGUQGUtBTx33Zg2i+W1x6L+/JTDq3OWiGIZ+\nNGzb99bYsllX1M44XDvbQrDOt83bO8LvZp8o/8ndGq1Sxt/6/btZK5SbS+oyapQqocW5wBeJUExB\nGzqgIkAGNz+N0kUE6TUOE54+fsCXf/wDS3HwhWIE4UvKxxZBRZf0cyO8SBz9ADZG0mVZEMeIIY5I\na12HIvektCIUWed0OuF8qXQaY0SI1Xmecsa1XJJ+enzUE5zCo/7880+8vL5iKvdxDdMBT6cD/va3\nv+HPP//E4XDC5XrF4XDgAJOcVU6QoAlJDyljGEtudb+edT5jBDJUdkg5gag90Wa/B6qjxMpU0zji\ncr1ye7/L7/ITJWe+S0f2IXu3mxRLl/4kq7zvnai2keOWN3oZ2jpRRA6WegCqXlL4/NvlgmWZy6kB\n4bFbHnB/7FsHQS+l1S0eIN/5b7s8zfDp3reeb/aCgjw8Pd64ZwjQv4EqfzmYpM2MyuN6eNgbX+/3\nHq4AcMpHI3BInz7mV/c+dzpyb78sL1Wu8zjpOY+3cq55Z8cs7Zp3/DjcnQOGr2oSOeddC5aXc8tQ\nStBahq/Y+96/68G0lamgOB7HqdUtAE6PltlAmMuJU+8MUflkI3P3YWvnTV+gnc6eAbg1VLZ0niGG\n674WaOAVPBS8buR4u1dA5my7lt9b/B4ouK19tHupp+2b+0KRvdp3/tRLX5fotte0vZXlLfx+be6t\nJwuD3/f2yi2atnUD0UYmbuVtA3+Q7afnZOvNq3OmUGvru8UrvC5X8cbwRoIGBle4a78Wt/L+ll61\n1U0AoW3ZOyxMDX6Js49EChudXGjSwvFzhRT3VmbIRR727de9s9PS3v5W/gvckOrvN+kMpRvaru29\n9d5r7717Q2892X97qRT34PJlQwPyfO99SoggTbWma4iwu4du4EKrk9pvtjjJ3Sn1J0KJK2H78Hax\ndM2BEWLXez/N/lKOkIzbm+jepisLUAkvtJuiPVEh367rqlGDGCIS+BK/QAPWNGMcx5oOCRnIAUO5\nCPN8PuPf//1/4DCOSHkBEPSi8re3txJVP+PTpz9xvV71gs6p3PUBQO/EOBwOJbIxYEkM01TyUbPC\nzveREAiBojpq7MbjNzTP/PYEum2EbNLTCmIEEEV/mqZGweAUFvUOFjkdEUJAQHHaEGEsODy/vpZ0\nRMXQbr4H+EQGADw+P3O7JN5wXvjizGCD/aowiENFDDEyt9L2+cz3tdgLy61CJ/WISA399iJxwQ9Q\nnSRsMMnF4VWFcTWqlLHZvoT+QoyAOdlDIZRTMFUAt/1aYU76mucZ65I0ZZdstFIPuRqRrNPIRwBY\nxRVA4+ywsBO1pwos3ppTHh1lqqtQwdr2aaOU7JWObLgrXIpAbJmQCnpm/mVeLIwSHc+MgDZHVruw\nuX732u0JPlUo77T5DkYhyrbkm+9VuSeg7pV1h4HvKZyNsnFHuGreF8DlHohk2iAijgjbExgr1+7C\n+Z7+e4Kk0HuyTjDKsDlme8q8bds+7zk+/fcS3W8N5nbdiWEYZT2+vL6Ukz1FGVCnzV7kmlVk/bvb\nJyUqrNKO/de1RCU1WmcP8NHCrBy0l7fuKYk/K7DfavPeMyrP9ALJzp7D8nk/QrX+bo1DKtAapU/n\nmSuW9BDtetJ9BDtrEHUPsHtISgmfP33Gf/+3/8Z3NZW+NZgDcPTfwp9z1gCTHq6ER0h6K7lXIyXe\nl8IwMG2nNjXjPM/KyySwYZ5ndUbEcawnKcr3LBtFTTU1LwsOx6M6Oi7nqxpkz5cLPn36xPeMpRXj\nYcJDucfkeDggLSuW64whRBzHCefzGUMIGCgAiZ0cofBZ4X2HYYSsoxACsGZOJRacgQxo6gnPBFhh\nWea5CUr4XX6XHy5izJQoO8pQL7Qx+kjxcomsVy/L+YAepXVTbNs9GlYDoMi5Rc85v73h/HbG00eW\n4RMiYk+ZvmXscDy7t8e/Z13t79fvg2VT3/xnTzPc6t+Pw7bbM9rp+xswkZGrPY72IOrp1nuynv1O\n+DiLBrfh8n/3+ImF3cPl6zRw7JQ92tjTH+7Bfu/7n5VfdnHxTrlH5kKaISKMkwQ4CG8Sw1g53ZED\nijSx1+jGKGaLPpX3VnbfUFo1nNrSRB2XMTT9Z4BAmNPa7Eu9+VMaNLJub30xaBk5tftYTxdo6qGV\n9fz+qnum0QVF77xVPAysFgrM20CJPTh737y7mLVrdQ6vF91u4n3w0D26+hGa99/vwLiV2/u6jrXB\n7J2caORxkDr1p2na9L9dB9pIt/9b8+pPifQKEWHt2FN7NPy/tli98v3z9yP7otWndqwd7+rzf2Wx\ne4Hn2z4Qs+n7B9an7G0pZ057Re07Kb31kIyzuWfnaDtqybeH+1v8tFd+Ft+bvst+tJQTL+8tv5Qj\nxJa9BWw3Admg2sXd1qnpClpClBMKcrpiXVccDofm/hDpaxgGZLMhruuKp4cHvLx+0xzS58sFY+lr\nWRY8P38EckAII9Yl4/jwhCFUJ4gY9qdpYkUkQFN4+ZRI4vmy6YosTqxw2xUMOoK+ZXD1v6qo55zV\n8G9TQCEHzPMFwzg0itP5fK75uhc2VAxjxPnyivm6NvMn+LWnFh4fH5Fzxny94vvLKz4XI36IEaGk\nnJKTIzJmMQDLcx/BJheg23srfOSavWA856wnhQA0Rh85TeINGv7ydunX4lHaTqmmaZK5tu+tYO6d\nXZJWCwByYoOU5FTPGc3JmGYDVIdaTYUjMNvTOzm3QqO9k0XasfgVuGwfSlvUOmaGztF53VDrYt28\n726eRXjaHhltHR62HZ824p7gpUIu2KAghuXet/K9fZbd8zqebb2eIGYFT3/03grHtm2Lr2z77ih7\nvr895dIrJLtz2FMyPHwhqGHc0pLuYQr4VrhJme9tAcGNM8FHrPeEkAYm2joI7JqT0sxBUUoU1gBV\nnmqz+wKnbd+u8S4tEDVzJrlxZb/2eD2/nasDFEwbCYRgFLSWxmgXhluKX+UZEQAfTeXvPf2WwIS2\npfKNtIsfLiIA1tb6IrAvewqzttt5Xn/nKmrnrHfe7MJocA60gRe1tbafutfUNpDZcBiJsKYEfuTX\n2nb/UbhzVcClhBCQ1oTPn/9kxweRpgmEGOJT0yxCbI2osnbt2hJesnHyUuVJa6r3lYUQEANhKic4\nAZa9osHF4XDQFFnCi5Zl4TvTMudgXteVU2AdDpzysMB1OBw0+GQYRiDwnSIhcEpLxKByijpaIjto\nhnICUr5X+Wbd4pL5Y0RaV3baDFP5vt3/7TrrGZFlnt7jbP9dfpdeSTljSYmjaMt/MVqeDBCqLGqL\nyNEcPMPp7eREtQ+Ukr8tb/T7w95eWvc6hvN6OeP72yv+WFdMcdzw/Xsyi3+2x4v7BpT7bfhnvXd7\nMg8BeiF5u1OXPTTnOleuPc9DunAbfc9+Y/dfadvyAv1t4LuFD/+38iovY9WPqw6Kaqa6h99d3my+\n9QbTntx8bywWfo/je3V9IWpPKDS83Oz5u3rMjT69Xn9LZ/Drr3wEWUtEfGF65c+tbAygxPVQMa61\na3lvzTXrQibb8H6rv9jRC8traYJQU222tFK0UiDXaPpba1L0w1wuWKzjAeQSdE6HVmBJWwOe1xk8\nvn3R4Aazni1v9+vU03xvnxNwQiw69lpxsxfJ75+LvcEGS+acVdbyJcPsW7nc2uhkmB+h5Vulma8d\nuVxOu21oYmddNvs+nB6s7RI7Lcr8rJmzEQT3nV+Dt3S90jIIbFeM5YRxs8dko0tYOd288+Pvlbrm\nZZQVpi2fADtgctY+LQ7tevN7zC0YDDBG/2aYeqf09trl38awcVOj23Pe396fbsFxr9wdPyqdSbue\nr/k12+yvrs49nphNveDo8xb8GdnEbt7neZxQf9uu523aYmj768HEcPvxGNmEqs6s7XZ4quiDQxx+\nyJDwSzlCBFF2s/DMwjIpOR0BQBXNNTGSrGFcUh6EwFM8xgHLdcYYB96EUsZxqvdsZKIm/RSI82un\nzJGMy7IgJXZkiEPl8eERr+czciY8f/iIIUaEEBHAOa7nktJoGEesJQpQThZ4h86yLJp2wkYR2xMA\nnigbxo2AKp6yKG6PVQqR2rRNVYFikpnna2P0EKP7+fqGh+MRRPW+iWVZTeolY5CYr1iXhGu5E4SN\nE4M6PzTt0hCxzFcs5Y6K4/GIp8dHDNMBAOFScoBbhm7x4g3g8zyXS+sPaiSUO1gY3oVPVZhUAOJY\nEIeDvdfDRnFap4Y9YaK4z9VYtCZODi8CCVw9ayiTvuSkkj8hklJSvA3jgEA1b7OktYoxICHjcr1i\nsKdBTF4ioZetcwCFToQOom46Qlv+pIode8NU5R6SHaYr83aP+Te/7QbcUWT2FCP5Pq0rCBkxEFLK\n5Th/ZVJ76RRyzuqIyyKwOIFLY9f2GAAlHYM8U6E11/rKVIuwmgGsRZPWC9MBoHjDVY4SmFkDVzht\nmrxbDFP3kAKBxPYRyh0P4uhSwYeP2qbClPcYkp0vlH21B4viVSGAnnJgIbHMUycqqm1rK0zJPSQW\nD5b2ybUFynq/Tl0nVARKxk4g0svwhD+IYG0FH4/vWwJmq1jWaEgKATnlwidqFIgYtl5fX3G9XnFM\nGVUPqoK1VQQFN0yTlX60lllXW+W77m09hcy3k8pMFpSqIGbXKeORaWnNWwNWA0MPVx1c7iu0haoa\nRQLmXS18pnHbLqexywXeVoAr2TEhe2jKbUqGnKwAaYMckqaLIQqlHcbxavcbMSD4aKuyRgRGxU0W\nYw3n1w4UsOSMx+dnxGEAzbOYHzS1Jbsq5b6hgHVeSzACK/nLsjapJXMuSqQ7EQozBgIwxMCG2ZRB\nYGdaHAfEGHTfCcGkJUUARZYhKATEIeL08IDnxye8lhO3nz59wuV81tOUCIQ1J3x/ecHT0xNCCPj4\n4QOmw5EDVc5nxYecIlUjDmp6MXHYWDoajdCdUkIMQWHPxeE/TgTN/1e2Ys93gW1aolzk09+Xpf8u\nP13K3iz8VS88BipfwsrryukLVhYkBKyLSbeLwitZyAE7v7nDnqLfc5zY3yoLAHh7ecHl7Y3lS9R7\nILxc8G4U7Hx7qw0dp5Nfes88zn4EtgaWMh/Jzg+/bHjjnrGmix/axhtvZA/3r8DSOGBd/76NPQMx\ni51bfGnfTg71OfJ9vUa/MHD1Sk8X6ZU9o45tp/e9hVvhlz5NFXuq2xtR/d974+jBdW8cvbocDCPr\nkjBNBw2wVANXB2d+jEDRd3ehgZEzS5Pkxr2BPSPnPm3vjVUuTZc8AkIj3mjW4CSEhm4auRCcYUNk\nbRGurPx7DybpU+m1874Hl5WZe2upfW5ld7MndNa7baPSATY2ih81Att1XU8iG5oDNkEct/roveuN\n3e4Dt+bE6jlq21hXDSCDgbeSvdnnyjeiu9/tL+cNr+M+ip1sGNjxaOZKx1Yb2eAkdmxJe/1b/Ph3\num5d+/Kv31969LqBQXCn48hN2qMK0z78Layip79j31YFEqpD3dKjt33tle4Kqn/ttW37MDzK06rX\nkXUvszLSO6DcAkCQ/+3DWdZ62JAaPGp6uLJ69e39LHdtPz0eJvJGq7Nn5Re9vmw7RMWiXeTR3dOL\nO+XX0q7M5mqFRE9k8p+PLGbjar04G9herD7ECGRW4KWNYRgQQ8Db+YwwREzlKGnOWR0iAGGIEXNJ\nxbCUS80luvB6vQKZ8PD4BKKAcTpAUkullHA6HjEc+PuhGBM4/UOJJAw1HVQ00ZJ2IfnL3FvUVQPo\nHpO0OLQGfhv9KKm/AOBwmLSOGOkPE5/4AKBpKSoMHCn5UNJ+iUMihIDn52fEGDUdmLSXc8bl8sbM\nI7Ij4vjwgBgCUspYyl0rPuWUZUZAderI6RBJl1UvAl913mRx2WhWadsK+1LPnpCx/fWYiqW9nOoF\nk8JA5ZSJPLOnj3LmO2UEDn/Swjr3MmWsS3UIDQNfsL6sK0LkFASN4Q2yPjjdkXWApRJ17GnL4qP2\n06ZmE9qQegK3Zwielq2wZhn0LUandG2FC1N3I1DJ+IoDUzfhghOFJfWVHg+rCLwa2W9hQnv0ENqD\njJ20n8ZIUD5UwcmOASgCe0Cm1MynCBLKkKn2J7RStZO+kcHOEVExVAZhssZ5YIy7okAoHm8oeNo2\ntvuV3ZNFIdFnOYMkXzHt72e+n2Y2Slua2svs93YOKOeGR8h9Cj1+k4s0KOJPM24nmO4pmHtFv7dt\nFiWNGmGhzHyq6fzmeTYtUXWsNfwTzfiB7frcwtcKOvy+PUm4O6Yi51bnWtuG1svVCbZpwu8fHRry\n3+7NgYyHyoK7qW/YPaIjOBa1Z1NHnGU6Sdor2EieckGpNaZUpZfX4GrmuioYKCmX7D4te0GUIAc7\n7tK0zHaggDBEjIcJx+MRl9dXEDFOU5b9KvE+JUoHCEPkU64JKKeB/HrImkecnQlsOBkHDhLJy8pH\n9HmI/D4nUCCEGDT16PPzh+p8XIHj6cgps4j0MnIAOEwTpmnC4+Oj8qF5nhGJU8aFoZ4gZTlsUtkm\nxohQ+GSVeYC0pE0udCt/WdqSu0Rkj6XA6byOJyUQxTc6F9DmXA3PnBIIygd/l9/lZ8qaVnCwRHuP\nlwYaxag514H29Far8FYqTKnuPUzrxXmcoZdU2r1WAmbkPx8IYOFhHg9czmcs84x0ZOPtLV7UNdD8\nQOnJmI1ctyPHWxxtTpe675v+IKxga1yxMq7+62C1/27acM97slWvHV820btFpodCfeUAACAASURB\nVIWByUpV3jDhOtXvm7l33yv8N+WO1tCUDAx2rm7RQ08O6M2TpzkvR/g+NKBScKV6RAIobOWCO2UX\nn3fKHh6qXFHGEwjjOCCWAEQWaTZhHtVB4tqDobfeGmTZHfU2c9hvCNBztDXYTnmnyqNFf6F6cXVW\n7Ba6IiA0YO3PKZW9bjV8tpGlyMAOqEzmx7hHQ/ZdT9cDCs3adx287e1pzXiKvtHzHdlH3X1G+rW6\nDLY0rWPrPEtA46T28f62r3s0bPc9X7rr4D16U+lbeQvq/NsxefuA79vOVeVRfadBD39SJxYbT5Xr\nt3qpH5OkOq7D3j9949d9Y0sQmhJGDQZD1vbGltGhSZFFa1gktsRdGlZaeuectvsUNs96dSW1QCDS\n01G9sfvnt2WF2/zTfkUF2I1mLMGUZjB2nLdsIg2f4Qq7sFi61BYzOo4A89stoVZbvb1GBcO37QLS\no93X78loFQar+7bLvbPf2v5kLwssP/6IPPhrOUIcMYgROxYjtb3M0gqy8i0AxFDu1OhsojFGxCEi\nr20KoWEYcLlcQJEv6SYql3kWh8SyJgwhIKWlLICMYRwwz2wAXldO0TCVUx5ykef1esX5fManT5+U\n6RMRR2HOi94NIpuXFcB7i6q/SIqh0QiiyJxLm9trDWFAPTEhRnmB7XK5aF/TNDbKixgdLiWd2PV6\nxTzPmKaJT7rEiGVdEUPA9+/fcblcNG0YEanTaBgGvL2+4nK94ng44K9v3/D4dNJ0E9frFZPkAwdh\nXVada7lHhHHOz9dlUeGGiKNIJdc4ADXSS52eICNOEDmJI31Z5c4qmWIkEUeBddKI42RdV468JdL3\nPu8k4C+rJ3VCWaHBOkS88weoTiHOoV7onFpHkcxl0g2odSbaPUVOmdi1JoYjz0jlJJBNveWVSH96\nRtesMQTdEpJ6kT9WGNgTXGXjXFdxWpm+UJ1nEinpHTgWfimRSGGGCA1UjlvnFkaUE0Gy24eiPKlQ\nKbhHX9FLhbBzzsVgyfBEM1+yrm1EWujg0jqveinNqIzDM8pGyDN75p4CstenabD77ba0CpUwP0u3\nvm8R4nQ82D9GLnUs3us3rZGkV1eehRB473Z8Sd6/V8HdFTwMHERsoAos7fO6A3C9XKzNddOnjKkX\n0bn3uz5v2/J7xV4JHYGrBxfZCTOltxZvKkQdoPb2lHsCVO23RJ+YPX+3rtRJRdEv8siu4UB+wyj/\nOTfOniowto6bVlHaRiIRRMA0SlwJCkAc8fT8jK//+Z/MI4qVQfcGIuRESNRGdxOAJXNEaQBA4pBH\ngl5IGEp6nRD1BGZKCRTbSM5pmlSWSynhdGIvwuVywTRNmK8r5tkEalBAjAM7cK5XTocFKJ8Pge9o\nezw9II4DTscjkNoTOboPEGm+8ZwSG1gMP5QxW9mIH8s9KkHnkIMNRMaoa1RkOjv/lg73jMS/y+/y\nMyWnEswRtg4JoKy7SIghNgqkl51k75B38twr78jggIkd3uh1Myn1FCzfp3M5n3E5v+Hh8RE5xGZf\n7PGmzbg7a8sr4z15v9dOT4nv8eQ9Z8iPFC9X9O4R2cNhqaQypcqpDk4LfxfeHT5mv7V3HIhBqPnb\n4kfGVf5u+ZEzInbw3JPdqfQRfH0D594Y9+SpvbnulYZvmLYsX27banUMD1+PLtvGjbmr/adbfJv2\nt4TDWKe/7Zvn1vA88/8ebvm9MUpJlVxPRIi8pPMOCZCoJCPT0eDDBe8UE1t1goCKM2Q7H5ZebH1Y\nncDtEdp/MSoSEyn4tEqGvejZy6G+jYa+YE7K75Rb+5W8807YZh7eI4B36qh9CJ357dS9t//u9bXX\nTr7Rjqb6KfhccVs/0d9wOCwybLoBb7NXCGyljqxAcvixdf36jiCA+Dx1KLJh3REAqEzeb+tWadYZ\nqLvPN+Oisup0/6yBC/a7/t4B5JrnqKEJMvMjcGVsaXkDd6fs82Cn8wDGQdu6b/f0wTquHcWyszJz\n5tO09pSLDRzJjt/2Ye+vzx6cnr/1cOL3FG2z6b66iy3ceAddSfMS5ErKljtyEtXne3JDvw/rVDZt\n6J+5Zjox6xA5b06YapWSQSJtXLK3y6/lCCmFqI0o8gKJP+1R00yJ8t6eAmmU4Qw9WSFK9DzPoBAw\nHSaTGgEARSRwaoZpCMhpwPV8xrUYq9PKEf3H0xGH0wkpJc5vDeDt7Q3LsuDDhw96F0ZKmVOd5Hr5\neIyhIXTPYP3zlNgps1l4JCIozPMa6S//WuP9MNTTEhKZMQwVl9frFdM06SmK6/WKh4eHJvVUJEJe\nV3z99o0jM2PEy8sL/vzzT04ZUVJ8SQqXlJIeHxzHEf/7v/wzzuc3fP36F0Ic8Pj4WCJP62abJNVS\nMb6IU2y9zjWyUxhNmVcxwto0XEIrlpkJHVgniMAphl+hE8GTON1krud5ZhoiagxANs2WT4kljhrp\nU4r8lr7sxmppgo1QLMjJHBJxmjH+uFUeBB4Up4W9hybGAeu6KI7tnSqW9uz6lDZtCi27Tomqsbon\niMu3ZODr0bsfe0Pz7m9bpE1kG/loBMtAevJqXfqXWHuDgrQbqKY9Y2bWZ2jylzgpiQgRnFbHw+xT\nJeiadooV6Tq3zFZSb7XzZfuw+6PHnx1rfdfOf/v9VtjdCO2Gydt8ljadVk/Qr+35bm4LkV7ZESHN\nGtTtGFNKzb0E+h6EYJx6e4JMA7Op385r3sD9oyWXi6YlLUkhCcVpKCcZc87dS7x7tNBGBAMOdW6M\n9Zlff/YkjeIRgMRF9kQmT29esOrtOb0xkJs7/9634fs3X7kPvOLQp4GdpGBK+7cEdYYjyQPFQc4c\n7eJTzGwVlqIiVEm9zgNYESOgvSyR6vcf//gD/89/+zedJSp8VpxcXqaS34H43hKA5z4SAaE6ybuO\ntsCnMvw7lhUqL7pcLvj8+TPLCXkBEuHp8QOn0zwMGIYB319f+V63aUIo9Pfhjz8wzzM+fPiA6XjA\nXHjuVO77AOpdXzmzvDbPM/K6IgR2eKS13psFCB/gFF45s9FoGCJEWZOLqXkNAGuRNzgQsBpfvFPL\n/y2OIAkk+F1+l58p7JQIAKgESbCMIvf4pVzkSHPy1e7fQof8bns5rPyuvDMXx+o2QlNT8DRyTFXQ\nA5U1tS44v77hcj4jpRUpJ3Ai4TuGrxt7upU9/fvmNIoZ154Dco/3e56za8zKW0OSr6uflu/ttz7g\nz8NAKMa7LvTbsezxyF7Zg1PqK7zSVmeeVFiR8bmy4Z8OX8D2PtCezLoH+9439nmPvvaK1WX0+5SV\nXGs7eUNjqq85XaaRXwtv0d/GkPfeuVOaLE4DfgYNxGPdLnXlLmnfnxaLhdbg8KS4y2XMAHKo/SuN\nZosXfqsjVBA46MTPpkjP0o/sPTLWjSx5CycFntSMxdJclcu4jl9ZPV04m//KyIvgK/iRk6bWaOxp\nsBmzo41evT2h3cvOPuDCtu+Ll9ebdSHvzZru9dsrzd5jYFZHQ25TaL+3XdOBBhJVmjP69b19WuAy\nbQBbfXyvDTGXS7/WJmJh1H46bdbPnK0PuT0JlM16cE6B2l79zTqhgdXsjfvjuoEnT38WD+/cR99b\nsmvP2gz02c7erojagNHn3XUbMoGRO+PY0zl9u706Xo8D6omrvSLwVdqBcYcJnJtK9U8LR+b/26yq\nnEtwr4FXYBQ+UupbSr6l3270Vm+bLv/rlh3+VNf3NhvPvfLLOkI8Iq3Qajd4onohujwXRVYEczH8\nL8sCioNeiinGfAAlZ3VsEKz3dJS0SpEIl/NZFet5nnE4HjGWkw/S98vLC0LgC8CnaeL2Y8QQA1aJ\n3A+EIUTkzEc4o4kgFUF4Lz0WFMZq6K+bY194JaonFkQwArKeUrDKzzzPiCHo5e+ywZ9OJzV4H6cJ\nRKSnPIhqpOfT05Pi4GpSieXEwo44WL5//451XXC9XnA6PWJNfEGqOAnmeUYuQtU4jrhcLrhcLjge\njwxvqob7w+GADGBeF1wuF513wT9QT4fIeCx+xECylvySY6ERoR2Zl8OBjS3IuTlBIzQ7z7PSgb1o\nTJwf8p1c1No6oqApvHw0q2dgrCTwjKtzhmokhJyCsBv2dDgA1DrDiNiJIcxbnDd2w68KcDWkW2V3\nWRb+rszF3sVjfvNa1xWrFWI6wrZv5xYj7BUe31I29W37nDe3daxq/n/TjsUJ3zfSPm+YoBF8vbLj\njZz6zvUn6QCIRAmzexsaeHNumVgPB2nNJfKpPQ1kS7sualS8fFvHU52SewKQFwpawbAd7D0lpte+\n3Ot8iwJuKbqyNj1Oe/X36FedS4a2WmF2n1H3+m4U6CKMyIkh25Ks9yT75XWGGNY9XXK7oRGQO9DA\n3kGzJyzzu9TsR76dzISv7wKARKT9e2HfR+Lo+J0S1zcc7CvA9juBrVfPd62CsLRLBOqkONrri2VH\nwpL3I4cVv4FUkA3lzpmNEbHWMtBVpYVLKJG4pEZP7+STHS0Hwh+fPiGEiJRWVH+M3AcVFSnCFwTe\nKOPJJbVoCJgT8xLhl9Kn8DR758Y4jhgCn8pd1gWn0wkxRpzPZ5UVJOXoOI5M48iYpiNSWnG98inT\nEPgC9LfSl8gl83XGZb7qhemS1tTuXzImhnfd0HBOCcORgz8COIWXnPJp25L5icg5cbBGSojD4BSX\n3hrit1bm+11+l58tBFJ+gXIhMIHUlsennzKu6xXZ3UkoTjiR+/REmwu28nSc1oQlL9qGlUs3ckAG\nEqWyP5UTrQCu5zfMlyufzELdP29x9ffIfZ7H7BnBrEx3ry0v5zfjA7Zj3inNnnxn3W/2Jif7hvKf\nf78xQnT5Sd9WtAdTT+7O7v17Uldu2u/N5w5uvPzvn9nv5BtPC3vlHl29V+9geFo4bn/7c3v/Hhwe\n56GkhxzHEWezHkIIyvvRmZftGt6JEG9ooTXQ8c7DVCZrO5S7wiR1ZUqSWruewhBayshFrpY29o3I\n5UEj0G30BwPdRh72opXDhexL27WFwu9LkIREoeSKN9+WwHZrrd3Tq/w4La339JYeDE3pwNr0I3qj\n/A1UY+kNOX13fPfe31k7+i2czH6n7z392PYt//p0qT3YCKh3w0m9aM2uZe1Qn6vd5D29J+Xihz19\nKNvKvGA2Y+7uGzswyOpb09ZR+R79y8K2p89vdMJOXR/Y22tnp3PtO6f25GSzrnCbJm3xdhv/TFoE\ntnLTPbg384r+3NjvPD0mV6fuGSyDtRpx/ZGlAV1Q7Xtua59WmuZ68hagDhA9AYh2DXuYm3Y8vfxA\nkOkv5Qgh4ogmuwGxoaAVQm26JjEm+1zOoJZBEJV0ByFgTny593CYgBgQKWgaI/utKAghBIxDQFoW\nLMuMcRzx7ds3nB4ecDgecSypnIZhwNvbmzoaciBOPYHiYS5KAqffYopbSwouMUDaeys8bnKukcxA\ne/EOFE+5GDnqiQY2SizIOWEYIkIgzPO1aVv+lTYvl4t6nyWNVl4Z1vl6BYWgDoe3t7cmgvTLly9N\nm6+vrxiH6miS+ztyTliLQWQYBkwhYL5e8fjM+cFziOqoEQfB8XhEzuyEmGK9eP16vSIjYy5OBOtY\n6AnQXii3jqc18QXvgWjjhJjnGatJaQSZi8xRckKHkp+0oe0yfpmb6/XatF1PDtV7NpgBFGMZReSU\nsabqOEHm3O3iwJGr7TSquQgdgSLWlDn6zhisUqoOAYHNRqnKO8GZPV0jxebM5cudk+JU6nic27XW\nYxA+HZbQZk9I2lOQYoy8vkqaMNlLcs41eokKCyTCYk7gBLJpw7hP6zRsaMnBsLpINutAEmFNjqz3\nlMNclA55Lnn7CWBnouvf3xEg7QveSJQK9CMTZJ3njfGWEII4eIfyfULObcSS4jyEDbOSMfsTP3Lx\nmY2YU4XLCN9+nptxuvlvlPTyd70/PNeIsFIketXyE0534PpzY7F9ElG90A0ZFIrjWAXTrAzb7snS\nv4W7p8ALfqnAGooBWuh5iBFfv37htjvz2FPMt2nFJI9z3WtEIsqqfO47Ji385Kwr0pM/mdPis1by\ndOL7s6UX5eu/J1V4hRLqWrTjV+XMKRe8D9joxVInbAV4rdcRgFNKQCiOaioNoEZpy3ec7Kz+lvRc\nAifDlTZ4z3ZPzhnJ0qfZd2KMeHp+xnSY8PryosbJEIcqT5iINt9PSgmBeF9blgWUOc3nnGWvyyoz\nPDw86J49jiMIwFjktYfDEXldsabEcsXphDiOeBxHLEvCFAe8vr7i9PjIp0BGholPjAZ1mLy9vSls\n67Lg4XBEBCEe690gfp+RAIAQI4iAeb0i5RXTOCLGgHWeMQ4D70Vmzco4fAmBsJRUnzaIoc6hm2MX\n2JJz5rvrfpff5SdK5fH1N1BPCsvfUmwAg3W8St2GH2NLw0CVazLqtxKUJEV5cGQ5Nq0JVPgI6woZ\nyzJjWVYMY0KiUFy6W7mwqxg7HHTlKLef97614+z1ISlJdTw7sG367ry349K9uVPX/r3H3zz/sTJq\nlR1Dt86tVI89PFoYfL89Q4avmx0OpTR/45ZhqX3u529Pr7N9742nN6bdsXq+iy0dIbd1e2No2jD8\nuflt2urBtPdc5XmwzDCVoDuhyaoHaUXmdZ22FQ4yNpnu3OzQUa6mPJFZ0ZwSkTVACrv8G4idNSyO\n8p1bZNtGq181UFE11neDz3IGpwZzdTpoVxmcyBF7kS9RHcgIEXxXTDbjRzPXQJ8GG7yVOkUAryA6\n2Hq6j6XVnh7d0zltPQuD4KX5zv3b08c2Y9oOs1v28LJH89b5qvRl4Mi0NZf6NbaLi5w3uPZwcrpU\nUhyN04QQg65BqWdhaHS7zph5nTKhNfMLKqf++/sc99NmXfC4VNmgvAdVOAjQ7BW2ZAaqNNCOo6ez\nSj97c3a3hHYvdN0249j0IfuNz9KRayBopUYJXOuXHi/Yw6erWchhr2UH8ru/bGlpow/nzCnleu9z\nud9nV2fdAtHMJwy+3R5ptesevACwZlODans9WHpFguh5dnPZ399PX7+cI0QWVIhxk3ddFrsojxLF\nbv+rDpFqgLBRidJWCKE+p9YoJemNhBDGcUBOKxvHY8T57Q3T4YDnDx9wPB7VUSAXdUufQzk1YdMG\nieOGiHBdZgxxvEsIjWEsixF1e5eIFDbg1n4tfsX4J1H81hgoKaBQNkM5RSOOmxgj352xLDjb9FgF\ndy8vL5t0FPM848PzM1JKOJcULvUS7lxSdDHuWDmq417XFWuqRmkZm56AMOMehgHLuiLnpTG+5Jw3\npyyk/L/svdmS5riSJvY5SP5LRGRmVZ3uaV20zfu/i6QHkI3pRjfT3WeqTi4R/0IScF043OEAwT+i\neiQzlSxhlRURJLEDvi/qLqyhtHTvLM5yKHkxLGeGIpJGCaVFvU680sOHxPJ7qmdRz6FPBK/fM0to\nMF9H4zMb05qttMMQEHOuk5YBioAoUSyGtEsQ7eCJv2c+fJY/WzrvCnmjKIPAW8+HPUbDE7YfAYjt\n2unfe0X2M4f96owjhIDorKK1Duf9N6EAauRLcMJjPx+q96ZH+BIJQeMFCG5yRsQr/ILrpb9GASZy\nVvjZUbII6uhbI8q3qvjZJ5Z7pWLsq/Yc86lzkw+7iJ+ILAl423MlxGj63SNQjJFAfUbCMICdF5a+\nF+Xmdr8K0btNngqI4FgJLe278mjg0kZ3z934ElAs77WPDI8rD8FYvOFu2TOtt6cpbb13euvWnon2\nfvtvfF+lPoCsOPGEnTLdvr0NAd304X/6tWlLO8Z2DqxEcWcM5Rsn3EDPM01mUdOUD+6io7N78Kkm\nTvWZO2NUe2oxvJeNhrr07WwJSs035i8ZUQ6bE5MYcBxPuN/uFmaSGRYKipN4xY35rnmhg7ZfzvEI\nIqkr7YhH5NQYdIzjaAlVhb4Ta1AiUW6MDlcfDiekZRVFRRDliSZIV3g8DAOGw4Sry6k1DIPlLCNn\n6T6cn4rFu4eNYPNk0b7HJnSmllZhqxb4qsiKUbxEg9ZvzsrP8rP8v1VSYlEyhCAyRoU7+b0/gz7c\nHbDlrYhIrqnDWT2Bmv9ZxpE27aWUkCKjhB5PGV6Iwczl7a26m4/okz189KjstdWuSzuvCscBFqqj\nYJTclsOrPRqvpYda+hCZn7M6HZzStrv3vqWLe+vlx4JOW+0a9f7utvsOju7Ovd9xRd892qteG33a\npF6Tvedt8UZfPT5b6YI+7VXGuTf+3u8bfsHL7VCfo16blZFLblaNFAW3p+KJmtsbhKCoc8Ioja4/\nd/arOhehtycezmgz+2tRtduh7/w4ejSrr1/oOnuYia28OEaouvGEjuIsGzNJPrTyLHdqRl251ZIe\nvnNv2zPd0qXeaM7q6f3x8Ghn3Xxfj+5wW5QO39zPZk139+rBeFqY2ZYe3uh9v4E7zfPe3bc9782t\nmdNmvTp9bOZIYiilKtHD6YRxmuzs5pQzNqePUIPGEykuT5zlATIq5Vn2ypbHae4M0DXWok6TeueG\nSnG+5YE/UvbuanVv3XeP+D5AaG/XitU3mdKHR/YYv21grj9v29Hld+XqfJQH2JzNzhy8vKytW/Hc\n+m1nLXv3lMi3XhflJRnIOSVrHL1PRWScpGOyMfT56XZsSh/5QbLHx/zxs/eXUoRooTzhXvgSjzA0\n7FFLYDGXvAxeCeLj5KtCwsfP9NaC2o8I3Eni+kOsvcM44uXlRdxNbzcQUaVcGMcR5/MZcyxCeWXS\n9Rv1ICE8JsZ6ALi9DEmJG7PslQTRKoRXRYCGf7pcLiCSME/MbAJ4C+9FtXXXsiw4Ho94y0yLrumn\nT59wv4swRUNWzcuMYSAkXsGJMR1GzPcbvn37huPxiNPpBAC4XGYAXBLV05CVMmV91phAYZB1zyEt\ndE+YWWKgjwOQvXzmZbbvdF9VcWKhNpyiA4CFt9L5EpGFRAOzhctqGceWKPDPtC2vRGqBu+6NnkMN\nm+WFraYIcYSCzKmxuoOs17KuSHlNN8Rcd/yw9v33/p7omldW8w/a9H/r77E93xnAeaQ3aJ1MrLfn\nv51Pj/nczDf/rWHCnPF1Q3DWYXhUYZZymC8JPTEY8I8pZgZBGBVCDmWUz5q1xcERMEDitYwfivQb\nYgSAt3xS4sfDOG916T6q/t7ufSM4zdmxPCwp++YYkHZvMyHmvYD29sBgtYPfSKlLxG8Q4A5R7Uvr\nCdgyHhUTpHWYEXhLBPr7GcL+u/acE5ETZKD6Tt7nVeMt8+qf9dbQzlU+i+z2P+QElYEI379/F/ju\nxlZwJlVnve3Dj2GDazgzf3luPcFBOy85PjVhS7xP+GoJFcPMYKrDX/aIyW07xVrqUV91G0q0kiV4\nbwnfHgMF1Gvpv09JVq1HULfPAonXqMHV9h5oO6TGHQA3BCBhZ32phrlKuB8OBzw9nfH92zdRCjb9\nqcUOBU1M19IhnL2gRCHgw0iGMGAci5GCv59TpoFS0rCkB6OXjsejhb+8Xq84HUZQ4OzBWidbV/xP\nRHh6eUachT7Rd2EYsGQ6xdN1SnspzaN5P5TmS+tawe9pmgT3pySMIBGgMAfiRcMk+70sEnY0NEY3\numbtOdI+TGH6AXj3s/ws3ZJhDiGZNaUKNfX+bbxYufBVrQcTJXZ5krJXlcNhtTKfxFjbwULPqw1D\nQEwRlRcbsjImAd+/fsNyvwEvn+C9S3pwuwc/P/Juj4Zs6/aECx4XqyduflnjUNeWv+ttO94wqhYO\n9IUbLd+wN88ezuuto1+L1KnTlj26rreWbQu9uu/9LecvmWHVI/z93r72aJQ+Lu/Pv6Xz2nl7Pqqi\noTL+1Lq9sfW9wUXapDS4Uu092mxvbas5ZZw1TiMmCxHthXl13cGNyYfB3KNJ2rOphiSwMXE+FMVI\n1RvI7Z2DinYn4c/8N707I3RX2j2bvq7PWShr0aybvKxwtO9L63afOX59z1DVj8d4pI5A2WCGgy/V\nOXuw94/ORVt6dGo1vgd97fXzCB77fv133jis7P9OGw3M9e1xfg+g8gjpjefhPXJ19duWX5P+RObG\nIEyHaRPu2Ma5Mw5/Xu1+5wr+vP5nSvfcYXt/erhK31N1F1ShueWhP1oe4fDUebVV0BSlDfe+3xPN\nN3Csd/d0v+wOoF7DwotxV45RLXcLBvPIUnnQ1OWqamUgkRvfu9WeTtGfbXs2/m7Z8tL2hiyOgj2o\n7lSnHz+uemT1ld6lBTL9am81goLRUXETdedR+UspQpjZEhh74awS62rVD2Dz0xdvjav1DoeDCRDV\nUlDDHJRQVbKxmuSbMpO/riKkXmNE5GThmeZ5lkOaLYlVIHA8HkW5QOXCqXBa59kCfe1bSw8gWR3O\nXg4pSUiFIABfGQlmRuAyd83JofkrhmGwuNrX69XWwNyqAdxuN1wuFxNQfP/+3WJ3qzLhx48fRWkA\n5LjcI273qykkrtcr5tsdLy8vIJKcImDgeDyId0neUxWCzPNqHioafkqVOErseMShQnsvuG89O3TM\n1+u1ypGiygqv9GFmWdcs0NC2PQDcUwbo93ruTqeT7WMrjPShqHxb3joun4SNEtAXZSjLuU+bc5OP\nTHW2FH75tWuZhJ6gr/ZWcUSo/6Zlvly/Mt5kFgbwbXjAxlyFgPKwoMeU+eL/VtgxjiPiMmM0wV9R\nmC5r2vQzDIOFepJnqdLQE0v4GXBh2lI+bxYeba0tI2uCQi2MW6FYIVR6xElL13jCjHMbxIzVwUoh\nKl0bDWry58raZ7VxaZgTIqBqa7vmvs2W4FDE6Z8bsdWzhmqKR31+7l7g6vcSbg0BlOSFXId5a0Og\n9e6B/v5IaNC7e+QSz++FibO7l5IRQIFqBrxi5t0e3DMM3zL5j61D9+5RYbSsmYb4R/1d1TDs1ATX\nduL6nLd9tiH39s7Tozm09XprsUcHBi7zfLQmhTnc9mf1gihVNnXadu38uvxEbaia3E4JdZe9lri+\ns15g0mVmkI04woBIwC+//Ip/++//Zt8OFOq8Jrmd0DAGiWAh2IgIh2kqMZteowAAIABJREFUoQfz\n90pfHZy3xTgMjo4mTMNUcrBlHPT6+goAGAYJo3nK3qLH0wHzPGNZEp6eniRP17IAg1OCppyfI+/x\nMAxYliXTb6vlL1NliMCLcubGUEJBemMZLV5Ay8w5d4hY4RMD6zwjrqsInBoY0bt7Lez7M4zkz/Kz\ntIWZwZGLgKCBPR7fJN7Sr9ZGRXsCKNRSFsxuvRmRE6yDaoMZ9dySUHbRYF2CeJvFTJPfrle5hy7/\nYU+I+Ig/eq/0aNl2/XpCMfb31PVrYwoBHGNXAOCFYERknnqG77W+7oujRXwbe17YvbG3+KaLo3U9\nOuunAnD286Ttnre4Eci5wNp+gDpUixvzHr5Svm91kRR6Z2Bv/9s9quaM+m58pLTnoqIRkHE0vCxC\nhbH77bXCNz8/a18kbVBe5T+HI4RmUKPREAISq2FfESa3Ye1afKeFe2Gt/Lgc/PFlQ480d7lrWV4O\nS++obkp3f9ydqYzU9Dul45RvJ1Hutuenh8/3zpgaUrWwpt3jHm3f9sXM/bAzXAtFeyejR+O34zC4\nATy2xs+0XTvnd8+lvmv3JP/u+a4KBqC+Ppt77/iGDd/S9N+ua9vWIzjRa3Oz/y63zeF0qrwHwYKT\nubNG78GfHrx/VOfRnaueA912K1zl1kXWGxXPs4eL/qfgqn/neIUequopQPbat3aaO6N9b9ai+Wln\nmKiS4m/XsPwe3O8eKxpI31mnInFxMot2HL05AF2FmZ/D+0u2c14Y8JKXvTu2Jwsq0KVfqtZ8O7ZG\nWYGUEhLJfUqJ+zhjpzxKSP//udIiBn2mzLIXwqqlupibMoYxYFkXEUIMhMTREJJ3B/dJtCkz7QBM\nAK2CU698AQOHccT9Jvk/Yoy43+8mYNXQWktcgRCAQfKDKDDxQnWdW6s1bn+vDpNQW4hpReKI23LH\nkiKGaRThBSS2blojiIGRytjVY0XX7H6/Aylhvt/x+v07bpeLCCmylWZaV9xuN8zzjOfnZ3z69AlE\nhF9++QXMIqj/8eOHCfrVm0EVH6+vP/D7//gd67wgLiuQxKvi+/fv5n1xvV1xuVxsjQHgen3D29sb\nlijKmjUylnlFzAyVJnonKsm+dQ/XPGa9GOu6WsJ1YcJWE4AcDhI7fJ5nC2XGyGGdACNoVUmSnGCy\nJJl3XgN5fFVILXeO/djXdc0CncXCusUo+WpSTIiRkSIjrhJOgBM2iVqVmZQwVwlgktA8gZBQzq/v\ntzpKhsDq++Xvliqi1JPI1wsMUNoiwgBgDAGjWs6GgMhcCa49co1chHu6B6LMg1kb+3p+/u8hW3tH\nBCYg8oo1JSAMSCAsMYdrQJCfblwhBAwkga8oETgRiAZDgoXpq1NSMRgYyPIALDGKpTcJ48/C9Uoi\nKxIvmZTyGoSAMAxy1rGdt1oQJCRE51VS1jIrAUOwUA0+5ryeUyJCGGom269pYgJnpk5vgyXkZBUE\nDNU+fqTsEZRaKu+SvG/vCSV0XuUcJkiEzG0OCF8IxcLdE9SuExtPxSg8II4Jch9TBMAS15gwQJJY\ny0+/Fn4+nO9KAsxzqhqO1aEM24e8j8V77PuPV9xvVwQBGEBk+LwfPcK2Esg0jJnN1dKu5Xaa5SIS\nt1f5R1UCe7/TsfIqkZbbMaTcm/6rSUL/eympsTQu26lz0t3ZKsh8HS88rO50pgcSi6VSZMbKCdGN\n36+FwRASwk+uTVlDgjC1xJlQTsJghDwG6px7JpgnkDxPGLLvSsjEva0P+bWqx8j5HodASDTg06+/\niscbJwQwEhKCDCrvkcCaldc84ASEhGlwjCVzhQ/FUGLMXhkEIkZKa06QPoKGgDmuwABJss5F6awe\ns2JkIoKa0+EApITlNuPl/Gx4XHE3EeF+v+Pp0wtWMNYUQUHCVA0EjIEwoIFxzshBF9iHsyyJ1JPh\nfxHyMpZ1RhgIMa16QGQNCKCBMC9zwWkUqv3UPfWGHHI26lP/s/wsf7Z4mFxIn60yTnAsg4hBARhG\ngQeMQsMWmnErHCISnEAhy34cmdbSaPpsjWslYNUchQBAYKzzgvvtjmWeM/3eV0hs59zBle9838LX\nPWFOr7SKAE/3v9tGRkxt/PWWlvACW/9NyEraR+viYf17wjOltdpCze+t0qJtsytY7PwDSgLXhMJr\n7c1F+9+zhN4bz25bHV7io/vfE5rWdWSlyFmAxCSovU1a+58Z758pezQ2EW1yWxk/19CGXRqkonOw\nefaYF1B4wB8+ozaPj7MYD8fSnRvq86mnvdR/vDeP9q7n7dOHp30B+14hog1t7V7u13mnL1ufh71/\nvPTOTdW3+701bG3Ht7eOoZmX9fn/yAxKadtrx8LMyIgRiRnjOBnPrPNMtD+PPzWWD9TpfbPhZfd2\nuuKDrMHMp/Tb/eg49u59WwIL16znnKzux9brvTPcfa/42b33vfXuSvtc/5Y7+idG0a7TO+P96Ln5\n+Irt9ezP7Pt02Ht9+bZU7kJcK3kZKLI/8jK+XK9qK7kn75e/lEfIe0jGE6PK0I7DiDWqYHwyZlOV\nHMpoe+GH1tdwCv6fzztiVqoQS80wDKC4WjxrIhF8jjm2NohAoSR19gK1HuFF2H7bCp6VMZB3hTBW\nAf8hCwvAEsdPkfCyLObtoSGxAJQY5C50xBCCJCTN36n1iHppaDgtP04doyoVVEF0uV7wv/zLv+D1\n9RXX6xX3+x3Pz8/2rXplHI9Hq6fthzBizCGslmXBOB0sz4f2qSGktL633tQ1CSHgfD7bWTCrz2wx\nqjlBPOOhQhJV6DCzKU90DKrw8da72rcJ9JwiQffdM4J6vrRt88hgAogRqIQqaAlvr0hjuSgAgDWW\n3CI6bj8uAJskivq7H2Nrhad7Vj1DFuwzrF51b/PYWobD33HWn+4+cvkAaAjmnmvyHtGvdYDspZHX\ndxwGxLzmuu6+jwFFFGXMPDnLeyVCtc8KUNf96rf62qzhncW13CUJuaVF5snyn0MCZo2pcIprKxqv\nxPLr438SkQlKlcnw50vOawk5w3kcfp18SJq98mhPHhFDLYHRjn+PMLFvyF5a3H7q7BFCSeguf4ZN\nMtSq3946or47lPstMPsxwVkYvQ5jyLwRuuTmtbbANS4u05p7CfkZjQMSFSs6b0TwaDx+LAVfuaUD\nLAl3GRdVdZSg7I9f166zFk2/+q5iVTfnhpqfvt3+XHvnsA7dRbZeJuhSRa1TLBUC/X3BUzsog4Ft\n3Wa9HxUTEvnqm/4aOEkwRenp6YxxGiVUXUrgrOWKMVmONMp1hyEgpbxQ7AwC8vocj0fEW8S6So6x\nNUaczyesLJ61SHIGFY+eTicsi+Dup4yn1UCFiHA6nTBkWky9Og6Hgxk+ALAwo09PTxZeczpM9izG\niPP5jHWJBt/UOl1h5rIsGMexwu+KMzWElz4/P50Mt+v3ur4hBIBJclGlJPkaKEiS6KZshBL7R/hn\n+Vk+VIoXsBjPaKiqlr4FMs/BqqSVup7eUG8zoq3g3Qv4PG4QcoLNaMfTCwJDxSit8FgETmLxf7/f\ncXl7Rcp53JCF/r7fVpDT4mQtXXzfacc/b73A2iIc2Lb9yhIZHxO2K63AqeQa1PXyhlWP5tjyi+08\nezhJ6fEN9myRTY+mdfPXPoL8IvPmQpu2tCGz9yl2dEauD2ATpqiiLdAvbV+9veudlw3sdWuwi7Pd\n2D/ynY7bi3CUJ9KiHjJ7NK8f13t99s68PCu/E8Fwums0n4maN2t/r/aUOcOFLS+mxmzYnD/lf0s7\nffq2c3/cQqZU7p2uXY9e92302mzPM/Ia+JA/KakxA9kh3Od5SovMYlBCTajlvdLundKcvbW31Wzu\nSNuer9feqUd8l/K4vq3unezxZo5/6MG89v4r8mn5Dd/mo7FS75n2p7CAyCJKPOJX2/d+HC3MrCKD\nIIdZRgASiwBX89659ZNvaANDe/Ps8WAfLT34uzd35e0frUP13OrVfe2djR6vvDuWDrwnoOtB0/bT\nHX8DF2rap7SfsD1PLa5/NFb9uzxTzxVZ2x3Ov/zq8pt0+WX0z3mvEFFlzJvqlw+NDtozU/2+HXXV\nzqN9zR8YTCn0JhfPHKLKuHVzbrKcseDKQm+1kW/eK385RYhfZCX2FEEARagzDIMw4GndLKKv6xdL\nE4NryCKghF1SxUrbnyDEYNanIYj3hSYZjcwgZxnUJnBXQlvnpG3KL/25+8JcgLsP/2SWjbEce7Xg\nX5YF9/vdhBSACC9utxvAJR/Gsix4enrC9XoFM1cKE2a2NpT41m8PKjjIIbcA8cJ4e33F50+f8fb2\nZkqKl5cXG6/mCVHrlGVZLO+I7Bnj9PQEIsI0jQjjYEoLv47m2YL6AjGzhe9qx87MNiZTNuV1oFAn\nxfPfpOy+78+G7pXmItHvPZPkQ3Yp4dcKklWpo4Rrkg7t/JYzUCPnNcZKG9pDfr5vHWuPYegxdoY4\nOoxDTMk8EJiFcUXzjSY02hu/f7b3+0eIly6hqwSIjUFCmCzrakI/ne+mP/d7jBHZL6Q7bmruLlAA\ntxDT6rWm+02IsQ6PpQnrKzf5Zh/k+5SVT3kMSS2YRzBTdcZs7A2DKd67KhxnSQoIEaiLJ0kJ/bC3\n/l2GE12aaru27tkj5rPt3xPkbe+KIEkaM0Ik0FZxZmvRjA2oc+LsMZbJnZuW+OuNt12DtvSeMjOY\n0oYYE2Y1z8kxXQyBE/f7TXI1xQiKEcGs9gvj2WOuevPojbmcfWEMqzXS9vI+fJw0aea9gQGFTCyM\n959nLv3z3HpztgksBv9SL3uYJnHryUmxy51XwQK4D3eRR2lns4WNMsFuXQZq2Iq89y0z3jIfTdva\nvmdMyrmVd8/Pn3A4njBfL5imCXOU/AIDHP3i2iEL96BDYEzZs2Icx4zbSs6el5dP+HERz9HAhDVF\nDMMxj0WMC86nE4ZsvODx/PV6xafnZwDF0ySlhNPxaPMLVLwT07JipIBlXnA4lDCn9/sdQxiNVhuG\nAdNhwn2+43g4iHcMJxAHS67uQ4J4OmVdou2ntufhAlx4MBCQOAKpvnePBEDv4buf5WfZK4wMt1Do\nEuZipFLTQ1KDwtbABsi4IohNZivY0N8rj3z04Zy2C4inKgXho2KKmeYeQQSsy4JvX78hKR8T9u9D\niyd216PhBX1dj59bXMEN3PRttYKsqj9shRl7wpi23xYvP4IDe/SUb9fvdQ8fWb0PwhuixgAIsPwz\ninuU/tobb/eZ8cBbQYifS9hpp7eG7e89XqMXmvSjpUcv+XNlfRDtesLbs53z7cseLaPf7tIfLMJ9\ntiUOVfjvlozq0ede6am4i4LkS1X6zHgLhROpP1ZpfqvM9PClR596AxXKBku9c1b68HMo/frn/qfy\n3TInVzd/L/n5Cj+3OWfcUxao1912TVtY0z7f3Ftde0fjAYxADEatCN3jJz5SCq1Z0yMtH0rVuvUF\nqPqt8aChhJf2a9H2/2isLY1kAehcvd5dER6pbuNRHy2uyC8qZSajhO0iUt+F3D4RDsfjrtHZ3hh6\nhp7d+rnfR3CitwYPzwmjCN2dWFI5T1Zmx71nAEzo4jw/pk1XO3u/mUvuoxfKSuvs0Rwyjy1/u8Et\n+rwZ70duzN4+mQyhOyhX70EnuvbcmXsPjhiNod/790S78LKtr3ff1qVD96B51/vbywLIxqWKZeVn\na9iY1IiGMq8vC9ChuTjzViXyz0fLX0oR0ioGWuFsT1iriZC1eILef+e9QjzBqOGdfB3PGDAzwhAk\nzBOE6Z+vNxOMs2Oc1VKyRfi1IGJ7kXtEXUXQhu3h85YRAMxbAYDl3lALynme8fb2JoL7EICsENJY\n2/f7HU9PT5Z01+dHuVwuSCnh06dPuF4vWJfVxj7k3CHMnD06gO/fRCh3Pp+tvoaYOJ/PVQ4Mb401\nTROmwwlhGLCmhDGUOHCqWFDFgYaZ8mvnvSG8Mqf96d2yFUjE7EWi3+hZ077b5OP+LLYeIJ75UeVI\nj+DxXighDKBBBN6Ds0Q2QtQLwhRQNOC2JSb8+OSexM03XQJ9Z441I+36aIBae467xIVb5/Z3LS3A\nb4XwLaHZIwSUiAyhJM1FvrMtHPCAn6H3LwJcEzU9ZGT9ZprB7zNlQqKtp8/BW0bTM+PM2WMoOCY5\nSJ2YPYGY69Av7frL3HOCd6r3yBO1igY9QvfnuV33fmEg92ECZGzDafWICT+e6Nepc250bwshkPcU\nxVJVYGetuGDE/N73X3u5tUoRXUNdh9b1vT3He2tUwYDm/PuSgFoAQACgijl54PsYhxH3HAKxpB2v\nGcH31r5/rtnqt0FZPQHVzq0zc/eltruFEf16/udeKd4vfm+l/YZZbxkDu/f1PdV9bu+s7ftOO0AJ\nvdaO2/MUPfjBAMIQ7By337XEaXv+3AJUz1scRCQelaenM5bbFch4caQg4f20fuM9RSQKEbUuHZ3n\npAhGg9FUayw4FSTJVzXxeQgBT09PmO93xEwbPD3n0FfLgvPphKdsEAEInpmXWfKPZO+P4+GAwzRh\nGAKW+Y5A4omyrmWPxBNQ4TCQeAABOBwmpAxXlSaJXHvaHo/HCi/EGDGMgwmBY4wI5HO7rFiWFV/i\nWuW2amnBlik1+vHdM/6z/Cz9oud2H47WeJyZMTgPDaCGESEYkbkRiGrp/b6H+5gJAUMWHDE4RRBx\nhhmEdV6QMhxg5hwHurZWb8fwyMPRz/fRsz26cTN++cDCCLVt5AHt4sIKbzTvW76w5UV7wsa27xYP\nWCQDdsIRFGyk8/FwCoAJOtvSE3h53tOPK3WeaRuFnnHKJub6b9+Ho8naee7NvUeH7L3z+9LjQfxY\n3qOZHtW3+e+8e9S2H//eNz0axf8ElZDQPuLEEADw1rq7S5vk+6he9oB6aQi9/WiMtgYf+GZ/HWvr\n/C3t1TdUkuNVR96woLGd+0Qk+d0SCt8FZAEe10LGHs7u8QTtHP23Pbq7d0b1dyJIRIBOO3qPeqG5\n/Px6a2h/c/Hi6o29BwOBOqeMebVhCzv2YFj7XmiibU7IXGnTRsFdoaKPGduzUp2jnfH5tUpNnb3x\ngiQk9ehwU0Dt9Va1revd0ImbPtw4CVuv/D2c1KU7mav2XCVvegZkhV4gMpiuG1oZ43Xgb2+Nevd6\nb+8Nb/XG2amnA2MugcW5WddNX53xaUu9Mflz3Z9nMcS0Eb3L327lGwGZf9wZy97eKjzr4d8Wlxje\n1T7d2ajujqMftsWdidzWoDJpoPJ6JRR5hpfrUNDw+WzfifhI6RGXsoCTeO0liTvJDMzzsresm/LX\nUoQABhy09Cw4iMTTYp5nUCjfWEglp5DQol4ExsTnUE4AHCNfDorvN4SARIR1LS7ewzDgOt9BVJJx\nt1b8LcHmD68hDqiwRYVvYoVuIZPAICeEUmJG3DaD5cdgLrG2mdmSg6aUsOTcHMfDwQQP+u5yueDT\np0+2JhoqC4CFsfrtt9/wx++/43J7wxhGhDDg5eXF4nT/+PEjE0PS9+l0wvl8xvfv382L5Pv37zhm\nbbkqkb5//451XXE6nTDPM3ie8fL5M6ZxRIxJYou7capCQpUgfm17ruWqdKE8J/1e91r3wO+btqPK\nFD0frVBMn6WUrB9vJbq6MEy+Dx+iyixLQUgZgizrmgXwIohickRJc4b2mIBWafGIWWgVQL6eV4D0\nmGb9xtdtBcV+bx6VFsn07k1vPr5ey5homefF7own2JjrsGW50ao95ohAg4S8i3XUX+sriceGgn1/\nnvy6tIgsRsZAOSyajnnQutKXrX3WpOu5GqgwypIEuA6/1jI2jCRWYoq/mDOsgXiDhJpA9vvXOyvV\n3njChfYZx3qZ+8IA/759V33DhfCXv8sPn7TeFyWCKf+vEOz989wbj9+/9o7trVfbTnywPj2mthA7\netZz2BIusO92vUG9FORZXyCwR0z1xrMhbhmgxJb/yh5C8df7wtz34dL22+7+Y7sH7/Xb/1bGn5CF\ng3kO6umnylO7n0rUPxhP2bPGao87rKFfj2bef2aO1VpSCd2l8DilhEDBLByHccKnz19wfX2V8FOj\neHQwpxwKK4GGweGeMnRV8o8OVyruu88zDuczEAKm6Yjr9Q1IEm5LlfG6tuu6YplnvLy8iGJXPTdC\nMAXFuq5gMCTkQMj0gniWJI4YEHA6n3C9XrGuCw7HA+73O8ZRPEHq0FczjoeDhEmMUeZXweNYKUPU\n41ONK4gOFu7K3yVmxjSMWNYcHmwYTQHbowttn5htTfu2bz/Lz/J+oSD4HYQKx3vY0xqS9CycvRGX\nwL76uZb2PLf0gKd59b3SWSEMmDJXShDaI64rrtcrnj5/tu+GHILnEfzbFRw182rp17ZUdFIHJwEo\nygMdt28fW1zQG18Prrd4qUe/tuPp4cM9+sRjHC8MS4ApYW182Bd0Vs9U8FKIyUyj7sxVv4Gjwdy4\n2jWvnunvnXd7dd9TCvZ4nTK12vu3ZwDWq9PeARVoMecQps2+qoDpkYD1Ub/+XHs+ywzssqKf8zyO\nx6MYGTp+R8ZW+Ag/11YhZ88ouHXRsQRHxuwLIFu6ek9QqHPxfxfaqXen+n3IHFQM19xlFKVdOwam\nzBMpja1MgzcG6pBy7bzaOba/+z3037fPyzpyFjAqPHY0uF3t940Ke3DwPf5cp9xrr+JRHO9ThR9y\n8LeFR71vqn5d+8Hq1O9L/UxLMbINY7Y4Z7IE1qFz7tqbtoH/zf4JHHNjzbjqcDgUvtTXQaHxWL/P\n+/ne2j/aux7M7K1LdZ5637g5tjgdeeycB6/3ou6/4AI/ikfj23vP+bnHD+W8l/7qdbGPgQx/1Uh3\n41nCsLmA2N8iG3+773twbIOn/QgbmRahKDls7p7myM+Dwhxgcy6rvh18R6jDpVdyO7dyKSW7PD0Y\nbXNS2sSdY5tDzs9BKHeKSJQUJUei0KGU5dopj9nvy7qu9XrkPvUZEUnaBwDMCTHpvQPWZcW6NLK7\nB+UvpQix/XAAz1sxyDeFkRZ3zVq4rIxsysy3hbBysZ01WSZRCXOgiFcZ3yJQknYl6bjU8ck2fcxp\nP0Zv0eMJ3sIQZAtjjliXtQoBoR4Gh8MB4zAhLgsCCaMe1+zuHiQ55+VyARHZHP744w8sy4L/8l/+\nS2UF8be//Q3z7QZdSVUaDcOA2+2G6/WKz58/I64rlpwnI8WIaRzx7etX3G4XnI8n3G43HA4T5vmG\nt7c3pMQ5sfrZBAYvLy/4448/8Pz8jOv1ire3N/zrv/6rJSe/3W4WkmwcRxyPRxwOB/x4lTwky7ri\nfHrGvC6YsxeIrrkKU5TgUwGMPtNiZybXFcHJVrDmCUivGFFFWU/QrooPrdMTPCvgiE4oq8+1zXEc\nQSBEMOLq+iLRxnMqZ6U9Y/4M+fO1R6BoaRGPR5YtA9EqDXxh6muf/fr687/Xjp9fi3z3GNp2jX3p\njUWAZ0CMSyYklXiv16fflr5PACUQOOcBqgl+YobA/H0hpt9DGYYnIDOsYzak3u4dp3JWmUpbGnJL\nS3ffWM5UmatL6u0wZXsm2nVpCYMtkbYl2ghbgt+vz35brnCOTd3p2xCv1g3bve2NkUiUErSzR8BW\nUejDaLUM7qN7sFkT6q+JlgRg6L7Jc4NbVwD32w2sBFTwbW4F8r17WL/fjNqeKwPAdnaBkO+D3pV2\n2h9isppz9ZE6fi7+zvy54pmZQvRtmIgy0IqR2owzBATeKj7FUo1yd2qVUwueanizP59Nuy2c4CI4\n2uCdDBfCMODl02f89/h/ZQI3553JNBVSMz/KedkGMfpQfGzhbzIOnMaphLkBQCSJ04dhQACqnF/D\nOArxnEoYR8X1ileXZYEoZw5myLJGyY12zwYe5/NZPDjyPfQeHSkly1N2uVxwOhyQYiyGEZnOmm83\nC/GldJGG69Ixq/CntdYmyiG2wDlvW8QYRqxmzFIMLDa4EVu8/bP8LH+myNl0fEXhtCFIvXyr4V6A\n2hDI49SUEjipTKE2DLM+0IdNLW3tjY6WRXII6fBijODEuF2vuFxe8Rv/c36vcLBWzGjfezTt3h3q\n4ZI9WnSP9swvyzPf1oM12KO9Pe36aCzt3B7NddMO1cIkFfCocKPToeGHD8EjpX2wXYP2u2q9enCw\nnZ//3vVVhtpfj0e8zv7wPkZr/Nnv/Tloc6EA+8LXlvb46Dh6XvMJCUwDMATQOACLKCM5JUQX6rTt\nz3tFC33gBGoPzojnQ+WuqvHY/po9ok33cKO/ko7ccf168WbfQK5X5P0OXODtsz3+8xF97Z9t6MyW\n56ro0SJKL1wMyx5y4X96fe/xKN25NGOwMXZrbvlEynwRUiMI9uN4sDbVXeZWiM0VLFD+g8VKq3iQ\nkM7bKgLoG3Pu7eHenrkuylrnOZX8cdyBs7ndfJZsnXrzds+oeV/EpH8Obu2efX3eg7G2tjDpfM3l\nlxERyhn5CDXr5Sd+fL4dGZaOS3vu38+Qz4Z5fCksA+DVVvV5kmYVj/l3LU8K12bTeTVWA0rumZFk\nfm5cyz68j1mZbjHAszVqYFxsvC/8mm7G0szRG8RU41JFitJb2ZMuWW6ODA8zLkkKH/O35vkRSPVN\ncpZYDF8SsiKayCJ7MABW+Tiy96GGfM07uK5R6iWu4Mt75S+lCAHqy94DkB6gTtOEZZkBlOTpRGRh\nnzxy0Z8qmPbCgePxWBEAhSkvfStzrIwChpK/xI/TWwDWBEEN5PSnMvwqrNeiuTdutxvGEAoTkces\nIa0ACFHj1uBvf/ubKVSW+x2n0wl3lwdEE6ATkeUJeXl5wfVywf1+x9vbG87ns41LLSzHccSXL1+Q\nUrJE5/O84tdfv+Dt7c3W9uvXr5Zv5Ha74cuXL/jx4wfmecbtdsPxeMT1esWcc4x8/foVYRgwTUdT\nCM3zHSmvgwoltHirTQDVnnpGKYSAkPdMvVdUseaVWV65on/7514R0cZd9okd9b0q0nSfdZ03RCYo\n53ng6tvWU6UN1dPeh/buaNH2WubR9+eF5t6LZY8YVYBlZ1iBZn5oa+OHAAAgAElEQVQ2UB0f15/1\n9lnLNLfP9oqfR0v8twyWunILPMlCPmpcpUMdjszn+ZGGXFioDpFU0HeDEPPPVhkGSPiJuK4QIp0L\nrqLSRmuNxbkbea7C5yKwaPe3XkMqhEwd8WazdnsEWft7+758k1E69/feLOVCiftrQZ/cHPR8KSNM\nwEYgsh0PbdajOlc+kTq2DHo7r976VIKgzkK297adewsbKuaRgiOArGdRWjlLMFkbGcMwjrher9Zm\njljw7n3ye1bDiHfI2Gq9HSFXEax1P+8T7VtvkD1GZe+ZttOOyddh3sIIpTMTc5V0bq+v3fPhxt3C\nUA3P5OcmROsH4wN75k9nSbQhbG3dOmffBgkhUD9/+ZKZtQgfCkc8YIvBCWViNaaC4w6HAziWvBlE\nOR9aVvLcbzOmw4jjOIGz+YUaF+i/0/EIZOUDADw/Pxtdsq4rpmnC8XiwMFsed2t/IYQcllOsXtcY\n8fT0hPtdvHWVfnh7e8M0Tbherzifz4UByLjZe6koXpymCbfbrVL8KM7RsXhP4mEYsGY6TXOP+T2o\ncEqzb3+Wqf1ZfhYthQ6oY9lX8JNYmSoEISIAp4RraSrBReNuuy2ubPGMx2kex5k3u6s732748f0H\nYlQP7kbI5EoPl+x915YePdOO0783+ou5hJHqeIy2eLxt/xH+6PGIPQ+ydv4buP6gGN/BxZik85F8\n4xT41bnAYxjVwrcW94WMq/a+2ZRMu1u7jh7UWj2exv/ew8O9cffq+Gf7dO7js6e42RsglOlRwdOd\nPW6N3nrzeMwrZeUFEcIQMA4ThjBkEfp+mFvPRxsdCxFECVnHRl9vx9A3yGjEbLvz8WPaoxkpj6HA\nHzWCeZ/WrbzgmnPI8gvcjzLODl/X0pB7MOkjd6Zt2xfLx5P/FoMaNs/eqm4z7b01/BBd3duHnbn0\n5t/jy23PXf8aftX2DgBCztUGb9xWK3Xt47z3BUo1fepjpXs7c/UyDf98s77Qoef7ySieQ4lBA3A+\nnQx3WV/unnsZgm+3Hbcv1LxTuUb7zLfZwiibqy5FVYdQtliV25xFBrxZ3RL1ozw1nsTBvkdzejjf\nDrxVmKTh+fbWx+OH8qz6Uf1GzT3SdSHmKieRzk9/5+w9Du7QD/7cACK0B2uMD/fOKUjymtvbkPl7\nhVlceMYQgoiJEoM5ITncGnUOuo4P8IZ0Q5aXWP6lEu4+MXiNFq55iUkMvqisU+QVYDbDYMDJR1JC\nzLgfIWRcGM3DjpmRYsJAYhwT19VoFAoB8zqb7GwYROGiHo2cEl5/fG93erf85RQhClR9/HcghzPK\nC5K4hLaKqRYyKnPqQyN4wZQyz6pY8IqMSthABLVmYBMGyOZoDEBFrh7B+hBI3hpKv/Xhk9TzQBUs\n0QkWStsRkYtl1TzPNr5pmrDOsxGp67rifD5bSCsNX6FtqbLi+fkZKUXc7hcJXXV7w/1+x+0iScH/\n+Z//BiLC/T6bgC2liG/fvln+kGVZLO7o5XLFsizi3v70BGYJj3W5XBBjxPfv382aU4UL67ri+fnZ\nlFYMxn2eTRgCJlBGiJpjpEVQqjyymN1OKSFwghGdAoKZK4WWhsLwxJ/unfbnBSB+f3QPdH/9Pvtz\nwMw2fgPm7lyvOXdDcsDIt90S5rqXKrz3ihl/brT0BMbebU4t3GOMQh5nINoyQQ5TIjdmRI2fkwoT\nfWkZkpaZaOfnS5c43LGy7TE+fj0ChRrZ5PYrN0K3ji1z69vs/d0yef5fj1FmqAUnQa3sx1CHd2MI\nUlBkGFNCEZ7m/v1YZCCbNRvDCEY+nzuKdE9wJNXyoyBUoCZ29ogb720j7TVMEApj3duvanLN3BQO\n6t3tj+WRZ4EjaCnHQ3cwnIi2dwrNGnNR3JQ594UbaOq1s2rPTpkHZaGVMpT5+xzGTL6F4crL5Wp7\nxszgKga8cQwbHLc3h4fFjcfPQX9/1M4jwURvLwusBR4xu2U95Lve2Hpj6Tzcnj25VOVuJwaoAxea\nuYWmmaIuLq7z7doNzZBYz18D44yxAhC47K24LffnacquTNa/fP6cKXwVjhZ6JQxtrpxkeEJDgY45\nn5dPDptQFMkhBAyHAff5au2u64o1Kxko0z9KF03TZLjXlC0MM5iYpknygxyPRl9dr1f88ssveHt7\nMyVGXBaMOXTq5fUVp9MJh3FEimJNdL1eLX/alMewZKMST2csy2J9qXGEjjXmkIlK/wECm9a45rFl\nrz9HW/RxW/b74hai/Cw/y8dKgeei3KgEfv49qMBuJjCCMLbMJmiq8ZHUaounP8u3fU/NHm43KEji\n2R5TxHy7IcUojLMqENlZKzZ0Wdvmo3XpjcV/08c3dV89nPmILuwJRluB4SO82eMDqndNW4/wam/d\nKnjE3Nnlfhu9sftx7hUvvKKCqDft2zqh0Ii+PxVIbYRhnfV+5NHu22z5rpZe/8g67+1dbw46D6Pv\n0d//ls/staPPe3wQAoFY6MPDdMAwDrLXDOM99u5sxceg3NmyNjoLKer9oXH6y3iUVvGfP9773pjK\nd3Iy9vbg0R3sfi8d6QOhyeDi5utoO7Bwn8d4f8/2Su/eK/1Q8ZftN/UC/+n72dbr3r2dNnTfqvuW\nUskxl++zJVAnZ4CmdGzVV332a1VUqaaNlH3P3obkZCAZj5H71tkaln7cPHtRQMrayjpLvqtkCikV\nTk/ZSKce69ZbhzPMVQW775Pas/egrR7c6xX2ZxzIBkvI/xgD/Dq6/hibscvvyLDE8ab9jstPv+9c\nDNMDka2DDsp701gkiMzfmoFRuzbYnllmNwG/VvmcVeHb9B8XxWhvTjHlXCR5Dkq5c0ySK8zhk0ph\nZf8nM+5klHBVahhqMhiwJBHPaxxCACdG4jXzn9JetFxNZInEQ1Zu3bNywWBHSnI3AYy5j7iudt+L\n0TAhrVHmlJ8LD5QVzwwscRVvlDwjjVhk800J87oU4wpIjpB1XeUsxPoupJSwrAskDLKs1Bqj5XBm\n5mouf/z+R2d3+uUvqQjxP73Qc83Mry6Et7xXYTgAi0etxVvubzwGGm8Nj3QAuS+JOYd1ypqpmEyI\nsUcMe6CizL33HvAATL0VlHhTb4p1XSUBTXYput1uNtd5ns0ic8phIEII5u2hg5+OR/PEYGZTVMQY\nLTeHvjudTgaclnmGClzf3n6IMCGH7rpcLiYMWZYFl8sr7vc7/umf/gmvr68AgK9fv9pcUkrWtuY0\nISJcr1cTfszLgtP5GQDlvWTEFKvkbJ5Q0nFKfoRsxRnjRmjkBRVeIKTeJBr+goiqs0Xu8hOJ0kmV\nBi2h1ttbQ/q5hBDsG59ThEGVoseH3fDKEf3eC2Q8c8VunXrMoz+fPYTv70ZLCPuwJT7ZHhGJK1u2\njlAhXI+Ieo/g9mPbZSo6983Pt1cM0ciXhlD9fNv2fai9HjPs++29bxkSHzpN9rUQT6DMFAagRBZ2\n+xTqeYdcXwWYPeTfXQfOhHJGql2ioVmHR5aJ7bor4tLiBSWPxuQJ0e14t9/5M756IopCTsKaXf93\nzorWtf1w422JeZtfJog+ykw8YpZ78+wxGhsmpGOVAyZb59v1WsGEXt+9v/uEtB973lmuz4dYQNX3\n5+G8P3BG9dtMMzfj8rN/zATs9eWZLI/fySk1+sorZxXl2uzBKU9fUHP8HW1fCHTye1HPccOoN+Pr\nzV/OmBpxlO/UYsev0fnpLK78KyPGtLk3RB4PJctBprgsORynffsQlkQHW7fKaEHpLyKEacI8z9m7\nd8HpdDJDDiLCMBaPzvP5XHmpqDLDC2a9V6aGKVBFis/1dbvdEELAPM/48uuv1r+e4Xme8fT0ZHV0\n3Zdlwe1+w+FwwJLzm2lZ11XwoMKQTC/4e1HBFfTP8c/ys/yZwpyyx2BRfCusU7hJRFnZke9rSoiG\nUwqsYqZsdVhgTw+ebnKrVeOp4bSnK4EiHCiWpQnz7Y7r5YLpdEbiQckbD/qseEWPH1sPjz4aW6/s\n4RTOSMnTDP5et/SGp83f67+3vo/m4nHCo/mzo1uU9qgwu9JBqOmvRzDpvfHv0Rm+fovTbE75pxpS\nWdhILtnRPN3a69Ove0XnNeNo4XJvrPrso/R1j6ay5LcfoMneO5uP6vfOoXqEMIBxHDCGQQT8LMLl\n6NamWovm4rW8qfRBmdauPVr1nNkdYV0FGZEKjlOK2/UPQIo5/ryeV27p4uIB9x79V54VQSEBZvHM\nygv5723d3LjgPBMaXL7X/0fhUssntTyl1SHO7Fu2HG/GLOPcjqW3LtU4qMzOVF72uuVHWAStDLSe\nzO3ZNSNFV7+6u8oLM1dKp4y1LEm38QOujd6c8q5BJffkzjDBuOr8bN8z17ep+yB75OFEXUvpZNnr\npjGdQ7OiCotVFlHx434snXH5v6t1Z67m7OE77Ft3flnDO2caokyuwICUDRlJIg1wrgelLzJjSK5P\nC0GPsg8EVLk69PtB+0tGgJgisrtm2p5fC9dfP0KI4565/GOIr7rQO9tQU+15s7vMwhGmlIpSzd0D\n8+Jyd5mIEDv8uconFdcVpQFMQSH9ihIoZWUEsxjFchLeTWXMfowxiWxumWeAs/Fm5m2YJXfOqgbz\nOR/ksq5YlwUAYSBCXFbcs3xah72uYuwVpuJFn1JCisnWjLO3ysq1vMaH8UJMIt/OsEXbkWfF4z6x\ntM2cMI4TxmnEsqz48ssv+Gj5SypCAtXIQIXdjELgiPWdCPwtxEr+tmWOFZj5/Bzq0QAUYt3/rgRv\nIMI8z1jjgimIN0QK5TISURVqyVsHek8Qz0wTURWCQb/XOeuBOIwjxhw66cePHwBEyZPWFdMwiEsU\nEThFLPc6X8gw5oRpvEos7QTM9zs4FWFAXEXoe5wO+PbtG4gIX758QYwRb5eLXKZ1lbja2ZJzPB0x\njCOen5/x+++/i9Ik5wW5XCTHx3GacHGJ6FUAopd+HEdMhxHjMGFdV7y9veFwOOHLly8YpgnggJhW\nxCSKHltfBY5UrGR1/Y2YA2zN9b3/XT2JmNmSsfocMZZgXdcx//MJ2r1QRM+W9hmjJHUdhgGJVAkm\nZ3NNOfRUEmFtoAFxWUCJMZLUUUtun4zdn0n/TO+HF97q+dJ10/OuxQPLlmAMzBgqYjdrYN1aV9+H\nIIipA+T3iHq/H63QUd/7OewRWoJY1mpMAMxaG8QIEEsHMGMMEG04JC+EIUwO4EAIKMy1D2Vla43B\nEfeMlVLFWPaI1w3hq8KFACDpWZZ/GntR6S1td0AdamwIQ000GWKGadUDhRxKAAAR1pSKpbnVk5j2\nwgwUgZ0NKXuq6Lp7AS+79fM5M9p98uvHQKXN97kRmNlC2Pk2PNGcOaKa2cjulvIJATTaGgBNYjL9\nzo/Rne+hFVrmto2QdPPzhK1tZ8PMhBBM4Kv1FA7q74HIchWooCW5NQaKMCBl61iNuZkABBXgh4DL\n9QIQg5IkgU6kllBKAjLIhVDpMWVlf8s89KeuQ1RY42DeFneirufORA8utPALdpq1Hftt0149djT1\ntspWfV/GWH43OiIzU6wXlMj2Rpuv91UYw7JvhXmzObvwd7pGSoxStrIJbsxWz9Eh2m+r8GbUFuBC\nE7QMnYxR8IKMZxgkKfnl2wKOjIRk9zwmIJF4biAlEAICFQ8ORgIGwpjDVh7GSYSnDDBHDNPBvDcS\nAmiYEMYRMRaPTJDAttPpZHOKObRVjBGXywW//PpFlA3MlQt3SinnKzuYYYV62Cp9p3h+mibM97t4\nmwfJyzYdxkxnMa6XV/FEXRmMhGkYMBPj7fIqSWYzUX4+nxFCwPV6BU+yhvNyx/l8BhHhfrsjZdyt\ntGWChxkRIQxQkUMIgzGUmuPhZ/lZ/myRs8VN4tUCxw0SMZDTAgDQJM7b0HwMQnT5zjQskc+JBcVh\n79Bwnt6rxutgHDPj8vaG++UC/vIreFRcX4RMbWlxQItjjB9w/bTP9sbbo4+tDR2U67P1wPFttjRx\nSx+3NHXveVv8GP28qnaavynvnQqjNuuH2gre95Mb2R1P7TnYN2Tq0XabOWZkrOOTALB5bM24qGlz\nbx3bcfT+7u3zo7/3iqePq2ntfK9CQj+Gj/BQ7bj8ua37L+d6GqeckxKFh24MDAGNpw+jefzYag8w\nGwX8EVHvb0sUTAQVTJsyi5ScbwW5JGHx1OvDrWBLk/o1VDpKFzrltth/rzDLRRHIqNd56pbBERWB\nrihGhMcQ2LfZCFMlaFfaTlKhqltn3QObPxWBa+vFVNa68Hmc/ydwPysA2vXJ8Fr7tbXQNvw6EoQG\nzasuY3S0P7S/vCsd2Aq8nzuqe+czrDKZH7D5l7ezKqTnikn4Httna7am0a2tBKYc1srdH3bt9u+d\nflufQQpllEKDFhlllUvQj1sbamCQnWU7d6jPsD5VryttN+9zcv34ouNIDCAL3cu0asUacbnPZOuR\n+7LDV24nNXdHaQPtN/koKjpO5y20Md7L38R1fYhz9vCz8UxENt5ELlIJu6g9KQn/pecyr703vBY9\nT/bMyN4UgOY3K3hfZJuiVlFFgfIf+r1Fa0i14kKj/Oj452U2o26gKC60aNvLsmTeRPpec+5DgV0J\n67KKJ3zuT5QQklM2cUJao8mlU4yYcwjiYRgEqqzJ4JOIg8oeJRYlijoHEGo6z59lGpwsya01JYHb\nFrEprlk+RmCO+cwxBlbF6iByhyhezE8vz7vnoy1/KUWIh2U9gpGoMJnqReGFV2EYssV0sncpJfNk\n8MSjWih65YT2V5CRjEcPtP+nAkctLQLzeSa8EkTrqhBec294DwK95HGVROp6MadsPUnMFiZiXVeM\n02jeIhq6KiWxVrzf7xiGAf/+9//Ap5dPVk9zf+g4jscjpmnCJecJUS2l5AERJcvpdMI//uM7hhBw\nu0oYrbiu+PTpk3mipJSQ1hWvb28IIeDp6ck8XK7XaxZWDHh+fsbb68VCWxwO4p2yris4ibu8CtuO\nzuOFmS2s2fF4xOVyqdaPQsn34JVfurYWPiPvqVqV6h6qd4cJU1NJ5kpUErky10JNLxQMNOQ2yznz\nFnRhECSgeUP8vHxIG+/x1GMkewi7JaLaOvpe/1YFjw8f1zJZIQTElEzxo0WUPg3j0SD43rh3EVhn\nLu13rdC1qq9EUPa4SM293Xiz5PieEo6htOPXIo9kA4dGdWN0c2zn2u5TYZh1HfoMoicckmvP9geh\nWJJQrRS0taJiFe6VDr1199bjfvw+RjM641QYu1e0rlcEp85e633089f7ZN9gex56RHWPSK/uxM5Y\nfV8a+zO59vb6bHObtN+2f3s84WOQ6lj9T/97ddZLg9a+ehAWQnSHoG/WxffRZVTQP9f6uw8d6NvZ\na8PXfe/eKwxt14OaPa6ntj+X/Tr1mFmTrOysQf1MmeStUCr50IvYnnltQ3vrrVs1Lt6uRfuNPq/a\nb9bMe088Pb1guUjoqpVK3cNhKqEgQ8Dg6Jo2JKH32vVnWOufz+J5AhTPQo+Pp+PRaARvYaT0iPcS\nCcNgdVU5oV6o3vCEqHh4Xq9XTEMADaJ40LGpF8jXr1+xLIsZgUzThBPkG/VWARFeX1/x6dMnY0xU\n4aJ51sZxxJzpoHWNmKahokF0fLIWHv4yiLYC5Z/lZ/lIkVDAAzhtlQ6AnjMAoOLpkQVo1NB9wBY2\nK3xioEpsqe/g4E0PFvmi919DPiosuLyKV3niLDywjKf90sMfXXz3Tnk0Xn4wr/b7Hr29109vf/bG\n1sU7O+1W+DzTLhXd5umfznh8uz06vTeffby4/dsrjFqa4lF9vw62H3h4PHbb3puD4jlPXxVBYJ9O\n6ZXeeXi0972679Xp8XG+TvuMAUyHAw6Hk81rj1dp64OKoZ+vUxk5Wb1Q9ZlHazSWUjotDVmNBWTf\nFdpY11R/3+6+qRIIIISqL3AR9qoik4gkubIaurg1kfGXPmLulthWL88hzyqlfN0yz8YoYw+hGLK4\ne8bM5inUO6Fs/EcZCTNMKVPmLf9XBYbtTx5LxS+4VatX0Cs+AA0/ZrS0/mZnuj7XLb+l57M9g9Ua\n67eo+VN/J7UnCoSE7ImSB9k/M26GuhTMAEvKBeS2xPuhPoNKF5Kr6u+/X3PWhNHslB1ZoDuG2qCv\nDKPso2+/zfXRwp+ybrr+4p1CBFMOpUbGZX3leYUQstFgsn3UkeixZDOSK+uBgCxLaXAO9HQkU8aw\n699CR232SccmshdJmJ1s/2L2NpJQuwVntDhZ/2moKE5RZDmo+Q7zDs+KgDHL60xOCUgo26x0ISJw\nlPzHCYx1WSW8Uzaq0jOSnCxMFA4LlnXBuqzmVa+8g8gIE+ZlxjKvlrNQI+OIoXXAvCxYltl4ambG\ncrsjDAOGqXjZK08j8k5xpBHlRc0/aE6Nq8G4sjZAzr2scD3LPA/uPGqkDXZwwLw58hqAWc4HZfja\npfWywkkNJlmM64eg94+R0mqyNIKE3BpAmMJoeUYMtqaEmBhPz884TAd8tPylFCHsYJj35gAKkgmB\nkLgONSV1C3Gg77ynhuaGUCF3G+O2FQaxYB05+DFKzLUMjELWwA9B7MTVDYhDqatjV6bXC/o8o6+X\ntSWgxiA5UdZ1LUqfGDHly6z5N07nI/7443cwi2UlBXFlCxjx9etXEyZ8+fwFw0C43++43+/4+9//\njl9//bUK/bSuK75+/QpAFCq3+92Sfz49PQEAxhzLO6WE69sbAOD7t2+Wl0UtIX/77TcAkuxdFS+n\n00ku7TjgdruZ4uNyueB6veP58xe5EDlvhgpdTKmUhfa6xvf73cat50MBlIbcaoWPGhbLW6AOzhpd\nz4WeEa2vbagmV/fPA2YD8lmIkmhLGKvwzOfA8UQtjUOVU6RHED8SiOnZa62stY7XdnfPfC49hqUN\nlWRI2xHNvrR9PGJ+/Bq1/bZzLw8zCmb3u2tf4iw6ZEpFEEhEWLl4zDBviYlHzKDoDgiBASV3Uif5\nhmekCnGqCEC9NoR4pxAQUCNyO39KlAZCpgl1YbZjgyMUgGKdVa1lQXBlDR4wacDmvOyV9p2P77j7\nXbO/FYPfaVOfb8bp8ECP4fPve2eqJSa1eE+NnpCjXs1C8HrGKzZ4ZzP2B/N7xCQzS96DeZ7Rs5Ho\nMeV7e/0ew7+FKb5OX3DTO1stXOntU8uAdNf9nfEC3DlT7819/2zvFS8sMMVA881HBCK95+08fV89\n+Oxh156QQ/DwiM9fvuCPv/9HhjOiBFDCU/GityBTQxR/Bo7HI5iLcYYWxY/6Ew4uDdmTRA0tNBeH\nrp/RRWDEeMVhmjAOA76/vuLLly/myfn29iZGFW9vxkSoYmKeZ5xOJwkBepMwnBwTljjjfDqB14jD\nOAEnWML1w+GAG99wen4y+mS+zzgeT2aAI8YQ0Ywx1DrreDghpojb7VbCarkccONwQIwrMnkj9CW2\nMOhn+Vn+VNF7HghAqOg/X1pPXKMRHNzydHJrFKN1KGyVdi2M7QmQPf7Up4ECwiAGErfrrfIgpUps\n9JFl+Ag+qEtUPJ/phV5vBuvQCLIaXNqjDR7RkL3vevXbMSDTFD3a72EfeeykbWRhs+qc9P2j+Xyo\nn85ZAFDx6/67vT378z0/LhVt15uX8jN6PunPnkBtpkOT/0/A9/do1ZpeaoTTLDzHEALO2fNS9nh7\nX8xSu0Nn7c2jHk/nDip9qGv6zjo84klzL921KU8LbDK6RWEaGoGuIuEOPWg5LgAL20MUDF/7SYuH\ngZwU9fdoKc2KXwck72OZdIHhpLykgzWUhf3M28P4cDl13PXH3oNE/s4r43gmxuYY2P6FHGLRyzT2\n4ETLL7TD9vtnuIm5WrdicNy/jfq1nF/U65XPOQXqnOMiuIeNUfFmNk4hJ4jXu5VlDt6rhoiERp0m\ncB6LJn1Wo2K/38xsigrl0UMImljOlCQmzwyDhEGCCORpdDi4um/iuUGheGMgJQQ4o8WGN47s2nG8\nc4w1/vbREyRaS16rlMyolNkZ/VLOwQnC6nL1akhaldsNw4BlXSWEE8RDK7EY6cZ1NSVHTBFrFMNt\nkkuE+X4X+ShgIXE93bIsC9ZMn6vsVWWq0zSBIKkJXl/F+1uN5r2XOVDkt8MQEIYB6yrGTuoRAUAU\nJwAOh8n2rUTOGEEQoyz/Trw1RFFhfHASnHw8HkVuYHyTKkGTeWho/tgWtqqxuJ5pvVC6ByrTNrl0\nCEIOZOSQUjRP4JiKzxwnDV0IIyYYEqbb4EBuR8Mg6thDEMUXgsqCVB6m8Kbc0ZDyHdB/nBCYEMKA\nGCW/9PFYwhK/V/5SihDAIU0uycXtHRIolOSaHhADWeCXNWaecEgpmZYNQLFOdgKplpBQggH5MlFu\nXxgBCcvjhebkwl14LxN/Gfz3Pl9Ey7QMRIj5smrYi+PxiLgsuOZ41zrmf//3f8PhcMDT09mE/Gqx\nqEKGdV2BdLX2L5cL/va3v+F4PFoS8x8/flRJRDUmNx+PAGCWj2EYsM6zARtVJKhHSYwR9/sdr3/8\ngU+fPtna/+Mf/8Bvv/0maxITXl9fBXnkuRARpoMoWMIwVJfae/2oxaZpF52FqnrYACWpvBZd33me\nuyGjPMPnmRK/Xz5Z+jGvSyX4CgGcXFIwFMDjGUxmRop17hJtd83aas+k+vG3lnv+pwE5x9AqovEh\nv/w98HPoWf4okK3uhSNSC/Cjqi0/rqqtB4T0XukxZmUuAJxlA+Cfo1jfuLn78aWYFZg7a1zGXcbi\nybGUCS0BELWHWEulMuf/sVOKuHVJMVnuXHvGDEZ2T0UhxjeEZ3POfP3WUlsInex+mDGa30s7X9Jg\nd596DEtbH2jysHBtBUWurbYNfxbJndPqHPg9cqvdO2c9ZtLfM7+e2hbnfdowoUowNu36s2nEff6+\nJ+Dw4Y6ia6Na/6ZU99HdVYXzav2TsL8O1Vzcs7a0DI7Hbf6Zb0fCAG7Xw89tc84649wbg2+jtzZt\n3RZe7ZVHDF2v2kfuQ9uSH7syYvZsp6PePrV9tWvicUdv7dg81TUAACAASURBVLWEEPBP//xP+D//\n2/8hRgYh591qwnz6PVOLJA1BpVZNe/BAc3MAEopr40GU76AaS/gQlMMwYBonzIsoV378+IHpcMDb\n2xvO57PlAdEwp/f73cbjk6mfjofK42SaJry+vloC9qfzCWmNWOdZmNeRwdnj1YwmMqMyjZLknVIx\nuNF1iXHFIRue/Prrr0avVPOF4iC5J8MYAH6shP5ZfpZHJcaU89MUOqUHXz2jqT9bIyz9Z+FiuShJ\n/M89eOphqIdXLa2pNADnPIBMCdfLBes843A6y91JjCH0adx2jloehWfpFY+ji+CRirBIn/n1cf2j\n83tvTfw3j+jiloZo2wBQW/r23rv9adfI5ur6E2MeIDp6lXgf7/g+Hs2lxQmPShfPAVV4md63e2Vv\nzP595XGse1MPys5Dbxz6vlA82/m8Z2C0N+5eW71vPG4GtjHyRdYkNOEhGyyYENStgRonMFBCuHTu\ncktH9M6Ztq3yEwoMCTf6mL7Zuye955z5Pkf1Gy+jntZcGi5rtrkT7V1J+RA4OUDuJVHpC9ozw3g0\nvY3eS3zDs8DfB6ED5F0eTWZrCKzAyCz/2dP+bn/BNf9anRdqzg4XzsvNQtZPn3DhXf2YVRwq7UcA\nWwOmFt5U9K17Zjy4rWPZD0A9CpDxQBIlvxkB5qDHDDAVOlv4cAdzQFnomqx5k7UFAtgZSGb6VBQS\n+XyJ5bPdGeP38j7p0qqA+nA4YDocKpwpnWYIkSdr/Kfj45U2TDm0t486EkhyNZhxbgBiViwQ5WTd\nrNEiIIaQAAaS+az5PsQY+yGpKGCZF1N0EEQuubKsnecD1BNhjSuQJPySKheIyGhs7y0dguSpUNoe\ngHhAzDOWbNCk4Z4kF3MJU68RbcZxRExr4XNJ8kh4mmWDp/PeVsqMvKZEhNv1mvcvmEF1m9vXy4p0\n72OUuU7TWO0zBVUgFTlhSdVQ6KqWVxN4lc8SIEnhpVM5JezlhI3MGrWhSnWenDG3FvubYYnVmeBy\n/6gCUXmVpIg43045YUZn2TMgkZxqMHKI+jyFfL9ijtQi90PgGcmgXCsCiVaS+xFZFC9gZEMfae+Y\nc1Z/tPylFCEFV+VDAt3s8r5WXiS7DJ4QaJMT+4PiE2xLm0Wj1yItzn5hc77c1i9Kwhq9POM0yUXI\nOF/irpUYdCEELPcZa1xxmA6ijUsxu2XJpjMzDuOEuGbt4yjKlXVZsNyB6/WK8/lsYahu9wteXl5M\nc6hazHEcEUiT6N5wPB5xu14tlJR4ZhD+/vf/EC3o8YDb/WbCgmmacMxJ1tdlwfF4NOvN+/1ua6rK\nJbX41Jwh67riX//rf8Xb25sJE3799VfJVcJsHi5eYXS93fASoxFnvn27dFmIoYBTXQI1v8CYPVU8\n4AZgTJ0qAzxw0Od6drQvb42vwM6/3wo4BN9xkiRF4nm0JWA9Mzk0yriUUjbgqRmHniDQF2+91xP8\nVcA9Iwe/Pj1hWlvsOdcEohdS95i3R4R0j4nq/e2/32Xw2nFzqRuzojI1eXlKuxL/XhH9dpyACrDy\nS/kBUVqa9U413s58UMM1W0OdE5C9RMp5z/hIyFQiRG2Xi7WITyzm10KJpD6iTIXhZ7dXfk3RP2+9\nvz3j14aj0+cFwSqvUX7fO3v2XAnWBkZX69uca1VmG/Ha1LMQaM05asNdGVOnc0HJP2Jnya3d3rn0\n3/eYWf88uHctPGC3bnoGVAGuimE7o80a7d3v3j73isCXup6fQ68/Ia7JLKk8A8bM4JiM6fH3W3Bs\n3VaX4IPCMN2CmmFt5+3n6mFy3Xc1Cw823Zi23/uzN4SSrwz11YIPhWTVmzPuZwI4i6wdmNs7K633\niN1TCmAEnJ+eILFXY7baEeapvRMEGN7twXCfe4uZjX5Qr9wYRRkyDgNCbmfKtIEyIRrWU9dPGash\nCH329PSEe2YAte/7/S55zrKQR8eo9AognqQa0tIrSd7e3ox2OuSwo5iA79+/4/T8hJeXF5xOJ/z4\n8aOiC5CircPxeMQwDCUh+xIRwpiNMoRbNjid3eaVjghDX2H2s/wsf6ooTZkkxxiBjH71eFl/ehiR\nnCJEmio0o4WxIsIwjmbpqgIXxas9gd/eP0//EuWcWJyAEPD2+ob5fsc5RUQKGBtDpXrKfYW6lj26\npVWUGOh1P4XcKzAuOZqAmXN+rm2/79GkPS/ttjykaaH5D9zaARX88PvQ4pK9vjTXZIWgFG8AFgvd\nhJZuPn7+2uYeLdHDVVq6+7WzBmie9/Dvo3b9d/68tgaJlWCtNwa48+J+7tFenUGU2Pzu+z4NsqWx\nWpze8kZEBGICZ4nUNE1gb0hFtKEPEDxd0ldg7fGm3TGqooEKne+/BbZ71p6hen7yTbnHeZycDVFR\nGyC1fXk7nuTatW8IOXyS8EjMwc6+2UV7hQiXTDaa+NvvZW+dZCzlH2U1ivyVuUkKu3TBFu7IrP33\nmXreVibhQw3eKQwxrxZU4Z58PyFzsHIfyjqrx0YbYlm+Uyt2eyh3JshgiLhqT+wHueCWnI+3wGW2\n93BCVoBzCC22fspCFJ5az73nvSmEHIod8OHu1ZvBj1/OJgAmIEjIWCIC56TiIxFojSAuCjJAlMxE\nJSS7jBUmp1Mj67wBeZqSJFoUGEPOXxFLmCaC8E5wBtWAhILihDgv2UCCgSxcX+Y5C/Oj/UtrKt7Y\nMUq4pzVijguWdQVQeExJXJ2NlVJRAsR1xepyqzJzyYPh5GZAwYMqt4o5H4bP79zjZfTeMQMRdWoC\no6P1TmQjgZrnoUpepXR4a9zh/234dGwNgVsaS+v5dVB5lBlfujYAP0+n+OQiL/HF4KLe8kzXbGgb\nN8Z27eH/+bb1J6lMSe+ZwA2Zex1C0vZGn+Xvy9wa3JS/MRhNGbYoPcLlDpe1dd4imR5V/u4j5S+l\nCNGixFdLzAWn9Njk1AAAR8y0xI1XkFR9MVcEUEtogMUjRLVrIRDWVRQjc7oh0GjCeQVwyONXJmMc\nR6zzAk4Jx+kAZsa6SKL35T5X41UGXmJizzhk4cD9fsfpdDKt6eXyhuPpYMBGNa9vb28S722ccL1c\ncMpKDB3fb7/9htvthh+vrzg/nXE8HvH16z+wriuuFwnpoFac8zzj6Xy2tn/8+IFTTgw6ZPc27RuQ\n0FzjOOJ8PptlpoaSeHt7M0GHF2IwM67XGygMFvNNL3brTWOCyww89Vt2v7dWPtqOz8eh7xS46+9e\nmONzemiffp/0vdYXZFqUJf6U6ZlTRYydYRfXUPtIJnslm3cLzPw4du9QA8Rb5VDb1h4DI0i+IGmN\nK6jvYuf7dhy9fv371vOlV6e9n3sMY/2uRj69dkKoc4R4AYIhktQiq6ZfJdC9QLP8sHMYY8mxUiHY\nlAzoK8EmRI2P6S3FKzbavdsrLWNv/SoSVTcUNx8bF2qGqPVi6hEL1dq0a9X0UY3TrU1LCCnSfMT0\ntm2EECyGaWyY9uo8UFljZU/8t9X3XJhX+PV39ZVBaM9ym8AUxmB11qkpfrxGVHIhgmKMlifKE/5a\nx/bJtbPHbOrfPWZOz6i+b5W97fcAENivZWFqKDPoLZ6X/mvLF99e2379rBwx5rQhDj9S/BHtnXH5\nVe587zz1YJoybUAPvhUCkd2eCj3RjP/BGrSwxc/ZPBEVFsoBxfF0kiTm62pu3uJZNJRxpBIqq82f\npXhZz6CGjWJOZoBAxNZuXEtCPs2hol4ay7KYJyoA3O93SWKeaaJhKOfO03Q+11pKycJVxRhxOhyw\nrouF0dSwVSEEvLy8YFkWvL6+mpfpMAz4/Pkzflwk7Ofz87N5ugLA29sbnp6ezNuEma2uH4+stwin\nh2HAMAakyPVexBzLtytm+1l+lo8VNbZiApBEqOSNdlpG/ZEnvIcdni8ymlNeGmzSmOu+nwJ/a6OD\nDU2AolAYAuHyKl7pLymBguKrffjv+/S/733n8V31uxuPfd9Y1qvSQcPraEgtWxNscUyPnm7X+9GY\nN3Nw7W6edb7vzguFNmmTo2/qN2P0NM1H6BT923//0f1qv9n7+1G9R3zN3t92V9DQb56wyL/7ddGf\nvXv0iE7tjbkdf9vOozXotWuCx2ycZ+Rja+2s9EEzlj/TZ+8OtDTLQ17TzXP7jdarvw2BMGSBcszE\npbwXc6WydXr3dvIa2vMy5toJpF0DuU3iQeDlVFuaTHG8KIakasszgHOYOgdTvLJm754wGEruEwBE\n9bbIveqaGGfizi0xwMHmLrS4TN9Btgzva15TFQXsPCuUZha4WO6CKnCVzu/RrSHDezCb4kzfe1wh\nYxF+iqjMU3Q5tIHLmQHOP0ueSg1vykiWtxUoRgCWd5YCVKHCpDKmAGAFUcAQRoAjUlrw7Y/fcb9e\nJUIMETiJ94Qk0q5z1K5ZeeATcJthAjOWTC8vy4o1e5XEFE1u5b9nm1PCwklCSokJvvCYMeKeDbq9\nAHldV1BiDOPo7lTKicRrI1vdJzVQNtlcvuN+f+z+5J8xpQ2+8XDJznKDH83wzu8nGGAqHg1c+KcK\nLjNXMl89m/4a9/BR75nW38VVDla1kWbyL9J/9pQAEZg0f4sPW1Y1qVX16oA5Oxg5GIV8v4i5WgMf\nBUW/U3icOjBZ8ZfKJAwuKczKN9oMYYB8zjO9qJ4rWVbmeU7ArV3eA4bKQMpe6mvl76p6ue/D4SDG\n/E1elEflr6kIcZehOpQpb1TYAlOPPIsVYjRvD11Yfd/rT3/XDQykFlARATnu2lCYhGCMAFtiHA9A\nta3b7WaxtX14Bo2NrYJ6ZeYvlwviOuN4lMQ6t9tN2lwk7t+yLIhpxboKM68KhcvlgvP5jJSSJRB9\nfX21b0II+Pvf/47T6YTjUZQov//+uyXuOR3Ptk76vebyuN/veHp6wi27qgFAWlesqSQ3PRwOmG83\nSYqeY2MPw4DL5QJmNkEFEZkQQcNNLDGaEmkcBwAlH4eFMnPAXut6gNkTQGnM8haAxQaB6LnwiKIl\n1NSaVD1a/DcpJgM8/ky1gN2PxVJcKELJiZW8sLMlpHvEshf0eyDc3g9frwXWnhDWdmokoJYPRQhm\n83dAr5pfU9/fMc8wdIlnoLt2PUZyn3CGIQuxyiYjPISwAkIYMqFSKxa84ivFtDsm9QwQYjGPUbs2\noedW2NDjKzzjZgqw3L5PMl4JOJr595gnL4woYeHIRq7Cht6++XX3e9NbD383e3UfPtv5hjL2NxKe\neTPPR+22997aVKKgvxEAagUFZe7FwllJa/a5Z4I8ARGCI95RK7Ws3eaMt6717R2weTqiLoSAy9vb\nLqxRoZJ/3ruPXD7IY27uFWW2gwrj39uH+j5ws86yQrr8SsTut+Xm3MwrcyjdtXp0nts2leDvwZp+\nvfrv3prDiFEYAanv63bL2j8a/x4RvidU6dU1xiav2TSdJCHfOALk8FWuMwwDmCRUp+blAIpnrf5T\nPDRNI8RgTUhpUf5O4qWa68X7Hc9PT2ZB5uGteqVq6KvX11c8Pz+DmS05+o8fP/DlyxfD2ap80HH4\nNbxc3ipFhhqZqCeHut0rDfb29obPnz/j5eXF6CKlXXT91PtDvUk0FOnLy0v2ML3h9ft3fP7ll+q+\n69iU0fbn1Qunf5af5c+UInACLKwHtnCvxfEWFqtDM3rBm4aaQQN/mVlCrZi00MPLrHSJNe9V9QFk\noZ/c49e3N9xvt+JBlxugUOeW2OP7es/b8ggXtGV3zApby4C0cfvmvdKjWd/Df34cVVv6Dluc8bC+\np60cjfWo/qOx9uiUXn3dqx4N36Pf22eByIQ+j3H0TptV8/V6Ke1muDh/V+W3a2nMzvzaMfR+V6GT\n0vntmD1d3aXV3FoC2NAvvh0GzBBRBW92bhxtYOG/m/3plb252jOiDf7rrYVX0PbOj/FhKTnhu/Kq\nsmMmVK3JXHAOiyR0T02DCq1e6FmtyCx+GUMO2QKWb2qKU+fK0OTsJU1lCcVUlkJ4Z6OnwebtoHW0\nbZJBQIdruUqEWN6uT/7pPdcqul3HAM6W3mLcR+rxEJxHNHRPnTLGhLRkxshlrwFG4/WXXI7SUHJ+\nsBvXHrw2lszDGaDkVHX1xEiwGK2mBHCWFXkaXM5KRAgDwhDEojwEjOMJa4yInDBOE8DZ2nwQORwD\nOWrLglMOxaMhYZWOBgJOhwMGIsy3O/7X/+1/l1yfISAyI64JyzqbsbCPKJJSwu16RWLG6XTCNI6i\nsMgRX0II2QBozAm/SxQbkT1KNnM915oHJRGBkqPjUeiCWgYghj8U2O6Jwj0E8chkrpUJSje0+NDD\nzAQ2405VCMn+1HdIeaLWM6stKRsU+by/osCredie4UdRpJT2LMQS95X61d9UxiXeq3JIPR2gf3d5\n9LwuIIEpyLk9LNE9J1CqcZyeeR2jhl9nkyeR4UWP+71UO5AoplILMxSW5nExuI2eZ/BP95RIDobQ\na94zLkPCVMug2vlXNE4BRlYK77P1vjLD9fz/lCKGacLz0xOG4f+nHiEaR42ZM0AaKoGkHRYODkzD\nAK20sQ0R5AkFTdKpDL0Hmtq3CYMHyuEdRGOs1o3MDBoGTIeDAKEhYBwGECRWuybmUUECIPEDS8Kd\nwWLhqXZXFRg/fvwAM+N0PCKliOv1imVZ8C//8i/4+7//DxHELzPCEPD8/Gy5ML59+2ZzuVwuWGcB\n3ufzOXuXRPMWCQPhLQvN/vGPfyDGiE+fPlmYrW/fvuGPP/7A0+mEYRhMCZJSkjwe2V3vmpkWy9kB\n4Hw+YwwBS4y4XC62DqfTCfM8S1Lf+x2HaQKYcbvK+M+fP+FwOokrH4XK7c4LN5jZ1leFCYo0vLWq\nB9ge2KmXiSmy3NlSoP9/s/dmS5IkyXbYUXOPLTOrqntmLshLkAAeKCD5/19BwT8QEIrwimBuT3dX\nLrH4YsoHXUzN3CKqZi5eWqSspTozI9xtN9Ojey+0DwBXYsX8NCaMycyu2bYD3BNwtAAXAMadhvAI\nCrpHgpF4abba+p4FtBE2hrlrKvEK8xLnrmX+qn7fYTzuAf44BzWAum8R1H4W6+3N6SMGMhJZB//q\nNglKyKxJHHPxDGq9iiiReoUEok9R4F0XIyCenK9wHMLgK2JuGYlWYFARFy6CiBwEad/DPCcGVsLd\n5+0sWWnXr/dZDzy0xPB7+vY95e48P2DUuAEA/iyi8iowvHGfNW0LE5Sr71pPLWmuDtPIBk2Es5H/\nuGYEGPX9hjCWe+NqmXRmycVwvlxc4dd7j7qzGBjN9uvO0kk8URsjI6GnlHK2vvSzQjhxfPf71Pbf\nx+HzZSeM4vG4Wx7tx3ifbx55INt5JMjiVMCqMwzN2Sjj7Asf2vvhe89TvCtbGlgNaUh4ennGx7Ig\n8xq8GRrlXNjvkW5G4xILg7nXXF/mMWoGH2Yocptn94hlFiUDEXnejuPxiOv16oYj7+/v+PTpBUgS\n6u/5+Rlfv351ptQSHxq2M0VF9FSxvsd8IsyivDCmFBAa//b2hrQb3cPV+jYMg3uTjOOIr1+/AgD+\n8pe/4PX1FefzGc/PzzidTnh9fcXTywtoHBwzRExqY4+W+z/Kj/JvKcJgc//e5q1RTrT2RNiTraBV\nMEzn7kCkUTXdIjKGPbsAxMQyJiBzWkrmPSV5QooMqyhk4xjRfPY/AmNEPGD1t+dSBBpBwFA6UM0f\nlI63NCzew+09X9Of+xj5XmkpaRRUEYpRR6Sffp+3c2A0K7Tf0oO7/ehg2haz38Oh3zvWSuDb0twO\nTr23V+7hx+8l/73e9kKm3Sv/yL59hHnbz+tnCMfTSeQQy1QJ73p8XxwDEW08pIBisNN08O5eucdL\nxN/jGcg5wyM2BcxouJGCBC/zIpbFiCEAQ+hp5ePcOM35OsBQvvVlZVWEAFhZk14jhFZCEQwSGJZr\nUZRz8l/JKarjQrNfyK6M+nwU4SNh1GgFvk538CFREXgSANYQT6ImaNbNBLErY9DQnKKstn+FNjCL\nQJvU8trSi6yLGo4q6G7PtmGuYRiQ7J6xuePamNXw3ziOGIMSw95Z1HNiv9/jsN9jpwa2bRhVwWQD\nVko4Hg7yHFmYeJmJNIyi9Ndnd/u971fLxZFA3h9XAHB2Jco4Cs407t/5/Jzx//4//w3/5f/+L8iZ\nXc5iBjRxvKQ0JJGEZM05g9cVs3qopJTcyIaZJSdFSpUnh+562Ud+EFnDZ8k+Ek8N+J62DWgKxMzZ\nz4PsIzO4lDwP6wI3QKYwTyYjGZIoAMGqxEx2do1X5lA3ed4pl6GgCUvt/GKFMHxPxHQG7lkRZyOv\nOh9G9Yz3xLaEw+j7SD2bhN8nmBIkjgPhDLbv270SxwzdG/Zc716seLPqe3KFa6/Ymerxykx6d3Sw\nEwOF128cURKiQiVevP32ergytvctPralUWiUIbEnQMnn8uWnn3Bb5u2Dd8ofShEih34V4EaEAWXS\nWiYSkLhiSTXOLRG3y9GYYLtE7EC510cj0LJ+GHGS5DwzEkYQiQVUvIAXi6EHAitDbReoKQgszFQU\nssbEoDtNsGkMOQG4XESJMAwDjscj/vrXv6oCQur4/OULzuczAPH6OB6PHvphmiYc9xIe4tdff3XC\nMc8zXl5eXHny8fHhcbBNgfP6+oplWfDlyxfcrldMl4vP2bIsyImcyJ9OJ012lHA4HqV/ecU6z7hq\nGyZ4OJ/Prkg4HA5IWqcJPURZswihXXMVjsMELYxiiWrrExUaHqaK6rBX8aDa2kXr0WjFHpM9RUuV\nKByyNcyhjwmQUFf6t9UbFRURZMS/7bkIBO3zuDfvMUnGtNnfsU17fw1nwoBtfK8FVvEc3LvovB94\nDMytndZboB1Ljzlqmbbec99iOExRZZa4ZS1F+Zpzxhj6ZwS/1J8qL7SBCEsAf5Zk0vtlgLSXIwbS\nrmDI7VxwOxarL8wRUFuw3yPMPh7UDL7s4bW4U985I7Ff9/7ufda+31qhfKvE/lfjDe30rDVb4mqC\nCxdOAJt5fNR3SVgGB+9DqKP1KkxpELDQALu63g7T3uzllJLnPuqdOWYu8xD2xaqWRB7KqLGilbbq\nuWoByd8h/6/r7XwWzzzuzLGB6HZN2npbMHVv7aKXU28/9+6xlpmS76O1Pgp32hnjfcFDXb8B+h7W\nkOfKWYl3UDuOnqKrdxfGcbbYKJZxHPH582d8fH0FIYTGMq9PZXgsD9e6rp7TI4bD6oHbDf3s5F+a\npgnPz88gIpxOp8or04ws5nnG5XLBfjdi1c8Oh4OHuyISD1Obr8+fPzs2Som8f/b8siyYNffZ+Xz2\nHGcWYgsA8jx57hEArjB5fX3FF8VeT09PYGb3vjUPEmTC8/OLjIPGYACz2zDEPQ+6H+VH+XsLA37P\nxvMe74OIMw0HWoLkFsP1GdXSFhnGsWY5b3AtkWAn8wiUulSAxCxqdBo0tn4CDQnn93dMlyvG3QEr\ns+QJYS5W0U3/4njvYch2TuLYKlpQKrcLubprIwYdTZFjbdnch/c3eOQbNO0RLWlH1B1/GENbf9uP\nyMesgOc2ABcrYgWpNY7qlB5G7GFKZnZ82461penfwvSxtG19D2YFarLeYkZ/F1sc9Ght1jB/7Xx3\n+Rv017Zd33v8V+zPPVykX+J4OmEYRyyL8ObFqr3G05t9aGNqv295BcDD6cRx93BXL0yfJRu26lNK\nEC9Vo5EUeFhAwhxlFXIPKpQueMvaTYM85x4virUIpM5wxfiFSAS2c7t3c5bcr87DkbaR1ROE9L6T\n1c9gpFENJiGJq20OiQirJmX3ulNCgtZPJZdECji+Z7TrMgwdQCYLbcMYEOdc+reSRXwgFZqrWRip\npxCr13siJCQk9YIgIlDSUJ4MDEm8aRfdN+MwYNyJ568JfqP3xE7rGdQIMRoi2z8iwqgGrcMwqAKG\nAJJ5SJB2Yij6zCEyCBE4CR2xvHLCt+n4U4IlfW7zAgtfP6hioBgsx7NY0VPF4UTiLc2GmZPw1kgJ\nyJJzw2hrXK81ZyyQHMfrumpoLiCZjFA1gBa9gkIf7IJp5QvGwxl9FpoLPb/FA5+F6fKIN3ADPZNz\nJEkFMBQ5kfwTZYOcN6HrRdFY98PPdLwz/JABrPsfRnesL6z3iBkIBf471mcXJzMHRVCko+HOMR6z\nmSvADD3Kf6YsbUvkE0122ON57lGtMoeNrKKdr2YON/Qi0vpQ54ZetMa8Pm/BgDf02fBc7Icrg8K6\nlX3E/fpD6WNHdoJXvpfWnG5o3+qzVxTRKSUxksu1DOZR+cMpQtxyLtVJd7tEngnropfubsS0rBhS\nwrKuGPU9B3shzJLVY4LRGLIphi0AMi6XC3aDJtocA8hnxvV8lneXyWP+RYVLzoOHTTCvBWZxg1vz\nAuYV61LCak3ThGm+4kktEZdFrBzeX9+UkVlFgAnG+f0Db2/veH5+wcvTC4iA6/mC2+2GP/30M67X\nK263mwssLDHo+XyulDG73Q6//fY7nk5PuF6vEnZLhWommDFvFibC01FCVqTdTkJgJfHeeH99B1Sb\n/vr6uyg7UsLpdFJl0lKWDcCkSorrfMVtmfHzzz9htz+CSImuattNARIZBuu/Ecxo0WkCDTTvEJGH\nAGAWYCJ7YKlcHVNKoEFjIGp/KQ3qoWICPtmjknC2JI80Bs8TTwWmM/YjXqrW53sMUXvJ3Lsg7W8P\nd2D1ZvZwPS6EVoYkxjlec4knuWGYwlwuuSSYin3t9TGO35WAtB2j7TOgBtHV+MCwxLPMOVjzlHmK\njCqxWDwkIuR1xn4YkBMwLeUeMCXIQFwBYffm0bAOK2cMSVw+c85YfXfGto3/DfPQEGhACb2GjSm8\nPTmBGsPYBSBsmbyUgJyXMBeMvNoeSiVpHwVFl+cnkf5JPFbdr24DUFy6Zc4JDPKEcOaJEte2t/YC\nTnQMiZF5wTBaqIyyX+LeiWe8dZUlIg8NZjSiLQYCCaiU47bvqz0tA3DgbZ97W3a/APV8tKCHyO+I\nlYO3h80yi7CEghKnHjdkTwfbulVpnwFHOxvxvYGKBAH3EAAAIABJREFUd1MaJPzIOA6YL1eAM5jY\nE9TJvlHFr7lQx0FRSTC4WUcF21EElRQwF2a4nhuE+XaPPGVS7DmLv00+jsJYbvFU2LPJ5qDOBeb9\nzapk9KHVCtb4fLwvYp/lObWKsvY7e6AFfknBYW7qi4xovB9kfQEgKc9Ue27EfRjf6Qkj4iaN4wFq\nT79Yh5xrICPj6eUFhyFhZcJCazDYYDm3Sa2toPwZiveEKEYG7Pc7df8vHhqOrZYF6zxjt9vhdrth\nIMmF9uXLF/zyyy+4Xq84HZ/1XBccZbSciLAsK4ZhxKqGCsfjEfPthgTxtuWUcLtcMI4jrucz2Ggw\nBizLiv1+h5eXF1z0GdI+mNIFgCs9MonH6/k8g3lVZYwoGXfDgK+//oZPnz7hNheFyuFwwMfHB8Zx\nxH53wOV6xp/Tn8HLikQDeAXmtXiytvunK7z6UX6U7ygMDcFndwcSejmi4n0X6YrF+IbS0MikexvV\nXabP2H3KrEmYg7AutMNgDKMaCoAtyHWFkRmEtGZ8fJxxu15w+vQJORPyQC7c7GHeFoP08HEPm/p7\n0K4G+UrTSMG/No9K993jt1Nvi6HjOrT9MecZM7yIGLzqCvVENPdpQdUv1OtZCaB740ah0VHAdo/+\nbfpy5+/enFX9bHkDFC92b9fmsPm87VNFN+WDqi37nICioEGJjw6YcK4YdsS6cs6Sgy68GxrfzIO3\nFR9DWG97J5zTqv/N34YR3QtF6+jNKwARbKvAHakIIFl5JbBgfdmOAbOh3h89HrXXz7Z075D6CblT\nwAVXqgBb3k0gmybWb/U5x9dgmGSUuSgjGILRh5B8205AguI1eQkA9LnAM9u8WSuai8m8QWT6CaBU\n7R3D4StnWPgh4RvUgj6JN1wCOU9uSZ1FLlFCu5ucYtiNyi8lD9Wb1PMhmaIhJTEUJlJPBgmxlAYx\n2kpjcmMp8XJIGFTuQQCGcYdEIs8ZLCzoIEmKmVmcEYLi2yJyxGgZbcQN47eiHCTicmbWcGRSd1Kl\ni3hYlL1mibAl10s5VazrJCtEZSxJz7HOt9MhkD8r+47CWZRvxfusKIPtNCQiLHl1xdhtmnCbJk0u\nrpb1OUvkCN/3KkNKBBCr/MESj+s+0TNgXggcRij7PPtR6Z0n66fw9YVu2fdlB+t9rr/4bKhhzm4c\n3Wtb6ojvljZj+/Z7FV3C+Zia7zM+rlx5kbcxmUDgfRsexu+7Bhts5Ub+Uj1XynP6fBJVIULbm4mI\ngFUMNsr+2T5XtW3r1/KpTV9677Vtt3cuiLpzD0DWsFOn10HqnROwQfHWET5baEMOe0r+ZX485rYv\nm7HE98n2Un1vtv21O83qOp1OzsN9b/lDKULA7ELteEG2gqD28hQhiHhSWHJKItpodA14AwUIRi+C\neICTCoFEsFwSrpuQvQhTswt87G9z5bvdrrBwX+fzGV++fFEvkxtu01W8ReZi9TjPM06Hg1stAsAv\nf/vF3fUsF4d5dTw9nXA6HTBNM15fv2IYBpxOJ/z666+emPtwOOCoIaeWZXEBhYTJIvz6t7/hpy8/\nYxgGvL69ucImZ8n5YYnTb7cbDoeD12N9sVws8yzhKL5+/R2Hw96fnWdJVGoKJiLC9XoVgYUm931+\nfsZ+v/f1KMIbPajN+scDYGHOzJKVuVjS2j6ydsUrQrTja5ZkqiCumQKqXVUBTZ6Fst9szwDKhJoG\nP5xL23/tpdAKpeKY7gHMKBBrhbptXe0ZYQV0fvkS3U0c3V7Q/nvORSl0h9m4V1fLhLfPbQR7oVRM\npDzcPL+9cH1+Wm+CXNw519XARMZA4gwY+1fGyApwi6LE+9V2lowxMX40BmCyNQx5VcL8GeEHb/f3\nvXmp/w79SgXMxX2c0qCgo2Jp/JkI1qzOuP+iIMD6uGFa4/5hgiXg8z2Qt3sn7tnNlDZnsQUT8TNj\nhFxJYuCpeb/dv48Y99I2YxgKcxUV6huAgoZx5CDs6ewv8QDsKPqbMdt38byVOpMKbs/Ia0ZqOdfA\nFNjcIM5huj8n1AZdDt/37uM4d/H3Vrhh1kzGhGz9UdAO4sEZtX50qrgzrnvfSb19C5c4LlOKV4Oi\nJmEgWoBfnx3jRoIdV9VG7FvrSRWFL4/ORbwXWzqHlMAL49PLi+zrdcWaFctQcubH4/0GjBM9aqdp\nEgWA0nA7NzlL3o29Ypfj8ah1DEiU8P72gdPxBGZUxgur5kHb7Xabz8ZxxJwl7Oef/vQn/PLLL46/\nzDskev7Z3fb2Jnjr6UkMPna7neMsw0XWb6KSq8RyhADAuqz4/PIZ18sV1+sVnz59gnn82nzcLlcM\nSZQvb+pxa0K2iBfb+6P1MPtRfpTvLa64NFqvdLxVuMXfCy5QulZZfjZYDjVTb99VPBoVi1NT6tpz\nFkJF2hIrbNYrz/AVcsbKjNf3N1yvE2hlpNFCeqwWmGZDJ+5h117pCRgsoawJhbzf4a50Iam85AKy\nu23qVd6jky1ethdIqlZlSFE+2FOk9ZoAp8cPRxrfo80F3ZkhDLvw1wXJzMpvJRfGefv1ZHYJbsF6\ngr1afsXXIOyPiPFtDBz6k9CEULF6OnSv7QtR8XRBHIviw43AK/QNqEME5cYwM8XnQ90WuivSEwrC\ns4jPC3YHLNQNc63csOckHIwoBt1LglnC4YU6bZ2ZRTk6kAiaxiHhsN/jdpEnVjVMw5AwpPJedl7d\nlJohHKryQgxpl1iUBuzjo3qjocYetcFJK9wDjIGyOYpYA9Dw02zzBJiFsuExhvErkt9hTMX7AiSh\nlqB72xAVkyRsTs4LrSKwRzFmcXqdkhiGJQmTbiHckaVvaRgkmskwgJLgqN0wVh54bvSnv8sSJPdM\nHXYjxFslYdyN4sRg76rnhWy7Il8YUolgQcxASuJ94VhTnhsVd7qnid7dci+T5+GNRnx2VtIQaYOE\n34prW9OagG/KBlfjUd3LqUK98j22uUbbPAektIY2pxeaQL1gcFH8idwHpDdtvOeZQXHPEiGyQ8RZ\ncLD3qShaEiu/TZKvY8kLVs1Fkm2PmlKPIo8iyvVMZQR2Xqux6LSkOFJlx2zejCYbvUCoh1V+AdK+\ncjFUsHMS89raXUOkMqIw54/4ZNicax2+ZgAIogAMg9/c3VUhM4osv7cyhvKsjpLLdzYfRM3u0L9N\nEW+hza0frRzB5rSSPcd3An1HpLuhLeui58npjOMePuu2H8YWA9453Q/138VCLR30aSz70/ZsodUB\nu3BF7u408eBLsgqtjwRLmFLhySC7Z2ZoEDeACJ8+fRJ+bYtK7pY/lCIkulrFi8yKE0Sd6Bj72QCH\nEbL9fl8BpOgZYoJ2ZglfZYyEJePJOWMcCNPthtv1osmfVoy72iXKFAREhKenJxCRM9XzPKuygDGk\n0eNaH49HXC5XmAA+AeABmKfJCZf1+e3tTWMXAvMy4ePjA09PT5hm8dZ4fn7GPC/4+Hh3hcRf//pX\nfPr0CcMYBBWzJAz/6aefJEfHNAmQyoSn0wl5XfHx/i5WD8rYm5DAvFVs3NerCAEs3NaaF2TO/vzL\nyzNSSp4g3bxLpK+zx/6OnjeXywXHlxc/vMuyKGHXEFjMlfDA9oetoeVbicATQOUtEsEAqzCCmd1S\n3eo0QUoUwA7jCMpFAWL75J7Ay/6OP+OeBmqmqPd9rLMFjvEzPRgbBsMJCmvyKh1/r5+RkLaMcCSw\n1u/4s+17FJbZc234j5bZ+L6iXkLZuMz+U+0lnLl4CFXPrauhj4rhi+MAUFmKberY/FW8hqSuLSMa\nx+5CsIJgKmATSy0IbeeTnKq5K23T18qKHzZPvFlvoLjBRmDD2HpWIHzWc7GvZkgqK8wVagXfZu+H\n+bD2HoGGjfCGCxP5bynGhBYvTEKiUQGBKrEAFVDU75EKbixcQE8gQEFRGceVhgE5hAmK9DB6QwgI\nknm93W7i7r5m7NLgRjwEjQmqyDmzCV6Kp00Za73vjD2+B9zuvVvPe2cNwr5Srgr1iWrfiYA3o+QH\n+XZp906suwfa7gG5+HlcTxsCYJZc0LWqAV7X242MrdE/WxqShYGx9ZIjWp8TCu/e2+9RoMDMvgfG\nccTPP//sYxoI7t2ahuJVggZjuTV5knUwg4TdbufhLu1ZC8VpuCKr6TMzYxyF+Z/nGcyMw3FXGYKM\n4yj7Oudi8LBmMeR4ecHPP/+Mj48P7Pd7XC4XH4cnhlV6nRJV+UPWVQwhLF8IULDhMktbh4Pkbbvd\nJgyD5KV7fX3Fp0+f8PHxIblEggBjv9/jNk2Y5glDGrGuYpiRNVb4OJZk7YYhYviIH+VH+YdKDpbr\nEDFLpPffuhdawbq9A9S0KmKjLc12dCNCJxTMbZja7yAAiczSGV53zhnLNON6PosQkySBbQaQMoPT\nls4Y/ejSro6wZUvfwh3awbTmXSoWwMqbhnrtXva2YIKCbZuRn63opr7ooXfa8UHRr5IKdrP4QjNt\nXbLNRzOOMClB6GEIJWJUUnpTPMkdwwQewusNfAYoCuHLCMild2W/mBKh9XKJwhnHgIrlnMdTXJiA\naixZn2Od0Cgsombd0f4d5iqi1wqzKz42S3+geB9bnSlJWBlkFsyl9JoB9Vh1RCVrjqLw4LhWqSip\nTHhrXt+ckhtYikdKmDtmrFwSEINZvBdyxmhCeCLwKjwBkoT2icLQwUJdYssPmTW+9XPVZNNy1nW9\niSo8nEn5TzAWLIDxiGswUILsa2YEJRqBmKooG8MwIobhs9053RaMGjJJPFF3YM4YxhFpHDDu94JX\nrD0iDGn0PWt5IUzYfzgc3GiSSXNNaN3DMGAcBgXWubQ5iPcEax5ZV1jYf2SeHmIM4mclh8gJjhUV\n63l0oMJvmYmoCxIBjBxyPtnODcotKyObgFUxHUHoh553aWNATkJPiidGOQuSe8WUdeKVbvyQSjg3\n/EL1N8tll4Yt/zA0ipAMVd7YmXT6g40iJEZC8HBjLhfiSpka587vM5TQtDoMx/J+xvQ9MX4dlBeB\nRp5YZf97nWXyohxF+DFygXxE8dVdaGcO5R6u7t9Io22RIr1OpU5ToloUECtbPqbctbEt3wSxPdTr\n28qp4jgK/7LlI2P9hmDK/Jd7zt7r3dw2/kdYxubsW7goytlsbJaQXual1+/w553vIq8Weahe6fGg\n3l8i9/pwFNDMa5yDWJPQFMMxRoNLx2yt7heySh4+FXFiNabQP6F9DZ5o6ijrIHRwIAmhvNvtumKF\ne+UPpQiJJTKG0ZogAnAjQBYnMF4+0VPDgHgUwNkER4G8eTnsx4QhSTLvdVmQ84rMKxjZGVfznLB+\nRSHD+/s7lnnGkMQl8Xa5IO92OOx2IIiSJWfG169f8U//9E+e/Nv6siwL3t/fkVexYM8sIbqen5+x\nU8HAbrfD69srpmnC2+s7np+fsSyL/0wDYb/fe4Ly4+GEX375BcMw4LfffsPpdMTtesPPP/3JrTXf\nz2ccj0cAcCvH3W7nyhAAHv5hHEdM04TbJAnTD4eDM/nR8nEYBo8BHhPEm8VnSpIYarfbITNjgIa8\nSkJk3NUwWFDa+kVGrN0jUQBjn685g1d2xmkYUnUB2AW/EcqyAEkTeEzTFA64Usv0+CDHS6EnTHQB\nVc6bOtp32v61AuX2me5ln5IDsChkNXO92A9LDukX+iOQg22OEvvOADJzJAk+qs1nbb/j/LTC7x4j\nrF/6ekMB0pg0LiclrOribHXG+lcO+6xZOxcmOuGw7+v+xjEkFd62e9fdBVmv+zvzWsZX50yqgSNr\nPeTutvfmqJ3fHtFybxouzGdvj8U6vB1dUmEuxXKmN65uieCisw9axYIzaNG7pQE0se2uUFrL5rsA\nDiI9AWo4EGmAvA8YjO1tTQPaCPMRlf3WVnu+W0WjMdjTNIXwZfXZwJrdWsr73eyFxLV8QCieCuKb\nvsS5sN9jey0ojneDWbvFOf4GrKra3AB3m/8OSG7XVwBt42mG2tLYmJ0Sm7rZ19Vz2jZQC146e7Yd\nQ7QQtbltaYUIWpr7HJDQgFKx35y9vrWAvloXvR/G/R4rM5Z5RhqEfh52exFgKO2r9iZKrNwWP1mI\nT8NIu90OCYInzuczTqcTTBkXFeQxFBYz43Q4YFIMEhUX4hUyYFkXXC4XnE4nHA4Hp/WWJweAh+gS\nhcPgXisl/rZ6cajHKqDhsQahD1ZnzhnPzycsN+nP+/u7h9myOvYqaBkc+9xwvpxxfH7Gbty7wjEa\n4iR1PTes9KP8KP9QYbGktXj6FiarxZYANndnDzfdw1EmhLiHS+r3lLtmQLI95iLY0LuVNG4+lH4n\nAJxXvL2+Yp1n4HDwW9n8azdY07AZW56LIgjf4qbtGJlQDAYMrwDVPeye5Q19YSI3QqpCNTph35ba\nUAT6nK2B/dR/caxlOkGQfITyPuBJox/QHP/dcXzBJEZ/rD57K4bZJR0raKs8c5ME22dKr0Q4GAX1\npAKtQrOiGJCohOitBCbajhkOWju54V0SEZCjskXqMetssAh2rc27JdBZw2LMLEYJFBQZir2sv8yM\nlbJ7hPi7Nj7Dh4D/jGOr+KJcBJYWTieDQFmSW+fVPNzDmgdcGvfYuq4SKjJnrMsKQMMdg7DOq3jI\nk3gV1HxhoUuJJCySGGuaVTmDlF4Dkut0MIVClNXI4gqGGCQs0+lwdBxo/1atxwwqUkoYkJxuu9LJ\nBbyENJB7ZQzDzpV14076miH5YUkFu4mDca3iPI/2gBJBwuQwEj5Kv6dU5VUEJFRsmX69C6iE7obu\nNfdYCWO0fWVJujPkPsoqxHfxHxV+M6U6RJcp0sYc+A8q/QkSawAMYrlE5M6UkFw0Fu8Yw3mpudOr\n+w0SboogOr+tXPjbEkrhL+XuimecuFbetOYhPu+1tNnn0ZSuKanxmBIOU0SVMW1lMBVPwjpnROXc\n5uwJqL2PTMgsnka3203uaMrmnBmwvvUUGlqRQxfI78YWq8u+sxsTVV3lqjCPAHgdG563MSJun4n8\nWSXvUZoX+Ti7v2y/RZzR1tf+fU9OY5/0sEh1V3bqDFNR1d9+b+u2sD1XWm551rZ9ecZyE6H7bDvO\nzXioyBFMudvFWk1dGx4UgWY271ifclUv21UH0YDX9be/3+0X2+cBODzoezuP9d/2L/de76xh4YeL\nIuTb94yVP6QixARNFdhS4aUpP2yizEq/MORSRzygMTSJ1WOxnWN+CbPQWxQA3m7XEm5JPSze3989\nUbi1Y4x0JeCn4kEh7cxYVyBlaf96veIvf/mLh4+y0Flv76/4+PjAdJvAOePp6QmAxMG+Xq+YAIz7\nPV5fX/H09IScM/705z/hdr1VCaByZvzrv/6rHzhLCmp9H8cRp+MB7+/vGIZBYnerJWYEZubZstvt\n3CPFwlrZM1++fMHlcnElye02V/OdUnIL0ePx6CEuLMn7NC346d/9Ow8/Y+tpV3701LHvrdhnMTG9\njcEIIRGJS+xQCJrkR9ljmm+lPWOqGiGiEVmzWo1KOgmvBSHgiXx/9ZjPeLhtjuPn7RnYXIDh8n0k\nlAMK49ibKxsvmrHYM8S86VOPeYgKj5aAx3FVgtvNSEsDbh3V9qdzYT8iIMyFiTDmNatXVwqJkFcF\ngqs9w4HRccBRh7iKa2Ah2LxfhEoa2t7T9y59UAGAc0epVc0tIHkbHLTp5MEUMwaMCrDpzY/PUzO3\nHvapBQYP5jv2sW6HQCQK63VhH3/P+jmCUOYiMIxA8t7eie693wLh9wBPbDtaavic6x63MB8U3ole\nMS0AAHRfY3sPGDMQ+yZh+Iow5l7/a+Aq3iO32w3TPOPgZ3B7j3kdMIbcrDNpsz9TSuoVnjdz1t5l\n8Tx+C9wxM1qxb3nn/p1mz8m/LBaDdj/HV8N2jeNmNqayBowjUdWfdp16/Y9zQbkG6qXfFWwP9Yfw\niOEbohBuI7wVa6kUgKjXoe3jZs2bNZLxZwzjIBaQRmOpKD3WZcGMjNPpBCLCdL24WzI1ZwUQht+Z\nUBaPWCZCGndY14x5ZQ1HWN9BZgxi4fTe398xqmft6XRynHS9XnE8HnE4HnBTDPLy8uJeIa3Hh4XX\nMi9Wo1mWbP14PErONsWPl8sFx5MKaTTpZk6Ey/mCw+7gd5MlZ7c76nK5gFk8jEcA+9MRb29v+PzT\nz0iUkDOwBPx52ItnzDBKLqofipAf5R8uLuhJYDUhpuBpxowudrbS8/SMv0eaZvcRlYdUwFzTvy0d\npOb/VBh5ex4Acsbl/IFlnhQDSDz8TAxyQXRRXFtOA3bBhgg0YXf0g2nbfM+iHCgZ/1An92YuYS70\nM15XFe6OHprMwpSZUNbDcZhwO8U73ZQ3sl6GFWrVPPxeBjSHRViv0cK1tPRKBT2RTtj7gw7ckVh8\n1+WANZ/hCnGGW1wTkXq8sXv7kNVrSg2Y0l6HwE1DzJrAul4LQGPic3lRwvqKRTjMiImhhopSpVn9\nm1GMYLjsONawXGYGZe0CBfjA0ByDZdyARAbI0aCSZafkdS3hm/XvRTGThFxKmJS+WfSJeDbMA7M6\nM1QMMxePapDUY1Fo4TxNG4O1eVmwLLMr3kVhsoIzY7pecNzvcfp3/xNMaZoGEfSPo3g55Cx5NYy/\nMU+IYZBEymMSpYJ4REhfd2rEYDklzKjBx5JIMAARSOshBsZhEO8T/W+xfKCJXH4CWe0NzvC1CljF\n/1HhxXs8VCwEKB6p+aGFM/b7A+zGIxAS7cp7iqF9/7IlkLZpiQpZ8bxxwbVZg8fbJ95FIQUiKx5i\nqPJhSEBuLfWLN4exobIeyXMgeFt66cqoknSrM0/VODs8kTXWY7ceCoOrZ1hnNhgThm4aa5s6coEU\n5z/0036P/FErkO2VeNfV+yyMgYpnA5hAVLww2xzEEm44GNeWhuRHXD4beuQ5I/8G+F6y/xMHAzXj\nP4DK2C2ObbPvG34hlhgxoC09mdSj8i1+3OuVyuOb5X2uaeG3+h86CwCecwebPX5fqhD3T+yPVNs3\nAI2/93gt/bL6/B8pzu/e+14JrQSbKFgmzm/caz05SPxZnvW3vaV78oD4WVtvqWG7T3t7FxAj4ryu\nkkbhcKjm8XvKH0oRYoDdLt3exOR1FaCVSmxmInHvxDjCEhHnnDfgwhYpJnVya4QQQmnUMArGaK/L\nhLwWa9iTCvMj022M8fPzsyezTeoRsq4rbpMI3A/poB4Ue1AC5tuEy/WM/WEHEOPt7Q27YQQB+Pzl\ni4eImOfZ4+he1SJxmiZczldMNwlLYX1ZlgXny4eHh7DNbsz66XTC7XbF5WN2K04i8sTuUbhn47Kf\nOWcPb3W73SRpqIYH2407xazk68Ms+VHO5zNSSp7A3ZVOy4Jh2GFICfM0Y7cfVEgvxMSsTl1wo0DS\nLdXVMtXWO1rEkAKiKPQC4Mq06IlDyrQYQ4JAAAkm4IlJoIT40VAAsPUv9qG1yAeKAqFX2oulJ1y1\nunxfd+pK4XmzpFnjBRXm0+bEFTMoLvrxghO7vvugI/Y/juH7L/ztxdkjOPfqi8/b77ZH7F1LkG7r\nnKGAPqyPAcnSpuwHJ/76uRNJUiEyl6udFCTWwuftnFpfjf2NgJOaNXAg1igSWBl4pqxxWwWotc88\nmq+qzWa+c+fdRyCpqg/mdaP913PWvt2uW5ybOM9d0EMFcA4dwvyovz0gUAHaCGDCPhn1vLR7pa3H\nc5b4HIQ9TKIostctvAnujME+i+dW5lNc3edpEmXtksHJ7giPhCzt+tawPiiT1NsfubM3Omcy9qvd\nUwboa8YtgGi6N38UpyK8qsAopeoetRrsJPXesfmoARnBK4hrA+Bx+C2u3gs8WTWGug+2x0sdBlOd\nXtmXekeb5WYch8wxFeZJn7P9GQV8j+5m20dpGLA/HvHx/o6cM8bDHmBgTAlLlvASZrwQ55+IkKnk\n9drtBvWUHZxurat4UgreEi+Op+MR8yR5Pux8lxClotA77Ha4Xa/YH4+OPcwLdVkW4CrM/zRN+Pr1\nq3toGB0zI5cYinNdVzcemTUR5O12c2+OdV0dV+12EpaHmbEbd9iPe88tYvTd6pG7gjEMoxuNTNcb\nVgiTepsmJBr8LiAiTLcrKBHW2w278VDuiR/lR/k7SxQUFYwq+EawqxrmJFLPEfhPMz6JOLi971tv\na79FWmbf7p7Av8X3KUeBBBcaKI2BWQyvrucLrpcLnp5fwBrLnkmNO7IIte1W5KRitFSwtwhqdR4s\nqTFqYwvvN1AULIavWJQh/h0sLJTUZ/e45a5YNSxgxZ9AIQMg8yzgRDwSK+twLviFzYCFdI1sDWS0\ni9GlMPekgyCjpWCNv6+0YM0YhtFxL4VwOUS1F6OXXAv+bLbsdxNamXW0zakZV0X8QoDzHS3f4DRb\naV2LO5m5ytVibbnXCAr/ITHthQiv3Kwxi9DfeEE34AKwp9H5RlYeiZJgn3lddD3LmCojO5bkzss8\nF69p/TlNV0DVWcyMeVnAq+QZEcUGq9U1Y10XzPNSMJSa2U/TVHk4Gp4wRciyLAAzRgsBHfZE1rwG\nnDU0Y2aMQ8L//p//M/7X//gfsDvsdOMMmudA3hwGDXtkRiYofGyK60oWPQAYBs0ns8p4kicaJ382\nG/5EwIfx/0QFQxGq7ynA0xbDiKyi4KfM7IrMYhj72DssGtE4vkHLY5VnfD8GwX2RmcjNEa3HZU1D\neyRKkHhHFolD0zcawJAQVsY7xQddvtPMjb9/xxOg+h15Mz893GgK6PKdXWzNvDT0o62v+q7iv9q7\nQc8dd3gQNPwJVeoUmGY1jrXl9e7tibot4euZVAGu7Tg9Is0LGDCljYXR552ZeZOjiazuzTpslTnV\nbWBj6tyx7Vis3p6M5l5p+fI2Uk8r4+ny5+jv7W1bQPesGl2+s7+NLkXD4hRxCuBK/PDJ5tl2LmpM\nJa3Eu/+ebCEqp1s5GaPQRTRr0atrU+xdPwd29guNsmvChun3S9hfsW/t7w+aRlmfen57soHevNi7\nwDYsWHs2y92mHnrzjJeXFzHKU2Pd7y1/KEUnojuAAAAgAElEQVSIlZ6AygkUUbXhK8WJPUdbC4Io\nlGLmKknmOI6VB0QmRiIJA3W9XrAbBRyYUP719XcMg8SynqcJBGhM6UNlcTgvM67nqwN0yx1yvV2x\n2434/b//7u8eDwecP84Y0+Dxtq/XqzPw0zRhp8qOl5dPICK8vb67hwYgXh9vb284nU44Ho+VJwbn\nYnXy9etXmNDFcnfcbjfPEWLzYyEuzMLDrChNaDFNE+Z5UiJObsV9Oj1pAlUJJfX29oas3i2mAIle\nOMxyQSQNSZFSwjCOLtRZlkXWPeyPZVmwLmo1DsK6rA70K2FcYPQ4S9Jj4rLH8rrArmm+c7DiFeEX\nIQXhGxehUrz42lA57TOxTvs+EpZYR++M+P4OTAvCZ96/LDFt4/lQVjQ8XverFS8afxO70p4voAZe\nXcEpGSFoCL6vW/1eBDG90vveGStb40iYAI8TacSvDfcDfaYljrGvxHqxG8NtSDbsLeaGUAbiVQir\nvq5eIbGd6h6kAuwAYQaHYajCm1XzookXqbNeERS2YQ4ig5pRAEQPNN4jqlsgTJ6Q29amV+JecYtC\niEC2baOcw7pf0RPKGKOqjWat7wGP3njimYt9bQGiv5d0HQCUVVc6loR5BOcGUvT7cQ/ghicBANN1\n6q6XMaW+8yJAQx3yqld67TtDwuxCGFesNH0rmLYAylJX3BIGa6Wn39xXpKENgM0Z6JV23QBN+ohi\nafsI1LdtmIu+ffoYaLb9EyY/AxqKgGq+UoGn4Rmrh4wWVnTOO1Cdr3tgs+BkEU6enk74nYJChgot\n9rMUaDYRaR62kh+MWfBDa7xgBitW3zTNgNH1lMQr9HYTo5HM2KnCZdXcZbv9Hvv9HrvdDp8/f8bX\nr19xOp2QxuTKEcvXYe0a1jEsdTgcxKNWrWhNWXK9Xt0zxAw+THFi83U+n11ZYuGyzLDDlEO7/Yhp\nmrHf7d1z9LYIbnt+ecG8ZPcOTmDxvlXjmzXP37V3f5QfpVcSShJQL0ZmVYBGinNoN7iRS6IB4ODZ\nC1S4MdKR6P1bNRPun40CZFkcl+acxesuCCQcizJL6B6Id8H54wPX8wV5XTCMg+AoIrhxh96LDIjU\nm0joKAudS4alDD9pW3mt47gUGibeJv4ZCl0TgZX21e5jLhbYiVTwvq5FEAHrUt6ESySo8mHNhcoZ\nrc5Z7mOlpyAqPIl+Zooky8nBzFjWWeiH3ts5Z2A1WgGAi5c/ZVNu6PtY5R0OWNTmtN0HbB4ZDbYn\nVMqdwguIEse8hcw4zkO5hLGb9wMzu6HPsiwSvlFpwTzPVb9Yhf8EYF5mUfhBlO8uwGTLESjrdpvE\n0yhZdIBpLW1xMZxa81KFQCYiXKcpJNNNWNZFwt2qYgMELM6HlvNhcgXZLwWXmbdHGizptRo0QTwx\n0zAKPsi5CNAM+xiQCyG0rF/Q/VdhOmasS8Z+v8eXn37Cbr8XTO7zWYxEV1OYkfVfcKyFoPI8iIoR\nfB3HYlgaeS/Pd2EY0fafMGOuOGHreFAL2J0US8yD43hFTxPBdYAgJG/PYFEHppcwZhSRa4s9gZ5x\n2RZfmUdeo9xs7p2ebKtXpLrm+w7fkjr13YumsOkzzGBK5RqBr6pKLpg7vPywtO232LuHT4nEYCsS\ntDjXUg80LKHtlmBERKbYM2WU4fxtW20/oiFBtrhaKFyJ8RlZFV5sSllmLPPkfV057GGniQBz1j1K\nfneZTMLeLee2M9+x7+Eu7spaOqXdG/f4q3vrEufte9t69Pm2hv4Za9s0Wgq9G2Po9ljLpg+ktwKH\nZ6Qh/93+2fqU3FgN33yH17PvK94dkVer13V7HrFZGysSCtT2eft9bSDd6+u3zl87hvKz6Ss95rfv\n7VlSJUjsQ/zejWYaOSIApGHA7njE4XTy/JXfW/5QipBvHSzOWROFqRV7SiVmH4VYrkOdR8Lqjt4D\nkVgb82yXQ+aMYdDks+uMnHYlZrQSuXVZPMnYsix40twcnDOeTidRSry/qjU+ldAS04SUJOnmOI4Y\n04DdbsTtesOHht3KOXu4hul2A0iSsQ8kApHb9Ybr9areGBMulytWtV75/PkzJgV71kbOGbtxX3lB\nEEnMz4/LxT069kNRwsQE5EAJzWVzdb1e/VlTxIjChPD+/oHL5VISz48i7DDlk7nPmmAk5+zJ7cdx\n8IO3chYGw9aPa7AtwGaorHaiUJKZPSGbC+tydmaB86oCWvUuodoyrhICQeJD+n5SxZjvuRAvceOq\nGwHsgz3fEqVHF238jJk9pqe9sariwxjbxPDkSABQ7OTiBRQYXzb3Oy5vcGwB1dh6fWqLEYRHYyfq\nz0M8s/b5vfmQduq+OCNLCiytLiLN3REYUnXR7hU2kJuzX9YulC1BEHxubC/mnGURqMyhEW8itep0\nbqCes/Z3Y54jeBchhM3DNpyXMVqxvwBV+5ZZ4geb1Q+BPKZytDOtQP431qE7hw9AsM1ZJIq9M2RC\nlE3dYeTs8xv2Q+hzn5HpK31yAzpdodkBjbGu2E77FPWe7Xy2GWO7r9gSsgO3adrMi81bYbZr741K\nGNMwfwZd2nPtPwlVe4yeNV32R4g2fG13rIWnsX3O1XtlD+tdxrY29Rz2wFYL6Ev7Nbhvz018pwde\n22F9CyjHF1kZ99ZGt7cubOPsnCPb69/gT31NU0pYF8bnn37Cf////sXx0DikysjE7oloTJJSwnIr\n+cOWJWO3K8+ZcMlo6vF4FEOKww7zdEPmBbvxgOvtjONO8MF+v/PcHy8vL3hTLxXz9pimyT1JpmnC\nn//8Z8zz7HWbEsYwhvUjJXJvDguXtSwLnp6eME0zpmnGMOQqJ5phE8NN0XPYvIqtHoZgRsvlJrhv\nAXHG9XLFOJbwnmmQkKn7YwlHtqrn74/yo/wjJYE8N4jRuiJEEC/RcTArOhXOMVfMvWHFmF/E6Jtj\nahOu2UXeCCBansveTc1d6N8BMGWMtTVNE97f3pCXFdhpiCm1PMqMjQe0WdIOGpqJmcG5VkxwzkjW\nVyFsEi4Xhm/IjeyIi4AqEyMxsEShYsB2JiD20GDqwZKNzjIK5jWaqwJFp9sBU8hahrGFeVwlw7Xi\nGBEgr5mVR8ohuoEmy9a1JUio5FWjKZQ1kCxgVlxZMc0ABhcwmbdBQlk7+3zNkqdijSGVVThl911U\ngsyqCIF6qKz2vNa5BMM0U34Mun+ML2NmfU++Z2tDFQqLeabo6kq/VpDz9+x7w0JdmcFc5oy8Ct6I\nGItZkogzWHJqQOmu7RWdb+MnVqy+BsnC5KhizKyYDVdbcnBrC4DkyNR5tDag4e6MheBVvEnGcRfw\nqYy7wocoeOByu8o5GyVkl1jWhv3GwDiEMEiImNr4JX1W581zp7g2VsJfJQCU6jyUhlvcwCqEsPIc\nPRFfGd9KhU8dQBUWlGeLoZ9yYFW78lwPZ4pNtQsXVWnRRkSIvHH7fl0Em7nHsgs96+cfCSzj30Uw\nWNpuRYBtD1p82qs3PlflzePi6bApuqZQ/rfLk7WzEdpu263kFyb4pGLw+qhuIz+RrxCnjWByljoG\nglyfj1h3acMs7anct837pk7OrPSCSph+kVMl5YXspBtmF/463kG9OQsNbv6+906P/2hlKXEM9+pp\nZU9tuTen/0jxfjO7sZ5/1+lztVYNLxr7D66NE+P+a+VD+kS5BgOmeXxGa/zU7iPBPhpCMew7IvJc\nPXf7j1p+4XeZ7U2irpFrK5e5x4PG76MMUz439KO/cz1/Ol3+3Pae3fLIxq9LuPRtv9v+lXEUWRCl\nhHE34nA8fBePG8sfThESJ7C11I7eIM6khoUsTHqpr71wre6YMNMYXRPIr9OE98uE2/Xq4ZxM6J01\nNrmFSprnGZ8+fcKaxevjsNvh7e0Nl8sFh+MeAJTJllBclAiLxr0+n884PO3BDMzzVMWcXtcVl/MZ\nnz9/RmbGfLshDwOOx6MzF3/722/Y7XcggitGzucP5Mx4/3hz5UvOGa9vrxiSJCGz8dg8engxFRJ8\nfHz4PJnF49evX7EsCw6HA87ns4z1cHAFyaJJ2JglZ4olTLO1sVwk9rytAQAcj084HA5u+WBg2hi7\ncRxd6VQRMgXjsVTgNdfHZUhD9Y4ITRY76w7k48XTCkDtcxtb3E/xAoj1tAL8GmBtS/vMvWd7n/uZ\nybmyJqMg7DdSDoTxYkscDMiX8cMZBjRnaiOMu3Mh99opA4IjnB5gvDf+HlCJf/ueoYRVQ+fBekME\ni9kfBQJ3AVAAtNH7qLIlolh3AZnC7Jc5lO8LUbeLP+5xn0PbW4DHdPW1tjm6AxydUXPegpWnMYIn\nxDoNCZyLEgdpFOYm18DgW3u4twbWH8vZ0oKclkh/D4C7B+45ftcCaGVC77aLkHzuG8We7zJI+rPN\nHxK/kzrU7ZaKhc998F8UglZfSsmTXk/TrSRMH0Ygcb1ebf9DX9o57z2P3rP20893/2xX+9HDtYZz\nzg8sPMj/V9fFyRU1boHprLsxoA3jW+19+LllFOHXxguvQV0Owr0fW2b0W4WtTgWUfgczN5ZrwZvG\n3cCLUrplHqoS6eUdsGqr/OWnn/R7EQRxhioRZhANHv4qs4TimOe5UkDE8FPmAWtJT3POHuJzv9/j\n/f0d+93ojKN5dRCR524zLwzxEpFzYXk+9vu9GGAMo+ctMzxieCOGLY347ng8ej2kHh2GiUxoZ0Yw\nEkL05t4oZtVr/Yv5275+/R37/R6n47M/R0T49dff8M///M++r6bbDdgJNrqcL0Ai7PeHv9vC6Uf5\nUWIh0gS3zVUQ7/G8ZE12bNaomsNAhdSOvaxOqUD2LhUa1eK/FqPE3Gn2fQxlC8C9RwBLzEqOz+Zp\nEqOwecYyqsJxXZEpgXioDQhCf1eZCABcEqDDpkQwWlLjucwydhNOMyQ/G1HJ02ReIpxXMEloKs8V\npvNgIbhEWZA9Ye+8rshq9AVAFAUo9+5NPcuGlJAZ7kW23++RpxnzMkPBIia9uyhJsullnrHMs8c+\nn+cZixpADMOAZV2xrEux3GeuwgYzq5Jhufq6WFnXFcSMaZrBLDzTknNRDlN53wh5ZpbIADljr7ka\nmcULYtDxL0EpYsZ5ZsQBIrjFjWIqmRdR4CTFOZEXY2YQB4UERKkBiNIq7n/Y/jXFgtVh2wXsoZsI\nBBrK5iEUWcOyzvKZhdhiwztwYZEI7iU0KXNWYbjuKDsr2bCweE9O6+wGeo5HuMan8lP2gMfwV8/0\nNa86dcVcac2L/qZ4B8BKScJf674hInWRKDgpOU+gSMPaCrxC0cRoXowk9wGp8DlirkSD98nmGlQE\ngnK+4O8aDiNCdV6kRapyYcS5GUxgBt9G2te6Pqsn8nO2buUDu97I1wP+dZ//ibw/674Fak/eewJK\nn/tO9Advj2qr8vherPeesLMtka9u62nn3d8xD6LgPdcbxz1+PMoK7vHpg80Xlb2Azpw8kp9UYwm8\ndI+na9fNDwtQM0ixXjM6ZCpK8DVjmhd/jSCqOQ+zGPZqXI57vF78rh1/7Pujv1u8Dw7zeefduKYt\nr9B7to0kcG9t2/ZY+xH5Z+NtgTKHQB1aMRaTAbbt2331LRkS2ZkSrh+tp0K1Vzd7m4VqMJU2EUN1\nhf86MgrZZvU9JHCIwSieTtUcAuU+C2de5qvwsfpYIU52n8VJbeZI+i1G+14j1XVuS38fcNO36o3m\nzvG1173ZU+Azi+HD09MTnk5Pvi5tiPhH5Q+lCDFgbEISm+B7B5OJqsTOJozOGRjGAQC7IN+emadZ\nmIahEDMTzEu4p6sS1YRZPSvWLMy5MdcW/sGIsiUJJyK3gtwfds78P788CShlwuV69twYnz9/Bq8Z\nt5t4eDhoVoGC5QiRxGgLTqcdLtfJGe1Pn59wu91wuVywrDO+vv4OVtB7OBw8uejT0xO+fP6C3377\nDSklnE4nB6JRG5hzxtvbG8ZxlFjeT0/4+PhwAYMlVU8puQfH6+urr8/lcgERYadJRc3d2QCBJVm/\nXC44Ho84nU4Yhh14HAGNI5q4CGILCJUErJmDGy7M0gZlbzAApqAcqYGIJQ7LVN5hqpVr8QDXILR8\nFoFQC3Cs9LxCWqJh8x6FpW07vRI9mx4VAzUggtmb2sUijVAAqsCW6m9qxEBFzCjzt23Xz6kaIHLe\nEmXTatvzltTe4n5WY+Bt6KEuUAv1rTCGm13ALO7/RUEmTG9Gjv3gEjMyqkwiGAezh8SSOghQQW52\nhgViWQYjFMqsmBIEyrjo2GWy7oO7OM1ujRP6RkSysRlIJGdFhBPG1pC7PcM/z1XlDCoMoc7voNxi\nD3R9Lxh1gO9zuH0O2J6Ztr34bPs5gC4oq4TK39Fnf077SdrvGJ6LAE+u3WNGANkHAwXvMjuLKGdH\nnpNPSN8Z79xBPp7GksnW04Q018sHVmQMWN06NYEhdpYMj6jqYAwbBkvqDiCzAU/Vc80jRrvbOanO\nvuvvSkCXzdZ3blb7aXs27g3icA40kX3VPW4qhOkdNnuwZ4XWG1+smUKF3HmoXjuA28uSwzA1eWkL\nVsESppMpSV4q7VOPgar2n77b0qrYt5QIOwzAOIIOB+wOe/B1AYOxYBYclEjFRBkrSKx/wcCQsHAG\nrbI+xbhAcJApNzgvAA2es4OZsdvvkBXjWP/GlEQQquE70k4ERLvDDlnDca5L1pCbgpOye2IMfjZi\n6E0z+DClxjTdAGbPWTLnFR+XC/bjzvs7zxOOz6LgMCxn9ez3e7y9vbmSZ5omPD09Kd57wjRP2IX8\nZ2IVmHGbJuz2e1EoM2OeF/eeHdMO87So4ORH+VH+/uLHusIxgAss7bksOQbHcXQcmENIJ4YkhHZl\nR0PPPOkooEZhjZWvtpZV+ZiGoRJUEBGShtkFRNglIF+8VogIgwojrtcrbhrWdwJwPB7VWn9GXrOH\n6816RnfDCJAJ3Fc3EDCvjyElUayo8J1hnlxwJeU8z3J2k4QMm65XVxgRUHm4LZzdK4JZhGCGHU3x\na+FLAeB6uWhialGKzPMsPJTWO0+T8qWibJjn2YmM5Tra7cWTTYwdMp6OR6RhwDzN4klBRWGwrqsr\nIUxpY4LGIvwrioGyhcjD6OriKO0l3K4XMK9VPiM2WsRFmBU9eWeNLGB17oYBeV1ABAlhZrjK+qDt\nm5I8GQOR2ZVMgldi7j8UoSkFqq/CJgLEwMeoPJc8DdloLoqHUPQApIDhGCZDbHhGqEdBvMJzodEm\n/IzCMSLCCs2F6eeUwWbYwKpYoGhUNyiuB0zxInTPaLwlcqdw7gRkOI9+vYpgKygi49rrb/5dMnym\njRYMQc5H+H7iWEddCq6K91HdrghrrfsFeN3DOLHefqsI+6X/fq/eb/E2PR6kVdTFZ1uh3732ewLk\nclfGvx/X0/v9UdnILojQkywULGnGk305Rblf7s9jlJv0hPBAR/zwd46j/SwK3OPf5RkVius+pnA2\nYv/krhEj3QQR1Ju8q9QEP6M9GYnNQfzZXS+ulQX36qmE9k0xxX47D/HJuF5tPd/FM9/po51NlxcB\nkteLy3cb4Xh8v9eOPRN5mgavtHzz/XFsd3rbH7b6m/eMd7Mx2JmwttbgpWb1mZzSDZOT7rI7y7s5\nW+33gNMJZlEIl6szrjM7v9zWK/0uu6Q904/OsXz3uM+lLyWfMqM2OK1Z3iInss9TSjgcDnh+fn64\n1++VP5QipHf4enkW7l288XI1yz6LQ20lkcWNlHrs++IhISBiXmYN/ZSciTerwGFMAGfMCthYAXFM\nKr5myT9iFpBDGr2dZVnw8SHho1jdbC3cg4WcMo8RyQPAm8TeOWdMM9zTwsYYk7lZvQDw9vbm1pC3\n201iVaeEt7c38cbQOd3v9/j4+MCXL18AwENF+EEnciXL29sbALGQlLAWe7VMXtyC6HQ6AbB8ImL1\nZG3nnDHuxD3X5qaNXegJ780hlIogLUOE3HmtvTji3nGlyFBre8tzjUA+vBstNNpD1wvbY3uxt5fv\nAYboNWPttgqRWHqEKip7Yt3xu7a/9kwrIItggZrPtnO3BX1tEauvxwClV3p9a3//5gUNSO6YuD5A\ncenW/nG7Dg1RezhODp+RMUlceSPdIyx5XYUhQbnTuLP2j8ZoY0ADhkiTh4oVpFkpbWOKbuoJxYT3\n7f5t94/Vd08xx81e8nE1Fn73zkmP8dAvKpB4773e2vXoCNABh+33j0Br80z0CtsCqfvnJdK89g6K\nc+5eIcq4JBCu50t9Lqj8oAZ2tJYe7djk53YPRlrwCIx8D9NpdSdK1d9yDPugrewRRaHO5AbQd69P\nm770H+/tw/4Y7EyU0IL37sdH9bRnykpU5LklaIeOxDq6bdw5Q5IbCuLdEO68SDslASmwHwas6hmy\nMoNyRtJ464ZLLJwJkVgn8zoD6lVrBiCAhOUUrKChrkKbl8sFnIphi+T1kKTlROReGoMypb///jtO\np5M/b0IsM0QB4Lk9pmnGvCw4AcCQKnoreUB0vKrMiH36/Pkznp+fHUPZnTqOI9I4YkiDhwCT8Sec\nz2f8018Iy7JiGEZfJzvbdoaXKtHmj/KjfH8xg41tYlaxRHFBaSJ4LrhAlyzM7DCIsjUr3feEruEu\nbL3vV1OkKL42LD4SiQW+KUVS8R4YxlE8GZYFzJB8BdoWrSv2xyPOHx/4b//1v3oOQ8ByTahwU/ux\nqrEVIYGzemWYR4KGL7awW6vyH+axcgt8zapJrM37gCBJqc3LwGc0Cf+4ZhVIQ41clAYzROgu921R\nHMX7Xc685ER07OYiZ3iIoUIH5fPpdhOx7rpiHAZwXjAvs3vLEyWI6lXCVYlXfRahHVG535mLYYbx\nHUZXEaItqKHZspYwOK2Fu2MSFZIvgRfLeQXAkChlQq+z5kbxOctrPTcMlBCzRSnAauvPCMZSZLtf\n9zXstYJbozDFsCIRwCRraHsjhX0QLZPjPQ1InPIWC7khSeWVioBL+jzhRkAW5lUas0aKQNW9wTn7\n2q3hjBlP2xbjea63Gxbz8Kak8pC6n+j83Qq8HP+pkiHpvPqyhLFQUJqUDsH5pVgqL3h9zK2cHfej\nwjN2d9j63sNSvXG1n5V9PgR+yZordDs+C2x5p1ju9ed7cJtmoihRlbHlW1ojwR6/1OPfYh8ezVXL\nz9j5ure/H/EEkV+M7/b6HnN+9OQAj/ZrW3K4r9q+VHXajcFbXtDasMxPgsXlM4sIU14I/e+dx6Yv\nldwlzs031sTHp/dY5Ietj7H+KGdauZahRL6y7Vf8PfI43e87fWA9nx5avMtrltmKnp4Wjq1aXcUS\n1byEMfiYAA89aLTPaACi8jrkc93sIzYluyr/6sxf/k51VgLGSkqzmMUYnmydgEoJwlxkRu2clJkJ\nLXO7rq1SwsYk7zLqfVyvYS3D6fH73T45bd7OHRl/jqTTS5s+WFtp867NbW2McDwcPLLPo3umLX84\nRUi5IDqXnW6gNbi4AvVhL7FsGVk3+qrMqi105iwhkYAq5rUACknSfb1cFPRnXG8lmaVZIhHBvTiW\nZcHpeEJmUYzcphuOR1EOWPLyw+GAt7c3MDOm+eYb0QQB0zS5suBwOLiV47IseH19xZfPPzngsUSd\nFtLHBAopJU+SfrvdXMlzvV6xLiVh+36/9/BWz8/PVSgLe+d2kzArllDULCYttJXlC3l5efEEpCUZ\n6k37skdKwPU6bRRaOWfkdcXlOuHTT198s4NTBYaKq5weXHNXZ8bCJVdMDCkW95NfUAHkWrHYrbaD\n2os97sdWYRGLWQ5VjEEYa7wkWyLQhvbqtR+/awFbfLZ6z37PefNs+057iXtdyiDEeShJ1PqgowdS\nevW3n7XjtcvbvwMjho2KdbeXuwAI+X4YkjO3MIbM1qnDfFSXeXy27X/jlilWIkJgW2WW1dsFGBUR\nvF/auYvFEzD6c2KdNeh82ZnxsFQdYt+2L3t+u497+9HG1u5zr8cBBGTO2rF2xvRov8ZnJHJXI3gO\ngKz3Xq/ORyD6W3V8b6nmEdjMlX3OVOJYt8zd3XoZIEr4+PjAENeXZW/2YrTf2wvl7398Tr59vpvv\nUtkvj2Y6AreiNIcnj/1Glx2A3vvb+lb93jDeQPEqLOd3W89QCU24ooH3mM545/kZQvVxc0fW+Xu8\nf71xNMUs+wARDh6OJyzXC1IC8iqGBmbFzMboUbGSW3PGQOL9Fr0pTTkwpgFLXgBeMaQB8+2Cw+Fg\nyM69KkxxsldP02VZsMwrjocBnIHT8QnXywW7NIgwMyVk/TeMCTQMeAteubvdDswsHqdEuFwuGMfR\njUs4M263CYfTCZfLFS8aWsuEf8N+h6Resbvdzg1gvn79KrnaNESpGXas6yohF5k9p9nxeBSF+LJg\nmmfs9nt38QfEan7Q0DxJw8D8KD/KP1KY2Q06suY3o5Q0bEdGXoE0jpqPY8AKxgACWbhe85g1xn2X\nXLBp9/hAGkKXFYcBoCRnOA0DkuYVoGEANAffOAzY73bYadujGTypp4I9S0n+DeOABPHyP7+/41/+\n5V/w/voqfXMhXPJxJu0TZzGIck8xFXBHurquGcNQ6O0wjGo0BucdijBMilmtCk1iTyCNDuYE1DBL\nP5OY/gxW31H2OksUA1dKASAKmGllyfhMZW1tnUdbB6CEu9IxSSzy5Jjf8BYPBasaLYmePTaOguNk\nFuy+t/Cdgv9R6uKtcU2s0wX4QAn7CcNoSla1j4lSCeeBLIqSYZB2kbHmIIA2xQMITDpVFMfIlQDd\nlUrSUT83JtwSXrLwPDlnjCnViiLF9BaVwIRoouyBz4/NC5Tn9J/WdoOH7mG7FhfaXBbhlirkgmGk\nY64oH/G1IIwDME03yScacFZMsB7b93mK+NQ/N8FijXsKN12wOLPwRhz2Q4t9rc2WR4ps4Aa3hXfd\no7fp5z1se2/ey+f3BW1VWNrv5Nu+h7/pfUdB/mE3yr12vlVnry8bnh/hrrozVy7fUL7iEZ6NfGCP\nf3sk7+g9G2UsbXFlh73TjAfoG43GPTUkl+EAACAASURBVN22uekTQVP1hPuVWQxZ9ELzdvUwRBE+\nEe6O8R6P367DvXWk5jNPyN6Zu0fn+96eje92ZS5xFhta6t+lEKIs7I0e/e31wT7b3BM6Vqc38T3b\nZ9Uez/XGIIIZpMY9a/2p10M+lWu+v8dJ6zOFmv9NxVtfKmryQvoVz+GDMCm2v4i669qbT6860LJ6\n3foygN4e3O5dGYfLoDT3CRFMIuZ0dyM7aurbypZKjuZhGHBUj5BxNxba8J3lD6UIsUW/e9E9cD0U\ni6PmUg3hBuZgcZcUZHqIIS5C0WVZkJcF548PTNOEZZmQ1HLQFA77ww7jIAnQp9uEvEg+j3mesaoV\nzPs0IYNdcfL6+gpm8ezY7XZusb3f75Fz9v4ZE//x8eFxuC001bIsnthcvDk+8PR8kvPNhMNemPOP\n6QJi9WqgAYkyhn2JyX29Xr0+C+tlISSmacJut5P8JYcDPj4+kHPG6+urCymYxQ3QrLWumkvFYnqb\nAoWI3N3cioX9ImYcjkcc9jsc9gcXGo3GnDUXzLoWTxf3HEn1ZWBj2hBYXdfNbmNTcgz+fksonclR\n5iI+U1l8o74s2u9iffcIjc2PXfQ9oNg7G+25MKa4vcAflTjOOG8mvLHLrHchtpfjRunFuZNAeWuN\nsblkCZvP4wV/755o6ynWIJaUUNdd3x0gjNrQrCM8pECxdqq+R6mrBdB2t7Tji2HQogDM4jk/AqyF\neBWGKM5JeQZGfUFk+1TJUvAOaQkdYajWrUoK2fTBiik/e/PudTnRBwB2IFGVB+vYnq943tvvqvea\nuYlj7fa3AUv2fm9NIkPXFiJywby/G4FjAAGx/jguKx478wEoHUDIRBiIcFMF/iahbBRY6Hx3gT56\n57F8X3mokCUD3L7zLabl3pmOc2xtb/sn28WfI4T9zmger4onfLW2sN0/m74qqIuFCNXctSHLIliP\n9/Kjtuz+ALn/o98PBchv93mJi61rUT1Vjzf2cc3KzKYkBhKHPd6z0OAbrx4PnyEMzJqzM77mKZEp\n+17e7/YgFLo43W44HEsi1xhqJKkA1fJwSBgtiTFvHidGsy2fh4X8FDywYjeOWNcV+/3ecYaFqso5\n4/39HT9/+YIvX77g4+PD3avd00Xxl3j+Dvp5Ai8LTnt5zoSNJmSdpsnXXUKpTp6YfRxHiddvVuqk\n7S0LdvtDde/buYh//yg/yj9SxuMRx5cXwRzj4DyHGGg9YdC8Dcuy4njcYxwVl0C8udNQ8m4Mu1Hy\nS4Fd0ZCIkAbCkMTz/Hg4uiAoqRIjDUmVIQluJZ4s/2ASg5Rk+EKE10ManGXjyFDPCz7e33E+n/Hb\nv/4CBouHA/QedivBGSs0zBGZUZHdNfHOJVGCoLSV2QT+DOYVHCxCc1Yr9oAjkAAJxyR3poUAtLuk\n3L019rer3u8MW7QMmQRWfiHyMWBIMvSk/TNFCLDwAgIV4x4UQYuNd0PTK/wFFebl6j3Hx/pARc9J\n+rOu2UmQ03elS47uvG3e1gOjpSXkMbMYFa1cvFQcn8gPoVMNTyV/i7LEckhFAZK3hxrzMAfs0cEd\nxucsdi+XKQOj4fl879oz5IJq4TVq74ayHPewzmO+Cijra987BlRew/tnzxu2hBhvXG8XYFkw6NyW\nhNKtx4cZNthaxv7W/I/9tv00vGN7RLFxRsFQ93ie+P7fSx97QrxHz27xfZ1Lsn32Hq7t9bflIaT+\n/vvbvgTDGcOAD/ZMr67v7WvkYW3Mj+beQtX1ZBXferfl4wG4H9i9lS5VbTEw7N04d4Gvsmdbvrft\n3yN+Eai9Lo2vYxbvQz97HO6x0K9H+7Dlse33yFcY/bD8EPHZVubVqzeOyRShPdlVrK9tpzcvm+/u\n7H3W74x+gWqFht1T7Vjutdnrl637vZkud1rzeWdPxTZqXlM8F22Re3dXPKY2bv8OgcZR2R9lnOtm\nLX3cocdyZ9u9bTdwh96E/29kPlUn+2va7t2NXCbc/lR3Up4N8sC4r8wgxPjHai8D7iXCLCE9n56e\nxNiNTeH1+F6P5Q+mCCnFiPM9Ny3zYAB0I2V2OmHP2uTbhVIu3ySWf5r0cxhHf1FclTNu16taNJ1w\nmydPPP7161f87W9/w6dPnzRpnQjeb7cbEg04Hg+gJMoGJgk5MU0TduMet9tNvD/mCYedMOAeK8/B\nnShFRAmzeC6O9/d3t1A0a8Tj8Yh1XfH+9o5x3Pm8jLsRyGIR+f7+7oy8hYu4XC6uMHh6enKFi4XA\nWpbFQ2oty+IhuoyxuVwuYObKmtO8Wn797VcM44gx73CbJccKsjBlu91OhCAkVpu36xU0ZnzRtUnN\ngYnxZsEkoSxIExXK6ZE1s3XLLC76pBbVEJfSHMBEPIgAV8Ay7pHYFyNwLRCPQu2W6BsBq8JzNfu4\nBbQ9otUjQO05sTvZwyoFrfs9gNmCkF4bfZBU19EDePGdODdtXyLT1gOLFbFjbNroCZC8LtT7qf0X\nCa55QcV1LsIq8bwSwkbl3iHaeNuIJWLJ+9L2qxfyyJP/mRdJFwTYvgNiUq92fd06h4ogVYjIgMyi\nSJTYA5KYNDqtPALK7Tji2owqjGzXq33O/rYcMxHMRwFxXIf2fDwC1fazWCMWaHMPVPWAZgUEU7Gu\njGMBirVN95yG+6S3Pw2AtgrDOJ4W4Ld0sDozmT1ZuOVpimPtJRVrgUd7nuRHD+AVIYKE3djOXTvu\ne+u2mZfmjNie3+7Nzp4kgGBJKrdju1uC8KTUt+0X0rZNwXi1Za21GduWsfSYcw5CgXq/R+WG1SGh\noEjzltQMcTVnIEs+o+0QYnzYsoclL5HRjf2+hKxMKWHSe5GI3FAhgtZxHJFXScDMzFgXCUmVxhHT\n7YaBSkgsq8fwlt0ZR01obvjC2jaDiaenJzfCmNUIxBUf1yvGnXixvry84OPjAzfNJ/L8/Izz+Yzf\nX1+LUYaG7bLxWxgr+1sw0Yh1WsHL6rlEzPgk7iNLsm6KEcNOwzCEZO/iFbwsCyhnrFQMQcz71vbO\n95yRH+VH6ZX/4//6P/G//ft/L/tPFXJJaddhd8CwE96AM4MGQhoTeJUQVWJ4pXs/EcZhEE96wIXt\nroRnwxk1Pcl5VYt9Kt4VQDG8yDW9sZvSvAD9vsziUzGMYhz2+fNnyVmySn41zhnjkJATxKNfCCkY\nWdJI5LnKX9GWzFkF9xqaCVoFi9JSfhf6YUm6C4oI9G0YwMjIIuvW80vBDk/fT7VwGYj0E5q0uggT\nAXlnxKAeh0U5UWiqNLLkDKxZBUoyq9nWyMalc8vo4RRZnwyjTSa8MSX+CkCMNow+DGPIt1iDR6dF\n5lHS5RdCv5yWhO9Wpf/mDbuGZywklHnQOU2isj6mu3JhpeFG7Q8J6186AohB4lo8biIuq2h6Soop\nt4YrLofS9WZoTh191/kK/n7RTQ//2lQD9dx61IQGD0Q8nXMGVvLE9tDwbQzhceL7rGegjBFVW10e\nLbzvYrHQf18nO0PQ8x8UkJEf8nF4fx7zwt8KD/W9peI5w2eRL4z13+MtKoEiM5BLvoBq3zR19P5u\nvvwmpn34/jeet/vCSsT79nd1h3TweRxjVuMZ/+5BP6P3wn2jIeOD+3KNb419i8Hr0vItrVxGewAT\nw0rgQfHw5agA5+qaqeq4x++1bVfnRh7UM1vmsbqHqrXZ1mX3QTv+tu1vzcu9Z9Dpl7fh3S88abvG\n8Xy091+vzZ68yLHHpn9qgMkM8wbx/jkrdV/p4wq0wt5v5AuRlsWxo+1j+SPMWpRx1Lgo7rsYFYUZ\njg9s3LEfsX1Go9Cpvt8qgu0MtvPR7iGgr4CrZCmbb1Hl9g4vlfuSyMdn9Ovp6Qn7/V7nrd/uvfKH\nUoTIwDsT1JT2sgSM72ekoSMkQdnIRuQzF9C+GtBmsQ6ivGKaJpzPHzifPzTRpjC6t9sNh+Me18tV\nLj9mZa4BGpK4os+WzJiwTLMoN24zTqcnz+kxkSgJBhLFguXU2CnTsiyLCxk/Pj7AWWJYA5Lvw5QQ\nT09P2O32zoyn0fKFiFeJha9KSRLAnc9nbyvnjA/1fLH5JCK8vLyAmXE+n90zZK9xfI3xP51OHnLC\nPEculwv2uz2OT6eqnaMKWCxc10GFH8fjEZxGT95Oubir2dpKUnpxzV64JHdv1xeAukk3h2NIyCpw\nqIWeW2v3dr+0bbUgKFq6tvvTvjcPj7gH2/bai98AV+oQi7YYwG77H7/3C7LzXK/9e3XFyzKOox1/\nmZs6Djqhfi/W14LP+Mw9oBXf7fXThJVxnCBC4hzOey00BeowL0QJygNVz+Rl3axlVQdV3GUFWNp3\n7t15dlfF58ueKK6Dsc7cvC+fBWG+AbdAcKv5wXY9HoGg3vr3vrc6Vk3oGNPxEQmsjHuxp1y8B3zQ\njNvnggjtzoxjHNTizyzUN+vTAIB756L9LIU2/I7onN+eV8636F8LVFKSsICrfIjb7SZ3TvBGigyc\n19Ppd7/dep/cs6iK/Wrvk8f112PrnXd795v7kRxC3m1z864KB1HNe3vfFHBZ6qn79T2grE0IT1q5\nMQDVWmx6Ye/oN0SoQ6vcZ47jPbL5DgCQNDTWEYkSljxjWWu6YEye4RKnUSSCJBF4Mpa8YiCNiwv2\nPG0WtgooDO/tdvPzaXnLxt0Oy7JgUO9bAP6ujc/ynZkhi+UEOR6PeFdLclPAAFClhBiifPnyxT02\nzKPDcp4Bokjcn46V8sM8gddlwaAhtj4+PnA4HPDy8uLKx2manN4POje3acL54wNPpyfQbujSynt7\n/kf5Ub6n/M///L/gP/yn/wii5DkyyC+thCElwEIHJSpghi3vArBnFoExzMOi1G/U1ZShktewKEhG\n2mMYUoVDswoaEgGcaqFBRqGvpjwgIvCaRejOjMP+CbvdEfv9AdfLWZhkQGi9KgA8Dxqp8I4s94QZ\nsUDHanemfF+HLlVlO6zfJtSFei+wj9nr4yI4t5FlcGVV+j3HuXdfZ2YwFT6oxdlrDjnvwlqKglxz\nR+i9ZX3qWbvq0PW7O/yUUYeUKl6md1dJnxjmDTSEftcCsfsYysrGkMJ4GMXU5qXeGrFUGA2olPat\nII5NMIYO7e1gBr+jOQWJV/Hs7QmP4/xZO+jUfa90MZSNw+aKauFYbcxS82vmcbMEY4B/SynsjRoe\n6hyZ160/l9Jm3CDaeC33vJ7L49s99wjz/D3P9fjL3s/2mXu8eYuJq/cg41y/c/4dT7Na0gMbXud/\nVCnztB1PlCOEF8o+vOPV6nOIEpoZqNGot0vlPrPP49qV+ez38V5pz0Fr0FqPfdv3WEcKfWV7huqw\n63IfBDnHd/Sz5fvuPXePN3r0d3y34rE6fPO9vfytPvh3KGu74W3BHv6wJ/9p80TcK/f6RHFNNu8A\niRgc8oLU57s+673QW20fWgPDyGVVd1ng8aAtVfQwkuROW0XO8YBORdrX8hM1ib8jU6n7256Ztt2e\n3KL93epq737L/1L1A3XhLAorp10puRzbZU5/B8/0h1KEPCrtZbj5Wz6EygjdKoHQWXjAk+O5MCJs\n1kSE3377DdPt6h4Qbq04JCzTDB4EGFp+jNPx5B4Xb29v+PTpk1suMjP2uwP+9rdfsOYSX5ISwGuu\nwl9dzldcrxccjyeALb71gESDh2FY5/+fvTfZ0RxZ1sQ+c/IfIyLrnHuFXgiQdkI/gdBPrkWvW+8h\nLdSAFrerKof4J5JuWtjg5k7nH5F1WwJKSD8nKyJIp89u8zABOeN0PIJYFDHH0wlLLlaMaSAP13C5\nXPDnn396MnPLIzKOI/78809n4s0q08JhmYLEFDIWeiql5AlKmUsYr50KMX7//Xfs93u8vb2BmTHd\nHx5Cx4QTNs7r/YGsBDYrMRUVAUTqAZJ5ZUG2cF4RTy0AW1RZVVvjBwFlB4EbsowEcE9IyVwSL24J\nCHtC1NhWPM/xTLsVTyQeDBlvX5N+Cf31AGn7/DNCzF5bPYFrbUWzFqRaieFCSqPyz4jtj4R+fSTR\njDMXJWVsy86InfFxlBAROYt1X2GaRCnXEslbRLsxAb2xt2eKNEtmTfABwBYxWNbdCLLqPHXWxYUG\nzTifhXnrzWur9OoYzCOUcAMWL1jWiJy6j2eyDUH3tN84v3COevOIc7UQZha3s0eEtGc99tkSXhHn\nxHFETxWktVVd29+qfypKnTh2QEIe5MxILAlgl2XBrtnL3vlr57QYUUbGtMuM2vUkImQVosR1j6Wd\n/8+UHuFV2lt7Q5Vvnre7gvM/NZYG/hmBZ8R3Z9z2vX4BCm2Y6MSYW0acg+1POF/N+Y0GH+1Zj+dy\nC1aWuRVlysvrK+ZFlBAzKZy0Oer6jymBzYNDx5tzxmHcu+WweHsQxv0eOS9udGFeoYnEcj3nLJbN\nOWOeMubpguV4wn4cJeQWibKkhMIULxUaBtynCfx4YLcfq/xl//znP/HHH38AAL5+/YrdbueKm2EY\n8PXbNw+/OShtY8oQQDx4L/eb5CMJXim3280NNt7f3/HlyxdPmG60zOVyqbxe77cbdvsDrpcL0jBg\nbgwhImzg/P+WeONX+f972R/22GnunZFI43CTyesxDgOQWUJdEoEH45cK3wPUlsCmtBUYIjQ7Qy22\nd6iEwCCAyVSf7K0Z/e6QKtCvlj8hB1okqYV/5gWUEl7OZxxPkh/IDDcsYA0D4BiOJPAL0j8pfS7P\nesZCAtPM+1dgFhBxugDg1npxhZtkAps4fU27hW87uL7lYYw2nufZc1MxGMjs6wiwCkuVdhpqb9MF\n4qFAYY4Cgwq/EceUtQ/SvTSk0jPmcppAzwIAzCwhok3ZYnvWrouhu9XzhjdpBURtHdh5Z8FpJmyz\nuRnfnwyncmg79b2IIi3Z8m9FFmsbwmVfbIwxr0lo5xlNRCiGAjaGupgQqURLkCAI2/kTff3UQLIN\n5xbXNNIMH9FuH533Z/WYzOL3Cd9pv2/wIu35i3V6d643J3tmd8zW5plcoG13a2y+9lgbR8WQp+24\nevRvOV9lPSL98PRMdXiarbEzqTI2cwVPfYyrvrniS7p8efOzam9jTPHZmgfb5kmf0buxTtvmNt1e\nwyCDWQW2iJHQvCx4TA+VV5hnOrpntze/NkSUzJJFYUb1eFJnej381OOBC/yqFTRbZesetXMA9Iz3\n6lvdYqkGInK6nrnkEf3MPW6fV990zpGPl+DpEggllQKDqs+eyQ9WvBZR5e3WwlxfJ43S4mijvCnt\nbMBc5wvbDQu0Ve8cl3PUhpQ0eKF3OPL8WidhzT/2x4Yn76gYMSDksm1wadz32F88E+fTCYf9XqOx\n/JwSBPgbKkLWSBROrLV1yqErdVg/ihe+DV9BSbWTuvF2IZecQchYNBzUqFaOzIz7/Y7T6QRArAZN\nUQBInN3p8cBjevjYzDI3elLc7w8MGp9XgN+CWRUIHlt6YRyPEoZrnmeMw4BlXjBlCWVlcav3+717\nYgy73Wou0yShcL59++bMvAkWbG3MY8SYeRuX9U0kYSjMC8TW3kJ8WdgIG5PH096LYOB2u2nOlUUS\nl6qihSDCksvlgvs0Y9ztVFBRh+FwRMUaYgoNsiC1xIqEQgMs2tBMLTFjRHT7TUvwtIxCJJ66yL8h\nKresEGKfVirgyyV0igP9jlcMN9+GxqT/J8Rpr2yN8ynBF4C53EX2ucn5FGTYEiuxnS0CtO2j9z4i\nRWO+OhMTxgGp2meg5GfxeLsqOGg9c0wxUp+j7PPTjoCghImAvkWu7RqvMV5dyhoZUq8LJwIthRBj\nlhiL/j1EkG0M6IrJQw1jW6Jxi7BukXHNBMKA9IpYkve1JVs8B8+IfK+DNaO9VWL4jKgE8fWJ4ZlW\n46wZco+0EN+FedT3wQf94bxaJiHnrGHFy1gi88b2u+Kxth1/8mSvQeQxo404jSUyQyXRdnnXIwC3\niLveXNf7XtdpQdb6HvXhQ12nfEt5i9j+HDNVMXbS0Ga/ge7sEqvl91LRLLQzs1vY6vBW+KUeP1wQ\nuBrzat/JYZ4YLgDg7GGfTJE9aiz2rAYNFj5zyVnDi5RcQaOGtprnGWkA7vdJkybv1aBBcrYZE3TY\n70EY3GPUchyYUsHGm5TeAModtpxlBounaXLP2d9++w2Xy6WqxyTKj3maJPSK0jjv7+9Khz0w7EYM\naXA6D4DTWv/4xz/weDy8PgBX8ry9veF2u2GZZyyA0GCQMKnzNIE1fGnNjHyMi3+VX+VZScOIcSdn\nftHcDyCoEYbkCZAQTKUQkVrUkBuDgfV7ZpGuGtueBKeRBvY3HACgWPdBBa1m6NUwuDmXnBQ1jVdo\nfG9T2z+/vuL19RVf//xDFTmLhvdSfg4F7g76u3n3Wx+PafKwSg4fjWG0EThdWRuDWMmwefdW3/iC\n2irf2o0/fW6h31hWNH2A8YWuDXsAC+XM/ow5uzAu9sk5yzlgXtOLzTgLPaAztHVJBGbqfmv4udCK\ngX/awNvaQh1qjQDm7LyDqdaYGQOtvXa79KpRgw3tSmQGHNKRhZgU61O7B+VorOUM6/1JauiUbJ5s\nvAd5SOZ6TQt92Ct2d3p8ZeSr4hlzqoGKAV9bfA0SqWygeES19ayv2O8zHBX3gJ+cr8gDGSxo17S6\nH5/ov4dDt2jQdj97vE0vdFBL/7fv4++Z2e+LwVTLhWPhdBHG0xt3dXeNzWO5C7mFq2AgSbjC+J2F\nl0sb4419Vr8HONfCkPbuAVjhlN4+9fjHdiw9ns/Oc2+s7VR6a9c7y+bx156Fth5QK5iqs6v5PGWv\nZTCZGffHhKPK+0z6weivYxxf77z6JKkZV2eegB+RLnxfrx35XvfWMP7dO/PdPUbNg/f2tzfHwBZ1\n61W4rwPr4zctT+bvYFNNq7CevXaBGg5UYSBtDRDWvGmnHXds278J94kAlLiaev8YsMTjBQ72x60d\ndJ/LPkMVP9KP4UgC+QSqtYzz5DhTmYHANpOvP7nzYVyUUvEUjPvZ3AGDk3ZHjXY7v7zgeD5jGHcw\nWdHPcE1/U0WIb70TWJ8pZV1rRUiA7NpqIFQZHjqGmZEglnzT/YGZJFfI+eUF+4PEe5bwBzPmpeTR\neDmfkTPjcr1gWRZ8+fJFvDuuV7cqfH+/OIPOLMoEVisdC6nAzBiHHXa7neQYMYIyEXbjiNv1BpD8\nvuSMbz++46Ax0x6PB5gkDAQzg5fsfVuCUVNW2FzN+mEYR6SATE0gYUqcyv0cwP5wAHPG9x/fRUmj\noSmYJWdAIok1/FgWgIG3tzcVjEzebyIRpuz2e5zPZyUo1abMiFbTFqfkYu2okECyZIJwBGFhwcSS\nv83pQfEYhPO2/bc9ixe1S7B0EGaO9TYIsx6SiUQBAxVhnJkxtgi/02Y1xg5Ci+Pw8TYAf2strH67\nHj3iLibdy3HdEUArFwI67n3bT29PujFrnbmBMCQxMaQmfKRUmOXW+wf+r4xyTTCxK/XkeWUfj0IW\nxHUs7F1pE0jJ2Hjqhh9w6yGbT2HbSjsO4wAsXMcWDeMvduiKzHPcT8hZCfA3Eo52Fr1N1G7aPYaB\niDAMHi1ZGYFCDDjCR/kmsyRs5iA88dW0vQFkBkSNNXU9BsvvYqUllFNKLsS1e+r3oDnrFeyBMXN1\nTGp7X668ndMiEDA2X5B+qokPnWP/LlFFWEfGKrGciyUv1fij8iTuUbsWgB13PfMmhe+smY1T9udJ\ne2E/5Rtps1STsduFpNCf3bEe89QS6BFWlrHA4+T7uiKQAzZPkjvVg48yQv+geaFw1eYaxu3zyIHI\nrz4na9lWBWVV67Uscy4oJFGNJ9tvyvAK/PKwBJHIDHhiWTL2xyPSOIiHpq6rWAdmpGEQ5cOSJUwM\ngPkxq+UxsOSlhLnR45dzxv6wR0pUKTRIPWsF/mTM04RhGDHuRnDOEsOcGMsyeyJnZlR5ypjFGzOr\nZSyRKBws54d5nzCLx6zlDNntdhWtkJnxmGZd60UEuYMIW43+ud3vYJ3Pt2/fcD6fXYlu87LwWW9v\nb55TbRx3eDwm3B8PEciyhPmKR6HyFPtVfpW/UAgJSb02RPdR8Dwzu2eI3CVSEqHEyQbgv49J8iVW\nwiIkMDE4KUUVYLhZOmoTHi6itf7biq2fULxC5HmS6EMpY3c84HA+i7dJUoMn9Z4yDxCjcxhF+GcK\n28iMO73YCiAa3rBMrNCSMt8ApQMtWP5bcFXPO7ylH7fo/nZ9qjVLa0FPK7g1z5xW0er7qTSX03Qb\neA9hfhFPCCpc48s4fqlnirTCn4QlrOdILGdMacN2foX3ySBej7WlC4ww8+ZX+wUjtMCw9j0rFwwn\ny76vDQfEnZl8LeWe1SA8US2E5oae6+2zP9/ABUbjEJUzRESSgweNIViHhwILXzRPswvniYuwabUv\nnTVu19PGVfW9USe2E//eWotnfXbP7JPnvb5730S+svf9s3mVe1pCoQlMFDhHxquEPdqau/cZ2mnn\nIHwRiRcH/NgHYauGKESkLLeLQjH39BW4UYT+cdU8gkNou+X79BfhwQCnDxl16Lz2TsTv6zWq6eBn\ne22LZ/06rO/AmE+11dSNhtSgpAp3wWUZKJEgmra3zuDT8TBXYXUz+jDboRfR0/3e6vvZ/YvfbvFh\nz9pM1L83qTyocE2LK7fuSsvHGJyz4v1y/3zZ7713jrfsuUWziHWbuUqeqyIL6p7puAb+PuRe64y1\n3Ol1G3F94k97b6kFpC2gOh3NWYlKCOcfiWsyqT6a6F6o0H7p/XlhZgymCDJpF4txy8vLixjM0dPe\nNsvfShEiGxiZeCkuUMkh/q28qb5dOFeEU/wWCAKr4BrEAOZ58XBJvGQ8rjdcfvwAJcZvv/0GInIF\nQ2s1/vLygnfNh0EkycdNqQHAw0YNwwAGuyIC0ITvidzCEgBeX96qpJ92Aq+3myOprEKA395+w+12\nwzRPeDymKgHn6SDhr8zbxCwpo4eEKTBmDamFPLt1Ywz5ZGv+mCWO9vSQttIw4H67u/DBkoCez2f5\ndpHwXbfbTfYIkqht3O8wzxLr01IL0gAAIABJREFUdj+I9eeSM5ImsY/A0H6f8+zEZCEA14J7thwE\nvu0R0SL8Ljd6K9RK69IcCcsY8zW2F//OOa+IX3M3a8ccgX0EYB4aqyEUOHxnpf0+1iegJBvcQAZR\n6dSOK7bVxuVt1yoWioA9CBtzMw6bUwTuPaC+Nd92XtC/ReBslhvSg+fuiOtjyDpY1a+YH9D2POWt\n/EbkBJ8lTi/1lcFKQzVmw4dEfQQtBBcAJEU8ScJJsTBwMbEymJHMT6FCjto/JfcYIH0GUmRJWV19\na+Qr1TpEUdy7QMhEQiIzw46MWDhwY526Zi4sfJYjg/B7InILTUlVh2DZWoTKbAubZHFTGn3NbU0M\nrg3608Y/Wzg3oio0UEUAhjmaYLpaIbbjIFF92aQPoWQGYDClhXnhDMTQDtU4dB1I1xVDwqyCZQuD\nkVEUkN27EvoJO6Jj7ZMcidQrCmvLn7YIYx8UFaFJO7MJIpiTuS7+3RasbMdb4KIqFpWYEka/YR79\njBQOkVd9dI57HHegxmhVRTbe+q5KJGKNSa32es1cFAher8FzVgdAkn30M697Rc0dYCo3Z3/cY9jv\nQfcHMpfwGUvOgIUL3EmCdPOWMzbBvKraEBD3+x2URhCHpLHTgkPau3LGwmYOA2FmxmO64/xyUjpK\nlDB5EcXDbrfD9Xp1JQfY4KyMw0J8WjhPy2X27ds3GOOeNSwqICE6X99+kzxiDNxvD+wghiQHNX4h\nItynBxKRe8lYeFFmxn6/x6xexERUklUzY7ff4cf7O5Zlxn63F6Wrhgc1nGuetL/Kr/JXSi00wdrC\nfjDFvAE8sa43fsLoBlOqG/NaAUHNP1Joob4loBXJItIXrkTmOQoWiMSrhJS/GccRp/NZ6hmsVH4p\n4seWRq1h5xqXRMOSKKCJOLinXO8luzYYa4qT9VzXOKvlT+PdbwU+9RobdbMu3ibrXjfzHvRM2Kp7\nu1v4W/N9CDGbVnOJ47X+Be9Z6OcBYoSitE+qBSzt3CraLK1pFSJCXso6d/mcap0LvdXiU8MDaGiD\nQvOY0U8dmtV4FzHuKjyg0L4SWq1HD/l5QpBBhHfP6Jx2jsJLsU5P6DRK8FA8PaFYtV9JcoUWGmJN\nT/2V0pO39J4LX1aX3l5+Zkztve+9b9vrjWer3V6p+bb1nKkhHg3mbrXYnuVef0A/VBcrrPZ5BVrW\n27RnHXp1s89sVvTBe6/5sNChcH67T5ObR538x9c9eGNvzb8HB2W9+nWslPWI+MuU32uPl63+V/uK\nNgpEuWM3zSknYU7731qfa/mBnBmRtQmPLv0UHovR2fuN8VLz7Nl5bb/vtdvb2whrCxTZaLN57+MI\nY+ndS+fhDRdYm1Kx7HEquK2N0NCu9xaO9rk0/TNQ5QJZ7R0VOZR7Z2K9X5HPW60DFdxoz61NkzlZ\nTqG4Bi1+9DGEPmP0i16JMMTXJ44j9WGl05IfFFu5Pozu46hWEZSXjJfzWSIKaEhWGhJ+pvytFCFA\nf8HiwYh16vAcNVEVf39GjLIS3eEDTNMkjHSe8P37d8m1sd+7kmC/3+N0lPwYP378qENkKZGxD/U9\nT8UwusLFGOZ5euB2u+Hl5QWn0wmX96uHdyAiPO53DOOI+TF5EnNAFDA/3r9L7g7mKhb2+XTC+4/3\n6qKYd4jN1RQ3RIRhlDBWeZb3lsgcAG63mx/WhbPHVm3DQZiFpCUltfL+/l6FcDmdT6IQ4aK42e0P\nrmGvgEHIrxABSWRWbE+FEOwBfGMeqHrfO0+9cxfHY98ty+K5TiKwbccUmTybj/3dzVPQuDV7PoUO\nkthKTgauQfDW2Y/ve20+Y+p6iKUFyrFtR5Y9YiX8HXuMOUN6BFHbfj3fYDVMqUbUFKxd4pzi+5Ur\nZG+t9PyEeK9GcWauE67H0iIuWTdNWsoRlZf5inDRLObCmth5C4JyYwKrdUvGJJPzhwz2nDuAMVdq\nAa4EmAjTO/cyEkF6rcz7iQAYW2+rGpUGTlwEQt3ijft+ANJK5CmYQZDg5gUFqhWsfpfzApV8V/eS\nUrnrds9sLlExXPY2CpKEMLAcHXZfbV0svI4z1b7m9jmBOSmxW3seDc5411ad8Tz2iBlTxjvMoRKL\nnZnxUG9CW97eOewR588Yslhi3R4sWFDuFAOrpJhxn5lVhBDOVO+s1f2Ue17BQO7sPVDd7Q050mp+\ncT7tuJ6vySeETCiWnW2JMCmOJYORuF6nut+a+WzHXxmRNGsmYxkwDjvs9wdcrjfc84Rh2Dn+caH9\nsmAMXhlxPbN5CBG790bOC3J+iOWpnWVGMQ5R+stoE6Mf7vcHjscDllnolt1uj2VeqvqOP3kBMPh8\nL5dL5bWx09ChzOLdskBDbS7izXq7XJCGhNvlHW+vb3i/FprldDqBhoRpemCvRiVEVAxVUGD9MAz4\n8eMH3t7ePO+bwOdF8syNewwaBtRgkM2j9cb8VX6Vny2bAo4g/FGE4DJfp9uoWLCbEU8La1pvUEQ8\npT/bv1eFbTwJrL4gLVMPaDjAYcTLywteXl/x/u1rEejpRy3OfkYrhu7LnAKOcrxdrRuczvK+QUCK\nuJJANFTwPI7L15vLu97YIk9i8CDyFQAQnSHsWZscW/AuV/3F0gpkTBHunpNK05VQZs362XgYoX69\n7hI6lpHSgJwJFqPcSmtQJktbvIUlfEc9/sgdPMPDcV9M5F6ND2sSYIuX6vFZRISMrIYGgsnF+aVH\nv5icrg6t2+ur97zF8WUOSeh35rAufb6opad4ycKvL4srQj8aB/C5PH2xMHOlcHT8+8F3z/p4RoNt\n8YI/WzZhaKApn/UPZveIjaXNCdL294zHbfuu5ojteVZ7Tyh6vo1C/t8O/dv5NOeMIdLaLU+h/UZY\nZYNu4V0PLvaeUQcGxrY+KhYiEPbP5vpsXcIelT0I68AiC6OUJL8eL1U48IoX4/rORZpd5gpY3r7W\nKNjGsnWGvE1peLVGYUYC4ztz7M23lWX0zuFWO47DwjvjVVuv0ba9zCF3CMr5q/i5pjwbW2+srTyj\nXdfe/ezNt8IvG3U34bu8rM5x14P2yT3/zNjb340WIMi9SGE9jA4A1TLQak4sPHhbIjxY35dIZwX6\nkmuliUWSIRa5+n5/wDAOYgCsdzelj/fYyt9KEULNRgBrYFhvSgr1G4InXMKWWIyX24hOsXaShLPv\n7+/exv1+lxAIzK7wkITiF1FkzDOGYcRRPR+u16v8fr17HpH9fg8w4fp+cQBpOT4sNjcAfPv2DZf3\nq4d/sASht9sNX758ARF5yKzff/9d/r5f8fYqobjmx4SBEv78409fU5tvjGlNRM6kM8HDZ2Endc2r\n5XK5eMJ1S/puVjKmCDAPFOaSNDTn7N+KpacIKXa7HaZ59rwr4zhiPJzkcDfjjVpeSkmUIqpQKmei\n+QYtY2AtmPCsRprmHmxrEn9uEavWR+/dCmFGwK+XtxWy1+F2WkKaK226IRBGc77tffiZwzftfLbm\n2CNmnhEq7be936s1QrGqM2tgq9sTA20xIs/G0EVCbMLyPjHrsab1m5ijBiiMTBX3GIWwl7NUI2u5\n5/VaROVXO58aaRbmRkmGeswrYrHQdHk1f+dYYRZ+fv55qYhBcGrGzNWZYnQYbxUlEMx6JYF40fUs\n4Y7aUhMgcc5GTFSP6rkAysQNXUIv3hc7V5IMNXXWupTW+qLuUQbaMibm9plJBlzhrcCmGuJn1PfV\nYlZXPjJ2zzsEhb+PcAJcBAiAw2oEorvFpx8Rac/K1hoKzKufGTETH7uQp1P3IzjzdMwdmoFbYom5\nWuvOIftLpQc3V/MLw40JUeN6Sr7XoERSxGX4pMeQr+9kUQ7avV0Q8ElLzOuzRIS3t1fcvn8HcYJ4\nmxWinEhzkGky9BTDnwQ6zOCc0TFEkkPEcJ3RDuaRWuBr2bfduMP1chMlBgjLvLihR8ypZp620yTe\nquapYQYch8PB86IBEpKBdXymfLndr/jtt9+AvOD7+3e8vLyoMkaVHUkSOZsBhChmJH9JnJPROabk\neX9/x+kkudmu1ytOL2/IamTDXJSwFmLrV/lV/kr5rBAIKHicUSs2SmgVOevEilewDe+tvWd/Px8L\nue2kw0KjhwEJ13fY43A84vv3rwIbco2TnX5s4rn34GQP50VhBBu+ZAYvSwnLZ/OKi9dMVt53+FQi\njdu+fhd/7+Hnqj5FaqzmG/rCGW6Il7o/+53FaqfBuYQh7TT6QA2X5Tt4nPxq7OYBjTr3ntHKLf3b\n0lJF0rUWmJsXcQzlWs8Xq/0GyhluFqjgxid0RjQeqM6K012BUm/XlQGx7F4qodbmPWrm8Nn7HPE9\nbDxx/VZ8RdKoFFlcUp8bDK/G95n3HP59pt2foT29j2aNevc91mv7+St9btK8H9T597T/rD1Sns74\n5Go84W5+Zq5ERUE6BHrMSuTHjF9ZwOoZXq9/u96tvCQq4LbG90z+8lHpyVL8nQze+Vy7P1s+O1tn\nxuBZzovgLBUkCx0nSoxMYnhjndo6dSbWnetHe/9XCqGEsozyCpuT/Wxh+1bfupybdTjAoq5spilx\njceIK7bmE9oyL9bendyaU8u3VWPB9tx6+OAvF12jXrSVdpy9+93H/0/kYdYHAr7gorh2nCcayyfz\nW8PfuvXye+FlEfBuMXjorXNKSfJLv5wx7EbsDvuiCPnJ8rdShMQ40rHYobMQCi0xxVwIljY5NoAK\nqLsQMNQzoSURMC8L/vzzT2GsKePl5QU5Z0zzXBFFJuw3z4n393fknDGOI67XqyQJ1z5MAWHfmScE\nsygD7rcHfvz4ASJRkDCze5EQEV5eXnC9Xl24AJS8IsfjAdfrBbfb3cNFzDrWx+PhQoGUknusxBwk\nGcV6E0rczvMsFow6X5sPEmHO7P2YZebj8XDm/vF4uEeNIWhmwrLMmOYZwyix/w/7A+73CVMGHtOM\nU87gxB7nl1ADZBN02L6KlfTaGuEZsWOXT84EV9+2TMrWMyOOq/NlY+ooSOz8WVK9Xn/x72dJVA2p\n2DerGLCxbohF2hKNsa/4fbw3MRZ7j8DcWmMrvfWL6xGZX2Fw6zBgW8C913cLD4BC2CQSN319WVsE\nQsOyqGCuba+de7s+Dq+IQJQ90TTCnrYEYcsQlrblbObMrkzMmTEmsaBemDUsMUE84XxKKPGNdd6+\nVqzSV1EIWE4TuJWe1vFVWTCkAUwWgksUHJ5EFIDnTWFIeAzt1UJQQcdGAEiRa8+6tNpH5BIua7Gc\nDmaFyS4ANnWZheFhlvAFmSWngbiw1nvlQlaY0kaUNcD6rm2ecV3dzOyW7cnun+1zIsQElEQEYlWF\nmImYEt2g9n4vYEi4hS3L8Ah7DO5BhdRJ54KcgZwwPR4SS93aZ02y6GeyCEG2PJeMwO2FMXjGpDDW\nsNhiDlux8HTy/jnj3yNge8ICgSdyF6SvYAUd2yNRPhU4Uff1GWFF+3e9rt1Py1wSVeExenjAYIpe\nbu1DjBZaDyYiwcmEWLeBhbROwOpzybZ6ogDeHQ6YVNGRNcA0Be8JANiNo1iUMnuIHIdpw4AMxjwL\nDZBQCGvziDQaxBQZMZ+HFVNCRJrQvGuNnjJPD1i+MaVrTGECwGkfo5ssNFWrYP/x4wd+e3tzWscU\nHpfLBafzCfM0YTeMuN/v3r4Zwry/v+N8PnuILFOIpJRwvd2w00TWc84YG+tggaMb3p2/yq/y37m0\np8xhTnjHgIQyokKzCkj9AMABlbKXqSNKUJqjJ6BmxfWCJ0Xp+vr6huPxKAIcUgVmzl3Yvmqr+dtw\nGsNCdq7vnSczxpo+cLgMW4bwbeApnUdUOsnqxr5aYUxLK8Y6LZ5pv6/G75bIVJKTxjWI3ymhttja\nNDyC7Ed/TT3Gf1kMH1dCLdBp+YDW0Mi/Vc+KngBG5pUKjd207/BdaSSTFUjDMtc2LFXVd7O2LV6u\n12QtSFvRRU1X7X57faUpzfghzssO61buRudHbIr6D8pPVSFzoVcL0PCO2wLKZ7zb1tq1Y6vGG8fV\nu5cd2uQZv7dFo7Xj2Loj7TdbY2qfPaMPWx5va0zPnvfGshWlwddoo00grHt80BlLrMAAllxUrj6v\n8P3W2q/WJgU+qVO/V6px2Z2IsIYKjmn7/OisWt3Veduo2+53HHPOxfuOlTZu8UPpTwMVd2AxkfDm\n/bPfV+zFsfRofSiMivPy+kgwD70WjsZxtX0Q1nuztXYrHNPcbesjzjuOl+LYO7C2ukcf9a/1e3xu\n67FWtR3OyIrvezaWzh1+Nja7vzF3Wbd08GWcX4Q/q3H11hDwkF+sIb0YDQx6Aj6Zi0EhKU1HFk7T\n/rXfN48KbAkGMSY70XEsYByOR7y+vXleyQ+G1i1/K0UIuQAuIHk9iMLMNoSTAw153hMSVEx6ADIG\nnE0xwWDkecaQEq7XK8ZxxGO6uQLCBIkW1sAE/SWpufR511iBRBL6iohcKQLAvUDMonGeZ3z79s2Z\n9TSQM/w5Z+x3+0oIQSTKEiMmRfEgidvtu3EcXQBgVpf2PjLplJJb/CzLIokLc3YliMX4ZhaFTQ7r\nbITm/fEAJcKcFyRVqgzDTneIMY57nb8kVM1T9kuUMzAkEk2fIr02Hl8NoJOOnRTRZN+/3v4j7JmV\n7EzUc+Fa7Dc+jwS390VF218hWCV0zcpssZOq39h8PTazDMiVHTqAlSulEUdtOIB47oeUJA76BwRX\nxbg1jFyLBNr1eQa4Y91K4aJz7Llkx5+9kEVx7H6Gm7GW74vHWCJhjHhZRKgXxrPb7TA3itKP1gqA\nW/D6/tt+Nmegi0irPjicURmzeZ8QQYT8TM4ARmWK3GHyZKgMRhokljJDXFTMEjFDLH2WZREmNhvy\nRbGGTEDOkwrvATMqTEPCsmg4P0pYckkQvKioPKEwt6OFLCJSy1IZwxCQdIu4F0XESGKzkswlMxLB\nCZJLSJORMQNLnsvaEHnyccs1EcOk2Zg9H85QcIcQemslp4xR6slzDWNmhLBLfsjztshdNia1KB4s\nl4nVIYaH7SIqghRA4AKHO2B1WnhmR8vQ4DLPuL5fqnNbXNILLLGzJHclejoZkYNynsPZbe9jr2zB\nDeY+gRaZjs+0V56H/dK7kyi5zZPdqXbsbd/x797vW0xjZFh6bUVYYPdCXwSiv24z2Z23kH5NH0Sk\nMYhLmAFTRmzB8Wps+rt7bVACqPx9Pr/U41NjB6Aw5dM8azsLSJXMbWjHAptLQvFBlXbLzFhmxn53\ndM/RJS1OU8U8bL2YzDGsVM4Zwyh3fJ5mgfkZyAtjHAdAhaf3u+YyI3IjEwvDZXjg69evSufIPTqd\nTng8Hvj67Tv2mkMNkMTyMVyd1UspuTLmdDrp9giN+PXrV3z5l/8BQMRtEDiS0D3fv8qv8qkS6BIr\nPbjWQjETlEXhSfy+Jyhp2zR4QkpIrARvZAYNpf/2+9iu0w2aC2S33+N8PotXOEF4wAzMLHQMUV/A\n3Y6/HpeMaSvcT0tLRvoyc9axyHzNw9kU0RzakGkrXM686iOuxdb99/C4hK4wpBJWEVUwmNEXKPsz\now9N4CaHQb7VBNw9Xsr3moLnauCnSelK8Hof4vq2Z0qei7AuZ4u3Xn2JXk7HiGMjnVTVC3sT1+uZ\nwiK2XdXB+i619IT//mT9mYsSw35XYlHbIbg1edPMp0Jt9c43M+73OxbNfdWTl/R+b8sz+q87T7sn\nT8b7jN/bqtf2E/9u6bBqbZrz8lEf7TsgGDg24wBqWVGPnuzJqp4ZQW2tRyy9c1qNKxjMtTDOviCC\nC+y36e6+IjvWLUEP+3ej/S6zKo4DLdut2/m2x//LGDrjC3SwDKpuuHcOYuniDC6GywDAuYSWlHtI\nYpgGbM/r2T3urEfk33xuYfyrXgS4FHy0AQ/bc0bh3rbNRUV7y+8BegeasbdrWn1PQY7WzJUDTxLN\njVv6IXqWV306n1hKZl7lQvN1lI6LAqWZZ7XOBmeAzT1enU+ujSJjm72yRX/Fsx/XINZr4WC1tlrX\n+Jl6DNvjIUPwQgh04XZ7nkibLM8E34MKLWpdGu5clgXjbofz6VTkVARQ5mfDW5W/lSLESg+w9Tw9\nykpsI++W6Grf14IUwjLNeNwfuFwuyBy8QHQs5m1hHh2mEDCgZEn+oibf8nNYsctqCgcb4+12AyVR\nlkRCOobkMkbbiD1j5M0Tw/qzMeYseTuycSmJcHvcXZlj43k8HmBNSMpcwmPFuXHOGFS54sKRcfDx\nixfK5ILZlBKW260gikxAYowq4BjHPYZRcpukQeLscvC4iPttHiBWDPHYBY7rGwFxJJLtX1LL8ZZQ\ni9+2F3oLmUfmzgiceL56QL99XrX3hPi0OUVk3AP81k6LUOI31lYc+8qFtQOYW+Jxa35tXR/Ds/mG\nfeitX2zT3rVKrliEyQv5K5SpjFrzZVkcwH5EsPXGYOOI5yCeu3adVmeOgDbXkXxTdORQAXsVU5NI\nLMQ5u6DeBpGG4vUQBu17LMq3WXNLKAInEiVIUKyQWe4ReXIqS1SeoXkDSBU5qpS0kGc0DJg9D0AR\nlBJJTqKc2YmLiJyTwlrWqRuJQQRkyiWOOS/IWZneQZSqoISFWYUVBvNFIZSzKGJc4aLnAYAkSgYE\nBrEojXqKOjtDiUiSRYfbtXBJPJuxSNguiyPN6jFCKIQe6/wD3LAwGoAkCBMiOotiigX2sit4oMIc\nDVMU2r1cJATjzvBWGKn3q43U+LQ9MmWM7dmNP+MaVYRMeF5VtUSJambWYzjaNraYBNjcfC4VbbkJ\nR7fe9+DNR999xJh6Xc1fY8Rgb2yiNKfNmMVChzTPAEhC+rw5rmcwGKzMRUo4nc5QbUwFk+M5GYbB\nY8rGflpFiNx3M2BIyniIIYMJCY7HY/GyWICUBoyDeHlZW3Pwxo141kJxztOkCsWEgeA0i8CGkvPs\ncrmIQkPX0QxEHreb5NU5HHCfJuxNwRKSrt8fD+yGkock0k9i/CF51g6HQ+XJQsMA5AXvl4t/F3GE\n7c2WEORX+VU+LJ+gm7zqRhMVLH323umWIpiItE4mhV1K2yif68oQxL/1j+rv2B8JrDidz0I/THX4\nuOihaTChhX/GgFcWl1QEG705IiWpQ0Uw421ChP7DMHg7Pt2GJrR3BIiHDfcFXj36ML5bAfz2ffO7\n07eySN5uT5gVeeeKT0Z9nqyswjDauNVww8ejeMpCKUcPjS0ep/CZ9qQSc0HIkTZ/35pmr2lwO19r\nfJuZPYm8r0kztni2kxpRcVM/rofzUerdEptv+S8fB8odWNEFRndu8Ca+/h2azDzAKdDXQxo8dOoz\n2mhrj3p8X/tNrOdtKH3bvnvWfyvDab9tZTvtOD8a9zN+r3evntF87Xlp5Qc9ucLWWHvj6LXHyiTF\nWPkrmi/CXAVGPb68mUwFH3trHLmKFS9s583uQ4RtDX/g327wGa2HjcHTZ+vf8uPMDGQLSUxuyc4o\n6/GZ0quXs4TNN6Mc83Y3BbmvVrOGFOrF50U2U/and7Z6eK7i5cIeSt3QRhmELrkaRDZn3ubTnpJq\nPCj7ERWDZHNTeBmfx7VsZU7tfHrfYAP+RFlYjbPrtYtjafl8749rL5IW5lf141qE+u2drea06nW7\nfATjPuKT47sczofRNivaTmfwBCyt2t3qO+6Dh97awB1+Z/WfRYnZ7/cYdzvY3TVc/NnxAX9DRcgz\nwcwSHluoIf1q81BsIa8eEyr4OuP98i7hnXYlvBQFd95oqRhzaJhQ/nq9OnNsnhumkPD47fqtjdG+\nP5wP+PHjh7S7GzE9JuwGCQEhDPkdu3HnIamA2kPDQmFFQQGRWDw+HqLgsYTvlv/E/g2UMI6S78SU\nNIaIlmXBnBcgDd725XJBYpmXxe3e7UbMU0n+bZY9dgnmaQGrUHJeFoxQISmz6KvZGJpihT4MJaZ2\nBGYt8jOA0XpttERUe1bsDNje9hiT3mW337MqiHoE2hYQ2wIeKwLcDiYK8HTCOQDViAh9PbBmMLcI\nqy2CzX7/yAJpq7Rr0j7fKr26cW6ruXbqm7JsmiYJ2dLMo7X+dwTZjC0SVfZ3xvbZiOcwnhHxQDDm\nFiqsr5m0ZLtGcKDvbbiGERiHATNnpDSAZwkNtYB97ImK98CSzfqrEAC7w0EEBCmp4pYwDoRhkNjQ\nwziK8kOVr1Zvp+9Tktw/GXJ/zbJi1N9pHP1cDmNy+JVSwrjbgR3dofJ8gO1Pe05YFBwMWa+8iGWm\nPZ+mSdz9A+M/zzPmPINzxvSYkZnxUE+8uGe3y6U6K7PBLFVgxzPicKgjQEgpuWCGEjDQCEbGsojX\nyqLC5cHPq6zCUhL6YLcfsCwzUhqwZPXeYeUTkszb+hKlE0sreo4SEa6qCKnuXPQ2CWtthDtQLKgq\nixt7F9ZgiylF53tmGbwQ1ARQAieF8ygEcwXPnlA4XUa8qb4Fc0KN5qO2zjbT2vYT97+tVzM+seXn\nheRjtWLaqBPhMBcm0t6tGIlqLH0BwJIzTueT74spiYHaYigS1LyU3B2Hw0GSRlbwuVgIMxcGT+SI\n5O1aOCrDxUuesdsJ+ZpSwmOa3Kprv99jyRnz9YrT6aQ3oOAw84wlIux3EvaTlwU7zW/COtdlWbDf\n7VwZYx6zy7LgdDrhcrm4Uco8Tdifz6vzbjQOJ/GcmzljntVjeFrARNjt9rhrKNN4RgR+StKDZ2f+\nV/lVPiq987MSJDx51/vW3pjQpoX3BkVXwipCCbugBhqsITXJkkrrP26EMBXcUuXm6XTC8XjEt9tV\ndLTmLaD9RKGDw2HFO05HNOu0xYwbXQgUi9EowE8Q3YLUjfnj1utJlJCEwNN1Ib3rYojVo2tjG86X\nrPBVzSe3e1jR6oSimIrrU6OEskZchJi+Vmmdw8lFoVrfhF0FJ9mPEma3N3Y7BXFsBZ3V67GaW0P7\nt+tZCq3ydbHuS+YOXdQUx6eA05wtHmh5vTL+Du9XBlHTCHWnVkX3qc4DEX83HjHSzEQaGk0bIWg4\nM14wTw8dR997tDf/mpaBEAAkAAAgAElEQVSp/+69W/HZtn6hnr1redGWlurt/1Zpv/fwYLamWwTV\nk/m2Y3gGO7doq61+nvVp7TyF0RaemG2eVI4d12eqhYHPxsWALVplje/7azRXZ0xxneUcduYWzomN\nrcgtyLgaN4Tzi5Bq2Fjdg7hHsavwR2/ubRsG07ydDuwQGlgiN1jEFs4Z0DDzEb6VgM31OHJ1bwpO\n8XXE+jxHI+Fn/EbVF8jX28+Zw7x1+HNrO6kHd7uuZlhq97nif+NdVT4hjrUHS3xNw1Kv7ljkdZo5\nx7pbIbA44I04lsh3VmvW3PcIc3tQ3deA1sot6/OZB2rss0evbd3ZNkKEPWthsLfX9hHqtevwDB88\nreckzwYcJxIikQGiFlcrZCFCZuBwPOLl9RX740FTOFDVz2fL31IR0v799PCE1egRlnYAgW3EJYue\nMc8zpofk69iNg4dtsDajVYspGOZ5diY6jtfCUlloqfP57IfNlSvat4XJOh6P+Pr1qyRXh4Z+YMbl\ndnULxWVZMD2KR4Z5n5jgwpQgpoQRL40HLjcJ8TUMgycQtbUxJc1xf3DLxoohUCL4eDyCiLCDKnt2\nI84qHCghue7Y7w4VYLxeLm5tfTyeAIhgYZrv+PIv/4qFGUNAAgAq7aorVDbOR9zrlkB9dq5WZ2nj\nnPXeR+LO9z2cqXYcPaDbI7ZWRH0ci7xYffv8fvThRQ/Q98a1ZiqeE2e90jILW3UMqfbqPiO82z7i\nuKPCIp5pu8uRCHCE12l3C3b03ls/cQ6yt3W7EYFZ4t5pLrABxFiWDECUEYdxxH4vYeT2hwOO5xP2\nxyP2+nwYBuz3B6RhxG4YRBGqYWOKh5d4X1EaJCRLsI4YUM+BhoR5mUW54QrdmnFzco+D1aVafLsX\nCIrglAAgJQ31UO7sqA0ZsZAjLFAiOOWg5GQGL/JOhKlyHzOKUCLn7GFnmFlDCtXW1xUxrr+bMDeF\nZ+bVtywL8rJgniYV2Er+qMf0wPSYMD8eLoi93++43W643+94PB74frkAuu+sbT3ud1E6qTcLabin\nzBnDYDldCiwVwqcerzElKREGGiT0gY6TmCUZajynzCUudTijfq8aYmmrfIbZi0Q3FwrJzwyUJvqZ\ntuO9kxw0nxhD+etpnZ+Baz9bPkO3RSVsgnga4cN9UNoSBPA6PGTOdb4owBigYmFt8z5oSCcPwRfO\nvykK7A7e73fsVHlhCg3zhjD4JnKjYK2dkoTLC3fKlKpGMxi9Ye/2+z3m4LkXaYvH44H9QfKN5CVj\nOBQPUSLCgxeFi0JTjeMIBjDNsxi7DAPAmvdMaTFmxvv7e5Xz43A44HKRkHPH47HKWfZ4PDDsBry+\nvUlOkdNJBZhwmH+93nztp2nCkjN24w6JhD77zF36VX6V/y+LCya4CKUcV1AQTvW+dbwigrnMCrdd\n0iE/qAcVDUcRYTfu8OX1FS+nE779+UefDgPcE9WfpQQstQdJJVxCH+a3dObCYrQVw0tKda6m3gfR\nvPrLaHih75RG0Tn06OOC3cvYDPZFBUy1HoEXEtqpQ+83g47rESdUCVK39rrTtzyv4bj3XdEiZZ6x\nj6ydm6j1M1h5ixfYKswSrjjB8pitLasrAV4zfmAdk72EhIyCqHCm4k+7Q3EOcXzerpy1yANXOJ5q\n4W11hrgIGM3g5H67Cf26SGjLtTh7vU6+Bh2+9KPyWZqqPf8rweAHPG9bJN8oAGrOKH/ueyJajal9\n/+y7rW+7wsFOey3/2CsSArqekykSqj6ftNGWxZWD5DTMZzY8jtf5X/TvYQtnHb/YeFlnwuXsAmoo\nSKWvj/YIoc04xk1YFs93p0n/VmGTGQVKDt01jAMzMtdeXd4XbE+2F/dnzvyzs9a2Y323z30PNu78\nT9171DKX3rr/DN1L0sj6+ZN7E7+j8M/OXK/E73sRVxjrqCrVOKjg61YuafXiGq/6b3624+y1t0UH\ntO36GnKRd7UwSM5HLW/twiFtsO2HNHx6r8jcCw3ZwimvNyTQIgZlb29vSCbjAfvYf+Y0/q0UIUa0\n+d8uOBFScAiJ0giQOKZU0xMCgIviQ5JilxZjsQO0MGOZJ+zGhDxPGMeE2/2ixCphmmeAyL0/TPkR\nhZ2mmDBBARFhmiy5O3C73UE0ed97t/wVIefpdMKPHz80/Ikgt8f80LHLwZnnWZQULOGzQIQpi1dF\nVsEb6TiHYcDj8cBuv8ecF3Ev0rG3Ch0TJtq8iEgFGln7zVjyAsYEgJDzgsPhWBAABCHP0wQwXLFj\nnjKgYEGulpgAQMOAcbdT4BsthgDmxd2qewRgK9C0evFyW52eJY2fNyiBqG7EWQl3iwNMQfDSObAe\nyicmo7X+W4+AYvhNbkHPQKU1twTTrVdCHG8LZHtAbQnjNqDrwuhNomqdlC8S9imJsNYL0WqckZjh\nUO8jgrLn2t2GvWqReuvREcddM+LKWCdCYhWScVbPJMkPREPScdaMlP+PswjNiJDnBWkYAcg9tdCr\nDLVm5gmZgJHUqn8cJcFvEsb+cDjgcJQQKsfdAafTSRQZ44i95hAaR1FkiFeXCBtpEK8MU1601g+R\n2BqpRtALMizBG1TjThgdkVFYNzCLpwkxDvLC95+5WHczl7wfce1t7x0uaw4CEEmICLMQ4gKDkxK8\nht52DaMHJ1y0vpo7ORHt5zRXDKufRyJAE0Ta2AvjYOOsz53d6dwIl5kZA6iKfzoHzxEnJvLkAtG8\nLJg5V0LeeZqxaJjBxzzhdn9gmiTE4UW9VO7XK+63u4Y+fOB6u4EfDzBnCU/Gi6wvgF3aYV4mfP/+\nFXg8QMMoIc8oVa7WhlIszJnPVZdgZvOMg685aVXDidlguJ4dgwsVU00WGiMom9R6vgAJ0shvNZ6O\ncP4jYjkFsiFCGKIkIZ7CM2FiyO9zzhKbONIClpKNmvZi+wZft4hdOaOo1tzhdnjeliWeWcUvESoL\nTJLx+/1ROsmEIba8cf0cP3k7EadC20rYjTtkJUAXxYsp4tuckTVU1WAeZyE+MgCkcQT0u4IDCcts\nymeI55aeuV2S+aQkoT7344iJRcFgoanMexZEmOy5tv+YSrhSUrojjSMGIkzzAw9lUhdm8CJedMfj\nEY/HQ/oYEoZBv1EDFyLyXB+EkjPEjF4ygPl2w+vbGzJL3pQfP94xDJJj7nA4yPrOGbwwjgfpb9zt\nMIw7cM6YddzD+CtZ+q/y7yvPzo/dm1jP4HauK3YFDfZdj4ZrGeX2XYVjEeGh4efIWHP9UxrG6XzG\n8XTCMIwYiMEpIbEYPbRzj31sjcnecfi7pSWdx2DGMs8YTRkS6Bsdnv5rvGK8n8BvrEZD+l12I5Ly\nra9Y1Z6NMSqPezRwnD9zVrxWC3Mo1DM6pWlA2m4USkIDAMRmjV6fjUKryxyY67BlNa7UsVPdvodz\nchoyjL3BuR8JCAsduf2ew++Rt3SDAFufBte356Wao78veNhoLsfHtLa296Hq/cjhWrZ77X9TqAOl\nwzp8kcgzJuXbVUjZ0MMfrqP9rUe0513VjjXu12dhRq/fpwLvcH+KwLq+P0BNG31U7CzEs0adsxj7\naOFPHM/PzK/tZ6us4Gg7B2we/bahroK4zoOkVd0orTN2HU/0xHgGn+IcXEgann90XtpSfOien5XC\nC3QMQYVprL9RBZMJcwUs1dFHgNpKX8IF1ue/N+7e2YiwwM/Pk3mv7pe3G+qoBxGrQLnInTprhHr9\nuVl/w4fd/Ql8Ze/sOzzc8NTYururfprC4aetm/DihVawPmMUl6qN5j629zi+e6bk6cmrqraaMetH\nzT2q22nParsWLXxq16Wl77bW0vDWuq7cU87s8H8NE9tughSBpYVI3zCt6USgeBO9vL2GNSGY3Odn\neKa/lSIEAEwwFy+OA+cGsFKqQXxLcOXcP+TxAIuAWpOBLxNutyse010El5AQCh6CJWe3CrQxmsWg\nhXWwPiRZeYkhnbOEb4lzS0mUBqYwMOXB7X4DQwQDu/0e81wI0cPhUHJ5kIx/5gnE8BA28zyLEEW9\nO9IgF/79/d3Ht9/vfb2OR1FqTPdHY405YFmyKwZgAkwQ7veHt2X17W+zwDQlSUykGgERU8a426m2\nz8lB/e+acIqESE9oD/Rj2G4RIOXMFYQv56p467SAKP50xNcAqi5Q3yjxBDMXFz6E56tkkBxAyQfe\nTg70NxASUCscnhGnDrxtbh3Az1wAWEsEW1vxZ/Vs1XNpt11TWwewKo0UTjhitbFmyUmjH2BhuTc0\nyrMS5AhOCEoDpf9EYqEvzCSw05iFu50oNXbjiN3xgN1+L0qN4xH7/Q7H/cHDxo3jDiAKnloD0iCJ\nnU0JJwxmjXSjAk7y/Ky9TXolVbIE8RRo193MM8s+he9TQs6LwOPKHdEIVbVVpNSc8cDIaZuUJPY/\ny2IKMszGvAVFSDOf6o7HvWcNtZR6d9KCi9XtAwAGZd47hERcz5Tqs0ngam1kvOQCYgaQxl39DREI\n++qZeSdFgobUKp+Dkt/D7SjOY7XGN3wzzxPmacJjmgRvqILk8n5FniZ8/f0P/O//5b/gy2//wPF0\nwun0gv1BlO2jKuX2h70o80jiRmciYJAY2ETCqBMTZs91QE5Qx7UyRbMJ35esOU2MSEIJPyHn214F\neJTtHJXzg7CvWzDUn+l4a48T3deW8GuYG2ds5FhVyguycUQ80pwbK/Gs1tbDtfXR1o2t5qeDYWa/\nL9WXhYbszKmPB7bexvOf0oBx3GG/P+BxuwEJnlTVcLiFiiGiiuYpgoI6h5W9I4UjOWeMaZCkmLpG\nMTQakcBDC7Vp3lnRA3ZICdPj4WH7JD6zeIyYR8c4jgInVGBo4UDnSe8SxAsk5wxiVbrkLLmN9K7t\ndjsxDDkcJJSnepFYmEAA+P79uyRh13PMxEiqDBnHHfbjAOaM++2GP//8Ewf1qt3v9ljmpXjCPIHl\nv8qv8rQE2q5XonCr99zvKtVCWW8+fvMTzGc1xKa/rnAk9FGEOXKXz+czhiGBl5LkuTDNa3rSYG68\nVxXeb+bYpUfDOOacBd/DLM1rmjTSult8RyvQkGf6H45jIMWF+tPJXYUT9j3Dqde2v6pPE9YojcVY\nW8NW68lFIBr3pJ3vwiUPhZWUkivGpU2q6cdmHcpurNe/lCLM2+Jz3JDKxt+0EUiFim4wkiGg0+5Z\ncrFQe35t9A1PGJqv2snMlXLF6Ecob9HeVaHFinHnug9yr6LIOxQPmzXOX5YFj0mMaYR/7AvP2sLM\nFX9dSLV6vD2+L5atvtbnYt1mfGY0cmukGGku4ZHZ6TswV+v0bN7PYF3l4Y71mWnnhCdtfbZ0+2A9\nmQ1sWcGaBtY5/a6TIAitzHltcGj02dDCtA2avIXNQA0Xe6U9K+2et3Nq18HfQSeEAiO3cxLo/W3W\nrKoT+kpcP2fNc/lQz3+iInC3c0YBgEc5Rw9v+TrY982zFVTcWP9WTmP7C7Ik9vUdfJYLxHFZO8aP\nYGDAUz3Y2MVT9g6Fb4t4uuX1nfMhQqvGj+vV8+po1yzOK869/b1dg7iG3scTmFfd2wgblO+xtqz9\nVZjpTvkU7P5gPDXcYA1Btcbbhj/Ns9fhCBuOTkp3jVX77RiSHsggcfO2kt8ZkVMf1DiYiDTsau82\nPC9/M0VIAHZAdaAyuHL/WxOZdveyhZn32KTLsnbTiV4GBhCXRWLEH3YH3O43zMsC6CUY9ztgDgQe\nFaF78XaICgF4EtBVf8yYpgcAIYaM8TZNsoWVIRAe9wdSUCTM84zDbu/JmZjZ3QXte9dIh8tpidNt\nXaJixsa1TLMrA0Q5M3uejlHDclmfpsCJc4p5USLwmDSMTPTMsATpB1XIlAtZ9i6WnsCyOjlPAG58\nthVj1JFbbL9DEHcBd0SWPc8RYGX5UxER1FfuRCI59hUZ19h/JKJtFI4yNgiXtr9V/2H9KqsuI5LQ\ngKSGeIhjfkZYtqCtQizhbAjCzUqENGFgiPzMs4YfSlQ8fPLCACVI3oYFQ1LrXzDG3Yhx3OnPEYeD\neGqcT2ccjkfsDwe8nM/YjSMGfT+qAhQkSXnhIa2MaSAYKiNKakFis1WYFVAdEVUENjmTKcxKJmNO\nP6EIaQjP3J5fFMS7RXAOwyhxugHxCOuc/x7h0MYMhyoSsvwq3zhzLG6YkVi1tlrvrUh8lWfJDwYH\nbtYIUNIeXJiQ++fc11/h1OoMRwJSCWydzqagqBXCxITmtk7gkig91o1nv9w9i49ex+vOer6XWfKh\n/N//9b/iP/9v/1msWXNZN8sZZZ5G5/MZ4zjiy5cvOJ/PeH15wcvLixMeu8MB426PcSc5ZEAkQmwn\njEVpbBajQxKhL4N8fYgkga4TywAoF8VSmSucqSsno2Ya2vWNxQn87ttQqCi3mYvHhY8h9PERk9xj\n+ls81BuvP19xNqiERtzWb9oA1BsmwJTY6JYgon1vYzb88/blC36/32FbwsxYeNFYzxnzsnhumTEV\nxYcYT4gybBgHh8Uxp9qyLBjUenrRNcicMRI5PbHkjIFGTDw7XRNpCQsHmpk1UXrCqAoF6F253W6S\n3DyVOS6L0Fq7neQ5Mo+Tw+GAcRxxv98xhBB0t9sN+/1ekqArnQIAj8cDR/OoJcLl/R3DOOJxv+N4\nOhoiRs4Z14t4geRMWOYZeVkw7nZCW2qdmIvlV/lV/mrpCXI+U699vsqRFvAtsA4HFL+vcTPFlyv6\nczVeEoF2tKg1Q4uX11ccDgf8+H4v8DWtvcUjPO+OI8wpGhi19QyWRI9oIAgpggdJ5C1i/fJdEeqg\n6YOddok4R74pdH5ZLwsVYwAjg0ruOKzj3ftcIOHJBoXb1KxRTGhsfIQluo17FeeYc214aDikXm8q\nhDvaeTZ0HQLujHXixhFVhme+J027kXYCoMLO0ozvSofujIKo2GasF2a3Eta171seLAqS7HkO57E6\nh4Hu7PGlANwIRGQZdbHvKHxHRJim2Sp8SqYU73rFk3XqUrOmvTaelc/AsWc0Wrx/LkLmei+elfYM\ntzy9hrcX2maD4qzOElDRnO1atvf0o3nGZyVrwTYfh3CO13AZ1bnpwXbnJRXWGG/WzuOj/S33mWsD\nJSoeCT16ujf/+H51BsJGt7sTYZ5ijtqMKMDsqHyENRngkwHiWfP1DkkMyQx3GNT/zJmrzgFQwWMf\nN9n4bB4iuUyo98zOxTM8H+F5u069+7vF57K1F55nYFO5FEvLJ5Hipu1zJBevfIcCvxp4uoXz/Z0s\n4urctufK8WGzLls0UGwnjluqNf3YuFDuWHv+tZPQTznYPY+niLOcr2veGb5v51R+7/OsOhTADTUK\nHJQtSKtxt204XRRwyBp3mhxmwOvbqxv4g8j3OQMrI8dn5W+lCMn6r7ogMHhTRCJx4coBKRsQD+kS\nQnik1FjjhkshzKh4TVxvdyxL9kRbAGF6zG4VaElb5lliO4tlIWOaZveGECZaBK2mQIjxr+d5wrLM\nOBwOrk0+n8+43ydFNMA4DuClKFTu97uHvMpcrD4yM8Zh9Jjbg/6es4Z1SUL4EJU1W+YF0zzhdDpV\nlpdg8SxBvCi6TlFR48KIXPJ3mEdLFKyYdZCFDDMkCpQ8DZbEOqUSM2VNUCvBGJQF1R6ivvzxfazf\nI8QjoVohYEVosTwjVqpnQLEOaNroJc/yNpqz3QXoVt+ASvscyvCEeW0B7GfESxxDtaYouKcN22Jz\niK1Gxtq+j4yY1hL9sO2P1ouER16yI0phfkIYpJxd2G/h36Zpwvu3r5gfk+S3SQn7wx6n8xkv57Mk\nYdrvcVbh736/F28PU3DoPIc0YAF1rd/sTPo5JCWUc9ZJpqceHPEM5yUXgV6pIRZhIAyE/tlmW6G4\nbwVp2er28EY879ZmlYCLbQ1qpWf8Pv6+YgTt7FAIbajhipwY20jy0N7rto+SGF0UCpQ6yDHXRHPX\nB3ijz/isEIzky+3jhwoScg2PLMeILGNYM1sHbWhIaUWsAPX9U/2D4DOqLVwSCI95wm4cMN0f2B0O\nWIxI1oSzQAlZ+Hg8QAC+f/2q82JX4ht+Oh6P2O2POJ/POL2c8Pr6ire3NxwOB7y9vYmS8HwGjQMO\n+4Mkok7JZ+nJtQFk8xqy+QV6K5mqalGVqr0LxJSdlSosX1grZkbm1vLLmJlGedfAtBjupAcnW5zS\nI/J6d7IlYnt3Q0ZY7ifIrO/In8sx6Sv5nSY2IjsyCHElAh5r7/pqbkPC8SQeoqzeGxYuMo0DWBW6\nGQrjuGaKZU0H8Y5Q/G/5jyzMlSnuAMYwCrxbmIGQaJ1GUUxnnqv2K2ZEmYmBJFSbnY8SmnQSbxCl\n0e63O0b1NMl5AEhwxUWVI/v9HsuSsT9IHiYLJWrzsjM9TROul6uEG92NYPWUud5uWGZJ8n46nUBp\nAA/szNuP79+x/If/gGHcIecFu2H0OW0ZaPwqv8qH5QnNS1QnZW3LSsAkD6tQEpWQpoOHWzgS27O6\nPSHKahwN/GQhPDDudji/vLgHl8Mv7o8v0sNGZ3q7ul4wXIA1THQ6DuXvguvrMbcwv6JPnD4XHwzr\nu33XG2tcI9aX7ToCjBjisF7P5CFbfX6ARxJohSDt/O0cGE5p80Wu9tJofttHNPtPkFDWRpimsF7Z\ntkTXPdD88WfLI9UrAbRPq3sQf3PiWD0Vm/1b76uiWu2+Neqzb3s0fuGWpCHDIQtnNQYqvDWr921S\nOiorfhUP+3puKeCMISX3dF/TN6V/u2M5Z9zuN8lTFVYujr9Hy6xo/9Uu9Nc+rtOz+s/41I+++Vn+\ntidbaGmMHswD7O5YBx+37SvcrK/9XMHg3vn+BM+1BX97Y6oGF+oQulNSenBtjBbHEPt5KldAH87F\njntj34KzoSKUjHb+agsmuIKxeVdgTKHNdUCdiahyKItcojof+q+Fs4aPt9apwMcSRikb7I5AiPT3\nZv98fcLcYg8ekr3HT4QxVHerab8XQaTtq4Ufm3KBTt/dwoyoPV6N23CkjsWihLSJy/1bogqGNs0U\n5UczL+NF2+LPVne5mCT3+D8AVYjLem4Mw/EM1jPWDLYpPfhhuDyF37dKpEnaduNPn6v+IybN/Url\nTjR43NsnWWHy+cWLX2iAYUh4eX3BfrfTcUmxCBM/U/5WipCtUgisjsV82CA2oSEXd88IcKKVeZu8\nLVFCzjN+//13TMvsjG8Kwp15Lkz5sgjDv9uNyBm4Xm8SXkvDZ5knin0DlLANMibC6+srrtcrAGj4\nBpmfKSdu9wkA43A44PF4YFkW7HY79+6w8F3zNFcCB1HIjDqHHYTmkkTMRDKO4+GI3TC6t4akSpZD\nOI57mYOuryVpt7U24GGKmSgItnG4kAnwnCXRZRqQcDn7/d6BvgGNak87QMwEB32moQDxqHD5GQKL\nmcWaFTVgsX57gH1FGKAAgIj4qFe3Ue5slfYsA8810+v7sW4n/txijKp9CAAJ8Zn9zkVwac9izHqE\nel6fSPI3cHSlXJ+BBQzK4o00TRMe9zuu1ytutxu+f/+Ob9++4XJ9x48fP3B5v+D6/o7dMOB//U//\nCf/j//w/YX8YAZKwVDbXcbfDnEMMegDMiypC1No5Sa4B5CIMs/NNRKBUn8NEAA9RwcGKLzrEdgiJ\nFPM4eB0OrBRH4mxNBLVM2Xb8Smmxd2+s/tZZkHGm7vO2L4cXOgfkEgaHUI+pZ2G0VdrcKN5vU49Z\nwtQQESj3FYs9Zqdl/HpwRvadguAa1f2y7zJbGC8N2cVQ5hRYZg09ZgxIj2BDgTsgwpBGMHJFXYhr\n8whQCafoBCnEY8TOQ7FoJUwhnKF4NcpamcDpdpcwkX9+/aMaRzQuWAh4PZ9xPp7wr//yL/jHP/6B\nl9dX9zI5HA7Yaz4p85yM/plssJpIwgopl9kjrNEoxyOTUaUdqe5YbQlq3pNxf8n219Y9jC8rzPK+\nmjvW2yd7Ll6d/cLa9tCexywEYBlfPaDYZwrPtu4LM3vekdZXsT3PS2aMg+TsGpPk1BDPuQRWRjgj\nO+HewohxFIMQwQfAfr93QwmjWcZxFAvmpVjF+l1J4nmalwXzsmAYEvJUcplZWKrS3+jrnbOELrRn\ny7L4fInE+8PCbR0PB0n0vhsxzeIVmwEMkPN5u1yAlHA8HkU5oiGxYgjU6S7KxG/fvuGf//yn5DbZ\n790A5XK5YNwfcNzvYN6A/+2//Tf8L//xP0qC9/0e90kNaYbRlbq/yq/y0yXgq66grePhWH8ePB6Y\nkTbwcHvfe0Kxp3XRF7K183D6kQT+DcOA0+mE4+kU+ixBTdv+o0K8DWHj7W8MoWorCRxbOPuYerRO\nS0e1f7fCEf+2qEcQ0NKqrrdBdZhcoZuFhjTFcqHD4T9J83TZxI0/9rH0cGIYc0ubxb1H6aa8a75j\nZoVvQikJLStrazhavoXTQ+0ab5XIi/VD4JgxWvwmAZRdnLDFY9b8j3q6Egoth+aeycflG4jwzuLy\nV2POZYMWpeuJJC+bvCLA885EQ8F2fnWcfT9OKmMw8kFHCVIh06JyiZy5iuPf423juFfPdM4flWd8\nessvxDpbdds6/z3KFj+/eladpc8J5JyjfdbuJ5/H8pn+uzjBYC3X+x/hVW+9e/xSj2+LcHC9d7VA\nlznAwVDWyZQl+kkLd73PAMMMxvfWR/gyr1BkEM0cyJSm+heo3Pn4z+RLzhdJIx52ru07/t6e7V6u\nVAMHZlCD+s3m+rdKe/vZg/GxnWoPvZdybnqGnbYuXa+2zrnryQ16peAoO5b1Ny7riNSFjhu9M9LB\nFW6ECDgv2M7Dvw8j6MGuJcDigiM54Lry03MDo157PwtqQlG8AsO3mRW3r89KZq54HwSc3K5rLOXc\n+2Kv6tp5iPNjhoTW1n6MZ45Ghj4BOSgwo+d4wkizcyad5zAMeD2LAcy/F8r/rRQhERiuiNvmeRdI\nV8I1ObKLWlmUZ2tgZD+ZGdfr1YkLZlUCKAMveUSWKnxVFO63Y2uF9SZENcLFFCYlrNYDQxpxu92x\nLLMQtwRMl4uHdHPwipkAACAASURBVLB2TBgxP4pwwHIPMJc484spOkjWYhhJGfYZBAnpkxd2r5NB\n84oYQrREz7fbzQUapnCJgrUYizsmRY/eIiYImecZu3GUC6Mx0F3Y156JDgCPfbZnogV47d70kiIa\nQPJ49+aGhVr7bWvfU8LEdpeI3OTD7rmOSPBZyC4rsU4UyPfWq/eufd67B/H3LhER6sTYkh7SQIEw\nAR4OLM9BERWuoiGAzNnvFRFhmmdMk8TdvFyv+Pb1K75++4bb9Y7v37/j/ccPXK/XKmaptx3OxziO\nSADOb684vbzImR2HFeG+12d25ol2ZV/HEWBCGhgYpP1E6yTlbSFQlQejPcdWlrjWRNVZ8TVvnveI\nz57gIXp2pDQ0Z8wQdK0YBtbh41qL7Hhee4q4eO8ic5ZQkkS2d6c3r7attp+2mHChLXbGKNBKz+5J\n/Lu1do9rULXTIexMhaVqefcYcd489ZMNtrgk/mRmt+h0i0AiscbIAJJ6mPCMIY3qRWXKF7MsFJi3\nAJXlLxMBiXDXUI2EOl6pedOkoYwpM3C9XHG73vDH77/bRMrYhgG7NOL88oLfvnzB29sbzm+v+O2f\n/8TheMTr66sInA97MAtOHfR+SSz2sAYpuZeNwVYXSOhcOIx5HJNem5qQo9hG3PtAdCO06/BC72gF\ncxoSc3UXO3voz1P0/KjxCFDiN3dxRtNnfUdKeDfLSwMUeNxjjJk1HObjgX/+67/i//o//k/s0iBe\nHVwUQUbzGP2xoBgajCOpQYnlGSswwC1hl0XCu6inknmF2hjmRQ1HEmHOGZmAaWEkvTRGdwGolBOz\nhoUzr1RjdiKtZufiPk0+lpwlR9o4jMizGHEQEsY04v2H5IM7n45gynh/fy9KIAbeLxdQIvzbv/2b\nn2ML3XW7XZEfD+R5wvF4AmjAfhjxeEioU/PA7cG8X+VX+SulB2cAgVC5gRE9Jt5KkRHVQq0oBPmr\nZ/YZbWl9dyaGw+GAgyrUpX+Ds7kaX6+P2KbR+k6jYg0Pq/E4gukL9nqwtL3TWeJxamMFRltIK8cZ\nVf9FgW88RI+fIBUulHmo+GRjnTkIZMCBdmPZdSpDXM2VuW33kzQZqyCoGkdtZFXGVPfP9mHoIoYv\njXtsYsf+yfIWhaYI69TyjVYK/cwNzyAL3objgvI+Uflm+8JcPHKa0ZT/UNIxyd9y30TQVO1bd1oM\ncKA92FVOjTIEAIlhgPOxad1uj8coXfX3+yNc1r5v1/4zpddHdX4+GONfKW37tpcffQPAabVId35U\nH0/qfaa/Lhz7oL3q3ANog8kzs/NucZw/W8wjzYxen46308UWzkK7bhvTtb2zM9/CJG+uaWY1zsCX\nuJci4DIQ+biWRX3k89uAOWnbB4eKt3X4y2HccQ024f/6ectLVPU742xxndV75nnalq3zU/G+zTis\nJwrnp20rrpHxby2dbbyuhzGL/XfyT1R0EApt1Du3FnLqI0zUg4Pt/Nu/Kxxp36qBpL//i/xEvR+9\nk1jqxX/MtZcsmN1zbAU3IdSJ/D8jqurI/me8rfJvLy+vGNXgHz+JK2L5WylCegTc1nHaOkg9AVJ5\n1iH6FeDKT8K3b9+AoEBZlOgybW/O2RNKtdafADyUgikGgMKwW14OYdwnDIMI3eUbEQxkXrA8FieM\n53kCoyhdYp+WLyQKPJelCLYWzXFi34qVu8bPHnfgvGC+35CzMBo2JwfwLBar9/vdFRukTInNzdYk\nji96YLjCRhU5OWcMFgKLNawYJN5sLC1x2gKL3vM2nFblRr8hdCAiHU84Rx2tbo9w7zKERviwasej\n9TpzH+lsEAIfnelnAM/cKa39VpHYI3JX7SlCtTtIRNDIskjGFOfs8108jEi5yzkXgWoickXaPM+4\nXC4Siu56xY/37/j27Tuu1wtutzvu95smhp4rxZONkxfx1Ijv4vus4UqyIgcaB9AwADQ4QK2IgXA2\nhJjJMAWdLwCzE0hVnGI2JjKtBPGt90S75mZ9aSPh8M7/bp6h+XvrXfReYl6658jGthV+5hlitm97\nyCn20TIAbf+xna32P0uA9wg/JxDkgVtA2Rq1c/uI2bL1srllk0SsCNX4NzS5e4EtSQkJoDBJ7Tle\nrxXr/SrEYFK8IcSDKHFFmWvMBLnFjs/HCHPzTgnvWQc06O9uVcnrdWAiMJEnEiQQiIsQIeeMBTO+\nffsTf/75u+AY/W4YBqRh1GS4R7y9vuGLKku+fPmC4/GIl5cXHE9HjOMOaUieSC2lJAqhsGb2z4X0\nmj+i2kP9PTJ13BBtkbjfEgAUgRw2SyTo45kqjBJW8MKfsHpMNGHjCl1E1Vny+T3Bczanlkmyn49F\nFAT7/dHbq0JXjhoGSvc2KuOJEpZ5AaeyjvO8OI1TrQcFolfrLoqjLLawAb5yP0suGqCcL6NzLP8N\nAp1CSoMZPpimCRniqZKGAWDGkEZcr3fsRvEgcYOXLGEKH9OE79+/u7eUry8Ywygetfv9Hj9+/MDh\ncPDk7eO4w2OeMaYRP378wDDu8bjPGIgkZFbAw/lDFvlX+VWelA3c+kwg1qMvt8oWPvosM+/tdNpt\naTt9sYLB+/0er29v2O32eDzujl9jLx/RGNVcAPX0zUHZX6UmLfA0ifGCw6Ywxx49EvkQRqGFDe6J\nEqeMuW2nqMfDujX0qn3neChnV3obfOqttTal32cU4bntMbx3qQfkJXqTJ/++cOh1MZq1mluUIXbW\nrKyB7GvkcQQfBOMTyF4MSkvE+OotzjYdhtE09aJAQjhyP+F2GZvLmsovBFf625pXYcP03BjPQIDi\ncjF+cfG4TjmlBGJCzvU53jrfK6rBeTWhAT0c91gEzj5+ljxXbEqepu3eGvhCPCmRx/mIv/wMX9Fr\nf+vZ1l2MbW/WIfPs3uYvtmBlRu1p2+UdNtqK7W3Bq16dFgb1xvqMf2l5jN7aDCCHJ5/BD8/2fTUH\n6uwbr8fIKHDS29DLGOGv1G3o8w26nZvvn61j+33Lw4seQp6Zt/IyTUhphAl7pX07AzVPGNfI5Chb\nZzXC8wKrirEYaz/WRZtjJM6jzSMlsKmjTDQE0Iw1ftvOpcJjAS72ygrvtTAANimdtyPN8oM5eDQ5\nH/7xmGKJhpiJCEu2iAdFdveR/MEiB7V4Uea4nndvDYxPISI1yIYaTerGBkMKPfF+9uVe0TqCQWfM\nn4KtjsbI8f2qPkuOsup5Xnuf1N8UgYeFxZZ9tWxHhERwPm233/vctnjbz5S/lSIklrLlZdFNi8th\nk2RRaqBeSntZY93SU84LeFkwPyb10oAfMHABdJEQi/0RSXz/xyKhryQkhhCopgCIoauiUsU8MZZF\nPEKq/CZqxWy5TcyjAhBLzUQSvkeSgJpnCLtyJR4cSwK6LBKKYZ4mt8Y0TxMjCE0QAAjBFNsywnua\nJlds2NxivRbR2rxjrNlHzhiG+og+Y6ZaABKJ1y0Cwki9FPazBe6ewyIg2h6Qjr9vIfxmMqv6HxFK\nzxgse74EgVAP0fnzzxC34dlWkkwrpszwe7aEGLaAW5c/5hmZGY/7Hff7Hd9/fMP1csX75R3fvn3D\n+493PG433O93V3a0xEnsn2xfUvYxgCRJmTGqgLmvq7sd2R1OaumeQGnQfBtrYrBFGmYxZs+SwZnC\nB5X6hdIRZBTG3mu7XftngL399iOEvPV9/Dv2WeUD6fQTiU0AEp4IcOJj+eR4qPlZlmtNKG0xHb25\ntfDeCYWN9TLmtCeAac9E21ePeejN6dl427YNjrWr14M9DBtzcTllZlXa6X7CQhEKXhAimVZ7HCCF\ngilyYrgw80GJ0BXZlzkstkZgkCoRpa+ExzILPrezFtZhnh6Ypwce9xv++P0PZFXeL8uCw+GA0+mk\n1sAHfPnyBf/47Tf89ttvOJ1OOJ3POJ1OGDRf1TAOfrdTUqVJJDTR5hGxvawvNau2s4XLVj+eWbds\nM1flsJN5Ix9NID38r4pJURwEJaIjvaOVVyxVYaD6ubXChMO8y36Lla0YaxwOB1VgsfkpuyCJwv2K\n3rZJvVeBoLzIkmQdgyrmHM2Kpwc4ehuJ0QmUVkk01OJALrDKwo3GMRgNY2OLexSVJqRGLaxMTxoG\nJAidMyqN4rnOAPcuuT8kj1vW9nbq1ZGGAY95RhpHZACX203O5DAAanWbUsJ0f+DBk9B7EGVdPFNm\nQPOr/Cp/tfRomp6AykqN/xzIWGsBm5b6bWjYLfqlxZXr/rbHxFyHdsiKI9/e3rA/HF0R0saKbvGq\n99uhv3rCAceDOn9yvhNIQ/LwrW37W7S683Kh1fj7M1pc8NjaExdEVYjILSFTG84qlpzVqjbSs905\nhHEpRy7zhvJI2p7Oqd2Lin//oFS0EQNuWWFtqJDL+BrH8wH/tDnEZAwMDvO050YfZOrTnlUb3mfE\n0ev61Rq0OBgA2IRKDT3sc7exBAMmwI0/fEzq+Rp5bakrihTzIrH9svdF4AcPtf2JrfF18PFuvfsk\nT2LlI1jQq/dRnz1Ys8VP2ztGuZft/Y5heCvBcdVG015nbC0f1eMvPppfbx5b9exZpPO2vlvxeDYm\nrmn8yLM9k818FK47Y40HUmPhT0RCf64bWNVjqDFaUy/uZ/yG437K0008VvXj79kOC4Ca/yKikLsy\nzrEZQ3gQV736xr81fqSnfEg+lsjjkrsySt+Fv6jx8rN7gc6Z2Crt+WllUS290N7T+Ky3FrYexoeU\nMda/Pxtve5cBzaEpYQYAMJYQQntLNoDOWNs5t897sob4vF0jOUeGD2ucIs+krxjCy9v7YFzPznqo\nFfhJkxm0d779pbTfPQ96ppLzxcnvn1Sy/wjv9vYmxpCJxEgAGeC0PmufKX8rRQgpAeyXgsQ2Jhk5\n02xgvOA9FN1erjWxq18qoTFND02yPDuANSa6dcVtvQ9kc4oV7DzPGNQaw5hceyf1ERQi6jocD3MS\nzVgU9h8OByzLgsc0IUE0ZlZf5ikX3Zh3s753BkbnY1b2wowPK4GBCadNcWHzjPk/LISWWWPGEGEm\nnIghu2I4DUnWmzATMIzFs6Ts0XOkZCXuSxXCBTWir6zddfF7BEsERtZmj5GM/bRjjYDJUJHvqRFd\ngchq247xXltiBaiB6vo+NNplLgKzRGtkU5BjckDVm6/9nnP2XAuLJV0mwuVywe12ww8NWfXtjz9x\nuV5weX/H5XKR0FdB052XBYQSQz8RYc5LIe51pyoLKwDICwjk3hqmIPR5F9xvGwUiFCc8B9CR6Cr3\nv4Wt9jwWi+kfE2EDSojZmbB1H8iRmM1ztabAai/b32PpERS9OtESeuusMbPf1d5+x7HYM5t/vCMt\nHGyLwVKjH9Hp72cRW6+vyi02rE21lp2+PmI2iNa5gYh5Zccd96WFR73xducQCVrDNSzqXG+P1/XN\nQ4CZsRtHSaC5ZEnKGYTXPhcAI1lSM1m9QmhlwWUwQXxYWdtLq6/rnPXuJYgMw/CGeH8oswMGqyIq\nETBpmKD/h7136bUsWdKEPvO19j6PiBOREZmV9bigRjWgQeIv8AMYIgbMGDEBMW8xRUjMEBLiZ/AD\nmjmMmHer1AXVt25V3nzE+3HO3nu5GwNzMze35WufHXkLtVIKT0Wec/Zey938ZfaZuZm5zpVPtbff\n7QBmfP70CZ8+fQIR4Y8//NDJlt1uh5vbWzx9+hTffPMN7p49w92zOzx9+rTeTXJl6R415SE7Od7G\nnsOaZPf/vsQ9Z7IT6A33cHsE6PLuj+bY3nFj3fjPGHR7GnS8O3Y5oh2yh0c8JpeMwoyb6xtc7/YS\nQcFyeEDV48k34Oei5GL3LOlcTkQdj7Y+pmRr1csrk+WVL4nThziqgBnz1KJb/Rz6u8B0Hud5BgHd\ns4CsS43QJWaUwwG7q6s2l5VMS6cFMYLe3t7icDhYdLDWmWpbzGyOIPf3cpE6EeFwOOLq6gogSRF5\nOByQNNR7Nc9fy9fy60rEvfFz9Z6PnCTqT8rDqqlZ766EGaGx5lkRA4ww/AhTxPSa/tmOTpIDy6vr\na0xzS3FXMgPU17uqR9t1MnxEs6fRDMZ+TEov3z1O9uOi8rWj3bcT1NUtrOdlSdRVFKt3BhR9P+CN\nLYyoNOgBh++/p2WkI7WuNF01joXx5xo17vWacymN9fNixkT3vdP3fW9MBw60yx8SGRvXotDT65JA\nvxZ7rA149xGVhd28aJ/cGjPZXHXzhJAOV45p2qW+3XqymeloArkIBv18tf+qR3E96OnUIrTUWHFZ\njNZ1ty58/8N3rU/bZUt3vbRs6ex/aiFN0R3ojHvHPgd3v8dej3iF1dEe6vDUFi48N6axjfj+ll7p\n/96qw2gjDPsX/9Y9dE6fU91pVdcAVzPYIrqVPr0jRD8btjHAUh1fgl+/jWUO1/vmWm30Hg9iNyxq\nz7N10REwNFCrvhM3IhFZRIbqUdI3fU/7QmbX8Log7GlfNY/XCmBR8axvubX52PrraOY1rwXG94rG\nfeV/jtoc7iJGtQ27b5zM17+jvseQ+znDULW7mxT0YEyjvuqxDOsb3R5k20aeDn23hOf93tsaSyuu\nHvvIvurX7bk92WhtpceFvZ6sp1Fc7Qb+Td8HL/MbcUXWcvF7RNcsIzNJtiIwnj55Khel60FloPUx\nWePLb+sgZCQ4yF1AEwc2bA1K3kNZvp8QgWs1jnqwypK3ELng8PCAeT+bUhvpUm9EVbQBOehgYpSy\nSPoTAMwZvExdbmq/EeRgQKZHQdCkdTJjmgnLIkBKL0UvmZFPBYkZNzc30i4LE5A0FQLuDod7AWFM\nFiJ7pcp+zjV8KdUc3hm50qd3jxyPR6NVI2H8ptIDHD04eXh46CJLvLdmKcUM5kpvSgnzBDH6TBMm\nbC9svxZG+YnZMYyohPCAGdQltWLEMcTZ1hStBa9d/hxoXIFRNBaSCiOTS4tCslZHgHMEXjxt5tEw\n8AZrwhBNyrPka08TGaPmUvRWPkyojJxYvI207VzAi9zfcTpJtNSnzx/x9u1bvH//Hh8+fMCrN29s\nvUw13YgKa+tbYuRSL6Vlt5e4esES7FSe3RjRpAZenW817vcGeA+kdC7l/Qk0ESZi7KgedFThFNe0\nVLWhlLr5yX6+/MAHoQtbR62+6LEW52009/6zkaLZk9Ce90LI//Pt+TEY9Tdr6p3UVvKy5Oa1jvOe\nh1oS18NeSAqmKLw5ESZqBuqWR5Y6wX5uzAoqH3VG4ZUgrm1p+GYMEXYVy4GPriv3rAEfbpeP+za4\ngoQGgtrYLBGENoRknw33vnKSFQ6qz1OVAYUkty8z5t0epyWLAQyExBqpBHSepmH+mjIjsoS5nwc4\nWQa0Oyhmty6ZYBd0Wz/QG+xzKbK/k8CgUrKsMxKDfIweJEpASsCUxPZV5cnHDx/w4cMH/PDDD3aI\nX0rB7e0tnj9/hidPn+DFi5f48+//HE+ePMHN9bWlMEopyUFMIpnv2teFmjLg97KOgyk6qz0beHlx\nMJpajmAiag4f/ZTCxwWQABUX5q7LZazQyny297vDWr1YBtxFqvh3d1NCwoxP1zM+5wX7OQE5Y8kn\nyKWvCctSWjQDF/HpyaJYaLSEpi1R7AO0CNIGaOv1hqUgLxnTfmdRNTkXzDMhnyRCdqaEnBdktIMP\nxWfzPONwOIBpqu/NoAKcHqQ9cGqyQRiRHNYBSJrOUyNZ9ZCjFOz3e5zqgUcqclH81f4azHKh/OFw\nwM3NNY4nSRs67/d2l9p+t8PnhwfcVkeVw+GAq/018vGET58+4erpU6HptEgUE4/irb6Wr+XCsqnE\n6tdjfH1eOVZm08wBEacC2xEJkT9tFY9rOlwf6UyE6+tr8RB0spgSmf6kdCaV3Uqb8ZzewKmGqBYt\nrixSx6UZPON4Rdy0iSWCMaXhxNK9Gw1UbMT0+I+ZRYgHPIjaitG6OeI6PnEiwp8DDOo/b59xJw/9\n94oB4trpsKdrr8dgbdjk2VRlQ4uGjxh29LLqO94RrOGqhqE6vXEgW+U5SRbKro3Ydi7FLlPvx03e\nUfnl8YLKeZ1bPw4+Lbenx+6qhF/TqJ71BErizasHeADc3XTAclrMcOvrjWU136rfrZ7s52T0/peW\nMcbqvz/37qVtANVmQ5A0ZlFXQr9d4t11deet9kzc075wssXd2uCNNU3o9OCtvinvivJgpD8qffGZ\n1djofKfU7s3YmNNR3eM2B/h1pKsBzR5dxwaVN1Y1q40XtzmSzBCQZ4e0VsdjrIZq/aTnu44uuLE4\n1Dt1hY+wqWojeTFooLMd+Db834nI/Oe9PbqNEbcXtX9eNoQ58Gu8tIe6g8D4ni/K11n1EyfDzunq\n8bM4Pl62x3dHdor22QbvIhdh4ffTRr+6O0HBdg3CqA+rPW2fqd6oopqtbn/HpU89R4FOlU+xLXt2\nYAutXdssfs4v5Y/+PXYLP04nG09MTZ9hdZJom1OdMMVugcpTGI0dToYn9ldX2O+v2v4gtAPAL6Af\n+I0dhIwm9jFB6gdEmdDWcwo+YpVi3JAc0syMvGSrR0GIX6iWg7x6RJZSkDljnnaYJsmpvfg7RdxG\n6N6pURK6WXMWj8z9fo9lOZnh6HCQUHDOwG63wzzPFtoqxrgsjJGbJ2UppWYuYrv/QxnNUgqW0wnT\nbm6ej9V7RVND6OGLH3+tV8dc6fdpKbTPevihoE2LXbKeJQJgdt/5Bb7F9OLv/gBji9l6RurvB/DP\nxOd9nSuvd4yZ+Khti4RwIYzn3hkVXw9R8+HyXgL6OSDCSXMFpmmqnoCMZXH9LGLE4lLsYrSHwz2Y\nGZ8/f8bbt2/x9tUbfHj7Dm/fvsXDg9zZwdD+1MumEmOa1NApnrsJfboljYjy86A/L2Focaz83Oia\njMKdWQ4t57RrIMoB2Mfmzn8+AgUjPuV5RMyvugVCR307Ny5fDPA3wEkE+yOaRJj3Y6pG0FE6rUvo\nWdVf/3bZig1IAucFe0c39QYFrT8e1ESAMaxPaTmzTmN/LlHUtubV81Mfebi1LoHe20LDwgkVbM2z\neLDfPwjIZZF5nangDC3nQPDWOhrVdwkPHymP8TsA5nVHIuhE9tSDKAVORFSjCITnvH33Fm/evsHv\nf/97WHgxM66vr/HNN9/gu+++w/Pnz/Hi5Uvc3d3hyZMnwk+o3fmlChWIbF2ovEzUjHDdnUFnygjc\n+pLQK956wKf9BpqyHsd6rbL7drziPV5XmZvjxTRN4Jort24v2/+KGeZ57u7tiHPmeYTHDrYvIQ4Z\n835Chu5b9aQlO2jUvure0H1i0anzXiJw68HGrtJ1qpeiE5GktkGfgiqlZFG2imWUt+mBmr5/OBwM\nC2rqsE+fPtV7f6Teq6srJEik025uUbAA7PuPHz/i2z//ixox86ddPP21fC0AOq10xFO1GD7Uvx+R\n2926dPgylnM4YvRsGXwfZa62CePtCde3N3jy5AmmSe5Y1DoUi2o9uWK9LUOC/1kqRiZAsKESwgxQ\nPJ7sdYNz42cYiVErrVq8N9Jv7PtL8droPZVT8ckeUzQZoHKDupsOHi/RSKdGIH+AMyqGX2Idg2dA\nnuYCQmpOOIM1RN1xctX1668jvTLi7hGdHX7vdtCGnA3RTaKXpQ7PeglsewUEqusk6p8jeoFRWltH\nnrZNa09sQOTR4u7ypK6CnrZL/v5SveRLyjl9aIS5v0SeeqxJRMaDunrqvtqupP4vrMnNQ+JRVRsk\nyx0kVO/0k73l0wa2PV8xPkllya/WIB82u7Ghw8iqHONGrfOxefVjkrmsHMt81Jw+O3leDIlqVH8e\ns81wwYzRweNYP4dWJ8pEL28eqaOrrxp61TYzz7PdkbpV3+pzR1t44fGDRt3jcDILPbzfspn8KXtQ\n9RO/T+oD1o7+3Bq/ER0jPfAyms48sFG/8rotrGQ0fOHVfR7NyF6V6KduTELUFDvaOmeKzS71dp34\nuS+/hj8bnRvzIWutfob1POsl6I0lcsWOjVe5h1Ef05ZFDy1yP6M4LEp2IwT886U602/qIERL7LBf\nSPqZf9Ymg3kF51RANOCHCjj0s+btearKbponmy9bsKVlITyVglzk0m+lZUpNiS5VIhVuhyBqPLCD\ngKKXm2dQTduhxpXD4YDTcsQuHFQo0/UCVtJXyMGN8sClZJQlo7BcMqgGhGVZ2qJLzbjgD0/USKHt\nqSKvxoERoNRnlT67rJSaV6hPsaXt7OZdi5AI8//YQvdGT20rAo8tARtTLmmfR/3yddnvToBGxapr\nH2jeQWJJ6p71kUKRbv0ZGZJPdaRhldr37Jhskl+wLDXllM4PM5bliMPhiE8fP+Hjx4/4+P49fnn1\nCseHezzc3+NQD7GKOwTkqhhKaBuw5FLp6SNx7GCi5vi1/Udq/AK4psby4z0axzifkUFH7wEdL31G\njaJNsaJuX39p8aB56zK2KNy80N8STPG7mDqgE+KDemJbI7pHZbS+u/pQAbDyTwewtvozal/3f2wr\nKnwOzXaGYG33nKouy1NTK7YxXGLkkFSPjesbhkBjNH7+wKL/vinJIzAR6/I8TA/YR0aPyDNWAAX9\nwejNzQ1es4tKs+r6UF3/U8fMp8ob6mzsLmnFev3HvkdFzMbBlCwYMFVSKSUDTS1dVDWCQzwfc1lQ\nQ0rAKCi5peRilhSMygM8LYfjET///DN++vlna4uIMKWEp3d3ePHyBV6+fInvvv0Od8/ucHV9jV2V\no0RkEQSYJneB3wCTuGFXnuyRx2jMNPVcHFdfCtU1bOPTZP9QDjFDw4uh7mQYKOrc+Op+v0c+PBgo\nZ2Ykx/uyu6fDr1V/b4hPrak8QHGIpiwrXOphvKypKcll5RkFaUrgJVsKj4eHI25vbgFwxT0Vd1QD\nkh5U6P0yehACAKfjCfurGXrpbl4YJcu9alrP8Xi05/19Z0q7RgOrk4dEFAlea5ekz/UQhQ3E39/f\nY552KJDDmePxgOura5TMSJPKjC+XR1/L16JlJKtGctpKlGkMNC6yLqV6uteKXTXbCvY5+TlS/j2/\n9PXLHhcdPbwKkgAAIABJREFU6+ndM0y7HU6LOK2VXNMyDtpj38+BXPU6i31HzcjErGkplae39wzT\nOEwYaW56qVDTHumdNTqa/VzFqSAXgUIi2WPbAIxf+3p93dJuT2vh4mTEGqONouTlGdd+apEX1U6o\nL6wNZa57ZpyS2kAkaW9zLtXwIlGMBM1x3/jyykktLiCWCPKYfs3o1D66l22MXdplP7qkHq5qyAlj\n1t1JRX3US6sF0NgKm0NuupyXoTreHnNuOQASGeKzH3EuAeB0OlqGBt17vv9bOCLili399Vwdv6ac\nW8//VKXt1THPOqvDMa+iq4dtbLLLNf9Tlly6zbTut0ao9C+zGSr9OyM+E3XR+K4839KGDt8Z0KV8\n29IrAhJ9jd75dTUSAz5u263yiqhT6PPnxn/83bZsOjdmQpfsnVxTyXPFqTFiu9clfdONN2i6sMdW\ndONj1discL7O27YEl7769s/ppynpHDnaB++M9qO3k8R99Nh7o8+ifWhNb5B/no9hMO/Up7338roR\nIM+B+4Np3wbXxzpbEHwV3MkZv4cxoM148TncttVPbo6fvq74nC8cfif0crHrq2IGbnqtjTxzq01p\nLy3VZDduGOy4GsXox+Tp06e4vb21lMxk+u42HzxXflMHIeeY9NZna+ZbBw0tHUtfZBobNlNgkUVh\nnWcALUepteMOBphrNEj9ToFPKScJ30kVqLlc0v5yTD0s0EViP2t9OUt0idBRQVHFYj6iRGkTBaWB\nPVXoCZOlrtKxmqsnp9KTaxoRVfyz8xKJBkxNdeUXt9ISL0pvY9IOV5SGpPk4iTC7HPGega5mLTCH\nkUHQP2ObjxuIGAnv1VgO6uueCe/rszLegSX7tatg2/200/UBfVZfUZpqXaUIEC9yQZfQ6cA8gLws\nyEUinE6nE+7v7/Hx/Xu8f/8e7969xcePH/FwOGA5nczzNaWEibmbr1Jzu2R3+KbrnajOwaSX+wqI\nzHmBKmg6TxY26fq6BcRi6eYExYQYACRas7fRGtLT6KaCrd+5lBZ9ZgsUM4/vjri0RIE8+tuvyxEg\nvLRtv1fiPrB3u3Ecr9UR2I5jMxLunh+u+uMBb9OSz/SlPeON4V2oq+3TpoBGgANALukjXylWYeFb\ne7b/bvTZeU8Z/8y5Nnw9EnCrcyfDpKkQST3DTBlR2bfeh0CYi0G4um87ro9zc9utU31G3wn1gMjS\nnA3brdEE9VHrN6i1B5LIDY0U4HrTmgK37Po/1Z+FCG/fvMGb16/x/+BvUUqxC9tvbm7w7NkzvPz2\nW3zz/Dnu7uSA5OrqypwbrN8K6FIf7qxeeoV6OTJaG6r06T6I4+DHm+zz9lfkC23OxzzC0o8hIxHh\n6uoK98dj9cAVZdy3p9E4oL6PHs+McJrnA4WzzbseYnA5iThJDduQyiXIocN+v8c875CLRo9UTIHq\nsAFgomR7X5058sIdDtOf+3rHh+GVipE0OpaZLSWP9i1GxhCLTNbD2LIseMgZNzc3EkGSGbkQfvrp\nJ/yzv/5r5CWjMEBLSzn2tXwt/xRlqNj7zwHDY1a4PWPPezkJMh7r30v1HRO/AUNHGtphPTVoTk0R\n97JAebXQTUjzhLu7O9HRSI0R7a6HiM+8Ednzw87RhJoXuDYvz8OwesOtvew01zjqebGl1/FD6+iI\n+K3Dq1XrF9hjo9Kmyfhom7QRxGP3/EhX0Yu7dTzMcF/bG6U8jfJdo/rApcrrON9jfSvW1dPVOiR6\nrz+kYPu65LXOKAZXAiVarYUVHYNDHzCv0huP6DRoOMBysZ/yTkEpIjN1VLheWG9pflz904ZOPMSy\nYX2rrulqHI7DspzEg13bQL/ShmsmfB6/O1fO4d7Rs/F3wzjarv4b8Bic+Xz0XN+mAOiIybrDsA1s\nq/dX+LbX/W5Wgp5XNl7q6bqUfm1Ljun6lD7d89q6100IkiZ7Q2cjfTF858sI7zEz4GxFm/qp42Uj\nvdE9vaojkWk4w3U60p1ZcfJlQyxp63z9zOB6QXrJLSIdKVV+1fN2QA4WmNcOuEbXYM1v6dpN1qiR\neL3mRu/7dIzndEv9Pn7l5THQO96t3x3rrCOdYIvmOIa+fqWI1DCfQj1YT29LtdynBNRidqWkEXxj\nmvT3c3s0qZPC4JDG+MkGL/V69YgXMlqKqZEz8KjYnG1SXG0HAjw6jKJtNk7c02l4idAWw2D/rWmS\nNQzUjCAFmCap8+b2FtfX146Gx3n5ufKbOgjRy/wiYNdivymIj0KA1JgXFpi9xnXw+3o1jZBe/q0v\neI+QXVWM9e95nt0iYDMkkG22Ur0NG6DJOZs3ob/AVVNiGT1VwSYk5HLCclowpXnlwSkGHvGOZZZc\n2yJ7JszzBHBNQVUVfH9ZuXrKauot9Xb0xlCfKiJGeujn6gU5JTE6UUriresObNQgJZuMkTMwTTNu\nrq5geVcDwBtdWqfAI3onecHrD29SSmB3sOPr8yDTt6vjb0A/gCDd74V5dXE0AGeSbHUxM+agWHiA\n59c1HBO0n4XbGDEr1BHacsaSM07HI06nE95/+ID3797h88ePePPmDQ6Hg1xYXj3oqG4AZnZpXQBw\nxsJFlAiIh1hWgaFjXMfUBGBKWLK7S0cvxiX3O9p+22LSj4E+Y6bU/o7KgZ9HL0QFGCo/6EHZFoB+\nrHRrTj/T9888e14ojJ+LQG5LQfF/jyJKRp91vDXUPVKER8J2RPcKrA6irfy7wzawjVNH7zAaaO/6\nVZz3I2r6n4FsMT5Ofb21wSH9sTRAKq0Ba4VoNWeA3cGicuhcfyOQVDCichMpgWpYaaO/r+sSkKpj\nuQWuR0DapxKycVOe5uulXil/FPAP9oOPMOjeqf+pt+5qHEkUgvqC3CuWvexrMkujAD5+/IgPHz7g\nxx9/BP/N3wCQiJsnT5/g2d0zvHjxDb755oV5sVxdXWG/3wNVzlv/XZt+ffs58Rcad7IhjENTHKVO\nJrd2wvjG8Ynj64uMwYTb21t8fv/O6IsysbsHjNv9UCDCUtOWMTNyjXL1xrZU5UZi+Xx1Rxg3ZxHB\nQfL5NE12Z5lEYyQsRRxPFK8ovffHA/ZTu8Tcy3u//qYp4VCxj+9TNy9EOJxOmCtW2te7PxTX5Jxd\nCro+z7FFv6SE+8+HmmKrYJ7qXSeFMYPbJY1fy9fyJ5Rz/L37iR6nOltU945nEabret4NhzsGMiTS\n5puxNtnxpoF4NRxJhJubG+x2e/u7ZACJDZNGGev1Hq9HbI2PPLf1uZNHRC7bYq+jckWcSdkxYM9G\nWebpiQq/1OuiGZwhq9MT+tECUPUQQpfeo5e5pbJrvy5Uz1jj6PX7rXNEIWWKfr5hvNB6EjcDIAPN\n8aGwZSwY9ZMZhvdWXSdCvRoDzBX923M9RpX12qdT7fqGgLNc+5WI4Xrv5Hmpdzqmmi43bKjksECU\nUVs66qithl+awxkFDOr7pV7s8kS1meg+dPMd8dU5/eOxMsJxj9fRDh+FR7jyCB7vH12PXdMRYfdl\nKh8qLGuQoPqsOPxRmHvx/2tIjX29us697lWKRTX1uoZGvxfr81gBWutQSelRChyG9M8RUYsecUZe\ncs/450f7Ic7/Y3qfGfjrIo/71tZaqNvX37XLsIvtAfl96+6SuH9iUT6NwQHLqHjdVA87KJFhQKW+\nlH7ulZ+u+qbdIM120HPMrb0mekx/4BJ7Jm3rd2OnurjXe57Ss13VM0F612Sbt6hnWd+9rBr04xw/\niXhFv1/pkM7cG3FJbCfyNdmX9Z3CSFTtQ7xezxfxK6LhOu74jCtejxq1N1z/2jdqcoPCO/H5OCZb\nfUj1JINDTrBSDwJ1dY5sAso3iah3YFT+MOy/0o2uPk1ZfH19DUqT05l/vY70mzoI8RNsn7mJtUvZ\n0Bg4DZ7zf3NYUP7StE4oAjgeHiTPdMkiDN2EKqD26RemlFraKtkB9jyRRFuogr3UA4mpHqCAROHO\npVi0CREh1Ts3pA053Eg0dfnj7aCE6mXmWTa6GAIa2C9ySQiAlrJI6d/tdnZJuir1GvHhxzCXLMb2\nZZFcuhQOJJiQl2JGpClJPbIphBYfgpuqvaQUSW8BUu/QFmkyDkluZcRAhxEiNWpC++j75sOMfT0j\nEGxrAD0TkPyd67XqlUNw9RAtBVRDtJvxHvXy5noSPU0opz7PpH53Op2QiHBaFiynEw4PD/jw4QNe\nv3qFN2/f4s2bN3KPRxYv2129hJVQ8yeXpSoJ7TRcBVryf4+URBkwu3skgkn1QgHQKaRtDHtlVN8b\nFa9A6N9tDlTA1/Fzl6b7+rs5LEBx0Ve+nQj2HhMkHW9xfEjHyIDmRr+2jAMjoR/bi888KvQGQjV+\nNzpsHLV7FkxeACAjoI48Ou5bT7cgMkDBnB/Hvt+VRu4Bk6SIM0o6ulaHPdSnv2h7eGzkiWutX1+O\nJmBFM3PdMVURVgelifo5ifUCGynjhDkZuHjy5IkcZDLALqfn6P1Re7YePL1hjdg+8H2r/ET1OIks\n64tfU6N536LPj8VoP4liQbZkVgfnqz3RjEGF9e4jYKKWDnIEogHgcHzA8c0Br1+/wt/9W+B4OGK3\n2+P29gZ3d3f45sULfPfdn+HFCzkgudbDEYhSzTWNCBQkJnFaSPu94YHR/KzXPiPX/WFjOxgz3RtF\nlT/Xr6LzWB08lpLx5MkT/MyMnEubRxcZqHK6GBXVOaDyFI248RfH+ns9BGxPyMuCebc3WlJKoAlg\nbpfEElGNPGx3t+ScgeR+R3/HjmKuOOd6gKYOHESEzAyuGCfeg6brgNEun394eLDUW9OcLF0bEZmj\ni0aU6JglksiR+4cH41Ey/Q3Xfi1fy/8fZWtteaed0SNb/HmrFOYuXevovca19P8R4zSZAsAMaQTh\nJfNuh9ubG7x+MyZ6hFWGka6+n6GvKrtV1yzwPET+xzRuq1Xa+lbsb6z4SsQxXdsBX0B5OwPq3dvJ\nt2HZwpQy1lGuq+uS8Od0li+pfmGH6/DGlionOi29vedpUQcQP/7dM4QOV8tzawNahw3lJEaGnftU\nYjYuRJ1OVytb1Wt97Z5bf++f03/ZMAijklRpTTaHqDJ4K+LjsegclXcio9ucMrNlHUHp5/mUF+TT\nCYWdE+cA3/pxje1+ablUxvV6IgA0XD7q/5e0c07f98/YPq/f2171z2l9rIenLSpJ6x/xCNJ1GNa5\n3z+yftfRQqOexT4Bferw+L7idl/SxpiNdFbfbtSpPQ3MjOSNykqL07H0z1EfRrKDALtUXh5yY+Z0\nA3W6ifSrTqPpUPUOnS1enoAuFXo3NjUaeTmdahaXyfQJw9altaN4T2nqHGZrZ/yl73FcdUxkHlN3\nYfZIpz5Xx6ov3J7zusW5sdmyW1idqPYxNx/+nRFNm3V5nqDvM6qdcf0sztBGSPBT6tefyLNxP7eK\nfT9a/97upPzA6Oj77jqwafKPa93T8Bhv5jP1Kv8Rt2FaRSjFPWr16bzU1JXt1gnnmFoduXv52WQ4\nV6yUElmQwX6/x93dXTeW3onvS8tv6iAE6Jmjlsc28bl64tMCjNYGLC4Fnz/f11Ps3ghvuWABAzZ6\noKLKt57ySzqFgnk32/cNZMI2ghkglDnUn6rU+4s+dQFoXXr4AiJcX19baioveHNeME97lJxRTgvK\nJExznmekabL7JHwqLF3ULVJlEUBLwLyb6rxQR6dnbmpYIKJ64XzzZhIDRsFpOaEwsJsmpN2uAmYy\nA4cXYlvMPK6HlSey+04FfwSqcZ1covB5xuXnNApJBTRT9SJxFAHox7xmn6r9WMwIxiyerGVZcH8v\nl5f/+OOPePPmDd6+fdvymTNjt9thqUaXKVUBaRE5NYUbqeFFQbUaoyBru7BFM/l15AVtVM6E0SXX\nNUJCaqCQ5ZS58zx0YG4k/EbguxtZBXqUkFE6WmNd8ndCmtY5SUfM9DHQt/W5CpgRIBm9u7W2zyk7\no3q21uzovXN1ba35S/bEFm2RnghGz41PVy/r/uhBwBjgeFXisuJpKeAaXRfX1Ha/Rn34NYJa6/MX\nf48U4Eh7+72atVIC0ozr21vjQSWPlXtfj/Ld7jm/Ruq/5OgD0HsEEXX0WxpF1+5W+1+6xuI73tgE\nNCXEpxvwoGJTZgCWVqDJ0tz32fFBrWfezWAUfL7/jM/3n/HTzz/hb//N31qfr6+v8f333+Mv//Iv\n8e2330r0SL2cnZnlTiVmnA4Hi0ZRnuLpbIDV0xzGLihuRGLsV0/Awu6+khG/pISbm5vm2cYu4iiO\nX0rd+4ofFBfpsHtcAWIkTrbeNfLD5kw9Cb38qbSdTqcWqbrAGYBKd3ACCNbeTTuU0keFen50PMph\nhoXNB2yoRe4zaUYGxVuFU5srt380JdvhcAAAzBMhV0eIw/095nkPVX9/Hbf4Wr6WcblURwJwscQ0\nfkvtb9+WtXlOlg/l/mW8HwAoTdhfXeHp06e4Snuc8gKqkWiTiwrp61//PcJf3Zte/q8wUO+ZuInB\nYp1WdT9eq8N2J6pi3XrIVHh8UL5urJ+Oi9eFvkPcLBsbrzJzi/7WcYMam0gMlaTepo6w2pA3udkT\nakCp48FMlvqwrTP5n+nRGBtzichS22zNuc3VECcLlWsHp/M7x3Sm6nWs9aze8d0ZvX+h7WOsU8io\nCg5q+eMBkVU5L4YTzkFWj3d+LbbdovmfslxCX7fOXOmMmW5v6nedvn+mbtFTLsPsNvdxn1e7QTWN\n9HwrtjnAh792XEd1PfZM/Dx+N6Jl9Sz3Noet90bvb+v9Z8ah7kXlMVtrJula2KhHdBsyp5rmWLDG\n1NLGNk738qX7wa0txcdb+u+vmXcZp8ue9amjtmgIBK10kV/FQ5gtko7Q5OBonzG6IJGN9nR993vK\n67SXjqQ+q3wl2sx8/TmspU2b0uoDEtm0QdeWPWW1BwZ6YWzXPuN+dDse6Ppo9ZCTIU2gyr+AQ/QQ\nxMv7RM32OM8zbm9vgXooJfrqBevtTPlNHYSwZ4joc9BRmEQAkg6CHDB1uC2WzpBbB7iBNvEuv//0\nCaUUnBxA0E2vTGC320GN1OS8E9mdfOvBBCgwjoT6Wc1HzQVcZEFM0wTkIqlbnADOOYPqJeveUDXP\nMwoz7u/vzWjWpbcixul4lIWlXpK1jsUZDLz3ox5AWPRLyaCpRq7kjN1uh6u5Racsy2K5WgHYfRNm\nyJtahMfpdEKa5PP9PEtuxZwlHG1qAM2nz+gUBGxFCfTzGw1cUSiPFJcI8mK7AFaeQ53XqGMI3Tu5\nXU5PAMAwjx1t13uzPjw84P7zJ7x7+xa//PIL3r97h0+fPqHkjGONCJGDuIJE9cAEjNNSbL8Q5AJJ\n1AgbjWwyr4ZKiGdkTASaxEvCvrcT3LEy6efDj237qfs2YaonvTFFyrnS7VfjA+0QkdmlJqt9V89m\nP48SGdUbyEbzG/vmywh4xf6q4PBCNQqL7vkz/RyNRbeuvNBB43lbSnmsZ2QQSAODpucLkYahMWED\nlPr2R8+DCOTuwrG2XDfk9oJxPVZfVY7bJKQ+FQHqWNWw4hFdpRRbV3Ag0SspzCz3iCS33ltl9rum\n/NniO2RtuHFNMrkWeYVoRFjztLjGUkoSwYV2t0MER3EPjNZ4Zm6yt/6j8LxvOyozOp7N67j3lPLj\n6YHWiI+Pyno9AUDfV02DNnjZ5s2rIBMAJOGAGiVCkyrB9b+at1wvWR8BRp82kpnx+fNn/P0ffo+/\n+7f/rxjvKWGeJ3z3/ff4/vvv8d133+H5s2fY7+vF7LtZZKBGEHrnAN9vt4d0Pnx6SK7gux2Ak4XM\nx3UkcyHj/uTpUyQQFhcm7fmU5w1+Dr1Ms3lOuoa43v3R2pvnGctpQaLZ6sw5WyQv3DoonDFf7c0J\nJJFExPpUmPq+lmNZpE2It/rVvDMnAmbGvJttjyQi0CS7tvPWYzk4muYZSddmkXSpzPI7k0Tz6p6e\npglUQX2HX6ZkcsrGPtD8tXwtX1IegVJnjQ9edx3aaQc8XT+/pK0oY4iaOVj0O3+RtWlj9m77FAAR\ndld7PL27k0PG4wEa8klO//JGp+hMsG0ca3ycFawDIu+87HZqqJdbUb4qNldKPN6IPNTTZVGMqvg7\nvJ4LUKjdJak8VNvt2q54dGWgABltKa3nVR9c4RVic3payX5OUCuw6g12cbSA835ZNbdRHXp7rxQ2\nT19mFr3FY12/FnXca38tRaN0u90DBnTODb6elTEo/s1FCZR6PFas8xu9iD0G0D4pURINoKnLqs4F\nh1E0VVb1ojX8Fmjz89PPh8dSzdHNF1lLBcvpVG0mDFQHiNGYxAOBuH7P6QKxPKb3jepj8OqScR3D\nL6lXi6akUn3D9kptze9xT4+utbPF8dARz+2w+saxjOb/N+yveIn79X8OGw9J0zUf1uuI5/vn4++j\nZ30b2ocRjaTvMGT/SiVW18huo/X59eb11cir4vh8yXg1HMzGV3R9tDFo7TBLhLD2t4SF2vZiO7Rl\ncIuUjvofnA3DwcSRzIj9f6x/4+9lwY74YBzPUSrirXUBtIPpx9aQL6Pvyf30c1qKOjrD7Fulooc5\nyNvYRjdmGzRt2Wu6ulx9MWU/Ob59iazx/TXHPqenrmgrY/6+1cbW+JPjbzbngzqG+4tq9Bw3Xiap\nFiuWYy+X6i2ZQQb7OlNKmOZZHPEgGQa0/6OL3C8tv6mDEC2PLT77fCBEVgzUAUYPGoBmdCeWQ4lj\nPTjg0kCihVVDgTB1jLiFXbfJTZOmZ6BugWnbXcoHIrt4NLk51jHQu0j0MnJt71TDWr3Bw0dSLMuC\nhAnzNEl0hutzCmmKvJDZ7/dmxMmcUbIYOjTyxCIRalHDtv70DCZRAsinrBDPz9OyYDftsN/vrU9T\naveljEDeVvHgtgMZREMDuP7cUo68IO/a3mBmuv39WDILK5jRIgVaqjJ/6PEZb9+8wevXr/Hp0ye8\ne/cOy/Fg45hSwnI6garhVlKRARkt5csuTWKwrArTRISF+1Qh0yTPcH1OD2P8XQmMltNYmZccq9Qx\ng+y3wjmMd1OCwLoW+9Qiul/OhfD7A5KtORilqunmLcypjqGCmHOC2Csv8T6N+N5IGVDhNXou1uVp\nxOCdUdG2lAd1dbrvY9u+X7GtWP8lNF8KiH05N+7Mkn5nHkRiaFHv9fNAj03hNJDslBJtS4Q2hc9I\n8gGbvkrd2MJVY3w2PR61EflXp1CFerfKSMaNQLGCDf3u9va25TUO86djPEqx5em0VLzk2+iLN4R7\nQEjU0tWlQOdjisnWWrb3B+/GsdC/4wFffC4qVQVoUS2pXa7elTiuoT82TiwRHho1YbItFzDJhe3/\n+A//gD/8/d/LPRLThNubJ7i7u8PLly/x3Z/9GZ48u8PVzY1d1j1Nk6WfUplUKu/rlYToNDBeM6s1\nxJKi8dndHVIiTFTvwSgFu91utWaizNfP+tST8lMjIf0aNIzj5AMRmbNGqh7f8zybo4Vv06fK8nvL\n1y/1ygHNw5LtfjSliaY6RimBnTOJrmEdm2VZsJsmHI9HTETm3OHTMubqBDNNE65qilN1GCmcsDxk\nfPr0CXfPX3TybLTPv5av5ZKiHqd2Zql82xtYH6sDZpsCMMbHupfHNGwbHvxnq+9I8CLM428DE3GT\n7U/v7rDf7/FweEABy6EBRFH2h+6R9pjyLsqVXjY7WdjVSdj0totjwWLINwzh8WLgU759/1knm5T3\npj6NUXzXj21HVyLE/OcjGezpHM3lSH+S55OYWLnRBUAMf0xhHN38OlKJ6vMgECVTsNQJDPU7poDx\nNzCr4uUpjQ9xtvTAri5RiFYGHNtjdV2IDCFkFCRI2kgfjQug4cxSR6YwGC5yVh/r7BVcm+/XTpyL\n9ZwKcu7uVNDvGTidjiDUgx7q6zu3Ph7To2LZ2vuX6CL1g5XO4wfrUlranK3fG2HOIZ2J1L810EOq\niK30Dl9nNxa8PuDxz4z0zhG/WPVxoB90bVR6/fr2kb1x/1+i8126bgCxM+ghsR+qS3SD0XdRz9Jn\nRnq6/F37NVg/o74S9byrfd0ckHVfkeRMXNFlqQKJuv76nyqjLJ1SdfiJNI7+jrSP1s7We9E2urXu\nzkWjdHSEMRvRNtLf4jx6DO/77fUKuPGUtgnnyIvreasvZnNwusA5XtjtSbQ9Zu84DHOuXWk8dXNv\n7UAO3yd3eEuQLEVw7Y7WL+JYVv5jLRRGibjGtW8RkbqO7JGK3dCvr/V6k8hI+ZO7cdM9NU3JHBZu\nb28xT3K3osxxs+88On6D8ps8CAH6yRydLtvlbCsGgRUY1kFPTd63DVQ3+FQKPt9/qp7rUpHilcwF\nc53qUhVuBppxWV0IlPkWud+Dk5wK6kEHmLDkgpQktcOyLJjmYgZfBuxSdIILh2M2I0Kqyrot6tp/\nPShRhjVPcshw1PyF82zpkgC0u00cYyAiS8mleUOnNElEycLdgYoC0Cb8BbDJgV/1OgWj5NbGNO1A\nAOaqS1xdX4vHK5oBZTRvW0AHQHe5rI5/YQbVtCgaJmdjFcBPZP5UGJnc+kDd5nUTlrohp9SYDgPg\nGt3COg85o4CxZLnE/MOHD/jw7h3evnmPN2/e4MOnTzgeDliWgxlSZAwA5npwVAgFkuecWQ5XQEBK\nE5YlA0Q4+kOHlLBUD2xlft6rm7lGi9T1qvce6Pxk2x9yANIZ06BN9IKh6JzX0aEK2nV8wQmMdkeH\nB3AKBolZvP3rHMm8tDXg3/MHFdqQjp0Z32qfZwAF7fnoVeLnXT+Lhu1S5W1ya9IbA0fh06MyAiIj\nWoha2jmvBHe/g+SwNuyPkVLH3N+N04296yMzWwTDiHYTWtwLsdiXUYljvUo76KLAIj9iZiwByGpd\nGf7z9XjaRc1eiVzJ+kp3aXflmIo74DtKZ32wAxMjJWUEuGxuklNsSx1/1aOMVa2VwLjWjE5WPrpg\nP0tEQVkWEDVjeanucBM1wK516J63PVDHT/cZYR0Zx5XH+OOGuN9IeWQcczdmW8Dd6kQ/1pnlYvtE\nBM69bo9dAAAgAElEQVS94V3BqDeMRZCqshuARblYeiZ7SkA1o1dS5B39Isy7zk891JdoCNmrJnOr\n12cuCxQUlrKAOePdhwUfPr7HP/zjHzBNE673V7i9ucGLFy/w/PlzvHz5Ek+fP8O+3jlC9TJxuVtj\nQuYiho/CXWrGUo+1VQG0vSICp4H+5YSJgOlqL15Wudj9UMecJWKmjqt6q+qBu2ECmXwbs5LQzY1f\nsxqtaBEvkLSZk/LV2t7xeLSDGL3HI0YVAe3wX0vhlnZLFFYXRVIjVvXwAwXiiavnTIkBKqasa8Qt\nUsLCjF1Nl7UcF1zfXBlvUIeOB64RIUUiOPfTHrv9Dsf7e5zyAp4mpGoQKP1y/1q+li8szaTUPH71\nJ1e9eu1Z3r9ZDVSkUIxR7dr2nGGu8L5XkEdL2ctDw2tQ/E4NN1LjDR0WqA3RNOH65hq73c6r39A0\nfpTItdnLzC410AZWajipRVroz0ZHMJbJxQAmt21UBgNxTpfx7fjnlQYzWAHDeezqpia7OrlaD5xS\nS464wiieR9vvIDDXI6ezWFfxVP+n79+Zt1pf3GdcWHRpNaRUeTHCESNDlx+zx/obMRaz7KLuPiyH\nh5TWhsGANCWAyfZRhxOAPvJeLiEQGah9dYNh9gXn5OL7PHLwjMXwNrd1w4A4NVYsoLqs77vv62Ol\nM7KFz7eKx37n6vH6p31XsfEWxo5tqz5sr7s9363zbl9XPuXHA3W7Ox2XiPo5Q++9PFqTbU6aY8+w\n34E+//nZ8doY94b7ZDGkMPfxvcj/Rt/pe1F3i/zePx8dlOL3sW+xXk/rFl2x3dWYkPDDzu6k8+Hm\nBWg6goSraSQLkJfF7m/Vder1wdguQTIFqD5EVNPsy4O+86vxiX3cGmdtc2TjWOlV7oB4tI58ffpZ\n5JteR4z9Vt5SBu87alfjBPTpd8+uP783tDpqz4zsx6PfR/zL398X16MvnUxgNhm5tW/PlbUcki6K\nXUtsMMxtjVpbgO3lbu4rTRTmyehCXd+ytBs/qnXD/fRrnH2Kzg56bKw3DuvMNoHDIoBdlJ4muShd\nPDLX6+tLym/uIORcJ0fgxiOo6FW32txsI989o8r84XBALhm5iDKd6/tpmoCy3qRad6kXiqqnoX3H\nvSd8YbYLnpUBLcvShCoRCBKNMdXLNlX5joCnS5VFLfrBCyQ9PFFDgOYeVxqZ+yiSldKgwC0YKvVg\nRSNHogET6FM9dIaIOi5LkculdDeMjNTx54ipKM7U+Y0M17x5zgiJ7id038k7XJkaiLBUoxERIbGA\n8aKXv5aChSVV2elwwKdPn/DTzz/gzZs3+Pz5Mz5+/CjgHQDRVI2OufNo9YJNvViV3sJsF7FFZuoN\nQX6uYl9HipLvu2dqRKmr13/vP/fjP1LiqiaxWaKC0gOf/oIxvwZHfEJp0XWh6bJ4IAhjn7REr8Ho\ndRQB6BYQuUQAj4Sin7tzz8TvRsrElmKzWvuhr7HOEcjS70eA/DGl6BzgGvVvS0nwAD7SQ9RSSBCl\nlce4fz4Cysdoi4Dcfz7iK6N+x1mNo/VrAJQ+S4mw2+2gdy10PHHjENEAzsaYjPa+/q30+z7ENYPB\negD69Hqx374u5cWrw8HBGvG0xH1qMkL5umu39/xR+vs1bXwWqHlNeyXH0xz5Q+TxnkfYmKEd3jMz\nPuWM+8MDfnnz2u7H2O92+Pbb7/Di5Qt8++23ePHNSzx5+hTTNGHez6CUMKUZy3ICJcI8zUDFNDbH\naNGy1i/meigR0wNIxOayLHKgpv8gsr1dgN7fp2L8Gr1Hld8r9izaYfPxeLSDFb8eNCJE50uxlc6b\nYg5N7anjezqd7Pl8Ejy1FDm0n2ra0dPphN287yITcynAIlEpU8V2GjVs9dmdbotFAOtF6TlnHI9H\n7Hc7EFF1XmA8HB4MX+rquXR/fy1fy6pUJyTZKtU4gaZnKjKSJdbzS78P27e+bjTsTKIlR15vjw5w\nkH4OjNd4pxTXnxFX6NfMwvN3V1e4ffIEr1+/FmwXqtAykslbMn7dZjG+JHU3OoB2ZwWAmiqRVnuZ\nCHYwM6JDP1deMsIPEWt081Z6Z6aI+b08bzqzxs9IPzpz1AYPErlJlvACzCEtkbbZO9x4vYAIKyeU\n2N45HtjhT6m0+zzKZ/9epMXoG2FrtLXd9kTTJbv1Tc0g6mvI2XvJEqKzRJvj+tNF+OhB4Aoz2vzZ\nY92hisjqut64OaMROTxeX5K1Up0eVcZjjKlHYxXx/Qiz6XNb72y9q9hrZaMJdOiB3qWFK7aJfdqq\ng0B9ah8WR0S5D6fWWXoeYW0B8ClZz/W7XuMy0DPq3Ib3I7/e0qVGOpqvQ9ve0jtGOs6ojtHf5+Yl\nromttbQlS0Ztj9an/30kfyR2jTunaVa+Nuobc9tn8gYAsdvc399b9P3FpTreeU7c7uRDZ4Tekp9b\n8ix+N5Ip8vc6S0c/dxdG2gRZbW/7ueWmb2UWJ2vnwgyN5BjJwS6jgKelUelo751oR/p4t64dzdGp\nlTDeP6u++foDjV5WjNa7e7L9nyuWI0Bd2Mx5rdYn2XbqfLrPbTbrd0U6JvpUlKFoWM7T3zll1Xnz\nuqqMSTGB7nnxxTKdK6ar703Ornd9fY391ZXpYNOUVmNG6FMjPlZ+cwchWlZAAD3YISgjD8yC3AaJ\nwAMqnLqlCgbjuCxVAZ9QCC01Q0rgRXJW+01k0RqaQiElLPlkF39O0wTOwFIjIiYNfVWmYalqyNoh\np1gvy2L98kJb8ov3Sr/W640DqojrIYoaDPzBh/+diCDpUMmArd0bUQ0LAkgypplQeKlGj6k77PGH\nJFp0TCz3Zd3lV1dXKNzxyGE5l34mFl0HagCfU7h0Fuj+1neUNgm/Esbi10uGUy5LwcPxgJTk7pN3\n797h7es3+OXnn/Hjjz/i4eFBvECTOwjjFhkkAEcuFV/0kEwIwZTUaIs2v8q47bMM5pYWhFEMNDEY\noLEXRvc7mmZie8TtrceUEv+O/9z/rmsp5vMspdg4AnL3gzJkVXIkfVcRBSoINFu3kRPquq1/FmZQ\n9dqNoOpSEB0Fm5aRR0tHSmhrS0CMBOOW8P3SMuKd/nejAeu1Euns1w5W4wmMI/cu6ceWEPXf+/Gy\nz7k3BHhFUYtEVrU7h0YKwjmgCcAAs+xBWanE/dhEcBjpXbVlhqm1MhKfX639FN4gVX7ZZFK3PqtS\nJeCOa/7pRxQ0Gq/8c8pjVNAuXcNbysqmkur6O4EAlS1eTtZnJ19HBK9VJkfAO/kxBzrvrbbuSYe9\nzbk+V+tPqb/bo7i1kOo64i5kGKYUd1E1Cn4tUofx5tUr/PzTTzjlBVdpRpomvPz2W/zud3+Fb7/7\nDrd3T3F9dY153oFnwQFlqnRW79alSPQIQeB2Km1NTupxnRKmLPtqDveUqdejpuxibtEhk1sHej+J\nlwlcwxs1byxBHEr0+S4yCW2PAS36VdOJAVg5fSgt6vyRc26pFkup3g6K4SRyQ1KvOANJ3W/LsoBS\nsogUpel0OhnWWU6LHQr51FspJSw5V2+uhHna4/37D1iOJ6T9zh0kXiaPvpavZbMQYBpm+CIq/lt4\n5JwBqj5gdaz4c+Vr8WLpyNM7HKLPUKNtVLfy31LknsZnz59j/+OPeDgcRCSnxmMLe6cqdHzJ63Aj\nTBHpFt6oOopgZvaRgSQGNT3ACcNhMmfLWKdj7Z3dRv33ss2+T/1ceF3OH2B1dbFgDzUwxZ6PcIum\nbRrNrdQ/lttqIGnGIBj28Ea2x7D4aL4Y45zho3HTUrjdK+hxWtRnvP2gvVvvgXKyjJ20b/Spw0Ub\nG32ms0XYPIb+8bq/G4NSRxHtJ7Wv/GGXGrxJLa8MiWpcFmgvoDrZYAzP4fKV49iZ58ef8woAN75w\nZl04ePoofq/rhcFfLGf7Ois+UlW8W9vBDsWSxvqxNMu2RzdsHL9GF+z4QKjD49ovrfNcifqPrg39\nbqu+c2tnJIe2dAX7nuSQI6bV9uOhTs1iK+x5KhH1BuMwVy3ypzkFq0OW0JZW7ynv9P2JepRFN2v7\nQadU+ny2CF9HTE8c69+eg1FElli6tvaTtxueuwfE16vP5eBS4McovmvriNd6vfTZc2BYX2pm+NXe\n6fiB2wcj2dzLUur6Hvvm++Bp7+pcPa2OK9zJVJPdq1rV1kuIuzfuk1X7cT043BXHpkRKqTnDN8rH\ndoH4u/+s54OiA0o2mbbeAVknd3d34niWyO5UTBTaoZbt4ZLy2zoIeYTxaVFDyNZz55i2X+AN0Ih3\nxGlZmnE+UbvsNrzvjS4ADBx5o7V5fwKmiNvzDkT7fnjmze65DnQz43g8dn0oy2Iei8uyWD5tX6+n\nKx6AaL9S8imaSr0orl32DqB6u7TDDT3JUxr1Mvk4Dzo+9Q+kNGG332/OT/z9nILWeb8p06wMbNG+\na/19Yy3smlv7KM1XgFlOJRlyudzx4YBXr17hpx8k2uPdu3drRlTnbMlHFzFTsCxCy1KEU0+pGem1\nZC6OGTH0YmemnvnS5PvRfjXhkdeX2PpnooDtFZyxMuEVBjPUdcO59vQVD/SeZdlcDfaxsnl7xtXr\n6WlCwa0z9kqYfK6ewf5AsKMl8INYRgLjEmA6GvfRM6N6t8BSfGcLTOp8EjDcS1v9kOO5cVv2Wfg7\n8tzIU7ZoPff3SAacK359JFqvST8Oj5XRmI9pieCxV4S0bI1/t/YZq7nRd4qc7g3r9lV5sKNpkvQd\nvbNK6Z7SGqwy1uvxS4oC0vXcGcbZLCPg7svojhgiEj5Na1rPHVHGCAydB+VprS63DlWO132lkRUj\nedQpFe7zyA9G7zG3aBUD+KW4+51UBmecqnF+nmfMaYecF7z6+Se8/uVnUCJkEkeDly++xe9+9zt8\n9913uL29xf72RtYK6eXeIptMUQOjsByyX13vcf/xYxWldZzqu3HMFWOo0azrtxsMRsVLqR87S7nI\nYkzNDIgtoQJnyFTpQYdXtHVM9DNmtkMS7wySc26XnVNCYq4Rt5JuMucCzLPQkBKIEgqKRZXE4mnR\nvurBiI6XhdZT8xg8nU4dHtqlaVX31/K1XFyifOw2oP1v8OWvbG5Qy0jODfHDANMbNr+ANEoJ+/0e\nz755jt1uh4fDAYkSCnKnrfW4bk2np0d/+hS1j5Wen4/fkbbGuFt1sS28tHJmwEBOUp2L0LzOD42M\nsPrABtXNWNIMHmq80DdG0zTEP8wthaR/Vk77wSWbzqaVms4S6wr9Y27mGD+HIkfcnAQ8uYUzFAv4\nNC9evrO57jdZAkYX8aM838a59raUc+ujp6HNz3pSqfZH8WLEErY+qvNPbEMdgnSsJQNGwazyKslh\nvafv0v1wie3l19SrzyeHlYEeaz5W30r/5fZT9w9TOzDSDbTCsmhrXyKCa5/9GJu8b9E1XS11GxnK\nfAQcX6I/XlrHl4z5rykUxmFL53xUL9Z/suBbyuIN/cQ+J6rz1vTQLZtRexdjYzja3JGbS/+i2dMs\nG0usu+qk7rO4brtS9QufojraJ0Z92uSTZ567dA96+WR1mK69ve7ie+6boT64NSZbBw/V/WBwkN/a\nj1hjtP62bGPW5mid6XO9eO91ek8TOmuBHb6JPtmPwWjMejjH0LSLWveodLSGOqxv4bkm3d1+Qp85\nAHZANuYpozUV14kftkSSptPGnRLunj3HNO/krpQz9X5J+W0dhLiyEu4XMPsRo/CXXRKUUTrDWVXA\n9XBB0j8UJOdFpT8txVXpQ4DVGz+mndIJ98q4tuvv/CiQXIPKcEHtAk71SPQpqCQcnCzvONyitj4M\ngLS/ADQyyZwzTnnpxktAFXURJvOu96palgbm1ZCk4+THWEG/GkqmSbxYdfy9se7c5tpk5swmnKAG\nEfesXSyfM1KqwjWRpCrLxQzHuRQkZktr8ebNG7x//x5//PGPePv6NZAzTscjck0XwjnXE+v+Yivv\niVxqWpJScvUsl76ellPXh5SSeLMlSZsFsCh5ZXwi3tY8unGXeW8Hc/EgzIxC9R6XBsDd4ZhrMK4l\nEypE4l0b5savc6XPlL9SLIy0VNBuxi9/SEG0YqAt1ZEcsOTq+afGJkYdd1WquAIVlouJ08B7aSXk\nB8UUEPTjvBqPAbOOyu8WQ+/Ha3wY4HnipjKnz6Y+asF/H4V951nH6/pGoHIkSEd0Rd494uWXKDQe\nEI7GxX/XJywagJvw/rmIM67rFKn3CtGntW5NXQe49ecO6roxIAdkSu+dof1h5nowtZZ/kXenAHNS\n9V6fpgm5Hojb8zmjUC/bVsoaxEteU/1EpVvHbFQ8JcJHyDTPOGZ+PLfWc6K1HNbv/Oc6hymsEU+v\nb1f5RinuECAcmgtP0RSP7jJv+fJRZUSAXfMwG/EeoyWEZet4qTGL2kvuDisGFcZheTB6iAi81PYK\n44fPf8A//uHvsdvvQVPCi5cv8fzFC3z//Z/j5YuXuL6+wjzNoEnuvmDOTYFX+lFTXVbZCg58oUY8\nWi5fHTFLMxV4JI33YdxfVPdTKfWidi41ipDqgQpJJMY8gxk1+kPwz+FwaOnhnHwFF1D1MmrruN77\npZG8VOpFtwsYkvKU0SJRRB7OgHnTtcN+j4OsLywHJKlis/vPn4WmIgdPS8mGIb+Wr+XXlCi/lI8R\nRTeU9v1GRbLnNzDIlnFgJNcjH96iFWj87Zy6q0aYNM8SEXJ1BXz4YLaHbSeXPsXqFpbR37t+6Hul\nYW3fh+55/WE6JpwVZGAgcA5uUcb6/pyTt7G/rDjE4boOg8LN32CwqVoS7TA6GDwcvG4DpFVV3u+N\nfZs6nYu859quRGjWSEv066WT9dAonQ2MzM70Q6qF13SHkIjPuPo1jajUSVjFymiqCWbkkrtx9ViY\nmBHUGBOZI91VU6x5bGFjvep/NciCzYgfx5YqtqQE5BzXqMONDByOR+TqlNcwj/wVMabWE0vXd7fO\nviSLg+9Dt5+C/kL9C8O+b+k7ILJ96Q8OFcu5mZHxxXleBP0+RmfD8R3oHWjoeCYqJLY1DawcIs+V\nke4VdajRWGzy/EB7bOOi9+o/5dFwPOucjFj1CcDwEGrAtzfliMN7JdgnVms69Ns7hLJ7hoFwD4x8\nu0T9KpYqT2M/o8OhrtHE68893aOowSizIvb0ekacA8Wr/fO8eg/M3dgavoCbd1dnJ/tdX1UU+n03\nmutz/VJ9dbTOdUfFNbfJyzZ0OD+GcO12NFICEzf9W+mqv/tx037q73EXPLb3Pd+O5ZxtoMmZtYOB\nH6PsCCqOdq+z63eaNhRQiTQunY3B96UugEms7Po0mLk64F3XCLkOXaz6+iXlN3kQsmVUOPf5OXCr\nf8tlb+ieVQPIsiySxoIIcnMF22W7BHf3W2iLiGqu8JZ+ROlSUBgNOSPGxBAmN6VkBhquP+MdHUkv\nXUXbdN67aHSK2oWzuQMLD1yIGKfT0Q5t/BhrfWoUJ1KPpl7p93REJl4rAyCGld1uh1wKrvbzCuyO\n5nUFJJc8BCNqWNc7IgAxkizLggSJAsk1FZac6DOW0wkPDw94/+4d3r99i1evXuHdu3e4v/+MnOUi\n2900yzunU718uKUyE/TZlAVjhNXIogZ5AWRrRu+VHxn/Ccw1iqgeHvmxl/VVPB9v684zvvqsRvBo\nmz63fwF3dGTuU8qMBKiGK24BLg9sPMPVi+yVxVKdJ4T5BuvhVT+3HZO3NartUdNXaufYpG5ftgAj\nsE4BEEHmJWXEfx57xn8WhdvonRUI6MB2A9mjOvyceFBRVAkYPL8CyVD9kMBe1IU1cGn/43xEMP7Y\nd1YvYNEC2r/ReMU9tyVj9NLt7j6l6OVHKvBZG7NnVjJJgT73ubYjLziDMbqidXl6tV+xfaa1otpk\nW+MfW2t9SwYbUPfPdQiYOuU1rq+VPNR5HfRXZC518wfIcGnft+Z6Lbup8mSdG3IXsZ6/v6Tnh5IK\nIe5bIrIUXFvKnRZ1iugwRCef5fMFoq5be/XydaoyiOu6KmWBzshyOoEz4YcffsA//vAD/vW/+le4\nubrG8+fP8ezZM/zZd9/h7pvnEpY8TShLwfX1LT5//FwjFMnMQzov5/qk+CDm/PVj5/vngXai9SF4\nu3OsAXC5xwoAS3Sl1CWX7akDiR+7aZrk3jc0D1NpuymCGvlhPIUZS85d6i/tm9+gKSWkaQIXQhVf\nYGSLSjkej7i+ugIS4fPnz8jLgv1uZ3zqUavL1/K1bJUBzu7wNHoc5vfWkJ8Pvlvtc4yVeeX7Yqg1\ni8fqubPtb2As03eIsL+6srt3mKusVzkwNanaDGFNN9rSLdj4dz3EMJFAkoVKiFvROcJkikfX/Wn8\nyzzKATlocYcOIyPi1vgxmtwtlQeqLI90gZrxotVd4aLKaJZD7QmSRaY+1eoNsyJ4CIY5TRYN6PX0\njH4q/1/T2ONVXdNx9ZTS5CLBX3Yrh/zaYY/vSyl22K3yQKSEx0+1tdowo6WlNvzi5qPHM9psfx9n\ngG2b+NNwivbfYdo4AERU751ozjbxUIKZQUw4Ho81PRZs7vxYx3p9+6NyTk/a/o7sUMzmrNiKcwoM\nxDA32HOuZyvdRvkPUTtsMHg9GOutfg2xqG2cvigNCzfHvO6ePoij47gPZ8av7k8PF6g9MKTF1xn7\n4/9mrYx6nXFL51sPhXGvjq5YxyX6s6fPvz+a++G79XfvwDmOLKh7062HwhmKbpXelppJbGRKk2FB\n5xinxesTHif7NE/knt0aG993opb6Pu7DiKM9DV6/imOkqbjiXSmrtleU9X3taKfzaYso/NyiN5au\nv9VOYU6+rj4Oz47ojfXFcTMeXetVXaB7x9mH2Y1hR7Prq2ILNFUY6sZIlqZ+7Vis7SZn73IPWV90\nffh94q9O0OfjWvG4xo+92iv1c3kv9/OEXlZ7TKXF67RxXqOt4ebmBlfXV5jmSUBkcjRSY3PkGdUF\n5Td5EHJOiHafYw3y/RMj5WAoBApjOR7b/RbiigCuaSmiNylznwZL61Xhpkq3GaIgi6q4ez/8ArN0\nGyxKt0+jJUxI6xOjOpHzalVvTDRgphetl9zujbBn0ZiHtq8RJJQI05T6KBpq4zalBKQKLllGn+tJ\nngdqfqz09xiFMk1JFnkicC5IU8ur7X+uNlUX9dAzP5m20pgXIAcfS/WCZgaXjCUXO/h49+4dXv3y\nC3755Re8e/sWh8MBaVJPAgazHERNkIO0JWfZkIB4BukhAjWABbR7LyKA7xjORIYq/JgpMCeaO2Nm\nXIPtvZpSrbbPpR/7kaBtf/cMRephFKbOOOzXjDL9EVPztFo7+r0yaiPCCR29KIxSd8AzElbW9zp2\nE2koeDjBJpmoUs5726wE48azfixHfd8a63MlCo6oAI/ofKw+oAkx9X6KytBoPdRfbN1G/hZp0AgI\nz3kZsEgU41Ec+JWrx+gIAnrU0wiQfT0j+hKjHliOBbGNVekV1DieCvD987vUp8VRntCNV9gHVAHi\nqA3tgwFmUvC1plmNMoZt4A8lAZBclj7NM7gUnPRw2vXHA/NzxY/rJetaea9R5veU9gn9YbB9r+8O\n1sDW/Hm579ctwu8j8AvU3L1hXylg9YdaBOrGQKMypV+lor3qG2RtoscFYS5tzALNqnh0ADbQ5yOJ\nlvp8qi8R6kEuOWDNZGRqZOTx4R6vDg/4xz/8Pf52t0OaZjx9+gQvv/0Wf/EXfwGaZ2QCGC7KwQ4k\nziumEXd1soObMm+yQefCyUnPQ3xEqcde+p0c8tfxcHeI6MGG7nF1iNC6c8V4c+qNp1I3LMJE29Yy\nTRMSt/nyirF+f8q988nD4YjdvMfpJFhTx+Br+Vr+lKL3EG2VDiPjvJHAK8xdHYM9rulhVvVVntF9\nFB6JtHT8ntZRt5GWebfDk7s7pJ9+AhdJU+TTtXr+0Ogb45m2hzOSS1PHhQWz1uc0IpmrRu5xwQZi\n7KBkh8frIAgvVx2u8knlMx5rBfzfD4gaCJrXe+xfq2c1te3zSpPH3iIfG04Yvk9kst10ACh+WdPb\n6QTcDu6TOgHy2vAW01Fv6zQAUGC5gx3u6JzIQn0DKdsf6HAwZnPDvzZWENmbqk4VdVcbqkqPRkv2\n9G9gdI/H699RB1O8qA6ZKVGn+/TzKnLydFoEe6PhjUiTH+tzOsgIn39p0XU8mpdRy4ZnSf7nn1HH\nks5wH3QBL7+9XhcxhjgLSiYD42V1vFHb8Nja8LUdIJL1wefER33eH14xAKSQrlpxRUqg0lJuKlbU\nvmq/MPh9pDPZ7/555lX/zxWPwUft4szn6zUV9sugLeZ1hFzjKT2q8jaJLRqiTPB72p5n7uZWDulk\nMyvuG+p1nvfKhxfZbyN+1jI60PF7c0RD3JPm5KprnbnjdZFveX7dzdSv2OOX8JG4Pod9Uh2nRv+p\nflbCGo91btHt7Yr+2ZRSn5o51lvri3tvW1dOjWdwvJPDFPpGp+NNrf6+L0pb7LPPTAS/DvSf1kvN\nIdDeHewXH7WeKK36uLkHRn9za1+bZmbcPrnF1fUV0pSMH/YVKP2ML1l9v8mDEGCsZCsDVICmqXTM\nqxPoDAiXbFRmxkQJD/f37ZJUFgO4CTMHyr13oU58Xmqaq4l8xZ3h2yvEvl9cIz6ICJlZLi0LTJDq\nLWcl3M/B3CJHNPe1RRSQB/QFuaZn0v6oUUDpmqYJlNg8GPVz9c6oMQlYsp8PQL1mWaNInAdoZMJm\n4CHCaTlhX+8I8QB1pAB5cKJF84kTyUHKUqN9EqjlAWdRbsCMw+mEw+d7vH79Gr/8/DP++MMP+PTp\nEw6HA66u5poSS4TEaTnaOFhaK/TRMl5hVEHC3DyzRgKe6yXpHdDT8TUDT5/WyvdbD9e6ugng3ABZ\nBHJx3fm50N+tHgcE/H0RY0HUtxcVng7oU2PUObS7FDEIUb0vBUXWe0rqGdSfMq+FNVVjlRxQpamB\n+jrsF/MBpVuVmmi0HgnxEZ96rKyBVy/8t57/0sIs+f5HYPKxshXa3oTnRpul7XF9XtJEc1NKnZ/Q\nCxAAACAASURBVBD0CgMlNYRyu+DRPdPtmzB2cY004NBIXfNVDy560NyvZYFaPrWg8mJ9X0NofV2a\npqlbL/B0p3rf6Xo/purlr4Zt/4yMDbW6wp7Q53a7HQ73922MAuB9DDj3kAuiIJ0Bp2fXrhsLP0+W\nOkijJmycmhwfzVOnuGGbV8lY9rxv1f+wn4nawfLWGrGxIXRA1B9kZlKeL6kg0c4QhvzC45dIq98D\npHIUAHFL3sVcQHKCVhV3WW+lFJFnLlWi4pylMGgiLGXBFQifP3zEp/cf8Pvf/x5//dd/jb/63b8n\nMvOXX/Dx40fxnK2K35wSjvWQIM63jsVo72anZPs9o4g4c4uUilGQ3jEgu0MZ2ZtAmlqUZkqpc8Dw\nPMf2iaNDDcotQkykoMpdvXhdI0fmmnIH6D3NPa7SyFP9+3A44JQLTsejw3a/3nD0tXwtwJivrWQk\nqhLpeIrxEs+PAk882+4ZOkzYCwH2vUivcVEazynZzECaJjyt0WuZizjFyEZbyXn/c/S577vcGZQ6\n3qQ0K4WkRjCVESuDhhox6vOBP/r2qWuj0lN0ntbYd1QXALskWMdwu1QzwojduDbUgM7MZgwq5CX0\nCDcNcICOUygt/WEz7se73UZly7DSxlP/p7aB2i8kEEsqjsw1nU2VjbvdzvSSHuOLFiD0BbxTU8/6\ntKQEAJzcBKzXoad7dGdh7KPJPScTzUGNuabwTg7XMdqdJOeiHwhLvWuMHaV+PP16G6XuHPVrqx+X\nlCE2a+Ta+tLvTccNumuotfuMLLRrTGvU52xtQw/s1s8pjlBM5evs+qA8YWMPC/WC7NTQF3Ug1jTZ\nlT+VUsRQG+qM6ay35smwNLnnuu27nsORzhv5KCA8qSit+jNEycd2OlaruqvXqfxh5oAnRu+STf28\n6lWkC8t9BrDcT+fw4ipDBAtxp9PJxnrJ7Spwj2lFB3br2jra+j6yBXRj6fW/gK0ZMM95CuzEj0/T\ntdE5Lkc6Nvc02SIZfh3XwKhPI7kbf8bnRv1hljS39VOj7Zx8Xa3XUOeqH1UnGDn9dm1tfF4pW/FU\n/Z25P0CR75rs8rpmK85hi6NU8uMl+p/cebX+3q85XZO6ddZp+rjyP7mXd6IJxNQyXmC991e8gN3h\nJa+XkOpzN7c32NX7rkmfjbLX48sLy2/yIMQzuXNlnue2oNRYHA8a3KSqp0YsBODwcBBgkjMIziMT\nDXjEtoCqqFPCNDePRE0RVepim8Lm9KlYuCrKp9MJNE3thNEM4WSATSNWQOhTZtWFPM+zMORlqfiz\nGZvUS0QVdaVDy+l0QpqAmGLL5qEaKed5Z23rxaB6AbvWqQdKnplpPfM0gUHY7/egCgRLYqSBAjNi\nIN04upN4ETZymbuO68PDA179+Ef84R/+AT/9+CM+f/okId/VUJFQoe6SheGRiEG5r6SAufVx4QIk\nQk6EhQtSbocTRhcYBf66uVYkUoXtiEFoRouE0LWoDB0SPuvHLubSHzH4KAjOlY4Rh/dRja8pJZxO\np66fqtzo935d93VIUU8v2zue3kSY02T5bJUuL8DsH3oFotS8/aXIZbeUCOytjWgwWOuLoOMSPjPq\n07lyKf869762uQLTl7QNT+8a2EZQpe/pdxmwC9tGQKn+Ba3YvytC8TLjXtzjnh6EdRKfH5XRN7rP\nfB9W7wVgHT/PuXSXciuI6rxHAthQ5egSun1bBpQrCJN+jd8d1etB3X6/B6MeoG4pHojz6uqudPh+\nP5b3t1R551OHSRRY86jSwdpa3zYGG4Uq/+mUvUFdRISlGrA7WsL6N+i4ARKBfh574F4Vp+ilw3LR\n/aSRnsuCmeaOPr0vq/ss9MHrNXb3jTdKFJboSrHGCd5IhILmGOFlh40ZiaJKLuqPCoNztvFIKeE/\n/Of/HIBcrHo6nfD+3Rv88Ycf8OMf/4hPHz70tBa5/0nvCvFeVuzmK4UxZ2ZR5HI7vNf7wyxa1e3R\niPv0b6OhYhw1amr/tL7oRMLVmKBt6MHHPLeoXsVFeo/I6dTf6+EPbHTcF14A7XP9N6UdmBaclgU5\nF6T0ZbLla/lazhXPm1Y4Z/C8Hmxriofu+QvWZW9mPP/Nl+CYYM+qHzbjUponPLl7Knv5eBBHy6oL\npR7ydBjSV9NXrTpP7mR3oqYLbY0GEdk9UF+C+5hd9AM1g5y2H+VNrH+FzTb6BPTY3PPeKIP7z9pz\nUL2GxEtTOV80449xRDPYqVOHn98RBgX61UPVsY9Uh2dDFK1fg7YbXqmuXdzWFiWJ3zi5g3P3difV\nxWklWm8QFioZNmGHDUb0jfD3qIwMSqbL+DUNmJG5x7B9e6gHJ4AYnk6no+BMd9eo1rFF29Ya/xLd\nc+u9i/mOX/sY8IovbP9RXeUL6xv9bnW5PsYxU/3NrIVx/nHe/Mfu/39KiXznktLNHY3XgXewfJSG\nAU0r7O51z4EM0+fWtGJ4KNb64HjxgA75EjhperkzEYwdb3dq+Wa9Q3raMyueoN8N6uvGp9IQ085G\nWRnr6OTDoB1fR5FKVvSf29fn1tnWe72NA22vuLHu6qjPmE47aP8x/jOUkVhPZb8P1vq54RFs6MD1\nXk3DFcrvw8i3vrB1Xe12no4aMLsal67PqhcTwHVfqK5OVd7Kz/FYRSwy+uwx3p5zxtO7O+yvrtw6\n23a8HPVnq3zRQQgR/fcA/nMA/xGAewD/F4B/wcx/E577HwD81wC+AfB/AvhvmPnfuO+vAPzPAP5L\nAFcA/iWA/5aZfzrbPtSDshqkAVu8KSUsXrEHwBXAqJILtEXpmaBiEpkI54VREV0mxvF4kMvS6gmg\nwgsiktNhMMACDsXjQgEWUEi9SNsBR0pyCTTY31Mxo2Tx2Ci5elJSA2xc5NJuNTwvy1JTnEhbEyXb\nIL7fyoRLKeLhwQxAo0aE9nluS8GYIjMKyyn2vKthpKUALMYMrh79CmABADV1l7VPEqa+LAvKsojx\ngMVIYKf3S/X6B6EUAhOjnAjTPGNfIwFSEY9wLYUSSq5RHgk1vVWjv5QC0kOEUsDHEz59/IjXv/yM\nH3/8Eb+8foXD4V5O7FnufkmzCLjCp2qoYEn1RQmYXChqaRfZ55yR0RsApyQ5ZDV6hypj1UgUhvAL\n/VvW4IQ51XySTihpSg6uUTiaVx3E7e6ZYAiKp6TidaFKwtpbgrm/i0AFgyiNaigmuTiP+6glW5tO\nicxFLs6lJGOgBrpUo2hSXUdEBJpgXoco5BSaylgTIbPuOM8o298mTOun5tGMekcNEsSNrtg6VaBD\nJMp+zhm8qx49A4BgQsMBmi0wGBW2bk+deU+/k586ak4RHpSYkszPS6THPmfuLtlmsO0d0wSJLLWL\npGJUUKgeTuhAxQq4l9LuonD0EMlBof7uL39rFDBinvKJG2lqIPBjafvR0WZzxgzySqACvpSQwl0e\nQ4HqxrSUAkzqYYcKQprf39YcTHr4U1gOkYjqmAtfy6VgphQuwyu9d64BbK64jqAhPSNwESP8hLD6\n3STjNs8zTocDprSrhtsGwkYATi6UljWkQI2Z5W4Foub5KhsaE/UpD21eqS3prBdJo72a/Npy7TBg\nqSKz8hbmztDMjlYPSC0dnBunWf+u/8xDrf5TSW5gGQA4Ge/1WoZfI72S0St/2vaESaJ36t/qiUVJ\nqGFklBLWHxUbNyI5H2h8SvibeQqDwZOMsHxex9tNbEwh0C7NI3Audn8JGDjARRNxwuHhiDTvkFPC\n7uoKMzNuvnmO7/7qd/hPcsHHjx/x4f07/PjHP+Ld23f4+O49TssRnDMy1dQcdeSneRJvtVwApnoX\nWkFK9b6N4tNxEpaSMSluq+4FRBItcsoZSGS40K8Prp3nUpNTSjiaeDg7BxQd88LihBE9XkUW9DLQ\nH8oQF2SG0eUPV041FZqsIXH8YJqwFCAvR5yWjE8fP+DFy5e9XP9afnPl37XOVN89q2D6ooeQI97f\nGRcCnjlXRsYRayPK20foM0Pgxn5INTUMzTOePLvD7bM7fH64B8A4LQv2Gyl2rW6u2oyL5moUr6MH\nRzhrpODH0hmPzuztzjGIVFK1vkajhq/Py0QAEhnjnvG4UMWtGTdGh/tn51xldb3QHBWjqS5CtDrE\nl7r7sVTZnqbJjC0ec6/wmf10eFGPVhQLDsY89kFkHpuMVGcAPVTp32H7pxeocylA8hiAzTbQ7aYK\no9n0qr5fW1je6x4jjMnuH7EYrjwGbuPdzxvV/hXu9wSzYPjT6VT1BVg7WzT7z+I865huvXOOl4yw\n7WjPcFi3Rm/FeLIWx/xI33lML9ui3ztvgMc0R9qHdYaxGMl+qnuUGWYTiTowUU275XCsokqgN3Y/\nhi0srZfyDIR9szFm8TvDTRUbjYoePkT6mv5CTRUOdG+toda/8cxHOrnqCar72vvdfu2obnysrsE0\nJRwPYgtTm4cw2XWfTabVNlQ/6XT2QeE60VG+x3UjzZKtS33W85NLZFYc39Ea1zWI1Xok4UkDeXlp\nuRQDFxYnM3Pe2JC/+lP0aHdQtdH3oRxXO+6g7ujU6+vpcERosxvnAXaTz93f9Z2C0vE/lTPTJDIr\nylHj87rW0VJBGw1qQzCaau6fKqsn8vutSv4L52kkN1qP0H2ntoqbmxtMzlaNsO6NisKbGHFUvjQi\n5D8F8L8C+L/ru/8TgP+DiP5jZr6vxPwLAP8dgP8KwN8B+B8B/Mv6zLHW878A+M8A/BcA3gP43wD8\n77X+RwrZ//1Git7wWyGlUeja37QGsb6uw+Eg9dcDgKYMV8O1U8aJNDStAGgKvNblPVD1WXuGHRCR\nD7v++NyMu93OvB1939VYbs9q3a6tOC4+0qMHyROIWj1pmkCYeuOa68fR5dc2mt1clWq409RhpRRM\n+53UwS3kujBj1vRiqCA+w51yinfWPE1iPAGQshyEoRTkZcH958/4+aef8Ob1K7z66We8f/cOpSwV\nJDrwDaAUPbxBN19+7Lv5dmPuwaqOP9AMaLEwC0DJXGqUQgUpA48djQgZeTN4Ydl5dAUFILYNYBX1\n4/fESqjW3yXlT8/IlQY9FCpFLjC3UFwKSorWH4QFsRycFHdhYMWFdU5bm1v7VNOVAc6gRwmaJxJe\nSDjArnMPRncxfJyLc589VvzeOgeS9XMiP5fboHWk0G8V7fdo7bZ2XVuDPhgfq2ss8uFRf2NFTfkm\n27s90B6NRz9m8U4hfT8BZpTX5xOoO0T1vNjTpCWml/Njrrl2/XdxPOsX3bsjcE5uDwnPW0dMbSt/\nqhj0YxXp2irTNGG/32Op91J5/u/ljyfb1i9zN18erEUavVe8ycYwDkB/aBPHIMoS/dsfyniDTwl1\nRrp8XvfYh01+HfuMsI7Rr03ty7A+NJXMq2ZtrxPM4SPuK6yjQka8O45rrIRY7loaFZX1gD/4TbYW\ntJ2Hhwegymk9SE2YwJMc8Nze3ODbP/sO//4/+w+wHI/49PEj3r19g19++Rk//fwTDocDyukEZuC0\nSKrK3bxzY15WypuWzJLOkxQLsDgGTIoXloqBiDBhLaO1Db3fQ9cUoY8K8qHj+plG3nrZ4deHpqNI\npPe21agRZqQpdZiNmZGrg4vc+9XGtpvPkQb9tfwWyr97nWmTP2+Xc3Lr3Hf6uefZRoY9KH/J+qe2\ntrmPQG58yLXh+8SDXUEkuhwI1zc3uH7yBJgmcDlVHA0z0FMFmL6OPiLQGbg4RHUFfKCGh2gUsb6g\nf6eN39rY2WGzWBOtxz2+ozR5nreai0EdIk7VaFLvmKh9IqKVp3CicE8BwhqA8i2C+auuZBcqzm/y\nSuguYF7TuNUW1DDcrfX+OX3Wt2VYzyReWw+mh6TxoVXEyuS+N0cJVFnLbHe7yGstgogH4+L7GDFu\n7H/8W+0Gj+ku/P+x93ahtiVJetgXufY+f/dW3fqv6uq/qZ5pjejRm42HkTHdYIOwHmw/Wi/GMpZl\nMMb43YjB4yc/GGFswRj5xY/CYAzGNhiDhWQ0NgiBf2QMhm719E/Vrb9bVVP33HP2Xhl+iIzIiMhc\n+5xbLdRTcHOm+p69Vq7MyMjMiC8iMyMbduI2H7t+bH1XK9bb2zgX2SOWyKetlE8JZ1l0SjZlW20L\no2m7K3p4Knnm7A/q2EuxLW+bytM2BjtlmKccyrP2AcOYQsoDwO4BmaUKYNfo1RmlJk0YE2B4uUGF\ngv+FlAk4bR9ou/JdAEQE1LkOYO6nLkjZztzupiu2yDjDYlZf21y7eSqkydky6bXZ2Dj1LMviIIfb\nOJ/ZwPKvyq4ua0QHtJPEkJPDNzc3EoUmyXgdq9RkT174mWFexwKTeWg6zZuDg+8zTdkteTLlQ6Jr\nNpenMqmNwazDT2IGn8+RvHVPZbZ3ghzhvqhNEJsvS64gV+SPafkzW5qVLu4LCJJf3q4rG+88j3Lf\nmi9C6fTzyoV5G3nXZJDiDpLNG7p5QPwJbXzUbocPYaCdXobySeub1C96oW2OTXy0ck7IlZmsz+2T\nf8a5efXgAc7Oz42uspThXi61lkZ+nU7PtRDCzH8xNepfB/AYwD8F4O+2x/8egD9g5v+u5fnXAHwA\n4F8B8LeI6GUA/waAf5WZ/3bL85cB/D9E9M8w8/9+L1qoN3mrwYOQPqWwR/0eBu+zZzddmaEPWjPY\nKeaXgSphoUq7YLxQ3zU421nEbYehd+owqhnrFt6rhV8AJqcB4BVKH9Bcq1zGngSH1ud3TgaBJyUY\nn0ubWL4uzXs4HIb+WN2AL22XJxGZoFyZsZozYrFL8aAhMrgC6sxObVwAHG9uQGAcbg+4uX6KTz/9\nFO9/8AE+/eQTfPrkCdbDAQu1VVsSoLAeD3bZzspr40lHSzOw4vkf3jnlPhPKWbhp26lE46RhURSK\nu7wUx1WOq8jeOaN90Me4nBgxUK40c1RUPmXFa2NYG+GSjpMABN380gvpbQcuOZ5wN3a9wdl0uqPB\nARLuY9o7wLOi8pfR+vByeW5HXolgX4g2579P94mrOksZfN37W/JgbG4onDIOgKbcjLeuD4iwyvYb\nOzUWxr6fFrlMdHbNZGoY89xBgadTHYYLdGx2kDczknx/5xS+AYVvyYbStoIMBombT7lsZrkzyuaS\nzadYznC8eAKEVjeHNAyS7qjYotV0hbwE5UF7ol0+aexrk20Z9KfpwMzhlEamjR0fvCypx7EfvUPI\ndIqf0xN6JXwWzCmj30a5I4tLmfeeXvtGiOnl9Gb3cd0/HNow0w/eSBDpmfqP3AJxKsPqVbAJgLkO\n/a/6pJDuu+07S0WNxf7JgFOeAaHBLcXTZQGKDm1nZlxfX8s4InIxiBm73WIGQuUV+/0e+/NzXD18\nCa+89hq+895v4Hi4xaeffYZPPv0UHz9+jC+++AJf/smXqEDDA41fhpWicbe0E0HmnGx1adothNrm\n6MGdTiPXJ1SKndpUzMNcLWQWSBwBC+JONuWV8ktVgt+kUisLbGllH1bBXvVYUVooOo11K3e0NUOl\ncf3p06fz+fUifa3SnwqbiQHvLeEkQ/WZ/3fSjs1nW/o0yB+T6w3rKTUq7xpGOKXNTG5Di5zs8Ndy\nSsGy2+Hq6lIc9mh2VSkWKSDIxjvaPMhxr/tdezte69ZibQsqXCe1MJzMcBcQA7YIofWpTPRphtsN\ng6SNFlu2r2Jw5r4MJXCYut5H7y+xC/qGFUbHO0STXf+ej00vBBw4wTtiY4ynGQYdy50OHQ99c9dc\nh3pbN9CJXiYr2ebRHcd00N86dput4+sgd3Fs74dx7OnCT2lsZq7DVoVZ6FHjo+mjEvo7b+TzqdMy\n4hmuslHAO76V4E0/iiv3LpmSZc/p8Xm/ZLCGNPqCtC/3VcDY7aNZvPz7yri+ZhdP+gTCKH7nk/81\n1OWmUcapQR4K4JxUPsqvPAezfWp0TjaQ9bl+Gp8Yrq/c5YmrL/dDlsfZvgzy/44xlX97P8NWe/1z\n9RUVbxeRK5NUWvj2O5qq4Lq6rlj1XinmfhcIYqGZB1typstqXfBirLqBtuXJi0Tq+8l97sve4oPo\nznHMzv6e6cuZ/TH71vwEuXzV6ZPky4v2/6gX70rDXJrQb3RmuwpuvJLMfw337r+byeqtOtofd8pG\nfScyfyKzVF+z39Th7J1qEyL2RdLd4/hQnjn7E/10DBH1RRXmoa1bfJWXcXxo+P1Hjx7h6vKyRxqp\nbCf/7W4h/91z9P+vekfIK63uT1rl7wF4B8D/rBmY+XMi+t8A/B6AvwXgn271+jz/LxH9tOXZBPX3\nVZQeDORv80DuE7x1q4Y7SND49vYmDLJ4MiDSUWuV0CNFLo7RpINfLxuHGxwidMZdsbpDPp8I8WAr\n88EPdEB2+7LuvHf5/KkMMEE3sRigdG2xsE7MOB5GwKV3gfRdL6OTyiY/y+XV0hcLQAxit0sX6Kdu\n2kWHXFd7jlrBteLm9gZ/8vnneP/99/H+++/jk48+BAAcjyt2u8X6Zl1XuxSvUgUtwlewW9VNoDGP\nGc93z2MLN+J2VPt+KhgFcpWKQ1u1b2z8aFiXEley+yJaF2w5bIeuXvhxOQjvNGfWZlBkWtnlX5Yl\nxLrM5fZFgr57eEhEA8ghlL4bvtWpRow+m83bAETTXO8Xx7dymlHjx7EqD3Wg1bqi0DIFIXbvSB0N\nq/ukTOMMOGagUNu9Mz7/bDe90jkDsqwMnPBsZhz432jfUn6vylXznQA7JrccP2dAKI/hLMMyH3P/\nhHY1GkWuKb0xzea054MvP/f52HfdaDd6khE/01ELw5wNHoBnWvLf8X0/Dutp80bLbEcNEeHq8rLz\ny33T+0Da5gof+EBE6YRMuqdoKXEc8mhIeQdQ4Gquz9GmcxGAhW8KhlIqd9avnheEtmjPo3GU+y/c\nh4SR563Qof8JfecQEg+2QhUw4oIz2pjpbsW4OM7MQOHAp23ejmPMaG4r06qvBa6QXRhOhWTjQ3te\nWDcw9PlHzNgvZ3JSEBXLUnB2eYl1PWJ/cYnzBw/x9rvv4vj972M9HvHk0yf44P338eGHj/H555/j\n9uYZGBjuUCPqi4iiCd08BbXFMoR532Fy3FDiuaJGZmkLnbUNWrlnuZtKOSSNPwFvoVkrsPLRwo+u\ntbZwX32MHdvJXVoW8PFoJyqX/RmePr3G8bgCizrG7hs5+0X6U57+idpMkgxtyTimiOEaHfE3uryd\nYRWfskMiPze7COMuwlNlDs9yq5rcDnU2nV9I7hl89OgVnF1cYP3yKCFr26kvkx8pRIW2eXZZrDmh\nN076KU3jQ/mfpV1anRehM2YS+doXX7uskY+7PpA81U6Sj3Rs4rpQrpdrDksCdmo1t8pvaAOASlJO\nacEOqdk9umPVHCZTvs0dJX4BIdSdbBCGYHiNyBBOuZtPiYbvPQ72Ol7sOu2cERcRyOyV8J3xqevd\nZbcYNqwVHW+lzZBCU3HljJjUt3k2z7I/wCd9P7S90YtJHXVdcbi9lT6rFe3CqikNOQ1YdZZnQuMM\n4261Z7NgNH1dRjs0zzWwK8LMm7nM820e2m+d3xY9M26XiTUsUgmmmtuFVpefR0q/kltTWK7pPMrO\n27vbBrTQWjz2AbV2biYe2xK/3/7W+OP6JfbZtq3pbcbcfgDh5MTMJvP0acSD0KyGK02usC4Ia0he\nNt2jd/BdX1+POraVJbbAKIdnWD3yx9GJ8RsGhH/BbpjboJlH+nz2LNPinDi94gkvh+8m71QWqQWn\nm7yE7vEba+vEdtmqe9amLgfmdl/gIWIfxnK6zCZqtkP+ZuBBy69+V38CkkZ7NdJXoJF6ANUf1PpE\nohPZpmp2iwJOV9TZxgzXdqHJ2XNQfNT7KTCCvQ6E6fqZ/f28iZnx0sOHuLy4CJvadNHPW/6nQqJt\npa+8EELSA38dwN9l5n/YHr8D4cUHKfsH7R0AvA3glpk/P5Fnmma7GWwSTQCeT/cRyiyBMgOA0vJv\nbm7bCGALocBm9MqJkNIWPcbTFe1YtO74SAsI+kx2vO9we3uL8/Nzic/ZQnZpOIb9fi8XpxOFHfCa\n9rsdarsUgtql2wstYN3hWOXy9t2+x6yutaKusoPRTqM0PugOfA05tDhlrjzVd/v9PvQJM9tun1m8\nei1n6cxuNDGwk6NO9XhErbcovENdV1w/fYpf/uxn+Nkf/zE++eRj3Nw8w36/a/zTC0slbFYlmcgo\nEhe91jUec8YKZncZ7EQQzoSnOVA3DBltm46pYBA2Bw2RxDO3cclsq6l2/H6t3dkMmVh5p7pMeGfo\nOoXcHrlx5tqh7Wr9eUzGhQhM3TkNGwNqnOSQWv5vU7wEM+g8EPOAXMdPcQYXVTlOWycKxPPfpzzu\ndJGPzZBhU1DkeMxgc7QJbVF5aRpOSrlxHeh37ZwBikzvJrAGbDdGoCfJjbuAgdPHYRz6v4nEkekv\nMWdmOSnStF9VWUP9GWsfI5avf3tDr4g+PgnyMn88LTOglpM3EjQ8lncf+u8yOJoZIPn9rK+kPrLF\nWTtOOukLX6YPX+jl6QwMZx5IPzSna0MemwAjjUV14tRasT87czJk5DlAYT54wKop71jcNScymBsa\nj84M2RkV21VK2tHT5EcG9z55HUroY3B1DoateWd8dOUyc4/jq21zc6yH7OhOEu27tdYQfgmpHK3P\nn7xca5UwTi1/5b6wKO2Xe41GIL4bjIM8NnTzhMpAgpyotHlqi3TUFuFjWZFu/U++6SGhKp49e2ah\noQCR4zs35ysAqsC+7MCkxnXFstdQmA0v0QKcAxeXD/HOO+9ixYrrL7/EZ0+e4KPHH+DHP/4xDoeD\n3KOz26HWKneH1dqcTMBuv8NRBkAfF4mnRITD8YjdsjPcs3Nz0GMxdmOjoi3GsCw86h0scY4Ceq+A\nYSW3YOZ3iHld4scxt1NatVbc3DyzzRqgbQfXi/T1Sb8Om2mDjs3xxOld1kdbejLnnz0nEDwKZd4+\ncTyjOb/P/wI6ZwX/LqXg5UePcHFxgesvvzTcVEpBbZvRMnZXm+XUrueKedutnTQJ59Fwb+l+XAAA\nIABJREFUUtj1qk7T7q2P/C0FRU+LqQxLYZoI1J1c7X1p+GDLNp46JRjmGGGWTXle08dxEHePBt40\n3aQbIuw7OEzEo/zMfSA6cGzDMDYc1uJ2J1mktzvD87eZD0aO1u1pUT7UZsfTOP4abEEzN0wHA/70\nSWN2S5XZLqItZd5G463DinkOzzYSZd7q2DZ/GQErF3Hmpjkvw4lxe3Nj/g5FTflE74yns5RnTA4V\nN8X0gFzOC2f7TcoK37T+m+GaYS4g8nw21mZ2w6k0lV/6fGL/bLWHW19B546j3+OTSDOCU1DnUW7H\n7PdsbpHL13kneHDGU1sgcPaEt119DbMxlGV55ovH7P6boYw2F43vEL8CXJ36TbalVS9Rqt3/6piN\ng/MeTvaXIpFgQihU9XtQL31LluY2ZrqVKrWBlGqLpHKCR1v1UHpuvFA5Ox+oUN9A3q4zm1fzdgHs\nophw6faw+CXmvt5Zmzblz4nx5vui65PY51s6H0DAMX4OEhXoVgDx5YpcnZXnF684zRV95u11KdXL\nYm1PlChe/rfzqYG31BbCh7rC9/qiol2cY5veRacLPbZpTQlCnMczLBKeu0bb/FxX1Frx4MEDnF9c\nNJxThnGgNp+Vj/unX+VEyN8A8AMA/+yvUMZzpT/8m38TDx48CM9+9MMf4kc//NGd354axN2xquAL\nAPpg5VWcXKvef4EIKGXy9As5gaxEYc4frc8DQqCdKICEzlqWBc+ePUNZCo6HA4BuVB+PRxOs+kwH\ndaF2sShTeF7dZFdnRq39UnOlMwh+Zou3rfTqpeyAX1XsoSS8oaH169FuarSwcwLI7i1xLHVnhNxD\nsrSwFZ9/8ik+/Ogj/PLn7+OjDz/E4VYuWy1FhP1+L7w4Ho8S5scmgu7c6f3jlc/WGNFJOyiDCbCs\nk3z5bwaHu0KyIZjrB9xO5kKoequYo83qr7VfTpxonY132zHrxy23i8JT2xiQY2euPCl73GEcjEh/\noqZxYJbshAUzuLR7FxI//H0Pnoa8GDHjZX+XgMMESUkfqTHqdpcnoLclQ2bGgKdpqz/Ggjr4UkVo\nIGQCAE6BcntXno9mVwK66QMZf9zHYjC4+O4daQqC78PD2XzLf894Gt5NSbi7H7YAYx57OS85nvj3\n960XGMMe+HYN89oA0Wis2XdQQ8jTWQygn52dRd3n6lO9FTYfJP5ujb5sTG4Zn7N54uu5T1Lj0uu5\nU/wOetnA4f0BL4CgN1Xv5m/9gox/bro6F+p0U7sdBGGVUWl2x+ANGE/o9WMm7wSdyZPZt6IvFjOq\nbAOAHoE4HFCPa7M4U0hPpa1KaBC5A1P6fnWjpxL65XdKLy/YPTrDSw9fxjfefRc/+J0/h5tnz/D+\nBx/g8ePH+Pijj/Hsi8+DzFF6SyEUphaSdNd51fpkWeSYtS44VC6oK1BX+Xa3l3umdLFLFyzthCZ1\nfmg7AYS2+80jNgYmhk2tFbe3t/ZtKYL3fvnhx/j7/9c/xD/4P/9vmwvX19fTvnqRvlbpn7jNBAB/\n+F/8obObZBT+6Ic/xI9+9KMhr5fr98YYLv+p91r44OCaebzSYzWsg5zecBZ4nXh1dYnLy0t8zIyz\nsoAbYtawLSqHTeZttNG3zZ+yzJifiloenY/d2TI6usyJ5dpm+EdtrJE1LV8FtRPMRqOALFd7xC/+\n71OJoYshMPzgv/e/N8uY2ENqjy1OXsq+vYxdmkOqdh12Sm8tu4LjusqJf9c+dUR1q3COITv28BS0\nvyb8Kq1cjwWc8Qhy0R0Ux/viu2MKtqFSC9BubIT1BaTJv1vPZr+FbmpRpnVMstEenWoy9q6f3nRe\nOdq3sO697BzNd8f4ycn6666xy22jSMJO+m+scxQ+z0NTTtRsuOcqg/xoizRU54vC3U0HBokIc4vm\nObAlC7wfZMOQOtk+XRAI5SVZrXJlLJrtfQhLBe3/SNKWDuKZntloznwcj3N1JLZlHJWQ+cxss7LS\n43H+TP4MdASNJ+2ahPtDsw0KOESR2Ozfjf4L9pH22X1sKWfX+fezuma+DMAvfPhvom2a2/Gr2NuB\nJvRxb/La69U7vlbbRn91ImvIt2Wv5XpU5m+ND7G5Zn1YwvyGa8fKDJ2avr9mpRBRwEbGFepjO2OB\nIFcQo4AwxnF3iq+mYyA6dLfb4erqqp9QVT3QyvijP/oj/NEf/b3AkqdPn26Wn9NXWgghov8MwF8E\n8M8x8y/dq/chfH4bcYfT2wD+gctzRkQvc9zh9HZ7t5n+6r/5V/Bb3//+KbrC7/sw3SsE31Fc3aBp\nR0R93lmIKg8MubLszml3QazHfuF4qxmEklajGcuiR5aqXUztQWff6S71HI+rfV9a6CJGA2Du+Len\nWcBZvHzaLokmQIWSUCk7qwC5d6KuKxjUnkUequFvob8wCiulZ11Xuw9EDIgCpoIjVuyXgkevvIK/\n87f/Np5++Sc43t6CUWTxo+1mPRw0LEorowFQ7/zp/RrHhNHDcVXxyNWOZGb68/jIiyCzECSWX4EO\nKbyXb3d+l3FTnv4ODJnnc2EVjKuN9jHHL5cWUkt5HxWGmW19HDOFcUO9kt4+V06um1oZPmk+badW\nzW0RqxR1NPXxp6iEW76Fiu2sCEZg4o19ShJjnrVAhwrVcCZMTttsKaHUlvukWT5qc03/VoPNHMUY\n+306vibvmVkuMOa+yNN+un6U/7wB3umF9XMldwQxgSwiEuClY1hbUOTEk1emhZ6PZ56m3L9bho2X\nWznl/rwLhPq/7+NAOKXoo3FOQfb6urb6E4hxRZFozMY9kVt8dm3w4mLvLmf2A62DnHQfThEgrkfx\nt/jn75cq3MedlYWRRwFUyx8ypiByRMNf+RTa7coadPkGMJ71Vb7/Ck03ejoWjGMQqawF8VJzL+eR\n6Nvmo9/o0O0u3152383k19Y86fwoKKUv7sQ2YfIsbt44tI0aA8BvtO3a5olVwTPQwGzDO+jjgSCG\nLkrTgVRQsMP+7ALnVw9w9egVfOe97+Hp9TUOX36JDx8/xuPHj/HkyZN2j9qC3X4n94ItOxDaidRm\nQKroXwqAdiJHda6E9qxgyCKPYgjZdKKnW6rrw2jUbJ3QUz7qJgRZ36LgZPCnISsz3n3nbbz33vfw\nL/yFv4Dd+RkKLfjJj/8R/uA/+g/xIn0906/LZgKAv/pX/i381m/9VvvlAcAmrXe+m+nBkw4IDnZr\ncMoZTKWNOiZ1miwBggzs1cnv/dkZLltcacXThH53oRrtp3DD0DZ2m8RUx0IXQ9EWQvzmGuoM8HV5\neyLJbbWnDP8qHTX2nw+jG/T8zCHqdFC4J09tEyLo3YLMLOGIHe6/b5+T43XWOXYicl37gjFXUCEQ\n9UFQW0hkO6VZq9BCFPL4MdJxh8cS3XmuXBna4/q+qz3JObsTUMv1fHQcMdxkfCGHK4xX0R6P5bTF\nOqU1YbvM/8j3uBltlq/nFTqEPWOkBuaKyrIBtNYzlIUsf8abA39mc9XTPqE707slS05tZ8zzVHl3\nSqaFsie47FSeU+UIrWZmGTlDuQwLtTb/3i3kFbJ4+DM+99mRks5zdDt6qz3aX7V573P/Vld/sR3v\nvS0ku14Ge0YxT+ZcxlBWlMlS/7DzNPscAgYzO+d+/e7bR0QhjJajtGNiNNmC3ncyj1TOyN23h9tb\nJXuw5/MY37Id8+8uVzoeJ/Swk3qjnurF2Vy9rx+hsttUGKav05fsNoOprDUbcu74H+VGH+VeB0rb\n5htB77I/Z2lr3noM4cv2NtxWiOmoMfTFWN/Ai6h+TFfZPJ7I1Xn9nmfxnc4oWXQDmGmYr+o7HeZ5\na4bega3jG0APHdkr634rooBnrKqpDkqYCG6sArbw8ejRI5ydn2MpC/RSeD9GfvfP/x5+98//Hgpb\nZfjxT36C3/9rf23g2Sw990JIA/T/MoAfMvNP/Ttm/jERvQ/gnwfwf7T8LwP4XQD/ecv29wEcW57/\npuX5bQDfAfD37qg7/M6K95SCOvV8NnE82OF1xdrCUek3MwfDoEQZUP1GRBZ6SwUXs+y66d8pMJIT\nFnrSItOuq8wWyqEBr/W4Wnv0fZ4oQDPKbaNiA04W5wnQZTWuNTr8F4DXFaSBqxO/dOep1qXHWLVY\nf7/Efr+XRZsql4devvQQr772Bt76xjfw5huvg48r/qf//n9AIcbCQF2Auh5BRe6TkPAVQpeGmAog\ngNlC1fg2FHRwTNR3HATDyrD1vL/XdQWX7izR//xKqZ7WUaGwAMPpjRyvVQ0Di2HeQnTMBPCWUMkK\nQu+ab5mgJ0KySI0YlcMRfC2zNGlohhJz5F8Wftx55wWejV2bB1oHTKFXdqdPAKztvYHGjfns+2HC\ntL4Lo9GGFAqLGvg6JbT9s1mYrpMOgVBAUnLcmIYOBIIjWUHWifK9YWjAzIGZGTgkjOMpDxBGU0pe\nGSodrV+Un/KezAC0MenGzZ2smfB7OG02UaSn0mx+zOR4piPXl8f5XUacB3aD4eKenwKNmUaxYXve\nLUdsbgux2VHY7U6p/6hTDVRRB0g2phLYOQWsJc+ErkkZKh+0fVv8AbDtsEhANNMS6nTt7lwIDbW8\nPpzSkhZpZjzwhoO1aaMtQX63slSnH2vtMVAl07Td+ttfiLd14shjlFAWT+56anUrBcfDwQCrnRRx\nSR2O0BCJDBATajoeLmNTcYfq0J0zUCp2ZcFuf4azi0vQK6/i9bfewZ9ZV3zxxRd48uRTPH7/l/jk\n449xI7ekA3U1md/DWDYdsdawqUR5VesRZbez07VCEmFZBDl0vnd8qLydYUE96dstI9Fv3Bhfilze\nXGvFCuB8t8fheMTt7Y3gv/3OjIEX6euZfp0200DLHeF38vw9ZVMB4305GTOa495ATHeYkJOJuqNy\nqEll2YxWlbOZTsNSclfcg5dewtn5OY7t9JWGlMyhbb0OvgtPaN7F4U1iRsEiYQD9BqATutDnYQHC\nQx9An1tR2zjG1ZK4Nk+Cy5xdSASi0mxAbk4+Cpf8qq5kEoeIr0V7S0PoZpmo9lMFgLZxbinF7iOA\nyliO5Xj9qWtKpd0tyLyaXvK2kh+XM93ncYbaMippgwPQ2kZyXyViuUqf3kk3dt/pBYx+mpDDULH7\npNJpmBmmyc9m47fPm4YFSBxnMn71UndA/BCSX0NSUmmbJU+0ZQsPb2G2jHP8M/23bLSlfWjzOMsH\nXdzT9uooFZ4CILLL0W2cNNvPOsH1iUquuzBk+zCOnSbrNmejszk3eQXXRv3hHnqsaDxQG1JlNLOa\nZUPeTmp3xPqFXA2tXbR+ALbg5+ZEAcKdJ5ENASWPeHPIA5OL/nkOzTaz4ZiohcKK9Z+cFz6P2qvT\nlozt4sZbHwodAA4tigx7H5vWmdp2av7MpoD4ZBBw90Kn5X4eJ7P2U/o78Fg+AJJ0VL9SlvWz8Tht\nJ/Uy5KUS5xazE71TWQ4MPtO7+jy0I40R9R1yytP5xMj8ntlv2odcVcWH215tbur3VQqI9WkfaN7E\nx+bdE16Si4Zj5RRwWyIT+mkYKpEvujgl/c1Nbvre7+PCtVm/mGBJX8/sqgvR3x0L6rOLiwucnZ1L\nG7jzxoaJsU/m7VyKbqfnWgghor8B4C8B+JcAfElEb7dXnzHzs/b3XwfwHxDR/wfgJwD+AMDPAPy3\nQjB/TkT/JYD/hIg+BfAFgP8UwP/KzHdc+ne/dEqh5HwKNOw3vOBpu5z1hEMLj+UvGdd/keKcR1oE\nWHojhJnlBAd3IxwtNJasuPcJpPeD6N++fUtZ4i5WtxhhjnQfroj6PSHrcZWB7sBAKV0RkOMH0HaN\nVkZZAGbZQQlqsc/JOaDb93q5trZRqShEoGXBo1dfxTe/+U289c438PIrr2B3fgZQQSHC0yefCT9X\nAWW1xcrldcVuv8dhPTYALYogX0IGZnMY9QnWXBncL/sLSlUYKIKqAZPK1U2qqGTMYc79LhR1WtUW\nEkSTxoDvX/Z/CdQWHhq4lvP1AkAhgFXHQl1Xu3BXd/Hmhbw+jlsdJKE/mFaUsmBZClC7IGJmCUlP\nfScXTClxEz4dHIqBGxcblGfaThXNlVdbqDNeN74rwNQxRs1DpEe3zTmVFJH1M+tijJ+38rtyi7nL\nUR4Exc5su64rM0qtLYLiCK7uUqw+35bh4w1DBZtjGVHxKmidgpcZAJzl417+Zh5Pq9UM91frr6YF\nB2U/MQCVdl+PgGSy4ptutXbrOPLIT/uKXDl3KdmRV/HdlKfYTipXp+/uoMWAQ/+faRrGGNHAw6Bj\nPCJxxHOS9yWAepUlBecXF7Yj3pfd5z8sfF2R4zxuzsGcV7lV5hiikTeRP+OY3QK3s2f+nUrmzCv/\nd9aDYd64gvzOFn1JNO+52bjLbZjv2IXFBh/a5fJkB04A+QGvyN/Sn2I81MqgNm9V7sKNe0+nymid\nxIIDSre5m8zPvNe7pSyEouph5TG6U0n1gl1w7vnuZSdIcE0bf4pj9P2y7ACWbQXL2RlePT/HK6+9\niu9859s4HA74/LPP8OEHH+CDX/wcT6+vcXt72+4y6fNJ26P3ASztHrfdspM2Od4Smr5rBgtZ+5tu\nVF6XLuPU2BFstgbeWl8ucQfvbrfDs5sbLLs9jocDjscD9rhs+U9JpxfpT2v602Az2fhx+mdmq7TM\no4G9IcM5yZ9tWa91ejkNAXq6IOr0iOmCVsZmaKjtJrf6CnbLDi89fIj9fo+b62sszQbT+9dmsnDq\nqEGU0b7tcTGoGq4tqbyBfofTfbthZXnF4xYF/Lc4tTlj3FwxtM01MfcpinVPD8lYFMv3MIkDhur/\nM8WZxekIba8OTd2o1vkt8jTuMCXoaXU/vgxIpra21Xfjl76jxtu48YldLkn9RHzCvGU+bjwvh/c6\nB3TbdqObZQCgMAGIJzt9f3vc6qMvqD3YQzjON2k5lsdEQLteJdhpt4dbHNvGS8V0Skdudx6HmzLm\nOdLW9xFjwQ2BDXzdstv4cnaRpcbrDkzYNv+oCbFlOy0qT9BsyW7YSjkTsoxfROI/quP7jpPCRG2n\nNWQMkgnUkTf+t9l11Nue8acfXx2HjjhbeVDTOMh1z7C6FjLg4Unfif064tyBT9TlAZPj2IZemqXB\n1kDnk81Db3SpXar1Zk1FJNizjTVPOZXSN/5syJAZfSGv0Qnxy1me5rOa8RPRvsh1GtLkqDtmetJ/\nf5eO82XM2qSeMJ2A1cbdaVs/13GfOrfaMEt5E/I0n3tkWmSij3VxdvAPeF2INE7c/PF2n9z1kbFX\nL0XkVtRHRIRi1ldbbJDBYHk7vRryOIlJHjGFMaG6jdFAmJfamwN+Gfo2slTLuLq6wuXlpSKD3gLD\nR+6re853n573RMi/DWnj/5Ke/2UA/1Uj/D8moisAfwjgFQB/B8C/yMy3Lv+/D2AF8F8DOAfwPwL4\nd+6qXAXwzImVwfgpoRxArAPdEXDUpgAZt7c3OBxvUInA1HbJuHs4KrMoMa+MieFDX81OZ3jg4E8T\n1Mrm3PeOqqCk2vfHVRzNzCyhjzg65YlEqBwOh3B5Z12b8e4AlPIBgK0ye1BVUFAsnnfFWo84Oz9D\nIcLx0C//VQWhvNnv97g9HrE7P8Nbb72Fb3zr23j77bfx8MFDlLIDSgHtFusPPqwgWrCuogRv1xVl\n3/KhCSci2206M8pEObRj48r/0hcVuBJq7RfUEZEpZ1WkgHRz3O8riziti23HygBUoce3iowliUXV\ndt9yEIjMztCwozpobZUFlXC5OLMthlh/tjaLsIMB9UKE9XAUo6zISgO3/g1CiJsTnvrugwKlX7R4\nJWcgOBAAAMR9UYWIzCEmu8aAIKQKQFzk/pMug1EBVF7RugJUFjsOLw69JDyJzLGuxlVFvxDQHLhr\nr192dclsV9BwXFe0uE0Nk4pSuUt+bD07tSNhaAP3sdcyGPjW99lqUWUi4eyCHhbjqD2PhnZy/N4B\nLhWsFsRyDLgDYdyjORKNFqf4fXv9+GHAnJ2lFAOLNsoc+CoQ8MiJvzOjJIM3oJ1i0BBeW2HVMjOR\ngI2TBSKnt09h+LIr0mmwRqcasmrUBkOynb5BjQaKlS9o1QEetyMmgwvTB2YKgUDY7/cAi6N+HY7b\nd/0gfocu0zXp/NKFK68rpKxlTjtpPdKGLbDq+1EWLF057O7ZmAA56zOlNZ0oyf2nc0rGWQfkzC0U\nH5pznCd3kVBcsJrdDeJp0JN/BBFNzHHHqsclA0+0vS557FNa2ClCCwEFmJNF59FWCC2V89Iravh1\n2hfXvwTGyoxnz551XubTq9zNRmq85fbDqmJnwLm2qMPILl/nGIaBygKNYktUUEtB3e2wu7jE+YOH\nePWtt/Fn/9zv4IvPP8dHH32En/3sZ/j8yRPcXD9DXSt2e/m2VGBdj0Ap2C2LLII0edTDuByt3wC0\nU7FArUCFbvECqA2RajsiV9tBq44F38frGuXH9c2NXK5JhMPhFlhXaLSY2Xh4kb4W6ddqMwHoF0um\nIbTp2EC0tXLKNsgWThq+c+XDJEOunLqmNGw57sj0stfLQy8/FH+/9PAluw+r0AIxUQRTxp2ZsY6o\ny5KT0L3LdyNx07PV2QeeL1v8CWUEnCabe4rH0S12i8nTGnkwY++8r72+VFZ2nGBhMIu+317wsn4p\nBDm0HTG7OdPQN1Oo7FeF0DdB+fr7PYvdIaeyH2ZLZaes559vMRpHbeEaDA0JVmtJ+WGhE71+JFfO\nrE7/X+8TNowbbAJ72HnfedXL9mNCsYRiSLuLwPpyxI0xhHfH8zqP8tgupeC4HsFccWibMbf6f8R4\n23jOP9O8eU7dlTbtlnt8l+lV7OXvUpU8gPqAZm3Jdp1udPU2rf72BXs+++9BffPpSG+kxfq2dpsr\nyEWMPBI7XMZaIC+NASV5C3FI+V6u4UTuPPd7G2Z8zeOE0THvTH4O9qxGLajdPpj119iemHxkCe2r\n1YXAsm9NJsbv9bubmxvBiiqTgWFOz8bDyLsSfnt+Cab3mygnc40aLqV4enlJ/Zbpmen2++r7u1L8\nbi5TZpt8t8a3z7OVsi4e6YhjaqtfAt3qC97csqFlyiZr0xlO96gi99pqhrHUBixUQMVtOsTS9GD/\nPsunPFfcNe6DPGDAH2DqmBDiy1iQcE1i+Uz/VNcmEE0lhsm7ZlatTc9dXF7i8upKnQcyH9SP4AR2\np/H50nMthLCij7vz/T6A3z/x/gbAv9v+u3eqXKfhUVy5AKKymzkiQn7tLAx9aXmPa0VdK2gZ45Rr\nvkFBuZMEMzp9GClN5sxtg7vWClooLGD45AENiMKF03bXRPs7O2cr94ULH6+e2zHYnAr1UFe62LEr\nO1AlrFUuszkcDigNLDGLWHj0yqt459138a3vfAcvP3qEs7MzlGUfLghlItQ2qIkZVduyFHEElG6Y\neSHoQyDpBYYRYEaQ5fsiKxTA5bF+BQCy8D5WLyv4kMUUFU7tpkTZBYrc51oozCmdU35GRBZGw3Yf\n8fwbFVSAF46tDNIdwmN4mTwGqTVcx5+OjRBTOAGSbNSwazC1JWUThlyBtS0UNW8Xufp8uwI4dvl8\nJ4X7LzDKgEKEFbEtJs4b3Xqh4UmAdYeyz/P/edKWcaHNVGNaeSGKBKPAmqSZkhrHfq5TDdG7AU4G\nFAbcGGEORMPU6f4NIEOuvFrrEJNyS/bPyqr+mw3acznP04+5bafyBRlce3zvbMjm704ZicxxYbRs\n9K+OceYFtd7gbL+XEIV3gMmlzeEV8YSCyVLudJ66K+EuQ+RuAMv+QbRInC4/ZVD4+mY0uf0MBlh3\nFA2/DND1xE1+lw0wL9Myr8LvTS6MPMptnYXS9Dri1LehHxRUqo5upw/9HDo/P5eNGKWgLAsO/nLw\nE/U8r3zMZSlf/SnQBQR1G5VSBPMwsHv1DK+9+gZ+47vfw/FwwKeffoL33/8lHj9+jE8++URO2rZv\nfAhNZglrxegnOyWkDhvOqipbJsZjaZtS8gJnbL+ecFmCr+Tm5gbruuLp06e4evSq5vzKPHuRfn3p\n120zta83hcp9ddeEnm3McgeeofDLKLHf7H7dh64tKKQa4+zsDC89fIiPP/zQ3qg+YeZ4AWdqw104\nwMujrlek4lOQccBDNDo9fAsFH3eHm3yvp/hYbCTWE+xkMutUXww0AWBdYHF9wfoHPM1ju6O+28Iy\n7Q+7V04KjziygNrJmsyvrpu1PjiaYnsHzODfb5MI5rm9w24edW0Tyx7bu637vANePRACY8Zxt4Wn\n/H+ymQvtTjO1vyJvZnpI/CBzmm9vb7HWo+WbDaVcbp4T9x2DvwouuKNk4+uMzkn2bsda5vY/G3aT\n+AWeX08H3GcbcPo7TXqCDd6GcfPM8znb6L0cTv862xt9h7jYnBhCXJWJoPUy75QNBiCEKJ29nyW1\ndZnHfHO7pcJbeVv2e8bluay1bULJ/hItM8vvPIcUP962u4W1CMOYiq9P8CLLgYHOVg5B7ymRevzi\nvtHOgN5rZ/VkG+qe6dRcPjXHTtm3s+Q3GMzSlp3zPHIk67BcdrY1tm3lqGumdPvd8oiywtPO6ZlP\nGuWGsUIn07Ls3cL8/XDTPaTxQIOWrTplqEOvVPgVxDgbJoDMY2bsdjtcXF7KRu62uVtMchKb3/GR\nv+KY/kqXpf8609bE2jY2704jXIplsIZKYBdKJ+3AGSYKiVDWHfWzlU2/y29dV9tJREVCXhWifhTZ\nObE9QNMyvEJlVAsEX5lRqwDj4PQmblhUTmysztFR0HfIglmO3TlnkE5Wdo68w+0Rx1pxeXWO119/\nHe984x28/fY7ePnlR9jtdihlQVnkRImcxGiXwpdiTjyNQ4l26qZWlpMGhNDmLPBKo9Pzn4ikLpb7\nOXa7XTviK/0CAMvinUYyxeOYqiYxvOGkR4cJbLO+lGJhQmbOIAWREq5pvqrux7b92yBKH6A0fNPL\nbyDIve/gNe5IRTsdo4tbiwflre54cXucc7k/VP7I7nJ/iWHkQz+ZoOCpGXDBKeiy5XoRAAAgAElE\nQVQAmjp/dce6a6uOUU/fYDwwsCyENrxDfwDop4SQhXzsm9xXnr+zdG/j80QZQl9fiDNeOPB5SutY\nGydq75ShRf5fngOM2bfaD6qsZ7sptVxm7rtp3MKryhYdJxVsO9pVunFnwUDLNIU5TDbW72OgxXHf\ndgap6lW5xbBTF1OeOBryfkO/s28G9P14152JPul9Op7W1X0P9N3kVR1AHO8wwgTYE5IRDWmjnqBj\n7oCrTJwC1nZX9qyNs6Q600RIAvYKdtjzT4UJcp/172Z97TcZBNqc0ad3amndOdSVvzBXP9XnuqNW\nT2JoeVofOdzgT2VS4t1MTniZMJwoMtnvFg48digubynQUCO+v60e1fdO7spu0RW3z55J6FBtXz5t\nkmmWF+Oz1K6ccoiwvOCmoflszLcTZrTbgRjYnxecX1zi4uoKb73zDdze3ODLL7/Ehx9+gF/88hd4\n8ukTHA8HlGUxrKertXWtve+BHtJUCLK5YnMGsLyBRoqbNwhyymVdnTMWcn+aYirVges9d8q+SC/S\nVtrS9/m3n7F2H5HKjlQeEfWwMDPZbhgllk/OgO02Sa87l5RtPQrfddlvv1sphQjn5+d48OAhdvu9\nLGC2OxGUPFjoI3niqfX4N+sTv4FMinEyiUaZtK37TjuWAKCUJcrnDR3X0xyr5TEQeqbZJ5w2CnkU\nGepodgVzuxvDhaLNfR7qJ3RHBmCn0/1JYMNWXlc6W6O30i8EjAtawV4CuZ9zpxYgkRWyHs3FySYf\nCWfd+dptRPnW9qQH3RxrQ1caDot5XTHDUeocXpuNWnZLwCsz2jsNcS7JHyS2pqufiLAej1iPx2BT\n+uTxxdC2hCtn9Gzl/6rplDN0a84MtuoGDS6Sn5Vn97G2OSAyzGNXlSqnaQ59nOeos6vMldoAeCY1\n21pA37jq7SxK31Q/0yftz/LX16XPJKoboXDMo3fd5M1sW87l2ThoW0tH+z/16dp8Mva9p4+jH25T\nHjeZ7X1ruqkvj1/PUdMpTq7d3Nz0/EQtxGr0NeS2eNo63m0bjqAWcKRRezS3KGDxNArzb7NpEW0L\nT9/MHrlr3p56l8vw5edvve2back0naIl20mejrto3n7e6DpZO8LE67KB2j07Os5ldBDB/d3Hs+pQ\nk+UM+8oLhJm8A9Q2YpsbXt5724TcdQ922nLSfNV9oT0n6PDyjFI5MqeaJUXiF3/p5Zdx9fChO9lM\nsDj6iPMky7X7pq/dQsgpML8VMkV/b00Udaz48v2/6+GIda0SBsQBeD8ZZ7t1K1dxVNUNIezAgYSW\niG2Bo9nCTqVEJIa6p8eEVltkEIwYj9Yd1yOwdNp1EO52O9Tadyersc+QwVfXClBBKQtWqmAqePjy\ny3jjzTfxzje+gUevv4YHDx5gt9thv9+jrg3Et9BDlWF3rJQy8luUQ20LM9y+mfBWHUCuTZm/6iS7\nPR6xa/eVVPSV5nhKoAMYE8gmYF2fuf5RB5GWpQbjTLgWDUu1IYAz4LV+hBwPM1qSJzUrqHzJHzOD\nLbyIB6byyF/QboaRKgtHZ67HK3OrG7CL7AERYkUDzyrIYrbLmhXzeQWoNA/g0CWifv0so1+Ax+kk\nEzFwXI/N2Rl3BUn7ZQ7WWrEq3xJgmDkYA2+TMslzdKsNvi15Dvik48rTVLmPB1CPTas8veskh9az\nJVNMCdc6aHbl+Ra9RATUGmSO1dsKKNzLKEQtHNtkbuiYcbu1SYGa2m93AJ8ehtkp9cnJKKNxY7yp\nsbPy3BkEUDiJMU3JOPLl57nvpGGoa9B/zbYneCe23C0UQIzSSW2e+tAKxyMMSBsYcYBpwheRt4vR\n508XZkN8Jg+H9ga+jXXN5p3Sn/kYjM8N4O77wRtJka5gkw715JAoXsdWXqftI1cGHH2+bZqP2txW\nXcQIECHw3dOm/wodHTusLuSTBqTO+ifzUfBLd5A0IWpA9ticJNR0e+7jHDoSgDke83zJ4+SuMeDn\nMCdW2pxsOmFpeGpZFizM2J2d4eLhA7z6+ut47ze/j+unT/Hhhx/i448e46OPP8L106cgIqzH1e4V\nqJWxAiC9Mw4SG7zDcWdAshj+/tRX1hW+7eu6YrdIuMiVDzgejzgej8Kr3dcOpr9If5oSxXkJ3O28\nmBQRcCGn5wv6AryWD3Qd1QUphblyKmVZEmQ4xk0FQf63+YdCWHY7PHz4EOdnZ3j27FnLKyFrx0u0\n2ZwNugEDqQ6le3ZRPDX8qKFqC0tdPk+iGszpVPaEL4RRHna+YJAnmY9eL+R65P6kFm7DQQ6GLGRr\nuKrhW4LsGtfQILU7bpSuGb2Zn7gH7Z7vfUjFHbb5Iu+uY71j1N6CuC9wE9DCf7oSuW9kyLbQjL5u\nV5iWD30+3wjSHFI6XhxG1boyhrK+pr4pQeblfLElYwLmvpEz8AtLp6eRtq6r0FJXYFG8N84JpW3L\nvp3lnfXV1nfGrQk2KCWGRcv57yvldKGM5MNA24BrHPartbZTOFLGrD6P5P3GodyeyjxgPJ9vWRbb\ntDpgYiS+urHDrg16Wj9Cbg6yzk0TUNWF5wlhShsxoCG8S/FWCwzP0+Q7xL7f6nfFc7q5KI8dVnnv\n5LC+m8nNLfsv1OdtTC8Yp+2Pz/Su3dXvwORxMSvfTxzbO/4O+RyfA46e0TijnYBKk36Y2KlR32xv\nopylWTn57yG85ERf5HoyLTlakLcR/YL6XTTP7JBcV5fwsLHB6PcrZbqj/kp9K7U1fepsLQ2Fg6gD\nnIKWd7pIJ0QHmk+2MdkkxnenL+1+XqKgF2vCLL5c5pF/PmVfIzjqDfVdLMuC4/GIy6tLXFxciCzy\nY8QxUOdrF333x7bA12whpGzEcwVGwGAGaUszBW15JkKnQSMQiSO9VsZCZA7T7Djx5cmgb0C59voz\nPf5EiISIikLaD84sGPTdyqup3mKCMeVFCc6/fjJEaPaKtXJ1E6LvyiZA7lIgYLfb46VXXsHbb7+N\nd7/5Ll5/8y25wHRZsGthuJQ3y15c1mztyuCryMRrv+ViehVkbTf/sR3LhFtwUv5RdzasNZ6asfxE\ndgGq7ubM+UyRal9xDQaK5I8XwWYHj6rKmbDPBoueisnGVJzoDUBT3HFnYItIjBg/+VWIMSBx1Rdw\nlR3gumtloHsC9ExQ+d+ep213gv62d9R3+g9tcicatN2liCGWjVIP1LNAZ+7hSbyiIwYW6qG8dFzM\n+kMunpRy7MJBzePqyjuPZ4DFj4UsX7aAv5azdeG9L9/PeQsTlcrz5YrxTXZ3kC9H//Oh+VQ2Ga29\n9iAat0AJxUxmUAyKsMkcvdunnxzpBqfWP1Ph3eDrpxxy+0baIv2U2hTaRSTjRwRQGw8NMLg6ZgZt\nhYx7LxsCfwjD7vitOSiyqCt3P7bm4KMvWPj269F2O1YPPbkgAHx/ft7HJUceZ7oUOAH+RENf/M3z\n/Xg8xgXRdArHz5sMYIE+p2dzP9O4dScHmE0veIe019t3nchh5W9akArgGAxQ7fqSj0Zn7CeyfvLz\n3+sW43VbhNLxNDsRqmV2WRpPfaoOZ2Ybe7VWlKUE8On72dO25DnuMU/TqzfNsejnh+8Dnet+0oWT\nKRO5ajsH3fjY5ZMmiQ82t3URl0XOLMsiC7MAGLrzESjLThZ5lhXL2R7nFxd49OoreO+97+Lp06f4\n6KMP8fjxY3z00Ud49vQa67pi2S1Yj0fwuvYTVY3eo5Ol/uTWrL+03+19e3Y4HMwIABOePHmC7y6L\nnRp6kV6kr5QmY+ekI0A/w6ij7LsN/OHzhjluhWp5NOaDiInZBaVTzGpFJt3H3DZPVDAKqBQ8fPAA\nV+cXePb0upU3GvLZLuDKQImyUfMxmnwkGmRp4M1MLyc8nWWg51BveyzLMH9bSMl1RD2YCt1IlSsW\n6uGfFf/o3cqGH6FyTzAAmJL+PpUi7z0vPAZvL4W/Dvf592XpoRHjZxkHOpuKXT+DJvnHvvZlxXGY\n+m2CRf3vKb7wuqH9T5hjjSe2/5X1DkQynArmaZ3tj5MLAdknYHdaQjq9rhW3t7eG9fx/7P69j37K\nmCjfsTPjUf5+/nzME/Ayd8f0Vh2GuUHxTrWW1TYTUreJAcX2ea6PNgYAEHc7AZN5KmXytD1+/G2d\nrB4XLFlNruAIZ4WhjkZKtiIAoF3EbtkMypF9zK28PM4yBrXxOmmXySx0vuT2xTk+n++2cY46Dhxo\nuVciEHgYnzM96oiQcdYc07UyqrtXB0x9zvB0WcJo3ZI/Xk6InTHH7wNpqe3e3s19knm15Zfw3+Rx\ns4ULTtHo65/5VLZwSK47b+zcwg5bY2Lm18g6po9+N2edr47dN5mnM7q7zIr0SVuK+T4H/Tj55Vuz\n1Q8zPdGjCbGMYJV76Lad0bAph5t8rSMPA52e/2Hhx8/dvti/2+1xdnYWdJrStqXb7tIlOX2tFkJm\noMenrFRmTtABjEwmBSvAaMUdDrftHgsCuzAFaqT7uryh6xXxCM7iJGVmYCHbhav5/S5bdXqES5zc\nUNAJ6JW+KOpWFlcL82B1A1bGfr/H4XgQECAEyr9lAS0LXnv0Gr77ve/hW+9+Gy+98gi0LEBpwHkp\nEiKmEEDFLny2S54ajctdk1MVKouzxVb59Z3yNK3wzoSM7h6YgfQ8Fhj9YnJx5I67qHxd67p2ILrR\nlpNCuHRH3CzkjRJFRFjrChCFUFUWmo2ScZDaqcmciiRO0aVEx1s2zPw7f0+I/sskO4BLUunU+o+5\n8ZPdDjpqkJ5GQGp5Nhygvi+4jQ0FA7rb1yufNcXC0n1dlX2fFqDt3C5w8ReZQZsittOTDaCt957+\nnGbOUjWItGw1+gsIcPcUbZXvgbrnyZahdpfCGL6TW0DneSpbXwzlawxcA+fj99oCovncRv/8ThC3\ntkoC7wkn+1bBRgciQGEKYGDGl6EMR4sBmMTmPIaCnHJaPs9HXw+DQMRTfnc+jH3M1O5S2O3A6yqL\n3HDySfWSJ9vJA8+fWVrcgvNWe0+lfCx7i2+ngHqmcWuezuS83ywg7ej5veyUsFmj/Gw1DjLUj9lT\n93n4594gy/omY4/Ar/a3hq4xfiQEqeMznH7juDjqaSkkJ02XpS0MVHGgsRdc2DB8FHNs6Eagh3vb\nOgoPxLtcfB5fr7ZXL3lf2+YDD+QL7aStLSzIfrfH/uwCL738Cr773vfw7Poanz95gp/+9Kf48PGH\nuL5+iqIytVZgrdBbiLTeWmu7GH40DNe2iGLzwL1flqVdEkgoZcHx9nZYiH+RXqRfNT3XWKLuLNnC\nGyaLES+pnNaTdf9MJqO/n9XjyyfA7gf03/u/l2XBw5dfxuXlJfDJJyiFsIqxZJjYlxlsR4fD9Lnm\nOfoF/NwILXfCg96mETf48DEe4+QTsN1eGnkTsZJciWqy0RyYbDQaHmrwbDipp3zJTSSx9bxsDrrK\n0TLgD4dLrW7u9qioksm3KttL11eK9b19ZPzkZg832mJwgV6b9jWVHgpR2+P1a+RzdxhtzSn55vSc\n27K7TFdqWfEjAO0UT+s4cVqTtMHshobhfGhhV4zgl7iLumMWQl1XHA+HhhEq2o1xRp/SqN9nWzLy\nIW1cSP17aq7nshIDRzCAnOU03iyloN6nDLUf/Dw88Z3HIoDaobBFkRmNTBru+zQ9PintA17Tdocp\ntN1H09/etsgVO3s1YzRfxl11aT15GXZFlHc2V5HmDfI4YhsWM9s3P+sk9GfFy5OJ/FJ7SPIo1Yrr\n2E71Zjs3//aYfcuOC3ZZ45XUI6yyxajUQeaHc7v0W9ZGcJQ5JuuTvLsPZgjjfJCVIxYOPJmMnfzd\nrN9nvMtzbitKhy9jyy6d5cv+F25C2uwXouYfmy/iZDm4xRdgIlpCG/1mvNPiItOhtIW5zQwfHtHT\ntYUvNsg7mS9s/sZo43veLMuCi8tLXF09kA1hRH0hsenW9uemPXif9LVaCPFpy6nhkwdltcaL1re+\nyROSmXFzPJphziQ7UaArxiS7DSzefQLSeu/FzGFT1WwgFebO0Hc7DJVO74QK7U+soGQYqNOYW5id\neLE4Ayh9h+Ku4HaVUyZUK9799rfw/e//Nl57/XXsz89wfn6Bs/056srAUsBFwDYRYdcGqU0ex9/N\nqZMld8u8rquE8iDdQVRMCTBzCInVOiooQ3HWwwCw500WfNRmka5EboLwVIYXJHcZg94YiW0XBEsF\nAaT3fi9yqgNdeXtQ0PcZ3HPi6/fDGGoEEEF6S07ErJDLgrXeWit2Z2cSN5aKjFleXfHslEI3sooa\nXCzGU20X8I3kjU5k/7wbTtRCcbH1V9ftUXkGheXeo7WUgBDXtA3cO9iYgF1+f/LrNkdbNWqozFy6\n1mYiMWZofD/SRZvvQ5l30niPhqQ0hMNq9ehFf61k/f+heDPeMnDXpjsw4u9X8HVlmRPkaKJrZlTx\n5DtPC9J7L0Ms7ts/puT1SSfRyxIG82xpZ5uOQsUuPi+l4HA4TPNx4uNWmoH3LSd/dirMdHKOtQtH\nhW+714Uqt4O+lA8kz8aY3wLmVgaRCXQD1hNQuAWuZwB7nOenwX58126oadYnuW9ze1QS6Im33id9\nYaenftkiW7A9lY7a1mK6FwB4rRIaq4XMpN0i3z8HAJVWFOtzZtjOxl4vDQsfNuc2ALqNNb9hol0k\nbCdoAGhQOMNr64rdbg8iOaFxdbXg8vIBXn/zbdTjEZ999hl++o9+jMePH+PzJ0+wKwW7ZQ+qsjGi\nkITiORwOQlvrt9WNw5XZ9BYDKDaeF6wtwNBSCq6vr4EZbniRXqTnSVtG9j1xwHNVhXtABhHUzaEj\nj8yQP0HPKXrzu/A35I7A8/Pz4ZsQNtIlcQpwcLzpcyIKNpToftJCh40Duc6vlBQopkcAx0uNU/E5\nVG7P1p6y+6iJ/JmTxGMvV7kl48vGCWyXc2pjG35qlbGHuhP7Fk2O6slEMJtTP9dZ14qytDCPlNrb\n2qL9rLoAiCGjB3spBOed67y7nHsRx50e397hlZ/7MuUZgu6RpjqHGWubOws4fBzLv725Md7IIubG\nxqSNNs7aktuceXXq+6G8VJb/+675NpMbpzCh2ld+sbBGk2v4zpenJwYGezHPtXsks2VO5bm3rTfy\nWzBTR4EMwWZjZ2+X+1z6xfGxj9ssaubyzI+B7Jcx+2CCr/XvQU67by1/xqWuzpYpvPObT70d72mb\n2ZOnUnjrTnZvdQG3XQcFcb7LyafZfENf6NzgjZV9Yq5sObdnaWa7bP2+S55slX+fOZ7LzPRb+Puh\nfNjYMLv2ZOlaaNd5RKc3FuqYpi2nDFEIFZp5MrUrs72KOg+zjChrTuIwUJiwp2Sp0h3EJ8d8u/0O\nV1dXcgfWpi791THs12oh5HlBpMXGbqcz/E68rDT9N3nSHI9HOWrNDBRCbfcOkJ60qBULLZughxKI\nVQGrd3uoQ4dI7oPQHYymaFNYq3CBnP6fDtpSsLo7PnydXrjFuw9Y7tBgxvnFOb75znfx7rvv4u03\n38SDhy+h7HZy8qMUlLLDioKya44RaqcLakVdV5SlX+oX3Cisx3ubQqkOXEcPhzmmd6VgKYRS9uC2\n8KThyfzksUnqBBEzy0XTAODuaPGOtyCAG/8J/eIzz/PQhx0ROmXYG0ro/tCZAt5ypnpAPowjEHxI\nXKLuBMvj1Y/hrJAqIH2VT9Sk3b9EBaUIrf50RQ6/AlD6rvNIxmXfxUwo/cJmR6/vi1NKLb/T3bVe\neA+hYZTuJnC9KlO+2/E8BSqYK3Olc94/MW3FrM0fsft7lvy42TI27gJQd/F4E2AggqJgOJ0AQdnQ\n6d/qSn7rDw2JlUEKNtjR5B0rHRNZHto3KUSNxLuMVP/b857Rw3LN8puBGcbPCMK29E//zd2gxdiH\nd/W5OF31ZBNBLz/1dCzLgmVZMF0G8YCdRB7oKbwZDVt94J+FuyZSm7zhmnnkn2d+hR3zzMEYqawh\nAeeycMZDQl+oWJrMr6n/4NovZdQpH/q7tPTh9IoCSy078yePFT3tabpp7YsaAYg7OvO9LZJnDXWJ\nLBrnrWu4yXRrXylyamFl0MIAy91AzyvL1blgUmIiP7JcUWNjdgLSvkmg3nAWM3TRn5PhR7sdjk2v\nlN0evK7YlYL9/gzruuLi6gFee+NVHNcVX3z2GX720z/GB7/8Ja6//NKwmfG19YNgkRiqsbTQWqqL\niQi3t7dGxwLg2bPrppM22fgivUjPlbwM7HpyLgc7NtkegFmGeoP5NCE9n1/GVxmUMcCsPG8DmEya\n5AEBy36Pq4cPzR6gpqcXIqxuztq/qSzl2+AccWEf75OIdBfjqNd9f+RvJO/4jJr91Hf8C+eE1oIj\n1+HegZlt6OXrNPQOx1DOtgBxD1nv6xHbzvUu9z4f9VEfh1p8aXLV00xEze5td1nA8aIPENEBQFg4\nYmY5VVHIfAU5goDZ61pGKcbj0LYt24AIzGPoIY7HU6b4xs/VrQ0YsR42vUOuPZpfT4QSLQGr5vmj\nOpmZ8ezZM8jJotLuy0rt9FjxBLae3Uk4w4M5zfgyyJwNW0Ten8Dr90wBe6SNWvcpO7fN/BOe9x5X\nVrYxqc+m/Gm8Vx7MTvHeRc+WP2KQExh5KvlO25gzfDZtz0wPJWyLJptrcyCpXYmG1U2GtbFdN8Zi\npnNrzIZvoKflIFaok13dzhtla1js37CXgHHD7pQG7R9Xvv5nJ8bVNmgL+TY+XBlEzvng1Y77frDL\n78HHrcSJBq3HQmJPdNKMDzP/7Eyf5W9P2ctbMnv6nmabDjfqJoLeD62+sB42qs11EEB9wX3AGc45\nquOHqIBq1B8mAydtye3zOlRpJfST+qFMLbcXFuYM8jcNd9wHD+R6iMg2bqh9fH5xiaurKzdm2XDH\nnfP1OWT912ohpHK9U9BvORL0t/67la/HSiOLz3m8uW0EoN3jIZdaqlOEIHc1qFO2MgO1LXBA73cQ\nABIuBUJp0rV0B0MFuLBQUABmCrt6Fuc9JV6ggRmIVxQi7FqROmAlbJDY/TqnBBDuZPchAS+99DJe\ne/NNfPc3fgOPXn0FVw8fYLfssFsWgIqcgCFZQS4QB6YepyUWRzKVgkVDpnhhDwHNelxMhz2Xti+C\nnfLQHThVhbFeFN7DdNhOSpaLSxXg6uSRetuSy8pYlmKxZE8LSKHHn7wwp78GgLIxwxLyCX3ChvFE\nXTGyKmfanpii2LqCJUeXv0OCXNsAAfTUeLrqKZ5CkLiCHcj6eoB2cWwGZuinbsBojhq5HG+FdJF0\nFfUTRsxw26UtTAzrmGgCu+p4UeBSV3PooQELW1SiCPi3wprNFOQQR1/NbAIqk/WDL4+o4Hh7dPOS\nbNdLMIy3wGErp+rYc++2QKGNU69fPVhvQMeDnV52/1b1Ansnp+tzC1Wj9RP1xYjOigASiAiFZdx2\n2WIZQ3E5MTM4hcIb6Wd3B0CLmdvo8qfqPK90LqqR18gIKfeV8kjba0DM+rGgtFBd3vmiQCeHpLEY\nzYj9iclvIOqcJfFs+j35+dwqQmwPEBf67J0bSGpgtaZAYjvH0yRgxn7Zy31OBjD6XVkVjc8OrJFx\nydUzzIUYi5kobj5gAogpjlenn1WOGyBz807ljJ0C8btzMshGHDv6nomQwxHkwezL0Q0UrSfAzBp1\nPvIfEsrIDZA+F33ZKptaNjXWROCS6H52l0HS+L1NQHdfmjqlGBq6qkuKvLgrtTkA3PTsEKrB1LIf\nW61sFrlJpeDm9gCG1kkhf07RmeD5JMnucXEGpc3/NA/sUllXdp87HMaUhS8lshObFQAqTxc19f4P\nZu5/A9jt91jXFfuLKyzrivPzS7zy2hv4sz/4HXz5xRd4/MEHeP/99/HZZ5+hHm6tb6yNTWAXEucr\nsei6yoylnaaRbAVMBbfHipVnJ4hepBfp+ZLXI4P+kQzhXZb17DH2BM8EveTLvYMmE2cdjWRlGejf\nwl9GC7pcM5qoYL/f48FLD3F5eYFn18/AlQ2nTx3fwFDXlP7J34G+3ir7nVgYymD3d26nyX9k/sPs\nsf5cdb8kbzfNFm48Xtni87BjVe0kmp+syfaWt9M8vhV+xIVu6xO7EjLeYWcOzyHCQ+etnlzIY7bz\nrWOP2eXkAXspNmnYONM8w5+eB56vzAh1Z54xs4Vv3BqTeT4MfyPWEfIoP3ybGuZT7CrzR8bWs2fP\nbPGI1Xgwfs83w9w1V327n8dpdir/lny7K3n7DonmXLaNl4YDRXZi6Pd71ctzGVlr7XeT3FGmSoO7\n5Ub6LveVGuepTo+x7U9BmlAfR03HdW0uoc/5BngDXTaH+cQ4alEQhjsGJ+5o387KPJQb2pX6azYX\nM9/6JryGT8nbY9wekfkAichOY3MdTwnEqDFjnd2f1BFx920g2FE5VWY7Wb2FH3Xum163to3jXZ/l\nOTvrs5xX35v2yvNsQ07M2jWTrb6OUzRoWpwNWXNdbL0L0OTuSEd7rq9Q33QHXezXTdXO7xt4Isxv\noe7J/Qeb1Fk36p2Hp/gSZFqoj8zPGr5Hbc2iIb/qW693s27x7MkL/Hf2I+BsVq9/Ks7Pz3B19cDs\nsFJKv4cFDjM1/HEf3DZLX6uFEH/ywZ4lQTdTHBk8zL6ffauAZT0cBTBTwcoruvqhBhAEMFSuslLd\nqJXdFyQLHVTCAGFmlF1bOKkKQmBgRAAJozZlyVUu+2ZaxJGNrsBKkUlIDcwEMNsAf4UI43Wt2O/3\nOL+6xNvvvINvfufbeOvtt7G7uMDZ2ZmEPtrtmmO5g28CdQeQKjQHTOvG5Cstn+esB4N+kcc7ZkRB\nrE1ongADqiRI4pn2MgoWp5j8xD0FLjIIFseMxgFWICkkeeNPHX7idAFo6RMb+vVGvUTC2xVOCGMD\n1NT+t/4rxkgJdGudOa+Vm4C0ODDdyaN1RSFZCCEioEAW/wIv284Y6rubdRyXZZETTyzzJjicqecT\n+pVX8pyYAbd7SPvBj63cT1OQo6CVYUBvNM4AjXMsF+IWy+v5rt9sASjLm8q/UEAAACAASURBVGlw\ntOb8M3FtZbuBkAGFz0Px4whW3P+awUOhaMuf+WsAtpXbgQIM+M8SN1mYNbWCLRF1XWGZEebybIEw\naw3JWPWLVZmHJEJE2qAxkxXKmhzoQDvwaNIuVbgEntLlMkq+hJ1COVv6KrF0JgfmQLDLTJow3/JR\nB/PUFgYtZCTpgn3fEesbwLwNLJn7iPJyNtPNTbafAkaEDoq8rNH31TuWtX9bX+c6Mx0VbfHdJa9L\n5SLx7gTvBXXw7vkSDcZi+XQh44TWmrZf77PSsesNhH7HiNSmmxF8LYUIenbPIPWkL9oDey7YmG1e\ni5Eg4NjnE5pUjgvWOaxHqzHr1xlW6/xCB7MDLxBkNVKeMK5Sm9Sw25LRXfYU0+cz/aH/BkMPkFOx\nJGiImbGjBWdn57i6vMJrr7+B7/3W9/H555/jg1/8Eh88fh+fffbExlaUy22cU1ucqbLxhZquXGvF\ns2fPIGtkZKexXqQX6XmTzFZ03eTe+bmSZW0eryAXcndjblo5rc5e1lZuFd/swdNQR6BnNreb/ATz\n2J4im7AePHiIq6srXLcL06E41GyGjkfYN9xjoQk9MxzK3BdRg7NlYgNkPJbrGO2GpOMdDsjfqIzV\nNnhZNOvvrYuYlbbBjprgJdXNWr+1HTAHv8Dugsp1KDfzQW1FT0POp7QTAUwcbAdu9aq9PLOrtJzS\nIj8oPlW+UXDEtn6tEj4Y6LbirEzjSx5n3PMGepKD0/wTbhwONKcT/sr4jOul3K7DBZAxLESDYTn5\nj4hwOBywNltcENQc+3uanyfNx/hY5pZO72TH8DIF1HC4x/xOn6c6dZMnCLZp1O7eSG12W1gG2oAe\nHjtfLKz12r/omDx/L/i3lQ+x8XNdoV7uGzhn40/z6/0joUVNNPnZXHzRTXbJRhKyIaKyfnVj1tvf\nKiOKZA44HnCOzdQv3h4g5WMUc2NeP/bquHFrK23a1+n72XNrL9jqVD/f7e0tDodD0DV5LJ/yJVjd\nrSUVPYS3ckc+abK9nrZNPb+2bDn/nV98yvkzn7Z4FuqHmy/TmmM6Zdtv9QUwLmrb3a/ue9Vb3kZy\nArn5bCMvt2Ub22fUB6fpkHydQRzrgDplqP0fmpyV0yT9RJ/YZXXoH6Ng0h95vGl4r2gXuoURAz59\n66OOt8zx6Zw6Ie+2vtmy2YkIF5eXuLi6RFmWwAeg4wyVnlkWn5rzOX29FkLuMTBPKWIPuLIAyhNM\nBTgBONzeNgC5oraBqZNK/quyuxhR2AC9sxhxYvt8iwNnte2kB8TxDJIQUfrdsbLFlAYBS+krrSJv\n225DALQUVLt8UwbVu9/6Fr79rW/j1TffwvnFBcqyYGkLH8yM3a4PCQXyM76GHWKRycGZc1qAjJOA\nSIwWnfAS2mSdKrzMy5mjRYSi7vaQvH6xyoAljQA5/G68lVMPXah6Ouyb4sfXNvCKv9148U+0re3v\nLYeNLkT43Vm9njY2qF9FVv0OK9dPcY7JaRzpE9gYz99Ew7MTL2PK0dfqXPR3+7eUXesfATsq1D1/\nt5TurA/CzjVVTtyBkfAilu3/y7zNZed3zzPGf9XUFVaXKTN51jJtl0MN+E8AHtG4cHmKlsE4JhrA\nrS9L7C4GLc1h0mRgqD+NSZOPYEXsg/OAnBGbk+bttHSnR/G0n2pzEyp5/M3y5pOLPt/ALzT54xdl\nToC98HwGTu11B4DGA8fb/X6Py8tLPLu+BpHcVVB51JFbcjfTRURiOHI/3RPyNOQZnQFp/nqZlNoV\n5L1vU8ufQwJmKrPBSXCnEIhE9yU6NJ9+p3Nmixeq9zxtPs30FBSoZ0yCyHvPk1x3kGG4Y/yAUxlq\n2Mo3K5PdwWVUEgEo4HYflO4gvbm9lfAbtYKWHnJyhnNm+tXrkNk8mj3X8vTi85r6flPu9ALmfJn1\nZSpPn6kRoidYmAhlt8ey3+P88hKvv/EGfnv9AZ48eYKf//zn+PnP/xjX10+xHo5tp9M5cDj0RX9e\ncVhXoBCIGfvlDFhXOZO5IdNepBfpedJUhvi/N+aNfzc7PYHJ/ASi3Jw/uJveGZ2hrlbs4nEyRllK\nuwUPHj7E1YMH+Pjjj5tje+5UUZGo5WVszByX0+/CAFv4uhEnelPrAoayMy8GDhADHJ3wM/3EDZfN\nyvb9eUrPZ1m+RVdNobMA2GJEr7PeLYvdhbBqR2RcFemzxgb6GLU5ufv9kloeEBcMfJ/Lt+jhc6mP\nG1H1Yv933lgrQnsyrdLGkbdbiZIzzfOg1skOX+awczjz0Ne3hRM0XV9f24aRWiuWMg8Dnuuf4d8t\nXLmFV+6TrLx75NH6/HM7Od9df0NhA3bpJYyVUfzhMWpuo87Hioh3p7IyYWK48doehno8ttJv5LtI\n96b9OMHwSrOeNshywMv+MMBdvhCmdcMG1bTovOyxxu8eJ7MuSbyZ2WAznOm/z/Kyh1l3MrHJgKUU\nHNpl6YR0Z2/WTRt2os/T53g6wTiqX5FX1Ecet5Ndp+rYkvVEuiBQp9+ewgx5XK16ct2VoZsX7mtD\nz5KXJ4N95WyrzXx5TpYCpHuiTqaNuQrXt/k0ZeZNHBNqz1KQBeq3JIzYaMt28e2d9ZX6+IwnIJvf\nVrZrnpcN4V+jbJ62eOjHSnHzpFbGstvh8uIKlxeXcrpLCkqneLbl2POkr9VCSDaa84TL/26VMfu9\nCQBJdkTIJeByl0YNA0t6qNba7g0hc+SqoNd7ERZKjhoHqL1DRoUsIACsalgkADsSUAfITnuSj0WN\n6qQpC6hdgnt1dYXv/ub38O1v/wbeePNNnF9eCO2lYNnvcDgesRYpq1Bvu18EyTwGYG1EmnDF6HE8\nRhzws74IigoxtuPUEQI3F1s5O1uAEb6tGCdMilCKdo4m0DIek+67YBgV61H62nb+emHPbBeEGNgH\ntZ2kcbcVAW7iV4t2ovwiAGuNvMuiRnmlO5lXBwrNjUVyyiEbZcNYHN7LrvsKAGtUerPdT9aHlW0+\nAOz42Tiox0ST0sqxjDVtHeXPwn0A9qxAQ3eerXKaiaifYAJwXA/gQoAt3CCUk+vSZ6fS/BLoryak\np0YtMDhPPa3yoz+b6mp0uaf0ht1EZuhFOohj2bMk8UkndGkfE4FXATrFD9aN9qph3U+j+fEtzt2V\nG8+bHRNCjykPauzDoEz1b9depUFkOAa6ZvpDeVt4HobCf19KCzuohtAG0My/uxzW+n0usv/l1izh\nXy+j1gp2p/947QupKl+zrs209J2l3QG+1tVRQWE+i7yDGXCn2shtIs7Gt9HSQPSsHDFwx7Gpx+U1\nDyXH3nBUGoxSwvAE1/nO6dlcsBi4jv7cHg8y9YJvwwBpV1aew3o57EwWnDR4vE6sFSu3HcxEEvax\nLTL08d0W2Yns07LogrYYfmFBkbqD75TB2Q1zGcvUSMvAe0vOETCMzakucLzOvNoy3PTZ3XcACENU\nBxMV8LLDDsCj/Q4vv/E6fvt3foDPnzzBz//4Z3j/F7/Al19+iX3DhsQsmwOWhkYqg7CiNEfhYV2H\nfn+RXqTnSVtjPMjCGc7IMnXDvlInUE7FvoWF2pk6UtIiNRAxDgEmz2f1n8JB+v3Vgwd48PAhdssO\nTIx1lbsfVR+JfFUp1MpBl2eZZ9YwjPzzefIpi3xXwoAdEq4d2qJ2gAd1Cl1m/eLKzHJ1xi/FCuqk\ntPzu+0yffscN89hmQVfHYGcx24asKcZweCvbn5lmn2a0AQVMennxyGPrjzt0gdeZc3ugg9ktHuc5\nNehHxH4rpWDluGHHz8XpfGpKlJpCzXzzTkZ/QijbdQBwPB5tat+lC2dt28LInidfJWV7SMuzsicL\nGlM6jK9A3qgzrzhOvV5M7EdmbrbS3EYa5G0QK9EeL0Xu19RTGrbIavkxyNZN7McRz1p+qLxLzZ30\nGxId3dbocsLGZnVyJSX1MWzVNdg7DbNv6TCgnQSaYM48X/KCoJ8XM3t/RtfawnwX124AuD0ccH19\njePxiKXsJ37y+emQmX6m/uOkLWFtasrBTr+5bM97n5X/29OZZeyWHyB8h07KVltndd1F21ZeG5cb\nWGE6rhud/s7cKFNSeQQQ5I4pFTceL3jdYuMz2Zy+Hq9j1NfhQ+8ToYf01nZs8D7wwc8fe1MHeUfN\nsaJUsBRgHoW+cKncOJ02bT5Pn2T0SxqotWJ/dobLy0vs93vjw33G21Y9p9LXaiEEmE8g/+4+SnUm\nXJlj+AJNBIBXPQWygtuFoFKGaBQ7sggBDeEeEBYDmUDh8k5m7gqpaaDKq02crAhVoZQi8eTKTk+N\niCAGiZNirRVXVw/w3vd+E9/81rfx6htv4OzsDLvdXipZChYicKPxbC/Oj33pF8tvXSquyeJyY5wK\nM2NqppTu0z+AxGlnRKBmu43YO2oiMMyArCxFTmpMlLFdKoW4Cp2VlQJ8X4eGM9F2EaIQZGVUapc4\n5AqI6xA70ugGGbg5Na4DkHf1GpcZYt5tALzAV8T6slC352tz3SbwxpXB1e2wAht/qZAsknB0vkvf\ntbGflMXWeFJa9V6ebSPJ7/pahBqrf8Wy7Gx3i7Cqj4XQrhkgmyjK/I2n9T6C+asYBoOccM+BrmjG\nD/ufFsahVtudZEAqj5dWnOyOhxmWvk7eANs6j4hIdss4pabt0HB5OgYMnPp63MKEFIx5hXckleN6\nBH6ZyA4pnqydszGZAXdZSjjGOpTn8xNk1849G3HKgDrdWJe3lTFdZERciM50xzkw36lo39b4vN9w\nhGl+kZcjzzKYs3dEIZ62N3iGdk3mli87AEKXt+YyhpIj2CSMc32GLXxoZW+AEdCNvUQTJv3i26An\nCHL7cpvR9A+ondJT51UFVoETLW6tc2Z2U1lkOQTvSBzkFVwLchjLfIJulhg9LIeC72GepG/8nVAF\ncQHLG+S+jGwwiJE47hjz77cM4kEfNd3FWqbJuXOUUnA8HvD6W2d45dXX8Ds/+AE+//xzvP+zn+LH\nP/kJrp8+tTu0wHKvGTGwHg/C3/O9bXB4kV6kr5Ky42I21k99e9f7bizP010qyjZyBZ3uHO+b350u\nW7Gt0nh1dSWO5ervf8KIcZ6TH6cwoN/gpnbmrCyvP6qTXVn3Ka61zVlM0Jj9foc1UT9xq/29oung\nDf0u/OCmZ4qaWWY/FB5j3c/wra/bnjs6RNesmzyAcaLbEls6fcbz++b1vN1aDBl51ekuJWIfwfs8\nfO/f6zM5Id9pC+1MOjyPG33u+ZPbquNklrbGq98so3m+/PJLHI9HnDk9OpuPz2u35G/vlDFKe6Ft\ngaB5JnbLVj52f/v6TvkrvF18Kqls2ZK7d/Es4yDfoxGDzNuwNcdP0bDVqiCD7mh64JkajJN6GbCI\nKFv0Bb8DIHfOboT/Mlv3RN9s6b8Z3lM6hzal91E+i923rqttmF3XDaf7Pfrf41ZfRj7N1j/SPpzb\nOqfq2hovfnx9Vf/ETI77Nvj8WfbObL9cfn7m9c7Ut7vBi9X5lgbbdhhv3d+hmwi9DZJtSbWgZm1o\nxJqPSu+X8e2R8a0lzTcUK582dSA3K4vGd7YhxZrZNr7BbxjvpyG323F63oie1Pu43R2sVaISHY+r\n3Ov28GGzr+6+K/G+8m6WvlYLIXkyeOeBvt8aEN7putUxms//va6rgWZmcQ7UZqwCFGKc+smuE3ut\nFVhXOQ3g6NWdn8UuWF/7KQxW2oHdbtfbQIyFW1zz2sDpUnC7Vlw9fIB3v/UtvPe99/Daa2/i4vIS\nIAnX4J31lQGUggI9CgXjJTCeBPE8nPK1/bZd3k14qYM6g+P8vVf06pAAAWtbUJKTBTsc2ykTA4Pt\nO63Hl2shmEqxC29l52V0vNm9FmkczMaGp9nylCiAK8cdxtKmYgsAzM5AqFU3+2IB4ejXQ5WvTehE\nI0Xa2k8QlU28Zw7lJshC3FzuC10KsmOftULTKSajsS1s6Pj373Ulu+9i0R3o4045KgRUuWxYgZHy\nx9rhxua6rrbw4S9itv7kHCYF1sZGuEvC29vbWwMvdhzR9cWWzMgg1T/3it3LnZlw1rHi6S6lzy1f\njy1SkuxC8TvTRiBvjTDlVrg5NMNl9XHsBcZhY06Y/KCwU9PqBsNFego06t++/zS1QHatDmWgGD6c\n8oW+dPNK67HFjep2QVhbOq2V2E5rrdycvA0s2BHjiaHhUwZyOpYrouMh6ysJY6fNLMMieK4vg14B\nXR3olVJw5OreAcRKXzxWykQobU55Zg7G18ZYsDKr75nWxio73SnLyIlj3LdTRFXXkavTxz4FmejH\nPeR+Io8RMt2DHE/v4zyVBVPT20QAokzMBpSG/us82tYh1m8NoFIbN3qM3HTipO1E1HnleOYXCWa8\nC3WDoIsXXBmrbghYa9MdvV+Y2NY5VE8zM47HI1SW+qqyXp7Wr7JJXkydEnJaMp3c8XgO4/yqzLao\nmeedl7erYqBE38zp5OneapP1dwWYq4TsabqKiLArC7A/w9sXl3j1tVfx3p/5bTx58gl+/vOf4/1f\n/gLX19dYa8V+V8Ag3BwO2J+f2Zx+kV6kfxxpy+mj7zQF2TyR21vf5eQdeLNv5XsEGwLum24bdBq2\n8NfsWSkFawsPXFrYEsWpBPSTa65+lRtq2/iU5ft9+JjpnclldVQs7jvoxq+JHBOdT+Y88Q4OWdAQ\nLN9xmDwqVIZ+zLIy4KCml3a0mI7a0qkmJ718BNI3bWf3hn4XvTS3xZSXW7hkhhW2xnpl7jToKRaX\nVxexvD7t/ff/s/d+TZblxp3YL3Hurerq6p7hH62pGYnikCty5d0I74v9Ofzs8Od0+MXfQE/2g0lZ\nltaWRXFFbVBDSZzurnsP0g9AJjITiXOrh7sRbkchpqeqzsHBn0Qi85cJIDHrcwaDStugiL5RqG2+\nI3dZdPumqN3h8AR7nGbt1EhzIN/Z7vKE9q/GTXC73bhH1DYstVMhPHhsQWubMnsnGwNLZ7FFLf6d\n8e7kw2uMbfI2bAO91zTSxtK88owHl8ngdTC7hmTyMN4REvG7zr32Qajq2HHt6gH6fbJrmdhkC8TV\nOeFu+4WMMkn5QVaQyBEXpmm28SD33y7sJ2ogMqWJbbc+o1xuOtnK4/kqdanm5GBMRzJl1NvvCGqV\n47rv+q6KI5vmuUBlLGS78pLFWDt37dzMUsZfmR5aRavIdVPzJdiyVnw86OJ1aDaP7e+ZrIj5ojw4\nst80P3JaZaF0bVsymgCz3FF6Ei03CAilaXw0+ozg16hjIUR8UZPMRtMpOkcTnXDM+/3LoPebQhM9\nZsSc6K7q6ejoxOPEoqQWYitvh6WtxVeiF+v+hPu7O7x980ajDdhN6FIsJ/NhNTeO0ie1EJJ1Nhvw\nTOllwD/bSTEWDFjB0YcPHxoO7ZCZiHRxxAoqO/mB4Whg0wZJfjd8dcY4Ac2BbibALo5vNOcQc8Xj\n2zf4wRdf4Adffokf/OEXeHz7GbbTCV3yqkNI4otCRS/pKRZAwnewKtGMrhY0sHlmwbsN7xXBTASw\nKcBJAA8zY6/zMeYjQ8jSXxSR6tEgMNlQJbbLOrHs+A3BMXQ8M/dVy8CP4U8Rzs1ZNZTmRqTCVHdw\nkb9rQQVuWKxjs1hiF4ZUOdcdWxk7/qOwj4pIf1IH9gjKgfs48FigEADb+tP6undQADW8+jhIWSR9\n8sAU5HfpWnCrf5O5L0I7O2jcvglryDx+aeNAY94t4hXL+ERjJcsT+W5FV9ekDDyiK8QEZCvv8bHA\nL6XoQsCq3lYWXMi2akBrlnIQOrcRwFhEuKGYHAinMR9dWzEyrcBKBAwK9upB/ZTvbshkl21PbIdr\nK5t7kiAh3/IFNhSaHMIrUJeNo8zB1ZFnkc3xW+7fnE6nps+Ejq0wZ8CtgaqAF5OP7bmBtihwTUBx\npo+lfjG+osx1fQrHg1dgMAPSE33Cd9M7LuDaFxnQLiSP83ZVf5S3y7awMU5ozIBJ1iT0QtcbhWY5\ndQSIew0do/SFeh6nMhQcSz21okLkJIFQgdJAeRs01qk2gPWx0SJ/H8mybN54fdP0J9v+J3M2OoNu\nnWy1Y5RhyQzzybOtEJiN7KeCrSm6FgKTGafThtenO7x+8wY/+MM/wvt3/4Jf//3f4+/+9pf47T/+\nI969/4Cnp/fYns44Hwnll/SSnpGO5t0K2xzNzWlOH81hzGECY4rzyNpEAJyhLQsXig0wy7+pDduG\n149v8Pj4iPcf3kPuzHPYgwoK8cCuoZ+x5Fs6BRi6eTdOsqVNgeFYyJI42kdj/AKLlKO6hBtdZNFn\n0KbLyCqLHKzjQ4CxGef+osvX2NcoD5u13PRDdAhX2YhldnY7XuPmZFzpVdvfiNMyuex4wuhX0XWR\nbyyW/6jE3k5pYyE6dGzK7LW4Psu70nUnM4+7SRLH5SrsasRW2aJ+xAj6T7GAP7n99PThpv2S4XKb\nMlkSede2LcV28BjR9TnUlWGPrD0ZNokRFhRrHJtHc78g+ZslDTaLkmPZArbUlS0iuEY2dMa2F5jQ\n2GE+qVxd0ETmgNZnvEFkytO6qIeX7jYMI4xHt+KIxJ+BEdbYtsdYe6l9I8+D72Aqp/e1mE1rsbyq\nn/by4BfVVjjelu/lyLBVa5dxpRTUvW0n2ve9b2QeUJiZu9+jmTD2FIHK/NAGBpwfCPARPKYxTnRK\n7FO0S25h8Ghnr97HjV+ruRf11Epe2PwrGzy2aXVCMbPLop6weSdZVWuLpCN/Y4xPH9xhW1g5tui7\ntslgGMld+n2Lop+HfBYbfVNZsrKt0vGvco2C2Qjfy9VNbrG9QA/XGxYt+vsqcim0w27kjXPJ6xz0\nKdnmbkEbn/u7e9zf37dFw4VuEQrrk0SHPyd9UgshFSNMhXWWAPnkzwxUmw7BUn9Xe3zmvY54atao\ntiFlrBIduzILmNuOHbkjRPJdr1ecz2ecTpvuuBgDTtrppkRO2ME4v7rHH3z/+/jxT36CL778Yzz0\no94oBefzGTuj3WPST5vo5ITg10RIMoNpFkRZUlEcBE/BWFi6tQPe0j/Nw2PBpQmKMVarlVwA5shu\nmAxkzB3ugmrvwlLsBVNW3P2TAWSlnxVOmIWnLZuIdCV3Vrg0FH3/u1AZR8ZEgYUTSJyAKDe2HdRU\nEmdrN3r6bmv0rxnQnVECxltT2J3kELBca208Q7MSjIBWKFRDmBwRX3KEVL6NiqyUAqY2BxmMctom\nMC8jYAVsrV7htt/FeGgh7ixviaCXyxRFSanMORCscdylvswR+lwjIatzBdxXbVnNP6ukZzV8DGBs\nO9pPDMONwzjUZsRlYdckFWqOeOaxC/GW7I59y2IbD/4b4L7aTrbClc9XKTNMQgazANpkwrXG0IKz\ngWfLk3lF5pvVaR/3HfvuRJnKzMYJMbdh03sNxq6miX6LukWfuHHo7RYHzK1xc4Aw1CkhEInIGDGt\nH3axbAX247wzWtWDuMW3mlFvjiPll0iLQZODOZwAbwWCvhFr3Wk3b5gyYv3298yVo7uULAaQYs07\nOy6bGn4EQtGTTvt17yebZuy1mpdxbALF5kduVbj/s6PZ5bcs5LJR+VqqqVPwRdTxtwy4VZowZLMw\ndO6X2rjWtYUrTuczwIyttBOZXz2+wY+++gr/8k//jF/+8pf4v//6r/HlF1/g+u6bj2rPS3pJq5TJ\niSiHV/mBPMyflmH+Pqo7fm/1XZTZUW7o8/GxK8e2Kf7++vE1Pv/O5/jNP/5mcv41bBBPl/tNDVqv\n2hpzXUf66NvgDN+nhlv1NLVpZy5TRb6FReBa20nHrgkIQ7c1UU7AzsY4GM5PAG1zyeZlp/0pdLOx\n82MbRb+7MDdqCwUbgnxfV2nu4xzqmKRN/e/5XrBEnqPrTB67jAmzbl3qkYBVGx5mvVPS2dNGv4uq\nK4ZO2qceZSK0YHLiw7Sp9CgJkYZ2M048tbvvez/1aXBi0u8Mx2V5MnpltMvK4WRcWq+zOn3eWL/a\nrUST/WIdzavFsDUX+ibIGCor2LYWApld2Gk9gS56yryPBbGd/6PiCIHsaV5LCzenZHxFli9sAJmr\nDIAqpoVWQjNM4iXhs3w6ns+NfgGYJn2QHlPI44oimuYG79XpjzFIxreysFHEeSubh0DUTu/1pso8\nY9YeDOgqfVi01Vhs6Xtt/4K+Vp9buRd1f5R58xwcstrmz3RaPBFwlGx7sv6tbM6Y95ZNbf1nmXy3\n5UT/lS2HmZ08NgW5OeLkvhn7zM6NoRjlu0Ib1K9mWVOWDblvAg79fQ4NG5/mc7rP2gnLyOZGcLio\nPOg4hyMNXY/8CHDjNzbRl7Lh1cOrdj9IafeoaphN4r6IafpL/W6guYZnpU9qIeTIOF0BpMh8dtCy\n465WIZRSsKPvuu07dyuGga9MX9A3lHslStQd7kV2w3vh3UL9XEEkjtMBcktpoRQkjv7n3/su/u2/\n+3f4wRd/hNdv3oABnO/vcNpO6sQopWBDQeUd59MJ1OPHqEgnievPQ4kCJv50vrNmNQ4rBZYJpwnQ\nwtwj0SfbrAwEHHshk8a1D7zh2k40LppLdofH8benWuTv2CetT5xDbX5qO8eOMlbJSaYd/VOzKDIM\nLSoF6E7/mrTXLhoUKth7HnkuJzREeG/kV6iBOaxcDKfSqJ8o1Tr6Y1OmkFfAuAnKVo5VQI6usczQ\n9xmcDhA0vksEtLZHjmMzqB/fFfAmO7ey/mWOvSMFfTRXojyKKaNfDibz7+I9D6Zi10c5sdA+PjbY\nrWzQfJ1mESzVWkHVz59lm9HiVyv8Cnxwq8+ZkeO+kaOkxjoY/bQKdTaebN+fK/tgQCgwlLSbg31+\nKwALi+mWDhnw1/YaXSbhqlybWgH6XEFiPxEieeRfX6rVBaTID3ahO9KDmXUhUfpB7aOcTkgAvHyf\n9DfOgwx8W5lya7ximnYocdtJtlFxgDcu7Lln5nt3wtQ8JyJ3glB6EY2jFMwa2lew7qBBknfdd5+3\nLVoZPlC8UvvuYIBRe3u7EcPtVOC+X7Wvkw4PfGv7v4pt3vKlXXF5dazpcwAAIABJREFUonxU2lEu\nb1x+0z4iahgktNl+k+kQ6bMk68gdDgCGOEPs4k3jh9J3MLZ7tNpcPOFyfcJn3/su3n7+Gf6X/+l/\nxl///H/H9VtD/Jf0knJ9+hzD+dY7Z0+FcrMvop0W7Y3nJoud7Zy2JUQDfQPh/u4VzvcPLSwkAg2Y\nU6f4CtdJGzKZdwsTikM6fic/T4sNX4WK2kWuLcE2aqFom0pouolRee927bCF7I0fQxPxuOSZgXZy\nZuw+VTHG8kXb6Nc/UuEq8lj0nqOJweqqy9rOpY4fil9oCmVom03fFfeayATyXNsj7+W7IPcF/8rf\nzjnWfnH1W7QV+XqMWZf5pg0DJ2KJOaVvUpblF8GtA24KL3fbTfWaIDlo36VarqwnOiuPC7ktrZgZ\nvLcIFA1n7qAyu41WOAWYN8jF7zKZsEpiN0of9BsgXk82hERoU8QdtTJA/RRDt00nh3kHR+QLkwwT\nXkjbHmSL8rPxITwLp1KvuvdP5CAMDQij72rzRDk1OjieUYCRhXw41NgUa+8JTsJstyL2Wd4xO/50\ncxky3uYb+DFw32g3TZgeZrWRIDIfwyaDyDPI/BwbRi1plothgSTSlqs5FcYd63FgxtRtq/3GGGf7\nmjH8Yqa+uV1r2ynTbRnfsoJWb0+twsYyoAuzKzmdtSk+dz4GDD4l7r7CYHeuZAfL2Nv+GT7SnyKf\n5F1cSMYcSmuS7waDiJ6w9nMsz9LD+eaaeaWyWjeeEemmhchHkQ5HPAGwljkSiRBx+W05cvrL4Rkp\nRcbLPLe4aOUn8O2UMgjX/Yq78xmvXz/i/tUr0LbpuI8N+wlefIboXKVPayHEEBvIJ3ZMRwq2lIJm\ngooTgbvAHHWVUnD98ISNNux8bY7nvZ0OkXsPynYCMwH9ng/mHQJZyibABKAevxvM4ErYCne2bExw\nV+4Aag7Bd5cnvH58xJ/9+/8GP/7xv8bbt29xf3cPgEClnUQZl4aZlXCChr2qvV/ELUSJJd4VfSc3\nszmyOINKazRp240Ch/l9GPvBQAljoDpZ2m7AuCi//XJFqQQ+baDaY/eb9kdjztfRy+B+10LdnfOu\nZWL02E8Yl8L2yVYZcnn3qWzYe6cEYEfeqkEoN0MHjSd6O0if92PyvA8l29tTWVjQgDQ0wSyX2e5U\nhxOb2zuNg7rLBZDN7UqVwNhRTicV1KpkSmd52WrdkSSDe1sY2L1SQh8b462G5b0hjGd6OB7qA03C\nA35SK61AbWc9AA1NIwZaoT5vyChnIr0ThoTH7NiYOkZbmwQodAKo+N1pScp2Q1pesDSOzz8mCZC1\nCgXou9JG/JlDcLNhODdF99X+nQ0XJbwU7ySRpCdikj4qUOARb3U3hhgKcLFhBJlxIu9sjgbzypFg\n+9duaPJOF5EdaoBJ3wF1dBK38TbU8ga3AUFqLO8VXDx9mdkdk59BbtBPRHoCSwaXOoCSeUGUzxkH\nPgJtCO3OKCZzgmStDkHc3Bbo8bDv7+/10m4BNQrQg/FiHQntubmrRgyWDmYYY9eib0ALKwmghXHs\ndByj4QGW0K/AMvLIo/Rf8I2bq9R0otB2rzvAx3d4iLEmGyAUlBuADBaDbrQlLta3sFpjPnPt90d0\nuoqct3dyEBhEDQzr5bngTtK2cHsS2cd9BxqR3o0xSB7khMyPXtdYCGW9eJyZwQVqiKrByB2cc8VF\n7naqrLsabZ1ucd2MqfCtzFmNz6/0H+4lHQuVV50O1HRooxVpqDTC0Jc2fKmdj9J3QjNYZVyz0Dq3\n5FHm2InzttVkTmR2zNXmUtfZpbkaa616r9uFn/D4+ef4l9/9C37zz/+El/SS/kukTM/cyr9K0VB+\nTloZ8SongjzTdkDs9+OTFqpniXD36h6Pbx7boiMzuBC4Ephr11kiHiMw/fZYDoDDlVaHfmzK5Iul\nnQ2/NdffN/Ppxb2hf5XBGjKDwJwsUjkzMhkTgspiAKnzRPVlIed8abZXhSAIss8NRjSDlMYgt/Sx\ntJHFJwnlUToGsnxknaCACa+MbkOHFDFsfCe6RfjYftPq52bD8Jq/snG2f9u67O+Ct23yYbnQdSZ1\nPD2Xte87TndnfPjwQfFXxBZH8uBWyvRnTHb8j1L8kgyzzo63UXYRI4mGjZPVdauXWR1Hdox+J5cp\nBlo+Xx4LxvA8suSnkrRR5itG32N/s3HXeoR+ILc4qOVTTtNbVJ36cMAHYu5bGaN9YkZhmYvKFH58\nbOdjnXxAU/OdztVa8eHDh8ETz1QdYv/cYjYbWh/I+Ww1N1dzIeaJacXb2bvnpEGbeYytr1c0VTXf\nON+DsTNi+234W2tP3kof0x8GWtQLHpvdxLaL7bHJhqIs2tbGa01Oy5tGosrGPkx48XA8ettK32Cw\nnENBp9jv5TuZXxrq1IyVfJfpQvtT/cxCi1JUF1WueHV/j7dv3rSoRp0u/yXTJ7UQokZ5klYK5JZD\ncoCmcWEa0FfjOjipe51272h9RQzx5kaoLDsLMBy60pbaT4fAOAWAFtJq3/Hu6YK3n3+Gr370I/zo\nJz/Bv/rBfwXaNpQi/wrA1J3Y5BS9pZJpZP/ZnQ1dYltFNymshD4r4DVKIR2WspiMVoBp3EfZURSP\nVdK4YBxbF3QaL7aB23gyYHZgk6OGBYdDMZHP7/ra/iengOyuFgHUGkN1v047kOQSLaUJ+fX/2dkG\ncIjnwdXvst/3HVXla1MWzafp+y6hrKgAhHx37JgXtr0+2f64b5UeMu5jXIaAzgV1NASdQDfgxbYx\n5uvdh5yYoTLv0G6hWsY9O94x5YGDnLqSC9vleVQsq3cZbW8Z51PfzTMtJ9BM53ygj+0Lc7urppmS\nA6BGPeIctTx4Km+o/PD1ZP2ZficfHqeU4k5lTU6YMC9WjsbuUfZzKlHAAkzs3xuRXrYuQMxemGjH\nL4IaaxgXMvFCA9/KDruJJoFtHFgNMmKiZajHPovP7bMmXmVRzDuhgaaXZLeJyuZFvbMs6PwuD8oA\nbsJ6vi8NNFpHxckslohsKMUvSkYHReuD36Evzo4MLLe2DppUeHmRORK0TNNv2yfmFku+UC7b7QkB\n0XvSRq0HfiEAnR/J1NUejQUzS/sBcA0PkZeHUc4Q2gYB7jLagmtoWXXMe1tGn3uEtpB1ebr0O9Ta\nruNtG/RfOftkzjH6fDJzQL6Tv4WGlkcE9shCqG2bHZsYVz3yM5tntxw6z5HnkrLFcrcBIPAZUXCW\nkVmMQpdrR/ccvaSXdJCifIs/V/LSpltY5dYGkuyb+Heq2+DxWuiYFDJkyqp+oxs+/+xzvHr1gPfv\nvunltjC019pw/LaZUxUO843NCr1I6Pr8IgkGsPruViJqoUK1x0a/6S7+BBurbutOFN0QZ2ykuBve\nL9i3jVDDPjJvArZa8YmEg874RZxR9qm1B9rmvpLGcnQ4SsoJfH34DY0NcUQAsQn3gtFdHe9kVBVK\nB9rH3yOWgNg7ZbZH1HwKNFnZ4lGPs+H79l0+NtM9Na1AV65srKxU3Xf7dceHDx/6fGjjG9sb23lL\nn2bfHs0N7bvQLMk66Xdr8wW7wpU5PlJHn2xUADyfhArTum/1O9avPJX0acULmrUxQcOBYW7ZfCJD\nj+yE2Cd530JxHW+6a3X0iWWKk8VGmVX6DY9NelregEjgfoeQ1GvnXeyH79PA6a6nqzZb2Wn0CIH6\n3aXyb82bzv5B21i794UQ264G7QburHsd4yKWGc28lNWdnXiPWH/V5shTk3/kgH8zTG+xQ5TTOnZJ\nuUTUfFgBj2DB81lSm2URdWLyBxh6sc0jpnnoR8RGK9pZzF+SbzOdoSeomtBWzm00KypndVww7Grx\n1/m2jh7H+aF9KyUTM609NzZnKG48yGPvkLY4M9LA9mk0ntSvc3d3h9ePj+5eoUxP2jTdz/wR6ZNa\nCBHHBzALxQzo23xaxi3QZASilLsb4cXKaKNVjIpL5bYztwPJAiNYey7mMZZMFYwTmBiVNvzwx1/h\nj374Q/zhl1/i1cNr0FZwd3/vTyEwGlAkr6/iBI19FB6DY0RMQjej2VTmAgQqo4sjCq2thHniFMgp\nCqWGmxhOQKA5m2gbQkFiL1qHkr1ngojaroedtb1RgFngYfuml431usXpbx1Rtu7M6TFW68cza6hF\nHrYpCuAWPm0foW/IUq3/tMcwAQB9FZW8UJyANNnCglMZbae5PUq9h/ZJzpWBRzSPfqYMUwWWzNsj\nxZ4qKHC/aAn9lI+56Jf6c8bYKVYlDMyxjMjAZAbOjsb5KA1jDE6pCA9l+VMgbub4Ef2ya7Zj2xuN\nj+Wnlm+yRDBARBrjFsgvcjwyorQOnuWK9MWd90h4Q0Dp0qBtHx7Wb8cjG+sTtR0OEu6Kk8ba72qt\nKOzfxbrs5XhHY0oYx3Wj0dim/DAuxFDR+zwWPLwC2ETUTxS03/cbbVMWOeCjowv0bL6M52MbvaE7\n6zN7qsg9T+aujMEtnJH13ZYXF+8lxX4TUQtZX6iB4qWcNLgI7S4lC7YtPwiSdqEfFs46mSPDODT9\nkyBZRD5++DTX5vYq/5aiG0Ps+3iapvGY/IHpXfa3N9BH2RPPmPHg8N3H6KAsrfjDjq8L4SDfKN03\n3N/duwXXl/SSPjYt56MR94olMxwVdFFaVCL3n4PrVuUA/rTdqhyS34mGE3PRVkaTh69ev8br1w94\n983vQAzs3O5r2Mrm5Et0csgpcbFLBA8V7vIpxN7ObFObbsmTYWIO2R5lZVZGO+0yOy6zMXRyyZyW\nlJpmGrJiHtMTiK3UcMVYhHb4jr1NbDcmqO4I2CzTBxYfxz5E2rgFOrXphKSy6WJTPCo0tqj0yJ+Q\ntTMLrya0EPpmtjPJZhXdEEdI2CaMmZkDUBKPfDQwh9XPDRdarFV7pItuu1O7LbEAuNYd79+9M+N7\no003MEDMb2mVfTsw/8AylavnpWBnxHJtWcpzhfpJXFZcLJxfd4PzMI8/kV9Ay+rK+tmf9ra23xnP\nxBbGvFKZ1/tT0DEahZPh3Ntv5tQ4gS08xx1j+s0rbH7umOfh1M8B7j1/k7R7bUOoXy2WGWjj8GOC\n9bS/uM2DQJur7pSU0lHKGjQ49EH0dojvqtaK932D0Mgx2gaETcOgxo+mn0d2sNAl+93l6f8g/Mrc\nwuIn+jr/OsfDWl/PIu9kU1ime+13ll8sL7s8Es5anpFfjEzxfHi/kkU75r5U7jb4ge3nqBPqtn07\nsiOyZ5bSRKVHqfGbFltUi3GST9I4PQI9YT75M2DwSNKH1I+QjMnK5o5jHmmQlU12PNVBwu1E/+mE\nx8fXapvemsu/r330SS2EyEXRQFBIzxQWzzFhDZ5tdYrTYiu47rvB5IZBGH3XnnGKy7FiseDZOxy2\n8xnf+e738Sc/+go/+uorvH7zBtvdGaXviqFScNl3nLetgRKLgvvvGVOmtOjANkA4yK7xlTDMALQe\nh0IHXQKYzVSOE0QUo5tUrCJO88Y2yIXcWyljgaJncbtqA3iX0y+n0k466Dc8XzJk+6e/97LsaqSA\nauEHew+H1K+Ckke4LXX4RABAmO5wsENnnzsAUuHoX/p3oigAYK8N2IpBwQmfTM5qDBDV+lOc41W+\njUbxbcfQyFNKA38ObAkNLJDqz91OaQS+UsPJKMrQ1q4+epsrBn9CaVNKweVyGfeuQIyxY1C7MkJt\nW48UcSxPjROfYQKV2feRRvZ0g6TpAkVThzYj8ETsDw764+bvwpBRepHIDp+sYjwylG4lsr+Y7Fq/\nAQPCA9pGDH4S+U3wxq3qoMDHsb1OVy1oMrU5JDV0wg4gSVPIP6CH7CJd4JBQVDInxt4T4O7uroOj\n3BC5pV+dU6LTVduTfJaVX8nzCPWMEaxH4H7L4I7zQpwNDXT3OsCTLnH9SvBGLBtJO2J+4Z9N6cmO\nL9w467Ne1l67DKfGc1GEdzXK5k/bjk3635+VxtD9dKHojDp4v0hMeAb38JENv6D3Bf3dOB05aMDT\nWAn4LvCLP9X02cqPlObCFEl6jlyOuiOOo8i36j9q7Qt12DKjPrQ/Y9tiO2wZDh8ZoHc6nfqJrZf0\nkv7zpJnPqM9fc3F22GkQscqk38K7+F3qREnKzlKO7cx7+Et5bajHKIMA4O7+Dm/ffob/9A//MBzf\n3T4Th6Gd13L6uYRd4qO/cnG5b1ettcm8Tl+m5syI9/Xd6vdEz67fiTp2M/qAZYGmfxcvoI8/3bjA\nREPoFHSYTuhfIvYf9M30caaziQqYd5enva96X32G/ac2G/kZU+S90h2NbkGimAt1MeiGZHyyNqR9\nC3Xb57HdPAYLosRbNe2EZbM7t95mX4+O9YTRDP8GPaztrXPbmUXPjPJq3zx2vVzQiZjSY+jwiWzL\nccnSEZ6zfbenrYXHj2yxWG8b4/67RqQYM7iQl3HPch49I8V50x9Oc8fhYbFDImYwPh0da4yx0O0d\nkS4JXrEnwed2rp/Zttq/Pc1FMtkuy7zt7WFWfCl9I6GNKT/eN9PwbZBpYI34bZME2Yl01r97A59j\nr7vnEHjaJy81/9Dlcmk78GvtXWS9ryWVCb3PMZyd50NvM9g+ZPpi2AhDFsDowpgmOaL/b740KmX4\nAHUOzXaio5XwN8a4ubYl81PkcUyxrxkmiO3IZPVKT8m8j3pzOfYypu0P7ddke9pvwvtqxpS6vbXZ\nPrpG+j5auR77oj+ZB+3TXsx6NCsvm+cmg/HR8tS+TUNcuQKU1wttQgwAwOuHVzidz9326wulRnbE\ntk33Q31k+qQWQqLilWQvtV59pxMrDGbpIZhkQWAIjiaxiHrcVTbORDMO1AXbuWz9VEIP/RIYvZQC\n2grOr17hh3/yJ/jZz/4M3//+vwKV0mKlbwWgdhyqDWwLMyGTcnaEGQU9JEp7FBiaeUxEz9DDcSHf\nxTQBKJiJyXD9dPQ2QCxzcBS0VVnCLGikvnZUmttFx0aACTC0dbWj1QPQwIyBtj3Rb07JEmmsPz/G\nIw67xLKzYHqmG2Hb2qouc0WtVwVeCpI7+LVAJgpQW67sulY+4OF0jGFQegbEDlslIrt7REFb7M+M\nHpqsTuM+2iRRZdcKQmgxUouEOF9WVydnk/COo7/5faWgRA4IXSxYBsb9OY5HbQv75SmxVxkoPHof\n80bQEt9XwnQiIP5uQV9shzNowoJk9rvS4/cwXMbot/9XZj1ZIH22i4eODtRYNCrggraIKJc1A97Z\nT0TtcnvTNpV18AsWus8nGauCTnM9bTeMkgGMeewUtHNHQDgASoRKZpzXPh2jvJDfNzQAHQ2geGn6\nqi2xvDRvN5xh2i8LuiBgD6Aq49usXv0bAG1tvFWfmubUbuUTW2AzA3uRkxFMrVJG7/i+/9b+iVHC\nAJHvbw0yr+mb3FG/agcCrfpHnQZdchaAdzj5736aMmutAzCWJkOZe8gCIg1pUQzP2wV7SJtMWyU+\nubSNzDyo6JfJYlN8A2kVdxqi6Yh6rXoixKY4Hs1g6LpaeCXI5jHeo40ZvVc4JTOOIl0neWnLS/JE\nYzXDQ/Yb+52TyWFu2RjPouvsPJIy7+7u2u9Tj1/SS/r9kp1GGf8iwcyWjzO9GlFnjo/zd1l5Mv+O\n5DswsEghAsxJEjfvC0DbhvPdHT57+9mQ96WAgo1hS5a6axLSs8muCpRxGj3qfdJFpdxBk33HGKYd\nA+PugkTvqhhvPgPUPd+5eoQh5JnYvBJeV54XIuyQkIqzPNUyAQ0rtNKXDj8ZOg6dmePfqYzwd9Zn\n+7veBUllWJ7dTtK7sRbtVYyxaI+rb3orwz+/cRuvWDbuzdiDaB5HAsBUNCKAvItjUtnrIzkhAPgL\n2CX0W/dydt5qvHS5XkdZmDePcP9mwB3Oujvx/C1MFfOu7OOjtOINi0F6xptlTfWbef0cHpTfPR0a\n7aWMnL8w5vkkC40lZt/pj49HD6txOkpZH5ssGVElJIkcaXX1EFHiUWb932G7WjlFnacWS4n9sfo2\n0zvyrCbvVjKUmceG2VJAfUf+vu9943TAgAdjIXn1/C83+RAnkuYzc1BCC7o8HXNDdHlvfyY3V3af\n52/ofqQmNVnvbJVcR5w2zQ8gl7f9/02kdP1PBDb3Xzl5Z+qN9heHsdXvbIhhq8vY68bp/XP7Z2RM\nTNGe9LqDYDWb4ABbx9T/Ln+Zk9P0z5SvtqzYn6X+tXRO8tmyVldLCA9UcL/TlnF/f4+3bz/D+Xxu\nc9mGAcMYa10sZYM9b4zRKn1SCyE2xRAVs2IewkKEoxMGMsg9WDx1B4lNUq6NFasGLJowb2USTgRs\n53O/tLk5l8rpDDDjVAp+8MUf4k9/9jP86Kuv+qLIhg199+c2jqG2gWW9mK3COKucmdFXaEHw90AM\nMBKZwtLLOoeY5/BOlpbx+w1zGNeV08G1OBMsPO8KLaXgtJ3a5CFC3XeU0za1ya7ays5UOU2jTgU3\n5q0xdsI6pzyNS7dlV1wDv2VYGTwElQPIigD7xN5FSGxgGkfXoPnRLsc1bZUJ7ehaZJTIAV5H1xA3\nnggah5+6IrRjU2tF2WRxp49JbV/LPRlyNNjS0IYsK8mFa2JYrgyFUZbfcYcgxJgZtG2T0RFpPb7v\n39KKx2dFbw2vawf5pZR+6fOoz9Yd05FyiUouAiK7o0kBIfxckcUq1wana3Ohr6dbIsCI8zM23zYg\n69MQGb7d/TvaSl/cGN/E0z9ZdVzIgdkx/0zG5PcoCyQ5xUxzP5U3uO2y4sArQufS++rCE2IA0AJy\np0KyNORih46ZocPDWPWP8wWPqOPkmWt/T24+BkKcz2fc3d3p4m78NpY79YvC32wvUvey0c6DrcMZ\ncQKwKQMYmxNsWoXHiM8yABvpNBwuOdg9om1WZ/9w9Bn+2HtM1FcfBaRncqry2AE49Z+7jpc2N8Hn\nFhhOp9MAq/BTu6kahhE2YTGi5Y6LQnKxvF5OyE3PiNG3nTYgMUCjnBPjJr73mwvinPb5vV7P9Y3T\nJ5jHWIihmwv6345veJxMjDIiW5C3f8d2xXvG7HeedwdPUaf1t71c+SW9JEkRp1qpkGOJxou3sNTg\neRMjume39yu5kg/kY2j0wiU2J93Zv9JZrWKczme8ev2A8/mMy4cnEaOKuXz1uc4lKg4DX5PT025D\nDrz9mXfVyk4GuJph6nfyYYQ7tHXYPpZtdrRkcvJIx8niuspmbTepDSXy0fVHdEMacDX2dZabGb6N\nstTqE0KkG9JvxnP9TX+/ohrdOOyroa+genW3OqnnLx1D2u8FD6xortjI9KdWwb5z/6XNK3vC0qbW\n4XQaJpbZGNYBe451hk1OROC9zYl337zHvl9xwvBvZH2KfoAVFvD9yt/bfKv6Ip1WGDp+J7YBONjK\nYd64/FmZWJtM0W6Yxl7burALbH3GrzNoop/rBj+LwbUPBzaj5Xc7ftEha/Nmz5Qe3d5aRiBw7Z8X\nY32m0T9b1mTHTm3BtPhj/Tmat2VU2/Oorevnvu7KDPSFYPErIIwVIbEvePix9MQgyQLj4M1s/kT9\nbDqjoepBwxfHyffLOza0HcZuEtNBRB3yORBxf5yHO3u6y3sJW6Untfr/5TSKLeNoziDhK9HxVP3i\ntsyTSR/B89xky6CRmQGgb8RWW6yywz/KIwssH+V+1ifrj442bM815hawjKri6BT+nvWO/1bKz2gF\neFt1lnXGzocfR7Gd7+7v8PDmEdvdXT9NKyHXoqyYFz9Wc/VW+qQWQiwhVp2NyouZYdzQU74jcAhu\nK1ltl3LVEwNWMNQeOmXfd5QTgcqG/brj/fWKH3zve/jZf/1n+OEPf4jXb96gbBsAwunuDpXbcSED\ncdrl6qGtbuApDrTsrL1hKiSKIaZo3KwEzK3v7aXbCizs36Z8AtxRwVHWMPwZrMrhaIK2fwOYVBPq\no+WBAu8V72wmxqvFDyKAdPIn57AiGJ3Boc9ny/T9ikLN0I68g1DAeuxN2QRY+1MrTnnUebf7CuxJ\n/XJnCJG/qF7bdyO1PONIvOUDdzFymS90iqApMygYmOhuv7UOX6uUmBmXywXnet9D0/g8GeCe+zW3\nV1I8Zhnf8+L5rSR546XSu3Nq5u1N5R4B0vkI4rN67VhYGsk8u9l+DN4VAN0rcCH4CO1+GmbWEyyr\nPrXwExEM8yT/mFlPVcnckn4D0N0JLn9U5ryWlUPn6PmcVHcJ7z4nicyIz6Z+JfxYeUeh4k7sPD1d\nsNe2o38rZ+2XHdPMkNO/IWPYdgapcYF5Tsgpu1QPd5GqQD3IxFvzKzMEVuMSaZ+dOjjCBMs5bGRo\nJqdMae6OnKO2tpiwfX4nYFzwQDvBsamjzwJVGROdTyIjuBGcgebIUToPh16hktIl6rAPHz6kzpts\n7KIJYMc80tLT2J+QivRWgtiyLb1M/qx8GTOnEw09n5tW/Zb0HL5sO3ObE/R8f5/O+5f0kn7/NBuQ\nE38GgLmShf1lc/Lo4xwTZ2kp50NLV+18rs1SqW0AePP4Bg+vHvD0XuK4N4xON6bZypGQOZKaLBjy\nSrCGOF6y9mv/BC8IehA8I7LcyGDnnEmw18fSXXV/L1McFFoWs27SSWUqOiag3Lk26sEECDjBaum3\nmHF57MOqf5JED8tp+ywRkZ5OlsgOtg5mbncnhnqpd1BpBPSwlkGvOdvX4IdQXkvt3knbnVa77bf/\nGxgbF7Rdq9THQ3h533dsRCjUwvzs+xXR6oy699YctDxj8z/HQbfKb/kv8uSqDe0n3HwRG3JlC9sy\nj/DiUX9j/m/jtJPvxHdyc0wXbfL1G9nDAJNvI9fMi9bLsuGqMKytKKulruxe1egzkXxg1vtLJPl7\nc2ch0qBt6CNj4gmlYbjgPUuZ3abVw/BEnzfX6xXv3r1zPhsnp2OriYb/KdKHtaJntfFjeHNUn3OR\n9M/qBPtSZFWkTza+z01L7LzIS4s+ZgsOymNllkGrRUsEeqo+DH6i2PbifBCex4/0ktaFmS3jHGk8\nLX/73NYms/XGMpf+oFW7zDyytnfmb1rpZttavaGLCFyA090Rty8zAAAgAElEQVQZj2/ejGgHC5v7\nqH0fmz6phZBVmhxLE5gf6OGWoW7zWDxfMEKHMDPKVtpJhbK1Y8TnE3YGXr16hZ9+9WP88Vdf4Ysv\nvkQ5tdBXlYHTtoFrm3AnEJisE6wBR2EQDfEibepxWffrzICWszMHZqEZdO+dJg1wjzAZK0E6CTag\nORyFll392ZrbpWZroTxPXQzFRlDHhwWFzPYY9ThN0U45bC5f2Ta0XVVDYFNXKqqgDT/ICZRWLyvN\nYyMzY2yAqQ4KeqwjZkZtyEK/aYK06mmkug+l6sncFpZsPdWME8ErBxsbdN/3sbugXl2bZXea9FOV\nnAHMZds0diF1RxwCLxBBdx8NZ/82CUZ51362u0u8wvAXUe172xMQ44HaHcrM/m4HG3c5gtYorO3z\ncdoKbhEkG+8MBM/OOP88a0NsB4tHMoJanh2mVvmuFKmGu5J2BhZm5rGrY5GOQM2RUVJrBRe/22yp\nmBzGIMcXzrDmubHsdougTxy79GE/8TLftlmNTm5zS2RE5TlUxgTmj2hIGDuqAmCKhkgBTXnkO43z\nS6PPGa9lYMa+ZxY60pB1gJ4IWX0/nbQxNClUsNcdlRknKv6ulW4A6CJd7FsoT8i0akfkh2xBaNod\nm+CCWL9dLJZ89tsM3GX54rtr0lcBq8xyZH0s9oNs+7ifNsUIFzD1iZ081jjZRDhtdswBszdB54vc\nRVLZ38VUjb6xJ9Ic/RioTNioPX96esJ2Ok0L0fIz05eKQcowUiVPdilhHKdsLGLdogNpFKRtJMwb\nBWrgRYsZHY2DTCNxotqxCaBhdQJEnl+No2HoBeB8fzd22b+kl/StUsQdQOb5yeVu/x/5fLccH5rX\n1L7CEcA6DJ40YsIvi/pcCvJG20KEh8dHPLx+wNdff913G/aQfQt9ENs89aWO2wcnbBfmtZYNAMYG\nZLkAUHWpOQFeAaIkBK5tA+DxPNF0YnWFHWJfm/zvdkIpLTxxr4OC4Rb1LITHEryMiWdmmR9l5GST\nwvNVhsenepN86GUIkrCUqb2/gs9q5w+w39Sk9nakAbfNPKKEy7ZptIGma6oSU/qi7eOxaBZp0P75\nPtn7LGqtehoU0rf+XnSh0Ds6XMVelH7VvYK2DafSdOl+3ftiTsMGPgpHnJdr2sdximOyshlW71dy\naMXX1oleuyws8LbKoTwy5XREl+Y5KmMlP5e2EgaGluknPBKrd/Il1LkuH55nROQTAd0H4+7dEJnc\nvL0O8VhejnP7SGcsaWAmeyb7szki+ZXP5JniXAZxw1ztNI3ZSR/tkji3bRuDGBa7ceeKd+/edfnb\nfXtGcLr53tOe8F6mO7P2uL4m+bL89nRBlAVZ/4TXROb0jIlMH7wmsnFlS3u53u+1yVi0z1UZZ1cO\nMJV/K031dyeA6gXhb70OIdjehh+z8NW9Q25Bztad9a9/spy/8dshq+Y+R12mv4dvo46Zyon97iku\nGk3zD8d8OtpJ6juWd6fzGa8fH9uVERib3FdlHcno56ZPaiHEGuaZwaz5IgCC8HkegkTSBKI66JAQ\nRlzJ7AqR8DbA+e4On3//u/jXP/0pvvjyj/H49jOcT82ALecTqC98oDJOW1eelUEnyxCA+ENBNISL\nCvXWFhf2RlHpmmEtPQ4VL82MeyRUVKRTEJo8CztbZmRiwnw5lHU27NwWmyS/LdP2i2hcQuja3dvk\nQKYZwz1TADqpZRcNqVNlpQDbx6TPW/g0c0S5T3b5vvZLATXMiBHwUdi5fqtmHELTToMqwDuE8rE0\ntXSwi0mRtlFYyvsRbme8t5flSf593xOeGzHu/XND/+RZvCMn9qdQc6wRtcWNGE7E0djww77vLb7m\nqYViK1u+uzymjLfje/tztZOf7beJ3I68HkGl5ZeVUsgAcaEysbDN9zEg3fKE3GES5/pKnjgYxCO8\nRWwvSBZtczAQGuT+lPiTsR2uX/33ImDPvBcAOwOd8V0sl3kY0mTeW76IvJh0BBagl1I0ZN3o6gx+\nM91oDXeY/KJPYgjI5xgp4qMn8qcN7DfajkJjmYo9z2S73YU+R0e2I//bMYjA3uY7OgWS9TNrQwR9\nW1iEX4LLuNOuA2kbKi/WA/i7b1raIpu3egHsezgJ2HfmFveMVIfLGFg+o7B6KmPRxgzOwdecJFec\nzq9Q65D5kUbSxmhMxBBT2UnJSEvLN4PXPRiP83ymoaEbs5OHGdhe4aFMbq4MIMuDs46dZcH5fO7f\nplW/pJd0OzEwQqAKzxmnzAGOOSw2YnEWfdWKb84ETnTpMV6y7RFH7ur9rfZ1wODq3sHYTic8Pr7R\nOx21jUFn5PM02VABr2NUzndaDNjN2i7u2QaVYGw9KxM9pLH6wtEx6jDMss62wcrUYUNVtTnZOIFU\nBhY50WJsCml4H2+hIychZyzWynit2dnVYYkVf078Z9IKC0/lRd4K31taFcIUsjOz14BBe91oZfA7\nc3OUllL0LsZGQTt+HhONk5CyYG7yGr1hx9QuvADWxzAWUyxe3DtfDRzY5wu3E/PX/QpUBm8j9Ge0\nP1Z0timz/Z4zp4/mfpyXkR4r7Nfo50PNCCbLZFaGVzOcc4v/Msx7aE8CImS8zWjzPFN2H9LfiqH+\n08ouzUvzuS2H4YIcPWrjTZsjfOfwYcIThMHrg+fHnLRzFDyQ7K3QimkfeNg/zBWFijrzSynYiWBj\nCBOLB4SmBbRJpxzwUKTR6tlqA1FmN6ZtMWFji+J+TICUDvhhuVAQ6uMuy6jrCI/HMfXD6tKpPOkD\nDVmpjMGyydn2g1F5jJXykB0LQxd0uMM9IpDwWTG0WfF6lCFOPvcU71GUNmT3AdfaFqJlTHUB3qQx\nv2ces+VZnRfrmeYpRw7G9M1Uv3lPbCfmoM2rV6/w+PjYac5j+MK8iGVO9P4ILPtJLYQAx0J8ZWgW\nAKh75+5+v0f/TuKUqVDsu1+oFLzbrziD8IrbauS1AvfnM66VUang1ds3+OLLL/GnP/0pvvcHf4C7\nuztVcoVOWoeudm1dCQMtnhz3v8gObnK/BUjvnGCEuNQ8JggRjbsfAl2EqaTcc9na7iFtY1FARVRA\nhcEVemKihQCrCuykzGkxKgKjrhWUZRltF4FJTTH0z0vBVivotGGn3ncthnWhaBV72PJI5R2FR3w5\nGecxUVnDkbX8DJTWf4B0CwRT2wWz1+vSiSanCcQRVEyfC5udqCqsNnDJY4XrmDFjowJm4Yc5NmCz\nWwZPuLjE0k8WAG+EZy9rI9Mms3ubzE7aWZlWWCCuZYLbzjo5Ciqg3fBzqwOuvr0rQTs+wmdi9FUW\ng0F2NBo+L+1uD2mH7HYvkofQ4oD2yFhizLg2GeC72iVu+3vEe5lyyY4D9w+Ulyv3+2nivLU8Ed5H\npVXJKtY+T8LR3K510kvhVn2KdOhvTLvaE5mnMQ1+ZT3KqvJjKw64CMCV8a0E0F41ZFqT6UbpCy2K\nXwSwrdjhd2BPfZSTZwlA2MMiZrvUEv1p73gbRD3BpiD9kH59zvRjuieInG1lcQ/HKHNIZb3tE6Ag\nQtpbEtlMKKC+OMOdDqdtw1aKLto2XsO41BzQ/pVSUK/XcRktMMkYwjD0rZ4AAKozj90KSzX4vejJ\nsxVgn78hd1GctnMBnuI89UDThIs6WBSxf9s+Oh3Z79moJkiU6vs6L4Y7w8PqeYhh1+Q/yNKz6LfM\nTSaz4Rv037lW0NbkceVr/5ZQ2C9E6DxUGcY4oShW2SsDpeBaq95tJgbBTlCaK4VE7gqddE4mu0Sl\n75ZXiDSutzgEbVst3wDQBXJbcubQEAwYd9haTCnjZX/ak6+KPdAMusyIsPNCTuMM/dPqvl4rCoD7\n7QSiDfOy9Ut6SR+fBDut32dyrNsq7tRa/DBU0vPHcnkxJ2IbZJ5I2CFtSYLJbBuM22M8NrpA+nM6\nn/H5d76DbTvhsj+1cgt1HFr9fDbfOrwx6Z6akpbBGq4T3E/dycaMboNISVHmtnKhu5ajw8J+QwHH\nItDattfqMTfm6LKMu73K/RS3nCZomcyCGtRu1D/gxzTKyxjm2I13D0UN8iclnD5KZGn2e4ynDgy9\nVJHoAJodSGMMDjY3mLZIXoIPvQVmjXHfQk4Vg7Gg4yfY0UEGg/MbhhWfBffTxHZXL3DtNmjz6TF4\nrxrei+vg59Pp7DaMeTxUQEX6Qnh6ekKVy4rh6dxrmcY7naOL9DF5yfTX0ufIhlm/41lghDbFsu3z\n7NO4eBpDF9s+SDq6SzHrg7MR25OEP0UO+74fIYloHbm+Z/JigceF9zPaZbT82DT4D9qh1Onf6SPY\nrtoQX+OF+pWe088miu18H1hbFhmvl4upojUy44FbNIi+gOfkP7I3G5SOp5/kknXP72x+t8sSdsQt\nXVTOJToqttHOYZlHImtWcyTSgYhS/SD5mj8g1G3ex3JXcqBX5r7pbON8i1N5i98jXaQfkvbkvaTD\nu1zaL/rNivaZHotzHDC0koVzU4dBhs8ap5zeva1mbpRtw+vHN+00iOjjKL8Wstzy3Ir3VumTWwjJ\niBAHNmO0hssZOtn7u6stp1ZcwdhkvPcdWyE8Abg0VxHqvuOLL/8YP/7TP8UPf/QjvHr9gNN2xpWr\nM8ptfO0VU/bWAbpAMVoWgUbmNHICwRjuUXhmDF8B3RU603S0WwAdESngPRK0afdACsQsU6sAnL4Z\nu4XFSSh3qtjv7KQHhkNCTu0IMPRAfdQNzDu+BCxSbzcRHSMHzPRrdPcCqxgnrk3Z/RFSpjqKVFBm\nK+Kj/ngCY+Qx4ym0Mg66uBNc2qlhssKplaUgrsO53nY7jbtdiMZxbBm7KLBs+/Z9V7q0b3yYLKkD\nGPxjvwXaQoiUuW1b4z2yX7QyrpfLOBliQnu5vpnfV4I4zotb4DyWaXf5Wefrqh5JcX6rIcjzs9V3\nbW4Cwuy36lj1ebWwN76Fkj/KRwrPhuHrw/3FvjSefY7iWxu58XcL0OxCQ8wvdWcpA6VRT9mfu9AF\nMhQznYuEqeiy0dYl+VZkiFF+91pxPp9xvV5xOp2gu4aNcSAnaXR3oYAT085BD3LOBwBuQWQab+HT\nAO6yeRMXFGxZMem7QJsIqGI9WTskrbBFtjuQiJwsnufL0Hq23OmC9a4vM0OSzftWTtFx1zZRD3NV\nG8gnc+pEsQEDqEPPxjCFsf36t6HD3i+FJAzeqwdgdRXjXt7buPoiF3eTzxo/ltcs/QetPUCWZHWa\nXzCc2xvn8aQf0p7a/rDjCak7hjFVegrv1PbscrksTz+/pJd0KxGMz8c+fwY2GfkYsiFnmiRdSU5y\nFwW3FkNiWzKcInc43Gpv+3Y489p2HVOWafrpfMJnn32uMn/bCi7sNbm2Q9pk3keZQkS68XfCPLaP\nBHMCAACbTR0SYon7xiDTbkujmJhZN6A43YqZ1pkdZPG5q6frF5HtBNboCNQd8HoKX3VRsxPh1hcM\nhgB0lzHQd0137K1yW2QufLSAlZM2w1mrFOW9tEHtMMkn/Q/tjfXHsu3vzG0hT/qxmW8EO7kNUgku\nlnlF1HR8e9ZOZWJAMaNHCFx3XwbJ6U/WPpZygkiGbTtpvW0qk55Uau/bCXuu3CZVDxutNtygSP+C\nLMRZ2lNH2C2j6SplY37LRlObAZhwV8RIqzpa5ll2rWyhaVNMVpzh5RWOWfUrnQ8i/DHkf9xUYWWa\nxVa36rRts+1tf/T/8fp0TVrWEJby8GadGpSw9A0+PMIWl96ntiDZOruV1q6dkcv70B+PHeNP6S6h\nhcmvKKUvdm4b9stFuxAxqKctudJsHYfYU8a9n7gfCzLi7ojlmo2qNIe2k3YNm2n8UHokctzSy7ZL\n5Uky7o6+xkRziy4G8wMmzL+dm6FuKaiw9HFs3B20FJtLQtlry/V7OwocdKPVE7dsRvvc0dYktaVj\nv5+J0YQmdqPG6ttov8nf0p82dUc5VXRQezD5jGNEn8y/Mdn+kheeRufTCQ8PD6OsIlv+Bq9lofZs\nfz+WdsAnuBCyShkhJE2OMwxGtgshzeFfQGghmTYwrtcrvqk7cH+Hf/tn/wY/+clP8L3vfl9B6/nU\nQhectpMaua1Bzx8E1zDcNhhif5ZKRf+I1ZBCFhjA7Wri+cPMWMmcAlnPlwocQwCMsgjn811zotUr\naOu7kVuFzSmSFsbYSgH1XdnMPa4g8smRCedSTmYchpLw/e+nZ6ooEPT7XmTlnJzjRg0FUxcDbSdY\nF15DeY0d8TC0SenJYqsc81oGrKbxEKMm5Bdnk7RFBSHMKR7DD1mcflvGUKw5ILpl0AzAZ8ufw0UR\nEeqVUcqmeZozt++iaqY1ChjXa1s4EeMzUnMsaq24+7i90q6YrNGa5b9l1B0ly0PPB7UDf87vMsU6\noII4IWx9zzFKXT4aC7MW2N/6rv2cd39M3zyTnq7OPs+E9xnApn1lgGvb+V1aiA2Jr4viaR3vu2Hm\nvlCntbYPb8zlvY57CgBSP5PyEq/Gak7MfhEikogirxvguaJkBHpHvGdpEfNLH2zbbhqlIe0mHxFN\njpSYYjueS8NVf23dVp43OvJ0cbi5EcY48DaXQzYDIGmfdSTp/EGTchPtwpwb39OMFxK6N1nRFvyv\n+0XE6XCE9FSCsUmubyvdNbSe9GEzOCVzUET8l8mPFQ/KO1lkjGnSZ4iGC+t9b3YORb6wobyyUGgz\nzxG20xnbtun9Zy/pJX1sIhrOvv2G7MwwCfBs1ZnIvzFLPlZ+H7VxVY7TGRiyR+bpCE0C3D28wt3D\nK7z78N5tzhGlOskYPF8vpEm+pXFfAzM3x3J0EHRcXzGHAJzknOmz1ZvR4eGbsu6HPy1i8cb8/UCA\nYld3/V+93I8bvgiEvc6hcw/xaa2Jzlx9m/StA1ylS/he+2Hsst54XZyRvtufk39B7I+wQ102aEW6\nDX61bfYbxUQ/1e5oLaW0UFUs9UuXw8YyU8+wLQf20lP5svje2913Lmo/L5cLrpe9OXxpbPgUedKW\nyQbtGcNOzFKk5beZUyufTy6/sjnQfybtXNkfmePtqA+prX3Qrlt12jzxW4t7NBJCZmMm/QVg16yn\neitzP9V2PE5DjqmBDpEEeko2fMNgF6pV+FgWW3UBL2LqntfhLZFLBLWFOHzTzLNWm0Yw/Gg+9H4H\noEUDqfveTEZXXhjj3sVs/GId9ludczCgmqw91mim42RtOcH2mPnIPsuS3YRgdaH8PDxFtKgn9rWZ\nD102BXrZk0WW71fzXO0t5YcwAjwCcPNEI59WOsn2Z2VnHM1l217r/7D2WOzTt8FNUUcN+9O0afHt\n0NUmT7AX4yLIqv6pbGlTP1l66qHpT+cz3rx5MzBIwktH/LTCr7fS/28WQoCZ6CKmGoBs7zQOIMYE\n02+ZUcDYLxdg3/Hud7/Dz//X/w3//r/7b/EnP/kxXr99AwA4bWeA28r6trUBlHApuxq5vm2Hk4yp\nxaxrT9NJ9NzBTZUxIsjCCMPTy7ax+TNHhQOGN5JVtDYWotBawmdYR7oCNhmHrYG+k9kNag2ctN7+\n3h1FbQjwUNFldG4GUXMixZBUXd3I17CXFdXKqHWfdgpPoZH6DmtTsTRG+8hdmO91B5td8YMW1GV9\nvLjuWAmlK6oIMdRpOKUV0MPPMeGZ1S6XUorbqTb612msoa4WYaNMEiE+zXE5YUI+hE37N/K058PR\nKMdDa91Rehx2qxWjQBUg8RxldEt52j7F3285x26BFzF4Mk91Brp9A9eKa6WMI+CLRuJURliwaPNJ\nfh9yyoGdMvdnokOc4xkAtgA9KQcYpyYcgAg7xkdfoTwz5BcA8HT8IjoxSimg2iVJK0jDd9m0gdZj\nLiKjV2xh83OB015buMNGMzEg5KTeOHGmNHadtcBT8i+ATwCxNsV5tspj5VwsO/6dGaC3jJ0jwGmf\nZeVnYA1o4y6nYnR8um6ZeHSBGewliqrXgG7p2Xk1dui2hhQwVa1X+FqArcyTUsYCuJ49TIC9p43k\nAy6Xtp2kdCNM8BWx3Lmz5kMZU5kDUPlgaGwBeW9DNe1ZjXe8t8X2K7scsoUsCfOMzM5q6XDLoIbW\nyAudHwTfb+mn6iIiDZOS0WPsnm7OppcTIS/p2ya2chq3bYljnAKd3M1RBSCRGebr1Gg1KuRQZ+j8\nht+5nelDtg4ieMhgbRIiwul0wv39Pd68eYOvv/564PvuaGYeG5MYI1yFlLkMaRtsHdvf4Vig7hDs\nG6fCpglr57DQmuadpAPnetvBvrMXpsdwlZKiLHQnL+2CdNKG1N5M9K6jBzebd8OGihYCkIl0gUo3\njcHzTDztn6WBrwjMFmsy2O6FpxEWe7KHgs6yGPUIG8z4YoQBFu7b96u3hcjwNfsT9TEkZ8+iY7GV\nDXsPby273bkroNYNj4nHvDf80vlDcInOS8MT+94cvHLyk20+pVmi5hNcfkQ/ohbaVzcTQXjH5R5N\n7zBqM7gojpOEChaMKthHcRBB7wiyY2cxxSFulLGVeszvch+f8M+INOHbeITTnb1CCa9hYJAJB7GB\nlHbMFv2pEJmUtINITw2vkqwLMA+5UUoBemQIeRfbIU9iyVRGFImVTlpieaBf2UpuvAETQqv0ucDP\nk2Ord85HUkiP9l+vss16prPw+NBjtcsrMnM175cU2fLFuT1sLRsOsv16TDObhq5Ct1PYvpzaJJt5\nq/VrEY2FL5Frpmw752wfhJ6xPZkdcmRPqv4Q8dv5oVsZ7nsiHzZb535fBH8O3bI5GGXeiqeELvsB\nzj/GbU3W7jxOz9q64qn3o/Zl4xMEl5bZ1M0xllzyZtdZutGDGQ8PD3jz9q1GcInjYqua5Femx5+Z\nPqmFkFxEjxQniTWc+2wczncAV27HVfe6g/bm7P7w4QP+/u9+hb/8i1/g17/6FZ4+fMB//z/+D3j8\n/DMQlbbDnIfze68A0TaOpvUB5m8hdHQXhUx6iABiBU3xsrbY/6EBSDk5Hj8SIeH2vwv4S5pbAOyA\nOlnkNEyrL98R2xwgApy9Q+1oEraL8upQgNsJ2K++7BCjPpvI+s/RxwoZUrrO+M0aF3UcJbTOpuDY\ntH3SC/ICTWzKDDmduDxCfjQn0SwcZbdE7Le0Pe5GIhoXvpdScL1enYCJIW1kzOTbCDLJtJWAVFns\n++5OxgDoiqXHSWZAjAX0uWNDlth+CP9YUmUKUdtWWePIy26ndrQcsORkBupesddrkw7arVw5AOs7\nRCJ4XhmuMUW+zgzJtI/w/G6/sxe/2fcZgBS6E839lrxZnNuYKOGBub88jjK3P93iTQSYPYtL1kCM\nxrm22Ya3w5DHrOU10F9F5qLvbqD2xvbd9kvmSBzzCNy4VrBZII2GLTPrIseQNYGeWI+HHe/sEuiM\nh9gAWgl3WLYt52Pw/K2oigM9nNHtiG9Wd25oO8SmC/MqgrzsEsz4LB7RzwzzlS6x4yt3SIhTxs4z\n2wcni10dTX4VkqP8M8+PC8utzDBtN3XIEXcgMS4wFtvY5NH2UHVgXyCAzJOCfKHbjq2GWNx3YDOL\n9TTz4cqI8fnWOzqVrxKetzS3xqnqEIiekoUfQC5K1e+hRRt6DodaIr5TPsraHUO7ZfrUy3hoeMlZ\nCr6kl/T8pDIKnpOOeNd9n+EWMFCTjQ0u78zX8jRurNI5IT8Njpc+qGPmQG5LO+xklb+HTQXc3d/j\nO9/5Ln7961832aUbc/LySinu3p+Vk2PeSCa6y5xGECe9KIOEfszOdW/6YNqVnMCOeNuWK/+yxQSr\n6xSXkNe3GVawP+Wd3fgRL3ZvfNhHM0CfEtou2JCIWpiMBa6xfw+sOv4eMjzfVOLaD58szsowTOSD\ngS1sHS2PXZyXPnnzbtaN9hvxO2jYYtrapkZLCzXpqTvfhyOeq9z3MmNZ12/n92Jcrld8eHpqbSB/\nQgmALkrA/LT9NIUpv3Mj0JzPNETmj23UxItityY2mc3nFiu0PZ6nj+ZSKitrGxPFDdHO6vTQUhgO\nF60we2HzgW1rKTreLY9MoFkm3dq46uaN/hw+KJuHMIfAWaUVdjv4AHEzpMVLFqt/rE3dpIzfxEmC\nuzGZXGk/brU/03dtc7S0rdXEAFBIaenvUJllceb3kfmdyW6bh7ndL0vm2UpvZXpMbYfQdVuOu1tI\nMpjrAVTGwdNe6J/Vb8Ox9wpT3bMaG1unfEtFjqvXdiF6SBl/xfZyaEcu7/37bG47ulidjDlE/VQ+\nVjwb6up9z9off5f81h5RHZu0Rdsk/4hU5sW+Avn9SIpDjcwW3SgXpZet+9QX+tb1PsN+H5k+qYUQ\nm6JhuUpsBpXBGm9eLwljoF6v+PDuHf7D//lX+L/+w1/jV7/6O1Bl3JcNp1PB6XwGocUA3ECoRLqD\npTlyG2CVy4Kac2QtaKa2ARAu9zAX/cKylkGYbkWP9rNjDfSFFPOtc+YUGpmFPiq0c0UoDG8B4bJv\n4sTREkN/D5l17EuQSRNXa2P7ZMJZx4conxE3bwBU+Ta2nDo4t83zC0kdFFBb1YyX68b2aFsTkGUF\nIhEpXQtMjHWCu29G292OWri2R4Ej5Uq8ytg+vXjXhccZYFTyj7BW65V4WSxz728oXyJC3Ydolzj3\n7d3IB3QahOP1cW5r/yGOwkBrUHMLEnT+n8sGgLDvV8gkHG2QNvsdGrZP2c6FDISvAJv9ZvVdVLKO\n7okDGHtVR7efD7Ox60I2mXJjfZZXopGbgZFVnzn0we04jEb/QZrmkvlGwkro+14xM1D1wlcBb12R\n27ID0FyBk+x3164mfNy7mNeOCzDmb5MZAHP1NNx6+B4nSnMZPLVLyx26ZNs2dYJD9YXQLcxDIlTT\nntUiRuS7DHxJivckHKUV4Mz66/od8mbALDtRF8HvoMvQS/b3/pHSej7BMXS0qyvqWmnrqKDRincQ\nNh1D7nEfC7WFdyuJRl8JPFsz6hCUHVK238Xs4Iu0I8NDgLkTplZsp9OQOxBDjpblAAiYZDiwjr6J\nv6+eTfqwOyxqZchll5v0p7dlLFn5BZeho5SE04J4rCERVtwAACAASURBVNsagLYvtVWWzlunWwRr\nMCMLpPaSXtLHpKghVvJthVNsIngcbcvweGbgKc1zUD6Zdi7xEvzc9j8lR/vpnElDmTW5uW14/fga\n5/MZ768jSHJboM7xBwPjngwz963cklCqROM+JAOr+4nLhQM69tUKHNsOZpXbCDLIYcZSNHSJHRer\ndyc8Datrq9qS/b+5Hck4WX3qdo5KXWAQ08D8Sj8hYscYpg7CuAfS6vKIn+efY/uj1LHiMfu3O4EE\nNdFTWuU0GfSVzWdxd7uWa8prTfSbfBpeF9xdIH4HaZGdg1W35od7KRTjB1sy4B9pGOsxk9bOvbd/\n5woSCGrmH41PhTCIqWGDNod0lgb7U2zH7NuM1zJ7Q+XN+FrxTkzZiYNVivJG5EAL85bcmUC+X8Mn\nM/PNZLMAU3/klEN/+aw2Szne1jB0O+inbZDCyN4GngSCLKPM/dF+hE+6hkjbO/U97e+8EC8/deOZ\n+M6C3dLmHRwdV3ywkpFA3CjUenS9XnG9XjWwrfRnNWK37LdR+ljgjXkmrNx1Q9aHkU+yDV9H6xOn\n42LburJlbR71vYXvs0Vla1fqfHEbgueNj9EmjLZU60vVudjm6JpHUzx+Y57EttjnK3k19b29UB0n\nfbG6gbuyyDjUyiUxG219q8TmX/p+NTdo+LuxGMvUbvSNHn5etHG/v3+Fu/u7LufmzYsIiz5ZdJtv\nkz6phZA4mVKGMgN3Mo6IZvxWlK2AL+146uX9B/zjb7/GX/z8F/ir/+Mv8eH9e9yfT+2cKTOIKt5d\nr9iZsZ3PfXV/vmqKCGDUvltjXt0GFkItALZVspMqXsJ9lD/W6R1OspPfGPXh8t0ICuO9F6NNswHE\nMmEFrJGfrLITVoB8TMUI5PazolAZx9aN0BIhGS8jE6EQ6ZL1zz47Gjt1ZKABuGL6HCfosGH67s4O\nAlYOOAaAfcdVyqIO4q3BVSv8JVe5wvO7iPyijIDlUgoKYZwUkbabviodez2Rbg4UYuyaYu6h1LL5\nKcqresEmFye2qjyvVZZjxqMsMeYqt9Vke0m6rU/7bZTp5XIBoYBLM4jbwkg3CqgkdycISAiAPfbN\njMFzU6Y8V/It+y62gcK7eD/FlF+ND6gGvVXvoXJN+ORWH6JR53cRGv4W/jkqc9GeNnr5gpPtl8xF\nMcIj/VKAv5AZ7rLP4HiwAFyMJAfseJgVZmgGek36ENOKR9tpu8bn27bpBezMGKcDfK0NpPVFwQbK\n/DhnsmaV4ncZTU3uScfI7yIDUiM46rDFiauVTMvaX8pYkBU6ap22/njMOuFZOalB1Hf5MUBbd9Z0\nGtsm2Dmij5k0zOWKnmKvilwYyyD9Wd9pG3U7dSBOt8YSA7RiK/3Yc5dDJf/O8ohtdxwvt6NZKyQf\nri5pWzwtSjTuwBLqtVM3Y6Ffdg7bsb3Fx9LuVZqMUyIXssDKnKxMOn1SEP0l/X8wEd3Gvrf+zgz3\nldx0fwOTQl7tVD6y5eRvr5Fm+8PdzWi/lzxAv+8BOG0bHh/f4O7uDu+++UZxM3O4bLrLM1t35jwV\ndEhETtfXfnl16XKWqWFtFwajGwdDrmf2BDmbRgM+H8gTMn2PNkB8FvV260PRcWRm1L0GbDbjXkun\n7IJozU8DUw/9JLHBu6u160Gu3C8+zhdeLG4aer66+ohIN2tZOjC3U+ORlyJvQ2gpNpSchAwnlFuf\n2d8JQkPXI+C8AsLOXleyiTCzpB9GeBLb70IFIB4hr8w3apNpd2aco+0GIKj5er3i3fv3kBeMbusl\ntLJjEtureNbQv7I5+Z/gpPG5GXsWrjE8P7UAZkc7T+XGdh69Y7QwW/1h+6HrS2JfDntFaSLzoRFK\nT+jId2vsMMtb+UbrXLbafHcgn2O+Q5zjZFP7X5TDgPgsrDzw7Zg2u9Fct59H+S75XkLahzi3FTsS\n6b0htg0Rox2PyzoxNz9jrYynpyc8XS54OJ9HRBVZVJQ5R9ZXkW10uW3XDVuy/Y8gG9Fg7JRhRY5+\nyc/ZeS/l27lq30fcnultrSexuVK5ILrN0F9kGqH1BSIbZDz7nJeNCbbMiDFanVu3k2ZaxrrlG0sH\nq0vjtxOdAl6QbwntagC7QKQjYZ6PUHKGlolszPpA3caIfLwaJ8Es05zhXFat+CVrk+Rz+MLQUWzj\nWitO5zNevX4AqMx6S+3pbFzFVoP64I9EWZY+KSurwuyLO5hYMoACbmC+Kdcdl8sFv/7Vf8Sf//mf\n429++f/g3B1Bda/g6wV0dwLXisu1Ynt8wPn+Dk/XK07dQerW/c2Kf4wDP6o9VjJrQb/O+7Ep7s4V\nA4UAFLC7DO65KQKgCbBJvi4SxFC4tbdR6LVtWxMo3HZugrldwldrC2ljnE21h/cQwdJiMHq6R7Av\nQCUTzCNV2AtrVcj0/KvjopV3bGUDUac999XP0B7rhJmEd+8Lc3P0t3JavwqR9t8CUhAt6WtjBLeq\nOnhs6EDbJpfSx75lwjEzHJwiQc7/rR2j3PFsrNor5mWA+aohaUS5i0Emx8X1lEt3Zl2vV2zbphcx\nSdxbOQlGpe9wrxXXfU8vcrN9v2WoZ2mVJ86dW2UfAVj7nrlqzNyjfPk7OP60ZcSLfo/6FlPGL0fJ\nKt02R3v82s7fYjwu60r4sP0C5Y1b9ftTYKPdMezdc5OAuiNDZutPiNUvgkpQR3VlBsyC8K0TkVM7\nOy3luTXUn3XpGQ+ZK7IpJllUld9lQdaO+6bjQU4frAxqHLw/kt3ZnF3NO6sX5O8o7zJjbdVO4dNj\nXunHPak0R08pGI48u1dmQRuifBBi/5l9vOCQj2EWiUD9pMnct9jfbdvAtWoYACLShTLAgtdej20D\nz/3K3kueGNTyKK3kqoJ+o4dTh2ZCa8sPaqDRuD8s9pW60RKNRm3Ts2QIYeuLlXG36Ut6SR+bRGav\nDNiVoyNLEkby6A6gUY+pw7xfzdM4P6a5mJTl39Iw7lF6GFZWHSZlllLw+eef4e3bt/jnf/onxfNZ\nb0jqMzTKdvdbuSJ9SfWEw7Lta9rEqcWqG3feBRW0NncMQ0QtrHNKA0+NTGcKdq4ivzGPQebksTgw\n6kir92RDlL3vg0w57Wff1BUw26h34CG5ewodN1nn0dTnhB+f68Rxej3hbcLY7OWcgaWAOx1bH0IY\nxIAvXH2Q6BLNIG94bL6kfg5fjKaDxClNQsM64ddVivp3WvzvPy77Ey7Xaw8LzRB1FPnbtvnoxKR9\nvsJu47lwj+kPzZsc7T2nsayjncNHzr4RVpMjKyhvNDkj9uoNvf4M+wcQTCwGcq/OONLFBv7PmVb4\n2mIebd9HnKKJScsy8HU1N7JvpV3qUUow5IrnK1jDlTGgd8ge9SXjUzf3qZVGaL6IvS8cDn4aEWLc\nXDH9vmXf67eZvhV7tcN2vX9B2zjL1hXuzvw5mcy030l5lley9kearnjNfSd/d51lxxrkN0S5Nib2\nXLSXVj6S+EyxfPLOtls1luh++Bmqvx/IQ7HF7ezWcX9m0jFIdA4F+iG8j/QXfFcXbbZ5V22Z5K19\nh8Ez5/MZrx/ftNCNhud8+/M2lLL1n43qWVi5o/RJLYTY+zEy5RufbWiXzwjY+/D+Hf7y5z/HX/zi\nF/jmd7/TXbF7Z+LttIGvVzBX7Ncrzuc7XLji6XrF24fXQG2X5m00q1wrYKySODIqVk4Zf7HNsfBZ\nMWE2AezvpStVjftOY6rbPkRmj6AhbY+ZxWT/L98mbXJ0wWB4Ufi2rxJ6TIDb6XSaBfdi4q6EX66M\nPD3sU/lbQmtYJUDUFnFs+CmA2kIbzaGopB8oZQhRItQOOO14yIVm0vY4RsxsQt2MfouD0n4jd2eU\nUlDYC2ErEOX3nb2RWKxCMnS1sdnZvGdmA+Y2FVayor/vO06n0xS7VsfUVG77AKmLGaiMvRsRd3d3\nqHXH5fLUAIIusDBOp3OjyXZqO/OM4oDZJdzGu6rQbu0dDJ4pkZUR6fqCmf8nw3ox92J98i0AvWAu\nlmHzZ3O7tbn1NqvfOc1XIcpMWcJb9tmKVrqrX0/iDTnIzHrvQMZjsY8SFivSbN/3tiMnmecrICi7\nh26B66N3YsRH+ti/J/oEesYFdjk9YO+Bie1f9s3IVea2sDGM6yHLdsPvkrZuCD2JLOnw0PL7Sudo\nWwyoEtlzdAfFUV+kziy8VjZnVs+sXATWBryV+Vlbbfv2vggbw4dFsD+AXEnC3BUwxk7V0uOJkwDY\nlqnrCX+qw5YjC9uiE+W7Ugqutd3JRRLik/wF4zYEjL3Ym9DG7SR6jttmBf1G5OkN7POcOUWBVu0E\nDByIjvIojqnKb4L2dd93nLeSyrNUtpixOsYNnX6hH8ysly4TkQvLldGhLdi3C2RXWOklvaRbia3j\npz+z8vMWPlnO0a7b7Knotmu/n1boO/6jUzazJWL9RGMh0ea1+anLGZZOAg4b27t1eBTeyu1tPt/d\n4+HhYZqrqzltQzNF3W11afz+SM+xNF9i4Zl3RbB/GfKDQP1uiaEDIg5YJWuriJ6TTVZZ2kNoEpj+\nZtgotaC6vsroyWaMCshtdrJ4yJYud2s5GibjtrL3Io50Y0ief2RzWsZ/WgcAGwVihJ0dG+gkbyMF\nIwbfl3IAjLtREnr5PjWdTqWf5B2lOWcTd6xQeh0S0kQ20GX0sbQgahezPz19aOG92G+skD5HOsXy\nzMPxd+cNxW/a8PG9PLAYFciDRWYyzdo93ibPv5G+25M+SE62Ot6i4T/J+p3JBLExgNlGUPSgz83o\ncrsfhDGXeUsGMHM72cJjU4jUNeZGjtmyk0kRs872DSCLe9INoW0luG+iLIllOTtD2th3jLk5KX14\nJm7KZMQyD+XPGyYfz67XK06yaU7mn8Wk2sc13rR9ju2ysqbA7IC3ctjoUcjY6rjbUxO6lOrKjtFn\nJrmM3D5Wu+Mg5PGqL5EOFreIzpL3mR4aNkLvJw9/1tGmDZvI0EWoA4xTKPo+RNBxeOVGn913lp5a\nq8+TXG2Slu9CDfefMXCbtQWl/KyNJO0zGzEtnbMxlDJivllWQgdW5MHd3R3evn3TolSIr27ys9si\nPH4csrb6zM9In9RCyKmHMkBf1RWBTVsTQh9qxYamJIgZvO/Yr0/4+je/aeGv/uqv8O7DN51ZuuOP\nWRnj2sNDMVfd+XtfgRMRqFaUsnXmmlWwhI0iArZT29mZKdgsRWU5gGniKOiTj9FiSAOEQrWJMn0n\nYa54OE56YmZwgd5x4sGFV1a2TTZckhVA810Y7V3BUIK9k+MoNwbzb9ScbpYWtTSAQHuV+DSOpy1Q\nsDuO5fJaySMX2epuZzOLKvooGuE9h5CS0d4NaZrKOJ+SezuYUbZOdx73XzTQQoDwD3clg+4s7ohA\nV7eF3l232vAgW/ELBdJ/Q0CnsKJS0meMvg+pVXJhRrFKrf8jIqA02p7kVEofu92Uq+0xgr1sGy57\n29F2rbuOV2v/DhInqllUqH3hso2H0LyiYCx+EbWYrM0A7O7YvbZ2gvvCyqkPbcHJjJWYXHGxsnBB\nwabGGADlSzlpJODLm/Zj/IXOkyLoIFlBrwGc1jAitB10wrfMc9z/SnBlg7kDoU7DNmihHoz8/Wfm\noIU6uIVOBJC5B6eHJ1CwjFwZWrCkl/5FQNXDATG3BWvIIncwQqyx4Oi9kKVyciR+02QSTRcVOvnK\nAkzbPNdTckUuUh+LI1am7pgNAgcAeAaRTab2vKXoYly/IlvDEZXeHgnzeKVB06iFMqOzibC2y595\n9FFk+Pl0wrZtuDKD9wEWz1Qc8AHGfFCZo33LgV/miIDOB0zOmziHxveD753Mo8Y3Og8CiI70Ebq6\n04+1tlM2GPPNxagNNJXwJquQHwrQw3g4kNz1SilQGluelyQ4hbA1PIGqoSLR38i8Iubp4lxJGtJS\n9V+XodqvMU6V946BAHBb/NjRx5yG3GOuqBXgvoBd0MKBlEJKQ0QAbMciYJKV8wLoYQUcdh/GjuhI\noYEtezKi0coo3L49Fb8xIHPmTIZZwHM6zmjkLTLX4XXALkf7tWxSjMg8+qQ8R4SybSgbYeMdXMcd\nBi/pJX1syuZWnJlWzsV5G5+XbqRavAHAh7Bg6CYSzWNkv8ouqRt+7q3a5mTz1FbBtuY5GSxr53sP\nC/n69WupxPRxdq7Iu5UDQHSQ1JXJdPnGOtnB86Kp7fOE3fs3Soe+icq1kzperf2+OFNmKWWiZUZb\n02DsggHLuD9K9Cj1PLLgHp3kUi4lzgsYl38FDxwYv+dhe4lTK4bwXaWVAyqOb3RKgec5wIZHHNZS\nG6GlcXojtKVjdRH5BNkwJo673hbjnM7nJPf/eB4vsNrhbmzNfNH47jfoJGnbNnz48H65MBRxZyxr\n9T7OeQaUB2L7IZTpOnMhKlx77M8pNO3i2ww/ZJSx/OKof4BDou0GloWJvF3p2C/GaUXzWV4Z92Ln\nwaysDAfFPL6vfgHO5Ey/U9wWyha63prXkkfuxNFxNnOsMpuQZb0u0QfwemIlJ5KaVe5KOW1eNRuO\nK+Py9IS6V+B8UpFW0GxJiC0Wys/HqtOsVZvyWWp8AXoPXetz36DAY8lDx0rrM7WZ+Qmhs1kUP5pD\nmR/Applv1rLnSPdmdUVsIz+zE9tpmwggGpumlE8NRpc/VRUPb8k0ZrE9kedsW8Qfafs55skwsjMa\nRFlp51eUHbcwnn1nQxbapCerFnxgn8fFq9a2hgckEk6tFa8fHvDw8CBeSchC74qH5tQ3BCzw7VH6\npBZCZDd5+304SfZrc7beEYH3Furm3e++wX/6h7/HL37xC/zt3/wNLk8XbJs/Wsrsd39K2CvaCvjS\nnN/XfomehCXZZJeHw0t+wFp4nuPwMUeAX94zw92JYauVoWYMoR7b0cqZFbOCp0VbRCBk7c0m8FJh\n0ngWDZZMSJY+4XTHU1dqiLs4iIxD1rdRjA8R3FJXjGur+W27REmE/sjdEc0B16eoEby17m68m1FX\nhtFH5ARQr0zzyuLGTG9SQ1Kcg+I8XgkHMXoirVd8WJnHhYRJeU2BNOAscyEaBPYnMIwAtwMHNMWL\nj3H/bLlth3QP30PeKOQONpTfe35/uml8IyfChKeYGegLhNfrFafTyYybB7alFOyRMp1W2ZyISqw3\nyEll5wxTNdcUgxpGMh4JSLyVnmsYWuUpY0U0X/w3ZIr/zsqJlQyIwDgagf3lsv0rI8IpfB5yUJ5Z\nUBJBMJJ3NkW5Fo9ZRsCVGWxWDi0NoVCmlitqzsjz4ThZy9Bln+LfHYBQNSf/TJlCv5hWbY/9iO07\n4kcLuIDjXURSvoQN00iimf5KngOeR4B2yiXe8xH5zJ0O47EYaPnEAdcwp0Qul1DeZgwK4aMYwjK2\nXniYQBqKQ+dUJnsA114Go3ZZCGAA3JSXwliallCXadLfWmtfSAfA7dLxsh72qW9Rhka6xk0Kkx4n\nck60degGs6uQCFx3pb3EdndlYt4JOdoZ7iMjoHAf34ifDsIJSl166q6FeNcQLE0HvoTGeknfMh3g\nP4tjWtZ5HtrkdAwPJ4AtT/UN8UA4Il+MnNHTx+HbFrqEVF7ZOW9l7mqON1ziHc6OBoJbiPqF6Y/t\njjl7ktZgPCsHJlvKyNsmm8cOXHtyJC5mSBtVP3SnucUotp6J/uYOCWYG1aqnXJgZKOT0TcGQcfIN\nM7uTu1bvuHYmOtnKRL0XkAgxvK/WBbsjlyaeUxygllToNzAMXUP3pe6HH6MVZol9dvp+UXbKi8Z2\nkDJq9X2Nc0P9jSQ95OHjCHo822BVee+bIUZfZF5Kavcf7gMj88DdtnfZqchxoXHrz4cP77vTmae8\nEZNH+n9U6kLjEGeqZDGbyXD8zbOq1rluJVNv1KLoNhZtvKONr99ippPLdjDnHf0+kpS2jAyvPhef\nZykdXzJ4NGus5C3D5ljpn1iH9kFZ3PuwBv97LJ5bM94W1Xk4mU7xQddhiqebrNj7fOfaFkguT0/q\nx1JcyuzuiJHyM5xpx6XKImmQmyqHEOYee60cZWImI6VYN5eY1XcVv78V9u5Weu5iirY/yJeoV2P7\nSEIkJe2MctTXaTjLAZPAi/3v2IPJb2PsKyAXISs9W5mVwwnox2znsVMaBTrEvsrzKIcye5PMuLv+\nkmxoHxs5VjIilml1NtGgHzPjdDrh4eEBr+5fATovKR07P0lt+YH3PkLvfFILIWKkMredi3o3QG1C\nZNsrfvvb3+KXv/wlfvHzn+OXf/e3uLu704lRuRrg10TL6SyOkM50VLBfruo8OJ3PEOeHnShBc7Ud\n68rsnskkWaawjselsqF1mA65z4CtMjB1rIDJ7O7OjrUG46YLogh+puYaunoDywseNznNJBQBKyv8\n7Vlz5IwY5l31tAqS1nqax5i2Nk8xoah6hc2ZLsrcgBs9pcMZzUhXL0ffYqs4nZgZHSOdZTGh7bL1\neWN835VyWYFT4ROqdVpAsf0sJhxcpoxVaXfhJrvHx4JV4wtnvGpVdrzbkfKmz1lDZlXui4J18LwT\n4J33xJAcYAxusXC02/SR50Ue/ZZZTzd1e9p9zH0eKqd3Oma7s6NSEN5p8yMfuzhuVCOsy785Aijb\ntj3j4r9xSabSuMc/Fdpm4GKWZwHUh35JHUfpyJD1JQfKxLY0xeGOyOq4scgt9uMLNu+TKez07ngp\n89LfyzPrgsgTwnsSYiTmo2LafmQwhRSNKfn7dDrh7u4O++UyjY3UMf4m93NgvFkvLMEVZp4G4BxC\nFtxanlI9LC3od1kcuYhd/cmzHV6jZ3xmQ4cw84jLbsCuBb9y+VvUebrjR743slBCS+ndVqEOmXNl\n63pJ5ik8naPBS0RNx4k8LhBrp+leYDmXZVepvNtrxck69JlRuW8uMfVp6808synyy4pPLO3kZFSz\nWq2RqKLflZEtqA0JMXbkqX7iHgrFbDwZ45ef9sr6tDQKYPiMCOB5gWWEB2E9BbpahHlJL+m56ZY5\nmBnRR9gl+17lhNVzFN6FlNVjHV2ZPF6FxFz1yco3bi+GQ7rjyzdv3uDx8RG//frr7pNuIbdGZPc8\nZfrctlkdCIIFu3y3dxlKOV43erwQMbZoQMkjG3l2I5+kcLFLrBxejS3ROJGtTg+R+dI+s2Ehc3LE\nk9ZKB+bm0ONhH4/+JTSDODDlJEkiQ5HzttgNks9iMPvt0lFjx8W80/5g5r0WttI7w5t/Yjj8NDIB\njZZ723zY0Jo1wUy+LY1agomkHXb8hdfaXTntvqkSL5KXPoM0PKZ0sR+2x+XpiqfLBa+Ye4SM+YTF\n2i9gbKWINcIz6yCzSf8WHIA4DmMDitBpxsiZ3FgtFJP/LTmpYjF7Lo9y+4y5nYRvsqFOfLy04fpP\nkSO/b1rilWRuHN35Jn9rOKpFuSqDFzxj+y0XZcvpJc3Fw5Ha2mr4sCsOydvwHWApbOkqz8XxXUye\nI52XYdZmm41wvyJ3bN4jG9+myjyivxhZEPmCiMDVLlrO9tXKJtOy2Ou5Mc+6j/HG/M76c+R/kDyZ\nHeDKgMgtVtkW2yBzj/9f9t6u2ZIdxw5bYJ5T3/f26P//GjvCEXaE9GTZ8oP9MnYoNJIcMdKMu7vq\n7CT8QAJcAJG5T/XMy40odtc9e+dmkiAIAgv8AE2nJrzBCznP9P1sMkx6YhtSf2Mf2WwfUPST+Vx2\nksgrNHlnmkQw1l5jLcFOPpHPqo2Vr57p32i29sq0xarQ98TqAnYehLoa0AY/Xl5e8OXLF3z4+BGQ\nMS7tHtgrm1L3H1m8n1CPf6iFEFdumB3agX4+IKr47//4j/h//s//C//23/07fP/xA8dxDKN4nuiq\neH198clOgBYYTlkX6YkgXBx9NJy6LnQbecaEcOyEdbkZUCtJIAph5ezn50M3xzItvMslj8hgWWiN\nUIcU9QkrJqwQW0+Unh0Dt7xRsVJ82yf0muLwEyGyLvNzZ8rbNNrAF9ZRYaHsaqLhTjFs7chl6eIv\nT45VoLjqJD6iaeRWF+At2tXfcSOY+9M+Z56+w2A5kDOgjl13eJ7bncooJy/tJAYwFlJYVjLyy44K\ny81xHNBzOVo+Vo2+GZLlPLuHyDI6ecwH3mM4dU0UR3v13y2EiTt+hSzs4eCiw2cx8x2QQzeDltt+\npTOqZHmvdkTmZ1X+rQfn7xZ2yO9v0Tgmso4LemyCUM7np2nMmZXV/+LgonZMfzY577uFPozyBOxy\nmkoI7zHd61naPVgtGlOdV8BLaPE024Leu5dr1FZOSNXPdbtiHuOTPjR87yffi2MexZLtfXLZoOpO\nDx+jZpp3kL5OPVby7LJ32D5Rs4OeYZsc8TKSXu+pbhub7sROkArUoPvOseAJCSsv38m08cnG1PzM\nF82rqu9SVuMD+jpNchwEV+53bjWndYzr0P70ntMLCfwznoSj9bZAILYgMflheALXqXLo+LfMe3VY\nFsd1U4We3fl453DaLj4Qb9jpOSY/7spY/Qnk8QG3a8V73B6VdbfBTBFLWP2D5y8vL/j+9lZw8Vf6\nlZ6nq3FoznwVYvGyrCf6kLHC0CExr9u3LVTc+9JV/oAdPC5m9A3MmR8/NagMv+LTp8/4/fff8Y//\n+I+WGT4F4WYw6nxrd7Y5jgtC5AF1/dDNv5m6xu4Msnzuu2G/wNxIG/YFwWaavlWs+6aCvZ0T5He4\nwTYJZh1bLW4I5mlKXeFbuf+r/placP6+7FzQp4vlnj/YISVejwLmRtl6o0mwdRp9O+Z7njy3/tKU\n1z5zX6kqLJZxa9z/cYxYGWMnrWEFdWziePCmPfm7dgXvBFk2Rn2Dgm0s7L2Xd+jx4pfh8VH/vHds\nbkB7+/EG1bHJ7UVW2zJuy3SH7+mvtIbzcU6+YYYGi/af8Tucc/d8sfdWn/uNeg53Fl1sc2v9UqlE\nXjC0vqQ3LumyAn3yOg9xkst9rJJ6uys/vBM3mzreTXn4JJSS/rrbmGS6aPlyOy2mR9Wwo0gYxxZO\n0eeTFK6rDb+qWsQQrLB/Vh8vcqQ2PcNyPMeWilczygAAIABJREFUf7vyR9nn93JE/BTvOD31AyNU\n1rHZx/y5qtssUNA7zqsGllxgv7fuSobyxuo+TxJm7qiq3wnptuXC3lW8eoYTcqoW1tmv27AFP8My\nES6XVldf9qP0K4Ct7fvD2l7Gd2iDBRDqDLyg36ryzI+xDY9RRqZU/ARmupoTqOxZ/q2B5rp697t8\nPU/lY6V2c19x2SxxZ+/48ukTPn/9OvPucx1R9rD9XqVrjbinP9RCiADoj8fYtaAdb28/8E//7b/h\n3/7P/wv+/u//HtDHNHUnHr3jkDZBJ3D2x1jUsLIuhJGFwpSw1S3NFkEiXVo84zLvFFNluCN94rvg\npQ3nYiwGTPChS2nwbs3cPnZOWPEb8PE6b8aYXRLLbkblSBmucCCGuaLr/IrJDKTTHRykAS7NwGir\nj7lVAN4WLAzo5jp779vFt3YRey5/LISIX+YtstMRlLVdPtsaTlVvA7AvIOVdvctIDYB9HMdcUIjG\nJl9yyPo79z/HtLd228q00d7nzmERCTtSsyLLBjdO4vAEYsN5vi1Ac4zdSKYEly6NgGtM1o337RTY\nWEhZbR87x+eO6NbweDwuDT4/95Mf87+qire3N/zl+3eXGbsg0mQnywI7jDm1YgzaOM2O4gqtEtw+\nT9YPVyCjGuf8/Gp3HoDyxEq4myHVxTQxL+yZA9ciX6bNy1INl/5VBu3qmZ3h87Ju8nOqQtAF/Xz7\ndnpHFlip+uEO7I4LrhdNGxjyfkincoo8z5Jq7o+oM19eXvBdTfrE+9/C5lk+m6hfdUdwOy7fHnrK\ndmWdWDt7nHebTExHpx2zrqjXg6zZO/TZ+GMIyfl5wRvmW/cC4DRz2EWWbczf3tIRdsgMjTHfV+1+\nV0SuL/RXa0OO6RQZ97PpY26HNAw8YGNcK8d+JXPa2GnsExtpm/ab2xrAZqFb0lMRwfk46cTM4mOF\ndRYeGFIh8z6wjeZcbyqLQ9dkWbl0eukvMGxzS7sxa0c1YqQwhmb/MN+sf8z+A3BnfzWAeKw6/nTA\n7mRCW/ebqQnWr/Qr/SukbSzhXyZeYbyZLnR/Y9W50dE7JN9xF+gE8saKPc/9JhIfo4leFR07blXw\n4eNHfP361ScxelcIFLBFY43lXaWs769ocrzsm050e99UDmPN9Tv5c1Su+RWKnc6A56hf2C65jQsb\n6QBT0FXT2Zd5D0+oAcMnFNtMYlKo838SJku4LOYZE3aHh56drLs6QXjX31af3au306Ho/YHlbViZ\no/TAc5G56XIhHPNBqpBsFS32u/nTpQwmrJAnwSZcWGWqQnTg0LfHA4/Hm/uIVbrso4IernSEfm0+\n6d11912cL7D69/IYx+uYhNiwNdMyt0xtPJm5HedaLhE6XWDiLJHGrE+f+SS+1jflggBdMY4FtuPM\n2ihYmxhZ364J7khvlUKou4tFnM0XNpxndbT12xrrc+NyKtNozbj+iibWHdYPVTKbk/sDuW911f/c\ng7pP5i9xG9/efozQt+Bxv8tBHkfMu83f6+sOyZ9JwVciW+LzUYkWpreyCzVGrtuV5wmqdq87IVie\ninaksoy+A8PPrOZImFf+a2GzAk+lwWY1Rz2xzd7uwsYuzfHzSc0PQPLZirbc8d7eyXMb/Bvb7au5\nmkAXfbb7Up/lZTqqvuEx+fHjJ3z7Oi5K54ZW9ql6vqcdP9ylP9RCSOsdoh1/+fOf8Q//8T/if/v3\n/yv+yz/8Z7x9/wtejoY3m9iFDX6F0EkNPXtgPisFFrrjOIBpmM+zw0JR+FSsyiYIjXb7X01IiOxx\n459NZPEEsEDCooNOUkyiK+CRrYZiF6AAqEXj+1TXKvO5QoeYwZozN4vIzQl7ocmMNYFgfROVstWc\nlXI1EeJg58lphsA7XTtomM4Prx+gukLeVI6IKTIuz3bKQtbiwqlrkoSNVKAjOE5jsus4mseF57wi\nEuIbZ56Eco3viReBnwbw7d2LMlgZ2QRp75ZPoNrR2oHWxHepjfYQf7pCJJ5iqoDXOePcGs9tt0Ln\nOPnWXlmQkHfGZUMqbd4BosPZfPSOg8K8LP73TabsX3DuJs12UbD91s3xoZ5mp3YV0Xd5Snzg0EHP\n7lMI9FC9+RJs/k2mQzboYnoz3emEQF87Eq/031OHgGi+e7ecYCn00nv0bKxLNtBsu1oZ2JtO6UWR\nVufV6YZBexsT2nkJuasfh6bGjv6ak+WmL6qy42vXC0sMyq3PG2aYKFWPSWsVXgHZfHdK3OVLYI76\ni+FJ1k3rL2D2Ytml5cRvSWRrj+nEO/taOXwVHshgmu8Usvsgcj3bqTHsPDcZsQvjcv41Hsd7vjAr\nazce67qqDvCvMu5qOo7DZamTjOSxwAwP+g/Tue2mR9R5M/p87ZJkfcllRT36XD/kd+KuoTz1sN65\nGxcCDTulqzyLn4tHuX9sImIVoDs5skaAnW0yjbkcaEIDbldnHe/Q9b/Sr/TeZBNowNIPPz0lxLoN\nVYjdGsOwbrr2mQxD3mOGZ/5TTXbE2K+fPuDrt2/49OkT3n788LHXlfxI8t1ySOPcnpynsik6bTqf\n3ohhIYdO41jqpitzW7Ju5NN5gT/2PdkFy5NPkdizkXFJh/3si99Uxp3O9cciOCycjdlX18mOwha+\nmnm8JWb7inqYL8wf/nwlUxnfYPpCucyyHqIt/8b2UYF5P2HEYcGfnJjJ8QWl3Abuz9zu8buFNZ5+\nTLoj5hIj2m86Fx7a2AjzOM+St5kvzxJjHZePuTu9ymvlV/yq6Dl1LVIt+mzzV2o34VNObPPnjqA1\nF2F3EBB9tBbgMqxu5ffCg/4lzAsFtFWyOOTGsIOuxwa30yJAXH5gXzXjsru+23xdyy+7Xt/kr+Bs\nHo+7X7HLpX23jUvR95786Aot2qypDMP0eQNqRd8FQ2bG8Z/lCwyazvPE43GiEqqfsmckf890Vs7D\n0T3YpwVWqDEAY/PVVm8hG9W4vGnD4Gt8rZQ1XXrwZ3RJHr/83G2RRr+hJz+Nx+02T8D+U7Lv53lu\noauR3y/aVGEh/y38Xf5D4EnV9pt0NYau7vbYMFqRZ4y//ZRHRdPdOOLePc8THz5+xMfPn4HWIBMT\nZfy0dMM7NzXkuZSb9IdaCPnzP/8T/o9//+/xH/7D/47//J/+01x8GCF0fjweY4elDue2a4eio+kS\n0Nam8k6Xaub0OE+8zsWQQ+YJDJ+YaZsCMGV7a0zMIJJ2yhNhrJgZYG3gQIQ2KcXdrbaDF5gCWAwo\n+05FLCpvDGMeKIvuWimOI7WkKLJmRFJcJPB9KpwP844WAAAtBPgki5WNNanDYNHAUAUqRWhhiQb2\nuKNiAXOF4vE4N1ozT7jcMYG6JrHWpBG2Qa490T0/5+OOpoABeLz5Ku1OJoPf0SqLMWph5t5m6I1x\n6fjoq+C4YZcJPmWywHN0qkZ4rDHh55PD00qbgdU+TmmwIx0M8eSlTG9IxxnUcBkk88ljihaKvgJf\nHjZvls/jME9oV2VmvlTPhm3bn9uwWDPPecKvNjYmHzt9Ow2sv0YZ4nKdgeraBXhtcHewy7JRg8qc\nbL31PbFud+duP0H1DMhfpQ0ITxmwTrl615z0Uq9KvRBS0cW6qmHwJQO28Vkza9/dps1xhi2uxgJt\nMcR3Cs2FWrMpdiqNYUwl+/x8B4ZMU11Gbgswmn7ksSC0WDt+KNtf8UFVXc+JeZHW9gT0kPqJF1+9\nnTaxrWvi4Wnb5ok2VfVFm8rGHrJCqPTeXR82HGEhI4LFBMKxTvuNzQnLbk9/LuAFdidLWydCYjBw\nmJflHy6cnzx2LoB0TIxNEOyRcoW2O9fHMJWQ+aJxCWLBoGfOaszC72nIl5wYEVh8a9O9ob8pDGYn\nPT0wwq+7Qn6lvz3RCFn2ZFNNevt1vj1+mrJudxpV2VXN6a4nBGJeyiMYe6fceblqVZ0yTtp+83+j\n7JeXF/z2pz/hw8ePeLy9Teza107/6Ssdx+EXvF/VZ9+v7L+dqlx3Hq602/yJ0pw3y9MKvhJtrmtt\n7KqPIQyXjfT2k//3DOetkyaz7hnGaEw8Lnlgm19h4CkJkR9GZ8GrYK8rOs3WzQl+DzdI71jZ2afg\nOri9Wx3kkzAfM5/smRCdGd85D3WPjeC/TzxyhZ/yYqP5j3yKldthoaRZVrgBeayMOpZ/wf3y4/t3\nnD/egtywHG48Sf5LxWfDcVf0mEzn39bvZo81vBOxmQ35Qi8MAzvgdYVV/IWIid6TwpgAaMHiGb6Q\niA3Iz7IFE8duwuNvPPRn2QUl3tzRMPpk+sFY9Fo/+D270rZhu5WtfV7lt0+eZh5V/VPj5yQvV+YM\nFvppvBOw1o1RybRtsux5RqUW4uxogvNthAM/z3OEDjzVozqYsJY2ifjnLexLRg0NBhhd6FmzEu/x\nqbh+nwuQ2P+Gp1l/GbVNV117G4Rw8rUvZnbKy3lCZ5msL8D8G5GAot6fC2bZBiRZGHS0NaYQZaKi\n5xkmeJpkt3HWFr8buPsWxdI+ABenqPj7tP9ua7KPYp+nXs5yz+Vmnmw+54WtHfK1oo98//4dn798\nweuHD+POkIIH1jb1TeqN5kcZ3ZrtFzxZLwnpD7UQ8j/9j/8D+tsDx+vhA9J2ywJwgwFV4BwK8JQx\nYBt3+FSMI2tkemsNb33uEH97QJrgOBpaO6axHCGSQIJoJSzjWiia6fzyMu02VioHgcplQWRg2lJ+\nNl484WQZ5GKl7GcNvaUFzyNv60o0AFNgH1BmZAGMnRGPHgzIlYHKKYfFqu4IyeB9AOsIXscCWq14\nmJ7w3cCsGRURCOalfXYiQiIwcaCga+FBRELYJ020CuCTaLkt3MbexyXky0GLPDzomL6VG4wy4LF4\nM/+Zt+FS4fPEcQz5Y95brE+ZC5eQ6Mxl+lWB9moLkhOkT7C4LnMffDMaLTwD90kFsu3z4/HAQaGh\nOE9t6EmGimebXBqwSGkV2yCSj3Fb38UTTcz/AfCYrgp0jPJjvX35AKE8FMP3GpSqqld5B1xKnm2l\n1akCfJpObVXAowL89+BKTT1dEsc66ll7M21iDhdqneX3geg8rUD0i42ZRNq7ANeUPXeiIXNSZyzI\nrhMOi3Z+96p/r1IVOjCQk8bX/jub8ukMZwA7baCHBCjA2dDdbesX1XVx+ZGcqibxu6riai8+65Ss\nx6u2ZRvRBRALi3VRfiy7Q3CQExHDLbFu4LrOaWtMrzcoGtraBNDaCCFhizkXdHDqGAs0rnN09pVN\nnlQ2vWiX0VQ5xPfyQ/0o08GhcRWgcaKf+9Q2KgSh2+oy+urLQsXeL96jB4BxePJqXHxft9ucsNbm\nCR65DiH0K/1K92nbJ7vpm+hGpoeprO1vGDtmMGwc7hPywblVWozMOAQRf1aW7k5XPMUEDoCAr1++\n4PX11Se11mWg6rjTbI6aD5PqqvBAwG6RkPA7sJ9etmcQnZul4qTw7aTHyLRoLOwERLYJ9Gw7Bo7f\nTz3q9GsaYjjUK59MZNkWx+eW50J3Vnd6BfrtWePLkgt5MAwxw95yuc9sDW/24vKQaFFM23cBx0Ib\nukAk1ms42kJC8V0eksoJviqNGWuLyVSfE2eq7MstGTYfDUD0/zAWltqxJsIFcyHk8XDsYRs+uL9+\nBtM7O8VwScjxDky/MOv4bSz8dFU0D2ucJz7zGIXb5PVs9xmuFhUitsTW/zwWxpgEOn9Peb28C2zM\nqTFGRhxjQ072sLtl2/rCTsFHtslxLD90lf0+rDjVxN6+m/e28Y3c74W+0+UHcD7H/wpcOXVXPmT0\nxetNyoxzfSNu77VupjxX7ar4MaI4Xtu3IGNul6YNHuZtzRWaHepGB9CF9JtXO5fBaD4HQDipxHqw\nsn08Tiu74u/ZWLpo3zM/EsA6hD3t1HZiA27qC1sZ+3nRrmPTre4eoG3gzHKb0918gYiQXbUGjHpt\n/AoU6Pu8JdN6Vf/Vd/M3j7kh2/h0xX/7bKfsKpm9GtfsC4f3Zn29d3z8+Alfv37Fhw8f/Hl4Z343\nXw9QHEcb90kN5ytgRp12tP/ESsgfaiHkn//7P+Hf/Jvf54r0iPffjjaulRMF+jDO3KmqinPuiD7n\nAsfcB+/4KwBzAhEv87LS8zznqq5dmr7gvlvQLOgJLAEIJyTKRYflP1iR00CttnAG+2bKhNvMKSgg\nG3AMAhMZPJlQpcogOT9sTOeBQUrbGzffyWDcLm1+pdMgCjt6uCje60AA7HaCoskKB7QNYGfuCAc0\nLtBOu1wE4USHtbtScgYGVfuauHRjrAuoL5Y4n9u86wIiaMfhk/P2Wz59wf3Bxrwn4zUuw8u7saOS\n4EvF2XBzObxzX1UhTYLz1ucYMd4cxwiL1fu5BCQBzm4hf3SdcFggc3VqP8/gPI0wAgdeXl7wOB8z\nrvPiKfOFeSIkO7brRhQ4zzf8eHvDp5cPgciriVT+bDLs49D7xwzd7HEaFwtY2vjZgSho8nrv77Fr\ncR33rtOoRyFCE91NsqpJDrsuFhC4Z0fWyp4Plj6R9T33QSJsvTdL96JCO6lco9V0nVwDSYiEkDdX\nk42+I8Xo0IvFVZfF3BfzeSq/zSPHNu79DZ0nE7H0RphAUKX27ZNEozah3thT4Mekj0+AiGDatBmO\nw+V4SAX3q+pcbNAdzOa6clvsAvY2wwiMExDwSR3jU+8nm1FwZ6uNmRRuKPSngTmmx8ZiCt/BbZNU\nFreniXi5LBMGyAxAhlOPDmLHqcKTTi9y/Ubn2Omz9N0Cek4YBGvHmbSGxxuHT5n8CY5G3DXGAJGf\n8wWza1GUTjMxD9drzqsmshb0Z9/aTufu/XYR59txP51wuUmkTqicdZ7Wfg9jBdEWMO08RnXq4K4x\nZGmsfzlG/F3EkOSenwhez+d341k+wRpoBbenwDq/0q/0zmQbsFgSVSUKmPsZC/P+TA3jrh+208uq\ns/Nb6dwy0QBwH8fJpZY4ftjHyBV2CxeHz4peXl/x6fPnvXxdllZgm3hsknmPrx6akO3lMAx+cp99\nEj7dG/xR7W6LOJLBlf9xnuu+Jj95PhtyNylT8XblEUAiPrff7T4je5f9uMCH0RgoxgI6t/vKnyn1\navocfC/UspL98krfMt3hN+fhXFTotkkNaGiRt2YLS84umz/CU/XQbpsMa/OC8kAT8VGBebcNPB5j\nxrQiyy8TCOQYn9eJ3phyiF2z4yLD73J80jseFpo5ORCqOnbzhgbLxu8rO2Yb2RYvyL9K75QTgKbO\nZOCcs5/IO+hjst/UfcdqojL7cowDtzFEbVi1DOycQ5oDdlI/1Wtt5/ypf3O6HNcXMr2PzekbZp+t\nqJvHLLcp+DDEHwshtvaywxctKno2fgCJ38NWZR+HQ8u+ByuVmOtCRhkXp1L8U2sN5zm+n+eJx9vD\n/Xues3gPHRUttV6O5RhFQQsp6WkZi3CqSpFjqgU9ga38hXFWN31rh+HV8WwjNeLviZVdnejaBGzp\nim8siwBBhhQiTcx+zjxMklj55LvaO53ulPZy8vvW5tS2zdcQsQaOsNjBn/CXCT5RfxaRbJgHVbqS\nbbidivyu5GtFB5EQbvM99VXPuI4u836wrvj05Qu+fvuGDx8/Dh0kKwJCxWuIAF3Av46+38fKe9Mf\naiHkoSd+zBA+PvDUgBXQm9AOP3qxCU4AcrwAWLvFRZovnFgSETRVqHRoe4E8dMQz7Tp2t/co/DZo\nRcR3oPPAtDKHQK+nDQKVuKuntbA/FbabagxKnbbYdokIDpOLKTQHKwUXfPiUgYjEHa/e6PXAlb4p\nKBYqOiq+Cen8d57qE3257FHEjFeaaWD+DybiTTs+yQeodJz6Ay8v64SHHc8cgG3yuK/B0HvHB2mw\nObcMOt24Em9Emq/y8uRUn6GdqlV556XxSUeb2kvzBZ3zfKDJ4cpYqb9EF4954gwncMgB7ecMmaMe\nGsadsDnZ2pIjEoCIAewG8OXcD9S7RVi2sxLqocx17DoCWFrUAsYipKwyBoDqPq/s4qErRnKfOyrG\nZwXkhGDtQFa1hQC6uKmNkHaiDW3ybRZMBkYW0PR+Fug5JwZmSL1DjkCTpnZng6nJmEhrOB/nOJoJ\nGReCX1zKu7z9zjaKOT/Kt36ai7mjbtuR5aWOC5BJR/HvMsfBEJ4hi65X2rqc11Jz8pbhDYDe+lmW\n89e8WbMxF7FuAV1jjf0H12mrji4E7IABrgtwz/3STbgYL2fdiMGHMSFhx5djedYm21nnsoCpi+fz\nGKLJhsWSPTsFpcK0iDdUZgcxWNvAHMgWzN8tL4OXCEBkbBCYHxXkLNi/rn4qwC7kW2Gj7oE389zG\nAdNi4b4A9T7tBAKX+WMBKI7Q92tnDhghvUTEY4z23vGynUJb76/TDARWJxV8wXU1IWNjx+3qMSTB\n8EjXc8WnNV4z7YOp636R1nCqrrFDyXcoA5ATeKGY8X7/FI0VIIVlm04Pn2thcnyyxGRVxCeqWCbd\n5gud3kMb4jOD6YvSDmgknUi8bj4IMHS169c1vtbC/xwJNB5d5ljvIcqpaHS42JG1MaSqI157M126\n5JLrWeUuOQ8OEGEh7ps4WTOemjq1brPxNcbj0nICzMHRIGg/E+72V/qVtlTaPvtt/EJ54IbKFll3\npL7eNVvnY8HGhtn7qr5kv6/T0guXOZKfUn2uJhH5t5eXA3/605/wX/7hH/Dj+3d/bndYKL1zTUlN\n21X9lT1jfAFM2znN81nwIdt91nWhzoTrGbfmsq4mAjNf/VmPJxPzpGHwFafx4bZXJ2HemzLuY3m7\nwgtC71Vl8G/mkwHDToTJfwe9I0yllW22pUmL8dh1bTwRsmuLEba5oo37TLHLcvA9plHQc8mx+1gJ\nB645ijHBlxfLOJ/1wwijFW3+97/+Ndi7qi/8c/FblqM1b1KPTf58J58da1PTfGtFvkg+QGgvBDoP\n8vB44MW6mfGpvhrvq2O/+XDIO/Y6qnvhdDgT7l/kcXSVKlnvhLl57sBoGZtZhkYQiSew2IcX7H2Q\neVmNXVVdd9L0a9qtHtqKFXTgVbsXbt8nc3OeK9l5ljb9gt3nAcZGUr5743ycrgvMttocUjWmuSwb\nO5LuoqrakWUyy3dMhjNXWbYIOF4eecz/cpWK5Z/ag7uRcNcP3I5N7/YeJtyv7MGdXq/oMlm6oivz\n0v9etDLImhiYHx5WT7y3PhcA3VeuizILOsbzkoTbd7juq/funrOuRubJOzDb1dxAluXWGt7eHvj2\n6Td8/vJlbZiUw+dFtvaRWgVo7NBciVJ/vDf9oRZCLFV3CdhkQwaGueN8cutCgfsOWSuDlFhOrBzM\nwGWHeBjp60EYy+USUl7YgI5OeQYbXPeiU0pD/myg5MmHDK4lOTpXCodBgRsE1ErDfn85DrweB0SB\nR3GJ9AgXIb4ooqpzoQvuENgkvOreVptot8WB8Wctrlh/qq5LoYXe5eeZLgeRzEuoG/hMhy2YxDQn\nQdrLnKA0GUgAcfLyLOQr5ENURvyM+zMYWup76+sw9mb5DOg6TdTb766qyAATyrmMp8y7z0CyISK+\nSt4fj7HbxMrROPa4L8bplICKfXyfZ7wDhnlX9fMVn12+bUeW2oT/4MGd8wVE/jvQaw2PKa8tyInx\nnbh94Www3Rk0vgfgWz6PbvxkcsLyG39nQZNqL9hBeaCR5QTBxy7bdNUWG/dC+Xwh9sJRrBww1rJB\nP1zZhawjvX5wVMVA/zHj7Ua52He0ZQCen1fh/wyo8fdxYfaJl5cXvL6+Eg9mnjyRIfuuqNA2ka1d\nIw9NwGMsNuTTU3mBtdJHQOSpFu/kz6WDj308RFbt45/fB2ZsXBFgTp5nW3Gep9tp23ll+tLlu8k+\nGZHawPY2y2cn+ljPiTS3bQA81mvFI26jXkyM2LtGa3DMsWKT++kOSZsTyvF0rTuyzr7VMRMuVf3e\nqJzKvgRgr3AYPe4Hi7t1r2i0z+W4SLphH4KTr9NGhGZd4Lhf6Vf6lyY1I5QW/OanmI8+b3pDlifS\naUHedRzry6yn/6X0J7oru3CVh9sz8g9g/fL6ir/7u7/Dhw8f8OP796kzzK/MuGJtKPJTCIm+zU6T\n/s93/5WJdYguvUtbI+ZE78QV0OH8t2M8j11MdAw95PpcNdAPrDsAOFySNdTsl8xVgcYbaqh9G98v\n+ugcxPhJQpjuTjQRYwLe3fwppBBL5qcQ/hNdYT6u8JQ9C/KGpeuHjeVq5nPChaNPaM5hbrQ69THt\nc/SHjU1d+zxhFWnB5IlhpnXPjLqMVP4c0yQyFkOYpuwP2j02Qv1gvPr+17+6vc8yv/GNsDeojDJs\nENtj68uLsE7l2JHJLy9uyl+P+sZeMXwdmEw6bQ77iMfS2K2wISA7DQhDcWGPSsLnuF2eWvq50GfZ\nF3J6gput4XdJZVRYyhlW1JU/87MKy3PSvjYFer62Jt6z7toLIFpTu+5SJacZo1b5mXeOq0WYLRNz\nNnSceJwn3vrbpKf7hlGFQvvus2xYnMbOe9qw6CEdV40bIT9Y2IdtoY8HRBgbtf1p8j8cMRQ6VHX3\nwbK83uJ64k2Vcts4r811sk6rTpRk3uUy/ZmGF/xjZz6MBvvF87m9uT5vhw1QtZJmn9s9gsWJP27z\nXbrzta5GSekjJVuc+/WufdkWOR5sDRZd6XGe+PT5Mz5/+rTmuFtcCAt9M3nS0UlX1pivyfuXQv5Q\nCyG2k4GZBBSgk1JWNqrwcAgDvKyLT/kSa9WOl3b47tIqVfp6yLQZouT90ntL4ElRXDjrPQ3MoEhE\n/I4Iez+LPV1xcZlWrO3UHlImV4aPUwb5fLxq44X1TeKvqqIjgrjmCwx2GsD6tuHlZQD2R5q86wxE\np9MjBuYFgKyJ8CsAxsA9/80TVVavAUUuKyuzPNDtlAdI+Vh5AllHh+eu0Xgx4OKrT8AnxfAeQ8Qn\nS3JPV4bJLnfl8dfaEeR2ZAQM9LNRFpIJBsnMEysXs783OZyD0Mev8s7nDGAk0jHrHqd21gkSU6xX\nyj73N//1zzwWUx9Vhhcrt3829py+aLc7tn5HAAAgAElEQVTkyoF8SV98luUZm32vdr0sckoApEBn\n0J/K8783gMZSGes2ySu34Q64Rn26HBpve8pbGf/oIMS4rjl/xbtncXkjLTLDdMQTQ8tBjPw8TF+V\nHKjTxjcqz8dcHyeSsp7jlO2g7Tjrc3yLtMDrDIKy82UOGaw9Nu4Jei253e0K/2Xb7XTyolAByIwH\nvjh28mmremwFJwZGpvhJ0X4C0Lb0v8wTplwOAO3rfpKx6/d+dw/zLEuTtfc4Doy7oJrLqp1IuQPG\nABzn+BjEwjeV7cLUyW3WYYtDywmr9eR4P/dDveBn5VxBd8ZfFejmMZ43z1BNwfaq7nJ+1x+VHuHx\nOp4P7LH3gSPB5cCtWRDizc+M9l/pV7pJav95ny2rsGRIQ6lvOqnCj16/w75oC/izOmaSYJfq9nC9\ngp2awgbOZ3Ic0MeJ43jB12/fxoWdsFAn55jol6gDZU7ayWrIpqWyDqp0cNarPFEwfxiTr1inwLOf\n4jTNx13XIrz5ErPwUTZNFHndSW++vMRpAT+dN5Rk4DWXxWUE3he/65SZ0aYxKWIl96qfseq2MDTG\nJrP5fAG9leUlTV7mDZIV1uTPZXtEwuavUQ+daJz/s8pj36/QqJC5kGTjh92l+bvhAsYxZte7WnQL\n7L61CORoI7QV/FX0fnqYZ7NNIzTp+P54PMbClvHT6pl8+/HjR1hwif5VSskXyfY5Zo2YlMurxg+/\n48cl2S10/yva012/xffmSzuWQJGP6Ij5Ezk0xq7KCLhO11Abu5sBmQ+vRobREdsZQzPZ86ybuN1b\nXP1JepN9I2zVBqCe84g+e4Fp6FmFVb08ic/Nd6hw+3vw9DNbd1XGGOfj/iabQzzagY43KGboYddE\ntHxd2FKu92ewHvtq+S6jbMs1Pcv+dOYbzzNkPRjuJC74l/VroBcrFF343cJTFW3keiq7edWGZ0n4\nL9mkVeeeb8nhbj9cT+Tk+oMXnGyBwfA/EEe3jd8nbfCT7LnKOPa87wpdGhf3yN5c8HPTGyVd++8s\nr7Mg9MeJL1++4PPnz2jtmJtmFj7N5QR5uOhii0TxHhmw9IdaCAF2RZ5/4+d5sLvSgGy/23ebcGxz\nVerNY/1hOMp5ItaFPA5inb/xwLkSnWfGxSYnVuerG/iseKytzKuw6yH9Hr4/2amUlZvIvrOA+Zz5\nny+itXTO9q3dpeLKXefEjt/vkgdTqtOV+Iwp788xjQHtfF0T7UCTtMihugFyAeYF4Ee5q8XaPPo7\nlucgv8cJEWuTOzrUnjbj2ZgRC++Q0haMo68e7qNImUehX4pd5La6nZV8GH8Yity6guUwOyfsNJlB\nZDkwHlylTb7JwIff6EJ1V/6+6+lE76vNVq72jh/fv3toHDbSd3RVvPb2y4zDuX7Z9NMVeHOe2/jC\nktvseOa6VdeENj+Pdae+qAybzJrZiTC9upoEw6ZX8W6DTsygNqUr4Fw5xnk8jLG+FhNYzowftUxc\nlxvZUducq8QO9x3gHF2x61rXTa12xKtnXG9qlGWaHSZhM4BiOjrQja9X/aSqwNHgAnrRbgsr6GWx\nni7kwXXlQKeLbwTMeAKIQ+llPj/jWwaJ+f0rsGcTUxAZEcUmb1nHHn5Z5xwfqX0c+i3Txzo34Bdg\no6kCqO7ooL5k8bJdfPcIsO0kDXWMLz5B1jc66vZVdJwKHJQ3y8X4G2n1/k56Ln9me5vxTp66YV2f\n8+Z8Tpvej5l3jaeRcdUrbAd4QehX+pV+PsXxu55v+oXGO79XybOPNa3luvQjhqNkszLg04LbAE9l\nVbYUszhofj15Yhu0kfiCjMWNz58/48vnz/gvjwdeXl7mJHW8l09ERigdVYiFu5127cre2Ea2ajc5\nf2b8H9ovgiaH32NU8SaXOXRZvQBuNmFNikz92sT9XrMhqhpOq0dfZ+gnpsjvD8iLyfw3yMuOW7i/\nK1to9xmqGv19y2OJN0pUJ3EqPFA9Hw8BRXef3zY/mJ4GJFwg3nv30EDA3NBIMQ5V56KJ2RJ/PitD\nXGxgu+v+/+TnJn8y2n4SXxuOGZZYna7Rh8PzGZsMx/aMddrI+DtCar09foxQql2BhtA/jPfzaGZ7\nHHhKvODPeVL3DndXv3h+h77cr0mvyf5ew05jpqUai/6+km+qinUlE8lYj21eEUN1YZvZ16Y6V4Ow\nhVIt8azG35nuDY/BVHPyU6R4Rnj8Wcr8yrhLoYMXNM6GeO/6lGYO3I5ASL7md9YvFvZYRPyuQ6bn\nGd1c/1WegbfH5/M88fb25iaGz1ALvVeV9wx3Rn2/fmO/q2xXnqMpbH2gK2EAYNiLBvOpo16+qtMX\n1qZxUwByNL8nJtfH6Wqc8bOrNmdba3cFh/ev6M51DdJXfyW75L7Z1fvB1t37Y1dt5nbav7jpWbf3\nLU+ug8vjlOcm133Huy28ks+779AZruoc/qHMhfbffvsNrx8+DHWHjv7AJn/Pymb7aTRfLEuV6Q+1\nEGJmtvdpziUOCNCgzMDTBanvAmYTthYex45yn+fpIUJciVc7H0aGS8MwjsSSMGHt8GE6DE7B/qqi\nFQZI2uJFBRrjoBkTo+1ofuTZB9GqPJTFQCQLIdd3tXMnD1oROtEAAtMYiyDHcQzFbIsUMibXX15e\n8Pb9xzjuXBzh3egTm0QY5ZwYC1q2S0p07J4ZO10AkTbyyALvJg86y/O2zmPPDOjMQdja2tYF54/H\nA/00vvJ9MCMuvMc1Jf6wcTXY4JiN+9nBgjo4zzsDrK4SJFGfVoZU6Xf+6/0MGccnaRK893Xpejvm\n2FLsu+qMBpI3voyRHSNfEEuGAJinxEjhq0ZA+phO7epXxfFy+P0q53mO3dDnOdjYFTPc76orBWgX\nXxe9B1Qt8btySku+isW87WEH35LbCOqtN7wen2sY5dopggCigGBII8CicGJEGoNfM/42To4Ww0Wp\njrs9GurF0ipVxs0chDZBb7WA4YAK4qCTZUkhrluuHOWr735aQJdZDSdYCjDF4DKOJ539t94dfRwd\nRbZdsjygso5KH1o59n3Jwqi89xFO8JhybTtA/V6FC4CYQfNJgNjsQVPz11xhbXKW6Q88Ul33k7Be\ntTJTX1kfVWAtJ9YLV3bc7VGKWy4ifmqiKV8cayB02QoeT713D8OBxL+7k4fcRrZxqiOsR7wwnQB/\na4v11K4W5GDxyWjcgCYWbql0wyHipzSPY8al95cXAQfqMc18yLua4mRaPP3DeUaBWKcLsY8H/mzt\nXRfJRh6wbOX3KydkVu8OFp9mZJ4Nj9A19NKd/vOy/duOTGCEQ3w/pv+VfqWQXJb1HoewDqhscfV9\n+CM3u4zDuxELXOEAywtVyJwUXPMpCqnV+6UdvsMbY9wPffLy+oovX7/SqbYZrhLDQR/vmG82LmT2\nekz3Z1qM34VOZ1718VJoC/9uPl/W9dk2xLqBftqGB8BslAJ+omC82ye7G8biQvT9Ah2B+d2m66FK\nG7o4P3b0Yv7OqHnpfvYt9/asklivDtZfh8Bosk6C5JT93IxfK6zIG4js5yp0bu7jUdY++cgbt1bb\nBr5V1TBfEfGkOFaab3g5thgT7BRj+un720ng3EOrDqXxJjjPB/76/a/gyApOUxNIX5NPds/nZlOn\nfzIrmg4btvr5752e0Pl+xjaWmsGz27QyVbprjcEl33luadOPMmBQV93vSWTaKfWL5+zlZeyU6w8b\nP9o4sTD01Y5nNjrKMQ7n73a/Bd3/+axt/LuFI/T8aqM7j/v1Xu+0oZTLtiIMV079Ftqi6+8VbVW7\nn7WH8435w4f7Vj9+/MCLCHqyudUG0Kq8XB8j5IjHgSghsQw1+ZNle4XyZB/VaHRbY+XPn22z3NW7\nluxuFO8fKNBtDmOOWXqvYfnY4U4/jRt+vd2kG2Ikn31zx2rXajOn1Tf3ifNx3rv3jN+Vfqp8OP5c\n29wlbw7rVP1kYc5nv2fbWsk219vTM3t+h/NyXfZOJR9mj9px4PPnzzheXkbfY9mH3Fc29n1zQdAD\nyVbfYss9/aEWQvKOmOycP50A0WmgaRBbOXkADeW8HNz5AzaFM593+m5Ab8uHuBqeOzoIzHy8wRTZ\nadjeBQvkAPN82oV3q4ai0yCpHKMrHj9N5CRwMgXI9XRRHMfL6tO+Ls/Ok17xc3dD44pz1u0KmHZJ\njQkJmZelprZWyufC4agUDbBi7XKeim6voxmPsrM6ozBr6gczVLLaWx2PvDoZFQxRAeaz4a2B6d4u\nK7ufHVAJlxQDayGTjVsei1cXKPJ3W7AKdzYghsjJR6yb0DFScg7e3t4mHxHyV/yyY8KWJ4AOe9Y1\nKPTM+8zHzbC4g7P6Z7xfO02DBpTA1I6i+ncCF7nPmC52ZpkuWH7vwzh2ZIJREaydPlTWFQ8sVbuy\nhRYrL4E8sGFCG8tCfvBVjG4rtxwLlzpnoHgl/omsU4fZXo0hSxOqpueLHXB3TlloX+YBYpi7APTm\n5+M4oDOO7UHhjKBjwbEXACbzjCfX7+zJxjOjQ2hxgcCv0k5KdnAMoFUYIOvvKwBW9TfzzN6xUHnb\nzqLW/BSAT6i3fL9T4gnRXtGzTiY+6UOR4CxX+GHYnGUfXFcWNir3m/Nf110nSs/N/q73+9K3pqkk\njasCj25yjY5TFzayHb/5yLbQnSy8mFGfhFx2L/NIVX3xMY/5fG9ZtvFMz6iFFkmNL+l91bFAyMbF\ncIn3j9ii0bi3bNcxfyPu+pV+JWAK5b0MZbuccQ0Q9e16vjYm3Plg46f69zu/gumSiYPXe8DaXmo6\nh3YN25+7puvY7/bh9RXffvsNnz5/Rp+7eqcj6PbR7GWXjvPsgZaraq78KOev/WYTOnY6nG17n4uk\nxucJHAaWnb6tNL+w13Hjse+/tr/DRjCd1xMcJWady0M8gWmn5dvEEUEvqnqoH+fB7E/jw9DtEXeP\nSdBZI9E3QpfFzV9COjj4gBdtYRvr7SKdv+GFgOvEN01m7FxNcvF4amNlKyx8L5vCbUD4XTH8Kp38\nhyowNyzIxFMK7LufMRkxXcbNXxFxzOMYey6+CZ1y+etf/zo2jcm+U7dPemdXbRP4gU+LHDRzZRM9\nbJ+3tsxkMmxl9eK31uImivF4LiKZD5X7CZhzA3MzCNRxn8m4dBtDsx8kdpht0Miy5ZvLMpaf/7H6\njU+N+FDhWufpZL5v1ANwzlIOWV6acSLMC0yeVONcmoR5E0ttEtid+Nqfy3Q21BhU9QSHwM3vPSt/\nkLPmAMTzX9sk4N5fsJTH+OoPc2WGLjgBXwg5PnyccnVDb9IbrD+Cv6VxU9aSeHelKD99bhLmEFXV\n71HNm4u5rZhzBi88D3NBd96QxnMAObnMDSfQKTM74T01MbrpmcAzomH5PE9wxXCK3E/39mg8SYBC\n/iOlCLyodBSnvAG80mUZX7GduCo/y7WdzrwrR2Z7R/6+5eV7l4V4ZyXbLWX5TsNqTqLUI/Rfwy3f\nvn3Dx0+fguwcVObm36dxeOfn1zPOdfpDLYQgCMca3qOzO0TqCQlgMlIQQlKE30CO91QWUIWe1aRc\nARTpH7Ccejaw903T/OCZ3/Lu8gRj53Hl2OQUnPwbIeO/FXC8E9JLmqn8rh0vLy/4/vYA2gCNJxmD\nIwNUQ2DUv35R7QQfSshyGWUMZTif99594n4z1pTHlAYrYubbo/fhME2QJFMRu9I9DkjfQfBoS5ps\nmiClCaA4YVDZnrv8YgCfKxnl3SIbqCGHwJ2xDEBKZRy/B6dVeEQkhWl92QtlLwLMywJ9Ip1OnQRj\nAvhdJdYPfPF5cHSmUVo74pez8uPHj43OS0BWyDhPZnK9xvfKWORdal5+2/vuauy+B2RJ8Sx/z7rQ\nninWCYjs9DhI0f193/XVJAAXH2e0YFnFcwwylOTKnmd5A+bCKvY4/+ZQXE06B9ovfrsCLk8nWpiI\n/KjvbfDfkj79mXSle0OZWBMxeWdkzluVZzZSMCZyHWxhB0deP/31HCK+I1axZAJYKj2Xt4HurKsu\neMLtuQpvyGWUNg3DFtluU0MdWS4qnuY2cP5nbTD+XvGW3+XprzuH50pGZoYA4kNIMgB2yeJ5nmtS\nYKP/3kFZdcGFI5YzT7QmXnE9LCNX9i01cJtorPDKVRk5bxNxbALsTqyIAGeUNXX3Yr13zvYCmA7b\nvwAA/kq/0kz1uIzpTmdynh3f4V/sq+R6wvNnL866w5iU5++FiQxRqI6Twb99+4YPHz7gL3/+sxcP\n2IS1fRknAyqbcU68zyfGFqn1jlVN+XL0gNXM5nrD3N+4uC6+MOt9UmD24D8lXl3hkNKfs3enX82+\n7sk6lnGfzhcU8/Qo+eEA4IvfjCln2ySeYBxYvwOIfs3CmLscZAxpfzf8WuBizz/vBmDcy+9W4Z/i\nPZ+zf3Th4DZtqdM/8zDvw52M3A7qp7HBZcltwMkT752JPmmEYXX3V6yNx3Hg7e1tRsrQIrakd9Z4\nvziF43h+1mVRDf4WnMsyuXzNaL+fTYZ5Xz27V5fkudqMFdqXaKzort4z6kPZ1Neb7t18uSHxORyq\ny4eVh11uT92xMNN75UPq7Es+rXaXRp7dF34Pbnvmszk+Hg/G7yjdru3ZnR9c0el5Ze8Xm0vo8WUA\nzec7fOPNTai4yn9f9WzdX7dH1iamK92e67/iQaUn+TmPR6UN26Et9l4bC6zjt7qPMj3+3f5V5SZ6\n+a/JfyiPdWnKn+dcgs9A8wh8IqVK5jPetS3L8V3e6z6rfTCzO657sfPbdcRcBDlEynxI9L1HB3L5\nnM7zxJ++fMGnT5/mO1bj3eLPfT1/a/pjLYSAG8+DEsiXqTrIzMIw37bfwjGs8YMrUwvrYjsllDop\n0oKwEMLK15SyxUPLqXIslrF4HyiowFgYEFg7KGNcufeXu5XJwK6goQSWN0rLHAKhsg67eFtWHktd\nNezGGe9rkInznOGrukLnSggrM6aV28PH1CsjzYDXdslysuePeZ+IAh6r1Y+jpwlZU2Sq6uG7sjxT\noKyltBHpqwx87u8IHhfNm4GY3yunzsJM5QuShfpExGLmxrHIeUF9xn3ndHtoojipmEN5mWwb+si/\nYfZB7z2EyrL09va2QikRPVUInRwPP4/hXG9s2/PdJ/yLlW06SJDHTwQcvqOIeY2kF6bxr455V4DU\nTkC7YZSdhjw20Wo9uZXv5Fw7o4PmyI9qtzdVssk3x7kNNNyAQ+dfypPjbip2vZLpt74Ji0YXQO4O\n3HG7rmQoy3DOn3l4uG26l807YHJg9VH+rQSkseBNXv3vfGfs/myB93lR605XW8qLE4E3rLfaunsk\njw+Wo2djmctvEk/HZf1SOqD0vqq6Hcn2N70IFLaZHbArGoB60SHbD8EIjfaKtnb+Jprv+MFtsj42\n+8ZO4iivBTrzIqfptzvdGmz8fHa5EI16bGWZEZEQsoBDem06OrfbCL+gkesc9db3VP1Kv9KzNBbb\ngax5Kx1dfa/8k/fovAtqyjFaTQi5r0aU+++Ol8dCqeK57tkpmf9aA9qBl6Ph25ev+PThI/6/f/rn\nVZ8MX/D0nfICJXvHutjaxRuqLuuffOR84WQolq5ljHun48L76Q6PejJMPcfC3U8wG6UB4Sd2wMA0\nSHo00KvqoWxtLn20cdkA84Xs/aVXH6bsMeRorJsEXGN8A3ackdqTaQR27Mx5HAewCCb+bO/K4Eyw\nBnMssj0eeMYFeclG4P20s3YaSCJGWWWL48wOK3NuhsTCNrZxbIW/VUAU7Zgnl3WFbh7yrfj+/fsI\nASQadu7Ot5dtm3KVN1E5tiN9NJsW+MHtvxvTJvO8idV94ykE5UlcUL9NHkW/TbDOuSrRPmxxmzLL\nOsomxUFlM4alom7bU+nGjPXu9G8oRwBQqLRAm0RfvSq7Git3dWY9WPVf5b/EPO/D1qGdqdzwzHzM\n8WDqXIw+p/zMiyo0PMtkzn+eJ6BjLD4eDxwvLyzY426ertumv8q2Bn7aMxGSa3Ed7TYslLcW2Hk1\nJvQ7dvyb6w905PGLxc9ze2fJnsc4KcZw2DyKYi7xBp9wcpkzXXfRpqxPsu/nY3meeFNJY45ousJH\nWfYy3zI9QB32/2q8V/2zZHXRZ9gBwJD1Nk4rQUy3ww/ServzAu8ABHE+CgtRvGd8chIR39isOuj+\n/fff8e3bN7y8HHPzV1KXhKcqGbj1+d45fw78wRZCpj1fXwj2iMCP9BjQcA1o2Yd0jO+JwXlCwC+K\n6R16znsI5mo73xXBQu/KkWlmAa4G4fgxGOaVDHHBhdK3YZhm15VtKYR1nNIxpdc7rjuyEyJGWxCy\nyVsWytxOI0GxgFJuc9GS/bdKVmdfjBiXAj0fQFuXre+Kd7HEAI0AeHl5Xf18jpMUY/eC0T1AjQGf\nNkG2TW44rawQVIOs5MlkN6K67j6BKg5pvvvH3tt4ZLxVhfbuFxgvRilsr28GCv53xt1zbcf8NxlK\nYKsEKu6AjQWPPhWY33fjyjKOtzBp2BVd4kkkkXWcXIB5EWRcuLS9MTo9pbN3nzT2smAx7Hus71x3\nuQxH4ZxNNrBLd6hMJxoYTpbMPAGMTDkxo7EELQGv8L17OdXk5lMwOZ2W/I7dlVKOSe/n3Rhb77iu\nSOM+66b8rtORDNTiR3we/nIBrsPqdofvtLjSZO6EJIB0CZRJdnO5rBc9zVWeCCSvaRuOV7U7MjpF\nO1nrV3evCPC404Ix5rMjXwEpLiPTm+lbnxdQ9ljSsgB074sOlocqvF6bvK7kjenw8cayOElxUGUn\nwHQtaK8QEeq2wPRwvWt20WD1VnbLdI8D0Pmu25VqzHJFTdx28BQHt33pdyvTZJrHJOkC132rTYwV\nLM45OyA8thNc3/S7XRKp1o+TlzLrBocXmc+EQw4meRqbBWSuXMwQAb2jWXjH+Z8sn/zd8Fx+hkT7\nCJViWG3ocG7n7NXlCBEe8jxkDzc5Tsf/sxOSad8nKxuAuDgbJy8E0rB2kQFO69ZPcgAsF5OXV5jn\nV/qVniXGsqxTKsed/9453zFla0V1JxsUdVWd3+r3SdhB1F5e4epW9vBq4o0ximHOj58+4euXL/h/\n/+t/9fCAAgE60CYA6h2ATPuk6uE2HDc7dtZtMWSbVEvP72j20+XjB+cl34e2YYHFulCvLUZsuhn1\nBpaKJsfhF/o9l73aOietkz1kqmvsMt7yxYXk/3Apwec4mkuK2XFuK+OwanNFoEzNxphNvG7zKEtn\njH6ibR5bNqwTbAUNpThRl/A+0Z35vsqbG1wmtpu3u0Pn4gmwbzrIWM9keZQ3NqSMMTHa4digjweC\nRSuPg6uU9U/lH2X8keX8buPG0n37xs3BFQnjaZVfYJHJyrUISn6fUMdRW8x3DKnAFlavT/kUOnnj\ny1bMxKUZn+iuJzMetkNBXDcRBiDyP9CWyq3o5fmxUIdjehtXu96zvguQqPL9qH5OzcY5gB4c+Zru\n6u9iRcLDNC5t7Dwej7m5bLzTdV4QxzwekxHlHZpMk+iu060BamN7s9MztO2s95CD+iz6SwNfx9CC\nV2PNQlUxfXmRseK/SBCuaTOXf2eHRzIP8skmo0cnHexH+T3AEhdSr3wPf5f1iHNvuRGbfiradmUr\nvE7U6CjTZs8qXJbHD72Jg+17VVdht8MwILzFejDTnfVklZ6Ny9bsXuWht79++4YPHz+OsdDo5Eri\nC6dKjzx751n6Qy2EoHGMcHUH1NJxHDME0lwAmGZOhyUHdE1iAeZkr4lbi09+HAfkONBwQOQB9DFJ\ncnT13RgMnjh5FxTGpBqU/HYFipeyAwCZF3vbod9dCOzeBAfkbFgV6Oe+uyDWN+qxJ+L/Wcl36KhB\niVXOFYDlPDGJh7OxiSGLIfny4RX9n9fkDCtupMFgdbW24tx5bM3W/MLyuQXJWzgu7JntMViUgRkG\nTVZmjiubAajquOQerMya4IB4DPIrp0zMOJoRnJ3i6i9fikRtNFmpHAIBPPb/4/HwI+iZf1vfTYyn\nU3P6pefTGYm8l3C5nwFFL4dAp++3mbIdaPCxtZxLk3XmZ9fuO8VHG0dwMJugPU9b6CBjJwKITSoO\nHXKeD7w93oLWN6OnIiOsCYF6A78BzAnoORnVZMxyynyXqafa5A/rBFWd4bxyfy1wUM00TAri0XrE\n8RN29Cvm5KZ431m/bAUX9AtGqCRVDQsPBpxY71p7Oc0I2WgUIqzPjwYc2XFlvp5zcnoDDglcOL2z\nHSu8+LURrZwTf947/Hx9AgsMQtdYhvPV6FKT8wS4jEdXICOnKxDvOs8WD0UgrY1LrzEZgamHYeNp\nb4fbS25LysPfjW7rqxX2ak48HM0d1nG6QJ2KUA59dpuOcRplc7AgaO2Ahxoie81lmWa5ctT8xOis\ns7Pumu9XsiXel9yGhBXMVviY35jp48nq8fFksj9jgoeSxS6uTxMls0zQX1uUftPusV9llnEl796H\nVrHMSBlEq00UMO9Xs1jO6PTj5G+zKYrQF6vHolO8npvtCY6BxokuKZ6Hdl7ZwcDeqPuHTov6IDqU\naSHNbd5yPvNEpk+iYfLk2MO+/kq/0nsS77bcfitsxSbzFvfoonSrw3RiebrDHZG9bqtzs1cJy3Jy\n/VvoqUtKk/30ts9QVwrF6+srfv+7PwH/t6QxPJNfaDDNj+FCyqfWTMN85sNRW4mI8nm2tYaD7SQ8\nd4dhqnxK2vjEvg7Xm3WjgdjMxkr/m19kdtv9k4Ln3CZGDOuEe8IUEk/E2+8i4ju5bQEh1EP61+VJ\nbLIuToyZbFVwim2/2VrVPucepi+gQL6vc8cgE0oTv3MdVk8oo5DRCQC2U+vN+g3Wvy3SznWl8XiF\nEwPvzXDJasM5N8WJ2KT7uLh3zVVM/Ciy939lc+n3Kn8V2jMOIQnlVv3A/bTxxZ5nvJnKGTB/35k8\n/MSIJR0bdVosKdoY2jpf2vQUZNw5OTHonZ7jEWZzCDaoZWJrgsjT1ZsbbfRi1/XEcs98jzwfw/3P\nNuGcWE+H0Cw8N4ewdg2+H/NtiF+D4tEAACAASURBVNhN+wv+un8FhL6w1R9B7bdUZVsbePEgqz2b\nJwIEJ53G5LmDUb3hwJqv+f4hZ5JL6rTLhNutv81OADSPhOUDWjue2f/w/IYfeawf2DdYWhnDXtgG\np2VDOHHYctadmQZxHp6ALfwWtFffgVpP3r13pWOu5hegCgqqWZa54SXVzRerkqOAiQcyH9f8Cnxu\n1coUqo8/M52KnW6mv/TpLvQb1HwghXbFy8srRARfvnzxqDnVwtctLr2hbbTrHg9y+kMthFTKKgtl\nC/crxPwGMnjCuhMIbiI+ATiM/DmOnlqIIwXGroc6TEE1YNYDYFnH5+2sFJRProRKI86+ch5ktjF6\n5GXlMGNMDwNtpshMEXPYIqafeXDqvLArGUujhXfs2K7VT/MSHaTdyDYB19Og4/qCoSKQpF2gdHNy\nvJB1tZFBpwNw4kGuMx5P1jHgNb1DSnSTD2K1tentPPHy8hLkoTrmCyyA1tLEGNcRLsJNgHQjg4Cw\nHIPex3l6m3I/jtMK3RdHZqZlODB3DRsYSHVszksfF6pjHlM04KRd56Xy4vUC8DAAplQfjwe0Y1u0\n8gkmAfxOIRmXAKouRzI4k6YTIFvc29L5KcfQ82TtP13fEGKdf9SAbUo2HlQ1xLt1WmBjbPwzU2Hg\nl7VGD++SsU96YznAdVuybFUTJM+Mm4NYAWy3Rye6rnh8B2xLO5Lo4t92Z61eROR7q2qa4vdt/M2y\nzWHJ5qICbKXjcmH/ANKzqkC4lHlU1nHPN67zPY4RO445Vi23R3W/UHrhPAlgONSReMRjl8dK5tOp\nY6GAJyHuQsSNixA1PBdFuYBmNGwX2CG227/P8r0nkkywnjNH0vX7xhFyTBJ/nW6ri8o+JvYB5j07\nxfjltBzTtZjBAluPm9g3AqyFdWv3BO1Zqsf7/m2TxeAspRNbpWM832Fe5Lx37Wd8NmElOHxV5Rjt\n42bV1QDIccwTWWPB+3E+vJ3VCdJf6Vd6TxKoO81Lxywn+10yf2nWbOyae63rb+HujLp+zrk1Onk8\n8ZzHe3HWVV2mAxRAOw789ttvaEfz0EFjLE//oMUdvOxj4IqPqmFnr3LYrLmYjXmKfGHdZat5IUtV\nPUyqYX2L611v0Kpxj4VqHjpXaA/HPU4KvJaGNsB76XOEkw6tedisEZZp+gymPO09qTHdmqhZE8ZM\nE9uQ7aLytvvSVlYoW5cfx7IWwvJOrOyT1kbfbBtog8/a7JPtKdUHDf3L7RXA7/Owfs70YtqdDpv7\noNMvsz13WDjfbWjtXRilud/Wz47v37/j7fGG08L/wOxpaoNiyP1xf/kG12v0evsvfHviUpj3qNoX\ndUSFacaYs7XeLEv7/Eukx/CYh8keYML7L5d553PzaF1zUGuDTIVjNnpSmTy52OciSJ9j1jaU2sJW\nSZ/qJR8qHMN8qzCQpvKkqFfWYYr1riCEIQWWebnjS+CPLUawfiy6gmm86ivHZRyRYj778ePH3NDT\nxlwFzSOZr911zCvKlL3MD2DpDAsfOIR5+oi4vgMp9Bfh89x2flb5ZFub38nr3I7KN6rqYhnWqUu3\nOkiuLI1DBgdgNvqCnsofcJ5knF74uM9wxhXPqlTdT+n8wPQHMOcxL+pwpPVUT8a5SJ8NsvrIBr+H\n9ru+fU8yGltr+Pbt24icg92WX801vGee5mfoAf5gCyGACe5QAbmdqmNVe4/rL/Q3AT0/oqWuvFQV\n5+OBJg3taPjr44fvXrFQSrmD7pjuShhrd04J9oi6u3KjsJMyL0DB9o4gL5w+TWrhY4LCmkBS1wTF\nlbBWBvoqCTAmnrGU93Ec6Prw8hswT3mcYXLNjntnWtgQdKuE22d5dU0Mm4LkO2Rssj+3jxddFhCf\nfJFZoV4b6PV3ApVJw3EcG1BloJQNCSuSrhFAscEzeu9kOO/IAoAXv4hv7dYWjLtcgLkw1eqd+rlP\nrF+g6hdGGw2VolUqX7FCHHFdgnHaxQy2tFjWWgiKIO1obd4RshtEBZbczDE8jBQZH9C9gTomdG1H\nVI5r/0xfhD5VA3pWz9rdBqSdZDNfPa7VZd77Tc3nXotKi//RCLrhysXetUEiKLtyBEbeDc4NPdBz\nY8z07+XYd1tAqgHaev+qHzKIv0vXfXn17gVA1+U4ySjYbUE13qv3fyaZbnm8na6vAhbUCbMvlPat\nM1eAEft3dydD/ME5YaWMS/9oYuiKtjV+rC/rfFfpCmTNTzEvPQ13fwDjRCAw2mKTO6m5XJOqrjJ4\nvNDv5nQHuSvGPNstLSbQFVG2rnY5ZuYFGwLTR93te++K47hmOGOWpdMKR0mdAnq3DwdQ2IkoQHKq\nk8fydreICB5/wwID64hV6305V5MHqjaBdYwFHNbvInijWO6/0q/0tyTy61nJw1dxb3Daz8udezj0\nZOEO84Hea7fc2WdcJBF/MZ3vtYXZzhtmbC8v+Prbb3h9fcWPtze3y6sFNHni9MTFVK7D20+6U1Xx\neDzQjnkHYuJ3R6fd2QI0oCNuWOGJrK7qkQy4bQDcn924ogq+4Uinzq0mFKo0QiNi+ZwVj7FOjTbi\nlwgmBtfwoi8xEK7Pd6IsHzliL+9HgV/e3GdY33Uok7ggcUHL2yxmG+fk9lxYMFnx8LRMOPG30+KZ\nl7fhUR2LM32+qwsfsL0Om950td1oUFHAT0EahutlfxsNYXNfavuaFOwukiIKHbuQhr18PPB4vM38\nHfnUMPcjsO5XZToCv9Nz/n49aWqnxXV7/2fxsOFtYG0AuaMrJ/aFf+a9mph7vRhbXNChY/7guPCf\nTcdxIepyddHuHuduSnyMNB6sQtzz4W7icn9v+uLsGuhzOXqWSIXd0pV91ug3xd/efnwf1Gof970K\noCoeOhYY41bIjblv+8+lal6HdVDpgxft/pm6nj27e34VYSXrzTw3NJ5xO+7rrMYWj4/sj12luzG6\n25ObOp/YWp7vK+fOKroxfFEPhaw6jUayV9z/VJemurJ9zd9/Nsl4GaqKz58/4/Pnz9smOq43vPsO\n+azk+j3pD7UQsgbC+JcFqrW24ozzoJ/v26kPnjTrepadDAMmenodXcbFsvp4AIgDmMHFNvHnNA4q\nqsk8C/Vh45rbVq3cTo5sPMqTAgJAxaZvr4VjGchrh8LrNpBkhsgeF0LoNDtP91X5oPAMwLfmJ0Le\n3t62HUv5Yh/mE+9EsskgjzHfO6ACRQ+T1OaccZ+8Hodf3ueTzrMdldLkyT6RDguFIrNv7SyR5QtK\nWseOm9bW5ePVkeDQDyMXLLDYlfLoRPfDLsgjB8PaV+0amA2k/twNUpZNkXmCxgBma+hnn0BgLbBY\nSzvRbk7dCPsyx2lrflHly8vLXIxZ9Bkv+zw9IoBPHh1tToyjDxnSsSjZz06TjMD3Hz+GEzGdM25f\nkwO2FGITdXdGLMtl1Yf8m5c7++Pl5WWL08vljld2YDYM2thduMePXXkHzy5A0ZRVaPx9jKP3LQAv\nWtJiBUZ4uHOe9qkv7yQe0ncZStSPhmf9Yfy7nNhUzF1fdV8wr7kvcvlXKYOHLAMZkDmf7sDfHLPm\n/AH7LiDTd7kN/PfqrozjaCMM5LRRPf1e6oLURk52qiHbwHBaLb3Tp55w3VnEqlXVuZtt6g3bZZic\ntGx/Bs26/ea8Rkx3bZUJLq0NDetod+/dT5JmPTnqWeOWsYrTpLrV7+9yvGfVsEtKVTFOqO70+q5h\n7DKtvY+NHWQDQliVUQhyCmMEQ8e+vrwCAN4eD3ycjiGHNcjyxO68THscMfpc7Na4o3i3hatcx2FW\nehp71QIIt3nVbX9X/PRMM/dPpofT5rgkXWJO9Hk+HPONMJ1rV1trxwj3OvP+Sr/Sv2ZizFU9H5/n\n3/ld019LVzYu5Qr5LZ8m/Ve+r7ro1PqerissUtWZf8P0Y9px4NPnz/j622/45z//2bGvyJxYn/O6\nHlWgqG+jycY98el4eQk6xGlTDapExMK5im8YcmxkJ0FEQqhbb5/7KTJt7FooUV12aTw0/dewX2qw\nyo08XyfrrvRThX2zrMy9AhiT7nFjVLVhC7JkVlgyZX3n0x5Mb/Bp/FlbNtdjHDXPc7QDfrk4zDav\nqWM7XWP+NreTaansxdY2vcDYhkEB6BlPeQw7fgScN7BBwrGA4/Lg30w7d57n8KuNn5gyN8GzbRj7\n8f3H6ke7XGLKT5MdQ+Vxl/Eq+48lDjaO+W9W5j62bdajkrn5qcSuo/wGpOgWjEHOXmB6uRwuW9u4\nHVXbRPYT2ctHpbZu/GB9U/umcvme2v+3suYDNwK5T70dpksm5pXu6nSBsnekyiascblkl/lQ7ayv\nyh2/UbjlC7tR0ZBTlAHAhKCpbXyc4QtnWKwlr+uvn9TRvR8rP2SzYz5W9ndF7um/8mt5zGUbphr9\ndaYx3zeU3+PPdz60+ylW7oUO4Gd93sc6+LjsW5U3tzHXi2l7VVBswtz9syt+2fdSj7+TF/6erg1y\nV+1Sy2NYTfexMCInjDx5c5xi3UEY+h27TFb1c9uqJGAZHzWqKn777Td8/vx52JBkPd+jM0MbijHz\nM+kPtRDCoJF36vPfoeyy0zwUku3oDwpAkb7LBD8NmBPTj7nwIbLCezA947fdWDjd/nwAh35WHaqg\nyAqlElSNp0pcidrXOXkMZLESz+u8AoeEmlDt0hDNe0nIml4NjIMGrZdLeQSRh2zg1mWAY7LUJoS5\nPFZA+ZJAX1eUyAM9jrCT1tLpiwLHdirBgaE5E8Y7HRNJkHjJNys3u9TWYyBy/6V8zkMb+NPIKYDH\neaIdRwwBFtphx5YRJuW2SxCN3rnYwe3no+B5wtRoHOHj7Hkr5Z+fdZJDdB1xUnXt1jKgyuX7GJyT\nnHaag0+vrB1vw+GxyfyjvY6+nCeJ3t7GjiU7HWCTgvECW0ynBpADeHl9hbQ2/onJRnMDwRcD5hNA\nWa6qBawMrO3dJc+ADa5nO+dNz23PrUzjUYtjsXJ+rDyTg8fsi2MuKjuoI1rtnVtQgSUXPjZI17Zk\n9Ph9a0Mok7536LgIbrZZmoy7QSYg5/atuhko7oBE6TswQqvFsHlL5zhoIGfbxujgpeJIMW6th9Yw\nrhyx/R2ZQPq0O3qM/9j79UonBztlPOwd6BQmEkYXpv4RoC87yzv7eMz75/myBh6z3MR28eJBptnq\njPK6gz+7W2NzEjhP28ca/67AdpJwy2O/K2Dh86p4ptEpa/53nLiyEw3LthxGj8jSM2lcLWeTTmKI\nzJBS1mGKTuA3AHWsEJI6GBnGl+vW1pbjIWu3LOutMKYA8EmyY+pEO8WY9c2VrA5a7fvQGxlT3TkN\nbpOBEaZlPPUQipUO5r8cJnXpVOMfJvZRnGd3GcyOY2tHWU/W4/vCS3c54hOn6nbgBCBjI0jZ+l/p\nV3qeOvbzSu+VJ7dx6b38fm/1c2DZbx8hWtu/UG8a8+ZM887lK71ffa9oCvhVZGBzKF5eP+DL168L\nK9s4Zhxi+vRCp7Ado2Y7xjdsypNInbBXa8kmTz3PZVU6J/+uWJPVpvfNbvq7IL6K/Wfnn/OL8RMv\nLmRMmnykKnk/TDdWFH7fIdsxbtdVe3O5RjPTB54In/zB9KktHK/2tTEs38nhDiuVbfbQLZhqeE9E\nwkYOxoDBH5Fl/yrMHvqA2lnlYRtu/7rzeU04Gh/s3/DH4Btk7MRnkwZom+GxfkysYFjdJi+XjDo2\nuMEAVX/xd86/eJQDJNXv36UrOjqFYXY+Bp4ijhNd2sjw4cIy76+Xfwsb2FxGU/summp96v1KWVXo\nFG72e0aO8Nzqr+Qr8ASzi0k3st+Rac2+l+XLWDF/hxXF6mW2a4v/IjXuGyd+5jPDyzf9xe/a54z9\nfA5j+p+9d/z48QOq4xTfKHotWjDP2CfJuDLwCXD/1VhgPKlOIqsmH8BsXDp5wWMrz/2UdwwVfMlj\n5GrcVrb6cszejOXVnvlPdlyQ66memd8xQthPHqYNXFdlVM9ze4F6HsdlsdgU6HXzO2WOSJ/ml4p8\ni+b61FnkSz03k/Pl51d63Z+mxvz2++9j3m2OQ5E4dq/sXJ7Hu8OB701/qIWQbAztBvrQidgHdWVk\nASQn2NIw8HKOibvWGk5bCAF88qJS6FUd+ZfxrpXmNRY7XDg/ASUZ71uIotjG3YC5wmRsa6iTeGej\nKSt+yzOy2SIMT17sRpffRcrz0AH0ldp7hon2OTnd2tj9bwXa3RCSFhACiNwHhV0oC5E0iGWFSOqR\nj+zIcNsyIGdQzrxorYUTLDbhbqdL2ElyIErlqOrcnb0cgmr3qggIcBd5qD+MF/wdQLiL4l7pDdmD\nVhM6yejl9zEnMmGLSRRXGRRaTGKdbsCl+TvaR/0vLy/bZD4QlWQuixcoHKNNHva5Szrygvgxv6oq\n5KVabI18qxS6AYycVzXuos7vXCn6Ci8IaJEwlVEtwgR6Q/0Eom8A0VXbm+zjcRnE6VQYKE3g0nmC\nfVxbr2T+qs4L34vyoBpOszCtXG7gYwEGKpBXAQNpCLKEqW6rnWN3DgBAIdWw27JS3xYpA1R7sWv3\nyeslAyM0h3YLBRlBesX3QLfsJ+v28bDHpR56EmHyKOh5jIlp1aHPra9Z19ROCy1Uy5Jrp5EwwB5S\nM/JQ1RZfEIC338tU9GXk+fWiTT71mZ2YwNMJHP3idF2OFdPqvC0WJnLbmgheaJHvyp76YsjI5DpN\nwuKVAFh8Zbl1CoiUDHj5EvFKXwHAeeYTc+rCYGdkTtqRN8qNfOK67bfcf+s00+5AGH1Vmeu3KBOW\nb90tMGWJFITv45aG3t+mXF6P71/pV3qWNtst++L0e98vHV4MOZ6uNpbTwe/u77kuwcD8VZ08nWC+\nU7Yd78Emoc40NqE6wu12RXt9we9/9ye8fviA79+/U92ki9ImiXy3waY/yT5q71sIJcaG7o8YaVQO\nh8tln6TS72Z3nL+yJkqFJ2JsAqJ3rLDTF7YCmKdWbPPI8MXtEnOsP07j3cn2jMFExGkz32Y74Y/Y\n5krHXuFyo9D4Peqg33Tv01DWFGvDlfmeSqZhu6skcGXHlbaBzhYq8mTZfbvO0D4jNL/TZG1Bym08\nzzOcDss47jxPKBTfv39H70qnRSI9tilGMP1TKo9pzuUzT3LfOp5qgJ7FtOd0T4dSu9Y3mY9OU8Bp\n+wZGyxs+QwlbxDrte9WH1dhSpTZVv8+SxZp4CwdojknHLTRZDwU8LgtzOO1qcoiAgxjXLkwnvmFL\nke7dE/gCHLe/7AP6vMv5wnf+xNqYcyYZDhPSMotJ9iPTcUWX5V9l2gbWNYYejwdU+xxLVzI4dKdt\nrALuT7d4/4vQ7v2Iga981uy35jreYzsrHF7po9InfEcKfQb45qarsWIZh18orjN/KrlJlv1xknWr\nlzdH2t/KDuVFEKY9y9vm1yeeVvcmBR9jfvcade93IiDa5wKvqM/zXo+Nq7Zt+dys2pybbXwQfLX7\nQdT0z64X8hx9JeOZhlX1+zHhH2ohpHcbYMMRXicLdO2IrwYnJnjSGBrLhUdsgnZOxoBMaWv48X3G\n/AMpIjbYqG+8B5WjiPcahDlWB5EEKsSr2JRaeIYxcIRez90vU1G4cS6Uxpl4diVwShMGWTibRFAz\n2rn3R2caTdlgCK7MPoQqPnz4sNqNEeKJd1CVDk2in5VyUDbmuqnCYo9n0H2eA1z6YsGkMwNck6eT\nLjf30z0qa5KIJ+WIL+z+rUFfTwAtwx4Vcu8aTtBwfju6nfnCyvLZXRajj5bTkPvZwQHN2cgURhuX\nnUKOsBPn9QxLv06hwB5FMJl3b1dxb4F14ocN2ZIHKgM6LjjrZ1hEnZQNMDh1BzAvYi+AlPM7AY/S\nIAEbbTYqcv1XOOUKwJhxzM/4c3ewPGo9IOgyHKWh02Tro8ohqOqu6LPTIOH7hW1dAHtvo8tJThOE\n82JapWsrZyzkNxDR6ZQVrkGd6740kV3du9AFgedNdzBatne+EUIKZKcgAdDMgyWHY8GRx7WF3+nn\nHEvz9Alfyt3auAiykofAa/9ucrbaK6YQ5kRPB92lgdWtFZDWc+6elxEfm0MIXIWoHLbdgN3Q+e1o\n4WRSTvuY3EEg7xRdJxt38Mon8Hzxl2wvy3clL5ycJsCBKmMALneTfyqD7WA+2cb58q6bHM7C22mY\na/bHeZ7BPpYg1uuK99MsGpa8rnpje8KilarLtM7Cumq4JNdlL7U1p8opGnK/dlQq8dIm0jiZ/Y7P\nq0msgUx5doP7btjBOa4vKf6VfqW/NS2c+SyFxYgL3blKde/3MoVJAMTJj61uHRPEK9RTfB+4H9O5\nzo1e1RUuQgQvLy/49vvv+PDxI77/+DHHeIfYXU9Ckw+08990QqONV4q1ocMxIOHxarJc5nPzZYdv\np2GhaNelydbPtqjjBnFMF+qqfLYLfrEtjx/MWZ1tIj0MrBOJIrJOfsAWNeA+YldbjIohnjKPWEpy\nv9udHmXSJZte37QLOmP2G35kW+N9RxvmgGU/7d4+xmUZi2RMmP3TyFIdMOlmMu0ON04RjSftRSBU\nl5kcUfhpFZYbrsdO4o8NH4rH28NPiijx0HTJqXOe5aadVz4E86t6rpNe5qF9njXRkFh4YuUX2CaN\n7At7aFcqM9cTaGptG0+g/qjaIiLjJLQWmEqX39UBiqCQ5gig62QD+ZcrfPDCVz4hRLo1+6e9oFWS\nXF37JTzvw7xPfhy9W+meu/JXu1HmzWVWz3M5jH3v7EKWkasxaW30OQSfYVr4Oc45zOgpssKh2Txg\nGUzAaEKUy4p205mVbcw6iPm28Owuszx+WeauUvX7lb8lMsKaBzkEwr+q/ZirWsZPkedh0phH4qti\nCLWMhcN9sy9wvShxl5h/WabKftrswXUbuG7TX88QXWXjzQYMvLLP/WS6mIbYTjMf4nadXx+hfxWv\nr6/49u0bXl5fAx2Zr++xGVe/7bNg1+kPtRDS2rrbwEJWRUUanWQTNAVmaCQC6TOVA0YwJlvmYGnS\n8HIcOIamA/X2qKeg1TvlQlHZqh2vSt4BA35v/dYmKN931TANPjwUGDFg165LruO5EYlGgScXeOBU\nIJI/50kXYDVrxMMbSujDhw/r/dkXijVAMs3ZSJ3nORYxEm/t3RFrfge99pd3XzGttmDWVQO4ZMBY\nhcXIQGRxFPGzCNaBz0ifLRLkPu694zz31ebzSb8yYKueBflLajYfn3TjkpLlCZNXMhTluuHEM3ve\nMEnX4wkw3i1mddvCVSXPI09fbXDjCdclI9TWMnTDMAhaISPPeHqVrkBGla6cAXoCYO9zgE67yT4u\nK/DJkxDs0FU0Z+OU2wdcG/DQdv9PlS8WksF0WW4h66ue9+4YqY3we9JtP14U9bN1+HuC29jEVT3m\nCI6QOwnc67An0hSq59bnV7SK1NdlcvlB/uY7ZzVO3R+sx1Jw+lK53F/D7h9hcd9/bw1C8V/bdATv\njoKvDRc7TdUCRuVANchwipJMoxhXt/pDSNe+S553vZFBvbdFx0SUh29MZeT2Rv2R7QZCHWu3c3fA\nvsrYT1Vc8aGUS5AzxO1Jtptfi+WsnY9XvDfbZhMHzJP3pFys6zeq13At6/MXO6317pp+pV/pXzEl\nGbVH/+JiL+xLwCCWXG2uibb3TEI8s19sM3zcNeDlZTnpFsLw7IsGJN2++VtC9/Kpbgv+loftGfPD\n9hI1DPxuCyJ2mbP7GxcnGKt2mt0Nzwp/7DZd9E+JJ3sPmwN77363l/moa/JFQerQaTJ/qtrc9ayt\nOVl9hv0hMdzj+CfeZ1Vd1v4dwwNjg8YQkoofgv0U+bbA4/nFT3FmOiqfoOSF6jVAVJ0+ZhrLYouS\ncaLTQyer4jwf+Mtf/uLtjL7QKFGsnIsxumHCn7Cjz5TPPp6eyEquO+m6iu9ezlJG7n+Y/DhfRNac\nkwzenl0LzEz49knz7bT5JV7JQIgeb0AEux9vfmO+r7ai9+r3Z31a+cFc1v7+wog/JS+prHUyJeKu\n9+jAPB7zXENXxeNx4i9/+csYL91udJSg7/z9KRuh6jFwNl7YmLq4AfMpvdX3XAe3618r5f6qdHk/\nT184Db9hiXHVT0/x+oWcuKz34fO+t8yr9Cw/8ziHJ+M8qrrZnrLkwr74O09o5fp9zNG/K19Wit+v\neW+lpvlNwjyfP3/G12/fNnqu+q3SFf+a6Q+1ENK73YEw4rCPFdYJHlsLO5WCsy+6diRLC868dLih\nMuMtaGgNaPMy1h/f/zp3lx845j0EYCWFYrKhop+3QM8wQ2OhZdIs4kJkNtWze/kLqAnmLgCaQNon\nMcdXv48GCkUfEzMT2LFqKkHcJOTUEX5GVYdzMHccWDkZiEkKwVULuY6QV3MkDvDQ0OV0gNFk3gfR\nxqKUxTyWVCfT7ruyEHfGWGoiY3L9aHj0E2MlftA7jvzOvm2D0wZwLL7uhHwwI2d3SDCgXcCGwy4N\nZXieJz7My9gd/EtD17EDtQlgd2CgNdhFguPrOFKpA1nNHQ7EY+s3TFFg+qYjp6p+LwqfBmFgK8e4\npLzrlBesnSl+/FnW/RJ2tDtevjn7YF5qxbH2AToCCfdPxmLKdC5M1o/j1ds3nKojyKbIuCi7tbZA\nptBug97nKR2BHecf9Da8vBx+mTtwTAM5ijjmmGki7ojyZNgdoGddlJ0G/83ukYE5hFPWJhDlMDEW\ntoCT6l639YFMHmQ6V3mkL4O/pwEE7w7PlJXD7j+Iu99cTo8WT5pN1dTWV5hKC3yzR7LaoBNUmq4p\nJxGsv/k0kQ+hAuzTu763y/6QPj+ajB1YUgMFy19NajA/pygNejB12CXwTwAKAm0ydqdfTAgxDQGg\n84Qw1pj339T+jVHe0ND1RJvtPR/neFN3+QW1Q2Y/DTrmucrCmVIomoydJ6Zvx/0+0fn2mOkUT52d\nAkttvDBCLE7aRqi7PmJbI8k/bbkKd2uMDKvs+dy4l0Eb83YtW5M4q65Flin8jB14kbpRPdY/TRAW\nMgFbOO5Yu3tlsnlfzM+2GID55QAAIABJREFUqM9NHLY5hPN4GLre8XI0dCQ8k8d3G6corc8PEby0\nY9zVE0Arj/YI7r1uuxeKxy6Nv1GeejmOgyiJrrteZPLiwL4QzODITgxyG70/ZXGYHaeBA3qIsy80\npnoftrLrrmMCRtR18nU4yXOna7fpOoWdZjqkmjb5lX6l96f3Tkxt9s3/O8fDz6y+X83IpTorGjf/\nQ+KzspztiCl/33VZqItspULx7bff8Nvvv+E//8M/4JhhWIHuGMbo4oVetw+j0ECJna40X9ESb/bx\n9snaXMB1DP814QziVdb7A3crzE3ePK8LzJrthted3i0nYhh/YPnHxhLztU89wzveViqzDl2NpZex\ndsGC/YhEJ9O1ysDwbULYLUzfZGHQ8UiXb0p8s3vThjkaIZ8J8iDgH9T8Ytu0+GY+ccRzdtqy2qCX\nfc/hT47q7SSLqobFKV0NXP6MuxirvDVfMvj148cPvL39wOvrh7TDnHhEfZIx8lW/ZqxS6QPDOZs/\nM9uZOVzJb1W3n1qCbPKT6V8/kq+CJd88rrqHSMr0xO9h7MLGST0uKp4NHkTPv2onp2djm0+yrTFy\nt2l2nZqFvzvxnBbq+SKVNIdx5RUszH7R1uwL+XNZkVEqfZdp2fxl/zx/t7sIe1+4cv5s+C43oGsP\nY4br711JrpY+vUsb1i/aE+ovNvk+SzwGdowOt0eKfbxc2ftn2MTrSnVe9dlVmyq6r3QQf7+0r9Se\nuzZkP2q7O+zCjl49M7tv0ieAn5a9sn3+t/cUanT5nyj8jIBpbvryqr1LK0Xeffr0CV+/fp3jZPzj\nsZrrv0uVHP5s+kMthNiJEKUQOwB8J/hrO5BNoYiMC8p7D1LCEy78XOZCQ1dFwzgV8HicVtgGtjKw\ntToL0Y5/Bfskjb2r2BTGUjRTcGziww0Q/R5oSXSRIw4aPNV9C3sL0kAA/Ei5yFiwyCG2Nr7kwWkX\nms7yBngaeT58/OgcO44DJyLQ29yerJQYjOc2zTof58PfGUfwJQBfkbGDA6QQm5WtZp0PRzZ3wMb6\n1so5DRDO/Ge3vGNhaIBWCXeLpEZMvtexZK3c4dyxYRyLiMb7CngCyxFZY2SvAwSQxgRbEWoFEUBM\ndBwAnsmyH42nXdsMwDYASydCAKzJf9V58SzdATJPlawj7R0HgMfbw/tDu6KL7QAfQE7EAO5yoJg2\n5sfl2Cmej3eWc7iN+czrizLXxcxrJzdPdsa814Yi9NFg5NJa6b3jONaOPh6TyVFYhdsQWQBfsU7d\nheRjRA1ZLaWr9a5EgBZ/rP1dPZ513olSATh7vsVJBkwrXAJGXmytToRlfaXAOCJ/M1EU5GG+Y4uO\nQ8S1HLe5jBhGaOn61gSvr694fZ0wQE8s7xneD2Ns7gA4OBncxqlbqfFBjnT2uf01B5TbzM7XlV0K\n4ShJBt8LLM/ecQTbiU22Kv1YAmnTg8a6pI+Hnl86qnJuK2era3RozFYugbUSmRW1o+A8oDFUAf9+\n9nlHVY1BLJ+HvzAKbvSfEev2GCxHHeYlV47WotF4EHEN215NshfH8iiDZYsB+oazdGwaEbTwnPvP\nx/xsU5tjhZVfyROSG2ufh2qh8aI67hOA7jL9K/1K70l3Ez053+6gm64xf2FgvHc5nma7nyyGgPRI\npX8HbLiub+Utys70XPymhhknpvn08SP+9Kc/4fX11TGlnXrLdPBJZC+roEPXg/DbFX4yPen2m3QO\nMPQF37eYeSLAvB9Rgy3fbGSh5zdcPfmT78Sw3+30xtXEUmXPPU/X0Pf8TiWTbIs7hatq/qx7G3LI\nUi8XwNGO1L6dfgt9xf3Aobt675AmaO0YG7EKX8XWDiu+Md9jUO7VLVX7M77IZa12qdsYDknsi2uh\nxmGhzZ9k/28s+oycf/nLXxLdu29vdljJpl5hs6vEefO4j37G2giV+3ltmeR3Iu94e5nh/wb4ydhM\nh8tyQWcYz5Mmptxlg+rM7RV7tyj/LmXsE3uWfONMy9yItNe1563mCiJfMzYmfAyZfuCcyNVFN8tP\ndZF0ZUFsnmbDf9jlctPBmJugtjbUKWPq0LZQ5lgIGdN05jnmOgauhEH51HaqNLahoPVKNqo5E8a3\nlZ7Ofk3lw+T3s342cH7HzUy/iKzQlOn5/8/euy1X0uNcYgvMLanr1N0T4fd/PHvCMeOYHru/Kkk7\nCV+AAAEQzK3qsS8qQvz/r0s7k8kDiMMCD6C1RT4UnVLoO9/Xrd+DOlpLTqord7Sr6u7FnJD//RG8\npGVlvbKMmcsTSnPvK77godcshJb5NPK/GRNUertqf5bboBusdLeIehz4/uMHnl9ehN/bSltP7xzi\nMdCiaIvR8YFM+/RHLYRk8fIDQERAj4DHiKYX5TY3MAk0BaWhIHI8f3t7QyfZXVhNgvq22N+bQbBv\nyNksfcYchDD39coJCP0t3uVJF8YU+Jb6kZWi0bPPrfLSRwSmWyblgh1clZKvz/9WAj09PdmlgufZ\nLVZ/BSayYvYTOSVQhE6k1YrV06H3eTpFJkhchHoCQHGn/mJMSDYhK9gnnkdjfd7OLjQG53sHIhiZ\nYwicfV6UVyojGiB7sh4AnidOlG5NjncLuG++S26BYdK1kVx073dv2/8xD/6OhoRZdgDz2ZexB+rT\nO/KdXuQ4mSp/q0CfMGLXD1k1xyHRUJ232+0mFwV2DZ1lVJnUUr1AhMP3l6PO2clplSaN4jM1ho+A\nyM4YdNdWBZ6+HE0BgA1mMvDGc0FS8/mFSG9EM5iMACYD2nFEuKCFzyN1etW46kPfDyACaH8qpAJt\nO30U2hoMenIYOeqi3O+l3IbtUfOqL9U71Vm7cc9lVM6AygEz2wlL5eU7d3CX0xx5Ybz627ejQ2Le\nhndjATV/U9Ep7syk8NvvIKTc/8L+zXGRExAOWsoCK40FGGdAtvG4gUC7rF9NJsd/BtpzOdp/OJ6k\nuJs1feCWTdjJggrE3rbtdlP6cj3g1u9MdkpKVDw/aDBOX55gJ7vs8nhHlAcfN/ubeD3lsYzzSLvQ\nXKHvWHl29MDyzOdpp7ApnJF/tH/W6epPdAk83qIM7vS1TjIRkd31pjx39h52LX+mz/SfJs+j3gcB\nq27Z6At7ODG/wNNo43Y8SgNjX20HVp1Z6c3Q1kdpVHVlQ32ZO/tGjQBu+Pblq538Og1Dsm1IUFrm\ncBfmm6R2TH+0XkgKuH7YBi1HfIK0YFD0rdJlendA72lnNxAmgXvvYLcDlFWXJn80h4rMfdxNCjGm\nLfY+gx94j3FL2g09WoWrzDo469xgU1hpGy+o9/k8hvTPmdlOZ7ThJ+np+tKeJznLPoP1j91GOcMG\nc9d4ZdvnHWQEvTlNu2jYivvyTHkn+hlzMcnbeTv5Mvyjt7c3WZwvxgeuvA7XGDdGVap8Hf/b+p2e\nWx/6FR6PmCG0QfUT6Z08ih/WBbT1rhoK/fO00PsAs47xIYv9XXUZ05JbvITHfVo/hs82SKyYx7cB\nLoqE+oKKawbTStcHRs496eBwn6y3Hzs/QLCS+8UItAfGSd3Z0sUbLO1PcsCmrE3KXPlF9i7QOvrZ\n5guP+cRH/o+e6NV+azrPM7R13mnj8nFsb24DOboHnyn1M9w7vOlz5q+KTpUduiozl09EZteynIZ6\n5MP5t/OZ8pyY1YO5ybHSmzUf1rJV2d2cqvtjKp/j0t93z6/e5Wf6r0a0yV9an/Q3nE3RdhV98vwP\ntS8beuV++r5e+TOTtrEVOnYHZCPH03Hg+7gonTftvaq7akfmxd9Nf9RCiB/q45hOrP6nRtxPICvY\naofubN8LOTCZoY3b7O+94/3+LrVzvAjMf6OMpcK97YNjtirWdHZWdkJePTOB2DBzzmd5eHVEdo67\ntc21MQDH5fIf3nJ6BVSNjoR5Sfl45wE7YOZ8KcePR3ju8gMAt4ZGLV2K7gxrZzlCeUwA1LvEDCbS\nwlydO9pxdIyMx/zEbTJ2BHfageYEnJ+Ikx0RKw+d3HG0uENLx1mVqC4C6aSnhYuheAHcOeI3AhQv\nC6S5quwXBYjWGOr+nZapwG23ez7LwKQnD10+L1T3YblUyZM7Do4hzwrKPODRieDX11fc398DQPH8\nbcZHZcWVsQMZvpxqAo8cDZfvE1DK4LNKizHkCRZ18nsBL8kge34JdErt9Ma3MtbbVPsOaz800xoN\nzOpfvtEFPEyanxiX0rk2G78keVSgntW38SPo8oJ3z995osD/spOMaaFpV+78O+q7RyDL5NGH1vAu\nyPg069mZV8tTx3BzUWAC6UFWrBjfv8hvO/CVgXyWm8x7mXf9JY40dJie+muNghyrnsiywINQUxdE\n/rUJCrWj2saL8dHUOYLa3Bdt83yjNlDbjNA/j4Wy7nIFB9td0hq17l7obC2hkt/IO37+WyLc+wxL\n5Rc+9TbdHba50oOZh0FatvYD9vfOubVyOMI41aymYT0GXPDHqNyVp5gmt9sv8uVFTsWZb29v1zr1\nM32mB6nEGAC8QdtPGiBgXXmp/zzWc/MDgu4GMFm2hV0eWQq9JEZv3wdM/4DTs6m7hi1KzQxlyhPr\nz9evX/H89GQx31WG1cfzusj/18YpDB4xVmdbaW0AIt3NH6jClgzcvdM7Pr/HZ3KqbdqCSrdL0TmM\n5uyn5q/uBdyFHd1hE3+iQXFVbo/vd+bLjOG13XkBRnFNpuliJy5SplnwWdg4BgBwjCne4A8D82SB\nq1M21KGwdez+XXGSX3RTrCm/o9/FjOGvCR/KHkZaF7V8Z3lM2jLALmykjBEAkk1g57jYGPRY9gN3\nDv4NAAoJg4XssWyPlfx7Czv7IHn+UhyiGEHGR8ZIQ1HqQkW8R8b5T7zqm84svnTBy1n2OsnkoPVN\n+y+DBwDuhBHAbtGgDUcqaBSOOHDxy8b/Es9fNhadTZcXHy2Y6SO01n4ZfUZ9VQlVuX4Dk3zn9KQv\nU//etM/LcOTH2f0dxr3629fXz26RLPqgpZ9Us9+uSxjzL4FPNCQWjYU2TL63+pqnaVxYze3TlE84\n+Pc7/yuXscuzlJnpDDf2ni+cXhwPp05VvyqFcqpOapRtwOozXJ3aqFIls1Ues/nFt8B6okF1jfgY\nST8MOsxQ+nFuwep0/aj8vtyW8Bsrv1/RpMInOb/au/lsMvu0H0A/T9xuN3z99s3o0BINMpaoaLp/\n7jDUZr6iSn/WQogjdj8Z1DDujJDjaH7yNzORPFdMHUFrdooNyEAMlUyUA0zJ8Gi79A+nAPZOxZyc\nUVA7J5jW3Qy7CYmKkXN9WZB9eeU3Bc1z2/XfzozGDD85phOmEfgvhV04K7O+RoTb7YbjOPD29gag\nyxwJETT8vNKLXFl+MSYoAN9vN/59nKaIiszRvHe9KGKh5Syfx70SFP7T9yfzAC1TOQSBV0V96iQq\ngam5+wNmfWH82IcDmgqoUspap/6rAJowLlp3IVgWo6F8mcbOOxj+aHyWpSomLAN2+iS3LfO+lhEV\npAMb+sy1TY2KtUf5BX7so6K8n6dNYlegXGngeekjsTgzvWYfNoYn1av1yPcrbbysd4xYxWABZcxh\nB87OkHjds9Rd8F+I5U/Yhg5vTe9jqTMw/E6QSQDy/aTMU/NjEg9/yNec3A4LHeDJw8Dyb/xb3yH8\nHs2yunZgnpnDwoKm3qPBBzB2nvJShvazAh0neCzErosDVTlVGerwMFycawdCM7BmjMUkIpM55cRg\nL4feJiLTeVp/trO+nUTRwa9OaS72wS14+XIqWuzq0bp8WeYsFbLQe8fZTzS6lXQKZSR9FMJqwGlr\nrjhpvsu2sqKhzy91HZh8XEyWJfoGjEEUaFKNl7ZlNizqrB0Pq8BmoHsyz80FEDyUaerz12VPGoHd\n3XCLA5gnAzdjkHdTjvpPHmEzNrpSellP6IX8WB2SIKutyX1Ae/b4TJ/pw2nrzI7/rfSsJXXYxyuZ\nCB4vHqQs/5Twy1xYlH+87vf5PjLTmWV50V1p8kHzBFuDKZdfvn7Bt2/f8Pr6OvAXwJ31oGNpb0Lb\nW6S54UoCiNrcsObaMkPiiP2QXeoKOQnMMcQzCtsYaeIXgtZ38791UunKjnobzMy43+/mAxgeSBNP\npV3g8T/OV/CYIfdJ6Xsch/1tvkzyF7wvVt3Fkv2cnHws9zIcVZM7DLtGStC+II8DT9yocuZuFZuy\n4EPq6HduuPs6UaRbkZT3FaMKXe5mi0Aaulje630aZ+9yFwTkROfZO47iRDAA0Gj7r58/ZygbWhcI\n/FgBc0e8PJz+ZMZ3FR9f8aIrsqD5fObLz3Za9YHV43z/1hpuTAGzhHIR8RgDNkld4ZRKvwa/g+Zi\nrt9qy8yqlOS/RuOfKK/ZP9PTSlcpYqv1vfl27p5EHu1om8If6Y+FDv7PQS+9i9a+IURZcOVX/vIO\nn9X4lUJUFKtTZVPJnxePeMw/shCmtYb3+x33+4nGkFDnA9sCg5baLyIwDotyYk0Z90Bu/TlwCKmv\nbapsWu53pn2FsSv5vaLrUidvfGOs45QxvA9trbrZ7pBNvsqVPvCp8h0ehca6amMu9/J7n9fZeuPn\nQhYq/v5ovdm/3bXHY5ersqxNF2N+3bahyYiMZzszvn79in/+4x+43W5bXFD5RVWbvF4/z7thJcVx\nH01/1EJIc5e5NKJx5LcPRVMLynEceH9/F8NCEfD5lJWEAh0mwtuvn4CGDUGTC47Hyu2VwkF6vyqT\nODHgFZydZEknATRlAfeKYnexlq9bFVNQTrhmngnM13ZcfeMNtk36pxBIuUzuHS8vL24SfdIFB80L\nrZMQCRYtgEHKo7svGx1GBF3TYUQQnwVVL2W1/g+0kGmhvxs14Z+k9HRS7LjdRj8Zx6F8MncGnD0u\nAth/rk1aLKe6Y52TxrdRpyjjlX+tjD6N7XEcdnqGjWYz/JQ5Ke3YOjRhkhMRoDLLQtDtdgvtUEcn\njonQq/c4KW9jPJhZZUHuB5kOmjo553nifpewWPf3d7uHSNudF3F49HlnIGf7otOUeaMKJWH9G8JZ\njaG2mexeGKd/Gtml9rorxe5AYMbJcdI3tMswnntGc2Ehp0Br3uNtGnxvlzEj7kIjABiLBAbq3M4n\n37ZQbp957Zh+AewcOUO/get4oUYWnt/BtZWAEE7hkcPRGi39UIcit2vJ4/oBCP2urhCrbMJSlssT\ndkryKJ3mfU9ENEJ1yFjbhBjWcrV9pvvSoqwfl3z5eJXPy0kOfVaBvlzWlZwSkelB003+bp3kMLSD\nwCkk1RaYE42NFLrQ7Cc8YNjB66LFrg5UVwHADARXGmDJh1EvEn006UYGP2bZaQr9HDb5PE90App7\nL7IVw2eoe59Hg3AMu32Gtx6TaRiS3P9Ml2q8528JsYkxcSQgfeWfijaju5MOvv2JRj7t9QuZHdHf\nuvGBISeR5aLVjqenJ7y+/SrL+Uyf6VHyOD/Lnm4SsN+FLtZ8IDnB4fHb/19pZxPKiSzLgNAXX5a+\n39U1/x5h+4jw8vI3/P2f/8S//vUvh2dXBxxIG0NcPt92e4/5OugL0okkdrofdm0XkS6OxM03inH9\n5cZKP7HpgMaBzAsEVVjkZXJmxxPJL+3c7X6JxZ9O307c+WgyJdaTx39nDzTP3k6rLSfoPYCzObU9\n0O/z2KsvRNQAPms6pnkHIoDQIGeWlfZWa2nz/R0ok6e9XR6YQbEdxO8EEZp4AtGHOhl8duD5SfD0\neQeYpU2K6YfMAwA1uVfyfr/j/X5f4vqXtpfW936xYZcW26t99GCeJ476SFkVb49iHCZDyAtwYNHF\nF0wLuTkJjWjMN4zfi2+ixJ4aNWOS5hB/PgET2rTBgaFCINAhYKeqD5RCqw//5yPq/wrbV+333z2S\n6ZFxr1tSH0b2qPPsGxielefu7hjLrpm83pHcfhPe/X63zdN+pCq+8/1VffwRnnbdD+Vnv0DLrtrQ\nxxxT9hc/mip/hbFuZsgpyOMHyv7I8yrpBt0s9x9pV0W7Xapo5zGXtd1/U5Szs7NX9X7ku+D7bere\nlfMxHrzAZJZJKmYAz8/PEnGpNbEpF/rhyubvnq3o63H6oxZCALez9JwXeXlBznn1X78bB4gTLdXR\nJfDYTX0c4N7HLutxMXWPu2HyhEyeYKsc7VZcTlUxVDZwO6bz73f00BQEKJV5pZg0v19UeCS3HpiP\nB4vA1QZ5XNJmkwViJPS+js69pD1cWTrmuqqc8xFkkt3v4G6t4X6/hwnjE/PyPX3Wex8LV1cghPTq\n8Nn3mWFOMp9n+EZTJwE9oS0aT3xYbgaWsWZeTzuMKoevNS897NxB1IyeSgMtR//zPD2BPywUUaxn\nBTW+f3Oc5dLnzCNeHndGzHZSUJ/OufuWXb0ECYVjAA7zgksFRcdxWIxYvwixm3zbgercX5+8fqm+\na2Or4S5WptLGj7fnS+YU3zLVfVAz+auOiYY2EU0nhmfb86KTvJ7TKVk/VccTaeyU8Ud8fV91cpiZ\nTT6zaVPHJfOU3oC36sf12emO/1ep0rVVH4F4iWhpqHvUtb4P+Zv8rY2V62eOGHYFgBd+rLqscmhO\naqAEOp+hbACyOKJHubVu1CAky3IZV9290+fHcQR94OlSlZ3LzPTIzoKXp0ay+OPfx52RorM+cuK2\nuqTVt62nvpi9UPlqLSxaZEBY2cz5DIAbCX9iL/dZ6WEnKV1bfKrwh55OasctvPPx34/jFkNlNVoW\n8Xic7jvaujC5c0g8r2R7YRsvig0NXo9lXtB/9ZTrIpNqPxzNKj28S744b+uyIyX/Dv5vDb9+/coC\n+Zk+04eTtzOEqHuY2cLhULKR2blnFz5F9NF40XjJ+5GJhPwuhxz2+RTtBh+hLHvvyPOYtLpqk9qw\nRg1Pz0/4/v17tLvcQZ3s5Ea20XpSwdo56Aoi2dHv2sLd3zUY9XyjqNez/rd/5f9ls1CncIrBdXqU\nHyMgLDi51EPTlwq2ItG3HYr3ND7+aNhEamFsmHnMWOztbYW/9HlFk4wRfDvNFzSd7TcEeZ5n5BCg\n+l1ejDl7D5dM936Cig1x2k/D0YqxsPcbfZ/0uW3u6jMkcGAoAXEyDu60fRu4X7/RED7+ty7Cm22m\nyA9tzIPce8e933He36ZP7RZTF7lU3lde6yN/JhEz8kMtdyevDF7CU2kbMl0r/tAIE9EXarbAYzLS\nVowpWDniaaKk00a/9cQNATijGCgHGG9sdRPPjbcqs6U+yP29WhhOqYHw3iPONzm1Pjocf7H7a+cX\ni2ogD0+Xfui9TIH/RxOC/1mckMptmO9Q+oV5LBzHBHbMvKQ4mZnFx+V5l5udstfy9BS406PSj4Ln\nOfqYFf0CziQCOC7uZF61fJqHhB91IcTKTuOw07++Hl9ftDWrH6Fjb/dfVXgBLhwcJq09DTT/le8e\n2pVosrvfyn/3CL9U/sijNizl0/7bnd+o3z96XtJG9ZmTr1xO9pE15XmfBRuO8UrbHqWOoULa8EH/\n9uULnl9e5PTTJiKTr3fXJma2ebzZrnr+4VH6oxZCCISbHrFJBPME9YDNjNkF4+aBDQIO4PX1F/g8\ncTSZUD0/IAQ7IfWAbNktO06a5N3isT06KabvAD/00v+40zYDgDIRsI1vI6VFZqT1MrRHignWVC1H\nO7HSU4u62USYq4NGjPfxzOK10lxoUGOjxiNP2NvlSzTi8c3KjR/mBOQ0FKKYR+ghdaw6QEm3LuGV\ntEPh0X4V3ngR8S6LoHwwwbRPR2vWNiljyIOB8eHQkV4uO0CN0phHuUlZmtI52jRULTqC+q2XQa88\nAYA7TVAEuXfFy2+eoCaicRmg9IuZR70DiJwiS00NbKIhICGFiMcOKD8+np7W1vl9JTtd6e7BRb54\nPumnR86dpqtFkKvk+2xHTIlsF1jTSU6tJ8W9DZEukoG2cTt73JU26rB6IY6kFLW2f/LIoOcAfVlv\n5/6zosOq347WzDIJ2ou8bMPkyiLaqryrcSrDoVHUtxr71y7RpAkW7JMBSPTvKzBF/tsxkNmu7fSJ\nf9ZZT4FN+Q78zSOUAY2FZx4XcPZIj9B3b3Ohvu8KJP3Y5nAWO/u861OWzSrtAFRFmwXUp3oAmINM\nOJb25T7Yic5ZUehvxfOZptlZAOqL/HI752kx+R12RbmQIl7+2fXP0ybTM76XiRjR3Q2ghrtOGAFA\nI8gdVG7sO5ZFQyLVWzrZFMeu0g36vdqKcJFpX2XCHE+sTuKHcAtQj5M8SPSpx1TFnQdWQeKXJyI7\nLUdMAPdxgmU9WfWZPtPvpMDvwNQtjg9ZPVZk3QJ7zsUlWR9x5Hcy5nGu2o1KW8/JVpr2yydnEx9N\n3GzbMPRIv0uIhaMd+PHjR1hE1k03SLop430JlzQn9XybpR1yAizviPT4dUBwsIYFdhPo2W611oAz\nncJgtyjci40aY/zzN5U/7P/20Qrm3wRqPrSV7uA3sGXlq+fXEh39GFXjmO1dCDfpxkLHyyf1XWZb\nVpyZ6/DP8gKS69J4Ln93BhrFzSG+nkl7zd8Dto14IpgIw5KSGs7ThBWh2ZQmutS+utP7PjGzw3dy\nvw3ZQpaUJ37iiApwP3G/311bdEQ9PTzvSCOMBwuMr3If1QtFHyO1GdCwvTwoEt/lPubURAm6k81w\nm09cfzoDxOWdrrs6TD4Rsda8B8zJA2PM/SCNndbDFkpHZfYqaTvaiGjCmOOrfv/wniGbEadOPXTJ\nRnWptSBhGUQZ3eHYFSsh+EpWuCtPfRP/PWHF+xWW9snGy/4Hjv4x9ZHHOJqjLcwLiFmfM4tcvb+/\n4/39Pc4pEdl9PXHzTFtoIaeoKfVtaW6cP6TVX7I+aDt8niHbcgcuGf9PnDzTh/xS04erb1jh7Cv5\nND3AcwbhkY+ofaSp1h+2t5Lhygbt0lW/vNyEbzbff6TOykbnsq54QNTk3ue58vUyPrH3zj7M7/Jj\n0Ve3duA+or3845//xPdv38JYVP2h1Jfcd8NRrnXeNF+wwpL+uIWQHRNUExjAnASIDnH9XXWhUO8S\nQ7MR2WS6D5lTGYBYgGCZAAAgAElEQVS8U9CnXG928P03mfmZ2Saed2UGeqU2hLrgGXayTUO6QC3V\no5TRHclL+4r+tubBAAKNdUyygevjFI5vswBeMTGy8Xu8I520W0H8KDC0zytuonjKQu6aWcdXQMzg\nDwP5kHBpRCBa+cbXAcV/EwcG+ut4hDrHLt0qzJQW4IGW0ruf6y7YPD5+V1FrDf2Mbe8jFvHtdgur\nrr6enUGpUkXPYPSUxin8zfw+KvnzvAsf9BNAWxzR+5BbIsI5QMqhfe09tIdoxvacvLnqEvvtuqyA\nKYxlQZvK0FWywrwuomV+Xowc1bubJCRbHC9uczyCDC46JPZZ7wQyXcLJaRkqZMdvPhvN7KEtczzm\nNzpeuuMw06tKBJK7HPJpMYbJ7uqsrWXtgEfWqztgtyvzCljmb3cAiAkBwGrKIToqwGW80P2pOs2r\nMtlNd015iO2zE5cFGP4I//p8O7lfdHZKWWf4OvIYV7oqYAJEmfJ9BcXLrLXsbLsWoObsLZxMVHaq\n2mnre5Wxis+X09TviQaI4S1N/zvbntvg6eH7qAseogMZrR0AuU0ehGFXdKcO2wJqVZ7sTD+xnhlZ\nQwnmcQh0d22mcGKkLd89cgCMJ4u22H+prULPCmdOWuW6chv03fv7Gxjnb13895k+U04e78cXuiFI\n/0cf723UFeR75GAXXwDgpX0ljg/fpKSypXfHhaz7k4q+jUGPkJx0+/rtG17+9jf8/OuvgZOnjuku\nf56U7yrnRLZJZjk1MsrJm1JUV8S+SWbRN+5UQZ++yChMfDOeu4dVR5X9TPZO6V5Olhe2eE6u665k\nPwnT3TRFBIxKHx+1QevJ2LTiKea5mSLn67ZTXEZduhks6dKnyrbklPGU+pxGFyKdup8+IlYME8p3\ndjf2UybGJavwkeYkR2f/Leupfo4YVzZGrX6f5znVA7Of7m9yESzOE+/MthAi/NUCjRfZzcy8SVcy\nmu1ytt/Srz3eq3SJjf1Su9By6jqyidaM/XPbqmcLDmf7H1t4Ec5hKAep6ghtL+q+6p/vI5PnHUyc\njrhYc4W1U42YPsM+VRhSfXmpD2HQ9TSW50XVb7nXXsZUFjjJet7oVvHAVZuXZwTHLw6nD1mYcyXN\n5LWnTZKeFmAeJzF1YyZscXzK4UpDHwkHqv8TzTTv2btF0An+H8voM03a7v7NfojWE/yZwmep6Bj8\nhywbo04eejHLeYknSDqgG0AXPkmY39Mo56nae/Ws8tl3dYe5Vde/Kx/Ep6y7fbqaizA7X/gqOV/u\nh8mVj95humudE8n98O3qXcL8/u3lxTYWKNYIfRqyrv+pXOd6TH+kqn05H01/1EIIE4GOJzDOwgGd\nE9XAmOCADODQL+ARc1lPlWQn2g8MDZBzOwjv9xOvb2/48rfbwLX1ZJqmncMeWsvVN+zssU40dGE8\nWpmdeSqJZmXK9JibDoXu0zVdPgSDMY7Jj/p0x0kGGqrYeyjVyA6MpXQiCjuPVDHqJLuUm40fB4Hi\n0XZqDS9PL7KDnxlAQ2M5zNc77MJgPZ1zOjoouLjbDnSduCPc+92MB4NxkDglNxVEF4YKGBPqB4FP\nofvhgQIBzBILsvGcvFHeC2PtVkBsQk1BKtE8ZcE8dmFz6J+V6x0Uo7mbJOIJEPTib/137uACjjZF\n34+Pn5RuR9ytdhCBjmOUw9B7UVTJAbJDJxgbNAPmgO6U09+j3qMZNgzAgr1TO+7K0fYMtjjoBmrH\n4F3M/+4j9i0zcL+DxuIOM9sdJLZLggjH0xPu55vwYyHLwZj2OPkqC1azf/YNpgK371vk9ckjPOmn\n8s7xXf7bt1N3Nx3DfDCrYyMLPfbNAGVncKo2AMPVqY60N5Q06ozgee4AU308yx70olS2AwMVyNKd\nTTp+BLKdTVpuozblqnfZ2WT0m7X7uhRoZp2X6eH/7r0DR3O9We1ta83o7OvxjgMRhaPdOVRZ0L+k\n9isuOnS1CRyB2DnoMQZN2mB6FGh0gA4yfX52oLGEHeROOIbtm7w6TmSNSXUDsOOEkC7CBdDjgEvD\nutjt++rH+gpM+j563qgSMS+8FXhXn/Vuut/4HM4BsG+BfkIm+9M4+TYaHzcGczfa+HlsZg6L7yVA\nT7TIOEXtx7xydbaHFCBqu7SNjXASgJucsmzTjIldG+XITR3qoEUsY/RmBp+yaPF0u41QXicw7KnQ\nFjhHDHS1VcFGW7tV540LOcc9PLJLT2hBzNOmZjCMEdefCaAOHjuTwQxKC4Oe1q01wQ2YWAUQWRCc\n1+1ydJU7JpLTn442PAinCzi6WSPUx3OMQHPThueld553KTUA3BkvLy84mdC55vPP9Jk+kvZ+yMSk\nCdSPNHGr5F8nyG0HuSvvI+0hhxEE7wk+qpFIxBhlDsNdeZJgbZfXt0u7eG52+tuXr/j27Rv++3/7\nb7gZ9j3Dd3ljjcq74kvFTt7Wt0Z2gvl0oXFD2CP3HVgnroYfMk49VJNK3v/QzXsev4X+pue7SSf/\nzNu8oFfdgo+EeZ04Tf1C9dsNkxXjcIW/fRsyHp351ZfqaQPVWr4f99ynHWax+oIrpjIgfg3R5O0q\nrJbkmbYysrTghclTcjejYm0JdbliGk094QIeBmoJi2Y8xRjHERxd5/cgQu+MRsJPnTteX9/1rdG0\naguYQcmn8nMZOekGq1JfsZF3FLPy8268Ap8RiWwSdIkDMoJsC4hqsPNGEl9mlqfo6/yvJR038uo3\nlb/zC0O/saGlS30S1OrW5HFyrodSnqoPRaPGXFW9wKHFLzoptUnmEeIkOXPW/No/2Pvcr6tE1gk2\ntvMLu8ZXJHbxOA68vr7KcxfZRcfQ69DpaxhQn5O+y1hO3dWNL+fCifbRI8RAF0wbkX0hHvOC+lz0\nduKz1JqdLXWieclzqmO8zbQ2D/lUO6HpahHARqYY/I/ikat+Xfmmvm3aNwALv2bfk13eUO4H2pv1\nzCN7OV5cLoL4b65kI9DByZtiFO25ltCGjmbIXd4vLy/4+uWL8CM7PvTtHUVZacyyuaGtG2V3fQiN\n+ED6sxZCmNH5biBjEVGvII5mTrB34CVEjN89soKdINjM+PXrF27HDZ15CYulKbup3l3IwFGfqTOQ\nJ0Ou+u9KDSB5nx7FrWYDFBmsV4A4t8WDkQpM5++rnae7doEZt6cb+I55FLeRjYtP1m5AticBeHt/\nx9PTk6t/tuNoEje132P4tB3Q8Iq5cgqqvub+ePowS0x0cu+XydDxtz/FFGjpdk753WZaVu5TBdoq\nnvMGM1xU7sK6wWSovo/EyrIFtKzwEoBhvYSabKzb0cbCV1/yznLiWNi3eqpHHaHW4IdGdzObHI4F\nI98+FHJh37o2tGPGlV3GaWjzrY4p+EcBDhX5shP4kbToHUzHOLfhd4BD9U0GsL7+zIdXspLTVbjA\nnLZgAHFColqweJSUfr5fVdvZTcCKLF/rvV058jcA2h/rzmX4SY9Mey3b7y4kIsf7DhAnnj8RdcZx\ntGCCK528bFconJEduLkax1zele6uyjTg/6BeLcXfWeMXX7I93yVq4vRlHQysodYqvvLPPT4hIhun\n/Nzar+XxcPeZg9NgsqW6gdkWcCqaWZ/gdqFCwGrvd1t0z3elaRne5hl/YnW48jPvPAW+Vh4QAo+y\nV1xHVPOUYCDHS1o7jaUNHSdzAFyuSoe5hpP+JAzneJ6Q9fVXiYhwf3vHjRpe+73M85k+03+aFn2N\nQgZFmVzbRp6TLb+V5kyTFpMmxeIEQbUTsbQ5VOvZjzj6ppPH38/Pz/j69ZuEdTgOqzsvZNZtlomr\nhug7mN4q6OojGAAx9B8T4VRfQHU2x0mEdaJobBbo5zLxVNHiI7TKtm6HYT9qk/03ORa5fleVU5cX\nbcO0XRze7/qybyCgDoT3ee2OCmcTAOWPWcdVwaRGAgB4ng5YxtUmA2eoy17yv5uM4rir3PtPRu+C\nzkaX5m3/tH8/f/4EDzxTBKkI5elmPOPjxLMf92UIunNCMYfHsX4Tpta/Sxz+ncaaoX2icqGl6p/v\nR37/u0n8i4k7dXxb0nkfLbvyA36nXR7/+9SGzg9tqnRFUZb/ndvk2/u7bcyT+gDmoporLuPHBVcr\nL2kb1SeiGQnFt04XKQFYCDmDikP+/IJaRZ3KXs32Sl5bhIeGg6dRxJBf+Rh5GHbh+O054qanap4j\n4/Aq8Wxs/d7Ji/d9Qljb0QfX8YdJ3dbfQR+/O+exm0t4hCke8XP4KtE513HVto9gmt/GZ7ktQ0Fq\npJGJxzDn2YwldcPbaD8B7/c7/rdv3/Dj73/H7Xazk6tbHwpu7iNvDBkp+85BH/9G3/6ohRCfxHlW\nAZdd+XQIuOwQQ+ZjYwfFd6YJ5wTCuHfQuHPgAOH9/o73+zva7Qn3+x3PT0+icLA6DlXagfKsFOZE\nhj7vy2gyjx25HRZT2yYSvMAFhhCkNetBKJcLJVhNGGgM2PA+uS9B0ZI70TAmMbyoZ+a1MeK5k+Hp\n+Rmvb2+jn4fsmB9tOB3djC6jQ0Sy+hgWBJjx1G5iMPv8pgrFou0iqHFri2Dl7/zxbs8XldNg4UhS\nfZq/nz1MVmd6eb5urYli6T2Mj18U2Rm53Ea/COJjAaucyK58AKoMMz933QEHKF8QEAD7rs9guEvb\nCV3vXRxWzk96ze9hfcyTbr13m/CbPjeNo/OME8Ctye7cgwjv7+8GMhT4e6Bk4wDZ7X2MS+ZJZg3X\nsdYqP5Aqw+xDuVR5jM8mWUaeHgHFB3c36fOd0UfxPKfcXpP/4bgAmGNS0KwCy7A+7g06Q8bTE111\nEw2GFB6LC3ctdenR5IaCZK1K7YDPy5jPpk7TbqiFj3WKI6HfzHfe/ajGhgE7MeIfelqZHDh59Yur\nFkuYxk5AF77I6xD1eKctjSERAq1UX3QfHiPSxPepCo9WAc0K8Hgd5HXw9rRIcJRI+surMwTXhp1D\nWCWxNXQ91k6vKo19qk4IPeJN/X269sPRJugJ/4222Te1z8WQndwJzWZYwtaa8Ouw4WCW0zbaH6ez\n4vgP9ckqH84hVRvpvlnkUWVu2ByZcFHsZzntWy8DauN9mrpO2trGVOY8IXXtFAFTbrU3+krD0IlM\nDp4a/TpH3jA2o42fd4R8pv/VZBbY/IyV3xocVnPYZ+IgLPpcf/7OJFuU5XWThM8XdASw3Fel38kk\notibcGK3wFDVBJjSx3wpAE/Pz/j+/Tuenp5Et57d7LvXJWX7SSYNyOVD+m5HL21bmAAAQOPORHjd\nMXQtgHFibYbpAhjM494liA/U3Hjqhe3V4r73MXy7lgvh07hXtnu3WSovfHxksuaKx2Rhfi6YTz6Q\nRXvjIbUp7HxYs3frvUzq0YWQNEobxz+a2/rveCzrcInoMO4dEMGSdhT4ONTj/rWJ8tYWeZi0HWX0\nEV/C7CLbHRJie2cy/ON71TvO+x2dGb9+/gQPn+s4bssiW25LoGWSO59UrnIZ+g4AoJsh9KkDEDt/\nKWK+Wifo34bXH+gywyauz97XVtx9pHH39Y2AXhFnOqVsNA3hpFaf9KqNW92Ka/+0Gh/BtjB/AfCL\ncWlzY58nXK/G/FGd/nmWpV0bK/ronZQqy+FbTjJQ2DnN7tsifNjQu2wm+/XrFxgrpo9VKS2qk2IV\nzgYUM3pMbw11ZfpPFzlyPAXEjbQnCX0UvwMyv7blgZ1sXfQjv8+JgIwslm92319ebwwnRxdll3NS\nRRmVflrKVh+D19NMlPIEuXDY61E/ru1glMU4RkCwUfD8k04EjueH74W+G3Mr5J7pnwRAPX+ZXwDO\nfuLbt2+4PT2JDPr6Uh/n34Dn8cuDCx7bxSY9TH/UQghRDdhoxioQsKdxUvtUekTzKLKflPUrkn7X\nhU/n2fH29oaXL9/Wox8jLRMSWAVnZUg15Q1+B6Osok2nxQ/wLM/9vSjHuTK+FVYq2uwMSJiE2ArU\namwqwMvaPts+U0+qLOloeH55wfk//+eYTJdQI+d5DuC4AQIFCKvi8Go78jgtNAELINyBN1pP0eTF\nhxiaKtEV0wD4iR9PF/9NNsS+XB+rWMtfJ1EGfyWe0XoU0Gl5WvepPEqQhRqKO2mjQgfAPGKbrwtg\nk07ivPg+ZpOooZ10t4Ufr54AazYS7J2BAfiZ56XOPP7nPE+8v5/23i6RQ+RzLbcpkKEJJytDq3Eh\nS3DPs5885MPkD1iUfuWUwpR+4ktXTcMeNFblZp2hvN24fje7Q3bsuWoHJ2cr13uVKn20zxz/UD2a\n+9ZILkYN/LhORS5t9rK5a0vW+6FZcGOX9EDIONVl2fedvtJ/r+6aaUdDP+edOBoyb2QEVOZdCKfc\nXpVHLTu3Q+vqA2R/FIjqeHlblPPsaBC+SfxJo1zPCzaRkHl56Aiv3/Qbz4s7HliHZtWROZzKzg6V\nuiO9n0PnHGqiEbd89ENucl1aZd8U5e6SlqL4SRZtR7xwrHSykzfOtsQ8o41enxZt8BNRgcdSCKz8\nd6Zf/j4+XycJen6QqDHL4fUZQ3Y+Kd0IC1A3uZUf1v/exca0vGL7mT7T76SA/Wm7E89kq3g+/ljF\nYJjMjE/rZiSbJwBs/N5j8OnTrG0FPMYVvL7D6XXZ4/3I08dGOO4y6f/9+3e8PL/g7dfPGdp1F9/c\n6x/oadA5ua7Jn8KrUrZ9YWFcKlruJWH9LuCOgQFsF6dMUMju+QaJhCKLsr4corygMtvlT0VmPe9p\nkO3cThdX6Qpn5nzVOPif0VYrvJmLGWJ3RlvR48dKxzGO/ZzPwiKB532CYfjzjH2PmKH5StRJCYsu\nKlv3+10mV5Ofp9EPqoU/5WVghI6EnE7qpBiIQOgYq/0Tow1bp3LEAzM1ZxX/+vkz2bzVV8o+U/U+\nt1naSrZg47+zrYgmF2Oj1aCb8HjcqKnJT9ZzgUXXtkokA79RMp8QkREkD9JlwpBHeznquywjncdm\nE1C476bCBYSoMyvdUMqJq7/3bru0fR/OpNHz+Cxyq/JEs5BqrG1jTEpVO2u7sLapSpVmqOZJyGiJ\nKWc8ZRXeJjKWe9kUs3lcmnHf+/s7+tnRz+7y7PtQ6a5tP7X9Q3Y7502uAA6SOQ8iNHbP07JOReuw\nqTnp9Z1v4vmw8oce+S4hL9xYjN+lf5jqML9u07/ctiyHuZ/+fZa1nC/WhzFXKAsEEv2Ggj+k7d2O\nedKd+ncer/y+ssOqGr0/PLQYkDBJLsNjsXXM3b+mewHPQZMeMNvZjgPfvn8XO4a5AYyZ7UoCKQXh\nb8LcXK3+WW63HwfFML+zEvJnLYQ0xyA8B+jQXTJjAQSYTiQ1WZ0lyMr8vUflFnbx8wQgB4nR772D\nzhMnd3Qwbnp0GdcTBTtBy89c7xxodgo7DTIRYdxjuzcOqumz4a4UFFpwHHZKLJfjhS1PInmBBwYI\nofgu06p0XFrDcbuJMe/dGV4yRwQojoMryDhPi6Wrk3bKAwqMTkQQu4BWANTieRBV2KppqDWc93vo\nMxAVlgfjgUYK+rqjgTOcu1jymjL/5h1WfqHPA/Cs/HMINV9nDpNmDg6AY2DjCjxJPnWupoNg/T4d\njaEXKM76oTR2SU9vGJlYHDqlha9bgA67slz7aZ6iaseBziwnQmx8QrUlf1bj68fWZQzPNa+AaFeu\nIq1Nndn4yRhwJtGaaBq9aZoTSDG6L50cO7+4XISO9Wza72SfNFsCGjnlvjMnnh4G0X+6I0MGaEZ/\nwnD2564md7hn5kuO0wqAVtDyiF+qvi78Q/VJqitQND4T++h1wXiu9GNm21lri7Qnhi2YIGrhEZOh\neOl1xYPLfTnLmHqauz6QbICrYt7uaOjLUxrk04u4kFFfNpGEIDEXJ9Fb/93p4l3bsnOW2/woJjnz\nPEUCALThMStvOM9+txTJoDl9ALOXKr5eR1d9sP4ezWzq7XYsDnxFNy13955nAVIHxv1f4wRlZYcA\nneCKu05zyhN6i+w6P9DXcYLDfU1z04qC8DH5qj1gyCnBoDfmRCUGHmp0gOFkJO90BQRXcDzF9pk+\n0/9yKpxHeSyYZEWE+l20C1IATHDFXu1xyyKX053bLqr7ijjJqHO9raBiqWYtKenv7HPZIsCd8fXb\nV3z58je8//o5wvwM3aH3NNiXnGQ+6jXVrQkmBdp7XX8fmzR88r/9qU7F/uQWKDCXXhffYbZrTtTY\nd2qrsNpQH2bFf7OzGT7l0/d5EiM/z7hol3I5Mg+4b4eW2aGhsjHIJH5hODFjNoICb2mT1BaIbdbC\nAT4nfjjPE9A7YVjj/E8cDh2DEerG+0EYd7fl/nqs4n2erT/C09dirOOnJOAhv32cCA0nh129Fqp6\nvFt3z++xyRUmCM+zLXbhV7a4t5A9f29l5UNZH/xvxDsxMr1HplLX5LtYqnICXQh2GfHWh1FcMLAD\ngDAeuT+zH7F/QkOnb7COx5W80ex6rKfE5bzakKKtO79gflLMPwHLSXj/GdEIyeb4N0rblLHKH/W8\nFPiR1T/ylUlRnWXDdDyxGLX9jvd93dV7a5cA9jBuvgzT1/b9xp8QZhJ7NfL4cHAM2KKrlr/T1Vqm\nl5GPpEpXATAbhoJG/u8sYx+pt5S/wi56GaHhUBOtoX4H2HdfqDcA+C2UwQct2mVjDGx1wEf8Xx78\nsebxWCDSwctXFcp4lc9Rhv4IbZ5+m4ZuOwcuuR03/OMf/8DT0xM8X2pIvXX7zT6pnfL4xrfg4yVJ\n+rMWQpwhUsDGzDMEFsZuAg8KGADJpOPRDtzdLkwNp5N3GTaSXRM0Ljxq54nz/V2UK2DMvDOkOmGR\nBTxPlAThBpmCFf25DiWRTv6tijMygj5XhVcLjim9pEgy6N0ZKg+wdkLKmH2qwFsuz/5uDf1+4vb8\nbJM11q6x8KUTesdxAGPc/UVc1fFJHd8cVisDhtGgAYoZ533GOLVJU4ix0HtPmOXeDz/+fqy8U2EK\nh8iGxytLTflIceYt/5/mySGxIlA+APDi4OwmWrJBDgstNi4IcWAjz+jxObKFLAIB3ND7vM9DKkth\n1wZtF+Dv2iV9hIVdE/3IOPs5Y5Yyj91Oo+4xgWeg/v0dpBedjTJvxy3QOozPSPnCSk+vIPdEOLHy\nu19AFL2FCb4AkLsHafKkBw4CXKrJu2DchmmW8RMzcbTZdmZ2FydH3aJgrrXYv7ybvXuQiDpFOZ/P\nvXOt74MucGNudBgXKoeFFxvu2ukJoG7oLb3UO8ugz9vSs1xe9XvXd9+//LzK69OBeYLhCvw1EBhz\nIDxdlIa9dwutqADKH5VmXnUPKb8xQLbTNDmj9jtN/Lc4Vr7dJ3cL2+b53PPiFW19mcaPzHIagoJw\niC4owLpdmm20ibuNK7Bc8dcOqFZ8VaX8fZXf6sF0sxjreDUAvY8JHy9T5NoLt2M31bnrA7TOrvc4\nAef9xPE84aTns485HqMOlkUPxXYRa3gdKjuz/cQjuwtfd6nCTsCQLXBYENKwMRm0yyW4sf1TdSsf\nT/5FwkZjCIa9hO1G9rSVHdoats6d1vpMn+k3k+p2YMX4MV/SXYG3V50UZJfddwmP1G3KDL36GNFR\njw58/L7eDHKla3f62PdN8d+XL1/x48cP/N//+hdu47lMbju9BABoYPRwJ4iEMJ6bcbyTTikCQdaL\nHm/rZoXcRt9WxSpzUkX0KM5xApri+Peh344WaeJtQ5XUD2JHi4xpdj5QxX9X2LmiyS7/LHuWm+tc\nfQk2H4ah8c8R8ksdKHhs+piVnxbqUywDJ2MDw4e2t3H/Agvv8Fid78zzwmrAQk/m+rSs3jliOCLQ\nuLzeL27Yv71bW6D4qcBr59lx3A68/noNpxhyPj9e1bscMWHB/JgX7Vp5U3KsDHb2no2mCN8wrzyW\nU76rwLd3pys0LJ2no++Dl4PyPUWaaNmlfrX+rPku8U7nh32vkvmleZOp1o2pj/03Hgdz/oZ5jGnG\nYY/b8pG++rp8e0SYYnmL/zY/nv/mftsSip8XYBATTgJY50Aagc/5bZ6vqfqnDaxkbubxz9YNcXB+\nPmFuZEV345LwOPkyGThzWG2aG9LySW59Vul0ny/wRPp+oQXc4muZY9Lmip9D6ZGoweYSPG3lgXIu\nqV1wRjvblJ2ssquWU52+D7OJE2vp7yzjmY5IeUk7kFLdxnXRfLWj1RjNTRK7egCgk5w80VOGzIzb\n7Ql/+/IFx+2YMi+OEjQaSkkfnv7V5HK4vlIcRyugaOQm/VkLIUO4W2sgBno/55HP1nBnOdbaxskQ\nPdrWQGhHw9v7u9A9TfB7QegjjuYkMdDvJ97f3wR8DEHxOyD+EwOjZWvFBKl7Mr9JXtQITiC1vAg2\nFLQp+PYfZaGIwDeX68yuvVt22ZJODNSg1BS0KoULI++IZM7Fly9fACKc9zuosV3YTUS43W5WlqqZ\nk9kUt9YRwkaROCRtjH+eWAxJ6cIx3uwMB1IDJH1mxr813O/viCcxJIzIQAWzHEbYyZ1jTVbAslKQ\nFCZr/Dmp2D6lj5axm7jKfKb0qU+cRIM9ShkLJw3gNMmt7U4yqY5a6QSOUmVMYOM6fsifOlkPuF0G\nsU/nKeG7np6e8Pb6tsjHHrhgOy6+X5MuEcQK3c/IM+m9Uc7RxR9jnv7U6iDG9sR2VsY0G0WfN+/k\ny3QIz8pL4Vxe0uPsQ48eU54v4+C7cSOb6HftrD7Z6RjeXzxeASwP6RmPgEJdRgkWgbLdvu0GJhkx\ntzMP6BzkLfKdMp48m/c5EPh0IfDoADfVldPJ0b9L0MabnYUD+AX6sOww9rrZ6x9PN33XSWz3I9Cr\nqZJB314Qif2AAtXI/1Z/9S2ux9WnUle6fvoF1LKdH+zfrh6bwOf6Mnh0DrrGg/udXih5fajbm/XH\n+5E1ra76aO/8Lj4i3GhO2rHDZlMHZF230nPSyi0iq7nwIcNY0d38dl4qCZMn5rhoq3UbDWnoKGg4\nEm2bNI+IZEG+NZynXDCPFB6Dwfj5+iobPHY30n6mz/QoFSKX5VBjg/sTiOQ+9f6E7nj1ZUXEMtNu\noqRuJhvmzimU+gEAACAASURBVDhEbbzapaq8jFtC+zb6KOM0327FpE/Pz/gv//wn/s//+l/x/vYG\nnSAhr/CYR3iHecKi8okyzrqaLAIQJtpXTLn6bfYdNchKDawfvWhH5xjCJ45HpK1+5zdM+Hor/zDc\nMeboshuTnc1QHCqY/VzGztNUuNk4F77IjJG75Zp9ypOm8p0uKMxyaNgBvyCQcZLxP4vccFddPi1M\nsF6dx+R9XBS4eRtU0FFTCIVF4mea78Ad5zjdnXlO+VbaLbhL295ZtlLdxQACAF5//ZSwsoO3/AJP\nHpNIxzgJmsdjh6eqZ9MTdLZ74cuGRhErXflL+a4TuQMl4rVMc4+fKrnP+bXtWb48fXYyYr8Nm68y\nkPPuFjPGF1ZOKGOQNZTHYQZhK1c7jDd9kUibnJsoTmwuPM4s6+6FnO5+53c7mvEoO98RIz5S3Cw0\nbeLgl6GbNLoHDxCuef29RYpFs3E2TOreNqS2Omy5zFGozzSafzkWRf+7k2NyjbmS353dDTRNti7X\na2X7b4o6rn77Z8fO10g6M9OOwWt/GGDHcHHRG3ODIObYaTh0ZXm238M+uyZlm5n5vaKVTzFvZVUy\nZlrxTi4n09R/lzfO7cZdxnPq0e//+I7n52cc7ZhaW0whkjjHtqt69z103SNETCrvf89f+qMWQoA5\neLoLn1TiAXDXFVDCrR3ot477CC3ALKuhnWTHhTGfHPGQcsZ/qmyoDSV373h/fR/xYdsA63qElW2y\nVonvTHNIHp6lTtn7aZ70lS+JRlvTyRhKTPAhQsLAS+2geKvn6As3oSzW4lJIrdnWn1pgKhB+u91w\ne3l24GT2T8GwLnrlb6sVWHvHhbLzeRwAlbGVHTZVLE41cLvTJ4ADVw026WE7pBPYaESAW/zITkSm\nWz5qLqBnAG1T+vN94BvU42GddwZeOsIBHPh+qgwo8JrvCAbGGQDN6VDv7L2/v+M2TvpoGXr6xsdC\nDnUqyOtuF6+jW2sNpAqSxRHs7ltmienKqg+GLtk57Dveze8qQ9YKjXDy6hwmYUGWaE/fHd9WYNTT\nunRki0WfXF7WFeFUE2pZyu2s5K7ajbW0/yM8W6RqLEK5qc3eEdL+dSczwjNVWz/WpiB7lL5yP3Zj\n3IydVUfRArIqYI8E7H3y9xZ5HuQpOqGBj5wMfyeT3YMTQF6khToGme5eHA7HY0AM25IdR3Okirbt\neFTLtMu+3TfZCdjxi5ZfLRpm2alkLb/f22ZXXlWO5hl9uQK80m/Z/HFzuqcC4ssEBssi8u3pSYGY\n1lq2+5Es5rz+3+GijL+mUy2vBavEU0clB6S/SXbfunoUvMfeQE95WxkrH82/iWjeiwa9d2jFDWrb\nvZNseYxOHc/Pz/jr588P0e0zfaZdCpNsyD4KBf7W/PrE5JYZ864/r68cy6rdMHuhEzwfkX9p2c4n\n2elur6c/qmd2uAQYWBYAhlz+7csX0+3dGaaAF1T3FlV7++SfVe2sdG+eRNPJ9zwBySMslGrKqLOx\n6Bop85pOlX2tMGEem90p86w7/d/6zm/OyvY1n9I2TGCLbqpbFYvMMiXPCIfaT3BrY+LT8Zbrxhyj\nAou7NitvZB1v/ZIHti9RzJeTOP3Gh8FiN7bjURu2RS8q93SLKbb1PE+LhlHRHcN06gKI70ujhjuf\naI0knCwRXn+9Tj9i2MyKn/0zoxN4nKxc25L5WZ9V/pVN/XCP9FH+OWScpYl1Gf7v9f2UGZUlkx0A\nFh5WGomcsk9q/XygA3bt9HKn9XqcOsdQ/tWQ5IGWs2BlQvnpdQUP3a3/AkuAkhwqXMsR0+D42nVt\nXlbunjVaT/Ljcdr5O1U+be8uf5CJjOMSX65lM04+gUHjN1sonwjS62v9TnzevZ0TDCm0mPhRv593\nteZ25rb5cLFXSfkyn+Lzocgr/+d3UpazxR72bqf4r2p45M98rMcxaYhs8VkBgGS+swF6/+GC0efX\nri2O59xm6aW+C3yy8/s8/RZfrMjry/J+1K4tM4+X0hUpWt6rPqg+cDz6/ft3vLy8+IdW2/K9VDJb\n8EG/8T9Nf9xCCFADp9Ya+H7aaQ9vNI7bDcwatmeGGRDwWsQspeQEgPD6+mtcXjYYYBjDwflLux61\nW+vLz6cBVnAXweb6TQG6SNo883YzkoDu3vDLLr4+ndxcGTRMNNHcle0NrZ/As4toj2aTndXumWzU\n9Pd5v+PHjx9W7sn3kAcQgNdTeRhAMTzTNrlJP7R4kiUrDQUcEk4oUsOfCsljojS43+/TsLR1NVxO\nM40xMXrFsd45UL5vlXFaeUYAoe5kDZfADbnwbQchhIdh5rjPSsEYjbF5v4d2zLKP0CbZnuOUOaM8\nYu37kxegvEGSnU89jG0YR6dMmTv8ZkatX+v6+fNniCnqL4TMdM98UwH5Sr4r52WW5ScTlMcjEPYh\nrSpj6NvtwyoAQufb7fah9mfeC05AMkodbIxROahajj8iHC8hRMhXJf+9T7MtcYeSLy+PSXPf9qK+\n3I7F3hQ7Yh+lK0CdU8hjfIw6RJf/Ln3vHQsvC7ns3nuYWGHeO2gfaf95nnbs31cpOi/mrZxQ5Y3O\nHcRuYWMjUzlZXwu+9t9aSE3HJ1Ov1TtOJ+lqOlSLer6fu7Z7uc3PPe/nfpgz7OS1KTYB7OJE324v\ny0CExkaLUWaVZj/ka42z7mm2o0/ue0XTyqaSw1m+DmrkTh9NHTCdmNyedPJlw+uxfUJD3S3W2Nny\nQqwAd/rHtzXpoT5sPpFczOonG1Qvvd3f8X6el07HZ/pMV0n8AQ35Y7MpNklmEw+Eucah3wLzvT3h\n4CuvsqN1rM8M49CqC7yMZrytejnnrXzBnGc3UfDIbusp4tvTDT9+/MDT8zP++ve/cTsO3M/TdK2d\ntBhE6UneK9+meu7bttIkvsvPY99XWzf29FkcrFkFo6vPcWEvg328wDI5TxU2a+Yz6zWeaV0TI/sF\noIz9K3pV9PU4WMu3uz16H/fIOx9WL5bnuVhtbXa+uToTVeib3G7fHvt3dNrj3yo94o2dH6BhcL1N\nF/oAXjjte56LRb5f1Ag4ddpD8r69vYUQW7OI6C/4Z9HnjH3JYbh3uiG/V4yZ8aFhT0J6tvpwNR1n\nvfL3xLKEoScZtpmJVB96+dD2ZFkaILiaDyn1Eif5HliIfZ+NPl0W95wuCDLrOuexblgwYQJRg919\nwGPOiDHz+7FJ4+W1eOgLF35h53HRaOqy0zkZw1V4FdCNxLqRJBXofm9DvvuySfV5rAtY+Un9wfM8\n8T7kQsqXUj3/Zxul5VT8TY1skYnBFnkl2BHqAI9ydYy4l2Vq33Oy8STYYr7aMvG94txVxac7G5tT\nXoTXfI/kflferu7p16tgOsDiwtuPAkb5gN+uzsxAJ/h7/HYyWukT7W/Ow8w4Xb5stbPvWflMV/jC\ntaqgUeV7xn+J2P29+k3qu6wF+T4g2LVjXJT+9PwsfIqVN4loRr5gKxIIy5MxqQ+Wn10juzX9YQsh\nYnBvdOD9/R1Ha2gg3M9TFKADFff7He0AqDPe+7sZ4Rs1nCMkjRihaZT62e3Y3TGsG7Poml9//QIz\n8HQceO2EA0PpAsNBrmNe+pSZuwJGbNwk+Y42B5s7oVM+RiXxra0AMDpPwwaM1Xuv4W2Vg6ewZzBA\nvKys8jHL8YZWAZJebKqpqyHtbjcFCHOny2wSJ8XE/QSI8XQcOEguZwNp7FIRLLsjpElsXm0cYYB6\nB+7VyDXIqSDJ4satyQW5OCXUh7VX0ZTSgMWT80rB/63AeQGvfeBmBf8soduYdSIpml2tPwO3yinI\ndTGvMViZEePw38/BPISOboMRFdMB7joxCpw85ebp6UmUPEvoOCBeCmh7dKwdg3c6ADrHIlqzsekA\n3j1w9nznZAWDf9R56SNW/L2f6H2dcO+QUx8YtCcfBgxdZGXkv7++yfsSbMfd3uEdIDucEJ2vyikA\nEMbFP7uZMzEXIxtIdnIdzRYcPM9l4+v5cD7TkDwNPqRL73LpeGN33BgQAKaAaIBuKJ86HpfLJveO\nnKeVfnOA0Mkfuxed3m2XS7H4p/qPp1N6eN42Is66xcl1wBgjxBpHfjqwm/CeICUcystOidKL/LcY\nJ41WPgIwTiZxkPgd2FG5VGcj6xwPSDRsWkvlNVA4faIy8kZAbxmgk+kJTyfvHNc6h4HW0AZgaowR\noinqyY4GjIXLg4YtYJj+y2XPkELCG3qiK9NqOUGz2ebq8+YdPtVpkMqGd5ohRfK7LHvVO9+WbX44\np3X0+2RGS7iBtRz3rdpgA4QVvTD54cCUu4xbVudj0IqVlodtPvFOd7Y/ir/yYqbQU5xJXTTw8md9\nwuyT6BEXiZ+aYQwVGWrr7jOjCc+dcp3kIj8N12c0HRMfRISDRF7Pgc06A7RstPCYhkI4g0xHMrxD\nbg5ALk7X/jcC7gD4BA4cAA58ps/0/0XypwgBp4cA9Kl5ptowp3iWMJRTeJmd291kDKuz+yBlu+lq\nW8q0lpX1fWwBv9R7LDbv+48f+Pr1K/7Hf/+/gGPoIT5tkug8uwudEumqFO2u/IDhxvs8mVLhOy23\nyx+RPnYK0933MCsU7BdoJn/nk9aUvs7tyH5rXpwwHVaEzNWJX9mEgPTNbJPfhFTZk5z02W6zTpXE\nl2MQWgqXnejqy0q+qj/V4HcA6yaL6r5GTZ07DjoSVvcLTpLvGOG/uxuHnsbe938+nwsb0leSky+J\nDmozz94tprvvu24OsxUAMM7+Dr3jsY/NFkeKZJCTP7HTueaxiuZVWbt3ugip9zJW+ap5moqHiVb6\n2lyMzTUg6NLFh5ePrRw5aTbGVu85TLLu22Z16OkT1ScjEoJuzvB0C/0o5hCsjtEOPzFp36GbsjXe\nSXS/kkejhZcPyzt55COmIJefy/VvxO/rIjPM7pL5OWa78rnNk03hOa98tOjBgYff3t58ydra0gZl\n+xt4PuuZQpfObutC59w0Vvcx4uqlHIYt3qklayz+bUWHLKOVzs3+6uI7ezrCbfYDyn7ktnt+N3pa\nWyM21/yBnxIP79rm66zasZWB7NcVtMhlXOEVn8fb2LU9Mf+VTWNe8ZmvfufP6hf+pJfiGMsH0cm3\npyf8/e9/x/O487kaZyvHkVJkmIcOzVEyyLoWbTQtPu+j9EcthDQFT2PyxjvXmrrb6fH+fuI8Tzw/\nP8suVR6XKDsGut/vyz0MbSywAELg1hjv7+/iBPcOXQYRAyHfEBA4qFLe/kkJ2N3/Jsjv/I11RVmN\ntv3uDDpm+XpZak7BQMY3gANMS1uDktn3x2jjhG9n+DI4GSgET7cntyAwDHJSgp4u9kxs0zIZS21c\nTO3qCmXQXHH3Skd5LTsru35UYMvT3SuXddGiWCSjaKCvjTXc37E/WtcxdvGC5j0csTwsk2iax8tL\nDiV0jEvGTeFb9CR36TS50DfABIOAgT04Ong6aTs6n/bsfp5RWhx95FvRB/4ydxvPJkafiPDr168F\n6OTx8GNqYaZGOQqG/LjlsfG/85jmZLLbGvRQUgUk/PeeT31b1/yjjwaEnebhuXtMMx86WTiSTGh2\n0xNCZTKwmfuli31I9Dzausul5H0gnMToPHWBhcFz/RReoUAzfaZ9yzJXp+mQAsMPdG20bz8AAn2Z\nPo/+K8f6Me17ogkRmR37aKp4V1Mr+iH/RTpG/ZUdtkEXHaMkP97BEjrMBWsvtFL+fpdR5gnP475f\nnt67SRFfxy6sIZzsLw4+0WLDstxXALcCk9tvsaaj6EcF1rPDki9y9f2r8u1sUKQRGTB9enoK7dGd\njr5t3l6UtEhhrap+6HetNcjafbSHV+O8e1fLZ3QgzBaCbOizfdilS1k1Z5eXPvMIQ/n+9jYW2PfF\nfKbP9ChVWDW5kw+TYgYDavlrWnVF0GXK2/pVqlhlOOPOKdsTpTyygTv98Tt51K9q7cDLywv+8fe/\n4/8YfVS8IxhSsJD1lKJu8qdG2NVrYbaIlpjm2T/wul4jE9iJ+zC2MjhR70prz/O0e028v5RThRkf\n5c+6NuBs1aHD1jbI32NGBMoInJzDCj95nVttysjt87Tzeey0A7PdEWXjMp6V9s+1L+NI32bF4YrX\n/AYAOy1Czfymle6rHIHcKQ33zvwi5UtHI4+/bYMEgLyj14fDOlJ/Z9SMLgt+h2xEtVPEqc6r8WMe\nFByinH27K9x05TdlHGTlOFnMqcKXPjGvdU7ZH3Uwwkap0H4g3iMUaCJ/H22E9i7aaePsfIL5UhcW\nZmN18vw8Txeadm5oIyK7u8w4gRB4CXAbZ0fbG41NeFRPsu8Su4brpqEsy4QY5tb4o+CdpfzEH/5E\n7eQPa8Ka3/s+tPIrg2MIMF7vUGXuNvdHAO7v77PM2i2cfS/sn9BtqCTJCaLY1nw/7eS5vKA1aJ82\nH+VIETsfscLv+Xkli0t/uPYnjM7CoCDIJq7duF/h9J2PBaPotV9T0aHUJ+nvzA+5vd7WX5VZ2Smf\nP493RY84bvps9r8as1FLqnPVubs0uWzWKXI9/o8aer/j+ekZ33/8GBelk/M/ycoBpi5gzBNeVovq\nEMUL1r+UHrS5Sn/UQogNLlZmPs8Tx01DXXR0Po2xzvPE+/s7np+fgXPEfXcTo4HJ0iKAKDjCz7/+\nsnYwTqM1c7RThDm5d92XRyZlGHHxLgCdZOSVSSW2+Xx3jNMNRieiYGxmP2abq3e/4yixA9izjML5\nABbrYItXPFdJOwQsv7y84Ha7DYBaX2Sml06T3WFhMxfTSaC5CNP7nGBWgClZ5DioF0ZALqrLCjID\nTaOBy7PQxz0vHcYHBmAHCrJhOs9a2Ws+IjmxoXGQCeR21KoDQ3JaAs5B3VwMGAyru5MjeLs8HTce\nixg64WplOqDldz9dGQMbB2sTII6gjCez7DbOxn9mnk7K+/0VusPmPE8cxzUQMyNILj40tLt7Xsh5\nroyOubGGTfegsKonA8/uFhMI3mDWiyHeaGWe1V03HmjrfRqZX3nIpQemmpqKrWQ0WfUOZO/dLvWc\nQFXy94nkQ50yAaGLqPrddNyu6OYoGNSVOB/prho4wl2kWZentBtTpWnnheYVTeH64bdSXOkek5dz\nyNDyzVzUVLmcIQATZQY9tfvGQ57fuE/gYs+V94QWzX1neij1T3evkdoBUDlulPgvy9YV0PRtr+g3\nH3zMJuYyKoehArXKU/6E2VW5OY93cKqj8FXKfJUXRTSP5xPwCLf39FQ6JDvHJ7eb4HfjTpDr/7V7\neTpEn7vxXfXn747OTPX4Y5m8qcLUVWVVfY8qQOkhi7RW3ujX+f4u5fw+tv9Mn2lJpQNM8ckVqz3y\na3YTFV4iB+rCYjiJH8gwB/0O1PrxI7jqUcq4+enpGf/45z+hm114KAW7F0/bPPBnaEPGUqmNDNid\nQo2SD8XrQvb9fgc2PonqxSPo2rEBZNThMR4wdf1yMmTjQ+j73YSML+M8T9tRPB46/29gc0R7ofcx\neqy3G3eFMNmuVHaruh8v8IhnRVe3fiP3gHp6zInHTCdPA2D4OCSnbfupCxewhRL1uealvHMHrBSO\ngInYLRxYX72/BSwYSn1vWYRiW5Tz7QQgE5PjdP1p7RBCU5t31Ly9vi04K49Zpo3HutPUrYslVcpy\nof9mPvULQ12PnpiuEUJmbF3Vk3Ga4VInQwDENo+NHERJ/ySe6AAobb5hXWQgChOmvhyNsiBsOvgD\nkX+Jxx0vjie0zVZei5gdro+WR/WVPyVFUi+BFrpUaeIYrWilr7W7e11IYY6o8nk6pp9Q1RtxatE/\npM2nROY/Zd/K1+/18CxrLKreGef9nKenEIf+ah7B04tI52QA09mYbc75YyGwOb+Kv1WOd7o6Lywv\n9FXaMtfziYl2Ng4qq1WZo58eW1d6IJ8Q3PlQ+jv2X2v/vZT7Uz3f5fNtCRt404KI59eP+BI7fzBv\n+ovlxUWKyo5Onol1Zlrau+WXvLcLFwbNCQA64+XlBV+/frUPVSfJhnQYLpJ2yMN5D3gdMlrTIx/5\nI+mPWgg5T9mdeQ7QcN7PQITzfh+nRnjsSrwPw9QlLMzYva1JJ9iDwcbcxWrvGvDz3/+WiVzFBIBb\nDYspC6qVXQhTEHwXiw40w8ZkkFalgC8hBvH8D4Tf2uqR1/qybE/ucx2LkUyhVt9MJSi0eX5+NoDg\n73PxeXtnHC2GkmrjLgUNobWc5sAc3+q0B6DK/AC7RTX/LrelAk5KB7/iWxljLbNSOl557YxUZYSy\nIfFKT5RMN8epBKHcLZKXGimlly4iViGf/N+kC3kXSt51Qv5xffD9y05OWEVP4HR8NfMgGtP3cTIM\nBJz9Hcdx4O3tbdaTaJtBaqBVAjwLHVPaAe3KOOm7Ru1Snq94U9uejW4Wb93dZN/79mEFc7po5B1p\nbnHMgsyxOgdu5b9oh8T8nyF+vJxEQK97jjaKirvtmiIa7iVd5C/LcIp1Q/7WqN7VhEizR2OkH8l4\nDxl9YORNbr2sXOQ3+VF3ihndOePyn5TlT0LIwmBb5BIKvAehO8Ni284Fo5hfR+BKRnLy4Z46z0BB\nFQj2fc1939Fj/Binr+aibfnNpo3V+FaA/aHzmJ4tjmMJdh+3yTvGj9K+LdNZk5BrhJeXl2BfgHUX\n2q5dGsSFB801PFn+tp8njuNY+nSVZIPI4z5dJWYF6lAlGL77yBjk+mz8GkB9xRyiE2U3le7u/Eyf\n6X8lVbhSUu0AA7/vYO7qmG7y7yePIdRGEggSZbvOn9NHMFn1jcecRIRv376JP3HX0K6MRgeYxoa7\nLn6a+imGbfwERaqDMG2b2uPc7tye3E595/0fu9/P2Ry7AD7RK04a7TeG7J7vaG7PHa5RRrMxbS2e\nQHhUVmq33KG5jnHlA53jrkyxNzDaeObXd1Use3k/8GuXWMfhhEjhr9jv8b+6sZEBnP1Ed/qdueZT\nxdma9BQ6XPtaa+B+ty55v+wqeSxhdCQatcZ8zHN//P1+x+vb64fqsH4kf8A/n3Ws/J1/Z50Q6J6/\nGb4TdBPWWHSw01QFTsljF3iLV13GzCNeZsRWpSwP/8PX0UjmstrRJKQuJv7UzWbxlD+QF3OsHog/\n4uUMrq7sR+v7HY4JcwMA3Lm3hQYr/uXf1v1XeT1+pWrcJJO0mQh+w5qWm+dkrmwcj80+2pdqISLc\nZ3SetsiZe1Pp71l3wui5bzTHbWJBDt96XR8tbjyZMmnYhjPs5gRS/+3kGhz8lcpm6Rt9G/qJNS1y\nPmq48o0+ikfWMj7mb+X5nagba/tbyuDm9+o7o8y3Szv7/xjXKA/sMMRkHeUVy8dR3v08mGW2DGQb\n2DXYP3fRv1+/fMXL8zPa0cr7Lnf9J3hONkI86O/vpz9qIQRwRqk7Q6ITnGOl3O9c96tw3gCocanC\nOBDBVpyZ5bL113//BBMLaPUXuGqb0kR6bRj2guNjMipQygYYwNhdo7sIZFICYIyZKPn/oTDz8dct\n0OB4+beaPYKEINp/x0E5yiV0TiGW/CpfeIHMQI953PtxNjw9P8sESWvjAtRm4cyI5O6Q3jtwxt3I\n2kYfSsa/O1rDXXfGDIE3IzEE9RyTL2d3SowA7qeAl/MEtSa7uNJiSthFNFIVH71SCnmHVv7GK6MM\nDDX8TxhP7uhd7ohQ+WBqOPm0hcHmxiSMtU5s81Sm+Q4UIsLtdlueA8B5yqkd5Wd2TqJmvY1Jfl9/\n5n+yNqzjpQ4W9W4T0ss4qLzqM91lwafVpRcAKg9Y3Yn/vWGzfgyd4d9rqgxVdj4z0PHjbPV1thAy\nukj6CNTnutKL0nFQf6G5fqssmdPmAHRYRJSguONit3lHxEHN7p4AywTl3U6C1frxNgCtygn1VU/4\n8Ufqp76fjqY4jye4vMOjolsoZzzPel35UcYg7vjM7dWwFmePp+CICM05twKIIzitbIrKim/X6U7P\n6HfesW+t4X7KHUF5t6mSculf6kt2Puffc5ek5acOQoOc0HK02dAzjyEzTz2k+V05Ob9/Vv32utF/\n13nd9eXfT+xR79rzY1mB6p0eqZJ33AyQEgWaZV3t8VB+n3d7sRvonTOT03w+nTDtZ++66Bh3luVx\n8PVobPHcJt82C9fh7u3KtNdv5ZOapkqLjzhTnnZGG7d82l07M6as+guMyc7x7GSASCbx8h1FAZ+e\nHe/v74tMfKbP9J+kwM8LRvF6f8r3rhxNj7DOzneotq3EWbP54wqD5XozpnqUKnn1+kixZ7sd+P79\nO759/45//Y//MYhFcpeh2Yw5yWY6O7XRynZ2Ie4On3nzRrIQEiW1ddd3pWLQMQknbu160knXaeUZ\nb/vyxDwRoR2HbPZItvLyQl/k8dGl9LkosOUTxekC0MADh4V8w4ZUO5AZTXBt7yPkryzJeTq1EXI4\nb6SgMQFv4aRIZw/2tpzchNTEUmT/5VObzfzW6EfpZkDyvgKRncSZbZeWmi137eSB2TsD6CQbS89V\nbrJvlMdMfC8MnFt/55OnbddB1O9IbLKFudZ6gXGVCWshS5laz6PJ8PkRLIZ9blsjmnfwEWyhI9eZ\nNzUtdt0+GYtSwqgYZ6as3QfNOzgrna59z76DVOHkc/zn85WyXjURABPCRsoj2QtdSMh0CG39TVwj\n2HDvs+kmnX6ORU/lldiNVGYX/nbzLoToF+mYZNtgC9/Df7jf7yUPV+1ljn6DtpOdb8jMOG4H+jl8\nKF34GCNHww4RAx0aolvHMC7KeCw7bav0n4gssoJhXbVf/8FY7bB2lrfuGaSkUcTXuzsx9O/gS4CX\nPFUbVA51o5XXuZVNzd9WdezaCG2Vkx0C5v2sHL8LtLpY3K76KG2WGgkoT5ESVv7k1AY9/e7nk0nz\nuYvVQx9HvTof8u37d3z98R3388RTa3NOUCoJ/dN2Gd9h6ncpFcafvj0LTR7DP0t/1ELIccw7Qe7n\n3Saqdcd/O8iI4ycFzTEfoZP8c2ACNaIxCe5WdXUQ3l9/mdJZUiGgWi7gAO74fXKcmB17cwGMHZJD\nUrxzUZZkJgAAIABJREFUL1WPieQACnV1zgvDEGKOiqZySKq2wtyUK2fC7YahqZR9iKUM9LSdOzpp\n/SagkFM7x3HgvN+FPkNY/H0P+vtGcRKrCq+kfxMRno4jLIIpMCbrc7P+sdKGZ8gSL7AZfKtS1RAz\nOQ697raOihvl39khUcBdhnvSvvcM9HRRYIAqdLub42pcQr8dDXViyl8GqLKpv1trYUFB/nVlj797\n73YSQfvVmZ0yZ6vbwErFy0RAn5fKKS+bXA/5PzEN3EE3Azivr6/GZ5kglaELsuH+vrq/IPw9mFwv\ndCM3iS6nJ+SyaL2Y2DeL1iZ+CNQHsOzaZ3w1VvVVAPMknwBRMkuoxxbzhILqLYxdz0QD0ruwRjdq\nAr4c8Mi0pj4n1n35FVbPgH4hhR8T1XDOGRNAuTpl4pRcEBXOKvAAmpthkMnfFeQws1ym6hYs+gD9\nRLR02DvGujt19juORdYPNtZEODnxccqjScqodVQHG328LqWF3qJ7mvNKIn+t9PIOgs9v+nfhu/0C\nlzmSxxGeWbvH757y534tbUx1+HbnSY4MsHf9Rcrv6zIQuLHN2RZ9uE5goV2YjHP4AsrjzPjy5UsY\nlyqsSdWOamKA9ZvUH9WLuzHd9e1kLhcwr+hz5fRU+TI/bjGTx2datpObNT/MsT53ZX6mz/SBVPHz\nTNGG2EQjOPkV/1k9iiM33lNRxmzG3kfZ1/efJC+389Jzr8cbXr58wY+//x3/+te/LJ9uKJC2SA8V\ne9BxzMtns57RZ1UbnF5Rz5AHYSp7aZAsYWTT5aM+u6zY0c/r9wqT+H/1b68H7du0UfmqHs2Y95Yz\nz40i7J7lcfIpbuTwJz42eAk1TwU7TQibOXybp881LjlHnLSsNq/l9s8JH90dK3/LeKvnrROyrg9A\nuPx67WPsa7a/epJEfakDsA05U7ZcXWNTyzT9NMaGcZ4dP92dihU2DD5DSoonfktufVbFxEQhykeu\ne1tUwmVNdSBg/gly1woc7ucBTrXrRX1GT1eG12crZmbzmWbVE/NTV/2caet4G2Nzj8+i2IpW3rcs\nZAVIqwtW9v3c4h3sdX6lR+ybQs8HXL+pixH1qZivydAZt/l7QgF3AqLJaQn2/OXGbY4DgIaxcNHQ\nNcrEuDeEO0+/1Pk7ni+XuyMcP9vC5n3eM0TU5hgaMZy+7NP+XMvAuoFu2iZHT0rLKWmsqs29u3oz\nrvbzPp6uWTarurOdWvlH5krlmw0JNmnX9ipP1fbcpiX0pG4IHcLhRgKeu3cnVKq69HemA0E2tE+1\nMnlH9EA9XmbXMfHHomnIbw/zH5Nht/tdNot/+/5dMMhxACRXN9xuNxcuP/pgJifjlG2U6zQWawt+\nO/1RCyE+MQshlQptrISCYXHwj3HaQ5XLeT9xtAO3m0yAS1z/OLkMOKIPQHY/T7y/veJ+njggIMgb\nNJ+2zrYWOX53ZnckeFXwk6F1sn2yYnbG7W8krODYNLerOlHg69WDJiOWzJIq4VvbnzlYjTdKC+lB\njC1i0JxM9+2OYHA1prbzJJU/d82s98OEFdcBbvLuX5nIZFssocFbnMYjrG46IOoXMNYkakf6MZW5\nb/8xFm+0bE+T6hRKlVTBBbo6ekx+qi1IZQh9G6xdo555UmQOutBpyNsIq6Pl6NiHyaV+BzBDjAWl\nCcwFBCFMMh77XWK9y06ddhwg6otIb2XNK3BMMamA/w6MeIA0Ms7y3ORyZ0bblhEdUinSG1Sal3Bj\nPm5FOwGYI9rBtgiTU9cJktTH7BxbmQaoJ4AUPpX7IRgr6PGlN8xTDtbvPsvaAXrb4RLqH7wJi3Lo\nyJJd86o1KxD5iDMX2saQRa8SodFYMnCOicprBYgcwFb5kV1R2pdN+DrWb6KeJIr5rhwU3X3F46SS\ngGh5F5wKeKBjFm0ZN68782QO6QJ7F8fO6ktp55TtJg9y3Rls70CmlqUaLbyrnCZ4J2DSOfKSm4ih\ngWUwF6ANc5icKw+sC0K5j/kd+UZgOibWt/GvLTgPeDUXvHTcB8Y6WqCh0SfVMWmBwKP+PQHzdIn7\nNuvfxQHT0vM4WQ1rUrvhncKc13+v2M3nX/u36oRFdsYEk+KXqZui3P/733+hd14W/j/TZ/qd9BFd\naXzunObJo3V5j/Rt3RgE12CVFYD7vDuwKnNoy/DuCqft2vZIb5rOPRqOp2d8/8ffgf+9jQ03XfxO\n8NidviJmw6WF/eFZUXimOkh1TRub/eydEojcV2QoGIDDzewWVYY9lkO72WeSsa74JOMHr3uD/cru\nHsnGEj+xByLd327fBYzgJv89f2TMH2jMczOhTmJ7jKG2LU8s2YKXs1ld8WiP9FH7svol0f9caCWU\nHSY7zjOorxJpqzSVyUyP031bfL8mD0up3g8MoaEBu5zbLx4YVrENaNGPUmyCwXKdgd5P/Pv/+X8c\nfy3DYmOYR0ywB0JUDz/O/newqaNNle2fXZHneoDYY3zDEG7CPJTvsI3Nn1/osQXrAPPS7aJ89Xt0\n8tdO5wBpXiD6IYt/oxjR0aNKirFUHwAyxm1sCmSiRcfmTSzVCMoGvqgv6jZwkEPvH4ZvFPezLv5Y\nx60NKtfSf8dDAXdPPsz+Fbl/iVwoY1p5Qeuwvx0uDfrS9P3Q7ywnUagRWp+8kDcU5PmTQLHK9xi/\nidk2ylVJJrz92EUbMDOufiuzbAA7XB4vB7l9mpaFnPR3DuTly9Ex1N/ez1l09bKh9hEert973VmV\nt8PtPo9f/Mk2wn8XbL3Psxs/woikUc2HxHL8by9Xof2mh5xcpLoru+oxg7Y1y8iOBzOG0NPzP378\nGHqnA7dbeW1CaINvP7Pp8VLLPLAFH0l/1ELI/XQTJJBdKPf7XcJb9RNHi93pY7eOKhIcsjL2fn93\nzCN5KwbBAKTtaLYyJavHc9VWgdSZBMM75v75mmcaCwW6poThfZJVALxAa/OFZWb8XNnhXYN8EwJU\nMdvIQJu/GqkSfJ5ELASEll9MUUFk48jAAG+nlRni37qJMi21NQLcSZ7eO+DCTmlfNdREnqDT/+z4\nOes4s10sbrR2fc6TKJ42YVHALeAQke30XBXYuojhFxt0AScnX4YH5f75vPR4tHNcJBfB9ATz1Pzl\ngKvBCApzpJM7jnbMOxzSSZHY3lgfMBWdHx+icYy+y04kpbmCfOMJpYs3xGPHVe99OGp+8RNodOCE\nlPn+dsfpeMjTrjJqVaqctTw2j1JW5h7E+Tw7UK/3YhgpOIO41aAEvhhAm5mVRZKRn2V0UgMlcnKj\nuMNQYkT6OvRbDpOsGTj4NB1dp+8+COj1+9Ilozk2u/oZWE6DVOAy88mVg8Db5wTSu44sDJrKXe0o\nKtDw7fI8Ic/nJXnnsInS/hnrc0eD+HvdMaqhy3yKIDaCMOVDr/cqveV/57Zke+Fp/Sg8nP+20knS\nyygfGWwGIGyUCR8sdo2aOqU+dErmx8FT0xOE2gOxSYV8FMB9D1InLvG7nv07n7pz9Yx2Sh9m3G43\nvP58x9dv3+y3LyffbyH2Z56KwpTqsq3Wb8wxyH31+e2ESbKpCqZLmkjDAs4KdRGBidEQZZGx7qbe\nORVWT6pXdbtk8ZykvEV4f7+P0DuP7cZn+kwfTbWOdFZS4G9YqHxUzpXusfxgWzDwNk2+0wlsLquM\nel8f1m25wmg7u+IehMk4gsj60/Mz/vHP/4KXlxf8+usvmFQPnAOKNiXYKMgktMdYc5Jb8ZbUbSGL\niMSHHcnjeR2jcgID49RtWgywxZjl1PQwI+Sm9sy+pQ0J1fiS+nXSFY9ZPc21DxLCpS2Y1PQ0kdOC\nexw+adldbuEiv9M0Y41sD7JtyScxZsaEkzWvGwd5RzZ+owLwOAkdrd26cObL101hu/cLn6XFnsr/\nEky/8ruMy6DXuFDbb77qfU72MnfQ0fD6+jr9WudXAc5nRQxDq/Ud1Gyi2I9DbFba+OD7mmyu4Qwt\nYygyQ/4qXzTLBmB38VX8tsPCJgOKobRtPo/9z0htLApGyo/2Zz04NCG5RUjtTyGH8i0M93v42AR4\nrn3B6hPWujvW48A8ZG1s/pZoJg4nFzhotpeX8Z0hnr2ESJXNfT+8mUs4rL7NgvEx/VlO4x7ow9E3\nWfAo4vCqbpYTgvKSez3e+r2nB65+b5778uKz+u9Zvi9V6KjRBzRaTTM+XjcgicKD4WwtRzcq6oS3\n0lb9hl0ffF+ufJeqv7v81fMr+n2k3qwXKh9Uf+fwxKbTuQOcTtFA5HQ3zo/6ckWDXGbWt17nlXUQ\nhTDoVX3xWxl125DAjC/fvuFvI2qAbr7Oc7hBD/i5PAcFNZxjXa9lv5SXXfqjFkJUMSkR/a5+meCR\nsBcHNdnRfM5JUmAFRQIU5i77BTRJpTjPE79ef6FzF0UxJt0qgkdwuSpRHejjOIbnMUc6CBOEnaZD\nPunglfSiIHhOMOvzVR3XKQqJ7JlWYWkthry4SoHG2pni/aNnAOF2HHh6epq7Wlwoprk4oTueICCa\nCDNOYq2wKtr58aK0IBFj7FMsLwEcbZ+nk4Zj0YUY329dzCM6zJDPXT2Tlj6ki99x7e9B8d9q+bfb\nLeQhkt7pzjBghhprzV9mJPTsvYPPeGF15j+VS12cyLTW9xnIhzEftKxDS6Uxqvrvyj6dop1FRTBG\nA6xozOTX11fc7/dSwV4ljREL158s+5XM7hwa7zRq+Z7Psnzl8nzagfqcqvZuMqKCjtYP52hMXeHK\nTKCquiNHFx4WsFgAemCcGNnIdm76FRmozGAQ7rLszO+78i/HgaKekcWdNduixzB55TgO9HPQm2js\nIEp9HM/1VM3Z111G686wuh2eHwEEfSXPT0Bn1aQBJieZz+2+K6wTDn7R80q2rlIGpf6uKWA6/tnJ\n+agM7UC1jNEq51VeK0syiu3WutUJgdMBm3ZkXlzqLvRQxB+FTUxttVNZWPW/L1f/lsX/sfuRppN1\nRVffD78JYHHOimR2hCZWu6qLeV7WDsyNA3c+TQ3I9yuvPeKP2skbToOTA5/nfr/jr7/+wv1+RznQ\nn+kz/QdpZ7/K9P+y9z6hmjZLntAv8nlPnapT9VV9c3XsZhhahhZ0I4g9042L7o1uxI3gZlbCjOLG\nAXHlLHRjK4iLYRBmITjiwpWMDqKg4h8QEek7raILG0Ebpx2a7um5Pbfvd7+qOud9nwwXmRH5i8h8\n3vfUdxtvF9TzUd855/mTGRkZGfGLyMzIjmvY/l17fy3n9NwnP13D3KQj48ihMwa+yDr1ORjuGl4I\nuIyCya9fP+Du7g4fRVDk1O0bnAZeaZ/LnXSsWgBVATXbWSh41M4DML2/kc63VJWetgUNN6lqSEfL\n+tesMJ9fYThfMevzI34BGKmdCR+1QO+woZ6KC2hBdBFAGp0eCLHKF3VZ4Jh9hcw/sbr7bIw9viZH\nSH0SfDfqj8ne9fupUFjQNfPTsG7GJhEnHK+KvXatsETVHkwm30B6mTkTgppjPlwrj3c4RsTwZVUV\nsIWo/f3z+ez9Yn29sosrXvJzLyOkOVvHB2yhUL/pfWk0jEWlwx+x8zso7Nfks9NmEzUZB+XfJ/nz\nX4c221TAEmVpY8VIVusrOivT6OegvWQU2io8km9BGZMxRJfTqUMWVLWnPOrYElEXZp7H+0Kr/Be6\nXhHevybbppPCc7oRdGeshU3S1ct9g4OyLG6w+BI20Zx3fYGqZhrP5zP2/YK9aj9MB4G3ixpcfm/5\njlzX8TvDzxrlRZd2fDuPL9PnPJZlerNdPnmYxsSh7V3IQRtTjRbWOWFhbPLxchkrvcp0LG3GDQyT\nn1n8xcfXgW56Vtm6GrvzUrBr+vI57/mza/5VFo5VudSftzGWtd00bEuB9e7tW9zfv/AzUfL3mWe5\nn00G/RwViosvqbf+WLd6eX1WEyFAgWLDXnfsVdHy8lVcLjuUc9XXinq5QDXmNm/9rtgsv6cAWjjw\n2sLDfHYI0Dr2ct6hH5+Ahzs3rqPjRwfmsyv4ueckFDpgGBEoqE+yKLYibSWGNAWXAz5t1rU/63VV\n7F6eSFvNaBIUBExbTnqRvpul0oDX9g3PlzNQyW0r0rffYl4tY8M8DqLIi8wnN7mnDfpUsZXS89lT\n0FQ27Fr9vI62zdYG2FhVwEGGvDrAguicw09V2ioKlzi0NGG0oqbHGT0AaQonrNiiftr3fUpntW0b\nKsaB7AVArZdWJsbq2RUYY15dLi3QaO9aPzGou+w7WW6EST9jOE+ytPIBaF9NUhu/gZGWatu2yUi2\nnVkxdVkpWwcFfP5H42yTnaG0LP9tnIyxsdJycPqEDW35BoBTKdjJGJXWoS0lnvFNZMxU93KhCuyK\nHS3V3uVydvoLba91RwKLFU5oO69AIH3etTQ7L5bCb8i0jDQCIn74nPe76504uWmgXurgJ49DNtJ8\nz3lcxkFpVqpoBI8QxV7b1lkHSlY2A/+0E0M6mGTnRTsyZwDh/FQCRK4IujEUtB0m1B9tR0pz/g2c\ntU8yOIPrh94cCNqB7FV1rGwq4rldsSiLdT3ztR0k2coJutL4oKTXev06pcfSnmu7y5zRSgGKTaSd\nJeK8jzSazh0OVYe3tHJPtetCFJRz03eKvW+9hvcNtz+W3++RThz5bId+gAq2vtmabRakTTQ3GjmI\nYLLfvh0rxJpeMYpqrdhMJmzsqE6rRbivRCToGh6btqtmp/qynVjpde7f7jU1Pdzv+0GSQBfeLhN1\n3pnSVqGmnQmd9gqa+NboMK+cKfvefhp+YF54KpfEJ1Wz6bbCsv2vdv3ivITgcjlDBLh/8cKDcD55\nqwAg4Twmzr0s6j0faRb1nM2tzK5PVcZZSuSU1B6IbDyxEht/LHAIGicmq25HAmhua6kBtJRfpOPM\nbgAIetlbsLezxcypuWhcNLJR/6gR3zFk64ORFsP4qKK47I3H5ZNg/ZfryzWuYF+xdmIDNkAK9Oj1\n755JRShDu66El3fs+F8NWPSdGLfeW5V7VI+m+2ZvRQQPr9/g4eEBP/7Rj7oe6bsRpJ8z0G1JK6hP\nrFq60Rp9QynS/Yqe/rSMHQutz/aRestSWHb8V7WOHSWuh6ThtqqtXOL5KigyFggS9wPmmyeqWec1\nNTZ0XuW+VJ01Vrcr2ne6+oQMyVfgTygzBr/ie8ajltZJUSHdx2ea3Z8wu0vtcH8J3ffS6OcOW9Ha\nMTDtLHO8Wt3l3epa8TLJLuNKctti36QyuJ/KtoW2eKxBhw8Eo7Fjl1WQsdZ0TqOnP23vfPvtt+7X\nairH/Y1VW6Go3JSuC/o+pdEn4ZXOC8fmY6GqXZbSK+BViTwnxvX05PMZB0e/B3wViMNKDEL7+NX4\n6GgyIAdWrWI4//1viruYSs2jb5Usm/nHNBzq0Y7bwtNoLNbf0auD5MgToe9X9efN0/7tFZtkOMom\nXOWwXVh0TBxTCsWe6+uyXErBjrZwxXUCVcWyv6J/1Z7hD5utHP6X+VdRVUv4mf39TMtct7SNx9NE\nikzfWeOifPZJcNfpcZHcKrXr3g3PmLxEkKGVXszjsKZ4E7BOo8XxsFU/ZFvBNHBMgWNMmaaVDmce\n2tiuyn5Ua/+1FGPXsNo1/GXYwOMiubwVfYsyMh2zTEWb3JrZYpCn0wlvv/4aL+7vYWcGPx8ztgwz\nTpsuaFzQ/ik40K7PaiLkVAp031H3iwuaqnowm5VIFvrVanS7DxgjG5DyGIkzGThfnvD09IQXL1+h\nnI7PYGChukUDX+3veI8BzOo7W9HA4FtkBJy1K5oW6KrhW3Z0HHgHegDxnDDNUqwErAGbnIaGnvVD\nvQIfdJ/KyYPMgGYpBV+9eYMf/uAHvf19IskAuIzvue68evSaQQgykAAwep2soFe08s/V9vhcdwt0\n+I3QfxsFGLmOlbIdMhMVASt/xXA28vgwOjaa/OFgvsg4EF3o+5227A9wO2gdW5WPlXvm25ExsfzI\n+WB7nmzYaReM0cr9yqvP7Ntaq69yUomBeWt/zgfpTUnKP8uCOyVlPhPG5QRjZZB/532gQNj1dBvU\nn66A+hXPR53PNEz02hEAFcTyTe9MgJ68Bwb1wvzWeFYGQDlHky4z0JUB/YrO7imEkXMLpK746j8B\n3z4KmpTk97N+TcyYruA4FvFtxzU/19lJWIGX4Dgle6RqAYpxNtM1eeZ6uK5GjzpPDp0rLb2f6/S9\nv0Jgu9bqAXVLUeT9bd/KCCAZnVnXeX8vdVADpFnv3mxvoF1Dl94CZ0dAd/XtONgx5VZN702O1KJM\n1pvtFtvJSO9g73ByVNvEyOl0wtPjI17c3UHRFpjYVfugNNq9TBm0WR/m9rZ3cTg+Vv0w28VjQJzH\nh8nGkT8vIn7oaNQn1kjiUb9W53QxXStHJtLbJi8fHx97ncumfLm+XDcvVQR5O7KLh/cWUb5PcWbH\nR8f3VuPhmoMeaO2DN3+7stnZN1yNSXuf/6EUFAgeHh7w7u3X+Nu/+7fJVlRfvzEFDdofAVMO/NoD\nt6X0yVuAzwTshPh3AOsVnXSChdtVtZ9hEnmbecHPBN2fZFzY/QvDxhYcrFX7Yq2B91yn6gJvWX+g\n+37qXebndIL4xLbdFpiEOri/tAVdrA1H7cztBTBSkLHsmb+HWU+3HfvHMuZlELZ0nwXDp/X6U59q\naqdhHys3+PVEH9OQF8ExH2zhlwcl1SyYG/0QpAv4ChjYHs0n/Pjx4/CzZSx4DHw50BO8m4CxsS8E\nLQKeLXH/Ew3zisAnQaeyE95bXc7zqu5v5zL4CmNigdtYjpZtTYSuZIf12eD7PM5j2fBxE/wRrit/\nL8NHcd9HB3bXxFa1QnPdrOOAIOdrOzJ8laC77R36c2UPVnXne7lu9wOgbYJYEPrC+k2TH5Vtg9eB\nLHNjTMdsEk3DVR0TF89pz5HNWtnCgQs53mP6Zfb/Rpuon22Mq7YMg714iy3uPaNA8KsQh7Xp4S64\ny/YFjvV3eKGpqgY5DfGJZRviZTsUqWETzyZ/8GBg5b7nuFYub3Wfn/Hvruc6Tiipj/j3uDi728TC\nS+XmeqZ2NKImmct0Zl8qt22FGb0deZdaf2CL2V68eIF3797h7u5usidDXmxM9TppiOXxwOczrtpm\n713jy+r6rCZCVNWVjYiEwGitFVrEZ2WZ6ZzH0tSEBSBjYE3aKVuuHHvQd9uAWvHhwwc8vHs3UNyC\nvlv0XwuOaGXlxgISgeb4HsPwIAK3HMhoOzzSWQwk4LIJP3H5bNexsInIcku102L0J4Oed4McDcRa\nK17c39MuhrGCN/OQaToCGvm550V1RUorrQCIFOyXftaMK/D1gUZ5oC8VNq/Q8cmqDvq3rQ10SvuU\nZebYAe30FoT+cOUPOiOkETLGDjQcDjj6MNYwTeRJaaDCNWEPbHLOdWR5HAZrtQWS62IZ2Wvtq+ZG\n6gAR8bR2grb7RDv/oLSSm/hmgV4r/+R8aO+wfuEA15DnEZQaRoHyOvf7shVcOh0OELM4KO0USMYb\nxLfngvq6APUrEDWBepnHUfDmmGQgBJyPrmxgs5MXCuvNb4HT48PgMj3WbxOg77S3MokGjPqYTq9f\nrNwIlq0uuyo9ss/E6zngy0GTMn/yPeeXzI6WqoadiaMABuvqMmj6k8E70Hes1R3o870OpTOANDle\n6KNpfButxJPJJqXJWyp0lOU7EwYfjEbx1+cVMmEVZLo4uGC4werItBw5XFyvDSM1Z8BpX9shxiwr\nkHlkQ4rtUiB9IJgn3p9jLyy3eW4X8zw7DbYbrRivRHB3OjV5MfrLCEqJABs2ZD3gegijD0Zb1Z9N\nPEhlNGeihKAK+Guy0az7Jlxg/ze1d0W3RXnvX8oow2VA5z68ZruHDTIaK2pt6RpPzXv/cn25vtP1\nHFw6Oagan9G6yDBmj8v4btegTSb9lN8J9bmOOCpv5sNzrpjmr/kiDw8P/rf5auP3WQ8v7QA928rW\njzekQE3b6t7w80KnL21Kx+K+05nam/2Vlb1ZB4jE6TK7bjqK2+XfMJ6lEnZbENQBk/kJWz9z03YZ\na//WsekCF+WLZWYoccyygKGWuymbx8LCjsZ2It0b48IqFBGcSvM19r35LVuZbWoek9nexrZh+S7T\nkhd/MM+ije2LX4gxihg7WGIS7Yso+sK4y+UC6MjpXvoZrbP/kTNJkEyt8KNhooP2D/9hrJZnH579\nsvx5xvUofREf+g4aOcZSoQ1l+IdE2IzReXLysMz25jSWvK1pPCrh+0N3Yz2BbTR5Fdonaa7ahDFp\nOz8bZPnbqQ12b9RP95SwGTAWv2lwHa7Q9rxLRNo5Lb3bpK503e06RtuiTlQd5y/2W5hT5qXxvqgv\nx8X8gGn6DonuISOs9Gb9MD4w+z63L56F18oUiYt6VKvPUcZ4hS2qG460+SorPN92UMZ7inkRUdaH\n2Sfy96h8lrGV/5H1q/utAGA2P/HGbRJ9l8uwn9knm3BIwgorW5wv9zgOZDa00f4+sCVsv7kdRz5o\nHr9VddoZ3/4YMZl93/Hq4QEPr175Aj7Tz0bb9WFMxxBw+3Nbj3j2CSris5oIQW2pkOpesWsDGHxA\npx/cS8wDWjobAChyAmg3goECu5o+0XB2grQ9sqj7jvc//gZ/D372EGxn4VmBzZWyG/UPJ6MNcJ7h\nnenlujXVP16AhWmvKn7Osy+SJzdiwGImfNSV28M0TqTdMEJtpb7gRT8jZCsFu17a89rbRaAcOlYT\nqSp2VZySA2H1ch+wQqhpYNluI10oFO7jo7aaMYGMFTNmLIK8tHBO+M6MLM9Ir7bQqSqqWqqPEtrF\nlzsbnU8+bmptW44XvGJ5zQaopcKMSpeB6FHwKTgD4ybyZd/wyinmdz5QnVc6cT1KgDl/b31Stlb2\n+UypsaSEPva2c12thTDgkVdtuWylySnms/FYC/NK4oqJA1AfsCKDeo2rCgItxJu+bGDi/epSbamo\nCvEXEvWK6S4G9d7Xk9NzXI/JhnSE7eOBrko8UY0HGjuPuN4+4ccwywCLJ1AUhAmrPJ4PgQM5l7XW\nEuJtAAAgAElEQVSXs7ILgX5amZ8BG9en2lN3rcaoatcd8WLaXCeOL31S0dIurea9mB77fiW7t69s\nx0ZauNnRM7kY5dZa+w4D9VSIWPTRyt5moKyL91Xjt6tdXHlnmP1sY/2Y7mt2IT9b2UO3SzWm7OTx\ntbLLpov4e3NWovMS6wHZKLuVHYCWIkABrdhOJ9zd3Y16QXzGSOmUwTTziOs3SWbN1vg845yVM2Lf\nLvUF74DqwRzDDFyP8W7YSpqMXNSX77U6xv0jrHd0WZ2WClKFA9Ffri/XT3bdHD9ZNtugC+/ayjwR\nhJWN0WawhplXRYcqgm5t/6bdEVe+ax8PI3aEgYeu9Y/WgQVLJ2xBzHYAIU6nO7x99w53dy/w+PG9\n60nWF9lGM4Z2ve1V26Icay9hWG077/LespX/6FgMhOlVe4qsQYsvhgt+E3zxlWrUwSJAO39g7N5U\n5wvAuycGYxNtAHTfzZEEkPlFO12NA6qQhKPR022MBZBlYB/pNkNrP1ut6cyQ/qs5KiCPOARm3C/c\nituxfKAr480jf9gyKQgUhrq07oBsKKW0CQTEdMQZa/mOdbLjbPuYXmCWc7b7wQ8y2dP8Xsc+AGoq\nJ9u6WneICt6/f4+npyennc+ZHN8v9EzCL0djFEKLBTHkNdCkw5dlTFhV1+mUOi7ghWs+6hQuO5mn\nTAPHh3LZk7+AsRNCCGfWRbvtyqlZZ/+ZseaMK/1Jf2z+uY0V/2IooQk7c/+0/gJQY3wl1AVpbQRm\nHiRsF+73sV903BPbKdf1SDX1u7gmP/vgyjECFYQD2Lt7cdUVXsUw4DM2wNPTU09D3uMBybfRVB9X\n5f5ValOTHRny0v3iaE96GcUCzddjUr1w1+Gw2IX5kweyxwtzN7MTni6Xds738gF4uuEVH3NcwOpb\n8SuSHn0s5tXRtys9k14gOR19s7Ln17B/jrnwd0d6btJpi2fVRk+RKW2jXSwTFhvIY/u4+Wv8V+ui\nnv6+lqR/0iDd9x33L1/i1atXvtuUbW3+2cqwH2OSRBWeFWa2L9f69GqTw/VZTYScz2dcLpdmcLex\n6pwFyRhlqXt8JwFa0DMfDHvRkf7GunUrBf1ENyjaavStFHz742+DclkFXlaAJBjRtAo0X+yEA4BM\neeTny8HNgo4QXudtTO3DlmtdZA7aCIEYHXb/ELQwAIdtoYtAh5VDHvzBsPb7pRRcVPHq4QGWF37f\nd5R++LfxxuvoqUNGWrAe8JOxYsYCSnZAuYEyo89AChuF7MzYZUB2pXS5HWJWlgd+bedX2ESerUgJ\nIMRkhcpeyl+tbSMTAFFth3XRu3kHCwOCWttkUt59ItIVLqXJmuo1IIXhHPMOK+MnB+SYP9x3fuYD\n1eeOicgUMHZgQ31Wu4HYzAHqDonJOtPubTWjohoCoK3MihcvXrjj4vVT36q2lW2F/s7n3zDI4LNi\nBAipoKAR1Fu/XwP1Bp4mUA8snaQgqyZbCyNo+jDzy2Wa6lCJsubfkyyx/EV5HP0QmzZAdl8sGenh\nT9Sc4OcBeqXxwXTZpJDh1xU44P4PvCX9WFT9nBFr256+Y14xrfnS8UKbGCtNd4RtxOQorEBbHDOj\n7svlPMZpaxzMMapap+3cksq3ZybrrPvt93z2EIPm63bNdITVHFf5+MST1SXSY1XiclWU9JoOhyXr\nUPsmnJGFCLqyY5HtfnMmZp6wfgOGXptooN+zg2CT8Uc7SCJv1+cUscM0aCduu423Fb+N7yPQFXtH\n+oTKVsroY2nefuCNEo7oLobrf6J71lXRibP0jOZYjXzPA7eZHrLxbTtVzN6pNUzEz7IqxqdtnEWV\nz6dqOsFSLKA5AEKBPMhYReZjbk55sroGX1pbzPGwQNh+uaDc3U0pAr9cX66f9LrmIGfMsNI1BgIE\nsy6TrgsEEe9x2SFI4maU/ZWsY4/b4HiU/ZZ0RToG9mtYbDj1h+NV2q7t169f4+XLl3j6+BF3dxsu\nl0tzFzViZGAOalo51qRGf0UpG2rt2IRt+KL9wU8L7WtnHOb3uDAJerXzAdEWOJZJqUvUJhBE0C1A\n6NOBscaUl+OKZJuerxv59/j3lC7MdsLWWWabXrc+jvwrp22k+i2zrI1yaDESY+HUH+1cT/Jduv2p\n+zjPaulzY9G3xDfjb/afuLyM07kNbPfNq6zTQktMwuB2zvwSVWwAPnz44CmJ616xbaclT+LqcW1y\nSmHgIxnQjuuKRJk2WbRxxIvSnKcl4umISRo2nFLKwtXQoW50OJrvmywxPrNTTwJWmC+hcZn5kX0Q\n73tziq5cUwaC/Lz/rDLw1Epfo2McOQjy2ndVx6KiTHt4V2a9Ybxn2bEyhNriZZY4MficK9CjM32u\nHW6UafqvF+p96zpE1RpzSAfje9dl3b7Ec3fG2JU0Fnozej0K6fkZDbszvSNIXuBnFQ6nNby/2s0w\nYfQus3rDZh7xMvcz388yf+Qbc73Tc7I5z6FL0jMfzxyrEPF4GOvYVWaTlX+3otvqFgCa4k/8gv1l\nvrpFv4/qaXho+FnPtbMrrMFtsklgtvHjuxEnsOvh4QEvX77096N9mtval3IQbRi4ItGTeb2yec+9\nPquJkLHSeoBMDpiWnpLnsu9hVXYpBftFsdcnP/9jCFwDj8N4te97TAWoFXfbHXC+4PHDx7GCWKIg\n3rq+awfdukzAOHd8DjRaqCADpDyQrZwp4OPg74risZr42wRcjwT1iB+2Dff1w4NvLS6ltAkPazcB\nEAtyGH0WfMxKHRiBFaYtGKZWSEg1ZAGtFQ+s7FU7m0NB9RCArbW2oEw/ld0BSQJuuXynG3CAYqA1\nA31bqcMTFVZ2U26jj4exK1gFLAOf+v/cIenP+PwQTbRzGdnorRScgXyb3IypCuiAensfTZlu24a9\nXvwZS1jut1orsLc33r9/j1or7kqB1rbKg4O5vTsCYLbJgGsX0xgK4yuMTYxdWSXKpr9uP6+A+mvB\nDr47y605LbaSpjq9yrM0cmw8r+k5r0vj6ml7xm39VEDvTniSJ9W+a+QAqNu2bEs9vOS5ZGkadRdd\n8XFQeWQqjsBSf+jvVDAQQwhEXCuL6WmB1hGgGrpvAKa8ciu0k0Bfnjg03Wx18k/tyqLRUacxeOi0\n9p9bicCrdFs92j+CyLHe4YAaoDq6rvYDZnmhJx13Xwe/RtctpyF/myeSuY5V/+eJ2Hn12Bi818fq\n8Wqiof/G7q+Vl9/wBK8yleWhlaN9TXOZgzfkdgSV1N/K+tT6aA4EHQHoqjoH/KbxTrZUFbrngOfc\n36udXqs+5N8HXhVIFVzOZ+/Pfb+9Ov7L9eX61Osw4Hdox+ZrORbpwbMcVOHPbIT3SUYB2fRI46jo\ngDbSxYEOjRPr0/MVrX2MvnnzBl999RW++YM/ANBtIu3m5THP51fOTSablnGLUqAl4f6s1/kqPSDB\nC4sUzUfQqjhtI4AY7SfRRWWOOreGAdUC8jldCvUvUo8sdB/bJKtn5Q+unkvwQyfyp7Y03s3P3BYu\n8Mda/rU1W0cbJcm3Y+4UIKz73nF8Cdht0Dfqr8m/dRqWvIgplI9sOftcjNmY7pwNYfqpCHGPfd/x\n+PjYFiluB3yT4ZssdwRgLYMApT9leex8N1wh0jCxxX5M1nSBgW2e7FBbiP/vWO89L9zjdbozgaEn\n5yJtWkqP37kl6JhpLll+U+Hdw2vjwBwAqivL5jU9eY2O8AzPZ+Fz6/uUy3SfDeICeLaPW3RlHaXa\nFryptkmQDx8+4HI+txRxar7UsV2Zxr80bHzqKXAzD/qNJv/asljYAlh4ON36buHfOh0ZF8d3Mp2H\nvDyiETN+eK5fdcSno4lzl9VV/akee2dwCR7Y50WJh5lvdO0/5gwYga4b47Zg6KSV39jKRIrviOMq\nv5Nk0599or+7tr2h5oBLzB609Ihts4HZmm3b8HU/KF22Dei62nlkmZuYZymQJaSTj9rA7ee/n6Mz\n7fqsJkJQSs9BXb0TTGgt2OtKTSh42oOcW9kAqdMgBaLS3/vuA6AJ6L5f8Grb8KMf/rA78SZkuIbB\nQ9nAdaVyeE2o8vYVBjLHF4Ce+iGCUCR+ZOXtA0ZjMMkMqVe1GFSrbZ727LDJ/D6A+/v7brcUmxQP\n3FcdgXDY6ldLJUEA0f/1srW21c4NaHGbAZGYTmQnw+SDzQMfCgsb8jZsERl51DFWLwPJ4HZels12\naKi5foFPBYBNLdh9PuytsWNsgZbt+KBWn+gKyidOVmSjM5wqk/0G5tuxMop9V+x1R1v5Mravl75a\nOBtEAw6WW9acMjYe2RjxCnNbLevbx41Wp3sB9MMElo0DDVtyedt6rRWCMg6Kp/5Q+qatkrNem8Gj\n899GCjt/6DKMFoyzdhuor7ZbLRk8AOPAwCuAfRUoj+UcO5yOFbs8CGhbMYZaGSC+t1P6AXE28Yoh\na0d0ZCCU+TcB+rmpAdDbq3n1TP77JwH0q3KMLyvnoemDVO42nwF07Rq6prFUtboJWk2G3WrXtm24\n6BPO5zNECira7klfWb+yk9RmA+X2Dk8uWz0crJnbuQbqmsYTgOBQst1f8W/Q3NtAdPruF/tb1c9H\nQtI7pqemYFPavZavo+AO32fgZn+zzBw5nyrdCSrkwBwA+bXTMCZtjB8r/uV+U1hOX7Nf2nK8bxvK\nZnq33Qd6V1WNZ9hI1xasPxdjjG3kJDMGwHt5/A2XFPX1wIM+fgCSAzhP7OeSJrK9oT8hXf/0UgWT\nTjQbyxf3B5drq3Qvl2ZD91pDW79cX66f5Mp4fIXbbwefhtwevaVoKReP9CFjvtXlQQvDOZOTTLhy\nhryhPdMCJmnY2bGM0UG4h79nDPPy5Ut89dVXMHXXUkzGwBbrHdelMrCSu2XmTnWdVruuEG2ZCVod\nNcYCdPhdOfAy1Ul8avYs7aKw7xFx69T/ZgN60EeSX+r1L2hiOq1etqv5Z9sdw3ubQTyNB8azLXXb\ns7BnwCrNhwAQn9gOdxf4x5YUWp6jkQ4m+weKnNbNsEZLm7XGVoYp2CdyrNMFRURQZWBxi1cA5gtK\nq9tx8JhIa3+m6QiRiKeIjtEmG4uD3+x/ZX/1yH4CfNjyDUwvApTZH9itgzTKWcMMXZeVEvhf+iQg\n66xAG9GPLmNrHy7qupXeDJjOPBOrVA7GmcTdPEBMh7fyibjd9s6Kpmv0E1Ee/2Ccl/vnVh2mr1ff\nOZ0y7i3LUA3+rmHBjAcvCcc/14dqk2HqfWOTfy6/C5/6SMe2Xf8OZpud2U59Vx8ADH4EW3Uk+32M\n25OlDmddqYDW3eX3KKVa9mFy1cZJ849ZTrLPzPw44s+ti2m9hkWC3BzgZ+ct0WE+H+ulQ/qfgXXY\ntq3KueYvrHS8XTkVGctzSM+sGjOHNGTlsatAo9tzwFJH2t+JQJgPb/5x8KGKZcbQUK/5SCt+cD0W\nD3j58iXu7+9dN6wWhYS/KZAx0hRK0J1H3x7x+TnXZzURUmttAVStUB0zS6wweDW6B1vLqTnQtaJs\ncVC1jq0DfNkg7aCnbBu22oT28cP7IRyQOCnSr1UHrAbaVYMVOhShjizwQBxA/MwAP8iwsVE2I7NJ\n8XNUBmBXF8pBK0+eALpYqs11r9p90xjQVWvFBuC+b61q/VN9+7JIm3UcBxV3pyc5HWYorG0GBtvf\nRg8D0TIAfzJ+tdZ2ILnGszucrWYQGZwnxev9BYy0QmoHkjWZsrM3TB6tjMkwaINNgq0DmTmJhlo9\n1m9Ej6XGYsVtysdes3E0eEGr0nuhptSrjskg7vNrQcNaqwOSDCY9JQqllOJvQxoTpYmxzt9K/cYO\n8eRY9bqenp6w7zss6/3lcokB3q6Xj4zyysExQ839B1wH9d7vR6CejRZdDOqvja9dDawdGfJo1ExG\n7eKzQridvtVeTJKPV5nZ7ytQdO1iQEi1B0Df7qz5cA3ANGcKVwE9x2OW+n5B35Eu/FQQSR8Hy9PF\n6Crwa8+6zepOrAEWs302nvO3kyPWZRSIZy/kfLZRrlvZ4/zzddtzuMjfC2p0EbRJ/XKNH37feYIR\n6EDsL9aNq2uVH37l/GQarv2daXX92ekNsEAX/UMX02Q6L/ex+HlIx33OjoUFa7a7E06nO3p/HLgY\ngHUo5UrbLVCU6uPL0nlmnZH5b5Px07NY+wD2Hc8dYROX85pMugclrX3tro0BGQ9Tm6ONMPosYLdf\n2o7G+mU3yJfrJ7iObOs1LP4pdmn1bvYz8iXSUkiGcXFQV8YNGQMCYwx+Eq3CJsOXqnQyiCf2s+Pw\ncneHN1+9gfSx6Ys+BFSGTHq3FEoTabiv659NxiKfy6WnZL5cAEg7vy77mZ5CK2sz+KpLw8eGjYPa\nVycg2BLmz7wKt/nKqm1nbTmYfcrYd5WilYNY8Tuz6QWq+1U7Ge1ylI1r9nRxN9xfpfM0XyvYTmkB\n1Vp3iMTzPvi7SW5XuDmltZp9iGIG0f1dsyBq40gxdpHbmOnPK33jdBG9KiMgz+1YZkBQOH58fP8B\n5t9tW2krf832lzFBYVdOBzZ8TWqr9UeSjSmoaPepTaVI8IDDN7nrrRsZR2HgjmsxiuWzhD+aXqA+\nAsKZmn6PfFPn0Ry6HPgNhKKIeD7o/Yhnue2ry/jX5Es9y8LcbzSeqJ8Pg5OrytRd6tC2TE/mx5Z1\nD2E4S5HLOsbHVh80IiN1KtPqGUYWOxCiHTVfaYylp6cnx+JZpo9wamiCjhRZK70nHUuq/ezj/lqs\njfWKpX5lHVMB36FtXw9fY24HX+x/GU+yLs3tP9LPWbau4Y7JXzz4+5rPxZjCdM1sTbsOTPzNdt3u\nrWz+1XZQfVzvymZwDKl9m/3T0uKWxn8FbDZVUp9M/JUe25n4fuSriT/lMvnOvu948eIFXr9+3WK0\n4b1bVzaQCijFlhZ1r3TO4c6exfV5TYS4olIyvtss1IgDT4C2DacHefyZB1rGanpLu9RyXTeHf+8W\n8psf/Qj7fsGp3CFobLLZDC7CZX8vBlR8LQpsbsuk7BbfetDSeVG7nNtKk25YurEe4ff2XzVkbONA\nJAy8I6OV77SyYiojvmawtzAeIrh/+RLb6YR6fsKl1g5Y2sAzFhrAsD5EKd7fVdUNpzkJCvSzHeCd\nZ0oPghB4d8BFnazULqH67Xd2iJhnQnKAUlD7jD5kpPcqPVDJYNbpK2P1rfFrnHuTV/L01b9t+awf\nom1OoH9LeXFHH9DqmaTkvX9q9ZVwI01do7iNy9jX/J0IpR0j3sHAeu+fhrmbAa/77v5b23WALsMI\n44v5bbJhfTiU4wAWpcuKquJyvvj4kSKUdgz+Tg58ssMzB+gELaHr8Lr/UEA9YlnWfv59Gp9XAJh/\nMG56eTb55ytGCHQ6gKB75kSbPPCqhFBFp3CvY2LNxvRs6COPmQ7nTyrfDlM3bjwL0BPXmN+xTzMD\nqf5F/zB9Vi7QVjV5w+kzC6wc1WVBF6T+FJKvXH9uC3p79lpxPp/bWO6LMG8FlYwXZWuHf1ZLvZd2\nafAKo/4AcKcm8jWmc4p90pyxGUBPwBPE4xDiGoF7QUzvUIKpHBOjK2DOAMvKOuLP0pal33N6r5Xj\nlq88DkrP1bHSRxm82ztNz0SdD3N7h7Fx3ee09/FZgL6yrulwm0hWVUjttsU/sLz1cVxlXnFnuQ5j\n+iFDLktrd9XaFw90ncFjj8q1trfdQKk/JemXqkGuVn23er7Cbbmv+W/j+Yx3emtF8Pj02DDK9lnB\n9C/XH+Er2otZp/LvR7u5AQQdflyXrUgku7Moiyq/HjhwXb0I8N3wr/MYXdnyeI9XCcugTQTYCr76\n6i3u7+/x+PgRVTtGUgVK1C/sired7N2+6ahHVVGlQoo61vZvqrb7zoPY0DlA055Ped77CmpPIYTe\nP31W1/Rjtn3+z3F1zw1lTei8cf6Szs36N9PNz9rzrDebjGVbbD95kZTIMT4zvrTuizjFnpcyT67z\n73NQDbAQrZ89opH3GS80ey8gNkUedxykqW5VjekbMZ+32d6v4PMoWn84uJnkv1ZtqXVsoZ3hQuq/\nPCasntIDqufLSD8MNL9sw9jR0my59TVC/YEms/spNrGSHW5zLi8fzhzwBflGwMALEclFP42xKe9u\nNfk0WtH/DgsBVYZfm/2ZvslLazxj0WXc5LxDgjoGbeez9XcvPe1SZfrt99XOehnNJb6M91e+0Mpu\n9Buu1lZ6ytjL92QcIIN8mQyFv2kMTO/bOzdsgcjgTd7Fntum2s+T8TZ2UkVQPVYGQBWPj4/kO619\nML7HOnDV9slnw0gx6/qkp/WvqkBtMQPWP3Gn+LDFViZn0OF6YDKpkb4j+eK4VG5HKJeuPH6Pxvnq\n92tX5tk13OG7sIGlrHE2AS7rKI6SeXnUz4aeeGKU/Z2pzKqRucLtsnKjr2eLnDOpKz7X8ZBfnN5r\n5QN5AGabJiL46u1bfPXVV+08bxFPdbjCb4GfripY1sZZlWJEeKUWz0WwRdd2Cefrs/KwVFsKniIj\nqMXMZHAQU+n0tFlVw4AbBzuzoPaAej/sFqrY0WaZP3x47zndBGPFfOluOoClIXAFreo53rFQECYg\nZngNmOZrOPHr1Bbge2rywvS0Vqi1tf9PqU3t21EGgwNrU7fg/YW1kyEELFaKndud23h3dwfdd8h2\nwvbiDk/np7aNV6Kysa2/L06nIQO15e1t/DM6e+Cry4Klr/K8+8m9YwBlA9jaHg6hrYpCO0vaVvYS\nAXFn0TCo2rZ3Wt8M+wObRtH+ntAuB5PVsLW8cD9kI1vo/L+etki1TzK0PJPZCKlpm74ioAtwzzy1\nPjDNwTeq76jKjo2DD5NpkweWL+K5HcRXgD52Qcq5rU6rQWCHJEova952bHJofO8OIApQgKfHx0Bv\na/5Y7Y7evVCgbMXHaFhJVRvfjSI7e+LIkBsdA1Mdg/rxDSJIqUP+jpwHq6udSZPGG/ouuMTfQd/o\nzTIK62/2IKXGVU2mozobzIUYRreDPV9pjSbLmgDb3PbGr+C+GKLndncd/imAvg3j6AzaO0N+Mle1\nDxVr4eDVCIi0YD7XP61q6tceh84AZd1xKJI1bpdXonPlKJrzxm0vpbRcs+WEfT93XTfrae4n/74D\nxdJlahX4sJSCpfR8qFI6g0yfRMDaHPnO067WFDMgBxDyr4sITqRP2OlTjFywfPFKVROdI4DLP1n3\ng3TnkaOTy6EbLe0hAcMj+XRnnPRMseF1xVnI42aMB8MxfbFHAvAibeWp11YVuimgBTuAohWlKu76\nbhBBS+Wy+zcCaMVYKTvGBl+llKbf+Tt7Twf436SnBEEDxfa2Gh5WNB3eK1g5L0oyZfIFGpMiQgEn\nhcU4VnLN/F31V8Y6GVPYWBQZZZizsGtFUcXj4wf4wPlyfbl+wivrp6N3bjqq6d2j58H+QJffrb5Z\n6dHrQZDZp1jRlOm9RkNxjAibm6RvC16/eY2HN2/w8eMHFDTd5C117Ej+Q9JFOcCj2LDvHQ+pAjJW\n5dqCP8uIICJAKbCVntLtYw5MTf0t4hMiK34cyYelGp4wP/t8vZ1mq4b/2XT4rT5c90XkkfvQk85t\nIRZuj08+hPztUTfn8oy+5nu3HTzbdgLQd+t30O32oXtr1fCKTXJhjbeUgr5cbzzDi+wwtbuSLWTb\n5jj7wC45PqB6+HXV7q90/O74wOqkfqjdP2i7UwTnpye8//Ae+757eaJE36JPs04x2oWwsHQedTM9\n/KKecsjt8aLsq3pIzZVdL7gM9GabL+K8nDAABqbKVK3G16yX1u9zaXZwfHiWx5TGMfmcy0XUP2NZ\nj+Mll6zwzp76Yp1y1T2rJRpc6gcbc0DciT+1Q7FNVIxnRtOGuLgnj31ut8cm2g2SmzHBJS6P2haU\n+eRdo/LIzijgC0Kn/lzouTBuUlpDa5uUDQr08RgneZoujH5wXZTvfnTvW8O/Wf9mmniSxXgyeOmU\nj78lsNaNrNk07gura+mvL/DKNIZSn7Ivu8L2uZ2Z11w36+FczrV33b8B6aTUZm73qu158smOixiL\nBvvOMqW4Jul9C4sytcyPvDuQ3grva7cbPGkkInj98IDT3R32SzuuAAseX8d1dA5pl4+2n8FwFZNC\ni/gcdl0vm6/PaiKkpd/Z0dcAQqE4P519K+uKsdaZnDIngx5svMI7gUDtgeiiuJyfAFgHskJHfP+K\nMW75ZI/fe07nrRTR6p0g1AvlkizgJ1/DsFGdmLdd6SJd0ope+oNgJnA6nXB/f48P3347XknAQERw\nuZxHm08bLpcWUBirjTEUrQDt+OE1cOG/py1WMgwEO0fWznx40jCoc4DS6B0r6K8H0FgxxnfX/Sjm\nxXk5/f0eJDaFnBWtKTdrb1OMe3gv58GNREdlaRdP7PmYs4OQOxjN4ER9pwl9B0qBRTx1g7RIJ8bf\nM5ltKLf6np6ecLlccHf3ArJJWIHhSj5q4AgWmccYRq50YGFB5tXIe77abk3jVcbP0RtDZrAE9P0l\nn/S7ZZRX19GZENeoy+8fOVHXrgzUh4N1fXzzvee8e4uGGfzLkLF05dEzwPUxt/I4DfpEMd0r6HNk\nBA4MFqm2VHZ2Lg6347ltZ77nIANAYG2vfj5RBugAT6zOk7IVMR1Srj/I2QFYv2aXVzKdgxO5fKad\ny8rvZEf4SJfndyNP2lVKwaWfG2RnzhzRwvTeum/AfALbia+s07XTczqdfFK1OWMl8ojeX5XL5a8o\ndV4sngWbwHUdyK45rFf1pQNtl2oY5rMyLBiZnaiMK4Mj1+lb9b/VZWNp2zbsT094fDwPh+RTjMOX\n68tF16yLgCHft32QHJCgJ9O4PQpG/KS+RrPnR4NgXfan2m/+Rm0iFOhGtNvmAkgFXj484PWb1/jB\n7/1e1xnW1g1SCIsQP9wPoENFc712NkZIk8P23PQros5zjI+eBomiAi3QXQAVjFg9BaH7QqqMzd2G\ni0wLjlY8s3dD6kLC9EjtZTvd3p/rRp8szvc18xVRTlcH2PKM8lEgxvBJKS24l8/KOFLEjDRFsl0A\nACAASURBVMGaHm/taXSUvlAk2oAj7DFhFhE/C7I5nh0XkUwANoGzT2XM9pZ8WpctaTIiox39Bf9G\nrX4oUNt358ensKNegz6Y7WNuM/fnIQYg2T7CCCufesKK1JqM4yo3lcP0yb1OPUW8ue6DrWQ0yGbG\ny4l2PqvBF+mW4/qec2W/ga+JzkVdwYsV8QUt/F3mSW9d70uZqg7YGXBdxfSKiE8i8H2PDHY51V4T\nEM9UXfpOvRyeBGIcuML0VWvfldziE+fzmdIFtvGyWjAKII2T+fnRPfeNafwL8ahNKI6YZ473Oc8Q\nuz2+Z2O1+V3s1+V3261I8/y8qy0n3UYyj+vZhh/xYjXWkfpm+q69PPGcz0ZatcF1F903GthernZS\n2vv8b0Wf6XgcPONv59jK8GmAJlfEHfgOQdbj9CXHt7jO3NdR9mc7LIty3r59i4eezccn72T0eW5j\nHl+rtIyFfdDUmbO+eb5+/KwmQlQtN6n4CvG4Apln+doqg2t5whh8msOZV5C0IHBP/VArnp6e8PLl\nKwC9A/W6A26KKzv01w6NMZrDroME/I6Mbhi0WBujaGzGatilgBNNPPB5EHG5dV/sUHnGtTJKip6i\nSgSn06kFCPbuKCyUimIARNnhOXlbIME0MSYlZvXbqvhaKyScC0ETPALobrPKxCNtxn0cbBoHsSli\npbauACLznBXqAEi2i6S1eByaOxsp+31f5BjnM3a2bXMga/X2uD3GL5Y3h/NMjglESyWW8xnzNnRv\nMywPKtND4Cd9C1U/w8d5Is1BihOcZHj7KifRvnusGxte5aSq0Fr7YYEK3Xd8/Phxck5adQIeWAp1\nULUyTnncTSZYabUW1jKxcpKcl8Qzrlukp/JLQNaeHaX10e7pV9Xp7I9c97X7tsPI7gWgIi0Iv/E3\nqhOgN7N9pOcykPW/ibSGDWOQWYGl82DbzkVsd98MZvgqPPmbwhFMF1OjYqslyH3SqG8Nfudy2E6t\nVjTZu5K/6bZpBM3H7piKGCzIvF3St9BPxrhr9sjHTn8lp+/jHMnmiAR7qeqLB4w6H9OpLvvJOj7L\n7EpH5m/5eW43T7Y+19LZ4X0BsBvvrwBk658RuPCn4Inold5Y6iZpOz1Y1xwFDvi7WR+285PuXrxo\n90Rw2jbsOg5nPHUbOmR7tJ/Lt/d10S92x/NmiwRbKF2elWQk82T8DX93AHjTV9YXHehDGtLWrusX\nOo3b5mhC1QOHPh4PeLu6VBWbtPOjHh8f/dyqdQjoy/Xlet4VbSZIjxzIZZf7Wa/rwB99pqB7KeGt\nqDcEOT3okc6JeibXP9va/O1qnD137HEZQW+0B438KkARvLi/x9u3b7FtGy71Qiv2NezkzYEQm+hY\n0ch1Xi4tRevKhknXL1oVvsHSykhtaFjd8hgANrnjvowWv5ep4t2HOVhRq6KQfHhqYsKYAfOrYu9t\nWtntVqw4FdzeRka0bZ7SJPkX/HvEN63sseCsyWMp/WxBraF88/dyudyXtlvH7letaKtvYxuDDFBQ\n90gud40YyP0xB47odRD/DJOcNv+72SZp53kE+SnTbtzR54Tp6FB6l58OJkXahNGHDx/aCvRasStQ\nTuuQko8hrouxiqVum9wkDky3dluq46P4yUqnNNtuQ1R94qPJrNXltfb/t3M3Ml4N9PX/rIAjn8Gu\nXXXa4MkpSMP3ldqZfJsVphC6l8frNR2YKZUUGzmaf/a4Rnur48IDH6H9sags+sYcB4hnsEZdksvm\nMVgUfq6q7xLpY8Zs2tSPLov27rHMBh7raOflcoHFl5hHldoUcG3yH0L7Frhb6Gcoi/qhjaH1uECP\nibIfxXVP9ZGtjm2iHfEY2JnjH6avHVcj9i0WbcxxiSOZlWlMjuERsDntChyi197Mvi/XdOQPZz6x\nLOR0iKtxsOZxa7PvEknt4G9z3f0peDdd84N6vLIILnkROpXb7BWma1XPaM/gW3iOGKvetg0PDw9+\nPsiw7ENuHBtSnbk+j4VL6X5ri3/mRRv8O8v7c6/PaiIE2oOnnRGWjsO2gnHD1Zk2DoNlw2tXlRZs\nP51OU3DczL/nTETBx48fcf/iJarUnpriYGU10cEGCouBwRcbsH3ffbdLu1dRtoL9slbmXIbV0dox\ntsRy3cFY9wNpjtoAxNntARXEBVp683IAp2zj9xVACAq9K0gBPP/86XTCw6vX+EH9vXZwt4zxnAMT\nBvCbcWiz43bGQX8pDGRuo2JWDGGw9kkBNhDhJwqq0tkiDMyZn/TcvvWJBJr8KuWEWnfwGTYG8Ee/\n8MRfUh6lQDUCZm7XKpctt4d5Y+Uz6LZv7P1t28ahjOTQ1GCQkoMiErYKupPHyhjDMQwrx1O/8xh3\n3qD4pFm7NfjV3h059rdS8PT01FZWaQX2HdjIicSQbSgm+XGe04GFzEpuU62157kfYDcbyNxnoW8M\n1Asiv/uE5cpwruid+5mASqqTZdqNLb3TjweYaU2GKhu7FaDn91mf8JgKTumiHZNecC7FK+fTtm+P\n6FtdmbeuwzsCY32YnRS72o6JpopF+wq/Pu58zOzzOUDje/UeGVorggyeTLR/eZvwUXt3bROLbJOY\nr9xHzvPSx5+Ms2YEYyKD9RkwDooeujzKnulpPhgy23Ye/9fAkL0bUmQRD/KChAkUIo6JLIcrW7d6\nlm0F0zLpbKBPVEY+hT4VuAM4ldvLspVDrHdXPOBngxZxvtzd3Q27k3CFaptUrQYtEg32u/MXC9mj\nMi2fMXep/Z2xhUib8OEAkHZ9vHJO7PKFBRpx0qovjv7OfWLPIw9n2RER7JcLak/p+fH9B2+X4YMv\n15fru1zXdNH6A/g4C+h1GBWfmLzmb2adwXrrk6/r6ry9shiXz7mOvtGuQ3i1s+ms12/eYDttqOeK\nraD5o0BPQTK+z74fLHhKGFKlfa99V93Wz12qiJnxzC9UaYeoQ3u6RFqUBBGonRmgtac6KmNntZPX\nFJ1mfYrZDkzYUYcjJKCVw8w3WuCQz8NyP6dTUXWuR5hfynSO31fY0K5V+pOGsmwiBFBtuMpWcl+T\nA76viDhn4KDhk2UsITLWwFcdZ7KsLu9H8g9C/cmWtXGoLa0qvScpQG18CXatDhzo3wJ+dh/7liD6\nUQQfHj86rZl+pd+NRPs78GfnpJjxWrYbLrmp/OP4RXxnKBLF8JlWZT1bTxWh9MTH3yoFLlUVWsTP\nyTA8KejneV6pbnqmM+21+x425vkc00xnpjmWNfclY5xQZ+Ilj032uwPdSalnHb4a2yv68zf8Tmzn\nuk+bTDai8g7+TMMsU9oWrNB9p8vLTj6f6qTfj+jiNmVeuB9E+n+oBfYNAKAtykPmg8f+qE0ayx/1\nzf6WT7C7HHJ8ZdbtsVwd59Qu6uTPbPwOfs78YhszdG/xsRAQCdmwIxlbyd/KTrg/eSB7/A6PiSMd\nozC/aeiGXIaVHf1jYBNv4ZIOxZCBph7GOZzXrtU4KKZPzYfZd7x58wbv3r1DsQXltaLKWGTaxMvi\nY8lvW/hnFpsNYyDJ+NTGT8CYP1H2YRH5iyJSReQvpfv/uoj8toi8F5H/WkT+gfT8XkT+ioj8HRH5\nRkT+moj8fbfqawe6UiAH6pMg1wZaDvBmpuUDk0YHDOE97zsu5zPOj08DmBAdGWjEcnpnHQyqTHMG\ni/2J5682oJ3bw0K0+jsf8ty+HcEnQFGJx9aWrPRaW2wlBPNtboMBLRGZQF82pENht3v7vvsht3d3\n/YB6xBXbrATsoDlQuTmAEPK7I/aV3bcJGKAF4Asa0G+HxK5nZ1Vbrlihs0GMV6WUuJtGZOLzDJzN\nkRg8zYZ/TPDtqLWluBmTgsMgZUVoxsHqr7XifN4hsqGUE9rkia0ki4qlat9dg4b7qgqqCqSccNnV\nd2oNAzQrtn3fU/5BgVZAK7BfKuo+yx+2Ai0CLS3gbgCWx7bxOY/FIcOxv4ZD03bxXC4XOvxPwq4V\n5luTqViHG8FafSCwNmJ5MDlUVVuAHMpfGVkux9q0sltcR/4968iV4yAiDkp4zIadN9Q6b7cBn9qC\nn/5TxM/GWNEItMAu/wPttDG6dyiqwP9lmVqBcnvu7wVdFfk9yomyyzQfgaGsj4Y+GMY66/08mcHy\nzgGEu7LhJMV5s9Kj3le2UkfhPDc9YfTniRiT88HvQe+KPsgMOthJyrpRpAd3eZVoZwrrKpcFOvND\nJepxo8n0PNsjnlxdTTZlPZT7MP/NdDA/AgC1NtcK1NomKfq/U2krWDYRP0cly72VyxPFJgOZLm9n\n0l+ZPuPNPAGwHvdBb6V+zP0faNLWJ/f3917XagVfk7FYbx4HLTQFt7Nua/t9FQm7PRrPAU/3grbY\nQgraggdpk2Vtxwj8fj4QV3rf2L8T4aMsXyt++N+JttWim0q2KvOZ7WXb7dxszNPjo6/uOwqYfbk+\nr0v+f/aZgDEmwr/nfHfFMRaR4IiusARfSx2yKvMP4eJx+6k0ZXvi7/L7ALAVvPv6a7x69dC+b+AS\nKCXY8F5oSIfcyq2h7tL9hrJtPdVQ9BHsd8e41I5K6V5ymxRARVvYoz34sMQqh7qpB577JA2o3GHP\n4UGQld3i8tgXcttcCuyQ32xjeykAxs6WdkBwD2ppXzjVMaEA2ACczI64vq+ourfJpu4T2QHTtVbs\npJ/Nq23dyVkQhPBSe3fbNiD5dtrT5WQsV0gmpX+7wgOtT6vTpQC09Cmcbhv8+b6737dTnaM8YOzg\nb3y7liXD5VNGyHw5ljp2/PD+fU+tOvwptrFZDhyjmHzRAc/ZX8pXGC/goGsMDl4b961v1zKa9Ub+\nueJFwJK4rsMsNezQI2N8SSus+T51LLI9Kk9VozpP7Tb/w30QaX4dy+AKG+exx/j+iAd8P2PY/G/1\nbea7R5WG8+1j2/l1UP/cP/Zv3eeZp4ubXdavy4dqixXN3Douf2V/WB+zXtZOB/cZv2+X6YymC1qG\nEpMD9wtMXmwpI8WY7PmACddlsPbyBx3ee+EK47/3pS9/kqFb12NRiI6Bh/md3O/ZN2q0aqD11j/j\np9O9SHmf6wHaGX9Vo33PvoDr8H2fzmpR1a7P98Tbdeq8rG9df4ugbFvz2TsGqV0GWuwu9h3vSTnC\naVkUMt9rrbicL3h5/xIPr161fqb+GYveuL2RV8wHG/ccEzqKf0xj4nkwF8BPMBEiIn8GwL8A4H9L\n9/8VAH+hP/tFAN8C+K9E5AW99pcB/FMA/hkAvwLgTwD4j29XOn7d9x11H0Jqg4S3ArNxzKBvtfrd\nlH4WgvPl0lbDVuDbb74ZzwWhDuLBTWNys6mpUyMQH8JzdIUBrQMArwZu7cYCPn7mNsW6BviFRGW8\nKt8PyE20cTvnBsj4B8GrV686/cUBrIjMYFJaQLBIQUHFJuKGDECYOMuywAFpP1BWxJVWe4Zp9ZA7\nTdJm//MEQAzGRyO6khueAOlPvDxrr5Upkh0spPJjENH/cbB7Kz6pYrzY99onyNKh7wD2uvtqoVxv\nKVs4u2Ilo7W9GGSM23faNmzpHzumDJjYOPGkl/3N5avOQUYnvd97fHxswL47QcHh4++Iz/zctuWu\nUvfkK4N6XoF+zZkwZ5IhB797TS9co4V1je1Rz+O0tXcwwMCT1ch9Wmv11U7P4QO3c9LLCXhImQ1w\n5vc1PqzAU3/i/OXxkGkI9Vwtb9DCYz7LPu9KYd5mHty6HDiMDyeZjzv7xjjJwRs/+LoUH69I/WJ1\nhPpZD+W+dV02Ji2Xk3/J/vhkTp+s16RPM4Ad4/8my0J7jkBu/tnaMujNW3UzT9kxPOKVaguYnHp6\nCbYjK7kqwLGuDSaRdr2kdJtsR5fl9Kv6SkZvNUopePXq1TKgE21y1NmMsa7pyBVe4bHznDKE5EHT\n7xkHrtqecRDXx0A9O2RH9n3GRiY71IZ+uOHlcukByHkcfbk+v+un4jMBn+QQzt8KBMUXqkAFRbZ2\nvw7cMuQZFrfoejz6FHLD5byFmXJjnuP0XtVNuXTSDVftbSl4+eoVHh4e2kREK5gWlbWAw65jV1rw\n4VShiMFCpi/oZGDSV4qR8lbKOqjpdNSRNnpg6dEv3PbMo8HfEbC1iX4FfGehtXVXbffo3yoZWAjw\nLXidFyIc0TnKSHS6vPG5Km0h117bTlsIevCnLeDxwHI1mipqvQzqBSPAVQHd0cdFxb4roG2ShpP+\nTv2mI3iYwUmUhWjbVEfddpnddduVFta1DwGt2ifL1vZoyWttaaG8fNQor/2989M5jJfSd9iLNNg4\nFiDENjoN/f8RVUnwb5p/MY9F7ueM3bh9wPCZMHrzEM8fXbmOjCfs/B3vPeZn14WhPKPvedXHti90\nWm4Lv3GE61ZtmspOK7ZzvRnTZL7we2ZDbBHLcQOZyL4IjH7yWPWgPfk+ecKHh9uz+91oX/CrkTXi\ncLVPSILG2EpnTeNs4bO6vtcYL8rYPWBNGssQgaIHvhWAFEjZWtwMvT/7w5ban7HnaHFmj6o2GwdE\n/a7qafKzt7eSAcGoc/SpBl/1lkxmvnLtN1M++z8dPxfjmr+dYngiQBFotyFm+y7dzlZVXNKi5FyG\ndNuJztdQ58TLQUu0KQe7IXv958vFJ8i93r7wIHNONcYqp35zcJf8x8Tfy/mMh1ev8PLVqyCz+eco\n7zhu0+RFQji4xSUONj503SKe5Px513dKjSUibwD8hwD+eQD/Wnr8LwH4VVX9z/u7/yyA3wXwTwP4\nj0TkLYA/D+DPqup/39/5cwB+Q0R+UVW/f1TvrtqEzwYMRhCKZ8qOlH5WIPa+/V4xBmT/AgrF6XRq\ndZ4v+PE332DdfXM9P8k1r9o4Vq55ljD/RLe1CnXhmN6hMhk8fMpl3y6B6gH9bSBZbviRpihfDw8P\nTQnvbSV8KcVzi/NEhHjZrfdEBKgVon1gyOZl2gqrYNhq3G0hIijYPBWLasVlH/l7XTGZMlNAioQ8\nwfZbltHM39Hnq0DP7CzZOBg8bj9th1O7N9qy77vXuSfQvMlpBql9nDAAZzC56kujp+q6H8O7dqNI\nX1Xd2yDDOAFtTNqWbx+/KO1EF2n3+MDnRnekT6xvxP5GB/Y2Nhp42vfdJ1nLVtpEGmw3SU97oGY4\njldWjYucAMTxFd8CNlvNfbBiKwOsIx1nP6/x334ej9eEU0X87BA7AHNVb6ZhdS3bH0BrLLuU4ud4\njLFKYIqNMrVnVQ+DS66HD9PLdOWJTTs7IOjSDBoR+dd2aQy2CdAc5oaE2n0Dsx2VCL1vU7lW5NL5\nEH6j3SvGq66vfPKU2szy5ucetUomPjGPnQZud+oDfs+AX621pczq3+St9MRBossmurj/R52tnKH3\nZhBn7yJclpRh1D3s/xJopcvu8Y6X/K0B43wVqzOBZQaeeiSvJvPEQwex3f5sWKyeMf6kNizxEI2F\nvSqkGJ2N9+fzGff39zT2QMCoKcmLtp9hJ6aVf8DP5+An6Ruyq44w28pJt5+2mjY/N064DMH4PoKH\nsKFlY/KKzrRyj9pwzdli8mut+PDhgwcev1yf9/XT8pl+Qqpv6kDWwVF3YwQvTf9q+2LYNBu367Ln\nck3vs/YfZR05vkc+zlHbsr2zy30FEZRa8erhAQ8PD7js+7A9Aj9XIH+fcZGqYq97CzjTbrW67yOF\nZF8pLyWm72Rel36GJQBPQcWYqNWZsVWzryudmXH9drACkxdDrSaUA6Yj/kXMQvYP/RwZJF3e/ToF\nwiHJ453Y83ZYvAJUItI37EsMfyPj5+ZjFtgZhTOvCsRtUOn2FUCJNDFPzD9ru7rjbsfWmr0tGOnj\nBQDO+97qkTFu9NLHgSo8q7NELKLsU2IeB+0nfHJGqO1Vd2eeovbzP7eBjwA8Pj21BWjkn7GEwf5W\nwHaicR9YyjmWO5dVGbhW0fxqWYRFuF15QcoKr3L/MR+y3V5hr2vlAAiHrptNZ8zu8h/kcIx1rovb\ncaSrrvlvUuI3wOgTpvs5ZR/V5/ypIyCa6Q38WYzfXF4dMB9AT1eaz2PlsUpta2Ofz60K0jjhfwBY\n3Jqeu98S2tNsmfTsHfv53KsUG5JAT02eMV9eKOm/k7+Zd5rZX0xH7g8eS0c4UxHlmYeUfVfEfk+0\nm7Bi7j97pKGswUUrSwDfxQRRf+coXmBlt5/XYi5DRnJfdTekY/ex8FkkpmnO7cr3XDeOINBansnn\nvLUDr3QbEFpB9qPpEMIHwV9v2UmWYxYzT4M8dKzgUqbX9YmqIj2aLqPv66+/xosX927fxvO+Sz/J\nZ178a/GKYQdG+Su90W5IovXWyB7Xd/Wx/gqA/0xV/zu+KSJ/CsDPAvhvnTbVHwH4NQD/WL/1p9Em\nYPid/xPAb9E7y2vb2rkgF63B+BnzbdWSVsC2zxJtk8Kw4Okth3VXC1wLvvnhH/hgtnJX3ya+XGvW\n7evg86zwbnb+4p2Jtpuk6pV3rgVf7eea1/lZbtOrV6/6Ntq2Oo0vXiXF3xcBTqUZEK0Vl8ucZzvz\nIqeRMcLjqrfFCl0GNqZneaCLhLQfhcrMzoEZjMiLmF7jGog5n88hoNYUv+XG3QHU5W6LnA6A+WPb\n9onrYXeNvcPgZEovQEY4y2HNvFqsMrY6rKyqKQVB6I7523w4VDt/JdJy6amx3NlIZboxWIzxghmY\nGAjq3PcVBM1hzryOQOaao77SMVfBz2KM5eua0WTjmt/h2flr5X/XZ8/5huX3ll68zovrhtRA1nrc\nHuvfFcAYaXkiMHawyDy1f1dom+pMPzOIUFXPD511G4PlfEVgMyZAV/qb/2a+tV12sX9sslZ7Go+8\n4mClf4MOWejoFahd/b3Sp6s+ZkdO6b188bdLe4Eohyv55DqnIIw9n0pFoG+lC67RsnyWy++17/ve\nUlbyk0WQQGRsy17pj+fqHXtvZe/t3SwPAFzGV2V/KjY7xjc6/eMr28IVnzYM23Y+n/H+2/dttRw8\nhvTl+nyvn4rP1Cv5zkTf0mGteLo/wWLSv3kxz/x6qHd9z7CZ/YP/vGWDV+167vvcnhbrKtju7vD2\n669jwKcpqnDgcKiLymnX2GnuOGA0yRfmTfiOFjQwD661d9RVkTMKZHzCK0hXGMcwybDZx/ZjJTsj\ngLreWa7ou0zM9vXAUk6f1Xy0uS6zN0w3Uj+HPunCqB2b25hZL9JY+d7JnvuO/bjrItCD6AOOa4Nq\nfCaCcKi204ERJJOV/92xnPAC0tSPbTNLk7wK8RW3AXepQKT7xl2+BcDHx499UerYcWP8sQU9UG0T\ne8Y/zWO/yaSN6avjUSKuMd5uZZtkmPuKef1dL5bRnGLbrqmO/isvilrh5aP7R2Mv45mM7dvPhJkX\n2jbj94x1VzpSdaR6tWAw62Bvdh7Tq7YIMKITLa3Q1EdBL472BJ0jFC0tgovYbi/qBIz0qAAFqAVj\nxTm31coV8dR7zBvTPS1M1M4IWdmzsAOfdA7zIe8ch7XV2rgol3lqvBHAU/WyjuFyg55PfUIsX8pY\nTrm7kuH4XbbT7Gv2OJFw0H/WsXwYOF/xbOghCyt+e+1Vb5nKQAeP+XAvvc8yEeTnoFz+fe6XzNdj\n/Layh6YLVvG8TIvZSib3GOtFn9p22V0ubUG6peRWAKeHV6hFUItAThsXESZoJ1u+4M2Rzg7PNN7v\nVT37+uQdISLyZwH8I2jgPF8/20n63XT/d/szAPgZAE/awP7RO8tr36sLelXt2VvGbL8bYQA9/B3A\nHDO0bb2UAau7cjKlqgB2bcKx9Q66oOLv/vD3gQLs6JMhtY5VFMBQxgnUATO4v2a0oyAq7DC8VQgk\nA1r+nY0i/zIPyKYgRNrOidb+2gTbjKwhdJI9MnutLPSDiULTGvLhvuB2RsWxUFQiePnwCk9Pjzjd\nndAh31jRrA0wiwxxVgUuVXF3d4LCVqxoGHANWPaVZNoPO5SeV7Y2GZJ+oLUQ/R4oBJoVdNq5yf2o\ndlJyNqGmqj7babtSTLmO1UFZDrqzJGP7vfOwNBCgteIk0g4lknEIuZQm59K3xNdaoZdWha1eGyvS\nhkz4mOkgoGqF7o32qgh9ae2wtmo3ysirwKBdRrYhZ3vfY96faxVjBKBtWzfKWCmh2lfN2VhdAMdd\nRxF9qcpwoNWU7FhpZly2HSE2R1xr9S3iWi3oX1xUzQAYIDRKJp2zMCy1Yzc/QwDdqYHR19azce7G\nXO7KwbwG9mW8GIBYkTImf3SkQRBt7fWWqbojA+9n6WgQIWDpMpDav9KDzSBbwRJWFw3aCZQoAr25\nXBVqK9WjGPIKYBwQ1uVMApP6isJSXG9ONBmojjVNdU+9v+hDgTlSnX7j7dT/nbY+Hsaav973BAQU\nXc72sUK1lA2X8wWCbkvDhKZtmZ3rBemt1VV1pBS0HQt8XlIvaAB0o9OLo+2y1fo76lAxCnsHr8a+\n62hhW+IjM9ghqHru5r4hcR5DNNanXRJcuu8wbJnl2BHR3vZwidCBpDMoXIFm53Vr8LBFjG3QHTfY\nqtY28S3Mn4gcR732jgfyOqjGWIfttqpWvHjxwttoOw+dz2g83XvuzdVqzWZLKrirgrxg9DtgctV0\no41dHV3rOlQBt1HNOSR8V7Xbwa7bTI8R//PFfnZwwu35wbiIGMzGmNKzkVSg9vbtXd4u56eGYrsj\n/uX6PK+fps8EwIG6IsrnNSe5vYAJi6/9k+sOvpPhtmkEOHg96lEZq3FFSGtJ+pGvdTjGFfCTSSlk\nKKTH8zjeSsHXX3+N1w8P+NG3PwZOtKoRTSdICGaPclnfmDdhu9Ebrm335lXIHQ9Ls5FFWr5v82/c\nD13wVNV2Ni9W+mLdb9JtlOM94rqUgu2At0dlHZ6DZd8c6N9ad7TVwzJskNcRd6wXEYjG1DJA93V0\nCcUBKo9t+mqMOOZT29Vh2Qzic2u/4w1ri/GdZULiPifL1W/2QSy9VJ1tj9fV/8cYLWQtSMHQUc7Y\n6QQdkxmGYdimW9OsTR8+fvTFK4Jt6nfr08AXJTyKY7lbBSz3xqq26Eyjf9V8qO7LF5IhYAAAIABJ\nREFUq7rfutIhKx2QsSR3veGfwLukU1UVG53TB4xdOCFFsOsBcX+KeeR6kmRyyZ9eVlNdVhbrFasj\nMTHxe/jmTQVaeme7wi762s7CQ9V4Xl2vysfGEOTYrkR/13wkA2u5XnkcrG8UkV8DM867fCYekgwd\nXTbpUagslm2goMgJIhd0KW06qPuCxco32Un2zbBw4JUOzNr8kzghEOQ66bpa+2KyhX30/gz001ip\nbaF5i0vNdSKIcuY3pvcnHaod7cosF1nmp7qpkI0W5gb/J6W1tjOSMg1uZk03m+xCfVwK5kwuxjtB\n6oMb1wo7MR5wf7E/CH4qvcflqI7y8u5/thMxjgLHD+1v4rmA2pUx2bpdvpC6y8rDwwPevHmD0+kE\ni7WMtsx8CLZIYqadzK/VNWRy9q+fe33SRIiI/Em0XLX/hKqeP+XbP4zr//6t/xcnypsqAP749/4Y\n/t4/Zqty6gAcqlCMiZNOv5cV8r2ptm1oXUG50pSuwFR7rlPF7//g74zgKNpIEhTXDa4oqZwc1LAr\n3wsDDSz0MlkDJeDL5TEQzT/bS7G+iZZu3E0x8Nynscq/9wfjTg4tt/4YRilfGiwfGYmI5nH/8iXu\nTidApB8w1FYJaVdK7YDzvE1NcL7s/TkFP/vAvdTqk2m99mF80GeiDaQ0FMqay2kzI8BBrM3oWvQx\n/85bwsahQoDqLAOlbKEM7X3lAS7EXQYsR746CS1NS0EL7KOot/5yucDO2Amzsx5eAjwU2YFiDm4Z\nf63Omh1B6dvHa4VNNihsSz87jMQ3weTUCPEtr15rirGPGzEZM/DRVh95QFNkDC9VPJ2fxqp0bMGI\nsFFk/jq4STzn91amUjs90AYwHQR4fV2We3PMwOf6V8G2DEBYDEUxTa4055occeUtk91JL5E+RTa+\nsz4qIlfTpNl7zqPG8HDfbgPwLdJK3654X7X1XtD5OvRwc5YRUy0kmgCM2Eiqiy8D8+OduY1HQD6U\nayCBAGJeCb52hqyO4ZQEkJG+t5SC+6W9e356CnxiU8NytYmEsu2nTSCb/A4Zmid+A90w2atxJ14A\n1YLUM2SEqHN4rFM7eOSZaWHgqGrpw7rW73QPGpnfBaXo0gZysKNNnM0HtmcZGO/G8WpgEJi3wds9\n62c+IyQ4dqpBJhuHaOUNjbOs06wvxxZydV3EAQJVxYsXL7zdquorT61nsuxxPePeKJ+f5cuwQZNB\nNPq6TQlb5vtYahMzvY1SAJic2jibd1cOeR8Th2NMk+N9A6SbmsxtZgyVdUnVFmT49V//dfz6r30f\nv/Pbv93GBxDOv/pyfT7XT9tnAoC/+u//e3j98JqIAn75l38Zv/Irv/Ks7wd2m2U/2EQZuD9//9x6\nVn+vHGdvCuH3VSRmaa8P6LFxXsbgRfcE2ncyAskvBNi3DQ9vv8LLh5f45sff4A4FT7WlR7EV85A5\nTa4HjUR84pwtGbdrXnggnt9b07veNwtMtPp9hZ0yn7jvg/LC3D8Dew47u7JboWxud91RLWiVcAun\nVdLuP6zkwtJuate1vjjEudfXrsnxbkDVsWCm4c1I/5SDXgHLQSpiAdCBXDIfnR+E1dRtdqOyxRTa\nTgqg+QqWocDk1Gyn0xamqYgfifdTu6ksw5Dte06P2ReljFk3KBSPNhHSy5WD8c99VNrLg9eTrzJj\nr1COybn9nfVQ7w7eEbSiafV7lKnRvybXIX4C9NUWJOuMDVO5PO7HJQO/81g7oHt59SKE+HqtvUZP\nxj3+jxqpHg0yn3Assjy6NP1upR1jpdje4LPZJOyiPSFgaibgwEdb0km43Fhnvm9sT18wIxGnaoXv\nan96egrpuamS0X5g9A/pt8wXHg8t1ijQ7vtfO1cx+hDD3+GY0CT39J3zTnjCfoGRFzQb33IXc99G\nf9Ww8PhIjV8ioY2Ckmy7ycncJhFx/9YmSqyPhsxLoNMnHrzNZqPHZEeoXefzW3JbXbZKwYaIm/hd\nI0RIFp02e0b12rejv1sfaVJO03hHujR2lpeNgVHs/hGGsLGZY4APr1/j9evXjf9k83wy/8Zldivz\nddWudhP4G7/2ffyN7/9auP3h/YfblfXrU3eE/AKAPw7gf5FB3QbgV0TkLwD4h9B4+TOIK5x+BsD/\n2n//HQAvROStxhVOP9OfHV5//5/8E/jq1auJMfkfG0vZItg7Attelu3wGDd7JxbclYIf/v7vt9Up\n26krEUwHt7CyyILEdR0ZBi6H3z0CrytBebYRPbwU0LGiAVhM6FgdN9uXYX6kdVU3f2oBl9PdXTuf\no6/6qRLbW3XHJnder52JodpWxYbzQHRul9YKKbYDpKJIP0Bcjcf9TImVsXUQ0ck2wyUUJJLhTLAR\nzDQxEOHzPlZOKPeDiPhZJbsB5hQMA7ri8oDySiHGCTST59onLyLP1bfItbRlbbdW3ffgOLms9vbZ\n9nwAKFvLs8vKmOkxx4QnAoy+o63Ettq9tbH6arvY9zK19+np3NJjoQfLS/FdUaF841nV5fibxiaB\ntUhD/1tGkHmqCyD+m3OFMTZ7F47JnQNAD3/dv1HQYzXQ175hEle6LAPpFaC1SZBb+k5VfdKBgfNz\n9NhRuW1VEq2q6O+VgyInQGo/BcHBWdW3BIYgR29RXwbztjXbHQ1VoB8qnoEUl9FV9dAJ6b0GWMbh\nl9oDzw0gF2zlLtJPNPtKdwLNWcaDze1FlK7r1sAlu+xwkL8EnenzIsNCD1o6iOzbbqsHsvnLqNOc\nfuMPdXQGrStb2ymEajxvxQNVxsMDPrBDyc5ocIIWE83Oh5S2I4L9UQdgu+mGE1U200u2MwLBfmUZ\natxDsBWXy8UPdl9PELf/MW7Jutr7Amm8pHbk7e7jvJt5zGb70X5WP1/OnrcyZvvIf2eaS8cH+VrJ\nLd8az+dxPJyYdv8f/YVfwJ/6uZ/Df/Gf/HWgFJwV+PbjB/zmb/7mVO+X64/89VP1mQDgz/+5fw4/\n//M/P24sgsATrllck3Md3l3rt0nvyezY84rgdb1w/bR2imWAooM2HN3zMvr3fK8EnTWAScPxbVL8\n5cuXeP36NX6A33O/saq2aDthOqNX/fuI8zZpE7p7vUAEKFqCfjcNYQuABG0BAmx38kh77t+sbJbp\n/2wDmZ+ZV23Hnrgv5gxb1NFoFbSdG/3ZgKkB2zE29nKqok7yqX1rrnUA4AuqvH8qss5WsXS4Smc8\nwqlgm5Rxjf3dFjwObJ1XBzdeNnwkQ0CG0BJvss/C9M4Lz+CBI3tiZzXauYWWIcN4q+iLycgu5smn\nVfxANfJu0Drwg9VRu+MgHW/u+46PHz9azYDW7st0W5sXb9Fws353fk9yRALjokC0J9mdffKmW+zY\n3IEt4GNTO02cDm3yfzosNBXjllqBNJX3LH9l1IHQN6uf/eWl/+Dt5nKv1HfkP2Ss22QpruAuGLEE\n5f6k/vuul2Y5SHreAtWhPbru8yUm1Ll/gk6ETUrS2ODv7YYCOTWULRI9n884n89Lv2+OO1A7XKeN\nBdzNK8M0Ho4wPvPMbRXGGFOaQDG/xOJE2RZLH9st5uGt9+e1VsgWd674AuOuK4L+XJ5t1f7e6zE/\nJp3sL1C/JPpyHCIugM87TWiyQprOzfwt3cataCu8A9AMW5th7xIhXWFW8FTeNNbYtpv+Qc4wMV/c\nH+Ne8/FyHfxztH78P9+fVe48ZtrC893pVdWW1q5WvH37Fvf391M75aCslTwf4rw0iWXr3/7ML/0S\n/vQv/mKg+2/9zb+Jf/Pf+NWpjavrUydC/hsA/3C69x8A+A0A/5aq/qaI/A6AfxzA/w4A0g76+yW0\nHLkA8D8DuPR3/np/5x8E8HMA/qfnEBEH7VrJaLdYman2XVa+oMHaDHQ7KLnW2lJEqUJF8OHbD7ic\nL3hxuifLmAKBi7qutSPTdu0dU/QcHFsLzShv5QRkILbiE4MT5qeXPV6cFHakZ6xOvdb26X7HYFKA\nu/t73L+4x+XDpfUJxiqUsKUQFdAe8BHgfDnjdOq7HBAPxWmB+4vrOl6J3IyF7aIAskGYeGllivhk\nCiSuBvNSOj/zCn9bRdR4NQ41t7bZRIO/X+vwDYj/tkLblc8CHTnwM6PhRmt+d2wBT4qVjE9ecSQU\nqIoOZVdeKmO1E9pWZjMGtY9BNoacV3CVuzQbQT70eh4TQwou7hQ2xwPSDgH2ZFC1QmWk92FHEiBA\nr8N5LqV4uVa/Lk2MEzSMxAoIG5MEfY+KOXgDuEDRHSRAy2JyTfuhcwqIwfdKPDeHR9aB++xAXdMZ\n/Hv4BsMxWZZNLMrf3rqy8ectzH5fUw8s6A+P2eAO0p4F/L8LmJ9piYDO72ag127S95G2rZTh8PW6\n9kuTH87vzbUKKHcrAWhuH69Q8nJrbfVdyV0qJO9tC3ej21byWJ0Agv5k4MiX3Qt6juRo8Gz0ogN1\nBYrqmFS/0q0r2wrESRD7KTJ/k2WU9Uje+SEyDlXN3wfATOOcx2V0jNple9zGpEW3NtrZXUqwjyyb\nYdKla7P7+3vcv3zpk/1MR/+r/z0CSS5PB3aU2wfq65X+MZ3SdOZwsJgWdsTapCwc112bZMrXEYbE\ngs/ASHto74o/j7tChhz0wGsfJx/ev8dl37Ftx6novlyfxfVT95lmH0D62Jr9qHi1cXXLabX7Weeu\n6KAPYR+IWxzGv4mMYX1pgHcKx9CffJSVP3LkD3l0swfEasfHk+0z/VsK7u7v8e5730P5rd/qZW/o\nx193n2kd4HPdAfhOcKUJ6WDz3f+Kvm7THT2lSmfLrfZmXDjxwKtM/lyyva2758mU1eV0gVIvkt/m\ngXtpu126F5dKaDJbcXHem1/GgXyjWd2ujUVc7R07RpkWoKwwhre7iaqq0grjOnwiqrPWhl+UeGcp\nLO07xkDBXwpjo/+oitpNVAjqsQGh+ndbWLaIDdzC6naxT7rEHsVCtJ3P+47Hx8fetgrRTrCMH9y+\nSVKs3Na4Ua4aWE86w/ASxkHrzpd+OS5Dwzyrtgv/9HGe5aH3FQffiK9SiiMO+9bau9JBjPkmXZC+\ni76DLTQi+q2MwcI02XMcLA98SDqZJYJ1ha2Ad3/xoMyMw1cpise7Y7JJlSYddfifK2yV/VPHgfY3\nMPmYuaxMdwF8/BhPxWSCyqha3bc0n2LfL76rnmUn98ORnhn8GPEEG+OeoDa/m3RHrqNh33kRreue\nxJdcLveNSNw9j6pdTzdcX9TGWez7o76ztuq4uXw/6oyE73lMUZuP7LuhCgXG7gvXPQOfS/5Gxw5A\ny3AS8TxcR1gKfael88QWIELihGbuTwUO5OW23m7fSODbtd81nbPtz6nPDQdNl7asErZA2OhWVWyn\nDe/evcOLFy+8n4btbX141M/8t9BEHOuIdgcYIbzbbX3O9UkTIar6LYD/IxH9LYAfqOpv9Ft/GcC/\nKiL/F4D/B8CvAvhbAP7TXsaPROSvAvhLIvJ3AXwD4N8B8D+q6vev1R8M6oGSZwfZc/ljdBQ79ABQ\nd4BXSIm2fxR39S0+qop6uaDul7BKRpiOZPBZgT2nc269e2si5LnXd3Gu23bd9Vwl08FO0a13pzoY\nDLQb3t7tdMK2bbjUiq2c4kBeAPJxkBCw7xeUUrD3AEgpBefLBaetr5BeKCmRilLurhog6wPOhS8i\n2C8XB875+arNtnsEGLls7bKgTdUdQia+1d+crvadYNmrKmYBluB77IhpE4CqIygJL32mebet4kkB\nLQGSj4MhI6UMI1Zr9QOj20wzAcGOTLjMI7DOz81BLDp4z0AhApUOFmrF09NTmxjSHVlFBh1ECpp7\nNQeuh7GI95i/srhv9QFtCemOdfCZ+VA6OF85eE5/+sYMT6PF+DO21F7bBr26svPVnEOjaf0uYI7N\ngDwrXXhkQCdZozoY3PnkESKgn8pIbVqVx08HaBRs6Gn3cs5XpPGR+FBJJrdSWgqzhSzZ+9GJAXzi\nn9/vQ79Wm2btNG4bLudG49PT01z+YVuj7rN3uM+11uaodj3LY5VttI07m4S1Z3vXhb76lb5pKYJi\n/lpVbYKzRR28tnH5XgOontzy4LtWxXF5sX/RJ09pospoxFqeA3ZRm3gWn7zg8WvPy7aF4Jei6cqi\nUT5slVBbQNDyWNuOQVNKu460G9zHAIID4O0BcDqdoPuOy763nXM5/Zlg6BUdaycZv9juFJYlb2fu\nKdJdTI9mB0QxQLrq6IdtnO3E37U6xwrIVCv97IfImtOnGhZXXMNAMd2bjfOhHwwDQNvZd/t+GXb1\n06Hal+uPyPXT9pkO6foOLy3tsNjIGLb106iIMh4CNH2CRBYLO55T5OErR/6HAMtVQwBccYh4DnVV\nxel0wve+9722W/2y29SSt4R1ntEXzgIB/Ow5QLrP2vSVLWgaQf91+1e6c/X8Gh+ufeM7FNAWl40J\njPFuft9DOGbXUrlsn0+nUz8nUKEqSXemfu/62vwTS9WT7Q4gIWC5nbZubxifzull+PfV7g/2v7dt\nczwCgaeO5ZRMGdtnfJL9eUu73b5VjLXhBh8GLUyrCCA1LoTI/X6Ip1WgukMxnwGXy3CMLtLPNiw4\nn8+J94OusOg7guhI26Iu3z3iQydigoZlZmxtdIvMC6JWcu5069EYOtA9ypghrv5fXav+uKbPgiwt\nymJkkn2JXCfXNY0XDFm9dd3S7iKD1uF3HXynCAsc0dtUnJ892L6gl2MgU7H6fFvEOtDTqfUG1O7H\nNBehj1furw6fRaT7UBoC5IGeG/UHu0dtDLbj4HvWKYzZuc+D72XHAKT2B1pJ/xrWXdHheiulks3l\nrXwylr0jnqjbnrZTEJ0nKsBGgt805cHYtr+F6BlUNLsztWw+iPw5/QgZk2emJ2unf+wqW+jhK+Xi\nGXI8Slnbcy8L5rfoclBK+i33memdLX3MsvX263chU4D58axjV/IU+WuyEesITc20J/3/fL59h8PS\nF1cgSVX/bRF5APDvAvgawP8A4J9U1Sd67V9GO1HorwG4B/BfAvgXb1aUO+RKwMM6rFZeKQlXkCJb\np7wBASlC25lJ8HkASAtQPT2dMVLutlX/m4yVIMA6t7f9fQuYBuNEApOfZ74cCf+qztWWtai0ulnQ\nWJapolxXDuTkUbYyvitambZa6zgQrRS8e/cO33z7DVAKar2MoK0IsO8dpNm5H8WdFZGRYsoCDhak\ns7aoKkrPU899ZytdgBisY+UY0tsYAKMAoH3HbbTy+T3PGZsGcTMK1X2xvGLCyt3bjU5bxdjuN95l\nuvOKZM43H2bBrV3l/2Pv3bYky3EssQ0ecw+Pa1Z295uepE/R/+gf5m/Vs6aqsm6ZEe5uh9ADLgRA\n0swje5ZGqRXMFenuZueQIAgCGyAJ6gRCrs8AodVT073kfo8xuJ7dDYYyyo2S9a+DEx9jnt4JOC9A\nsd8bVECBFbsDyIA9QVK++FxTYmL/Yr9r+7FEWhpzue9hgFyQ7Hxvoc4KJszp4xX/a5uTzoGDGTD7\naZkhO2KoRWfyZB+tnfM80y71qqdsXCqPu+lY42GmOKWqinJdeWD11514kc5bYOV7StrVJAwqwcyg\nHzAAvY3xhVpOx0Z5oaP2tfaBO4e5PMvEtKO9d7kjqQ391Jm9H0TkpzXsFAije0Ch8vQtwNUX/aPu\nCHVU+xV1pzyj81o6BJCm63JwzYk2B/uwadKTnESnIZ2WuVHk1J8TvXQ86nHjwfsZwOsbQ98o+D4o\nz4uoj9zeEXx+mzxxz/lo4zidugBhn3d9T8zlfDG5dkZ0SdCJYl9FtzR1QJOO1EWn+Jkt8j89PY2N\nIpj1go9ZYzS7jYXUVSBAMpyws7LKSuSZyw/ys+baiDy5wNuSxUhTKZUByp/zPMelnubUFvUhTdjO\nJx3P0M8oKfki4PEeBlWTjExzSnX0b7/+huNySRcn/ij/vyn/r/lMWv8CK9n/7O95vslcmy8aneqj\n8s4GB1k79o5+Gf4IFW7er7ROzwzjsMRH9flqk1b+y6gitEsENICOhk9ffsLD4yPO86tuAmAcIcA3\n+V7hKDSZ3mRdVCWA2gGNGIgOW6RSin5GQBIA9DL1oot3ZcvH+pnS2twn0kAlHSjiLHp0cAweIGLg\nOCJfhfazn+PErGLuQ7HuSFQd+hWOLUpg0rxS89mFgLN3t7unndYAgn8/K/xVqkoAbmctNWI8mQ9A\n08/o5bCWMsRlffhIEz4JfycZDnT1bj6QfHZVG+GiThRO2igneKRxVgr133rusP6sCyyxpL9DFd9+\n+zrmHHO6vzG6SXEndsRZK8u2bIuDX0w2jpt3wru7GZCwWLjrQ+rSRuL3GDrFSQljUXWJvfuW2Mek\n08jPlQ0WhFcp8KX6JLWPpid2czv5I4UOZvYNioAtFKw3mhFR8u2qvlr1NeIjX3At/Ktl5Xvb7nto\nPVZF7cuq7kGDLihi4FHGSIPk8QeyoLvNYcbr9WXSJW+1P+l5+dIXgbhlHlZ5mnkz6rbU8PV58/li\nfZEO8+Wo6d2hYfyq3vL+iIHQjXdjTFf3k3CwefKexVrmOjvsVMxYLOL4z2wT5njB8vLwpb7Y+9i1\nrDY3xvqND5a+3+pheWCqr7ZJQ3BVx5WY0+b9McdMxqMuWtnnHEsy+gMw29OnX9U0dL13vHv3Dp8+\nffI7P0e98PF2n/DGXBz5cd5eqp5ZpTDelf/yQggz/5+Lz/4bgP92451nAP+X/vu97S4/T0pWL/i1\n522n/fzucLBp8b3tvsTZ8dAO/Ovv/8BPf/rZBQ7M6TjsTmirAajBptV7NahQ+796/pbTPAknZkFn\nBXocggD+3Ntla9n2ChjcAl/+eWt49/SEfo6UVczsAWQzjiN3HaNd5LJUPjuokSjUCEQXTs8cnDCj\nMfM8TTqt2wIZw0nBaC+8a/2OBq7pQoDkgiUH0EpZonO8L3ApAWo1hmS8dmdiBruRNoSc6R5wTiAe\nI+VU5EGQ6RigjYsWVl/vXQFsBx2HO3n2LvEA7NQEDlCpP5bq0A6aCJ1P70t8ZhVsG6CS8PLtORjw\nsefXeACI4xNzH4PmXR27Oep0IsuDOZu7sgOqtc1hoGJfw1hxXLBAeg62bI95LtwMQJQ+hw/hgZKN\n7ph2Vdt7tf80TodtHfbwLEp6NKK4g4WzYxXfv6WDFzQlh7mA+TjWU50bXppTVftUZTe9Q4QYmu8a\nkEEAiMwSbJfARFjMRQ87mW6D7QrGq7w2mmW92rfBMxWPVV0LmwToKRN3egJAZwvMzAC/9iXTE2gN\nfIqLrrlLliIj9ysW7488ru9vHJ+iJ4zutPjT5rGY+lb6EnlvR+StXLn7cqfrLtvRhV09IW2A6osP\nHz5IGrQu6c1k909+1/rSSO+laqOtyI+2TOfHfkdN6n+UFQpn2YIMxFQORq/b5rBQRcVZys6R7QBu\nzitCsI08nO/KL3POYn9y/dleuq08DpzXjl//+U80kqDX1P8f5Q9d/lf5TEDVVWsc4c/eWZDQDyfb\ntvJt9gQlMhbV86Qz7ectjLXzoSe7HHUNxd2cVi9SwMB9NPUz6Djw8dMnvH96wm+//SaBC+6gPuN/\nIhI9yDlNUtN/UPeqn2FxPtjjNX8GfpfgQ9zgdm51z8omVt00eCX/WtM+6elB1r4Kfoz1RyyxHodh\nU4YAxADOwGbDN2q6Ecv/i3az+EdgQoP4M4KnLFUvwP0a7Cpg6JO7LdZbnw2jhJOIRW5cDjH8L8N2\nbAEwpLWbwoN586P5LdH3htrl6C8eGHn/I/Y3OtZzz+gvvoe3sY9RcGcclvaZGSA5zfP129eRYrXa\nf7PA6veN8bIH4pitheWWnEZfYbX5dKVeDB/YqybHq2BqaqeQmfm72vS3pjk+s8T5+v9bmtO8ZEsP\ntvKZDNuZXikzZKLF9F7cmOZ9bUipfFf6KJ6uj32zuuMb0S+F9qNuwLHnGJqhxToBoOovsqgxAPS8\n0BZ5vJKlNJfVTW1EfjdknevOK9mmCWbG87dvgjORZa62kfy1iD2Zx0Y5q5sDTyLWbLl+GL3MshlO\n7ROV+0trDOoQpS1jjiEDNnM6OCz6rOeh6d6KFW4VHoPop99W/pFzMgiP6VZ3qYhgG7ajHlzNK/cV\nAmZxM1P4GWlZzdWakSfOIVS50gVb3xSAle6vcQSTvZm2qqOqDQFClpeFrwVj241xXfFj1MGKB+YT\nk+/fv8fT0xOsE3XurObCXD+wOplb7dKOF7+n/M84EfK/rETGMGtQ3JRLkxMNMaggzvEIasY6EH5M\nQxCM6uPlgt9+/RUHNXfw3wr6b02y3XMzKet2dkDZ6puEqKxeZ0fAjmrPK6rMLEG0EpS/1Xb8evVs\nAoEl5RGRpnFpJ96/fy9H4tohYJEacJ7jhEdUzOKRqIMhaUqmnbWtObj0NotCqRN4BWhWn9cURhKT\npcE3QR3eht3/YU5RZ4z0JRjPWo5cRgP5GCYGu1PiX4dFlV4UoztjUalpANkWAMcR8EGr3V0i1ZMv\nutQLfOu4jgCWdKn3vNtgAGYGeKxa2zH22fhEHRDByjCyDuQNNISFGj86re8fx4Gv376mRZw41lB9\nYrsUnI/Isr0DXLu5bbMt6qs4TrHOJIsU71FgNz7VuXKmk6QkG5+v6jaK3gbqI531+dWq/MrZMv07\n77PXdpvNoxGQzc5JabfzdHyTGbiijyO0RW+7bgj1JRlQma2AngBfcDcn4uYujjtgPi3GG/Bb2Iua\nb1hUnjirtU9xXohiYNkTwifO85r7s1HnU532O6le4xxYXjkBxs+muld2LY3c28l+F5A35v6o348v\nq95qOkZgSfdEKA7Hoj/uFAceJF1j+ojiezMITuktdKeu0SrXIuWg9lHmHhZjDGRMMtmf0ZmBU8zm\nBFta9REH2SQidF1w7mBfQIwnGYd7JI323vH+nQDeBrljSPTpoDM6C1D97TnE7xRzeKp9dZlDlkdm\nqL4P49q745wxTkOWWmuyOy3wZyyoWa9pDIB2Pg6PzbsJY3XA04iGsbnV365ZFnt4AAAgAElEQVQ2\n+yDCv/75T6Gz58DEj/Kj/L5iMrjXNW5/XPiHXd77JHn37QoD3fIP4FhjjylWv9/2gdRZvxFK3OH4\n8UC0v+t3DQc/Pj7i06fP+OWvv6BTc1234kdHTxehz/2yd6E4HinPfvU1yexd4Mnohyd7mdqK/V3p\n020QqKt+bD7oALIdXLUXeTB+CuqNj4i9ReljlAE7Nd5nMFaK+xzOazlV4rwP+NeC4NHPkVgBi73j\nnnzD6g82Gvn4jaSIBwxj1PvEUvCXIT4Ph0CdL/iYPRe6iNgX1ThMa6MtLq77pgDahSvzuMW+VZ9L\nDazWRTio4fnb86iJ1/OuthsvJzcSzI4O/i8C46EmxowxjYZ4cnzSPwRPx9p5lvmZ9oqJs766FcvJ\nuHUvrFMfynexb/bTeFFPY6c6GmmKvdif8ExpU3zcEvfB4LNFMFZ9iXI46Q1zO0q/vBqe+edthr7W\n950fFpwN+K7yfWef5o4oVl/REuaAtUwkl6ULLmbPQgPAfbIVT07baAqzDfDNuqwvx5NnQ4vpGLZw\nZyzleRGD7rHN+HvC1BiLR2lsGdOcjPWYTMTUWLEs51c32ya2layzoV7TeVFnJbrNPJsZCW1vx3W6\nnH3v666+j3JkdmLXXvb/DY9gGOvwrujMHM+qfvuuT2+S58X3DMJiSo36FICM9Lw2dmFTtNc3aPzw\n4QOe3r8fWQRu6MZ9WeiWG9ii2mJbmLuJO0v5Qy+EAAsHNDi54J6DimqkV4bTmU/QwO5wurl3nNcr\nTkhqrH/+858Ad4AOF+7Y9skj2HbP+GUaRn+q8k4Br43w27ur9DRVWG7RAtiKOGWg5s8V5AXcnKx1\nxXhF864MRQF8+vxZ7m9owOVypHbtGWbdscvReCMZCgOKI0+60YmJx0TzxapRyXnbXscADKm/nGlg\nM6ZKL/O4a0N23MSd78HIqAI6WS4rIuQL1e0UTwQrFtzpPTsOBtLT7me0kUZM04esxqMa93h81nhm\n30dgLvTU0zgJxcvcs74sjJzRbW1ZIOye3rPxirvxiJFyNlOTOxPsb8/FH+aOvec8ATS1TGhrAezs\nXf+98LUzp+Ohcc5WUB9lHm04cSPl29z+ABDZgK2erTSsfq+fVfpWhYFxOWbhh9e3fBNe70qHVZ3I\nRSD8e2NBGcNUNw0HdeWg1NaJSO+UWTgj4d16WsL7G8A8FMzzqCDRsRqL1MfY9+IMuDwxdKnb5tIJ\nxil3kgQ+VD1t89iKL1yyBiY6g8IFfWkskGXDLhYFkFKu+XuLBfHQUcgOz+ucIsz0UWu+y6/2J+lu\nrGV2J2eVl/G5fSpEbadlmTf5S6flFva92jTvQ/je7lFa4YSof62uutjntGHWSysZYma8d8Ab9YG9\nk/llOpYZ6ZSu9dkvU1+MRRo7df4S/xcnxOJcjjq04rIz2ALpPwX61V6y3I0mz4T5B873RCl/Rtq0\nGXNVGazz7KqnWX/77SuIqVrHH+VH+e5ioUnyxRCoQ55xqj6ciy0k1jp9Pt7eJATc9oE4/2/5/GoO\nrepeYo63+8LfXYgkUHC5XPDly0+6W77LAjcF3Vx1UwuBnIIH098EAOzBvWpzzBdrbc2bWL/p5egP\nr+6ZrPjCdGEM6iPaFmS+r2x9pqPKigaJeGxSXJVIi6h1uf9P0o4w4oK3/Gw4jnoyIi/aMctpya7y\n14stSKk/Aj/iCfOZvj1Wrs9YOib3P52NLZy0ibZSsITzlYQfHqMKp0HSeJDt9453ZgRMFLCDFcO0\nPD7wwK+lq7mov/Tt+Zuk2/HxzOMmsZTxebxDZfBntt+RFv882FWGLmgEGq2mGMaesGi421WC1ph9\nJgp90d/Hd22S+6q/xrMUB3arK6f3Ki+K42G+nH0c8WymKb4EfycoIMVnY2ExpuYmopG2DvA7Bw/E\nILfRudbd/rq1b5gQY0xsGlR7FJ/tLsVDhoWWEa+D2jg5OQ5fhGQAnYRuK6u0USY/vpjhqkMvuren\nCLKppzP6eeLl+Rlgud+JAIx7fpIbuiymVxkYgWMMjDjmM6XKoh8N1UuWBlZ8yXlDpPENtY/jR5Ld\nmEUFWNvyztnmuHxvgOu9u+88U4ridwRZ8frjwsmijuUc8/GoXk7uGwe5XqXH2pVII8U+8pDbaH8C\nWTKviKZL2G+VnV9hZWSEwCSE5EtfmVbRNawybDHIBeYqekp8LcKHT588XTK1Nq4nJsIUcCl8oI1c\n+LgP4iGXvZveyzhH9MMGD27KH2ohRJRhDrrGIMfD8WBWMAxzLR3MCyCDEfA1BxqQ3dYPGqTpAC7t\nwD/+/lc8c8dju+DCNF1iTAy/bf008ASSe0RifzaAfheYqZ/58025E5TcqpDddLYo3MWpkXRikt8e\nrKCnkaej0hC7Clpfpu1woBVWGCYTXcC3TC5yQ+PZJlUZPQB4+vQR/eUF794/4fW84nK5gFrT4MG4\nZ8EWBh5w4Npfcblc0Eif0wlrAIXRQAdNK7xVydTd185TihSHe0RO6XgMjqUJC1mgHnU1oMn9FGa8\nDggY7RR3Eakjose646VHwuMmBppZTwoI0ON+VUcNEDggiOhigUtoEJ6QTntYn80RshQmEXxGB6uO\nqY2oAdBuBg55sSQGNJvmn++6O64uqgBjcZ9BuOjOragL7O/4ngEND7I610RWLw1o7cDXr1/x+vqK\nd+/fg4sdpLKrwGfcQqHPAGSAG+d5BNi6Q4mUr7KTSy4FNCk5u8452/rOmk+5y5g0NiMHn0sGIA1A\nsNkxzc/P4HDCZTWXpRgg7mAcwdDU3VfxHVNNlov/IHKdGOeTO0ekmvueDSML2kfHXtIXMs+XKGpn\nAhCCX0QdT2H20PbKMYkgYMij9Mc0SLzcOr7H0FMKC/1+gHwhxRdTBYl50Nouh4x11rueGoTXmS9h\n92m3nSkNh5+6IHAnTckhemdnb0T+VB9hwEkGNKes2QmYZyT9aA3X63U4KAoQ29FA5xgnB540UoYw\nM5rrDQmYdLDY2ALSUv5bAs7gyzYHSUH+yHYzad8pL3p2Ag7uLr+dxiV93Ej4OdnxsTBhstLUMcgL\n5D3duXPRgEUOruvvPY+HAU9ikwl2J2q2UwxeyB3ZfADAnRJQz4XUZIrNOUh2gh5P7/Aa2pPAjD5z\ntBRIEp+RHahqrSBqQLCtMLzRY3Z4HsGNfsJEqxJrixUG8hkjv3PVT/5Tg0vEOk+Co2IgHqwnAOUE\nvp+4YsM1yY4PnkVer+5sMawoqpyBzjgb0E/G9bziJKn/RB/29kf5Ub6zLJY7FHvIt2+s5PvbXdi5\n+p382G+i2r3/RgqwwzO7IMMuGLlvgnAcDX/605/E3AE4jgtO1VOi83ugIuvqGAQEoHdNqm2l2Ezm\nZezH7T5lHkyBP8r2sNZtfyee8M63zvWtaLLPc4BJdL6dwIgppeydiOG67ZDyqus4L+7jAtAWgRgJ\n5g4f5jiOfJJROqE4ad4gYpjF8Jp9/6YAGsEiN8OPiD/LmFS5tBMiG6MdGolcGeXenOPFc5FGWYQg\nPH/9Nk7QF+y7gRNTW7aEsZLzHKcZaYAIANrwHQI0Hzhf/RsmGpdEs54W14wRBHhKJNKX6+jly4XH\n4uYu5Vn8neMxZZ7HFSjzGCM+AAr94OEb2IMMuTiKCIs5mXEgaQDfFtkQ3rOupU1YoxNrGWvmi+f+\nrvQQW/vBF2XrLDINc/M87nJDfDAiydH2yu4Qkfui9wqVn6kutrFRPabfv76+4nI5cL5qvCVgVl7i\nw6y13GdatalFFiBp+p6ZcVHZJpY0V5JpYx4PF53FZ1aXy0to3rC/+STuH/WOszB1jMHAxkuZKONT\nafPNxS7u0b/B3bHcxepuPR9/ryq8fr+q12UnqYuhq5btYmwcq7Ngp6OrnV3HuqR2URRVj+b3YI+6\nnA+/1nwdf2w6aSn1tuPAp0+fcLlchA4JKk/6h2H87YNfCewMP33iQ9B928K3v16VP9RCiOCGYe2m\niQS1c51x4gS1efAtkJ/qJfmMkXc/2oCdGpC1FbJffvnFBfE8TzQd+GTIlLSWtL3Sndod5S3gdt41\nGoSU1pM90rWTEAtQxCBksj0B5MVAYf2ZQZNZ8nWbsW6jgcNiCKtnQQpinp6eBKTqe6cubFi78UL0\ng8gVWbo0qvDEvot9jN9vDXsBpiYfXSd4S3sPhBtiG05AA0t24WykBdBFk57z/FnQk+jAyd13VMc+\naTO4nldPFSZ5zkPgBxYklwBg5k051knzPIkgP8pEBew+jxJUGeNqfYo7tqzul7MLlYuUNs53bW91\nJ4GwYbGLECq6LsfhM7CkPibGy/OLpwN7uDxOfW2lrzsDF/kWywj2hu+i82TgvDjLo29YynKjNgLj\nLpvZKpiO868Sgh6gbWl/VYHUVC07gGB9d51Ba3Cyev+WbjQeBKIA2LxDem7qwurzQoOV6MyOYC/C\nrjqVWeblgnCl352zBR1j0TiA+WL881jtwDWBAsAAZPFF6h42oFHD88sV53n6AkUnTgsrO70ddx6a\nnDaVxzjeB7XkUPpJCaIwh+QC99on44HT4ydIbBziYt9sM02fZT7NvB96QhaH4ykSkGCJbmHDYMZZ\ng+c3QT4j6Yo6qaL+r8GGqG+YBc/UC+hO0wvW/9h2paX8HOAU6afNfxTwm8ZFc5N//PhRTpcor+I4\nRhuxy1dufRtzdnwebY3IQdZJY2qM+R8DBGkBPhYdU2s7LkQZ3cZ7XxQtdOVTkvGkzOhTneer/OWA\nOLcUU5iBfU72EBDchx5/lB/lfhG9K79HDLVS8cm3uFWfPVX0V/3+Jl2uV/e7oVeBrVUb6fvgdtSg\nwaquWF/FJDvKx1xv+OnLF7x7uODry7MHU0cZ6Z+I7H6C2R40wO+osD1rjk2bjpfqQVvoRT8t4pF0\ny+zHjEXpmr628mfWvTnloL5sHUIECquxqnXHn9ECRVwcsW6UQiI5ESiYK/TZ3xGMFG3/sHVS29DF\neodIG4sYdtdF3C1eaV/ZNnvfPqsbwypfRO5dKKSd0O/Y1op3RAToQkgHFz9q8Ko1HpuM9Mvd2EzF\nac2FTG+Yv/bygvM8JR3tMcuVvVN9t1hfVTTx3Tqvo05YpVyO9Ecsm3SJpUgLWCP3fdRV6ajYqfax\nVqNfur+103O174SJLVtduIpTTD7Twrfi4B7usKzRDhrPGWEruuum0YqHxjtS6fCB930lpaPWvyoj\n9jCqtPkVe7fi1+SXJd+L032lDHbWPL+84Ho9Jf6juHGHw1O92q9JX8sf+X2IL2ebe6jUabzxeIDq\n+etVUx/riZG2eXeStYk3kmI+Ym9Glqvk2zsGX+uEPI9HPGvo3p5OmxCNkz+5Lhnp3djNRXmv/eiL\nd7XXWz2zep60zxUb+e+d01hbPd1lKSwgYfRzOlG60ItRfpxf8RRnoV3GP9hJ6e4Ykya+u/g6I2ou\n8UOtp8v7Te3m548f8fnzZ7x7fHQd0bTy0+Vm+P6t8GHogawr4ndDn6/H4T5uW5c/1EKIGbadeHc+\nwT3sMmbdBWpGGEmfw+4IAIB6tNZ+JyK9bFsm5wnGX//Hn8HXK7gdQJNAQAyOCakFtIef/xWXdjfJ\nwGOS3XYYtq7NZAgSuIiGT5XiCihMCoIM9OVnV4rEyDYKfSe7Pvv09ITj4SL9DLcJuAG+jvE89SK+\ndjQ1IMMoR2N6HJdUR+RPNd4rYCHfCe2XyyG7bLnrCZo8iUNPk2Mx6h18YISdL1XBgwAcAkSV5kFr\nw3HMu7wMoNvufULOyV/TfaX2gjEYjtEbdj3JhS4A5I6UYOJTv2feyk5epnxqhNm+zxdDr5zcpUKM\nhmPRP5Pt15cXd2Zin1d0GxiI9djv9xzv+PneaAcQpgasXkoX26t9T/vuNvN7GEZ5b5tb155d0PwW\ngO/PinBPi7q3+GXOqf3OMc+o1LrWP4V2MMYOkwDo63NvGZf0fHyW83fen2CLKpivZIwc0rfbtbID\no8xjgdYwlpz6k1bNGWRAd6JyWCzLes7pobwgGNuPv0sVqjvsNB6PhWqG5tTlcZrS+j50azhhgjA2\nBE8/Z++ZXhrjkDc29LB44fzrSKlFrB7hjvJJ0ycY/TBOhOO5ExAl8ossk7MXSgyor47pM+tuQu39\niXxfRATJcf6bozTriMm3GnRXvbyQYf0WnTuuV8aH9x/0Dq65fzZfV7okygczh9RWs+O8m9Nj6t4I\n5IAkfUAbqSzqLqR6j4rZFyKgMaHbfWgbfeCYhXnibdRZsZ36jOt2IqAzXl5e8PL66t/t7rj5UX6U\n7yrR+cFwtIEsl3kDQH5nVefS7sfXSrvxMw5fVpx9r2z9FXBqb4Xbb31WP6/1AMY7zUnfCO8/fsT7\nDx/x9fkF3e4jhNkGuB1MfVsp5NoWM4jkFITrPLPjZkvbWMyNGHC2KetgacX99TM7XSrkRnpNODJW\nuFXWbUCxvdVK3pZ8lnGq4SgKAubjGRcYSnsMTVsTTvQNPBFODCDk9b/Rj5XPUe2X0224T3ETw/AR\n5ARMtetl80BK06UcETPNfnK+9rn+bSMV6Yzfp00w8sUW/0af5/n5Ga+vr2DOizZVJt3GLXjEHl5b\nlzS3Q7lpGylsuIFiW+vrBrsC4+R7/C5hxvgz9G+PVRT33uhfLHW89EM5cb0Yq/oz1pNxF7xeeD9s\nFt/wm+z9DZ3p2eI7rfSNfQeMzUq3ChGlRcJYj8zrBU5k1lN1Y5wmE7SyW2W8Hbc1WtwxIeV6vcod\nIeX9W7rQ5wPm1FKG63c037JTQ2ciP6N1cu9gopS1wH3EBR8yP2wjLbvuEj9H/S5bhGYN7Ieg96pO\n/XTJm/U3oU9Tn+eg+f7NXHmd09H3jM+8FZeM56Uhm/9uhautlheUrDH3oXFTiwOu5L/2NdE5lHR6\nhrvNh4VO2unFYLMIjIfLA/p5oummuNfrKz58+oQvX77I5jJax3VWfwPQ9Dic9BARPHuJb/zQbq3S\njKd5wUhpxu6VP9ZCiJYOLA3LpIBpGH5gwDX/TCe/O6NNg3xVyAg4NCBx9o5//OWv6Ncr8PAoE/5o\nnrrCJ9Vq8DdGYUn7pizz/zNg+VW58zRpdwGzVCi/m4FHCZDnr0qfhqE1voKGSa+GItFBDLssDoDv\nsmaWVfaHd+/w8PCA1/ME01h8Yq3PdlOZ0pYje3JhIHNOv2TltHQwh+wIlrZnBRhpnYGjLAylHPEA\nWPJjLYNBERwbKAiaKzAy8tZOLQxep/FADtYL6M4OTF27WAXw4t8r5zQGc2tfnBLZrhUU2VDyg5Y5\n5dVxHODzBLMc4a0nRkwWDTyswL3RVk/cGNO280uNju1woiAzlQfOh0VV5mTtCpEFzkPfgxHfAUz/\nyT0dB4/HCFM6Gu1T5EHk9c22lLFVL0UAEumK9a0MoF3byay/93kcboGN9XfkOmgEzG+7G8m50LJ1\nHEvf4vd8Z7xW9APzMfJom2bHReaj85VnB7OWZV/82PSYh6zn7l+vV7y8vspln/pOvDx8JTeSfivL\nkGC+3PYZFh4i4G8Udn8aZovttLzwYfMjyrbdnzD0lVQWdcDkZC2GyVJWxZKC1k3v16i85fn5JM89\nA9+F+V/a6SoTwHzBaqI/Bi94noO17h2+SLtuPRA16Pd3dFfT9XrF0/snWcTC4Y5DrX87TzS9SXY+\nZmepOqS5Uzr9V6exeDxk2MwwiclfpWvY4WF+G4ZTanRlGmNArZAXZXExzuGDRPb19RXXl5fYzbt6\n7Uf5UXaF7a5EynLEFh4UMb5Tx60HViAICUvCp6D5VFnvRv30PQGHLT0L/Bzb2jnpTv7GxtYghiwE\nNzy+e8Sf/v3f8cvf/46jM14xWCB3/rE4+pEmLjoCphZt9+1AzQl38dCX4BlXV1qlz+Pi9KqTo/6r\nAXd7fnUvhtYMYDVmMW2GW0L/fRXAnn1a22QUeA7ztwL91ieM56ufOWoB4D6C2p+AR1Y4r36+s63V\nZ4p+kvVFxpjG3VQQu2k2xMYgtl0XRWQ8su8b7eTKZwNnPBLbqnza9TO2b/05WsPr6yu63hFS51XF\nIt7mnfm+8jEssB19Jn1g2RYifwD3FdSLWWINBm7qjXu8YgG6/tnAq9lvSPwIOHnqu87vlFqVZv7c\n8hmTDBvLTO40YP0mvWuKyOosfIqbBus9Nan+KJvx3rzFnA2VbPu1LKW+0YWsv4H7ukh+pzSHhk6S\nv2QhJL8zxVY237k/pfV7mn3tR5xXsQ6OuDTxZiwko3yf+OBDQN7OuugYdRb5dl82fw/YqbjwaRm3\njUrR7yy2ifGTSOdsfjb6Jvaz9nkb54FZLaT4sJX4d017uCqpzfiZKZNo2wGXTfafgCWaHr43+V1M\ndfxv+Xe13yNClosvEpYuMbNeQC8yL1WFh7S6aWMXy0b1d+/epRTNtp2z0dBbJrcE5GtDXL/kueXz\n2HkTVf8Ge2I/Xqvyx1oIScB6rfhlglMwmnNKgrpoYXW7wQz1WXvX3nFAACVfr3j5+g2Xd0+4XB5w\nvV7TCmu8bCoWE+CGcUIBAVTYMyuAsDO+94zXyvjW4OheYHj/rLc7/h4HqBAxb6BxDXhy8EZ5jtJe\na7g8PODx8RGvX7+KsTgONxz2nOWIP+wEz3lC9XzaCT6M33xKxGZ7BUozraMPrZG3XXe4RmC6AtqD\nPx2taVAJI6VVXXDwPjXSi2fZFa/xzR0XHQjpmx0Ftx3P46JiorFjIIKZqPAiwKm8sH/XcGkeM6Of\n+SilFeN1vYxdVnoyv1u4tD06jStwv/r9XmGXXYBaw/Pzs/ctXuIc610apkjXAtjG+dqRV78bSO90\nmecaa33ukKapt9cBXOZupTuD1fGc5cq31DuxeDA96Lhhanm6kC7xTFSzLLgCch+It1EM+cq+xX7G\n79mAPbser+Az9rux3PVAJDvGo46rgGIFYN0dZ4adCtgZ3vQ+ZZmu+iWWlf5PXQ7yGHVMrM950HsK\nzBPsXowBurmvebWqV1meaPCdaou5Z3/brqM4NkT5snBT1o2G8yg0FwC4An3hs2tIBeI8QoDs0daE\n96YhpLBTyukJdyRhHiujT3B8TotSqk6fT7pQafP0jZYbvbRtz42rwuZgTO3nRG8ibYBg02PMjIve\nzUJEeD2veHp6SjpsNXd8EVkvho1OzMyToEmCLtrhoNiD1N+wpTPZzzbzT+y+2er5PpEqEJGWgSFs\n4Xu/4FGd4jh3Dc8an16fX3A9Tz/9c9+C/Sg/yo1i/sVC7oYjOzvWANyfypij1o/lQt0t7PUWXFZp\nWen631N29jZ+v5q39vfgme7S7sDD4yN++vlntOPAa0i3a/jGNFbFWYSgE9W2yAKvLlxF1psuxlAM\nzB2d8onlrDMNr4s+rwsdJhc2fHZ6rnN3TCB4MPDEfTSj+W08rrwWPs8LL9a9gQcq9mDnfdSOhqjj\n+GWMpOfIO4PoQGs82ZBVgGnuz1jQ4uk7pPmVFvD1pet1pECW0mC+or0f048COY2m3ZFKDWmM0iYo\nw0pEaH1cGF2xorW3kvcdtqrvSVqs7j6Q+ZerZ40mYttBPjYmcHmn9isG7cG6SaHwP22WMZ8sYkgf\nv1lfObYvslNLPK1t89n42sFltzInA84sgc+KB7CQXcOsHN5Vlglvos+k/4s8nOdg3aCnsYPyecWP\n+uGSF/H5ney4zPkqDCV5sXfs/ovdppdVe0Qkd72UxQwiAje1e32en2+NEXg/ov+kvoNd2AwifP32\nDdEH3Omg+HvU002AdrqflQGJxwQeVppXMip1E3qXuckQvd5aG36ftQn4KbV4gsbqGeOv9kN1LzZ9\nSf1fLqpn/lrivnZjLPwTliB9vFt3VL9Y/Cn+jz0jddbxnOUi+yP52TipUxuGtex1fVI2AcpHaeGJ\ndA5O817tB48YzMxLnn7PvuyMm8BjHprPMvmDqkwodCL5PSTxuMtxASD3fB50wcePH/H4+Oh+X6wu\nxqKa1k5q21WJ+rNuO2N/jLfM283H3j/mce/iG8sfaiHEcjv7IO86SmJYLO9cBbHVeA2GbZR9ySXZ\nzxNff/uKj//2s+fsc2VlNTEn5VAVll0aG/0LRpxebysreleTIbwBm3h5ggRlCwUd4UTG3DCyg1Qc\noSUfy0eTMwZRjIILcsCBmXFcDnz8+BFfn5+B66wImJDyqBNFOoahtTZlsu4MCy+enUGXtFOMQD3G\nvFBg9XSKPCO5eO0SPFPsUaGZAtGYjSszcK7LgTROv8Culwt3facx59Md1rclmCmAOLZFZgSI/KRN\nLHW8Ywocp8t9zBk8pM+187dA2MoxqEAi81bqlLsmZuNuP6fgHOBBK9PrO9AIQC9SDrTa3GN4wHA1\nBpFu39+34I0Si3i0c1VWutHqYYaekBvORD9NLnVBjiOcGPSdOtcmB7HwxsdEUw8NLYwlXYnuLm37\nXCWMxZDwnMnn9Lm1oaDOPl/xaKqPOexCH98P/m3o1jkd54y3weEODS3t0Ds2GMnW3dL5kWdOL3Lq\nRpuDBiiur684jodpXCr9zOwO+YGRoq3umjFbGN9jHrtAqu2JJ+k6RH/2lo9vE1G4pLqCvhbSTchO\nG5+7Bij1YsxoAyJwHmMiut4XA+MiNNT5dOwxbGktt0Cr/d2Kfa1jCHCQpakJB8pyqnjwdEpxkd/S\n8cq05vmPwJuxoBEXwa/XK969eyeA3vX6fMoiLkpIDIpd37lNTaczgNXF7tXJJIKnfAPsvhp7f17Q\nNCoqV4y/vgObMz9ugelRP6aaq/xHPtuiX3Lem+a+P6/45z/+ISca2wV8npqu7kf5UX5fIQuy7b73\neZX/lg9jUCDb2Og3mS2+Z0N3ZTfPVvNo9d7UBs3PvLXs+mF1kRhxCXBAWHQ8PODT50+eQpmYUyoe\nIUkcf9dNfTxj/y6tJf3tmPqGjXG/NNjRyb8LizDJnwm8Mr0Ksze6W5vBQB/+Q9M7NURvZ4w525CR\n9tIPgSa9apsXh45rGKkMffNaM4DIRpH3x3mLWecnulhHjAcOs3ZT2hX9QqUAACAASURBVNWbcgb3\nTb2vAFbRmcmea3vR9sX0u7fkNPbn8FSe3f1Awy5RloQvuxIX5cJYBBruzUmbJ9frFS/fnpcn/Ot7\nzDwRVX29+p30lKdnwbqbPuitGJKwMU/2n1V6JnxhkrXu565UvwkESQtj4xBOHblfioCJ9bvOPF1O\n7b9HvcwMjfJNYztw6W06vbc0bAMYWM2d6ud2nYNT23f8k1rqwkWS2YLdbs1Hf8b6lB6Kkp3fTf5H\nOJEVKk3193PEEocMNlCXtL/5JFYmYxV3ANYbn0jvdu2Lsajv7z+Ti76jXLq/C/NbkOxKvEfI5VQ3\nz4rvw+7yDH6PsorlUKjf6SQCeQok9kal3Sr3Oid0zjZq6fR31F0r0b/nJ4cPk8+8fW68cBdTZH9G\n/e+NHES5jXqwdw66Pr+zym5zC7PILwsUGBZGQk1jhpd+Rp0YTzqCGZ8/f8bju3cjJWcbsSMbY58f\nWv1IHz2K4xjlWdTnzr8FT2I3vhfz/SGTD69y2SXlvTC0Hgyrk8UnbAcWR1BToELbeXp8xN//9gvA\nEgBNwr0AEqtBWQmA9WMHCG4ZmK1DsCyzcs2AIAOq2I9E14LPtS+32rVnJuVAayFu1PDl8084iEYQ\nKa6gk8iGp2ABcFAI0JV2mNkvx6tgLHalBpYqH6RaAaJKwZIvK7CQgN0N/oznu18SqB8kmY6nOLwd\nyk6DPVfrnxdm8veV/hossp+2CFL7VJ8zh8zavWgaGpDDs2SgYvs2f1aAaUVT7PNWTklafX19xfX6\nuny2fkb6Xi3bebj42ILUTfvVGDhAuNAd9cyc5mps23Zu1391Tsf+rAIA0Zmv03KI4H1g4H2N7y8W\nTxMQegNfbedk/M6dpwLOyovTd9/Tj0hvnaP3aL5VjIbex47MXoxWHa8d3U5T3RHVyHftdc0Zu6Ij\n1YHFQg2NEbTnzt6TDqr8pfg7xYvx2E9EWZkcRqxklIIHa8EQgGAnKAiEppsVbo3DANVG3zRH9M8C\nP2+OPbA1Z0u9VovpA8t5Wtt6C/iv41Yf+V6Zt+ctnaQtrMy0LWQSeczrYrW1cZOfwcmI7/W+xirJ\nIbxL363g0arM+nT75Bv6dxwXvDw/C+YgnWM38lP/KD/K28os2Sv7Ve3vXu9+R8uLeg333Qs87OZW\nxX73ygr33Pr8DRUGXUig48DHz5/x8O6dBhhzIf2fBJUONByw69HlUusLWtvvS7yF27yNpa2+jSF3\nnEt6Ell3md9UUzhFGurYyr/FhhRiwXANgP7e0dEJON20d/lHXX4TY+P0ywLTOig02mOtR/1brdNK\nL7hlxdfWWtpoV79f4bE0r5h1rPMiyMrX3s07C2j6s44Xz6kOx5EFN0SejEBiHqtbpbYPZrxeX4f/\nuPC9xq/k2GyaizR8eA7qijS/c+JDoMEeFWmPOmvWDRYKlA0knFAfYx6zFV/GZ0h/2+/z9rC3xWd2\nXE9olyg9eM/3WLc5xyFiqbGBSsuKzrfQUcstOXurP2Xjzot/9woRJXm79a/SE+/lYZaNQWeJH0Za\nd/ZqFxMqlSz1Sqw3+o2mmz2gfJRNvOGH/2OAA0YQd6qhs2TDeWXGq8r1yUO+o46p/QQg97zqOz20\npR0TXaD/Jr0Z+NJovvg7bmS+VYRXt5+r9NsQyU/hkv1+09dOdQZ/foMzSPH96v1GhN1dGMaLaj/2\nHVx/LHxez7U6j3xDg/4ds0pcHh7w8eNHoYlrxGLEehoNXFBj4CuZXtqSbSdvx45ulT/UiRDS1bEu\ny53TcSoz+LKa2j3tD5CDRlO9MDClg1CVf++g45B224F3757wj7//A+04YBiOMSYvq6LwI2dcj0vm\nAI8HBcyoL0HLvtT+H9ZP+3zRb1qsNNpuL/k7LwYseadOQHxm+yyMSXe7sywEURifP38GM6PhiHuD\nxriHdi9dj+ia4qYOHA1kqVhYdl0aD/IO/D1wsf4Z8BtyNjpoyneMjewgiFCi93yE3tkkVikAtFkR\nkETGRt2Y5YDUYZCdWweOAy5nNi+EjnnhRsivgaS1Urb+EsmuMd8xVgzXzoD4T7I6u+96uV5fvV5r\nbxVQsmBcvuBqNp4rR9iYyo3BPBbC4nyenZyx0CO7JfKR7E55/JrLRXOH2OWtzydymNnTFABwvZAM\nB0gdw8zTmrZnPb7r0z23HO16VwoDbsSjPgMwdkLdKKTPxbbknSzHlebo/OjGJsRdXrU/8ad/Z/zr\nJ7jNC4G39G5NaxV1QXz/e5wTgi2l8vhAKrpZR4cuIJB3374cgKHaPs5HkU2/CM3zYmgc85iizgME\n+pynUlsA93vFUiMcl8vSUei9T0e3Pf2f7nSxOWvv1LzmXOZYlDUlG0SWgkJizwyCTlmRtU2/1mM9\nlMBqYbeC6lkmZhww7tYJnxe57qXOeiIKGKnhqhNvdXDvOGx3ch/zOcrIw+Ojn+KRlIsLYBuaXWEe\nZkbcF2d96wVbIFaVeBKCkRTrmOewPuW6uuoU1ytMY6d2aG/1DtFsAwHgGrGE2hEEjBFTLsq4Dh39\nlz//OVBsuh8/yo/yu4vAq2okpER9VAOUb/VFdjh59/dO7+2e2dU9Bx/Md8k4cWWf7btoy2/1pz5n\ngdTWGtA7Pnz8iE9fPuOf//g7AFnAPllsuuA8oFPHQSOYEHECgQCmtNuz12fCzwkPlu/0D4CBji72\nS++69DFFFolan/OpNYPk0h+7vH1x8juWit9uPTPoFl9p5AQ/QL6bYOhktyWA+wfWln0X73GM/XN6\naGy6iu/PeF9K17vVZKfy4KHYjrCJzqAFj/cI4pv7CXxmP9ltd0HUcRA5GD4HwDi7+Lnmy3WlV+x8\nHjvDprbhb9Wv1fxbfRc/t41EnSTt1svzi5wYPziPDcXTrO7gYVUct6ic+eld7feOlpWMmVwkmmG4\nH9NmWfXiJt5N/UaU12U3Uh+XchSw1+Sb8g5LBlqZ0+XhXv9EQvbzst/ELqJY8HeaJ4jtDd2X59jb\nyqpOq9fkavL7MGR50iUcKxj8qGmFqi8ceWb9iOMRcfOxwOa9n34a5Nu3b+ILd+FwxXU7exU/T6mA\nQh+O1nBiyK6d/oJ9RmMHv+kfVW1h/IVnZ0eS84ixyduXl3sZU59Ti7FbykDg91j8PXWcLfjfHEOv\n/LaVzxD56nTdmTO39dkqHpJ9w/QOje9sDrjspXiGxVDtWdPhNNguDpunOxQdwB7vjP5FLFWednFE\n1xOc/aMo31Gfuf2KtsjaNLqCjbETOu+fnvD582dcLocufo0MPEpM2rxMlO9eTPwtP02XRv2J+mZQ\n6DIf5kdulT/UQghiaiz9qCpUxhDC1o5pEjV5yQXYJ9R0Y30IWDADmquPmXG5XPC3v/2Cfp5odPHn\nW3h3GHXaGv6VUqwTMir/2M9dPSuDaMorG5iyssq17jFxgF2aHgBJqc7OwgzWkb6v/dgZVNYGf/7p\nJ8kNqoEztLFa7A2s6mD2ibFMyVRojpcL2mcxBYw9b+MDXzGO/Yt08ERWNh5zkNvrCW0SAWc/wQj0\noC35bUrVDGPsSwV6sRAR2tHAfC4BYH3XPvf7BjjvsJqNjBQLBjkvzitOrd/HF0gA39pfgfmtE3cD\n+MfCOgfO88Tr6yvO64nj8ZJG0YB97DOIJp27mi+A6Ou0C7qPxc+Z3riyPjsrqIAw0Bef2zk3cQ7M\nqdCiLsWkbwFdq8J6LlsO0q0jZX9jOJDxM9PPK4ek947DgzpjXjOvF8frXPe/SdMx0SzTta+pbzd2\n2ZltWs4vQlogqjLLVZdKxRM9qW/hu3pJoYNQo8v4CUnvaLJ+niceHi6Tflo7f/OiUvq78D2C2hqQ\nl98b4qWlCZiKUXJexL4OfkvaSgM+PTxTeRVpqw7C2K8U7uBBgMPMAEODDi3xAbitWwiWWzfz1Wzw\nLkhn71pu84QrkMff5kLVJTVdist/yL1dedW0vzbX+jlwkJ0kQtgdO+qY7eiqrGTH+1P+rtgm1hGx\nUbV7tmhvNsnTgZGRn+/AqvJbx8P0UaQz0lJpXOEEwiyXsY7r9YrjaPj1119xtKb3a4ncrHaG/Sg/\nyttLduzjXMnztNjnDUYE1s73W8pu7vyeMuGJG/My45s1Jv0eWoklUAWSgMDju3f4/Pkz/m8Nq4II\nDYzOZitYc5wPe5f1ctfFEG2byBfv1zwmTOcTKd6JZLpR60OwXWnhAClosDzNCbtLKbZ+a5GM1b7t\nMYT9bnfHpbej3XYiMfSw2nOx++S2VHylXEdsP/XJUnUF3EVEvmhQ3416vNJquMqBiP5c4t9UB+HS\nbMPW6OtIeXUmXkx3KwBLuY78PVk3dxp+cDufffyVHYvYLvFEg1Gsvt5v376ic9c0rPNJr3ERsoUD\n2euRgFiOTwAY9ygqbk58BGaaEPwReWDJf1K6U5xuwYOdjojpi1nnf8W9TJoumchldPhQ6/lcSJro\nrg9PWFqdtrqgRqpH2MhO8xquqyJGjjyoxYK0tjgxZEW/b/NYrvoxj5/Io8l4V4Jrf2IaXAAjdSgv\nxkzH4rTlNMN/4bnVaYPq48TNiqJHWRe0DWcOXseTyVbfvRiEzYvVvPP7F1vzeePVkyyCrH392Qdl\nnmWc9IuEo+33PHyDvvL5asGn8tBiOlYvYTMPFri/947jOCZfKfFvp6ucYvWRJrmcYy/p22r3STyt\n7G9wst2jzcgT+DNsk1GxfW1X1HXeeDbTNeib7GWkmyl9V8fIxjvOsxjRcrkGNGW82Kzr9ep1vP/w\nAU9PT0l9VD+p0jeNvCuQ9dzY1eOmxN/TufQd0PIPtRBiXfe7NWgET5wtZfIRNWMLeudx0Q6PVDTy\n7qG/nKYtxsq5/CLBA+5oZ8e//vEPXF9f8fB0wcv5iuO4wOxjVXyuUJYTFJPxaW0o5hTU4DnQVwGH\nrVzXA75Oi+oRsjslBuPCvROuZf3veaKOC5liGyvaXEApv5/4w/lERjXyBMalHXj88AGv11NAnQbK\nLF1UDDZIypcYWJGQK04NjDBLTu4wViMwPwLvvjuLoPlHtY1mizFqmNVQXi4X7UfZecBQfl39NEZe\n1Za6rF6AgHaRNFMqv0SEK8szBHi6l7oDeIyo7t4G4+SryuXhuwoi/6e8xJ2tw64UrZ109YQrWZlr\nZDva9L2jHVkumMFkYz4Co6+v16C4F4t5lHfPuItVANzhO9r3QXhmnncwqJE6uxxzfX59kbEgAfZj\nHMUwOa+UXiIaAXWMwJUH4kwvBVp8nge5jXT6c1Lh1BdmlgUBHZsOAJY2jXN/vZthvnoORuZxsVzh\nlT6Is3enPV3iW2iO8kRcR3E22jaXYnuHAdPwjr8PeMowkedwSqUJ4PWxCYCqgj/rf+eu/Vk4gZRB\nWfy5c5hiYZ2r3g8MOb5Qk50TBvrV2at9tVplBz98QaCFubID8uPERJjvCBeJnV3BjDwXL6a0C7p3\nIMv+rheadWbP69mIcHL3NAZEpE7MkBk7Qeb8goBMC777s34hIgEQuRWnPuhQjEWouOiS9ID257xe\ncblcnI+k9zPFMTU92XSX17whwfQYUjvyne7mwTjxMMuNnQqw77K8mS7pXfeDKb8dOMMgX8fVwdED\nmi2alJNgsf0oa2w7kuKzfl+LgJpmI3wyjqPhp8+f8Xi5gM+O4+GCEz3Nxap7x4YToPPpQbR2ULr7\nTTsuuCw4YsMBY3UogEPrGs5ybDM4ZsyKi9h3MI9F+rIIFdpEwIk+HgVfCk1ITizC85X/qS8BZzF3\ntEPm3a/fvtpxJNHrBMzZpH+UH+XthV2Ths9Wvog56/XjKXiwfn/piN9rs3y/stlvqds+j/o3vveW\noMtb6Iz0HWFOXy4X/Pzzz3h894hv3745LwndU2OISlncpcQjECbBL2DYlzXdUk9LdaVNXqlvTXwS\nHjo0YsQa9Jp0WRelS5T1WPS5AocSr1b0pzs5Yl2kG9uQ7SCxbFZgVt886l/m4FuO7+2EjXy/kAPO\ncjbxT760WqcxApBwhvU9caLwyrEqMu9XJWK6WHrvKQ4Qbf29utdtBRkM+L36IbtynqfsiDfDHOga\n9ISNVjoeUDlXjzsFp50qGrg5YSPkzQHRz7c2KnZwHkA2aVnbTPA7aJZ95pHGhdRnMnkSEQryFbCg\nnCq1hauwZFnmvpXWWvLPEs0LHB5jKOPOn7Xf1DDGZsIhip+MYzWjwKr4vI9+k8nR4r17sm41eMxJ\n6Yr9tjkd56Gl0uYyT1bYK+k3+xfw3D3bVEvWu6fGTO5siqp6K9RjW293dLAtJKR6dEGqF30ZdGRs\n84iukDw80ecyRZTjjUHfc3nHivug8sXkJ6uHZhGtNIdXMr7K5lHHStqwdPmjS8kPY4vjzvpwhQHq\nvIo0sfI8fibylWNFiTeqG8yu7TIEjb+lpVhXLW+SV57l0E4jmm2zsRohJrJPA2/ElnZI3BRlnD5/\n+oSHhwecYBy4XdL4LeZD+sz+7dSGGYlA69BCby9/qIWQCGxXQcNYEsB0xWDj1z141MLEN4O2asMn\nDESQ/v73v2uQouNo89DH9ndKdvV5nBBVgFtRBnP/9kZrgHBTcoNmm8SVrnsTje88u3MyYjtVwdl7\nsY74+6dPn+zltKJsoDGOxTihsF7dju2v+pD+HjZ6SS8h7zK1uuu/acEhGUOp3wJ+9jwAUBuAl4rh\nT2QGnkclL79n2o3eWzIYyzByQ1FWw17zBo+LEufTNRXkjxMuM6CfaCoGdFWIyFP51Pmxk20iwsvL\ni+fZbMzJKZN3RwAtyQLPMlyDp1EGrP8HArAu9cV+xNzCSXad+Dvgq8gGkOdw/LzOi1u7PyvY8Yrv\nlNjGEiDybADrfQv+7KLJexdgRhrqe533QKiWqqM4jFt0SqJM9G6Xz2Mak1ttgUdAq8rL9wD5y+WC\n8zycHrN/pjNXiyC3dHkcR6epNbQIuGjsXorPxQV/keehq43/0U6vdgWtgGWlN+rPh4cH2flJrLtc\njmwf2wgw2b9TL0wc/Nrb9bp71miKz7xV7woteXPEqk+eAgPZwVrVO/CQjkGwP84/xtBzAC7tAJ8S\n1Pv555+XacyiA2S/A3L6z4/0B11sfFzafqwcruwgGQ5m5jfrnO+dK963YE8rrSt7lPjOI4XJ9K6W\n8zyB3vHrP/+lJwdPOdVszseP8qP8jiJTWIMPvejooN+suP5wS3Nb78evwywYPsXCGb9Vdjp1N2+r\nXjU9cQtbfE/b22fifIaku/vy5QseLw/49fw1bfA4iDylxng94DFAF4fVNviz82I2YDY7Y7QljkiY\nGgqqkHQRtG3zEbEYKxLCQAWAeR/JeN/QT32mkQOzyDOrL2F7lzmoHhc7MfpHI3C5GJOlzvW6ALCc\ncEfC8tknGnwdAe9kj8RgSkpsjPHj0K9l3wo+rDQbroh4fuwqtzEtG+f0wxUWjIEhAL6DPkoSaV/G\nOxy7sDwVVItbY2Y8P4vPdPSudxJEP2JbhT8Tfb7k53KObfh8Qubxqs6I5SafiSjJ4o4uAGkjT/Sb\npj7QPB/H82t8spqz98rKX7uptzZfuezG92no/R1u3Pkckib17X7TRKbOe5PNuHDj/FT/qm6VvCmn\nQcf6XOXxdxyrN/uKRH6q/nq94vn5xaMi1e/cYf3V77UviTbfjKhziuCbgesiYnz33mer+Vafrd8R\nwsbYhf29t6hDoMT72YdeL+bctv/jGdHjw1ea0iRv9PXbCg9s5ArYdPKoc6ZvUdNGPsQXX/vc30fv\n/L5lRYp0mv/klthMd/SrCGmeEMR2XS4XfPr8WexiIWuM3+gvs23+yzIWR9HhgoXBhiksvSr9s5P/\nIPB3uEx/qIWQWHY54rKANOWogawG31VizwZjYPnu510YWndXxdkIf/vlF1xfnnE9LrhcDMbeLjuw\nunrOnhknVgI1lOmMRifml53fmQ2IvWO7fTIh/rb82ZcY+XeXFShcKWIDLkyEp48f8HK94uHdQ0o/\nRgQ8XB4lnQQAuCr2BjyYEHfPWH+iQyjguM9jFSZzLWQXUnXG8XBBv857OGNux4kPSkswBzl1h8mw\nAXV/SuRbHBUlMsVnQi7AsIABYDoCXp2J+HfKrYmsfqpivgUqxPiNfzG4pdQnYDzqyIJn86KC+3EP\nwLjPIPZpd7TSil0A9fXrV7mjYwEamAPPF4UATz1jbd8DuhVcVgd5+15tN7y/Mva1nZU53RnZCXzH\ntqtxrg5wedbqe6sDkJy6FX0L/X8PLNx0JrJY3iz3gEkKONB+NOtzq7kZaW8MRI3yPUDe5sbLy4uk\n5Lk8wC7yXNnAHYC8xSZZvIs6NAcNBv+9RgBjjEmfrc6X2bjUNttO2nn8E3irummj01fPxoVIo/vt\n8js7Giih/nvjvbLt1fE6z+6XIxqt95xEg0i24MtsiyAZzJ/n6Tuenp6ewAhj1YY+IVPyAOLJSIPZ\njeY+OL93hPYO6JjbuA+Ha+2Y12Lge7VI9b3lll6L3xtNt1Jb+bPQhSy9vbNRw7V33bF62279KD/K\nrtRgFfBGZ/qGck/ynVEYQjR71KPgdhX0+K+U3TysbXx/sCO/uyqJPSS8/fLpE94/PeFvv3TQcXG9\n3cGwXRx2V2C0LyM0BPVnXMst+xkXQWK/b/VTTo9k22vvGaZdBU4A0dxtnI3b85IDVxb4cuVjNMUG\nGWPM/RAOERodiKeyhaKB9YfN7iCEO0IxskPISZExvo4pgr23+EDpQA4ABpxeZaXiqBXGWM+FeXHL\ngkcWHGPL9a92dxc0WxV/ztt402u5jtLHr7/9Guqui6vzguRKzt4yRwft82fDZxp3s97jibjM4/23\n+AxTdGjlP5R3bJEzkr5qjwnAjVMhXt+tfuk0Hrgiy2SudP7zNoaa9Wr9/HtKmi9SEYDh16e+Brgc\nP1t5sTPWRgg8jGlNpvI4/K0VM8/8IrVjnbvfhXC9XvW7BnCf5vVbStZlufjmNKK0EdDuaVnWt6l7\nNb6VTyu/adLFlGOTeb7Dx7G2D4Ke7nNI4HoIwLQBr9JpbVXffVV29vCt8Y0VTwCEOzK0Q7B+hD7G\ndv3ahdv+eZ5Pt/3B2PaucJkbI455J1Zd4xBh4cc1Oo8FZlsIuTxcku+ZxyvSkDfdycMQmwxLiaiw\n0d7T/8f2a/8Hbxf13yl/uIWQIWAtDI6C7DYAijvkIL3HQ7SoT2AVujMIX/U1ieJO7AFMz97x/PyM\nX//1L7z/+HnC/ZnOfZmBbBvG0uhS5W1Bgr4wPFHgfLdqeW5MypmG1e/14fEVhb/Xq8ux7yujfYsv\nt55tjXB5fMTx+JAUqL3jObWtnj6M4dnnhQ1KKXYCzSDfiZ77MliSdsxwuXckdG/QP3ZcLQEz204g\n3d0b0tUMR67rvTQzejFlZQpSZIsgu6CMlmHxo6wQEXK4ChJ0orLbKZwIiXxZ3UtQxy6C77rbXhZ8\nzHkCukThlgB/ZwBvAbKdsbS+uRFn4GgNv339Cj47rq+vOC6XEswN7y94V/lg/dzNV9FdmeYY7JSL\nOPMCTqQj5pjOp9tmWg7QmwNqK9DhbQdVUtOyZdBDWILU3fMzEdNCj9Nwp7juXH2O23qPmf1Y9r1A\ncq3X6WbWi0lHnQ7OtTlP49bHLoxID3lQKXzOUr87cIy8vMn+sAeLjT5zyCTOKp/Hk0bD3LwdxFPp\newS0YAbZ5gG6tXvJHOfwiTu1SONYncEq86lWswvhuDaFRQM5Vh9h3rovqxN+0b6tHdOqp+bdVlN7\nLQJ81bPeN/knpwSaMX7IgtZ1XATrGF2Vvql/SfDGfJWdOGMOxXnfjoYvX76MhVcM+RIdE97D2BlG\ngWfOwyDPwR+dSrw0Nsq12M0A1ItszXos8p+m0J/RZvpjQkQ0t5Ns5Kho1EN090SH25I+7qKj48DB\nmnbhO+bkj/KjxMLMmuIunDiI8qTT0LBpfA9VByyKBKhtLrBP4vx8wNA3yi74cC+YMevWYT8cgW/8\nkqSPSllhWNd1ir0kbah89/79B3z58gX/+d//09P7ERGamD65tBwj1sDMmgbPQ/QAdzTOl3xX+k0X\n1nTCMSDFzGA7ddpo+LE0n1QG5LOTB25NdsMXsTOmy+M1uC0+aHE3aYQyKl9XuLXqbsHLTVIp4pzx\nzcIflRM1wdeC2TGh1fhl913lecHJj67yGOkmWOrjNR6ovK7jFE/mMyTQGutPGz8Vo4kfBT/Bu2qv\nsH9ZpJsZf9X75gDFjL4JxRxhSW16vV7l+d49t1IdY991TkPXyEwdOM3nlp4gXemcsgXG6x+/D782\nyo7RNI3Ngl/uU5VFnZ0djlgx+mRLnRlwxaremipYX/GUM7f8piUOBtZ0lHfG02/zm+rftjhQ/aZ7\nvEt1MStGL/NLZc+kxTbq2Nzz2ztU9RP01JBpLsWa5nt5nTziJrEtVV8yVkV+7JRe7x3X88T1etW+\n2SLIkPfbvF5/R4u5J5uVaaSlJiT9t/QnSnve3+LHxHfrSbBJBwS+reh3HM85jX/yg2J/KQflqw1L\n9gS2GFzSF8b+ooyj/e2LEVqPvtPegG9Wc3HJAtLeM+uGWgaRLTTTnAI41H/vBN78XlhYDfrEiDKf\niH1Bz0gk6K2hSxtM4fPBo9E1IkmNTkQ4QLi+XvH45QEfPn4EqE2+UNbL8tUKU4lJ1nGwf2F+e982\nGG7i1/LTffnDLYSkCV96S9Q0f5muKhVDyh3hHgy56NyZSd0HaQWQXWkA6K2h9xNff/1NBK3s1DTB\njjs1s0CYAgISPDEHQp+JwYEZ6M9OQwUOFXz1LpZAUr+ciDlSXeAsACASvQQTOyUZ293ReAskRv7U\nzzsL3e048PT0hG/fvsql6RpcEwXfEm0WZOaWj95a3USHKwhXrn4KIJ8oiUaq1gMAxAeIxsWsNmat\nEQiHK300gO3oOOcgOSvNbUREfXGk2W4mpnAqxJySMc5m8J2XOLQflOTILp9yJbwA0ufC2BGRX1x3\nC5Bl4BAvGssgPy4YXDz9C/udGNkoZp4L37OzEktNQ1aLYqZA+PvF3AAAIABJREFUp7Dq4eHBc96u\nAmuxLrkTYbA8Onp1zq9oHIHOuW8MSP7+OJ4bAONtdZZ7GUrbmh0jBXXj99w1XaBd3o6xGFj7k/gP\nVyPT/LbTNZGHRLL4bMb0Xmls92NYMGHvANWyorfqxBV9lok1fl55fUsmrNRdTaZjl2DSvgPSrqQG\nSpe5HxVIGnAsf5tsc8+Bkvjv5bymU1PmxK/m9C29bY5IdAJFZw2QNt3pE3kJyIYEG4/QxsqRtZ+r\nxcGotVM75bNcsl1bPbeSBfu8ueMqi9XiiM9zsNIU5UI/9GfEkYgXt49NHGmsGw3wGnThyqGtwS+3\nJ5TpMR1vlqXZu6cAfGLCl8+fpR6SdtIih/yiVOtdMZEHiOOod/UEvWQL5UaPnf6JDpDJmARVRiqO\nFX5D6FeVJwuTLWUM61JtSsUW8TuUORfpGHWNtq8vL+iaKsV2kq9s4I/yo7y1iBlWkMIxbZ/qDTIZ\n1ud29VR9ZYWQHOj6/HfRuqgDwN1A77IdVYmgWd9WX6b+vvNfKvYjyOaZUzH047tH/Onnn3E5Lnph\nsgV/CUwdDYff/+E6y41TpVXsiH05+kwg2umSrJdc5zM0LRrA6G6H43iK35Jt2/gpv59nBxG7mDhN\n2qc0KhFgx48XWCqOMyvOq/dhRqxjgcExLpjqMmyBgBvHPubZNkr/RvrLdM9YpCN8H31uwU/DB0i0\n48b8mRm0fb8R+YkB6V/2oeKzFY+nJjDiDIMfOR5gRTDxsO0R3xn+eH159WcjLRVXgEZgOuJWQpa3\nnb8hf0uMp2Iyxw6QzUaOhBZzJNJKDFy7LvQFjNRIfPGYeYOIks9Jhru02nriLvWjB1kqPlN6p/DR\nxmi16LkqrstpBHqnVHjl94GV9n7TLUxsMkKYxyWNf6mv9sHGEDTLUMPeF/B2McZC6uhhpg9cF2UD\neFsquNSmPAwA+Pbtm+6Mf0Dnc+D3eg9pqSO2l+SAOS1EOu9M59GIDUZ8W9uILXsdZVz0y+FTDtbd\nLdFseRtSuf9dbS7HuRP8gThfjHeGgSvfoj2KvLRTYKw05E1+M59HJ2YZ3Onoic+LvzhJ3NjMZp/b\nuJHSupLprLNW/Q/2hMKG1GAHBZfJKSUC0EZkcdI7VuIpI8cXGG6lsctO9Zy94/37D/jw/v00v1tr\n02fyL4+9VTzgzYhfmMi+xXZOdX5H+cMthFhx8x0Y008FI4AoiySzDFB3URCleQLQ/JEabYwXF08T\n2NoB491xwd/+8hf8b//H/y4XQi/oI6UDZfCGEOZADjH0qN4AfjWvdG0nGgP7uQIywoGVAjZ6zTJP\n5E7v1L9XArr7rjogK2M4AXoiUO+u8D9//oznb9901dOCu5ZTOx5vlp6hTPqqSFP79pzRQWVi6eWx\nuz57O20ofcNJpqClzryDnyhfLG5IJrXBejidBXxKezng1gOfAmXWo6HcSts1pUxVzsxjB1zl2wok\nbUtpBxi70uMCSw/jVUGV99Po8N5FGZ0XGKqD5I4F4IE/KIB+eXkZF34HVk7yq6gzgt2GbMh2xXZ2\nxfq8T6Y3Snux74DoIgbSYkkrbXM4ar2jKezxgrJha3hTH5DnRwSZ31tWvACgJybYTzFUmYhtx7pW\nIrmas6m+0oed8b1nlHnBZ2aWi+A3+gOMacel94NsXmj7hfYVkF+P9VgoAYDX19c3OQMr4JT0RLGX\n9j3CgtrKJjBrqoFQt1nF1f06q8vzRlv7/g99PhakBj/1EnKEY+iLRdQqc4MG0fFycmyc5LtlF3eO\nYOI52O8yCx319wSkrt63HW6jptim0xFWOv1+kQ50TTMiF8gLSqKuulLb/vLTT7JAaZLEmBYqqyMz\naBlYw+iKshP1swcaigzZ78NaY5KHnY1Kdtpksrw/cXShh9+qF3b4pr7Te8dvv/2m97zA7dGEQX6U\nH+U7CoW5s9I7Oz0XP6vPzu+u38+EwBdM3jLXdjTdKivfIQbVVs/f6+Pqu4pDqTXw2dEuF3z+8hmX\nhwe8vLzAg/AU0hSyeS6A6y79dY1tLDhkvNCNTYoNWstufLUXGePIVqsz2K2qpynpWlqMm2zBMvBn\nC+pG69Dhs56ze9EALDcyDNqzvo2nOmOt9vnJABV9T0R+PwbzoHW4CANn9/N0DLObJ36SVfGD4Xxr\nT3DFqCOmHt5hiDoXvJ42zxNpO7F0Y2PzPChJoqW/zDhKX+35Sf6CfbrYmNlA6COvr6+IQfRKo48j\nZt3jixbhBPUWd7NJX6bX6ceACzufCSSbneJiiTRdbHzw9SM/WHlI+od8r/og8DH1odr8MGXe4jMR\nEVgOMGcaMeMnw01d26i+wtSXWM9ManreSr0zsi8Qys5W7D5zLtLiGdM7N/DyskR1QrZxdraJtdz1\n73jE5l5fX2GxhB7k8d6JkHu+yjL+EusxkM/z4hmAOftDkA97pmaQsZ8m42J3si+zwg4mOyjjU31C\nf7bwd8WLutCcn7N2cztjXipf9H3Z/BFp0wV1MwxKe4yjjKk7YgnUhm9i/BvPcO5+8NmHvvKv/OdO\nym7LIGsXA0ZI75C3Ypurh3yM+uPPQU9sM8bRtU0A3BkPxwUPjw/48tNPeHz3bugxAYMeAxEO98QT\nxixDkQZAbcUGK74RDr65/KEWQlLnyQR4DBt3FUo3XjY55wuhU73QvMxR8UADIwoYRNHJMsr1PPH4\n8IBf/voLiJoqxEja2K1qghGm23iuGKaxm5xgx+woCNMqvdOqLq+vKKFJUYVZuFN0/5UAQHzWnIHV\n5/fqdiOjfP2P//gP/Pf//E+ZVAxY7tuoGOwCajoGesiKNx9fXQHg1i4gYt8lVGkal3sLMJPdXpYv\nMoxlBEPBANdddBNwSPUM1WGgXSrSXV7FsNlGshHwGkDRnrter+My4tB2Sndkf/NIaQXOF37vxmwJ\n8jEbYwCgO5cL178N3CejCTi4r3cITXU7PeOZ+NTX337z/tnliLW+M8hOBOLyc4w7kZ3myTTE+VgB\nqjtTxXF4S2lviJxNugIzv1dBiCiH/hxnILwat1pXJ8jiJmbdMe18ukG7f3anj6tCarDlDxuu4igU\nHVG/W7UlC1ELfrK183YrTkRoLKezWhM5Mlty3Hm3zjHvKNh16evrKwikp8PO7Sm/e+201iRnbpl3\nTBTNTFpgsnejTXJZ53LCMdoI6wWv50Z0/G1e50tjg51zzDjsXB1vIOuyVbtxA4XpS4TqzWmp8zuV\nk30Rk5lhqzOreRjLbu7snrES672+vgJE3gdQXmRhyElE9I7zPPH+/fup7sm5ZvZdgvY9I3ygINvA\n96BxjEV8d0V/rnvNH8J8miTRXnR/+FJw4BucYqOnfr5zBMfvWdf9429/G31R+ey8dgZ+lB/lLcXu\nfgIqBr4tm/fKzkZOQcBY7/8kMZ70b1nET3MvNPu98+heQMxg66XJBgcQ4ePnz3j/8SOen59VR+nm\nB/Siy+3vOSAtbQd4srKRhb7l/V5uTiuuwQhKxLGbeGTBfUEdzfxuVoxrpxYp4w3S7I32HKGBr/qF\n8S7Hphe0k9tNJQXWmNXNLBtk4oYloUM72UT+vc+7gK22Uzda1Pli/6o9iQGo6JPUMVphspWvtPKr\n4o74YUtnWXA8lvwlcozu7U2cyMVltfdp/pDZbn3m+fkZry8vOM8nHHQs8Q2XMUp8BcwpE7nc+DAR\nP+4xDYcnFyXQMeo1wsJjhc6pGmCaLzufCaVJozJhpoW+nHyO4EdGHsS0Yq4PvK+38WPqE/OS76mQ\nxbOGL2Iof+dD1jmwqXbbtG1g3mH+qQ8I2L/So+0w4Cm2VvZq9bd8NnjeWVIjXkg3Eimei+nRbmL+\nSpu1FeiOPpF9zswSsyl0x3bB2e+2zV5W504PmL9SdZbJaPrc+GjP62ereTF0B/KpqtpP7DflWZXU\nGGpwtQ4Z1KZxPwApbhO8UjAP2uVeaKu8zsOo0wcBMT7WfaFlfafm9LvSWjXUFi/B2DRFXRAlm9Cy\nfGkqMEbeEGr9GfXC65nmnyrlYR4HzmhHw7VLHPLzT1/w+PSEdjTJqBOzIyktZW3FeTzTNrcfv898\nyjHriEPBDNpqk7n8wRZCwg72Re4627HuA5wC4Jl5zrAgT/6E1nPtIxegDwAR2nGAzo5ffvkLTu54\n1BRbAKb7G5Khu2uQXIUoIRJIcsW3SctkZQVkpwkZAGtN52XPrNq4F4ypfa7PE807nVfv7d4fdQD/\n8fO/gbijQ3bd2EWEsnAxAk5i6FhnW1TqQFzgSH3UfL0gDfzQfEwxyU8oLpPJKVAQtDCAtR6/H0SP\nh5shI5J+gmg4tFaHq9UyVkSak9CeDjKliwY7cGI8NC0lR6DjDunmO4hX6dhuAX0GT4GdprTm4Oh4\n3+Z7kn8OAc/oAK36Un532YhjYuBbFx7+9a9/ySXSx4F2DF6tAqUrUC/BN30OczB/VaKTZenVUO6Z\nmEqxqA2YUpqt5vRbwCSXv3eBvjskpWfT3F48Z/SuPquGsI4n7vRp1YalEZP3M732XJ3zb3Yoyt9U\n/75Bb+2j78gMn3VAcjSX+Vf1SfzO56Cl74PIjF34F4Mp9wB8mgNaXxqf1pIsjqtW53mZnHjVXylN\nRfi89jXKgfMr6Jj4TOVHLNYGs9gGyxs+FsJnuTPZYchGBe+T7hyy9HAHxim+e4VNGLVJczcE/C9y\nd2+AYe1vbSPuqqTSL+YOppFWpVOXxTiIXL17926p642P01xnRqfUuLd9ogc+jgUlGszYOkbB+iGB\n5qBddrxgHguCKP2o+vLe3F/Z0fr5PBZj8wYzgxrwP/78P9AOwvXsjgH4vsj8KD/Km0rV5TXl1A6n\nVn2d7LkhHjabTkWHhUXKDRau7a3ovvXMLXwNJWUXmHG4SfN3q79jsRN7ZzdL2vHh42d8/vQZf/3z\nn+Uya0T8u+InILizphsegZ5IyzgNrTQEjDgF0GvnMP2JqDejLU5PLPov/TmDfjWiRAqiXRp0jHeH\nbRAaop5tTXfSsvVHfR9N82Fo6qJ5ydOOdAbs4lXiNnwCEpzSi6/h/k5gqtmw2e6MMYyvGI0gpJMg\nsY2db2S1Or7DwA25bfXDNABrPsa9+nsYh5TuFtC7q9TPK5fFW7sWB0l2UoWIWVIWvb6+4nq9Jlub\nfH9mERCbh2bflRBrr7s+eZvPFHnk/SeC7TqaaPDehncx+zvTOwVXrYq1fcvmp3ruuxH+zhjjMY3u\n0bTyW2b8S2snbFGPv0vBbzLfexWDKLT/7tIX/vobyqAlsLrM9boZdTw2j1scVyb2u/CeX561j/Ax\nYj1NtOp/na+3+kXAlDkEPDCy1hjq7k6H9dF8T+4dHFJFDd8ScxpCLTHeZPfX1c1ufuoOw6efcHqg\nZ6UjbvktRqvx1nAzfIFCsYco/PUEDyX3cehxy4ox2inVaD+PShvsfq15Pq70j38XfNX7Zfgzq9KI\ngBQf84mpqlCwhMjQZjMy2ca0KAtcNLFuUGySCu/p6QnvP34cpNV+OiYYJcclMi/tp9jDPnod5MRS\n+o9pnDfiRFz31vK2m3P/P1ZugTRefE+GJ2ktmCvnYGU4epfA72s/cTkO/PrPf8lOypBn/R6d8d+u\nWHIQM9BGE2imtda1MnwJkNa2KP4+T+Bb/Vn1697zb91xXBXjQbLrhwB8+fIFrR04NIXJpR35iJpf\nvG2TI+cJND6s0pdYWpRhyHsCw5I+JMuNrCrTlLe2xGYSsyf5AyTo7rlpdyvig89nALGr76291mgp\nN113967ksvLGnrdn/HK8RbsJMOg/d9B4cQEXxk6Grn26Ocf1OUsDVsuoZ/2+57tdzSWl5eXlxZXu\nqjBz1idJZvYA+FaxS9eMrmNzsXmku47drPtmgLMPjt7QSRugBCy0yh39Vuu9RVvt561n7rUT/9X3\n3qK/7untW2UFOt76njwf3lvI2QpUL+UEeRH85fUFgAHeDI5u9XXJL+Q7aNIcXOgEK/GeEmbZYbXq\nW6Ut6pWYKm9q48b8SPUlfkvbNf/2SofGOqwvrp8WpeodK/WYtdG0otfqyfNi/VycoUudvKJJ5YwU\nPKV+A3j37l2aR6t5GinoU3dvy3+k0xaiVjxjf3aNjW6dDIzzIN4rE+1nbfHenKhlp6vrsf/zPMHn\nib/8+c962HksVq5o/1F+lLeWWYv8jjo2uKLa1WnGaMDie+peFd8ccsMmV52WizmBKwLuNj/XZnrx\naLLYQQAdB9Aanj68x8fPn3SDFmmwSE5MDp26DoBtsRl4r6uR8XPFuvKPJY0qjTvXLPDhbWzGYWc7\n43cr+m+9V9tb+Q7QRRAL1jM03Y/y2/pSTyPXEHqko/r5kW/xHsMVP7LdTF/IpjP9F/2k1fs+fiT3\nv51gkQ2VpbMElQFZ8Ogs+/ROBhgEDqdrlvY32GGGyoDS1sL8FfveikyNeg6S1CqN84YV2fwSsM/V\n7pzTu8SawIjOQSZZA6+4OSPfXCpPha+z6219JSLHg70sUNZnq8/xFr9pNRd28v892MKfiX7Apqxk\nYarnXjulrjyv1+O27SfpZhVmicno+8SzHPRFHVTo2M3PpPtI/XySP5x+a1//rWiN/ZFgbDnlbjEM\nPUF/fXlFO0g0rIv5kMtWYgMrv2Dy26B386m8rvi9xMN3dO3Kt1vZ8uX7b7RXK7mv/lP9+RZf02JD\nUWK8fQK2Uq2v3OxneXU3vaQZHrIc6Mt1zv4usyxKT2nkFnNs5sFc1/T8Qu+PJmZfbW5DY6dvwEMW\nC/346RM+ffoEW8zmgj+cG1u6WccG+bO0qS2P2U7fzrbgfj+s/KFOhHQeFzhfdEf65XIZx5P0Ei07\nEhhFzhh4IjPr7Fe9nwCArjBaMOM4DqmLRpCbG+FshE4NX3/9Ffz6itfHRxwkF1pbW5Y2BzSvBPou\nrH6dT5CUPpMBwda8rpVDb059B9LufaFbVq/P8/QVcBcq3Ym0WkU1A+DPNQIvYjtE86JL/DmMkDgE\n9k48abMT8qgoW2vg1vDlyxcZKx3rE6cYtcYgauCmO3pa3j1rd4gwn4DuWmstHJ/rXeoMbRIdsOOO\nTgOzRWD0IlcaltVOAdAlOS/i+BgIONIx8e6XWeZ2zIWVvw/JX8i6Espy30Dv7DlyXIY9oCb1Xa9x\n15b2LSwiVIdFFmNsVxOl8TPZWAUIzZnwiwfNGADA0bKzEeSFO3CSpRkw3q8Dqi5XbYwRn/LsEeSn\ntWMJ7ImaXuJMoA4wxTEau5BfXl7GVT2a4KUdonMsNVgze0gAnXGuhHtPivJfGXzjw+VySd9flQeW\nHoshO8tTHdpFCzR2jPtCKu9isQu44+p/Av/BYPplgWFuCI/DxYLa5hkUiejkbBQr4Nsa9VC4kdxR\nUFI/MI9d5pJNcJwaulBDP2hy/AB4GjZmzZMM0UvxUnKjL7Z3HIekJzzDDrnAO+8z5j41yIKpPQNg\nOAeBF1Mu4+D4OKjQe2jk1TxWE28riLfEwTjRzxOvzy9oB1QntrRDqp4YdBsTdghGWTRbGaGgXZie\n9XuUEdnVCdVHBix7AasHhdOOAZSbjJ3MKVUYYVyedyLn845z8Qj0Rj4B884nKM+pdYxj2eJ12y4h\n3zXZCITBq3DrAw4PKGTwdmrAIMmV8Yog9aEDJCrfLtvLNnLQOWRQfl65B4eAZWOBt3GkBQfBDSr3\njUAkOz8vaLheXxMeMQIlmBIYyaK7Giy1wXyqop8n0NSOWV84OH4uNz29OxygjF+MrzKnZ0fZ+UqU\n9ZditqQnMBzAFeZyDKO5mw3vaWNJd6xoZ737qJPquBP429/+pjQI5gKpbC3sxo/yo7ylVA13z97u\nSn2vBo1u0uDPhoBWncvbd25/phQA5svY3xQWZtj4UP8eH6ni2NJS+xgftbSBRISHhwf827//Ox4f\nH3E9T9XFHZ2772YkyjrE2lj3jwfudx6IThay82JxxTCppojHaB6Le+NY64mnNGO790oOzIw0Wb4w\n7YsNMz9iWqqBpViHXMecNmNGOW1NpLvyP9ri8dygyTEbd4UkA29GPB3pmNoGb3lvm7D85D3q5bNd\n/fd5d2/FkWZXB89p6vfsK7DjCGFv3pxnPioAfPv6Fc/Pz4o5Dcfps5of03wr1n7H+y4Y4362Kr87\nn2nFzz6mt8cs4l2MGMOXnm/60tiIuFjIohGobyW1dvWb/Ds27InAs4FjW6nX+lb/Tr8HP2E1h4VW\nxVELneLLV6SdHhBTUqg1lfVAN4CUvloC9EDXga0+kPcx0GyLYIbXPL4QaIvv1vq8bwH/r/ruvSHr\n2uij/oUhuaHO0m4tcT4fGr0lBl5fXtAaefpd0xFxM2usc9gAmnyoW/p698w9HR/br7/b89Ve7FLs\n1hSbS37p+Kz6VfXhrh/j+6wbhf4GPzcW/Y+WY4ipf5hpEb0z7p5y3cQSJ6q0Vbqni9inHkWWhLnZ\nGZ08d30BEvY8fON3LmvZZA6LMkaf0YxZJuLvNv6reTUvFo6+Xq9XPL1/j/fv3+O4XLw/g7/QabiW\nV3a8Ffk+Fjqd3w7T3oZZh2y+6XEAf7CFECs2wCsAgBC4Nec6CmwSSB6BHcLhE4PC93GAvHRGb4xv\nv/6KX3/9FU8fPgigUYPQkINIVlelYTWsuyAMSyVLJbgDt9ZuBDkxkJVo03sk/H2pJBn7XYlKsSrK\nWUmPubYzdLVuAZtjkjx+eI/L5eJHcUnH/NrzscBBg/2bL32qYLeqs9x/Mdz1Et8lzbg6yHflxOZr\njckdaemd0Vqus/cO7l0Ctars7Wu/6Ilt0ud+G8MraKx3niwNR6lP6BhgvxrKGhw147PikwGA8zx1\ncW7kN/RTHjR4H2mw3yu4WMnQChz5Z2SAnZweD9Y1wi+//KLOpzNX+zwHh+0ehFvt35tDq7J3jMP3\nIpJbOdwB5em5Ui8W4DzqxZ3eifn0U58nPT10THx/R+MK4JznCRyapq0slnXuEoQtixVm7Ft4FtBA\nNY/nTE/G9HnGp7v6akNv7V9XW3GvTDwZPu1os4xFGgM010M2tgfLguCpOlRS0416V3PMPl+lU6my\nvitS3TzW1V7tZD8GStI7pe1KI4p8vcUhiO2PE3KAXVYrDp75eGUxjPPJNrMFCPw1PlTZr/NrpedI\nHTHwPBdrYQ516/+tf03rWo2fjXXS88xoR0vOXGhppAMkAijO/3hiZ9Aw07rHRhXLWIdSug/OH6zm\nxkrXDJs1nrt1etX5Z4sgmibB+hZ33Fa5sr9bOwRvGsY5Tzw/P+OivT9Id5sHG/Sj/Ci/p1T9+nve\ntXJL1/zeeneO+uqzbVDFHzEnw3AkXO/e7js59ty1bX+7vtAdlBbYpdbQjgNffvoJH99/wN/+/nfQ\nIaluPWe/tjXrIQoL2TNuNp0bq6ljUW3GDleNPs266a2y4npNAM+WXwzBzWJnrM3of8kdZasFjjQY\nBPCInhdPTca7btSLeCDWv+KVf3YHz0S5G3Z8ttkr+Y4n8AHI6ZZNW/G0KzODmm5sWeD9na+xwuo7\n3FWL4R3xu4e/ZPwM0XS8Xq94fX1dxhYmfANsd+N/r2655S/4MxhSZJhtuCVjPhFy3GUK+ob6xU/N\nG8ME8yxOkmzodL4gTZ+0uQUBkwDwOy2mOnb1m99CIV4GDpsl83vd2iPSk1i5PuuLz5PiNyVfqeiT\nqkmqnqinhr2OqWOymGObrFbFoPbSrhA8q8cK46U6I2jX0hrh7MqH88TL8zMOIlxTO2PhOta50us2\nx98yrmudvI8B1jGJJ/Z3/V61yeH3e/hBVPx6IWvnY8Xfh54OPSw+iF974BuoFvdjxX6xLYYEWnSD\nOQG67SiOW/aBIu2RzhV9sdSFLqlZNuRL5DLTNHgBgy+lzL5q6ifgqbbiuMW6uy9ozn4RQ+aW6fmq\nvyxNvs35z1++4PHxEReNnwVPXO/KnNvfFWqL3vo8iL1f1/dfwaV/rIUQsoBlnrRDMGXvp13WFY+9\ntibOew0C2+8CQEeQ2cqKuY0I/w97b9Zk25Kbh33ItavqjPfcZstByhGWHEG9aPgDtl8c9i/g/7T+\ngfWq8JvkgdKLQyQldpNNmnc+Q9VeK+EHDAkgc+06t0k74kac7Lh9du29Vg5IJPABiURe9ysYhE/v\nP+D4gwPbpVwQswCeExOUhXVLqd+a4pWhkoQQA12j5nmcFwSbz3nBTPPyxPRMbX/lvKmCaSiJ8xGt\nABGhaQQl4XK5x3a54On65GmORi56dkEy2ra5rUKs4e7uMqUxiY4VIokWV0wxKfwVPUwArUCB9WZF\nO5uGvGGxjT4x670fgWekQRGqJ5tQjSiNcaWg6jhWBlWMPlrNOZCBPjeaHJb2r22CRIAvEbC53RXA\n/1zAPD9nn1drUY5wE0m0T+/d7zKxjdfsxNT6TwT7ij4VRETemIwVOlmXdY6Y/ajxrVLf9+PJ0GP3\nemnYiqpn/bgFpuy9HvkoyjsexvBzwKrWb7Tatg0HFNxhAF9R3qO92i/mcolzqD+naIuGU9YZde6q\nUTPJhAVtichvW10bMuOdmd4B7Cz4yuv3HVcz1Hikb+iM69MTNqIRF6NyptZV5/1zwfus3/Iz8f26\naZXougB+lVg1OjAVHkEN1u5zMiSOddxXsiFlFCUAyPJdZFrlG+V3ZRB5Pnaf/ERLDNyI2nPJI4s+\nx02g2K8G0pMc9mw81UeOgQLXwXS19YWI8OrNG6vc073YjTNyN0pY9wt6CkmiXqllKYVCEEd0fq5l\nB/MqmirzsciQwHManmnvnRn1sz7nEHU6NmtWhmgspm+sLUs32fWOMIs0/lK+lL9PqdGQn2NzpPdP\ndP3PKRO++T3qPDN6RYasI1hrOdOVo36Rf89hm/EORpoVlW3cGt68eYOXL1/im2++wf1lE1mpmKQF\nmSdVusQZp8NntLCM0jUsRV631mu4oiHJoDFOAJjly20scaI/B6w+bevoBzZqFm+nGxqkucbVBaV6\nYRw8HzrS7ZyFLZH7P/RaldX1c3wm6pPqAD6jQdf7JJmW6WKbAAAgAElEQVSRAgZWfTxzQEbMGvsx\n4fWJrlZDtjMqTqvrvY7LflvdFxpp29rYFIl9F4KPdMLeK3uOC/1mCDuVz7GZVs8KUWYeaVjwszlQ\n111Y0qHaWcyMgwqGWeDaOM71XMzjGUi5vGO/nciwWFQ0TM8RzYGcgzd5WmtW7F6aFc2mkzx43m6y\n7zBaTc96/yZ5ogMLA5zk+DOqwOi77EuUDYh8OO7uYXEYoPcu2SNoRN4zD9u2+lxiH1c2iL1fU5PX\ne2qf03Xx97OUkmd1xHar/y561Kye7WQsq3Gu5BGzBJNaFg2znUB0cn+G2nKI02zybh2kbGYtUeBD\nGaBv/NmTK7KsTnbHMZ6VKDtQfQA02k26tGk/sFrbedRT+2G98PKZsUG37Ddb/UXOh783amAwLtuG\nr968yfaqZh1YFbOPrP4z3ZafTyMNfLeq+/fHqr+sjRDOzpe6mPySaejiR1588RIze9c2SdwxYScj\nGq0XFNHYFTs6/vZ3v8N//U//iUymPDD1LfaxjqcKtdUu41GURxxTfG71dwRE0UCvxtAkmLCu+9Yi\nXBlY8+/5XVcac9W5jUY4+gHaNmx3F9zd3ePj4ycQj/3LrLTq4jJrxZTKoPdsDI3+xu8iz9jfKwOP\nmdPR2XlAQzBHmlnEl/Gk5e2P77EqCAdDSj9pZk4fcotvYg7ylRPS/rbTIPXunKH0M9D338OQK0iv\nAGTFuwbQ7SLns3JrzkZd+fPoZwtzQjAj6jgkddCKbk4fA96LcZ45I2+VtH4wg+55LS4AYClLcLdQ\n5Bw+rxzc5oB8tu+m8J03CEaqYSzA/3iu/6vxRBnWyJywYSxa56U1v+gxrWEaRk3XU2RLEAcXGWDM\n66qOH7B81bedTRXk28b+TAsCsOabOBsrYJyAAUYkmPOnyh4zXhnQdHmzHK19fw6wGP9XXb3Spyua\nRFmyOn0SIzsHgMwn3XwNWpsw3Dnr2+rEyEZdXmu9d9mkBIB4MiTUvdKfLiuCzJzvrsr0ZOCUhxjw\njYla4lqNdBr6S2V8t37B18BISQhA5aFJOJMTr9+8Abbm9yIxyyYCB96ZxnGCpYCRUm2MLOMXffr0\nrpDcLvmc35In1u8oS0bLWc+v6oo07T3jmvp8Te048Rcz0Dvef/gg9amO6keXOwicLl/Kl/L7lXNe\nNmez8OLZmjnTBfG3W/J9RBcNQ7xiwOfK52Co9fMZy5zVl//OcmwloxmCP1obp2dlmIyH+zu8fvVq\nuBSYsbXmwTWMeCeX9W3oa1CNJI0yRtPmBozcdKOESxaE/ehoW9ahUu/aQVf1b6Rb7OtkPyrFhlyb\n6ewsoA937sCRsZlFmNtnaVdeO91MUANI4ZTXtcIeAFJwzpiPjKdO5zzylI5z2+Zo5GrvGMYwW8Z1\n3yIKtuKnVYrS52yBVUn4hLONvApYc36kvHYHXQdGOY4D79+/T6eWLN65hZSwPerpgDMjTezzczgz\nfhftl/q7BRGu3lvZOZXeKxsqtnmrCG+OvyPNvX6MteFZD1YO2VDPqv9z2/l5n3NmP2la5a9FqXfm\niTbRbor2RJ0rl3n6V690qzxLQHa35z6fjo+wPFk0enHOL2L8zanv5jUyaonjaI1waAu2ps3eBQ9b\nI64HezfSLMpwq6OmgAYW96pGGXbj5PJzNuvn+AwApIBPo6zLWKLMbMh8afJl9Zv3LfZRec3OaOSx\niF5w20hT383jq7Jl6IY4z59z6rvK3LNxnJYgA1IPXZnKivG/u/X1jLmrDTXb65Xn4tirbbiqeejs\nHBhmAV/MwKvXr/H27Vu8uL8fdCrPx7HGvmbyZFloc1zfZcg9WZkT1zZlpdNz5Ze1EULkubiBNZBd\nE38WvhXE95D/EAEcxDRXviAAv6jsd7/9K/m7dxcWcfHURRd3drfwfVyUs3JC+juOZyXgYl+tPJey\nalnURiei4SReKONYqkPcnlsBWN2KRUShZ+MZfRZF8dW7r/D9j98vgbv9fblc/L4XWf+RF/IcWf2V\nL4bTYs6PGlNEVdDtDjOaDYqj77i0TQS6SHFI3kOMSwDBknu8I/Un8lasM+VY1/756QzAT4t4CiFV\nOHZapAL39HfPFwvWNXUG9IkwveNTXwAAgMnRVfPt1mLtxr5WPrcypdJZyAUgO0HZ3vNnihOVTSpn\nAR95eGm0nfShAuw452frNaYKOitnsiKDsjXQsucoIsKT+pnFvH8e1KrhGuqvbca/JRLpRF6RVZeB\nD+s7Z3PembHp79GhnJ7DALRgdmPljB/tHQOFt05geT/Dxok9459r3Zzv6Ih11vejXhHfwujLtm34\n8PQxvQcHmbMcXNULrNcal7HXOV3J99jWLcOn0mDQEKKzMeaMgdO0Y2fr00D4fhxo2wa0YfylPqiz\nhmsQRRzvYYmxjXco3T3lNTF7LvAlzRc0SrRq5IaD2fvNqXJb9sRj20mudUXibX6/g/HrX/8a1+sV\ntMnJW2pUeBKIstS4HEmHjf6M0zbmHMz66DmsMkx4+IlJ0DDAz/htoo3P41qWO32IYRHoBx9K/rq2\nZwMqrg3j48M32xlPHz9Jys/rFURygnm6WPFL+VL+nuW59bSSwRXDVrz4bP2G9TEcoyssdKPXsaLz\npxb4eNWvWzpIsMnz6058FYt2wHjx4gW+fvdO8PUhMoK7nNiwU+yjM/qPpp4Ne7lFBs4yPfQkYUWz\nQTp38DFHGFdyR7thbU9KO1ke6gkYq5PVScWjLwHNQjbZ58CG2kZqt7jDzvRCtH8qnki2RsEqaTwL\nHVv50mxhogbaMiZa2WVVr642NVbrqH5X7brYRq0n0W+BqT9nvd3CYWn+dQNu2zZ8+vRJorr9rsPc\nRlcMTURLB/bn2kxneDpuop3ZOlbOUqWd2SKxHvu9kd67Fvuw6CPh9tzKH4Ncgby57QXvn9pMvtU6\nz3PElblf8DsTbV1PNGYPWB/OaJRnfTmZY1v+9hMli/k5o8uZz8HbROabW/xd+QFljHUsvqYIEugT\n074yiZ/mOPxEiNRhw59tmjiW2OcVLez5z7HrP09/3rYVbz3v7T1T/xlvDmyfn0ufU1tjXHZRAQc9\nEt+l1iaNkT+fLCYtZ/ruufI59J4KR/74h6lzWg+Bl89lGHBqG57U73OqwXPH0fHu1Wu8fv1asIXL\nvUhvrZMwNk1VcBCd40TyB1YygSaZNtfzvB+hll/WRsiNYoalCJ4d7g4IiqkyRxYCw3hFJxS8lond\nGdzEgfHDd9+JU60ojFvCdfXcCgQw6w7bDaY+o0Vt2/5eRdjGZ/yY04ngWCq+0u9EK3XQjFACQNJP\nmPsCYU3OSsN/sZRQ8iP+0a9/jb/48z9HuzTYuQlTzAbC0uaWVO+OR//qCBs3XTYmYqSr1FWOBwan\nepueHTSQsWVw4HVg0EM2TWbQYfXICex80sCencZY+mjH8GN00b7v7pS7pWhb20QwbWuwH9eVbQrV\nTcMoyM54eLVGq5JeAdlazgC0/JYv8q1AnZk1/73w5r7v2K/X0PfcV6n0lHRLnlj3a5YTnhogzNEt\ncGd8YfOw+v05GXJmPMQ6BmY5dyjol2H+TJaMEyN2yXOt61bfzMCxv30DssNzS1YQzCqXjwX0MGPg\nllRt5UfqnKFVkYVdx/q5stqNlokvdb02mvpXU/iJc2WW67E+Kv1iZlwuF1wfn/D49OSbpERSqRlB\nVY/cAs7R+LvF87dkQGwr9//EmHNDpWxshL7488jztdpMIpJNMbb+mLFX+yl20E1jS/qHkQYl8GbV\nlWdjXxWXCcoZMUe1jBvFyVD4kVn+08CNyeizPtGoMzLhcRx4++4dLpdLkNmjHdfblKMKGSNFBfNs\n7Brt6obs5/CDI7gTZ9gZXe00mI+5/H6me8aYoqOtofL/sq+pLtOrB4gZ3333nTzTJA2oYyd5cTmG\nL+VL+dwy2RaT3FnjpyqjzmT5SrbfkpG3nlmXW/WP62/nscm9RnkNK6pn0iABXasEEGfnZV2zDNMN\njK6ZIOw/JsJBhLZtePv2Le7u73Hdn+SEuJ7ySBJOxbH94ePR7w0pxTmasByHoJ2Ao1tr2MQomt5R\ntVnqnv/Osmy+a5M52ED6xXj9M7EvCHJyOLTb2edFnlD5usDUrKlRsej39Dmcgo94eWUrExH6kWkG\n3+iZNz7OcE/vUU/kto54IrHQpuqPGnRX7aPYZh3HLftr9XsrJwbi3V/27MGKPbeGgxkfPnwIA8ep\nfWS2V/y52ho/p5zZTKkvpUR7eDWPt3CD8z4yTaz9xEuh7Vt2U4Nk/jB5BdsNVX45P/mQS+Ibzt/F\ncaPNa9nruNkAbtpNJgfTdz27sZP8WNR1Jn9icZsrtJee7T0F8iSbMX7mc3w3jY3CBnPXAFsiPF2v\nITV7kSX6H4Ec08W+Vn9OHN+8ef3zMWDF2St5teSB2h/M8+rvqM3liox5nufF+qi/x7Xo7fvk6mdG\n/DBkSTP/4MgKVMdh+muJ5W/M/8pmO6ND4t24CUOGDxbrQ4djdpStCsMgK9ot27fPap9GJ3YfU6Nr\n9EQXYJB6Pd8NRBuOvuP1m9d49epVGgjDguUDx6TFv2xW5o4xeAdD35YHPyNEZS0zbpVf1EYIPcPA\nybmBkWpoBTDOhIszG8vu1krINkgutEu7w3fffANAlRh4WujxXQpt6A+pTyDyUyUuRLWcRbqztut/\np5ZKe/b8DYF6i3nOlGsVEtVwMGXu/SvvRcW96qsByMaQ6FMG3r17p5eIb37kHAqo9UofBW9Gtz76\ngwEW7vTeGFbFeHQGoR4TnmlWnf5Wp4xrg6UYiX4d6Qt7nXWeRFEK6JeemjEQBJpGA0U+jjSPkdh2\nkWvcuPHPZf68S/oPM5wm9ch36rMDg64GQgAMvH6vgsWYnmaMKzupRgS4np5ZAOZbvG16WvrX3Al2\nxse9dxy2uWNECe3Eo6I5Zm02PlZgeVUmI/nkmTyuWQ7a3yuAs6qL1aBxVGprvDxfeSy2n9Yy64km\nMo2MxO63DG+rI86vybRIyzNwMt4b/M5A2izxdkqbAsQ03ZESQE7BBbCqcxREodAFcxH5kDfRVjy6\nwge3eCRGCsUNTfsttbUwBjrv4pjeGq7XK/YpwlDADBU+YFoDdGvPxnwEGTXqvA1KKthL81/GNT13\nUhciTwSgbgZwlG0zEB5t2w00bCA8jJXCuwbc6po/W6PW1uldKws6Ued8qSTbXKtsa+e0tv60IpuA\n4ejw5yRqQMchbVxaw8Edb9+8wcVBNp9uxkt1WeYZwF0ZSSs968OccNz0QGrnjAaVf2xs4QksTIBl\nHaMvdpIkdkWceGY8rN61dWJr99tvvwW7rhty5fcxgL+UL+VzS8UlUW6dYZYV3vicum89e2vtr6Vh\neNdS83G2wWYZU19k30D1r272Jzh8QFkOmYxS/fL266/x4uVLPP7w6Fh6WGtDubooJaCjy4YxmYNk\nNLCRnLdlBojV+c/24NDJeUNEMM1IeaiBVXY/ZENwsgZ712gWdEUz106dewzbfJwIgYOkNH1u+oY6\nAknjGFiD5/xO0KB3I195pHVJ77v6bPNUFUj1Caz4ZvX5lr5hhttG8VkfNpGnUF6V2o/Yx5qpQJ6P\nfRv9WwVSrcY6jyW6wyo+Uis76PVPnz6Fvtb+AJxOmK6x0JnNFNuNZYX/4m/kPLiuZxU4VnFb/T0O\nwbAUGckJadOCaGyqrvggjRn6PsWL6M36wcSzK5k8UmvZzNH0rH+e5puHDB2vTuM+kfTjBVI+fcZu\nKk2E/tkv2XZajTmQyH9f2WOVp7w+jHtNiSj5DEebdfwHQIS9d1yPHZ+envz0sZHCuFLsM3KasuL3\nutbqabF6EibaCTMWznr7li5e2aBVri1t1Bu813Uj2vsfxhTrrb6C1GfXhyeyUHWtmliwgD2oPiVN\nL9VtATK7vWrv+wXrNmaiKWuA2QTWqg+n6K8lLXhod6IgO1UXmp8oynRbG2R9jE58opnfV7Spz7D2\nhda/P1cjlWccSwCqYxmdD7x+/RovXryQfm6a4eZEblL5V9aDjpeBehdMXJ9jWKZXboxAcQI78Pi8\n8ovaCKmlCoMsLMWBHBd2BclWxxDa2ckzMWYocry54/HjJzw+PuLli1cOElfgiDAurT4DWhM4Q2GE\nIqQM8CSG5+qWDb/hnIl+jrF9xuzxd6vToibG97kfiQ4iJaYxCgg3w4DBveOrt2+xEXk0UAOwq5T0\nDQWto3taK8AvHy/CyMF1ny8QrAJlfcxvOOjlmc0VclRONmdrA41gho2BSSbdYLP2Cq1T38v3Zjys\nDIMpEqoYg3YMdGlIhNI7J8dnpNGGuIEx97tu0GSa3hJiw/n2nJMxviPPybolpXWMuLMYJWbJ53x9\nelIazo4B2dk/XwNnxk/t39TvE/C5OlYbnzmThbdKAif2NzLvjN/XFwCv+mrPSx1jXFSe/Zw+rvoM\nyBFuphn4uYEYLyGvqH4xfu83FZkfQO3gb4t4GfUwKj/E+Rg6eWmQQPipYbHeCGneV3SvxmNKG1Xf\nIdnk6Mx4ul5x3fdgEOn/UaGW1YUMtis/bNu2jLqq/Yt9WoHyKqtugXtgbSSm34uhAOSIQKe1jlGM\n23CXll4UOuCA8YCkOmGdQJvnlYG6WjO1f/HzmK81qLRaTKf6Y1P1QReXS2Rj/1B4D2HpuinBwGXb\n8Orly/FekVdncs/WyHaCTVYyoX4etOlYX/hZNgHLOFfGX8aMP18emd4wbGd1trQhNQz6YajrKRIA\n4IbrsePbb7/VjUr2y5e9j7+HrPxSvpRYnltbCQ/oeogY1srKhvo5bT9XVvrg7H35HVjp9zNsmGXr\nibOB4z9cjDHFuDQkBhecy0R4+foVXr95jW+/+8bTHzYiIKTlmXHTmgarcdjz1WkRnyXtY5pjANwC\n3pUXYP9sRHKHgL7XUZyLRAknih4wndgVswTigABsqhurk9E25xeBDrA+sjsaJWCHBi5j+OYS39hw\nsLqZyYMFKj6ZMP6C5VZ6w0T1eN6Up+jldFqXNEAs4OLYzzM9aFjF+GakZZ77GMcvtlnG7M+txbH2\nwykUs5eSzjedKX378OED9n3H3f39TLMiX1bl97WZwl7hqb6v/an256qdW+/GteQ+XB+j/g0LCMwB\nXCs5PHw3gm/ioIjOZXftWxnF9L2nUl5hksp7J3NW9QWRSaGfZzeBdXOkujt5PLPC1FN/aHZo2912\nVc7Yf6u0sPZMTrub73tlHIlW1+tVTocEG0p+4/K3jU7+zzDgzbm0/gHT3Jz13coqZftp8UnJtEr1\n21wXX9M4h5k/A/OGtTVVVi+6hX+S0VppBMpZGXhYXtEvIfQwuskOP5mOUh5gGjLZbaYg87NPz+5+\nHLwMby0HP8zr42R+xk8wA9t5Un+vdq8/fTLHlDuS6Jr7NPp8C0t5P0s9BHhCH6B7iru3b9+iXS6i\n7yEbTykzUqiTrU8cflnouhWfOv8bXUrWgKlokEjdXLlVfnEbIaJ8fN8NAoPIhZsJYGbGcXSkux3K\ngi816/+zLzbYrhJRym/Yu15iyUDvBz5++IBXL1+PRdn7MjollvhdZ84pLhbPWF1ed1hgXJ+hQZ2x\n8LMBI47k2cl9W1nndm4K10UZihMwhZcV41CeQ5kMp1rDUHpfffWV53y1I6VDQUtlFMC8j230xmlz\nHIffgbFdbGdzPBfXkxsSXoflvszRUsk4cIlwDq6sugzaByKwZ1rbkIVsFiIR4JnAb20+FhrBjPw3\n6rD6U7QM0TRu+2eZ9xbjdEM16iIYt3XbexdDpoDJ/IzwhPQrODEXkQezcKUE7G3urR12UDbG80Ev\nr2XUuuA8BqJJeXifaY5M8XpwAmhNMZZ5H7TL/FzX7eqOnpWT42DN6WDWPK9BWaRnI/L5iYZjfTaC\nnsErISIi1o9Z+TqNtJ5ta3K8OrRp63rqc2ib4r8BVMI+lcYjgI+BKXbvSQTHice0nmgYWf8Gedby\nvfbf5TMz4kXVcb3EuUAA6gBmB0vEceEPA/yguM1qIND/SH1KazUASGvPN0SNJqXfq3F7P5D103O8\nmHg70k++BEGdAHbSjMfmTT19BgP43RNjTYqVFLwyCygUOzU6h+Dye8jq9ck104FR5kbZn561sZd3\nnR+J/Hi/PXeL1l7pQMajIwu6G1CXscgp21evXnkqB9PP0jZ7dXG9cahrpDKo83wepVZL1R9jG3Lo\nsabzKWsffjKq0sP6S2RmTia4Y/dQSHHH6COBWf6TdxpAOeBltDcMuANd7pLpjH3f8d1334WgAkuj\nwwBzjjj8Ur6Un1MWazqWyZCvOjE/ffr+2ZoVGW3O3/VpjWQPLU6cnpX4c8XO8T/biEjFdH3Mg6xY\naPytv6uxH4R2eAGTHAUBL168wNt370C/+UsfF5vwPrkk2+oxDMjWAnOQLwSLtkawd1b1xXsr/SmV\ndWtwKheSjmERNggeWaVmMv0QSWL43NJZDZuzJx25tG+R+WF8Vv3NACHYLxGDLzDvcoSBL2KJPCJY\nkHwtrE7cWjsHa5rJsskTavP+dEaS5V3lv9mqZ/aX3FUIce6o3togp3tiHycMRZvCRHmvMQBq6gjP\nuCDjd+Mb7QAJNiQMfuLwABHhxx9/9Oh6my/HWYCnPhHezwBrhRdW5cxmyp2deahi2WQP27MLrBrr\n6YAfwBrLf+ajaoP63XAYvHdmN5kNEoyKiR5hyqfiNlOx67w96y+ll/yj3XvJJgOMd8bDGqQx+u52\nTzI2hr8g0YdOsH0ftmGVAWf6Rdot2yjMesfq6DcZRoYBd5I1F+uJMkrfMfzYd80qQA0EPfHOhzh9\nO+PYu8pmXWvBt2RrOgzf/7Nz+LOsg7Sd7IOxge1jWtCl2v3mg4g8Nstd4ZdK91j83TIeG1PsP5f3\n0txog9lHUGjA536Ts7UGzCnEo54Rmlubs95ZjbmeFpO7zW6dgD/XxTVbUXShsXtGRj1xrGfzYSfy\nDDcM/wSS4K48UcstWwueKYDTXN0/PODtV29hquJQ3ZDwWOTLRVvmUzdxQoDnCa+8lPT1c5jw97CV\nflEbIcwEMnjBarj6JPPYKKI5wkkYQnMvo4E0MsMFgwv2AwcHZiSJpIx1HWBcOuOgAwcYP/3dt/iD\nr/8A7WLgUhwvBs5G/7Oj8AgTu8p1uBJ0lwjoW6kHAOu+bDS4o/NoBT6tRGW8UkQGYm+BzFjkvZgO\nSiqxXWUiEUpHt8tSSY+4IT3vmJ1ITmw0wsOLF7h/8YBPj5/QaMMVIRLDLg1BpqMoTQW0YIAPMLZp\nzHKCRJ1+ALgPo8EwhAm9bjWbsgoC3j+p50z4k0C4yMWIrWwIIKdaEQGed439MtjUh3HZbDUE4jTF\nOUvpbZgAGpe3GuA3mjRNPcYqtY4jpOXRtWd1HSrWXXAVkG/9SI6szoCd7FHlHe91sHEMQbg5nRrD\no8mOBbivcsB5mRgUEB0pumXIxhofB677Lo5T7mBuae1Yuiy/K6CA541mZZ6ccJiLAUo70rkGLfnN\nCWicGdgYdQrY0He78fz5enY+KODlVlFYiMM2Zcm+DSq1KOiVcQpAnIU3ZE46TWtApGlezDgPahh4\nf+r60MtMqwyKqYiICBtLNeMehdx+wwC55yZLnpcYKW9gngNv+hVLGq0Sx2J6LNGEwuYxC5+Lc5V8\nvaEz9uuuOlFBvJ1u7vPm/EWP7HcMJ/8UeeQgUTSR0W51ii7OeXVUVVlGaGjbOEIeecXlRtmkYViS\nxMGzMScvM3uuZOYYmSQyhTvQaBtRSTx4V2T10AsjDaDOCQDGSOdn/UhGkRs9mIqvU2/PCJmNPOMS\nl4fF8IntRD3ufysvr7Clg1Ov7w5EDQ8PDzBjWr5X/QBx1iXconzUQ9PRmUKKr/z5OLRCL3csBF4i\nIk17FmXjkHHW5kp2RHnsJwxD/6wzRBlj9XjaDIAcyCd0S6lJGtwyk3S0x8P8YWYcTzve//AT7u/v\ncSXjH6VXaynq9Uv5Uv6/Kqt1EqPCV+vRPp8Z2wO33W6nYrdYpnbNZNOvbQNxdQfiyvgHTJZnfJhd\nEqUPKFgi4gJpLD1/f3+Pd199he1yEayBoYvOsI45NaIdYM3JBchrHJR0ZehHL3M0+piDnwYu1pNt\nnf0iWrERcj2uu9ekmpyT1o4NprUtPesn0mt/UflJqVgnSZ01txw9potXZcrHD3JaRZvIcNXozXDu\ncfgPEBney2n5HOg3l1rHGJ5yDiMFcsD1Li8xliyV8dkxPK9pdeu3wSKzHcDMeHx8xLHv3n+q60M/\n6Kqb6reAo9jGLV+DzxXbews7zxovVSRb1N4N7SVbTf8WLG2uhdvz6O9pnc+lPLbSIBtqdTxxA8Gx\n7A2/Dk6ctaNzY04I4c5SArheZJCyL+TASa/LDFdYPzOoJCI0fa9imYjj51C5OW1UpHnEqNqVyblu\nQ6v8WucYiiXdkRp5qazv3sX2OfZD/CHMGVfjnDeYJbDF7/lr8+lmG5t/vmUff0abcczpPdhm+yxv\nUl+I0tpYPfe5eqk+lexHnud01YfVeOLaF3dOlnXmL4skOOs7UfxuOPjPxug2urHBWLY356QR0Is0\nPBvfxPcLWTe/O/sA6/Ofw6/jHblv7e7hHq9fv1K8ROjH4TgnvDjNtelK7XiRpaIXbA2b332MWL/v\nmS/ND2HPbvrdse/L8azKL2ojpDqsaxmLbjiCokOhbeFIMkZ061J55pbRNrmUu/eObdvE4aNC83d/\n9Vf4p//sn/kk3+pb6qcdU7yRTgJYp8Vx4VzACRGNPOEh9c+afvnvKhRWYKzukp4t1PE7POIiOqpW\nC3CGqRE4U4r8b/cX3D/c4/HpEQzZIDqO47R/BnhsM0L0dLvZ/0r/8R9AG/n8M5GfKolt2fh9vGjj\naKo6/pMRwsFAqrTxf0PEgr8/u1wGHYaCjgoh56Acl6gzD6dkbLuzpAwbR7LlDpZ4HH2prJkdWJnA\n8v4zj8jdlqPHmPs4Dl+MW1Y0KgBOIq8cHCqPrZyWYNsAACAASURBVCK3ah3NI5Pid2Pj7sP79+nd\npVJnLI3nCnxNuK8MRCu+hjHPv/3ebtwBYCVusAIjx3KtCze+j397ypfFb5EmK0DHKKcnFuVM7tT7\nLmLpoV37TRzE5kIEVtJkAk7FYDKj0voOwFO8pXeh+pvKPDrYym2vTupYaYExmNmj/ZfAtY0LPKvM\nZhJ5b/MtusCTpyc6koEQEDZq2DEcSd1PRuS2j+OwrBSDfsjzc6FssFTdAuS7u850XgLH9n5hoQx8\nad6UWdB61V7V/yKr1ye9VnUYvUyWAiKTBBT7xMrGTJAvcbxtIcPd+RH7yRZaQGBL8QFOdE86JXw3\ngWQu0dDx+fJuI5J88k0cfO1ywcG78ruOMqwHAnxTzOeOFNxiIc/D53EH1BqbRZ4yXZnHK9hHvlId\nbf2bTL5cWJ/JvMOu511nRd7VOYl6qvfcTu0/c8fWBla7Xq/Y9x0PDw+ygYwxR/X9L+VL+YcvvPY+\nIPAeAeE43HizyLIlplYPQXQoRDxa37vZT3ddIm2qxjZXuGTSBV7T2nZ5rk+S4aiMOWCvy/09Xr99\ng4cXL/D48aP3WWRmn8ZfTx1M40IOyhjfymDcJoD2i2P/wqBhdsSwAWNbZzaRBxGUvjGrHdDIWQRA\nup8sdVf1WLQHatDFGW6Xese8c/j/+O6ZLSf9p/WdcfE9nse+spGNftEusnntrBc2K87szB54ZDhL\n7MBhI50Vn9s2cAmz6KXOFrFesC0GO2pXT22AlY1T6dd8PiPNxrPX6xWH251z3dlmmocbbSbDsyjP\nrfpPRLqJUudGipyexs2S4KXSOm401Dafs5mG3LNADZ5+rzgt2h1c6yn1I6wdezfWuXqPedRLGLaG\n9K0wSm0v+pGMp8Pj1W4y/PzZdhOg9zuMta2VZdrEdwKeczyo9XZdG8YbwDiZNKUB93/NTyNftpP5\noSaBUA2E3g8/rZXGomv7cuZjauSb2pFGyZ6zjWh3D+f1VNuL8+6btgs9a8Xsifh3XP8rGVr5/pb/\noMpLC6gtlQIkG4DxBEy1DytfzzZDPe0y+mW6xeFL7EPSA1H2rTZZgl+v0JGIfMOw6V3AyRay2uvc\nEfnh0M7wzAVGmjGW2JbKK7V9nJ/jMqURsFUmeYyHx0nzTe8Tnu5MqTqdCPu+49f/1T/Cm7dvwb3L\niUgAtAOkJ397sbOqruE0TvYNsOoL74nqOjDunh3G1rPfa9rI5/ijYq7PKb+sjRD7NyyKKETccYZj\ncop0ZlBwDp8pilUx0HKwRjeGyby0C/76N78RB1XvaNSwEU1KfVUq6KgLegno7NlQx8oxE6O3Vu1X\n+kwK6EZ/azkDzsyy+UThuJNtJPmzRNg2YUM7OsumKU0wLZy/W9vw5u1X+PHHHz2tUs0Vmk7ZQOtO\ncRB54RGRgyl/h/IzLfKdgeOTXKOsQl6qWRxRYwUkesrDBKL1tdKXmbFtwdGITOtK+1CB93v1fAQG\nK+ezqYhx7FlKB0uKOG3jUDrYXQG77shWylTg7QoirGdmTpHuZjwAojAMIhh44VVDhX61SD9yn3o/\ncLlc0HvH9XpN87UyFoxLadGO8aAYpSozgrKqAD8p+qCU8+be+Vgwqk7jTtjxRO5FY7y+b59d8Sp+\nWoG/ud7yPnN6zwD5LXl8agxA6HQEWiXiVtkZnrMxt8I4hzuEwnxX4BzX0aLPo97xbDPTgMd6R8zT\nrc9FACFKXi5PdUOY1BCJoBEjgszTb9C4jyHJnQY0bhJF1xn96JNBJSks2DfqA9HRtnESJM5DpN/Q\nKRSO1oZnjiPNQQW+a4OeE63ihfFVV54Zq/X7bdtwDX1xQB5AufE8MG+I23f2vTkKJt2KystphuW5\nhWEoRtzoGyFH+Ipvca0n4mc/IGl0cl5qE/1XpTlIPfD69StAL02f0nnafIfx2gkVAkaUYhEc9Qi1\nOzXiGIi8/7YWjIJ1nZPS2PQRmEL6MMo8Wlaw1dzjMR0u8vnoyRkFQC8CnTebzBAS2WdDItlc1UhC\n7h3vf/gR9/f3zjsbA/txCCZgzrmSv5Qv5eeUE/wjZWDU89eL7OQcZRgx2ueUKudv2SmjlxYrfN7f\nWzhvXffauVLHtrKx5Mehk0Y/h51wEPD2q6/w+vVrfHz/HqS64uxugurMqbag2UYrOQ90aKZLwN7B\n6J9jz9L/ce9DPoXSyqXB3o/eMVHSCMac9RFYUlNC9daCb1qbT8GDRy2VR8xZUh1jZ3Mf8bM8rydo\nQTffMew1hphtJ7dTit6O/ZrwkzwwBQSK03XGknF8CVtzsc8US0ZaeFASA24tKV2VRaZxxXbtt4xh\n5vdMn1k2geiIW9lDZjPVtmyFWx8/12aqJQZeRZtoNdPJZgp2SqjstK1I6zoXFuiTaBfml3rmpcku\nh2D8NA8LG+RMWp7ZTbE/HRJAs14Ds90k4/T8F8/aTZPDufRn2XeCZlIxXla5FLG4+nnstFqs+wBP\ncxa5a0UHx5LRXlTZWTew4M8BDYJJD01tt6L5mV5bZX+ZSEEU5ngEtbWFvKv2SMWg8blVv+gkeG31\n7mqMZzrN7LTypeN4GZnO+WRKkKTDpjw+a6MGuiaaBdnk8oZ5yXTVDnUa+Cyt75Gk8K/9RqF/ZtNZ\n/Z7KOM4JqZ3Doy/A8NXFk3/VRrc7BFk70aiBTK/AfImzLc1A8l9vgQZbTPkb2vc2iWSTpx94+eIF\nHj99xHF98vpGgLTeY6X1dGa3p+Iz+9M1+fuYJb22+Rnj56i7eu/+ffzMoR/HceCbb7+dJ/yk/LI2\nQp4B2oNR1wrAHDAUDPGYM/yszXSKQb5E5y5pM6jhP//FX6DvO6htuGyUDOfYt+nYNhZREJwVeRQy\ns0Bgd6AMozsou+KsWgtddscE81jaEYTFZ+OFpPZvPVXjfWzZ6bWiQWqDkYSJ/eSRVwFEbZcL3n71\nFX77m7900Nl7jmqOwsRpkqaZh7ACwDG9CQ1BKmJsRIE62A00tpMNAQf6qY+hYLOwrvRwumEAnSgM\njRfdIYf1mqjGW/fLn9YR0imagxefWx67vbeKQqjCyUB3NGxi//xIGw2lMtLbhJkK4xGdNijtXEvz\nurM2rd48hkz3Oq6PHz9OAGdFQ3NW+vfEYLSgJbF02EVHYlrbGPSqmwt1o6LKhYooBDzOJ7KAnCbI\nnvW54WH1RKPPjMmomGwcdioqKV/Dx6oUK4CPvFD7FelpaDWtZc5gPtUVge2NYgZXMpWqcbvqk73B\nGOnRMOZxZTy4XrC+YkRgRJA1Nk9lCpo2xMwhjdJYVGY4RZrK93mT1tZ5Pw75L5zoiuNyWVboZzSd\nQNkJaK7yItInGuuncjDqEmqL72a9FuurAH3Vbi1kwiqsXftc9W/Vfb2LzGqtaS5vuJE07qvKOnms\n4XEfjPGH8Ax7RCMze/oIe3+zfN+Az3WVZ/Vzle91/hJNg6xtjfD6zWuAGPux43KRVGkoa9rvUwPA\nPWygah/rBko8sSZRY0eub4F/fEywNFNaF400f65HTf/Z34GGtb4t6iRkwxIacJG+Ywct6EcPDlvo\n4TRGTzqzyg8xan744QdcLpfEU03ntjU9ivOlfCn/QCXLiM9/frx37mCJZawxCng661wO8mLZtv0W\ngdHPKLf6VzH0pPMKrqudXMkjkESBN2p4/foNXr5+JUF0zICeWjc75FTuYmEzOkYeDjKTrYYVZkxo\nsr0E2rjc54HniJwZoo3i9oeOrfY36/kooxnE3e9VEEcnOSyzeV/hPqdjxAcn+tpkZi1VD3LhubNi\nz50FW/gJ6TD+iHuJyFO1rbCQRYuP+6BsRmccVbFxpT8R+SXFHN5L4+njxIhRII5nZS9VrBObXq0R\n+/e6i3OrlbrrOGa75fNsJufDRT+G3i3BXDw24Jbr7WQN9j7WXw2YXNktUYZVPD/6wboOkOqNdRsm\nsOfjGoljqN9NeKbm6dF3LMgkYk8AmrK843Nk7HN2E3M+JbuymwCkiHxmrVPlLCsdWGnh4wTcps08\nBJ9LsZvy5q4FtAmN85pizPS0MWY+Vt9Gl5RY16erp7+LxWmbNrB0jbfMPyubJtE6jHGSB4uyyiDj\nYwp/272rJjsIsgFu+N3ai++e2U/Vhpg2QOIzoS4wPNCZyql2rpuBCzul2pe5L8HPFvyaqY7En1Hf\nXca6xdDF4/SFpHozeuhDSFyuzGsbak1PXUBacpmcbGOtB1icpgrPti0GYTffdCdquBDhcrlIwLk+\n4++3NgK4WTZtSW2ebdtkExfiR767u8Nl08vroZliWPwHT4+f8L/923/rQc8WjH7oGnZPasGNPfgb\n9n33MUmauV1OpqiOtdNMCHPsbZ3oLYR233/4gM8tv6iNkHTJ2OI4GTCIFQWMOI8tJyknx28VDhV8\nRgEgb6vDD3IqgZnx4/c/4unTJ7x6+xX248CFcmoh4FwwLBX9Qsn686VflR6maGO1KyHrgiK8v7UN\nACWmTYKaGATJj2iL6LTEG7XK+M6EeH16pSDc2QPGu6/fTQslvhuFpAmNSFf5vTvgkelQwabgtPcO\nixYQvS8nH7ZtS/2tRsLYYBvGAWkSQVPS/QhGAFHivZUDzybVx8w8AalJSHAWDqm+8Lmuhwj8zNls\nUT9V4Ni/kW/iuNLpGR7GRFVKtoPs86WErccpiQaoGZFPMj+r9DiRnnU9r/jGePvp+gRm2Zne7i5D\nCd3azFNaHX1cLJj7HmjX83ykeliAaWqJgR4c3gyEyxPdsvY6fZwLAyY585DvXvD6DESYQRgu5c6y\nJu/GV9qf8d3qt0gHq3+z9m0NhvdiW72PXM7gGUi0AAqszw5wWDeRKb43TvnFd+Y7KmhIUulyiign\nosTbRm8SQeDKnZoBcB2T3Lk8gc5I/zFvmb7S3+5zGOe5M6O1DdergPj4fjQOJmcxIwO/k1LncAXA\n6+cVH9jvvXePz7FNGgT+jDwV025ZX+JvsY/233Ec2LYNRz/QGvl8NzMMiVIO+jM9U3FEjDqltukJ\nt5gaSzbYrZ7Og0eFZiJDTNy7TAzjdpcYRboL7/qaPDq21nAcmjJQjtSlubG5Nn4Cgk4i6cNx7PjV\nr74GG0glddxzdhbFfhJDUnjpPT8Ewn6YTNH1Gvvau5/kiPqCbWPdvmsYfICwntgCQuzeGNl8OFQH\nRX15dKGLR7MC6Ars4zzG0nvHpZ6aJKTLZwGTzWrXU3AiMrvRfbdtYgx0xrfffis8eBy4u7vD0Q9s\nerqYmfPdcF/Kl/L/Wxk6NxZZdieBNeE7lwn6t68tHr+PptbOINGna5uhytzYbu1XfY9ZTzWTyfHR\nYHYEcTJOMq7KzjYYxtBn7u7v8Pbt2wk/x7R/sz00AqqyfYP0vQVbIDg21Z3j/zM00cHLKG1JJTE2\nQ1anHm/ROGO9eY6Y8yZ5dczGugzPJN2t9Xvq4aLv+2fOebJTRkemvsaO0pQoJGOsGIFebRrDFRHv\n1TbyqY1Bg2gjTc9az8vcUGDaaY7CZ9P1vdhxlWbRFh31jc3MFV2iU6wKjdX6C3+57o+8Efvt7wT9\nOfkHHDuGTTPWlEvN/wQAP2Hp6zjQ3ukWbJupH8h2j2OOErhaxxufretshSXP7KL6Tl2rbaM0BRXb\nW5H1prJoEfzkMuUkGNdwrvnUzG6yjb3V8+ZoBdkmjJ36mOnBQf/E9oecko0bjqfziMZGUuCbbPMO\n7CYnpmncy6bzE09cG14n75eMc7/uvs5bA3ovc+dOfsPxw26Jc1PtlspzVkyHtIBbz2yyKv8in/jz\n6lai8DzJC6mt2H6U+VEexo3j+H3pVJKRzB3UCO7pCO8N5/7QbbGfcWyxfybjTfYRxI729jFkKDst\n8qY/1GbpLEHWhsPbRmi6eUCA2w+R5q0132DYtiZ8jnDCI9Bw2y7YmmxAtCa/Xdrmtpd837xOq7f+\nbWMXO1bsovhbnDt73+o32bttG2gTm7eRjDOmB2ytgTrjp59+wv/x7/89/uzP/gyvXr0CuIP7AQal\nq4lcliWMkOestXHlROU1my+3Nw2LuQYXW51VD3vTXDZIP6P8ojZC4iKIhKyDrgCNnPmHEL4FAqz+\nqqgA+MLZVLAxM+7u7rA/PcmO1uXiTtDVxE/CCQiTPBsS6dmVYFn0nTSy4jYjZHDvzv9yGff8VnZU\nzW0wYuqLlWKPv1FQlj13KfUzKnEiuZ70V7/+NZ72HXd3d34k7Ky9YbgMPjDJSjp2uDLG1JGhxOcc\n97VNEzTyfc8K0EbFjJiRL/Y3bmaY88aFemirzlNViM6/RsfQTtpAuZGzPYL9EcE096G+6yB6P9BU\nGThILsXr03DnBDCx4rV6XFGPHi42V+IcrQBjpZ8pBAD47tvvlhuuDUO4LwYjCkZVsJu0wgQOypgZ\nW9hYqPxkYKT2lVNT2ckAhFNIBkZZPiUD44aMQXhy8E4EcBgbVEZvA50LGVXpvaJ7fT6CVTCmzbdY\nRIkyDnRsNNNnOb7F9wbK+FDHCAQci6LtCKwH8CH/eDWcU0CtxgqzP3TuG+HQe3CIgMtGfreL3Udg\nmzkGFqyfIus6CE3r7CBLs8eMQx3f2tq4aJs7NpURH4+O4+mqzx9YSt7Aj5s6bc/meDWvzOxR7vG7\nyn+rTcpo7MiYWY7/2nNKlx7+tbbie7U/q75fLgKDtm3D1jY3qIgI0NR/9kzse5ULA3gyZP8kyC4C\nLttFnf8GSvPGTD/EWb8poDXahN4K+Da6BXAtddgazAZEuxeD5kKymcv7ni6XJxq8d3d3J4B028C6\nQWQGI3Xg4eEB73/6UTaKPyH1sZOOYz9w7Pv6NGsjoOec6nEjQuqrziAZU+SZp6dHb9vb1X5skJQF\nloffXjMIHaOKYh+v1yuO63UC4wdL9JJ9a5FMPisEHJor2sDD0/VJeIkauqaITHqdCJ8+fcLd3R14\nP/Dy5Uv8i3/xL6W/bqyQn/T65ptv8H//p/+EL+VL+X1Kcs5Uuaj/v0b7+kSCCwNLKywAAsawtwzb\n+3cOhWogCkr9P3t0CKLhFFec/waYMzBir9N3CKp/yfFQfELsExnz5XKHd+/eJV11BEwZ+yfOG0Ty\nmldK+7K2W+sYK7brPJwHq3cqLj5Y0ykWnL+yZ+vfRHMfkj0VXlvdC5J4c2FXxb9Xm2MrO7rymr1m\n39vp9RgowTyPMTqQelkTK4xabZHYv9QvFmwTbaRos0Sa+DzFgUBhqdmzCV8R0MQk7xzuMluwQ6TX\n2r5nNWOy/Ih0fHp6Kn1Sm4nofIkb3rMADiw2O5QHOWxyVJk2xjX7bFJzoGLX6frXtp2Wsd6T4m0D\nU19hsqSPCGmzmxi2ATnzaF47eaxLXrD14FiR9XQyZcbQZyXYRlJJtShrTsbXpMFBv4DnDIub/rD/\nmAE277PpCkj62MP1BXu6VI7vSsNOw+Y83UGkab3UBiOtv77HANgyFOg4LBDWMLJtdDDCplFo13kQ\nmqIWUgfpeiUAu6bPlnvoxma60aZiW8PrRwjs8dOCCBuexjuAntRh5y2zc0xmTYF5Czlk//pdrMFG\nIiaYz86zROhvVr/bncHWieuOw/MrrFF5yseqtN973tDxceln7z+NDQh73uwu8eMNe3XbNlAjXLYN\nlzY2EC6Xi9clJydaGuflckG7bNiPA0QN93f3qQ+Xy2U8a/aX/hfnfWw2zXKVdGzEyHatva/yvX7v\n6z7UQxg2jdmPoCzD4+ezYGEA4oMLc2RYyN/dd3z//fd4//69BiUe6Me4lPzm/Y8Ystj+7fs+8BNJ\nAHHFXmkcLWAlBg4ea8uCATzAeOFrPCu/qI0QE0z+mUS4SmoETjnRgZGLj4nQifz5WqrSj0KlgiH9\nEoABWzlC9ON33+P1u3fYNWLQDhJE5Tjl1MZtJTQ3u1aQGejNn1cgdpVpITkNFuMedSjr8sJ4KkbN\nmTB0ZQpb0xTmZmFdlH4SEV69ejU5/jMI7JAjt6OyQZM+hAXZIh3gMYI4AEKvPtqJbfLJ3MpzhY6a\n91AfAKAR72egO/6tY7ONs3m8a3pTqINZHJ/m2AMQ0u1IaUXxxrpNAURlFmky8SgNRV4jnCaepBHh\nbL8FsqcikSJhM6cRGm3J2bRcu6Ws+mDl/fv3DnIo/EY3QL3ZJ6xrw4+t67z5OaIT/q5K63kQLnW5\n4mgE0hQ9HAAnU5mXsjES6Y3Qvnc10NOArhk3DmIDj2oFZz3XNSe/ixveFD+8DftgtPTOaN0R/GpM\nh49hmvsi2+tpEW8uHNXurDmP68ZukF2pnUCfVDePkxtWt+soBdaRdl5vWDNmNGX+EGevOcR7qNtp\n1juYbP2VO3663ONjGy+R76KD2EDW5XLxqI2udQM5WrELkQTMFBpHgFhlQXpGo1pacEw0BesGRIlH\n+iuLpK9yLQLIM31pfZFoRsbj09Xn0C5LPOzUjdW7AmmQOx1ABGrQTc5xKqxRQ9O+A3o/iaZyfLh/\nAFHD6xJpFI0Oixjy/Mg06hVgvjkwN16LEUPVqcIYeeCjAXK5XHC9XvHwcI/OHff398PIAeE//umf\n4j/8X/+n0xKA847ROUaFWaqpI+iO6DSKJyDHvI3vTIfGUxi9d2x3d16XGQaHblDIpt2Bi18m7zW7\nAWLtxei6fd9xaePOFx+H9nUjUvAdT72ZETLoSETouinVSmL+usYOTZXzJ3/yJ3j75it5Nxg6Jnt+\n+5vf4Ev5Un6vwkV/+dfRCUVJz+nTqltJAr8QAiFM85M4fzoDKWAAAU8XNRvlUEbduV9JThvQGS2H\nl2ik16sjKFgm/8gDdwyi+PNRVwy5yeEZ+SZoOHfMicNP5MHXX3+Nr776Ct9//704xSicEJvGO9tz\no+91DBHTBZtqQT9rJ+pE+65eCuw1F5pVGj6HT9eFwv9nW9ufcLssb2ZYX8WRPD9/hvfz94StjQh2\nYE4RK2k+stM//l7rjE6qM5rb++lkh49t0DvZnEWvep2Kn53ffGQzh5gt3YuRZ469W0FG1ofR9nD0\nVuecYahPHz/pehqO8edKtZniWuwqfwg2uPM5PuOBShcGJzvF7twTGRL65Fsyc9NVLpj9b/zMlH0I\nFOpweutnT4+rY7Zn81isH4qzWWtltbEjL5jNZDiiiGHnewbG2Q35r9ra0R6pWQQigU2O+vgXdhOX\n+sLr66I20FHaNvlvNlK1y5lobHoELBqzXDB39XuoPybIzh5lIkuArp349aCf3rFfdzw9PQ3/ilSe\nxhyj8KMsMGd8hzhht8I/CHPhslqDHCM+fU7u2LwBYjfAAut8A6G5jeu2ldqijQj39/dpEz9tAuiG\nzMPDAwAJooo2XrQ/3A7ZNq9D+kS4XDZs7eLvxXfts43J6Gyjtb5YfUexZ0RnjOw99k5htGwbMQOa\nEop7ri/OR+yLrfnaRgu6JtpLVo9kgZs3npMfxQRk+MxqJxDriZUy9/aM27Gj85Nej/zp979C11jv\n+grj6FdwY/z4/gd898N3aBvQ+4H9YE+phdKPtbwYp3LsP08ViiwrIjYTngegG0fDZ8omBl2O/9zy\ni9oIASp4h2+CEFHI3zYEbgTc4mQ4BzP1cxKwUeCymg7KNJdtw1/99rf4w3/y30ztuvCt/Q/CfVLU\nN4BsXOATLGb2cZ6B1DVYDBFVBJinPiofA+nCnFGZ53Z6oWM1KOq4Yv0ROLi/WI/OOaN7Ox0vX76U\niMrSRqyjCpkzmgwhm48rZ4UyHCsVsHGoqxYTJMAM4wgz71UAHPt/LDYT6rHrBDIagdQpZ3Xd398L\nDRUs9M5LGsVLqEeqr+HsqnyaeFN/29om0bkLAy/23d8juXMjOkvj+nC+p/H3irdWBnCde/szOn3j\neH/88celMCeS/JATaEQfkeBlvi29tNGhGq2xrFKz+DhXxhjH5+BrcqwDLs8w4imglZyp/eq9z7mI\n7T+Wy3wNOKZLJqlGX7H3x2kgC1X7NYweuTeh0CdMvitL7/8AqTFHZWw78q7JNK+PazwDAB5OTSt7\niGT3kdqmgPVrAWz3fUROGAiGKnsAdnfpAAL6/raYHx+bKJt0eRi1nELC7i5I7x7dQXxrDdcjH+eP\n/Gn9NuC7H4dsDgATL5OC1tYa2ibpt168eOEOXwPWBrgBAdD2jvN4ANStNWztAtA4ymuROOaoZ2b/\nbMD54eEh/W2gOhon0O+ML+/v7gGQv3N3d+dtOkjVeYhRS53DMWPuuN/G6ZTBf/k+Mrps6Mc4kXKE\nCDbPlRr4Be4AgdMIPRvhlwLyjZeszV1PedQ1X0/lyOWrmnrK9MR1x//+7/4dAMZxfQKjTbLA6t1I\njFHj+KY8Kin2Rs73zuR4Y2CmcEGeOnBYHTbREAWF0ImwJsZ/I7oublbYfEVe33dNccA8nXxMEdxH\nR6e6RsZnP2GDrlGEsrypz3L/0Dy/Dw8PePfuHbbLfdK1xpNEhIuukS/lS/l9ygonuU6zo9inHin4\nPUTTMyeY+lY5ez716db71rT/n1ewHELF1+NvhkkQopy6NeL1Vvvl8soTG7p/wawIgFz3PDy8xP3D\nCxD94Ab8bL0NR5qJXeZhT0nfkLddaEO8SZpZsH4z+/dgoGn0MySFBB+Kd1qUuZLWhTsnPGI9jFHV\nRsPqTBL+go+bLUUhRSyO9AwCTYeTsqnKUY1CgXc529afwyvev8V31VbwsVFDb11pNdpx3cMjHaTJ\n6WgbuZ7DwEf27ArbN2pyOrim+w3PVUwuvJ/9AdVOkucIROuAOWvrufU46DTTLT7DzPjxpx+9g+nd\n2O9QbtpMII2UP5/3+t1qjI6V0nP5M/Fsw8umZ5QZ2X8UGpp40ddLGZN9NuxeN1Cs1KAmQ4J2yk6o\nQl6h4an47LBsACxSZIsNkoM9uPwe6eo2v/pVYr+3wivMc7pQBLvJ7UjPYBDk34Ieqc/2fXjGsBYI\nCd9ZZH2sZ/hLgAYLpB5R9XU++tFx9CO9z51xXK9+t1sjyVJSdWwMRLLv4imGrmv4Ehz/7ty/jM0B\nt5d6l7sbLnnjYAp80pMBDHjd0TYz3SSyYZBprwAAIABJREFUvYEakgy76H0QF93cMD9aZ92Msbq0\nLR2c8jOpiiHH244Too0R5AqVk16t6eXfLLaIZZ2YZFVd4wXXA+oDw9DtBKTN/16eT3YXkFa8822Y\nY/c+VBlgbfAiYDzU78o+tkXjZJz4m2y4Y7wEBizlcOS7MJb4jvU16nKUZ81LZc/2FtYOGNfrFe/f\nv8fj0yMe7u5Edra8KTHXOYrLxGi7YZxabYzgzym0Uv5zIGHPKQaSuf15WNTKL2ojxBSA/91tN9sU\n1GD0YZnb30MhcWA6XxwFKEThNQMuRwQK1Dr++i9/I4KVSPNhr/OLLv9OCiSrTANHJkBrqf005V3r\nmtoeo1AyRYECFSg58mYIHXtr1B0Bj/9CPO7rQnQcDCckhReqEo7NWoSJj7k13N3d4+tf/Qrf/N3f\noQReTu97G57EjhTkWKetI+xCedBMxEcSahyE1Lal+0fiWAdfqWMJpggC0AhA1wwTdgCYjQCPwl8A\nv+rwHb0PwlPfJ0UNdrwtgTAHAz2Bkq2NuxdiHsFqZFsfLLKCwR4xFAHVEtiGPkT6x5VvigwFqK0M\ntDEPADI3hzkZz25tQ+8StWepgKACeNwV0YfgV4UhUSgh+oJGpufK07Yp5Ze5YSivNLf6f6OPlABt\nBOkOqLum5QOD9L24KTDoNZx9foGvAgDvr9NyyIKovDj0zdPaNdkK6N6ObqI40B7Kqtv66GHDw9YG\nD2PT1o8Ry3IJb1vTFDjas3DvgYxbDVDKTkp3wnYGh8tC47NWj9yrkAEI1GFtuTj7EfKi6rredWPi\nOA50lvuXGIxjPwCydAzq9O26znVsh17I17tcSg39nfVy8/3YsV937PouQY4W995x7Aee9MJKPy7L\ncn/K9XpVBzKAg/H49IR/+a/+lWxO0CbgNURHtm3zzYQIuAFgu1z8lEPcWNguF1kTjTxndFODYAsb\nNAZ03bDRNiSyBIPWMOAeVZMAdc9rCmlv13RMAwDHFFnk7ztjRjClckoM8jHf27Z5lBHCv6kEnrFu\nixwZG7ly6m+sY2ZJTTBOQmVjPZ7+M9q2VqJhiTy/cXzv4KxX0YRHW2u4A0pfKY8Nw9h0IA7G0Q+8\n//hBHB12n4aHBAyaMoWNBpKoQ5NpJk8Y8A19AmAXyg+njlU3AjQ0mQTYnWjd5xhQx5lPjUSme7Sr\n69nRD9HxYVPF+AUZlzHLZedN+YWgsm5YLGCMTRYbkxhTPDChYaqwqWJO1MvlDu1yJ5Vq4IJE6A9j\n6Mw4+FK+lM8tk7Nuhb8qhtQ1vaznH5wnK47k/JGWv3ihxfcrnLz622xHq/s09SmybSEXy7JbJxEj\nmV3w6vVrvHz50vXT1hr2gG2yE4M8r3wezRz1G7oesFrsp7y3ml93GPCQf/ZSbSWm5rU6HC+lEw5D\nn8Q7UIhsw9ywlqXMKSca3JZVW14NtLphkbDaNGZKn5N9oDRxDMvjAltW/CqpUQmiWY9wp0t2zG4g\n7NxHkIhu4IAZ1MWh0y5bSmtT/zu6YeqBg2twWx1bdPzWi6bNVrFgGh0l7F6yWIzvzjdBML2zWmGN\nzI5mP1W5HwfuSfDBRpvaroJfow0a58DajDaT2df6hdhgGJuO1iP5O9u8ZlfH9xGGZPQ1+xeMwAti\nQ9nJT5+L2Cde2Gs2FlJUoH2IpSujseKVo0NsJlaODzKo9x6yReQ7G8RmGHjSosOFDmpf6ioXO0bO\n3TflmePQSG8YbopBIor/9T0TvZbKuSu+inbSjvG31H/4vPjc7jsaNexqg/SjA6x90+fM/tmvu9jh\n2ufrvqudJXbccdja0zF3sbWOLpcud8iddqwBMKw+i+OQ349+YD+6B+0dXWyu/dhlXXJI38rj9Hw3\nenTG077jj/7oj/A//k//M+7v7/WOXaBtzeeNSIJY4smFISODzdN1w1plItldhYoBofdHGAC1Exsm\nLZ21tQ0P9OGc8s9OG1eZamldV6cDDY+KXwTp3RU+MF1lPjvjn+RjtXf1e5dQ+p2fHjfeBKY7rqI+\nWJ+0y6fpXIcV2dfC70ajGHzofhq2DchIm/Ecl9N1lcbWt+UmRdDfQ7dug96cM110MntvzjLxXFk9\nZ/ToIpz0u2xbgoHr0xN+ev8e+77j5cMD9l3WqAdvlTGsyvkv58XrC4cdWgtz63Wzny75Oe38ojZC\nDk0DAlQFKZM0rq+WZUUoisi0JjCiD0wBhOdilEVqSwub4tEqmRh/+V/+C/brFS8uFzXY4e+e1dOL\nURwXmW0URMfUZMio5R8VqIHNukFS6+C4V8MYd57YFwGUpDbjGBacZjSRaGdKtlJ1WrOCAt/GUiFd\na4zOIt8YAHB/f49Xr1/ju2+/ResdR6BDdDXEaKMhh7XOAMJMcZiz1oQAgdxZWYs7WANt6iYMkUUC\ntSAsMnitNB5TvQawq3cijc2ZZcC/8jkzFIXleqPD2NKAuKLRqHEBv+awyYZF+g/AzuO+gti/5aZe\nApdhI4TZQf/qvUrz1d9GbyqKg6j5ZckAJLc9NVzu7/Dx40cBQ77GbGMhKweQXBKVjSXlJQMyyDni\nt23zUwSm/D1imfNpk0EHyF0Qca5ZQB7aGEcP9DP+iieJPE0TM+rGmtGOmcHHnr4/kPkk/RZpGC6W\ntn5eg6yLkXUGeow2bOMpip16PoXUWsPHjx+HfATwpCDWTkfYkeq+7wJiO+vmVhcHLTMeddPgCBsX\n8mwfG2F9TxsLx/UqvxH5hgX3fPeApWqy6EAbm439er3KPQuaU9nSO8WId9t4cPDTO+5CrlI7ihvX\nde8ddNkm2o0iQPnhcoevf/0H+O/++/8B9w8PkIjROZUVhTamI9mgaT0NXtFIla0BR3e9YHrXuNFP\n1TAnORGPw8d2Y+7yMCIwM+70pJuXFFk5NkJWDp0aAWTrRuS18lwA4iswGZ0Lsd+bftd46HLHDzTO\nZh2c1yAAUIgsBcTIWtHb+s76weQ3M4Nb0GVmDITxy7Nlc0Rrkys9xIj8+PgRj9dH3G8XDHFS5IHS\njXU8hkXMyLE177TnkS6QeWxKVrwjfgNHJ6n/wo8NR4qo7a7FjSj2vulFQMbdMfplffP+WPvqtGo+\nd4IfPJ0GDcwn/SY3hJ1UlJ+DbhK+fvNW7iKSZNhu+ETdOuImv5Qv5ecVW4NA5u3OQ7aYvTHbGHAc\nY+9x/A23jV7vQ3ln9USvD9S+lGZqq34Ca1l9qni26dy+yGOcToPUEtczhg0XI6zlxNdXEmWLbAfF\ntu35aEuMZmbMZVh81TuzEep70Z6M8j+NcWGzmj40u+kstWhq32gS6HlGy9FOTvcy4DQnuW/9xIKW\nkV6ui2nwBoX6oj3k2SWOsS5Wp9wBBJuA3fFoetxtFIZf9Brr8LkIetFtAkR7Nbcf7TLTXwnn20Di\nWuf1irhlL0WeaS1f4hx5xcZNHdgu0venT48a2GR91oAr3S6E6nhbN473rQQ9bLSI+FMAAnzePYYL\nc0S222dY+HR0TPux+1ox/GCpPDnQIfqbIoaqdImnWbO9Pfpmv7nDXbF/xI+G/58e93QnqQVfeR0W\nlNI7Aigbc68bBFYnM/uGrNkrez+wm50SaL8/PbkNs+9yWhbah+ux+29Wp9kvtkHRd7uDUDchrjv2\n/QpQ0zvVGGCa7COzx+rpjMiH9nvcOIzPxNMNTnOUUwor+4m5bCSq3vHlxY7Zj874+uuv8cd//Md6\nckITNJf1kdZ5a4N3rH6IDRNxsss20kBStULa1oAum15xBUc5bfxsss6CEA3jRn5dyfBoAwkfqQzd\ndLO36s76/oleaLUP5dnpLSJz+/iJkFU7Z+Pw/i10jqWjjnjf5WbVKeE3ANNmUeS52C//PQyuhhmQ\nBmD7hgPG2q29TjgjyIpIl6jX43PhRcEmJ3NI4f/rzDIko8DHDx8mfeFyq8i5+Ix+QC2EcKJrjd6m\nsZzhIYBdJ8yhBOflF7UREks9ekpEiBfWRlBrwJdQjxpnxROBh5UqKCtghW48/O53v8PT9QmXhwc0\ntOTUiYoz1lv/zgsuRFGU/sZ6pZrKDAG8xvrDeLn39Fwn8RI54D2lfC6OD4amcPrAWihCo1oO7ijW\n3x3wYNDbeus6qTXQ1vDm9Rt024ktgK0afzbP3vfcjaFAimAzh1YEsEfgP4vcAOBRyjOdRr3VKKiG\niKQDMzA9hKKPqQg/q8v5TOuLeScH78d+sB+5SwYPsvGyErgW7W2Xmzvv6Py21tIOdnR2p3nVY6bC\nfrNwjcUcS/4+F4MLPNWf6wi5JEP6k83T2Ej0xrHvYI2g3tRFDAVpMAdakQkHc06rAgT5E3qga++6\n77i7XHyjxWgR5YtORKLVpGQ743p98kuOuTOerk9o1LBt4+6ZCLRtfuN6OPYDBuK6jVVlQT8O7Fe9\nlIpGerZ93/Hp4yeP/r/qxXHX6xXHceD69CQXjgG47juu1ysulws+ffzobRiA3vcDx7H75oOD66dr\nAOO7g+WPHz/i7u5O+OeQ0w5kBgOgzk1xdMZ7I+xUQmskEU4OeoUu7bK5YOi9+2XGzoO94+HuDo86\nFrs4OdKVmXF3d5dSYdXTCsyyGdKK3Ij5UKssawFEe1ot6Aa2P9vc+FBW9XsKPAqOCDhkbA8PD7i7\nv4fdMWGnocxQs2Lrd2sNlzAG5yXjb4ZGtYfInqbyNNTlRjBGpIttGBzM2ILeNYPism0O0O3uiUYN\n3U5ibQt5AahsmaMizakNyAXkptOr88fumrCNkFug29vuI72R3y8UwKAZlQByLtcAZKNBF/uj02rE\n1yqjg8I2XlS3g7FdtglLjCrYT9hZ3UKbsAlDwPv3H9CPA701HJ4XtuCM5wjD7I4cRzrKK+ZAGciq\nvBr+tYg7zwGNWbZVoDx9H5yjktpglGpM1JNisU8ZaxadtMBsNkKTi3/4h3+oJw7P4fjn4rEv5Uup\nxTF60ikF/zIP8eTvDVnkp0rLO/bc5xTD7qdPq0ys68f6FOWzrZ+xvofjZyWDslEcsKxUkkz/+L6f\nyCvjCDWdFobI9tYa3r37Gvd3d3h8fJT36gRgpPuL2LUa/mUUo50+NhCqHosdMnnZS/1AsP2KbWy/\npfk2W8n6UmRi1Qm1LwNxWduGbW28wVYHUjvP6phSt9MuzDMwUlzGICbXucj3ZyQnTCO9NBmOy2KQ\nBACP3ieQpi+FR+2DB02ivWbtxH5nfYVpfdhzaazI+tBRI2UuZg6nsk/sJuvDuPDZbKhh19nl20wd\nnz5+FCzRDzA1DaYk9ylEHjs0gHDUnHkn2ccQDH2xrAILegHwu+sSP/YO1lMXJkWu1ye5i+44BKtf\ndzm5ramF4gaD8cS+754e1k467/uReOc4Dr1zhNWm0VMlfPiJn5/ev/d2zS67Xq849t3tpLu7O7z/\n6T2IgOt1BwguO3zT4ei47lfs191TNx1qC/XrPmwoHcuuAWGtNfTjEDs38F9XJyIz/BR3XA9gxra1\nhBWr3SR0AC7bCJw0Ot5tG64aMLe6m8axfrA7hNbSrizh7EOwufDTFOmEf/Z5kbknVJ9J87oxZ/+S\n2NQpWEYd1RH/HYcERj7cP2DbLrjoiV7p0+CZ6IOp64qVpv4PmV4yjKjrpuk2orbtmwP+JHzjfenf\nCvrS2o5+Bjv5lE5va19SUHdrmjI3r7majYXlMmZ507E+DbsHAcsnzEFh3jAFvcV7eKusXfn9Vr4X\n/77yXiAak9yHWOcsz9ccQDDJ4fh+W/MB63xXnYnFWI0mudMLvip2T62n4j4rsvbW7wLCWx9+eo/3\nP/0k9ldn+FUCKs8rXVftxP7GsRCgtvz8/gpjTphER9f77XuvVuUXtRGSGc3kxjimtyE7oFkFmTlq\nTBFXYBX/veXoiKB7CCCdkOPAx59+wqu3X03CIoLTOp6zRRufMQeoOZ9zH7NSMDAZwUQFtdWhGvsV\nNxyeKx2L0zShTlt21KMhMvpdxx7/XdGqFmbg17/+9YgoofGsAd+z970XJ46KCG48gh7q4ApR2cn4\nCMZBjSSzz722Z30hgqQrIhBtE6/Gdj6nEOYIGY88DmNtW0MPjt64HjoBTUkrR/ojIB7PWnqWK3e/\nCyNFfAflbCBo6ldZIJNBgEFfAG5QpHqIZGylHlsT8nqO1raIp7FBso+jx8z4+PEjtruRw9MNAzs2\nS3a57ZYim63EyJa4ydp7x1P4nYhw7eNUwvUqlzbfbWPjYGvNNxniCQZ79nq94tOnTyky5/HxUU7S\n8TilQER4//49jqcriEieOQaQjhsPbuiFyLDDTopQS6nRBOyOy6dX69voZ2PeWY5HRwXeaMjqyg+2\n4XK5XIDexSHeGl69eq0R6ANMX/Xy7AHsIOBcwtzR0dHuLqn+p6erXrYsfLBfP2EjgGjM3aePj2h3\nF3z69Bjk6pAXNr4oN0RBD3AutO6JvnFjZNCrrgndlPXvufBzwzVcIA0WoOsXfx8HDmY8vHzA/d0D\ngIZGmzhstqYGh52UYz8JxwC2TdJeWZRjQwhCQJBRJIa4r3vSy/esx1HGEiRXchi3OaU9wmYTw81k\nK46oz/TUIY0TMl7PZfCsGRo6VW6gRFkFGjqrp+PBRQYV3kT43tsOGxgySzP4t/RZ/twJBohtcKP6\nLcAMdoNlrLWDsdj+CXUFMM+lr1JzxBHAhw8fwgnKsXEwg1GlQUEScX3Y30TkqccM1/vnMJ9Msnlp\n8utgW0+DB631VepFkSvF4GBLFcAuxxvg6Uxs4AS4nDMHiPcLs6y6VTiOlQgfP33Cr/7gD6b0AkQ2\nA2s89KV8KX+/ooIXkqKEiBz8J34Oa+aWXVTtAG8lyDaXn8VQT46Gk+LrDLMdtRjZVFe8A8D6s6po\n+e6Nv5OML+PvzLi7XLDdM959/TVevHyJx8fHccKRMe4EM/tA9dwqunSif6CtzVHaOAdAdhqTxEFn\ng7M0gFCcUJ0kk71E2aaMEfZnc299iMWDAxY0DPA+9cWe+VznRrWvbslm9wuEd+3C2NgZPwmonYx4\noLUm9kjP68T6PHDPYLuhA/S3oEMNP9YxEc7XYBx3+n/FgJEOhpvMBl/zmAgC+9uCHkz3NU0DZJhF\nNn46fvjhBzw9fQKh+x0EVqJellSW26BNsHXtRHayr3ngyWjHMCQtLDN76tf7ywXXp6sHhNlvVgcz\n4+npyb8/jgOPj49+EuGqJ753dWhfr2InXa9XPH78KLihd3z69Mn7bn16enoa896GP+o49hG8u10S\n/toonwC3edj33e1lC6wS7NOV7BlHea6JYn/GoKwGkYWNCO3uDkBzPw4AT9dm6WhbI/T9cB8FDpYT\nxlvGwdfr7vZFaw3HdRc7LthNT/sVdNnw+PgU+G62myKf2lBGCuS8OWW8HDdWrN4oQZgZxONUmP3U\nLQgzvDMcrCYzJQWRPdM7iy+kN9zdP8BSRzE10EYenEVEfn+Cpy0L9kpYPh6sFvnCn6GxEaOGTJr3\nhB2DDKDyfWNO/icGgEbZb2r1s2FeAllGLvhPqcQTS9YWqfzwewbN2Y/5pEPst3WhbflEz/z4+SbE\n6tlqc4RftY+hD247rwNrq7w8w0be5g21dWZPrh/Wf9ksg8Hlt/T1LYwSy6kON/m2H3j/4QM+fPig\nvBGeQV1x5+XWvEXd9Dl9XNH9LGvMrfKL2ggBzhzXY/ECY1fUQOZwsgEGS5IjAOc7SPZ8cubJD/4f\ngfDmzSt89803+NU//sdgZlyiU7QINmu/nmqJEawjup3RNhGenY/JV1JBqbQnv8WUIol2NFiW9Lkj\nLPqzhV1Zk4GU85qZcUCcTCRfoC4NjgYJA36HS35o4RjIAqNDLu/9+ut32Pcd9/f3kkZEn5OTBhlc\nxHpM0FlKH6+/D2c+a8QKLlu6E2LVn+io7V2yp0d6RaBt/4rDPfJA02hewBRHFHJGu6rgAnQdyrOQ\ndNQx/mZmXC1vsa2dhaDx46f7kY6ixrU12hhHR32TMPCo1Zc+E3vUkukgi2xPvEjkoG11VFIc8M0N\nlc7jdINCEAeEBtosysdA5ouQXmejhj//8z/Hw4s7Pab8CAJwVeA8nOdPINgJmbEB0fXkh90XEU9A\nWB88/ZLxiW6iSt7UHAHAzEDvSW5Yzs86H9mYEmVvPCZAcsgEcxDGyIrWGu7v5eLoaMAwMy6XO/R+\naLqaAVb7wXqR8IiUirwW14htNADAsffUtuR4DMpS516MEjEO+n4I4FRj5difvI5jk7a2dsF+PZwv\nPQLwkGueSaO8Iq/bd+kUGLVE84M7EAyeCNjjemjxnoiw7g20u/GhRlR8f8xf1Bkqp22DotDXNsB6\nmEM3AKx/kM2OgyWi/+7uTjZDWxt0J3K42nRjxHYsiAhoDRtk7j1iKMhlkwGS/k0c2L6W1QEjeKe5\nZ8BynZLKZbJNxrDR43y0STot8pNc2zi9Eoz3uCbkfb2ng3hsmgT5GQuB0j0nS8fdAotUeQfjXQN3\ndA7zViB70sMLgMvalwFMfBDBCZLrq3xZHVoif8fdPcyMH77/XurAJqd8Sv8n4M05wifK/mr8tvFQ\nqss/Uz0xN8v+UwxnY+aMNVJdJBt8Rt9qaEVZmvoRjMvID/VzpbVtUF2vV7x99xXaaoMLY85uGXpf\nypfy84qmxVKP0OAxsVUSbjXeRV6TKM+c2gzlnYqXb/ayvqv/Hsyopq5szgcZxyGDvo0v9NV1GWYs\nnzCX1n1agpyoNLC0nADw+tUrvHz5Ej/+8MOwIRFOaRombm1a7/Y5YZJQx2ocfqLcLzJVXdfmeldy\nrsrpqNdWjpUJ6+nnS3CSuZ1reDI8X8fsjpXl3GU+s3QrlxhEonMzdFHm69HWwDpR9wgNS5S01nN0\ni8we+qxmlOi9pzQ40hL0PoixGS7/jfGvaOGfL1u6NJd54YQMdHMMZ/yhFiUBfvohjcHe15Pvhmvt\n1IedEr8LpyLu7u9xf7n4HWQ//fQT/uOf/gfHjYfaN3sI2DIc32jYTLYBYVjYgnmY5WSFpJwSx3zc\nKGH5EhZ4w8zA0RP+YvUFRB7dw/uOkwtujPezCm7fvf82/0Zre+dO74OwyGprY9su2DbLGNCcwWVD\naGwOHSEdcWsNj4+SOve4Hh5gS6QncNjdGNK/+dwbSOsYvDVsJhmbru0m3m75vuHYu465O15lZmzq\nmzqK3YQ27i8Z+Ihmu+m6Tn03Y09GTBVdfVmR5qtiQWdxnXcacqofGf8C4966eC+fTDgBPNacyCOx\nqe3kTNs28NbgYWMtnKQg9f35Eh12R2pDmCvcpZfHsLU20ofb5JvMolh1DP6efUVEtnkyZKLf4Wnr\ngMVjEjcIxmZwGBfKKRSljclVH5/Rnhb2ljGxvR9oP/wCPBlNVQ9FfbbCI/U7RzblDiXnVYLfgbRq\ns363wjq2Ds7e5zLu2v9qh/i0Q2Zv+M1mDDIHVdJEs7m/IrvGyTd2XzSD8enTJ3z69EnSfLIGc4zB\nZQkUT8EYJgj+gnHihyaein26hRVvzceJaFiWX9RGSGO7lIzQ0dF5dsYmRnAwMJzLdoGUC0QTpsRT\nPSJdCGDKAmVrenxOL6JtDQ8vHvD//O5v8N/+838O2ggj37p7oJLxLu2cG/1WprG1Mcl+gbH7gJp+\nluerw02YOWyKmHBf0PpMyUTGPFtU0eEgx5Saf2/HLOUYuDinXdlZz1fMXwQCEeHoB16/eePKtxHh\neuzJmKhGgitQrTOmovHLe80YsN/KWOsJkTh++zsq7AhsnIY2TozpNmdIjaaOBk8UkubM8w0V+9sA\nGrIw7AxfMxZxbY6+qFxJJa2l+xJAdACbXHDce0eXJSMRbE2POVM4sUKzcWB0EWA46L5dLg4sGzU3\nttrWcNkuopBCdNHd/T2gdVwuF//+Xjcx7u/vAZLLni+Xi7bF+uy4APrh4QEXbcsEPwBJh6R0/tf/\n+n8BkabS6h1ta24IRZBm+asHCMm5mI+yrquDNRpBT7opA4xsP9afTc/fMIv8MREVgZ/xcI0qE07O\nGynKhmCSqJ7RH53EIB3ipoHJLzag3Ee6ovE70mcDZ8d+pHUWPzv7UASJ2RA3g4woyylphuT+I2q4\n7rvLHop0BsAkp1EmxRvW7zCAjmUEZAXmcW3OJ/eCo6UAlJgbetq0DvM00dbqbnrPRms54mcBICKf\nOZ/D0lWNjZdYh0T3UNA9w7jgnkEbPAIILtOtWFQ9KDg51DHAII+aIl27sfeR7kQEu0A+GUoQw66O\n1d63yJ9I11ivyU8zIAExjvxIdsQG5f04P9moM5luIHDwwLFwlsS+x7bGXK7BbHSSxU1F0wOGYCrI\njiXzi3ze2ob9EAfGDz/8IOn8jlE3A365r2AmodOmctVkr/0e27B1EHWB6cRKi8594skV9pvHMeqI\n80VE6BrdyJoD+dJmw8E+O38MKJ/qrvgztlONmajPX79+jXdfvZvb1JYGXaYhfSlfys8u7Kt2fGOX\ngQK2fNfMZpjZnkv1LmyC6TerJzyzkmW1fdetoR8mT83N0InGnYcIkdbM6gRVOdgCpqlrMrZBI23i\nNKYoo4pNkvodZPCLFw94+/YtfvfXf+3fgSXdYqdhU2TEdU7XatvUAKYUBGDyqIWN8CKL65wkvajf\nrSItK0apfYuXjR+qW12fkuIKAgBxxLp07cU5ZM/X9jeJZ3bbhcfcRp0J5QezbUDieI53dfkp9kh7\nu2hZ2yciSfsTsR6zpGpWGnmqHiE0SNP6NPD4nig5tkcq5BwwZBsdvXdc3E6SYBZiAm1mv4wT69ZP\nIkn1C6V5tJVaa7jT3zZNHWv2ktt/24ZG8pzp8nu1kywtreluG/vf/u3f4N/8m/8VgKaDLbQV/K0R\n9s/aTBlLrjZ9rBwaAOTrPuJ4JndoMstJcITNCgsKizgl8dgCz5udbXdoRrvpCHdv2sl9K8wMMiwT\n8E4MTIvv+jsYazEHZYS6wZOPoYc6wJL+Kvq/DB2yq4WAtVR2NrcrZLMsBr9628VuAksK5Z9jN8Wx\nJQzLI+V0ysyhQa42NxWDWf2VrgNBBE7/AAAgAElEQVTLwWWQfa5zXEuUR9u2+foynTMQ96zb9Nsh\ngyL9TGzpH2Q6eSH3U91WV7QDrAc2rj5kHIhCOioK8mZsXBi2Xo3Z0uJFlL7C4NY3dyOE5yp9k86r\n+CLZPZhK0o82XoT5tS0Drnyvn9uW7LKJr61LvMY2qbjjf6w/wDbQF3V/hm6fCmWM5vZdsTmeKysZ\nFz+7vRb9P9crPvz0E/Z9x92LlziuclJM9F+1ikY7mSfCb7DpPVtzt42e5dqWH26+tyq/qI0QK713\nMM1Cb3qOh0Ii5UYXCKhEz6DPhWWJCvCUJ/KKCPXjALcNf/Pb36IfB+7a5gy06l9yJHFwXNji4fPF\nUAWOLe4EigMITu8KEgAg0e7gEukK5BQZK6EVBbT31xFN6JfAmq6GhwBg4Oi7ClpvJBkhq5lkAPVC\nNTve+fLFSwd0T3rRNRsdivKNx7InJVXo5oASc/SsPQsMhb26FyTWnZwhQcnn3zTaihq2/5e9d2uS\nLMfRxD7wuEdGZNatb3Op6d6eWduVrUymV43t6mUf9Esl/RtdbM20mh3JTG8709013VWVlffwcwg9\ngAABkPSIzJmXNAuWZYX7cR4SBEngAwmC1OOgKh16ekXAnBMypViZlRl6kXlR4dSCsm9UQA3Ua1z+\nUgqenU5g58F/Pp8kDE7p47O0+Pzn89kAtwIR+75JeKhy2nq+UrCdTv2eBmbc3t4CgG1kKA+2ImF6\nttPW4mLC6vCK8nQ6iRG5OOmTwYJ4Z8mYq4dsiOS+Ls6jRU5jMN6/e4fb2zt8+PBeDJmytftM0mkV\nBdhhTOTTXjF+ogfWXq4QkZz6WM19PsJ3BsLR5rwRB8AtNvf3fHiXSggnDFo3AYiyZjlBXVqCIi23\n/V+BvbQ5zh0PJ1dlMSTkE5OL9dwAmi6PmJdlAggEBpNsDG5prGBCswflmlfbaRe+OzqjYRT7JQOW\nzoP5d2tvkmH+ovlcb5bZakiFhQWWy8UNsDEHwBo7LNJhedo40lNXW/AqQ9vYTDqOIqDt81qMrNIW\nLRTc2xIdE8CE0sZKSUfzA93WlU73mssUhbb6FACla+/gIebfId1Y6xWLvmKTsVq6fUobSroJ5Hms\n5WLr3nFAH8u+7V7eDTROmvsQWF7pxrdv3kAWctqJx5YtLKol3s9kgC+7VRg+e/zbx5I/mTuOx/x9\n1T4/x1BGnZ3npp9TDMFQJk8nOlyN9pmBr3oGbUydtw1ff/21yCBGN0SJbJFIZP6DYvcpPaVlqtU7\n1rQ/SQjrSTmfvE7sUiz+bRmxT3SevNrtFK/PS5JhcLbJQEObAzNJYosoBPhFQbVTzGFNc1eT7K79\nfQGjP2JXt4aiEdkjZbN7J+MmkfZ6QoUBnM5nfPnVVzjagja7hT0v8rRO5RUz2z0jgG42N9uUO6Q8\nbdEJwu6dU3lmXsaweme602SdcwaLslRtY7RwMR3LzsIZmR4jFyIKMAcAMp6lBTh34pBaPTpOCWS2\nDTuahUfttyoL3KeiC/uNJpWxpYcuUv2ljhpq04gHNjfs356dtnA6tZQimzFEFgrK2xTUnqP1QUHD\nRW2TQ07ElxaWtDvE3LTNB7OrnFOaneJgwnbeDCt7ulpmKVPpTPq4EJm9b30GsbUVo3CNTmtqi22l\nn5JW/t+/f4/7+3ucTmfc398DmGNYqfwxNhMHmaSn52f62bBuKXbpea+3gsPyAbfoGrwsR8dMt31G\nPLMjXVQvbwbcPYo0cr+N2GWFl2qymWTujxuThuVzrY2fh/IYCrW4RW7opzgEfzQ5XYqtP8CtSWQb\nO9M9rHmkZ1bOA3yY2VK+zhyt4Jrt1PF2PPXhMdq0Tdzlvv7OLb86k9XWFmXu0H6Vcc3+YXSaVA6i\n9ZG1J2FpcViIm9RmK7v2mk7UpHNZ6UdKzZtSbS1S+6slv8muJThzJ/DMt9XecAYI2e+J5mR3abtN\nX2n0gJR8GXp+fWa/MDjDm6QrvSNFKlsFrKt/qjvtgerxgdzhfV8H66bJFdtMk8h/5Wdeu5msOaY0\ns48EWlRnw/Q5VmvF27dv8fr167iG7tp9zdab1p3svJHmYSSP3xa48GPT57UR4phEgEV40kuQgK6s\nbbNCE7cXqHeYZ7gAV68MmxcBAYft6rUdMga4tEWeJjy3UvDy++/Bx45yvglCMw86qx/iYV7bRVel\nhaMYDF/u9euCtwl2NaKTMPd12eAiPwj7bp8A3wZuHbs0drexv4FwMxCy8cLox9PbtPYLSULf0Re7\nrKZitGgfe1CU2+MXQ06nE7746iu8evXKlIraOurpZvEjC8naRwXQTuwoGCQi7FXARlh0oR4exTxY\ndbEcfQe+OkUphs4evBZ8eWoMmRdYMxJK89gx44EZ5/ONAWZm8SA73dygbFLu6XQCtQ2FU6vr2eks\nJygaaBdvIcmnY+F0OtkxXgA4T+490Q0mbuPumTsp0fuzhpMppxIvQiZEAC5lJUM4KOhmwDqgYF4f\nbnx4Yaz9UPVorhsvfuxzrTifyDZumNnGuIwP4V9phuq5Vnz11Vf47rv3Qh3JXN22ePG7NKkfHxeP\n6T4vKsG8/eIYHjdE7BSX40tQcn43gmSDpTYi1HMnAE0ikAb3VJ6RgN9uiM4BeOgzDa/kQQ11xdlf\nGpXvTCFXFgNfj7Xn3wj9MkVyZfjFAegRdrAL+UDGDwE+XtZTA/66mAE7yeTlmJfZ/rcgS9HH7gy2\nhIWABFLyd82fPS5tFBnApjAPtF4v8wNItr+tNELg9e3d3dDeoTFksBdA2tQPAL0Z1qWFOuK8eC3z\ngAy5O956XpOOM4LnLBXHK2ZELedJ7+Bp1B1Zr6JdiodHgc9VElmVaCkNCHu8AgyyydMyLbu9H3SI\ne1/mpoLoeR/qWM91+LGZjYf+V4Dw/YcPeP/+vfVRtcXBMQmekApnxrB64XJ+JxXo57tfyFnhKa+T\ncptymXofyH4cIHQsNQvB0EF/00yNhpq8FH2duW7Tq+m3X/zsZ3h2PgsCLZ1+NXqBGKrnKT2lj00e\nT89SVRkSHMe6NA0LCMyTy1G52RMTA98yifYFw5zY2mNnD63nNnOXnYYJnKBTJwit29uDTBAMpBfp\npvYTyE7HW73N9lMqPe71C2X++xBCEWQhec6nM375y1/i9u4Ol8slePpbfuoL6HlBjyAnxnUhTGVz\n55NuXMjCJbe7Roj7BsNqodBjfkBwMhp9ZnsA2OsY4lZOJkT57u/S83hcNxPCZkH7uzmHKN0cEHgo\nzlR6clt5oeFoAHdyor1/0+yUQoTztoHKZvaStbeU5hzlpGurx+uaLfFGP9vphNYLZ7dZoG21hTyn\n23RDA+63NgKD3uWGlfxY07YrHeoFpCdWlJfmmODtIx0n6LaXRmg40phQzMhcxa5xnvfBAce9V48D\nN7e3ON3ctI2QCwSLUzsV49shNG6Pspn6ezObKSeNjBDAidkBZF+PxE+/9mN4qdlN1GRB1TUDLTZh\n+Wyj9OURbzORzVXD4hxxw8xusPrQZZPH8mYvN94URMxoskbbRoQAe8mFtbGN404/gwWEN7oespt8\nH6zspmspj3tgtHNyndFOHm0n01HuvTFqQi9/Zj8pN0rZsNGGZ7e3hhutnrlB2Mdysk+UTnMc02Kc\n425xMtz4oTJCHxHWfKVmjyTiSDcA/FhrazqfknStYLAVgbb86trs/kZSJwv4K2NjRUP6rvieJuVs\nFDeglIZOUB9PGjZ/wClX2jGTU1ZPsEltgAFwPhurNurQxnoeZBry51CeldNDBTZNgcoV799/wOs3\nb7A5Rw6VqrqZNOOEH+e1jXNlaMRsIz3yW5QH9g4Wcy3hssekz2sjxKe2MEe2qD6fKJ3BKghXg4Sg\n8RIBgJz5mY/3ybvyW4VMpP2y4/e/+0e8efMWz29uAXdCYKXYgHHjwubCZFDk2NRWbjpGnAW81e3i\n4oIJlQ/zUKQ2MKs7aaOevvrOVtVg0bZHL3dmuaBVFW1luEXKRhNBBK3ji14S3RkO6SvHNxXM/agp\ngdsl37/+9a/x93//9wbWTv6EhDtSXLniuN9tYWXbNvFcKWRHfc/nM056mRmAc9uc0E0H9RRS8H0+\nn3G+ucH52W3Id3OKIN3COOnx5lLAhXAuW3iPqIFHRMNoa/98fyiNCkx1Y2XLoGOT3ePaQrF4IGtj\nxAkPBZpW5ukkp1FSuVqWGQVEJiABBbItVqwJTpYNqTanfPg2Ilm0t5BPLW3bhsLR03Y7nSxOqT1r\np1CUDzpW5KI/oW+juGhlhglkA0vDJR27tP/Lr7/G71s4g1qrXCbXI0T1NtFcIR1uIT4DOfO2aSBt\nAMO+jsb3bLSAyI4q+yPCaswBaKfa3DtNHGpM1Oi5PgP0Xr72zyHPJJlRNgGbYQNq0k5NuolaMlBp\nZfiwRQyYp6EsJvb+MFq1XLAsyKj3mCvX06LGsLbHP1dWArC54QGFN0BmgMjkgJ+riGMoh7DY0via\nnVabAUFfLrNcFvnM3YczJANZbqGA5TSU/NwNSzOSm6EloF1kinqz1iqb/npSojYQpABVx4jwzPWD\n6xc7DUEUtD1l3msDkm7qc4Da4ndvV0EMxeB5Guia9CFhPn/IjI/+XuHRENSFj5Ly5mTg1PW/LhUo\neAUw3SRSnub54OmN9MPkJuqBy37B/f09jn3HUTEshoYygk0VT+UyOJxgU+L8qVhgPpZtTqQTVDP+\nLBdKVJ74E0ru91kIDNZxb4ZmD/ugc9DTYidPk9zQtpohXhlfffklAPHovniaVVaRseMpPaVPTNwc\nnbhbrrrSCrgQuYImRTpC5iKH6dxLjDZ720xxc1E/6Pxi51nq8Lzp5TbOvX5XG8GRYolgZgIAcVZT\nfZLnboAv7rmQpxip/5Y4J3Ir6eHwveE3u4/OsBoDLXSovwPsaLxS3HYq4rSkWNCHZvVOO3KKQfCc\nP43tnadOZ7FX9iafzqcbuZ/A2bCnU/+ebRuVW5srX0PKsjptub/bttklzd5e0X/kMK7puW3DRsWw\nWz/1zQ2OjRs1pZRwwtTLWqDpGXf6QW2Fk2s3ILpRina2jJfTDneLfkXHHNon3hmxOR+BOdBGFE9b\nGGZx48NsHsTNd0DscK+n8sa82usHqp32sX5h7vc1NHrNpnM8p8YrXakIp5bB4NrtJa83NdkJFpL/\nVW4hs9z8sfmwu7ndIg1U4oBJtJ5rNlMvo21qpefWfzQL06v4UXg3ww4zhxP7vTn5WADZCeYzmk15\nt78B1I4yaLB7fLvhbKmEAVe0HoBg6kRjbeUVxzvdQBQhWy2sqbeZ1Nph9FNZPg226gT/rOym3AZv\nV86cWmb9NMNbnPhY2jz083uIArLgp5br85xPZ5xOInNmeJOd0tJahecigzqPuxwzp0+G9Z26UGbn\nSD0V13WltJqIbBNF+8HTIm0RTQ/o2p/ThxP7qlUaxlPPEPN6tagAtviNJJ2jLd9gD+R6lWdjzdE+\ntLzzealrNGZhNPtMv1OzSTGhpY8BBD4GMibz2NprdBqVgZWrsbdK1AjR8dTfVRt4TstM1kSbEKY/\ntV3MjHpUfPjwHu/evsVWCvZjB1RzqOyA460V3lvtN35z0veWp7Is35o/UZ4us03T57URkryafDgb\noAtIZea2bWHxFOgAxkAfKgg6AMgWd9FM9qMeONMZgJyaqEQt5qfMoA0bqDIuYLx+/w5vXv6Ar3/x\nDW65edi3CRhDbPXvgACDvdbg3ZEVnS5W0mUHiJoCUQOnDbR2soQqXNxUNqAFiOe6KFWJ34njwFEP\nbBbOiyRsTJXLzOyINHmPew3VwQZy6yEnPUgXxNrCfbxXQBaS634BAzjqASZCvT+wHxeUUnC5yG+X\nfcdx7LhcdtR6yIVpXFGPisvlHqWSXEjNjB9++AG//jf/GuciJx9ub54JsL85Aw34n86nFltVNx4I\nN8+egdE9mLaTxEQtpKBS4qPqgjGVFp/VeffrwlqFGCntYQACauB1BdEWdNC9eMgBN6S+18U2fdeA\nNnexEBbHbLz3+gETW10wu6PYVkYD0ppKU77ntgvsgQuje9jrmNVTJ9p+DVdQSmnhbGhYRPP0YwOI\ni/FF6wIQLrXXMj348eGlxGsjhSDLoVB03ri+OpELkcWMFy9eNLGj/XTYSQX1ppK7aY4WGohauKB2\nvLzGxVvrzzY3CnWZY8Za1YvqDuSUFZk/bQV00GzKLYWLYG4XpR6NDm4n4doaMJUCVJnvh5xzEkmo\nckkBG2QjRUG19o96jekc2NltJDi6NwVbHoAxYGEqLJJHBMAyFxrsoQi4DRSqUib1PFOgJIvdtRk1\nCoaCx3Wai0TtYsVW5omKhS3TuWZGhOtfjZ+82gTxAD6HqfC/l0aTLTQpbayyV+ci2waEhgbg1q+F\nxINJnQe2bcPlsmtHNPom4KMBQzUgmIuNB8G1cbyaF2STSybfWl8woxmTHdX6vuvjQHQvuUvsepjL\ntlDHkV7lufSp0Hmki7rBDGJdwO6Ggy1eQMmSsagXtW8yMfwIU2dBB6ijISc094vi9QKsj8NnXYb7\nBTsGYyvUvZgd2BcsNAHjwZap2LIh6/SK8ZIItR7g48CHN2+x39+DufVz1cuJrYQom9wCUecLmlNh\nr7vWpq8qMIQcdO0WQ0X6wjaDW59VjqdOZ0atLiQoXezLaCcxdIEy6vbGsyp9KXdjST5d2B1Ock3m\ncpD9LNEK9ssFf/4XfyEhWYqErfQ9D53TTzshT+mfk+oO1Es0FN3P7OatX/giZjt1nz1EFf8BDCqi\nZ5jj2KeeOezBALCLa3UxKs97kGyOy6W2TeY3fGcLgo4edXrxshet7MoVfOzNeBfc4u+040PsqKMe\nOJodUmvF/eUCAmF3jlrHcWDfdxxHDwe177vpSebu9HNiwuWy290Y+77j21//Gj/781+hoF+sXEA4\nn1oopCIYWvtJnaDUwcMwb9P9pWw4nbZ2Ir3bI0SEbWtOboZd+0aFyUPtq1Y+UT/JqRij60OxkQdx\nlGydQRfYY9LtKrODFeHlO078OMvyfHPj1/C7ftc2trss+iKe/DELILUhYzRdRIQbj6qDuue8OleR\n2eiafFhmrV5tLg3rbHacmX3UbEwK3sB5EVjp58rYSrSJ/NoHOWyr/b7iL4BH20v5PeK+ZnE+n1vb\nAD3VW3EYf4gIx76Lrf8xNhMA2jbUdn+iyRFhRXBGmHn5z3Ry5mu3mWDjxS8SmtMe0O/EOHQtSXQ6\nc9vYathRbSHZgJIxtdd+0t1v5FV0nMJoC/c6tnV8ObtJkZEuenJwDnbYqdlWzGj3JtWBf1l2Kn0b\nycZtZW6n6sgW5q/ZTQCwM1+3mxb90TcDrttNvm9meajNzYBDtZ0qQ9XptmEtcJRF9ZBVjrIVs59A\nwNmFyNP7ETy2NRqgcpbN6RiNe6YvGdA7hW1jBl38mH3TeF6IYCsDFC8wt/5WXjheyZhUu8p+df9X\nm65bQr4tPqk9zVAM31+R6tkudu/lyPNcXrF3JK9e0A10+7HbWG0eQU9MNGyg7y/Ggn5WO5S1re3k\n/mPtMmaAFs/9PYZh3DZA5YZdq1AJ6WPG7P6FHadle72idiijv3LNYvDv5zmkdFcCCA3U1YpSd7z+\n8SXev33bnMZlDdicvhoFOopC26H8lkFi81oBR2p7Th5Xlm2+UR2YoePoeLy1/XlthGBkgD/Gyk6Z\nxF2tuFCgwEUWOPp9HmA4UKLHcruisV1orVwFFoBnN8/wxYuv8PKPP+Dbf/VbVDpsUsrgl3d3dxGy\neZAcTRBWGfxegIgMZTNWvIr3g0cH9HEcHRyWnu+oNXjd2vN9Bx9VPKociKANuH9/sbiclw/3suB7\nuaAy43Ls+PDhg/H48uEe9ThwHAcul0szFg7xIm1Gyr7LpgahYj8O7Mchwp0L7i/v2wLdpY3nDmq0\nXfu+20XXpQJUZKPmV3/2Z/if/uN/xLkBN2qrTsVdBJ4XSRRw2KW4DeSoN0Tv4g7GNNlmAHSStryT\nGBYDuHbPc+gxHwc25wf6iQ59I3sg+aRgVBc5Mw2eJ9mDNZTpxoq/ULwrnCj4FUKVpsC99xTQvOsc\nD2Z1zwC7pz8bdT7ObM/Y67C00A55QVUBSykFd3d3AzDb/Phw5egC29FhSuSp+34cB066UO7GeIyZ\nOwrysNjsyszjQOSh0rBWHl0u9nAGGu7Kb6JoiAPx3BMFubULrbm1YW8GjufHteQBuIxrnZddpRoP\nvaK0o7cdLCgv/AkjzyOR1Y4elbGKON04z/ckmQHC4q1W/ERPACLPqcxzpWsmF/IpvoFXKY/CQo+C\nuIHFvjmxWbuzd93X33yDZjFBjusno0Pp8GOKdENXjPaa+L2iG4CdELH4024cB15QM++o80YdF5Sw\nLKt8HpsXmRBXh/IpZHF96GDm0I5QnoH/2J9dHmrXaIldfmZejWn8PS/sPJSCcdrGuywqjgZDnjMH\naxg2xpvXr9sdVScDtUSpDgd6dSwSEnBvbI+GLKAxqj028X/BXSKooWj0YuS/b49/PvJn8iDVrZt/\nurBxKqPhkJNugs4rFMPh/fv3+PLLL8GQEF05HykzaV3PU3pKD6V3b9/h9atXXRcu5pjaUIq7+ajm\nACHOUX3Dws9fEIuj0lHDhoRuXOyX3earYhyxZcQuOfYDx7FjP3rcfgBy+uzS7wVQR5daq5Wjc0zt\nDWmjLDBUruK8Viu2DRbK7uC2WaFyngFiQq27OIW1jYjL5SK0OEyT287MYrM0fKwY+TgOnLGBCdi2\nky3+/g//4d/j3/y3/w6n7YRzuzePnT7TRZ+Arp280+RtGMVPSp+3eYqzF9zLg2z0KTo7AczOft5o\nKYtWi5bhGUbnHaBvUFyzlwLvfb2Ies7bNr7MWr3MHvVCfk9/G3S7vuN0/JbGiIa4ge9XqP4jsLOR\niguJqLFSAm5K9qulMvI861A/DnKa9eNj7CWfz0JGF9jpX9kMKdi5b1r4+n0dH2szhdM4TVcfi0Vz\nX17ANr7vElZgZmh435Ud6vGjOlYq/vF4lIjMiUhoc3YTM9DkmDnyurKvhSYi6FjRDZbWvskic7QL\nZS2rTPjhx1hl2cDYmsNQrtswkvtxNqcftJsmdsNjZYu2zbdxyGv4TddqvP3XxlYRvmkYZSnLrwWI\n/dQ3m+T5vh94/vwFXrz4YjqWrBp4maN06KdGHfU+DbYUOvZEz92/tWEspykpjp/JOFA6jLz2rGxp\nrYG1psl4dusS1fF3EMgcCgv2lpdR3p5Ru4ua94XwwG2+zisY5NTMFrN+abLf6NExhDg2ZpEarqXr\n6FzbLVTbqsUjbbhQkhtr/rvNyVbJiub8Xu7fyv3+4W6ACMZ59/athPXn7njAzcBVLReGgZepCzoG\nuoArMsBjktH+6rbkxzP2s9oIoRZGCBCGHVWO8ekOtnpx+8UoTerFqE9K+1fbooAOfO/tD26XiruJ\nW0pp97b2AVdKwf39Pb744gt897vf4b+7/PfYqSlGVNtB7wuD/S6AWg/zPAVDvrujcczVPJD2Y7fF\nPjUE5HO1jYJ6HKjHgfvLPbgyLvulna44wj8+KvYG4I9DaPjw4YMNssvlA/QEDVUF17ANlT4gW1+0\ni7xLUYUsDOzztE88U6ZoHgmVAOqhJhQsd2VUzNDQxdajVtR6YKOCf/rTP4G54nz73E68wIGJAHBV\nUQA4uef+tMEs/BQBPXxUo188Wdk8sMsWlbqNWxVSiAukWah5Ps2er8BsFmZaz3HoHSS9PK8U/Lv+\nQjxfruYbBWcX7o2trb+jSKzkMqHzMrdtBoRmws7zzR8nfWyaGTa+vWZct8/Pnj2LYzcZnL6MGV8H\nvqVx6Mec50UETp1GfzdN3hQxLjt5FerW39HmFNAvna7dmMwbplZfMJLIwLjWaTxAnL+Z/72IRGfj\nCzzfEAG3giPuhdh8zuMKibf+medL9uTTkGUmKyagIZcxW1jwmzKeRznlcTQbn7lsDXsw1fncT6oo\nF2VI98z39/cjv3wi4TI1MOQN0vazAcZMXzB0EXlE3I9ChzHzgAHknRrEUO3zReeB3QXl3rM54WTW\njM/63c9Tm5twnqQt3wD+J+Wt6lil0BNJb3b60jtmwOl3WQhc8dbrohmtwWCCLB4dXPH69WuReb1S\nm6cEWKxvRuRjCf3B7WJOJ1eouNM+uW2xn8zwahiNmQcDfGkUI3YXA4IHkxesa5o7WdmNgpkRN5tD\nQ8i6Rr/30D1qxRdffDFte8sEkJ54mfPoKT2lh9J//s//F373j/8Q8I1+5qZv6yGn31E7nrCNh6Zf\n9/2CfT+CfDmOSzv17UIUKRbhjpOojWXZHBG7RhfubPpQXPzwzidlK30RtG10+Fmneko+0zA3ibtD\nhE8VsHs0RM/VoI9Vr4SyyJ2qaCc/9Xd1dJPFMjm9f3/sOFHB5cM9fvjhe+zHjtu7O5zOZxS4041N\n73R2RPuFmS2ssLbWy5OMO2c4VPN6XlCSZ8pQc7SqMK9muVejYaP8jv+ecLrhVPQ7KrLcfAgrzt7x\nyWMRX5aeACXyTnERs68wyAzf+LyG11ubda6oM54vcugHxSPUqNET8+jjYbXgs+LJMO4fwJ4PpWv2\nkiZdh9Dnp1NcVlIe+bBxn2wzEQ3lDeMs0e4xgY8ikOeKp2vmyCSL4gCo2YGs5kp3ksj2msi9bsup\nXPP9MhvTZcLzWWIvCLW9sxXWlk3nfbiUm2UzitSpuJUVMHemI9FktrEft7kfU/6V3ZT7dTX3fbkf\nYztpn6juYYV36H2U5YRs2EV72NveWk/e8BO+dDsMVnbvNlVdQc47Gryzt7enAKCk8Bqr+T9LWmbu\n52xfebpmNpZ8bm3oynzo22s2SZjrKk+FFLjdI6uLnSPWqm2z717Wz7C8prVdPDGf2qtl4gnd2zwv\nm5391mmJdtyMtqvPrsiLTFtop5MdRcMAHhUHKj5cLnj37l3XcTSxTQEJt+90oj5XubzSJ0r3rJ/a\nj/b/Wd/IKbiG4R7Zfp8+q8sNUj8AACAASURBVI0QSc7DgfSS8T7YlIGlSGgX73Fetk1CRlUn/byg\naaC2uEl52jZcjoptO8mCyFbk8nQS8LwRWTilm+2En17+hP/vv/wXXFoZcoJCPJUu9zv2XTyf6nFg\nv1xwv+849gv2uqPuB469bXxUyUMsYaIqy5HK3W2UMBh81OFItsZblWOnbrFAAQMRiNt9GqcTCOKR\naAtKOIzPqKIkxeNFhKNeNFaoXxinR7j1GGxXclEoZyF/HAeIC07n0k/LTARUFsIFLX4ugMv9B+z3\nH0BfftXASnufeQDH1DZRVHHb5VQ6eYjCOyHkRhsnfmpyi9tryu2KYga658QM2B66xe/fZwzlZH6u\nlEp/LgLiGiiegrG8K65CbVIGUZx/rA9CnrHNK/pzyjyrNc7tfPJnJQxXClLba+U2Y/jFixdDGdlz\nP8eIB6J3ui2KCWFSV6vXL5h5gGzGuI5P91dTAOkerDjv7FleoYusTKBvZGYDJZch8wYG+hX05jtm\ntJ3k6iZXjrY5gmG2UyylKWW7/NCPXe6A1Zcld0+w1c3AcD9Jnh8qv2xutHcM0DZwp/2gsiLP77zw\nmcfEbFzPeBzGcHo+lNN0FnMPF6FqzY7cHxXicTRualpoDgWfgV4MctgupGelv4/jw+kP3ybxBPOe\nItFoYGZbEMhz12S2+103wWYeO7ogZalWRO7GxI1ZM0lRnYGpBogBu3aHkW/VQ2B1kNXMyCem1KaJ\neR24JWeYkdwp4sWs5vd6KMsL5bd6oQZeuPziAd43Lv70ww8op1OrbATchLYZMmurld/1m1aSjfal\ncZLmj3Ei6ZGZ0TvDEuqtSD4PMxgtBAG7slFDm/JpmpymPCdyTjhS1lfffIPbuzszKoJBqO/6Bj+l\np/QJ6f/9f/4eL148d9PV62NqYW9r2Lj3sjSPSdHHaHOXG2Y6yWN2+Rse3IjaBels89bffSWnFlqo\nEEe3d3QhAiofAz2Azt9Oa3we9Q2cXLIwniC5FLo5hezu7rkVnlQa9LnX/+ZU12LgiZyWTZaXL3/E\n5cN74MuvWvtKuF/MLyDkuogIpd0f4hcLiajbwPJC50GOYsDjgoS/b0FlomMiQHnDpb0/4UuQ745+\nxRddg8U2HoroqNMIdPsn57dyJ899ft9H2Ybw7874PW0Hxs2RbBuxtmMitAfdzhxUaqbpmp3kach1\nrO66mOW9lu+avQR0HGZjftvs7jlra/l4m0n1cbaZCPM48r6vzXHJ1eep9rz0dpjMHRmheQyIjTO+\nE/jnxrlPRm/paydafnAu85iQ+6bhzCYLeKeNIZ2btW1m+5NsOvHkvc4X9U5XW0ntHHDCU2kuARgi\nI/xL2U05PcZu0jIeazuZLVp7v7HSDTfHa3eyszHTfjufz9j0zlcioIyL/7o+a/UWNz4cL7iFWPNy\nfdbuKtUgSekgm8ymolGu+b/dnnJrUk0Hr+yZqdNprRI2LaWpLo4mZNAHMk46btAyGFH/sHcKekA+\nZfoDLat3eLTN7CclGpFGQEPZRV0r4yrbeeScD6TA2NfNjkv0a50rPWhtdHhgoN+PuWEeNXprtc15\nvY7g/fv3ePXmjd09o/fODuW2dmcMI/jNGjwd3/63kd5pc/zLD2W4mj67jRAdCKKE+qVtx3HgdD5Z\nuJbSjize3NxYHg11s51OoFpxc3OD7Xxul8HJ77fPntnn8+mEm6bUb25uwNzCA7XfT+4ibIYY16VW\n/K//8/9i8ev24wJANg2AflTZYohCTlr4zvceSRvaJa7Ng1vbbrwA0OwDnBuQ0FMxVWJuWVn6Vxap\npQ2Xy8XuKZAwWEc7Ltjf2YhwtHYws8WwlY0X55G77+AyKm2rtwk1vbxNN0/AZVgQRuJHBgEoBZd9\nx6n1s8Tp7XHpNY+/CEwNMCoFN+3+GA055j39s9DPitDz00vyGYD2wskN4k6TF9DIiYax4RdMgHga\nItddXAiaUCrNNw68YTUzNnv9Y0z0TJcq4RaCMeRV4Kw89n2/AvZZia/a9bHpIQNAFosJtfYF/mCA\nOkNAxzRRP/GVDTHvPTiM+UnyXlTkFKh5NqV+0vBpK8Uwi72aPR4LkQF2zwvdaGAeFwIYcsLqY9K8\nL92Ypf7bAAAUZLvfNPSFa6xxIYPPML7D2E5j3+a320i40qY8NzW04My4zTwIcxnRg9wnz/MMmr1R\nau0mlV/ds0j1JDUDgFLZSs+sjzyoV9Ct438AmyS2JVl3dk8eZpYYvNSNz5E/2QAcPeq0bplDbHWQ\np7X1W+WoR/SSXuGnxLqdrXNrG3r7pYKZjMy6auAha1zceR6jl6jF3u8g0wND6b8yAHNk4D2hsR41\n8DmMIerhY3Tx8Y9//CO2bcO+H2FO9ffYGQmz8a1tGB0GVkbtinYAdumn51+eY9dOWs3K7rIzlqv9\nLAZANSyQ58yqfCIajsOXUvDNL36O0/kMtLqHeRsZMvDoKT2lxySuFex0Y5gvDOy1y1Gdz4YTNH8o\nUL0VO15gbqdJfD55GQe7OZnmXK+rQneCS8LiYFm8Yxp192pxQ/NFYiL+LKU0B44iYZO4hdNysuRI\nMiFjZmBcvPO4wt9ftJ1OePX6Fe4/fABD7LRSGNyiDqDJAL2/xClKkzkm90rcQNENaK0302O6tW0G\nGeZJPJzyrsn01mqFUEvsnGlQnGGLL4iyUcZFWtxip8dTe1b6Ykl/S3Jfl1I0pjn+GHHJyu6Y8XFW\nrtezQJs/qUnZvltFEsj4b2YrzXTsQ7y6ljKeyWUPm6jJk15pvGYzedtoZjPl9mf6soyg3Le1e1x3\nfBXt9Jkd7OvwtIut2+4TTGNIdH+fN1le+HpkqkU7J9ebP6sct/dTElrI5r2XgezsS62PhndhdqaN\nZcR5PdDUnzxoN0UcqdEsjgHnz+pReh5rO+V3ldaV/QT0NQzBrt1RQMdll9XzdZM8P7WewPdC4Y6J\na3OSlZesDoiwMSPzrbWq6ekZ/9rriSbYOPIp6GPk/iVV8wD8eHSb2TbmhE4v64SvOu49bbF/GbFO\npSTrkoFXE9k7tcmsZEzuNpnPuTz2VIXleTmoG5uKqlH73Ig6PI7TwI/J+LC54mTNLOX3FZfpfUZy\n9ysD3BzumfH27Vu8/OknlG2TPsQoa3I/RDmng60jiVU74rM+D+X/ye62P3M5/dj0WW2E/Pv/8D/i\nr779FufTDcomF14TyakN25lVxeQVlPuMrQHg2hdjNXkl7ScPtQFiHZw6nIhwlHbJ9GXHN9/8DD+9\neon92IMQIfTjnIX0eGKFeRxOhGSFCL56HAJ+nYDQMnVgBY9yrigTwdJp6WUczHKkSRojeSSjtI27\n54IPN6XSy4RLe0d/9wCdjb6CvQKo3bOSqNr9GhaTuJWTj+1Zv7BcYKVl//DDD/jZr/5cYpin/vL0\neIGYhR0RAW2jSoELEdlF9T5fAJw0EWTpc+b/oIwTfcbfytMycvmz7ys6VkrA5yfqC0mjF8C4wD+r\nv8c5HYEf0Pt2lh4qOz/PGyp+YfYxAnJmTJxOJ9zd3Vl7ha5Ii59zU0+xRKtXxDOQHWjAuCig/eKB\nuP8daKcAMAIfpdHT58GK8s/P2azUFNDMaNdL5LU88+LQ3weQHIGhyG2gudvb7znElNFfqynFWmsA\nvvpMvcwOb7QMXFkbjZpfQEL0YAqGVm5Hmj8zMGO6wG2mebmpYDLP3+51xbaY43WSN9CYG590AaTR\nc7lccHYOAAok8vhYyTD9zoDoPceHODdbWTOeO9mmAMfXo0BS6OiF5OPn9ldv9nVlzmSdN3IGmhjm\ntRVCs5RisrjrvjGpkZRD3Q1g2zXIy48wrziW69suEfZjttxf/t3Qp5PfPM+15FII9RAP6Xfv3iW+\nzesCJLynXXzuGi2AWy+DnMt1/0zpyieNBk9M7Z9Fntkz1Q+DgdoWPhksBpEDUcKbzvPetr7QonLH\nzwPN08OHyYmcv/j22+5FONFT2Vh5Sk/pU5K/S2OOhUZ8aHOPohe/vM9R1rY5OIzXCea1PGVyd0Wo\no1MmoY+vG7pHsxuU1izTiMkWiJgZ++Hls87duMg6zOFUrrVzkSSEBHUZRYRXP73CmzdvHJ5z+hYN\nKSv28vUm3nhdm+XhQJPHJ/ZdvlyzWzxdQPROX7U/v+vTY585sp3+X5d7TYf471nWP4YGn2emy6Mj\n2qi7ZjSE+ov3yR/bMNNRmaYZZs3l5M/D/HDlXOPHoC/99/bs7vlzw+WeTl/vx9pMQHQKW9mwfl5Y\nXS6fRZVo2NLbPN7hacU/q8/xKvdDbqvhoDJughzMAT8rGTqqzLVnwvfYTxSwisch7YHjFZtdlS17\nLdPwEfV7Tvz8p/TOMAYLSRhcjnZTttNndtNsXPpnGWNFe+e67WRltjyqp7Ld5u2nvkEx2v16Rwwp\n72geVm2QqWn8knXROJbdA/vdFqIpLkqr45TSS66zBjmisjV46UTMHPrESGGb64DaWfFkzyrxRM5p\nrav+NnvrATE9kwOru/o+Bk/7vls5B+p9pY/WJfoZZDoZ/i+i7HtM6nIIwRaa5RueNbimETS2rWDf\nu+Pv27dv8eH9e9ycz87hcKx7TnPGhWudG9aIWr8TdPNsouM4Pg+/fUT6rDZC/vpv/gZ//du/Nmb6\nS1dL84xUQWixqR3gVqBJROZ9I5d36yAE0GJWE/Wdvq11nHbd5spTUKkLSeey4Rd/9iv89Oplvz+i\ntEV1NzgPN9EZBcw1HJvUVKGL/bJxoEeTwCpAuIdPUrpaPeJt6wYfLANqacqcuxDSq9gZ/ZRErTVc\n/KZ1VGY5ccEQulr9/lhqBlYd9EjokVMzAmqt2NLiEy8EguZB44l6Ev3hD3/Av/5v/h3AcvGz54eV\n4+mbKCly7ePEU8vDXQmUovfTKEiIhlT+nCeoV+bMzYOBfb6kcD5hgut72RD1CmKmuGfP5e+o9GZG\nGFFb9Eo7xwpCpwbblXY+BPaVXk0rw/8xBhIzW+gGvSOkt6uN37RJlOtZ1av8zAvq+ei4Gs95HDE6\nmFQwa22Gzg/2w2ZpvPjFwynATvUbFlkosQ6jev5Ae/u3pX7M4JDbJafKW72ANL9T2hhTgEKIfPcb\n4Dq363H0S9+5byTk5OfMrn3FpW8qpHbld2efM4BXGv1fG3vahtRnJv8Sb6dHlo2I+H4pBc+ePcNZ\nQc2+o5y7193MyPXGTjaatd9LOokkOqTFUadim/+ZN9QAfp7jevy2FAnxKGVGPhuNhQbadVHJb2TH\nOgkHolFW22beTGZ7wJ49ODPPAg8SQJwdW17JIV8cx8Z3AyblmRkbeRzK+XoyQ7U0vXNw7eEbAaBK\n3Htw9xBHQwp93rD1oQ+ZZ/VSnCdcYztnG7qeH9e8QA1nMA/6PidvLM/mohrIRidGGTbIxKYQbOw4\n3Bj6s83rbdsszOkv/+zPrLyybd0ZJfTbA416Sk/pEWlq/Do9D9INh2R/zHS92hQ6f5n7fAfC3PTP\nZqih6xKxO7wNE2lFCB0Y6AvtWHgekzh0qaewxvP2cqCUuJho4XIWsj0b/VkHSKhgiU6g8//9/T2+\n/+EHfHvZcXPzDGa7uvfzAljWvx4vzfKG9+BkmOpqivn6z80mdPclAk31Wj1z/DzTf8s6Ju9z632p\noju7gR/G/Y9Js3qzjZDtnfzdY8lZ+VpFtoNmf42GZiPlFBwoJ+1XzDezox6ylWa0ZAx+7d3VmNd5\n9EULJ6ztUzr/OTYTEJ2QtP8Gu2BRrl/EH/AzdKgl+7VGO3fG6zBGEj6wcQNdH8I0+TnqZ5jhFI42\n04w3IB5CGwZ6CbJO0WRAdXkzD/Wfen8Tt3DLHvsnuylgqEazhSVmF3La8eahseZTXiuZ2VAfazsR\nkUQNILraxzCHqmhD3dzcWHQTEIE2MucrT+tqnIdTXs35Rjensy3V3uw0oo/3ONeF3v6MByArY7Xl\nK2QYs6vRcT2AiCxctY8sYOuKNOruqezIi+ItVfDQXzlPt7+Edlu2TToocGzB+6m+Yo9fFpMVcTOv\nl6vBk6/Xb89dVuXcOFbWcyTPW/+bMkmlj8qfVuSwHqd3VNuYKtq3DKaKD/cf8Pr160HeyvtSh82O\nLPvIjSu4kKg6/iY6CFqWrUdr/jSuWEuN7V+NhWvps9oIKacTTjc3IJTG4LTLrMIHDtRl4FLlvgvz\n4i8R9EnBybO19N7kVga7/AxZV2AiHPuBb7/9Fn//d/+3nUqpbdRr3DUnoqzco3WqLiv1QS0Lmwp8\njiMtmAJRuLAzaNoAsnswvHBuddubzACqTJv2XNdZagMSVY/cGZBui+LU86li6eyeC55SJC5xX5xw\nR9JTn82Eli7gMEtIsO+++w77vuN8Okv5E8EME+YLA2+VlGaKnpvs/qeXCXqaV5Nck/dKlUXpaPT4\ntucyVwJWy70mQLWOGdD3gPYa7ZE9ToCxPzlQnWJx+SdlzAS7Ph/Ay7RutnHZDauHL1HPyieA14lx\nwCwnWWZGaaZxVm5Os9jS/p2gtKb0I2814ea0hXYdDaB7+pSvujk7bMSALSyOPVft7eXGImn9pW2F\nqZ0AdHnlAWNWYpm3+nutFRIpsASjwfeXtcF7wtLo2Wpzrz1TWZQ3qbRuvUcFrq4V2M28mD0bFn/d\nGRqSH2yjd8YXXYxeGbqSTxcVZPPzOA4JI3k6WVu2bYuxuO2Txg5vG04lLsj4tqzAaGECocimtZn8\nWtkIwrtugcvTAbgHh56Hx37AR+wTfoquspEtwCDw0ML8cddVeePIM4bZ6RajffQOXAFVdiEZ1rKs\nk+vl9jRPGlqql8MzB36NdzTSrXVqvm3b8P79e7x/9w77fpG6SOdyvqi863XBXqpLDtukWtG38hK8\npuu8Tocr27clbyvonPLjdADPTo9LuPC1nLf3PF9XIFx1ayv9/bt3+Nkvfm4LDCWdaFu29yk9pY9M\nAlHbOA+7pu0PKeaJv2WDWd5WOUFB+JgsgXMSaVi+MncHoqQ3vB2leRVfqKQIefz39HmGAXpdXZ7q\nDM+ztBvc/mHHTteM66wPmRk7Yp1bczx5+eOPuNx/AD9/Pi13Kgdc27U8rWtFC1HsIzibyPqe+wII\nQXBSxv92NdhMny1w70OLERkzbKZ6yTbKvS719c/sm1XK7xJ1HePtIJ/X0+jbmdulGDLVONTty2rf\n3LPWpgntH2snZRy6WhhkZnjA122ex9lL/q9+9nXd3NwY8QSyE2n/HJtpNr+A6NzgMjzYjsqxn7YS\n1wsI7bSGczDyGzo6Z7LdVJE2Z1i44Nuz6kPftoK2EN6GCIOHMjLOnDmT6PdadaORTK6u5KWNdXlo\n60AEd4LmOLrcoNEuCDbbceD0SLvJy4T8e25np9UsJlyznXI5qpdma009X3N05iiH9n2XsPvNgVft\n0T7uVXcJ97r9yoaHs3yb0ZrTBreZZHIwasFuUykxve8ba6AbY2Ia8vBeHmcd78c8ZrcOhtzYFtMx\nQOBV5PeVZGBAN8znOmnWhln5gc9OD+pv18qenWTzLhiPxgr9KNoy79QW1TFPOuK5YZxxPue1Tt/O\nw80TfVYIqAfb+sn9/T3evHkDf6+kjidmDM5vnkiBTx636f/Vblq0cYI5gkzw48DXOJEpj0mf1UYI\nlQ0oBZUJpyKX/Gmjt9MJux6Pbtw5ucu37JkKLAeCwoIwjRfN7NVfAhXz2IZKrdhZvHv+/M//Ej+9\nfIVvfv4zgBjc7qLQ0BpWH7oR4v/vUwcpBGqXl+bfQv4mZsQrnOyiMuWBxl8sGiN+Vl/RSVJR4Lx4\nKSpaPwo17MMoTPvChwJ4fSsotKYg4ruw9/S5CubjOHDazmI0MeMf/ut/xeVywd3tcxFqqQ+9gDPA\nk/g4EzjMbLF4rSxtC3UBNBOcs/Acmdez5zOlnQHHqkytd3XKw5fpP+tlx7ku/1dbf61+P9Y8r61t\niKHlPI/0lMq18EPrvqIA7qXu+P6MHxmclyL3OqDNlW3b0ricH1XP/T/zVsrvzADajD5fhs5f65e2\ngWZ5HMgy3k5As9XN4+mUDNDyO6r4poZeAN+1gSTPIyDLuVkIsxV4NZnC3ouQekgbl6+g33WiJXdA\nOnpfe8/0UCdEvukJGj9+M3C6Ns/zb9ruPgc48WHioZuPu0/K9flL8945OM6rZ8+e4XQa1X/uhwgs\nxzxEBGyi2zIPDFiVgsN0hjXN8vS+yO2QjP29tSzzp0amichpop68p5nop+sgipUXoejrsj30h/s9\n31cy01l8JTRia1bAn4HHLg/4utGrerRf+Cinsk7bhndv3qJQwW6XFSd6CcOCQJe/c0MZiKfqRuN2\nlAUW1iI1Po83k+np/SzH/Hv51MlUtmHs65m81LZ5faoys7YTZW/evcPzFy9ADn/O0qeA+qf0lHxi\nBuQ2PwBUzGBnYnhAHkYaue8qH9qqnDpL2c+AYYlcjo7fql5gVnerRucgkjd3y96fcQxNOGlj10la\nD4ffwqJpbadDwvwbN0k7zh/TSkZoqrWCNt28F4pOpxO+//57vH3zFl999TU23QHg8TL3KX7U+jCG\naNZ3HpIlVhZ3Fxq1icHsOGek2RPJksqZ6LCVbTLFoFfye7ofynctrcKTruhXPuZnK3zUvg28X+mL\nFVaUUjBg7BzW0ZczvH/FVvI6e+DDR9hLuT61H0speN5OhCjdoGgT+vceazOtdLfnaaZT0yzc62zR\nMveN5+OAeXm841FsrVieY/USV/j85pxFFNZXZinbTTN81cdKBaDRUVicgZv9EN6HwOjqkLCOQ88b\nVRvX+P4pdlOow+X3fTjaiwxZm7q+Ieb7NfN+1QYZKwX+NnCl8e7urmM8JYMcr1K5Utd4ciCMaQtT\nNSYds8r/3heqQ+Zt8KGmjVbbnPO0xTE5yJbJeHE/dvWueiTZCYEneR44edSzjH0jo1hwywoZD2P1\nip603zmOZ3ZlBTonny0fx/wzPf7YZO9irifMlnW62etu7+h2XVZmGdTCiVfZPK37gQ/v3uPljz/G\ntlDvT9+v0TkuEBnqUX75gRn14qi7HpNyex+bPquNEGMUV9QaL0gCZJNDd+tBsgi2JcEH6l5LWcAS\nkYWX8ZcS734jAQhCSCm4MANbwXHZ8eLLL3GzncBHxQW1nShpdRPbgoI0ag4u2NWvgmJcuot5tQ0g\nRrEFUUAjTUo82gOnU7ELDAGVXbJoAegdAwC1S/x0zBJSjPx6OMGvYehLk5cFOYSSKtqtmTg6yQ8V\nhMxBRayEojyXmO0MMfI+vH2Hy/4BtBGOtpt5cuFvsvKU+clA2TCKVA4eE2owAZBwYarU3aT1fZhD\nfYR+dG2ISlnH4npBJj/TflOAkUFlVvogF/+dR7AY+cwt9Epvu4ZcsrZoSDTfN25OMfNweZznRw5N\nsrxTQeONpsXrQeCxgqrxDgHPP//bYAyhYjsVHO2Sa/GcL9iL/Cblj+XNFKPFGoWAFZMZ7kh7jgGc\njaTMCx8KS0OzefANMPa2WbMVGZt6q0BpYf9UAWUAbEpMx1RHLTYPZF4UbJB1Cd1o9bRruaey4VCF\naW2ncOm054PvhzjftS5utFUcrIv8MG9Tq7stvh5JmfrTXEqvD5sEzEOqFZQmR4U3pfR2zmI4z4yn\nLBO2bbNQHXIsup0qbHc7GW9KCXPH80VpZ1d3BezYuvTZAbDOb7bPL9oi7EZuoSbN09FgcYAPXb9s\n22aGQpxuyoPu7Z4X9su2xYteweCJolNZnI1T31cE2fjPYMr3DaifPsgbX0Cbb81tX18J/UsyFg08\nTwyIzD8/vmsqcwqoof1fYXdtaH54b91mBDnjS8vw79RuZ9jv3kuoMFCLnhzqHjd73VFx4E8//oD9\nwnapb2W90yvqj6Ly162i1uL4qvrdBcBmTpt7rY3i6dSwRPP8GWR1rTi1U07SztgHOj9M17v2B5kA\ngEkuKRbHlvZfCxPW0EbAex5HVCDeo8Y9FId5kaKfYitE+Oqrr8TggJwIqfVAIcEiXXZUlE0M8U8B\n90/pKQEuHAHFk2xgWfCyjRGPjcdS7JONT33QwLJiBn1fnRDk2q+xVHZ0+fmpyYezybhrKCNsc6uc\nsNkaFlqyPLE6KgM0LlbWQEPU8T6fPvd4dtuKtU++b/jTn/6EN2/fRKzR/s0w/2xxBSpjRpYEmmZy\nQ3HPEhuTs3Mxdk/mj/+eZXku32PgVRkz/JT5mn+b1bWiIXwnfcYO04x6NNhHBmA9nZF2oC07JzLU\n5o16PmI4VjoXWGzVbtFjZFjpGn+UdpCGdcY070P2ktQreqrugoVvb29R1A5HdVhK5umjbSbmwK88\nzjy/Z2Mo5wX8eornDTebvq0JNVp1o7AU0c/EkfbMmwoE7MqsmERo21CazM190RcUiQgbFRwE1Cq4\npmwl2Ey+/tn80N8rN0caknFRubaYH84pyOE9tW/Yn2pp7QoCwOEbrWuKxaHjam435XeJ5mPDy4LS\norlUR5/94WohyplHnvhERKB2Gtfqaf9046bPTbfOA5gD9u3dnTmakcmR+TztbSNw1XHXBGtjfyES\nx0ZnI8WU5DnD9EZrleWZlsA6A/Nm7kQuun4ZQr6mxfNcmfWn42krNGyqkeu7TO81vKt5Z2N/Jfd9\nuVO9nZox48dDtOU8WUbM6ZHap/VdcexTW21G64xOk5dwsoPEnu2n+Dn8XoqEs/7w/j3evnmDZzc3\nOI4aeZb0V+7Th/jYR4rHH/N3TA82eTJr+6faSZ/VRggRyYmOJPD935w//+aF7mOY9hAwBaTDt23D\n3hTp8xcv8Nvf/iv8+OoV7vcPnQbuQiQDvZky+ZQ050MBmnIzJUQt/qMTdtq2GV0zADTWcb0/VnTO\njpllvudyS9mw77tdVlVrxU8//YRvvvkFiPozX57W5evOwF0FU3sx9EkWLGUxFj3If2gM+nc971fj\nIvPf4hinNO+nUVBn2lyGkH9dZqdfMs3Bs4JcX85KKa3SQ8ZPpmeWJ9e5bIer4/b2Fm/fvn2UAswA\ntdbaT65R/H3fdwDj4onFMwAAIABJREFU+H9Q3riyfUzUPK6yseVP69QjwXFTStf5EXi34K8mWYCJ\n7zL3eLercT3IQgXTqQ6vkDMNw1ih6EWT22N8cZtxM14wcwjB5AFi5tfsWZCniRbbaHpA1j4GlM1T\nB+y3t7eDXI9lXe9b/W48WdS40stiqOTf2f0ePfNWMVh9mdJ/h4G4bdtsjgGyMJFPoA1jr/YxK38f\nI5+6rDQdkBcXHyGvxlKve5j6smegeyUvGePYn81l/e2n5g10lf+uzjCvE62+KmobmcPmY6im9QfP\n5cXsZJen/VqyOZflZqvXP4MrK2OlqfwBhj7xn3/zm9+EUHwaGjPU2YaVbqI/paf0qWlmkPb59hgd\nEvFgUsmhDj8jzOBGfGElr5Bydh1BA5nMfVquRFiUx9zntgkm+VPdkk0OJbGaw9f0s4RZLOCjopzE\n9Wtvemm/v8fbt28AklOsFYyNynBCsDsgze9WCLWb/bWWhz7/TC8QkTmL5Lu8fD+EMhPWCmVNZFZ2\nuBJZ3sMj+zSz2bzsNxuPryz+ubJmtPZx3B10Mv7wbcpp9izE/r/ynrVJ86Rns8vpPV9m5Qwreg8l\nXmd/7HqE/d7+3JzPTbfWwd6eteExNpO2M0e3yLTmz/rdY4zaHB7yHFC97XkaTopOTudeW6Pwvw99\nhnGOaN6Du2OS0pBtphk/H9tfAMbL1+HvTYrPs800q+NT7KZVWTNbMPNbxrqjyX4HZpNgVs6Slwia\nKtSr4aGP48Dt7a20eWKbrr4rdU7D9bHNLBvn4GFs5LYAa/lA6ByQ+p18aHgyEbO0i2OdFMqzIkqA\nx9oq9YzuvMfKThQHSXVAU7pm89P2jqa8GW2ulW6yuabRNVyzxrM8D6esG6OO6dhC6qXhtzCu06dc\nDxHZ/TtL3eJsBr/eYJ4N7Y/Ob62RmOUe1XqAUHG/X/Dy1U94/eo1bu9uXT+3OiaUTqcV+w8OfLnx\npP0rqvBKv03638vemQx6KH1eGyElGr+zgR4nzVqYzEIHVUTjPdRN/SLVYfA1FK70nE4n/NVvfoPv\n/+7vsIFkg0SzInbytQUSqzODVdfpKyU1lp+OeTrazfub5jxdgX89QcJMAaDkNuU+OLww5b4LuRLE\nulDgPemZZTNEeXRzc4OXP/yIy19ecPf8LKG2HLDQNmeF6Cchs18E63cHeL4dPE7AqcBO/XHteeTT\n9XGxAue9rNFg7O8i2zHTckPdzijwSbMwEGJx5vejwTP39JqNtVX7r80X//tD82pWVway+lwvTI/0\nzpWsb6vmJ0MKklc9mL3BdW0MzRb7rhkXXrF5QB/akAGemyuuwFDeYNQwI98anQF5QV9YyN7UmW7f\n1kgXGaDySQ0X/x1AW8x284RGZW11pndVfoUx0d2xALi7JLA2ZnxZ/tSIGu/39/fhlFlDd1MvimwY\nXAPzNscW7VVG6EZBrqOXPdY3S37cbETLU4sGutCAepHwjQFBm0yppougcGvE30HfKB1+jPp55sfe\n7DRaNtaYOw9ykjE9wlml2fivLHflXDOSsz5nBYpX3smffRuDHNA50P6nxoSN0emclJAXv//9H3rY\nQkS5ZXih9aX/DeiYbWt5ZD5wMDxGvBB5LwdR5ndFzTyQV7plxq8ZHlPuq/GgeWa6xRwR0hyltEhD\n7fTkRgV1r/jr3/wWxHKHjpywifJe6IhG01N6Sp+SZIFZN5Kj9zcRySk1XhjVcHK4CxAptzYZpbZD\nOrnU5TdscyTrky7PapB9oNFLPU/lTpecFrlmdxAYfqk8yIheIGILr6eZnu4yEdAT+MfewwYREY6j\n4rvv/oB/++Hf4ny+BbeFoHAHwQQXB3nbDZWGGeYLI16PqzwLbR14Pi42z3C71uU3NjL2y7zJn73e\n8+3KGGfAtZmG9nl27+ND9oJPnv+ZtkB3XipdGFaS3evW7l2+woy5zlDvA7psrP9xttIqreyjjEc9\nzUSy/nE6nYZxo1j+U2ymHDbLP1vZfNd4k+eW9Ukag75dIN2g6LBMsZNSWlIdMx7rcPH4zJ8mJfc+\ngOHUuv/N4yDF89TANmGcK6s+J8R1Nb8TPdjFs/fpX85uyuUys+FPDVsd2uPkxbU+17RaYyDX3hk1\nzBz0pNLlN+tm5Ye5jLl+ybJvtZQ70wm+DlMLqWFeh0esKyeAdF7muT3i3j4ffZ97WnRjKEf4mM+F\n1m+VAfZ6bZ13lZq47TzQ+cudH3mTI8wJm3hzGZz54em6Jtt8GbO2hPImeienPA+z/ZJtGi1X+cAe\nKyU8JvqqglFxcMVl3/HmzRvUChQ6oeKwrpE5DrfBudZtW8NzQ7sUjjS6DnBwpMn8IZbttG6n9zn5\nMTIgp89qIwSus30iItSDUTZvPXdQ63MvhWATqOS13CQNQNTVBWg89B3f/tVf4f/4T/9JtZhQceWo\nkw6qJrWmA3Vm2K9AQBRO6oHbFsmpDTUWwRiOSes9JqKdA33eSO9CuwM+cmL+YwbjoZ5AKmgQhY33\njOq7feJJxC32/fl8xo/ff49t23C57HjWLk0non5/QK2OJ6oIIg+zoeb56UNvnM/nzhdrdeeV8Hxc\npPE8zM+7kBiVqimZFCsTQAifM6t3Nm4eBiEj2H8IvKzaNHs2W9Ra0zJPs7k8KIWFcFzJAehGkrsc\n7ebmJoBuL6pn42VQlLXB5AaY8lFtfScvzhJRCIXFzNMQE1nBeoDtlXfkDcLfvVoU8aUMHOZFU/7+\n9wPAlt4xQJ7G9LXUlf319nqw38vN9US+xXxz2erLHO4mcHTkjRv/fv7Nf99OJ/PqmMl4328rfhlo\nThvEs3xqHGl68cUXQj9YQiNNNgYyLatk8ig+jYrXGyw09pUnrrcdBp40bmkvjob2azVjOWRhFH2f\nZR4b0Ff9aNMgj4uoNxoWw8AiZxjkMG1jiroz9H0AMCOY9zyJdPaivSEwo8GfoAQ0zA2DasU/ffcd\n7m7uDHQGI177lKNMtKorj4YQM9jthOQNVgn5sp4D1+bErF2BzkQjOTyBJNdnp0Vmsl6ND/+bxkw3\nvU3FLubk48CvfvUr6ImfrWztlC6Qwzo+NPee0lN6KGW5HudSETxD3YAGRptpjrUwyKMVdl7R09/J\nKFqpGPXDjK5V3Zoqqcd/lJ7kZMysfP/32kJGfl/mPsw+yvLt1cuf8P7Dezy7fY6b5mhjeSbyRJ+B\nR53FtS+wt6xN9UTHLqBzM4+HUorp75nMW2Ftn7KMnOVd4eUZP2eYfcZrc7QJJ0ewTFNZzt2ha9a2\n8L5yMeCjXIdpcxtxq7nhx5nn/WNOOw598LH5F7p0NZdWfJFwJfLZR0robSKbC7M6PsVm8vSv7hhj\nVieVLtdM01PPH05+YFzo7fUFKrFnO3YxZofksvkw22F+OIxSj7ruXFcXtG3avgmPpzaTW3hW2RFk\nzBW5/i9tN+lz/5uWFbDiRD5fs52GcZHHjf0vJh0ffjNf15w0rLHHjd4u8Jj+ISxn9GMWBj/aAd2m\nbO3wdYa+SjidJNSbtYP9mtra3vRjgaifpgd631ifceTjSn/438fHa17J6B43rMQpgyyTb0uBmw7O\nHlrh+lWUh2U/hsEztxFm5V37nvXdTG/OPl9LJg8n70jbapQPx4E3r14DgB0EYD/gJ+UPNNVe5+q0\nRsYnK/0jdXcCuhwnNyfWenOVPquNkLIESP2fKjoF9aRMMsA+V75MFI6ahYnv8g+DUgEq2uYBACqE\nX/zqV3j9+jW++PorbCRg6Dh42Oi0qROEgauDaxe0VPIcS3zgELIpT2C/iaGDfQMNCxE2WXi+EOAn\nqD2vbaKUObAd2+wuoOpbjLagpLHR5f1+eqdWnggG+fv7f/hH7PcfcHP3fNiwsUlsvO7tWilfTzUR\n4QgLaP2CxdJWzNQrSyY7dSWVFmO8Evbfs7BcgVYT7sOppg7z9D4P6MK+8WltzI3P1304KyM/8+Pw\nmjJ5CCDMyvdAxyuOFSCe9fMMwLXWhvH91VdfgYjM40YVf/Ycy/3Sn5usHujXcvy8nbXL8ia+gdv4\nKzS0N7dN/85Cxqlnpwdj2RMp95N5unE/YcIsmyF69LoezqAAdbxAI52edx2A6wsxmQzLzxJf/W+9\nzL7hWo9q90pkfq0M/ZXhnnmUx0Tm3bURPzP4PW2+rti/bRG5bUxbflNXUuYXX35p71eu2Ggby4cb\nuCR9qtpI8a6VGWQQjAJrb+oLIupUEtl4yPzT8hXEZ2+d3Bez06JU2RYt4Po/85TZxV03PO3Hdjcy\nfdco1hD9NY4jrTcbMl7HesP8WiLuGCLLtDzPAw9SXp+YWY78G+nqPc24XC64//ABdzd3mnk652bl\n6vwNG/8tf2EMp0v6/C3GyywDc70zeenT7ETtkNxczL96fCYfxHu7uvpkRHDIW1w9EoaQcSoFBWJE\n/vznPx8w1MoInVP2lJ7Sx6a+uZx1qs0vwwP2w7g9sZArOWV9m+XP+C7Zv6oLoW4xn+jxBv+UnsUz\nxVHaUqlDHWKuY1+P2fTdbpDLBj61ghTjnc9nvH71Cm9fv8HXX/9cdFYhCX+jBhAw8MvX61MpXr71\nv0tR4pLR6vo5n/JY1eufrWjV9NDixMwG8JvzXsZnu0dtWQ6L0mOosE8dO+N7j7OFVvhxVX7G/DN+\nr3StPOt5ZrbDqsxrbbhGd8jTNCAR4e7uDjc3N6Lnta+I+r11D4Ss7jbTiAuzzaR15Db7/EC//9BC\nqTGAbb3h9pjvzIq0m6MmGCXNB0+7pn6/RadV3dCUR4Ih9H6hlhnzOaa2aZ9jzjIi91lpSW0RPul7\nKg9h+EvxreQtDYNXsHPsVd5m7O7pnfHaj8s8D3KfC4+lTcSjvPBlPmbMjvNBUW+kzf+u423fdzx/\n8aIJWVmXmt2zqu9lurjptcfJJLXDIu3Tv0Kl6ZycP3/u9LT/c3c4zv2itATZm3hNzG09YKTVp5kN\n7flB6d1MD7n3ej0wGbRaM9BmFiIw9bm4kovXdH/4ndTOm+bG4oep3stzaJaHSe6bnOkOAOY0GHCJ\nUmGm2Gg7euxRjwNv37zFjz/+iGfPnomT/3Hk/dVBt8xs6xUYGeSBOxmPZjbDtUXXqarxWuXjeILn\nY9JntRGSO9smIRO2bTaAOv/lnl23+A43wLKBLYV34Z88GjmOgqGTmQgvvvoabz+8x5f0tSl/1Wlm\nGPiXiCAXoQJySaju4HKnAdWUrqeFiMwDUWlehtNxhglRM+iPA7IOQ31cJX5P2+6er7wr8jveMBKB\nWQHuO9IyzuPunirprDSl6wqIpM6fXv6Iy+WCZ88JtEl83kCHb4c+uxJrzwvheOza7TS3VSmZwOsQ\nYdkQnI1l37arymb6eTSWWne74emFzBpIzIAfN/ATlPlUUfZ07eLEWXzXxxhePr//PFUWTpGsYtX6\ndjArDBL+MDPO24a7u7th02Ov1Rb7o0c+G1iy8uW2OVOW/jedK91gnh8Dn40V/WwbDIkfcdOk0eCw\nWR6PpbTNgeTllMGW8Znj4p//TS/Y0/jPWmlQxMhAtCdpVzE6RU73ughjjFTlez0yKIDJUeN9C0lz\n2jalZDkfM//18+Yuap7R7+vz4/PgOFYfkgU+ZY+KwHcFCLYZAQcu4xwLF7efTiNMK04/NZ1ATaHS\n1vtf9ElteThgvjy+tC3BYGjjcgrOE89lDPQNlpxP+38+pvr48fJmCBknDXX1tnHYcJcCyo7vIlgl\nN69K8xbTW5xmhiBa38yg8sqAkMuH4zMdLzmOvC/rqjzlfhxf58Kx77h//wHP7+5wHEeXbWBUL4NQ\nwkZolnFarWKe/t5EllHawIR6KcVxPwXbiGPNy/WZ4TXyADrQBVNl/lV1gKBgaGSzaxyXpV/ASeJw\n8/z5czslNC4gJOOO16ESntJTeijJMCxOzo0Ga8zP4fC6yhsCuhxUrCQmihmws7JyyqGf4jyVSgLG\nW7ZrLs+myXQNYXJ2cdjAVtxs+CrVtcLBI46XGnqZIhvfv32L1y9/An3bF4cLze8cDPXIh0iD6aSI\nGTI27iggtqMyh9Puml9wqPR/IQIXOYHveeHDSfkyPf25LSv7p30CklxcYSFrJ8Ze9bI364FQTBO3\n1KrNNM36I/fLzH7xWN7zKfOlY7O5rl89m9oDPI5lz++Vzpw9yydEZ3mtD5ts0Dq208k8xrUMPfWA\nREe2mYwGPTHafvce6J6nHu+s1h048QFEssnAGJxKzLYopYdyMgCzwGSl4YHJJdcrXOvXFAY5AjS8\nQw7rCgHhIvNUh44lf3KB+stSrwo2R5Ngn2x7C+cUr3W7qdkMJdpNea7Pxrp+V7tpNb4Dfvbl+jZM\n6vLvX5MX+Xu0kWEhhKgZPl3K9DG+77tbnIeGVbF5oOVWtYuczUu12eaF+pjyskxtXmfH6bzJWHZs\nk74Qv6zWRvSz3lGnOi+/0zcvgVlkG25zm50DAa7QOdXdFD+r/lR7q78jFYzyzMlr7nJQEfU4Fnud\ns7Go461rJs08kn4tCV6Ksnk1FrM9Gdu3zncNC6lugJMHc3vQydDG93fv3uLVq1d49uxZv2/TyUMt\nf2ZnWZ9MSFvRS8xOgmkfTfAM0EOzujJVnq2w7Sp9Vhsh0zRj8kS5oZTm7enAXAPwH3+QBgZAffV+\nQfTZ7a14/dUmuE3x6RsVKupM6dR+WZJtAFDf2OhKa1Q8vuNnF4IDCHGrTQkHFrJthuTkB5m2Pxsy\n26nYIu4MSPlFDgvnNJsPLMPbQJQLiZVBtHyXcn/8/ge8efMGt19+CUKxkF+zRZCHwCERhbidNbSp\nLfCys69YuNnrclLWlZ2VWedpBtWycJINlBmvIrIfhWb+jVlOAl3Ldy1pldkYXOWVFPNdMzByssWm\nCajU964ZDf77DLTF3/uc0Pe/aGGEcv6uYOdzzt5xHJgZ0EA0PNTbydOs721t/hP6HD7qAW6nzfIc\nJaJ2CVnz5lFgloDESUFdk4ZdEU3aq+0Ji64dnEi8T7jJMZa1Mv66MUCdFpqMHY4APM8pLy+VvqKn\nZtwdIgbIaT4GV3PD+qN5Yk0NpEk/e6OEXD4/hj8KPBo//FyLKYsIIsLNzQ3Q7gk5uOJEaak1ii9L\ndmJC6XZZdf6swPe0DTbQFu2avEvpJZ/NAzIiktMgfiHrAQAajPQJA9Romast0+jCF8PNa29oNULn\ninDkg96zoSBdcYxuQnG7vGTGu4cAc8vZ+QfCmzdvcDqdAC62GRJoSxtsOdmmn+uX/m48nTbT7df4\nktN0rjoZ/KCeI83Zk8nnhvd8XZ1WwUyFaNTXLsRiZQbVihcvXgQAv6TdP3+w357SU1qnmSGtc8Jj\nq2oyrMt0/ewKixt/qfxgsCa5kI1mKyPhFsksw15o5UBPbhcmv63yyXz1NLVnAatApzUiru9l5Ge1\nAmTlej5EOpgZx2XHn/74T7hcPuD2fBY5uMXL0Xu53fNd9Y95tmNU09nWmPHCsBFmEpYa3/WFVuZG\nrV0Zs88dtUZsHTGWfxZD5Yy4bta+SLLX1qOc9nSFMhIuGvgzqWt2esGHIx5tu2v2Ud90y/biivZV\nW8w5YoGlHltm7p8HMYOAERmjAM6nk+DLTJ+W02wRxeOaouMcB1w5o0dP6Cv+zneG6Oe+iM92yv2o\ngmW4TaDsmOflop0uwujYtwGo9QCrnl/xy2FGW8uAeDjHcSb5ymLc6Ds5dbupO6VInYILTU5MbCag\njzxm70yDEOHD3wOnoTx1sD3Gbgp27CPsptAuIgtvrLbTNdk2ez5Lg65RmwJ+3Pb+MCwH4HQ6SV+V\n0nx5J0bTzI4iQuFZL8ZIAay2lEFAnv71csaIRxqHFK2ZmV4eeDJJRCQbfzm/4Yb2j9xvLt/8DlA0\n4eWd1Kk1vfeP3kHWbc1sS4YW9q8TeVdb9pmN7u0rUtzPWv7cSXTGNy/vRNbQ0mEkp9X66TU9cP15\nGzNtjVftxvy7yvCdJbTd+7fv8ObNG9z97A739/e+cVrT9Ya0avz8uapP3BzsVU3GKfuZGtOj9ZZL\nn5WjmSkomgOvWX47JYHWd0wAF/mH7Ok/AvJZ2Q8NSCaJvf63f/u3snhQ/QkGApF2UhVATvI3d6BO\nRp/UgPH/gKjI/YKF58EsGf5qE95qW/Dat1XacUCPHz8EIIe61dqYPo/1eYXo69CNido89F+9+snA\nZU6PGTvzuqmBISfofR4AxLK5sFFbrLb354BzxtcCCRki/yL/Z2PSxoIai1cmv44/387VO1ODAcC2\nnVzbIz2drvxvnq4p21mazoMFoPd5rhkiszmSQx0ws3jvtjnlx+FWCgqVcHdBH5Puc+J1pp1IFuQ9\nMFzNI31X8+rP1IxRv2Fo88aBVQ8kNIW8tXYPwFw3RLZ5uWP0WibX95MLz7Q+X+/stzwuqRkxpX1e\nAeEMtHqbyebpaSvYiOxEz0Oyyo9vf+rucrm4fhjHwCDP03idjYNMz2Pl6Aoke3r85y+//NKMkcfO\nxaugq42LruPG8QWsY4Q+VEfMhKY3gatixniw5uHHAiZAoDBDjBb9PKRmLNRPKF/TTO6bsd9oJ24e\nu/r3EeXM0kzOHPXAH7/7bm6surL97xUiIw7m4GBS0fkVxgdPTmughDl3TYbPks07j2na5wffde3P\nRk7WDwPgXtDHLCHlttMJBzN+89vfDqfCcj06sIm2hl8/bQw9paekaSbrhnHu/y3sn/y+fOjfvSMH\nsNbps2Rzywl2Mdoj7sl1XCufiMa5OcQonmBXFuzf56LYAMwamx3pHcXikTdxTrdUK169eoX7+wsA\niAPcYpFkJv9msnGGiR/qwxUmUdxUdJNjUsY1m8PbarN3XOsmdH6aV6cvL7fvWlIcnXHU6t35GFP7\nUPpfF8/ntt5j2jXHhVftNlzv72t272NTHoPZXtLnZ93c8/W3ExxywvY6PvVzfmUz1VoH54ysk/13\nX4/xgOIJZbV7/Elvm0tpg836pa09zLBXtpl0TafT3Owk/dcslZlN/qDdxKl/0HGhSp/VXGVXTiyD\nrG1bKaEcnpyAmdGc7aZ930N/BzrS95kN7N/z5c/K+JdKOZzbFy9e4Hw+43Q+uY3RJHuulKd2uH4e\nfredhPTOI7D8NC304iBfFlQ/JI/JZPbjSQLm0S8+OWXbN88HInHe1JM4kyIe0pue1BmWmn3WE+Fl\n1s/u2WzOj/XP7fvHJgIB1dmNAOSWOAY1uScnP8RZ46eXL/Hi7g6Xy2W06fM6aJK1fvDO5nmew/JP\nnUE6vpKoIqWb/DrnJ/V/ql77rE+EiPCPoaKq/zxZFAvvol+QloWLZ2foNBerrmKMp2oActvwN3/z\nN/g//7f/HQBwCGXw0y+Dxa6oGKVsqBy9mksp4IgtxAtxYnTojqLWofyw76XYQqDxR+kS4ob2j0CK\nUOvh6hPPCD3G6mk3elPoDrFRIh3X2pLL1QlHJPX++OMP+C1k0eVctoH20TiJ48NoYDbQgtSOPhEn\nExx9nPSy5wIzg2PiqMQ7KRHUef48TgiKUKFSUDTU2oTPSM+UH3rXib8UC0C7hyQfhxvLywaG8iOP\nqRkNwPw+hdlc9r+tFIzNT413mMYFM4eQVwBwe3s70FVrlTAnHIWvn2sK/oR/dRhvM9r071RW1Tp4\nLkWklN61AdS9rXQBYTuly8BqnI8zb4TspeDrkjBA3ENotDSTj9ZO570+juu5PPC0zfjOzOHSS1vo\nL05tNg98f9yemYe7QmZ6w/I6AO43yXxb9n03rzV95mOSFopGW/b89ONzFRLLxjp3EOrnt/Z53gy/\nu7vr3mipvcAaxJvBRUih1zxCHPv0mlGj5SqtmZZQN2R8DWEF4DyZVUZZXWsZk+ON975t7zlyZ2P4\n2hgBUTA+yf2mxmeh4k4rjEA4zzczug5G2eTUY+4sSuPKn/4z2tKiW8c3MEP82Hd8/6c/iYdQG4tR\nvgjIV9k2nSctJJSNM46mloYP67KyX8jHLPf35HRNb0RdNMEwWOh7fR+Yb15xLyefUJ0NLw11o5Oy\nAjhqxf39PX79m9+E9s+MQSJqDjTq9f1pAP8pPSUgySciIOFZ/xsDEsrBy0W0YW55uxNG+zbIodU8\nXemCSEfHihp21uPGIf+qregLfYaWbM629qnBjaEJg7zKen62sZ/xm9JKrs5aK374/nu8ffsGz7/8\nEls5y4Ij9/z6d6YzRztqLs8HGlxerjPPWFcWd9FG9r3rW7WLKlsOeDIybfM+l3fLQC6BKW6cz2y5\nIOOHFnc6Iub2WMLchKwNq3E7sxWYEcZBZnvWNRZuKVpgsLEYaJzTn9sWyuEFFkn0PJSm+mjA6B3X\nZEx8Op2GckQnxk1OT5Mvgyva+sdItx9XM/tJfzM8QaOtrzhqQ8e/hskcvb6v/V08IjfYYbd+d+TA\nJ8RTXgHjEsYIJmibDjObSUDUtP2gjlepMw46tvI4CvOqVuQwcsIj582N3r8RA4+8n8nAnGe1CO7x\nlclajGNyVra3lX0bfVtzXW5LIuq7NC6z3D+dTtLn+w46lQFbXkvdblk/V32Uy5z14bU6PjqpsM+p\nyfnB/gl4u403+XFZxdxecnRfYV/laLcGah0talPZFcQkNoXWsZKLotP8WuDj+ehlmHvYdQ734gbZ\nlbAGAbbenOvQv9d0w7UU7CRXpoQWP1Co4Nh3vH71CsWto/p+70hwodtBDseNbbZyBn0esZ79TrIu\n1L333bpgmt/X5sUsfVYbIRX9YFIHtU6YckHZihnt0J0uLaCQTU7bBHD3cVjnsgN5taJgAxXnkQTI\n78B0gADADuAvv/01jstFYrATAVxBkJs+iAo2IAKXRnMpEu7G4kozUGgDDoI/0q20+wFQGKBtXLDM\nINgbNTaQUzie2n5XTwBuCsp7O4+XKnWFUVhCYygNPsn7hwOlXhAxgH4Z1+U4sNFpCoZlCMgJkPLs\nGb7/w3eolx3bdsLeQr7YO0AID5aTgSQkIdMUg4J2bc/Rv6KL4g6wge4Z7vvC1wWgx1smufjQQiQ5\nntgiqSuHbZyUgtqPAAAgAElEQVSO4LASN5rdxgXHMaHJh/TIQisCmpnyGBftcxvjGJVLY/1JrDGu\nvyiFWjm0ecbHlZAVhTe/wG0GaoxO3/YmR25ubnBzc4PjOHDsFUXDKNUKtHePY1zA9UCxX944eivp\n5/w906jyyPNMASwAUFVei7Y9Jkpf4+rmON2is8g2Wod+JDHS2eY4cEK10ILCbZFXBQ6suLk6go9+\nK4H2gbVv83xUWsf44nMDrWIrp56niEyxd9EuSEc1M7hsJY6F2o1acquxXBlcyGTmwbqgvYGK23CC\nCzfmeFDabxlAzoBEvGdh3GixvmltBFi8O2y8y90KtG1ySrHW7qnHrT9bv3HpEsz4lhZfqwOqJrEd\n8FMjzow/dicX/BgAUOA34pWvXab4xI1Wr18KSMZiH74yRhvPCwO7iBFs1OsdyrV3m4xs7VY4bxvb\nRDhqwxUcwZs3DtH4GYxBhsXgFXDYw8/J/SoahjEaooOeI5INKN20ZMau/HdGus49k2WV7WI9ZpYj\n2p4PheSy9EaPnN44wKj4/e9+B1TCqbFaLqvsiwg63wuAvfZLFk1ueb4vgOmw8aAqt/WEnvqcGQRZ\ntgedleUOUbgUfoPISI9jwt0nTu7K2O7GVeXD+lTBOxEBfnMdfQO8sIQCub29xc9/+QvZjG4bsXmD\nmRRvFAm7oYE0ntJT+pTEWfDl3+FMz5bZO/ua3dl+N5n0iCE5M9QHmWYE6hyO+q47DEQMF2TsIvXF\njG5j6TqP3P+UjfeRfk9nrmsZ6gMR60WcWbEx48O793j9+jW++eWBcjo1/bWFOjOPHrPodY0fPQ+a\n04rnY8wzWEqhL2Mf9s/X653S78eab2eS6Rkjaz7FIaO7lK+iO0oAbmEqYJkrNKY2RPuDh4VXff5Q\nX8zqEjtEZ+WYL8wprr3dzPbKuLg0pmu0zcbt2D7LLH+bkxUz4+bmpoeuOlgc8Ix2zT7q815RDA+1\nwvtTnriy/B02SrvQ6OzyQ21luM3BbtuajuZxo0MqW9k3sPUeNOxKFdhaTG07TazdJgIuYKiZ7eqk\ndWhfCc4tsom4UXdk7HSNfG29E7CIOMV0x49sNynunNtNfiGS5bm7CLkFGG/yp7fPOxd7Wu09hy2z\nfPX8ymm9TsBm++oYcFQLfa4/1H6+vb3Ftm39nprm0CSE9vfDA/d7mD5KvzTS9Y17Nc3jlc3Yt/Pb\nX2onjFC7zFsk0zeIjmbBtst522/kMPBj9PHUhgX5CrIZuNStU5nkOGI9wb1HLO8En+QxFWlYNm2J\nc4TWKsH6gwzificGkRff0gdiID5YT372OP3v8zhdpvKOCB/ev8dPr16ZzB71XqdVw7L34uK87cPY\nbfaobdhsM+Z2FUCSeytZaLVQ3CjNsuEx6bPaCMlpahhXD5iqdcIASjEOKHadECdO9Ix6KKnSPZ1O\nuFwuON3coO57iK03M+L1e22xGCvX5pmlNUdw1OlyC00Qz0NNq0kzW6D3NPUFq/XEEj473iFO/to8\nvo2nkzzXBHMB2UWz14wDhmwgMICfXv4EPuQa0g3dG7oVMgCq2Rg4oGSrx5MX2nFxsi/cjQsyOd9M\nWFH6brRNnk3Lor4o6/OGUTIDAa6cHB4u0EfeA2TItXxn9l3ba3yj2D+eJ0TFjFQFWtd4OvbldY9D\nLw+CZ0pTBkSy0EpEePbsGbZtw77vjV/z8EtDWxfGyEwGzE5g5Lz6XIGvMmsU+mz3YATPZVcPT+YV\n177YMB2vMtCggFFg8lw2zBbxfX2x/dcXOQ0AJ3pXytLLhlLyAUoEPuQyvFzULbiRlnyrVBwHWla+\nSD3LrAwqw6LrZO5kWlanJ4wX6Js7KqWY5Wj63fPnlv84DmxUhrL8vJvOJddencfew93zfgQvMPER\ndCFE/5WSPPpSOdbnaWO7h1VAAFTX0mxMxfu8XJt93RTnFYPlFEBurwfpjhwv71by/iFaZ/NqeKc4\nfUBy8nDWz7aJ10IX7PcXvHz5Erc3dxHAtuQ3JY/jGLyjr/E+jHEn28OGUtL1pq+Sk8eq3JwnX9rn\n9aafu75O/36W274eP/79HO7fJab56XTC7e0tTuocg5kh1xcHsm58Sk/pU5LHi3ns5rmthq3/jmty\nNOFNn7JdMdBjn0XejuN8vQmQ53pu16y+lW5d1TErx8uimfyd2Si+PQRZaNj3C169etUxB8MWGDOd\nK0y9su9mPAe7OwdBABWUcoWPpLYn4HWhjBfu8vQBnl3TazkqgdTUeEqdAD+OvJYJjokTW5SZwdTt\neJHHbfFYcYK+47pK61FNMxtXzN72XveDz695Z+X5Pi7JNvP61Ze7Eck6vrxouOda+bP6VumhOeff\nV31aSsGLFy+GPCub9FNtptm4ndE1oz3PsTb5uvOdW/wGOr7z5cxkgO+jGr2ppA7ShekAge2dYGe4\ncEyeXrGdAUzak2WaOpl4eu23fGrC8Ww2NgZZ7mzPbjepG1Ec70SY2E1d9q/wVrBDXd25vStZvsKQ\nM55QqoObLQyK441I1vZKKXYJNipbyCXkfnWfva61ulnHRc+jOjjbjPmuEqK+ld+dyxQ/tkYUpWKc\nQ2Bud912GcYsjmZouFU6Wqx9IofXWdboDjCOxia/rpqlirZL2uZklOMxmHpkBscbP9Y9VzN+18/z\n1Jwq2vpIKwCe2CzL5q4SV2ytNB+1MJsTtULDZhCROyGXKNXxQHM5Ro7m+Jt5sj5IoxaQ5x7XioMP\n/PTyJd6/ewfmCsb6egWlxZ9sm+E2hrthJfcb61as47DqPx03bpzk+U6+7KGdD6fPaiNkQ/SI9wqf\niOTUhvjp///svVuPZUtuJvYx1s7MyqzT3eqL1Be3Rt2th5GFgQZj/3/A82xAtsYvA2MAW5KlvqnP\nOXWvytwr6IcIMkgGY+1dLemhgIyDOrnXWnFhMBjkx7iqQRMGQ9P1RqptEIXKPICqKy6l02Aos+Gq\nuky1IdSoEGE7nfDLv/xL/OY3v1Ga7Qx4KuDUyxfFjbnBhbahHLzijzs7MgGWyz8tDXHQy55pp66K\nMXzQAdE5rIQwGqDMWaBRyb7yl1EwbxEbhPe/teLbb77Gx0+fcLq7w4ubTWnVIzhMPSKdEShw+zEB\nNTkOTOItFcSBMgKgd4mo4TPfMvp6pk1ByGBQUr4FNVEZZXVdlblyuj5HwUi6xicAVJzSknsKMjqO\n+Jc5m4OsxBiF/G0ZdiLEneMo/bgPYD0+PrYdEOFIrQmwhXrE3zaePa7O0htpFx7JKiuXJw0dIHEJ\nZdpe7OmgDvR6Xh3RZQ6HPrvaDbAVdXFN0mZ5ZrzKvgugj2ds2lVeEaS7/GjWtXGAcZJ1+Hxd2kEY\nBK1Yp8cBXCR6hdmsOpuBiH23eh/5ZstRB6e3WDVH2skdK3J0gZxdWnnXPKwdiPlbeiqz6jBre+LF\n0pavkXbqYFv+AjwNhlez8yp251ROSWGnA/gEnnY5VyZv0w1IpOL5KUF2K3Fvf+rKm4wWT3w+IVBB\nsBwNZ/vdYFiePF7UegROtSZWtrn1c1LeNyWwy+TV1lbAnbam787nM3A3JqSs7XROv51A7H8j34C+\n+0OJHM5YnEDI+J6FlY0Chi5X/U5+4raL27TLjDs9cWXiSmdIsEdHRpkstGHfd7x48QIPDw9pPWPb\nHrXvc3gO1wa3Uph5Wvhi/Rt5BgwWOsB9R/IZ7dfUJ5LFLc6fIwJzW5ZUa+4zZLhrRaOnX3YF2Fpn\n+Zj3DVQvMUr8Pd3NyN2fI2AnAj8+4c2334LPZ+znM06nm26Hiw6QiP8igyZLh2tRZ/UFwuI47kZL\nyBYZsSyqUmeTXzWYh/U997zMTotF0HaDsFMwrMde1s7E+nBia9iUGf01a5fjUUlahthFI2PZAjFX\nB7I7QXO8O6cFBi7JbThR3hdi/pJf9PNXfo9PP7fRkb8Uy42D6AAaRuvvxcYBhFIIe9iZ/7k+k5Rl\n069ojnRm/NPd4GTrM2x8PAZa6sLqM5n+kNAquIoj5uyiKCufrfyN/uTrkbYls8MyK53ECX9F906+\nRM939GlMcpW1gS2fYDB7CEIJWR3CbbW8zWMlu+oHwvfTTE4yvy3WZyVfY/FVO+6Z4LEuUZsIubm5\n0XdVBYNSPsVdv7H84QuZCd9gH7dtUwU9+X2akc+7YXbR9az5uHGHQYXqf5FfxNM6yN+XggpdMHpt\nsDZAaYz908hFO2LW+naEfZ9PhrB/B18S/cKDT80n0qrpYnXS+G3Hvsi16ABLpysv40M/2rMdp66W\ns+UB6OIHdFrkXftOWr7Tez0LdvVY6/zu/To+WFKdvILx9OkTXr16BdQqy0EbBmuR8/6lbZAc2zkU\n5xQcD8PiSfU5+z9idjsFfQ17msXizaPwRU2EMHgSfBukYxSicSQTMBxttF2QbYJ0AUQWStWWqR0Y\ngI3tnAlm7Fzxy1/+En//93+PshXJMKTyabQzkV2Bn4Mg4UrMIxqvVTmuniFOrGuWPoKRqITEiFi6\nR3+N9UhKYh47QsKqgXi/ww7CBuDdm7d4//49vvsnfwLADxyP6+xG6ZHuijGrfQQKs3fzEU8+nwws\nWUMkX2ut09m4l8qfgV6uCDS/QisxXNZvlptZlqMMxKCDS8aYZvJoy5Nz6FfljHpZuny8I7AUaZZ7\nNGqt2HkMijEznh6f+lFLa2c4KzOTg2scRgAORGV3dGTnVB/RlZURZSED5E0vSdzWu/daVZdeqoc8\nR4fNq9+OBEKWsz47lj1XtgJvL2/xr83HAqSj+tDIeEmzTae6All/+vyQldHukhr0bNvWVg72i9Ce\nnp5wd3eH0+nUdjmVspTprCz5u5WxHTzvj8eDuTszTkQAEuCU6K/xTAqQPot/ie2l7pBZms2HFOhm\n/XzenbOgy7xu9mgRTwBx+Lxy3ibQeUWIOkacj1orzuczvvnmG5xub1XH7KYMSZvt6LN0xWBbIHOq\nVzozo31ZxgKor/LLZDc+2zzTQQTT9+yz4pW6Y9s2/PznP8fj46PbPRLzMCWPdl1cpPwcnsOl0PDg\n+C1BZS/RGddK25GzudLflwa84jc55jTmUQxOqIu0x2WNfFdmpI1PdDecZIBi7CbY6OTKseVOfpJo\nP+rHPJ/PePfmDc6Pj7i9ewGc+qAPxgBOHFz5XMzAPCa+4ikImX5c+42z7r9ET4bHVtYx+pIrybCD\nIwDcrpGs/JhvLG9F85HducbOfW4Y9LX6bds2neyQDS4Lrwbd6/yP6xZ89ws81b/9vQysyg6Eu7s7\nAMC+n8HiIqQu/nU+k3zLcGVG75Gvk8ms+I/226W+NtyL9ZgA9YHMMeTB7ThdZqd0rMtzpBeVtpSg\nkYntJ4RZj8T8pEK+6PEQj5he5bXCs47/GLg39vQGx0cuKUbMaL9QpqXxiL+BSFc2SZ6l4L4fjUWy\nwLYfHXY0lmFpyL5ZqgTH03jhOrfrL0YHjD4icWa/NrZlNb7u8LBEXPNFjTaQ/99hmD0wH0QH2jrK\nb2kHuzOrVVFwTMMK1k/Ewo+/Wg5aQVMWV6e1aUbhmkdsN9Pg7m7cSeaZdaECgSAn/kqKqSW0fRpu\nabqB9Zkh1xg0np73dj8kV4AwLipno1OqlUGgxxkTGWT+STyLOT8HO17zrfHPy8y14cuaCLkAXkzE\n4bzKCtX2up1rDcxKjvpuE5J7OebOaBVi/+iUk5z/LumYGf/hV78E/df/2oBNk6omeIbGKX8iAAVE\nFXVvxciKaEtXdkSEKMDVIJy8tys8gabId3MHSFx9LVsAZSBAmah5yKz4uPBXyzT8aB2tgPpEz8jP\nKu+hzPoTKrczta0Ck/roikoiPJ3PePPqFX7805+O4yrgO8lKGTO3VcB2tjgzHKP5/Tvbpvvezuyc\nAH4CzK3RF4BE8MdtrAaLsufMmYkghoE2O12P+1QGIMeET4c0ZFeueZoGDYP2eCybO5fUyI6cbUpd\nibfuNvNfDH/7bfmSndsLkyZpSwBUiq50F1pvb2/b/Qp7Ox8+awtbN5Eb3188H2PcrN0kzwj+I+/s\n0TaR/66FjSGN9ESdZFeNyEoQdhcGzvkLgFs5Gxn/l23haBy7FzJAHI/istuzx/7luR9K0GOB7FF6\niI7B7AQM/sxaJba95e9KL9i4gL9Mud1JIOU0GgoNBw4Qx6v9UtpqBXc6Tqd2d0rd99bnTpuC+Fi2\n/R0dEtlhF/U7gdp5wGoV0O3xoEnAKam9bBeuyrRKs9lQO7n1QXhbR7l7wkiN9vfWZ1q6yhUoJ7e6\n0wOyqdn6N2vX5dx2VhsR22vu45iD002NvixY3cLm3aqPrhyVbMeUDh7yiC86ptHYj+UohNevXuH+\n/h71qU72Uvp9BXSFLndZc3UwZRO13SZylrjddeF0TahHZvNtfSfbZsqL/Uh+i+xEZ2RLypJjSSzW\nyGxu1B8uTwI+fPiAH//4xyiluAUaNgy7Ks+9LdPYz+E5fEZgM5ij+hrLnQbDynidJGEaTDHvyXwH\nmo4Qu5H1USKv12I5cVBH44geM58inph1RsWlhTXpe+6DDmrb8gFYj0vZJm8bG41Ofv/2HR4fH/FS\njuLZCupene4m01Yxz0N6EeyBxDFxfV7NMGT5r7Dbqtwj+mxMwQf2CCq7azCta2bvJn/DtDvPu1sj\n3Q33EyZDh1n2rS1Z2aWVv3GEie07f2fUYlEJjwUKgsVbdetEiw2lFNQdkLPN7F19R+0YcavKepdN\nKIZo/hIRjXEP4//Fvmnrle40Qa4PsqNhs/yzYOuhYyH9mDXJX3axUK9TBHWWbttPFZP1tkClacdS\npkdxQUYd7ZTl4xcMcm07vahsbW8Diz/j5dhid82zGYqUZ9mz/l6kO8JtobKuL084e4HvMrpWfU14\nsJIxWUhm9cdmjko7nU646/JdupzI2NQqz6N2JYrHr3s8GzH8kZ7RHTMgyBFM44Sbdh5Kqgvd2IoZ\nh8hwQaehkEztW6Rg85zrXPvQeOZXRt4c4W23Kx+mP1ieNOPiJ94WfoXSK35p0L8ZDfbbNSHTn5dk\neRXcccejgPEu6V/KidJ0nYwViM6qtWLfdzDv+PjhI969e9eO9zbNq/gRli/yLegjQ4sE7b+1zhjR\nYpxQr0Z/KmVKCwMggyU+p22+qIkQKzz22X4HGkPlAmi/jSYKxhzaERFZuR5YrYCGGtF9R9k2fP/7\n38fp9hYAN+Vax1bJTGEPBdBWXOtKQK6oqChUFPTEOuvzAghk5dghHyvkkVuV2a1KHM6UKExRNn5y\nwvNRSupX0hrggH4GnTg8VuG3wRsPlEanN4O/XTn/9je/wV/+x/+o9csMotR1Wk3PAeActHX2zhoZ\nVRArYyIYvhGv55DKVsOM7iMDcgQMrBPq3hfqJytdWB0P6Ln9Q4G3ZqlyWb256FFCHKib+NUZZSfO\nmkIszgZLH8zCMCbHOyOyEPkYQQJRG2S/7SujBTBa4BD5ngHGbKVwCnBNfJuPnQyz5VngbYETrOE3\nhkRpNvW0gNi2rRvE7xBmOJ7tbFBDvA4Ckr7KgbMFAAOcD37LXSWuOblPjOmah0aDXauRyVoMtn2z\nfj2B0EIKilfx9FsZOkpWKiqPYVYxsp8IuyQ7Up7wpj2Lvu39wuqamEcHtJbvp76tW8ugWSbj72mi\nTXhk4/Pop0QEyDGC3fkooKZjKXOEuv3Q+K2cfd+BzeouWcti9UhsH/0AmXQXNk04oqCvWrTAdKRn\nZyE/Lwg9cpziyknK9b2tyBrvyO/Umej8lrq4v1O+TVfUWoHKePX6NcQZymQVlp4EF7kije6ytEd9\na3lhdcQqxHxWcW3ZzOwmFizNdkJUaUXvd4XcNn2bXp7lAvSp7K5j/+zP/izVP7HeEi7t9nsOz+Ga\n4HD+AndMaXrfj30rxaWmHLE/omszvTCVA6fqErpmmsXxNRk5HBTx0iUczyxUa3beDyHBG2ayI27Z\nM3RPZZhHGQh4/fo13r55i+/+4Ic4l4JSd8WxVt9fa3mmso19lu/Wt5tlYZ2vpWe0Te6Hxt8ah3mS\nleFLsurm4XPMx6dlxx2lddd3FyZBREaAw8VhWTlDXw+5iPLmdfrg/so3X2HAyAsSf45jXmPAc5n/\nxD9e1GukzxZdOH/c1Pfu7q5PuIy7DG2IPky0z1m8GDIabfrYvvZbdhwlleJ4KffPid9EgDt23C5C\nkzz9IgcGUFAFL3BjRO04y/oHR/071SfMEcaNiaHiosEuEIry4nQkhMa5/KVOS+KKTxD9Ovs385uY\nWVfB23IK9SOqDtrTlq/pir1Ivi0iG2kNtrPyp8XmZWmb9wVle62g0iZBKvtjrqW+q34YfW6rk9uz\nLMo2/g0GY0ebiTyhYfVer1Y3WM9TV/bby9CjHyJ8aSlsGCiC2cgwmo9FRDqmZX0X30bCnzjuZuSL\nRltGm73q4/Zd/GuyPwg+QtH6Tp+mQI0QzMvFTJxE/rWs5CSZKf9ARipTNk/r9wFOvobNlXGJYQ/K\nVoDKePz4ER/ev28arOt+e+S57KXlUEame1e+TcajQ5yYvMv0WLw39JrwRU2ESMgAkCipaFgsII5n\ni3EhtIEbaqv2agVV6EVlANpdItQUwNCR8wCEFUaithKC9x0vHh7w8PIBjx8/4ryfU2dkBR4dhCXv\nVKyAfXxvaVy9YwzFGPMX2JatglUF7DNOjVOMNneIVlJrq/zehKnzm9UPslr8dHeH3/3mt6jnM8rp\ndgkwCgC56cPRIuUa3kzEO7dS6lfMO7t7wSsGa5wrlW6uWklSVlQIK+URgav8FiU3aMsNiAN8u99x\nkslRRksTgVzBDTlqPMniMCFZOODrMBztFrmxdcWTeSY/o/uoTvLO6pWXL1/it7/9rZCXps/6mI0T\n+RlXHVg+ZiukBUyP6o+21K3pujvKn0mqUMjKTPvhZK59l8nY3QDEsdrf6jrGGKzbJK/ICwVX/Y6A\nvoJG6lmrVqht8ew02OOdVD1h3K0jL+wguN1BocWLsV+0iw3ThFzWb8yRGgOlUIgTQG+XSwtAbTmR\nnqgDMmC9shtwgL6lOfejBDci3D88YAuToiudE+2Ke2+AcKRN+Wnsr6uDrZdVADzLdmrTzN0ewLCV\n8ld240lZ9lnq42mViegBbNslcTCbfVuo+wzCbRj52jYZ3zL7DEAd5uH0zZNkK12b2dxSCrBX1CCq\n1hGyNKjFY8bT+Yx/+f3vW5l9cpNNv6qtkJm2MFiS6Thb58gDm8Y5iVH2kPMyxrH2drRrwy0C8p0j\n2NPs+25ytQ5RkwtLQzXHA1pHnmjcaVdKwfe+9z08PDyo7ls5yL6P90GMZGHJc3gO14ZL2KS/TNNk\ngw6zPr6AFxM7Z302ckcBX1knnZa4Iib751iHQZt951ky+GS+w+sjG3deDNZusJTLabdS8O7tO7x5\n+8ZMNLcydQJUeG/KIUBXmEc7NunD7qrIWztom+vONU7KymEefIo62qbRb1FOYhsQ6cDLXBa7OsSw\n8nOzutjvUz37zpBmgcf7ld0RW23t1YjTz1anNvgn/tDaR55lCegDTwl+YZ7rl2FFV78ER8T2O/KX\nsu+urQHc3t7idDrh6enpMP2RXlrpkxVGjjtEbFxVQ/3+Vamr9RWkd2maUK7tg0h43A7ntpND/Qhc\nWdgV5EfwQcrpUPfad6Wqf2MXDPU+XkO7tu7WF131fiWEZTx0LkSga4WzJMx+UxvEt23ifDC5EDuZ\nSLb5t/xqu9El9LvMntg6WVkn8VUOMFerN0EWbdl+JEdkM5qc3d7c6C4Q9HcyRneEbcVXt/H8ohuT\npuPNIXLUd10Nmyo74xvFkT/Gboii7qGoDLCT5ZEw07F5G5y2dv8dlZZOjo2U+LFNQHZBX+7fDX7J\n5GTYGUKzTrblWH63b0eD8MZASrowwW/rm/pgPOdhQ7Z7zdczmTCzxvUgpPyLetXEHZgM7W5YG5+B\nule8fvMGj6K7jYz1KMs6rPyY+C7a5Uv2xpVt+72pl/ylK/Oy4YuaCInKTt5JWIM7o+iYg4LvCrwC\nQJE7WROFu3bG418ZVKCGaPHzn/8c//d//+9NUADtxJHGrL5i6ARUtfdtIC5TBKqDLgTXIWgc6aB2\nlf0WowzYRvo9KIjlrVdrC5Ac+c/KJuvsTGZXBbezN7dtw6tX32LvR7/E47RcuaFu2j6mnnbCxJQ8\nv1l2bjsp4kFQW4EyJkAKF6CMOyoy4L3ioaXD1ZHyS14n3iZ5HTm21qDHci2/2y4UC9zH7oi28guO\nP0RkTzLqebfj0bTv9ME6CmXF4w5SI7yoXwbsq9JIePny5VgtbM6hXDl8DoBh5rktJwKilZPR2qkM\nACwgKcgX0M6kt3y2dWZmN7vPzG7AutAGoraNVetRCPUcBigrK89FO0WHwR0ViKEXzuczgHFxm37p\n9Wr6syBedE5Eeo8PXMm9zXrfARu5n7ie89+2gZRl/x6ls21Qer+2cYtAKztAz/PdEllZtp22sukg\nbdb3BGhqfXrbSnl7rfiT73zHgd/2z9ftmpDpeiv/ra/PToGl0e7a7BIEaTHRXdYWjYwGWB20kMVz\nmkdt5245vkdAKyvDsovWMpuX8sHqa3N6pCPIpNkRdFNSjpWLlQ6J4NLWTVYxq63TMuIqJO62qMnk\n0+Mj3rx5A3AbyKlc/UIQq8eNvdJDNkxfyPhu6YzBHhsledvdjJfkM+rc2Jaip7jMuruQ75/Sbi7P\nMJDqwHjnS2kvtH1PpxO+853v4uHhweneS3XQ5+c7Qp7Dv1MgAWFY962IlSa/Sv4uyoi5RqyTrfL3\nZVj0YOn2n2J/j93MTrjMuJpgy1jZRMFPgJ/YjdjNY4kWXy4c3frk8uPjJ7z+5pVOdHIyeJTyVPwG\nzLrChpLYncjnUd/8XdTTXkZEbhr1l2zkEAQjbwzUYOFXeCj64NEmZDLEo7hl2iwfADpgN9d7pi3D\n7RFbxTD4O9On+aD7SdXnq/SRyQsY9/ZRX1RRfZ6jP9m6rWmM9c18PekTtX+/vb3F3d0dPrz/oD5T\nDGt+rSIMCZYAACAASURBVH2miCGy/LxPGG04ZapE7TrB4IxQ92i3GWO1NKEfYW1GC6jjJNbySx+v\n8CMKjHBvLaTNDe7vftL5fO6LPs1CN6mi6HGa2ygGWRzm9VXLqGE2kafrfYHLfpPF3UqIX/iS0Kxa\nOdFBK1nQtIaHhYr6I9buxHqgFIDMYq2O62TxTykFdy9edPzr+bzSCStdo3aj5211etbPShOp2f4i\nLAwjIDuaKvo9XBl0ijvNeiGJ5Yl1JIPvO7O6XzZ8vFlv8HQMYepjsU0T7YCnaRWk/2f9Qft8oguW\nF3Insj38jInMq0KGuVZ6L9LhaIPgoXV+Xn/G/l9RueLx6RGv37zppyONhXkipxFfxeKG728mboN+\nuKbOWTy151PlV/jkuvBFTYTYoMqj/3aDyua93HehgAOJomIZaDVfmyVwM/YRPthdFFKeo68UnD99\nwi9+8Qv8X3/333C6PaEJnzHQi44jl445Cmw6zEIzBPvygMF0pnmot6RXAMBjW6BwgsIAO0weUaET\nrY0Wa326sg/GCiSXCNo0deKdTIR8fP8Bb1+/xlf3LzUPXfkZFJkzhMxuW9XW5caeX6sEOdB/yRB3\nJaQpWS/Z8vI2KzwH6EK+KzBojWOso+YHARjSL3y+sjpaa7swWhqX/TFjZPhN4+WSU8MR5QECacj7\ndJkz+b48gWhFh58XhqFo5W3bhv18xt3dnWubCVAEHeDvmvD5I8ihvMvIjYMOHLbtS3cfPGtcqfuQ\ng75Rvp8VOvpZ7ccwlCKrOFqaNtDeBnPH2fi7Anvqx/MJg2utevm3rI72beVXX23Ut2CykdfeTRwf\nR9fx/KgVxQyWWmdM7x2weaPJuThjEVpFB8oBVUnt3gWA19tEJ16kjQz9+743HVTMnUaJfNhyskmZ\ndobnwt5Y2RSgyYynpyfc3NyAqE0sfPXVV4NPXQ9ltihzSqODIrwck602rQUurX+rHgv6ZIVlVf4T\nB4O7LVU9QD5+IeFLTUG341vXJwLsuFZQoVTHgPuxfXrGZV+YoBEL7PRjBuay59EXGhHSJ4VOpVnS\nafqcd3UfZ1WvQ+ctD54CwMePH/Hhwwfcnm4AlL5r0O+Y2fsuI2DsyCR4e5Ot7LV1FvthKycTrHb7\nfOZA2nzi7+y5Z68YrmFDf59HKQVPT0/jLoOOC6P82z4sd9ios8DGhhk+/Omf/mnr06dtrrfhkYi7\no/+PAPfP4TlIiE7l5FQnOtYPSqhiz/M/KjtJN2FX9+wxs2JAE8Ut7gm+xch7eGtyL2Es29u0uKJx\nxuNtsI6Q7WCJWNDeNRbrLf4dKuO3v/kNPn38iLsXL7BRARXq57xHFnkbkC1wWeHTQTvcXQ5zWA/c\nrwYwRp1zXCLpGjYsam80LXU/JGJiLHR4YkfWNM1p471tnzNwEv2cVXmi3yN+st+tDSwGFzr7BoNX\nAz6Vdyqn/ThtJpiV4t4Hi3Yss6ORvkt1jf4gANzc3PSJgSSe1Cvg7mPZ8rQBGLskaeC0THYEs9jx\nBM0bMDteZz+g0TUWaskipOzOsPP5CSBzDxJqx6e9DCrjPjVpB2ZUlj7Qy+51kjh2krjtbF5gIHWh\no+PUfD9mxrbJeNK8a8LuLsj4n7gISxx25Dcpj8MEXRa442DqshRlxoZsN7/0V3nn/ZPFinV4mWS0\niWtJvNeKh4eHnkfHxkQTbz5XrzSOBVp4+NitjjmvMh/JfAUwLwCQukasCn2OPhe6nzDii3+lfJNK\nsM0n038mz4QG4XvcjS/B78r39sTTLPFWENrLhOavMjzrqe78aZnSX7XuJt1Ktle+0Epmor2IaYG2\n6IHEz07Gh22fGJOPjWaRB6KC8/mM9+/ejb4jR4MH/dDK9otBZOEaA4DYv878z7a1CU8yLDml+yN8\npS9qIiQKqjZMtzZjdr6DC8BtIa61YneX8vW/hNaZO2jgOjo1A3qeuV0RYBto2zY3YFFrRWHGTgRs\nG37y458A+w7UE576gGKTj3H2YTQk7cLSglrPTogLNshwxdzJuNNaHGDLBGMYT9K/Agrkuy231tqB\nVptZr8z9Iq5gUHhlrNrZmW2QISpSX49a4eK09jUdF1ZxjvK2csJ5B3b+hI/v32Kv7XisvSs1O6zF\n3C6VYgtqax1HexBhD6DKO1ie7zKA4ZWVAZ1yf4BRzGXoUvBegc1P7sW/2aq5uAtKfm9GI+8GwajC\nq6Ze1vE0oGpsq6d+AfKu6SdH2tAS5XJn6R5eaRbmDmYlP9MHYIATNcAIOwkXDOzkBDMmY2BDRj8z\nj4ukiFD3tmuhAnj5ne/gfD5jKycHBDRd4IurJ2Sl1i6kDdAr8Ztn0PVCu38jM6JlGwOQpRR3pxGj\nX3zKjLIRKstFV03fFN1d0ScmAcjggModAJAH66OObXKQ9/MA5uQvuqfQX0Q/Dx6Jru0GW9uOzX+d\nEgPctjJktPWTOtrXHA9g5UH6QFUebN0Bq3bY2snPfJmrd5oNl8zJfLJyc7Rn0YZu9aCtaIlxdbvt\nk2ykNutL2QRgDIy2I2ZDm+hAd7gk/ldffQXmtoPu1CtSqA3mTnmFfmLp7RGGfeC2m8gG2UfQ+vPg\nlfJJ8ywKtojWK3KULqeKxbkzfY/I6P32ncLxWOPM4OJkrS30KqrPbd9uAN3sYGqV0LKZuw1OaJ6A\nbgS0sb8AbmKembGZQfnmuHbQmxRYtmanN0BlxmlYEWDhSSsQRBVvvv0GhQilnJper4yz6IxQJ6FN\nFkxYHstign3f2wRmr0/p7dMGxwIG0gJaafbI03h5YuYcyHt3qW3AbwVN59p8iajp+L76Uvtl4X4r\nvOev68NCB0Sm29nRtbYL6j89fsRPf/ITdAXvd8qpTIy+5M9Qnp3S5/AcPjesHO1sEEbeO5zTXrp8\n1M9Y6GldlBrNWKr7rJwT/NZgr1euc3Z58TvEMv1PaMuwl39n8Eia14qOls/WFyDc3t3iN7/5Nd6/\ne4fvfve76FcQXRUsBdkgg9qQ8eKqfNcDLl4PrdpiNQDk+EqGdpCz90f5XTtYdKl+Ed/agS8XL9Ce\nTV6v8rZ+kfXHM96IX5j3xPYhq1udLHLHTlXkgwcODSGj46heMZ3qACkM3PrstoG2DbcvXvTvoT0v\nlC9jNwD1i9YXMiWwh4c/k/l84nMws97hFbFus/Ptd+0LZ5pvNP41jORbSHenkyz2xDShRUT9Iva+\na5bMymoivchc2ohgJkohOzT6LnDYFfjeYxp+dAubQgjuv8nHF7gl7QnR5cqVPkEperiqjxllMWLk\n/L7O4Ztr/kYnVF3kZ2QN1NYVyVhE8LM1Xt/1PWFq+1dqzsH3thi2VvQVVAMzd2xbMI5NPd3c6AJr\nXUhIyThKEqIPteal97ls3KO+K7JVpjhJ30jfXg6Dp4Nm9QF6P8hItDJS7K50lcEVpXPZfwTVF57z\nMGGgXr8xmCjveMrymva6FGafWwgzNCblzvYbgZbhN6otrIynT4/4+PFjO1Gn+/M2+7T/ie9KBNo2\ncK3qJYs/Lrrapp34I/IBjPuYwvdYH1+nPy58URMhctYmYABH/9Z0tUwWQOPYIAprGBijuE0aUUIq\nTP0iAzvIBgwlYtMDQyhkxeH3f/AD/PCHP8Tb9+9xd7rFLkdJ9It4x2D2UAOtfD9wLPRxk4zxLMLU\n7oNSwDt1oIQn1tjaEBX1cND7KsnSBk6y45FKmExRJVl3bNs8YJG4YK6tbdntua9Ir60VZGhDynl6\nesIf/uVf8Od/8UvnvAlfM37IxNNRBxO5aAbc8zID8ApFLcgJZQvNsnomGvpYvi1LjLCTAZr5S11e\nLDC4qDZUufdqUFXDtaItU5Ci1Fb0R7CSBeV774utLKS0XJNfpM+WA4wVJHZA7P7+/mL6SLONEy8n\ns/kDXVJ6nHjpVta/9AgozI67ddq4Iz/RZ3MFOjg2MmH7XQbEsnw8aO8uiba90SOOvtkgqo4O9c8c\nzJgW8NusBzgd8VScQ/4r4x7zX9d3doBGurmeWdluFV/I26aPa49mfeHT2OMBa624v7/vK/ZIywG6\nJjVZ2zyP5MDG8+0z6Jgu+iRy+eZAzTwnQGfY5zmtzyMHX+IQufwgNr27gZmdNTobGOcDS40buflk\nsS1PBubHuc+Y4sc87Cq6YY/mcMkRs/WwQY6U/MMf/jAGDfZdF3sImE1pXNgku4oy0tBs4wLYsqfV\n7kCh0LepRdI8I/aZjrVI+EPkd7SoDt2lrgLSx4CKw4NOB5fuSLQ2e//hA77/gx+ggrFxO6LO3XUU\n6HZnay907nN4DteEpe3X70HHwPc7HfgyfW7S+Yu8K7g56QlGkXysH+eD2Z1A3uqtbPKwf/F75mdM\nOWgcwc2xjyvt3DHVwrYTkS6qcTVy/lDFtp3w/v0HvH79Gn/24x+jK71xETaCroTXM7ZNssGAorQO\nJEYA6pLnq5Dzzpc5/J1ob7UuREqD+EV2/eoRnrd6UeKkWAHBBij1TZ72yuNs9J5GdjSr+5zgrh5Z\nFykRt0VO+z4GuTMZj/Yw5svGrgPkjkEcvLILxqZMWtzSeckVbfS4n6RAg4fRLmYY4ChkmCb6heBm\nH29OJ8hwMh/kkcl1UzdVfWLrM7k+KfKB1hdX2FhxwIH8WNya6czxPOeV5WllN+rL+G68rzLt4srd\nAn4W3GTTn8OiyIjXV/625aersfJ4tJ/1U2M9Iw468pvsnaqW19L/9L6T3qYrrCUyUErRY9ns9xgs\nTkzpKv3Sa25yrbLbdZXo7Zubm/bc9XVBO/5453kqLtNRse0jpt736icKOtkM8y7WVVRUrJu87bp2\nwsEJP9p4Basa1FHVgNV1SZjYXTWh7UfU307fGPkV3jZ6RG9f9qFsJe2EoDeRvY6KJSbmzPU3fPIL\nhaF8t/Va0mVpSEKmL1bppS9CdYTJx8a7UKaU2z7zwHZoOu39+/d4//49aq04nU7gQrrAbc63tbOO\nqx/wQltn1TdF/3SbrXqyFTrp6wlvHfD/UviiJkJsUAUIkY3qjsdaCWhBO0JJFJpTItLJqc3zRwCc\nTRb0HzrxYWlDyxLbacMPfvQjfPqnf0Kt5xTU9WyCsA1lIg0tg3tkyldx0AuN+RB8Sci+pAqrh20z\n9SfoAKrjhaWLbXdtg7LTkVwpIJipm3gPUVAY/D/v2ErBzemEX//zP+Nv/ks/mw7k3KDUsTG0HIGH\nyM7UqCVpiRMQ0Q1GrbVfs2Z0tcqWrTcD4axVPZt9MSEijgDXS5MfND0OGheKLRi5KUfyO3BmA3JA\nTVB4bdLSyHvf+XWy9V4AjqgLjgCaBbtFdxAwXvTVTUJABNipA6a6ZQywrgYDmTFAPoYuOALyzKxH\nrMW6jEF55VgSZiAbz+7OjV/Ou8Gc8SyLdFZOhQU/liqr3wB/uXMGrmI9pNbC9+xy6IwOP8gwdNwl\nI7syyu3P6EcORNpV50TYzztQxoSs3tt0SY+z3/0Xj+gS+iWv+4cHnSSzebOpI4Eg2y5YbCN42X+k\n3u5T12+tfjBA3feVOHHeQKjYYq3kVGeymYZvQmMpovszoNRX7ru2muskf7OJR6Wxpy3AVE7m7DOP\ne3kUhyQyHkOlkUeUaZcm4XUWrI4EGo7ivU2EnE4n1N1PlDUsPnRRtgvQ6qzZts8XCF8TOPBGjzs1\nuax2JEr5kTbJy+oAu9pxHuiY2zDSNtHc+92L+3t89d3vNIxaCijo2U4lWpKS8Ok5PId/nxCPNIVg\nqWB3pL/NdpLTRUT6meBxYPxusNuRrRWH+Cgc4cqsbN8HvS4c7t3lgQqbl9MtfTV1JEmwoAx6v/rm\nG9TzGbj1R7C6S9OjXelEOvQVfRsMDSuYKtqaQTuQ6eNlezj9161st08Gpbb/t8KxwR+7y3u3qdt6\nIcqgb/azLB3xedgt8y3eqSFp2R7DctTOxg7J0BuNo5udLUl8sosyFOogGCezNVHeJIf23FveCADD\n+2SSX8a/z8G7Um6hAi7Amdv9hLe3t6hcJ5wy6jWXOd77eq6OGdadREmeGa22nChDjsfT8VK2pjjE\narG8y0HAGmv+MhdmddOUp8XHaLtvYdo34/uMx5JJSxhcxW54WVVQ5FfsS3+M3yQh9vvYb7KLpyvz\ndO965sfGibKsXNFhto2tvMhRw/aydCkjLiZzZS+waR539metHgBg7jMcYzXWbx7tgj6e00Rs6nvA\nVI9ZFS50o8EEdjwh3mnX+NkXP6quHPJEJHa7j/N0GZL2yrCy8FoXVLJmBp28E9MUwjXjGco/mwF5\n/bga74vfjspa+SuZz0iGJuG40tIi9XdrPGZlS+lA61d73fHu3Tt8+PDBHG04fK2Vz6P2fqFz7FiY\n2qGk3najwgorrtJe8seOwhc1ESLnaBJRW2kHYHQ/UUQtRMfXDriUbjA0pen343JPoJQ2MIl+Vnjl\n3TWAAlEDvGRgo5SCjQi1Emhj/OIXv8D/8z/+B8rNDQhIVojvpib5YApAoM078HK+pVQkKqR1XiNY\n/mQDP1vf6iSDRjWc0R/z9YoffSfI5gQ1M/A+n7JwRMaOgP7RVgRAa9/f//Z3g0d6/numnAf4YPve\n0BkHdnyROegZ8jYGNTJA1uL1VXfVX8JtjYwooiP5RvgWy7TxjwKjHSckR4dYUKSDcOaM9JXSvjas\n0ki+FegTOX6SwbYP2JmrdDX9NTyI/JQ7GW5vb3E6nZox163Tx3zWb0AHKfMKCa2PiWsBQNa20Xja\nvqq84KELSIFQAG3UwYTl4QUjb/ma6RdZ6BP7um0ze3+KlnFhQDvSncWV/LR9qbj7fSRdMYD+KDAw\ntmcaub90cbOTS2r3q4i8xHazYds2naSXkIH+GYv6/id3oYhzHnn91cuX/Y6QoBPN3UyZLpzmSgMP\nmnyInmetk3xTeQtOnaW9lX1ZdwwelwHs2Lf/qn/qb4aexa516GC8dHu70knWXh7p2JV8tNXAm3uX\nxV056152mvXSbwgryZI87XfZ7n/usrbvOz68f9/jNTrP5x0kesnYWXfEU/8tF3rGdpjqZ+y704dW\n1IwNsBevR35anlg+TfY06NK4s8T1o1rbUYioTt6kjkSU2hnVlUTgCpxuNvxPP/kxbm5vvW5I2sXS\nL5dxXuNAP4fn8Llh5QfoM9COI81kL+Cb3exsBY2FWhEvrnySSEeMc6TPQuqryvBVkX430xGxvs2z\n7agU+9PKVlonpTvykB0Ap60dWnizFbx59W27J+TuDuV0o2M6O/fBj5Ch6sr24OvCrJWxdpyNP3HA\njaV/M/PG6u1WGgsuHgo8TWd/NztyvKjlSFZjuqN2t1h7NUh2HMzgnQ7SDZpsOdOipYXOj+MI2nYX\n6pJhHOr4BYBOHMqxjbJIw+I7oSHSb79l/kekYRxj0mzi+XzGixcvev3YDcqv6uTrMt5lZU7xu3e8\nijfJisFxAHRCpZp6rGhth1lB/SY2CzAyvBP91VhfXeto/KYa8rRHzw6fafxf68hjIXDW1zJsavtY\nw1pepizuEqx96P9g9pts+deEFo+nnbyWLo1HBK5t/MwuItuSMapViIuxYjk2v/P53FbKG16r3Qk4\nM19QNp+iktXffaLwU9osfDzyL/sghJ84z9kx55HJbWjbVv95Ys0W5v1YI4cTUeT64Oz7MGo/YtuO\nIbD+gv6yOtGGzG/QOsokU0gpbRz5JvpgWUYykeRZc9kQyV2sg+ZEX9vfQW9OtKHrC8Pbfd/x4cMH\nPD094XQ6td2O/Y6QiqEnXT4DAE3XMUy4z9CYykmiR219jp7/NeGLmggBhtMuEwAEuMEuWSkoz9Yg\nuM5Uxhngbs09my5kwGTlvgUUcfZ7NspxEKBWxs//w5/j3fv3ePmd70A6sRyJIRfvRWNlad/3HaWc\nBkgNnVeUsRgGocMGF3ehMG0c5aPunLGXg1VUHsrK8iPyX0AhURukc9uAFyBhfO8dVM74LG1LonTg\nbdv06A3h02nb8M0f/oBPnz7h9vbWrUiL/GDmtrugGza7iihT9CsFNJQq1BlYAQ0JAhg177KZrfTd\nYgWQHQGFBSrKNSpt8DWhb/UcQwOwJLaz82qcXd7ELFvh69s03mFi83cGFAhy0zddCr+J2rm3BgRm\nzpEeM8MySCr5z8buiCeSbts27ES4ubnBixcv8PHDJ9VBQL7tPds5piba9Gt71IvSvA1DEndnrHak\niQ5jZr1IXGVV7s8A+cvpTL9UXvZ2Oxq0ODrmZu7HHnDL76xNZAXJ6gzm7HzlrH9GfSh10z6Ifgbw\nzm6QfqatQ7GE5/u+t9XyYeLSptUJk8CXzEkav/ukNnndadtfjlvM9SVc2XEHA1FzUl/2y9JrZRRd\niRMdt3ZJmtVdlXeXH1e4dhRaSymwR0lGuwYDV8tm+yuhbAX72Qyo9PqIszhsJmkdLAjXFTuFZHpg\nkpvRZ4fOkPoz910k1QMxa8diu2n9MPqtfW9lx9IQ8472IWtfyxOlO+Yf7A+HI/wbwLeyOO5Vq7Xi\n6eNHvH37Fvt5B7MM+nu9KuWVwIdKbcBN7meJ+ChiAwDgahadcKeHxuAaIHfusKMz61eujjyvyrUy\nLkdXqR40/Yy5DT7aO0xGGeSc7Gh/pby721t8+viIUgp+9rOfoXSMIUeN2TSxr7Y8zWDCvyHofw7P\nAcjxjn0GoINaTl9hdmYdLoNHyBZL2+AwdbCLU1yTZ64X26Qhe9fG6L31oDKzlGDfDTxv6R3fWkGE\nCksOdQPeYJfUDUAdOpeYULat30vRLkB+/foVnp4+9XwxFkDZ+ieYIfJDdHLkp+YXfAdbr5kvKz9n\nXlE/yc/CvYgYiHqbpYssaAybBKTu42HmTSbLgzaD1QPdgYqsBv1LvgBCaIm8zmi55IPZ8mL+Ng8p\npzLrkTZ25bf3iUbcVbuvaFzRu8L3t3d3rew9n5w89JmgrovSHu28tjOR+vgRk8Uy9fmg/4wOOAaj\nBf/KSmt77K67i2xBZ7Zbdfho0MVLNo+IX4a/bRZkdl6LXzbVM7SJfZ/1FasnbJzG2+pw+aT7NZ/F\nam9jR+IRZZF32gx1+MnOXjjaCDenG5zrnmIqW4Z0pxXtRIS93+Mrm8ec/9j/3t7etsVkQqudPDJl\nSrO6OgZblPWJ4ZeMCS5Qclk6DR8/5jG3c512zcTxpSkP+b+7r6sFK/NtzBOTvx0LE9spsmtIMOWO\nhRSjmrPuyzC/H2kf9rs10VoXx2c2C0BUZy7GJmzaDBcxj/EZG+QobDMc6vMK/o3z95hx0sYbeY6F\naQOn+HIJhQYtVctrcevejsZ6fHzE3e1tH48sTb9qpxyYggbRLb8DHkmd5vbO48U4K7xyJBPXhi9q\nIqTuYxU60JWWYY69GyTrOBIPGMBaTwHsCk3Op2+yMRDamBtk19iq2E0ZzpABYCJ870++j9PNDW5v\nb/Hh8aOu9oMB0gr0u1B6pTI3cFY3osurfj73GyVCrtvREgNry5+o5lygM+GWeisgqHN9Jydg23SS\n6dP7D3h4eOgrr0ab27AZfrnON3HB03k0ANNjujqMgQ7NCefzOaRbwf28/IwHYvCGY/j5SsI6nGz6\nwzVAP4pPVOpZ7WTga8g5T31CfmtvjLwPCvYozLTk7y0YPZ1OuLm5weOnJ1QmN3ia5TE5ZqY/26AA\nGdBL2mAMn6Vp5ZjGNvYAsLXJZITL1v96oC3vVnU74h1ROz9ZvxogaWk9ksOV83KN0zilTZKoyWd2\nK9djHqv0EsdeWD8A2OjD2W4By4dsJbk9MiI6MSs5WNHeaJt5WfrRgeJsuPboHazlPxwuLc/Eb+/h\n8r3IOMzHF8Xjv9ayNeelQA/mwu3+ba8VW7IQIDqEsmtG9MeRDlkBsdX9Tkd5xHblyv5s8IUTEOVA\nRC8jfLTr2qYrIOaBa96+e4fHT58AbADixd0j7NVPCmW6PuNH5GOt7CYipCoRDK/yAWYHHpgHV6Y0\nzA6/xFDKpn09Oq8rWZBAzPj06RF3d3d49eoVfvqzn4GAcaTXQV/2u8B6va/Qf8/hOfxbhOgj2XDJ\nfse4UPwos7HD1vhV4r7skNHcb2NcVYQAUNT+th29NbUfrR8e16GNh+Q+JJvJjfgtJcuM0AiHG2Rg\nvP72FR4/frTgG6lSvyJcg5Wy+FmyzN/oX/S9f+d1+JSuQ9ym49qA2Lzutqc1eVjbntmHWJdI/+r7\n5wRGH7RKyF31i/be5uBl5QgTR97nNlUmA4q/98QsTpFJD+ufZ7QTjQUiY3DsumAxwN4x3sP9vfo+\nl3BRkuHA1YHWUceBSy0d9m9ME99FOdV3pj7yTXdjEIBa9U4K8XEiDrJ0HOnN1hPs+M+YoJvko3WY\nnqcdT4BrYynzEs8nWgMe0fphHFsj5Sx1gwwYJMHWxfNkHvsgrO9J9HEFuw6fZl1hpJOYKY08fFnL\npxcvXuB0cwPxtQllTFAE+bMLt+x4UD5+YvA6GW8ktHHu/12Wsygv1wQ2tsr6fyNPK5swspn7Q4Na\nck3u+ByaJtZnqdOjA0fmkbycZvpoyrdlPvvkOA6pj1cvpcppiHnG30c05PFaizIw2ovaBCuh4unT\nB7x786ZjLoBo64svW7tUYlTTRFPvXeg/CXLX0ep+pblvr3ki9byUxzXhi5oIIXM0lgzVuO+4Hqi3\nGb9tuqBWBkTa76aOB2O9krPCNnVWjI5ERLi5u8N/+Mtf4duvv8bpdMJT3bHXs5an4MPYElHaVnkq\njcZQjoFLuRMjGciMAjIJi157ZISarG7zdQc7peeZ6xWBcEMBhRo3GsDJ1EvKsbytdQehDd7aY5ls\ne5/rjpt+QWEpBa9fv8b3f/RDR4tewmXSrTqgfTM6rgW2a4W/y3sbZ+LjMJJm9s3xdMinJrzQ0eeV\n1zHMfcSsZEfSnhhtZelfKZ3cUK+VlKfF9CfpD8MSOblN1fyiP0ry6IhImhVwlm+yI+Td2/dTedFB\nielLN4RUZqBqaalgPR4t22kSwZMc2yXv8jSzjIohcvKPdvQdYFYndZnsvRd2OYmCwAjmWGR5uLex\n1zT0VQAAIABJREFULw++ez7KNzsoattpFUa9oAZbfKihfaBIsPTdgFkbXBNmB6AVYtNXPVvOO2eZ\nfB7259Iuj4dxSLK6Sz4zuDa6pLQBopubm7yf0MiTOlhyujIULhMNqrsBMPWdI870GCcR7YJRyd/S\nOOhvuXq5Gqvn2uQFQSc/lL6mH6jfwWB5MtVVni84i5ljm/WnOEkU20HbkMj1CXUquU2G2BVmTP7M\n1Ex+In5peXr6Y0j1VE9TSsE3X3+Nfa+6a8GueFwFocftVBGZdbLe6mZIbjtwbDspjd6psFjHXtKY\nOatxV67I8mr3hq1HrVV1GDAGJZTTV+gJWc339PSEfd/xJ9/7nspm2+JO4yBwhD6S2OY/Btw/h+cg\nYSU/KQay+q5/0z52cCxktEP6jhmkR2aQ6izVZWXWry7fBc3+5VwfiyWzJNGvy8NYqBb75VoNUB8x\nJ+UlCy7v37nr17rvoEJ4enzE2zdv225TnrFDNsjkqm50p62f1amO51dindUATIDiE6ZbyYZt31IK\nCsYCEE+bRzsrHJzl621+21l3hNEzelNeYNbTpH6tQzOg0fSh7DXv537FTvYG3i5TPTjmY2Wl495Y\nlufZFAVWxqc+bfKxz2L/Sym4u7tDrRWn7YS9nqed5jG4fDtRlucSZ9DSMCljxh1TTUz6eNxsrNdK\nj0Ud2XRju9Cd+28AfajR6lW/2MrimKET+kQx2T7gaZd29R7wzJss/ZLnfduDyCZ49DoK7VxQUO3t\nPwt/YxWszBJR94etLuE+3tW5aPCfnVBwuK5/lwXMtu6RPvE/sl3i6bM5dl5xOhHu7u50J3Hma1k6\n/M5r6cwzb5roCF3+mC7Z4Se8szyJchnr1uyv8I/9DhVCHwf1dYwyxGwn5urQP5CjkvwEVCZrQgfA\nehzxFNfxc72ASvks/BFMLzrP2v3IiwV9WTkUeK6LJo9sx6IvRJ9BFrtLXT8nWP2+ouNSHW3dar/2\noO47Hj99wrfffmt8viAPgudGQb4GRldltnavVdNE39z6i/Jca3XH7Mk94FKWyKHqgb7AYiw9vi58\nWRMhwZhIEKfYXlR6DeBrWHMwNZWuyewUPSLE5s9BIKQTamfdNvziV7/C//673ymoGSBZ6CggPcrG\nfOkOxKDBnmWJcUZlL3e6RLURuOQDAK9Ae3lRWbXLqoU+g/RsPsFATcAFAPPeyfFX6gm/sjwb4DF5\norZxBB78KOWkqytQK/7h//t7/Pkv/kL5xzY/Q6sFmWw6Wa6Ic/riUSeWD1EWM5Bj08X3Mw0j1Bp3\nZ3hlb7O5BuzbXkBoR9zYdsn6oM/3GqXu6ch4UErJJ2VEPommlogOYlrykRFL3ovyJSI98zbWO+OJ\nixfOCs6OLoIYckN+BHRHA5IRZF6qq5NRQB0KKz92AKGtolk7kjbPFr8f7XJBHCJNUs8szqo/jYhW\ndtt0MI9MPH8M+FvRY6cuZ3A4y5oD+RnYtTYra0fT+SygNtWb2Jm1xeATPFDs8bOzc5XnVv4wwL44\nLq4cHjZO+qS1jTa4SbPQhva+rJXzYGVPvtW9goqsHBwA9Ro9oDTlmx1cWOWnfOchK81UNdmPToW1\nLYDRCzx0QPcBgcTOrOgRsblWt2m6DKjuO37/+9/r8Wu2nKq6YKTPdM1KP9hye8TJFquNvaL91nKf\nOATBnl8aPBAHgJn7JaTyfd7Zl9VVBoC20wnbtuHFi3ut82axnKHL3j8kgH6m6zk8h88NXu4zm3sU\n4vGQq76d9SmbppU15N46zRJWR6naeEcYTPSHPcZlhYfaO/2V4nI+ujQ5pZOmp2mADd1n64scCoDH\nx0e8ffMG5/MZt92e6qr+g/Kszivic67oTPRle215eIyHMzr8N09XDPE44AroMdWGspSGY7pnfDD8\ntTFQdymNr5f5Heo5fudyHu/btGkyu3VNGPmNumneoemYSAeyeWTgKnbUpr6cNS1aXoJtH16+bG1s\nJqKivbfvnMx0sBvxtk1HQFs8NrmIa/0RfSTr+68Wn9lg9RP3wQdZ7e3kSAdP1nySZ4atn6/7rN9y\nn8nquayciT73gQwPw8kKnR/VYaA5zyM7Yusg/G76yp9aoTrB7I5e6ZEYDPwf+ZV2l4v6F+1rrOFU\nF++neBpKKbi/v9fjp9f0iIz6iZeMT9FftLaxvch9PEt3fGefa5+sy2k7mtA3/bX1NJStdD+P+1t4\nPzuhw76z9jS2rT6zoTHxoaLvLH229SXDX0586CvwjsQroR0u+TWxrjGd66MH2TiewPbNPOE1fp6N\np7Q0xaP07ecdb968watXr8yJReQmIefMhcacrkzfCSY6um82uxtV+qQpOh3bHq1+ua0kfFETIXIe\nuKzyAJEbQNdVNwYAkFXeYYCBCOb+C/MpGF8KjNUBG/YrqycDZQsiws9//nP8b+/e4f6hXyJWNm3w\nWvfpHHzXvtQ7OYIxJ1mV0mfCmLuyOQZYTahqqiikrrJVVt67jlQKiih5xS7DoR/tQLCiOdhIQ+EH\nUKSDSkapUdkAAwKGwhxAZK97p7vV75/+8R+x72ds3C6oL+YAPd0ZElaSaIfE6GjaAcnPfKuxlMZS\nxcuwnVZaISqTJs8djMGvgrft4Q2BVmHkb5wPKaeUIMNEfZW6bStFa+Mp0m0AwUqx2LY2ZEEyyYzd\nqAd1JrPGVwfQgnttd1G8YweTKGw5DkzqLe+DO+D4ApODFmr4LfeBnLYN9/f3TS5YCZ3y1DqZ5zFS\niUY3syPHDhJQKU0n9W+yIjzrF3YlBGv+BrwpH2c9YM+o16Y1q4NmYO2xmau31JV8vJYHp3lktlvl\nyLTBkB3TB03BFtRJk+iKLBqsH/T459gGIlfW2eLet7UvwK98a/061kXOTDX60fRF16d7mr2OQdZi\n9Lyev8rcB1AM41P+yWdWxwMYq+Rvbm9NG5usojzLsUhk29Y7q5aETH+1+o22VHDZhY6drBibEUGP\ntetGJgr1VWpGRy+dd6MvxuRLcW0RQXYG1lUm7LuAGdjIpvRd4UUExSrzgZcMzJNPKtddPrrCjfFa\nXCVwAqVW/1k9Vbnim6+/aXJt2ntod7g0Ng/udLhyJqp8HS0Px0BEHcd5dEet2a7Ov9odc1NPi7es\nDplomWQooUnaRvCGiKLV59rJhvOlPOXm5O+1gvmMv/7rv8ZJjqPjpnt1dazh4cBvRueBl7Q+h+dw\nXfC2PBtgk2D7iI2/zPngWysZqtvG4EYryco94HXUKt84QDLi+aNnHb7Eur9PRm8qTzDlaqLEg92I\nm9IBq27f9o7TK1d8/PAB796+xfn8pJMjAuziRJQNdhCooukW4c3qTjlJtxo4u9QOsc4+WP/UfycC\nzufdtA3a3SmE0XAH9GlxoSmtzV3hVEtyZrsuyXhcXGi/yd+VTYxxL4WWV350iOTrBopi2QPgDkzU\nEk55Wn9/1Re8/3lgN+F9prvb2/Et9MfYf+KzPTdfca/xWWybyH1w0Wey+YrgCH0CeKU64otDZDHi\nNwoDd5D04361WDcpdsL70l8VW0TZiYsoxzsXKOCDBPP4/kfazAPLRR0w3sx+06wTrP5RXLvAiS5O\nx3KUxMuwbLwTbgos/yN9nGTgguwOHsiA/FhcbOPI/SAxf61XbKbQBtbvkvLjMb6AWLT1JIi8LyBx\n0RpHVUZD2t7uk31SmUCT+26fCAQqAy+3tjELOPtYRQWP4ZtDndrup7AXbivmn2o/eBN/T5jFvqdB\nR/TTln5hZqNNm67us7lE76VvXq5Wu2oOJgIPzEmmq6Nd0r7U9fN+PuP169d4enrC/f29LrIGzHUU\nPK6gCIMraOacJ/uU2b3J/zUh8mAVN+OL9WU/J3xREyESmHsH6nI/HFC5R6IP/KpiHKrd6ljmfXxm\nwpjbHAMyzGMFnwzqHZ33NjneBrD/2Y9+hNevX+P+5QNA/fgFbh1AHGhrfNqP0uhEG2Soe52UTStT\nFE8xzgAPhgVhbGcbmjO+A+1guDNHpdPopEGtqJTQC98J1XjCCra/9GfiIXy5dlBigBI5n7FlTlvp\nIGBcsv1P//CP+PT0CaeHFyAZ5MVYIcD9XzuqItCgRt3T6ICt1EcyklwLUKz96YClss/DggCWbZgL\nQ58CANX7DdCNlS2xLcbvim4xEcHZaI/RfrXvUCIzseK3N9tjzoQXFkjZ1d4jXfRmSu9bTSnr4Kjh\nazSY9tx6z5YBGnWAWsAJsxrhCaANFJ3yvJSCFy9eYAuXMMd4tp56SSHkyCYZoKe+GtxM9G1mmysA\n7pfdy+Rue/BtoEwG6V+C7KSBCwLorFGPzhObdnEOR62NDs7P3ZdLGhn9zh1ryKQtXT0aP2pfNd9W\nvPi+VQ04ZOaxQh1kZKDzowogHHVlrti1bmNyaK/jwu+1A9wmgcGNDuptojGJdDBTHTez46HxzE/2\niQ7wvJW6YrRf98akrnLUF/U2Jlmpwa0PHAEDprZiTo5mY2Z8enrCi/t77fPaHwyAjG2/CnYy1bat\ni8Nwg+P62eggW06Th6L9YDXQIPyWxRGaN5sFCPD33RC63HV5oeQOlejMTn8TMM4BdErfd/Lcj1sq\npYC2lrZ2fcQYq5etvpE+5WxOP1hMedL1eaaDdDKNxjtx8GxDNT21g4hRecfbN2+bbMmRJRqbvExQ\noK17UnZrv3y1fS3SOh+ZYfo4WNuLCf2IwYINibyPCkmhvm07kcP+9r5Egw9y55xMWLd35lJIImAa\nuPD1kzil64lf/epX2teJxv1Cev+k+ebzksE9v6LvOTyHzwvXTaZdK2EruzkNIug7ho3udIFqlnmX\notro9uDKyIJd2T3om7HFCOudLtHxJt0hZ8prQ02KaXU3l2BoswBhyr//3fcdZSPUfce3X3+NDx8+\n4uHlVy3NwQSIsxVEk56dfMSkjvF5tMv8LhtYsen16I+u2+1gl7evXs9D8BInuHRR90gF88Bajd65\nXf09hAt/ygWD1yYCWj6FGk638pzjycsh9h3rn+l7i6cDf0lsrf6P1AkQ+dQsOvYijWIGxcTPIwbq\nwGDRX6qje7k49jLsF3d3OG0n8L6jMmD3CmcDZW48o/TB3eYSNv+jii7xPlOrDQDZeULe15C25MBf\nnZxBGTtLTGNnJ4zENiHBAqHZB6ZpKGM6khPmPlqTruGzUY4eAyu8JpPDaOKGK7qvMhZnFQPe5slR\nrtavERkAWI7aEN7ROC55pQcG44xcNsU7fDCTXsdWEO0JIXa4rEup79TjN7+uTaJsXYeNHGW8qe+y\nJe+3zH2v00Xc0hqVWErB7d3dWNhi6hvtotgLqbfXKL7/ZmOKgu19vecFA5aX0Pdw8p7V0/l2LbJr\nm9qPzbI6m4M/OBZjevqPbIbfoeOb240dLnCG/TbbaRr00PBXbNwsr9W7qYw6dKR8z/LJ6LJt52ih\ndfrW53PsU0cUQ7gS4+S25QnYhfTOq6C2MOPjhw9Dro1taJPb1RWiC3PZ9jXkHdYSwTyNl0T+THxw\nIbfb/xoP6YucCAEwjLx9RU3HqVEWQQhO+B8LViSQ6WDX5NfiAy+/+go//elP3d0m6jyXApijp7wy\n2ACSQbeh2MYWwzHDvOo0MVhQr3FpjuPj+whxkDvW+Srni8fwq1WydhVUZUYxHWSixRip/emsxv7d\nu3f49OEjXrx8CaJ2Lr7gArufQLIQQLekFR7EW50oDp/IoOVD44XXDzqIZcJFJWJpEeXD7M4fTNu1\n5x7bORvMcbSEEI/rOOLVfqCWHOCdCuugddGvohHPjGGMm4VrdEDkz8PDgwG4kW4faq26Oq/Wqkar\nwDhh6pB40GBhgq/fTFvPYarbkXGf3ruqzJVqtPqzlmOeZDLy4CAXaZuPrCBzchGMowUEGbjjVUFa\nVpOr1QXK3rEcE7XSz1aAp00S5X0uM+grWWU2R1Yt2q4Bkrxtj/S+ABlmxve/9z09msLZjOgEmLY4\nArVXhYNk0j/ssW+ZY5IBJKuLLVhfhcq1g4Q2SK0TlQnotXQ77AAvL+1o3+MVtNEJksmbBkblO03p\nibBciToReRTD3E9kJ/ikThqPGR/ev8fT01NaB/s7TgRfE6wcxrSRb+3Z89XuArQOzrhna+iNVR+5\nxkZongf1uLZf1Frxs5/9bOCZQsBu6uxkJ/KyYYp/JVx9Ds/hXxWirGd9JhucQaJj7PPoO5TK+LX+\nQ/+l7/zOaz9IPoJZgHZQ3jRI53PQV4RtGhhY592xChFKOYEK4/7+Hq9ev24Xpkv+xn8tRDpJe4SL\nZ5rh/J5YtxmjrHmenUmvNFmdvqDRluPowzWDH0Lz8lOKD4asjWN40sGzObflAB1kkJUBwe8y0ZLV\nVcpiBja4tVbtGx3XuZcCtgvG+iy6uBHFyWYvU1K6vGVRkOels680crnsJ3lb3rD6GDw73ZxwvnC/\nmE0rMiYX9Er9op2d6fKyG30m1oF96Z95f1npqtU30rJbEL8P0A32h76s+utL/L7gP8lO2XkHM5Ec\nL5xhqrwutrSuciADoar9Lsmo6n1MA+Z5+Ymfz7nflAXxz7gyStk0fsSU2gbt5Ugc+Df8byMPxNiZ\ndVHR3hcHya56AOai9Lkvi58l/j6Zsqw9jaivZSc7ucZbcWWdfnN1oklvIXk+sq22TZxWiXQKn9tH\nH2/lw9LUBMtwzRhNzD9eHM3Kt7wPZmOYK72nbxasu2SX5dmOWQwdgmNmpPnni6MdicGdlZOD5LmU\ngv18BlXG44cP+MMf/oDb29s+sTjsvUyCzHb1WMfMPvWYqI331EqaVV6HoXXyYbs+U3a+2ImQphvY\ndUCgos+EoClws8pIFK8RnmxQ7LDMAwc+G5yzgaigbMB/+pu/wd/93d/pxVMKLusYDHGOh5RlFKA1\ndqODy4z+LFzWyNq60+I4Jk0bgBLQVjBpehoda5BYVDEegfNYT0un5a+QELen1b3vDBG6niqKae59\n33H/4gXevH6NP/nRD9sMN4aSs8Z91a5qpPrmnTqZq7jbwlZhcjsc+LSGUL5zSHbVgIs6L5Z3/m8E\nwuAOnPv30tsuk4RosC1dWdCVQpDJSA8ShR6/tTTQaqojg1JHA1jRyZzkHwPcXTOAJ/VVGqlZ74eH\nh+UgYaRHBvdLKeMoFIKuzGdmHRwT4C/l1lqxgVC2opNcjQcLBU9BLs1KrqOg7XkYC5CzmOIZuhOf\nk36kZ3Ub50yBnhhVWSEt9NTmqOxnGSAfEwBRBm0dd+krhQCQcc7XBjWTI9832+o33YFmyi/b2KVi\n82j6Ouq6fHstUV9BHla3KZ1k5flYZvUILJNeLrMDxrEZNzc3wFb07htx0rM8xanL+jz1vO23qNeu\nASTzER6Y6Ik62ttIRt2ry0e+R52D2lbCgKEr82MZ0fZdCmkdec6jRZsnU4SHO6yuX53JGtogYAZb\nD91Jgd6naEzIxFVStTa98/r1a5xrVRjFGI0R9Wz7P9vuNcXL7GsGdqONc06W0JutrLY4SOoabPhR\nYO40wTukpV/K1yZE+grzxLbbciVIGgD49PiIcjopVmVT172Xm/Ete34Oz+HfKkxY/DPTH+r30D/1\nKGNg0gUSv4ajgJzsJ2WxeS/UZ7gPINTq760SmmKIA1h5/Qz+0IuNt2mwVnaFtJ2vnr5zn2Qt29YW\neO0VWyl49e0rvHv3LpTXbfMBTpG8rV1cDVasBqiiroy6OPJm4JyctuivxTSyS9QeY+S4nNiCUYbE\naX+LuAwG61jfwuSqf8Vnrvr/pE+w/0EdmBAG5htp4rG8YTcqye4+DDtleBbbKLaJtbPik9hBPtvW\nUlYmB/OAk9nJKLs59Euru8erl30KiXdzc4MXL17gzcdPnWYfL0sXL8QGBh6utfaVh7EOwM517Fi3\n8oYZn7dMg8/YMbD6TRkINXTLApjVd8FaMqpjF8269kjaGpBdsGbXREjHXHX3h9ar+xwyNjLLxDye\nUHlMEFCZF2c2auZ+6MZH9D1pfJFXoqJHgEHxjuBQL08NN5Fja6aTxV9pzUSwEwNzm7CLvwqXZFzr\nC+Dh/n6kMeMUcBjR8yuugJ/jzPXsEdLvk040Uaw/5+M1GiM+nnWCp6tN+DeNpXYOxk8NfUVlTHWQ\nx/OOfilbFzO5ajldmvkN8YhAyynmQT9j7n8Sd5L4Xp8oC6XPZDGPcS3ZYYGeDyc+emZbNU+5H4sl\nh0hLZMjMm0shi1e5jqP50fri+w8fdEcI18yHj/ZxHpt00pb0I8YYp4FgI5WXMZF+lMei1eZYF2yV\nDV/URIirVz8XixBm9ayCrr6hmNGOIOr57NwvwgwhCu1yPYNVngdCOQZlGH/1V3+Fv/3bv1VQpeqG\nygT4ma1ZklVTK3pzgKuKCrlgWAWvDJXfBkxlSpOZ9bz6oegqBAMLKFnxZMWnAWLmb/Y313b8jYCB\n8/mMU9k6XQW3Nzf4/e9+h5/++c+x3ZxGnszapnHwzPJkvKN+4ZQHOj0rNQh2ki0Cj8Hv+UI2gQ56\n90SgxfHbGF7Cmo/x2TkG3Er0d6N4+ciMYgSpnsbGp920IWAmnwLvIthv/3KHRGiQcpxhDXlK2dER\n024QQNZktBI+Cn13d3fYuYbVV1DeRHotzzQfYKxGD9mwuaND7EENA+iltLPnszAbrvF+xXu5kN62\nD0K9iTY94iuCpugQRF2hzumBAScUBAuqQMTSHNNmzpSn2+sLouL6TCkFZ97DpGj7bY//iQ5k7CdR\nJ0jCI4Dp5QIQBsiFpzJAUCg60zx4akJ2jukA3uPuqZubG5y2bYrHjk95H5/rcwxIMlqz9pN3cm9N\nA2jFtXu0PzaPCHCJCIXbnSuyE6IBrEFKlg8RuZ1J6Lp/ZXehcXzdjhwMQZ4EjFVzHbeI42DzyGiN\nPI7PsXybvFfJ3W+jedSKV19/g33fsZWtH3lXtYpKT/Flxf6Q9Vv5Petlbwtj37U8jMeC2oUgsqsI\n8Edf2uAmfzjKZ4t9kt1pRP0MZHa7jK0OdPynwA9uPP7hj36Eh4cHnLkNdo7dK9VgP5roE15JOz2H\n5/DHB4s/c+f0mpDZ4JU99ro6TyeYGaBwZPE8kGDpjHQ47IKIredBFDkSS/sZh9XCgMMEGQ/8b+5+\np5nsoYq2k799J6ND7eplKZuI8HR+wtfffI3z+YztdFL7L4tnIh2WD3Is11EbTYMUQZ8NHD+4NCw9\n9dOcTXsXQuGB1QjmqE1jN1R3Vh1SHbv5CDpYHGle+SORD4Th43p5nONmz/ZOAnufWo+0LjeUeYRN\nNf+Rw9TvYvpp8A80DR5LLiufZ/yeaZRc58r516v+HsNo54YpttOpLbr5jDBhPOo4DuM4dBzKRfAB\nBIezH+RfYUn9Hu7zzHxWKW30JYvtPW53WGdxnJCPD9jFVBEXaa8Z8KOVUWcfetX2Ux/DPF4BAIU2\nl54KTX4pc1JOx7qCvYlI28O2zUrfj7wOZA5oOM20h9XL4/jb3N/3deg+mK2roUew2O3NTdO3hdxi\nMhhKbZtHDJethLdhsm+TIluyY6pL1AuKMU3cFR2WHqI2UWb9BR4RpjxqrThRUZ1VgbZwIMH1kWbp\nw0s/25TJ4oOJPxDyjjo1y3OSC250ko2nr9c6Ib7P+BjrJYwk21cWcY90rw2p3+mLUzssZe/MePf2\nLT5+/Ai5XsFO3oo+y8a5XH2Y3SkGS17Y70Jr0j553YaBynVbWyifXLO1DF/YREhnkuo5gqyYzQHr\ncDC3bcN57+cIUtKAksbaYKsc+8rkrKFKKWM2C+vGBwg//slP8OHDB7x8+RJbaTRZoG8pUgExecrl\n3hawycXxALTxnTEy9NpBA7uqRZz8kZYhZ2HbS9yd8pBTchMAqwNZGBcLZ2BN2seml3qvjIfSGBT6\nVjad/JL0//j//j3+03/+z+CTmXSyechxLESTYtc61womv8JHj3NhxtZwlpM5Wz/fhvGszZ6G0Fev\njOKFX1FO3aBPrZMCcaBrEfz9AuSO3DmSY6lDNDaN1nxgzD6rvEJEc/DM1knykV0Vlh+ZoRw8ycFc\nttbFx+sgls2qh97Oku7+/h6fHh9xf3unK9qODFZcEdZKaaCgkL8AzhqbtrOtO5MYjjwztx1Z5MuZ\n2ytMWKLB5uw4MQsurM4Yz7Ps6W8ewAbAuAjb0dx5z4PLkVc1tJUAj3kAYwZ2Md0oZW6HzIg31Wkm\nYtQge/7GPmf7mOgaS2vlNphsbYptpzhwYdtrOME1PJszmLtzEeve9FXXIV2nbNvg28PDA2xC1+YB\n2GW0HfN9hFk/9EvXD0KU42royJxWzdvVqNsOsQ1sVvuH+kTdKm1s27Q50HWAVdvnEtwR6ZvfNRnU\nwTeT12rVU0ZzpqNFTuf+3b/rJVUACDrpY3n/69/82uERNvo51smWYXWh5aHDSMHpGGdZz6B2yDph\n3899V90Meq18aL40zum3+iKe1W/poWC32daN2m5Q0YmWv8OGw6UHCE9PT/jVr36Fp7qjbJujCUaW\nYPK19FkdsXZTn8NzuBRmfe/0x+fmFvSa5rXIz/YRZ/shNix3fo/szkyDpnLvqeMon6aCmRytk+9l\nsHHs3yPzjh0Q6ZTJ/AqUzU2CtH/97HXuJZs+/urbb/H0+IjT3S2Y22K+ExWn46zGkd/c/QB79GrU\n1+7eDlNnzcMObkZumkkMBvR+zjgQGwcqpN5EfaduwJREsnJ+Dsf+i514EqocxR3KWRzS+WB8HdHp\npU2n6N2O2S75zKav7HX8NvCvYGZKKB7p0iNcMS8YOyrzmlASP4Yw7i/DFfn5eg7/najvPnZycUxr\n9HktfiYaK4g1vn405TsR6wvnQrm2nFF3T5e2mbHNgg1s/xA/yfkMRm9Y/sZ623wHVhkER3yu9DL7\nMQuQ4t4sZOV72fETq+377O8AADGhbc7pPVcYTJbekXPmG3uMN+K15uYxuRFomuvVaAfGIjLNH8Gv\ntSGwKbZR9Ld0Qq1/uzltTQ6sXGDmbcTIq5DxKNI34top6sv5rXwUm/c1eiP6YRkOX+ZL5O63++n9\nAAAgAElEQVT8PNKbF+l2/R/aca3umfMqvn/K3+rpsEMBogMjBo/+ji0bod2zusjkkK9SszZHcvA5\nun7VNt73KZB7lZ6eznjz5g3qvsNe0ZCVC8DZLrGTMdZKBi0+mcYJyrwh4Ko6gmBtwOeGL2oiBBh3\naYy6sgqfhq4Q98rYSotbuR2vUgF31MoARAKM84HU6KjagX013GYAAU7gupIkwna6wc3NDbZS8Hh+\nmjqVU6TRAHNBKbPwSHnZgMJgSTaQEjoa/JnkehRFTycr2ZVe8nlLHjHnEhRgpL/QDOhsm1ZmnE6n\n9Z0sSVvttWIjwj/8w9/j8dMn3N7eg6m21RiBJ1LHLDBz33u9UN7UL4Ez6MuC9FVo9egYQtuw/c/2\n4zh4BIyV060JSjphZmnsh6CNNEm7uS2Gtu4hb6l0Bqb8ZbPmuwHUAvR8Ofb+G9L8pZ9FICqTIV6p\nj5XbKznrkR1vLXBT5QwfaqdDLpluE2B2tpz0yLhMb1hQpv0w1MkLYPOSZXhO5R7zQF5spxXgyr6J\n3Kj8GZ6IVrS6LJN/eSM763arU0lWLbFlu9vBFwcnOaS35cV2dRyz78zPoefmCTod+HYTJGT9kJCP\nqUNcORhCPE87BRM8+rroe2Y2skHaN+ygaClF7ZrkkwFv/d07fa0V3/3ud1v9lM+8vPwt1j3qlglE\nUlgxxDmwszotgskl+CGRIUnjPC03edkGbWZoNiDDejVgrKvo8dLrJnJudd3QP8fAbarSBWC74p2l\nL8a3k8Zqs9QBUDdx6m/Sdr/+519juznh6ems9eQK064MuSzW0hbbcVXHWN9Mdod9a3K7baf+fZ2H\nTW+5YvXydJ52nPwAu0Uz572OXUrcJ2cvTEmI7iz9SIi/+MVf4LzvuO0rvHskx6fmgBVwOMIHMHpm\nmy+Tfg7P4dpg7bh9d9lpFMBocYPIrbzO9dScd3CwcbDbLlJxYBuyumXYr/0V/Wh0JNa6WLEZzTQ0\nG5/Uk8ZCEt7NoolmpGAH8G0daq34+l/+BR8+vMPdy3vQqWBn4EbK5DDpH/0XZnf34SHPhCfyTx2Q\noUNlUmDCyYDiOsDwqac8wp+zXEjbrGmMeIG64OkAFeWTedEuSZjuBeMm06KHR9rL9ivSKYvEch74\n45ml0m0xnZcr4aPDhxC5nReMxaN3Rt3nhSSCIW1bRR9eJ+lMSOsVH7vNFixyd3fX3BkikMG2h/0t\nKZMxdtN4OqRvoPtMI7/mM4k8N1mNZVu/yPGJoIsqPc9s3lDdwSy4yPj07cdcH/O79Hr58odsWEzj\n/AmzY8lhOaN7PjfMeNP7TVJPN4Zk26GbCjvIm+HCrK1HPHY6MpoGJx+hb8z58tRu6n/v7PJ24x9M\n7lhZAKAyMOTpdHLY0epGm19mg9aY/3J7OfnkYQmO8LZNozSYuJdsxNAn1emYWFasY1scPvAwg9Vf\nvNj3D+CA9rusfxzwImY5eGJ5NMt7RmcmT0RtkpZDXFcmzKSf0VtErH3mku8kPAWgi3EjffbZ0ReO\nmC+FsJ8Ze93x6eNHvH37tvfvwYfR/iP/SkNa247OwX8p68i3zWTSfJzqvMpnalXthqT99drwRU2E\niBJGP0pFlJZg1ShEtBFQCmo9w6+iKKh11xX97b2mdLPq+arkzQhGPz/abHrNgJkaDiL8l//lf8V/\n+z//D4BaWXI2ODO7dAOWjpDtEJgC2RX3fqvmsFbxSCgy/1o8pjGIQIXb5omA3p1YEo1zc0Fpp7Z/\ntTOEDgoDdMTo29W6QrMFlIzh3FAHA/u+49tvv8Xrb7/Fy6++1y69Mp1QVk/ZThnBnhiBLIwJNQ8c\nejNPIQOkK9Ac06VpuA3QRdlP0/NYGd1o9xMfs0zNzoo/V9kbYpGhrZ8zKnIwZGvwxImQM2hjMnKA\n3u4oGIMV76qQ9POW08tOTHzOnd22E+N0c4Pb21vHO9FJK0UvQVYXFNPeOshlVhWOTAag1DrrSTp+\nFU08f9YOJLbvuzon1A1XrVUvagbMpZeQs1p7HcxqRCvU49zXVt/d8ERjdWAu6VaGOrvwz/49km3v\n9BnmCS3dOAxA5tNBdnp0HnL72IRU5ZVVz0j9os5Y0XUUR3gk+o7g7U1L4p2PcZwRdPJ+BTrECZB6\nggh3d3ceIBKl5x2v6HVtQvZZ7rCx9B87Czk7Mqs368ppBYixnZs7VmvoKVsHBetBH2b11X89mzgJ\nEh2EzO6NNsFYGSurkns7VfYD4bNc5+0SAS/pYF8H7jT6KxG1XaXKt0bK437Gft7x7t07nE432geY\nudFb5ajLuS+6XWLw7I5Hj2Z6W/5mdXW7RQ/iSd4ZX6wudPIT0gOMApk8absk9zouTR/6w8iKlUGT\nVykFt7e3+N73v4/Tzc1o/5HEYT47yTboN7vZ9s/Y5/0cnoMJl/DhcVruyyHIvQXEdDX7OqFH0x/a\nT5reAxgDegmNgqMtXkptiqEq1+fa40Z6oul+ilyP9EEKzuqVr7RsuLxAJk9GfqRHNRJGn5YjPQDg\n9etXeP/uHb7zg++j1A3EYdecqesRrjj0EdmYe7EN9qPUr3POYVv5G/DuoGVeJMU8p2l5taMXt4DV\nV/hhpJ8XkFwTLuFIS6vo/9i+Enf9nNmV9r71pbltmt9s62HzFtpzeQbmHcq+znXCZOIHSFvN7cWj\n87m8Mp9pLGSUO9cEz1ApePny5cD/oYzYn6f2BqbFl/54y8xnGvxzPlNnpqTNfI7Yrs1fRveZ+mAw\nj3ro2FEjuPt4AIJ/1n8MnnUMBjZ+rvyV71f4PmkdMMvXEV665DdZmgF4OTUYUZ7FL9D34g+G+mR+\nS6TtKJ6ly+oAVx+a5WzgMy9r8XuURUvBixcvnMETjMyYeR/rIn9T/WFJT3SEhNEHjneGrHRUNlax\nwuQj/sK/SSbtJA53ndf4UqZyYhnuG4/+JyVlwWJoYN71PegRWn364iYT2NEhv0W/UZE7v4ZSURsp\nY7jIJ9+PAi/aMLPvEYXFcQhmdgsU0zy0X+yg0hZ3Pe1PePfmXbtr+XTq+KKVUuugsL2yPvXahqza\nNvumepkZdpRxFY7GPOK7a8IXefhwHDjPuogIiWWyD8ZgJ4ArMnbFYGtAs05u09/0swX/57/+a/DO\n09EQh3V2YPOygYj1iCt1I53CRTvwY/PL60ntGBb7T7+tB5YmWgH3T7/1XGKniW16JO4vXrzAb379\na7fqOxq2jCdHwSrO9hzqyiug4SIdleDKcvJWTPk8wOilQMAk6+77pMDWBt3Gz/KQ1JccqOxZ4kYZ\nzIDBkVN8bZ+a69D+ZhNFp23Dw8PDYd+b8xuOr8jzqg4hJQR8rECRgDz7Tt7buk3gYMYDU2hSleep\nf+XfQsbVocJl2bHfXN8Off5fE6JMujK03Hnl9UoXXgTp4fkYEAy7FvtiCqAZU172eds2N6kiE3Bf\nffWVp4uu6yvXhuN2nvtrBo5XoNfFWESRNv5cMCrB6sjY7nLWr8h8Fu9yGPXeTDvvfXKioN1vQpWB\nuq7DkR6dMAw8HojAW94/fvyIm5ubyaFj7pMhQVauqXcGhq/BLsCQglxPHzvSMd6qrSKeceXRvKAl\njr1IniIbVt/f3d3h4eEh1Z2fE7I2ew7P4drwx+rCawMd2JBMFzv9xG0AiPuJMO2MWbGH7V6g0R1p\n0m2a50Uac7yY4Y1I61G9Mpu+IorRFk/JQgabRo4ZZWa8ffeu17shsJrREHTaagDuCCMws07o+6yH\nXxX9MYvjV+3q+TDjuOizMEOfIy6Ii4xkEMfioJrcobLiS+7ZjC9xwHFVz6OQf/88/HpNnyXqO/1h\n/eeMFz5G5OHK37O0XOKBzWtrZ7GCmZv9C7hWTtGw6VZ+oN0F4spK2eOxif1n72m4hENGv5p9Jk7i\nATM50UeSd/a5stcfNBK7PNLykm/UFPEo67P0/oGe67Tau9e0PaW8jpX0H/X7JwH96+g8CNf3k6O2\ny3ZHwekUL/+Luks9Tbrb21td6Gv13CVuW/03lWkSr/wP+9emuVYfrfl6vZ8RQ9eaiH1v/C5hl91l\nvl+iaSbieh886oWV3ZC/sY/XWltfQJdrAnbI85rmlg8v/v2RwdlFU69S4BctjzjFfGv9ty38+vD+\nPT49Pblxc1tEpLbQhkKbW1AmMS/5Oo2lBzJ3XOt/l/BF7QjRAbzexhVmi17SGSrvfeVo73gFaGei\nje1eKi7cO4rO8ZkBAPQsGECR7a9l2aDMPC7EMkJVawXXip/95Kd4cXcHKsDH/azltUWuSadmP2Pm\nyoEIdNGZQK5oyqfukIWzTQHZotgYp3bUD1HfqmmUtZbWrF86C+kVWlEjgVHc6FEmfhzEjflJ+dyP\n5YpxXBlEehmf3FVQCuF+2/Avv/89aj0DuGkzt/C7KCxktzWxBt87ECPOXAcAVBMHpu9c4lFuMW2g\nK3S1/vnkGuxWfB3Qlry9bAyHhvsglgFIpe2qYuWdgNUBfnS1K0wfADu517qU4vhSggzI4JDwSPgg\ndbWOT1xtYX9r+4dB1ZWjqzUg4VPrvxGMFEi7NueidrXB3FYE7NwmMh/uX+L86bGdpdhD5kjXyuZy\n3IKN0PpY54ilubpVx2z0APk2k/ba58sxLS19sVHvq3B9R/4e3UcgZ7/agUgx48KrNnNPyh9nPHs8\ne85wE5kh75voFmacOmiWtAqYyNNg2zrSrD9NXXUXGdCFtw0yw9TH8bCDFdFfmqWp0xgiGE+erh5D\n7svRmP1bsqKejGJ28t7542VLHDuhW3g68nC60ThIXCvu7u91l44M6mYwMsqVrNTQNg31nnXkDHab\nDLcVwqWM857bZYwsJkZlNoJmeW67J/zdU17V9jsi5PhLQGbUOyFjlXINk9iObubeXJJPVX3ZbFPj\nv+ojsY9AwxiltUvTfy1u6bQWlLaLStpSY3rAadu+8adqz7T6MDp7W5daAe7gzsO+DXsXgEsNwO/7\nE77+9pvWFvve+WJxCfogC0ByjW4djlDtsllIAYejMQuxbbX5IH1i1ktiU7XVuK2+dufbdxwD9qsB\n3QrwTuPYJ9vor72y2vc638dRqpg6jLMlPf75fMZf/PKXbTfjtukRXWLn7T1vQoes3LW8GDtBjpzG\n5/Ac/rjgbUvsp/JuxhnOHnOBTJJm+jpiLRtPB0QDTR2uIcp9HDy5NFCTpbFpM3zhMEbASVYv+yM1\nzXuWO0LGCm0S/4QZVBg77yD2l3ITER4/fsK3X3+Nup/BfGswuKH7Qr0znRufmNsAjtiFmLbhpgEi\nZW0v60ywb0+b3vJBPZQgZ568Yxmb7IMrr2MrOk4j74adtngSh2HVR0b+MQOa4g1c0+o7MOnAdWVB\nR1YPZtZJEFmNXtXuz7jMD27lffIoRDw37J2to8cipRS8ePGi0dWPE76mLMWs3Zb2M0AAhKNokz5A\nIMV9tVbIJenWo4myJEctC+ZpaofMuEk/iUD9aSkLOkahaSxbEvqsL1VMGTZfex+h1FP4acuT0yAk\nrWBE8bWuCa4tKPgfPOIojjJtLLp7KwUVNGGwKHOWZ6tBaJs+yqulV+WX+t2kXF2+0lczv0R86an+\nJo4MGtt3wm+Z6HO09kbN9NSqrlNdRmmqQlZp9R2zUz+2/jbPsXvIjnCO+OTETXDpse0Fs/ZRBc00\n4nJl5UtG11xvuPfyZfRLmmRQxwkSG7YqYy13Y8Gqs++SPuCRbBwi09Um+4NS5/RxTAmAHtlGNPxn\nS0fjDwEFKFzchPPoQ1JWa+vz+Yy3797h08ePk8wD8+Jd+3vGGQw7CZPymqDjsJZuqwcvaS8ZV3K4\n6MD2Xwpf1kQIMCmg/isHPhK9WaUA+owAsU+lnWySYWrNR0ZZmDRHtAIA19qO1+lnXqMyTtsJT/U8\nxZX6DQNLU6d2jgeGUSQqbZBSwfwA4ZFDAgQ1XyLXX0MNRmfDrBjHgJT5HgVSECFmgY2GQ8GQoTtT\nDlCaxsVWzIxzv2j797//Pc5Pj7h9cd/qagacHD+FvoEAUsXdtlV6oztoHnm1dFY2c6WvxEx8nBWP\nZ3h4XMjJMFWDv9VaLa0zK73oBsYSR/B3I8zt5xWuTgQEUi8CYcOOVf0JIkoXvJgQrLL0oKnXj4Zz\nJfX5/9l7t1jrtuQ86Ksx1977v55Lt09fbKfd3bS7A7Yf7OBEcUx4iEQUoSAuL7yABAoIBChCPAAS\nkSLygngwVqQI8cADMg/ICkJIKAJhEDcrxNhtGUvpWAntuNvu7nO6z+2//3uvOYuHMapGVY0ac63d\ntnT6SP/4zzp7rTnHpapGjbqMSw1q+BYi3Lt3D48//EDDTUmdQwg9FvhKeCZ8XRvsEwFhnNBIMzHo\nAR8GLOLlNF139TW/3PdjDX0Jp6VtGUOrS1mo8hGnINJQx2qDQ1sPhnCHzyu9IYZwgFN5y4T/Usdr\nIVdblye1Zcsv1tHKeIio3qwjmFMwOIWmbPqUufdPp43XOfW/CmMp/Wa26swviBeWDjK2GZys/VnH\nrUxa5Lh0frl//36d3GmlTlocpo4ZraKjIflneSu92m4Sctzl1KCVZcMFodIdQa6y+9sytZin1oNV\nmCnHKcNf4Nd+IRnEhufau+MG5dv63DauPeYhl3Fn2WXHuJs5PWhyQnhPTp5szMYhMmMKDPCGb337\n29W4jg5AcPAgMlL6Bp6G8gzw4Rsy3Z3ZEIOBa+CVtLb7Oxa9q421X63d4Yzs0Ifd65G6GUyyoG/l\nkJGtkxSdt5fX1/jCF74A3jZsZO5uCfmz/nUyVfnzdob9q/QqnZN0wmjKXyecSh55Weq1+hrIx//M\ntt8ba3uObpwwm+XJ7Mqou4YJlJ06YvvyXeWCscuYGbxtWMriFvOJCC9fvsTjR49x8/Ial5dX4GUB\nk1/QFUtd6rIh9diE2RJcttAHzD5UYupTSX1k/5IjAlFeZpbEPxK9JDCIvK15Opw5fXtYm63t+OkT\n3Kfh4WaYE+oGAPHlMj2V8UXk56w967/1Z+1vwKXbcX3CP7Onoh8quDj9Bn83nficsoxl6xlp6zUu\nUceDkwUM4r6YtYk1I3prXZXGd+/cBVbWSNxxfFr/V/hC/WyRPdXAaBs8ez2ujsSO8z5Tzhva7zXU\ngtoJfdNf5zVqN4SRlKMetgsOH9aNHJ2kzY80fk0mB+XTbduOC4W6FIdW3sFC1MP9Gt4Y+MOa4AaW\nUopeEmRljLWlpF7xYIVfinQmPL/3dlgndC1+NpKG8C2EtMEGUh+69QsQ+AlB9mrTpBtlLQ0M1Ycy\nQnuRWXfv3u0w/BElKwcsDaIgGUP1e7rYdzFkb4V5qBIW9722er9Iy3WOhJqnbF0XAMPp6Wx8zvya\nYW6mocmG98n0o60/9SlOJPExRRXZRQZXf6FsL2Na355etek2OtSWkSHg7C+9p4h3fK/+fWPGtq54\n9uw5Xt68BKjrwlq/X6zN4LbzG6KZep59PE71zcxXjH7sHzZ9rBZCJPTSzCCZDYAZsXs9jTlsPjKr\n+7z1OJjGKT63A7gNqmVZcHNzAzDjH/uJn8Bv//ZvYeO60/zl9fUIJ9ddqA2gJrTzSzMj/g4y9TQ6\n3ir0YYQLjfHOFf6dtmYTHOLAj3Qay8bvLrepP15CbGEqoS5ZQX7n7bfx7Nlz3Ln/0K14Zo5OBoFt\nrwsbVmHJgA+9BXE0xkWjGc/EfCSOB3jk01un8cTIrH2FUaSsIGTyZf0s9HE7cMOOuU5HfWKcBuve\naQF9xwFG6QNl7R1+FRpYZEZFK+PBG3kyNgTP+/fvOx4qpWBdV3cyqJSil9PL+1LM6Q5tb3RObLsR\nr2yyYeBha41IXR1tyEp8XEjJ7kjI5KrdYWDlhIvD2porpQxK9Fxn0j6z96pIm/Fovbv0nNou8WAM\n82avEs2Tw0tOXwkNlLZzJ5INsWNfyhvvmIlc7zv9s+R5n+Uh9PQKESQOq5U18n1ZFjBafNtEnsdL\n3zPjVNtJ3mdwZs57HR/d6KQZ1pEvREUjXyRuRbQtuzBk9V2qi9hWwPGtubze92ly+ji86+MB4ZuF\nX/h0qAeopy6KtXvG9rL+tvJITiOg9An5Lvu6U/yN3/sGsG5AKXoSYtZW+9HrQi6f9vhqpu+Hdo2s\nlnaIoPG09c4c0/9Zm9K7ysPw47Xm3dSW6Lxu7KQdB0f0xLIsuLgAPvnJTwKAXrAp9/TIsywsq9Bl\nsDlepVfpjzhZhzcZdQDGyYxZOmVbWlvLPq+TS/Y8qKnPqNxs16Tq9TPhyN5lMigb41mtma90Ksnk\njZw0EdpsTVYSgA/efx8vX7zA/YcPOx0CnjP4Z7Iv/qYhNrqvL+ru7t90P2VPLGX+mSjxc2TaXP7F\n0ySSd7c6TSKjq7s/vzBc0mgX90WFVkjAAuB9G3bZRrtIhl3bXmnyGLq3Okrpfn8WScHSahhn3PXe\nbRIrTrbP/cYxJslnlluoh6I6XFzoqXiJOmHhVbuykN7nYUOGO3uL/HzCzG+IPmlmk4y629qadROs\nWAnVB4DCb+meTTbG7zPZl4VFL0Eu2PzsGSod2+oPNTkT64p+k/+e+3Ng67V4HGwdROZ+XS0jgsWV\nhNC101L+5+XvACu6v2drgxnLIpt0NFmeU//B8JMs5HE+RljszFb34fIStJR2yLzBzLn9a/ER+9W9\nC+34sTZ/59qwpFadSeov9UXGAbWh/pM6je12TLhKe5lcpmbwz+5mtGU6/dBPVartkPFxhOf7S3Gz\n7zl2ePR3LBxuM8Pe2G4plS1kLKFhGsLq7pzeLnsbE8fjEc+ePsHLl9e4PFzqOBR+ZYy4D34cGbns\n9GPatKsjk3WxjY7Xvr1z7ruYPlYLIcDojMozYE7Q7J0t11QEasCKFnO02CmaZozGSZKJsI7v5PfL\nmxscSsF2POLLX/4y/u+/87dx7/69NlFaL0u1xbhq393BmCncPsHSHXj9TQRCN6qEyYnIDQD7113g\nCz8wMjwtPNXwdFkcFWd9lg3icwUboe6C3XjDuq64OR7xve++i0+89Sk1yKfCXhTCpG3mujtCVEEa\nM9zhmBsRtt6cj+a8tZc2ZtfnMmkU8chcOzIhRgidd7TEpM+F76yROVPcebJOQ1XsC/Vd694Os3V5\n3M6h08y4j2kxho+8PxwO9fI/wF3ymRnGhRY1LBpWBvRm+PPcIJYyWxyLSZu1j4uO32ox9O/STgek\nf4mGfXSALY2sQdfp6XlC/lZ5NjoApwyAfhm47ArzZexErjUwWo2KmvCOa5doMHZn8OuON/mQjA8x\nGLvhrzuimjuV8ZPWa6RDHFszPOW3GDid6Xvc3kJ9V5StzxpQh8Oh3gFh2p0ZHbM01Ju8l3q7o4GO\ns0Iu/ASQudByC/X0RNqv4BpKqG4M7fit2LRNM9QA5GO8vjH4q/fkedROwnldLCw1yviRPsJffWgS\nhUmVCe5TejeHRxbDqsPDDhSRyYCEQonjr35/8eIF3v3u93C5XDRbwC+e52MGvU8MnFE+xLE6kzmW\nVzMaWJfpcFjA64qN11o+xBXJYAG8/FSZgM6lGrIPIgNYdSHg7anB9pE2SsEbbzzEg4cPcTgccNMW\nyhcDzx7+s/pfpVfpjyKN/HW+fRlTrWPuZ0U9lvG/+FcDjFpN0yM8jh+EMRPTbEJG7K5tR74ByQlV\nk+ecMTufUDJft636G1w3y7377rt49OgR3vzkJ+tpEGY9fWeThofY0ccZHZTmikdxsr7n9yfiXH1t\nT0ksN4ejb2ryedjpV1tHWq/oW0s/1b9ms1GwY52NLgsP7TcDwCK60MCy9dsN1K8x9pf1icF9l3u0\nkzMfPZvH8DiPfmG0UdV2aDrK2p697Nh/e/MWvXwZ6rI2qoVBeUTtjz7xfHV1hevra9y7d9ct9ox1\nEUBmYXDbsCzF3Ykp9goR6ZxJnBuxtojYitpH8k5OI3g2DH4TWj+TTirb09pxQ4n1kSJNI4x2scPm\nEV/C2hix/Oy3yLOZ/xb9JrZ4Bp/aW1oej7OSsdMzvwdc/RUXlpY9zqdsIJFPau+e8F+6/2vz+QUz\nmzelcSkAEa6urpq/lcE0gzXAgRHfjHesrzCnBcAt1m2NlNA2mdE4R2HdR0djGmWM3lOlbRsaIcib\nkvtYe/6DTZbmUVd1OVv7QLBamZ1+Pof+ERb7Xnm2yOkwdCcPjCIXvpuFnlPpPN2Yp4w33Ts7v7GN\nfKOhoQ0NB55j4Pr6Gi+ev6gb5g6o8nurPLSh3WcW0PX4j+NWYMxgz/xDyZ/VkaWZnN37vZc+Vpel\nE9lJeT8wgVyw2N+W6HmqzB9zROUdPzmsYyccDgfQsmAD8Nkf/RG8+eabKujqDsSxrGWmU0w1/I7Z\nGeCtGxrRGNtXOh2WPQY7RZtM2FHxK5ixPXlm4ZzBQkQunmgpBZeXd/D2t7/d7nXYF8gy5vcGFfOG\njTeNQWpXQ86hUc3nhb+9QM5D0mE9S/gGGp2bev2j0pP3se8y2L6fXXIDPyT835/NaRD57nQfeH7T\nsuzflxaGaeN62fS2dedNysRLHaUvs52/Ns0WQSJcEcdu2AFgcevGSYmMH4nqruWMx+0Ym8k6W+eU\n1o0mq4E344vh4jquu7Ht5cNZOB+7K+6UwlWapVT2qY5LhuwMB4BSDrp4bA1w7XOl/5mpOXN1srlf\nXGZDZDQSBth8H2Zydu+CT1kIocPp/Q+xr6ODdUoWKX1EjilrjvXa0FJx4WsGk6558YZtW7Fuq8u7\nxxMZ3Tr95/iMhpe8xMCPvQ3xr/tvqY+Mzh8bROcpU8a+r8+ET2QiKD/xGF1bOzbWdcXNi5e4vr5R\npJgSuei+N3lv+nM8bTL2w9JCDA5yzKOui8DyfTX1MXO6IDzUcwvbLMq+WZ5psny1AZ/45CdxdXWF\ndV1xKEXDjSn8IRavnNrJ6EZ0S/nyKr1KJu05k0Skp59uW2eVw7kNblPmHFu795x0jnMsac/ekrr2\nZEPUs1l5q6+zOvbqrA9dhlpv+/n40Yd473vfw/H6Ru3OCSIDXWa6fy+d49OOeBLi5D4Qa/QAACAA\nSURBVGUDaVI/IEvMKuPg7xKs7XiY7V+Vg2xsXaJ632Fi96a479jaXk+Psz+ZX5SlzO62fTODz+Ns\nPwJ2fyb3myrmVWEGfO3EZe7jn7KdM9zCk6F+8WmWZcHl5YXKiFk0hur7rk4mZDurT8Em79Ru4HGb\nCZFMZKItzBTQiWmw7gecHu974yfahmld6BeTn7JhtUy0Y2umAf5zfGOZ5HX8eQ4MfeBCfGhqHKp2\nPovMqB/1fXB7/cPd8J3LL0p4xbrJ7b683jclpbnoua35UHfv3p3qrTj29/A69X5/8nlu856sN2tq\nol+dFIzuR6OLcT8qzTfpa/uwnfji3G+dJScrGzQ6V8anF0FulayrSoSFSpMPDX5um+R3msr4MPcd\nz5ubiraIupzD+D7t68YyVdauePH0GR49eoTDxQVW3rDy1vu10aV29b5/dAqX+Pv76bMMpz+Kvv9Y\nnQgRQ6RPHplJLiJ/coHGY17yNwqx3lGE2usyMW9jSHqGtDvfY91EfceCLji0Y8/btqEsC+7cuYN7\n9+5hA/Dyuq7G0TI6ByJLRNgQZQOgM5abjJC9MoxmjIy7hi2trBCNippCfkbO0FEoiVFn6y1L35Wk\npkqYeLG0BMZjatl3afXIjIUJKHXy8/LiAu+8847u8LQ7MrJBKvVIHm7Er/kBtFBpsmJeYZO+7gST\nssx+sts2ORgdFp/cBhnyKu8ZHGI+X68PIwYA3HhalEycqFGnOezws3XbNmz/WBzte+WHUKfwY4av\n0qT1d+QDm/oxYKDzIBCVhj8q7ZWNwCIT83UhpIYxskbjMBYI2Hit91ZQPmEtMEdlJ5Ni1E5VZLBa\nuRT7Ih6dl3FkFxZsHwkM67o6PCxdMsNd8syO6svlctu26QR35IMaRgz9HoOtX0ht+zi73N3Cu201\npI/WyVwNcfZ0yHjN0wwgyGmP0sYv6zjM+FcvjwYN+SJd+uWo9Y+GLSJWYd/Ljnw9G3fWWWNsKEu/\nBrosBzDqQvzV1RW2ba076ifjxsIf5ZPDIUlxo1SUBbH/9butI6k30hzcwwwp3pTI03Zbn4Xb1hN1\nVT1ZIAtnLWwLlYHOjbRVzhddFnX6zB8X7DYGYwMVwratmj/KS4FbbB6wqVv0eeO3dV11YbPiX9RO\nqM/kwhIPv8oZInz44Ye4vLxs7Yz9FXcbVodn09jxmS0k5TJ6y5i2ITBs/VGmFCIXTsaOfZump+sG\nmySMZUDpK/I12o1R/tgkYW3AhOfPn+NzP/ZjOB6PKId+D4DFaVtXFLRJ6LbTTe40k7YsjcYpnVfp\nVfrDpc7D7PSk5fMi09eUlG0qKo5dee90fAjzoO/BiDuQBx1XC8HJQwu/gdviEGXIrA2nV8yzGHbD\ntldNyv2NZARPU7Uwm8yk5iNoPmODvv2d7+BLX36Oi8s77d6iAK9tR9oYsMwnzyKuWb5Mpjs7BBuI\nKn+smo/EbEP3mzpaArWzaQ3fdVp5vPx3mmAaoDeyfe+ZT3FCSXAOuo1NdgNw5jPJ92i/ZHbc2Ace\nrpntZ4EZcNPB6/HeC+k005XRL2M2E8k1Ux/v61ovSV8OuHf/PnirNk9c8Lfty0QnFTX/HUy27Sys\npLS9JnT0/T7y2Z6ta/GeyZI49xTpF1PkxTjWmFmjO+zVqbCvq84xRXylbinnbDJTX7WvNvWbYBY7\no24YeLugLcgYOaEbxCw/WcJRtbd59AnyJPnQTqSNfO3r6W3P+s36TTPel3G9lKJ3U0Z5aPOfk07p\nHwBTeZ7hK7v/N177oqR6Jb7OAe7QBumEI4Z5ItumxWOKe1dpPY/xkTPcdGxsTWeSn9O0ZRXDanyj\nWdOV0ZrONVYOZAFsinzAiRCiFJDcSBPGY2vr3FCiWcr0FbQt6nhWMKp/SobAti6MOibidSgFRy54\n8eIFnjx5gsvLCxyPW5vfMvZK6YhFWaJ9GW2yHRwVv0KO/oMvPrGrsjGQ8d9txuPHaiGkdgAg1BOD\nSy5PmxkKM4YYBUqrmfO65IKsjFmjcFyWBeu69k6zDEQELAu++KUv4atf/Sp4q0eiV7mAmSsjlxYe\nqPK/OMxegMeRnDJTKYinFmZMN8szqz/SgNEnV6qBRAM987ZZcY/GYp9k6IZBNNCICEtTWJscNUc7\ngrkxHj16hBfPX+D+5aVbCNkIWGDh9zSIf7vBT+0InTdqHE1COcVzkrxyFUdJ+HyWr9HDfmc7idON\nj2hoRdxkcqkbfoTQzAlHosOXjbnYvvZBWHjJLgIXx4qa88jmctxZ+7nxgwEnS4eSGOgysb4sC+7d\nu1frSdqaCd6M3/eMZa2r8budHIsTi9UQHBenqlz0Cxm2f6MzZvvD/j0lO3fliIwnkzdbQBZjI06v\nOzcvkdkz+a74hz7JdqRtAea6COIwBsQoCEpby7VLs6MhF+Ht7fex2eGRetu4KzX8VnYE27ZvDZK+\ns8ovZh/XIy4vr3B1dQUQGWN+rDPSR55bAzryiS17SjZkbW1tIm5W/lQ7Mz4gFJURllZ7MszVL/Z1\nkFe97H59LFrI6H8A6rSIfrTGperMgJ+8ryH3PLxyD5H0a8XdGK3F57f1Ho9HrOuKd77zDu5eXuF4\nPDodIPU7urb2N4XDuhs+6SWbraCdBMtOpYrcO2QL7twdDlg85HeoZ08+SPsuhKFxkJalhw+N+mqo\nlxkoBeu24eJwiePxiLfeekvLDrzBgExZ2EWS7HLK/klReJVepbNS5jh2WeGZa9gsgDbcTBU6KRm8\nf5W1gN4rEeXjnn2WwRrhHmTNxCaJNlm055UGRqbYaYXB1qk/IP5cHJQWJ7FrrJ1Rfb9RUnIru7R6\nD4dD81ee4+HrbzR5y03MlF7GlHd0ADSUls2j3xPaW7+joenQG2nZ6+0yLtfdFtMox2Kf9Lq7r+Tb\nnvPMno9pYbDPxSebiddMn+jvUGMW9lH+Rt6wde7x+9S2iTwMT8MauhXGhvG0yORB/977d8Yn0U6y\n76udQi0awyUuLy5wvLnBzebnBkb/ok902ncZzJGmWV7hIDII9ffe38z8msxnim3EZ/F7fJbdTxLr\nsrMEWb8TVfvQSkI71rO6Z3QSmSb8LJtrbFn7N7bVbSB5iWbTysMc1/qWQVm4wx08YHyFvhmQzWRx\nsMsoH0MZXmylJcml6u0NA2tr7+rqSuLypuN6D342ZZjb3VBnlLWJE7q6jTsNNhtyGPAT+t5Pr7k6\nnaBj2MFOZlOV9gNrmU4HvyCcJe9zCz+FOYleyWDbexwI1HzwCrxpR2AP6rou+Mn7+mIhwtb0WGlL\nAe5kVh9sBk7HNc1387hmendGl+G5oiOyQaVabyfM7Ur2Akuv3l3MwMobjuuKbd3w/MVzXF9f9w0r\nmd1E0Ducuo03l8+7OJmU0eNU/sz3j5sQ9uzLLH2sFkKcR/99JhKDU1KYLBzyEwEoWI8bSjngyD1u\n6F6SRZA48YelgDbGum340pe+hF/5lV/BG2+8gXU7NrktEwf1BIc1yLeNOzeaFJlImEUmxrqgiXiZ\nsmQu8tH/FTX6B0ZNnJmaJw7kUZFbs9PSppgwMZlhIqm0SYeZchZDASyhsBjPnz3D06dP8eCN17VN\nCYXCPF/5FhS8wqttyIJmjafaQ7OowoY16vUtgCZIzOWp9vSQJ9vooHi6JYIhcTZmzmEuxKwp1neu\nxfGR7fTbqmbp8XIZUS/sCrpZHsF1z4i0BkYv5/NWgeknHmNdAEJf9OOYl5eXePHiBS7v3MHGAPM6\nxHztk1eetlaIE5lLjM272E9dWZM78t0RhBJYlQFVA341u5gsbNmu6T2DxcqxTLlkEw4qhxLaDk6c\n9B8iH+ZJDEh1bmqlOoZHB2s0/lSBwhpLrPLWwaFDUM01yLHqLFVZFKxQ7saiNVbkBIIl1Mywjg6k\n7ZeYz+YXvrhoi8B24fEcJ1zSOcbKOWM7jlcRWczcQy3FHS6DYXbagcr0Ynw/0i9Y0ZzzU8TnVCIU\n2J3PGey9f7P3NNCtVaR8T82pcqEhmDWeu62v1lGfreuKd7/3LpZlwc3NDcQRjE6ejnM6r59tGngU\n/v6jTL8klfQNEW4cVXjjnU7WFor2g+LGMIsQ9eSF3YHFxtmzuwadvAfcQsZbb72F1157TReo7O5V\nK2MsbUS+OxpZOXq+Tf8qvUouzew9q4dm+f0LjDqPqp8SsgHoIZ3UDhDbyo3PPcj9SS0AuoM4k8lW\nVmVjfzYJoSaUsVcymV5FgegnON8uyhdph01+sgtMbWKiNB8PBDAxeKunzZ8/fYZnT58A2xHAAWFt\n3OERISXzXmWhk/ujDOt+Q7eze6x5GgxpRtU33OqOPLCXZvZNp+F5tuleHibSkEGeLwR6m1maNPoE\nllYOei1vecy2s2cbWd6MsO+9OwdnW77/rVEKZrXENo1ZvTs+ne4NSTaOFSK9V/HDDz90Yya2fwof\n+3tmO2n7gIb7m90DFNup7O9teps/Xt4e4ZXvs4WOrIz8ntqPgjdG3hKfR0eM+a6/s7qb7WzlGJv8\n4H1bLNpcWh7JBjKy7qnYpH7LGyWn3bI+t3awIY37Lne4WLl87kYyFjuaqNmA1r+smw2JCGVZ6kLI\nZEE2o5e7oN70o7aJ8QS04tWFuepVchQV/erpBUAjwWh9UseE3+xCbq2z04Z1st3TRRaatA/lz56/\npCeOWrsCrwRLkLEk9jlGajsbv4z6KeYNnrSCqs/Z/819++AbojVLpnj7YmWolmqRQfqGxXEzWPRd\n5GSH84dFBpL4HsYOsLwfcCDUCAfWZllvbvDB+x/4E+ulgM3clI4/inMLgRgZxZJ+4f5yoLLaG7dM\nMbLAbdPHaiHEKTu3gOGZKSOIGixBAGZHRDPFWxyTAnZQZMbQcDcA1YnvzlSEt976FD75yU+CmXF9\ns+Li4sJN8Ne2a1txYshQJWWcdW1heSBM0kOyyCByiUXgN8HNfldkTP2SYAOJKFmpUgVacBhKsqsS\nAGMFOJ9wFbgyx0aSO0rq8AKePXuGd997D5/64R/GsiwTxZMb4KlhYAxnZowTxQQ3McPMOgkPq7SA\ndPCSNcwB7f8t3VXTHZ2IhzdyvcCN+caLqPNJJCJyp528Q8BDuxYm64DNJmNzhyLJQ/6xc+4hPOON\nVYv/FsaazSe4Vpo3A6EU3LlzR/Ns64auEPPdXdFwj23bdrO4o8L38XRHRid9XoJBFPLZd9nl9jZP\n9ixT3Nk7IsJCVEO+LIubAIxyWgyGegozX0Cx9LRjPeIU5X7sj4zG+t7tcjDWUSJ+m5021Lm1MACW\nHtbo6rtpC0AStqjmlV39cbEi68MIvxhYWwjFdzyuWJYD7ty5g2VZahsJbWaO3tBWQl+RH+fEfM+c\nQS6kjlVMKf+SMVaNje7r97Iuc7Iifs4RRt6/Pe++O6SuxNYm6Us3bLPd/7akTVZXDZA0vS0nUFvG\nQCs/LqT947HGoL++fol3330Xx+Ox1dND6Qkvdjgmu5rUAcgpMhj4zOpMD7YaUEM9UD/VpX1h6tD6\nWrl4KkbrS2SYJD+ZaVCxchnsFqOj3CGI00Y4XBzwoz/6ozXMWHsfw2YQO5cqlbMi90/FS3+VXqVT\nKXOw5Tswl2ETsSe16h85BY6waYaKjKlx3Ng2WMMXeph7/XG8j1Mj0UbI3lkazOw1m99NqFn7S3ZN\nJm1n7bdMPV9THNZ8re10O+/Fixd4/Pix2q+l+MmjrF1tH/M+nfk7zHV3NkkNtL+jslv65yXxZ6j/\nSO1Oj0WHbQZzfE4n+8WX0f71jkSAYG4D2Hr28u35mbaNzDbKbBjblsVjxDeH1elhze/zdn913lfy\nO9s4xqh68erOHeCDD1DDRx9Vt2V9OdOFM/pYWGd4ZfTI7EAZgwBauNP9TbIxWbkhNMn8KJs/+oex\nriU5QS9pExsKbeEHGGwTi6/6TdEesXAwp7bJIFNbm5u2YfnD1dAm3+t3lefoNB8qbgtSdSwL/YN/\nz0g3kbmqAs1tv9g8sX9qGNakL5YFpc2Jbe2Onizt8Ursx4wPc2TUTdyRmUOR2l4iGzO4PH3Z273h\nioCMH6HsOPNrfFsKp9YZQmRCNlPOxw4A8MZmEUXaD7If9ZGDl5qP5uwOhN8GXyXNnixg+W8sn5yc\n3ZMB/XftB+E33TBVnSF3X+JmTuy4+9PNsGQwtq1uln15/bIuUotqpBa2dyJzqaCFAtjXczO5qfgK\n/JO0tzE9q38m889Nt/awiOiHieiXiOh7RPSMiH6LiH4m5PmPiehb7f3/TERfCu+viOhvtDoeE9Hf\nJKJPnWp72xiXVLCUgpt1Rd2Fvw0E6MRZQLSA2azKUo1purXv4qjasCXVMC/6Kab6AxUsKACXVn/t\nsCNvWI3RYIUuN6HCBCwM0Lbhcllw5+4d/Ohnfxh3lgOWcnA7uDut2m8CqHBtFwvADQb4RQbScgTe\nqOZDD3Oh2pI2gLbqxLTJOGbGtgIEoVufoKy02+quJiK3q2td107fjRS+ba28voH1wy2PvBc89INx\n8IlRxY0g2eWBopiJ+kXQC+qk30LAvYsF7/zBN7GuRxy3Iw4XByxEWAgoVA1/9FaUhkQE2hgHqnyw\ngEDlgI3r6QculS5qMJT6fGXA38kiA1U7YFi8qIMZ4K3UD3WyrLRhpQ0bVTkkvCbGKvGmn6nxMgiX\njjNR/110oaoahs7J4PxEwbZtNazKxuDjqvQKYn0wbDfqtNkzCMiMVSLSrfzWUbWXTXcDB4ofFao8\nyJZ2jRKl9t3MeZBLfi8uD1jXIwoYC0HxlUsfV2asRCiHQ+1fA5M6CDzKiejUEVDpt4196ehAnj4o\nRS8lW1BQ6sUJg6FTx+JWY4oWoCzUwu7Vcbxu9aLzYwszd2yTcjOnRL5vgMrXlVkXdqOjkzlBKpPh\nnQRbp3w/lIKFarxO+UvMuit+IeqynlvYGwq0M3h0+dkuSCNqZXo5oa/FT+5wknotb9XfwLZ2y8jx\nV1lV7hDVhba1ydt41FMvQd+g/Wt31qzMOPIKLo2OAgMtOBwOYGY8fPCgTuJs+ekIx0cCYqNVgV/U\nj7ABY2iI7Hu9bI7cB0u4JB5saF/j3tZ7Naohxtia/1NDPm4rVxqHVMVvr8cucqm8sXqG/WSc2oZN\nn1Xak8JBZuxZHlJ6UoN32bBRHQtyd4304bbWPiXUvpKLO2VsSyx2dQiMnLR3R0T5yeaj9TVyHMqC\n43ZsCycrnj19jBcvXrT42g1W45T4sV6VEvFS7YR604WTu0M/UF/0tjJ6KQUHsN4fJHlX3tpdi6Qy\nYUOVSYKnjocmczcAl4eDjv1DGOMjHtJH3Ymq+Tv8omsZBPaelqsXLKFICM9fvsSnP/tZLQ8iHJss\nlf44Utc3Vp9bObmuR6cfXqWPb/oofaaaqkZgiB70YeBiGsa7+YhPpRfL+pKDU28d6iwETZcbRXWm\nlRFwY7jZzZ0mffKPefjMXGkrj2Ypk2MZneLdSVHGZKnQeEG90KD9wPMXL/Dee+/h5njUBVFbrZW3\n8YNQL1Mum6MtTkZX6mW33GVil4/CC9Vmmem/buu19gzdbPuzSaAM19lzrQvdg2ON3mB9nLz+Wb+J\nbTOe/sntJ1tnTNzkvsj7qlv2U/SJZhOL/rf5XgtPdbPUPfAQvK2cvY/t2/GrduNSL5cG1TCcMnkX\ny1rejTa5s88nbWdzQBk/Znn65cs1nAyBgM3XWe/eq76E2qdoQ82AJDaePZW7x1/SR+5zop8c7Og8\nZMeXzNvoh02YH3QZNNBukMu+zki/brNn+fwEQJfbcP57rNN9Z8/P0lfbBj3to/3X4LZ6xtJOUvS5\nuz9oZMikPHMNXXiuXSY23CCnkjEQeTV+bptU+jmBkI+XYVzB89OefW9qGd4P+tzUGXEbZJzIikSn\nDC0r35owlMh1R60Hu8JX8vd5lsTuT35bE8S+S/XBGTrDPvc6dab7gtxr/zZuc7DEOvfDWPH46RM8\nefoMKwMFBcvGOGwMbn4pmJpf2u2BaAekMOMM5TZJ1r6ztMrGwSm75tx0Ky+LiN4A8KsAXgL48wD+\nUQD/HoD3TZ5/H8C/DeBfB/AnATwF8D8R0aWp6hcB/NMA/gUAfxbADwP4b0+1v/KmO9EXI4gyJe0H\nWDd2bP6ZEpW0J4BqO71zFiJ318SQH4SFvEAgEP74H/8Kbm5ummAdheSptGe8zYyWPZzsSvhtUjQ6\npL4qFM7brZIJXMkXL0rLJpAjLuXg72l555135CXWY7tstU0o6gQoRqWVT7DXBRfbb65t5zwApZx2\nvhpo7UtOK+Ud7o5YRsOZot22zYVkyui293uvjKWXtJeOhcTgjnjOYMjy7sE48mSng51MU1jFaQtC\nWAzbw6Ea9pmCtbDpGJxC5p0rD+NcnmVjI1MYFqaIp20jK5OlyPu2/VhfhIWbZWDryNpbAkx7hoF1\nMs7Fg3Cav0/RIRq2tY6xrE6QAFP4/AK8txvO7huRL+3vtm16kq87DRWWe/fu6SLxqXEt49j2ofJk\noMepFHXxDMc9eZHFAM142aZzTqfIJNpMP1EhgDZQ4bYAMtoMcRzkONS6osw7px8yuICRf/baVz3K\nXHf8tLIXhwM++OADEJFuaJA7uTInpVXm/07gy57HPt7gx7GMGSR0iTpD+KK0RepZn+ylTF4SkW7e\nijIr769aflkWPHv6FG+99dbgA5ySfRnMtzXmX6UfvPRR+0yAOMN2Uhjp2DXwnOVcMnuZlvP1fOJS\n7KQ92V/n0hYUOqidfu6NpLfxo26Tvt9xKXaQqwtt4bbeSOrk7wfvf4gXL152+p7YaevaEnvgbHj9\nzlg7uQgARLJ4Hz4Bv3NtSYtD5gtk+e3vzEbGCNJZdfU693CY66NMf+x9FNaJrXPOM9tWhNP5JGiT\n2SFb5oOR6jyxsSf+AtDXySZ9LXbJ4VBw584lCgFLoRqubGOdV9wA1P2QBSQRKBK/MNo98tzhA795\nLOLrI3QYnJRAdRHE3t+l8qp96uS9nBpBP5XQEgNuIUQmZfdkZBxS7kJ6jL5QlCMdh3md3PLUk6vc\npzGZ3QayQnEDWaeVo5+BpcJD6BvIABsT28LHgFu8kffW9hMfRTaYpKlsMgkilTh6DzRmBhjgLfrR\n1iERPBO/vlV5OBzCmD8tW2dzFTO5NouUcVu5akHbeMOKzemQLEW5n6UMH5rQIfPV9uqMspy5Qxx9\nfQuD/w3IBkOz/VrtDdtAHUp2ngKaN/NZdxP77wrSCdwjboJftJUy3eSem/pKKSlrOnkO4OnTp90G\nsy5eKBNZT8cEo8+fopiNmrV5eUM1hEPb9EcoVH02DU0+pUyOw6k5jNvaaLcNjfUfAPgGM/8l8+z3\nQp6/DOCvMfP/0AD6lwG8DeCfBfDLRPQagH8VwL/IzP97y/OvAPgaEf1JZv61WeMrb1ipr94Q9aOb\no5Npw/wAQL7zZFQyEs/P6prs8p9o0PY6smM93JSjq7gU/LHPfx7fevs7+KFPfUoNsaxshdu0lxhg\ngn+cFIg4R9yj4RQHgeAUIcsMklFIBpq3RzNBZv9mSiNOSHShb3qgPVu5x2Asy4IP3v+gvts2FzNX\n6pewPFFZRNIVWe3krRmaUqbVITi3fJ72ll/NUyugSgHT1o625cYyGTxjmk3qaVmaT+w4wy/0ub3U\nK7YRJyo7jl47cMNJ3m3sFzVjeVtWxKWl3akFMZ/qcUEK/OrH/yiUt23ru2hKwZtvvokPP/zQ42mM\nPuLIP/lYjXBLyLZ1XVWJDBgkfSa0UWUY+pbCgos8I2wpHwh/STgLEj4Q+ZIs6En5RQxa8rvzIq4z\nx2Zbe+g3DcPWeERhBdxkaYYDM4/OwY5B4vins5rm93KmtbvxAEesT/g98imRufMFI89pHhsWibnF\nGa86hCGn4MqAr3xj7mGTZAGvNJpGfbJHkwqvPx32faXGWwxWxHmzhiAj260c+UUvAxWFEvDIx1vT\ndyJXjb/A5GlmAHb11D4ZF5LP009kDPMOukwmqoOr8h0un4y9KL+VN6RP9Hg01XCcsLSr+G9tp/Fx\nvcZ3vvVtXTyr4Su2yttUXH+rDCEonJb2Ou4NLBuqvHWbMxD7k+oOWTYnigILRLkTHQPR33sp6j7A\nhq8QWORUV58YinBnDtmh3a/y8LXX8Prrrzt+ijBLfW7Cw8hW3/6+o/kq/cCnj9RnAsbJpGrPCH/N\n7KagO9EdVkbn13W1HEp+AqDOGqYL/PH70HqQp/Is6vCZPerxytuZTUTN8tm2rJw7hdMMT4JMBLQJ\nMBPPflkOeP+99/Hs8RO8/sYbNbToxK9L67cycYB77Aci1BPlQX53nZLA32y8GX1mBfcmMuykS6+v\nUsugYvKKrIx9mcNsy0aYYz1Rj/d3fgFEnsdQkrad/kBq8DLd4xrGKyS8tO+fPR/f3hcouVRPJva7\nHWfCH1wIvJr7DWx+9XegPq7TydsGNNvz6uqO2u0Q+BuWWk7uy6Rc00k+uXcrs/dFphFVe2LqF8BL\nBJmXIfj7CAb6tvqt/JuN7ZLwUQwd220dHuDSMWJo5mBq76oI7yfvnW3SAdD27N+BJlM5hcGXSuXu\nzJERWOKYT8YoQxagagYVP4HepVTs1X4zVUUb2bbX3IAgf2ThipvdVsseWjhnAunJtwf37lWfCob+\nFv4wNuN30ZXdByDtn72yp9I0r/Cr+Z2VzRY/uA3u7lrOfcTgfk7THj4zPsx8q3NsB1NzZc06wWee\ndrkv5Vhzc40gstUFtxncjseY/LgQ/7Y+GOFSwdx0ssLXfdPoK9p2B1iQR1UZZHeD+ebmBo8ePcLL\nFy/q4nShvmDKiENz2m6sV+SFk+SBfwjU5P0cxlRWxrYSWXabcSPptufu/yKAXyeiXyait4noq0Sk\nBj4RfQHAZwD8LwawRwD+DoA/3R7946gLMDbP7wD4hsmTJmohsdamZJntQLTMmgt6+3v6jFnDrGj4\nG3UYnEgBDOOB+8q6KNXhQ1WglhZrkIjw4P4DfOITn6gxpTmBZ4JHdBAGWnmLeNsMgQAAIABJREFU\ncXDeveHTf288Py0QYZruqveADDDFtmdtZPXu9Z08dzs5SjcKrtvAF1i66dE+PBEeoSNLo2mTpN1Q\naOO6gHRXFwGqNHUniRFW8dMo695nuJLWM1cKYnzJ35kBPE2WNGIsBPrHPop9IbDFO1lsHfWESm6k\neTqcHscRJve8vhzq3iuv9Si/AK+99pqjLccdBAB4q0cNiamvkIf+zGgiCiDubInj1z0jpHlFjRBG\nPLvjMDdu5I0Y21J3Rl/Hly2/cyiS/lA4zemJeNrLwmI/Ed5MKUobqmwx8mc0ruSElyvvGkML71Sh\nqkbz2CcUDQH48QjMdy/ZZPPLGGBmNdbsqQ8N4xDa5PbuwYMH1UlMTpFl3zNjataHkbdnMq5QdwLk\n9GEPIyY6eKSbrb86P/J8Lgfiiasa9cPqcK4uCW8o5rkfa80QbmFlrH6c6ee46MUs5vXmftfGAGtb\nsPlrL7aT/JbPrMPn4FHycXLCs9J/XVcspeB4POL9997TCYZ1W13d8hlsDbFjJ31u/8qCXyvgJs+y\ncUuSz4zVzBmydPBUzMfW4JTuyH6hvX1m89iydaGx3q/yxS98IT11ZdtddnSclJHFvlPy4VX6gU8f\nqc9UM0P1r/JTewbU8IQ11Agg4YCZ/c7mBqyOywZ7E0t1MT7T0nMbF9P3szxZ/jbaQVT/9k/01bI2\n/TNHsomek+8iA6J+tvIoS5Z21qZ2aWMclgPeffddPHv2rPkO3eafya4AcP8EHKxsj2HIMtkvejTS\nAIF+Ue7Hd2x5KdBkpsPPzcuNV2O7MU+WRppaW8B+/PvY7zFM2tC2+Ivc7iRpdvEuPKpvR78pw3XE\neZ8ee3R3lzzbMq6SsZz4S9LenTtXg11pTTwZxeKTiEyRvBbuGO3ChiCXDSpDW9YGdLadlYejDxdD\n6NY+2B97ElCdMG6IzXiWuW7WXCTUL/mweeeOi2hPEfWwwSqRd+xVxSlpS8JPOdmV+Dt7MPVGqZ7K\n2BjYRhvdZIT4OrF+ad9uJJvRxNqLGRllXC/GBxGagMW/6vhfXl25cE/Ywd3acmqjblUOFBpP10Re\njaGGY71WrvaQw0asEFzoZqcz1e9Am0AfYa86qtXT/kbnO5sDsM9nY+Wk/gop1j0rf3KsUPX3srS1\neeVuGzCyTXmZTBGBFucTLHP6uVIgElTs/SpqeoSaOB+R8YDVDxzGa83X8FE6ATc3N3jy6LFGJLJ+\nctaW4hpoEfMxPJvYMSp5LC2yerMU9dXZMueMdNuFkC8C+DcB/A6AfwrAfw7grxPRv9TefwYV57dD\nubfbOwD4NIDrZuzP8qSJFgALYDtUdzCyDVlij5blOxpsigSOA23DVi8cJQaK1JtMfiYOc4ezd5CG\nJyoFh4sL/OzP/iywbVU4GhbKhEwchPbdrBwon7y0eZziHa5BHyfCIm6jEWknb/onc+6zmI4WrwzX\nmVER+5CZ9Qjvejzi/XffbcKuT6KI0eAGvP0MA5011JUoi0xYOGeCKCjQyQQQzCmMdqsqoU+qEtUQ\nbJWenb5jPUJbuRjJ0nhfcc/6YcOc57L2bV9k8aHlu9ZDBFl0maXerhf8pwSfHsdNcDw1NphZw4kd\nDge88eabAFDjNzNjacdlPXynDeGYpI0sNE1GO6v0vEwMk3DAUI/QMDoGlq6S4sp8Rh+b19KTmdUA\nnzmmpZRh8j4a23v4z9p2BNB6fdkYj1eNmKnD058tFOVef90NmjHElMhYMXYAb6RnTm0md2Pew2Sx\n89B2+19eXqKUgsPlxWBMRRp0vgpOVqh7E6cmpD1ed3Kx7ZIbwzl63PfCPVo8rJ4c8oS+lzHmcLY8\nN8Ej65cMvyjGOpxQHmuV1B2Rps5Bv8Hzv+cluCWUGX1quUrri4sLHI9HvHzxAo8ePVKaxUXICkf9\nxHr3jtFnsssAVO/MsDIiw2ui47Nn2l/Yl/P+QW7kS7iuiEOE09JB9PqPff7zng9RJyDUKTaOQBx/\nVs4NNs+OTnyVfqDTR+ozAeKbwMmjuSXYnkd7FaOTb+1nKRNT1BmDvA2bqWy+TOcP7ycTOF3v5nKD\n2twBlT4JlNmte3o3CxWDJJ+jRfi9od7HdNxWvR/Myq733ntPw/jae1RUVrddnNmkBcIzmyejr9x7\n5esqasfM6Bz7pedJypl8Xqb2T9193e/o1MU51PujVu7nKrtNVzc19LsS5/La4mxtCz9lM9Jiz16a\npUzGz/0sTxt5yCdG62iPjLaCbTvTawMsE9wG3OH7UssYfXznTj0R4kNTmROwQIukVLKrOn17wSeI\ncweZPRJ9nEyfktjOBj5HH6ObC5WBJzL6xPGV0dz2x+C/MLt6U17EKIu0HYwyx7539Ah8YO1lmIly\n3XSV5Cdzoi2Ti6z3rnTbd6hDvodJ4oijyEoG/GJ9Qitph6jfhSmbm1xJ0z/WNxDbl5ldWOw61Mbx\nEWWeoy152sb8e7LEkzOOW0M58SlnZZq8bMYpuJ0gl7sPlTbM0FCUdgErqbfLyo6jtWcz+uzpkfq+\n/h0n9WdWy/47gXWEJ58Gn7U5jBfe0RNElfdlvIuOSzZbzuRCzd3nClRPktkAlqDtx3aQP9sGXle8\nfPECzIzlsGi7CHbNrA+jDhUZb+Vo1A/ZXG9m+1n709o72XiJ/TG1zXbSbUNjFQC/xsx/pf3+LSL6\nSQD/BoBfumVdt0601tAg27ph0cWOAmA1g44gWtRe9Cyph0LwYSVqXWb1nMIELYxikV2i3EMZqKmS\nKMY4oKwAp2XB57/wj+CrX/1qq8sqoHFwREW/N0GkbSpF+gp8HZ9mEsEZjuMEBRG1cBkjng6mFhtS\ny7bLdqpiN4AY3LKwMZkQihNzccU8wrtuG5ZSsG2r9t0733kbP/7lL2PbGEWODTdBAep9Lztp4wB1\nuKuDYIzyALO366xT5UNwSf5S2oXCqOLSiYzhh59ktf1ReWU0gOtvQJgsCmFnTAWFXlv1IUgif9qx\nZdNgkEgczELVmWt1bO1wcubAqPEBnKg/cX7UA3PFnHKITovlT9ktwMx48NpDbATQUmm/GuFeiFo4\nmF6nyIc9oxnw4cWk96vy6DBmEw9q3DQ+ptJ38Al/u3HcyCELKJRcEm/xju1pPYnRdsoRmPYPMj41\n+SY8JZOQw9iE6WpbrAlDzUc1RNVi2u0GY+tToTmP/lkt06ehCaXJkTHOq+IuWy7UNhZ5wpjJ/oye\nNtkwYhZG5rqId3E44N69e1i3DWVrS5qcXxxovyvZqC8OOV2rBp4YZT1sQcY3NW+DrfFW1n80kY/y\nPfKOrcPiI0nC29kFLq6V6SkVdb0aTxBRjVudyIYUL6unWsxkZq5hLWAnWxQopy/Y6OFoyAmfASE0\nBkHpVJJxbGHbtg3E9QTDi+uXIADPnj7D06dPcXW4qvnQ6xU7QEOvqX3V65w5O5F3LR5Kf/LhYAYe\nMONf+jfqOznJkvXDbkpOHVWMoYtJg22Y2D7ye1kWvP/+B/jMZz5TYSqktoQ2WZEZ8I06SNqNPP0q\nfSzTR+ozAei+s/xU2UwqA3Obae4MSz3x3dQuQJd8t+XpvfxiIUedo+9Lr4PNGVl2NgDXiZ4wHmd2\nirxTXNmcfq0FhrwABkd+OLnJq+qNjRl3793D0ydPcH1zjUu+o32oC6+l+weMehJ9ZseeJRNrocRw\n4kFHK02Mn9CfiQ/r24x3SnT4xMZrFFlQL3uA749apvvbFGydEZXcrj2ll+LzUKnfJkjQOyliezmu\nXnep36N2th9z3P5uvLbwWPPQH/l4NPQ1efbwFB04T+zHT6iHuW/sWErBvXv3AADH4xFMdfe9+Dam\nRqcvZzZFhNeN+zYOt20Dh7uLJJ+zH9q41/rlBAyRToTbMV77Au2S+zyMkZSRMRppHnHw9oU/NWU3\n0tl5q04zqF8Z5Z+lXmazWvgi/JD6AOjEPYe6bB6LF1VJP44nct+KbQ/VxhR3wl/9kfC6biI1WsWb\npgqT+LC2XyItnNxvNCzNB1AYWjj1B/fv9/kA4zvZPoh+rpeX4i2Otm7UX7fRk1JM9Q+1SBTU/Ev9\ne0KXBfr5fEX7Kyb1f0XghO6R+qiNLTC78PRscOh1astSQeO7kI95KDtLVucA9RSsaGOiTeWt1T2Z\nnHN9C7gFItePLPA3WdPok8nXbFNgnO8VuSSwgagaEoG/oy9Rx0CfL2UwjjdHPHr0GGIPCV2Iep/Y\nlMlked7Hv/CAIE9TWZTVufc89enDmLF8fJvxc9uFkG8D+Fp49jUA/3z7/h3Uvvo0/A6nTwP4TZPn\nkoheY7/D6dPt3TT917/0X+Hu/ftNiNaG/szP/xP4uT/9c2l+5m2qsIHAzNwHcY3JSek9EuIQb7Fe\nqyCCkrF1uLapKt0f/ZEfwXfffgef+uxn0k7s7ZzXsTGXnWyJ8AhOwzFYXlF3A+WTQJJ3JkRt6zku\n/ndm5JxjvFv4tmaAibAtpbRn9QQHLQXf++7bOB6PuFgWMBdn+Gu78E7bdLIHVQCqrLN4kD3ZgaGN\nPcO7GzOJsAy/B0FJozO4p+A6raPBhOlRc/t4SpvQ52K42Ha60Wxp0S4rw0irXqfn4z0HBEC7D+GW\nY8gYM7YfNtTQWOLULsuC47oqrRa0ezLAPRZ3EUU5Cuw9p8Ya4/Z5hFF/Nwcljfd51lj17Vs4s/Zn\nz1x+NXK8DHE4wdM7S9n7TBHauju39EnMbuTkDpevg5CdjiOiMIlRQMTOiCm0uPp7O+NYtMaJ0CPi\nkv2OtGRmc38WGdwJV5eXNfxisaEuLE1yGri+RMgf+iP2z15/+mQMWeI2GS8tjg6Dk5E7vDzAgxZv\nO+TbmIEhhJRWkjo6kmbjadRh8W9Pkud4POJwqCZZXPTXojwae3EMZDHK3djnOi43Zrz9ne+Y+0Fk\n8TXHJSdPLvvtJE/GB26MmpjQ8pBqprS8lXv6Vz7cnXNK+ESMdNuXbuf4znib0qDmxOXVFe7du+fs\nEQ1H0WzLrN4+ngqoAF/9jd/Ab/7mV10bL54/PwnHq/QDmT5SnwkA3v7uu4M/8sZrr+H1115zzwaZ\nEp7HFG2u3bFCZgJEH+UT9/bdqcQ8TqBYmMpiFxNzP6brwZPN9fJVYLiTfG7cJ3IkyiJrF8nEqp2Y\nPd7c4L333sPx5giioovGWrczKXPc5JnX48FmavKWNCSaqZe4z50RwCBdQ64iuzjRdp6+j6k3KH4H\nIfd/tA2daNmpdUcvW1ijLtnDIe68tbbQbWGxm4wkT+WTeh+Ig3Pr9Dh/bHhdbm3oU/7Hfr2ovMDj\n4oVuwjN673Bxgev1iMPFod5Ltq066CwvS12dphjMpb2+sT6T/WSn2gw2MhAHW3HwWRR/VvxhnmV2\nz6k0w8f6vzG/9NsSYBwuWa9AKCxSNrOfnXxCp6WOsW6KuzYG6NmP296/3r/RfiCBb20nbUyTqb/K\nWl+ta+4bA7kt7MA1fbbITnaK8wnQOyoPF/U0/XJxqBuXaF//DPBHOu7wiC2b6RP3rjMnZBMTlezk\nTdKRGGmj/ijbXmbX4ZkfksGatRVtgWleosoionsEZxBoabhY8ibj3D5L6agbhhVAh2dWzj1LkPBl\nhOZNHif+jESkKWj+6LaBlmVYkLNldPxw7GO4331sUz/RtW548vQpnjx5WsM0qr854pD6Kkl7/QW6\n3EHOu7Z8ppOtrIq4K2zm96NHj/D48WOXJ26Q20u3XQj5VQBfCc++gnb5HzP/LhF9B8CfA/D/AgDV\ni/7+FIC/0fL/BoBjy/PftTxfAfA5AH97r/E//+f+HH765/4MLkrBQjYcjaz4nojvDkwVVabUtP4w\nsVjCgI/CTnPLc+Nwi2A+mtW5w+UFPvuZz7opt6ljQcFA4mrAKg4J87aXzjiQegYFKu0SQGoBmx0g\nwbCSOtzEhgU3CEsg7nwfDcIIizWwMtrEARlP/YjKLlTwtb/3NfyFv/jP1PBk2LAsbZLUeFR79afC\nFNATABsJ3k0RKx2kn4S3On207rZqTCS/2F2Y7RynIDy4OQae1nOFFC9us0lwLKGNo/SBEXTWWJmd\nHpD2EJRyY1c/dlgmkvcmGMexCiJ3soSZWwixMNaNjrP8q7tv7Bjp2Ls4ybLDCaiTl9aIHmA2/Tzk\n4T7hW+XD0scoHJpaXsK2qLPBrLCLDMycm0G+QeRY2wlFts96f9q2I13i88zwO9dAmso705b8HXmf\nUxjV9DO7QvfaB8bFFe+YmUUxB4enVSkF25o4AwEfrVb4sBRvjE3gPFcOijNzKAuurq5waCHcbtZ1\nGsc8Okz+eXE8ae/q2Iwhda5zneWTU3DcMw3wzYyjWRtDm+gNbNvmTkRZHdUXtSrevFXD0967keFJ\n5E8U5rwdF+f86ZyZ41N5WYzq7hRkxqT9vq6r4c2jnqT41re+hYvDAXL1iXJ0GFOtoeAYjcn2T9Qv\nmWMiC19SfYWhOjfSftzVF+0C5urErqYPMxtIy6Uw66+prLF1WPoSgHU94qd+6qfqfSG8AU0OL43O\ncpq208DV2p4V8Mb46Z/5GfzMn/gTru3f//1v4hd/4RdmZH+VfnDTR+ozAcCnP/VDuHunn/iC9ReQ\nTyDZdEqepw5tLwxxWona5jKT79TEoboc9p3M+xC5Da5Z+dmmEP8bINqc/zi159CnNezmMRcmF0jl\nj05oDDUKrj00MnO9rPf58+d4/uI5XlvrInkpi8b9F30gft8IZZ/0spM21Gxj+S35ZRFY1FvH3Uzo\n6FdL+9qO8MmyxFPquc5w/iMIoAKmbXQiQxmZ3svku9SX2UIVhm23b8cy83yq55qfFv2KvXqdz+Pu\nFql6Qv0NoN5zaWBZwWCqh2YyXV/zjc8s3I720WafwL3nBzva241jzDgcDnpvluAluloCn4EIG699\nETGz8dHHl2z66tP1DOaao+Jk8Dc6Xy5x7/MVffNY1n8ytjOcY7J0nMnUGc+m32k8JRDrnW0Gy+qU\n33WMLgOscQ6nks6O5T6O41hzfh7sCehajG076LSsm1U3jwu6H+R5VZs3sJC+O9U/NmU2nh3vlmrM\nG6pJV3D3zh0AwHFdQcsCObku9Ext3Cxx95V6O9YXOM1nZPhjCzymPhn7e1hkETxdrFI47A7/bqtm\nm7MsLLEOoNIMIsdYNgZFex+ydgO7wGjHcf1t4WXERTfb7m6yOPHa1hGKLrj0vqtAMeAWS1SLBxkb\nx68f96Ver5CC13iw8b9sTGOJNNIHQ5t6s0YPhr6M/pHCzR2um+MRjz54hGePn+D+/fsmZFXX5f7U\nVsdzxgedIE02KYBzmWdhzvJkc0eiF0spOlfw8OFDPHz40OV7/vw5vvnNb2YEH9JtF0L+MwC/SkT/\nIYBfRjXW/xKAf83k+UUA/xER/QMA/xDAXwPw+wD++4bEIyL6LwH8AhG9D+AxgL8O4FeZ+df2Gv//\n/v7fx5/6s/8kAOgucuk8ESqORxojxzSbmOrl/KTeEHYDlUmpCT8qYuBDO8jWZS9ekrZquIyW93DA\nz//8z+N//T/+N8cUdgKglhsFd1RCAPyRMzY7JKlPKiCUzZjTKtlqUADWoB0uozV1qqKjGqLJKmuZ\nlHH0SZLUsxc6y+EtZdBOiwF6CW5XssDTp0/x+uUlNt6wyHHsJonJOASS4jHSCEv2G2IKiAzb6jPv\nXHCgA0E2AhFR25o10sS2M3NSu+F/WvBYhZPF8FOlKrgQenQf0/9xnIwGmneIrMGhih11Fz6b+iO+\nCGVc7VYxRz8uSVK/65WgxCI+d+/exfF49AaGUVZSrzU2Z8kZX4PyrH1oaRQNHjbfM2NEntkxVKjH\n6K9lC9bt2O4mme94z5wfZwAnfZT1V+SZKGdO0SxTzMuypBOv4lSx/V07GXZ8rOh3flg4Bl6S9h2O\nxU0eWDxtv9S287EooddKKXphoq1PaBXLRprE5yLzHzx4gIuLC6AZWqf6OJMvsf9jf4kxNIMlwtnz\nDI/kDVRGTnhiz+EYdGWsGhguE7c8JfII7PWU7NbM+F1+27CETuYza9v2bonUzjB9kfXBrizkqFt6\neKvq3B7B24b3338fhQhHuZidkJab2QiR9nv9Ic/XbXNhH6jRxe7us2FUcrnYv0e5GGkh+bqMznHo\nOrO36/ONMKic2Bhf+cpXen8JruuqDtaMh22d67qhLNlu4d2ir9IPbvpIfSYALbZ3+0F7/O3H1qmw\nu5kNDuTmViaHo++Q5bcTai5PGI+2nB2DszwOXuobiWZ5bPvWzozymptvlSWJMpDdmUaopoFMPhwK\nwNsKXL/Ak8eP8UOf+pSG+K07RUub2ZBFBIO/0mcOR5bWppv0rbFpufl+PSq5WPPUVFqjN/WQqwPd\nOPe9lQCWLnoyNO8TMs+ibtrTPd4+G22YLL/aBM2OnJ525I6vfS/PZn7rbHwJD3f+tM/8fVMR7gwX\n97v9rXqTVQcz2X7llIPIwmxoymLbyN1bVDX65eUl7ty5g5ubG92lO7NdtY3pCd2GfFWwhkelrm6f\n2zGqLVCCF/kxEW1/B5/hHbHlLS8N/uCJNMs7e2Z9JSvrZjw847sMzugLVxLHhWTvw+vprVC/O4nA\nvWSksyyCAD104HmbyCJOfvFrpldmKcpij0tNh2Wp9900G7kQyWCYwJjAIPybzUvCwtBmsCjXw7Hf\n1F80OEjknLF8kAWGF/Z4yeIm5eJvp+eZQfbEpCGCnHRQXWVcvKF9XUDw+NdNs3PfJMI55QmSxf8+\nnyxgqbtGgt9oK3nbhqvNQtKfvu+nsqH1S/TbhG7cPtYRIKKml/d941rMj+Pj8QaPPnzk/E9mbaXR\nt89Z2zB/OX+wQ3WL7/Ym4TD2ycnxKzBL7Ul/3ybdaiGEmX+diP45AP8JgL8C4HcB/GVm/m9Mnv+U\niO4B+C8AvAHg/wTwF5j52lT17wJYAfxNAFcA/kcA/9ap9t/5/T/A1nbAXJJliLqTh2pobkO8ghIu\nSy/oxiJR3eUOeILHOPzRKV3NQgIgjsamK1SDEORx8lHgEMP2C1/+MpZf/b+qscsbDsuCDSv0Qhxm\naAxV6WiuE3BWmcAa2gaf8bLqBYVEiJa6ixFdrtedE+2ivFJqPO+VsREPwy7Szk/gbLqLlblefLO0\nuOsA+g4xw8jZJb1DvOx2qxoDWFdvbJZmgElcx7ZPpK7qbowPPvgAD157HYUW3PCGpakdCWkE1DUI\nazzJTnygLq4ITGghcXTxxArSirYKIVVSiaHMzMBmJjq5x/y1ZaIg8s5YLjSsgutOsGnKCDyb374j\nqkdxRZhLHUSyy8fviLdJJvzshUorM9p1CsYAa7utuehquMCxiqDlPnZsYmYUPSLojeHCdRcVAe6E\njRunIcaj7RspIZNtD+7eqzvqGOBS6sSelF0WNfbjKaYqd+RybN//ArjUw9Qm04zBsAJ6SkfkFzen\nY1trQNBi+i5LgnO856XQojGI491KM8Vv64tOQ/xuy1oetuVmxrkYS2TK20WobLJWQiBVOSCwmn17\nIvuA7tzWUd4MDpHd/hREAVDaoou0eTwe9YIxsSWW0p2tiJviCw4GRivD7GRFNDyisWTl5rCoXAro\n4oCLqyu17DS2NncHTpBUw2hrE+ZbN/4iDL0JE7fb/jayaWoAhjuxAPgL+VqlbGTqgQqOW18srXRq\nO24ENq70jDRb11UXggSefgcQql5vrUlfiAGuMrjtWFNdEXblMXOHpQksbv8AgOQkWFnajUiVD27W\n1dUT9XbFv2iYPW5WOhmbJ8Kicr2dZqoG7g1WrHj54inWl0fw0ThBXCf1Zcytqhfajmny8jqOX+Lx\nQrtMFtixu4rcl75Dv7el2wKlewPqUNRn8Z42OX14DOOhCKsVycna73KSbuXgNDLX/mkzRARqO4Bb\nHlQdsIHx8I3XwYWwSLiY3mnV/lvjnTje2GdeURYzthgn4+C/Sj/Y6aP2mQDh5Xmo3qjP7bPZ73NT\nZqfZqZhML3jbKNd7/eG8XQaafMzrjxXV595/sbaPswelTqGPaTOzwbw+kaJGRqLUfdQqb6sMfPbs\nGR49+rD7HlTvyCyLXezpqZRSwx5OfQGBdkyFve7ViXbd5eE8mw6/oUu1WXse37a36+SZEXfNGOsg\nUqyHqMKp5W24sHFhqutBn9+0mPJ/lM2taTAw9ZWUBsEWjW3E5OuQCV1S/hcbzKZuTeQpa0/hIvJ6\nvPlUG9TcOZm6LeR9UNkhT6SGCS4uL3E4HPDy5cvBFojj4fQJsRE4Oy6r/0jWVNCT8yS2tuHf5iZW\nuy/4nIPPYuEi9IU6CnAktrl9N7s/5By/LeKc/Z7xmm03+k5aFhn/2g1kvs2ZvAvQe7gcfb09GHH2\nfcGON2O5GQi30V3Rf602HvXQWHoKpJMi7pyP8DlYayPqz0ol+hyWf+B+C3wzPMZx0xeHfLm+4dTC\n6sv25zpnsLMRL+Kr7wNMajNvW2clZieTon/f6+7zEpuZ2M/mDSJNIo6+bzR38zXtncdiyI+bACNe\nOlcB49NGuZ3yYved7XMblUDhNTSNuiria/Fc1zq3IaGxbm6u8fjJI9y9e9ctdsR7hccx5u2iTA4N\n8ifIjXMSUQ8/7vg/VEcYq7dj99x02xMhYOa/BeBvncjzVwH81Z33LwH8O+1zdtpuVjx5/wPcffgA\nTEubdKmk6MarZ9LIYJnhmCmObBV2T6DGUyBZsowVJ0nffOMNrOsRF4cD1gLcHI/g0hzhRMmJQo31\nC+xRmcfyzKwCfF1XvWC5vutKytKj0nK+s2WGs7ZLG2Ql3w7hQn0HpZSJOI+4mgpMW1EoCp4AsG71\nmO7vfv3r+JE/9rmaj6sY2gRxqTyBITpFbndGhyKlgZSPlxnZlBnQFqfphYVJezFZo6bmiUrNn7rJ\nDMKx/mAooY8DO4EXBenWdgTbxSVHA2OoxnEbL5i0sFoHNsJLbGvpaW/cZjQmAi7uXGl/0OaVUwaD\n6zsGrPHn5Eyrw/MiNG5kCfBmvG/x2DNuIk9lxmg0mhXOlC5zOTBTztlbB50BAAAgAElEQVT7mKS9\nGCdzbxyIsRV3Pu7BncGg9IQf1WuYsF4OB6zNwGDmdrS1GVWbhzvKzlMwZfy8lze2BdSxeHV1peEJ\nGPP+mukahDIRH9W11N9nsGXwE4X+NEeIM/27YTwdA4g5aXXX2KcZveNv0Ud7SZx9Z2skcju23Qr7\nuqgu9OrF4d1DcHJN8be7dIw3NdNXQD0CviwHbGsN5VdKwfvvvYebm5s6TqQPXR0dxrr3w7ZDg+Ee\nU+oYJX8Fpz0+s8f85Xmt38hPS1NDq1KK47FMxtnY/EMeIqzbisKkddk8VBZcXh5w7969tsi/aV/O\nHLH6fD4JDFQeYx1PeJU+pumj9JlqOp95Rn4NslJqI0K0P1oFu/aGy4tT8sM4vJNxIv6IPLN+hM1L\nrTJu9pdppfk71Qae2VD2GTc85b39xHbV/wg6hUwd8oALgbjrw1IKnj97hufPnvcJdtO+P3fRYG3H\n0GO4R5Wt2EkEWCna5dt40ntGo1rJ3P7MLisW85ncJruJvbCjmKMJ1+1XDDLb4jjX4aHtto2p817N\ntJqQwdG2s+3MfGabl0gmv9jzm0n1dH6/y9TWv3dBt2uXpa/72LCjvfsqI/wgahslMSRrK8sGrsvD\nAXcvr/Dy+Qus24oNddMhUHnL3q034Il63x6h7wBXulXA3Oaxre5qUFjrTacNd7GjqE0Et92OsnES\nJ+xxHYNSnutmjArbOvQrTP4sekB2AbqUsf1oTw7bPLGNCK9+b3ltnbENW9+i5fvfbANZN/b7cy1D\nPbSbZFkC3uvaTrhp2Ox6crGYhVBrx+mdF1XIuwHKvIHXuti1Gchtms9j9LYGX0V9sEqry6srlKV0\nXuLeWvTBM9+l1wvvh4X3Oh5o30e1sI94ce8XcYka/boEm+tki8uevz2Dp/LJ6CdUFezt9a0BJRzE\nJm/k+whrvN94OidA45yp+lYSMtH1nxR2kPuNfmaR0BS3LQDo8MQxp88NPSwees+xsxXIQJP3RakD\nC1vhunGiEI7rEUQMIq52xYsXvhBV3W3HgcU1u9NKcMzCRbtx1C96OZuHsiS8oX+NbI53Gt+mjTwm\n0Q9sYvz2V3/Txf6Pg0I6zBrKQGbkdKG8Z6SkUHCcMBiFnw4U26Zp2yojKgXLYcEXPv8FVRBlWSDd\nszcZtpkJuD0csompUoo7GmUQSid6TtGhPqzmIqGgevHR6Tg9uTfDwTUjOAd40rwCJ9eTO//w61/H\n9csXuNlW57iJfuUNbRd5dZIsnvWyt7pnmEFYGfU3738iPDJZ123L3JCJPHUqRQG7Q8EmTxkwfT0z\ntiwd+xjTVh2MWXitrL4M371n2XvLy3vtEZ03ttPyxKAC2CuI7t69W8Mx8dYNbQNbJiMyGeQNhNoX\n/pPDPevjrM9OpRnPxGfZLg2LRzUIqFqy7RRZzD9beM5gsnCsRsZltMyeR0PuHHpRMNCYeViEGeQX\n18mOhQgXy4LDJNSfa2MiA7Pn8Zl3nPeNe3n24MGDKf/v9YebJJCpF+q8meU/JftOwVsCfWoZhrCX\njA3G5mCKfWfpHOmV0y3QmOWJxVng9/yZ0XDALNICnoolfOxikG3LyjueyFrJK6mGjlsBAtbjEcfr\na3z7W9/Gtq6tTjmpBv3EthUvMo6xaWfYvTtJ0ZmJ4zV+b0/y56bJuDPRypt13ab9JPUyMxYS+jOI\nNxC6UzBzsLZ1xY9/8Ys4HA56wniP74Wf63e4v9Mxmj59lV6l26XzbS0GdKq9fag+q6FLz7+IMoXj\nzFypnhQbvfvWApX7V18WEC2o55nFgCPE+yTtZFbW5imbZWZ7NHCrDNHW8/IAgGJs2WZLPX78GNfX\n10YPqiI0NZKdrkzhkDrn/pf3A8Q/jHSZ2X2yq9fZDLsyHa4e/Z7m6tgOUAcbc/RFwqnKW/oBFvbY\nh0M/J2VSPAyNZz4Xg7HyFnirTjrZsFjWf11R76nMb39sbVteNEAT9YUeZh42nekHcHeiuP4bEcVF\nu2Cat63aVBP/NvLlIiHgTDuOTs538nqVYMZcrDvplnP4Y2b/27E2G1v2BHlmi9rxRkRJBI/vL2UX\nLcvvwUZv4/icvNH/GXideWqzOLybfVbnsXhgIFdv697oT1b6FSylNLt59LHPoWFuHxKYCuiw4HBx\ngeVwqP2oPl5TQG7JZ473OV15m7mTU/VkdrR74nTJXrnTbaXPzSdNRBrFR/0agWeia7Jxk43H822d\n8f1etpltvzfPcAqGc3zwrIwbHgaOuniyYT32+0CXsuCwFBAYL148x3o84ubmRueQ163dl1JII/+c\nmhMCRPY2WDFuDtQyM5vkRLrNfMK5fRDTx2ohhAD89v/z6zXunCE20IW1JFE6THMUN4zKdS8u7rkC\ndXb5t1UY0bFeDgf85E/+JB49eoTLiyuFZTbRJeUk1JQ8z3ZWrNuaMoxdRHHhqMhPdFhh043L2aQk\nhY+lHRB3CykNvg9BUBHx9cjHrhKLMbC1kB+/+/V/UB0LbGAVAttQPk7YrG3SiHmr8fOMcVrLmHKb\n+UyEQKejnRAZdyVkEzCRPtEB2BMeth2l0ZZPFM3KV74Tw83nz2Dz/CGZ+4RjQWWN+pk4UEHoz5ys\nDF6t+/tQ+kR9N1/FZcPl5WW9myKEgpvB0o3N/l1CaPWLEUnzRI8556H5uLB9GmGJsM7gtR8xzrOy\nrjz64izQnBlzSiiTT1GubqgG/Ga+y/NTRkj2PKPNrM8jLBm+qa6BPw0lqRRvqMVxZ/skm8i141nb\nsnlMvhjSUT7H4xH37t3rhuYZRoLkiO2pGU3ya0v5ddYfe0ag6pdMBsnuJjfR1WGyOmQ22QTk8b1r\nWWlrA0RuS6Ew5ySTAbuyI8BiJ06iY6DOwhkyW+jUk5evM/61xigR4XA44Bvf+IZOUqy6IELOGben\nT2YTFgqblVeGD20SWLou5aGM0snoYrEfZnJWaD7rD9aZ0xGWRkbVxdIOALUPxC7K+ub5s2f44he/\nqCfFRE6lekhht+DkDpvonbjz+1V6lf6wKRvHg93YZK4VYDIe7T0QOtbThvL2Iz9LncOOzY0ALiC0\nxQwuYLPBamtw7svifXvR4m7x2UvRJ9qT2xbHaP9bfOXU/Yauly4uLvDB++/j+bNnbddjl0VkJk6J\n6vYz+13C/R5KwUKEYekn0RWxZzJsVH/aT+sSO3li5Xf0q7vs9XQXvR69SELf2R95ttfpebg/93ZR\n/Dvz8/fsXEshAumJ867nLRa9vahHhT5A7f91PTaabHWCsFDbgFUdGNYNbPmmD/0d+mrA0eSJ9djd\nyTO67Ok23TjW/H1aFlzdudP9nDBxmcEnsOvYBg8Tni0XxCqsA93XN9heO/duap493EKeyGtRjkR+\ny8KqiZ+zcr1Enmnc2JfZShGmDM5t2zTWf+qv2Wftk/mAezQDEl0i5ZMybuyhj+2llL7wRVJLju9M\nRmfjeW+xMdY1lLd6j1kX5yp4IqcF4XFxkKgKxRrSFjrnMcPBlaO+cLKnk/bf9c+Yn6aG5Sldtpci\n/dh8bP198wIGIOO4suPG+qTZeJv157ZukI3atS/6d+9TmPq4n2rB1iLIbKx3VEd4UxsKuXwRG0I2\nw/f24b5Xcc/+YzbnzWSD/GNjWx2PK25ubvD40SM8e/Zc52eUj00dUWZMfTpV/M1W44KCpendaonY\nkPDn8tUs10yGRf/uNunWobE+0nRY8PzJEzx/8hT3X39dO8spIXilBHTlDvRFCjupNnPW4195lwlV\n+Rvvt2gvm1CrA8tOsnNTfLyu+NznPocHDx5UIwjA4XAAr34RoywEXmu8blbF7xWuw4s2YGVYc4eb\nQHdYN3hsvMMtxMseLmq2zEd9csjiv8lR7WYUlWIHQ3O0GDrJEHGQvIMRRPCS1aEyhpyQ0ELVGNrw\n3rvv4u7Dh+CyVWHIjOPGOrHPzCgMDeNU8QeAqhBHxTI6VlbhEEmcWmq/64W1Ec44wGdG5wzvqCRm\nSnLPuMnb68aZGOI2b1RWeTudHsysl0diG53QjC6FhVW8ottzYCNPZYpG3me0zmhChwWvf+JNPH78\nGMx5mB4bVmo8At0m3EqTX6gLBtjkTpsdhagPu7EU+SQq24hPpMmMnrFc1sfegPD9l+Pe88bj4iKX\nK4UMPA13MZxncO6dCtrjjY5Ml6cRRwbqTrpA5zixbidtgTpxUWhx+PZ6AbRo3oLfOWPd6aJmhFDx\nO+fEAC9UF9xkIcTWkfW/fWcdS2sc6vsmJ3WBAF4Gxb6NiaiGJ+AgO8m0V7ujLRJmY9HU7caqUS29\nTsWiqeR+t5HIaNps673gML7cnstmcEJIJuEmjCw+ayq7QlzbadAP4wuq96mQGvRSrpTSDHaG2AWb\nmWwSKLbjEe+//z4WLI1nfYi8Os5J23FjX9vz+FcaeDsopV3g8UyGWEPckQdG11AcqT3WucsHTk9p\neVut87xr0sDGkEseN70nCADeeP11fOITn0BZFg31Ye0Wm/bG92A78Xlc8yq9SucmnQgMA8fzZbPN\nYfWE5GvuTJN3YiuLjvS1SHiPAhd2agbbRC7EdzN7ItoxfXE7bzHTt9F/u43tbesc9cXpsgoD6kSL\n7I59/uw5nj19Wjfe9EKAkbfEZpHEIZm3MXtWQ2oBsngUKoGcAzKuje9zqjdzevtiB3moe9x/g91d\nfv1557XM3/VaXp7n9qngIPzr4TH+qeadLMCYBQkyCmnbBE4oLBqa1OhA+R79KOFf7d/AT3Gj4ixl\nujUbS5kfEJn2lD862tNdtx4u6lQTlQKwDws+88msvwQm3dBpfbUCwixemt6v5XzKUU7Z9iJt4mbU\njF63tdkjL8a7AFoBB9NsnqDblyGk8gTHWN7iJWVm3DT3pcSqNhsG0f2mEnCOPnUh0pMhbiaFEJb7\nOqyc8Lwdo3HhdeYz7NUR0+FwwHI4NLkx64/+O8NVqJv5LQ6/pmgZEv5/rveyVMWXN5CbS1LD2tn2\njMdVQRL/pcvmPRkjsMXfqc9dnUQdg9rfYeyJr9zD41VJK/chi+y18vGcZO/JObsc+xBv4ufu6RZX\n3IyKWb/vwSH+ZPSFRN/YxV3Vi+ZzPK7VdlgKjusNrq+v8eTJEzx79hR3Lu+4sSJtrOvaFiXJ17tH\nr+YA74nDQcdI0Z1CM10x5LN17YzjLH2sFkKO24Y3HzzA73396/iJn/lph+i2bS0uWv1tCbYx9UvT\n0QeepIwho6GSCdQ9RvZMS4NgjkywAXj42mu4/+ABnj59iotlwfXx6GKAVjzXNjCMlApJlXWTZNFo\niiFuAPQ44T1nykjOCEW4RwBeKIhiA3X1pu0yTDztxU18TtuzChVFy2SKJBqcAMBEuFlXPLz/AH/w\nzd/DZz/3I2BeQKUaWox+sRq4hgshmDjjivVoCMXfDgulDVz+/vo8Z8vmd23tGbMAZFJQJy5PpFHo\njTuBxFGIeGTCLROilg/q5cM9MKgaSEZhFfBQT3Q6M1jONdpPOYokXhMqP7z22kNDA+hzZnY7BS2c\nFi5RpsvSd19bMzTiJA6X/BIjgUodBxonl+tiIxKeyGTUbIxntCCiFmJnHv7FPhE89+qfwTDrD8E1\n8nwmN6yMzxya6V1KxsiRd4qb4c1MMdtxqbIRdSfKMB6EWs34lKoyfon1a742abAFXrP51nXF3bt3\nlU7LsmgInwxu1y41Qy50kdOJFp5JvbFcTC4kgDFuu8xt5esLZ/TIZwy75vlP5PJwFwcbY7XxzeDq\nxX62RrhtqxmoYihzJw6qg9FLuDqbvqkqnaSRcfOBLhAx3GSVcVbqZL11ClfonVBcw8w9f/YcSymg\ndu+FbAKwMkzsEt4APVjrzBrrZZ2WqdL3cezExYLZqdw6BjegXcgeJ0C0fuobXfaM4VE/5GPZprXF\nEhbZUUrBw9dfw73791Ue27KDHA/yZjbOASger9Kr9EeSePaj2TEQOzGMubaZqb7yJ4BtPkk6rlSM\n5WMw1dmhjtn4zca/PO9jK7dBsw07EZdssmIGdxzf2Xg/lVhxIshGOHDddHV9/QLX19dqe9T3dSOc\nbOJykwDarrenZ3idglWks2GDvggmrSgAvr2aRPdltqa0a/zFpN/cvViWbkNbFpjcLpz5BJ7/ej0Z\n/c61WSsMXt5Hu3HqvyFqpDnMzKyX1PeQnjlcmY9mU4H3q2Zt2jr6M7F7+rOyFNy7f1/fR79N27Wx\n9+14knmMxtN1cxFhWQqwbdiCrW/xcuOCe19weDfT0Vko3z25Zdu27yO+zgaKNoGxf6yPkvk6gsvg\nq3oAfP1h7Gfh0S0tsnfev933JZ2mCXxuxzczt003ufzP/GnbjjNHg/0VYXdlzQJm5mtJHXfu3MHF\n4YBt474gHVLEVVoY8sndItpug8TiC8+jmZ/r67R0lfpGORyT9zehcw2EekrJklp8QtOo8Vsj3lB/\nKrYn0Nj3FrdxYVA2mvXNfwy4uyls2ykvtju47HuF1bn8FP4mibxOsj6ordf6Z1Cf0MNY/RoGStss\n3fJ1f8/PRwyguP4TfLiFmjN3AbVeffH8OZ49eaplNTIQUDcytChDs43mrh0YeaA+qcA1J1+sYw+3\nWz3X/wGFz/eePlahsY7binVd8bW/+3exriuOxxsANST9zMGU7+1eLO2daIzYsrNkhbgoSfkeP4Yf\nAe5KFYCeTNDh1t5tYPz4l78M3jYcj8de2H06LBlsFhfmFn5CAGltZhdE+2PegEysOMfC0i4oaPk7\nTl4ILXLja0+BRzr7tG98ZP3bMMWdqyt88/e+geuXL7Gua4+RZ07fsKmDOYSOYt+GPjOfFayfI/dw\nL5JfwmhksNrf0XCwbXLjD1s2hvSqfNakUwv3QoG28lmWRT+Hw8HFLJW67DF3S97ZvSAKQ+AVMpOR\nGe6DQxkWCGz7wl/DRJLBc8/5OSls2xFKtHtvNgCvv/46ZNIzwurxzHlaxpfr3x049Do5w39Ap7ud\nCJdLBUuheoLM0jEYnjM5mNHELoBExdtpZSaR2Ts9mVHqeDdpP4PPtjt7ljk1pxxAYJS2DEMrU19m\nzNt2xMDIjJ6YMnpHWGMbcUKggIY2FqE5gPv377v31sGLfGj7ysIb44ULvQLgTrZkuMa/oi+rrPLP\nT+lki+/sXcav8r3WH3iNCAjHheMJB6sfo67Ixj4R9UshnVzrd1usbMLBYaRtrM/1V9L/ygfLojgw\n6iTCu9/9rjv9afNnNO9ko9kLxzcVJpFXvV6re/J2eKgr04EyCWrf9YvPbahPb+Rmtpq2fXLaqcMo\nsL18+RI/9mOfr0evSr/41dad4RrxzGwcZu73xbxKr9IfNqnxVy9b7iF32vO24G3ZsPKmfObh8TL/\nw/5NwQnyzKY9md7Ryeu29nqsb+Z72N979qCVSza0cNR3s/ZsGbEpov2+bf1d3Sm94dmTJzgej+qv\ndF3JKNJ3ZmNFLT/aTjEcV26fjM+qzI22mdFRzb9o29LBzQa1pIw6sn667kdDI+oyq+eydI5Ntadv\nxPSmQMeMh2d2p/fX0HwnmuJv4ToFdykFheE+lPCX+lITnb7nB2W4zcZP7A/XVwlNqBTcvXdXMNIy\nmX0caaF6vFReB6GGZF5Ku3jd4+dwBpmTRRX3dV2xic9v+4PQ74GsI2dYfIs0yODN5GNGe7fAEWgs\nIe9s2/I92uUSotv202yMZ/0ZcYv9YOWVvB9tXDtp25PYtZkdG+mn9FKfXmAOG6MafIV4+GTja2+8\nKg0E3nSeSVQj4/LyUjfEnuOXZO1He1N4T/SvTHxnm88G3ZGM8w7z/kbmqMtUtveMGqLNfsTXMBXu\nymZCHq5fYNH7IAEQ97opfCyOHfa5nZD34+i7dxoSwAG3UE/0R+xmqOzqAA8rwZMtzAewed7y1rCI\n3SDL7KVs3KrtQFW3EtVQyDc3N1jXI148f44PP/wQFxcXWiYLcZ+Np4w2jtbUFzJnfo3DG3N5anHJ\nbYcZjJO5iZ30sToRshKBlgW/8/e+hufPnuHe/Qcg1KM/zMCBJqtxABgEtJ02kWlmRrhVFtYAyI4S\njckshuD/Z+/NmiVLjjOxz8/JvLeW7upuDEAsBEGAQ3KwUZAZZ7GRXjQ/eUzPYzI+DzUaCkOMBG5o\nEI1Go9FbdVXdqnvzhOvBwyPcPTxOZjUpk9rsRlnWzTxLhIeHh/vnHpvOskgMioySyOHozPjjP/5j\n/G//6T/hrbeeoCxAwQYPKH2wQbZbGoVKl9NxRat2n1Qu+ewaw4HJdWArci5C5FWjLnTQBtijEuBR\nIVnFbAN1cTlbLDcDqpZH9h4tC25ubvDLd9/Fi8+f4cH1A9nzkSTAvbDUfyFC2cYzESRzF/+Bhsnt\n4FBxPBTAn9mKDLBm1/v3HrybGfkhPzbObf0bZ67O3ldgn/EyysmeA6l52KRKUg+yjQ5IpKnTsz9T\n0N5fILMabD57hjtLIhK93HVd8cabb2JdV2y8NcUf9YSlydKm963M68DYDMS1e4aPS10N0gxlpVO3\nofAAxAPYvVnY0bDEPulWgUVDZO4XltnnM5mOedXCpoax8Q1Aqfya8dQ+b/lvHZB0Ky3LsdAeWjaF\n+3m7+dnvmNiZ2WyszHnSMl2dUFc4UN8CqTsV1OT1cBhNfdRtM+Bs6zqASCSrY8isUEnyG2wDk3M6\nl2V1tpKZsdLSdKqWG+sQ0x646nUI9wzNdo1WZk96ncaaRhlmncJk6HK8R25199qk8S+UC8M3ZtmH\nF0YWT9uGX/7yl+2dUnWGDeDrDCFHQ7ADlLQxM7utEFbta6HdgXEGaHROoqy3Z0up9Qng3+S7Ll0G\nbRs2vgW5tnTN8ETUN4fDATc3N/j2H/yBO2/uuK5TXGTzjLPeBqwiX4T+10H19+k+mTTa837d/o22\nsj8vOjrTcdNUFVqGEzVdsjKj0zvTkKLu1BqqO9SDAGN+ERecrUtIgz+QvD/o+EB91Hmenq7XFyI8\nffoUH330Ud3j+4TlSoLAy9L1q5l9Uv0tu3oQ7a/qFVf3TlSnmdR2ICj4wIvBfhb3wqV8fR3+K42Z\nvrb5zXD4ubIv/a1+WGsC13e8vM5kfcTZ2gzej7W4f+YzR2yqfyOvBl4bDJthnMwXyNqr5U2EhRbw\nAmCTAYc33nijT8gkPyA3a6MBvy/UtoGx/kiWiKjhE9nlIeBY+WGwndliHdx2yZ3VM0uWL5ZPGbZ3\nfK0rSZdlabEZNs9GvbVX55lOUtnIZCj+jng3w0hD3XOGpH1nhtmt/usX0TDQ3rvx3h6P7Pfm24La\n2Uz2nqaFCFdXVzgeDr1tqaPvPezYlGRXtD0OY+tCAHM9/5iwm3dWlzHl/G/WMspWnaclLJ8PXjTP\nk9m0VB7fAswZqLN2w+h3T8t27VsngDVyel3ibg/S5/swU+HiB9wtBXXrX5D6bRpT7b76QgtolXdn\n24Xnlegr27jqwtZGRkdlOjjr21Y27BZ7SuNhXXF3OrXY5LKsePXqFs+fP5fdPba+dTnRgiWRS0bd\ndrPxUq9OfO+m+y7vh9k91dOcTLK2aDT2k0715elLNdmM1gV32wlvPHqEX/ziF41hOlsJeD1ApSt/\nrJDFv3aGX5xFq3+j8s06hj0gTDuqfEc7MIgBfOtb38LXv/ENeXYbgYJbmVAzOFfnGFCwtM4MUgTL\njU9JvvGZ9uxE+cWyspR1+syIXeLMtOcWwu3dHa6OR9zd3uKjj37XbJQ1itu2DTNbvIwEWtFHiPUA\n7LO0hGdmfLT1zECoLWbGi7jqQ1d72Pyy2QZ7M3YiHbN2zAK9WT1rLmleudKM5e2PXuu7TsleoCvk\nHd26SwzJtm14860n1RldUE7bkP8liagvS5yNnANe4dMSZOACvrpB0NDeUZ/sOTqtbwRgbstTY3w6\nnVLZmc4Q0E8i95ZuAG51lZ2ROQCfoMPjrP7XaatIQ6xXTAMNHAemztuqPWelXTMzaOx7iwGmjx49\nwvF43JexoDvOBaky+i9xerJ81ba2AbSyDc8g8H0mG1YGYv62TZrsJgBLgB+3C9YBbWVZ3MzeTkQ6\niGjYx9W1w1aaDqkP1Pu5zvX9z1Le83dlc4X/Qii20wnvvvtu68+EPkOxOxHtiEBTpqcnWy1oac3a\nwvbxTM9kti7qHVo8PsmcBP0s1M+H03vxr9NdqH0V+4eUH49HMDO++tWv4p2vvAMGnO3P6hBlIzvE\n09ajFDbnvdyn+/TPlF7P7FXcfx5fDe9MMMRATsC4vU8w2sGgtTey9kriGvJfsdAKohU1cvHFKnmG\n/oiVs3pELNVtBTc7k2H/rEyrM9Zlxc3NDW7v7vrWpJqP+fhac/tfZ42zEAAQtcOZS71mgwmOtr2Y\nzg7+mbf/PK+oz+NM20vTJT7lJTRndcjt1dIwtvoJl2CokZ7E3m8F9XBKh+NjomrndGVwxBhn/fAL\nn7socc2xzrBe1hXX19dYD+uwqvgchh5wly0mtFW81vIOPr6NxXQ6wuSuxPJnOiqjIb6jKdthoeWL\nHvCLvkpW59SH2pFvojqB7IIBuZkPFus0xATgdRGHe68jWw4vTSfsnpejGU+y5+0VJ0dAm/C11HN+\nADhceQktLbBO+3ITIyKpTbkguXyCbr1Et03ztfbMfGYp+uZ7xBK9vuWOfT7D1f0BtHYoKOC6IpbD\nv4YldEsuooGfcRKalpXqoC9Qp+gzRJ2VvTNcK9wOSycAKAVPP/tMng1ZDDlWXklR3GSXlu7HZT7p\nF5HV10mDP/nPkOeXakUIMaMsC65pwXt/93f4wY9/hAULDhvjhhZcoWBh2QaCuc9maUoAauzqjcK1\nle2BvgSxFQJo9F27lZGeZiANjWZE+4Gjq8kPKCwrVqygHeiADZubKXk4HEDX1/j2t7+Nd3/5S7x6\n8QILL60cAFjoAJAYs3ZgKJlAh3zDVjQgprRsUIAmB6qaVSUR8FceEff9wksp7lAr5bFrH6ssmuI1\nB6wyQGoICGCuM0cwzkixijvbj9/SpWVHwMwV9NOyiCNQGA+ur/5WnYYAACAASURBVPHqtOHBgwf4\n1T/8At/94z/FQgDXgJCCpFK2vmrCACnmeoi8lSsWN033K/T7iNcMWCRHgt5dRmPqiq+2pNXhDXTL\nSiBR+l7hH/VQOguC2Tg6hcFU2h7qAFAIQ7BF5DoA6bL1fGTanVOI9cn6/AIrk3v2wLcdtfd6YNS2\nu+1v+SwmlTmuh4Wt5GecA5B1VsbhykBBB9IM5oKFxKk8Lgc8OF5jPRxxur2re+xvLv9Ik8pDZrTb\n84XbyDSzzJQopGGAaoQwDojZQ7wFpKDOCuxMK4WdE3IygU9wnwW0bZs7B0T4P4JnXWVDtc7qaGuR\nrc9iBCq2LVz/Ne/ZdkDNRw88JvOezdeWu8jF6XNRboQXsiKsABh0ieFxabu6FWCR/m4P95Q8/eyt\nJgvETd8tNJ6VkMlz5tTq7wJZ5aYrb1SmJEwkjtexHvK3kcC/A61glDqolg/ORB3s+TRuRSSxKQGH\nmudCBM2+2cZQDqOAsNQ8lA9dr2g5RflfuPYBNGdV+e15Lb1GyiDI9ESvM5QuHYjs10x90Vez9XMz\n/Hkz0p4mb4XSi8wubCCU1UZ2+0lE4HpA7bLoNTS73No5yLEOXGx20IjruVtlkx1vVP4q31APG312\nc4Onz29wWFfQsorsLj2QD8gMIHVepU52kEP4UlCcM6Ayo9tOSFsuOG1bW712STDDfu921MsfKGwv\nYRHxwvVwRbj9tjNg3vp0kbPKDtW2MilWqtuKscwSXao9eXV7wno84Kvf+CbWq2uACAcaZ6dlZcXv\nuuWo1f2AyI8d9L1P9+mLpMFpVj9/0hfsO/0ZeUn14V4ZqgPlu97P35kFZeSBbBUyDK5R3Rtt76Te\nNWX+xCxZu68pm8ke37H3LQdZHnBYqZWDjkOkHAaJ9cKnn36C21evwEXOXODC2JaCDYTVaOFqCXcB\nt56D6No4PK/YTXlsc4/1bA/uYHzLautbRGxo8UWjI2D07F37e/QHkln4yXuXJB+MGicYKQ7prkOY\neJGU3es9oSXI+azeUZ7Un8r6uXtXsTeN9mYWdJul5sHZOjPj8ZtvVFwj4QvFFojPhuux79nrERs5\nWTJ/aSFsp3G7SpNhpTnKusU/vY/GusYU+aV+37quKFwnZ1QfhtED6ns+jc3L5a11JPKDDYZmW0+b\nR4bpuZSmG+IuAcq/rE0SJrTyLE2ZLzPivhADKlLLrE+n9gFehiJ+jPVu/A3YHIAbWLy+vhZfal1h\na+95keC7hK6ZLGo7Rr7ZtKdH+n0CSj1Px6zIINK4ACmQN/qDWt+d5zsmRvX/dtRE5MfgW5IEOjwt\nXHUfZMCiliWxjXqjR+pTWRjkNAUi6udFPaP39axPKX+pcrJtpSmAjEfez8xld6bjMj5F/kUf3U7Y\nB0u/KdUBJ4jdf/78BT799FMZLFIWwsodu/LSeIx5rjEQI6/3+mesny3zEpvT/fOBae3P67hMX6qB\nEAAASyDib/7m5/j3z57j8aPHYFplifCk4jMQMktRMVFVHNbw6hMSiPbOuk/z/Vj1mhXywowf/OAH\n+OlPf4rj1dUuYI/OfSZozKUeEOSBvLxL5nsOPvV5DUZF+mPaB3xoitgqgFh+5FdWZjTOthNZAEZE\nLcCj4INIDlp771e/wt3dHY6HI1YsOBwObnuQxlsOARmKMgJEwNlBsT7bQXJs07H+OgBiPD74Z+yo\ndwaQbRmLWfglCnOTqJs+B69QFEDHvNbYPqE9LJiPCv6czPgk/Ip7rfd7O4bO0mMGVTIexf6zm4ja\noOWyLLh+8ADH4xHlJMHFBfm+1DMgkRrGRWS2gwMD6BsoHLemsvXqPO99nhltcIOoB1idQTXvZwM2\nM7oj54b2DmBub39qvR+vS1silSdb/2i0M5mb6Sb3zPBEexLaF51D4HyNDhRSp4FJ9iJOwE/rr2YW\nZCYnjSdkDjqLAMLYw8dvvOEGwdThzXhmy5qBkuhINJ41cGb1TeTLmA8Xbk5cz8fLYtN79tRuo6a6\nno3l5f3e/o1Lt9UZsLK25wyMeMFPLhBgOtdXe0GemYxkZfdrssS5865v1Vi44PPPnsoSfwBb2bAu\nK/yggqDIdCaeqhXa6ye9aXQCiR1siry1tiLKvOoLawus3PXrSlxXOTOnJN4beajOlu+jZASulILT\ny1f47ne/K1uFDrI3Ypmov5y8TfjYdcxroPr7dJ9McrKvMYcJBs2wUr+Wy3VMZO7NbEd8N8Nn51KW\nl31/tvVvpmf2Uo5DR/wiJlcxQv3O4mf1B+qAB7q9621TdWH7XvXzuuKTTz7GRx9/jLff+YrB/oSF\ntcxKayNOCmH0AIfYyBErMjNAS7XBfcBadHYepIkHcvc6o+lCix8iRok4OdONmY3Q5zPZzdrGto/S\nrQp3RK/J84nd7/T2cqL/b+XxEpm2edWSnV3ruDivV+ShvTaWdZ4e957B+bP8GnbViY3qv9bpww+u\nHwAkW9eVUtC7RN7vVWbiNSezLDZ5CRizzrlMJ4+1vJD7f61+FV5afKurpxCuZzgd4XorK9SHzTuN\nF/A6NPLAXtdBlIXCwerykPit+u7/CxPIlAnE5Oomz8j5Ro0f9X8rQZmGnvVnUXkeLc30QJQVq79t\nX9GgcdNT6L6k6OfOX40fbduGZTk0Pe354yfmZjIW6TubqPu/DWeee0/lQ+thylI9MtNt7XtybSym\nY2UdEFc7Y+kH1+tyYdDnBNEb7Rxb0v7RBynDaH/r20CuY6e+ktITnnPtmQyM6ENt8HGZt8W8besQ\nT5vc6/WN61ZR10zwSuY7Eno91mWRM6cB3Ny8wNOnT1Hq5LRzaeaXWtJ94+TvZynDVLHMS/xdoOtq\navS8XvpSDYRw+zDuXt3i/V/9Cv/yBz/AVhiFT1h3XfPRYF0KhNGgq3+vN5QPUFvF18okcoY1c303\nluDD17/5TTx/9gxvf+Urg5Msq0A4fT8D6l2Zi1EahWuujEvdr1AM+DjoEA2M0pDxWA2ZOgvUFOd+\nHfTanuMya9ODrmTRPIqcuAJmLMsBn3zyCT7/7FM8fvAQIG07IIJNBVZdUfVZW73T5kDWPiOgYDx4\nd3TirONp6zQuj8sAsB3cAmTGeiurDt23HGs5xbG2ynsw4KWWbZ2aXGmNQNDXz5atPN03ZCN/5/c1\nEFsoPiMB/wjqL3YMTDsdDwccDgfcLoRyms8Q3DNe8Z5skddnU1pj3PraQijbvmHshaDlpiBc67Ea\nEI5Qxp7hbf2buYFwC3SdeU9A2zkdPDWMQY4yGnPwfJmOdwAaURq5rlKY5SdAwIHIokCJWjvaPn0R\nADbJO6ZK87yOogPkrIInT57U7fAk4P2qFJnVFNplr+zM4bgUpNgyGsANNgQ1+LwQYat6Mg4IqfPb\nf6PPDpqUpY6OHcTPZNDLU86LVuesXwC9f8nDu7wA8oMqnV0193QQ1g5OZG3Q9UWnpVS7f9o23J3u\n8NHvfifnG92dpquQGAC7LfuMDMhyk8p/kX1n55cFlAxotrqEGWrZlnHRSctkLe6H29tlHIi3ec3y\nkzlofgYVmTzbu0Q4Hg949uwZvvH1r7s8Zv1ocDrZrCy2QcSkzuu67m4PcZ/u025i/31m30cciuE5\n6R/LsNWf/a56a88eRJ0zBmVyPWuocvlk9Ykzn+2zlwQBbJ1s2j+boOM3DW609xJ+Rxs84CEWRXG6\nO+GTjz7Cy29/Gw+WBSvgMJziLcF69XfFf1jUfw143uD4bOVZt0eNwnmbkq7S7Cu4rd8SfcU0eDPR\n9VEuox6f4Zg4Yai5GWrGuhPU8p0FZ2L+fpX6F8d0imOydzsZ2T1K+4+9Z69H31Suqa2rtnwZV88z\nc1sdmeVvUz8PT338aptBeHB1jXU94Ba39WzFstt2ml+6GtTUa5jsZpqu1b34SZ2xvJ6v6SMsfqTF\nEZHHC3kfeaBt4ufEgVUVSQrP7aVM1w1tssM3S/MXnUDWkvYnU6a0raGpAmQ9h6K9yj1o22kNk4qp\nDrCxbotI7p09XTLrF/Y3N7kxPmB9rx3mvSy4vr6WrbHaIdYdu3VSqeO5YJsynB/1HpvyXXs23Z5P\nLhifR+MRl0qnXqNM9n3SK9l5oHq9yRC0v1R/N4gK6+4lrc/K/263GNL3F+GgwylVnxib3+nc91sd\nHRHXZC+1OpGT5fhe669crwQytB3H9mI4XwpG3owMWpozuxdlqFHG3Nu6ZrmVGlnigttXd7i7vas6\nTt9VPVS/E1x51nanNo6Ub+d11zS+U1PmE2dbLk8x7FkK8vSlGgjRIMW2bXhwvMJ//+lP8S9/+AOc\nwHJQ+g4QEYMcndvsuVINYC9zMHQszn4sbVxdkQM6Wx9riE6nE0qRwNWPfvQjfPTRR7g93YERD1kH\nbPBnz/nuqwG8gckUqgerjMJbU5xbOWFdjkP+WeeMSyobfSxBeValx2OwIgtgxDpq57B1UdBUapBv\ndhCbOmqn0wmFC3717rv4+u99A+txrWUrr3xZtp1moD0GTTKAbPOdKWoi/4wH/v5Zy2/LvyzZ2Qo2\nH9Hlht9M+aFJIe/sN+C3PHpd58AmqXucLZ3LrAWxU4UtmeiLQ1vu0WuNDjNjqUtk0WRqnHWhbXfu\nrJVY5/h7lKPLjI6t81bpOZmZAJlsa/lr2MomA0CgMKMx0KtpYxl4OeesZfxoz2IOCmbv2LrNZCLq\nqNGwiptC1GdxZHkNzk3Srtrv5F42EAa3MscBZOU/1W31Su/PsQygbpF02nA8HPDo0aP2zLquA915\n6qsylIaMHi3XXtdFG+Lk+IATA267IucgxsiRyV+AW3+n2EMzdeYZet/XA9fbeRdTXTvOThrKhXfK\nM8zX7I3qnwLQTqxNZgX1X8IbbwezgJuVa+vsufqUGs6PAwxE4HLCr3/1XtsCYVlWOUgvOBnWqe1l\nq75cQeiHokeenUpx/UFp1dUhMxykfLY8mF3X93zi5uSpXbQ2tK88gsvLO6J10keVN3XQrOUppeB4\ndYVvf/vbeOPRY1lifkYdDzq84oyqEORaNbpugCeZxXmf7tNrJbJ9xa++ao/YfhLujUm22dXEXPtU\ndYhbKIHGAMEsDTgMaAd86n2L7XTr1WKCubYeg47sFQ1Ej1hi17adxYps/ni8OsMfu/nJXlgAGJ98\n/DGYGXenO6zXcrCyBlwsdnBlAjLLtvGhB8JK0/tjOEl9wEhS44HhX72hSCn4OwyisNpwUtf43pw/\nPY8ORWdyYuQikNwCPkuOD+Y0zpS90pPjiYxWfW/isrX3bN/s71j77/Fg3JpYy9vD4NY/bPQFPlq6\nM9+93VsWmXTGjGVdcTgesa5yRkjZ5vZsbtvhrgttVY7VZrdAoK+vnTy2N4gpL7k/3dMiwoogtxNd\nEevTrpNMxHMrY0NZdqt07LTdjC+h8Klu29M758qaPTtGvGo5VGVTMQ+M7BDaRLHed9GuA107aV7u\n/UCL3sv6f9ThdvtmWxfrlxSuE1aY5Vw4QLYYZtliGOC2xbDiNfDI0xkNZ/lt1I19N4sLRCzbUavB\nwks9+4/G+MyCOunX5Lexl+9LpGKmN7PYhrp8To9Umo2mmpfLKh/Bp6h110Ga/rjBJWQGbbjLWayD\nkzWL9YXwsU47v2M57hb3eszkIbOR+l184X7cgAyIbDIRegH4tOH25Q3K3Qbaent21BCMI41tmcVt\n9vTpzO/eq1f8ne2YsFuW/l0ukdb66MVP/v8gieJkYBWyP/j1r7Hd3mJjxu3dnRwAB8YGPVLPHKYL\nyMgkA6R/uQtQpmB8Q3tw2Z1TSoPu/cmeoiKMiqwdar0e8Gc/+UkFqyxBSUOn5NXPT5CgGEFmaoXg\nEtuDguOZGp2vlhalzx6yPVPiewDJBiKWZal7po8BsKydo0GKh4zF93X7qxQAGxqWuo0FrQuOhyP+\n8d13UbYNGxcXsI7J1t8GZRyvnfM1ylULeIW21GR5rQBOl98pP/Xv/oFq/mNq0d6f8r54mex5+gPV\nY90jP84ZhATrpe3d5VLprz2bC2RgT0BWesByrBtz2xJoRpet+6AX6v3DQcaP33jjDeFJMKANRNVl\ntDM+zGRN5SDqh/Y+jY5f1odnPI7bKVm6m64MoDn2Wa7C1Ubwk3pk+sJezwYomq6YAPhLk27FE2cY\nZDSmW180YOFXJdAiof2lPoPKr2XJbUcsy/0uAGGRwQ3Wsz1y8AH41YadnqXdi2mpgx5vv/02qB5U\naWcyxvzbe+lB2SHvJHgwS04n8Ni/bB/TM0+iXMiBr/3gV4K3B8NWgc5fzcFjvObl1QcZyiZ2VlBw\n798ZX2ydI/+knv1AVU+I0L3QCi5A2fxggqVVr+WOPXlQb2zR3d0dPvzgA6D0wQKZDaz5ymdZ4hAW\nACzQVUaks/MmvNSgh6XV6hG9poeg783QVtpVb22Gp3avbWbPH4H2dQoiC2aigNeinmt/ibAaIK3f\ntN8fDgf8yZ/8SbMF4HxrRFvWdIJIzf+sE3Wf7tMXSDO8Pnsuw36DjqGuK2ipzhTsxzx4AV1DuQmu\nGWnaKg0MoMAGgpdlER1kgzcJjsnqu5fO06QBzq6Brb7LsNqQh/mt23C8evkSTz/7DLevbrGsaw3+\n9ln17UD0Hq+pH/F1eSvAJoczUAEWJqxq58vMLuZtrzTqpwglbjvIrK6X8DW+a30dNjanP5/Zbp+v\npugHrutaV8p6LBF9hJiPTSRDP/UDLODBblosrm9ZX/CStIdfI0639T1Lf/UnZr034+nrpm3bcHWU\nSZQyEXX+rK3DXh9rv93LIyKJcqJlXJL03MONGXFb8Eyu1YZn9AsmZWSVz9qJmdtZhVmK8Y2pfMD3\np1my/SfDRHsp4hhXerMTecyHS8eA2jelIannaL9fQNMlch/pH+Sq1b+33fF4bM609ht9ttO+n/Yw\nHhF1e8UM6AIYJudryt/uR4hP5etTvwHotLW4HG8TvlygqyftqOVerM92BgNY+4kpS5ogkWOKMjcU\nZInHQnqilio975POUlrn5JLnfUbOaI9a3ns6elqOfaYhjtQuvHp1i+fPn+P58+e4urqCTt51MUeg\nxsa5nllLbUt8r88ikZfRfUmKOMD6VfHebnqN4r9UK0JQBzi0ye9ubvDLv/t7/NEPf4ADLXBhifpQ\n60hcxUSBpjIxHDat5VA6nbMOHgSwmik3mT05OhfnhEPz/c53voPf/OY3+MpXv4qyFRzWFXenU9vS\npGyyRZY6/D5A0kd77UypwTADUKh9DkBJJzkP3ixwin8XWrCswBb2UTwn0DaIsgvoAu3ZNZvWdcX7\nv3oPr169Ah0OWK6uxVkIs7iyYPG5suMzeri5DWqO7yqva8CzHnblg0cjGPMBWE+Tfu+OxBiU8XXp\ngW0Fdpq3yl7Gg6igYvmq0GwZ2klnQNDen+3TPPvteZLQC7GBaxKQjM87x0weABHhYZ1pnwW5lFZ1\n4pSuOFPalqnBe/tcpKfNFq6HTGdBNc8X0UWlhIC/aafIQzkMrNc9A8dyEHYfjLNB/KxNtDUtbSoT\nNpg7G7jInDwOddhzhmfOlQWwri+GtmnveQzmflTT4PIa+MDc8khltJY9k/fICw6HWmsqRQ5/ZiI8\nevgQRPZAdd2UZ6RN7Ynalkyu43ua+n1vM2y7yBZjoY2NfMx0PMEDYzXovfyuN9oKELarl7S8XiYR\n3BYvsU3UflKwB3FVqR7gLvfRHDedfWuTtn/s+75/mXoFXG1nx2X9vutNAlOd8AGqh58zPvn4E9y+\nfInj1YNenyIel9dL3uaFQqSK4bmmH+FBfuzbccWD0hCftzq0yTu0n/UB2yZzxvY57BNwS9anmmy0\nKslg24K6OoS6fB4PB3z68cf43ve+h0Jo++j3Q083LMs6yPKgZ9DrZDHpOYx4n+7T66TBeaQ8eJoN\n7Ka6WHWP/rZKjsxv0v9yG7ZbDpE5D8q/E/Fuh4rSk9joV1sKm3wUk2Tlz2zuayXWA3jnj1jsNOMH\nVbvFW8GzZ8/w4vkzvPHWm9hOjPVwrLpH8aNs4anBZmZ2q9Ukn821OcHf17o6e9SIMvSZkI61q4RR\nXvbwV7w2C3DI9XJRsHFdFyiU0voQyQoFZ8sLo5AOonOrIgNmdY2Wr3klqzT1rxhusYEBL0c7GX3K\nyIf+nlAl7TluIenl9rwca36R+oK8bMErcx2Q0W1pUxtf6qScw+GAu7u7wdZHfaSrRy9J2WSQYftp\n6m2fnX/h3hdD3/Bl872Yp92Zue84YumKOyMwc5u8JNuc7+vBiO0zuYnX7buuI8DLxKzdzj1j7w3y\nZuwCg5ta5oahAq8XAgUM7vyQQLNAtJwmhw2DfGk+rf8z1S2jVLx9nuu6YqsTZGkRDPro0SPQIhPX\nmOWwbL2nE2LiWUFjncZ+6f05358BtVW2XfqKeHlu9OekRpUj2ocbDvcrP4QvsvqlCXip5zGa1f2x\nLqn/aupkn488aP6MtSnJ+60/NRsXd14QRkWOc29Yl1/uLwGosd1z9knboifxPWw+gOjTmf6ihdrk\nA883lY+x3HMTOomox4aNnShyKJPsgLNtePb559hOJxzM1thWV8d6N2+eogxILVU+kTwDVJxQ+5eT\nieprZbs1zJLll7WjssrJP7fHqyx96QZC9P+CAmLg5//tr/GnP/whStlA69pk33XyBmLmYMwmeU5W\nUNj3ABlkIHctHzSZORCzAAYg+3PqIdaP33gTb7/zTi1nwbad3PYcRHLw2NL2f5Ukh5qbgQZuHrw+\nAdWbNkBRuK6oQFW6IBB64HsM1uwDWwl6+cBH0ZkzLcCxb2Qz5yDbQ07LiNu+pEEcoO15um0btm3D\n008/wfHBg+Y4NP+t8iOCxIxWTaqsN2YzS1wOZ4/nx0Qat63U9vT59o7vncH4jKbMGAtGt23YvxfI\neCCBmmFXM2qbt5RcbueBJf897g2/n/p9Cyatc5PR4ZyyCQAERuAfabbg2gaDl2VBOZ1ARHjrrbeG\nbckUQLnn2+oLNMc1OjWONrNaI8q5d1BGAJIBWULVLZYfYSss6/SygtlwTw2t3l+MAeJSRI52lp77\nIUa0+qR0BHBYMMrUOX0+XM/kbgAjPbU9veusEdl90Tuyrk8ZABMd9rH9+rMqNzroiaTNbRm0dNAm\n7Rvam3oQ+u7uDg8ePnTBlrIVP9udYSYEdKBqwXcGeq2eL4U7L12wXpbEa71KBUXKI3net3vuTIwr\ndmz+rvWMs2TttD9LxM/SbPW0AwBY0E9XHeWptTF1p1l/6pZcmYMSy+ztWCkrxfRDiz0k/BRXi2U6\nQAmR7WUYp23Dtp3w0Ue/w/X1lThxROA5ebXU7sSCpW2XynBFY8y+/SxeUP2oumMzgTitfzv/ROuh\n+ifWJ+Fm5jzNMIqTX4yDpszcVmCqvFIdFGztQ4RDdS4fPnwos7N3dPV0YBd6JhRGpQik+d2n+/RF\nU8d9HR+9TkptETSw1fGlriNbKl5tOuKCfN11uTi17RHbWftrrzedek7Rhfde5/khJfvk7fmD8T5X\nhorulWDQ8XjE5599gs8+/Rhvf/UdPHwgk3BKZbL6B8M2ufBYI6tb1EHtPpstI7yxlK1WMddNe/5J\nxhdvP2Jx1sftfmNcma+4YVm8rPZael1f9AwDa4cB3bK+8ybQa+VfzxCwto7Nsw5/mL/RD7pU3iI+\n8rzxsYrIg9GPt8G/USYu6Xu2jIgPNYipeOXRo0d48eJFL8Pkn612HuT0DI+mfsdrTh6jKt/aprGd\nevyit4M//2D0T1RW9VBzLSc7+8u9Cwz9bM+3dvWRQlJdaesReT7r0xnWavWw8lhKXdW9DPRl+oQW\niTbFyaJ5qjE46gPABNVh1Lbd1RQHo/pKCmMTaewnfYIe2mDU1dVVyu8oC3tymsn11N5Q90e87wNn\nG5s8GVEa/EwYLcESh7CcsjaAiLrPBt/mUV/2shhUJ6eJNmHYVfs+htMHdyZMGiebwfeDzm/T/p51\njkezvt7bk4IcTPpbvVPdWCeHQ/km+T5bGo8x+CCo/B3ptv3V1mGUn+6vqA6TLbMInz19isPh0Nqh\nlAKqW2+6M31MLZSa0c+EsR++rs23JOVaYAxXVMijH7bX/6OOYlRZwKgnXyd9yQZCJDGAu+2ER8sR\nv373XZzu7rC0BsmBtV6LCp8xbisyG9WtubTGFCFjAOdnqsQOLMZxVCgHItmBd1nwv/yH/4C/+Iu/\n6A1vjChQt9Dg4mZODYZMQWW7rgMdVqA33zkhPF7ILxmOnXKmXGxyz6jwG2WzZ3hn+WYBjHh9D5wx\ngLUOUpTTCe/+4hf46je/hW3bcL0cRMFNFOE5OhswWgAd7ewzDzwg1YB5p5sHMFDKWKdIU5zhksmz\nvW5lEDBqqgIJdZ7iMr5YzzjrJqbc+fMyNXt+D5TNZDK6L/K+dwCJSA6GN87hjNZztDx58sSt4hgN\nBbu27YasNPm3KYKrjE/D2SvB6Z7RGnnmaTPtN6HfOnowlLf6k99KJ7p/EXDbOmdbxkzBITyY0n50\niR5hHlfykfk+5A+0PVLldw28JwNtNs+odzK6Iy8c/XWASR2oqN/s77htoc5Mkr1qZSDk4cOHAPpg\nsR7y6ICl0mPsW1a3rF1mq8viNox2tpw+u21bcwYFXO63o9ZTV9BHfitSdSuVxAC2ILfNp/0Wpa+K\n2ji0aANCTbebv6Vuz6dMi2088jLXkwpc3ZkQxumIz0fHK7aLAFxRD3puSSkFH7z/G2lj2U8TQN2S\njZOZVpEGHl0Ood3IhmkPXQ2nExTsAK/rA8oVZnFkJ/p96LvUZ45aPWxpi89fasutPBF5XVFKwQ++\n/31cX19r5u7d5kAn+s4Q1O2w5hH0oKZSyuDg36f7dGmy/boN7DZHVIMWfQWG3fZX7UE/c6Bur1Qn\nSamDXN3QHvxkv7WLBiaAGEDZSQ6Hk79eixzyYq76eml9NuoBKA4ImNba1YjjUl7G1AbNPaa6ROcM\nNKIHH0phXB0PuH35Ch+8/z6+9Z0/wNXxugb1CLpdI7PMFYeo2AAAIABJREFUNl/tyjMe/Y5Mr2YU\nNj/A0rZQC144+tXwVlvrbELAQzk/fIBlxhtbj4hdBQv5d2zZC/S++MDFTDNotFU6ir0hDdEIG3BD\n9aZLQqd9noiGwOy5JI94u2vrb/1o5blt0V628mJcaRx9hsGvIp0WOvanLLnBOHP9wYMHrbzZNpHW\nN7l0b/iM5unznPtp9vlS+uSx5r8orSZvV4bml+Bz/a78WE29tgS3JCTvJlsfHzsow0H35/ykyJtu\nN8ZZ95kMAWgyQkq8V90z9yLna7jHzAD34LMexN2knggU8LH9a1ekaH/ULQZjv2i4GtJmDx8+rJPQ\nqJ4B6J/N+JJVWuV/1t+6LUPTRxo/cH5Oyjvfh4jUn6uT1upzJzuh2vlpfXJUa8NAS6aPVf8Yj3/Q\n+/ZdpU0nbfvzd41pNqov83+lvvs+q032XX8dLQ9uF8b+0nBM9e22ZEeBrDy913ilvDQNKSvORKbt\noFRr2+LbXt1OW6c+cAtwEf2zsuwG8ez5M3zy6SfjVpBm+/ac/jFusqdHOiY5z5NL07SvoO9gQuH+\n6xTz5TojxHxZDgcULrh99RK/ee899OFQH+iz7ypwb39t3vr8BKT5YEvWmdh9MjAdR0UzgWAAd6cT\nDscjfvSjH2Gte5nqoj47w9ymTNiYWQ4ILbrZYFIzp6jsxyvU2KFnHdwDik5n63zVeF0CcDKAZHmZ\nAXy9Piq6bgjkeZnFfHV1hZ///Oc4rGudtRr4l9QzS3afvWVZcFgP4pBYpWVot2dHOKMV6kfUD9/S\nPeMz+iydnQe6LZPc37ZtGASxbeDz9O1j625luScPCnT1CBslqjRlcpUZTBEXMh+4dh6WP3Pe9i7f\n9l+eUr6Ee3LejQCjeK4LC0Kb8LjPZjsHxiMgi6AiBXmTci3PGv1EA90O+IRylmVpIIqZB6ev8UY/\nATg78BlkScHmFvSapdnW0+13Gupk++A558mWo+BLbUPjwU7gOtNDdpB8VlZMvc24HWJNgNOTzDwA\nGF+/ia0BsB4OIBIwL+DTwms45w3aY6kHUlDN4tRJavWyvd3Xrc/a8PK6VP3WVmLYd4M90vesHFq6\n7fsReCtg7HLu87X5zT5jnfTe3Fb2CtWyqj2Odk1/t72o6+Ciq0OgNfvrH+rlMxfc3Nzgo48+7vgF\nvd00jybPxilgZliBYf246lGTI1sflVm1d3HgTuvccJn5rrx2H0SJ6PwYbEuzYb0JZOZXdFT7c7Ff\na55VauVaKfjhj35UCSHzPrn+ZXVJt1+92Mzppq5AYmvep/v0hVLDvssCwiofWrFgBWEBsYyYEhb0\nE7DqSDPqKg8R6AF72N/aZ0opsCej0UQ3pPqyv2Xo6LRE/8S9EezvcH+HP3ElxZBvpC671vjnaZhh\ngVl57TqAAsJWCu5OJxCA9957Dy9f3KAUwfLNv6C6pTyTw8Y2OOD12rlPQeEiZycS+kcHEFp7FqN3\n4/c5zt/HR9E7l2Rxazy/UttEbbEto+llyOG/W90mkoxCVpuG0nFXt+2eDo+15/cyGclwvve/DC3I\nn/O88pM7s9Qx8R4upvQdHQTxZY5+0sz3gGmbN+vEsVnSttXzxWQrNF3hk8uE810mPFd6Synp+Qgz\n3mW+hv04PimFEx2XlaX5B0Lbe5b2jN+ZT2Cfz+Wllxv1XizXXQfAJKsIONH/uV9i7Ae8hA1yPwzc\nXe67WflXXzL2CZcf6Tmctu+PGFi/E5EMMB8ObqJPG2wPNtHVQ3lgbGQ20dqeZ5nVEZz3Pc+H/TNc\n9RynTD/6siwvjA5MJl1aOYr6NkuRT/Y81I7x9RlAnMMeC7L5t35Z9/cYPlXPW3sE8vV1+dj4w0T8\nWBgjrZq5XBfY+4wP3cdA83OSlxwCWkgQBzHaRKm4SrLV67Th6aef4dXLlzhtJ5Qi22XFuElmu5jF\nJhZjF2fvyGceexnsQ7ge2ybjW0YnJffPjiCb9KVaEcJ6FFl1aE8oWJnw07/8S3zlG9/E1bJiXQ/D\nFkR2P7x+GJOq3iKju9RHlXsD2ECrocN04hRwUx5k8c8XpwCYWZwHZhwPB2ynEx6/8SZuPn+GN956\ngldbX7WxrqtRrNG49vbvW4LJDzlcUJ9dQ8CrA79mVIxeHpYYGobMZnRbfvR6q3Eksw1T3x6j18Er\nvZmCSZWO1gVjZ1uWRYSeJdhUmPHhB7/BqxfPcP34TSxUV4RMOmSmKORrcM5quyz9lpPBOGPBG26b\nvwkuBjm2POkK1ebX5TZrE03C+30QEsGd8sCuWNlYDgtU+gBgq31oQQ9klaGOY5md7jLQ7p+LK1Mq\no0weDuhWg6PyNpNVW2/Zx7SXxZWxjx4/xrquOJ1O/Vl0YznS13pmo09pyGY/xfYdZN3MhNB7uj3V\nDARH3gF1VcdK6EFOBXHo95el7ZtMRFiVl0pX5auCUH0utlrmzmwqT7Vf2K1ydPVClL0IupyBtu0Q\n6jtAzbp7UdtXc+krJgBZOdZYx3VpNy2tT2YrNlTwtO3dtlRhcLi1MelAtxl8Wj1YypKCxQ6AZJst\nYnUwgKvr65a/luv5QwCr46stVGc9udWGI4B37VHNXuOXaSdm2VJJVinU8uumtK29KylKkxVZqvzX\nvJR6pzOhs5ZV95ntAphcG8hy/F5en53PTQ4l/6XJuT6j20hKs/kt5uRvkHI2OlPpbvUw/b0rrGab\nVT4i+LTnNVnAS1WXr1U1FBK9vG0nPPv8KT777DNcr8dAq65u8XpP/R5qwZaqY4yvwKCGIeKKn8FB\nDfqs1Rt9RVJVioMOVIzS+FbzW2gFQ9qzkgLmityo61ihVHQMGg6Bz9tip9YW8ue0bbg+yNYIr+5e\n4evf+hZ4XVHMXubDejlzfXHtrd8NiK/9Q/qBdKRma0xe9+k+fZHkbNTk/hbOj/ABk2YEYbe8yPIh\neNuvdsjmmW/fermMs5kVDEAObNdyW8Gl2RDZCqTqAZ1cdGFZVu/uBzn26c+CANlED5sED9VtZYjw\n9LOneP78Od555x1glSJ1JY/WXVatVtxJVPEqXOCm4fNtQxnO23KVT+pMcOdQmvd8QNP7bDEfj+Xm\nAwSdLz34G/2Rnh/cO/nuDtbP9XfM8FHFtcaWxVxMuREDZP5qhlntvU7/fkDf1LDTHVaZEAUb62xv\nx4qdFz1/Z7N94SlNts62vNiGjx8/Tq/busXJbXt9bsD9Vg4TuSNr4OH7XLaCIMs7lmHlQtFU5tdq\nvQozDsb/5/q7+U3kJypp0m2I3XUyvmWit60OnvFmtoVvfC5+J+oz15tfbHhlz0vRvlvKBj17cF+P\njtjYlqvfI/61bUQYZbD5KABArNJ/ts8BwOF4lEnJdYKS1n/2itBQHaKJpcnkNqOBqv5uPo+Jjdl6\n2y3xM5ytObDJY9DfLPeiX91okZZ151AAMQAPaGwixi8ymx/tYo4/xn6l/WWhRJ4EhBgfr+dZwH01\nD1WfvPoH1vcA9Tq06HD15ZouJGp5t/Iap/cxTdSVUL5VwgzZw3u2v7W8DI9lVVun83S6w83NDY6H\nA+62fkaT9YViinqziWCr7tgXm73cRVfd/kZe6Pdz+iFL/xQ8+aVaEbKYip1O9ZDYZcF//9nPQCd1\nSLmB+oyZsWMrSCdzbw/ADIohMerxfXXKYyAgdnStI1GfGfGv/+2/68vN6wBIJkAtL3Rl2J5d5jMe\nZoDkdYQoyzfmN+Np++2eVT3mQUSkbZYnJ/c0yayQPruDmXE8HPH06VOAGUycbfHb2iTOQpJypdRZ\nmTpTKgN2tp1UOewZV1uPS8BEtnJC753jY7w29h1TTiLLgDe41iHWqmSyERXsuXo6Wd+pw6yOmUOS\n8SQanuvraxwOh3Qmhx1p36N7Rm8GZMa+3/OxM5diPSKQuJSfQ/3Dc3tyY0Fe/LRniFqgLw6mtmeg\nMx3Pt6c+YyFa0yHwemTWf+w+mXuyZ+XaliPfJw4TjQezu5eSOtl6ZLPpMvJEx8mA0jvvvIP1eEjp\nsb+7bPiMZ/I74028ZutL7XycPuhu83J5TuQ42s++jVSQP/Tn7Sy+aHMznRYdFA82JzIfys74JCAc\nLs/43RJyCY8tDwaauW+1uK4LPvroI6erHF0R4+wA2VZOBe+ZTct06l5+M32b1TvTm9kcqqVOdLA8\nT2lJdGyms7Ztw7Is+Mq/+Bc4Xl21QZBLQLt9otfD/46rWRXHXJL/fbpPe8nqz7ia0z2HPZk7rxPa\nx5RbTNkXYzTm9lFfwIQcwrtzvHaJXsmwib2u3+31eG1Wpz0fa5YkkFCfq6+uy1rPnzvh+Wef4dVp\nk3MMDC4g3kDoW2OgzgDW0WGr7/V8xP00w64zP8fa6fN17bYr94eibxRtdlzd4mlAW309nm1oZwCP\neSg9GhB0HAm/7ZmO5+q7FyvoGH70L+f+4Jh/9j3WfZLb2D+x1+OzvP21VrfqM19fX+eTtMx7Y7v3\nCZSxqOiP2esDDYlPqZ+Nz8c7pvqhrjAt8H5How9oW5MSkWy3xX1ijU6Q2J1RX7FcxBAMAMsifpSl\nC3UNnerPxH+MbQ2gnSNgY2FaPkmHArGe81GApeoWPVg1ym39B9sGEac7+ibMjzwPcj60d6in/WvL\ntXnYLcwsv9alnzt7OB6HPIkZC6OuBSRhxY6+n9ma6NtQxdZRJ8kDvt76zLqsSWyK24C4rV+UBS2B\nIQNY+pFifd8B/Mqypu9ZyxttYFbP7P65fqip6f4L4mB7ZTmeGxqbXLfhstJVJ/XVkQ2UtFnn0ABA\nWn60U/H6LAmO8oPdXmZ8vLTpB6p+0GnD06dPmw9j5WCmI62MLE5myNlGT0+IrSRG5JLmynTWuZT5\nh5emL9WKEE3SwIRTKTjQhgeHI373/q/xzT/8btsK6LCssgSWx4NrbcoCiCAPCqzS0cOQo+LS1Jzm\nplyMwkXcCy8YIowG6M9+8hP8l7/6P3B1fY27012doZx3IKrLD/z2R6K4wGZ5uXZ0k2YGxpYzAx2R\nT5Fn9h0FALEsUkq1c0nmLQ/bTrYDa17ruvpAIY3ALtKhhhnM+Pu//Vv83te/icKMlXxHdweoVuo6\nb+cdb2Z8s/YTWtNczHVrvAG0mUt5/Wz9s7awhnQ0zB3kW2dE5YnIt70GHpfWLjVItPR6WpnwssQp\nreeUoFXoMc2u5TPETL2JmvOpeoYNoLS0XV1d4erqahh0VSAZaYn8t0bJHrAe3521EUhnnZhLyTtZ\n+UQ0zACN5ce+sgADYJ/Vr8lW4AGoHoRmaHbnItRnmtAbXah5FRYwnukYbWMNELj6A+6ayp6tv+w2\nMQ52W/lVkKp9wNWvog9bRgQ9DbDw1s5X0YPSdfa4ZqWydK6NHEoDQCT5PnnyZHp2QtbflpUa6Gr7\n5+4EPmZ56jUbYC+ALOFdvH79IqlsqockL3Y6RGWmrgyxvGHfnvGQSdkK39Sr/qfgmM/oD2sTvE7r\nT8x0U+w/s2ezd1vpFpTWgrfThu10wj+++0scj0fw3YYSRvs5gmxLNAuvnTMAO3i5tndnuk6/Z1sx\nZH0t1sf+9n0NqAeh1L9U29ysMgFQqOKeCQrXvpalUooMeDPh1atX+PM//3OxB+uyiy8Hh+/MfV5U\nL/AFcnaf7tOFib2sWac261+DzZZfcEvMk27kcHnSz2Y4pObe+iZVWx8xVXx3qKNbjSDXOmK3di6n\nPdbBprhyY5Zeu89qXYGGBSytx7ryb2MGGHj57Dk++/TTvq83d82lZxMpplHM3nyoyoiWPxTjj9jf\n8inaJYudmP2Zgx3v7Ad3Bt1oZFLOIfHPcfg9+it63efJ7K8JbcXdt8Ks1q9ytM/nrvyyfh8AbNv+\nVk/6d29LKM/f8freczN57XWNfLbXtS17zWPKLNsMGwNiw4hpxFBEuH7wIMcAMOg15ZWV79FXjHol\nJvJCMfhMDK+LMqyelcXgtpuC8mHYutz4LbN8YlqIhkGVUCEA5nzGmgoLPa3MHWyVYX/1q6qQuGcy\njFN7RA9809rlAb7fdd2+uMm6jgck+FvPNsjKtn7ywBZmLNVMKdzzgwnz9iTqA6a2TG3j4/HY+Omq\nBbgBesDizv1JrdH3jnQSyGTc/RrhcYEOiKD2ZTY2MPq9Snf0d1xitDK7v65xyUD7EuISzZ+oeJsL\nzq0cjfzIrseJVlFu0WjL8UbULQDaAOHou8/9Dr0mz5LbtaIRiu5/qn3N6I302PK8btK4aENkvV6u\n/nViALZ0kjYzYysFNy9e4NWrV3h4/RDbZidIz3VRKp+KITbvD+YmxK5yr48Ttb8zG3dJirRl9u7S\n9KUaCLGCu1SB3MqGI4D/83//L/jGd75TnfLqSC4MYH7glgZr1XCpg8DuWVE6+lsUse/0SpsqUGYG\ndP/BdiaAP4hw3TN2SgcRvv6tb+L6+gHWdcG2naqCROiEnkca4Cm8NRKzg7Kd4xKChhm/bD1tWfo9\nW146C/rEvAaLURFspMeWbfPamvEdAZIty15blwWFZJbGX/3X/4p/8+/+PY6rdAl7/pIF+Bmptgyl\nicjuiy6yqrJm+T4YPxqXvWVt3QE5DXyJec+cBjayMauj57eCPQF/pdTv9QWCbJti9/DXLcKiMVNn\nSe4t7bely/IlJssr/RsHNX1ZfjBtthWVfB3l0/Yf/Xs8HvHw4UPc3Nw43jI6D2Jb27a0RisO5EUa\nx7bjBo2i3JXAxEwOYv+P9DPkwFOn15L2yHjr6ju0XH2vvlvAONQ9JZseDgMjBPQDtSuIsW1hUzs4\n3ayea65rA41GLornDSH8nsjTABht3bjP+LLvqazarfGajCmdzG2VTNa2mV7I9LbK8ptvvglSBxJi\nlhgMwrilk+hwYVPURcA4YBX79Kyf23rqYYMxONf1mbY5TfOI7dPfby87/rj71mld/cBoNkDPpcj2\nS9rfWLcw6jqytB/cBmSUGpFXcjwEIIGspH87eSLvtEfbF5+X9lLHRMsjbCdGOW34/OlnYpcqjwij\ng6EziD2/O+aItJyzsdlzVl4tXzIgG58TujRzfWgsi4iwyd5u6QBEtjJGD91z5de2LVUO1nXFH/7h\nH+LEBQda22q1TA5dOwlhjWirD2JdY9A18uQ+3ad/jpStiizGpvjgV8V/6D5Npodi3x8c81IaTs/0\nRPxuk3tGdn9CDz70700PCUUuj9an4O2nzT9ey/TajM5z2Ht4vtJi8WWGp9TgbNuG337wAW5uXuDh\nw0eiQ0BAsRgyn71uLaz92+uRD0Jb/vbrXgbs347jRxww2oH+vb2/5fYtPhfp9OXP7GrEEt53KhCM\nRDaI2bBsLu8zm2efi/amPWPsU6ej/57V38cerO/iZdDyfbaF8Jh3z9jiuYyebLcGi9FVjzCAY109\nH7fxSstOUpSnLM35VX8j6d+6hVzo57GciH+XiQzY/KMesdcyzJ7VFVDtC7dVpl1t3XwIlSf2vhfX\nazOa7HN2Ekbz04Is6Ba+EZvH7VGzpBKf8oPRJp5aGY5nzUWeEdWAjTRw9fdCuTN6SG2VZGCfW+tg\n6HI44Hh9LfKsxSyLTsGqPlUdINj8CoxmoxhNh9gtxTMapQ/1SnTk6PFhzXaQHe9z9a2QLY6f82Ov\nL9b4QKnfmd2kNoKJY5B5h9leGPRl3qc9Xm6+SPNPlzbhCQnN0TZF+2Me3Knv2E8tzbMy965pX7T1\n7v5XWKXZzET3zwgjTSpnPGyPJpNsX97c4MWLFzgeDq0ZiPp2xlE/6fvNR4l1sLik0ZlgjoFPZMUi\n5dVMPiO2yvyuS3Bklr5UW2MBaI3DzNiKBI2ICH/zf/9fePXypoIZma1X35gwrjjgEAG7bKWhwdoV\nsictoR/c11PWqeO9GBJshiPZE5OIgGUBlgXLuuJ73/tenT2+pg0ttEspmg8zy1ZaYeluPBxHaYiH\nZzH35dPWIMWyLe02oB4HVmYzySNomJURn3HPJXzNeG3zsamUgo9+9zu8fHnTnyGgUA9sxfxsXl1h\nIPymOmgw458YXwEVnRbJewR+42x2rT3X50v7yLUF9kCvvSXXlr96jk6mXJyBtQCobj1DdWBEyzqs\na1fcRAIeWh2E/sgfy8dYpu3/+Uw03zbWsbT3ZsGmwRQnMrosC47HI9Z1xePHj53cRprtDJZYlk22\nToA4tRkd9rtthyjXSztwcBx8sXnagZ0GtJibobbP7emA2fZ10clzdR6cUrSzD2K9bburftTD+/Sj\nbaO8y8AVB97p4X/tM1DpafBt4fU+N3uRASc5h0W2J6/ftTyidkCkdW6WWses7fUT+e50OIC33npr\n0Pdxey4tq+1DHOyl3pttwRRlIgO2/vvo7BOJE9F0VOgrMwfL1ncGTDto69cjDzJgG+tRSsHBLJWP\n2w5yKS3Q50Akxv5PS1xaHiSPxAngdjxtaTPp8u0ZRf50P3leSLZOgdDx6uVLvLx52Zzc2J8aLYZN\nXk/HayZQSv18AaXF8jbTe7HdLD2ZrujyLg6iqICuy2zgsNSD/YzLCrTBq/GgUC1zK+Egy8qb47pi\nrTrn4ePHeOsrX2nbbhFRPbTQH+2MUrAStY+tfynFnStlV+No/7SYYFmW3mHu0336JySrW/W3+6D3\nGDC772AAxeOC+BnKqilisz08ZPVLNrmlfWXjVqdBr5EeqaN37PdwTYadZzrKvmvfmeG0holJ6OFS\nGs/VSG7b5vTigwcP8MGHH+LZ55+buN/YntbGWtpK0HFZvWP9uu+WD155Xnt5iP6mfgSjjX6ULV/p\n3ba5Xci2x4q8sPbF84gbDa0urW5I8x2xWOdFC4gafMjcz9RS20S0YF0P4IXqIkZqdoTIB/9ifeJv\ntR8c9uzP0qyf7qUBP1t5QcULJPXghdw2eEDHSAsRHjx86Pp0Rk/sa1nZmU7It43N5Hn0x/d01+vw\ni01ZfcvWXHYyjJThIOuX6qQL2e4zrE4xddXtQFmY1fyadlLlpL+IDI8+sLUX1kdhDX5WPWxpmP1l\nAWGpznKBf6P/I796vXVVBNLtzON7rl1g9U7un1rdfX11NdhOAKjrLCCno0qMUAL0GvcTGrlUfkmH\nafyytmFYuV//gZI2AZys2BTPpHSTvRI71Oub+1Zc40ttC7RESmb+hN8yigFiWXWfxNbyPt+7EKGe\n7VX0w04GIy9a+wU6cyGf02AqkMrKnn5IccIEa2hes89MDvp7VX6MHwqIn/Ls2TM8/fxzLOva7KnK\nAsBDuzk9XzwPvfzs60aLZeZ0+zJjv8/0ldWzmX1+HRsHfMlWhJDRdltdlrNxQWHCsqz47fu/wR/+\n0R8By4qXL29wPB5r5+5M7Q77OBpn+4fcm888kMtJHtpourxXgQ5MQ6Nf83mGTrEQeFnwg+//AD/7\nbz/F9cOH6fPiPJsZxYWNfM4DPWoUsmWP54Qp21ORmXE4HFretj5RsO2saBvgb8HbpI6RvlY29f02\n90BNTIVlf8d1Jay04Dfv/xpvPnnbv0Oivy2v9pwgZgwy0cvvs3Y085kDJu/ZAFDcH3B0IGx5/lrO\nw0i7B/m18juJSGY2bOAWfI5KycoBK2gJs/CboSO4dyNfrMzk9Pigpb2WBSXPbZPl2jGAbpXVR48e\njcacyG2XZXlraYz37XMWIMXfnkdz2Sbm1KDEOqTGWF4agY0tI6zCifxMV7TAGHPjIMby23XjCLTX\ndvpf5JcCb8u7DAzP8s143tqigV1ubRH75DlaNZ1Op2GQqr0baMzAo9WrQJeKt956y9EpDJAnbD5N\nBy+jXYpl7dVroLP2nd73Ftf/XT3Z8JIZg2xXuXTvBLqspEQnytFet1LK9G/GAYYAy2zVI0MHEs1s\nQdeWXX1Ee5mDf3U89mebjm1gZwahbvMlz73/61/jdHsrTuuanBkDDdj0OilAhr3C3mnT7f3s4GPs\nf9YWXVKXaPPidw1kbryh/nJtR7RgAw+zzwkjLbE9AGPrAUd/KQW///u/j+PxgNPQar4OcYWL2mGd\nCehlc1yZo+UR6SzI/f52n+7TLFk3VnXrvkOd9dEun7pvemov6yfNY1d3Gfom7/d3EguVYKlGD6te\nMLpN+ZDoHZ/tzM7kdGf6Ze993WJD8ESCTYnajPVt23B1dYWbmxt8+vHH+Pbvf7tNoMjqPis3oyvT\nP9n7Vqd3fumAwL7PGPW9xaD+epxdP8dTuRxF3iuW8PvXyzOJ7Unz9bq82QQdgKiC37cnk4vdFnpf\nW/GjCwYaoKBf9+TnEtk8hzX2UsTTNs/GC8X4FuSQDOrEGMBVDSYP/g/8+a+2fEu3DfBGv8a+s1ef\nVqCpC5FMGiFDV8av2L/Ex+r37La2zSeSm00nzmi1eQ+SZ5+rKNMG0md1jxiHmWVFSZ30Zmtng9iL\nadPWg5xsyoQUzYPqc4pZyZSfyk19cY598/ccVmv2qPMF1LddXhpNlOY7+ttoHJHvXZaZWQbxamwr\n6nrA471OZ1ytOI+zZXTZMti/5GwpGG1LMx1YFT4T1uXQtrHSytHgl3v9Hv1dfSSTObD3FUadwR2z\nw/dXV5bq+0APTFuojRnsSOBXL7uXC8sXI6Oqf7M2bS8OKsX7myqLg58TeLWY8mOKOnHmJ+m2kWqj\nrC4qqDZVnD7pD4Vxe3fCJ58/w8tXd7Wv1lU8IFCVHV6StoXG3Hjgl+OG1ROJ3qTw176n72TSOORp\neJdhmoxfl6Yv3YoQTeuyYFkPwLpgI+BwXPHXP/0ploVw2jYcH1y3Zy3PZrMN+rO92TIQAIyAPBWg\nKmBU/LM2j3MNRiAcDwd873vfxZMnT3B1OKS0l7KhcJ+daoGcP4purOsQZAgKxQPSSUCO2TkiWb0y\nRXOpwO6Bc9tZmHx72E8vVFWAzBYlIpSt4I1Hj/DeP/4j7k63OJW4Cqav3Jhxk+pnAWOFzmrZd55i\nfbJZvvq3OwxqtHupmQMX8zhPhxot/e5pmzqJ1EHAuCRy/q7Pp0vpjGd7oH9uxMY8Zg6V0riw6bus\nuwT7Z+xqjSdPnqTBUWCcmaFlZoMH2r56T2dyZDNIwtEwAAAgAElEQVQ+Gj8vkC0O/bJv15Yc2s3s\ntuvL+lBWvwEAINcDMT890M/mWWrwUmdWqy4bZlwnNNnVHlpedoBhdmA1dq7FethVKGzawdUDAkw2\nFDllI2mqi5w29N5IRFhoha70soGHqFe5BoJlaywvL9zcKUaf5dNe7nlM6Htdve36f6TT5nVGnKM+\nTHUK+ed9f2/WoufTNLfO5PKrCCzwts56r47YvnXp/dcOCpyrj37iLMDUdmEMALQ+gJG2Vkdm/OO7\nv+zbryTy7IDoRKbides0C04d+/sUM4S0bx+C48XqCej9vne0Oq7StraSjCkQyuipNOkKtWVZcHt7\niz/90z/FXdyneqfN9mxn56Ovv5OtePE+3acvmKJtntn3S+34XmL0IMXrpBk+G8ojBNs1sQVk75F7\nLg34vGY6h20zXG/9yoyPVm8uyyKrB1eAlkX0HANPP/0Ud7d3Fc8UmWjc7MhIx+V+wDw1n5IrnqG+\nipbhVyrazzm7treqg5nBhaeyO9LY+VCvtL/Z87H9PBQacXekwc/sGftGYR/kmdWx3YNv/xyPRvsx\nm+E92p5L7e9MTs5hZsGovlzFHYd1bQemax0jxpjFInz9x9WjWVwnjV/weK/9NoOKtl5z/5IdoiRM\n2iv+3sHVRH2yz1mP3eST6hh4WW39kfoKkbiSfjYxDkDbYqmU0jGjye9SWmuu7h6bfjKLMwz0VPnZ\nMn42X2fEtlHmsjIbtq3PHA4HLMsoB9Feub9WX6jPVQ/gjp7pTKfRhLdWt9rfPUNDJ6MFvd07GgdT\nJimbua8EFVw/X5E3TLIIdyO/5nEq9UfhPLAFaCuuz+Whu5/44mtOXONmbcl7xwK7unMnxivv2XfP\nx6EyvT7DANk9ayNcvqh8qnhB/SDwhtPdHT777DOz64OUvbHGnubDANLX9aTQOMihsmwEaKzw1D55\n/3X82HhPvG45P7TCF8A4X6oVIQCkrywELoytnLAspSrzFf/wd3+Hzz//HFdvvonb0wlXbSVIH6sX\ngzBfBqRJFEZSvLso3vheRyeiOmugN/gsGd8eoL4U8smbT/D1r34NH/7uwyFvoO4rx17BweRlDXQG\nHtT464x7azSJ/GoExzOttwkI2KV30WBEUOx4lPBiz/nX4IR2P1umAoDIKzNXodVjK4yreujp3//9\n3+Nf/0//M9bjFQrYBcF3lVv92wBeq28vOzO4ls/62/JYnvdnU8R87J6AEfR1kvcUc6fR5h//Sp49\nL80/bjXU9zoW+Vio70MYG9nKof7ugwr+YQvQ9hyJCJL2QEusX+eJfuf2v20rpVG3xorLspnZLHMf\n3z1nKONqlj2jaemJz9hDxe2z0QltbRnyz5zZZmBDfbPv2coLBVoAgMXvudtosfVTugMfdAl+BBab\nbi8xMbztO7qERR77lzzYGx24qrXtoUKtor2gZVlkZifMwKEBy7otlTXuhdnt77pUR84FvTHKxLqu\nMlGAVjyoB1Q2kpS/xrkggjlHhJu6sH0j49Ge3Yu81jbXeWRZfk7OQhdpfJ/UGYCsgDC8ybZLGJO3\nPZzpSqqHYtaAjNVRTS+p3ievx+VeLotxJq/jc9W1UYfl23tEPgn7CjNQCgozfvPBB1iJsFwdsRWg\nnErrV5qfvq/JblOXleP0DvXre/TavGZO6AyPqWhKvf32Ln1yQ52lW7Nc9b2mv+azSV15hhbFSY8f\nP8bXvva1Tqc80GU79Bdbtz1nR2cRNzxnBsd3ddN9uk8XpGyLEfvdytcezgL2kKRPFsdYHN/6hukj\n1pIaQOqHrSO+yfBpi+RY3TjqnRkeP4ezZhhe/2Z6zOq9bBWuPhNX5Q8BE2aII0m4ffUKn37yCW5u\nXuDB48fgbcO6EkrFBlFd7OHNeH/W9o2HYGCpfkn1qTi8a+14tFP9mViellG35yyB5sRX2KtbL3P0\nqezvSOMetiXq+fb2svyW7x77GL+IuZqLinN3/EOlHeiBqp7vpb1wrMNYpz4hy5Y/0pLYssQsiZ0e\n81/XFcerq3TrW0z8or12yZ6LE9KsDMY6ZUn1yh4+GPE/Bt0UtwWPsYxYrwwHx3cakuX92cuN/5bH\nnbg0iKqHrMc4ROS4bpnc/JSAx2f6T78DZqV0fbE9oyIVeGvbVbqB+Chty/H6TLZdmmFZP/+XeZAR\nx7tAvyyTJlwdj223k/owQJx1AVewW40BL1Mz/B6fdSvm5EY7C6bJGdcBZUNQ1HlDPza+3qx8OxAQ\n8xS8vYfhVf4rXm+2Qnzmmd4rQFtp1d/XgPvo+7jByyXS4Xmh+tm1QaJPRRfMfVxn02rntKuCysat\nEpkPYGm4REe5vlQp1tiO4qnStsQnbHV7rG3bcPvqJV48e9b4ViMWEo+oxy1w0o6NR8q4rO6DDHXc\nBbavdXmwedt2iKvoU74rLYE2Ds9a/XtJ+tINhLTGXGTmtszBlwDYcrfhvX94F3/0kz+rAm4MEbgC\nGd8IUSlpgMPbuSikDObS9uN27K5CqUZnBA/7wRymKpIMEETh3ZYT/uwn/yP+1//4H0HXh1rE0uqy\nLj5gwQr+2QueVSB25nnkr+WHzbcwt/2uSYXPKCN9ZpaiYxD/NiVf+ZMZitTYVUMewUlOiV3mVZtK\nGgMf/va3ePrpZ3j0+A3px4XlQHXDh0VHT60Rr8kG/JfY7oYHSwgANxkystSdp83xLIILFbceRKYG\n5qysD6DW0LynL7rMeLrafUFWcsCgGVkuFexv3M+eaMuIrW9HnW8kjHN9r8kEm0MgqYPBGUBm5iT+\n6IOeuuxPnaXhfb1mDKLyv9Strx7W7eosqF20/09AtO2D8WyQXidRVs1wO/oV7GIw4mTLwtheWUBE\n6MmATAeiKV8sP2o9lqpk9Rm7XDyWq/Ke9efYqtkzlmIGN1l0+sQkudz7wca+bzQdooKJzl/LD9uG\nsj1Y0oGaKlB70qmJjlKnqusHvdbAbquDd6AYABO5AS8FsIULjsej4xkC/a1u7bsBL00H9aA5ATI4\nkwFEdpdNsUkwNwFcbpKUUdJU62cBUFXa0NkoIoOej41fml0mF0kfjWkhW19tNz8wzFBHLeTV+pXo\nNUIHnf48ig7IpW2Kww+NLRlQdbZP85MBQS4FL188x+nuFgzCdirYwuqIZkeg7c3NpmRgvcsZTH+H\ns8GqC3TG4Rxr+bqNeqnyausDtpXqXld52OnXBTKTGOZQTx2kijon6mXNT+9t24arwxFf/dpXcf3o\nYQ8mqL67qG0yvbm0601UDH3WyblP9+mfktT5nTnclzqNBDPbMKYEq2f2nSfPasoOBL2INtVF1qmf\nuyPT8vcw5d578dlZoC1iiXN5NTuvvwF8+vEnuHnxAu/YdxVXDCrDWp15/WZldzoZoAX1TGGwIcra\n3VmQx2JJq/uIwp7gAFwkzJSQBUoivVnaeyfGA/I8gr0x5dl31J8A0CaXCHaSeIGikWZzJvQ7jBds\nZ+/Noz+oKcOYabxhR9azfPdSZs/1U7YNx8MB19fXoS5drvPthbrP0nyMpZ9Z1/I3ftQsCNax4ER/\nwfdNpSNuARzeGOjd89dj+8ZzhC5OQTb0HJYuGf0Zm/YOM7c0iLfteQJzrcV/Erpinq7/27Y3k8e6\nXHuV3d/3/c/2H0bA0qF+Mz+81WNH1qkqOlnl3eVRcBmqTzKWqXmN24B7f9J+HzAoElkCHDbVe1t1\nvrqND3RcoP9mSXxJa4HG94QWtK2b2j0WL60N5ra+tGAr29Bmmpfb3b/mbUXAvWd5xgS72mbQfwOP\nXY8Za06JTEzwzxijoE53yNdetLpsbyIKEbVD6oGOk7r+6bzgWgyD8fLlS9ze3vbtt1kGElEH9uSs\nnXyQsOWFRF+kfNNGCv5o5EDiA7ZV/TanzBYbXNnsbqLXXgc/fvkGQmrQqchIgSiqqpSv1wP+9mc/\nw/d+/EMsiyouP5KmSZm4rmsDZzJbAfWTKzAykk3oBrApJBVOS3NicArzEJQ0ULXSTth4QwHjD777\nXdy8fIknj97G7d1dPROkKycnVHoYE1W0Sqqzu/Dp3+x8kEj3HByOIDK+H9+N4C46Agy0vTr36OqK\nr89QcNwLILOGIvrBpapMwNgKcFiWek7I+/jaN74hy0RrAEwHnQiCzwt5OYr8sPv+Wj7q9zj7phk4\nvR/qKu/k/CWCG1jhYABj+e1doM0qAPyoeubEaT7RwbFgSY00M8vBx7SglK3GAmWFDXNpwbE6aGzk\nvhvRAZioIa3/FfYgOKunyoEDGoZeZ0Dse0GWI/iwoOvx48fYtg2Hw6EPGAQwndFoaY2HVzbHl5VP\n5AFmtXKtu5u+pIFJe/5OTHGWdilmsEqBQjtsq19XXmSgcXrOkPIv0Kl80mCpLcP2B9Zyog6xrIDR\nmDaPugqjlCIzc2qZMWl+EdjN+s+wAqeMB5CHaDsI1Fd3BD5YRy86cZF/gKergQUOs4dYBtGvr6+H\nPBUwu0Tuj+ODr4no5z3dYnPpYNb98U+3Ptp1c6t36C+pZdCHC5yctJvNQdArlhfFOOAF6TJhV98E\nXDcMMgLYRndd+a2+HzO3Ld6ovqurnoSW+v7iy8pssddVhFJOrbKFGb/94Dd1SxXpDwuAEhwCVTM6\n8FS/DPWwZcr7gdtGV2l/3HO4UwyQ2B20fNTuLO0Q2kwGF1pQKMwQrS20mf6rAxnWAWk0Gxt38+IF\nvv/9fwWua0XtoOl5fOTtaa8/V9VegxkAVph2UduBinfv0336AolLd2gH+xJseaa7AO87UbCX1hm1\n2Dv3nfzfs0GYQdeOkzl6fqOPByytH8V8LkmRVzGfmR1MMfdER5whoE7EQhvOuL66wscffYSnn32K\n3zv9Pg7HK2zbhuOyYmHFaQGzBJt/CT/G7VMFn1P9J/mWqkPFDto2iiuCo785C/pIcXv69FLZMRg6\nqWcv29c5+j/Rb455zegoZkuZdV1lRanB7dbnY6DtdAFz3X7v5cztjaU18ijjWazjzPdL9QL3AUu9\nXwJZtq8fDgc8ePAgLSPSa+UlW3EfdUjWD2cYI9bbPQtgDXTbd/QjAcWOKay9znhvv7vDq0Mf2fO5\ngTrZhMLZm4b29l599xRWlyqtsV5xZfCMHlYaMLaD3recHnyqUDfB7Ry6O5vJktWvTeiWFRDBL5zo\nNbuCQvhD1TUYfT6r54kA0ILj1VWzebKSHw0rz/SLvEupbKrfDYy+c3q2ZsCZUZ4A1JiL6Oh5/93z\n23x/GnWdOFoNS0d+S2DGvaOvxviS5CbxoOz6iEu8PPZ+qHJdnatWQ/0y6u1URsjnb1c67vkvts8P\ndoDVk1W/yPjwFftHPbaHEWw7aOxXRdG2CbNOrGWUsuHlixu8vLkBQdZbFi4SkSDdaWOp9OR9ycqD\n1W91utnAR2l0an066oSYND+3RaZ5L9LR8B+QxoozG30ufakGQjIAT0CT/LIA77/3Hu5ubnB4+EhW\njbigzAhqt603k3zPytWStHnQHNQZIIsG2jZiBNR6v8dgesOv6ypnTrzxBv6Hn/wEH/z2N23krAEK\nsDmkzXRMrSe6IM4M/GDQduqk3xciwJyXMDPk8Xfs9Fm7NnAR6JvRAsg2GFZBcXwn1Kd3bMnj6uoK\n7733K/z4Jz9pyrXth6t1VmVGOa8yumKZs7T3vAWEtlwtzy7VbveSMvX5jWW1i6LyLGCetYvNLwOy\nJ7O1GmyAvUugmlNAg38mrH1OdzWXq84oi9uION7bzIw2HuVqPnvP8sbmrStCHj16hAcPHrjDrjMg\nEZW55WXGW6EHLhis52dEp8W+G8uy/LH9zvY9C8osDTbN5HZPZrUNRC2FevsX0n6v9YbqsqxsrQd7\ng9uNvOrCUvk50qs6EpTrJZ0RBhplLMpZqrNYsb7vN7TCPZv1a0uj/K5ztZr9GctVG3M8XuF4PO6C\nq72kPJnZhCire7Fa0ZnWFs91Zaa34jOgMDDMc3BvaRieMbIvYNrTqc+YYpoMNRC4N2igoiyeXJVZ\nuDMrhA8l4QcPg24zXdEfEH3KJH7BVgreffddV/+mP7DTnpb4aeJ2WGx/B6aj+oNvLf8zZy+rY7zW\ndRiwLNQOv43LqmNbC9tD7+ceAIi8bPZTFBIOhwO+9rWvgUBtIGUNujPaoE6HzhS2uG/s2yssT6jJ\n4+Vw/j7dpzy1foHRB7DOp6bRP1FDU5qui33ti/gUWbJ4Jbue2iGW87hqrL6Xy+fccJMHxr32M30S\n/ZeMfvt+xFuzfDN6yrap8qorCkhWqQP43ccf47unkwTphvYKPNqhz173uBCw/kSWf2+PUX9mqb/X\n87bl28CYuWPy7zXK6PPYSf2J/QDTUFrAxpLGQZuZ/8rVrjCSQTtXBjdcFHdWtXl5vCm5cJDrS/zu\nGe3RZs18wXNl2BRtoNbz4cOHWJYFp9Op36s1ibjX9knFtdYXG2SMliYpxfCn43DBXAzLTwKZPLOd\nHKK/1dsY0GmvOtM68lD9EEtz5NsilRz8o+wAeQAg9ltOZ32uY7HQ7oleaLKQXNMbFjllu360Hprg\nZytz0UdWzy6D3b0KEmuy27a7OtrnDD1Kq9te2MUhtD+Jo53qrFr34+EAbWciApO2aQ0qmxc6jcKV\nmU6c6eH4O7sX+4rPK6lG1TcZk+e+5mif+lbAMRN1ZnzdtF/bgSNbp0yvgLoRn2EAfy/srtLkI48x\nMllnVXWDQ+Stjk2mATeR0dWBg49jaIn9ryeV+3Fwz9Yzl4MaPbN6LdRfJvhvKNuG7XTCzfPnOCyr\nGUAN7ctzmpokT2WngMjE7pqsNaJcne27Wb058Gsmm5mtsOlSvAl8CQ9LzwygdoMTM25fvcLP//pn\nZua/AfrMozKt36czmkmVmQrPHOCV8N4MfCgd9p581y81HwDYZEbz4XjAj3/8Y9w8e47juoKg+zou\nIKwgrJDoRwfyrkOGekWAZf9mfEjrW0FMqd+jgUzBSkaP0srclY55/xIQm3UcYhbQABkkWZJ6Stsf\nZDbmuuI377+Pmxcv2myDdV1dezIliBVjm9vfUamd68B6nTPg4MC5l+lY/2EgKNCmM02z2aYzZzDL\nxz6n19qBefDPLCQBpAUACoPKeBD27qe+r50k2+qplYUKGrm/n/WFc/IVFbEOSBwOB5mJdzy6Wf3n\nBhUyfg19RQN8lVcqy+ccXru8UPVa6hSRzIBnLjKrD51fqOdsuOcx1wOzOm66XN3KTZU7p02139c6\nqi7V+xbInk2hb1tdm/VNE+1sJQyOIcyB0pM+bm0M8yjTJkw8HCqqZUZgkOpOArCS7NPdd+nzz7AA\njkd127bGi/Pc62kHpKdpAly/UGp5jLKe9ZWszIvpaHpQ9KUeLO/aVmmq3zeWgeTCQAGBQeOe5rNq\nVRxhy1F6rZ6NekSvZylzlNpsVAD/8ItfuNm9MiNI6BgOcJzgnEuCIAzjkpDIarS1mpf9XJLUZjSs\nUCm29EWZiM78QlRXflJbjTOrn03H4xW++c1v4e233gHRUrdJkPpudUB8lqJ9tDZ0hhFEfxD0WMMF\nug3sfbpPr5+WRT4T6Lrj1dT7E8zk+xc5mzaTe5vfOZ2S6QerG50eabbb455L8F1W5qW6aS//PTt1\njqaY70Ikq9Er9lyXBb/77Yc43b7CYV3aRI1ZHhkvNGCin5FnsyBOrMO+3/c6+jF/ZsxbPq5Uc72h\nNc3B1Ws8WPo8bdm9vfsahHO8sMbrgjyy5zou3Mc8Fvfq75kvnsnlJT6R7cftd+F2Fl7D39vWfO+r\nqyuHban5c5eVbTG9wxOoLkRjcv04OJPrg2VZ6pl6NOzmYOs36KdA10yQrNzFw9iJJKZgy7DyOaUF\nvk/PfLPsd+YvuGvBb0LEWeYKEYnfBrRBll39OcjkpK3rodb93Lf9GAVhlBul1b+E8ZnEADbduKxt\nSzfZZQYATByGaiyiihstMKu4L+BHVvVLn8Oo43ML32plntvx58/QNtTljP60smzzAOU4OEMjs/6Q\n7APpyjqf2H3tpoNaTNLKVqx/1z2X44X4+3Vkw7zZBvJcnM/go8IbXt3e4sMPPsDdq1eu/EynKBMi\nO5v+gm9qrfcZMl87qR7OVhHF75nNy3zns2W+Ppn/3yXGfuWYgPVwwF/957/E1fEAr7LHwCPgA6kz\nIG4Zaw2WdOZRqVgjMjPqEXy030GuDodD277r29/5Dj787W+xMLDSKkGcACqywCd2ggSZUozOeqQ7\nuzbjwexZ+z06H+eUcaSl8ZslmLqQzJqKtMTD1HSGiQQzgLu7O3zyu4/w/NkzaDDJBjq6wzUGr+N3\n+1eTDqpkg2BKkyq1qotRSJ9j2Fmvto3au8yDPAioSZi3+KV0mTyeA6SObsg+le2sEnVUtQyMvMnk\n0Jaf/Y71tg7xOeWX8fsSham81eeJqB2c9ujRI7z99tuOFi0r60cZeLX8VxlhMA567k5wLAJxDbgC\naFt0ZcZVZbnJLrjpSCvPCtijbKSOT02lFJxMH+NK2wDuEyOWDfZFZ6DVNbaN+S59lgd56HUrSRYa\nBO4yGtuoBT6D7GUgQGl3dRQklcq7zdPmlx1wa4MdTv+YNtO+V0rBkydPej+xMzSSNMilsW2zejoW\nJs/F+ug1Sq7Zd4Rl+zrI0ZvAmD07FZPyTldVRlsU65T14TaxKOhgZhncA4k96X1TEDdzGfprz3es\nw6DfW+WUhj7Ism0bnt88w8uXLx39nLWroT8L1owrOEYHZmmyBtcPW7mJrGe6MUvtmVaC1/dxWzm7\nZ3gp2xA8tfUaeNnZAaozpP7V978P2L5d5bjJK+X9pOOgTqedlRXxJBFhrVtycsU0XwTY36f7FBOZ\nPr6HIzNfoMnpsti4IiTWyCi8udVhF/XlHXxp6Yt9V+3csiw9kJ9MLlAdGst93bRnA6I+mZVh6zGd\n5JDYnIUIK4CFZUrFshywlYLbuzs8f/Y5Xjz7HNtpa9gu2tKZ7daBj6UNyANoLeuix2f4kgcl7LXo\nK2XPzmxt15/ZQI6lWb5TCK7F4PPMrsdyVadn+XZs6vmmNqAAoHD2Q+eDqavxWef8zf119xzE3m5F\nJyfK5AxaklgAxv5XIJigUD1rYB13reDW4feCaAp15bnmO5P4TYd1xVVdvTTbGSPWP8MQWf+LqycE\nF+6nqFvitZbPpG+T/VvbMcP3M32b5dvo0I/ltfkMB5ejy17Xz/nkJ1emKc/SEGmb9RnLt1lyuAx+\nxZEtqz+b7G5ByQAmZILMShLvIR51sU56sWcoWoyoqVR+2TLa9tLMWA8H3/7qkgJp+zWelVF2L7G7\nlnc2Zdg/o2svz4zWLGXvZ7RHOqzebn/DRDE2+jJ7VwY4+kfxheMhetxP+4H2xa66x3JTOxOuyzXf\nx+N7zX8gahPpQKJ3sZB8gKHNe46SMjww47HeEx3FxvJxG4gspWBjuX97e4vPn32O41FWNGmelvdS\nfvRD/WdP/ynnpd+GZ5jbpOi91PQ5+qRTK0fxOcsjva6xs8jDS9KXamssID8UCdX4Y5E9y169eIGP\nf/sh3njn7drh1gagRyW8tnwBmTkF2I7Zt6xQJavvAmKQ9EBt+55NRJTSHY2IXbHQyuIe4Hzw8CH+\n7b/+N/jle7/CVjaZFRzytHucEqpALcsACmKwLg4SWAGM+2dbxz0assXcX9a1bU9jeWxBjKt/Algj\nTVH49bcOFlnaI2CKNNQvPeAHgMD41bu/lHNCFkYB1YPAY8fy+UbeW9o1xfpnW13BdvR6balnHdhn\nFYjrUvJt00PVx8PXssOcmfuSUSKS1RkJjx2vmkQlipqgY+goW2mzfHQ/0eYvoG81FA1P/da2O3G0\nBgVng0uWp5cmS39UtHo/K1eN33Y6tTyur6/b6hCbn9YxBrGiDrFytG0blmWR/E4+uJfJFNRgh/o7\numGWCJNsX7aGsweskWzOhVnlkvUlK+vt3BdmWQkCyDkj9b6enQSK5aLR366FfhUdIQplu15p5G5x\n7+tWM0XmWqtOqjzUfmfzKrUekebBGAdas5lfXBT8jfpaV/Fk5/QM+g8Yr4X+uq4ii++8/XYHB5Tb\nJiujMzlzYB1ebm06B4zVMdensskC0n+kvZzOHfSq1nncJkLLtH+ze6mtNvt0R1s3fcfQM+oLf0hg\nZjuFF2M5RD7A73X/SJ+1fzrA+bsPP8T19XUNSlTAPqnLzEamz7OXZ9tXmv6Qt1LcBHjZt/fs88oz\n1a2W5yKLBXIo4TioLflUGhJHh6hvbwXFh4aGpbbdxx9/jG9885t+e0p4LCorT3XwWAJKvZ3GwZZM\nxy5Y6qzvbkfU+dMZXffpPr1u8v2i68rWHy7ATarjCnfcI0EA7YMSUJWwfR6oSW2npSxg++yZqAP7\ndcDi0yxd4hhnGGsPV0b7sEejux9wi6Vvxrt2bSEc1hUvXrzAs+fP5Yy6ZQXQB7nJ5kMYVsP3Mjz2\ns+XOfAG9LvrL2qa5nZz5IP3Zmc+BgQ7r+0wxb8MEWgaGdpondnUB4Gxrr1M2jzT3j7xdFnp00EJW\nYtdyTLMQqQ+oW+IuiDxuvKERB8mZJH4C3cgjxd8Yuk7WP5WPWR1tGdG/Uv7pQMjMB7JtHWXQ+l/W\nr+p0Uj8wnLkPFoSJVjGVUlwQLaPPncnau5VsyWswavRFMn0y61eADmiVhvNbXQPNVMuzNEZ9bvXM\nOQ2vz2rebgVG8LNrLdxf87qrr/p9jRZjA7L+6HhDXpZF9vtzy+r5m+ltl3/lhVwysqvCn+B8kaMi\nZ9uo7LMgSvw/7L3Z02W5cSf2S5x7v63W7qreF3ZzkyhREk2POJLssR3SzNv8iQ6/+M2LXhwTEw5T\nGjkm/CKGTIkUKVK973vXXt9y70H6AUggkUice6s1fqiIgtSs+51zACQSicxfYkkouWpTzzvtW1r5\nhvKJdvkaNjHQyIH2z2wSP3Cf8vRnI/tmcg3pFv9X/22LsOPc5q82osqNyGkQBTbAM61q6/tX+tTr\nRS88ndYPna9U8nJTsdVh0h7tA1j/xNblvel/beIAACAASURBVJdI2cwod7ch643tvMXpw1OcnZ1j\nmiZsN3leCnCOFPQ+bEuz+irLbPpb9GJr51LGHNYTBH3yy5NP7cPauXR7l1jjcw70qP29Kz1WCyFi\nGIA6YLWh2vIMRMIKEf/8T/+EH//Zn2blFhHCNFQQ/STQGIB7aRbhzn97wq0FeqGFzV/MDMRY4kFO\n6xV+/Md/jA8//QSBgDnOYLQX9XYADOgUsKUL6Hdl6+9k4toq2dFEim2RBTf6WxtbUycLNJeArB6c\nXn5La5lgKru9ASDtWnn//Xfxez/6o3xhejp5M2qrNuijZ6O+14CADIhCaAHd1O3Ibcso7XK+0UCo\n9Dej7lYAd32wrzGW93O+dDg908BfmpPu9NBAWcbJfs5Jm4Kz2u47Jst0J7FplbTnLOi6NACfpglX\nr17F+++/331v04inZSwwwDIOY+vAaNoamtS/o54qfaAm3SaSwCvSV77jY8e7K4N5Nw4A3xHX36py\nPH0UQsAcYzOWm3oz4CmyJm3XfQanH5R+lvpCCOlyUZEFAdvOZEoHXlWdRPVIvf5WZRYIZ+pvde9I\nZ3SgTTfL0FE20YSAa1evpnxEXd2S9ER0ZVXfb57spRfoFrs94FaeyYR5ToEU/7VMOMLcjZ8W4e7d\nDtum5n3sNzxY3eKBMiGm+14WVZhBaRVC+V1altDIvJQ5IfedjM9geMvUL4RSusMoxhkff/RRAcec\nKPT7xdFNS31e/invsqMLRnNGx8iwrksvsNpvbL2RxaFu+UQZaNv8DbGUxp733guxkXYxpUmnQISX\nXnoJl69cwTbOCNOU2lbK4jK+ke8hYubmknvx0VIWaVflQao7tjve5hnn5+e4c+c2PvnsM7z9xptO\n256kJ2mf5E0A+pjH6kRPl8tzz1G1ZWqb5unbjlKlcxq7ZiYEeh3sTxxosh7FMR7RZn07T2/axWsP\nDwA9bhnhTslDWZHMMe1Qvjg/x4N794Ac4pQ5yLwDgj4lmXWmhzvlkdd/tY09BhGM79Kq0q7ybbJ+\nc/pXJlNsH1MnK7XeahdyjUMaK50aD/cYT9PX11V/1/3s1QcqskLVP4ocqs1BsgFFJqhSXOjh9I1+\ntuSPEykaFuS2TKAJ9KrGqnwPyNxLtVuj8aTLlkWQNBG3KSeRgIQ9LQYY8XWUZE4obSQQDLLDfxWD\nnJNdKCpynRqTs9S2l7LVZcFeXe0Y6vUnc1rgCO2Lmg9KglWfFFk0uoUo7Ub3fB/Y+lHlS+go94d0\n4zovgJmT1wyum81KqQuJqJlYXtIfzabgBmPl9yE0cNnaG1tuh3PzQIyUPL6EEVv7V2lNC3iqGS2/\n3LYuMULRnYhKi3UjG8ld96lXDGp6019kcGrtfsq3RNTK3lJ6RJMqOlA3aMl+2Pfa3kfmHEYplHIT\ntK7S2Ez4K1vU1Zh15T70NNmo9dl1fobo7P3Ks3ZHl1f1bV0EIjDSAoPwNAkx5e83my3uP7iP87Mz\nzNsZZZ6n0NjjN88H8+YcYsYOhZPKDax/ix71panDBLlOe4LEs3WSvM363yQ9VgshJXFWwlnxI4O1\nKQAcCHGO+Puf/Qz/6t/8GeI2YhWmvKNwgoAnoAV1gGsv/Ood4bACPDrOY9OuSdeJCHMGMdt5xquv\nvYbb9+7i8pUr4HmLaQruxN9IsO0z+dvbFa8NS4yxHpfZMyWFky4wDEEpDNTQO+nYXCxHEssKq5oc\nXAoLYR2Nhgs7wLYAqAiUwTeFgE8//qQAuLBep3CVezhy+r23O7UDLYq/SZ0pWYiqnxqno5VbcVKs\n/DWTSD1n2njrnOpu29Ybn6qMDeggBSbznR/VoVU7qQwAF/57AH4fC7sIds13nuzb/LsAufw7z3OR\nrRgjrly50uW1zr8d27o+/T6AMOcJsbQIx8X5kW1jnu7ppjnUuOEYEaZ68i2EgGj4OwWnTOMsjPji\ngRqPpyID8r7YTPveAbTWWAfU8DvNySbThqauIsMoC+MyfuQ7r280stSOrm1nV2dxqLhAAs12fZG0\nrrPopRgbvhedkXleFjhYdrVXMD9NE65cudLxuqPNyKd+XgCX1lNGlm3SY7ob36qO6pC0i7cCwm3a\nVe++yH0f53pXmqQ5yE4RV0BoARk1v6ruBPKpgaD7gbWopR2d1oEzYZvt2I9xhqztzZsN3vzNbwvf\nWYF9XSYzY8qOYQXLnI9XxyJPtf9zf8R6Qqm4jNz2oZUZ36lp9aXlox7jTPXEoIzp9E3t27p7NzYe\n/2icNyljAI413MaPfvxjzEITdJ/uB7xrXfJ3nfyRE4CRZ/A2LX7c/voWPv74I3z00Ud48OABAODi\nyYmQJ+lfkEZYic17+e35COnfHRPBgwV3/d2+Dqu1pUs2oDxvxvZe1YzLQts2z8fqfckeA3blZOJ0\naWN+m0UhtSGNmfHpp5/id35vg/X6sDF/MfvHzCj+8lLy+kZPOtk2if/h+Qy7TKzXlx5+0srbymTC\ntuOFAMlf6e3bWOwHyz127W51214rV42t7nBt6zOUeaL8PtnODrVnlEClbczZNy2zfPJlY9o6/gqd\nmsaRH138QJUsX7n4nW0dfZ39BqdpmlIYMCJcvXq1nATd5W95mNR+J8+maep2nes83dglau5c7Dbw\nCIbJsrCNEaHr734C1Nu9rOn0MH3hG1o5AfQGkP5EAZv8WvfZtguWL/QO9A8hLzKIL4aEG9PvWDaU\nRFVH1VWphMafNZv53HHv+ExdkjHQ0Ds+5eT1f+mL3CZ9So2aclOKzJgovdN3xY5H3nISvrttVDwa\njQs7SpMfqP4iqrvp4fOiTPaj19MNjs/95J2IaPP0dI3n65QfSEJfz0/xZb1U5ElsTbZttazB91nO\n8lqB2cSVk/KpGlmU/A7+GGESTY6r47AsQR62qAUDoHpnh8zlzAGY56RfQmTEuMWD+w9wsdmAoaL1\nqDqEviyanezV9vX8Lc1WMiCbSaks0FndbTwo0YtKH2nMY2mRd1q/PCqu9NJjthBShUCMQ+mNQOA4\nY2bG8cEhtvOMzz//HM898xxkRVUUn15FAmIWghRTzTvJYYVS/h0Pgv57nXa9a4yL1IOkjOdpwne+\n+118/vnnCGHCPG+bXQA9GOzLtxMBnvHUtAg9sgLrfWvbrh2nqBx/KU8rS71T3eON1wd2sNj3Akos\nbVJPCXOhy+S06+P87AyffvYpvvvd7xaFPTOaHQBLfbgL4OkkE02yw0GKE+Uj7YuREbp2jgd/yiMT\n6L3CluNxHqAtADzURbBpCk29mrYZ+UK8EMrRZElTnjyyk1Ej3o2Spd/Svc9Yku9auQ5gjl0eLT8W\nTMcY00mtkGJUX758ufBJ7wb0gI1tg/RTqTPG3F+twZfkxkuWeuBBART9oPNavnmh/axe8PqAmRs5\naspPVrp+m2m1Y7abCHf6Up/CIbQh+Njw2KvLgubIFdTrtnptlAUX9bDjj/7efTfAk1aH6X6y36TT\nc6rILL8y4iQOrkxaX8pyWU9d+KeLtKx3+kDRYNsoX3iA2rbNi7nM0R93XYFe0p+wPDDO7iPo5kqH\ntMksJqs+mePctCtrasiibx2XPuEKy6p6+8UobxLf6vwk69KvMp7SvRi3b98Gx232ZPOCDUuoxVS2\n6D9G6zQw+p3ZlX51HNy0MVAo9ExEiGpMav4v2S37d5ULbpyV8n3mk9XZwhtJHkZqQolS2nQi7Qwh\nYLvZ4MUXX8S0XiVHSLqFxTlQoqj6q29f4mmZAGPg4uICRIT79+/h088+xfvvvotPPvyojGHZMUtE\n2G63Lr+epCdpd7InLPQkhD8uvGci3IL/pOzii4HKOCw1m/G/k9KF74puGvg6jOyIK8fcK887vVn0\nk0O3Hcs6T4Oz0Ye/XWhowW0eZrB1Co/LJgNOOye/+OwznD54gOPjEwAqvE+oJwDFPnr9srTJTOhI\nspNsRW3T7k0RbXN93Gnfl1CSzF0f2bzWD0xhTsUm1FPKqVyHJimP2glAW6eVYaIm9yJOTovn5kRU\nbPtdNg9oEmMy1o0/JSPW+hdSlmtzuJXXEY4bldXzHl3SMm95UcI6Z3nXcuCND93vOxNz4/Q0WMGh\nfbERKmmfoty7l3EpQeuFSvO+9Hc+CmR45ud9hvJc4IWnJ0jzWbdDg02D5UiVX+hArxMkIonM/SS+\nVH1Z+V5tS+kDjOWv071qzFiete5Xxdee3LtYWr9DmyIzJvVeEQgghb6edEQU6Yw9k1en9lF16vA2\n7xTXIaYe259sewgAycJY9iFNnlImE9KmTMG9+Ts3ZtuOZP1Fh6GjhfvIsdAu/m7lWc+DOM9VRsUW\nKttbaFAyRs6Y0M/tGB/p3qWk4Jd61o4Nb74GBPCsxjSQToDkfgkh4OLiHIyIzcUFHjx8gNOHZzg6\nOCyhynMxCgfmcaf03jLteVHV+IWeoPr2w+Gd0U+63Z5+tXyxOOxR02O1EBJCuhSP54gtM3iVj1jG\ndCcBYcI0ES7mLSgyfvm3P8ONf//vERhYA+A5Ioa6KhyZEVSnTLkzGhk1oEt+64mjpWOiOq8FGDPy\n0S5ujU8DFGJEQA6/FQJ4Cvhv/uy/xf/+v/0vIACr1brElB6KrwL5nJBRO49kla95l3gfuqOAGnhY\nA1+GFxMgsbNjAtOi5Eo+UUxOG6zQCz0xhwzTSm1poteWp8EzI/U9A7jYpnBj7735Br7z+rdxFi9w\nuFpDjlJCfQtkOWGJ4ZmUaVpQSxNG3cSMoic5M5UflG0Ts5yqSJFQiOuKacEApZwAZgKTmihWOikp\nrexk5IfTNIHnOe1sN3zvlSBhmla5nAko9dTFrQCZACv2ElI0WHYR9f1SFslQjwdr+anBj2ziAQgF\nrAFqARGp72Q89id3Ch1G9mSMTlMKlyYLaZcvX8bFxQUODw9LGdZYjkCKXgSZVlMZn4Da9WCMfeVf\nBi9dq1tjrXcCkHlvFza1nDYOf0DhlV0g0vWLTLGjRwNRuscpG26iNPEoelAcQigdJca5TAAI39rG\ndlDK6msSL0J0PDPCFLq+6pw05nLhFwZ8LjwytkDbCYboBOTvASvb3vHO0s7ME7l/RC6JC0IU5aPC\ngcAcsD48xOHxMWg1QU6kaL08Zd05ZQdKn94obSh39WS9F4SMugPHymjhHVXecF0NM6AuTyyHdK8Q\nKTktwEjx3NPrwkYv7qm+i2g0adM8yzIR53wBX6AStLsZy8oJzHN/AKqeBZBtnbSDkPboaruIsthg\n+ccLeE7zoo5TFVIDAOIMnmfc/eprTFjlE2ZA4CQJJLgzf1tsAKeAs3JxZOR0ClRAb9EjWego5lHH\n1W0p4z7b1oAKmIc7UgUIS9uplSmivFiq9bu0XXZY5kUSRr0LjmkFzvdshDCBKC0yx6x/ApDuMVPh\nO8QBCdmpmqYJV69fL3mI0uJOkb4Ykx7Jdq9ED+H0POl3gDiWhT/mdHfLF59+hvfefx93bt8utiQE\nWQBRCx+xvzfrSXqSHiX1C92tJ+5NrrpJYj1LGIaUu0wQ7jp5MEqe09tUq/wml16STQKx0NjqSH8z\nmy6/TEabfNZ/8zCilLE0AWfb0k1yDPgiEwUtNkk6Ybud8fDhKW4MwgA3E66qvTvrNb9DNnSR2v6x\nPF3yvfQzywOZiKp3/415I49lYabaFdIzPENZEp7GhX7YZ1JRoKqVA1tP6jvBttInYz9lqaze/+v/\n1jz26V7ue59vGonV77xxYWlIZjv9fXx8DKCN7+7xemksaZqmkPBFnOumvwqyq/9rKiiYpZFzJUsx\nn6LXzxjt/EQIyf6P/LzW/+h1hSenXlsLJjb0sv53MNYsDa3ONL6Ok0TXCKYvC42Fxfk3L+vvJdpc\n3rQfI7sbrZ8RWh57fNZju8iVaXORbDsG83zOwXqNtb4sfXn4KL71bRYMXWjdkUe/25e3tjxvHEm/\npg/2Kg2q04vu08xIeLwumovfKXlc8p3+GLWFiw8weKdGdOMfouKSIX5wSVP6U2EDXY7+3erbyq9d\ntsV7NrJJrX3N7crypINOT9OEOUY8uH8fTFwiJ2kfbJc8NWMSAMtCmDRNfpcvxL5pnevpxt62EVGz\nsLKE1WxeeW/9/EcZL4/VQsiUw7uE1YR1ZKTbwtXEXIiIDGxjxJoC3vzlr/Df/7t/B14dgAOBwwSa\nYxEYbeREKWXXvkmPon68C2CBtqPkvcRzl+ey+0ODBBFgoO7afvXVV7FarREC4WxzoRR3S2upT+pU\n7wk+IPeUp0wOjAZ0k9cRPjIrtXaQ23KWJq6E9nKKZK67c0G250w+p94OcIaAQMB777yLi/NzHF46\nQQICMknZTvixKrvii7q7aWkwdiCyFoaCO8oJgSWnINEVGwVgjH/MoAVcdjErRnTtSmPDAN1s2HRb\nm91wujgF3brxZHlCvYyor30Dumdq+fZoZXljtijZ/DeFgKOjI8zz3Fx67S1synvZ7avf29BPWi70\neOjGUfpRnnn16t9LRsJr59ghM/pCfmv6nHrlt4xX0bckGXS78rdlgdOhranTtq3RIakWys4MEVx+\n7hyv8PUVFp7XsmubxA8a1akBmKbNA9FhyheMZ37ISaXVep0X7RT9Up/uV2pPJVXnse3jomvzs+ig\n29p2vUsQpb+186m/9RyXUmbmmV1ULkn60YRt0ZN/Vm47PjfP7N/GZjRh5Fr9puVN1DARp8VsXTgR\ngN4u5uZ05VU8MHVyUHFpfTZvt/jkk08whSmvZ6kxop0EqqHetFxIfQWTMPcnozgvVJIec0Vqduqa\n0h8ND1Dcp1bPVH7b1O5IVZenI4LLxF0suxozcgSAcgm71COXpxNN2G63+K9+9F/n+68mTJC7CRkx\nzmXxX8YFiNL9Rrm+7WYuC5anp6e4desW3n33XXz22WfYbDbYnl9UVnJvm1L7xUnvmv0kPUl7Jx8/\nJgXV2islaIR2MgOhjtfGfPT2zqvbc/a9b7Vd9hxbz+7Wolub1bTWwTSNs69+a3sItCEYNK3W32sm\nDoCBbfDp0r+908gSwneeZ6ynVPf52Snu3LmFFy9eBB0euTZO01tfLWNhbaMZSCdMtGgonhU7NKi3\nlMPtBjzrryY/q9Zu5cDWLb8LrzTGQs97m6/scieqcwLJkHa0+3LZ80NSveS6tZlBuXl1MaSXR1/W\n2xMelsY+teVqDLVvajEJFdw8qtPDWZzHUowR6/Ua6/Uam82m8YG8MWD/9nEf0hy8+JA5FHcto/fh\nYm3QcBFBBkobPaSlSYet8vyzUt9g7kTPHeh/076Zngflu0yfYD5Ns+dPyN8RwKR16QgLD+QrbT41\nIcwNPvN8Zl2GHf+WBsk/lbtbBfeKvyQf9vQtYftGx8OXXZtE56/Xa6zW64znKW0mcrILDToyhHrZ\ntFHTRKaMwtvsQ3i2cNROOP06TkkD72OXQf2CXz+zY3jezSnpegEg4Qji8Zj3/qaQ/HgysiZ4WWMa\nIG0mZsCcYHDodXBKgwlUfaP7i9s+Tzq+1fNlSabhn+3bkXy2G6KUDkPeDBhnTCFg3m5w9vAhbt++\njfV6DWT9CxZs0utbXfJQX2WjXb5l5QFTLVl0U8UR+X+MDS2609Ji/tV3Scl/+noF+36Jh156rBZC\nVqs1Qt5FPlE6GZKYmHpmS0hSHyaACQdzxMfvvY9Xvv1txLDCNm5xgJDiYQMAA/aqWA8bagZbo7w0\ncea9a0BRelDf5V2BujPt4Fit14gAXnvtNbz11psIIJhp7c74asDZPFOge8mJ2dUO+7397R0X14pj\npIhHQEvXX2MGtk7UvoOgqGQpI+9+uH37Fk5PT7E+OgJWLX80AAJ6mSmgIfS80O2WXdBEBAp1V0ui\npf1eno/CfUHLTI7l2YQ6GTh8fT/KJK0HzqPiWG2XNRzWQdB/t8523S3k8TAjD/ij0q/fc5JNjvzd\nfmO4oymXWSbUiLBarZr3lq5OVlW9Vi5GqXyrQL5d9Bg5KEvO5JJMtHqojmFvZ7fwQ+cbjUNbz6Rk\nik3ZYvDG8vroOsrLq0HsUnlev43apk+DgHuee/3UgAMFGmz/2IsvRX+FXM/h4WG5mFLHjYUCcSNd\nKXKmeqUBK/INZcegeTbQ56IHvB5J9advJHa0lJt8wnYCBbTfeNVprzFOls8DHrmNaOuqn+vdSu13\nQ7UmKo9RFwXg86IsalP7LG5nfPLJJ9hut12/LTk+s5YVKEyiyE26mRRlPvlNU7l3uIota96l6QxP\n7r0FZhmzTdl5DJBwT+yrDklidT/JAilVB44CvvP972GOMeGufDqXY8SqjO2UZzvPCRMwY55nXGy3\nuHv3Lr784gt88OGH+Oqrr3B+dlbuGWHmdEIn27hkGypmszrWYrwn6UnaN43wgOh1gBB5hozl7vv0\ntFvAljQ86TXwYXo62rTLt1jCAp6N9mgePRc8OnqvdYbVOw3mQ6//RvV6GMyhNP8bQJR23q6mCaen\np7h35y428xaIM6YAEI/KSOXsM+EC5vbuNUpavWh9ZRf1hIT18UatyB+YKgX/oPNBvD4XGkSnwkzU\nF7tlbEnBtyGkxRNlb+RUp8XA+/DMYjRW7YgxZp+xXuwb8saNeoK+0rmvD7v0jX61j58zwrX7zHGM\nZDjGmE9zMqYQykKIxQMW73r9rUNo1/4qXmQ+VWnKdSZrwf2mUalL6J8U1nD1GHbjm/ymfDjSW3oO\nAlluQrvSXPtPlaHOQRVMI20rtauwZIqiXh52yJpsimRwE2JHt8fTle3mTMFXbduX9LjUCe879v1W\nL7y9pknqJeYyOU5FUgjgHHaJgdV6hdVqVTYEWb2u61mcT3DGVmmjKafoUMdn9FLxzbJ8FEuxY/5H\nsLG1CZoOTxeROIemmUs6xtdnVLB/65PGXIejA4os23mmZBdLuSlnu3DAgGcaG33v6QunLfp3sUGd\nTjNlk9CWpMj2d4MfTB3il4hvLv5+I1dAiriRQ+rev3cv+RwU8gatvHjqKT8ANjqKpqN8nutXNS7a\nyqJrih6sEXBKuY7sWRr0ONA+0kjv6u/2SY/VQshf/MW/xfHREd5991189N77eHj/PgBgCmn1eOaI\neTsDBKxCQDhY41e//Ed86/XXgXnGigiMuVWGCviIfFi22g7WneIBbk+gPWdElBHVzN03ttztdouZ\nGX/4Rz/CP/36Vzg8OkLkvnxrqDqjr34vGfwR/bYeu9gx4ottv0erV19j5FjCwAQpfC9a3aTBBaRP\n06tPPvoQV69fq2G48lc6NqGlT5tJT5npgatjbtbYxtI3YsCkif0qtLZG5VeJo97mtRyJ8iDTkAy/\nTBa1iyGjvmwAL9WWW2epTYonCqDNnMKRFKXJDEIYyKLhguqzpqYRMM1Ujr7xZM9+pw3DwcEBrl27\nVk6F2N0gdjxYwKTBhjzTK9xShjaCto1LoK9ZFDV6zHM8djk+7vhayGPr0ouXkjfk9kXFhxG/bPus\nA7XkqI6e2To90Oq1f2mMe7wa2RJbp4Bbey+QDvfEzMmZpnRMX+uIk5MTrPPkbbnd29CpY6V7R2ab\ndqK/CBKkJo1zktAWPSDKi7tK3+p2a8Aqbdd9Ig7TkmoXvSz0zah6dlf4yqJ1tc3NJ057uTH8zPqq\nL4+yPub6t5M8uyugVX2U/mMuIaeKrKHKm5R39+5d3Pr6a6zDOsdrGrS600Wts9i0uPBPdBHnncKK\nUgnxRJX+gHbDiR1z1bmplYlcLTmCo7EqdZSYt3kCrziIQOGJxXtBbE4grA7WuHLtWgq9kUNBcoxp\noYYonQpB2oiyubjAvNngyy+/xIcffojPvvgSt2/dyidM89hEWjzkmMJkcQiIMTl+og/lTjjKseVj\nXkRdFPwn6UnaM1knVUJJ6UU4ncozE/pkZMMeqX7Hv/Gwpny7hEuI/A0a2hZr/LwPxlnCv14ZRYca\nmouf9wi4BHlCrkzPZd7EOGO1mspX83bG519+gYuLc6wOj1I2jcULHgHEp1hqQ3lu8OnIr9XJ3vU4\nwkmFLs2Djh/U9Jutu8MXMenKRoaI8sYav6+TSBufXvlMXlvTd9Yytgv3hQ/qN1EKgd20V2wf9sew\nmlb7zNK57/j0xl3vr0o7ax4iKqc6bF7r53K2aavVCgcHB648efhZl23Ht9yDU2oO6S/rZ0v5hW60\n8mfvKMwZmr6RZyN++r6WYA8M84GohhyX8lmgXq9rmesCpVd2maUQfuZnpCaaK4pTZKh2dmNb9JCG\naE4/eW2UsKear3DGludvlbEkUJrqqQJPZdp+9+S5w4yln5ulkPJ+nud0ImS1SnMS1M+lLC28NGwc\nvHf90ihzMOnvXXN0TdvQ5rF1ljLK/wCLjDX5RK4fdTFkUGiilasPVf93gP3Z08lCfkL0up8ZuShl\nF+u37fhuPDCnH7Ut2tmf3P7d0OTo2yavScyMdNJdis7jOCQdLD2aMEIER8bmYpMODsS5hls2NIxS\nh21yfxQ/HDJP138lqeuDXliK3HrYbTR+PUxo3z2qHD5WCyGXLl3GKy+/jNdf/zY25+f44ovP8e47\n7+KNN97A3bt3sDo4QFivk3ID4WyzxRtvvIH7d+/h6tWrSJMjCRwFSqv+gBLC/Dv5nb3isBchuwps\nAPQ1IC66ZzAYpM5mgGUBDyFgOjjAiy+9hBtP38Dp2RnmObnMOjUKUyk5qcETkRFIHikdbTDsJUuj\nfKM6OmC7w6g0K8iou0Ub58XJ5ykx5nrsnLPRD0R455238d3f+R5WYUohNgoIlGObavLQtCnRM7uD\nVoBljLHuusrl6F7UMiAhPOzpncofTpcmDdpcDVzeNWW+kcm1yke4E/qq1NouZMONHDeVW9nZBQxK\nTHc1GZrM2fJYat8NnANUObV9YAGErcejtZHTnH91cICnn34an376afneO62hw7DYsbVkCHuHpD73\n8trdCXYCYDcvfUMiBnD0Lmd0Qa43tsv9AaZP7KVdXn4LPj3e6XbbhSWvvbsAqgfWvaTfxxgxrQI0\nahRZlxBLI7oIyBOvKLKGXFIJU0RtGhVrqAAAIABJREFU2MKY1dTR0RGmfP/Bar1u6MoVVLuAVp9a\nGW3aJIBIFZW+lZ1naEJHteVIP0eUS1HBBfTL9xSqTHTOMhx5ZSggCPVtPmFH7S4Uu3iTHrIDsLNu\n4tjyXGdz+q32Z3ZmSr2t3h3pndSmOtaXMAWQdpame0CSjF9sLvDxRx/hYL3GKqyx2W5LXwsPC79V\nWZFELAgc8/1loeouuRsl4d+6eFnkU16i1wFAO1GmeaVpo1qE77xxv/uqszVUaZRFInmozHjDR6IA\nQg2XEpnxve9/D9PBBASUHb3giDhvy9i+e+cOPvvsM7z//vv4+OOPsZ1nHB8fgzmNXTBjm2mW0052\nB3U9OZb+i1x3XZLcy4Mn6Un6Zmlo11xsR6jbJinLXp5Qo7YMq7926UaPhm/iuI4w5UhfLGHRBjMB\nHQ27cFnXnoVJsSX/pvWrWoDelJHzhnQcE4eHh/j0k09w7959nFy5Vr6bs4+bsJTY67wgm3W8BIke\nYjmTPDygsanw15589lKHgYlA01TCnWgG7IvDyLwvWMZY3pKfudshzCnjYputjSNy+llwDLLtMP0p\nC49Sn9fG3Zs3lpK/eSj92bap7yuhW2PB/i5FyaNtmZ4rkfKJCJzt32q1wtHR0eJ49+ZbbChhD58K\nzxraMr702qrL2IfPY1/Y9yPKzaGU9Si3m4kC1TtKCW1kjuG4Ub+D2twhfoJwRNrW0OPheQdDjdo+\nwqE7dZzzjf7bu1exKT/0usbTm66+yTwG8uYhtDysNNbJWs27GCMODg+LX1LwJfrNi5oGT0dZO6Tr\nWdK5Xhut7IousXZY+4ywOldaTmifGZp6WWztU/PmG9hzoavxjYKWbpWUv1AeocqYx+8UV63nc9PG\n5HBUX4GRN5i3bfB0sr6HsuUblP8xHlu1af6CuuiPpoxsu0RuGWhCHG8uLnD/3j3M85zDP6Z26Q2H\nun+LD0StLuDcENvmKBFC1IgqPeiIS1kUysGF7fgXOjyeeM9G42sJcyylx2ohhKaA1cEBAOBwmvDi\ny6/gpVdexU/+9E9x9+5dvPv2O3jzzTfw0QfvIxwe4Xi1Bm8u8N477+AHP/qjtEAyBTAC5jhj5hkr\nqrtrrLKQ1Cmc/LcOozIyzpKfoC6ERtUj+wwOqzAjMw6ODvHiy6/grTf/OSvsepGu3qXByQKXycXJ\n7Ordx0g2fWAVf+wBkgYlQBvSwjOaHgj0nnmOF3s06bYAjYEYGlCghL6IRJimgF/98pf48z//c9Dh\nSfkuhIAZ3PShbrc1pB09JI4CwNkyy4mTHshrMNqGs9EGTCihXEbdGZ0BpRiPHbIWRftD7I1VgFwA\nHaCPyxYmFKZY0GiVro7TGuekhPMG7AZ0W15qftp+j6g2sukbKZPbndQjkGjpB/rwcbbdV69exeef\nf17Gnu1/6fduV5OjtD1dIs5GUPrK5tdOiZc8PbYEXPQzmYDWp3084L4LpHaGygFd0ZFTd+w7PPZo\nBwYXkTs7F20aXX5uQblHHxGlWLcNKBOxb8GyB+I82lb58upJ5I9bYMGcJq0vX7kCZJkT8FjKrMan\ngJYlOyRlz7IMQigDrYzV7BykC+j700ycbS+YEOMWjMzXXG/XPwmX5nAHgJzO0PQ08ly53/zb6+II\nosnIrXP6KEcBnONc28uMMNHiZea1L+uYnRRQ1OGZPL3YtN9dyk8p3Sme9SfH0gZmxrzd4qMPP6y2\n3sgQUVAX36lY6WjlW9MUQigLIUlfpw7aZl0zybeDsSKL9FanWQdI+OTpGTue7Uk3rfdCoHxJenDL\nCSEgANhm2xPndDH8QY6ne3p6iu985zuI84y4STo9brc4OzvDra++xNtvv40PP/gA282mxLOmTNd2\nu80nPXy9X2SsjOGxHq62/tHB/ZP0JPmJ6r9ii1B1Ypkikc9YZVHpmzqdqexHz+fiB6dMi3M832OE\nRerP/drm4SaPJlv+jlI7XIW82h8CgRERk3FMO1TniHt37+HGs1tM01QmJEobm0ke1Ml3VFy3q42j\nZ0u+Ym22/66x1Bk/iKiJ3vNisWt0X9qk/B2vDq+FBJSF8bIgYjD+rjbIuw6/qc0GXv0F7zj+0q76\nQEvIoM+/a47Byd3Qvs8chU1eGEvpy2maGp5Z2y5l7pqHsO+G8xVGXnb5erosD6f9S1JHr+BF9PrJ\n0gHUuQwA3aS+TfucgNulv/b9VvTsiFdef+6rVwjIfpOvnxfLA+ocEerpn5DlkXNoWVkkAWQ+BgDS\nXNrRyQmm9RqgAAk7rnWX9N3IZ2vaNpDXzv9gKT0lu4loH70r76eMNfuXGApQb/+qJt1H1z+6zqlJ\nbxAsz4QW42cIZcIuj+JE9X7jtvKest+O5upJd4yqiPHNfBTXjU5DG2hkdyg7pj2BUPypYhO5lnl2\neob79+9jc36Ow8PD7EeHvqCuXWo+hqhhqDf+kwjl/x3oVT1f07bJ1/37pKV836S8x2ohhImA7MBG\nNVBXIeDpZ57BtatX8cM//APcvX0bn378ET5742188dWX+Nuf/Qzf/sMfAtsZBzE5vFTCs9Tdicm5\nryuRuxi6D1BaUoqyG1qUvTeZJt82QCsL5A9/+EP8/d//HIfHR5jCCoyI7XY7VJKySCJARNflgRIp\nZ7ijXAGyRgEuGIS9B77jtNRLpFAmYuwkglcfq3K696bOECQ6J2G72eDrr7/G4fElTNOEKazyqZwJ\nWqNYh0u0xwgzeSDTTgjJZJooGD2Rp5MNRUO54oYWUWCF96FpeZX9pPgU5wst0u/VUFRwoXmgZXl8\nNFOcnZ4PtYcfNWXwzpUWXa4t1QLcrrQFwBzUBGMIAWGacPXq1Z1AUfK2l/v6YGipDGtgPMC5qwz7\nvotJv3AaqOiL/Nw7Wq75Z++kaL6LEcFcjOc6lo+gi5f0jn5v5dorU56P+OMBf6tPKTv5eiwLeLF6\nV48bmWC17WjqdMIeXWw2uH7tWjnGK+OUUHeDSlnMMv3g89Jrr/22bX+7SNXot3kuY8ZuImC1+zBy\nLDTpcmR3fBfqLeZJdsHKWecR0Mlg5mJLW941WPU45yPF9eJN3fbO7hsQXMuWBZFEExHlUAGiB+qi\nqTduU9z+1KIKdI3OyPkldFOMCQPc+vprIKbnUI5DkoX+ZFyktMipHQZpp2CGmMkIwchH0YXJNffC\nrFn+AO1GEgh/nWGu+e/dEWL7uNohf4OELIKk+kO1+0SI84wQAp579hlcv3YF56cP8cWXn+Ojjz7C\nxx9+iIvzC2w2m8bOCebSG1F0uSVOurQh02PDonR6m5SsfQNw/yQ9SYCcElT3Ve1wbnXaZ6JFp124\nvnOktd9gkmdrtK3UemFkh0d1W1tm8feIhlEq91SIwjf1dqUIjd5zwQwkn1V9ne6IYiASVtMEEOHi\n4gJ3793tNuEI5udsOLVezKV27bA8lN9Li0nSfsnfnFDVi9Oa36YsVnSjsUJpobrSVdnbYMQmv2lT\nRRPNwgjp3+WFdwcjN+1psV0/aUlE+YRm3ZwYWMu61D/AExk3REa5L0K3qlzsXvJ0TV5MfX32WcMB\nyQVHWktebxyX5yGUTRtE6RST2MZu06Yqw25c0H6AF53Dld2Cwdqyl/yjJZ/A49n4+4qHZSNjt6M8\nxqo3TPkebU3naFzEdbNrLTq6k7Cd3lO0L/lO9p2HrTyad/F8dO9p9V24mefxQlF5bSz6wZENLVdV\ntwHI07qCcZvQplO9q5KAspGl+Fd57ohzpA/hf+lz7UKy8v9QdZTWCSOf1Pu76FmN85Xd8fizS210\nMl0mbfaziZ7P7ZYL215W/9uWZWW1G9eqPK6Zh2s+FV83lCOdIFFlibzofMy17yIDxi+ivNHEbkxw\n63d+l2+djiKtj7WtjxHEjLOzM5w+eIjVKs1ZMrgJs237gPN/sjEgylNla318pbettTZiPO7Fxo31\nkJ+v7YvRu30xm06P1UKIpAhUxxk1BvjB8TEiM24eHeHmM8/gD/7gD/Hw9m188Pnn+PXPf47XX3gR\nfOkyDk9OEGlO5WSgAqDslJGd7qkaf9fmiNlDY6GAdlFe+VKguijTFJTaaI1NjFhPE3ia8NwLL+Cp\n609hRsT5+XlZgVyix3MS7LMRGJZwDTq0g/SDNaQWEC8ZK48Wa7BsksmTpV0Po1BmIwNDAOJ2TjuX\nwTg+OsLHH32A5198uSt/GQT4anfkoHV0NG2vdfh09+XLb84OVTTtnmdpY1ZjrJyLZhEw8U+MbCyO\nWd7hnYH6UqLsyGma0vht3Z0mD3pZ1H23DxAC+uPZRO0ldNaZ1mW2POxlUS6hjpz499zNZ7CiAM4T\nqJQnsYWGOY8VBtQFbSYxFYvUi1R6F9Vu+12G1bZj1D5rHN0yjTOxy0mw9VrZ1PXNRfioxJSNQA0P\nY/Sg1kGaHrskENX3Hm36me1nS6Ntw67UAPG0OteACkuPzjMqz9XP0i/c8uXq1avpNAKtatms9Cta\nfGX7fR9HUT+TpMP9zHlSuWnzoOy2bfJfHiMiE4MjtGQaE7mfLNenE6H4kHbYjnfsaPrc+ociITIT\nQGDEOYJQ48vGOZ90MePY/y0gn8sFq2L/KMPQQInf23mDW7du4f69eziYVol1Tog4vRO4kUcVIkw4\nkkJmxdwtld6WH9VWDXVTZSaAtIHFXRTOzoPV9b1tHDtHKZRVbXdDU8zYgaYUEjJjwO12i8gRJ8fH\nOD4+wv/9N/8Jt2/dwunpabJ3eQNJOe0BAJEhYbXmmN1Zqk5YaZ9gpgXdrWkt7WJ0CzpP0pP0TdMS\nPhji4j3tXn+HXUq7sLf+zsNiHg1Wd+nQl17+kb3y0j7vPRuobZsN78npo6atNm9+0S4Y2HHP3CxE\nExHOzs9w/8EDzNutfIJAmm9teyKchRmTLO8sNtylv+x72WAm9YqFFr5Ikxv+OZhVI5e2jlSGi2No\nQKeiocpRf7JYyq5jhDKPp1I2c3t325RXsWTXbiWJYMOtNLRmipjz5CpzJrTFHDLJprj4jZPt017+\nl+2UTkv39ABAmCZcuXIF220KL1nCIhtZiTF22MCOuSV/xBujmmbvufXvbD26LbQ0RkuZrR/nhdXx\nyrH1dfoMaDbRJvyfcYeizy6CeGWNIhSM/KNdfPX8PNsmy1vrd+lkx6/nl9l6PZp24ntEIJ+KlPFK\nOZzQOkehIaJyl2vx7yyt6cOGb1pHVb8g/2Yu/guV76mZPNe8qX6U6AV0kwVN36vNw6Lndvl2vq+5\nyD63rKW00x5Ti3u9b1x/2KFB/GPdWUvltnJV6Slx7GB9jqGGlNqaspf0lquXShEqnwofzcw5vDSX\nDVcXFxe4d+9ewSEhpAvTrczqequnKT/0l/k3jfqNu/kNW76W37L8p/jpJU9ORrr+X5Iey4UQIE0w\noOw+JISwQsSMyECY1qBpwn2acfnwGfzg5g28/etf43/9H/8n3Pz2a3j2xRfx4quv4OmbN3F0fIJp\nmpJyJirO8y5DqZ/Z3/J3U45TntxLQYP8NuwUUdoFNGcAcXJyjB/8/u/hF7/8RarPCKId7HqFWidP\nKXgKcVcbR0bdM64WYHs8bfhny3fuYBBgVdpa0fWQZlnVn/R7zsaaGL/97W/x+3/443RZVqFJnYVD\n287a1vbURaUT7nP9TMtZ0msagEiefjIIQAnd0shv3hGmaSyrwyC1Y6oUnA1ADyRkgildZB47507L\nLZF1IPokfbakyDzZa9qc+7zGQtR83T9pfmqZXYrVm06EBJycnCwCckszKZRcAZQYiB4M67I8Piwt\nCOr84nQsTVp4ANID1El+lpPVPbYsImpO90nINIbRF07dXn/tmzx58xwF7VRI0m0B+gmgTh9RBtYw\nk95mQkPKHYGlkcHnMrFR3x8dHSGEgGmaMOeTBQIsJ91GSrrK1jlyNEa0ef2g9WGiM+PJfFeOdoCb\nMGuBmvuCUp39LtNafp5IISObA3sjvADkZGnLz5B3oJbd/aHlgf1tdX/Dw+z8hJB277LUTQAoNrzU\neWv72jp0XWIP0omYypN333kH6/UaPCc7ZXWGAGnpA+F/0klUFiFq30yIcR4uXIfcPz026sewlt4m\ndGahDQmHqXZ3PCXqeOGlEa6YNEaYJqzXa5ycnOCVV17BzZtP47lnn8Vf/fT/wq2v7iQHmRlTloXI\ndaOMyDOLPsjOCeeG6PGs6Sl9lxexiFrdTLXxjY54kp6k/7/SrjE0wuE2jbDHKN/IxiyVOXK0Na7x\ndAWAToPpshN+3OHHDRIzp/Gq82lbCZRNHqM27Co/4ZAJ05QvQBWaAXz1+Rc4ffgQly5dwrQigESf\n+5OWGl/Z9mnMM7Lro2R1nPBf6zQ/smRrHVraeh/CYuKufU27sz0pvpdsIKg127w9dkhfav+ZTd7O\nzkJdxF0mlganVrhOQxGFwgnGQPYKbrBlNC5ZaZP9dpT28bPk2cjfcU8PqfZIqBa9cORhtJHsebLq\n6Yz0nW97rSyNQg71mGb3JrCaRznraPHw0CcctLFrpwlDBeE79ZtHvonP1OhFxz/3+G7p96IK6L93\n3YGj6ZS76mS+NWGw3XYLyCHp9XdUoxg0vMiwXOYCQ5jAAI7zfYus9Lf1y/LDru6WL03rkB2WZnMM\nESHuGKd6yrriUCptIyj5z3YIeXel6FLNC6h2eSnxxtNBg+d7pl020Bvn++b162n73Pqe4qMQUQkd\nrH0YCgSKftkEYJ+Q3noMjHSlTnV8V/9dz1E31obTiZDtZoPbt2/h4uK8tC1ME+ZNCvMc57bOqMoZ\n6Uf7ewkPefqsKy+LZLoPcffmMI8WO/5GIeH3SY/VQkig6lQmJ5KRdH5SDCsQZqCsmF/hCVtOoYxe\n/vZ3cUoT7n11G3du38Yvfv5zrA8P8fKrL+G111/H8y++gOPjYxwdHoM4AFNIO5UphVEQBZIWLuQG\nywymiDCDESjvOM/KLQlUAFFIYS6y4hZFtZoIcY5lh7g1WKLkGHWwbpjLJP9MhN/7gx/iP/31X+Hm\nzZsgImx5LhdfS7KCqS/38ZKNJyjfdpOZSnCJKF3Qp5XKwFDuM4jsbxsTHGrgzPl46UoBNVLGLvGc\nIIZHT5jJckVxZPIC2xxnTCB8/P6HeHD3Lo5PTsATI8x5N1AQu0dYhYBtvhidGbK3ANVYSXsK6Z2S\nBajhM5Djy0+rwocJAVu0x9/13SEAwLFXsvn+8kKI3HOSTiSl+0pCBujbvIu7tZWJNtnTVU4EcToq\nOHM1vKtQL51M7ez7POjdTIR8aaOS/di6RbXLK6AnohqzvhQnPEjfT468mXNXnUx68ejt+80cU9lZ\nxigEHF25jIs5xWjezlsEBTrEEBUDkJeeGNQIh+wqQ6R83wkBPEN2aAu9q9WqA++jcFv6GVG6s2Ke\nZ8hSHjtg1DU2SqPokE0C4rw6Pb6WMWt0XSmbatuL3E8ToHaIefQBKAvEjavtyJ9n6Ev8YrNLverx\nXkdrAFzgaNZLcwaI5bJjjnkyJDRlaSdD/7ZxlHWeBoQzIXAobZ1WE46Oj3FwdASEdNqGuCyvgQFs\nWZ3KcvqAKC2UpsMBnEFeFt3ImPIi74yqO0nlLbJp5BZcTxGWsR0CiI3jFyvokzTik/ybQob09qzo\nrmDvqcqLwByNRqj5CrDipPcKTdTWDfg760K+i4SRT6mwlmtu/g4hAHOsF5KjldPST2gXN0I+jTAh\nYLPdADPj848+BhCAaSqL0mnBP/ezusS1lF3Ir3aJKJ9AM3ZfdqMFEq5kbhLyTiVgno2jrtoQ64Nk\ncxQdYeonogr9gr+IgBiLvS/vONMAwhRWKexGUKGvMs9kbH37u9/FS6++gueffx6HhwcI6xUQZ5zd\nu4d7d+6kXathSqf5Yr2sVRn/LBoJ/2kPlvRJYzUGWhuPPKhkdOoNFjrtXnB+kp6kb5qsf/Co3y/h\n+V0TVVbH2/K9srVdtHZg6XugHV0dxsvvvXKX6Pf0HKhucIO22fq3oWnfiR7dnhgjptUKt7/+Ghfn\n5+lvZHsY56JjxTepkMVM8pj6vDZZrDDqA4uPyt/pD1iDm8whFzyCTH+gunGs8js2NCAjr1pfv8uU\n8tatatvS0xJiqmlr26/6nW2X3hBn+Sj+se5bkraa5Mqsypf6Ut1Vh+pX7ZOatmUcIK4wkP398nfe\nGGL8v24iC728anzm0SC48iDvsPfKavBQTta36ftB913PSyujXt4lXeaNdQ/XjNpidc4qhISdzTjy\nTsYs6mYlX8wMLjKWhdy02xvjIpfwyldle/ksL71vCm2D+kd/N74P0sJH3XlSsfM+dXb05T4pvALy\n4sqs7EQoi8Wr1QphCnU+JusjzTf5beWskRMbOql0npE9Ur6GaVvxHSzfsl5l+9xJnf8qPFmyP0yQ\n+1GUdnLLb9oyqN/SYr4odXjy740zW+dILj060ubeKmvJ3+3ngFIeZL/WvPB8llIGD1m1L+YylWGe\n03yR2HeRVQKw3Vzg/OwUq9UK280MZmCeN3lDWz7Z7+gmTdNIb3j0erpQ59VjUHSc3iQm48KW3WEq\nQ+Po+Qg3LqXHaiFED4DgKOfuci7KE93MOL58Cf/qT36CN3/7W5yfnQEEnJ2d4Z2338bbb76JyIzj\nS5fwgx/8Hl577XXcfPZZ0HqFuI1YTWsQM9brdapnrmuyaVdhgESOiKpf7Mo8wOVSpkCEzewoNIwd\nAO+7p556Gs8++ywuLi4wrdfYbiJA7ckIb6VMK8NmZ4bht7yf53nnICjlaNCmBpKOB7pP2scxkH4W\nUGDBRSUUVSmppBdXZAGAOeZdo2my7ItPP8f1GzewDmIMp0YRtpeE9SF6LCj22uQ5XiLTFRQ68sLc\nrER7QM/uvGDmJnyMpmUEasI0ZUCi5Sk5FhOFdHkjrL5fdkqtsSv1BzKhkCpIr4+rcYlG3kZWZx+H\nf5cClbZv522pJcaIg4ODouSnaQLHuQFCcimbBk+lKvWdxJdPj+OizIzCxti2WkCmQe9qlSYMR8aM\nKMXA14sfo0kCC0T191YfTGhDV1VHsU4SSBkxx7309KPnlGstNnI+LS/l71k5I9JXlh9SrzhsaXG8\ndcAZXC9RJqo7iri2oQBjJbIeSBTdW04uqlTe5XuLYow4OjrC0dERQIR5nrEKZne+4bsn880CEKed\n6TLhgDLGZKdlzT86bejt/io8dENT1fG95MzZNHJsrTwiUe/nRXvioLvXB73Tu0SL/S77LI1+jzHW\nCxupTgZYB9vKPnM9r82IuH//Ph48eAAQwLFdAPLo9cd97Xu9S7ofLzXQYAjUaPsQ0iK9PuVQZaet\nX8ZGp6d0XVydVytvmq5pmrDZbLBardJiIIB79+7hypUrePGFF/Dat76FF19+GZcvXwaAtIAh9HNa\n3Hv33few2Ww6TFn4ZXTZSOctPdOYo/zL4snW9pSwlNxjuCfpSXrUNHLWNU5YsrNa5vdxNr2xocew\nRoKjMC2jciyNWmdbfVWet5nlZVPmozjRQ/2v+GTvUCvly7+kJmSs36LyxawDY+S6Q5ryxqbtjLu3\n7+DZF17IPkpoFnZ0cz0bsIT/S/0LOy6XJqHKxAdRKzuMitXy54HSBcYQn4n68iXEJCjfDcZ+vUt+\nrW7rqL+TDS5WZ5isvBUbQagTmszpzg8We2MxDzu/lLwUWULxF4p8qVPeqb19XwsPmLleg6JwSIOb\nucqN51NYHlleuM9VeQfrgywPsjzVJwnxwsAwlHCCKoQ6McndO/F1l8aVxViafk8v2vaP9WFuHVHd\nhS1lm/EykgtbtpYHbwe6hGIr/Hbo7GhHy1tGlQv9reWZLcfjx8hOiLyOQhq2IXUd7E5CtR/doDvp\nbOgOijdij3T3lj4hKpsY00kR4zeIXTT8GslbxwPKkTVUkhZb3iX70D+n7FDIE+VOtsnQvsufauw/\n+m8DIvoZiuWy99W9moZ9U8iywol5XRs8PFNkR3ReJdRZiGTwLLLatslumGzG7RAijH3IRf8y+9wl\n5HGWiW0+sX56doZ7d++mOeGQwiMz5/tBGWkrtYOHiu3IZTYYMbGobJj25in037W8tn/tJsYQ8jwI\n95snWrp6f6pjyw5dvZQeq4UQyjvjipCod55i1spsGyN+8Ps/xP/zn/8zrl67hjnO6UKjzYxptULc\nbjA/PMcv/u7n+Nnf/gzTaoWXXn4Z3/ne9/Dqyy/jytWr2F7kic7VAWRvJgjp9AD1E4W1M2JZ/Bh3\nZKvwvUkPXaYYuoODA/zkT/4EP/+7v8O9+/eLYVua/NDldQZO8VXzupzIgDKU6nlTJtqLQJvy9xBo\nea95MALhGuCNwv00SSmxTklCjAqXQXp0dIS33n4L3/nB74C5htUoHOAcKmNlF72aShesk9du8QNk\nR1R9F9TfFCUm4KipjiMoBVI1oKM8kmSSLvE57YISgwy0R+vQ5e/7uwNOqLToI55tGS2hAnyL8W/k\nBWUB1LbtUZxcm6fyjrOfk3Yw0xagAKxWacV9jnM3NgAZ4XkXusLCNiY0IZ2M2Jrjv55BGBn6pfYE\nJMC8z9FkDVhHIcysbHngXf9b6B+BRQVWNd267db51OUzK4Nrdtt44H4EWnc5fmWxOV/uTUxFbgNN\nIKSLt4EkH/pCnaSn9aRIXRjxwFrRg01+lMv8OCPhEALW6zWmaUrfhNBdrgnnL6+NO4G8Qt/+l5R1\nmVZaTn/tOgtuaBs5nlavNHW4dkeUsgVsesEVaSdUSN+VMVPKw069ru0XUTrm74Wo9MrrdHhsT99I\naK95k2Juf/LJJ2lhM6b3dgPDksy7zol2ROUOo+zcQ045UbvQFsuuXX8DxorUvUCm7nKpqrRX6Jbv\n5Hk+aZtOqxBW0yrxI0ZsNhtcvnwZL7z0El555RXcuHEDJycnODg4SPyfQjlFcjBNxcFMOm6Fd95+\nO+2mmh9t8aHwr3MYaxs0z2Vcl4VoEn0lTgrXnWq0B7Z5kp6kPZLY9X0mJb4JZlpKHTrUuBC9zdlV\nv26D3vyl83c0LJS5ZFN20eCY8QKUAAAgAElEQVSVXXAKKp5Z5AG3J8ZcW2cnCWLE5vwMZ6enODs7\nw2q9KoZE7vUL8BezLabSNHv2dJQWecRJj5XJR67ebgkgnL+RqRmN6/vK6heN11ywRosxYoyubGmf\nRU6+Fnuj7Xut1MWcYo/aslsMUdA/teXU9tWWRHXSJJ2ODapJPTYTGamy4odbYccJ9cZC8cd03j39\ndf1t45cobH5ydISj9UHGRemEMVPFSeLTg0xYYlsuqNn0ZFPBI4O5Aw8XjcbIkh7QmNS8af6Rn0t+\nqdUFzHWjyKjeUkXmm/WtRzQvJasLduVd4s+SbtjXZxWs3uP3sT+4lFzfkfToSLyct1scHh6mMFnM\nIIvPKxlJPtU7awe8Z7L8WLCetLS6GJYZKPjQ9WlyRssHpXt1HltF0cVan+SVRttXdT5k3O96cX80\n3+DxSYqtVeyTT+aSUOYXiozk//HGfCoAQKzahDj9TUUXqe9aKkq9MH2i5yO07h+1Y9RGz94UWaUU\nvUamGAHgfLPB6elp2gS5WgNRhXkmKveG+LY9Czgj2TSNE3Olu/TBvn28y3/fZyx7/uw3wauP2UJI\nXb1mNdgbQVKCWMIhBEKMwJWnruPKtWsAUQ5hM2OigO1mm3a1xxSkZyIAccaHH7yHDz94H+v1AY6P\nj/H6t76FV199Nd8tcozVep1CL0wBlJ3/CDV5r0AOIa/gK2NVB0919+1A9ZS8VkhEhN/9nR/g//yP\n/xFXr1/HZrNpBmThiyoTQBun1QJ1yujZxqzO9FoNbcu3F+R638m3+yqHReHmuhhiy26BZu4JVWV3\ntwKJ/uR8ESrhow8/xNnpQ6wPDwG14AVkB4OQFWYDy7u2sKOIdw32otRVfq1s9TioedodxfZdMm59\nmCHmFAt9U8JjKWeDWbWtogFrULUD4xlzmTTTfCJpnDS4ocs11elTRuK9I++V5vpM/2vBraeA9WRB\npT2DhJB3cjAwrSZM04STkxPcu3cvfacAgK4ryZY4K+poMtTCBCHt5m6GXU+f3W0ths4H5ah8zR3j\ngUdP/4wWGG2MX5tfvrH1j8ZywiL1FILmORQvLR9GjkWlZTfAkGdpcbuVpwm93HShgvKY0CVKeKD0\nYY1zK32lT4xomjx97zoMWXbsu0uXLjV89+4ZoLIgN3YiSO/YknoKs3IXUav1Ci3a+ePmj0Zfibzb\nJFrF2rqlZL/Vv/XY0JVYZ1EAe+qvADn9UfVwOsFi7addvChHkHU7FV1yuV2nzxUzrTxoWgnAhByS\nKeMZRsSHH3wAjm3ftkwV3WhtSwRi1SlyEsTOnYj+LnFdmx6oQTlFx4+wQKA2TjMRlVjOlKmUkSUA\nPOETyuG+UgznmdIp08uXL+Opp5/Gyy+/jGvXr+P6tWs4Oj6ufM93eMQYAXWyU0K1zTwjzjPOTh/g\nzu3b6gg52uToyqYPHf0nI3FW7QXaHeDF4VQOP4EwTer+qyfpSfoXJs9x1M8leY6lhyt2Ob3lt8F3\nOr+HBzzbvFTn0Ebm5N3jVeiSdjr59nHGPVoFS+vTDVqf67jwOp8tq5k8CjqsplSe6j89fYBbt281\nm9JokjOG1ffc1QY2Okq3ZxTyyPubIOGo0oSKLI4DqBsfsj5vTJTCh6P46U2dRX/KhizBKm2YZCt3\nLBMJ9Su12K5PWlRfxks6GkDxz9BuYJO8S75sekVlws5ra7ulqn3f4urBTvyM13T+/r61fmPWCH+N\nxqTFkxo/TlNIpzUPDnBxcZHJqotGJY+pR7Bn0yKS8GnqdATXPpOkT5zadnl8su3S4YTBXEJsejqn\n6WOWGauWv2Xs7+Cv5SXzOKSwTG7qJPNfWid0/ZJ1Ucg4XOtrovZEsken5z96tsTypvGlBzahllXH\nbzNfg4qHbR94vuJQV4lOTrGA60wRpWgIKZQb19Mloo659V9EBywtzlmeiM6S9hS/UtBvaWA6tQzR\nE578Ob6DYlZZ5GhoMGNV80Y2CLF6tm/y+nzp287uMEDpqpbijzURFND2X+J9LPMalJybRn50eOIG\nd7u0yaJUXpwvMoSmv2sb7I+2pMj9yaelsSKpGbOk/WrlLwiPKPkfF9sNHjx8gMPDQ+hF8dZ+j/W1\nbhPn981VMKpPrU5dwmAAxnNUxK3+WUijsbyEZ3elx2ohRCctxJ5hIKqTkXMOXxV4jf/hL/4t/uav\nfoo5RtAUMEcGQtp9HQDEuM1hQAiBAuY4Y3N+inlzjl/84hb+37/7Ga5fv46bzzyD5198Ec889xxu\n3LyB44NLoCmUY3QR+dibXKwZgrkEiTFluS4AitOEhFUiJYcV1qzILl+9gueffxEPH95PO00Rm91R\nrIA4AHfHB2Is4Y2KUlLfjY6texNP9rn8PRLOkYFd+rahg/pwVE07ChDLE1uxrc8FM5RCoAEzHty6\nhS+//BzHV64ghBrmJmHKaggnEOZOD2rj7/Ohp4MaOdCTI7Wsnle2Hfp4aJdikglLrvCq4Ucq3K03\ni1a526HSKLHsE/1a8VW4XuXRtkWDes0DmwLq5WKSJ2h74ZRtf5d2O0bbA6oxzuV0lz6W/tRTT+H+\n/fspBBwnI9X3N1V+gDANAFvahSG7MVTuBZ1gAabXBuHkrBa7RoBU6pP2jULs2W9tH47AMnE94VB2\nBpq0y1HYCdJRJ2I9+kaGW49JOx60bpV+TP/f81zXKTSUC9Tj2HgvgaWm/TGCTTzlK1eu1FA7clG7\nwzt72V0v523M4gpSW4CtAUzta5lMmBvgmjVZy6fohHmDLw9NPge82XBSi7wr36BRLcXpzjobZMKC\nJEPdgN6R/rB1CW9geDAa11b+J6A9TVEcr4jtxQU+/OD9wsvtdqvqAxoJZYZMommgTUT1MvHScWgZ\n5NCcJjPq4k+zEEfqXqnuhFyiilQdVFgbClYJeeF5niNW6zWOjo9x7do1vPLKK3jmmWdw+cqVsvCh\ndVkIobkfhaYJEkxszpOUac6MEIjxzptv5UvRkXCgopezvpIQLz0PHF2XZV4mJXRZNg660FHkKPr3\nIj1JT9I3SbtkyNNBwAA/Dsq2OMKzad5vUcEeZhg56rackU0o3zo06fqxA2t49Xlt9UIa6vdlcsHU\nYbEC1Hdk8HUtl/NpD+DLL77A+fl5nthM/ucsE2pis0x9DQ2sEbnQLNnEP+Xsdo4329nU+ifquXgA\nypTu1nOt7SRdjrGpTTsNnaMrNqwcWN+ltnuMmxiOnKDnGex3SBshqLRs0PoBjyqNCU3bRQ4PUy31\nm0vjAqbXtr3eI5mIlhOYIMJ0eIDD42Ns5i1iDiFMlEK+aZzMGb8Kb6AmxEsfEZoFEq81nu/h/T0a\nr7asQP19HjaN/BH5V7ez0w8OHboPNS3lWeat1aFw6HDpLflEA4x1ruVHoQXFHSj+cTv2e8xb9IkQ\nocYnQy/QxAxZ6+JSJrRtx6BPrI/rfxcRmdJGaKWP5E7OwihTpx5XhQeqvaM6d9krWwlRmlC38zot\nhk/ckYlxmYRvewc1H1rZsHou+UYLfrLJJz4eICes/SgSXTkdDwa4AcibUHvbSyIrJXf6lfRE6L+F\nGmsuiWmBXVw9yn7EbOezmAtrK8ZoS5qUDwYrSgNcM8YPDAqEiUKaxy59FbGdN7hz9w4e3H+A9Xqd\n7qDmqiukf/Q9qsk+1bkm8RmbfqsdXbjr4ZddKY3eGlK5zG8RlbuMd/nuoxO/e48lJz22CyGaWQ1Q\n18o2G62QNv2BCfid3/1d/If/8H/g0skJNjEiykRRSGFMinJglLiOjLrbejVNOH/4EO++9TbeevNN\nIAQcHh3h1Vdfw7deew3PPPssjk9OcHx8jBlpN0KgqdwRUBUmgSiUHfisBNBro/uM8qT8POMn//pf\n469/+tN0j6f6LinPnF+BEV1WCCFNECjDZWO5LYGJ0TdL31llZAV45HxZ4NIZ4gF4WZxVM/TJjo0U\nvxE4PFjj7bfexmvf/k7D17rjqdIeGPnCW9+h8fhkeTNq/wg4eUnX5fYB2l0kzXgiaiaoS9uc+KXi\nKLTgDhA5Trtu60WzJfarfENprBWj2xjA9I2863Vc6tfGCUctYwTC7DMrTxrAeXlKHGN5hqScb9y4\ngffffx8gFNmpfGr5TJQm//SpjimE0vpyYT1rB5T6MgzvR30uzyJQFoiZuUx6WpCu+WHHpq1/lG/E\nW53KMU1DZzPOnMltz6GxbS2OlAAP870dj0SUTsGp8jSwG/HAfuEBBNY0EEN2Hbb6oOdzJzuGH20M\n3HT89dr16004LQ8caGDPRlfZNrd9SY2NLftmdN6YCwYgYR0KvxxuWhmuuXvbp9vk2Q8LHvX7RZCU\nF4XqLn1pW3LCGnvGaHRkV9QO2yjd7MofWnmydjTatgpvmXF2dgYghZvo7rZw6BLQS6Qc+9zudDJF\n9aFJId+h1faPyEIoMipHsvWkjHbkBIQ374qdS89WqxVCCLhx4wZeeOklvPDiizg5PsbJyQkoJGdg\ntVqlCcB8N4lc8F7ubMtgu/C12NdYL3aPEb/8h39IO0C3mxKuoyx81q7r5Et0a2fbB3ZV57X9Ic+/\nKah/kp4knVr9suA7mXdLsuj5JLvk1dt9XvI79tybDFhq4+hbGYeuDhQa9mzHEub2aMo/UABswah9\nWSPb1vyryyaCLCIcHh7izt27uHf/Hp6+eQPMjO08p8VcRrMIC6Ql5h5OV/1km1l9j/S3Pqni8luH\nGWnes8D2BgnE2Pa9V25Pbp6U4TJNnp477RLf0Pcj2sRkeVPpqf1QN3yITWZV+C4fLb02uMmhy8PM\nHb0OTtRmT8opyEogMcs8hM2zW8aX9IH+e+YISheblDG2Wq0wrSaFZbj4ODp/wQbSzfVlaXOSw5BP\nmMrkLyB+oy5riWejdsmztMG06qqlfvHw6Oi7XXXb58Sc5NOjU9O2o0z9LhgfsORh1Q/eGEeLrTWf\n7f0lnoyK/Qm1i2v5WbHV0+xZ9wzYKfXqOQrvDk3rrzbt4kwHZxTO9V5gfW+nPumTKEPRQSMF0/k3\nxtbZdnj+SnROeVv7ILq1+lF2vs3QRm2flztpi3tYNzc1+k/5c5ob8o3MdjKiwvzSgXvgWu0uNe2t\n/phNzDDRD6q9Hdp2pVeq3PfYpj4iEBWGqGJSe6vtUlU4m447HU31uaVPZ7Q6jWNs7MZmu8Ht27fB\nyKcvAtX5NaD0ik3lGWWZgfzrzP8YWlJ7l/Wdls/mR7FFSu51O+XdDkygMcOjYDRJj9VCCKv/vGce\ni5jTSQ9wAjgxEL733e/j3ffeSWEMQhUSEBAyRIykBk9Gh2K4I6eLkkOeuLw4O8Nbb72Bf/7n3+D8\n/Bw3b97Eq699Cy+//DJefOHlFKpkmsCUJ6eSesBMEXJ9up7kAXzl2F/ek2ia1mv88Ic/xN/89V+D\niBL4SNowCbPZnQmgxr4zv23dEuyiGDrD+5Hg+YrKB0v7JG+yrCvLGA/Z9d4YaWsospNS89XwHrmT\ncTAFfPTBBzg9PcXVK9fSK0V6YxSJ8oVExoFxFLjX36l9ff8n0ECdh0IZLHi82QWCUt0DI9xP7zZK\n2MtPpVy1SMDtyrP0QbOAkXIWQJ7y9vRqWmD+kj7Vbv2jgNB9Us2TAUXR7WlB8saNGwW8M3Pj3DX0\nCgBFBYzMjBUFbGPsJ0IDdRObmibdFk9HFLkgAkzILkuTLrfRA7ECmgJ2YnRBtJVrLS8Cfkse5tJ/\n+6TRBEnTFgBEATPXBTjtpOYHDV3SNpmIte3y+KQdBuu894BR3xQgv9LdE94wtUC4oWPgZEhbrl27\nhjJJ4FlFrvnkQSBZhEt5CNw4+IVX6jQdqfK0zC6dyqhYU9EMlFBRmVmpbKdvpX7u9CvXUEdo5WTk\ntMvR/0KvKnPEP80DaZAnu9bp0DJWLrKl3u63+VEWXLWulC/TJD8BHDHPM959920Qpwmwjgan/FSm\n2fGa7VQFu4AdnVXGNTYRZ7Fd2Gkumc/jXZ+omqYJcU4Op+iU8/NzHB4d4aWXXsL3v//9csfH0dER\nZqVDGDnsxXabYuGHUPtjquHLKPNJy0LVOeIAzrh/9y5OT08BrqFTRxsyrJyJ3pC+ytASslAVm3Aw\n/YkZIF9EKHyHkQ+XiifpSdqd7MlDTy+OdJE7htU7AGqc9baGMr4WefYmpJJP5TjnC3jfbefIDzEY\nqXufMrt1DW0w/PZqukub0VuSET3daVNtA6ndNCL6W8Ijbs5Pcf/WLfBLLwOHE2ZErLM/S0FvYsrT\nHDxo34AHote07R61Xy9uezjAJl2ehKQKofoEmtZab9Xg2YNobBPUVzo0mMQ+9yefSP1v5bHGQZzL\nJDnGTATWMS1NmWSeBXMXnMONFvOgYmSOLV5OfKu/dR+WezlyGQ0UqFCrQ4iPMuYKxUY31LmCtFO5\nwWOBsF6vUt9CTkwSgLrTO4i8M4PzXZhiHe2JTGpZD/ElhQ5Nn/ajuhMzS21WesQLa2fH0VJZ9l5V\nbwxqWbc+nm0uoQ8pXO6jNf6SR2uhS/QLkZJrXy97ZZX30i71jfWL2meC51VZlDaiyntvviHN7Ygf\nWV95vpj0PRF1F6gXujjLQR4VIQQcn5xgWq1Sm/K3U8bEnImbswBqD30fvafrtptMPf/W+nme7Ajf\ntYy1m5rzwmG5Q7P13YoflEQHdQGIu36vusNuiFI+mvQLpScoMrqkX0Z6dPc46QaGorepQcqVO0Tz\n9yL7YrV1qNu2F2Xjbi1f86iprzVXXQoA7HWK+tOq0tsxxACQT62HQJi3M87OznDnzp1iw5MtJYiS\n9BZBhrpLyUbTHqcdWtZ32Q5GoqkuzYuuoCK/oss87BQdmbd0PGp6rBZCIgjRbJtg9Z9n0Jm5xLxc\nTRO2AP7Nf/dv8O7//E7a+cdzE6867epry5ohiipNFGzF6VWOw5SB1vHBAc7u38c//uKX+Kdf/Rrn\n5+d4+ukbeO211/HKK6/gpZdewuHxcSp/vU53eoTghp4ZDl7Llxhx6dIlPPfss/j8s89SuKBUQseY\ndpJHDa783p3YlLxGKXj8Xvp7NEB2DhynXNcAO0qoBZRCNDUy0zgXAIgimEMBzzHO+Prrr3Hv3l0c\nHR5jvTrABAUaFtrEuVJRQ0vt8tpoB3mz67QDgL2yXCrf1tWUYwoX+7Vk3BO97cKHpWsiKotEWuF2\nBs0sBnAGH54BrU5ClJtPFtu85Nw+iiJNyjqFOVqv1zg5OUk7oPMCQQFp0EBGt6lOCm6323SElf2d\nYbrOJSd6BM6FhqUJD/2Nl8+jYwhILJ8UD2zy6Bg5ByMQWLEWF/PalZWBfnXSgGBoChooM5fdgRaE\nWtoEFC/rMmfAqna7IMp8E4ia+0WinqzNQO7w8DAtUnHanb/TqWWU04ClnYEKP0vKcQ46va9+x8gA\nxVJWv+O45mjAU6CygChOWPNNzA0szKg8ATKYfERAxKrNxfY2eK91sEqbUDcF1PGkSFOgfCjv5Mi9\nHTeJiPw7O/Jl8gUFqKYLwi/wm9/8JoXlg55QU/Kp63L4YMGutJ9Nvko35c0dgg1YHXrOVKs/ZadZ\nAMA5xOTFxQUIAScnJ/jWt76FZ27cwNM3buDS5ctlcWSapiQPIWCaAuaM6bbbLbZxRli193bVdsmi\nreCYfkGBKDkSzIz33n4HB+s1tps5hRULoSyGdPpIjdWY7U4B8JmBLU9Tp8nkBFDDAYp+YaTNDvqU\n4JP0JP2XTCMsPbLB2u6N0giTLGERfV/iLlp3jQWNCeydfxzb2NxDHAPs1U5N14gO/bc3UTW8rwQD\nXZw+qnpYPWZOC+IE4OLiAqenp7i4uMD68LBMuLcGu22DW89gosOaKNtWTbvLI1WA9p3kW4nIQGWF\nQWNGy/vehwDZsBn1hLUmPN0T1WLHnlytt50k9purf2JZqftxCdvJu2DwDQMQj0bzri/DYCXxn1y/\nX9rknAj6L5wIfWSDaRUwTVM6wRmji4iXsFtQeNzyV+MlYBnnhBBU6ND6vTexJt5oCfUzz03do/Hs\n6QtPt9q0j+8esx6hHd8v6c467uop6JIn98y+GKTwyYx9fe+st5lPcE+aDFULFLJxjLMfxjCLudI2\ntaEk/5/F1iP/dZTkXYwRBwcHWK1WhX4iagZ68SdF1Yaa1ya5L67wl4tL1QxXKXOJZqtj27tTdsuE\n0EjOPh85CaC/H80LWLo8ervxFKtf6tsJ5XRYuqidn/TqU5Wply6JyLc6l4+KLzfkn0QOavW9bWvp\nY6r5dKNam98Q1JAbGclraWxvXoQhKSfNUTKAebNJ1xzEmEJj5blqZk6b+wet8uiq9I1PMu3jZ3vf\n6s12RO0Gj7KxZlRWyjTUbd/Eb3qsFkKaHR+OktYgU37HGGtMR6RTAteeegpXr17F/YcP0z0dcqlU\nVrg11HVr6IjSaYuYB0GaMAqI2xnzPGMtO1Jzr87zjMPDQ9y/fw//+Iu/x29+9UtQCLh85Qqee/55\nvPTqa3juuedw+coVrA8OpYWlTjtpqWPuNQAgrHB+fo6f/PEf4y//8i8xHayKwo6EJs615Jkyb6Sc\nSYWwsJf4JoDBnWCW54oWK5xaWY5Ax76Cu+/Acx0fQpkIIWMowzQBUQFOgtqNwJjniA0i3nvvPTxz\n87lcZuorASNAexxUwLv8GwLBCzHSfl8VW+FNSKCg8Mm0X0K61bxt+y2wW0oNfwmDuInt97KrelSW\nOAiajgIaHDmpfPDKG4PLQFT7UD330kix70p6AjDtKqvLLnI3A1G+XG+7Re1/O+Egch/6Sa/cRr0w\nqu8h8UC1/Nb9bUGKgGdJ9X4LDPNIPtFFEh5Q71a09HghE4qjZ04K6PL1d9pZ0aCt7YMxyC/tCASO\n6Uix0Ktj+07T1IWMqP1QeSJOu+hg2z8hhHIRmx57LVFiwKV4fRFolYdR0vwW/Sx1yyK90HZ8fIzV\netVMsjb0CPBuwIQ9BcMFbADJPsQ5NpO9VSfVdonetPq36RNjE9qxUcFacQy4TjhIPoaRWdN/nt7r\naEF1Wrx+E51j6UuqJqKegEBTbuGN4qk8S/dLxba9ThvEbmhnlMSegxtezfOMOEd88sknODk6KrLJ\nrLALWjnQvyNHAGnxP0DADcqCj+yUs20UPEZBwHgF7OIo6IW47XaLi/NzXLl0Gc8++yyeunkDzz//\nPK5fewrHx8dYZ7me8gJIIyNEiMjhXojKREDktFjJMTZh/qTvJM0cs3un+hcoTs3ZxTn+/h/+AcgY\niHJ96/Ua8zxDS1IIodgae6GvnEJtTuij8oFZbWZQ+Kc4YCaN7mZ6kp6kvZPCu9Ze75rE8J53Zaj3\n++Jzm9fm05hk6ZJu8YnEJlvMu9RGW6+HR5eee0nqH4W2td9JmR6Wa+rTvpgo1/xAvj0/P8etW7ew\n2WwSD/L9l2VRO5XYzYZYu6UoNrT3WE/nq3QTOF/KLeEFmRmB1ekYx856E0U+v8d90PZ19ufRniKI\nMaaY7aWYhCeinvzLrS90aJ5wnSiWcmdEULYwEcouoMCtpmRpVpVVMrXXPqv2P+RTKJpPtZyGQ1xL\n6PzCbOOT/x5RRawdJ56PbsfCqJ8qRosIGS/JPMRqNeHo6ChvIEjfRG53nlv8KFhDb3jRtlOLj6VZ\n01cwT4zde08HAXWTkOQLZMfF+A5Vj4/2nZff8rTFXRmPc3vqYpTXS+57qvMLejLc+nq7fLBd7bN9\nMKI05pBqRaeaMLu+nyvqsden2r+J5h1QF220/6nlsPiQwndq0aTU6/FWns+lfE0jqWfptBpn9cSm\nj1s57e1a8fGV7Wx8Z6LGT81/KN1Q/VQGd/fpemlutKPYJuPbkArpTAyIfeC+fOvDFXyc+380tmx+\n5UEOx4O1F5l1APr5Tklyb41uX0d71DppzDudvLJq1JDqeyafVPoUmKYV5nkLMGNzcYE7t26XPpV2\nNdd6OmN2iR6x9dpXt+3Vf1ufqPm2wSItPd1z3Y1CC6T9yxt09sGhOj1WCyEBERLwgFWnVMc1AFEm\n3GIywpI3K8HD9RrzZoM/+tGP8dOf/hSHRwdAlKOF6dtk+FK8SeTBK5caUwgIXCd5t3NECBNmiG8c\nsCnzSASK4mwHXMwMijO+vnULX371FX79j/+Iw8NDPP3003jhhRdw8/nn8PwLL+SJrDXW6zWwTYst\nBXDxnFfG6yTcPDNoWuOV117D1StXcTpfJOc9K1QQ5QPSFQSn5qk433mCATAAg6t4luAuxRCEIrwl\n9ENIz6IATqJuAjd9v9u59y6Fkn87ZwfZCJbJraxoUQ0jF9BXywlAWQRLf4cyWKW+DROOVod4+ze/\nxU9+8pPcTioXvEYGQlDHUQGsOO9GEqPP/d0DY2WUDXOeNJzjnGSMfYfROgapWG4NoAE12ggFJU+S\ntwmBQ3LhVg3vU8HI3IPMorTz5fRSpmll4AqIgp45ojQJ1U5Sc+nDVK/+nFIfakPu8LN3khhbjgik\nd2r0yQJ+jjNWqxW22wQsRPYPjo+wWq2w2WwgC0QaVNkJunYSjADZEcftRdWMpIsiz6UPvIkCTzaI\nCCDGHKvhkBMFnOVeFoolNb+l3Kz7ItcLg4VfAmblueV1o0scQ6qBaaQE8pnTpdClX0QOzSKMbrNe\n6En8rL8pI4gUrkYUvb6PoF3E0XVavoZclpQp9xEISPfyJXybFktSGKqYQU0am3aBG6iToIXfir+W\nf/M24vDwEKuDAxwcHiKCMYUpO26hkznKQHTkGMqaTMOPrI/Sbl4L+hP4lZiwAgC1buDMq1Ivc7eh\nQXSTBv+1nuqksa0/93f9s52EId1npbJk80M2EswMRDT1FTDGhIApySVmIEwF6FKxg62MR54R8gR4\njMmxFNzAszgDtV9YH1fPvIHoTqF9WxfsI89J9ojw2eef4PjwEFPGQam5VYcE1CPFXPLrSZi0CDFL\nH4g5pyrXK7mvqJQzV3DLqY51WANIix7MEdPBAQ4PD3H9+nXcvHkTzzz7LJ56+mkcHR2BKN3/wYGK\nDiEiRGrlRnUYVkoeASt164sAACAASURBVNTFD0oTUFTaZBwxiBVow/wQMRAZ927dxub8HIGm4uAS\n0sKG3eWIOSpMkexdF4+69GuqnVH1U9F5nO1Hph9EmLUNUg7Pk/QkfdNk8cc+30tamtQBsq9UP26+\na/C5qdfDAqX8WlGDx7St0thVJ/ceEqcNFjtZ34KMnvHaZekiVa4uY9R+Lw37h2tkAwheorqRRfr4\n9te3cH5+LrMFOT65rSvvnaaWDlZlQSa0mra0E1y2jelf5es5k0UdRjNtb/W+xhYjtlSM24TXlDJk\nYlE9DxJCUdk/zsZccGBzT4iWCULFvApTaR9M+gJAg1+Fy7rrG/47cqf9mdL9Dh88PEyM4elyuwHI\nS7Y8TWP1//x/vW/KbyIcHR0pGQoF80jejg9ZViNXuWvvVFQb70CqbB9L7DP/IJgEpl+0v2Db7o11\nez+aXrC1IfAaPjn06BSo1Y+6v0Y+kle21l8g6vvL5NFlW71pdbperBnRMCpLvtN6H9A6f6CbueXV\nKLypl6zftlqt8sYzsRcEGe0KJiePRTD7Hu21bRPZRV6A8myXu1gWKas45Y/mMSYYX/oVMjbQ09KX\ny81pEReP5/qafHB0sKG/3kHSzn+k91VpNeOXqSjCtLFRKhAe5UVfd3FF25K2PdKMothRyxM/1OpQ\nkTH7rPWfq1+EUtrI7lffp3la/JCmx0CUN9Ei+dPzvAVzXgS5fRvnZ6c4WK8a+6bLtDzwZMCzSwXz\neWE7Dd3/H3vv+mNZbtwJ/shzbt7MrFdXd1c/1A+1pLEly5ZkSfYOvLCNMQaYP2AMDHY/7X82wP4J\ng7Fn98NgBwsYttdje2WtrJfVstqSursemfXIrMy8957D2A9kkMFg8Nwsab40UASq8t5zechgkIz4\nRZAMNt+ZDxWb7bmiT4TIPmCMol+15MWLpM/UQggglAqf9lDx/hrBrwQ0LxB89bd/G3/xF3+BwQO7\neY4ADvK4Tgx5w99nEYJEDyYG1NbzOe2EKIYyRH7CbrfDgwcP8ODBA+z+bsK4WuGVV+/inc+9g3tv\n3MNbb34ON2/exGHa6UnOw4UQTzGk9vjVCvN2i9XxET74V1/C9/7xe/leAUfIwjsQ8pQapZSTAkAo\nOdlWIhEDUbazKqPe2eiSMJZ9o5WeTJay1fy0Unm+DJjl29pIkYZiAzhS3z4+PcXV1RVuHB/ktvvU\nbmlUZAOLv8sFKKod45Ke9rumtW6jJYj6AOr6woHLqO9yAHoKVIMgD5d26drGblHybVm5vs5xFGlQ\nyDZx/9rjKjpfa7AVfxtcOdHDQOI6qQKIqT/5CG28q2CqDKKKTgVW85zwTsTDbeeMrLdnsOt+YXBR\ncFW5wDi2v61Dvj8AjSNQ13Gd1DN6mR6f5AufitUAn9+XMlg6RCw6apC5nE+OX0vuVAa/MBy0TJH9\nadEhQT2HB9BGdPWOKj8oPcQ6cFwNWK1WeOXuXfjBV/wiqkGYJSMs/vTkrYPLR8B7efR8i2ULYEhk\nH8smahZ7LPqkjOK7XTzauVYZhPFhgxesNvMdFHk3I/EdEG3/5s/OHgPllGgr5xaxC2p8QURpkZAE\nICTM84yPfvZRviOFMU43MS9R61kuT+uoQmfclEH5VNRYyZN4qfmI9XqN119/HZ/73Ofw6quv4uat\nWzg4OIjHtQ8Ocrk5fJer9V9PpnCeJedBGTu2o06yJbYtYJ4m/Oyf/xnr9Rq7bVzEjs4wVOEYSj+7\njD9jn7fxmFl+W3LVSvwe7zh1zuVFwheH9S/Ty/TiaUmHLuGM3vty3rS6oHzmRX5dNm+2kLLuRWjI\n7xjyTP4DUOEtTb/5ndskcL51d8D/qKRLzJgNLm9kORgP8OTJYzx9copXX7+LYThMmD1U3hzvAN7E\npu2iwlukdul+r+tf4pnFv57dF2G0PX7qfOykyuZqostVtCXtlsMPVrrXxcgOnM+lZ9lK0thLYTlp\n/bbtVTyt2iSdNQ0bqjyA6PNch40RoBZXZPLgHfcu0+Y6qyOLthpa+5yf9XGlwogZNzvcuHEjYQDX\n2JZWWUyFXEjzzsUw5VU+l30YvSQdymzb65P5lk2keaE3P/TkkzVHenks2aZ3WFf1dOwqmc+iXZfn\n4oc8j5roFrIeIc/l3312lvVc4pylfDLFkE5pvlM9bgllwxGX08OLTbnEG+VKPcMwlAgp6Vb3HiLT\n9oU5n5K+kCc34JyQNYjfxQaYfaJiH985DKVHilwg8uWQw04vYKDOZ9WReFHL3X6q3k99V+EAn3yw\nS23JJxNCTQfL5W5c8Vih5VNJ1GUZyuPqRZKpCzXtURFliVzbjb6J3MNUx6sOioTM9ST7JZ66i8+e\nPH4Ch+jX2fFCrSMR5aiUwXKXp3cpN+kNV71Q0SX7yJJdzWcScg7LOInvrK74J/sqj7v9GPS66TO1\nEMI755wUHJACh1cKGzbG99MkGtdrAMAXv/RF/OJfPsKcDFDGT6wMcimdMqXTg+koRLn8soOPJzBc\nFDhIO1ACpcs+50SXHxB2Ozw7fYynJ6cgIlztZty6dQvvv/8+PvjgA7z11ltYHx3h4OAgCulxhe32\nEsMwIkwzfucbX8Pf/93f4fjmTQDxUvddEBd5Noq+5pEcRnI3S4LTe1MEB2KSiDJ6YMFSzNcB1KaR\nloUZC8kaWOYd66IsqbCCogUo9whstls8ePAAH3z+JoChADsnhWhRyARwiMvKYLLaZE/gmkfSmLPe\n7QkjCGUl+VfVJJRScThpR5Lt1LGMZM42pDEQ5CV/ihYS85mYvjrbtZMz5j3TbucviU8L2LKltE+G\njuPfwxzNrvX6EM+fP6/q0OPZkhdsPJV5YgMC2U/WSRCrf9jck4pUh8ypeKLmld7Fx+DSclibslC9\nK39n523uc90mA2Bw/V16RSgxmcc2IpHra8GR3bY5hGI8X1PxynEUT3h5EUbHJ6BQG5UaLBDVF4ID\nyCd7eCTfvHkT42rVGk1xO1Bpo0uCCWUslfbbOy68cgpX45P6u6FaHrZIsz4B1Zcxmdaks6WREwEs\nt6/E3OaxJR0Urfwz5hCzKL4A58px/bZ/aqrbex7aRZclWd5LNXiOebebDT762b9E2tLpUysx1y2D\nenDOQDg1XUTxBMYwDJhDQEjj+PV79/DO2+/gzTffxCuvvIL14SHGtFGDT5SNSWb6wedQVjPVGwaa\nNtZPGx3bS9r41Tqe6+Bn026Hn/zkJzn0HyDsKSI4ouysteqC9yAVb9xqi/5dym9Jn8ZN9VLpy/Qy\nvXiy5FvPGN3n0Mj5xGeHZd2/QJh5UTogdIKv9UVUIUJPUYuHMg2ibN78we3ed0Gt5E+FNxIRGndr\nu1SWqzHKr5OknGbnDwXAjR7b7Qbn5+cI04wwBLjBgU9p5PYovJ3bJeRlae9+epd0XPndwKUk8U6d\nv36u9SZjnsIFCmjesRIlnMLa2ie9RlQW0aWsb8ZHxkcaEyOVkzZd8TtVORJjxnfKGEJmtU255qlo\nj8FzWZgOnSxH6ZLTcUl3ybobSjVeR72pbxzjZgmeL8Uir09baHsUEPZCCj2zdOpF0m3Rad2p2GAE\nVT9jXatMWZdshyxP2oyWbSmT5ffQn63+s3Bl1SY1XrJ1TAA4EopuF+NDgaH1/YqctwrrHittaKy+\nE/IOes3/qo2IjnJ+xnKFTQrXWaKQcq3USZWtWfd9KeUobUCO/Y6Gd1VilYO2X3s2PxLWk3IgzytX\nW0oWb/h5812136zbIh52G3t1T0SZ69fB5bWupLrHHME7OxRsM1dc256iZ1rbLo4Re8Mjk80+YIe4\nQXapHVbq+xcS3ZyP6XOl9dnvKN4qm6scHDnwxgWu3gEYvEMI8b7E3WaLi/NzjG7ENM2ltIyF5Nhk\nG0PRSACFaA9yNIP8Mv+OuHlN0ijHeaszFZ+YC4Y9ln8Xv/FCXpmdtp9G9mu/L+z0mVoIsRSN/C6d\nNRnQUexUICqI7XYbPw8DvvXtb+O73/l/cefOHfhxxC7MYmRIwUJwQ5xkcfL2Tw9wsgaGPiLJpzbm\nEC9sHz0A51JYidiW1cGAq80FfvLhj/FPP/kRri63WK/XePPNN/GlL30Jn3vnHdx74w3Mww40E958\n6y289+7n8fjZk3gBc5jy7laXJGvEidqMERORokCiUJYRKSDHxtJC+zogP+fbMzYtxS77VebR+SxF\nhiQc5bs10G4vWLTqd87BEfDPP/kQn3//C/E5bBDqXLoQ3AAUkna5E86e2LEWLeA1/fttq75wlrTJ\ntuq214aHprPwTAINy4iyhoANxvvGUy/l3leCcN+4lBfwgWtV4LdnMPMdDdtpwjAMuHPnDs7OzjJA\n7wHdfMpCAtOMeOqm1+O+7ntLFurkvUOYC6jnUwRY4uUCeNJz7joKp9cHGvR4lAVXfQG2TD2Ayby4\nrsPhOm1pTvWghVs8flieWOCU6SzYwvEg6bZBUxPQ8pJl4zRNUZcxwL9Gm61nDUCtfrcNYlkkhVYm\n9sq9Dm1Wfbr/Wz3Q7lDr9W9vjMk4wqXw0JTDspFNRJMmL+pJVud1cZpFt0u6d54mnJ2d4fz8HAfD\nCFbS1jvexdBLgFj0VWM0G30unnpwzmG73WKaJnhyuHPnDt557z28/fbbeOWVV3B4eJhPq/JCwmoV\nw2PN8wy4NMcHX3hKZUFPh2RjftrjgPlb59XvageHlfi9eZ5x/5NPcH52hhvrQwSK4RLZSLHuPAoo\nm3IIAEK5u60YebU4t5R0DzswPgtEOYzhi4R3eJleJpksZ5X8uy/1HT+UsVJWaS9gfGZH2d66inNO\n2h7xQ12elmeWHCSRH0B2RF2X9n36cwmLvWgy7cjyY4UdiGKEgcenpwjTDH/EDjztmHOWOOpRAEvn\nL9F6vbyx7CIz6w0wHh4zzc17Zn8a41vbihrflHzG++k9szV0zQ0f7YsVPUQBIYhTkcoGJ5c2ciic\n8euOKbH9yfz9uuVfmw6GPM4BFPc2e++wXq/zHV/s8OV8lg0qf5OJdavV5z1aK3y9OE607dXKlJ6N\nSeKftC011q8wglEO0F/YYL8ORFmZHymPjO1v8aJOlP/w3ODEduOifyTV7xNNst0WztH09HHfEsXl\nFIurp0vXDuzxIMtKFJ4fHh5ivV6DV91KN+7Hl42fxtd3glq2q6AmyhoxN1q6l95X7drT9qV2LJUt\nk3U3hOSBF+3X9OXw6K6d5xydZx+N5R2qNn7G31q7Qfu8LDsEBu96vFjibfc3Lsv4vfZjtX6YqMc9\nwrwDhYDN5gqbzQa73Q6rcRWjEXFOno+8XJjk7gAn7iApPig+HdXgrVQv626mR/Jw7xijWu719GzF\n+/TPi5dexJbflz5TCyGVcCERPz79k4oLKAOJ4+ATEcaDA9A8IxDh1ddfx7vvvo+nT58gJLCdxgdk\nZw9DvBxTlq0v8h3HMX8GioAuxMcyy6MouQnF0TZRAZ3Oe8yx0XCuXFR8uF5jDgH379/HgwcPACKM\nqwEH6zXee+/z+OLnP8C7776Lf/l/fo71YYwX7wHspgnw8YaVeZrg/JCUh8u8kResMmBmQ5wNdKls\n2HEiJ4TP080YlITcPgj+8ASSSkJPLAscaUXDcfr1zLIEnhTOOh/HIWXBzU6bYfD47ne/i//5D/8o\nOifcgABg5esLqbRQ5frS1bqJ73GhqYgqvdjT0t8aDhJq1Xn3A4DC63kOFR84lIsOfxPz55rSWGhB\nZ3Zupzj6Qe3EK62pu2pJ0bT1cAklScBARJjTOHRUBkXc9UV5rOVWG0pQgzT5uTJMOcxUWgj5xc9/\nHp2OHWPDOVfCX6EG/0Esrukx79LRVj1XLJorXqZ+80kBVeNxAdDnsZRiJjOvsmOP2yA+5/YZx7n1\nfO2100ovAvasdyzwJem47kWrnLfpm46xofUEgKhPgHLnBu/8GOowj87FnfMQzygBGotWOMKtW7cK\nXQarZHsDBXg3qHLavFUfooSklCmkWOQciovzlLysNKBFlsFrKSH6bcjtzjTEECDOifmuHNTWfAmh\n7W9dc8zbXrDJ7+lQAhl7iEVHn5aBOG+5SymVmS7uzhhElJv7Td49RMDoPT7+xS+wXq9BU6h0Shmn\nPobcY6e+i8uNTGc8lRTjIM/zjO12i4P1IW7fuo3XXns9nvS4+wpu3byF9Xqd8QC/G+kDxtUBAkJc\nSADiPVqIcZb1XOzd/9UzSjTP+ZLzqn+YZ0k2DsOAeS47mynjD6HPAvDTD3+KG0c3MG93OUyXlGEy\nbBUAuHwKqx0Huv/TDxnHSR7IfNbudIlV5mvENH+ZXqZ9qTtGU+oZl1onVvpPlGnVZaXrGKxRVqFy\nPGv5UCFa45RoRsjOLc9P2Dihhzvqk4jJluvwtLYDlUfGaFfzvqYFiCf7ifLdeBG/IC+M73a7HCIx\n2ir26RerrdZvUqdqXkSaASlXW0ynNxbFc27xWY2jqp4VsCHLzY7dsWT7yPL5sttqXIt2y01Cla0Y\nH+S2WlhA1s86Q34vOLM+sehiA5uy7PLbNqknzTfFrW49/FzPl31jp0errj2WBRwfH6c6gDAF8Zuu\nR46PGqfyhhsHed+ZkBeuzH2WDfqkaK/thHJvKD/PjlyFD7jcXEb6m3W2czkSB3Mk+xqge0twTuCE\nnr0h71b04j4c51z0i4m2SvnUzB8Un4NFT7Y7UOdhDKjLb/gpZIt8h/0rlO5QXZrHcSREOyfOX3Hf\nIK6nU3L9Et8NA0Ak7tMobeNNPSTuSF2yNWvIV9MT5hlQ2LYaRxmflpQCyLTyJYcaQmUjcHlO2GeZ\np3Q930r1jqRF9a3E8vvsd1lPje8p22wEynfT6sT55VjTA7WyVSHGel5gtkMnS9sgqrmil5KaBW96\ntkKdaxqr8W/46GTddV5kZ3+tW4pPOdZTyqYwZ+wRphlXV1eZVsDob6IySFPi63kphHx3VNG30n5i\nvrvWvy3q0vhQQIPyLJSyuHypgyk/FZigi0vaZMm4pfTZWgiRzvP0TwLL7qXB4nNIjiU3DBidwze+\n+U38X//1v2K9PsB2nuJvQI6lBwDzRBj9AO/THSMogi4rNLHyXk0IpV1yB4u8OhwTf/fOpYuT02Qm\ngkvTISt0EMIu4HyzwQ/+8R/xT9//AdYHR/gP/8t/wINHD/DpLz/G2ZOnOH38GNurDVYHaxweHGI3\nT6nO+v4T74rzzTuHVbr3IDWy1pi+dVjkGP+CBzlPckiz8JF8kO3vHVnnPHLCyXtiCsiJdWWAubCj\nqQH/BvhjUDFPMzbbLZ4/v8B6fYghOXhmKmGCLGOiTGTmXQGHHP+vFSr81zf8SZQ34KIxUFXqGYIm\nsHbWO3aZer7peVgbgvVH0r9D8q5nfLXQXhpq8lkGyiKkTVWeAiWSBj025RgDCvgNRICPd/fcvn0b\nNAcWEPnYtixrrkB7GZ2BxLJYI8Rto4uVs2V8y3j1Wanzb+J9PWaW5lvmDRS3eYyjnTu6XD1eJTjk\nsr0aV81C3Z5Ugy1DJyhamOalY+VcbhPKQ7VBl1vxr9rZUvjgeLxA6Q+jDQHxWLou//LyEq+99mqU\nh749TWID24AqlJJLe0YM2jnEQb3AwWXF/3IISF2nY6gDLO3uSVkzuFvMtzBmTeOhU4Yz5ih5g1eI\n4DvMenEIeQMAi3cuJ4cuI2Ec8dzwtR4bMo02iIs01GN3s9ngk48/hguJZ07elBI5PvgBM81wbsi7\nML0bsZt28d6OcYXbt+/g1q1buHfvHl577TXcunMbB4eHOFgdwA988auLjUj8lTyoDA6ln2teGwt4\nok36d6mjpAw2mFNpeeccpolxTe0I8b6Us7m8xP2PP4FLu3PZiAghRCeDMLzyhpWEl8z5rWjQPLKS\nZWCayvZlepl+haR1IT/ryhiFL3r5AI24XjxZMlrKgBgL3kf8RpSdEsWGqHXoPj3P5fewcg+LSrtT\n5983t3X9UNjSsnWkLYSM4USZuS0eRGmzFgUcrFZ4+vgUz5+f4ebtO4U+8Ka+IS/8l/LqunO7+LPp\nxEnMKDEEzXJ0u8x6LDgFghfPHaKjhoga3Zx5YqQe5slmWPoj8aYOZ4T0OxPq4yUrRjtEoUnP8yYQ\nxk1WIrYTqK6z0C83nbU4fw9Mik7fRFOxOmT5ihaKecocr0dCHsuducb4EEh3ELITLdUcKGB1uK6x\nkOA/v89tM+1I5+DFRiI+fV/tOG/ZZWIQnWJ57cIDh9bjoi15k8tXPLmu/NVJY1xpnzjnqrsVa+Pa\nPh0n69Y2bs5r2UCUQseJ/Iv4W7Wz6l85l1z0N7m0kKvt7ZoOyk5VthHi3AqqznaeSToavJbHC+UF\nBF6gWa/Xeew6orhosi8lHRUXn1lfxYWqWd3RUTbQlvntMpat/R9FX8RK2B6TseGi7LTnJv9m2anS\n37NkN+nvcq4v2fry/Wwv5L72mW+dVbj8Q4X9icvkc24s3Wxdb9FvpjQ+iQg0Iy1iJvs3IG1grG0Q\nbdO0cgG5DRbuqPRjytmbo1o/xQ3gDmdnZ3jy+HG8ezT5oDRNS3Knh3Hye0musU4K4rceV53Sk7rt\n9ffiBwGSTHMuyTZX9FAHt/Xk3XXSZ2ohBLBBljamNXAE0pxxLjus2en4xX/1Jfzn//SfsD44yM6K\n/IKrnfJdMAcXVzLzYC/AJU9hBRxiVBRngmL5jmNhGKUYwhzShaXxancPgBxlR4B3wPOr54AHvvV7\nv4fh9z12l1d4fv4cJ6en+MUvf4n7n36Ks+fnuLi4QJjmbGwcHKwwTROcA6ZpwjDUIV68GFxEKbYv\nN5snuQJZFSiR/UXluJsWlPpzb1BL50TTN11QCbM/m/ITSHOIK/kecSf36IDT0xPcvXs3N0qeOGJa\nPRsbyiGp2yfkY5Vq4ZA/AtQqH0sAWM6ifUquR4PLILP0pWMdrRQMG1wamOT5oAQ+YBibFUDRSkdY\nDAtt4BBLtSKoxyckKIatgy2DWYLiAt7jBYyv3r2LaJiuQGnRVLbbkksulemE000nErvW5a6mpePK\npqyUZe5RiPK7M/JX8yn3f/6xbQPz2bnmd70zyjIypXNAO1i5bK5bgokXSZYjZa9zpAMuKrqdy4sT\ncgZETFEscstQ4x1oVpJ1zPOMYRwSjajArW4bvxMolN0fCGae8q5lNLPMq/PUhgea3XU9eS7pvW5q\n5Aq1jgxOuux5njEo46DZpUeRNz16CRzGLWt/BCXvdJMi7/sOsdgfrZzjXWtEhDBP2F5e4dGDh7H/\nU1xY4s0BiDJlnuc8X8ZxxNF6jVdeeQVvvPEGXn/9dbz66qs4Oj6uTnowPtEyWY5P5zjuvu1Y1Ian\n1Q/W2LSM1vpIfXGC5HdUn7BBqetkxxSH5froo49weXGBIZ1ebFxFQrZZdMvnvXlmtZvKYEG27mHz\nQrbvZXqZXjRZoeKWcLFMPWye9a0Yn/rtvUa3mlsJaFblEgGg5ISotGcrl3ptsNK+XayLekPZHSGF\noNC6WzthqvJl2ApDluyjg0/zhhDgB48wB/gh8u/xk8d49uwM997UDkJpF9R1DMlJV+8kZt1mYCBQ\n6hdb3vV4K/XhUldpp43UtfvwwxINRJT1Y+q06h1OWZ+UF5t67HZZ86zV7zKvSwvw/CyXEWqdwDpX\nJ8mnyNc4GyVNeTEE6OgSOY8o/yUqyEe6lx3ViEg73OQzpp3t9WEYMI4jdrtdDDuEOYmCGh9a/Mo2\nj7z3JA7CSKNy4od5qV/alPmcWMLZqn5ZkJOO5Zf1nHmg57viW69s2TYZZsgBzd2KPXloPffC+U9U\nwnHqfEs847/WjnlJk7T9pM7gd5fwFdMYy4kLwH5gm7m0RcoH2d6AEo7coR1veXNL8uU55/JdNkPa\nQHRtG4XKhrlqg64TsoX1RuaGleIg1LYAO5jtPrG0sW1f6/FwHflt5dHjV5crdU9TdjHcixGlaSFd\npsDbORQzb6xs26k/SxujbrsTi0VSxogFnFDqWNLVdRMF38T/1nuEYudJej1c3qBPeWwBIUzYbbd4\n/PhxHGtD8g272k9o2WgWXzSPAI5eoGWHOCUmwnETEYbq/h0eN6I9VScBcNKHUM/PlkftwtZ1cV8v\nfSYXQkwQjXKkiDtDxvgmJOXNg947wDusj47wh3/4h/jRD38In8JKxBVmZGDunI+7vAG4FOAITihs\nR8h7rDtGbO44L4SJ8/HCUFc7HDwrtyAvEmQFWC7HJQAzUjgqAhxmzEQYRo+/+Mu/wP/6pf8NDg43\n7tzB4a1bePWNe/jN3/oKQgi4vLjAxfMLPLh/H7/4xS/wzx9+iOeXl1itVpjnGQcHB2BANE1Txf/8\nl1pnBQsk2X6rD6u+RD2Q9aBeio8tBWy9KFImrlW3pXC104HYaEi7eh08Bufwwx/9AO+//z7GYYT3\nQ3XMsgalRWFJDVhPcHvBogJO6bLIkI5naieRfE8aYbrNjcAVisC59n3eaRG7WoWRIi4jNSvPBQna\n7RNaFs2Snn355LOlVLePgUhdzkxFmFsjRip+a1xyv89hBoFw+/YtHKwPME8sL9AYWxqApS9VeLUG\nQFAZr3pXkMWTOhZpwRosi6RB2eOtZdxYv1f84t/FaZSGp+pzlmFoT4Jw0o4Hq93asYzOuLOAgLWg\nas0h51zc5UYlhub1ABbSrjW5X7/Idko7fHRdeq7nslL75PNxHHHjxo1cIi+acvuYd+1u9jT2OgBS\nP5P8Ksa8A8g66F8Wv3pyq5VXhTc90M2/LQE7PYZ77Wqea5wuwHUce+qSRdRynIhyPODChX6ZGWAb\npOktHdxf8xzvMzs5OcFms4H3A8ZxhXkOWK2GXPfheo3bd+7gzbfewltvvYU7d+7ERY9xrOQIL4Jk\nvgGYKeTxwuEhmd4AgBINZQGvhGbgcvSdbSDUYVqo3bSiw0xWPIMte0xzcEGGsQz58Cc/wfpgjd12\ni1no57jZJC2+pHbkxSQfT93wJX5avsv6KiygZG18jcAbQnRYAIf64t6X6WX6VZIl85aMYa0L9R16\nGqszxlnCY5YcyRkfkwAAIABJREFUl9jARuv1POrhPxNPXaOdPd1t0ZBersrJeZMOkO97X+sIIqrC\nXPboM9vB76N1ELD+iUooAD467R4+fIh33/8Aq4ODSItPDj7KZq1ojsvOiEIDMi42+1UCStWeBbhv\npriozTrU5QOjWn5qnantTq3j9/Un26qW7Vk5wjrtW7IlY7s8rJ3DFpYjgXeyk4jyfzkvX9VZt0ue\nao58dE4tfoq6LBtHJ7YJAWRszu/lMbeApZge6bAnoti35DC4GLaSVah8t2dr6Psu9v0e/9rONAtX\nVM8dpYUo5HnhnMsh2K2k5YTGvV07WOKuDo1LcgwAe6VK/xrylpO2n3qnduWz/hhZthMt+iVuynPH\nyLdEQ5SHhLjoZ29WlJ+D5quwHbS+IwCDj7659dERyEVHsPcRA/NJj5iXT9BHzpd6y9irQsOKxhKK\nvSsPydsWFDJ+hisn/KRtV/Mb6nvmsHlPCdTiiaVLZVlS9nLqReSRZVploJqnqW9ai2lRr8j2yEUH\nWZ+UC9o2985Dcr6S/OTy9yIfbL+dVV/dBh73Fp9cNQazX4rku6h4z/6czWaD87MzHK7XCPOMwXtM\nKRSbbKfm2VKS9nUceqL/dHtzC2PiOV7bPzFHIILP4dBS23guZyHmsq+92IrxP+7nJjLHr5E+cwsh\nAJpBDMSO4Hs08m8ajCIJRSD3mB8G/M7Xvoa/+au/wuGNGxFEiKO3WsjnwQhD2IrwC5IuppJA9c7u\nNFgY3EiRBCA5vpMBjbLiNs8zyLOTASDnEMIMn8YRHOHjTz/BFKKLcRzGePTQ++zEG4YBx0fHuHfv\nHn7rt34Lw7/7d5imCY9OT3F6eoqf//zn+PCfP8TJo0e4ceNGjDOL2knB9xxICWUB4fY7D2bun1A5\n9nIfCv7rXRQx/vcc43BSPLIYFy60cBcdYCSBraNi8q0DYw4BnlKMR+/x0w8/xNUfb7A+PEoOkQCv\nADUUYLIAcC8vpxJvfy4CkJTQF+VqYdQDYRbY4KOgfcCVjlY6V/HTeWEYpPy8m2SeQ1bIXZklQFH1\nrHzJNDE/JMgoc7uWBQS9gJac//okQXqewb7oC+3EknIETsQ5pZDDyx2ly4OvLjdg41ceh5Uqvwqn\npoGtXOxA3DFmKXMNRPm3+sLuVuFq0GPKOcFfdohq2ZvHWurDnlGpx38DTBNJLKMBO0SBdnp0lbkC\ncpou2c5qF5GglYe65DUDZ7lDnfNIncDv8JyaqRiWbEjysNfvFJ6IHVRUL14xiJY0yfsbeKBVu1eS\nbGSndmm7oEvwRcsC/o3fd85l506M+RnSXROljUEcW5egk3JnF9kjOg+04KAIgeDQjlEi3n1iG44W\nsM9xlcVClE78WwypkdrpfRVKiU9uMu+43byTOcz1AhQB9S4+MuYeEI0eKrJ3niY4AjabDQbv8OGH\nH2IcR2w2W7iVx9tvvY333v0c3njjjXiZ+dFRNaecc/F4f763JTKMZeUcQgbp3MaKb8R0JeOQL0FP\nPOA5kP8J574X+gui70jNgZ5BpceRbBPPj0rGKMdIHLcz5hDzXl1d4enTJ5hzmNACsPXmCr3TUM5F\nOFedeMrtUvTXzyLv62c1ntR48GV6mX6VZDmIlsJLWuOW01KM/aVnFg37xrWlf6zP+wz6Ho089yoM\nbdAr66gcdgb2surJZcSCahvnGjKO9YW2J0AFfzvnMIUJKzdi2mxx9uQZPOKdIbQaQcHBBQ7rVHQk\ny+JAVN0JKDFBh5OCzg6vjP4qvG3xq35f655gLCRxvus807RwuNzFfETXkr9szxZ5XngYsbsI7Qph\ne2jcj3q3d8V/wbeldlmJx9Bg5LFs9up39bmaA6J8aw5JPeqcQ0ibKodhwOHhIfg+SrZve2OCfSR5\nw6F3QGg3dMn6gXauMy3ajoEuxyWLUbdR8VTzQfIpz/f0XW7yqtpHVEUD6MkA2Q7dZqi6ev2ik72J\ntMXLuk+uI+/4eYOL2KbR/FLtstqdT6+kzcq8MOF54Y9qJ3MuD/ZMt3jMY/Vqs8ljgVM8SabxMGmT\nOpVdn4DQZVV6IPPAoskBrmBNrqfp/6puLrWlyXkHR8kuSWHdXSyw4pnkzxLf9DP9XfarWZ60C4BK\nFuSyhJ2V9QciFik+u7iw2vR2km9si1k801s2s40j7m9p32vt06XUlc9sb+l7vBJFSQ3FFje4zSHM\nMy4vLnB+fo7dbofB+yjr02Ie161lj7QzezKdIuOSnLXb0WAoQb/MIxsWw3ur+tI8yvqZ5jJnQuxT\nhzLHa9VoY5Drps/kQgiABoRynH4Sv/NvlWMB5Ying8OEgNuv3sXde/ewubwEsZMGzHgkZ1LNaDYI\nokMJVQdKAFB1BwHOxfjtceGixO6Eq3f+ZaWZFDK7Z2ciYIiDY6I53SNCCeA4zBRPlBx7jx9/5zv4\n6re/jdnFUwWeUly35KwaxjHuLB3iIslqfYC3jo9w7+238KUv/yb+OPwJdrsdHj9+jJOHD3H/lx/j\n448/xqOTGIpjtVphNY4YhgGbzSaLn8EVR9ngx+xE5UucJgpVfE/HvGMeuLTs0wMpACYJiiXvKILO\neEpHFJGIY2GYBXMoYwVUwHHVl7FDMCMqkKePTnF6+gg3bt+JIbPIAfBwrg1TpJVKCyDi3RLZKY5Q\n3RnjnLggSl0QW8pw+ZKjZsyJPEwDMyTHVuTmV/VKoygO8ICQGFpWiR2vCorKue85FnuN+coX3tlU\ngbdMg/wqFmFQC/FKkJZuzPJBgg9nzGOXxg5JORHKTibrIrjY3Q4Txdi0fhiwogO4ecY4HmD0I4iu\nYhu9z5eU64uPnSCYKIH7SrkiXyoV6UxHgcN+gFvmlsvjKBq9Hi66mdNccdmYkGU1itM4hTIpp4gH\nEATfWyOvvv+Ik1yYzrQo0N0DWTJPnkc9wCXychkN2I4ZygJP+s7vyYXgih64fOmYByp+AWyAitNH\nFMe0PJZegwIh89JfD4B8uQMig6cQ+frKvdcw+KjSvfPZee+dj7vbiDDy6UZXAH+stjZ67DaGFN4r\nwHnASdkNAE4sZmS5gTy+o7Tw+TMAUAgYdExflxZ/0e5GzswB70RO5bqWfp0YBLOjgWUTOYc5TFVb\npMHJ4ZTy3JDzlOIxZFDs4zLffEUvnxDJc2gY44nPNGaJCLt5V8sb7xDmKfXziO1mi91uh91mg0cP\nT/DowQO8fvd1/M5Xfhs3bt/G4dERZhBWfhB0uOouLxco7g52GXZEncwA26X5KHjIYQCHxDefeLjy\nKxAR0q1pBYelpJ2mlPogCAPReQ+EOswgka0rLRlAROUeltIrQl+UvPM8YQ5xM0MA4Uc//D52mw3g\nHEIaZtJw4Pe8q+OD83PnXKU3dLIcCWy8mfl9yecozo05z9GOEfUyvUzXTPucG/o3yyiWckWeEHaw\ny7X09Iukgj9/9TIsWvJ83IMr5HOrXo3BrNOqmXdGuRJ/9HCcdDBIbORS6Ith8FGfE8dK9zh7eoar\niwusDg+z3K7dFIIGlrfXcPm3/Kkx69I7Wo71djK7vKNP1eQictX2ii7nuk48pr/Xt1b9Vip2Qqjm\nSbZVAOFT6NfjXN1ucxwtllDeY/2n9WKvr5Z4lm00a567mn/WHMu0C/kxDANu3ryJs7OzHMY42oz1\nSdqMxcUYKmVlKFjolPNJ2KaWDNEn8KtTXJInsHuuq8ddmW+yHGlrZTlayK/kkZa9S/VqOnWqbFdt\nk3UWDK9TvyxPLy71ZJlFv0zZb2TcxaHHWMFUCX+iyODmxLpT0s2VC9NlGwS12G63GA9WRW5lBpca\nRXboHujpUosnXGZ8ZuVMI0XJrh5fZHlNSc6J4uJOfE1e0QeurtPVefivxOBVPSqvxA+Vf0G+mujS\ng7k3fup6eazrvkG1fnWd1LVBXKHXtDuFzNVjYElmAL07V4o845BwPPdCWvzZbrfYbDYI04zhwBe/\nheSxrs8VXyihnCqLdYmaeViLIiiakeZY7fUPzyHtVbDy6nKii8DlV+K1EK7bpy9qM32mFkKWgFrP\nWWY59vR7zjn8yZ/8Cf7sz/4MboidxcIi4s46zhocIQQhYF0tFKw6606RO1hbpaYVltWu6OhKjnvv\nC2coOY0J+L//23/Db33jd4FhTIM9ctA7QmBjhnc8MpBHDP0wrFYAEQ5DwM2bN/Huu+8C3/gGrq6u\nsL26wuPHpzg5PcXDhw9xcnKC3elpXgw5ODjIi1LTPGOVFlzGdIrDw8FRmdjDIBdF6l6W4IgDr9Rg\nU/LE5VVFUH3hvQRFTioQV+rhvoEqV3+/efMGfv4v/4K3P/ce3EggN8K5kEPl6LGmFbekmx0s9Vhp\nd2pwHku5SEFWt6Ud99LRptN1DM7rChdKEpQBea8cPUdKm+L7KXc1x6zk0mTlyMtNnQu2mgSsHG9S\ng2rzPQYgIWCaJozeY7Va4ejoCOfPn8cxXTJXY9duu95tqcFDPRZ6tGnjHJC8S8fm2XGZnvYuCc/P\nBF3meLYAAcr8YSMAROlivAJaNQq7/hgjxa/y7DrA3KS3Kj8pYKrnnq43jh2BFwQAqerB8q6qstuJ\n8niRxFB8qaKDQzUNw4BXX30V4zg2AKrRQakPzN8M3izpVjbBdHPluMkfLSeMc/kUlqxHhvLS48k5\nHxcRmecLwMuaAyXOqtQFvjEGLANDz1nmQdOydPdKfD/kHWzjMGKaJnhQdXcHA+xpmhBCwGazweXl\nBS6vLvDwwQlOk67dXF7G9ynGL/7Tf/+nWK8PEQAMB6t8Ms274gyRzgA/RINxRh0ubYln9UK8mm+K\n/9ZnvYtJy34tr5hubWhbielpHCiyK4Qc4JBe827Cj378YwzDkBaB2jK4fj2Ts24w2ix5Zr3jMMQF\nbaM9ec5QogWLautlepleKPWwB/9m5Zdz08YTKLppoazeb1yihS106tZvtMc51yzE6mQ74muZr9sJ\nLsvAWJo2Lf9y2UAVJiuGFEw/uBqb6404XI4TepVpk/bcJ59+gqfPnuHm3btZHulT9USUQ7JE2UR5\nq0YPLtW8XO6PpdTKfPE+w0ldZrpjzXqnhwH2JW2Xx2fxM/EOnWYMtWOt9925GNs9nnCVcyp6hFxu\ncENYHhJM2T4cW9rOfxV/1Nzv2w/l/ThGJNYT9aTKenKE6ZUYZ05YYxgG3L59G5fnzzFjjqc7vO3r\nKJaLCH9OlDctyHoL7+0xom0CiS/22VRsv8n3rfrzX5FnyRZZCrdltSHzRfRJsUNsG0PbtL2xpOW8\nrr/XFh2ezkqV/LP44NowVUC7yJJxrOPFD5emU5GBVhs0VrWwa+afiyGtantKjW9QOpGXxlua1ro8\nmb8xlIzUs8VzncKOk4KjGmuutbd6fRPpshZD8pv1D64ur5KgHZm8NKYU2xJNqMe2cynATxnH8ndp\nkwsXYNugzvDk+aPlhtbd0p7S7ci4n1Jdvq0s0mm3VNs6eczm+vlETBwf0zQhzDMCBVxcXODJkydY\nr9egEJKN60w+VH0h9AJpezcqLD6M0WKOFE1b3x0d3y8YqbJ1nIubMh3KRmDetN5wq5Oy+qzHv8Zs\n18UAwGdsIQSolTh/Xrr4TjOFQ0MBkfHBxVARn//gA6zX67hrkOYiqJ3hEIGDd0NVNrs8uXP68fJa\np5FWJhb9/Nkneuc0QQexCEJp4NIUsF4dYDcF3P/4Y7z7wQcZWDlEEC4dCImI+Ecq2AT4JRAaVyvg\n1k3cee0uPh++CO98ctpc4vT0FE9PTvDg4QM8fPgQ5+fnCJeXmLZbjOMIEGG9WmFGfYcBCNHJgihE\nWACUy6sC4uUq5bq3eMWLy0CLjRMpsKoLejP3BVggqnYjR+dGRwFJYRuAD//pJ/jdb/0+xnGF7AlL\nr1qXQlnKVI9j7gdpBOjxY11+lMsQ7ZZAQwMWO1nzh8S/uh2tQJfg0i5Tt7cHPGtQ2QLr+FuhUeaX\nC15VWUkHOlUd7+YW2+yzsdu7N0K2IxBhDgKcOOD4xg24kxOmroBUbk0GMsvC2sFV4QoA5PtCWsVT\n6JN0ypS/U/rPAK49I4mIQGlxs3ucGnWPe9nWUkH1Do/bpaQBvDY6+LPmicUjzifzm++CMULtAJb1\nZvDvfby1DHJe2CAIrrRHzgPnyqKUBD9sUBXdU88DNkYB4I033mhik8s6dB80tBk87+nVSr5SmaUy\nfIGXJzTNFA0JzCSATZ+uSvYU7764xLCludcuCom/DD5ZzGUcW48xPfZUoTnkJY8dcsjOLgaLgQJ2\n0xZhDpjnKYfU21xeZiB7chIXPZ4/f47z83Nst9tqvA7OY95NwDDgK1/+Mo4Oj+CGeE8VOYdxtcr6\nk0+SDk6GdSpwXwJvXkDpGcqMPZq50sEzS/K9TX0wK59rLMQyugmJqt7Ln52Ddx7TNOHq8gK7qw0g\ncEhvQUi2Q8q6RQPD+K0YdL4b7zzWEV0+L2QcvEwvUyfJuWPpTvndmkfW+LfK0L/3aJHvW/pfz4se\nTb201Jal8rryvfOeaau54ljQ78mT3hl7pbjYxfZbponf5c9RjrO+Zbegiyf5Tx/jnffeTfTUm5Ja\n/c64J5Yh79dkHAQwnuCwmn1ssMQnWX/DPxScTMZ7eeuFwne67t5z1oFyPHOb4u+KFqXveu21fqv0\nR2qUd67spM26hCpMVvR326alVGjo0CPLp/oOVX7HpzEo8Y5pI6DGoppf8n39D4iY4+bNm7jP71Q4\nLtHJ/9SzChvr37kMKrRJJ73U8ZLeWvcjD8JiZtJif2jc3fZJyVfJ0oTb4NqoJrKWbDdWNkG5k68n\nK/bJTMbx2naT+LCXrPkr+7+X8iXhC+O6sg/VXOeTs4XQ8l4IAX6o38lhTRWdgep7HvX9iYeHh1it\nVlmc8wXUkr6WD4WT9Rhd3qTTGzO5HbqDUuN7cieGm5f2sd2f2SawzBpQ3lCV8zq5kay/kfu6qbS/\njjgRl+XrE1usH3NI/fijaIegGzWuWKJrSfdb70kfk7RDgKTHk9zgfPL9+n7XWFqxKfiUW+xsljh5\nA3igGJVF0MZ0PDs7i6dD1wN2mxkOrmyo7MhJAND3bFR60Ts4dU6kusNV4A+rbF7YlnqJZXeUfSzS\nfLk3SPKZ8RSXCyMJufzrpM/UQohssgmo9w1kMTAqZ7V3GA9W+N1v/i7+6i//EquDFaZ5zooqhqio\nL8Ou6mSlKX8zhRSl1Vf1VAgUbXToEwFElE8R5Nh+qr3eeczTjNUw4jt//3d49/PvR9GQLnRip4kE\nMfmzE5PDJQUfCnAaxjhkBvJp8cLhcBhweHyMu6+9BnzxiyAQdtsYxuP87AwnJyf49NNP8cnHH+Pk\n9DSHsGHgw5exZoUkwAwTEk+RJMDmHJwIMaGdFvkttcvj2kaaa8G8VJKggPsff4rHJyc4OFhjGHm3\nvqtOZVjCwernhjYqK6RLBmHst6Lkolxt+WAp2xYk9fPq+mtamlxgIL20466qWIFpm+72NxOIId1x\np7BJJYBl9fw12O22Fo7Y+SYvAeQ7dJz3eOXuXXz00UdZUehyZdxJaRiwgi+LhL6VK67sLLOSBP+5\njZpPmBOfivLRgJOf8fdZKDSL73EnhA0OszGSd5bXIcfM3dGo+1/eaaEvYNYLyLItlmFij2OlTyB0\nsJgbzFd5dDvTmd4hCEe9qDMq/PoEmATrk+ozBnpyDJFS/IP3eTzcuXMnyn9fn27Q/HVOOWXQjid+\nvjSOesZItUCm5JFpKEp5h1pWs/4JaN8jQpEfNQmNzK/4neZUvmAyj22CC/UJj2hQUAW6YziyUNkm\nZS8t5TZxWLsQZoQwYzdNODuPsVxPT0/x5MkTPEl/N5t4p9BqtRKGm4OnqOfnKV58N2GGcx7b7RZf\n/OCLcU5ForLuXDpt4Lwz+37pgmTOm4N9CrzA4LY2VlSdC0Dc6iM9LziPJVN68b7b74QQUk/OAX//\nt/89ykDn0v0tfb1p6RqgnkOyjURUNpQY417KJs0fHtfW6diX6WX6dZOl+3o6QOe/znMrj6ljZT6g\ncozJTVJLF7D2cO0+euR3XWePdqA4XuRczvdCJr08iFB2lk616LPq7dGb8zNGSbDLIToOwhzlxjiO\nODt7hplmDCHeNUlVCEqXd2byd2m3eiBviJPOjK7NYtEo8i23Wzi3uJ4mt3yvj0nY9ojlvLj0bOWy\nyzZWn566/7Q9nzIB7PlBOy6W26vHeSxD6ktRmtmmVJJ6jjSOxOY1vq8TSq8t0GfXVWiX9HnvsEvh\np28cHYLvPmAbrzdvKh6osaXroFC/r08X98Ztb0Ntlk9YwALiXQur7PNB9J5b+XJZadzEMOK2T0HK\noiXbPv1Q3u/Q02LwghelfbQP6/Bv0m7syUvZjoh3xRgFQBzlIOkLHX50aYNxADAoevnvrdt3cHBw\nUPw+nbFTtTMvP7RYdkm/lDx1eRYP99m04IVVySSDXsifxSCX8oLEaqCUC1xGTVvt6Lbkom6/pKdp\nBznInav5dxc3TVu2QjXOBc2sM0OYGz2c6VKiWY9Za4yY+D6RrV30shxrPvLSR/m9XK/g0+1RZdt7\nDFXvncflxQVOT07SRv655iP1FwqKrrXlgtbEzTBKPPV+gNS7lexj+yyajZV9H4M6pL7jNlf1EyA2\noaoRXvEybyJt9OH10mdqIUSCUAlEczz/lC3/pkCJNqoj4HOYw4zRe3zt61/H3/3t3wIUMHiP4EuH\ncbnWZOCypWHufBrITg7K0hRL8coyZDt06gn1/DvKzu3vfucf8Ef/5t/g9t1Xwbepe+/T5b31xJwT\noq6ELgA3ePgQj0hNvOLpXLkoWwF/B2B9Y8QYAm7evo03334bX/nqV2M8u0CYtlMO9fHzn/8cH3/y\nMU5PT0BEODw8whArqEDO6BxmIBsAIS2KyP6Xx8o1AGAlqQ0e2f7cXvEb86pxyBDw0c9+hrfffjs9\nDzHcGPnctzIFUApHU3gEsoFfK4LqvtZKj1J/xAuIWkHQM056glznlb/XjtHWSNW7KqAUguyfOTkT\nB6ccrvCwxHcPXEqwxEYcIHa1Cdqs8nonHGSengHoXIlnSnOMln/j1k3sdjsEZ89hfjaHGcMY79MJ\nNFfO8wL4Zdt44aUupwdOTSXN8lPwRfPRuheF5xMrWuZXVkRC/lb1KBlj0d0Di9bpBpkscK0B8FI9\nsn3c7kync9UY7OmQ9CXuXvBx178fhngZnaWUyWWgLnUIUVnIzDQinWAUOqEyeV10ag8+hhy8detW\n1ldRZ6U2UU1vSPdEVDyCr/vA1bVZ41jrwLjQIwAp6rnlnEsXZlMpm2pQo/sypFCKngDMoTZqq00C\nHGkaJTwUxZZFGkQoKKKIr1Ooxkhf1GXee+x2O4wpnCPfDwISC26O4l0Tgg+U5gVRPLJ8eRlPdDx7\n9gz379/HgwcP8PjxY2w2W8APWK/XRU6FeFk8hejIypsukkRgGoniPR0BcTPE0Y0bwOCTRyOCTof6\n3hkt561wMZaRQkB1ojKgXLSqMZV1f4ZlBMn3LFmu57mlg/Iz74GkmyvDR8im+v24x2yaZ8y7Hf7p\nRz/G4XoNAFV8Y1m3nOty51R2EnZku3NxkU2H7shlZrsrlc/3QPn4LIYva8t9mV6mXzVZOlLLb05L\nhuS+cah/l3MSrOOselzr9FpKFo0aa2gZtw/LafotWwLO5Q1WDaZyZcekhSGXEttTVtbe+7wjPDsJ\nKDqunHOYpwmPHj7A5eUlVgdrEA2Vk8uJUCi98vkOPxuLx1jlS7hA0l/bF5I/pPS4A1HEUU69Hz9f\nz8kR63LGM2vsFBuKEmYodWZ00pRnlWvpkVxfwj6B1MlDIO9gJoE7dW29efqr6AYPYK7KTItejr2B\nhQ5foFpp80LZss3ankgCAcMw4Pj4uMrPe8ArW1yNHbbPzXmbbE3n6o1SVR0Ghsk8qTZ/yEY77h1T\nflkyg/Gvpj/wBpq0AMDcrugV44WIyl2yst3OVdENKP7Y0KXbLdvew38weCPbpXWJtBt7NrZMg9wV\nr2jR9PDf7BeLRlJjB8WeD3key7rZXiD1XPOjbR/hIN0R0ksN7xbSXtsU7T2cvURtRGlVFyAs/Ppd\nrffT3IkLDLYPiHnM9pqpo9mWI7bH4nxnWwKdtmXbV9VZhVtzdX52fcvxV9oDnlSSGQClTWwdfvSk\nWsOHLCPLM63ziSjF8jPoM3jAySe6eeNfWbwtNmEco4g2ZwjYXlxhutpgnqZ4/7MfsvzR9Gt6Y8SR\nvl9F89Wh9uk4wVs9zlxa+HfOlTCT3M4kA+Y0LrKuR5HxomDRlTXGk7Zf73TLddJnaiFE7piO32tg\nYwlQiGeBKBvzMg3DgCk5Fr7whQ/w05/+NCkkwXAxF+0BXTO93UlO6aiRrYi14e1cdLDqnQY1P2xD\nfAoBI6KT7ObxMT78p5/gm7//+5imHY6OjkHTbL7n0+RpYCIrbKY5+oIqQcy0zIMAEz6e3oAfosIL\nAY4Ih+MKnzt+B+++/x6+/rvfyDHRr66ucPLoBKePT/Hxx/Fi9tPTUwDAeHiEcVhlp8UuxEtk8w4s\nHy9I5zRNE8ZxTDjGFUPFWDUWDa2PXYq2aVB+6+ZN/PgHP8Tv/d7vRfqGqDADRacYBB9yXWp3tYcx\nWRksQgmFBKJt8FI+z1VR9u4VdPJcR3D0AJL8vTZw+2UUhaqM044D9kUEm5SmSxzgMVHRZQBFq37p\ncMwyyXvcvH0bwSHP3x64kQufeud9VmSKl04YSj0g2zoElEEGVAuhOjUKHcVZe53+l87vAOTwQ1Za\nkuE6nwXGe4Yny9N9hjqXJfsy16kgU4+2+KwYb3MIGF172R+/q520ub+AyhAEEaAX5zQATY/9OOLw\n8DAvylXzRrWVca9sUzNG5fxRxlw/xZfM8lL95Th6zRMA+dLMqg8SHbruYRiqvM61dDbGHigfWybE\ny7O9j+N1TjuFpjkuqM9hAhywm7aAK0e0wxyAOc7zabfD1dUVnj59ipOTEzx8+BCPHj3Cg0/vw3vC\n0dFRaUsx7qpZAAAgAElEQVTqx8PDIwARi0wppJOjtCOmaqGWOWXH7mo14jd/48u4efMm5o6ck+1m\nnlvz2kpERbnv6/dabqNatOvJpd6clUaN1Q5JS1D9DNUevfuT72kBAQ8efJqxQcThcozUZfBzSetM\nJUzYEh9ln+bFcqphvi5ftrmKFfwiuu9lepk6aVmH2em6Rrwup+gSu75Kpxk07Nc3/WTpgqUksYV1\nknlpDrLcuC69xfZ4MT5queil/ATbcADIYRwHfPzJx3h+do7bt+8ATm70WKbPsn9iPfwkOrl67b0e\nH4RMDSEhLSfos2nQ1mmvT4QKq/LatJVFoR5W136FFxlPvaT1irS9LVprPVc74+I7aJ4VndqebGcd\nGnexJwefgcs4NMt1elXqco13I86KHtxhGHC4PkyOtTSHQlwkajouESH9m0QAH3AqmCDETT4k8J5n\nu7kuzupfiUHiZryylY41+YtgI6sdjMe4LTkis+YjCs8dkO8Rkff8tB6m6/dRM7ZYnjh3LYei5Ff1\nTJaZqOrxXstUqzxA4KBYWpXHpU1K12t5h4b4oZqP4zhiNY4Ate3S72v6icoYFITm9/T8yBnElNY8\nj3i2bqZt61CZz6pumSobjUcO1b6XXtKYfOn0shxLrKMkv8tvLP9r+rJubalA5ZQVdMn5rqWkHj86\nWf0qeZxlqUPTh828MuROry4eM8h9UvLI8cfP80nUEHBxeYntdpval3I5saki65a04A/KoRpByOHX\ndVqyybIdVNkoqOZR6WsWhX1Mlue6tMGuMa0tfbzPLrPSZ2ohhNROCg02msYbQKKKh8gDEclpN034\n1rd/Dz/44Q+xXq+xm3eRwS7t1uldUY96B8QSAF/afT6p3ZpEVDkRtQCNi2xlNS0rSecQ4DAAOD5a\n43v/8A/47a99DQfHx9hsNhid7SDUDgUCsuMIKDtCXXYRkrhMGPk3+T4l3oEIfoiAiHeYBIq7gVYA\nxoMDHN+4gVdefRVfCAHfnGfM84zLqys8Pz/H+ZOnePDgAU4fP8bjx4/x+MljbDYbDMMQldZqlUNq\nxYvZV3miJzYlBZFWhZ3oK5TxkHfjSOHHBaQ+GIcBm80Gm+0WD+/fxzvvvZcVApB2anTAQ/29yYJ0\npq7OlzKzkRDHQf4l0dkqKKvOJZqWBIhU4GV82kfUyxxoQ7RkR2yUyOnqFw2AZJn76cvPAhuE5Tev\n3tPGh6Rdf5fzUH9vlVjJc/PmzQbk6bJkfWXHd+2UBwjVKW/HR0/L+5XxlP6NPKBJ/lro0LLJaqNM\nvFCjL8TrtbEaI/ybyKN5bQFg/X3psmSmQ5bZyy/LN8NuEAk+x/HHfUCx8ObkYfwtD9qqDskP5h/v\nSrFksJflpr+azmocwuWwWtnZigLEy4kPpHYVdNEzPGK/1XdC6L7m1LRBX/bqRJ6EXbV8k2NCAmfO\nqucdf5aGYAgEKW5CFX4x7hTzQ9xRFhcnJb+jIRjCjCk58ufdBD8M2FxdIcwzLp4/x8npKU4ePcLZ\n2TlOTh7h/Pw5hiHeObHb7WI84XnG0dEB5nnGNE2ZFrgh6hcqAHZMO3eg263kFf9ERJgdgBDwm1/+\nMuB9PNjTAaqav77T15xn6bJxa55Wv6HGrDp/bwwRUYlCm/Vma47N1D7TbZWyvm5f0s1EcBTwo+//\nIF+SPvqy2SQA+b4ROSat73I89gyrxggzdEdlNCzo7BcF9i/Ty2SlffhOP9v3rh67lUFqlLM0jvfp\nGMuJZBnqvbKvk2R5+8rNuAPRlvHO5QVvq+7GoaAcVqynZJv5fS0zZP0Vf5JTYxw8trsdnj17htfv\nvYEx6aRhGCI2uIbjkJBOsqtF+YyNlDPI4pnNP3kapbWDXFYIdurVobGl2aZritEQAhw89KWCpVsk\nsjVAjaBVVp79CZbNQbXms/StZFjbztoZJMuxcrHjW3qeTEyf7LUyZqhii4xiUelHB2DwmCjp3mHA\nCIDIIYQJgx/qMFbewZPPYbshcD2HhMmcNoavNndy88TppyX51+dZbRMwSupdap2fWeWl/tN928MQ\nSNiKiPJJNIAxpT02dLlLdpqkLdtFqtzrzKv8e0NT8heJ+iycGcgl27X0s/P1CYlYBgCSDtjSdN1/\n0l6VMrJpN9rhNKfoDuv1QeENShmZbrUpO9ePAO/G/NmSjRVd6TSIvPPOsq1yLAdX162jyxBxuKGW\nvkaudMSXrj/bEVyOuOuF/RKNLO+NcUvP88ImUbwDWNyPmnUQhP/DdWQP0xJE//I8UP49QI+t+Exu\nmG7mSspoyvBSaFcr9HFFbfsCKSJE+oVbQ4Htmdj+588vcHl1FeUpubTgEXMPIuoB053L4gUQpU+K\nnneZEGnD83fpE8rtci6f/nGQPvN27si6Kv4URol88a+1OY1TDnUN5BDq102fsYWQ+FcyQF48uQ/l\n8CQBlcWQEALcOGC3m+AB3HvzDbzz7rs4efQo312xSyEyKFAOCwXUAn1cjTlsjJ6cDQ09g1gYxnpV\nXhVSYJhSfrnsdORps93g6dk5Hnz6Kd770hfjjglD53K4B2Z0Pl6q+M2OBZfpoIIFAfhQpj8LY4lc\nKAGr+CUU5QIA3mMAMBDFi2YBHB0f45VXXoF75x18+be/immesbm6wubqElfpgnbejXv+PMZf32y2\nCCFeGD/4odqRwkLVpUoD5mZC6cR84MQ7eUGEH3z/+/jc594GDYDHkIWBHIvakCv9hCpPEai2cI3P\nLPBS07rPoC3v2QDnOoBHK3T7PWksqLJdWk5TvHVSGwml1TN2shIDHzGXuJ7r6gPdUFeeF7EswMSf\nl+4+IYqXrB0fH2O73VYr9xawYIXSBYoVzaEaV977GF5M919RmYL1iUcCBEseWvFzm/aL9/L8N8aR\nbFcGJqiTBQY0oNP0We8tGRN64aaXrykj1x8Jr4CUUXe8q0m0UwxhXXYshx8UGqKxJ/Ir3SBBnrUg\ndfv27fhZlZk/pwZFkNDqoBYoo2lrz+hrxokTv5EC3sT/teXF/JSdOdaCCZcVwgy5KkhEiNOj1MWn\nPNhoCPOMfMEkOVAImCkuWEzThKurK1xs4gkPDt14eXmJ3dUGl5eX2UAhonzaa5qKTJi224gXdrto\nuCcwPLh4MipQvKfCOx8Nn87J1toyqU/MjeOIzdUWr9+7h8C85VOMCfjPVM+hbOAa40JjEE68SWFJ\nF8j5yrtLvZiri04CFGN18PXpqbxZRY5xw3jWwF3KSmu8hhDw/Nkz/PKXv4xAefB5ET47G1QZvTtK\n+PelRFTcWibgV/2ecaArO+Q1H16ml+lXSXKMLW0qkHquN2alHOYyTWdApw5+p9a1dp37dHUPW79o\nsu4a6tluTeK2o5UTWt7Vn2uHSrBCTXXaGzdSAEQuywjOExVhdAQ8ffoUhLjIP/gxYrjkLMmyxrWh\n/Lg9ngEQIKIppCj9Srf3MJ3FS8mH0ubaru/bEy0eWxp3dj9KvFsM2KoNzrY5jBoK3hP/S4dU3T7j\nFHzWFXU7LL1T2lFfZNtQJedooTTZ2hLHcxvsuhyEbwCAtZvF5k0Z36xf4wJT5On68JCN3fjb4uoX\n8niLX2sasg0odzdnHhvOb4WBunOWfR3E9pRtT5jykihffi43JFVOVtE80cy2+YZN1Mu3NNdkWbps\nK1mOR8seZ52iZYisQ8v++nuLgUDGM2411X9lmO5GNwl95eS7QB6LeexT3CjrvMM4jCjGTI0z83uo\ndapls8K1Y67Vn6HC0zp/5ru4y1TfH8wNkguW0haz+qRwoU37MKtlP0YdWIqVJbMMgNGu3D4i1Yaq\nGfFd7npXbGPv+LQjj5v4L8u7ps11XxW7PJYvbRjdZu99ljN6TFc8c0XOm+PC4O2Aeg5JPoQUUjve\ng0N5gfH8/BzzNEd7bS79wgsgPL5r0mw+VPomQYk6lc71fsgRFYpPwsP54mtNygMS50heNj4GyPEQ\n66HUn7SANyQutbm7nD5TCyERN/eFhNPPWZCiVTRSgM9zVM7jOILmGd/+1rfx53/2nzGMQwYL8b0y\nyPRCRaCiJAcx2Dm0R15pdDGEk+V4zOFZ0mo078iVKStPPQFTexng8qrc4D2OD9b4zt//Pd75wgdA\nWuBgYZOBgVA8zCczCWVgaeLBiSOlprKODOGjflk5QQpClyf8PM9YpXBYIQSsxxHjwUGMhx8C3nv/\nfcxznIjTPGO7iU6rR48e4eH9Bzg5OcmX0U7TlC+l5UWuwQ3J4RMwz7yAlVZN0+WqOZ5n4vngPeZ5\nwjCO+NlPf4Jp90fwzmMYR/BubCt+buOYYUDJCiNLHTHBNesNtkujygLO+ZkxdmX+fZfJNfPLaJcE\nLaXsWgiXzLn0RmHUWNveSVwZv5a7naiMd9hKXCpu58RxQiCfMJKgx1IgcZG0nPQaU5ii3W6XQ0rJ\nuzVk0k5DCXDlwgUJWmSqlAHTl2RE1kO4njHQe5YVN4MYCeAlAErf846AOMFzfh4/moeyjT35nuUu\n70Ix2h5Ij305Krhv6zFASPdXJPpzG9M8o8C7UajQH485FJDCspSdC94BCZDAlR1WmZ+pfA5FmARh\nAomFdtn2ap5SHeIxhIB7b9yLpxYTbVUfyvmpeBs/ujxWgHhiJWk7sAFoGkuUqqICUqDaSsnA1uNK\n7noqIRqQF3KI0imJVG7I4TNikos5DLJCCElmp1BujnXNjHmasd1tMc1bXF1ucHb2HOfPnuHJk8d4\n8uQJzs7OcHZ+hu00AeTgfbxw1rl4UpR1RgGZBW5F3hGcHzCHuInAORHWkpKTy3sRUqm8z6BRngSL\n5ZagFLneacJbb7+Nw8NDZqbSFeUkT5YDqu8sGS/rlxtL9Jw18RWVsc7xzy3DVwNuTrPeVScwgT52\nL6muQLDxHFH8Y54Tfx3ws5/9DKuDFYgoyeQybqXe0mVp2uV9Qlq/CEoqxxgUD7VDOmKGodK1Fb57\nmV6mXzNZc991xj7/BqCZ03qse0M+aIxgltuhb8nOs57/KkljEY21LNq1Ec4Yx6Ogz3205TJJ2nfK\nwOfynKuwZZG1ZbsL0m7iAMTQhC5ihM1uh8dPn2C72eDw4CjjHMZB7LggAsinnb5qDNQnVq7Xrp79\nsJRYj0cHSxuqlv/2xlKv/NbJA5iGq8ovdX18P5UhTzAQO1b5O8oH5/KAaMezQKWdOWfyusL/mica\n0ylbBYAcMb0TQb0+rm302tXU6jF7cavCPEQ4WK8xjiOmaap6xDHuyA8ckBbvGoIEzTL0eGVXkW23\n7Wu3tC0zHjFsMJnkWOT49/yc/1Z4XuFzmTfTwPpf20qdBW095nuybMn+0wuRPTks2+ycy76rkqc+\nmdGlM7Uv/2a2rNhZ9dxUukhis245yDiTxxoRwSPJw5lweHScx1M1xgPF0wpU9J6mK9bf8mupLyS2\nlHlz/mSkWTKZfRdB9F/vtEqbos0SC19eXNbjSeMD/Z4eQzzml3FzabOW/XocMc/jGPPgHg0I4CMm\nlP5jvWe1icdqPAVhb4KtaKL6fYtmUGsPA/VYauaYq+8Zk2Xlz97lDYbTdovzszOwWpH8quYw6wiD\n7t5YXEpxU27c1F76hLJ87IUX1Sdt7Lq4DYWn3ASiemxZMkzO5+umz9RCCNA2TjIyXokK8P5Cb0xS\noFZKMURFvHhzSg6Pd955F8fHx6AQMNGcQ1DFo8/IDhoug6jE+2b6gvPl8mBWiK6IXe0YAMoU9Xmy\ntTsC850CHB/P1QaHcM/FgRPi4sQvfvYRzs/OceP2LcT7OtXkVfztGiMM0jOw5NMWyVFDfPmsL20X\nKe/c54kihIXkp0s7KfwgLv7x8WLYAQksjSOICIMneCIMCVzdun0br7/+Or761a/GuKRz2fV7enKK\nJ48f45NPP8Wjhw/x9NkzbDcbAMBqXCGkXcTOe1DaaTvPcxZQcZWVcDCuABCeP32Kk/v38ca772Oe\nJrhhwEwBB8NQOWYpncTRQhwOmQ9sTFX8Zv4Q5WCtctd3tqkU+JHjiqiOEZ/HqHEvxaIAZFBmCFDr\nWf0ZdV6eT9kxzcVH4SpPM7DZIOmzlImOXOeqsimOe63EJbBVSomSU5lmdfzPELAM5Lz3ODw4wJ07\nd3B2dmbylRV3f7dx5IusJdYpd6u5cvmb4GmmRbSfDQGtfEwZJMZMxStZLudR7SeoMZF4Ugz/2pki\n0z7FKw1THg+qgCw3Wa6D7QxQGX/aKEIKa8HGN//L7xUlDCAeT0/jKP+egXx6l8pY5CHOi84Mdrh3\nKuM0y9aWL9XunyQbmU7ngTt3bmMYfMUYfndIoJxSA4u+kWC9UFLmQ9FD8C0w9fDgJSQODUJenggI\n+WSEHuNVbFGPfPm45A+I0r1S5SJ05lOgOe9EIaJ0WpOw2+2w3W6x2Wyw3cQTg0+fPsXpyWM8fnKC\ni8sLXF1u4OBxcHBQ3d0wwONgOAAzi3YB+VI+ONCcxhbaOVv8I7G9wQHkhV7NyxRi95twqli6lue8\nc/I+IuA3f+M34m9hhhuHLN/y/HNpcYlp5HmPIveseZ7rTA6zwItVQDX/CziPXSV3MAVQOnHNcqbd\nKaf/yrEv6WnkTwXq7VT1iyorTDt89LOfgeCwnXa5vxi8WzJQ9o80VDXPtPHKbWEDQS5GWXqTLwLV\nu8X4nqWX6WX6VVNP58rfe0YlUM+p4ghQOAq27SCfpxfyvKzkp3Da9E6sMG7S9DV1XCNZbV16dh2n\nDWDg914+1smMqePDWFfJXNlHFcZP+poxdC27QtRHBDx5dIppt4Mb42K8H+LdSD7jIJf1kcT2jQ2R\nfudd+5YjvWeDZNymnsXvWnbGf/H32r7RvNfyWtKg8+i0NB9iXflbepaeo0AsbQvU38sYLxEJtE1d\nb87JelacmuDnhXcvPtZzGZ225rqtDI6nOpXxSOVdbUdIPkQYkDMDqf2D9wjzjPV6jdVqhd1uVxGo\n5YLEzrJOST8SiWxPRxyUsGKgNq/BAwujaMzhxDu9MV21H2hor7Cv4JG2nTW9Db8NOUuoadHvsW2U\nbSRVl65X31PWmzfStik2FPeByqPaqO0xpz7V/OaXa5lQfeZ3DHsDgs5ERMWvgBgSzzmH9Xpd604S\npaedmmzfgAgkcLpzDuWayL6ukviv2x45PhamvtX3VtJ59tneS+XIzxyuifVRYbG9oMHfm3HlXGMb\n6bmFNLaqhWmwfVWkdM3rOmd5Ljamg8AbFJywlVtZt0/HUzeLRTOnIN7T87JsXE+8DAGXl5cpWkHA\nOJToN9M0CXpZt/D8UYTVU031RXzPtBcd62hRjzrZxWXk9lEtc8xTTTBsUpR6lsa4yzrqxXTkZ24h\nBOgrCf5N/tVKjgGd7Ijqcl8irI8O8a1vfxt/89d/XXar8kRE6tf0H0+eRoG0RJuKzlK6lpLXwiI6\n4wCXd7zLCZMmd6JjDgHbecIPvvc9/E9/8AeYiFIcPrmPaX+y+K7pk0KuZ7RI3i8BV600LYHtvC8t\nEP1J44gwTRiGAavVKj+/efMm3v/8+/g6vgHnHKZpwjzPOD8/x8XFBe7fv4+HDx/gk08+wenpKS4v\nL+Gcw40bNwAAx8fHmLZbeD8AYcZ6dYB//O7/h3tvvYNx5bHbbuHHEWGOgkgeZQyELDgS9bVy5Wei\n7cGlHWHOwXnjgjSh0yEcm3rs8GIeOZdUPVVj0BqLGhxxzH1Z7tKYeJFUhY4KBAdKCyKFK0sGT0nl\njZ6hJIXpInAIlOMoEmsTq0YqMeh5XN+6dSsuso5jBPqCDgbD8gROTaNtePNB+Agw+f6DYsjI9vG7\nSwakpL9v0O0vpyd7ZbJ2jL5oyuWj7HyxLmLP4NLVCwPchdUCYM/pgrp9Ufb7NNcMEEkoQIUEIFZh\nnpxzoHTxUl4oZeUdM1Rj3uJBTXHMdffu3XiCQVgeRefFkSPjfQPIBmKmi+cDeBwBlnVc+jAgBAY3\naZeKMFrlqb/Y3pD7jueA9+l0SHqHQgDSQn2YJnjyCK6cDuRyN9MGFxcXODs7w+PHj3F6corTR4/w\n8OHDDASPkiEzDAOmKV6M7uCxGg9SqCxkvmddNXjkBS0FwKv2EzVjRPLRCoUHqueanqvyL3+WNAzD\ngGEc8IUvfCGW4Z0ZXovlwmDMw54xq3fqaLyicRTXOac+hYsnb3inXAbrRlstebGEA+SzbOQa9Gha\neWGBjZqHDx/iwYMHODg4KPeUocUWFj1VCFZVD79vLWKUuS3mtepXLjPKDFfNUSJqseTL9DK9YNJj\nVT6z9D//XbJJ5Lv61GP+HcjyocovTzcYtO7DKLpdL5K0U8WS7xlD7IkzLeVRlwdUNr7UmJkXQJbp\nZZ1f9VHczQaJc7muHRwGP2A9ejw/P8PFxQXuhoBhEPnAOo4J6Mhf9um4VvbLOjnJjQ+lJuVpyfWW\nxlsyWNIkx9+SjuRnPTyr+zz+9U35lHTY0vAiSpthePMDLxakZtFc6+ZhiPK9HbN9fajbol+19WQp\nV747OFeFAq7qKSqzJY3LULZGlY1aW1DyWvMcANZHh1gfrvH8+fOsJ3u+gkBp4xgBvBvZoKLiT8+u\nscLg8e91w+vn1lCwcIPGPD37KWVqMKO+G8OqywrFJOvpye563Nv2MdOyVH89Jgs+9bBO5tdju7lX\ngOoFRko7PjW3uO8AO4ygtF/0nXv5rxHyqC4jDkXvPW7futUdE2b/xAddfSrbq3+TF3ADyfYKZftU\nXgxUNlzWo3IDG9qxJ5/bbW9l9Iskibmz47wzDyQfemMQir+aXrlgkOtlUzvwNoHlxbv8qlMO9mQA\nRvsulUeaRn6vtUVYfzgg2pJ6LqbxXuuBWAc5J+ZBbFdhrcuCmsf4ZrvBdrspbe/gK6rY5Up56R2G\nAQ0mIsrz2Z4vaiwvsLpqr0MM6UzlFSUxQGrRpPDQvnbi10mfrYWQBYAAlAmXd6d2GCUnh3RGEhH8\nMCAA+MpXvoL/47/8F7z26qvgw36WgI2DqB4AUdgznWkQCkFR/WA201accoDHQSfb6PJIlyuM5OK/\n9bDCP/ztf8e//oN/jTB4DFPLE67bokfTpsGNBqR8WU3PeLmOgOrxJX2pjCt+NlPZnezTiRE4F3cH\neA8/jvFkR4iX6a5XK4QQcHh8DBDh/c9/HtvtNp7wIcLV1RU2m028oP30MZ49fRqdb6ePcPb0AiFM\n+MH3vo9/82//La62G4zrNXzcPo3dtMMwxFAXvOPZubgQEYWMy00p3UdVPwYeMFkQW2NGgyJU38Fv\nCWkoBYsMzWIJ9Zz/hXqrJF1WLdikwaQE6wtUGMdT9cRQtGX3mwSeewpOxgOBHZmDIe29jyfAJiLM\nAG7cuJH5yvcJcL37BLjsZQkUuR4AeVd6BSpRG5TWPLvunNOg2lzUZDkrX1TyMeh3YAMHXbf8fSlx\n8CAGT0M6QVZ2AMnya2cs77augEouC/VqNhW56p0IlUcu7/RzzondEzwJC9CViyIMLgIQF3Nc2Zku\nedDwRrU/1uRx584rOb8O20hIF74L0CbBtBN9WHQLMqiF+E3znkEj1xOnSpStHL6q0FkueeS5Mc8z\nEOa0E4cwh4A5zJimHTZXV7i8uMCzp89w9uwcDx89xJOnT3F5eYntbo4hwtKJjmm3w8oDY5Jh48EB\nKMRNAGGOiz6zSxSTw+BX1f09Wf5xXwk52YxHGTqqdGmVv9GNaa6A4m5clqfW3KxBXyxrHEcMfsDh\n4RFu3boVTx4aElnLact4tWLUyvtPGFfIsahPDwICC0kmUAGwPDC0IXadZMnnpTdbTVKmL4fN/OEP\nf4ibx8fYpg0SZQdba6xZfaDp1/mlzJzmOQJ9MC99t3/5vWjc+8zvSo69TC/T/6C0bw5qGaaTpZ8r\n55f6XbtYrLJ7Tq3e7702vQi+6ZXzorbJdWGq5GumI79fO1U48b1hFFTIQaNSLptx/CqFen7+/DzK\nurGVXbqgWt6mDVSuLt+ql3GfA5rNUjGPzC+cO5ofHVuzZ5e+qDPE0kVRX3mjDvk96U7Vd3lDS1NR\ni8WX6HkxW7jut+uUkXlFyOFMMk2iL/bRuuQMs/wxsv58+nYWUSPYNt/Tj6wHrQXUMk5EY4Di2FO2\npW5ni5Ha9vSoW+IZ29zaiaj1v1VeCYpq17PPKanL1L8t2WT75J9lv2UMw3kgbCmV+pEQ4ltE1Gwg\n07KT+9rin8Xf3Beq/RIvSz+Wcw4H63UTeaJ7WtF8upwk38z+dPHECdtgrhoRiVuyL0Sb9vWfxq5w\n1hm//jjpP5M0tHUu0VR9Fu3S80daL9o+iDK5vK/z5XG0oPequkJty0haiShuajTaQgr1VD6GGLuy\n2Pgo47n8L/5KPqb3+K6li+fPcXb2DOPgMU0lqoI530m3WtJc9FnTTnaGZPM3NP1ZPhfdtE8vOccj\nutW7zhX+ORc3KxS7LC2UGnJNY6vrps/WQghqYdWmcr8D5+UkHTKEupPkwJmTsDw8voFvfutb+PlH\nH+WO4gvFtSNBhsriujzEIEda7fXx25wGHbn2AlMpGHs05u9psuV2Eq9cljKJ4g6hg2FA2Gzx0Yc/\nxdtf+gK8X1V4ygKgmndEVIUSkc46STeHo5K/y2RN0h6Yku/vA7684zk79J3LO74pFgAQxQWStLvY\nOYdhHMtxURBW/hCrJIwPj4/hAbz11lsgio67OQRMuy22V1eYNlucPj7B//nnf46j42O8du8ebt65\njeMbN3Dz1q24i3cYMK4Ocl9FQQxxOX0cI6MfG6dyDttDaVeZ840wC3Frc8OvfCQbBMfHUVgYiv4r\nIJIFbNzdjaGN/UpoHUA6Ty/1+l2OGxaOuR6VV7/P5dpjg9KCJBuOAXBqMVGWl98S343mWOPVuRgf\nlXf+3blzp3IuWsBdfq/ne1GO2SGmeG7JuF6f8Gkg3eeWoaaf8XMzFFkH5Gu6NCjRvFz6Lsutfktx\nMisZIxS0ll/XMSSAMu5ABAoEPzBor/NxHFoOz8QLnpJnDJxdlkNZ2MY+dr44OCyaDBpd9XMMBzaO\nI/+uho4AACAASURBVG7dvJXpIXWRW3uKLDldxQKqS6cw4juUdYm+VDSyub4EkOkKRHBJ9gPIOhCK\nJ5vNFtM04eLiIl5Q/vwcp6eneP78OU5PTrCbdthuN5imGRSolCeNEBd3n827XepfjzDzePRVvxDJ\nHf2xH+Z5Ts7wArhCoAzCnSunUPgdy5AueqaMuRBCWSyNYCMzqQmhlMFdGSuyf3MozJmwubrE17/+\nDUwpnKfz9QJl1F/I9PP7sjz+axm+RV9EjniVT8uOcpxc0SvGmZV6RsdSvmh0LDtqZCIKCOIemcvL\nC5w8fJTpm0OIfa9wVo9f8q+WLdpAzjipumy3GLREZYc4f4/x+x14wbWJE73Ap5fpZdqXXsQJsQ+v\nywuPZR4tIyybpvf7EqaU71v0aCxlzWGZb5/MsX7vberq0aHrscple6M4Dur3pGsBhixq+knVGULA\n1WbC2dkZdrsJ61UpVMrsLq4WNIgfow1F9bPqfqlsDvd3ksbX+IStfBhfLpEObH2xr197GL22r9ty\nerK+sGj/GJLvlc9xw4z3Ld0WruiXU/NBGyimXSN1nFVW+mttkMgYcuE0JOuvng0vx0bBjg7jwQHc\nMGQ/xNJJDZYL+hLjSqY4dYLHJUebNEVQ7u7gmVcOSpW5KNte22b1/GpoEHRpGWfxTn637oZYSlZf\n66Rlq1WGpsly9uv5pNtc319U5IfeINyjnTdCJaid70G0bLlYbHFeWfitmsfys+wf1LPHuRqjcb5y\nV++C3oCws1VawsF7dVqiOdof7fuS5xS4qQ5ptTNdOyvqcEa0mkQ3y2zNT0v+aj1d9H+Rd5pdPVlm\n88UiMfUJtNQTNKCcmOmNeSCOn2rDuIE7yo92G+L3mEHLCuecaa8Qy520WZBHcjUmnXzHlTGVhiD7\nhKbdDk+ePEGYJsAPKHdKKn4ZfLC/s1/CKiOL6QqfSPuPnzVcpJK/kus5eoCVxBhwsU+5Hfki9k57\nris/ZfpsLYRQfQoB0ErKg3cjUsrPeeLXIlx0GbnziaIBHYA/+uM/xv/+H/9jDG+TLtwkxA7kC4H5\nnRJmtRakSPl9mnjcRVmp8PuKRktIOufKxcvxSf17ysNx2Lwc0CAgBPzNX/81/vRLXyx8o1rg9YCx\nBjs9xdgoONFfUnBrwKl/syZjzxjKtKRJ6dVqoXzP890d/v9n712fLUmO+7BfVvc55z7msTOLBQyS\n2F0s8SBILQCbDNqWSQYVtvxBn+QI2/+ePipsBsNfFFbIthAQSJAWH+ZDS0IUSBAABYrAYud5Z+69\n53RX+kM+Kqu6+tw7oP1hI6YQ2Lmnu7oeWVn5qqxMMULaNdQYIocG8itbBM3LogR4GEfsc8a42+Ls\n/A7AGW9+6i0wT/ja176Gf/fBB5g5Y9hucXp6iu12i7OzM9y5cwd3797Fvfv3ca5/j5sddrstxo0c\nLmWaiuGUUsAXE6QzQMX45AyHgXEcMWe/P1IJjTJ1VmPlrDHg2z0gxFkIHiv9rRN5I8C+L5TXaxXf\n93C5fV/FC0Rdjglxq4JqYAwuIFCNk9V+gwgzMVSe4EY9n57CEAWwOWecn59j1ji4UZiwvtdomPej\nUiRDbxLw0nhd7ZcOPGKbzFwZKCOcoqISx3CT8t8a/4xGxDZaQRMrv9fwpVuf2T0jqvF2BLa27QXO\n9IQEbUtCJRaPkB5tt5tvx+bArAcdhkcOm/UbN/ZNDmscD/AIGud7SBg3IzbbsewjlH6YWUIoQUWu\niPfELrjYrZasOZBcUFRBPM8TCM1tExLvDBv7PM+YpwnT/oDD4YCrqyu8ePECl5eXcpPu2TNc7/e4\nePHCD0KmaQLPM8ZxDHlaZB7zPEsWkkwA5QqnZ/WeL/ulxnUAYEqYctlPbDSdksAkJLWvjPourEb+\n0VdUfZ21febloaXhia1du88qfAw4IIaT5OMGgPfeE95N4+D8q/D9Ja9tS0/g73lZMoAp0LmM+mAE\nzEBKC3nGlM1eaeffOxSKdb3vRjY5puD46AnIc/Y8J9/9znckzKXN09qCKIZ2k8zyzPlcmvG3Y7Ox\nRMcPfx6MZnJdv1HQQ92c7cZYn0+Or2+GvC5/j9KTj+x33MM3yWrgjvd720+njfZva7c3npZ3HzPQ\ntn8fows9mWKtvKoy3WvZ8gIyQ4wBoZKMxXh0f3yEJjdYpc8VWDcDBwCMw4DMGdf7a7y4eFG6tm7d\njW6pHzsvXAFXa4SMxg+Xi6BSxFobzh/jei/141dZs8I3l8mZy3pGvKm/b/XLZd9L3fzYrXKZYz22\nY+P2Xog8v1fFc2zBOuNr+Uor51byhbFwUlmrY41q2zb+eJv16MkyPZ0xpYTNWExQCxmk4bdrel7R\nNeIeK04tVt90s4W8z9zFBfmuDmfXk/3iMw/NzcHhsIHNjP46eR2sl9vAv4Vhu25rOnivjWN62CKc\nqo1d4WIqd6bGPz7ApLf3TTYrjlmlbpxPoqV+SkTSP4dw4K5/pWrTR/rpbQMYdF7b7VbqkUQaMfQi\nCk5esd8gqPf4Xwu/nizezjWrLAsuNDYd/ZbiFli22e0Nsk55htkD1/CFLflUM7caT47R0OWYYinr\nW82kfp/6bUbuSEfWwXAr0nP7txf5Yg0Pvc8V+aOnL5Q2S9bL1n7BwTmvusOh5CxncZ+4ur7C06dP\nMIwj5mmCoXNLl9ruj+GkbdRjMpglpbeDypmzf8hho5teHHqpx+XXx9ZTKMiQPCh89TzOc40237Z8\nvA5CsL5x9BeMangCzObbNSU3tpVSQk4D3njwAJ/69Kfx0YcfYkgJs3qYmgd+bXRohXUzNsmvHFC6\n2pxEyzF2NpN9s9/vy5VSNg/XahalvradmTFnxulmg+/+5V/h8uIC53fvgyAK9jzPXS+AvsCwzjyP\nMdsWeXt1en/3iGlPAJFnqDZeD1d6m6hqOxjOIzOHiovEjGEoRhTkATwT3nn3ZwH+Ok42O0wQb9TL\ny0vs93u8uLjAD//u71wIyzljmiac37mLk9MT3L1zB3fv3Sv/3r2L7XaL87MzbDXOfUqDh0eZuMRM\nldsihDxPKC4BljjaDG4BHnLcjHlWT+M867+F4RLMUOSQc+jEdeuV1ktmQaSozhfR9eBoiwkCK0Lo\nQhhzvGlvMXCX0dv7qBgulJDQrw9phfgSkYfGWtsjrWAdBTzDZWYGU/K4puYZbqU6qGj2SWXcVJpm\nAtTaAUe7f6MCYELCmsBs35unswvLNobOXlsrvT3f0sSWZkbBOuLDMYZo/CDOrV5fwEPa0HrOo7VS\nrTXYDSNEVMUBBgurb/lVCuNr55ZgY5qx2Yx+kDDlCUMa5dDFDOk69uQ8K8nfeULW/ZDVQ8XycFR7\nlCcwM+aD0K/D4YDr62tcvHiOy6tLXFy8wMXFc1xeXuLp4yce0uqgtzXGcfSbhCYcWTLvMQ2i+Bt+\nsAlUhDwxkNTHx4UqcoLW0hXnuY4nAZaKk/4NCQ0cdH1tfCXxN+kNEcDkCpcVG7zq8RXrM+KMK8jV\nPu8bDbwtJK/31ltv4e79+/6N3VgBFe+2Coeb9lrcbJXkql6Hbq3t35uUvbWypsz1lNuZudCSXruL\n3yWnUp4O+M63/1IU3Jz1sLumMZXxoiPHAOt5Qtr9ae0Z+5F5yqCsfkuDTYZMVONpzhkn2y1eXF6u\nwvF1eV2OlajXLN4BhTeL0FHTH8VtP7xFkZFiG3H3Rd6xpmdZ+8ee3VRnrZ21fo/RsLa929Avb1cq\nwjh4JTvm4zQz6oT+/1Jp4UTjr+ybzhyjDDOkAY8fP8bV5RXOTs/hOiNr8nQqBu413dParee67C/C\nQ8a3nG9dt5mX3zClakxtiXnh3AQT6vW+MR3nJh5W407E7CVulL7WZNWig1m9KFPHuvYss9kEWuNT\n43m7Ih+v7vOVedteXtPXnSfKw0InmrG07Uc9o9XN4ve7k5MK99bogJV40ND2G2PH+7hNnkS7SpGO\nMfxwME6vQ3va9erNu5JluXaAWPL8QAesbaCSiQnLftG02du/vbFHutHb68vcIzaigvs9hzn/vTan\niE/Mi1vD4jy05C/HaPnqntc2B51A7Se/TisE1jrXYcDJyUmpQ63MD9e5yxgLlsWQSlX4aKd1fTl3\n9TcFnbThyQ7/FkidolMRfG/AGtdxjdc6DUOZR2w7iBHVPNZ05zV8bWm6lXYtfRBc3IYdPnPf/uLr\n3FmDlnaWvQWVjXRP2HKj2GpepazxdAAa2avcnGPVG+xQjJlFj8kZ+/0eh8PBQ1HXPJWalo/wgTge\nxgLfa9qi9oG45SKvtERU1FurwOsUJ4bUO/Jalwl7deLvNdp8rHzsDkJ6ZSlcHRd2UBGvBhn1+ioT\ncH3Y49d+/dfxG//8n4shxRThlJACx5SNMVRXdmLoODsEOSasRQH+mKAffzeitCZQrxm21aBEOMwz\n3nz4EH/xwZ/hq//lf4XNZoM5EAtq4NKFT4chx9+tMtFD1Pi+bX9N8WlhMaMQPm+Pm43noSlsg6BC\nDWNw1e9wnmWMPVMwtJoHjQkTiYGcsNmd4P79B3j0+BEyAfN8wDCMIXTLAGICQxIZbk9PwDPj6uVL\nXL18iQ9/9CNXeq6urhyXTk5OcOfOHdy7dw+f+MQncPf8HHfv38fp6SlOT09xcnLi4beidzoAbDYb\nAOUEWTx4E3JWQzkkMXHWRF0yP8PrAkyHP5kR0QBUr2ErtHQZapZDopYLLwRMhCqMRV6OltD1/o7x\njVW6dI/gguvqhe4Ka7zeWXCg7hveqIXNsRdm5Nput9hutwuBPY47eh8vpIcObKReFFANp0W5iJ4i\nFk7IhN6knuMWn7ctx8JJtPTgNkaGNeWqx5zmiDcmxDRwK9eTw5JSnUS0hXWv35a5m0LgtxEC/rUK\nyLF4/T2YVLCTExBpO8QwJciSyo3B1ohNqEQEln0Z9wIBuHfvLjbbEXOekIYkt75mO5Q0fUxpAGdA\nk4dLH2JMn3jCdL2Xv6cJ11fXePb8GR4/foyLiwu51fHkCZ4+fYqrqyvnh2mQA1rAwmKwK6tGk0xg\n2wwDKI1gkCegyzkjDSVxu9NoZoyj5MGQNQgxSpUEmWKgwBb5K/D4EqNjafT35LWLg1iDar8YzXCF\nTkOetV7Lx/Z97C/Wb/tlZlAqyuZnPvOZCqamLDstSMvx/aSlt5cY7RxRjdn7M/qmY4wlerq2skqU\na3Ln3dqczFhQ9pTsL84Z8zTh2ZPH2BtPtX6o7O81ehb7bSbh3/mBBlP1Xcw/Is/7ClbsL6VB8tqE\nkIobzWG2U+/E1+V1edVieNrK28eoQ8/IZmWhl3T0lLV91ZMT7duePtB+1ys3GZTWnh1ro/2upy/2\nDIprZa17u2muDbslqTenWu/rjxFUjJVEjM1mxJPHj3F1eek8ahztsFV009SZF4AS/qoIXHCP0U7/\nZRoid+QOXix/lxsxkl8qGFS8vSV/OEa7274K7qytU1A0VubUK4VH1uOM7ysjsQ58DV+zyp0JWOBa\nlA+oUWQXfLrRhQiiG89oDnmCarO2xysdSioKXqzI1hEu8W9fB7vFqr8HlR0X9XryR0d+at1d7Vtm\nkzVCZAWiore38pq0qnIEYA5zzCGJeTO+ntE00qmk/bUltuHyiI1Pu6+edXSwtr21EscsMtz63q3p\niG139c4nwjzVN3PZ6jL7moKNnhiPKXp1ABQomdxa5G4CSd47k2k7W7bmE/ZwiXMDyO0HQzPHCI8F\nHAPeuf4uUPC2mdURrbPPOLRlNCfn0G/5orsGbWn3AUAevt9uaVk9NPNazjEc2HT0jThu14+aOcoI\n4p3AOIdyKBDXNs5hITt0CimfWdDT0iSWL8LPG2QPN+Jbgxyc1FEOHtrxyA92GmJ4V3TX/pzWnscD\n3XrNUN12KipuFvqp47+8eomXL17IjXYiZCQVIbLjHtC23Zct4t83yUJhQNZDxdfi2vfKUvdbP8Ql\nJ8gd3nQD3F+lfKwOQnrr00f6dpvevoiXpSrMw4C33noLJ7sdDvMMsIanyWVpROgUpOsybiXw7caK\nJ5uReMZ59ebnsehtlr6R+vMxpjppfPTr62v87jd+C1/8yldARNiMmxJKpenbxlQE61dDuJ/EEHPb\nb3or3DL49qDkGOG3kpQZ+q0t5Xe+FUk8DYzxgUiMj5sT/MI/eB/f+Ma/UV1m0Jj1gygFCr9RbxYd\nDgeJ887JPa6ThmQ73W0xTRImKw0JLy+e4/LFC/zw7/5OBA31BM7MmCfJen9+fo579+7h7OwMD958\nE3fv3sX5+bmE5Lp3T/KUDAPSMADDgDnXQjpB8Ioi/lIx9DgeNsJggW1/HZf703Ap1Ube+K3Cvfvu\nFsqP1WMNR2DVo8JX4VlUZGRT+b6phRebQb9E+Gw2G7z11lsSwzHExu0pS/btwhCg6+F5YlDjq+Ng\nGFPPYJCGckj7qgFWesJiO+ZXNVzc1EdLf7oMEstYpzcpCy3umPDY67sVE03xWRMmbppLpWgy9NCj\nqHHR+ODzALlzhbWRmo0xzTPu37+Pq6sr7HYb7PcTRs15ZAKt3eC4fnmJKw1H9fLlSzx69AjPnz/H\ns2fPcPHyZdnnQdHzkEE5i0KhHupEpAcSA3hiVxWM5srtpRnzJJAcaYTcXMs4eH4ODcGRW6OCHhEm\nAs+NUkyi4Cxy1JHSaocVPHxau472MfOMROGmiq6Ny8mLNa65zkIha0pLH3u4cROu2oHSxcUFPvvZ\n9/ywm22gnIU/paCoBwFxbR/2jBdrddpxRXhEiCSUHGukvGNu2mBpeAks1Htvvc/+N9lpW7gNBsHD\nP//gA+GTSktZ6fSsOL3gYyv8pWuIYTW6rI4wNtlXQupnBSfGccS032McR3zuc5/DX3/nOzf08rq8\nLstCQRmuXzS8HX16EHlX78AXqGnbTXx/LQb92revIkscK7dp4yeJ03/sWYHLKpPoyiA9uLa0wvin\n8WhmlpwLbijImGbJ2fXy5aXz9OR8Vm+ppqV+Wv02KYWxoN1r8k4xmtn/iz5m4wDMw7ZDg1eK0XWr\nm7Fcgx5fPbaeRMfft+uxDNV2Ox7VYxKO90Clcxi+1PvK3i9ZaLv/enwzodZl1iC9wN/KyFUf/mU7\nZjhCByrbQhhfAvDwjTfwbb2FvEZL4nq2cztq6engVcXj/5405VX1m76hb11nAVTH6egux/pa68fX\nI+j5xX5UbvP3StmzzfrEMZFTCkcuUkOzYR6BVP6yOuUAIaOsaQp5+Sz6hYyxkEu3rwV92cenYr7s\nq+V+YJbDG7uBFecASGhBdzpiXiBZ1gMi1k+K69y6XH9s/Y+tb7U3EPDXeHJLczu0oPpdfh3tqz8m\ngxdBXWmPjrudZ92S6Wf9Q85jekLcN71qLc1oZiA2vNCH4Wxu6G6ExUCFDzIHZ8mVcfX6jmUdbjJK\namhUAiGDMOcZeZ5x8eIlnl9clJBvLCMSp6tcjd36I+aaB6zon2UsK7jg7XC17yJcbiqVDtWtoO2X\nH1U/cYw30dGbysfqIMQFFmKYN3oUTCINl3qaMyQuTmAqfSSVE8NEhCkzckr4R//4H+M3f+M3cH7n\nDsbNBqxGaEBilTNyZZgRQwUZXsrYEf41A5AtIAkjME8QMxTnpp4RKTMIVaNmRiYJcTKmOqG5GXPn\nnJFUaP7h3/wA7/3cFzAjg5jQIpp9vyagHjPixG+jErVmfCEihSP8dNHVBxZGZ0qabzQqieadBihz\nMzhnE75z8CgPTNQEzspgVE2JlYm3cwPMw9O8eEDAZz/3s/jm7/4OUmYc8kHqKueOeRhs/HJVe/Y2\nZzXcTTkDnJBnY1yCTxrHBtNBPEYTJaRRDGOH/YSPPvoIH330Eb73ve+qUDPIdTlKGEbJIbDZbHB2\nfo57dyVPydn5Oc7unOL05AwnJ6fY6U2G7W7rHt92tXOegWFUpSsXJiYJpQlDIszIlaJATCAk33fM\njDQQMs8uRJjXjkCcNX+LzDUr/GS95APOGVk/JuVgBE08GXNHiMVZYO1ry6U9VvWDta7FnmT/j81C\naEgrjDgOM5Im6mMwmIA0Dnjj4UM8evwY4qqdNceHtMDM4JRdmLKrhYlqD7LMKiSyJdQtgo/gX0iW\njKQCpcBm6Owzw9m4lxDw3q4o+3UVlj3QJv4SJbSsWVIwyRoZQ5Z2CEVgzswYUvKDYNsLkeEbwwbK\ntwNKvgyPGOlGCzukLTxBXlAl7KQkRgLDB/lCjAfzPDuNMfhEHhEPBAe9/UdJ9mBWD0gbrytg1o7N\nK9LMlBSnshsaEpEK34Ue2+HddDjI4WfOSCR0ZBxHbE5GzPMBf/WX/wEf/fjHuN7vcXV9javLS1xe\nXuL6+hqHw1xg2cRIlnmG3BysqglZjoXJE70fZltXMrRA3CdCBxOmyV7WApLhrYShKu8sYbnpG4SE\nlIQeWgI4Rtb+CMTkIf2q2w9ksXsZeRZvhTTUyoKtkuGc3Tgx5QkBr+LYZU2U/8o1pMaTtsaZbNjN\nEnOYktBv89ZhDnvE16FAUuii5HvZDAPuvPkmHj58iDQMgVfK3ogGJqMbytn8eavgLgyaNo+ewmJ4\nzOQeScKXhF7NqnGKfCH9zDw7fygw0r6B6iZXkXmKAhRHYfJLNRebq/FXqFjI0P0oBx2Hq2t873vf\nk7aHcOgGNSDK9UjvN8459l/BoQlrV5SCUleMkyU8QlQOzHhnDhVFNpBxWULdnDOGccTzly/x6U9/\nerEur8vrcqvSbOm4n+IzdwIKThtr4W1uUjjXjD49veumttbe9xT227TXG1/P8GHPe0aVruLNqL6p\n2q5sCP2xVgbeBsYR/mjqVW2xeN2PKSFTwoYSnj9/jhcvL4Qv5YxMdR8LQ1Hsqzzszr8PRwLl7PxR\n2GDtCLQWjrmFQ/xdGT8QdcQlLNZ0/DW9f22d1+rW3/Xeqz7Q+X7ZHlRWBEB2sNDrj73dVSPfLfor\nlY3v5wU+F55fnArMqO2yAkzmK3p0HPPaGpgMmlLCvXv3ME2ThyZdwuYYnknpeQa7BO26YPHAjnXa\nNnu4dJtQY71vu/sIJWRn02BsrOhF4V2Lny2dW9vLXo/KIZatYSuHLekPL9qq9PvO4QgAt+PEsRXd\ngeHRJaSyy4oOs+D57gf5YsqAGaLt4zElTGbnq3TJIlNXtKOBUQ6yPCA08lRzvFoY+i5PcXgF+0Sz\nb+Netb7NBnJbm1ppi2G2T9Exwlyols3tG4p13NYBlbGpSswd19bxTO1VvgdcR0OFT25DCePtzaGe\nsP3T0PpsMgpLdAMIDoiz3RJmtgaCINJWzpJPtce3CUYzljz6GE2I9OyYLOTfsAErboS6Xtu+gSWu\nW5lD+fv66hofffgRpmnGGHJWM7fRAGqa4TprM8+o+5X/BrxBBnOxE7TfRv1MeAR1YdPOO9IYGXIY\nGZt9NcMPUjty1xpdvI0caOVjdRBiyOvADochq4JteMZoEogzLzyAaoAmZMz4mXfewac+9SlcXV3h\nOs9ubJEP5D8t4TDiHvsy5sxA92TON4+Ok1JaJS5EtDzNZq5udyyYIomxYtxu8ad//Ed493M/Cwxy\n+h2F+C4cO0JNj8m3BKKnOHSFJGNg1GzKRBrTMHIYFd7MyGK3G8LY55w1qVLNDBcKRrPB7JkxbmDp\neQ5qcCYJEz+7cwcPHjzE448+cqZOvoVrgkFEHuOF7MBOJ1cJEYHxlOTAKnyzKahRkJU2UhpcuMw5\nYzocACLs93tcXFzgox/9UJIbs3hc2E2jzWaD7XaLYRgxjhucnp7i/PwcJycnuKe5S87OzjwsV0oJ\n43br4bkyiid5zhnbcYc5T+CpwHlShu3eFghhnIg0J4YZWwUAlAZY0noQa2LZYvhzgZxM6VJjbjbm\nkCFhwfR6rx60VAnhO0JL+7comwEVAp1RFQYZcmB07949OVA9yK2deMghDDkZx9OVj+0XBEhpVESo\n93sRlA1P5L0ZNGJfQ0ou/LYKA8oQxHgatyTgTNb6rPY9hQNJ+6+/lsMxoJyrmGcPBRyYg2DtY++M\nMV41j0KgGerbeNxDGv0gzeFkVFj3YqIByMCYNi5AjGb8yYzNuMOsh5opPB/HEWZYANmhN7vQvAle\nmq0n1UEThA9EmCcxCFiIu3GUfB8nJyfy79mZ77nz83PsdjucnO4kf9BmgzlP+Bf/+7/AB3/2gfZD\nSo9sXZVPRh7FRYA0QSSlJd674MUAc6TZNe9sE6mVf4sBLeJdEUJrRSHSx+xrGQihUnyiBBrg8De6\nkZX/5cwY0lDRhh7thwv+chjkB3otnQY0p1JxKiBvs9Bc68PikVubmdkPBFtRu6d4x992MPnuu+9i\ne7LTm3JUaIXt0Ri+wRZPjSb1mvb38WyKJy9zCEWFvHj42Xpl+NGGKi8RR5Yav64vSlLK2EeUgar6\nDd1Kut7OG5XTZoKGXRPc+I8/+I/uMX2YZ1T+cPp9Gx6tLa28Qnr1yHChB095VueoomQyAarvPK8S\nljgwbjb4ype/jM121wfk6/K63FAyh5yJirOt7gFg9TnQl/Wrb1fe31Tvpj5qhbn/bq29WG4a31qd\ntfa7emdUCztyWqtrdGnfK44ZzFWYHwlPCeR5Bg1CGa8uX+LZs2e43l9hs7lb0bLWyNOD6WIeDT9v\njTmr86D6d09PbY1MXV2WakrZW/M1XOomw13Br/bb9m+X/8oblQVc43N9zWSE1XFSQJ5Gv6jgU1q2\nBrrjjd+0vLPtQ6ryAj6+vrhhj0cZQwWiZc5U+M34OBbzum/XIMqNLT7cxKd9/E1b9vcxG0cP99o1\nOGbcax1M1nAzylht2xzqtV/39tdPWir5Jco3QV+qQnpSY3BUnbJ65mMEUNS1hdwDppIz0fErjImL\nvojQhxnEy5igyZqXc+rNt6pn8IdpF7qOCaAEjJsBSOIfueCLzOp4U+uqNlerZ9t6QVcZwc60/LYd\nd01vi04TS8/ZKToL9/pIALj5zvvh4NzZ2Z9gqINjcKpEnPv63Cqcaeg8mX0LgN87CXgS27J/PH6A\nDAAAIABJREFUky5ShAtDHIpbvmZrvRgbA2lIrk8tdMZV+sfVPvDHqMOyVfoQifN3lxYRxDZoz8Jn\nnDOgdPTFixcYxw14nlzfi+30aF6kKdVsIg0M43WSzo7IRfds5l/akqotPW3n6bB1na/0V8GDGz2K\nRF+XT5cH8N4+bl8+VgchYmSQS02CqPW7tW/iZuslu+wVZnYiwWnA+1/5Cn73t38bm80Gh4N6+8f6\npcNqo/UEaWOYrWJPIWZ5ZvW6VxxokxAv5mwI3gpODWZlEsL2F//+W/jxhx/iE5/8JCZIUr0oxB9T\nAFo49er12ukJ2q3A0RZWhtMrPWKq2wmZCmMz42pXqG7bjAZDf8aN0AAnionEmG1G+i988Yv45je+\nISHtmRfC/2q/KzBvFYwIw8U6M4AUDY6FmGeNOw4jPJQwDCOYZ4w0+l7KM+P6ag/mawDAs6dPkXN2\nD65JQ3EdDgdsNxsMarQ9OzvDuNlgt9thd3KCO+fnGMYRZ2dncgvl7Ay73Q7jOGK322Gz2eh+FuOt\nGBk1dixYcx1kDIMcAkyzrAirwagIL6poAGA1AstaJGGCFi+RLVOPeUIUg522rH8U6c2xkcstBOSM\npYiP0A4BemD1QBMbW9Mp4Ggi8cYg6A0OZqQ0hEMwYQolhrQqBZn1lg1cYCQyjwDF99Cm3Taw/Dl2\nJyUpnFmZ0Ix2f4Z9oIAYaCn0wtYh0pigTHmCSltrmw/Z33KrgpjDu46iYcKGvQ8eQzbeMcRMBYA8\nTZIXx4WlQj89xCDJfrZwcxsNK4VQdxxCrhcwxu2Aw34vcxqGIrATu7EcALabjR9s7LZbnJ2e4kT3\nwb1797Db7XDnzh1st1s/DLH6lhsg6U2uQflDIsKsXjJ5nvH48UdqpB98oaZZYuR28dvg6fTcPEhs\nJeF/L+hL+Hf5t3yTUqRNNe2K/dp6tO9IG6sVD6gwpDQwBcnQ6tjB59xRwK399gWzHBZzULgbngIU\nOir0kivcL2MstFq8kYqQx1wbIuMeamHS/p7nGddXV/jse+85LpPl+yE1ODT7kmGH96qIdYR5G0ut\ntIU2OvxqOedygM/Qw2n79gi7qxTQDl51DQ3hbz98lMraTvD2JFnzw36PP/2TPy3zYbjy2cPJWtms\n6RkbrqyMec3QYvlcYhlSAgWv+xYfrIzDgOvLS/z8z/88nj55tgTk6/K63KL09JQezpkssGYYfJXS\nk2ePjvGIHrb2/Dbtr9GVm8Z37H0Lnwo2LpjVYyDqw7wd55ohrPqNWjb1PxGSDjO7bnJ6eoqLFxeY\nJgnBK7JvQtLjYzCcbxfZDd5LjEwQ8aE1YkWYdCbh47KylpeuhUPpB8s2blijY23GurfRDdt3S32t\n3/ZKa+Ff5Tlc709mvSWocmorw0Fl+qgX9sbc5adrdgSgu65xXtW3DGRiFT05KEKaR6H51nMVKk5t\nNcyqyd+xbuyrlVNiHbGBUp2jlQC/YdDMu5WF2rVn6OHRDfQh6jkGs8jvoyzR1m377NEGIyXH5EP7\nppVbevvHSZPrlKG9YCvowaS7DghYHGBncq8ZpmtwL3UxoTsGvxLaT2iTjbTciCCCOJUAJdQpRB52\n2mjP4jxRl1jPdVku9pJKP2ngS0QaxljyMiz0Bi6yuNHYot/CFzfu3Zt4YGvvqybERab317YOnbbi\ndwaASk5l9qgfSQDtPCxH/EXZUx3Wd2u+HnVVmUt8LzfAKS1hZHBb4yVkdAmFd0R+olMPe7Ks9WKc\nt5SFfL0QqXt5F9el3ace7hL1XIm5+uaw32O/3yNPs+QTQaBXryir+Vi51mvtxlAl1DDc/iVrLvAa\nkulh8YbOeunqUP6u0BfDuZYnRPkkPrc21/jhWvlYHYQYkA3QqbMx1gj3msLdCgrt9wkEpIQvfelL\n+MbXv46thgoSAlwztp6RYyEkatutEciIbYzTmIZBQggFwWTRB7N7ShsiWx9t2/bdzIz79+/jj//w\nD/Hf/5N/UoUCaWETBZg1If2YcFzlofhJNigvv2Uuoa5ifyUZHFXeposN3tlYpXHAN1gQqhzO/pj8\nhJogoZ7SOOK99z6L3/3mN5FRDLXFWFs2e871tdQeIW+/YbYQRGQVFwwcLBcqynpJuDQXQvTfPAOk\noUIwEA6HPTabDTgzpjw70zDmmlICZmCT5ABjpFGvdwL7qyvs93swa9ijLAnx5nnGpIcos8aBBcRI\nt9vtsN1ucX5+jvM797DRq6i77Q67kw1OTuX96ekpNpuN/z+lJMmZU1lTi3uczLjNEiaOWELwpHEo\nHs/ygYYoK/CzfTUrrCphysJtkQjwA401zkPC+Bhu2En//fv3Me8PGJLkRogCAwAk1iSmekhDyvAF\no8qJd8mpwiBiCUllOK23kUSJKjNKZL8DWiPcbjKerwcvhLLHUhBEGSie8POhzJkZErAKdm4j8faJ\nQCnQjSE53jr9hh68+sDkAMvGFumOC4lByTIjM6uwPYwDhiGBck3PM+m1XsWLXp4jz63AjAGSRNxw\naZom7HbiiX1yciKHfLud3844OTnxm1Gb7RYnu53g67bcrhrGUQyf2v84jkjDgIMeKDrMU/FcsbwQ\njKIHWOJSuXElsJvmCS+vrnDx/EWprzCZmZFMcM0ldFePLvdiA9fyX8fg420JgbMbJTWPXt6GKXS3\nVly9OC+DJ//OzBgdNox4wGt0LudcQlZF43OrwIR5MAAOITraUHL2d8tzLfSSKdqtHCHrNwZ8xWp7\nUXVgp8+iYIHlMI1nxsOHDyWWexg7uBxgxfExy2ViE4ztUNTgIHs3+/6O8LHx99a65f4mzwv/K4eu\na4LwQlaLbTdyQ69EXtkmYRddjau/nz59ihcvLjAOyQ9PhFb1Bej296qM0NRpZaBYHFf1/3bjKL7f\nbDZVW/6OGW88fIjz8zt49uz5Klxel9flxsJBwW9k+wrvVLc5ZgQELb1uTXpNVbUVg0LvvY2x8y7+\nXtPvbqNbHKvbo+NrY2n5w6IuoRhhrd1A29fmZM9uGsNCtysv1AtY5PLD4QDSZNRPHz3GixcvcOf+\nGzI+Nm9fNWC1XtXKv9fmufa8NfiWsfPixu6xdlrjoL02ftdymO46HBl7j27HPfGqpeZdtu6tJ2s9\nnkoOUP5Z9LlmX1rbHTQ/hkc2niMjL7IMlsb6tb1StdCgdqtvt2MqOo0chIzj6I52Ufbo6QGx/3of\nQnRwPWgBc5BJWrm0BmPPbmFQS5352zdVbp5mfx6FV2ePr8nXt7WZtLStRz9qfKhh2c5zDacW+/uI\nzCa0sDY6t3Nzfb0jc1o9Vpne6AhUryl7ol7jFr5rMLHS3IdApZuoPrJYG+uXix0QULtLLrKySevG\n3whiU5znEMYq9Q9DfB85DZCW2rmJbM6VrcxHG4bdyqxecq5yUbb7tx1XNaYOnbc2qudOv40OUmUX\nI/+fgbUQfBtLjKJzE51ew1/jxXaLSII4UHintNc4YxgLm/zeG0ODWmVejKpa1N/CswUfangFB/6Q\niHB9fY2L5899L5h+lrlkn+7BoB3u2jhiPdI9YG3FMbF9l8sXxZk3AsT+WVs3+47Lt0HOtHyq7Qy6\neqrSkzUniV752B2EAOtCSySE7hUdSo/YHGNGjvjDgO3uBL/yq7+K/+f3/wCHBEmYoPxE2g3ekR0h\ny4w4vSujfWYvuGeeEj1iHomCEb/4LxQGtjUSy+l5ZvEY/uu/+ktM19fYnZ+Lh0ZlyFjC5zblpoRb\nty1x46NZE5Dm/8jZN0fOGTSEhNJtW2vCyRoBi8zvBhDM8yzC3OGAN954gIdvvolHjz9yz+D60mAp\nRpSPwWWOYyeqktFGZlHmmUDtFZoMwc9chAoGgzOJMZsTxmELsBm0khJcu03ByPOMIYnBxtbYcDnr\nOnDOmAxXmZGnSfI7aMgfn7fu02ma8PTpUzx7etHsTdYcIoxpmkEp4er6EuMwYJ4muU2i4bdO1DC9\n2Wxwfn5eHZ5st1ucnJzgzt272KjnEQD3QrJxWQLieEW7MkjlEjoMACbuGHCNRTKDNJfDnTt3sN/v\ncXZ2hiHVhzE5Z1+30pd5vdWHfER6EGUhw/R/8oUx8ezrDzWMWh+W46VlDHGOI8gTB0c7oQuxDCQ9\nBCMiZBSvbMMRpz1NPpyUkhwGAKp0swuXVdLsIwKxPZ/mGVfX1zgcDpimCdvtFvky4+LiOU62O799\ntNlsQMOAhw8eYBiG6vaFhZrabDbYnZ3i9PQURHJwsRnk4OLk5ERWVfHMlDUiSWBeC+e1sE1U4O9r\nh/rq8vnJFtf7g6sktj7jOCBxsnMq+S7gQ6ISXztzxssXLzFNs9wmigqA7cEm1IHhbQkJtW6kOkaX\nZL79dWrbWPDUmBNhjS6jACDnjHkgjJSqEF5rioPtg1Ze6OFVtR+B7nhMQZ9nia8ueL4UMuN62zet\ngrqcq7Q32TVpF7Zl3+ac8Z//4n+Bk/NzV8piqR0qVhSPxilAhOXi4SXflzmsjbeM22BXYEiZe+hw\nVBg3Q4Md1PQMHLFuXMM1uLp8kDO+853vYLPdYrrei0HQD/jrsZkn6mYcS2hTLPHmGGwiLYg5Fuzf\nSrFEUSaj8cdwx3Bummf80i//MiYA01Fj1uvyuqwXyVEUb5HVMmfkDcbLa0NOrWyvlTWKsaDR0RjA\nJdY5s4SlbPlF1ccR/a07plu2FXlz3PfVHg60p5UR1/ouOunRqn/vYjqPJK8FMhFAI8CEOU948eIF\nrq6ucNgfQNsE8AxAw0FSMHho6dHX4zxhiVO9Q5Fj7bfP+/JH4LfNGvXaaZ+1a3qsfq/crr/juLEO\nZ/Zvo85fWkW1B/tadt3umtxTxit9MoteEat2+RyWdpVY9yaYMrM7o8yqR5oOEGXH265p6b+EHi6Q\n7BtCtbFV3K5owi1wbE3GuUmGju1E/YGBVzL6vmqJ90FaGKzR6u44VnDc5DrXFTnDlMq2P/vd3raN\n/S/WiWrY9+C/pnO0pZ0BEcCZcXpyJvIYanhV40PQf1HL0suxRBvQ7WihleS6BuA5UHs0FUucb0tv\nTY0PI+BgG7q/V2Rtl3S/PTwAgMGPhFBCojGKwR/1DbL4rdfI0Fshy3G09ddgUO3/3nsA6oFn3RZd\nD3N/T5DY1+KzwmsArOBlrL/YhzaWBrfmecbhcMDF8+d48uSJ6Cyau9PWMd56b/fPAteirEflVs8x\nOrBGJ9xGEfaa5+/W6ikNfmCTGwwrfZDCtB7zq5SbZLO2fKwOQsww4IEfOnM15iVegyVUSivoAkvh\n9hhjo5Twcz/3Jfxf/+pf4Y6GvEksm5PDWNYUdTFKwt9Fhbft2/7OnKtNZMXrAp4cqnoWmQQCsQ9j\nu97vMeUZ3/rWn+NL738Z23H0XBc94Wkttmo7rtYDuIV57ztjFNavr1Vetk9E8bakEykiOSRo22fm\nRZy+en7UeCotCYfnIEHfWzalhP1+jyElpCHh85//PL75Oz/CoEmYndQQVcTXGYIRERWALYRSi6fx\nkKkYQ2s8O8wzRhqUGWu3jYFfcKz0YUJ3DTfJn+B4ndiFQiLyJPBC6BPy5KRb8IxID07m0qDPRcJd\nZX2V82GVYI96+HK+uwOAgVH3E0/gmXH58gpXL68AiMEv6xXOnBkxpqnBYZpnD4czDoN4zVExQo2b\nDcZhcA//YRhwenYGAvzQBDR4mK+UEjabEbvd1vdeSgnb8RSHw4TTO+eY9geAkodrsaTXeZY2X758\n6cZTM7jnzH4DRuAhisJ0OGC722GaJuSc/VDHwvVJbph+glO7lePXL1X4nKYJNNcCTRoS5nnCyckJ\nrq4lTJrd7rF+meG3fUrIMwntRERI4whOhM0wYhwGjMOAQRWflBI22y3SMLhX2GYY5ABrt5Pv9TcB\nODs7Q9I8NHbTYmP9pIRxM2BIoxsko5c1Uwm9BireTyklCQmG8AwmDLAfRgxpAAgYsHFpszXoiABo\nuCc3okYMKpzIf8xIwZB8BRiT3pQp/bP2DSK/eWg3gEq4I6EFGcDjp0+RxhFTJzZxDvMqwrnRy/Is\nJqpsFWjWsUfBSvYsV89jv2tKY+R37Rjs29ZQQYk8H0tf6dDfmhclhuYyGCznxM1c+uEy43hM+QBn\nMGcNaxd5vYXtlGI0dQ0elZEowongMAcR5sx4+5135CbQihDt7RPBkssXltPz8inKSssXevV9rFUs\nb1bHDqFNkuuHQJh9nESEQ8+gE2WuAO86+XyrdJaxxO9tbOVwXhScF88v8P3vf19oXipGOeH19Tw9\nPFo4uPI9jSXOxWcu6K8YUv3vhh4jwDt+Fw/dT8/O8PCtT2LijPnVdYHX5XWRYnQPZc+3+76qDlRO\nVV7CvgYa/SjoGgt6x+F7lXPtYSV59xS6xVTq/XeTXtF71uunF84mtnGMlvf0xoURh282gqy1L/UQ\njBS1c4O3SxRu8pS+xjTgxcUFXry4wDzNmNOEcdwUBtyYhNpQfu08Y+nhQtuGHbx3JyWAWe1juX5L\n/a7Fw9uMvdWv4rh7a00Btmv99XDy2Lh6/ET+FnhxZ21ua96JeNvFKVLnB3vFXJ6tjJm8ah0pwtaw\nr9eXW5G9MVpY2GP2grbPKEuGCiKfzHOZUvhvaS7w207bsW9S57P1PdnHg9uu/1qxfX7TN54jNux/\n1n/BxcDdyo0GO7ulb3LH2l5u5+F41TyL8zTMFbqVNKfnks4e2zPxufdRWIesGy3b6IWRN1mzbZtW\nft+5e7eikT2nLclRx5Usnah/4NLVFwHEuO+9/VpTAFa5ESUsLoJep1ezahgXZ7coI1dwCP0XpQyh\njf58ejB13QUtr3XFxitabk/rL/OEKJsLPBr80lyLPmZtiwMczQZkPLdLe8owq7XRFqq1YnVgtxD7\n5jjle4AtNobpxQGeQIVj3pfhclM3/m45uek2yIwXFy8wUgJyHboSZDbcJQ9f6BvysKIVFJ5X69vq\nMwab8N7wusfTYBE/FA8Z4qAjMLbbN8VlnPQkxPUstogNfdrkO5fis9uXj9VBiExs5WSXirJrp9Fz\nte9qYrkqJEtlSbwaDylSwun5OX71134N/+6DDzDpZgDJaVfLpHujl8TfFfp0hWj5Q/nbipDIzH7T\no0I+FKW8TuPWtEEJ23GD3/+3/xY//w/eD+1aouo+g2oNUPG5tX9MOFz7LhZWwthes4+ExaBYJXK2\n8Cwr42pLZeQ6UieOsTbklf6GYfC8Be+++y6+9rV/jZPTEzWKlsObInCUa3qRAS6Yd4NXVqc2vJT4\n+TIeCwtj7ehctQ/DbXDd9xrMyu/IgoyAsrcNdHZnk+gIIA8tE+HRKufWDzM8mbZBW94X7x+ZB+Tm\nix3kgUCpnKUREZAlHBVmIcYzE5K1wwSeM66nK1waQyDS/mf/7bl7DJZZGCTn4i0wDANAkuPhn/7T\n/wGfeOstudmCcuV2Vg+oqFDkmXE4TB6K6nCY9AotMGvIJma5SUOD5NiwA5E2BB0RuWHPZAQmSHIt\nlOuDzGIIPxnGGtcVR/aHA8ZxFK+tRJKEGuUAbaOKDOeM3WarYdXI52T0aCARhmUdGPC2ZE3HcdRN\nXR8SO46YsV6WEcna54ycS3gjMjwju6UnBwk2t+iBzcy+/iUXy1KAWci2SoB8L0ZFglSBUgVFDgyL\nt5rF3LT8MIKb7aZROJnAFPp0w6+GTHzy5HHXo85bWhEEa5mUb6hfeGb7bWyjVYiYc+dZK/ChWuv6\nPYWEinrIaRjTEdRNwLR9G2OZ9vhOj9629L6tQz6C2H8rvPd/xzZtznao4mPKAVaQQ8o3Hj70/GHe\ndoCV9yHIV2tPXCsrBbe9UxBCWKmOQF4JwFRomDzXdWLWPD+1jNCufSsoz9ZPM592DLZJ1mSLKsb4\nPOMHf/M32B+uMRh9r27odNYo9tusOYCKbrR998bUyhXGP0A1/sQ5RTo+TRPe/8pXAi3D6/K6/ETF\nZOW4r9ZCFkZ8Xhgcwu/4rRHj5LSxeBZmFIW/VqrrMZru1dM34vjav9uypk/Edlqa3DvMbPuKemOk\nHe27eqaBxvb2r5EbC6sKTfqKmg/U/9bG6jjGmuwH56mBMB0OePzRI+TPitwwMyPpAXZm9cY9ogP4\nv0rvy9Kr0WKhK1QCBsxY6DCM46/oKpbfR2Bh7X39rsWDyHvabyPdbde2Kh3a3dOfev2vjXsJr+Pz\nbGG3Lt8t9do4phJCxfZB4bFre832tKBA4J9tPaKic6wsk8HZHJuur68XsoL/H4WGaYVeg67PmmxF\n1ELTBkQOx56cYnrLPIvel9bw4ZalXaNe3rB6iH1Ztdtu+Nu+rXSHCCt9logWIX7W8HVt/EC5zbuQ\ndW5o69j7tW+sX8cGtWksQnqh6HKRGre6XWzXvvOoPMTYaEjjak7MdatkvRTcsX1VyYRg2CGjP9Y9\n17galG/COGfOlbOu0Nv61nHOsxqKA/9udSOEvUUMu/lgeywMOLRb42m91ln1XBTju/9d8412v3lb\nsJsZrtktosp09QHA7Q7V1952gBarnhloHFT/rsZpYw3RTpw2gosuqg7jrgep7cZsLkChGZLLJjtM\nUwrh9NC/XRfXyco8z8jzpH9PuHj2zPeS0xMuTpKWb9dw0mQr8a1veKC8RKSWRU/sy1TQvVfxirC3\nl/tMD2gI1b5ilsND+Ts6JDKQm93Bgc4txgMVTn4yOv2xOgiJZY0x6MtwOlUT31VC2Aq27QYZEsAD\n3v/yV/B7v/d7ODk5wX6exWN1SJhnFVBJQ1qg7q+SkcPqtky4DEiHwPIjbkirawmcF/GyG2ZkJCXW\nypyRaMDlxQt89NGP8clPfkrbTRXy94STtvSUixbWEc6979p3KazBgogHGEZw+hVCZZeZl0y5VYh6\n7bdzWwjVRIUhWxmSe33ef+MNfOYzb+PJ08faqTCzwlSW89DOFjeF2iKJkUMIMDYorMM6Y3lgZHkD\nerjXEhu7/jjQ8hAIVHtdT0cEIYNv9NiIBjIruTEGgozJkq+xeaS70NPb4xxgSGY8FCGx5JNQhu+z\n5eL5haUXxZAG9cQR5psGuS3AyuASaZJ3FRBmZpyen2PQkEsmDM1zdiHObvfI+ADDD4NBIjl0GDRv\nxTgOvi7KYf07YXyFKbf4bkbzFK4iMzOQOSTalIHEw2CAPYG4wcRUKWPq1p7hVdIbOoJzdeiYwqTZ\njZiWSyMqNEQaskvx0Q2SMPxNoEGYrDQvuJIzI23UQ1yBXtEnnedQ0LjBnSg0NUI+ZzVYKAMHg0t8\nCf2+XP2vcFzzwcTt2qNR9o0fEPhNpyAA54ynT58iDSEpPcphbUuzbe16fa7d5LNnhgPH9raVsnbd\nqk3hCkZripQLTeAwnqoZcCrklEiSyhdaZvw88qhaCRYYLOmR0y0bg4WZ6Xj/xN+uVHfoeO+beZ4x\nDhvAeCkIX/jiF7HdbmUc8lFF02zcLW+OwrbVrd8Lr3dDQ5R3wpyXtDkv/rZ9Z0phGxKsNWzE9avw\nNMCiVazXxNu2XWLGNM/43ne/Kzcy9xNSSjjMS69k40WuUMdxGZDCXGO4s94tqjjuCB+n7aGOe3Pq\nc2bJr2U3As/OzvDOO+8gZ8krZMrD6/K6vHLhGkejt2xLg1rjEMK+NN7s6makFVC5mIv87X2jNoRU\nak7bH2oaFOcgQteSNrelx/daOtzTb3qlpYPH9IfqG58TFSDIy/C3vbJ2/K+jc1wbq5V2XJwzkAiP\nHz3G/voa2+0O8zwhDWNxrIDI97GNFjcym14tS1/Bt+m7Go+86I5x+bvP+6v5rPBTe0eAJ5ellBaR\nAloet9DvOmsrsn3foWJtHG3p9dN7F8fksskKD7wJFmvPqXGYYNUjahwv34g3rw22aa/bR/nbHPXg\n2G2ishyEnJ2d4dmzZ9WY1+QZoJYpqhLkobi2dVvqyqL70OUOoupGaqR5lUwQJ6hwiLeujWb24FLk\nHLnJYI4jtg4VaQh0szdH/4n1EuEcf9sc43OEdV+jqW1h5uq7tp6hV0uHq+9v2U8Zq8yCzbrdgkfr\ntDadCIfYl9N1lPWfOWOzHZGG5H1YLokKP1MJ/awE0fWkcsRBQSkJMl8VRj+OquMQRgD7QYranvzW\nA5uJWXTeVPpb0jsLsy82Ic5TtT9MXxccVnsaEYgYOc8+JzG9ENJgjryFh/meauinGeO9cVhOH33v\nBxpmFzDdTfR5mydAapdhzHlWe0yu0ICDjkJOC0wnsVsoptvLzzI2IOdJ5xT3D/nYBe9ThVuOEy2v\nmdlzF4Hg8yoYIjEpBB1sTEHmYBuTOhXmjMM0Yb/f43A4YLMR3TBp1ArjUxVGUbEhRF0xyjTMmleS\nat4Y15AU9j06QUSYgr2ppz/m4EBsz2LYcNa1lu+Lrcn40kCp2ttys8R4SoImRfVxD+Ptjzc+dgch\nieGJfXrMcA0plwyxT3RzzhiHOt46EeGQM+Y8440HD/CFz30e3/v+9zGmhAz10CYzLAIAVx6IlUDK\nfSRZzoM8FEX8f4yRXgkK4VkUmioFKCJuSsiz5F/4N1//Ov7H/+l/1vHUHkft+Fr4VUyK+mO7zfN2\nLY0590pkM0KfCkP3UFGxPtd4sVZ6cwRqj6GsSoXVq4RqFezGzYgvfOEL+O1v/pYYeHVDugBqbQbF\nw5L7RO/yHmyJavwpY1jHpSjsyaEpa5zW+mR2qegFJtCBX5vQyQbIpbJ4xwfm2O5F6zMax43Bs660\nEHgxu7eh6KOStVi3UNMPTpIcWEWjJjM3BuJ4MwJ6Mk0uy7PL9MZEAIYcgICSMEkA4zDihx9+iM98\n9l1J5p0kBMswDBg25cr4OAq9mecZm3FEzsK0xnFU2kIaLgUYBmVaBFdcLUeLjDdhVPhhHMRLM4vh\n3oxvKYRs0tV2WGVl7CklbBLhME0iDKSEPM2SeFzDeGGeASIx0jGrAJL1ZlYdyg3BGDjYQQ6VnTvo\nupj4IVushECUsHFZcx6ZJwmpAhEVI9b8MWE/200U0oOXUQ+tQKBO4uTMXHk3uPBqe8wpVRzkAAAg\nAElEQVRkPi4eIYnK94ar7e0xdkKkQgCVw47qeiuWiqDhbEoJ0zQBOWOaJlxeXnq7w1AM+Y73XCsB\nx5T/+K9OuNpsUaCufze02wQrDfNzmxJDSdUUR+DtxgwhDuVdGKrRrDiOisc072qas87n7Cqv4YHs\nt8i7ZCwtn4sHvmuhVyINbYVPZsYvvP8+4LediiINGP6YMtLna1GYj20fC4UQaXKEgYVSsLG2eVCA\nJS607bZ4HUsJerrOp9fgZPtonib87Q9+gGdPn2LmOeQgkujm8fu4/m2xWOhxvnENI/x6ckwr28Ux\nG1S50//hcEDOGW+//TZOdjuhdDkjTzNel9flJypU78u4d3oKr9cLTZhjEofn5oBV5L1141a9V/ry\n2mpRWUs7RZvUOY69t5db3rc2thuH0fBmM6C15xwqsAZZ1l7qZKgYsFIT87yVt+Pz+qi4WdMyyHLj\nO9Q7HGY8e/oc034P0RVsPnbQTJWzlIm71rbDjZf0LM5/BXJl+RraWNXy5vo4BDO6reCYtV/a426s\new7wWcwltFHRb6gq0Hy7NpdeW2v7bI0Px3egInH4irscWvPfnhy52NtEjoe2PonbMYYDE+Pb8hk4\nwLXs6ABf3Ru1jhrmpOPZbDY4PT0FIDrH4TA5bhqpqKgOqRzOqODODOSsOp+u12CyPBBkFZHlyKIb\nrMh9Jt8YvE0uLTycXXhzEy3ZFmeXVyNMrC1Xc+w7tyfYFAliNyXP6Wow9fUnWlCJBRYGWdr6N5g4\nTXSBK6yN/w5OcC7fsuj4anx22Fq4IMAjT3j/K7qGGVbR1In0utWL/B3UziAnSkVnYDHPRNXFaTxT\nJbcHI5ngqBtlS//DkDBp1AdKg+P0MAxyU4MZnGfRLQggTZQ+JLMHil2HdFA5Z4eLHT6Cip3PDNFs\ntJjCobovTaBrWb6XMMoZukVrO6hPWKOTsBrYI71XHYfBGuJXDj8wQ8aka2+yq+i2s45JJi//TZU+\nwq7gZLcrRHrg42tyyJDSN9eZWXVZtSOYI+80W1J7O1CKfKm+vS7AafK0osAr2tiMhjCHyAI6ftEL\nZkMd2E2GzFkPNAz7dA7EFR5H/WnOB1+dRAMADVWvznZitsqYDqrLzBkXz5/j+fPn2G63GAaxEcUQ\nEzEfb3V7X8fehkb3MQGqLzGqAwmdPDOQ59pxUfaO2KV6aR6s/Wh3aA9D3QZXwUbWzuwCEmUlIdt6\nOw2xdrIfphAkUsr8CjrTx+ogxPIaJBCYlp6WrqiH38CATPWBBFCIrP0dBY65YdxydRgYxg3284xf\n/fVfx3f/2T/DZrfF5X6PA2eMSZmnbbIGGWzjIpFu5Dp3BYBqjHL+mtXAVkTSqYlVaB7xEYm0MSG4\ngYlMs8yDiHDYTxiHATsa8KO//i4ePXmCT37iE5qjYvCxtzCukJyLt7UJyy3yx29icbio0GPetYmL\n0N8aluy7EbR4xsyejDoy0CRST6gLmJTPLLkQ8lyI1KxrvRbzm11oqQ1JxAwmxmFmzER4+73P4vm/\n/Jd48OABrg97yRkQhAxO5CF73OBEfQNLT0hoYWwkQbzrJ39CKvgAiitcCF914DIMEm8TgF27FNwS\nQEn4J/Y1s4TQC8USZW8xZxDXyWCtvhl0482Qdk7mBU+UkGisEyyR9DPnDAo5XCqcW+CdeM5nTU7i\nTA1wpd4OME04ikK7Lh3qAyRrWXM4ZIuXn5E2Iy6ePxWjPUE81il5+Kg0ytXOPOt15XEUAZoAGgkz\nT6BkMLADEGXbTucIREON9x56U/NLJBK/gyD11qSHkDyamhlbJS69fCIn8ePWbr2IIJxGxZ2kgvqQ\n4LckiDwuZBQkgGJgJJixQAVRMmWCXKBwJq4wAWUMAwFZDl9SsrBQkd6gfEOk3oFw4cYEHINFwWEZ\ngAkhXiMK7iysVnLQkB6YFCNrMS4YnjurdtrjO1ZDuZGGbONsyk45uPQxJKkncCZMTLje73F1dSX0\nK9tYsx+Ee7gjAwoKPYjGAAAhtniZc01rogBZDi2W32h7um8NJzMZz7C+rKLuQR3zYPBueAej3Mxi\nMg/FIGCB/KDD1VeTofUbo28uvA8SY7UYWQoMCr9IxUDP4rU/z1kVBvFCyaxhYRSu5tXfo4+2BrPh\nIhOSCpszZwyKL2MS0ezhw4eA0eqBXL4uY7TcYzVfsAMANuWBC69xQ4XSSLIFQ8EVAlw+MSHZ/m6N\nK36zhILy0qyj8zlbswgL9UyDzEaNiw3clEfarbFDuBnlilACkGf8xbe+JUoLF0U7seQ2su9dwA7j\niwJ7HHPkXbZ2UXEw2QcAqAklEPmRC/nNc+OvQ2akzYjr/R5f+PwXMauHX4T/6/K6vGrpG50Ljvfk\n7LbklefHylpbq+8CvSjPCimItN7Zx4psHH+3dPjYN73iRtQ4biI5oM7CG+VZkLHUhT7CrT48p6I3\noWh4ZJ82xQ2SzbwjLY1tV3RM5/D82TM8fvwY9994A2kcFwfBooephJ3W4XIMn2Idp3lm1GWuxuT1\nctH/KKWFgxURuusX24vF9HXAZM3Cw6x+1LNgcp0KhhQM5L05runEa7/rubS4WNfp2SlsvDpUv4lt\nMkfbz7H+Abj9IfbvhsLe+ONvRtATa17OXNc13us6n1hfXb/IxOBEGLdbdwJM6iwmU60N5TUe1PK+\nPUuaB9AMqVReFbg28pLx5PibiKrQqkWKtzFQRGJ3MgviWZGzIo0NeFCDuHGqzCLzmkNWopIz0OVQ\n3aum00RddXW/5Ky5GWx8y9vE0k6hV0QxlBeZwqwHSlJvoBEU8EJOI8patfacAYM7g5aQV7mSF4EQ\nliysHQMePtrlaG1XXMGCLhD3eIc/UHVTocBwsxlFz5onsY2A3a7CzMh6s1yigDTOiCROe6w4J/qD\n2ulCfglADwY0d6ccINTjg8q2zFlzTFKBMRcHTovWkajl5/p/wyPlZVlvhhgumxMRKOMw78X2wqS8\noziGG55LvtHZ9aBoSx1srsxis9FxbVISJ08ofBzugftpkkRBnxI+3PKKzocSSnieZ2y3W+Q5yzop\n7G3+FioXs8B5HEfsD4ci5+eM3W6HwzQtcsXO86Hij6Pyy1lzEM0ZrmNN0+T69GazATNjVoemYRik\n3/3eYWfrdJgmESFYwlrtdidgZuz3e8ez09NTzIcDrq/3YoNJCU8fPcHViyvstju1fzCuLq9wcnKC\n3fYEzBmH/bXDZ9DcqofDAYdpwvn5ua/Z5eUlAODevXv+bL/fS87WzcZhaQ65p6enmKYJk95KGccR\np6enjpd2yDoMclPHcsoSAZtxI/KRIvk4Sj7ZzCwOYJwxjpJHttBx0u/MnpM8gkrUySyfruMoMx4/\neYzv/8e/wW3Kx+og5JjIWhHL9otgd7G6UZDsKQKtMBI3+hv338Bbn/oUHj1+hGEcJL/ADcKQLaQV\nu07X3hqx4fZKFFZiP8VYGDwwmm+jYceIQp4mTPMBu90Of/KHf4B/9N/+d/Vp39oYmjbj+GsBc70U\nA1cQlMK7m5QzZq766gmpzliYg9eFKhRcry9Qcg7QygIYs4qlXRNbh/v37uFn3v4MXl68kOt7qGM6\nWniqdtytIaad0014uwaT9ru2TTIFAGU6rIpcMJeqUAbhWU0brZGMwoFaqVd+D8OwurZROPNcAzlL\nboxQL4HUAF9/v16WHlzH8L33vvd3dy2mGX/7t3+L/X6P3cmJv28P2VKqY9yHl5VyYvhXwRNlD63v\n2ZZsRHG9jKMqFT4u5x2ZUPsulmyCt+GH/jblQpSQsKvY/1ONSxRqvV6as8vZ7bBbg+aaAWRZgvJz\nw7y8He8jeNqQHIwcx8G6HFu7tl+icpBxdXXlQsE8Ty7E3dSWwcbCrZlgFud7Ew0v+7zG5SUaOTFx\njY1guVtQIWYbtziOI1F7a2Z9fKaymSAqbdzsvdmji71iQrEPn+Xgb1DYT9PkcO3yd5tb20dmHPIB\n2+0W0zTh3XffxcmJCMdoaEZsSxSK2us6zuNYPOpYp5Uh4lit3Z6RBoArmVkFUSLS24DLPXgTvWVe\nGv4jzrqs16zPNE04TBOeafzcOAdTVLx9igacGjdKmMLi/VSNHzVd6pUerNbm7e9I+v7Sl34Bp3fO\nzTTQnevr8rrcuhyRJ9vSo3m342U36wzlfaF/vT58DG4pqeXXxcf/P5e5J2hYWVMWcBxuZsyWNmo5\n71Un14vVL82aTsbYbXd49vQpfvzhh3jn7bcxaxSDlk62unJbujjU0TMqLYzLu7K2xUs3igjZLJ2h\n9Ph2C9oo81V0tmkuykfMLS+Fe3bXc+Tw3xtkwvD+Nnsp6s3H5FVGPY/296uUCseEmbmDCLP9Zj+8\ncl0vOPUg6IquI6zgbpmHGo2ZkPVGxnazwXa7ERye8uIb4bes46sd6exWgGEcoTg/geWwhVkdIggA\nF97NinfGz1mdLwp+ltDjPh7bH/pQHBkjYAE99QM84XI/FG1LUqR9FE2INHpAXCcAo8oJDFSh7ABZ\nHg/HGd8FmAFUbiWkgkF2g8FUQ9NrQMGptJGfAMjtenUkjeGNEA4TJRrBvNgj5rnusnQ8XNIyRoce\nFJiZvjK4TlTL2UTAMIwqwxWdocqbq7pai7E5Z89bc3Kywzwf3H5kNIxYnSp59vxKFl7VbiCbkZoJ\nuD5MQFacA8PscDPUzpLFwM4zu+F6Vn15P++r8RERkLMcJuQlfhm8LKyq2RaYRUYWva/Wp+w5Dcnt\nEcSMw/4giao1n6fpttf7vRi684xxHMFq9J6mCQnkBz4W1UJW19aneOzPeUIa5KCBM7DfT7Bk5+Ys\nO82zr28aBqRhkIOFXMLNj8OAPM3+jFUPKbf3WfEBfqAhDrGFJ8nNChnjOMjzq+trx31KyUNSjeOI\nNMj/D4cDrq+vsbHDAwBXV1eYpgnb7RbjKPlXD4cD9vu950UCgKurl2A19ifVGa+1j5OTE2x0rnrK\ngJQSPvOZz+C//of/EGenp0gpYT9NfltGQvQDyXQeIh+TzRsp+cFS1H3GccQ0z25TGLVO1B/tFkkv\nxHZmiVQClvWIznhRl4p2rjW+GW0ZZjOSGzFzycMyDH5QGp3JTe/8wd/+APg//w/cpnysDkJEIBYC\nzUgLotn9gmvjdc843FPUjxlFJs74lV/7NfzG//q/YLvbQQxh9cm63E4BTEGQzxVLrH9ggYy90ho+\n7ZkZQaIRy4VB7yko2ubRHxgLE2GaZ/zfv/Vb+KVf/CXcefAAM08YoDkAyMQeNZY3wpkVCScDFaDg\nfNATUHWKG3Gq2S0NMKuGpBuMAxUsFgIolCjOsCRDjhsLfqw4pFIXcR1mrPI0UALOw4CvfvWr+J3f\n/qZ+I1703fHdoKDW82VntBQFn3CA5TpAI1j3Dkla41eL98ZQHDCAJFbgIsy5IIy2bYAXAkrtXduO\nsWeAs99E5InTi0Jzs3J/zJjXKmgLA2xjWJYxx3W0PcXhvdCoNAz4wQ9+UJhBR6C0Oazt/1hXRwAT\nNZntFgVV9Vs8A5YG6jUtqoW/jBdojisqGEXYtXNo8amFp81hOcdlP7PediGSXDGZOjf60L+p1M4v\njs0E4mMKbk+BtQTWIFTrGr9bK9Jvcu+engoZ+7Z9LZ6pIuw9fvwY+/2+xABdgX9v/iZA9PLIxO96\nsGyNJ3UX/f7i33PYt1X7K+sm6xP/Jr0zbO2WXRHIUFFElFCJ8wEq3G9pXqQHha6VceY8V1eKAeUO\nPIsHlSlmfmumhomNxThdhNZmFOF4miZwBn7h/fdFsVAvmXZtqt/NMxM8gZru+zyYF7eA4hh7uBT7\nM94d+UOPd/TGHL+Vd7VCv/Rxrg9qgIbnmmE1M771wQeY9vsSfqqz34EgdwGVNyeYq5swbRsV30RZ\nT6gybIpVjAFt/cVx9P5mZjx5+hSf/dn3MKm35+vcIK/L/xfFQ2kE2gYs9zTQUHAWQa/nTdsW5j4P\nEhnc8ruFvYZ6b904Bx8jFaK/GMNxGQVAxXMB4x1w2MS2ekfIlbwcfnd5fnjmOdWABV20kkzh6pSe\njODzQYkOEMdf+FHGbrvF00ePcXV5KcaRZPK5ck+bP63DsUcLM8wDO2idbIYvLOo7PJy5AiCKLL0p\nvkINT6nHV9Frq5eCB3UzBoupX3JYSJvZlBvU69SThXo6U/vO4L/cFxlzNml+iaexHe4ufC2zAMCc\nI8wVZnagEfaM8VjmEpbUw94IEBQPAh/j242PCFX+NCvZxqI0wMJzbYZRZCqNzW97kdVgn6hpHKKP\n+Ax1zwyqD4tOlLQ3qVTEMIG18f5y6wHFdgFUtKE8CDqsw1CfOe2U3wMl8cKfZUJJQycTE6C6O3PJ\ncQkicArrabd4DXZ648D0vepWXIBxoqWcEecFAOQJm4EhEWggpJBPMw0hXLTqOTau1MgjmQAM4sFN\nMik/mDUZK6WExIPvAblFIOtr74kIqmiC9fYuAOynqeSLJfE0d92FGXv1xh+ohGI24zOgSaazONBk\nZgxqlB7UsOpYmmf1egfG7YjDYY8f/fDvME0H2QoW7pnLoc80TTKnrGFwAWy3G8w5Y7+XGwHxVj6H\n2wNWZmtDZfjpMKnBWvRKufkzY5pnHA571zuViSDnjMPhIPRW5wQWD/vrqyvRS/UwZBgGXF/LTYF5\nluTqwzgikUQXkPHOaiSXIzj2QwMuTmUkdpg5M2Z9XvGFPDn9NV1pnmds1DBuDniGU4wSZkp2ULAR\npZKnhTNLODLb+wmuMzKXQ8NjthRzUhvCWHLO2CiMLPQSUdHp3fkKAIVxm35phxBRnzK6f319XR0k\nLPiI7sNrunZnSnt3+eIFrkDgPGNIo++V3W6HT3/60zjZ7TyiCREhDQNmMPKcq7zQC1pG+pTr567L\nNLqiyUqtjGT0iSOOp5oPG620CuvySxhPA6No1+RNkbl8zEGWA5R/Z8aoh023KR+rgxAOkDTDtDEU\nAKvevAkJGUvPTKtzTMhr3xMRMAz49E//FP6zn/opPHn0yAm/lSJ8A26TZCyEmcVmdSaPSslulfku\nbDrjTSm597A1HAUUUsGBNhu8efce/v2f/xl+8b/5lcrbAs6EhERVAp/K7LdXZfrj9jl15tnOaw0W\nrQLj/xI0Hmh9c0aGL4xNFifcNAg4ZYpB1EIoENw4LlPSSBn2u+++i2984xsrQnC9yXvK6TFDjOUh\niESjrdcan9YEeWauCKfhXkDdSuGr27Yx8eJ9jDXYK8eU4NpwV55RluvCfiLNTfiBzl6u+7QZoQuP\n3hhr5au//3rjJwD7/V6ZISMNyz7ldsPgYVtiv51Ga4MvoEn16vb0zQ3z6+OjlTQM1Q0t5hlYhEOr\n21gTPixOb6xDDa4uD3w6+zviHqGqb8ZHEb7Mi2EJg7V17NGgOLZeG/5t2TWLPnoGJwkRBA/z1goW\ncigTYntS8XpgZhfGf/zjHwMwHCL/2+m/j2g5bkJRVGy/L+bl+6zvaWp/H4WNjYUl7GCBSTDIl499\nHSNuOR2Pa0ZFkRI4DZXQlyE4VsUt7QliK/TC6E6DDdJ2vMnnhp/yt82v0MNcP2tbbOj8OIw4OT/F\nJz/5SVE+TPgOdcNIHVaR9raC5LHSk4EW/AqoDs0cDk07vXYjDSVgIS8teJPJHJ3xVAqEzRnqOXd5\nib/69l/K7aF5qhT4Hv56n5VMUHhfCwPDJfdoovowxH0LOyS3RxPi2IgI4zDgs++9h93ZmfSlOH5b\nnvO6vC7d0ii8aPDJDv5Kfj2CGcOXNHCNngRvbCz3nHnNFoeiZg92x7wuo5jHevu+kgea78yIA2bP\nNeVyBWqdK+pNrQEAgIcEjjBZ0Eyq5XN7G2v15Omeoi/9l75iv/pHhzcU+FpIj0ePHuH68hJ37txB\nThmE5IcBKsZDKar339OtIozJ/9O+r8dSrV9L79esJAqxsrbF0SvCw9rKYHe+E5gXL2Q0czFxu9KB\nFmAse6Ik3C39tvNr4QUEj/cWlmEvxC8o6J/2X9JbDbEP86slNSqTWNz14MP0WrjzUIn7rk6RqtMn\nKn0yhz4qiSrIH4FXwsdXKrn8ZrqW1p8Z1ToZvTk7O3PnwpwZpGGP2ORujZkre9VyAliIFTu8W+r3\nCQMyYWGIlFGZXKsHJi6X1zJKbz2j/cBa48S+jvGmM40b3885IG5FW6x+kFUZ4n1N+q53G6PV74Hi\nsd2+t/kd1HvcvL4Tjbh8eYndZuc6gX03bjZVrtsy1CJXE4kneaKkYalEThy3W/cmt0MJ80KP47S+\n4q2TcRyx2UqoLTNax9DX283Gc69uNhu9kcB+CMA6j0Tk31sInqTRCSiOh4DNOGDUxNtX+0v8/h/8\nPv7Dt/+iRGqgshtYc3GYA62Mf8Y0Sb6HYRwwpEHCjuncJgvHTfXBntFmM9BvxtH3WZFv4TcSOGdx\nBtW5GI5UuSDCHmDdI6ZDGZwyM3juhDhmYMLk/FX2HMDEHh7JcTAlcAYOylusDHrwRmAJt6XF8v+A\nAc6qtyaCJaohSBJ0ZbhgJg35XBwgxjT6wTux7W11CmYLE1z4cQ72p7gP4p4ZDYZ64JEUzgxUhyCl\nmD4u7bW5E60vo7FGB209fXyQUIDEs+x/d5aWjzIzxmGE0TjT8z/x5iew2+3KjQjtgoaEQdu2UGwN\nCZexkbEdHWuWKDgJcJ2p4E6YdVz75r3bKII1qpXtTNaiIFO63BXs+SZ/JpA6qpsjWRLnV6f7ITVE\nZl0zCfeXqYTZu035WB2EAEVJNUC4qKDPfRk5VYsmgkRH4EatjLbCdGQ6vtgsZOKXf/mX8b/95m/i\n9OTE27awEFHIc68DiDAgNEQZjHk9hPhmKrYVwTyMs11cO7U3j9F4ZckMRdFQLDHrNblVkhPn68MB\nZ2nAn/zxH+NLX/0qTs7OQLoBra22GGO3PBekgoMx/ZbR9wSKCFfKzYa5oUQx0XsJsHfCoYxP2m03\nd1j3JpGBCdTMjMZhVb+sDeQ9BeHk7AwPHjzAkyeP3evG6q4ZjVoi02u/l4TZvu/dMOopmouxdPqN\nBE0EHLkKyrkYM4+N1wTrCPdVxXelCNMK3iUasz9z1qvBN8+1bc/WvTfm9raGtd0j+laMScfflhvi\n5OQEL1++xENt2/a9C+t66Gj7NRrk2sKhfatjBw3VuLgI5WjWuWeIi/OqYBXrJ0LOE6CHMEQoyoN9\nS8bs4Ay4R1uTjqusWa2olCEFIQ4WsiZ4qBmRRMFXSaam+Uq4Xad6v2iHEqM6wOzY3iMVZFvlwIS7\nqJC139pv4whR0bL1L/RdxYMO3bTxP3361BOoRVjHfudcEnYbYM3Lxuhj3Jux/dLOst2ekNR7XtVh\nEwfLN4Yq5O3WB6fWnt24clxQPDQaY3gwEMHE8kXytmY8PdjWRiaheSZoxvfVfKm8Iyr5J+q9Fv4O\ntJWBKleYjBn49E/9lCh26p03G23iHk7U9KeF3Vphouqwsx5Dw99kw1fyh/F6AO79Fr31+nRSr1A3\nzxZjbfhIbCPSPLkdLHV+/OGH7sEW4RHpT4RYr22LvY3ONxE+dbG9VeNEqzgcUyBSSri8vsb7X/kq\nNpuNHhqigufr8rr8fUtLNZLKcSI3OCGDE70gG7rOxUXmMcWVA75LE2pAMUrXkTPi/qho2i1Q3QPX\naD85z4U+EVX0NcbpdzlB52k8iLHMZRZlsRh7nZlLTrnm3wjbVhdq59yT8aLu17bFqHVSbw8mVyyL\n0Q4zPP7wh/8Jj588woNPvImUS74ASwg8aagXl08Nngt+LyMjB1iE+HIMcS7c1mtkl+X3/bxLVuob\nj7yAL4vVDZWDSYpuIuxRn+TwKvZtz7k2HjlNXpcfrF7mrDJ+mC/YYcgmsZCuM8lTdjARkA1P3d0C\n7pho34Exz5aroNwMyWzG16z7IbnhiW0vk92Qkcu28m2J566/xNAVb7+DNVQJ+W+oc9dC9rW4KQwR\nlmf5f0yWnqjc0PRcdznDblFIiB6GJFyM+6kk9jZZl5ndGaYt5VnRmWMoF4Q27JnF/7dnllze9kBS\n2XMcBkyqF81cQvTYgQADksiX5BbwOI4YhlQOF9Q4P2j4pEh/HAep3I7IKm+mlDBofjrTNYkI2+3W\n61ssfTOie2jcZDkX5SDC6tuYk/5t4XLsEIHGwUPFmoOX5UDbbDaw8LSxLSLCuNn4gYA5lrgjs4Zm\nSgP5mCRZeXKj/zxLSCbP6Unkc4i03vSqpHJdDMtsMJU8FlntPRnPL55hs9loSCdovhbbZ6aXOfZo\nfwnjsPX9PU+MGTPkoI0waJhwuL4i7cwaVmy322l7KKF/nDclcebVs82Rkoapk73X5u+SmxOz2wdE\nPiXfp1OenUb4f11HUhM6F3og+yrL7brAC3ieZWxhrwjvXTr3Sn6VIutKrlY9TEiFnpgtLmvy6yLn\nB51C42IXc27UKlUemct6meE/+225kPtP534I+WotvJdcApJDFybVcTK7bdTogI2vcphkTxPmNg2T\nJoyuM+TwZWjC5NsYBW51kvW7d+/i3p07GIdBDqICnXQ91Ghbo8OQwaaBF1IqkXtCWwXH4WtseT8p\nrElcO1uNuF6+SvY7Fd5M4Z214+utY/O/wb6eCkIAxi8gYcG0zcLjb1c+Vgchxgik1EJIDHUQzzuK\nUFROB53wW5udRYsLsjAcqsfxT7/9Nn76Z34GF0+e4upwDSY5XZzmGA+xMGn3wggCubmlVMnOO0qv\nE4HwOz6LBslqHiinZibsS0JdZcgsnugTM66ePcdff/vb+Pkvf2XZbyP0tQYEFx7COznBLHC2f23T\nJxVGOfeF+PjdAh4oG8GqmEdmNDIDIrwl39TkqGNzc48RDknPWkEaDU6E8XEYhIGJ1JP3y1/9Kr7+\ntX+9UBJ7alA0CvUMjRFXe4YRZq7i7/WIVHwe227byWE9gcIyLX46lLjH/RHhWRhhf45tv2vGM6sn\n7+S3GNKLkN4aPNfmFZ9FWPZoQaugtzCM842l7EMZ03a7xcuXL5HzvFgfb3NFEbUPE4sAACAASURB\nVKz2WIWPhbH59WV7zsWjyX5HBW5tPy0V+UJbXFAyIyGKMsXGeQb5Ppsgq8IDUHtIaWc+j1qAMBj3\n4+oCTaiwSgBQFm90leWqbGt8TH4tXPqdmeWQR79p8S/iRmwHob49N4FHjAeo6lc02dY71Qm/2pBL\npZt6PIyE6+trPHv6tKIZsb7jrP2O+64Zt35V3gewJ70SvoY37dzWxg0URdHgZGOpOYt/vdq+rXGM\nXyoGcfXiMwMZav51bI/1n5PvLaDGDa/vNK6sgwnUbW4OXyugaqvdn/v9Hp//whdcCIy0px0nKa71\nwlO1uBxxxdpxx4s4noZGx5uBlcDe1tV/3cmjQ0ONHlXtd+BETZ3Yj91EMcNLSglX19f44z/6I4Ck\n/7kjjFs77iCBmq9GuSzOLeJPbw1kf2FhR451e/x3VKOFvbv/4AHu3bsH5vpAJnppvi6vyysXx8so\nawgPN2OqOQMY/TLDU5GN4fZudpoBhM0ifTAaWl6UYx9DfNvKe1GjD98Jv5dOLZHmnLPoDoTq9kWU\nNRLRQj6s6QFcFyjjNZpOkky3I/t1eVIjK0YdAdY/WziccoBhxKLWbRvasbL9mdnnHucdx+Dev4kw\nXV/jox/9EO+88w6Shtuw27OTJSFlAGyx1QEQF3qotE3EL0GAis3bJyJBSt0iuPqc3fmHRcJksN7c\nl5LZJE9Zj6R8VozwtcwghqCs8nCEouEHaWgbg2vR6WBzcYEk2hgKjP1D45tq9C03CpJjegaLPMLG\npxQIHJ03GCjO+10e4zimSBrzINQGuHIoEmGKXHhtJvOYZjCJJzfpPjIZQMZGMu4cHAEDTvsYDJr8\n/7L37rGWJsd92K/6+865987M7swu90GJ+xiK3CXF5Wv5WIqhZEtWEsuRAyQREMmJEyBBgCCJg0D5\nJwmQP5zYQAIDURQgRhBAjl8yJcWyBEWCLNmmIlEiZcriQyJFSlySy11pl8vHPmdn7r3nnK8rf1RX\ndXV9/Z17hzFALTA9uHPO+R7d1dXV9erq6rpD2acY22V3sLTqApD0LZJSaCopXBIODw9FXx8GTFnm\nh6Yyyjlj2jGGQRyU2+3WZLemumGGnYVAVM9czMx2IC8AUEpYH6xtzsnCge44GECodEmFbwzDYM7+\nXUnTRCnh8OAAaxpKRDsZnxlXK+y2W6w0PZM63lPCUGBKpT5MGeNqrAcDk/DdNCRAFyuoXQQgItsB\nQYkwDCMIsMWPaNPqAoza7IIHFzhb+MKQkpvv8lvS/mRJWUeVj6ldSG6u+F0OPkWRsnN/Eoder/pS\na4tUvld5v9eryfWFwSUN7dCcl0FFhintDcOAxLkuYFcmJrtZBInYbiUt1eZ0B0LCblfSNhX2Wvax\nGG6BedCT1311PmhgpOHA9GiZN8KOGNuCbDnXpOIL5pmujnTN0GD2MzMkHoCQUHbHTACg/VZ+Um2O\nbLxP53QuPKA8l8sdFUGBOc5shqA/e7tbF4R1IUSDviQAFPBmgH+3xxMbmErpnVsBGy+j1HJfF5EL\nLQ9lgaDItUSDyJpCwATCWM5JmVD5mvZHF9bdsTuL9lShwJk/p37WOgYIjWsKrwsXLmG9PgCR7Ai0\nnqVquwyFP1idjV1TaCbYiTCbi/q6mpd9quvodTAcqXdtFaXTHj56xetTfoGpZ8P3dDFdJD5veVUt\nhACVnNm4QXDqeCJHi3QVOL4sTZ5oxDfOgyz5/6c84bHHHsM/+pn/G4cXj0TIF0dnuzroFBxuCf2m\n+s4826oYjfeesybN4J+qUKSywjYAF1ZH+L2PfwJveetbwbTadw6gwBNwtY/sZs4V3Z6G6rDsOW18\nP7rOyIXihZDC6liPPdPWxaYcMpdULgykwSmpxSjhKBF0HIq8UiH80Jsewkc+/BvYdbfYVVz0nHW9\n/no6rfcBMzi5LhhYrxz96e+znCte2VGMJcdsVShH+CI+l5xHsfTm674S0/58M0Xx4vGvpecYbJxl\nAU7fz5QSUJx1q9UKz3/jG+A3vnH2TnSOtRS7XLxCqgLM8wEPzzdb6tKpGzfVXgkI2Yta2M4oi4Ym\nVNlZSEXVmQ9e4ZyPid9pUp/34x4nyxyWeZua41SjKH2JfOfMzvs+EJkyD6BurUWlj2masJt22O12\nuHF8bJXOaMkZ0Uof8b7ynt4Osx4/7ikg53XQqnM8FblNqDRcF2nOT7MtZTJUwa3qLoCpbtRdUs72\nz5NA/+49QOWx45OMGe5ag6iPq8xshz4SES7dfhn33nuvRNqJt+XceF7q29zI9IdbLvPwyFMafDll\n2C/E+IUNfd6f8XEWb/KOQw9vb36nJAcYvvzSy3jllVfAJY2BpkHozd9ehKiWmMhxyUj3RRxxxXJE\nNTL7dFDLrkShKS967LH3WRq0nLMsWGKJam6VW+X8pfInFAeC5Bmv8eVCt5o73eZxoNuenm9GsXum\np+vMdGb3vn0P9yRFXb1OqFHpZigTITrNrM+YH86pPci5Oj4TUXWawztavA5gtcizCTMeFfvjS2rS\nT5VrqA6GpXcN/zSX4/UG3DkdojsM4wDkjLFEcaYB4NWIl55/AdN2wuEBynJFWZYhgDToC6Qu/ZL6\niur30oyoJ9U+qB2THX8+CtoB3cBvehgCz2zwIEEOgrsKgwYHqR7HzDUVip6/Bl1QFsS3qTKFPshk\nDcxxKzJX4czIud1JkbPk2GcA2fkFNPpYxLYsKiQiDGm0lESlVnBmO1shszildQc84OUUA0nOE2Cg\nnk0HOPonbHdb7KatpXgxvc/pD9M0YbctOf/NgSeLirk407fbrR0cbNe1r85e0j5P04TtZmN922w2\ncsZB8cNoepnVIIcPb8t5BNvNDswS1POdj7wFFy5cBKWEsZwZYv4L3ZXgeFPihAzGwXqNVA7FlgOo\nhSZWZQGEmW0hgwCclsOKfdCRd5oDEIdnseWHNADk0siqvQ7YIgWcPaYLEoajYbDc/4ov7YPZ+4DR\nr1G828ltfKUsAqaS5kl1JEm3VM8rtPTnytTdQd/ib9cAVVlEiPqQ+jnSQCBOSEUHrbRaeYRvSjmT\nWUCOBhsZon1kF1RX2pQH5D1bYLN3yPiC6foEDMOq7Cyw5Fx1oWUoY8uyAGgwaFQ6EThLaiImAifZ\nHSeO5+LAL6mDGLLDR9c0fL96fjeVPw1eO6WnG7LxjzAurn5gsN0TijO/gFI7u3RGkdMHaIBFR3O2\nADhxegMl557pEXA9m/lJyI2pe0Zl6k5392ddYEfZhdjzx1aZoGc62Y6G7GhmL16X7dj6u/yRUM8O\nKPioOrjKCUB4sKTQYpNLVZtStO/XBxr5Xd+q7xb9jFh2V+1yxsHBAcb1WrIflTNuWBU7x5Otjjjm\nrpUGPptn80AAD+tcVyt8rVQqcrUz5x2/69arNbGFT0jPXF3nshuxjO995VW1ENIi0kU+6BVFWO4j\nhYgwBcbvV6lUiPXa9c/LKrlEG7zuvvtw1z13Y7vb4eT0FEMaMIWDMj1lKQOPTI2ZZcsQkW7b6A5+\nLivGlcicIg7M3jHBrdepXb3WJ0+mHdbEeO6rX8VTTzyB+97wRqyGsSojumfWFSpCmIZUt5W3nKBL\n+ERk2yk1AulcDtSmrt6Emk++Bt7mbYnaie/4VWGg5E/1Lmqd0J7uMKezPE1YHx5guznF3ffcg2e/\n8pVmLHp98ofG+ohVH/1T35sbYUtG1FwAdhhS7WE10pyTxjPVfQ42T4+m6HX621McPMyxnfOUHuON\n7bZUANsOvbSjSt/1ME1eOSkRTCYWFF+oEf/PPfec4SLuPhGI+rTf0mW4F34vzTNTGF19Xj2zMZ/N\nvyJYufZbozhqG7lE2i2XqIh42GDKbHW+TyoIewKzCFlPN9VwbrHCzJgo0BfXbdt6vUdhM6Mn0FXN\npd5XYp0p0EnP5KLrXHuARhkuRzyIXTVgsz0VY1O3bnONyPLj3uCu873FISoMUPR3ZFTnM9bXw4nl\nADb+aQDN6oh1MdczjDxsuaEDTfwgyqs5AoyfV+Oi1/+In4Y3leHs8iNtEv05WXHn7DzUHRzWTyKk\nzODEeP3Vqzg4PJSDCMcqW9XoncvBtuVR+bYZJt4wwyIf0hJ3aGRu5YzBnXW3WU3vxc6BD4hR6XHs\nz4TpyQdDViiTU5gNRmJMO9HZHn/8cZjjgcKC4h4505NHvYXB3jtL+DtLl9F3dJyGlHDhwgW85u67\n64KR0rzuIl4+SfhWuVX2FuIqx4dhvjuC5Es9K8TJPJsL5TmT2x0d0hvXnnernJ1rAu7NIlclwlJ5\nCWMkkgh2KE8XRp5Q+bI8TnU3ABcnNvsgMb9Lo+oMpr84vkTFOV68zg3v1/SlQyrR9GH3KheHXOVx\n+lllni3FOHj0GSpbamY8pFzTxQ5dwGBWfU5wbOkTtT6IUyrzJE5NSrJofO0aDg4PMaQBw3qFzXZr\nkaTq7LadjWWHgMLpnWG6CGA2ETMYhX6mbCPu+eTkHKlm85T3i/ZR/y+GicpxRkkDWiywIdV0s7vd\nThaSVU5CZN9mt4PaJVUXZDu4mIpuOYziWNpud1UuMWO3mzCmhO1uh91WzgFIoV1d5NBPIgmI2pTD\ncre7qUSuk703TZPl/J9K/n1Kg7XPmbHdbsCQg5I1mE5kxoA0SIrrzWYj+m6ecLrZgKcJ4yA7JEBA\nnrLZONvt1g7wXZUzIHROK9xTwctUdmAo3gx/BS86pj4C3nZpZDT3iQg87YwWZDEgYcqEo6Mj/Nnv\n/T7cdvvtAAPDUFMoAXVRwBYqxhGiKrdymCA7f/I0IQ16OLezY8G4TWmtzCPSDAeA7ZT2/pJU0s/o\nLJ38PZu/OtmBMZEdRO3x5OeA2trmtmdN1+xtq+Kac/6pNDofjrNBxABIckYAhXTFpS0LDGHjHAAT\nUhoLL1IewrKTiGXniu7Y1saICJQ1er6dUxYUxgUmj52OiaQ7wFyoTWMbEtedP0ZHqfZJ+TkTQINq\n+1J58jYNyyKnnPsiFy1LiJqOgNHC6ea0HFZO1bdjdiY3brBk7KvaDdWnKJDGHcj6XM9m998jfc+v\n625hldEuhTCcvOUaFJQtgAD2hMLJkyCkHHWPIQ1ll0ZrxyieVb7UsYO1rfQRS+Zan8kE0rT6BBRZ\nb/PSpUTmwltRFkMsy0uH5j0+CdQsHPvMPDGoPH7qXHUjUfpddBGqdh1nNIuefd9Ar9TxbApB8JFF\nyTm9cYLLly/j6OhI+CFUL/PzzNlnC3oaHC21UJR5jDpPemNoOl0Hb55P+/b9NQ1irrO+/V7tem2v\npio+Tznvc768uhZCkEBU95NGxqFbrTJL/saeoesJX/Mj+oHsGbq+Lfksee6KwP3X//yfx8/9w5/F\n6mCNTTn0KHONQlIho3Vp2oboYDP5ASfgXImOO3lfok688O71wdouEQl+HxozY4Lg7eLhIT72sY/h\ndd/xHbO+x0OejOHnogAXwd/gEv3iDaQ4jtE55e/18BCfsbGa3WsnCSWCP/BKVIRU9Bdhlj4fqkbr\n9HaDqMCsimqyiId3PfoofuHJJzGu17N+eiHp+9jgyOHER9Za86AKJ3wk0/6dCw2duLHrwdJ2t84X\nJaM+7S2PZazfv9cTIEuwLJWlCAiBqV7zqUliOz3cmSJKdWeWKhtRKdQthNeuXcN2s8X64ND6Gvvp\nDbTYHndw2I5Be1BaA2t9ob63INz0fv0u+FLlabZITK2w8zTg+xfrll1XFY45nmHzSfskgl/giX2s\ntBzwE/UKVfbdPEVQUNt80y1Nermh81ZThalSpM+loZ2rVqfmmy0A+Tk96K4Jc2SjbdvJrxs3bszS\n4EVaMr7tjKlI63HMYonPeydx3Oo6o2W0kW3SJ3E8DGlEe8Te+ed3jzfo3LY0ESVKdKBkh7SrMjZb\n4IUao/P6iUjO/+K2Pb1X7IQiF2rqNU+ncY54XPqSUsKNGzdw9epV0U1QUzV6DLVj0k7nnvIb9QGv\nmFp/XJ/84l3u4aO8PxalNud6VpivM/IjYG4Pt3pVaaMz59Dpgx5C//zzz+PLT34ZA2rEZea60ODh\nAVwEsYOjT1N93XA2V8znoX0Wo2hJF9NPpb+cM972trdJStWCo0H1y+L47fHsW+VWOU8psZiN7Lfv\nhb/E9AM9mtV7/tMfGt6TIeJvkbaY9XuZTwwwiv7LgK1tOPnCzLb4UJcXlK+oI0LnJcwZ6mEE+b4J\nCKlE1Q8FtlzgNP0tiY5iiwIqx4vNKGk+kkVJCyq5yPHB0mb0xKrnjQ1/dHZiGgZzlEuqMoE7Gwqc\nXlSc6npYsDq3NcKfGRjTCM4T1sMKX3vmWVx76UXceecd2GxOsduNkAUfCfCT1M4GrKUyMV3HyUxm\nifBNiTAkyWmuEf+6WEBE5nzX33pA8LSbCs5kHKaysLBzOdunsgDBKLsusiw/ab8VT5kzJs4gljRK\n0zSBUjnsmCuv3e62yHnCdltTLaks3u0yNpuNHV6sC0u681BTlGiJ331QlS4KDONouFM6zDlj2m4t\nbZM8P0AX7/whveNKA3OKvgVgN+2QCObwtTTTZcxUppPuYgHgd1oTEXbbSXhDkYVKL3mSiHClZQte\nKdHn9cyT1n5nyFwVB7vKPZfakdYWVCH4kBQmx6cnmHLGuFphGFe284ZKX8c0mK4r704YV3IGIOAW\nLFjeqTsu6kIcp1R0lboLVj5Ttd/KAibZ7h/pkywkZpPLpkdwq9cl0tEhsxEtdZ/aB4Vc7MwPVvej\njq/oyAMG0/003SuRRsTLWILdIm9pWnUiz3eYAExcDqjPtvDhkGCfnn8CqIcfq4wo39WOSrX12h54\npuipDcsO/7rrQMdoKhH+MqxaB1kQjLfVCC7wybVlbMv/0FGRA2hc34Dk6V/5327CtuwsPt1sGr8X\n6WJSIwdbfPd9D73A5tr3fb4Pue6fkR5F+2umH6O1BX0dOm8USWq/oCwigeWckWw3qg2nujOTG6Y6\nk6o8LYsjpnsgtt3q1Y1dpTzG9ccjow1YboMXe/UZXo0vOv61MEZLur6BoXTu5s/cRqlwtMFn3laD\nzdk4lswlZeAk581cvHRJ5NVQUsF1AlG9nRh9JfYX7TIq/Al9eop2S6zf9znai72iqel0DBSHDMIE\nJawq7xp6kYZmMPbstfOWV9VCiCrJKjxSvSh/6vwYEhITJspAOVxZRbXP372UFkRLnEwobSYQpkm2\nF/JqjSv3vhZYjWDOGMeEbW63kgqYxmlKJEBR/t2EGPTAdUAynjIsElYEczZmk7XbRSgRJTvISFOA\n2cHtWSJ6UhLHhRovvq8rGsEskZcvP/s1HH/16xhf9+0YSPJUsudjDh8eP/FgvYg/z6CYSlRBZssp\n6UuchJGo1cBSp0xKSbazMduq7MD1fX1JGLlOmDLhXDucJ2PAVLg4wy1GMLDjuROrniNSlMyikB+M\na3zbt307rly5A5vTE5yyRCKlcZDt1cWpqgB6x0cV9rWkYhBmiyIphmXBme5YgsO3Hys/DhHPzdiS\n0hiXFXiYsxfNuMI+dV7VVeFg6LFGaSdT2HgBhtYYV4Edo3Zb56V/Jxrz9Z1aV4WvVSoi3iZYDI1A\nwgDKYe1iIJTDuV3JWveU8eILL8r22ykD5uweQUkF02S0VbVUaUuVMBM+aohrH4uRHumxKuvKRLwS\nFYQLc3OotuFSlXaF2fpW2tB5oWv8RUGjosxyUWI1Okxy4LLhnItib4tRKgyZi9IrcI0l+oGZQawG\nT4nyGfTMj6b7Nr81OlGdn1Mx3qlRSubKisd5dKArHeh88/PJeFVQCIwuyfHOYiTputAui2Gqh04P\nicyJD0DOYSkL7NdeegnIXCLH2/ntYZmYMaDOVTNOUSM4SY2tIOuyWwTWvno8RFrrwaApCHyUJDPs\nrJCKm0ITzMjFIEtOcRtK+oM6L6PCxWDNS8htCgx1diWCOST8IZHa/txIKYYlz3mn1wcIsMP9JHI1\ng9IAFNozJ5XDscGUEqZJ8jgnIhwdXcTdd98t9F7woGOkvbVdO0pngOV85pyNNrV/GkmqfW4OBS20\nrLJUd3Mw2jRR2mevBE+qdzm4og5FbsyY6m6q5vlKnM0iiI8u4vDeMCZM2wkDCF958imsuOo7mrpi\n8nLKRX6aIcfVyPC0ujTWvm/zwBOASvS4N3BjPV5uppU4vg4PjnD3va/DSuUraTofAlPZsdjRkW6V\nW+U8ZUg1zYw657PaBEOazVktnucAaOa6Kn7GgzwvhtPYNICByJyI5uQlUTLTQJaqRHeMeX1Md3Ea\njKXNCCucHmQyPei7tjMxSR7+sczdgV14E8PeHYYKs+GECAn1INco/6bdZA5FtU+UnynvVQe+HTqs\ntozyMBbdbxxHnG5OQUQYB0llpClgjNeRRNUTJVkwKHrF0YUjHB6sRa/YTeA84fDgEHSF8MzTT+P4\nxg2sVivZkQBgu5PFBuW72+22HmRcFii83jiVZ3JJ2WMLAdOE7XaLwhRdyifpn+bH9wvBeZpsJwKR\nLAQlIhyfHCNP9bBqdRhttzucbk6RiLBarctOJxRH5s6cgMMgZz8kIrueIdkcqs/anZdAVQf24+4d\nbeCSZrtYZ2a/KV0VuSi2AmPabpFVBpTniCTdCRfnr6ZNsx1HXl8oBx2z+i8ArNLK2VRUFimqPpeK\nhkfcBumZ7m17maoNB60j69Cx+RGq41FN5tbJx4Doo4NY87udDygSep1YDoceS5CH7vzKmXF8eoqJ\nRC+ikqKn0a11JRAAUfEYlEBGS8PDupihuiRsrgicklbK8w6pWpZdxLFJYEp2LoamWFNOqOYZM9yu\nDDK7QHiXeKcIhDTC2Svk/JYCDzn6E72ECu0oPyo0wyg+E5jOhwTRkQ0wwO+Cq/RNwEAg4pLhAsXv\npLyypjFTfqYqOZWzU2y+Fh3F6Fi9p6GYrazEpfAVBBIpres4iN9GnzM6VZ0erW2meGDnV6vvtfLC\n+49mzlFHw3r+jZ5F0+inXv8s9fjd2fV2G4j6L6tUG0mnQbWdvI7aPl8gauwsdHHh5zFzkp1VueJW\nrV6rtvDBXtsALEW8kkeFuVBGIVqF39fjz3IeqNqcBqcQT+FJVa/2dqT2r4ef2TUH/ry+BfopTTX6\nBPqLYJEmvc3QG6v4m0jOjbzrrtfg0m23mT87DUMTgKbyxVhBT0fy/exci3jolZkN7Gxtbzv13pG6\n9b9yr+BT5ho7fi6BH5WzyoOMqpcuwVhuLt8L5VW1EAK4yQyRyI3RqkoVZAFkMEJWV3tlUtEZ0G0j\nINKfS+DvrVYjfuAHfgD/+Jd/GWl06Y2oGtzt8J3VSW2kfhcGUB9RRx9c/3USeqcTUAQzUxWtXD99\nP3LOyMMAyhm/+eEP4y/+pR8BUDLFTtmUxH0lMt2428EUXdRt1VGQxjHpjZE4/Nn6qQaTCa3CFFvh\n7hZAEB3tC/BTZS2+T56pSb0tvAli+O12OxweHuHBBx/EZz/7BxbhxTxnDsaX28qacc8OZlXKI+xi\nSDnB3dlFEvEa06GIQojO8y2z7Dngo/Ooua6KO1dFaYlh94S5v+fp2N9bqsv3sYeLeK0uPqRm7lZn\nXTYjJio/FefAjRvXcf36dRweXcA41C31SY8s8mPjFRLUoVea86lm2BT/Dg6IKlEpDTk0R9xGR+2S\nMG8vBiDRjqdEXQIpzcfRz8FIm+QiRH20aIS7LT6yokaIRuGuBkBPSfI01cOTH1vfl94zRO39rjJK\nJU95qnVaqrapNRLM+VCcSF/7+tdNmenhvr02TxOkcmkfP5/NB8WX1dt/b4lf13v9NpnZouCoQ6+N\nrJ/xBnkhqxzoKMBwxrfKyKjszt9p50PX6JAHzBEBwIy85XlU61uVQ7NX6zXe9KY34cKFC+aQ6s1H\ng0XhRod/O7xFRbVH82fJ9d6zcQ5F/MXIoR5tmt4Cr9uhLBBNDQ48/LvibLxx4wae+NKXzBlh9aJN\n6aXve7LyOlNspwdn1Jv8bs6lhegl2UZl7m83G7zjnY9iGEfsqPS96LIJ4gDTnWK3yq3yzZQhDSXa\nvF4bhwEYRLv38led2UrjNeUd2yK+11WYuY3UpbJAqguyep252VWh812Dt4wr6tzSg7sBbEsKSM3t\nr7sJdGEBQDmAWZ3II4YhYbfdYTtV5/p6vQZQg+CIgWEUh/J2t0MuCxPrw8PCf3bY7mTHwMWLF5GS\nnGdwcnKC1XqN2y9ekrPCdjucnJzg6OgIhyXdVC4wjuOIo6MjjKuxLA5IP8ZxxOHhoeml42qFlBLW\n6xVQbLjVaoWDgwMXoCL4XK9Wlj5I8aKfaq8kIgzlnIRhEHwOhacOA+ELj/8RfvsjHwGlhO004cbJ\nMXa7HQ4uXBAHPTO2262NzVB2LkSbmcqhsplljPyYKI9s6iAgTzsLsiGiWaYBAKCSVishWborO5+O\npZ3Dg8OGN2s7q5Xg0HA7DCCS9jPqmZQa7axtDsNYd3l7vZRRTsiFqS4ZGaR6LTOonNEwTS4ivyw2\nZgBMTldj1VXlKFxw1a0UB779nGvDzFVPqs4glXlkRqTJSsyDdaD2l8lHlUk6bm7R3vATZbpmg/D5\n6NHshHTdlTrK3NS+pgzwILg6PT0ugZQAJ4DKQiMB4vAfBux2k9uBVfpiIemiR7tMa3o+fbHTir4S\nU0wmVBvJ+V2Ub1kJ6pHabU3xuprZ963c7ulI9lvtNVTdhYLs9/YiqW4q3S8geIdAvSY73FgVf9iO\nHlbnttcJXaCh6WRO/4Tn2dEGT7b7o9Gi2S/tlAUOtIu/XjdTXwPzHjuKaiejDdyzQXp2WAN76eV2\nt8Vme2p24s3qXhVmZwcHeHp6uIc92i1Lvo3WJq08o48DhvfhRX8IoQa/zvrMgAQQF18bJTDL7qxM\nLY8x2ijzQBcsYj+7uCC2OZrc/PF6s/lSHb1W04sLvlpdpYePxm5xsDV9KFWaPwFCa96PRUDZadTa\nBx63CPXHvusYZ8efUvDtjKs1Dg4OMIwDsvbXpf+e9bHwk+5ccN99Gx7m0Vj24wAAIABJREFUmZ3r\n7C9/b9/86LWt9cfv/lmzp7hkJQjP5g68zWd597zlVbcQ0gyOY/5EhFxyhHKSCNcVyfYh2dpcBHd5\nPabE8fX0dokIIw+IRlUS3vjQQxLFkggjtZGTntDnDhzpiE6y2Nfk2+dAvtROcHWwRiK1XJY8J5iq\nUNT8nkfrNZ544kvYHh8jHR6CCFil1hm8ROB7c/XNFAdVGpadKYsl1+hRkTncRFsnSmZUads9QdmD\nSQS07sWokV0Gm3/cKQAqiFSQqAKSc8Yjb30rfvfjv4sLFy7I1nNm29bmGWCEUeKO0Iyx6H5lyzNV\nxcSYVCr46IxNhHepSF3UGcd2jiwJtipsHaM2VQMmfJbbjkIrzqeI/zmsvXte8Z8r7HNBBaDkZ8+W\n7qqdOwXvuW3Ht3262eCVV17B3XffU5VSLrsVCizJGSa++SYqO7cObeNNHpeN8l6Va/nKDR0BbrdD\nwAFQjYGIF2cvzPDI7OqgBYWzo9jGZ3SeqSJqvLB2DhI9VRgnV4Ow1q35U6vDUg9E1b73lNSlEnG3\nVDxft/7UEDNo5DizOgnmioDOa3JbyRVf280GX3nmGRmbsPMqwlqQEniWw1O5D09Pxovd4YJEmKA5\neh2Og4W4xFuXjJP2ufrJJZKRqAYv+L6p0tsbE8U0l602Zlxh3scIQ4tHFwEV2g89EJi1BwWfcSfR\nrN8FVj0Ucrvd4s1vfrPNuzZ1lzd4fCVV3uizuotIUMTN2Pq6enx21seOzHQPded3bMNwHuo3uEsU\nrRnDee488HBQ4cPTdounn34aJ8fHcqhpwIt/R/UgEDW7TijgL8qMswyo+ZzpzGXXj3pdAiWGwwGv\nu+8+pEF2moptU/Ua5gnHN27gYDXM6rtVbpXzlBs3bmAcRjlw00W7rtcrHBweYLvdWtqfg4MDHBwc\nYJombE43uHbjGOM44uLFiwDYnlMnPYhw/cYNvPzyyzg4OMDly5dlF8PpqdgSh4ey6ALg5OQEp6en\nODw8xOHREZjZzjc4PDzE4aE4to+PxSm/PjjA4dERVqsVNpsNCOLcPzw4EAf+Zos0JIzjiPVqXflf\nOQdytV7j6OjIFknW63XVXQGMlDCkJAskhV+mlDCMA46ODrHdbMzBMwwDDg4Oql5f8Km77LwcSpTs\nwOpxNWK1Wpvs0cWIFHafxR2KmuJv0ANRWRZrmGUX2+B4ZtTFxQZIJZJfdTuxlyRQIOP+k/vx+OOP\n4/r1GxhTwsWjC5hYdmNOux1AhFVZ/JB0R0VvgAb91N0PnBiJB5jjtKSVYSp+5lRSVW1VRrn4etad\nDJHP+nSvKD1gYKo6t5b4XXdVqM44lVRPzGKPDIPswlRcqs7KDEsL09h5DMS0UvJSETGcZosVZMFu\ng+2+LSqL6RS6i3SfHDYAnNtZI4IVv9JmOOfQvx1og4vu7G00ItjO4rJ5eoZn1Ql1IYPVtgDaMwaL\nrRf1DdNhAVv0mKYJaRxwenoK+DMHaW7TJVqWr6Z3uXvsbILYj/a7q4sR7Ay1VXnRXJ71k0gWZVB1\n5QbWqNAuFOZKLN1+M1sKMq9XxLbq/UC/wZbfp7tYvxb0+PP2SbFSKZqcji5zvdIx5Eny9bPZet4w\nkDOjyg1udX3FVUMD7prqh1z+ppKab7VazfpoOiPqvOrhzeuW8VoPJ/vKkv455xstXS/5Npb8HABs\n5zQrs1qAUGUV0SApxZTnljokoE35U13wMtigPokKr58/1d/T2qCl8eZ7H1et3aj97gYssdpiXpcX\nSvVnbzrEGO3pfSXVyDd6pWd3CtxzOz4zY8XCdy/ffjsOS5CGIa/Qutals4sNluW5bN+x3z6fy4Dl\nZ9v0X+3cqHZg8c10YGnlFOYL0uGdnp0pv7Vn5yuvqoUQP4mjU565HFo8TeBMyImwMwIBJsk8Bn/4\nbw/BiwoJtwsh6qBWJXa72+DPff/341d/5R/j4PCgHoQLVRLmDoWGman8J0kJMpU+LilJJLqjRGp1\niL0hipyhDsGeI0gVb7BEp55ut1it1/jYR38b7/2z34PVuJaDUc9PV/txGZ8rMqz3/hIz6SnCpEpM\nYWTZ1duFJdbtJo9Pg+OZrReC9rsjWJTB6hb8O+64A6997WvxyvXr5tzMeSoRH/49QFeg7Rra6NYS\nGGU8jtGmwpp3c2ng2uh5QwO3kbPnKb12W53NgJX6B2oY4Zm00gGop2j4djRtjSmTJuS94KjV9hj3\nDIwzBEHv+mocce3aNQCisAl+axq02I46+rpoWDIE9sJU0kEhzUi+V/8+RfiscWqMxVK6hjpVI8Er\nJ9JG4e9U0j7tcyRzNcpizlRLq4MFHnoO5b0npAXAs5Wc3gTqOVuVBowPo5Vv+qzl2E4J165dk3ep\nRvctlgZeZTBCD3r7LF7b3CM1ZKjyoAUj4GYULEAMyPh4xFkvAsW/4xdb4/uRb/v5NMcBz/oS4QIk\nGIjrRaHF0M8ubrOcJYUstLudJjkw1KVxolrJjAWabJrNq9quh3WfcTbjJ2jPOerJA9WHziPnDb8h\nejzyBRHBdcF5CuMmaKtG1eN/9EcY0yDBBalEexd698ag8lQvc7r9XjAg4zP66XFu9NDZHt8rm80G\njz76KMZxxHaaQIPkFGdmiSZmRp52eP65r+OjH/3omfXdKrdKrzz00EO48447MY6j7TDIFuiDkl5X\ndUzRUQ4ODiR4rJyzwCxOYxoIrKn2xhGp7G4AkQWbjasVttsNcmasUsI4DlivD8AlBzszy3kAmuca\nZTeD7hQpcKVhwGpYmc4ti6aSUsinNpazMWDOL7XJvMNWnQf6XXmaLY4CphuWRDEY1dZLElAhOeQL\ncF6/Ufy5hW8tyh/0HArd0Rn1zOxg7BZmDKtV54DmGjkOVDWZUdNAotgLBCBlRt5tsD44woWjS3j5\npVfk7ACicoh5jU6XszVQ8FMdPsKT69kp4qAeSvQ9287IYZAdwRNPAOQ7UnLwO8f2HmvD613qF5vz\n6FaO15uAKBU1UE2uiwbOuQ1UhH3XYBX1N9QD2Ku8Vb7fwht5PzPADj4Pdy/Ywcsg6U/piNXL0EPj\n5aSaju3Vw18FsNpEJoMlXWnOJRWYjxw3HLR1K9apo5/3bOJeEecz4fr167M0mPsczDP5GuaF2lim\nrLL6b+JrbeBZuVpQ5OkojqnOslpkEdTrmtkrcE39EQaEuymlNrWn14EBC5aI93r1entS2B1FEFDP\ndNH6+lHecRdBq2MuB5Ut6VpAm2nFP7sYrEnzr5zrDhXxoZGkfiSxI0Ul9Dyj+loqDkJaxdLAfD67\nQKNQlvxCSrNLTt8eXhTOXv2+zl6Ggh6+a/DjHMZYv0wbtwhdyJ0MJk2u1+rxDLSLB86HqSmPNCBW\nfJfBbmE2nGuAmEd0tZkj5ufFxrjXP/fb5om73gv67snt8+j5HvaleRrpU59NSY4lODk+wcWLFyU4\ngQFCtjGqRrjK+bJwi3LO6AKMZtdRDTr0985j13l4DW60Abyzut0fwLZYNsdPDR7o2d5Ltnmt4/zw\nv2oXQpiK4q6pLnLGlz77Obz+6oM4vHRB8rBq2oKSozJnyTevuVm986MxxoNxS1R3ZjSRg55w04jv\neOMbceWOO7E5PcZ2txNDvmzxrsrHPJJQDwZqIkenDKwSuoxac/cbkZPkUotE5Ji9Vxa1xJRJaRgw\nZdlCTQB+89f/X7zr/d8l7Q7rvYQXnQM9x1JUcIh5NmHis/uUoliik8wWDMJ7xqC9+s1kuPLKDFy7\nPaZHykTKzFZjLBeGrw6dcbXCI4+8FR/7nY8ZXaiy1dZNpqx4AyDigkqO2jZ6AlZnInfImIfV+jPH\nc3Mfc2GQiBr6jxH1ZnA6HHt6aOh+hskKY69k0l3MrcHTc/AxczlryeWOJbJFQ6/jEZEZcB4fWmqE\nnqfDTkQ56hbfWMdqvcZzzz0nh/yh5jmmjCZKwsYlRTc4ZviLZQl+htJo6zBfomeDpau4FpzYPTZn\nOrilnyUnoQpfMNtCkCpDLVHM+9Pj0wj1x2el7+1ugRhx7lPc7DMoADTR5J7/9xQjZrgINzInZ+RT\nang0xk5JteDnDwDLLX7jxg2skj8Ukmb8XPqbDZhmMZyqIt+nJ811DJvrXHI31zFcnq+qAGtdBQWu\nv20ULassMGXOw9Ly7rbNauDpDjZGlY2Rv8bv+tkzYJQP6/UejkhlTJRz5A4JVYwE2qh9Fxp82zve\ngfXBQex8hTnSONyUKfciz9d2mzNBHJ+apYQqsHtdJ/a9LtbBFi6qHN0vn5v3Q7093uXni+psstiR\n8dxzz+H69evCS5JbNAlweDrTos+SG3ePp1ZW8mwc9bc/O8C34x1cPXpT2rj/gQdABKShjEPOSATs\ntls89dRT+OM/+WO88MIL2JX0QLfKrXKz5T3vfS/uu+++Zp5G+8bTv/KzgdTBr3wBGIbU8FVAzrFQ\nnZbR0vvKLXZQcguryqfdXLLgD6o8lNxOW2auqUBhj0pbqPzI9IkACzPbQcrTNNUDi4EGJk2vaCmb\nlFdisF3mrZwQPUbPHzD9guq5KMwsO/WGoZxtWXDNLAtAnvd5XpPkfDRiwPaEFflr/Eph0DEt/dE0\nzbrLQWR3xjCscHh4AbfddhlPP/0VOd+O2e2WLfYg1d0odgYWlbTGCi+XnO4FZNkZrWdu6GDqYdko\nNlLt5pJ917fzqr7Y6B6sC3mSEjtpd/UZFie/1EDIU2sLe30kkdcVvd0Ad50KKO6cQ6o6e3a0ZPC6\ntgCZU3P9utWLqsyR31lck2a1yjwtzi7UQM1czjUjRw/w+HXtelncXcAv/erZ8x7m+W/TLl1brY6l\n9U054+T4eE9d6quo/pBWl+rQivVd8UWy6z7M2yXH/n6ds3/dLHitpzgF5Le/1+Kvsbm9HhF0dILj\nSZ1+a929MWoa1akb4NffSc+HsAUh38M+zSI4Mns600y/U16aUptiLeDlrKK+Cd+vpi0WKoCHgWCO\nfi6ybcri2j85OZHdjsL8Cim5vgX4Yx/PC/eSbRBxHNvqjXttP3fHtLGHg67azIc4l0pV4qMsZ/g4\nvq3tRTtCxEi1ebV+D5vPdFL74XGSjLep/FIxUh44F64bm7ppr8VRxGULV8sD41j3begeL5/zeY+b\nfpAf4+joCFeuXMHBei1+gWILUap+nehV0103kf9734npPmjNzn14POtew/0jj6nAGWPRwAq9bvMZ\neuZmX1bG7zc7/3y5qYUQEu/r/wDg3wfwWgDPAPg7zPzXw3P/I4D/BMAVAB8B8J8x8xfc/QMAPwbg\nhwEcAPhVAP85M3/tjPZrJ8kx5XLt6PAAP/PBD+Kx9z2GBx56A9LhkRCXiyLxhnUPcfW7roYSwFXZ\njEj2hkUaRzz22GP45V/6JRxdPMJumjCOY23LaYGVqXYcnFTqA9kBTh4uraQV1lKXGNlKGA5OY+gt\nHiJOpAWB86677sIfffYP8Oi734Ocd9AcorW+vqGvJW65BDBzNAxUDjCm9v1oaOwTrD0ha+0RQHnO\nsPQwJ/KfZUT8Do1uCfqAyFFRUnXLL1KSgyCTHBY5jCMevHoVH/q1D+HixYumKJWz8mZ4neES1ByM\ntMsThiCAYtFdS90uhDaWGPmsTufc622Da51n8zGSw7vngiX2v1d0YatHd42QKspgovbgeB20ucKG\nRlD4epVe9bBmn4sTan4T5FBCN7+qcpAxDiNeeukledd1LUMMe11g0ndzA1tfOT+3sgU0xmdzb4Ef\nGr5nc7zyLC7GOZFGrKGOr8PBbIzd3G9z31KDG4YY/pT6/e+VZWHpx96wMutjxEus1xs6hDq3KNBO\nw68YgOZcdgtoySv/ECVN+q11tMqEh+X0+Lj57dvtjVetw9F/F0/td18vpBtBqeFmPH0dPYUyFv+c\no+xGVsXnPT684ix4qM9OgKRPdOMRDf2ePK/X5wZVS08FB6z20lweelh90UsaITyOsgX/LY88ggkS\nRZ3Lg/t4dO7MC5H/83QbS7yjN7cWv8drS3x6T9u97z3Z3gQ0OB6l45jzhE994hMgFkVa49u9Q8r3\nVd/TtDhLJSrVvWse7igDYx+X6iMivO3tb7ezAabdrqTN2eGJLz2JL3/pCVy/cd0WbJZ2CN4qf7rL\nt9pmAoDDixdw2+XLRn92HoHOO50zVJ2eKqPIz2USR0tWOQaAaKh6fllk8LKec5bzboreWGMVxdi1\n1D4o6UGh+rS0J8dKUGnbBU0Q1TRGcLIZaNoH10VHz1NWq5UsetgiTdFrmTGgDbpZKoq7GZ/2OjlJ\n0AGlhAFwi0KpOcvK46hn+Ivu244TALEzGpnsn29hzZyBBDATDg6PcOnSbeDMGA5X2J6eAi5YJtqI\nHi6zeUF2MLvp+y6jt+o0S/Kwx0cb3Pr+m4xwilEMtijX7QyKks45F9t4CYZonzZ6CWs7HjZpi4hM\nB/S0Obff2v6rLhb1Ru23p9PmEF6InZGoJtuqcoFMV2a0C4y9fsdSda5+AEBPR450Ee/793s2tekq\necLp6ant8ho1JRsHHLnPhrZDvabfejns+9CTyfHdUJ+HuXcdgDkACbBzk5gnoT21OwjG/5SvuSTc\n0NaVxzV6UUcf8XiS2y4A1s0PPSNE6MPzJmG6zOJUVQiS7rLzEyvgII6PwkTMzRv7bHpfzrIVfDsL\nD9kzXibsq0d/i39Fym63k6CbqZ75A7Dx3kjvutNY5QFjblso7S7B3/KNuQ3d60Ovjvj9LB4QHe9L\ntq/2MyUJLM95PqYet0q/e9MDn6nTCt6VB+vc1B2HicjmWeyr8X+qv/09lSXCb6eA/xYXOg5LRybE\n+oF2V3i00ZdKnCfDMIBA2E0Tbrt0G46Ojoy+UPAwYHmsC1HWuagwoPIqpeceVBEXS/hZkqfcuabX\nKV4LeNTdyb5f/pkePnv86LzlZneE/LcA/lMA/yGAzwJ4D4C/Q0QvMvP/XoD+bwD8lfLMlwH8dQC/\nSkTfycybUs+PA/gLAH4IwMsA/iaAfwTge/Y33zpIlEFppx+4ehV33Xkn/sXH/jk++enfxzvf+15c\nvXpVthQPg21tbpQLap2QZY6ZIAFQDwx0A6DFn+GQM+M73vgG3HPvvTg+uSHRu7udHIRZDvdDYNG+\nHQ9DSlXJhyOsGYN3is+0hDXWtyq+opLs61bHAu12+J2PfhRv+c634PDCheYdT4hRoTVi7kR+tkqm\nIrsqgIT5QfY9BnIeQm/gQjuZ6yTt1FeEeeynwYKqWLPC32JHnBrOCJxyxh133IGrV6/i+eefx3a7\nlWHNjMiFekzZpylROCzVR2SAZ+CmKr3LSl3RJDvV9oWkljp29Vl7jmFMGK4f/pk4H5u2OkqBFo3C\nBYqBxvOVZFH2Ou8Wg4YDfv2Y+8jfFifaR2CghF2JnFPeMpWUJ6+88oqlRWBm25U25cKTSs7EvKDC\n3Qxj984Fr+ZHIe77E+coh3vMEhVYLviP5r0lhc9+94Qa5mMd51hP6dqHEU8PMBxwQ9JKa7ItvD1r\nY2b8F8WrlwZAn2/6iThmrZBm5kaupEI7CqLhx+Os8MSXXnpJonDZpf8q8PfGdcbr2RlHkEioNCe5\nOW04+bd0wpCf2/6aGbCpMwG1jwa7Goq1SJ7vNKMDa6MDTDXCXe5sqlFukjKOZs/GuQ/UMdMdHPG6\n9VHbqNhwMLYLqBNkgXVXdjtcvO2SLZx7Gb2kfC4pmvFA2x69LinwGp2n+eWjfO8pnjM5FRYxFG8e\nv/59zV2vGPP91nmsz2Yui9O7Ca+89FJxnnJdADmH7Gu4Qke57333JfIWz4sU/nhAbcThyckJ7n/w\nAcuzv9ls8MxTT+Hzn/88dpsthiTntWHGx26VV1n5FttMmJ01oVQ9c04EHRjMzcKi8oNBeYOmiyGX\nS9u1q+dPUakHGr2omgkRQhLBjoPTpXVJ9VwMgzHIN6B1YNi8K7Jbdci6+6Tl8z5tlr9fIUQ1EJUX\nl10ZmraKVE/AnL9qOmWi4sRxMrWnlykMdiZ0uMderVG0yOC07wB2rsiUgXFc4/KVK1gfrLHdbKRO\nBpKeaFHskhkeUenArYjIvY58iOMyq6vgOteHqn7SqYeNdEr7LmWR1y38LtOY0rnnWGnSmVG1hxmM\nIUQSq/3kF0G0P2hkgfwbUM+DqbpxKxM9DBGH9k4ZV7uXs+weDzJMdnLtdwj1xuasZ+I1r+fr95l9\nX59GtGu0vyklbMs5Ph6Wpk/FMU8U5meneN0lwp4RUvWWupprNMfpeYoubjQ6cGPPKvxh543TJ8mh\nKbt6DC60uNbSSyM1s8+axTL3/lAUYp1SBS8+iR1zDSTx/FV3+QHugPcOjJGP+Od8H6mksNPnejtr\na//I5kWWyuQZ3yYa06IdL+ZiB8injtPJyYnY7W4ONekUsTD3C9Ib2nK0FGlWrqVmTscRa/oZvuvv\nVhft19Sfy63NohebNsqKenKLrAy4XUNzmJbb5MUFlBSusbvXszm83I/teDurjm+Ls7Ps9Z7eHttY\nonFtw3/q94b+m9/tWDQBGlOxDy9ebOqJYx95QrnY6CHJ6xeO/zU23DmyY3icnodXRvzPpUG918Nn\nt2+d61396Rxl/6mv8/J+AL/AzL/CzE8x888B+CcAHnPP/FcA/hoz/xIzfwai3H87gH+rAHg7gP8Y\nwI8y828w8ycB/EcAPkBEvp5Z4XpMGHSq+I7nlPDou9+NkxvH2JzewEd+7dfwsx/8KXz58S8gb7a2\ntXi32zWHpXui7gn63qDH51KSQ/vSOOKx970PL774Ig4ODsTZOcUlChWS+xWQXBQdJJID4BUW2OsG\nk/ymWWQNAJRlXH+ucNOXDmTC0BPh+JXreOqJL7cM3r0bHQJemVlyXEWlqRGsC/g9T5nAgicqgjHg\np15YrkNj1iIDbmFpJ/X8obmAoZQwrtd49NF3WcRB79CVJSccoNsS5ZpuiVfF2//594cOPntFcxg3\nfSQ0f/rMEm6ANlXIXOAsRxFEwdArnvaV9iL9ebqLNIXgCPftaxmGoZsrtGc8SVvqRO8LQj3T4eT4\nGJvNxnLw6lzRtHkTzxf+Im56SkFXCdAUTOgz+H0CztpBn9f5Z8qvGXxL87439j0eLLW2BlbvHUKE\npWNsm1Ja6aepTw+SIQBUo6WUvvbxfa/A+/7NomxAtkV4SclQGNUasXMnlP8TsCuH0r3wwgsYqdbj\n+1/b9rAxUjlMOj7rz1NoYO6MS4LwIJ88Qh6r3IchRkKGLKhPzGaY+rQEvt8zeuywFk2/0qMH/VTa\n8/TXKniqHLf6QyNvS7+WaF5pooEBMs8SIKlO9vUtwKqHnL71rW/DsFqBqe7OyjyXg8rzmKsBGXG5\nhKPeMzN9Z4/TvdeXOB+W+usXM/x78dN/j/JA+09E+L3f+z0kFHmjDk7M+YFvV2kz4mUfX40w9N7R\nM0vU8dscHBvKUA5Jfutb34rV4SF20w6f/vSn8f/8ws/js5/7nOimnDFBIuyVns+rA90qf+rKt9Rm\nAmB0zxA9NA11h4QuLE7TVPk0ylwrNM0pGW0DCSA5M0NkU6r16zPujxOBhwQMyewQuSf1qHwTGST1\nDuUvkcxrKu9NkMO8OREwVD00/tlcsXctJcBMVvd0KypzuHWIo3qZgmw0+VneycAsaEk/4wKpv9+X\nObJTJp45BVQ5ywSz7QAZogHAAEaCBFzoWR4WYpIIt125jMOLl5AnxoAkiyCqh9C8PaWl3o+ZvtUp\nrPoAKj2C2iAk/67qD+zwqueesOlzuf4pvj1NdiHx+G31Vd1vUMEgw4WHLQZOlSelvqI/I7MF1PnI\n6J5uv08vbK8FB5yTiVHXjQERvs5YVK+YpqkbSNHVFcLvJTru/W4WPUgCA/KUZ/fPA3sDo1Ta2gSo\nKaUSWl3N2zmx7LNze0V14UaXyAqBTNJ49IYfe38Nbdx27SPqvGl+K7yBvppxCj6Rek9s/bl9U/ul\nesjcB1D+HK+E7z+3fh7/fjwb0uAtE9e/q/d8sfkOWjwLVn7Pg9qq7tbaeDlnnG42tuvY4yrCajjv\n0Emcfxzes3poDm/lpbn8Le+o6dl/59cV2cahSy+1EWmn2KbMusOrQ5/+Wemkw71LT0tk9/TdwtS7\n9pT99jB25m21q9p05kQkuyHLHDW6D6WH5yV7Kd73bS35NpbSJfsdczIHGNMuY7fd4fT0FLfrQekm\npwrd7+FPPVvvPPLAz5ElHhhtcc8TbCz3lSg7z+Czs/nUzJPzybh95WYXQj4K4PuJ6CEAIKJ3APgA\ngF8uv18P2f79IQfQywA+BjEIAImIGsMzfwTgKffM3qKTyhciAgbCffffhwcefEAOBhxG5M0Gv/7P\nPoSf/uAH8bk/+KztzFDB32NOUTB5JWUpamG73Za8swkPPvgg7rrrLmy3WwASiVMZgIPXTZ7ar0pE\n2kU/4KocGyE2z/QZZiTms4hOI6emacLBeo1Pf+pToqicQ0E6zz0/YfwBabpFNCpBvXpuRkFhaifu\nUuYrf+xcnGReGM5oD2HiRQVbaYoZr3/96/HKK680Ee8JLcPpMSAd+8p4apTRUtnH1HulYS6d+94J\nGJWUts25UPVj3uvXeWBXuJYYNzPXtFhBYdsXTQ6DuK1vyUCJSv9QzmqQeqgxKhRv169fx6ZE3uki\nrBpsgFtkWjCIespgpBn/mTr88bw8QOZIy3N8HQqD5DluaSLS1wy+Tp/20ZC1SeQM/zk8sd3I280h\nGtqbwcDzsba86Qj4jzhzMsXTvXy2PCSmL4o4k9QGMacpYbfb4fr1611Z1C4COH6X57ix73v4x1k8\nl9AfP/98j0/EPk2Br3h8eZi1LtkyrGoxZnVrHTEAQccnyjH/fkxPsiTvokzuBiB0YNL2vPwehgFv\neMN32DkQRCQ7BhdrtIqaNnr9OQ88/rqf92cpm7P3MZ87sc1FWgn1RH6nsDEzrl+/ji98/vPIme3A\n5SgzI6/y1/z3JUU/9qGnB0SZcl7lexgGPPjgg/jdf/G7+MVf/CXdl1ZIAAAgAElEQVR84YtfxOFq\njd00YbPbgYmwmSZxAqojpRM0cau8Ksq33mZSGqcSJFR0bQaAREjDgGGsASCimxConAeSy8Kc/pOH\n7L/uvLJnFni/udAYtnNBHSCNG5Bkl6w6wO29s9LXdkpPnu2b/z0eQaaH1OjyuPi+qLsutN++o3ac\nft/TH9eM4qphE0QAJQtK2JWFL4nmnXB4dIQLFy4glXzjbW03X86SFXFhX5/1vH7f7jeVlwwhGo5w\nUl0sqTKkOryWdNR6r+2HSSWubWfw4g6T8nJr86ANQIl6IXM/laWH17cT9UmDLcjqm1lI6NkWWnr6\nUnRIedh6cre0EvTuMpeKbn16coLtbtv0JQa6uU4sjuO+stTPs+qRcZzzp9hn75hs+gqyw+cjzS61\nayaQ/3M3Zb7XxQed456G/Rj1aN/TE2vklfvLjuNzZ7Gk53TfR7PxORvbma1UOsxorvfmDtCOR8/e\ngD3VKW7+TNOE7XaL09NTvbVYeqnnPEx2xhTz3GGkEHXe74kO5v6SrrSl8uLm9dAlGDpPoS6Ot35H\n396SDu5lW7QBjCY7rUb6LZA0iyL+OV9yzhbw3ty3prn5jPbcWbLc9y8+1/dnhP7O5kjrg9CzzNRX\nfe+992K1WpkepH3Zx7vUHlvmMfvHfp9utE+OOPCW2zgX3Z0PlgjXzcoF4OYXQv5nAD8D4A+JaAPg\n4wB+nJl/utx/LQT/Xw3vfbXcA4B7AWyKsr/0zF6AJTK+MgAiKpGqCZs04G3vez+e/foL2DFwygxa\nD5g2p/jYh38DP/vT/wB/+Ae/D2AHGhi7SRYrGMBOw2umjJQZKTNGEDbTFruFlVl1Wq1Wq7L9nJDW\nB/i+7/t+HN84wZBGi7SqLwGMLMYGuZVykl0CVIRmIoA4y2blXJ2qGRIdPBHKDggGF86Q8wQ96Iq5\nHnTIUwY0zyiqEqKlZ+jLmQaEJ5/8Mv7kS19EVqsFADHbAk/PaeGFkm/DC0BzIjEwgDDYKhEs8kt3\neMSi9U5giZSm2gaBQJmRWAwmyoyp5DZWGtL7zPKZWHEt+FYLLSVCIjZcTJAon6HVTFrmDzmQT6Nr\nMtfIpjSOePvb324rumk12vkofit7V5nlqARQWdQhqIACaqTYLmdMzDMjLeY67DGYRGRjon+0wHgb\nJYtKNJY5N/VMDci23KSCvdLaeRSnOkb7t8jlQg9KF0o/nAg0jsAwWESh7hzaZcaUxWGsf6q/TNM8\nZVLFt+CeIXSozgLFMVDm38Q4PTnFjVdeQc4ZQ5mn2ojWvSvKaFRiu06GTv/1M+6I8ve9cqL0lQHb\nReIXDKJTP4OQ1SnHZSEnETDIuE7hRJpoEPUUqKi8qrGQSfqhc5uNzqsjP0Zd+rnh2yaqznMFpyod\nEqUl532mmYKrTg5xHsl7PqoROVtkWXSINP0u4wrWCJeOQYwSwQkG5ansWNdxmcCckQA8/fTTbnzr\nwYaGF1v4IIn0LM4QLrAjJetDzQM/FTi0Wq8oFlOoRCjZ70aJlDlh8pnbHST2R2oE17rTUJ0FVJ7X\ntF9Lxo8eRGnzo/B6eUbgHIZkbTEzQAlMSei4TOOe7Gr05oaOGGmQnSVap7Tdzs8JGTuebIfipEZk\ncZ5NLEYrIWE9jDi6cAG3v+ZOyVvPDM4ZY1k49zTkZcnk5qr+eSdEL3ijwR9a3mIyGeXwOmoXd86S\n6Urbvvg5LfnaAeRsc8YM0NIeUOVfjv0bEiZkDInwja88g4PViAzGNpedvTkjT4w8sc3nKWeJWCeq\ne4kd/A3PhHMmENU50ukvkfA+nUNweBkUFmZQzjgcRqxSAg0DNrsJ69UB7rxyBb/14Q/j63/yxxg5\nI+XJjBodC+W/27zDLk+Sy/tWeTWWb7nNBKjjvjodGKhntRHKzo8yTx2TFgdYXUhRlyChE9le+CKU\nvxe+DC7BPll03FR+J6tt7usTwNjeGYo+6kyQxRL1pCXDeO6o6b/v6xFbrvArmrunlpxA+wxzwZXa\nHGj+CLAdHf4FjWxVO1h0B2c/gETeBdj08HZKCRcuXMAdd94h/Mbzem0+4MBrdzlrqpfWWWVyAjVF\nkcorH+Sj+ueSE02emUfPRh3PZF5ps+qqhafvCd5rnuWq51D5E13M6c6JytzAfBHG1a/RvZqjnl3d\nZgst6PFLpcr2cB1iqymMCTSjtbOcQ70xiLrzvnQpe+1Bpzf4sUhpMH0hpYTj42Psdrtz2YK9su9Z\nCs/1vp9Zv6tn6S1nojT47vEZj+Me/sqXQDv9fkQoejb17KkwJ2rPqm0rehE3O8483Yuvo1/OM3aZ\nlxcB5X2REL35a/0K9rKm5gbmQU3qP2ngijKs8CV1RMd27a+zQBhxPqRkiyGpV8cZY+TrjAuSnqbk\nXeErPrNHZvFJmK2KmYpu81IXDAwX6MnjKgPbRe09jmfq9G+BHlsb7Gxete+53g4me35B5se2icS/\npn4PH4jpd17F3RBL49rSCpyvqfQ7i02o9jwgwXxXrlzB4dER0jiaDKWh9eHFsjj3OvK056+Ide3T\nZWbvo+VWSzrWeWDu8dGqm7bB2b13z1tu9oyQHwbw7wH4EUi+23cC+N+I6Blm/vs3WddNlw/+1E/h\nwoULzbXHHnsM3/Vd7zfEMIB77rkHDz38MJ772teAsr2IhgFpGHB64xi/9eEP4zOf/jTe8sgjeOih\nNyGtD8BcDkSGpKNSA3g7bbFaDSIYihgYAnGLAGwZ6re97nUYxrGm4HIKgX93fyEYSZnQWYq40Mfm\nKauKH0YbrfXRcl1cFFdmxtHRET7+8Y/j/jc+hDSOZYv1fLs2c+uA6Smtvt/eCbNPaKaUgE5UMxEh\nqZJNzqEaJw707AUgim4VpuXmTEEhpGY7HYM9Cst/bHUsGVxmgDLjXe96N774xS/apFa88SQOkFiH\nP+wxMpiIzzgOS+U8TK03hjFn++wdFFpz9xp8BmHRjBu1i3M9WPfRfsw/7+dBVDpVwbc0NM7pH/tl\nKaxc8c9FPMZ6AEnt8/zzz+P+Bx+UZwLsKqA97FrHzWx3VeV0huMFOPXZCfM542GcCSPItmKvqMr1\nOY9r8BFoob7n8VDfH0q0orYjCm3luZEmekpIxKd/rnetp6j1yuDw6tuJOIt4aBiOwQoba11w0a3Z\nyr+JGdvtFt/4xjewHkZ3oNiMmozuFX8I9NXMKQBwi0QoC7l1uPrzzo8fO4PEK069HZTz8Y7wJ9CC\nt2tZWcolr3myrrbwerqo/VyCy9ddr6vBEXDhEzs7OD2fzFZDXUTXhfJ3vutdANVUeXGenAcHwFyO\n9uTr0nzpjW/kIf56vG9thmfOU2ZzsvP+NE0AA8fHx/jMZz4DcZKVw9NZZXKLl0Q1TdXivAxwRL6g\nPNK/q+MzUM2PDa4p0USuCBHupozttMPtd9yBRx99GHffeSd+68MfxubkFEju/Bpn2Fy7dg3Xrl2b\n6Tu3yquyfEttJgD4yX/wk7hwJHaTOrK+6/3vx/vf/6+0MrjweuaqLwMwZ6sqd1VOlo+iHxuPYBFY\nevi5PUoSH6/fz+IQ6vzX/5d4tMG5oI8tPbekAy85GKjo+j7yu9eJ+p7nJcuwii3Wtm19JccPSeus\niKUOnD3YZUd65SMDEcZxxJUrV7Dd7TCOQ9XTygrMEp8MDVl71dbq23Rej20yARS553m46h0eh3aX\nWp3T9Dv9XcaJOZscncl5tVNLY54ETCcqNF9ZfF/HlN/1U+dQlY/7Kb2nV/XoV3BW8aM6IyuouQZi\n7fM19OlF66z+gyWbbMmOt7Ht9HimoeYSIFfGYbvdYlcyaHjZ27SzeDJd23Z/3rpnOjtIKw0FXS5M\nc29HeTi97uJ1tyEsIOncEp2+0JezvYxalO687klk/oaZHaHVKpswupAFhRrmUu2+7PqgtN7gLA4a\nCcyEFp+90qO/qJt6PW+Zt1MDd6yPuPZVr0dbtcJBzdlH1fapPpbdbmd0GPsRF21MjhTeE3mNp7Ne\n/+b008Kt39v5p/hqzaZe3fo4kwsWq6ZFWSyXCzoWSSozzLsRkz41do+2FdrUkmG751ROMbd1LMlg\njx+rLvhyes/OZXlZtC9klDmD3EGxPXup9U24jpoPQlJXSyYXxzuc/rSkpvSmTMVftghWZjbbnZlx\ndHg4W5wz/uzouOFnpQMNKO73Ev+O35dKz6ZU3mKyOPgKwWxnoy2Vnmz37cV+AMAnPv5xfPITn2jq\nOT4+PrMPWm52IeRvAPifmPkflt9/QERXAfx3AP4+gGchVHMv2ginewF8snx/FsCaiG7nNsLp3nJv\nsfzIj/wlXL16tUv0zNys1H3gA9+Nn/x7fxcXL12SVe1E2E4TaBKEXnvhZfz2h38Lv/+p38c73vlO\nvOGhN2JkBg2y6IEhYcoThtWAXSE0r+hpm/bJbSQ4YY1/54d+CL/0i78o4jvN0zTsI7bKyMqETI7A\nm37n5tBdVfKatjqCq53sfVjkoGc54+TZZ5/FV7/yFdx///1gSDqgfYZJvLfU9+gsk3GcC714mFIV\nDmQKofY1gmQ4c0aFweBwUBWMfl/MEFJlAzWVyALfs6JCNKWEK3fcgYODA2y3W4toVcXDjxURubNh\nyg6i2KcOrP3Sg/BsZrdUIv3otcxT2T3SVwbi3I3OJ4O2Q1cxQrnpXaPUts/H+iNs+qw/BFeNgfPi\nIsLtaYaIMKQBL790reQ/lWgRVdrrXK8Hku8z+GO/Yx+neL0j4IyfFd6WHW5UuEaFstfnHg/wY+13\nH/m2/bvzHPh+4aQaC6aQat8CLD0YPLyxH4uCv0NbvtQcpI62Q/tLtKyKgvZzyWgDidLeRBLljNPT\nU3Gg2xkhgolI23oWwf554o2BwtsCTN4YXub1/fo9X4/j0Si4ZXekh3dpTO0dN08Ht6NEbUevmM0+\nDWi2wyOtaoOzRz/lu8PFkhKpdB3ngkZVAYzDwyMcHx/jgatXMQ5DSW1QjSo/t5rvHbzMDYA9v3l+\njok/v8XjK+KuNx7NmAVYpt44arsBdvssMPoyAJg445lnnsZ2s0EiB6fVGeZaImtf512i+bj6EnmR\nyLQg6yw3ihjizIz1uJZnp4xxHDFhBwbh9jvvxMNvfhPuuuceEDOefvJJnBwfy2HouRpl01T50+XL\nl3H77bc38J2enuLJJ5+c4fJW+VNfvqU2EwD85b/8H+Dq61+/qDMCqid4k1/10fLd826o32xZ/9T9\nHozcqp7CnPfoqf7Rvl6xVJbskSX+1ZNH+9rwvAZAs4O71NhVs6sToJWrJh97z5aiOxWq3lDvR5vI\n6hAjpzwtI6hDldKAXM5VGoYBd1y5A5cuXcLJ6UnZ6agyZln+qtkkTkWPEUXDXNfy/fXX2DmqqqyJ\n9s3clmxkBYJzzR6E0Zp/x/Reb4cg6LRWX8UdGh0l7tCo77bysx/YdRYd75urs/pK81WF6eu49V5v\n3s5hBNoF+Kg79nRsWO2tXeNhMz0+VSceM2NTUhJ5alJdwOCm2t8AsFC6EJT81j6g4jQB3SDBxnb0\nQThMNhca+8XpL/593wGv63O4V+nHzW+SztX1O6r/XPWy2AWjbXIEIDDVA8cJJWMIczmIXDspuq/p\nO9yiVPoj/NsHP4qemEsVhUbDWR/7dPdmHpbfKSVMZceDnAvl+sotb5jp22QczvxyabbIWfnnzAnv\n5jwzY7fbYRMX5DCHPbbR0Dj6Ng83Tvh23lS+0eqgakfIYrGvr1287cq90JLpyf66w6N+qs2JUCfb\nuSAFH1QWouLioe8XAHL3xLegqQsLlOU5rao7p9CX49Hu1dLQLJcAZp3Hxc7V9xs5EGks4EGfbQP8\nPKa9jJzrFNZnB3O1w2NQqZT1eo1Lly7NeC2zLCR7e9TwQzXI1ddH4X3FVQ+HHr9L92MflG56PhGl\nvQSlg7NlXLQPtb9wfQSAd7373XjXu9/dvPvHTz2F//XH/pe99Wu52dRYFwDEk7+z1sPMT0AU8+93\nHbkdwPsguXIB2Rq+C8+8CcADAH57X+Oafkby3Ar4RAMk306y1BGZGbdfuYKH3/zmklNNIvNkmxOX\nnKjCdLfHN/DPP/Jb+Ns/8RP4w89+BpvjGwAzps0Gw5Cw3W7KQbe6hbYqag7+OaMnwgMPXsW4WoEo\ngXdleXTfH2g2KQFY6qSz2uwRlSkAuq0XLfHG6H5fl61AkjjWfuPXfx0pJcFLnuyA597k7V3vwaiC\n0G8vi9MtMh+gCgsCJPWLpfThpg8NDEEwtRO7KBINzJLWxPCUcyPwoAZHp0/xt4/QXq3XePjhN0ke\neCcwM2RB2NN5HJve7gCpo4U94sBf82NhOO8pKkEAAG4nTsdhxMzN2RSqeMaxqzDPBdtM0Qkl0lAP\n10Cr7HqBFGkp4icVA9H/xUiQhlbDn9bp21GcvfDCC8glChyoimDF97xeLSnVtE3xfjRWYvHPNnMs\njLXOEU1p0DNmWzpqf/f401mCztN0I/A6fdtXIqy+niWc+ufi9x5NalmCKbbTOxg1tuvPrdDdg16G\nGDyFz1y7dm1x7vRLMXoAi87Qtpt+117MxtPT89Jc1Xtx3pFZrW4hgdkdylnT3ukfz3jcvM3eePpF\nnJkC6KKAlG/3xiWXFIqaEqDmgy/pDeHTDC7ztogXJt09oKnCxDH0uvvuw+UrV2a7NrSeOD9V5i3x\nyS5PDrv4enJkaY7s0zGi7gDUtIy2jbynk6BNsxLhjsq6/GXk3YQvfP5xjKtV056+RESzfsbZ0ZOd\n+++1OCEiS/vmd55qOgWt5/4HHsCf+9f+VXzgz3wPXnP33WUMJnzuDz+Hw4MDcUY6fETDzdo6c37f\nKn/Ky7fUZiptdOeh0RZDUlbpddRUVAlU6bz8iQO+L9PUcWfBC6TcH2a83kzp6RW97/H5Hh/r8bAG\n9l597k/PVdH0XuTeUzupV6foW/OUmXYvLeOkJ+NsJJhnh8kmBdo/5/vj+PUwDLh48SJWq5UNyzRN\nM8cvU7WdPOoWZUNHd23663ip//R1xeflr5xdyZpispempfdeC0tPv4nfG+2jjO3Swp/x7ZC1oIev\nHs5i/3tyNRZ/az7K8zajbtbCqPrZXNfvjc3SPOIyFrooo6qfBgto0bMQNVE3TyLbc0mZqWgWFdid\nm6gzkZSVOFoqMKuNpFkrPKK83tRDaHzeD/dMN3ApiM7kr/5ap77oaNcFyW9G9gufq99jFZG2m+sd\n2yfaZ5nFxwYi0DDIX3g+zmt7t9Rju55TMrzX/nZ4AS/4uJweH2Ff1vM6+pzTrZkZW5+ijXt2b4M4\nAK1PILbZvlMXdlSvrbC3/V6yw3r9is/7eaH4qzYMuva9Pj/jhR63BIAYak5NRcY7KQ+H6j5silhD\nsHxWyOpfxU+Pty4sjjlc+XN6TS4tyJv42+Yj3JEMhtM29eJZ/HKO6zj21ByVgFL3ZrPBPffcg8u3\nX+7ycT0PCwDaQIa+L6OOUuCfPV61IEN9/6od73DWSePm6/Tjc5Z8EZ+rG9tCv1l9sQsydUnHWyo3\nuxDyiwD+eyL6N4joQSL6twH8KICfc8/8eHnm3ySitwH4ewD+BMAvFGBfBvC3APwYEX0vEb0bwP8F\n4CPM/Dv7myeIZp3QODaojTxHibb7M9/7vXKA+TiII6L8bacJmQgoK6wJwMFqhY9+9CP423/rJ/Dp\nT34C0+kpeLfDwTBIDnhm5O0OIFGHe5HuQFX6MgGb3Q5/8Qd/EFM5oJ1d6oulgWoEhV5z93yOXfku\nONHc2HliUGaMlJAY8kk0y7ltqAuwREJSoQcA3/j61/C1Z58th7qyrN4H2CMelhSmXr9t4oDsbA89\n58PXCQTnb+mHRtz6vumnjVUicXCJRVf7i8qwKtLb94Gq1DU4A5pcjD7NkIdFf4/lnJBVcegoMyEn\nUDQP/T5GVXE3d4Q3DJba9EqVDur3er5A+9lvb1ko+aJCJyqg53Fun4e5LQmwKDQ9HuJvnW++39M0\nYbfbLW7FjPMnKkERD8yyqPiNb3wDUzkQWfiO8jMxlL3CqLD4MaNQpyiJ3JzDoGeo9ASYXYu4jvjG\n2cXqKbATEsDzBbjee/WUiZa3aT9jHz2P9ZHsUQn1ac78e9qub8fjI5aoDHXTtTl6X6KPniIwiy5H\nNersPIlYHD1cv34dqzRYv+M811yvqmS37SwrjKZnFNdynvwzjr82YM0P0dQ/w5PjP0sLBkvKffnV\nwBr7W2kDpkh6JavyJT8mdTFhpqSHtglz+bjUf196yr/qAESSluT4+BhvevObgUTdbc++n9qeYqRH\nn0v0HBd99dn4PdK9L/HMEe2TGgWEvjLZ4+MeRx62JfgBkZnPPvMMXn7xRUzbbUkhF3BPQBoIlCod\nt6b1HC7/nYiMn8o5N3J2GZjs/DbOdS4o7GNJsbjdbvHOd74TP/iDP4j3vPe9uHDpEtI4YlytMA4D\nnvjil7DdbnHjxo1WPyqf4zjOFPt9hsit8qoo32KbadlJCsAWQLwOMJuzqPOI5AGL3qy+yaLLoET5\nc5bIz44MPK+R2rNVet///77T9BmwxRtdALc8+UBnF0h5fwYHigGPmU0SgwX24aPqbCqLFMj5Iu9Z\nRYO5/PgeXTjCpUuXSipMwnq9BhgYBkkW0Ust2Ouv9bt3raML+n7vi9DX1tjZXZFHLrV3li5aKu3K\niOrLqzs7ooNnZn842KsOejYuzjsfvpnyzcw7oNqkvo6ubkGaQx+2sIHyfyKxDPTdyFcqXMCUp7Lb\nudpdWNK9w2j58798W1Gnm+FCYSr8rOcg1Ge79pQCz3VXS1O/76v9Dn2hgjOG7QSRzyXb9uxrmesB\n0VzOiJ3BvVBm/gP3dJ2nfZ281/deaXCDit+UEvxunH02NYC56zzo+vGMCNtBx6EObh26uxKgqvfP\nKl07L2Q5sXEOfat/bX972SyWZNu8rvmccy/N4N7Xp1jU59fwwfZNZ2NRc25VC8aecZ217ReNSkq9\nTt8W5bs+qzbuGfx3yYb1Nk+iOjP26RwL4Li2ayJB4UWMRFUnG8cRt992GcyVLpqxRjtna92qqAQF\nJPRpH6z77Ftfes/cjG6yRAvKN3UXHxHJwo+ju39ZkvNmU2P9FQB/DcDfBHAPgGcA/B/lmgDH/DeI\n6AKA/xPAFQC/CeAvMPPG1fOjkCipnwVwAOBXAPwXZzXu1uMax2AqwsynldFo7kfe9nZ8+vc+JbtA\nCHK4bznobQKQtxPSkLDbbTGMIw5Xa3z8Y7+DT33yk3jw6lW85z3vwW2XL2OaJoxpwLQTV5WeL6DO\nKB8NyMxIw4hhPeC13/46XLnjDrxy7VqBsXXu+eIdedoPrwaklICpbAtS4Vva3Oek4rIKfRbRN7gO\n8DGA9Tji1z70z/Dv/vCPSAox1C1m8fmzmFTs53lKT6kxwQHSbULN8/bp4Svv1HRAvdbIDpecoC6x\n8ASR5UHWXTuAHkAcGYQIu5wz8jTh0qVLuPPOO/Hciy84Z1C7upzLVkTPtHydvXQ1PYeSHPjdwu3h\n8g5Tf9hWVGh6jNP3uRvV7OhU4Y+LZL5fSwbOEn3559udG2q+z/sc+zBNk9XhaSzCsdT3Jdjjwt1u\ntzOFK6WEaSqHVFI7h3q8wQvdXpu9sijEigC1vhZ+wgEO30ZPyZ+N9TmVLKA1Oubg1faGkpovlbyS\nnr61jrh4Enmh70+MCPxmeI9u7fT3lui1h7ecuWxzbnGQINvwMwDyi9aqWBLhheeel9Q701TqSR2l\nDfAqgtGj5Qpu+YTcl7OQNPo3pZbfWJ7V5v35AZqtUraM28pLKv/R6zlrLuz2fb/g1auPmWc8qCd3\nfB7cmQzWbf+AoXBfxK6Wpp5g1Fh/IQsgeTdBd399+32vAyBBE+M4amWNgtfb8ZUwz4d9lvH8TfGK\nUJq5dM52Z+3s4aNd4z5n7LYTvvD44zhYrbDdbiWQwaPcxrOFEwDCo01bcWej54t+EazhR8VQXq3X\nuHF8jNtuuw3vePhh3HvvvRhWYxNZqrJlt93iySe/LM6h1aryebRzJvLcvrF5q7yKyrfUZtKiDnwu\neq0GUoFaZ9eMRxT9DeSchdzqVgAaXbVptzPXb0buxne7fTuH7bFPX2p4qDnX+sZ9zwaQ9wS3hh+u\n7+gMjjr8eXBgix8OwvIyevjex8ZTStjtdubEGYYBq3GFu+66C08++WUM46HZjZPfsdbTi3N/DHOu\naYn2pdO0/gUZ2aONpXHvXV+SP1pvzrlZsNe2dGeJPV/0hDwVR5V4nAqMS7qF4L91grYO0X392Eeb\nc7lYxeiZ8rbzXX9T0yetk5DSAO+gi7aJ2V/6H5PBA27lGCEVnai262FJSc5mOD4+LvSXAQyS5rzU\nR0TVt1dbrn0xaMvvYBOYPLXX67ytl+Y6pO+/x+GMD7i6Ii+ydju2ZdRbvNka27TnuT/36z1JjWV6\nrvLwpr/yrJkXoP74FBpueBfNcRV5W4/WeqVn//fq8PpQM57kaJGLbaAmLbJlLSEQEiUMiTCVsy1b\nfNQ2PO/zMEad/mbt3t581bnXPtf6NvZ977UZbWA7w8RkRtV5m/MlFiF3dZLKpNr3aq8F+w9zeZSg\n7UIHSTtV3qtw+DH39CWwtLw4wtrMHaJibwGZp67MqTSvvA/QOebx6YPJl+ayx0NfRrd+TPld3xtI\nfB2JCMgZh4drpEF82uLmzJimjDQIjzR+62wFqkiUPtF8J+SSbImlZ0fGPjQ2TH1QPjCfKz251NUV\nlEa4BuT4+sVHK7tGqIzfN6Nb3tRCCDNfB/Bfl799z/1VAH91z/1TAP9l+Tt3UUXUBl2ZMVCiopOs\nhms7AN7xznfiiS9+wXL/WSaqUldO1aHGOYsClAi70xM88YXH8dSXn8D99z+At7797bjr7rtldwWR\nTagpTxjGVPLnFTiJwJmRIdHlH/ju78Yv/PzPY7VeN4sXvYlkilnOFuHqnxlCmh5g/+4LMbYrIzS+\nE5SaaIwbQROZMztNGU8+8QSef/55vObuu4sQnO9wiYIsGuPzJb0AACAASURBVPXnGus9zGpJIM0Y\nYKeues0/HyZpliiwRjKUx+YCoMDgHuXOhOSieIBEcVitVnjkkUfwT3/tQ+bYjH3SnJK9fvfox/eh\nFSK1E1UYe6bUMrfe+FWY+njtwRPjvPR9n14rOnJ9aejKC2xyWrWr1+MwKhg92KtxNCGVM29i3+Sa\nd5oByj1inT18WR9Y8o+enJzgwqVL9lyPH8giSRDY5TOej0FF0W0MDy+AFK4wBzQOwZyZqjCfQ4jE\n/ukY+oXh3jtRCCst+EXkyJMavAQ+o2VJUOu9niK12Dc4nHWK5xm1XphCFg0Cj6+cs0sroqmSuKzf\nujGyj4rb3TRhN014/rnnyjUG805y6xb6IiJJOeDPHWpgEIOA0dK/MACBxVL0Bue/PN+ejSFf5/QS\nz9rxOGjHRro8z+dKzTKmcWi/8yHgVoT5gnObqOCr6A2d87YUXwm58GrXn3BIZ0v3cwMu4s36ME3g\nNABDwjiOePNb3oKDgwMwEVbDUBf2Cu+MdBxlW5Q5cW41+HHP2bsdmPfNDZ3f++ZRhCMvPOPxE+XN\nbFdYznjpxRfx4vPPF/2vng+mfcksOzmW+JeZJQtj5OlJgmxa/uP51LBaYcoZd73mNfiuhx/GlStX\nJDCGgDQMtc+FjFbDiC8+/nlsT0+NT9rc6cjwXjm/5nSr/Gkq32qbSQuh6grJLX3Mw3viiy2NIszd\nAlvDn3qyu6fPx3piiTpl7/leXUvvRP12X9uRh8qOl2p3Rn2CAZSDiwAiJKq47emIrpddOLyM7Pe9\nSEhu+UdP/tl9qvyNS+XDOOLy5cs4PDwyWIYS5KbyQR1dvr+93X+6mOB7EscwyrDY76oLtLsca9tL\n+FiwQcIZdVEXbvSUQKtmO5mO0R+j3m+ZanNn/L6+9+rr0afC5R/v6R9RTu/TaaVOjUM+W9qYjE5C\ng2aHoNXTGWyqLXN/furvGzduYEiDpcKyuQbYRgFq8FICRTvz2tcbry/OD53H2jT+P/be9Vmy47gT\n+2Wd7r537rwweBMgABJ8k4BJgARFkSK0pCTatB2xDzvCWtv66rAjvH/PfrEda0fY4Q+25bW0ekRI\nK4lakVyS4hsEQJAAQYIASTwIgDOYubf7VPpDVVZlZWWdvgPJXiM8FXFnuvvUqcrKysr8ZdbLx0ea\nertoUOotvoDkw5irnj4TfDn0MR29XeUKeeyiwTVWXjT+k7HSlcdoJoVTP4/19VLycKN3xHZfFjV9\nPPKz5D2BVvbUlsixObq7yEdAOY53e3KCebvNC1zHdsT+5n22dtHSWT9bE7vgny7YvlH5ozYQ1Xgg\nFN/32c8mxkDqJBbTpqI/VZLxGlmffENFxnRsFiYGZ3WHZw9cXqj2kTMShQbbVvnNHn/l+WT2uy2j\n/a3Pq9Mc673PU1gl/2K9KoskQYQg92JmTMLaF2/d1+Qa6xib6OrTMA+9nHnt1PwRO9Dip7Y8L+bn\n+a+gvDhUfXd9OWl/067Te03XuyPk323Kna5NNTcMSpMhcwYgW444c3QG733Pe/H1r/8tNgcH2MVZ\nRkbenQEQR4Dq1psZdfUMmPGDp76Pp576Pu657z585CMP4ba73pa0J1Kn7Xa7VLNS6ingNWFaA/fc\ncy/uf9e78Nxzz6WVvJx2kCwBlBBCdsbb4IIN9sr7IogSVO8UmnyWvNCPDOjXilINGgLj/NFZfOXL\nX8bnPv/5sn1al1O7ygeJpx18Xloq3z63jpgo2srPUlJHp9FfeXDnz7mQRjGgB7rs0COBJADYxoj7\n7rsPBwcHagWKD5a9oKKrNEzbPd7U90LzGSqwO+ojz6nQYG0EMIEMBI3yPO2KMS2vIp9yNqI1ykJL\nBfaOs9yUL59k4qkaxTKWQzWItQQfSOvUHNfHaSLk9ddfx8233prLlYvq6oW8Vm41H3IlTRtEHq2j\nLyCHUPnuJTn/GQt16v91n8n/wpdFB8ORDyuTNk9jYJW8l/dV2yX/yLn05NruYsoZWw/TSXqFVPqO\nziZ5wKk4GowajCDt3Kg6iNIzde70drfDa6+9lo9ta3lUeGN0DhHqJICUrZ7bFZLiuLbU1Pw62V0i\nXn8SoWm/dYRSOXViFADmqN/Pq36gZETkTxfCArgEDDL0cXOFRkWfTcycFh9AnMRULucPpf2UViwO\nHSKyPCj7Jks7r1y9ine9611Yrdbq/hCfj/Y3LS/eFLKVea0X7BiJ3OoMTfMSDUB1WE5j03WeJlDi\nyEOTPzshT3zve5hA2O22ib5pSmMDPtzt+kbo3YMhpJ3SNhnD0zTh5OQER0dHePvb3477778fR2eP\nsIsx92GycXOUi/wqBrh69Qp++NRToJgmdaZVkp05635dr0fbm0dMN9KNlFJnN3Pah/m8cjzcZgMk\nUp7ktXrHBgU0jZ1jDWc8m7JGydNfo++iVUmCt2JNuD6Faicz1x2EWcEUbHTKQcvOilFNUPVbbACo\nLsKwbbK8rmEBToHrvJsjAphW6Z4QynhD8kuTul3zgtsDlQULRYer/rJJ2x+bKn4UmejbbCfHU/7Q\nPbN1yt/S6QPM7GNkUv63qqf1nTTNKX8I7fGso3p1W5aetzwrlqk8H42R0W8ulliwi40tsuVFBlG6\n/zSNlSoHJS8tByyZU19evXYNc5yxVuMoELWnKxisbuMYtp1L/sgoJbzWT3CUOgw/NMazPnFRIJQU\nBEdOx23mvILhPD0ssR4iSkfa2TZyOo6MteZSOkMfS8ZFSaUU86Jfyzsr14UX1Mq6kKknTzz/y5bf\nxC4W3ul/a33uOscoOicv+OU6DqUeOb0l+Vy9j6L/3263lU9GRLo4QsbtqV9at1HUacWRiWYKbRm1\n/lG794y/QdL2s9iqmORR2xwy8pverXGOSk7qc45cJtQ92mp/5n7Ik2aNS0nJxnK2q02LyP6ffdoo\nqqXKQa3b14XF5hjeiLy0SombciwPdRttWft0TOdziRQ28tL3+267w6233YajoyNMq1WZ0PHiMgDA\nJAsRGoRX7m2C0ge+rz7GUUt4Tbe55FfNk4Wa5Z1sIzianWamvtqCppLGviS66zvXg2V1ektNhDD3\nA0/+T0cTpXXOclFWoIA4Rzz88MN46qmncHx8rQGozOkIK3A6rki2a80xgjjf9xBjWi0OxvPPPYen\nnnoKd997Dz78kYdw99134+DwINm5kBWxlAs5tgQABTzyyK/hqaeewpnDQ0wyyWLaYT/HGNOdFuq3\nELJi4HYLrhhfe+Euc9rdkO6ZU4NaC4vFNhnErVZrUTl5HBHm3Q5f/tIX8Wuf/CRuunQzgihVMUCh\nNxbyfwfQjfHXtDUDdQHgsCprGgRaGwOuml6qM3yQnLIqNMYIyqteSL8o9eTfhN+BqOwQKvTk+kVB\nTNOE8xcu4B3veAee/dGzmPMFXZStZurTXuFxlTKXH+B2NhbO55Q/Kj70DurI8bL06CBm48SgTyOD\nUeuqq1ZkrDeALOcrlyM6itgDcjqlr748tUYcqIBvn4KlbK/TuzFy2bJYZIojZma8/vrrpQ1y/BGF\ngCnvArETAUKtlnPboMK9fAeBbVd5X9pnDbsCCxo82D5sjGYuU/d96a+GM8ZAFlCW6NQTwjrpyRVI\nXU67Pb7YiUPvDOrmHZElQ4eWu3YMaYoEeGRHxylD0yFlzvMMTFPtijx0Eu8VcAjp7pUYIy5fvozX\nX38NRHXHxaT7XINaEqcoFgDZAF5SAQJB7chyySg2VENNVp1QZMDoEDv+tPS2z/y+SPxCkdG601K2\nZlOZrNEyWyYfqL2HpZat9DdQxuscZ+TXaj8YaRO9XPWD0TsSOCs8qM+qTUvv73Y7nDk8g81mg5tv\nvQU7jliHdbG5geyo63nUfDb23Mqs1SX286j8ohMcO1vkWY0ZS4928KqDVUZJQ6ulZwoh73RKK4Ov\nXbuG559/HisSxy6od3O1Trs8XVk/mh1TKlsIId25hkrf4Zkz+Pc+/GHcddddWOUt6RFcFjIAAE0T\nIMcqZFmL84yfPvccdrsZhHT2/m7eFVnUFA77BVbibqQb6fTJWz285NzbZHW65wjb8aTf83SQpaPH\naeOgulfWadtjaZfvkRKfaKBDGgxRMJKs0Gzp9ai2wQduFFeuC1AKweeLLcv+Ltgtw9Ze7yt7PYWA\nSAHnzp1DCAEn2+PEi3kuwa507HSQDaOYCZimpH/l6GDNk+sJ5IkfUvFBfcfFwR1Or+VYXo1sy6hv\nBMs2NCq84LWhLbsGDatf7tAE1BhEXlDDXVltu2xd2r53NKPl12n9OGnDyEfT+WwZFgPavIAc+9qX\nJz4jgXD58uXyvdCPGsdoZQJdZ47s/5IesYkAgOvkQvNM+VOjOnXenCP/u4y5dN+4vmanW1Har/U7\nld88+T+dnu/bQBkP6nHayqNe5DniiX6u9awee15y7Y7C9Jqeejl2PTa4OVoWKHfO6nZLHSfHx0Ow\n5bZL+yMN5iUAdZGZHEPZ6H6go9/qODc+Zug+bR59lK3wXHCorxf9NrtsGEwiQJXN6o9MW7OyLHyw\noNfDwJ495eKHqUkQKV+1PyIvzlV8Gy3otPJn6/eSt2AUyJfLS58wA1x9yjp2kWI5vMPZc+ewWq3S\npMHUYhDNG1tPawNyfwv9hR/9Dhcvjey6l69JDo2NnSJqTj8ozwcYrRRr/gfnWCnXeN0+XWfT9V6W\n/u80CcMkIELqb+aIiAgmlAtVKBtVXgU88vFHcOXKFaxU4G2aJnBMOzQQAiIoX8ER0mo9SkBxB4Ap\nYGbg7Jkj/Oqll/Gv/+iP8D/9D/89vv+974F3O8zbLeYYseOIORBmzNjGbTqmZAq45bZb8cEPfhBH\nZ85gt91ivV4nGE3c/KXdqQwEIFIrEBLwQZ7YSJMiaN6V6/2ETzVwkFbwlrtD8sWfcsGhTkSUHf2s\nNBiYGTiOM6bVCnfdcSe+/c1vYOa5XFhKQJ617Y2M/ZM67MXxRfBRt1l7ILH7TgBCu1LNriDKbDOg\nLRshCmCoC99COwCnsrYiTY7ZFUhRta20QZQaUT62jTGlaE2V2RDw4AMP4Orly1hPK0wUMNGkVkoI\nN+ROgXRhn2eJtFGb1LjQz3S7M2dKHcUhHChwMmV6hiGVFMXKlcvjI4DZ6f9aXlXKubamzDQRSYic\nzpaUlWiaDk2znpRhjs2EYfqrfNW/6yOakIGkrFLTgEKDD1HcrIAQEcrWzynk/idgPQW8+ItfpCB4\noHxMX3XCVqvVgKeVjyEEIIS0Ijq/O3NaXSz5hDYdLJ+ybHBMx/UhRiDvBvAARnBkqDxHvSzMHdvq\nT/hmJ0vkN3tZstQldzwpogoPxIDaVfQCtGv5q+5yMZuk/frC2DKGVLsLT6VPStWyc4DLdlZvnGh5\nmZmBMCV9FKEuSUw2KzAw5eDDPM/YbbfgOeLk2jVcO76GZK5kNeScLhNDDUzHAgYAcIDsjMo/ZMxZ\nHemk5+tqR+RL2znzXXiPEMr4E51ZSuV6tm5/R0vrIIUwNX2it0gThdIfqU3pbwrJlS4XyRFKOwoN\nJOOEi+2S+kMIZZJBZG5GsvsIlC79JICZIBfTMSf7LPWUulj6UjiquMtcduvId8r9EUI6Euv4+AQf\n//jHQasVwjSlXQSZb/oSPphy9f/auSlHV+a/sl3a6OjTBFt0nqIbMpayzxPeyfI8qIPyWaQBUz5i\nTHjUj3tJxb4SMHPE4499N/0uDgwFyPnWZewGSnpBtcv+aZ1WdFYE4sxYISBEYL3aAEw4PDzEPM+4\ndOkSPv0PfhO/8+9/Dnffdy/CZg1aTUA+tnQnOxPlrji5xyaFVcEnWzz5ne9ijjts44w5psluezcU\nVYFuHEYudv36gP2NdCNJkpWy2haP0pKttLrHftd5bFleuaPfqj04HV1Sb6fv1F9rD3xaNQ726NR1\nxYzd9GW89XlLm4eZK14vyKPz3U8TfOj4QMlg6j7X+hZofaoYI86eP4e77r4LcWasVxtM0xpAwg3E\nVFbkWww8Cr7pZw1tji+oy7Tv2z6t+ME/Clq3dXSpeclr/kYyrIjqZFDLqtdVVmaA4ukM850uMeoE\nknyu9VifaNgm5oJxmdt7RYOLQtrUy32tUwcVBVNbf0vfR0mBcPWNNzr/UyYag7GXMDLSNsv3TXUq\ndai/nj2+fMPIQMlv3hNZbGjxKnL8Ba8t9lWOg3ZmoV7iw5INSCT1bdbPrB7Yp9eBegm1bqtttx27\njZ6Brrc/xkvrtHmuO7JsvU2z0svlaOxr166N+TpIPZ/9PvT8bMmv88oz1/ce8HaU35aZ2syNn2By\n72mtrxdk8VnVzbleKuEgU0z6odjP/BIxpXgbAxTTXz5Pa2hTvDYj6w7RPcVHIspjI5Y7pesrfszM\n5rE2X8cYhCavn2zMqvjXuh05HwGY1iscHR3h4PAQICAa30BiIcVnGOrB6l+M4jYjeR9jpVOkPe8U\n/SHt4RrDivLd0jZsa61OfPPr8ZjeUhMh2byAec7HsforHEQwQwiYpgkEwjvvvx8333ILYoxYrVYg\nSqtyWSItgcCB0qyb7RzVGbsYsZ3nFEAB8IUvfAH/47/4F/ibL3wB2ytXsOaIVXZ25zlNgjARaDXh\nY7/2cTz5/e/jzJkzODk5KTR3ikuEVg02+X9WtIhzD4yNngcyO74aMCrldkGNENJFpTHiK1/+Ml5/\n9bVykWwKlO0PvHhJX4K7pOxGyRrBEQjc5+DZspYG74g2IsrzWDVfCd4iBRHlMzFw6y234dKlm5uV\nR0Vhq1VhnkOw1I4msNvQ6xsPzxHwHDfbVsnXTA5xBbpLyTpUHk2j9nkXNS/VMSrnet+1z9MHoGgn\nzsY951GbTBFCwAsvvJCJSC6pBYKaZ15AQORb36mg3/c+ywXtnhOrmFJn2gdtLuNKG/I96TTgYlTX\naByOQKC2B+n/nr9L9DVtxAjy9TQKL0agYqnNjUyrf+XorNqeiJdffhmHhwfO++346YHCWJ/Ztth3\nlvKIfmku5qM2QOLpD82nVjZ6vrTyutQjKf+E3t558tJiK8XzDKhI6V955jlUBWhr2h3ahE/znFbO\n3Xvffa5+9ORnDHAHQZ6FsenpwiV7sqQrvSejMVvK4UrHiJaEuSLm3Q7zyRbPPP00Jk9nOcR4TrYu\nv+y8Uc5MCCEHEAOuXH0DkYD73/Nu/Nbnfgef+PRv4NyFC9ja+6egjiUjKjixHCXDDMSIH//4x7mu\nqdnhSdBjuxDfTD7KWelS3410I/1d0xKm3ecrXI/t3kfDEsa4HnzWvAvUOyCz+pbPos4X28B+UF7G\naJlgX2gLa48cy7wY4Zg3m0Y2oere4kEjAjiJEbyacHB4iHPnzmO9Xic60EDavW3wZMejbSnYYv3c\nkZ82so/2mfWZVGXdJIgOUDVZNX3jloFo5GOaxR5Ne+XtcdrXXvu5baaZKODkb6ZFeTUwWIJiMUeO\nRH4HuELKlmSPHEvf2wV2kttOrmj7FyNjJ4sj8opFOeI7Ii1aaYLoC3w7TepwrPpbyuslOwZO62vI\nb3bR2fWmXhaW8aP9baTzGlzfcMYvf+T7eNi//G7o8nxeVVozGdLFHYAiM4H8Y5qFpq7dzCqIX3d0\njdJybMTBa0SLR1R75ev/q5+xHMvzytDfA9B036JHdUo7LAXpvq6XmWdfhKX3Mt2ezKVKvaIbmpmX\n9Z5ulR3ngdLCVFLDRPC1HccjH2UpZrBPL5e2EiV8IgsO5R35DIAj45ZbbsHB4SGI8kI+4ws0Opnb\n751/mbLslRvb9tPopdPIyvXqOPGxyqKxBT9Ix2DeTHpLHY2FvPpBglzl19z4GM2qYuQz/EIAg/EP\nPvsZ/P7/9r9jWqWVwhz8gL/+Lpuo9HEbsuqUkIKCu+0WTz7+GJ76/hO45+334MMf+TBuuesurKcp\nHYMQAiJHHF24gM/9h5/H4999DKtpQkRsVk4w2jO7hQIBFNIu6XDOOzDC1G8dnGcFUEKrcJg5TQCp\n9g7ckkZ453nGZpoQdzscnTmDb3796/jNz34WUz4je46xmQAYOVKd49DViqLLmLNBcgIbzTucAmVW\nIelU+5oUyG+NwZwfN2CvKJCeZpkIKiBXKWl9FE4Eq803yShO04TNZoOHPvIQvvSlL6my63Y5P6RF\nBXwLf3Tfa3AQiMxqOLE1KqjDLZgfpabcoI8nqcqfQr2KcxSM6gJAXRv1bhjVagcE6PLku26XLV8b\n0ZGy90CIB/D056Xn4hwEIvzylVfSb7sdps0ajATabN1ANdyNgheDwO1WcY8GlxZOwbp13hkn8qLv\nXSirtb22ZhoKzw2oFMdqyWHxDO0+OdH9ZZ2vMt6gHBrKRxzqsskCehS9IuXL8WQAst1o6bYyzVmB\nJOet5u0C5vnP8qO5TFreoZyXCEDATAncv/TSS1hNK6QNPf2Z2fK5ADu0MqzbwJTO+Qb3O9zEHtgw\nfYwx727Ksqb4T0TNDh47xisr2v6TsZHeSTmWJlCrrY8QPeiN3cgxXbxZaPR50WybpzRBwsh6PPeF\n3rqr89KCs9VcYpuajd1uh83mEGeOjnD+woVaDmofyFZh3RZJ3Q5J5maFjyKuoVOXNfrfzefJuuaB\nqi+baKRJ8IC6IGHsiNu6W/qTXnzqySdxsNmUIz9lpZBbnqWrKbKVf7n8fJrSMVwnuy3uuPNOvOvd\n78ZNly5hmias12tsdzusVpviWK9CwDZu826/UCcr0epLAnB89SqeeKxivTkLl92hKLywuqa0Ldrw\n6410I11/WsIIQI+lRnh7FATYV5/WMaN3RjrBlsPMmDkWO4d9tKaBWvB00wbJixoA1HebACiXlHrt\nS4EejVH8Nul69/WFl5YwZgkESPBZIA9V/UT5ufgAoqfSMb3nk44NVHb5W51jqfWwmaZrpPeX+OD1\nM9DfR6bTaEGBV/5SOwTXip+WEQYyulNyW3eJ6jJsmd1zCupIIPIN1aAdmnZSONar1/PLco0gUNqx\nyhrvzAj2PrVAxabpMts+8e9d8fwxsPRT66eW8gJj3m7z/XcR04q6NnB+O5yi7fp7wwMzZoLuDqLO\nBrtjzvmt8c/ah2WBk2CqMvYMj/bp0aLr0NPa+o1ZZsUvMguVJL+H7Zb84PovVWxIQDqNRPMADf7t\n7EAea6WfAJfvneyr74Fa7CT9ov3YQKGJn+i+s9h/jmk3+3a3w267Kzt7LQ9sItWA67WLVm/agmeO\nqVz5Kfj+hjve0NPDzOWy8oCpHLu/zxY1ZTP3MQnUsdnSwRIlzfLay5O3sMyjZYQHrG5KvzUvlj4X\nu6gXXhedRjn2Kt6X6R/dZ3IMXIPdHf3Y6WGg0/ne0VAh+0+bg4O0G2SPfqj9n/x5Rr3XVvNKaAhO\nVy/5eaPfvNT4/EB3aseo3qVltdeFkhz9fJr0lpoIEZAnSTu1WjBFyEMBtQAR444734a77robr772\nKiIYu3kuK3x0cAGogDaqbVmhmrSiyKW+kEHOj3/0DH709A9x0+234aGHH8a9996LzZnDdPwGB3z4\noYfw5b/5Ii5euNAbI5jBE2h46V4zqIqxReGHHsARbUBxlY8B0wM4xrkb8DbYPYWA7bzDKkyYKOB7\njz2Ghz/2MVy6dHPa9RJCc7GZNjaeczUC9nqWVJbbshP8XALcVrmOlIh7gbP4TkYBecatk0czGVf+\nl3sjkCaUwhQQZgDTBvfffz/+5E/+BBduupBXNOR2Z8MDVY6AqFpn3+5ABHtcV8F76mJ0zRs22wT1\nM2+nTv9+BbzCPyJKR6oYYOMB2Nq+cZ4W0HPZ+ij0aGOUxgA3OrEYC1jDqeoyPPfq3weO9NE4ROnY\nHSAZp6vXjnFyfIzValXq0ztD9NhN9zX0+s7yawRoLZhMOiOfDW2D37EirmLAtJwhOzJ63DltL2+I\nXjH0yOelcVRArhl3+2Sw1Gkn7DJME12q+88GnYn8QEjTRkeXSD7rlJeJbjNJ4JVDzQRn/ZOdCG9c\nvpLf1bIrtLa0MIBg5KLet8JZzHtnKYHdRI0GbXqci71tgKS2u0qntucGyxF/LZ9m0w8jHV/1n9Cj\nJxB1HQGgoN71Vy4STZ28CJAS/UkgRG638welx3PHdanR0fm99WqN3XaLRx55pABgzcPyHnNPb6Zp\n3yRR0fVm7Nc+6L97mMqTH68+SYlfABA62nVekW+9M8OWOccZIOCNy7/CD556CisQAgNz5heIGtoA\n1Iv3VL017JL5kb/LhN1ut8PZo3O47+67cc999+Lw6AgkO0XyLpH1Ou/AyuoxXRRcJ0BK8Wgv76V5\nxo+e/iHAKcAjMmJ3vwoPZoXb2pWYuc2x5/+NdCOdJhF8/Hs9QZVSllPOqGyLTTy84tGzD2MDaSEa\no9cx3rs5VufXmf80rvEWBsD4153daGjZjxtOE1gY5dF4SPS9YEyxgdooiV4EVxuq0RuFgFtuvRWb\ng4PmeMveJ6i4waPHtnHp+aiPK33Wtzg9P0dYzOYrZSRwW+xe9vBLQNlry2lkmJlVW6RHqMgTqPrt\nHtYc2k+0J0Foujw6RMhTlQHE6fjilJ8TjuK2X1J5qUIpS98DoevSpzAIvqt8SkdPlvP4HUxJBGAK\n+Uij5P+mS5m52FW9YJXKP33y/DRLb/Ob5TnQTP545ZY+YzT35ER5n/UiNbWYkVPfSYdI6d4wb8a3\nqVfTiqa/JEeuN4NlOV6sBNXFVxJKuPfNrW4DUp9QaOsltEcSF72P1i+XJD7kKNnxZemSVyWm1byH\nilkFD4Ko8a+9JGOEY8T25KTkF71j9b6huNgPzYNEAxQNSHU447TGJepvQndyw/Rip2W907UL1vdJ\nvZ5OJDkdptR9kvzDOrEuTSdoie5pgLRf8iisrvvawwD2Nz1sR7ZH5EF+tzpMcHatsx1Hre3px6OU\nIyf/2DYvYShdT5AjshU/IzN4jrh083mcOTpCJAIhxYKW5Lj6Rdzy2vAx1ukeADUGWvCU0p/9+Gvt\nbMVj5ccqG6YsXY5DeqMn1ZNxe710Spm26S13NNYSAX2wGwAAIABJREFU4LGDgqBXLqc7L/6Dz38+\nHUulBN0aPAEIzJyO1iLVUYR0vjvyRej5rOptnPO9IoRptcKVV1/Dn/7hv8L/+j//L/j6V76Ky6+9\nBgA4c3SERx99tKxwlDpzAxoHwrt8qoA7onxOdSgrRbuACuRIDxUkNiBdBrO+H8E640WxE5WAXowR\nPM/4+t/+Lba7baVJ518Ajd7AKBdbKSBsHSpWPBJgpRWXrUPT4smO/T8gzZhSTKtFAjt1OqkEYRRf\nBSDOyNvqmUuAmQHEdCENzp0/j/e///1p216oExWJx2KIU19bx9JTFJq3JTBmaTXyb+VGt1cbDVuG\n5bH+zeP3qB6bR9pfJ2HSn4zF/ELTFk2TbrcOPqXyKx91HQJgdRmSp6XR0jKWjXoWfvq82Wxw9Y03\naoCLel4v8Uu3YwQCdB8151caYNQcvZfbULYWa5DADC5js7YzEDX3EniTNhNRsx0fMfYgO8Z6JwQc\nwD+QqYZXRqdVmY2ouwjbC9G0Y6f5VPhqgId2eORelnL/DeWJm9xGacsqBKzysQitk9k7vslJaNu+\n2+0ATpdsv/7aa2DU7d8j+yd/s+Kz9KfdSWJ1vegUIUOPDyK/Lssfq3Pl3cpbQM64lmCLwFYLPqUc\nzwG3Z2OX5xmMVR71eqLwY2aAKUFDdiYWnXcr36nyixn64ld9jJaWqfXBAe66++5yx4QLDA1PtX23\nOrXYCUO35Z98H/1WZFvKUnks3+V9Un96z4KWzTluwZhByagmS2jkQ+S5STHipz95DgH5jGdWzpyD\n2+zRI4lvBNCEyARGANGE1bQGR+D8uQt4+KGP4jOf/Sw+9OADOHv+PEK+l4imqRyDs5WxRvWYVKkv\nhHqfDrL+kLYcv3EVzzz9dNYzc3JS1ESJ5qk+X1l0VIzpPjBCmriZgrov6Ua6ka4jLTrP5vm+40y9\nZPHxCCMv/e7pKI++Us5Id3aFo8EsTuX1I9XAZkePwd3D8uDjF2snR7zybGdXvlOWfrdiOpTgoKZJ\nB6Ckvy9euIALFy9gjoIt+kCorkOS9h1HbRsHPzRfSP359Vk/b1THaX1B/ecey+y0w6vbqyP53KYd\nuq5TBGetfSv3ZFC1tbofh76Vsufa1ynYYjB+yciNjQl4fLGLwADk+0wzzkbrU2lbeHJygt1ul2wg\nt4sCtN1N92a1O1g0/rH8GCVmTgtUwc341vVZfATUOJQNNOr6G/4q2SakuE05uq9OxTblaB9vbxtU\n3ZxjDaLLyu4uVrjeKdvDhpam5J+0E5X5E7KYlQkQT+dqeWyeMXdBeSuLDa2o/NX9PNbxlO9iTGNS\nOK71OiPhsGvXrmGaVi29QCdLRS7A5U6RlFfpKKIOF7+plI/tf5Nv92NB6ZClMaLlZ8muez5g4y9R\nnqjP2Qg58BxbWbD63ZaveXyaJOO0ltH6Zq2M1XZGQ4/oKRkD2pf2JgyH/KL+uUwkShvLkb1TwGq9\nxpmjoxoTGdQl5VV7le1PXBjjagzp0wjmGMsdHcgLwkjFRnScpOknY1Pm/L+L3ZzPQl/hU/lj2FUs\nS9hI/0KnlBPgLbYjZLdLq/FkZpUNo20QJW3mIIA42wHCtF7jAw88gMce+266nNgcjQHOKyHUDGEA\neke/hG4AsFyimwM+YMTtNl2MfnKCr37py/irv/wrvO+BD+KRj34MD3/0IXz7m98ATxN2eRKBiPIK\nxrqSJEAdm5XbpWcfRckQUZktFJ7IKjAZ5JzpBGeHPkQzyHuFpg27GGciQgyEENPq3u9++1v41Cc/\nifVm0x2N1fBV806V7StXB0RiUKbzegcOHGMmbdITUoWnnVyN26I/y8DTfJvBxdnqHKRVAM870GrC\nIx9/BP/yX/6fYGZMIR2lQRQ6JdC3s7YthADWQSXSO0HqSh2b0jEh/Tn/rGRKb2HU40zytLPrAuYY\nIHQgxzO+noJ05UjXAXTKVtO9mtbY7XbluCN9lE3RudQG1UTSRjIx6n9bnuZVOpos9Wcgwuuvv45b\nb7215qME0nSbxbDZXS+67g6gi4HouFsJLAYNJiCndIhXF6tJA0l255l+zxvjpOTRA8maf9KOxrDt\nA7yq3gJS0ZZbHbZYd+XAlzm2PNL8cORB02lpHO0w0b9FrauzrK83K8TdDifXjnH16lVQjGmiFqLO\nWQG+3G490QW4Tv5ovMkOCDCDDYCuq1/a1TEWyHr8bPpFyUjKU3ceisOu8/d8q6DW1pPYlnb/tCOh\nRg/0716ftPypdfnP/HKascJp1eU8R9z1ttuxPth0u52acjUA7yhTLcoyYunSOlFkY6n/NR3azst4\nLSBb5Uv2rk2CMZr2qDK03hYeeXLEzNienOD7TzyB1XqFk2tX8+ITlPdHAFsmOBECOKZt5kSEMAXM\nkXHvfffi/vvvx/nz5wsPZ2ZMq1WdJM19AASEoOSw4LDWXoQ85k7mGQebDXa7HZ566vuYd7s6scIR\nbI6LKPw2fCyTfvrv9Jj+RrqRmjSyl57+vt5yRu8sYRaLI0c+3JBepx5tpxtchuwQU18OgBKQbHQa\n9S601V32WWmTafNSe7qyVX9EkkUh+/tEUAOxWhEKv78EJ9g6w2qFc+fP49VXX8U874qvoO1v8nn9\nvvJwn/1fc8/apA4X5eBqWRRn3m3LNRiG2l3sumx3pTsjBdcdGoUAb1Gi973+5iy0FH6osvbJhq2H\nITaVXd9XUhlnPPZfcoFdv8r7+XH5Xmwr0JdjaG13BU8V05k60u9AiMC1q9cwb7fgOCOsprw4q8+f\nBu3yRNQypmt5tA+jdvrJwdPatxmlVG67aEWPjSW9V2jRNBk9VeSVah9I2RIza8ohiXf147jS6y/a\nsnkrtk54PhCaI7l1O2TnjHqt0KR9fK8/tJ6FpcvBhNyMZ1Uv1ffLAlVOEyFBncSiZbTQqeVBtaHU\nKTwzQ8TKkfestCcBS4CVn52/68XMqS50ySu/6rMlm5JkVHiU3mvtWuqTPt7j11dp1G1sdX+6fmBJ\npyyNyVqOkRHu7/TyaM0vJ/mhZOfSxvPQ8Pa67DrV0zDKSUKiunS1jh4PU8Dx8QkuXbqEs2fPpl3q\nlBZayuIoGf+Wgr5P6khLulO+Vd+iyKyJ4dlyi6Zq3c42zx48uO+3UbKYb8h7okZWT5veUhMhc5wR\nmZqLviTIKopRJ5HtIpAhIBwc4JGPPYLvP/E4VmHKqzMa+JPKUyCmCIwqmzLgTM5/BdqywuJgtcJ2\nt8Nms0EIAUdnDvHcj57Fj37wQxxsNrjtttvwo588l54dHeHk5KQqPFHCnAPptYUFIGs6Yj7fUK8Z\n3Ddog6xOELChDENtX6u8ZFsjM5fzBQMRvvTlL+NTjz6KsFo1nLQGTD7L/SqWrsJGNdIsiLSJtXXD\n8gDYxxPP8Or8kuy5hiUPUII+zbEcAxoARswK7u63313A4zzPYHA6v5xjCk4OW9UCHDm6A4P6dVuG\n4BgtSPRArLS39IuAK0WTAJFy7BKlmWodI/QcZq99jaNpaLAyJnnTPTl11TaRrieV1I1trU8UjR59\nniPvGhKSFfozwrTCL37xi3Rk3mpVjjwJ1F4lyKjOWQOuRKkZGpb45wXb5Cg7Zk731QhI5TqTX0B3\nbsMoLYHoji5D/6is606U9EpWyMNsErRk+bynviXHSO4ZoBCaCXV5b1TWKDEBrJw8gfHzPOPy5V/h\n2rVrWK+WVuxy1wcw8il2S/pbgO6s6iwrVLwjQlD71u54sDtsNK+KLGQHgZUD7nFkn14QunsgbjVE\npd2rack5Sb+hOJH7gFvVUf1E0URp0v1DDzyQVtAOjgjYN549m1XqZm70b6HXs6dOe3W93WRKytDo\nRzn2UJWAiHqEaJTlIQPejWwwwHj26WcQ5znVl4+O0jTbdlDy/hFoQmROq/om4PLly7jjjjvwvve9\nD7fffjvW63VZdTrPM2ia1ERiPlqB671NesIq5iCGnLFLJFvM0+ThJk+CXHvjDTz//E+xXq9xfHyc\nzust+tSROSUjtv8o8927F+VGupHeTFrSLdfjnHppXzDDYqW/j3LboIoqc1B8h1NMHe4Rms3Etvpv\nTxuWcZmoVMP3rFdKwGNUdpkC0YS1+rHBjYp2TR8R4eDgALfdeiueffZHmKYJu+2207W9/9v6EHJv\nV85RYJ7Yalu5bbe2n0C2Lxl/hhDK6uSRDdDlep9HqZD2JmX/tOOmuKrZ6ThNYK+z0UC1IyavTtVX\nqPy0uGIJW5XPkF6j5mQJU3tbJ+xzhSFMHRYfXr161RwhPUF8uDFe2I+bRv3D6aFqRdsv8lfGP1c/\nV8u+4GWtS/YGSwfJ8ykBy9Faj8XADU90w/bUt+TjXk9c5XpSE99xyhnzsK1H4yhTQUtX9gO85YKM\nvNA4Vh+1lpfkWvM2+QaUjguLY1OwTw5YucQNv0vUnKDJsCyW90dxkDeTOPsS5V4fRb5dOCs09nog\nE4yWHlKv1HW+lj9/VxyCMr1braKXr8Y9rCUF6/iRr2O9z0OaqmVDqa3t/ERL3gF/9vx5aC4CJmbB\nhl4vcYtx8grBtj+M/uuKEDtMmaNSpnqh+Co4HS900rgrXV8lOkHnST/s1afaB947NV3TW2oihBCw\n285Yr9qgoXy2BkEC7px3hciIWK3XePjhj+LLX/wi1mcOm8B2wg5cDF7I03gVgLTKWlZI6EkIIsKW\nIzgQTuZdDg4AtJsx5VW1P/vZz/C7v/tP8cILL+A73/kOXnvtdZw9OkoX5aTDBZNSplY5FoMcuVN8\nttutsMsqWaI8s5jLmqYJO54L8O6DS7WsmevMvRzl9I2vfRWf+o3fSI58bI/V6QJhqJgzrW4xwBVy\n1E7u14IsenlgpUT051H7PRC4FAzSNHl163dD5m0TAJO8BBdkpy25DASAZ8aHPvgAvvPdb0OCQdBl\nFW1u6a7lltVOJKuJEw3EOdBujK2kkaHueOEB8/xcK2iPt+XyYfR5PHp00iCmy5f57AHrGqgNykzr\nMurFX57q1n2pnT1rAO04RNYhssUw6fA8cQjghRdeqOWWdysVGjBInR5Y9cCO8MTjo36vvFt0pd8n\n9liFUbnyruxgKdtL08NOlzQysiCLWirt8Wy2bohOKdja0WXSl/o981nzn9FfbmwnAIoMdpTVpHX4\nUL5R/QGhZ97tsNvt8PJLL2c5yCt0nDJ0+cxcdruFrp46GgTUlDsXytCo47Tno7Erjv7oZSS9x8xp\npRO4TJDKJFLR/Q7w9PXOmI8tX6BoVm138iLflaVARTP+2/wVx7Y0V9pkzE9hwvnzF3D77bcnGxpj\nmYyydlLzwrPpY360Mh8N3d7Y0frMrqoukyEFqKoxjSwizGliy9De8FTTyFxwh3f8Q8znND/7zDNY\nTROuXrsKWk3QfR2Q7gtpEgEBaVv5yckJLp47izvvvBPveMc7cObMGWw2m4SpYkyTH0Rp1wgS/im6\nrujpFPjRsiBtkXsIrX3YnpxgIsLjjz8OjhHHJyeYVhOYxD6iCbLKfScU2h1RMa/60pOrYVG73Eg3\n0unSPkfyNEGtke1ZwidFJynbuZRviTZ2fvOS2JLlNtsFMsDMgD3mU7e4jFWWqYiar97lIyDEODCM\nguXT3Qz+ZMCQ4uwDaMyjWlKeWSzQ5Odqt2dm0DRhvdng6Ny5dH/cPHeTPCMfqCFN3dll+e7eFclV\nrzFioUt4ki6vRaODO9/M6GDRqyOsqGmo5fW7lLTvNWqD5ytqjNXZ6sj5Lpce8+q26Xo9vMgswVx0\nOFa/L3asvF/KyT7K1O5yIQqIc6xBuqjqI+035DJQj93x+kV/tu2xvrn87bZpB78cB8kmECn+1ZtJ\nHcZiLgsstLx4clN6YKAf9608X9Srakza1LxnftfYrOalRgZh2lTGk0PviHZLy752Me8PQWqdWmNa\nCn+q8vaNNyqYG+W9ko8ZQdSH+AEhJByo26hswOhuzp4faLChlmvrM4k+K+5P0wZ046GUr7/HFtd7\nSfwRnUYLd1sa9PMA2UuRrhPqfSa9s67TnfKb8F1thdB8Zc6xQlBpUxcbcGjUPp3+vR2/tr29bm3K\n7FpY+83+pvVhbUv3svtZT8LFGDFRgExTTCEgUFpUeeHCBZw7dy4tmiMR3TFOkjGj29Q8z7NOhFDi\nr8IVUmNFp9b2iD8o5emysw+MHtct2TGdr5TJXPghNo7zb2lhsL+YhlA3IRDELrrVuektNRESAxA5\npjOfhfEZ+E0hNIOJAAROQpcYnERd8jzwwIP4wVM/wNUrl7ENwDamS8ABCE5A+ZcBBoE5T610oIwB\nlrWB6eEc03E8c3ZqY0zgZd5FrNcrhDDh+088gU9/9rN434MP4MXnX8B3v/sYnvnhDzHvdjhz5hBM\n+VAuToFsRkzAlQJmpCNKgHREVcjLbDk/L1toZYQrg69X7krATAZbGvzoFFILXDk56RTADBxuNvj6\n176Kj37846BphQ1S8G0XI8I0NWCtBEoNDUENODFYMmljUwFTxbqlPOn+DcmTnqVJAKpBZatwgwQW\nc7kaZ7FAwt6w2c9lX1EehWKaKX+wihMAKBACpwPQeAr40IcfxDe/9Q1MgTAzYTfPybkQ5wcRYL1L\no21/MSzStkxOe7Esl3NcddDOKqpOoQnfUcGUZ3RV6xQgiI1spYkCMUDkGtXuNwPoSqvVM9svU6jj\nFqAcgGsJTqzQbc1HkqFOPMoZ/TZI2/JItVzJsvBL8nCMeOGFF7DdnWC1XhvDVvtC8x7Qx6WkvVwe\nQLbyFatgl47yHDsA+W4aCyaQZRv7gWE2xFrWikGCkSfzXerxAinlcx67AgYsuNOquAGSrOjIY0YD\nVUbWidn5r5c6tmDcBhc0zShgPOfL35u8hqcyDvR5pKGKcnYUKF+qTXj55ZexWa+RJtjSvSdJDoSf\nVecJ74UJ+oxPz0FN/JRA8PiC0QLoo7h92RYogKTzt6BYOe4yX5t7ZingL0lfxiYoxwJVqzP0OEz/\naquu+NPU14Osnh8ajOe6BXOEgClWuYhzOoJtt93ine98JzabTXL01+umTSIHXCvoeZIaVsYUG9r1\nuLDjackNsjKdC0srHNnwjKjehUOVjuiVodpVbIY8VzitymBaVveTZ5/N9ygRNpsD7Oa0gKSce0vA\nJDs2gOTYzjPCeoXzFy/gww99BLfdfnveoZqfA1hRSHqOkBdsrPJYynZTyU8sO/WoLEwJeeKEENO4\nlD4Se8uM1157FS/+/OdpV8pqVXRWuug+jS99bAulylI98r30X8AUCIi82H830o30/0ba58hqG7mU\n3yt3FGyy+QTXSn02mJofdLs6ND1ax+mFE7Yujz49bitik138sdh1vS6xrshHU1c6Jqenq1mbypaP\nPbE1mCPLbwbtBSCL+qSGaZqw2+3AAG666SLOHB7iV7/6Vddeq4BsX7HhN6kfR7vZxC+L5T6S1Bca\nA+kKSNkbL7XHYVWitWyF4ATCmj5RsmHkeBSY06kG4doxAQBTg4j7NAow+5mRedXn08HYyJW/+neJ\nizT9zJyO30Gy7/Y+OaCf+NCXD4/SUjBM6BFad7s5GXiW6E5fjn1XP9M6gFW+0fse/zwfr/oPIt9U\n4hMx1zfyaVoeVJ9ZY07Lvb39jzyunF3bnj69Lv2qyrI6Vv/vpSUeN7gU4uOgyp5TtudLdLqpPPPa\nVMtRB4WV3+Q0Fc683OVYWKsT0luVtupXcKz3aATy73GTBS9L3Pfsjb0LVMc2x++ZMd1EIPp3vP7K\njck2re7br/2fyt0nX2T1r3neHJ+XfWZCWuSk9Y2HKdJ/S/qyThaXGPBCKrEpVZ71q4B+UsnTaUKZ\nPU5R+zpJHqmUWe8PZEwUcHhwiMPDw+7e0CSn4h9yW5/oGmmto2dcGRR/bjFRM27qq9TYZLa0Yvxd\nlyHPq1/tLBqVRTRZ9yqkUcYFyUkL3MYk9qW31EQIQ68+TAycVGMbpZC/x/YXMM9YrdfYMePhj30M\nf/oH/xcOzp7FZlrhZLvFZlrlLaCxvFePf+gv5EzAt1cC5YgFGcghdeCE5IQTEb73vcfwoYc/grMX\nLuLed9yHO+++GydvvIEnH38C3/n2t7G9ejWdES8X+0TGepqwnXfq8liZ9Mj15gutAKTgIQBSRsDl\nFcmlTnXAwE5CsAD6qog4T4hQCPjXf/Zn+NCDD+Dg3HnEOKegQ15pCW2YjbLRvSMjXrBpCaDFfgAx\nc905KKAM6UiLWk8d+NbA23ZT8x40NY0BtzS0ZSs6ldEK8ohzu4IKAkn2EHDxpou444478MpLL6Xd\nTPmMfyYJhlBZTau6RVUpAEPzVPJpBW6Bg6+gNM8iuATL67PUURQUQCp8Uj1aIrzZuCnllQCrnVQw\njgqqEVEPGmeltN84HrEoTQbYroyodJT+pXwhYQpDp7Iy/daYt+DWBGWV8SuTA7mcV3/5S+y2W/BB\nbJGxSS5PKHHVvuIBJK5fujKtPHOMzTE3lR+6T1XZ+jfVR829Id57aOUS3ncLdKEk1Do8mgfmnpUG\nz3I25WT4qv4AdAHdEbAv+jcHUAUsiYzoo6fkzgL9nZEAj5QXHdkSG0QAXn755bKqXEA1BSq2JJVd\naWz4sgByJO/KXMZsHY/UNuGYvDsu09IgzkB9qZ2oCHtoFnuQR1x3ebT0iafndTubIBPqTjYty167\nktPkn4/NDDDS/Vip/9OZtwxgtVpjzoGmd7zjHWlLedF7CkjatgJltWLHF6X3tAMi8irtiXlHEHMb\nFLD5ALhBj8aJzbzRNBYbjYq3GpsjzFGMIuSVO2r3IqnFGdvtCZ7+wVP1PhpGngRJ0wRyVm5pL4AL\n587jjjvvxD333YuzZ88CyPfZdLyrZij1WZqckPY3jgq44Dpph9i3rEZKodWZAx7/3vfKvW+VP0kT\n6fGjgwrMSf6bCwYFBAEV59xIN9LfMXmYogsimueurR3YlNE7GjMsBdJOU6an15t8DmkWh5T8ns1M\nSsoSMXi/ekWiU7SzXjA/VR3KWQlJkZaVMt6LVxF77K5pqSshQ6W/zVTLUs3R92gRgMPDQ6zz4hyZ\nXJY6GL298PqSpBKFRz39lexk2w4h0A12iu518Fgpr3zvK9TBLO+Z579T9iFH8urL5RjHEFHHi+sZ\njwAKxih3grqU2fHZ8mj0fx9UTd9l8WTBqs7CNS9ZvnryommIzDg5OWn6OHDyPXVgVNrjYRfBIGWx\nhubFiK/Uljfy95s8ULh9kM/TkRqj6gVt+/ZQyDhPeX1dqGnW+E77JsG+t0e2bbv156VAJxu+6L63\n/WHx8Khe73dS/dy/U8djihelvM29wEgLJYkZ2+0Wx9euIe3Uq/G/pk2c/w/SJpSjUuuyWeU7ijzq\n9omxGLSx9J1qQUWRNc/+sefzz/oAmoaKd4dFY7RYzsbBivypWBCjHu3fyKguP9vOcmef2UFe6/T1\nkPVd848uH5r8qPrZypUet3ryt5axTEeRb/R9p8tdTWtcvXoVt99xB86dO9dMMpdF3OJGN66V1BXS\n3Cgp++voPRtbEa1qudTbkd52tDxodcBpMF9jI1BlF+D2WdNf3AwKOdqMQPmOn6UjxPv0lpoIEcNx\nstthFVKgHVmRzRgDeWSFFSNjvV5ju90CIeC+d74T73z3u/Hyyy/jjWtvYJqmvIODOsdfb7ddCiyV\nuqHAcc6uVzQDaXD92Z/8KX73934Pc4zYUMBqmvDRRz6Gj338ETz//PP467/+Al566SWEENKF5NsZ\na0p3m8zzjGmzLlvuSluV4glI94qwAuA0pZ0cYM7HMrRBEC2IGqCWBsmMsLwTI265+WZ85xvfxCO/\n8WnMYFBACcRA+kaN3t4xaodhcSaUgul43+POtg9KWzTibnWizmMB0AjMLKUO/Jlnsvo51VN/R5bt\nD3/kI/jTP/7jFFUJsmKqnVxIdOt3m1a7fNBttXSeRklRoDL+xKBRy0gDKGt/VcemGrYGUCs+2ABd\n+a0yMZXhOAEWiIlR0+N2BPBGfT7PMyJJ39Wg3RKvdHnyu14dcHJ8jGtvXMXR0blORsX5+vtOnUPm\nGOPTgCzNQ31kl3epO6Hvk5Ex7mgxeetqhx6Aj2gctaEJ+iIdP1Xu1VHn/C6NDz2mONPnrV7RoF8A\nkchujLHwjYiagIeUE0LANkZcuXKlBIctn/UY004PZZo0zWQR1ELynJ9mosvQqvP5QOl0+oZTppaW\n5n/PEau7fd6Mzm5pTtV7NkfrNl23pl/yEZL+OHt4iJtvuQW33nZb2hk6hU7G7Luds6hrc97Rn/X9\nLF5/2DZbHeQ5EnaixOPxabBRhSktXfM8Y97t8POf/hS7ky0o5jszOOG+sFplgJ/G0G6ecc/b3453\nv/c9uHDxIqZ8J9vMjNVqlXCcDjooh6jUjbaP2/GrV8C1bbD6Q8q9fPkKfv6LX2C9WjVBxKb+wW/y\nvT12L+1AZqgdUTfSjXSdSYLYgK+f5fcl3blvXPd43s/jlWfrXayLyD2GtTzmHj2N7HeHJTSGVXlt\noLXUDZTJDsgvpGxeMmT+OOc2GGef1zrsjsXeT2FmUL5g0dvh4nFT8EZkBk1TOpP87FncdvvteOnF\nF7HabLq2lroM1mlwmpolFn028tPkxOqEh5Svrmqk8oxbPwC+TlVPHRmpGEHzZmTLlnyppd+afjEy\nn2xSbZ+HU5fwEZiLnI7GibYj9vfRWLN6QQf6NI7UZTcY2MjFUjtsvxR6iHDlypV0R2Yps10RLU6d\nPZ5W45SQy7K0EbUjjTMfLZ2nwY9pQa6vVzzcaPXd0qXznm70MFpzb5GpW78rKag8RL3/bGNcunxb\n9wjDLGFTz74wt4ugCu2OHHl8bZ9jMTW+WPmxPp/nGScnJyiq22kfss6S++IAlJ3CWd03k87MdaU6\n5borPS3NXbvkz2lY+qnG6vTuci8EPJIJ24/1Wb9LyaNT42Yvz6he3ZBaY0ohjy07vvtj+JIvW/Wp\nwyeg9I2NR3hJ6zdZVH0an8k3cP70pqZDtyvRrLMnAAAgAElEQVTGiBjSrqSbLl3CwcGBktn+3k0P\nTzHHsu7Y1q1ptuNZrjzIjm9XbqWdKlPt0MixK89nXEqj8ewnFb9Q/K3vZHkgXNcCsrfUREg5YgfV\nENrtR4BmSlSLe9JMkQSSIqWJkU89+ij+u3/+z3HzpZtxEtNxU6J82ICVJUffgh85PKRVGrGshqcM\n6F/75S/xs5/8BBdvuy1d5h4IRBPAjLfdcw/+s3/6n+P4+BhPPPEE/vzP/xy83eHSpUvYnlzDCoR5\nO4OmulOFM8DVRt6eEV8AJQEKgjaDs+YV54KqCHIG6LmdAUDc7vDlL30J73/wQVy8dDN26I8SikYw\nrQIlBOjlXBUf+YB3AtRl8rUN1knQIzYCZUeGVQgWWEh9pU/VFjabR9ctnykrlUbxqXYxC5+TA7Va\nr/HO++/H2XPncLLdpguM513TtiqHLX2KA93vIyNk+boPwAqv6/hIyi/WBrl9NTKSGsBY5S70FNCd\nM5b2m3Z4TlnKxwB8QCe8D0G/Uz6VPCGkSRBWAeZaTppk9XjdfOY0MRhCwNmzZ3H58mXcctvtLn+W\nDIGuq767rPFtfo9PUwjNPSHee57hJaJyqfuobisHIwNd2+gb4onqqih7p0mhxQHrHggq4EqeKwAe\nTbkeLfI9ZJpGR7kVmlgdpYP0fbVepTuk8vbs7uxYEHa7La5cuZKOryj1GOd6Abj4417ROchnwcw0\nTR2wsXenWP2n6ZvyhdeW3iGdJk9ZRYRs/6Hsa77Ezdq5cuCG6Pfc3xae6TGd9A2geazlKj3vLwrU\nTnZxdImwXm/wyquv4lOPPoo5RkyrCSGEsgW/bN92+kmcKI/W/MUF2hJI0KBe8wEYbzn3sI5gCXC/\niuw0OqJpm9GfMcYy0QwA3/12uiNrl3fvhSlge7LD+uAAv7r8Gu644w58+OGHcP78eaxWKyA7Eccn\nJ9jk4N12u3WdMyKAicvxH3pP0TRNhbY0XlFEQHZTMs9Nn2g7RAC++tWv4CAffWaxhXXqLP8Ktsh8\nrrAeNyZCbqS/W3KwrqRRQGv0m5eWHHOvHPvstL6VvCv60parfZ2lVHGIjDOlu7n3/UZ0NL/twbi5\nmpyPWh2gBre2BcUuqTI9XkiepKfR6CSPo1L+FAJ2MYLykV6b9Rq33nJL0kUZq5SdeYEQwlSwSlue\nU4nmgaKj8zFjdjAV7i53W4XaO8Xfx/iorVa+db+NaSx5O1FPHu8SRurrtwslufFtkl1pceJwkm3B\nJzjNuGwXwLTvWT1gbT9RjZPo33T+0bi1ci+7SSz20Lik1BkjTk5OGh5wPpbS1jnyLRs6HP2gdaHL\nR+c9oNrf4vsajL9Ei84DtBMOdtX7UrK4a58ub/ziU5Ztjyzf15bFNqPVP0uB0Y6HIzxsfUmtY7Ju\nFbnRXanlJrLGV1z8swa3oed3Q2vvxMpDF1cLjYDsDNA9Uhe6lmO8lc5KNKG+1flvFaxqrDjqd/tb\nZ5+bZvWBd8uLXgY0XVJObU9EPTGnUkjqNcfODfCLjr/UV1p9NkpWD1hcYW2W5cFpfFnPXk/mt3JH\nYQiIccbZs2dx9uxZrKYJ8zxjtVol3i20p/1dvAaC7W3PvhR573L3KY2p0Cy4yKJbYsOSRM/b+i1P\nip5CHcfpN90eHZNQCKcRn9Pbapuub//I/0dSw8j0S/rM/nYveSar9HRw9fDoCJ/+9Kfz8VEB9sI3\n+3loQFX93lnlCdiFdHGmGBoAU2T88R/9UTrSITvCMwCeUt6ZGevNBh964AH8t//sn+G/+L3/Eve+\n4z4cn+xwstvi4GCTLtnJf0BdzRFycCgY2q3x3dcm2MGjwR3SGYlEhMP1Bt/+xjcQOWLmbFCL09H2\njz7/sFHYLHWi6cuhUba0qs+p/VU2oh38DoBz66B2FcyENFus3/MCH6OyXeNEhBiBg4MN3vve9yZ6\n5bzUPTRWPp1+8EsfWJBq6+pkg+pWZQvGTus42zHqObSaBvvMA+5ePqBeoGTbJZ+99usybZ9aELrf\nOerbcnRwiKtXrjTlTtPUAxKHx28qmbMiNN9GgLoB0UqH2Tyus6Hqud5k9afoNeJ2XPVbU9u+7I5J\nwlimvbbatpS8aPtUdJeMpXKM4XBc1Dp2u13pe9nyb9vPzLh2fJxWzGegrstcAkZLet3Lr5PtuxEY\nHCU7zoRPUwjJJqm/09Ko+Uskbaxt9ZxJrx0eRmjHdO/QVxDWAjuhwSaxfTzPODw8xO133IH1wQYx\nRpxst0Vfa3p0HSO9XOodtE/XP9J7RCnQoWXV1ncaZ9uTL1ue1pOcUHTBYmVVJwO73Q4v/eIXzcRb\nCAFXLr+B8+fP430feD/+4T/5x/jMb/8Wbr31VtA0FbzEADabTQHz02qV7iYzukh20Urd8rvYd6s/\n0vN+5WZ3VxSAF3/2cxxfvZra6azGXZI3y1+t48ptPKccIzfSjdSlgf2+viKWcZbWY6fBRLa8Ib53\nAgke/eLvXE8KRJgoYMo66LQ+R62zfu7jYkbv6WdQx0rl6EHlncEPrDBRd+ZXikDkpXslCMbqDw3/\nWrpmjqAAhDBhRRPAwIXzF3HhwsV655noshL06GUo+Wvpz+PfqFd0f1q+ad41dmlQVl82NBfQ9xDq\n706hS/Ley2Q+grfp57Ht1O9aP1R+35euF98tlQO0i1qsf6Cx7W63K3Zy34pfz8/z/CmdfvWrX6Wd\nSoqeYGix9DUyadpFqAtgRu2XcOESJ0VWa2zO94u6sgcyZDHfSHeOMALQ3ldgZcn2475k+WifLeHo\n6/HzvPHs1dqMJAfHjm2H0FQ/z2xiTQ12q/0v2NCqCqvPmLnzP6UtQpvHy6INm/JrX9Z26P+rn9Dq\nM8MP5zfdZv22PoXA5m/prr3D8OWgacke31nKTPYklR0aXokdO73Pure+fOwZwR9L3W+K9f4ys9H7\nPWawfVLkR9Er4zTJU0Cg5PecO3cOq9Uq+SGhLgoIyucp9XR2xX7wk/aZtZ71yrTyQqbfOAMPqxcs\nXvDK10eK92lPG4pgc/6/jq/rUEtvrR0hQBLOXYwImelhs8krN1rDoD/LKlAtdBEoF2d++KGH8K1v\nfBNhs047ReaIaQrY5bs4XKWmDQ7SqkaQApuqEzqhyQa9zJidnOCJx7+Hd737Peri8nxRbg64hynt\nlrjt7rvwm7ffjk9+6lP40dNP43uPPYaf/vSnWG82mFayajfNMm63W3VMRJ0EWa/X3dZM4YumOVGL\nIlEMCbDMJaiRgETdLfGdb30LD3zkIVy46SYwpdWzzNys+rQ8TIq6fqY8f2IHS781LrkBonEmULon\nQPpGL7EmgnY4PCA1z3M6K9+ACWbGSk2Q1aBOKxN6u26ZOFH93ICzENIuAci2vxQQjTvG+97/fnz1\na1/DZrPJ9wlIQFiaEkBU+Zf6jQsNug+t8bbK6TTGgTmv0lLXjVU+VlpavmrW190TAKej04jK6vsR\nYPOAXW2fgNCeXt2vetut3bYdY2xWukt7CmSRcspKjB54e8mCUgFjq5CCc+v1Gr948UW8e54xxVgc\nyDr+hFftiirpZ7/+fhKuNbylWXkrbx7/ubnWKdX0MNdgvx4TzFzuvvBAuQe0mBmzWhFlx/QogKsN\nKCGdpy996OkFyat/G20l955Zuhs+qP71DD6AeoGilMOcLzZsQWc595e57Hgpsp4/v/TSS5A7DIjq\naiU7NtjwRK/IaB1b07ckK5HsWO354Y1JXb5dUdbYFMUXW649wqsbQ6oOInWEeyEzBdetLDR9mHUO\nqX6b8+8lSwiY4wy5jJ6IUr+oHaiW9wJMNY3MnCc3Az70wQ/i4MwhdvNc6m9pE+dArY9Sfaq/j8aU\n/az5Zz+PHJ+Rk8NAOlfZjFEblNh3BruMH/lcxnqM2G23+M53vgMiwtVr13Dxpku48847cc899+Lc\n2bPAZl1WGEak3ZM6NeMm1jt70mqqXHcIWBGVfrLt1tgRIYP7RHD5k5XSImtgRpxnPP69x9KzWC8+\nl7KsbRvpN9svjHGf3Eg30vWkxn46ttLmWyrHjhegH0OnKcu+u/Ss6H6g6PzODxjpLwcX2GcjO+69\nI9/13QVCm0ZRVl9341t+Y9Woga4Q3EOC87J/VI48tvG1XJauS/0EorQCHzOXS8vXqxXOnz+PozNn\n8Mq1qwk/iE1iBsPjY/Wr9DyNbWvCTc4iglDXcZ4WW3vJs4teHmtXNetLvlSQ3Enr0tDhivxOK68t\nzZZGS8++sTOy//aZ/q2WNd4NZvGXl3T5+8a9/t3Dn16ZMeOlV199tfHxrje1IVX0HbhPPxH14whq\nDOkxp5I88/Cb17dLfGnKRH/p8kj/2u86n3eUtObP0vjReM3ivDc7XuVZ8s9l4qLHQV47OxmCbb8s\nlAqljhmt/Or3oPiUFp/WFekhjPum9l3MddYjbz3M19av2yV1jHyxhhkOb6kcJyWYsfQt+0rM5SO1\nR1yr3JqA8sli214ua9+Sjf8FAsmpiQP6dFkjPQP0MYMR7VZ/dXLW5lZ3jvbHSy8dbeclnS9y8vU1\nPcLLeU7x2TNHR9k+5vizthXo+eGOG9Uem8/6iRJnnAZ2wLM9I51u8+7zWZvnSoem3yRP37I62jlH\nzJTcXafb9NaaCCE1e5aFdLvd4nCzUdtlWuVYX6WWm5wYxwigaYXP/PZv4S/+8i+TMOTgaAkcq2Ck\nVXCkkfkgaeEgJchzjJiIcHx8jD/5gz/Ef/Vf/zeYDjaADAyk1ToActA2YMszpoMNDqYJH3zwQbzv\nAx/AKy+/jCeffBJPPvkkLr/+Og436cK79XoNjhFTSAG2eZ4xhalcFrUEKomSIiAgX86jhbUGi4EU\nzI8AVjECBHz9K/8Wn/nt38EuAGtlHE4DdFPGVrkuAUCJU1Q/olfMaeIrKeQlhZqCD1wMYfnN4VMJ\ndqh6LVDRv5OSXQmiRGZQqBcRr1Yr7GLEpZtvwb333otfvvIKrh0fK0Mvgc1+RT8pOjy+LYEmTbMu\n0wZSg8xQZRkeAXfOHaIBdlW+Mnmi6er7VvejLzOq01Wehiag0QOeIu637tVAbpmAMDJQedSW5fHC\nvgMibOOMX7z4YgtUu8C0D3pHY1b/7p2fK5io1lHpIiJg7nk0qqeUDTPGzKpyPe51msTYKaJ0+yL3\nkzKTHkcOuLH80isdyjMoR4naCcsmaWZpGnLgc0VpIkZvadV1j3SB8L04fzFdmq6dweZZXhn3cp4I\nmbKcxNjLm65Hy6/nuIzks00CYNsxJscE6bbZsWHlT7e/8NdJWu8Ufhnaih6xRRQZN3Jg7L51EK1s\nljrzRBIzg83EUQe8RfeYdjIzTo6v4f0f+AAiUadHykvcl7tvnHe9pd4b3WXW2gtTAodG5mWilJ33\n7W4KAO44akC2om8iKkd4ghk0R/zi5z/H8ckJ7nrb23DPPffg4k2XsNlsFD1Ix2Dl1jf3mgHlqArR\npXZ8l0BP1j1Lei6EUBZY6AUaug3lrjlmPPfcc7hy5TKYOe1M4Yoh0j12bR9pnunU90mVYdqDMW+k\nG2mYBhj6tE68TdaZtmUtBTZGz0/zjh6L+n8CADk2eYBrl8rWdSy1w74jt4kl3xLJb2noBTyP3Npk\n68To/rE0eLa3x3gShK8BtvSuwYDIQaRY+/Ls2bO4dPMlvPDzn+Hw8LBZxGXthsYhshixDWL4GNa2\nI6Laea9frA2iQZ/qPKP+7eVW4gBcbEsTYOH98ir93PZX9YFKPoXtPVnbh72ljNMk6w8A/W6MUZt0\nv1mMrPOkZ+k48RQw9uvXuMH659ZHvZp3Vabv7RGe3uRBs7hN0adlFmgXOl2PHix+itMu3Z/Wt7Cp\nyWt1sfKndL0eftNxqNHkldUfEuS07Qd67WT9UG/B7KjOpt3y2ZED86ZLyT6/1+Ol6Df5v/qLqfwI\nBsW+XbKQV/8JLzw5br+bnRxSr/I/Nf6tnkKdIEh1pWiFlhPdfi+lfMKvVL8eA+LHiHx6/HX52SwY\nzfi6uFxj/ePTqrQp13yl/jxwTuureL7LmFe9DvbobfQEUOSh1empz2LMNsP1dXR7ywOXY3KlAICy\nYAtI95XeetttOHf+PBBS7FTulpaYoegLwXV+yhhgAcN4787Gj9P9YO3XUvL05Oi5JKvP2nfsxF36\njSjtBJ6Zm1jK9aa31ESIBPDnGNP5zoxy3MEIxHpgjJnLhVo7MKaDDd7+znfipm99C6+/9lrv/Fs6\nGhCaZM0aeZmN1vkxV7BeVhYiOdVn1xs8/t3v4sGHHkIkxhQmrELAPFdDngRqSgB2tUrOdgi4dMst\n+I1HH8UnPvlJPP/cc/jGN76Bn/zkJ2BmrKdVHsMzpmmVAmoqUCZtnLE0qFKKuZ0TVNApt4Py8ykE\n/PD7T+HXP/FJHF28kIKae2TT6zdvJeXwfaSB4QVjmrKBekcLyy9Iga5iuFtV7yliW+5SO8QqeyCA\nTWXzPKfLXtdrPPzQw/jDP/wDTKtV2ZnkGQuhaZ9yGikwvcpDA0yglY8QqEw+QuWrzfQBi3U6qpO2\nDyC15dp8YpyW6mt/r2dv2rKWdgqktk8tIOQIisrkEUFDTSsjBcxTcrjmecYvX321TIixqrOOc7jt\n89smeQb9z7KjR+unNrgnqwL39UXjSBK5x8DY/K7sa8fA9KvoyKYc9VkQlWecg9FtQCubnvxb53ik\n7wlodnDIePHap8tlTpMowfDc8goqP5B2AZ6czHj+hRfSyvZynFHfLv3dS7Yfyg7J3C4yMp/ytc60\n2DRPz1W9Pe7vMV3IdaW/NNlSJyL0LhPZFSVAqMh8EppSZqN3am3tClCjh9py6lGaE5bBX7GDSp8w\np0u7DzaHODg8aHamde9mErwdFa4jpsD1kgMxGnvyXjMuugwC/tN/lDHEqA2NTtBjxNLAjN1uW347\nPj7Gi8//DETA73zuc1hNAZC+R3UkZXEKMyOEleukUmGf2FzDH9aunLRY6/UWI0JWFhnmyKKSQITd\ndotnfvADHK43uLY9yZdt+o6s1Z927Oh8QueEG+lG+jsmB5tpbH19GEMXezr7c5ryvaTHQcwTHeX+\nLt5/rOL11LtE+wj/299jEyxSRoZa/th+UFRoM9bmjTVAVfQrUtGs7AE1R/aO2190DydbR3mBxWaz\nxi233loWebT6k5VONj5HbWb1sRW9BBSc2/IiFh8pPyhtK8lgTPGdY6evfYyn04j33kSzlNv79i2i\niDw3l8Trevb1uUevtR/75HgRW5dnNRDpvWNpTm1erNYt+zRDTveV1Cffd7v2Tkwuvkt7WbAtQ8ZA\nGXXiE+TgoQQQmbksjpGV2bqcoL6XMhX+l8UsduV8QUsL/qr4V8M7bgyPRjra+80u/NJ+idRZMLrg\nvYF/1vI2+cx2cZUrk5nHS6mJQyiM2vpooSwYlt/0OOnGtyorckH56RHHtEim/NC2L3IEOAWit8cn\niBnz65iIxxsd/7ByYHcMdeOz0Jz0Tm1f5ZHU77bX4WfjNypfSU+cVRqLoVJ+lFLDjd6gItyiI3U9\n1e+ri6NOs7us1opk2xx7qnkhv3n6cqwfxz6npJEsU57YlfEvvoSMYS0flb5a5yguYKkrOiH71xQC\nDs+cScdikWNTtB0a8CR9VgrZ6As75iVuYuWoltXKWQjpeGvBA1D9eT22yx3TCmO0ees7OgYgZaTT\nNGzmYdVdektNhFihC1kJ7XY7rFarKqyO4ghERUEVgc5lXtvtsFmv8ZnPfga//3/8fqorVDC3i2Ow\nIpcySaqC1PZCc7yrBgDZ+NNuxr/5whdw/3veg3MXLqTjInY7hNWmEfYVpfO9GYzVFMBE2BwegvOl\nOvfccw/uve8+nBwf40dPP4MvfvGLePmVl3H23NkycHe7XTmDWyth2YZVBJ51e1TwLDGuKgTJn5/H\n7Q5/9Rd/gf/4P/knmLe7cqHpKDFzOuoG7QCwA8UOqkYhOOWuQrqgN8aYdrWocpYmWvYpXnkWKM1E\n6ve0khHlpvtbGwqigCiXwuZncmnr7XfcgXkXMa381SxCQ/7UfNc0W6XkKbwGTDqgQ9oyIQDKAeUg\noI4NPS2fKs39dnGpY0k+dPKMjuWLqtyA03YiRLfRrnL2wKTWHaaihg7veCdN38yMl155GVeuXMGZ\nM2cw5WNelhyEKv9WD9n+VqC1A2DJsts2NI6F85tHm37XtlE7EdawAu0lWgmM9vJq6yxBcaDREx6A\nsqCgtMXkk3J1/hKMNmXI5W6SRLdo2bF0N6Af7TmwSzqljsOkG1555ZVir0QGRgDDAyIdbx1gBMUP\n2w5dlnZGPV1kndWh82Lqb/JFgCjbJACB8qWuhW7vwvKWBz4II2QrVvqtnwRtaUs2ejwxX/SCWa0Y\nQsD22jEe/Z3fxJmjI8xoL2QjqkerpH4fb+9u+snw1eaxjpGWvX022PuNtXF15F07a1HJkaZHJpSY\nGXHegWLEy6+8gieffBIvvfQS3nbL7fj1R38DcwjYxR3kCMZiqxAa/kcAwcpONkNJRsWJ6XcXMaxu\nN30ifFJyQOXuuLQ7iCkdK7MiwjM/fBrXrl5D3KVjSLec7z4xcuUtNPBtufnu0Hkj3UjXk2yQd0nu\nvGTtQFf+deiVJTtg86QhPZ701b8t4YeRrlxKSzmI+sVx+r3R7q3qF/ZBdcFmYQo1H9eghhzz67WJ\niJSe6PXvkOcZS0wZA53MM8I04ejMWWw2m3RMpL68OkbQFLqyK35o8Ue3E9X0ZaKr4qohz01bBVv6\nWftV27rNlm+jFe9jDFGT0BFMj1fetpM1+8qz9I/yL/lOtu/bti2XUz83LIcVH12+YHkPSwF1LJCR\nz8b/yr4c5VMw5HkkhX2AIqeCJ7x2yKdyFJTgdtW/4kOU/AYrWf5HoN+FpGRwdDSvlEVE5ThWz69q\nfVSUupe+e3hB8pxmp4jIqPWjLI2ifyR5k1FA5Y/e9VyxGde+sPSz4pGWOdS+sbyxfmGN68Q0GR1q\nPu0xi97WsT9mwm5O8nv16lWFk33fqW13O7koaaJ8t5sjVyQLH1MN7mSPNHkkU+149m2n55fW8Zfe\nE54z+/5bLY8TrY7+8HxNj36xDfb9tj3s/q/pH+k6rxwiv9/24Z/WP6gTsVVmqaGl7Wez2Am9DSj1\nyG8stEacHB/j/PnzaSIkLworUmJtOfVIw9Ik5tXj/ZJsu2NcP4cdRyqmpPBbEbCcF57+07KjdKXX\nL/X/Vl8A+ZQepuyLVxt8mvSWmgiJsQaXGTUwH2PEyckJNpvUHFGQu3xecxEYNdiBepHyer1GZMb5\nm27G/fffj5/8+MfY7XaYgXRxOVBWNlJMW+yExXLMjwStPCBelIwdOFl0wjRhBuH8Zo0vf+Ev8fl/\n+I+wjRFhdQietxCREwMeptR4WSmZLnjKSn+1TkdgHRzgXR94P9753vfgjcuX8fQPf4i//drX8MtX\nX8VNFy8h8q4ACuHHnIEws/Am83gSwMKlvYhc7qURiDsDmI+PcfbwDJ595mlc/dXr2Jw5qgLLwDwz\n8mlfrWKikiXXVfN4ADbJQ93CKIOsAeIiN7X6pgyvXM+JGDlU0qcMpEPrmdOq7zk5DLKqtcpf+66G\n8zOn1bNS3pmzZ/GJT30S3/j61zFxWoGqnRDAVxYjOvXvAUDUxlkddTYqM62KriChggDHeHHdYVBO\ney187AFejHPHa5uSgfbbreVBG5uZpQ/78nQZGjDIUSYStBZdItvLa6UZ5Bta5nkuq+m8REQIDNCO\ncfXq1brKj6gc/1QqwPhunOYz5WMaZOtVV3eqk+GAbkY6C1OAj1O+pn0WAB1IDVJdXC1bb+mUtljn\nDEBZlSVFpYlLZ/u7/FE9HkEmtwtoydtMl2RJ8nmAiBV9uv9nDSpFnwPlTgCZFPECAQLAhbsFXBIh\nZL0hoL9MXk0Bu5MtLl+9nMb9bk5BWLRgSOyfd47w8AxXoJnETbZoAogxM8CIQNkll9tEAOdjEHSy\nfN7F2AT8950Rneg2OjaQEuW6QqS224I6oaW6F0y5f4wujzEfM8RJfO255qKny2hg2eUSFB+1HhT7\nlXWrtJEJPK1w+913FbvdO6JJh2hsovtJ81j6WYAnVJms+cScPUFSk2rt0SbM3DqsAIC5cjXr6aqK\nKhCfVbCiTE4yI01cyVEZNU3MACdH8+cv/AzP/uhp/Oz553FwcIDdPCPudrj/Qx+AoJw4MzabqQl2\nrKZ0b0vhRd5/1+6yqSsXpR/t6JexJeMl6WpqdB5hyo5OYkMIE5pjuJghh32+8cYb+PFPngVNBOaA\nLcc0SePof8+pIPNcT1zL/SMFF/km/Ua6kU6V9gXW3kwZ/08kGygQ3aZTgNqRLnkNll965qVUFxes\nnnTpAt88TElAYJOvQfntM2uXAeQdtpWqahtCV44qcLFtUNpQ66EQprKjRJ4RBZw/fx4HB4c4Pjku\nehLgHJgZ4Crr23j4ES0/5fiRLsDjvCft1MemjnbJj3DyUlrCi4uyo2yo16/6N1u+59uOgoD2uZS5\nRLeuI+Xvj4vdl5YXUCSc4I2RBlvkTT/VCU44NmRfKL+FQMmmn2y3CcfTqvUtFL+WAqAAqpywWmxi\njn0i9Vy/38UFnJbr307DS6/fvDz79JQXt5DfR3Xto3FJb8qRTfrZyDe0qYxPp7+a76W+JKN6UdE+\n3pIANVXWUnsAlMU9nIOl4p9dOz4u8TTtw8mkBhGVuIbEP4axlkSc2xeSQ9ffzNhAsOe+SdFKgxfH\nsu1/84magH7flvobEZW7NfaWOhgD+/LY3/Yt8nozqfZtz8ckC70tk1hT5b/2+gftlWdZHoiAW265\nJe2AZ0YIwv3en1lKSdfHxXdGvD2NrhDdOioHcHQkUbPTSz9r4qz2Pef7UHayz0SOXVpKb6mJkBDy\n0SecgrICkicSp1/O2kM5wx1og0Ldee6Zz7t5xkSEX/vEr+OZp59OAPD4BLReo4SJTQ9WowQA1ATm\ndf8RUbsjJKfybu6w3bzD0z/8IX7y7FvBkgEAACAASURBVLN42z33pomJlLMEYursounsoqAD0n3f\niZZptcKFixfxkYcewocefBAvv/QSfvCDZ/DE49/F66+/josXL4KZy/FiAnwJhMgpyBcoFJA/visl\n1z5NxaD8qz/4A/xH/+gfY73ZKIW9AMakPCPsJQhkAGYj6M7g7WbEm0Ck1xc+aF0Cs2WyVtdBrdFg\nllUltTyWAascJqFX7gJ4z3vfi69+5d9is14DnCaaRDlb+dJ1jdpoDWQF0n5Zkq/nt9zjQGOUyC1j\nTqVcF8C/nohIR/QIWPLLWQLnNih4GmNby67fU19XQAOke14k0GZXTutnZw4PcfnyZczzjFWydoom\n36lyHTzBqQ7rLF+b0JuXX5WtHTttoChZejQKTRcblZMhpDkyNOJ9ICpnY+q2SpkeoNZ59Zn8no4Q\nmzHSJbaOhj9EDV4lSpMJIduf0TulHmi5IiNLAJvdWpEZJycnpV0MxnbepfqMfHl1Lv2ud75YHQAg\n7Q7Uk1oxHe/lAeyWX2OArL+3fW/Ar1xFlOnTzmq72k3K1TptvFrU6vhqM1taU15Fa2j5Nk3mYneh\nEwl3iM1+29veVu6MkKOdPN5IOfp/+9n+puVJ+Ck7q0rXAu44B8xuMQtuWexL5U9k7uiv5ykziGrw\nP+GWdGzUz198Ec888wxezHci8TxjvVphd7LFtNng0qWbcfGmm8pko+jIQlqmTM7QjbFe2l53klUe\nNsc5Ul25nWjLGEUdI9HovNL2flWk1b/zPOPJJ58o4xMOZrCBLmunm1EzcpI4q9u/Xz/vRvr/UfI0\nYhsg7TGfTp7862fDeh0M7ZU/es7kl6GD9/vqXUykFkkpjGPf9rAKq3/t76O9isn1oTyme9+pBsbU\nwo/y3O8jjdO6+pTd9QIKRcfFWHTptJpwdO4sLt50ET/+8Y+x2WxKcDCbYuhtgl7wYpQoh3vg8FMZ\n3Kbcci56znPaYLHX5n355bO2sfao1dFY6GgSOr1+Vu/ao1kX/RaDw3U8YKkdi3Qu/NbarhpT0OE7\nyVv9Fmm+kgvStiz7TNKlJMdVV+xw9Y03cNOlSyqo1Z8d3/BQaFWUSQXeWFZfuriB9Q0kgBeotnW4\niMqrAxjKgf6s/SWPblvevoDgafre6gcCypHxIbczmnqWfKN9tJ4maV+VKC3+tb5oG7vQbU0SUNet\n6AWojDL5UbIS5C68GCO2+Vi2hCMH2DvkyeB5V9rXt71iTbevslxr/yPJSN9Ob3dPPbKr0iV07OO3\nfd75H67kaR3Q6oTkxxq93AyxZX3j+TsaL1sT4WHq8d0S/gJqKz8+Lzhfm9r2keyMYW7L7/Vl9SOr\n+5jkIhDlhZV14oQAxN2M226/HQebjbozhDGtMq2Gj5G5O6nC46H0kSR95PTI/zw1rgO6ctx+VO8H\noCw4tX4Qc1oUTKasUp/pI49WYoIbcF9Ib6mJEE4HAOYV0mnmuFz8DVm5WYVSzuAH/O2LRMnE7uY5\nbbsEcHB0Bp/45Cfxb77wBZw9c4RtPpcdWaCLmiZ9nE6rIFzasyKWJCthRbkkIAps1hv8zV//Nf7T\n3/1dTOs15h3XraOZ5vTVFzzmdoU//d/svdnTZcdxJ/bLOufeb+tudDcae6OxEUADDRAiRUkUQVIj\nzYxDE5bHtmImwi9enhxh/1V+1YRNL7JHtkKWJYrLUAspEgQJgAAIsBc0egG60cu33HMq/VCVVVlZ\ndc79mpoXRHRFdH/3nlunKisrK/OXWVscKARg6Rwee/xxPPzwY/jKb30ZVz7+GG+//RY++OUH2NsN\nx/QQwqRN1/XwNGZg6kfo1cgcG57bnJWgbOO+ePEirl+7hkcfewz50vcRS/TpIvZigEdDJc91P/3H\ncHw4KjcBZzADdGrFeitIpX9jKlenWgUu9Hvk1QdQShUIwTOWrb9DuBPkxIkTOHXqFG7euBF2Dvj6\nLpwpHkzxRACPzmOPmdFKXhuNZPR8UOihLRMOAZvvhhcFPQ2wYAFpO2XAYdudgUFbuc+B/7n8SXHH\nnxwo3YtgnShNh5YtD2C5XOLKlSv4wvPPo+v7IgBv6ZgCtcFZpizPKD5keoWXMyC2oN2MCynV+7C0\nK+x08pP9IuOXiMDqzFXblhaYzUfTRJ5Goz36cFm4lkntqBSO88wKEXs0nKbLJ+IBgNM/2w/SAmvA\n55K0yQIS6a8KEMbvt29+Fn+LE9NqAkQHdOXvFLBsymbRBtMvjebkCUjteOh6azpkYQKRnpguJ8Qq\nShLAz6tsWnxqfVdkrQVzrd/zWNbHRpYrCaWtgjWkgfJ75xyGkfHlL3858qCetGqN7UPbMaMbWD8n\nAlEXdmzK5DolM17WF/+SLTf+yxPdjZ088peC/vND2GE6HKxw7do1fPjhh7h+/TqGvb10DKec0z2M\nYTzfvXUbX3v962kHXZIJ1LI8DkOS49a9Pt77uFI89+k4jumIKlmcIv2bJqvZF46O7oIadzBAHn4c\nsdrfx6WLF0NfR3utz5ReZ/fk2dT3ShYOKRv30/1kk7XmU3hi6reWrprCoevKmEr2d28W+6R6J4qZ\n0/VTWE/WSzZpWzfcKPDV6iGKbl4ba0Y7VwR3ap1QYNBUWbkQJONsLie1TVmpDvOeBCcSrczB/2DG\n1tYWjh8/jkuXLqHrujzZy8irfSfY3cRnmp6qL0K+IdqSTF/mjw0wzfV1Jm69vpzyMVpYSX+u2mR+\np8Y7xe/JN5mfYGzhugJbq763PGn5MfpZDh4KztX8oMn3ptqsKJ/9CqBYoKCxBTNjPDjA3t6eoaf0\n85r8srmU71BcqN7w8WRcVdgSCAuCZmRAvw/FL3kuOztTvTU7SjbFvFMTEK34hE1yDPwUr4o26rbJ\nZB9QTD7qMauxuCmoGvt6p7o9KnTK5w8fINu5C77qdydTQ78gtYtzXwPhJAUOPjyPI/b2drFahb3J\n0g7nYpxxzdgP/o1qj+SzvlfJtDwRGIOLpe4RWVJvTOgKjT2T/FX6lNNn5nasQuxT7pPaZ1uXrN5I\ni8+9nEih9brhG9br5cyXso2lfg0V6TbasVP7kkg+XfTwqjEr061aZ8zZJD1eRCyY46JCDzi4JCN9\nv8Ci79HHo9K1Lm6NA45Et3yL5KPCyty0TbK8mtLzWpcxZ17MpanfKTNFZ05lT423mK1onVxDII8P\n608Dn7OJEEJQ1mHLULzjIoykanWg3TZrg9xpMMRJkDEK2siML7z4At74yU+wt7uLDhksJhCBCMil\neM5B7vC1DJ6IsOh6PQCoWecwURPovHn9Ot75+Vt4/pVzyYAQx+NMEid8HLhTyikMAa2AnaxK7QjL\nbhtPPv00nnrmGezevYurly/ju9/5Lm7cvAmA4rEROYBDcOEMz86lelsAOx+31WFjscB3v/Md/PEf\n/zEIgbed0wGm+lgX0uSjAfxRP28ZqclEudu0Ek4GJ9mve1jJwAgTOMbgzb2fDVx2LAI/Y1/FSZGv\nfe1r+LM/+zOAGb3rMHpfyaOld45218ifCChoLo1G6KvYNkfokB3JVt1pUtYo8CkaW3KswQiQdaU2\naq1y8/fDgUFbhq3flhfdETCAMYIZGdutyTQt60CQFbhw94PmBaV659tlz/HUPNZAVL9fuhLTbRcA\nX/BA1esRd4WhfWdC5+q+tvTbevUzrbcLgzwBOhwRdIhZB5wrOSEqdr7pPjHcqGTWgnwg81OPdZ3P\nOru2HQLqEAPWGjSCGRg9Lly4lCahxDnRtKd+MUeo2fE1OdaoXuEmbSKV16lytSRR8VyNENPudWO9\npLPRz41jMGy7AMD2ZukgiwNe671cXskL7xnOaYBN0Ecl6TpSGeRw7NgOHnz4ITCQ7jCzsmmTddJb\nqRgDcdu+lblqazqXo59VWalM/T2xJa6M04YRHAIDzIAPl03u7e/h0xs3cOnSJVy6dAH7+/tYLhbp\n6M68cySAVc8Mcj2efOo0jjzwQMFHWZQiDiiiU9K6u8bqFAbUcWAcd1Hld6bsh5wBTEQgJysKW4Eq\nTqD9hz/8IfquC/e7UemITp3RXY0xMy5SaKqhPw7rhN5P99O6dFhbPPWe/TxVxq8rs4kG+7ovtXer\nfPtsCgsnR94sACjenaRrYrW9/NO/E6eJqBDMkAa0+CxBVfPznC9C1voIhqOEv6MFh0yIM6Ku8Rnv\nUZePI9zY2MADDxxXd28SyGVfSdfT6uvk4/r6TrRwYAeqvLadRLUstfwVmzgxr6arJd8tP6KFa6X+\n4q6qxv0i+q1WEKqkcx4jlxgfgPSV2CWTR+PBKRup7VpF+8R4nco/l1f7QLWeUZ9TjIJBTFgNA/b2\n9iC+sOTRXklFi95BqunTuHuiPah8vJK/qQwYGWeZrFW4y/CCOUxU5WWpKgakyo8/FHXrhZXSFhje\nFj4j1IhQZelkfdNK9ijvfEl5SfxvpSkVjtJ+jU0FvxQP9O9sv0cdOeW7tFKr7OodzoukicKisnD8\nu09hOO89hmGFvl+qu2/GFHuTcnKt2RfKekfzdWKcGeoDD128uN3yqByb9q9tc/OeHsq/F/LKDf+7\nejtC3pmJZatjp54lmfdSGkexljYBwg+Nuaf0Scs2zPmZ079pWvPvLd2R9ErMM3XHVJlkdJa61nUu\nHHcdfRU/jlguN7CztZXuYQbJ0nAkHSAlFiU3dTfn1s1gCMvbKX3YrMOMC9v/c33QpMXQJO9Y2dU0\n5jLjGYy/xjnCn6uJEFHK3nM8xy8q6eg0S5C4I+mMrghi6CQMlOBe3/c4WK3C+c4E/N4f/D7+lz/5\ndziyuVUoruYKjAg8sxDYC+UcoHarjCKgzgGcweKIEGDeWizwV3/5/+IL515K5/eLAvFxcEAp5/ZZ\nqQ7MOehXgdK40mH0HsvNTTxx+gz+6//medy9excXL17E3/393+HjyxfhnEPf9xjGEYt4bp2XuikE\nhbRy77ou36fCwKUPf4VLFy7g8dOn0S83Ap+U8iiDJO1ZyClHZs4ZM8wowGL5W+SH4C7xVZgjSENa\nqWSVRHZsRFlxUkxpJYGhraW05fLxLp1bHgMsXYdHH38Czjl0XYe7u7tV4Hcdn2zSwR3NExuAlry2\n3BxsKw2AdRRyBJKqeuUy21ZdBW+rdtY8lNdq5TjND9ueFg1FWy2AiOOR4UFmN0hY3ewxjtlhsnwG\nAM8en926qcaljCdAO3GM+m6hsl1RhhjwFL5L26vxRFRc2tfiCUemFnyJz+XuDqB1IV+9+oCZk0zr\nd6acUd22luOpjaQG9Q5Ix8atc+go6kK580NyqhB1/aICIMVj1EDEOhhFf00813ZBVp959hjHAVc+\nuhycLi7lU+vzZjupcQykdkyi7xLuC0LSXqLSbFuknWvHVINPdozZPsrfy5WkOY8Hcx2csHZDjs+j\n6DwE941UH6f9hklHW3tg77NJ9zyZPFZWOwqr+MIdGh5PPv0UtHOpj5S072r+Wf5OylJ+WI05vUNN\n2/5CDlW9djzpfgKCngOCTMIzOgCr/X1cvXYdv/rVr3D+wvlsy+KdG+F4TSQ9iMh15zrAMe7s7uKl\nl18B0BU0LhYL8Cj3lQT950Mu6FFabscOeAcAhui4hjy5nSnAoCYNIXUo3hTSnjABgxxkbgi3b93C\nZzdvJFzgDZ7RfC1kWWRftUHTxor/CdpHObbHg9xP99NhUw42hqTxSsrT0C1zzv1hsNU/JTEUhgmR\nsTLIfEjsP6ln1f+tMpLGkrGp6CIgH3MLw09DVrW3tnJNSD3XAaEy+xRGVadUVW3Q9IUveaV62NdZ\n22RyDovlEg88cKzQXeG+t9xmKJ2uy5G6WwER4WPLJ2ph+rk0FbCZ4oP9bn3mObur69N1tnxVm3R+\n64e3cXg2z0WRyedAkpVAj/ElVbtax3rFopT/FQpsY8R6/E/5Tuv4oNsHKy+xynAs9wFWq1UaS2Es\nBhmb6l9n6JB8cm9fS6+12lT4NFTvwCo+J3Cg+lHpiSk/C+q5Hkc2WV2n78bRNEOXBUzKZGtHso1F\naIRR3LXGDDtytV+WjndulJ11z/pArKUp8cGUpT/LJJPmV/JVykogcq71uQNh9GE38/7+Hrq+A1G5\nQDbQUfbTCEAOYWY1Hgvd5zQ+VTgReQwyxqTEp/SZFpHcv9nPKZ+XsZbD2Emto+uMqMaBoqZZNoAC\nB2uawByPF9NuiPA6fw/ZXLyzMmRxEB1sdGPVpiABLTlsY5x5nGPtE6e85bFcouNnyyryquN9ibBa\nrfDQQw9hZ2cnnjTiQ4xY027G+zq0lTFJ2VdSBqOtxyfLiqlYwB7LQEPe5ni6Lk3Fc6b8Z21bZDwe\nNn2+JkJikgucxnhsVTpaAZEhzqGLyow5ONCVgo1MSqdeDuGicEIIOp16+GF88bXX8Mt334WL743e\nh/Oth3w+YDjbOgf6mh3vgxFhEEY/ZiVMHfRxZmGFYLj4HQR8/zvfwTe/+c+we7AfLnQfPEAdwCGY\nrCdfbLtCe8NRJl6VDQoTM8mwxtl+WvQ4YA+3scSZ557F6afPAOOAjz/+GN/97nfw/vvv4+j2No4d\nfQC3b98OwWzESREX9s1478FjuFfExwtSNzeX+MH3v4//8t/8G/hxgGdg2fWHBq8i9FPnAOqBkoxj\ndQZeDg5POUaSPLLiC4GUNujVStbH/hBfhgG4yAfJ78FNMCBGmYgwIig+HydDxnHExsYGXn75HH74\nw3/I55RydmKmeGaDfAnoGMdE+GV5WzhjiW+lY0gWgaR3KbU55Kn7mBJfp53alsM+lU/6I4/NvIsk\n0aNWzQsw0f3Y1A8qICrGVVlsII1DOWt0nASjeju69x6fffYZDg720S8WWC42gSSvBfLJq77RnoAI\ntMdJCir5ZgN1mq7m2ItMS+NOyQtRvhQ8gX5OZBZgM40vtM+knEqa7iln1IIs+37rHfmcdV7KUAQb\n5HV9/BTF747CBGC64F6AkT72zNBmgaAOnlq56/sefhwRVQVWqxWuXr1ayK/IYmu82/ba+vPfUtY7\nAUVxPNvdjMwxSDsDmHV/t/oi94Ee+9OrB8s67NF9ZZ+mHTKxAorbvj25Qk8y8go0AbO2JdaBkLbL\n+EvjHyUvpN/7boHVaoWXzp0Liw0mdNgcGLT9benKzhmaujXeJpV1H7h5gWEal2qichgGEOejOn18\nt+977B8c4ONLH+Gdt97Cp9evY7lYgsHpXh+5ZFLKdcgy45yDH+NRHp3DmTNncOyBBwonl+L4ctSB\nOVye6iH6NsilLLyQnSZWfrou4KOEudQ45HgJuh53ogrkbiE5vguItBIA4nRfGzPjjR//BAQUOFBo\nkHKqHcl6vE71ef6SdO2i74GR4yT3/XQ//cdJ1n5YXZS+Gx05hcTEwwFCXIeAgI0OeXGqLctGsvSO\nxMM47c1yrQ6eyZt2caRpYMA7SvzQFqnFy8xPrvJUer9ByFwA67AOfpWL86QFJvQRR2x36tRDePTR\nx3Dt2tXob5cBxOAnBx1PqP0F3YYpGzht70tfTZeZP7f9xpLPVRYAeUftVLLYTdNraS7qa1B1uGBT\ni5ZyAExhCP35sMGl+Eaqx2KeKs2MtyJAyG2eT7W98r09Y7Fc4s6dO+n3KV9Kf7djqyVTU33WKlfb\nYh10tHmKMmDGkeRrvNtKc/oh/TbF4EZeS0/L92vqQ4vHm6XV5Vqs36rDfte0xgyp/qIPG/ojYfeJ\nPi6OC4yYnWKMpuBgcnyAu3d3ow8WqJIYUKiijH+0UsLbqr8cEVgdYZxiJ8j/hUk1WYyqy5ufyLB+\nfmZjO7Y1l3LcYbqfD1Oe9WnLfiyLn1Y39VgIflggsX1ss/YjyrJ0Ge121PZkTkeIThBfujW2pvqA\nONcUrnpguK4DiLC1vY3t7e1itE2NdtsOPTGZf5e21UliEXoisXXEppUzW38R55kY35PYciZNybcu\n0/YrYpxXVqzdC0z8XE2E6GCKBpircQAzYxnvoRiGEegpraLTA7MWFqX4OW9TGocVXv/G1/HO22+n\nZ8wcViu4OCuJsEqSCTFYKTo3XOAOIG59AiBOfcwUAmxBWD2F2eUQRHUYKQjVj/7273DupXM4dvJk\nDCiqQM4ECJLVoPl3SkdZUFpFImepxXVBTHFCQ1arc9i9MTo8fvo0/vjf/lvs7e/h0q8u4O233sLl\nK1ewtbmJ5cYGqHfxLpZQvwTzmICOHJxnXLp4Ab9873089+ILzZ0Hum+Li1KpXtWqn7cGhy47fTfG\n2tbfKle/PwvkaN5pSW0BSiMApBX6OS8FJzKeF+mcwzCOePWLr+KnP30j7Z4hIFzkRDX/WnyIHxKg\nEFJa+bIhE1GdATIKRAjfdHCKXFgBbPt0nUG1YzS/l+lJ23U5X5Arxx7Z9tjuseN/XaryaF6zsmym\njoKnEOOT/Yrdu3dx4+YNHD32QDiGwHVoGeQpOst2+CRT4FK2tWzIlfOt3QIWOAeZLeUijUV4EMpA\nr3VE5SKvVp9YHhV8i3QKn1mV08oPAI7zZdFAuctp6lJxodEbWbErvDsV9ihAtoBxNGSkQSPNnDfL\nzBiHYMccwp0Iw8EB7t65g+2dncT7Kb1veav7Y86ZTHclFDxq6BXhc2MXRZFvTdJ9XwPUlKvZ1xoc\n+bj4IFxcznHXkcYHwCDgUNptAJ04U1OALcmzfcfuaIsqoFv0YBBefPFFbG5upkUaruswrFaTvLDj\nRvebyKCk6oI7oU+Vq3es6Bbp9o0+3K/WdV3csTKCPcDjkBaEEIA7d+7i/IULeP/997B7dxfwHl3c\noejjpASHwuPkxJh25nDsm2Ec0cVJkWAfPF599dWiDzR96QiW+L0zNsnex8Gc76JJ9iHitbJvGcxj\n0Zc+zjD4yEuG5lMeQ33fww8DLnz4K9y4+SmWy2XVZ5rPFshrR6WlB3UZRT+NHhv9Yu3Kr/vpfjpM\n0vqkwAWtY360fOcC8jvVchxADeYpH3w2JX0g9sHohxaumcIEtlzzpF236FzJoemR8TmBrZp108xv\niYwau085/FNl1+1AtYq5susZvBT8ZmYsl0tsbW3liphAvcvHEAk+VMeVNXEqBZ+GwenW2BZmyu2d\ntseSL9/35Cs5KN+pF77ZSRDd53NpHZbSeDn56PJ9pj2A9U/mJ/ssDVMYAsjYrukPrkkVrWJ8J1I9\nBtMv0HcATLXNM6OjYLf39/cBn0+aoHw5a7tO46OktjbaUuGsyRaZxlDeTc8UdvlSfF/KSbgEmAkp\n17yajC0o+lnx/zDvY6Z+eWcublFgINT16Xe7GMjFjGxN8Vr7UxT5XLQVAKlFaYj8F708qRvLWlKf\nSL/I3XbMSAop7UQyi5zYyBdiDo/gd7b0Sav96XPKF0qSY5BGTYz6pJ+W43z9LuHcnjkdVA7vpk9e\ntKtdhsazzUXhpHRd8vfauDn57WoSKRCJbHuKNhYVxWelzrN4275byZIa36K7SMm59KG1IZpX+VlZ\nX7gjJMowh8Vo/WKB7e3t1L6ERSZkStNi9aosdE/H0zsjv/ZzJLLg6z3iK49yMqR1coKOO62zRa2F\ns1bHFzTESUVjgQ+VPlcTISUDYoCcGXZ7qDi4i87F7ZblMSK6Y0YwelBWjAgBVdcvsL+/h9e/+U38\nzV/9VXKGh7TyW638JS0ccyawpDHs0AjPR5Yjg+TiOODYzja++zd/gz/81/86nFXedYiXhEyWK5eS\n21QCJg8mb94DwCO6Ll5+6ldB6FwIcGwvejx39iyee/FF/MG//Je48Ktf4d1338X58+exv7+Pra0t\nLBZLwI9gBKA6ImDfnc0t/OAH/wGnn3kay42NtMJKHAyHErTZe0MAoJ8IwLV4oL+LcfUKyNpgqX3H\nDlz9bhhu5aRRyy5UgLWxVsh7RkdyibyHh095CTKZ4HD06DE8/vjjuHDhgiobBTC1Cs4GYiq6jHFo\nK+9gRHMZhUmuG41a+ZWXK5c0VnddmLbYz5q21l0cmrfZQJXvWSU6FYyq6yxXeoAILlqaDI3aNKc2\no/QlmBm3b98uwNe6NOWMpX73PlzApY2iooGIint6FIG5bVJPiw9p/ByC3liW3slgjZs4FkAGiBa4\nJFAU09SYdQogSVkF7aj7xq6CYA9wqaDAatWH1GOdLUtP3FQR2RqcQceZPgm2SEVMDJLLwWNbb926\njeViEXYKgdbyoaif9Lbd9qSI0EFE6HoCWJyDNmiWSTTf+E07nSVIzaIoO01S++XIJrLaMUzOzwH4\nAizHNrsu2z6Cy32rQOw6R1jLaarH8sH7YoK3cx0IYZHE3t4Bnn/+eVC854LiLgvdBumH1pnNraBF\nZUuMLNt2FA4JZUdTZEDn98MA2dHmvQe8x9Vr1/DRRx/h0sWLuHP3LoZxFdqDuDtqHJPu7roOI4eJ\nKLmc3MV+1jtEvBo3jz/xBI4ePYquDxP9egcSEPUVh5Fn9SpR43jL8CtYHzPKI4j1sWaU3tf80XJo\nZVdS3/cYhwEH+/t4971fYGOxCEexRj7YQBpRdGq1HYwt0WPL1sVAVU7XddhbHeDs2bP44L13G9Td\nT/fTfJIFUMB8wGhKp9s3xNWcshN1CfPJ2mkvz1gWb9X57jVVuEnV16JBggKcC0j5nAmUadvSCopI\n8KZCz3ImUKxI9MNh+igFL2ZW8NYnBkT/hSgpJLEFHDGtnB7QLRY4cfIEPvjgl3mXG1G6SyT0T01X\noo0oBSQsRm3Z8nW7ha0/07qvxJYfqq35s86PnMPX+vfAM1lMUdpZ7WO16My0lGWGerzyE7LfaWmz\ndLXqSvJEdoXs1GKzehJOjnkeuVyMMyen5Xgqn9txyAiXBrvOwXU99vf3w8Iw3hAgHymOdMu7VX+b\nXbNWJhu+ZEviqqOnQ+HlOFcNk3I0hmj6Tqb9GhuI7Zf7yqDqLHwNy/OGj2OTHTtTMpMmLHNtzeSi\nX1Tca9jg7WFSMzYxlVctbBLe25317QA84MiBkY+IFfuiMaPs+NX0Wzxe+RCwfa2txnSsJMRFzIJe\neUN4QJTFX/oOWh7bNrhe6FDrFBjysgAAIABJREFU4Wm9QSkOWR/zOi9jlo6WHtX8EhVpdWuWA0rj\nooi9gJpl28+WjpLGoA85lVfTDOTebMUScq+txyYUx4zrCH6srwJg77FYLHDk6NEwnoKjUtWt25kx\nwMx4EywTbWHi5SF0eCHJjfLt0Yus8rfKPgx+S9pH0TiX18ZhCp1+SB0EfN4mQnzNWKJw6Yz3Huzz\nUS7DMKIjmU10IJqYRdKDEABxnPDw4e6ML7z4At75+c9x/ZNPsLc6CPniJZxp0IrINPtNBlk5WJnM\nqc8UBc8RwglWjIO9Pbz33nv48MMP8NSzz2KUYyMm+NMKomRg1RaKMBjjHQPM4S4TBrrIAwDxInkH\n7gAwY2NnGy+dewUvvvgS9vbu4sMPP8Tbb7+Nq1evYn9/D+Qc+sUiBYC897jx6ad45513cO6VV1Jg\nSkR4ShlKOzRQLoCIaaf+XpQzwbDK8VOGbnbQ2vrvYcDptjnVrnAWfa7X+3C/AlGYDPniF7+I999/\nH4vFItGQ1U/ZhtZnu23N0lI5b5P55HttROw7oR2m3xoKuJWnAotcQg6bJwMga4hr57TleM05FONY\nTsxZJ0f4Ubarli05bkZo3djYwLVr1zD6AV23bKGqKukVXu2+rmVXDFprZ07iQUOO2ftKLnzcdRN4\nkPtYyizoMeO55YBmvhinBmrsx/5NK7ImAF31WfHMnsev6xddrnmsgbU4OTaJw6MBwNzY0XI4jmM6\ncinkyxMNY5yJuXHjU2xtbWEcR6yGPGleHtdW89OOozxmaz7lccNpAqg1FoQXrZXtc2kOfMszPVGX\n9IoSy/jJvFvyM13CneQI8Q6ueG8HUbHCOdU/Qa/Oo584F6YD9B1A3o9YdD0WfY8Tj5/CqVOnUn7Z\nxacvv9Rl6zqtTrPjSdtCQKkKJcOF/oxjq+WkMDPgPcCM1cEKn926iQ8++ABXr17FrVu3wmQ/5ZVd\nPI5wFHeSKL4P4wiQ2rUJFDsd5Y4VIge4cAfaa6++GiYXxnJVR+FgyOeMcJMsy91nxc4tDuFZfYQO\nuK0jrIOn+yp/zc+FzvffexcHBwdhBVfcTaNT0Y9qkr+Fy+xuOZGzQrcTYfAeOzs7OP7gSdxP99Ov\nk7jSndO7Dsr36s+HWUOdMYV63+ggjQ/1MZSpFpa7cRrlTtU3kVo6HWbsF+PQ8Mq+S2jhv3awAqBi\nsVSRS9llgg1U1/RX+nuu3Vz3legY77nwpaX8pI+JsOh7PPrII/mydMpBmaw3J3ZIEEV/trZv03wK\nRDOX8mnlpdmX0mC0+0u/t+73w+RVlAeazcTYulTanXant8qycjYVuLUYLfRdOdZDX8vumDIQ2PLR\npmiyvtVcWwTbWZwPIjABwzhi2fXY3d1NOysckHYdkTP1GPvawreaxgbxzQUktn2tz/Z70l2NcTnl\nZ07yrIENgOwT2XJb/jKAtGhpsv0wYy2+NIXrLe/rC8Tla+3P2dTipfgYdte5btsUbVZm235eW/cQ\ngu7zo4873lzSQ+JbzOqtho4paCaOu8iznrOk5N9qfWoxofY1p9pb6uVSJG2fTGGDogxk+Stwekx6\np91cHxEh3XPb8ourdmu6JK+sGkgT+5aaut5WIlL9kfIa/1jT1NC1822t+TyquF7Q00FvrFYrHD9x\nIuwIiTQVZetOFDmIv+vJ00omgbTwVd61eVttIKLgc038rttY2AygpuWQqZBvoorftsxqEauS28Pa\nYkmfq4kQIDLCxeB+PLs0rapwDoM6emQ1juiJ0LvGhWFRkXfxQs1RCRBzONpqHMOlx69//ev41re+\nFXYlAMXKj3QeNovghfLS3SOUO5Oj4ZWBMCrAH+4a8SBmdOTCJI4jHN/exN99+29w+tHH4La3MAwH\n8RxsCTAQyh0xYTVtqC8cQ1ErSQ5HVcg7jGL7FRGBfcgT6AtBBU+BP+g6jARwR1hub+OFl1/G8y+9\nhP39fVw9fwE///nP8c4772C5sYEBhAUcdroO//jd7+OLZ89i3Fhg8B4L16EfQ392rsPgI08pXsya\n+KYAniiRGICxRlIDwdTfQYMWilV+y5dMK/lKfC3LdsaxI6J4bwDH480U4AHShczstGINEx4OBA8u\nFK3IJDMXAMYDeOKJ03j41MO4ded2nGDy6IgxMsMTpVVqDh6DCmgCcQt5DEhxqMyAjdIgAUh3lOjn\noluKVdjqSBLpK4Cqd/TvI4fAmAS4meRS+QBWiFCtnoVxqvRlt+UqpTLgnfuxcKnhXJfGS+EwKB5k\nh0KPde1kAECXnEqO7bLAPPQ7RWc39HPnHOAcrl65kugYOd8hoeUo9Gs2FK1jLBBXSTg5B5rMkU8m\nf8fBIfbxAk0mirtJlIE3BqhYuc8WBDA8h50LrTM8Q47Qoi7JXrzriPPvaeyqsjvn8lZ51QaZOBDj\nOSIDC912jnpVytWS4JXTkS4qF95HXnsEeyHHI7ZW3KSL8WRHhZeLxEJ9ncx0o7QbmZ/hKEGOQfPV\nOOLatWtwzmG1WqFzOQgtu/60zFrnSo9vvdtO3kvtN3yVdyWf/NYBYB/uSRAgG1ZDlo5CdYMN5R1+\n9sgx4UNigbLB+l4cnfQ7Xdcj2H+5+tXu/Ii0N3iU7EQMamnAXewQiHIhqyG9XhkJxHHV4WAY0TvG\nuXPnwF2ctJMJKwqLG8Rea/0oY5fjVk97r5PISEA6SDpCsAT5PAEAsVPxuMoOYjPDKiQKFQTbtLeH\na9eu4cKF87h48SJ2d/fSUShpHERZl6PhZLWwjDdpT+rXOJblfZkoCHLNGEePx888hY3NHewfjOj7\n0H+julcp6CoqHEXvPbpFDz+MgNP37IQdsH70cH0Hog7DwSofO4qMXQgU7oxR9kHLQV5ZGHGBcxiG\nFciFoNHe7Tv46OJFLOIqNY76Ne3hpHKxAamxTQAGNcbSDpnIQ9HVzo8g14WyQ0bAM17/xjfwySef\n4H66n36tZLBIeLRm9a1ybLmRLesyi0MURqM8jm0wUOerHF2KgRUW/dp2hHWaCgRNBST0PV9VEEZ7\n8/EjIWMfG1DT7S71uoxvmPxCY34n+XKNNkwl31j0gkgrDH5LZSUnAPVvUq4Pd0lubm5ie3sbe3th\ncZvc+yj60Y9jap/3gt2jpeI6YGT7u+wvFHlb9Nn+1b6F+B3C09a7tp0tuZ2juRpDMgXC8zKdaZwI\nWCvMMj0uBQEEXokvqmWn1S7BS4Qu+dShDnu5dcmXgifxebJXDd7ZZ3UbQjxCYphpt1B6Fwlb7+3t\npYmQslygtaiztTCISC5k5qyDVH2o+jL7xnbctMcYUj7tEyS/S/FNY1Zblt2tL/4hOVfLiKFH86cl\npwXOF3qMDM7p1kqmdT6uYyQaC07padumlsyLTEudGWfX40LebfkRVg+nmmWMg8MiavbgeN8wiOLd\nDaRiUA19oMosdvGsaTOMzrZtt+WITHKkTeSOok/cOmqo7evp3XTthdE2hmIX2tkdb7pVFOUWkb70\n3MgHseqHqBNax3TrcssTCKK/xHKCTuZUfi1qmIYI5nKiDCRFqqw7t/IrXhY2vtAqRbJYADEGwMwp\nttZ1YZwvFgvsxGOx+r6Pu7NiXXFBnysLL2qtxpvRY608TZvWsNFTOE3HMUzBTbtgaWjZzGKprMt+\np/jAhX/vfWWPNG3rdn7q9LmaCGHmdBHflNLW58Izc7j8s3dpVsyesd0y2LosAHjwwQfx6quv4s03\n34QfBnR9DIiFQio6WkbABmEEYDj9nXJQUCYmxnHErVuf4c2f/hTnvvylGFANl5PrgaYNwjDoAG6b\njzZpo6bzTbUnvIMEqCgC56eeexbPPP8F/CfDgBs3buCNN97Amz/+CXaHAZtbm3jr7bfxwrmXsHRh\nRaiPZ28PcbtY3y+xf3CARe9U/R4eUfmTrP6sjYZ1zKp+QdnnGRAezmgT6lUGgIC6MoiuwWlycixI\nMQZWgERyNOLnru/hAJx75RV8/3vfS8YkHOHWpUvLQ9kuxE9UMK+1ctwGJZNhaICT/LlWiHr1kZ7h\ntvKU2x6Cp8W9L5WjWIL78O40uAp5AD127yW1wJnQX4LwcpLEviv5dFn5uQLrnC9uv3HjRjKo1vhY\nmWnX1/5tDjiCIwDvXDqWjtbsLtC8sUC76Ke8caHgF1EICGsjWQAEZLCfPivg1lEpnxXAorzqzfKj\nRY98F52gjapXZaZylLzOgchWIpPPypfmR+if0OYbN24kwKRtkq1f09oav2HipK3z7Xfdv1pHhLxK\nPlXD9DsWfNk22vHVqt+2BwhHOHVdlyZoM60+0zaht2z9RX0tmkEVfVNliF5YLpf4+OOP8eyzzwLU\ncswmHOG4C6FcMYbiXZHHdC61sSEyEStHNY0Hq7Tjous6HBwcwHuP/YMDXLhwAe+/+y6uXr2K5XKJ\nxSJc7i47j1qYokWT7TdxC/UxV2IbDg4OsFgsMIJx9uxZdH2fz9kfPVxHRVCBOPNV0jiOYHBAPgqE\nC63pfiinbZEZW6TpLcei3fG3Wq3iTuMRnXN446dvYBwG+DF8R9RV4lIDXDnEQiNQO5Win11cXEMU\nJuyGqIu7+Pz0k6eVjb6f7qdfL/HMt2ZeMsEjSVonTr0v40Bh6xZOqTEWJ30sQTutF+y7OrWO3Fyb\noq4JiyTys9A2i7048YMJeWGFqa8zdxPxhA8m7xS2jlXbTSpss9SroLOt4rAYRbcx3PEU+OiZsb1z\nJP3uui7tgkz+dWBUpClO2BfBqJIWi1EsDwocATSDm7nM/Nza/Cm8OscbeX4Y/yGXL++Vtt3SPSWz\n+lkL15f4ucTLdpfXumR9Xs2/Il942JRBlt8a+GrKPtVB1ziBRfkce6hyxnHEnTt3cLA6aLQv+9mt\ndhU5GXAghCNWS7+oJQ+cvzTbYZMEpnVJBV4y49j6LQDSqSAtGZ33dUsdbOXf3qkq9KTvk2VTYhVR\n/pz0jARdzOtJVuNRsKNX96RI30Ya7DvWRyzGyiHkex02SjpAFVfoGArB19VqwP7+fligGuU/5Vee\nJcU4QyyooNke9V0sapqZAMn9Ev5r9m/8nBbbKDuwTtc3ZS+NuaAL1p2QET7X74c5b+VHI+Pa1o41\n4Zv4Li2abCrkItZn6SvaHgNiSVyTTa9KjnzM/VoMGVBic+FHEpREoJDTeR0PIMqb94zlYpljyETY\n3NrEYmMDKx/8uIQlFH8sP7W+0XyEKjfdfzjFrwZvmNWOL1WmlnHt49nyqjqUvW/ZyYJuVV6afDN5\nxH+yMmvrOGz6XE2EAOW9DtohBvJlyemuCQDkwwp5ezSFBvkFMAfyVkwEY+qJ8eprr+EXv/gFFotF\nCCyA0BXgJCciyisCpXNMfW0QbNrKDO9CAP7vvv8f8PLLL4O2dlKAQy451aBGB6anXZV20gIu7dDK\nKU6/CHEASgArTj2cA7oOJx56CF//5jfxza9/A3dufYb3P/wAP/zRP+LMk6exc/QoCITd1QGWERwR\nEVZ+BdcBnkfI4WHWsNSANbSVOR+10QK19zo47HtTb2sbMR0kKoF5cnqMU2ADMkSEcRXOaH/uuefw\nl3/xF9ja3o7HrYQtnLrOuXDJnPFo9zvS36nWa8cv0JttdJBNl55x9JxcZFoGS5qZ2QlNbfLr+405\n03hYZya0tzYs60Do9Nbd/L0JdFAbmIO9fawODrCx3AxbaNWkQFH+PcqufqcC2WE5D8Spduqov6l6\nBIytrdcBPLaBwTQgadQ1AY4tLzNAnS51yllq0Wjz12CwWUICsQlxa9yH/HXW4WGOl6l77O/v4/rV\na+UZuDDOhdJx69rWAqRtvrYnKqzTEhFwNfk0ZT+mQG7kXllXK0+Xd8HIXyJ9jFmehJ1KrX7mRgCt\nKQ8TYFfz6atf/Wr47lp34eQzgSXlVYR5FdIkWGUu7iqR8egIamcpQ6YDh4MDOOdw6cIFfPDBBzh/\n/ny66NY5h+XmZrC34wjEXQ/FIhH9TwHrwiHQfDR0azsWVjgRnnnmGRw5eqQYs6H/yh0h3jcmyw1b\nJF+4Z62W1eo+IiLos9e1PNsdQDL56McR5AifXLuOm598miZyvaFD7BpVxizWFeVM06f5lv52XbHq\nyznCl770JYzM6Pv23W/30/20LnmE3QPJHynNUzWWAU475K2uSyuYje3VehkIGO4wmEXGXNaFQlSd\nt6Ubp+zzOgxIvtQpc/ap+E2yrMEMydebpcLUg2wLJwMGJBpeJmKlT1TbJ9qg/7aS6MHOOXgi7Ozs\n4KGHHsZ7772LRVevPBa/gGiqVk32hO1fg1+mfmv3l8ZrlL7P9e06Gmffa/jYdlyta1cTkzR9yPxZ\nB/dsnTWJIkvtnJmG7KfOpVbQrC5rjp6MKQJ+EYMc/jgCbt++DYDTTu5yrNUUtGQod005En/dGIBN\nBS66l/eUTNi752YxMqkdaQ350M/s4ilCXlWt62nVtbYPuT0mNF6Mled2Ivf3XBJ/lChPME35frbP\nW/6NzRuOvDKTEz7c9Tb6Ebu7u5EvNd7MNIY308XtnBcpFe3Q9aMsrslfzn/sr+vc/3uRw8PEN2Tv\nVxnDqAlj87Dln9cVZGygh3bp12UQwOWrh9LjgSxObnlyzaFOLBBZS7hd0zvhvBflR+rilynPs4xl\nSLWErgt2fBzGdPzk8eMn0EWcn/gu+EjKMXxq+dcWj81hPUZ7R1Oym0DRBxaXVBOujbZP/V7F8qWu\ndTKkaWqMe9E39uisufT5mggxgEBSUoKdixfRMFzfxaMUHMCEgT06coWwBAEws4CUARQQxsDIjI2t\nTfz+v/jn+J//5N/h6NGjcMxxJWb4y+b8ykoxcpwx57zanZDGazAcZvwxM4a4ApGY8f/9P3+Of/Gf\n/xfKeY9KheyKgK5y+msFYlfb5MB3wVNVLgmKEcaYxBz44AngLhwd0i+X4HHEsRMn8OrJ43jptS/i\nF2+8gV+8/TZeevUVPPz0U9jY3gGYEl/CsSMayALo8lFgCU2lueh4PBnKwdcKVhfb9RHBP80A9YZN\n1EAi1dd8W+5XCZ9TwMU4YEJfZUDjzg7XdYD32Dmyg9/88pfx5ptvwjmCR/viOkZ5kZEF0nOgQRFW\ngJFWeQngGEUs1iNvm7PbsINCTz6lUre573Swt+TVNMlTOxgCTba9oV1GvlXSukKndO5/NAR5Mmia\nNtl5JONf3l0NK3x28zNsbe2E4/BIv6PaUpU3DWKnjFjRBvmNy8u/pa4wzMpL1e3KGytXIKEhlNKW\n7TLoa9vhAIwoDa6MUytnjqi4ZyMhH8sfY1irOkUepXzmotxEu3JG2nyQicB6LE85HzXfCcNqwN7u\nLm7fvo3tGLAeC95ndCYr01ppHeide0frN/0vjclIMJvLPi0QtmOy6eQzp7bLKsGWXpHjhKzubdVr\n8UGLF/qujeL3Bs+meClabGTGy6+8Ak/Iux0KnVwHMJgZ5GYm28TW6foiDxB5K1P/fhwBZty9dQuX\nLl/CBx98gFs3b8ZVvA6OKC0UGX1YITcMQzrii/2YVgSnHWIzcmVpEtkHi4OTA5zsCKMfcfbll+PR\nWkiOR9JRChcF7GRWKkcskFfrccIBcixdJrBFtNgZSI2Vg6DHZ9d18OOAcTXgpz/+MZaLBYbVqtJ5\neo5e9LpMeghWsU4KYj7ImI5tEr6vhgFnz57F6SfPhKPYvIcf7m0c30/3kyRWf8PIoqmhHfJNiFoa\nr3M2TOTcPJ9LxVGTFFcBZth8zzbsMGmqTGvzinfs5zU4Wu9Am2yDBFWkLM64GgiB4XDEsQQuxD76\ncHRxohtZXx8CJ+vP1rbLkSuLvsdDDz2EDz74ZbELs7hXzOhNjbdtmg5SzmNnS3fL/0K2JJkfQEWb\npkPs0xRv5jBEyxdO5XI+2liXVfJo2s+e8r1pon8J5XnpFhuNEhOJR0amIqjkp5hUm1LJ0c7DxUWa\nyIu6Wn0bfDhzTA+VfCn4JvSuVvDDmP3lmqRMWwPP699+nTQlA+tomKOj1ecpnmHLmqJphpYi9qQC\nlC1Z0jRN+ZHVM7RhlfaNCj3OcSJrZleX5NXxBRDVwVDEI2EbZWhdOddX2i/VtHgf7gUZV0PYBex0\n/jiOQEpu235MdPxm69c0VjEZaYzKn/lCIYzJnBZBt/pvXUxA8sz5oE3aouiRfpZojEfYOafy5/jD\ndCIAh1i8ptogWn59G4Fq7Wx8MZ37QIB4bxQag8q7j3nqWu1CBwY7B3A80p8o3m9WvqdtFhAmLPu+\nx2q1wokTJ7C9tZ3ygWTniDrW2rRTt78pD5E+3YJJGyTPdbm+vcjM6scmVtK22rS/hbGY1URII03K\nqNKlut1yhcJh0+dqIqS1HbRw3omSUzwMQwL9jOBzuj4ylJG2NofiMjjIzMuKw1EHMOPhhx7Ga6/9\nBt5/792QmWU2GHEypB0Qkm3EznYmS6vkgR2I+SzWZd/jo/MXcPXyZZx65JGgDBHPrcdYBKREQU1i\n76jQ7aBqGZTJII2qS7+jLxoGgBWP4W4VjhDeAS+cfRE/+ft/wF//+V8AGwucOvUQzjx1BmfOnMHJ\nBx8E+j6eSRsHj3NhUivyRIxrrjtc+ip9b4Ggpq85YE3+4l2OwXKGmqhSk1YJyNcKk5njUW5m10ec\nJJCVvC1gT07O1ifwGGc3ifAbv/Eb+MlPfoJFv4QfhyDLTo4giMY90piNdjRkpr90vdmOKyUnpTYU\nnU9B32ywrayIg2L7QgOfNjiKkwbxHT1zrGmv3ysdojnl3KZ1Gjzn38vJNbsdtlVf4jGyLLAPTsHq\nYIXbt+/gkfxSbuNMkHuqLiu7AipTUC5uW9a0WWdQVo+GcyrjuDLl18YR0DpT+t32HSiU3ylY0wKJ\nxXghqo6rshdCRutQgY+WA9Ea69aRlDq0bCeAb/Ug6ou7DptyO/OEGgDcuXW7DNTGv2UQAkE/AWHV\nudEjGhiKbdO/uQRew6p83f7W2LH9mAsvHSLLPxsE0Lqnua1d6eSCR5q2qHdHuZfGqYlyrh2WdeA/\n8aTxTgEUC/oz2Dp67Bi2jx5JtqmS00bdrgtBila/yRFgsvJMeEXsI8hnDKsB+6t9fPLJdVy+dAmf\nXL2GmzdvgjmcOavvBfEcjwGId6L5eDZvpqXDEOtLdZm2WF41fwNDJlB1v7987hw2NjcTHz3CnVvi\nLEudAThTmpwSHsKVugIACC7a4dKGeubi6BptwwKPg+wUx0/GHUdCwzgMICJ8/NFH2L1zJ6zaci4e\n0RXvdGNDD+XVVYl24RPyogbR7TaItHdwgEcffRRnz57F0QeOp7Z0Xdc83vJ+up/uJRVBmEn8BOhJ\nQ+tgE8XVj8b+U7QD8fVm+a260vE4giXVbvx22GN9mevSFN6zerhVruiShNMa+FYCRYKPJ+mF4KQx\ntzTCosK8xiJ89CeYuThBIGizMgBy2FS1kznd3UdE2NraDLYIJZZr+VgB77V5q/O3/ImC5w27b/PO\n+wA1hpnD9VO/tWhs+VAFJpB8Bneuk805OSlsreGdyJodb1P1ZZhG0VaXfRXGIhV5EwYWHzMKd/K0\n1HiYS7ZvWv65pNXBQdH+1jtz7bRjT/DvulT5ua2jX7h9bIymFcxNehPNh5CHFmaeolfXU90hGZ87\nJSuCkKdwXKtsG+EosVjGOrK4xuY5VF2xHo1N0zHUCk8WPmL87jnEveR+Ke1ZBFyPsj3xLl2oMgNv\n6olZ2x+2TwRzJn4UNqO9CFPyBTwY9auRjdL2ljs1rB6Sz6KnNe+n8KPWxXNjsuWraZxbSJrTC1Dr\nskIWgte2kxj2MjKtf5DylfxrpxybKsrzCCdWaJlEuLfXSuScjOoYk/Al6Yn0XvZTE1KIfhunyQ0k\nX29zcxNbm1vhGOu0OM1M0kemtPThnE1klH4IAeneEbFVLV2l62vJz9x4TnYpcSovZJyi1+qMliw2\ndWqUD7tA515w0OdrIoTLAKoWBn1etOQLF5t6cFjCAKJw3IDIcYtR2vAlsA4AnuEZ+Mpv/zZ+/rM3\nsb29HbfU5a1BUp4FKskwCOiXfBFMZOCnhxgACqs4O+ewGgcs+x7/5//2v+O//x//B6ziO6MfwfB5\nZwkAIhsknBbazMMSy0wBjqbR1/kiJnIxSOR1gziA/365ia997Wv4yz//c3Qe+PTqVVy7cgXf+/bf\n4MFTD+Kpp5/G42fO4NHHHsPGxiY6xMulYyF+XMED6LsgvuM4RIXUBic6WT7oAWvvj5EVV+neltRI\nocQEhBpV6nrCxbN2hVI9wJllIitZ7hQkPXr0KI6fPInd3V1gHNOktUigj19ktY5cCi5laj7UYCv9\nCsSgsoAMSWk1QhxPaYw0j4oq2wdTlqVBP9dJglRz78Sazd9Qf8soyvgAasBpx03l5JpnZdkzv8cg\npIByijy+eeNGkA0NjsKHDFYbNNjyWyBRguRiAMVY+In+AJCdbdVW2T03Z3CljHBkTe0o5v6QCej0\nUuUYCF12t4b+XfgkoL6VtKOo6Ul9rdutgQVQgUmO+lsDQHnW4kNLru2Yy22NE0fDAAC4cuUKNjY3\nwzO0HbJAJ8FRmFTVZWpZtjKu6Ql/w8qc8L0Oyuey7A40BsFVF88Wn6VvVD9OpZZtsTKtV4blsmHo\nirwx91UIGaIfnKPi2D0yNGr5Z5XHM6PvOoAprdB69YuvxkUJSMdtrdNrxX1QPCb7XzgzatcAe4/d\nvV3s3r2LT65fx4ULF/Dx1Ss4ONjH1uYmSAWhVnH3AgGA1zokG2TdT4Os+I31S59OAdBaB7Sdx945\njER44skno9NRXq4ORNzmGcR5gUGaBGokzxEPqLFn7SyUbtCgKtHMHr4xJqReZsbd27fwszffRN/3\n8N5jGMdQbmq77uNSbhCr1HK5XCzyXSaK7tUwYHtnB7/xW1/ByRMPpjYsFovQlsYOs/vpfjps0jgt\nGsNmvqRTyerRUq5zOeJYU/Sv6vFUvdck0ORl9dmUo23mNA5sv9PCd7qedWOsGM/xv1b1HlywuahL\nPScwQB62CFZYS644yN0gdLFlAAAgAElEQVQnbUAxWVXowhbtBruI7q94IP/iBPXx48exubWJu7u7\nyaeWBVq6plxengi3ZaOsQX2vF9SBubowWtdV/g3llJfnisyW79jU8pHt77p9s/IWGWz7w9ZTtLNR\nb0vuNV90eVqmC7yiynTxeO3AdQnYIcuYqd+2NU9+AdJXMhbSHpM1PoFNtv0dKC0UWCx67KuJkEaJ\nWLeSfOq9tckEZC0OLe+1rBcf5XLycUl2rAklhb+xRg4Fv7VkcM6nnjrJQffZWv3cosV8TlgzPMz+\n1j2VnPkiOFS3gbj0L5gZcM4ce5+D2kWfQVyQzGOZGBJMuuj7sAAGhJF9EbS1+imoOuPvoDwJRtvc\nQlopLESSXc7SB2HHFur30ZaPueC0fdbSN7Z8nbfs45oG+37RPPVBcLKmoTymU+wSxXsSbTsU3fG/\nAoa02oKwM6MYjhO6rsAR6afSJrXap8dvE6do2hQNDIBcB1ns1Xcd9vb2sFgssFguAJ93/Wj6pK0p\nCtroJ5tkHBXPIHzkZKda/DiMLr8Xfa9xk465tBaQzum3uaQXH2j+HyZ9riZCgGmlL8EOOW9tHMew\n0lDeQzjGgFiARS6jDSKy99wRgWK5jgh/9Ef/Gf70T/8PbG5tAdAKSc7WFUMtn6GsT9mW5FAjKEuP\nnE+UxcicJlO2Fx3+9nvfwVdefx1jDERFVJPaZi8K1UAp8y4HvwpHSaWW02HvZ6n6h8sVkeloKRJK\nHUb2OP3MM3jg5EncvnkTAwcQu7G5ib29Xbz9zlv423/4e+zu7uH555/HuXPncPqJJ3H06BEAhL6X\nVZXhctfOhbMfPVMyblHHNtsyl2zwp/hr21rx1CgnJVfB8LpE1LxBMbRSWOsO5+A2Fnj9G1/Hn/7p\nn4YLaMcRzMH1Ej4DXCmCSqGaHRblEU8KSAFgszrDpwBQXb7+G/6179Owqby0Pg8Wm32dTtTyrwfc\ndL8T7ASRfsc6HPp+kFr+2wqcmeNODKqe912Hy5cvF8fppP4xNOvdVnPyI7owtUGVm8alvCdlkepT\nBWDL3RCxfNXvFmQFMFfukGIW8ysrBpE0F3PpeyQZijVNGWrLdaluapxPOf8td6rlGE7lmXIkp+W8\nJSNc9Bk849q1a1j0PYbVKuXTE4Lp/bhS3jFSYNeWb3VaSa8BmkAhL5bm/DGcOlyAKvVeqlP+xZfT\nsUGaPpTOWRE2meAzN/LYlO/liHqBOdhJI2u2jTBtqRwSAKuDcHn7crlE3/ch0C+2R622yXzkyv4D\nchxSHLOrVQq6C4jlccRqtcLVq1dx/vx5XLhwAXfu3MHOzo4UgGW/gF+NqZ48AVSuwknnzMbJM4Yv\n2mj1XQL7qn+m9KMk0Y+Ogi1xXYezL5/D5taW2oHhUh9yGryxzPjV2mBbZwiaLNBFrBech4xnECdm\n9F2paWKTAaIejDHrR1WX98EJPn/+PAjAIDvDZPdxJN4Ot0J3MRcrGDulR8cx7OBdbm1id3cX586d\nw5kzZ0Bdj77vUzvDJEjgyr0GK+6n+8kmGctNRVRmTDsOkg5XiZhLBazKt5+n7E+hd+M4zYEjnqWw\nFRRKZTXyzWH/Ob8nfU+Z8xfxIYvJiCK/6BmxbxyOPj0EnpHKrMsougpAcbyu1Jl1dW3Tw3JAuwhL\nN0za7pM975zDyZMnceLECdy8dQuLxaLyeWxbMm7X+F1Wx/rMm1REe9ehUJV8e1NPq9+Za5uusf1k\nPcqOtRZCVj6ROfUgyRmQF2l4pJXRugxdnzxvtUvb5JQMdhN7rm1XyxeQKEgLM7Xsq/1b5uEQZGyM\n0CnetjBcheekbVHu9vf2Chp0H7XaWNNh9Q/M97qM5OPEcZ39MM4TkOrwhSk/KPG2wQPdr9pHszis\n1S4Y+XTOFbKo+WR5U/AyfArxo4Z+bmFi8RFtG2q+1/4Poy0bTb8psL9alJrqMGVI8DP7DyJLZT7Z\ngazryseHIWHI1A5HadFg5GDSL4ItVWE59mJ8BZWpyF/s/ChsClU2Qn7LcZT2Qkhd55TPmnW0yEXG\n24WcSi5TzK+zM6DqNcrcGNinuKUcJ9UaK9oWzvnjic4UA5M+zO2tgDvi4ioTr5jDFmLb7W8tHkL9\ntdxjZqxWKzxw4jgW25sY4dFRX4whP45pZ/hUqv36gtQq2bF92B3ntq8P0xeVLjC/if1q6ZUWXrS2\nS8Z1OH0nJ3sv+Fz63E2E6AvRdUBSOlOvshziMTABWBN48OFCSkfhTLfwdiqjTKWiSUqTCE+eeRIn\nT57E3d3dEEDuu6RQwHnAlUXWApMuqSElIFy+EbaQMTwBB+zh797B3/7gB3jupbN44MEHMYyDWnmQ\n6Z0G2IdL84q0TLounzNXeZIw9x3AG/jS7/4u/q//9VtYbO9g5BBgGIcB7EdsbiyxvbWJ69eu4dt/\n/dfY390De49XXnkF586dw/FTD2Jjayv2vUPfx0mBuM1NjFeLRt2+SaCmvZ4ZHhXGfyJPLrNWmqV9\nTNAprm5SAVLZxtk5PPHkkxn0cAm4MKOg5O4Y249zSs0+T22J2091A6wCs4p7CoTaVIPU+vgconyJ\n+hRwW1dPbo+Vk1Cf3WKc85fvZ9medhAJiJfb6/wByF69cmUtzdahagFvnXedrIvCEblNjrRxGHQb\nQBGgysQrdJs58YzSKnu9csuuTjB8V44Fi6M8YVD1To0MOoITlYIPE7Jc6KqJbe/685QGaIE/q0ts\neeuS6IfRj7h75044u9b77PBqYMjijVGeBG3U25KployFCXgVdBCnRMCY2eXg4OpzWE19zFycERwr\nD7+h1q7ZmckBH91X6WiOiTFS8V9lS/wyToQz/JL69bNWPd3GEuQZe3t7OHfuXJiUjgsxvNpVkLBJ\npybB04xi6OsU1OIxPBtW+PTTT3Hh/AW8+84vsLu7i52tzaCPuh4bGxsAh+ObdL+E9iOtZiv0VgQa\ncmlmOHYPxU5aabPIfR7FZdunPufVyjmIcHBwgKeffhqu7+Kl331xZsHIjI7zBAo42BaN74SuUHYG\nz96PyYnr+07ZieRZmv5P30JXUDnpAwCLxQLsPT6+fBnnP/hV4JiyL1L3XPLeo1O6CgD84NF1DquD\nFba2tnDr1i089eyzePYLX8Dm5mZaDauxbACRhwfz99P9NJVKXDubUTnvKign/6KN1bZ5zoba5/di\nD6cCLOtwqrY/v5YPlNosAa8pf2pq5SeyCorltLg+DU8zpgpFK3s04ZYkDJfqK+1fWLnfxgESfmQf\ndqPaQP/OkSMpEGdxly4r48cyqBH0q1eTN8rvsfElJX8F/lRtLFeRTmPzFn1NLIw21p9MTbydf/Lj\net/jsFg/0W/qDbJAyYbNlZPKmPFj9O917KL0DYC8GzucAJF5mvlKM/LdpjX10egxNI7GsrTavpzy\na1tjt1WmjK80+k2e4vsE9p1ql45NeQDEXI2z9L7BY6pBoSxDk6aLiJqrrMtU80X7VlP+k4xNvTjO\njqmiloYPWclkbJdu66S/MjF+9dhI5RHS/XkpzjIh8+QIq9UKwzCEnd6QMVBPCuV4gfrNqQnuhs8j\n46llnw6lb4AmH6tjp3V71TvWp6XoC5Tllfd1JNjJ+r350yAsrbl9pa+vU1iQxUmvG86p/+v26fpq\nXsr+i1wSA2nSRcxqwRtVV15E126vNsMtOZeF+IrKWEHgtffhpJPVMGBrexsPHHugGAvSLkg8G6iO\nW9Rj0PJDEVPRPpembMZcn0/p0sPKdrPdhoZWG7O+RDoRSYan4IXDps/dRIgNzOikDYscj5Dei3ct\nAEi/i4C1FHDmezZYruvCxZ/DgD/8V/8K3/rWt7CxsREE2wRr7Sp4azSAHA/o5HcVWQrHejE2XZdn\nT8cRW+SAjR7f+e538Id/9J8Wipri33S5jqpfK84WLXNAwpaxThkW7zHnmfVgDQB0WDnCY089hadf\neBEXLl7EGCM0IsiOQ6AHFM7H3tnegB9HvP/eO3j/vXdw4D2OnziJJ544jRdffBEPP/wwaLEs+J5W\npc7cR2Gf50Cf6K15oDkFrGOOfPQKtV3QZjAWHuxLEAWO58mDQb3DV7/6VXzvu9/DYrFAWIPviwv6\nkmPSaKcGZfJcHJ3EA23Q5agR5TiFsrgKJGoZEgfBPmuBi/A5uo0NntagtG6X7cfDGG3hh/SlvQPE\nJruKhxRfsuOKmp/Iq4BSoLAL/Xr79u1wUVu/qIBNy1mburS8JcfyvGgLx5UJnI154mF0orU+sH+T\nLuBcgHM5EOrUSjjdB44o7phLZOQ8epVN1AN6BY+Vhfo5J2DT6rcWYBd9pu/mKOQT5RFidX8nIiqQ\n3jpPtXxFaCiPVhzHEQd7+7h582a6p6HDmqOCpC6XHeOWHGn6QnsyHaOxDWTeCzqBIo89PDyIukC1\nKse2swkilQ2X700Hx/C6yXtT15STMWWDRQp1e3X+rPPy7+EM9bArcWNjAy+88EKwVfFoLDTqCW0t\n8YejDo4Ie/t7uHHjBq5cuojz589jd3cXq9UKi64HeY/Npez8Y4w8JGxARGmnQdJhqlWCB8Soimtg\nbbi+C8f205R9q3gZv8tCFXEuv/bVr6ZynXMYViv01AMuBgSiXdTnGvtxDOfkcp4UEN0SnIiwahkk\nC1BERjNt2b7lySipw0HuSKl1ymq1Apjxy1/+EkRhsl1GcuIbkIJ6LXm15+gLbc459H2PI0eO4Guv\nv47l9laSr67v1W6a2FdMgKNq9ff9dD/9OikFhGZ+t/hMfBIOxgIkgcIZPTzlQ7R+i5b7UGWt+30K\nKx4mie7U847ii1S6j+XHsECNEbGKsoHiO5S4S+tPVIGY8C6BERa/5Xo0oc2P2fEvfC2pK+ACrUeK\nNiW5ILmKKejqccRyucSxY8eCrem6pB8FJxLUBbRJR6t6FS1T/pS1JdKOCjtUfVoeWVSwyWBV22b7\nzOK+VD/n0xgAFPECXU9+gKqcimwOpwOMjZ3ylt7cUjNOGlioKfPMAtESv+r79eTdDMClKI0RUyli\nAyO2aPlxczi8kgEO2F8f43Rnd7c6IqbAY+rom5a+sVhQVVbQossOuFcwrqa3bEPJq3b8yLa54If9\njlqmarrDew7xro8om7be5JfZ9wzPtTxIGTYO0JoU0bhyqt2t+zxbfkC6EyPaFsuDlj+ra5rjt+u6\ncJ9eOlq2TTdzoGP/YD+NqfBOOW5bslIk0wdt2bP+FINJLxZE5Xtl/rXbqydD2j5ebRMju1XfI/Gh\neAeo5abRL01+KPo0L0U/hCEU7/+UsqTSmAp/RPkqwRbF+wE9inGQ+BuvQCCWRZNqN6V4QgxwoVlj\nvgm+TSWpU3yVgicuL8wmZFvYdR36vsc4jtjZ2cGRo0fT0WhSd/IjDsHnGeIq2ZRkfcBqrKs2tXTS\nHC2zfjrUOOZyt2dJej12WnlYTcyDwxUWLWw1lz5fEyEMEGfnNkxPZ0WeLtRGDG7GMwyYM9wemeE4\nXCZK0fDJJEapJPPgSjtP4pEJnhy2jx3FK198FT/+4Y/gnMOK4/0PjDAIix0rQlWmlYgAM6PrzSxz\nTzFwyAB8EMg959AzcPX9D/Dh2+/g6bMvYvSMBQutSG3VhjddcKgUbfgp76SR7/FleMp5UAwKD6cU\nc2XoVdlcMgBM4ZJYBwfqevzWb/0Ofvqz/wlHd46gI2BkwFOHIZEbzs0fYp/KmaSLfoFbN2/h7Rs/\nw1tv/BRbm5s4fuIkzjx1BqdPn8aJB0+CNjcBAjxcuIwKhBBW1LSXhgRezo6MbfaMgcRwFc0rQLjw\nrY8sGLPIgYjC0TXsi/eCrMQLWAnqEnhK58PbFTdgB8eEs2fP4od//w/wAA6GfXQIxmGMfSVgNXK9\nYZwJ+tiqcPFv7GMBBGltTLmazCmHp+XUyDgSI6hlPASfNB+4eCb0hWPbgGyYRtSpVOounaVOAJNy\n0Op+yztjnHGiKMld5pXQFS+JV/JuAY8GlM45YPRJ/iVIKONqHMdwlB+Ag4MDLDY24Fx4T/ox8YnD\n1t4RE4aZEe+00UeX5fGd+RonKjzHyYc83hlhRXYGDmGiBow4MQfV70iGhyjqPZYLPZNbnidvpLvI\n5f4XnRXXqQsIII4gMbZ9hEeneKvbleR6lN0CmSaZGBQg0ZID3S+5nzPfO1WOtKeVV1bgJ11o6C26\nikublOXPw/OIW7du4c6dO1guFuCRg850XRMMMzHQ5ckgQr3SzHHob+fypJ/nEoB3hb4IlHUKAAV+\nir0EgECPS+M39wsTqT3ArP5Q4hWzcuqilyJ97aKuJcVvjwwMQ0tt4COuLkq7xFyqOp31G1icjvqT\n/hmUHQ473YLelz4dFIgP+pFB4wCGw+NPPoWNnSNw8ehM9nLhd9bdBAS6Yp17u3u4fes2Ln98EZcu\nXcKdO3ewu7uLnqONI0LvCezlTgqxESFQ5eKEi56kG0xQRdqV9VFkEmTCMgNzorAgZFS7aWWQk+bd\nxBgRmXSuT78RCJsbW3jo9FOAC3e0AT4EgNgDIxJ4zSoo0Np3QReJXHiMAPKxWswe8KFYEQiigOP0\nmHMYw4QRHNLRiwzAeZDjJIOD4CNm8Dji8uWPcPP6tQAvnYNPkztBbjqHhC09EI7L8GaBQefAwwhi\nxrLvsXewwtGdbTz73HN4+JFHgo6HAzlGT41zvDlOyntXBQnup/vpXpMsptFa3toxjRX0M8mb8mu/\noJGm/IKWPRSkoLU5R6jtjF5oOfGtwM9cgGydgw6Th4CEbVrlyHEMdpV2gQt1rAVRjdIUf/LEgu0r\nHSSzzwHEBVHRnpp2B/DQXj3MQLrXKjqQ4YL0ccRiucTxEyewudwIi3VKixCDTazNe0VXy0dYp8+0\nvamwRaOspu/JHO8yaefXMhNwJwd7C2W3oQJYkaZ221QfImPXgDniSvo191ocRsdrv07HJiaxpvrL\nE0HTzL96LJXfE6FxrBj5U3ixSbfiu+WfjB/BMnv7+5D4gcXvU+M4P2vLXX5G9e8ia4IRoNuWfUJN\n77QmaSeO8jXXBl1vU1+aZ1NBxCKvkhl7b0kxtlR/J3pb7UAOkN+LrrdJ34kh40XX2+KPVzIhAkmc\n5VfHZMSnKH349gLgu3fuNuzMtE6fsklTvGu1xSVDkKF1HmJ2bMLUD+i7mKbqbY3JqUlE/X7kZtEv\nLT7I38PITtPHVt8ZcVF4Y2RZPS/eMxPA6fQUnyNVSUhkp4tMHgIMJS+KikBDjt0w13Kd7UCuQ7dd\n67hUJuVFCLK4wY8jON4PcuzYMWxubqJz8b5Nw+vC/phk+0DbB81fy8eiLTHZxQT6+ZS+tWPJPp/D\nW/K7xNNg8rbkpfV7jFzH/znJj8VBc+lzNRFC5NI50IkxjLSKx3ay5q0WTlld25ujCCwgkKQdhLSa\nAoRXX30VFz78Fe7cuQMahuQwe0a+5FToCgUVRmmdsWBWK+4RVggNw4Cu79EtFvjBf/gBTj/1NJYb\nm4ALF57KJeWFMBY8rAWzZdCguMBx8Ipg9eRSUP8w4E23lT0DFI85IeDhRx7BV77yFbz/3nsYhlUB\nSKyRZOYURPZj2MY4DiMcEfZXK1y+cgUfXf4I3/72t/HAAw/g0dNP4JlnnsGDp07h2LFj2NjcAuDz\nbiEiIAaZEs+IY9gFYqOa4K0AgF2HYRxD0DQgTkAdg6SBlaQU4BMhNTKc+6Fe+eP6HjtHjuD0k6fx\nwYcf5oEfj9HpZuRK2hIutLar/lX9qv/XKTNbfv3OelBwGIWZjUx9GSM1+DSVLAA0v0LzXNc7jnFn\njHNNAyOp0CUyoaUNuHEIiAifffYZdo4ebZaZnMIGeNaruUOfelDXTxooAOmuBMsTUnKoHQbNM3G+\nKI6fAC44fceM3DFz6eD6cjzpfDbZNrSMJCs6PHM6UkrobIHTOWOrjXNr7K5zGPQq91Z/hMu69V0u\nhL7vcf36dU1k+tje2ZYnEWU1SrXiT4BdnPiyQKtoX0LkdZBJKNG8sCCNKGzd9wTTZkCAJ8c+cZGu\ncQxHcrRg2JS9skEX7cRrfsnEhM5rHZrqqAEgX9xHceJG8cn7EeQI+wcrvPDCF7CxsYTnMYNwH2SP\nOexqHL3H7c8+w5UrV/DRRx/h008/xe3bd7BYdPFC7PguBftOyDqOKYBndsb50O0BcjAKtdNg5UZ2\nfGk+OMUHC/41rwo+hg/ZIXUu4JOuw/7+Ab7xjd+BOBU+3ucl31O9cZKEmdPxZyAuVmaHekv725k2\niUyI/IcL6FW/xz4kBPOc7kcRfskuE2a89dZbQYaZCxwndfmRy7Em4hgXyhCQ7nUL4kD44muv4dHH\nH4dzLq1ydeTCpFpDj+TPpR6+n+6nf0o6DEay+tK+VwUlGvnn/IImDUp/pUfy3DjYLYygMdU6Gopx\npv9S3U7H7eBSeGcap+TyI57UD5W90nXp80h0jsMGQgA1iWJ1uVEj2o5k/qLABugCpjx65AiO7uzg\nk08+Qd91GIYhEwZtF9r9olqJli5r4jL1W2GHzLtTwZu5VAWqjJ1YR18bT0S8BQCs74IpF+Ik3w6I\nq8GnVyDr53J0qc4zRVdrrAoOtPzUeay9z/WEdqTfgHQssqYgt6Hmk6a50hfBCAd8GrHh6uAARGEX\nUimj2jcDWjJ32FTwudEOJYURGpR6yPoG6+gQXwlU+6pWBqbKszxNq+mp9FkbjQUQ5EgwCkw+rUNT\n+VPHQzfo178fhhedkjvPnBaa6PJqfVq2SXzrkK8cx96UJbYkl5n969Vqha7r4IchtU/3ieVpS7Zb\nbZR3W+yQWEaRd6K8QHe5SDMOlSafLG21HlYxEJksNkW02q/1gvW1yvKFPiqeZbpyhcnWqW7J9bXp\naWGOVIT4PerdHNGycqV4TUh5wu+lvi1oUPZ0TjbElmmZ0uUMw4ATJ05ga2srL5635aEcU1MxkpTX\n0IAJeZqKoeg2zcVHpmiZKlvTqKnJ9zqr2GeuoCq7SV+B6UL/3MtU9edqIsTzWKzeLRiGwGDX5QmL\npMzAYRUiEC6siwxfDQMW6h6DUmnkz3rHhNQ9eKBfLPC111/Hn/zJn+BY3NoULmwP52Gz/hdeLgTO\nmXqLFAdOESijcBTGAADjgNWtW/iH730f3/j93w+rlonSzg89cKwKlDr13+ZqDvEO4l+iEDwYvV5p\nuh7Y6iQr0/oYTB6GA/zO7/4ufvCDH+DkyRMYhgGud/CjhyfKuxMaYPVgtcJysQj9MY7oXA90Dhtb\nmxiGAR9fvIj33nkHd3fv4uTJB/Hcc8/hyTNP4dFHH8WRI0dCEM6FeW/vOe7ICKuqRgCeAHIEisdU\nTR1bRJoPRGB2xUCV2eBKoarVSi1nhygfJZR4EA0hE+G1L30JP/3Zz3Dk6BHA++AENZRlSymJPJUr\nhJBWULVoqd2Q+URq9X/92/yqFw1wQ2C3EdArFGcG0YcBxtMgJ7dT/+59uPNk5NIgRWSS8idgJ1s4\njeHVcI2I0qTsxx9/jMeeeELlnQKzLV6JoY07B9a0ueK7akPJh7IO58pJw6Sbot6TMTLlAOW2lUCq\npUPkHe992PVQAalyAlsCnwFQGSA+AxJtna082kgLHw5Tnn1mZd3K3zAMGMcRV65cwdbWVpxY5wLY\n6P7TzctjJjzT29s5eOKVvZTyUn8yZ9AUwUmidwZ4kgV+Sk5TH8eZ5YIGNkctKvG2suG4nBhnZDlL\ndwW5Gixrh09wru0HvRpxRJY0uRKUpI2RJ86F4xpPHj+OUw+dwjgcoOs6DKsViAj7u7u4fecWrl27\nhkuXLuHjy5cxeh9sFVP4vFyEC/3GMS2gGNPEWQbOoa3l5FUrWR0/5TQEPrUBotYlh7HrcqxByh+P\nmXOuw6mHjuORxx8DJx1HcK5LfSVy7L0Hj3niLul40S2d9HPdltpJ88WEBiCTYcoRDh8Key1HbXVE\n+PlbP0+TSp7z0Xk69cWuqixbwocw5hyGYYXnnn0Wzz77LBjx/pGIn/q+D7tqWx2h7VssvBncuJ/u\np3tIbgbC3Yt8rbObLcf4MOWRq7GbHeOtYxrW1d/MI3gxGRxTX8g0uRgoYU7kY3TleY0n7dfWCtr4\nPkm9GZtNHY3XCjC0MLUEY4r2Kb3lwAFjBaCTfUfngHHE9vYOlsuNCrOHRW3zExVSl2CU2m80fRmf\n2uN9NG6e0JpFu0Id07I3F0jKNDMo3jkZYgnpRykk4a5cp8Yt2QYJXs71Hs6O25RjEWX5c21CQVPb\nzmefwy6Ok3Yr32GCbmZOHUVUt1DHJDT+D2Mx1AFmLBY99vb3MQxDsOdm4UQbA1u5t1Tq8aAxcx43\ndWrjJymqGmMT+N5r2U64w2AZzSNdVQN313Km8kbcWOFgUgtEwsNCLor+mMB/ipAmtixlaTrZ39Nk\nZoOHU+Oh5WPq/N60vcB8poxhGMCIC6QTDUoHGzpsmqKxfOfwtkqSXnyt81o/viXbuu163E22heJE\npLYPwkNMa9yW3Oc62vWW9OTFaF7s6YzvkWlXPqNpU+JXDIVnUxO9qURSnljSNlLVmsoW3aPpIQ72\neko2pGccObAT3Rjb23UYvcfW9jb6xSJM+MajsBPuj/WItre8KGgxNLT6xL7beqdVfiu1xtycz2nf\n9eb9Sn6kjkzcPF1a8KWee4hXfq4mQhJIsoF4Ki9PByJzvdpKp4FuFDRCeUksRac9FpnK0X+l/kW/\nwDgc4JHHHsPv/d7v4R9/9KO0rXgc43ngh3AupoSvBcA9OBzd1HXYHwbsLJd4/+238Mqrr2DnwQfD\nO/FYHVICGc5yF9pr5alBZgakYUIgA6HAMMErlraWMZgSdDmOAgx0iwU2nMM/+4M/wI/+8YeguApJ\nytEXXmkISQhHiIxxdeYweLhlVrLDMGAc9tH3Dg8cO4pxOMB77/4Cb739Nq5fv47lconf/M3fxHPP\nP4uHHnoI29vbgAfIdQBcmARBmNRwLBNasrKf0kAWgKE5So5i8CWjwRSCUe8VjgvQ3M3RUrJjDNA9\n9MgjeO4LX8Dly74tFkQAACAASURBVJfDxcrgIqhnDaAuL2CmtnEG1UeWyF9b7nTAjCrxrw14/VtZ\nRku5UvW7TVNGwPLAjr0pnll9Y7fnZlcop2w01VZ7onSUgtQr+T66eBGvvfYavHMh0BotuKanciwg\nhlY7om3nKf0+o2cykA5U16uB6mO2Es+AdExhKzkl7zEyD9kDIMBTyq0dDOHitHEXO6Dfs0Z56pmM\n4bKthpaCxyj6tKX70o4vPSExAeRt/R9//HG4B2L0+YxRzpMGVuY7tbPROjW1c1g6jBbIToNtlDqu\noDkcylG0iRuXmhrnRACei4ZF6vQMdAqg2n6xaWpiKh0HqRMZ3cGGR1GWnXPpwuuCJ0Rw1GE4OMBv\nfv3L6DuH/dUBPvn0Fs5/+GG43PzuXfQbSyzihMmyX6RjRRgMYh/vr8pn6HZdjxFDxiNpCmTeHmR7\njXS04tQdQuGzCiTqQErDTrTGjS2z5QjdvnsHv/v662F3yFIdl0V2RVsoo+/7JN+SUsBj9GEyJC5s\nyfbSjt9StkR287jTckQAhbE0yCQUM/bv3MUH7/8S/XKRglZdPLqwNXbDcXLxTrZYRd/3uHv3Lp76\nwnM4e/YsFv0GhmHAYtFh8GPR3ghFqyOxtH2Yk/v76X46TJIdYBIY+KckPb7mMP8kLQ18m4IQDIP3\nuZgEEB/PYgRNk6VhCuu19Kq1dXPBBAlQaIeoyEuUsBSir5Nwwwx/ss1t/2bbV9Df6GHmfD+AN+2V\nIyoFR4pPI5/hw1Ejy36BU6cewoXz57GxsQkPCeir8oQ+UWqaLgYEd+RntT0hysdkaMyrfb9Wu6dk\nair4aPmTLS0AzsdIC+3BfIRJkfRO0RdGdqiWB9t3oV21fEqyCyBtObGlidUtOS1k2TyzeC98LvHl\nHN80Zqco6y67DxlXqSKmfDJNk3MO1DvcvnMHq9Uq+cRTdE/RWOHXOBw5w9BaxphBrI7WSbxrHBdI\n+mleeGuIKLEDAeVFPVJm/CL540NCwPZT980C6tjXWLdHvu9P6E1tC4Qm2Ras2/J3ZfJOl6GYUPDY\n5tHvCa9savYb50Vn+VGJ8/RzaVNoa8Z4msb01ZQleFMWwK4ODoJ9GYagGyme5opa1rRctXwuy5Mp\nfa7zar7Ycsp2S2umbZvwYlYfKW5N2fJC6TZsaov+Ms1buzDes66ufZucz8pX4o3L41x+E9+USfy7\n7LvZttb+LwparG0p+iQq1jn/jBBsadpxL7veQegXi7Aj5ORJbG5tgRGPo6Z5nKbvhdF0aX0v9y/a\nNOXr2zytsqd4MZem/EZdrvRfq2/myi3KQinP4e9a8lL6fE2EROU8jgEuy0q9Ll48loyBgGUfnM5h\nHOBcF87h7/sY5C8VvlaqxQW2DWUigLzrFxjHAS+cfRE/+fGPwwAchlTu6HWgryEQ6pkNlFkVoukZ\n2GOxXAp6xf/97/89/qv/7r+FB8W7MDitRAfaQdAwORJnTgWsF+1F2hZOUaGMDLlhIwLEDA6BfDyP\nplzTrVeNh7tWQrXee/zWb/82fvbzN3FwcBDueol3N3SdnO+Xj7KQ+iiuAh/9COo7/P/sveuTZMd1\nJ/Y7eW9Vdff0dPe8ZzDA4A1QIECRxIIgLHG5dmzE2npYVkgRjnDIH+z/y/YH2xvhiHVY4bWslVa7\nkiiTokSu8CZBgHgMHwDmBfQAM91dXffm8YfMk3ny3LxVNZS+IGIyYqarbuXNPHny5HnlyZPHfYcm\nDtsLAqNCDyL0/TEcNTh76jScc3j37Xfw9ls/gvce09kMD1+5giuPPILLDz6IE9s7oKZBxwt0PkRz\nLhaLENWpxkaUU3+EiFefL3mLyqAoQ3rxeu9VbsOoWJG6j8YwHM2IwnFhj6Zt8exzz+FnV69i0raQ\nGV1H4UypV0Sh0nSv+hNcB5hrgrkUAsM85zbqSNNPFlID5WkQZTUUdqGu2Jza0Tau8GvFZOy+B6vg\n5Au/qNjJVgMvDA2taIlxKsactCenK0IEdTgR0nUd2uk0C26U0Ya2yErzQOG0tQJGw6PHx8yjQrfG\ne4Qp6dRYWdHPc7uqWCUj5/5fIpi5pDW70aCNGduGjSLTf3Ufto48lwvdBjRa6Uvzz6BQBZzUFYKy\nf+cc5vM5Dg4OMi1X8KfbkrFZg0nXtWugaWjwu8aLlkV6rhyQTqhZpVrmJ8xJfFdRL0GM0RGDKXhl\nEu40j9Wp5ooLqyvKqqV32SQqZE/813VdvHMsdOhcA+67kKuVmpRnuG3C/R+LrsOdO3fRti0uXbyI\nt99+G3/393+HRd+h63u00Q21MZ3Cc4gw6/s+SWC58DzoMB20Y2WxWCDIUHVC1eDZA2g1X4v/0soT\n5X+kMJBPWlCQqQlnpq+xUqxNs5aapoFrWzx68RJOnzkDojZtKjH3yCCX9CYpsaRt4Y2pPx94qNan\nUv+yJUIE4gYgNaaEq9IWD7ijcD9H22I+n6N1Dt//hx9iOpmE+1bkXWlAvZvu2fGcDDFHYe2eP38e\n3/zmN9FubsC5Njgl2gadzwEpPntQE+5lHp1ZG8IH7pf75Vct/zRbIKo9wycs763JYSuDam2GdazW\nt6gdSg9b9r7ub2WdJTZekAjls9rYxRlCClZQDHah8FmCpFK9gn1K8El8XSl7GQdZT7AjG3NgaJkv\n73kCdEJXIgppI0VWGt0XQLzPqUc7meDU3h6apo2n53TLXO3TlnGHUv5dbOKsbyoejNLZYce/juyy\nckdKuphetZn4Plf6WKOvot/K+hPaWbuNga6avpVtjpSs39r44mw/jbVj8SWnVm13q9Cyci1FYBpy\nWCwWRb/6VEW2D7X9MAzo0TRJMd0mi7K6DPn3Nr3pFd2itVVXNWxxLH4D4XllO7mOfT+kpR2OTfub\nCJkeJEBN6tRsiKqNrGCrjie8WCUKgROWpg0+YL7bOY4vFjZWaZcsx7eCFIeHhyEbifTh1yMCOzfr\n8KF12rNtlet3KLN0nVqxfI+h8M3LMBWKFz21Aq+Fw/QMLSOGtnKW9SIzSzmxHC77u5UxFH1NQiNj\n8Aus4htKfEfRgY93kOSXh00OdAoAzB6eXdZt4l8f7cPt7W0wGE1MaW7T+uputC6U7rWsrXesZmPW\n1zHmD9F1x2hsTN+rlazb1NtZJseWDObe31HlC7URwsyD1FhAZMjeA012cnjvk5FKoPSeKNvy/bjr\nMGnb5FTQk63/1YQQBysf040N/M7v/A7+z3/zbzCZThMhT6hJ6Y9IKZ3yr5aTO/VFOTpABBfid7Gj\n5T6Kvuvw9o9+jMeeehJw0fFDlC571TCjeBYcCTmaofAWpMuMBS+OdVuZ9gQXLPW1AywxlNIJSyDI\ntUBt22KxWOA3f/Nb+Is//7PglEJMpREZk+d8uVS+7KkUiOH3BAg6Yd4upwzziSn3IHIp2oS8xwfv\nvYe33noL09kMTTvFhQsXcOWRR3D+wkWcPn0a0+kE8DF5isyTz+k2EA8CyQadT5e61iOWQxRpXWmx\njMj+jkjLly9fxs7Jk/De4+joMCoGxrArprWu8AalJs5RqltXinRkni7rMrEhHQ4jrMZhzb/lo6P9\niJGVNzlXwSLv1fFdT/ekhV2tDSJKa4ghBlEubTQsmRm3b98Oa8R7cLzY10ZD2fEBmbZ6ofVoJBQO\nVEnTFemS4/oQZ6rmPyG1lldrWeGJgtvRKuVhfCXeBoqXspyScFU8YkyA6rZ1nZphMLbxLCmfLA7t\nXNXwW8Jbfm+SQ3R4mZiGgahUqCxPlM++73FwcID5fF7NjSz4q+FWHMd2LPq7XkPaeLC/j22oiEzS\nz7RBlbMPB5gdEXpzgbXFaYIRDox8/5b3ZepIgSspf1jOb7QhKe85iunTPODh4Vyb6II5pCyazWbo\nuw7E4UI7ADixu43dvT1cunQJZ86cweaJE/jRm6/jnZ/8JMjh6EhhcHEfUDk+Tb/hn6QhXMWjdOm9\nT3pD48rN7PR5MN9ZjmsaljUkuIJpR6+xQaCGvBNhb9vAy+5+dge/8a1/jr5nTGauuGMj4yIYmgGm\n3J42AsgRJJAgwRv1lQGvYEYKeihCJQTvSEEGXo+NCV23QONcurS+odwvc94g0in4iOJdYC4cce+6\nDntnTuH5p57C3t4eIsLA7OGoBXt911s5ppqBUTMq7uWY9/1yv+gSLvvOMmyZrK2+X6k/ZkCPyeb1\n2kTiXem5WSumEeiVYbXsdXiq6LNWZ7NlgCvnkuLHjJBaSvHdIj89B0trbBMEaZfE9oki7aQjShvd\ntbHZEx+qN7RUnnxlzqeatRz1iEFk8e4mIofWNdjd3cX29jYODw+jvTR0Ovs+6gPO9j8u+wd6gQ8W\nmpxuFJklMjbo9BZPdb3dOno0bgq6A4Fc3ihKenHET57nkgvXbOvBmEREKR02TPn42qvBPVxv4+tr\nmTOKo91c4rAch9Yv6zwi63hp3VTkE4MLtdvKuarO3PcxIMWHEyFygqFtysMUVOq1y+zltM5IBxWM\nOPQwxOwqPmJ/tbYXhB9SwNtYe1pHtPaK1flrc2z9SgBSEBcwTCtY0JTpaxX/Xik7mNPpZku7ydEr\n8MYTyaTehdJja31qPITqvsAPoKlU6b/qX+g3BN0cHh6mU+DBljL27dicaf2UhutIfuOky+Y1ISRh\nm7a2nV03y+qOFVuvwAtEDw+2F5HiVZY/j/Q3ZotpmwfIvgibwQdAsqEs7sfaZ+aYxWU43iTPRIbG\n6ATFZTMuKrRsA3qBIINczESjm1llv8l9SokmHIFi0OOFmKYflINsF11XnMiyY6o9s+tZalqo7JjG\neLE8q+l4y0pNttdko9iPWs/T9la13RE7aRnc65Yv1EaIQ0CEQ3mxqgy67/sijY2jbLwC2Vj33qOJ\n0fvOuXRXiBY22ilkhRCgDeVA2Htnz+DZ557Da6+9hul0mhePNxOPTJw1gzf9jVxSiCONlQguCgof\nFeOj+Rx//R//Iy498AA2tk+E9E4UffYYplPRBnjOSVvKnYC/4Kzp+3JxaRxYwYxUsxS4BRMWhhR5\nHnOIJn30kUdx/tx57H/6Kbp4sgYAPMkCyS855pSfjzk7jRlx95oZnoLy5EDpkjCoeQV6EABHLeaL\nsHE2m22AIy19/PHHePfdd+GaBjsnT4YL2C9dwgMPPhgcYpub6fJTuTxedqqYQu5dcgSQdlBFoRgd\nPYFT5w06q9TJaQJp3EnkQ5z7jY0NvPDCC/ib7/wNiFzVIS3DrjEHadq5Bsw5gi05ulBXtqpCqZj/\n3MGAGRv48rv5RMfwt2AE1QQz83CzKax7gUvWGQpc1kp9ndg7X8pNzNyahjWOQ/QMzhs3TbzHyHFO\nBdH3fY6Cis8cDO4pH8dmBauGQebORkkVeCNjqEOtI++zgibVERSUFK2s7pEReGXDZ+zySkKZtxXI\nxmHAzdAQ1OPzPs9Dwb/U5+KoulYMKnVlzAJzai+hKL+bvpv5kCiZdYwGTdeWhkUmee/x2WefhYv7\nXEz9V1ooBTz5cdm/za8NRXvh6zANmChqPjoiXE27RGlY6ff7yH91KXETqDPhHpkPeCBuOnBBWx7Z\n2V9LySbtJCbGUZDllRCOJDcuEXNaH70HtflOikXfo+86bMxm2Dt1CmfPncPZc+dw+vRpnNjeDhtT\nFHB7cPcO3njjDcwmLfqujwq23OfEKU0SxUUUXTtx6ijhutd8lAK8STeo4R4oHGG+Rs8AupHNGKmT\ncRg2n/q+DxDG0zO6LoB0smZAZ1LPOSz6Hm3b4umnn8aJEyfQxPswdNHyrI9t9n2f7naiiF8hjEGg\niJrrMYU73M8Vcu2KU03oACrSiplDWk0Ad+7exTtv/wTT6RTd8XHSFRxQXEIvdNgzQo7fvsfm1hae\nfPJJnD5zJmw0GwOGEQIugpJF+WJAGYtCUS03cp6L0Z/ul/tlaak5tsYMxVUGZM0JssxRM/Z+7bvc\n2aH1FRfXiDhvQmpRUkqkOo07Il+HeiTFtl3SzTIQANhq0UN4rQ2ny7D/cYeAjbMVfTXZjXK8JMrD\nwpFgdTsa/k4+RhGPMBAPLu4qTPKEA37IAb1j7O7t4cSJE7hz53M0bQNyDr3vqxsD98KqCt4tepgE\nOMmcDwJmxJmYT4SXw1vPCZLt7ExF2jGT5c3Qob9sLLb44C1Ta2d4GsnKcavn1Aqp9bIOHPFX6Bmq\n2e9Wv66ndTV2ICPc0YacZjPEBdbtUU23Yv+LrcXMmM+PCzhk1TFLG0McLXOMyT6kTtU1ilutrI+0\nN8ZTilKZY9H9lhVrq9Scf2M+HQDF5iZR8JX0siGj6lteJsXq2roPGZcdv6Vn6WulnNH6EHLAitw7\nWZtf25cOdKv5JgZ9qu/eB/qeHx8Hu0DZphnE8dM4FjbLk4ewhDUrny1NhO9DmWB9JHYdDfth2IvY\nCziBgQ+ghDEUq5Ouot1h0bzEwKD4eWqfA+7H8KrnQsKtIwoHvEa/53PnAFGyVe3aGtJ7DpSQcFaN\nHyG9TPZm7hADGLT8cNn+OXnyJDZms7CmTLCVhoMVT7JrorY+xuizVl/jagx/tXb185W80JRkz+UH\nhW9c/2Z51kDvsTBDcLQSjFS+UBshEvntJOJeGfxElJwmQMwn2+vf47JxDi1RyF9N4UwCew92Lkeh\nqFJTFIBMRGnvmBkvvPgiPvjgAxwdHSlh4pPTUjvcdDt6kafnqg+99DzCwiLP6AmAA6ZEODGd4bvf\n+Q7+5e/+NnzvgxJLTl3+NKIwUclY07iRnSAZgiF+1lHolgknAGioQTNp0DHj29/+Nv6Pf/2vMdvc\nBPrgZBJ1m5nDFAKJaaSLgJPTIy+olLubOTNNZKMKCI42DwBNAw9GL9GbHBxE09kMBGA+n+PWrVu4\ndu0a/r/vfgebm5s4deoUHnroIVy6dAlnz57F9sldTCYzyPVGgpviNIzCbwOXUs2AGWiGl2PZPPUa\nry7eH/DYY4/h//1//gSnz57BvAspVsq5HgpXaJwCMQpCMVpUaIKGaUyG68Iy3+UbIaGN8sL2gTFH\ncgqopsgMTwHUTqzYS+DD5b1DRWGZAE7rxdVOmkh9/U428Lz3cMpQDb83gdYobGjd3t/H7u4uavMl\nF9xp+i3gEigopK+zikNNUbZjLpUrtaEhyoRXMMV1paGswSPO2zzuaCwRx/GEtVK7/yKn4Mrt634E\n5oHyEtf7YENAldH39XjiP+3grxlyNd5Ww8XQ5BgqqR999FE+0Rjv3khvKoVf+tX9pBRglbGWOBrC\nQhRPyyV0Z0W6AnSxESewSy5UO76wzhS+teYIKF4T+mdfGmOiGBLlk50UcSG8Kq7qoERD03yUA1Eu\nNMIbZF0AOHPmDB555BGcPncWuydPom0nySEvznpPSCcKfvnhL9FO2rRB0Ec5Jcq+Rm8YV9j04Fg/\n0GWQSJbP2LmtBX0wdNvrG3+EzAfSvIjsH1GKpW176smug6YJqUe/8pWvgF28/wR6cyzw8HB5eW5T\nCCDTcUi9onlW2jygGAFegZXjfAm+E04Uz5BNvmJsnvGzq1dxdHQEUvQk7doxB7yFDY+vf+1rOH36\nNNq2DfQssjTyeueaSKceYAeWfMgK/4kO1frVtJ/Gca/25/1yv8Qy0PxG1rr9vWYwjxmfy2Thqnqp\nTVI0j8ivVCCZ1vBJyZPYyKCvMbkMhOAoruUXXxM3oDrvzWxgtZMh6bqujMIHY5CqSXQw/WzUESB6\nM4ZOikInBA/4oRTHMTgh6rFt22J3dxcffvQhWmqjPuvgtXSi/GFc86qfRijkIJBOEgb4Ai2E8dh7\n5bg29QWe7Pca3vKWeYYq16vrymLfLG2fwn8lLKudNKvWUe5rxbuioys5vKxpTR9Avs9KfgvyKeBe\nw1BOqXzjJMtrdpXtk5lTFo87d+/g+Pg4OAxlkKleaNvCVdNP1MgyMak6en1IYKzwn2XF0ivZ58Jn\non8h6G3BohjSJdR27jh/rtm/pY079B8k3IvtMKBfFK75MRjsOxou3VcB26CF8bbSe4j3G3AZvDVW\ncr+umDOiyMM4OLCDXl7aBrLRKqfpmcMp8FZ0epQ8d4zfjsGlxzo2dor8YYiFsdMYw/brawqDulrP\n1HM+Zj+MyfSaPAFUYJQGgPVJ/jF6qVGg9GN8DkBhA4ioDV+1ThDlgsKBXquSwn/MD6BhS3VY/FGK\n77K2x0qcWYyKDRXshYCvra0tbGxuoHFN8W4Tg7YSb+KcIcHOR+30SsIGc0rrrfmcHa+0W7srFer9\nMVrR7a9rj9okjaWcyvU1ndb4TOpfnqn21y1fqI0QAPlYnQxcIydG14vDBKyOAweqAFNIEdM0DQiE\nru8waUIu6y4eSRJloe7MCoWIwhFiH+s5h5Yc/uAP/gB/+u/+Ha5fvw7XNGhdg45D6i7youCHd8TB\nr+8pKYUbReYNzdXURIdPXbfAUdfjg/fex3vvvocnHn8SjHhU2cCs/0q+V30cLfNliTgNzqNlRTtW\ntEKv/6b0JM6F0xMapZwX55nTp/HlZ5/FO2+/nWEk0WHivHjOuXdROu3FaUDxJcG3DM6DY67QsKHW\neb18KDJJddlY32PqGnDX4/i4Q9s22No6AecId+/exVtvvYVXX30VBwd3MZtt4IHLV/D440/gwYcf\nwvb2Nk5sbcVTNfGYSOxJ0hRJv9oI1Ivdfg7H41Hg98SJE3jxxRfxo7d+DIYoqnaXtqQBW1wTNxGV\ngCkV+vCeddIAJTOyZaBwJa15NaPUz+xjUcb1HQAh8q6+mVnic/naTsZyupPIHOE04xdYakXWrmye\nyDMPRKU/GH2uafDp/j4eunIlzoFalQr2tPYrayzXyZ+zU72MLNKfe++LNDtE+uiqmSdtfCbajHgA\nUsR65mdxJJTfDaFjnHiA5BzWuC/Hk9Pi5frlWqHIK4tcpqKxmHGnoSyZezGGpH9xkojynOYl0d5Q\nOdGKvL3w0PJ6+fzhL3+pjo6Hc79ayBdwK3qSz8WljdYw0UqaOuWk7weStjQvyEV4q4Ij8lrBzzJj\nQdosDXWk03T6VJAELtRkSLVdUPGbphHfe8yPDkHO4eKlS3jwwQdx6fJl7OzsYDKdom1azLtjuKZB\n4xyOF4t0fFlObTRNg9573D04wKuvvQrnCL4PKclcVHrTPTJERUqoEq+RJIEU5cOIhh/yutbUpDfx\nkzGj8FnioZ6KUcuRQgmOrzdNM4g4tmvGyiKmHC3lAXzpmS+HU7fk4BGi7RqVQsbCktaN+q7vukmR\nwAaPyWlFehNMtw+kTZc4xmQ8JfjD5vTn+/v42QcfoGkcfN+D2zY2GHQNBwLFE58U+fizv/5VnDt3\nLsrjBkQNQJz4aMqSwz6eSgbgIqRp7WpZGIo+fazxFOZ5MKX3y/2yVrG6oJQxWbjKCVtrf9l7tbaH\n+mmw3yTxYWrL1B9zymgbQLdpnTbyN6RFUfyWKKWwGIO9eK7+V2Cmz5xCz7MeMcQBCr1ffsvb9mUR\nPcCYTqFDJZez43No86W+lXMwtSP6ZeyEXLSdHaFpQ3qs6WSS8CJ6l/BG7XQyWMzwm2HJM63T6Hls\nVN2abKqVe3VaFjyXIh5kjz7aKkQlDea/Y/2OR2r/qmVcd12xuWEchOv2UfvN0pHAInSY0j1zPr2h\n8WXb036D5JcA43h+jMVikQI502KxY6vwhaVzL2vOl7p3oRPFdUZr0FvtdLQ+RerVZwl60+PIXKIc\nU6FjL4Ghxg/1M237kXkvpSkiSrpfrZ/B3BndUM+x0EJqgUTHKdeFhb+GXd3mWFklqwK25bSxgts5\nhGBXxrybQ04hhPvp8p2gYndkf82w73VkKxElv6WMt9waKMvYerGYqumLA56K4ec07yNydQyWMXkq\nY4pAJXkSUg7mO4WKdbJGn3oclNbOiGwsYCvbGfCgaLfqd2s0Xc5QlL9c6c/UTDapdAZOdx8yc0qp\ne+bMGRBCsDeBkj9LgutqOLHP9N9l+JS/dv0t84PoIjzD1rP0McbvV+mhQjP62Vgbq/jevZYv3EaI\nGN0sypcStiKABNntpEmpXgCg84wGYcMjODb65OCQi7cp5sFv4xFN3eaAMcnGBoUox3nfw01n+Fe/\n/TvY39/HX//lX+KTmzexuTELTjqXJ7nv+8JZA8RUOZE5OQbaqIQByJegKoUtLdOmhSfCFk3wn/7q\nO3jkwStA24CaYKSzulcFMCdpGHDUwEeGQ8lA8Elm+2jQA94sonDqRJ6Vjqrwcl4Yfdm3Upp9vOC0\naRosvMdXn38eb/7oR5jOZgH2xoG7Ph0x9pJWKuKDqDzq1nCI9JSA5p7FmckgViln+pxv3QsyGEkY\nhlQXhI7DWD15LHxgcJ6R8sG3zRS7J6cgInx68yb+061b+MH3/gZHx8domgkeffRRPPrII7hw8SJO\nnT6NZjJB7zt4yKbCItKw7ApzjMRBGLfP+OlFkVDCp2fG1//Z83j11dexOdtA5zs0oHBiCAw4SidP\nrItM1k4vzkggbYDJb8m5avL9S8R4eJadmTodnI857bUA0szS7k7XckfaIkImf870JsWe9ghOp7pA\nLx3xQQmStdn3IXrcXpIuCnw4IaM3RXTyKiRHqo6+I5ZIaY5GF2MymeLGjRtYLBaYROehKJRi5Mu7\nQL40OfUkRgU1hUDWJ2MsDxP4HWUnv9TjPs8vexHqelNLK7hBQeiAkLYP6bqcMGrR/8QOkIRgRCBu\nYtqrUpACSgim9Ztxr+EPcytrOEePO86bKH0lxaGmNWnTnsCqpXty0o6M3sDLnC8v1xd9y3wkOOI+\nU1JGPePjDz8anOzQhpHALTjWdw/0zPDOpQg6l7fdk6JfgzVFqlADQJR2n/uK7CaMI+MBTismLqRW\n0nd4RaqRgASZy4RLInTs0UQFmeM6CRFL8Y4oePQ+RHU1rokp/OK6iT0Q5eCGO3fuYD6fY2NjA1ce\nfBDnzp3D+QsP4OTuDlzbomnbYqOgj3RPzQQeHhSd2bIFyGHCcew7MHvc2f8Ux3cPMJlMAv7TRmPk\ndyPKdU5p4l2vxQAAIABJREFUJQkjQr5ZrUCTojer0gndxcYHxkfiqcibbnqcWebKe2oTkYaGsFVu\ndZBDajMcU8O0bQHn8KVnnkEfHf4EYEKAg4/xKQTApbs1tN6m4bfrkeIcSQk8TnAU4GmcS/JLsOVc\nC4JP5KbXSkgTwXDs8aM3X8OkCWM79h6TRKeRVB3h+GiOyWyGL335GTzw4ENhbRChaSYJBoo6I/m4\n5qKs7JljxHfplGC9YWnmkNT4RGJXruu6X+6XtYrwbqDuvFllQFqZbI3ZdQzQZXU0zY/171HRC3Qb\nqq6tYx18VgcCkPx11kwfNbAzKy6WcYkbo6OlZzG9pLP1lxThy6klwkBIQOtM5rsqHHVLD+O0RNY3\n2UW9j0Ll6WyGkzsnU8BUpqMY5KfunxsbkXVUVXW9NYqdkzHHyyoYRO4FYMQRU5G964NWWR+ySaH7\nDc8tPOu2bV8R+KqnquMUkmlDPgsM1TVldJh1Cut1Bx6kWNX963a1zccAmBgHBwc5i4beHFV6n4Xf\nOjQHY4LYSwwwDehB19PtjTreFL3rjQXdptiARBiMnVQQ3bJ+1nV0LqlQ6ECDPjDUJWslrTXn0h16\na8Ng+9R9KJtKSi2DyvpluDlY+DM4B6KxZ3R9D9fkDB0e4tsrneh2jMtorVZPF7n/dvW5lwy/nGSQ\n79a2t7amDYqq+j8ob5KtM4OpTqT/pXU5MCDB5eC39LwmfceKClQXOEybVThQ2kkamhpexBdX1tT+\nJs0nTLWi7exLCRtqhMXxAru7u9g6eRLUqrtb1UuDsazg12NFY9bqRbrcy/qt9rMGnyr6U/0SEHxQ\nqp17Xfe/Oq/4om2EiGDWiicUMSpDmlw54USE1pVOe2aOlwxzuNQ1eJPQNC5frs5cLDRpzxYdzUhE\n2Nvbw+/9/u/jo1/+Et//3nexv7+Pra0tzOdzTCaTtBgLx29kLM45NKDSqTQiJIPTrUXXdUDccfyr\nv/wP+Jf/6r9C7z16dMGgrjDsmrEgn53SnvShw+FCGioSY87mMSPK1tvZ2cG3vvUt/O33vx82R7ou\nRJZGpUMiz2sknxShKOCgIeTSMVQYRNAOF0qnKvQ4rEKrlSQGgnMj0oujcN8IkcPPf/ELXL16NV2A\nvLG1hcuXL+OBy5fxwAMPYGNjAydOnEC3WIS0b8whVzlzPK0U+ul7BjXhskBqglAMQeMOm1tbuHT5\nIm7duCW2i0pLFDbZ9Nht9KnYVXqseT5ReGJKOhQnT2ZeWoEuBfFQqS7vLliuxJZzVxr4+p3RNrje\nJlekmG5DbxDIXNuijyXXYHfI9KoVFTCltfHzn/0Mfd9jEjoDA0UkitC1biMp40oRsimhpK7dHBpc\nVqbarOGwpJk6jvXxWDZw6X6YOeS/VmMjomLjYB3lf6niw6VztcA7hvSi4dA0PIaPZfAkJds8K3Hs\nVboPnzZrBEa9yZxSQ2jbAUiODKk32HQUxdkuhYo86fs+RManec4dkdKmEr9TG6PeezREKb0kc974\n0zi28kNkcjCuKPEzcLmJFyLvw7tt2+L4OEQMMoCTJ09id28Pp0+dwqVLl3ByZyfkXW1c2LDokRw1\nhDIFQuI/JKcjS3Vczhyw9+j6Dj95661wl0TlQjsd/cfGKcHqtxrd2VIzwGv1C6VR1rky+KycG6Pf\n4hSkWjdk2irgR1Dwj7sOz3/jhcEaJ6IUAUXxpK1eX7ova28QURG1acdhcSUNlDIk22q5DsM1BO4Y\nV69exfxwnsY/m81AcFj4BSaTCY4XC0ynEzz19NN48MpD4QQMNXE96A0LZHwYPNtnmhfb3Ov6dGOY\nx7rOdL/cL79KsXynpjvZ57bc6ztW1xjjR6veBy2Petdrv+C5FZ2yWLfM2ktQrLea3JZ6ts0av05w\nGX/RGB9Pv8d/EgwT5K3eBIm1OPN/zVeXXvau9Fnbb8JJbF9SZXqEU+Ynd04CIHifg9okcKHIpAqU\n8HKed62zk8F3BK9a1uGBy9sds6Pl9IemZaQJWyY7td0wNqcDE8T0X5NpNRtZfYttVvTpSls1GAZz\nXpExmq6WvZt/iLqDCrSwGSJqbWj9Wtubk8kkBIvKBhvEpkhvBr0kvpBO1xJVnb/69KnWw6xun3Rf\n+b0+2gRToSua9m3xUQfRmzo1srb6guhmFlb72dJ4MXdEQAy+sDaJQdZSG6cYS7IDoq0leKmukzwm\ni6AaDElxw/iaKcYouC/WbTZabB/aPmQOdzM6SMYZD+7zpd41G07jXHS2lTQuEBXCIKyV4ZjKuQ3/\nLJrKCP1y3oc8UOwd/VxOmyea0zhS9D/An9R3+U6gkkupaSak+5prZaizazmd9fpEO8ZWyHWX88Jy\nDofN1OSGj3dspd8GGFBjVadAw/8c+VIeFzMXdk3bNmnNyR2Nqf+4xtaxAcbGnNrJgyzGq0utn5pN\nN67rlIGZq2SHtok5wkbm9+FQhsETlsbX4V+2fLE2QoQhqEekFBFZ6BwJyMfjRZqZDZiVMDJmcO9j\nSosWjri4XFsXLaCk6AjgWAmL42M8dOUKLl++jHfefhuvv/YaDg+PUhtOhAfndoHQb0VejChbedOG\nYiqIq+++h49+/nNcePByPtZXrAWCzaDWupAXkVw8MeH7xCW5eG9Y9HMbBa2dpyIwUhSWZdQkKXkc\nnnn2Ofzt9/8ORA4ObtCX3AlSEzjpu+diQ0zDaAUGEDYLGBxOwDiXTjYwRQUmvuOAAp+F8E305ONM\n9nmssf7RwQHeeftt/OjNN8HM2N3dwdbWFs6dO49Lly7h3Llz2DqxjdlsBq9TvLCPp4Tipk2c82ZC\n6LsOv/Ebv4E//uM/RgOXmDc8g4kLQUcAOKXGiScgKJ6oIqlHqKl0JWMU53+pHMh4Zf6z8qAN4QoT\nLRxx9lfLtBHnRDv3xxWwWinpr6QFeZ+Ziw3URH/qd91eHp+FngCvhSbDEwXnL4CF73H71i0sFgvM\nmEEUFeZCaarPhxbwrBTS2gXyqW6lHT0u+44YBXaOa/AUCoMILbkXRB4rg1g7BMeML62QCZ+3/brK\n3FkFyc7XgGeYOrV7ZIpxFsqnpvu+eK7h0Zv1pH7b//TTVCeNj+MmmpJTaUwo54sgl8tqZj+8FFaP\ntxrpn3AWAYCcGsvKKggpZyoc0FiCohzPvkqZYghvcCD0YczRUdz34UTc8WKBjY0NbG5u4eTJHVy4\neB6nTp3C9vY2ZhsbmEyngCvH0Uwm6LsO1DosvA8nSsKgwUTo+h6Tti35nPBVNc9yN9ln+7dx7fr1\nuCb1nEdBSZSMXI98iWOpQGc8rOJP69TV+KxdfqjXi+XHuq7VZ2rF0rxrGsAzdnZ28OCDD8YTqKWs\nB6DuRZETRjww4IBxmSNF6w6DjfwReMPYGIgyMWwOehwfHeL9994t1gp7Ru/jBlfb4NeeehKXL19G\n0zRhrNGYkwuc9dzmNSmRjU1BH77vwnqXufJ+ALvkqs4nwhhEPsK9Hq3cL/dLraxrHC5zVuh2rGyr\n6T3r6F/yt1dBX9ZGC0bykjbiWpTvY5f92rbHZLqV6xYer3hU4HXpV9QcUMYtVJW1BRzK9gvDW4fH\nRd2zElmbdVbOgRdqXAN9C+LojL9FEE9un8T5c+fwyw9/WW2bAMhd2QFmD0KjbLDslK/rkOPjHNiK\nFR1V1xujRZvaV/DRuBhwJM7iERhs3zVYhuNa7tRZtk5yn/m70JzGpV6L6WRCRUeuwWVtt3VKrpvt\noUCsItc5nt7Np2WZh0FIQ7iCbtW0DY7mR1l/iXpt1XbUc670N2urhu9Rn9VZJQZjUnChPu9EefOl\nGENlbaeT65CUS6oN9X7xnlnXts2lJfHM1FFcm+NnD4oxjsyNXWewsDAXdjEzhyzIxj5K997VTsXq\nfhVcop+O0a/9XpvLAS9HVKs84+7du9jeOhHGwNlxX5N78rfWpvxW41eJ99jxrpCt+m/AwzqBgqWN\nYgNONQ5y7coawJDmKACSvyv7PfWieSijkJnCMUITNR9C5hcD2Smffd5oX4aFcTwFa2OMT2c7nMBc\nodFEZ3pM5QhlLACj3FALdLy9vY2N2Qzi3+C4ftLbQg8V3rJSh6jIdMaQnvT7NTyN8ShN+/p94c6a\nrgbvr7Bna2OxMm6sbtHPPZhMX6iNEEukgCwMGggsYopGac5BXhVoUEwASBf7UtOCuVu6k1lbZJJm\nx1PIA8cIjOLpX/s1PPrYY/jpT3+KH/zgB+g8Y9IERSGl4QEnRwE8DxyEegzyOareYGYsug5t06B1\nDn/x53+GP/of/ke4RhaQUea9VYRLpiAX4dkLeiwcY8aQLOqwmI2yvkRwEIXLhBYAfvt3fxd/8m//\nLdqmQee7IKQ8Bqd9BoueRNnQGfrK6O4EQ4mawLQ5x7UvYxKqw7RRHaKjPNhnx78H4GIKNihhPmlb\nEBEOD+/i+PgIn9y8gVdfeRnz+TF2d3dx5swZnDl3DhcvXMD5CxewubGB2XSKdjoFYuQCECLANjZn\nuPDAJezu7uLw4C7QZ6epPQ2id6hFF4l3VyuFG3J6eKVST3GOS6Wg5mSuK+/FxlnfJ0VpYBCLUqzu\nNJD3RyYGNaOwprwsH9vwd4FD026phGkaY+Rrr+OjslV477E4PsZ8PseWRAA1pbJuYS+EUeyHUeLK\n1pd29LpOxkl4UKV1MUbGTrxUcTT4ISsy+jLQQToco3R6DptGxdmiNYShpiui0tkiBuPYO1VeYcen\n/toLy6TP7PDMtCjveRYshYV34+bN8DzC5fuYQo3UerE2oMJzUkCKOYzGiS/5s8UhM6fTR87V5znh\nw+Wxee/hIBvYGWfaELNKuIaDKETZd12HbtEBRGib8FvTNLhw4QIuXryIc+cu4OTJk5hMJvFkXQ+Q\nS5vWAMDOFXmdvQ9373gADUW+bIwD9h7xAAqAsG1NCtbgOGf4rse7P/0pHAF9X0boiY7KMWogjH/o\nVNN4tDzDbmCNKX41uStUJHUAk/7SPLMwSbCE0IDMq4YjGAUln+37Huw9nvvqr4cACpvWMPIlnYc4\nn3ag1EZNJxClGgZvNXkPBB2IEKOdGQgbCLJRwUn4MHvA93jzzTeCDImY8z7M32QywSOPPYaHH3kY\n1DRlYI1nNG0LYkmckIYpQCAu1sATlMDTuAaANqZfkzK24Xq/3C//2FITkUPdbD26G5O3y57X+Jf9\nXfOqIVxKSY8yU1z+MHCPOT5WyfCa7B59n4NzwltZbPSy2ntRCQJG9GoL/zJdtQpfhW+OvDD6U5J7\nEU7ZyJ7Mptjc2kLf95i2LXp4wDl03oct7GBUAIj2N4U0IDVnyphdZXWSZeOttbUOvqztQci6pb3j\nTppaZQeSeU/bOtkWAohcOlGzaozlb8M1Efqw8NZtbGunWxpb3nd9jAITpXlHStndxE0Q269tn4jK\ngBHV79HRYdKfgz6QNNyinTGdyMIsdiqAlBKN4189jlXzEisPny2hjWB3UwJ/GY0KlOvQs3BHuWB8\nABdRdkYavFRxB4Nh9Xxsreo2C1wiphG2DmfxLZi+9FzU6GUlDze/ZRorn6f5DYNC3/eYzabpd88+\ntbUM/xqHY/yt+KzgTNYZM4gaJLe+xmmFjpkxsFFrcEldqzMvky816h2zs2tBV9IGFe/F+ijphcCJ\nDsS2qNnjekwF3GYjc4xego4QbSFH4TRGbnR0fOXYlW7Oxh6PXElSgdvUczqQVbI8NG2Lrvc4deZM\nyBoTYUnrPuIw8S4FbwGX7meJfBo8G7O31rS1lr2nL3VPbSkYdGtj87uM/zLzwFZai1+vKF+ojRAg\nIt7l44LFnRSRqYlRL8RFVDoh9aJLd3V4D3Ihl7wI37Zti8t3a0qELuG3yICY0DYTANmpMJlM8Mwz\nz+CZZ57Byy+/jFf+4R8iExCCZ5CsBBgmZBhtuqTUezhC3BygsHnhCdz3+Nu/+Q7+s3/+bfS+Q9u0\ncbwd2rY27XlsKfKStQNLBHoUFjHlijoAA1nGoiMxcYiCV2kgCmeISS0iLXhmtJMJLl26hPPnz+PG\ntevFQu+6PjntrEOnWJSidIBTFC8xwomJXuca1+djao5mPR+c8sAnB5GaH6GdJkYdi8CQFCFNbqxQ\nLjruQAA2N2bY3NgAAOx/+ilu7+/j7R//GJ9/9hmapsGpM2dw+fJlXHzgAZw+dxZ7u3vY2NgEIh39\n+te/ir/6i/8A5xzaySTNJ3Mer/c+CBJkB4ysA702SJw6hOToDHNtjcRMH3ke8qmf4i4H9bumYcGn\ni9HVDZVnloZMT3bry1yi2tEns2/ntWbkBhiSGI9zXmfO1mjWRRh1aE/oS/odGmEZTsZkOsVnn32G\nvdOnA914n0w0a1DIvDnF24gIDcp1oIWGvohL40lgZubqSatVn5mRhTnFDQcFj8J0Wt8aX3ruLC6Z\n8+aOGEx2TuRdrUhZ3lIT9FK0g7jXEYFxzZCqI05ja0jYy/S0EZjpKPBoiU4jCrzMRfvoww8/TO1J\nWgDiEtbyQvFy7mv5fwVmvbb1d1l/mqb7Xpz75TwJI/R9iC0FEO5FoDAuSSdIitfDZ+U94LeH74Ns\n7ZlxdBRSRZ48eRIPPfIwzp49iwsXLmA6nZaOd878RMPkyCUHjKYF4WeI8jvUBSidjovGNzswhtH5\nUrpFB4bH0cEBfvHzn4XNQEVv4S8DFPuSgzyeEw+UYvFcjKfSf21N9Oa9lD7T8Kfahp7GW0lTQ15s\ncW2fERzaSYszZ8/gzNmzILspnF8odJe8JKhQagUHHJlJIauYq/Lejs3iV+Sr9x5t26DrenDf4ZNb\nN/HJzZvhxFG8/4icw9NPPYWHHn40Gk0uXnAOEMkJLpeMIc23CZSsW48o+/UcpbWTjTPvfYrQrBkx\nmjcvc4TcL/fLvZR1DOVl9FZLtzdW6rpC2ZfmWVZ3S7oSUbSL9PqoG8B2DdXGU6uz7jg4ypOlZ+di\n8xTtDQJS4AczBvqVhan2XcMyNofpPIjGKfJGtAS2rnIZMHw87eeTfu0BTDZmOH32NI5fP8bGdALv\nYxpNgcvIIM3DxnhZrj8+Zqv71j7XeKedt1o9oS39XNLYpjsWxxGlgUz6Uc2+iJ9Gfx9zCun3ypJP\nFlRBS/rmED9lndW0aPGYn43QYqWNWt9Fv0o+AoFm5Y6QdJehG15YXWk42dZjulayeeT4koJJYE+0\nQRSzhKzTdfYVjeIs6gmj+GEe4E90zSpN61dl/KoUegRKvFdt16ivJVxhuALuRR/RYyGi6nKiSh+D\ndsZ4ntH3dHpRa7MnfCl+4jmkxN3c2ES/6FLwqLVJazRUg43N+/r3wbpKtnmJBAmocoZfRC0XgPVx\njGJtULc2d8t+s2OSenrONH+R55rfOyd+Q1VflgJzEZQ5iquKXm8LmXdDP0peIOoNghvThOUPNVkT\n34T9JmPRG0SJhyAHfLVtEzbencOJEyey30D0HGUPpnFo5A1HPUqLuui5s6nT9ZgtHsbatHM1LiMs\ntPW1bvsam/8xGl1vPYyXL9RGSDLwqcKQglyuHwGTPxXlmZnBKiVByFPu0TOj4eD0bmg4Kfb4qXaU\nCfMJ7ae34KhB07To+w5f++rzeO7LX8bbb7+NP/uzP8PZs2fhHNAdL8KJiMUib+hU8JCIzQ0JZNF1\naAl4+R/+Ac9+5SvY2dsr8kzWI7CHufSdqSPOpWVGTSZYEcwhglbTr54je6EThwpYLBYgZvzWb/0W\n/pf/6X/GZNpi0YVTIU1VMTQ0wZy5FVOOkuKKYaN/hytgHeK/NO5q9CR/taBIsKWTw5wcLdFkKjbc\nRJg3IBAzTu3uoe97LBYLvP/++3jvgw/Q9z0+u3MHvutw8eJFPPTQFVy6dAnb29v48KOP0Pceu3t7\n2NzYCMpk36NbdDn+SUWoNK4N808xHz9HFYhDNHWNhdUMG4sjjRPnspPSPk/f2StMrC6h+zLK2Trz\ntFEw3k5eR7Lho0ZgGPTwBMqYUZ6UBv2bGq/ud2Nzhk8++QRXHnkkzJfCt9RrxOnmOW7exjWNvE4l\nqtsKpLGIi4KfoKK8WmykseSoCE3rmid6Gs5mOB2Tx2Zz5Q/7SUhIRrdVWmq4/8eUNO6VRmodZm2A\njG0gMscI/H6Bw8NDXP3gA9V23MAwJxLllFZqI/51qk07ZbbfWvS53RzJeVEzv+96X8hYnTIurWVy\nYBAmbd4sms/nOPj8c0ymU5w+fRoPPxw2PM6cOYPN7RNpY17LmAHciTnKcwei7CjTg07rStG02jIq\n5wA9fO9D0EMlXRMIoJ7x7rvvol90CeMDxQ2VQlzkTrf5hjUdjyu6pklFV/FBXP9qTGu0VTO0a33U\nFNz4DQcHB/j2V/7ztEGwWCwKWT7UxQiNi3Pl8wZscXolNL2Ud2meqWFMeg2Ucy720XULgIFuscAb\nr76Ora0tfP7555hMN/Dsc8/iwqVL8D1y+ggKMPRxU14vupIuo5xUJV+OqmlNOVkyUgo6rSn//1g+\ndr/cL8x12sq/L3eEjL2nn9V0iXXbLGGtOKvlN/VsmdNmWb/3whuX8b/k1CxeFP6VnS6Q7wWOBh0W\nfYzBuAqXVs/MdlBy/QQcLnWsAI1zZbAKsvPr3NlzOHnyZLwombPcWaInrnLOQILn7HgUfx/TD8dk\nwapS2oqU5I6kpRZdc+ArUN9dtJ9CQk8etTBKuIYO0hr89q8efni2XN8N7S2HZ2AHr4m7ml5efA21\nlvZff1/B42PAlou+lbbBcMGNwK7shGGfMfZe+weWwKgDYYvfl8Bh+03pbOO8aX1rYBOEl4rfxF5e\nbosh1VnHFhqD1RaiMthq1Xpk8y44+zyCr2rktFzZ0NBmXlGsTVjAz4HzkYspgvtoG8fu+65HQw4d\ni5+gvhb02MV2s8/193Xhrg6TUPhBEu++B/lVpg3H4PP68A3pSQIwh54SFGuPoh4tdoq1T5fZqmP0\nCENnFlYyMNgVvExXWaVzC+cdq7fsfblLq/cdOu+xs7MT7rAUHsNc3rEpPEjGg5K2llieo0XWqNXZ\nrF25bJ3bd6W+fHcV+7GmI9r2x/jWvdpBv4rd9IXaCEmOpQrCZOCNawrDWhfiwIw1klrK6Q96H/OT\nR0Sm0yUq+iKk/yiVPO28Eb1T7pFIy5JCjnVmHyNYgclshi8/+ywee+IJ/PjHP8bf/+DvsDmdwfd9\nuBxcja/m/Avfg1OxV2NqmvDu3s4O/vxP/xT/zR/8IahpQq5r5Yyp3cmwTKAUpwVWCNGUXMpFxqWI\nWnZH9Ymeoi+E0zPd8THatsWXn3sWP3rzDUzaFl18t1PpzpYJVlHg2XN2PFRKFrz5yHGpjIbnLOmo\nqBQ01WaFwZGwMbW4QdCXK+nRa4XCI5yAWvQ9iIC+69LcOQC729sgIsyPjvDOT97CT9/+CZ584in8\nd3/0Rzg4OMSn+/v4+KOP8MmtW7h27Ro+v3MH88MjnNgJaWbats0bf3JZk/dmXjikajMCxaOM5pex\nOZfHW6JDfncRl3kNNSkCjZO0Cf4nLVADrhR61fwsPwIq9WuC1you9nO6b0X9ppsWhSA55HT/vuyU\nicIRTSBGc0dccoe2meFmTI8UjICwtgfrjPN6FGAkVUNtLYwJm0KoakEGVKMGyvdLQ0cUBBfh4fzC\nPyqiyPYt6/RXMQBqituy56lNJbSXGSP6tyyD8kmJGkzCGxsQbt68id3d3SL6rY/9Oxe3SpWyBOTL\n7iw8egNDYLdyUdadVUrC+lQwx6j5Rk55wcXlTSm39tHREY4ODtBMJtje2cGpU6dw7tw57O3tYWdn\nBzs7O5hOp6C4wZc2v1Q6KwBo2jbNs4Yz3V1EgVsm01nRL1EIYhDFWxen5pLVMxnvWIom4StX338f\nzhEWiw4h9/WQ1koFvy5DrcEE5ICD2jv2eW95M3O6MHRMkV+q2FfGbPUNu0HUNhN47/GVrzwXLqUP\nwnCQOivMm+KbcaGJI8LqTsvwpnGmU3npCPWUrkycDbGPtm3RdR0mbYu333sPi+NjtM7hq197HmfO\nn0M7maD3JGpaoh1C2Hhm7mOqF4waYekFHtJkGEOT3k9GDfpRw9aux1+VZ94v90vVmI1/BxGMlfdq\nsm+Mp9wL71kHzmV1l8G7qs2o6SeZZnmu5bu1tgPfDp8LSAxcBZzR9tObJvI+A9VUtOusfYekIK/W\nUwRe0cF1nyI79ZgjbKCQ13x3Zwf7+/sAOzQu4FFOEo+V2jRYmVmjtzGHTQ0vloZXObo49pkirzMk\nhQ2mYasNjNXLFra6AwhFHQ1f7XthayyRF5Zes31Ud1hZvW/9YmhL0Yx4JEQ/LKuN98NAPLFLiSaP\nFwv0fY++8WjRxFor1gJRzrqArLvoYCsKu1dRr836c7bVS53HJZuck56VfChURsfbsRbPI6F4FR2T\n0zAp/FXmJDhLQyBJ5k9IJ+XSZfHSTWGc1ZKKqfkwtu1gzaG0b5fb2EM5MXhvBA5HVMgju3YFieF5\nfTNcNo2K8envRInHytuHh0c4Pj4u6ovvT97Ta0XP/9AvULep7fNifBWfhNUj5W9I5Vc+k3dsfR9T\nuJL63erbq4v4O4Pfq/AT0DCtNtTveTxKTlIZBEnOpfVlkBDmirOtoNutrTnbb0SGwk3pN7Bzae0e\nDUqtFGPkvEYsTQgM7BnUhED1i5cu4dSpU+h8H9LtUghmY5OtQ+AUzjfG/Vbx8IL2gEEavWX6VHW8\nS3SSZTJK9zVm8+rvVd11BZzL3h0rX6iNEK8J1tURKGlZ9O31tmiidxQvVQfQNm2xsHtmUHI8CPLD\ngtLRs+UmiBB/+C8wiJjGxuUIReYcLbqxsYGvf/3reOrpJ/HWG2/ijTfeQO992C0U5xXVFf2a4uc5\nnGY5PjrE8dEcr77yCp7/xjcwn89TWhedrkhH4I4pmfJsbAEUDEXhnZBTGEm9Ws54+ayfT6dTLBYL\nvPDCC/j5z66mo7KCD4uDwcLFEDe1ekOFv3yeGSQAlBsE0ndyZhX9x78cnTMVZpNqMsCUGTVHF2eP\noLBqF5dmAAAgAElEQVS5mG5D8h1mGmaAXFLqnHN4//338Y2Xvom9U6ewe/o0nnjiCXA8TTKfz3Fw\ncIDbt2/j+vXruHXrFu7evYtPb9/G4eEh+r7H5mwGN5kAkEuf5Qh8OT9IG4SUcJHns2aIqRFXhPwo\nfSklSNq1tFJWF2FZMyzGmWZtXRVrGkJHgJ57rfQmHEApkfJ7VMKS4peU83BiynvG/u1PsVgssNG2\nIHIW3EKhHyhUET1WARsbW02gCE9cX4QYYarG6yp91EpNYBV8SClCkh6rBv86pSocdTuKhtNx9IoS\nXOvfKqxCJ3YOinoUnPf7+/vY2tqKa6C4DQUgpKh7h6BQaWWeotIoyd0ayikM7VyP0cHgNKBrogzN\nMB/PO3T9Am3bYHNzE1tbW9ja2sLe7h7Onj6Lvb09zLY30z0eRARqmpBaICrDzOGehZT6i8KJN2ZO\nG4jJuFR47lNcTMa11BE86M07u9J7VkewpY2Y8iNt8Jt145nR9x0+/MUvcDyfo6Fy/aX3kqaf8Z7p\nbGi8F3TAazpc1O+aV5Jaq7rfVWvDbj6MrUHnXDIIhU66rkPTNHjs8cfRyGmeOFKb61eM/nRiKQi6\nvGkxIv/lmaVLayTIewJbyFAWT+eynAYJF6B//NHHuP3pZ3jh+Rdw+uxpeAJc24KZABdO0nVK/0tp\nItAAar2xoa5MgzRqNaUNG5lvWo17/fu9KPX3y/2iS6CfuLnOZRAUgCrNWpn1j5G1v8q7tbKqnVW/\nJ7tEqZM21dcyx5IuOQ3l6nVZtGnb0+tfyW07pqXrf0T/FejkJiRJ+SROtujaTXqy1d+yLhv0gIYI\nGxsb2NjawuLmzZw6mqjKEzMs9TROgQaHDj073mI8S/BQs4VrupfmucEJJzSQcZYtwvE+UmXU+bjV\nu1cVK9uznlj2HWi2bo9nR7D+bbljauz5GK7F5tN2T3gSv1Gp85TtDPuU9GqsfDpt0+Do8BDdYoGN\n2WYIfojZQAo4NZ1w9j2M0xNlm0IFTABBx5b2yiCz+FG3ZXFfWYMlXjIuSr4qSBhuglg9L29nyCiV\n0xX5fjur+xKC/mWDWH3UcQv4qMRb+l3gEn1XtW2pxMqNpE9L/yMZACyu7LoPeJfuNa8JX9m8KxaD\n7iuvD0769/x4juP5PKUSt7yn5jeymWCkbm2TYcw/gYrdlTBq7Hgwl78v6SOvy3LTIdnQI8HMY23m\nKpkzil9o8P6ILlHbGJXfPNf5pJaLeg5ac2JRngvXWca/arLE9m3tklg7/y7jlPfTsMeDJaUF3wfc\nb25uhlOE2p5EWMMcbdWhrCn5wtgY7fj0GEUH0e0V7Suevow+ltksQDkPY++PyXj5XsPl2Nq0v9+r\nzvmF2giR3Grsc2odPcGi8OtIfVF805oyKWN636d2+r5PwlEEj54w64TUGwk5/QlK2BJhhQiNpmlU\niiknqcXBzDixvYPnv/Einn3uK3jttdfw5o/eRN/1mE6nAPuwEaQMaOlHhGJwJsW0EE0D9EE0vvzD\nH+DBhx7EuYsX4yILnTqilNc14A2qzeGCKxlWVCTMLnFK0ZPc5iXj1t+soqf4HgCk/trZDP/shRfw\n7//8z9HGzSFdMSkXysIRRUQuCQ6aY4RAAZHeEKWjeDrCTPKPEDOCB+mUkGhJGIzQYhbOBjckdEJI\nh84j7IvoqGupZFLMCBeMx5NNfd9j3i/wxuuv48VvvgQ3maD3DGocpu0Gppub2N7dw4WLF/HU00+D\nEU6ZdN7jzp07+Oz2bVy/dg3Xr13H7dufYT4/xHw+D5cZdwtMp7OQ51DwK8qnOqFTU0r0/CPSsUsC\nLW7exWgH3/dF1HuJ1KyElvQ5FICSAkzzxHzNrZljCpE6To0rGLvlvNqo+uTcElg8R8qXU0PhUAgT\nivXFQDr1xXFR+67H7f3bOLh7FxsbM8Aj5GpG5hG9MtytoHIcY+VpKGhkTWT8iNEtvIw1YQOiQikF\nzKhzBa7HynJlJK//pJzXUuBI3diUTaU1EKryf6FMhiayQ1bJB9tfRAxBLv8ixB2sQndIfRrGxczo\ne1kPkmovAKDfJ4onGLzH7dv72NzYwKLrIHeIBP6HFHkT7rwQ/oFMnyQUh7g28hznDZm8MZVwImmK\nQHDx4vHee3THC8xmM8A1mE6n2NjYwObmJi5evISdnV2c2tvDxuYsbXg4uCjTKJxKQrxwnUOkGjmV\nB1VoX91TlShsxOhgDvyrqCwfiQZzmOgc+YRSOqGompB1L2udodMrMXzXwfc9Xn/11fDdI+oWPKC5\n1B5TMmpr/oeBoqaZk8yzGlOSXbFYA4zM+7GTos9leK3CVPlN9JyGGnADPP/CNzCZTsNl9Jz5d5YH\nus1sdIqeUsowHQCQKDkZ9eJM4ygnoPoSK4QRgmMCuuS+FgqnDPseN27dwmQywYsvvZQu8GwaV6Sx\n6roupBo0OFDX8iSaSXhVFBU2eSQCdZjPnCgfGw8PxJA0myTI+oj8vbcovvvlfslFJTBK9OW9T7rF\noP6aMr2Ql0ve0w69ZTznn7JUHStA6YtJ4nu5UW6fr+OEKPpV47fpSYv2Kv0vw1fmnYgOTOX4UvIl\n68OVMQH57pBoQ+W7PrT+RYBzmM5mOH/uHH7x859HmDndAyZyX49Z9EyLj1yngoeaXDU40HJjGd0N\nxmvkjZavDMTIXtGj15zfJbBbeJY5d8betQ4fIrVpM9Kmlh2a9sbgXOZwGo5DzNIcsV1SMMSYXauI\nfPXeo40BpkQOR4dH4UQI92ipySli1Bxam/xX4Sar6M5HIEUPZ+alzvxirkw6VF2nWOfKl1Ljry58\nSLp/7kfphkpvtJk22LTHMmeanzgH5l5qK9iy3V7jjaU1p+CNxV6s7UX/szgwfErbZ9nWQmWSOfEf\ny0vFRoi1orkktlwMwOr64HOYTAZ+BQtb7aJm+a4/F7RZ8GxlLtphjJSsh1JaV7kdEwxp8GJ7Gaur\nxzNGq4OxRkaQ5nXJBgtXPtX61jxF/6bxWctWUaXLqr6BlXMc347Zf8ZnqZhX5uj7pLROrH9Axte2\nLdq2xXQySQHObHCpZ67kE7GvFXc5Ct0X+AMG85hHK/ZMrjtoc4meVNiVyLM8xpd/FZktRd//Myb3\n7rV8wTZClLImCgsPo5uY4kXZnCcXEm3PpZEJ0gIi2erhsw+MODjD1GLShJIUDHMtsGaCLNEHrnBg\niNNb2iEisHOYzjbx4ksv4WvPP4+XX34Zr778MmbTWXDMUc45L+0nxkoEitGWnY8bL8SYtQ1+8Lff\nw3/5e7+HyXQD/riHa0rBFS73RRqHJTLvfYqICIiNjkLF/JhzpLLvkS6rTQt9pLCxUMQ5wMxwbQvf\ndXjkscfx0ENXcOvWTfTeY94tBru/8YrSNIccvYaSikV8qUU6DbWLaxez0IQ4JuVfiKxKmqhSmMtF\nKXdiyN0bQHAOpgsUY9vpfpkY05HitIqxRUUlQpaUCwaA4MQUBjabtHjtlVfwjRdfxHG3QOPaaPCI\nI4aKjRs3mWAK4NR0irNnz+Lxxx9PkRPOORzevYs7d+5gf38f169fx/UbN3Dz5k0cHhxAnDSEfEFy\n0wYaWiwWaCYTdF0XaLFp45G8QCeMuAvOIQLI9zHu2zVpE0zPi3MO5KMQkBumY/G+R9PkuwZKIyvT\nreNSGRTliYjQI6d00xd4yRwIDJbmdY7HliTtF9JGI1y+rF7mTV9sTfFET9M4zA+PcDyfwyHMVU7Z\n4+L8lXcNCP9LSmPkixpvgQUNja1S7jcIay6YG3G5BFrhwAu10myVIxmTVmJsqRnzosxb5VF/pziD\njFxXl5ph5ICYTk7hGQDFHangr+YEc4kvSvTn5MW0aVMak6HNUEc2qawZkflrOQdd38PBgz3jxvXr\naFyDuV+AKNz90sQ1AWhHaJZBHKOzPIdUQY3crdS2ifeIvAyygcM8qs3hxaIDE+HkiRM4e/48Ll68\niO3tbezt7WFzcxNN04T0ecxY+D5ufCAbFEDk+S4aUmFtSLqmQhmLz6qGrDrybQ20gDNDPxVlbvBd\nK21CZ6rZcA9P+Z6LY2D2APc4uPMZ7nx2G7PZLDjKadwAlkFSRAqb9TGq/OkvlB1RWjHNP5cKYBGc\nIH/XUARXKotKf5I+HVzYrG5bPHjlYXR+Ee4pqhgoaV6zchJksueUTq12ItWD4XuftheICG3ToO/L\nTcuw+eJjmqyQqs33YRPaUQjs8Oxx69p1vP3W27jw4GU8+vgTIeLKRX4quIjDdc4F2WxoyyPyYDTJ\nsZFwzgTS94qlKagb+WmcXu7CosyzBU8oYWBmlKO/X+6X9UvThBNNPt6/JpQ0dmmmLjVnwTLaHnu3\n6vCqGPDrlnXeHcBF5XM58VV7rwb7WJ/jek0Jr9VvijaQ9bdaqcGQHBMEFa1eDDW/X292VI6WY412\nMgiTtsXu7i4m02nYTGO1QW1k63IZI+6SIWQ1PBapjdbA83AMuX79HST/QNC1BcYhbFqfSZaF6rPW\nR36/9qykjfIvDeqG5+UmkLwv2Suyfo7id/3OGK7GnEnMkoqylkECEda8ORfeCc+tLZfbVzq4OJnj\n3YeLxXHUuYawDeyPwq5ZohOiTgNjdcFc6LCIOK69PeCVGFL3EN9xjohLm1ylwxTfiw6UkDY0uKIz\nWfyMnXqT8Y1F5A9gHh1DHq/o71ZXs7aiXEDvKjQpcEmrBdxEyjljRi6/x/Y9yrWUdLyoVyMeDul9\nn3xVyWfIZdrVsTVRw5OVH3pcrNKiEUKqM59wFtZNbSYSzJwHn9dcOc7QBydZT0AB/7qyM89Z5jdF\nXwAoXhUACr60kI5r6B8ghIBQpG/q4xq6RPEbVTIAVPQU/dw6z6tytGhryZpghMADzvWJMLpvnuYg\n1nVE2Nvbw2Q6DX3rfrS9ZMeNci5rdKZlE9u6Go4anFYuqLU8pitaPNZ4AjB+19Jo35XfVr0nZZW+\nVitfqI0QQOU5j4qZJWrN+J15Lr8B5ULVDIyZi6g9RnBwiVODiNDHHNWSrzvU5bKfXjFRBzRw8LAX\nlZeisu97eO8xnbRg36NtW7z00kt48YUX8Oabb+J73/seNiYzsAtwdl0HRw4d8qJwKp1OcCyEtXXj\nxk388Pt/h2+8+E3ANehHaEuOvC1XZPPCssUSoW0jRQMUv5tNCKW0JZw6h2++9BL+9//tf8Xm1laR\ntoUgAjWeauESr7VLanXfmi6SwEFW7jRszrkw7+HNGGUgWl9kQBQERBKuqj3m+Ht6JRoyCp4C00uU\nNhm8k5274j2Pd999F0986UtBSMV/YROGB0463VcyPmJam+nGBs5sbuLchQt4/MknwRzvFvAe3SJc\n9Hzjxg18+umnuH7zJq5du4abN29iPp9jNpthNpuhjXkQ26bBYn6EJjqiur7HLF5UTEzpzgM2cDnn\n4ALhpPnU679tG/TIzmGJcM+4rzPFLBxd2EgrLu6NQpTrUXyi8IuCFSc0/h7xCU5CkpnT8cdh/4EG\n54tj7O/v48LFi2HjQyLAIx5CxH3oVIQLcbjUNzns2cLIVdqyuCkUXQ6qlExGqWiV/NL2pdfXMsEm\nRpK8L6cealGTua26wNXjYAA9SgertJFOBAmO0t1BCaAwX17NG4YRnUnBMmMMdFnyMmuwpuIIvQfm\n3QIffXwNi0Uw+oJsAfyiB1HeSG6aBjniPPI0CikdJ5MJ+r7HdDaDI4e+73BwcID5fI7eA6d2d3H+\n/HmcP3cOu7u7OHvmDHaiMkYqzaP3HuxK48kj8IIJ52goR4E+5BSVOKbHyiolPPEc58IdRYqewsb+\n8CJzLb9rvN3F+0fkc3UOzNylOeSQqu6VV17BbDaLF4GrnMECC8ZWVQlLTWm0xUZs2rVTk8kFLjjE\nflu9Z8wRULvTw8Kvn3kO/PW/+M1/HhwUjTaUCjt0rTLkTzJvIdBANkqOlTNELk9lzptWLsppB8Zi\nMcdk0uLnV6/inXfegWPCZDLBY48+FjbbyBkYGDrdJVVmU/P2Md5Tx1viqAUO00EsqR9DYnvh50b3\nYebqidP75X5Zp3jvE/2QW/900TKdqeZYGTPK9WfrcFiq2+o+VTukno1aKJbnDSsUcFhevU6b+v1l\n9bSOZ3/XdmZNkGgci35Um5ea/CvnCAVvS89RoGK0zRCwF6yend3ddPo8jdFlGSD9hc9DWa3rLSsW\nT5b3it5d4ja/PyZvS3+BlqnD0yt2zkrdQWzAenFOHGqr9R/rw7BjsnBI9bH2rF9iVT9ja7Guw2TZ\nprsfXztLdPVII8lfo95fLLpwQroile/FybWqyIhqsLP6J6k2pW7CH4Z4kmJtGQs3UZyHhNeREnV9\nXaVm09nNkjRnXPpddLtlqcPBnDeqljCM5D/RvdT4o7afanUSJFm9HIIc/8ppGd1+el/PUzRnAy6i\n3Qeg6zpMxSkdfX2WFlZv7I6P1445PxNbEjm4Wi8BymtUywkq2hjyNdHJpa78tfJA/tphDWmUBv0Q\nEdjLFGSfQ+NcvAtZ1xebMdjvBW2AinThdlxJ1hv7LZxOD2MUOwEix43cKGXicC5q8lh8DWMl0a0P\ndrkjlwMClE9D4BI8+L7HbGMDJ+PdvmkCJBAQmUarPlRZXyPwa26jebt8Z+aEH0lBPVZSu0t4reV3\ny+yjKl9a8l5NJunxaBhr+s+66xX4gm2EFIiMqVw0Aq1DqjaBY0zZMk9RG4WsPYcLyR2FaMLivhIa\nGhba2PAx/RacS0eHM8l6iCFOFIx2cS7JpPfMeObZZ/HEk0/ivXd+ih/84AeYH82xtbWF48UxyBGa\nEWWDiLBgRkOEH7/+Bp579jnMTpwI+dkNHlyEj5lSHvCivcisOV7wJRc/E2IOdhWx3zQh36KN7Be5\npl0EevGGeqXTi4hATYOz587h2//iX+CVl19G10ecyrpm5GhfAuT2opqzRacXWRUNoYtuwwMYJBbQ\nSqGjdE92olutxCCcVCl/rDum6vBlnHrPMcVaybj+4i/+PR554ong7DQGRI0piRKjI3QYw8ta2fu0\nCdjMZjgxnWJrZwdXYiQPEDb1uq7D4eEh5oeH2N/fx82bN/Hpp59i/+atsFFyfIx20qIhhxMntjCd\nTdF3MT1dzB/c9z3A4aRTqdgHo6VwTGv6sihjbbQQZN+gj2tdaNNHtVsuodP4lH7LewIIzrWJNnw8\nhVAoLhp36ntNidnY3MAnn3wSN4gmAQTFC7jSvlcT2jMPjhwHY08nBxoWkpR6sS73iq8aGOXzmNCz\nArh8Z8TgMAJNP88KTH7uFX9Pc1HR6mqCWo9l7PdaIaKBQ90a6BoEK1tqMHR9j957fPzxx2ibKZiB\nrgvryDUNJpEHy31RHE/KHR4d4fDwECDGxsYGTp05g/MXL+LkyZPYObmLU6dOYXt7G7PZDM1kglbW\ncOTTCXcUN/plQTRxIyKmPCLn0skkfbk4M6e1pFflAHsVHmbnYCC3zTzUNsbGSmFkxdzT4KETBUCS\n5/Je/hfSKX322W18/PE1tBFGUbiZKuu7orCtr4aZ90boRtepjh3jeo9ue1WprRFHDTx7PPDAAzi5\nuwumeLrNU+4cGAjFLKNkY82ciuW8CRxeCKLbs96I65HZl6ajHmAP7+MJsPkRrl79AFevfoCGCI1n\nHB8f41vf+hZc25QXt8OuzxEdwDweOqRiMAQM7yAApDbiHQPkU1S+WPkMnzeu7BpA3tRaT0O5X+6X\nYfHeo/c9mqinDB2t6+vAVgeofV4mb3X9tQxVHp4QTLnf76WdAVxIAQ41WJfr3nXnEFCXVTV+bj+L\nDK3xF/19XV1l+Pvq+bU1KBovROFzH1MHbm6Gu8FuxXSDekNE3lsts9eXjoIDnZZG2zAZR+X3ZW1V\n4QiEJtv6VX3XlrR2luh591rWmdfa2ltGX1LPrv2xMY75SeTzOmMdcyaOrlkLFzOO5/NB3XV51VgZ\ntIdxarR6XJUGIFqw0S9G2hu+HdptXLBek2NX17+HIct4ClgVDyrm37lB9gMLuH2v1k4B7wh+LQ8j\nonQypOg/YaZmEy7R1SpwJF+T2D4UApwQ9WTmkG5a3iEMo9+132gpD6iOIwZLjtjJQPRLKLg1n9Nr\njYF0j806vCXJyJU1tQV3j4QGSGghwIxavA4nm38MB+OnlQq8GVld27CqnVwIry63p+r8CwBW6xcS\noCA3STOHzZEESxy6rAFJN53s8aZZc55K4KS+pg9bLK9fNpax38b4373y4ZpOM6Y32j6W+YzG4LoX\nv8EXaiNEO2tlt7TmmMqOGpVWgLIz0SJKM/fC6RtXtQ+Np/tFGod0gXWO0snMS46PBgWJw24hM3iE\nAPT4QnsU+wmRsE1MTdJOp/jSl5/BI48/hg8++ACvv/46bt/5HJtbW2gcoe+7oj0GsqAhwtQ5/N//\n1x/jv/3v/yhFFwgUTdMk2KGcvUMGz4P2BX9936MxjuJCaALF3Q+jRhKCA6DXClwTTmJ8+cvP4nvf\n/S5mGxsDQnfxolT24ih15vcAV043hHByoHJ0NPyTUaojftogi4JVsOiDJVMwtDKCXCkjBX8fOmas\n8qrxZQu7LMS10eC7DjeuXcPFBx4AHKOhkNTLXoatx5aYM4VTOD1nBxWAcLdHTH2VlBuiSOMupd0h\nCpt6W1tb8H2PSw88EDYe+h7kGYu+w/HxMQ4PD3H79m3c+fxzfP7Z5/j8889x5+Au7ty9izuff475\nfB5SbLUtNqZTTOOmjriHmHzCW5/uuQmXvDeuKXiDGHZq5OCYVkjqNRTTpSU1rG4saOOLJeIyCkCt\nJDonpwbC+wn3hokH4RlE6Y0bN9B3Pfo23iWkcJ3y8BfrKx5HtZEIak6zkhuintNdPvJ7wlM+TSdK\nTc0I1/0sVQ45n4oShaiyb5zTwxWn7HR7gExeOiFgcCibQHbOEqzI/C7l+o2tyjoWTDLkt7hBZtOh\nJTpHUkzlJAOETybljzPdMafvfR9yHx/dPQRxmIdu0ePwaA4ih7ZtcXpvB1tbW2lTY3c3bHKcOHEC\n29vbaCcTNDHnqOBGj905hy6m5YqcLMohAijSZtMUF5a7eEJLFPJFvGyanIupuuJQ4r/kCFC4ljnR\n82ONKU2num5TM9hUnZqRLs9rRqQzzzXcNtdqOoVwfIx3330Ps9kU3dEcTdOq+0NKvmyL6BFaKbc0\nbU8p2nFJxK02ivLdYvV+SeFuDE+1ubHPhhHjBMQ7Wn79a18P94E0TTo9l3mdg+eumKu+kH8qDYDS\n1bI8puScjIn6wr+YRoqZ4ThwZ1C8SwrA7U8+wS9+/jNc//jjtKZ77+F7xhNPPglqW3gSGZnMB1A6\ny87FaR8JoFCYS79pGZ1lesaj1UHluf6NNRxRzxjIfvOOc/U5v1/ul3WKRC16ZnTxjsUGpS5ujVKr\n66wyWi0vtzaArbvSkC7Wy7j+ca8l2SIjuvU6sNbqjNUdfSc+0/bsUL+s41/KGG4H+p/R5XRxAPwK\nO4OiPcDeY2dnB2fOnMGNGzeCbI02g4anBvcqmlk2zsqLg5Q7ovtnZUvjJqYvMfJxkAc+6ailrWtx\nITDbE8Yl/EN6rbU1tk446Y/jOrjgLaesivpr1JdLPUU2Jghi00oanaU6PEra1C47q8eNjdXWqY1b\n61VyIbxshEj62dE2BtDX8b3O2q7S6wgPSt/l5LbYKFGXAZenbmpwsARHhG9VOKNSAg+OQa8ZRwmE\nrIiUOlaFl6Q+hM8LLmk4j2vxatW++BDS/GQAh20vbVB/VDQd3h7AWIUjP1Qdh2EKXo4XC3Rdh0m8\nI8QhOPSXnVax46g/C0S7SkZRohWZMz9oM8kJJbvsvNToS/xtlnaXzWmtzcxbyveLoRk5ULZf6sxl\nyTylzgOFYw37GsWtxkX8TkQxawHHFLjBHl7GJ8b4m4Xc8qUQtIhkt7TOgZjQI2T62T5xImVScJyD\nPTQXsHRc4EXjQ62j9L7RITRsBV6AKu+UutoWsbgZ1DN9/1Pqa6ueFfZV7N9V5nWsfKE2QmxhzheW\na8dNSo3VOHSLDoycBkLffQCMCGSNzODJTMTGzCmffznhJbF1LLHlcU2afgT+UOp5N4URy0J2TYPO\n95ie2MLjTz+Nhx9/HB999CFee/kVfPzRR9jcmEXYowOs69C2bdwgCe0ez+d4+Yc/xK8//3wR8a8d\nQmLI242GgGMtcMN/hbKkllXeJMpyKOBPmEt4p3F500raHToGEMbCjP/6934Pf/InfxJ2Xb1PDqKk\nDJKMqa70hJMuEbe+ohwgMzOKGpimr0wf4QSBFvSaeVnn6SrDKz8ikFJIbDoe/VnwKPcdCO33fY/J\nZIK/+eu/xu//4R+Gy4/jmL0fHpPVn13TBEMjppkqDBujvAj9JIbZigMo1vOcLuUkAJPoIJxwi8nm\nJjZ3TuL0+fNRARHlDOg7j/l8nv7dvXsX+/v7adPk4OAOjo/DJe7Hx8dYdF2ihbZt44ZEeWktUYxA\nibCy92ibNiqCCJt6iZ7zmpb7BcIFo4QuGRmZthsXaFFoTmjFkQP7LtJlzoELUNoQ0EaOI4eDu3fD\nZoz3YXcPwVjVERCZlmLECVBsbmg+poukehLDW3gnkfRP0SmehfGQ3oSO/OCZ1Es5OdEnSSvrWCuH\nQnb6kk1Jz6dxQ4knuASnOFDDcfV89DZOb/zM6d3ghM2bzRF7wcEf70gK6arEwRvliO+TMsC+BwuX\nU0p+SMkWnbMhb1T4nnaTQi5a3wcanR/PMT84xOHBET768EM88djjOH3+PHb3TmFr6wQmsxm2t7cx\naRpMJhO0cU3qQ2PFHQuyLo2emY7zs+TxJjWvlMYV6CcrdcJP5TNFpS0p4/Ie5QACS8vjhnRJ9zYl\nVJfSX9YNJduGlhXaAS1yoWNOGwR6bejNCHneOIf50RyHh4f44P33wdwDcePNjqm2Dux6qOGiti7l\nd5vLVushzCG1nu/7JPu0zJF2lqW+sX3X1m5ZwimOxWKB5557DtPZRohgMm0I7xVDWtoSnh5kE+GB\nTesAACAASURBVNIms4an2BSisCa974OTyanNeScb3A6LrsOnn3yCn129ipvXr4U6JrBlsrGBR556\nEh4xmMVrPSv3rWW1/CiYCCc4rMNNGxMpHm7wm9UBMk8M0pEVjTOQgkoSfplTCksTdH2/3C9rF+Ef\nPq28NVMiAAOaH3UIGL5S4yk1HUG+13Rj7cBYBeeqIjXlHecoBajV2hzAUuH7Uq8Gx0AGaBiAZOPI\nRFi9aQzfYzr7GPx68HqO7Ls5Va+CPSqBiQYkOM457OzsYtK21Tzt1taxsAH1TbexMdk2xCVncZTf\nHadVK++HsEuAzTgcRbuEdHpd9M3QXtmuluWjbalny5xGYvNZ27u4f4AGrsMl48nwlu9jAPOytVj3\npZS/1/pA1N21Q1HScB4fLyBxRNrJN9bmGPw24GXwruiEsR/Rd4GcllgHoei1xAg+ofQyEAIdKwHJ\nQ5jzmvBeaNMN6mq9W9hGzceR8B6/p0A6g7Nxegy9aQmhdReM0GQxvso4tVlSrFsal0VElHkOkG20\nNdaQbSePfwhvuMM065+U7PsSVmun2D7s85K86jxR3m0cAUzV+Uz4R4nDclzjm89a9tTKmPxaNrb8\nXa+z0u7WcJbv13SCet+1sYVnKkCXYX4bmZv4Paxrjv7Z4HMZs9nGApCIqVjv+j2xp8U2E1utbRz6\nhceZ06cxm82CTQSMBrjpNV8bW1prGM7vOvraWvrDCL3WcLyMH1u4xtoc07PGxqDft+vhXsoXaiMk\n6GXDSG0iSsSmEd13fcy33ofTCk0zcNhYItOGuX5GiGlniMKJEOYkLmQCbNtCnswlQ5BSRoWWypcI\nYsmDx/mHGMXrMGmmeOjKFTxy5WFcv3YN3/vud/HZ7f3EOOWSW4DgXBMchw3wwx/8PR66ciXdQyBp\nsDIxA2FzxgpMD7vyKXgu0mfN2DJBK5xUGKxsTllF6v9n782bLbuNO8Ff4pz7tlpYVdwpibRobdZG\nbS3ZltsWLbvbM/aM2xH9Daa/1Thi/mjPTNs90eOZsK1uW5JteWlZEkXSEkWtJMXF3MSllrfdew5y\n/gASSCSAc1+VeyaCEwXpse49FwdIJBK5IZHQO/KOgM0ccoU/+OBDuO/e+/BqdIAkpxDkZI5XETI3\nV0K/YZyh3Tn1IcIwzF3BuRXsIZqAzKKGi05apZD17i7RuGg968HNyMbKEI9QvvDC83jrjTdw3333\nAcMQT024yhTW7eroaanmAYwNAaXpWsOcxuTKzTFmxhwWTYxMj3Q3z+GqeBcurB0c4WDnAPvn9wsc\nOaJ098pms8E8h7W9Xq9xcnKCt956C4eHh7h+/TquX72Ka/FUyTzPIZo90pWX1GoA2LkY8T5kh6PC\nvTZO5a4SIsI8hySZg+IXKYdseDHyBeXYKhAoTvnIuzwAYhwfHeHo+BAXxgtwkE2kENEmQpPNnGkD\nsZWXVk+nNnat4MimSeAbUs/HC+UqQUzlmgcyP8sXhEs0XnozKkycftewBhMu8908vrARIbQ+xLss\n5ik88/IuRwMeAOJaJlIp38DptF/A4xT7AAguwU0QzS6c+NF8eJ7nZJDM84zNNGHebLA5PcU8T7hx\nI9Dg0dFR+lc29G7cuIGjoyP4acIwrPBLv/RL+O3f/h3M8Wg8uSHNr3MsGhFIbdKIkRDJqJxrlDxF\njKZiro3c03JMy7OK3wifSQgrlZawLjI/132cpaSxUXmKwxar9FsDVRRQ+8zmUJWS+orr8ZlnngFR\n2MiS/K8tpb6lpNv2ew4A/e5SHfuv/JZkEjJdti6VtUZJk08bXIpKQkQYdlY42DmH9z78/iCT2cPP\n5cktUeRnxXtKvJS6kryjT73IO7P3GMZwolGcIA4AzzP8NOHlV1/FT59/Hm+++Qb25ISg0GLk7/M8\n47Of/QTYOdAQ0z9wdn4yZ34Wxiy9RFzI2GkAY844UfMj0bSVTkRlPn/50/QYTrvO4U43oNjUEtkj\nfBpAPpl5u9wut1A2m02QFzF4g5gqI36pWLkP9I1a/VuPxyzZX6122OhODC6Cl62eXAUPGYeJtlVu\nZlwteVSNh0o7NZ0a2ILvs+C4JWusnmrrSd57i+umLFP6unA2jvxU7IqZCHdcvAPDMCadqLYVU09d\nvPVwoOmk9652NPXa0f+SmoCSzhrOpzBooLFho+GSz0FPkLdLR/OSLE40rWRxLefr93TfArXFmX6n\nNc6yvzDTPVhb/Vpa1fpEa/301lTQTynZy/EhiALPEt0ezCk19yABrxF/2/SvXr+6HiHnzJffdPCJ\nNmBaNi5z3z5v0UOt9xHIlfZQxmvUnqieKyicqQ7L2W7wuYrPAuhjS9GEac/SiKTTBeoAIW2zZr5M\nFYwt3gS0T1G33mn9ltqIgXBezcP69LQK7tEwLskD+7umgZZ8sbIif+diAlp0Is88UPgnziQ3gIK2\ndf8tum2tcaGScs5zD7IG4nLt4sg+yzxI+o3wSkDhtpLYpFQWXLblh7Y3RNfX4+zJyWIcHDd5zVoT\nu4BoSPfByp3C4dTRiINz5wIcINDg8sn6zvBatp+MtrY+ynd6pSX7qzkSGtiCk63tdPq/2ZTXZynF\n+jtz6++wjRAAYB+Oo+oTC7KYHfIl5aCggDIzQDUT1ZGAPWZQCC7IeiNME2McQqoQAuLx2hYxBCec\ntNOL1NSEI9HZ0o4sNIHM0VjA5pwDDYTLd96Jf/N7v4fD69fx9a9/HU8//TTuuOOOMC7vsd5swmYH\nM87t7+Nrf/lX+N3f+zdwq1XhkMgLpGbqWtEhK2wFZ2Zc4X2dloTCxc6sIiw660GncGLZ2JlmbOYZ\nX/ziF/FHf/SHGU/MMaqfYxT0UMArg3KiP0Tlcda4Zo5H5kK/ASe1U05udREjwc5lGU+BxNiBkmlV\nioIo09RnKFahsoURFETZtLjnrrvwnSefxD133x3u9JDchdxSxsp+gJDy3bu6T6vQS3HpY5tRhjbj\nJkiceu99uouAvQ/Hf8chKajQzDiezpqZ4VYjxnjJ2cH588AM3HfvA3kMLivowWE+YdpscHJygqOj\nI2w2G1y7dg3X42mT4KQ+xI3rhzg6OgIzh9MljtNl70SEHbeKJ092EU4YxEutKTJ4AOv1Grsxf7LY\nVeQo4V8bD1JWqx1M04TTo2OsT06wunQHKKa9yrQSnHh57lyaSzFIcyouczIJKOqUNMQJTgABzyzR\n6ADIhXWbJzQrIBzXk0m1kTcNXdbX47sUr6kIeND3vGQBr+mQfYkHFm2LKBoiHkOK8AyNpBMyQDLk\n42U6aiMktOFlszxuGHvvcXpygvVmA/hw8fjx8TGuXbuGk+M1rl+/jqtXr+L6tWs4vHEDb1+7hnkT\n0gIdHOxif38fOzGVmz61BgCr0eHihXNYuRUOj09w5113wYMxjuFo9gwGccD3zHNKlQiEDfC05pTG\nqee/dVm2NjKbmirypYPCju16t0qYLVq2avlkebDlNr6hVC0Z5Xpctm/Ll3Tf9h0bOCEy4PT0BC88\n/zwIFE4hTqWA0u02HSUCd0OB7I3ByqptCmUL9rMooFrfEWe9VyfPvPBaSIpA4PDwEJ/73OcC/TpK\nqbGKE1my3ml5bgROfdmunTsGp8AVqbNen+KF55/Hs888k+hqVKkuZW1Nmw1Wu3t48D0P4I5LlzCs\nRsybCQ5hM4sdF/1lVxPCuGVzScucWCHRstB15LEtfrV0uaadt7ROzG8ggicTmHC73C43WWS9DeOI\n0/U6fB/Gqk7PwXQz/bRsKPnN1l3ijYCsqaBZVKlkF2CtdCsq27dc8ixjbMFf9Ru/p5RNIrc7zVue\nL981j+7htOe86smUloNOy0g5VVv8HgNIdPpjcIjev3zpEg4ODnD9xo0Q7BSDgkQvVOK+6MuO/Sw0\np98VHaXSD1n6Kt/NNnc5tvxuQ7/oyNGeLtI6baDrJeee0sHkVLac5Lf9yDut/nrlLPK/8+aZa5Z6\nTz3OOiVkuVRbNBB+yHDIrLh4EjXQSX7f6j66vSWYWzpSoZN0aFLrB/Y+U0tvBV2rn2W+lwIQM6JY\n9xp1e3E0IweGRMWDgMQf01ijMUcN0mmuxQIoJF6whOcKVws4bLVV1Wnovy1bYKnoOou+Eo53xHqP\nzekao9I1489pOzjgvTy1eDYYAgFUQWhpuOoZB9s+ZDwQCNCsG+Y3652MdsrtbWXJhrH18hzUsq+F\nFxvc1CvlfGc7limPq/Sz5b7yvYIlPYrsrfpOPMZuHGcZXT5H1W49ANipKmwreI8QfOJS2uzz589j\nd2+vtNeN3JaeBB8KmAp3JX7qUsu8AtgUnF2tsx6torQ3ezpf67ey6z6/BjIHvFXL52Z013feRkgH\nLeLEEOd6T+mTUjmh429+9sXiZqKUckEbvFN0cFom52J0ufczZMH1jGKdG1tYrygPwhTC+Ya83gai\ncGfCMMANAzYxGn5ndweOgYt33IHf/I3fwOc//3k89dRT+Po3voFze/tw44iJfZjwacbx0RG++Y1v\n4rO//Ethg2GzMbgQpqyVbsOMOwq5nZeAg6wRtQSx/txaWINz4UTIOGAAcP7CeXz0ox/Fk08+mZku\nBwWAkGmgLZD78kIYvaWzgkkxhxMejdRbnJyW1ojJz1LdjmKWYewp7zXMUsJF9SHydLPZAAB+9IMf\n4JOPfAJ333cvJma4cSxgt3Ak+hfFb0H4W4faIMpsHLtsGun6+eRCOPEkJ3ocERA/C36SASTR7w5g\nyiecZjDcEI4IhxRBcQzxKKngAgDcaoW93V2cO3cOV65cSfiSdR4cefGSaB8cbJvNBo48NpsNjo+P\nw8mT43D6RNJ2HR0d4drVt3CyDp/Xp6c4Pdng6PoR1psTrIYRIGBcrTCOI1a7u4kvyNhXqxUGDBhW\nA043p7j+9tu4+84r8MMQxsAxisXly9SC4jYnegdiTv6Yzo3jSQZHQzJixZCwEYIkmwdJCDmEi7k9\nMEejrU0BanPCJ41cKyteCdr4FPBB8dMlGzsolM/g6NSGFYFSRHcYIyFEXPhpwjTNYPZpA2KaJmw2\nG5xOGxwfHYdTGlevYnN6iqvXruHq229jM0342euv4+T4NKa5YgxuwP7+fogody7lkPUzktLJHDbJ\n7r7zToDnsGbiemDvcXJ8nI0D2fhlLk4w3n3vffA0APMMGlzcpPKx3yErh8zVqay01tT8Lq3X4h02\njuA0o3FdW4NQ8y5VV54ByGkr4r9NHrYVurJN+73FA7cpPeKc0nXlxKV+tpkmPPPMM1ifngIApnmT\n1s82pS7xLIj8LHlh652es2vbmJaM+1Y/N1uYY2SfI7z73e/Glct35qAEDvxAjK80x6g3uXKDJSx2\nLiuD2gU9Z5om/PD7T+OF559PpxwH53B6eorVagUvmyDEGMYduHGFyXv8woc/FrTbuKG7M47wQLwf\nwRdzk8ar4UgGjtZ5ygEt6TGtZ4Ve2dCFbKAMU7zoevK9WJHb5XbZWnQqvXEcIae4GW1j9lb4ya0Y\nvEvvaidPMo/Kl9CTJLXcuLm+dWnx5q7jiM6eV77VfpN/cNiU9lTDKrp3Cy4Nm/A1sU91f6VTuXyf\nKOoCKk0me49xtcLO3h7OX7yIa9evYUUjZoqyb5TT+W15Z+WVfbZIR1IfLUfMkqy9FVdK/c5SRLru\nWzvtknyknObHkm1hW96SrM7wtt9vr9fCcbig3/RplKKfo3QgWhz02kr2QFzk5ZwG2+3w8DBuxGW4\ne+Ns+X2WcOuNA9B+Fl09fgn/SLvUHpelbUQZToo+e/NhGVXBZ6o3pFLrR63D9OdU9y3rqlW/p5tW\n/KgHo/yubJMC5533kw4aP7dShLfG09OvRIdL8zKHVMVTvAMx8bgW7Fvmu+dn2oYVi0ci+StTtvb8\nYgk2KgOmdU1xrBf6bay9Tf5JP+X4uYHXWnYAZ/MNZp4R/V5FT9amyH407TftlTPJ78Ck27912iES\nHaoNgT11MgwDTk5OcOmOO3Dx4sV8l+w0x2wxy/Og12j2o+T2l+iwtRb0WFvw9+xK28ZZ6OcspacD\nulwh08UZbfGbKe+ojRCvLn1tTZR2DmjiYmaQOT0CmBzryGl3yFHhjHXDkJiIZ59S43jvMaf2slBl\njo5/5H5sEUeohjsY6DKWUGcShSW+w37CKiqbfvYYHcEhOLYlstaNI/YPDvDpz3wGH/noR/Hcc8/h\nsW99C0c3jnBw/gLIe/h5xo+/9z184APvx+V770nRleJUExwAIdLHEaUTF6IghOPlWYkOkd1yb4Jm\nySSDDkSM+C4YPib2kGRNibEowg94jylKZp8uQv/YI5/Ac88+h6PDo+A44Tnt4g+OQiQvCVyxLUUy\nLcMADDBJlI6LTs2SSbpYj0iiqAITZ0Y6vapTqTBzuuwNFC5zF/RkZTS6EIv5bxh1WjdTMBVR9YjH\n8aJwX60GPPbtb+A3f+u3Ma5WmGcfd9qzcsfq3bQ+pFMfNuTGOHdyKbzAr2k4nciKRS6hlqgnz4yN\nKO0u7EY731GOCAFGCvhEmq+A59Uw5rl1IX3a7EMiAh4Az+pS8CGktJL7ByS9VrrUmCgc++eoNAzA\narXCan8Pbg6Rzhfv4NiVCymKBGYKF7WLAejDTWvg6Ij37LGO6bnWm02402SzwdHpMbz3mDYbnK7X\nOD48ArPH5vQEr7zySsgb6oCDc+fCaRI3YBzDXRFEFC7KHlyMfohnlIjg06ZBGMuMKSv1HO838oLj\nUsHPF+vNYYUuKF8UaUNomxgp52VSOue4Bn2+P2WzWWNcjTg9OQVR2FQGMzbrCetpg81mwjRP8GoT\n4+T4BJvNGkfHx7hx40bcbAp3OZycnmKaPByH0zKI8zvEKOspwsMA4lTGtZN5PjNjf/cAezu7iv4j\n7/VhvW/WUxxLQ/YoY8fREA4uQU7ehM54jmnpKNyBs7e7i4v7Bzh3/lxAXkyJFeYutws9N96nSHQo\nWZa5cJ6nrmFYCpl6jiMMTv3mGrwo9ZPwGVMjCc9TcGgY5HLVJNMasG4zzlvp3/SGLJGsCRXl1VEI\nhVbBDJ43eO6ZZ+BciEbcWe1gmnIbsmHbUihT2zDKfEPJbhnOeuz2M6Bs3sirtBEltF60R6ROeGSd\nI+k1Gldx3rJMYczscXTjGL/+G78RUqbEC2SdIzDCRh1xHp9DjGJN5MVRYIV0k0nfAYeNeI5ylsLm\n0TzPMTXijFdeegXPPvscrl+/BvYeq3FM+PfMWO2G03MhWMNjoAHTyRrXjw7xxX/1r0BDwBgzYxhH\nTH6KEOb1wlD3yYkewBL9jLDpzmEjWRvicJKGj5JOKgfNwOrkiMKDXQNB1pT6Z3Eql2Igghdob5fb\n5daK9z4FT4ksvtW0sUAtW3SxfHHJsbvoJNlC8pQWXLvfoi377nLTNd+l7Eia0R8/q/o3W6zzLn2P\n4+wFAC7BT5kBNeGq8K9spaTfxSqDc8FxSCEwZWdvF3t7u0W6P3IupIsV/aSx0XYruEnv5geNdnON\nljNL1N/tMCzQZLLVcj8tpxARwYOa9zM0iU/rZEVfC2Caui1Zkx2M7XWqbfQWblo6WPiedQRrM1o8\nlDDWcOkTEpZfDM7h+Pi4ajd91jhj4y/onJhd4jnN4NhCXY7zCEt3Fp81D0nPo/e0xWNcEcUuuC9P\n80srYm2kU1vMKdiH9Xym9vW3Pu2m/55preSyTV8vnvfqNWhJp1rtwWL1ej3Xdl5SylKIjcIVvbC3\n/rq23bCEm0zrW2RTQZelfLUObqKYc0FsFdG7VfC35Ys9uKSOLKP8flm3RcdLfCW2DFnZS/BYfhqe\nRZyllrJtadccERX8g6P/gTIqizGz/IeR5Km2XfQotV9tGMb+HOalYthR1uvFNvPe4/yFC1jt7ARd\nfxzSHEtqXIvz5Ldp6DTlmkWBb12PYlCm5csFP2u8b9uXd7fJlQpHjTpn1gOiHVRMKeeNoFb2ilsp\n76iNECAyfnOBjTCxQeX504ytKYCpPqnBXiJqc65oTYhCsLL8hIGKwpMLJ6dfi5m0GEvvexL4QmAu\nbiQ4yxgSd0hKKZhx7vx5fPgjH8H73/9+vPTC83j6qafw8osvYX93D6thxFe//GX8j//23wIxhcvO\nzk648Ner46hQO3MRNi/ESEEchzFKujKNd2E4aQJjm0ZxkPqdxacXmItOhJ29PfzK538F/8d//I84\nd+FCxhdCigzEC42q+Ue+L8DSyeznqFz0j0JKOz45TSQOOismdRE6CngS3GRdNCjJIqDTI9LfI7wc\nnJS5jZJJFxcuUoDnxRdexFtvvIHLd92FYbUT5jBucFhhqz9nmg9T59kqZSW9CvMvmW2ppHK8qDo7\noQbYi/5cY2xa4OQ+M+7D5lOkV2XoJyURVAhYANXJiDBTVNYZyrt/PBB3ePLmnUOI+JK2Ugq2iMeK\nHxHBkw8bQZoPsce8XuMHTz+NP/4//xi0yvM/jiOAEBE9TRP29vZSCpkQOUMIq1LjMmz+OBDcEMT9\nPE8gGgoBW0YsZaWixEvYzEigxsvrBH2B53l4P+dIMRDmaQI40xLHiOz1ep3eIwCzz0fABXbhLQ4h\nQmxYjfG0RY7uIQCrkUL6Gy4vywYpBYcchnxoKM3PnE4BimxA5KOhf8GHfGspd4HeFG8kpXSncQuO\ncw7dc+fOYWe1KhTbiu+oMVDcAAHyJY76HUkv1+NdeS7zv3oti1KUFPT42UWj154SSeNVsGq4oeCT\nf7VMWzKcWkqZ/mx5Y91IW7HTOBCe6ucJYMYrr7yC69evYxxHjONYbIJIkU1UabPvKCiVfZuWakkn\naBVZ2U61bee5ZVw0FWkDN7NK0cHBkHHDgE9/5jMpp23+2cdgBZTEE6H0swdT1LHsJkIkCTnyDmb4\neQIRsD49wU+f+ylefvklHB8fg7lMwQXkNbWZNhjHEX6OARI+APipT38aly5dAhSeCCiDOEReN/AX\nPmopEesF4Rxg4Pws6KNI9YCwUc/R6mrxikS/EKdFYx69D5v6/iYNh9vldjFlmqakv+sN+200ZR0/\nvc+9d7c5rmx9U6t6nnWkUoYvFeZW5Zrvlk6B2jlCWB7/rZrhybEQAx7E9ghjVDKSyndanwWuQodv\nOD9b+j7UuKWu9yrdlYKViLC3t4c7r1zBT37847RJLW2kMSiYtuGg9zzJMyCdqGi3VsvEsl/RdEq4\niGpHXLZf2zBJKmytPVVj4Fy/O37mMM/Jf3B2nNVNtXSBEkZbHxB7rT4Z0lu/4rBt+VC07nFWHwcB\n6d4ueR7c/IFjnZ6cxDVg7b5yHPqz1m1a/pdKD2yMU8+bBHg0sNgmktwKmHPwkzieofpPa7zxttB6\n9ilkPKgGCsCSbo0mwF19OfteuFm/9czquD09pWiju37bbesBa35Q1NE2Xqdk+yMHnRA5TFPIqCI6\nHYDsiyrG6MExX1OySztrP3+XANnaXqnrtnFh8So6s9jEYv/KBeBNMyjisEHl8fdleZ3aSGOA+tzR\nTQ2h9sZu7RCgZVJQ0tUFlqbPhrLfRZJNZE0+BuZt4bHWlmt9rp6ld0qayfZe0Lt2d0PK7N3d3ZAK\n3rmwcRP5qLatS35YP2vhgVGPKc2rKwNHmoVUEF/iB8v0a2EqZPYCL6jWsPm96K+jdwnPulXdS5d3\n3EZIIB6O6UuCEzo5m6JDaxiGEMHSOIkBKOWzWoBRiHMmKua4sxerDpQvKiYgO4mHAcmRhjIVhy09\nIrC/Sx1NVPYodMpFZ961DoTVaoWHf/59eO9734u333oLT3zr23j1n17GyeER/uHv/x6/8oUvYBgG\nrNdruHFIjmMgO2BISV1RDAglYWvYWrgW/ljI3MRP6oUOoLgPRp6P44jZb3DvA/fjkU9+Es88+0ya\nf0cOE+LlykSqozauW/QgCl+LTpaOaC47LQhlqFuIApHc6ulpga+ybzmNlJgAZyOpYtzx93n2IGI8\n8fi38egXfwPEHl6cMMjML9pfsU9OjqNEe1ogK3gLGCO+5SSGc1lwyneYefbznNBSKlclrRd4ETxp\n4y2Nu5wHWdOhf7NRg9al9e2xkaLTnI6LwsahHOghROeWrFfEe2ayWe3F3KZyfScB4hwuX7kCgLCz\n2i3WB1Ggv3FYYdrMIEeY5hnzehOUPBpA6RLfMEJmuZxXviNtuKW5dxrvOVqLw8Pwr5eLx/OJGjGW\n5f3Zl45jMRyZ8wYpSByaY1BwXFxrAzC4IdGLFoIZr4gnmoa4gaGcyygjgHy8WD0SBsQQ0etE5xnV\nRrcWsFLb0p+mj+g6DnAwgzjMOaM8eRgUVwJA2EwT7rr7LgzDCMSTiEJk9kh0uoeBUCjstnCHN1lD\nMCk7WsEGmhsd+r3iO0pYekpSTwG2fK73vh1D4PFUGCwyX817PzqwaYVtcA4nJyd46qnvYmdnFTZA\nYj863YkzCqXQiyiszEE3IZWST+jTKovbSl8u1fqFlnL2PWvkWPkKlFFl4HA3ihsHvPfhh7s5joPt\n0ZJVMt5M+yJTInNOa5HnGdevXcNzP30Or732GqbNhHE1YCBKp8tain/g89ngl4t7H3zo58L0OHUq\nCYBsxCZewTWfEtmg7+TIjpl6PpHSMQb+pqM9NZ6bekL1RN+lFAMtZrUmzkAvt8vt0irXr10DEPlm\nlD1VEX0XVOYyvcmyRPMCQ6u+/JacNuZeurPyS1tXmxmWV0sNRlbL09o1MEuKWBI49e/qhbPy9vRK\nDALRAQ6tcZEFaktpjWOpiKZd4jBogK20kuM44sqVK9jf38e02aQ7jgYnqT1rXboFX8+RIr/pcSS8\nNmSZrm9ln+7H9t/2BdTj1XpjS5YWbRClVZb0ydy03poKOq3nZH8t6Qg92grvCLzZTpA+em21PrfW\nWw/HLdhq30bddtEud+xdCgFSp+s1si1oUkdaXDBX+mulOyn8a31Jj0mPMYh5rvgDxB6RgFfhnZyj\n+zkFjUXDMG56yOl7WfdyNygbnDGHZzmIjxDuW0W+y5Q5Bp24rPsDSKkjxKZHdpxrXC/xd+3XjQAA\nIABJREFUaXt3TQuvtX+nzLLR6meJPzb5AZboq/+ulPzd6lPhFPLh4SHE1pS+lu4ODpXCHNs+ynHX\n/K+lz9djaTuc9ZoqX2H5P0CcNhHLFttlGw0UvFjxNZEN7XFRGkPP7mjNVZ8utp/m6s59biJ+5/RZ\nZpDEDvbc6aOca9VpetfqC/Jv4i3OYZ48Ds6dw85e2Agh58DxPlKf1o2czLfyp6YZO9YleSH03Ztr\n+76Mq2V7at8ZiNJpEysft+luLR7SlAVb3v9vUd5ZGyGygKJgkKhvjmHqxUIzRG0VjIJIKS9tIBrf\n8VJaIopCR4NREoRnORkSI9mNUG0RrW5Ht2Wf69JzirTascokxVQxGz/jjsuX8eu/+ZuYT0/x+BNP\n4Dvf+x5+7n3vw7vf9a6YcsOHS4O9hgnIiaAi41BKnsbl0gINQhrpXaJ4eXqD2ST8qpQn0tY0zdGB\n6/Cpf/EZfPuJx3HpjouY0piLlqCd6gKChVuEuIVb1/Fm0Qt8S06rrKgq534cLrOMvcBQ9X6BXwCU\nLnsuC3M2nOR9R4RxGPGTn/wEv/qFR7Hi4FAVJWNGvqyVo/IkCqMeq1zsJ5tLer4TvVHJtybjmJSp\nlgtn02muCIe+YNu5IY2w3tSsox9EsdbH+wVGp+aXWTmCtbAHooZp+qnoGZh4jkomgV1sKxB04D0k\nEfUMdhxTyAR8yiYRmIPzW/GqYRiwmSbs7O7CR+d6ovvYNuAweY9xGGLEOoFj+plp3mDX5ZNx5IIR\nL/n1JcJd+ALHefWV8UcgzgKPmeG8pTaFdyCdTtHr1BPDuSHdFTIMOf1TfDum2kFMn4W4ya2QHQYS\nYEK4f8lT3JSJ6dUkVZlEhhBRpEWWp4nLFOvKKO0UU4ylOVJbbU0VItJVcBZEfhg3NMiFFGrMKIwK\nUZBPTk5w//0PgJnDXPp4goXqtIktmWBlhl2v+jepL3Oeni2MrcATan2EgHBpn/6hIVelrZ58WFJy\nFxVczWvRv6C6Gr/5G5zDZppweHiI9ckpeJ7D3VwNXo7YD3xI6jgMQ7qPSCD0yDLLjrP1eQne1sWg\nmq+ndYZy7lMbW5TFlp7ihhHHJyf41Ue/kNaz1E2wxHWV9vV1N7Kp6hFSkjJD7uUgBD41zzNef/VV\n/OhHP8Jbb7yB/f19rNdrrFYrrE9Pw71lkcdt1GaI/KsvW9/Z2cXJySm+8OtfhHMj3DCEU3BO07mW\n62U7zHUqjULZj/+26DSks4o8RzkzA++vTxMB0Z0TmUDWPR1mn2WdnuOM79vldrn5cnh4iOPTU+zt\n7aUNewCFvhtOmfripDnQticsD+/ZMbr0+HszWI3a9fOaiJU6MFZ9GphmcTZQGaSjYU+perVuGP9d\nStvVcvKI/MzOGG07Zk2j63hDUsm3ltb7wclSBg4s6RWIsMow0wax5sMALly8iIODA9y4cSPwYuGj\nEBuxPyctuW6dIIWs0fx/gReezbEmdXO9HpwZpmyftvAWvubng+hABi77nm5L27uWFuy60vphu53S\nnrZ2bq2DadhKaittWoujPF+tdlswaju2hRMWeHxI4Z3lYR5T2JzItAjmZLqV9oX5HHsQraAFLxla\ns+udDYqEj9iY+9a4HTXW+JbFrdec1nhDEznIJLUbFPzcODFailryb5G6i0J0I8qggShtbmre1YLR\n6lIt2UCs0nhpG4Oy/pRoiUo+3OrP9tPGYba/07givZyengZfRORv4ti1+nt6keMpoajLaniWYFnS\n+UtcKLN3QSbo/hji35CXS5pfEFmFTG/Nlw1CTnMUG5ftEc1DKnw35E6Lt6V1KYADhUtGY6HHU1ul\n4n9Aus9W1oumpZ6taovmmLY/3Rb7GcfHxzh/4QLGYQxBm3JHtHonuD44xXjpPrbxVy0ni+do46jA\nv1lHdvzNtjp2aU9mWdzYum25yoXQ2TYft1r+GbE//98XHy8wtheiayRWwlb9hTZMTuhYAjNRk881\nU9d1Y8f5Xc6O2WoRdBaq/u0sxoQeqx2XboNREvIwDCGdxDzDjSvM5DARsDp3gH/xuc/hf/p3/w7r\noyNcf/ttjATQ7OFSpFIWwD1hJJ/L8czxrybs1qJa4mWWaYqix8ygYcC58+fxP/zu7+Lk5KRmYB38\nyxO78aH/dDstpXQbo2kXERqlU06iQS09pJzhuaNwT0AS6HqWMo0XUczk4KcZfp7x5Le/Db+ZokFs\nlD4NJbmKtjwBnvL31l+ruHgMMI2e8yaIU3TsVJ+y9lrCVD6310Gm+dQ/6rVm/2YRPqjnskUXGp4l\nhp/GQwA7Dg58YlBM2cYwzoDoVNvb28OlS5fDumDCzADiiY95CkfHpylEKnvPUalzWA0reIRoag/G\nHAd1ul7jdLMJJ9eGIURbs3LyG6HnZ582LwjR6erCJli8OSi277Hxczhx4ggbP2NiH/AZ04elzS0a\n4GdRygl+DlHPPqaAIbicYoopfh/gaIDcNRAuRndgEGZmTLOP+ZiHeKl1SJMzTxLF7eCZJB4qKdUy\nxwXuOeLflfRU03U530Lfmh7EuBBZo/uQ/o+Oj3D5yp2Ac2FddQwM3W6SfS3luKVEoGUItsvMNX87\nO19bhts+s8XKv5ZSJPQINOxGtS4rnrnQDwD4eQIz4+/+9mvpFJHw5GmaqncTXiKPsicIWjJFaEE+\n30zRMGu+JjKZTV3dR0tHaOFA6s0+rOn3PPQgLl++nGh7iPekBQMy4iGd9kiNhQu+pxleTtQMgBvE\nMGKcnBzj6aeewn/+sz/DE088gcMbN7C7u4vNZgMg35Mh+JLNDo177z0263Dv0Wq1g+PjY7z34ffi\n4Pz5cJo1gpNkSzypVa7DUgZvK0S5TtINZN1Lu1TTrtY1C31B4R4cZL/g2seNXaj3/t8yAG6X//+X\nGzduhPSUBDARZvjCERXuMvOLsqGn6zcN14XSdC51Sku/jtpzE5ZmG2ZQjIbsaPSnC1FwyIUzXw3n\nTWeNSnsDUrz4Io71O9vw2NOJdXHORVWLilzaBS/lHJiT3+egoxpneBpPDGY5d+4cDg4OcHx8nDIQ\ncEJwW2fWsC7pBfr7UmR6752lZ60+W3On+XgIyhIVLQS0SWpYmdXttn7LzqJKX1nSk1q/tfvs46Iv\nSyjZfWfro80DWrqbaSzkWI4OyKTTEQUbM35G1KHlzkGOxNVew6X9p//0qVQ2MG+T/1a30j+UeFpo\nQ/cR1yIv0N5SsXaaBb2J+2I9Lrff9JVofJ0Bxp6OmXhBA07Rp+07Yq/p57Wv6eZsFNHtpT2d2l7k\nYqUv6kJtfrEER4/X5PnU7fVtp75txsU/us6iXDNjaNXp21OUbRDmAu5eCb/rE2sKBwt8R3wQDuk2\n1Egby/zMliVZJCQYsgwN1ftLY+vhWafGvnLlCi5cvICUr4Oo4GXh9HtqUf233V/nh/zXGGPvnbPY\ny8XzM7Rd2TyN9dqT2Tcjy/9blHfWiZBYxFgGSuRqJgHDaHWEpqRbKOrHf2cf2xYG5LLzQqIjNTOW\n/OjracL+7m6ITKaSgUn/+plVtDQcdsKXNmNaDicAKXYiKWDx+SR3EhDC6QlH4HnCe3/u5/Daq6/h\nK3/xF/jMZz6NBx98CG61yinIQgcgANO8CRfIE2X+yzkNXbgfgIvocA1jUnzkuZkHjZfWv8zhAvs0\nx0R48MEHcd999+H1118HiDCSS4afZ0npYxihUdLt/KS+Go4MK4wrYd+aE46plNQ9C4mOGlEULl5O\nq3FF5ECFH61UsMO/4vQN8yO6uiOHb3/7MXzs4x/DOJwLcy89mBQksikIiid2KLRY3D+iin5Xf5bI\n3UTzLudLlWjqjMMyqlvTioi+cg4KEDAHUsAIF09lyJvhZIaeR9nQGSifcOnNq54fouCAJ3lP5sqM\nWc+jbivcbxOUeZI5HVw63TbPU8DROODynXfiZ6+9hvW0CZtZQiMxLRcB6aJ37RzwnCNEhD48hdM1\n0xzw6eHg0zojuCQ7o9FuHH/SbqI5MwmSlko2OQDAzwwach+aZuYp0xs43s2j+KLtG/aZuadh5nh8\nPEZ7hhRGPh3nTWtZ8W6ddifxsdmHO2xUvXynRz4ub+eVo7Gh6UVH04eTgmG9DUNweN533wM4d+5c\n2gzr8QygTN/WkhM68r8nUzjSnW4zOeiB/jssBiSSsppkn8ZTY54qeWm+a37ZUyZ1HeEJlk8ASE7z\ntDHBLvMxgxd5NhCwmWZcu3YVh4eH2B1Xsa9Qb4z5z4sTicL/ZB0rQ8riztJ0vkibqroyLtdxgLfm\nSfiJ7r/Hg6xBU+ADDn4OF4t7Znz0Yx/HOO4G2meR65yMRh9PXHj4tOaIHOAFHwzGjJFGHB0f4ZVX\nXsGzzz2Da9eupY0V2URaxUANPS8+bgR4rk9pEoXUXd57TNOEy5cv40Mf+lCq44CYmkzWVK2DyTOd\nWk/Lm7QWES7s1HMyDMIfg1xkdek5gcKdDAb/0ma6+C/Nv6vWgveBb6WTRlbQ3S63y02U1157FcfH\nRzg4fwDPQTY6Q++IariHT7KwxSt6+pGtr9/Rv/UMa1WxDLriqCdFG6bXRwEP4hBce91o+WPbKmwD\nDTfqscg72kZIMOi2lZ7Ygr3VZgVP4x1pMzmF5AI/AwNHI8Cn7wqsZKtm3U7aBCGlxxXdXU6FBz3e\n4eLFiylgwEV9HszZAG3BrUprHvQz64q0Dhjbtn3Wk3dLsLTtG3m/1tFssfoKkGVPi+aYy/ZasqNF\nC3bM2+otwav12qU+SAijgF3j26U6Wo/S+geHBV7pi9ZvKXS1Xq+xn+4powpfCSSu27BjjJZIgHmh\nXh7flpNTPeCR6cnq8El/BbqpbNN7Vd9ymoZSl631o9tgKn1Atj+7fjQOvLIZWuui0m8avLGFF81x\npPROkqT7rdS/pe7aLhYPur7gdrPZYHdnB6cnJ2FTWNWz6YkD7rOuvySPsj5b/qZpQqdidSoltG2v\nNQ5ZdwUOKPP6oo0Ofsqx1f3VKZ3zO3qsetklsc01bqRkvMoYYp+sfQzZXxfSUka7SQUUJOnG5ROF\nEZTUoXFXn37RdkZJxwJje0wp6Bg1/5V2vfPY29vDOK7yukXLpgPkboZsgZTF8pXuWrAE1dHBFthm\nqr+onzT0mx6/tDax9QEA9SlhTXu2yHMd+H0r5R21ESKEWDkHjGIO1Ai3RYzxaZryKRNWEUsykUSV\nMGgRDhFhHQ1gR4BrKLP6c0t5WVIWrfLeM1JSe8pRKKyDCCnKhwHMhGgshLRZ9z9wP+6//z789Ve+\nivMXzuOBBx/EL3z4w7h4xx1wFJyVcA6rYcQmpnHR18RbXGtGKp8H2UBRcycOghY+rCKp55/j/JAj\neCL869/6LfzBH/wBBkmbQVREO4U2VYTpojKb6S2nWtK/l8ruWRQFGQeAOD9hFPmdqKal71kYVO+z\n2pyicu6lzBzi4JlCOqFwr4rHD3/4Q3z4kU9EwdI3Uu34GKgcy7XBUDv4tOAn036R6z4urFbb0pY9\nDWbhFmNFFPuQkiq/lzZEKTi42NXrrrVGi1RF8ltHyZN50hG+xe9xfEMynkuczfHfd737XXj9Z68n\nQVMYt7F7CqFJ8V4Kju7HgEcfDQ5GcMR7z9ioDWFGzA1N+ZKxhEczT5C66jfL28IaVScjXLg4RZQc\naxTIfMzGGPCitTOaR8nDsVG7rhmOQ3SjQ0iFNvnMrxOeQdGpIoqTVZ44pJ0j5I00VvOO/J9Etizt\nUIWT3HKmKe89VqsV7rzrLuzs7oIonGCydGyVZb0OrVKjldTWOm7JnkKZQl1a8qgro5pP2ykcZDzy\nvaeMt3hJqqM2UAX+sxmspSIndPSPTz6JnZ2dlPM5t1rDrj9TD76O8tiEIZZeugvBhTjI9fzN5n1m\nDnf5NHiY/t6iByLCer3GJz71KRwcnAtBIMl1UI+f4w5J4uscNy+mcFrjxrVreOrZZ/HKyy9j5rnY\nwJIxDsNQpiCLsLHgNgalpDoK1tXODuY5bNqQGzNMQLycCZBMlE5keYEHAsM350LPUzaQyg2n+CHP\nxTw310Faf8hzGt4f4lg5z6/WSwr9Zztd3y63S6sc3riBl1/+J5y7cB47u/uw9xwBNT+W0pMlUvcs\n/Na+nz6rv7AchaciOQKi6rBoqAssqU3RmW9hyYR1Wo6fmdPJil7fLVtA/9azQ7cZ7sV7ojuJnlG1\nwfBVC1qv8olXl20a/Vf+KN9hqMclwX/jaoXLly9jtQrBAz6mlAx44ib6z2rDJjgaNNay+bUerYMN\nWqW0t9qlpXvof61eb9+z66gHix5abRcLFlrvcfWe/m0bXfXgzm23cZN+IwJTDDZiO5e5zZYt1bLr\nRO5r/XAYBqxPT3F6elq81+MHRKLTt56rIhukjSEW/oUeHvXaIfVIjdv2bYNbCl0ewIC2/mFHVNvF\nUquuk/rwSqcw9bQ9Znmz/Fusgzjum+X7rWLXf4sHFHWVzmV5Q8/u0djTv4csBIz1ep1OHDnnqo0p\nuyYL6lPz3xufBNrYMcp30UPtRqmlw3pcBjcIYHV/68Bn4WrZC4meUNKDdBpErR4XIHi38rBqk3IQ\nWGnJItliIUW4slOVHq/DZLWd0qZPkRtRDlLW60OQY9m/xo1zVP1m68nY5N9kt80eJycnOH/+PPb3\n9wp8NHmMkJhZ/FYP0P0urR1b15beGy1a1f4Gy7O3rUcLX89e7q/lso1t/om2BtIu76iNEOaaeUup\nFBAqLwxPCq2a0M1mg3EcM2KV4z7VnzkR5cw+X55KLl3AzADIhbz9cqtBrdT0jQt5tqS4WWV62QiJ\nB8hYMY+4uoa09oMTgymkOwrKDONzv/iLeP2VV3F6fIQffv9p/OiHP8A9996Hj3z0I7j/gQcwDCM2\n8wbDOILn7HARmCxsLSZrv3vvVeKaNo4qwcCMgVxIweN9uNyV9vGZz3wGf/93f4e9eDoHpPGXT6Js\nYxxyybcIPzt/haKRaCq3D5BpW+hvjgzYnIqBkJnMFotbtoRTCSQf8UCgJu7JhY0qIoJDjv7+2te+\nhvd96Bewt7cHcmP9nsFJUvjFgCaqLkhq0a+0J+lcmDmfmEoDNmptVHJc2vsPZWYuHGnE+hRGpPGU\nmz7i2hEGBVPiBS7jUp8UsxEQaupiRD9CpK7ZXAMAP+dLt6F4jBUgzJxOoWg6lGC+FLVHhDsuX8Y0\nTflUQYzIs7THskkYwSUG4IAhCu/ZOjmY1Q66TEQ7DaCeS8pfyvkS4zptdMnpkNhBmvDIcwzbqoxG\nR2mzY5a1LptFUQlyzNEJLed9OM0Lg3Pu1viXsvWr/su1bSPYvEh6gFyaU5LJio0TlXdJWPylaBpp\nK9aZZ4+77747RFES0h0nLXzoOUh0hGyYbLsHolfs+tVjWDJ0tDKUZMwZFDHdp5bd1UYhtALqqvVD\nUQbL/S6avq1y1TIOClgAvPHGG3j99deyg7CQXeWY7WeZg3TcORZ7gmfbfNoNAr3GE16IisiXHr/V\nxeofLYcnEYE9Y7VaYWd/Dz/30MNB7nT0DWljCFZH2swcnMP69BhvvP46fvrT5/D2m2+KuMjzpzZz\n5G41bsCT5hhxbRg9g8YBm8nj/e9/Py5cugSRt+Q5yc5YO/2X9fvUvn+lhdO0LgEQhTvUhI/KO9ox\nlp0KGX9CW+lOrGHANJtNLoUPG/ixZVndLrdLtxzeOMTPXv8ZHnj3e7C7d5B1t8hbwwnVEO3q1BoE\n2npdi5ct2TdJV5HfSdWTz8iyGqzXLyqe2CpaLp5FGnaNdC5PIbT4/pKtZtuiBjDb5Gvrd6fkDDLa\n6rkJD6s2rV5bjiXXkTkQ+KUPGx3NRFitVrhw8WIK4hD+hQhjO2CkhKkFZ4JF+Ggcu7YUtFzT72gc\n6mclSuQ9qwNV4HTwlSXCWZ09+T1K/dft1TazbVc2xC2NVPJxgca0PNZt9dprPfdyL6sJbrNFv5to\nKPyQaDLQU/qlgGe9XmN9ehqwlmBs99jaBOQ4YHl/qVg8FGt/y9gI9WlSRJ5q14+lqRgv1oQn2bip\nUxcYqFw6CUq0LG1WOqfoEAnu/tojogqPBS2dwS6w77Z+a7bS4Vtn7c/yA+lJ8KNPIgRbNJwoPj09\nTfftiTUpG3EyBksLRaYKqteLwGLXZduO0HXOlg61ahulTQhFD8lObODP6q4azm39J3wRp1R25biQ\n6MWexhYeZNeanJSy9SQbg7SZ+jDrI+kRSj+3cDdGA04buttt2KJwOCGpM1TAyCZHhJUbcOXSJezu\n7KZT9456+kyYzcC7GIT67svqrTjebXZ4a145jqM/xLbeI2uGDW+zMCzJebtuWvYmo50ec6n9my3v\nqI0QyfVvlQhZUNq5Yo8qtxSHYRiw2WzSKQUaXHXJOqhUwBiyMOP9Btn1l4x39sDg+pe31kpan1na\n44ItxczmMkxHMMFwbBgbh8igMQo8BqXNEPntC48+ij/+T/8JO6sQrfmz117Fn//5i9jZ3cVHPvIR\nvO8DH8TewQEAyqnEzNgEJ8kRGGGQC5U145PUVT2cNPGn59Y58DxjGEd87GMfx3PPPIPrV6+G3Meq\nXk/Raz0LgkHye5eqQS9yt5yLun3nCJ5DiqpgGM7IqTEixrQQNHThvY8pnSjSXg23GBDCFBkId8M4\nF3e1Q/0fPP00Pv6JTyAkEGmPxdJl5fBVwlb33/tc0oYS5nqJ+HLNAnEuCF2naHpVbQgkhQD5dIa8\n62OEjNS1QlW3HZRRGX889u9KWoVs3SShHDa85Bc9R4nuqXRqggBWebqHYcDFixcxTVNKAzNL1ISa\nn0I9IyA46Vw2iJnhKV4B7lzIET7PGETh5bBByBq2Bt9qrkeBIRm/FiZEPORTYCBKab6kXUbcUI28\nyocniGgJdM9CDzIviBEjXDmHhc+k9jlumlDgd4UxDTZaudACEg7ZRGMXDs+4uSP0BM5kxJ5Bkt5O\nrZVhGLHZbHDvvfcmODxzsWmnYU91JKUgjNJQz4zCf1vhaPWxrVjlUr8rstkaM1rZbvEG+29PkVri\nT6164bssgXa/3nvwPOEHP/g+dnZ2sNlsVEQruu8U8g6oNictXEv41DzOGjct3JD6radHSGrP2Rg3\n9j3dzzCMOD09xRf+5a8G+UFBLoyiM8Q0VjKPgZ8C6/UaAzkcXb+B559/Hj998XmcHh/j3P4+KN43\nIuOapgnjapVO4HLEdctIdpHWGEE3kZtRBPbZM+64dAnvffhhSGRXwoPa/Ej3d3SU8d4UtXRH4VXF\n+lFwhVSP/TUszswWffi4gSMpwYLc6dwzdLvcLjdR1us1rr71Fo4Oj3DhwkWsViuM0eZhEIg9wC4F\newClM2eb3qyL6JwkspYQTmg06rVKyAqRZTAQUkn2TkS1HATc8vpseZdAVRqm8IM44ZejZsVTT7Gt\n1gaI7nfJzunJbM1amvMgeuSC46H1SqFPy0Pk08K6v1Q3yoLz5y9gtVrh+vXrRcBTDb8vfusVLd8F\nwJ5NsSTT1Mhjnfy+5aXJLkA+bdOyf25mPVg7pVffmfRt/XkKlJXHY2Qmc6Q/ihc594vGRfv3cv5q\nf0tS15OM1nVbup3or0GHMXoOclvShtaLTk5Osj0b+y7mgfuxv6IrD0qGyj1wvXG3AnOkrXIdRH3Y\n8LdCV4UHeME5SAxm6rIrVmOzegcXz5Y2vuJmJDfVoDMXje+KHyzws+ZzZStY/bZlk7TWXksHbq+5\nBhyhI0zThKOor/KcAyjDhkQyofv4YEaOLi77yPDVDbTpr4RV+yCEJ/VsN5njMpV4jafmGP6ZpWpb\nxm8gKTdDShnYSnWs2/eGJ+u05E16ARItAeU4l4LUen6P8LgNn/SlxyttOxowe8bO3j6G1YhxNYb1\nI/bPkuyKBMHGP9qUS+HLmdaj9R1oHtNaYxYX8txu/PbWbM/H0Kpv13n6V9thph3rl7iV8o6yrma0\nmSFgjUoPP82Y1huAcy54m6pGnPJJ6MaJmKYJk5+Tw1MWlHY0yOJMEXyKSTEDkw9/AiMJ0xQYKbep\niUXfnxGIotw0aDF6qTvPczjmhwmSH1suTpYoeB++YKa88+84XOg3YgDTgN2LF/H5X/91nHjGZvaY\nphl7wwjaTHj6yX/EH/z+7+OvvvQnuPrqy9iFxw485ukUs/NYY8aMcFmyR9hYkZQRDsBqGCBWgjhX\nRjCI1GXcytFs/9JzksjwiIt4Ioedwy//y1/Fa2++hWmaMBAVKYhChEb9FxSJ4JDITikA4GLu2ftw\nEmbmeFcHpT95v7UmkxKHMdUjjEnghkrBagyqrEPef5GNEsIAhyFuhATFjjDNHC659WEfYY4bQEyE\nDRjsHNgFWpiZQcOAJx97DCenp9jEexTsWtLCV+h9iH8pLY0ykoR2rfLbVowBomDcTp7NZXgxx3v8\n7sH5BAdyf85FpxQ8wvTlPjxleheeod8dQBgYGCPdS1ooAjCSS3+Oy5RRngAMLp9OSG0ibGqRh+cJ\nIOW8Clo7guD3+Su46Id8NjIchZz5586dw0bdZ+SI0r0iKQcpMu8LkZ0OM/t0GbqchJhZz2+MKvI+\nzamkCtQGi113ljcBCJsETIFWmcCRhl06dpojogJNAJ5nkLqQ3LMDI1wYPkdnIHkGvFZWEC+YBxwY\nPHO6RD1cUdBQRt0AJpf+AJf4RWoXYf2l8YTwnmLNW/6feIFcG0/xRBv7SJMMchwOksTvcPnE0TzP\neO3113HpyhVgyGtryTBNczcMcLE+fNjQ1sXHdT8zJx4gl9vPzOnkiV5jMiY7Rk0DMwOTUpgSnmM7\nCS9axinnvuYNqX0lF+0pLNu/LdVvHLmj2nh3gzKCA0BwAEbnsD45AbHHtatv4ZWX/wmbzQZ+Ft4t\n0aIKr/pUls+XtnvUG7RAkBNysZ/d4JLLMq38h3MQlXcgwmDwIHcTFX+xbqH/oD6lZJV+T7EtJjgO\nFPHQe38ed9xxCcNqhPcc7lqaQ8AHzzMG5zEODPZrgDeYpxO89OJP8Zd/9WX8xVc0tClTAAAgAElE\nQVT+C178p+fhvMfuahVSjsYVMnkf7iaLqRkpjjMji9PGB5iLTQ9CvGxYyShmxtWr1/DJT30ajHDf\nWRhvWHcgD3LhVBjzXOgL2sESDno50BxkATHDea5OWJUyDTkIQT0XmmDMYMzxgnjF9+AAGuHZYZqB\nac5tT37GzHOSzaNzGFWkrffhMuvb5Xa5lbK7u4OXXnoJb7zxBk6Oj/P9ICxrpHRZ9Hiu/KZLoRtz\noP6gAlByNtn367YZBA4bMukykAxSB5RuMV02+01OLM+xSyOboqIWNnEaMHMAdaCgP4o81aCXMNU6\nrJVhlYNFw9sYQzVGlLzKtt1zvkl9/WsUg8G2DQ0U7Uiw1d7eXjjZaoLhRL4nGKh2zjsKOrEtWr89\ne1lwJqWPfb7ORGlzv4erno7UqnOWsgSPLb4I0GQkpxyyDSP6Rq8N1dPi73YMtYMqBttRPqnDQNI1\ne2O0+Os9Lxx1RJg2m+RsjBp6frfBj/Io87MEI2c7S9fXfYqfqAjiVH0UpzuS3trQzQgxKIOrvkoI\nSxxtw5+8UerLNT7T9wZXsjqhtu2sHq7tIW1vtuC142zxrMR7LQ2a93rtV21tKdZ3JO2SCxsh0zTp\n7vPvZAQRZBMwyAXEzAWyJpZ47TbeLUVOlsu/mqfrtitblDkFBrbq9ew87afRsOp/5T3Re12DDnTR\n7Wm7r+Sbrl5nTZ7fkKhKPtv+Ei6MHLS40kXjoMWbdBAxjBRrtSlXKchz5xxO1mucu3gx+OKkj1iv\nqVNFjUSvoSX5YMfRqVDSjnm31bZd60vrsaVz9NaynZ/Wb7p45hQILP4MudPHq2wat1reUSdCgGXl\nQS7g1JeaAwTvs6NVUmEVzjAtFBjJIWhz11dEwLIWxcmdF4U4IvIBgVKjZ186lbKSkb/3xr5EtMMw\nYPZTXK+xXoQs7yvGDRHkOmGdh/cdER5417tw//3342c/+xn8NGE9zanu+YsX8cqrr+NP//RPMa03\n+MxnP4tf+NhHMVJI+eIGSWeRc7XO3gcHOkIUjL5LIOGyobTaRdVTluRfIsI999yDRx99FE8++QSm\naUp9WRxbHIbfyyPgs3JEJ+YbEemRNz2al72qdm2x41kqrboJbgLcIOMX/cK2WzPr45NjPPPjH+OD\nH/4waFU6XSxet43FPi+V5j4ttxSHNO/xc0+xZpS0ING2mm4SDFtQLEqrdLxEIwKbqLeWPlslRFLX\nm0KtGEQ91zs7O7hy5QqODw+TsqovGbY0rRX5Ev74r+/zDitwW7yogn+BR9lNsvoCyGzapE0tFoe4\nJBhUfTcmUTunNazS51RFkW5XrrOOIkjLD2uek8dQ40HRVKwlJ+GGYcD5CxdwcHAQaFydMmgpjXbM\nxLWxIu/ZI7cEpBQTydihfOR+2yVjGg59wqBXJJ2Rfrclp5Ix1ClWqdNtnMVI0u/LXUny/Pj4GHt7\nuzg5OcHTTz+dAgxWqxV8MopUJL8JQNgmR2IDiZ454iSt7bRGyrFJwEDamG6Mx46blF6h4bXFKqUO\nhODoYozDiPU04ZFHHgn4mueQ9goR/nkOm5ccDMc33ngDzz77LF5//VWsxhHzPGN3dxfTNIGnvCaD\nQl/TQXYNlONLODaw2nEAwKOPPor9/X2M4yqdmmM/F3VDOqrcfqvkeQmnDiVtj2SrCPKjlm0aFvtZ\n10sydGYQZd1Cz9EcaS69i2xAZt2jCf7tcrtsLTyHy1hffvllvPvd7waAsFbNfV69Uww93aals1V9\nd/h4OHmHRRkgJ1s5fa91+L7d1I4SJyBufnDxzOoXjMgLGFU9qUtq0F3+0uBlLWfLtiJ6bMMtVMrD\nBj4INR9bgll+Y7TnPet4hL3dHZw/fwHzPBe2dagXbRLEtqBTXHAT7xpu/bkH65LjBmjLGnkv0SSE\nDM1m0BYd+Cw2+9JzC8f2dixMUY6zsb+6vfVLaVf3cc6cacr2lSBQOoluO8FoZXvsz95FI/VDkEqm\nL3Iu3+vawFVac+XDzEc6OLD2hNZHWnwq00+wA2qcEST1s+2TiCK11TZE1Y5au6X9VLyV7vOpC6de\nQjO13qLxaKPvq7k0v1dygLl6loeyTJ2s+uvpWkvtNH0krX44bBx473H+/Pn83gI9lQ8t1PlUg+UP\n1qbsyrH8JeA4vnP21McMgBECHZf5ZsLBFj1b103rXn1m9afHLEXswbZN4hJPS3RLarNJ4csNEvDY\n17lb2GjVsHRa4YlaUqktSYjihn9j7PLaZpqwv7eHixcugpAD8Hs2fz0OratQWiM9O1TzTjvmNi8p\n3+0VTS+6j56NbvW+JfqX5y1dqWgXKGWP4F7pJNt4TKu8ozZCLKIrYzM6lLTz2jkCKB/ZFWHbcu46\nhF1iaVdf8t12MqgNEDJwybsUTGqbPsOhnHi7KHsCT2AX2CqhzQywtIOoZJTvh38BTVLBSRrzVANw\n44DP/8qv4A//8A+xGscQwRoF7TyHS+EHN2Bnx+Hxb30bTz7+BC5evoRHPvVpvOc978E4DsG5CcC5\ncFfLzIxxFe4W0cJhjmtTIqpk1D0lvLdYx3GEdw7wHh/+yEfw3e9+J7xDhGmzbjJj255zA5h9ykkY\nhJuqy5QYk553ScXTUpK3CaM+cw/01VO2C/oXGoK+OyM6RSP7CO1EJ/vuLp789mP4wAfej5kIcENx\nYoq5vqjZlhbcmpZbY22NV+el1vSfha1ZAxyetS6gE7wFuCXaJUYcNpSqao5Ys1rzexTaLio9Xv3W\nUuTbSoZWfjnTktK1JQJxGAbce++9+OmzzybFX6d8WnJQaEea9Nqqp+tvK7pd9bAwxPJctAWk7leK\nbGrJey28cTRUcxsm1ZJnhGPmfcWbuaQl5hytn+p5o3hQjM5goSmVGkl058WdtsCHJ+8xqFMrP//z\nP5/GbC9K1/D4xvwWvxs5JqeGhBekgQL5ZBxzde9Crw9N207RGwkM8heLQ04VJW3Yz4m/KPh6vF6P\nbZvCqGHW/c7zHFOtUXLan56e4OjoCK+++mqCabPZJMUWRIALlycWc0CUZDeirOnNXQGLUQJ7iqDQ\nozYMdJt6rfbkRrHuF3iE1NvMMz77i5/DMLpwuo4ZjHjqhRk7qxHXr97Aiy8+jxeefx6baQKYMQwO\n02ZO60Xn95WUlDrXsoYr35JV6kEF/9S/zx7DagXPHpcvX8ED99+PafKYN1NwAMxz0im0PhhkY833\nA9viqPNxZTgmow9IRo6e022GeStdqR6nwLZRmyAp9ZjqryWzbpfb5WbKagxp727cuI5rV6/iwoUL\n2NnZwTAE40Ci6uQUZ4uv9IxuW3p8H1CORrO2Wn0BImO2j8/CmN6m3LcjlzfDcwRbNbYEs4KbODqc\nzfj0OrXwWBnQhbWhiy4WzvpS9Q4hnm6hrGZydlRZSJMJyJrfkShK8DYMSeB1EZfMGMcV7rzzSoRD\n9LeYfshFeRVM0njvX2oqOJxcWz/chovt/LDUSdjo59IGEWH2WV8S+7/ZYsPWaNl7rTXTlhmangA0\nV4XAebaAtPB2X97XpRVh3o4+DmPQn6n6XUZR2tTZRyEpp6XPFD1t5kTj+iRelp5MANF/uhgo5XcB\nf4K9dlpbO9fqIHo8eSyIp9sR14dAJquu9LVoOzNshRh9z4zB0k+GF2V7DZ6QcAnRQwMcmnQq/tOY\n08KexXIamd5atvSfaMKuiYgbDX+vn6U1mL/n8N+W3SkbuPBSL+O7dyot0ElrTbf5OYVjIynFdqHX\nshonl35CjRO9pmqeUtJbpvPcD6FNT/ZzD59Lci5jrbbZtE1Q6eWo9WlWz/TdU7GBlM4bCicteHs8\nPPEdcwJK07f0pccFtFOGJ32joac7FySe94y77r4bO7s7ASdD6WuzJfMIhPtXOEtwizc77tbYm2uo\nU2dpvutsRXUgblMedOj2rDZNMTda7yr0RE5j0vg7a3lHpcbSTLVSMOO/4jAEsrIqEdS91D26fSmt\n6ABtxHJUFoGSCaT2I6w+7kS0YNaR3TblRoYtLxRNgCk1hzl6trgIDN3l3yjBkE82OBycP4/f+u//\nO0xxY2ma4gZBZG5TdDDFJYprb7yFL/+XL+GP/vf/DX//N3+Lq2++BcwzvvEPXweBMQ4hutTCrY85\nhTVfL5AWY2vhU8ru3h5++3d+B+t5gmevxlW23V6MlBwX+ZImqhaWgClzpf/089YYrNEHZFHmEdPa\nNMbdZPScbnuJDv/AI+R72UYYy2aacHj9Br7/3e/COUrOKnG0O+fwjX/4eiGkWuNqGXqlwKg3+ywO\nWmsrM79GxBQCfYYJCH/hsvKsqBc4U896/CP9hpxKSKeYsdSXmHGj2DGKwpO7k9NF0pZsiNRK7v33\n31+seXvhZWtdXL12reKN+kpDmaMWnD1alv6qsbbGTnl9t5Tq9B1WGSuVO0lZ59wAGhxADuQc3DAg\napWBzyYyCEY6JCWZKYzAu/Jfqw6qsev0az7dEcAVLZX0TUU6g+xkCkdjH3rooRDFzjk13BOPP17j\nmSjnExXFs6HwU1QSs2wSBzxEuwzp9KLCXcwX6nXR+9PprKwyleRQp237ueCVqh1Lc/bd5tq1eFP1\nxfjw8b6KeZ5ARPj+008nnqP5llbGLcVrhV36uH79Omxh5uR8YeZ00lLuUpE5122KQicwO5W2c6kI\nLFp+6+JVHVI0EFL3AXfdew8eeNcD4WSWn0EcTh2dHB/huZ/8GF/9ypfxt3/7NfzkRz+EnyfAz3Bg\nTNMcjyWH/83TnOk1jk1vggiuEy4F7gjTIOmgIm3ldeiwGlcYyGEcV/jkpz+N9XqdTj4RSpkr/ybe\ni7k2OIjx9Pe+ByJO6eQKfug5pOdDbSjWBnXNP/WYw1/Wd2SemENqIs857Zm8V4CqlP7b5Xa52TJ7\nj2Ec8bPXXsNbb76JzXptaLTcnNDF8tsWb05/1H5Hnkmh1rOOzmR/b+kgrT7Cg9yWa7QvPL9qR/3X\n1i/sv4XS0600rL0/APivX/+vpsH0YoLOM2c9lRDTlEbHjDYPlKFK6k9OE3Di4LJVQYXcE/nJEQ4G\nw89z0kcvX76CSxcvpTnTaVanaQoyget571z70sRlz6bKz4RFBkjJ6DnCw7UPAShPxPb0qnZ/7Y2F\nq9euSY/Ik8AJNntXSvi3L1tUr0W9NC4oWwUxNV3jbatzlWMTuGq9Vr+T4ci+BruGrKyyslC+Z0e4\nkdnI983J3+nJiQyiaLe2J+rx6r6ljtCLrveNb/xDgkP7isR/pEt7Lfsoy3N63OaGFPIs2iyAVbHs\njLkwZsPdjn2d2Lxc1LP2WfrMXKRYs/1v08d1+5ZPNufE+OREb9Zz0aJFodvHHvsWNN3W8Ja0r/sh\nCpts6/U6nJAMAqOCt6mPqY0tKxt0vfSn/Efp/ruGzteynVrfoWoTiV6f9X+7FnQwV+EzjKmaODfU\n7btl02/zD6QAIPP7tevXt/AZ0160YUl9TamRFui/xU+FZ1lfClDKqGQ6S39+mfZbdgEjBB3uHxzk\nE22x/2mauusjwRrTjIdADlq0u23R8FV2SfONdtHj+scnnmjaODbwtgXfNlrp0YF91/yQaRdI/gli\nznfXnqG8szZCjMKgJ0MzEB2drzc0NOFrAe59uPfBbn54MfQbk+CgmVzt4JnnGZNswCA7ajQTSo6p\nAGwBm2WqtjSZqF2IqQ0lAOPy9LMVYJnJeQ4C4XQz4e577sOHP/ZRTH4GjQMwDCFfvA+XMM9EoNWI\naZ4B57C32sG82eAH338af/gf/gO+9Cd/gr/86lexPjoCeY+Byr6YJat2UOpDjuFyAVvG2zMexOki\n+cguX7kTDz/8MJijE5BL3NiF21IU9EaYdib7BVbiItNmn09oFAw2zUVJNyDkiyWz3IR80rjQiuuS\nkaWf6ToewOgI33vqKWzWp9AXyMm73/zmN2tFycJs+hQ4w0NJMBLxYvOuMoM9KWGThU+OFEJSGoCc\nLz7stGcnHFArxno99RScaixU/jEFI1PPd0vwCq1oPC8JhTZOJW1cns977rkHq9WqWu/yPUca57Zv\nHB7m4XBwhveEpYXJwtZSBrXDVf+e+VW5jnS90oCRZ+EdrWjpNehjVL79sxsgszFgWmvCbor7eFF8\noQRS3IQxeJVc2UzZzNFKhV6fyiYvtFKKm4533XVXIYOICE888XhJH2Z+ljaX7AwShbtwKPZZwKYU\n9J5iZ9czESWjpccTUt/mN1us7E746rRp4bTFyn+bczZ8jlMRK65PTvDSSy+k3zVsFg6rO2h5TkS4\nceNGAYttK8vzGHmtmEuxlhUcM5ebJZpvFsZgQyml6IRKTgelfIOzTPLeYzNN+NSnPpn0nJOTE7zy\nTy/j8W99C1/5iz/Hd777HRwfHsLPEwbn4Oc5G3FxbDqgo0WfdXAH0pw7+ZfCRsioNn+kfSmnmzUe\n+cQnsL+/nxxt2iEjUjasvXIehuJCy/Db95/+XnIkaAeNGBzeexweHhYBKnaOE19prBtdtLOIOdxD\nt4kbcgwU0W8tI/ZmDJfb5XbRhRFc2ydHR3jttVdxcnwM9j6nOgwMO6+jjtHZ4o3Svgeq91pyJPC4\n2tEu9aVBuTpiSW9ZKtUIzJpNn+Opt4LX6PXG+d2mjnuLZWlcRIR/+PrX2/gkSvqoigMK73Xadgi6\ngFPVSYYGsVfK/skZZ1GSscGOGoYhydf9vT2M44hxGEPghWcwe7CXzfbs+GvpDloPWtIbCjxw6YDU\nsKc2rLxR8tjWC9G7Zb+VvGrIWgvrtWvXwMW9OyW9lDDk8bTqKEiqtZllBWdbZRFrpsXUV/m8Rd9a\np5LvLX1T+0N0e9YhnnBPWa9JefhFjnN+f73ZQPLAk6H11IeVwWosdq48laeWAeBb3/xme02b+W3q\nxca+atGI9nmEtVTruK3+W7RQPivHWOiG0E5vKurrPnt/ml9ofPTWsPzb3VymbIdb26mFV7u2NT4F\nBd9+7DE13rOv35D5g7HZbGL6dErbVzXuUOBWoQJhbZZkUmykcWCuRBmTdkwFzMj2U6+OritvCF2V\ngqssVg8v+JfMDVHeGGmUtIaUHa2Q0aQN+52IlI9C+zDi2ljQQcCc7sjUgVO2P1K0ZtdES+7Y8bXG\nIrTRWrOyeWjh4ZhO+PKlSxijHweR7s5axMfVw8k2mdniTWi801tr+vl3/vEfu+235Ltto/L/LfwV\nOKDSPtb9qErlO12M1OUdtRHCqJ1wkjPdIkYYlxao2rFGRPmSJNRKTnYchPd1FJ8lIqlvCS4Zt14p\nrgg8g1T0jt29ahGC7qPVX61w2IUvMSPhD9SItBcCDT4a7O3tYfYeH//YI7jz7rtrHBNhAmPDHn5w\n6aJj5qAA7+zs4O033sRbb72F//Xf/3v89Ve+gpdfeBF+nuCI4YhDLnLvw2kRAjA4bOapwIOGs7vj\nTuXRVhoGDMOAX/vVL2C1WmF0Q4ru0EKtddxY04J2yqiKBZPVRTZLHAKzFsOgV7yZwxYcojRnBaC9\n82rhGYxDLIxDlGoHz8CN6zfw/LPPRaebL6OK1dqpjFXzWZdS8SqVmiIaIV6knS8eC5+FSuEk1U9s\niWul1uKsx1Dl0sslnG1TRLViYw3HHl5aa6yn9AUDo4T94OAgp0xR60FoNys3RSchKs8oAPo4pj1R\n1oJJz1d9x0f8LIZJgr+sr/uzfQBhTryv8SVRhfI5G2P18VQpzg3x96gTNvix7oMo01y6+I7COapw\nIovSpuqs+S6UMzz2V60zzsqRpJGQY8JvvvkmLl++XBsMXNOxLhWtqN9bKbQSjL69JqQfabt3Ssgq\ny3nu2rAxc0oF1aIrW+w7+jlQKvDF+FTgApuNtCSrFa8OfDPknP7uU9+pDFiNEw1rLyAhKMc1DgpY\nkyMJsb9AX3qu9Xik72EYikXdmhdLA/HHFHyR1hIF58Q8z8nQmTk44z/16U9jHEdcvfo2HnvsW/jz\n//wlfP3rf49XXn0FQLhYfrNZp81I6cMWfQrQ0nAxzjjPLf1G8yUnmy6gFDn14IMP4r7770+pT8WY\nJkpb4aWzT+iKCPloFKAvQyAiDOOYHC3eewxEmKcJjz/+OE5PTws5KuuktT61km/nSvOjoBLkNKRE\n8Q61lqwQ3HR43u1yu5ylMIf7Ed984w28+eab2ExT0pfDeqnXdE+PafJx6vNSW7FUVVr99h0p22SJ\nASk12NIbhX87Kh3xZaBLGdhiT921bIYWb7Dj6MIs+qEZs8DUte7PyB4qfVQFEBVwcdRhoq0qgX8s\n+qDihfv7+zg4OMDR4WG8wy7wbSAEI/Rs28AHS5kR6gDJzWfgbc2h1hmL58U46xLq5c+gWr9qnf4J\ncqoMRAqw1h3ZdWN+bdoXWv+w9oJup2VbnAVnvb6WbLugo5e6X9BrxJZD8mXYPhNu0heOdo6HBPSl\nzSPRgeJG3DAMOD46UgFVaBb9uFg33ldrM8xpWT/bxWaNN+ZHt5PT/ZWBDiVA6n0J+WP1k7Ifyrnj\nIqCLOQbKmbH37kop5pCknZJGWny1GCtLmqW+7pe6MPqvppXiT9dptKP5XZ/Hl/OiP7fGU+EDYR1v\nNuvAz4ahC0uvnXrDp57DbGMS2KmTdY0+dD/Fvw2cAtmnkS5YjyeSWjAUUOrfGzi29h033qv+VeNo\n8ZHA0vt8S9OdXeTFb1tKQTNqkdm5bekS6Q81rnVzdmzFZ7VeQpYS4Nz589g92E/2v2eubAVNty3b\n6Kxj7+lN2jZeWhNLelcPhm162M2Oo/VOmqv4B+YUxILOXC7xKlveWRshDSEuSJjnOUVQLiHbtgFk\n1bw14Y6ojsw0y4p0tKgIbOkvGrnzxGAOFwETE5hrYmTjLNS/i1LeG1PJhMQdIIdmy/dmFkeRpBNS\nypAoAkQh/YRzGMcRX/i1R0Ee2BlWcAyMpC7Y1j2RwwxKvv/15hREwDA4vPTiC/iT//v/wv/y+/8z\n/u5rf40bV98GTxNWzHDew1GsH3frxYkqJ3zseDXxt/A2M2PyHl/84hdxGC+clkuKWkyhh1ugNN9E\nOen12ysVw6XSsajH1hNk2sFs4dROl2SINMZHcCGtGYU0Qn/1l39ZKHZzPPYuTvmzMrqyjxylYfHT\nUtSltKIwtMFuf2vhqqXYA/V+1DaFIcGn3+G200Bg0hH+PYWs1R9RuBBMn6AYhgE7OzuLY8ptaEVC\n/d4GtKbDTtGC2kY1B0OoPZ4l4VnWSzcFAChPwi0ZdEuw3sxvS7SYlAhT16Y0bDlGrPYlyr1s5Bwc\nHHQVEo2DHpx67rpOUkKOGm30Yce9jY+JBNIzpmHR7bZaailZ9rezKHIi66dpSrxKbxYKD8vt5PY2\nmw3mecazzz6b7uM4Cw5axopNOdVbS4EdhyPowziW9ZF1h1FFRtmjxktKqDU6tYFJRPDThCEGBriY\nWu7k5ASXL1/Gm2+9gT/9sz/B3/zN3+Dll14qTnbIGBNvUWPWaQOX1pD9rhXabfS2WgVdY3d3Fzv7\ne/j4I4+UwQ6KJ1rnRl/ZL421yYcTYeM4htNznvH9730PX/nyl3H5yhVcvvPOgAdFU9XajP/aoAYN\ng4cHXIg6nH3YkJI/WVd6HsUR4G5Sob9dbpdWGYcBfp5xdHSE119/DevTU6zGEdM0xbur+nzZd0JI\nEn03yNM6StLz9C+VOrX02dDR/tmFl3lNwSsMCD1dT967GTm6TQ9e0j+36eG3giWitoMofih4tNVV\n5RLcoLcOeM+D78HOOIIgNrI4ypUCgoaDlAL0eXxtmbwk/85ifxVzmvrPvJWZmzjUslQ9NXNRUk3P\nrrDjCKy9LTtzve16q26it+5uplhdZ8n3QKgjoQUfSsQlOCUbrc0KkfQ8oTdFd2+9/bayC8+2ybgY\nOBDt0vpxyY8C/RqnZXxW6+sMSS0XLuFmOBrCE5bASDubMehKwZ50KwAzJDNCxKUDGHM8kQ5ImJUe\nqj2BH77IcJft3YS/xrz08HSrdFby2NyW5g3bSkvHa+maBX0lOyL8O005E0bl11sYm/a36L6aPh41\nSFZ/+YkZV6u/Vh/q7XDGaAA4BuZxiU9SC7EaV2utKL30ZuZikU83noXlVI4rjekWbf2iHoQ3IWXH\n6LUn9ny3berDZE+NA0j3RO/v72N3d/em4D6LTDvL+5ZGZX0X3zvv/3Nh0KUJB1DxmFvlJ8rrckvl\nHXVZuhVAutiFZiMBUh2DdElVYY1q/a6+1IYoiLuKUBwVjns3DnG3Pxq0yJdh9qZap8mqxxSVBC4J\nKnyWSJjsTNRjtuMPn/M4GR6OY1QiYr5ZZqzGEfM8Y4hRP4/+2hfwpS99CefOn4P3M8R8EoVW7g8p\nosgjHtgRTqcNxt0djA545sc/wo9+8APs7e7hkY9+FA+/733Yv3ARI8k1qvlOBBmrHocei54zRFiY\nCDwzdnd3cf/99+ODH/wgXnjhhTCPzJD9f3bUVB4KBZtzxEirFELA0Jc1slrvlXOJ4pl23Cge1oYz\ngFpE54ZInuyADfQDEBw2nuHAWA0DXnjhBTz00ENgntOxUQtjq2iFoMRPXDscNwZkzSgHcaGracVC\nnEHehyhfF06vWCVHH6mcvU/buj2YO/pv6NvcF1HQl7TJXBzPs/ULx5fiF8IrtEEg/ep/U35DIqyG\nAXOk/4sXL+Ktt96qjBz5d44XBZfjzo4G52IcUozAGkaHEJnuYwRfncu1+T0eFQt7FwGZmscBSJdf\n6rHpzQJ9B02i0dmnlFFELuxYeQbYY+UCfL4y9up50DA3o7Y5pFZDXEeEkIpPtyt3TOmTLHYDaBgI\ngY0wvJ9BAAa5ZFMpvqLSC/3M7LEaBnzwgx/EOKy6sOcx1r+JsVS8G7GR8JkrN50Ztfwo4dD1bR35\nnk+beECt/4pvGD5dtNfgp8T5voSKf3Le5HA0Yhx2wnPPcBSi+uWkY4LTxxOQyEv/qe9+N9zP4rfo\nE+Y3DbvwgxbebElcJJ5685TxEvidwg0yv9Gp9nJdrRGUv3FRL0TvEhHO7fvif+YAABHKSURBVO9j\nvdlgs9lg9+AA73r3u/ChD3wIX/3qV3D04ksYncM8zdh4X90VBQgdx0tvoeko/J70GqM/CW+BekdO\nWGnj1+JY/vWeMbgBx8fH+OznfhlAcCx470OoclxvS/Sk54bgAv6M3JmjTvDsj3+EZ599Fg7A/ffe\ng4fe+yCYAt+TV5LOGMcreKqNS5dOuklgiecyLR/HOdLmE0cDV/TExF9v3a91u9wu4DkY5Ffffhtv\nv/02bty4gZ39fYzjiHma4MjFC63jKW0AMwLdk6OmAyHo/STCB8B2JxmhzVtTmyzO07b82+ZwaQO5\n4FABihS1LA+3lQZ8CSYjG6xs1OOo9ffsTE58fZt5H8eoebMdo4arcDQpOaNhWJojyW8+Rh11HEdc\nuHAhPN9sQINLfKuEwthwIKWTlzLF4kDjyo6x5Yxs4aCUXZSnkIMbsUsmZG1uFGNpv9I/YZHH0LbN\npU6o5/6f9u4/5pKrruP4+zv32e6zXXdTYbu7YAuChaKRlNoCGm1Fl9iECqYxgQYT/jAGtZKoMakQ\nNYpGU02sImJCMBqtbYxAKpKYVCsItfIjpVhCwUbddrvtbvdh27Xb3ef3zPGPc87MmXPn+RH77N6Z\nez+v5LT73Dt37pn5zo/zPWdm7tj2Y9a1T8T3x9tMW9Vzs9eazyfrK9F6rM0W86/bx7FtluVTdY5V\nFJSuClf8wmJ4jE7dzoXWQFxdF2u6skfNTNODis9HaD8GLeal6X5cr3P/QrPtbbHe/FeFWo7Fv3uw\nrZ4m/ztdp5b9v15fHe3SrI513wHdbfm8gzLepZq2eQqo25PpZzesb8eypJ9p5UobTB9/vjw/PoUp\nxj7T2qeT6dL9Jy1VVbG6usquXbta8+hatnT58nUQ24Tx//k0+by3EveNViy75pls76RThiZuEQbQ\nXDxehHXukiZwzOU2PPiF76wvfguP142xyfOgfDlycb+FWIfm2JVv4ul63Wy7y7+rOW/GR3aS7I6u\nHiRK9/muZY6avgRwrgqHkuaiu/j95vzTTMzMX9RWFKytrVOVJXv37WMUHo1VWHt/S212Dtto2u1I\nt720rzRdX9uZB7jObTuf11bnv67Pxe/o6rvZ6MLQsXVCs21vf+0MZyBkHuD0txbCc0mbg2p8zMJo\nNGK9qupbFB3N1XRVaLw4Nx700WjkG4fZxpE2fuLtZk2XgNeaVzhZ1Fc0hI7VeqcLB6K5omBXMefr\nQ9XaAMY2RvODE/UB3iB2ZPvvj/tschtnPOEUcUAhmV3W8KqqEgsDASMrkufu+w1xzkZUrgyP7vLL\neuhlh1k4tUDlyrqhUIZciMpRmW+QxAu9zSrWypKz584xKkY4VzFnjrKsGI0KlpcX+fy/fo7PP/AA\ne/bv5zte+QouP3SYvXv2ht9L8I898R3pFaPRXL3u47qLnZZ1Z2u8XsIROs3giiuv5H+OHmV1ZaXe\nPqrK+dsVkxiMnaxjgysZCGl1SsRpw6M1mh9F7nh0jbWnTzuu4g/E+W0nnGyqyj83NdnenPO3x9Yx\nbuUa1tqO4zN8/VX31ko4wKgKPyA0B9x77738+M03s3t+HsKyLi0t8eSTx+rbwNM2ZdyeYmxa265r\nmnwF7e3VNzkr/JUs8YRe1fMLH/f7n3O4sqqfHVt/eVIJCx1jVhSkXUp+VccfP3Z1XeqTdr2v+H+m\nHe3psvn6NHejFHH6dFXiB5yKwup11ZwQ4nGnGtuuRklnWtoQiNbX1livKi7ZvZvFpSWftIfPpldu\nN1dmU5+cl1dW6t+IKMO+ambhDrfkUQW0R+RdaCWlyXf9fjYI66ha21TzOBsfRIv7VnpHV8hm0uNd\nVRmU1M8sN5pbFeN6Te8Ji7uRHytpOuLTddts+671OVfG9RY6x/MTNmBlWSddgP/9I8JxDaAsCeOL\nFOHOuFi/eGzwu23akDUoChbLReb3zHP8qaco5gpc0Wz3y8vLPHU8/G5FbAwkyxDjPUqXlaSROrYs\n4XMxDwzbtO9gLuo9MU+m8oZSnHd6lXqzvTQXEuSNkvRK4nR/aibYYCAmW57Wtkk83jvfeeea87Nf\nhnQAJG4nTefz+XPn+fqjX2dU+Gedx3OFmVGVGzfo80QurDbf2K4qVsJ5ZSOx0V+fy3BQuubYhqsv\nLEiToLH16g9ESd2SOwOThDH+HkhhxhzGSw8c4MDBg+zdtw8K46sPP8zi4iJGGOwLD3UsO5Ks2HBf\nj+fCMG+cayWpZVmO/XZHVyO7dS9jcpFJur4Ji2kYV732NSwvL7FwaqVu1/ljT9HKWcwBRdOWK7P6\nEdoQcf6rKyucPHmSby0ssHDyJGX4Afa50YiXHDjAwqkF1vFXdm6WBKcxislhVcbF8+eEYq75ccT6\nuE2zvVtoq6brJl4VWzrHc889G1+eR2R75sGfVwwo1lYpq4qjjz/B3n37ueL8eYpRgQu/hzVnxoh4\nPgq5E2THm+z4V7ftNug8SvdtC4+LrWfpsnNC910iG3X0bUesf9q5kndOpd8X24Gxk9GS85GLeU6s\nS3KLsSNpM5k1Pw7eai+FKcN7+UVe6TFzcXGJY8eOhWVI2qxdXHOla318SpbJf2HShiY5H1vz24lp\nW7nzfB1UZVWfW3AV6+slZ184y/mlRZ8njoz1svRtclc1x7fkO+rzYZhPumR13NP/hvZy61QY29ZJ\nPdN6m/NtBMy3IytodbxvZ1nj+7nN1s1S/HHvbHnGt71ig/dckuN0xdzV+5VlcfUvxkcbZxem1Mvu\n2nlQU9H2a/nnSWJoMb8bX0Y61k16foyN9xLfTm4PMhhrtlbnNaNixPr6HMePH2fPnj1YeGRo2q5s\ndRi77rjEbc6Fz9T5hfPrcinsbzFnizGv27Abbx6QLnL677QucT+My097P40fyzvtfdw6jldVs2W0\ntqnYNqvz22a5i/TzjG+XsW2aPwjW4v6ZfE/sU/N1z9rw2cpyNFWKy+nb703fQFWvItfa/kjaWa15\nhvxteWmJ4yFnyrls/af5lCtLVlaXOXPmjP+x9KKgKiuSKNXbatrZ39XRW6/zZoU19Yds3whrpDVN\ns282fY7d5yhiezH7rjz3yiMytm7qDS75RMc23jpub3CO32jQp1PMWUMfha9du/8HHM41A0zQfa5s\nZjk+cG9ZDPLvz49xaVzT48vYclbhEkB/xWdrGygw3/8xKsJ5x1hZWeXgwYOcff55lhYX62Vxrnni\nzVaDPJ31SJa9y2ax6FqHW80vWl5e5sTTT7fy8u3Ub8Pz6ybbXOtz+XR51Tvm8+zp0/GfW+ZMttWC\n94GZvRu4e9L1EBERERGZgJ9yzt0z6UpI/ylvEhEREZEZtWXONJSBkJcCNwFPAMubTy0iIiIiMhXm\nge8E7nPOPbvFtCLKm0RERERk1mw7ZxrEQIiIiIiIiIiIiIiIiMj/R7H1JCIiIiIiIiIiIiIiIsOk\ngRAREREREREREREREZlaGggREREREREREREREZGppYEQERERERERERERERGZWhoIERERERERERER\nERGRqTWIgRAz+wUze9zMlszsi2b2xknXaVaZ2QfM7MtmdtbMTpnZvWb22o7pftvMTpjZopn9s5ld\nlb2/28w+YmanzewFM/uEmR28eEsy28zs/WZWmdmd2euKW8+Y2cvN7K6wzhfN7BEz+75sGsWtR8ys\nMLPfMbOjISb/bWa/3jGd4jZhZnaDmf2DmT0djonv6JjmRcfJzL7dzO42s+fN7IyZ/bmZ7b3Qyzet\nNoubmc2Z2e+b2dfM7FyY5q/M7GXZPBQ3mTrKmfpFedPwKWcaFuVNw6O8aRiUMw2TcqZuvR8IMbN3\nAX8I/CZwLfAIcJ+ZHZhoxWbXDcCHgTcDbwV2Af9kZnviBGb2q8D7gPcCbwLO42N2STKfPwZuBn4S\nuBF4OfDJi7EAsy4kxe/F70vp64pbz5jZZcCDwApwE/DdwK8AZ5JpFLf+eT/ws8BtwOuA24Hbzex9\ncQLFrTf2Av+Bj5XL39zBON2D33+PhGlvBD66kwsyYzaL26XAG4AP4tuNtwBXA5/KplPcZKooZ+ol\n5U0DppxpWJQ3DZbypmFQzjRMypm6OOd6XYAvAh9K/jbgKeD2SddNxQEcACrgh5LXTgC/nPy9H1gC\n3pn8vQLckkxzdZjPmya9TNNcgG8DHgN+FPgscKfi1t8C3AF8botpFLeeFeDTwMey1z4B/LXi1t8S\n1u07stdedJzwjcIKuDaZ5iZgHTg86eUeeumKW8c01wMlcIXipjKtBeVMvS8obxpMQTnT4ArKmwZZ\nUN40uNLV9t6JGKntffHj1jHNTORMvb4jxMx2AdcB/xJfc36t3g/8wKTqJS2X4UcWnwMws1cBh2nH\n7CzwJZqYXQ/MZdM8BjyJ4nqhfQT4tHPuM+mLiltvvR14yMz+zvwjFR42s5+JbypuvfXvwBEzew2A\nmV0D/CDwj+FvxW0AdjBO3w+ccc59NZn9/fhz55svVP2lJbZV/jf8fR2Km0wR5UyDobxpOJQzDY/y\npmFS3jRwypmmykzkTHOTrsAWDgAj4FT2+in8KJRMkJkZ/japf3POfSO8fBi/wXfF7HD49yFgNRwc\nN5pGdpiZ3Yq/9e36jrcVt356NfDz+Edd/C7+NtM/MbMV59xdKG59dQf+6on/NLMS/xjKX3PO/W14\nX3Ebhp2K02FgIX3TOVea2XMolhecme3G75P3OOfOhZcPo7jJdFHO1HPKm4ZDOdNgKW8aJuVNw6ec\naQrMUs7U94EQ6bc/A74HP2IvPWZmV+CTr7c659YmXR/ZtgL4snPuN8Lfj5jZ9wI/B9w1uWrJFt4F\nvBu4FfgGPpn+kJmdCImYiFwEZjYHfByfnN024eqIyGxT3jQAypkGTXnTMClvEpmwWcuZev1oLOA0\n/vlkh7LXDwHPXPzqSGRmfwq8DXiLc+5k8tYz+GcSbxazZ4BLzGz/JtPIzroOuBx42MzWzGwN+GHg\nF81sFT+iq7j1z0ngm9lr3wReEf6t/a2f/gC4wzn3cefco865u4E/Aj4Q3lfchmGn4vQMcDB908xG\nwEtQLC+YpEF/JfBjyZVNoLjJ9FHO1GPKmwZFOdNwKW8aJuVNw6ecacBmMWfq9UBIuArjK/hfngfq\n24qP4J8lKBMQGvM/AfyIc+7J9D3n3OP4jT2N2X78s+FizL6C/+GcdJqr8Y2UL1zQys+u+4HX46+w\nuCaUh4C/Aa5xzh1FceujBxl/pMXVwDHQ/tZjl+I7pFIV4ZyruA3DDsbpC8BlZnZtMvsj+IThSxeq\n/rMsadC/GjjinDuTTaK4yVRRztRfypsGRznTcClvGiblTQOnnGm4ZjZnmvSvtW9VgHcCi8B7gNcB\nHwWeBS6fdN1mseBv6z4D3IAfBYxlPpnm9hCjt+Mbkn8P/BdwSTafx4G34K+8eRB4YNLLN0sF+Cxw\np+LW34J/NvEK/oqY78LfNvwCcKvi1t8C/CX+B8TeBrwSuAX/3MzfU9z6VYC9+E6ON+CTrl8Kf1+5\nk3HC/+DjQ8Ab8Y9FeQy4a9LLP9SyWdzwj339FL7j4/W02yq7FDeVaS0oZ+pdQXnTVBSUMw2ioLxp\nkAXlTYMoKGcaZNksbsxwzjTxCmwzeLcBTwBL+NGm6yddp1ktYecpO8p7sul+CziBT8juA67K3t8N\nfBh/K/8L+FHIg5NevlkqwGdIGvWKWz8LvlH4tRCTR4Gf7phGcetRCQ2OO0OD4XxoBH4QmFPc+lXw\nj7voOq/9xU7GCbgMfzXp8/hOsY8Bl056+YdaNosbPonO34t/36i4qUxzQTlTr8oGxynlTQMrKGca\nTEF50+AKypsGUTZre+9kjNT2vnhxY4ZzJguVFhERERERERERERERmTq9/o0QERERERERERERERGR\nF0MDISIiIiIiIiIiIiIiMrU0ECIiIiIiIiIiIiIiIlNLAyEiIiIiIiIiIiIiIjK1NBAiIiIiIiIi\nIiIiIiJTSwMhIiIiIiIiIiIiIiIytTQQIiIiIiIiIiIiIiIiU0sDISIiIiIiIiIiIiIiMrU0ECIi\nIiIiIiIiIiIiIlNLAyEiIiIiIiIiIiIiIjK1NBAiIiIiIiIiIiIiIiJT6/8AI8Y4IiP3FtMAAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11053dd30>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pickle\n", "%matplotlib inline\n", "\n", "# Test undistortion on an image\n", "img = cv2.imread('calibration_wide/test_image.jpg')\n", "img_size = (img.shape[1], img.shape[0])\n", "\n", "# Do camera calibration given object points and image points\n", "ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size,None,None)\n", "\n", "\n", "dst = cv2.undistort(img, mtx, dist, None, mtx)\n", "cv2.imwrite('calibration_wide/test_undist.jpg',dst)\n", "\n", "# Save the camera calibration result for later use (we won't worry about rvecs / tvecs)\n", "dist_pickle = {}\n", "dist_pickle[\"mtx\"] = mtx\n", "dist_pickle[\"dist\"] = dist\n", "pickle.dump( dist_pickle, open( \"calibration_wide/wide_dist_pickle.p\", \"wb\" ) )\n", "#dst = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB)\n", "# Visualize undistortion\n", "f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,10))\n", "ax1.imshow(img)\n", "ax1.set_title('Original Image', fontsize=30)\n", "ax2.imshow(dst)\n", "ax2.set_title('Undistorted Image', fontsize=30)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
Roger-luo/QuDynamics.jl
examples/notebooks/JC_Model_QuTiP_in_QuDynamics_MCWF_method.ipynb
1
37255
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "require(\"/home/amit/Downloads/SemVII/QuBase.jl/src/QuBase.jl\")\n", "using QuBase\n", "require(\"/home/amit/Downloads/SemVII/QuDynamics.jl/src/QuDynamics.jl\")\n", "using QuDynamics" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "using PyPlot" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stderr", "text": [ "INFO: Loading help data...\n" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "wc = 1.0 * 2 * pi # cavity frequency\n", "wa = 1.0 * 2 * pi # atom frequency\n", "g = 0.25 * 2 * pi # coupling strength\n", "kappa = 0.05 # cavity dissipation rate\n", "gamma = 0.15 # atom dissipation rate\n", "use_rwa = true" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 3, "text": [ "true" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "# Hamiltonian\n", "idc = QuArray(eye(10))\n", "ida = QuArray(eye(2))\n", "a = tensor(ida, lowerop(10))\n", "sm = tensor(lowerop(2), idc)\n", "if use_rwa\n", " # use the rotating wave approxiation\n", " hamiltonian = wc * a' * a + wa * sm' * sm + g * (a' * sm + a * sm')\n", "else\n", " hamiltonian = wc * a' * a + wa * sm' * sm + g * (a' + a) * (sm + sm')\n", "end\n", "init_state = complex(tensor(statevec(1, FiniteBasis(2)), statevec(6, FiniteBasis(10))))\n", "init_state_dm = complex(init_state*init_state')\n", "tlist = linspace(0., 10., 200)\n", "c_ops = [sqrt(0.1) * a]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 4, "text": [ "1-element Array{QuArray{FiniteBasis{Orthonormal},Float64,2,SparseMatrixCSC{Float64,Int64}},1}:\n", " 20x20 QuMatrix in FiniteBasis{Orthonormal}:\n", "...coefficients: SparseMatrixCSC{Float64,Int64}\n", "\n", "\t[1 , 2] = 0.316228\n", "\t[2 , 3] = 0.447214\n", "\t[3 , 4] = 0.547723\n", "\t[4 , 5] = 0.632456\n", "\t[5 , 6] = 0.707107\n", "\t[6 , 7] = 0.774597\n", "\t[7 , 8] = 0.83666\n", "\t[8 , 9] = 0.894427\n", "\t[9 , 10] = 0.948683\n", "\t[11, 12] = 0.316228\n", "\t[12, 13] = 0.447214\n", "\t[13, 14] = 0.547723\n", "\t[14, 15] = 0.632456\n", "\t[15, 16] = 0.707107\n", "\t[16, 17] = 0.774597\n", "\t[17, 18] = 0.83666\n", "\t[18, 19] = 0.894427\n", "\t[19, 20] = 0.948683" ] } ], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "rho = Array(typeof(init_state_dm), length(tlist)-1)\n", "qumcwfen = QuMCWFEnsemble(complex(init_state), 1000)\n", "for i=1:length(tlist)-1\n", " rho[i] = complex(zeros(init_state_dm))\n", "end" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "for psi0 in qumcwfen\n", " i = 1\n", " mcwf = QuMCWF()\n", " for (t,psi) in QuPropagator(hamiltonian, c_ops, psi0, tlist, mcwf)\n", " rho[i] = rho[i] + (psi*psi')/length(qumcwfen)/norm(psi)^2\n", " i = i + 1\n", " end\n", "end" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "for i in 1:length(tlist)-1\n", " plot(tlist[i], real(trace(rho[i]*a'* a)), \"ro\")\n", " plot(tlist[i], real(trace(rho[i]*sm'* sm)), \"go\")\n", "end" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAApcAAAIQCAYAAADU2UXxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3X9w3PV97/unbMlu4AZBsMMNBmpbxj5eTX7ZqYxMmkJSCI1rJhz3jGOSnkp00imQe045g8Vcp5mSCSZB0KHtNOcmNzRWU7CvDwRSsMPv0sbBapTakNx6uShWTAA7QWsX1pDgSLJ0/1it9N3VrrSr/e7ud1fPxwzDWr/2u7uy9dL783m/Pw1jY2NjSJIkSSGYV+0LkCRJUv0wXEqSJCk0hktJkiSFxnApSZKk0BguJUmSFBrDpSRJkkJjuJQkSVJoDJeSJEkKjeFSkiRJoSkqXP7zP/8z8+bNy/lfX19fua5RkiRJNaJxNp/05S9/mcsvvzzjba2traFckCRJkmrXrMLlxRdfTFtbW9jXIkmSpBo3qz2XY2NjYV+HJEmS6sCswuWNN95IU1MTzc3NXHXVVTz77LNhX5ckSZJqUMNYEWXI559/nm9961tcdtllnHvuufzkJz/hzjvvpL+/n71793LllVeW81olSZIUcUWFy1ySySTvfe97Offcc3nuuecy3nf8+HEef/xxli5dyjve8Y6SLlSSJEnhe/vtt3nppZf4+Mc/zqJFi0r+erNq6Alqbm5mw4YNfP3rX+fXv/41CxcunHjf448/zmc+85lS70KSJElldu+99/LpT3+65K9TcrgMamhoyPjz0qVLgdTFrl69Osy7UkTddNNN3H333dW+DFWIr/fc4us9t/h6zx0vvPACn/nMZyZyW6lKDpevv/46jzzyCB/84AdZsGBBxvvSS+H/1xe+QPvv/A5d3d0sXry41LtUhDU3N7NmzZpqX4YqxNd7bvH1nlt8veeesLYwFhUuP/3pT7Ns2TLWrFnDu971Ln7yk5/wl3/5lyQSCb71rW/l/by/OnKEkSNH2LxvH7t7ew2YkiRJdaqocPm+972P3bt389WvfpW33nqLd73rXfz2b/829913H2vXrs37efOAS4DtAwN0d3Vx544dJV62JEmSoqiocHnLLbdwyy23zPrO1gG3eQa5JElS3ZrVEPVS7mz+yEgl71IVtmXLlmpfgirI13tu8fWeW3y9NVsVDZejwOnGUBvUFTH+YzS3+HrPLb7ec4uvt2arouHyB0Csra2SdylJkqQKqkgZcRToBT7f0sLu7u5K3KUkSZKqoCKVyz9btowHOzocQyRJklTnKlK5/JsHHnAQqyRJ0hxQkXD5V7feyomBAeaPjHC6sZFYW5un9UiSJNWhioTLjz3yCP8VaCC1/7IvHve0HkmSpDpUkT2X7yUVLNN3GDytR5IkSfWjoqOIgtYBcU/rkSRJqitVC5ee1iNJklR/qhYuPa1HkiSp/lQtXHpajyRJUv2pSLj8MalKJWSe1tPlaT2SJEl1pSLr0v+0cSP3Z8253O2cS0mSpLpTkXD5Z7fe6gk9kiRJc0DV9lxKkiSp/hguJUmSFBrDpSRJkkJjuJQkSVJoDJeSJEkKTcWPyEkkEnR3dRHv68sYTdTlaCJJkqSaV9FwOTg4yKfWr+f2gQG6gQZSQ9X74nE279vH7t5eA6YkSVINq+iy+J233MLtAwNcQipYpi/gEmD7wADdXV2VvBxJkiSFrKLhMt7Xx7o871s3/n5JkiTVroqGy/kjIxMVy1wXMn9kpJKXI0mSpJBVdM/l6cZGxiBnwBwdf3+UBJuPRk6d4rUTJ2gEzlu0CBYutBFJkiQpS0XTXKytjR/E41yS430/GH9/VASbj24GtgBfI7V835BM2ogkSZKUQ0WXxbu6u9nW0kIvqUol4//vBT7f0kJXd3clL2daweaju4DbwUYkSZKkGVQ0XC5evJjdvb082NHBxliMq1euZGMsxoMdHZGr/gWbj+JgI5IkSVIBKr7JcfHixdy5Y0el77Zoweaj+WTuE00A3aRC53zg5cOH2drZ6f5LSZI053n8Yx7p5iOA0zBxexDYDGwC9gAPAz8aGmJTTw+b29tJJBKVv1hJkqSIMFzmEWtr4wfp2zBx+07cfylJkpSP4TJLIpFga2cnz+3fT2dTE88CNwPbgP3AIdx/KUmSlE+0BktWWfbZ58eBO4CDQKKxkevPOAPeeouG0dGcn+8geEmSNNdZuQzIPvt8MakxRP8E/N8jI1z5n/8zF/yn/zSx/zJbFAfBS5IkVZLhMqCQs8+DezGzRW0QvCRJUqUZLgMKOfu8lgbBS5IkVZpruAGFnH2eHgTf3dXFbX19zB8Z4VfAyOgoC+fN448//GFONzZ67rgkSZqTqhouE4kE3V1dxMdDWrVDWaFnnwcHwaebgL4yMJA6dxw8d1ySJM1ZVVsWHxwcZHN7O5t6etgTj/Nwfz+PxONVHUY+myXv7CYgcO6lJEmau6oWLqMYymZz9nkhTUCSJElzRdWWxeN9feRrfVkH3FalUFbs2eeFNAFJkiTNFVULl1EKZaXs/SykCUiSJGmuqFryiUooyz6Vp9iGnEKbgCRJkuaCqu25jMow8lL3fjr3UpIkaVLVwmVUQlmpDTmzaQKSJEmqV1VbFs81jDy913F3BedchrH3s9gmIEmSpHpV1W6TKISyqOz9lCRJqgdz/mzxqOz9lCRJqgdzPlxGZe+nJElSPZjza75R2fspSZJUD+Z8uIRw936WMpBdkiSp1hkuQ1TqQHZJkqRaN+f3XIap1IHskiRJtc5wGaJSB7JLkiTVujm7LF6OvZFhDGSXJEmqZXMyXJZrb6QD2SVJ0lwXmWXxRCLB1s5ONrS2cvWqVWxobWVrZyeJRCL0+yrX3kgHskuSpLkuEqW0SndZx/v6yDcafR1w2yz3RnZ1d7N53z62DwywjlRgHSUVLD/f0sJuB7JLkqQ6F4nKZaW7rMu1NzI9kP3Bjg42xmJcvXIlG2MxHuzocAyRJEmaEyJRuSxXJTGfcu6NDHMguyRJUq2JROWy0l3W7o2UJEkqj0iEy3QlMZdydFl3dXezraWF3vGvn76fXlJ7I7vcGylJkjQrkVgWj7W18YN4nEtyvK8clcT03sjuri5uy5pzudszwCVJkmYtEuGyGl3W7o2UJEkKXyTCpZVESZKk+hCJcAlWEqutHMdhSpKkuScy4bIe1Upgq/QQe0mSVL8Ml2VSS4EtOMQ+7QTwbWBsYICrV6zgXRdcEMlgLEmSoiUSo4jqUaVPHSpFvK+PdYE/DwKbgU3APwG9J0/ySDzOpp4eNre3l+W8d0mSVB/mVLhMJBJs7exkQ2srV69axYbWVrZ2dpYlLGUHtqB14++vtvTz8fPDhzOG2N8J3A41EYwlSVK0zJll8UovU1f61KFiBZ+POGQchxmHih7HKUmS6secqVxWepm60qcOFSv4fMQg4zjM+eQ+dx2iEYwlSVJ0zZlwWell6qifXx58PrqAbTBxHOZpyAjGCWArsAG4Gjjy0ktl204gSZJqWyTDZTn2RlZ6mTrq55cHn4/FwG7gQWAjcIzUdUJmc88e4GHgR0NDNvdIkqScIrfnslx7I9PL1LkCZjmWqaN+6lD287GYVCMPwGvAZU1NfHN4mG8z2dyTlr2dwOH3kiQpLXLhMtfMxTDCTKytjR/E4xlfN61cy9RRPHUoPdj96NGj9ALrc3zMT4GPbtrEg7/xGzy+cyd3Dg3l/Fo290iSpGyRWxYv197IqC9TV8Lg4CCb29vZ1NPDE8kkfw7sJ/fzcevf/A137tjBsqVLbe6RJEkFi1zlslx7I6O+TF0J2VXh3aRGDm0HhoDXm5u5/JprMp6PSm8nkCRJtS1yyaCcYSaKy9SVFO/ry5hfGdxnOQpsXLJkyvNTje0EkiSpdkVuWTzqI3xq2Wyqwm4nkCRJxYhcuDTMlM9sBruntxM82NHBxliMq1euZGMsxoMdHaGfaiRJkmpfSeHynnvuYd68ebzzne8M63oMM2U026pwejvB3kOH+Lvvf59YWxvxvj7++MMfLuv57JIkqfbMegPj0aNHufnmmzn//PM5efJkmNc05/dGlktXdzeb9+1j+8AA60j9ZjFKKlh+vqWF3TNUhSt9PrskSao9s65c/umf/imXX345V1xxBWNj+RZbq68cp/3UqlKrwpU+n12SJNWeWVUu7733Xvbt20c8Hmfbtm1hX1NoolRpSw8vj2eNQeqq8BikUqrC2d3mQQ5UlyRJMItw+dprr/Fnf/ZnfOUrX+H8888vxzWFplyn/RSr2iE3rGBb6fPZJUlS7Sl6WfzGG28kFovxp3/6p+W4nlCV67SfYlVzOTl4Ks+eeJyH+/t5JB5nU08Pm9vbi9oeMJtuc0mSNLcUFS4feOAB9uzZwze+8Y1yXc8UpeyZjEqlrZohN8xg6wxSSZI0k4JLTW+99Raf+9zn+G//7b9x3nnn8cYbbwAwNDQEQDKZpLGxkTPPPHPK59500000NzdnvG3Lli1s2bJl2vssdTk5KkcXVjPkhrlPstRuc0mSVF27du1i165dGW9LJpOh3kfB6er48eMMDg5y1113cdddd015/znnnMMnP/lJHnzwwSnvu/vuu1mzZk3RF1fqnsmoHF1YzZAbZrD1fHZJkmpbruLewYMHWbt2bWj3UXCqec973sMzzzxDQ8NkVBkbG+MrX/kK//Iv/8Jjjz3GokWLQrswKL3qFpVKWzVDbtjB1hmkkiRpOgUni4ULF/I7v/M7U96+Y8cO5s+fz0c+8pFQLwxKr7pFpdJWzZAbleqtJEmaG0pej21oaMioZoYpjKpbFCpt1Qy55Qy2UZndKUmSoqPkcLljxw52lCm81VPVrVoht1zBttqzOyVJUjRFejDhbKtuVtQylSPYRmVAvSRJipZIh8vZVN2sqFWGR0FKkqRcIh0uofiqmxW1yojKgHpJkhQtRR//WE2FnNYTlSMf651HQUqSpFxqJgEUutxtRS2l3PtO66nZSpIkhadmKpeFnpFtRS0VxDe3t7Opp4c98TgP9/fzSDzOpp4eNre3F3Qu+0y6urvZ1tJCL6nnlfH/95JqturyKEhJkuakmgmXhS53x9ra+EGej4tKRa2Q5f1SFBrES5Futnqwo4ONsRhXr1zJxliMBzs6bJqSJGkOq5ky3nTL3SeAY6++yobWVkZOnWJPUxP3DA/TTvWOfMynEt3slerkjsKAekmSFC01Ey6zT+tJAN3Ac8BRYMfJk6yLx2kAXgO6gD9pamLpRRfBwoUVP/Ixn0p0s7vvVJIkVUvNLIsHl7sHgc3AJuADwA7IWAI+D/h74J7hYWK//dvsPXSIO3fsqHqwhMp0s7vvVJIkVUvNhMtgA0k3cDupQPkC1NTooUpUFWth36kkSapPNRMugw0kjy9YMBEo50NNLQFXoqpoJ7ckSaqWmgmXMNlAsmzp0olAeRpqagm4ElVFO7klSVK1RCt5FSjY3BMjFcpqZZh3V3c3m/ftY/vAAOsoXzd7pTu5yz20XZIk1YaaDJfB02G6SDX3bIeyhrWwpKuK3V1d3JYVxKLQzT4blRivJEmSakNNhsvs6t9u4A5gG/BGUxPvXraM961fH9mwVq6qYrWqh5UYryRJkmpDTYbLfNW/D83hZdhqVg8rNbRdkiRFX02GS/B0mGzVrB46tF2SJKXVVLe48qvEcPZ8HNouSZLSDJd1oprVQ4e2S5KkNEtKdSL77PWgclcPKzVeqRTZzU6/AkZGR1k4bx4LwdFJkiSFxHBZZWF1eAfHM2Urd/Uw6uOVspudEsCngK+Q2jJwnNS0gQPxOFfed9/EtAGDpiRJxTNcVlGYHd7Vrh5GucEqu9npTibPph8kFTRvH397w/Awo/399PX3O6NTkqRZcM9lFQVDT3o5O7vDu1Ae+ZhfdrNTHCb+HAyapb4GkiTJymVVhT0fMsrVw2pIbzn4+eHDGXtR5zMZJOPgjE5JkkJk5bKKwujwTiQSbO3sZENrK1evWsWG1la2dnaSSCRCvdZaMzg4yOb2djb19PCeoaGMUUmnYeLPwaAJqf2YW4ENwCeBlw8f9vmUJKkIVi6rqNQO76ie6V2tYyiDglsOYqT2nqb3XAb/nA6aDWTuv5x4PoeG6Ovpcf+lJEkFsnJZRaXOhwxzz2ZYghXDPfE4D/f380g8zqaeHja3t1esAhjcZ9lF6tz5XlLhO/3n/cBqmHgN3H8pSVLpDJdV1NXdzbaWlonQw/j/e0l1eHfN0OFdzVN58olK4A1uOVgM7AYeBDYCfwz8vKmJbStWcGD5cjqbmngWOASRez4lSao1LotXUanzIaN4pnfYTUqzlb3lYDGpyiSkAvzGiy9m76FDwOQy/i927qRhaCjn1/OMdEmSCmO4rLJSOryreSpPPlEJvMUMlU+/Bhv6+hiLxyP1fEqSVGtcFq9hUTzTOx14c6lEQEt3zz+3f//EcnehWw6yn89g5/jHgdeOHrVzXJKkGRguI6TYsUKl7tksh2oG3mAz0ZP9/XxveJiHgN8FPtjUxO+tXDntUPng8/kLYDOwCdgDPAn0JZMVb0ySJKnmjJXRgQMHxoCxAwcOlPNu6sJrr702dnlLy1gvjI3C2BiMnYaxXhi7vKVlbHBwMOfnDQ4Ojt3c0TH2iVhsbOPKlWOfiMXGbu7oyPvx5TY4ODh2eUvL2P7x608/jv0zPI4w3NzRMdY7fp/Z/+2HsZs7Ogq6/ps7Osbe39w89myJX0uSpFoQdl5zE1lEZJ9/DVO7rNN7M6MwRzKfUpuUShFGM1Fw/2V7MlnS15IkaS4yXEZEocEoqoPTg6p1DGWYzURRaUySJKnWuOcyIgoNM1GZIxlFYTYTVbsxSZKkWmW4jIjsMBPsVL4aOPLSS2zt7OTH+/c76DuPMJuJotiJL0lSLTBcRkQwzAyS2an8d8DHh4Y40NPDz/v7Xa7NI8zu+Sh24kuSVAtc24uIru5uNu/bx/aBAb7N5BnXg8Cnxv98J/D7ELnB6dOpRPNR8D6axsa4vrmZRuC8RYtg4cJZNRNlNyaNnDrFaydOpL4u0HHZZZFpopIkKUqilUTmsGCYeXznTu4cP4bwTiaDJkCM1LJsISfPVFslmo/y3gewbdEidv/zP8/6PtKNSen7+FoyyTqgIZmMXBOVJElR4bJ4hKTDzLKlSycqk3HI2GPZBWyDmliurUTzUb3chyRJ9cJwGUHB5p75ZC6BLwZ2Aw8CG4G1TU1sjMWmPXmmWuJ9fWVvPqqX+5AkqV64LB5BsbY2fhCPcwlwmql7LBeTWi4fBTZefDF7Dx2qwlXOrBKzIuvlPiRJqhdWLiMo2Km8Gmp2JE4lZkXWy31IklQvDJcRlG7uebCjg+dXrqSzqYlnif4ey2yVmBVZL/chSVK9aBgbG8tXlCnZwYMHWbt2LQcOHGDNmjXlupu6F+WzxKeTSCTY3N7O9oEB1pH6TWaUVCD7fEtLKHtE6+U+JEmqlrDzmut5NaBaZ3WXKntWZDAYFzt3Mls5ZltW43FIklRvDJcqq3IE43LOtswn+DiCwfaPP/zhmqkkS5JUCYZL1Zzg3Mm07LmT5ar0VmIwvCRJtcyGHlVMIpFga2cnG1pbuXrVKja0trK1s5NEIlHU16nm3EkHqkuSND0rl6qIMCt+1Zw7Ge/rI19//jrgNgeqS5LmOCuXqogwK37VnDvpQHVJkqZnuFRFhLGUnV5WP3r0KL15PqbccycdqC5J0vQMl6qIUit+g4ODbG5vZ1NPD08kk/w5sJ/KD5Z3oLokSdMzXKoiSq34BZfV3w3sBh4CNgJXAG3NzTzY0VH2bu3g0Zy1dmKSJEmVYLhURZRa8cteVl8M3AnsBR4HzluyhDt37Cj7GKDg0ZwbYzE+vnw5a5qb+T+am3kH0HHZZbPqgJckqV64QUwV0dXdzeZ9+/IfoThDxS9KjTTpgerpDvivJZOsAxqSSWdeSpLmPCuXqohSK35RbKRx5qUkSVMZLlUx6YrfjmeeYbihga8lk/wwmWTvwACPxONs6ulhc3t7RsCMQod4PtUc5i5JUlQZLlVxhVb8otIhnk+UluqzBU9D+nhLCx84+2w+dPbZbFixYtYnI0mSVAj3XKricp1ykwC6gUPAL3buZENfH78cGuLLgTPEd49/zHZgCHi9uZnLr7mG3d3dVdnbmF6qzxUwq7FUn0gk6O7q4rn9+zl65Ag7hoe5GdgCfA3cFypJqggrl6q47IrfILAZ2MR49/fQEKvjcRKHD08ES6heh3g+UZp5GazyfqC/nx3Dw1wC3AXcDhNV4gRwC/AlYP7AAL938cVWMSVJoTJcquKym3PuZDIAJUgFzT8AWshdFYTqLztD9WdeZix9X3wxt41XeV+Aib2g8cDtYIjfAzwJ9CWTOfe6SpI0W4ZLVVx2xS8YgIJB8zRErkM8qJozL4OVyj3xOOefPEn7+PvmMxnKg7eDz63d7ZKkcjFcquKyK37BABQMmjGIzLJzPrPpgA9DdlNU8DkMhvLg7eBzC6kq8VZgA/Bl4LGdO10ilySVzHCpisuu+B1ZsGAiAAVDUhewDWriqMVKzbxML4U/tnNnRlAMhshgKA/eDj632UvkDwM/GhpyiVySVDLDpaoiXfHbe+gQV1177UQACoakxaQ6xB8kdYb41cD7FyyoyBnixarEzMvgUviyoaGM/ajBEBkM5TeP394PjDD53LpELkkqF8Olqi64TL6azKXwYIf4/wlcde21Ve0Qz6cSMy+D1dHs/ajBQHkuqVD+beBTQKKxkevPOoufNjVNDKLPXiIPcgC8JKkUhktVXXCZ/PmVK+lsauJZor8UHlSJ4ymD1dHs/ajBKu/HgKvPOosXYjE+1NHBPx07xo+SSfYdPcqfj4f44BJ5tih04kuSapfhUpGQXiZ/6sUX+d7Ro3xnfD/m1StXsjEWi+RSeFCumZfphpmPAf/x6quzPhknvc/y54cPT7sf9VzgPwMNLS08fPgwew8dyqjyBkN8cJ9r8Fo3kNp+cOSll2zukSTNSsPY2Fi+gkvJDh48yNq1azlw4ABr1qwp191IVZdIJNjc3s72gQHWAcdJLUnfzvjJOKRCYB+wraWl4KA8ODjIp9av5/aBAb5EqvkmHTDTpxrFSVUijyxYwFXXXktXAScWbe3sZFNPD5eQau4J41olSbUp7Lxm5VIKwZSZl2edxW2U3jAT3GeZayl8tvtRg/tcu7G5R5IUHsOlFJJgB/z5F1wwMdQ8WzENM8F9lmGOZgqG4ccXLLC5R5IUGsOlVAaldo/n2mcZ9mimdBhetnSpzT2SpNAYLqUyyO4eL6ZhJjjP8j1DQxlfJ7gU/h3gohUrSh7NVIlOd0nS3GG4lMog2D1e7Gk40+2zDArrCMzsTvdgEP448NrRo3aOS5IKZriUymA2DTO5jnasxBGYwWv9BZlB+EmgL5n0WEhJUsEMl1IZTNcwE6wM3gp85+//nvefdRYfOf/8KUc7VuIIzOC1XtXcHEqXuyRp7jJcSmWSq2EmuET+TWAY+IexMa548012jIzkPNqxHPss813rkiVLQulylyTNXYZLqcyCDTN3MrlEflfg9guQ92jHoLD2WeZTiTPSJUn1zXAplVmwYSbOZIgM3g6e9V2JfZb5lNLlLkkSGC6lsgs2zARDZPB2cCm8Evss8ymly12SJCgyXD7//PNs2LCB3/zN3+SMM87g3HPPZf369dx3333luj6p5gUbZo4sWDARIoOBMsyjHUvhsZCSpFIVFS6TySQXXXQRX/7yl3n00Uf51re+xdKlS/nDP/xDtm/fXq5rlGpeumHmqmuvnQiRwUBZzaXw7Ov0WEhJUikaxsbG8h3OUbD29naOHTvGz372s4y3Hzx4kLVr13LgwAHWrFlT6t1INS+RSLC5vZ3tAwMsB7bAxOifE8AdwAHgjaYm3r1sGe9bv56u7u6yVyxzuXrVKh7u78///pUrefjFFyt4RZKkcgg7r4Vyrtu5557L4OBgGF9KqmvpymB3Vxfxvj6aTp3ihhMnaATOW7QIFi7kQ21tVQuUQenmnvSSeILUUnmc1H7RdHNPFK5VkhQdswqXY2NjnD59mtdff53777+fxx9/nL/5m78J+9qkupReIo+6WFsbP4jHuYRUc8+nSO3B7CYVOEeHhujr6WHzvn1lbzSSJNWOWXWLX3/99SxYsIDzzjuP//7f/zt33XUX119/fdjXJqmKbO6RJM3GrMLl5z//ef7t3/6N7373u3z2s5/lf/yP/8Edd9wR9rVJqiKbeyRJsxFKQ88NN9zAPffcw9GjRzOWxtIbRD/ykY/Q3Nyc8Tlbtmxhy5Ytpd61pArI1dwT3IP5i6Ym/veLLyYWkf2ikqTcdu3axa5duzLelkwm+d73vhethp7f+q3f4mtf+xpHjhzJ+UPl7rvvtltcqmHZzT1T9mAODzMaj9MXj7sHU5IiLFdxL10MDEsoJ/Q888wzzJ8/n5aWljC+nKSICZ7cA5lnpLsHU5IUVFTl8k/+5E9obm7mt37rtzjvvPM4fvw4999/P//rf/0vurq6OPfcc8t1nZKqqKu7m8379rF9YCC1x5JUxTKXdcBt7sGUpDmrqMrl+vXr6evr43Of+xxXXHEFn/3sZxkcHOTee+/lK1/5SrmuUVKVBZt7NsZi/KKpaaJiCan9l1uBDcAngZcPH2ZrZ2fZzh9PJBJs7exkQ2srV69axYbW1rLenySpcKE09OTjCT1SfdrQ2sqeeJwGMvdfrmN8BibQB2xraSlp/2UikZgYOD9y6hSvnTjB2OgoQ2+/zY6REdYBx0mdbHQQSDQ2Mu+MM2hqaJgYSm+TkSRNL5In9EiaW4ID1oP7LyHrJJ+BAX7v4ou5/JprCgp42WHy5VdeYcfwMDeTOirza8ADwB+M318w2G4FtoyMcPvJk6mQm0ymQq5NRpJUUaE09EiaW4ID1g/BxAzMQWAzsAnYAzwJ9CWTbOrpYXN7e85l6/QS9++uWsVHlixhU08Pe+Jx3vfTn/LN4WEuAe5iMsC+ELi/YLANfkwDqZB7C/AlJkOuS+eSVH6GS0lFC+7B/MWCBRO95wmdAAAgAElEQVT7L7O7yPMFvBdeeGFKoPxAfz87xsNkA6nKZ7oaGmcyUM5nskM9+Pbg7dmEXElSOAyXkmYlfUb6e1asIL1xe7qAtxO4LJmkt6eHq2OxKYEyWJGEzBAZvH0aJu4v38cUGnINmZIUPsOlpJIEZ2DmC3gJUkEzvVfyH5i6xB38XMgMkcHbMZi4v3wfYxVTkqrHcCmpJMH9lyPkDnjBoJkvUAbDIWSGyODtLmAb0AuszvMx01UxwYHvklROhktJJQnuvzzW3Ezv+Nvz7Y3MFyiD4RAyQ+TN47f3A+cCu4Fvj7/vD4Fnsz4mX8iFzJmcXwYe27nTJXJJCpHhUlLJ0vsvn/zJT/jzHFXMQgJlMEyOAouBXaTGD320qYl5S5dyQ3Mzbc3NdLS08EIsxvqODh6Ox/lORwfXxWI0LV/ODc3N/LSpKWfIzV4ifxj40dCQS+SSFCLnXEoKTbqK2d3VxbGHHqI3mWQ9k4GygclAeQmpQLkZ2E6qurib1ED0bcAbTU28e9ky3rd+Pf88w4zMO3fsyPhzIpFgc3s72wcGJkJuA+HO5JQk5WblUlKoclUxg3sjgxXK4BL3x4Arm5r4f1eu5EMdHTxx9CiPv/gid+7YUXTQy7dUb6OPJJWf4VJSWQQD3vMrV9LZ1MSzlC9Q5rr/7JA7U6PPifHrGhsY4OoVKzyzXJJmwWVxSWWTDngwebTj7X19zB8Z4XRjIx+qwLnfwaX6Izt3MjY0NDGkvTvwccGjJLuBhpMnGY3HPT5SkopkuJRUEcGgWc37/kFPD5cwda5m9n5MmDqyqFrXL0m1xGVxSXNGvpmc4MgiSQqL4VLSnJGv0QccWSRJYTFcSppTcjX6jJI5f9OzySVp9gyXkuakYBVzYyzGsbPOcmSRJIXAcClpzkpXMfceOsQThw8XNLLIKqYkTc9wKUlkVjKPLFiQ82zy7CrmTuCyZJIDPT189PzzeX9zMx86+2w2OCNT0hzmKCJJGjfTyKJgFTM4F3MrsGVkhNtPnmQdcDyZ5A7gQDzOR++9l3lnnEFTQwPnLVoECxcSq8B8T0mqFiuXkpQl38iiYBUzGDTvCtxOkKpu/gGwC1g8MsLXT57kh8kkewcG+GY8zmBPD5ctWWKFU1JdMlxKUpZ8I4uCVcxg0CwkdDaQqnZuAa4H/n14mJ6BAVbH4xzo6eHKJUv4+KpVBk1JNc9wKUk55BpZFKxiBoNmIaETMoNnsML5NPDc8DCP9vfbhS6p5hkuJWka+aqYwbmYwdv5Qifkr3DahS6pnhguJWkGuaqYq4EfjL8/FridL3RC/gqnszQl1RPDpSQVKFjFfH7lSjqbmngWuBnYBuwnf+iE/BVOq5iS6onhUpKKkK5iPvXii3zv6FG+09HBdbEYTcuXc0NzM0++8510NjZOCZ2jpMLmv45/nWDQLHSWpk0/kmqBcy4laZaCczGDEokE3V1dxPv6aDp1ihtOnKAROPucc9hz9Cj3DA9PVDgLnaV5J9AwPMxofz99/f1s3reP3b29zsqUFDmGS0kKWb7QCZPB8/n9+9l75Aj3DA9PdKE3kKpido9/bDBoQmq5vHv8Y9LL5Zdfc40D2SVFisviklRBuZbVC5mladOPpFphuJSkKilmlmZ20w+k/gG/BNg+MEB3V1cFr1yS8jNcSlKVFTJLM3sge4LUmeYbgC8Dj+3caaOPpEgwXEpSBMw0SzNYxcxeIn8Y+NHQkEvkkiLBcClJEZJvlmZwudy5mJKizHApSREzU9OPjT6SosxwKUkRlmu53NN9JEWZ4VKSakBwufzIggUFne7zJLA3mWSwp4fLlixhw4oVbGhtNWxKKivDpSTViHQV86prr83Z6JNdxRwEtgDXA/8+PEzPwACr43GPkpRUVoZLSaoxXd3dbMsxFzN7XFEwbCZIVTX/AHgaeGJ4mPf293Ogp4ePnn8+729u5kNnn523uplIJNja2cmG1lauXrXKCqikvDz+UZJqTHqJvLuri2MPPURvMsl6MquYkP8oyeCZ5VuBLSMj3H7yJOuA48kkdwAH4nE+eu+9zDvjDBgbY+jtt9kxMkI3cBymfExTQwPnLVrEr+fPZ2R0lIXz5rEQON3YSKytzSMqpTnEyqUk1aCZTveB/EdJBoPmXeSubu4CFo+M8PWTJ7nizTfZMTIy7cf8MJlkx8AAo/39fOXwYR7r7+fv+vtdhpfmIMOlJNWwfKf7QOYJP/mCZiGh84UCPqaBwpfhDZpSfTNcSlKNy1XFHAViwL+Of0y+oFlI6CzkY7L/PF3QfG54mEf7+53FKdUpw6Uk1YlgFXNjLMaPly/nuvETfoJHSQaDZiGhs5CPyf5zvqDpLE6p/hkuJamOpKuYew8d4vGBgYkTfoJHSQaDZoyZQ2chH5P953xB0xOFpPpnuJSkOpbrKMlg0LwZ2AbsJ3/o7Br/mN5pPib7z/mCplVMqf4ZLiVpjsgVNK+LxWhavpwbmpt58p3vpLOxcUroPBfYDXybVMD8Q5jyMaNMhtDsoBoMmlYxpfrnnEtJmoPSQTNbIpGgu6uLeF8fTadOccOJEzQC5y1aBAsXsr6tjeu6uvhmd3fOj5k3fz7bRkdpGB1l7yuvcM/w8ETQvIT8VUxIVTG7SQXQdBXz8muucUamVGMMl5KkCflCZ7ZCPiYdVJ/fv5+9R45wz/DwxCzOBjKHvAcHu3ePv380maSvp4fN+/axu7fXgCnVCJfFJUllkWsZPjiL072YUn0yXEqSym6mE4XciynVD8OlJKli8p0oNF0VE1I/rC4Btg8M0N3VVdFrllQcw6UkqaKKqWJCaol8K7AB+DLw2M6dLpFLEWa4lCRVRSFVzOwl8oeBHw0NuUQuRZjhUpJUNTNVMXMtkZ8gNXNzbGCAq1esYENrq5VMKUIMl5KkqstXxcxeIg9WMv8J6D15kkficSuZUoQYLiVJkZCrihlcIgdHFkm1wHApSYqUYBXzyIIFE0vkMP3Iop3AZckkB3p6uHLJEj6+apVBU6oCw6UkKXLSVcyrrr124oxyyD+yKEEqaP4B8DTw3PAwj/b3u1wuVYHhUpIUWV3d3WwbXyIfBU6Te2SRy+VSdBguJUmRFVwi3xiLceyss3KOLHK5XIqOxmpfgCRJ00kvkQMkEgk2t7ezfWBgYmRRA/mXyweBT43/+U7g+PAwd/T3c6C/n4/eey/zzjiDpoYGzj7nHI6//jqNkHH7vEWLYOFCYm1tdHV3A9Dd1UW8r4/5IyOcbmyceN/ixYsr96RIEWa4lCTVjHQls7uri2MPPURvMsl6JpfLG0hVMbvHPz5f0NwKbBkZ4faTJ1kGbEkm+Rpk3F4HNCSTvAZ0xeN8+N57mQfsGBmhGzgO3AEciMe58r77ePeyZbxv/XqDpuY8l8UlSTUl18ii1TDR+JNvuTwYNO8q4HYDqUC6Bbge2Dgywo6RkZwNRE8MD/Pe/n6X3iUMl5KkGhXcj/n8ypV0NjXxLJkn/OQLmoXchsxA+gK5g+p0QfOj55/P+5ub+dDZZ7PB04Q0RxguJUk1K13FfOrFF/ne0aN8J+uEn2B3eTBoFnIbMsNmIRXRYNDcBSweGeHrJ0/yw2SSvQMDniakOcFwKUmqCzMtlweDZiG3ITNQ5guqhSy9Ox5Jc4nhUpJUV/ItlweDZqyA25AZKIPvKyRoOh5Jc5XhUpJUd3ItlweD5s3ANmD/NLdHSQXKfx3/ml3j75uuIppvib3QPZoGTdUDRxFJkupa9pzM9JzKplOnuOHEiYnZljcE5lwGb+85epR7hodpB3aTGj/UC/wj0MNk0LyEzJFIxY5HuhNoGB7mtf5+uvr7uey++1h60UUZczYdcaRaYLiUJM0ZwaBZqHQgvT0wOH19WxvXdXXxze5unt+/n71HjnDP8HBG0IwFbmcvnecKmjA5+uh2YN3wMA0DA4wCffE4m/ftY3dvrwFTkWe4lCRpGtMF0uyKaDBo3kwqKN4GeU8TCgZNmBo2E+PvjzPZBHT5NddYxVSkuedSkqQS5drjeV0sRtPy5dzQ3MxPm5pmHI8E0zcBPQn0JZOOMlLkWbmUJClEuSqdwTPR8+3RhPxNQGAVU7XDyqUkSWVWyHgkyKxqOspItcpwKUlSBcw0Hil79JGjjFSrDJeSJFVYrqC5MRbjx8uXc12OM9ILOW7SoKmoMFxKklRF6aC599AhHh8YyHlGerHnmhs0VU2GS0mSIiTXGenBKqZBU1FnuJQkKYKCTUDBKmYh55pPFzSfGx7m0f5+RxqpbAyXkiRFVK4qZiHnmucLmun3nwC+DYwNDHD1ihVsaG21kqnQGC4lSYq4QkYZFRI0IXOs0T8BD588yep43CVzhcZwKUlSDZhplFEhQRPcm6nyKypcPv300/zRH/0RK1eu5Mwzz+SCCy7gk5/8JAcPHizX9UmSpCyzDZpgE5DKr6hw+fWvf52XX36Zm266iUcffZS//uu/ZnBwkEsuuYRnnnmmXNcoSZLyKCZogk1AKr+izhb/27/9W9797ndnvO2qq65ixYoV3H777Vx++eWhXpwkSSpc8FzzRCJBd1cXz+/fz94jR7hneJh2Ms8zzw6a3eO3PddcpSiqcpkdLAHOPPNMVq9ezauvvhraRUmSpNLkOwXo2FlnFTXWyHPNVaySG3qSySQHDx6ktbU1jOuRJEkhC54C9MThw0WNNXJfpopVcri88cYbefvtt/n85z8fxvVIkqQyKnaskQ1AKlZJ4fILX/gCO3fu5O677+aDH/xgWNckSZLKqJgmII+bVLGKaugJ+uIXv8j27du5/fbbueGGG6b92Jtuuonm5uaMt23ZsoUtW7bM9u4lSVIIZmoCSp9rXmgD0CDwqfE/3wk0DA/zWn8/Xf39XHbffbxnyRKOv/46jcDZ55wzcfu8RYtg4UJibW02CpXRrl272LVrV8bbkslkqPfRMDY2Njbzh2X64he/OPHfF77whbwfd/DgQdauXcuBAwdYs2ZNSRcqSZIqJx00n3zoIf5nMsl6YAOppp4G4Grg4fGPDb59K6nmn3SneTBsLgO25Li9DjgO3AEcBBKNjcw74wyaGhoyQud1XV18s7ubeF8f80dGON3YaBgNQdh5rehl8S996UsToXK6YClJkmpXGOeaQ2ZV8648t4PL6ruAxSMjfP3kSX6YTNIzMMDqeJzenh6ujsXY1NPDnnicv+vv99jKiCoqXP7lX/4lf/EXf8FVV13FJz7xCf71X/814z9JklRfSjnXHDLDZr7b+QJoMHReAvxDjre7xzN6itpzuWfPHhoaGnjsscd47LHHMt7X0NDA6dOnQ704SZJUfTPty0wHzUvIHNIOmWEz3+3g/s18ezm/RO4wOtMez6UXXeRezgorqnL5zDPPcPr0aUZHR6f8Z7CUJKn+FXvcZLCqme/2dKFz3QxvDwbNBlJhcwtwPfDvw8MTy+pWNSun5DmXkiRpbpopaI4CMSC9cS7GZPAM3i4kdM5mj6fL59VhuJQkSSXLd9zkj5cv57rxsHkzsA3Yn3U7WO3MFzrzvX26PZ4GzeqY9ZxLSZKkXIJ7NGFyn2a8r4+mU6e44cSJiTmXN7z+OmOjo+x9+23uGRnhZlLL2rdBxl7OLlLhcHvW26fb41noLM7jw8Pc0d/Pgf5+rrzvPt69bBnvW7/ePZqzZLiUJElllR02c8kVQIOhsx3YTWoWZi/wj0APmUETMsPmbIe+j/b309ffz+Z9+9jd22vALJLL4pIkqerSAXTvoUM8PjDA82+8wY9OnuR7x45NLLH/8cqVvBCLsb6jg4fj8Rn3eBayTzO7ISgB3EKqO33+wAC/d/HFLpcXycqlJEmKrOmqntnjkW7v62Pk1Cn2vPLKtCOS8lU0g1XMbsZPDUomU/syXS4vmOFSkiTVtHx7PAuZxRkMmi6Xh8NlcUmSVFeKmcUZXDp3uTwchktJklS3igma+fZlDpLqVN8E7AGeBPYmkwz29HDZkiVsWLGCDa2ths1xhktJkjQnzBQ0R8jdAOQpQMUxXEqSpDknV9A81txM7/j78y2XQ+HD2T96/vm8v7mZD5199pyqbtrQI0mS5rR00Ex0d7O5vZ3tAwMZDUC5TgGaaWbmVmDLyAi3nzzJOuB4MskdwIF4PKPz/LquLr7Z3U28r4/5IyOcbmwk1tY25e2/AkZGR1k4bx6MjPDa+CD68xYtgoULibW1RaaLvWFsbGxs5g+bnYMHD7J27VoOHDjAmjVrynU3kiRJoUh3mj+3fz9HxzvNtwN7mQyYVwMPj9/eQGofZgOpQLmJVNAM3g6GznWMjzgiNY/zNeAfZnh7IvD5y0gtyWd/rYPA601NsxqXFHZec1lckiRp3EzL5VDYcPZCzji/hFSAnO7tDVmff1eerxWlJXnDpSRJUg7poPnkT37Cn7e00EvhpwAVciLQCwW8PfvzCwmtu4DFIyN8/eRJfphMVrzhyHApSZI0jcWLF7O7t5cHx4+h/PHy5Vw3w8zMQqqbhbw9+8+FhNZCq5vpoPlXt95a7FMyLcOlJEnSDLLPPp9pZmaM3KEzGA4LeXv2n8Nakn8aeG54mEf7+/nYI48U92TMwHApSZJUpJlmZt4MbAP2k7+6mS+ABt+e/edCQmsh1c30++cB7y3ysc/EcClJklSCXEHzuliMpuXLuaG5mSff+U46GxunVDe7SAXQ3mnePhr4834KC62FVDfLyTmXkiRJIUkHzWzpEUfP79/P3vERR+3AblKjhHqBfwR6IOPt24A3mpo4+8IL2TZvHgvnzaNpZIQbTpxgbHSUvW+/zT0jIxlzOWOB2+mg2cDUvZzlYriUJEkqs2DoTAfN2wOD09cHBqcH3/6hGYaj5wqtN5OahXkbZITOYNAsJ4eoS5Ik1YF00Iz39TFy6hSvjVc3h8armw8xOUcz6CCwFkLLa1YuJUmS6kCxS/LzSO3p/HHI12G4lCRJqmMzLcmf29ICIY4jMlxKkiTNEbmqmwcPHuQfQgyXjiKSJElSaAyXkiRJCo3hUpIkSaExXEqSJCk0hktJkiSFxnApSZKk0BguJUmSFBrDpSRJkkJjuJQkSVJoDJeSJEkKjeFSkiRJoTFcSpIkKTSGS0mSJIXGcClJkqTQGC4lSZIUGsOlJEmSQmO4lCRJUmgMl5IkSQqN4VKSJEmhMVxKkiQpNIZLSZIkhcZwKUmSpNAYLiVJkhQaw6UkSZJCY7iUJElSaAyXkiRJCo3hUpIkSaExXEqSJCk0hktJkiSFxnApSZKk0BguJUmSFBrDpSRJkkJjuJQkSVJoDJeSJEkKjeFSkiRJoTFcSpIkKTSGS0mSJIXGcClJkqTQGC4lSZIUGsOlJEmSQmO4lCRJUmgMl5IkSQqN4VKSJEmhMVxKkiQpNIZLSZIkhcZwKUmSpNAYLiVJkhQaw6UkSZJCY7iUJElSaAyXkiRJCo3hUpIkSaExXEqSJCk0hktJkiSFxnApSZKk0BguJUmSFBrDpSRJkkJjuJQkSVJoDJeSJEkKTdHh8q233qKrq4srr7ySxYsXM2/ePL74xS+W49okSZJUY4oOl8ePH+cb3/gGw8PDXHPNNQA0NDSEfmGSJEmqPY3FfsLSpUt5/fXXAThx4gT33HNP6BclSZKk2lTSnsuxsbGwrkOSJEl1oGYbehKJBJ03dtJ6aSurLl1F66WtdN7YSSKRqPalSZIkzVlFL4tHweDgIOt/bz0DHxyAK4AGYBTiR+Psu2ofvY/1snjx4mpfpiRJ0pxTU5XLdLVyZdvKVLC8kFSwhNQjuRAGPjhA161dVbxKSZKkuasilcubbrqJ5ubmjLdt2bKFLVu2FPw1MqqVC4ALAu/8JfAskAAaYOebOwHovrXbCqYkSdK4Xbt2sWvXroy3JZPJUO+jIuHy7rvvZs2aNSV9jVu+eEtmtTJdsXwLeAD4GBNL5EOjQ/Qc7anpJfJEIkHXrV30Pd/HCCM00kjbB9oMzJIkadZyFfcOHjzI2rVrQ7uPmlkW73u+b7JaOTb+H8B+UsGyjpbIBwcHab+qnZ5f9xC/Ik7/pf3Ex+L0fLeHJR9cwqp1q2xekiRJkTSryuWjjz7KL3/5S958800ADh06xAMPPADAhg0beMc73hHeFY4bYWQyPC4GXiUVKBOkKpa5LIG+p/pCv5Zyy6jSBiuzV8JwwzD9o/30H+2v6cqsJEmqT7MKlzfccAM/+9nPgNTpPPfffz/3338/DQ0NHDlyhIsuuijUiwRopDFVrWwALgXuJxW4gkvk2eaNh9Ia0/d832RgDlZm09KVWVKV2R1f3VHxa5QkScplVsviR44cYXR0lNHRUU6fPp1xuxzBEqDtA22paiXAmcB/AV4A3mByiTzb6HgorRHpbvjDLx+eDMwJMpuXgpaMB1FJkqSIqJk9l923dtPyXAu8AoySCpi/C7yHydCZ7eh4KK0BwX2WQ+8YmgzMdViZlSRJ9atmwuXixYvpfayXjoUdxJ6KsfKJlcSeivGpNZ9i6b8tnQydjP//FWh5roXuW7urd9FFyNhnmd5TCpnNS2m/BJ4A7oWXXn7J04kkSVJkRH7NuJCRPBMf81TqYxiG0ZFR5jXN48Of/HBNjPHJ2GcZ3FO6iMnmJZgyemmoYYj4aNzTiSRJUiREOlwWeszj4sWLJ5paJj5nzUBqr2KNHA2Z0Q2f3lP6LPAL4CfA1aQejw0+kiQpwiK9LD5lcDrMOMNyNp8TBRPd8GlnAlcCf5T6r/npZmJPxVhwZIENPpIkKbIiHS4zBqdnyxOkZvM5UZDRDZ/tDbhmwzUcevYQS5cttcFHkiRFVqTDZcZScbY8QWo2nxMFU7rhIWdj0pQKZ1CNjV4KSo9har20lVWXrrJJSZKkGhXpcDmbIFWr4StfN3zHwo6MfaLTVjhraPRSkMddSpJUP6KZtMa1faCN+KvxzOaVtDxBajafU02FdMMHdd/azb6r9jHAACwh9evBKHB0vML5WG2MXgo+7lePvsrJ3z3pcZeSJNWBhrGxsXx1vpIdPHiQtWvXcuDAAdasWVP05ycSCdqvak816OQIUrmCxmw+p1oyuuEDne0zXWuxgTRqpjzuncC1pB7/E8Bqcv9y8Ap0LOywG16SpBCVmteyRbpymV4qDs6wnAhSj+UOUrP5nGrJ6GxPK2CsUHD0Ui2a8riDpxAlmJz3mW0J9D0VzYYsSZKUEulwCbMLUrUSvjIGp2crMEjVYhVzyuNOn0LUgMddSpJU4yIfLutZqZ3thQ6Zj5opjzt93OWFZAZNSB11+SypimYDvPTmS3Te2Bnp8CxJ0lwW6W7xeldqZ3vdDIy/FHia1Bim9HGXkGruuZ/UHsxrU/8NfXaInl/30H5Vu93jkiRFUCTDZZgzD6M8P7HUsUK1NjA+/VocPXo083Gnj7t8AXgVGr7TAC+Tqlimj7qsofAsSdJcFrll8TCXeqO+bFzqWKFaGhif8Vr8F1Ljhj5KKhzPA94BrIaWUy08cu8jdP9tNztf2snQlUO5v6DNPZIkRVLkKpdhLvVGfdm40MHp+dTSwPiM1+J/IxUw/z9gF/AtaP6H5onHvXr1anZ8dYdHXUqSVIOikz7GhdFBXY6vVS6ldLbX0sD4Ka/FmcCV47dHYclTS6Y8DxPhOVfAjFh4liRJKZGrXIa51FtLy8azUeh55FEwm9eiHo+6lCSp3kUuXIa51FtLy8azUeqyeiXN5rWYEp5/CTwO9EDTY03s/7f9kWnOkiRJKZFLV2Eu9UZ12TjMwee1MjB+Nq9F8LSl/d/dz5FXjjD8+8M1f+Z4LQ6+lySpUJE7WzzMs8GjeM74bM8Tr3WlvhadN3bS8+uemj1zPB0o9/cFQvIFwK+A7wM/h6bhJpYtWcb6D603aEqSKibss8Ujtywe5lJvFJeNo97BXi6lvha1NtMzaHBwkPar2un5dQ/9Tf2pYHkhqWX++4EY8Ecw/Nlh+q/qd0i8JKmmRW5ZHMJd6o3asnE5O9ijuNwa1jXVcnNWxi8U32MyJO9nckh8WvoXDVK/aETpe1eSpEJEMlzWs3KFpCgOjA/zmmpxLFE6WO98aCf8yfgbG5h8DAkyf9HIOkd955s7AVwilyTVlMgti9e7cnWwR3G5PcxrqrWxRMGl8KF3Dk0+/jEmX/9g0PQcdUlSnTBcVli5QlIU9ySGeU21NNMTsoJ1MFAuZvL1D749uEQekV8OJEmaDcNlhZUrJEVxT2KY1xTF5qzpZATrYKC8FHia1Ou/KPD2BJH75UCSpNkwXFZYuUJSFAfGh31N6easQ88e4vvf+T5tH2ij7/k+PvzJD9N6aWukBqpnBOtgoHwHqXPV46SC5UPAy2QukUNq/+UTwH3A/wOHjxyO1OOTJCmf6HVBzAHl6GCP4sD4cl1TFJuXILMz/qUjL002IJ1JKlA+S6pbvAEWvLmAa6+5lq7PddH9t93sfHMnQ2PjezPfAh4gtUw+/viGRofoOdpTcwPjJUlzT2Qql4lEgs4bO2m9tJVVl64qSyWqEvdRLVHck1iua4pi81KwgSd+RZyhZUOZe2vPBK4EPg38Nlx7zbXs+OoOVq9ezY6v7uDaa66d/Pga338Z/HvW0tbC2UvP5uzlZ7Ni3Yq6+jsnScotEpXLSlSiolrtCkvwqMS+p7JmSj5WnVE25bqmcs4Kna2MwAuppfD7SYXEHCcSdT+WGay7b+1m31X7GGAABonc45tJzhOI1pOqwP4ucAEkf5WE70P8u3Hu+8f7PI1IkupUJMLllB/MEPow6UrcR7VFbWA8lOeaoti8NCXwBpfC/wUWnFrAiotW5A3WwSC+89ROhhqGct9RBAfGZ/zi1gT8Pqm/Z08wWYENLvVfCcO/Gqb/+/30f7ffoClJdSYSy+KVGKMTxVE9mp0oNi/lDLzppfDPwNKLlnLo2UPs+OqOvOEpHcRXXLQi8/EFm3t2wktHXorE0nJ6+Xtl2+YoJwkAAB4XSURBVMrJX9yOM/n3LNgBH1zq99hLSaprkQiXlahERbHaVa/Kvbc1igPVwwy8GY8vosPVg3tMkwuSkyEy2PWefRpRrqDZQCpsPgV8DwbeGODidRdHIjxLkmYnEsvilTjar9rHB0bx3O9yqMTe1oz9iQXsZ6yEMDvjMx5fnEiePz6lqSr7BKKGrNv5jr3M0RmfHE3aGV8m9f7vUPDxnRo+xYnBEzAPzjn7HF7/j9en3F60eBELGxfW1XMgRUEkwmUlxuhUc1RPvTcTBVVib2uUmpcmGll+uJ+ml5sY3jCcqtCVEHgz9l++tJOhK/Psv6xwc0/wB/fhI4cnz0sPhsj0wPgLs27nC5rBKmZaBMJzLcsOkAzD6Mgoo4zyyrFXUs1WVwC/YqLB6t4H7+WMBWfQML+h5gLXjM1k50DygeTU2zaZSWXTMDY2lm8xr2QHDx5k7dq1HDhwgDVr1uT9uEQiQftV7alQkqMSFUb4qsR95NN5Yyc9v+7JHWxfgY6FHaH/AK1WhaL10lbiV8TzVohjT8U49OyhUO+zWo8145eGC5j4Yc3PoWm4KZQfVKsuXUX/lf1537/yiZW8+OyLs/raxZjyWHeRWqaH1H7Q1WTup/wYcDbwbeCjwAuk9lheSGrv6LWkvkeCtxn//GdJVTcD80Cr/cM+X0UsKkEsZ8C6gNTzma4Mx5l8DYIV43MCt8v0fRy2nI83+PiC35P5bgefgxp53FExmwrx/LH5jI6MMq9pHjQyJ6vmUfn3IpdC81qhIhEuoTIBYa4ErilBYLxSWokgXekwVM3HWolfGqZ871QpfE15rMFQGAyUS4C3mfgh3XiqkTMWnMEYY7x96m1Gfn8kM2juZDKkZv+wr+BrmUvOADNNEEs/1nJW/3L9ABsdG009txtHMgMWZIap4GtWY4Er43EPneKVV16ZGijz/dKS73YNPO5yKjYgpm9nfL8F/z7ku539S04V/t6EpaBVgemehwg/7rDDZSSWxaEyY3SqNaqn0s1E1Ry7VOm9rdV8rJWYt5mxnaOKJ/dMeazBJe/sE4hOQ/NYM9d84pqMfygnwtrIfo7sOZLaQjDK5PdLriXyt4EXYOA/BljRvoILzrugrP8A5wyUhYxXuhRGHhjh5MdOTlluLXXJecZl32DA+h6ZUzGC+1vz7XsN3g6+BtnjoxqG6R/tp/9of0W28+R83FcATzL5egQfb75msumazAp93G/20/9UP/e97z4uuuiiqgcBmH04ZB6cffbZHDt2rPAtBMHb2RXij81wG/I/v2X8exOWvN+H2asCuf6NmMW/F/WyPSMy4bKeVTpwVXPIeKX3tlbzsVbil4ZqN/ek/2E9/PLhzMeaPST+TFI/eKapMgZ/uUt/3YeGHyL5ajL1mII/7GFKmD7ZcJL4aDzUvcp5K2LBQBkMMPkCSaE/RBqS8CbEn4pz3/vuY8l7lhReJcoXcvMFrOw/59v3Wkjggoyq+cDpVFf/Nb93TVkqs3nDffY1FtJMVmyTWfbjfovU9o6PwfAFwwz8aqDsQWCm4JjxfVFsOLwAkk8mZw5D+W7n+/uQ73b2n2fz96YC4WvGVYHs78Pg4yjkOSnkcWfNAI5KwJ4Nw2UFVDpwVXPsUqU7uav5WCvxS0M1m3sythy8g8zHWuSQ+GzpoNl9a3dqLzQDU4NRmcJNaBWxYn+IQGZQOWeYlx54qfAqUb4fYPkCVvaf8zVYzaar/1eQ/H6Snu/2hPbDPu8w/uxqbL7Hm6+ZrNgms+xgNF1Vs4QgkC9AFlRVLLZ6mP19WEgozHe72Apx9p/LFL4K3ds4Y4gsdVWglH8vivjFtJQKeq4tgi1LWgr+/EIYLiug0oGrmmOXKt3JXc3HWqlfGtJBbP/z++lvyLOftdzbK4I/lNPSQ+JfgWsXXjurqmlGeH5zJ0NjQ2UJN2WpiBX7QwTy/wAtpEqU7/7yBSyy/hysNi9i9l39M5y2dOG7L2Qe86Zt3Mj1A/5Xb/+K4Y3DM1dj8z3e4ONrZ7KZLN/t4HOQ73HD7IJAnuXdGSuPhVYVi60eZn8fFhsQS6kQZ39OOcJXdmU2zwpBQSGy1FWBUv69KPQX06wKer6QPeNqSHB6zY/ihMlwWQGVDlzVHLsEld3bWo3HWo7xQ4WYEqSzmnteejN1ck9YSyYZWw6KPCu9GMHvl55XeyZfy1mEmxl/kIdZESv2hwiUViXKd3/5AtaSwJ8/Ov5Y/wuphoJXgReBT1JY4Cp0f+Ivh/npAz+d0sAQ/AE40dyV/QM+3w/y7KAy3eNNP750w8RT498L55zD60+P/5Advz06NsrbA+NNZvked/a1lLK8W0jlMfs+wqoeThfQi71dbIUYSvt7U8hzXugKQSEhstRVgVL+vSj0F9NCvscKWQ1JmwecR6gicULPXJD+AXro2UO8+OyLMx4FWIruW7tpea4FXiEVABj//yvjQeDWyg8ZL5dKP9bgyTT9n+hn+L8Op7qfvwVN32hi5WMr6VjYUZZmh0qd3JM+YSljn2V6GfwFUmOIdsKCbywI9bFOeS3T/wBDYUdJ/gGM/MYIJ684SXJTkpdef4nk7yZ5c8mbqSBzIZnHU+b7gQuTPxQgFWCeJnVd7eO3X2YykGR/fPDrBG9n32cxVaLs+8h3fe8g9TrFSX1P7mxi+TnLWfHcClY+tpKVz64k1hCjY2MH8e/H6fiNDmK9MZYvXk7z08288+g7aXykcerjy/4BmO+0pQJem4zXI/vzZ3rcBTzeladX0vGJDo79+BjJnyV546dvcOTgEd546Y2M2yd/dpJj/36Mjt/oYOXISpr2NE193NnXku95yPec5Lud75jU7Pso5Pui2NvZz2mxt/P9fch3ezTwObP5e1PIc579HBb7vBf79282z0khj3umX0yL+R4r5DkoIyuXdShKQ8bLrdKPdUp3+pnAx1M3h18ZZv3C9WWr2laiuWfGfZZXjt8ehRVPrQj1sWa/lq8OvcrJV09ODR7FVjLKVBEbY2yy8pWv+pddwSmlSpRv2TdYkXw6MDrnEzPvgcz1+s3Y1Z/vtcj+c77XJl+VqNBq7JnAJuApaNrbNLn37BPF7z3L1WSW8bgvIH/1qdjl3UIqj9nPQ1jVw+zvw2K3EOT7fiugQjwx53LxfEafGx/bs+eV1PNbyN+bQp7zQlcIZgqRYawK5HlOMirlhawWFFpBL2U1pIyqGi6reRRZvR+DVumxS9V8Piv5WKvZnV6J5p4Z91mmlWnLQfYP+4lmn0LCTbFLy9P9wA0GymkC28T3fW8fpxaf4sTTJ/L/EMkOKoXcLnDZd6KBYRYBK9uMXf35fthnP9fF/oAv5HEHX4tLw+0WzvW4+55K7QmdCEOFBIFiKo+5QkSx3xezCYfBgP5aU2pPYo5QOF1YLOX7rai/N4U859MFsWJDZBHfhxe++0LmPTePef8+vr+4oXHa52TGx13oL6bFroBM90t1mVQtXFbzSMS5dBxjJUTp+Sx3yK1mdzqUr7kn/bztfGjn5LGOZdxnWYhgmC4o3BTyj2nIFbF8v9jk+iGS3lR/dM/RqVWbQqpERVYlw5Czq3+6/YmFvDb5fsDPItyX+3Gn5axqFlJpKzbMQGHBcRbVw5zh8NLqFFSK+XtTUPgqdIWg2LAe8t+/mR53xvfXdL+YFrsCMt0v1WVStRN6qnEkYhTuux5F5fmsxGk91TjesuDrSDf4DGaNBprhH8GM520fkyfmBL/meNNQtY5jzDi+tdhTWfIdT5l1mlClTmKZzdF5UZhvF2xkO/Ly+A/A4GlLkP9EoHyvR/A2ZH6/nR4fxh/yLM1S5XweziH3Uaf5Hmvw+zB4TGq6MfBNMquKEf6+qIQZn/Pg7QuApyj+ec9xslg15ktO9+/D0WNHp/69K+So0+n+DUwXDX4E/CO1f/xjNX9IRyUg1IuoPJ+VCLlRCdJTrqOEoxMzvlYwBGSr8t+NGcNNof+YViFQ1pucr0X6B3R6H1q+12amYFXFIz+LNe3MxN8fmT4ARSTM1JpCfzmbCGJ19LwXFbIL/N5L/xu46jdX8f+3d+9BVZXrH8C/GwVFZBhANMGMDpMKXkYbUbxmHRAG0xQHC04XqOlXhlM6E0peCtQaa2qmmpomZTqMoWBaniZEMxXG1JRDanIxPaKIUqMBSWyCwFi/P3DDWnuzcQPr8u7N9zOzZmxt2OvdazHw9L7v8zzf7P7G+YNLvXtQG3FtUfZ1aj0OI5+lnJZBrt0/pgb9MVTM5AVB+X/qgEMzQPKl8Jb/a7GdVbIm0Kx+j2cyGFBq5q79ll3sD7wjHAmAXOWzisreM3CV+96X9p9d3QOX6S1uZPFrPa4tyj5EPcZh5LOU02o/pOIexqKjdh+OWAUqOmbiW2dWX7pyCS1RdxJ8uuhBXt9Wj6zqLBT+sxAR4RE4fe50ZzFxb3TeN4P3WTqqy+QL6/2NKiYgkH3dJdTZezau/jz0TqgkW67+DET/fIYFl0YW+tbj2jYlawDN+0AbNQ6ji7ZbaBXkGll+qDvyXy5jZ43tTPCx1zbxV6Dyj0pUmiqVxcTlm73lbR2PQrnPUtAyVqL/ku3P+GyI+ifDiqgbWehbj2sXnS2yX6g06M7rOtBjHKIUbVcUGbfWhyBXlGfZnY7AGlAW25UXW78H7R1ZrAvpWhcHttSz/BeAOUDikkTNCv4TEZHrMSy4tCzrJQ1KQtihMIw5OAZhh8I0626i97WNLlmj5ziMfJZyNkFuI4BvAWQB7gfccaL4BJJTknvcvUaUZ9kdRWAtL/tirzOD/Gvk3SVcvKMTERFpz9Ai6kYumWh9bVH2Ieo1DhGWv+T7EE/kn+jcUzgfaDW14mLbRVysvtjjvaaiPMvuKLr3yAuOO1JM3AmXwomISFzsLa4RrZZonXUcerEEuTOnzWwPLC2tA4HOvaZT2vea3o2lx3Z1dbXw91A+e+zT6tP1LKYloAS4FE5ERJphcKkRUfYhajkOS/A1ftZ4jJ01FuNnje/VsrMW+rpP8ubNm5gRMwNZf2WhPr6+fdm4CkIvG1sC6//993/KZ95VQMmlcCIi0ojx63kuyrpUjKK+pIEla9Qahyilluzp6z5Jmwxxy7Lx91DWjRRw2dhu20RH2uvpXFKJiIhcj2FF1Mm5idKpxp6+FlQXpetQX9kUW2cxcSIisqJ2vMZlceoV0cvz2Ow1bUR795kdALKB6l+ru13Cd4YMcUfYZPIfH4MwUxiSYpNQfaYaF05d4N5KIiJSFZfFIU6bRmcievClyJ629C/uomON9RK+5Weh8kql8BnijhIhk5+IiPoP3WcuRUsCkSdulEeV4+L8iyiPLEfWX1mYETNDiOQUNal1/xVFu60JEHwpsqf3+HTWeuwmc1z+s9AS3CJ8hjgREZGIdI0AREwCEaVNox7UvP+itHzsjmXGruhsEepH1StftLREvAnsbN6JorNFaGlqQcWDd34W/OAUPbaJiIhEo+vMpSKQ62XtQbWpvXdQtJlZOTXvvyillhxhs4Qvb4n4L6AloQXlUjkuXb/U+bNgKSx+HkAOgJ2AxzYP3bsOERERORtdZy6LzhZ1dguxFgQUHdI/CUTNvYMizszKqXn/RSm15AibDjvylohmAHvu/HctlD8LlsLidwQfDHaZWWwiIiKt6BpcipgEomZrP9GX2NW+/86SKGKzhC9viSgPNOUtEa0JsI+UiIjIGei6LC5iEoia7RFFL8+jxv0XednfHpslfHlLxN/Q+cysWyLKCbKPlIiISHS6Bpci9rlWc++giDOzcn29/86aWW9d69GjwaMzyJYHmmyJSERE1Ge6BpciJoHYFJk+OAZhh8J6lbgh4sysXF/vv4gJWY6yLOGXHS9D4pLEziDbshQOMImHiIhIBbpGO6Imgai1d1D08jx9vf8iJmT1hqLA+jC0B5qWZyZP4rkGJA5KdIp9pURERKLQfSrNWZJAekMRtAhaG1F+/+WdiWYvnn3XzkSiL/s7Sh5kn7h9AlfyrqB1QWv73ksBnxkREZEzYfqrikSdme1Kb8omqZlZb7Qug2zBnxkREZEzcJ5oQCd97TPuLDOzvSmbJPqyf285yzMjIiJyBgwuZUQvgq6mnuyftATcJ/57Au5V7lxCJiIiIrt0CS7Tt6SjorqiVzOBehK9CLqaHN0/qQi4YwH8CeAYgCOAe6s77g+6HzOnzuQSMhEREQHQKbj8puUbp5gJ7G02dF+X0o1gs3+yEcBxtBcVNwGVDZVITklGc3OzMuD2AhDd/s/Wa62YOWimywTcRERE1Hf6LIuPgG1dRAFnAnuTDe2sS+mK/ZPy/tp3PkNLQwuyDmW1l+lZYedNnKj8EBEREelD1yLqCgK0Q7TWmyLozlpYXFFQ/Tg6+2ub0B5sfglgKgB/uET5ISIiItKHccGlgIFJb9ojit5P3B55ZyKPSg/lZziBzmBT3sHGmpOVHyIiIiLtGRdcChiY9KY9ojMXFreU4Am+P1j5GX5DZ7AZAOH6wRMREZG4jAsuBQxMetNnXPR+4o6w+QwmdAabswAchlD94ImIiEhc+gSXN+A0gYllNq/seBmO/ecYpk2e1tEecfys8UhOScZvv/3W8fW9WUoXjc1nkC+FewGIB3AeQA6AnYDHNo9uA24iIiLqv3o0rWY2m7F+/Xrs3r0bdXV1GDduHNLS0vD44493+31DTw3FgHMDMCxgGAYNHOQUrfW6ywIv/GchIsIjcO7nc2hubXb6wuI2PdEtS+Hy8kPz7/z7GpA4KFGoLH8iIiISR49mLuPi4rB9+3akp6fjwIEDCA8PR0JCAnJycrr9PvNCM+ofqQduA4X/KcS/P/630IEl0E0WuC9Q+Xslck25KI8qx+UFl9H6ZCvwI+C+1R0h+SF3XUoXjfV2gH+0/gPuee5AFXo843y3nwVyLXze/Qufd//C50295XBwmZ+fj0OHDuGTTz7B888/j4ceeghbt25FVFQUUlNT0dbWZv+bTRC+NI81myzwRgAHAXyO9iLi8qDTG8ASoHVBK+ZMnYOy42VOEUDLybcDVBRVoLqkGkmDHd97asFfRv0Ln3f/wufdv/B5U285vCy+d+9eeHt7Iz4+XnE+OTkZiYmJOHXqFGbMmNH9mzhR0W1FFri8yLg8k9qaE32+u7EEm0REREQ94fDMZWlpKUJDQ+HmpvyWiRMnAgDKysocuprIpXnkFBnU8rqP8kxqa070+YiIiIi04HBwWVtbCz8/P5vzlnO1tbV3fxMnKc0DWGVQy2crWVSciIiIyC5NI6Gmpqb2f9TcOXEDCAkKwenTp7W8rCqejHsSh1YcwvWx14G/APx65wVPAGfR3i/dmhN9Pq3U19f368/f3/B59y983v0Ln3f/cf78eQCyuK2vJAdFRERI06ZNszlfWloqmUwmadu2bTavZWdnW+b5ePDgwYMHDx48eAh8ZGdnOxoWdsvhmctJkyYhJycHbW1tin2XJSUlAIAJEybYfE90dDSys7MRHBwMT09PRy9FRERERDppampCZWUloqOjVXk/kyRJkiNfeODAAcTGxiI3NxfLli3rOB8TE4OysjJUVVXBZLKX6UJERERE/YHDM5cxMTGIiorC8uXL8ccffyAkJAQ5OTk4ePAgduzYwcCSiIiIiByfuQSAxsZGrFu3Dl988QXq6uoQGhqK1157TTGTSURERET9V4+CSyIiIiKi7vSot7ijzGYzVq5ciaCgIHh6emLKlCnYtWuXFpcigx0+fBjPPPMMxowZAy8vL4waNQqLFy9m+Yp+JDMzE25ubvD29jZ6KKSRY8eOITY2Fn5+fhgyZAjGjBmDzZs3Gz0s0kBxcTEee+wxBAYGwsvLC6Ghodi0aZN6JWrIEGazGatXr8b8+fMREBAANzc3ZGRkdPm1p0+fRmRkJLy9veHr64ulS5fiypUrPbqeJsFlXFwctm/fjvT0dBw4cADh4eFISEhgn1IX9Omnn6KqqgqrVq3C/v378cEHH+DmzZuIiIhAQUGB0cMjjVVXV+PVV19FYGAg9127qJ07d2LevHnw9fXF559/jv3792PNmjVGD4s0UFJSgtmzZ+PatWv48MMPsW/fPjzxxBPYuHEjEhISjB4e9UFNTQ22bduG1tZWLFmyBAC6/J39888/Y968ebh9+zZ2796Nzz77DBcvXsScOXNQU1Nj8/V2qVLQSGbfvn2SyWSScnNzFefnz58vBQUFSX///bfalyQD3bhxw+ac2WyW7rnnHikyMtKAEZGeHn30UWnx4sVSUlKSNHToUKOHQyq7fv265OXlJaWkpBg9FNLB2rVrJZPJJFVUVCjOv/DCC5LJZJJu3bpl0MhITTU1NZLJZJIyMjJsXouPj5eGDx8uNTQ0dJy7evWq5OHhIa1Zs8bha6g+c7l37154e3sjPj5ecT45ORm//PILTp06pfYlyUDDhw+3OWdZSrl+/XoX30GuIjs7G99//z0+/vhjSNy67ZIyMzPx559/cqaynxg8eDAAwMfHR3Hex8cHAwYMgIeHhxHDIpXZ+319+/Zt5OXlYenSpRg6dGjH+dGjR+Phhx/G3r17Hb6G6sFlaWkpQkNDFYXWAWDixIkAgLKyMrUvSYKxtAwbP3680UMhjdy4cQMrV67Eli1bEBgYaPRwSCNHjx6Fv78/ysvLMXnyZLi7u2PEiBFYvnw5GhoajB4eqSw5ORkBAQFYvnw5rly5goaGBuTl5WHr1q1ISUlhMxQXV1FRgebmZkyaNMnmtYkTJ+LSpUtoaWlx6L1UDy5ra2vh5+dnc95yrra2Vu1LkmBSUlLQ1NSEdevWGT0U0khKSgrCwsLw4osvGj0U0lB1dTUaGxuxbNkyJCQk4PDhw0hNTcX27dsRGxtr9PBIZaNGjUJhYSHOnDmDkJAQ+Pj4YNGiRUhKSsL7779v9PBIY5b4zF4MJ0kSfv/9d4fey+Ei6kSO2LBhA3bu3ImPPvoIU6ZMMXo4pIE9e/YgLy8PP/30k9FDIY21tbWhubkZ6enpWL16NQBg7ty58PDwwMqVK3HkyBE88sgjBo+S1HLhwgVERkYiJCQE77zzDgICAnDy5Els3rwZDQ0NyMzMNHqI5CRUDy79/f27nJ2sq6vreJ1cU0ZGBt5880289dZbeOmll4weDmnAbDZjxYoVePnllzFixAjcunULADqWSurr6zFw4EB4eXkZOUxSib+/Py5dumTTbzgmJgYAcObMGQaXLmTt2rVoa2vDt99+27EEPnv2bAwbNgzPPvssnn76acydO9fgUZJWLPGZJV6Tq6urg8lkgq+vr0Pvpfqy+KRJk3D+/Hm0tbUpzpeUlAAAJkyYoPYlSQAZGRkdR1pamtHDIY3U1NTg5s2bePfdd+Hn59dx5ObmorGxEb6+vnjqqaeMHiapZPLkyd2+zvJTrqWsrAxhYWE2eyunTp3a8Tq5rpCQEHh6euLcuXM2r5WUlOCBBx5wOKlL9eByyZIlMJvN2LNnj+J8VlYWgoKCMH36dLUvSQbbtGkTMjIysGHDBmzYsMHo4ZCGRo4ciYKCAhQWFnYcBQUFiI6OxuDBg1FYWMji2i5k6dKlAID8/HzF+X379gEAf5+7mHvvvRelpaVobGxUnP/hhx8AtO/JJNc1cOBALFy4EF999RXMZnPH+aqqKhQUFCAuLs7h99Kk/WN0dDSKi4vx9ttvIyQkBDk5OcjMzMSOHTtYiNXFvPfee0hNTUVMTAzeeOMNmxIHERERBo2M9JSUlIQvv/ySGcQuaNGiRfjuu++wfv16TJ8+HcXFxdi4cSOioqLw9ddfGz08UlF+fj4WLlyI6dOnY9WqVfD398fJkyexZcsW3HfffThz5gwGDmSqhrPav38/Ghsb0dDQgOeeew7x8fEdZSMXLFgAT09PXLhwAeHh4XjwwQeRlpaGpqYmvP7667h16xbOnj3r+NbGPtbi7JLZbJZeeeUVaeTIkdKgQYOkyZMnS7t27dLiUmSwefPmSW5ubpLJZLI53NzcjB4e6SQpKUny9vY2ehikgaamJiktLU0aPXq05O7uLgUHB0vr1q2TWlpajB4aaeDo0aNSTEyMFBgYKA0ZMkQaN26clJqaKtXV1Rk9NOqj4OBgxd9n+b+vXr3a8XU//vijFBkZKXl5eUk+Pj5SXFycdPny5R5dS5OZSyIiIiLqnzTpLU5ERERE/RODSyIiIiJSDYNLIiIiIlINg0siIiIiUg2DSyIiIiJSDYNLIiIiIlINg0siIiIiUg2DSyIiIiJSDYNLIiIiIlINg0siIiIiUg2DSyIiIiJSDYNLIiIiIlLN/wOeRUGMBnZofAAAAABJRU5ErkJggg==", "text": [ "Figure(PyObject <matplotlib.figure.Figure object at 0x7f0403b850d0>)" ] } ], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
Ledoux/ShareYourSystem
Pythonlogy/draft/Directer/Readme.ipynb
1
8380
{ "nbformat": 3, "worksheets": [ { "cells": [ { "source": "\n<!--\nFrozenIsBool False\n-->\n\n#Directer\n\n##Doc\n----\n\n\n> \n> The Directer is a walker through the folders of the harddrive, \n> assuring a call of _DirectingCallbackFunction at each level.\n> \n> \n\n----\n\n<small>\nView the Directer notebook on [NbViewer](http://nbviewer.ipython.org/url/shareyoursystem.ouvaton.org/Directer.ipynb)\n</small>\n\n", "cell_type": "markdown", "prompt_number": 0, "metadata": { "slideshow": { "slide_type": "slide" } } }, { "source": "\n<!--\nFrozenIsBool False\n-->\n\n##Code\n\n----\n\n<ClassDocStr>\n\n----\n\n```python\n# -*- coding: utf-8 -*-\n\"\"\"\n\n\n<DefineSource>\n@Date : Fri Nov 14 13:20:38 2014 \\n\n@Author : Erwan Ledoux \\n\\n\n</DefineSource>\n\n\nThe Directer is a walker through the folders of the harddrive, \nassuring a call of _DirectingCallbackFunction at each level.\n\n\"\"\"\n\n#<DefineAugmentation>\nimport ShareYourSystem as SYS\nBaseModuleStr=\"ShareYourSystem.Standards.Interfacers.Killer\"\nDecorationModuleStr=\"ShareYourSystem.Standards.Classors.Classer\"\nSYS.setSubModule(globals())\n#</DefineAugmentation>\n\n#<ImportSpecificModules>\nimport os\nfrom ShareYourSystem.Functers import Argumenter\n#</ImportSpecificModules>\n\n#<DefineClass>\n@DecorationClass()\nclass DirecterClass(BaseClass):\n\t\n\t#Definition\n\tRepresentingKeyStrsList=[\n\t\t\t\t\t\t\t\t\t'DirectingCallbackFunction',\n\t\t\t\t\t\t\t\t\t'DirectingLiargVariablesList',\n\t\t\t\t\t\t\t\t\t'DirectingFilterFunctionPointer'\n\t\t\t\t\t\t\t\t]\n\n\tdef default_init(self,\n\t\t\t\t\t\t_DirectingCallbackFunction=None,\n\t\t\t\t\t\t_DirectingLiargVariablesList=None,\n\t\t\t\t\t\t_DirectingFilterFunctionPointer=None,\n\t\t\t\t\t\t**_KwargVariablesDict\n\t\t\t\t\t):\n\n\t\t#Call the parent __init__ method\n\t\tBaseClass.__init__(self,**_KwargVariablesDict)\n\n\t#@Argumenter.ArgumenterClass()\n\tdef do_direct(self):\n\n\t\t#Call the folder method before\n\t\tself.folder()\n\n\t\t#debug\n\t\t'''\n\t\tprint('Directer l.62')\n\t\tprint('self.FolderingPathStr is ',self.FolderingPathStr)\n\t\tprint('')\n\t\t'''\n\t\t\n\t\t#Definition the call back function if not already\n\t\tif self.DirectingCallbackFunction==None:\n\n\t\t\t#Definition a test function\n\t\t\tdef test(_LiargVariablesList,_FolderPathStr,_DirKeyStrsList):\n\t\t\t\tpass\n\t\t\t\tprint(_LiargVariablesList,_FolderPathStr,_DirKeyStrsList)\n\n\t\t\t#set\n\t\t\tself.DirectingCallbackFunction=test\n\n\t\t'''\n\t\t#Call the function\n\t\ttry:\n\t\t\tself.DirectingCallbackFunction(\n\t\t\t\t\t\t\t\tself.DirectingLiargVariablesList,\n\t\t\t\t\t\t\t\tself.FolderingPathStr,\n\t\t\t\t\t\t\t\tself.FolderedDirKeyStrsList,\n\t\t\t\t\t\t\t\t**_KwargVariablesDict\n\t\t\t\t\t\t\t\t)\n\t\texcept:\n\t\t\tself.DirectingCallbackFunction(\n\t\t\t\t\t\t\t\tself.DirectingLiargVariablesList,\n\t\t\t\t\t\t\t\tself.FolderingPathStr,\n\t\t\t\t\t\t\t\tself.FolderedDirKeyStrsList\n\t\t\t\t\t\t\t\t)\n\t\t'''\n\n\t\t#Walk with os\n\t\tos.path.walk(\n\t\t\t\t\t\tself.FolderingPathStr,\n\t\t\t\t\t\tself.DirectingCallbackFunction,\n\t\t\t\t\t\tself.DirectingLiargVariablesList\n\t\t\t\t\t)\n\n\t\t\"\"\"\n\t\t#Do it Manually\n\n\t\t#Call the function\n\t\ttry:\n\t\t\tself.DirectingCallbackFunction(\n\t\t\t\t\t\t\t\tself.DirectingLiargVariablesList,\n\t\t\t\t\t\t\t\tself.FolderingPathStr,\n\t\t\t\t\t\t\t\tself.FolderedDirKeyStrsList,\n\t\t\t\t\t\t\t\t**_KwargVariablesDict\n\t\t\t\t\t\t\t\t)\n\t\texcept:\n\t\t\tself.DirectingCallbackFunction(\n\t\t\t\t\t\t\t\tself.DirectingLiargVariablesList,\n\t\t\t\t\t\t\t\tself.FolderingPathStr,\n\t\t\t\t\t\t\t\tself.FolderedDirKeyStrsList\n\t\t\t\t\t\t\t\t)\n\n\t\t#Filter the folders to walk\n\t\tDirectedFolderKeyStrsList=SYS._filter(\n\t\t\t\t\t\tlambda __FolderedDirKeyStr:\n\t\t\t\t\t\tos.path.isdir(self.FolderingPathStr+__FolderedDirKeyStr),\n\t\t\t\t\t\tself.FolderedDirKeyStrsList\n\t\t\t)\n\n\t\t#debug\n\t\t'''\n\t\tprint('After first filter DirectedFolderKeyStrsList is ',DirectedFolderKeyStrsList)\n\t\tprint('')\n\t\t'''\n\n\t\t#Filter again maybe\n\t\tif self.DirectingFilterFunctionPointer!=None:\n\t\t\tDirectedFolderKeyStrsList=SYS._filter(\n\t\t\t\t\t\tlambda __DirectedFolderKeyStr:\n\t\t\t\t\t\tself.DirectingFilterFunctionPointer(\n\t\t\t\t\t\t\tself,__DirectedFolderKeyStr),\n\t\t\t\t\t\tDirectedFolderKeyStrsList\n\t\t\t)\n\n\t\t#debug\n\t\t'''\n\t\tprint('After second DirectedFolderKeyStrsList is ',DirectedFolderKeyStrsList)\n\t\tprint('')\n\t\t'''\n\n\t\t#Map a recursive direct\n\t\t'''\n\t\tmap(\t\n\t\t\t\tlambda __DirectedFolderKeyStr:\n\t\t\t\tself.__class__().direct(\n\t\t\t\t\t\t\t\tself.DirectingCallbackFunction,\n\t\t\t\t\t\t\t\tself.DirectingLiargVariablesList,\n\t\t\t\t\t\t\t\t**{\n\t\t\t\t\t\t\t\t'FolderingPathStr':\n\t\t\t\t\t\t\t\t\tself.FolderingPathStr+__DirectedFolderKeyStr+'/'\n\t\t\t\t\t\t\t\t}\n\t\t\t\t\t\t\t),\n\t\t\t\tDirectedFolderKeyStrsList\n\t\t\t)\n\t\t'''\n\n\t\t\"\"\"\n\n\t\t#Return self\n\t\t#return self\t\n\n#</DefineClass>\n\n\n```\n\n<small>\nView the Directer sources on <a href=\"https://github.com/Ledoux/ShareYourSystem/tree/master/Pythonlogy/ShareYourSystem/Interfacers/Directer\" target=\"_blank\">Github</a>\n</small>\n\n", "cell_type": "markdown", "prompt_number": 1, "metadata": { "slideshow": { "slide_type": "subslide" } } }, { "source": "\n<!---\nFrozenIsBool True\n-->\n\n##Example\n\nLet's create an empty class, which will automatically receive\nspecial attributes from the decorating ClassorClass,\nspecially the NameStr, that should be the ClassStr\nwithout the TypeStr in the end.", "cell_type": "markdown", "prompt_number": 2, "metadata": { "slideshow": { "slide_type": "subslide" } } }, { "source": "```python\n\n#ImportModules\nimport ShareYourSystem as SYS\nfrom ShareYourSystem.Standards.Interfacers import Directer\nimport os\n\n#Definition an instance \nMyDirecter=Directer.DirecterClass()\n\n#Direct for displaying folders\n'''\nMyDirecter.direct(\n lambda _LiargVariablesList,_FolderPathStr,_FileKeyStrsList:\n Representer._print(_LiargVariablesList[0]+_FolderPathStr),\n [\"_FolderPathStr is \"],\n **{'FolderingPathStr':'/'.join(SYS.__file__.split('/')[:-1])}\n )\n'''\n\n#Delete things\ndef delete(_LiargVariablesList,_FolderPathStr,_FileKeyStrsList):\n #os.popen('rm -r '+_FolderPathStr+'/Attests/')\n os.popen('rm '+_FolderPathStr+'/02_ClassCell.md')\n os.popen('rm '+_FolderPathStr+'/03_ClassCell.py')\n os.popen('rm '+_FolderPathStr+'/04_InstanceCell.md')\n os.popen('rm '+_FolderPathStr+'/05_InstanceCell.py')\ndef move(_LiargVariablesList,_FolderPathStr,_FileKeyStrsList):\n os.popen('mv '+_FolderPathStr+'/00_ExampleCell.md '+_FolderPathStr+'/00_ExampleDoc.md')\n os.popen('mv '+_FolderPathStr+'/01_ExampleCell.py '+_FolderPathStr+'/01_ExampleDoc.py')\n\nMyDirecter=Directer.DirecterClass().direct(\n delete,\n [],\n **{\n 'FolderingPathStr':\n SYS.ShareYourSystemLocalFolderPathStr+'/ShareYourSystem/Guiders/'\n }\n )\n\n#Definition the AttestedStr\nSYS._attest(\n [\n 'MyDirecter is '+SYS._str(\n MyDirecter,\n **{\n 'RepresentingBaseKeyStrsListBool':False\n }\n )\n ]\n) \n\n#Print\n\n\n\n```\n", "cell_type": "markdown", "metadata": {} }, { "source": "```console\n>>>\n\n\n*****Start of the Attest *****\n\nMyDirecter is < (DirecterClass), 4554248848>\n /{ \n / '<New><Instance>IdInt' : 4554248848\n / '<Spe><Class>DirectingFilterFunctionPointer' : None\n / '<Spe><Instance>DirectingCallbackFunction' : <function delete at 0x10f733c08>\n / '<Spe><Instance>DirectingLiargVariablesList' : []\n /}\n\n*****End of the Attest *****\n\n\n\n```\n", "cell_type": "markdown", "metadata": {} } ] } ], "metadata": { "name": "", "signature": "" }, "nbformat_minor": 0 }
mit
paris-saclay-cds/python-workshop
Day_2_Software_engineering_best_practices/solutions/03_code_style.ipynb
1
473748
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import itertools\n", "\n", "import six\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "# preprocessing\n", "from sklearn.preprocessing import StandardScaler\n", "from sklearn.decomposition import PCA\n", "\n", "# classifier\n", "from sklearn.ensemble import RandomForestClassifier\n", "from sklearn.svm import LinearSVC\n", "\n", "# regressor\n", "from sklearn.ensemble import RandomForestRegressor\n", "from sklearn.linear_model import RidgeCV\n", "\n", "# meta-estimator\n", "from sklearn.pipeline import make_pipeline\n", "\n", "# metric\n", "from sklearn.metrics import (r2_score, median_absolute_error,\n", " confusion_matrix)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### IO: Reading and preprocess the data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can define a function which will read the data and process them." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def read_spectra(path_csv):\n", " \"\"\"Read and parse data in pandas DataFrames.\n", " \n", " Parameters\n", " ----------\n", " path_csv : str\n", " Path to the CSV file to read.\n", " \n", " Returns\n", " -------\n", " spectra : pandas DataFrame, shape (n_spectra, n_freq_point)\n", " DataFrame containing all Raman spectra.\n", " \n", " concentration : pandas Series, shape (n_spectra,)\n", " Series containing the concentration of the molecule.\n", " \n", " molecule : pandas Series, shape (n_spectra,)\n", " Series containing the type of chemotherapeutic agent.\n", " \n", " \"\"\"\n", " if not isinstance(path_csv, six.string_types):\n", " raise TypeError(\"'path_csv' needs to be string. Got {}\"\n", " \" instead.\".format(type(path_csv)))\n", " else:\n", " if not path_csv.endswith('.csv'):\n", " raise ValueError('Wrong file format. Expecting csv file')\n", " \n", " data = pd.read_csv(path_csv)\n", " concentration = data['concentration']\n", " molecule = data['molecule']\n", " spectra_string = data['spectra']\n", " spectra = []\n", " for spec in spectra_string:\n", " # remove the first and last bracket and convert to a numpy array\n", " spectra.append(np.fromstring(spec[1:-1], sep=','))\n", " spectra = pd.DataFrame(spectra)\n", " \n", " return spectra, concentration, molecule" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# read the frequency and get a pandas serie\n", "frequency = pd.read_csv('data/freq.csv')['freqs']\n", "\n", "# read all data for training\n", "filenames = ['data/spectra_{}.csv'.format(i)\n", " for i in range(4)]\n", "\n", "spectra, concentration, molecule = [], [], []\n", "for filename in filenames:\n", " spectra_file, concentration_file, molecule_file = read_spectra(filename)\n", " spectra.append(spectra_file)\n", " concentration.append(concentration_file)\n", " molecule.append(molecule_file)\n", "\n", "# Concatenate in single DataFrame and Serie\n", "spectra = pd.concat(spectra)\n", "concentration = pd.concat(concentration)\n", "molecule = pd.concat(molecule)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plot helper functions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can create two functions: (i) to plot all spectra and (ii) plot the mean spectra with the std intervals.\n", "We will make a \"private\" function which will be used by both plot types." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def _apply_axis_layout(ax, title):\n", " \"\"\"Apply despine style and add labels to axis.\"\"\"\n", " ax.set_xlabel('Frequency')\n", " ax.set_ylabel('Intensity')\n", " ax.set_title(title)\n", " ax.spines['top'].set_visible(False)\n", " ax.spines['right'].set_visible(False)\n", " ax.get_xaxis().tick_bottom()\n", " ax.get_yaxis().tick_left()\n", " ax.spines['left'].set_position(('outward', 10))\n", " ax.spines['bottom'].set_position(('outward', 10))\n", "\n", "def plot_spectra(frequency, spectra, title=''):\n", " \"\"\"Plot a bunch of Raman spectra.\n", " \n", " Parameters\n", " ----------\n", " frequency : pandas Series, shape (n_freq_points,)\n", " Frequencies for which the Raman spectra were acquired.\n", " \n", " spectra : pandas DataFrame, shape (n_spectra, n_freq_points)\n", " DataFrame containing all Raman spectra.\n", " \n", " title : str\n", " Title added to the plot.\n", " \n", " Returns\n", " -------\n", " None\n", " \n", " \"\"\"\n", " fig, ax = plt.subplots()\n", " ax.plot(frequency, spectra.T)\n", " _apply_axis_layout(ax, title)\n", " return fig, ax\n", " \n", "def plot_spectra_by_type(frequency, spectra, classes, title=''):\n", " \"\"\"Plot mean spectrum with its variance for a given class.\n", " \n", " Parameters\n", " ----------\n", " frequency : pandas Series, shape (n_freq_points,)\n", " Frequencies for which the Raman spectra were acquired.\n", " \n", " spectra : pandas DataFrame, shape (n_spectra, n_freq_points)\n", " DataFrame containing all Raman spectra.\n", " \n", " classes : array-like, shape (n_classes,)\n", " Array contining the different spectra class which will be plotted.\n", " \n", " title : str\n", " Title added to the plot.\n", " \n", " Returns\n", " -------\n", " None\n", " \n", " \"\"\"\n", " fig, ax = plt.subplots()\n", " for label in np.unique(classes):\n", " label_index = np.flatnonzero(classes == label)\n", " spectra_mean = np.mean(spectra.iloc[label_index], axis=0)\n", " spectra_std = np.std(spectra.iloc[label_index], axis=0)\n", " ax.plot(frequency, spectra_mean, label=label)\n", " ax.fill_between(frequency,\n", " spectra_mean + spectra_std,\n", " spectra_mean - spectra_std,\n", " alpha=0.2)\n", " _apply_axis_layout(ax, title)\n", " ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))\n", " return fig, ax" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEgCAYAAACXa1X+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8HOWd+PHPd7bvatUly7Lk3ruNaQZMD5gQSkjBlxwp\nJJAEcrmUu5S7S3JJ7sKlQ0IgkAAhCSGUJDhgmsEYm+pu4y43FauXXW3f2Xl+f8x6JbkKfpZtyc+b\n1760M/M8M8+sX+x356milELTNE3TjhfjZBdA0zRNG1p0YNE0TdOOKx1YNE3TtONKBxZN0zTtuNKB\nRdM0TTuudGDRNE3TjisdWLQhRUQeEpEfZN9fJCL1A3y9Z0XkE8c7raYNZs6TXQBNey9E5BVgFlCh\nlEq+x3MoYIJSqua9lkMptXAg0p7KROSTwGeUUuef7LJopyb9xKINOiIyGrgAUMA1A3gd/cPrPRIR\nx8kug3by6MCiDUY3AW8CDwHvqWpJRF7Nvt0gIhER+eiBqjMR+bqINAEPikiRiDwtIq0i0pl9X9Xr\nPK+IyGey7z8pIitF5CfZtHtEZOF7TDtGRF4VkW4RWSoid4vIH49wL6XZcnWJSIeIrBARI3tsr4h8\nU0S2ZK/zoIh4e+W9WkTWZ/O+LiIzex2rFpG/Zu+9XUR+JSJTgHuBc7OfW1c27UMico+ILBGRKHCx\niLxfRNaJSFhE6kTku+/l30obfHRg0Qajm4A/ZV9XiMiwd3sCpdSC7NtZSqk8pdRfstsVQDEwCrgF\n+/+RB7PbI4E48KujnPpsYDtQCvwI+J2IyHtI+wjwNlACfBf456Nc86tAPVAGDAO+hf00d8DHgCuA\nccBE4D8BRGQO8ABwa/Y6vwEWi4gn+8TxNLAPGA2MAB5VSm0FPge8kf3cCntd55+A/wGCwEogiv1v\nVQi8H/i8iFx3lPvQhggdWLRBRUTOx/6Sf0wptQbYhf2FdrxYwHeUUkmlVFwp1a6UelIpFVNKdWN/\ncV54lPz7lFL3K6UywO+B4dhf9v1OKyIjgTOBbyulUkqplcDio1wznc07SimVVkqtUH0nAfyVUqpO\nKdWRLf+i7P5bgN8opd5SSmWUUr8HksA5wFlAJfBvSqmoUiqRLcfRPKWUek0pZWXTv6KU2pTd3gj8\nmaN/dtoQoQOLNth8AnhBKdWW3X6E91gddgStSqnEgQ0R8YvIb0Rkn4iEgVeBwqO0ITQdeKOUimXf\n5r3LtJVAR699AHVHKfOPgRrgBRHZLSLfOOh477z7sucHO0B/NVsN1pWt1qrOHq/GDnzmUa57sD5l\nFJGzRWRZtiothP2kU/ouzqcNUjqwaIOGiPiAjwAXikhTth3ky8AsEZl1nC5z8HTfXwUmAWcrpfKB\nA1VoR6reOh4agWIR8ffaV32kxEqpbqXUV5VSY7E7M3xFRC49Qt6RwP7s+zrgf5RShb1efqXUn7PH\nRh6hA8ORpkQ/eP8j2E9a1UqpAuy2mYH83LRThA4s2mByHZABpgKzs68pwArsuvx3qxkYe4w0Qex2\nlS4RKQa+8x6u864opfYBq4HviohbRM4FPnCk9NkG+PHZ9pkQ9mdk9Upym4hUZcv/H8CB9qT7gc9l\nnyxERALZBvcgdvtOI3BHdr9XRM7L5msGqkTEfYxbCWI/eSVE5CyOb5WldgrTgUUbTD4BPKiUqlVK\nNR14YTemf+w9dA/+LvD7bDXQR46Q5heAD2jD7on23Hss+7v1MeBcoB34AXYwONJ4nQnAUiACvAH8\nWim1rNfxR4AXgN3YbVI/AFBKrQY+i/35dWJXp30yeyyDHczGA7XYnQM+mj3fy8BmoElEDlRJHs4X\ngO+JSDfwbeCxft25NuiJXuhL0059IvIXYJtS6l09MYnIXuzBjEsHpGCadhj6iUXTTkEicqaIjBMR\nQ0SuBK4F/n6yy6Vp/aFHFmvaqakC+Cv2+JJ64PNKqXUnt0ia1j+6KkzTNE07rnRVmKZpmnZcDamq\nMBF5Til1ZT+S6sc0TdO0d6ffY5CG2hOLHtWraZp2kg21wKJpmqadZDqwaJqmaceVDiyapmnacaUD\ni6ZpmnZc6cCiaZqmHVc6sGiapmnHlQ4smqZp2nGlA4umadoRKKVoDDXy1LqnTnZRBpUhNfJe0zTt\neLr5vjsY2RAHZTG3Yi7Vw4+4kKfWy4A+sYjIlSKyXURqDrMON9lV6+7KHt8oInN7HfuSiLwjIptF\n5F8HspyapmkHe2rZg0x+Yz3B7WsJ7ljPHx98+GQXadAYsMAiIg7gbmAh9lKyi0Rk6kHJFmKvfjcB\nuAW4J5t3OvbKdmcBs4CrRWT8QJVV0zStt3C4hYbVz+KIR3t27tt58go0yAzkE8tZQI1SardSKgU8\nir1YUW/XAg8r25tAoYgMx17H/C2lVEwpZQLLgQ8OYFk1TdNy7vre94ivjvXZ5+5q48U33zhJJRpc\nBjKwjADqem3XZ/f1J807wAUiUiIifuAq4LCVmyJyi4isFpHV6EkoNU37/1RbW4uvbu9hjy1d8sSJ\nLcwgdUo23iultorI/wEvAFFgPZA5Qtr7gPsAssFF0zTtPXvykXty718svYSM1+DK+qUAlO2qIZPJ\n4HA4TlbxBoWBfGJpoO9TRlV2X7/SKKV+p5Q6Qym1AOgEdgxgWTVN00gk2rDWbcptxyt9fOP9v6T8\ninYAxMzwi5//5GQVb9AYyMCyCpggImNExA3cCCw+KM1i4KZs77BzgJBSqhFARMqzf0dit688MoBl\n1TRN42c//nnu/S7/aP7znJ9y8wt3cXf9Z4k5vQCkG3Qj/rEMWGDJNrrfDjwPbAUeU0ptFpHPicjn\nssmWALuBGuB+4Au9TvGkiGwB/gHcppTqGqiyapqmRSIRPDvfyW1XntvKmhfv5dN4aIoN4+ERHwPA\n6widrCIOGgPaxqKUWoIdPHrvu7fXewXcdoS8Fwxk2TRN03p76snfQtJuyt04YRoX7b6Cy3HRmqhn\ncngNXy+7CIBMXZxIIkKeN+8klvbUpqd00TTttJeMtNPw8src9uQSF5fjYn3HMl5u/BN10W3cvjf3\nm5jHXvnLySjmoKEDi6ZppzWVSvGjB7+AI5HI7ftw8/sIp9qp6XgDfzKV2x93+wDo3LTykPNoPXRg\n0TTttGVZSf6+5AL8K3tG2O85cxZehGcbfkvG4SDmcQPgTptE3GMAcDToJt+jOSXHsWiapg2Uvbt/\nTcPWB0l5I9TsmU7z3vPwZUczNPvLuKn5fBY33H1IvjP3NOJ0BogJkEif4FIPLvqJRdO008bump+z\nfst9vPjmlWzYMJn2t734dtpBJSUu5pZ/nL3tLxHPRABQ2f8AXptYzYTaWgAyndAYajw5NzEI6MCi\nadppobPhDfbU/ooNb1xFcMc6Mm+lcYU6c8eXTVmAr305ddFtKBQZQ/HMufv5w5X1xLxgofCmzFz6\njdvWnYzbGBR0YNE07bSwdvvH2bN3JoGOXYccWz9qBmfEplHTvRaAPcNj/OHKWtqKTK7fdz2ZMfNY\nOTuE1zRxZCwANrz63Akt/2CiA4umaUNetHk7bdFCOpY7kY5on2Nr8mczenwrpXvvAuzqr1fntOFP\n+7lhzw25dHOSl9ES9DMsZOf3xOrQDk8HFk3ThryX13+QPU+MwpGI5/atLpgNwBnh9Yx8tacxvrUo\nhChhYf3CQ86zdtJ4Zte12Bsth50XV0MHFk3ThrjY/m0sWXoZrkSqz/55ofW59+G0Pclka0GSJeeG\nmN4xvU/aFrfdvdgcOYGw143bzGC2WQNc8sFLBxZN04a0SMdWxtce2q5ysKjX5JnzmnBaTiaGJwKQ\nweJJqeItT0+6sM9DeSiKMiCejh/hbKc3HVg0TRvSanc8n3vfGBjPdSP/hfnl1+EyPMwuvoTrR36J\n8IgP8vR8u/vwzI6ZALR52thYvpeicT9nbNULWNhPKLtGVTOzvhWA7fvWox1KD5DUNG1IW7amIfcL\n+rbSq3EZHqoDkzCLAxSZBXx4zPdIueyqLoflYEz3GFyuOMsrl9uZMgadGdg25m98cM8HaZo8A9Zv\nQSxY9erfmT3+3JNzY6cwHVg0TRuyWhs2Y9TYAxwtFEtKXqfF1cFfS146bPrKWCUALVOegm7XIcf3\n5e1jdGQ0pgBKkd63dcDKPpjpwKJp2pBV+/JjuffPXxiiOfD4EdO66i/grHQ5Hl8XL/cKKv/qLecX\nCbsn2JqyNYyOjOatqRNwWCYoGbjCD2ID2sYiIleKyHYRqRGRbxzmuIjIXdnjG0Vkbq9jXxaRzSLy\njoj8WUS8A1lWTdOGnk2rNwLQkZ+mOXD0Bbqi3ZcDFoUznsntq0qVMm/zf3N5oa9P2voZc8lLpohv\n112OD2fAAouIOIC7gYXAVGCRiEw9KNlCYEL2dQtwTzbvCOBfgHlKqemAA3tpY03TtH4LJdMoFIvP\n35/bNycymZubr+fm5uv5nzXvpySkIONikXcDwyct59etPb9hv9b8Ha64OI9H8u/L7Usa9vT65+1s\nAL9+YjmcgawKOwuoUUrtBhCRR4FrgS290lwLPJxdSfJNESkUkeG9yuYTkTTgB/ajaZrWT0opMiEn\nNVU9U9z/aecPKUoHsTr3Env9TjKZJHv9P2KU0YHDt41fpTpyaT8U/zUfOy+Y2y7CSScm7eNfoHLH\nNXQFg2QMoS3eRqmv9ITe26luIKvCRgC95zyoz+47ZhqlVAPwE6AWaARCSqkXDncREblFRFaLyGpA\n/+tqmgZAZ3MdyjJ5baY9+HF4qoyidJB9a35L58qfsNdXwOKx5wFwnnsX58x/NJc34T+HeyYF+5yv\nsdJeQTLPFwNgzZyZqLjBruYdJ+J2BpVTchyLiBRhP82MASqBgIh8/HBplVL3KaXmKaXmAW0nsJia\npp3C1j7yv7kp7wHu2PclUlufYrnHz3XX3MHnL/0a9824lrFGOxPGvcm/1dvtKAoH3aW3HXK+bqeH\nhH8+L4ZdpIwUkkjiSaV4/cWnTtg9DRYDGVgagOpe21XZff1JcxmwRynVqpRKA38F5g9gWTVNG2Ia\n97fSVNKz3HBxa5i7PG7un3ENN3rW8WHPehZ51nJV8duo0l1ksNtLMkX/2uc8lzz3Ss9G/vUAdOXv\no3XsOALJNIn9NQN+L4PNQAaWVcAEERkjIm7sxvfFB6VZDNyU7R12DnaVVyN2Fdg5IuIXEQEuBXSH\ncU3T+q2lLsm+YfaUK9+q/wyP1K/gqXEX4JYUI4dtpyJ/P5dd+BDTZj/Lz1u8KHHRXfwZOoOzc+f4\n5zeeY6KvixvWLAOg212BQlhRZPc2Gx6K4Ambh178NDdgjfdKKVNEbgeex+7V9YBSarOIfC57/F5g\nCXAVUAPEgE9lj70lIk8AawETWAfcd+hVNE3TDmX3B4LdlVEKUwEu6J7LN2eMp0K6+Na5P0P5umhK\nG2yNG/ymze4FFsu/hkTehblzfGjF8wQs+4mnNNLTVTnlm40nvo44wpiWLnYmy07gnQ0OAzpAUim1\nBDt49N53b6/3Cji0MtM+9h3gOwNZPk3ThqZYqAsLRcptkSLKH+pWUDyumi9P/x1pb4jv7vf3SW+J\nn1jBdbntiau2UWr1TDDZu1NxuOwrlNX+M24xaSgpIJU5JZuqTyr9iWiaNuTs37aeuNcevHht64X8\npnoWP77ou+z27ee7jb5D0neX3JJ7P6q2jkti23LbpVYQj3Jy3bpX++TZWbgF0+0hnvCg9aWndNE0\nbcipe2cZUa/d9pHXWYHbkSCj4JEODxlHMZajBFdqJwoHkeJPkfKfkct7Yf07ufcfTp5LgbKfbu4P\n2/OLGVYahRAobGLf2Kl4ky0opbCbgzXQgUXTtCFo375XCQfs90+k8vjfc37CV+v9KISOEXceMV/x\n83vwe5MAnJEemwsqADPMai7atpZXJs8l4xyOO67oCBZQ3FFHV7iLooKiAb2nwURXhWmaNuQkWvJo\nLUziyTjJM/248luwjDzaRj58xDzTXlnPR7wbctuzM6N5OvQi3X+/hXTt65xhjqMw3g1AwHU+7a4u\nun1e8uJJXl/3ykDf0qCiA4umaUNOMiI0FycZE6lkwYgu7mn10l51zxHT3/S3x7lA9ua2b05cQvzV\nH3HhMns25EznHlw4KO22e4dZrjPIOFKIy0EglWbTqqcH9H4GGx1YNE0bUtKpJFEx6QqmCcbGc96M\nh9nlOvxiXF9++D6e+PKtPB+Y0/ccNS+R6ehZzji9dwUA1yZmM7K9iS5fMTsyGZyGhS+ZxhfqQOuh\n21g0TRtSop2dtBekAIhHi/hak9A98vbc8Q+9tATPvjBPjLmQXw97P39ZeCnXezbljn8weTZm8/25\n7aTLhye7tn2FKiTtSBHzeHF5phEL7qcgYyBpPUiyNx1YNE0bUnasWprrERbJd2E6K3LHln1+EX+a\ncjF/mnQVi8xOipzdxJ2NueOTzEq8bzxEptWe6OPqn/2OmMfL2ZvXc8fv/o28hT9mTt0OGgtLKcqc\ngeV9m46iQszkib3HU52uCtM0bUhZ8YdHifoyoOArRbV0Dv8hALO3bOSx636Bc1Y5n/Cuxuve0Seo\nAFxc8xCZJnu6lmt/9DsmNRh8emk3Kd9UVNJuXymK2g34eysvJ+rpoj2/iExIofXQgUXTtCEn6jUJ\npLxsGbESxK6YuarOj/K+ccQ852dW0bm+E4Dv3Pp/fGlJgveviVHZmeH9a+yp8pPvPMmiyMye6wSa\naSoswUjowNKbDiyapg0peSUumouTFMcK+Wnyhtz+GYbVJ91Z6fG4VIbJVoZPdy5m+BN7cseC6ZJD\nzvvmmf9FquYFKjJ5TGhtxpOOsTGlqBlWwfD2KO2tB0/efvrSgUXTtCGlO2LRHTAZkVeMH7vx45Ob\nu1nj3J1L85FMEwudtzGnaA2/mjCX6PNxjOzElUsuuJm5u+18MerxR+wR97FABaBQqSjDYklSDi8K\n8LjbmdDcweaNa07ofZ7KdOO9pmlDRsY0iYkdFEosP2H3VACCba8SMdIA3NixhPTKGK/5p1KUaOP+\nyLdy+TfMWoDXMTe3vahwDBSOoc20eC1izz1mtm2nLDkWZRhknCMQFF1+L2+/9DILLr3mRN3qKU0/\nsWiaNmR0t7USd9sBYJwnQso3C4A0dlB5X/PLqBe6ccYylLR1URjpzuV95fyf0F700dz2wvye392l\nToOgA1bM/yGprU8xOWxfI1T+TSxXHAzBJdEBv7/BQgcWTdOGjPb9e+jIt8ewWD67x9e0TjuoeDMm\nRctaD5tv9+irsZw9sx7n+QzcRt9JJYscQtqdT8oVYEzEbq+xnAXkV2yjtaISrPBxv5/BakCrwkTk\nSuBO7IW+fquUuuOg45I9fhX2Ql+fVEqtFZFJwF96JR0LfFsp9YuBLK+maYNbS90GdlRHMJSw1xUB\nIBi2G9UTjr5fd7vGfICmYWeTcLsQI6/PsUs9DgC6M4o9SYsKlzDb56A2ZdLsqWB8qjCXNiImJi5U\nWA9mOWDAAouIOIC7gcuBemCViCxWSm3plWwhMCH7Ohu4BzhbKbUdmN3rPA3A3waqrJqmDQ0t+zbR\nFUxzhtPHY85FAOwpDDIbmLTNXmPl1fN+jGkocASwzBbMxHrc/osBaCxycGV2EH1z2uLNqF3ltScF\nF+U5qXIJ+d17yVeu3DW7LUVnXhG+ptoTd6OnuIGsCjsLqFFK7VZKpYBHgWsPSnMt8LCyvQkUisjw\ng9JcCuxSSu0bwLJqmjYEdLe240kbfKgsTDTvIgDm1O0EYPSevaw893/ZNsIDDntOfcNZngsqOypd\ndEzxMcoQlnebuaBywCsRk/FeB+HgKKxYB1fuaUSUxVq66RwznMJk+sTd6CluIAPLCKCu13Z9dt+7\nTXMj8OcjXUREbhGR1SKyGih978XVNG2wizWmifoy7Gkdn9s3ur2Jmes3UBgKEfM5Gd/iOGzeZ+f5\n+eKOJA1pRVfm8AMeN8Uy7Bp7HfE37qQkqVBiIFIMgDuVIdatG/DhFG+8FxE3cA3w+JHSKKXuU0rN\nU0rNA9pOWOE0TTvltGV7fxmldrvKDTVNAIzat4+d4y7BaQWOmHfp8ijphMWaWM+TSqjwHVorXqU7\n337qac8oTJefLoeL4Qk7TZ41mrgkCSSSbN286XCnPu0MZGBpAKp7bVdl972bNAuBtUqp5gEpoaZp\nQ0YyFqXDbU+9ssEaB4An3kVePIk/Hqeu6oO5tE2FDhafGSDuFZjiZX6JE0OEFZGeoBIu2EbKa0+H\nn/D1zCkWMCAUGMvYmN1EbcgwMsFmxOFg3fplA36fg8FA9gpbBUwQkTHYweJG4J8OSrMYuF1EHsVu\nvA8ppXrPCreIo1SDaZqmHRBubaHbZ7e8b+RsAFKZLkrbuzANN2TXpH/y3ABbRnpY+nI3hV4nNGaw\nFGxL9G1TSfpaejYEYoFa/NGRRC2I+coYn7C7J0cD0wgnHiPl9dLRpp9YYAADi1LKFJHbgeexuxs/\noJTaLCKfyx6/F1iC3dW4Bru78acO5BeRAHaPslsHqoyapg0dka42wgGT4elCag17rq/iUDOFbU28\nfeZ/AHDPwgKGWbD6+e4+eTfEM9SmetpVWiteZav3bc5a11Op0z1R4Y+OBCDuK6Uo21a/v3Qmke77\nSTsLcIRTA3mLg8aAjmNRSi3BDh69993b670CbjtC3ihw6ExwmqZphxENtdAVTDPbUcQOle31hcIT\nj5OoKKUzYNCW7+C557uxMibKssDp4ulQ30W6OovXEXVE+wQVAG/THpTjfAQHofyxJNc9DFfYX1+d\njjjh4FgcaT1IEk7xxntN07T+CrfXk3JaVARTJLwTmdFsj7If0WA32z66IMgXtyfZHEnwj27F01E5\nNKiUrMF0d9MRPXRCSVe4g86CtwDIuPxkumpzXY7blEn9xNE4QnqQJOjAomnaENHVtJO002KbcyEA\nNUVBALZPsJt22/IdLNjVSY15+O7G3fnbiXo6qDGXMnWPP7d/fLCns6l/75tYxHEaoFIRRsQFJQao\nSuKOOEUNsYG6vUFFBxZN04aE5h01dPtNNlt2o/vF29fjSyRpKT+TpTN9fPuVbjZ2uw/JZxkpWoet\n5Pmxj7HNuYI5O3uma4lVj2f32Is4a1hPvpS5GtOChqJpTIjZI/B9ahxpI40nYx18+tOSnjZf07Qh\noTGcxnQqdhV9HID8eIQx9fW05hmMbU6jmnuqvSJ5e0AsEt4WXhvZTptjGcGIwfkb7Ik/CkcXUeez\nuyyHUvDrkflcG3fQEG5G4nsheAGhvCrGNTTAvBJwDsMR3Io7bZKMJfD4vSf8/k8l+olF07RBL2Oa\nhJwpHKrnK82VSVOxdy8AY3sFlZ9+IMj9M8eyfqzBQ8NH0eh+kbnbglzzWs9sUgeCygGTIqNZWW13\nV1ZmK0pZNFXMozIBhmWRcZazPbAPHAa7d2wdwDsdHHRg0TRt0EsnE8S8JpWpclymPagxkEriTST6\npPv+R4pQq97B2fUAdcYDjE3eyeVvlzNlX34uTXTM1MNeo9SqwuO3Z0FW5n6U4cXlClKQSGA4h5OR\nDOLysuStZwfoLgcPXRWmadqgl4hEiPhMZvgzrHUW5/bvGPfx3Pv1E4SbVjzF9uBrLHjNAxQdcp54\n1Tgsb0/DfUxC5O9vwRw+AYCwPx9PLEIq9hzegs+QaNlKp38MnX4/E2NJYt4K0k07Bu5GBwn9xKJp\n2qDXWruTcMCkwG8HhYnZKeyT7p55aYu6VpPf2caCtz2HPUf3lHmYQTvYhF1h6mOv0Jr288aU+azz\nbQYgXWifT4ldtdbSvD2XvwOIeQIEOzqO780NQvqJRdO0QS8SqifiM2nOVAIwvqWeovYOkr4y+3iw\nkWE7lh82b8bjJzFiTG575bCVtPpaaT73odw0MFjnMmfFYpTL7h0mmRhWpp3aYWfz8a21/HHKSCqT\nM9hbOYwRe1oOc5XTS78Ci4iUAZ8FRvfOo5T69MAUS9M0rf92vfkWqaDFKsMecZ+fiFHSESYUtL+u\nnLV9pxy0HE7MYBHurlbMYAGWx573a2PxRpr9zUQKF/UEFQCjp3LH9OXhjEcw42+Q8JzJ+JgdbDxq\nBNECE+Pww2ROK/19YnkKWAEsBTLHSKtpmnZC7dtUQ+IiC7fHrsrKS8RwJQqw8kHMvtOsRCbMQjld\ntJX/kcLGfJwyF4AnRz8JAu3Df4LlLEcsxbimNItWRNhT7uT+887hs2+8Sbx6PMEd67HSO4gXXc30\nuB1YIh4PKr8ZX1TPF9bfwOJXSn19QEuiaZr2HikUEX+agFFBYSKNU1nEXFUYCuKxP3Pg2ePxi+up\nSDmJuCI0+30wPk0wtZSyRBkITK+7gWUjhwHw9Sc7cGV/Ro9pMRnVkZ260OFEiSDKnrSyYOMzcP5H\naS+cQ13qNc5CiCajBDxHXvtlqOtv4/3TInLVgJZE0zTtPWorM/EbEFFlFCaTuM0Mad9YAMS0V3V8\naOE+or4Muwp20ezvWeKp292NGWsiXHI7y867jsp2k//6y4GgovAU1AEWH1vezYrR9vJRymGPuFdK\n4UwkKYwnSLvy8LnjOMRg1+7TeyxLf59YvgR8S0RSwIGFnZVSKv8oeTRN0wacUopuV4oSQ6GsagKp\nKJ6UiekKopTde6u5wsWBx5aCKFz76kjaiopoz2tAHHP4xxU3AeBOK25eGkYcScpnP0bRuFdz19n2\n2G+47s2RtFfUYZh2dZdl1pE000zqCLGhrIAObzuGo4oXH/sbM78z78R+EKeQfgUWpVRwoAuiaZr2\nXiSjUeLuDFOtEpa43JSFOnDHulGGk0j8MVxAi68dgH9eXcDy8YuoGb2Pp67ou+5gUXeG25eEECPN\n6Mv+B09BY5/j497/DXY98yP+PnYj/7TbhyMZx4wvJ+QfT0nSIuHyUJvw0lpSSTxxei962+9xLCJy\njYj8JPu6up95rhSR7SJSIyLfOMxxEZG7ssc3imRb0exjhSLyhIhsE5GtInJuf8uqadrpIxYOkXRn\nUM5yOjwG3Q4TF3b7hytRD8A7Y0NcGYmyZMZnWTPzvEOCSkWHye1LQgBUX/izPkGlrNWeCt8V6KRo\nwlIUEMsXoeeSAAAgAElEQVSOzjeMICFPKRVJQAQXZTRWVeGJ911I7HTT3+7GdwBnAn/K7vqSiJyn\nlPrmUfI4gLuxV4GsB1aJyGKl1JZeyRYCE7Kvs4F7sn8B7gSeU0p9SETcgB9N07SDRENt7K6MEc6z\nv+xdGZOkoxxH2m553zoyTNJj8fTw3zKyJUB5l0lZOEN1q8nrU7zM2Jvikk1xO29eM/6yGgAm1EQY\nuT+BAl4uswdVDpvzF85ZeTtICDNQALE62rwXUBGxq9x8agQpb4ZAy+k9fX5/21iuAmYrpSwAEfk9\nsA44YmABzgJqlFK7s3keBa4FegeWa4GHsytJvpl9ShmOvUzxAuCTAEqpFKD78GmadojmfZuI+E0K\nLXtesHl7t2Gpaai43T4S82WYlxnJK65CrlnV1SfvmTU9C3MZrhjjrvrP3PbI/fb5BLj01TZeWmCP\nup/dPponJ9/LFTt8oEwSzgwjI/YTkhhltLjDTIhGB+x+B4N3M6VLYa/3Bf1IPwKo67Vdn93XnzRj\ngFbgQRFZJyK/FZHTt++epmlH1LB9IwBxhuG0LLxmCkfGTyZl98yqqYrwYuUn+Nrfu454jvyRbzLx\n+i/ltiuaeyav/NnW84lnnJy51s4//Iw/kRY/RsZ+SlGZNqq67Ccew1GBcoXxhdTxvclBpr+B5YfA\nOhF5KPu0sgb4n4ErFk5gLnCPUmoOEAUOaaMBEJFbRGS1iKwGSg+XRtO0oautvgGHpVBWFfnJNC4z\ng5HxoLAX3Yp7LC7cMrxPHjO1EeQZ3PkrmHjD56k853e5Y9O3hJmyI8L2cCkfif0HMcPLb3aeTSBq\nB5Jg1TrKMz4S5VX2uRJvo/ZtxG2mUY4K3PnNeOJp4u2nbztLf3uF/VlEXsFuZwH4ulKq6RjZGoDq\nXttV2X39SaOAeqXUW9n9T3CEwKKUug+4DyAbXDRNO42EwzFmBTKsd1dQHI/hjadAWYiya88TgUuZ\n/4Y9SsJXuoNRl/z4iOda8Ho7LlNx57b5LC+9kGHDuxk1Aqzqbp54cSKl2BNMzi+uJxycDy31KBUl\nZngIxqPE3UVEYyaRwiLeqdnCmSVnH/FaQ9lRn1hEZHL271xgOHZVVT1Q2bsH1xGsAiaIyJhs4/uN\nwOKD0iwGbsr2DjsHCCmlGrNBq05EJmXTXUrfthlN0zQAdgeiSMZDiy+filAHjoyBld4HQGthknNr\n7EW7vMW7jxpUJtZEcJmKRV1f5aXqhVw5ay0fOuMRKmesp6pwP9aZAS5e0QbAzGENRPwZLKcbw1VN\nu7uQ/FSaupIKYkaSmNfDX1/5y8Df/CnqWE8sXwFuAX56mGMKuORIGZVSpojcDjwPOIAHlFKbReRz\n2eP3AkuwOwbUYDfYf6rXKb4I/CkblHYfdEzTNA2AmCuJGJUoEXzJCErySEf/DsDy2a3cuHEi5bMf\npXjiS0c8hzeeoXp/gp9uPZ/CiV4uGbmSsePW9ElTPrqOTY09Q/o2Vb7DxbsKUKl2Qp6zCGTs2Sf3\nST7d/nIcnUdu0xnqjhpYlFK3ZN8uVEr1WYpNRI65qLNSagl28Oi9795e7xVw2xHyrgdO36GrmqYd\nUzqRIO2wcBr2PF7uZBSsnn4+EV8Gp3IdElQm1kSoaE6ScQrOtIXTgkXJb+Gf4KLaEe4TVF7mMsIU\ncB1PkpjhYNY7ITZML+BMhEygAGesgaTLZHr9Ht4pL6bYnEhHMEAwuu/EfAinoP423r/ez32apmkn\nTHvjHmJek4jTbqotincjpj3TVMppAYK3aG8u/dwNXVzyahvV+xO4MopN4uKM5A8Yk/gTFS7F3Mr1\nXLDgD7n0a6x5/E4+z+NiD6iMBBwUhuxG/ItGbwd7BAax5AucXWf/9vaoSkIFcfLbTt8Fv476xCIi\nFdjdf30iMofcbDvkowcsapp2kjXveYeoN4NLTSKQNgkk4ximDwt7xuMPbPkCo6/s6cBaFDL5pvVh\ndqUnsM8opDkxgmmOJs70rkahmDz5tVzae/giX/nmn/lA9yIuvufPLOdiLpRlODM9XYm3V3czsw2U\n1UVplwVKYbpHE8/fgj/Up5LntHKsNpYrsAcpVgE/67W/G/jWAJVJ0zStX9rq9hLxWRhOH4FUCl/S\nwjDtHmDL57SxyOyZs2v2phA3eK5nQ+gaPu5dy1Ti4GrEQsgvbGLWzBdzaZdwNcNfilLUba/l8sD3\n/43P/OcdXMgyNk/KY8T+OPVlQaK+dC5PR950gokY3V4/o3whyqMpMok0Dq/rBH0ap46jVoUppX6v\nlLoY+KRS6uJer2uUUn89QWXUNE07rNZ9OzF9Jt1GAF8qhTslWBl7nq+Yz4PHE8ml/Wl6BjOSo/m4\ndy0AKYeTZ2acy9QFz/YJKn/hn5hz136+8OQfATCdBmP21/P0l2/ma9xJU7kHb8JCXCbtBXtR2ZUm\nuzOK0oRJ1Ouj3d2FT7kI7W4/UR/FKaVfbSxKqSdF5P0i8u8i8u0Dr4EunKZp2tE0tbTi95i4VQXe\ndAKHZWBmGugKZChMTaF8lv379/w32nFHLgTAk9fFBQv+wKXnPcgdRV+gjNY+55z0hzbO2PYOAFdf\n839MXr+Rr15wG75kkoX/eB1EsLLfnFPw5fIlrCRFiSQRt4+wI8q2yiqWrn2N01G/AouI3At8FLsL\nsAAfBkYNYLk0TdOOqUFijHR42ZvnwJGO0e0PIGYXobwklaGKXLq/pj+AhVByxibOmvuPw57rN9zG\nxqcu5qo3XgGgbvo8XvnkGHavep1vXBTg6xfeygeXPcedfJWYz+5afHVlC6HC7KJfmU6cyTBRjw+J\nldFePIzNq/82sB/AKaq/k1DOV0rNFJGNSqn/FpGfAs8OZME0TdOOJmOatPvjJDz2ihoRrx+xDJTV\nQbc/zawSu30lr9HJCsaxfUGAC1nf5xyPcyN1jGQr0yEh/Pfz9wPw8jXXkdi7kU3/3TPP7nnTFhBI\nxFnN2USdPkDhNjKsntjKZW8VoKww57SO4O3RBqZ7LK1FTibuOz2ndelvYDnQvSEmIpVAO/ZIfE3T\ntJMi3h0m6c7gz9jjVubU7sDTbAeTqDfDmOF2dVZ3XTVvjZnM1/iPXN5beYh8M8S/tf2IyT8MYRkG\nhmV3HV4/dz6JfZtApO8Ft7zG/162iMl7drF2xFQuaVhN4zAPrcEIUICyupjVYs+za7nGkPTVUdF0\neg6S7G9g+YeIFAI/BtZij7q/f8BKpWmadgzRrnYSbotmYyQAwWQchwpiATurIwTzYwQiJk8GF/C1\n6p6gUvB7B/9465bDnrPljHHs79WTbNblCxkxaSpLfvVTnCrDjNbV3PzY07z69ak4M4qM06AskEIZ\nTlQmjNsM4k2nSXmqEM9mXJY5oJ/BqeqYbSwiYgAvKaW6lFJPYretTFZK6cZ7TdNOms7WrSRcFu+U\nzAcgL5ZCMmkyhmC4LJRDUdae4uyJPVMUFt3nJPCW47Dnu/War7G6VxyY/ZFP8eNdBr949hUmLbqJ\nhOHGgcVLpTMJ1KYoCNtdjc/wpbFcbjLpGlrTiopojIivmM0lmzDEIBk7/ZaSOuYTi1LKEpG7gTnZ\n7SSQPHouTdO0gdVUu4OufJNAOoUpBnkxi4zVTGcwzSScINAYqaLQ0TMC3ruhp3prTflE0mVOyj7x\nFWZXO7nmju8DEHP6KB3j4dJNn+ZSTzbxevjBqF/y4T2P0eH2Ym0vIj9gB5a5TnjHlSaQTBOPtVIa\nL2F7oZ9hOIl7/Ox4p44ZZ407YZ/LqaC/U7q8JCI3iBxc6ahpmnZyNO1+DSNgPw1MaGnAMN0os5Hm\nohgfTBcD8Ib7rFz68m+7EGV/hS0bO5FdIzx0OJPMnzeav9zxfdLiYnNwMv814QU+7zy059ib3i8S\nCgxjVKyWSckdPDLtfPLDaXxAc5k9Gj8uccqSFlGPlxZSNJdU8cLf/zjAn8Spp7+B5VbgcSApImER\n6RaR8ACWS9M07ahaak2GebxEXW4CiQgZ3IjK0FqYpLi0iYKuNIztGaPibLODyqrRFcSDGfIse136\nB758K/XeSl4YeSUPVPVtOm5ak8/GbSNz2/UVo3FgMW35Hp4JXk4wYuJ3p4k67N5f6fQmquKCZTjw\nWcNpLypFhTcO9EdxyunvQl/BY6fSNE07cTpSiiBjAMiPR0m5uvEC4bwUBJIEGixKC+3Akv+4g3Vl\nE1gxfhQ+t8mM0jZ2xMpZ653OPjWMTzue5eeuf8+de2dyPM+oK0nODTAvXU1G/QsOsXjA/RM+XPwV\npnk7mLSsnsCoDKbLYNfEZmbUjMYwiilp7YAppbikmqYiD+Wb4yfj4zmp+hVYROQlpdSlx9qnaZp2\nIiil2FUWwmAqAAWJKJ5Ou80j3+dFGWE8CSihjZ3RyVy4bDevvG8KXy98inGGPeULBYc/936ZyVvO\nj/Gh9LRca3JjcjF5nkUUSjffK3uCZypHUb2rBbF7F3NR0K6SszLNFETsMuGZTtK3DW86MyCfwans\nWCtIekWkGCgVkSIRKc6+RmPPeqxpmnbCRbvaSTszxMSeACQ/HsVIRen2+7jYb49HedM3Bz8xpixp\nQBXCfcX39gSVI2jaPIrmxNe5KD3tkGOR5CMATDFqcQcdOMdFaPUUAXBRoR08rPQuvGH7CaWudC6e\n4p0Uhbqxl546fRyrjeVWYA0wOfv3wOsp4FfHOrmIXCki20WkRkQOWbM+uyTxXdnjG3svdywie0Vk\nk4is12vZa5rWW1vDDuKeDDEZjj+VorgrjUrvp70AZlXYywe3+O1HkpJ1CaZeub9P/pZFL2B+4Jd0\nBcaTmPgJIqO/wtol4zHH3U2ZOsKjDMLW9CcBsAr8eJoTPFM5H5Qik4Hu7EIiqZQdRNJOF4lAEx0F\nZUSaTq8m6WPNbnynUmoM8DWl1Fil1Jjsa5ZS6qiBRUQcwN3AQmAqsEhEph6UbCEwIfu6BbjnoOMX\nK6VmK6X0SpKapuVsf2M5zdVRIq4i8uNR0kYRqBh1w5IYcYOCUJpEUYZExE95Rc8Mxx3509i96mpS\nD6ao/WENjf8YyZo/d/HaxnLKL/nFQVfJ4DOW43csxSk7AQhmrgPgkrxt7IoWs8p9BiMaE7gsxbrx\ndkALSxivmSEjBqF4kPYRVSx/4/T6bdzfxvtfish8YHTvPEqph4+S7SygRim1G0BEHgWuBbb0SnMt\n8HB2ieI3RaRQRIYrpY7+vKpp2mmtsbmO6vHCisIihne1YWTbMRJ5dVg+i0BXhgkFO1D1Hspn2z22\ndnluxtNyPe4Z9jnc4y/HPf5yDtczySW7Geb5l77XTDxAhnK6VAmTjX0k3DPwtZj44xksl0Ch3SCT\nSe9mwZ5KXpgwklbPuYQ8Tja++hRXf/D0aZLu7+zGfwB+ApwPnJl9HespYgRQ12u7nkPbZY6WRgFL\nRWSNiBx+/gW7bLeIyOpsdVnpse5F07TBb3dnPaZzJgBNBcVI2v5SP6fc/hvKc1FIF1Vd9lxd+6zR\neELX9+vcTtl3SFABKHH/AAAz/UXckmF4fpwRNS2knXY35tJhCZThBCxm1rYA0FJyLdGAMLxtz3u/\n2UGov3OFzQOmqhPbAnW+UqpBRMqBF0Vkm1Lq1YMTKaXuA+4D0G0xmnZ6CKk0bste5/6a9StRUXus\nSEnS/q3ssDKAg1G+TkiBL30bx55YxSLoeJwC1x9IW6Po5mJiqQ9RP2wtE6y7KA7vBiBhzSGl3AQK\nHIwcthMUGJaiypEhmucgGG2jvN0e+1LV1YgEO/B16jaWw3kHqDhmqr4agOpe21XZff1Ko5Q68LcF\n+Bt21Zqmaae5jGnS5Y1QEb8cw1KUd3dipJOkHQZVhoUoRSRg/2YuCNuTf6XUlIPOYuIx1uOQJpyy\nlzzHYkZ4rifgXEJ94mmaU3cTS30IgKrmucRbH6IrUEaZ+2uAgw41hhnGbppWlRP3O7AMYUFBhqjH\nRFkJYspJcSxO2uFGKrZQ1WmiMqdPz7D+BpZSYIuIPC8iiw+8jpFnFTBBRMaIiBu4ETg4z2Lgpmzv\nsHOAkFKqUUQCIhIEEJEA8D7s4KZp2mku2tVBxJthv9dFQTKBN+XDMNNsmBgkvzKJEsFyGmxtOAND\nQVOyp0+Q0E2Z+2u4ZDcGISrcn6HCczsu2UND8imakr8/8nU7HsRwbgcgzxrFWcZ2klaax91X59J0\n+9OgIqQz7bjMJEmHm5dUJ915ecS7ogP3oZxi+lsV9t13e2KllCkitwPPAw7gAaXUZhH5XPb4vcAS\n4CqgBogBn8pmHwb8LTs1mRN4RCn13Lstg6ZpQ09LUy2hoIDbjz/RQdqRwAtk8jr6pFvU/jIApqrK\n7VMEaU39BIC0mkhD8sIjXuevVS6WlTvZFTRYstwOCns836cosYG0mgC8wOWl2/l5+LPcFFrM3lF+\nugtiQB6Z5HqGxy9iW3ER5SEv62bNJvXCC1y76IPH9bM4VfW3V9hyERkFTFBKLRURP3awOFa+JdjB\no/e+e3u9V8Bth8m3G5jVn7JpmnZ6qdn5Jv6Sbmp8BuUdMQzTru4q9rUD4GgoJDOii/zIgTnw393c\nudvyFF+cl0enp6dC54bzAzy5Moq/czaUfIlo+48oct3NQt86PjVqGok6+6u0a0wLbMwDhPpgPgmX\nB7djMnGXh02rntCBpTcR+Sz2OJNiYBx2z617gdOn/5ymaaeEnRtXMGlsGW97DMbHo3jC9kj7cwpb\nAYOiWIyGpBeXqWhPfR27g6kdXOrO+DGxks3E8eK2FL5YCWkjSbzuLNa7LH45rm8H1Dm725ndsJpt\nlZWsLRrH3M4Msc4f4ZVa2jOzsIw9XLtiMe2TCoA4Hy5Msd/rxpsJ0+a359wvtC4g4tjJiPbTZ5ni\n/laF3YbdeP4WgFJqZ7a3lqZp2gnV2GlC5kwAhoU7sVL1AAS94E5ZhEcm8HgMLEtIWLM5EFS2XHoz\n0UgxW2rfxy9H3QoOmB7ahSXClslj+1xjRl0t172el817JiWdTfzLQgcrX87gsDykg+vxxOZS4tiA\ntKXZMm0SE1iPmVQkvAaecAdff3o7/3f1JJQRpK5iM7M3JDhd9DewJJVSqQPLsYiIE/tngKZp2gnV\n7ugkIdMBKI6GcYXsEe+FhhNX3CRaYFdhJa15qOzwx53T7+Lu2u/w1thpUNhzrneqDl2A67Mv7qKi\no4gSh3B+0ImlFP8IVXD55lXcOu8cfrM6Dt0fJiV2f6LzHRt5kflMYD2jC2BVQYT8rgQFrSZ5iRgh\nb4A66sgwGiudwXAdsxVh0Otvr7DlIvItwCcil2OvzXLoSjiapmkDKGOadA8PEvaWEkglCcZcCPDS\nee+HAgtTuQAYvztKXJ2Ty/fz1PV2UDmKeXu38o0n97EoXca1hS7Oy7MDgCHCwnwns7ZPIZxpzqVP\nKzsoBX0mzdHhuf0N5XZbT9QZoSISozOQj9/0051XTO3q3uPBh67+PrF8A7gZ2IQ9MeUS4LcDVShN\n07TD6Wquo6m4nbSngMJoGEfSnsolz2V3Gk26nECGipYE7Zk5ALzhqeXtMXZQMSyL4m6LRW/VYxCk\npcpHKm4ytcZkjr+SyoDgzNbM7A46uHG+H5cFry+NcFnQReeqKA+Pd3HT3jTNw1+jvH0kw5zt1JZU\nM6Emws7xebjz7N/r6eg/mNP+OZ6YWEKpNZy20dU8u+JZPn/u50/wp3bi9Tew+LC7C98PuQkmfdhd\nhDVN006I1194FD8x1ga9TGlsRGL2tIKjArsAMFNeLJegwqOxsJuBv3hhz9y3v3+ugSmOQqDE3lGX\nAQQKXbk035/m4akRLsgGmJQD5l0R5N63Y7yvOZ+7nPuBMkqaLiHh2MVcx7Nc0bCUqNjTG7sLw0AZ\nAGc0JXl8kpBnzCbpSRLZtxIY+oGl32veYweSA3zA0uNfHE3TtCNbtaeZlPdSLENwZUyMZJqYN8D5\npXbDeL67nbKOJCnDnmnyGc+mXID4zT9askHl8LYHDb43zctTVW7KQnE+svIlqnf9O2eus2c9/q+Z\nXoa7DKZuswOIQxkkrem4xWTsnhbGNXZhWIoz3OncOfNbsqtHusYTCjYwZ8uu4/6ZnIr6+8TiVUrl\n5p5WSkWyY1k0TdNOmPpgmIDMB2Bicx2OeIj66lLme+2+RAmvg6JQDFNGA/Czs2cD8Mn1Yea6vADc\ncJ6fTrdB2AWXNpu0eYQNhY5cAPrnZav5hPEbprODlfXzWM4IJi99gj9c9iEMEWYkPbxTbDA9bNFR\nnKA0AnFDuHPyh5iffJEqA14a2c3k2iCd6WIA1oychj/xEG15p8fXZn+fWKIHLcJ1BnD6LeSsadpJ\no5QiaSTBGIbHNCnrioEVoiuYxmFajNgfx3IIpe0p0pbdfTjks7/IP9IhGBLlxvPbafMkuXP7f1K3\n4lK2FnZyS9MPmdu+md9u/i+all/Ij42vMp0dAJzPav6DX/Fj1y+5e/kPufhCB+O9Dp7027MX+9su\nJaVKuMjYQPP+EvIjJqVexYT6PADCiWW58te4o+wYMZNEeOh3O+7vE8u/Ao+LyH7sjt0VwEcHrFSa\npmkHee2VZdSUbSCS/6/kJaI4U/YARKlqJeM08Mfshvzidov9ahx/K+sGglxWF2NYOsoI742sPGj+\n87VvfRiAG1qOXbN/A8+xYc0UXq6+gvyOnt/kaWsa44z1VK9tw/k+hbgNVs+JcPaaICiLT27YykOz\nplBizWJbaYCG9Q2MW3BoN+ehpF9PLEqpVdjLE38e+BwwRSm1ZiALpmma1tuLy5dzRaqITrcTbzqF\nEbW7/l7t3QZAi6cIo9tJ0pwMCP83axiGZXHHlnpGeN/d7+Dl4Sm83jaKX24/h6da5+T2f8/8OXV5\nrzOjzc+S4fbv8hQVlEiYcHEhpO0uyvERHWQ8flAJzq6321zGphZQXbyf3z5z3//vR3HK6+8TC9iL\ne43O5pkrIsdaQVLTNO24CIfDxB1xSjN2w/3E5lokbo+4Hy4xHKaB2xuhNAaWMQ0sMB0OXFaaKu9n\nj3jeN5jDuaz7f+ydd3gc1fWw3zuzXaveZckq7k3uvWDTu+k19GAgBJJASCAJJZQE8iP0bjoJEGKa\nMQZjY9yNe7cl25LVe91dbZ2Z+/2xQrKQ3AIGw7fv8+wj7dw7M+fO7s6Ze+4pLGQKTcRRRyKuxgCh\nhLTwmksSNAL7CqP47YAVADxSdj9fmT5mAz7ATIkthvgQ1MXYKTT3I5oSRtgCBBwW1OZqXN5emHSN\nEqcZv6hhakntAeX5uXC4ucLeIpwjbDOgt2+WQESxRIgQ4ajz2GOP4bZ6qXJORkhJdmMNiq+NHf2G\nke/cgTUkqE+20m+vB4NYlsf5iA8Z7Fp1dscxHuAWUmikiTgyqGUK6/iCaSxlAuH8yO0kdj9/y4Cx\nzAlaucDyJQCD7FUsam3AYCTFpimMCL5KX6OMrcpAJlNCvk1nSbyPvOYgrlAjyW1mGqNiINiMxR97\ntC/Xj86xXEEyQoQIEdDasxcH7a20WhKI93qIabUgAG+KGcWhEGjvm9wUpFm7gNkDEzmv7qOOY/yT\n69ExUU0qAPvozT7CVR67KJWDUGAZTJO+lgTVTZr1JqY0/4fGaBjfnIRmSWaCUsB/m08m2RSAJCs7\n0yvJK07C0KqIC8SyKzkVR3MC7uSff5rFw1Us31SQrD6KskSIECFCN7zecBx2skmnwOog2leHCIa3\njcxd0dFP+kyobTkYxLAzRmHx5qcAWM0o3DhRWxvJi3Vy8rU3EJuWQSgUYuPGjezatYukpCSSk5PJ\nyMjAZDLRu3dvPB4PTqeT+vp6PvzwQ6qrq3lKvY77CMe1DLUWI4LheBkfQxksVqNr0JBgAcAS78NQ\nLUitmt2J0wAwos6hOquUkDeE2dEZlPlz42hWkEQIcaoQolAIsVcIcWcP7UII8VR7+9b9XZrb21Uh\nxCYhxLzDlDNChAg/Mx577DEAxrROoCRKId7rRvjC9eej9HAqeqcnRFQwSFD254MUH59sDpd50qXC\nAo7DUbyD393zVy6/7+8k987BYrEQFRXF1KlTmTVrFueddx5Tp06lT58+ZGdnI4QgOjoaIQQpKSnc\ncMMN7dIInghdAUCW7S4+jgvXsq9WexEtvGQ2NJFYE07jn2EJIQwNPbiDG5e2ApDYFkVQDfDOmweu\nVPlz4HAVy33AOcDfgH/u9zog7WlfngVOAwYDlwohBn+r22lAv/bXLOD5b7X/Bth1mDJGiBDhZ0ZD\nQzhzsU/1URc9Fl0RZDfVonqDeOxOkvRmAHRFkFPdRkj25ausGMa6dgDwHmeieD3ERTtxxid8J1lO\nOCFcfqrFnNSxbZh/PkEB+2zhW5vXF0WUL+wFdlJ0ECHDSia+xotZC+G2OfCZPVRuWfqdZDnWOVx3\n46VAARDd/trVvu1gjAP2SimLpZRB4F1g5rf6zATelGG+BuKEEOkAQohM4AwiyS4jRPj/lmeeeQaA\nZclfM6d32MSUVa2hhNxsGTyKBLNOTKuGz65iDRi0GblcXP9Ex/57RC7jcrOY9exr31mWqVOndvy/\noz0Acxr/YlOCSmIgDYBfOObSEhVes0lQDYr6hQM0Da2C3NYWShPTcMXuI72y6jvLcyxzWIpFCHER\nsBa4ELgIWCOEuOAQu/UC9s8RXdG+7XD7PAH8ATAOIdssIcR6IcR6wia7CBEi/AwoLi7u+H+mezQ7\nY9vT2Ovh9ZWyrFRUp0LICCeMTGgNUa7GcUndZwAsNmYivD5OvuHX35tMs2aFK0x+oJzRsa3GUkO6\nN+xKlqtU837bWWRWeDGZYH1eIRKBodcyoKEZr9WOS+Si61Hfm0zHIodrCvszMFZKeZWU8krCs5G7\nj5ZQQogzgbrDCcKUUr4kpRwjpRwDNBwtmSJEiHCUaCmDnV2XbOvq6njzzc5ohqT2G3FOQzV6+8+8\nn2MbAIaiYGoNz2YqYrZ17LNc9OG4MSNQlO+vsFZGRgYAOiYqCM9Srm65DRC0hq4CQKlIJmjYEULQ\nV2LBUH0AACAASURBVESDEOj+TcS7wzKGrKP4fPDx35tMxyKH6xWmSCnr9nvfyKGVUiWQtd/7zPZt\nh9PnfOBsIcTpgA2IEUL8S0r5i8OUN0KECD8VnhjW+f+kWyj1O3ltY2c+rZZAC/U5YTPUwJpSbNX7\nAMjXVwFgN3zEuzR8+gROCrwKQKM+CVtbC70HfntZ97szffp0lixZwgecxq28RpRsphkIybCxRXP5\nqFDTsVBDZlQDQsYBBpllQRgDG7LHcXLZe0hdIlTxvct3LHC4M5bP2z3CrhZCXA18SrjY18FYB/QT\nQuQKISzAJcC3PcnmAle2e4dNAFqllNVSyruklJlSypz2/RZHlEqECD8zfM2w8N6Ot1Wk8NgqXxel\ncod8AVdqKctScwHCgZG6xvzjzuVEWY7dqxOyKCQ0B2kJXUmc7iKEmd36LGJqK8jJH9nttN+VKVOm\nANC0X41j3bSNWjUcF5Nga2KtEXZwPSWpM4U+vnC0jUnXsMUVsvar1d+7bMcKB1UsQoi+QojJUso7\ngBeB/PbXauCgCW+klBrwa2ABYc+u96SUO4QQNwohbmzvNh8oBvYCs4FffZfBRIgQ4SdCsA0eyYGV\n7QvtF77BO8zE1V6jHqAfxSwPnM10ZQD1tvCtyuTTARN7c3sTtKtEt2kELAo2jxNpewGAItO5rDbt\n5qy7/3pURDeZTMyYMQOAHfQDQLd+TmyoF5qMJketxBVydvTfMSIm3CewFQBNNWExRfHl+z9fl+ND\nzVieAFwAUsoPpJS3SSlvAz5sbzsoUsr5Usr+Uso+UsqH2re9IKV8of1/KaW8ub19mJRyfQ/HWCKl\nPPNIBxYhQoRjmL9ldPy7Oe54LlychBtnly7nsIDXYwYxN3UsAAOrSzE3l+GzOxnrW4DfpmL36Whm\nBSM0nBR2AlCqnYCtpojMo2AG+4YBAwYA8J4IL+Ln6UsBQY3IYqyyh5i9Ov33hEtYeeObCFkdSMPF\n2PJwnjCvyES1Hkmqxp8Wh1IsqVLKbd/e2L4t56hIFCFChP9v2MQgPmoZzpDGzrT1qqJy1ukns86V\nx66UJGrsOQAMqt6Hyd2MJeDmprgPAWiKM6OGJLq0YULDLyy0ah5ylKNbUCstLY2kpCQM2XkLFfiw\naiPJUyopDPXGrIUdWkenVmDY7EitkvyicLS9Xc+hPiajx2P/HDiUYjlwHc+upYojRIgQ4fBY9n8A\n/JuZfMypXZp89KFWmc6bc5ayyzycF0rMFDsVUl1NZFSXIgyDd86+rqN/m0Nl9NYWLOo6AN5M+SN1\nqpcRvzhUNMR357TTTkOlM31ihvViGk2DAIixNLM0agIA0YofaQ57hNkbSgGoiYqjzIg/6jL+WBxK\nsawXQnTLOS2E+CUQqccSIUKEI2fdK/yX09lDXsemk4L5nBcYzy3+HO70wMyo8Tw/7ZfsSMrGEIJE\ndwvm1kYA1KRwUkpz0MAwKTg8JqyiiRpLIimt45ANe0ifPPmoDyM9PR2A58VlAAhhYA30x5AKk5XN\nbA/1JcYVIheNyvbJidO9l1i/j3qHE6dtD3WNdQc6/E+aQymW3wLXCCGWCCH+2f5aClxHON1KhAgR\nIhwSt9uN3+9n6VeLuc99CTsY0NF2QWACoZZyEmTnGosDC/OX+9jVHhQ5qmw3Jncz0X6dkcFPALAG\nw6YmhbDn1TspZxPrqkFVLAhx9N14HY6wua1M6YUuwwv00WIzLpHDQLWCcncvorw6pmiV9Vmr0Rxx\n6MG9pLlCNDiiILaJ11/7eS7gH3T1SEpZC0wSQswAhrZv/lRKufioSxYhQoSfLF6vl7feeouUlBSO\nP/54Hn/88R77ZelJxMkoHjHVckXLKgbHTaLJIrh9QAtvbo3lkwyV9JYGEqtdCCnZ3SefS+xzALAG\ndGJdIYQIK5ittjNJVvcy/bTTf7BxKoqCRddYqf2GaeYHiFIX4TXyGSXmQrkdZ3R4djXOFqIlPpkk\n7x6SW30UpqQyyNefNm/bDybrD8nh5gr7Skr5dPsrolQiRIjQhbq6Otra2giFQlRXV/OPf/yD6upq\ntmzZ0qNSsZDFpf7JnBIazquhWi444xM+GVHOf/c9yvnD/sVF25awOFXFZVEZWlmMuX47ACtHju04\nRnOchbzScHqXp7Iup587ijLqGHTqjB9m0MBvf/tbBLDUFJbDrq5FasNRhUGctZFCLfw8fm6ShiMU\nViLx1ZsBaHIMwy8VgsHgDybvD8XP198tQoQIPwgul4vnnnvusPsnW5uY2RrOFPxpsJbMqU+z2hti\niX0pS06HvIoahjke47L8sKlp8M5ChDTo1eQiplc4/fygQje7BkRjCYUXz/+Wez0vL6+ktrkFoRxu\n3Pd3JyYmhpgoB642L036OBLUtegyHIuToVbwpTKWkygBoCJdp38d5JaG14rKbV7ipJWtW7cyZsyY\nH0zmH4If7hOIECHCz466urqOeik9cfvtt3f8fyfPcpvxAi/17Uxy3jLmbd5uDvGpq73olYTbWu7l\nT/nhDMEmXcPcWAhAjGbhDvk3ANrsKqk14Uj2BQlTQAiUYAvjxo/7Xsd3OETFhEsNuwh7fkWpSwD4\ng/k/UGoitSacScDvcKFZo7D56wFY1GcgISmZN+/nV24qolgiRIhwxASDQe67774DzlRGjx7N3ReO\nwVy3kySnFWttOc/uGs/swjGMbw8SfN9fgsVWRK0aLtaFhDkFj7FKrKXEGV60v27FPASQ2uLhgRt/\nzTdr8g1JFnIqwuanO/rfBkC9aGXQJecdvUEfgPz8fACWMh0Aq7oCrwy7gTW1jqBOhJNVDkwupSUu\nGanXd+wba64BwDAOmsT9J0fEFBYhQoTDori4mLfffrujBn1PpMTHMaB3Lzb/60V277fd0v7Xb7Fx\nyu4iiMtiT+/1LHWHb6jCgJt2/IIttlK+zhvSsZ+9Yi8AQysbmB6/EID4piDNCRaivDoAdZYEXlnT\nhn/PKkzmm7+/AR8mEydOZPHCLyiXfjz6KJzqRkLaEDBVkRu1g1WWMUxkEb2dzexo9ySbVFbDhvQE\nYiwxaH4oKSkhLy/vEGf66RCZsUSIEKEbbrebvXv3smrVKnbu3MmiRYt48803D6hUFJ+H5LLt+FYt\nYvO7B3ahLe2VS5ophVbdx4r4zlqBj629lhNNY/g0VWdLVjj/1m9feQCzuwVLSOfzSTPICYZLN4XM\nCpaAgQB+OeBpEIKhLQa5A45eCpdD0X/gQDShUxMKh/05TCsByLFs5oPoswFIizaoj28BwNTaQMBs\nodkaXo852LX9KRKZsUSIEKEDKSV1dXU8//y3q4R3x1ZRhOoL58NStBD+g/Qdm+XjyYm34q3TSNxr\n4V/RC9CV8Izjvq2/ITM2m9/3q2FN3ngALp7/KeZQeA1lxq5Srnn2Rh4mbPJqi1KZtLYZnz6aeWlh\nM9QOtZSTfv/jhdZFOaPRhEKhqtG3fVulHMlx6mbe+6wRcaZECoGWUgBqL+wtJcBQBrVlUS4LEALW\nrFnD5B8gsPOHIKJYIvxg7Nq1i/lvf0TmyP5MHTqEjP4Df2yRIhCencyfP5+Wlhaqq6sP2tdRtB1F\nC4Ghc7AQxDMzd+Kw6KhDL2JhfSqLWzwM3baZ7dFZmCzZfJz9BUj4b+ETSIvO3zOKO5TK4H319C4L\np5SfuKeaZy66mslyGQiwujWsUmILGtyfEC6W9cqaNupcOzHH/HiVNaZMmcLatWupUJrZpt/CMPVp\nUijCLFwowopRkYzIamCYswm/YwDxjeHrXBRtwloeBKeFhQsXRhRLhAiHi9/v5/6nXuWXTYO4mCnU\nr3Mxd8ErXHz7XcT3T/ixxfv/GsMw+Oc//3nIfgOcIcq3FqIGe56XDI+vYnRCJXY1hCokDynts4c9\nAOFZjXlkFVd/YnD1+FdIDSbyetEDADwa/zULhp7UcawRmz8AIL3ZTbzXS0FOHneLFwGwagaZteGZ\nzEvDTiMmaJDfYlCm71f35EcgOjps0qo0eXD6p4L6NGbhAmBc1EbWGiMYzyL6WdtYlJJGckUBAKvS\nnPQpNOjdnnSgsrKSXr2+XcH9p0dEsUT43vF7PGz87GNUk5n+E6fywqsf8ytXZ5XAZBnDmfFn0/bq\nDuZOjOaqmSM62qqK9rBh3XpOPe98zBZLT4c/IAGvl6WVNThLXBhJDnL79aKX8+ddW/x/pbm5md27\nd/PZZ591azM31iBNZnSHE3v5XtSAjyqgpwK/tw9aHj4eMXgGXsmL+xLwBwJd+ggMJkcvpW2NlbtO\nOZdBNet4vPIuAB7LdvPuwE6l8osPnie9rpLeDa0MrWyvNJ7dqczanCbSt7nYrF6CpqpoUiKAgdde\n/p2ux3dFCMHYMWNYtmUrtcKH3ZRBmlYFQIbcy4rSEZxj9VOdbKU+3iCryAdAYUoaE9Ks0O4UNnv2\nbO67774faRTfH0dVsQghTgWeJPydfFlK+fC32kV7++mAF7haSrlRCGEDlgHWdhnnSCnvJcIxz7bS\nMna+tYnJnnA1vYa1BVwhw14+bQT4wrKFk4PDicIKwAmr3ZzpW859/Wy8+P77TLb040R/f+YVzuOs\nu8/FpPRscPE0N2HoGpsamrmmpJnrCmpR1CiuqLS293BTZK9i7SSNc0868aiP+6eC1+ulsLCQjz/+\nuMt2S0M15ua6sJnrIFyZu4FafzS5zibaNDPNxGAjwJNcBwUAARR0sqN3M8m1k1eNU7B5LTwTfT31\nIzL40+efMy05rFSK1QbeHpjbceyb3ngYp8+DkLJDqVz+18f5P8KeXgN3uigYHM7JdfnYcOLHW3cH\nWBpazuVj/vR9XJ7vxJixY/l6wwYqlSbWOu/m1pabADhR2cTHTZcQ8tlAhSTHti5mRC3Bygn1i/hS\nTANg8+bNjBgxoocz/HQ4aopFCKECzwInARXAOiHEXCnlzv26nQb0a3+NB55v/xsAjpdSeoQQZmCF\nEOIzKeXXR0veCJ0Url5BUlZvohOTWfP5AuL75DI0f3i3fqGAH0VVkVJSvmsnLzQEuGhhHZNlp3nL\nLju/Yv+yLud0sYyPbQ3YjVRODA4mGjsvbAY2+7mXM/hmBXisL5nL3l7AXwbEkz92PAFvG2VuDw9v\n3EXathL6K7mkBBWGucJPINB5Th0Dt/CR47OzYGcrpx5vYFf//3aAlFLicrl44403aGpq6tJmbqrF\nWl+JVQkxLrkCj2ZBFQYptjZiLX7qfE6+rO3LJdlbsNoE9bY8djKGuuQxNDSHzT0OfMxgFWPkVp4t\nPp2VvabynyHXckGJl2C0g2fqHVAPJJ8FwHWjBVuS2ssNV5UwdfVnZDQ2MLiqkfi28JfgiUuuIdrZ\n0CFnUV4U49c3UxP6JY3WcFDieeUBSgL1HAukpqYSZzFTpTdxRs1YCMd4kq404rA2ssWSTy+5hT5J\nRdiD/Rm/fSNrho4CzcbawJCO/h999BEmk4mhQ4ce+GTHOEdzxjIO2CulLAYQQrwLzAT2VywzgTel\nlBL4WggRJ4RIl1JW841hFsztL8kxQrCsjGBpKfaRo1B/ZFOLFgziaqgjPr1Xl4yu6z/5gobNxZz8\n51koh5niQjcMHn5uMVdVWJlrW81J/gxySYQ1Lt5bv4L8Xjqp+X3xtLTwdHkbNy/2oyLYZW1lUCCW\nW4BvSvi4hY9VpkIyjUR2q7X8V8vlUfEV49hClPDwuLyagL2Q8cEscvXELnLsVCsYrGfy2PYoAjsC\nvLBkPp/0jmF4VQV/re0F9Okme6NFUGcKsDu0lRqTC11Rsega59eM4aKPV/DJedP+xyv806agoIDt\n27axfceObm22yiLMrmampxaRmu0h0+Hq8RgZdjfD4mvwCjv/5AYABlDE0OYFDDW28577BHITq3ja\neSmDfL/jil7JnAOwA8AB++VZ1ND5S9ZutiR1Rsif++nrTN+1j1hfZ86sK+99lJZUJy9wLQD9N7vw\nxzlxenUetYdvuPds89EoPIz5za+/0zX6PunXJ49VhUVYgwrl6iiy9I0A3G1/mo/qRzMoWqOv3cte\nu4OYpnJgFC22RCa07eb0wYX8X3E46/OcOXNYvXo111/frWrJT4KjqVh6AeX7va8gPBs5VJ9eQHX7\njGcD0Bd4Vkq55ijKeli0rV5NqLqG6rvvBj3sKtlv5QpMiV1vjFJKPEuX4hg5EjU29qjJIw2D3X/6\nnBhTPDvSFzP1N1cC0NraQspKG2kM4YNnP+KCW7pHI+98YTllNdWkjEwiRYtnTcViGltTuMqbA8BJ\n/q7V7SbtlrBb4dHCrdxU5eRWgPYJ/aBA5xgrlEa+NG2j1h5DjK+VvaYW5oSGcnJaEeOatgDgjbbi\njrfxXpnKIkNhllrCOD2Hjeo+5iS6yW5rBJ9ksJGFVQrObIzmzEZJ+KvRiQsfbqGzyLyDp2ecCDiZ\nuQ/+WvMGacFGChw5/Aedx9fOYGbsBj4+YfT3cdmPeaSUfDpvHgWFhXg8nm7tit+Lo7SQYdGVnHLl\ndLBP6Ci+tT9VpFBJGiPZwWviQiSCFFnLSSzndS5ioTKKFtvVjDUaGeYZzrDup+pAE7AuVuHWsVFI\npVOp3PbivZzjzUX3FXZs+/VDf8Ufb+pQKgAlGTYmFTahywRemDwSgBNqNWrcRTj6nfE/XKWjw6Tj\nT2Tl7iIK1EpqoibxC1dYsfRTKlhYfS/nJC3ClWmmPjuGAUXbWThtJvXR6ez1qixZW8Hv/vQgj7/0\nFhBeyN+4cSPDhw9HVXta4Tp2OWYX76WUOjBCCBEHfCiEGCql3P7tfkKIWcCs9rdJR00ew6Dsms4v\neshkwqRp1DzwEJlPhHMlSU0jVFND69y5VD/3PFIIMn9zK4m//OVRkek/jz7JFFM4eV1udS6LnnyO\niVddyuzHXuASpgAwuCqagMeL1RmO+JVSsviN1xlQ0pehpMNqAA/j6fyxlygN5BhJlCj1fBXnYqhL\nMlYLe+ffVNW1Lnml0gRIKtRWCpQyWqSZfUoujr5F7K6OIcZw86vs//CrrZ2lZye4tlEzIImynGwy\nmtfyx3XJpFgrGai2EquHeG/MdEqLdnFlVTUDjfQu55NIZtuW4bFZqHQkkGutJMXcQM3S47pdn4He\nEganFrC2tj93fRXkql2vMk1rwpmawUWXXEp9fT11dXUMGTLkB6nfcbQp2rGN9//xAFIo+HK6u3Jb\nGqqx1Fdx1fFRmM66mPiFN8G6PR3tOoIKMljb9zb27KvEZwjyZCkLOA4nbeTRxOLES6mqm8JVoRQs\nUsWkmIHMbucygIIYhQKn5JEhDvRvzZqzG6q58P3nmFSvolcuACBhoIeYCR7erP81BfHRHX3Hr29m\n05BEVOni2cSLAIgJSaJ0yEo9ttLOJyYmYtdCVCpNZLXNAJ7paEuXHoKB8C03od8exN7wGNelJ5Oa\nrGDZF8up827gyitf4s033wRg7ty5zJ07l7vvvvsnpVxE2Ap1FA4sxETgPinlKe3v7wKQUv59vz4v\nAkuklO+0vy8EprebwvY/1j2AV0r56CHOuV5KeThpQo940IbPx6ZzrsVWtgWvw4E4+R7ipZPmhX8g\nqq2N5N/cSv2TTwFQMHAAJfmTGKj3Imfek/Rf8SX+HTswZ2QgbDbMKSmHfV4tGES2C2xp95LyuV38\n9757mGw+GyvmA+5bqNYyQE+l1F7E+LsuQyKp3Lubhn9Xkab3XBO8zOLjffsmrNKMNeBGivClcho2\nzgiNIlqGK1J/YdlOmaj9ZtJClpZEtjaUm0xN3Db9Zf6q/q3jmDm+Cr5eG/baqQ/+lWTLvXyeOJmr\nh/6Nsa3biPK7UIWLlYnHs2PVTKIMHzcMuod9gWycexpx4qBKxJEVCpGctYOH6h/ntv5/4OnCv3M4\nvJNwOrVNaaRrg5FIbFgoVCtpNAs8UVbSWpuxVJXjz8hl1KhRjBs3joSEBLZs3kxqSiJNLW6ys7Ox\n2+2YzeZj6gfu93kp2rCWiuIiVheXH7CfuamOicHVDD7hTNJSouGrhzradpLHPP1ixof6UiXqEeZE\npgTTcelBolUzfkI80jvIGU0qYz0Hr0heHQrx1/5e1vfvrmy+4ZqPZjPZF0WvVfOxaTqBPgbxQzwk\nJPtYO7prud6cMi8lWXaOW9WESZf0G7cQt93CioVugoaXQQ+diDiGPg+Ahx58kABWrvNM4J9Dqnmq\nKGzOWqkPY92wvuQnLKOl0UTdu0O579Z7ALhkwzsM37qOFJuHMx79GBdRXZJ7pqSkcOmllxIbG3vY\npu2jwGE/fR1NxWICdgMnAJXAOuAyKeWO/fqcAfyasFfYeOApKeU4IUQyEJJStggh7MAXwCNSyoOm\nAT2aisXX6ubvj/0DVdewqzFcFgjPCBaxlhHz38QcChEym9k0ahSDMmaSaYTNYx7DhTbvDwgpwy8g\n89lniD4hnDZcBoMU33AjjflDsWdmkDlqNPF9wiktgvV1vHPTzQQGTCCke5gwuDd6TAwtq70MFjkA\nNChtvBy3k/NbMum339O9T2g8mryDP9cNQ0FhQeMcGgNVjOx9MYO0VJoVH/8xryZBOjALE63xuaxz\nehhX1kaqlkC9WszXob7cJmJIUQyWiQKCikaj4sYsVYaGeqOZFDbGtlHYmMaQgXMYm7aR20zP4SKW\nc+sWsceRzfbo/ixafx1D2/bi0U5FFc3Y1a5WzQ3Rg5k54mkqlp/QZfuF+f+kyppCtq+K20vfYK+j\nNxfXfn6kH10HXmy8zoXE0cplzO3Y3kQs73Mak9hAMVmMZzMpdF3gLqI3n3Ai+RQQmxBLr5OuJW3Q\nye0H2AclK2DUFZ076BqoJvC1wNxb4OQHIT77f5Z9f/weD3vWrkILBPhk6XIMW88PCY7afQxQy5gU\nu5ukGTcgBpwGr3R6yLXIBHaGHqK3kUWtIlls8SL9jUTZHczw2Gj1V5IVNQCv5sZhiu7xHC1mWFlf\nxCfDY9jWJ5OAuWcX8URPK5nNdfxm17sMNW6l7eMbATAckppHe/ZEiy31URhtZVJNHrkN6wFIO24p\ns/YGmFUUpFgsZtrfjz1n0aqqKl566SXODYzjvaxoHqo7s6PtZuXXnDflXQBKnhzGX269B6koPLei\nCqvcQsGOldx4ioOoa9/jiSeeoKWlpdvxL730UgYMGNBt+w/Aj69YAIQQpwNPEHY3flVK+ZAQ4kYA\nKeUL7e7GzwCnEnY3vkZKuV4IkQ+80b6fArwnpbz/MM531BRLWX0zn774Mid5RmPGTLVdkOkLH+ZD\nyxoaFQ999FRmhLp7cmxXy2kWHgbrmWjoFFR+yMlnnIIpM5Otd/6J0umXcHxoKM1GC6x/C7VqO1LA\nnjNvYYx6cM+Q2fYmRvhNvKNUMtzs4nL/WEwo3GcpIpSym7GNAzjH1z253ctRa0Fz09dIo0a04BF+\nUkK9WZG2j8SoZuLTvFTZszATYhOjydjZyO8r+pKIiaes1Whpa8gdUMMT4g8MkVvZIfI7jn18wxbe\n3hFehXku7rf8quWJI73c34lqI51kDExK7Q96XgA5/kZY+xJCHjxbrVRMiHGzoKUMCr71vHRPMwTd\nULMdcsKR2DV7d2N1Opn9h1tBgrdPz9+LGK2ZsWILa80TuPmiE7HtWwhrXgDAJR3UBx/DLDNoI0g0\nNnzeRl7XCrgp5vAjvrf56vnCVs47p0yDg5gQ8+oryWqqY9quLxlCIXHWP5OkJBIqW41/42vo0ZLa\nRw7u3py7+g/kBv+IEJIhY+fR6Ijmk6UelGArw24ajiXrwDOjH5O77n+AscFMYm39iNPqGc3VAFzs\n+Tu3T30Yd7SZ3W+MpjApnXfPvIZ0dxvHLV/FgMqFeHULN/7xl1iGnUFraysrVqxg8+bN3c4xc+ZM\nRowY8UOacY8NxfJDczQVy5aqfVieq2Blsokip8JreVZ6uXU+XOXtMZPnydOjGNoc5LEtPf9wlng+\nJ3HfDoYNu73H9sPh5dgSBo14CsNq5vltV3NKrQNhLqFJj6bf6LmUxvbDtjWPwZ7BTPB0LrA/H7sd\nS3QF5SE7S+qHEmdtpcGXyNl5n/NevwOvB82U7zOsdR2+2Bj+KXqOGzBpIfYun4VNKe6x/T/adC42\nLfmfx3wgqvXhzAzdSB2xxIZa8ap2/m17mHFKOMK5TZ/eUSfjSGhW4tirZjE2tO17lvjIaNPM7DX1\n5UNO7bH9MuND+isl0GsMVG9B06KR2NhrHUis+0okDhSaACtGyzusbA0Ql3U+g5WeM+q2BBuIsyTR\nhh9Vh2q9lZtmpNHgdPbYf38ymut4d93NaOoEYrRr+WYpV0pJYPNbhEpXAFD1XNgLrIkETISIIZw+\n31+eii2rlsEFbtLrwsGW8+SV/HL6ddxa6OfKkhCVtW8w/rWXj+AK/rA8/8RjGE0wMziWO4fbeKPg\nPFTh4gN9GmnZRfjyAuzcPIrGbSZeuPKPAPzqq7VMrH2BrS0ZTEspZuzMi+HE8IxM0zTeeustSktL\nu50rOzuba6655ocYVkSxHIIjHnRlRS2j93TPozSqSeOpDT5s+z2gnplvpiY97JR+SZGbm4oN1iSa\nKLYH+GVZz2siW6J1hru724of7OMmuXYXxTkTOKHGT6NWxYKsRNK2aQw58R2eVP/Y0feP8n4chX1Z\nZnPwZc45AKRr5fx6WT2FtlqSQ2bsuiDd6WD+2Fo+Fed07NtPFrBHHHnurqwGL+VJDi4v/pI+NbVc\n2JZOsuW+Hvvm+2fjIoo8UcVi6+8P+xx+fTA2decB268I3slyI590XzUnVy0jRjQSVCzMzr6aYnvY\nU06TydQGnkYV9cSa3sSurqPS/x4SK6Dyem6ICc1lNJsSmZ2XwX3bffT2dn5NVOpotlUxO2co0ZqP\n0xuWENCSGRh6l2hRzUbTEKZoa7vJtsw4Eb+QzGAZdcZZ7JFpJKhfky82HnLcGio76M9nTMf/TZDD\nt7iet+nFwWdm4Z+4oFSfjiv4GxKU7j47u10b2RjajDcpg5DNSlVcIp/mTybV1cTo0gLmD5t0QmnO\nLQAAIABJREFU0HP8vug5+tZ4OTFQiwkdt34uAaNrkJ9v/ctoFWtpm6Yj+2m4RofvU3/gMX6x6CW2\ni+F8euJFCGlQvaxreeH8SXOoMyfz5WI3baF6Rv/llB/d1f9gNDU18fgzL3CDdyoXTbDywZpdpFlv\nxZCC1+ImkzO8AJ/XRuFbufzfjQ8C8MqqBqj7NwU14bic8YllTLztGdS+na7yW7ZsoaqqijVrupqT\nb7jhBtLTuzq6HAUiiuUQHPGgPd4Afdfs6njfS5ZjoFAtwi6weS6dfdEKsodpqc0VYMTOFka06ZSm\nuXigotNtdpszwHMD4zhj62pSRRqfpwm+zs4jKEKYfX5u3rCH6LQK0oKx6E1phKTgmbhKLhrzCXeK\nwzMxXbjtC2ZV57NRLWGrxULllEaWiJMO2P/meS00xqgohqRPrYYElg+2snRY+IecUxsir8ZLv5bF\nJEgDQ1r4nXJQvwry/S/x/u9OJy8hii3FjVz62gr6iwreNc0hSu2c5r+snc1s7WTW2A4cm1BspDEr\ndBsVMhk/VlRD47iGpUwavpXowR6S1Hpu4hWmf7mECl8K82Pu6tg3YAzGo52JXV0BqBgyBlU04tbO\nJygHdTmPwIfk24vVksP5fQnakDgO2LfeFMJsGDhkPU7cRKkLqZND2C10StQGqkXqAY89ls0MZg+5\nVHSVTAq8RhyFvhPwm8ysC4xmsB4kzzYUaw8LvgYGW9jLnF4aK/sOw3OAtZqeuGPlG1Sb0rgg8Cmt\n2liytZNwyq43ehlso8Fbzdc1W5leEF4ba75awzeu8ylsPWNRlvo4yX8tcTKa53N03hiUTG9fFW+s\neooG7yAuP+NSgoqFc4tb+P0egzbjS/L/8RDHMlJK7nzo74z3p5Nk6ceaJBN31J0CwJXGLVw1/R0A\nNr84qEOxPLK2lif72LhyziPosvPzuukP1+IY3TVkoLW1laeeegq9PewBIDc3l8suuwyz+cAOPd+R\niGI5BEc8aG99Pau2TqRY9MHul7TOvZPG3GqeHzekx/4TjJV8rXS3W5s1P3dtCLI6uRWLFiCLQj7K\nHo4z0EpTYyKz9F1UFfdjut3N+j4fszT9dJpIJIdizuJD7Pj4nehMad6vKshx23ys72djc561Y3uv\nxhATCvy8Pzkap3RxtncOSa3VvJh+GwERvlnGtukMLguyelDnzfPKVW7G12jUhCRTo18jPyq8yP2V\n+zr2ek9GkxYcSg2piZuYwUqsavfAu0ojmROC/0DFIIiZECbObDMzKNT5pJzU28nTTY1UmMI3GQd+\nxiiFLDOGM95vYq0tyHHKFu42/Yt4JAlKDUVGOv/QLmGBMRaA+GATud4STm5YSc0VfZgZmovdrxPV\nplPey47PpvDyrusJVZiZY3/gkJ+xlCohmYdF2XMYfRX8xihAoogAraFfoMleGDgBMwouFNGEIWOw\nq2vRZRJmUYzPmIQu4xAEMYhGShMhTxXm6Ay2KPvYZi4nILrX5bBKE2bRyoTgZHKMRJq8HoJBF0nR\nHpY1xeIxJ5CoQobaTK6jZ69DPyFahZdV7q8ozkzFZY/i0/zDX1uZteYDjjd2EuOdRKI2GvVbRmAZ\n8qG3lOBd+QTVKcmkuWpR/ALDLnGdp+OdaHSrABXCxPxFM5hrnMUZdjN3+uxcPtHB7pjus/e1C9wU\nmqo5/s4zjunZyjcs+Pgjdm7YzYXBiZwx0ca6DbOwtJuIv5wWjozw3Z/OwnHj+c9pV5DaFuDKzZWc\nEnyNBYVdb1HnZW0n94pHYPjFXbaXlpby2muvddl29tlnM2rUqKMxpIhiOQRHPOj6fXuY+9IK/M1d\nPXsyJszm/t6/oFr0Il9uJCStnFVQjnXbOGpjBS+dGt/j8ZKL9pEd9LB+0LBubZPlUvpTyGtiVg97\nduXP/21CaX8ANAQ0xmvYvWbyNBjuaOSuQZmszOluRvndR804A52XIaiCQ8IViY9hV1YQMEZhUzd0\n26828E9SrQdeF3oqeDtPGcNJ0sw0qpKQgKk+Ew2qxCZhk1XHZsAJPjMlJp0d1s6n10RdkKYJcjSV\nL+0h/AfyqpSSaY3LyTMqGXJhIQnmRnpX+ijL6v7EHd8UZLZ6JZ+tmciDplfJEvWMVQpxiEAPBz56\nNJui2RgzmOOb1nT5da4yxvFFDw8gQMe3NNufQ34ohz0BA4vwE6oupCZaEmuyEaWaybQIsqK6egkZ\nGLQRoEnx4BUBVpoLMRAsHDyWfckZPZwM7lzzKq3+OFKtLRSnZmGu96FpJt6YdDrDy3fzxyIP/YK5\nGEoIRbfSap+H1ZuDt/4DqK6g+SoNPQUsuwXB/gf+iQWklXqRTCYVbJibzXPW2zjDayFLU5mQrtIr\noDL1xK5eaPOWekjzS0o2PcyUBZ8e8nofC7R5PNz17PNc3tqfFwam8ODOJnrZwjnOijIdlOQ5qH1r\nAMWag2eu/QsA6xe4me39mkG2lVSWdn3AMAmda/usJ3rWx5DdaZosKCjg3Xff7XZ+k8nE1VdfTWbm\n9+bgEFEsh+DIvcJqXHx23xq0HnK8xg37mLicldR+fR2++q4/cL9ZMO/0RvL9e1G2TOad43p22zwY\n6U0a1Qld7eI3ftZCpsfgnLh1xJufZnnr4+wOJBJqH9lF8etItv6NltDVDDr+auR+yRyvXuRiQHOI\nMY7tuPTBxKsa8eY2ks1/waR0XUfy6SOxq5sOKFulkUmpMZRPZCbv6DMAQV5IwUjcR4UnA80IT8ut\neoBbfO8xadpKSvUk7t15B4ZP5eL69/k6diwllt5owoTVCKIJE15TVyVhNoIM9Oxmins1octj6G8q\nJNWoI645REOytQfJwsS4Quiq4OstY3nOdRXBDpOQZLAoZafMQWAwQdlJf1HJX82d1Q/fYTzL44Zy\nsbacMVoRmhDEeDRED2ETLSYnTs2HiU7ThEe1c8mwRymMysFtcnKq/IRBoZ00e3PZrg5gzMZ9HX2F\nYUIJBDAH7AhTImZfDuj7UP0uNF84G5rDFEOf6BEkWNNJs+d07KsTrqZYJ1woQmWeeQMNUQ6WDBiJ\nIg1qYg8cN3x6y2cMLynlOL0/wbRNuDNWoQZiyP76Ptwx63C2jsNrEtC2itpT3jvgcQ4Xt2HmXdcw\nrFsGk122nbfSL+JcVwKPPHY8ZotKSDeY8/CnTHHH8bcYNzty7PT1S+7fHf4e9XpwIsJ0zMZ1d+Pe\nO25jvGUUOSKbRWlmbm0Im8P2xtsoHebEvTqV8o1JPPTrsNPrdbtbSaooJT1UTNC9gfqGnm9V1/dd\nQ0y/8XDVJyAEhmGwYMGCbmsvHf2vv/77SMcfUSyH4IgH3drWwD3/+oT+m7KJVgJoA1xscnoZsSER\nv9HdU+a42Dl4DSvr3Gd1O/GDF3etQfLHOU14rQoJbR4cVoO5Q5PYmmHGJBUuWeYmyW10WPYloJoh\nzhAcF91Khu2qjuM0BW+jNpRAokklxRpeV5DSwusN/+HjYXbKksycvdbDyVozE6N/iejB5AJQI7NI\noRrlAO3fsMPI5oxg9yDFYVHb+O3k2QBsmT0AJR3GnLiTKWubO/osmZSAblLwY8VGgOJlWXhrokg6\nq4U0WzWheislX2fhCPhw4yRlWh2Veh7DMjYiDMmMFY0U9o2iMqPTjGc0arwYdDBw90lsGbiIe20e\nWmPNDCp0U5QbRfnq/gydU0HQYaLhVMG+6BzW547mOPcyxE4L2cubsce50M0K+0RfhJR8NWYCY3Zv\nZcmkcezI7M/l2+aw19KX/B0FrJo0mlP6zaFY78u7pitoIY6bqmZTkJGDgsFINjJSrkcxJLqiEApZ\n2b18OB5TGkqTit3ShjW4m0CLhX7nlGCLD7J3Xm989TassUH89VEkZGs0loMZO+dk30pT7jwsnkzc\nqouatigKZAM+ReIcUM58cTY74vsf9DMD+K38B2M5+hmSelX5cEWbMBTBvhITf4txkBUKsTfleV76\nchdX27MZEFR5+OSBjDw1p2O/5Zt2kfufcPJJNz6i29e5jNOh97SpR13u75Mta1azcHEhl7T24Y+D\nAjxVuJZEyyMEzIIVE8OxbptfHERh33zmnhjOKrB+gZszJ9t4b9v1vB88jYCuYmmqxdrQ3Xnotsk1\niFvWdbh9H2j28g133HEHUVH/sxkxolgOwZGvsTQ00fToDj5PViiKgZuLAoCbCyak8siyOWz3ng5A\nb9tmktVMMs3pCOlipb+G+kBul2NJIGAW2EKHJ8YU53bqQvk0aBIhYIpTQRU1pFsPbirTpAmT0KgL\nPMwS90DqNUmqSeOCpAt77B8yUjArdYcl09fGIC4J3g2AWUKo/Ss31LWDkVN2MD1tRUdfm09n8rqw\nUmmMMxMyC9Lqg2waGoNZk3jtCu5oM32K28ip8HXs99XkRAxVgJQkNQax+XUakqxYggaumP0WKKXk\nxTIzzopzyHD1Jc2dR3XcdnalL+LmYWFvsrRaPy0xZvz2A0dpP8nt/IZw0asPuJAL9PdIrQ9QnWo9\naLzG/nKouiShOYSugmJAQ9KBZ1PfhZVMIYtyNjKG/4rLDtn/ZPkpl/EmZg7+sGAuFoTyDvy9VOvA\niAIZBVGtGv2LPDgDOm0OlbhWDQFsdqRQbm7jfXsUmhBssXVeg4HRv+FXOwdR4Q8w2xfgrtx0Tr15\neLdYjM2/f48kU6eXU62pktEPXnLIcR5rSCm58fFnuLtuBMuTVEa2NDLQFK50+c06y+YXBoBQOr3D\nvm5jeKvBc+YC7uePPKjeAgis1SVYWhq6neOktD0MuvZhzINPBbMdKSUrVqxA0zSWLl3arf8999zz\nv0bvRxTLIThyxVLnYeGzH+IzuZgaUuil3EmbXWVLzEXUlp7BCPMXiMDxBEkg2fwZ8ebwAnvQ6ENd\n8DbAgoIZKebwcfN1XQQ4LrqcODWPWm0Bhb4TaNYlKjA15l/EKpcTa3oTq7KFuuDjWMQeUqx3dOzr\nlw6eFZdzO7O7yNsqnewhlzEiHH/h14fRpp9MouXQ1QL35/PmO2jLPJUtJVWkxv+Xm01zeUE7k0dC\nlzC5ahursnthGA7y3NWcGfwcJSvI9P4FpNUHcfg0QmYFh1enKt1GQ4IFjzNsxkhsDJJb5qUiw4bP\nphIyCVIbguzL7jSBDdjjIWQWpNcEMOmSpZMTu8nnbta5x+PkqnUPEnCWE7Q1drQ1WZroP3g+g2I6\nr/aoLS20xpjJrPLTkGDG2abTGGdGMyvUJltwtukM3eWmIdGM126iNMuOZu7+IzSHDEI9bP++0FGo\nJZ1UqlEJz1h3MpTZ/Ir6g3iMAThkGyfwBefxHm04iKczettcJLBvUTBVChQfqA0C6QC1HoQM3zek\nkOHQZAP0/jqeEeCdZpC1KUC/VjevZ57DSY0rWR+VxTNxNipVDVWrQUh5QAV8f30jfx/8CuW2NNZ9\n4eE9bwBrUOH6J6ZhsXU3bRm6we4/v41VT8U51kryRT/d7NSPPPgAJ7eNIpYYbhptZ97WazArZawe\nHYc3ykT83Va+ysxjZ/4kPp0UfkBdv8BNnVbPDVMz+Ouup9jg74MuFaw1ZagBL6qve4603w1cjnJf\nS5fPIBgMsnnzZubPn9+x7TsUEosolkNwxINuqamn6tPLqc4t6tYWV3oCqYVXYBLlxJlewvatNYnm\n0E1oMguTqMCQUfiM4yjwb8QqMsi1phGlfk6M6V8EjQG0aldgFhUEZV8SzI9jVbp7Xe3PU1xDU3uq\n+kbNzE3q+5SKTE4j/KTSKp3EioOknf0WZcGhbPScT6PWC03aCEknFapBkqGw0hai3NpEi2HnzH2r\nuLZxLvV/0ShsNdE7SsFuCpJb0oZmUijPDJsvhCG7rO98H3zZrFIQMlEUUDil6CKcoWgMayvFSemU\nWh14omJwxSVx4q51GIF9VOUs5LdpP+xiPYC/xcLeudlIXRBji8NhDGFS6kSCUdW0xe8iVDOMFZTT\nrHggNkClyEJzSNblDaRRPfx8qtFtbv72/D/oV7YPCxpSBREEDJAWUIIHv/6vnHUhH06yoJsysLYt\nIGQbSHL9BnThwR+VRrpyLrGmVqrcL+MSvh7vLjGGgksxOMHv4NLmfczOvJQc3crihHG0qXYMoVBu\nS+fzrzzYQhr97p+GehQV87FEY30dD7z+Dr9vHMWvRwje2PZvYkxvU51gYdewGMq/HEzjXknAauep\na/4MQJpPZ94yL29py3ny9FOZ/9VvGaVuoZJU3uR8AlhR3S04KvZ2OdfohAomJ5divuBFyL+oY/vG\njRvZvXs3M2bMIDX14A8mByGiWA7BkS/el22gsPBSFFXvsd3m0xm+w4UtYOCKNnFJ7f3ca/oXk3tw\nxw0ZGTSG/oJNWUuM6b8o4sgztL6in0mF2od8dnEuXwBQTjpZdLfDPid/wflyNalKEZvkWEaKdV3a\nl7ddwNSoOax2X8ZC3/m8GnPgm3Bfz15Oq19I/8RqHBe0oGoGhioYu7EFZ5vOvmxHl1nHN+z1K5SH\nFOpdDs5Nc2NWu38EUkrm1JtJtMHxMT2bbB4rt6DXx3Ji63nIln6YEdSmbOe/I49DMTRu+HfnjKyg\nz1ASbFFEtyWwdPCz3Jn1PyiXkEFQUXityUqOJ8C4OAOrVLBbJE2GislnwVMcAxIcyX5aS6Px1tkI\neswgBap1FKekzCDaZMJLgDXmPRSptUjg67whbOvVB+MIzBLnL/6M01b9v/bOOzyu4lrgv7nbV6tV\n792WLfdeMDYO1aaFnlACBAgJgRBKGgFSSEgeJIEUSMIj8GiBAKEFh2aaO+4Ny72o97raXW2/8/7Y\ntSVZkmU5ciwn8/u+/XTL3Jkzo3vvuTNz5pylZDU3Yg/0HX++PzrscTz6la8TZDP70yuRei2Cvu/n\nIyMotlmwJp5Fk8gh0+Ahj0oqKORTsbBHytFyJ1PYSEGLhys3Rh2Rpt89BXPG4I1YTmbufPhX3No+\njTqHjer4fVzXdietFo3Ns5Npq08l69Ega4pz2D7zLN6bHl0c+soqL8WeqNXkH+L3EE4vYV7lU5xr\nWMz7nMFeCgn5I8SV9b94+Lb7bsE2+Yv9nh8kSrEMwKArvWrZUkr3PY/Z0c6llatI9EZfUlvGO2lJ\n6dvx3ocuI9fvMTHWV0XILNCFwBbo24fU/4SuRgN+aHq5x/Ezgo9ziqmcdaF8TNLHAuPnBAyJ5FDP\n9bzZr7y3Be9gnraNa4xL+jy/V8/hnGDvGByHMz64h+2mUVj0AJe2vk1KST3TZuxH0yXjdrsJGjWq\nc6zkV/vYNbrrZfFQnZVJ9gg2IXnPZcLpSmJazVWMdJUQcNSQWfwyZXv8lOb62ZvkISRACoEW0bil\nfTpPpESV3zhrhI4wNAY1gprgwm1XkeuZg0TSkraGoEnnxVlnc8ez/S+Ya5o4B3OnlbdKngPAJCQ5\noTC1mpGgJkg36rRFBDZd58KOTkZlwMvSzp6AAXNIY8G6dFJdRz9XIgxZmB0XMNLgJj8xnX+aN1Bv\nN7OqeBIjmmpZVjJ1wDyKaiopy8ln6q5SNo+ZwDUf/INTP9/E+LLea2w6LWAPgM9s4mv33s3o8pXE\nB0awqyCNvIalhDL3sVv4yBYWamWAK5rPYbxvJCERZop3DA7dhujjneETfnxagNaxL1KXsgW9dhJl\nZfPINXeSmtRAVVsqU/zjsEgznxn3AjpugyBzxCd4Ws6iSneQ724hNZzCvHCXV4fch0+uCfihoL6y\ngg+feo8zQxO4eJ7GuvVXYhBuls1JJhCykvM9+GDySCSCp66/B5c9ahC0+kM3pm5vq8vm2plWUc03\n2n7DtMg2HuZWAiENx77Pj1j+V+/7LqnpKZA16YjpBkAplgEYdKXLa6rQP5yFx25AagJdgCEiKS7z\n8tP8Ozk/PRo/Id4dJrveT3ZDVPGsnZZ4aF7hIM7WMNO3t6NJeMM4h99rZ9Hkz8AfTERD8EPjy5yh\nbeFboTs4P20zaakVOMJ+1laejhk41bSG+Ek78dsMZNf5yWrws1RM5CL3FryY+dWI0zklbiszylyk\nefx93g2jA3/ilKI3qA042V9zGTLmz+kO42uk2DZTMqmdEeWdpLcEaTMZ2TElnvG7o76cgmaN6iwr\nbUl9K9S/tpipq4xn9J4RdNq9mEPzGB+e0ePlJcxuglqIpuJFtFcU0hpqJMuYyEhPzGOw0HEW/pOA\nWVLXnEdyy3Sk2Y8eho7EXYTMHUjgbzPPYuLODcxb/wkAJulES/oaYf9qIv5oJOtlpyxkWnszCEGD\nFiQhbKPd0opVpmGRLnY7q3BZ6tDQGNNWQkqbRkJFOVJoAzqTPFQfQyZmx2XY0FmYnIBb+PirfR1L\nR0/FEg6xM7uw32vP/WwpH5x6OmfsXsnm7IlM27OdHz/9+CFLQJ8Z3p8u2J8tSPCCFkym3plBSTU0\nWdIxmiLkttUgkeTOTyA9sYUWSyMdMonabZcRbM9ldNiJX0KSARI1DYvTRGJYJ8ESNWaIAJouMYSO\nrr7HSvbP56CZTx5z4aHkew89wq2uafzPlE5+tO9F8kOfsHSMFTLMrFh8ERe99xFLxhWyct4XWT2h\nKybiyo/cPVxG7Td6uG+8wGFJ5fV1t0Kek0ebosra4O3AXrmnz/KvK9pE+sLb4Yy+/fwdBUqxDMCg\nK11dupbdjX1b39g7w4za7yWlLdRnyzelmHE7jLQkRSeLG1PNeDQD1j6GgwA+rJjH3v2z+eqsZ3A4\n2tAiErsvanlzcL7CEJGcvqqlx3XPZk/iC6Z9NKSZmbMhOmG7r8jOSy3n8NOOtwG4O3graw1ZPD32\n16S2BklvDhI0CVbPSOILq3u6ij8cCbgdRtZPS+zz/Eq3gYqgAeuqBcyIG4c1qZK2fWeRd+YvqVjy\nA0LmdjqSdmIMOXB0FGMKOQEw5q4lp+RjKj65n4gWwBt/AHMgGau/ayw4bOgkYvDTkVyKx2RhRd4o\n8msPcMrm5YfSmJ03IrTEQxZGeriWoLvL9DJocxBJTEWazBi8HejWOEztjRi9UYUphYhOQPeHsGC0\nzsFonYaUUeeiI2o/Ij1Yh9WRjbnoTNZbK9lrrKPemcSiyaf1Ocxli7ThlE20aEXctfZZQh1OGpw+\nDsSX4Ta5abY2IxCYdTMBQ4DUdivJ7WayWs0U1UdNRRNMaSRZMmjK34DFOol/apm4wna09hROC2ik\n+NO4+K4ppBU4MVsNSF2iGY5+yC3iDuIrbca7q5bQbt/AFxwF2T8/Fc08vGKn/Dt5+5+LSFkdoi4x\nk3bHar7e+CAf5sVjKLLwedVszn1oM5+NL6HVGOHArLN4a9rph659fYWbws6e+W0K7+XPk7MYW76b\nH4Qex6DpPMU1hGRUcTt2b+71YZRm8XD9C0uPtQpKsQzAoCv9edlumsqiFhuWegv/NAsmmQSFJg9+\na8+HJafWR2GVj8ZUMzm1fvrSH5/Oi1o45Vf7aEk2k13vx+6LsL8wDnd89MZIbA8x/XPXoWsiAvaN\njKNkX3ROps1pxOU0kd3gxxCRGPr52DwQm/d4c+8MZqeWsqC+icym/ucbJNCWaKIm3kRha4BWo4bZ\norFjTM9x8dUeA++6zBiExBMRTN56OfmeUWQmBcAVNbG256+ms3IOzWmrkYaenp4drmJ0QxCrLwOk\nIGBrxBtffui8KZCAxZ+OJ6Fr+KcsJYsao5Hzlr7VIy+T4woMpnwKLBuYFvcWb7VGh8b0cA1B96v9\n1vVIGKynYLRMQ2hW4jvK8cZlYwm0M3nbEzhTR2CbfhN+QnSIThZZovFCKpIzeH/inF555Xnf4eqW\n3XRUFGAyhAiFbKxJX0ObuY2QFsIU1PniZw4swQR0AUZd0BofxOEzYg53KYTU8R2kjm/itYoLaJI1\nGP3XMVsk8OXLRhP2RBg9NX1QCuRokGEdGZFosd6NHggjNIEwGXqk0QNhDHHRXqyUEiIy6sIlEu17\nif+Syfr+CIdCvPKLF5kXLOaW6UEWl17GalsyocmgB0xk3GMgrAk+nDgCqWnUT5rLi6f0nLN6YJuP\nC2t7zj/+OcvFHmuYIu9OvtX6PB8bzyCAkSaS0fw+7BW7EXrXXNrdz72EZjumkOlKsQzA4N3m7yvl\nvUWPUeuoYZ3WTKep6/PhB8JOdm5v+/K+GFnmpaCqy7ImYNbQdElljg1NlxRVdX0d6gJqM620JpnI\nbAiQ3hLEFW+kKsdKQ3pvNy2nrmulKTbfU5dh5fOgkZtLmxFA6Zh4DBHJiAovQZN2KFJfUnsQYxDi\nXRFskTDbxww8qbrYZWR/wEBbxSjOLV+IFytGskmWZjJPe5Rtm2/EbKpB6EbiPIW0pkXnSyRwIDUb\nox6hoLVvj7xlKVnktjVi6vYgeM0WahPT2JOaRU7lHk6LDXsdxJL4bYQwcabzcYpsq3hPnM7njOO8\nzv1s6LixV8+lbwRG21w0YyFSb8eo5WGKBEhtKWX03lfRYl9+xrEXsXH8SEIigkka2GWspTYhhY/G\nzSTB56U+oadJtLPpD9zil5Q2wpaUrYS1MEgQCHIarbQ5g1y8IruH8gBwTIWibAfVopa6snS8+R3E\naSO5NPFLFM+fSUiYiUs4PmtkFMePbz7xND+qKOGWGWHe2HYHQT2RppH7KM+3Y/2Dk+TdfqonTeVz\n0UHYkUDTyIm8OKd3qISHtvg4p6GngvlOTgXLJ0wgt6OTp7Z9QGbwDSqcE9jlcVARSMPaWIU/q5Cf\n/uKYHXgqxTIAg650WcVubvzn9bTEd/Y6J5Cc6gjj1CQSyDFJJtqPbG1j94ZJbwlSnt/TgirBFWLU\nAS9SwMYpfQ85DRZ7Z5jCKh9ZDQHCBsH6KQl0xg1+nHvt/kw+0CLkHliIzT2TCUEbZgQhLcCe8c8w\nO9GDe8V3ae62OPIgAYORT8dNYMr6z9gyfhYVucUkul20x0e/nHJbG6hOzmDqttXM3LqSVQvPoTy+\nmE6zDVvAx5cXPUNaW8/Fm2bnjWiGqIK8JONWnhJXU52Yhs9sIa+1AWs4xKzw59RWXYn/FDUYAAAg\nAElEQVTfmgKEQfqRuhfN2NvFuK2zASk0Ru1/i7TmrdGDmgnD7K+zPcfBVmMFESHwma3syCqkLiGF\nusS+zYLPi7zGpO2N7I7fxypD9KNj3pZkimvjkUjCBokpopGTMJHA5JWkZDbzdv15bPK5GWG2MTJl\nMqs8z3P6hC/w4NyBHWgqTg7qaqrZ88QGdqal8kXXr8jRl9PuNLJxSiJSQs63zOga+M++kaUNy5Ga\ngY780bx22hdpi3P2yu+Fz9yM8nBogn+3aOQTuZMXzlzIV9aXcZn/n6QRpNQQYgsT0NFO/nUsQohz\ngT8QXW71tJTy4cPOi9j584lGkLxBSrlJCJEHvABkEFUCf5FS/uEoyjtuimXHjuXctvROWuLCTPX7\n+XlTK2Yk9yels8HR2031l9xusvMMFMXD+y4T7RFBZVDjnszBmYgC/LHRwu3pPYeunmk2YwA2+wzc\n3uSgeFpTj/PVXiO5cUdeZQ2w06eRYpSkx+7M7bsSSYsIOqrtmO1jWJtyKnm5K7H73ZiX3QwyOvwh\nkWyadz+uunGMaTyFbHcxYUMn3vgyPHEuNuePYnN+zG+alFzx7vMUdbO5f/7y22hMyybR1YIxHMIc\nDFBYvY+5G/u2YuuOOe5yhDEFoUUtZ4rTnmCpeQrPzrugR7qpFbuZXb6TMZH9pK6y4InLxePIIbN+\nLbtLrmHUvtfJq14Sq8/Bp0aAZiSSWULLzGl8agsQERp1iSkcSM054iQ8wJTAm1ywv5KWpkLeKHoD\ngMl7E5i6t9tHgtOCPzGe1gIPlQYP08acyticSWTGZzI7c/a/MyKg4gTw3IOvMTuQyebMRVzT/BfW\naam4o5HO+fOB7/OLR6KvOvt5v+X12j8BELFY6RwxgZBm4NMx03s5En12jZeJrp5j4a3hVr41zUJ1\najpnl27j966f0HHmw2R94epjFf3EKxYhhIFozPtzgGqiMe+vllLu6JbmfODbdMW8/4OUcrYQIgvI\niimZeGAjcEn3a/sp8/gF+tq0hpxFC/uMxvFafBw/T03hF00tXODxYgQ2tubjj0D1iFaeSnSS7Bfs\ndERfyjYhuTE1wGirzv81mwlLwS6/RpJBcmli6FBv528tZvYENIwtNloS/Yyy6Fg0yR6/gYAUXPlJ\nAWvHNlGZ0ckNS3KxFnWwPC6EscPMuHIntrEB1o2uJU6Dq5KDh+Td0mng5VYzX36/gJYCI+YmCyKx\njfwkNyZ5KZ6aqFv6DkszmjTiCHa9FIOan2dm38OEutM4teISXEmlRIydSC2qxA6kZvHhuJmM27sV\nT5yTyuwR3PbCw8T1sVJ4sBiMxRjjzkZo0V5eqvEAC1Mf4GfWO3h59oI+rxldX8mZuzdxs3wFV+sY\nKjsnIaTOWal/wmjTCUsDkbDAoOusMzzAR6aY65k4Jx3WOJaWTO03jrvVswyLOZ2R7mc401iPrXYq\nbxuq6RRBXGYX48rjmbkz2qNyjjLyvm0iIm0Ve01NfCFnFj845QHynfn/crsoTi6eevolztuXzy3T\n/by7/Qo6IpPZM60cV4IJr7QT+k0h48r34ckxok98kDgtzOKa5wjHOZFCA02jqmQqb0w/o1fed+7y\ncl1F78nW0kgF901PIT0S4d2rzsNgOCYjimGhWOYAD0gpF8b27wWQUj7ULc2TwFIp5cux/d3A6VLK\nusPyehv4o5TyowHKPH6Bvqqrefyxh7jX/iLl1mzutT3G990/ZVq49wLIG4I/YKk+BbMuuaL276SE\nuqyt6tI62T66lZqEqJ/k6TtS0IVkRE0cQjOxenIHFSktpLdambo3kdR2E6aIxq58N+ltFsIGnbR2\nC59Ob6Iqo6e1jtNjZmRdIsWN43njlCXoGlzzYRF/W1hGrkkny6Sz028gsT6OBfvuwijSEAiCBh/m\niAWDMUS9pZHVBW+T5EtnR8ZnGGPeiSNahERfOg5/ImeWX44nKRrytzkuAVsowNKSqVQlR624xu3e\nzAVL3uizHUtas9ifUEvY0P89ms4CXAmjya/6hLqseQS1TiCCZuz6Sjsr+bcEzM38zXQRiybPOzRM\nMLbufdqCrzC381LeGBuNkGkNBrh+9ftowI36h2xlOkGClGo9h8Ma4xNZPWJCv8NbAMgQls61xLW/\nztfcGeieDD6O20Wtve7QY3fpsmwSvNF2SygKUDVCsljzsPi6xTjNTtUj+S/H7/Vw4Bef8dKIBH5Z\nE/0g+rM9h5IZ0VGJm3iRD2676VD6mqnnEZc6ls8a3z50TAqNxuKJrB87g53ZPX0RHuTt5R6yfLJH\nCJzlNa9zzoN3k1ZYeCyiDwvFcgVwrpTy5tj+dcBsKeXt3dK8AzwspVwZ2/8EuEdKuaFbmkJgOTBB\nStnRRznfAA56Y0yVUhYehXiDrvSudZ/x/fI9BF15bC3umqC1+sOk7W6hsKGUkDSyhWLSrWZcMkLY\nHyEioDAoSdE1bNJAQdBPqns5kdAupABNCszOGwgKCwfin2NEdc8hrzUTJfH6eNrNO0htdlObGqAt\nyco1m39Ci70WoZsx6/G02yp5Z+yfQHSrmgRr0MLVy+cgw02029tI8BoxJn2T1UXvsiNzVa9WKWyd\nyOS6M0nyZWHWDQSszQjdgC+uBikiRIw+JBAyGFlaMpUDaT1dcY/eX8rFH/WeKJ+7p5q6vMuozZ6H\n1H0YWl4gLF2MaA4S7/NSmpNIit9Jc+GtR/w/aIS4IuNHvCcmss08+tDE5sLaEG2dv2Fep4PO9mzq\nCpey0TKH6oyvHLr2rB3raXAmEzYYyW1rxGOx0eJIYG9G3hHLLPJ9wNcNL+L0xVNfXUJLSx4eg59t\nSduoiasBAfM3p5LbZDs0Cb+04Cyys9ewOnEnr130GiXJJUcsQ/HfRfUPV7Aq1UC+dh9zOjazwX0r\nzPsbrgQTrb4M/tT4HZ741Y8PpV83fjxnjbqTiB7m9You7xLSYCCQmMbWSXNZ3s/C2y9VBvnBzsAh\nrVA2p4HTLr7iWMT+z1AsQggHsAz4pZSy/2XmXfkdtx7LWxs38p0mgc/Sv8nk1P1+xlcGyWyLYIt5\nLl5sD1Jt0JkYNLDVHKE9Znt8vtfEuKBGAMnjiUEQkBvWuMpjBt1DWG/CHW/DF0xnqyVCjUHncq+Z\nJF3gFRKLFJgO+z9HkGiHraFutzTxxqTfcNP6XyEQeMztvDf+d0jdSqo7n9PLrsIgDbisLtqtVWR7\n83AllSK1vo0PtuQWs2bkhEP7plAAYzjMVe8/R2pjV0dzUkUDcYEQ7XFWknxxbJpx39F5CD4CZtzc\nnHk9LSRyf8L3eHtKdFHY+TVBRtW/webklWypvoygbyRmwtya+QFPprfQnvnTYyrvhsjjOPd6CDSU\nUB1fwZakUoKG6JBiepOTJI+RyQds2AMxQwiLIFSQzIq0NnJG5DJ/xKl8ueTLmA19D6Up/nt5481l\nTNyoce1cN+vWXY0rdAOPG1Yx97TWqEdv4Cu8zu9/93Mm79116Lr2OVYaI2czOfNc9nRsYFvbCiD6\nQgumZBJIz2XFqMns6KcXc9nuxUyoaOK2h44cSrwfhoVi+ZeGwoQQJuAdYLGU8rdHWeZxUyzPvfMP\n9laX81zxFxjZ0M606g102OLYkzqRfVl9m+hestpD0CSwhCRvzXGQ4I1w48cdbDOEWWUKYpJwl8sW\nXXhogpX2MDKskx/U2GMKk2Uyc6qrb0XWaRZ44/eBqQYALWImsWUKBj1qhhwydeCz1WH35mGM2Hlh\n+n10mqPzHOfuupmCtqhyCJvcCKkRNnbiTtzVZ1l+o4mWuATemzSHiBYdm01wtXLmmo8oLtvWK705\nDCL1boQQJPsbabV2hcp1ZG7BUz+Z/u7R6fl/pMS6nNrQODZzJsXp75DvaiCzvYNObPxR3shf5lxM\npyVaTyElZ+x6kEnufN4MpjHSYyJJGsioXMsLIy/hK6OeYbW5nlrbjbQkntVnmQBG/24c7S8z3lDF\nbtPFXNu6EVdrFqudu2ixtBwSd96mDAqazJgi0f/LJ6mnc/Gc96mrmM5OeznN1hbOm3Ee35v5vX7L\nUijcoTCVP1nCn8bE8euKK3DoXnZ4n6E573ZCE7osRW+SL/LoIw/1cuUTNgvkad/FYsvknaonepyT\nQtCZnsfOsdNZMmZ6r7K/+taT/OqxJ3odPwqGhWIxEp28PwuoITp5f42Ucnu3NBcAt9M1ef+YlHJW\nzFrseaBVSnnXIMo8boplyTvP8dmaXaBrmANBSrZvoznRSeWY8VGX5unTWDE2H03XB3QqeO2SDooa\no5Pdn060sWqcDVNYMqbaz0XrfGgyanWliwhLJsOaUWlcsbqBRF8rm4pScDkk+zIye+R5zvZ1jGyu\n7VHBg3eBs208lkAKHRYXzkACHc7d7M2V5LY2oSHRid6MQaOJPRn5lGYX4bb1Hwzo3uBPCT/Tu0dj\nCYWZ0hBiy4T7es0jGAhwTeodOAzNSE3yMvfgqou6rfhmxpdYL8+lRN9EkrE2FqVT4iGOUkowE+Q9\nziIiBE/Nv7hHvqlVt/LFjgKWt01klk/H7WhBGL3kt+dh37+Of0xI5gJzCmLcu7zYakHXHCDDCBnC\nKsL4DOncm95CWVUW9Y0jSPOnszNxJzsSd4CASfuc5DTZyGjrWje0bcI4dG8KmHXKc96nzdLGC+e/\nwNT0qfjDfiwGi5pHUQzIaw+8itWaR1Xq89xW/QrNwR/zmGM333b8g88ndJkW/5r7Me/U+OFzT5Ds\n7jkbEMqGj9JGMi1lAe3BBg64tx46JwHPmGlENAMfjZtJeWo2Qkquf/dxfvXoM8ci8olXLHDI6uv3\nRM2Nn5FS/lII8U0AKeX/xhTIH4FziZob3yil3CCEmAesALYBB00c7pNSvterkJ7lHTfFsuKNZ7H/\n7LesG5GFROCzRCdns9o9mK1ODhSPRkPit1oJmExY29xsGjeJz/OKj/iSPt7MPrCdkvpKUtrSsHvz\n6EjazlvTJ1CdnD7wxd1Ia23htveewZDZgntf7zUwp7Y7sBVdwmekIfu4//wZ7+IW8VzBu5gJMppy\nfHo8uylgkzaWi/iIOjJYxNl4DXZMkXB0QWVaNrltTdQmpvHh+FmH8vvigY3U2B7lOxkB7itPYf6a\nadizMwmdHeC7M77LzU/dzOSm8SSWVVNm97JzajuXOnU83mR8dWMBgdnsQ7e1sNbQTHl8OYZgAgnV\nk4i3bGXmrkTiYoZ0EQThUWbCmUlIVzIyZOeNwjfIic/hrYvfwma09aqvQjEQj774PleWOjj/jAir\n1l1NXFhQG3iFK0ffylPWduoyuz5mIlLjTvG/tIkUfvbkb5m/paeHcl+yYPPoKSzIuAVXqIXFNV2K\nQwpBMDkDX0YeFredsLmMB/7nz8ci8vBQLP9ujqdieeat/yH87BLctv5XO4+vjq4lMUZ00ju8mHTJ\nhsvH4W5NJ7Wxkb3FxezJHcHibg7mAAqa6xjVWM3H42b2yjPO28G8jjXsM4xjf3ouANZQgExPM9+M\n+w3JnS6ecd7EGm1gj7E5bY2YIhHKU3svDuyOMejj9mV/xlHRTLHbi2wLsCM7rXd9KaQh7TzCESt+\n2fOeOyPzD2TJUrZoZ2DT9/KBOIOQZuDD8bPIb2ng9tq/YSTMJ8zrcd2LsxfgsfZ2u9+d5PZPMXQ8\ny+l1c/nQYOXqLTXUjs7H8QXJb0+PjppKKbnorxcxZf809tVr+Ew+do0pw+TYgVEaCbpHkthpYEx9\nByHvBCZ17Oz11IQMRtrGjsIcsfNpzscU5xbz3WnfxapZsVlt5MUfedJfoTgS7kCQmgdW8MTkTi6v\n/x3z2zfSHPwJHXIq3xp5G6+2N/Xpl+8R7mUz03vNvxxk9cTxJCeMZWrKGTT6drOh5RM6w13r5zpL\nJvLjn/cOKX4UKMUyAIMfCnvlWbZ/+jeCLhNZdGCbGcRTa6KhJqnfa3JaOwCB32SgJT76shxX3YQ9\nUeOD2edjCYaYVvoZWQcaqSuw4BmdRIAkNkyaSF6ghvzATupWRhcBjhDNmDIMeEYIImU69XXJh8rJ\nbPdQ6O7gsZtuYmvuGL7ufoLZz1agS7jh24/Raev9or6i+q+cvWc57slxtIskhBbAusePa9ORX+oA\nBh3OLfguywKdhEM9v9YFES5KuZ+9piQkgtGU8TRX02Zz8Oqssw+lK6mrYHL1PvwmM7sz8knztLNy\n1OQjlvvl/bt4L3kLX/WtYrFXkrd1MjOaK4gUZ9E2OZWHvtzzYdGlztTnpnJpxaWIsl3Y/V60I/zr\ndzjHYdAkSWlxeM0BypI/J6Mgg9OLTufyksuJM524nqfiP5NXfvEPxgWSuXmOl3XrriIsrTQEnkPi\n4MbC7/GbtgNY80zUZPfuFb/HhfzTfynXvPcOV378bp/5NyQl4hm/kCLnJD6oeYYixwR2T87j3ju+\ndSziKsUyAIOfvP/7MxSsd7CrMx490tVrMQqdxAm/pXr54BzsZbi8ZLe52VyY2etcibuJVmGnyTE0\nL7KSmRWUTpvIZ8wjWTZzwba3qVx95F5Lf4wsTsbn/RKt/t6yOVI3c53hF3wk5vJM5uXkt9YTFwyw\nMX8064vGHXUZZ9S20mJLoNAb4YBhJbsTU0hoegQBLGyexSZ7BcIdYeT+M4nP0Ng5bhXvXdX3KGmV\nu4qLX7uYdH8688oKCDaFMIUDNOfkU6tlM8bUDKKT6uRyqk3tuCwufEYfiy9fTLYju888FYqh4rml\naznjAz+Pl7TS6Kjlhe1Rl/Y1/teRWPle7q9JMuzke61tyBwzFfm9P/ze40IWcRnOpk5e/Ol3+i2r\nfcIC9uUkkbFgJgsuuKDfdEdAKZYBGHSlf/fY05h3jDhyprob0EDY0cNPYLS242u2IjRJ4ogwqWkt\n7F3dW5EMRHabm9qknpZnFhmmwAJhv4WOiEazqafn4Hhf4IjDdn2R1tGJ32TAbbOQhIPsxMkUx0/F\nG27Hbspkhd+L77Aeysj4jVQEs1loe4Z86wb2MoLvFNzDxsIxvfI/pTlMXPPvOadjAT+c1TvgULE7\nwikHnmdx4pIet/B1yQGctdOob83m05QNmLZ+iXNaPqF5/Eiyzsrmlhm34DA7+q1XZ6iTdw68w8Nr\nHsYQNjCyYyRjXGN4szBqwX7eiPOYlTmLAmcB0zOmE4gEsBp7O/lUKIaagK7zyYPvUuJzcN4CjT3L\nLzp0rtr/JmCm3tTMjcU/ITUcYUlVDY0pZraPjUc/LOT3Bn0Wb2pfooIiHnzyt8zbuoHDCceZiXvm\nSUZMPuVYxFWKZQAGXekH7rmdlI4LEdKIUfOSa11DlW8eujzyxK3B7CYS7FIKicUfkZa7iG1vddmZ\njz/3AC2tZ6EH9+IqixBwWTDoOpPm7qPJv5Dm8ktJGv0BySPfQZfQtPUcrMmSQEcOnQ1jSJ/2EgWd\nhVTuddPYeT7Z5R/jdo4iLt3PgcZP+7RSi/cFmOyYg48I8fYMyqveodNqZcyEsyC9gY7WEso9Nuy6\nlVZf75d2TtoBzuN3SEMjLuJZxinsYDRNjoQ+XU08t8bLPVm3oQsdIQVfab6cfHEOcf4G/pGyArNu\n44BpNXXmJhZ0zCOuJR2Dxc3yxC24zR5crpnQMJevVryOwSL4bHqIG8+/kUuKLx3Mv1GhGHY88tYK\nrloLL+Z7+HNJCpUrzjl0rj7wBGGZF7USRee1pA/5a8YiZvv83Ol14S6x4+3DoWwpE3iE+wkJM5P2\n7uS3v/8FBj1qB6W98iwlU5RiOWqOp2L54913Ms35OR+KLxw6lkkjUymlOFLLP1t/jjdy9L0Re+Y2\n/G0GIv4xCNHzxR9fsAJrYiXNpZcjI4P4ctZCoPd0iDl6wXewP2Sg2W6h3W4lq92DffQF7E2aQKf/\n4PxQhDhnA1azn5bmI/fKkqxtnBu3FbPYS8S4nN9ot6Dpkj0ZeVQlpx8yMPjWzgbmtjmotmns41Xe\nTl6CLnTGVl3IvJGreCoY9clVZI6QZdLJNEnwJbB++zUk1zeyyzEal9lOsbuKGe0bSIxEg3H5EjNZ\nNH0zv1jwEAsK+/YPplCcTLT6g3Q+sBaA74/dw+qcCZSv7Hlv1/qfQyfqaigggnxsWcYfi94iOxTm\n6fpGArl9D5MBvMy1fBpewANPPMajX7mZV8cIxkw4u8+0A6AUywAMutK/+e6deOOTCBqMVCZn8PG4\nmZTUVTB3/zbMkZ5ehGeG91DW/DXspjp8oUwQIZAnLnaG0ELkT3oN495RhAobqdp1DjJy9KvBTdZ2\nklPKKfA5mGn+Pn7MbGEcf0z7Ch+Pm9Ur/V27/LxuvY2ACJEQceAyerjblsD/bfkmYxq38HnCBC6f\n9AHrq2ZxwJuHw9RGs+Yj7C/kju3/R9Ae/bLSEXQabEih8XnuPNKSt7E6YzXvXv6usshS/Efx9Lr9\nnPtmdB3ag5NX8XHqfC5qWsLv9vy6R7p17vvINp16aD8gg/wk/VGaE8pYXF2LBBrSLGwf2/ei7UdC\n9/JowSTGjen93B4FSrEMwKArfcuPvs62nPM5MKa3qwRjJMxlm5Zh1CPoQhAX8B8KVPUl3qGYcj7i\nNL7AGhp8E1ns+mE3QXRC9ipGWZfT4Z1Oe7AI2W147fLUO8g0VvG/+rV0eKdjDDlIMpUxzvEeU9jB\nzvA5bA+OpC48Fpsv2mNKN+3EqnmoDPQ2X+4LzeRFD3VNxmspOxiHj0QC5BHAJCqxGT6jRUT4X66l\nzRZPac5ISnN6924W1oUYXfd3Njk3khh0ss6xnwtIwbNuPAVNFRwcFt5rH8HS1PkkB9vJ7mwAJDPa\n19PpSEbLy0MLBdAt0XZYmbGSuZPnctmoyyh0FpJgOabodwrFsCUiJbt/vBJnGCLoPGZfwUunXUhm\noIkta3r79drsuZQc02yCcjwgCIggVYYavl38a3LCEZIjYW7xdGAfaaHD2XMUY2LRa6QXTTsWMZVi\nGYBBV/onP/k6fzljcCZ6KR4XoxuqMIdDBA1GTJEwp9Z/zhnyM4oiLuyGRjqFlQPk0yRS0KTO6azB\ngE5EGvHqCaw0TGQfhRRQzQy2EcBMEBNLOJXx7MaJhzoyKKKSRDpIki4eElF3bD/gz7zW+ks8wZG9\nZEuO/xSfvZE8WY1VRCgnn7mUkis7MGvV+LDQSCrJtFFHBn/jEkKagVdnntVjnclN+wPMbQ5T4NV5\nO3ERy5wbqDM3k7D5Vmqs+Yw2NJHcXMGM9g1IIHLeVIKlHiL1zZgjPlzpBUSCIRLdDVRmTiKSvp8f\n3fJjvCEvE1In0BnqxGwwY9QGH5hMoTiZiIQi1P34s0P7L1qXsP7UBFYZ53OK63O+Uf13zm/pHURv\ng/tuMk1d7oqaDK3stOznH8mfsjO+guRIhJfq69l9ShLGgE5G8SLGjJp4LCIqxTIAg670PXdfS3zR\nfC5uGkdiKLq2PCygNMHAk8Vm1qcc/YvvmrUf4vR3EtIM+MwW9qbnsb5oLPE+L1ev++jQf6+929qP\nGeU7mVq5l7a4eHZl5FOWlo3XYgMpOXX/NibWHOjzv/4D/syr4S9RLfMRAux6iLvMj7CWKUxmJ80k\n4cZBMeVYCPECl3GAAgA6TdHhO4/VxrLRU2lxdPUUzqoP8cMdAd5KfJM6czMdBi8H4nczz13Cm9VX\n8q09zyG7xV6vKHLw6C//islgwuP3cO/v7iUswoQSQ0yMn8ieqj0kJCfw4NcePNZYEQrFSY/PF6Tl\nZ2sP7b9n2sQBi4eKqQ6W2KPzu/m+Ov6w+yHmuLb2uLYlNJaIfj1hmYNO1zo3r/BxXdEP8JnDIASL\nz1xEdl7fTioHQCmWARh0pZ+9+wbOsXxtwHSLE1YTTzFvJ7zEioJbCdqjE26Tm3xsTTu+rj80PcLo\nhiqaNQf+BDuXbl5OXNDPHDYwP+LFou1EEz7e4Uw2MBkJuGxxOPw+jFLHaAqyLH8a23KL+y1jcluY\nP23wYdWh3eDmtlE/YkIojYi7gMWNFzG5eTdz3ctoG1WAxZxEIGwgIdPCPbfe08N/VkgP4Ql6SLL2\nv8BUofhvJBIMs/zRNYxydb2m/mFeR4PBQ7s9ntdmnBk9KCXX1y3i13v79tFbF/g2upyHJA4pJbWm\nRozCSMFtp5GaldLnNQOgFMsADLrSLz35B7a6V3Nt2zV4DH5eS1qMt62G8+OmMaPtvKPKw6/BTdMb\n2ZPcc2gqr3YDp7YJViUnUJ3V+6X+wx1+Hh7X0zrsR6V+nhth5o6dPn4wvf+FlPE+L3P3byPT1YJR\nj4CEZSVTB4xBcjg/KvVzbl0Iqw7b7HtZlLSUKlMtjdVXEfbbMEbCfKFlORmBBrxF47nvf36BSesd\nslmhUAyM1CVlj67H3NIzPpMXP5+YS6mw+EDolJ6Szu7IeEq8Zby7pf+h+qbQdAKR+2iOCBLumExR\n3hGC2fWPUiwDMOhKt1fUccPfX2V/dg3ztjgR+n7a443UZ82hJV1ndM0/aDG280jl90jVE9Hof2is\nziow6eAIS6y9o4jy17SlnNp5JutTDIxy60xv6zs2Snf2x2ksyTDyZp6JYrfOtkQDTk+YmqTBvdzH\nuiL8bpMPiy6JC0O9VZAakPg0N3cV/ppGUxsSHUPldbR1juWK2nfICkRd93eUTOGCG77IjMKZaAN4\neFYoFAOjS8m+V3Zi39rS5/m/WVZSZzOwtaSAHYnRYHKntm/mza19O4VvDI8k4f5VWGzHNHqiFMsA\nDLrSrZX7+Pzh99nYsrjXOV0I2hJS2FYymc3j8gibCxC6l1n1QYpbPiO1upKPR+zinKoJzDOdRWGg\np6uQWks12YHcPst9PfkjWtJXc8uun/Q6tzFuBx8mrubemr6H6CTw+GgzLxT1NnXO6dR5Y6UXHfg4\n00hcWDK/KdLjzlnr2Mb6uO1scuyg0dxEaiCNQM2lWMNORhuaSBFeqkzVVDv3ceWUa7h5/jd6laNQ\nKP51pJTs+bCMuCU1fZ5fa9zLdkM1XpORz4rHsTejEIAxnv1c1vgJd1S9dCit+4SuKI8AAA0pSURB\nVO5K4hOOybJSKZYBGHSlQ8EAf7n1OvyeTgCmX3gJk88+j/aGeta98wLV2/b3KmD57AUY9AgprfXk\n1JWzeP4ltGmLKOls4ZcVtxPRItyf92dqLPXkupMxWu1McBWBrQNh6WSLVkdj2EenLdpjiQvEYcZE\nXMhOq6WdTlMnKbvvpFKDscV/whWxMsMznnpzE5O9JVzX/EUAAho0WgU7nAYEcHZ9mL76ExvjdvBy\n6vtUWOoIiCBJTRfQoRtxBRNJ9mdgJ8SppnIM3k40gwV5geCnp/1UxR5RKP6NyIikflklkQ8r+zy/\n01DNFmM5XhEgIgR7JiSzLPk08vx1GPUIr40eQe6oo/fd1w2lWAZg8IolFOKpJ5+ksbn50LH58+cz\nf/58ANrr67A5nXQ0NbBu0V/Zt2bzoXS6yYIIhxBSpyUxjS1jp+KJs1KTWs6crRFSW2txOSwsm5GO\nxbcBY7grxO/ptaeTHEhmc8pmypxlGHUTYS2EPWTntPrTcISj7lZqdTsrM9ZgcHRFmpsSTMal2/hG\nwxVM6eyKuV5mqeGJjL+zzb4Xs9SYFadT6jcQ8I6kqeYypG4jCz9haaBd2rjasglNgMUVoNqWQnxC\nG3d+63ayHMfmyFKhUAwN4XY/+z84QNyWvofKAFYZd7HPUE9FgpMir4Fbrjuf5MIje9joh+GhWIQQ\n5wJ/IBro62kp5cOHnRex8+cTDfR1g5RyU+zcM8CFQKOUcgJHwfFULAAPP/wwfr9/4IRAcnIyoVAI\ns8lIS2vUfcnlF09n8cN/ASEQUkdqBvxZBYSdXaaBxo5WdAFBZzSCnFEaMbY3E048bLItEsHpFATt\nRti8B3/MkktrrSXirqS2ZCQNkXj2OsvI0ZpwaibG+keyPX4btcJHu2smac1zyNC8ZGpeDkSSCUgj\nY40NpGteDB4X5uY6vMn5GG02gjYftlkJ3HvOvWhCzZ8oFMMNX0SnclklcR9W9Ztmm7mOqTedQmZh\n/rEUceIVixDCQDQ08TlANdHQxFdLKXd0S3M+8G26QhP/QUo5O3ZuPuABXhguiqWhoYHm5mYyMzPp\n6Ojg+eefP5ZsBoWmadx///1EIhEaGxuJRCLk5+f3GH6KRPz83wdvE1yzAk9dE9IbRCIIlkwiJDV2\nWtzszfkAgJB7HLObJ1BEl0GA1unB0lSD1M0Ys8biNtQRLjJy4flXYNfs5CTkkGo7JisShUJxApAR\nSWWbl9fLm1j4dg2JoegrryxOY8JdE0iKP0nnWIQQc4AHpJQLY/v3AkgpH+qW5klgqZTy5dj+buB0\nKWVdbL8QeGe4KJbDCYfDtLW14Xa7qaurIxQKsWLFChYuXMiuXbuQUnLdddcRCoXYsWMHb7/9dq88\nCgoKuPDCC6mpqWHfvn2UlpYCcN1115Gbm4vFcuw+xpYteZuPX1mMISsWhljXIWat5WrvJHm0DWNx\nFddOvZvmcJgxaWOwaBZl0aVQ/IchpWTl9nps6XHMSHceazbDQrFcAZwrpbw5tn8dMFtKeXu3NO8A\nD0spV8b2PwHukVJuiO0XMoBiEUJ8AzhojpQqpSw8CvFOyMSSrutEIhE+/vhjmpqamDFjBuPGHdMk\n2qBocFXw5kdv8Oo2E6fkeHjwxrswmVScdoVCMSiOWrGc9A6YpJR/Af4C0R7LCRbniGiahqZpnHfe\n0S2oHCoyEgq49YrvcGtvX3YKhUIx5BzPMY8aoPvy7tzYscGmUSgUCsVJxPFULOuBUUKIIiGEGbgK\nWHRYmkXA9SLKKYDr4PyKQqFQKE5OjptikVKGgduBxcBO4O9Syu1CiG8KIb4ZS/YecADYBzwF3Hbw\neiHEy8BqoEQIUS2EGNgDpEKhUChOOGqBpEKhUCiOhqOevFd2pQqFQqEYUpRiUSgUCsWQohSLQqFQ\nKIYUpVgUCoVCMaSc9AskD6N54CTAICahFAqFQjE4/qOswhQKhUJx4lFDYQqFQqEYUpRiUSgUCsWQ\nohSLQqFQKIYUpVgUCoVCMaQoxaJQKBSKIUUpFoVCoVAMKUqxKBQKhWJIUYpFoVAoFEPKf9rK+6NC\nCPEBkHqcsk/l6D0AnGhOFlmVnEPLySInnDyy/jfI2SylPPdoEqqV90PMIGLCnHBOFlmVnEPLySIn\nnDyyKjl7oobCFAqFQjGkKMWiUCgUiiFFKZah5y8nWoBBcLLIquQcWk4WOeHkkVXJ2Q01x6JQKBSK\nIUX1WBQKhUIxpCjFolAoFIohRSmWQSKEKBdCbBNCbBFCbIgdSxZCfCSE2Bv7m9Qt/b1CiH1CiN1C\niIXHWbZnhBCNQojSbscGLZsQYnqsjvuEEI8JIYY04mY/cj4ghKiJtesWIcT5w0DOPCHEEiHEDiHE\ndiHEnbHjw6pNjyDncGxTqxBinRBia0zWn8WOD7c27U/OYdemsTIMQojNQoh3Yvsntj2llOo3iB9Q\nDqQeduzXwA9j2z8EfhXbHgdsBSxAEbAfMBxH2eYD04DSf0U2YB1wCtEQzu8D5/0b5HwA+F4faU+k\nnFnAtNh2PLAnJs+watMjyDkc21QAjti2CVgbK2+4tWl/cg67No2V8R3gb8A7sf0T2p6qxzI0XAw8\nH9t+Hrik2/FXpJQBKWUZsA+YdbyEkFIuB1r/FdmEEFmAU0q5Rkbvthe6XXM85eyPEylnnZRyU2zb\nDewEchhmbXoEOfvjRLaplFJ6Yrum2E8y/Nq0Pzn744S1qRAiF7gAePoweU5YeyrFMngk8LEQYqMQ\n4huxYxlSyrrYdj2QEdvOAaq6XVvNkR/448FgZcuJbR9+/N/Bt4UQn8eGyg523YeFnEKIQmAq0S/X\nYdumh8kJw7BNY8M2W4BG4CMp5bBs037khOHXpr8HfgDo3Y6d0PZUimXwzJNSTgHOA74lhJjf/WRM\n2w9LG+7hLBvwBDACmALUAY+eWHG6EEI4gDeAu6SUHd3PDac27UPOYdmmUspI7BnKJfq1POGw88Oi\nTfuRc1i1qRDiQqBRSrmxvzQnoj2VYhkkUsqa2N9G4C2iQ1sNsa4ksb+NseQ1QF63y3Njx/6dDFa2\nmtj24cePK1LKhtiDrANP0TVkeELlFEKYiL6sX5JSvhk7POzatC85h2ubHkRK2Q4sAc5lGLZpX3IO\nwzadC1wkhCgHXgHOFEK8yAluT6VYBoEQIk4IEX9wG1gAlAKLgK/Gkn0VeDu2vQi4SghhEUIUAaOI\nTpD9OxmUbLHuc4cQ4pSYVcj13a45bhx8CGJcSrRdT6icsXz/D9gppfxtt1PDqk37k3OYtmmaECIx\ntm0DzgF2MfzatE85h1ubSinvlVLmSikLgauAT6WU13Ki2/NYZ/3/G39Eu8BbY7/twP2x4ynAJ8Be\n4GMguds19xO1vNjNcbAGOUy+l4l2z0NEx0i/diyyATOIPjD7gT8S89BwnOX8K7AN+Dx282cNAznn\nER1C+BzYEvudP9za9AhyDsc2nQRsjslUCvzkWJ+h49ym/ck57Nq0Wzmn02UVdkLbU7l0USgUCsWQ\noobCFAqFQjGkKMWiUCgUiiFFKRaFQqFQDClKsSgUCoViSFGKRaFQKBRDivFEC6BQnCwIISJETU0P\ncomUsvwEiaNQDFuUubFCcZQIITxSSscRzhullOF/p0wKxXBEDYUpFP8CQogbhBCLhBCfEl2QhhDi\n+0KI9TFHhT/rlvZ+IcQeIcRKIcTLQojvxY4vFULMiG2nxtxzHHSC+Jtued0SO3567JrXhRC7hBAv\nxVZLI4SYKYT4TETjiKwTQsQLIZYLIaZ0k2OlEGLyv6uNFP99qKEwheLoscW83QKUSSkvjW1PAyZJ\nKVuFEAuIusmYRTSuxaKYo1IvUZcbU4g+d5uAfh0Hxvga4JJSzhRCWIBVQogPY+emAuOBWmAVMFcI\nsQ54FbhSSrleCOEEfETdvdwA3CWEGA1YpZRb/6WWUCiOgFIsCsXR45NRb7eH85GU8mB8mQWx3+bY\nvoOoookH3pJSdgIIIRYdRXkLgElCiCti+wmxvIJE/TtVx/LaAhQCLqBOSrkeQMY8MQshXgN+LIT4\nPnAT8NzRVlihOBaUYlEo/nW83bYF8JCU8snuCYQQdx3h+jBdw9LWw/L6tpRy8WF5nQ4Euh2KcIRn\nWUrZKYT4iGiQpy8D048gi0LxL6PmWBSKoWUxcFMsNgpCiBwhRDqwHLhECGGLecj+Yrdryul62V9x\nWF63xlziI4QYHfOq3R+7gSwhxMxY+nghxEGF8zTwGLBeStn2L9VQoRgA1WNRKIYQKeWHQoixwOrY\nfLoHuFZKuUkI8SpRz9iNwPpulz0C/F1EI5K+2+3400SHuDbFJuebOEK4WCllUAhxJfB4zNW7Dzgb\n8EgpNwohOoBnh6iqCkW/KHNjheIEIIR4gOgL/5F/U3nZwFJgjIwGqVIojhtqKEyh+A9HCHE9sJZo\n/CClVBTHHdVjUSgUCsWQonosCoVCoRhSlGJRKBQKxZCiFItCoVAohhSlWBQKhUIxpCjFolAoFIoh\n5f8BHxS3IoIenwkAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f0525dfd6d8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plot_spectra(frequency, spectra, 'All training spectra')" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAEgCAYAAADIVhjyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcXFWZ+P/Pc2vvfU9v2UhCYgiLgKziMCgKjAMuo4Oz\nMLgxDPhTxxm/Oo7+3Ef8OuM4jg6IuIGDiAJOdFAUwQUwQFgDIUtn7fS+b9VV1VX1fP+4t5NKp5fq\nkOql+nm/XvVK1T3n3ntudaWeOueeRVQVY4wxZilz5rsAxhhjzHyzYGiMMWbJs2BojDFmybNgaIwx\nZsmzYGiMMWbJs2BojDFmybNgaJYMEblIRHa+jP0/JyLdItJ+IsuVxXlvEZFPzOU5vfP+nYh0iMiw\niFRmkf9aEXlkLso2GyLyKRH5fo7P8V0R+Vwuz2Fyy4LhAiUi+0UkISJVE7Y/IyIqIqvmp2RzIxdf\nrKr6e1Vdf5zlWQH8A7BRVWtPZLkmnOeY61bV61X1s7k65xTlCABfBl6vqkWq2jMhfZX3OfTPZbmM\nyRULhgvbPuAd4y9E5FSgYP6Ks7CIiG8OT7cC6FHVzjk853xaBoSBF+e7IMbMBQuGC9sdwDUZr/8G\nuD0zg4iERORfReSg16R1i4hEvLRyEfmZiHSJSJ/3vDFj39+IyGdF5FERGRKRX06siWbkrfL27xeR\nXhH5vYg4Xtp+EfknEdnunec7IhLO2PeNIvKst+9jInJaRtpyEbnXK2OPiHxNRF4B3AKc7zXR9Xt5\nvysiN4vI/SIyAvyxiPyJV1seFJFmEfnUVG+miFwsIocyXu8XkX8UkedFZEBEfphZ7ox8rwN+BdR7\n5fnuxGNlHO913vNPicjdInK7996+KCJnv4zr/lzGvu8VkSbv77BZROoz0lRErheR3d77/XURkSne\nj5CIfEVEWr3HV7xtJwPjzcn9IvLQJLv/LiN9WETOzzjuv3qfg30icnnG9lIR+ZaItIlIi7jNzpP+\noPHevx+JyPe992+biJzsfc46vb/16zPy13vvRa/33rx3suN6ec/zPof9IvKciFyckVbhfX5bvWv4\nibf9mBq7916vneIc033mP+Jd/5CI7BSR105VVjOHVNUeC/AB7Adeh/ul9ArABxwCVgIKrPLy/Tuw\nGagAioGfAl/w0iqBt+LWJouBHwE/yTjHb4A9wMlAxHt90xTl+QLuF3XAe1wESEZZXwCWe+V4FPic\nl/ZKoBM417uGv/Hyh7zXz3nXUIhbE3m1t9+1wCMTyvBdYAC4EPeHXBi4GDjVe30a0AG8aYpruBg4\nNOE9fgKo98r9EnB9lvse9Trzb+Y9/xQQA67wrvMLwBYv7Xiue/z9vAToBs703sP/BH6XkVeBnwFl\nuLXZLuCyKa7pM8AWoAaoBh4DPuulrfKO5Z9i32PSvbKPAe/1rvHvgNaMz8l9wDe8a67x3vu/neL4\n4+/fGwA/7o/AfcA/437+3gvsy8j/O+C/vPfyDO+6L8k41ve95w1Aj/d3cYBLvdfVXvr/Aj8Eyr3z\n/NE0fxcF1k7yN5ruM78eaAbqM97HNfP9fWMPtZrhIjBeO7wU98u6ZTzB+8V/HfD3qtqrqkPAvwBX\nA6hqj6reo6pRL+3zwB9NOP53VHWXqo4Cd+N+kUxmDKgDVqrqmLr33zIntv2aqjaraq93nvHm3euA\nb6jq46qaUtXvAXHgPOAc3ED0YVUdUdWYqs50n/B/VPVRVU17+X+jqtu8188DP5jkGqfzVVVt9cr9\n02mu/3g8oqr3q2oK9+94urf9eK573F8C31bVp1U1DvwTbk1yVUaem1S1X1UPAg8z9TX9JfAZVe1U\n1S7g08Bfz+YCJ3FAVb/pXfP3cD8zy0RkGW4A+qB3zZ24PwaunuZYv1fVB1Q1iftDrtq7tjHgLmCV\niJSJyHLcH0gf8d7LZ4HbOLpVZdxfAfd7f5e0qv4K2ApcISJ1wOW4P4j6vM/5b4/jPZjuM5/CDYob\nRSSgqvtVdc9xnMOcYBYMF747gL/A/WV6+4S0atxa31Nec0w/8AtvOyJSICLfEJEDIjKI++u5bELT\nVGbPyChQNEU5vgQ0Ab8Ukb0i8tEJ6c0Zzw/gftmDW5P9h/HyeWVc7qUvx/3yTE7/Fkx5HkTkXBF5\n2GtuHACuByZt6p1Cttd/PCYeOyxuh5Pjue5x9bjvLwCqOoxbs2mY5rxTXdNRx+Lov9vxOnxuVY16\nT4twPwcBoC3jc/AN3BriVDoyno8C3V6QHX89fux6YPzH4LgDHP2ejFsJvG3C5/HVuEF7uXecviyu\nczpTfuZVtQn4IG5ttVNE7sps5jbzx4LhAqeqB3Cbh64A7p2Q3I37pXCKqpZ5j1JVHf/y+wfcZplz\nVbUEeI23fdJ7SDOUY0hV/0FVTwKuBD404V7H8oznK3Cbx8ANXp/PKF+Zqhao6g+8tBUyeY/EqZZT\nmbj9Ttxm4uWqWorblDvr6zsOI2R0ZvJ+YFRnue/xXPe4Vtwv2/HzFuI2h7dMuUeWx+Lov9tMZrvc\nTTNu7agq43NQoqqnzPI4k2kFKkSkOGPbCiZ/T5qBOyZ8HgtV9SYvrUJEyibZb+Lfe7oexdN95lHV\nO1X11Ry55fHF2VysyQ0LhovDu3Hvf4xkblTVNPBN4N9FpAZARBpE5A1elmLcYNkvIhXAJ4+3AF6H\ngLVe0+wAbnNPOiPLjSLS6J3nn3Hvu+CV73qvBiciUihup5di3HtGbcBN3vawiFzo7dcBNIpIcIai\nFeP+mo+JyDm4tei5sAu3pvcn4g5D+Dhu81c2Xs51/wB4p4icISIh3Gbxx1V1/3Fcww+Aj4tItbgd\np/5/INvxeF24f/+Tssmsqm3AL4F/E5ESEXFEZI2IzKZJe6pjN+Pe7/yC916ehvt/ZrJr+T7wpyLy\nBhHxefkvFpFGr4w/B/5L3M5nAREZ/wH5HHCK976HcWt2U5nyMy8i60XkEu9vF8P9/5me5lhmjlgw\nXARUdY+qbp0i+SO4zZdbvKbQB3FrgwBfwe0Y043bUeIXL6MY67xjDwN/AP5LVR/OSL8T98tuL26n\nnM95Zd+K29nha0CfV9ZrvbQU8KfAWuAgbgehP/eO9xBut/52Eemeplw3AJ8RkSHcL/O7X8Y1Zk1V\nB7xz34ZbAxnBLX82+x73davqg8AngHtwA+oapr/vNp3P4d4vex7YBjztbcvmGqK494Yf9ZoCz8ti\nt2uAILAd97PwY9zmyRPhHbidUVpxO+p80nuvJpa7GbgK+BhuQG8GPsyR78K/xr0/vgO3E8wHvf12\n4XY4ehDYDUx5j3e6zzzuD6abcP9PtuM2E//T8VywObHGe3kZc9xEZD/wnsm+fIwxZjGwmqExxpgl\nz4KhMcaYJc+aSY0xxix5VjM0xhiz5OXVjPMi8gtVvSyLrFYdNsaY2ZmL8bvzJqc1QxG5zJuItmmS\nGUvwxuB81Ut/XkTOzEj7gIi8IO4Exx/M8pSzmXnEGGOMAXIYDL0ZOb6OO9ffRuAdIrJxQrbLccev\nrcOdz+9mb99NuON0zsGdz/GNMsXs8MYYY8zLlcua4TlAk6ruVdUE7sS6V03IcxVwu7q24M6bWYe7\nSsPj6k4wnQR+C7wlh2U1xhizhOUyGDZw9KTKhzh24typ8rwAXCQilSJSgDsv53ImISLXichWEdmK\nNZMaY4w5DguyA42qviQiX8Sd3msEeBZ3LszJ8t4K3ArgBURjjDFmVnJZM2zh6NpcI8fOIj9lHlX9\nlqqepaqvwZ3fb1cOy2qMMWYJy2UwfBJYJyKrvRn4r8ZdaifTZuAar1fpecCAN3M8GaswrMC9X3hn\nDstqjDFmCctZM6mqJkXkfcADgA93de4XReR6L/0W4H7c+4FNuIuQvjPjEPeISCXuDPI3qmp/rspq\njDFmacur6dhEZKuqnp1F1vy5aGOMmRs26N4YY5aiZCpN+0CM0cSk/fdMHrFgaIwxk1BV9nSN0DUU\n52BvlHxqRTPHsmBojDGT6BqKk0imAUgk0/SOJOa5RCaXLBgaY8wEqkrPhODXFx2bp9KYuWDB0Bhj\nJugcipNMHd0sOppIHa4pmvxjwdAYYybon6IWODBqtcN8ZcHQGGMy9EcTU9YAR+LJOS6NmSsWDI0x\nxqOqdAzGp0wfjidJp61XaT6yYGiMMZ6RGe4LqsKQ1Q7zkgVDY4zxdA7GZswTTVgwzEcWDI0xBrdz\nzEh85plmojYbTV6yYGiMWfJSaaW1f/SYbZ/c/AJ/+rVH+O5j+w5vt6nZ8pMFQ2PMktfaP3rMuMI7\nnzjI0wfdxXLuebqF/93WBrj3DW28Yf6xYGiMWbJUlebe6DHjCps6h/nxU82srCjgzvecS0VBkM3P\nthyen3R0zGqH+caCoTFmyVFVuofj7OkaPiYQJpJp/v7uZwn5ffzLm0+lOOTn2gtX0ToQ4/mWAcDG\nG+YjC4bGmCUlNpZiR/sQbf0xRhPHNnf+7PlWAC7fVEtJbBD27ObCKh9FIT+/eKEd4JgmVbP4WTA0\nxiwZw/Eke7tGpg1mzzS79wmvPb0aOjuRsVGC3W1csq6SLXt76I8miCWtmTTf5DQYishlIrJTRJpE\n5KOTpIuIfNVLf15EzsxI+3sReVFEXhCRH4hIOJdlNcbkN1WlrX+U1DQzyHz3sX0829zPO89fiXR1\n4BtuIda3HR1u47V1IZJp5Xe7u0kk07a+YZ7JWTAUER/wdeByYCPwDhHZOCHb5cA673EdcLO3bwPw\nfuBsVd0E+ICrc1VWY0z+64+OERubuhdoWpX7nmkB4MoVYRhqpzO6n8HkMP2jzazWXmqKQ2zZ24Mq\nxK1HaV7JZc3wHKBJVfeqagK4C7hqQp6rgNvVtQUoE5E6L80PRETEDxQArTksqzEmz3UNTz3nKMBv\ndnaRVvjQa9fh7+9hZLiZtFf7S6ZTJIYOcl5jMTvbhxhLpS0Y5plcBsMGoDnj9SFv24x5VLUF+Ffg\nINAGDKjqLyc7iYhcJyJbRWQrUHWiCm+MyR+jiRTxaWqFfSMJ/v3BXdQUh3hNpZAebCaaHDoqTzTe\ny+llkEil2dE2aGMN88yC7EAjIuW4tcbVQD1QKCJ/NVleVb1VVc9W1bOB7jkspjFmkRiKTb0Ooary\n1Yd2A/CBPz4JX383Q6PHNkQl02Os1Q4AdnYMk0hZMMwnuQyGLcDyjNeN3rZs8rwO2KeqXao6BtwL\nXJDDshpj8thgbPJxgcmUO6Zw64E+3nvRSZxWkCY11EIinZg0fzjZzbKiIE1dw1YzzDP+HB77SWCd\niKzGDXBXA38xIc9m4H0ichdwLm5zaJuIHATOE5ECYBR4LbA1h2U1xuSpdFqJZcwYk1alczDOh3/8\nHP3eyvVlkQBvXF8O+3YzNHroqP39PiGZVlCIjvWxtuwk9nQO2xyleSZnwVBVkyLyPuAB3N6g31bV\nF0Xkei/9FuB+4AqgCYgC7/TSHheRHwNPA0ngGeDWXJXVGJO/omMpMkdB/J8fP8/OjiP3Az9wyTpe\nt6EaDuwjMXKIsbRbi3QcqCgI4nOE2FiagdExVJXV4VEePZRmIDpGOq04jsz1JZkcyGXNEFW9Hzfg\nZW67JeO5AjdOse8ngU/msnzGmPw37DWRxpMp/uyWPxzefu0Fq3jTGQ34BOhog5EehkfbD6eXhAP4\nvEAXDjiMxN0a4kr/IFDEnq5hzlxVRsjxzeXlmBzJaTA0xpj5NuItxvvg9o7D2+65/gKCfgdSSWjv\nQAZ7GBzYRUrdps9w0CHoE55OHOT2kcf44/AG3hA6jYHRMRoDfUARTV3DxJNpQn4LhvnAgqExJq/F\nxlL0RxN869F9nFRdyFfefgYyMgwD/TA6Cskx4oP7iKWOrGdYFPLzleEHeTzhrmP4g+gTrC2uocap\nJJQepqrAz4GeEcasE03eWJBDK4wx5kSIJ1Ok0/Cz59sYSyk3vOYkpK8XWltgeBiJDZLo38FArPPw\nPqWRALuS7Tye2EetU8qt5ddQ4xTzjZHfEvC5zab1BUJL/6gNr8gjFgyNMXkrNpYmrcqvtnewqb6E\n9U4UujphpJVYz3P09j/PQKL3cP6AT+hzhvj04E8pkCBfLHsrJU6YawrPpzM9xEve6LC6cJxDfaMk\nphnIbxYXC4bGmLwVH0vxUtsgvdEEl59cifR1kxhoomtoD0PJIZLpo4dHlEQCbB59FoAbi/6YkLh3\nkl4ZWEGFU8gDiW04DtT6o0QTKTqGpp/izSweFgyNMXkrNpZmy95eAj7h7IIxogNNDMTaJ81bGgnQ\nnu7n4fhOXhVYxVnBlYfTfOJwRfhUdiTb6XeGqfVHAdjXPTwn12Fyz4KhMSZvJVJpXmwd4OSaIiJD\nhxiO90yaLxL0EfQL/zjwIwD+uvC8Y/KcFzwJgOfSB6kKDAJwsGfUlnLKExYMjTF5qz+aYE/XMKeU\nBxgdbQWODlyO4zaNloT9POH1HL04tJ4aX4mbYTQOD26F1m6qfEWs89fwVHIf5f4xgj6hpT9qnWjy\nhAVDY0xeSiTT7GgbIq3winCMkcTA4bSisI+KwiDVRSEiAYfmZC9fGX6QCqeQ9xZe5GY62IHziW/h\n/OIJnC/fDX1DnBs8iX2pbgadYeoLxe1EY8Mr8oIFQ2NMXhpvInUETnLaAPA7QnlhgMKg//AwicF0\njM8M/gyA9xe9Fp84MDKKfPcXAKjP/ZqUH/ya0/3uKnT76KQunKSlf5RkyppJ84ENujfG5KX4WIrt\nbYOsKgvjS+0nBRRH/AS94Kaq3B/bxh3RLQC8v+gSNgRqQRW589cwNEL679+Gr3EZ6UeeR+77HY1N\nwxQsC7JPO6kNxHi8y2EolqS8MDiPV2pOBAuGxpi8FBtL0dQ1zEV1YRKpGAVBH0Gfwy9j2/n2yCNH\n5X1L5EwuCK11Xzy5A9l5EF59GvVrNxJyAvS9JkL/r57EeWQb6/58GXtSnfyRf4S0FrC/Z4QVlQXz\ncIXmRLJmUmNMXmrpH2UknqIxMAIokaCPzw787HAgDODjktAGbi3/a95ecLa701gS+e1zANS8/U8J\n+QIgUB4uxffq05GdB3nlUCmH0n0UBLoA2Nc9Mh+XZ04wqxkaY/LSrg53DGCDr49w0GHr2D5eTLor\n2H+p9M9Y7q84Zh/5xmako5fIe95MQTCSkQCl551J3y+2cMHv+/jupTAUPABspKV/9JjjmMXHaobG\nmLyjquzpcoNhnX8Q8SnfGvk9jb5yvl/xnkkDIUNRZL87IL/6zFcek1yyrA5OqqdkTy+oMuIMUuAX\nWi0Y5gULhsaYvJNIpdnfPUJlxEfIGeVXYy8wpHHeWXghfpnkay+WQL7zc9TnUPWJG3CcY/OICKFX\nnYrTN8SmnghdMkh1BNoHYozZWMNFz4KhMSbvJJJpDvREWVEIfh/8Nr6TU/z1nBKonzS/bH4EOdhB\n+O2XUtQweR6A0g0nA3B2a4i2dD/VoSQdQ3ELhnkgp8FQRC4TkZ0i0iQiH50kXUTkq1768yJyprd9\nvYg8m/EYFJEP5rKsxpj8EU0kae6L0hgZo83ppTM9xKvHe4tmiiXc+4RP7MB36TnUvubV0x43UlsD\nhWFOblFa0/1UBWJ0DsZs9Yo8kLMONCLiA74OXAocAp4Ukc2quj0j2+XAOu9xLnAzcK6q7gTOyDhO\nC3BfrspqjMkv+7qjjKWU5YERnkrtw4fDq4Kr3cTuAeQXjyPPNh3ZoayI+quuQESmPa6I4FvdQN2h\nNsZIEQ60E08W0jEUp8zGGi5quexNeg7QpKp7AUTkLuAqIDMYXgXcru5Mt1tEpExE6lS1LSPPa4E9\nqnogh2U1xuSRne1DANQFB7l/bC+nBRopckKwtxXnv35yVN7wu66i+uyz8E1yn3AykdUrSL2wh8JR\nHxJsBdZwsHeE9bXFJ/oyzBzKZTBsAJozXh/Crf3NlKcByAyGVwM/mOokInIdcJ33sup4C2uMyR/7\ne9yxf/5QKz2JEd4cORN6hw4HwsCpJ1P17rfhD4ayDoLjCtauZpiHOblFSazpAOBgb/TEXoCZcwu6\nA42IBIErgR9NlUdVb1XVs1X1bKB7zgpnjFmwWvpGKQ877McdV7jJX4fc81sASt92OQ03XkMoHJk5\nEGoa4n2QPDJ8IryqERzhjNYgwz53SSgba7j45bJm2AIsz3jd6G2bTZ7LgadVtSMnJTTG5J10Wmkf\niFEThl3pdiqcQpZt70F2HqTsrZdR9toLszqOM9BE8IX/RMbcJtfR878MoTKcUBCnvpoNrUP8in5K\ngkJbfyyXl2TmQC5rhk8C60RktVfDuxrYPCHPZuAar1fpecDAhPuF72CaJlJjjJloLJ2mfTBGVTDB\nrlQbp/jrcR56Gqe8hJKLJ96pmZxEOwg+/++QThzeFtxx2+HngRX11HUkaE/1Ux0eo20gRjptq1cs\nZjkLhqqaBN4HPAC8BNytqi+KyPUicr2X7X5gL9AEfBO4YXx/ESnE7Yl6b67KaIzJP6OJFN3DcUoC\nnQxqjDO7CpBDXZS9/jU4gcDMBxgbJrT1k6Ap4md9itGLv81Y4+vx9W3H6d8FQKhuGeFoioJompJI\nBx2DMVvkd5HL6dykqno/bsDL3HZLxnMFbpxi3xGgMpflM8bkn4M9UdIKvtBBADa8MASOQ+E5p2e1\nf2D//yDpBIn170ILlgGQXP0W/O2P4m95kETZyUQa6hgElncrWtVKV1cjsbEU4YAvV5dlcmxBd6Ax\nxpjZ2t/r9iRNBFoRoHxnJ6F1q/AVRqbfEfAfvB9/y69J1l1Mqi5jAL4vSLLuIpyupyHeR6C+BoDG\nLvD5u0imlVa7b7ioWTA0xuSV5h63Z+egr5NTBopwOvopOG3DzDsmYwT2/hiAsTVvy0hwB+Kn6i9G\nSONvfRhfaTFEQqzucVB/LwAHe20pp8XMgqExJq8090XxC3TQw0V73XuEBae/YvqdUnHCj7kzPsZP\n/SD43VpkoKaK8JoV+CvK0UgN6ZI1+Nr/gAC+2ipWdQtx34B73l4bXrGYWTA0xuSV1v4YlZEY3TrE\nmlbFKS0mUFU+9Q5jUYLPfxlJJxhbfjnpytMACFRV4i8rQXw+AlXl+AoLSS47Dyfeg0TbCdbVUNuV\nYogBBBtruNhZMDTG5JW2gVFKi9zhyjVto4RWNR6dQdOQGkNi3QSafkDk0ffhG9hNYs3VJL3mUV9R\nIb7ykqN281eVk65wA6XT9wLhhjoKRtMkRoYoC6ctGC5yttK9MSZvJFPuGMNVNc1E4kq4a4TQ+RlL\nMqkS2Pld/O2PHL1fzbmkGi8FQByHQE3lMZN2O6EgTvUq0pEafL0vEqx7IwB13Sn8Bb209Zfl9uJM\nTlkwNMbkjd6RBEOxJOlgC6e0BoAUwZUNAEish/CWDx/OO7bqTWionFTlGRAcn2RbCNQvQ/yTfzX6\ny0tJl5+Cr/0xApuuAdwepdF1HbQNNZBMpfH7rMFtMbJgaIzJG/u8CbpHfZ28sjMMxAitbIB0ksD2\nbwCQrHsNYydfA5OseO8vK8FXMPUQDCcSJlV9BtL6MIH0ITQSorE7wf5T2ukZjjM6lqLYguGiZH81\nY0zeONgTBZQBp5c1bYqvssy9/9f+KL7BJsZW/Alj66+dNBD6SorxV1fMfJLlZ7j5R1vx11axokfQ\nQBdphQM9tnrFYmXB0BiTNw70RBHfCAnGqG2NE1rZCOkk/oP/S7pkDcnVb550P19hIYFlVTMu7gvg\nq6xDAyXISAuBmioaeiHu6/XOb2MNFysLhsaYvNHSHyUS6aYoqhT0uU2kTvezOLFuxpZfdlSNUMTB\nCYcJ1tUQqK/JKhCC25EmXbIKZ+gAwWVVlAynSY71A9DcZz1KFyu7Z2iMyRstfTFKC7tZ0+6uIBFc\nWY+v+1dooIh01SsBEL+fQE0VTmEk6wB4jMp1yK57CVW74xfDvYP4JM2hPmsmXaysZmiMyRttA6OE\nQ52s8RaCCzWU4+t5jlTVmSAOvuIiQisb8BUVHH8gBKjZgKAEi90lnmp601QUDtDSZ/OTLlYWDI0x\neSHljTF0Al2s7/LjqyonEN2JpOKkal+NEwwSqKlCfC9/ZQmp2whAMOQ2j9b3QklhN20D1ky6WFkw\nNMbkhZaBUcZSypi/hxWdSqihFqfvJdRfQLpkDf7qCuQEDXtwyupRfyH+RCvpsiJq+5RIqJP2QVvk\nd7HK6p6hiFQD7wVWZe6jqu/KTbGMMWZ29ne7wyriyV7Ke8cInLsMp/+XpEvX4ysswFdYcOJOJoKW\nrsQZbiZYU0tDzwg+fzf90TEGRscoLwyeuHOZOZFtB5r/AX4PPAiksj24iFwG/AfgA25T1ZsmpIuX\nfgUQBa5V1ae9tDLgNmAToMC7VPUP2Z7bGLO07O8eQXzDVPeN4SgEqwpxYt0kGi/FV1Z6ws+nZSfh\n7PslgZpN1B88SMrXBbjDK5ZKMHzqqadq/H7/+Pf0Qm5pTAMvJJPJ95x11lmdk2XINhgWqOpHZnNm\nEfEBXwcuBQ4BT4rIZlXdnpHtcmCd9zgXuNn7F9wg+QtV/TMRCQIn8GedMSbfNPdFcYI91PW6zZSh\nwmFIgJadjJPFwr6zJVVrkT0/I1QZpiCm+OPj6xpGOWPFNKtk5BG/339bbW3tK6qrq/scx1mw7cPp\ndFq6uro2tre33wZcOVmebCP5z0Tkilme/xygSVX3qmoCuAu4akKeq4Db1bUFKBOROhEpBV4DfAtA\nVROq2j/L8xtjlpDmvlGKC7upc2MSoUAX6gRwaje8vJ6jU5A6d8HgcHEagMLeAUBp7l1Swys2VVdX\nDy7kQAjgOI5WV1cP4NZgJ8+T5bE+gBsQYyIy5D0GZ9inAWjOeH3I25ZNntVAF/AdEXlGRG4TkcLJ\nTiIi14nIVhHZClRleT3GmDzT2j9KQbiLhl7FKSvBF9tHungVvvLc1NKkYhUAoSJ31pnK3jEC/uhS\nG3jvLPRAOM4r55QxL6tgqKrFquqoath7XqyqJTPvedz8wJnAzar6SmAE+OgUZbtVVc9W1bOB7hyW\nyRizgLX2j+ILdrGi10dwWSXO0AHSJWuQUI7u3/nDaKSKgL+PtE+o71UqinttXcN5cMcdd5SJyFnP\nPPNM+HjouqbyAAAgAElEQVSPkfUNTxG5UkT+1Xu8MYtdWoDlGa8bvW3Z5DkEHFLVx73tP8YNjsYY\nc4zYWIru4QRpXze1vWkCFSFEk1C1AXFy169DS5bji7WhlaXU9UJRpItWC4Zz7q677qo488wzh2+/\n/fYsZlqfXFafEhG5CbepdLv3+ICIfGGG3Z4E1onIaq8DzNXA5gl5NgPXiOs8YEBV21S1HWgWkfVe\nvtd65zXGmGMc7BkBFF+8l3AsTbDEa7mrWT/tfi9b2Qok2k6otor6HiUU7KJjMI7qomg5zAsDAwPO\nk08+WfSd73xn/3333XfcwTDb3qRXAGeoahpARL4HPAP801Q7qGpSRN4HPIA7tOLbqvqiiFzvpd8C\n3O8duwl3aMU7Mw7x/wH/7QXSvRPSjDHmsH3dUcQ/RE3fGAChwhjqBHGqVuT2xOWrkHSCcGUxtS+A\nOJ0Mx5P0jMSpKjruFrtF6cM/fm75rvahE9rr/+Ta4uiX/uz05uny3HnnnWUXX3zxwGmnnRYvLy9P\n/v73vy+46KKLZt2LaTYTdZcBXj8tshq0o6r34wa8zG23ZDxX4MYp9n0WOHsW5TPGLFEHekdwAt2H\nh1UEw31oQR1OQW5HZEnVagDCZT78aSgaccca7u+OLrlgOF/uvvvuive///2dAG9961t777jjjopc\nBsMvAM+IyMOA4A57mLRDizHGzLXm3lECIW+Moc8h6OtAS07BycGQikxSvgqAYLFbIy3tc0eA7ese\n4exVx91ityjNVIPLhY6ODt+WLVuKd+7cGXnf+95HKpUSEdF0On3ImeW94mx7k/4AOA+4F7gHOF9V\nfzjrkhtjTA4090UpLOihoQf8VeX4xvqgdGXuTxwpQwPFhCLuSLOy3hjIGAeX1ljDeXPHHXeUv/nN\nb+5tbW3d1tLSsq29vf35xsbGxAMPPFA022NNGwxFZIP375lAHV4vT6De22aMMfOupW+UYKiL5X0O\nwUqvabTypDk5t5Y04NdOkuEA9T1KUUEvB3ssGM6FH/3oRxVvectb+jK3XXXVVX3f//73Z10tn6mZ\n9EPAdcC/TZKmwCWzPaExxpxIqkpr/yglJV1U96YJrnOXaJLqNS//4KES8AUhNgDpscnzlK3Ed/AP\npKtXUdfXQ3lht9UM58jjjz++a+K2j3/845POPTqTaYOhql7nPb1cVY9atVJE7O6wMWbeDYyOMZJI\nUj/cgz+lBIsSqBNEKpfPvPN0ylZCgVfBSFRATxO4HeqPVr4S2fMA4ZoK6nd3UxDuXGpTsuWFbO8w\nPpblNmOMmVMHekYQ/xDLvGEVwcggWlSPOC9jEd+KNUcCIUCwEIrrJs0qlasAKKqIUDUIBbTRPZxg\nODZFTdIsSNPWDEWkFneu0IiIvBK3JylACbaKhDFmAdjfE3WHVXiTMYZCXVBy6vEdTBwoXwXhSWab\nLKiE4c5jmkulzB3LGC6FQaB0qB2A3Z3DvHKJrF6RD2a6Z/gG4FrcadK+nLF9CPhYjspkjDFZ29c9\nggR7qO9RCAcJSCtpbxLtWREflK90o9pkHB8U1cDghFkli2tRx0+o0J2GraTP7c/RZMFwUZnpnuH3\ngO+JyFtV9Z45KpMxxmTtQE+USKSH+l4IVhUjAlI5i84z4rgdZUobwReYPm9BFQy1g2asce74oaiO\nEO4Yw/LeOFTF2NM1fBxXY+ZLVoPuVfUeEfkT4BQgnLH9M7kqmDHGZONgb5RwuJuGPiG4wl2hQqqn\nGVYRKICiZW5NL52CYBH4spx/xHHc5tKRCR0WS5bj69lLorSQut4Y5at62N9tnWgWk2wn6r4F+HPc\n+UIFeBswByNajTFmeof6ogTpomIgTbA45fYkLZ24dCre/cDVUL0eImUQKnb/zTYQjouUHbutfCUS\n68KpKaO+Rykt7OBA78jxXZCZFZ/Pd9aGDRs2rl+/fuPGjRtf8atf/WrStW9nkm1v0gtU9RqgT1U/\nDZwPnHw8JzTGmBMlnkzRORijcrAHAYIFI2hxgxv4JipfNXkgm61gITgTmlMrVyOaorCqlLo+CIfa\nOLS0FvmdN6FQKL1jx47tO3fu3P7Zz3625WMf+1jj8Rwn22A4PsYwKiL1wBjujDTGGDNvDvWNgm+Y\nmr4EAKFwD5ROslJFpHzqjjHHY0JQlXK3oaywzE9RDIoSbQzFknQPx0/cOc2MBgYGfKWlpcnj2Tfb\n9oGfikgZ8CXgadzZZ755PCc0xpgT5UD3CE6wh/pW93U41Oc2hU40xRjB4xYsBG+FCgC84RWhIm/C\n7gH3nuKu9iGq1oZO7LkXqp/cuJzO7Sd2yF3Nxihv+vq0E4DH43Fnw4YNG+PxuHR3dwfuv//+Y2al\nycaMwVBEHODXqtoP3CMiPwPCqjpwPCc0xpgTZU/3ME6wy12toiSME1DSlROCYbgU/Cc4IAWLj34d\niKCRakLpIQBK+gYhmGZP1zAXrK06sec2RxlvJgV48MEHC9/5zneu3rVr14uzXbVixmCoqmkR+Trw\nSu91HLC6vzFm3u3vjhIId1PfC+GKCDDJnKSF1Sf+xD6/2yt17EiPUS1dTnCwk7RPWNabwr98gD1d\nS6gTzQw1uLnwute9bqSvr8/f1tbmb2homFVzabah89ci8laRHC8OZowxs3CgJ0o40kVDLwRLcXuS\nZjaJOn536EQuTDiulK3EibWTrCqmrhfKi7vY37OEguEC8Mwzz4TT6TTLli2b9X3DbO8Z/i3uChZJ\nEYnhDq9QVZ1kzqIjROQy4D8AH3Cbqt40IV289CuAKHCtqj7tpe3HnekmBSRV1Va9N8YcpbkvSnGk\nncJRJVQYQ4sbjp6TNFwKufoNHyo6erxh5WoknSBYVUp9+yDFBR22lNMcGL9nCO4KJjfffPN+v3+W\nw2XIftB98cy5jiYiPuDrwKW4ayA+KSKbVXV7RrbLgXXe41zgZu/fcX+sqt2zPbcxJv+l00pb/zCn\nJnoBCEb6oXTCnKShaX+vvzwT7huKNwVcUXmE2pcg6G9nX/8o6bTiONaoliupVOqpE3GcbAfd/zqb\nbROcAzSp6l5VTQB3AVdNyHMVcLu6tgBlImJDNowxM2ofjDHm9FLX6y6rFA73Q0Vm5xnJbTB0HPBl\ndMwpH5+wW/GnoTTaSjyZ5lCf1Q4Xg5lWug+LSAVQJSLlIlLhPVbhrmYxnQYg84bqoUn2mS6PAg+K\nyFMich1TEJHrRGSriGwFrNuWMUtEU+cwTqiL+l5FHSFQmEIye5IGi9yAlUvBjMlOwmVosIRwoRv8\nSvvdGutL7UO5LYM5IWb6pPwt8BSwwft3/PE/wNdyWzRerapn4Dal3igir5ksk6reqqpne/cUrUnV\nmCVie9ugN6wC/OURxJnQkzQ067s7sxecMPNXSSPBsLtqRVnvKEicXR0WDBeDaYOhqv6Hqq4G/lFV\nT1LV1d7jdFWdKRi2AJlLTTd627LKo6rj/3YC9+E2uxpjDAA724cIR7pp7BXCZT7UCUJR7ZEMEwNV\nLvjDR78uX0kg1U4yEqC+Ryku6mSX1QwXhazaEFT1P0XkAhH5CxG5Zvwxw25PAutEZLWIBIGrgc0T\n8mwGrhHXecCAqraJSKGIFAOISCHweuCFWV2ZMSav7eoYIhzsZFmfEiwag+IGdyUKcOcmnYtgGJgw\n4UrFKpzUMI43R2lFcRtNtpTTopBVb1IRuQNYAzyLO9QB3Ht6t0+1j6omReR9wAO4Qyu+raovisj1\nXvotwP24wyqacIdWvNPbfRlwnzes0Q/cqaq/mN2lGWPyVTqt7OseYWVpB4GkEiocQktfweE+m8Gi\n3A2pyOQ44I9A0p2Ue7xHaWFlEQ17ugmHWth/KGo9SheBbAdjnA1sVFWdzcFV9X7cgJe57ZaM5wrc\nOMl+e4HTZ3MuY8zS0dI/SjQ5QkO3O6g9XNTvrkoxbmKNLZeCBYeDIWXuhN3hch+VQxDUVkbHUjT3\nRVlZOQc11SVqz549geuuu25FU1NTJJVKySWXXDLwjW98ozkSiWQds7LtavUCUDtjLmOMmQO7O4dw\ngl2s6FJUIFSSRKrXHckQytGsM5MJZAS5ohrUFyJc5k7YXdLbAcC2FpvKOVfS6TRvetOb1l555ZX9\nBw4ceGH//v3bYrGY3HDDDbNayinbYFgFbBeRB0Rk8/hj9sU2xpiXb2f7eDAEKQ/j+DVjWIXMbc0w\nkNGJRhwoaSRc4Aa/qq4YOFF2tFknmlz56U9/WhwKhdIf+MAHegD8fj+33HJL8z333FM5MDCQ9dia\nbJtJP3U8hTTGmFzY0TZEYVEnKzuVgqog6gSOzEnqDx/pSDMX/BG8GSrd1+UrCYw8RzpQwPKuNBWb\nOpbE8IpPPPqJ5U19TSf0V8ja8rXRz1742WknAN+2bVvk9NNPP2pmg4qKinRDQ0PixRdfDF1wwQVZ\nrbKcbW/S3wL7gYD3/EncdQ2NMWbO7eocosR/iJo+iJQmoGT5kQAYiMxtYRzn6CEWFavxJXqQ2gqW\nd0NZkfUoXQyy7U36XuA6oAK3V2kDcAvw2twVzRhjjpVKK3u7Rjit4BAOEC4aQMtOy+hJOg8dVQIZ\nPUq9jjyFNSWseqmLUPAQu1ujjKXSBHw5nhFnHs1Ug8uVTZs2jf7kJz8pz9zW29vrdHd3+0877bRY\ntsfJ9i9zI3AhMAigqruBmmxPYowxJ0pzb5SEDlHX7baMhQv7oeKkIxnm8n7hZOesdMsSqfJTEoVw\n7BDJtLJ7CTSVzocrr7xyKBaLOV/72tcqAZLJJDfccMPyd73rXZ1FRUUnvDdp3JtsGwAR8XO4gdwY\nY+bOzo4hnFAHKzqVdMAhUJTKmIZN5r6ZFNzhFeOK61BfmEiZWykp7+oC0jx/yHqU5oLjOPzkJz9p\nuvfee8tXrly5qby8/AzHcfjiF7/YPqvjZJnvtyLyMSAiIpcCPwJ+OttCG2PMy7WrfQgn1M6KLvBX\nFyICMr5aRSAyN4PtJ/JnBGBxoHwVoYIeAJZ3pAiGu3ih1YJhrqxdu3bsoYceajpw4MAL99577+7f\n/OY3JY888sismgiy7U36UeDdwDbcybvvB26bXXGNMebl29E+SFFBG6s6laI1DuoLIUXL3MT5aCKF\nI51okt4tqqq1BPp+TapyBas7hqne2GrDK+bIpZdeOtLa2rpttvtlGwwjuNOpfRMOL9wbwZ1CzRhj\n5szOjmEqfAcoHoVQSQxKV7m1MZifzjPjApHDwVCq18OOn1HQUMXKg0MURA6yu30YVUXmo+ZqZpRt\nM+mvcYPfuAjw4IkvjjHGTG0sleZAbx/LvJldwgU9UJmxbNN81Qzh6JloqtzZcCLVIWr7IZhuZmB0\njM6h+DwVzswk22AYVtXDA2W85/P4qTPGLEUHekZIB5pZ0e323wsXDcP4NGziA39omr1zLPPc5atR\n8REpd/sdlne3A8qzB/vnp2xmRtkGwxEROXP8hYicBWQ1qt8YY06U55oHcCLNrOxUpCiEP5xGvFoY\ngYL56TwzLrNW6g9B2UoiRV4nmrYETqCPZw9ZMFyosr1n+EHgRyLSijvvUC3w5zkrlTHGTOKpA30E\nC5pZ1+EQqfZmfRkfYzgfQyoy+fzgC0HKawqtXk9w7+9Ildezpi1K5UktvNh68vyW0Uwpq2Coqk+K\nyAZgvbdpp6qO5a5YxhhzrGeb+ykNHKC+K0VkdRotrEXGx/jNdzAcL4MXDGXZRtj1cyLLa1h7cB8l\nhc3s6rBp2U40n8931rp160ZTqZQsX748fvfdd++rqqpKzbzn0WYzN9CrgNOAM4F3ZLHSvTHGnDCx\nsRS7ultY0z6AKBSU9qBVGTWt+exJOi6zqbTarTsULouwrB8KUwdoH4gxMGr1iBMpFAqld+zYsX33\n7t0vlpWVJb/0pS9VH89xsgqG3kr3/wq8Gjcovgp3wV9jjJkT29sGIXyADYcUdYSCkh6k7jQ30Rec\n384z4zJrp+WrUcdPpMIdblHV2QIo221tw5w577zzRlpaWoLHs29OV7oXkcuA/wB8wG2qetOEdPHS\nr8Ads3itqj6dke4DtgItqvrG2ZzbGJNfnjnYjxNu5hXNEKwrwfG3QN0mNzFz1Yj5lFkz9AWg7CQK\nYl2owIq2BFLby/MtA5y/tmr+ypgjrR/75+Xx3btP6CiD0Lp10fp/+XxWE4Ank0kefvjh4ne/+93d\nx3OunK107wWyrwOXAxtxm1Y3Tsh2ObDOe1wH3Dwh/QPAS7M5rzEmPz25r5fC8AHWtimFtT7UF4LK\ntW7iQmgiBa8TTUbFpGY9/vhBUjWlrG1TSooP2RylJ1g8Hnc2bNiwsbq6+vSurq7Am970psHjOU62\nNcPxle6fAA6PGlXVK6fZ5xygSVX3AojIXcBVwPaMPFcBt3s1zi0iUiYidaraJiKNwJ8Anwc+lPUV\nGWPyjqqy9UA3J0kzgSQUlA9C5cngeF9hCyUYgls7TLnjC6XmFbDjpxQ1LmPNjgFKiw64zb15KNsa\n3Ik2fs9waGjIufjii9fddNNNNR//+Mc7Z3ucXK503wBkvjmHgHOzyNMAtAFfAf4PUDzdSUTkOtxa\nJbhB2xiTZ5p7R+lN7eH1HW7nk4KiVqi98EiG+Zx5ZqJAAcS88YReJ5qiZQHKnoKK+H629UaJJ1OE\n/L55LGT+KS4uTn/1q189+La3vW3tRz7ykc5AIDCr/Wez0v0O3MBUDLzkbcsJEXkj0KmqT2VRtltV\n9WxVPRs4rrZiY8zC9mhTN/6CJtYfUpzKIgLhJFLvdZ7xh4+scr8QZC7nVL4S9QWJlLvTONd2dJBK\np9nbNTJPhctvF1544eiGDRtGb7311orZ7pvtSvdvB74E/AZ30P1/isiHVfXH0+zWAizPeN3obcsm\nz1uBK0XkCiAMlIjI91X1r7IprzEmv/x2dxfhoj1sPASFa7wemzVeF4SFVCuEo8vj+KFiLaHRDtI+\nYWV7AmnsZ0fbIK+oK5m/MuaRaDT6TObrhx56qOl4jpNtB5p/Bl6lqn+jqtfg3g/8xAz7PAmsE5HV\nIhIErgY2T8izGbhGXOcBA6rapqr/pKqNqrrK2+8hC4TGLE2qypa97dRF91MUVQoqR9HiRgiXuhmC\nRfNbwIkc39HrG9ZswB89SKq+gjVt4I+0stNWvV9wsg2Gjqpm3pDsmWlfVU0C7wMewO0Rereqvigi\n14vI9V62+4G9QBPwTeCG2RTeGJP/XmobYog9rG9JAlBQ3Aa1m45kCC6wmiEcVSap3oCkE5Q0VrOm\nXSkrbGG3zUSz4GTbgeYXIvIA8APv9Z/jBrJpqer9E/Op6i0ZzxW4cYZj/Aa3edYYswQ98GI7voI9\nnPK8IgUhQgWtSN2pbqL4Fs4Yw0zBIoi6k3RTswGAomofo3FYEdtHU5cFw4Vm2mAoImuBZar6YRF5\nC+4MNAB/AP4714Uzxphfbe+gpGgH5+yCog1l7sIUDWe5iaGi+V2pYiqZ9w1Ll6OhUiL+PgCWd7Xy\nbDBvepSm0+m0OI4zqwlZ5kM6nRYgPVX6TM2kXwEGAVT1XlX9kKp+CLjPSzPGmJzZ3z3MS937WdXd\nQjihFNWPoCWNUOzNAbLQ7heOC4TdWiu4wbr2VMLOAZJBHyvao6Qkyv7u6PyW8cR4oaurq9QLNAtW\nOp2Wrq6uUtwJZCY1UzPpMlXdNnGjqm4TkVUvr3jGGDO9e55uwV/8AqftTIMIRUUHoeENRzIstJ6k\nmYKFEHcH2Evd6fgOPEKq4VTWtPXgW9/G7s4h1tdOO4x6wUsmk+9pb2+/rb29fROzW/hhrqWBF5LJ\n5HumyjBTMCybJm0BrJdijMlXyVSaHz3VTFH1U1ywx09oeRl+fws0ek2k4iysmWcmChUfDoZ49zhL\naotZ9UQPocAhdrUPuesALWJnnXVWJzDdTGSLxkyRfKuIvHfiRhF5DzDjgHhjjDle//34QTrje6gY\nbqehfYyiNSEUgbrT3QzBBXq/cFxmoK5ci/rDlFckCKZgQ2yPdaJZYGaqGX4QuE9E/pIjwe9sIAi8\nOZcFM8YsTclUmtaBGN/8/V7Kax7jNc+5Aa+0ph2qNxwZXzj+70IVKMCdo0TdwffVryAy5o5QW9PT\nyjabhWZBmWmsYIeqXgB8GtjvPT6tqueranvui2eMWQoSyTSptDKaSLGna4RbfrOHlqFWxgqe5vUv\nBQitrickB5HVFx3ZKbTA77eJHHVPU2o3EZRDxAv8rOoc5EDPALNcFc/kUFbjDFX1YeDhHJfFGLME\nxZMpmjqHGY8LjzV1c+cTB1m15rdUtUJZ5yjFV6xwE1d6k3P7wwtjMd+ZhIphzKsBLtuEQ5pkfTFr\n2/qIb2yjYzBObekCHCe5BC3k3j/GmCWgpW+UdBpUYX/3CP/+4C5WLeujN/g4124rRcIhyupa0ZIG\nKPOCYmiRzOuZed9wmTuXanFNkMZuiPgOsrfb7hsuFBYMjTHzprV/lJF4CoCuoTgfvfcZ/NWbSVTd\nTOOgjzXb+ik682QCIzvh5MuOdJiJTNfRfQEJFuHeNwRCxWjZSmqKR3AUVkX32uoVC4gFQ2PMvOgc\nitEznEBV+cmzLfzt97eSrPwhlD5CCPjsY+7A+orT0igOsv4yd0dfcGEPqcjkOEdNDCC1mygItwFw\n0mALe61H6YJhwdAYM+cSyTSdg3EAfvzUIb71yD5W1/cTKH2GNxZcxJ39l1HwzH7K3nARkegT0HgO\nFFa7O4cXSa1wXChjlpxlmwiGhxgLCKv7e9ndacFwobBgaIyZc+0DMVRhy94e7thygIvWVVJRfz8R\nCXND5ByGf/hz/MuqKH9VGZIYQDa+8cjOBZXzV/DjkdnrddlGRCBeE2ZFV5K9vc3zVy5zFAuGxpg5\nNZZKMzA6xh/2dPP5+19iTU0EX+V3eHHwOa4uOB/ue5Bkdx+V7/hTAq0PoAXVsOI8d2d/2J33czEJ\nFByZp7R0OeqPEKz0sbITOmMHSCSnnDvazCELhsaYOdU9HOdAzwj/8vMdACxffQ9PDTzGFYFX8pfb\nQgw/+hTFf3QuRWUd+Ab3IGdd4w5aB4iUz2PJj5PIkaZScaBqLZUlMYpiUDV2gIO9eTFh96JnwdAY\nM2fiyRTNvVG+8PMdlIT9fOj1UbYO/o7zfSfzwb2N9N79v0RO20D1xdUEdn0PrTkF1l9x5ACL7X7h\nuIyhIFJ1MuWRbgDWDB2wTjQLRE6DoYhcJiI7RaRJRD46SbqIyFe99OdF5Exve1hEnhCR50TkRRH5\ndC7LaYzJPVWlpW+UOx9vpm1glL87P8IPD32ZhngRH/mln/7v30d4eQkN57QQ2nkrWr4GecPnwfGa\nGINFi6+JdFzmuMiq9YRLRgFYNdDJ7s6heSqUyZTtSvezJiI+4OvApcAh4EkR2ayq2zOyXQ6s8x7n\nAjd7/8aBS1R1WEQCwCMi8nNV3ZKr8hpjcieVVg71Rdmyt5fNz7Vw8coift3zbyRHh/jSfxeR6H6e\nyo1DVG9qhVgRyZPfju/V7wF/8MhBFmMT6Th/0L3fmYxB1Tp8AWW4zM/q3iG2tvTPd+kMOQyGwDlA\nk6ruBRCRu4CrgMxgeBVwu7oT9G0RkTIRqVPVNmC87SDgPWwSP2MWEVVlJJFiOJakdyRBR98w//fn\n26ktTOEv+Q6743v4z5+V4u/qpeHCXiKvfgPx6rNxqtcQqK9FnIyGK/FBpGL+LuZECJfCcAzKlqO+\nEKkqPyu6YtzReQB41XyXbsnLZTBsADL7DR/CrfXNlKcBaPNqlk8Ba4Gvq+rjk51ERK4DrvNeVp2A\nchtjXoZkKk3vSIKeviGSw6MwFqepbYD/+0QXiciTFNQ+wOPxAT7zyxKqd/dSe3Y/4YvfQrLxdfgK\nCwjU1RwdCAEKq9wB7ItZqASGO9zOQJVrKSgbongPdA/tJp5MEfL75ruES1oug+HLoqop4AwRKcNd\nRmqTqr4wSb5bgVsBRGTrHBfTGAOk08pQPElf/zDD3X3o4CDxaIwf7o2yoz/Jtr44JVV/wFf9U/xD\nyrc2F1F4sI/KU0YpeNO70bpzCZSX4CstRiauUSg+KKyZnws7kYKF7rVoCqlax7KCh+jVIlaM7GV3\nxzCbGhb4klR5LpfBsAVYnvG60ds2qzyq2i8iD/+/9t47TI7rutN+T1V1DpN68gwGA2AGOZMEMymJ\nWRQpyVRcB0paax2kXdlrr4M+e2V9a1ty+pRsy5IsrSxLlKhIiqJEMQEUEwCCATnMAANggMmxc3dV\n3e+PamAGiQRADDCDue/z9IPqqltVZy66+tf33HPPAe4AThFDjUZzaXBcxVgqx+jQGJnRcVQ2C7kc\nh1M2v+jO8vChLFZ8K2awm5q23RQZ4MPPR7nlhTTijlJ3zTjBd/0hUr8MX+sCJFwJqX6wsyfeKFoL\n5rT93X72iHgL8HOjkGinIvZThonSOn6YbUfGtBheYqbyE7YZaBORVjyBez/wwZPaPAx8rDSfuA4Y\nU0r1iEg1UCwJYQgvCOezU2irRqM5C/L5IplUlvGhEZLDY6iMJ1zJosujh9P85GCKXGgbZriL8vaN\nrOlUxAZgxUtB1uw1CabGCFT7aLxyAG74A1RVO77WNqRqnicWoQpID3juRNf25tmil8Go8BjBMk8M\nq9vxRR0KPmHeWD+vHBrhA1fNudTWzWqmTAyVUraIfAx4DDCBryuldojI75SOfxl4FLgL6AAywIdK\np9cD3yzNGxrAg0qpR6bKVo1GcyJKKVShAK6LBIMo16VvfzdD3b3H6w72pPOs702xYaibfjmEFdtK\nrPEgN3bYXPucYm3npJg3I0dw0XwqVscosx/Bbn0XTtVy/IuvRCrrJ9qJeOIXToCT9yIwT3abzmSO\nLbGomAumj1zComUoy88OdQMrL6Vls54p9T0opR7FE7zJ+748aVsBv3+a87YCq6fSNo1G46EcB2d0\nlNzwKMV8gVwuj+u4ZIsORccl6PdjI2QzWQ6n0rw6Os7jI9volX002rtY259jbp9iYbdiXp93TTcc\nRJAAYYoAACAASURBVGqjhFcuITKvmeCS+VhjW/Hv+FfcqmU4LW/Ht+I6jPIzxLwZBhihi9cJFwvT\n8tKzFTNQOY9AZZaWTjiU2s1o5lbKw/43voZmSrgMHPEazSSU8tZymf6JxdqaU1BK4SaTOGNjZIZH\nGUnlSeUdlFLYqojCxXZtHNchWAwxkMvxt/t/QiK5gfZuxQf7FEsPQmXaG/25lglVFRg3tRFbsYjo\nonn4TEFShzFGd2PsexpzYAtufB7Ouj8hMH85ciYhvNwJxKCYQarbqY08y2guRI27l437h7h9Wf0b\nn6+ZErQYai4P7LwXfJEb9eaaEC/wIq6/XI6hXBdndBR3fBwnkyGZKTCWLTKaS/HC+Ivs7noBM1nE\nSCdRToaakQLjYUVnfQ2BbJY/+dUYc/snrufMbYS3LCHQNo9gUx1Rn8KfPYyROYK5+zGM4R2I480p\nKrFwWu/GWPch/GUJqGg+g5WzgEDMmxNNtFMWe4xRQsxPHeDJ3f1aDC8hWgw1F5d80nMTXahRm1KQ\nGYLxI6AmZ/9XkOoFKwDhGb5Y+zxRxSJuvoDK53BTKdx0mmyhyFjGZjSTYWd6J/v2PkX5q3tYtyvP\nrWfMF90LQD7kh3tuxmhsxFcXpdw+RCR3CCu9Bdnej5GdUEplhVHxOahwApVYjCy8Hau8VI/wcokO\nPV98EUAg0UagvIgrsHC4jx/s6OFv370C07iM5khnELP4E6m5qLiON3JL9Xo5Jitaz/yF6LpvvMDa\nKUIhBclezy16JsaPeOu7rMD52z4DUEqh8nncbBY3ncFNp1HFIgCO65LK23QnB3ntwHqGO18icLCP\nNXvzrC6lxdzWWIda0UxTTZTKqGDFYvijFk5OkR0oIvksjQ2DVKZ+hDGWQ0YKE/f2V6DCNTjlC1AN\na5H65Rg1rRiW71RDfWFPDGczhuF9JitaMfwGuVo/Sw8V+HrzEX61b4CbF15G0bMzCC2GmqnHdWGk\nC/Lj3vtCCob2eWH0wfITky/nxmD4AFS2emHoJ1PMwlg3FNKcVYY+14ahDqhqOzHP5QzHSaVRxQKq\nUMBNpVCFAsrxRsbKdRjNpOke6+bw0Z2M9B7A7djLnL0jXDvgnV80YE9DFWPL46ydM8B7eAXhZe+g\nC4yVXoAdKMewshgjedxII264HbEzuG13Q9NajHgFhv8s+7as+fKKDj1f/FHvOahopaLBwf8qlAe2\n8cMtq7UYXiK0GGouPK4Lowc9V2iwDJJ9UEyf2MbOQbLHe4UqS+uvxiA7AigYPQSxejB9Xg04p+gd\nz41xzmlqnQIM7PZC9kMVYJRS3bqO969hnd5t67rgFifmIA3LswXl2eW63hf76b7cXdf7GwspL3LQ\nKXovMbxRqmF557nOie5d0+8dswJ4wdYmqmijbBc3n8FNJlG5HKqQPX5f286RTI+xr+NlBro6sA8d\novzIONUjDkvypS4Q6K2y6FzmY3njOE3xIVaYRwHIBxtIx25AwtVIqArLH0CcIlh+JDeMDO1CobAX\n3YvZdh1iGIhpnFvJGzEg3gT+8LmcdfnijwAg1e3UVD7PYTfMFclXeGr37Qyl8lRFL29PxnREi6Hm\nwuK6MLwfCiX/W2bojc/JDnuvE65jw9jh07c/H5QzIb6nIJ64GdZEEVmn4AXlnFF4jwmg8lJsieEJ\nqpje+rhjQns6JmVYUbaNmyvg5vOoXAHlOOC4KOWibPvUU12HbHKcPS88QeFoP2pwnPBglmjapcaB\nGiDng7FyGJjvUFGeoyZYpKkiyzKfwjZC5MMtjIbX4oSbMOpXEK1tIhwLI8HAqanQ8JZegCDm2cqf\neKJuBUqvEATjXh9rPPwT84bhikexfVGWHxjg8QXDfPWZ/fzpXYsvtYWzDi2GmguDnfdGbZnhU9Np\nTXuUJ35O4Y2bTj7n+KbjvdziGVu7hSJuKuO5M5VC2Y63nRtDsn1IYRwpjCFKoZSDi498MoszniLT\nP8pw7wDZoTzWoE00NZGR3jbgaK2it9UhXFakpjyP5a/Cb8RR/mrcQBQn5KMvVk8u0oovWkmkPEok\nHiYYCyOmCWbAEy/T541SlTvxQ8C1kWODZjG9L3HX8eZ7rZAndqbf+zEgRmlkO8MTal8MDBN8Iahd\nhmGCf3E11+zqo3XdC3xvc4L7r5tLXdlluM5yGqPFUHP+5FNeiLjp94TwdcTgYqHGulGDXUhiHlLW\ncGltcV2csSRO7wGMoy8gqW6M/PBx8ZTMAMWhDJlBP7kxi9ExP7msiS9jYNonjtAME0aroG+OEHeg\nd24ZXdULKBTjjBXr6VFVlIeiLK4MsbasSFuZiYRCKNPE9Fv4KsqprKggHC+bGAGb/jcWL6U817VS\nECrXazcvJP4IVM1H+WPULzBwt8Ly3hd4SG7jX5/ex5/ctYSwX39FXyx0T58vZxPxOBNxXW+eKxif\nNEeHVzXA9Hlfhvmk5/7MjlxaWyeTGcJ94avI/l9iKBeF4M69CeOtf3ZRI0mV4+Kk0rgjvdD1HGbv\nswTGO7xg2sEyMiNh3AKkMyb53hhmLgp4c3r762CgUUgFoRAwkFAAuzxCsrKS3sgcxrPtHBpvoi/v\nw0Axx1UsrhAWVgT4aEuUeFkUFYoTKIsTC4cIB0zCPhPrrN2bp0Fk1i5NmXL8UZABpGE10Z4dFCsr\neevmNDve9Qzf2WRy9YJq3rKwhqBP/wC5GGgxPBeU4nhixsE9Xph4Rcvrt5/qyLnMsBelGW86calC\nMestO6hsPftruY4X+JIb80YMk92Gx+b+Tt4/DVA9W+EXf4bYOZz6m3ESqzGHXsPqegL1iwxy199M\nzAVeqHs6DqpQxC0UUOP90L8LlUshyW7MkV1Yyf0AZO16+vcuJ9kxjpnxRs45PwxHXPa0CZ0NBum6\nMqz6BlqsOnyFBnpSNRScCIeyAfamfSSHDBiCMr+wpCrAPQ1xrltYR1Wll+fSZwkRv0UsaBEJWPje\njPhpLh6lIBrmXovR9Qy1N9yA76FN1I88Tp9vLZ/+yTYqP7iWxQ1x4kE93zrViFKXTwF5EXlJKXXF\nWTQ9vz+6kPbC/g1rYl4sWA5lTRPBAcUsZEchM3i8iOeUBA4cc1+NHsKLbvR70Ze+sPd+pMuLZqyc\n743yTibV750vpS9O0we5cc+FN4Nw9z6F/OqzKH85heX/HRWeyOBhHnka/75voRbcjrzlT8/rh4kq\n2rjJEVT/XlRmBEn1QfIoku1HMr0YuYET2yO4oWZGBxsY3pHF3j+AC2xcJDy/WOhtiVITqWGOUU2j\nShCxm9mXrmHjWIS9KcEuBZYaAnPKg7RVR1nSEGdxYwUN5UFEBMsUKsJ+Qn6TgGUQsIzTBr5oZgB9\nOyA3hvrWuymWr2LfN/vZVZHju+9fwqv7PsSCqhB/9e6VtCYiVMdOH+B0EbmsP2RaDM+FQhoG957m\nxqY3n5JPeZGEk/FFvCrdTnGinpnvpIlxVQrgOJ07r5D2hCsQn3BX5Ua9tXbuqdGGp2AFIdF+4lxP\negjGDr3xudMYlR1Hbfx3jL0P4cbnk1/2MfCfui7ROvAjfAcfwW27G7n+Y8jkNY14i9VPGMHbDm5q\nCHXoFeh5DWNkN5I8iDCx/EGZQVSoBhWsRgWrcINVuETI9OQYP5gk++J2SGUZKTP5xUrFq6sirKtY\nyRW0UXQS9BeD7M7GeHbI4mjau25jeYiVzeUsqI4wtypCc2X4uHvMMoVowCLoM4mHLPymFr/LhpEu\nyI6gNvw97Huc/uIHGf7+L/nS3QahhR/gR/tX01rm58/fsZzGqjCJaIDKsB/j0mSpuaw/dFoMz4Uz\nieE5IRBvhHCV9wWcGfaCUJy8F9UXqvDWYokxMcKcfO75mG8FJ0aN2eEzLC+YIThF3C0PIDsehGIa\np/4Gim3/BQwfqdd2MfrUc9g9A1jNdVS941ZCLY34Or+L1f04ygzhNl3n9UNmACmkvf6ws8fXEEpu\nGHG9HzRKLNz4PNzydtzYPFSgAhWoAF8MJ5sje+AQ6T2d5PcdxD3cC7aDEti+wMdPVzscnh/ldv8K\nrlCr2Fpo4ae9AbpGPRezIbC4Ps4NCxKsaamgviyEZQoByyDkN7EMg0jAxG8ab27OTzO9OfbDtG8H\nPPT75Nt+i4Pf3sn40aN88r8GWBf6ID/YvwTTEH5jbT23rGohHLSojgaojPgv9o8iLYYzhZkhhiXE\n8EaU0yAC86KRGUI99wWk6QpY/I7Tt1HKE6hg2SnzfGqwE/X0ZzBG9uGUL6Y4/72omDdnO7rhRUa/\n+wiqIo49twZrzxEkk6Pq/l8jtm4VxsgurIOPYIzuRlAow4eKNKL85d4IWwQMP8ofRwXKccsW4sZa\nwfShXJdcx0FyR3rIHuym2HUE1evNoSpDGKgPsb3RYVtdkZ1zhFh5Fbf5lrNatfNCro3/PCAk8w5z\nq8Lc1F5DbTzAyqZyysI+4kEf4YBJLGgRsHSgxKzDzkP/TlAK9eBvoZSPVMNH6f7bf+Fo3OGv/0uA\ne0Lv4vGja9k5pqgIGNy3vIY7r2glGvJRXxYkdvHmE7UYzhRmlBjONgb3otZ/Bhn2AkvUivchV/32\niYJn53Gf/BuMgxtQ8WbU6g+hcklI9iB925GhHWCFKbb/Bk7NVcdPG35sA+M/fpze9gr+8t4cY1aR\nhcUKPvHDIpVdoyTuv4/oulVeY+V6LmnD97rLBNxikczODpKvbie/bS+kvDliO+JnsDHCoQSsb0qy\nvUnhBiyW+hpY4WumXRqpcWvY5rTwnwd9HBzNs7guxvuvnMPaueVEAj5CPpOQ3yQWsC6Vu0sznejb\n6XmGtn4fXvxn8iv/F6luoe9fvkVno8nf3Wfy9sh1xJ0bebS3jO2jLomgyermMn73lkUkogHqy4MX\nI3Dqsv6wajE8F7QYnjXu0Z1ItBqJJVC7fgrPfxHMIIWF92MOb8c6+jTKCnpJnivaoXIe0vlzjEwv\nTvUVGCM7Edsro6AQVLgep/oK7Ma3gt8LCFKuy9APHiX11It0LInzF3enmR+oY75Vzd5iH4dz/fzj\nD8LUHkxSdtuNlL/jrYh10mjTcby1gMk0zniKQv8Quc4ucjv2Qb6ICvjoX1jJ822K5+qSHIoVQIQq\nI8JaXwvX+hfQRBXiBsEq5+VCAw92uewfzlIZ8fPh61q5dUmNN9dz8d1ampnA6CEvWtvOo7736ygC\n5Nf+JalXdjHw9e8zXGbwT3crzKYG3irLEXsN3ztSwYGUIuIz+NSd7SxuSZCIBqiK+qdSFC/rD++U\niqGI3AF8HjCBrymlPnPScSkdvwvIAPcrpV4WkWbgP4BaPOH6ilLq82dxPy2G0wC15zHY8Blv1Bep\nQ5KHccoXU1jyO+CPAWAMvIw59BpSGPOET9m44QaKC96PW7kMCuMY6aMofwwVqPSynUzCSaYZ+OYP\nyW3fy451CT598wjvjqzlvtBaDDFwlctX07/iueQuPr2+itYt/RgVccJL2jDLYhSGRigc7cPpGQD7\nxAhaFQkysKSGDW1FHmocoGBBmYRY7mtkqa+BVb45hFUQVBjlT7DdqWFDn8HTncMooKEsyHuuaOZt\ni2poqgxTEfZpEdScmewojBzwtrueg19+kmLLPdit7yS79wB933gQNZpk02KT71wPZqKSt8sV7Bq+\nlsd6Q9gK3toa576rWplTE6My4qcs5CMSuOAr5y7rD/GUiaGImMBe4FagG9gMfEAptXNSm7uAj+OJ\n4Trg80qpdSJSD9SXhDEGbAHeOfncM9xTi+Glpncr6pE/RAUSqEg9xvh+inPuwml828QyjpNxi0h+\nFBWsOnObEkop0htfZejBn6FyBbbcNYfPLu/mruByPhJ/C9XVizCDFeTHjzAw0skXxx/n2UIHf9Dd\nxtVPD8LRQcRVqHgEaisoNlQwWhVgPAJHQ0X2hZK8FOxnyMhRJiFuDLRxTWA+zVKFKBMkigpXM2DV\n8nC3YkPnMOM5L6q3vTbKPSsbubE9QW08SFXEr4NfNG+M60LftuMJ29VTfw0dT1BY9nHcxCqcdJah\nx54mvX4TFG22LPbxnWtdjJoEt8s69o1cyy96LRwXrmmOcffqZpbNqSTkNygP+6kI+y9UjUQthud1\nYZFrgE8ppW4vvf8zAKXU305q82/AeqXUA6X3e4CblVI9J13rIeBLSqnH3+CeWgwvEe6+9bD/V8ih\nDahgFfk1nwRf9MLeo1hk6NsPk37xFdTcOp58Rx1fiW7n5kA7Hy+7k6GyK/nXnVn6kgVWNUS5v7mI\njL3C34/+jE2FLuqMOOsC8xBXcVSN8WrhMAVOHBVWGhHmmlVcF1jAOv88xPWhfAlUvJGduTgv9hV4\nsWuE/qQXcbq2pYIb26q5Zl4V5REfFWE/lZEL9uWjmS2MHJxIVm/nUD/5GIwcoLDkd3Gr1wDgjKUY\nfHwD2fWbwHbY2C48cLNBXXUr16tr2TG+lMd6TLIOtFX4edvCam5Y2khZ2E8iGqAmFnizc9SX9Yd6\nKsXwPuAOpdR/Lb3/DWCdUupjk9o8AnxGKfVs6f2TwJ8opV6a1GYu8AywTCk1fpr7fBT4aOltQik1\n9yzMe/NimBmeFUVjXw91cCPqhX8Dw8QY3YcyAziVKyi2/fpxd+jJuIUC4nt9t6FyHBBBDAOlFMUj\nfWR37mP86RdxRsbI37qGf7p6mFfsbq7xz+N/xG+nK3gl/3O9twylqTzM/sEU5WE/n7upjKrUFp7N\n7uLJ3G522d7vrJD4aLNqmWclaDGrEIQFVg0JM+otOzTLcKItHLLqWH84y/p9gwym8ghwVWslK5rK\nuWpuJXOqwpSFfFREfDoaVHP+5JNe3c1j5EZRj/xPGDlAcd57cZpuPb4W1kllGP7F06TWb0K5Do9e\nZfLwOmFFdBFXsoqO1FKeHQrQlXIxBdbWR3jnFXNYNTfBgpoofuu8vRVaDM/rwhdADEUkCmwA/lop\n9aOzuOeUjgzdX30Bd6gXRjowD/4SfBHslb+HueRtGMHZI4qqby9qy39gdD+LG6wGw4dbsYTi/Ped\nMUJztJDCd7Cfgc9/k8C8OdT+3q9jBAMUHZuRYorqQBnFdJreHz+Ku2knEgzgq6umeLQPlfYiOVVL\nLd23tPN/al9jRGV4T2gtvxa+kuHIKn77qXES0QDf+sg6mitCPN85yCe+9xquq/jS26qoy2wjX0hS\nUDa2cgmJJ8iGGFhmAAcLIYgbrCIdSPDLAYsn9g2xfyCNIbBmTgXXzK/iyrmV1MQDxII+yqdmXkYz\nWxnY49W+PEYhjXrqb5BDz+FULKU4/32oaNPxw854iv4Hf0puy05EKbbNFb5wj8HcWAuLaKLZvZLN\nY7Ws7zdJ2Yq19WH+4p0rWdVy3rlmtRie14XfpJtURHzAI8BjSql/Ost7TqkYqv+3Ginl5XSqViGZ\nHoxsH07FEty2ezFCYcQeQ4ppLxKyshVarpvaOm6u7b2s4Bu3PVeG93uRbvkUoFCpflTfHuToZjAs\n7OY7sefc6SULeB2Kjs3h9esxfvyr48Eq/uYGItesZnTnLlzl4qupwn5tHwyPo1a3ee36R6G5BjW/\nAbWgkefDfXw5tYEyI8THom9lsa8Bu3wl9z+VwTINfvR719JUMVE89tXDI9z/9c0YIvzFzc2sDQ1g\nJ/u8bDJmFCdUSSFQRc4K0Jux2TdcYGtPkk0HhknmbZorw9yxtI4b2xLUldZzxUOWriSgmRomB9Ic\nQynY+RPUpq8hxTRO5Qrs5ttwyxcfHykWjvTR+9Xv4PYOYVvCC0tMHlmj6K3zc6U5nytlMfuSq/jJ\nkSCmZbLxz28h5D8vL4YWw/O6sIiFF0DzNuAIXgDNB5VSOya1eTvwMSYCaL6glLqqFGX6TWBYKfWJ\nc7jn1I4M+w5Q2PRjxC3ili0AJ4919GmsQ79Aiid6cBXiLe6ONaAW3A7ZNJTVIW1vQcIVZ3/TfBI1\n2InULfHyjwIoFzWwBzo3wL7HoJBEVrwXVrx/Ig9p92bo3wUr3nf2rtxiBjZ9DY6+jMqOIrnRU/4m\nFazCqbkKu/FtEDj932GPjNHzmS9jxmOU33sLg088g7u7C9VQRea9NxAczWE+8KS3dCEWgmAABkeh\nuZbO2xewv8VPrRmn2ayg0x5gW7GbVwuH6XXHWWTV8Yex20gEE1iVS/nQU2n6U3ke+O2rWdlcfoot\nL3UN8/vfeZm+8Tw3L6zmutZKgpZB53CWQ0MZDgylOTycwXa9j0QsaLG0Ic6NbdW8ZVE1VZEA8ZBP\nVw7QXBwGOyYKY08mN4ra9kPY+RCSH8cN12PPeTtO7dXHg87yh3oYfvpZ8pu2geMyUulj01yH9csF\n1VjL9bKGVUv/G7euWXC+1mkxPO+Le9Gin8NbWvF1pdRfi8jvACilvlwSvS8Bd+AtrfiQUuolEbke\n+BWwDY4nhfxzpdSjb3C/qRXD0UHyr2449YBTwBjd7WUwCZSjrDBYIYyhrfj3fQcpTJQ6UmKi2u5E\n1v4G+COonT+HAxuQ7BCqcj6y7F6kcTUUs6i9j8OWbyCFpJcxpX4thBNI94tIdtBLCl25DKwQZv8m\nlC8EwQrAQJLd3g1broNbP32i+9LOo7b8Bwx3gWmhlELcIvS+hhQzuFXLUK7Cjc/HSazyRn52znPR\nGK8/ylVK0f+lb5HdsdcrceW6KJ/FU7dUsGGtnz1OH8t8jfyRcRO+VI5vhHayze3hVv8itjs9vFI8\nNWeqH5PFvgau9rdyQ6CNeKSWwdhK/uCpXnrGcnzpA6u5c3n9aazxODqS5R8e38PPtvaQtydyjFaG\n/cxNRGhNhJlT6f3bWh0hGvAdD0/XaC4qdt5zl54pYb6dh/1Po157EBnZjxtuxG65C6f6quPPuJPO\nkHp5B+MbX8bpOAzAq+0+vr/OxVzazrfu/g7B8/MkaTGcKVwyMXzdOylwCyAWkj6MdfQZzJ5nENzj\no0c33IgKJTBG9yLOiVXinbJ2nIabMfs3eYLrFnErluDUrMOpWnE8YlNS3VhHnkDyw4DglnnJuX2d\nD+LOuxW54RNIIALDB1BP/h9kpBM3UFXKACMgJm6sBbvhLaiy+efcN8p1sYfHSG7YyPjjz+K+6wZY\nNg8O9/FARRcPBb3ggJgESak87VYNYfHzSvEw9UYZPa5XN/HdoTXcFGhnd7GXTrufdYF5tFu1+MQE\nhHhZMy+5bfzFU4cR4O/uW/G6QniMTMHm4GCa7UfHKdguDeUhGitChHwmfsvAZxoEfQYhn6nXBGou\nLZlhr5Ta66FcOPAMauNXkeQR3EgzxZZ34CZWnZDVqTg4wuiGF0k/+xJk8wy2JbjuB09gBM4rxuGy\nfjC0GJ4D5yWGp0EyPZi9z4OYOFXLUfGS+DhFzMEtGMkDKDOEU7kcFZ93Yumhc6yRaO3/Ib5DP0MZ\nfgglIN0DVoTCog97D86bJH+4BzeTZfSRp8jv6wLAvqKdL7/dJGIEaDYr+Ur6Gd4RXMHtwWVUGGGe\nL3Tyr6n1GAgfDK/jjuAynit0EJEAa/xzcFx1wtIEMf2EQpVEylv4fm+Ef9zQRVNFmM+9bxVrWs7B\n5Qw4rsJxFZYhOhWaZvqS6ofxI2/cTrnQ+RRq878jyR6Uvwy79hqcuutQkcbjzdxcnrHnNqOKfho/\n89nzteqyfmC0GJ4Dg//8ReyeAzjJFIWDRzFjEYKL5hNZu2xaR5PKWCdW9+OIW8CNzjkhpdn54hYK\njD78JONPPFe6iaDeuga1uIWvJzr4ZX4iP0KbVcv/jt+NJSZJO0TAzDPmjmFiUGlGTrQVPylqqQib\nhHyKULQGwlXsL/j4ty39PLF7gDVzyvnSB9fQUH5SKSyN5nIiPQRjhzmrryvXgcMbUTt/Ct2bEOXg\nxlqx667FqVl33IMUuOIWjOippc7OEi2GM4WpFENnfJyOW27FHR8H08Csr8YdGEHlC0gwQPSaNYSX\nteNvbcIMX75f0qpok3x+C2O/eAZnZAx1zTJUWyPEwzC3nhfz+/lc6gnuCC5jta+ZITfNNYF5xCRC\nyg3xyPgC2kMplgY6MHEJWkHCZoBkMU0olODhvjq+ujvDlc1x7l6cYPdokfV7B9nXn0IE7lnZwP9+\nx1Liej5PMxsopL2Ibjt39udkR6DjCdTunyMj+71SZIlV2PU34bv1v2PETg00O0u0GM4UpnpkON69\nl8NP/QBiIfBZ4Co43If1/E7cV/eC44Ih+OY0EF60gOCieQRam8F1KfYOYiUqMGORN77RNEQpRb6j\ni+Hv/5zCoaNIXRXO26+GxS0opfhBdgubC10cdoZZYNXwl2X34sMAFIb4cP1t/HOnyaNd3rq9v1wb\nZF2iSNBK4PcJpsBDPS6ffbGfirCfsWzxeIRnZdjPtQuq+PB1rSxvKrsY2fk1mumDUl4i71T/qcXD\n34jBfbD3MdS+XyL5cVTlAuT3XgDLfz6WaDGcKUy1GB7p2cnIS08w5KYZclPUmnHKjdK6tmQGeoaQ\nzqPQeQQ51OeJ5WQsk8gVKyi75Vr8TV7Qh5vLk9vXhSoU8bc04EtMLIhVrkvymU1kd+wj2DaX6DVr\nMMJB8ge6ye7qwBkexYhG8DfVEV69FMPvjZZGCylCZoDAm1jfmOvowh4cARGcZJrMyzvI7z8E0RDu\nvdfDqgXstvv4v+nn6HHGyGOz2Kpnka+Oe0KriMaW4LegmBtgf66Jv3rVpjdV4Ob2arqG0nSPZLlm\nThkHRvPEghYF26VzMM3Shjh//a5lDCYLbD0yylVzK1lYF6Ms5H8zmTM0mpmPUl6mmuywN/o7F5wi\ndDwBxRzc9unztUCL4UxhKsVwLD/G+x6+j5HsMBlVOL4/YURZ45vDDYF2qs0oReVQZUQx8kXYfxSj\nZxhMA7cihtF5FF7aDYUigQUtGAE/2T0HwLaPX8/fXE945WIAUpu3YvcNQjR0vJ7eCX9vNIzK5cF2\nMEJBotetxc7mSPf2YCYqiNfWE3/btRiBU38FuoUi9sAwbr6AWCbKdnBTaXJ79pPdvZ/ikd4TWtYo\ngAAAEWlJREFUT6iI4d68Gq5ciO0zeST3Gj/IbCEsfiqNCDcG2rkzuAwRYdyo5osHm2guD3JTtckf\nP9NH0GfyW9fO5dfWNDGQzPHpR3ayrz/FwtoYY9kiedvl5oXVfOT6VuZUhhERXFfpIBeN5nQ4RUgP\nQmbQS7pxtlQvBt95J+i4rB9GLYZniVKKf9n0j2zp3ECLVcU8q5pDzhAdxX5eKR7GYWL9Wkh83Blc\nztuDy4kYJwXWZHIYG3cjr3VA0cZtb0YtngNBP3Qexdp5ELfrKADGvCacte2oKxdC3wjGtv1exYW6\nSty2RggHvdHn7oMYW/bC1k4QUNUVkMog6RxWdSWxG64itGIhvtoEzliS5K82M/7k856QnoxlInPr\ncRbPgYVzvIz6kSDEIyhgY+EA385sZMBNss7fyocj11NmhADxsuBYMf5qR4JNPRNzHNWxAP/wnhUs\nrotTEw+ilOLoWI5swSYa8KFK/x0VYb9e3K7RnAuu4y3FSPd7RavfCC2GZ0SL4TmQGj5K18af4oqF\na4W9xfZ2hqQzzp5iL6Mqi4GwvXiEjYUD+DGZb9Vg43DEGaXFrOLu0ArW+OacsJYtp4qk3TyVRsTb\nn8l584+xMEk3x65iD/OsahLmRBWIgrIZdbPEjSBBKblDcwWyFPmBs5W5VoIbDocxHnkeugcAMGIR\n3HTWWwi/tBW1vBV8PjAN7xX0Q1O1Nx86iYxb4OXiIR7JvkaXM0SLWcX7wleyxj8HfGFQCl+wmiy1\nfL2jwEMdSX73pvlUx/y8dniMD1w1hytbK3UlB41mqlAK8uPe3GI+ebwc1CloMTwjWgzPgQ3bD3Bw\n5ytkHR9DOR+mYVMbzLMglqPMzGMo23NfKJcue5Anc7s57AwjCPVmGduLR+h3kzSbFVzjn4+LYkvh\nIIecIRwUTWYFbwks5Ar/XMbdHLvtHh7OvkpS5fFhck1gHkF8dDlDdNoDOLgYCK1mgpX+Zq7xz+Ob\nmRfYXvTWJ/1u5GZuCrbD0BhmRw909aDiYdwrF0Hi9OHVBWWzq9jLM/m9dDmDjLoZ0iW3cL1RxjtC\nK7kx0IYlFkaognB8IUopvrizyI/3jOAquHtFPf/fe1ciIuRsl6hOZq3RXDwc2xPGfNL7d7IbVYvh\nGdFieJaMZgpc95mnSBdOTZM0N27ynhbF0iqXsOWSKaTxuVlCFPBTRFAgBrZb5PlCJ49kt3LI8WqX\nzTMTrPA3ERI/mwtddNj9J1x7sVXPPaGVbCocYHOhC4Wiwayg3aqh1ixj2E2xq9jDXrv/uLvxo5Eb\neS7fwU77KL8ZvpbbgkswJxXNTbo5HshsotcZI60KDLhJWswqbFwO2APYuITFz2KrjrgRIioBlvoa\nWeFrwhADgjHCkTp2pSr5f14coWArUnmbG9sS3LmsnntXN+hk1hrNdCE3Xgq6GYXqRVoMz4AWw3Ng\n/Z5+XuoaoSrqpzURIZWz2dWT5PtbDh8v9loTtggYUBd0WFmZZ0lFgfqYid/0I06WgJNCFTIUsBHA\nL1Yp0a6AcjhsD7PL7qXSCDPHrKTGKvfm4iaXdplEpuAQ9Jn0u2NsLx5hnlXNPKuavLL5XPJxXike\nptKIcEtgMS1WFfvtAX6e205OFZlv1RAVPzEjxCF7CANhia+Bpb4GlvgaCMgkQRMD/BH8oSr8gXr+\nvcPl29sGKQv5WFgbY9WcMj56wzziIV3YVqOZlji29xwbup7h6dBieA44riJTsAlYXj5Lx1Vkiw79\n4zme3NXPweEMBwZS5G2X/QMphjNFDIHmmA+fZTIvKtzRmKe1LIPfyYFyKZoh/L4QPsOiaKdQhbSX\njBfACqB8ZQSsOKg0hWLSC2gxLXy+KMkCdAxnqbYyJAIFTPtYxKkACle5vFw8xGO5HWwrTqR2Wuub\nw/vDV9FsnVrXzC6lKsP0kxc/BQcytuDzV+L3lbN+OMiP9o3Tl8xzU3s1n75nKZVRP2G/pUVQo7m8\nuawfcC2GFwjHVRQdl1TeJltwGM8V2XlknOc6h+gdz5Ivumw/OobjKq6pD3F1wqHgKLrzAfKYhPwW\n19darIxnESngAANpky/uFjpGi9y7IM59c03KAgYp1+LZfpfvbBtk71COxeUWH2pXLKwsEA+EqAkl\nSBfGGE734mSGQLn0O+OMuzkSZnRibaQYICYYBrmiy1gebMNPwB8h4C+jc9xPT0axY1SxfdRhIOPN\nPSyqi/Gb17Twa2ubdHV3jWb2oMVwpnApxfCUGyhFuuCQKzrHE0MfHs7wrRcP8osdvaTz3tyjIRDy\nm+SLLrarSET8zK8MMpqz2TeYwTSElsoIHQMpAMrDPsazRVwFNbEAV8+rYv2eflJ5m1vmxmivDBIJ\n+bm2yiAmBYr2UezMIBSzXoSZGBCIEgglMMworitkC7B/NM+2YZftowZ5DA6lHIYyRQAifpM1LRW0\nVkVY2VzOncvqCOugGI1mtqHFcKYwncTwTOSKDr1jObYfHUMBS+vjRIMW+aLLz7b1sGHPAHt6k9SW\nBVnRVMZ9a5tY2hDn+Y4hfrr1KNmCQ2XEz1WtlVzRUoGjoG8sx39uPMjPt/filLLeCNBcEeK+tijv\nbnKxVRrl2lhWEMcN8PygxfYRm96Mw47+DH0pL2I0EQ0QDZjEgz5uW1pHayJCU0WIspCPqqifaMDS\nJY40mtnJZf3gazGcZhQdl1zRwRAh6DPPah7OcRVj2SI9o1kGUjnGszYbDwyz8cAwHf0pFtdGec+S\nSpYlgrwykOOBrYN0DXsBOeVhLwBmdXM5q5oraCgPYhhCWchHNGBhGELQZ2h3qEaj0WI4U7gcxPBC\nYTsu47ki33iui+9uPsxAciLbTH1ZkA9eNYfr2xJUhP34LANDwDIMIgFTF7jVaDSn47L+UphSMRSR\nO4DPAybwNaXUZ046LqXjdwEZ4H6l1MulY18H7gb6lVLLzvJ+WgxPwnUVfeM5nu8c5NBwlrlVYW5s\nr6Yi7Nd5PzUazblwWX9hTJkYiogJ7AVuBbqBzcAHlFI7J7W5C/g4nhiuAz6vlFpXOnYjkAL+Q4uh\nRqPRXHIuazGcypo4VwEdSqn9SqkC8F3g3pPa3Isndkop9SJQLiL1AEqpZ4DhKbRPo9FoNBpgasWw\nETg86X13ad+5tnldROSjIvKSiLwEJM7HUI1Go9HMbmZ8tVSl1FeUUleU3KODl9oejUaj0cw8plIM\njwDNk943lfadaxuNRqPRaKaUqRTDzUCbiLSKiB94P/DwSW0eBn5TPK4GxpRSPVNok0aj0Wg0pzBl\nYqiUsoGPAY8Bu4AHlVI7ROR3ROR3Ss0eBfYDHcBXgd87dr6IPAC8ACwUkW4R+chU2arRaDSa2Y1e\ndK/RaDSas0EvrdBoNBqN5nJGi6FGo9FoZj2XWx2es11acVkP9zUajUZzblxWc4YajUaj0ZwP2k2q\n0Wg0mlmPFkONRqPRzHq0GGo0Go1m1qPFUKPRaDSzHi2GGo1Go5n1aDHUaDQazaxHi6FGo9FoZj1a\nDDUajUYz67ncMtCcFSLyCyAxRZdPMHOKDM8UW7WdF5aZYifMHFtng52DSqk7LqQx0wmdgeYCcw6V\nMy45M8VWbeeFZabYCTPHVm3nzEe7STUajUYz69FiqNFoNJpZjxbDC89XLrUB58BMsVXbeWGZKXbC\nzLFV2znD0XOGGo1Go5n16JGhRqPRaGY9Wgw1Go1GM+vRYniOiEiXiGwTkVdF5KXSvkoReVxE9pX+\nrZjU/s9EpENE9ojI7VNs29dFpF9Etk/ad862icja0t/YISJfEBG5CHZ+SkSOlPr1VRG5axrY2Swi\nT4vIThHZISL/o7R/WvXp69g5Hfs0KCKbROS1kq1/Vdo/3fr0THZOuz4t3cMUkVdE5JHS+2nVnzMC\npZR+ncML6AISJ+37O+BPS9t/Cny2tL0EeA0IAK1AJ2BOoW03AmuA7W/GNmATcDUgwM+BOy+CnZ8C\n/ug0bS+lnfXAmtJ2DNhbsmda9enr2Dkd+1SAaGnbB2ws3W+69emZ7Jx2fVq6xx8C3wEeKb2fVv05\nE156ZHhhuBf4Zmn7m8A7J+3/rlIqr5Q6AHQAV02VEUqpZ4DhN2ObiNQDcaXUi8p7Qv5j0jlTaeeZ\nuJR29iilXi5tJ4FdQCPTrE9fx84zcSn7VCmlUqW3vtJLMf369Ex2nolL1qci0gS8HfjaSfZMm/6c\nCWgxPHcU8ISIbBGRj5b21SqlekrbvUBtabsRODzp3G5e/0tqKjhX2xpL2yfvvxh8XES2ltyox9w6\n08JOEZkLrMYbIUzbPj3JTpiGfVpy6b0K9AOPK6WmZZ+ewU6Yfn36OeB/Ae6kfdOuP6c7WgzPneuV\nUquAO4HfF5EbJx8s/aqalutVprNtwL8C84BVQA/wj5fWnAlEJAr8EPiEUmp88rHp1KensXNa9qlS\nyik9Q014o5JlJx2fFn16BjunVZ+KyN1Av1Jqy5naTJf+nO5oMTxHlFJHSv/2Az/Gc3v2ldwMlP7t\nLzU/AjRPOr2ptO9icq62HSltn7x/SlFK9ZW+fFzgq0y4ky+pnSLiwxOYbyulflTaPe369HR2Ttc+\nPYZSahR4GriDadinp7NzGvbpdcA9ItIFfBd4q4j8J9O4P6crWgzPARGJiEjs2DZwG7AdeBj4rVKz\n3wIeKm0/DLxfRAIi0gq04U1SX0zOybaSa2VcRK4uRZP95qRzpoxjD26Jd+H16yW1s3Tdfwd2KaX+\nadKhadWnZ7JzmvZptYiUl7ZDwK3AbqZfn57WzunWp0qpP1NKNSml5gLvB55SSv0606w/ZwQXOiLn\ncn7huUdeK712AJ8s7a8CngT2AU8AlZPO+SRexNYepjg6C3gAz3VTxPP5f+R8bAOuwHvIO4EvUcpU\nNMV2fgvYBmzFe2Drp4Gd1+O5l7YCr5Zed023Pn0dO6djn64AXinZtB34y/N9hqa4T89k57Tr00n3\nuZmJaNJp1Z8z4aXTsWk0Go1m1qPdpBqNRqOZ9Wgx1Gg0Gs2sR4uhRqPRaGY9Wgw1Go1GM+vRYqjR\naDSaWY91qQ3QaGYKIuLghdUf451Kqa5LZI5Go7mA6KUVGs1ZIiIppVT0dY5bSin7Ytqk0WguDNpN\nqtG8CUTkfhF5WESewlvkjIj8sYhsLiVz/qtJbT8pIntF5FkReUBE/qi0f72IXFHaTpRSax1LFP33\nk67130r7by6d8wMR2S0i3y5lDUFErhSR58Wrw7dJRGIi8oyIrJpkx7MisvJi9ZFGMxPQblKN5uwJ\nlaoYABxQSr2rtL0GWKGUGhaR2/BSXF2FVxfu4VIy9zReuqxVeM/dy8AZkyuX+AgwppS6UkQCwHMi\n8svSsdXAUuAo8BxwnYhsAr4HvE8ptVlE4kAWL1Xb/cAnRKQdCCqlXntTPaHRXGZoMdRozp6s8qoY\nnMzjSqlj9RlvK71eKb2P4oljDPixUioDICIPn8X9bgNWiMh9pfdlpWsV8PJJdpeu9SowFxgDepRS\nmwFUqcKGiHwf+AsR+WPgw8D/Pds/WKOZLWgx1GjePOlJ2wL8rVLq3yY3EJFPvM75NhNTFsGTrvVx\npdRjJ13rZiA/aZfD6zzLSqmMiDyOV9j1vcDa17FFo5mV6DlDjebC8hjw4VJtQUSkUURqgGeAd4pI\nqFT55B2TzuliQqDuO+lav1sqz4SItJeqpZyJPUC9iFxZah8TkWMi+TXgC8BmpdTIm/oLNZrLED0y\n1GguIEqpX4rIYuCFUkxLCvh1pdTLIvI9vIon/cDmSaf9A/CgiHwU+Nmk/V/Dc3++XAqQGQDe+Tr3\nLojI+4AvlsoOZYFbgJRSaouIjAPfuEB/qkZzWaGXVmg0lwAR+RSeSP3DRbpfA7AeWKS8wrQajWYS\n2k2q0VzmiMhvAhvx6m9qIdRoToMeGWo0Go1m1qNHhhqNRqOZ9Wgx1Gg0Gs2sR4uhRqPRaGY9Wgw1\nGo1GM+vRYqjRaDSaWc//D3V9TYrpOmFOAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f05211000f0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plot_spectra_by_type(frequency, spectra, molecule)\n", "ax.set_title('Mean spectra in function of the molecules')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdsAAAFMCAYAAACDGRbPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8XNWZ+P/Pc6fPqEu2Jcuy5F6xgRAgfCHYEMC0mBqS\n8NtAGhDIZkmym7YBwqYspDcglCRsEgLJEmpCW0wJECDYBoMtF2TJstV7md7O7487MrIs27KtsWT5\neb9e85Lm3nPvnDvtmXPuuecRYwxKKaWUyh5rrCuglFJKTXQabJVSSqks02CrlFJKZZkGW6WUUirL\nNNgqpZRSWabBVimllMoy51hXQCml1OFpzZo1k51O5z3AYo7sxlsaWJ9MJj/zvve9r224AhpslVJK\nHRCn03lPaWnpgkmTJnVblnXETtqQTqelvb19YUtLyz3Ah4crcyT/ElFKKXVwFk+aNKnvSA60AJZl\nmUmTJvVit/CHL3MI66OUUmpisY70QDsg8zzsMaZqsFVKKXXYCofDctRRRy2YN2/ewtmzZy/64he/\nOBWgtbXVcdJJJ82prKxcfNJJJ81pb293DGzz9a9/vXT69OmLq6qqFv/lL3/JOxT11GCrlFLqsOX1\nes3LL7+8efPmzdUbNmyoXrVqVd6qVasCN910U9myZcv66+vr1y9btqz/xhtvLAVYs2aN96GHHira\nvHnzhqeeemrL9ddfPz2ZTGa9nhpslVJKHbYsyyI/Pz8NEI/HJZlMiojw1FNPFVx99dWdAFdffXXn\nk08+WQjw4IMPFlx00UVdPp/PzJ8/P15ZWRl74YUXAtmup45GVkopddD+48F1FVta+v2juc+5pbnh\nH1yydMe+yiWTSRYvXrxw+/btniuuuKLttNNOC3V2djorKysTABUVFYnOzk4nQGNjo/vEE08MDmw7\nderU+I4dO9xAaDTrPpS2bJVSSh3WnE4nmzZtqt6+ffvba9euDbzxxhvewesty0JExqp6gLZslVJK\njYKRtECzraSkJHXKKaf0P/744/nFxcXJ+vp6V2VlZaK+vt5VVFSUBCgvLx9oyQLQ1NTkrqioiGe7\nbtqyVUopddhqampydnR0OACCwaA8//zzeQsWLIieddZZPXfeeWcxwJ133lm8YsWKHoCLL76456GH\nHiqKRCKyadMm97Zt27zLli3LahcyaMtWKaXUYWzHjh2uK6+8ckYqlcIYIytXruz62Mc+1rt8+fLg\nhRdeOKuysrKkvLw8/vDDD28FOO6446IXXHBB19y5cxc5HA5+/OMf1zud2Q+FYoxej6yUUmr/rVu3\nbtvSpUs7xroe48W6detKli5dWjXcOu1GVkoppbJMg61SSimVZRpslVJKqSzTYKuUUkplmQZbpZRS\nKss02CqllFJZpsFWKaXUYS+ZTLJgwYKFy5cvnw2aYk8ppZQadd/5znemzJ49OzJwX1PsKaWUUqNo\n69atrqeffjr/s5/97M4JNjTFnlJKqYnnkesqaKse1RR7TF4Y5oLb9png4Lrrrqv4/ve/39Db27uz\nq1hT7CmllFKj5P77788vKSlJnnLKKeE9ldEUe0oppSaGEbRAs+Hll1/O+b//+7+C8vLy/FgsZoVC\nIWvlypUzNMWeUkopNUpuu+22xtbW1rcbGxvfuffee2tPPPHE/kcffbROU+wppZRSWXbzzTc3a4o9\npZRShz1NsbcrTbGnlFJKjSENtkoppVSWabBVSimlskyDrVJKKZVlGmyVUkqpLNNgq5RSSmWZBlt1\n2BGRU0Rk80Fs/x0R6RCRltGs1wge91cicsOhfMzM435ORFpFJCgixSMof6WIvHwo6nYkGKvX/UhS\nXl5+1Ny5cxfOnz9/4eLFixeAptg74ojINhGJi0jJkOVviogRkaqxqdmhkY0vbmPMS8aYeQdYn+nA\nl4GFxpjS0azXkMfZ7biNMdcYY76drcfcQz1cwI+BM40xOcaYziHrqzLvwyN+ghsRuVdEvnOQ+xgX\nr/uR6MUXX9yyadOm6vXr128ETbF3pKoDPjZwR0SOAkY3O8ZhTEQc+y41aqYDncaYtkP4mGNpCuAF\nNox1RQ53+oPk8KIp9o5Mvwc+Afwic/8K4HfAzl/RIuIBvgt8BPAADwNfNMZERKQws48TsF+zV4Br\njDENmW1fAF4CTgOWAK8CHzfG7DazS6aFfS9wMpDG/hI+1RiTFpFtwJ3AvwBlwCPA54wx0cy252Xq\nXAVUZ+rwdmZdBfAz4BTsH3H3A7cBvwJcIhIEksaYAhG5F4gAlcCpwMrM8X8HmAX0Ar82xnxruCdT\nRJYBfzDGTMvc3wb8MvMcVwJPAVcM1HvQdh8CHgc8mfo8mHkudu5r0P4+Y4x5VkS+BSwEosCFwPbM\nvlcf4HE3GGO+mdn2s8BXgSLg5czz2ZRZZ4DPYbfCJwH3AZ83w0z5lnnubsV+7wD8ObPfSuDNzLIe\nEfmnMea0IZv/fdB6gDMG7feHwKeBHuBaY8yTmeX52K3lc7DfQ78FbjLGpIapmyNTl08Dk4EtwAXG\nmB0iclLmuZubWf5vxph/ZLZ7gb28p0XkZOD72K9NP3CDMebefXyOlgF/AH6SqVMK+IYx5rcichVw\nOWBE5HrgeWPM+Zn3wh2ZdfNEJAD8O/DZzPHsAP7TGPOwiCwgi6+7iMwGfg0cDSSAVcaYy4Y+52Pl\nhlduqKjprhnVRsTswtnhb/+/b48owcHy5cvnOhwO88lPfrL93//93zs0xd6R6TUgT0QWZL58Por9\noR/sFuwvnaOB2UA5cGNmnYX9hVaJ3TKLYAeXwT4OfBL7C8CN/YUwnC8DDdgf5CnAN4DBX+CXA2dh\nB725wMAXxDHAb4CrgWLsoPyYiHgyx/RXoB47EJcDDxhjNgLXAK9mujALhtT3u0Au9hdOCDtYFgDn\nAp8TkQv2cAzD+QiwApiB/eV85dACxphngbOBpkx9diuzBx8GHsjU7TEyz/0BHjeZbU8D/jtT77LM\nPh4YUuw84P2Z4/kI9usynP8ETsR+7ywFjge+aYzZAizKlCkYJtACfHDQ+hxjzKuZ+ycAm4ES7KD2\na3kvR9m9QBL7fXoMcCbwmT3U7UvYvTrnAHnAp4CwiBQBfwN+jv1++jHwtyHnlId9T4tIJfAk9o/X\nSZnjfiuzzd4+RwClQH5m+aeB20Sk0BhzF3Zg+37meTh/0DYfw35PFhhjksBW7B9X+cDNwB9EpOwQ\nvO7fBp4BCoFpvPfj/Yj38ssvb9q0aVP1M8888+7dd989+cknn8wZvF5T7B1ZBlq3LwIbgcaBFZkv\nsauAJcaYrsyy7wF/BL6eOc/2l0Hlvws8P2T/v818uSIif8YOEMNJYH/IK40xNdith8F+aYzZMehx\nfoEdcK8C7jTGvJ4p9z8i8g3sL/k4MBX4j8yXEdgBdG8eNca8kvk/CrwwaN3bInI/dqv3kX3sZ8DP\nB7UOHsf+sh0tLxtjnsjs+/fA9Znlx7P/xz3gcuA3xpi1mf1+HegWkSpjzLZMmVuMMT3Yrc7nsY/p\nqT3s618HusZF5GbsH0MHMyin3hhzd2Z//wPcDkzJtLzOwQ48ESAkIj8h8/4YZj+fAb5ijBkY0LYu\ns89/Ad41xvw+s/x+EfkCcD52MIc9v6c/DjxrjLk/c78T6NzX5yhTNgH8V+b1eiLTAp2H/YN4T34+\n8JkAMMb876B1f8q8dscDj+5lHwMO5nVPYP/gnprp1RpXg9hG2gLNhhkzZiQAysvLk+eee27Pq6++\nGtAUe0eu32N/SVyJ3YU82CTsc7hrRKRHRHqwP1yTAETELyJ3iki9iPRhd/0VDDnXOXhkbRjY5Zfd\nID8AaoBnRKRWRL42ZP3gD0w9djAB+0P+5YH6ZepYkVlfgf3lvD+jDHb5YIrICSLyvIi0i0gvdguh\nZPhNhzXS4z8QQ/ftzZy/O5DjHjAV+/kFwBgTxA4a5Xt53D0d0y77YtfX7UDtfGxjzEBS7hzs94EL\naB70PrgTu/U5nArsluC+6kzm/kiOf0/73OvnKKNzyOs1kvfK0PfqJ0TkrUGPsZiRv1cP5nX/CiDA\nP0Vkg4h8aoSPOaH19fVZ3d3d1sD/zz//fN6SJUsimmLvCGWMqReROuxWwaeHrO7A7hpeZIxp3G1j\nu+t3HnCCMaZFRI7GPhe33/0ixpj+zP6+LCKLgedE5A1jzKpMkYpBxacDTZn/dwDfNcZ8d+g+ReQD\nwHQRcQ4TePaUVmro8j9id8+ebYyJishP2b9ge6BCDBqslvkBM2nPxXexg/0/7gFN2IFr4HED2N2p\nw73++zKwr4FBUINft33Z37RfO4AYUDLCHxk7sE9JrB+yfJfjz5jO8C334fZ5/DDL9/U52pd9vlcz\nXdh3A6djdxenROQt3vssZu11N8a0YJ8rHjhn/ayI/D3TQ3XEamhocF544YWzAVKplFx88cWdl1xy\nSd/JJ58cGk8p9rRle2h9GjjNGLPLryhjTBr7A/wTEZkMICLlIjJwriYX+0ukJ3Ou66YDrYCInCci\nszNdbr3Yg0TSg4pcJyLTMo/zn8CfMsvvBq7JtEBFRAIicq6I5AL/BJqBWzLLvSLy/zLbtQLTRMTN\n3uUCXZlAezx2L8ChsAW7pXqu2JfJfBN7YM1IHMxx3w98UkSOFntQz/eA1wd1Je6P+4FvisgksQfA\n3cjuYwL2pB379Z85ksLGmGbs84Y/EpE8EbFEZJaInLqHTe4Bvi0iczLvmyWZ87JPAHNF5OMi4hSR\ny7AHO/11BNW4D/iQiHwks22xiBw9gs/RvrSy7+chgB1Q2zP7/yR2y3bwPrLyuovIpSIyMJCvO1OP\n9F42OSIsXLgwvnnz5urNmzdX19TUbLj11ltbAEpLS1Ovvvrqlvr6+vX/+Mc/tkyZMmXnAL5bb721\nZceOHeu3bdu2/iMf+UjfoainBttDyBizdWAU6zC+it29+1qmq/hZ7NYswE8BH/Yv99cY2a//PZmT\n2XcQe4Tn7caYwed//4j9ZVqL3VX3nUzdV2P/qv4l9ge9hswgpMwo1POxB6Rsxx6ANTBK8jnsFleL\niOwt7+W1wH+JSD92sPjzQRzjiBljejOPfQ926yKEXf+RbHvAx50ZrHUD9rn4ZuzW30cP8DC+A6wG\n3gbeAdYyaKT7Po4hjD1Q7ZVMt+iJI9jsE9gDlqqx3wsPYo8DGM6PsV/LZ4A+7NG0vsw4hPOwe1k6\nsbtIzxtuBP0wdd6O3UP0ZaALe3DU0szqvX2O9uXXwMLM8zDsWAFjTDXwI+zPTitwFPbVAQOy+bq/\nH3g9c575MezR27Uj3FaNMU0er3aSQZe8jHVdlFLjnyaP35Umj1dKKaXGkAZbpZRSKst0NLLayRhT\nNdZ1UEqpiUhbtkoppVSWabBVSil1WOvo6HCsWLFi5owZMxbNnDlz0bPPPhvQFHtZJCIjvSTG6E1v\netOb3vbrNm5dddVVFWeeeWZfXV3dhurq6uqjjz46qin2sutQzDiklFJqnOjs7HS8/vrruddff30H\ngNfrNSUlJSlNsaeUUmrCafrGf1bE3n13VFPseebMCU/93nf3muBg8+bN7qKiouSll15aVV1d7V+y\nZEno7rvv3qEp9pRSSqlRkkwmZePGjf7rrruufePGjdV+vz99ww03lA4uoyn2lFJKTQj7aoFmS1VV\nVXzKlCnx0047LQRw2WWXdd9yyy2lmmJPKaWUGiXTp09PlpaWxtetW+cBeOaZZ/LmzZsX1RR7Siml\n1Cj6xS9+sf3yyy+fGY/HZfr06bH7779/WyqVYjyl2MtqIgIRWQH8DHAA9xhjbhmyXjLrz8FOknyl\nMWZtZt2/YWeZEeBuY8xPR/B4q40xx42gauN6GLtSSo1Du5301EQEuxqTRASZJNy3AWdj56n8mIgs\nHFLsbOyUb3OAq4A7Mtsuxg60x2OnzjpPRGZnq65KKaVUNmXznO3xQI0xptYYEwceAFYOKbMS+J2x\nvQYUiEgZsAA7oXLYGJMEXgQuymJdlVJKqazJZrAtBwaPTmvILBtJmfXAKSJSLCJ+7G7miizWVSml\ndhPt6aNuYx2drV1jXRV1mBuXA6SMMRtF5FbgGewLjd8CUsOVFZGrsLugQWeQUkqNkkQ0Rn31VuLR\nOKGuHgomFeKwxvZaTXX4ymbLtpFdW6PTMstGVMYY82tjzPuMMR8EuoEtwz2IMeYuY8xxmYFReqJe\nKTUqOrc1Eo/al1+aWJy2pvYxrpE6nGUz2L4BzBGRGSLiBj4KPDakzGPAJ8R2ItBrjGkGEJHJmb/T\nsc/X/jGLdVVKqZ1MIkFX265dxz2NLWTz6g01sWUt2GYGNn0eeBrYCPzZGLNBRK4RkWsyxZ4AaoEa\n4G7g2kG7+IuIVAOPA9cZY3qyVVellBqspb6JVHLXM1fJcJRgLPvZYdT+u/nmmyfPnj170Zw5cxad\nf/75M8LhsIy3FHtZvc72UNPrbJVSB8sYw6ZX1pCM7z5MpHDWdKZVlo1BrcaFcXmdbV1dnevkk0+e\nv3nz5vU5OTnmnHPOmblixYre6upqX1FRUfJ73/teyze+8Y3S7u5uxx133NG4Zs0a78c//vGZb731\n1sb6+nrXGWecMbeurm79aExsMSbX2Sql1OGot7ltl0BrjCGVtu/3d/eNVbXUXqRSKQmFQlYikSAS\niVjTpk1LaIo9pZQap9LpNJ0NLTvvJ5IJIrEoIhY5Pj/J3n6iiRRel2MvezkyrfrdxoquxuCoptgr\nKs8Jn/6JBXtNcDBjxozEdddd1zJjxowlHo8nfcopp/RddNFFfVdccYWm2FNKqfEo2t1DOBgFIJVO\nEQoHIdJFKhEmnkxAKkV/T/8Y11IN1t7e7vjb3/5WUFNT805LS8vb4XDYuv3224sGl9EUe0opNY70\nDGrVRmNRnOEWSCexkmHiTi8el5tQVy+TJhWMYS3Hp321QLPl8ccfz5s+fXps6tSpSYALLrig5x//\n+EeOpthTSqlxKNjcSleX3WpNp9OkQx0k4ymCQSEWTWIiXaRSKSKh8BjXVA1WVVUVX7t2bU5/f7+V\nTqd57rnnchcsWKAp9pRSarxJx+N0bmtg4OKMaCxMOhKmt7WTmMPgdXgocLtIpJI4gmESqTQuh7ZV\nxoPTTjstdP7553cvWbJkgdPpZNGiReEvfelL7b29vdYRk2LvUNNLf5RS+8sYQ9emd2lq7t55P9hZ\nR3RTDWV/fG8undarr8I5Yy75eSVUnXg0uX7PWFV5rIzLS3/GE730RymlhjCpFOl4nP4tNTS3dO9c\nHo9HiPf17xJoAfIeeRRiIVLpFMFuHSSl9o8GW6XUEcUYQ7Kri1htLR3rN7G9qWtn93E6nSbW14b1\nz38CEHR6OXvlD3i7eCa+1lasthYSySSJUNZP8akJRoOtUuqIYVIp0qEwwe0N7GjpprUnwuAzaYlE\nDNPZyqS/vwLAped+G0vgZ8dcahfYsIFkIkYilvXBq2qC0WCrlDpiJJqa6Nj0Lg3dEaKJXYduGGNI\nhropuPM3ANy+5AJK3TEuKWmhKWcSW/Omkn57M8SDxEKRsai+OoxpsFVKHRHS0ShdLR2098cYblxo\nLB4j1tmIIxYD4K8zTuJ0Tx3+YANXeN/gxYqjKe5qxby7hWQ4QjKVPsRHoA5nGmyVUkeERHsH3aH4\nsIE2bdIk+pph9ToAfrn0Iq7wrcGVtGf1EyBwVC4A3hdfJJVKaetW7RcNtkqpCc+k07Q3tpEcpjFq\njCHa10qks528NW/yTvFMaufO3bk+5i3d+X9bXiHJ9i6SyTixaOxQVF2NwKWXXlpVVFS0dM6cOYsG\nlh1Iir2XXnrJP3fu3IXTp09ffOWVV1ak06PXe6HBVik14SV6eumJJHZbbowhHuoi1tfBpHvuxRsO\n8duF53CCow6Ac62HKfN9jwXeFwB49rgPkhvsxbQ3EY/qIKnx4lOf+lTHY4899u7gZTfddFPZsmXL\n+uvr69cvW7as/8YbbywFWLNmjfehhx4q2rx584annnpqy/XXXz89mbTzFF977bWVd9xxR/22bdvW\n19bWeh988MFRy3WrwVYpNeEFO7p26z6OxcKEe5uJ9TQRf2s9rrA9DWNosj3vsUf6ebn1v3FsvJe3\nuz6GRRLHZC8GSNfWEAlHD/FRqD05++yzg5MmTUoOXra/Kfbq6+tdwWDQOv3000OWZXH55Zd3PvLI\nI4WjVceszlElIiuAnwEO4B5jzC1D1ktm/TlAGLjSGLM2s+6LwGewZ3t6B/ikMUbf3Uqp/Rbse++6\n2FQiRiLUQSTUQSKZJtwZZPaTTwNw1en/wUmeJiRt2OhMckLKC8DUvjk0++tw4qSptIxEXSNFevnP\nLp6+46cVHTvqRzXFXklFZfisz11/QAkOOjs79yvFntvtNmVlZTu7PyorK+PNzc2ugz2GAVlr2YqI\nA7gNOBtYCHxMRBYOKXY2MCdzuwq4I7NtOfAF4DhjzGLsYP3RbNVVKTVxpePxna3QVDJOtGc7LR0N\ntPaGSK1ex+x7fg3ALcddzqLibnzpEEFXOyfsWEk89grR7h+TiK2htOV0HCR4Z8EivHW1RHs1kfzh\nYqKn2DseqDHG1AKIyAPASqB6UJmVwO+MPUHzayJSICJlg+rmE5EE4AeaslhXpdQEFevtJ540GGPo\n7dpGT1sr0x94GG9X184yf5h3Bn+fdjRXWKsBmNZ0DsnIa6SjrwOQCr+IhQ8xKXqnFFPyQhPxvj6S\nqTROTUgAwIG2QLNlf1PsVVZWJga3ZOvr692DW7oHK5vvknJg8JPfkFm2zzLGmEbgh8B2oBnoNcY8\nk8W6KqUmqHC/3YUcj3bRX1vD3Nt/vUug/eYHPsN9C87iw95NAPRLFCseJRl9laAjQO30s+j1FBCP\nPIcVng5Ae+lkTEMd0diofRerUba/KfYqKysTOTk56VWrVgXS6TT33Xdf8cqVK3tGqz7jMsWeiBRi\nt3pnAD3A/4rI/2eM+cMwZa/C7oIGKDl0tVRKHQ6CPXZ3b7BuA7N+9+edyz/1oa/RnFOCkzTvD3RT\nmLJP4xV1LiHe/wBNeUv5S/EH7MJTZ/KZpofJ6QgRD0B3YSGJmnp7RPKRl/1n3Dn//PNnvPbaa7nd\n3d3OKVOmLPna177WdPPNNzfvb4q92267rf7Tn/70jGg0KsuXL++79NJLe0erjtkMto1AxaD70zLL\nRlLmQ0CdMaYdQEQeAk4Cdgu2xpi7gLsy5VaPVuWVUoc/k0gQ6Q+TigfJv/8RAO5dcDb/O3c5abFw\nSprzCtvJjXXa5VNOcvpaCEqaxyafBClDqtSH1RLhmdkrWbnxfiQ9l87CIjzbG4iHw1CUO5aHqIDH\nH3+8brjlr7766pbhlt96660tt956a8vQ5R/84AfD77777obRrh9ktxv5DWCOiMwQETf2AKfHhpR5\nDPiE2E7E7i5uxu4+PlFE/JkRy6cDG7NYV6XUBJSOxUmmDYkXnsbb2cXLZUfxp3mnkxaLU/O6uKSo\ng0AyiCMVosXbSknb8SRjb/F81SeIpw2xEydx65JvUjA7yvawRXfhHBzxHDpKSgi0NhLVWaTUCGUt\n2BpjksDngaexA+WfjTEbROQaEbkmU+wJoBaoAe4Grs1s+zrwILAW+7Ifi0zrVSmlRioaDGEMuF/4\nOwC3L72QOd4QlxW1M40evKF6XPEuks5unOGpJPr/xLaiBdQYF6bcxw/T36D7uRO5suAvGJewauoS\nXMEgcZ8XT6SXWESDrRqZrJ6zNcY8gR1QBy/71aD/DXDdHra9Cbgpm/VTSk1ssUgMOtpw9AX5v4rj\n6PbmcbanHne4bZdy7/g7OGP7aURS/+SFkosgBkvmb6bnxaPAOPBsKCZ/WpTmOi+hcBsWk+nPzyO3\nvWOMjkwdbnTMulJqwoqFI6TW/ANHOsWDc5ZxQW4D7th7gbbb3c3qgmrO2PxJYuFHWVO6gv4YxJcU\ncuHat6D9fOg8G9N8IR8KvAnA2tLlYKA3P59Yw7i62kWNYxpslVITViwYIbm5mlZ/IUWTXRQkmgHY\nlrONhyofpsUR4+xN15CKrSOR7OK1QBVG4F+8jxDd8aFd9jVr9RIAtjq8WEk72HZvbySVHiaNkFJD\njMtLf5RS6mCZdJp4NIJz2w7WTV7E0dQCsLboLc6q/gLvr/kEAKnYRhKR5/ln5ccgDfHjS6h6ZT7p\nRDHL825jlvcf3NN2H0SLmV/Vx6YWF/GkRU9BIc7VbxCJxsnRy3/UPmjLVik1IaWiMeI1W/FEI2yZ\nPmvn8rOqv4AxhlS8xp6KMfwk6wtPYK1VQLIiwJeaVpEOVVHo2MFC/7N4rDCXFn8ZgPeF7WtxWzwF\nhHL8xOIxkjpH8pgbLsXe1VdfPW3GjBmL5s6du/CMM86Y1dHRoSn2lFJqtMUiUZJb1gPgmGp/zxa1\nnUAy8iqxnp+QCNlXIm7KmccLBceSDjjxzAP/+uMBWJ53B/WxB2iI/pV46ueUurYwtaEEtwi1uUUg\nQsKkiMc0r+1YGy7F3llnndW3ZcuWDVu2bKmePXt29IYbbtAUe0opNdpiwQjRLTW05BZTZKWIpRyk\ng6+SjL5KQpxsLVrIL6uu4f8mnQZA/LgSvvJMDWAxz/sS8K84TM7O/R0fKIW0m1kui6ZEPgBpJ0R6\ng8M8ujqUhkuxd9FFF/W5XPZUxx/4wAdCjY2NbpigKfaUUmqsxKNRPNvqeGXhMQAUdwZIxZ7jzcIP\n8HLB0TvLpQvcxI8p5jtNPybW9ykAjvJNI2Gm0yN19G/9IxUz/xOhmByrm6MSho1xJzG3g0hugFhj\nA8yrGoMjHF+6HtxSkWgJjWqKPVdpIFx0ydyDHvJ97733llxyySVdMAFT7Cml1FiKtrTijYToK3Vg\njJDuepXbq67aGWgNkJibx9Tj+/hV7Gpir9uB9ryCd0iYuQDII7fg3NrBtg33AHCUr4eqfgsMNFnF\n9BQU0lu7fUyOT43MV7/61VKHw2Guueaarn2Xzh5t2SqlJqR4nT1drgnk4o5YVBcsJiX2udvoslLw\nOPiv7psoauyj8ZVbAahwv4kD+5ztG9vvZd1lH9m5v+U9G6j0VGBCPspSUToDbnoKCuiu12ttAUaj\nBTrafv4wk249AAAgAElEQVTznxc//fTTBS+99NIWy7LblhMxxZ5SSo0Jk0wSr68j5nZjWQHioU5e\nLnwfqWIP8TOmcJf7k/zXq7eTeGMJra99EYBJzq0c67cDbVv7P1k3t2KXfT5f0IJDcpnuFo5Nx2mX\nPKJeD+GmZtJ6re248+CDD+b97Gc/K33iiSdqcnNzdw4r1hR7Sik1StKxGL119bTMqALgzcCxJIww\ndU4X/7r+9+zY+NNdypd63uHD+bfTGr+HNGle82wFJrM9r5bzinJ5ucFNXjKfTY5GjvFPY0skyaq4\nF0SI9fcSTybxukft9J7aT8Ol2PvJT35SGo/HrdNOO20uwLHHHhv84x//uH0ipthTSqkxEY3ESDY2\n0TSrlHTcsMFZTKrMzxXv1NPbeMUuZY/Oe4CTfA/TGHsIgI0bf0XbMfPYUrCRjxdOxonFwvJ+Gurz\n2ST1LGAaufEiYqEIxgnpRIR4JKbBdgwNl2Lvi1/84h4nrh6LFHsabJVSE04yHsfX0UbP8UtpSfpJ\nCyy2kpjG+QDMyn2GM/13YkmatPHTkbBznvTVPcOrx8wjTYrTCgI4M2faplkBXspZD8HFNKW7KHLk\nMTti0VPgQyRFLBqH/DE7XHUY0GCrlJpwop3dOE2ClMtFjWsaEhfO2ZgCHJxb8D0qPW8CTnoTH6E/\n9VEAQu2v8UJRBzCFZH470yQXELCckE6xuNBHKAhvOmqZ7zyGynSEVl8OKbeTRDAEU4rG8IjVeKfB\nVik14cRqa+nLy8MY2J7O4wTLhSPpYEXBrXj4HI2xybuUT5kkD5QHMdYUEpLgxEInIDh9eYjDQTqZ\nZEE0xbpQM81+ONEZZ1Y8zHOuHLqLSuirrWPqrIrhK6MUOhpZKTUBtW+xg227CUDc4pTMtLgevkmK\n9wJtmjSd7/yUV+rvwlgCQNG0HbjFicubS09dJ+88vJaWd5pwOrxEizpBIO6KUpB2050OEMzNoaNm\n21gcpjqMZDXYisgKEdksIjUi8rVh1ouI/Dyz/m0ROTazfJ6IvDXo1ici12ezrkqpiaO7rp6uosm8\n6yihKml/zX0wZ+3O9Z0b76T/0c/R99i1vFZezJb58wBoLlvHImchTpeHhrd2UL+2nlQiRdu7rYTa\nI5ROyrXLWd1MlSKCUS9Rr5u22vpDf5DqsJK1bmQRcQC3AWcADcAbIvKYMaZ6ULGzgTmZ2wnAHcAJ\nxpjNwNGD9tMIPJytuiqlJg6TTJJobqGzsoxOK4f346LAEaHQeQLhdDPNr97G86cvh2Nm77LdjrK3\nuNRbCQh9LRE6ajsQEeYtn8+7L21h22t1zD5zFsH+TrYHcpljVZLb78B4hFhn+9gcrDpsZLNlezxQ\nY4ypNcbEgQeAlUPKrAR+Z2yvAQUiUjakzOnAVmOM/nRUSu1TKp7A3dFG0O+lN+ZlXjTN0f4IABu3\nPW4H2iGem/ocF3inAUK0N03d67UEigIcd9n7yS/NZ/b/mwNAuCVKyuqhS4LkOJLMiMbpcXhJRYKa\nRH4MDZdib8BNN900RUTe19zcvLNxOdFS7JUDg6fvasgs298yHwXu39ODiMhVIrJaRFYDJQdeXaXU\nRJCIx/GHugm5PBRHHeSkneQ7ptAYr+XNhe/ltV01dRUPVT1E34w1fMNzDC4cYLnY+oqdZH7uB+cx\nMMVfflk+/gI/nXWdmPwIaTFE3N3MTUdp8wVIp+PE4slh66Oyb7gUewA1NTWuVatW5ZWVle1MOqwp\n9oYhIm7gw8D/7qmMMeYuY8xxxpjjgD1exKyUOjJEW9pIe1w0u3IpT1lMdQlp0jyZZ897sK5oHV1V\nq/ma52i+L8s5k5kAOB1OGt+05zkonVeK229Pn+sQB5Y4KFs4lVh/lFyHD4CYI8aklKHL6QeHEA9H\nx+BoFQyfYg/g85//fMUPfvCDBhHZuWwipthrBAaPhZ+WWbY/Zc4G1hpjWrNSQ6XUhNOx6V26C0to\n8+awOJmk1G2xOf3e18pZ+flUDZmBwmE5iUcc9DR2AzD92EoEBwWefJwOJ5F4mOQ0+3vX05TEWZAi\nKBEmSyk9aYgEcgh2dFBQlHvoDnSceeSRRyra2tpGNcXe5MmTwxdccMEBJTj4wx/+UFBWVpb4wAc+\nEBm8fCKm2HsDmCMiMzIt1I8Cjw0p8xjwicyo5BOBXmNM86D1H2MvXchKKTVUx5ZaOoum0JX2Myfl\nosjp5BV/PTF6CVRt2RloJXNzOd30tcTY+Gw1ltPi2Iveh4iQ43HT7X6IBsetpHzV+L1+SqpKCLb1\n40iE6bSC5EiAcNxLMCeXlk21Y3rc6j39/f3W97///dIf/vCHTWNdlwFZa9kaY5Ii8nngacAB/MYY\ns0FErsms/xXwBHAOUAOEgU8ObC8iAeyRzFdnq45KqYknWFdPd0Ee6XCAqU43Oxz22aXOwjZOlUlY\ngNvlwuF0kRYXrVs72PGmnZN23rL5uLwu/E4Xne57MNin+npYRb7Lw5R5pXRs68Aku2jz5jLfmcQd\ndBL2e+g+wvPaHmgLNBs2btzoaWho8CxZsmQhQGtrq/vYY49d8Prrr28cqxR7WZ1ByhjzBHZAHbzs\nV4P+N8B1e9g2BBRns35KqYkn3dxI//yZlPa7KXQILXRDOsX8fHBZQirmoL0lQioRpPGdhp3bLTxz\nEbkluTgtB2Hvsxji5PpOoDBnBdvb/4ug8x/kl1yCw+XAkbTPz6ZcISojKeI5Tvp26AUT48Xxxx8f\n6erqWjdwv7y8/KjVq1dvLCsrS1588cU9l19++cwbb7yxtb6+3jWQYs/pdDKQYm/58uWh++67r/i6\n665rG6066XSNSqkJwxiDs6uVFu9SpodTFLoNq9xNhOngRCmiYUMXHXVdu2239MNH483xIjhweGsJ\nSS0B7zFMLvgXAEoLP0tL9104vY3kTcmjuycMBRBzRJgZT9Hp8hHtHjcNuyPOcCn29pT1R1PsKaXU\nQUrFYjiTEVr9OZzUkWC7xx4YZfxCtCu5M9BOXTSVsgVTcbp3/Qp0+xroczyHZeUwpWDnWS38nsW4\nHFOIyFvkTzmaroZu3Mk0PY4+qtIBXvL6SEVDGGMYPPJVHRrDpdgbrLGx8Z3B98cixd64vvRHKaX2\nR6yphbjPT4cVoBw/65x21+7UnAh1q+3Au/BDC6lYOn2XQCsIuR4Xfc6nAKgo+Toi7309ilgU5HyI\nhGmmcEYXArgTUfokwmTjo9vpx0iSeGr0JkFQE4sGW6XUhBGqq6WrcDKpSA4FDjf5xr4mtqAujkkb\nlpy3lNzJu85TIFgEPC463HcBUFZ4LU7H7slpc33HAeAo3AEC6VSUXgkRIEBf2k/c4yUeje+2nVKg\nwVYpNYF0bq6jq6iYnJCXYid0EySZ3k5PUz8lMybhy7ODr9Ny4XV6CTgD5PjCdLrvBqA490L83oU7\n9ycOBy6vF7EEEReFOStIWs3klroxsR5ikkScEI/6CAdyibSM2ngaNcHoOVul1ITRtW0Hnbn5VEXj\nOD0xElYaVyJNOplmytwpWDhwuPqIep4lJLsOlCrJ+wj5gQ/uvO/yeskpLkGAZDxOX3sbfs9RdAef\nonhWgu4341AM4oyQF3IS9ntp2VTD5NmVh/io1eFAW7ZKqQkj0tREsz+H2SlDn6MfAH9XjJxJuQQK\nc0gHnifo/TPJQYHWsnIoLfzcLoHW6XGTU1TEwFAnp9uNNycHj6sCS3zkTg1jRe3LfxKOCDOjfYQ9\nTtq26MQWanjaslVKTRiJrhaaFy1lWa+XBqsRK5VCuvopef8MHN4thK2tABQEziQ/8EEcVt4uA6EA\nxBJyCot2W+4J5BANBfG552Dy65CUF2caIo4w01MO2ty59OxoQKnhaMtWKTVxxEJ0S4BCy0+71Qvx\nHgQonmkIu15GcFM15fsU530Yp6Ngt4CKQE5hMZZj93aIw+nE4w/g88zDWP34ClO4Eyn6JEK5cdHp\n8xLp7Tw0x6l2MVyKvS996UtTJ0+evGT+/PkL58+fv/BPf/rTzlFvEy3FnlJKHTLpVAoLi3Q8B79l\n6JEQkojgCXiQvLcBmDbpKzisPc+V788rwOX17nG9JxDA554HQPGcJFYiRq+EKTIBuh1+Uonw6B6U\nGpE9pdi75pprWjdt2lS9adOm6ssuu6wXxnmKPRGZJCLfEJG7ROQ3A7fRqoRSSh2sRGMj/Xkl+MIe\nUq4QRsAVjFI82yJpNVIQOBO3s3SP2/vy8/Hm5Oz1MZwuN75ABQ4rl5yyCOlYkKBE8eKnN+0nbQlp\nTSJ/yO0pxd5wxnuKvUeBl4BngdRoPbhSSo2W7neq6SwoYk40TsRvX+/qCIcpnNuL4KIg54xht3O4\nnPjzC3B59tyiHczjD+BxVZIoqCcd6QeZjLiSpKI+Yh4/0UgUf8A3asd1uKje+NWKUHDLqKbYC+TM\nDS9ccOsBz4N5zz33TH7ggQeKly5dGr799tt3TJo0KTXeU+z5jTFfNcb82Rjzl4HbaFVCKaUOVlvN\nNprySpifhh4rhCOVxkpHcRU2EfAdjcOyA6BYgi8vD39+AbmTJpE3uXTEgRbA7fXicVViefpxpkMA\npJwRioNpQgE/wR1D03arsfDFL36xbfv27e9s3LixurS0NHHttddW7Hur7Blpy/avInJOJouPUkqN\nO73bGmgoKOboHg9tEsQRj1I0KwpiZ++BzDnX3NxhB0CNlOVw4vNU0R2EnPxegkDcEWZG1CLkddO2\naSuT588epaM6fBxMCzQbKioqdnYrf/7zn28/77zz5gCMVYq9kbZs/w074EZFpD9z6xutSiil1MGK\nNDfQ7veTJz66rRAmFqJwRhzBjc89G7ffjz+/4KAC7YCc3Ln23ylRPElD2BGmIp2kNZCv19qOE/X1\n9TsD5wMPPFAwb968CMDFF1/c89BDDxVFIhHZtGmTeyDFXmVlZWIgxV46nea+++4rXrlyZc9o1WdE\n7zpjTO6B7FxEVgA/w04ef48x5pYh6yWz/hzs5PFXGmPWZtYVAPcAiwEDfMoY8+qB1EMpNfEle9qI\nmAAuR5qoJPDEIvhLe/G6Z2E53QTyC0YtI483MAmno5DcsgSu6iQ9njDT0vms8/jpatBrbQ+14VLs\nvfjii7nV1dU+gGnTpsV/+9vf1sNhkGJPRD4MDEyx8oIx5q/7KO8AbgPOABqAN0TkMWNM9aBiZwNz\nMrcTgDsyf8EOwk8ZYy4RETcwqifelVITS9qkcEf8pJz25TdeZy8Ob5iAdzEenx+xRu9KR4fLhcc1\nHW/JFohH6PWGqZAAPc4o0f7d8+Wq7Bouxd6e8tnCOE6xJyK3YHclV2du/yYi/72PzY4HaowxtcaY\nOPAAsHJImZXA74ztNaBARMpEJB87sP8awBgTN8aMWnNeKTWxmGSSYKCYskiKqMMetJRbYAc9r3sm\n3pwD6pzbI6fThcddidMXgWQnSUnhFDf9xkcqERvVx1ITw0h/6p0DnGGM+Y0x5jfACuDcfWxTDgw+\nYd6QWTaSMjOAduC3IvKmiNwjIoER1lUpdYSJNzbSU1DI7HiaPiuEI2XInxZEcOMPVGI5HAe+cxH7\nNoTPNx0Arzcza5QrCmEfMbcHY/RaW7Wr/elXKRj0/+7JHkeXEzgWuMMYcwwQAr42XEERuUpEVovI\naqAky/VSSo1DbVtqacktYppx0W2FcCUS5JZF8Hnm4ss9sHkJLMuN3z+T3JwFeD1lu60P5MwAwB+w\nEx4knWGmhJOE/AEi4eiBH4yakEYabP8beFNE7hWR/wHWAN/dxzaNwODrmqZllo2kTAPQYIx5PbP8\nQezguxtjzF3GmOOMMccBe+yjV0pNXK1bttFQUEQRXnokhJXswxmI4HFV4nS5972DIcRy4fNV4XQG\nEHHgdhfjdhfvUsYfKEdw4isI40xD1BFhejRMOOChu2a3U4jqCDeiYGuMuR84EXgI+AvwAWPMn/ax\n2RvAHBGZkRng9FHgsSFlHgM+IbYTgV5jTLMxpgXYISLzMuVOxz5XrJRSu+mp206n34/b4SQqCfy+\nZkTA563a7y5kEQu/rwqHw7PLcrd7Eva4T5vT7cXlnEKgJIUnkaZPwlSmoM2Xx/b1m0fluNTEsddg\nKyLzM3+PBcrItDiBqZlle2SMSQKfB54GNgJ/NsZsEJFrROSaTLEngFqgBrgbuHbQLv4VuE9E3gaO\nBr63n8emlDpCRBq3EksHMA67+zYnrxuA3Ly5+7UfEQd+/wwcjt1nlLIs1y6tWwE87ql4CmM4EjF6\nrRBleGn15tJSo9faql3tq2X7pczfHw1z++G+dm6MecIYM9cYM8sY893Msl8ZY36V+d8YY67LrD/K\nGLN60LZvZbqHlxhjLjDGdB/A8SmljgDS04Y76iWRuewnUNCHQ/Lx+afsx04En68Ch2PPVxm6XEW7\n3Pd6K3D6ophkLyGJkYuPbpeXvtbdripRWTRcij2A7373u5NnzJixaPbs2YuuueaaaQPLx12KPWPM\nVZl/zzbGLB98wx6hrJRSYy7h8FEeTRC2QlhpCEwK43VX4vR49r0xIOIk4J+J07n3S4Qsy4XL9d6A\nK5+vEgC3NxNcnYb+tI9ELDjc5ipLhkux9/jjj+f+7W9/K6iurq6uqanZcMMNN7TAOE+xB/xjhMuU\nUuqQSgVD9OYWMTsBPVYYr4niyYvh9c3Y84xRIlgOLw5HAK+3jEBg1l5btIO5XO9djBEI2COSAzn2\nREPGGcWK+kmO4gQaat+GS7F3xx13TPrKV77S7PP5DEB5eXkSxmmKPREpxb7u1Scix2CfpgDIQ2d0\nUkqNA5GGBtryi6lKu9khIXI8rQAEArN2Kyti4XIX4xky2Gl/OBw5iDgxJonXV2pfy5sfhE5IOWIU\nh11EvR7SaYNljc70kIeD6zdur9gUio5qXJgf8IZ/umD6ASU4qK2t9b744ou5N954Y7nH4zE//OEP\nd5x66qnhsUqxt6/pGs8CrsS+JOfHg5b3A98YrUoopdSBat1cy/aiKSwNeaiWKMU5dpdubs68XcqJ\n5cLvmz7iFuyeiAhOZw6JRA8Olxu3qwx/USfONohZUWaELUI+Lz1dvRSVFOx7hyorUqmUdHV1Od56\n661NL774ov/jH//4rB07drwzVvXZa7A1xvwP8D8icrHmr1VKjUdt79bRnBuAGCDgy+lGTC4e367X\nxXo9ZQcdaAc4nbkkEj32iGRPOd7CJlzJFN2uILPSOdQE8qldvZ6iFSePyuMdDg60BZotpaWl8Usu\nuaTHsiyWL18etizLtLS0OMd1ij1jzF9E5FwR+YqI3DhwG61KKKXUgeqp20aUXFLOCAD+vCBezzQc\nzvfaEi5XwS7nWg/W4KDt9UzD4U3gSfXQKf2UGjctvjy2v/nWqD2e2n/nn39+z6pVq3IB3n77bU8i\nkbBKS0uT4zrFnoj8Cvsc7XLstHeXAP8crUoopdSBCndsw1dyHHFHBEjjzY/i81bsUsbtnjyqj2lZ\nbizLTTodx+efDp3gcrWQlGK84rIv/9mxaVQfU+3ZcCn2vvCFL3RcdtllVXPmzFnkcrnSd911V51l\nWeM+xd5JxpglIvK2MeZmEfkR8ORoVUIppQ5UMpGiKpok6A6T6wpiOQ1e33vB1uHw7TYb1GhwOAKk\n03H8/kxCgkA3xAFnmnDaTzIyat/Tah+GS7EH8Oijjw67fNym2AMGZtUOi8hUIIE9o5RSSo0ZYwxR\nbx5VcYteCZObycAzcEkO2NMsZsNAV7LfPxXBhT/XTkiQcoZxhj3EnAeRaUhNOCMNto+LSAHwA2At\nsA34Y7YqpZRSI5Hq6aEjr4TSlJMeCeHzZYJtJiMPIvucqOJADezXcjhxu8rwFURwpoWwI8TUcIKw\nP0Aqran2lG2fwVZELGCVMaYnMyK5EphvjNEBUkqpMdVTU0td0RR84iIhKbz+TixTiMttp792OnKw\nv8JGn2W5ELHPxHk85fgK43gSaUJWhFmxGGGvh+7m9qw8tjr87PNdaIxJA7cNuh8zxujJCKXUmGtZ\n/y5tObk43PYctr68frzenVPg4nTmZPXxB7qSvZ5pOP0JXCZItxViZtpBc24ha194LauPrw4fI/3J\nt0pELpY9zn2mlFKHXvvmLcRMDglnFJEU3ryoPTo4I1tdyAMcDh8A/oD9mB5PG2GJUWQ8NAfyaNuo\nI5KVbaTB9mrgf4GYiPSJSL+I9GWxXkoptU/9De+SE3UQcYTxe/oRy+Dz2YHPvjxn9EchD2ZZdio+\nv99OSODydth/HS56LC/x9nE1z4MaQyOd1CLXGGMZY9zGmLzM/VHLhqCUUgciFgkxK2Ynbs/32Vk4\nA4EqwL40J9sGWrY+fxkYJ74cuw1iHEmiMT+JVDzrdTjS1dTUuE444YS5s2bNWjR79uxF3/72tycD\ntLa2Ok466aQ5lZWVi0866aQ57e3tO4eHj7sUewNEZNVIliml1KEUcucxI+6kV8L4vZ1ghECO3co8\n2PO1vYkkNeEoG4MRuhPJYcvYg6QcdmJ51xR8efb89nFniMJ+Q9Sr+VqyzeVy8aMf/ahh69atG954\n442Nv/71ryevWbPGe9NNN5UtW7asv76+fv2yZcv6b7zxxlIYpyn2RMQrIkVAiYgUikhR5laFnQ1o\nr0RkhYhsFpEaEfnaMOtFRH6eWf+2iBw7aN02EXlHRN4SkdVDt1VKHdlSoRBteZOZbFz0SwRvoAuL\nIhwOu2v3QOdBNsbQHIuzLRonlEoTN4Yd0Ti9ewi47w2SKsdfFMedEoKOIDMjQUIBP91dOp40myor\nKxMnn3xyGKCwsDA9a9asyPbt291PPfVUwdVXX90JcPXVV3c++eSThTBOU+xhn6u9HpgKrOG9FHt9\nwC/3tqHY+atuA84AGoA3ROQxY0z1oGJnA3MytxOAOzJ/Byw3xnSM7FCUUkeSji211BaXclRUMgkI\nevH5FgB2MnjLcu9jD7tLpA310Rih1K7dhwZojCXIcTpwDBkn6nD4SCbtUdCuwD/xpaL0OEPMjXup\nK8ll42tvcdI5px7wcR4u/uPBdRVbWvpHtSk/tzQ3/INLlo74xPfmzZvd1dXV/lNPPTXY2dnprKys\nTABUVFQkOjs7nQBjlWJvry1bY8zPjDEzgH83xsw0xszI3JYaY/YabIHjgRpjTK0xJg48AKwcUmYl\n8Dtjew0oEBGdmUoptU/N1e/SkVNA0hXHspJ4cqI7p050Ovf/fG1Pptt4aKAdkDCG9vjurVvLGjhv\naz+2z91OtwSZaty0BPKpX7d+v+ui9l9vb6910UUXzbrlllt2FBUV7fIiWpbFWF9MM6K5kY0xvxCR\nk4CqwdsYY363l83KgcG/SBrYtdW6pzLlQDP2j8lnRSQF3GmMuWskdVVKHRnaNq4n7ZpHzBnC7+tD\nLPBnBkdZe+lCjqTSdCeSOEWwRIik04RTaaJDBsO0xRI82dFLTTjGmcV5nFKUS3s8wSS3c5fW7UC3\n9UCgd7lbSMen4bWctDkDBJurORLsTwt0tMViMTn33HNnXXrppV1XXHFFD0BxcXGyvr7eVVlZmaiv\nr3cVFRUlAcZ1ij0R+T3wQ+Bk4P2Z23GjVYk9ONkYczR2V/N1IvLBPdTtKhFZnTmvW5LlOimlxone\n+mqqIoY+K0S+186E5s/MiezItDYHS6YNNeEoNeEo7YkkzfEEjbE4XYnkLoE2nk5z4doa/uWdOv7Y\n3MU/e0N8p7aZ5zr7SAOdQ1q3luVGxMIXmA7GwhvoAiDlgJ5kDslYEJU96XSaj370o5Vz586Nfutb\n32odWH7WWWf13HnnncUAd955Z/GKFSt6AMZ1ij3swLrQGLM/E302AoPzXE3LLBtRGWPMwN82EXkY\nu1v670MfJNPivQtAB1IpdeQIJxzMjTnodoco83aCsfD5p4HIzktyBqSMoS4SI7yPSznW9oX4+hb7\na6rY5eBbs8vpSSS54f9n783j6zqre+/vs6czD9LRLEuWbXm2Y8eZJxKbhClpQggJCaSBQKFD0r6F\nt+2lFPo2l8IHuG0v0EuBpKQll7lQkgCZndGJHWeyE0+KNVjWrKOjM497eN4/jizZsWPLwWOyv5/P\n+Uja4zr7HO2113rWs37dw3y9b5S5Pg+GEDR4DhzKU1U/UjroeiO+cBaSYGpFYpkAZeP4zvV9p/Po\no48G77333tjChQuLS5YsWQZwxx13DN1xxx0j11577YK5c+fWtba2Vn7961/3AKe8xN42oIlqene2\nvAAsFELMo+pAbwQ++oZt7gduF0L8jGqKOS2lHBFCBABFSpmd+v09wP88inO7uLi8jZFSkvJHmWtr\nbFGKzPMnUKlDVTRUxXdQP+TRsnlYR2tLyfcH4tw3Xg1kLooG+Zt5TXjV6nHuXtHBJ7ft4QeDcb66\naA4l25leB0w1z8jh87bhi23B2yMoqgWWZ00yoQCT45PUNtQe+wvhwnvf+96clPKlQ63buHHj64da\nfjIk9mbrbOuAHUKIzUB530Ip5dVvtoOU0hJC3A48DKjA3VLK7UKIP5la/z3gAeADQDdQAG6d2r0R\n+PXUgLYG/ERK+dDRvDEXF5e3L4V4gr7aNubL6tipN5TB518JcFBUW7AdJqam7eQsmwcn0vz74AQR\nTSWoKgyVDxyW++t5TVweO3B6ZavX4JaWGPcMJ9iUylGna7SqM9XO+87p9bRjBDfjdUpktAKLzAiv\nNMTY8ezLXHzt5cf2IricVszW2f7DWzm4lPIBqg51/2Xf2+93Cdx2iP16gVVv5ZwuLi5vf/Zs3UU8\n0oCVK6GqJp5gebo46o3ONl6pOtPHExm+3jcTzKQtm7RlT//94cYabmmN4VEOjIodKVGE4IamWh5N\nZPjxcIK1NQf2XN7XtjEQ6IAEeD1jxB0fy2nhQa9K37ZtrrN9hzPbauSnhBBzgYVSyseEEH6q0aqL\ni4vLCWfglS2YTiMlLUPAN1UcNdWfWNmvOMqWkrRl87ORSf5jqDpl/w9bYlzbGMWWkLdtGgz9oLmz\nUq/r4eUAACAASURBVEoqZRtZdqjYNoZPx+vTuL6phm/3j7MxnWe+34umiKlzekGI6QItwzuKXWzH\no3iZUBUKo68d92vicmoz22rkTwO/BL4/tagVuPd4GeXi4uJyOFK7XqC5KMgpeSLeag2LP9ABQhwg\nPpCoWOzMFfmPoQmaPTr3r+nk5pYYAVUlrKk0e4yDHG3FsilnKxglBz+CqKqhl20qFZvLY2H8qsJj\niQxZeyYqFlPn9fqbERj4gtWK5LJWoVD0YdmH7j7l8s5htqo/twEXUe0chZRyN9BwvIxycXFxORyl\nosnikiCp5An4EuBo+P0tqIr3gOYFSdPiewNVAfevLGw9KEW8P46U5PMmImvhk+IAJ6wLBaVkowvB\nJTVBnklm6SuWD9hfVfwoQsFjtOKP5lEklPQcHZkSeb8P2zmayRwubzdm62zLU12gABBCaFSbTri4\nuLicUKSUJPwxmqRKQZTx+CdRlXqEUA/oh2w6kieSWXbmS3yuo5FWr4HtOJRNm2SqxGS6RLZQIV8w\nyWcqlFNl/JbEoygIBJv7Jvm7X7/GX/9yK68NpjCkoJy3uKYhSsmRPDaRYf/ZkKpajai93rn4YmUC\nJuSUHMtyGUZra9m9e/CEXyuXU4fZOtunhBBfAHxCiCuoatv+5viZ5eLi4nJoUn176Wqaj6ZVHZ03\nlN5PVm/G2aYtmwfiaWK6yuWxMIWSSTlTgaxJTKjUoRIyIWhKQlIQUFRUBH0TOW7+wfN8+Xc7eHUo\nza7RLF+4dxuvDqYwLIc5mkZUU3klWzhgOtG+9LXfNw/VsPEraSaVHAttlaFQhO1PPXfiLtI7iEKh\nIFauXLl08eLFyzo7O5d/9rOfbYHTVGIP+DwQB16jKk7wAPDFY2aFi4uLyyzpf/4VEv46HL2IppUw\n/OZMm8apqmCAnkKJF9N5Lo9FsCo2etEhKFR86kxtZzWGraaLCxWLm+7axF/8bAvpoklDyMNfv2cx\nVyxrBOAff7eTZK6CYkrOiQR4IZ0nbc6M2+4rzAoE5wNgeIcoCZMYPsb1AIldrx7X6/JOxev1yg0b\nNnR1dXXt2L59+47169eH169fHzjVJPZmO/XHR3We7F0wrejjozo31sXFxeWEsffljfh8Z1PSUoSn\nWiMGgwsPKI6yHMl94ykc4PLaEGbeIqyqbOyZ4KsP7jriOb5x3Rksba7eZ9+1qJ7rz5rDZ/7vS3z5\ntzv43zet5uyQn0cTGTan83zQW51vqyhVpaFgaD5IMPyjkFmG1DWSpgcn70rtHQ8URSESiTgAlUpF\nWJYlhBA89NBD0aeeeqoLqhJ7l1566WJg6M0k9hYuXFjZJ7EHTEvs3XDDDZljYedsne164HJgX5NP\nH/AIcOGxMMLFxcVltkyOD3BmwxpSvjwRf3U6TzC8aKpzVDVKzVgWD02kWR70UWcLMB0++aMXiGfL\nb3rcqE/nimWN/OH5cw9SiGmO+Hj3kgbW7xrnxd4kqxbWoAp4ejLLBxtnJE9V1YemVdDUevyRLGTA\n1ApE0yFKHi9SypOuPnPcuPe2NsZ3HFOJPRqWFfjgd44ocGBZFitWrFi2d+9ez8c//vHxdevW5U81\nib3ZOluvlHLaOCllbmqurYuLi8sJJaeFWWhq7PDniQXGEU4EXQse0MzihUyB4bLJRxproGLzhXtf\nm3a0f7Guk3VLGlEE7J0sYDuSubEAqnKgE/TqCiGvTtG0yZctbl/bSU88x/ef7uFbc89iedDHxnQO\n05Ho+8+3JY3P146//jW8fYKCmmNFxiIRDjMynqKl8ZjpkbtMoWkau3bt2jExMaFeeeWVC1544QXv\n/utPG4k9IC+EWCOlfBlACHEWUDx+Zrm4uLgcjFUo0lszl5W2l5Iw8YeTeD2LgQPHa385Wk0vn+Ex\n+NufvsqeRIEPndnKrRfNO+B4c2MH6976DIU5NX482swNOlMyGUoW+cwl8/nCvdvY2BXnzHY/PxxJ\n0F8q0+mvnnufw/f755MNvoTfyTOheTjD9rIhWstrT2+m5fr3HvsLcyowiwj0eFNXV2dfcskl2d/8\n5jeR01JiD/hL4L+EEM8IITYAPwduP1ZGuLi4uMyG/k0v01fThKNbaFoZb7BEKLIImKlErjgOW7NF\nFge8xEcK7EkUWNwYmna0mioIeFSC3mqsoShgaAo1AZ2OOj8L6oN4dfWASCjs1WkKe1nRGqE16mP9\njjFW+qrjw88mZyT09jn8YGAhAD7PIDmlRKMMM+YJMPzK5uN8hd55DA8PaxMTEypALpcTTzzxRHjp\n0qWl01JiT0r5ghBiCbB4alGXlPKYeXwXFxeX2bD9iYcIKUvJ6CkCU8VRoeBChFCni6P6CmX2lirc\n3FjD/U8PYqgKd1y9HENTaIl6CXq0aUdqO5J92eMjpRmjfp10Ued9K5r4wYY+RKKMRxFsTuf5eGtV\nSltRdISiEwxVb5We4DBkF4EmmHCCmJMHCc24/J4MDAzon/jEJ+bZto2UUlxzzTWTN910U3rt2rW5\n01FiD6qC8R1T+6wRQiClvOdYGeLi4uJyJCb39nB2wxLGvCmi+xVHKft1jrp3SiZvTgF+uSfJh85s\npS7koSPmR1MPTOa9cZz2cAghaIn6uHxpA3dv6GNL7yRLO7xsyRSmxQqqx/RieCJoSh2BmjRkwdQL\n1KZ9lPZTCnI5Npx33nnFnTt37njj8qamJvtUktibbW/k/wv8E3AxVad7DlVBeRcXF5cTRlqLMs/S\nGVPSBHzjCCeEYURR1Znx2o2pHHM8Ojt2xTE0hY+c00Z77cGO9q1gaArz64OsaovyVFec5X4PvcUy\n45WZRN/0uK1vPoH6Ih5LkFdzrMymSIWCpDLujMl3IrP99p0NXCSl/DMp5Z9Pvf7ieBrm4uLisj+l\nYomdjQvRVAVbOATCk/i81XFYVa0WOpVsh63ZAks9HjZ2Jzhnbg1LmsMY2u/vaPcR9etc3FnHeLZM\nfb7at3Zjav9x2ylnG+hED5gEyDCpZFlpanTXNLB90yvHzBaX04fZfgO3AU3H0xAXFxeXw7Ht8Y2M\neBsp62VUtYI3XCIY6gSYjmw3p/MUHUk4WSFbsnjfiibC3qMZLTsyHk1l7ZJ6APq7J1GATan89Pp9\nhVrB4FSRlG+ItFIgJkMM+yPsfe7ZY2qPy+nBbJ1tHbBDCPGwEOL+fa8j7SSEeJ8QoksI0S2E+Pwh\n1gshxLen1r8qhFjzhvWqEOIVIcRvZ2mni4vL25Sex/6LtqJKRstQMzVeGwotPaA46ulktdlP764E\nsYDBe5c3HZf5lZ31IZY2h9kxkKbT7+HlTGFalGBfJ6lQeBFIgTcwDIBjwKQZoDTcd8ztcTn1me0j\n3z8c7YGnWjp+B7gCGAReEELcL6XcfyD7/cDCqdd5wHenfu7j/wF2AsesP6WLi8vpSTJZ4IIanZFw\nmobAKFJCKLz4gGYWm1J52lSNrqEMH1ozh/qQ5zBHfOuEvBrndtTww439rBMaj+YLZG2bsLZvOpEX\nTQuga00EomlIQlnL0pnSyOlukdQ7kVlFtlLKp4BdQGjqtXNq2eE4F+iWUvZOyfP9DLjmDdtcA9wj\nq2wCokKIZgAhxBzgSuDfZ/1uXFxc3pZUTIttTctpEgY5USIQHEGlDt0IT6dt85bNq9kiDUkTR8Jl\ni+uPW9cgRRFcsqiaSvZNlDGlZPMhUsl+33wCDSUCFqS1NMvzGeLhGrIld+bkO43ZViPfAGwGrgdu\nAJ4XQnz4CLu1Avt3FBmcWjbbbb4J/A1wWI0jIcRnhBAvCiFepJrudnFxeZvx+sYt9AbbKXvygCQY\nSxMKLQVmiqM2pfNUpKQ8nKfGr3PpwvrjatM5c2uI+HSSI1UnuzG9v7OdKZLSvBYBkSSuZFjm+Nld\n28DrO9xU8rHGsiyWLl26bO3atZ1w+krs/R1wjpTy41LKW6hGrV86Zla8ASHEVcC4lPKlI20rpbxT\nSnm2lPJsYOJ42eTi4nLy2PmrHzKnqJPQJgl7U2gem3BkOTDj2DYkswhbsncoy8UL6wj5jlkP+UMS\n9umsaY+ybSDFHEPjpfQbIlshCIWXAWD4ejCFjV9EGPWE6Nv8/HG17Z3IP/7jPzZ2dnZOtxE+1ST2\nZutsFSnl+H5/J2ax7xDQtt/fc6aWzWabi4CrhRB7qKaf1wkhfjRLW11cXN5mjBfKXFSAYSVJbWAQ\ngEhkJYrqpVoeUp1+05y3qVgOaxc3HHebhBBc2FlHpmTRURG8mitSmYqEhFBQFS+hcCcCD8Fo9fZp\nGiWcoods33Hpm/COpaenR3/44Ycjn/70p6cDroceeij6x3/8xwmoSuw9+OCDNQBvJrHX39+v75PY\nUxRlWmLvWNk42wKph4QQDwM/nfr7I1QF5A/HC8BCIcQ8qg70RuCjb9jmfuB2IcTPqBZGpaWUI8Df\nTr0QQlwG/JWU8uZZ2uri4vI2olwxeaV1BddndfpEhVDNXhSnFp+/FW0qhZy3bLbnSnRMVMhpCuuW\nHH9nC7B2UT1f+d1OjIkyhTqFVzIFzosGgWp0a9tFfN4FBBt70ccEeS3DsrQgX3z76bh86dkvtXUn\nu4+pGlxnTWfhyxd9+YgCB7fddlvbN77xjcF0Oj2dKj7VJPYOG50KITqFEBdJKf8a+D5wxtRrI3Dn\n4faVUlpUxQoeplpR/Asp5XYhxJ8IIf5karMHgF6gG7gL+LPf5824uLi8/XjyV79l2GimZGQQwibc\nkCQUXg3MjNc+l8phOg6Z0Tyr26JE/Sem4rc9FqCtxkd6vNoV6oU3ppKBQGAR3poSfqtIXMmwpiQZ\nDboye8eKn/70p5G6ujrrkksuedPWXKeDxN43mYowpZT/Dfw3gBBi5dS6PzjczlLKB3hDBCyl/N5+\nv0vgtiMc40ngySPY6eLi8jalf8NvWRN+L2NagvrgGIomidZUp+Tvc2jPJLMoBYt0tsK7LjhxdZKG\nprC6LcqjO8eIrAjzYuZgZxsOLSOeuJeAr59h28si2cT62kbKpo1HV9/s0Kcds4lAjwcbNmwIPvro\no9HW1tZIuVxW8vm8cs0118w73ST2GqWUr71x4dSyjmNlhIuLi8uhMC2HUaOeC8oao0qSSKgX6ajU\n1KxGUTwoSvXeuDmdpy5ZLXJ599ITk0LexwULYpRMh44SvLJf32NFMRCKTji6HKTAF6yONTuawagR\nZMf23SfUzrcr3/nOd4bGxsZeHRoaeu0///M/e88///zsfffd13e6SexFD7POd5h1Li4uLr83zzz4\nFM83rOCslI0jJJG6UTzaPHQjOJ1C3jdeWz9Roq3Gx+LGE9sD512L6hGAP1lmzNDpKZRYMCUmr6l+\npGbiMdoINyQgBUW9RKhs0r/pGc5cveSE2vpO4o477hg5nST2XhRCfFpKedf+C4UQfwQccVqOi4uL\ny1tFSkn/b/+T5bErSetJfHoeX7RITe1ZAOh61ak+MZnBNG3S8SKXr2lFOQrZvGNBS8TH/PoAqdEC\nNEa4byzF5+ZVW8mrqh/TTBMILKPU8AiBXQ4pNc2ylCQx4WrbHmuuuuqq7FVXXZWFU09i70jO9i+B\nXwshPsaMcz0bMIBrj4dBLi4uLgDxbJk+fzuXlwK8EuomFugFoKb2PBBiekz06WQOPVnGdiTrljSe\ncDsVRXBORy3/9dIgWCFey81UGu+LvsPhFUymHiLqGyFeNlhSiJJwrBNuq8vJ47BjtlLKMSnlhcAd\nwJ6p1x1SyguklO5jmYuLy3HBcSTP/ef32R5eie4pURQVojX9CCdEIDQPTQ1Mz699NpXD251DUwQX\nd56cJnIXL6zDdiTLyoJXs/uP23oRQiEaXQUSAsE9VIRFGC/9YVdI7Z3ErObZSimfAJ44zra4uLi4\nADBZqNC1d4CrnSX0Bl7HkCUizSnC4bUoQqCq1bmsQ6UKPdki3kyFJU0hgsdYTm+2XLKwDk0RGJNl\nhgKCsXKFRo+BEAJVDaAbDobeiq92HCbBVDUGwmFM20E/BqL2Lqc+7qfs4uJy0imVRrCsHKaZJJF6\njYd/fg87I8tY6TEZUBPUGttRNEms7iIANK06XvtoIoOSrADwmXfNP2n2R3wGy1rCpMeqUe2Tk9np\ndZpWfTAIBpcQbCjgkYKiXqKMyu7de06GuS4nAdfZuri4nFQqlUkqlQkKhT4KhUH2Do4xtLOL96fn\nsEHfhWE61NUPguOjpvYMFMWDqlal855NZvFMVlBPYgp5H+fOq2U0UcRrOTydnG5QhKqGAAiFVqBo\nDjHvJBk1x/xsib0b1p8sc11OMK6zdXFxOWk4jkW5PAaAlDC2ewLPjyzC2qXUeZJMKjkC412E23NE\nQmehKDq6Xp2RaEvJM8kcnokyK1rCNIS9J/OtcHFnHRJoz0s2pvZ3th6E0IhEzwAgGBwkLfIsKyhM\n9HSfJGtdTjSus3VxcTkpSCkpFvfgSAsrHmdk2y7G/3uSez0vUjJ28oy+E920icwZRDUcYrF1AOh6\nBIBnJrOks2VK2QoXneSoFuCcjlp8uop3ssJw2aSvUJ5ep2lBPJ4YqqjFFxnGEZJ6S2e0LE+ixW8f\nWltbVy5atGjZkiVLlq1YsWIpnL4Sey4uLi7HlHJ5BNsuYiYmGRkY5fUXx3nMeI2KsEgp1bFPIzVE\nw6oEujKHaO0ZqKoPRammkO8bT6GPlwB43/KTX9kb8GicMSdCcqzasnF9YqYfgqZNpZKDS/HVTQIS\nVJ3uaMvJMPVtyVNPPfX6rl27dmzbtm0nnL4Sey4uLi7HDMcxqVQS2MUig717uX/DbpyRanN+f6XM\nnKG9LH1xA/X1XXjCJo11H0TVtOnCKEdKHk1kCMTLtNX4WN4aOZlvZ5rz58eIp8tETfmGcdvqfNtQ\neDm618LvzVLRTIaCJ7bb1TuJ01Viz8XFxeWYUS6PYxeKDHX1sHXnAO/KnsluYwDdUXnffb9hpEZh\n2+o6Vp4/jkedR6xhXxVy1ak+l8wxkS3jTZR4z8XzUE9w16g3Y+2SBr61fjctaZvNvjyOlChCoCg6\nquojUrOKgSGoC8cp5YoEKz7iI8PUN5/+Ee7wF/6urbx79zGV2PMsXFho+epXZiVwsHbt2kWqqspb\nb701/ld/9VcTp5rEnutsXVxcTihS2pSKEwy/3sOjm7ppS87jyfCzKIrNktbnGPqaSTllsLxmCFXT\naW74JIbXh6r6p6uQ7xtPocerKeQrlp34rlFvxsqWMA0hD/ZYkVSdxmvZAqvC1ahW1YJ4PS3g+AiH\nRulX8izKG/Q89TD1N956ki0/vdmwYcOuefPmmUNDQ9q6desWLV++vLT/+tNBYs/F5ZhRMm3i2TJ1\nQQ8+4+0jLeZydGQLk/TueJ1tW7uxMh6S7Y9x3uJn2HcvLKd1/I1lNKI0195CKDoPAF2vZvSKts1v\nxpP4hwo01vo5s+1weiknFlVVuHBBjAe3jcLSIA9OZKadraaGqIg4Xs88fKEBskqRBdkYg9t3nGSr\njw2zjUCPB/PmzTMBWltbrSuvvDK1cePGwOkmsfd7IYR4nxCiSwjRLYT4/CHWCyHEt6fWvyqEWDO1\n3CuE2CyE2CqE2C6EuON42uly/BnPltg2lOaejf28vDfJeLZE2bJPtlkuJwgpJRXLYThVpKd3G92v\nbad73GKZV6Fj0bPk01HGt9bStyWGZl1HqHQrbeHPEgwvxuMPIIQyXYX8X6NJ0oki5XSFa89sPeU0\nYS9dXE/ZcmjJ2DwxmZlerqr+qdaNy/GEsqhqBR8KPaVTIwV+upLJZJRkMqns+/2JJ54In3HGGcXT\nTWLvLSOqjUu/A1wBDAIvCCHul1Lu/xj3fmDh1Os84LtTP8vAOillTgihAxuEEA9KKTcdL3tdjh22\nI8mWTAQCv0dlMl/h2e4JPveLrQDc9Uwv37/5LObU+miN+oj6px8ysWyH0UyJlojvqNRbbEdStmyK\nFZt82UZRoDZg4Dfc5M3JwrId8uXqA1UiX6aYz1CZ7KH7pad4bURyVtyLuPoezIqXnt80sqszz0eW\nXkJAC1JT34YejRKI1iKEQNdrpnsh3z0YJzBQwDBUrl1z6o11vntJI4amEElWeC1aJFkxqTH0qdaN\nQUKRJYzGIRicxMop9ETmnGyTT2sGBwe1a6+9thPAtm1x3XXXJT784Q9nLr744vzpJLH3+3Au0C2l\n7AUQQvwMuAbY39leA9wjpZTAJiFEVAjRLKUcAfYNYOtTL3dC2mmA40h64zlKZnV+mhCwd7LA3/zy\n1QO2+/x/v8p1a+bwgZXNNEVs6oIeChWL3nieR3eMceUZzax4kwpTKSVSVpsaFMo2mZLJg6+N0DuR\nZ1Nvgj2J6rSRdUsa+OZHVhP2HbMaB5cjIKXEtCXxbIlMOgGVItIsYuUyTKTG6d65heFJybyxGLz/\nZ3i8eXY8tJJMa4U/XPZuPEaAWOt8fDU1eENhNE0HITCMGADPTGbYlSzgHy1y+cpmmiOnnqx22Kez\nak6E3tECzjw/Dycy3NhctV/TggSDiwCIBicpaWXGfEFsR54yRV6nG8uWLat0dXUdlIs/3ST2fh9a\ngf1z+INUo9YjbdMKjExFxi8BncB3pJTPH0db35ZYtoN2lE3OK5ZDoWIR9RtULIdEvoyhKsSCnsOe\no2TapAommZJJtmjxq5cHURTBnKiPrz20C0XAV65bSWNjgNF4nn95oIt/39DHz14Y4OvXnUF7rZ9E\nrsz//N0OeuN5Ht81zk8+fR4Rnz79HiqWQ6pYYSJboWLZDCSLPPDaCFsGUoykD6iHwKsrPL5rnC/e\nu41v33TmW7uALrNCSknRtClUbLKZDKVsAis7QS6bIZnNkcrlyWYy6PEuepnPFblVcP6PIDzB66+f\nz5Azzrqz3ktN21xa585D9Rz4XTP02um5td/tH8c7WMBxJNetacWjnVop5H1cuqieFx55nUDB5rED\nnG0ITQsh7CiR0ASDapa6YoSe3a+zaPHik2y1y/HklM2xSSltYLUQIkpVU3eFlHLbG7cTQnwG+MzU\nnye/jcwJpmTaZIrmQa3qypZNf6LAosbQrI8lpWQ0XSJdNMkULdLFmdqAkuUQ8ekEPRpSSjIli3i2\njDXVYcW0qomHvZMFbvvJywcd+5OXd/KEbvF43xCrgz4+/+EVvLBjnAe2jnDbT14m4FEpmw5CwPKW\nMNuHM/zbEz1cvbqFgEfFdiBdMLnzmR42dE9MR84AmiJYu6SBBZ1RrIjBLtOk2dAYe3WC+7cOs25J\nAx88s/WorqvLkalYDtlCiWQ6jVXK4hTSpJNxxhNZxpIpliUexSkKyk6UIaWVXaFL+buJEM/N/ymL\n5m5gZLiTwe4Ul1z4foy2MylEwpSFxv5zRxTFwOOpVhsPFEs8Fc/gH8izsj3K6rZjNgXymHPVGS38\n8yOv05QweSacw3IkmiJQFANFMfB65uEPdZEWBRZngux64mHX2b7NOZ7Odgho2+/vOVPLjmobKWVK\nCPEE8D7gIGcrpbwTuBNACPHi72/27EjmK6iqIOw9dIrStB2kBEM7vn1D4tkyqYKJLeUBKbXxTJmy\n6ZAvWwQ8B3/Mk/kKiVwZj6bi0RU0RZDIVyhPObH9HS3AZK7CZK5CyKtRNG0s+8Cs/vbhNN9av3s6\nwvyTyztxHMlPnu3n1ncv4EdqiZFkEVXAc5k8PcUyV3dG+R/zanhsywhPvz5BR8zPhy5opz+sknm4\njx8828d9W4coWw7ttX62D88Um6xsjZCvWLznjGaUVj+/Smd5sJSHifyMUY0qrVEvf/nzLTRFvJw3\nr/akl/+fzkgpKVRs8sUCxWyaYnYSMzNJslBgPJkjlSmiZvYSzfYxZM3lpfC72FbTxqgV5pa9Zf6q\nYvK70JOsWbiJbLaWns0aSy+4gkDHKp4dN4jkKhiqYF5MIIRACA2fr2N6rPZ7e+KIPVmsss3HL+wg\ndJLk9GbD3JifZS1hRofzpNu8PJPMsjZWbWChaSGidcsoWq+gGAXasgoDr/ecZItdjjfH89v6ArBQ\nCDGPqgO9EfjoG7a5H7h9ajz3PCAtpRwRQtQD5pSj9VEtsvr6cbR1Vpi2Q9G0MVSFwWQRXRMEGrSD\nxlqyJZP+RAEhYHFj6KhTubMlXTRJFapOcSJbIV00aQx5EYKZ5bnyQc62ZNqMpIs4DtUIsTizbttQ\nmniuzEUL6uiN5/jm+t0sbQ5x83lziQU9ZEvW9LX48fN7uXfLEJ31QbrGqpJiIa/Gp96/kEeoUKeq\n/OGHl/G/JhJgw0XRIF9a0Mz2XJH/r3uYuyaT1GoqN53dxHUXtJMRku8lU/QkKiw8p44/GDHZOZyl\nO55jLFNiXl2AdSub8M8JMOrYDJsW30znYKxIna5xcTTIu2pCvKcuzECpwh9v7yexNIyyqcyNd27i\nlgvm8tnLF+HRFTyaOq0l6o6VHRrbkZiWjdfQcBzJ8NgYudE95LN5RtNZ4ukc47kSgfw4C/JbGSi3\nsqu2g5faPownY/HZvjyfM0IYKLyupnhA72LF4mdRhUnP82EWXvReQh3LuHu74Ont1aLPwUuj/OlZ\nDTSGAxhGHYpSLZ5Lmya/HE6g7y1w4YIY58+PHVUB3YlGCMHlSxv51vrdGHmL++OpaWerqkFC4cWM\njEIgOIk+uZRdXjfz8nbnuDlbKaUlhLgdeBhQgbullNuFEH8ytf57wAPAB4BuoADsm9ndDPxwatxW\nAX4hpfzt8bJ1tpi2w8BkYfrmbFqSnniOjlgAQ6uOW45lSmRLFlJWVUzGs2Vaor7poh4hOKroat94\nmKEq0067bNkMp0rkphzftH2WZDBZ9Zxdo1k29Sa48dw2/IZGfag65mXZDv2JAofqr50rWfztr18D\n4F8enakrGEoVWb9znCtXNvO+FU1s6K6mZwuVaqVp11iWJc0hrjyrlUpI499SaTJTJ3gkW400Pze3\nkc+01RPVNRYFfCwO+PinPaM8OZnlO4kkHiEoS4kmoN1rsLtUIdYZ5I/WNBNUFGxgQ6HI7woFSTEv\ndwAAIABJREFU9ownpm1TgE/NqeO29gYaDB1l6touCfp47JxFXLa5i6YLmhh9boR7NvZzz8b+6X07\n64Mk8mXm1Pj54JktXL60keaIr/oZ7XddhBDvCIeczySxK0WK5RKyUqSQz1OpmPjDEXJFi+6+PvpH\n05QrJi3FnbSkdtGvreLBznNJlVdx3Z4xPjwQ4fYRPz7N4cehLWwTM9+j5ubXqakZZWhzE3NXvZ8H\nykt4/NdloIxd50EUbX62McOa9g6urmlEUWbGY7/VPUquL4NuOVx/Tht1b1JDcCpx1apmvr1+N82T\nJo9NZKa7Samqn4C/Onc4GJikojv0RGJUTBvjFJvG5HLsENVC4LcHQogXpZRnz2LTt/SmCxWLnvGq\n87ClRBEgEAgBQY82HfW9EZ+hYDkS05J4dYX2mP+Awo7xbIlM0SLo0YgFDTSlmkYrmTaDyQLFioOm\nCoIeDU0VJPMmtlN9Cz/Y0Msz3RP8+dqFnDW3OoZl2g5//KOXiGfLfPTcdm46t52IT8dnqKQKFUqm\nwyM7RhlMFgl4NHy6gqYoPPDaCP2TBToaAgxMFOioD/CxS+cxmCjwq+f2HpRa/sTa+SyfG8VQBC8U\nS/SUKzyRr1YCf3ZuI0nLoqdQ5pOtdbyrNkRAnXnPtpSkTJvN6Rz/tGeU7bkSZwR9/Hl7A++Ohfno\nq71sSud5I35F4fxogBUhH+eFg6wK+4loKvqbOMO7B+N8YfcQiiO5Ja/xal+KHSPVdHTYq5F5k89s\nHx5NwbQdNEXh/SubWNQYQhGCWy6Ye8j0/OmGtCpkk+MMDg2wZzxPqVwmUzKRtiRbLGMDIV3Btixq\nBx9nouihK9DOa7UdXJ3MsjIZpdaJoOk2Xeowr2l7D3UWGmp3s2jZ8xQnIoR9N3DX5Bo2dJk4QQ27\nLcANKxpJZ0zWP9JHsCXAD65eyZrWGgxNYVsiyzVbenAeH2Zlc5i7P3HOaeFsHUfyB/9nA8P5MiPn\n13HfmZ2cF60Kyefyu3n+2etJJmJM7riGh7wB/vSCpVyx7sKTbPVhOeifbOvWrXtWrVo1cTKMORXZ\nunVr3apVqzoOte70v1ucQKSU2EgUYLBcwasoNBo6UnKQo5VIJKAgKFZmwsiSWY0s64IedFUwlilN\nry9Wqh2WVEWgq4KyVR33BbBsOZ0a3sdzPRPcu2UYgK88sINPXNjBJZ31PNE1TjxbRgj47WsjfHB1\nNUW1z1m+uGeSf338YB3NkFfjPRe34W8N8hmfj+cKRb5byNAS0vmz65eTjhfYvieFUASrV9TzZKXE\nPaPj+BSFhF2Ncls8Ol9Z2MolNSFKjqTkONTpGt43pNJVIYgZGu+pi3BWOEDasvGpCs0eHVUIfrhy\nHj8fneSe4QQRTaXRo9PuNbiqPsqqkB+JxFCOnJ7/5Jx6tuWK/GRkkl/XwNWL5rJO18jbDm0eA68Q\nTE4UyI4VGE4V2diTYCJXmd6/PuRhIlemZDrcN3WtAb7+0C7qggZttX7OnluD39D4g1XNdDaEprMY\nkmoRkeU41YhGEWiKOG7DCrPGsXHKeRLxAXoGEnSPZhhJjKFn+qixR2msjBMz44yZMSaNBtrlIJmC\nl52172VdaQ6XVoJUsiWe1gd42j94yFMoikVr9BVqowN4a8oYAQsrH6UxdiOi+XyeezGLHfPQcl4t\nn2toYE1dFMeR9A1k6NuR4M839/DNcxbgN1S+PDBGuTuNZktuuWAusYBxyHOeaijKTCpZzZn8fHRy\n2tmqih+P3k4g2E+XkmZVVqfvwfvh1Ha2pywTExPqzTffPLerq8snhODOO+/cs3LlytK11147f2ho\nyNPa2lq+7777euvr622oSuz9+Mc/rlMUhX/+53/ee91112WgKrH3qU99qqNUKinr1q1L33333QPK\nLO4zs8GNbI+CeLHMswMpNAEv96fw6AoXzK2lRpt5ZpFIMpbNjniWiUyZqxY3Ig5+IPy9eX0swz/8\nZgeognMua6fnhVH6x2ciweamIOV5QSY3jvKH58/lhrOrdWjjmRJ/+YsthP06t125pDqdJl9hIJ6n\nrS3Mv2RSVN7kO9GoqawNBthVqrClVC2ECqoKFUeyJODlM231LPB7WR70zsoRHomy41CwHSwpEYjD\nRrCHw5GSn49O8t294+wulN/0w49qKnN9BpdGQ+zIl3g5m2dpwEedrtLi0emP52G0SF9/mr6xHB5N\noWwdnI/fFzFHfDrpoknAU43o9zV4+Mwl83jXonpqAgaxoIFP19BVgUAcvzaWUiLNIqnECL17R9kb\nzzM0mcCc7GJu6iV2eM6kobyIFeUYJVMlpgiQoOMQVqsPNy9qvWzV9hx0aFWtENAn8Mk40eAwocYs\nvrryAdvo5YuIBC6hfsFKvvF8hXs3Z1l9SYy/XdHB3JooTWEvlu2weTDJLT95GbNgMX/tHGoDBs8N\np/A8P8EFC2J86yOrT7pI/NGweyzLe/7309QvraXSGeLlC5ejCIFppuja+Q3GJn7OxueuZ15iDrv1\nCT7/lS/hPXVTyadsZPuhD32o4+KLL8597nOfmyiVSiKXyylf/OIXm2tra62vfvWro1/4wheaksmk\n+t3vfnfopZde8n70ox+dv2XLlp39/f36FVdcsaivr2+bpmmsXLly6Te/+c29a9euzV922WULb7/9\n9rEbbrghc2QLqriR7TEini0zlimxefcE67dW50OL9y9i9ZwoUU2l6EgSFZN7Nw/w9PZxAAbjeW69\ncB4CsKTEqyioRzFmu2ssw1O740R9BteuakVVBP/2VDePbB/D79VIrqrhAatEy1kxri830tWbRKqw\nZa4XU1eoa/bzo+f76RrNck5HLb94aQDLkQTOrOd/xMcJKAoNqka8BpLpJCpwcSTAy9kCczwGX1vU\nSk+pwr/0jjJiWvwsVf3enRnwcWNrLWeGA0gpiRk6hhDUGdr0uOnvi0dR8LwFpy2lPGBcXBGCm5pj\nXNdYQ3+xzMuZAknTpsmjkbMl3+4fw68q7MqXSGWLbM3OVIw9m8odePAaoCYCRPBpKiXT4t2al2Rf\nmrGhHIlMmVy5muXIlqqZhFhTEM2R9A5Ur92dz/Rx5zN904fUFIHlSEIejRvPbeecjhpWtUVQFYWo\nT59SjXkL19Q2McsFzFKGoZEJugYT9I7soZgcpjHfRbggCWvvp668hEBFskMbYIOxl4Kn8qaH1LQy\n4fA4weAkPjFBMJjEGy2hqPs9wjgeVLsDXW0m6Dkbr68VXyhKIBplvKjy0M40MqRxx9lzWdU4o0Or\nqQpL60J88fJF3HHvdno2jtC1KIx36yQ1QYPb13Ye0G3sdGBBfZBlLWGGh/OMtvt4cjLLulgYVfUT\nja1kbOLnhEIJlMxCXmpqZ1vvMGcvbjvygV2mSSQS6vPPPx/65S9/uQfA6/VKr9drP/TQQ9Gnnnqq\nC6oSe5deeuliYOjNJPYWLlxY2SexB0xL7B2Nsz0crrOdJfF8mau//SzWfpGM9Cjc/WQvf7Suk3mN\nQbqG0tz3/ABjqRJ2qx8tb/Hg1hF8Pp1s0SRftlg6J8IVC+rxT43ZVhyb3+4Y4/nuBEtbw6yZE2Fx\nQwghBP/xbB+/3Toyfb4f7Vfcs3JhLbs7/IQ1waXBAA9ksvxYt5m/Mkp3pXqzvCjo57llDqs9Bpv3\nTLJ5zyQhn8bCi1vZrNkgIWU7pOzq9h2Gzu3tDVxcFyZpWvhVlUZDY3HQzxkhP2nToitbZEXYT0BT\naTJ0YoZGxZF4p8aZTxZSSkxzkoo5iWOXUFUfhtGArs/ohRqKwsKAj4WBA7sO3dwSw5GSiiPJ2zbZ\nqZ7NYV3Fqyg4UrK3ZPJYIsNkxaK7WGagVCFv2SQtwXq7DO3e6usQTJcILQuBI4kkK+TjRTzjJQxN\nBUdi5U2yZYu7nunlrmdm9v2LdZ10NoRY3BTEq6sIBIamIJFT4+0q6pQzdiwbaRfJ5JKMDI+zZzhO\nOp8imclSSA4STfUy32qgwbqUnFhCWsuzRekBn8TnyxAOxzEclbBi4g9Uu9QVi2Gy2TqEcJi/4EXC\n4QODGLvYjFKJoesteLQoAf8ifIFavIEQqq6jGR40w0BRVQoVh59sL1DKWiw7p5FVjc0HXauagMHa\n+XWk3rOIbz7YhfFStRjub96zmPn1geM+le5YU00lN/Ct9d14sia/HkuyLhZGUQyCwSVICdFQgrJu\nYUsPXT/6Jov/7muE3mRK4anM+nt2tk0O5Y6pxF5ta7Dw7luWHlbgoKury6itrbWuv/76jh07dvjP\nOOOM/F133TXgSuydpkR8OvbyKM6eLKLscMHaufTlS4xuHuP//K7aIcmRIPwalVW1+FsCmBUbnhvj\nVxtnikae3RnnqW1j3HjhXHRF4c7Huxmcai+4YzDNr54/8Hvl9WvUXtSMM5jHk6wQ8ukka3VeqNPx\nCvh/62s5sybIIsPgsVyeUasaVd1SX8NH59TxoS3dDC4L85F5NWQyFWR7gHsLeS4LB7htTj0AUgji\nxQrzoz7afV5ihkadrhFQZ2SporpKyrRZ4PfiUxVC6kxK16ee3Epd2y5SLA3i2KUDlpVKAyjKPFT1\nyP//ihB4VYFXVYgZB/9/LQtqLAse3BpQSslo2aQrX+LxySyDpQo9hRKTps3VDVHqDI2QqtDqNZg0\nbR6Ip7Bi8FQsi7UEphP/jkTkTJTJMnrXzIP0t98wtt5e68dvqDSEPCxsDHHpggjYBXKZSRLjI0wk\n42TSE5BLsLpUoQ0PHfYKSnIVg3ozL+qjqN5N+P1pQqEJlkbGiYTH0D0Hpn0PeZ0rGnapDSEMDLWV\nsO9cwk2teP0hNE1H0TR0jwehagfkG6vzcx2G0vCLV3JIv8qX37XoTc/TGvXxnoUN+FSFVwdSXLGk\ngcVN4dOiKOpQfPjsNr77ZC+R0TKP1GSmG1x4jBiKXUckMEGvmuLyuMpe22A4WWBBw/GbMvh2w7Is\nsXPnTv+3vvWtvevWrcvfeuutbV/60pea9t/Gldg7jTAUhUevWsVv+ycZt0zW+HzkHcnPQ15e3T6O\nEi9hN/tw5oW4Jhrm3cEAg6bF/7pQQryE9GvIkI46VKB7V4ov/6ran0NVBbLFT3lJBCNrUjdYxKk4\nxAIGex2L1NIIKcWBdl/1NcW6YIAPhINc0hKlNeCl0W+wLOnDtBw8usLqxjCNHp2/bKnnq0Pj/NCw\nq/21CnmWej18aWELjV4PpnTwKArliI8abaaQKfiGNnj7CppOJRzHpFKJU6kkDrleSodCcS8BfyeK\ncnxsF0LQ7DVo9hpcFgsfdlvHsbipKYwQKrYE07ERwPZsnpxts6dYZkOqyNYltewtVsCWKOMl1KEC\nasGCks3eyeqD2a7RLE/vnuAHG2aOr6Dho4kAtaz09OH444SMHIbxNIZRIhod4ZxwHK+3ML1PJauT\nnKylUGzAtOsQMgB6EI9io6pRdLWAV+3G8BbxRD9AJLYQn1dH1TWEqlG0BQVAsUHYoiohIiwUoeLg\nQQidsiWQGPzH60nKmQprzmthdW3wTa+Tpio0Rbxc2BHjwo5qm8OWiA/9NHU+c6I+zp1Xy0uDKdIL\nAmxIZbmsNoyi+vEHOjHtl8goBVaX2/mPuXUse/TneK/8GO21/pPuII6GI0Wgx4uOjo5KY2NjZd26\ndXmAj3zkI8mvfe1rTaeaxN6pdfc8xYloKm2GTpuhU6urhB3Jpxpr6Y0GeTKfp0HT+EAoiCIEPkWw\nRDX425YGttdWi3IkcL8iKNV68Pfl0FRBen4QPCq1qkrRUBmurT697+uQvcDQ+dNYLc8XijyVy1Oj\nqXwgFGKR12B+rZ/2oBchBAsjfpoDHvK2gwDqDA0hBDfNrce0He6OJ0naNuf4fXxhQQtLQv6jGjs+\nVjhOBSHU6a5AbwXTTFGpJLCdIhyhwE86JoVCL37/PBTlxKXmpLSx7QK2XcS289h2kWoHUhBCmdqm\nOiTRqQKK5AzV5iqfg2mbjFuSjZNlHvJpjLb4yDkC05ZkVS92WSIqDlpvFnW8hBPUUHIWDoI8gjxe\n1peXQnkpQjjU+ROEPHn82TxqRSIs8PhNTCuEo4ZxPCE0w09Z6qyc42Fxo4emgIIUAp8iEZVyVXnH\n8JBHUHHAKas4otp6EKGiCBVdUbHRUNFwZPW7ZUmJKWGsWOY3T/ejBDS+fP6CI0ZtNX6dfNkiVTBp\nCHuI+E+/tOo+hBBcvaqFDd0T6BNl7h9PcVltGE31E6tfTb68CZ8vQ7GkUTYVerfsoOOyCl5dpfE0\nKgY7WbS3t1tNTU2VrVu3elatWlV+5JFHwosXLy4tXry49P3vfz/21a9+dfSNEnsf+9jH5v/93//9\nWH9/v75PYk/TNPZJ7K1duzb/4x//OHbbbbeNHys7XWd7FBhCIaQqSKBO17GlpFKuMN9jMN9TfVBS\nBdTqGjWaNjX5B1r0mRvFumCAJ3J5Xop6ydgOazwGN0Uj+KcKgeKWxaZCkZiqsthj0KBpNAQM6j06\nlwWrItS1Hp1zW8IE9AM/vqCmHhSR1nt0rp9bz/mxECXTpiZgsOwkOFrLymLZeSqVCTQ1gNc7ByE0\nbDuHEBqqWm38Yds5bLuEpoVQ1ZkbTXVdgUoljmVl3/Q8ZqmEbVloHgNNr34mjlMmn+/G46lH08II\noSOljZQWTE3QUhR92glW9zFxnNL0zxkEUloIoU5N8bEQQkw7TiEUbLuII80DHgQc28K2LGzTAgGO\nY1Mu5sgk+8lmtlPMx8knM9hOdcqWgk2b6eNTioowbErePLpexh+Ok/MGUb0OL60+h9dZTAUPG8Rl\n1NljTFh1KJNlUAVKvARCMJbxMJ40Efs/l+zXNWzqCgMVtu+tAFn0oI6mK1h5kz9b20RHvcGrg5Ln\n92Q5d0EtjgP9kwXydhEUCE999wy/RnPMjzQlfdkC3ekiYxWL9LZJhITzVjXSWRc44vdFCMGcGh/N\nEe/bIp36vhWNfO0hA3O4yKOtGaSUKIqPSM0qGITG0BgT+QmuHZNsblmA+t8/Yd31NwNQH/Sc0t2y\nTgX+9V//de/HPvax+ZVKRbS3t5d/+tOf7rFtm1NJYs+d+nMU7N/UojZoUDJtsmWLtGmTtizCmkaN\nrqIpgqawF6+u0hPPkzQthKjqBOZsh4w9U2QlqE6f8akKRdshbzvTUXBAVTijLkhLxIdlO8QLFYQQ\nxLwa+lGqnZRsh6xtE9W0tzR95mgplYZBKGhqANPMYJqTB6wXQkXiTDskTQtOObbyvg3Q1ACOtKrT\nVqQ57dAOhW1Z5FNJivkhKtYQqhIlUrOMQPQQzeqFODgiFgKBOr2u6oh/P2zLolIqkpnYxcTkJgr5\n17HMIlp4gkrOixEsHfEYlqVjWQam6cGyDEBgWzrpTAPGWAO5Ug7bn6GtsxdvXKH+8RKBHTbbFi3m\nxfPPYai5g7FIPT2hOhabJrUeLxWPQaZkoyiCUslmwrao1zQqmTK5vEnOcqikyqiJI4/jHg1rVjfy\nL1cspSN2ZGf7duTzv3qVn784QPFdTfz2giWcHQ2Qy3WzedONZOIqW7rez5rsEv6+3csNo5u47Iab\nCdW3EfCotNX6T4U0+ik79edUwZ36c4zQFAW/R8V2JK1RH6bt0BPPoSKomaoUDXhUWqK+6blyc2N+\nvJkSkSlN1ULFZjRXImM72FLy/7P35lFyXdW9/+fcseaqnudBU2uWJdmWbRljMxhPGMuMSV4ShhAI\ngRcwySLhvd+CH5C8l/ASA3lh5geEhGDCYGIw2HjAAx5ly5qseWqpWz1311x3Pr8/qiS1LAlbQo1a\n0v2s1auq7r1Vd99T1bXr7LP3/jYZGl3pGJmYTtnx8YOArOWiKgrtNYcN1XWstuSZh5QiqnJCY4mZ\nwraPraM6jJ30mCMh1SN4XvGlB5y47RS4jk12dA/DE9/Eco81dJ8s9NEdfJBUfc8Jr30Sg5B4p/0z\n7Mjh0vers2/PxbUsKqVRJscfZarwFEpkCgDfULGDBJ4Vp+KmmBhK4DhR8vkmhAgoFevxvOrnRNcd\nbDuG6ZtodhqfMbQph63dGvPm7WJ+tkj91i3UDeSJTDkMLpmH19jC0BvWkPzDduZF4yxPJolETexE\nChmPIUyTIJDYQYAXSBw/QAa1qIEERYDtB1QCn3EvIOd6PDiWY/OmUfSSR3NvmoIhyJYclLxLTzJC\nLGMyXnFISYXRqQotCZPAUMhOVMiPlImmDVYubOTGOQ0szMRpvYjDom+7rJO71h9CO1zmnrEpLsvE\n0bQY9XVXEfBz9D02lUiJtx8a4IWuBcz56t+x6MN/R4kGdg4XaE1HqIsZF0Xr0AuR0NmeBoamMLcx\nfrRVoq4qLGhOkqu4FCyXhoRJ4iUt/NJR/aijnb4tV3GRUh7nmI/cNv0WTvVcIaWP5+XxvPIJs9gZ\nOydQzmbJTm5keOobBIFFdkcPTlEn1apA5x76D32BefoniSVPLkT/Ss4ReB6B51W7gklJ4LoEgcRz\nLHzPwXFHsK3DeO4EjjtOwd6E0KoREMfKcHjwUrLZVkqlOl46OTACneZSL06hiK/WszWdZySdpGI6\ntDRO0GJPsEjdSaczhUWa9/1sF7FShYOXr8FfPI+hN7STrm+lJRYjHY9hZlKk6pKYqSRG/JUn2Lh+\nQFATfi87VXnFkuNxRSpOrqcFD0lUUTEUgVP7/GtCoIraGMnq+qxaCxoEtf0CMBVBVFWoixqzuWHD\njLOiM8Oy9hQ7D5f5xViWTy/oRFXjNLVey0Tu57Sl9rPdN7m0uJq7Kw4vtC/D+/InWfrev0Kv62Eo\nazGat6mL6zQlzAsivH4xETrb00QIgTat1EVVBPVxg/rTaCF3usfPVny/jG2PoigGnlc8FgKeYaSU\nWKUiTrlENvcko7nvElhRdv20B2vSwEyYHN5gU7+wle7r9nHw4FfpbP8Tosk06vRuX1IiAx+hKMgg\nQAgFKQN838d3XOxyiSAI8NwijjuI5+Vw3AE8P4fnTWEFu09iGxRH4pQrfQxkF1IuZ47um2P1Ikqt\nlNwDTKqCjZF69rb7LOrbzaXaJvQD3azKGdi2wcqnNhErl2kcHydqWYx2z6GyvJ3yX7wJNdPI/FSM\nRCSCGokQr0sRSSUxEzHEGXbuOhKiNLVqn+/mZATXD/ADyUjewvECooaKriqUbA9VqXa80lSBX5sl\nB4HEl/KotvERP3/kf+RiT/bRVYWbl7ex9f6dDIyU2FmssCAWJ5HoQwRp0vW7YWoRpeQIHx0u8am+\ny1EFWP/6f+m54S20z12MH6ljvOAwVXJpTBg0huu55w2hsz0NqgkxPhDguJMowkDX079VZu35iOvm\ncN2p35iodDKklBQnJzCiUczYqdftZBCc1GlIwLMsitkpXGeKicI9FCtP42br2HF3E0FLM+Pt9YCK\nokrEwSEiGx1Y+SSDQzqNpdtRNRNFU/E9H2SADE6MG/tBmbL1IqXyFsrui0iO/xEReApu0cS1olTG\nIriWjmXXYytzmAzSBMGxSEa310Qk18cLIsdn602MriK9ZpHF2n4uHdFYWqijbcdhGiYlS178BQKo\nZOrIXXkVLF5CoaEFP5agMWISjRhEM0liyQSJxjqUSGRGS0N0VUFXoec011iPRH4CWa0nhdNTurqQ\nWbeqg88/tBvvcIX/Gs3ysbltqFqU+oarCOT9JHcV2ake5hZzDe8+8Dj/Nmctb0Li/fQe9s19ntVX\nriHRtADfrGMkb5OruDSnIidEz0JmH6GzPQ2CoEKptPfoDAjAtocwzRZ0veGC+0IJAqfW+lBBCAXP\nK+C6OTzv9LuXubZFOZfDd6trmgiBEYkclwEMYJWKlLNZzHicWCqN73sEvl99nm1hlSeYyP+IorUR\npE9hXxd7H45j9XTiRtowjywF+5BvTeLuVtFMYPGjlCobiJmXoKkJXG+CIKjg+VME0q5eIyp+UMan\nmoAofYXKeJz8QJLKhIlnabhFjYqTwqqPYsQ60bQkRaXW3nBa/lZvpRe9oPLTqM6+hSPcHHmMtw+2\nIMeqP8z6dk6ycPsOopZF8bIr8G6+Hev9d6CrCnURg3pFEE9EMU0TJREnmkqgRKMIdfb/sDuypqjO\nQE/w8522dIQ1vfU8eXCSe0en+NjcNjQ1TnPzDUxM3kdr3RPsy93I/ZHnuGTqNazb/xR3zbuKm/UX\nqM8VeeE/vk++cy5rr7qcTMciLJni0GSZXESnOWVe1GH62U7obM+A6VmxUgZY1hC2M45AAWStjlRD\nVeMYRgNCKASBixDaWXPIR+o4Pa+AEDq6Xne0cYPvV/C8IkKoGEb9SZ8fBA5BYCOEgaJoR2fn1czh\nidr+Yz1yp//AeCW4NaECPRLBLpcYG34Cy9lPvvwEpt5Ji/xTFKEjFIEeiaDqBk65wMjEj8iVHiIV\nu4am0jumXa/EcvcyOvVveMEESmkee38VIXc4oNLXg6c0kQqiXOrNpcdvIquUeUTfQq5pDv0v2OQO\nRulaW8BPPAFCglTwrQh+JYprSYTqoig6dkmhMtlAcSBOcThGEFPJN2dQzB7iaoCajFFWq3XuFqBK\nj4YgSUpGybh1lPL1HFQn+VYkibdkjEuD/SwaD2geUVnz7M+Jl8pYHZ0EXb3IT/0DZkM96YhOui6J\nWVeHoioIXUeY5nnhWENOj6qofDO/3jPOrsMFhm2XRi1JIjmHRGwVTUs2M3LfHvKZeeRTe7i2sJam\n3Y9zZ+tVLGib5FLdIFpxeO7un5JtfYGbrr2GeHM3OVnNHUlGNNoz0aqwxQX24/98Jyz9OQ18v0yp\ntPflD5xuk6IfKyURAl3LYJqtRx2jlAGumyUILFQ1cVwv3+q+KRxnHEUx0PUMoOB5RVxv6risWkUx\n0PQ0gW8fN/M0jEZMs+UlNaQ25fKB45ypophIAmTw2zdMcawKxYlqNrKiqkzlH2Y8/4PqYxEnkCUM\nrZOouZCytRmESiKyirK9Hds9cPR14pFVqEoCPyhhO/1VJyvjTGxYQv9zRTRTY2phO7g8tvuMAAAg\nAElEQVTNaFJhXflKXihp5AOoUwUr4g73Rp7H9bLEsvuQExYgUfSAwFNAHv9lJFQBqsB3A7JzM+jG\n/BOurc2voyAq9PrNRCstTNlRJmWZEc3mCT3KaENAb+YQl0wMY/qChdt3sHzLFqYWLCX+Zx8gmUiQ\nMFV00yTZ0oiWSKBEI6FjvYgYzVus/YeHsTpifO7NK3hrSx3F4nby2V3s2PUxpvbF2bnntbjRJJ1+\nPUtKy9ltj/CDZJ7NbfNpSZW5ZmQbKatMfWGMA62X8O6br0IkWpGqgRAQ0RXq4ybJiHY2S4ZmZenP\npk2bzHe84x3zjjweGBgwP/axjw2+//3vn/hdS+z9ptKfGXW2QogbgS8AKvANKeXfv2S/qO2/GSgD\n75JSbhBCdAHfAVqoOsavSSm/8ArON+uc7ckQQqk1V9Bw3anjymCEoqNr1XVg18sd1+/3jM+n6Oha\nClVNEAQWjjN+QunN2cKxKuTG+hmZ+ha61oSm1jFZ+BlRYyFp8RomdhYwW0coRh4CAkytF4mL4w2i\niAgN2puQk61U4k9TUp4FQCWNIVuxJ+vY9ssSVt4j09fEHqMe00+iS5Vby1fzTKnEA3UBL6KxVhvl\ntePN9CZdfmluRHVtJpP7aXUlYleFXK9KJRmjrOjgZqlz5mJw8naLptS5urISxY3T70iyvsuUkWej\nGmdDJCBS75FK2Fzu7KRhqjqumakp1j7xJKZuYnzy0zR1tpNurkeJxRCqipjh9daQ2YuUkt//+tM8\nfTjHDW9ZyFeXz6FSGcB1p9i3+5tM5O5h7y86mRCrsGPVBLvb7TXsLkRxlC38V9zlyZaVqD0R3rT7\naTpHx4mXDqG/6jauWDYPLdVKoFfX2YWoijs0xM9KJvisdLbT8TyP1tbWS5588sntd955Z/NFIbEn\nqnHJLwLXAwPAeiHEPVLKbdMOuwlYUPu7Avhy7dYD/rLmeJPA80KIB17y3HOK5CSfvFf63Nps9qT7\nAhfHObuf3eprTgAn7yH82+C5DoqiUCkUcSolfM9iaPIr2O4hKs4ewEdXOhh6pIetA89TmCqgGRpr\nb/tj4vUJiod9rHKFxi6PwnDAM0/tJT+xBTMeoWfZzZSmbDzPZ/LwJK6Vw4ybuNdk6B9rwfSr2a1v\nrazlkQJ8K+kzpEdIxjUeKLSwN1bmA8UEr1aW8KixjZS9iErgI+eraECyAsmTXFNUGhhSY3llCdJJ\nsMvP8aDq8oJSYXc8oBxXqa/TuEJ5gT8Yt9FK4qiiwNy9e+ne24+xcDGpv/kk7UsXEGlsQK+vC2ev\nIUA1lPyGJa08vW+SB/eN4y/rRdczuO4UHV3vIF98lt7XjGLdvQ3bvAxUg7vNZ0nrMW5zLqehLHnt\nTotdQ0/yny1rSa4R3LbzKczdL7Ltqbs4PPdyrl29imjHAgIzw2TRYarkkInptKejF3T28j333JPq\n7u62+/r6nItJYm8NsEdKuQ9ACHEXcBsw3WHeBnxHVqfXTwshMkKINinlEDAEIKUsCCG2Ax0vee7v\nHN/zjq5FFqcm0AyTeCaDol58S98yCCjlpnDK1b5/flCiZG0iX/41tnuIjHMrEaUDV51g50OTDOw6\nWO1+1dNAbjjHYz94hngmTilb9VKaoRH4AUIRNM1rZvLgBLueqWq+ahGdeCZGpCXO07FhGsd7UQS0\n+mmutlbxVLnIDxI2pcYov59/hkhR4hQ9ftJ0Nf85lud9pWbeKlPsVA8zJYoMUK0DbvMzJIgw12sl\nSYS4jNBvwYQnmZR51mPwk2iZ4YROQ9qiWZ3gCjdLrzWOOFpKLFi6dSsLdu3GdByy199C+lN/SnNT\nHen2FvTm5t/1WxNyHnDT8lb+9ufbsYfKbM6XWZVOoCgmZgS62j/AgYF/YNGbD7H7noB8ahF2tJGc\nUuY7kUchAjeW19BeeRVXHnqCHw838u+dV+HNTfLHmwyieYufPfIUPc73qfS9hrUrl6JlOpgqQWPC\nJKLMzI+++7/8+a7xQ/1nVWKvsaunfMMHPvKKBQ6+973v1b/1rW+dALiYJPY6gOmDNEB11vpyx3RQ\nc7QAQoheYBXwzEwYeToEnkdh4tis07UsssPDRJNJIokkvu8hg4AgCAhcF80w0SMzX1v428yyX+51\ng5pkn6IqyEASBD5WsYBTrhBIh4q9kyAoM1n8BZ4/jqqkiBZfzyPf3Y2i7qWhvYGxQ2MkF3bTsaSZ\n9exlkdPL5K8HKRfK1C/uZlIkUEcGiCZM6G7lsJGnfnEPvUoKS/PZIyd4oDDAvP4IzdZKAgVe7S4m\nabXydNnn6wlJqSHOusqz6Hp1hcBIabwl9zR3N13BZ8eLrMupLDLmMk8T3KgpbK/4TPqSSU+yoXa9\nFa3CgOqzxVTYo2noDQGXukNcbw2ilY9PDlu54QU6Dg+SKJYoLV6O9ucfIbJ8OUszcWJtLaiZzBnX\nvIZc+LSloyxpT7F5tMTdw5OsSscxzSYqlQHqm1fg+x9jYPhzLLz9EHvv8ygPpil1z8czqrGY+2LP\nQgxeb63mj8opXrtzhF8O7uQ/mq8gMldlUeUwHAQO7OXhFzdwMN7MH627AZqWUV3Vu/CwLEs8+OCD\n6TvvvHPgpftCib2XQQiRAH4EfERKedKpvBDifcD7ag8bZ9Iex50gkC6uN0bF2YUMLKJmHzI/h0rh\nZDWnBYxYFDMaJwh8FFVFM8zTftOlDE4okTlSc2qVivieRyyVxogek+DzPQ/PdTCjp/dD07Eq2MUi\niqbhVMonrUMFsN1BxnLfO5rQpIg4DayDXBeP3/0YAIEfMHZojMT8Dg4rzRzeATCPkaHtxF9dx8JI\nB09u9/F9BWXOAiaCMnLcBJo4DBwGqh/RdhbTDhp0+Y2studysBRlu+Pz9aSFW69xW+FZDNXj2kce\nRbM9Rjpa2LpsGbc6z/NI63L+cVzQ7VVYiEqd7XFQUdhtBEwo8mielIgIonFBu2Fz68RuGss1KToV\ndMdh7r59zN+9h3iphN3QhPjQXxJduID2mEmsqQElkUBJJEInG/KKeMPiFrY+sIufHRjn0wu70LQM\nijpO4Fs0tixDyI8xOPoF5r/xENk9FQaesPFsnaCpkVJDtQXpg5ENEIF19hoai828+eDzZMaf4s/M\n9/JC03XMNSe5fGw3GbvC1q98jsKNt3LdurfPyPWczgx0JvjhD3+YXrJkSbmrq8sDuJgk9gaBrmmP\nO2vbXtExQgidqqP9rpTyx6c6iZTya8DXas957rc3+9Q8v/HNBEH5+I1FiBp9NKTWoSpp/CBPEFho\nagZda8IpV46GWqGanRvP1B2d8Xqug10qE3gueiRaLYOpdTkKfI9SLodbqaBHIhixGIpQcB0Lu1Q6\nzhEWJyfQTLOmQCPxHBskKA3KSWfXTqWCa1u1LkoBiqrhey6eXWvgYJ/YDUrKgIqzg6nC/VjuXgQG\ndfImtKAOtxClf88YAzt/jWu7tF0/l0gmQsoxeHyfh/CoZk8LwVTbYsyHtvF4qwCzjS4nziFKQJy5\nVgpH1xlQT1xffq2zjC6/kaeKHhviw9wdTWFmVNaVniEqPK59+BFW/+AHxBrqOfTw46T+4X/xxLXX\ncENxI/2xVl5I9vJAOUB6AkOHHlPl0uIojbmDRL0iqmdW21eUgJq/bBkeZvWGDTiJRiKvuZboH76b\nZGMjLYZGIpNCa25CMU2EHjYVCDk9bl7Wxp0P7GL0YIFt+RJLUnEiZjvl8j4UVaOhdRG6/glGx38E\n8x8hM2+CwsE6Dj9XRuwYQ/a0UYp2APAT81kw4SZnFap9OV8tb2BfVuepiMt/ZZZT7stwa/I5Bp/e\nyLJrXkdjQ8M5vvqzz1133VX/9re//egCzw033JCdTRJ7M5aNLITQgF3A66g60PXAH0gpX5x2zC3A\nh6hmI18B/LOUck0tS/lfgUkp5UdO45wzlo0speTAri8zceg5JGB4cxAKONpBCjxNQPmE5xhaJ8nY\nFcSMRUgkijDQ1GrzC6FWS/4D/8SsYKGIY+ozp5hZAhQrG8iVHkXXWmhI3Y6qRE84RiiCeF09RiRa\nu46Aci6HXSqd5Bp9bLcfxxvFD/IUK88TyAqen6/V2Xoc6dwQYwVGdjX7t4/gOx4DO6qRGzNh4i2O\nkZtswqVAMemQsefwGmcp3UEjLj4P6hsZVatLJsu9btZ483lK2UZOtXmdsxxDVB2Xg4dR+z0YyIDt\nlmS/HfCzVJktqmB+2mZtbiO6Kpm7eTe3fOOL1DUf+xI5/NRzPPPpz7B7aR/lRBwC0MsBiiPxtQA3\nqfPSIIPi+6i+T9+uXSzd+iLFW9aRuf4NpBvriJk6ZkMdaiJR7d5knP8tN0POHX4geeMXf822qRI3\nvmkBX11ZrV6x7VFsewSo1ZcX8uSm9pArPUqh/AwSG68UZ/iFJGPbM8iONkqJzuNeuyFIsNZazmHL\nIOuPEuiDfD7diWjLcO8bV9LWeUa5BLM2Gzmfzyvd3d0r9u7du6WhocEHGB4eVm+//fZ5hw8fNo5I\n7LW0tPgAf/3Xf936H//xH42qqvLZz3724JEkqMceeyw2XWLv29/+9sHzpfTnZuDzVBcJviml/Dsh\nxJ8BSCm/UnOq/wLcSLX0591SyueEEK8CHge2cKwvz/+QUv78Zc43o6U/9331TqziQcq5EpODk6i6\nRueiTjrntRLE9oBQUIigigSuMkKZ7Tj+4eNeI2LMpz55K1Gj+o/lBxU8fwLPz2Lq3Wjq9Dpbn2zp\nYSxnH1FjPun4tQihYbuHyJYeplh5rlaHWkBVMtQlbiCQFUrWJgJpEzXmUZ+8FVVJoBo6mm7gWBbS\n9ynbO/D8LODheCPY7iCOe5BATi81Uomby6n2AtJQ/Qiql8L05jOw9zDbnngR360JoquChdcuwm9Q\n2POrAfJNC46+SqdXx6VWH2U/hiKgXffZqQ0RkQbdfgObKhYro1FcqfJY0aMSQJ+p0KwLdlkBk57E\nx2M4neOXQZyRuODm4gaaYi6CgEufWs/S//M55qxcdMJ7lt25mw1/8gFG2xvYsWTxCfvn7t2L6vkk\nCwXahoaIlcsoUmK/8Xba3/E2EukEWjSCWldXLdsJQ8QhZ5F/eXg3//jLXShXNvHE9Stoi0eQUlKp\n9B/XDlUGAeV8Hqs0Trb4OFOFe5F4eOUIA0/WM7U3hT+nh0rkRCe60Gtnmd3HC6WASuJx/vh//gXR\n9EmkJ1+eWetsZwvnzNn+rplJZ+tUynzrLz9AcWICoQjSrWlKkyVcy0U1VFrntSEEBE6Aoqkk65K0\n9bShp4q4IosMPAKlSIHnCChiaJ0E0sLzp39OVeLmMky9C6GYFMpP4nhDqGTwySKEiSIM/KCAwCAh\nVpGSr8ZTx5mU9+IG1YiHoXXiByX8YApNrae17r2YevfRs2RLv2Ii/6Np59VQhEHEmE9cuwTVNcEH\nzTl+CdyxLQb2D7Bv016sgkU0HWX+2vmohsYhNc/WUj+Z7U148Q56/UYWeI1kFZclXicP5SV2bdTr\nVMEVcQ9bBjxd1EHksIOqKk9T3dM81FRHewkacmkOpD12uK1sd1wcIF2vc9Pgg0TrqmvRa555hqUf\n/yQ9r77y1O/d8Ai//OdvYz33DLGgRMIuk5rKYXouxeZ2lFWriQ4eRPujdxNtaSJmaiQa61ETCbS6\nM/pSCgl5RRycLHH95x6j3Giy7tpe/vmSOUeXgixr4IQSQSkldrlEuTDFxNR/Uag8ix/kcYtRRjdn\nGN+eQmgRip3z8fXj8zVMqXFVeTlrP3MjRsQ8E3NDZ/syhM72RM7ooscO72bjQ9/GNwX7xAQNSpz4\nqKR/w0GsfHVdVjM1PLsmPC6gqbuJVFMGp2JhmAY9CzrxUzux1L1I4RP156EG9ShEscRuyspWAqqz\nS5UMKfc6KqMNmA0TOMYOEAGG7MSwFjI5UiQ/lUfTVDrndSLiefA0hneVUDWV+h5JNvIzfJknEb0c\nU+vEcvZSsjcRVRaSDl4DBGg0oGga0gsIPI9itkBuMsfg3kMEXoDruthlG7tUXceNpqO0LW7D6zJ5\nYHgDUjeZu6sHO9lydKzeaV2HXst63FDyMOvu5ReZLn45PJ/lCF6dNwCFjrk/ITXvBZw9y9gYa+Qr\no1fCS1ISpKFQn1S5Ir+drtwgbn31S+S1Dz1Eyyf+Fwuvv+Zl3ztvcpLK8CjZfBF3dIxYUyN6NIKu\nq5gRE4SCmkwgotFqiFib1bmDIRcIrh/wVz/YxH9tOkxwdQv/eel8rmhNH02itJ1xHHvkhFapEnAr\nFcr5KXKFZ5gq/ALXH0X6BsVD9YxsMSgOxQj0CG5HK06k6ehz//pjHyUaO3kDl5chdLYvQ+hsT+SM\nLvqv/ufVTKgFYl49vblWlFI/B+YqNMzr5nJ1DikzilBqv0rzFmP7RhndM3o01ArVNdS2+e3MWz4f\nAezdspep0Sl81yPdlKalu5nG+T66rGfkQJGd63diFavOt3NxF6qqMHZojHLu+DViRVVo7mkhP56j\nnK/uUzSVy2+8BL1jByW2IHEQaKS4GntgLnbFwXVcrIqFGTFxHZf+bQeOOtUjryEUMKIGmY46zLhJ\nek4dj1i7ES84qInlx9mxwGvkSm8JG0uCMVciACM6wGcbk1QKBugKBJJ6Icik8xwoxfEDFU338UsC\noio3WvsZ0xXykWaWDD1Hx+gOqFtEuUkHFToGBmgYLnHjF/6W2Lx5vFKklEjbRjoOSIkSj4OqnvOS\ngJCLm+f7J/mDbzxDJaWz6ppO7pzfxdyGY1rEvm9j20OnVNlybYtKoUChsI1c8VeU7ReRuPiORr4/\nwfj2NMWROF5rB8lkhA9++vNnamrobF+G0NmeyGlfdHlsjP/7fz5L5RTScGpuB6N1PknZhSFTBN27\nWJXpplGJ41QcNF3DKTsM7xxibN/YcYlPRtwgXp+gMJLHc47NipHVWWS6LUNxvEBxogiy6rAbehpI\nt2ZINCXwXZ/BLQNMDU6hairtq3swYgYD6w/gVhwWrVlC75JefJFDOgbbnt3FwI6TZ+lHUlHMuElD\nbwMN3Q0o0/qqWtJlfWkfU5snqA/6sOLHtFqvcOayPJgDwPaKxwNKiV0pwYLIBD8tNVBBkGoyuHXP\nvbhqC3dnVuJZPkpax42omFZAk+Fy3cGHicYSSEB1VTwzAP3YWM3ftRs13cvb/v5jaOkzE4QPCZlN\nTJUcvvTIXr7++D7cZRn+27J23tfRRG997DiBeN+3cd1JXC930h7mvudhFQtY5Syl8lYKlfWU7a1A\ngF+JMvR8iqk9af78az8+mjB5moTO9mUIne2JnPZF+77PL7/6t+wfGENXPRpUST9pcpy6jrVr+68Z\naMsy0BFBszLEYyqre+fR6iSYPDSJlJJ0S4poJoaNhxGoTPSPYxVshIBYJkbQZrLNG2aR0UKDrJ5L\nURXGgxKD1gSpcYtIcwNtkWoWruUGPPligK4JLu/12PXoDqy8RaIhQSQRJTeaxa24tPS10tDTgB7V\n0QyN0mQJzdCI1VV/UbvS56A/ScEpow6MM5kdx835xMw1lJNVJzvfTfJq/zIUFFzp8GxJIedLho0i\n34moeEf+NXXBGysb6KiMYTfVgYTIgT3glNClAmggbby6hVRaT/wS0B2HeXv3Eh0v0f77f8Clf/QW\nFPOM1pxCQmYdUko2D2T5Hz/ZyotDeezLGvn9OU28s6WB3rrYCVq1Uko8L4vtjJ+0d7oEfMfBqZSp\nlKYoljeRKz6M7R1EEXGuvfY5FOWMMulDZ/syhM72RE6/9Cc/ztD//iUKNp48pgYjyFFSDnDQ3Uy9\nmEdMNLJe3Um/quOpJ9ZeRkpZ8vF+zIUxdFTG90+gFHXUwKSS0anvUlgQqZbIbCsfRttYoMHpJG8U\n2LBkiJihI8cdFh9qprmcAcWk/dB+dneVcV/VRWW4CS1fnfFlmw5xc2s7Y5uGyA3nkIFEMzS6V/cQ\nbYxRkg6O9Jn0y7RqSUp2mYkNm3HzRWw/SVO5Ds9MkcuksSIR3GmlLm+115CRSQ7YDlO+wpArsRWX\nbRmb+z2VVfEJmoa2MFK/kOUjz6C0dRxrXFOrt8UXCMVFimPro4rvc/0vH2Cyvp5sJkPDyAT1joO4\n8Y2seOfbMdrbwx7DIRcco3mLPaNFPvKfGxnN29hrGvm9OU3clk7Rk4xQnzBPKhDveSUcZ+yUIWYA\n17GxSyUK+Z3EMyk6u37vTM0Mne3LEDrbEzn9MPJkkfWfWU9GVdCEoOBL8r4kpQo6jRPLQSyRZUP6\nfgatCJrrEigmthSUterMzayUsU/R3alpYCdjzS1gZE66/+VYbrcx4Y0yFHUY19azemkfC7RqSYCU\nkqcqByjsbEKVZlXEvZylafgg7SN5iul6Bjs6yL8kRKsSME9Jstjuoclvww5yrC/FGddyOIbPMyLO\nM0p1bbozI7lh/GmEiBGZsii2KaBWlXCu+9UjVAyTh264Hk/XUXyfoOY86yYnmbt5Dx0f/SjtSY3C\nyATday+v1rUmEihhXWvIBUoQSHaNFtg3VuKD392AVAXuojRz5tbx/sYMc0yTelOjoSabFzOOT+Cr\nhpgncN1crR7+RGQQEI/3oelnFEKGWexsP/WpTzX/27/9W5MQgkWLFpW///3vHygUCspFI7H3u2Ym\nne2h8SJ3fPZJmm3BqAgY0HyWOVWtyFWWoE1XSCqCEU8y11Ro00/+BvVHHuABFCJ2GcuIIIBLfZM2\nabPFLtAfSyKnvbltrs8blFb2OcMctMeZiCSICFhkROmiC1tItpmjjFhlpoRBk2NwS7AWF5+7xUOU\nTQPh2exufJbReouO0QQ9xauOs8mwbZyjYVlJQgvo0RJ0+k2krUZML4YhDQSCkl9hl61z0JHszxS4\nR2o4ojqgLZmAV+/7FZmkhpc8/ofEqx99FN2Cxs9/nrH9gxz+0leoq+SIeA6G75Ctb2PXsqv444//\nCZn2lursV8pwFhty0ZAruxycLDNWsPnET7cyMFkh6Izh96V5TV2SaxMx5pomSU2hMWqQiRmkozrq\nNBUfKSW+X8Tzinhe/jjNaoB4vA9VPeMlmFnpbPfv36+/6lWvWrRz586tiURC3nzzzXNvvPHG3LZt\n26IXhcTehUbKhFxsnB11GVrtKdqsIcaMOvqjrdxfgjZPIaopeDG4rAR9OZ25hkKnAYpQGHUlDZqg\nx7qe9wJCGUS6QNBx9BwtGkinyKT6KKqqkPD60IJ5SM9noVjBwiNdFyVQSxiOA6+yqs0aPHw0VHZa\nFt2Gyi3q1dzvPEHeMJmfvYb500r2IoHgHf6V2FoZ1VQZElMEqkOX3YBpHSsTOMKkN8y2SiMTvkbZ\nrPDvjZD1NBrSHm3FQebkDzJnMIvd2IqThOWbNxMoCmNNTSzYsoPgTz7EstdeQV1PJ4vWrKBw5XI0\n30VP1noJKwo3xOPH1mLDDOGQi4x0TKfFr37+/+mtl/CPD+xk/f4ptOEKjzZleXhBiuV1cdbEoqy2\no9QVbTK6SnsqQl3cQFerzfY1LYmmJYE2fN/C83K4bvYEx3sh4fu+KJVKimmafqVSUTo7O90777yz\n7WKR2LuwsAKuLW2HoocXN1BUBREUWTOxjWHXY1vzFUxpaXKeyn7FJ53wWeqqtHoK7Y7CYSOgxYJW\nX6UvImjU6gGFAccn50vKAfQaCo2aSQO3gA9WYLPZ8jjkSOpUyfxIgIrKpAeH3YBiUG3hm1ShL+LQ\nrsc56DjssFQO2HBdUuetyg1s8V9kv3sQi4CKGeEKv5sl3kIAdN/Hp8Jc5gIQSJeyLLGjYnLIPRYA\nECLNcGaSXykxDvkS1VS5wd5E3+YNKFoT5dYGCo2tQLUrk5izikVrVhD99XoWfe5OOlevODpLFUKQ\n6u0iJCTkeJqTEWy3WlP7iVuWsnMkz7ef6mfrQA51qMLOlM7W1ihf74gxNxHhtlSS1bZLQ06jMVZd\n101FtaNlQ6oaQVUjGEYznlegKjM+M0z+cFeXO1w6qxJ7emu8XP/Wvt8ocDBnzhz3gx/84PCcOXNW\nmKYZXHPNNfk3v/nN+Xe+850XjcTeBYWhlmgS4wzFW1B9j7bhAQr1KXLpFA1CcE2wE2O4iFoexbPK\nbF7yJvZE2nim7CM9D8VQ8Eo+LY7LJUJjWQmElOxIVBhQFfKB5FpHobmgYYrq+11UPZ6N+Dwf8Vih\nqKy0A2Kegi0Unq+TjPuSiC/oVmHcstFLBnp0gq7Xfxl3fA4Pb/pDLon6XMJyLqFWD2tDIMtsqkxy\n0EkiiSCJEFNcAgmWBDCwYzkmE5L+CHiVCM/JAFdGEBGFy+29rNl6P7JuJZW+PvyaPmbD+DiLXtxO\nrmUBt/39x1EUwbK33Rq2OAwJOQ0666LoqsJYwWZhS4r/vW45mw9nuW/rMJsO5cjvyqPvznOoJco/\nN2ZJdya5PpXgqniMTlMnpavURQ0SpkYioh2d8er6GTWymPWMjY2p9957b2bPnj1bGhoa/FtuuWXu\nl770pfrpx4QSe+cRFUfnsl88RcSrhmImIikivoOmSLasWM7+uXNxGpLQUNWbXOzuZ7G9l8jhAyiu\nA5gUdJ31vTfxoBvnAdUHCTKqYhigCsG3Cy6K4dLqC1QEA2oAEYUm0+Y5L8Z6JJg+UvgoEZWkFuBr\nGtvyPvdLjWTSoRQkCJ77K+IxuLqhgDsRJWFBl2ETV8fI+Wn220mU9ADGvF8z4jeQVwysUhtjbgOu\nHbBdBhTQq/a5ApFSqdcFq0eeoW/bBpTIAtze1dhRQTqbpW5qiqbhUSa7VlL/yb/n9WsvQejhRysk\n5EwQQtCajhA3VQ5NVvADyYr2DCvaqwmTe8eL/HzrMI/sGMUZrlDekeNHLVF+0JdiUTLGZbEIl8Wi\nNOkaSVWlPqqfdH33bPNyM9CZ4qc//Wmqu7vbbm9v9wDWrVuXffLJJxMXk8TeBUV9ayP7vvcD/v3x\njSxc0kCmLsL+MZfsnhHqHn6MK3/5CAlcyvEY+WSKrSuWg6Jgdc49+hqalFwzuQfbQg0AABWBSURB\nVJFrR3bRX9dJoBrM638RRY0jUCmoPs/Oew3ZSBuetFlZOsSlB9YT0VqRxX0caOrB0w2aCiPUFyaR\nSpxAr/YcfnLZ29klUiiBIKpD2RHcX4FH6j1u1LMUsgaqn8SP5lhf7/KY3Uow1HrcNUrhIlI6zYqg\nVVRYOvgE3dkRpDUJGMjEYqy5l+DpCiII6Oo/hOlEkfMuo/FdV3LztZeGs9iQkLNEMqKzqFVjquww\nWrDx/OqyzrzGBP/9uvm856pe/nPDIR7dOcbEYBkGy+xPGezsiPKd5ijxqEa3ofOqeIyrE3GaDJ3l\nbSkM7cL6H+3t7XU2bNiQKBQKSjweDx5++OHkpZdeWo7H48FFIbF3Lpjpdo1Zq8j6wZ1ENAVDU7C9\ngIrjY7k+U0WPPTsmUJ/ZjD84yhUjL9Li5smnU5RicQzHYbC7g4GOLpAS1VUQKHjGsVaOhgdqVkUt\n50BK3FQaJ+MjhSDi+UjbRHGiiEiJwHCxamugiiuIjOdRsnsRSIQSRwZ59reu4IGWa7HyXrUhlaEg\nnOp6UCStUWeUSQfQPLWXdGmMlFumfmJ/1Ri9Az/ViZ2Q+LHj+7J2HjzE4u3bGfvA/+RN/+1GlDBj\nOCRkRvEDScFyyVc8iraH/xLpzc2DWZ46MMmz+yYZzVUbXciEht8QIag3SDRGeVU6wR3zW1meSZyp\nGbMyGxngjjvuaP/JT35Sp2kaS5cuLX/ve987kMvllItGYu93zUw7W8d3GKuMoSs6uqLjS5+SW6Jg\nFyk5HoGEsu3hBZJ9wxVe3DxGy5ZNRG0LoSn0vfg8DUGBXX19TDXVoXsukYJFKp+nv7cHxzCOaxwB\n0D44SNPoGAd6eymmEvjqsWBEolCg/fBhhtraKKRS6EGAQOILgeGoiLxEjG9gf8s8NrZfSVZN0ewU\nWH741/SO70Mo9aCkkFoUP5bEi6l4pg+aSyCU4zKCDdum50A/ZG3qX38TN/zFO1FCwfSQkN85fiAp\nOR7jBZuy4zP9K1xKyb6JEs/1T/HCwSw7h/J4Ncfst8eIdCXY8MZVJM9smWfWOtvZQuhsT+SsXbSU\nEtu3mbKmcAKHslsmIMD3JWXHJ5ASCShCULBc+h/ajP/wetr794CU7O5aiBE3iU5MoBaLdDPFgTm9\ntA0NYRQr7KqbQ31XPWL3ATpGD5GQNlOxJGURoSc7xLaGOSyd2Mf+OXPYO38uhWQKb5oT1IIAY1RH\nyx8EWUEoadxMB27awtepOtVpKIFPvFgimS/QdegQ6VwO1XLZ3rWU1C238Jq330hd/YWZaBEScr7h\neAF5y2Wq5GC5wQn7LdfnvheH+dnmIabKDqau8sL/8/rjei6fBqGzfRlCZ3siM3rRju8waU1S8Sq4\ngYsXeKhCxZMeni8p2h7Fiku+5NPdHCWiqyhCkCvZ7N09Tvm57TiqQbBiEa9d1YimKUgvoFKoMFVy\naYxrGDETYepIx2frjjHGvvcA87Y8R06NoACLcgfZsXgR25csASAibWwMdDwcUXXGmuvSPDJC4/gE\nShDQdegQuu1Q1KPs6VpE8bo3kFk0n+ULe1g2pzmUnQsJmcVYrk/ecila3gkz3iP7VUWwuueMNZpD\nZ/synLOmFkKIG4EvUO2K+w0p5d+/ZL+o7b8ZKAPvklJuqO37JvBGYFRKuWwm7TzbGKpBa7yafCSl\nJJABqqJScApkrSy6WiAT06GqHUBUjeJLHyOlUbfahNXVRhcKCnWROpJGkqydJWbaNDYJ4nocXdEx\nVANFKLRm2ildOp9icbLadcmX9O8dY+pHj7P2vkfYeM3lqL6PlTLxPcElWzYyZ/9+NtfNZbSxHern\n4BoRNq2+ibU3rOHKxV1cEU+j6mF7xJCQ84WIrhLRVZqT1faPZden7HgULI+K4xPRVRa0nPF6bchv\nyYw5W1Gtnv4icD0wAKwXQtwjpdw27bCbgAW1vyuAL9duAb4N/AvwnZmy8XeBEAK1VkieNJIkjSRu\n4GJ5FoEMiOtxNEXjSITBCRwKTgFd0YnpMXSlOguN6yeX9gOIalEao424iXYUqvVkCzp9ylddyZ7+\nN1P56oMs2vY8imURC1wOX34li/7p77iloZFoLE7EiKGICytDMSTkYkZRRLXO1tRoTlZF6guWhzaD\npT8hv5mZnNmuAfZIKfcBCCHuAm4Dpjvb24DvyKqneVoIkRFCtEkph6SUjwkhemfQvnOGrujoxvHJ\nRUcKrk3VxIyeWe/SI44Zqi0i05EMq/tWs+IfV5CvZHHKRaKxFMloBlUJM4hDQi4WdFWhPh5Gqs4l\nM+lsO4DpRc4DHJu1/qZjOoChV3oSIcT7gPfVHjaevpkXNkIIdKHTEG+C+Ik9j0NCQkJCZp7zPnYo\npfyalPKyWmJUuFAfEhIScpHxmc98pnnBggVL58+fv/TTn/50M8DIyIi6du3aBT09PcvWrl27YGxs\n7Gg47+Mf/3hrd3f3st7e3mU/+tGPjpZXPP7447G+vr4l3d3dy971rnd1BcGJGd5nykw620Fgerf5\nztq20z0mJCQkJCTkpKxfvz7yne98p2nDhg3bt2/f/uJ9992X2bp1q/nJT36y7brrriv09/dvve66\n6wqf+MQnWgGef/75yI9//OP6nTt3vnjfffft+shHPtLteVUN4D//8z/v+fKXv9x/4MCBrfv27Yv8\n8Ic/PGt1jjPpbNcDC4QQc4QQBvB7wD0vOeYe4I9FlSuBnJTyFYeQQ0JCQkIubrZs2RJdtWpVMZlM\nBrquc/XVVxfuuuuuzH333Zd5//vfPwFVib1f/OIXdQCnktjr7+/Xj0jsKYpyVGLvbNk5Y2u2UkpP\nCPEh4H6qpT/flFK+KIT4s9r+rwA/p1r2s4dq6c+7jzxfCPE94DqgUQgxAHxSSvn/zZS9ISEhISFn\nzk9+8pOu0dHRsyqx19zcXF63bt1vFDhYuXJl5dOf/nTH8PCwGo/H5QMPPJC+5JJLShMTExePxJ6U\n8udUHer0bV+Zdl8CHzzFc39/Jm0LCQkJCTn/Wb16tfXhD394+HWve11fNBoNli5dWlZf0q89lNgL\nCQkJCbkgeLkZ6Exyxx13jN9xxx3jAB/60Ic6Ojs7ndkmsXfeZyOHhISEhFzcDA4OagC7d+827r33\n3sx73/veyRtuuCH71a9+tQHgpRJ7P/7xj+srlYrYsWOHcURir6enxz0isRcEAd/97ncbbrvttuzZ\nsjGc2YaEhISEnNe86U1vmpfNZjVN0+TnP//5g42Njf6nPvWpodtvv31eT09P4xGJPYDLLrvMWrdu\n3WRfX99SVVW58847+7Va3/cvfvGL/dMl9t72trflzpaNoRBBSEhISMgrIRQieBnOmRDBOeCVvulh\ng9CQkJCQkN8ZF9SarZTyxnNtQ0hISEhIyEu5oJxtSEhISEjIbCR0tiEhISEhITNM6GxDQkJCQkJm\nmNDZhoSEhISEzDChsw0JCQkJOa9529ve1ltfX3/JggULlh7ZdjYl9iqVirjlllvmdnd3L1uxYsWi\nnTt3GpwmobMNCQkJCTmvec973jN+zz337J6+7WxK7H3hC19oTKfT3sGDB7d+6EMfGvnoRz/aebo2\nhs42JCQkJOS85qabbio2NTV507edTYm9n/3sZ5n3vOc9EwDvfve7p5588snk6QrLX2hNLUJCQkJC\nzgHbtv91V6m466xK7MUTfeUli//hjAQOzqbE3sjIiDFnzhwHQNd1EomEPzIyorW1tXm8Qi5KZyuE\nuA9onKGXb+SVd7I615wvtoZ2nl3OFzvh/LH1YrBz/HxtHBRK7J0jZvIDcxr9mc8554utoZ1nl/PF\nTjh/bA3thDOdgc4UZ1Nir6Wlxdm/f78xb94813VdisWi2tLS8opntRCu2YaEhISEXICcTYm9W265\nJfvNb36zAeBb3/pW3VVXXVVQlNNznxflzDYkJCQk5MLh1ltvnfP0008np6amtJaWlhV/8zd/c/hs\nSux9+MMfHn/LW94yp7u7e1k6nfa///3v7z1dGy8oib3ZgBDifVLKr51rO14J54utoZ1nl/PFTjh/\nbL1Y7Qwl9o7nN0nshc42JCQkJOSMCJ3t8fwmZxuu2YaEhISEhMwwobM9TYQQB4QQW4QQG4UQz9W2\n1QshHhBC7K7d1k07/uNCiD1CiJ1CiBtm2LZvCiFGhRBbp207bduEEJfWrnGPEOKfxVnOmT+Fnf+v\nEGKwNq4bhRA3zwI7u4QQvxJCbBNCvCiE+HBt+6wa099g52wc04gQ4lkhxKaarZ+qbZ9tY3oqO2fd\nmNbOoQohXhBC/Kz2eFaNZ0jobM+U10gpV05Lof8b4CEp5QLgodpjhBBLgN8DlgI3Al8SQqgne8Gz\nxLdr55nOmdj2ZeBPgQW1v7NdKnUyOwE+VxvXlVLKn88COz3gL6WUS4ArgQ/W7JltY3oqO2H2jakN\nvFZKeQmwErhRCHEls29MT2UnzL4xBfgwsH3a49k2nhc9obM9O9wG/Gvt/r8C66Ztv0tKaUsp9wN7\ngDUzZYSU8jFg8rexTQjRBqSklE/L6oL+d6Y9ZybtPBXn0s4hKeWG2v0C1S+zDmbZmP4GO0/FuRxT\nKaU80r1Hr/1JZt+YnsrOU3HOxlQI0QncAnzjJfbMmvEMCZ3tmSCBB4UQzwsh3lfb1iKlHKrdHwZa\navc7gOmF3gP85i/BmeB0beuo3X/p9t8F/10IsVlUw8xHwl6zwk4hRC+wCniGWTymL7ETZuGY1kKe\nG4FR4AEp5awc01PYCbNvTD8PfAyY3qx31o3nxU7obE+fV0kpVwI3UQ3XvXr6ztqvwlmZ4j2bbaMa\nwppLNWQ3BPzTuTXnGEKIBPAj4CNSyvz0fbNpTE9i56wcUymlX/sf6qQ6q1r2kv2zYkxPYeesGlMh\nxBuBUSnl86c6ZraM50yxZ88e/YorruibN2/e0vnz5y/9zGc+0wyhxN55j5RysHY7CtxNNSw8UgvD\nULsdrR0+CHRNe3pnbdvvktO1bbB2/6XbZxQp5Ujtyy0Avs6xcPs5tVMIoVN1YN+VUv64tnnWjenJ\n7JytY3oEKWUW+BXVtcFZN6Yns3MWjunVwJuEEAeAu4DXCvH/t3f/sVWddRzH359lbK2jMhhUNqls\nQUolC+APzBJJIDHyD5hsBFaWuLFsS4aIySDyh5tG+GORZGKcJiQmbdDp1oIkw8b4YyQLGcxFKkyk\na8sSlHaonY3TToHByv36xzkXL11PbUtv7y39vJKbnJ57fnzvEy7Pfc499/nop5Rxe461KVOmsGvX\nrrOnT59+o7W1taOxsbH62LFjFY7Ym8Ak3SKpKr8MrATagBZgQ7rZBuDn6XILsF7SzZLuIrnp4Oj4\nVj2y2tJLT+9Kuie9G/Ghgn2KJv8fQ+o+knYtaZ3pcRuBjoj4bsFTZdWmWXWWaZvOknRrulwJfAHo\npPzadNA6y61NI+LrETEnIu4kufHp5Yj4EmXWnsU0d+7c95ctW3YeYPr06bl58+Zd6O7uvskRexPb\nR4AX0zvibwReiIhfS2oF9kl6FOgC7geIiDck7QPaSe4Y/UpEXC5WcZKagBXATElngW8BO0dR2yaS\nO4YrgV+lj2LXuULSEpLLXWeAx0tdJ8mo4UHgZPrdHcCTlF+bZtX5QBm26e3Aj9M7YG8A9kXELyS9\nRnm1aVadPynDNh3MuP8bfaKju6bz3HtjGrFXd0vF+e994mPDDjg4derUTe3t7R9avnz5fxyxN4FF\nxJ+AxYOs/wfw+Yx9ngaeLnJp+XM9kPHUiGqLiN8Dd39wj7GRUWfjENuXqs4jQNZvDcumTYeo85dD\n7FOqNv0jyQ1cA9eP+D1U5DbNqvPBIfYpSZsWnOcQcChdLqv2HA99fX03rFmzZt7OnTvfmjFjxlXD\nTkfsmZnZdWEkI9CxdvHiRa1atWreunXr3tmwYcO/wBF7ZmZmYyaXy7F+/fq5tbW1723fvv3t/HpH\n7JmZmY2RgwcPTj1w4MBt8+fPv1BXV7cQYMeOHX9xxJ6ZmV0XnPpzNaf+mJmZlZAvI5sNk6TLwMmC\nVfdGxJkSlWNmE4g7W7Phu5BO3zcoSTdGxIjuUDSzycGXkc2ugaSHJbVIepkkygxJ2yS1ppPV7yjY\n9ilJb0o6IqlJ0tfS9YckfSZdnplOvZefCP+ZgmM9nq5fke6zX1KnpOfTWX+QtFTSb5XksB6VVCXp\nlXQihnwdRyR94PfiZlY8HtmaDV9lwQxNf46I+9LlTwGLIuIdSStJpsD7LMlEEy1KwirOkUynt4Tk\nfXccyJw8PvUo0BcRSyXdDLwq6aX0uU+SZJL+FXgV+Jyko8BeoD4iWiV9GLhAMmHIw8ATkmqBiog4\ncU0tYWYj4s7WbPiyLiMfjIh8Pu/K9PF6+vdUks63CngxIs4DSGoZxvlWAoskrU3/npYe6xLJfLZn\n02P9AbgT6AP+FhGtAPmEIkk/A74paRvwCMmUfGY2jnwZ2ezanStYFvDtiFiSPj4eEZlTUab6+d97\nsWLAsb5acKy7IiI/sr1YsN1lhvjgnHbwB0mCw+8Hnv//L8lsYsiK2Nu6desd1dXVi+rq6hbW1dUt\n3Lt377T8Po7YM5v4fgM8oiRbFkkflVQNvALcK6lSSXLUFwv2OQN8Ol1eO+BYX1YSn4ekWiVpU1lO\nAbdLWppuXyUp3wk3AN8HWiPin9f0Cs3KSFbEHsDGjRvf7uzsbO/s7Gyvr6/vA0fsmV0X0pHnC8Br\nkk4C+4GqiDhO8n3qCZI0ldaC3b5D0qm+DswsWN9Aks5yXFIb8EOGHsFeAuqBH0g6QTKarUifOwa8\nC+wZi9dpVi6yIvaytnfEnlmZi4ipg6z7EQO+A42IZ4FnB9n2StqKpO0F6zuBRQWbfiNdnyOJynty\nwKEOpY/8/psLlluBewaeW9IdJB+uXxr4nNlY2Lb/RM2bPf8e04i92tlV559Zu3hUEXuHDx+e2tDQ\nUN3c3Hzb4sWLz+/evfutWbNmXS5VxJ5HtmbXOUkPAb8Dnko7cLPrzsCIvS1btvy9u7v7ZEdHR/vs\n2bPf37RpU00p6/PI1qwEImL7OJ7rOeC58TqfTU4jGYGOtcEi9mpqaq6MOjdv3ty7evXq+eCIPTMz\nsxHLitjr6uq60nE2NzffumDBggvgiD0zM7MRy4rYa2pqmtHe3l4JMGfOnEt79uzpAkfsmZnZBOOI\nvas5Ys/MzKyE3NmamZkVmTtbMzOzInNna2Zmo5XL5XIqdRHlIG2HzN+xu7M1M7PRauvt7Z022Tvc\nXC6n3t7eaUBb1jb+6Y+ZmY1Kf3//Yz09PQ09PT13M7kHbzmgrb+//7GsDfzTHzMzsyKbzJ9EzMzM\nxoU7WzMzsyJzZ2tmZlZk7mzNzMyKzJ2tmZlZkf0XjE+gqoTTZ1sAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f05213010f0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plot_spectra_by_type(frequency, spectra, concentration,\n", " 'Mean spectra in function of the concentrations')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Reusability for new data:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEgCAYAAACXa1X+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4HNW5+PHvu72o92Jb7sYGF4w7YJoJmOYQCDWhpDgk\nJISQAumkXZIbkntpgUBCT+DSkpjeq8G4YWzLVbZlS1YvK2m1fef8/pj1SrJcZH5eW+V8nmcfz86c\nM3NmeNhXc6oopdA0TdO0w8VytAugaZqmDS46sGiapmmHlQ4smqZp2mGlA4umaZp2WOnAommaph1W\nOrBomqZph5UOLNqgIiIPi8hvE9unikh1iq/3sohcfbjTatpAZjvaBdC0z0JE3gGmAkVKqfBnPIcC\nximlKj5rOZRSC1ORtj8TkWuArymlTjraZdH6J/3Gog04IjISOBlQwAUpvI7+w+szEhHr0S6DdvTo\nwKINRFcBy4CHgc9UtSQi7yU2PxURv4hcuqfqTERuFpE64CERyRaRF0SkUURaE9vDup3nHRH5WmL7\nGhH5QERuT6TdISILP2PaUSLynoh0iMgbInKPiDy+n3vJS5TLJyItIvK+iFgSxypF5McisiFxnYdE\nxNUt73kisiaR90MRmdLt2HAReS5x780icreITATuA+YmnpsvkfZhEblXRF4SkU7gNBE5V0Q+EZF2\nEakSkVs/y38rbeDRgUUbiK4C/pH4nCUihYd6AqXU/MTmVKVUmlLq/xLfi4AcoAxYjPn/yEOJ7yOA\nIHD3AU49G9gM5AH/DfxdROQzpP0nsBzIBW4FvnyAa34fqAbygULgJ5hvc3tcCZwFjAHGAz8DEJHj\ngQeBbySu81dgiYg4E28cLwA7gZFAKfCkUmojcB3wUeK5ZXW7zhXA74B04AOgE/O/VRZwLvBNEfn8\nAe5DGyR0YNEGFBE5CfNH/iml1CpgG+YP2uFiAL9USoWVUkGlVLNS6lmlVEAp1YH5w3nKAfLvVEo9\noJSKA48AxZg/9n1OKyIjgJnAL5RSEaXUB8CSA1wzmshbppSKKqXeVz0nAbxbKVWllGpJlP/yxP7F\nwF+VUh8rpeJKqUeAMDAHmAWUAD9USnUqpUKJchzIf5RSS5VSRiL9O0qpdYnva4EnOPCz0wYJHVi0\ngeZq4DWlVFPi+z/5jNVh+9GolArt+SIiHhH5q4jsFJF24D0g6wBtCHV7NpRSgcRm2iGmLQFauu0D\nqDpAmf8IVACvich2Ebllr+Pd8+5MnB/MAP39RDWYL1GtNTxxfDhm4Isd4Lp761FGEZktIm8nqtLa\nMN908g7hfNoApQOLNmCIiBu4BDhFROoS7SDfA6aKyNTDdJm9p/v+PjABmK2UygD2VKHtr3rrcKgF\nckTE023f8P0lVkp1KKW+r5QajdmZ4SYROWM/eUcANYntKuB3Sqmsbh+PUuqJxLER++nAsL8p0ffe\n/0/MN63hSqlMzLaZVD43rZ/QgUUbSD4PxIFJwLTEZyLwPmZd/qGqB0YfJE06ZruKT0RygF9+husc\nEqXUTmAlcKuIOERkLnD+/tInGuDHJtpn2jCfkdEtyfUiMixR/p8Ce9qTHgCuS7xZiIh4Ew3u6Zjt\nO7XA7xP7XSJyYiJfPTBMRBwHuZV0zDevkIjM4vBWWWr9mA4s2kByNfCQUmqXUqpuzwezMf3Kz9A9\n+FbgkUQ10CX7SfO/gBtowuyJ9spnLPuhuhKYCzQDv8UMBvsbrzMOeAPwAx8Bf1FKvd3t+D+B14Dt\nmG1SvwVQSq0Evo75/Foxq9OuSRyLYwazscAuzM4BlybO9xZQDtSJyJ4qyX35FvBrEekAfgE81ac7\n1wY80Qt9aVr/JyL/B2xSSh3SG5OIVGIOZnwjJQXTtH3Qbyya1g+JyEwRGSMiFhE5G1gE/Ptol0vT\n+kKPLNa0/qkIeA5zfEk18E2l1CdHt0ia1je6KkzTNE07rHRVmKZpmnZYDaqqMBF5RSl1dh+S6tc0\nTdO0Q9PnMUiD7Y1Fj+rVNE07ygZbYNE0TdOOMh1YNE3TtMNKBxZN0zTtsNKBRdM0TTusdGDRNE3T\nDisdWDRN07TDSgcWTdM07bAaVAMkNU3TDpt4FFY/CsqAYy8Erx4m11cpfWMRkbNFZLOIVOxjuVQS\niwvdmTi+VkSmdzv2XRFZLyLlInJjKsupaZrWy4Nnw4s3EX79h/DHMfDJ40e7RANGygJLYk3we4CF\nmCv+XS4ik/ZKthBzkaJxwGLg3kTe4zAXIJoFTAXOE5GxqSqrpmlaD4YBu1dSn+fgg7m5+DJs8J/r\nj3apBoxUvrHMAiqUUtuVUhHgScw1JbpbBDyqTMuALBEpxlxu9mOlVEApFQPeBb6QwrJqmqZ16agF\nYP2kDABWTcsyJxjc9OLRK9MAksrAUgpUdftendjXlzTrgZNFJFdEPMA5wPB9XUREFovIShFZiZ4r\nTNO0/19Kwf9M4tOJaTjDcd6tuYj5HzYTcFngySuOdukGhH7ZK0wptRH4A+Y63a8Aa4D4ftLer5Sa\noZSagbkuuaZp2mf34Z0owBlRZPuinFLyLO/NyyVm7Zc/l/1SKp/Ubnq+ZQxL7OtTGqXU35VSJyil\n5gOtwJYUllXTNM30+i9ZPz6N3aVu6gpdyd2bJqSZG0HfUSrYwJHKwLICGCcio0TEAVwGLNkrzRLg\nqkTvsDlAm1KqFkBEChL/jsBsX/lnCsuqaZoGHXV0ui3E7L1/Gv1pNmJWIfrGj49CwQaWlI1jUUrF\nROTbwKuAFXhQKVUuItcljt8HvITZflIBBIBru53iWRHJBaLA9Uop/WeCpmmptfoxaoqctOQ69nm4\npsiJZ/tT5JkdWLX9GFRr3ovIykRby8EMnpvWNO3wCPvhtlLemFuA2I39Jpu0sZ3ib9aBxXoEC9cv\nDNkVJDVN0z6bV3+M32MlszOS3FURmEhDw8geydI647DllSNcuIFFBxZN07T1zxH79DE+mFpAe1ZX\nC0FHPJPNm07G11qU3NfptcLuVUejlAOGDiyapg1tSsEz17J6SgYxi73HodfKT+Xh0Ez+9ekl+CLZ\nAJRPzCBct/JolHTA0IFF07Sh7eP7UEBHuh23NZDcfe8nX+cH7eO4Bw+rImNp9JUkj1krPzoKBR04\ndGDRNG3o+tsCeOUW3p+TQ/d+TOsaJjKp8QQmYWUqNl4ng5iva8hda8ZRKOsAogOLpmlDy9bX4dZM\nuDWTUOMqfBk2ahwFSLc+T49svIzFuDDCHbS/9WsiwTYWVV6SPL722AwItByFwg8MOrBomjZ0xMLw\n/A3EBQxg6ewcXpx2DPl7zQb1SNic1tD/8k10nFKJf/33CS77C4ZhdjF2hOOwTI9l2R8dWDRNGxrC\nHfDbAnZmtPLOyXm8PT+Pakopoq5HMsdrfyZLWVm6dRWbvzEb/0KDxp/GiDZ/inXlNQCIguDGJ47C\nTQwMOrBomjY03DaMgMtCxWhvctewvaYvPHFZC6PIoXLXGuKlYTKmfpA8VndHlMJQJwBhl5U2CR6Z\ncg9AOrBomjb4ddQRF/hg1oFX1vh7x+0opcjZ9hcKP39/r+ORT5+BxPjJ6pw+D0QfcnRg0TRt8Hvh\nRuoKnFjZ/1Qtv/jwFhap8exurqZ9UmZyf/Oms2jbMRcA/1lx8n9vjnUp6OiAQTQl1uGkA4umaYNe\nePsrrJxQuN/j0c15LPKPIqYU/rqXCF7V1Zhv9zRTu/JqACLjFbbu7fy6Z9g+6cCiadrgFmpn5dRM\n0gj02F1SE2Tmah/zP2zmLzt/xRU4aYkayE1dgx8jndmkD18JqmvCyfBo8y2lusQNu/RAyX3RgUXT\ntMFt/bMEPF3zfxXUh5i1spWJFZ1k+GOc7v9f/oIXpRT+5Xck07XuOB6/V1gps0k77QHqV18GQMuN\nMQhC0G1F1a0/4rczEKRsPRZN07T+IPzaTVjm5CS/T97sT27XG8U8wRiihuKV1gDjbi1HgMqW2fx0\n9I+6TlIAPzP+yp7KNM9yC4FTDEJL/4T7tFuOzI0MIPqNRdO0Qa0xu2tiydkrWwFQykpt+AFikTsB\nqIkqJq+7F7HEASjPKeh1nt8WfYO1Oy4HwFFh9girzvOktOwDVUoDi4icLSKbRaRCRHqF9cSSxHcm\njq8Vkendjn1PRMpFZL2IPCEirr3za5qmHVAkwLoxucmvaYE4/th51IQfJ66KUbhRSlG340OqLx+b\nTKfi9n2djQ8jnwMgPMw87kGPZdmXlAUWEbEC9wALgUnA5SIyaa9kC4Fxic9iMNf7FJFS4AZghlLq\nOMyljS9LVVk1TRuc1JoncNjMgSclNWYQ8MWuQ5EOQEPUYFdbI0Xul8mf/G8AlvnO5QnblQBYY1Ec\n4a7g8f4xGYRCWQTPCmHfAiGbbk3Yl1Q+lVlAhVJqO4CIPAksAjZ0S7MIeFSZ6yMvE5EsESnuVja3\niEQBD1CTwrJqmjYIde5cDokXlrLqIJ2xBQQNRcBQbAoZNMUUEy1/Q33dHIEfD3m5K/sryfyv3nA1\nVqVoyPRy6e//BsDbrhNZyIu4Nlrxz7NAJAAOXSXWXSqrwkqBqm7fqxP7DppGKbUbuB3YBdQCbUqp\n1/Z1ERFZLCIrRWQlcOBhtZqmDSm+pueS256QQUv0u7zWHmN91UZKV5ntK4HTw8k0FmdncvsHj9+P\nNTEAsqCtk8lbywF4XMzAY68RQi4rrHs65fcx0PTLxnsRycZ8mxkFlABeEfnSvtIqpe5XSs1QSs2A\nvaYo1TRtSPuk1Pxb1hmKEzVyWNIWI3/MsyBQPudKjrnk67hzdibTX68eT26fu/RtADo9Hppyc/n9\nPbcnj8WwYbgVYaeFeNWHR+huBo5UBpbdwPBu34cl9vUlzQJgh1KqUSkVBZ4D5qWwrJqmDTbBVjxp\nHQDktkR4vvVnYAnTWnsqxtQmxp5/c4/k73MKbVY3AMdu2wzA1d+z8sIF5/PmmQtwh0PJtKuZQTjN\nQ9QuRJo2HqEbGjhSGVhWAONEZJSIODAb35fslWYJcFWid9gczCqvWswqsDki4hERAc4A9H89TdP6\nzrcrOZVXflOEhlgJOePfZOx5t1Ay+6Feye+TG5LbNz12Kzd/o4Qzmhcm9wnwxreuAOAxriV8UgiJ\nCu2BnXufashLWWBRSsWAbwOvYgaFp5RS5SJynYhcl0j2ErAdqAAeAL6VyPsx8AywGliXKGfvqUY1\nTdP2Y0fF+uSqkJGGcRgWoWDKv3qls73iZO2jC5LfH/7V97nlWhvT207GGemaYv/Zi76QbHOJYsco\nimJtECKy/4kth6qU9pVTSr2EGTy677uv27YCrt9P3l8Cv0xl+TRNG7ze2fQmI8aAMoQXW3+Mp2BL\n8piEhTGv38V3j3eybGHXqPyy2moeOLOe3HDvfkAxu52gy8WU5vWszT2Ojmgm+Q3t+DP2PeZlKOuX\njfeapmn/v8ot5ttGaP3JRFQaw08x5wFzrrMQvn0Es88vZtmwnB55FnxwF/GMsZxaeyoAjsbduKor\nksffOe1UGow0AG61/QZrE7gtAYiG0LrowKJp2qA0OsdsgLc15VI86+/J/dvfnsa1P/tzr/QnrruV\n52ftZlrztOQ+Z1Mt9g4flqDZDbk9I4MvPf8XAOqklHiGEPBYYdubqbyVAUcHFk3TBqUJmdsA2NZ0\nDpkjl6GAu1p/yI+++9Me6SyGwR/+fAVbMrfhjnW1qUg0ktz2Vib6DomQae/qyBrLstHpsaI69UiH\n7vR8BJqmDTrxkI9g1IXb3lVFVcF4luXMSX6/asldnLP5PQq327jkFiv2uJ2F1V29wFw1O1jYmIEr\nezSGw8sT/gbiaZnsHtEVWOLiJmIPEmvZgW5p6aIDi6Zpg86u8pdx20NIhxd7Wh11FHGr3JY8nlP9\nHV6e5uPlaYm5bRXMq+8aKmft8DHPX0DGrIuT++bFd/A+2wFY9M7rvDT/VKI5Bs7tVkIZn+rA0o2u\nCtM0bdB5ducbAHS2lZE+7BO+L/ckj4kRxGK0dSVWcFHlReR16wlWtHMno8Z0BRWACdZRye2MSCdR\ni52WzDQsNUK4dV2K7mRg0oFF07RBpzlgLiW8e9l15B/XNXYls/535FUvRlDY43aywllcVHlRj7xp\n1ZUsHHvTvk+cGHBpOM3Knl2O4YgFOu2RfacfonRg0TRt0Clw1KKUYEtvYpdlRHK/PbwJAE/UwwW7\nLuCMmjN65PNsW89FWZf32FflkeT2adFjAbA4zMDlI4soXgxbLCX3MVDpNhZN0wadbGcr8YiXnAmv\n8R/M4JHW8jCemJsTa2eRGes9ADJtyycMd47BbjOnwDeAWWeZ67bcXB7ki9UxBDPI2OPmSpMNFGG4\nLEScR+CmBhD9xqJp2uASj5Lu8BPvTCcWzOJVORcAV8ebnFN1Tq+gYm+px9bWjC0W58TCC5P7Xyy2\nJrf/cKyb8gwLOcocHGmPm28or3AuymahI9MG4Y5U39mAoQOLpmmDimqvJcvZQSyWgdXVntx/8V5t\nKXu46qvIrKvl4tFdsx3/u9TGr6b0XLxr8SwPWcrLBeEZCJDd0YaVOMomhJwWaNiUkvsZiHRg0TRt\nUKmt3gpA2/YTSRv1MQDjd6/qkcZdtZWmYCdbLVbWTJyJe8Z3ehz/7XHuXucNW4VOK8m3luN2VRAR\nJ+05aahWC9EKPfp+Dx1YNE0bVNasexWAeEcmq5gJwEhfPHk8e/M6Hly0mJrplzA170xuC53O2Y1d\nP4Wnnp7W43x//a8fJ7f/e6ILG2YVWUO2uebx06UXgE+wLu09TcxQpRvvNU0bVN5v72BBEbgdu1nB\nXNwRHyObagCY1uhgRtmNXPQhQO+JI8+Z48ZvNxvof/eXPzKlYhM/+EqYl2+4moV3PsKHeV3tLhG7\nA4ANjnFYOoS2jFKyU353A4MOLJqmDSouVztKgeFRVDKKrFAkWTUzI/3k/eb7e7rQkGn+JD7+8+/y\n/a8244xA0CV8b7H5xtPqtNBhgzHxIo6p28mO/BIKqMcShbZYSAeWhJRWhYnI2SKyWUQqROSWfRwX\nEbkzcXytiExP7J8gImu6fdpF5MZUllXTtMEhPa2DaCCX2MhKaqWU2owCAMY37//v6GVWxb3zuqrA\n1pY1YliEoMt8e6mNz+bvvzYHTf5+oguXslHWUk9WsAM3QYy4FX92MIV3NbCkLLCIiBW4B1gITAIu\nF5FJeyVbCIxLfBYD9wIopTYrpaYppaYBJwABoPfSb5qmaXuZmlNOsGE0gXwfAN5QAInHme89pUe6\niGEOo68zDL5zRnpy/yO/uIF/nNbzp9GRvZz/Pi/MhModrM22kqnMHmPuSAgf2cQcXlqKBc2UyjeW\nWUCFUmq7UioCPAks2ivNIuBRZVoGZIlI8V5pzgC2KaX0wtKapvVJZ9VxtGA2ri9c/zHK2tU2UhmO\n8ycP3OURZpyVznkLM1GJNYxPX7GUu89rJmLvHSRa8to5acXt1LotTIwPA8AbCrFRjiPqdBJ1WCAe\nPQJ31/+lMrCUAlXdvlcn9h1qmsuAJ/Z3ERFZLCIrRWQl0Hs4raZpQ0YwGMQwLFjiBtsYC0BaOMD8\n6EQA3o7EufiCLJ44OZ0nTknvkTevtZkvvno3lUVdP4sTK9NZ9H4x0zdlAfDxOHPyyj0j8KM2c07j\nd4bPwe2PQ6v++xf6eXdjEXEAFwBP7y+NUup+pdQMpdQMQK+2o2lD2OaKrYgYALwg5ij69ECI8fES\nAH54ftY+893w5ENc/PIN/OKqrnaYsz4uwF11Ms9nXEtus/n3bqMrE4C7x9opMrKYkli2OOK2EI1Z\noL48NTc2wKQysOwGhnf7Piyx71DSLARWK6XqU1JCTdMGlfKVzyKAYTeS+4qsZuP9HeN7T+g1avcu\n/vmzG6hJe4NnT+r6ObTFBFd7Mf6001gcKGSMZTH2qAXD087PH7idsNXC6HghRW0tAARcDsQvhGt1\nYIHUdjdeAYwTkVGYweIy4Iq90iwBvi0iTwKzgTalVG2345dzgGowTdO07sLOVRiGjXC+uUb91OrN\njIubzbaPjTLHnVijtVzz3A+YVDOS5aNr+fmVEdq9Pf/GPn7VFynyzibftwblPB4RK9aO8URzNlGZ\ns4YlpTYu3urEqgw8sSA+aybWeqE9tpT8I3vL/VLKAotSKiYi3wZeBazAg0qpchG5LnH8PuAl4Byg\nArPn17V78ouIFzgT+Eaqyqhp2uDi9LbQWXcsDcVhAEY0N1JkHGMeVAZFlV8jbo2yZK6FJexK5OrZ\nUL/wo8spYw6x0MfEQkuJBd/D6jiWL29ZzANzbuKVmYLVUHiV+QaUGWun1ZqDkQbt4UodWEjxAEml\n1EuYwaP7vvu6bSvg+v3k7YREtw5N07Q+aI+l4Qxk0ZyYmbi0zY8HJy+W2PjBo3/kkdMO3Gvr0lcm\nkZ05B4B043WmFNQxI3c3j2730xY9Lpkur7mG9ngAAG+og1ZnDnG3FSPYezT/UNSvG+81TdMOxfjs\nbcSac6m3FOKKB1HK/KF/eESAR05bf8C8V7xSRnamWUGSz9t8ZcwqZuSaTb5Xjf6E6c7/5sxNiUqV\n4Nt4XEUAODsUDRRAowdDryQJ6CldNE0bRAwlGP506ikiJ+pjZNwcgdDp+16PGq9rXiqjNjtERsBG\nZXGANePayMg0R9bbYuu5ZNidvc59Yv4u3q8xA0eH/XVW534RWiEjEsYvGbS70yl21oNhgGVo/80+\ntO9e07RBQxkGRtxCTLlYJ9Owxg3GxUv4nzGtKDFH2bvCFi550+w6XNzqIi1WwsfqZr668n8AiPiX\n8I1hP9/vNX5UfFty+918KyPj+WQEzY4CtRlFBO0WiHam6hYHDP3GomnaoFBbU4U1Hqc5MQNxqyOT\ngFRRF/0HOGDijnRmb8xB2cpwZV/EBmsrk+LZfCuxFli2tYL5Jc8mzxdVgj0RkPawdHvr2ZwW5loj\nF2+4DoDmIhexHVbideVYy+ak9mb7Of3GomnaoLBq3QqMqBfrscsAOHXHSibES6h0mu0kszeNwJV9\nE+50cyXJSXFzLmKbhLAS4Yr8HzLM07Xi5N5BZY/Tys0R+6HoDmzKSlbQD0C1rYRg3EbThndTc4MD\niA4smqYNCh9t20aocziVIbP3VlZLmBaHQbvNrJpyZS3ukd4uQfL4kG8UXs51RZf2+Tq3eTdgMWwE\nZT1YvTjiMRzxMEG8WPyCo/qdw3ZPA5WuCtM0bVAozF5O1bvfx3fBSiwqjiccJI45lf3xO09LpFLM\nz7ifyZ5X+nTO+jwH2Q3FOCxdc4B5lSI3YCXoracm3Yu1U4hYnbzM+Xwt+ij+SOuQX5dFv7FomjYo\nxO1x3Dlb8Tk8ZMbbsQAFES8As2s+jxDnpJxfHDCotIRdAPhjn2NjRiF5jQZ22UWt1fypDMbMv8VL\nrO04g6vZlOXEpRzJ/DG3jXisNUV3OHDowKJp2qDgsgRx0kilpYy8cDNnRaby3yUPU9o6GlB8q+hi\npjr2P5ZFKchxmuNeflEUZbSvg/vqn+Yv9c/xTt3tALhtMQA+dZuj7julESsWZm7bAIDfnYFV/Cm8\ny4GhT4FFRPJF5Ccicr+IPLjnk+rCaZqm9VWxqxHD6qCNLDJCnaQrN+1WP3N3XcRM15/2meepnZPx\nR823kMSSLNSEHuGKyhz+1vCPZLqW+Chea+1axPa7LeYiYmHx024Jkhk223Ea0wuIubomwByq+vrG\n8h8gE3gDeLHbR9M0rV/IcLQTs8fplHQ8oTiZykOto5HiYBazspYm0/1p48n8rWIGwbiNC4ZtJM1u\nvoVUqWOoCT3MrujrfOz/Uq/zbw2bK1B2RB3MD5htN8scT5FtpOENm9+b07IJOi0QHtpvLX1tvPco\npW5OaUk0TdM+o85wFKPFy7tlowBwxJz4LQE6lMEZGV1vK3EF35/4fvJ7B15eNK5iTuRUqm0xJju/\nwie+/wMggsKTDp1WRXGnhZYovO27mRM8/0N+PA5AWFUwLnQBOyONADS7Mwk2WqG1Eoq65hYbavoa\nWF4QkXMSk0pqmqb1K+t3NhIwynhz+GgA4pZ0/NYAnc5WxrjNWYx3dmZR5jWrsB7mYrJp4xOO48rI\nyVRKnLmWS/ig4ysYiZ/FO7K6TSjphYv8DtIjozkpI4bd6KruanXa8YbNtO12D9GwjUD1p3h0YDmo\n7wI/EZEIsGd6UKWUykhNsTRN0/rusdde5TR3JhPYwHqmMbM+xCtZyzm3cj7wOABlXh/3cBVho5gL\nI3OJEGcqNixYmOf4Aqs7v8C6wHkAhFy9Zyl+Ni1CTnseQeM4WiJd3Y935GbgabVgM6JskomodsFY\n+QjMuPKI3Ht/1Kc2FqVUulLKopRyJbbTdVDRNK2/SLdsIh7KJB0/LhXgeJ+i3FPBLca/AHim6liW\nsIBGcvli5CTSrW9T5riFka5FjHCdT0ils8z/ZQDsNrjLZY66Fwwcc9KT13kgI0xYhXBZwlzUbraj\nbMy1k6bcxCx21ss04sqKt+7jI/wE+pc+dzcWkQtE5PbE57w+5jlbRDaLSIWI3LKP4yIidyaOrxWR\n6d2OZYnIMyKySUQ2isjcvpZV07ShxeFswojZaCKPolADeUYGPmsHWWL21pqbu4sN6ni+FJqP1/og\nAeNdXJatAFSE5vFgw6PJc/1XmtkQP8bSxNWuVVyx5i0uza0HzGDzgf9CvLYQl3d0ANBs3U2aciXz\nB60Z+F3uI3Hb/VafqsJE5PfATGBP/7vvisiJSqkfHyCPFbgHcxXIamCFiCxRSm3olmwhMC7xmQ3c\nm/gX4A7gFaXUxSLiADx9vy1N04aSPHcd/i3z8U3OpjDcSprKpCgwHFgJQKG7k1Ijl+HOy/lb/f5X\nO799WAz8cLp9KyOsvuR+d+curnHt4uHQDL7vmsqFFhgdiWJVioCxk51WKzn+NlrSMvG7s4jEK1N8\nx/1bX99YzgHOVEo9qJR6EDgbOPcgeWYBFUqp7UqpCPAksGivNIuAR5VpGZAlIsUikgnMB/4OoJSK\nKKV8aJqm7cPwcBPW0o00SiHp0QAbPNu4PPIaAB/XD2OjjGN+bO0Bg8o981wof5Rx1sYeQaW7Bfat\nGAJ/iFzdX8XNAAAgAElEQVRNYyCd0liMdlXF+PgwplZXALAtfwIBpwUCLYf/RgeIQxl5n9VtO7MP\n6UuBqm7fqxP7+pJmFNAIPCQin4jI30TEewhl1TRtCPGWttGQYY6GH9scp9pRz/CYuShXq83FC5zB\nK61fTKa3WLvmv18x1slvF2UQ2NBKtgQ40V6ZPFYW77mC/TBrGwD3Gmexob2AkdEYzmglbmsOPk8a\nAH8tvIxWixN2LUvJvQ4Efe0VdhvwiYi8jbkO23ygV5vJYWQDpgPfUUp9LCJ3JK7XawUeEVkM7Jm2\nNC+FZdI0rR9SShELZlFnM3/YC1qhyl1HaYc58LFldDGz6grZlEj/9IlpbBpmzu9l3d6BpS2E810f\noyzNnOLY3uPcO62Nva7nIkoIO5MyOvgkGuUjVzO1Xje5/mYA7BImHLWhnr4a+Xnv/ENBX3uFPQHM\nAZ4DngXmKqX+7yDZdgPDu30fltjXlzTVQLVSak/XimcwA82+yna/UmqGUmoG0NSH29E0bRCpawsS\n68gimGaupTI8ZKfKUUemodjhz2Zr2zQaOqcA8FS3oCK+CPat7TgaApzvKO8VVPZnsq0WAK+9jbJo\njKgFdqVbGdNo/rwdyzqiVkFZHQc6zaB2wMAiIsck/p0OFJP4wQdKuvfg2o8VwDgRGZVofL8MWLJX\nmiXAVYneYXOANqVUrVKqDqgSkQmJdGcAG9A0TdvLp+UriEayiWVYsKsIBTEPux0NAKxtKkRhoyUG\n60Y42JIB9uWNuF7dzYyVn3KNawVfdq0i1xLYx5kVV4+JcOPXruqx91hbPVYM3pbp5AXMKrU2uw8B\niv0NrGA2RsRCQ+nZKb7z/utgVWE3YVYz7WsGNwWcvr+MSqmYiHwbeBWwAg8qpcpF5LrE8fuAlzA7\nBlQAAeDabqf4DvCPRFDavtcxTdM0ANZufJ5h7WWsYA5RcWBFmB+sBiAjK5ZMt2ZYmM+tXM0oawu4\nep8nx0ijxbJnji/Fj05y4fngf2HbPVz7ued56LW3kmnLLK3cFLuevwZvhRERXJF6AGzROFEcsCOb\ngGVT74sMEQcMLEqpPW0XC5VSPYaiisg+/tP0yv8SZvDovu++btsKuH4/edcAMw52DU3ThjbFbiK+\n2dRLMQBlRj5TI+ZYlM2OSUwKHEM1MRZs+wibdd/LDQPJoOImxM3cCx90HSt77Xwu9pzKM4FpgJBr\n6WS7kYsl7CA9HmKndSVXxOazprWFquxi2nMzKUmMkxmK+tor7MM+7tM0TTui0hwdxKJmw/2wYC1L\n09cwJRxmbWsR9fbhhAI5tBd9iK3bGvYuw4XbMNtAsoyuIXKZtJtBZR+OC7zDTNaa10lUnQUidiZE\nInTKDkScZAXMQZOVJztxSMhc5GUIOuAbi4gUYXb/dYvI8Zg9wgAy0AMWNU3rB4Z5q9iUHwZgZmMF\nbbYORgVj/F9bASrbgU9FeuUJWboqYHyJIDGNcj7Pa8n954Z/R7kahY0YFS6zneVc3mIFU8m0dJAm\nYVZ6J5Eer6HV4SNu95IVqAOggUK2FqUxLNQG7u4jNYaGg7WxnAVcg9lb68/d9ncAP0lRmTRN0/os\nPWLgyzDnxvU2R2i2tSGA2GKkxdNYnr2DsT1yKPJpZhGvs4XRuAmyhdE9gkq5UUa5Mqfgj2FjSuh+\n1rrMlgEbMWLYKBA//7acjMP9ASGrosVpJS1kBqn75AbOaH4P2qp1YNmbUuoR4BERuUgp9ewRKpOm\naVqfKKWItedg5JmN5/FInN3eKjqiDmLWLLIjBYx1m92IWw0XX7a8wAzWJfMPw3zDmMsnyX3/OeUl\nbnq1ucd12knjt9Er+Zn9H1zH49zNNRRZ2tlhK+PG3TH+NsJOnacDe6Cr6sveqjCat2MZgtPn93Uc\ny7Micq6I/EhEfrHnk+rCaZqmHUhDW5BwLItwtlnddU7gGJyWDaTbI2wrPAG7sgPgUkHusNzWI6js\nLWpPZ0roAb77qo84VgCW//QMdtx2DlfMHsFj8TMBcGNea7ytCUQ4vt6DyzDw27bhxcmE1m0UqDqi\nhgvL019O5e33W31d8/4+4FLMLsACfBEoS2G5NE3TDqp80xtEo9nsZhhZRiuueAifLcSa1mIMi43t\nns0Iilvkvp4ZS0+AshMBUFllPOe5hIkd99COOXNUWa6Hyt+fS0G6CxHhvy6cTBgHv4p+GS+dFCTG\nYmdIiGDUSrZhMCLwHlmGB08oRgg3UZWGIQxJfe0VNk8pdRXQqpT6FTAXGJ+6Ymmaph3chspPiJDN\n+3IaPks2LQ4fP2lq5cPm4biU2evrPN5Ipld541E/rkZ97U1eOOFvTFZPMaruNm5q+Tyxbi0Dr3/v\nFFpaPmTL1t8Si3VgGGGmDs+iTuUA8C0eAyBHAtQ7y8iOx3krLUquSscSNfCTRnxiJxG7BYz4EXwi\n/UNf5wrb04UiICIlQDPmSHxN07SjprWzEm+b+Teuw4jQ5GilJGCAWBHDisVqcALrAYjNuZ6x75wI\nv3xvv+ebMzqHe66YTiS8jU/WmNVYVVUPAfDU15Yz45c1PdJPsDXwlm0KEaOcKmcL+UYGQZsFQ6xs\nzSrj2OwGSjpqIXNYKm6/3+rrG8vzIpIF/BFYDVQC/0xVoTRN0/qi0LKbQNh8izi/cRnHBEfSEkwn\nbHOQrbK4tNssUmPfOfGA59px2zk8uXguAd9TfPxx7+lYPlg6iwe+Pp/34pMBGKN2YMdgmXUSs9vi\nRCyQqTyUtpoTT1YEJtMudvBV9TrXYHfQNxYRsQBvJtZDeVZEXgBcSqm2lJdO0zTtAEptrazNNSeF\ndAfTeT37ST7XnEFkxCjapJYJ7ADgbeu8HvnOOraQb582jjSXjeJMF3arhWi0hbq6f7O14r+S6ebN\nfQcRK0s/PBkAaV6MDbNqa56sZgtjCFmcWA0zfYbyUNZs9jT71HUsoXo7RtvuQ1qfZDA4aGBRShki\ncg9wfOJ7GAinumCapmkH42j30lhodvGdWJ9JzLGNpoiXiJED3aZvubbTnDnKZbew8mdn4rEbWCxd\nsw93dGxg+Yrze5x7/skrsduzAZg541+sWHkhfv96Hsr8EvP8GxjDLqxiMNLqwx7IAoLcX/QvSlpG\nABC12JC1dtrmVZKdyofQD/U1kL4pIheJyBDt46BpWn+jlMIfGUlrmh1RBuM7BKdqBRRTYqOwJN4s\nnrR8jj2Thmz89Vk07L6Ht9+ZyJtvjWHNp1/hzbfG9Aoq8+a+nQwq8Xgcr/fY5LFvntqCv9sa91mW\nIJ5ac0GwsthGFIpjfZtoJYdIuoVdFfvv4jxY9bXx/huYMx3HRCSE+V9JKaUyUlYyTdO0A6hpbici\nmTQ7c8gyfARtHWSrODs6s3EXBJmRmNerPFwCwJpfnMnHy8+ls3NL8hzNze/2OGdJ8SVMmPAbLBYb\nq1at4vnnn08e++lPP+G9948n1P4ST8RP4yu2V3GqEDbihBxpjIpEqXBVMrLdgqszTktmDo0jxnN8\nYMUReBr9S58Ci1IqPdUF0TRNOxTvvPcBKpxNk72A3HgzdY5Gsn1esp1htttrmYvZ9vJE/HT+cOo9\nrFp2w37P5XQWMW3qg6SlTSAajfLrX9/aK80zz7xIQaG5nX1cOtZNBlNkM5VSyCbPRLyxT6m12TiZ\nEjydAeJiZ1fpMGZ2Dr0livsUWETkTaXUGQfbp2madqS01b2Cp3METZZ8jouuo8pVx6JwC89YpuNQ\nISbLZjapEcSwkefYnMw3/fh/Eghsx+HIJzt7Dlarl+61/L/73e/2eb3NmzczcdKtNDffSnb+m1Ru\nKGSspZIMmcN6WyGFESuN3jhtDieZQbNnWM24KOEPrRBqA1dmah9IP3Kw2Y1dmLMY54lINj1nNy5N\ncdk0TdP2K10202nJpV0yyYn6qHLUsbsjh4zsucTYCMAL8Tl8ZXpFMs8Zp28DIDt7dq/zxeNx7r77\n7uT3a6+9lvz8fDweD7feeisA//5XBSfPB0TYoEYwW1XgtQTZwkQWxIM8bPfilDryO8xOs52kEYjb\nob1mSAWWgzXefwNYBRyT+HfP5z/A3QfIB4CInC0im0WkQkRu2cdxEZE7E8fXdl/uWEQqRWSdiKwR\nkZWHclOapg1+mUYrTeYyLBTV5xO07uadptGkOQo5VT4G4PX4dE4qNtcaPGX+mmTeSCRCPN41Iv7p\np5/mN7/5Da2trQCcddZZlJWV4fGYq4PcfPPNiZSC3WaOY3FkxEgXc3GwYksHn8aKACh3b8ERN2db\nrqWYkLISbqlOwRPovw42u/EdwB0i8h2l1F2HcmIRsQL3AGcC1cAKEVmilOq+dv1CYFziMxu4N/Hv\nHqcppZoO5bqapg0Nbiy05ZpLD09syWNlbgPt0TFst7SwMDF+ZXhxFSpagdNZhM1mNhV3b5Q/5phj\n2LSp9xLCM2fO7Hktt5vvfOc73HXXXSxfPpzjp68jO8+JozNKDj4WOLayoy0DCjuocO3kzFazleAt\nOYtvhp5j97ZPGX3MmSl7Fv1NXxvv7xKRecDI7nmUUo8eINssoEIptR1ARJ4EFgHdA8si4NHEEsXL\nRCRLRIqVUrWHdhuapg0lsbhBJJpLa7rZ7TcjFKbGBtmBII2JJYbXGmVcONEceT9+3C+orKzk4Ycf\n7nGevYPKSSedxBlnnMG+Rlbk5uYC4PfnYrWWEi0wYCeUUksLWRy7zcHq8bDduZtM5WF0x062p5cR\n3Z2JVL4F/OAwP4X+q6+zGz8G3A6cBMxMfA62Hn0p0H0ug2p6t8scKI0C3hCRVSKy+ABlWywiKxPV\nZXkHuxdN0wa+ddU+OgOj8Oc4yVBtdFqa+PNKIZ7rIcdi/qS8L8fisgYpKvo8Hs+JvYJKd+eddx6/\n/OUvWbBgQTKotNTspvzdN/HV1yXTLVy4EICqXWnE7LsBGMtOYspCwJ7Byb4omaoNq7iZ5DO7Ndde\nG8Dj38xQ0tdxLDOASYk3iyPlJKXUbhEpAF4XkU1KqV6zxyml7gfuB9BtMZo2NPz9tfeYHhrPTkop\npJZ2ex3WzgzczjKyEt2Ma7PTOAbIzv4yt99+ezLv5ZdfzoQJEwAIh8O0trZSVFTU4/wb3n+bl+/+\nU499Nzz2LFOmTOHll1+moyOPcIn5tpOmgtjE4K2i0zkn/DEfZDpxWh1YmxwwHHYykph3WwqfRv/T\n15H364Gig6bqaTcwvNv3YYl9fUqjlNrzbwPwL8yqNU3TNEpD7xKKbWCHjMXbKQStDbRGPGRmHceJ\nrCCirNiyA9hsWbz5xtpkvksuuSQZVACcTmePoBJo8/GnS8/rFVQA7vzyRTgdDvLz8wkEM0AEv8vG\nGKnEThRldzDJCKJEmBDKIbvTrJJbF55ByKGgtTJ1D6Sf6WtgyQM2iMirIrJkz+cgeVYA40RklIg4\ngMuAvfMsAa5K9A6bA7QppWpFxCsi6QAi4gU+B4m5rzVNG/JGudfSluMGYEx9J4alAZ/yUmUP4SVI\nABcnD19GLOZj2zZzaeLvfe97TJo0ab/nDPn93Lv4Sz32ufOCjF64K/n9mTt/y+LFizHiZmWPK2r2\nLCuhnhwJ8GntFADKM8pxJXqGve06lebaDIy68sN09/1fX6vCbj3UEyulYiLybeBVwAo8qJQqF5Hr\nEsfvA14CzgEqgABwbSJ7IfCvRF2nDfinUuqVQy2DpmmDU4aC2hxzLq95rTn4rQ102HJplwAOFeFl\n20yyqeiZJyOD6o3r2Vi5hrUPPwnA8Wefz441K/HV9ewvVDW1kXOOb8HqNKctHv+FHWx5bhRVy1bg\nv9ZHWto4lBJWTstkziofhaqRbEuYYGcBUMWGtBVI88jk+SItOQSev5m0ieem7qH0I33tFfauiJQB\n45RSb4iIBxKLQh8430uYwaP7vvu6bSvg+n3k2w5M7UvZNE0beuKBTMpHjgZgQpuX1vRq6i2FBC3b\nsRMnnuiGHAn/CKhl0aJF/Pmy83ud55NXnu+1b/gpNUw7pueqIJ78UHL7yb/fxuRZF7J23TyOmfAB\n7XgolCY8EsIWjFIcidPBJxSqycyrWcVHxcezu2AGpa6tpB3GZ9Cf9bVX2NeBZ4C/JnaVAv9OVaE0\nTdP2JxKNs3vbpVhdBqIMimIutu8aRkbabEqoNxPlhcjKmsuaNS1MnjyZD+/+Q5/Ofdw1m8ntFlSm\nTX2YE6Y/RVHO15nyVbOxPrB8C2NHjaTTnw0i1DvzKaSJTAnzYsHZlARhrStIg6WdNF8UJRbqcuIo\n2Xi4H0W/1deqsOsxG88/BlBKbU301tI0TTuiPt1eSzQIcZswPFZFrT2GakvDKMymBHM8dXpWMw31\nYwiHw4weVkSl35/Mv2pOHQVlfrLb7Zw4PECkw07Ebye9JJBM43aNJRiqYM2n1wAQiXwJu91J0cwG\n6lYU8PGql4jH81DKgspNJ7+mBpdEUS4XtrYsKjI7uDUK//CZI/l35RTQetA6nsGjr433YaVUZM8X\nEbFhjjPRNE07oj55/1/4PK2UW6aQFgmw3bWBzqiLnfY4MzDXPnHaomzfASjFW3++LZn3uKs389Wp\nrZyfFeWkEQFEwJkR7RFUAIKhnu0zDsfjVFdNI3+KGSi2/fN5QqEobb4C4mmtOImSSTt5Fj9enxlB\nDHsYdzSMwwjRkJaJd4dBrGpojIjo6xvLuyLyE8AtImcC3wJ6V05qmqalmKf5NT494fMADAtZ2eFe\njh1oc7QDEN8zV64qJivWxJ4ZwaYu3sihLFVY4RvJbctvSn5/4MzvUrO7q6tyLRsY4SvCn2sOyCxQ\nTWRIiMK6NJjiQ4xRiKWGnLiPZnc6wQYHHRUfkT38YGPLB76+vrHcAjQC6zAnpnwJ+FmqCqVpmrY/\nOf4I2bYaAK7eEKOlrRGbx8JEMd9WNueW4LAX09jgIl6xE4CxiyoPGlQMJexsH8ZXX7uTr752Z4+g\nAvD11++gpHQzoy40e5AVtgXp7Myi02sjjlBCPdkSxBEzf1Z/U7IEUdBmyWC1zGTnlAI87+97Sv7B\npq+BxY3ZXfiLSqmLgQcT+zRN044ov7eAgNuJVcUIGSGCISvpnhIypQOA+rEGsdgkOuNmQ76RFySt\nKJjM3xZOZ22jOZ4lZlgJxlw8uP4Kvv76Hfx62Y96Xe+M8V0r1r9XPY/MAh8KyKoVwuEC4lahwZ5L\nqdRTZOng/ZKzANji3snE+DCCVnOG5K2lZWAN9Tr/YNTXqrA3gQXAnhYwN/AaMC8VhdI0TduXSMyg\nozaT5bNm41Ihalz1qHYrJc5p5LGOVpWG4YzSUJdOg7GSItKZer751vJq5Wk8teXCPl0nTUIssG8l\nyxKCXfDDYybwx00ZPLbxUo4vWEvamAid2xzUBfzE4zZCOS5K6uuxiqLJlc1JW718MK6TsaqdkytX\n8v7IGUQDabQ7XeSn8gH1E319Y3EppZLdKhLbntQUSdM0bd/WrFhDK3l0SCadljSabK2MqElnjbuR\nXFqoE/PtYvt2C1O2pWPNDWJ1KH697Ad9DiqXOT/hYuc6M6gkNFZ2TSJ507u/o3iW2fssKvWIxIl5\nGvASxEmYEqsfr8+s0PFY/JTVmmnbHV4aCoZG17C+BpbOvRbhOgEIHiC9pmnaYVf51l3szswBoCDi\nI89oxLDZCNlj5NGKz+XCZhtOwG8GhckXV1Lnz2dn+4jkOdIlxHRbNQvsWzjLvgkLBnZiXO1cwTWu\nFbjEHFx56aWXcv3115OVlQXAl5xdPbqUwwCnBVewlo6OPKI286d0IhUca6vHZZQBUOtahTcSwmmE\nqLSNIFKeQXwITO3S16qwG4GnRaQGc3niIuDSlJVK0zRtH2IEcJ26EZjPz30P8mmLQbbFihcfXoLE\nc8Hf4SFn+w5sniht4XR++uHPASiytHOWfXOvRvyrrKuS2zNmzGDevHlkZWVhsZjB4sYbb+T1119n\n6dKlLHRs5OXIRN6rmcOYWZ2MWBdk586JFI4zp9YvxFzrXgw7VkNR4arnuOAw8kItvONZwJWOpZTu\nWEtB0bGpf1hHUV+ndFkhIscAe/rabVZKRVNXLE3TtN78HWN4SC4BYPSuGSz3LcEazyQbc7S8M7eR\n5sZRQJD00k5W7+paCfIs+2Z+/vOfYbOZP3uRiDk0LxQK0dzczKhRo/Z73QULFrB06VIKEksRP1dx\nPnecegsV75fRGowRclvZacujMNZEVFnZZR9BYedyPvL6uKzFw+jGGnaXlVCdUYzl/Vc4d+7lqXg8\n/UZfq8LAXNxrCjAduFxErkpNkTRN03rztdZghIzk99XxTjI77XjTRzALcz37kFvobDNHrpSdXsvj\nO8zxLuPTY3z729cngwqAw+HA4XCQkZHRI6hEYgZX/m0ZI295kdNvf4erHlzOq+V1XHnllYhAlpiD\nKdc0TsbqNlC+FkIhL5aCDAppwkac5d4pZDemscZlwyMhChvNMTb1JemMCK1O7YPqB1K5gqSmadph\n0/Ty9TQHuhrUK1xVuCIWghk5lGJWRUWcVnZvETJHt7Oh5rhk2hd+uJD8fLM/VkcoSnVrz5H2YC53\n/OAHOxj/s5dZWtEMwPamTt7b0sh1j6/m9mVtLF68mM85zJUhOyJpOIot5FTGiEWdhJ11eAnikjDZ\nlgA57XaiImRYyskImddbmnMCmZmtqXlA/Uh/XkFS0zQNgEikmc7lrTQON2c0/vquJbyVvpovkEfI\nZsepwrzkmYFDxcluCuMsi3B3ubm2ygPn5uFwOABo7Agz83dvJM/7hemlzByZw59e20yTP9L7wt28\nWl7P56eV4MZsBViybSE/GvZ3gtvB7gwQdJk9vnLwMdzio6DVCUCro5rSSCkeo5Oww2CXJ58RsTDY\nnIf3IfUjfQ0se1aQrD1YQk3TtMOtvv55NkQm0zSiBICZPicbgmaVV5q9BpsYuPN9NPtyEItBg+s4\n2pSbTAmy4KRZhKJxjvl57yWdnlu9m+dW772wLTz1jbnMGpWT/P4/r2/hjje38s1/fMJdJ57Amx/5\nqDay8KW7UbY4O+pLyMzvBGAENRxrKyTmGg7U8FzWjv/H3nmHx1VcD/udu3f7rrTqXZZsy5KLbOPe\nbTDGGBw6JgFCICQBEhJaEkiBQAgh+ZJfCAQIoddACMEYMNXYxr0XucqyZVm9r7RarbbdO98fV0iW\nJTeCadH7PHqknXJn5mrvnDtnzjnD+TUXUeDbz77YXPz1GZTs2U5e4df3UNxTeYIkQoizhRDFQoj9\nQog7+sgXQoiHOvOLDjdp7sw3CSG2CiHePsF+9tNPP18zdD3CvpJ7aVXiWZ05GQAtEsXZZiXGlkym\nMASDmtJMWaPElRFgYe3pSATj1Aoa/KE+hcqR/OGiQt67eTr77pvD2AGxFDcXc9PSm/CH/dwyZwjf\nmmCYLO8ghxnmUkCyx5+DiFMpbY4QtCoEVStJ0lCj7bcPwtlhYr/VR7oWT1ygDb+IoSmaSWPZ1/tA\n3FN2gqQQwgQ8AswBKoGNQog3pZS7Dys2D8jr/JkI/L3z9yfcBOwBYk62/X766efrgb+9GDWo4w+4\n6VAMv2xzIJncaidCtZNMKUFpJmwTtFeGyZ/SSOUGw/fkissuY8J9H3Vdy5b+T9SYHQhhaPXvGHc3\nb+3eislxCN3dyj/2bGTJ+0t6tD/55ckk2ZN476IlvLyhnMdXl3O1TQMEH5XP4oIz7yC4PhaEoMOp\nkdrahJSwxVLAlENuNhdo2DDj8oUgHdZmDmdYzXrgu5/H7ftCOKEVi5TyY2Av4O782dOZdiwmAPul\nlKWdIfdfAc4/osz5wPPSYB3gEUKkAQghMoFzgSdPeDT99NPP147i4rvxrh5Inae9K+3JhDeICZgJ\nxWeTTRXFMguEQswhB8VNhuJjjKuV7764tauOq+CXmGOLuoQKwB823c2uwCKKGrdx/4b7WVLeU6h8\nQkNHAxe/dT6vXW+smOw5o7vyAmYbzko3AO0OlUSaEEKSZAoQ6DzaeLtrDSmNxt7MawOnY234eluG\nnahV2AJgA3ApsABYL4S45DjVMoCKwz5XdqadaJm/Aj8HdI6BEOIHQohNQohNGCq7fvrp52tCa+s2\nfL6t7GybTcc4Y2L+Q8UrSF87rc4IDY52EvAS8uiEw6lkz6hlc60hWGYXdE8Hrvw7OSN7Jo/MfoTf\nT/s99027jzsn3XnUds/IOoNfTvwlIxK6LcvKfGU0sZEEp4Un9ypMVQ8CsM87CKkLdpYOwO80YSNE\nvGwhUbQzsN4QRKWO9ygMJWKTHbhlK4iWz/xefZk4UVXYr4DxUsp6ACFEErAE47jizxwhxHygXkq5\nWQgx61hlpZSPA4931vvfOEWnn37+BwgEyti0+WIA3P5mHk4zrLyGV2dTVLmRIdaRNAsfViI4Eptp\nIgRON9vaDZ+Ut2oOANlYU1/nxXOfZnTy6F5tLMhfgC51KtsqKfGWkOpKZXhCt1f8twq+RUSLMOZF\nQ1j99OOfcvc573Lbv7eTFOtAbdI40DyQiVlb8PojtKSYARjEIbYrOZTpqXjazLwR086dTS6msoKP\nxFy81q+3dv9EN++VT4RKJ00nULcKyDrsc2Zn2omUmQqcJ4Qow1ChnSGEePEE+9pPP/18DVi7bjYA\ngaCF9mhZV3pTyE5iq4VEcybZnVOKP06hvsrJrpbRdGDBrUTYW2Vstv9gyqg+hconKEIhOyab2QNm\n9xAqn2A2mSm6qqjr88I6ww5pT4ebBBGgtCWXuPw21GozfrsFv8lGhqglQ/FRbo/H2WGi2RzGozsQ\ndTYADjAEX3XJf3eDvsScqGB5r9Mi7GohxNXAYozDvo7FRiBPCJErhLAA3wSOtCR7E7iq0zpsEtAq\npayRUv5CSpkppczprLdUSnnliQ6qn376+WoTibR2/b1kw8V4M4z3z7N8W3ks/lWsERMNbjsDqMKH\nnXaHifbNsXxUMcOopES76t86/sf/dX+EELxzkTHlbW/YToLLzP6AjSTFT2UgBeJ0VL9Cqy+Zjjg7\n6RtANOQAACAASURBVNSiCInJbqGg3Nh/MZl34PIa/Xo1bx7V2/vez/k6cEzBIoQYLISYKqX8GfAP\njJAuI4G1dKqfjoaUMgrcCLyPYdn1qpRylxDieiHE9Z3F3gFKgf3AExhHHvfTTz//o0gpkVJnxcpu\nz4Mh+1UWz5gPwHnlgki7F2kTlCl+MmUVpZYEQmEb9tTQJ4cS41CMYJAPXZmDOJnziI9BljuLm8bc\nBMDU00rQUMg1NaNjorgtBwJmKoKCgD1MMl7sdDDUVI9NJACwxf0xyV7DcKDCmka4/sBn0q8vI8db\nsfwV8AFIKV+XUt4qpbwVWNiZd0yklO9IKYdIKQdJKe/rTHtMSvlY599SSvmjzvxCKWWvPRIp5XIp\n5fyTHVg//fTz1SIQOMjSZYNZuiyvK83n/DOByCaabcbkPKYuk/QmKx4lCUU0kSRasKYFaW52YRti\noUF3kq000xw2bIDOG/HZRhG+vOByAJY2PAZAfGfcsGd3XY4rV6PDJ4nxhQA4m49RhUaC2TAieDSx\nESVsBLGssySh1h/PsPary/EES4qUcseRiZ1pOaekR/3008//FF6vl127drFlyxW98hZuPEjNiJEA\nXC6f5S/JLzGw2km+ezI5imFQGvBEaK2RrN87m3as2JUwEUz8YMbRoxV/WhxmB5flX9YVen9JJA8V\nDYlC1sRDmCtU9ua5AGjHTrLSTq05G3NEEFYipEhL17XC0WOHkPkqczzB4jlGXv+Z9/30089/zT9f\n/jW1decRCtd1pQ0YcD2jC1cyZd1K3powD4BRbGOf/RCWqMI+d5ghHCSCiTanCY9ZZ1PYECQBzYjB\ndcuZ+b0b+wy4cfSNANizH6dK9zDN3QxAeSAT2Wwi4FDpsJqJ6TzJfQuDyK0xrMAm6w7mNCwH4KA4\nNf37MnA8wbJJCPH9IxOFEN8DNvdRvp9++unnuEipEwo1UFHxEgUFPcOtnD5rD4MH/Yxr3n8Xn6LS\nZjE2vwsPFlJjMfZODiodjKeIg/Z4NFUh5M6mUjfeg5ukk2EZFuyWU3MMsMfm4YysMzDZD2E2CZJi\nrAgkRfUjiHEZeyhej0IepQgkFlM7Ga2dfbPuwN1mRGiuIo1osPGU9PGL5nh+LDcDC4UQV9AtSMYB\nFuDEDpDup59++jmCFSvHEI229UrftOpCJrleJbL099xZ7eahkd8EYKAsIankUk4P7GKQ+zSKTYaA\ncbj8NHtTKSsvBCBZtFEv3Tx02aRT2v8F+QtYWrGUrOQg62o0koSfrbWjOS12DzsbXGS4O0ivC+HG\nT4bSSrKegKIdYnWMl9g2w9elzuOifu+zpI/+6Snt6xfBMVcsUso6KeUU4B6grPPnHinlZCll7anv\nXj/99PN1or7hfT5aOqiXUBmV8TybV1zEz/Qncb7zI5oaOvi4IZUPx54OwA+8q7gr6xFSmmwkJI5g\nCIbXe3OSSm2zoChqRD3OVhux2/0MSnKd0nFMzZhKsj2ZKm0JFboHu4hQHUzGmeunrVYlYDdWS6k0\nkKm0UKqejcdvZpW1gtwWp9F3l4OWA19P97wTjRW2TEr5t86fpae6U/3008/XB03roK1tDwA7dvT0\nKAiHbbBuCIkvn8PPeRwFSUdU5Y3K4bQM6N6DsFSZ2OTajS2qUGJqZTarAGj2mHHp8eyKpgEQ0c1c\nNu6zMzE+FhPTJqLGbAcEjbohLMpIx3rIRbvVWJVcziIUARsUJwWH3NTYg6Rr7TilH2+6GVN7/TFa\n+OpyMkcT99NPP/2cFH5/MRs2ns+GjfPZXnRdr/y2A+OZHV6DT3bbAj23bzrC7ODJuYZp7/TIBl63\n7CP/kAtFqJSbq4jBCEipqQqBUCqRTq1+sZbCFeOGfQ4jg9sn3I5i9uGwhZhhMyzUalszcITM1ER6\n2j0lKy3ESmMVFTJF8UgvS8VZRNvtfaoEv+r0C5Z++unnMyUYrOajpYP4aOkg1m84h0DAcARsbOz2\nNN+/fzzlxWO4tGEhUofofoEWhcVlM5g/8DbKRnafnnFBxXqK7YeYtCueMakX4KQDgLoEw/prn28I\nAAWmOoKYT7ka7BNirbEARBzr2BBKxUaE4trhDLmgDG9AUJFuhG+JoY1cUxOJIpWYdpV6WztVihFJ\n4GDTKMrLn/5c+vt50i9Y+umnn/8Kr3cdmhZASo1du29j9Zrpxyyfk3M74epkrqn7ACRUr/dQs9nD\nX0umU5j6U551rufV8UacsHnyTf5kWo+nzYxA8LariemsB6A2xUJDSSI7AzkAmNGYOtiDopx6Ndgn\nDIgZgNmzmSbpwiw09oYzCGo2oj5BTYoh+AZSTrwSYKN6OqlNNta5djO/7n0A9rpTe5hZf13oFyz9\n9NPPp6LZu5a1685iy9YrWP5xIUuXDaG29o0+y6anX8a0qeuYPOkjGutG8GOeMzIk+A45WJuXQbZz\nKL9P3s7D087sqndedBGaEEwrSiDJmolTbWMS2wDwuc3sqz2DA7rh2V6pxXLfBUcPNnkq+N3U32Gy\n1iMEDDYZpsPFTXlom+Lxu1Q0RWEYJThFhI3CQ0zIwX57JSOrjKn3UGwa/rb9n2ufPw9ONGx+P/30\n0w+RiJdw2Iu/vZidO288arkpk1dgtxthVaQ0fDuMDfUkLKXPAqBHBTsWZrBkVC4moTIjeS4/Pq37\nDJUH5XU82RgEFBJaLYzLmk8dK9ARNOfm4lV8REzdq5MWHGTHOz7zMR+LrmjIplZaNDsCyc7aUUzP\nWIYUgmaPiSHNB1HQSVN82HQXPrWe9FYXZhmiKTaGYNNGQqE6rNaUz7Xvp5J+wdLP50ZE01lX2kQ4\nqjN76NfnIfo6E422YTK5EEIQjbaxYuW4Y5YfNvRPpKSch6J0Ty2HW2jprVWcVvIA1Q1udm1Jp2hE\nMlbFztk5NzLjTHdXuUfld7HqPsojds5Zk4pms7LcdogC9qMgORDXTF11Dts6DG/7yepBKmPyP1c1\nGBgh9QHMsZspb5pJvAhw0J/J7FRBRaWTfKsfiBBDG7PMBxC+XKCUsEkjRdbR5IzB2qFTXv4UeXm/\n/Fz7firpV4X1c8ppD0XZVtHC6Hs+4NtPbeDa5zbx3s6aL7pb/RyHtrY9fLxiNNXVr9DSupmPV/St\nZsrO/j7Tpq3n9FnFpKVd1EOo0LlaIRKEDU+gPGBYbL3cOJqi7GQAUjOmc0duGbpiTEdXyGeJpZXf\n1hib38ktVs6Jv4J6tZ5vYJxf73eaaG8eRAtGmVItgSevOrVOkUfjgVkPYElcBopCiiVCZUcysQMa\nCDRYaYw3YoMl4MUqNHYo41CjAgVIlbXUqSlYG8yUVzz1hfT9VNG/YunnM0fTJX94dw/ZCU6+PWkA\nw3/zfq8y17+4hYJUN//vkpGMzOw2zZRS8uHuOsblxBPvtPSq18+pYffun6OqboYMuZM2/14OHPgT\nTU3LAdhb/OseZW22TLKyrsZuz0YRKgkJM3terK0Wmg+CMxEe7r3C2d6Y2vV3rmsUb2errMobBcDl\n8jnO4S3eajET0AXpDTaiVhtRm404jDNaGuIdRKJWqn2DqNDiyVGaCdmcDEn5fKzBjuSM7DOItdlx\nxLWgBC1oIRN7GkeQHimjxWNGF4JJcisHyCFiizKkMoEWUxuuNhe1nnRqD45CHbiNaLQNVXUfv8Gv\nAP2CpZ/PnMv+sZZNh7wA3PnGzu4MJQB6tw58b20b5z28mq13ziHOaaGhLcQ1LyxlZ7lOrMPEtjvn\nnpCjWyiq8fG+Gv66tIjdlZLk1GKSLUO4fHIcl5829TMf39eRmtr/AFBR+ewxy+UN/hXZ2d/tmdhS\nAbGZIHVYdCNs/+dR6+9uTWJJQ3dY/PUDnbxTOKXr8zzeAmBZmzE1nbUxhQuyv8/zlg2MphqAA7kW\n9u6ZyMKQcR59rOhA8wz4XJwi+0IRCmfnnM3LNRsJtU9HQWdb3Shy4krRTAJFSvIoQyVKjqkJpUXy\nyrDFjGqbDR74KHYUc9nGxytGM/uMr8cZLf2CpZ8upJQcbGxn4GF+AIea2oloksHJx34blFLyxrYq\nbvnX9qMX0vveWD3t3g97pbUGNG5+60UePO/bvdr5YHcdTluYH71URGug92RSX5tPPfDL8ha21jzP\nn8656ph9/1/mQOkDlJU9fNT8lOT51NW/DcBpp71IfNzk7syDK+CVKyDkO247Qc3Ejwb/kmHvLAdA\nAu35E3huyjldZZ6TC1CQ3FxhBwRjij0o7gGoJitCaExnAyGzlVaLFa83p8spMiDNXD1xwEmP/bPk\nG4O+wSs7bqG1/ixSTe0c8OWQOM6IelyfaCG5MUwcLVTiQdHzaTavZWST4F9Z0ODoPu2ytnYRqann\nf1HD+Mw4pYJFCHE28CBgAp6UUv7hiHzRmX8OEACullJuEULYgBWAtbOPr0kpf3Mq+/p1Y2NZM4u2\nVXHzmUNIdFlPqM6b26u56RXDlHPBuEzWHGii0ms4o03PS+SJq8ZhMxsxkDYf8rK31sfLG8oxCcH2\nytYe1xImH8LSiNmzmVDNpV3paUorNXps56coR34FhepFRuMAWLQmntqm17h8zATe3l5LU0crWw4e\nfobFkULF0OebkGid24f/XpFAknkDP58z4YTuwf8K0aiftradPYRKfPx0mptXUjjiUZKT53alD9P/\nr3vfxFtmrErKVh63jS3N6SyLFkBTxLjOvuUA6KqF9ryR/GvcrK6yL8hLUdB5v1UFBLO2JLJvyLe4\nVB/KK5Y12AmSiJeKJDslJZNpkcbeSoGplmIthW+Nz/6v7sd/S6Y7E8XaiGKtwabEUdbhZH/jINT6\nRmIyIyQ3hrmI92hQrmSreRaKvha334WQOh2eOAZk3cChir+za/etxMVNxmpN/kLH899yygSLEMIE\nPALMASqBjUKIN6WUuw8rNg/I6/yZCPy983cIOENK6RdCmIFVQoh3pZTrTlV/T5Y1+xv50T+38OGt\nM0944v6s8baH+f7zmyhtbOf5705gRIYxYQcjGpc+thaADI+DG2YN6lGv0R/ixn9uYWeVj9d/OIW9\ntW3MGZrSJVQAXt1U2aPOypJGCu58j8KMWHZU9RQih6NYq9BDGUgtBtkRQ6hjYFfexZbtuJUwlVos\nSyJD+OTrJ0w+hNqG1BxdQkUgkQjWF9tZX9zrrLkeWIgQxswngkY7TOAoaDz6UQOO2Fe4ccI3j3md\n/wWi0TZWr5lBNNpzlTEg+zoGDfpZtzop6AMtDFKiKCZorYSl90LJB8e8/qUj/szgtZtIrKzqTIn0\nyNdNKqVjZrJwTM99GQWdX1fZ8euCgHsul8afh1ZfwV/SnifYNIQfsByAOnMsjdW5rIoY3yszOheN\nTf7crcGOJNFumEkr1hrUkLFP8sbui/hO6pNdASnTMCIyR6wBMhqcNCthBst9HIgfSPkWLyQZ11q1\nevJXXiV2KlcsE4D9UspSACHEK8D5wOGC5XzgeWkYuq8TQniEEGlSyhroPCUHzJ0/8hT29YQoq6hE\n2GMprmrmw9dfZIJuY33pCM4dmd6jnJSSjogGgMNy6m7x4Sqk+X9bhcdhpiXQ80F+u6ia62cO7Jow\nghGNcb/rDq1x1gMr+rz2kPQo1cEd2JyNaKKNaP0C2oLRowoVs2ctejgRLZDXZ/4C61YcwljyZ5pa\nuUrZyPOh8QCGENJiepSXCGzO3QTbj4z7JDlypWIIlW5iRBBf5xutjvFQ//l1N6+WzuIfc/7O6yWv\n8/PxP2dX0y72efcxJX0Kme7MPvv9dWHHjhupb3i3V/roUc8SHz8VseM1uKfTiCKlEOqOLcwBfprx\nE1I+2oYiux/NSXsW9Sijm1SEFqUubzS6001xajabcob2KPN3eQ3vtar4dcGiymoedjTxQsI/uKn2\nmwyrnU2ldS/JshEEvHPoMqQ0zlwBqNNc3Dlu8MnejlPCTWNu4k/etZT6DOu5PcEshMVMqd9NXrpG\nenUrbvy4RBgZcFHsKSM14mSLdSz+t59l2K0/4FD54wDoerSndd1XjFPZ8wyg4rDPlRirkeOVyQBq\nOlc8m4HBwCNSyvV9NSKE+AHwg86PiX2V+Sxo8fl58smnUIXxEDkFOE0RFn+0gnM7z4xoDURYtL2K\nx5fvR7TVUqnH4rRa2HmPoVao9wVJcltPepMxGNHoCGvEdVpJlTcFuPQfa7ryhaUWGU7tIVSEyYdJ\nibCrGl7dVMElY7MwKYJ/ri8/oTb3VavAafgNNTGKrRRL8jbCDXNRY3ZhspcSbR2L1ulHEGnp1r0n\niHbOtOxDRWdHNI1sk7dLqEyZ+k8qygupqCjkKusmtkXTKdK6BfNQUy25Ji/vhIf2IVSgt/rLYJq5\nlEylFVtnOxGp8FJoLAApwkedjKF828+4sO6PCLWVF7cswOTYjxCgR9ygW8lJdPCd4d9hXOo4ttdv\npyC+gPz4fBTx1bTK1/UQra1b8bZs7CVU8vPvJSPxPMQz86C2qGfFYwiV9xKmcnPmrdhDHVy58B+9\n27RY0U1mgpmDkKqZqFBocbpxhIK8NGluj7LnyEVcwfPcVmHng/IG/qQZL2N3eddSH36YBy1bSFID\nDKCSdNFAaboLvVphr2aoiaabD7AqMpDxOXGf5vZ85pw/6HweWP8MIRRcIoxfWojGmQjUm6hPkKRX\nQ46soskUS52/gP1p+0gK59JudVEcNHPe4NuprvkPkUgTy5bnM2Xyx9hsGV+YUcJ/w5dWJEopNWC0\nEMKDcdjYCCnlzj7KPQ48DiCE2HSq+uOJcbE5mslEsyEHQ8EoVptKcutezrvrGYrCyViIYhVRZpkP\nkGAJAPB+eAin/3k5BxuNaKxTBiVw3cxBzByShJSSkno/C7dW4euI8M3x2RSkuQlGNNw2M8uL67n6\nmY1dfbhr/jB++/buHv0SaMhwKhZ7KeHD1E5SiyGqgYMQt/9nB39ffoDCTA9vbTcsa4S5CRlJAMAc\ntxrF0kCo7oKjjl8PZhMOZqNYa4i2jiHaOqZXGbcIcr5lZ5fwBRhjNlQimZm7GJCzjfp2hZzcbfjb\n4/A2ZzLGXEWBWocFHYFEQSIEnGPZzTvh3oJFRSOKifFqOXGig4N6PCNMtcQqQfLy1hIXX42UEAy6\nMBfpLAnnUal7iBUdtEo7wcP2e47kkHoP966796j5BfEFXDD4AmKtsczKnIXL8sWYtx4LKXWCwWp2\n7voJPl9PQ4qkpLPp8JeQn3ULnie+CdzQq361NZmoUFgWU8iDWddy7/6/kR8up0HEcVvajZzz4Wt8\nf9Vfe7crFMIJqYSTjJeEdouVlyaeha70PsVRSJ1n+SYqGg/VWZnf1o5HE/ydK7mBF/EoNay3PUgS\nxovBSLkTXYGVYjy6hPXRAViJIKTknML0L83Em+RIQjH7EGoLKej4o/G8vvsiFsS+hDfWWFXnif3s\nIJ9D2iDaLesZ0gG4oThnJDKiMbLwUTZvuQyANWtnMnToH0lPu+QLHNWnQ0h5ajRMQojJwN1Syrmd\nn38BIKW8/7Ay/wCWSylf7vxcDMzqVIUdfq27gICU8s/HaXOTlPLYrsEGJz3ooN/PI9d+kw9yL8Bm\n0nE0lpOgtpKYZEzOHVLFLrqtO2o0N3YRwaMEWRsZQLGWxOFv2xt+NZv7Fu9h0bbqPtvLjLN3bZwf\nHZ3DfVzNqhclbhXCdxrBkKHacSl+/PoRE6AIQqeqqC/Gq+VsjGYzRq0kW/EiESwKj+hVLlH4sYoo\nVbqH+ZZdJCqBrryRI9+nqMh4Qx2Sv5rk5FLuqbaR704iLlrL3Lgomqaydk3PfY+UlP3kDtzMurWX\ncUCLJ0m00yatfBjJZ5JaRr6pgSPnkcLCDwnWQOqwnmfP6brChu3zeKKh+03ZRBSt633KEGT6EX7C\nJtdu7GmvEfUPRUoVYfIjVD96KAXVvQthau/Rh/un38/8gfP7vJeBSACH+dSHGQmHGynedw/19e/0\nmZ9SF2REbRy0VvTK+3fyHH6TeT1tNjdqNMqNz93fxxV6IoGO7CFozm4V5rrcYXSYrRSnHd1C6yy5\nmO9gRPP9eaUdXYcHy5JZLiejYWaQOMRVvA7A0ywgVm/iYuUjyjLsPFt1PYtCw/FKBy4RpENa2PHb\neadU3XyyFD5XSNg7gVDthYDALsL8YdRvcCW3M3uFEUvsbm5hbzCOipwXuCU8hxsLLyO5tZEnklKY\nOLWQj5b23BOdNXMXJtPRn9fPkROW4KdSsKjAPmA2UAVsBC6XUu46rMy5wI0YVmETgYeklBOEEElA\nRErZIoSwAx8Af5RSvn2cNk+ZYAH418oXWf3BMt6MXNSVdnboSVJjR3V9jkrjNLtP1DsXWnYQqxhn\nXOsSfNLGisggmmX3ZGMnTBAVeZRACAl5v6HDN4qO+gsxmyQ2xxZ8vu5hXmwp4j/hkT3qOAmRpzay\nLZpBYvwHjMgZyvItWSi2cvRgTwuaOBHA29mfuea95Mfuw+dPQ0RDSNWKzdJKSyieet1NmRZPvlpP\nrOjAJjTMoo2I7O3UNX3GC1QfGoTT40NxNvBWq5nLE7pVdZvaFT5otnB5o4Oc05qJRlVCIRcORyu+\nZjO6Es/OHXN6XXfosOVYrQFaW1LIyNzD3jVJDJ169MOSwmEbL6y6gTXR3KOWATjLvJdK3cNeLRmJ\nwIROjqmZKWoZtXoMVXoMLdJBlR6DNfV1zJ6NIM0gNITQu65TmFjI9wu/z4DYAZz/hmE2OjxhOIpQ\naAm18MPRPzyqEPo06HqIvcV3UVPzmpEgJXGtEU4r8qGZVdRItM96JbFpWEJwZd7vSN5fxpQty4/Z\njgSiMXEEM7onvaBqZk9aDo2uWA4kH32P6iH5A+Jp6pqV3m9VWd+uMqG1g9SGi9iqDejajP+OdSPp\noo7r6OkL86h9ARWBbF4OGSvlCy1FLBFj2HFPT/XaF80+7z4ufO17tB+4vcsA5Wcj/05B6h5G72gl\nwRvhSS5jmz6Y7cmvckPgHG4db8wn31pxOw/85n3a2nazYeM3elx3YO4t5OYePTbb58QXL1gAhBDn\nAH/FMDd+Wkp5nxDiegAp5WOd5sYPA2djmBtfI6XcJIQYCTzXWU8BXpVS/vYE2jtlgqU1EGHU794C\nvbcFWKLYz5mBUgJhH2/G9l62nmne12kFZawGhqt1lGlxbIlmcpF1B+3SghmNTdFMhrubaDDHEZM6\nlI0lG2gIdm+GF6oVdJj97O/o3vycZt/OeNd+tjZm0qxkdQm0b6rvYWrW+GfMOUgEFtdOzCmLaT9w\nOwDj1AoG61XYvPWQkATq8d/6PK5ypFBpbUs/ZrmJE1/jt40SW5tKyCyZlRRidkzfE9yj9VZq2lQu\nCKkU5PhxOgw9eyQiUFVDLVZbMxhF0Yi1VVJT5WCbK0zUHeWSuMMMFaTEpEkmVw/CWmaoD0uH5nIw\nqQ2/P46H1v24KwruiWAnjFOEGaHWsjwymDgR4GzLXqzC6F+bbqVES6RdWih31CCsdViTlxznqt1c\nOuRSTs86nQx3Bi6zi2THyZmX1tS+QXPzKmprF5LQHEZTYFixH3tIP2a9B7Ou4NGsbxENQ3JjNZe8\n+wJgPBCaKxZTexsIgdA1glY7Mj4FqZrRXLGETSolyZkErDY2Dyg4bh/nybe4gme7ZqNDIYVHGqwk\nNNh5NHiQJ0PfZWlkDPWHvZgMclYwXavlSl5nMIeMeh4Pz7Rcw+pIDiVaEnmmBg5q8Xxw2xk9fK6+\nLHz7nW+zcsU3cROkDRsjnKXcOOZvxEdDTNjaQjOxPMR3Wev6kMlyPBvGDmOLmMCfnvk/vv38C13X\nOXLlAoZfUW7uTTidA3vlfQ58OQTL582pFCxtgXoK71sOmmGNYs96Clv7MLzNk/ssPz7rPTZWzjbe\nao8gQ2lhpvkAHdLMwiNWGmBMah0cP5zJNyzvkKAkdX0efdpiDqzKpknLxBJjbGj6dAuvh0f1qJci\n2phn2Q1CwRkqJ6CkYrEECMmep96dKHFxVeQXrEJVI6zzqeiKzlS31qucLagxuX0WgYGjWd/6tx55\nS3wqZx4hfP5Q4qKg2MOg/Fb2VzhosOmcObaJgdaek6fHlM3oTZWY2nqvXIoHOanMsBMO2yjZN4nG\npiyapZPsrO14g/FYXC0s3D8fX+f/9aTGLQJkKS0UqjWYD1u1BKQZkxLEKnvuL2horE1Zg9/cTofa\ngTvsxmfxITv3pEy6CZM0seqqVdhVO0dSV/8O+0vuh5YKErxhhIQhB9qP+7QXO7P59vD/RyAgOHv5\nQtIaqrryjJVIPOGENHRbd5sHE1KRQkECznAHjS5PV9iVY/Fd+RjJ1DGCIgTG6uRdn/FdtoUVphYl\ncL9nOx8wgZsi3W/gJjS0Tgu+sy17SFUMo9DhSRvZ3TAOTSo8HxqHhSjfsm7FMmEBvzr38zkp8mS5\nednNvLNZEG40wv9nKC3cOe23+NBZsMH4jt7NLVT4ttGeB86s8Sx2nsv1/36f06/KY+YkYwWjaUH2\n7P0FdXVv9mqjoOD3ZKRf9vkNyqBfsByHTzXousaVXPXCu9jUOm4YsBHV5uDODd+hxt+tWkqI3cnN\nhS+TRIDiqmweOHhLV57D0kwgHH/S7aaFaxjVsZGtsTNoxsm8wFJmTVjBvt2TCVp6Rgm20kKIngJC\nSj8vhWYQxUScCDDXUtxlPdUXU6e9RPHeaSQmlZGQUEEkbKeubhB1dYMIBrvfLvOGrOH9jhpSYqLs\nDyq4rTrfSQz3ec0BspDBK5d192nQ6ewbNZjKxoU9yqkRnZH7JcXZknbnsVdRlpDO5ObRqCVLu9Kq\nZAJ3Ra5hnLKPG1TjgVw2NQHdJKhYlYItNkxSoRFuJtymYnEb96HEO5A/bLwZgNMzVtEYjGefdxCh\nPlaoR2OieogYEcQtQvillSTFj1nohKWJCCZ0CW6l7/tzOG9nv03EFCTZlMSMuEFclzWJukN/Y/Cu\ncuzBY69IAO4a9CM2xBTSJm3kb95MY1wKjfHJXPxu99tw1OGi47BVh8/m4J8TzzrhsQK4pI+rxAv+\n3QAAIABJREFUeIrJrEYiiKIi9DB/q7cSY5JYBIzaF4u+Mx5FKqwcPxtvRjpv7r2FUaEnuq7zDcsu\n4kQAv7TyeueL1lXWjRzumrJEG0BlJJnp5lKKo0msve8yTF+w78rRaAu3Mem5b9B+4GckCT8N0sX/\nm3AfJm87kyJ1ZNR28BDXsDgSS9Pgt7nYNosHU7/NnLXvM7LxGW77v909LBGDweqjHp7WZ4idU0e/\nYDkOn2rQ69ZcQntwK22+BLZtO4f09L0MHLSRivY4FlWO48ysVQyQCqUHJxIMuunoiGFA4jIcue0k\n2r1IDYraUnloQ8/w2Jfl/4d/FV8MQKqpllrNCNI3S/2YSZbd1EcL8USKGTZ7O0hYv3guEU+36kQI\nDSl7W9+MGfMWW7YYutr0tLVU7EjBHWcnYErrKpOYVEZjQ07XZ/fQ99gsWpnkjFIRVjgQMiGRXOiJ\nkGHpvm1RCfdW28i16lRFFK5LCpGodueflnMfjcGd1DcvZYg/h+R1i42M8d+Hjd2TikTQ+MNXKdp5\nAzZTIlOX7e3K+2h6Akfu1JsjOjPWNvca6yp9BEuUnnsyE6NrmaeuoyVGZfPobmEb1SESURBCEgkp\nNK1PoeWAsQltTwyihUzEDWmltcyNJ9dHR5MVW0KY9kFuvMFY3jk4h/K2rF59OFFGmGrINTUTKzqI\nohArAlgJM4P1jGMHIcxYj3AsPB5Pp1/IL/NuxuX3MaJ4M9M3ftSVJxFIkwlpsRLo9CGRQL07rpej\n4vFwyjbm8g4X82qP9McbrCjoRAJmZjXbCG0wXnhWjz2dHUPH4gz4qXMkU7N5Ds9Fz+I30asBuMK6\nucdqb0U4l1I9kRhzC5fZdhCJ2FBMXp5uN4TeGFMlE6bN5I55x1fFfZGc/urplBV9D6uMJagJTjeX\ncOXpf8PljzJxSwtvyjN4IXImVdlPc5s+jx8NvQR7tJ0HXvkF0e9cwyUzrulxvWbvWiornycabcPr\nXdsjb2DuzeTm/vjzGFa/YDkOJ68K81bx74U34mtLosXbvcfgcjUxonAJFuEiHE5h3abezScoe8if\nvJWavVm4En24Elt4sOhKChNKGN5WStRnwSsTCARVktvryTmrko4GG/tX5uHP6FaV2VoqCTkSkZZu\nCxFH/CE+iN3KrMqzEUAkYuSlpJawwrOF/L1HXy5Pm/4CQQlLfGa+4Ymwu0NhmN14yPcHFQbbuh/4\nhojg7w1WBJBu0cm36Uxz9V71JDWGGLm7rTvhvIfhzU6Vx4LnYdj5UPwuvHyEF/ykH8G6R3okBaZe\nS2jcZRTtuJ70tAXkFlehbnqBvriXn3SpUj7BRJQ7MVRuewqzqI47npXdiSF1Y7KOtJv4uHo2m+tH\nsr/j5AXNMFHGSKWU85U1TDbtPn6Fw9jhGsxD2VfyXuwUphevYOzqj7v7B0izhWDqAHS7E2lSCapm\nWu0uNuQOpSru6Ps5GbKC63iYVGoI4KADB2Xkkk0ZOZR1lXt2o43zR4fw64bsj1clB57P48Ox8+mw\nOSlPH4Tf1W0xZin38dOD/+EnPEtO0NiYP9yw5fof/Zh/bSinacOiLsfZYakPMLVU4wnHTwHIUrwM\nycniqR+cnDD8IvjL5r/wj5W7O63DDP46+W4c9ibOWtMEwA/1X1OvLmKqeTZ/mngeujDxs8d+TeWA\nOv7yxw19mlFHo362bvsOquqmubk7rI4QJqZNXYvFknAqh9UvWI7DSQ+6wd/AI39+5Kj5JlMYTTux\nMO8Fg5fRukVBT4unrr2wV358fCWqGqa+/ugbdImJhwhZW1hhqWdO3ljeLFtCgU2nISyY7JCYTRpD\n7Dp7dk+nsTGnR92s7CK2xuzh43ZD1ZRm1qmJCArtGtceRZV1IiQnnUPhf57vO9PmIXhzMc+99C+G\nFuQzY+wwWHwb7Hi1d9kfb4GXLoXmY4e1WKjPwKckUUUq4aPsSWVRxbWHvV1XTZpDq9tETWgTMZZB\npLmnUdz4bK+VkaJJdNOJq1rCmpna9iRiZZj6aCwpVi+baiYzytxOqGw+MWEPFej8DR8RVIaKQyy2\n/uq4113KaWzMGk2H2c7TGRcSViyMrtzGnLcNK7CoKxZsbszORNqsIE3d6sOQSUWRksq4ZN4fcaRv\nsoFNBriA15jPouPOGlEfmNzGrYoGFaq2pfFIzi1IoVCTkomoDaF7LKgW0EI6SesqMUcjjFJryDa1\n8D1eJla2Uhgyzh652raRq394MwOSYrsm0QUPfoClsbjLSuxw5pr3cNdtPyLD03v/6cuGLnVGPHEm\ngdLbutK+m7CEMbnvMX+n4WJwt/wJ9b6VOLMLKBsynJWO6Uzf/CHn7XyP8PTBXHttbwfUw4lEvKxc\nNQkpe77gDS24n/T0BZ/9oPoFy3E56UEHAgF+9eKviK024nE5xjl4o+YNzqrqrZc+EFPCtoQiXBEn\ncyvPPtmmeuDO2MqumAPklZ1JqMNQ57hj6tmcsYxdQRMPD04gHDLiem2wLWBr0wEiepgb3Yb3dGlQ\nkKSoiLCLhoYc4mL381o0xBWpLmyyHSFDvdr0eCbS0rIek+Jkiu1aqls+5IB5d6/JNzvzWnLlcIQj\nCdNT83peZOw1gITNzwLw2vT32bnyva7s08aOY9iEmZTt382cD417qGeM5+fmX7CkuJmPZuwnYf0f\nOJIyPZVnlW/1ea8qtFiWRQaTA+iKl1mWUgAGUMk1/PuY9xlgm5JP07BC4vZuZkz0YK/8atVDndNJ\n+8AgrkiEQMhOZVMBScN2oisCc9BC5s5LsTePBsWPmXoSzPcRkclYlNo+WuxNQfAZ0kUT9dJDh27B\nJDXiIi1kd1SQrVeR7qtGszkI5PbcuI4oJsKqmUWjpxNVTASsR/d7mCffYgRFBLExkTUIwPGmQuBc\nHUygScMU85N/t9IEmED3QHUwjTuq78PR0oalMYzNppEfrWOIavho6FKgiN6Pl4LGnfIhCkLPEsLC\nmeZ9XDx1OPPO7vn8lDb4ufqBN5BAhd7tUT9ZPchBx1DW/XL2Cd3HLwOT/zmZmqLus2yGmOq5Zfqf\nSfe1Mmp3G0+xgP+g0pK1ldvbLuS6UXOxaCFueuJeLs7awYA/lR3X+VNKyY6dN9LQ8F6vvOzs75GY\ncAZxcX2/VHwK+gXLcfhUg9alzu3LbkdF5f4z7mddzTque/86LiwzlrsrU1ZSb68HAYsvWIzb4mLG\nqzOJUSQBTWDW7ExrGEdMsKcqIphaxArnPpIVwfjWEUTq841OKhEWZr/VZTUEEocCeVaNK8f+GUf1\n3UQiPfcbkpPP6XKSE7pEKoIlPpXFrWbSzZLqiOCBrKOrhEaHppCw/k344Xp4tOcX0j/rBgJDZ+Fw\n5uKK2ODB3hZtAJGfHeKPLy/BLxxcfvpoXn/+8WPcU/BGBeW6hxKZzQKb4S2uo1MacnJAppGvlNOB\ng8HmNsx9TFpBaeLd8FAulR6uxkrQ1IFNs/OAaMBtNcKVJNHEN+VCEkRbr/pfJK+mzOXj2LEs9kwj\nZ8ceAkmxOFvbGLJvF3nefUiLndSE0ZTb24lYui0MI4oJVdcIq2beHz6Bak/SUdtIkTUMZwens4SB\ndK8C7SsFCOiY1vueVlflYnd0oKoh3G4vgYiN4p2z8LcdvZ2jMZ8ljGMHy7WRXB25AzD2Vu6585eo\nfZi5v7+rltdeeYkm6cROlHRTK5WahyfvvA6n9cvjDHk8KtoqmPP0rwnWdK8ebs99gRHZ65i+3ss7\nzOK5wEx2D3+GRaW/48cz69gsJnDDc/eTFOng4uz18KsiUlzHPsZb10NUV/+b8opn6Ogo65U/YsTD\neGLHYLX+18eB9wuW4/CpBy2ljpRRtm//Hs3e1cycUUR9sJWixiJiLbFMTp/MvpL7qKgwvIu9sRdw\nz84PuHXsrRTEF/DrVb8moTaWrHAiaCrb01ZTJ3UuGHwBb+x/o3ss0nCvijMr/L9Rc7FGG1kTySHG\nmcvMGIWSfXcBkFobZFD2jdTHRimpf6brNdPeoTFlo5dd+S5qU2zcVmGoD36RFiVRNTaGhw//K7oW\nJBJtwWXNJaa6HPOiWzgmFheE/b3Th8yDM35NcWOUl197o3d+J9ui6YxW+442cLK0SzPvhQtokzae\nx8nAI/ZYwkS4VqlkZufKBUCgM4SDlJCLi3aapJt5rEQRkilsRkPBhLG3tJXhVMtk9omBTJGbmCiO\ncdbMCbDfnsW1w+6m3qQTVVNpM8dgCbUybcObjK3205aaRkJLkCbP0VcbxSlZLCsYe0LtDZdF3MgD\nxNAdyTiwz40jt40j4nYS8rlob0hhd/UEFCl67Vf1RKKiYSOIjRCDOUQBB9jNYEbIvWSLvldnI4NP\n4MPJNyw7SXaaufP2W4/awrOrS3nlneVU6bHEiwDXnDOZq6d9OYJNngzDn5pEe8mdXc6SF7g3Mn/i\n80xf38re8GAe0y+hUV3IPMsF6BM/5NfiT2TUl3P5648z0lOD3Rtl4IMvk552YqbVXu86tmy9os+8\nMae9REzMaZhMnzoae79gOQ4nPehotJ11688iFDIemuSGEG0uFfeA8xg+7M8oioVQuJHVq6f20nlO\nnPAOfn8xfv9ebJ4ZnLv4e+id/yMVyW/Gfp/h1nbSs66lrGUfEcVNdkw2Xt9uynZ+56h9+kR4fELj\n+LPxpqfip4VRy9ah+GrxJ6Wwfmhvn5Lp3ilYdrwJo6+AmqKegQfTRkNzKaSNgnP/ArEZRrj0f1/d\n8yImC9zRGdTSbOeVj4vYu+z1o/b3leBogpixEOVy29ajlqvSYsgwHf3wqLdDQ2mRdqKYeB4nsWmr\niK+eQWukmoi2kOZQCd5wGqPirySgpvNL037Gm3uHMvmsyKKSwRwiljZGs6dX/iFbGlcMvY86WYu7\n+SkSA3FMaezbfPQTamLi8XT42Z2WS1HmIFzhAE3Oo/sZzZJLWMA/sRLCRpBQaxr6lmxSS7YhE6Lc\nof2UA56MPutminpC0sy3TEuZrOymUiZxtmkjtSSSJyo4SCaxtBHP0Y9LOB43x17NG3WG2utq20bu\nuusuFOXYwT2XFdfz1MqD3HfhCAYknLyf0ZeBZ3c+y+/f3Um4aSag4BZB7hjxOPPqN+NqlfyeG9mo\nllOfsYMn6q/hwfHNvCu+wfSNHzFp8zLOSd9LnruRK0dM5qVL3sbUR+y1I2luXoPZ7KG27k3Ky5/o\nkZeZ8W3y8+/+tMPpFyzH4aQHreuSZcsH0xKKIUFrZdamJnQEy6bHgxAkJc2locE4293TEmZskTEx\nrpgcT8Tc8wEaMOB6EhLn0FD31lGPgnW5huL3956kPiGlxcKIohN78/94cjzRw/owOfv/cLx4FIE1\n9/cw8Xro6wtctRn2fQDDL4RgC4/uMrNu9Soc8Smk+vb2KNqiJeAxGdYv+6KJrI8OQEPhzzhYSoR3\nOs1pPSLABdauKD/U6S7eDReQofg4w1yCqVP1Va552BzNpFXamYXKHdhxIQg5qlH8Cbx+qHdgRIBL\nB06l0pbN5R0ehptqGG+u7LPcyaCgoaIRxszd9N0uwH/ix/CLAeeSUP0Sc2rnoYi+DQwksD8pg4+G\njT+pfsyTb3E+r+HuPGEivHAiKRv3s3NQEuu1UdQ4EtmSnH9S1+yLgaIaK2GsRNgm8/iV+iIr9JHs\n1gfQRCznK6t5S5/MYHMFdZEERikHSLPW86+O3iF5zjLv5YqL5jPztP++X18FonqUUU+dSfuBn3Wl\nXZf8HgviXmPQoQAPcC0fhdMxJb/N3ODpJE94ixvFkwD89LFfd83ktxasZI3dxo6J3+W6mfchjiOU\nwdh/2VdyL5WVz3WlOZ15TJrYez/mBOkXLMfhpAfdEgjxzO9/zC3qv2iWMcQLQ3D8W5yBa8oeLKYI\nakSnoD2PlKLuCP+6amHFBBea+ulCrw/XppK6ehFaxmjqpl1AspaByZaAeNHwzpVCofUnB/A0bYUX\nL+pZefZv4KN7AAj+rIhAqBK714v9hSOWyon54EyC8/8G8YdFSJYSIUTXb4CoprPlYD2v/etlHJG+\n32A/8UU4nBGY+DsOdDWEKWojgOQgGr8nyCG6zZpvwMplWDiDNg53BXRhHNDzGA4GuyvxJ20nsdSI\nxfVm+b10aBbq4oK8O7kOgORmK6eVxJLWZOcbA09HyvHsIcoaUxVvarGMwkIHxgFTZgSVSgsCyQzz\nAWxCY0k4jwXsY5rpLRwijIJOerSBBoeL3GjPfS0NIxyowNj0Pi93EgdUwbAGG/MbZnHI3GLcT2B9\n7jAG11dhi4Z5cdJcsvw+Klw9z6LpiznyXVqJZQJrGccGoo3ZmFYnEJu6GfdbJiJZkpbvRHvEFtWl\nIKqrhKuGsvLgWcTKQ9RGM3DKNqqFlc36wE61n0QAIcyET2HA8xGmGvItLfzfb356ytr4MnLRmxex\nZc21fHKWUIzo4NHTfsm03XUsYg5Ph+eQFXiFTSPb+atSyK3Z8ygVg7GEQ9z0dHe07TmpJYyMMzQm\nPxyQz6PXbDjhPnziZKmqbmZM34xxKslJ0y9YjsPJxwqrPUTsY92b1SuYwAy6/7HFSib5evfb8EEy\nMcsImaKu17U2jfLQGqsidIklIhmTeBOOxcbJy5Fh51KaLnCHzaSvWNir7uHo6WO5v3oyEczcfPPN\neBo3g7eMSNHrPNI8DcXi4Cfeu/quPPf3MPlHPa+n6zz99NPU1NSQmJhIXV3Pvrvdbho7NKzRAEdS\nrXko0eLpwEytHsMd2MhCYSNR5mMhFYW6gudpyVqGrXUgAzbc2VW3DI0nCXE+FsajUnL6D8lZdz9/\n7bDgRHADVkTnd9qbsI24JuMgJSF38EqZYajw+owqfH341VzxfhZmTWFe+l5irP9AEEIRfkAhyXIH\nqjBO9dOlhSgabTi6NvhriKPOG8vouLKu60UBn6JQZLXyodPOjd5Wzso2VEyKVEiMeDDpJuZVT6L1\nsBXK+txhbM0e0vf/4gjSZQVns5gMKjGhEVOegrXFhFVpQt3uwjF0K4o5RKhAGnsln0i1zsdeaLDB\newlntcLQYcOxjzobXEcYjASDCCFQFAVVVbteHPx+P4s/Xs+KUj+NdZVsiWZ2nS0PdB0/AGAjQvCI\nzRo7YSxC6yqTrXixiij5pgYsiuCPv7oZs/mrswH/WVAfqGfa3+8l3NBtIXp3/mNcWbHq/7d35uFR\nVtfj/9x39kx2spIECPtOWGUTEVAQqUuldala99paf7bWtmoXtV+12lWt1bpX27prFVBUQEAB2fct\nC9lDVrLOZNb3vb8/ZiAJSQzBIMHez/PMk3e5773n3szMmXvPueew1RjLR5yLLWczr84v4b2Dj7Fi\n8jPcH9eyifrm//yZ2Ka6NnXeOfxzhADPpOtxLOp81tya5uYihBDY7Rknm2pAKZYu6HanpSF55dF5\nfN8XSvmy3vckOaZPud7c3qbwIt+hmHRAdrpUEhw6F3POqg7vnQgvOH9Mibvth9put3PuueeyfHlL\nUie7zcbdvrZuu8aMn7Kzz0Xs3buX2tpaBg0axKFDh6ivr++WDIYU5OgJVBmRbWYo12HlJtoaoIum\nPIgnOo+tS8aiOXSmzqwh4dAleGMKSMq+6li5/LPuoz6iCt0wMahoIXFF51E19HVqUzdQUDiPhYXf\nxqGtxcQyXjiUSGNEgHdntywJOnUbixoGE+sfyXPJb2MIyYKNyaTU2okye7lx8NZjy2u5viga3VGM\niKmitDmKrd4M+jntPOPJ4CJ/gAv7LiXHamGfzcoum40ow+DN6PaRnAEmuEZwR+m1LLG1TQnUYI/g\ntS5CpZhlgCv5F+eznOrt3yWyvBKPK4PMg6uwH3FhCXqo+nUAaZOYywS+sS1v37g6PzQ6Ef5Ukot+\nRJz93zgu+BZMvqmL/96JUVrr5oE3NhBVV8TiOeOZOmU8u/bl8Ls1lfzm7HjinTaadcknX+xk0YLz\n2ZRXRUVpMQ152yjWkmn0Gdy4cCqTRg4iObpXhH4/Lfx41Y9ZtuICIvDRjI2LrHu5P+YP6E3R/J3v\nUxAcSE3Uk/SLGM4vKr7HK3Nf52lxx7Hnb3r1L8Q1tp0pz03OIyu+nIv6pvL69du/jvQMSrF0Qbc7\nXVFfQfCRXI6IJqzSRBQRGBgst27gYu15onBzmGRe5WJ80oyBYE8wlXMsuXyHZRxkEBqSeOqZzO52\n9f+VG7mcZfSlZZZQET+Ff9Vm4caJldDGxf6UkkdmePEihCHhy8ImXbTwfCZY8uHgB3in3sGjLy9v\n83xHSAlVRgx79CTStAZGmNsGeHzXN5pG2Xaj2v/DxghMjAn/wq0e8gZBaxOuxB1sOjwEy8cte2Ze\n6n8zt056mpSIWtI8SQQc1fjtR9i39vfM9EaRq7vIscYyARNZrZdnjD/wRlHo3xfUDP69IGSUN0mN\nZ8siSWu6D0mLXHcMeJQcRxHnb0qi75H2G+skkhiLj0vS91HgjsMkDHQNbhzfPnjoUSy6mQvqZxLh\njcbuj6SJtnuBPGYrL89Y2OGzf5U/5FPOYy1zebjuIRoKzibSUUnUDhd2qmBcOY56F54JBrKDfYBx\ntX72WGYyIwf66jpy5BzqzVXEzLubSOuJbdBVfP1UuiuZ8dhLBJtCG6JHmSr4fb9HGVteyZ+5mWzv\ndAYXvcC/5hfzg8rFnOuw8MXoT/m1aElBNaC8ivE7P2FwUVt75lUDdpLqaOLuiAQmXPx7vjvslGyO\nBKVYuqTbnfY1B9jz2/WkmFvWJoNSYhKhypaJKmIxmC6TMIddNSvx8oJlJ5Gan2ZpIUIEiBAB+lLB\nDLZSQAYNRJNPxrHkUwJJf0opJq1dAqqOeMcXCjY4xFTNDEvhsetuaSEnmMh4S8uveaFpSKNtEEO/\nNOGRFgwEQTQ+9Q/Bc7wvahgrQaZYiskJJlIlo7gHOz7AjeRKrJhbve+2JW7moAiQNeZFPsr+Nhlf\nlCKDbWdE4+JnMzR6Elp4vdcdbGRZydPH7jtMkfSN6E9W/DygnPeKX0eXoTHZP6CRzSNDywPp3mSe\nL/gpkmhytXKahZ9xekuyqQtG/KhdXwZVWzmU2L0oA+c2TOHi6rl8bsrp8H5QaGwaNJI9ae3dYh+X\nP8BcMJSgJ5amksn4GvuSmb+cqPnLCAwNIm3QkYev3WMwYXc9TXIMTYPOJXXRHUQ446EmD+IzO3ay\nUPRKLn3nBnZsuZSjyfn+1P9xFlduYgnz+FvgWyTHWImqeJZ1Y4+w/OBT5Mz5AQGzzvfFG23qGVZW\nyaIPnkIz2np73jpkIyJocHt6H35x5VKGxg/r6eyaSrF0QffdjQM6Fb/Z0GU5A8lHset4Iem/vJ77\nKGZpRiLxIMjDz6daJc3mcpK1lr0gzdJCqR7DAFMdVtHeNfhV73jsIshsSx7xmoeNgX4c1EObnQbF\nrSfSWs/eygvRkdgJtln3Ps+S3aHr7oe+4dRIZ4fKa4C9DOlPIC2igPyYrQh/An6h01R1AX405mLm\nTuEgRrZ9n+XP+CUWbzyHi6dgywarZmdk7DS21XxCXtMONJNOWfpUUou2tHkuwZbGuPjZrCr/T5fj\nWx3j44MZLfskBjf156nS69FJYrepiM2WvGP3pgQGM1rP4PO4J3kk5WBH1XWOhL8X3EtfXzJNwsMm\nSy4VWvulwrLYRJaOm9FhFVPkBhawDPPaiwhUDmVA8VKiLl6KES/RW4V0imkIMCTfRaRbp4g7SUyx\nYZ87A0v/qWDufOakOLPw6T7GPvwyPnfIJvfdqC940HiSbcGxvGhcQlbjOFam7ySgv0lRajMfHnyC\nyqGv8WZ/K6+Ijpc273jufqx6i21xYd+DDIysxWbSKToSy52jHLx0w2airV07iJwAvUOxCCEWAI8T\n+i32vJTykePui/D9hYQSfV0npdwuhMgAXgGSCSmBZ6WUj59Ae6dMseheP3l/X4mzOrTGXpP5Hk0p\nm8n84uEOywfR0RDsjsglIRBLeiCZalMdiXocmwnymFZGvGgmWc/gMhxkorEEH0/iIyGcjtcmgiyW\nMVyC4OcEONjKT+rimG1c3zSeBCOWAEEuG3Ynmb40hO5gcsVlHOzzCbXmRnaVXscUcwkmDIaZQ4bq\nNf5BFBrxXI6J/Uj6mVxkGhE0YHA2ZkZIJ9JsQkNCUGLqY8OfUkqEZQiHLA2kb2kZPk90Pt7YQ7gS\ndtOcsIdPDl3JhTtT2VITsvPEWROp84fa9SVdhknE4HDXEnB1vImyOsbH7uFWNH8NM3f3oTY6NKtY\nN/YITc62xvmbyhdxbZPBYWMOb9lCEV9dVisN0U5EQCPB1UBc0MQVvhlYLP9m/qCNDPb7yLGFloxi\ndJ0Gk4nJTaPJcRQyIjCD+wov5t3UJqZX6Ow3l5Bvap/jpTIqDkMz8X7WzE7fL3+RP8JWMIjagxfg\nb0ph+HdubvexnLytDntzHFZZAz/cAMmjkLpEdCNGmeLM4oFVr/LSimhAMNxUyTvOX+D0B7ifn7Da\nM5GhsZEM2f1n/rWgmAjdzpMF95JgEuTP+hkSeIureF9c1qbOS9dsZNDBZe2+9S9MK2ZYVBFCwEvO\nKGbesILMuCGYtZN2njj9ikWE/NlygPOAUkKpia+UUu5vVWYhcDstqYkfl1KeJYRIBVLDSiYK2AZc\n0vrZTto8hRskm/h81XSQAqPwAmIPjMGi2ahc8FsSixaSkH8JAIVT7yNgr8Kweogtnkfywas7rbPE\nWkFsMIooI7T5K99ayiFHCRWmetIDiTSbmpnWNJZ4vfONcZb+ERhuHb3Gh18EcGnNxOsxYBKgS0ox\nuBoXrb+SByN5nug2S1dYtdCoBLrO93GUgmm/ptYVWrIr0iFv/7VcWLeF/fVtw3p7rDpLZtXisbZ4\nk83LvpbCuL1M3F2D2+HHHNT4aGoFXlvX7cc2DGdF9WFqAo9gYPCifTX1jkhenzKvXdnFWz8lwd3I\njd45aHj5YODbjHZn80Ta/+PevUnE+0M/AgwkhaYqSrQj+Ahw2NTihVMdGYPfYsZkdbN+gucuAAAg\nAElEQVQpeRzlcant2rlYvkMqZUxmEya3k/JVt5Cctwfj/CLsI/eRUt2MvXg0qSYXMmIhzu9cjnCV\nQ+aXb5RUfLPQDZ1B97bsI1kT9VMGBCp5gusoMFL4gXc6sy+I4do37jrmOn9W0xjuL/0hpVmP4U7a\nSQPR/Ei81K7u765cR3rRp5gCbZd4U+wuZiXlk+FsYHJ6P7bctKfdsydIr1As04D7pZTzw+f3AEgp\nf9+qzDPAGinla+HzbGC2lLL8uLreB56UUq7oos1Tplj81c0c/tNmCpt2E5R+dtWuAWB2v2txDdxE\njEkitQAISWLu5UgRxN1nHwF7DUa8Dxp1rI4kIqpHY6px0qx5ERIcsq2nTBAdn+bHYdjQOrGxBAdX\nYc7rXipbH5J1BBmOibQTsN0cpTF5ExF1wzH7Y45dq8tYhdvm5i+Fg7mweAeDorM44i0hrykU8sRt\nD/LWuWWk1MVy9k4nb80p66z6bjNq39285vgRZb5lSCRrLfvZZzvCSzMu7PSZW9a+hwZ8xzcNizSF\nNiSaytli+fLoyQl1zWwYGc+nQzsPJLpALuOiwgNUbL0WaViIcFcwsvLvuG49ArEB7F6d8VuisV71\nMuYh40+y14pvEhf+82H2HQxl4/yx/RPu4p8Uks4/+Q7bfWMYH53My1ka17/+EG/PCUW20KTG4wW/\nYGAwCW90ISWTHyGfQfxG/KFd/TP37mTaurc7bPv2Yesx/7YK7eSWWHuFYlkMLJBS3hQ+vwY4S0r5\n41ZllgGPSCnXhc9XAb+UUm5tVWYA8BkwWkrZzlgghLgFuCV8miClHHAC4nW70wXlufz37nuR3vYB\nHOekXoVf95LmHELQ8OPVm6nxlZEWMRiL1jYujzeqkMNjn2JQ8AHkJge+mFIMvDgaQgbfhnNXELM6\ntGPZE52Ho7Hr+Eg+4cUm27tyShFESDPSpiN8J2bkrRn0LrElcyiZ+EfiBk6ksTaanQdtzBsXQ2lV\nHhsPDmFNIJGn6qN4v/jJDuv458KiTuv/LL+ShSmjcEXUdHjfUn4BUQ3D8BgOxgRM5A54kyMWHxft\nsXGlpZB+kefg0i8liM7LtrVIIXlr6iyO2EKZOW+peoPYyljKR5fyL3EjAEnNNXx7y7ou+y6BzQNG\nkJOYhjviy3OpXy7/zaQ9JlyHZmL4naTLJThnrEakh2xn/YvcJJX0xXz1P4gYOKXLthX/O+yryuPC\nv+4GaWO6uYBXzaH0CffzU7YG0pkcXUiTdz6vT7Nx5ZLn8Wl5rJ4YWk6e4BrBtdXfYqgvg9r+y6kZ\n+jZebNwoXm3fkJQs3PAh/QoP4HQ3oRk6Ni3IJXc/Qvq4rJMR/ZuhWIQQkcBa4CEpZedBqFrqO4Ub\nJEt45qe3YjKOjq1oV02Gcxgl7uw21yYnLCDRnsGeus+ZknABZi20vh+0NrSZBXSXgO0I1VLwRPlm\nxjfuos+0sUxzj8TZ1B9X4g4+ithPuS+d2ys6TookMSiZ/Hs8sXlYPAlYPAk0xx9g2aE7WNk0kLM8\nAXYcaSQ+UE9u5GCQkoneCv5kG0CDv4ZV5f9uU5/HqrNrcAON0VEcjj98fGP88dA5zNf+gxAGXiE4\nu884PM4mssoX8kjjfJ7X8llk+wuD/IuIMK3EIooo8PYl05GPXx+PWZRRG/g5fjmcKtHAEttWDODV\n6fNwWUJK4A/19+FaeStSDylzc/+t3De1ZQ/JpQdWklzlQgK5Sekku8t5K2s+QbOVGG8tDfaO00bb\npJenuIFd639DZGU81ZF2hh3ehyWhgj7nvIEIpze2e3WG57iwaIOJuulDRET301Ar/jcY+LvHMJqH\nMECr5WHrC0xnB48aN+HRosgLZFCb9Cnpnh+y5KxILl3+LwYXZbeJLAEwp2EKd5VfTcXIl2hMW89/\nWcwGZnJYdJx07pr3niOlsoLFD95H/8EdRybvgl6hWL7SUpgQwgIsAz6WUv7lBNs8ZYqlxtXAI7+8\nE8MopDbGx55BjcQ2WZi7LRlb8MSXluJT53Keva2IlZ4iluilfC96PBFGyyYnT9DFkpKnkMDeqJFM\nS0umzHBQp8eQUrkZuyuvTT2vpF9JhMXGiEA5o0pDcctMs0axuGRROzlejtvB63WDaAIuc9Sy2ZxI\nWaOfW4pexHJcEE1DWNBk+1S5VbE+Dg6Jxx6MY3/q+jb3RMUFeIKx2NNf457cm5kVDC0DRZleRRMu\n9tXvoMLTj0mJ93Q6Vg5tHR6jrYG8RKvhY+suYmIq2ZI6ik+TQ/cfKHuC4LqrGXvOHWQVVfC+vI2G\nolkEx27gD8MXoIvuGSyvkP9iKuvxbLyU+vIJWAOhGd/MrT/FM78Z99wWW1B0Y4DxuxsJzrsPuyUG\nJl4HJxDLSfG/yy/e3cjSzeV4sHK1dSMPak+wOnAeay2jAUjzTuONzEe5qPwBHj4nirj6apJqKrho\n5Rv4zDq7hjSwP7MJk9SI0B3cXXY9QyI9HM76G0FMFDCQ+0X7fEYA75lrmXr2nJMRu1coFjMh4/1c\noIyQ8f4qKeW+VmUuBH5Mi/H+CSnllLC32MtArZTyJ91o85QpFm+di8lLpnV47+K1KcS57dg0B/aI\neLITqxkTGM7m4AYyKzqOyppoz6Da2z7ibr0thj2xM4nQfUysWdldMTtk8vi5RMcfxuKNp3roG+z6\n4iHmNvkoaNpNAwZ6sIGa5i+3NxzP2nHVFKS1D+0CEFU3Fkv5LLLqd5IgI7m5z3iCsu2vKKfpY8DA\nrV/QYR3HY2BQK1y8Z9tCUAj2nR3PFyJk+H5Bfo/a53/G0G8/yFl7j3C437foW7yUVZEXcDDvZsSo\ndfxu9MVdtjFbrmR+0wYsB8fhOpyF7gt5AI7Tf0Xg3CqMlJayQ3ObSK72o2n9MS/4GUy49oT6oVAA\nVDf5mP7QxwQwMUCrZZn1F0TSzBNcRy2hBGdZ3ukcidzP+oi99K++hqfPD61wxDYcIWvfZsYc+Iyl\nM8txO0JbFFL8fbi/6mqi+hyiemgoa2oR/fmMOXwkWn5cLjNXM+ns9gFCT4DTr1jgmNfXY4TcjV+U\nUj4khLgVQEr5j7ACeRJYQMjd+Hop5VYhxEzgc2APHPOxvVdK+WEX7Z0yxZJzaDuXres8hH2oVgHH\nJaJKbIxABHVivBDT4GB0wckvf7VG1wy8qXXk28xEJ9YQvz+NqKaOQ2bERQzm38nzGSkClBlmZhY+\ndUJt5KW5MEU2U+CEuqgAdr9Go0PHYfShPqK9G66R+zPcRiRnu/bwh+h8XJ5ZJNr34tIXA/CrMTbm\nlzYxpU5gb7XXJsFyDzWB0ET27nFB+lQWsqjaTpIRg08EWBKRjTkcn2zDsBHsTmmJjJvmreCWZS7G\nT/8lWeVWrD8LZ7oMeDEeSmZZ2nxKtt1KY0o1thnvMMK0hxIyKKyZiUs4Gb0pFbO9EU9N2zhe/YNv\nIuZlY4psxBJRT/9iN2mHfWiGJH/ms4yYdZnanKj4Sgz79VJ84dWOV+yPHYs9eD8tOZHqveNJTljP\nMr+d7+pRVHqm8OJ5oe8Qu7eZyz58haSaEt6bdRhXRGilYbAng78V3oPEwJ24i7p+K3H12U8p/Yil\njlTzfUyddcnJiNw7FMvXzalULPml5Tz99Br2JL9FWUwuGfXDGV0+i+UjOs+OaAs4CWheDFPLpsf4\negtztyfh9IaWZpptQXYNq6UywcNZu5JIqrVjarXxcN+ARraMqEMAQ0oiSK5zEJV+mA/jbSAgwZVO\no/0IhtDpG3RTZraim0LdswY0rloRmimYhRW7yYkr2DaYHYDL6Scnsx5rdBPbo8wY4e/L/rWjMIRB\nUPMT60nmYPIXrbJZhogtupLoxhHkmSSLy/6LXfdybcZYTNrsNuV+MMmHz9PAzEMhV8cbvXMQCJb3\n9fLAiFgW1azlgBjMuQd3tpPPAHAGEGMrecYaMtHNkGuZs9OFkTOOoYt+xTl7fdh/eaBt+uSgD9+j\nyaweN4hDy/4IIogQEs3iCc9G2n5OElM+JH7GEtB0hIDohgDjdzdgliDHXomY/Ys20Z8Viq/C1IdX\n4GlsoAE7l1l382ftUQCWNt3HtqgWP6Uifz/uNwZjQnC35QDREYUMqDiPv1wSh6YHGZO9nZmbVxLh\nbSY/1c1n41scY+IC0bya9wiemDyKz3oQky8a3fgzcy88Q5fCTgenUrHk7S/k4yfy212viSjl7XF/\n7G51HUokwuFKMg/bifCZKU724LGbCJi9WIJ2AmYvmmECBIbWYgcZWTEdTZoICh2EQXlUPkmufuha\nEGd9PhNz4to0FUg9wutj3RiaJPOwk4oEMEk7Md5EFh64hWendZ7Z7yjzd/6KleZoJtWuQkiDYe5c\nBhtJnJVehm77dZuyufb3WEvU0W4igfpoBylGNH5X2wjKuhAcSkzDEBojm7J5anL7/Pbflf9h7IqR\n+Or6Mzzr54wKlJByW0WHdg3ji6eQn9zD+rPiCVg1st/+O9KwMsFxB7YKP3U3BY99XDJKmqlOsDIi\nx0VcQxBx1g9h3n1g6SBol0LxFWnwBJj6wFK8WBltKWO2KZefEUrM9Ur9n8iPbXHTP2JEsDOQwT9k\nMjFYeCJyE+WBaBIZzquzQ7vqLQEfWfu2MGXHMuojA3xyVsuqgklqPFh8O/siclk0ezGjJnUv908Y\npVi6oNud3plXwfee3cZ5HiufOPw0axBlCK5sshIhghTG7ybWk4yQGn2a+5KduIlN/ZbisYbcTy26\njYDJ10UrPU+8OxUjWMM5uxIoS/QgJNQkpVOQsBeArLK57EwLRVkeWjWZnKQtndY1tuRCavUYDnhC\nHiXfqviA8w8XkR47lsSBLUEXDQw+tO+mMbqMKU1m1kgzAc2EiSAfjZhIwOLg4p0hY39AM7F1wHAG\nVZfhsdhYPqZjO9ZRrm9+hfSlCwGNYWPuYWZjDrafVyLMnQdg1AN+mh8agDc+wBFnJF7hILO2kihX\nkOYIE9aAgTkg0YDgyG+jR6Zim/8AmFQ4FcWpZfE/1lNZXECJEcd3bTu4QnzIBEJm6FdqniE/oX0o\noqW+EVxpLuTywDR+mPZ3ElypjDl8MZuG2vlsdOhHkDngZ9LudQzPWU5OvyZyM9zHnv9oxiukDT6p\nPVVKsXRBtzt9aPMXPPziOlbFjuR7WLkJGyUYPI+PDTLI4ICJWs2gr65RbjJo0iSDAybme6wENB9m\nw4IhDJ6b+rN2dce7U6l1lnfQaojzsq8jv88uDiWE0vkmN2Yyo/Db1DuqWJ2xAmnvOMd4azTDhCEM\nBAIput7drulWHLWTaYzOwWSrxsi+G7cRS7K3kokNO0j3ljGr2cyAEbe3ezZXK2ettSVIwsHkfqwZ\nPqFdueu3/peXJl36pXIkykpuqvsnbnsk/Ytt1O+6FKc5n8zRb3J2xWYab1hHbL8xXfYHgOpsOLAE\nPesayta/RvqUS9CiU8Fsa7uEplB8TWzMP8JPn/+YciMGCwGutu/gvlapNrKH/Y3NWx0citrX7tkv\nAv3BcHAnVtYlrmVj/QDSzc3kDTyP3LTQDy2Hx016eSEXffIqxSnNxDVZueOhv9IndeTJiKsUSxd0\nX7Gs34BtafsAkS0VSrLR2YfOG/g53KqJpKCg3iRxGoLxPjPj/RrFcftxWeuojCgnqexbrI6sJ95c\nyxBbPlG+eMpicjEbVrJrvkUTZpwShul+5rpDhruNtgC7bDqNmgHoaMJPirWMgDeNOe5Y3o+sxTLi\nwU7ljfYk0mxxk944iCRXP2y+eAIINtokbj0aw9veF/47h99laEMZUxhCzKCFWKwakhb36C8yXmSb\neQj2cj970gawP3Ug8w5s5a1JLeu5NunBJzpfWjpHruIGnqEm5zyaysajV7e1aQwa+38McRwgwZiO\n49q3sFqUAV1x5qIbkkH3tvgkXd5/Gc7KRH7NE6FYfWHe8r5MpNTY5Njerg6fNLHcP5w/y1iGYWez\nYy9PRhzkHD2KSYfn8eC0CApSrDjdTRiaxtqswfTrm3wy4irF0gXd7nT2qqU4V3Qes6sjajDYg06G\nr5YmWx9exsdWWimnUKbSNlhl6LImwRc2Gfyg8EUKI9L5OKlls19MoIFrSl9FAHWWWJYnnc8Rax/M\nwAs4KcLgPlMFA02VDNHB7Sxid+oaDE0nfe9vOWCKaNOmv5UcI5sOMKdmDQA2WxrN/grGlVQQTSQZ\n0+9FmFqWnaLNL+HQNnNv2hU4y8N2n371/CPzujb9miQ3EU0DE3dZsVpcPDQq5P44Uu7hbn5HLsMY\nSB5V62/CVdZ+djOm/hH07+cxYV89MS4d7u84LbJCcaaxpbCW2575hCoZskPePPIVgvnDuI1XSKCt\ns82ngfuoahjHwYTPO6wrIDVG+7IYI6xESQd7HXk8E72J68q/x5+yIrimyM/3b8siIrrjbRBdoBRL\nF3S70x+/u5Sa7WXMMPUlaHHxvsxmWmyQ9PJz0Qxb1xWE2UYQqzR4WXrJcucxw5pOpC2BRDSqMPjU\nW8zbGpgxkRGo417naOLCsb12+CrY6S9nBhpDo8Ydq/NIczEWs5Mi1z4yo8YSaQkpwNzG7dwWkUqz\n2YlZQqQhqNckCPhO2Tuk+EPGPZsWgVv6qLYmkOivIcHlZpp5HJFDFqKFlYjUA4hWNgezKMFqWsYT\n5hY3XQmUpMXy4eDZREg3zSL05r3B+wwTy9xU7rwCS0Qt/sa+2OILCPbPwVrSn/hhK6naeTn22GJc\n5WMYdsnteJvSscWWABIhYcqOOqLcOkbSSLQffKbsH4pvDFJKMu/5kFStgXIjtCJx18S/kW49QtOO\nUVxD+xTl7thxvJH9M8bHmnnf1rFdVJeCjcH+XKSnchEObovcRL1rJB/+9hyiuwhZ1AlKsXRBtzu9\n5O0X2O38nOW2hRwSLV+mt8gnmXBkJzXF19O3MZUDMpcFgSxiZOdpQiXyWA73U4lEsvXIalYEa3Do\nHj5IXsBwVw5n123h8gF3IqVskwjIvftVIoZfjLB++a+ZSNNrHDF/zr/EZTTaHDgML2vGjeWQM/NY\nmXnZZZzbsJs+A1dSuuqXCMxEZWyh79TnMOUPZP+2u7HFFhGZuocjBxYhtAADF/6KrKIiUqpborPW\nO/oRM3YhYtxVULFLbURUfCOpdfuZ8H+fMMpUyT49tBP32v5LmDH4Uw6XjmJCUQWDKCKS9puSt2e+\nTu4OP97IwxSYK9vdB6g2nHgCmdwkrIy8ZzaxUSeVn0Upli7odqffef0lbkvu2pNinucT+jTUMXNJ\nEeaMc4myxNCHWD635jHfOwynPPXpYyNN72AWh6kPhgzrfn8jeeUrKaWatMgRjOozq5s1+gAbida7\nWGLNZF9wOIYmqezv4P1+7SP/jmw6yLc/TDr2LoyJ30rqvGcASDkYw6iqQxgCauMseG0mmh0m4hoC\nRLqDOLwGXP8RJAwJGdVtHeeYVyi+adQ3+5n4u48ZZy5je7DFxvnTs/6PEZG1VFdlUpw7gZ/wAg7a\ne5gGbYm8XnYvfocNt72CI6amdmUK9Dj+dNcVJMYoG8sJcyoVy7tLn2dFdpCIzAKS6upoOuDg3VmX\nUhvdud3l+sYXmRy1ji+KzyXSa1DpT6Oxz2Su2F/MOL0/AsE6ewlPjOlLhO7m9gMu4gJ2BgZDwQt9\nQifN/Fts2u7QuTGOEm0RacZaHNo6QBCQ/bCIIlz6t3Hrc9Bwk2C9H4GHMt/SE+pbnPkx6oItkXNi\nzC8QafoAAzuGjMOkFfFfFrCHETgcjXgyfPwj9eY2dZhkgMX+dxm87Cy0YDQDL7iH6j2XEZm2g5Hm\ntQw/5Ma4+n20wbOh4HN4OWRjkUkjEVUhDzI55ruIy5470X+JQvGNY8OhGq56bhNDtCpyjZbUGFHm\nJn6Y9RJD40LxAXNyplNTOYDzWMc02hv0y7WJbKq5CClHUx+bS5GpZSZz792/wmo/Q8Pmnw5OpWJ5\n4h+/JLC6vctf0BmNRGIaI3h6zI9pNnW+BAaQ5Kvmhop/k8sIxvjyiPfUckjLoL9WRGJzI++kLWS0\nJ48fl76GBH5t/SlVUfEMrSvgB8YbZJv7Ewxa+Ig5VEXFEdvcwMVlnzAlZQ8a8CxXcpgUMpzFXOf6\nCJ8xmdrAXe3kiDS9R6zl+WPnuownYGRg03YhBHxincEGf0u4d5u9CbPFx7bxA1gjWhJqzTy0npmb\nPARsw4gIhpbQBkz9KzNqNxDbGDLm6yYnpp/tBRXtV6HoktUHq7j+n5u50rqD5YHh1B+3rB5pq+Wi\nzFXMSv8CX3MUBXkTmNBYcCwkTEfsTn6YzwsdSAk3P3ANNodSLCfMKQ3p8ukqdjz3COVYiO1XTyBo\np7a0YyViaCZ2zJ3FjgHjqTN1/GXaR1Yznm2sFG2Xkqa5NuGoM/Al6Kx3dJ769ngSm48wf9cWfBYr\n+/pmMqyimOSmOm7jZRJkLX45HA0XQZmMSdRiEYWstE1ntT4dqx6kKjqGAe7DVDljiWwMYLJ48Q93\nUWDvz8qI9gHr+npLOG91Df0a+wPg4DBDpv6BUfWHia8PwK3rkdFpBOtLsfQ9wX0mCoXiGA8u289/\n1uUw0VzM+uBAZAff6wKDp+fdhTAERUXjqCobwmUsZwR5HdQIVRnzSbrxzZMVSSmWLuh+oq/8wzz5\nj2dpdDpZOiv8RSslEV4X39n1Cum5xViiU3GXd5zACiExx+msn30enyXN7Vbbw+R+ssVJbWhiYtFB\nrilcShJHGMsBXncuosqXSGFsKl8MGg0mg356Mc1GJClGOQnOcpaKzjctxuh1LF5RQGp9f4QQZM76\nPcneSjJry4l3hY3u466CS58+KXkVCkUL+dUu5vx5LRZ0nMLHWeZi9uvJVBhRBGibCmJevzUsHrIE\nDfB4otixfRFplHMTr7fRCMZvKtFMHQes7QKlWLrgpDq9snAjT1XqzIt2scMluDy9P+NjM1n2wW6e\nb6omd0Aqw429jGUnjtpmBqxrwnskEml4ECY3hj+UfbIpLoH8QYPpE1lNZlE2gQITAbOVTeedQ3O/\naHaJ0D6OKdXrGLdzCwmHK3GbnKy74HyS3OWcG/kpdSsjMOo1ooa5WZc1j/zoIVSSQqOI5Wy5mjri\n2StaXJIv2bualLojxKcXsnPAED4UXYeRny4/Y4MIGfp/c+D3+HYuwiqSEMJCcur7DE37mNGl5WiA\nO2oQzju3qR3sCsUpoLzBwz3v7mFNdjUWdEaYKrEQZJver8PyI+MPsjBzBcPjcwkGbWze9G0GG0W4\ncHLjrx/HZD7xLRKtUIqlC7rd6WCwibWftU/nmZq6GLf7EBnp12KOHI/FFyRvz2rkrhQeEzXUjvaR\nTgnl3hRm2D4ncZWH+kNtE2nZYqLQfSaC3vp29VujvkfSqM+p2D2cYPMngAWTdTiadQgxA3IJuIfh\nrcvA3/QqMZk5RPZtRvea8NZbqRyexuN9O0+kZZF+AsLKUH0/7mAkEc0u/NLK8Pw9ZBaZiWsyY7KO\nwOQwMAJRIEO73M8feBdDmg+hW6IwXfc+CA1Sxqow8grF14A/aJBT2cSiv63DhM5F1n0c0JM5qHfu\n6XX9qH+TlbiHSKuHqZM344zqczJNK8XSBd3utGEEKSx8koLCv3VbrqMb7OO836fpUDO5g7YRaWsi\nOtgIjRJzjI5mMqg7NBlvbRqOuHKcKTkE/RJHfB0CiRG0I2vt6DY75sg6NHNo2clRp9PkiOXwxlto\nrhreIq9+BN27A5czl40XzmFrZNvgjj///LeY84cBfdDM6ej+XMz2CQitxb1XmHxIw0RK8nqG9H+N\n9Lpa4hsDBCJTsdy2ERzdi0SgUCh6npCxfwtpWj1zLHmsDgym1Oj4szm0zxpev/FO4uNTT6YppVi6\noEc6XVr2KrW16wFJdfXHPVFlSAkdjRGpgTNyPFlj/8b6Ly4DGXIZbA7YEFUDGTH0Gvr0GUb+ihup\nG1aPvykJf3U/IgduJdAcx6Flf8AIVhL0fIY5ogDDDwGvHatzPpplCEK0DTOfMullIhKz8db3Z4Bl\nM5kVjeiaoE99OC1xbD/4/lKIG9AjfVUoFD2HN6DzwNJ9vL65GIEkFg+zrPlsCWZQbzhwYyMCPxt/\nM5do5xm8QVIIsQB4nFAGyeellI8cd1+E7y8klEHyOinl9vC9F4FFQJWUcvQJtve1KpbWGEaQ+vpN\nRERkYrf3BcDnq6LJtR9nxCBAknfoj1RVtU+CmZAwl7jYqVRVf0xDw1YArNZEZkxfi6a1XQs9frd8\nqHEdV+F6qotWUux/B1+VHWtiLUGzmfr8s6ncfnWb4n1GfED88OXo3hjMjnr6HmmkItnOpB31RDXq\n6MKMb/y1OK0WxMTrQsmtTm5NVqFQnAYMQ+LXDV7dVMzvlu1HYDBYq8GwRbPk7otx2sxdV9Ke069Y\nhBAmQjnvzwNKCeW8v1JKub9VmYXA7bTkvH9cSnlW+N4swAW8ciYolhNFSonLdQCzOZKyw2+SkXEd\nNmvCqWlr56tsy34Yn9OFx2ZFhDNZmoIGk3c0gG0wwdgMoqfciBg8O6Q8lJ1EofjGUdHgpaSumYn9\n4tC0k3aw6RWKZRpwv5Ryfvj8HgAp5e9blXkGWCOlfC18ng3MllKWh88HAMu+SYrldOBpLsa79G18\nRjZ9Zt6IOXlUl/HAFAqF4jhOWLGc1HzoBEkDSlqdlxKalXRVJg3oPOvVcQghbgFuCZ+emp/+ZziO\niH44Lu863bBCoVD0BO2ThJ9hSCmflVJOCs9UOtmdqFAoFIqvi1OpWMqA1mkI08PXultGoVAoFGcQ\np1KxbAGGCCEyhRBW4ApgyXFllgDXihBTgYaj9hWFQqFQnJmcMsUipQwCPwY+Bg4Ab0op9wkhbhVC\n3Bou9iGQD+QBzwE/Ovq8EOI14AtgmBCiVAhx46mSVaFQKBQ9h9ogqVAoFIoT4YS9ws54471CoVAo\nehdKsSgUCoWiR1GKRaFQKBQ9yqncIHk6ONF9LCppiEKhUJwivlHGe4VCoVCcfmio7Z4AAAdsSURB\nVNRSmEKhUCh6FKVYFAqFQtGjKMWiUCgUih5FKRaFQqFQ9ChKsSgUCoWiR1GKRaFQKBQ9ilIsCoVC\noehRlGJRKBQKRY/yTdt5f0IIIT7i1KUxTuDMyWR5psiq5OxZzhQ54cyR9X9Bzhop5YITKah23vcw\n3Qjdf9o5U2RVcvYsZ4qccObIquRsi1oKUygUCkWPohSLQqFQKHoUpVh6nmdPtwDd4EyRVcnZs5wp\ncsKZI6uSsxXKxqJQKBSKHkXNWBQKhULRoyjFolAoFIoeRSmWbiKEKBRC7BFC7BRCbA1fixdCrBBC\n5Ib/xrUqf48QIk8IkS2EmH+KZXtRCFElhNjb6lq3ZRNCTAz3MU8I8YQQokczbnYi5/1CiLLwuO4U\nQizsBXJmCCFWCyH2CyH2CSHuCF/vVWP6JXL2xjG1CyE2CyF2hWV9IHy9t41pZ3L2ujENt2ESQuwQ\nQiwLn5/e8ZRSqlc3XkAhkHDctT8Ad4eP7wYeDR+PBHYBNiATOASYTqFss4AJwN6vIhuwGZhKKIXz\ncuCCr0HO+4G7Oih7OuVMBSaEj6OAnLA8vWpMv0TO3jimAogMH1uATeH2etuYdiZnrxvTcBt3Aq8C\ny8Lnp3U81YylZ7gYeDl8/DJwSavrr0spfVLKAiAPmHKqhJBSfgbUfhXZhBCpQLSUcqMMvdteafXM\nqZSzM06nnOVSyu3h4ybgAJBGLxvTL5GzM07nmEoppSt8agm/JL1vTDuTszNO25gKIdKBC4Hnj5Pn\ntI2nUizdRwIrhRDbhBC3hK8lSynLw8cVQHL4OA0oafVsKV/+gT8VdFe2tPDx8de/Dm4XQuwOL5Ud\nnbr3CjmFEAOA8YR+ufbaMT1OTuiFYxpettkJVAErpJS9ckw7kRN635g+BvwCMFpdO63jqRRL95kp\npcwCLgBuE0LMan0zrO17pQ93b5YNeBoYCGQB5cCfT684LQghIoF3gJ9IKRtb3+tNY9qBnL1yTKWU\nevgzlE7o1/Lo4+73ijHtRM5eNaZCiEVAlZRyW2dlTsd4KsXSTaSUZeG/VcB/CS1tVYankoT/VoWL\nlwEZrR5PD1/7OumubGXh4+Ovn1KklJXhD7IBPEfLkuFplVMIYSH0Zf0fKeW74cu9bkw7krO3julR\npJT1wGpgAb1wTDuSsxeO6QzgIiFEIfA6MEcI8W9O83gqxdINhBBOIUTU0WPgfGAvsAT4frjY94H3\nw8dLgCuEEDYhRCYwhJCB7OukW7KFp8+NQoipYa+Qa1s9c8o4+iEIcymhcT2tcobrfQE4IKX8S6tb\nvWpMO5Ozl45pohAiNnzsAM4DDtL7xrRDOXvbmEop75FSpkspBwBXAJ9KKa/mdI/nyVr9/xdfhKbA\nu8KvfcCvwtf7AKuAXGAlEN/qmV8R8rzI5hR4gxwn32uEpucBQmukN56MbMAkQh+YQ8CThCM0nGI5\n/wXsAXaH3/ypvUDOmYSWEHYDO8Ovhb1tTL9Ezt44pmOBHWGZ9gK/PdnP0Cke087k7HVj2qqd2bR4\nhZ3W8VQhXRQKhULRo6ilMIVCoVD0KEqxKBQKhaJHUYpFoVAoFD2KUiwKhUKh6FGUYlEoFApFj2I+\n3QIoFGcKQgidkKvpUS6RUhaeJnEUil6LcjdWKE4QIYRLShn5JffNUsrg1ymTQtEbUUthCsVXQAhx\nnRBiiRDiU0Ib0hBC/FwIsSUcqPCBVmV/JYTIEUKsE0K8JoS4K3x9jRBiUvg4IRye42gQxD+2qusH\n4euzw8+8LYQ4KIT4T3i3NEKIyUKIDSKUR2SzECJKCPGZECKrlRzrhBDjvq4xUvzvoZbCFIoTxxGO\ndgtQIKW8NHw8ARgrpawVQpxPKEzGFEJ5LZaEA5W6CYXcyCL0udsOdBo4MMyNQIOUcrIQwgasF0J8\nEr43HhgFHAbWAzOEEJuBN4DLpZRbhBDRgIdQuJfrgJ8IIYYCdinlrq80EgrFl6AUi0Jx4nhkKNrt\n8ayQUh7NL3N++LUjfB5JSNFEAf+VUjYDCCGWnEB75wNjhRCLw+cx4br8hOI7lYbr2gkMABqAcinl\nFgAZjsQshHgL+I0Q4ufADcA/T7TDCsXJoBSLQvHVcbc6FsDvpZTPtC4ghPjJlzwfpGVZ2n5cXbdL\nKT8+rq7ZgK/VJZ0v+SxLKZuFECsIJXn6LjDxS2RRKL4yysaiUPQsHwM3hHOjIIRIE0IkAZ8Blwgh\nHOEI2d9q9UwhLV/2i4+r64fhkPgIIYaGo2p3RjaQKoSYHC4fJYQ4qnCeB54Atkgp675SDxWKLlAz\nFoWiB5FSfiKEGAF8Ebanu4CrpZTbhRBvEIqMXQVsafXYn4A3RSgj6Qetrj9PaIlre9g4X82XpIuV\nUvqFEJcDfwuHevcA8wCXlHKbEKIReKmHuqpQdIpyN1YoTgNCiPsJfeH/6Wtqry+wBhguQ0mqFIpT\nhloKUyi+4QghrgU2EcofpJSK4pSjZiwKhUKh6FHUjEWhUCgUPYpSLAqFQqHoUZRiUSgUCkWPohSL\nQqFQKHoUpVgUCoVC0aP8f2/Vhre5jAyEAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f0525dba2b0>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAEgCAYAAADIVhjyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmYXGWZ+P3vfWrtfV+STmcjGyEEBATcEUUBFVzGcZth\nXJERXnXGn+My+o4zuODPWRxHBkTGBXwFUdFBhxFlU0FBwhoSSNLZe1+q99qr7vePczqpdLo71SHV\n6a6+P9dVV6rOec45z6mu1F3PLqqKMcYYs5g5JzsDxhhjzMlmwdAYY8yiZ8HQGGPMomfB0BhjzKJn\nwdAYY8yiZ8HQGGPMomfB0CwaIvIKEdnxAo7/ooj0i0j3icxXHte9UUQ+P5fX9K771yLSIyJjIlKX\nR/r3ishDc5G32RCRL4jIDwp8je+JyBcLeQ1TWBYM5ykR2SciSRGpn7T9SRFREVl5cnI2Nwrxxaqq\nv1fV9ceZn+XAJ4CNqtp8IvM16TpH3beqXqWq1xbqmtPkIwD8K/A6VS1X1YFJ+1d6n0P/XObLmEKx\nYDi/7QXeNfFCRE4HSk9eduYXEfHN4eWWAwOq2juH1zyZmoAwsO1kZ8SYuWDBcH67Fbgi5/VfAbfk\nJhCRkIj8s4gc8Kq0bhSREm9fjYj8UkT6RGTQe74s59gHReRaEXlYREZF5NeTS6I5aeu944dEJCIi\nvxcRx9u3T0Q+IyLbvet8V0TCOce+UUSe8o79g4hsztnXKiJ3enkcEJFvisipwI3AS7wquiEv7fdE\n5AYRuVtExoFXi8gbvNLyiIgcFJEvTPdmisgFItKe83qfiPwfEXlGRIZF5Ee5+c5J91rgN8BSLz/f\nm3yunPO91nv+BRG5Q0Ru8d7bbSJyzgu47y/mHPshEWnz/g53icjSnH0qIleJyC7v/b5eRGSa9yMk\nIl8XkU7v8XVv2zpgojp5SETun+Lw3+XsHxORl+Sc95+9z8FeEbkkZ3uViPyXiHSJSIe41c5T/qDx\n3r8fi8gPvPdvq4is8z5nvd7f+nU56Zd670XEe28+NNV5vbTne5/DIRF5WkQuyNlX631+O717+Lm3\n/agSu/der5nmGjN95j/l3f+oiOwQkddMl1czh1TVHvPwAewDXov7pXQq4APagRWAAiu9dP8G3AXU\nAhXAL4CvePvqgLfhliYrgB8DP8+5xoPAbmAdUOK9vm6a/HwF94s64D1eAUhOXp8FWr18PAx80dv3\nIqAXOM+7h7/y0oe8109791CGWxJ5uXfce4GHJuXhe8Aw8DLcH3Jh4ALgdO/1ZqAHePM093AB0D7p\nPf4TsNTL93PAVXkee8Tr3L+Z9/wLQBy41LvPrwCPePuO574n3s8LgX7gLO89/A/gdzlpFfglUI1b\nmu0DLp7mnv4JeARoBBqAPwDXevtWeufyT3PsUfu9vKeAD3n3+NdAZ87n5GfAt7x7bvTe+w9Pc/6J\n9+/1gB/3R+Be4O9xP38fAvbmpP8d8J/ee3mmd98X5pzrB97zFmDA+7s4wEXe6wZv//8APwJqvOu8\naoa/iwJrpvgbzfSZXw8cBJbmvI+nnOzvG3uolQwXgInS4UW4X9YdEzu8X/xXAn+jqhFVHQW+DLwT\nQFUHVPWnqhr19n0JeNWk839XVXeqagy4A/eLZCopYAmwQlVT6ra/5U5s+01VPaiqEe86E9W7VwLf\nUtVHVTWjqt8HEsD5wLm4geiTqjquqnFVPVY74X+r6sOqmvXSP6iqW73XzwC3TXGPM/mGqnZ6+f7F\nDPd/PB5S1btVNYP7dzzD23489z3hPcB3VPUJVU0An8EtSa7MSXOdqg6p6gHgAaa/p/cA/6Sqvara\nB/wj8JezucEp7FfVb3v3/H3cz0yTiDThBqCPe/fci/tj4J0znOv3qnqPqqZxf8g1ePeWAm4HVopI\ntYi04v5A+pT3Xj4F3MyRtSoT/gK42/u7ZFX1N8AW4FIRWQJcgvuDaND7nP/2ON6DmT7zGdyguFFE\nAqq6T1V3H8c1zAlmwXD+uxV4N+4v01sm7WvALfU97lXHDAG/8rYjIqUi8i0R2S8iI7i/nqsnVU3l\n9oyMAuXT5ONrQBvwaxHZIyKfnrT/YM7z/bhf9uCWZD8xkT8vj63e/lbcL8/0zG/BtNdBRM4TkQe8\n6sZh4CpgyqreaeR7/8dj8rnD4nY4OZ77nrAU9/0FQFXHcEs2LTNcd7p7OuJcHPl3O16Hrq2qUe9p\nOe7nIAB05XwOvoVbQpxOT87zGNDvBdmJ1xPnXgpM/BicsJ8j35MJK4C3T/o8vhw3aLd65xnM4z5n\nMu1nXlXbgI/jllZ7ReT23Gpuc/JYMJznVHU/bvXQpcCdk3b3434pnKaq1d6jSlUnvvw+gVstc56q\nVgKv9LZP2YZ0jHyMquonVHU1cBnwt5PaOlpzni/HrR4DN3h9KSd/1apaqqq3efuWy9Q9EqdbTmXy\n9h/iVhO3qmoVblXurO/vOIyT05nJ+4HRkOexx3PfEzpxv2wnrluGWx3eMe0ReZ6LI/9uxzLb5W4O\n4paO6nM+B5WqetoszzOVTqBWRCpyti1n6vfkIHDrpM9jmape5+2rFZHqKY6b/PeeqUfxTJ95VPWH\nqvpyDjd5fHU2N2sKw4LhwvAB3PaP8dyNqpoFvg38m4g0AohIi4i83ktSgRssh0SkFviH482A1yFg\njVc1O4xb3ZPNSXK1iCzzrvP3uO0uePm7yivBiYiUidvppQK3zagLuM7bHhaRl3nH9QDLRCR4jKxV\n4P6aj4vIubil6LmwE7ek9wZxhyF8Drf6Kx8v5L5vA94nImeKSAi3WvxRVd13HPdwG/A5EWkQt+PU\n/wvkOx6vD/fvvzqfxKraBfwa+BcRqRQRR0ROEZHZVGlPd+6DuO2dX/Hey824/2emupcfAG8SkdeL\niM9Lf4GILPPy+L/Af4rb+SwgIhM/IJ8GTvPe9zBuyW46037mRWS9iFzo/e3iuP8/szOcy8wRC4YL\ngKruVtUt0+z+FG715SNeVei9uKVBgK/jdozpx+0o8asXkI213rnHgD8C/6mqD+Ts/yHul90e3E45\nX/TyvgW3s8M3gUEvr+/19mWANwFrgAO4HYTe4Z3vftxu/d0i0j9Dvj4C/JOIjOJ+md/xAu4xb6o6\n7F37ZtwSyDhu/vM59rjvW1XvBT4P/BQ3oJ7CzO1uM/kibnvZM8BW4AlvWz73EMVtG37Yqwo8P4/D\nrgCCwHbcz8JPcKsnT4R34XZG6cTtqPMP3ns1Od8HgcuBz+IG9IPAJzn8XfiXuO3jz+N2gvm4d9xO\n3A5H9wK7gGnbeGf6zOP+YLoO9/9kN2418WeO54bNiTXRy8uY4yYi+4APTvXlY4wxC4GVDI0xxix6\nFgyNMcYselZNaowxZtGzkqExxphFr6hmnBeRX6nqxXkkteKwMcbMzlyM3z1pCloyFJGLvYlo26aY\nsQRvDM43vP3PiMhZOfs+JiLPijvB8cfzvORsZh4xxhhjgAIGQ29Gjutx5/rbCLxLRDZOSnYJ7vi1\ntbjz+d3gHbsJd5zOubjzOb5Rppkd3hhjjHmhClkyPBdoU9U9qprEnVj38klpLgduUdcjuPNmLsFd\npeFRdSeYTgO/Bd5awLwaY4xZxAoZDFs4clLldo6eOHe6NM8CrxCROhEpxZ2Xs5UpiMiVIrJFRLZg\n1aTGGGOOw7zsQKOqz4nIV3Gn9xoHnsKdC3OqtDcBNwF4AdEYY4yZlUKWDDs4sjS3jKNnkZ82jar+\nl6qeraqvxJ3fb2cB82qMMWYRK2QwfAxYKyKrvBn434m71E6uu4ArvF6l5wPD3szx5KzCsBy3vfCH\nBcyrMcaYRaxg1aSqmhaRa4B7AB/u6tzbROQqb/+NwN247YFtuIuQvi/nFD8VkTrcGeSvVtWhQuXV\nGGPM4lZU07GJyBZVPSePpMVz08YYMzds0L0xxixGyXSWnpE48dSU/fdMEbFgaIwxU8hmlb394/SO\nJDgQiVJMtWjmaBYMjTFmCpFokmQ6C0AilWUwmjrJOTKFZMHQGGMmyWSV/rHEEdsGo8mTlBszFywY\nGmPMJH2jCVLpI6tFo4mMtR0WMQuGxhgzyXSlwLFEeo5zYuaKBUNjjMkxFE2SzkzdWWYkZu2GxcqC\noTHGeFSV3tHEtPujyYz1Ki1SFgyNMcYznsyQSGWn3a8Ko1ZVWpQsGBpjjKd7OH7MNLGkdaIpRhYM\njTEGGI6m8gp0o3FrNyxGFgyNMYteOpOlZ/TYpUKA+AzVqGbhsmBojFn0Dg7GZmwrzKUKqYwFxGIz\nL1e6N8aYudI3mmAsfnSnmEQ6wy1/3M+unlHOX13HW89admhfNJmhqsTKEsXEgqExZtGZmG5tNJ6e\ntp3wG/ft4ne7+gF4rnuUqpIArzm1CXAH31eVBOYsv6bw7KeNMWZRSWWyPNc1Qu9IYtpA2D0c5/e7\n+ikJ+PjyW04H4Ov37SLtVY+mrZq06FgwNMYsGuOJNHv7xznWuPl/v28nPke44T1ncXpLFe976UoA\ntnYMA9ZmWIwKGgxF5GIR2SEibSLy6Sn2i4h8w9v/jIiclbPvb0Rkm4g8KyK3iUi4kHk1xhS/ruH4\nMTvKbO0Y5tnOEf78nFZKwik6xvdzwanl+B3h5of2Am6PUpuJprgULBiKiA+4HrgE2Ai8S0Q2Tkp2\nCbDWe1wJ3OAd2wJ8FDhHVTcBPuCdhcqrMab45TOOUFX56q+eJ+h3uOyMRnpjXSQyMUbSfZy+rJID\nkSgjsRSqkEhb6bCYFLJkeC7Qpqp7VDUJ3A5cPinN5cAt6noEqBaRJd4+P1AiIn6gFOgsYF6NMUWu\nf3z6OUcnfOfhvQzHUlywroHRTD9ZzUA2S1YzvOlFFQA8sncAsKrSYlPIYNgCHMx53e5tO2YaVe0A\n/hk4AHQBw6r666kuIiJXisgWEdkC1J+ozBtjikc8lSGamLlUmMkqP3/K/c19xUsbiabH8PcPENp7\nAF9kiObqDBVhPzf/3q0qTVrJsKjMyw40IlKDW2pcBSwFykTkL6ZKq6o3qeo5qnoO0D+H2TTGLBCj\nU4wjnOw7D7tB7pOvW89oegDf0Ai+4VEA/INDpOPj1JX7iaUyJNIZqyYtMoUMhh1Aa87rZd62fNK8\nFtirqn2qmgLuBF5awLwaY4rYsRbl3ds/xl1Pd7KkKsyLVgZJJqP4RkaRTAJfYgTJpvGNjPKmF1UB\nsLN71EqGRaaQwfAxYK2IrBKRIG4HmLsmpbkLuMLrVXo+bnVoF2716PkiUioiArwGeK6AeTXGFLHx\nGYLhcCzFF+7aDsDfvX49Q8kBAr39SDJGIDaALzmMLx7BGYuyrDaNANu6Roja6hVFpWAz0KhqWkSu\nAe7B7Q36HVXdJiJXeftvBO4GLgXagCjwPm/foyLyE+AJIA08CdxUqLwaY4rXeCI97bjC/QPjXHPb\nkwB85S2n01yj9A2NEozF8ceHQN2A52QS+BLDlKbraK0Ns71zhExWUVXc3+tmoSvodGyqejduwMvd\ndmPOcwWunubYfwD+oZD5M8YUv/HkkaXCruEY//dXO9jTP0bWC5Lrmyo4bWkl7WN78PdHcNJRSI3z\n/cxDDDDK+c5aXpLchDMepbWukuc7owCkMkrQb8GwGNjcpMaYopY7tnBgLMGVtz5+xP7Lz1jKB1+x\nmr5YN9mhAfxxt53wN9lneULdTjX7M/0E8HHGSB0ttVU8vCvJwUiUVQ1lBP3zsh+imSULhsaYojbR\n63MomuS933sMgNrSIDf/1TkEfG4gG04OMhqPEIoM4qTG6Mr08r/ZpwD4jP9yvpL+b36ReYIzEmew\nrsFd3HdX7yjnra6lPGRfo8XAftIYY4pWJquHpl/7t3t3AXDuylq+//5zCfgcspohEu9jINpFoLsH\nMhlSsV7+K/0APhz+o+LdbKpo5OrQaxgmyjPJZ2mQOI5A53CcpA28LxoWDI0xRSuWcqtId/eN8cSB\nQc5bVcvn37iRdDbNYKKf9vF9DCUH8PcP4MQT+JJjPJjdRj+jvDV0Ng3BcnyO8LKy1dRQxpZMG8Ho\nKPXlAbqGYqTSNj9psbDyvTGmaCW8YHjHFneiqw++fBXR9Di9sQ6y2QyoEujpw4nGkEyC8UQ3v8o+\nzWqngbeUn3noPI4ILw2u4e7kM0THOmmqqqd9MEYyY8MrioWVDI0xRSuRzhJLZvjT3ghvPrOFknCM\n3vF2nL4+ggc6CO07iBONgWbwxwf4fPoOAN5aetZR53pVeB2K8mjyaZrKoX0wRixp1aTFwoKhMaZo\nxVMZnjgwSDqrvGh5BcMjHfjb2/ENjyLpNKiCpvHFBxnIDB067pzQiqPOtTxQwyqnga2ZPTSVpElm\nsnQPx20ppyJhwdAYU7TiqSx/2D1ARdhPa3UKp7sbSaZAQbJpnOQYgWg/idQw16bvBOA/q98z7fnO\nCiynXSOU+dwJvQ9EoqQyFgyLgQVDY0xRymSVdCbL1o4hNrdUEovsR9IZJJsmEO0iMN6FPzFIJhPn\nM+nbAPiLkvOp9ZVNe87zwqsAiOkOADqHY7aUU5GwYGiMKUqJdIbe0QSD0RTrmgL4Bodw0nEC0V4k\n685K06sjfCL9AwAC+Hhj6eYjzlETqKAxXEvYFwRgma+GMkJ0JHdTGnToHo7bhN1FwnqTGmOKUjKd\nZXffGABLQuOQyOBLDNKdHeB76d/RxeAR6b9f+/4jXlcFyqgJuQv6ljhBDkR7cATW+5vZnWmnvtxH\n13DcSoZFwoKhMaYoxVNZ9vSN4wgskVF8yVHuSP2eP2R3Hkqz3KnjmopXs9xfe8SxAcdPbbDy0Guf\n41AZKGM4NcZpwaU8Ed3PyrJBekb8tq5hkbBgaIwpSqmMWzJsqQ4TiPdwILHnUCB8ZWgtV5W9Ckem\nbilqDtWiqTQd136TzNAIFa98MVVvex3DqTFODTQDEAjvo6ejwoJhkbBgaIwpSol0hj3942yo90Ey\nym3phwG4tvJy1gaapj2uNliJ3/HR/vl/IRNxh1uM3PcHMuMxSt7xKpZqNQA+fw/p7Ca6hmOsaSwv\n/A2ZgrIONMaYotQ7kiAynmRZSZItiafoYZgPl71yxkDoFx9VgTJGH3zkUCBs/de/x1dZzvgjT1Ia\nzRKWANVSSka6ATgYic7J/ZjCsmBojCk6mayyq8ftPLM0MMo96S0sdap5eWjttMcIQlO4lvhzbUR+\n9D8ArPjmF/CVltB4zRUAZB/eioPQ4qtmVHsA6ByKk7ZONAueBUNjTNFJprPs7neDYcb3HEOM82el\nZxMQ35TpBaE5XEvIF2DsT88A0PyJDyB+tyUptHwpgaWNjD28hbATYqW/nn4G8EmGnhFbvaIYFDQY\nisjFIrJDRNpE5NNT7BcR+Ya3/xkROcvbvl5Ensp5jIjIxwuZV2NM8Uhm3J6kjWV+9mZ24sfHOcGj\np1gDCDp+GsM1lPhDjPzuT4w/8iQVrzyX8NpVR6SruujlZIZHCezpYoW/ljQZaqoH3eEVtnrFglew\nYCgiPuB64BJgI/AuEdk4KdklwFrvcSVwA4Cq7lDVM1X1TOBsIAr8rFB5NcYUl4mepMurHHZn2lnn\nbyQoh/sLBh0/lf5S6kJVLAnXU+YPkxkZI/LDuwCoecvrjjpn6dmbAIj+8H9Z7nOHYpSX9dA9HCeV\ntZLhQlfIkuG5QJuq7lHVJHA7cPmkNJcDt6jrEaBaRJZMSvMaYLeq7i9gXo0xRSQynqRrOE59WT/t\nOsDm4DLADYINoWqWlTRSH66mKlCGz3HIxuIc/LvrAFj6uatxSsJHndMJBvHVVJKJDLEs4/YeDYa6\n6B6Jk7b5SRe8QgbDFuBgzut2b9ts07wTuG26i4jIlSKyRUS2APXHn11jTLF4rmsEgKz/aQBeFFiO\ng1AfrKIiUApyOK2q0vst9yum7PwzCS6b/Hv8sLr3vBmA8j0R6qQc9fcwlkgzMJYo0J2YuTKvO9CI\nSBC4DPjxdGlU9SZVPUdVzwH65yxzxph56/muUQCGZCd1UsZyXy0VgTLC/tAR6RJ729n/158n/vxu\nSs/aRP1fvW3G85asX40E/MjuDlr81SSlF4B9A+OFuREzZwo56L4DaM15vczbNps0lwBPqHp9mI0x\nJg+7+8aoCPnopZs1gUb8jo/aoDvP6NgjT9L/vZ8ekb707E00fPAdiMhUpztEAn5Cq5eTbjtIy6ub\n2S7PA1naB2OFuhUzRwpZMnwMWCsiq7wS3juBuyaluQu4wutVej4wrKpdOfvfxQxVpMYYM1kqk+VA\nJMrSqgQDOspqfwMV/lIA9n/sn44IhMHlS6l+04U0fuidxwyEE8LrVpLu6GFFoow0acQ/QsdgzBb5\nXeAKVjJU1bSIXAPcA/iA76jqNhG5ytt/I3A3cCnQhttj9H0Tx4tIGXAR8OFC5dEYU3zSGaVzKMaa\nJQcAWO1voDJQytgfn0QTSQCqLr2A6ksuQAKz/woMn7oGfnE/a/enYTmUV/TTPRInlVGC/vwCqpl/\nCjo3qarejRvwcrfdmPNcgaunOXYcqCtk/owxxWcolmQknkYCbgf0df4mJJogcvsvAGi59m8INBz/\nV0tw2RIQobk35QbD0j53eEUmS9A/r7thmBnYX84YU1T297udWZLSQZ1TRlOwmqG77kNTaZZ8+qoX\nFAgBnGCAQFM9Jd2jhAkQCPXRNWKL/C50FgyNMUVlnzdx9rjTQ6uvllA8y+jv/kTZOacTWrks/xNl\nkgSf/AolD74fp/+pI3YFljWT7eyj0VcJ/j76RxNEk+kTeRtmjlkwNMYUlfZIDMgQYYBWXw2ZZ9sA\nKDv3jPxPollCT34Z3/AuAELPfgNn6PCiwMFlzWQHhliZLCPlDKDAAetRuqBZMDTGFJWDg1FKSiNk\nyLI60Ejsqefw1VZRsmldfifQLMFnv4kzdoBsSRPJtX8JQOD5myHjdsCZGJi/vj9AVIaALAdsrOGC\nZsHQGFNUOodiVFe4g+HXJiuJbdtF2Vmb8h464eu4D9/AU2RqN5M498tkWl5NYvMncOL9+LrdBYKD\nrW4wXNkDWbJIYIiDESsZLmQWDI0xRUNV6R6OEyrpRIDle6KQzVL24s15HS9j7QTafgRA8rS/Bi+A\nZms2ki1fjr/zflDFV1mOU1FGU49XUgwN0j5oi/wuZBYMjTFFI5HK0jOSIB3YywpfHb59PUgoeKgk\nNyPNEnr8HxGyxM/5AvhC+CsrCDQ14KusIN1yIc54B87gdkSE4LJmyrvdad8qKgboGo6TzdrA+4XK\ngqExpmh0DcdIZrLEfT2s9jeQ2ttOaFUr4hz7qy6w81ZEM6SXXoiWL8dfVUmguQF/VQWB5gZ0+atQ\nXwn+9t+46ZsbcPpG8KtDODxA97At8ruQWTA0xhSN/QNRcOIkZJyVmUqS7d2EVrfOfJAqgee+jb/r\nt2RqNpFa+258FeX462sPJRER/A1NZJpfhjO4HVJjBJoaIJFk7XgZTqCP7pE4yXSmwHdoCqWgM9AY\nY8xc2jcwjhMcAGB9twOqhE5ZfmSi5AjO6D4kHcMZ3om/8wEAMrWbSZ7+URAHf1014juyrOArLyW1\n4lVIx734ItsINLsrxq0fDNNeNkAinaV7JEFlSbDwN2pOOAuGxpiicSASxRdwV3Jb0u727gytOlwy\ndIbbCD355aOOSy+9kNTad4P4CDTV4QSnDmjO8jPRxypwBp4isPRdAKyO+Phl6wCg7B8YZ11TxQm+\nKzMXLBgaY4pGx1CM0rIIWaB8/xCytBFfaQkAMrLniECYLV9BuvX1ZBrPBXFLgf6aKvxVldOe36ko\nJ1t7Gr7B5/BtKMcpLWFZX5Y0KcQ35g34NwuRBUNjTNHoHIoRCvdTKqVk93ZQevYmd0dqnPATXwQg\nufYvybS8+qhj/ZUV+OtrZjy/iMDSzUjPI/hGdxNoqqcmEgfACQ7QMWTBcKGyDjTGmKLRORTHCfSz\nabCMbCxOaLXbXujf765YkVrxpikDoa+iHH9TfV4D82XVy91/x9rxN9VT0ufOPFNSGqFrOH6ibsXM\nMQuGxpiiEEukiYwnSfn62djntvmFVrRAchR/54Okm15CetVbvNSCEwjiq6wg2NJMcElj3jPUOHWt\nqC+EE+0k0FyPMxIlnHSDYfdw3Bb5XaDyqiYVkQbgQ8DK3GNU9f2FyZYxxszOvsg46sRJyjgr+qrA\ncQg01eHvvBfJJkkvvxQAJxx2xwgGA8d3IRG0ahUyup9A45kAbBwsYWdNP70RW+R3ocq3zfC/gd8D\n9wJ5D6QRkYuBf8dd6f5mVb1u0n7x9l+Ku9L9e1X1CW9fNXAzsAlQ4P2q+sd8r22MWVz29o/jBNxh\nFQ19KQJN9Yjfj6/vMbLly9GyFgL1dfiqKo4aNjFr9Wtx2u4hsNodi7h2MMSO+j56RxMk05lFs8jv\n448/3uj3+ye+p+fzTWeBZ9Pp9AfPPvvs3qkS5BsMS1X1U7O5soj4gOuBi4B24DERuUtVt+ckuwRY\n6z3OA27w/gU3SP5KVf9MRIJA6Wyub4xZXPYPxA6NMSzrHSewfDkS7cYZ3UvqlHfgKy3BX1t1Qq4l\nTaciO39BoDwJIqwc9JF0IiTSWTqGYqxvPs5S5wLj9/tvbm5uPrWhoWHQcZx5Wz+czWalr69vY3d3\n983AZVOlyTeS/1JELp3l9c8F2lR1j6omgduByyeluRy4RV2PANUiskREqoBXAv8FoKpJVR2a5fWN\nMYvIwcEo/vAAwZTiDIwQXNqIr/9JADKN5xJobjhh15LmjQD44+34a6tYEsmSkhg4Ufb2L6qlnDY1\nNDSMzOdACOA4jjY0NAzjlmCnTpPnuT6GGxDjIjLqPUaOcUwLcDDndbu3LZ80q4A+4Lsi8qSI3Cwi\nZXnm1RizCLUPRiktGeDUSAkoBJY04ut/gmz5CnyNKxD/CRxJVuV1ohndj7+pgepICgAnGGHf4gqG\nznwPhBO8fE4b8/IKhqpaoaqOqoa95xWqOv3I1BfOD5wF3KCqLwLGgU9PlVBErhSRLSKyBagvYJ6M\nMfNYx2AMX7CfUyMhAAKNlcjIHjJ1Z+CrPsFfV44Pqlcjo/sINNVR0j8OqvhDA+yP2FJOc+3WW2+t\nFpGzn3x8Azr8AAAgAElEQVTyyfDxniPvBk8RuUxE/tl7vDGPQzqA3Blyl3nb8knTDrSr6qPe9p/g\nBsejqOpNqnqOqp4D9OeRL2NMkVFVuobjZHz9rOlzwO8nFB5CULThNJxQAeYLbViHM3aAQGMdEk9R\nNQ7lZYO2yO9JcPvtt9eeddZZY7fcckvtsVNPLa9gKCLX4VaVbvceHxORrxzjsMeAtSKyyusA807g\nrklp7gKuENf5wLCqdqlqN3BQRNZ76V7jXdcYY44yOJ4kmo6ScsZY2pshuKQB39geFMFZlt/CvrPW\ndCqSTRKocodRrB8MEQr30z4YtbGGc2h4eNh57LHHyr/73e/u+9nPfnbcwTDfSvRLgTNVNQsgIt8H\nngQ+M90BqpoWkWuAe3CHVnxHVbeJyFXe/huBu71zt+EOrXhfzin+H+D/8wLpnkn7jDHmkP2R6KFh\nFVV9MQLrW3GGd6LlrfhqTlzHmVxSdwoAwbIEAGuGQjzX0k/ncJx4KkNJcHHNdvnJnzzdurN79IT2\n+l/XXBH92p+dcXCmND/84Q+rL7jgguHNmzcnampq0r///e9LX/GKV8y6rno2f61qIOI9z6t/sqre\njRvwcrfdmPNcgaunOfYp4JxZ5M8Ys0hNLN0UTCmBoRiBxlqckfvItFyAP1CgoFTdiiIEA0Pg97Mi\n4iMpAyTTWTqH4pzSWF6Y65oj3HHHHbUf/ehHewHe9ra3RW699dbaQgbDrwBPisgDgOAOe5iyQ4sx\nxsy1AwNRnECE5kH3daDKQdJJaNhQuIv6w1DagBPvItBYS3MkTUJGQZLs7htbdMHwWCW4Qujp6fE9\n8sgjFTt27Ci55ppryGQyIiKazWbbHWd2cwDk25v0NuB84E7gp8BLVPVHs865McYUwMHBGMHwAKdE\n3MHuIa/qksZ1hb1w9XKc8S4CDXVUR5KAO7xiz+IaXnHS3HrrrTVvectbIp2dnVs7Ojq2dnd3P7Ns\n2bLkPffcM+tfIjMGQxHZ4P17FrAEr5cnsNTbZowxJ137YJRgeJA1Q26v0WB4CBUfTuPqwl64diUS\n68bfWEt4IIpkveEVAxYM58KPf/zj2re+9a2Dudsuv/zywR/84Aez7khzrGrSvwWuBP5lin0KXDjb\nCxpjzInWORSH+gFaBx18NZX4U91o2VKccGFncZTalZBNEawNI5ksjcM+hsoHOWBjDefEo48+unPy\nts997nNTzj16LDMGQ1W90nt6iaoesVCXiBz34EZjjDlRVJXu4TFCjYM0RkoINNYj49vR+o2Fv3j1\nCgCC1e5QijUDfra2DtA+aGMNF5p8Wxj/kOc2Y4yZU32jCdK+fhClsj9OoKEKJxGB2lWFv7gXDEMl\nbrXoKcMhCPTRNRQnnc4W/vrmhJmxZCgizbhzhZaIyItwe5ICVGKrSBhj5oF9A+NIcICKqOKPJglU\n+wCQhjWFv3i4Eg1V49NeJByidchH2uknmclyYDDK6obF1aN0ITtWm+HrgffiTpP2rznbR4HPFihP\nxhiTtz194zjBfpa6Y+4JVqRBwWlaP/OBJ0p1K06sm0BDLU2DMWIMg6Rp6x2zYLiAHKvN8PvA90Xk\nbar60znKkzHG5G1v/zi+4ACrun1AhnDJCJoII+VNc5OBmpU4A/fhbzyF6n17UBQJDC62pZwWvLwG\n3avqT0XkDcBpQDhn+z8VKmPGGJOP/QNRQuEB1g4GwZ8l4OtFK5cjIsc+eCaBMqhaBo4fhg9CYupV\n66R2JaSjBOorCD0Rw592CIYjFgwXmHwn6r4ReAfufKECvB1YUcB8GWNMXg4ORnGC/bRGhEBjLb5Y\nB9SsfGEnLWuA+rUQLAV/EGpWucFxKhM9SqtAVGkehIryiA2vmCM+n+/sDRs2bFy/fv3GjRs3nvqb\n3/zmuNa+zbc36UtV9QpgUFX/EXgJUOCpHYwx5tgODo6SdoaoH0gTqK9C0uPgTaJ9XCqWQGUL5JYs\nHcctJU6l1h3YHyp3R5+tjPgIl/Rz0ILhnAiFQtnnn39++44dO7Zfe+21HZ/97Gen+UPNLN9gODHG\nMCoiS4EU7ow0xhhz0ozGU4xlenA0S+lgnGCN2/IjDWuP74SVLVDRfGQgnBAshfAUaxSU1qLhakJh\ndyKUdYMhxN9H13CclA2vmFPDw8O+qqqq9PEcm+9E3b8QkWrga8ATuLPPfPt4LmiMMSfK/oEoEuyn\nYRicjBIsTwEg9bOZhk0gWAbVy8EfmjlpxVKIDx+9vXoF/vFufFUVrIg4JJ1e0lllf2ScNY0Vs8jL\nAvbzq1vp3X5ih9w1bozy5utnnAA8kUg4GzZs2JhIJKS/vz9w9913HzUrTT6OGQxFxAHuU9Uh4Kci\n8ksgrKpTfCKMMWbu7O13l25qjrgzwARLx9FQNRKunvoAcSBcDSU1XulPIFDqVoPmIxCGUOXRnWlq\nVyJ9vybQdBZNkX6iDIGkaOtdRMHwJJmoJgW49957y973vvet2rlz57bZrlpxzGCoqlkRuR54kfc6\nASSOI8/GGHNC7e4dwwn2syriB5KEgn1o1Qqm7Efq8zrCBF9g4aWk5qhgKNUrIBMj0FBJ5RPtoIoT\n6mZP39gLu9ZCcowS3Fx47WtfOz44OOjv6uryt7S0zKq6NN/QeZ+IvE1ecF9lY4w5cfYOjLvDKiIB\nnLJS/NmuQx1ajuD43e0vNBCCV6qc9NVZvRyAYLUffyxFRQyCJX22esUce/LJJ8PZbJampqZZtxvm\n22b4YdwVLNIiEscdXqGqWjnTQSJyMfDvgA+4WVWvm7RfvP2XAlHgvar6hLdvH+5MNxkgraq26r0x\n5ggHBqI4JQMs61cCjVU4mkLrp+hJWt4MgZITc1ERt6o1Fjm8rcYbXlHptlm2DECyeoj91qO04Cba\nDMGdtP2GG27Y5/fnG9oOy3fQ/awrvUXEB1wPXIS7BuJjInKXqm7PSXYJsNZ7nAfc4P074dWq2j/b\naxtjFof9g8NkyoaoHYDgBnctQ6mfNCepOFBad2IvHKo4MhiW1qP+EkIht1p0XSRIR1M/7RFbvaLQ\nMpnM4yfiPPkOur8vn22TnAu0qeoeVU0CtwOXT0pzOXCLuh4BqkXEhmwYY44pmkwzlOymPJYlNJ4i\nWJlFkUOltEPKm/LvIJOv4KQ5R0WgejkBXz/4/ZwyGED9PXQPx0mmMif22qYgjrXSfVhEaoF6EakR\nkVrvsRJ3NYuZtAC5DartUxwzUxoF7hWRx0XkSqYhIleKyBYR2QLUHyNPxpgi4fYk7WeZN0F3uHwc\nypomVYcKlBbga8EfBP+kJV1rVuKLdxNorKM1IsScHtLZDHus3XBBONbPpQ8DjwMbvH8nHv8NfLOw\nWePlqnomblXq1SLyyqkSqepNqnqO16ZoVarGLBJtPWM4oV5a+9xhFaFwP1SvPDJRqAJ8s28/ysuk\n0qHUrESSQwSX1NHQkyRDGgkOsKNrtDDXNyfUjMFQVf9dVVcB/0dVV6vqKu9xhqoeKxh2AK05r5d5\n2/JKo6oT//YCP8OtdjXGGACe7x7FF+plzYAfCQUJOD1QN6kn6VQzxpwooUlVpV71bKixhNBQjLKY\n4gt1s6t3EQ2vWMDy7UDzHyLyUmBl7jGqessMhz0GrBWRVbgB7p3AuyeluQu4RkRux+04M6yqXSJS\nBjiqOuo9fx1gK2QYYw7Z1TtKsKSXVQM+go3lOKLo5M4zoRk7vL8wk8/tDa8IeX11VvVCtKqXtl4r\nGS4EeQVDEbkVOAV4CneoA7htetMGQ1VNi8g1wD24Qyu+o6rbROQqb/+NwN24wyracIdWvM87vAn4\nmTes0Q/8UFV/NbtbM8YUs7a+UbS+l6a+NME17jRqkjtBtz/stu0ViuMDXwgy3hwkFUtQJ0CozG0j\nPHUgzO4l3bT1WZvhQpBvZfo5wEZV1dmcXFXvxg14udtuzHmuwNVTHLcHOGM21zLGLB6pTJb20U7q\ny5OUjGUIVmVQx49U5fTRK2QV6YRQOUS9YOj4oKqVAH1IOMSaSAANdHFgIEo6k8XvO8E9Ws0hu3fv\nDlx55ZXL29raSjKZjFx44YXD3/rWtw6WlJTkHbPy/es8CzQfXzaNMebE2j8QRQM9LPO6zIXLx6DC\nW4h3QmgO5gQNHDmjjdSuxIl1EWiqpyWixGWAZDZO22Kalm2OZbNZ3vzmN6+57LLLhvbv3//svn37\ntsbjcfnIRz4yq6Wc8g2G9cB2EblHRO6aeMw+28YY88K19Y7iBHto7Z/oSdqH1qw6nECco8cCFsLk\n4RXVK3Di/QSa66jpSwCKE+plW+fIlIebF+4Xv/hFRSgUyn7sYx8bAPD7/dx4440Hf/rTn9YNDw/n\nXRzPt5r0C8eTSWOMKYTtnSP4Qr2cMuBHQhD0dx65oG+wfOo1CU+0QCne7JTua29e1GBdkMBInLKY\nj3iom+e6ij8Yfv7hz7e2Dbad0CWc1tSsiV77smtnnAB869atJWecccYR897V1tZmW1paktu2bQu9\n9KUvzWsaoHx7k/5WRFYAa1X1XhEpxe0UY4wxc+657lFCpb2s7vcRbCh1415DTk/SYNncZMRx3ICY\n8jrJeAE5VOX2M1zd75Co6bWxhgtAvr1JPwRcCdTi9iptAW4EXlO4rBljzNR29IxAQw9N/WmCq70e\no7mrVcxVMAR3JYyJYFjRjAZKCYfdkuDp/SXsWdLFzp7iD4bHKsEVyqZNm2I///nPa3K3RSIRp7+/\n37958+Z4vufJtz71auBlwAiAqu4CGvO9iDHGnCjxVIaO0Q5K4glKR1OEKtOovxTKGtwEc9VeOCG3\nE404ULOKgHThlJawts9H2t9Nz0iCofHk3OVpEbnssstG4/G4881vfrMOIJ1O85GPfKT1/e9/f295\nefkJ702a8CbbBkBE/ByqJDfGmLnT1juGhDoPzUkaLB+F6hWH2wj9JXPTXjhhco/S+jX4xjsItDSx\ntC9LglHEN87T7UNzl6dFxHEcfv7zn7fdeeedNStWrNhUU1NzpuM4fPWrX+2e1XnyTPdbEfksUCIi\nFwE/Bn4x20wbY8wL9XzXCE6oi9Y+93U41HvyqkgBAmGQnC4UtacgmRjBpiqqesYPrXr/bEfxd6I5\nWdasWZO6//772/bv3//snXfeuevBBx+sfOihh2bVmSff3qSfBj4AbMWdvPtu4ObZZdcYY1647V0j\n+Eu62DAQRIJpgqExyF3Qd66DIbilw6TXLjjRiabOwUmkaR700VPew7au4bnP1yJ00UUXjXd2dm6d\n7XH5BsMS3OnUvg2HFu4twZ1CzRhj5syznSMESjpZ1y0El1S5NaK1OWMMAye0d39+AiWHg2HtahSh\ntCENwJmdAR5a18XOHht4P5/lW016H27wm1AC3Hvis2OMMdNTVZ7r6QYZpKE7TrjJ60k6MeDeFyzs\nfKTTCeYE4EAJVC4lFOwDv5+N/SE00M6+/nGS6ezc583kJd9gGFbVQz9rvOcn4eeXMWYxOxCJEmU/\nrX3gS2UJ16bQcDWUVLsJTkapECBwZNWs1K3BibUTXNLAyj6ISg9pTfL8Ihh8v1DlGwzHReSsiRci\ncjaQ16h+Y4w5UZ5pH8ZX0s4pXW5n9tKKAajJ7Twzh0MqcvmDR86LWncKTqyXYEsj9V0xVDM4oW7r\nUTqP5RsMPw78WER+LyIPAT8Crilctowx5mhb24fxl7SzuTuIUxom6HRA82mHEwRKpj+40HJLpXXu\nbDjhJSX4x5M0DkFJeRdPt1snmvkq3+nYHhORDcB6b9MOVU0VLlvGGHO0p9qHCJS2s64LQi01OLIH\nGk/19srJDYbBMkh41aDeUI9wndtGeFqXn/FTOtluE3afcD6f7+y1a9fGMpmMtLa2Ju6444699fX1\nmWMfeaTZLLD1YmAzcBbwLhG5YrYXM8aY45XKZHmmaz++7BB1vQnCDd7YvolgGChx1xQ8WXJXsChv\nQkvrCIe6kICfM3tCOMF22nrHSGesE82JFAqFss8///z2Xbt2bauurk5/7Wtfazie8+QVDL2V7v8Z\neDluUHwx7oK/xhgzJ7Z1jpAO7mFlD0hWKakeR8saocSblvJklgph0rRsgtSvxxdvJ7hsCWu6lHHp\nIplJsau3+OcpPVnOP//88Y6OjuPqTlzQle5F5GLg33FXuLhZVa+btF+8/Zfijll8r6o+kbPfB2wB\nOlT1jbO5tjGmuGzZF8FXcoD1ux0gQ7i0CxpOP5wgcBIG2+fyB8EJQNZrQapfgxz4I8EVL6b24U7I\nghPq4Zn2YU5dUnVy81oAnZ/9+9bErl0ntDtvaO3a6NIvfymvCcDT6TQPPPBAxQc+8IH+47lWwVa6\n9wLZ9cAlwEbcqtWNk5JdAqz1HlcCN0za/zHgudlc1xhTnP60L0K4rIMzegL4KssI+SNHdp45GTPP\nTJZbOq1bg6CEm8P4Uhla+iFY1skz1onmhEokEs6GDRs2NjQ0nNHX1xd485vffFwNs/mWDCdWuv8T\nkJjYqKqXzXDMuUCbqu4BEJHbgcuB7TlpLgdu8Uqcj4hItYgsUdUuEVkGvAH4EvC3ed+RMaboqCpP\nHOhBlx7glE6HUItbNSqN3u9rJ+DOEXqy5XaiqV8LQLjGXePg1C6HyLruog2G+ZbgTrSJNsPR0VHn\nggsuWHvdddc1fu5zn+ud7XkKudJ9C5D75rQD5+WRpgXoAr4O/B1QMdNFRORK3FIluEHbGFNk2gdj\nDGZ3sGo4Q/lAktIzfaj4EC/gnPT2wgm5+ShvRsPVhII9SDjEGT0BHtl8kLbOMbJZxXHmcGWNRaCi\noiL7jW9848Db3/72NZ/61Kd6A4HArI7Pq5pUVX8LPI8bmCqA57xtBSEibwR6VfXxPPJ2k6qeo6rn\nAMdVV2yMmd8eeL4Xf1kbG9vdAFJWN+ROweYPuQlO1swzk+W2W4ogjafiG9tLaGULp3RmGZdOYskU\nHUM2Z0khvOxlL4tt2LAhdtNNN9XO9th8e5P+OfAn4O3AnwOPisifHeOwDqA15/Uyb1s+aV4GXCYi\n+4DbgQtF5Af55NUYU3zuf76XcMVuzu8swSkJE/YfQOZbeyGAzw++0OHXjaci412EVi2lpjtKKJ7E\nCfZbj9ITKBqNPpn7+v7772+7+uqrI7M9T74daP4eeLGq/pWqXoHbHvj5YxzzGLBWRFaJSBB4J3DX\npDR3AVeI63xgWFW7VPUzqrpMVVd6x92vqn+R700ZY4pHIp3h0f0HyAY7WdueIbSyEScbzxlsz/wJ\nhnBkVWnjRgSltCWIKGw4qDjhDnZ02woW802+wdBR1dwGyYFjHauqadwp2+7B7RF6h6puE5GrROQq\nL9ndwB6gDfg28JHZZN4YU/we2xshFdxF7YhS3hulZKnXFtS82f3XHz65g+0ny50ftXEDilBSNQyO\nw4ZOobSikx3dNhPNfJNvB5pficg9wG3e63fgBrIZqerdk9Op6o05zxW4+hjneBB4MM98GmOKzH3P\n9RIob+O8PT4gQ0XTCFrSiFQscRPMp1IhHLmcU7AcqVmJP76PwNJGNnUNEnppJ7t6rWQ438xYuhOR\nNSLyMlX9JPAt3OnYNgN/BG6ag/wZYxa53+7sI1yxm1fsDeKrrSLs7EGWvgh3VV9O3koV0wmUguR8\ntTafjjPcRnh1Kys6UqSdg+zpGyWbndUcJvNVNpvNLohusV4+p50L71jVpF8HRgBU9U5V/VtV/Vvg\nZ94+Y4wpmIORKPtG21D6WbUnRun6Fpz0KCw983Ci+RYMRcCf027YvAlJxwgtLSOQzLJ0IEGcfjqH\ni6JH6bN9fX1V8z0gZrNZ6evrq8KdQGZKx6ombVLVrZM3qupWEVn5wrJnjDEzu2PLQfwVz3LqQcWX\nzFK+zCtNtZzt/usLnZyV7Y8lVA6pcfd5sztlXGmdG/zWdSg7GjrY1TPGspp5MiTkOKXT6Q92d3ff\n3N3dvYnZLfww17LAs+l0+oPTJThWMKyeYd88GeVqjClGiVSG7/1hL2XLn+Z12yrAP0ZZVRcaWIWU\nN7qJ5lt74YTcfJU3Q1k9IV8nTnkp6zvi/E9rJzt7Rnn1hsaTl8cT4Oyzz+4FZpqJbME4ViTfIiIf\nmrxRRD4IHHNAvDHGHK87thxknH2kff2c0ZYhvGYF/uhOpPXcw4nmWxXphEmD72k6Hd9IG6FVrZza\nKYRKrRPNfHOskuHHgZ+JyHs4HPzOAYLAWwqZMWPM4jUaT/GTx9sJ1T/Aur4AJX1jlJ23BsmmITcY\nhitPXiZn4vO7Qz7Scfd18+nIngcItdbRuHUHZdJuA+/nmRmDoar2AC8VkVcDm7zN/6Oq9xc8Z8aY\nRSmeyvCt3+5ma9/zlK3eznu3LgWnncpl4+hYGPHa4AiUgm9280/OqWDZ4WC4xB0TWVKbZAhY1TPG\nNl8HqorIvO57smjkNc5QVR8AHihwXowxi9xIPMWf9kS4+aG9NKz4HRBg3dZhghtWE4o9jbScDT6v\nw0xoxjn8T75QBUQH3Oe1qyFcRUnYnT55VTc81rKfgfEk9eWhGU5i5sp87v1jjFkkhqMp9vWPs7N7\nlKt+8DhO6U5igae4qn012cgwlZuXIokhWPOawwfN92AYzMmfONB8OsHkbpzaKlZ3K064kzZrN5w3\nLBgaY06q4ViKA5Eow7EUH/rhrwmd8o/4lt5Mi7+WVzw8jL++hsrWUVQcWPZi9yBxTv7K9scyedLu\n5jOQaA/hZQ2s6RGcUJ8Fw3nEgqEx5qRJpDO0D0bpHIrx2Z9tJV59O44/CsD/HXoFqT3tVF74EvwD\nW5AlZx4uDZbUgLMAvr5COb1dm91uF6E6P42RLGVOD209FgzniwXwaTLGFKN4KsOunjF2do/x8R89\nxXORZ/GX7ebdy/+SP6z8MqW/fASnoozKTZVItAfWX3z44NA87UU6WW5Vbt0a8AUIV8cQYPlwPzt6\ni3PV+4XIgqExZs4l01n2D0QZiqb4mzueQiTDyvV3U+or5wPhM4g9/AjJve3UXH4RwcFH3Z6jq17p\nHuz4F04wzG039AWgfj3hUrcTzYreFLsjB05SxsxkFgyNMXOucyhG+2CUT/7kaXDi+E75NH3JfVxd\n/yYCz20ncttdhE5ZTvmLVuH0PArrLnbH7QGEqxdGFSm47Ya5bZtNGwlm96HhACt7lUh6P+OJ9MnL\nnzlkgXyijDHFYjiWom80wcduf4qu4Rinbb4HgFeVbuYt4430Xn8rvupKGj/8boL9v0OyGdj01sMn\nKKs/STk/TrlTszWehqMpgs3VrOhVnFAPu/us3XA+sGBojJkziXSGg5FxrvvV84wl0lx49kEOJP7I\nG0rP4ctyAT3/cQuaTNPwoXfi94/hO/BrOOVCqFrmnsBfcuRK8gtBuOrw86aNAJTWBVjRKziBbutR\nOk8UNBiKyMUiskNE2kTk01PsFxH5hrf/GRE5y9seFpE/icjTIrJNRP6xkPk0xhTeSDzFnr5x7nuu\nl8f3D3Lh6Vkei/4nq51GPvp4BR2f+1dS3X00fuQ9hJpKCG3/DyQQhvM+fPgkpbUn7waOV7Ds8PqG\nZQ1Q1kioOkZJUlmS6GSX9SidF/Jd6X7WRMQHXA9cBLQDj4nIXaq6PSfZJcBa73EecIP3bwK4UFXH\nRCQAPCQi/6uqjxQqv8aYEyubVRLpLGOJNP1jCdIZZf/AODf9bg9rGkvY63wJUeVL95QzvOU3ADRe\nVE/16Pdw/tgJTgDe8C9QnrOyQ24pa6EQcXuVxr2eo02nUdLzLBBg1dAAO3oHT2r2jKtgwRA4F2hT\n1T0AInI7cDmQGwwvB25RVQUeEZFqEVmiql3AxM+lgPcoimWhjSl2iXSGgbEkg9Ek2Zx1xXf2jPLF\n/9mOPxCjtvU2nov2ct1v6vA9vpOaDUmazuhHpBNNBN3B9ed92B2OMCFUCf4FOnVZqDInGG4kHH4Q\nlSWs6M3ym/p9wEtOZu4MhQ2GLcDBnNftuKW+Y6VpAbq8kuXjwBrgelV9tIB5Ncb8/+29d5gcV5nv\n/zkVOvf05CzNKOccbMtyACdhbGyDYcELxiyLFxZY2L3s5ZL2wgZYdll+y16ilwUMGDDYOGGMbJxk\nHCXLylmjkTRJE3umc1c4vz+qRzOKVhppRnM+z1PPVFefqnr7TFV964T3fc8QKSWOK8lYDt3JPMns\nkbMje1N5Ht/czqMbWxHhN4jUPsL2dJp//lMVk19vJVRtUXEJ5Od9CWPSIvSSE3SFjsUu0kECxdBf\neNRVzkYzJJQGaejK0pndT9528RlqCseFZCTF8KyQUjrAQiFEMV4aqblSyi1HlxNC3A3cXfg4xqaZ\nKRRjF8txSWRtelN5spaDHNZ3k8rZ3L/2AM/t6qIvbQEuVfVPko4+R6VTypefqSCydi+B0jx11+lw\nw9fwVTQi9BMIgu73BGWsohuer6SVhvJpoJmEyk0aDmXA30ZTd5KZ1WPEd/IiZSTFsBWYMOxzfWHb\naZWRUsaFEM8Cq4BjxFBKeQ9wD4AQYt3Zm61QKE5EMmeTtRxSOZtE1j5CAAGaugZ48LV9rNmXAGFh\nxl4nNuEPFGtF9NLJe3aV8Z5XwW3ZixF0qHvXBMSqz6GXvEnG90iVN/Y2lgkUe2Ko+6B0EqGYReVO\nCGltvNrUq8TwAjOSYrgWmCaEmIQncO8F7jiqzKPAJwrjiZcA/VLKdiFEBWAVhDCINwnn6yNoq0Kh\nOIrB7k9D13BdyaFElu5E/sgyts0re9p5Zkcn69sz5F0LI7KD6KTnINBKICcxsvCWHZIr90So2XsI\nFyibk6D4yulob/0SekmxJ3ZmCAZawTnyHOg+LxbpWMcfgcF8vmVTCYReRiNIY6qFF/d088EVjRfS\nunHPiImhlNIWQnwCWA3owI+klFuFEB8tfP994PfAjcAeIA18qLB7DXBvYdxQA34tpfzdSNmqUIx3\nXFeStR3ytkvGcg63+izHJew3sB2XrOWCZeE4Fs1tnfzqjXY6EhYHrHb00AEC0x8h5EiW7JHM3CGZ\n0uLC69QAACAASURBVAGzDg42HVNgGkTfcglV9W9gCA37sk9hlBVDtAai1V4xXwT6DwxNNkF4PoZj\nJeLMyfCFve5eJ+eJYXg1EGRSd4JnaEHKJSrR7wVkRMcMpZS/xxO84du+P2xdAh8/zn6bgEUjaZvi\nIsV1wM55cSBHcxb0UYLrShI5m86BLNmcDY7jLeD9lS5JK4gUgl27d/M/6w7RnkuQDq9DC7QRLWvi\n0kNpGvfDdQ+5VMeHHTsWAZIEF88lOK2RyCXz8e/7KUZXM86Kz2I2zoCShiOd6HXDS4Sb7oVsHIKl\nY9Od4kQEiiDVBeXTMCMObshkeqvNo6XN7OlMMq1qlOdovIgZtRNoFBcpjg2afu7Hf3IJSHZ6fwe9\ncMIVQ5FLFEfguJKBjEXnQIZ8fAAn3k022YPtWLjSpT3tsiPuoGsO04sDbIqneCj+OFf0ruOKLokm\nYdYBmN52rMeTdsNVlCyeQ2RCDUIr/J+li2/rd9G71yOX/xX6vJsKWRxO8AgKlY7t2aMnwl8Qw7Ip\nCCEI1IWY0dKPvryFNbu6lBheQJQYKs4PUnpdX33N3vhP8cRzI4iO5YlgqvPY71Jd3jjUxfhQPUOS\nWYvu3gGSfQncgQSZdDcDmTgPtO+h79B6iuNZ/Ik0fhKE7Sx1vVk2VOm0l7k88KB7xLHs4gj2xChy\nwWyCc2dRVFlGxG96PZrShXwC3elB79mEdmgtItkGs96BWPBer2v0REJ4MeOPgtC96zJWT1GVpGY3\nVIm9vLi3hw9fMflCWzhuGYdXo+KCEN8PmUKkjUyvJ4ShcvCFjizn2JDs8B6Wmn78Y9l5yCchN+AJ\nrHSPXw6gv8UbhzJ85+Z3jEEcx6Wns4d4dz/Z3l7S2QHybpbmdAtb1z7JxL17uHuXRSh3/P0v3z7k\nN+iUFWPPmYY+cxrBSZMoCpoEdRdDZtGT29G6mtCynYj+JsTwF5SquTD3Fpj3bu//Ol5fUITwJtJk\n+6FsKqEiLxLN9N5mXkt2k807BHwnuO4VI4oSQ8W5x3VhoMULqhwogkTHkBAOku7xFjMMsTqvrJ2B\nvv3eBAPHgpLGI1uPjg3JQ16L71QDEkkHevZ4XXIXuSBK10VmszjZHIn4AKlkhmR/Asu2SOVTZKwk\nB/e+SGbrVmIt7SzYn2NZYXhwZ0M5oan1hMsr0P1+KIqi6wYikUJftxkhBL4bb6BSb8EQglB2B74D\njyOcNCRbEe4wR3tf2BO/mvlQuxjqFnkvN4Oc7EVnPDAYjaZqDsHws7h6PdNbczw7eR+PbWrj3Usn\nvPkxFOccJYaKc4uUXiswW5hJMfAm5a0UdO/yuo6kM7Q9G4euHd523fDE0UqfmU1OzjtHuBxCZV5y\nWCkB6bUqhX7+ZitKedbdw9J1kbkcMp9H5vO4uRxOJktiIEVPMkkynyWTSyF7OknuXEc630/Z2h0E\nkjmWp7yXiIwp2Di5EmonsHh+Mcv1AUL5HnzZnThmFCMdR2oBHH+U1PXT0XEoa/kqmpU40pj6ZVC/\nCCIVUDkbSqd4rX3tBI8WX+TIWKPjkcHExNVz0XTw1RYxs6Wf8OJdPPRGK+9aXI+mqVml5xslhopz\ng2NDPgGpHu/v6TJcCAexs95f6+xMA8C1INHuLUIf1rUqvYDQRsCbfaoZ3uLkC4vl2aYZQ6KpmZ7v\nmxDecYyAl5XA8AOFba7lzWrNJYaOJd1CuaDXMtIG7RCg+5BOHjQ/Eg3hCyAtF4kGmnZY/Nx0GpnP\nY6UT2NIhkbPo6m4jt/8g2pbN2K37CbX3UpH2WmrDZWdbnZ8Xl8SYWV7CktI+pjt9hLJb0bq8CnbN\nMJghRKoNkAgzCMkdRPvWegcIFEPpXJj5dqhdWHCEP52XCAFFdWf3f7wYMHyei0XZVDACRKt1Jq+X\nFIe28tq+XnYfSjCjRjngn2+UGCrOHKcgML6I1xXqnGDQabRxtPC6FuTfRHGPdgQ/k9NKCTjemCfg\npjNI20Fmc0jbxs3kkMeMfwo8V1tJ1rGJ791HpqOT9LoNhPa0gSsJAcNHXgeCEAQeu1yjyNKIVAtu\nCh1g1rCuZScbwfaXkJq0Cr1hOYHauWih4qFW62AL1nW8SU+OBRXTT1P8jvodxROPHSMer/ij3v1S\nOYtwTy99DjQebKNV7+G/X9jHV985T8UqPc8oMTxTrEyhhXCBq1BKbzleN59jnb6vnWN5Y3nhiiFf\nL6F5TtG63/u92X7Ip7xZnEiv/GjAtaFlHbSuh8qZMPGyUZEI1s3lceIDOMkk5JJIdISdBCeLSLej\npdpBM3CadmNlHNItLkZ5iGxbAqkJnFSe3J7M4eMJYDB3et6A7RNhzywH14AZxSmWuDmmWhY1egWa\n4UczAkj/Ivp9EdJ1y3FrFhOMlVEU9BE9UXfcoChqOpRNOc1f7LV0Mfze9WeGvFblhb5XRhO+MKS7\noWouoZb7wDeBy3bYtFy/lkc3lnPb4lounVyOrrpLzxvq6jwdHNtrRbiFSRlmEMqnH38MyMp620c6\n5cxAmydYJY3eDTZIJu6FtqqcfXz7jieiVtZrBdgZr8U3nFxh8G9wostoo30jvPAfED8wtC1aA7d8\n54LMXJSWjZvJ4DS9itb2Gnp8B2bSs026YGd0BloCpNoCpLp8CEC6w/9PQxOOXCHREPSF4alFGrsa\nIWIGqTJzpHKTmZH2EREl+GM1hCqqsGvK2BUqgmAIhEAIgd/QCPsNyoN+TJ/fe8HRjEJwAp+3aIb3\nQuE6XkvYtb2Xo8FubzPk9QK4dmGfQmADvXCN6z7vejoH46IXPf6CP2HVXHTNJTp/Iis3NvGra17E\n5mp++tJ+amJBJpWHVVSa84QSw9NhcCKGVkivaKW9SR7FEz0hch1PNDLxQotK9yLUj0TrxM57b5aD\n09d79niTQ8yQ97QdaPX+ZvqOFQMpobfJs1XoHB43O5VuztEmhFLC5geQr34PQpXYM+7CDVahd61D\nb3se8cRn4eZvjWj3nJu3EELgZrO4A73Q8gaiZyv6oZfRrQRWRqP7QC09b9SiBXXczLHjo9um+NhX\nYtFcJfBZcKBS0FoGpj+K6VSQztQwkJpIOluNm6yiLiQ5gGBiTGf6ylIqK0u9sUXNxNUNdNMg7NMJ\nmxp+Uyfg83mtvDOJymMXxjvNwKmVVw/vN2fwJaJqNiAoXhAisU6yYlOWzUvW8+Q2P0saSrh2dhWN\nZWE1oeY8oMTwTHCHjS/ZWeje7bUAXdtbBpEO9Oz1xGhwMkio7NjwUq7jfW8Ej+3uTPd63ZH+iNd1\nKTRIdXu+eMORbsHl4CgG2o70s5PS870bbOkNjp+NlfG+4VgZWPMN2Ps0buVS8tM/5NUh4BbPwCmZ\njW/rdxDP/BNc/89nNZ1fpgeQ/e3IdC8y2YPoa0JaeUS606tLK4GWT6BbXr1KYZDTptK9I0piY9vh\nCTudlWFaInnagjnWTRPsrBNYBlSJIqLWBPKZCRxIRYk4pbQfqAU5JF6XTwwya04ZixormVh6pLhr\nhsBv6BQHTaIBA+NEqZDOhIvcJeWC4Y94911JIyGjA//UBm5e38Kzy56gseIyvvrEDiJ+g5zt0lgW\nJqj8D0cUIY/OwTKGEUKsk1IuPYWiZ/aj8wU3gLMlXOnNxANP1NK9BVESXnSWwS6UTN+QaJ0NQvPO\n6Y94xxwtY3xnipSw83HkxvuhvwV7yu3Y9auO2yLRW5/Bt/vnULcErvgMFNUc/3jD97VzyINrkS1v\nIFrXQbId4R47gUaiIYOVSF8UzCjSCGM7QQaagwys3YfV0Y3UNbZONfnNUpvtE4+0b7I7GV9qGTu6\nJ5HIHpmrb0ZVmPJogCUTS5heFaW2OIg5TOBMQ1AUMDE0QSRgEDR11Z021kj3em5IL3wTufspenwf\noetHD/Aft2nkFlzKixvfSdCn8/V3zqehLExpxEdpyHchRfGivsCUGJ4O50oMgaHr6uKp/zcln4LN\nD0DtIs8h+0zobYLn/x26tiPD1eSn/Dlu6RwAnFSGvgefwE1lMGsrib3tajSfid6+BnP3fQjXQtYU\nXAKsLPTuRQy0IDUTAiVei9/KIJzs4dNJPYhTOgcZrkMaEaQ/BpofjCBOsJbsvg6Sf1qH1d1Lfl/L\n0H5BHwcWVPDd+d3sK/Na328zriCbWUjaKWdvPMi+vqGZowsnFHPV9ApmVkepKw4eI2yaBmGfQdhv\nEPLpBE1ddZ2Ndew8dG6F/S/B6s+Tm/937P/64/TLLB/+mMsNsTv545aFpHIO710+gdsX1yOEIBY0\nqY4FLsRs04v6glNieDqcUzEcZyQ74YVvwMHXvIka134FGi8/tlzndnjtHi9yyaL3D7XYOjbB2v9B\ndmwBM4Rddx32hLcd7vpMvrqB7h8/cMSh9JIiqj/1IczqCkSqHf3Qi+idaxFWEumLIv2lyGAlwk4j\nNd9hX0Kp+3Fj03BL5xbGhz3snj4GnnvVmxmaSJLdvX8ow0OBzPwGfjMvze8mehNgakUpM8wl7D10\nHVs7hsRvamWExrIQyxpLuXRyGVrhdwoBpq5h6oKAqeM3NEI+A7+hKfG7GOnY4gWe+Nk7cSsX0tUy\nh95fPcaDV/m4f4XLnaWf4oHNjRwayFEUMPj8jbOYXVOEpgkqon5Kw74jegxGmIv6AlRieDooMTx1\ncglv4pBmwKGt8Pj/AjuLO/OdiENvIPr2ee4ajVd6XZdVc2HXatj28NC4a6wQlsq1PD9GwKm9gnzj\n7eAbiu6fbTpAx7/dA4DvXW+FFfMQL2/B+sPLCJ/pCWJV+Wn/BLs3TnrLLrI79pI/2IHddVT3ck0Z\n7syJdNWFeKaqj9/59mLhiWMJEVaFbmJTz3LWHrBwXMmC+hhvn1fD0sbSww8wISDo0ykKmARMT/jU\ndPpxRN9+L1bvy99BbvktmUv+ja6fP0l63Wa+ebuPzdN9vKfkTh7cOovWuDeuHwuafPaGGcyrL8Y0\nBFXRACXh8zKue1FfmEoMTwclhqdG5zb43d9BUS1Mvho23o/0R5Fv/SfyCRNBBl/ro4jdq5GAGOZo\n7lYtITf1g5hdL6N3rUOaUa+lFpmEU7oQGTxS1FIbttH94wfQomHsT76TP+pNvJjbwzyznlv76jD/\n+wmErlH1Nx/EV1d9UrOllNg9cVJrN5Jev5X8wSH3EmPWJGR1KY6pkVs6jfX+bl5y99Fkd9PlJgqu\n8Rqz9AZWxFaxa2A2T27P4LiSa2ZWcsclDZQWHlimIQj7DIpDJmGfoVp845lUj5fMuL8F7v8Azox3\nkSl6C63/8P/hpDP8y19G2FSe4bLAUq6r+gt+sQ3eOODNI1jaUMKdlzUyqTxMJGBQXRQY6fHEi/pC\nVWJ4OigxfHPiB+GRjyONIEgXke5Clk4jP/uvcY2hWbTCMNB8Js5AL75d94ImcEoX4FReekqnka5L\n972/JfXqBsyGOrruuIx/1J+nxRnyz5ugl/Cl7ErK/vuPuOksoQUz8TXUYdZWIjM50lt2ktm0Eykl\nmt+HEx+arCRME2lZcOsV2JfNocntZrvdzjarjS1W2+EW4Fy9gdm+6UwrWkiLVcuGDoNXm9NYjmTF\nlDLuWtFITSxIyK9TEfUTVi0/xXAcCw5t8dZXfwHZvpHcpV8n15Gg45s/xNHge+8K8Vx1nIl6DSuD\nl1IbWsH/fX6oe/7t82q4a0UjAVOnKGhQHvET8o3IhKqL+sIdUTEUQqwCvgXowA+llP961Pei8P2N\nQBq4S0q5XggxAfgpUIUnXPdIKb91CudTYnihiB+A5hc8nz8pyS/8HK4Zw6AfWys7izBex5Leuovu\nHz+Am/QCdye+dhdfSD5Gv8zw8dr3Mqd8Dk8efJKH+14ggMH3jXcRfuJ10ms3HXMsLRTETWcwqsrQ\nSmJoU+qwa0rJT65iq+jkxdweNlutdLme43mVFmOm2UilUcPc8hVkApW81qzx9PZ+kjkHQxNcMqmU\nP1s2gUnlEcJ+naqiAGG/8mJSnIDOHZ7/bu8+ePDDuJOvIzfhz8i3tHPou/fh9A/wyg01/GRBgl7S\nRESQd0TfRknwan6+0aWlL0tp2MefXzKRt86oxDQ0dE1QEvJRHvGdSzcbJYZndGAhdGAXcB3QAqwF\n3iel3DaszI3AJ/HE8BLgW1LKS4QQNUBNQRijwOvArcP3PcE5lRieT+IHYN2PAQn7XwTHQobLseZ/\nGsdfOyKnTLywlp77HgGg+L030ba4mi8OPEKXm+SLs/+WFTNXYWgB8vkEz255iK/u/T6zjBq+GLuJ\nspRA7ipEqKmvxC6LktUdpJS4SFwp2W0fYpPVwsu5vbS5/QSFyWSjhtnB2UyPLiYcrUQGi9nRIXhy\nywB7OlMAlEd81BUH+cz1MygO+fAZGtWxALHgGTi5K8YXA21eajKAV74Hm+7HvuzzWP6pOKk03T9+\ngMyWXcjqUnbPCHPPkgEO+FM06DWsiq0ibi/nqd159vdmKA378Oka33j3AmJBEyGgOGRSHvETMM+6\nC1WJ4RkdWIjLgC9LKW8ofP4cgJTya8PK/AB4Tkr5y8LnncDVUsr2o471CPBtKeVTb3LOkRXD7l2Q\nS3pjYuvv9SZ4LP2Q59Q+nnDysOnX8PpPDk92keUzseZ9HFcrQjrHyUBRwM3mED4TcRopk9xcnsy2\nPfT/4Xny+1vxT20g8uc30R61+Yf4Ixx0+vjcnE8xq+Ym/n31Pg72pVk5tZw7V9Ty2OZv86ODv2GC\nXsKd4RXMNWoRQtDmxNlutdPpJDjo9NLnpjng9OLgjV8WiSC3Fl3L9NJL0YvKGLDDbDrg8PT2XvpS\nFrYrqS4KsGBCMdfMrGRWIctAJGBQFvFRFFAiqDhFckno2e2tO3l46KOQ7sG64mvYVgApJenXt9D3\n0JPYPd4wQO+kYr70bpcuPc10o5Fri1eRN5bzi9f7OTTgTbSZXB7m3UsnsGJKGbomKA6Z1MaCZzNG\nrcTwjA4sxO3AKinlXxY+fwC4REr5iWFlfgf8q5TyT4XPTwOflVKuG1amEVgDzJVSHuOBLoS4G7i7\n8LFcStl4Cuad/o92bPjGVMinj4zWUjwRlt8NDZcXUvpILwv7QBtEq7wAxWMRKb04pT17vHGNSAX0\nt3rbdj4BTg5Z3EB+5scgVIwkgHRPknEeyOxsovM7PyMwrZGKj7wXLXBk3FbXsui9/3FS6zajF0XA\ncZASnF4vN6IWDlF0zWVYV81nn93DPw48Rpeb4O8b/5KpE9/DJ+/bQndyyDm+JGTylVumcijxCD9o\n+hk5aWGg4SCRwy6BEi1MtVGCJnQEBu+suBVfrBHLKGHzAckre/vZeSh5uPyqOdVcPrWceXUxdE3g\nNzViQZOSQotQoThtOrYMRbbq2w8PfwwZiGFf9iXsvBcGT9o2A8+9St9vV3sJtIEN75jCN2e3khU2\nlVopNxSvoj2xko6UxrrmfizHu86nVUb4+rvmM7u26GxaiEoMz+jA50AMhRAR4HngX6SUvz2Fc45c\ny9DO4b72Y1h3L9IMYc34C7T4Dsw9v/JCciE8V4HhAa41Exa+D+a/14shGiobii5ztkjX89l742de\neLbFd8KMG4f88g6+6t1gC+849dio+SSs/R9oWevFTezde/xTT7gUZ8K1WGbjKY0FSsum/8k1DDz/\nGu6AJypGVTnFb7uK9KadCFPHrKkk9coGrI4ujIpS9EiY3L6DBGZMBl0nvGQOgeXz6XGSrEnv4AfJ\n50nIHB+svY0rp/8Vd9+7Fctx+f77lzCvLsbT2w/xlce2YWgaX7t9KkX6ftYffIG9/XvREYR9EaYX\nzaQ6MhVN82EJjZyr4QsXE0+a3PdyFxtbvHev8oifa2ZWcvWMCupLvDBoflOjOGiq6C+Kc8PwrlLw\nMq/84XOgadhX/iM2lYd7XKTjEH/8Wfp//5z32dC5520aT89xQQgm6NUsCy5lYdlVPNdWxCObhiaV\nvXtJPf/+7gVnauVFfZGP2m5SIYQJ/A5YLaX85imec0S7Sd14N7kNzx+10cE49BJ69yuIQAxitRAs\nRkSrPEHa+8xwC2HKW2DZX3puBwDZATjwihdYu3ouVM8fynQRPwjrfgQHXoaSBphyrSe42x6Gjs1e\nl0q43IvH2X/Qi10aLvdilKa6vWNMvQ7e+oUjbXYs2Pgr7wZ0cl4SWimhY6M3Llq/zPtbPR8aV3pB\nrtO9SDOEbflwMsZx8u4NO/xAkravfRfN7yd69SX0r34Bp68fs66K4jveAX0DdP3kAbAdtGAA17bB\nsjFrKvG9fSXm/OmE9QCmbpBzLCzXIuvkSdoZHsq8wS/TrzHRrOBvpn+EifVXcPe9u+hO5vnph5ez\nrHEoKPmaXV18/L71mIbGR6+ayPxGDelmsOw8jgiiST/JLBzsdcjlYU9nku3tSfZ0eYJdGfVz84Ja\nblngda0GTI2ioEksaJ6L8ReFYgg77w2/DH80tb0Bv/tb0E3kwjuxJ67CGUgPiaLrMvDsK/T95veH\nd3npztncX99Be6ETbZJez/WxG9jcM5/VOzLUFQd59jNXn2kPhhLDMzqwEAbeBJprgFa8CTR3SCm3\nDivzduATDE2g+S8p5fLCLNN7gV4p5adP45znXwyPbwl6OIgeiyJ6tsOhTUgtgpbtROx8zOsOabjc\ny5C+7/kjE8f6IlA9zzPx4FqQDrLhSsT+NUf+gIaVyLpLkBOuQItEEbv/ANsf894uhe6ldCpphC0P\nwKUfg3nv9lpxyU5Y/TkvgHiw1Mu2oelesPDKWTB9FdQtxklnwHYQpoF0Xdx0BmcgedLxQPB89Tq/\n+3Mym3cOqw6BeN+1+JfNJevkKfZFiWQkTn+CgRIfCXKUuwEcv48+O1GoQS/1kFsQ3QN2L79Iv8oG\n6yCXRubyN4s+RSDawKd+sYcdHQN8//1LuH7OsX6Ez+3s5PO/3Uxbf5YJpSFunl+D40q6Ejk2tMRp\n6kodLmtogmlVUSaWBHn7/FomlYcJ+jwBLA6qLlDFCBM/6GWiGU6yE176L2j+EwRLkDNvwqm/Bjur\ne64/eN2nfQ89ycDTL3n7lBYRL/fz26tM/lDuZbUp02LcWPQ2PnLNJymJFJ2phUoMz/jg3mzR/8Rz\nrfiRlPJfhBAfBZBSfr8get8GVuG5VnxISrlOCLESeAHYDAw2QT4vpfz9MSc58nyjRAxPjK5nMQ88\nhtj3rCd0k67Brb0cJ1CNnmtBP/i8F5JM6MjGldgVK7HdCJpmYWT2QqQK16zAyYF0vMkrQmjoJTGM\nWBTpODiJJLgSoQv09f+JaH7BC9RdPQ8OvgKOjXvl53DLFiH8JrIgergSN5PBTWVw86ef2d3ujZN4\nYS39TzxP6btvJDBzMtndzdiTq2kvAQOdp7PbmWPWsiDUiCtdOvNxOp0EdXoxvW6KhzMb2O/0UKPH\nqNdLaLK7eDnf5NUdGu+vfDtvX3gHQtTyvx/YxpbWfr7yjjl84LLG49okpWRb2wB//8AmtrUPDTlr\nAi8AdiyIELByWjlTKyIUh3yHZ+CVhn2qC1Rx/rDz0LX9cIaTw0gJ+9Z4L7Ydm0FoyNrFOHM/iG3H\nDj8HpGWTePF1Bp59GfuQJ6qytpyWSSF+sCjOrmiaqmAlT737j2d6TV/UN4Jyuj8NzoUYDqL5TBAa\nbi531HYfWjDgOaEn04ff/s7mPEZiM1rzU14ItMqZOHPvwsq++YSXUyGzYy/C52PgyRdIb/A8X8JL\n56G9fxU+3SSg+Xg2sYWv9D922FE9LHx8NfZOdDS+lvg9rU6cReZE2pw4h9wByvUo3Y7XQvQLkzqj\njGVF87ms/nIm1s+jqSPEFx7eRncyz2dXzeCjV01505v70ECWtniGfV0pcrbL1MoIAVNH1wQ+Q2Bo\nGkGfTsDUCfv0c5sCSaE4VQYj0pyIvv3eLO6mZwGBnHoNzpRbsN3iI54V2T3NZHftI/X6VqzWDvAZ\n7LqmkZZbLuPjV3/+TK1TYjhWGGkxzG7eQPb153FTGbJ7mjHKSwktmIUWPjbLwOhDoPl9SMdB2vab\nF38T3Fyenp89RGrd5sLhBZGVSwkvnQdT6mnOdOBDx0Xy2f4HaXH6qNCiXBpbxDPx1xB4vn0SyRyj\nlnXWfgSCL1TewdzapaTtDP35ASpitRjBEHq0iJBZzAOv9vPd55qIBAw+c/0M3rd84ilHdHFcSSJr\nYTkSn64R8Gn4DTX2pxhl9O7zkoOftEwTbHsUdv4enDyybinujNuxzQlHvGBLKcnubKLvoSfJ72/F\nqK1lymOPooXDZ2LZaH/InRVKDE8R6brsWrYcN5U65jtfQx0lt1xHYMYkhH5xP1yl65J8eT19D67G\nTWcILZpNcN4MjOIYwdlTsV2HV5K7+Fzfg4Q1P7V6MVusVv6+7HaWlCwiVTeRrr5dfHv795HS5cPl\nNzHbP4GDuQ7CwTKqJs4hYcQoDQcQWp6QEcFx/HT02dzzQhNPbOlgXl2Mr75zLvPqxqjbikJxMlzH\nc2my0m9eNnkInvvXIdeMCctxS6bjTHoHTip7xItvdvc+HCdM+Uc/dqaWKTEcK4yoGFoW/Q89SPKP\nTxCYPong3OlYh7pJvvg6qXWbcNNDOfACMyYTnDONyKWLPH85wEml0YKB03I2H01IxyG7u5m+h58i\n39yCUVlGdOUyYtevBCBpZ4jnE+Qcmy8NPMweu/PwvleG5/N3sz9BJhpl9XadhQ0+qn09kEwSKK0g\nZISIp3sIFpWzvS3Az145wNSKCCumlrO3M8ma3V28uq8XgBvmVPNPt86hMhq4IPWgUJwXXMdrIeYT\np1Y+0eEFwmh61kvgbQRg4mW4lfNxKi7BSeWRrot/6bVokdibH+/4KDEcK1yoMUM3kyX+2DPYfXGs\nzl6vj/74BlL2gVuJLFvgTVgp4KQy2L1xfDUVCOPIGJbpjdtJvPg6wVlTiF51CULTcJJpMlt2kj/Q\nDpogOHc6gemTzpnQStclt3c/uQPtGLEodm8/fb/9AwB6UYSSd60ivNzzVerMeT5MKStLn0zz5MkT\ndgAAFDBJREFUu8xGHs9u5q+n3MXC2GwOdO5ift0ySmoW8J1n9/GzV/YT9Rv85x3TmFETxCdiBE0T\nkKzZ3cNnfr2RjHXkjNWAqTG/rpgb5lbxvuUTCflUnE/FOEBKz/0p1fnmZQdx8vDGfd5+e5/2JuP4\ni5BVc7Gn3o6x9D2I0Bn7OisxHCuMtBjafZ2k1j9LXlpk7RyGZuDTDEJ64IjLREpJdvsekq9sILuz\nCWEa6CUx7J4+nN5+0DSCs6Zi1leRfmMbdudQnrzIFcsIL5oNQOKFdaTfOOyJgjBN9FgEu7f/cASK\nQbRQgNgNV+Hm82R37UML+AlMbSB65XJvQs5ROKk0VnsX0nFwk2ncbBZpOWR37SOzeQfSOnZcMXrV\nJZS88wY0v4+MnaM730/cTiGR/CC5hrVWMwBvLbmUT1z+D/gNnZTdj25X8sWHdvFacy8TSoL0pvIg\n4LZF9XQncrhSEjB1/rClg6BP59vvW0RTd4r9PSnqSoJcNb2C0rCf4qCp0h0pxh9W1vMjziffvOxw\nHMvzUd7+mBdIA7wAIDd/C8wz6lm5qG8+JYanQbLnIM0vPUSb288hZ4Cw8DHVqMSnGQR17+KypU1Q\n81PsixwzqUZKSWbTDnp//Th2jzdA7p/agH/SBNxsjnxzC9ahbmTemxUmAn6iVy6n+Ka3kFq7ieyu\nZgCM4iJCi+dgVleAJkiv30rfw0/i9HmuA3pJDDedQeby6LEo4WXzKbrmcoySIty8ReK5V4k//gwy\nd6z7hDBNzOpyIpcvJTC1wbv8hYZZXY7QNGzXoSvXR8bJsya3i3uSa7AL3i83F1/B/NgsZk1+C/ev\nc5lYGuKm+bXc/bPX2dY+QGnYx30fuYS9nUm++PAW4mmLsF9HQ5DI2SyeWMJnV81g+aRSHFeStV3C\nI5OKRqEYe1hZL6BGpg/kyf19j6G3CTbe7wXZ+PMHQD+j2LkX9Y2oxPAUkVJy/W+upTvTffjhD2Cg\nscg3kSv90ynTwggE5VqEMiNKzAxjCgNNaGTdHD5hEjB8SCmR2RzSsg+PKQ7i5i2yO5tACALTJ3ku\nGKdonzOQBNelK2ARMUL4Wnrp/tlDWG1emKfBdEUA/ikTiV653Nvu92P39GHWVOCfPPGYmKFIyDg5\nBuw0GSdHpz3AfelXeDnfxDT/BGYHJzGtZCpLZ16DYfi59/kMv3i19fDumoDP3ziLmxfUUhn140o4\n0Juioz/HhNIgritJ5x1qioMqy4NC8WZI6Qliuuf0W4tl08F/RjNJQYnh2GGkW4b//KevkOntpMRX\nwsSSRnb276Yj2cG65FbScmg6s4ZgVWAutwQXEtO8uKC2dDCETkD3UWoWEdB9ICBpZ8naWWzpEDHD\nRIZ3uUqIW0ni+QQRI0jUDKMhyEubjJ0l6+bRhUbICOIXBgHDTzyfpDc/gC40agPlGEIjs2knmW27\ncZJpNL9JeNl8grOnHbbXlRJtWOvLdm36rRQZJ48rXezCW2hO2jyZ3cqv0+uQwG1lb+XWhe9DN30E\nfUVEzDKe39HHZx/cwjUzqyiP+lizq5uPXDmZD1zaoJLaKhTnmlzSG1PM9p9a+YpZZ9pFCkoMxw4j\nLYYZK0NT3z78RgjpmtjkcNws6YFOtresB8sm7+TZkNrJmuQGAEq0EGHhp8Xpo1or4sbgPK72zyCo\n+RAILNem3e3HkS61ejGmZhDUfUgg5+TZkm9lXX4/S30NzDJrPOOlpNnpISlz1OsllGhe8GgNQasT\n5zvJZ5ln1vG+0HKqA6UEjGNbet25OFnXQiKxXJuQEcBAI+3ksKWDKyX9MoMtHVqcPp7L7WSj1UJW\nWiwJz+SD0+6gqnoqldF6fJrJE1t6+MFz+2jqTlETC/DYJ1YSCRikcjYlIZ8a61MoRhI757UU071D\n2S+OhxLDE6LE8DT4xuqd7O9NsedQkpzjYmoa06si3LywnBl1AoEkb2XIZ5Ls6djGq4fW0pptx5Eu\nDYFaNid30ZRvo0QLscRsQEPwQn4PGemN3cVEkMv8k5ln1gOw2WphdXbrYWMn6CUUiSDtbj+97pC/\nY4kWZqpRwRyjlkcyG+iTnn/SqsAcPhhaQZEZJmqGMYQg69r05xPkCjeMLV0GZIaYCKILjU4nwe+z\nm1mfP0Cne2TGrKuii1lRuZz5U1cSDhZhZ0v49P2b6c9YtPdnMTTBTQtq+ORbptJYPs5yPCoUowEp\nIZfwWoq5xJHp5kCJ4UlQYniK9KXyrPrWmsOJM6dWRBjIWnQnc7gSljaUMLu2iBlVUcrCJtVlEp8v\nibSzIASG6cfOZdi472Wean2G9emduEjmB6ewuGgOISPE2vgmXk9txy2YpyFYWbyE26bcwqa29TzT\n8zISSb2vipi/mPnRGXTkutiZ2Mvm9G5SbpaoFuSL5e/hieTrPJfewgrfFO4Kr6BIG0rjdNDu5Yep\nFzjo9JEuCLEPnYgWOCyyxXqEm4uvIKgH8Gs+6ssm0zBhLn5fiMpwJXvabT71qw0c7PPGIC+bXMY3\n3rOA6qKA6g5VKEYLds5rLWb7wc4oMTwJSgxPg0TWoqUvQ0XUj9/QsBxJc3eKX752gD9s6SCRG3JH\n8OkaSxpKmFkTZm5tEYZuMKMmSDScYSDVSz45QN7OESoux+8LeZNs8iky8W6au/Zgmn7Ki2spLaun\nNFhKPBfHymfAcUA3MEw/Pt2H5VhYdpZ8TzcHe/ZRYRRTHC7DSSV5uPtZft3zFCY6l/unUKPH+FNu\nDwedPnzCYG6gkYAWYFpwIp1WH3EnSWOwjknRBubULUILhbz8iLpO0AxR6itje1ue//lTM8/s6CTs\nM/jmexawqKGEooCpsjooFKOZXMJL96afsZ+uEsOxwkiL4QkPJiXxdJ7OgTw7Dg0QT1u83NTDhgNx\nOgaGItMYmuDaWZV85KoGJlcaWI6DYwXpSloETZ2GMj8JK0HaTqMJDb/u55ktKZq603zg0gZKIuBK\nF0MzyOQ1HtvYxmv7erl8WjFXzQyRshOEzTA14Rp6Mj10Jzo40LSBR9pWsza1jYzMY6CzIjqf90+4\njaJoORg6GMZhFwqCfgzdR9SMohMmZ9lsaknz9PZu2uJZ1jb3Ymgaq+ZW86lrpzKl4hwlK1YoFKMd\nJYZjhQslhsdjMCh0e3+WjQfjJHM2m1v6eWJLB5bjMr0qSjJn0xrPHN6nLOzjtkV1zJ9QTN5yeHxz\nO8/u7AK8KCxXTKsg6jc40Jtmw8E4tjv0MxrLQvztddOZVxfDlZLGsjAuNi2JFjKpOG68n3QuRSRa\nAqEgoUgJAT2ArukE9AD92Swd/Vl2d1hoGDR1pVi99RD7e4fiI0YDBjfMqeZT10yjvmQsBCdXKBTn\nkIv6hldieJ450JPih3/ax4aDcYKmzqzqIupKgzR3p1jX3MeuQ4nDxoV8OndcMpHbFtbxH0/tYm1z\nL6mcTU0syMIJMVZOq+CKqeX89JX9/OSlZvK25/+oCZhVU8TUygh/d910iiM2KStF1s4SMAIU+YrI\nWyabWvrpTuR442CcjQfj7DyUwHKGqmZyeZj6kiCTKyL82bJ6aotDyg9QoRi/KDEcK4wFMXwzOvoz\nvL6/j1jQZH59jKKg7/B3UkpcV6IfJ9fe9vYBntzaQdZyaY1n2HUowY6OBD5d40OXN3LnZQ1Ux4K0\nxzN87/m9PLyhlVTO8x/UBDSUhZlXF2PhhGKiAYMJpSHm18cwdQ1T5fZTKBRKDMcOF4MYniuklGxq\nifN/H93GhoNxNAHDelW5bHIp0aDJDbOrWdpYQixoEvIZGJpQPoEKheJ4XNQPhhEVQyHEKuBbgA78\nUEr5r0d9Lwrf3wikgbuklOsL3/0IuAnolFLOPcXzKTE8Ctd1eWlvD49vbmdtcx/z6mLcsrCWK6dV\nKNFTKBSnw0X9wBgxMRRC6MAu4DqgBVgLvE9KuW1YmRuBT+KJ4SXAt6SUlxS+uxJIAj9VYqhQKBQX\nnItaDEdyMGg5sEdK2SSlzAO/Am45qswteGInpZSvAMVCiBoAKeUaoHcE7VMoFAqFAhhZMawDDg77\n3FLYdrplTooQ4m4hxDohxDqg/EwMVSgUCsX4ZsxPE5RS3iOlXFroHu2+0PYoFAqFYuwxkmLYCkwY\n9rm+sO10yygUCoVCMaKMpBiuBaYJISYJIXzAe4FHjyrzKHCn8LgU6JdSto+gTQqFQqFQHMOIiaGU\n0gY+AawGtgO/llJuFUJ8VAjx0UKx3wNNwB7gv4G/HtxfCPFL4GVghhCiRQjx4ZGyVaFQKBTjG+V0\nr1AoFIpTQblWKBQKhUJxMaPEUKFQKBTjnjPO8jhKOVXXiou6ua9QKBSK0+OiGjNUKBQKheJMUN2k\nCoVCoRj3KDFUKBQKxbhHiaFCoVAoxj1KDBUKhUIx7lFiqFAoFIpxjxJDhUKhUIx7lBgqFAqFYtyj\nxFChUCgU456LLQLNKSGE+ANQPkKHL2fsJBkeK7YqO88tY8VOGDu2jgc7u6WUq86lMaMJFYHmHHMa\nmTMuOGPFVmXnuWWs2Aljx1Zl59hHdZMqFAqFYtyjxFChUCgU4x4lhueeey60AafBWLFV2XluGSt2\nwtixVdk5xlFjhgqFQqEY96iWoUKhUCjGPUoMFQqFQjHuUWJ4mgghmoUQm4UQG4QQ6wrbSoUQTwkh\ndhf+lgwr/zkhxB4hxE4hxA0jbNuPhBCdQogtw7adtm1CiCWF37hHCPFfQghxHuz8shCitVCvG4QQ\nN44COycIIZ4VQmwTQmwVQnyqsH1U1elJ7ByNdRoQQrwmhNhYsPUrhe2jrU5PZOeoq9PCOXQhxBtC\niN8VPo+q+hwTSCnVchoL0AyUH7Xt34D/U1j/P8DXC+uzgY2AH5gE7AX0EbTtSmAxsOVsbANeAy4F\nBPAE8LbzYOeXgc8cp+yFtLMGWFxYjwK7CvaMqjo9iZ2jsU4FECmsm8CrhfONtjo9kZ2jrk4L5/g7\n4BfA7wqfR1V9joVFtQzPDbcA9xbW7wVuHbb9V1LKnJRyH7AHWD5SRkgp1wC9Z2ObEKIGKJJSviK9\nO+Snw/YZSTtPxIW0s11Kub6wngC2A3WMsjo9iZ0n4kLWqZRSJgsfzcIiGX11eiI7T8QFq1MhRD3w\nduCHR9kzaupzLKDE8PSRwB+FEK8LIe4ubKuSUrYX1juAqsJ6HXBw2L4tnPwhNRKcrm11hfWjt58P\nPimE2FToRh3s1hkVdgohGoFFeC2EUVunR9kJo7BOC116G4BO4Ckp5ais0xPYCaOvTv8T+N+AO2zb\nqKvP0Y4Sw9NnpZRyIfA24ONCiCuHf1l4qxqV/iqj2Tbge8BkYCHQDvzHhTVnCCFEBHgQ+LSUcmD4\nd6OpTo9j56isUymlU7iH6vFaJXOP+n5U1OkJ7BxVdSqEuAnolFK+fqIyo6U+RztKDE8TKWVr4W8n\n8BBet+ehQjcDhb+dheKtwIRhu9cXtp1PTte21sL60dtHFCnlocLDxwX+m6Hu5AtqpxDCxBOY+6SU\nvy1sHnV1ejw7R2udDiKljAPPAqsYhXV6PDtHYZ1eDrxDCNEM/Ap4qxDi54zi+hytKDE8DYQQYSFE\ndHAduB7YAjwKfLBQ7IPAI4X1R4H3CiH8QohJwDS8QerzyWnZVuhaGRBCXFqYTXbnsH1GjMEbt8Bt\nePV6Qe0sHPd/gO1Sym8O+2pU1emJ7ByldVohhCgurAeB64AdjL46Pa6do61OpZSfk1LWSykbgfcC\nz0gp388oq88xwbmekXMxL3jdIxsLy1bgC4XtZcDTwG7gj0DpsH2+gDdjaycjPDsL+CVe142F1+f/\n4TOxDViKd5PvBb5NIVLRCNv5M2AzsAnvhq0ZBXauxOte2gRsKCw3jrY6PYmdo7FO5wNvFGzaAvzD\nmd5DI1ynJ7Jz1NXpsPNczdBs0lFVn2NhUeHYFAqFQjHuUd2kCoVCoRj3KDFUKBQKxbhHiaFCoVAo\nxj1KDBUKhUIx7lFiqFAoFIpxj3GhDVAoxgpCCAdvWv0gt0opmy+QOQqF4hyiXCsUilNECJGUUkZO\n8r0hpbTPp00KheLcoLpJFYqzQAhxlxDiUSHEM3hOzggh/l4IsbYQzPkrw8p+QQixSwjxJyHEL4UQ\nnylsf04IsbSwXl4IrTUYKPrfhx3rrwrbry7s84AQYocQ4r5C1BCEEMuEEC8JLw/fa0KIqBBijRBi\n4TA7/iSEWHC+6kihGAuoblKF4tQJFrIYAOyTUt5WWF8MzJdS9gohrscLcbUcLy/co4Vg7im8cFkL\n8e679cAJgysX+DDQL6VcJoTwAy8KIZ4sfLcImAO0AS8ClwshXgPuB/5MSrlWCFEEZPBCtd0FfFoI\nMR0ISCk3nlVNKBQXGUoMFYpTJyO9LAZH85SUcjA/4/WF5Y3C5wieOEaBh6SUaQAhxKOncL7rgflC\niNsLn2OFY+Xx4km2FI61AWgE+oF2KeVaAFnIsCGE+A3wJSHE3wN/AfzkVH+wQjFeUGKoUJw9qWHr\nAvialPIHwwsIIT59kv1thoYsAkcd65NSytVHHetqIDdsk8NJ7mUpZVoI8RReYtf3AEtOYotCMS5R\nY4YKxbllNfAXhdyCCCHqhBCVwBrgViFEsJD55OZh+zQzJFC3H3WsjxXSMyGEmF7IlnIidgI1Qohl\nhfJRIcSgSP4Q+C9grZSy76x+oUJxEaJahgrFOURK+aQQYhbwcmFOSxJ4v5RyvRDifryMJ53A2mG7\nfQP4tRDibuDxYdt/iNf9ub4wQaYLuPUk584LIf4M+H+FtEMZ4FogKaV8XQgxAPz4HP1UheKiQrlW\nKBQXACHEl/FE6hvn6Xy1wHPATOklplUoFMNQ3aQKxUWOEOJO4FW8/JtKCBWK46BahgqFQqEY96iW\noUKhUCjGPUoMFQqFQjHuUWKoUCgUinGPEkOFQqFQjHuUGCoUCoVi3PP/Azy/d+g5JLPhAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f0525dba320>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdsAAAFMCAYAAACDGRbPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4XVW5+PHve+aTk3lo0qZpWjoPtExCqQwtXKEVKoOM\nchUVBRR+CupV9ApcrnIFHEERGVQcQUVkUCZBQJCZ2pZOadMhzTwPZx7X74+9E9I2bdM2adrk/TzP\neZLsvfbea+cM71lrr71eMcaglFJKqeHjGOkKKKWUUqOdBlullFJqmGmwVUoppYaZBlullFJqmGmw\nVUoppYaZBlullFJqmLlGugJKKaUOT+++++44l8v1ADCPsd14ywBrUqnUZ4499tiWgQposFVKKbVf\nXC7XA2VlZbNLSko6HQ7HmJ20IZPJSGtr65ympqYHgI8MVGYsfxNRSil1YOaVlJT0jOVAC+BwOExJ\nSUk3Vgt/4DIHsT5KKaVGF8dYD7S97P/DbmOqBlullFKHrUgkIkceeeTsmTNnzpk2bdrc66+/fgJA\nc3Ozc9GiRdMrKyvnLVq0aHpra6uzd5uvf/3rZZMmTZo3efLkeX/+859zD0Y9NdgqpZQ6bPl8PvPq\nq69WVVVVrVu7du26F154IfeFF14I3HzzzeMXL14crKmpWbN48eLgTTfdVAbw7rvv+h599NHCqqqq\ntc8888zG6667blIqlRr2emqwVUopddhyOBzk5eVlABKJhKRSKRERnnnmmfyrrrqqHeCqq65qf/rp\npwsAHnnkkfzzzz+/w+/3m1mzZiUqKyvjL730UmC466mjkZVSSh2w/3pkVcXGpmDWUO5zRllO5LsX\nLKjdW7lUKsW8efPmbN++3Xv55Ze3nHbaaeH29nZXZWVlEqCioiLZ3t7uAqivr/csXLgw1LvthAkT\nErW1tR4gPJR135m2bJVSSh3WXC4XGzZsWLd9+/bVK1asCLz99tu+/usdDgciMlLVA7Rlq5RSaggM\npgU63IqLi9Mnn3xy8Mknn8wrKipK1dTUuCsrK5M1NTXuwsLCFEB5eXlvSxaAhoYGT0VFRWK466Yt\nW6WUUoethoYGV1tbmxMgFArJiy++mDt79uzYmWee2XXvvfcWAdx7771FS5cu7QL46Ec/2vXoo48W\nRqNR2bBhg2fbtm2+xYsXD2sXMmjLViml1GGstrbW/clPfnJKOp3GGCPnnHNOx6WXXtq9ZMmS0Hnn\nnTe1srKyuLy8PPGXv/xlM8Bxxx0XO/fccztmzJgx1+l08oMf/KDG5Rr+UCjG6P3ISiml9t2qVau2\nLViwoG2k63GoWLVqVfGCBQsmD7ROu5GVUkqpYabBVimllBpmGmyVUkqpYabBVimllBpmGmyVUkqp\nYabBVimllBpmGmyVUkod9lKpFLNnz56zZMmSaaAp9pRSSqkh9+1vf7t02rRp0d6/NcWeUkopNYQ2\nb97sfvbZZ/M++9nP9k2woSn2lFJKjT6PXVNBy7ohTbHHuDkRzr17rwkOrrnmmoo77rijrru7u6+r\nWFPsKaWUUkPkoYceyisuLk6dfPLJkd2V0RR7SimlRodBtECHw6uvvpr997//Pb+8vDwvHo87wuGw\n45xzzpmiKfaUUkqpIXL33XfXNzc3r66vr3/vwQcf3LJw4cLg448/vlVT7CmllFLD7JZbbmnUFHtK\nKaUOe5pib0eaYk8ppZQaQRpslVJKqWGmwVYppZQaZhpslVJKqWGmwVYppZQaZhpslVJKqWGmwVYd\ndkTkZBGpOoDtvy0ibSLSNJT1GsRxfyYiNx7MY9rH/ZyINItISESKBlH+kyLy6sGo21gwUs/7WFJe\nXn7kjBkz5syaNWvOvHnzZoOm2BtzRGSbiCREpHin5f8WESMik0emZgfHcHxwG2NeMcbM3M/6TAK+\nDMwxxpQNZb12Os4u522MudoY863hOuZu6uEGfgCcYYzJNsa077R+sv06HPMT3IjIgyLy7QPcxyHx\nvI9FL7/88sYNGzasW7NmzXrQFHtj1Vbg0t4/RORIYGizYxzGRMS591JDZhLQboxpOYjHHEmlgA9Y\nO9IVOdzpF5LDi6bYG5t+A3wC+LH99+XAr4G+b9Ei4gVuBS4CvMBfgOuNMVERKbD3cQLWc/Yv4Gpj\nTJ297UvAK8BpwHzgdeBjxphdZnaxW9gPAicBGawP4VONMRkR2QbcC3wcGA88BnzOGBOztz3brvNk\nYJ1dh9X2ugrgTuBkrC9xDwF3Az8D3CISAlLGmHwReRCIApXAqcA59vl/G5gKdAM/N8b8z0D/TBFZ\nDPzWGDPR/nsb8BP7f1wJPANc3lvvftv9B/Ak4LXr84j9v+jbV7/9fcYY87yI/A8wB4gB5wHb7X2/\ns5/nXWeM+aa97WeBrwGFwKv2/7PBXmeAz2G1wkuA3wHXmgGmfLP/d7djvXYA/mjvtxL4t72sS0Te\nMsacttPm/+y3HuBD/fb7PeAKoAv4vDHmaXt5HlZr+cNYr6FfAjcbY9ID1M1p1+UKYBywETjXGFMr\nIovs/90Me/kXjTGv2du9xB5e0yJyEnAH1nMTBG40xjy4l/fRYuC3wA/tOqWBbxhjfikiVwKXAUZE\nrgNeNMYst18L99jrZopIAPgK8Fn7fGqB/zbG/EVEZjOMz7uITAN+DhwFJIEXjDEX7/w/Hyk3/uvG\niurO6iFtREwrmBb51ge/NagEB0uWLJnhdDrNpz71qdavfOUrbZpib2x6A8gVkdn2h88lWG/6/m7D\n+tA5CpgGlAM32escWB9olVgtsyhWcOnvY8CnsD4APFgfCAP5MlCH9UYuBb4B9P8Avww4EyvozQB6\nPyCOBn4BXAUUYQXlJ0TEa5/TX4EarEBcDjxsjFkPXA28bndh5u9U31uBHKwPnDBWsMwHzgI+JyLn\n7uYcBnIRsBSYgvXh/MmdCxhjngeWAQ12fXYpsxsfAR626/YE9v9+P88be9vTgO/Y9R5v7+PhnYqd\nDXzAPp+LsJ6Xgfw3sBDrtbMAOB74pjFmIzDXLpM/QKAFOKXf+mxjzOv23ycAVUAxVlD7ubyfo+xB\nIIX1Oj0aOAP4zG7q9iWsXp0PA7nAp4GIiBQCfwPuwno9/QD4207XlAd8TYtIJfA01pfXEvu8V9rb\n7Ol9BFAG5NnLrwDuFpECY8x9WIHtDvv/sLzfNpdivSbzjTEpYDPWl6s84BbgtyIy/iA8798CngMK\ngIm8/+V9zHv11Vc3bNiwYd1zzz236f777x/39NNPZ/dfryn2xpbe1u3LwHqgvneF/SF2JTDfGNNh\nL/s/4PfA1+3rbH/uV/5W4MWd9v9L+8MVEfkjVoAYSBLrTV5pjKnGaj309xNjTG2/4/wYK+BeCdxr\njHnTLvcrEfkG1od8ApgA/Jf9YQRWAN2Tx40x/7J/jwEv9Vu3WkQewmr1PraX/fS6q1/r4EmsD9uh\n8qox5il7378BrrOXH8++n3evy4BfGGNW2Pv9OtApIpONMdvsMrcZY7qwWp0vYp3TM7vZ1//r7RoX\nkVuwvgwdyKCcGmPM/fb+fgX8FCi1W14fxgo8USAsIj/Efn0MsJ/PAF81xvQOaFtl7/PjwCZjzG/s\n5Q+JyBeA5VjBHHb/mv4Y8Lwx5iH773agfW/vI7tsEvhf+/l6ym6BzsT6Qrw7d/W+JwCMMX/qt+4P\n9nN3PPD4HvbR60Ce9yTWF+4Jdq/WITWIbbAt0OEwZcqUJEB5eXnqrLPO6nr99dcDmmJv7PoN1ofE\nJ7G6kPsrwbqG+66IdIlIF9abqwRARLJE5F4RqRGRHqyuv/ydrnX2H1kbAXb4ZtfPd4Fq4DkR2SIi\nN+y0vv8bpgYrmID1Jv9yb/3sOlbY6yuwPpz3ZZTBDm9METlBRF4UkVYR6cZqIRQPvOmABnv++2Pn\nffvs63f7c969JmD9fwEwxoSwgkb5Ho67u3PaYV/s+Lztr75jG2N6k3JnY70O3EBjv9fBvVitz4FU\nYLUE91Zn7L8Hc/672+ce30e29p2er8G8VnZ+rX5CRFb2O8Y8Bv9aPZDn/auAAG+JyFoR+fQgjzmq\n9fT0ODo7Ox29v7/44ou58+fPj2qKvTHKGFMjIluxWgVX7LS6DatreK4xpn6Xja2u35nACcaYJhE5\nCuta3D73ixhjgvb+viwi84B/iMjbxpgX7CIV/YpPAhrs32uBW40xt+68TxE5EZgkIq4BAs/u0krt\nvPz3WN2zy4wxMRH5EfsWbPdXmH6D1ewvMCW7L76DWvb9vHs1YAWu3uMGsLpTB3r+96Z3X72DoPo/\nb3uzr2m/aoE4UDzILxm1WJck1uy0fIfzt01i4Jb7QPs8foDle3sf7c1eX6t2F/b9wOlY3cVpEVnJ\n++/FYXvejTFNWNeKe69ZPy8i/7R7qMasuro613nnnTcNIJ1Oy0c/+tH2Cy64oOekk04KH0op9rRl\ne3BdAZxmjNnhW5QxJoP1Bv6hiIwDEJFyEem9VpOD9SHSZV/runl/KyAiZ4vINLvLrRtrkEimX5Fr\nRGSifZz/Bv5gL78fuNpugYqIBETkLBHJAd4CGoHb7OU+EfmgvV0zMFFEPOxZDtBhB9rjsXoBDoaN\nWC3Vs8S6TeabWANrBuNAzvsh4FMicpRYg3r+D3izX1fivngI+KaIlIg1AO4mdh0TsDutWM//EYMp\nbIxpxLpu+H0RyRURh4hMFZFTd7PJA8C3RGS6/bqZb1+XfQqYISIfExGXiFyMNdjpr4Ooxu+A/xCR\ni+xti0TkqEG8j/ammb3/HwJYAbXV3v+nsFq2/fcxLM+7iFwoIr0D+TrtemT2sMmYMGfOnERVVdW6\nqqqqddXV1Wtvv/32JoCysrL066+/vrGmpmbNa6+9trG0tLRvAN/tt9/eVFtbu2bbtm1rLrroop6D\nUU8NtgeRMWZz7yjWAXwNq3v3Dbur+Hms1izAjwA/1jf3Nxjct//dmW7vO4Q1wvOnxpj+139/j/Vh\nugWrq+7bdt3fwfpW/ROsN3o19iAkexTqcqwBKduxBmD1jpL8B1aLq0lE9pT38vPA/4pIECtY/PEA\nznHQjDHd9rEfwGpdhLHqP5ht9/u87cFaN2Jdi2/Eav1dsp+n8W3gHWA18B6wgn4j3fdyDhGsgWr/\nsrtFFw5is09gDVhah/VaeARrHMBAfoD1XD4H9GCNpvXb4xDOxuplacfqIj17oBH0A9R5O1YP0ZeB\nDqzBUQvs1Xt6H+3Nz4E59v9hwLECxph1wPex3jvNwJFYdwf0Gs7n/QPAm/Z15iewRm9vGeS2aoRp\n8njVR/rd8jLSdVFKHfo0efyONHm8UkopNYI02CqllFLDTEcjqz7GmMkjXQellBqNtGWrlFJKDTMN\ntkoppQ5rbW1tzqVLlx4xZcqUuUccccTc559/PqAp9oaRiAz2lhijD33oQx/62KfHIevKK6+sOOOM\nM3q2bt26dt26deuOOuqomKbYG14HY8YhpZRSh4j29nbnm2++mXPddde1Afh8PlNcXJzWFHtKKaVG\nnYZv/HdFfNOmIU2x550+PTLh/27dY4KDqqoqT2FhYerCCy+cvG7duqz58+eH77///toxlWJPRJaK\nSJWIVA8w4T329G132etXi8gx/dZ9UUTW2BNuX7fztkoppVQqlZL169dnXXPNNa3r169fl5WVlbnx\nxhvL+pcZ1Sn27And78ZKRl0HvC0iT9jTnfVahjV94HSs/Jn3ACfYE+R/Fmuy8QTwjIj8daxPuK2U\nUoeqvbVAh8vkyZMTpaWlidNOOy0McPHFF3fedtttZWMpxd7xQLUxZosxJoGVIPmcncqcA/zaWN7A\nShs3HpiNNTl3xM4s8jJw/jDWVSml1GFo0qRJqbKyssSqVau8AM8991zuzJkzY2MpxV45O+aBrMNq\nve6tTDlWOq5b7ewgUaxJx3c3gb9SSqkx7Mc//vH2yy677IhEIiGTJk2KP/TQQ9vS6TSHUoq9Q3KA\nlDFmvYjcjpUpJIyV1SM9UFkRuRK40v5TRyMrpdQYs2jRouiaNWvW77z89ddf3zhQ+dtvv72pNxXf\nwTKc3cj17JiIfCK7JkjebRljzM+NMccaY07BSuM14D/NGHOfMeY4Y8xxWCnolFJKqUPKcAbbt4Hp\nIjLFTqR8CVYOxv6eAD5hj0peCHTbyanpl/x5Etb12t8PY12VUkqpYTNs3cjGmJSIXAs8CziBXxhj\n1orI1fb6nwFPYV2PrQYiwKf67eLP9jXbJHCNMaZruOqqlFIDymQg2gFuP3iGfd4DNYoN6zVbY8xT\nWAG1/7Kf9fvdANfsZtuTh7NuSim1R+kkdGyBZAR8+VAwGUb4Xk11+DokB0gppdSICzWTCXcRC0Zw\nZydwe3MgoGMw1f7RYKuUUjtLxjCxHjq31BOKRPBmByjLLdZgq/bbaEtEoJRSBy7cQrSulq5giGQq\nTaQnRLSlcaRrpXbjlltuGTdt2rS506dPn7t8+fIpkUhENMWeUkodylJxTKiNUFeQaDRKMBQiHo8T\nbGjCBFtHunZqJ1u3bnXfd999pStXrly3adOmtel0Wh544IFCTbGnlFKHsmgX8VCYru4gyWSSTMYQ\njcbo6QmS6tRb+Q9F6XRawuGwI5lMEo1GHRMnTkxqij2llDpUZTIQbKSjrplEIkkUBzGHA7cxuGNx\nom2NuCfNHulaHpJe+PX6io760JCm2Cssz46c/onZe0xwMGXKlOQ111zTNGXKlPlerzdz8skn95x/\n/vk9l19++dhJsaeUUoeVUDOJUJhwMEQkkaDR5aPV6aXV6SWZStPT0gqpYU8Qo/ZBa2ur829/+1t+\ndXX1e01NTasjkYjjpz/9aWH/MqM6xZ5SSh1WEmEINRNsaiUUDtPi9BE3hqRJkhE3PTjIjkTIxEM4\nXIV7398Ys7cW6HB58skncydNmhSfMGFCCuDcc8/teu2117LHUoo9pZQ6fPQ0kEkkaG/rIGqEkMNJ\nNJUglowRTPbQ43CTSCSJNNSMdE1VP5MnT06sWLEiOxgMOjKZDP/4xz9yZs+ePaZS7Cml1OEh0gGJ\nEMH6FiLROG1OD1mxBi6puaOvyEPTvkMkBYm2Jpg+gnVVOzjttNPCy5cv75w/f/5sl8vF3LlzI1/6\n0pdau7u7HYdSij2xZkwcHUTkHTv7z96MnpNWSh2YWA90biWZTLJ9xVpaekLUuvxctPH6XYq+NO12\nJudlM/nsy8bi1I27nPCqVau2LViwQIdo21atWlW8YMGCyQOt025kpdTYEw9BqBWCTdC1HZNJ01Pb\nSCQWp93pxRve3Ff0V973p29PpHqIRGKY2LD3OqpRRoOtUmrsSKcgGbUSDPTUQbARMklC9c20N7fS\nmUyTSoc4p/4nGOD/3DexPezie8lrMUBueC2pTIpUsGOkz0QdZjTYKqXGjmAjtFaBSfctSkeidLR1\nEQpH6XK6md7xAgD/aF9IIhkk7XIQcrtZ0TKX0vAmwhlDuLF+pM5AHaY02Cqlxobe3LT2kI1MJkMy\nEqV1WwM9PUG6xEkEJxNDa0mkXPwr//gdNn9y3BlURtaSiLUTD4cGOIBSu6ejkZVSY0NPHZgMJpMh\n2txOJBYn3B0k2BOiM5mmw+XlpNqfkZdq587uT5ApcuKr24w72EmsrJJkQQlVXZVMDjxDIjxnpM9G\nHWY02CqlRr9MGiLtGGNIdodo2N5AOpMhkUgQSaZpd/nIpGNMjGygrrGEzvFFJB1OXjzhDKqnzOLM\nd/7FpFgXrwXncUX4b1THwmDMWByRrPbTsHYji8hSEakSkWoRuWGA9SIid9nrV4vIMf3WXS8ia0Vk\njYg8JCK+4ayrUmoUi3YCEGppp25zDaFwhPZIjM6Uoc7tJy4Oztt8EwBPOJYA8JcjF1I17UjSTjdP\nnbCYzbmF1JZPI5lxEgyFSccjI3Y6akcXXnjh5MLCwgXTp0+f27tsf1LsvfLKK1kzZsyYM2nSpHmf\n/OQnKzKZzJDVcdiCrYg4gbuBZcAc4FIR2bnvZRnW7eHTgSuBe+xty4EvAMcZY+YBTuCS4aqrUmqU\ni3Vj0mlaa5sIhiO046TJ6aPR5SOJUNKzErdJsrplGi2l5WzNzqMjv8Ta1lgfuH8/+hSMw8Gv4+eS\niTaRCnaN4Amp/j796U+3PfHEE5v6L9ufFHuf//znK++5556abdu2rdmyZYvvkUceGbJct8PZsj0e\nqDbGbDHGJICHgXN2KnMO8GtjeQPIF5Hx9joX4BcRF5AFNAxjXZVSo1kiRKi9m65giNqMk1anh4QI\nBnAnezi98UGMgUfHLafTn82zx1qt26mbv861Lz3KlPonAWjKLaTWP4n87ndJBoMjeEKqv2XLloVK\nSkp2SEq7ryn2ampq3KFQyHH66aeHHQ4Hl112Wftjjz1WMFR1HM5rtuVA/4mp64ATBlGm3Bjzjoh8\nD9gORIHnjDHPDXQQEbkSq1UMUDwUFVdKjSKpOCaRoKWmnlrxEBWrjZHIJMmKNvHRuu8D8I/aE2ES\nvHGE1RM5pf5pPlR3AikHnFmd5rFAG48ffQpXv/wYrmgL0a52skfspA49z97zo4q22pohTbFXXFEZ\nOfNz1+1XgoP29vZ9SrHn8XjM+PHjk73LKysrE42Nje4DPYdeh+QAKREpwGr1TgG6gD+JyH8aY367\nc1ljzH3AffZ27xzUiiqlDn2xbsKdPdRH4kTFhSPZw0VbbtqhyJvOE3ll0kJ6vFnUFI/HkclwZnV8\nhzLnrnqV+07+CEmHk+ZOBxO0G/mwMdpT7NUDFf3+nmgvG0yZ/wC2GmNaAUTkUWARsEuwVUqpPYoH\nCXcHaTcOjm/8NUcEV+ywOpOBp1kIwO8XnoE3keEzrzxH2v50zOuYR3fhGgDGd7ezuaScjY0VFHbo\nla3+9rcFOlz2NcVeZWVlsn9LtqamxtO/pXughvOa7dvAdBGZIiIerAFOT+xU5gngE/ao5IVAtzGm\nEav7eKGIZIn1deR0YP0w1lUpNVqlYrT3hPDFGnYItM/5PsIt3jt4oOFiANaOnwzAR97ZStoV6yv3\nD2c2/nA5AGetfo31ZZNo9o0j1b2N0ZTIZbTZ1xR7lZWVyezs7MwLL7wQyGQy/O53vys655xzhqz7\nYthatsaYlIhcCzyLNZr4F8aYtSJytb3+Z8BTwIeBaiACfMpe96aIPAKsAFLAv7G7ipVSatAyGUws\nQns0wQcbfglAtyOPPzVcylFvPY/7zIk0TJxAyOPjlRlHAVCUfA8AR9rLn5Iz+PbS/+LO5+7gFOpx\nYIh4/YSycnGEmzDRCJIVGLHTU5bly5dPeeONN3I6OztdpaWl82+44YaGW265pXFfU+zdfffdNVdc\nccWUWCwmS5Ys6bnwwgu7h6qOmmJPKTV6RToIVa/k9RVv8aFt3yFsArzxzzm8cupJfUXSItx/inWj\nhCeV5NP/+hsA73Ufz5VnfRGXI8PrDcfhWHMyCV8bW4vKyY0FuSz8Kkd/7sd4S8tH5NRGgKbY2wtN\nsaeUGpvSSbo7e/hA/S8wBv685fQdA20m3Rdogb5A60j5mHfU70l2VbDxLz/ixAnv0BCZAsCU9no2\nl0ygqs1NTAdJqUE6JEcjK6XUkMgk6epoojzZzIbuSrZMnUrE7WXluHJWT5u/Q9GT/307MBOALa58\n/nPi62x67Lv4Ct+jZf1SwlP/RXGnNa4m6M0iKR6SoSHrZVSjnLZslVKjVzyEr/ElknEHD+efT9Dr\n59eLlu0QaCUTpmLL55nbYwVaX9dMzlt4N43/vJ6PBLJZmqmipK6A5TOewhktBaA42EXQk0uyXUck\nq8HRlq1SanQyhmS4m/L2V/jXv+bTeF4Rjx91ct9qV2IbOe334kw0cVbt+13JL5e08wFPhIWJAKW+\nCwEY74Q3ti5hVaoIoZkFDVtozCsl0brxoJ+WOjxpsFVKjU6pONGeMFHJ5+1jj+0LtJ7Iu+S23clR\n7TP4QNtRdLq9fUN/Xo/M47oPfZPY6jMo9V63w+4WtrzI0xWzocsLQF1hGbS9dDDPSB3GtBtZKTU6\npeN0d7VhGsK8OXsBAJKOcHLV81yw9Xym9cyj0/N+oH0vOJ9LFt1FcNNpnNRmzWXQnvw4jyf/q2+X\nx2a9f5+uL52krbkDM4SZYdTopcFWKTU6pRIkG99jQ2QKr063gu28qruZbl+b7S+Z9vKBY3/HpNx6\nKuqzyHP9iVh6HuszCzg2fSrbY49jjLC4eVvfNnGXh6ZuN6lIaJf9qYNroBR7V1111cQpU6bMnTFj\nxpwPfehDU9va2kZnij2llBpR6TjujnW8UWQNhjplzWt8sHX6DkWye6ayoftYuisa+EDZShr+fgMn\nuu8HoC75FSabWQA4cNKTuoDcdBOxxDgAuvy5rPNNJR0NH8STUgMZKMXemWee2bNx48a1GzduXDdt\n2rTYjTfeOGpT7Cml1MhJxXE3VfHSkYsAmNPe0rfKEyvin8ET8C/6HZ85+zrOm/YU2/56O+e7ngKg\nK/lpfHYSsUaX9RkeTF+OMQ6WOF8DoLy9k6DLT7K782CelRrAQCn2zj///B6325rq+MQTTwzX19d7\nYHSm2FNKqRGT7Goh2GSoO66Uxau39S33RkuYdeq9nOB7v0Va/9xNLPXkEnD+g3hmHqH0+QBs5B9k\nr11F5/RzKHAcQX38z5zgvpLXmUZpuIWwP0C6Yzsw5yCf3aGn45GNFcmm8JCm2HOXBSKFF8w44AQH\nDz74YPEFF1zQASOXYk9btkqp0ccYIs0b2ZCppCOQy9F1rQBkohUcf+YP8CWtmNC2djkb/ng/Ux1Z\nFLlvBaA1+TnrZ/c/Gf/Yw+SsX4/rqTvtHbvJc1j7cpKhI7eQZLPe/nMo+9rXvlbmdDrN1Vdf3TGS\n9dCWrVJq9EknSDZt5Onpi5lVFyIasLJ7zv7gvbSsuoCOqjMByCpazXFFtRzt/BEexxbaEjeBqSRm\nuvG92C+jZypKYss/8BxxGpHMYiu1CtCSW0jL1lcoOcindygaihboULvrrruKnn322fxXXnllo8Nh\ntS1HY4o9pZQaGekEpvk9qksnM7fWmuWplVzGZbfTUXUm04q3cEphhJPTcznB/QU8ji1kjI9Y5nhr\n89etDEGbGTnHAAAgAElEQVS3XuTgoq+7eHmekKp7B4DO5FcoS1ifwSl8NDWOaINJ7cYjjzySe+ed\nd5Y99dRT1Tk5OX3Dikddij2llBox6STJpkaajy5i4Za3wQFHznmGhmduZml+hvxMK9muX+J1WEnh\njXHTEH8EgGi8iUzLOn632MEHy0/gykgJvzttBcfcV4070oQ7q4TZspEm5pIXSdMRTmOMwUq9rUbC\nQCn2fvjDH5YlEgnHaaedNgPgmGOOCf3+97/fPlIp9jTYKqVGn1Sc7Q0eIsd7cDisRPATW+ZwlGMK\n+a57yHb9bYfiG+MP0JuVNvTCzbQWQ+OxEzlyq1CfaefDJbN57pgGLlr1R9wnfoEZJsmLQE44THsm\nCxOLIX7/wT1H1efJJ5/cuvOy66+/frep/26//fam22+/vWnn5aecckpk06ZNa4e6fqDBVik1GgUb\nWZk9kxOrrcuIknExv+kUxns/gVOsbl9jPFSlriI7feb7gfbZr+FLGB78DwdnbZpAXU2ztWIrrF+Q\nRfrNjZhMGq9jJo6Uj7xYkKacYpKhbrwabNUeDOs1WxFZKiJVIlItIjcMsF5E5C57/WoROcZePlNE\nVvZ79IjIdbseQSmldpWoX8OK8XOYXWtdqvNmZSiRe3FKB4n0DOpif6U+/ijZ6TP7tuns/Bcm2klG\nYHrOTJpqWnfY5we2TCTsTJDq3EzCzMWdzCYvGaQ1p5hYZ+NBPT91+Bm2YCsiTuBuYBnWTWiXisjO\nN6MtA6bbjyuBewCMMVXGmKOMMUcBxwIR4C/DVVel1OiSaN7E5tJKMs4QknGxLNOGz/EW9bHf05L8\nwS7lGzqewPXyrwD49Bfc5L6VAGDOh+Zy/KUnMGl+Jelgkr8fFcB01pAyU/CkszCOGN3ZeWRaNx/U\n81OHn+Fs2R4PVBtjthhjEsDDwDk7lTkH+LWxvAHki8j4ncqcDmw2xtQMY12VUqNIrHEzHdn5GGcE\nRyqLBYlfEUqfg+H92ffSJNnkW8H20F/I+edfAbjjow4ueXUyAEWTi8kpyUFEKJtTBoAnXkaqwUpG\nUCJpEEi4fMQbN6HUngznNdtyoP99V3XACYMoUw7075O5BHhoOCqolBqFUgk6tjYTG+cn7YpgcJEx\nPoLpswGod28i6qgl9913KKuu7tvszgt9nNAzg3AqjDiEaYum9a0Th1jZgQzUejqYCUx3NrEFEOOm\nedtWyg7uWarDzCF9n62IeICPAH/aQ5krReQdEXkH7MlMlVJjVzrBxlgOFc1hjCPFJNd22hI3kzGl\nNHqqcL/0c0r/8DD+foH2mx93smjicYSbrCkcj7vwA7vs9shlVkKDNaXW7FNFxsoe5IkbWpqH7A4R\nNUoNZ7CtByr6/T3RXrYvZZYBK4wxzbs7iDHmPmPMccaY44DdDvVWSo0R6ThvFsxkXIcVAI9JbyNh\nrMxr2X/8Pv5WazTytnFw9TVOLvq6i/MKPkjri1aH2qzTZ+Nw7vrRmJWfhTfgJSVeMuE2/GQhGSf5\n0RitYb3HdiQNlGKv180331wqIsc2Njb29eSOthR7bwPTRWSK3UK9BHhipzJPAJ+wRyUvBLqNMf27\nkC9Fu5CVUvuiq47NBZNY0BYFoDITBhy0bX+0r8jHv+zkT5dP4ovexdzVcwbNL9eDgZIjSsgrzdvt\nrsuPnAhGCDW8gUgezrQXfzJKszcPkxyymf3UPhooxR5AdXW1+4UXXsgdP358onfZqEuxZ4xJAdcC\nzwLrgT8aY9aKyNUicrVd7ClgC1AN3A98vnd7EQkAHwIeRSmlBindUkVjXikpVwhH2oNkjsaYNN73\nXqYpHx6+djbf7jqNhW/lsfUf21jxahUA3oCXIxZO3WFfghO3o28aXfLKrEDcbKxOtKyMC28mSkNu\nKalo5CCdodrZQCn2AK699tqK7373u3X9Z/calSn2jDFPYQXU/st+1u93A1yzm23DQNFw1k8pNfok\nGtbRlXUyKddWAsSIpBeTbN0AySi3XejijFcSrGXLDtv4sn3MX75gh2UucZHrzcPpcBJPxwnGg3iy\nPPjzstjc2cZ0oBAn3RKkJbeYRE8L7tzdt4pHu8cee6yipaVlSFPsjRs3LnLuuefuV4KD3/72t/nj\nx49PnnjiidH+y0cqxZ7OIKWUGlXaqjfjKDqNtCtMaTpNhiJSWx7in3NcnPFW5Q5lc0pymLlkFk6X\nc4flgpMcTy5Oh/UR6XX6SLqSRFMRckqyaekOkQ63MC7byzYxhLNySNX8GyZOP2jnqXYvGAw67rjj\njrIXX3zxkLknS4OtUmpUWdntZEaiGQQmGSfGpEi2bSBUagVab7aX+WcvoDfl2kDyvDm4nDs2avwu\nP7FUlPzyAlqqW4iGG8gPFAJNiHHTumENeR+8aDhP7ZC2vy3Q4bB+/XpvXV2dd/78+XMAmpubPccc\nc8zsN998c72m2FNKqQOVybDBFDChJwhAmSkiEW7krcnvj3M56iNH7zHQuh0e3E7PLsudDhdup4ec\n4hwAIslu8rEu6fmjGZpqd77ZQo2U448/PtrR0bGqvr7+vfr6+vdKS0sTK1asWD9p0qTUSKXY02Cr\nlBo9Mim2ZY0jKxVHMk6y0kcibdvoCFgB8vhLdp5XZ0cOnOR787BmsAB/Xh7ZxcW4fT4AAu4ALq8L\np9dFT7qHHLLBCP5EgrYuHSA1UpYvXz7lpJNOmrV161ZvaWnp/B/+8Ie7nXOhf4q9pUuXztg5xd7V\nV189ubKyct7kyZPjmmJPKaUGEu+hIbuE0o4e/BkBcdMTqQO/gyknHGHNBLUbgoMcbzaI1QbxBLLJ\nmzkLEcEXCtGxYR0u3LgdHgKFAVpbu5mG4En78SfjtKeGbCyN2kcDpdjrr76+/r3+f2uKPaWUOhCd\n2+j0FYKzhUJ7QoLtjg7EKRRV7v7mBsFBvjcPl9197Pb5cI6P8s675wHg805gcukNhBoa8Do9BAoC\ntDX3AODP+PCnI9QHijSJvNot7UZWSo0apn0zmXQ2GWeCYlyYTJItniAF5YW7jDju5Xa4yfHm9AVa\np9OJc3ycTVtv7SsTizfQkX4Wh0PwOL0E8rOIZIJk0gkKEDxEac4tIROLHZTzVIcfDbZKqVEjvOFd\nxrdbA0jzM7kkgvWkRSiseH9uAsEOmK4A2e5s8n0FeJ0+ex1kTchja/2PASgr+yjHHfsoPl85re3P\n4ii0BkplF1jXgBPRdvKNG5EMXTkFpNu3H9wTVocNDbZKqVFjQ3UzZUErmUCumUBXtMH63Z6C0e1w\nk+PJJc+bT5YnG787QO9gKAB/SSHVrd8hnQ4xa+Z3qJj4cUQczJr5bUAIydsA5BXkgwMiiXbyTACA\nhNtPonH9wTtZdVjRYKuUGjVWJfxkpXvACAUU0pZqx5Prxe1z48BJtjsHr8s34Lb+/HzqYw+QTHZS\nPuEycnJm961zuwsoKjqV9s6Xced48bg8ePN8dKU6KKAQAFfSScuGlQflPNXhR4OtUmrUqPKW4DVx\nPMaBCyeN0kVxhTUwKtubvctEFWC1a/25eTRkfkE4spGsrCMYP/6CXcoVFZ6MMUnCrtW4HS5yC3No\nN93kYs1Q6IlnqK+qGdbzU4cvDbZKqdEhk6EuMA6HM4jXWF3DPal2ckpycDvcfddlAVwuF75AgEBJ\nCQXTptPkeJhweCMAM2f874AjinNy5uH3TaIn/jZOh4tAQTY96W48uBDjwJdM0haKH5xzVTsYKMXe\nl770pQnjxo2bP2vWrDmzZs2a84c//KFv4urRlmJPKaUOnlAzQW8pxpFivCkinU6QzMQJFGbjd1ut\nTxHILi7EO9VLvGQbVR1fZvXWKwgGVwEwb+5PcLmyB9y9iJOScUuJxevIeLvJLcqjK9ECgCfjJpCI\nUi9DOg+/GqTdpdi7+uqrmzds2LBuw4YN6y6++OJuGLkUe4O6z1ZESoDPApP7b2OM+fRQVUQppQ5I\nx1ZS6QDGkSInHSCW6MThFTw+D16nF6fDQbywig2df4bOXTc/5uiHcDr9ezxEQf4JbN9+H0lfA/n5\nZaRMkkSsk3xngJBEqMsZN0wnp/Zk2bJloaqqql3n2BzA7lLsTZ8+PdGbYg/oS7F30UUX9QxFHQc7\nqcXjwCvA80B6KA6slFJDKdW4kUDUCnZZeNkcXElgXC4elwcQkjlbaOr8c195pzOHnJy5TCz/T/z+\niYM6hsdThN9fSTi1Ab9/MuKEcKyF3CwPbrppzC0hHYvi9O05aI9G69Z/rSIc2jikTftA9ozInNm3\n73eCgwceeGDcww8/XLRgwYLIT3/609qSkpL0SKXYG2w3cpYx5mvGmD8aY/7c+xiqSiil1IFqWr+e\ngoj1GVqYyaYj00XBuHx8Th/iStIQ+qO1rvAUjj3mTxxz9G+YPu2GQQfaXnl5xxCOVeNxgivgIZjs\nIFf84EjTHcgj1brHmQPVQXL99de3bN++/b3169evKysrS37+85+vGMn6DLZl+1cR+bCdDH7QRGQp\ncCfgBB4wxty203qx138YiACfNMassNflAw8A8wADfNoY8/q+HF8pNXa82xYjLxFCnEKhySaY7KC4\nsAKP00uX9xmIZZg+7Rvk5x9/QMfJyz2Gpqa/kHQ3kV2QTWdrFw7GA+BNQrRuDd6KOUNxSoeVA2mB\nDoeKiopU7+/XXntt69lnnz0d4FBPsfdFrIAbE5Gg/dhjP7aIOIG7gWXAHOBSEdn5FbgMmG4/rgTu\n6bfuTuAZY8wsYAGgd4srpXbrXZONPxPDa1xIOk0k1UNOQS5pegjG3qO09CMHHGgBAoFpgJB2d5Cb\nn0tYElRkrCQz7oSD1g1rDvgY6sDV1NT0Bc6HH344f+bMmVGAkUqxN6iWrTEmZz/2fTxQbYzZAiAi\nDwPnAOv6lTkH+LUxxgBviEi+iIzHauWeAnzSPn4CSOxHHZRSY0Stt5ApJPAbF5FEO+I2+Hx+4v4q\nSBhKx509JMdxOv34fBOIm3py8ubSkGon11jXaH0JQ+3mOqYPyZHUYC1fvnzKG2+8kdPZ2ekqLS2d\nf8MNNzS8/PLLOevWrfMDTJw4MfHLX/6yBnZMsed0Otk5xd4VV1wxJRaLyZIlS3pGJMWeiHwEKwAC\nvGSM+eteNikH+ncr1AE7J5McqEw5kAJagV+KyALgXeCLxpjwYOurlBpb2rzFVHq24kvl0p3qxFXk\nw+100ZVeSU7OPLzeoRspnJNzJO3tL5NduJCu+HqcRnBn3OQkwjRGhu7eTDU4A6XYu/7669t2V34k\nUuwNqhtZRG7D6kpeZz++KCLfGY4K2VzAMcA9xpijgTBww27qdqWIvCMi7wC7TRislBrFQm0kyQcg\ngJ/udCfZxXkYVx3JdBvFxacP6eECWUeQyUTJysuQIU0y0UNROgd/Jky1Xz+G1K4G27L9MHCUMSYD\nICK/Av4NfH0P29QD/Ud/TbSXDaaMAeqMMW/ayx9hN8HWGHMfcJ9dr3cGczJKqVGmcyuuhPVxVmry\n6Uluo2xcCVH3BlyST2HBB4f0cIHADOsXfztOn4NosouAceEkSVPuOEwmgzh0ziD1vn15NeT3+z1v\nt6Xe9zYwXUSmiIgHuAR4YqcyTwCfEMtCoNsY02iMaQJqRWSmXe50drzWq5RSfRK168mJWlMABIyP\nrkQreUV5xE0tubnzcTiG7HZJAPz+ChwOD2lXJ778LIKpbrLxgiNFZ1YemWho7ztRY8pgW7bfAf4t\nIi9izdt9CrtpafYyxqRE5FrgWaxbf35hjFkrIlfb638GPIXVaq7GGhT1qX67+H/A7+xAvWWndUop\n1Wfj5hoKYtbdHHkmi55kK/7AFDoz3eRkzxry44k48fkmkUy2kF9YSXd9kBJTBtSSdmYRa6giMP0D\nQ35cdfga7Gjkh0TkJaD31fM1u/W5t+2ewgqo/Zf9rN/vBrhmN9uuBI4bTP2UUmPbirYw2ckw4hK8\nyQx402Sc1rzF2dn7f8+rw+FBxE0mE8W+itYnK6uSzo43ycmbQ8e2ZsYxHwBP3EHL6reYosFW9bPH\nbmQRmWX/PAYYjzVauA6YYC9TSqkRtzbkwZ+J4zNuQol2XLle0u5mnM4s/P79mzjI4ykmK2sqgcAR\neL3jd1kfyJpOOhMiu9hBT6KdgPEC4I+nqdu48YDOR40+e7tm+yX75/cHeHxvGOullFKDVpdXgpsk\nftx0pzoJlOSTcNSTHZiFNb/OvvF6y/B6x+FwWJ1/Hk8hbnf+DmWyso4AwF+YIJzqxmecOIyDQDxO\nc3vwwE9KDdpAKfYAbr311nFTpkyZO23atLlXX31137ych1yKPWPMlfavy4wxS/o/sK61KqXUiGv3\nlpDydtIjUYLJTkpL80mkm8jej+u1Hk8xHk/xLkHa6x2PyPtX3nrnVHZmx8CZIR7vIjvjIysVpQ7v\ngZ2Q2icDpdh78sknc/72t7/lr1u3bl11dfXaG2+8sQlGLsXeYEcjvzbIZUopdXAlIpAKAJBj/ART\nHeSWWEncs7Nn79Ou3O5CfL7xAyaPdzhcO7Runc4s3O4i0tKBO8dDKNFBrvHhJUJtbtkBnJDaV8uW\nLQuVlJSk+i+75557Sr761a82+v1+A1BeXp6C3afYq6mpcfem2HM4HH0p9oaqjnscICUiZVgzOvlF\n5GiskcgAuYBmSVZKjbhM/XoCUavdcGSqkurkatw5aRI4CAQGN3GiiAuPpwiPp2SP5TyeQhKJ9ycm\n8vsnkYi0kl00ma72LvJMHnXOThoKSjHpNOLc9y7sw9V167dXbAjHhjQuzAr4Ij+aPWm/Ehxs2bLF\n9/LLL+fcdNNN5V6v13zve9+rPfXUUyMjlWJvb6ORz8San3gi8IN+y4PAN4aqEkoptb/a1/2b3IgV\nJP3GRSTTSdodI8s3GafTt8dtxeHG6fDh8RThdGYP2KLtz+Hw4nbnkUxaU+b6/RUEg2spyJtPT0sX\nuYwHMUS9OSRDnXjydDapkZJOp6Wjo8O5cuXKDS+//HLWxz72sam1tbXvjVR99hhsjTG/An4lIh/V\n/LVKqUPRuppaCuJ+cIMzmcAZgESmgeLAaQOWd7mycbsL7Nt6PH2DoAbL7S54P9j6KjAmQU6xk6b1\nXZQZqzvbFxNa3nudiSctP7CTO4zsbwt0uJSVlSUuuOCCLofDwZIlSyIOh8M0NTW5DukUe8aYP4vI\nWSLyVRG5qfcxVJVQSqn99XYwTSATxGWcmESEnAleMsTxZ03eoZyIA7+/Er9/Mm53Pk5n1j4HWgCn\nMxvsFnDvbUX+4hShZBdFGStBWlYsSd2qdw/sxNQBWb58edcLL7yQA7B69WpvMpl0lJWVpQ7pFHsi\n8jOsa7RLsBK6XwC8NVSVUEqp/bXRmc8EbxMpIJTsoniS1Wjx+/rdXyuCzzcRt/vAB5eKCC5ngFQq\nhN8/CQBPboxIqhuPceA0TrLiCRq7mw/4WGpwBkqx94UvfKHt4osvnjx9+vS5brc7c9999211OByH\nfIq9RcaY+SKy2hhzi4h8H3h6qCqhlFL7q9NTygSs8S7BZAf5RUnSSN99sABuVy5u92CmdN9Rxhgc\nA1zHdbvzSaVCOJ1ZeDwlZEwneAzJZAi/x0t2Mko1e75erIbOQCn2AB5//PEBlx+yKfaAmP0zIiIT\ngCTWjFJKKTVyjCFhCsDA0anJdCVacGeH8XrH7zA4yuMp3edddyZTbIzEWB+K0pHc4a4SHA5/3+9+\nXwUJ04In10c42UWO8eIzUTblTcCakVapwQfbJ0UkH/gusALYBvx+uCqllFKDkWmvxRdzgIDfeEmk\nQ6RdHWTZ3btgDYhyOgc/yYQxhpponO2xBPGMIWEM9bEE0fT7swk5HN6+CS78/kkkUs3kFeXSk+4m\n1/hA4nQECiCdHrqTVYe1vQZbEXEALxhjuuwRyZXALGOMDpBSSo2o0Jo3KIz2AJBvAqQ8PSQz7fj9\nlX1lPJ5xg95fxhhaEim6UjsGyQywPZYgY7dURQSXyxp57PdXYkhRUOoilO4h3wTAkSHqzSYR1Gkb\nlWWvwdZOGH93v7/jxpghu2islFL7a+3makrZAEAy1kWgPA0Y/FlWsHU4PH1BcW8SmQw10QRNiYHv\n9ohlMjsEYafTmr+hd0RyoCRNR7yRYmMNwgpEM9S/pkNblGWw3cgviMhHZW93fCul1EH0Rkek7/do\nvJO8CqtrN8s/GQCnc9dAa4whms4QTqdJZgzdyRRtiRRV4Rg9e+n2bUu8f+3W5bJu8/H5rDmS/YUp\n2uONFBtreXY0Sc1Kvf1HWQY7GvkqrAxAKRGJYU3baIwxQzZJs1JK7auNZDMh6WCCI4tEsovccQZx\nePB6rQFRLlf2DuV7UmnqYwmSdnfwvg5fimasIB1wOu3rtk6cTh9eTymYHpKSgGQcr8dLbizCllCU\nJUNxouqwN9hJLXKMMQ5jjMcYk2v/rYFWKTWiWn0TMM4E2cZLMNmJKzuCzzepL2NPb8s2YwwNsQTb\nonESxmDY90DbqzvZvyvZGpXs81eQNK24s90E4y3kZrIoSHSzKavoQE5PDUJ1dbX7hBNOmDF16tS5\n06ZNm/utb31rHEBzc7Nz0aJF0ysrK+ctWrRoemtra99E1Ydcir1eIvLCYJYNUGapiFSJSLWI3DDA\nehGRu+z1q/snpBeRbSLynoisFJF3BlNPpdQYksmQlhwyjhQB4yOcbCfjaifLHhzldAZwOKzZ93pS\naVqTqf0OsP21J1N9A6V6g7nfX0Ei1UJ2SS4dqXaKCGCccerzNfvPcHO73Xz/+9+v27x589q33357\n/c9//vNx7777ru/mm28ev3jx4mBNTc2axYsXB2+66aYyOERT7ImIT0QKgWIRKRCRQvsxGSsb0J62\ndWINrFoGzAEuFZE5OxVbBky3H1cC9+y0fokx5ihjzHGDPSGl1NhgehrxRq3GSsB4SXnbSJtQ3+Ao\np+v9BDTNidSA+9iThliCT7+3lUtWbuad7nDf8gwQsW8Dcjise3n9vgoMKcZN8NGVasODE8TQnl1I\nJhbd31NUg1BZWZk86aSTIgAFBQWZqVOnRrdv3+555pln8q+66qp2gKuuuqr96aefLoBDNMUe1rXa\n64AJwLu8n2KvB/jJXrY9Hqg2xmwBEJGHgXOAdf3KnAP82lh3fr8hIvkiMt4Y07hvp6GUGmsiW1aT\nHbWCqDuVwT/Bmnunt2Xrslud4VSa2D50B8YzGe6qaeH59p6+Zf+9qZ5bpk1gYb51DbgzlSbbZV23\nBfqmbcweZ9iWaMPHZAC8aUP7v1+h5MQzDuBMDw//9ciqio1NwSFNsTejLCfy3QsWDDrBQVVVlWfd\nunVZp556aqi9vd1VWVmZBKioqEi2t7e7AEYqxd4eW7bGmDuNMVOArxhjjjDGTLEfC4wxewu25UD/\nf1Idu7aG91TGAM+LyLsicuXuDiIiV4rIO3ZXs+azUmqM+PfGavLtVmMmGSWn3Po48/srQcRKGADU\nxhP7tN9vbKzvC7TH5maxKN8K2jdXN1Abs/bV27J1Oq1BUn0jkgtShFJdzEtbwdcfFra8/s8DOU01\nSN3d3Y7zzz9/6m233VZbWFi4w7crh8Ox1/SJw21Qo5GNMT8WkUXA5P7bGGN+PUz1AjjJGFMvIuOA\nv4vIBmPMLq9aY8x9wH0Aem1XqbHjlfYguWkfGQOJWCfZpQaXK8/K6OPIQkRIZDLEM4O7UruqJ8JX\nN9b1/f2no6aS67K6qd/tDvONTfX8pKaF22aUE8tkiGcyeB0OHA4fTmcaj2ccxnQRN3H8KUE8QkE4\nysZgOycMy3/g0LIvLdChFo/H5ayzzpp64YUXdlx++eVdAEVFRamamhp3ZWVlsqamxl1YWJgCOKRT\n7InIb4DvAScBH7Afe7uOWg/0S7vBRHvZoMoYY3p/tgB/weqWVkopADakcvE4ImThJZhow50d7evO\n7b1e253a9b7Z+liCN7pC/Kmpg4ZYgj81dXDmOxt3CLS/nDe5L9ACHJsX4MLSAlYGI6wPW93V77du\nrRHJWf5KEqYZT46XeKLbHpHcxXodkTysMpkMl1xySeWMGTNi//M//9OXaunMM8/suvfee4sA7r33\n3qKlS5d2ARzSKfawAuscs2+zar8NTBeRKVgB9BLgYzuVeQK41r6eewLQbYxpFJEA4DDGBO3fzwD+\ndx+OrZQa5Tp8paTcGwkYN92JFvKdHfj9RwPgtBMFdPS7Tacnlea7W5t4q99gpwfq/j977xkmR3Xm\nb9+nQuee7smaGU2SRmkUiRLJIJlgg20WY3DGxqzDLuzrddo1Dn+bdVjver1r48XG4ICxjW3sJWcs\nhECgLFAcCcXR5NTTOVRX1Xk/VGuQkAQDKELd19WXpiueqm71U084z2/4gGOeURbgO1MaDhly/Eh9\nJQ8PJfhLf4xvtTWQsWzKdcYED/yBFuKJNZTVTCEZjxOxfSSVNNvL64/4tbu8zJNPPhm67777KqdM\nmZKbPn16O8BNN93Uc9NNN/VdccUVk5ubm6saGhqMe++9dydwwkvsbQImAOMuXJJSmkKIG4DHARX4\ntZRysxDic6X1twKPAJcCO4AscG1p91rg3tIXXgPuklI+Nt5zu7i4vMWxbQoyjCmKNFi1xL19jmB8\nKXeqqgGklGOFUSOGyUc27DroMIsqwhSlJFa0+Le2ekL7ebOvJKAqvK8myp/6Y3TlDVRgos+Douxr\n29gESKoaPCSGY0SoZq8SY7CsCts0UbTXL1Tv8tpccsklaSnlIVt1LV++/KVDLT8eEnvj/fSrgC1C\niFVAYd9CKeX7Xm0nKeUjOAZ1/2W37ve3BK4/xH67gLnjHJuLi8vbDHNwO2UpAwSUGzr5CU6hlM/f\nhKJ4UBR9TBbPtOWYob1qQjnXNVS94WKZ99VEubs/xt+Gk1w7sYqiLdFLRVL7xOpD1TZ7c13U0wJC\nolkeetc8w8QFi978hbuctIzX2H77aA7CxcXF5fWwZuVKKjMlvVojT1lrqRLZ1zg2HWefJN69g6MA\nnIJOy7QAACAASURBVBUN8vcTq9/UeSs9GjNDfv7UH+ODdRXkbBtdcaYA+XwNgIK33CBmjDLLdqqh\na0dT7H5unWts3+aMt13jUhwNW73092ocXVsXFxeXY84jHZ3U5B35OrOQIFwn0fVKdD2CpoWQUjJa\nNMlaNr/sHiasKnxr8pHJnZ5b7hjR50ZTZErCBarqR1F0fL46pCeBSYFAwTH2kWyWzUOjR+TcLicv\n461G/jTwV+AXpUUNwH1Ha1AuLi4ur8ZeXwV+xaldyRox1FCKQKAVcPK1BVtiAU8OO9t8trHmDYWO\ny1SViKYe8EN5aXUEgB3Zwti0orHmFr5GinIAb9hD1hih0goTNjNsC4xfU9flrcl4JfauB87B6RyF\nlHI74H57XFxcjgt9oVoMTxJNqqStQSwlRjAwCXAMX7oUQn5yJElbwMtFVa+vxa1XEdR5dFr8Hlr8\nXlr83rEfS4+isCAS5JnRFBlzn2freLv+QAuGOUx0QoRRc4SI9KORp6+iltc3mcPlrcZ4jW1BSjnW\nhkUIofHGRTNcXFxc3hRF2/Eup1sN2OU9gCQQmISq+hFCJW/b7Mzm2Z4t8M7K12doy1SVyX4fNV59\nzBsOayrNfu/YNqdHgsSKFl0Fg6ItxwQPHB1dSWWDymhxGIRAqgYpXxn5/le2GXB5OzFeY7tUCPE1\nwC+EuAj4C/Dg0RuWi4uLy6Hp3PIi0VHHowwVVXylSuRAYBJKaX5tyrRYNppGAS4ap7ENqQoTvR5a\nA150xTGymYJJvmhh2ZKwqhAtTQ2aHXbOszaRJWVZCKGgqD78gRYAgrU2o0Y/5bbT6tGXg66nHzn4\npC5vmmw2K2bPnj1j2rRp7W1tbTO/8IUv1MNJKrEHfBUYAjbiiBM8AnzjiI3CxcXFZZw8uPQ5WlIj\nANiFJOF6G1UN4fFUo2lBCraNISXPx9NMDngJ7zd3VgGimkqtR6dK16jWNeq9Ok0+D5MDPio9GlJK\nEtkiW/uT7BrKsH0gTV8ihxCCWo+OAJp8Hqp0jZWJDPlSyFpTg3g9NSiKD080T9wYYopRAxJqkmm2\nbdh4HO7WWx+fzyeXLVu2bdu2bVs2b968ZfHixWWLFy8OnmgSe+Od+uPHaUpxO4zJ5/lxGlG4uLi4\nHDNeLKq0mklMFWQuhb/SIBiYhBACRfGQsyX9hSJ7cgYfr3+5VaJHCCYFvHiEwJagKi8XTNm2pGBa\nJHMm6YJJOn+gJN9opohHzVNT5qNS1xgumswO+3kxmSVdqkhWFB9CKPj9jdjFURRNQ+ZHifrC5I0U\nK9Uw7z02t+hthaIoRCIRG8AwDGGaphBC8Nhjj0WXLl26DRyJvfPPP38a0HM4ib0pU6YY+yT2gDGJ\nvauvvjr5KqcfN+M1touBC4F9skR+4Ang7CMxCBcXF5fxsitSw7T+vYRkkITRic8bJxA4zwnlKj7S\nBZPVpZaM+6bpeISgVtPI5U2GDYtkrkjY5/z8qYrAMG3SBZNXixoOpw0qgh5qPDrDRZNTygIsiaXY\nmskzNeg/QG4vnl9NIDKVWK6HsqiPhJ1mW03z0b0xx5v7rm9kcMsRldijpj3L393ymgIHpmkya9as\n9r1793o/8YlPDC5atChzUkns7YdPSjk2uNLfR/amuri4uIyDUX8UQ8tSJcNkArtBWAQCrQjFgxAK\nWdtmZTxNg1en2eeIu0zQNVIZg65YjljawLQko5kio5kiwymDZO5gQ1u0bDb2JMiWhOctW9I9mkNX\nBBFNZVbIydtuTufIWrYjSCAEfn8zppWksiHEoD1ESPqQap6BSDXFrBsMPBpomsbWrVu37N27d8O6\ndeuCq1ev9u2//qSR2AMyQohTpZTrAIQQpwG5ozcsFxcXl4Pp7u2mscegqBiU531YtU6ELxCYjKp4\nkVKSLJpsSOe4uLIMIQQVukYiZZB6RWj4cCRyRT72q5UHLJtSE+K/r55HKm8SzxpEdZV6r05EU9mS\nzpO3bQKqhqJ4CQWnAxBtsujcOkStnOWMMafSs/JZWhZecgTvyAnEODzQo01VVZV13nnnpR588MHI\nSSmxB/wz8BchxLNCiGXAn4EbjtQgXFxcXMbD/z22hCkjgwD4CkUiDbLUKrEOpdTMYnMmT8GWnFoW\nRACKYZPKm9hSsnpPjNue2clnfreGJ7b0k86bZAomG7rjfOHPL/Le/112kKEF2D6Y5uantiOlJJYx\nKNNUdEVhRtBHRzo3ViSlKn4CgWZAIVBjkjRGaDYrAAhnCmxb/uyxulVvG3p7e7Xh4WEVIJ1OiyVL\nlpTNmDEjf1JK7EkpVwshpgPTSou2SSmPmMV3cXFxGQ8dyQJ1Sj8SKORHCdaa+P0tCKGiKj4Sls0L\nySwKMDfsxysFqazBjsE0X7j7xQOO9dOndvDTp3Yc8jwVQQ8/+eA8hBAULZsv/WU9T24ZoLUyyHvn\n1mOYNiFVoT3kZ0UiQ3feoN7nKbVt9OL3NyH0GFIoaLkMik9QlxzlWXTeon7tcaOrq0v/5Cc/2WpZ\nFlJKcfnll8c+/OEPJxYuXJg+GSX2wBGMbyntc6oQAinlnUdqIC4uLi6vxYBeTqs9Sk4xGc11M8Gf\nIBg4AyEUVNVPqmjyQjLLtKCPoKaimzYv9CT50l/Wj+v4X7xoKgunHdwc73+unscnfrOK257dxbtm\nTWAkYxAK6LSHnNTg+lSWMyLBsSKpQKCVRHwtgUgbqcIgVXYZ0k7RMcHVtj3SzJ8/P9fR0bHllcsn\nTJhgnXQSe0KI3wGTgReBfWrMEnCNrYuLyzGhYFqYMoKpGEw160h5V1ErDAKBVhTFkbkbMnJsy+T5\nUF0FQkpiicKYoW2I+rn1Y6cddNyRdIEyv46uHj6rVhH0cM1Zzdy5vJO7Vu7l+kVt1GgqUwI+VAGb\n03nytsSnOkVTgUArIyNLqGqKMLR7mKisZ1gdYiBaiZXLofr9R+cmuZywjNezPR1ol25zTxcXl+PE\npo1b0fOColLEmzeR9U5lr9M5yimOWhnPYAOnlQXRLLh3Qx8A75xewz9fOPWQx60MeQ9aJoTz8qgK\nBdNGSrjqtEa6Yln+uq6bd8+eQEPUT7muMdnvZUsmR9628ZeKpIKByQCUN0l6XxrCy0RspUgwq9G3\n8jkmXnDh0blJLics4y2Q2gRMeL0HF0K8SwixTQixQwjx1UOsF0KIm0vrNwghTn3FelUI8YIQ4qHX\ne24XF5e3Fk+sXMuM0b0AyEKGaJOKEBp+fxOqGiBr2axPZfEpghkhH4l4nrvXdjGzvox/WjTFMZ6a\ngkdT8OrKWFOL/WeEqIqgKuyhsSLA1NowTZUBmisDeDTnp/JDZzQB8NimfuJZg4imMiPkZ1smT8Lc\n19zCQyAwCRAE6yyG8nuZaDvNNc7anmXz8meO0R1zOZEYr2dbBWwRQqwCCvsWSinfd7gdSl2mbgEu\nArqB1UKIB6SU+8fW3w1MKb3mAz8v/buPzwMdwBFrmeXi4nJyskbqnGulSeiQT/RQUWuWxOJ1VDVA\nwrLZks4zPehHmjaPbewjU7C47pxWgl6VypCXMp+Gsp91TRVMipaNAPweFUUIfLp6wHm9mkpLlUL3\naI76qJ+Z9WX8ZW03V5zawNzmctpDPu4fjLMxlaPF70XVQqhmCp9vItgxhAa++ChUg06G5VnFLZJ6\nGzJez/bbwN8B3wd+tN/r1TgT2CGl3FVSDPoTcPkrtrkcuFM6rACiQog6ACHEROAy4JfjHKOLi8tb\nlHzRYiRchqGnqLbLGM53InyjjgcpBIriZdgosjtXYGbIh1Ww+e3znXhUhRn1ZbRWBakIetBUBUUR\nY6+IX6cq5KUy5CXg0Q4ytPvwaip1ER9CwOXzGgBYsWsEXQjag07+dX0qiy0laqlIKhicTMHqJlxZ\nRqLQS60dwfDG2F5Vd2xumssJxbiMrZRyKbAVCJdeHaVlr0YDsP8k5+7SsvFu82PgX4BXlV0QQnxG\nCLFGCLEGxwN3cXF5i7F6425Cozo5NUeoqOIP5bDJEAi0oip+hFB4vpSvnRnyc/OjWwE4d0oVTRUB\ntFcpfhovAY9GNKBzZksFHlVh12CGdN5kkt9Lpa6yOZ0jZzuiCAhBMNCGaSWobgzRZw7QaFdh6hmS\nwXJsw3jtE7q8pRjXN1AIcTWwCrgKuBpYKYT4wNEalBDiPcCglHLta20rpbxNSnm6lPJ0YPhojcnF\nxeX48fjDTzJl0PnvXZWRVJdm/IdCM1DVAHnLZkMqhypght/H8h2OKtCN755O0Pt6Zji+Og1RPyGf\nyukt5Sx9aYh41iCsqbSH/HSk8xi2dAQRhE4wOAWAaDOMGP1UyJLAfF4Q6zgqs0ve1pimyYwZM9oX\nLlzYBievxN7XgTOklJ+QUl6DEyL+5mvs0wM07vd+YmnZeLY5B3ifEGIPTvh5kRDi9+Mcq4uLy1uM\njso6GosphIRMppfIZA1F8TuerRokb9vsyOZp9HmIx/NYtuTjC5pprDiyLdyFEET8HhZOqyFVMHly\nywABVWFG0E+/UaQz53isqhogEJiEEBq+mjyGncOXd8pdokmD3SvcIqkjzXe/+93atra2sTbCJ5rE\n3niNrSKlHNzv/cg49l0NTBFCtAohPMCHgAdesc0DwDWlquQFQEJK2SelvFFKOVFK2VLa7ykp5cfG\nOVYXF5e3ELHRLJ3VYWwtTUQGGcjuwhPNEAi0jDWzSBQtNqRyzAsHWPyiM93n4pm1h83BvhmiAZ2z\n2yrx6yrLd43gE4KZpeYW+9SGNC2EougEAq3Y+iBevw7ZOD6pU5uLsbx76IiP6+3Mzp079ccffzzy\n6U9/eiy6+dhjj0U/+9nPjoAjsffoo4+WAxxOYq+zs1PfJ7GnKMqYxN6RGuN44yuPCSEeB/5Yev9B\nHAH5wyKlNIUQNwCPAyqOHu5mIcTnSutvLR3jUmAHjjbuta//ElxcXN7K/P4Pz1Ku+ElrKVrzEdKe\nNAbdVAQvR1E8KIrOpnScopRMD/r4vx27mFYb5oyWiqMyHl1VqC3zcWZrBS/ujZPKm8wNB9CFeLlI\nSg0CEAxMYXjkKaomnsOe7h1U2E3YMse2wBH7DT9h+OZz32zcMbrjiIYS2srbst855zuvKXBw/fXX\nN/7nf/5ndyKRGHu6Oqkk9oQQbUKIc6SUXwF+AcwpvZYDt73WwaWUj0gpp0opJ0spv1dadmvJ0FKq\nQr6+tH62lHLNIY7xtJTyPW/g2lxcXE5yLNPmBSPFO/bsASBtp6mZrAOSsrJ5qGoQW0rWpRyP0pcq\n0jWa45y2yqPi1e4j7NM4tSlKPFdkTWeMcl1jSsBLRyZHwZYoigchVILBNmw7T/VkP8PmEOUyiKnm\nGSg7Og8Cb0f++Mc/RqqqqszzzjvvsPqFJ4PE3o+BGwGklPcA9wAIIWaX1r33qI7OxcXlbYuUkuRw\njq0TozQnNwEQGhmh4kwVUAgG21BVH3lbsjqRpd6rs3eP0zf+PXOObg9ir6Yyf1IlsJ1l20dY0FbF\njJCfBwbjxIsmftWDqgYoK5sHQLgpR7oYo8XyYms2tghimyaKduSKt4434/FAjwbLli0LPfnkk9GG\nhoZIoVBQMpmMcvnll7eebBJ7tVLKja9cWFrWcqQG4eLi4vJKbEvy47vX4su8HJmMpXfjqYoRCk1D\n00KoaoikabIp7eRrV+8YobUqyLzG6FEf36TqIK1VQdZ2xlAltId8FKVkXdJxsFQ1iMdTgddbh/QP\no2jgyeUBCGcshrZ0HPUxvh245ZZbegYGBjb09PRsvOOOO3YtWLAgdf/99+8+0ST2XsvYvto31u2k\n7eLictS4f1U3GzWTs3c5z/teS8EfLmLYPUTK5qEoHlTVx4vJLFnLpllR2D6QZtH0ahTl6IcMywMe\nTm2K0tGfoj+Z5/QyJ0+7NumEtFXVeUgIhaaTL+6mvDqCmRsFoD6dZMXjS476GN/O3HTTTX1Lliwp\na25unvX000+X3XTTTX1woMTeu971rqmvlNj73Oc+19Lc3DyrpaWlcCwl9tYIIT4tpbx9/4VCiL8H\nXnMOrIuLi8sboViweG5JJ13TTc7tLpBUoakvReRUpztTJHKa0zwCWFGqAGbA8RrPn1p9TMaoqwoL\nJlXyf+t6eG7HMJec2kCtR2NjOkfRlmhqAIQgHJrByMgSaqdFia8eAgJ4lT5eTHgOaqnn8uZ4z3ve\nk3rPe96TgpNPYu+fgXuFEB/lZeN6OuABrjgaA3JxcXn7IqXEtiTdXUki8TxqroykJwbAQGorjZMt\npBYlEJiEpoXIWjYvprLUeXVWvzBExK9z1qRj10jurMmVeDWFFbtiXH76RNpD/pKnbRHRNVQlQCg8\nE4BIi8Xe5/qBSQB0hcPHbJwux59XDSNLKQeklGcDNwF7Sq+bpJRnSSkPeipwcXFxeTPkUkVifRn+\n9Vdr+dWF5fx9x3YAKnMKqmJjebqIRE4pza8NkDJNNqVytPs8bOpK8I4pVejam2/NOF7KAx5mN0RY\nsm0Qq2gxLxxg1LRYn3J6K6iqH5+3Hk2LoEZGSZsjzC848nup8JFtuOFyYjPe3shLpJQ/Lb2eOtqD\ncnFxeXvheLQ2mXiBYt6kTahUpSy69Z0AiO6tNMwOYMss0chpqGoARdHZmMqRtmzM3SkA3nGMQsj7\nCHhUzmytIGtYLNk6xIKok7ddHnemcapqECEE4fBM8uYugmV+tFJfZC3vwzaOWLGrywnOsXsEdHFx\ncTkE0pYUsiaxvgyj2QJ/vPlFfn1ROZ9dvQOAlnwZBTNJ9RwLUCgrm4emhZFSsjzu5GvjfU4F8Hvn\nHFtFHSEEF86oAWBzb5KpAR+1Ho01yQxSyrEiqXConaI5Qs2UKKbhPBhMSBp0rtly2GO7vLVwja2L\ni8txQ0pJciRPcjiHbUnuvv1pUpVL+cDGHnr9TghZ7lyBVxPI0C7KyuagaSE0LUTGsnk2nqJeU9nd\nn+LMlgp8nmM/b3VydZiasJeOviQhRWFuOMCLySxp00JRNDQtRDg8C4DySRIjP4oiBRXFLCuWrTrm\n43U5PrjG1sXF5ZgjpQQgPpClkHVCqeue6cIMO80rqmKrAWjM+YgpWVoX1GDZKSorzkcoOoriZ7BQ\nZFMqx5S8wDBtPr6g+bhci9+jMq8xyotdcYpFi3llAVKWzbqU420rig+/vwlNK8NTmSBpDBGVQXTy\nbM6mX+PoLm8VXGPr4uJyzCkWLJIjOYoFC4AH/9DB3UOxg7ZTtjyFKqByVg4hNKLR09D1KEIInomn\nsAE5mENTBOdMqTzGV+Hg0RTOn1pN1rB4fucI50ScKUn78raaFkYIhXB4Fqayl0RxkCo7jKHm6A65\nRVJHgoaGhtlTp05tnz59evusWbNmwMkrsefi4uLyppFSYuRNEkM58ukiUkqWPLqT/50mOCPhTImM\nZBu4KPck5z/8ILGAh8nzJpMXmyiPLkDTytC1CKYteTqWIqAodHenmDsxQkXQe9yu6x1Tq1EVwbPb\nh5kU9NLg1VkRfzlvu8/YFs0R/NV5wpYHUzGJBd3eQEeKpUuXvrR169YtmzZt6oCTV2LPxcXF5Q0j\nbafa2MiZpEbySFuSHi1w93+s5Utt8I6kzYBwWuuebfwA/yMJ1k1yip0aztSx7AxVVReiqD5U1c9w\nscjyeIYZpkLvaI5zpxzbKuRXUh32MrOujJW7RvAJhbllATaUKqWdaUpBysKzAaiZoVEsFUlpRR3L\nOnLek8vLnKwSey4ubxopJcm8iU9X8GpHT5HF5fgjpQTpqPbYJcNqWxJpyzHv9tFbN/Kri0N8dPsQ\n/oHnAdBNjWV9M6DdOU77/JnkPRvxUE1Z2Rx0LQLA8niGhGnhG3Tyve+de2yrkF+JT1c5c1IFv3x2\nN/2xLKeVBXhkKMHKeJoLqyKoWgifbyKaFiY4scjIhjiEoTWRpGvDDlpOmXpcx38k6P3a1xsL27cf\n0bi4d8qUbP33vzcugYOFCxdOVVVVXnvttUNf/vKXh08qiT0XlyNFvmjRm8jz8PpeVu+OjRXIuLz1\nMA2L1Eie4Z408cEcicEcpmFhWzZSOsb2/v95kVVtKqmQRnn/6rF9vTtf/rt5ZguNp4fIGduoqX43\nQihoWpiCbfPsaAoF6O9OM602TFvN8e/GdOF0ZwrQ3zoGODvq5G2X7cvbqmGEEISC01GCgxRzIwgp\nmFAwWPf8C8dtzG8Vli1btnXr1q1bnnjiie233357zaOPPhraf/3JILHn4vKGyBkWqiLwaAr5osXz\nO4b54t3rieecB8fffPIMzmitIOQ9+CuYNUwCx2EKh8sbYywMKiGfKZJNGGMPU5IDH6ry6SIP/nQ9\nK6Z6ePKUEP/7TB+bhPOd8HdtR7XyNF06k6kTWvF4vAyJu9D1SmprL0NVg6iqn76cwVMjKZqL0DOS\n5SuXTDum13s4ZjZEqA57eXb7MB8+p4UWv4dViUxJTN6Longoi8wjnlhN1r+XsKxHlSYvxoZ4//Ee\n/BFgvB7o0aC1tbUI0NDQYF522WXx5cuXB082ib03hRDiXUKIbUKIHUKIrx5ivRBC3Fxav0EIcWpp\nuU8IsUoIsV4IsVkIcdPRHKfLkSWVL7K1L8mu4TQ98Ry3PbOLT/12DfFckZqwU8Ry7R2rWbMnRm88\nN/bDbFo2e0cy3L2mC3Oceax9+yayRdZ3xdnWl2Rd5yg3L97O4o6Bo3OBLoBjZPOZIonBHPH+LLG+\nDJl44aCohbQluZTBk7/dwoM/Xc8LrY6hPWXEZJNcCUBg5ya0dIKaS1torjcwtV30iZ9TKHbR2Hgt\niuLF4ylHSsk9AzH6jSLenWlURfD+UxqOx+UfRNinc0ZLOS/sjWMbNvPCATanc8SKTvGNqoYIh5w+\nyd6aGGHbS1Epstd//Aq73gokk0lldHRU2ff3kiVLyubMmZM70ST2jpr7IIRQgVuAi4BuYLUQ4gEp\n5f4tU94NTCm95gM/L/1bABZJKdNCCB1YJoR4VEq54miN1+XNI6WkJ57jz6u7+OlTTvef95/SwD0v\n9ADw5Yun8cEzGvnKX9fz9LYhPvkbJ2T4h+vOZGJFgFjG4IqfObm7dZ1xfnT1XHRVOegcsYyBXvKY\nMwWLl/pTfP+RDjpj2YPGtPLGd1Ib8R3Ny35bYRYtTMPGMp1iJ9OwD5kSsEybvt1JNj3TQ2owN7Z8\ne53OQ2eGqMxb3LSul0c8IITF5Eu2Ea3PAh2MaZpJqKp6J5UV55ZCyFFSls1z8QzYkqH+NPMaI9RF\nT5yK3vPaqnlkYz8rd49wWjTAfYNxVicyvLs6iq6X4fc3oigeoi2S+FZBjy9LPHBiPCycrHR3d2tX\nXHFFG4BlWeLKK68c+cAHPpA899xzM1dcccXk5ubmqoaGBuPee+/dCQdK7Kmqyisl9q677rrWfD4v\nFi5cmDyWEntvhjOBHVLKXQBCiD8BlwP7G9vLgTul8791hRAiKoSok1L2AfsS2Hrp5Sb5Xif5ooVP\nf32FSPmihWHZBD0a6bxJxjDx6SpRv36QRqhp2STzJlG/TixrEMsY/H55J3eu6BzbZp+h/cJFU/jw\nWU2kkXznqjnc/XznmEH+6K9WURXyMpwujO33wPpe5jVGee/cejwlg5s3LTZ0xfnOwx3sPYRh3UdD\n1E9/Mo9lS+b/+2KWfOl8WqtDh93e5fBYlo267/6ni2QSBSzz8FGHQrbI0/fsINmVOWjd3ad42DY1\nxHmDJt97Ic5dvnWAzYL5d6N5zLHtaqouo2D0EQq3U1/3AQB0vRwhBBuSWZ4dTTHfUFhfsPjQGU1H\n9oLfJO+YWo2mCJZ0DHLdpVMRwFOxFO+ujjp9khWNUGgm9oROChts8EE4J0nF8oQr3IfCN0J7e7ux\nbdu2g/penmwSe2+GBmD/GH43jtf6Wts0AH0lz3gt0AbcImUp3uRyAOmCiWHaBxnD0YxBLGsw+TBG\nxradbJqqCKSUCCGwbElXLEu+aCOEs41pSzRVMJRSqQ57KQ/oJHJFckWLkbSBlDCSKdDRm+T7j2yl\nP+loit52zWn0xfNs6knwoTOaqKz202OaY09MV85v4sL2Cdy2dCer98QYTDmG9sIZNbxr1gS+/JcN\n/NtDW/i3h7ZwUXstpmXTPZpj++ChO+58+rxWPnp2M0UJKAJVEXz3nk08tXWQ7zzcwS+vOf2YCIqf\nrEhbggCk87nn00WEIsgmDcKVPqyifcgQMcCSlT0UNsUP8GDByVGlghYPTVd4qc1pOPH/XkjxnkHJ\nr33LAGhuWY/mMQlp05jU8k94Ig2HLGTR9UosKfljfwxFwPql3QBcOmvCkb0Rb5KqsKMCtHzXCP/P\nqzMr5GfZaIqiLdEVBU0NEQhMIunZQD7fD2V+2lI5Opbv4MzLZh3v4bscRU7YKhQppQXME0JEcTR1\nZ0kpN71yOyHEZ4DPlN4eMyFLy5ZYtsRzDOW8XknBtOiL58gaFrmwl7oyH0JA0ZJs6knw0mCKhqj/\nIO/WtiW7htMYpkRXBYoi0BRBXyLHh25byZyGCJUhD0u2DY3tc+3ZLbx7Vh1Bn4ptw7b+FL94ZudB\nxs+vq9z84Xm0t5QzybA4fVIFkTIvQ6bJn/pi/LZ3hHqvzvenNlAb1vjq5e1k00UGknlS+SJnTa0m\nYdt8bEETv1+xF4AntxyYe51UFSRdMPn6ZTNoqQoQDvvIYLM0nWN5PM3evIFfUVjwjgaSuSJPbR3k\nJ4u38w8XTH7dnv7bBSNvkk0aSNsJFe9PYvDAKMLTu4cZ6svA0iEORX9Qsnyul75qHyM+5yemNmfz\n8DMZepQYv/Y51bf1DR00NW3Cq9YybdZ3UDTPIY+n6+WoqpeBgsGjwwlmmSpbgbqIj6DviM3MOCJ4\nNZUFkyv4+dO76BzIcFpZgDt6R+hI55hTFnCm/gQmAxZ2YDfQTpVhs2rdFs64dOZxr5h1OXocTWPb\nAzTu935iadnr2kZKGRdCLAHeBRxkbKWUtwG3AQgh1rz5Yb86lu082W/tT+LXVVoqg4f0mOJZpE4U\nsAAAIABJREFUA9OWVIWOfPGDZUtM22YkXeAffr+OHUNprjilgX+8YDJCCBI5g4//2mlw7tdVPjL/\nwJ6xQ+kCL3TG6Y7nmDGhjLBPw5KSW5c6cmYbeg5OU/zm+T385vk9rzqur75rOvNbKyir9DFsWUhF\nIoIaO/MFPrlxN7nSvestFPnkxj1c31TDpVURImGdWeU+4obJ3oLBc4k0H1k0iffNrWcwWeDhjX1M\nqgrxrlkTqIn4yGGTtm08qiBtSR5JJPnuzr6DxvNcPM03L2xh/R1xfrJ4Ow+s7+Xvz23l/GnVWFLi\nURVyhkV5wEPAq+JRj//0gGNN0bDIJgyMnPma07H6dsRZ9pcdh1xXpQk2tXq4/VRHYs5rFvm3bU/z\n3t5RsvYiwEOWAo96HEMbLe9l0qS1eJRqZrT/kEFbRy9KKvUD778QGj5fPQB/7R8la9kkNjg1K3d+\n6sw3c+lHjUXTa/n507t4fHM/F5xSyx29I/xtJMGcsoBTJBWeAYBa0YunMAdBge0yi5G38PpPWP/H\n5U1yND/Z1cAUIUQrjgH9EPCRV2zzAHBDKZ87H0hIKfuEENVAsWRo/ThFVv9xFMc6LnKGRW8ih1dT\nMCyJaZvEc0Uifh1VEU74zbQYSBZI550clK4qRPw6ti0xLPuwnpVty0Ma7ZxhkS9aaKoYmyYTyxgM\npQp89+Et7BhyPMt7X+ihaNp84uwW7ly+Z2z/nz29k7MnV9FUEUBRBEXL5tandx7WcLZUBviPK+fw\n749u5erTJjKnMcqLe+N84/6DnnP4xwsmM6chyraBJBfNriNn22gBjT0Fg/8bGCWiacwM+fhV9zA5\nW/Le6gjXN9Xw072DPDyU4Ja9gzw2lOBbbfVkvDop0+Izm/cQK1osjgb5zqR6plUHmdYcRVMEiqbQ\nb5qsSGTIWDZPx1L05A16Ck51flhVuKAizN/VltOdN/jWjl5uGRjhvz52Kp//7Vp2D2f4+n0HXwfA\nB09vZOH0atrryoj4PVjS8foloCsKHk1BwFsiFC2lpJAxyWeLFPPWQUbWtm02vBTjycV7aEnCOz85\nnRXLe8lsS45t4xEQUgXbp/v42UynQClg5bhh91N8tDOPXjgPmM8+nzhDgT+WQsd+Ocis9mfxqJW0\nt/+QhBLitr0mflVwbb1ClceJFimKB7+/ESEU0qbJd3b1oQzl6RvMcG5bFW01J2Yeft7ECI0VAZZs\nG+ST57dS7dFYOprmCy3OFCCvtxZdryBUZ1C3PUyflqKruprR4SwTGo9Yd0CXE4yjZmyllKYQ4gbg\ncUAFfi2l3CyE+Fxp/a3AI8ClwA4gC1xb2r0O+G0pb6sAd0spHzpaYx0vhm0TyxVZuXOE/3p8GwB/\n+exZlAd1ogEP+aLFaKZI0bL569puckWLT5zdTGXQS75oUTBt6qP+MeMMULRshtMFbAk+TcHvcTws\nVREUTJudQ2mkBCEoGWrJmj2j/HVtN2s6RwG4sL2Wv20Z4KGNfTy00fHw5kyMcPa0am5dvIO/dQxw\n7pQqdFWhK5YdM7RRv44EptWGWbUnxrzGKP962XQsr8rX39uO5lFQAhpNTWU89E/nkClYrNwd47y2\nKlRNkANUn0J5tR87oKKhsjKR4RvbXxnAgOsaqvhQXQVVHo2vttZxWXWUO3qGWZ/Kcs3G3Qdt/3w8\nw8OxJAsiISKl607kDa5ev/Ogbc8rD3FDUy1tAS9+VSFUKuip1jWu79jLb/MpHvniO/jSH1+goy91\nyM/2z2u6+POaw08TVASc3lLBBdOqufr0RsI+DV1RTirja1k2xbxFJn5gkZOUks3P9tK5NUZ25OUi\ntZbSv4vv2ArANJ9CQ0jlbzUaP5rqwW+nePfgFp5YNkw0OxtFhoEzxvbfpQyQEFk61B6yinNcRSly\n+tlPIRRBy9Rvs7UY5prNFsWVI9hRDxtPq+SX7VHCmhddj6IoTpj43oE4SElkZ4oc8I3LZpywUQhd\nU1nQWsE9L/SQzhSZHwmyeCRJrGhR6dHQtDCBwCQKNS+R3lzE8BQpeDRWrOjmstpp6B431fFW5KjG\nLKSUj+AY1P2X3brf3xK4/hD7bQBOOZpjeyP86MltrNozytael5/wf/D4Vv71kmnkDBtbSr79wGZe\n6DpwatanzmlFSkk8W8SyJXGfRl3ET65o0RvPYduSlwbSTK0NoZSKewAKRZt//vML7BnJUh/x8ZVL\nppM1zAO8s4+d28IFcydQGfbywLoecqV828fPayFa4Se4bDfffbiDD5/RyJWnTeTGezYC8PkL2zi9\nrQqPEKhC4FEEhi3xRTxYiiBnmOi6SlEIImVejKKFogsWzqrF0hUSBZNw0Pkh1D2C5+Jp/tI/yqa0\nUyRzU1s9Q4bJfQOj3Di5jjmhAA0+DwFVoahLbOC7UxrozBX49OaXq5c/31zDe6qj/MOWTv57zwDg\n5Gt1ISju54FdXhNlfiTIvLIAUU2jyedBe4Xhu7y2nCdGktw3GOeuYIKfXncGIaGAlCgIcqZFUFPZ\n0pvg7jXdPLTh4FD0PmwJq3bHWLU7xn8+5jxoeTWFi9tr+eLF06gMegh5tYOMr2HaxzWvL0uFcOnR\nPIXMgaHiYsHihSVdbNk0TLDoPBEHFNAF1GgKAQWavSpIyYBPcPPcPXxu95+4ZqCFq/rmY8pWYGrp\n9TJ5ijxprmYgdGDBFEgWzFsOSpGJTddzS281v9uVx7NuBAVQ4garNYVby8v5l0mVKIpz3xJFkzt6\nR1BiBrmEwZcunsq0Cce/Y9SrcdmcOv6ytpu/ru3m3PYKHhpK8OBQnE82VKGqAYKBySR8a5FmHNBo\nGc7Ss3sXmfNbiNa4SkBvRcRbqW2eEGKNlPL0cWz6ui86kSsy96Ynxt5fPK+OeLbIqpeGAcfrzO9X\nWPLOORNI5oqs3j5y0LHuvPZMKkKOJ/zQhj7u2C+k++5ZE/jwGU1EAzr/+fg2lu0YPuR4ynwan17U\nxrxplYT9OoOJPNKwCZa8Om/EQ7dhsn3TID978sA820XttVxz0WQ8Hg3LlgjBmLFdkc6yMpHhkw2V\nrE/mWJfMkjQtPtdUTct+k+9zls0Pd/fzXPzg6uDvTWngzEiQfb6TJgRTAl48ystGx5aSjGXTnTcw\npGTEMInqKmWaSqPPw/PxNB9dv4uorhIrWtR6NM4pD3FJVYTJfi+aIgiqKkFVoUI//DPjYKHIRWu2\nMWA4Yf3/mjaRRp+HqK5RsG28QuBRFHwIvAhs28Yq2qQLJn6vCrZgKJ3nue3D3L++l86Rw085Cvs0\nLpk5gYXTqqkMerhrVRfdo1mm1IRZOL2G8qDO9NoyAl71oPnDR5piwaKQNTFyJpb58lxYKZ0GE8tX\n9BJbO4IGhFXB7IDC5toiqcgKNCtBn09y4UCKgBzk9sZzOX+kmzN7D9/n6PnkVnao6zEqD1+jeO5p\nexHBpZSXn8PT4vPc/KcDZ15EA7rzQHpqJb9ZNJ2zy8tQgHsGRvniti7qXhjFSBRY9i+LKA8eupjq\nRCFnWFx687MEPCo///SZnLmig4UVYf44dzK2XaSr+0527Pg+g48tYFtgClGznF2eidz40UVUTSxD\n956Q3u1BoYT169fvmTt37qF/pI4hw8PD6sc+9rHmbdu2+YUQ3HbbbXtmz56dv+KKKyb19PR4Gxoa\nCvfff/+u6upqCxyJvT/84Q9ViqLwox/9aO+VV16ZBEdi77rrrmvJ5/PKokWLEr/+9a+7FGX8/1fX\nr19fNXfu3JZDrXON7eugM5HhhrteJJktcsXFkwkg+OuS3bzUmzxgu8+/dzotNSFMS3Lvir08v/Xg\nqs3PvmMSv3hm12ue88zWCj5wVhN/Xr6Xtbsdvc9Tm8u55sLJ6LrKarPAmkSGzzVUU+PRyBZMBIL7\nE0nu6otxfX0VC3Uf963p4a/ruvnAaRO5fP5EghEfiuCAUNyQUeTTm/aMFTLBgR5lWFWYVxZgfSqL\nlJDar8vTRK/ON9vqqdA1GrweJvp0MpaNYUsimorvMMZFSkm/USRt2vhUhXqvjioEGctiR7Zw0PZR\nTaXOq6MJgTLOMOKWVJZFaw453Q6AZp+HsKZySlmAWo/OxZVhkpaNKgTxUvefGq9GhaZhmpKAEDzd\nMYBh2Dy0sY+1pXD+6+FT57RwRksF0yeUUV3mxaspY+mCN2qIiwULI+8Y10LWdKbzlDANi2X37GBo\ntxNGL1OgRldoD8TIBZ5HK0zHY75228OCbeNVFIby/SyN3Ut80uEb6KtCctFplchABjyryRrrCYfn\nMGnKt1hwxwhmvzNNbG5jlFs+cgqdIxk++stVSK9C4fwJ/HJ2K9W6xg0de0nsSmBsjPFPi9r40sUn\nRnvG1+Lr927kj6v28vgX3sHXegdYl8zywlkzKdNVRkdXsu6FjzC4qo6h7N9h2pKnWibzLzVzmDO/\nnki1H3HipShOWGP7/ve/v+Xcc89Nf/GLXxzO5/MinU4r3/jGN+oqKirM73//+/1f+9rXJoyOjqo/\n//nPe9auXev7yEc+MunFF1/s6Ozs1C+66KKpu3fv3qRpGrNnz57x4x//eO/ChQszF1xwwZQbbrhh\n4Oqrr06+9ggcXGN7MG/ootfGUmwZTLMlX+CO0ThBReEr1ZVkR/M8uKqbd53WwOQJYXRd4ZlcDoHk\nDNWLup9R+OWT2+noOrDa91PvnEx52Esmb7KrN8mOvhR+XaV1QohFc+sIBXSKpo1tOQoqmkejrtzH\nhlSOr5byo6qA/57WyPSQn42pLF/e5sxDnB708fX6GnyWRJNQVAW+sIcf7unn2dE0ChBQFZr9XjaX\nQsDvrAgzZJicEQlyeW2UQcPkezt72Z0zxsYcUhWum1jFhZVlDBsmdV4dIQRRTaXJ53nd+bR9c333\nJ2laCCBv2wgE5bqKAoc9tm0XMYojIG2E4kHXoiiKhi0lPYUiaxIZft41SNGWdGTyr2t8+xBAua5y\nXnmYd1dFkEhaPB52diVZvm2I/1vbjUdVKA/oDKQKqIqgIuihMuRh62HyxfvTVBHgr587i0hAf9Xq\n6H0FddKW5DNFcqnimAcrpUQWLHLxPIO7E2zfHifRkyOqCmb7FSbom8kE1mAZp+ArzhvXdWesAisG\n/0q/iJNrmX7oeyMsmupspk/NoHgGsGSKXKHjgG3mzL6NH24KcvfjI5zSXs3P3jebaMCD36Ni2ZIf\nPNbB7c/sxqoPUJxdUjezJL6/9RLx6zzzlYVEAifWdJ/DsXZPjCtvXc4/XjCZ6lmV3Li9h9tmNvO+\nmnJyuR7Wrr2K0Z1FRrd9gm4twT0zFvCJpZKrv3oG4Qo//pB+ohncE9LYjoyMqHPmzGnv6urauL8X\n2tLSMmvp0qXb9vVGPv/886ft2bNn04033jgB4N///d/7Ac4999wp3/72t3unTJliXHDBBVN37969\nGeAXv/hFxdKlS8N33XVX5yFPfAhezdi6deavg/dv3EWh5C1U6Rpx0+SW2Cj/X2U51182HYGkU5o8\nOJRiS+nHfGc4wLUVUXRVwZbwuUumMpTM81JvCo8qmNVcTtivoakKhmkzpb6MS0rn82gKtVEfXl0l\nnStiS6drU8Cn8qf+Ue7sHaHao/HPzbX8aE8/n9/aRURTSZhOOPudFWEWx1J0YjEv4iebNwn5Nb63\n6+Xwrw2kLZvN6Ry1Ho0vtkxgXtnLOSMFmOz3cuvMFkYMkzt7h/lYfSXVHucHz6sIvIpCla5RoWto\nQryhwpVD7VNWkuEL8+ohNSltCoV+jGIM9nt4tLQ0fn8zihBM9OpUVkU4tSxA3pZIJLZ0QtwZy2JF\nPMNve4fpzhu0h/xsSOW4tCrC8niad1aWsSSWZKRoIYFY0eL+wTj3D76ibWoVnHnVFM6OhhACnoml\nWJvKkcHp3KLPjVChKcwflahZi0Le5KmOwQMOsTeW5czvLwbg9OZy5k6McsG0auY0RvDrmlMhbUtS\nyQKYkmLBwiraSMsmny7wnSe2cmpWoXzIolwVRDXBDGEyqfIBcoqkYF6GIWejZ2azv8l6fvB+ujJb\nx97bmods6wx8fXsAMCpqsVonABMAG48nRygUo6Kih+qqAh7vCLZ0ukZlbaD0LKMoPmw7T9vkrxKN\nzkcIwaObhkER/ObKuUT3E3xXFcE/LZzC7c/sRu3NYjYHkWGdyrUjZHCq308WQwuOx95SGWDpS0P8\n7LwWPELw6FCC99WUo2lBAoFW8jWbGN2QwvAUecdLI3TXeNm1fpjJ86qxTPuk6iq1+M6OxlhP+ogm\nnCsaQtl3XjPjVQUOtm3b5qmoqDCvuuqqli1btgTmzJmTuf3227tONIk919i+Dn44bSI3dw6yI1vg\nf2Y08vRIil/1DPON/iFavB6KOB6ULgSfbawmZVrc1Rcj5NF4ZjTF/EiIjGnx0UgZ86dWoQioKvOB\nKthTMKj1e6jTVUbTjgep6IIbd/bSVzBImTYfnFDOvLIA397URboUwv23tgYmBbzc0t7M4pEkDw85\nXvM/NlVzdjTErlyB/9jVx39Pb6Qp6OUPvSM8F09zdjTIt9oakFJiSrCkHDOcDT4PnbkCNR6dcl1F\nAv2FIgrwhZYJCEAVglqPTqWuYkkOKk46HIfyYN8oUloYRoyiGce2DvZUTTNFPt9dmj4iCKiC5kM0\nfc9ZNlMCPq6oLacoJbaUKEKgCVAQ+BRB2qojZVqYUvLIcILtmTxlmkrKsnlqJDn2eaxKZlmVPHRe\ntyglA0WLB0JASAA6NDWALWkYMIjH8wTiBqmk8/mv6RxlTecov3rOqdaeWVdGma5ydlM5omDRHPYw\nLSBY8XwXuV3Q6lW4yW/gE+vJRQV5GvFb9YCHjPUBsBgzsAljmJFCL2uHn6AYDuCbpFDeoKMoJiDw\neFIIsYLg/FG2bF6Iaiu0T3+CaPTQ4g6KEsa2wOutx++fSN2E9xMKvcIDFoJ7ugKkevbSNrXiAEO7\njzK/zoM3nMM1v1nF6HIn/ZIB5jVG+dS5rYc894mKpiqcN6Wa363oJDWa5/RIgMWxJImiSVgNEAi0\nMupdgVoYhnCY03NZfj9Vo+nRTlpmVZJPF1EUQTDqChW8GqZpio6OjsBPfvKTvYsWLcpce+21jd/8\n5jcPaC3mSuydZFxWHaXF78WUkqCqcnVdBWeXh/jOzl725AzKNIV/bKrm/PIwUV1DSsnObIEnRpyQ\n/9JRJ4y4K1/gi401VGgaP+odZEX8wD6yH6+vJGNZLI9n6Cu8rPD0+74Yv+9z8rbXNlRxaXWEKl0j\npKkI4KoJFVw1oQJwPLZmn4evTarnM5v38OnNnVR7NIYMkzMjQW6c5IhtCyHQBegIvIqg0echqKq0\nh/wHhL+b/V6KtiRumkQ1DUUwtl4b53dYSotMZkdpnmH09X8AJUwzg2mlMM3UIY3s/hSLcVQ1ONZb\n91D4SznS0KsI2kdKVkpKybSgHwEYUqILQcK0KNg2nTmDFYk0E7waQUWlNeBFR+BRBeWaSqqYZ3Om\nyIp4hn7DYm++wEuZAllseuq8UOcl45wE8haVO9Nkel7+bmzuc75Hy/cenCNuL8/yd7KCBrwYcj7C\ngleWEPVkd7C3+AJD+iZ81Qpqs4/WyADhcOxV7+EZZ9530LJAYBJl4TlEyxcQCk5FiEPnmfctV9UA\nilrJ9+5zuq7+4OJDh6IBZjVE+O+r5nLtHU6PmtOby7n5w6cc9aKyo8EHTmvgdys6+fnSnVy5sJnn\n4xmeiqW4oracYMhpbpH2rkOXi8goeXZWT8bQMjxzzw4WXj2VTKJAPlukvDaAcoJf/2t5oEeLlpYW\no7a21li0aFEG4IMf/ODoD37wgwknmsSea2xfJ15FYf/nzIk+D7e2N5OzJYKXf7jBMWQ3tdXTmTeI\naCrlusb9A6P8rGuIb+zq2++Ygo/WVdKZL7B4JMXvep0K5iafh+ubarisOkJPvshve4dpC3iZ5Pcy\nvyROXefVieoaFbrKrmxhrAL4/2fvvOPkKs97/31Pnb67M9t7UW8ISRQJBKIX2SBsiAv2dUkCTnCM\niXNxnNyQYCe+uckNsZ244Lg32Tc0Y2N6E00gVEBCq7bSStpeZ6fPnPLeP2a10rICSViyJDjfz4cP\nmjPnzHnO7Mz8zvu+z/P8Ko2iCE8Pmnx9diPf2jdAxnE5rzTE37TWUG5oxHSNjOMSUBXSjktM1yZG\nqOphhElXxMT08ZFwXRtFKX68pHQpFAaxrDiuWyCb3Y/jZFAUE0Ux0bSDzQksawzLimMY5WhacGK7\nlBLHSVMoDGLbh++PLKUkk+kgnenA56sjHJqNECq5XDeOk8YwKlDVY5+Wk9IFDk6Pa0IWXWjGl7DK\nx71363wG55YGKbbCkLhuAcsaxbZTyIJLmWux3K+w3K8AgoIEKYvLC8l4nm3DaT6fCJMUKvg1cnPC\n5OaN35RYLiJlYbw+isg5U2LcKgNsZeqNx0Wl61lS+QKV1UNEjAQ+x2CmXtzPcVTS6VIGB5vQtDk0\ntSwDFfyGiqZ0Ew7VEx97hVSyn3RmF7Nm/U9CwelTziGEihAaQqgoiokQCqrqH/+3BggURefvX9iJ\nlShQWRFgSX3ZW77fQgiWtpVz758tJVtwqSn1UR05faZTD2VubQlBU+WhzX383aq5BFWFe/tGua6q\njLLSswCFaFMetcugzz/AmR1lvDo9wLL2BNlkAX/YwLFcRnrTBCImuqmiGSd/lHYq0djYaFdXVxde\ne+0184wzzsg/9thjkZkzZ+ZmzpyZu/vuu2Nf/epX+95ssXfjjTe23nHHHf179+7VD1jsaZrGAYu9\niy66KP3zn/88dssttwwc6fxHi5cgdQwcmiFba+okbGdi+vDNlGgqqhATXpaH8nI8xU96hrFcyUdq\noqyIhie+PK6UdOUKZByXmUHfW36pFKDS0KkyD4qf5Upyrovk4Hpn0nbYnZ2c1etTFGYEzBP2hXVd\ni0xmN0KoaFoYy0687QhU08IoionjZHCcg1Owul4CCKS0cZwcUk59Lw8Qj69j7767KRQOzdVQWHjG\nDyaNoosiYOA4uXGRUJBSomrFpSZFGAihYNtpXDePKwtIWczwnkCoKEIbF+HiR0lRDFy3OP0rpT3+\nHOOPJU4hyWDfI9i2g+tkMLV6MqlBkplNOFkDJ1w0LUmNhihkdXyOgVGWZot9Hc8FWzGVJM+rZ+OI\nyTc7ImOjdqXR9hz+BuTt0ISLLRWiQUEqBz5DIWe5vG9BGVfPjRANQNAQRP3F+lwpAgglhMCm4Ogo\nio6umbhSxWccuLGSaIoynikusV1I2w6bBhN85u5iC9E1f30xjUdhi1ewXXK2Q9jUTmtx+ddHt/HN\npzv49z86gwd1i2dHk2w9bx7CGWHjxo+T6B+m/6GL6KjxU5Wt484rz+Jzv+2lJG1y7W0LMXwHx0RC\nCAIRA39YPxkj3VMyQQrgxRdf9N90003NhUJBNDY25levXt3pOA7XXXddW09Pj3HAYq+qqsoB+OIX\nv1j9i1/8olxVVf7lX/5l34GM4zVr1gQOtdj70Y9+tM8r/TkMJ1ps867LvmwBTQhaAiYF12V7Oseh\ncutTFCoMbaL2c182z6g9dSRytBhCEB2vCT3wOiFVodFnoh/lOml/3qKvYE283rSA76iPPVZct0A6\nsxvpHrfZlyPS1/dr9nf9EIBwaBElofMYTTxJOrOVUGgOs2Z+hWIzsj8cUkqy2T309/yOofgTR32c\ncAyEo+MaUy3qABTbR94qIedPk6CEdcnL6FJryONns386lmKA5YIj0XYnUUbyKOm3vkk5Gj65vIGR\nZIHOsQKaoZLPFB2BskgUIOe4KI6kpS5CZcSkImhSETHpzBV4sTvOzt4kzkAWJeuwZHYF93zi1Oxp\nfKIYTuVZ/I/Fz8A/3HIWf72rh58vaGVFqc627X9HX++vef0HsxCtyxGo/GjOucQKQ1z3UrFxx/KP\nz6S6fnITDyEEoTITw6+h/uGappyyYnuq4GUjHydMRWFawJwQV0NRmB3005MvkHclIU2hytAn1X/W\n+wzUvIVfVTCFIOtKevKFCbUXQEhVqTI00o7LsGVP1LWW6Ro1hj4xtVs5XvupibcufzkcVaZOiaaS\ndBzKNO2ok5mOBte1UBQdy4pj20kcJ/MHE9p8vp+t7bdj28WksPrYX6GlIzh9OSr8H8Uf3shQ8l76\n+h6gpuaDJyQGx8li20ny+V5Sqe2k07vI5/rJ5idXC2T7QyjolPYsR6nuJTw8Hy1fhp6pQs+W42pZ\nFDswMYJ2hUUi0UfSTtNum+S1OqRq47oameA+coE+XDVPDIcYxTKvs9k56ZxJ00/nnAXUR6MIM4AS\nCJFE0JHL40OwPZunxtBQXEmNppGRkv17xxjpTKCMHfwb/ui5o1uK29v71qNrBZg9I8aPP3TKNYY7\n4USDBtGgwUi6QHnKRRXw5HCCi6N1hMPz6Ou7n3BNmmAKtpck+dzaYb50bSMV8V2c3x7juZ9uZ/H7\nm2mdd7BhiJRFD1zdVAmUmJ6BwWmA9xc6RoQQqDA+3amiqSaNfvMts2wVIajzHUxVCVJco+0vWPgU\nhTJdJagWR11BTaXC0HDGmxu8ed30rRpDHA0+Vfm9jn8zBzKBC4UBVDWEbR913ffvjePk6O29h96+\n+wCXSHgRZe51OANpMrk4jm1DIo0/MoOw/0y6un+K4+aoq/3wUY9wpZRY1jD9Aw9h2ylyuS5sO4mU\nNvl8H0Lo49Pah58kka4CwqXj/mk0WxexsOy8g0++qcfJcGqQZws5/KpRXMdF4qp5pAiRjaRQpE0m\n9NxRxW1oGucuWcz0GTOoq29AMQ7fack9ZEZLyqJdpKoIxhbajNk2+1IFtqWz3L93iJ2bB3H6s2jV\nfrJREyWeRwqBDOtUZl3UvMtQXxo9rGPnHRxVoGSLszBqmcm8mjCr5lRz9czqU84S7w+BEILvf2IJ\n133rRVa/0Mm8hWU8P5pECEFJZDGgULfQz47frYOSuewt28CF7RZPL5hOW89L1IzNZP0M4MBFAAAg\nAElEQVRvOln/m06uvGke4djB9Wsr75AYzBIoMfCHTsrUssdR4ontMeA4eWx7DCltCtYIitDx+WrR\ntPAxjTTDmkr4LTJfxfjI9VSg2CDBARwUxRz/tyCX68G2E+OPOWqhLRRG6OlZTaz8EsJvLgsZx3UL\n5HI9+P1NU95TKSX79n2XgcGHAVDVINXlH0aLN2GnUrz+wib2b983sX+kvITzr70QpdRHb+9/Mzj4\nGKWlZ6NrJSiqiW2nSCa34Lp5wuF5qIoPhCCX6yaV2j4xYj78e2Phc6fj4kIhyvD+NKNdaXJxQWbI\nh0mQq+v/lFmhyYk9T6fWs0eppcKKImTxhzGvaeRKMowE1xzV+wgQDQTJOTbzGhtpmd6KMH20TpuN\nHiim7x3p8zip+5YQHPiNjgYMohi0RAJcSCl/2lbNjjMzONKlOmjiUxVG8zaO46KrCoYqwIWs7aAr\nCqmCjQvkxzuC6aogqGuU+PWT2iP6ZHNGfSlzaiK8sGuYjy2t5XsDI/TlCpT6KggEWtFrs9iOIGir\npDWHc3r28eK0Fr535VJWvfAq87taAXjku8W+6CtunElFY3FqWUpJOp4nmywQLDUxfBqK+s7q3T1O\nHJ7YHhMO+fzBOkNXFshkOtH1UgyjHCiKk+PkcN3seMlJ9AQmItlY1jBSOhhGOYpycBRj22lsO4Fp\nVh/2/G81EresOJY1iittpGsVBVUIFGHgulPbJx4Nmexeduz4ByyrWLIyOPQ4NTU3UFZ6DpnMHgwj\nRjg8n1yuix07/xHLGqYksojW1r9ECJV8vp/R0ZdIpbeRSLwGQHnsKkrUy7EGhxnp62XtQy9gja9L\nayUCe0ySGBpj/eObOOuKCzFLmxlIrGZo6PHDxpjLdU16bCjVBGlBdyvQZBTVqcVyLZKjKfp297B/\ny6FTq8XpU4Uw1f5m3t90/aTX2l2I054JYiGx9WaU0G76ja1H/f5pQsEeT7g6e9Ysli6Zj7+yAdX0\no6gKrnTR9RMzYlQUwcxoYNJnJWh4PxvHiqIIPnleE7ffsxmzLwsKPDKc4MbKAJHwPPqzvyFauxhr\nfyfplgYS+hj//Jth/ueqGA+ct4QnM2lu/fFaRLQ4Df/Mz4tmGCtvWUAgUvzeu44kOZzD8BXLDsNR\nH6qmnGpdqN6zeAlSx4DjZEinp1q8vR2qGkTTQjhOGiE0TLN6wjZsIhgpcd0cimJMmeZ03Tz5/BCa\nFkbTineytj2GZY3iONmJ0aVQdHS9FIGK6+awrGJ3I7+/YUpNq5TuePlNMSZF0RFCw3FzR6xbPRqk\ndOju/gVC0YlFl7N5S9HYSVH81FTeSDyxhnTm8L2KdT1KKDiD0fjaKc8pikl59HJC6grs4THcfIFs\nOsuTq4sGEY1jcRaMRVDLmrGHd7KmVpI0fFTUV3DOlcsQqkpe34crUphOCzggHRDoOCQBF5UIIBBS\nMjA0yEj/CMP7BxntHkXVVZxDzCYUodIaWsDi8ssPey1r7Q30peaR9w2QLN3+tu9ZSFNxgVgoTHk4\nREVpgIqaBsIhE+GPEimPgabiCx3bLIrHqUMmb3PZv6+hxK/TubiUJZEgP57fQm/vf9O+7UuoiUtY\nv7qH7PQzscdnvir7lvOVG6LIccH8xGP307wnils6f+J1q1ojnH/9tClTyEIIzICGL6RPymj+PfAS\npI6Al408lT+Y2B4Ow4hhGJWAxLJGiyNJt4CiGJhm9XgtqMCy4hQKQwcFVWgcGD0fLUKomGYVmhZB\nUfTxLNl9J2yNVUqHvfu+y+Dgo5O2NzX+GSHzHHKpFEIRSGM/mVwHwcA0kqmtDA09RSDQTEP9zdhp\njby7ne6+72PbCcLh+URCSwj6zqEwMoYzOlrs+5DJ8cQviudpjI9xdtOfoEZbJ85pj+7hN4nfUHCz\nNM5tYu6SuaiHjABd6WA7Fo50cQsOmWSG+MgYtmWxe33HpEb+AJXJAgYqzTWXUB5swQxUTrl+Rw7z\ny7xDKFdG3hwkUdY+ZR8Av7CpCZcTC4doro1RN2smqKCHKvGF/LiKjqKqCCE4ltIDj1ObA2VA56xs\nZYO0aD9/PvlsBxs3/g9UpYT2X1aQ6BsmPuegL3DrwAV89+oEu4LNE9s+9vRDNO+fhTAP1iuf/0fT\nqGk7fLMYw6/hDxu/byKVJ7ZHwBPbqZxUsYWiCCKUP2iJjKr6kdKZqAc93jhOht27/5342DrKY5fh\n99eRSG6msuJqRKEOu2BhDw2gBIKooRC66UPTdVTDQNMN8ukU2bE4TjoDuo7m9+EWCiAlbr6Am8vg\njnfU6ti8k/aXi1OxDcNJzpl2E6K0gU5lgA3abnQ03ldYDOlhfj3wfSwEuk8HCYbfID3etUszNOzC\n4UtjNDdPw1COef75GHVnocWmTdlHYZB2fZBfJJqosRWiaoJMuBNbn5yZWyZTVESbaK0oRTdMqpvr\nCVXXEayoQtV0hHpKWqp5HGd2D6a45N+eZfHcCp6vN/j1mdNYGMixZ/fX6e5ZTanzGZ79/rOYtmRw\n3sGfssb0dAq+MR46z2SduXhi+4eefpoZA2dMOkfLGeUsvLQB7U0m9EIIYnXB3yeJ6pQU29dee838\n0Ic+1HbgcVdXl3n77bd333zzzcPvGYs9IcSVwNcp+lJ/T0r5z296Xow/fzWQAT4ppdwghGgAfgJU\nURTG70opv34U5zttxPbdgOtaDA0/RSg4g46OfyWX7wGgouIqyvzXoqga/kiE9OgohfgobjqNe2Bd\ntbQEYZrIbBaEQPgDyFwOJ5lAvkWjEICR/mE2v/QayaFi68tlO7qonv8pCrVzWe17fsr+N+SXEhjo\n5Nn+nxAvK8N5032GozoorouQOlJYRDI2s/tSVJcvxr/gI5P21diLKuL0KknuKlRQm2kihEWh4pW3\njLeFQdqaF1Pf0kDl7NmowQiKaqL7vH6371VW/OvTdA5nKFxSw5+3VvOl5iijoy/z+uabCYfOpPfp\nenaubycsNXrmHHRlqnQjlI3OY8TS+KcbynAPWYu9+b4nqSgsnLTEoJkKF3xyNrHowQYi0dogmv6O\nb+xOSbE9FNu2qa6uPuPFF19sv+uuuypPJYu9E5bpIIqLj98ELgO6gHVCiAellIdmhlwFTB//7xzg\n2+P/t4EvjAtvGFgvhHj8TceeVNLpDhRFx+9vPNmhnBRyuV46dv8bmcxBY/pwaC7lFZdjMIdcTy9C\nUcgnxnBTSZxMDiklA339RKNRiL8p03fs4Oc5k0zhDwUn/XA4js2O17bTsaF4vmqlwMKN+wmcdTOy\ndgGrfc8eNs7f6ev5SMVyLg58gfQTd5AyXEZDGpGMTYlWgxqIIvQAeuMytMo5SLuAmDO5XKZPe5bv\nWaVstdt4f6YaO7KT5mAXBLs43ByBals022NUtS5k5oIVlDe1EKxuLNZzebzn+cSyZu78zVbqEg7P\njyZR22rx+Wqoqbmenp7VTLv0LDo37yJZsFj85KOsv6ToAzagJBiIvUibU8V3fj2T7opXuXPZpaAo\n3P2BSwD48n+txooU97fzLk/d/QYAZ1zRyIxFU5c93m08+OCDkcbGxvyMGTMKjzzySOmzzz67HeDm\nm28evvDCC2cC3ffcc0/pBz7wgRG/3y9nzZpVaGpqyj/zzDPB6dOnF1KplHLJJZekAW688cbhBx54\noOxYxPbtOJFphWcDu6SUuwGEEL8ErgUOFcxrgZ/I4vB6rRCiVAhRI6XsBXoBpJRJIUQ7UPemY//g\ndHT8GwVrlLGxV8nluhFCpbJyJdVVqzCM6MkM7YRyaOZyNtfNlvGEJwAhdCorrqAsej6m2oSVz5EZ\nHMDJjLddTKVwbIfn7n+G1Nj41KqASz98Gb5ggGwqy+jACDXNtcSH4rz00PO44yPbqtZqVE2lZ0f3\nxPkUXaGlu5NZIwGM5V9AxKbxY98zAGhWiM0lFWxvLOeDz21HRvOk1Tzt6l5mB5sIX/ttwkCllULV\nD/ZjPhShFYVW0V7kG3YIJTmNGvcspvkGqS55mXT4sIcB0DbUwbQQZNpW0NpWSeXsRQSraz2R9ZjE\nx85p4htP7sToz7E5Wmz7aupl1FRfx/Dw0wxn7uPyv/gsa1c/wg4guuUValwfbyxYAECH2g/Rfqqt\nUr7/UA+bw4N8ffkZSFXhjj8tzsb85f/7Kaa4Gs0tfvZee3Qfrz26j//x1aWEo0dulflOePTbX2sY\n2r/3uFrslTc0Za74s88ftcHB6tWro9dff/0wwHvJYq+Ooo3nAboojlqPtE8d40ILIIRoBs4EXj4R\nQR4ttp1kYPAx8vkeQCEcno+UNgMDD9Hf/1ti0eUIxSCf78NxsphmBaHgLMrLL53UUP/4xpRibGwD\nQtEoLVkyUfojpTueRCUnlQMdDZnMbnp670G6Fq4skM/3UyiMIKWFqgZwnOJapxAGM2d+BcWuRFEU\n8qkMyUI/bsHCHhkdNyJQAcHOTdsPCi2AhCdWP060NsbIuOnC4ejf3TfpcTAoWbhxF+HIdAJX3ooQ\nGt/3PQWAma3g0Vmz2dZcvOn55vV1zN7Tw4X7XuEFfRf1biVhWfyROVRoVbUd4ZpkfOtJW2G+Uaih\nNNNGKBTA5xsE3yCHizBlBPBZOTTpclVhHenWayk/YxZVNVVEZ85GL6kEL7HJ4zDomsLsmgjrOkdx\nZoZ4ejjBNZVRCoVBmhpvYsfOL5MLPM/Sj1zNM9+/j1Q8xT61wJlPP44SKmX9WcXkqT4lTl/kVRba\nzfzr/aNsr93Pfy0rTjvf9UcfB8C08tz+i/vBV8yY/7//9BJ3/tvFJ+fCTzC5XE488cQTJXfddVfX\nm5/zLPaOgBAiBNwLfF5KedihvBDiJuCm8Yflh9vneKBpYc4953fExzZhWxncvImqGwgtwf79PyI+\ntgHHKa4jGkYFtp1gdPQl9nf9GMOIoSp+VDVAReUVRMuWTzjiAOTzA1jWCMHg9CmlP72992LZYwSD\n04mWnYcQCrl8HwP9v2Vw6LFJyU4lkUWURZexf/+PJ2Jpa7udaNmyKdczNPwMmfQuJCAQ5AuD2Fac\n1CEG4kKohEKz8fsbJ6zxFMVHbe2H8ButpMdGyY0NITQFmcpgp4tCnM/meP43a7ALNnPOmcuuTTuJ\nNdZRnU/R+NgG9leXsKWqfLLQCgFS0kSaua/1kdMUti5roLwzjmZZVPdmUICh1lYiC74AwGrjmYnD\nn2xtY1tzlCWd7ZQn4jw3cyHtLbUs3jeDEDv4lfkiTi5K0NzCuYzyQn4ZvVYFgWwVMaOfrIyCBnXa\nEASGpizqp3U/eU2lLJti5sguZsh+svOuJFxWRXn9BZTV1+KrbkE1vLVYjyPz0bMbebFjmMBIgUeH\nElxbVYaul1JSsoiK8ssZHHqY8jKTyz93I/vWbuLVx15mV3Ux8zjyxjrO7+jld9dcA8AmrRMqOinL\n+/nqfw+TDA3yu5kt7KjTyZomX/nEhwG47rkNLOwMkk5mCIaP6wAUgGMZgZ4I7rnnnpI5c+ZkGhoa\nbIBTzWLvhCVICSGWAv8gpbxi/PGXAKSU//uQfe4GnpFSrh5/vB1YIaXsFULowG+BR6WUdx3lOU9o\nglQ2PkDf7ueQgJNIoBgmRjRKqLJqokzjwPspXZdUZht9vfcyltgwUepTKAximtU0N/052dx+Roaf\nmxA4XY9SXXUNodAcXDfPvv3/RTa77y3j0fUYLc23ULBG6Oz8z0PeB4NQaAbJZLHbzIzpd1BSsqgY\nl5T09t1Dd/fPD/uaFRVXEArOBKEQjV6Inc8hEAhVAVlcO82lkjj5As7YGHZqctatlJLnH3yWscHJ\na7LL948SHhnlwFs/Egvgi1WQT4+SjviQdTVEN3RTGj2THdY6WvbGD1wNqDoyGCNy8Z0A7Fb28pRx\ncK342YYF7Gxq5OrXXuILpWFarn0fr9z9HX4QjvLw3KV8/IVXCLi9HCtJ08+2qkaW7NvO8s0vUrqo\nmXTNuVTEQkRjpcRamlHL61HM4//D5fHuxnJcFn/lcbQKP7kzyth83jyEtEild+A6BbZt/xvS6Z2E\ng2dSEf4U2YEhNj3yAr17eiZeo3VglBAGL1x44ZTXn59cSG86jK07fP/iKIOlxZv7eXt28Pinbnin\no7xTOkHqfe97X+tll102duuttw4D3HzzzfWxWGwiQWpkZET7zne+0/Xqq6/6brzxxokEqUsvvXRm\nZ2fn5sMlSN1yyy0DH/rQh966ldybOCnZyKJYFLoDuAToBtYBH5VSvnHIPiuBz1LMRj4H+IaU8uzx\nLOUfAyNSys8fwzlPqNhmhrrZv/F3U7ZrAT96WQzF1HEcB6REuhKhCEKxcjTDRDo2UjgMDz1d7NU7\nPh2rKAalpedimlWMjLwwPk19kEhkIS3Nn2No+EkGBn6H42Qoj11CZdVKDK2KXCqJ6zgYQZfR+EsE\ngzMIhWYACqnEbrbtLI4CS0vPIRyaQyq9g9HRF4hGL6Cx4VNYdgK/r4FCYRBNj47Xm46hGya5dGrK\nOyUdGzeTxUmlkM6h9b6SglXgtTUb6d/TT7mbx/YZqP4Ii9qTBM67jYJwiEg/W+XzVP/2J+gOmAs+\nitZ6IfbOx1ArZqOWvn3C2cvaJjZrB0fE20vO4umFdVz+2lr+pb6S6us/UIxGSjp+9hO+MpLhqTlL\nuH79M5TkDu+kcyhrW+aws7KelZtf4uz9r7HI6Ce+8GNURkyiFRGCDS2Y1U2gn57+qh6nDrf8YgOP\ntfeTPL+S+86ewbKyMPn8IPl8H7adZOOmj0/s21j5ZTSlDCedomPta+zbuofESHGyr3Ysze5FS7He\nog92zeC52I7Bf10axvWlWXfxEszA4XMWjsApK7aJREJpbGxc0NHRsTkWizkAfX196nvGYk8IcTXw\nNYqlPz+QUv6TEOIzAFLK74yL6n8CV1Is/fmUlPJVIcT5wHPAZpgw2fkbKeVUpZt8vpMitpNiGK9h\nU0wfIhBAMU0UVcHJZlF9PsxgCD0gSCRfByBadh6O4+BYFrrPJJvpJJPZjW0nCUfmo8kaCrkMus+P\n4fMjkdj5PIVsBseycB0XIYojT9MfQChK0aw9k0VKFzPi0td/D8MjB7N1a2s+REVsFXY+j1AU3HHR\nLOSyk8puip+NolG6a+WRufy4yB7cJ5EcA1fSvm4rg53FDvthx+L8LfsmvpnWuZ/mvuai0M2x65np\n1LIzsg5jKM/mkB9LOFxZWEhQ+rjXXEtUulyTvxgVhTw2GWULqrKbF4RGj1r8kQiNTWd9QylPn1lH\n43Afq9UUbddNbpMoXZc9v76fb7Xv5OG55zASLkWKYncoKQSq6+AoKq0D3dSP9NM80k9pKsFZ+7bg\nu+BiautqiMbKCdQ3YVQ2IExPYD2OHy/sHOLG77+MM6+UDy5u4GuzG8ebznRi2ylc12L3nrsYHX0J\nANOooTZ2GwoBnGyGvjd2sv7xl7HGa8+bB+OU5yVPX3bZYc83IzWHfmnxidvOJVrfdth9jsApK7an\nCl5Ti6n8fmIrXbJ2Fl0x0NS3T1YTAlAUpOMiVBU1GEAri2L4fCiaRj6Txk6nkbaN6vOh+QMYPj+O\nbWNbeQpjY7jJJEowiOL3gVBxc1nIF3CyWXAdhGGgRiIIwwTp4ObH13GlxCgpJVhWhqJCfGw9gUAb\nsuAjm0ggpYsQk+/aXCuPzGRxC3ncfNG3FCGm1L46jsXaR9cy2jMysS1WX4MWj7PwxTfYdtFS9pck\nqdk7Bq3Xs03rnnT8p3MX8Ybaxcv6QVu4Ulcnrhx5icRNRfnu1ctBCOZ07+Y71hAzPnXTYfeVUjKy\n7gVe+tpdrGubR1+0As2xKU+NIYDFg9upMBQC6TzZpRdRWhYhHAxR2jYbX3U9ij/oZRN7nBCklJz7\nv58kYyikzypn47I5lOjaFE/o7p5f0t//4LjTWLGTXF3FX2CqbdipJFufeoWdGw7mWlRkCgTTGXrm\nLGS4fGoay+23fo5A2TuqnvDE9gh4YjuVd3TRm9c8zP43nmKkZ4TRrlEKmQLTl86gdWYbuqZzmM/i\n4eNUFVR/AFQVJ5WcJGRaMAC6AaoCufxE0tHEsYqY0kZw0vPFPKODrxcJo4Qj+EIhVF2nkM1gZTM4\nI3FcqzAe83ialKpMNJ14KxzHpmvPfjo2dZCJpzEDPioaa/Hv2MH0jUUP18GzL6O19gYAMuT5he95\n9EIEyzh8uZriGLjqkbtaGbkYdjbGt1bNAeCM/Tv5St8uzr79S297nHRdsl2djOzcSqpjB8lIhHAw\nSMjvxwyEUVQwAmGMaAw9HEWES0965qLHe4OvPbGDrz2xk/y5FfzVGY18oaUaKPZEz2Q6JxIgpZQk\nk5vp6v4Z6fTBvuLVsU8S0Bfj5rL0bN7OtpffIDE8eYlxxkCCkZbZ7GmsAeD2L91O4J3lGXhiewQ8\nsZ3KO7ror33kWhz38H2Jg9Egla1VdG3ZT8PsRmK1MaKVMXT12EpvTgSKrqH4fKBpYNk42czbdmk6\nFMd2cB2H3r09dO/uJj2WIpcsmhVEAiZLX9rKgfzp15sFA/PnsEL7Y+41J1dqheOz8OUqkUiGqg96\ns/rStYSSrQxXvoSRLyc8NoOhyCDRVIS0nsM10pgZhbw7ws8um8NoWYxAPsstj/03N1x6CQ1XXHnU\nrQ6l4+AkE1iui+Hzo/r93qjV46QymMxxwb88g1LlJ7egjOfPnkXNuP910W6yG9uenIR4wKpycMLB\nSqE69in8+hlgO+SHhunY0M72dQfbEqhS0to3QnM8xby1L6MEPLE9EXhiO5VjvmjXdXnhnCUkfCbB\nfAFXy6HYKmOBELuq3npKpnpGDWbQJDmUoKSilJZZrQQCAQ5+bouh2LaNpk2dks7lsvT29BCriBEJ\nRUAo2K7FyPAIYyNjjPWP4toubWdMJxaLkU3n2LVpB4nhMWYumUV57bF1jUmMxene3c3A3gEKuQL5\n1GQXIFXXqG2ux7eznemv9ZD0wRvNCr45K1nuvh8Lh5+Za3DEIWIuBb2j59DVsIXKfCmzhv0INY/i\n+NimBNgTHuEDfc0ADM/+CY9GrkZIhwXt6xgprWB300z21RUNBiKZFHf89odc89nPE5k7Hw+P052/\n+u9N3Lehm8wF1byvIcp35zZP+A1LKbGsEfL5AaSc3MPbthN09/ySgYGDeSRVsY8QMs9BugpuLs/+\nTe0M7utlX3snABWV1XzkX/8T3feO8g88sT0CnthO5ZgvOp6L85GfXU0hlcDSVSr9FexkgDN3O1y5\nDhoGDTTXxbQdHEWwPxZhrCzCiK5y6BhSCEFVWxXltRXEamN0dXSxb/NerJxF3Zw6qptqKCsvQxGC\njvbd7N7QgXSK4YZiIVLDKXwRP7lEdkqMkaoIqeEUrn3wjAsuXEDj9GYO/Z64jsvOzdsZGxljpGsY\nzdDwhXwIRRDvi09MU/vCQXSfj0hFOW42S0newujcQX37ALYCL51Vwoy5NxKzKlBSZWxR99E+vjZr\n5GL4stUorgZWhNHF97IxczavLFhIIJvnM2u2oJb2MuxsoCHax96sH3vvdH626jOHff9122LZztf5\n053rWf7FOzCqqrypXo93BVt7xrj6G8W+3rnLa/k/Mxv4eG1sQnDhgOiOYlkjOM7k777j5BkYfJiu\nrh8BoKohAv5phP1LMdXpCDQK8QTb17yKr7Seyz9z2zsN1RPbI+CJ7VSO+aKllDzy0P28sn4TUh6S\nVCRcdod2k8ltpTTjUu7MwBffS1NfknO3SWxFkDINwrk8SZ/JjpYaht7UCFxVlXFP28OH5QfyQuCO\n/62EIvArCtP649R0D5Kqq2R3Wx19iQS+UICWxQsx/H52vfIqqaE4NTNrmbt0Hj7VJD4yxoanXyUT\nz0w9TyREKBKhxvChd/dS2tWPIkEZGkEd93FNm/DSHIXGOdewKH0V29UexkSGzdrkeuDgyCKy0V34\nRmYyWvUc9yy4imSoZNI+S9c/zVBZJb1VDRR0g4JRvNu+uH09A+FSCppO03Afi9o3U6trLL3gPGov\nugStrAwPj3cTH/veyzy/awhleoRMa5h7F7ZxXtnhe4PadhLLSmDZo5MTNICxsU0MDj06kcEshEEw\nMIvS0MXotFDXegGmP/JOw/TE9gh4YjuVdyS2d95551Hv3x/Zx4ulrzB/r6S5H7pjsGKz5Kwdkt7S\nEJuaqqjN2zTs7yeaziGAvKbSU11Ge6wEQ1OpKxSYsWUv6vjfyBGCXMggmMxPnOf5OYJztkt0BzIl\nfgplQcRIFl/OIlEdZGtDPelUBs3U8Jf4SQ4mQUJTdQUtQkfpG0IqAi2RhnwBff/k5g89UUj4YXuD\nYDCqUdN8NiuH308wX8YvzRfIiPyk/YOJVhynhIcXjFE52MeizWv5zsdvJz9eNnPrgz+ls7GZXy9c\nDoDiurjjdWy+Qp5Vm9Zwy/52ZFk52VSWsrPPIbJoCaHqGhTDQPGfmL6uHh4nk3imwMpvPE93PIs1\ns4TQtAhfnlbHqqoyzLeo83Rdm4I1hFUYnTLFbFmjpDO7GR1dy9DQExz4yWtuupW2ts+90zBPWbG9\n8847K3/6059WCCGYNWtW5le/+lVnMplU3jMWe39oTqTYZvv6eOmuVyhRFUpkAIkkaYOuFXhJ30GP\nOnogqRe/NMiKYhahGkhhqxbl+Sj9xjBrtee4Yn2eMzohkJM8P1fQXi8I5mHlOpfWQ9oBF1R48FyF\njWeVseq3I8zZL8ka0N4g6GkNY02rR5gGnc4g017u5cLNLoVILS8tW060oHHZ/b9ESoc981roqizF\ntmxCkRBNvcNUbdgx5Ro7quHV6QrxEMSDUJhWSwNl9JLg7MJ0zhleTMVYI781NjKkJCeO0/OlmLkK\nfNkqCg2bWWsGWbP47EmvfdG29axa+ziXXn0huzbv5Nk09JeW09Kzn5xhkg6FqBkZ5PLzl9J4/YfG\nS6UUhGkivB7DHu8BdvYn+eQP1xUFd1oEpy3MLQ0V3NRQSbmhob7FsomUDoXCCJVABuQAABr0SURB\nVJY1clivasfJ0d3zC/r7HwTgwgtef6f92k9Jsd2zZ49+/vnnz9q+ffuWUCgkr7766tYrr7xybOvW\nrf73hMXeuw037OdV+TrB0WVs9ffQb5hcmIqiYhJS5rPcUDCFYNh2aQrYPOB/AQAnE0IAw0i0QpTz\nuRZrXpb7L9hFVikwLT6di1ONhESQ0ZUDfMl4iEg8TUialFW1cnbvpbi9XQwv8bHu8hESWoIlqblc\nMDKLx3o3UelG+Ci1dMzazn8ue4T5e88HYMSweeLjK1nxswdp3bKHRk2QqC0l0hNHsyWvzBBsmRsi\naUi6anUsn0IpfpbLVpZnWojFGynf1jBx/f0izlati8fM57EOSX4q7zufXMVuxPzH2diRQEu0seaK\njzKtfz+GbbG1rpWWgW7+1/onaf2bv8Y3fQFLVmaYtnE96S2vUXLNn4BVwBKCUF0jZnW1J64e70na\nKkJ868YzufabL6LvSqB1JPjmCodv7h/kG7MbObckSIWh41PEpHwFIVRMswLDKMdx0lhWHNtJTdTp\nqqqPxoZPU193I5oePWHGKCcTx3FEOp1WTNN0stmsUl9fb91111017xWLvXcVpi9MydKncdznuDLc\njWFbSAM6+ufxQNdSwoNVNMg01W6M7kSQluQF1Jo2BXOMpJJkWE0wqBb7/Rayfqq6i5m0NrCHOKhx\nSMPC9OXUuWUEFJWd/UNsVIoGFmPkGBsJAAGeYxh8RTEfUdNsoxeSMD95/qSYm9JzeOOTpezfez+V\n+1NUxkd5fbagf14T75N/TIPl0pivYHhvkirCFNQsiqvTL1M8oe0g5duBLlUsMbncycjFMHMxjHyM\nfdX/gRx0idtzeejyYmfNaGqMW9Y8RMByGHZdzp3bxsx/vxs1XFyDUkMhoudfQNmiJSjBINJ1iwby\nXsKTx3sYRRHMqyvloc+dz8e//woj6QK+p/twYiafc1xQFT5RE+VDNTGa/CYlmoqmHCq6Ak0LoWkh\npHRx3Ry2ncayRnHdPIpi4vfVnbD4R+7Z0WD1pY9ro3C9OpiJXj/jbQ0OWlparFtuuaWvpaVlgWma\n7vLlyxMf+MAHEp/4xCfeMxZ77ypGxvoYez5MoMXh4T3XMWRWEhvtY3q+nU8v+gH2Qo1Ng/MZFQ6Z\ngh+7/QpSyUrIxoAYABVAme7gRDrp0A92VApYJWiuQcIstjvsVkYnnTuQakD64mS1JEdDdPAs0iU7\n2GDsgQx8MPa3xFu72RLZxhnDCwiO1XK/+QrogN4+cVxI+kipk0t9JgmtFJSOLEC3SvDNeowdO7p5\nbM5NSAT95cWC+UA+x6cff5AP3PEPqH4/VjqNr6ICoU/+zAohEMHiHbY3kvXwKKIqgtnVEX7zF+fz\nfx/dzv0bu1GH86hP9OJU+PjJdIsf945wZtDPVZUlrKwspc408KmTv0NCKKhqAFUNYJoV46L71naW\npzODg4PqQw89VLpr167NsVjMWblyZeu3vvWtSfWYnsXeaURhKMFd7/+HKduFlFSNDdOyexdnvfIk\nIT1By4w91Fy1hj2jjewdawVcCkJB65kL+xfCcBsVtOEoeRTXwEWiolDBbFwlTyrcgZmrwszHDp4o\nBSHAFRYgUGTxTyfHl58L5giOmsXMlRNSB1FG5uPGXsPSk9yrbKQtXsX5Q1exRm9n0Jxi91g8hZgs\ntL5MNUa+DFex0AulKK5JYNYjdOzaRL5jOr+++iZSweJotXWwm5seXE1DOs2SL/0tZnWxE45WUjLl\nPB4eHm+NogjqSv38r5Wzue7MWv710R1s7h5DHcyhDha/o+3ApvOr+Gqwj5vqyllVVUqD36Rc1w4r\nKpoWPOHTx0cagZ4ofvOb30QaGxvztbW1NsCqVaviL774YuhUs9jzxPYoCde2cu6zj7A3VoJEZ1oP\naDJJV8zPrppy+krLeWn2uRP7lyfjLOjcxPT+jZQnu0mmIjQvXk1g1Y9Zu+mjuIPT8QuHbNsLtFVt\nQRUO7UOzKHv9/ZSNFdsR9pgZwkt+xll169jRsYKhXRcTypSQKekjNvthWqteR8tVsXPLlYjOomft\ni2aB9cEQ1yQkjcMLicc2YuspOtR+OtT+ifiCiVYUV0d1/GhWGEfLYBlx9EIpwtVQXROCQ4hgEsMp\nIVe/jp1dL2HsaObZpbewr64Vw7ZYtfFZFrZvoXFkhEvuugu9vBzxzrrTeHh4HEIsZLK0rZzvfyJC\nTzzLk9sG+I+nDlpLms/3Iw2F783J8t3KQc4rCXFpeYSLyyOU6zphTUF/DyzPNDc3FzZs2BBKJpNK\nMBh0n3rqqfDixYszwWDQvfvuu2Nf/epX++6+++7YlVdeGQf44Ac/GL/xxhtb77jjjv69e/fqnZ2d\nvhUrVqQ1TSMUCrlPPvlk8KKLLkr//Oc/j91yyy0DxytOLxv5GCjkbF7fNkQ4YBD16TiOy5qt/fz2\nqe1kmg3ypqC9PkLKf/juLMFchnm7X+ei3gdpbOsGFQqjOn0by3GyKqrPoWr5AGa5QKZ8OMksz+69\nkK6qNha99hy6GSeuOpS7Am3MYEfjHPY2TOPcrU+w+Kot6H6HrO3D7/qBCBt2zyey5X0UjBEsYwwJ\nqK6JL1OFGG+yuCMYp7TqDUq6F2DYJoHK3YTK9/G6PUTvYD8lGQvLKaOv+ky2T1/AQKw4Yp3Rt48P\nrnmKa85eQvWK8zCqqlA9kfXwOCFYjksm7zCYypMt2Dy/a5j/eGonmcLBZR7pVyksikFIRwKLwwFu\naihnWVmYoKoSUH/v5ZpTMhsZ4Lbbbqt94IEHyjRNY+7cuZnVq1d3jo2NKe8Zi70/NCdabF1XYuVs\nFE1BVQW25ZJLWWQzNpbtMpjIEhIKm9bvZ8/Gfl6eC1saykibOraqEcplSPmKglSSTiCFIGP6sdXi\nBEMknaJl/3YWb1xDJhDh0RWrGC05OJVcMTpMc/cekqVl9JeWM3pIk4hofIhrH/0F4dQYQroYtoVq\nODR8cIwdaz9DJF4/sW+qtJuZS7+JcOrpTYbY0xtHOgZWuoCTqUIIg13Ns4lHK+monzZxnM/KM7dn\nD+dubWdZepTlf/NF9Nrad/2ds4fHqYTluORtl5FUnud3DfMvj24jnpk82+n6VewZEdxKPyiCOlPn\n79pqWVlegv7ORfeUFdtTBU9sp3LcL9oqONgFB9eWKKogn7XJpQoMJfIMWRbTYyFe+vXLfL1KsLPm\nYL/iikQcIRWyhkbSP3VkGM6mmbV/H6+3tJHXi8sMQkqqx4ZpHuqjLJXi5WmzGT5EeFXHoXq4F1cI\nLlnzIGWle5k2S6fEL+ge1Nm1OUlJPMhISTmJcAl7mmbRX15LX0XtpHOrjkOgkGPaYBcLd+8nXBjj\n8uE487/8dxhVFZ7IenicZLIFh2Te4o3uBA9v6eX/vTo1H0MC9swITkOISysi/HB+K7ryjr67ntge\nAU9sp/IHuWgpJbblogiBogqyKYtUIs/Atl6efH4bdc4IC84/k7LZrSgavHrPg3w3GGJM0yhNppgz\n1MfnP7yS6KxpdP/y16zZuA7f8AjBs5Zw9nlLCTY24IwOsu8/v8XP3BAvLFxAxjRRXYfusgqyhg/D\nKnDeq08xbfcbBLMpBmLVvLJoBbuaZk6KVUhJ3WhxeWJezx7q+oeZ27GVoOvQnEhQ+8c3EbxgBf6K\nEk9kPTxOMVxXkrddRjMF9gyl+MeHttETzxINGewZPGjTGa4OsO4vLsB3lE5Zb8IT2yPgie1UTupF\nWwWHQtZG0xV0n4YQxVIYx3FxCi5WwUFVFcyAVjRvPwTXlSiHuSt1c1nSe/dBMk6maz9b7/k1a6qb\nuWf5xQxGpvYSLksnCBRyzOnaR8DOcM5rm5iz9Q1idRUobXMovegiSi5YjjB1FE07ahs7Dw+Pk08y\nZ2E7klTeZv2+UX6xdh+vdI4QDeo8d/vFBM13lBvrie0ROGliK4S4Evg6oALfk1L+85ueF+PPXw1k\ngE9KKTeMP/cD4H3AgJRy3lGe77QQ2z8UdjrD1r/9W34WKudXF1xGXjcwrAIfeeZhrn/uKeo+9jH8\nc+YSmjMTxR9A8ZlecwkPj3cZjivJWQ6DyTyVYZPAOxNa8MT2iJwUsRVCqMAO4DKgC1gHfERKufWQ\nfa4G/oKi2J4DfF1Kec74cxcAKeAnntj+fjiOy8jjT1BQFIIlpQTmzkHz+1B+/+xEDw+P9w6e2B6B\nk9Ub+Wxgl5RyN4AQ4pfAtcDWQ/a5lqKYSmCtEKJUCFEjpeyVUq4RQhw2aI9jQ1UVKq68/GSH4eHh\n4fGe5UQObeqAQzuKdI1vO9Z93hYhxE1CiFeFEK8C5e8kUA8PDw+P05evfOUrldOnT587bdq0uV/+\n8pcrAfr7+9Vly5ZNb2pqmrds2bLpg4ODE4knX/rSl6obGxvnNTc3z7v33nsnDH6fe+65wIwZM+Y0\nNjbO++QnP9nguu7hTveOOO3nEaWU35VSLhmfPvamMzw8PDzeQ6xbt873k5/8pGLDhg3t7e3tbzzy\nyCOlW7ZsMf/+7/++ZsWKFcm9e/duWbFiRfKOO+6oBli/fr3vvvvui27fvv2NRx55ZMfnP//5Rtsu\n+gH/+Z//edO3v/3tvZ2dnVt2797tu+eeeyJve/Jj4ESKbTfQcMjj+vFtx7qPh4eHh4fHYdm8ebP/\nzDPPTIXDYVfXdc4777zkL3/5y9JHHnmk9Oabbx6GosXeww8/XAbwVhZ7e/fu1Q9Y7CmKMmGxd7zi\nPJFrtuuA6UKIFooC+mHgo2/a50Hgs+PruecAY1LK3hMYk4eHh4fHCeCBBx5oGBgYOK49WysrKzOr\nVq16W4ODhQsXZr/85S/X9fX1qcFgUD7++OMlZ5xxRnp4ePi9YbEnpbSFEJ8FHqVY+vMDKeUbQojP\njD//HeB3FDORd1Es/fnUgeOFEKuBFUC5EKIL+Hsp5fdPVLweHh4eHqcfixYtyt166619l1xyyQy/\n3+/OnTs3o76pL8C73mJPSvk7ioJ66LbvHPJvCdzyFsd+5ETG5uHh4eFx/DjSCPREcttttw3ddttt\nQwCf/exn6+rr6wunmsXeaZ8g5eHh4eHx3qa7u1sD2Llzp/HQQw+V/smf/MnIFVdcEb/77rtjAG+2\n2Lvvvvui2WxWbNu2zThgsdfU1GQdsNhzXZef//znsWuvvTZ+vGL0/Gw9PDw8PE5rrrnmmrZ4PK5p\nmia/9rWv7SsvL3fuvPPO3uuuu66tqamp/IDFHsCSJUtyq1atGpkxY8ZcVVW566679mpaUQq/+c1v\n7j3UYu+GG24YO14xer2RPTw8PDyOBq+D1BE4WR2kTgZH+0f3mv96eHh4ePzBeFet2UoprzzZMXh4\neHh4eLyZd5XYenh4eHh4nIp4Yuvh4eHh4XGC8cTWw8PDw8PjBOOJrYeHh4eHxwnGE1sPDw8Pj9Oa\nG264oTkajZ4xffr0uQe2HU+LvWw2K1auXNna2Ng4b8GCBbO2b99ucIx4Yuvh4eHhcVrz6U9/eujB\nBx/ceei242mx9/Wvf728pKTE3rdv35bPfvaz/X/5l39Zf6wxemLr4eHh4XFac9VVV6UqKirsQ7cd\nT4u93/72t6Wf/vSnhwE+9alPjb744ovhYzWWf7c1tfDw8PDwOAlsbf9iQzq147ha7AVDMzJzZv+f\nd2RwcDwt9vr7+42WlpYCgK7rhEIhp7+/X6upqbE5St6TYiuEeAQoP0EvX87Rd7I62ZwusXpxHl9O\nlzjh9In1vRDn0OnaOOhdb7F3qnIiPzDH0J/5pHO6xOrFeXw5XeKE0ydWL054pyPQE8XxtNirqqoq\n7Nmzx2hra7MsyyKVSqlVVVVHPaoFb83Ww8PDw+NdyPG02Fu5cmX8Bz/4QQzghz/8YdnSpUuTinJs\n8vmeHNl6eHh4eLx7eP/739+ydu3a8OjoqFZVVbXgr//6r3uOp8XerbfeOvTBD36wpbGxcV5JSYnz\nq1/9quNYY3xXWeydCgghbpJSfvdkx3E0nC6xenH+//buP8iquozj+PujopAggrKi7Aa2sGzowJqp\nzMiE2UQWVOqo4EyKo5aGOAplk1oTDOPEjFFqMzRNSyiFLERpjGPlpjKomawgCO4uhgkrxMJOJpog\nutynP8736uG6Z+Mu9+49yz6vmTt77vf8eu4ze+/3nnPP+T6F1VPihJ4Ta2+N00vsHaqzEnve2Trn\nnOsS72wP1Vln67/ZOuecc0XmnW2eJG2TtEnSBkkvhrbBkuol/SP8HRRb/k5JWyVtkfSlIsf2a0l7\nJG2OteUdm6Rzw2vcKukBFfia+YQ450jaGfK6QdJXUhBnhaSnJTVKekXSbaE9VTntJM405rSvpLWS\nNoZY54b2tOU0Kc7U5TTs41hJL0l6LDxPVT6dd7Zd9Xkzq4ldQv994EkzGwU8GZ4jaQwwDTgLuARY\nKOnYjjZYIA+G/cR1JbZfAN8ERoVHoW+V6ihOgJ+FvNaY2eMpiLMd+I6ZjQHGA7eEeNKW06Q4IX05\nPQBcbGbjgBrgEknjSV9Ok+KE9OUU4DagKfY8bfns9byzLYyvAw+F6YeAS2PtdWZ2wMxeB7YC5xcr\nCDNbA7x5JLFJOh04ycz+btEP+kti6xQzziSljHOXma0P0+8QfZgNI2U57STOJKXMqZlZdvSePuFh\npC+nSXEmKVlOJZUDk4HanHhSk0/nnW1XGPBXSeskfSu0nWZmu8J0K3BamB4GxG/03kHnH4LFkG9s\nw8J0bnt3uFXSy4pOM2dPe6UiTkkjgHOAF0hxTnPihBTmNJzy3ADsAerNLJU5TYgT0pfT+4DvAfHB\nelOXz97OO9v8TTCzGuDLRKfrPhefGb4VpvIS7zTHRnQK61NEp+x2AQtKG85HJPUHfg/cbmZvx+el\nKacdxJnKnJrZwfAeKic6qjo7Z34qcpoQZ6pyKmkKsMfM1iUtk5Z8FsvWrVv7XHDBBVWVlZVnjRw5\n8qx58+aVgZfY6/HMbGf4uwd4hOi08O5wGobwd09YfCdQEVu9PLR1p3xj2xmmc9uLysx2hw+3DPAr\nPjrdXtI4JfUh6sCWmtkfQnPqctpRnGnNaZaZvQU8TfTbYOpy2lGcKczphcDXJG0D6oCLJf2WFOez\n0Pr06cOCBQt2vPbaa680NDQ0LVq0qGzdunV9vcReDybpREkDstPAJGAzsAqYHhabDvwxTK8Cpkk6\nQdKZRBcdrO3eqPOLLZx6elvS+HA14rWxdYom+8EQXEaU15LGGba7CGgys5/GZqUqp0lxpjSnQySd\nHKb7AV8EmklfTjuMM205NbM7zazczEYQXfj0lJl9g5Tls5iGDx/+wYQJE/YBDBo0KFNZWbm/paXl\neC+x17OdBjwSrog/DnjYzP4sqQFYIekGYDtwFYCZvSJpBdBIdMXoLWZ2sFjBSVoGXAScKmkH8CNg\nfhdim0F0xXA/4E/hUew4L5JUQ3S6axtwU6njJDpquAbYFH67A7iL9OU0Kc6rU5jT04GHwhWwxwAr\nzOwxSc+TrpwmxfmbFOa0I93+P3p7U0tF87vvFbTEXvWJfffd9+lPHnaBgy1bthzf2Nj4iYkTJ/7X\nS+z1YGb2T2BcB+3/Br6QsM49wD1FDi27r6sTZuUVm5m9CJz98TUKIyHORZ0sX6o4nwWS7jVMTU47\nifPxTtYpVU5fJrqAK7c97/dQkXOaFOc1naxTkpzG9rMaWB2mU5XP7rB3795jLr/88sr58+e/MXjw\n4EMOO73EnnPOuaNCPkeghXbgwAFNnjy58sorr3xz+vTpb4GX2HPOOecKJpPJMG3atOFVVVXvzZkz\nZ3e23UvsOeeccwVSX1/f/9FHHz1l1KhR+6urq8cAzJ07d6eX2HPOOXdU8Ko/h/KqP84551wJ+Wlk\n5w6TpIPApljTpWa2rUThOOd6EO9snTt8+8PwfR2SdJyZ5XWFonOud/DTyM4dAUnXSVol6SmiUmZI\nukNSQxisfm5s2bslvSrpWUnLJH03tK+W9NkwfWoYei87EP69sW3dFNovCuuslNQsaWkY9QdJ50n6\nm6I6rGslDZC0JgzEkI3jWUkfu1/cOVc8fmTr3OHrFxuh6XUzuyxMfwYYa2ZvSppENATe+UQDTaxS\nVKziXaLh9GqI3nfrgcTB44MbgL1mdp6kE4DnJD0R5p1DVJP0X8BzwIWS1gLLgalm1iDpJGA/0YAh\n1wG3S6oC+prZxiPKhHMuL97ZOnf4kk4j15tZtj7vpPB4KTzvT9T5DgAeMbN9AJJWHcb+JgFjJV0R\nng8M23qfaDzbHWFbG4ARwF5gl5k1AGQrFEn6HfBDSXcA1xMNyeec60Z+Gtm5I/dubFrAj82sJjxG\nmlniUJRBOx+9F/vmbOvW2LbONLPske2B2HIH6eSLc+jg64kKh18FLP3/L8m5niGpxN7s2bPPKCsr\nG1tdXT2murp6zPLlywdm1/ESe871fH8BrldUWxZJwySVAWuASyX1U1Q56quxdbYB54bpK3K29W1F\n5fOQVKWo2lSSLcDpks4Lyw+QlO2Ea4EHgAYz+88RvULnUiSpxB7AzTffvLu5ubmxubm5cerUqXvB\nS+w5d1QIR54PA89L2gSsBAaY2Xqi31M3ElVTaYit9hOiTvUl4NRYey1RdZb1kjYDv6TzI9j3ganA\nzyVtJDqa7RvmrQPeBhYX4nU6lxZJJfaSlvcSe86lnJn176DtQXJ+AzWz+4H7O1j2w2orkubE2puB\nsbFFfxDaM0Sl8u7K2dTq8MiuPzM23QCMz923pDOIvlw/kTvPuUK4Y+XGildb3yloib2qoQP23XvF\nuC6V2HvmmWf619bWltXV1Z0ybty4fQsXLnxjyJAhB0tVYs+PbJ07ykm6FngBuDt04M4ddXJL7M2a\nNWtPS0vLpqampsahQ4d+MGPGjIpSxudHts6VgJnN6cZ9LQGWdNf+XO+UzxFooXVUYq+iouLDo86Z\nM2e2TZkyZRR4iT3nnHMub0kl9rZv3/5hx1lXV3fy6NGj94OX2HPOOefyllRib9myZYMbGxv7AZSX\nl7+/ePHi7eAl9pxzzvUwXmLvUF5izznnnCsh72ydc865IvPO1jnnnCsy72ydc851VSaTyajUQaRB\nyEPifeze2TrnnOuqzW1tbQN7e4ebyWTU1tY2ENictIzf+uOcc65L2tvbb2xtba1tbW09m9598JYB\nNre3t9+YtIDf+uOcc84VWW/+JuKcc851C+9snXPOuSLzztY555wrMu9snXPOuSLzztY555wrsv8B\n+xIq7UeN98cAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f05215e68d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "spectra_test, concentration_test, molecule_test = read_spectra('data/spectra_4.csv')\n", "\n", "plot_spectra(frequency, spectra_test,\n", " 'All training spectra')\n", "plot_spectra_by_type(frequency, spectra_test, molecule_test,\n", " 'Mean spectra in function of the molecules')\n", "plot_spectra_by_type(frequency, spectra_test, concentration_test,\n", " 'Mean spectra in function of the concentrations');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Training and testing a machine learning model for classification" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def plot_cm(cm, classes, title):\n", " \"\"\"Plot a confusion matrix.\n", " \n", " Parameters\n", " ----------\n", " cm : ndarray, shape (n_classes, n_classes)\n", " Confusion matrix.\n", " \n", " classes : array-like, shape (n_classes,)\n", " Array contining the different spectra classes used in the\n", " classification problem.\n", " \n", " title : str\n", " Title added to the plot.\n", " \n", " Returns\n", " -------\n", " None\n", " \n", " \"\"\"\n", " fig, ax = plt.subplots()\n", " plt.imshow(cm, interpolation='nearest', cmap='bwr')\n", " plt.title(title)\n", " plt.colorbar()\n", " tick_marks = np.arange(len(classes))\n", " plt.xticks(tick_marks, classes, rotation=45)\n", " plt.yticks(tick_marks, classes)\n", "\n", " fmt = 'd'\n", " thresh = cm.max() / 2.\n", " for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):\n", " plt.text(j, i, format(cm[i, j], fmt),\n", " horizontalalignment=\"center\",\n", " color=\"white\" if cm[i, j] > thresh else \"black\")\n", "\n", " plt.tight_layout()\n", " plt.ylabel('True label')\n", " plt.xlabel('Predicted label')\n", " return fig, ax" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy score: 0.83\n", "Accuracy score: 0.93\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUUAAAEmCAYAAAD1FIKpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8lGX9//HX+5zDclgVUWQVVHItUEEtywQF1xRLU1vU\nXDNLzZav+fNbmi1+K7P6agtpuZVmX3NJUyNLTUURFHEXERCIRSAV5Aicw+f3x3UdvZnOmeWcmbln\nznyej8c8Zu5lrvtzz9zzmeu6l+uWmeGccy6oSzsA55yrJJ4UnXMuwZOic84leFJ0zrkET4rOOZfg\nSdE55xJST4qSGiX9WdKbkv7YiXI+LemvxYwtLZI+IumlMi/zOUkHlHOZpSDpAUmnpR1HpZB0saQb\nS1j+u9uNgt9K+rekGWlsx8WQd1KU9ClJMyWtlbRU0j2SPlyEGI4BBgFbmdmxHS3EzH5nZpOLEE9J\nSTJJO2abx8z+aWY7lSumuMzdzOyBYpcr6WRJLXG7eUvS05KOKPZySi1jPVofV5Y5hmslfaeN8aX6\nbeaUsd18GJgEDDOzvdPYjoshr6Qo6XzgJ8D3CAlsBHAVcGQRYtgOeNnMmotQVtWT1JB2DCUw3cz6\nAFsAPwdulrRFyjF1xHQz65N4fLHQAor9/Zb4t1mo7YAFZvZ2ZwtK9XdgZlkfQH9gLXBslnl6EL6Y\nf8XHT4AecdoBwGLgK8AKYCnwuTjtEmADsDEu41TgYuDGRNkjAQMa4vDJwKvAGmA+8OnE+IcT7/sQ\n8ATwZnz+UGLaA8ClwCOxnL8CA9tZt9b4v56IfwpwGPAysBq4MDH/3sB04I0475VA9zjtobgub8f1\nPS5R/n8By4AbWsfF9+wQl7FnHB4CvA4c0E68BuyYGL4W+E58PRC4K8a2GvgnUBenLQAOiq8vBm4B\nro+fz3PAuESZewJPxWl/BP7Quow24sn8XnrFGMcnxv0xrvub8TPaLSP+q4C74/IeB3ZITJ8EvBjf\neyXwIHBanFYHXAQsjN/d9UD/jO3qc8Ai4N/A54HxwJz4GV3Z3nq08Ru5Pn4vC+My6xLvewS4AliV\n+C5OAV6Iy70P2C6OV5x3BfAW8AywO3AG4XeygbDt/Jn8fpsXs/nvKdtnfRjwfPyclwBfzXe7Ifx2\n3wFaYkyXkNiOE9vurfFzmg+ckxHn/wE3xvU+LVduKtUjn6R4CNBMTErtzPNt4DFgG2Br4FHg0kRS\naY7zdIsf/Dpgy3a+tMzh1o23AegdP7Cd4rTBrV9qcqMFBsSN7bPxfSfE4a0SSXEe8D6gMQ5fliUp\nNgPfjPGfHr/U3wN9gd2AJmBUnH8vYN+43JGEDf+8LEmrtfz/Ify5NLaxMZ1O2Fh7EX5AP8ryXWRL\nit8HfhnXoxvwEUDtJMV34ndVH9/3WJzWnfDDPzeW8XHCDzVnUoxlnR3n3yYxzynxs2z9c52dEf8q\nwp9NA/A74ObEj3UNYRdMN+DL8bM8LVHuK8D2QB/gT8ANGdvVL4GewOS4zrcTtuOhhMT00TyS4vXA\nHXEdRhL+LE9NvK8Z+FKMvxE4Ksa1Sxx3EfBonP9gYBahVq04z+DM77KA3+bFbP57yvZZLwU+El9v\nyXt/xPluN5t9Rmz+514X1+ubhG1oe0Ll5uBEnBsJFY46oLGSk+KngWU55pkHHJYYPphQjW79YJqS\nX1zc2PbtYFJ8A/hE5ofG5j++zwIzMqZPB06Orx8ALkpM+wJwbzvr1hp/fRzuG+PZJzHPLGBKO+8/\nD7gtMdxWUtwA9GxrY0qMu5NQa5hDrIW3s7xsSfHbhB/vjm28L7lxXwz8LTFtV6Apvt6fUItQYvrD\nZE+KzfF72xg/y09miX+LuA79E/FfnZh+GPBifH0iMVnHYRFq3a1J8X7gC4npO8UYWv+wDBiamL4K\nOC4xfCvxDy1jPVof+xIS/QZg18T7zgQeSLzvtYx1vIeYNONwHaGisB0wkZBU9yXWxtr6Lgv4bV5M\n4veU47N+LcbeL2O+fLebk2k/Ke7TxufwDeC3iTgfyrYu5Xrks09xFTAwRxt/CKH20GphHPduGbb5\nPsN1hH/ugljYV3EcoZmzVNLdknbOI57WmIYmhpcVEM8qM2uJr5vi8/LE9KbW90t6n6S7JC2T9BZh\nX8/ALGUDvG5m7+SY59eEZtT/mtn6HPO254eEGspfJb0q6YIs82Z+Pj3jNjAEWGJxS44W5VjuY2a2\nBaH2cSehpgGApHpJl0maFz+vBXFS8jNr77saklx2jCkZS1vbZQNh31urzO+xze81uR6Jx2Mxzm5t\nLCe5rWV+PtsBP5X0hqTWJqkICfrvhN0AVwErJE2V1I+25fPbfFcen/UnCH86CyU9KOmDcXwh2017\ntgOGtK5zXO8L2fy7yLUdlUU+SXE6sJ5QrW3Pvwgr3WpEHNcRbxOaia22TU40s/vMbBKh6fwiIVnk\niqc1piUdjKkQvyDENdrM+hG+eOV4j2WbKKkPoalzDXCxpAFZZl9HO5+fma0xs6+Y2faEHfHnSzow\nR2yZlgJDJSXXaXg+bzSztcBZwGcl7RFHf4rQnDyIsI9sZByf6zNrjeXdZceYkrG0tV02s3ni66yV\nhNpn5nKS21rm97sIODMjwTaa2aMAZvYzM9uLUEN/H/C1dsrJ57eZlPWzNrMnzOwowu6D2wn7lYu1\n3SwC5mesc18zOywxT9bfQbnkTIpm9iZhP8BVkqZI6iWpm6RDJf0gznYTcJGkrSUNjPN39Nyo2cD+\nkkZI6k+oYgMgaZCkoyT1JmwMa4FNbZTxF+B98VSFBknHETawuzoYUyH6EvZ7ro212LMypi8n7E8p\nxE+BmWZ2GuGAwy+zzDsb+FSsFRwCfLR1gqQjJO0Yk8ebhJ3ibX1+2UyP7/ti/GyPIuzvy4uZrQau\nJmwjED6v9YRaTy9CzTpfdwO7Sfp4rC2dw+Z/ojcBX5Y0Kv6xfA/4gxXxTIfYgrgF+K6kvpK2A84n\n+/b/S+AbknYDkNRf0rHx9XhJ+0jqRqggvMN739Fm206ev82kdj9rSd0VzvXtb2YbCdvwpjitGNvN\nDGCNpP9SODe5XtLuksYXWE7J5XVKjpldTviiLyIcZFgEfJHwbwLwHWAmYX/XM8CTcVzBzGwa4Wjm\nHMK+umQiq4tx/IvQ5Pgo/5l0MLNVwBGEI96rCEeOjzCzlR2JqUBfJfwjryHUYv+QMf1i4LrYhPhk\nrsJi0jmE99bzfGBPSZ9u5y3nAh8j7PP6NO99RwCjgb8R/kymAz83s3/ksU7vMrMNhIMrp8ZlfIbw\nHRXSpP8JcJikDxAOUiwk1KyeJxywyzeWlcCxwGWE73k04Uhvq98QjuY/RDja+Q7hgEexfYmQwF4l\n7F/9fVx2e3HfRjiwdnNsxj4LHBon9yNsN/8mfC6rCM1XCC2FXeO2c3ssK9dvMynXZ/1ZYEGM6fOE\n7QeKs920EH6TYwnfxUrCn2P/Qsoph9YjSM51mKTHgV+a2W/TjsW5zkr9Mj9XfSR9VNK2sfl8EvAB\n4N6043KuGLri1ROu9HYi7EfrTWgyHmNmS9MNybni8Oazc84lePPZOecSKq75PLC+3kY2VFxYRfcM\n7087hJJrrpEuPjYVenJK1Zq10sy2LlZph0gFnQ4yC+4zs0OKtfz2VFz2GdnQwMyhQ3PPWOV20My0\nQyi5Zctyz9MVrFuXdgTlosyrxDplJeE8vryXnvvKsKKouKTonKshdQXswStTldyTonMuPZ4UnXMu\nkgpLimXiSdE5lw4JCjmoumFD6WJJ8KTonEuP1xSdcy7Bk6JzzkW+T9E55zJ4UnTOuchris45l8GT\nonPOJXhSdM65yJvPzjmXUOjJ22VSeRE552qH1xSdcy7Bk6JzzkUVuk+x8iJyztWOurr8H3mQVC/p\nKUl3xeEBkqZJmhuft8wZUidXyTnnOqa1pljEpAicC7yQGL4AuN/MRgP3x+GsPCk659JTxKQoaRhw\nOHB1YvRRwHXx9XXAlFzl+D5F51x6CtunOFDa7OZGU81samL4J8DXgb6JcYMS9yRfBgzKGVIhEXUZ\ndXXw5z/D1fEP5dBD4d574ZVX4P1d6y57mza9w5Ile7N48RgWLdqN1au/lXZIJbF+/SmsW7cNTU27\npx1Kid0L7ATsCFyWciydVHjzeaWZjUs8pr5XlI4AVpjZrPYWZ+Em9zlvdF+bSfFzn4N5894bfvll\nOOssmDEjvZhKROrB4MF/Z9iwpxk2bDZNTffyzjuPpR1W0TU0nEzPnvemHUaJtQBnA/cAzwM3xecq\n1Xrydr6P7PYDjpS0ALgZmCjpRmC5pMFhcRoMrMhVUO0lxW23hQkT4A9/eG/cvHkwf356MZWQJOrq\n+gBgthGzjYDSDaoE6uv3BwakHUaJzSDUELcHugPHA3ekGlGnFWmfopl9w8yGmdlIwgfzdzP7DHAn\ncFKc7STy+MBqLyn+93/DZZfV0h3MMWth8eKxLFy4DY2Nk+jZc5+0Q3IdsgQYnhgeFsdVseIffc50\nGTBJ0lzgIPLY51DypChpiiSTtHOpl5XTxImwahU8+2zakZSVVM+wYbMZMWIx69fPYMOG2lp/V6FK\nc0oOZvaAmR0RX68yswPNbLSZHWRmq3O9vxw1xROAh+NzuvbaCw48EB56CH72M/jgB+HHP047qrKp\nr9+CxsYJrFvX1fe9dVVDgUWJ4cVxXBUrfU2x8JBKWbikPsCHgVMJ7fx0/fCHsN9+sP/+cM45MH06\nnH9+2lGVVEvL67S0vAHApk1NNDVNo1u39CvtriPGA3OB+cAGwvGEI1ONqFNKVFPsrFIv6SjgXjN7\nGVglaa+2ZpJ0hqSZkma+3tJS4pDaMHkyPPII7LEHXHMNXHtt+WMokebmpSxdOoHFiz/AkiXjaWyc\nRO/eR6QdVtGtX38C77zzQcxeoqlpGM3N16QdUgk0AFcCBwO7AJ8Edks1ok6rwKSocOpOiQoP1x/+\n1MymSToHGGFmX832nnE9etjMoVXeJMjDDno17RBKbtmytCMoj3Xr0o6gXDTLzMYVq7RxffvazHH5\nF6cHHijq8ttTsitaJA0AJgLvl2RAPWCSvmalzMTOuepQg73kHAPcYGbbmdlIMxtO2BnykRIu0zlX\nLYp78nbRlDIpngDcljHuVirhKLRzrjJU4D7FkqVfM5vQxriflWp5zrkqVIHNZ+8lxzmXjgrdp+hJ\n0TmXHk+KzjkXeU3ROecyeFJ0zrnIa4rOOZfBk6JzzkWtJ29XmMqLyDlXO7ym6JxzUYXuU6y8iJxz\ntaO4933uKWmGpKclPSfpkjj+YklLJM2Oj8OyleM1RedceopbU1wPTDSztZK6AQ9LuidOu8LMfpRP\nIZ4UnXPpKHLzOXZJuDYOdouPgrsp9Oazcy49Re4lR1K9pNmE+ztPM7PH46QvSZoj6TeStswaUufW\nyDnnOqjwe7QMbL1tSXyckVmkmbWY2VjC/V/3lrQ78AvCzbLHAkuBy7OF5c1n51x6Cms+r8z3dgRm\n9oakfwCHJPclSvo1cFfWkAqJyDnniqbIPW9L2lrSFvF1IzAJeFHS4MRsRwNZb3zuNUXnXHqKe/R5\nMHCdpHpChe8WM7tL0g2SxhIOuiwAzsxWiCdF51w6in/0eQ6wRxvjP1tIOZ4UnXPpqcArWjwpOufS\n40nROeeiCr322ZOicy49nhSdcy7ymmJ+5vV6P0ePmZl2GCU379FBaYdQclq3PO0QyuIzn0k7gvK4\n8cYSFOpJ0TnnEjwpOudc5LcjcM65BN+n6JxzGTwpOudcgidF55yLvPnsnHMZPCk651zkNUXnnMvg\nSdE55xI8KTrnXOQnbzvnXEKF7lOsvIicc7WjiPd9ltRT0gxJT0t6TtIlcfwASdMkzY3Pft9n51yF\nKmJSBNYDE81sDOEez4dI2he4ALjfzEYD98fh9kPq5Co551zHtDafi5QULVgbB7vFhwFHAdfF8dcB\nU7KV40nROZeewpLiQEkzE48zMouTVC9pNrACmGZmjwODzGxpnGUZkLUzUz/Q4pxLR+EHWlaa2bhs\nM5hZCzBW0hbAbZJ2z5hukixbGZ4UnXPpKdHRZzN7Q9I/gEOA5ZIGm9lSSYMJtcj2QypJRM45l0uR\n9ylK2jrWEJHUCEwCXgTuBE6Ks50E3JGtHK8pOufSU9yTtwcD10mqJ1T4bjGzuyRNB26RdCqwEPhk\n1pCKGZFzzuWtyCdvm9kcYI82xq8CDsy3nJpNimvWvMQTTxz37vC6da+y887fZscdz0sxqiKrq4O/\n/hWWLQu3nPvmN2HyZNi4ERYsgHPPhbfeSjvKIroXOBdoAU4jx+loVemFF67glVeuBsQWW7yfD33o\nt9TX90w7rI7zK1oqR9++OzFx4mwmTpzNhAmzqK/vxZAhR6cdVnGdfjrMnfve8IMPwkc/ChMmwLx5\ncM456cVWdC3A2cA9wPPATfG561i3bgkvvvgzDj10Jh/72LOYtbBgwc1ph9VxRd6nWCw1mxSTXn/9\nfnr33oFevbZLO5TiGTwYJk2C3/3uvXEPPggtLeH1rFkwZEg6sZXEDGBHYHugO3A8OfanVyWzZlpa\nmti0qZmWlnU0Nlb5d1iBSbFmm89JixffzLBhJ6QdRnFdeil8+9vQp0/b0z/1Kbj99vLGVFJLgOGJ\n4WHA4ynFUhq9eg1l112/ym23jaC+vpHBgyczZMjktMPqnFprPktqkTQ7XqD9pKQPlXJ5HbFp0waW\nLbuTIUOOTTuU4pk0CVauhDlz2p5+3nnQ3Ay33lreuFynrF//bxYtuoMpU+bziU/8i+bmt3n11RvT\nDqvjKrT5XOqaYpOZjQWQdDDwfeCjJV5mQZYvv4f+/fekZ8+sV/5Ul733hoMPhgMPhJ49Q23xqqvg\n7LPhuONC0jzmmLSjLLKhwKLE8OI4rutYtuxv9Okzip49twZgxIiPs3Llo2y//WdSjqwTaq2mmKEf\n8O8yLi8vixff1PWazt/9LuyxB4wfD2eeCY88EhLihAnh+cQToakp7SiLbDwwF5gPbABuBo5MNaJi\n6917BCtXPkZz8zrMjGXL7qdfv13SDqvjarSm2Bgvzu5JOLFyYlszxQu7zwBobBxR4pDe09z8NitW\nTGPs2F+VbZmp+v73oXt3uOWWMDxrFnz96+nGVDQNwJXAwYQj0acAu6UaUbENHLgPI0Ycw1/+sidS\nAwMG7MHo0f/RJ0J1qcGet5PN5w8C10va3cw2uyDbzKYCUwG23HJc1ou1i6mhoTeHH76qXItLx6OP\nhgfAvvumG0vJHRYfXdeYMZcwZswlaYdRHBXa83bZ0rSZTZc0ENiaHBdkO+dqRC0nRUk7A/VAF6+a\nOefyUqM1xdZ9igACTor9nTnnXO0lRTOrL2X5zrkqV01JUVK/bG80s67Uk4BzrtyqsPn8HOGmL0qM\nax02oHznzjjnuqZqSopmNry9ac4512lVWFN8l6Tjge3N7HuShhHujjWrtKE557q8Cjx5O2ealnQl\nMAH4bBy1DvhlKYNyztWA4t+jZbikf0h6XtJzks6N4y+WtCR2TjNbUtYz/PNJ0x8ysz0lPQVgZqsl\ndc9nnZ1zLqviNp+bga+Y2ZOS+gKzJE2L064wsx/lU0g+SXGjpDrCwRUkbQVs6kjEzjn3ruLfo2Up\nsDS+XiPpBTrQVVI+EV0F3ApsLekS4GHgfwpdkHPO/YfCms8DJc1MPNrtDUPSSMJNrFp7Gv6SpDmS\nfiNpy2wh5awpmtn1kmYBB8VRx5rZs3msrnPOZVdYTXGlmY3LNZOkPoSK3Hlm9pakXwCXElq7lwKX\nE7pRalO+h37qgY2x0Mo7hu6cqz4lOCVHUjdCQvydmf0JwMyWJ6b/GrgrWxn5HH3+f4Rbow0h3Pji\n95K+0Ym4nXMuKO7RZwHXAC+Y2Y8T4wcnZjsayNrSzaemeCKwh5mtiwv4LvAU4dYCzjnXMcWvKe5H\nOHXwmURHNBcCJ0gaS2jpLgDOzFZIPklxacZ8DXGcc851TnGPPj/M5pclt/pLIeVk6xDiCkJmXQ08\nJ+m+ODwZeKKQhTjn3H+QKvKKlmwRtba7nwPuTox/rHThOOdqSjVd+2xm15QzEOdcjanWDiEk7QB8\nF9iVcFc+AMzsfSWMyzlXCyowKeYT0bXAbwk7MA8FbgH+UMKYnHO1oELv+5zPknqZ2X0AZjbPzC4i\nJEfnnOucCkyK+Rz6WR87hJgn6fPAEqBvacNyztWECmw+55MUvwz0Bs4h7FvsT5brBp1zLi/VeqDF\nzFp7mVjDex3NOudc51VTUpR0G7EPxbaY2cdLEdC6dTBnTilKriy91y7PPVOVszYvLuh6dGO7PxOX\nTRWevH1l2aJwztWkSvzjzHby9v3lDMQ5V3s2VWAf/pVXd3XO1QQzT4rOObeZqk6KknqY2fpSBuOc\nqx2VWlPMp+ftvSU9A8yNw2Mk/W/JI3POdXmbNuX/KJd8ThL6GXAEsArAzJ4GJpQyKOdcbajWpFhn\nZgszxrWUIhjnXO1obT4XKylKGi7pH5Kel/ScpHPj+AGSpkmaG5+z3uI0n6S4SNLegEmql3Qe8HIe\n73POuXaZQXNz/o88NANfMbNdgX2BsyXtClwA3G9mo4H743C78kmKZwHnAyOA5XFhZ+UVonPOZVHM\nmqKZLTWzJ+PrNcALwFDgKOC6ONt1wJRs5eRz7fMK4PjcITnnXP46cPR5oKSZieGpZja1rRkljQT2\nAB4HBplZ6832lgGDsi0kn563f00b10Cb2Rm53uucc9kUmBRXmtm4XDNJ6gPcCpxnZm+F20EHZmaS\nsl6sns95in9LvO5JuJn0ojze55xzWRX7qLKkboSE+Dsz+1McvVzSYDNbKmkwsCJbGfk0nze79YCk\nG4CHOxizc84BxT95W6FKeA3wgpn9ODHpTuAk4LL4fEe2cjpymd8ocrTJnXMuH0WuKe5H6PP1GUmz\n47gLCcnwFkmnAguBT2YrJJ99iv/mvX2KdcBqchzSds65XIpdUzSzh6HdvsgOzLecrEkxVkfHEO7L\nArDJzLxHTedcUVTitc9Zk2I8UvMXM9u9XAE552pD68nblSafk7dnS9qj5JE452pOJV77nO0eLQ1m\n1kw4AfIJSfOAtwltdjOzPcsUo3OuC6rUrsOyNZ9nAHsCR5YpFudcjanEpJit+SwAM5vX1qNM8ZXM\npk3vsGTJ3ixePIZFi3Zj9epvpR1SSaxffwrr1m1DU1MX3S1cVwdPPgl//vPm488/P1RFttoqnbhK\n5l5gJ2BHwpkm1a2qms/A1pLOb29ixsmRVUfqweDBf6eurg9mG/nXvz7MO+8cSs+e+6YdWlE1NJxM\nt25fZP36E9MOpTTOPRdeeAH69Xtv3LBhMHkyLMzs8a7atQBnA9OAYcB4QkNu1zSD6rBKbT5nqynW\nA32Avu08qpok6ur6AGC2EbONtH+KU/Wqr98fGJB2GKUxdCgcfjhcffXm46+4Ar7+9fCr61JmEGqI\n2wPdCf20ZL04o+JVW01xqZl9u2yRpMCshSVL9mLjxlfo1+9sevbcJ+2QXCF+8pOQ/Pom/qOPPBKW\nLIE5c9KLq2SWAMMTw8MIncBUp2qsKXa62iRpmKQ7Yo+3r0q6UlKPzpZbLFI9w4bNZsSIxaxfP4MN\nG55NOySXr8MPhxUrwv7EVo2NcOGF8M1vpheXK0gl1hSzJcW8L4tpS7wa5k/A7bHH29FAI/CDzpRb\nCvX1W9DYOIF16+5NOxSXr/32C7XC+fPh5pth4kS44QYYNQqefjqMHzYsJM1BXeVS/aFs3kHV4jiu\nOpWg5+2iaDcpmtnqTpY9EXjHzH4by2sBvgycGPs7S1VLy+u0tLwBwKZNTTQ1TaNbt51Tjsrl7cIL\nYfjwkASPPx7+/nc45piQAEeNCo/Fi2HPPWH58rSjLZLxhJtqzgc2ADdT7WfMVWJNsSO95ORrN2BW\nckTs8HEBYW/x7LbeVC7NzUt5/fWTgBbMNtGnzyfp3fuINEMqifXrT6Cl5QFgJU1Nw+jW7RIaGk5N\nOyzXIQ3AlcDBhCPRpxB+ZtWpUvcpljIp5k3SGcAZAA0NI8qyzB49PsCwYU+VZVlp6tHjprRDKL0H\nHwyPTKNGlT+WkjssPrqGSkyK+Vz73FHPA3slR0jqB2wLvJQcb2ZTzWycmY2rq9u6hCE55ypJJTaf\nS5kU7wd6SToRQFI9cDlwpZk1lXC5zrkqUOz7PhdLyZJi7HfxaOAYSXOBVYT+GL9bqmU656pLTSVF\nADNbZGZHxlNyDgMOkeS96zjnil5TlPQbSSskPZsYd7GkJZJmx0fOHbJlO9BiZo8C25Vrec65ylfk\nGuC1hMPz12eMv8LMfpRvIRVx9Nk5V3uK3fO2mT0kaWRnyylp89k557Ip0z7FL0maE5vXW+aa2ZOi\ncy4VHdinOFDSzMTjjDwW8wtCt0JjgaWEM2Cy8uazcy41BdYAV5rZuELeYGbvXuMp6dfAXbne40nR\nOZeaUp9qI2mwmS2Ng0cDObvC8qTonEtFsa99lnQTcAChmb0Y+BZwgKSxgAELgDNzleNJ0TmXmmIm\nRTM7oY3R1xRajidF51wqvJcc55zL4EnROeciryk651yGct5mIF+eFJ1zqfCaonPOZfCk6JxzkdcU\nnXMugydF55xL8KTonHORN5+dcy6DJ0XnnIu8puiccxn85G3nnIu8puiccxk8Keahvh769Ek7itIb\nOzbtCEpPj1raIZSF/fwXaYdQFvpCccvzmqJzzmXwpOiccwmVmBT9FqfOuVR04BanWcX7Oq+Q9Gxi\n3ABJ0yTNjc9+32fnXOUqZlIErgUOyRh3AXC/mY0G7o/DWXlSdM6lotg1RTN7CFidMfoo4Lr4+jpg\nSq5yfJ+icy41BZ68PVDSzMTwVDObmuM9gxL3fV4GDMq1EE+KzrlUdOCUnJVmNq7jyzOTlPM8MU+K\nzrnUlOHo83JJg81sqaTBwIpcb/B9is65VBR7n2I77gROiq9PAu7I9QavKTrnUlPMmqKkm4ADCPse\nFwPfAi4DbpF0KrAQ+GSucjwpOudSU8ykaGYntDPpwELK8aTonEuFX/vsnHMZPCk651zkNUXnnMvg\nPW8751ygRU5zAAALQklEQVTkNUXnnMvgSdE55yKvKTrnXAZPis45l+BJ0TnnIm8+VyizFubOHUe3\nbkMZNequtMMpiVmzRlJf3xeoR2pgzJiZOd9Tne4FzgVagNPIo5PlyldfD0cdFZ7r6uDVV+GJJ2D7\n7WH8eNhyS7j1Vnj99bQj7RBPihVo5cqf0rPnLrS0vJV2KCW1227/oFu3gWmHUUItwNnANGAYMB44\nEtg1zaA6r6UF7rwznNBXVwdTpsBrr8Hq1XDffbD//mlH2GGVWlOs6a7DNmxYzJo1dzNgwGlph+I6\nbQawI7A90B04njx6iaoOrWc419WFhxm88UZ4VDGzsGr5PsqlpmuKS5eex7bb/oBNm9akHUqJieee\nOwipnkGDzmTbbc9IO6ASWAIMTwwPAx5PKZYik+CYY6B/f3j2WViRs5/UqlGJNcWSJkVJLcAzcTnz\ngc+aWUX8vb311l00NGxDr157sXbtA2mHU1K77/4wPXoMZcOGFTz//CQaG3emf//qbXbVHDP44x+h\ne3c45BAYMCA0n7uASkyKpW4+N5nZWDPbnXCXrbNLvLy8vf32I7z11p288MJIXnvteNau/TuvvfaZ\ntMMqiR49hgLQvfs2DBhwNGvXzkg5olIYCixKDC+O47qQDRtgyRIYPjz3vFWgTD1vF6yc+xSnU0Fb\n6eDB32eXXRazyy4LGDHiZvr0mciIETemHVbRtbS8TUvLmndfv/nmX+nVa/eUoyqF8cBcQoNkA3Az\n4UBLlevZM9QQIRyBHj686vclJlViUizLPkVJ9YTeb69pZ/oZwBkA3bqNKEdINWPjxuW8+OLRAJg1\ns/XWn2LLLTPvF94VNABXAgcTjkSfAuyWakRF0asXTJwYDrBI8MorsHAhjBoFH/4wNDbCYYfBypVw\n991pR1uQUhx9lrQAWEPYCJo7cve/UifFRkmzCTXEFwjnS/yHeO/WqQC9eo3LeQvCYuvT5wD69Dmg\n3Isti549t2fs2KfTDqNMDouPLmT1avi///vP8fPnh0eVK1ENcIKZrezom8uyTxHYDhAVtE/ROZe+\nSmw+l2WfopmtA84BviKppk8Dcs4FHTjQMlDSzMSjrXPLDPibpFntTM+pbAnKzJ6SNAc4AbihXMt1\nzlWm1pO3C7Ayj32EHzazJZK2AaZJetHMHipkISVNimbWJ2P4Y6VcnnOuuhS7WWxmS+LzCkm3AXsD\nBSXFmr7MzzmXrmLuU5TUW1Lf1tfAZODZQmPy/XvOuVSU4JScQcBtkiDktt+b2b2FFuJJ0TmXmmIm\nRTN7FRjT2XI8KTrnUlGpXYd5UnTOpcaTonPOJXhSdM65yJvPzjmXwZOic85FHbiipSw8KTrnUuM1\nReeci3yfonPOZfCk6JxzkdcUnXMugydF55xL8KTonHORN5+dcy6DJ0XnnIv85G3nnMvgNUXnnIsq\ndZ+i36PFOZeaIt+j5RBJL0l6RdIFHY3Ja4rOuVQUs6YoqR64CpgELAaekHSnmT1faFmeFJ1zqSli\n83lv4JV4nxYk3QwcBVR/UmxqmrVyzhwtLPNiBwIry7zMNNTCepZ9HfWFci7tXWl8l9sVt7hZ923a\npIEFvKGnpJmJ4almNjW+HgosSkxbDOzTkagqLima2dblXqakmWY2rtzLLbdaWM9aWEfoGutpZoek\nHUNb/ECLc64rWAIMTwwPi+MK5knROdcVPAGMljRKUnfgeODOjhRUcc3nlEzNPUuXUAvrWQvrCLWz\nnnkxs2ZJXwTuA+qB35jZcx0pS2ZW1OCcc66aefPZOecSPCk651yCJ0XXZUhS2jG46udJ0XUlXXp7\n9qRfHjV59FnSIDNbnhiuM7MK7K+jcyRtBWwys3+nHUspSboM2BpokPSkmf007ZhKpDuwPu0gurou\n/c/aFkk7A0slXSHpdIDWhCipy3wekg4D7gF+Jek7acdTKpJ+C+wK3ATcAXxJ0vcl9Us3suKSNBm4\nWdK3JH087Xi6si6TBAqwFngUWAYcK+l6SUdK6tdVaouSDgEuBL4LfA8YIakx3aiKT9IkYKiZHWlm\nfzOzPwETCZ0D/Fe60RVP/D4vBf5G+M0eKmnHdKPqumouKZrZYmAGsCdwGPAX4BTgbkl7SxqdZnyd\nJWkAYZ0uN7M7CE2uScCPJP0qMV9X2T+1GEBSN0kNZvYacBIwRdIH0g2t8xLf53fM7Crg14TvtJCO\nFFwBaiopJhLBBYARNqxlwAeA5wi1q/Ml9U4nws4zs9XAx4BvShpDqC1OBS4Dxki6Kc7XFc7aXwTs\nJWlfM9sYr2roHf/4niS0Cqpa4vu8LLZmFhO22x9J+omk8yUNlNQt3Ui7jpo60GJmlkiMc4HLgb2A\n883s9lhLXGlmb6cWZBGY2d2SWoCngAvN7DIASQcBt0vaysxWpRpkcbwE/B44TtJ6M3sq8d1tBXxP\n0nVmdk96IXZe/D43AbMk3UuozFxOOLh0KmGf6vnAxvSi7Dpq9jI/STsBDwJXmdmlacdTCnGf25XA\nPmb2hqTPAacDB5vZmnSjKw5Jg4GzgZ0IB5aeAL4NbEnYTXKNmb2UXoTFE//U/goMbj17Ih4cHGBm\nXb2fzLKp2aQIIOlkYCTwAzNbl240pSHpUOCHwM8JPYd8wcyeTTeq4pK0JXAwcA7wNLDOzL6SblSl\nEb/Py4EDzGxF2vF0RbWeFHcGfgAc31WTIoCkI4A/AXt0tOeQaiCpu5ltSAx31fNPjwK+BYzriuuX\ntppOigCSenXlhNiqFtZTkloPICVfd0WS+phZ1R9IqkQ1nxSdcy6ppk7Jcc65XDwpOudcgidF55xL\n8KTonHMJnhS7EEktkmZLelbSHyX16kRZB0i6K74+UtIFWebdQir8lvCSLpb01XzHZ8xzraRjCljW\nSEld6vxMVxqeFLuWJjMba2a7AxuAzycnKij4OzezO1svFWzHFkDBSdG5SuRJsev6J7BjrCG9JOl6\n4FlguKTJkqZLejLWKPtA6KJK0ouSngTe7bNP0smSroyvB0m6TdLT8fEhQmcTO8Ra6g/jfF+T9ISk\nOZIuSZT1/yS9LOlhwqV5WUk6PZbztKRbM2q/B0maGcs7Is5fL+mHiWWf2dkP0tUWT4pdkKQG4FDg\nmThqNPBzM9sNeBu4CDjIzPYEZhJ6BupJ6JbqY4ROMrZtp/ifAQ+a2RhC92vPEXodmhdrqV9T6BB1\nNKFfw7GEnmz2l7QX4VLDsYRu28bnsTp/MrPxcXkvEDpAaDUyLuNw4JdxHU4F3jSz8bH80yWNymM5\nzgE11ktODWiUNDu+/idwDTAEWGhmj8Xx+xJ6VXkkdhjUHZgO7AzMN7O5AJJuBM5oYxkTgRMBzKwF\neDNee5w0OT6eisN9CEmyL3Bb65U1ku7MY512V+g5fItYzn2JabfEy9zmSno1rsNk4AOJ/Y3947Jf\nzmNZznlS7GKazGxsckRMfMmu0ARMM7MTMubb7H2dJOD7ZvarzUZK53WgrGuBKWb2dOzA44DEtMzL\nsSwu+0tmlkyeSBrZgWW7GuTN59rzGLCfYnf2knpLeh/wIjBS0g5xvhPaef/9wFnxvfWS+gNrCLXA\nVvcBpyT2VQ6VtA3wEKFH7EZJfQlN9Vz6Eu6p0w34dMa0YyXVxZi3J/SveB9wVpwfSe9TFXca7MrP\na4o1xsxejzWumyT1iKMvMrOXJZ1BuC3DOkLzu28bRZwLTJV0KtACnGVm0yU9Ek95uSfuV9wFmB5r\nqmuBz5jZk5L+QOjeawWh78Nc/ht4HHg9Pidjeo3QZ2I/4PNm9o6kqwn7Gp9UWPjrwJT8Ph3nvEMI\n55zbjDefnXMuwZOic84leFJ0zrkET4rOOZfgSdE55xI8KTrnXIInReecS/j/ATW24J2s58QAAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f05212a23c8>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUUAAAEmCAYAAAD1FIKpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm0XFWZ/vHvc4cM3CQyJISYgICgDNFACEMjKkRQJoFW\nVBAlSiQ/ERTEoZHWBroVWSgtINgaRIyggLagNCKI2GlFEEgIIMgsIGAgJGQkIcPN+/vj7GtOitwx\nVXVqeD5r1bp1htr7PVV139p7n1O7FBGYmVmmpegAzMxqiZOimVmOk6KZWY6ToplZjpOimVmOk6KZ\nWY6TYh9IGirpfyQtlvSzjSjnOEm/KWdsRZH0dkmPVrnOhyTtX+U6fy1pSjXrtGI1VFKU9GFJsyQt\nkzQ3vaH3K0PRRwOjgS0i4gMDLSQifhwR7y5DPBUlKSTt0NM+EfGHiHhztWJKde4aETPLXa6kj0m6\nvZs6D4mIGeWusy8k7SfpjvRh/LKkP0raU9I+kl6RNGwDj5kj6ZR0f5CksyU9nvZ/WtIPJG1b7WOp\nJw2TFCWdDlwInEuWwLYBLgWOKEPxbwAei4g1ZSir7klqKzqGRiapTdII4Ebg28DmwFjgHGBlRPwJ\neI7swzr/uPHALsDVadV/k73/Pwy8DpgAzALeVYXDqF8RUfc3shd8GfCBHvYZTJY0/55uFwKD07b9\nyd5knwPmAXOBj6dt5wCrgNWpjqnA2cBVubK3BQJoS8sfA/4KLAWeAo7Lrb8997h9gXuAxenvvrlt\nM4H/AP6YyvkNMLKbY+uK/4u5+I8CDgUeA14GzsztvxdwJ7Ao7XsJMCht+306llfS8X4oV/6/AC8A\nV3atS495Y6pjYlp+PfASsH838QawQ275h8BX0/2RZMlgUSrzD0BL2vY0cGC6fzbwU+BH6fl5CJiU\nK3MiMCdt+xlwbVcdG4hnvdelZNtM4BP5/YBvAgvTa3tIyfvw8vScPg98FWjNPUe/AxYA84EfA5vm\nHvt0en4fAFYCk4BFPbyfzwR+V7LufOD6dP9AYAWwddH/n/V2a5SW4j8BQ4Dre9jnX4F9gN3IPjH3\nAr6c274V2Zt6LFniu1TSZhFxFlnr89qIGBYRl/cUiKQO4GKyf5bhZInvvg3stznwq7TvFsB/Ar+S\ntEVutw8DHwe2BAYBn++h6q3InoOxwL8BlwEfAfYA3g58RdJ2ad9O4LNkCeifyFoOnwKIiHekfSak\n4702V/7mZK3mafmKI+JJsn/oqyRtAlwBzIiBdXU/R5aAR5G1+M8kS6IbcgRwDbApcANZckfSILL3\nwg9TzFcD/zyAWDZkb+BRsufufOBySUrbfgisAXYAdgfeDXwibRPwdbIPjJ2BrckSe96xwGHpeB4D\nOiXNkHSIpM1K9r0SeIekrQEktZC9X7q6+gcCd0fEsxt5vE2nUZLiFsD86Ll7exzw7xExLyJeImsB\nfjS3fXXavjoibiJrJQ10zGwtMF7S0IiYGxEPbWCfw4DHI+LKiFgTEVcDjwDvze1zRUQ8FhEryFpF\nu/VQ52rgaxGxmixRjAQuioilqf6/kH0YEBGzI+JPqd6nge8B7+zDMZ0VEStTPOuJiMuAJ4C7gDFk\nH0IDsTo9/g3ptfhDpKbPBtweETdFRCdZkpiQ1u8DtAEXpzKuA+4eYDylnomIy1KdM1KsoyWNJmuZ\nnxYRr0TEPOBbwDEAEfFERNyanr+XyD4ES5/ziyPi2YhYERFLgP3IPhAuA16SdEOqh5TsZrLuPfwu\nst7Qr9LyFmQtVuunRkmKC4CRvYx1vR54Jrf8TFr3jzJKkupy4DUD2b2JiFfIupyfBOZK+pWknfoQ\nT1dMY3PLL/QjngXpHxWybhPAi7ntK7oeL+lNkm6U9IKkJWQt4ZE9lA3wUkS82ss+lwHjgW9HxMpe\n9u3ON8iS628k/VXSGT3sW/r8DEnvgdcDz5ck03K1mP5RZ0QsT3eHkbWg28le80WSFpF92GwJIGm0\npGskPZ+e86t47XO+XowR8XBEfCwixpE9r68nG/bpMoN1SfGjwDXpQxGy/4kxG3eozalRkuKdZOMw\nR/Wwz9/J3rhdtknrBuIVYJPc8lb5jRFxS0QcRPamfIQsWfQWT1dMzw8wpv74L7K4doyIEWRdVPX8\nkG67sACkM6EXko2pnZ2GB7qznG6ev9Sy/VxEbE/WPT5dUn9PDMwFxua6tZB1VyvpWbL34MiI2DTd\nRkTErmn7uWTP4VvSc/4RXvucd/scR8QjZN3z8bnV1wHjJB0AvI91XWeA3wJ7SRq3EcfUlBoiKUbE\nYrJxtEslHSVpE0ntaSzm/LTb1cCXJY2SNDLtf9UAq7yPbDxnG0mvA77UtSG1CI5MY4srybrhazdQ\nxk3Am9JlRG2SPkR25vDGAcbUH8OBJcCy1Io9qWT7i8D2/SzzImBWRHyCrAv33R72vQ/4sKRWSQeT\n60ZKOlzSDimhLSYb/9zQ89eTO9PjTknP7ZFkY8g9kaQh+Vt/KoyIuWQnwy6QNEJSi6Q3Suo6tuFk\n74XFksYCX+glmJ0kfa4rqaWxw2OBP+XqfIXsDPMVZN36WbltvwVuBa6XtEd6HoZL+qSkE/pzbM2m\nIZIiQERcAJxOdvLkJbJP7lOAX6Rdvkp2OcIDwJ+Be9O6gdR1K9nZzAeA2ayfyFpSHH8nO3v6Tl6b\ndIiIBcDhZCcWFpCdOT48IuYPJKZ++jzZoPxSslbstSXbzwZmpG7gB3srLCWdg1l3nKcDEyUd181D\nTiUbO11ENtb7i9y2HclaOcvIktt3IuJ/+3BM/xARq8haTlNTHR8he4166tLvSzbE8I/bAC49Op7s\nhNhfyM5O/zfrurDnkJ0RX0z2oXFdL2UtJTupc5ekV8iS4YNk75e8GWQ9jh9toIyjyT58r031Pkh2\nVvu3/TmoZqPux7DNGoeku4DvRsQVRcdita1hWopmeZLeKWmr1G2cArwVuLnouKz2+ZsJ1qjeTHYZ\nUwfZhfRHp3E/sx65+2xmluPus5lZTs11n0e2tsa2bTUXVtnNXvWWokMw66fZ8yNiVLlKO1jq16UW\ns+GWiDi4XPV3p+ayz7Ztbczaaqved6xz+tus3ncyqykq/QbWRplPdo1cn2vv/VtXZVFzSdHMmkhL\nP0bw1vb3Gv6BcVI0s+I4KZqZJVL/kmKVOCmaWTEk6M9J1VWrKhdLjpOimRXHLUUzsxwnRTOzxGOK\nZmYlnBTNzBK3FM3MSjgpmpnlOCmamSXuPpuZ5fT34u0qqb2IzKx5uKVoZpbjpGhmlnhM0cyshJOi\nmVnilqKZWQknRTOznBpMirUXUTW0tMBNN8EPfpAtn3Ya3HVXtu6mm+CAA4qNr+xuJvtt+B2A8wqO\npZKa4Tgb6Bi7us99vVVJc7YUTzgBnngChg1bt+7yy2H69OJiqphO4GTgVmAcsCdwBLBLkUFVQDMc\nZ4MdY41evN18LcWttoLJk+Gaa4qOpEruJmtVbA8MAo4BflloRJXRDMfZgMdYgy3F5kuKZ50F5577\n2l8GmzIFbr4ZvvENGDGimNgq4nlg69zyuLSu0TTDcTbgMTZjUpR0lKSQtFOl6+rV5MmwYAE8+OD6\n66+6Ct7+djjkEJg3D77ylWLiM2smNTqmWI2ajgVuT3+LNWkSHHgg3H47fPvbsO++cOGFMH9+1nKM\ngKuvhgkTio60jMYCz+aWn0vrGk0zHGcDHmOzJUVJw4D9gKlkAyDFOv982Gcf2G8/+PSn4Y47sjPP\nW265bp/3vAcefbS4GMtuT+Bx4ClgFXAN2eB8o2mG42ywY6zRlmKlT/0cCdwcEY9JWiBpj4iYXbqT\npGnANIBtWlsrHNIGfOlLsMsuWUvxuefgzDOrH0PFtAGXAO8hO3t5ArBroRFVRjMcZwMeYw1ep6iI\nqFzh0o3ARRFxq6TPANtExOd7esykwYNj1lZbVSymWqG/PVN0CGb9pNkRMalcpU0aPjxmTep7cZo5\ns6z1d6diLUVJmwOTgbdICqAVCElfiEpmYjOrDzX63edKRnQ0cGVEvCEito2IrckGQ95ewTrNrF50\nXbzd11uVVDIpHgtcX7Lu59TCWWgzqw3NdKIlIl7zBeKIuLhS9ZlZHarB7nPtffHQzJpDE44pmpn1\nrMzdZ0mtkuakK1+QtLmkWyU9nv5u1mtIG3lIZmYDU5mLt08FHs4tnwHcFhE7Arel5R45KZpZccqY\nFCWNAw4Dvp9bfSQwI92fARzVWzkeUzSzYvR/THGkpFm55ekRkZ8E9ULgi8Dw3LrRETE33X8BGN1b\nJU6KZlac/iXF+d19o0XS4cC8iJgtaf8N7RMRkb5I0iMnRTMrRnln3n4bcISkQ4EhwAhJVwEvShoT\nEXMljQHm9VaQxxTNrDhlGlOMiC9FxLiI2JZsRq7fRcRHgBuAKWm3KfRhqnK3FM2sGNW5TvE84KeS\npgLPAB/s7QFOimZWnAokxYiYCcxM9xcA7+rP450Uzaw4NfiNFidFMytGjX7Nz0nRzIrjpGhmlril\naGZWwknRzCwp78XbZVN7EZlZ83BL0cws8ZiimVkJJ0UzsxwnRTOzxN1nM7MSTopmZolbin0zZ81b\n6Jg/q/cd61ygokOouFEje53kuCGMH190BNUxc2YFCnVSNDPLcVI0M0v8jRYzsxyPKZqZlXBSNDPL\ncVI0M0vcfTYzK+GkaGaWuKVoZlbCSdHMLMdJ0cws8cXbZmY5HlM0MyvhpGhmluOkaGaWuPtsZlbC\nSdHMLHFL0cyshJOimVnilqKZWQlfvG1mltRoS7H2IqqilStPYPnyLVmxokF/jq2lBe69F/7nf7Ll\nCRPgzjthzhy45x7Yc89i4yujzs5nWbz4ABYu3IWFC3dlxYqLig6pYlavXsSDDx7NXXftxN1378zi\nxXcWHdLAtbT0/VYlTd1SbGv7GO3tp7By5fFFh1IZp54KDz8MI0Zky+efD+ecAzffDIccki0fcECx\nMZaJ1EZHxwW0tU1k7dqlLFq0B+3tB9HWtkvRoZXdE0+cyuabH8z48f/N2rWr6OxcXnRIA+OWYu1p\nbX0HsHnRYVTG2LFw2GHw/e+vWxexLkG+7nXw978XE1sFtLSMoa1tYro/nLa2nVm79vmCoyq/NWsW\ns3jx7xkzZioALS2DaG/ftOCoNoJbilY1F14IX/wiDB++bt1pp8Ett8A3v5m9yfbdt7j4Kqiz82nW\nrJlDW9veRYdSditWPEV7+ygeeeTjvPLK/Qwbtgc77ngRra0dRYc2MM3WUpTUKek+SfdLuldSY/4X\n1prDDoN587LxxLyTToLPfha22Sb7e/nlxcRXQRHLWLLk/XR0XEhLy4iiwym7iDUsXXovY8eexKRJ\nc2ht7eBvfzuv6LAGpqv7XKaWoqQhku5O+eYhSeek9ZtLulXS4+nvZj2VU+k0vSIidouICcCXgK9X\nuD4DeNvb4Igj4Kmn4JprYPJkuPJKmDIFrrsu2+dnP4O99io2zjKLWM2SJe9nyJDjGDz4fUWHUxGD\nB49j8OBxjBiRtYJHjTqapUvv7eVRNay83eeVwOSUb3YDDpa0D3AGcFtE7Ajclpa7D2kjD6k/RgAL\nq1hf8zrzTNh6a9huOzjmGPjd7+CjH83GEN/5zmyfyZPh8ceLjbOMIoJly6bS2rozQ4eeXnQ4FTN4\n8FYMGbI1y5c/CsDChbfR0VGnJ5PK3FKMzLK02J5uARwJzEjrZwBH9VROpccUh0q6DxgCjAEmb2gn\nSdOAadn9bSoc0jorVx5LZ+dMYD4rVoyjvf0c2tqmVq3+qjvxRLjoouyC2VdfhWnTio6obNas+SMr\nV15Ja+tbWLhwNwA6Os5l0KBDC46s/HbY4dv85S/HEbGKIUO2Z6edrig6pIHr38XbIyXNyi1Pj4jp\n+R0ktQKzgR2ASyPiLkmjI2Ju2uUFYHRPlSgi+hNUv0haFhHD0v1/Ar4PjI8eKm1tnRRDhszqbnPD\neGW5ig6h4kaNrNx7q5aMb9DLXEvNnKnZETGpXOVN2mmnmHXZZX3eX+94R5/rl7QpcD3waeD2iNg0\nt21hRHQ7rli17nNE3AmMBEZVq04zq3EVuiQnIhYB/wscDLwoaQxA+juvx5AGeCj9JmknoBVYUK06\nzayGlf/s86jUQkTSUOAg4BHgBmBK2m0K8MueyqnWmCKAgCkR0VnhOs2sXpT3OsUxwIw0rtgC/DQi\nbpR0J/BTSVOBZ4AP9lRIRZNiRLRWsnwzq3NlTIoR8QCw+wbWLwDe1ddyuk2Kknq88jUilvS1EjOz\n16jR7z731FJ8iOwan/xp0q7lAKp37YyZNaZ6SooRsXU1AzGzJlOHLcV/kHQMsH1EnCtpHDA6ImZX\nNjQza3g1OPN2r2la0iXAAcBH06rlwHcrGZSZNYEyX5JTLn1J0/tGxERJcwAi4mVJgyocl5k1gzrt\nPq+W1EJ2cgVJWwBrKxqVmTW+Oh5TvBT4OTAqzU/2QeCcikZlZs2hHpNiRPxI0mzgwLTqAxHxYGXD\nMrOmUI9JMWkFVpN1oWvvKMys/tRo97kvZ5//FbgaeD0wDviJpC9VOjAzawJ1evb5eGD3iFgOIOlr\nwBz80wJmtjFqtKXYl6Q4t2S/trTOzGzj1FNSlPQtsjHEl4GHJN2Slt8N3FOd8MysYUk1+Y2WniLq\nOsP8EPCr3Po/VS4cM2sq9dRSjIjG+1FgM6sd9TqmKOmNwNeAXch+lQ+AiHhTBeMys2ZQg0mxLxH9\nELiCbB7FQ4CfAtdWMCYzawY1OiFEX2raJCJuAYiIJyPiy2TJ0cxs49RgUuzLqZ+VaUKIJyV9Enge\nGF7ZsMysKdRg97kvSfGzQAfwGbKxxdcBJ1QyKDNrAvV6oiUi7kp3l7Juolkzs41XT0lR0vWkORQ3\nJCLeV4mAWlpgk00qUXJt0fJun9qGEYwqOoSq0MyXig6hPtXhxduXVC0KM2tKsd6PhdaGni7evq2a\ngZhZ81lbg3P4117b1cyaQoSTopnZeuo6KUoaHBErKxmMmTWPWm0p9mXm7b0k/Rl4PC1PkPTtikdm\nZg1v7dq+36qlLxcJXQwcDiwAiIj7gQMqGZSZNYdaTIp96T63RMQz0nqnzjsrFI+ZNYla7T73JSk+\nK2kvICS1Ap8GHqtsWGbW6CJgzZqio3itviTFk8i60NsALwK/TevMzDZKXbYUI2IecEwVYjGzJlK3\n3WdJl7GB70BHxLSKRGRmTaMukyJZd7nLEOCfgWcrE46ZNZO6TIoRsd5PD0i6Eri9YhGZWVOo2+7z\nBmwHjC53IGbWfOoyKUpayLoxxRbgZeCMSgZlZo2vLluKyq7YnkD2uywAayOi8WdHNbOqKGdSlLQ1\n8COynmwA0yPiIkmbk/0C6bbA08AHI2Jhd+X0+DW/lABviojOdHNCNLOy6Lp4u6+3PlgDfC4idgH2\nAU6WtAtZz/a2iNgRuI1eerp9+e7zfZJ271NIZmb9UM7vPkfE3Ii4N91fCjwMjAWOBGak3WYAR/VU\nTk+/0dIWEWuA3YF7JD0JvAIoqzMm9h6mmdmGDWBMcaSkWbnl6RExfUM7StqWLHfdBYyOiLlp0wv0\ncqK4pzHFu4GJwBF9DNjMrF/6mRTnR8Sk3naSNAz4OXBaRCzJT2YTESGpx2HAnrrPSoU8uaFb346h\ndnV2PsvixQewcOEuLFy4KytWXFR0SBV0M/BmYAfgvIJjKbOWFvjd7+DHP1637hOfgDvugD/8Af7t\n34qLrSIa67Us99RhktrJEuKPI+K6tPpFSWPS9jHAvJ7K6KmlOErS6d1tjIj/7FuYtUlqo6PjAtra\nJrJ27VIWLdqD9vaDaGvbpejQyqwTOBm4FRgH7EnW+G+Q45w2DR57DIYPz5bf9jY4+GDYf39YtQpG\njiw0vPJqrNey3JfkpKtlLgceLslPNwBTyD5FpgC/7KmcnlqKrcAwYHg3t7rW0jKGtraJ6f5w2tp2\nZu3a53t5VD26m6xVsT0wiGxujx7fE/VjzBg46CC46qp16z7+cbj44iwhAsyfX0xsFdF4r2WZW4pv\nAz4KTJZ0X7odSpYMD5L0OHAgvTSxe2opzo2If+/bodW3zs6nWbNmDm1texcdSgU8D2ydWx5HNvbc\nAL72NTjnHBg2bN26N74R9tkHzjwTVq6Es86C++4rLsayaqzXstwtxYi4Hbr9Iel39bWcXscUN4ak\ncZJ+KelxSX+VdImkwRtbbjlFLGPJkvfT0XEhLS0jig7H+uqgg+Cll+CBB9Zf39oKm22WdaHPPhu+\n//1CwrO+qbefI+hzZt2Q1L+/DviviDgyzdo9HTgfOHVjyi6XiNUsWfJ+hgw5jsGD31d0OBUylvUn\nNXouratze++dJb4DD4QhQ7LW4ne+A3Pnwo03ZvvMmZP9N22xBSxYUGy8ZdFYr2WtzrzdbUsxIl7e\nyLInA69GxBWpvE7gs8Dx6ZR5oSKCZcum0tq6M0OHdns+qQHsSfZDjE8Bq4BraIirrL76VZgwAfbY\nA048EW6/HT71KbjpJthvv2yf7beHQYMaJCFCI76W9dZS3Fi7ArPzK9I1Q0+TjRYXOtCzZs0fWbny\nSlpb38LChbsB0NFxLoMGHVpkWBXQBlwCvIfs7OUJZC9Ng/rJT+Cii+D3v4fVq+GUU4qOqIwa67Ws\nywkhqkXSNGAaQEvLNlWps719P0aObJavch+abg3qjjuyG2SJ8FOfKjaeimqs17IWk2Jfvvs8UH8B\n9sivkDQC2Ap4NL8+IqZHxKSImNTSMqqCIZlZLanF7nMlk+JtwCaSjgdIJ1ouAC6JiBUVrNfM6kBX\n97lpkmKaZuyfgaPTRZMLyOZj/Fql6jSz+lKLSbGiY4oR8Szp9JikfYGrJU3smt7HzJpX059oiYg7\ngDdUqz4zq31NnRTNzPJq9eJtJ0UzK4xbimZmSdOPKZqZlXJSNDPLcVI0M0vcfTYzK+GkaGaWuKVo\nZlbCSdHMLHFL0cyshL/RYmaWuKVoZlbCSdHMLHFL0cyshJOimVmOk6KZWeLus5lZCSdFM7PELUUz\nsxK+eNvMLHFL0cyshJOiNZWO5S8VHUJVxOe/UHQIVaFvlrc8txTNzEo4KZqZ5Tgpmpkl7j6bmZVw\nUjQzS9xSNDMrUYsXb7cUHYCZNaeulmJfb72R9ANJ8yQ9mFu3uaRbJT2e/m7WWzlOimZWmHImReCH\nwMEl684AbouIHYHb0nKPnBTNrBDlbilGxO+Bl0tWHwnMSPdnAEf1Vo7HFM2sMP080TJS0qzc8vSI\nmN7LY0ZHxNx0/wVgdG+VOCmaWWH6mRTnR8SkgdYVESEpetvPSdHMClGlS3JelDQmIuZKGgPM6+0B\nHlM0s8KU+UTLhtwATEn3pwC/7O0BbimaWSHK3VKUdDWwP9nY43PAWcB5wE8lTQWeAT7YWzlOimZW\nmHJevB0Rx3az6V39KcdJ0cwK4a/5mZmVcFI0M0vcUjQzK+GkaGaW46RoZpa4+1xjOjufZdmy41m7\n9kVADBkyjaFDTy06rAq5GTgV6AQ+QR8mCqk7K1eeQGfnjUhbMnTog70/oF60tcFJJ2V/W1rgz3+G\n3/wGjjsOttwy22fIEHj1VfjWt4qNdQCcFGuI1EZHxwW0tU1k7dqlLFq0B+3tB9HWtkvRoZVZJ3Ay\ncCswDtgTOAJorONsa/sY7e2nsHLl8UWHUl5r1sD3vgerVmVJ8eST4ZFH4Mc/XrfP4YdnSbHO1GpL\nsWm/5tfSMoa2tonp/nDa2nZm7drnC46qEu4GdgC2BwYBx9CHbzrVndbWdwCbFx1GZaxalf1tbc0S\nY5TMaTBhAtx3X/Xj2kgRWc7v661amralmNfZ+TRr1syhrW3vokOpgOeBrXPL44C7CorFBkSC006D\nLbaAO+6AZ59dt2277WDpUpg/v7j4NkItthQrmhQldQJ/TvU8BXw0IhZVss7+iljGkiXvp6PjQlpa\nRhQdjtlrRWTjhUOGwJQpMHo0vPhitm333euyldilFpNipbvPKyJit4gYTzYj7skVrq9fIlazZMn7\nGTLkOAYPfl/R4VTIWCDXsuC5tM7qzquvwpNPwk47ZcstLTB+PNx/f7FxDVC5Z94ul2qOKd5JDf03\nRgTLlk2ltXVnhg49vehwKmhP4HGyhvoq4BqyEy1WFzo6shYiZGegd9wR5qUpAbvuL15cXHwbqRaT\nYlXGFCW1ks1UcXk326cB0wBaWrapRkisWfNHVq68ktbWt7Bw4W4AdHScy6BBh1al/uppAy4B3kN2\nJvoEYNdCI6qElSuPpbNzJjCfFSvG0d5+Dm1tU4sOa+ONGAEf+lDWKpSyVuHDD2fbdtutrrvOtXr2\nudJJcaik+8haiA+TXRfyGul3FqYDtLdP6nW68HJob9+PkSOrUlUNODTdGtfgwVcXHUJlzJ0LF164\n4W3XXlvdWCqgFpNiVcYUgTcAosbGFM2sWLXYfa7KmGJELAc+A3xOki8DMjOfaImIOcADQHez45pZ\nE2nKi7cjYljJ8nsrWZ+Z1ZdaHFN0V9bMCuOkaGaWNOslOWZm3XJSNDNL3FI0MyvhpGhmluOkaGaW\nuPtsZlbCSdHMLOn6RkutcVI0s8K4pWhmlnhM0cyshJOimVnilqKZWQknRTOzHCdFM7PE3WczsxJO\nimZmiS/eNjMr4ZaimVlSq2OKVfs1PzOzUuX8iVNJB0t6VNITks4YaExuKZpZIcrZUpTUClwKHAQ8\nB9wj6YaI+Et/y3JSNLPClLH7vBfwRET8FUDSNcCRQP0nxTVrZs+fP1/PVLnakcD8KtdZhKoe5/Ll\n1appPVV/LfXNatb2D0W8Z99Q3uJm37J2rUb24wFDJM3KLU+PiOnp/ljg2dy254C9BxJVzSXFiBhV\n7TolzYqISdWut9qa4Tib4RihMY4zIg4uOoYN8YkWM2sEzwNb55bHpXX95qRoZo3gHmBHSdtJGgQc\nA9wwkIJqrvtckOm979IQmuE4m+EYoXmOs08iYo2kU4BbgFbgBxHx0EDKUkSUNTgzs3rm7rOZWY6T\noplZjpOiNQxJKjoGq39OitZIGvr97KRfHU159lnS6Ih4MbfcEhE1OF/HxpG0BbA2IhYWHUslSToP\nGAW0SbpHIVD9AAAF10lEQVQ3Ii4qOqYKGQSsLDqIRtfQn6wbImknYK6kb0k6EaArIUpqmOdD0qHA\nr4HvSfpq0fFUiqQrgF2Aq4FfAp+W9HVJI4qNrLwkvRu4RtJZkt5XdDyNrGGSQD8sA+4AXgA+IOlH\nko6QNKJRWouSDgbOBL4GnAtsI2losVGVn6SDgLERcURE/DYirgMmk00O8C/FRlc+6fX8D+C3ZP+z\nh0jaodioGlfTJcWIeA64G5gIHArcBJwA/ErSXpJ2LDK+jSVpc7JjuiAifknW5ToI+Kak7+X2a5Tx\nqecAJLVLaouIvwFTgKMkvbXY0DZe7vX8akRcClxG9pr2ZyIF64emSoq5RHAGEGRvrBeAtwIPkbWu\nTpfUUUyEGy8iXgbeC/ybpAlkrcXpwHnABElXp/0a4ar9Z4E9JO0TEavTtxo60gffvWS9grqWez3P\nS72Z58jet9+UdKGk0yWNlNRebKSNo6lOtERE5BLj48AFwB7A6RHxi9RKnB8RrxQWZBlExK8kdQJz\ngDMj4jwASQcCv5C0RUQsKDTI8ngU+AnwIUkrI2JO7rXbAjhX0oyI+HVxIW689HquBWZLupmsMXMB\n2cmlqWRjqqcDq4uLsnE07df8JL0Z+D/g0oj4j6LjqYQ05nYJsHdELJL0ceBE4D0RsbTY6MpD0hjg\nZODNZCeW7gH+HdiMbJjk8oh4tLgIyyd9qP0GGNN19UQ6Obh5RDTDfKBV0bRJEUDSx4BtgfMjopgp\nUStM0iHAN4DvkM0c8qmIeLDYqMpL0mbAe4DPAPcDyyPic8VGVRnp9bwA2D8i5hUdTyNq9qS4E3A+\ncEyjJkUASYcD1wG7D3TmkHogaVBErMotN+r1p0cCZwGTGvH4itbUSRFA0iaNnBC7NMNxSlLXCaT8\n/UYkaVhE1P2JpFrU9EnRzCyvqS7JMTPrjZOimVmOk6KZWY6ToplZjpNiA5HUKek+SQ9K+pmkTTai\nrP0l3ZjuHyHpjB723VTSpwZQx9mSPt/X9SX7/FDS0f2oa1tJDXV9plWGk2JjWRERu0XEeGAV8Mn8\nRmX6/ZpHxA1dXxXsxqZAv5OiWS1yUmxcfwB2SC2kRyX9CHgQ2FrSuyXdKene1KIcBtkUVZIekXQv\n8I85+yR9TNIl6f5oSddLuj/d9iWbbOKNqZX6jbTfFyTdI+kBSefkyvpXSY9Jup3sq3k9knRiKud+\nST8vaf0eKGlWKu/wtH+rpG/k6v5/G/tEWnNxUmxAktqAQ4A/p1U7At+JiF2BV4AvAwdGxERgFtnM\nQEPIpqV6L9kkGVt1U/zFwP9FxASy6dceIpt16MnUSv2CsglRdySb13A3spls3iFpD7KvGu5GNm3b\nnn04nOsiYs9U38NkEyB02TbVcRjw3XQMU4HFEbFnKv9ESdv1oR4zoMlmyWkCQyXdl+7/AbgceD3w\nTET8Ka3fh2xWlT+mCYMGAXcCOwFPRcTjAJKuAqZtoI7JwPEAEdEJLE7fPc57d7rNScvDyJLkcOD6\nrm/WSLqhD8c0XtnM4Zumcm7Jbftp+prb45L+mo7h3cBbc+ONr0t1P9aHusycFBvMiojYLb8iJb78\nVGgCbo2IY0v2W+9xG0nA1yPie+utlE4bQFk/BI6KiPvTBB7757aVfh0rUt2fjoh88kTStgOo25qQ\nu8/N50/A25Sms5fUIelNwCPAtpLemPY7tpvH3waclB7bKul1wFKyVmCXW4ATcmOVYyVtCfyebEbs\noZKGk3XVezOc7Dd12oHjSrZ9QFJLinl7svkVbwFOSvsj6U2q40mDrfrcUmwyEfFSanFdLWlwWv3l\niHhM0jSyn2VYTtb9Hr6BIk4FpkuaCnQCJ0XEnZL+mC55+XUaV9wZuDO1VJcBH4mIeyVdSza91zyy\nuQ978xXgLuCl9Dcf09/I5kwcAXwyIl6V9H2yscZ7lVX+EnBU354dM08IYWa2HnefzcxynBTNzHKc\nFM3McpwUzcxynBTNzHKcFM3McpwUzcxy/j+h1PTgub5WcAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f0521301588>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for clf in [RandomForestClassifier(random_state=0),\n", " LinearSVC(random_state=0)]:\n", " \n", " pipeline = make_pipeline(StandardScaler(),\n", " PCA(n_components=100, random_state=0),\n", " clf)\n", " y_pred = pipeline.fit(spectra, molecule).predict(spectra_test)\n", " plot_cm(confusion_matrix(molecule_test, y_pred),\n", " pipeline.classes_,\n", " 'Confusion matrix using {}'.format(clf.__class__.__name__))\n", " print('Accuracy score: {0:.2f}'.format(pipeline.score(spectra_test,\n", " molecule_test)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Training and testing a machine learning model for regression" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def plot_regression(y_true, y_pred, title):\n", " \"\"\"Plot actual vs. predicted scatter plot.\n", " \n", " Parameters\n", " ----------\n", " y_true : array-like, shape (n_samples,)\n", " Ground truth (correct) target values.\n", "\n", " y_pred : array-like, shape (n_samples,)\n", " Estimated targets as returned by a regressor.\n", "\n", " title : str\n", " Title added to the plot.\n", " \n", " Returns\n", " -------\n", " None\n", " \n", " \"\"\" \n", " fig, ax = plt.subplots()\n", " ax.scatter(y_true, y_pred)\n", " ax.plot([0, 25000], [0, 25000], '--k')\n", " ax.set_ylabel('Target predicted')\n", " ax.set_xlabel('True Target')\n", " ax.set_title(title)\n", " ax.text(1000, 20000, r'$R^2$=%.2f, MAE=%.2f' % (\n", " r2_score(y_true, y_pred), median_absolute_error(y_true, y_pred)))\n", " ax.set_xlim([0, 25000])\n", " ax.set_ylim([0, 25000])\n", " return fig, ax" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def regression_experiment(X_train, X_test, y_train, y_test):\n", " \"\"\"Perform regression experiment.\n", " \n", " Build a pipeline using PCA and either a Ridge\n", " or a RandomForestRegressor model.\n", " \n", " Parameters\n", " ----------\n", " X_train : pandas DataFrame, shape (n_spectra, n_freq_points)\n", " DataFrame containing training Raman spectra.\n", " \n", " X_test : pandas DataFrame, shape (n_spectra, n_freq_points)\n", " DataFrame containing testing Raman spectra.\n", " \n", " y_training : pandas Serie, shape (n_spectra,)\n", " Serie containing the training concentrations acting as targets.\n", " \n", " y_testing : pandas Serie, shape (n_spectra,)\n", " Serie containing the testing concentrations acting as targets.\n", " \n", " Returns\n", " -------\n", " None\n", " \n", " \"\"\"\n", " for reg in [RidgeCV(), RandomForestRegressor(random_state=0)]:\n", " pipeline = make_pipeline(PCA(n_components=100), reg)\n", " y_pred = pipeline.fit(X_train, y_train).predict(X_test)\n", " plot_regression(y_test, y_pred,\n", " 'Regression using {}'.format(reg.__class__.__name__))" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEWCAYAAAAkUJMMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VGX2wPHvSQgQsWBBgVBEYcFAqJEiCAIqTQUVBVwB\nlWLBn7gsiFhW3MUVZS2L61IU1HUVQZGACzYEYVkFBAIEUJQiJYqiEKUECMn5/XFv4iTMTCZlZjKZ\n83meeZh555b33gxz5r7lXFFVjDHGmHCJCXcFjDHGRDcLRMYYY8LKApExxpiwskBkjDEmrCwQGWOM\nCSsLRMYYY8LKApExXojIQyLycrjrkUtEfi8iH4Vp31NF5FE/76uI1A9lnUz5IjaPyASDiHwLXABk\nA4eBD4B7VfVwOOtlTlXSv5WIKNBAVbeVQl1aA+OBy4AcYBswBfgI2AU0VNXtBdaZB2xX1dEl3b8J\nD7siMsF0raqeDjQHWgDjgrETEYkNxnajTEj+Vv6ISDtgCbAMqA+cC9wNdFfVdOATYGCBdc4BegKv\nhba2pjRZIDJBp6r7gA9xvuQAEJFKIvI3EdktIj+4zT/xHu8/ICLfi8h3IjLUs/lHRF4VkSkiskhE\njgCd/W1PRM4Tkf+ISIaIHBCR/4pIjPveWBFJF5FDIrJVRLq65eNF5N8e9blORDa72/hURC7xeO9b\nERktIhtF5BcRmS0ilb2dCy/bvdA9tgru69tEZIdbn50i8nuP8hUe66mI3CUi37h1elFExH0vVkSe\nEZGf3G3c67mPYvytXhWRCR6vx3j8be4ocHznish7IvKriHwhIhMK1LuRiHzs/h22isjNHqtPAl5T\n1adU9Sd1rFXVfu77r1EgEAH9gS2qmlbYsZmyywKRCToRqQX0wGlmyTUR+B3OF159IAH4k7t8d2AU\ncKX73hVeNnsL8ARwBrDC3/aAPwJ7gWo4TVAPASoiDYF7gUtV9QygG/Ctl/r/DpgF3O9uYxHwnohU\n9FjsZqA7UA9oCtxW6Ik5dT9VgMlAD7c+lwHr/axyDXCpu7+b3foDDMM5382BlkCfItTB29/K8/3u\nwGjgKqABzt/I04vAEaA6MNh9eB7fx8CbwPk4QeSfIpIoIqcB7YB3/FRvHnCeiHTwKBuIXQ1FPAtE\nJphSROQQsAf4EXgMwP3lPhz4g6oeUNVDwF9xvpjA+VJ9RVU3q+pRnD6Dguar6v9UNQc4Xsj2soAa\nQF1VzVLV/6rTOZoNVAISRSROVb8t2P/g6gcsVNWPVTUL+BsQjxMock1W1e9U9QDwHh5XFEWUAzQR\nkXhV/V5VN/tZdqKqZqjqbmCpxz5vBv6uqntV9SBOkC6M17+VF7l/m02qegSPv43bRHoj8JiqHlXV\nLeQPEtcA36rqK6p6UlVTgbnATcDZON9H3/uqoKpmAm8Dg9z9NQBa4QQ2E8EsEJlg6uP+sr8CaASc\n55ZXA04D1rrNShk4HeTV3Pdr4nwh5vJ87q2ssO1NwvmF/5Hb7PUggNu5fj/Ol+mPIvKWiNT0sq+a\nOB3luOvluPtP8Fhmn8fzo8DpXrbjl/vF3g+4C/heRBaKSCM/q/jaZyDnryBff6uCCm57l8fzakAF\nP/uuC7TJ/Ru5f6ff41w9HcQJwjUKqedrwE1u0+dA4ENV/bGQdUwZZ4HIBJ2qLgNexbmSAPgJyAQa\nq2pV93GW21kOzq/iWh6bqO1tsx7P/W5PVQ+p6h9V9SLgOmBUbl+Qqr6pqh1wviQVeMrLvr5z3wfy\nruhqA+mBn4U8R3CCZq7q+Q5K9UNVvQrnC/kr4KVi7COQ8+eVl7+Vt217bq+Ox/P9wEk/+94DLPP4\nG1VV1dNV9W73yvdznCsqf1YAB4DewK1Ys1y5YIHIhMrzwFUi0sy9ongJeE5EzgcQkQQRye3jmAPc\nLiKXuH0HPuewQN4Vis/ticg1IlLfDSC/4DTJ5YhIQxHpIiKVgGM4wSzHyy7mAL1EpKuIxOH0OR0H\nPivGeVgPdBSROiJyFh6j00TkAhHp7falHMcZSu2tPoWZA4x0z0FVYGwR18/7W/nY9m0e/Tp5TXiq\nmg28C4wXkdPcq7lBHuv+B/idiAwUkTj3canHwI8H3G2PEZFzAUSkmYi85bEPBf6F84OhKk4zqIlw\nFohMSKjqfpwvkNwBBGNxmstWisivwGKgobvs+zid9ktzl3HXOe5nFz63h9Opvhjni/1z4J+quhSn\nf2gizhXVPpwO9FOGLavqVpxf3y+4y16LM9z5RJFOgrOtj4HZwEZgLc6Xc64YnEEa3+H86u+EM3y5\nqF7CmXezEUjFGVxxEicAB1LHgn8rz/fexwlUS3DO95ICi9wLnIVzPl/HGeRx3F33EHA1Tt/dd+4y\nT+H8HVDVz4Au7mOHiBwAprv19/QvnCux2arq7zNhIoRNaDVlnvuLeRNQSVVPhrs+kUZEegBTVbVu\noQuX/r6fAqqr6uBCFzZRy66ITJkkIteLMzfobJxfze9ZEAqMiMSLSE8RqSAiCTjNZ/NCtO9GItJU\nHK2BIaHat4lcQQtEIlJbRJaKyBZxJgKOdMvHizOBcL376OmxzjgR2eZOdOvmUd5KRNLc9ya7bf25\nkyJnu+WrROTCYB2PCbk7cYYRb8dpUipOE1W0EuBxnJFoqcCXeGlmC5IzcPqJjuA0QT4DzA/Rvk2E\nClrTnIjUAGqo6joROQOnPbwPzjyEw6r6twLLJ+K0J7fGGSK6GPidqmaLyGrgPmAVTnvxZFV9X0Tu\nAZqq6l0i0h+43mMWtjHGmAgQtCsidzLeOvf5IZxfZQl+VukNvKWqx1V1J05HaGs3oJ2pqis9Rsz0\n8Vgnd/jmO0DX3KslY4wxkaHQ3FOlwW0ya4FzRdMe+D8RGQSsAf7ozv5O4LfRUeCkZEnAmRW/10s5\n7r97AFT1pIj8gpMo8acC+x+OM/OeKlWqtGrUyN8cQWOMMbl27dpFRkYGJ0+e/ElVqxW+RtEFPRCJ\nyOk4aTzuV9VfRWQK8BecyYN/wWlDvsPPJkpMVafjDAMlOTlZ16xZE8zdGWNMRMvtshERpkyZwo8/\n/sj48eN3FbJasQV11Jw7+W8u8Iaqvgugqj+oarbHJMTW7uLp5J+FXcstSyf/TO3c8nzriJNZ+Czg\n5+AcjTHGlH/p6en07t2bN990UvjdfffdPPaYr9SDpSOYo+YEmAF8qarPepR75pK6Hmd+CMACoL87\nEq4eziTE1ar6PfCriLR1tzmI30bhLOC37L59gSVqE6OMMabIVJWXXnqJxMREFi9ezOHDobuHZTCb\n5trjJCVME5HcVPYPAQNEpDlO09y3OMN0UdXNIjIH2IIzC3yEmzIE4B6c/FfxwPvuA5xA97qIbMOZ\niZ6bbdkYY0yAtm/fzrBhw1i6dCmdO3fmpZde4uKLLw7Z/oMWiFR1Bc58hoIKpuvwXOcJnHvMFCxf\nAzTxUn4MJ4W8McaYYkpLS2Pt2rVMnz6doUOHEurBxyEZNWeMMaZs2bRpE+vWrWPQoEH06dOHHTt2\ncO6554alLpbixxhjosiJEycYP348LVu25OGHH+bYsWMAYQtCYIHIGGOixqpVq2jZsiWPP/44/fr1\nIzU1lcqVK4e7WtY0Z4wx0SA9PZ3LL7+cCy64gP/85z/06tUr3FXKY1dExhhTjn399dcAJCQkMHv2\nbDZv3lymghBYIDLGmHIpIyOD4cOH06hRI5YvXw7A9ddfz5lnnhnmmp3KmuaMMaacWbBgAXfffTf7\n9u1jzJgxXHrppeGukl8WiIwxphwZOnQoM2bMICkpifnz55OcnBzuKhXKApExxkQ4zySlycnJ1K1b\nl7Fjx1KxYsUw1ywwFoiMMSaC7dmzh7vuuov+/fszcOBA7rrrrnBXqchssIIxxkSgnJwcpkyZQuPG\njfn00085fvx4uKtUbHZFZIwxEeabb75h6NChLF++nCuvvJLp06dTr169cFer2CwQGWNMhNmyZQsb\nN25k5syZ3HbbbSFPUlraLBAZY0wE2LBhA+vXr2fw4MH07t2bHTt2cPbZZ4e7WqXC+oiMMaYMO378\nOI8++ijJyck8+uijeUlKy0sQAgtExhhTZn3++ee0aNGCCRMmcMstt5SZJKWlzZrmjDGmDEpPT6dT\np05Ur16dRYsW0aNHj3BXKWjsisgYY8qQL7/8EnCSlM6ZM4fNmzeX6yAEFoiMMaZMOHjwIHfccQeJ\niYn897//BaBPnz6cccYZYa1XSmo67ScuoWL1+q2CtQ9rmjPGmDCbN28e99xzD/v372fcuHFlJklp\nSmo6495NIzMrO6j7sUBkjDFhdMcdd/DKK6/QvHlzFi5cSMuWLcNdpTyTPtwa9CAEFoiMMSbkPJOU\ntm3blgYNGjB69Gji4uLCXLP8vsvIDMl+rI/IGGNCaNeuXfTo0YPXX38dgOHDhzNu3LgyF4QAalaN\nD8l+LBAZY0wI5OTk8OKLL9KkSRNWrFhBVlZWuKtUqDHdGhIfFxv0/VggMsaYINu6dSudOnXi3nvv\n5bLLLmPTpk0MGTIk3NUqVJ8WCdzYKoHYIOeysz4iY4wJsq1bt7J582ZeffVVBg0aFDFJSlNS05m7\nNp1st08rWCwQGWNMEKSmprJ+/Xpuv/12rrvuOnbs2EHVqlXDXa0iCdWoOWuaM8aYUnTs2DEeeugh\nLr30UsaPH5+XpDTSghDYqDljjIk4//vf/2jevDlPPvkkgwYNYv369RGdpNRGzUWQlJQUhg0bRr9+\n/fjoo4/CXR1jTBikp6fTuXNnjh8/zocffsjMmTMj/lYNnRtVC8l+LBAVwbRp06hevTrNmjXj4osv\n5l//+hfg5IN66aWXmDp1KrNnzw54ex988AENGzakfv36TJw40edyzz33HI0bN6ZJkyYMGDAg71L/\nwgsvJCkpiebNm5OcnBzQPkWEW2+9Ne/1yZMnqVatGtdcc02+5VJSUhARvvrqq7yy2NhYmjdvnvfw\nV+eC7rjjDs4//3yaNGlyynu+jiMjI4O+ffvSqFEjLrnkEj7//HO2bt2arw5nnnkmzz//vNd9+tpu\noOfdmEBs2bIFcJKUzp07l7S0NK6++uow16p0LP1qf2h2pKpR9WjVqpUW14gRI3TKlCmqqrpq1So9\n99xz870/atQoXbt2bUDbOnnypF500UW6fft2PX78uDZt2lQ3b958ynJ79+7VCy+8UI8ePaqqqjfd\ndJO+8sorqqpat25d3b9/f5GOoUqVKtqsWbO87S1atEibNWumvXr1yrfczTffrB06dNA//elP+dYt\nrmXLlunatWu1cePGp7zn6zgGDRqkL730kqqqHj9+XA8ePJjv/ZMnT+oFF1yg3377rdd9ettuoOfd\nmML8/PPPOnjwYAV02bJl4a5OUFw49j9a131UrF5fNUjfy3ZFVAQbN26kYcOGANSrV4+KFSsCTjAf\nO3YsPXr0CDhP1OrVq6lfvz4XXXQRFStWpH///syfP9/rsidPniQzM5OTJ09y9OhRatasWaLj6Nmz\nJwsXLgRg1qxZDBgwIN/7hw8fZsWKFcyYMYO33nqrRPvK1bFjR84555yAl//ll19Yvnx53lyLihUr\nntLZ+8knn3DxxRdTt27dgLdblPNujC9z584lMTGRN954g4cffpjWrVuHu0pBYX1EZVBaWhoNGzZE\nVfnHP/7BE088AcALL7zA4sWLeeedd5g6dWre8pdffnm+ZqTcx+LFi0lPT6d27dp5y9aqVYv09PRT\n9pmQkMDo0aOpU6cONWrU4Kyzzsq77BcRrrzySlq1asX06dMDPo7+/fvz1ltvcezYMTZu3EibNm3y\nvT9//ny6d+/O7373O84991zWrl0LQGZmZr7j8GyG9HeshfF2HDt37qRatWrcfvvttGjRgqFDh3Lk\nyJF867311lunBNHCthvoeTfGl9tuu42+ffuSkJDAF198wYQJEyJ6QII/ocqsYPOIArRnzx4OHTpE\nz549SU9Pp2nTpowfPx6A++67j/vuu++UdXLvKeLNO++8E9B+Dx48yPz589m5cydVq1blpptu4t//\n/je33norK1asICEhgR9//JGrrrqKRo0a0bFjx0K32bRpU7799ltmzZpFz549T3l/1qxZjBw5EnCC\n1qxZs2jVqhXx8fGsX7/e6zb9HWthvB3Haaedxrp163jhhRdo06YNI0eOZOLEifzlL38B4MSJEyxY\nsIAnn3yySNs1pjjUI0npZZddxiWXXMIf//hHKlQo31+hfVokAM58ou+DuJ+gXRGJSG0RWSoiW0Rk\ns4iMdMvPEZGPReQb99+zPdYZJyLbRGSriHTzKG8lImnue5PFnZYsIpVEZLZbvkpELgzW8aSlpdGx\nY0fWr1/P119/zVdffcXnn3/udx1/VwkJCQns2bMnb9m9e/eSkJBwyjYWL15MvXr1qFatGnFxcdxw\nww189tlnAHnLn3/++Vx//fWsXr064OO57rrrGD169ClXFAcOHGDJkiUMHTqUCy+8kEmTJjFnzpy8\n/4jFOdbCeDuOWrVqUatWrbyrtb59+7Ju3bq8dd5//31atmzJBRdcUKTtBnrejcm1c+dOrr766rzB\nScOHD2fs2LHlPgjl6tMigf892IUT+7atDdpOgtX5BNQAWrrPzwC+BhKBp4EH3fIHgafc54nABqAS\nUA/YDsS6760G2gICvA/0cMvvAaa6z/sDswurV3EHKzz55JM6atSovNejR4/Whx56qFjbUlXNysrS\nevXq6Y4dO/I6zTdt2nTKcitXrtTExEQ9cuSI5uTk6KBBg3Ty5Ml6+PBh/fXXX1VV9fDhw9quXTt9\n//3389br0qWL7t2795Tt5Q442LNnj/79739XVdWlS5fmDVaYNm2aDh8+PN86HTt21GXLlpVosIKq\n6s6dO08ZrODvODp06KBfffWVqqo+9thjOnr06Lz1+vXrpzNnzvS5L1/bDfS8m+g2b91ebffER3pO\n1+EaE1dZK59WJW+QULQC1miw4kWwNnzKjmA+cBWwFaihvwWrre7zccA4j+U/BNq5y3zlUT4AmOa5\njPu8AvATIP7qUdxAdMstt+jrr7+e93rZsmXavHnzYm0r18KFC7VBgwZ60UUX6YQJE/K916NHD01P\nT1dV1T/96U/asGFDbdy4sd5666167Ngx3b59uzZt2lSbNm2qiYmJ+dbPzs7WOnXq5I2M8+QtmHgG\noiuuuCJfQFNV/fvf/6533XWXxsTEaLNmzfIeY8eODfhY+/fvr9WrV9cKFSpoQkKCvvzyy6qqfo8j\nNTVVW7VqpUlJSdq7d289cOCAqjqB5ZxzztGMjIxT9pN73vxt1995N2beur1a765pWqlmIwW08kWt\n9OL/e03nrTv1h100CWYgEi2kyaU0uE1my4EmwG5VreqWC3BQVauKyD+Alar6b/e9GThXP98CE1X1\nSrf8cmCsql4jIpuA7qq6131vO9BGVX8qsP/hwHCAOnXqtNq1a1eQjzi8Nm3axMyZM3n22WfDXRVj\nIk77iUv4Zs2n/Lzwec6+cjhVEq9AREioGs//HuwS7uqFjYisVdXAJiwWUdAbOUXkdGAucL+q/uqZ\ndVZVVUSCHglVdTowHSA5OTn4kTfMmjRpYkHImCJau3YtGzZs4LuMCzitfhsq3zWDmEqn5b0fqrxr\n0Siow7dFJA4nCL2hqu+6xT+ISA33/RrAj255OlDbY/Vablm6+7xgeb51RKQCcBbwc+kfiTGmvMrM\nzOTBBx+kTZs2/OUvf6F6FWe4smcQgtDNqSlrUlLTaT9xCRWr128VrH0Ec9ScADOAL1XV8+f5AmCw\n+3wwTt9Rbnl/dyRcPaABsFpVvwd+FZG27jYHFVgnd1t9gSUairZGY0y5sHz5cpo1a8ZTTz3Fbbfd\nRmpqKmOvSSIuNv/9guJihTHdGoapluGTkprOuHfTSA/y1WAwm+baAwOBNBHJnXzyEDARmCMiQ4Bd\nwM0AqrpZROYAW4CTwAhVzb0Rxj3Aq0A8Tr/R+275DOB1EdkGHMAZOWeMMYVKT0+na9eu1K5dm8WL\nF9O1a1f3nSNQ8OdslP68DdX9iIIWiFR1Bc5wa2+6eitU1SeAJ7yUr8EZ6FCw/BhwUwmqaYyJMmlp\naSQlJZGQkMC8efPo3LkzVapUyXt/0odbycrJH3mycpRJH27Nm+AZLex+RMYYU4p++uknBg4cSNOm\nTVm+fDkA11xzTb4gBL6/fKNxsILlmjPGmFKgqsyZM4fExETeeustHnvssVPyK3o6Kz6uSOXlmeWa\nM8aYUjB48GBef/11kpOT+eSTT0hKSvK7/ImT3vtEfJWXZ6HKNWeByBhT7uQOnhUROnXqRNOmTbn/\n/vsDyg93NCunSOXlXZ8WCfRpkYCMC16uOWuaM8aUKzt27ODKK6/k1VdfBWDIkCGMHj06apKURiIL\nRMaYciE7O5vnn3+epKQkvvjiC2Jiivf1dlqc9/V8lZuSs58IxpiIt2XLFu644w5WrVpFr169mDp1\nKrVq1Sp8RS8qxcV6bYarFIJO+2hlgcgYE/F27tzJ9u3befPNN+nfvz+eOS2L6uDRrCKVm5KzQGSM\niUhffPEF69evZ9iwYfTq1YsdO3ZwxhlnlHi7sSJke8kUFluC4Gb8s0ZPY0xEOXr0KKNHj6Zt27Y8\n+eSTHDt2DKBUghDgNQj5KzclZ4HIGBMxPv30U5o2bcozzzzDsGHDSE1NpXLlyqW6j6o+Jq76Kjcl\nZ01zxpiIsHfvXq666irq1q3LkiVL6Ny5c1D246sFzlrmgseuiIwxZdqGDRsAqFWrFvPnz2fjxo1B\nC0IAGT4GJfgqNyVngcgYUybt37+fW265hebNm7Ns2TIAevbsyWmnnVbImiXjK9FntN4YLxQsEBlj\nyhRVZdasWSQmJvLOO+/w+OOP065du5Dt31uiz/i42Ki8MV6oWB+RMaZMGThwIG+88QZt2rRhxowZ\nNG7cOKT790z0+V1GJjWrxjOmW8OouxdRKFkgMsaEXU5ODiKCiNC5c2datWrFfffdR2ysZTOIBtY0\nZ4wJq23bttG1a1deeeUVwElS+oc//CFsQSglNZ1x76aRnpGJAukZmYx7N42U1PSw1CcaWCAyxoTF\nyZMn+dvf/kZSUhKpqalUrFgx3FUCnCa5zKz89x7KzMpm0odbw1Sj8s+a5owxIbdp0yZuv/121qxZ\nQ+/evfnnP/9JzZo1w10twG4VHg4+A5GI3OdvRVWdXPrVMcZEg927d7Nr1y7eeustbr755hIlKS1t\nNavGk+4l6Njw7eDx1zRXzX1cBtwPXOw+RgJtg181Y0x5smrVKqZPnw4484F27NhBv379ylQQAhu+\nHQ4+A5GqPqqqjwI1geaqOlJVRwItABvHaIwJyJEjRxg1ahTt2rXj6aef5vjx4wCcfvrpYa6Zd31a\nJPDkDUkkVI1HgISq8Tx5Q5IN3w6iQPqILgCOebw+DlQPTnWMMeXJkiVLGDZsGDt27ODuu+9m4sSJ\nVKpUKdzVKlSfFgkWeEIokED0BrBKROa6r68H/h28KhljyoO9e/fSrVs36tWrx7Jly+jYsWO4q2TK\nqEIDkar+WUTeB3I/RXep6hfBrZYxJlKlpqbSokULatWqxXvvvUenTp2Ij7eOfuNboPOIYoH9qvoM\nsENE6gSxTsaYCPTDDz/Qr18/WrZsmZektHv37hEZhFJS02k/cQn1HlxI+4lLbDJrkBV6RSQijwDt\ncUbM/QuoDLwJdAhu1YwxkUBVeeONNxg5ciSHDx9mwoQJXHbZZeGuVrHlZlbIndSam1kBsH6jIAnk\niqgv0BM4AqCq6cCZwayUMSZy3HLLLQwcOJCGDRuyfv16Hn74YeLiIvduppZZIfQCGaxwXFVVRBRA\nRIJ7MxBjTJnnmaT06quvpl27dowYMaJcJCm1zAqhF8gV0bsi8iJwlojcDnwEvBLcahljyqqvv/6a\nzp07M3PmTABuv/32cpUp226MF3qFBiJVfQr4D7AAaAY8oarPBbtixpiy5eTJkzz99NM0a9aMjRs3\nRuQghEBYZoXQC2Swwl9V9SHgfS9lxpgosHHjRu644w7Wrl3L9ddfz4svvkiNGjXCXa2gsBvjhV4g\nfUTdgYJBp5eXMmNMObV371727NnD22+/zY033ljm8sOVNsusEFo+m+ZE5E4RSQUaicg6j8c3wFeF\nbVhEZorIjyKyyaNsvIiki8h699HT471xIrJNRLaKSDeP8lYikua+N1nc/wEiUklEZrvlq0TkwuKd\nAmOMN5999hlTp04FfktS2rdv33IfhEzo+esjmgPcBCx0/819tFfVfgFs+1Wcq6mCnlPV5u5jEYCI\nJAL9gcbuOv8UkdxG2inAMKCB+8jd5hDgoKrWB54DngqgTsaYQhw+fJiRI0fSoUMHnnnmmbwkpVWq\nVAlzzUx55S/79kFV3QY8DfygqttVdTuQKSLJhW1YVZcDBwKsR2/gLVU9rqo7gW1AaxGpAZypqitV\nVXEm1PbxWOc19/k7QFexn2rGlMhHH31EkyZNeOGFFxgxYgTr1q2LiCSlJrIFMnx7OnDU4/URYFoJ\n9vl/IrLRbbo72y1LAPZ4LLPXLUtwnxcsz7eOqp4EfgHO9bZDERkuImtEZM3+/ftLUHVjyq89e/bQ\nq1cvKleuzPLly3nhhRc444wzwl0tEwUCCUQxqpqT+8J9Xtxp01OAi4DmwPfAM8XcTpGo6nRVTVbV\n5GrVqoVil8ZEjLVr1wJQu3ZtFi1axPr16+nQwTJ4mdAJJBDtFJG7RSRWRGJEZATwbXF2pqo/qGq2\nG8xeAlq7b6UDtT0WreWWpbvPC5bnW0dEKgBnAT8Xp17GRKN9+/Zx0003kZycnJek9KqrrqJy5cph\nrpmJNoEEojuBrsAP7qMTzuCBInP7fHJdD+SOqFsA9HdHwtXDGZSwWlW/B34VkbZu/88gYL7HOoPd\n532BJW4/kjHGD1XltddeIzExkffee4+//vWvEZ2k1ES+QO5H9APOF32RiMgs4ArgPBHZCzwGXCEi\nzQHFuaq6093HZhGZA2wBTgIjVDU36+A9OCPw4nEm1eZOrJ0BvC4i23AGRfQvah2NiUb9+/dnzpw5\ntG/fnpeu8H9FAAAgAElEQVRffplGjRqFu0omyomviwgR+aOqPiMiz+EEjnxUdVSwKxcMycnJumbN\nmnBXw5iQ8kxS+tprr3Ho0CHuueceYmICvSWZiXYislZVCx0xXRz+roi2u/9u8rOMMaaM++qrrxg6\ndCi33XYbQ4cOZfDgwYWvZEwI+QxEqpri/jsjdNUxxpSWrKwsJk2axOOPP06VKlU4/fTTw10lY7zy\nGYhEZB5emuRyqeoNQamRMabE1q9fz+2338769evp27cvL7zwAtWrVw93tYzxyl/T3D/cf3sDNYE3\n3NcDgO+CWSljTMns27ePffv2MXfuXG64wX4zmrLN52CFvAVE1nh2ULnDqFer6qXBrlww2GAFU16t\nWLGCjRs3cs899wBw9OhRTjvNbqhsSkcwBysEMmTm9AKZresA1thsTBlx6NAh7r33Xi6//HKef/75\nvCSlFoRMpAgkEP0R+K+ILBaRT4DlbpkxJsw+/PBDmjRpwj//+U9GjhxpSUpNRApkQutCEfkdkOgW\nbVHVzOBWyxhTmD179nDNNddQv359VqxYYdkRTMQq9IpIROKBkcAwVV0LJIhIj6DXzBhzClVl9erV\ngJOk9P333yc1NdWCkIlogTTNzXSXy03H+x3w16DVyJgQSklNp/3EJdR7cCHtJy4hJTW98JXC5Pvv\nv+fGG2+kTZs2eUlKr7zySktSaiJeIIGogar+FcgCUNWjgN2AzkS8lNR0xry9gfSMTBRIz8hkzNsb\nylwwUlVeeeUVEhMTef/993nqqado3759uKtlTKkJJBCdEJHKuJNb3ezYJ4JaK2NCYPyCzWTl5J++\nkJWjjF+wOUw18u7mm2/mjjvuICkpiQ0bNvDAAw9QoUKh3bvGRIxAPs1/Bj4AaonIazi3gRgS1FoZ\nEwIZmVlFKg+l7OxsRISYmBiuvfZaunTpwp133mlJSk255DcQuZNXNwA3AZfhNMmNUdUfQ1A3Y6LS\nl19+yZAhQ7j99tsZNmwYgwYNCneVjAkqvz+v3BvNfayq+1V1vqqmWBAy5UWVirFFKg+2rKwsJkyY\nQPPmzdm6dStnnXVWWOphTKgF0jS3XkRaqGpq0GtjTAjl+Ehv5as8mFJTU7ntttvYuHEj/fr1Y/Lk\nyZx//vkhr4cx4RBIIGoBfCEi24EjOM1zqqotg1ozY4IsMyunSOXB9MMPP/DTTz+RkpJC7969Q75/\nY8IpkEB0XdBrYUwUWr58OWlpaYwYMYLu3buzbds24uPjw10tY0Ku0CE4qrodqAJ0A64Gqrhlxphi\n+PXXX7nnnnvo1KkTkydPzktSakHIRKtAUvw8DMwCEoBawJsiMi7YFTMm2HzNyg7mbO1FixbRuHFj\npk2bxqhRoyxJqTEE1jQ3CGjhZlRARJ4AUoEng1kxY4LN15CEYA1V2LNnD71796Zhw4a88847tGnT\nJkh7MiayBDI77nvyB6wKbpkxphCqysqVKwEnSelHH33EunXrLAgZ4yGQQHQA2CwiL4vIS0Aa8JOI\nPCsizwa3esZEru+++44+ffrQrl27vCSlnTt3pmLFimGumTFlSyBNcwvdR66VQaqLMeWCqjJjxgxG\njx7N8ePH+dvf/mZJSo3xI5Ab480IRUWMKS/69u3Lu+++S6dOnXj55ZepX79+uKtkTJlmKXyNKQWe\nSUr79OnD1VdfzbBhwyxJqTEBsP8lJmpVjY8rUrkvmzZton379syY4TQeDBw40DJlG1MEgcwjuiGQ\nMmMizTXNahSpvKATJ07w+OOP07JlS7Zv387ZZ59dmtUzJmoE8pPtES9lD5d2RYwJtaVf7S9Suae1\na9fSqlUrxo8fz0033cSWLVvo27dvaVfRmKjgs49IRLoB3YGEAsO0zwRCnxXSmFL2XUZmkco9/fzz\nz2RkZPDee+9xzTXXlHbVjIkq/gYr/AhsAo4BnvdOPgQ8GMxKGRMKNavGk+4l6NSs6j3n29KlS0lL\nS+O+++7j6quv5ptvvqFy5crBrqYx5Z7PpjlVTXWHbjcEXgeWqeoMVZ2jqj+FrIbGBMmYbg2Jj8t/\nE7z4uFjGdGuYr+yXX37hzjvvpEuXLkyZMiUvSakFIWNKRyB9RF1xsil8DCAizUVkXlBrZUwI9GmR\nwJM3JJFQNR4BEqrG8+QNSfRpkZC3zHvvvUdiYiIvv/wyo0ePZu3atZak1JhSFsg8oj8DbYClAKq6\nXkRshp4pF/q0SMgXeDzt2bOHG2+8kUaNGpGSksKll14a4toZEx0CuSLKUtWMAmWhv5eyMSGgqnz2\n2WfAb0lK16xZY0HImCAKJBB9KSI3AzEiUk9EniOAfHMiMlNEfhSRTR5l54jIxyLyjfvv2R7vjROR\nbSKy1R2xl1veSkTS3Pcmi4i45ZVEZLZbvkpELizCcZsQSUlNp/3EJdR7cCHtJy4hJTU93FXyae/e\nvVx33XW0b98+L0npFVdcYUlKjQmyQALRvUArnCHb84ATwP0BrPcqzvBvTw8Cn6hqA+AT9zUikgj0\nBxq76/xTRHJ7kacAw4AG7iN3m0OAg6paH3gOeCqAOpkQSklNZ9y7aaRnZKJAekYm495NK3PBKCcn\nh2nTppGYmMgnn3zCs88+S4cOHcJdLWOiRiC3Cj+iqmNVtYWqNnefHw1gveU4t5Dw1Bt4zX3+GtDH\no/wtVT2uqjuBbUBrEakBnKmqK1VVgX8VWCd3W+8AXXOvlkzZMOnDrWRmZecry8zKZtKHW8NUI+9u\nvPFG7rrrLi699FI2bdrEH/7wB2JjYwtf0RhTKgodrOCOkCvYJ/QLsAZ4SVVPFGF/F6hq7k319gEX\nuM8TyN/ct9cty3KfFyzPXWcPgKqeFJFfgHOBU4aWi8hwYDhAnTp1ilBdUxIlmTAabCdPniQmJoaY\nmBhuvPFGevXqxZAhQ7DfMsaEXiBNc3uAkzhziV7HaZo7BjQFXirujt0rnJAMelDV6aqarKrJ1apV\nC8UuDb4nhvoqD5WNGzfSrl07XnrJ+fjeeuutDB061IKQMWESSCBqp6o3q+o8VZ0HDACSVfVOoKhD\niX5wm9tw//3RLU8HanssV8stS3efFyzPt46IVADOAn4uYn1MEAU6YTRUjh8/zmOPPUarVq3YtWsX\n9qPEmLIhkEB0hoh4BoOawBnu8+NF3N8CYLD7fDAw36O8vzsSrh7OoITVbjPeryLS1u3/GVRgndxt\n9QWWuFdZpozo0yKBG1slEOteacSKcGMr3/N2gumLL76gZcuW/PnPf2bAgAF8+eWX3HCDJZE3piwI\nZELrA8DnIvIVIMDvgHtFpArwhq+VRGQWcAVwnojsBR4DJgJzRGQIsAu4GUBVN4vIHGALTjPgCFXN\n7eW+B2cEXjzwvvsAmAG8LiLbcAZF9A/wmE2IpKSmM/uLPWS7vw+yVZn9xR6S654T8mB08OBBDh8+\nzKJFi+jRo0dI922M8U/8XUSISAxO89tGINEt3qKq4e9tLqbk5GRds2ZNuKsRFVr8+SMOHs06pfzs\n0+JI/dPVQd//kiVLSEtLY+TIkYDTNGfpeYwpHhFZq6rJwdi236Y5Vc0BpqlqpqqudR8RG4RMaHkL\nQv7KS0tGRgbDhg2ja9euTJs2LS9JqQUhY8qmQPqIlopI76DXxJhSMH/+fBITE5k5cyYPPPCAJSk1\nJgIE0kd0GzBSRI4DmTj9RKqq5wSzYibyVY2PIyPz1KufqvFxQdnf7t27uemmm7jkkktYsGAByclB\naUUwxpSyQK6IzgPigNOBau5rG/dqCtW45hlFKi8OVeW///0v4ExWXrx4MV988YUFIWMiSCApfrJx\nglAznNtB5D6M8WvljoNFKi+q3bt306tXLzp27JiXpLRjx46WpNSYCBNIip8hwCiclDppOKPoVuIM\nzTbGp2wfIzJ9lQcqJyeHqVOnMnbsWFSVyZMnW5JSYyJYIH1E9wPJwOeqermINMa5WZ6JUCmp6Uz6\ncCvfZWRSs2o8Y7o1DMq8HsF7DqeSJtK54YYbmD9/PldddRXTp0/nwgsvLOEWjTHhFEggOqaqmSKC\niFR0J5+GJ0eLKbGU1HTGvL2BrBwnRKRnZDLm7Q0ApR6MKlaI4fjJHK/lReWZpLRfv3707t2b2267\nzfLDGVMO+PxGcPO3AXwvIlWB94APRWQu+TNimwgyfsHmvCCUKytHGb9gc6nvy1sQ8lfuy4YNG2jT\npg3Tp08HYMCAAdx+++0WhIwpJ/z9NF0NoKrXqWqGqj4KTMBJ62PziiKUt+HU/srD6dixYzzyyCMk\nJyezd+9eqlevHu4qGWOCwF/T3Ck/N1X1kyDWxZQzJZlHtHr1agYPHsxXX33F4MGDefbZZznnHJu6\nZkx55C8QVRORUb7eVNVng1AfU46Mv65xvv4ogLgYYfx1jQtd99dffyUzM5MPPviAbt26BbOaxpgw\n8xeIYnHmD1lDvCmW3MEPgY7Q++ijj9i8eTN/+MMfuPLKK9m6dWvQ0/OEagShMcY3f4Hoe1W1Ydqm\nRPq0KPz+QwcPHmTUqFG8+uqrNG7cmHvuuYdKlSqFJAiNezeNzCznjiPpGZmMezctr97GmNDwN1jB\nroRM0L377rskJiby+uuvM27cONasWROyJKWTPtyaF4RyZWZlM+nDrSHZvzHG4e+KqGvIamGi0u7d\nu+nfvz9NmjRh0aJFtGjRIqT7/y7D+x1NfJUbY4LD5xWRqh4IZUVMdFDVvLxwderUYcmSJaxatSrk\nQQigZtX4IpUbY4Kj6FPcjSmmXbt20aNHD6644oq8YNShQwfi4oJzW4jCjOnWkPi42Hxl8XGxjOlm\niUOMCSULRCbocnJy+Mc//kHjxo1ZsWIFL7zwApdffnm4q0WfFgk8eUMSCVXjESChajxP3pBkAxWM\nCbFAcs0ZUyJ9+vThvffeo1u3bkybNo26deuGu0p5AhnVZ4wJLgtEEe6RlDRmrdpDtiqxIgxoU5sJ\nfZLCXS2ysrKIjY0lJiaGAQMG0LdvXwYOHFjm8sPZPCJjws+a5iLYIylp/Hvl7rz7+2Sr8u+Vu3kk\nJc3nOlUqxhapvDjWrVtH69atmTp1KuAkKR00aFCZDELj3k0jPSMT5bd5RCmp6eGumjFRxQJRBJu1\nak+RygGeuD6J2Jj8ASE2Rnji+pJfRWVmZjJu3Dhat27Nvn37qF27dom3GUw2j8iYssECUQQrzh1Q\n+7RIYEDr2sS6VyexIgxoXbvEzVErV66kefPmTJw4kcGDB7NlyxauvfbaEm0z2GwekTFlgwWiCBbj\no6XLVzk4zVFz16bna86buza9xM1RR44cISsri48//pgZM2Zw9tlnl2h7oWDziIwpGywQRbBYHwHH\nVzmUbnPUBx98wDPPPANA165d+eqrr7jyyiuLvJ1wsXlExpQNFogiWJaPG536KofSaY76+eefGTx4\nMD169OC1117jxIkTAFSsWDHgbZQFNo/ImLLBhm9HmZpV40n3EnQCaY5SVebOncuIESM4cOAAjzzy\nCI888kjEBSBPNo/ImPCzQFRGhGo+y5huDfPd+gACb47avXs3t9xyC02bNuWjjz6iWbNmpV4/Y0z0\nsUBUBoTyvjhFvVmdqrJ06VK6dOlC3bp1+fTTT2ndujUVKthHxxhTOuzbpAzwN4AgGFdFgTZH7dy5\nk+HDh7N48WI+/fRTOnXqxGWXXVbq9THGRDcbrFAGeOuz8VcebNnZ2fz973+nSZMmrFq1iilTppSJ\nJKXGmPLJrojKgFgRr5NQYwtJiRMjkONl7qq/eUSB6N27NwsXLqRnz55MnTo15BkSLP+bMdHFAlEZ\nUJwMCeA9CPkr98czSenAgQMZMGAAt9xyS8jzw4Wyvyx3fxb0jAmvsDTNici3IpImIutFZI1bdo6I\nfCwi37j/nu2x/DgR2SYiW0Wkm0d5K3c720RkspS1rJoBKm4iUl9XTIVdSRW0Zs0akpOTmTJlCgD9\n+vXj97//fViSlIYy/5slPTWmbAhnH1FnVW2uqsnu6weBT1S1AfCJ+xoRSQT6A42B7sA/RST3G3oK\nMAxo4D66h7D+peboiewileca0MZ7k5mv8oIyMzMZO3Ysbdq0Yf/+/WXiPkGhzP9mSU+NKRvKUtNc\nb+AK9/lrwKfAWLf8LVU9DuwUkW1AaxH5FjhTVVcCiMi/gD7A+6Gtdsn5akkrrIUt975Dxbkf0eef\nf87gwYP55ptvGDp0KJMmTaJq1apFq3gAitr0VZIJt0XdV1kbJGJMtApXIFJgsYhkA9NUdTpwgap+\n776/D7jAfZ4ArPRYd69bluU+L1h+ChEZDgwHqFOnTmkdQ6kp7mAFcIJRcW6El5mZSU5ODosXL6Zr\n165FXj8QKanpjJq9ntyMQ+kZmYyavR7w3d8zpltDxry9gSyPjq64GCl0wm1x+pYE78E+Itt3jYlg\n4Wqa66CqzYEewAgR6ej5pqoqhV8QBExVp6tqsqomV6tWrbQ2W2pK2sQWqEWLFjFp0iQAunTpwpdf\nfhm0IAQw7t2NFEx7l+OW+5NVYLRFwdfeFKeZrbhXosaY0hWWQKSq6e6/PwLzgNbADyJSA8D990d3\n8XTA8xu5lluW7j4vWB52KanptJ+4hHoPLqT9xCWFdn5P6JPErW3r5LtH0K1t65TaLb9/+uknbr31\nVnr16sUbb7yRl6Q0Li6uVLbvS6aP7Ku+ysF3kCoseNm9hYyJXCFvmhORKkCMqh5yn18N/BlYAAwG\nJrr/zndXWQC8KSLPAjVxBiWsVtVsEflVRNoCq4BBwAuhPZpTpaSmM+adDWRlO7+r0zMyGfPOBsD/\n8OPiNrH56xdRVWbPns3//d//8csvv/DYY4/x0EMPFStJaaiGORcneEHx+pbOPi2Og0ezvJYbY0In\nHH1EFwDz3KHBFYA3VfUDEfkCmCMiQ4BdwM0AqrpZROYAW4CTwAhVzW2DuQd4FYjHGaQQ9oEKj7+3\nOS8I5crKVh5/b3Opf3EX1i+ye/duBg8eTLNmzZgxYwZJSU6geyQlrUgDHEI9t6c4ipPM9bFrG+f7\n0QAQFys8dm3joNbVGJNfyAORqu4ATknbrKo/A147LFT1CeAJL+VrgCalXceS8PYL2195SXjrFzl6\n4iQPv/gmfV4eQ926dVm2bBmXXnopsbHOiPdHUtL498rdectnq+a99hWMQp0LrziKmsy1uOsYY0pf\nWRq+bYqoYP9H1sHv+fmDF9i9eyPLBramU6dOtG3bNt8ys1bt8bqtWav2+AxExe1/ubVtnXxBz7M8\nGIpzbyG7H5Ex4WdJTyNYbv+H5mTz6+p5fD/zXk7s28ZF1//BZ5LS4qQT8tXPUtjcngl9kmh/8Tn5\nytpffE6pDcIwxpQPFogi2JhuDYmPi+XHuX/m4NIZVK7blIvumsozj/6RmBjvf1pfCVH9JUrN3Y+n\nQG6ml5Kazrrdv+QrW7f7F7+jCKvGex8o4KvcGBP5LBBFqBMnTnBdsxo8eUMSddr05Lxrx9B8yJP8\n7bYufpuaKlXw/if3VQ5O89WNrRLyDS+/sVXhTVrFmdsz/rrGxBWIinExwvjrbACBMeWV9REFKNDh\ny7EC2V5auWJLcbr+6tWrGTJkCHfeeSf33nsvfd78c8DrFmd4dEpqOnPXpuc132WrMndtOsl1z/Eb\njIrTt2QDCIyJPhaIAlCU4cvegpC/cs99FPble/ToUR599FGef/55atSowcUXX1zkYylOOqHijpo7\nKz6OjMxTRwueVUgzmw0gMCa6WNNcAIKdpTmQ2xGsWLGCpKQknn32WYYNG8bmzZvp0aNHkfdVnMEK\nxR015yu2RebNOowxwWJXRF4UvDrxlY25tNLHBHLFkXvjuqVLl3LFFVcUe18JPo4nwc8IuOJmxM7w\nMXfKV3lJ2U3ujIlMdkVUgLerE18/4BW48MGFXDxuEY+kOE11Dc6v4nVZX+Xg+7YD36z5lKeffhqA\nzp07s2XLlhIFIYALz/UePHyVQ/FHzRV32Hdx2E3ujIlcFogK8HZ1ovi/NUBudoJHUtLYf+iE12V8\nlcOp/TPZR39h/4JJ7J/7F2bNmpWXpLRChVMvYIuaYHXljoNFKgenz+bJG5JIqBqP4Fw9PXlDUqFX\nG8UNYMVhN7kzJnJZ01wBvprbFOcL+Dv3F7c3ufnbvPHWaZ8rdx1V5eiXyziweDo5x49yVoffs+qT\nmT6TlBYnB1xx+ohyt1ecrAUQmhFwln3bmMhlgYj8fQsxfkaV5X6JXvjgQq/bKezL3JfcfpvsX/fz\n06LnqXj+xZzb4z7qNWjkN1N2cUazleQmfMURqhFwJbmzqzEmvKI+EKWkpue7I6i/K4bcqw1fX+bF\nkZOTQ8V9G6Dy76hw1vlUv+UpKlavj8TE+u23geLd6rrtRWfzv+0HvJZHsuJk3zbGlA1R30c0fsHm\ngO4ACs7Vxv2z11OpQulcPXzzzTd06dKFT/8+imN7NgFQqWZDJMbpV/nMS8AoqW9/9h6kfJVHiuL2\nYxljwi/qr4j89d34cjQrhxiBAOMXkD9X2smTJ3nuuef405/+RKVKlTi3x31UqnVqCptg3LK6OFdR\nkcImwhoTmaL+iqi4ihKEYoR8udKuueYaHnjgAbp168aWLVs4venVSIhmefrqCwpWH5ExxhQm6gOR\nr9tCl+bXcqwIWSeOk5Pj5HMbOnQos2fPZt68edSsWbPY2y3OnKXijpozxphgifpA9Ni1jU+5BUKM\nlG6z2OE9XzL4ui68+OKLAPTt25ebb765xFdBR094T1Tqqxx8B15f5cYYE2xR3UeUkprO+AWbT2lm\ni40RzqxYoVj9R55yThwj47+vc2jNAmLPOI8GDRp4Xe7s0+K83kq8sOBQnLkzh495PyZf5bksfY4x\nJlii9ooodzKot2CTla2IQFwJ7t1wbM8mvp85gkNr5nN6i560GjWD7t27e132sWsbn7KvuFjhsWv9\n34OnOCl0fN3twc9dICx9jjEmqKI2EHmbDOrp4NEssgvcu6FIJysnB2IrcMEtE6nV617G9W7pc9E+\nLRKY1LdZvqHHk/o2KzMpdCx9jjEmmKK2aS6Q4coFLxL8XDQAcPTrz8n6eQ89b72Lb6u2oXLtxiSc\nc3rQmrGKk0JHBLyNS/DXXWXpc4wxwRS1gag0ZR85yIGPp3F06woqXnAxn39zAzue7h3w+sXJGZer\nqHNnft+mDv9eudtruS+WPscYE0xR2TRXWn0bqsrhTUv47uV7OLptJVU7DqL6wGfIialQpIzYoWz6\nmtAniVvb1smbNxQrwq1t6zChT5LPdUKZRdsYE32i8oqotL7gs3/dz88fTKZS9Qac2+M+4s6tnfde\n7hVEekYmY97eAPi+ugl109eEPkl+A09BocyibYyJPlEZiEryBa+aw7Ed64i/ONlJUvr7SVS84KK8\n/HDeZOUo4xds9vnFHQlNX5Y+xxgTLFHZNFfcL/isA+n88OY4fnxnPMd2O304lWo0yAtC/tLk+JuT\nZE1fxphoFpWBqKhf8JqTzS8r3+G7mfeStf9bzu15P5VqN8m3zNmnxbH9yZ7Fqo9ljjbGRLOobJrr\n0yKBh+elceSE73lEnn58ezzHvk3l9EbtqdH9bk5UqnrKMiVN1WZNX8aYaBWVV0QAcbH+D11PnkBz\nnEB1evPuJNz4EK+/OZssL0EInKa39hOXlHo9jTGmvIvaQPSLnz6bY3u38N0r93FonXNL8CoN21Op\nQXvAf/+Sv0mydpsFY4zxLmoD0VnxpyYUzTmRyYHF0/jhjbHoyRP5hmPn3iq8sNt3+zKgTe3CFzLG\nmCgUlX1EAFnZ+RP2HNudxk8LnyP71/2c0eoaqnYcREzF/EEnMyublTsOBrT9WBGyVYkVYUCb2kWa\nt2OMMdEkagORt4EKMXGVOO/3T1G5VqLP9QK9gVxxR9AZY0y0idpABHB062dkHdjLWe1upnKdJGrc\n8Q+/E1ONMcaUvojvIxKR7iKyVUS2iciDgayzb98+MhZMZH/KXzn69edotjNwobSCUFUv/U/GGGO8\ni+grIhGJBV4ErgL2Al+IyAJV3eJrnZ9//plLLrmEQ4ePUrXTYM689HokNv9pEIp/q/C4GGH8df5v\naGeMMeY3ER2IgNbANlXdASAibwG9AZ+BaNeuXbRv355vLxlI7DneJ5D6C0Ixwim3Fs+VYMlAjTGm\nyCI9ECUAezxe7wXaFFxIRIYDw92Xx1esWLGp4rZ9rUqzItmZh/bv+uWH3dePK82tBt15wE/hrkQZ\nYefiN3YufmPn4jdBS34Z6YEoIKo6HZgOICJrVDU5zFUqE+xc/MbOxW/sXPzGzsVvRGRNsLYd6YMV\n0gHPmaK13DJjjDERItID0RdAAxGpJyIVgf7AgjDXyRhjTBFEdNOcqp4UkXuBD4FYYKaqbi5ktenB\nr1nEsHPxGzsXv7Fz8Rs7F78J2rkQLen9C4wxxpgSiPSmOWOMMRHOApExxpiwiqpAVJx0QJFGRL4V\nkTQRWZ873FJEzhGRj0XkG/ffsz2WH+eej60i0s2jvJW7nW0iMlmk7N9QSURmisiPIrLJo6zUjl1E\nKonIbLd8lYhcGMrjKwof52K8iKS7n431ItLT473yfC5qi8hSEdkiIptFZKRbHnWfDT/nIryfDVWN\nigfOYIbtwEVARWADkBjuegXhOL8FzitQ9jTwoPv8QeAp93miex4qAfXc8xPrvrcaaIuT8eh9oEe4\njy2AY+8ItAQ2BePYgXuAqe7z/sDscB9zEc/FeGC0l2XL+7moAbR0n58BfO0ec9R9Nvyci7B+NqLp\niigvHZCqngBy0wFFg97Aa+7z14A+HuVvqepxVd0JbANai0gN4ExVXanOp+lfHuuUWaq6HDhQoLg0\nj91zW+8AXcvqlaKPc+FLeT8X36vqOvf5IeBLnKwsUffZ8HMufAnJuYimQOQtHVB5TAqnwGIRWStO\naiOAC1T1e/f5PuAC97mvc5LgPi9YHolK89jz1lHVk8AvwLnBqXbQ/J+IbHSb7nKboqLmXLjNRC2A\nVe+8I5oAAAQ2SURBVET5Z6PAuYAwfjaiKRBFiw6q2hzoAYwQkY6eb7q/XqJyzH40H7trCk7TdHPg\ne+CZ8FYntETkdGAucL+q/ur5XrR9Nryci7B+NqIpEEVFOiBVTXf//RGYh9Mk+YN7KY3774/u4r7O\nSbr7vGB5JCrNY89bR0QqAGcBPwet5qVMVX9Q1WxVzQFewvlsQBScCxGJw/nifUNV33WLo/Kz4e1c\nhPuzEU2BqNynAxKRKiJyRu5z4GpgE85xDnYXGwzMd58vAPq7o1zqAQ2A1W5zxa8i0tZt2x3ksU6k\nKc1j99xWX2CJ+0s6IuR+6bqux/lsQDk/F27dZwBfquqzHm9F3WfD17kI+2cj3KM4QvkAeuKMEtkO\nPBzu+gTh+C7CGeGyAdice4w47bOfAN8Ai4FzPNZ52D0fW/EYGQckux/G7cA/cLNwlOUHMAunWSEL\np816SGkeO1AZeBunw3Y1cFG4j7mI5+J1IA3Y6H5Z1IiSc9EBp9ltI7DeffSMxs+Gn3MR1s+Gpfgx\nxhgTVtHUNGeMMaYMskBkjDEmrCwQGWOMCSsLRMYYY8LKApExxpiwiug7tBoTLCKSO7QXoDqQDex3\nX7dWJ19hSffRE/ir+7I+zkTATCBVVW8v6fb97LcvsFFVvw7WPowpChu+bUwhRGQ8cFhV/1agXHD+\nD+WUwj5WAPeq6voirFNBnVxeRd3XW8C/VfU/RV3XmGCwpjljikBE6rv3cnkDZ9JwbRHJ8Hi/v4i8\n7D6/QETeFZE1IrJaRNoWYT8NRGSFiKxz17/ULe8uIktEZCHOZEREZIJ7r5jlIjJHRO51y38nIh+5\nCXA/deveGegGTBbnvjO1fVbCmBCxpjljiq4RMEhV17i5tHyZDDytqivdTMf/AZoEuI/vgK6qelxE\nmgDTgPbue8k499LaKyIdcFI5NcWZ0b4RWO4u9xIwWFW/FZFOwGRV7SkiH2JXRKYMsUBkTNFtV9U1\nASx3JdDQ41YsZ4tIvKpmBrBuZeAFEUnC6Z+60OO9/6lqbgr+DsA8VT0OHHevlBCR84BLgZQyeFsc\nY/KxQGRM0R3xeJ6Dc4fKXJU9ngvFH9gwBtgJ/N7dpudN7o54XSM/AX5Q55YgxpRp1kdkTAm4AxUO\nun06MTiZi3MtBkbkvhCRogSFs4Dv1BlNdJuf5f4H9BaRiiJyJs59qFDV/W69rnP3HSMiTd11DuHc\nJtqYMsECkTElNxb4EPiM/HetHAG0d+96uQUYVoRtvgDcLSIbgJo4zXOnUNX/AktxsiD/B6eP6Bf3\n7ZuBe91tbMLJsgzwJvAnG6xgygobvm1MhPv/9u6YhkIAhqLo68SCDEThjeWr+RJQwl4WBLA1JOco\n6HbTdGhVrd19PV83/0n27j6n54K33Ijg+35VtSVZkhwixNfYiAAY5UYEwCghAmCUEAEwSogAGCVE\nAIy6Af+Gp7G5nwoLAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f05212c7dd8>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEWCAYAAAAkUJMMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4FOX2wPHvSWgRkGKFUERFeg9NQESUrqAixYuANAte\n8CoW9HpFfyj2gldRiqKoIBcUUOCiSLuoVEFCVYoYIh0iLUDK+f0xk7AJu8kmZLNJ9nyeZ5/MvtPO\nzE727LzzzjuiqhhjjDHBEhbsAIwxxoQ2S0TGGGOCyhKRMcaYoLJEZIwxJqgsERljjAkqS0TGGGOC\nyhKRyXEi8pSITAx2HClE5G8i8m2w47hQInKjiOwJdhzG5DRLRHmQiPwuIvEickJE9onIZBEpEey4\n/KWqL6rqoGDHkUJVP1PVdoFYdn7/rFKk246UV/lcXP9VIqIiUsijrL+IJLmxHBORX0SkS27FZHKP\nJaK861ZVLQHUBxoAIwOxEhEJD8RyQ0yufFa54FZVLeHx+jMrM3smkRz0k7tvSwPvAdNEpHROryRA\nsWdl/SIiIft9HLIbnl+o6j5gAc6XHAAiUlREXhORP0Rkv4i8LyIRHuMfF5G9IvKniAxyf2le646b\nLCLjRGSeiJwE2mS0PBG5VES+EZE4ETkiIv9L+YcRkSdEJFZEjovINhFp65aPEpFPPeK5TUQ2uctY\nIiI1PMb9LiIjRGSDiPwlIl+ISDFv+8LLctP8inZ/Qe9049klIn/zKF/uMZ+KyP0i8psb07siIu64\ncBF5XUQOuct4KP0v9Sx+Vp1FZJ37iz5GREZ5ib+fu+8PicjTHuMj3M/rqIhsBhqn2x813P0Z5+7f\n2zzGTRaR90RkvntG8YOIXCkib7nL2yoiDTLbJndZmX1+T4jIBuCkiBQSkfIiMlNEDrr7cJjH9E1E\nZI27P/aLyBvuqGXu3zg33ubp9m0yMAUoDlT1WF4zEfnRje0XEbnRY1wVEVnmHg8L3c/503T7fqCI\n/AEs8mN5vo6va0VkqXv8HhKRLzzmuV5EVrvjVovI9R7jlojICyLyA3AKuNqfz6NAUlV75bEX8Dtw\nsztcAYgG3vYY/yYwBygLlAS+Bsa44zoA+4BawEXAp4AC17rjJwN/AS1wfogUy2R5Y4D3gcLuqxUg\nQDUgBijvTncVcI07PAr41B2+DjgJ3OLO/ziwHSjisa2rgPLu+rcA9/vYL6nL9VinAoVwvqCOAdXc\nceWAWu5wf2C5x3wKfIPzK7sScBDo4I67H9js7vcywMKUdWTzs7oRqOPu67rAfqBbuvgnABFAPeAM\nUMMd/xLwP3e/VAQ2AnvccYXd/fgUUAS4CTjusf2TgUNAI/czXgTsAvoC4cBoYLG37Ui3ff58fuvd\n+CLc7VwL/MuN62pgJ9Denf4n4B53uATQLP1n6bHu1M/NjXkocBa43C2LBA4Dndz13uK+v8xjXa+5\ncbTEOT4+Tbe+T3COnYiMlkfGx9dU4GnO/T+1dMvLAkeBe3CO0d7u+0vc8UuAP3D+VwsBhYP93RO0\n77xgB2AvLx+K8899wv1iUeB7oLQ7Ttwvhms8pm8O7HKHP8RNIu77azk/EX3iMT6z5T0PzE6ZP91y\nDwA3p/8HIm0iegaY7jEuDIgFbvTY1j4e418B3vexX1KX675P+TJJSURxwJ1ARLr5+nN+Imrp8X46\n8KQ7vAi4z2PczWSeiLx+Vj6mfwt4M138FTzGrwJ6ucM7cROk+34I5xJRK5wfHGEe46cCozw+5wke\n4/4ObPF4XweI87Idce5rVhY+vwEe45sCf6Tb5pHAR+7wMuA54NJ006R+luk+t0Q3ngQgHujhMf4J\nYEq65SwA+uH8wEgELvIY9ynnJ6Kr/VxeRsfXJ8B4z8/RLb8HWJWu7Cegvzu8BHg+J7878uvLquby\nrm6qWhLnF3V14FK3/DKcM521bvVBHPBftxycM4sYj+V4Dnsry2x5r+L8Av7WrZZ4EkBVtwMP4ySH\nAyIyTbxf3C4P7E55o04VSwzOr88U+zyGT+H8Us4SVT0J9MQ5o9krInNFpHoGs/hapz/7Lz1fnxUi\n0lREFrvVVH+58V2abn5/Y9ntMVweiHH3p+d4z/2632M43sv79Pu5m6qWdl/dPNaT2efnGWNloHzK\nseQeT08BV7jjB+KcZW11q6oya3ywQlVL45ydzsFJwJ7ruivdulrinK2UB46o6ikfcfqK3evyMjm+\nHsf5QbfKrcIc4Jan2Xeu9J+RP8dXgWeJKI9T1aU4v25fc4sO4XyJ1PL40iilzgVdgL04VUQpKnpb\nrMdwhstT1eOq+qiqXg3cBjwi7rUgVf1cVVvi/AMr8LKXdf3pjgeci7JuTLH+74VUJ3GSZoor02yU\n6gJVvQXni2grTpVXVvmz/7zy8lkBfI7zBVpRVUvhVHNKFmLxXH8lj+E/gYqS9gJ3JbK3XzPiz+fn\neTzF4JxNl/Z4lVTVTgCq+puq9gYuxzleZohI8XTLOI+qngAeAO7xuLYVg3MG47mu4qr6Es6+Kysi\nnsdLZv8LGS3P5/GlqvtUdbCqlgfuA94T55psmn3nSv8Z2eMPsESUX7wF3CIi9dxfpBOAN0XkcgAR\niRSR9u6004F73QvZF+FUrfiU2fJEpIt7MVZwri0lAckiUk1EbhKRosBpnGSW7GUV04HOItJWRAoD\nj+JcB/kxG/thPXCDiFQSkVJ4tE4TkStEpKv7pXYGp5rJWzyZmQ4Md/dBaZzqmqxI/azc9yVxfpmf\nFpEmwN1ZjGWkiJQRkQo41WspVuKcPT0uIoXdi+q3AtOyGK8/MWTl81sFHHcbMESI0/ijtog0BhCR\nPiJymXvcxbnzJONcp0smgwv2qnoEmIhz/QmcqrZbRaS9u55i4txrVUFVdwNrgFEiUsRt/HBrJtvq\nc3kZHV8icpf7+YBzDUjdcfOA60TkbnEacfQEauJcnzQeLBHlA6p6EKceOuUf8Amc6rIVInIM54J6\nNXfa+cBYYHHKNO48ZzJYhc/l4bRQWojzj/cT8J6qLgaK4lxMP4RTtXQ5Xpotq+o2oA/wjjvtrTjN\nhM9maSc4y/oO+ALYgHNB3PMfOgx4BOdX6BGgNc4v6KyaAHzrrmMdzpdJIk4C9ifG9J/Vg8DzInLc\nLZuehView6nK2eXGNMVjPWdx9mVHnP36HtBXVbdmYfmZyurnp6pJQBecloO73HkmAqXcSToAm0Tk\nBPA2zvWweLcK7QXgB7darJmPkN4COolIXVWNAbriVP0dxDmjeYxz32t/w7neeRinccYXZPB/kMny\nMjq+GgMr3W2aAwxX1Z2qetjdF4+6MTwOdFHVQ75iCFWiameGBZk4TW03AkVVNTHY8eQ3ItIRp/FE\n+ioWk8+4zaq3quqzwY7FpGVnRAWQiNwuzr1BZXDq4b+2JOQftzqpk1uVEgk8C3wV7LhM1olIYxG5\nRkTCRKQDztnOrGDHZc4XsEQkIhXd1kKb3ZYkw93yUeLcBLnefXXymGekiGwX5+bI9h7ljUQk2h03\n1r1ekXJj5xdu+UoRuSpQ25PP3IfTtHoHTpVSdqqoQpXgVIkdxama28K5ajaTv1yJ00T6BE519QOq\nui6oERmvAlY1JyLlcJo9/iwiJXHq9LsBPYATqvpauulr4twH0QSn2eNC4DpVTRKRVcAwnAu084Cx\nqjpfRB4E6qrq/SLSC7hdVXsGZIOMMcYERMDOiFR1r6r+7A4fx/llGZnBLF2Baap6RlV34Vw8b+Im\ntItVdYU6WfMTnISWMs/H7vAMoG3K2ZIxxpj8IVc6+nOrzBrgnNG0AP4uIn1xmlc+qqpHcZLUCo/Z\n9rhlCe5w+nLcvzEAqpoozg2Dl+C01PFc/xCcu9IpXrx4o+rVM7rP0RhjTIrdu3cTFxdHYmLiIVW9\nLPM5si7giUicLvFnAg+r6jERGQf8H05b+/8DXgcGZLCIC6aq43G64CAqKkrXrFkTyNUZY0y+lnLJ\nRkQYN24cBw4cYNSoUel7icgxAW01594ANxP4TFW/BFDV/aqa5HEjZRN38ljS3vlcwS2LJe2d7inl\naeYRp3fkUjjt9Y0xxmRDbGwsXbt25fPPPwfggQce4NlnA9viPZCt5gSYhNPR4hse5eU8Jrsd5x4X\ncG4E6+W2hKuCcyPlKlXdCxwTp3t2wek9eLbHPP3c4e7AIrUbo4wxJstUlQkTJlCzZk0WLlzIiRMn\ncm3dgayaa4HT+2y0iKx3y54CeotIfZyqud9xmhqjqptEZDpOF/yJwFD3Lm1w7k6fjNNV+3z3BU6i\nmyIi23Hudu4VwO0xxpgCaceOHQwePJjFixfTpk0bJkyYwDXXXJNr6w9YIlLV5Xjv3HFeBvO8gNPN\nR/ryNUBtL+WngbsuIExjjAl50dHRrF27lvHjxzNo0CByu/FxUB+Pa4wxedGsdbG8umAbf8bFU750\nBI+1r0a3BhndfZL/bNy4kZ9//pm+ffvSrVs3du7cySWXXBKUWKyLH2OM8TBrXSwjv4wmNi4eBWLj\n4hn5ZTSz1uX0EzaC4+zZs4waNYqGDRvy9NNPc/r0aYCgJSGwRGSMMWm8umAb8QlpO1uPT0ji1QXb\nghRRzlm5ciUNGzbkueeeo2fPnqxbt45ixYoFOyyrmjPGGE9/xsVnqTy/iI2NpVWrVlxxxRV88803\ndO7cOdghpbIzImOM8VC+dESWyvO6X3/9FYDIyEi++OILNm3alKUkNGtdLC1eWkSRK69tFKgYLREZ\nY4yHNtW992LjqzyviouLY8iQIVSvXp1ly5YBcPvtt3PxxRf7vQzP62WBZFVzxhjjYfHWg1kqz4vm\nzJnDAw88wL59+3jsscdo3Lhxtpbj7XpZIFgiMsYYD/n9GtGgQYOYNGkSderUYfbs2URFRWV7Wbm1\nzZaIjDHGQ/nSEV6rovLyNSLPTkqjoqKoXLkyTzzxBEWKFLmg5fraFznNrhEZY4yHx9pXI6JweJqy\niMLhPNa+WpAiylhMTAxdunTh008/BeD+++/nmWeeueAkBM6+yI0kYYnIGGM8dGsQyZg76hBZOgIB\nIktHMOaOOnmuZ4Xk5GTGjRtHrVq1WLJkCWfOnMnxdazZfYTkHF/q+axqzhhj0unWIDLPJR5Pv/32\nG4MGDWLZsmXcfPPNjB8/nipVquT4eqaujMnxZXpjicgYY/KZzZs3s2HDBj788EP69+8fsE5Kk3Lp\nqTqWiIwxJp282OnpL7/8wvr16+nXrx9du3Zl586dlClTJqDrDBfJlWRk14iMMcZDXuv09MyZMzzz\nzDNERUXxzDPPpHZSGugkBNC7acXMJ8oBloiMMcZDXur09KeffqJBgwaMHj2au+++O9c7KR3drQ59\nmlUiPMDPJ7JEZIwxHvLKDa2xsbG0bt2aEydOMG/ePD7++OOgPKphdLc67BjTibP7tq8N1DosERlj\njIdgd3q6ZcsWwOmkdPr06WzatImOHTvmyrqDxRKRMcZ4uOoS7wnHV3lOOXr0KAMGDKBmzZr873//\nA6Bbt26ULFkyoOvNC6zVnDHGeFix82iWynPCV199xYMPPsjBgwcZOXJktjspza8sERljjAdfzZUD\n1Yx5wIABfPTRR9SvX5+5c+fSsGHDgKwnL7NEZIwxHnzdO5OTLcc8Oylt1qwZVatWZcSIERQuXDjH\n1pGf2DUiY4zx4OvemZy6p2b37t107NiRKVOmADBkyBBGjhyZZ5OQPaHVGGNyWVTlsud9MYa55Rci\nOTmZd999l9q1a7N8+XISEhIuaHm5Ibee0GqJyBhjPLy6YNt5PU4nu+XZtW3bNlq3bs1DDz3E9ddf\nz8aNGxk4cOAFxZkb7AmtxhgTBIG4oXXbtm1s2rSJyZMn07dv34B1UprTcusmXjsjMsYYDzl1Q+u6\ndev46KOPALjtttvYuXMn/fr1yzdJCHLvJl5LRMYY46FN9cuyVJ7e6dOneeqpp2jcuDGjRo1K7aS0\ndOnSORZjbvH2tNpAsERkjDEeFm89mKVyTz/88AP169dnzJgx9O3bl/Xr1+dqJ6U5zfNptYFk14hy\nwKxZs5g7dy7Hjh1j4MCBtGvXLtghGWOyKbvXiGJjY2nTpg2RkZEsWLCgwHwPpDytVkZap6d5wgcf\nfMCVV15JvXr1uOaaa/jkk08Apz+oCRMm8P777/PFF1/4vbz//ve/VKtWjWuvvZaXXnrJ53Rvv/02\ntWvXplatWrz11lup5VdddRV16tShfv36REVF+bVOEaFPnz6p7xMTE7nsssvo0qVLmulmzZqFiLB1\n69bUsvDwcOrXr5/6yihmb5KSkmjQoMF563rzzTepVasWtWvXpnfv3qlVGf5sX0b70N/9a4ynrF4j\n2rx5M+B0Ujpz5kyio6MLTBLKNaoaUq9GjRppdg0dOlTHjRunqqorV67USy65JM34Rx55RNeuXevX\nshITE/Xqq6/WHTt26JkzZ7Ru3bq6adOm86aLjo7WWrVq6cmTJzUhIUHbtm2rv/32m6qqVq5cWQ8e\nPJilbShevLjWq1dPT506paqq8+bN03r16mnnzp3TTNejRw9t2bKl/utf/0oz74V4/fXXtXfv3mnW\ntWfPHr3qqqtS47nrrrv0o48+UtXMty+jfejv/jUmvae/2qCVn/jmvNfTX21IM93hw4e1X79+CujS\npUuDFG3uAdZogL6X7YwoCzZs2EC1atUAqFKlCkWKFAGcZP7EE0/QsWNHv/uJWrVqFddeey1XX301\nRYoUoVevXsyePfu86bZs2ULTpk256KKLKFSoEK1bt+bLL7+8oO3o1KkTc+fOBWDq1Kn07t07zfgT\nJ06wfPlyJk2axLRp0y5oXSn27NnD3LlzGTRo0HnjEhMTiY+PJzExkVOnTlG+fHm/lpnRPvR3/xqT\nnj/XiGbOnEnNmjX57LPPePrpp2nSpEluhVcgWSLKgujoaKpVq4aq8u9//5sXXngBgHfeeYeFCxcy\nY8YM3n///dTpW7VqlaYqK+W1cOFCYmNjqVjxXJchFSpUIDb2/EcR165dm//9738cPnyYU6dOMW/e\nPGJiYgCnmu3mm2+mUaNGjB8/3u/t6NWrF9OmTeP06dNs2LCBpk2bphk/e/ZsOnTowHXXXccll1zC\n2rVO1XB8fHya7fCshsxoWwEefvhhXnnlFcLC0h5ykZGRjBgxgkqVKlGuXDlKlSqVWq2R2fZltA/9\n3b/GpJfZNaL+/fvTvXt3IiMjWb16NaNHj87XDRLyAmus4KeYmBiOHz9Op06diI2NpW7duowaNQqA\nYcOGMWzYsPPmSXmmiDczZszwa701atTgiSeeoF27dhQvXpz69esTHu40p1y+fDmRkZEcOHCAW265\nherVq3PDDTdkusy6devy+++/M3XqVDp16nTe+KlTpzJ8+HDASVpTp06lUaNGREREsH79eq/LzGhb\nv/nmGy6//HIaNWrEkiVL0ow7evQos2fPZteuXZQuXZq77rqLTz/9lD59+mR7+4y5EOVLR5zXpY2q\npl4juv7666lRowaPPvoohQrZV2hOCNheFJGKwCfAFYAC41X1bREpC3wBXAX8DvRQ1aPuPCOBgUAS\nMExVF7jljYDJQAQwDxiuqioiRd11NAIOAz1V9fdAbE90dDQ33HADixYt4ujRo9SuXZuffvqJ66+/\n3uc8rVq14vjx4+eVv/baa0RGRqae2YBTdRUZGel1OQMHDkztDuSpp56iQoUKAKnTX3755dx+++2s\nWrXK7y/q2267jREjRrBkyRIOHz6cWn7kyBEWLVpEdHQ0IkJSUhIiwquvvprh8jLa1h9++IE5c+Yw\nb948Tp8+zbFjx+jTpw+ffvopCxcupEqVKlx2mXOPxh133MGPP/5Inz59Mt2+jPZhVvavMZ4ea1+N\nkV9Gp3ZtkxC3j7hv36Vr/75AW4YMGRLcAAuiQF18AsoBDd3hksCvQE3gFeBJt/xJ4GV3uCbwC1AU\nqALsAMLdcauAZoAA84GObvmDwPvucC/gi8ziym5jhTFjxugjjzyS+n7EiBH61FNPZWtZqqoJCQla\npUoV3blzZ+rF9I0bN3qddv/+/aqqunv3bq1WrZoePXpUT5w4oceOHVNV1RMnTmjz5s11/vz5qfPc\ndNNNumfPnvOWldLgICYmRt9++21VVV28eHFqA4IPPvhAhwwZkmaeG264QZcuXXrBjRXSr0tVdcWK\nFVqzZk09efKkJicna9++fXXs2LGZbp9qxvswK/vXmPS++nmPNn/hWy3bdoiGFS6mxS4qntqIJlQR\nwMYKudZaDZgN3AJsA8rpuWS1zR0eCYz0mH4B0NydZqtHeW/gA89p3OFCwCFAMooju4no7rvv1ilT\npqS+X7p0qdavXz9by0oxd+5crVq1ql599dU6evToNOM6duyosbGxqqrasmVLrVGjhtatW1cXLlyo\nqqo7duzQunXrat26dbVmzZpp5k9KStJKlSqltkTz5C2ZeCaHG2+88bwv/Lffflvvv/9+DQsL03r1\n6qW+nnjiiSxvc/pEpKr6r3/9S6tVq6a1atXSPn366OnTpzPcPs99k9E+zGicMRnZvHmzNm/eXAHt\n2LGj7t69O9ghBV2+T0Q41XB/ABcDcR7lkvIe+DfQx2PcJKA7EAUs9ChvBXzjDm8EKniM2wFc6mX9\nQ4A1wJpKlSrlyIeSl0VHR+s//vGPYIdhTL41Z84cLVu2rE6ZMkWTk5ODHU6eEMhEFPArbSJSApgJ\nPKyqxzw7/FNVFZHAPH/Xg6qOB8YDREVFBXx9wVa7dm3eeOONYIdhTL6ydu1afvnlFwYMGMCtt97K\nrl27uPjii4MdVkgIaPNtESmMk4Q+U9WUm1/2i0g5d3w54IBbHgt4PgKxglsW6w6nL08zj4gUAkrh\nNFowxhi/xMfH8+STT9K0aVP+7//+L7VnD0tCuSdgiUicU59JwBZV9fx5Pgfo5w73w7l2lFLeS0SK\nikgVoCqwSlX3AsdEpJm7zL7p5klZVndgkXsKaYwxmVq2bBn16tXj5Zdfpn///qxbt87uCQqCQFbN\ntQDuAaJFJOXmk6eAl4DpIjIQ2A30AFDVTSIyHdgMJAJDVTXl0YAPcq759nz3BU6imyIi24EjOC3n\njDEmU7GxsbRt25aKFSuycOFC2rZtG+yQQpaE2glEVFSUrlmzJthhGGOCJDo6mjp16gDOzdZt2rSh\nePHiQY4q7xORtarqX+/KWWRd/BhjQsKhQ4e45557qFu3LsuWLQOgS5culoTyAOufwhhToKkq//nP\nf3jooYc4evQozz777Hn9K5rgskRkjCnQ+vXrx5QpU4iKiuL7779PrZYzeYclImNMgZNy7VtEaN26\nNXXr1uXhhx+2TkrzKLtGZIwpUHbu3MnNN9/M5MmTAafT4BEjRlgSysMsERljCoSkpCTeeust6tSp\nw+rVq8979pXJu+wngjEm39u8eTMDBgxg5cqVdO7cmffffz/1cSkm77NEZIzJ93bt2sWOHTv4/PPP\n6dWrF559Wpq8zxKRMSZfWr16NevXr2fw4MF07tyZnTt3UrJkyWCHZbLBKlGNMfnKqVOnGDFiBM2a\nNWPMmDGpnZRaEsq/LBEZY/KNJUuWULduXV5//XUGDx5snZQWEFY1Z4zJF/bs2cMtt9xC5cqVWbRo\nEW3atAl2SCaH2BmRMSZP++WXXwCoUKECs2fPZsOGDZaEChhLRMaYPOngwYPcfffd1K9fn6VLlwLQ\nqVMnLrrooiBHZnKaVc0ZY/IUVWXatGkMGzaMv/76i+eee47mzZsHOywTQJaIjDF5yj333MNnn31G\n06ZNmTRpErVq1Qp2SCbALBEZY4IuOTkZEUFEaNOmDY0aNWLYsGGEh4cHOzSTC+wakTEmqLZv307b\ntm356KOPAKeT0n/84x+WhEKIJSJjTFAkJiby2muvUadOHdatW0eRIkWCHZIJEquaM8bkuo0bN3Lv\nvfeyZs0aunbtynvvvUf58uWDHZYJEp+JSESGZTSjqo7N+XCMMaHgjz/+YPfu3UybNo0ePXpYJ6Uh\nLqMzosvcv1WBJsDX7vsuwErAEpExxm8rV67kl19+YciQIXTq1ImdO3dSokSJYIdl8gCf14hU9RlV\nfQYoD9RX1eGqOhxoAETmVoDGmPzt5MmTPPLIIzRv3pxXXnmFM2fOAFgSMqn8aaxwBXDa4/0Z4MrA\nhGOMKUgWLVpE3bp1efPNN7n//vv5+eefKVq0aLDDMnmMP40VPgNWishM9/3twKeBC8kYUxDs2bOH\n9u3bU6VKFZYuXcoNN9wQ7JBMHpVpIlLV50VkPpByFN2vqqsDG5YxJr9at24dDRo0oEKFCnz99de0\nbt2aiIiIYIdl8jB/7yMKBw6q6uvAThGpFMCYjDH50P79++nZsycNGzZM7aS0Q4cOloRMpjI9IxKR\nfwItgGuAT4BiwOdAy8CGZozJD1SVzz77jOHDh3PixAlGjx7N9ddfH+ywTD7izzWi7jgt5X4GUNVY\nEbk4oFEZY/KNu+++m2nTptG8eXMmTZpEjRo1gh2SyWf8SURnVFVFRAFExB4GYkyI8+yktF27djRv\n3pyhQ4da/3AmW/y5RvSliLwLlBKRe4FvgY8CG5YxJq/69ddfadOmDR9++CEA9957r/WUbS5IpolI\nVV8GvgHmAPWAF1T1zUAHZozJWxITE3nllVeoV68eGzZssEYIJsf401jhRVV9CpjvpcwYEwI2bNjA\ngAEDWLt2Lbfffjvvvvsu5cqVC3ZYpoDwp2qug5eyzjkdiDEm79qzZw8xMTH85z//YebMmZaETI7y\nmYhE5D4RWQdUF5GfPV6/AVszW7CIfCgiB0Rko0fZKBGJFZH17quTx7iRIrJdRLaJSHuP8kYiEu2O\nGytuN70iUlREvnDLV4rIVdnbBcYYb3788Ufef/99gNROSrt37249ZZscl9EZ0XTgLmCu+zfl1UJV\ne/qx7Ml4P5t6U1Xru695ACJSE+gF1HLneU9EUq58jgMG4/QCXtVjmQOBo6p6LfAm8LIfMRljMnHi\nxAmGDx9Oy5Ytef3111M7KS1evHiQIzMFVUa9bx9V1e3AK8B+Vd2hqjuAeBGJymzBqroMOOJnHF2B\naap6RlV0BJepAAAgAElEQVR3AduBJiJSDrhYVVeoquLcUNvNY56P3eEZQFuxn2rGXJBvv/2W2rVr\n88477zB06FDrpNTkCn+uEY0HTnm8Pwl8cAHr/LuIbHCr7sq4ZZFAjMc0e9yySHc4fXmaeVQ1EfgL\nuMTbCkVkiIisEZE1Bw8evIDQjSm4YmJi6Ny5M8WKFWPZsmW88847lCxZMthhmRDgTyIKU9XklDfu\ncOFsrm8ccDVQH9gLvJ7N5WSJqo5X1ShVjbrssssyn8GYELJ27VoAKlasyLx581i/fj0tW1oPXib3\n+JOIdonIAyISLiJhIjIU+D07K1PV/aqa5CazCThPfgWIBSp6TFrBLYt1h9OXp5lHRAoBpYDD2YnL\nmFC0b98+7rrrLqKiolI7Kb3lllsoVqxYkCMzocafRHQf0BbY775a4zQeyDL3mk+K24GUFnVzgF5u\nS7gqOI0SVqnqXuCYiDRzr//0BWZ7zNPPHe4OLHKvIxljMqCqfPzxx9SsWZOvv/6aF1980TopNUHl\nz/OI9uN80WeJiEwFbgQuFZE9wLPAjSJSH1Ccs6r73HVsEpHpwGYgERiqqknuoh7EaYEXgXNTbcqN\ntZOAKSKyHadRRK+sxmhMKOrVqxfTp0+nRYsWTJw4kerVqwc7JBPixNdJhIg8qqqvi8ibOIkjDVV9\nJNDBBUJUVJSuWbMm2GEYk6s8Oyn9+OOPOX78OA8++CBhYf4+ksyEOhFZq6qZtpjOjozOiHa4fzdm\nMI0xJo/bunUrgwYNon///gwaNIh+/fplPpMxuchnIlLVWe7fSbkXjjEmpyQkJPDqq6/y3HPPUbx4\ncUqUKBHskIzxymciEpGv8FIll0JV7whIRMaYC7Z+/Xruvfde1q9fT/fu3XnnnXe48sorgx2WMV5l\nVDX3b/dvV6A88Jn7vjfwZyCDMsZcmH379rFv3z5mzpzJHXfYb0aTt/lsrJA6gcgazwtUbjPqVara\nONDBBYI1VjAF1fLly9mwYQMPPvggAKdOneKii+yByiZnBLKxgj9NZkqk69m6EmCVzcbkEcePH+eh\nhx6iVatWvPXWW6mdlFoSMvmFP4noUeB/IrJQRL4HlrllxpggW7BgAbVr1+a9995j+PDh1kmpyZf8\nuaF1rohcB9R0izaranxgwzLGZCYmJoYuXbpw7bXXsnz5cusdweRbmZ4RiUgEMBwYrKprgUgR6Rjw\nyIwx51FVVq1aBTidlM6fP59169ZZEjL5mj9Vcx+606V0x/sn8GLAIjLGeLV3717uvPNOmjZtmtpJ\n6c0332ydlJp8z59EVFVVXwQSAFT1FGAPoDMml6gqH330ETVr1mT+/Pm8/PLLtGjRIthhGZNjMr1G\nBJwVkWK4N7e6vWOfDWhUxphUPXr0YMaMGbRq1YqJEydy3XXXBTskY3KUP4noeeC/QAUR+RjnMRAD\nAxqVMSEuKSkJESEsLIxbb72Vm266ifvuu886KTUFUoY3tLo3r16J82iG63Gq5H5U1QO5E17Osxta\nTV63ZcsWBg4cyL333svgwdl69JcxOS5oN7S6D5r7TlUPqupsVZ2Vn5OQMXlZQkICo0ePpn79+mzb\nto1SpUoFOyRjcoU/VXPrRaSBqq4LeDTGhKh169bRv39/NmzYQM+ePRk7diyXX355sMMyJlf4k4ga\nAKtFZAdwEqd6TlW1YUAjMyaE7N+/n0OHDjFr1iy6du0a7HCMyVX+JKLbAh6FMSFo2bJlREdHM3To\nUDp06MD27duJiIgIdljG5LpMm+Co6g6gONAeaAcUd8uMMdlw7NgxHnzwQVq3bs3YsWNTOym1JGRC\nlT9d/DwNTAUigQrA5yIyMtCBGVMQzZs3j1q1avHBBx/wyCOPWCelxuBf1VxfoIHbowIi8gKwDhgT\nyMCMKWhiYmLo2rUr1apVY8aMGTRt2jTYIRmTJ/hzd9xe0iasQm6ZMSYTqsqKFSsAp5PSb7/9lp9/\n/tmSkDEe/ElER4BNIjJRRCYA0cAhEXlDRN4IbHjG5F9//vkn3bp1o3nz5qmdlLZp04YiRYoEOTJj\n8hZ/qubmuq8UKwIUizEFgqoyadIkRowYwZkzZ3jttdesk1JjMuDPg/Em5UYgxhQU3bt358svv6R1\n69ZMnDiRa6+9NtghGZOn+XNGZIzJhGcnpd26daNdu3YMHjzYOik1xg/2X2LMBdq4cSMtWrRg0iSn\n8uCee+6xnrKNyQJ/7iO6w58yY0LN2bNnee6552jYsCE7duygTJkywQ7JmHzJn59s//RS9nROB2JM\nfrJ27VoaNWrEqFGjuOuuu9i8eTPdu3cPdljG5Es+rxGJSHugAxCZrpn2xUByoAMzJi87fPgwcXFx\nfP3113Tp0iXY4RiTr2XUWOEAsBE4DWzyKD8OPBnIoIzJixYvXkx0dDTDhg2jXbt2/PbbbxQrVizY\nYRmT7/lMRO7zh9aJyGc4Z0CVVHV7rkVmTB7x119/8fjjjzN+/HiqV6/OfffdR9GiRS0JGZND/LlG\n1BanN4XvAESkvoh8FdCojMkjvv76a2rWrMnEiRMZMWIEa9eutU5Kjclh/txH9DzQFFgMoKrrRcTu\n0DMFXkxMDHfeeSfVq1dn1qxZNG7cONghGVMg+XNGlKCqcenKNBDBGBNsqsqPP/4InOukdM2aNZaE\njAkgf86ItohIDyBMRKoAw/CjvzkR+RDoAhxQ1dpuWVngC+Aq4Hegh6oedceNBAYCScAwVV3gljcC\nJgMRwDxguKqqiBQFPgEaAYeBnqr6u19bbYyrypNzU39VJR47xJFv3yV+x2qWLFlC69atufHGG4MZ\nnjEhwZ8zoodwvuyTga+As8DDfsw3Gaf5t6cnge9VtSrwvfseEakJ9AJqufO8JyLh7jzjgMFAVfeV\nssyBwFFVvRZ4E3jZj5iMSZWShFSTOb5+Pn9OeoDTuzdQ5qZBtGzZMtjhGRMy/On09CTwhPvym6ou\nE5Gr0hV3BW50hz8GlrjL7QpMU9UzwC4R2Q40EZHfgYtVdQWAiHwCdAPmu/OMcpc1A/i3iIiqWrWh\n8UvKgXLwqxeJ/20FxSrXpWyHYRQufSXh4eEZzmuMyTmZJiK3hVz6L/e/gDXABFU9m4X1XaGqKQ/V\n2wdc4Q5Hkra6b49bluAOpy9PmScGQFUTReQv4BLgkJdtGAIMAahUqVIWwjUFVWJiIqrJiIRxUbUW\nRFzTmBJ12yEiwQ7NmJDjT9VcDJAITHFfZ3Fucq0LTMjuit0zl1w5e1HV8aoapapRl112WW6s0uRh\nGzZsoHnz5pz4ZQEAJWq1oWS99paETKpZ62Jp8dIiqjw5lxYvLWLWuthgh1Sg+dNYobmqpjYZEpFZ\nwCpVbSwim7O4vv0iUk5V94pIOZzeGwBigYoe01Vwy2Ld4fTlnvPsEZFCQCmcRgvGeHXmzBlefPFF\nXnzxRcqUKUN4hXbBDsnkQbPWxTLyy2jiE5IAiI2LZ+SX0QB0axCZ0awmm/w5IyopIp7JoDxQ0h0+\nk8X1zQH6ucP9gNke5b1EpKjbMq8qTrLbCxwTkWbi/Fztm26elGV1BxbZ9SHjy+rVq2nYsCHPP/88\nvXv3ZsuWLVxU7fpgh2XyoFcXbEtNQiniE5J4dcG2IEVU8PlzRvQ48JOIbAUEuA54SESKA5/5mklE\npuI0TLhURPYAzwIvAdNFZCCwG+gBoKqbRGQ6sBmnGnCoqqYcCQ9yrvn2fPcFMAmY4jZsOILT6s4Y\nr44ePcqJEyeYN28eHTt2DHY4Jg/7My4+S+XmwmWYiEQkDNiPk3xqusWbVTXlE3nN17yq2tvHqLY+\npn8BeMFL+Rqgtpfy08BdPoM3IW/RokVER0czfPhw2rVrx6+//mrd85hMlS8dQayXpFO+dEQQogkN\nGVbNqWoy8IGqxqvqWvdlPwtMnhYXF8fgwYNp27YtH3zwAWfOODXIloSMPx5rX42Iwmmb70cUDuex\n9tWCFFHB5881osUi0jXgkRiTA2bPnk3NmjX58MMPefzxxzPspLSwj6PfV7kJDd0aRDLmjjpElo5A\ngMjSEYy5o441VAggf64R9QeGi8gZIB7nOpGqatlABmZMVk2Yt4r77uxOobIVqP3Av2ne6zYiInxX\npyT6aNriq9yEjm4NIi3x5CJ/EtGlAY/CFFiz1sXy6oJt/BkXT/nSETzWvlqO/oOrKsuXL+dwiat5\n46cjXN5zNEXLV+Ov8MKZNrn11cbS2l4ak7v86eInSURKAdcAnk8C+zFgUZkCIbv3Y/ibvP744w/u\nv/9+5s+fT63BbxBf9jqKVTzXriWlya2vdYWLkOQl64Tbja3G5KpMa8PdptY/AotwOhZdBLwY4LhM\nAZCd+zFSkldsXDzKueTleWd7cnIy7733HrVq1WLZsmWMHTuWE6Wv8bq8jJrc9m5aMUvlxpjA8Oey\n7MNAFPC7qrbi3GMXjMlQdu7H8Cd53XHHHQwdOpTmzZuzceNG/v73vxNZtoTX5WXU5HZ0tzr0aVYp\n9QwoXIQ+zSoxulsdn/MYY3KeP9eITqtqvIggIkXcm0+tHaPJVHbux/CVpGKPnCA5OZmwsDB69uxJ\n165d6d+/f2r/cI+1r5amGhD8a3I7ulsdSzzGBJnPMyK3/zaAvSJSGvgaWCAiM0nbI7YxXmXnfowI\nL22nzx7Yyf4pjzJ+/HgAevfuzb333pumk1JrcmtM/pXRGdEqoKGq3ua+f0ZE2uJ0Ljo34JGZfC8l\nCWSl1Vx8YnLqsCaeJe7HLzi2cgZhxUpy5ZVXZro+SzzG5D8ZJaLzmg6p6vcBjMWY1KbTZ/7cxqG5\nb5J4ZA/Fa7elzE2D6NatW3CDM8YEREaJ6DIRecTXSFV9IwDxmALkQrrTTz4bjyae5fK7niPi6kYB\nj9UYEzwZJaJwoARezoxM6MnOjakZtYDzNu+3337LsdWzuLhxNyKuqk/k4A+QQoVzdDuMMXlPRolo\nr6o+n2uRmDwru2c2/jbfPnr0KI888giTJ0+m8KWVKNmgM1KocJaTUKB7cTDGBEZG9xHZmZABsv+g\nMF/NtD3Lv/zyS2rWrMmUKVMYOXIk5fq9la2zIH9uhDXG5E0ZJSKvzw0yoSe7DwrLrPn2H3/8Qa9e\nvShXrhyrV6/mxRdfpOzFxb0uq8xFGScne6qmMfmXz0SkqkdyMxCTd/lzZuONt3t7Xry9NmWObQeg\nUqVKLFq0iJUrV9KgQQMAnr21FoXD056MFw4Xnr21VobrsqdqGpN/+dOzgglx2e21ANLe27N7927u\nu28QCxYsYMmSJbRu3ZqWLVueNz1k7d4jsKdqGpOfWSIymcpucgDn2s0r87ewbfEM4pZ9TJHwMN55\n5x1atWqV4fqy2sjgQpKlMSa4LBEZv2QnOcxaF8sj09ezb8bzxG9fRbEqDbm0w0NUaNGOsLCcfQzq\nhSRLY0xwiYbYU8CioqJ0zZo1wQ6jwEtISKDuc98SnwgnNy9FkxMpXusmRISLCoex+f86BjtEY0wW\niMhaVY0KxLJz9mepMcDPP/9MkyZNOLDK6ZKweM3WlKjdNrWT0lMJyRnNbowJMZaITI6Jj49n5MiR\nNGnShH379hF+sT1l3hiTObtGFIL+OSuaqStjSFIlXITeTStm+kyezHotWLFiBf369ePXX39lwIAB\nvPbaazR42Z4mb4zJnCWiEPPPWdF8uuKP1PdJqqnvfSUjf7r4OXnyJAkJCXz33XfcfPPNgdwEY0wB\nY1VzIWbqypgslYPvXgueGjuF119/HYC2bduydetWS0LGmCyzRBRikny0kvRVDpx3o2hS/DEOzX2D\nLZNH8vHHH3P27FkAihQpknOBGmNChlXNmUyFi5CkiqpyatsPHPnufZJPH6f09b1YvWiyJSBjzAWx\nRGQylXK2lHTsIIe+fo0il1/FJT2fp8jlV1O0aNEgR2eMye8sEZkMqSolDm/lxCXVKVTqcq7oPYai\n5a9DwsKJzKQft0gf/b9lNp8xJrTYNSLj065du2jXrh2bJo5A/9wEQLEKNZCwcL/6ccvsMRDGGAOW\niIwXSUlJvP3229SuXZuVK1cybtw43hzeO83jHMbcUSfTfty6NYjkzkaRhLs9KoSLcGejrPdZZ4wp\n2Kxqzpyna9euzJ07l06dOvH+++9TsWJFAO5oVDFLy5m1LpaZa2PPXWNSZebaWKIql7VkZIxJZYko\nn8usxwN/aVIiycnJhIWFcc8999C7d2/uvvvu1P7hsiOjp6ZaIjLGpAhK1ZyI/C4i0SKyXkTWuGVl\nReQ7EfnN/VvGY/qRIrJdRLaJSHuP8kbucraLyFi5kG/NfCilx4PYuHiUcz0ezFoXm6XlnNn7G3s/\nfphx48YB0LNnT/72t79dUBICe2qqMcY/wbxG1EZV63t0K/4k8L2qVgW+d98jIjWBXkAtoAPwnoik\nXAEfBwwGqrqvDrkYf9BldMbhj+SEMxxd8hH7pjxKcvwxKleunKPxlb6ocJbKjTGhKS9VzXUFbnSH\nPwaWAE+45dNU9QywS0S2A01E5HfgYlVdASAinwDdgPm5G3bwXMgZx5nYLRya+yaJR/+kRN12lGkz\ngC5duuRofKfTJcnMyo0xoSlYiUiBhSKSBHygquOBK1R1rzt+H3CFOxwJrPCYd49bluAOpy8/j4gM\nAYYAVKpUKae2IehKRRQmLj7Ba3lmkhPPgiqX9xxNxFX1AxEe8T6eO+Sr3BgTmoKViFqqaqyIXA58\nJyJbPUeqqopIjj061k1048F5Qmtm0+dUA4BA83UJx1f5vHnz+GvlTEo1vZOIyvUoP2gcEp6XToqN\nMaEoKNeIVDXW/XsA+ApoAuwXkXIA7t8D7uSxgGe74QpuWaw7nL78guRUA4DcEHfq/LMhb+WHDh2i\nT58+dO7cmZObl6BJzvhAJ6EyPq4F+So3xoSmXE9EIlJcREqmDAPtgI3AHKCfO1k/YLY7PAfoJSJF\nRaQKTqOEVW413jERaea2luvrMU+2XWgDgOyatS6WFi8tosqTc2nx0iK/El9mjQFUlWnTplGjRg2m\nT5/Os88+S7m+byDhuZMInr21FoXD056eFQ4Xnr21Vq6s3xiTPwSjXuYK4Cu3aXAh4HNV/a+IrAam\ni8hAYDfQA0BVN4nIdGAzkAgMVdWUTPEgMBmIwGmkcMENFYLR5NifB895c8zL9SHP8j/++IN+/fpR\nr149Jk2aRJ06dZj85Nwcjt63lNjzQzWnMSZ4cj0RqepOoJ6X8sNAWx/zvAC84KV8DVA7J+Mr76Oj\nzvIB7Kgzuzd+Jnm52qWqnPj9F6AzlStXZunSpTRu3Jjw8PDzJ84F3RpYlz7GmIxZX3Pp5ERHnVmt\nZsups7CEo3vZP+1pDnzxT5YuXQpAs2bNgpaEjDHGH9ZkKp0LrU7KTjXbhZ6FaXISx9fMIe5/n0JY\nOGXbP0SrVq38mtcYY4LNEpEXF1KdlJ1qtsfaV+OxGb+Q4FHXVjhc/D4LOzDzeU7vXEvENY0p224o\nhS6+lLAwO9k1xuQPlohyWHar2RLSXfBJ/z69s2fPopqMSBglat9MiVo3cVGNGy64fzhjjMlt9rM5\nh/mqTsuomu2x/6zPUvmqVato1KgRx392WsAVr9GK4jVbWxIyxuRLlohyWHYaO/jq8SZ9+alTp3j0\n0Udp3rw5R48epXDpclmOr7SP7n98lRtjTKBZIsphgXoq6fLly6lTpw5vvPEGgwcPZtOmTURcE5X5\njOmMuq0WhcPS3WQaJoy6zW4yNcYEh10jymGBeippQkIC4eHhLF68mBtvvDHby7GbTI0xeY0lohyW\nk08lPbV9Ja+8sonHH3+cNm3asHnzZgoVuvCPzG4yNcbkJZaIsiGj3rmz02ouMt19REmn/uLIwvGc\n2rKUqTvq8/DDD1OkSJEcSULGGJPX2DWiLMqsd+5stZprX40wnO55Tm5ewp8TH+DUth/o/cAIVq5c\nSZEiRbzOd1Fh7x+fr3JjjMmL7BsrizLrnbtN9cu8zuerHGDN7iMkA0nHDnJo3lsUKl2Ocv3f5up2\nfX0mIYAihbx33eOr3Bhj8iJLRFmUWdXb4q0HvY73VZ6cnMykqbMAKFTqcq68+2Wu7PMKRS6rzNSV\nMRnG8peP3rd9lRtjTF5kiSiLMqt6y8o1ot9++42bbrqJfdP/xemYjQAULV8NCXPOaFJa3mU3FmOM\nyQ8sEWVRZjes+pMcEhMTefXVV6lbty7r16/n0o7DKVrh/Pt4wjPpKSEnego3xphgs0SURd0aRDLm\njjpElo5AcFq8jbmjTmqrOX+uEXXp0oXHH3+c9u3bs3nzZu4bMtBr9zy9m1Y8rywrsRhjTH4gmkn1\nT0ETFRWla9asCdjy6z/3LXFertFcXFhZ/1wnwsLCmDFjBsnJydx1112pCeiWN5bw24GTqdNXvbw4\n3z1yY8DiNMaYrBCRtaqa9e5c/GBnRDnMWxI6E7uVreOG8u677wLQvXt3evTokZqE/jkrOk0SAvjt\nwEn+OSs68AEbY0yQWSLKBn+fwJp89jRHvp/Avk8fI/lsPFWrVvU63Wcr/shSuTHGFCR2q76fUnpT\niI2LR4CUCs3YuHj+8cV6Hv5iPZGlIyhaKIwzicmcjtnI4blvkvjXfko06EzkLffSoUMHr8v2VTka\nWpWmxphQZYnI5a3bHsBr8kmfIDyTUqrkZAgvxBV3v0SxirUR6+3AGGO8skTEuW57UnpMiI2L57EZ\nv4BCQrKTZvw5Ozn1608kHI6hVPMeFKtcl/ID30u9Jyje10OHjDEmxNnPdLx325OQpKlJKDNJJ49y\ncNZLHPzqBU5t+wFNchospCShzPRpVilL5cYYU5CE9BmR53Wf7FBVTm5azNHvJ5CcEE/pG/pycZM7\nkPCs7dbR3eoAMHVlDEmqhIvQu2nF1HJjjCnIQjYRpa+Oy46kYwc5/N+xFL2yKpd0HEbhSzK+ATUj\no7vVscRjjAlJIZuIvFXH+UM1mdM7fybimiink9K/vUqRK672uxrOGGNMWiF7jSg71XEJR2LZ//lI\nDswYxek/nJtNi5araknIGGMuQEieEfm6AdUXTU7i2KqviFv+GWGFinBJp4cpWrF2jsfk66mvxhhT\nkIVkIkp5iJ2/DvxnFKd/X8dF111P2VseILxEmRyNx1vz8ZFfOmdcloyMMQVdSCYiX88M8qSJZyEs\nHAkLp0T9DpSo34Hi1VoEJJ6MnvpqicgYU9CF5DWizB4cd3rPZv78aBjHf54LQPFqLS44CYVl8Gih\nrDxMzxhjCpqQTES+HhyXfDaeIws/YP9nT6CJZy+oOXZ6dzf1fXOqPWnVGBPKQjIReavuOv1HNH9O\nGsrxtd9QslEXyg98l4gqDbK1/IuLhqc+XTVchD7NKmV4j5A9adUYE8pC8hqRL2GFi3Lp316mWIWa\n2V5Gdh5ol5IYrdWcMSYUhXQiOrXtRxKO7HE6Ka1Uh3ID/p3hPUERhcMpVjiMo6fOf/hdZOkIfnjy\npmzH0q1BpCUeY0xIyvdVcyLSQUS2ich2EXnSn3n27dtH3NcvcXDWi5z69acMOylNqWKLLB3BmDvq\n8OyttawazRhjclC+PiMSkXDgXeAWYA+wWkTmqOpmX/McPnyYGjVqcOpUPJfc2I/iUbef10lppB9V\nY1aNZowxOUNU8+9zQEWkOTBKVdu770cCqOoYX/OEhYVpixYtmDhxIltOlbCEYowxfhCRtaoaFZBl\n5/NE1B3ooKqD3Pf3AE1V9aF00w0BhrhvawMbczXQvOtS4FCwg8gjbF+cY/viHNsX51RT1ZKBWHC+\nrprzl6qOB8YDiMiaQGX1/Mb2xTm2L86xfXGO7YtzRGRNoJad3xsrxAKed51WcMuMMcbkE/k9Ea0G\nqopIFREpAvQC5gQ5JmOMMVmQr6vmVDVRRB4CFgDhwIequimT2cYHPrJ8w/bFObYvzrF9cY7ti3MC\nti/ydWMFY4wx+V9+r5ozxhiTz1kiMsYYE1QhlYiy0x1QfiMiv4tItIisT2luKSJlReQ7EfnN/VvG\nY/qR7v7YJiLtPcobucvZLiJjRSSDJyrlDSLyoYgcEJGNHmU5tu0iUlREvnDLV4rIVbm5fVnhY1+M\nEpFY99hYLyKdPMYV5H1RUUQWi8hmEdkkIsPd8pA7NjLYF8E9NlQ1JF44jRl2AFcDRYBfgJrBjisA\n2/k7cGm6sleAJ93hJ4GX3eGa7n4oClRx90+4O24V0AwQYD7QMdjb5se23wA0BDYGYtuBB4H33eFe\nwBfB3uYs7otRwAgv0xb0fVEOaOgOlwR+dbc55I6NDPZFUI+NUDojagJsV9WdqnoWmAZ0DXJMuaUr\n8LE7/DHQzaN8mqqeUdVdwHagiYiUAy5W1RXqHE2feMyTZ6nqMuBIuuKc3HbPZc0A2ubVM0Uf+8KX\ngr4v9qrqz+7wcWALEEkIHhsZ7AtfcmVfhFIiigRiPN7vIeMPIL9SYKGIrBWnayOAK1R1rzu8D7jC\nHfa1TyLd4fTl+VFObnvqPKqaCPwFXBKYsAPm7yKywa26S6mKCpl94VYTNQBWEuLHRrp9AUE8NkIp\nEYWKlqpaH+gIDBWRGzxHur9eQrLNfihvu2scTtV0fWAv8Hpww8ldIlICmAk8rKrHPMeF2rHhZV8E\n9dgIpUQUEt0BqWqs+/cA8BVOleR+91Qa9+8Bd3Jf+yTWHU5fnh/l5LanziMihYBSwOGARZ7DVHW/\nqiapajIwAefYgBDYFyJSGOeL9zNV/dItDsljw9u+CPaxEUqJqMB3ByQixUWkZMow0A6np/E5QD93\nsn7AbHd4DtDLbeVSBagKrHKrK46JSDO3brevxzz5TU5uu+eyugOL3F/S+ULKl67rds71Ql+g94Ub\n+yRgi6q+4TEq5I4NX/si6MdGsFtx5OYL6ITTSmQH8HSw4wnA9l2N08LlF2BTyjbi1M9+D/wGLATK\neszztLs/tuHRMg6Icg/GHcC/cXvhyMsvYCpOtUICTp31wJzcdqAY8B+cC7argKuDvc1Z3BdTgGhg\ngw7o3cMAAALGSURBVPtlUS5E9kVLnGq3DcB699UpFI+NDPZFUI8N6+LHGGNMUIVS1Zwxxpg8yBKR\nMcaYoLJEZIwxJqgsERljjAkqS0TGGGOCKl8/odWYQBGRlKa9AFcCScBB930TdforvNB1dAJedN9e\ni3MjYDywTlXvvdDlZ7De7sAGVf01UOswJius+bYxmRCRUcAJVX0tXbng/A8l58A6lgMPqer6LMxT\nSJ2+vLK6rmnAp6r6TVbnNSYQrGrOmCwQkWvdZ7l8hnPTcEURifMY30tEJrrDV4jIlyKyRkRWiUiz\nLKynqogsF5Gf3fkbu+UdRGSRiMzFuRkRERntPitmmYhMF5GH3PLrRORbtwPcJW7sbYD2wFhxnjtT\n0WcQxuQSq5ozJuuqA31VdY3bl5YvY4FXVHWF29PxN0BtP9fxJ9BWVc+ISG3gA6CFOy4K51lae0Sk\nJU5XTnVx7mjfACxzp5sA9FPV30WkNTBWVTuJyALsjMjkIZaIjMm6Haq6xo/pbgaqeTyKpYyIRKhq\nvB/zFgPeEZE6ONenrvIY94OqpnTB3xL4SlXPAGfcMyVE5FKgMTArDz4Wx5g0LBEZk3UnPYaTcZ5Q\nmaKYx7CQ/YYNjwG7gL+5y/R8yN1Jr3OkJcB+dR4JYkyeZteIjLkAbkOFo+41nTCcnotTLASGprwR\nkawkhVLAn+q0JuqfwXQ/AF1FpIiIXIzzHCpU9aAb123uusNEpK47z3Gcx0QbkydYIjLmwj0BLAB+\nJO1TK4cCLdynXm4GBmdhme8AD4jIL0B5nOq586jq/4DFOL0gf4Nzjegvd3QP4CF3GRtxelkG+Bz4\nlzVWMHmFNd82Jp8TkRKqesJ96uaPQC9V3RzsuIzxl10jMib/mywi1wJFgQmWhEx+Y2dExhhjgsqu\nERljjAkqS0TGGGOCyhKRMcaYoLJEZIwxJqgsERljjAmq/wcUoiWVh7KKOQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f05254b8438>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "regression_experiment(spectra, spectra_test,\n", " concentration, concentration_test)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def fit_params(data):\n", " \"\"\"Compute statistics for robustly scale data.\n", " \n", " Compute the median and the variance, i.e. the difference\n", " between the 75th and 25th percentiles.\n", " These statistics are used later to scale data.\n", " \n", " Parameters\n", " ----------\n", " data : pandas DataFrame, shape (n_spectra, n_freq_point)\n", " DataFrame containing all Raman spectra.\n", " \n", " Returns\n", " -------\n", " median : ndarray, shape (n_freq_point,)\n", " Median for each wavelength.\n", " \n", " variance : ndarray, shape (n_freq_point,)\n", " Variance (difference between the 75th and 25th\n", " percentiles) for each wavelength.\n", " \n", " \"\"\"\n", " median = np.median(data, axis=0)\n", " percentile_25 = np.percentile(data, 25, axis=0)\n", " percentile_75 = np.percentile(data, 75, axis=0)\n", " return median, (percentile_75 - percentile_25)\n", "\n", "def transform(data, median, var_25_75):\n", " \"\"\"Scale data using robust estimators.\n", " \n", " Scale the data by subtracting the median and dividing by the\n", " variance, i.e. the difference between the 75th and 25th percentiles.\n", " \n", " Parameters\n", " ----------\n", " data : pandas DataFrame, shape (n_spectra, n_freq_point)\n", " DataFrame containing all Raman spectra.\n", " \n", " median : ndarray, shape (n_freq_point,)\n", " Median for each wavelength.\n", " \n", " var_25_75 : ndarray, shape (n_freq_point,)\n", " Variance (difference between the 75th and 25th\n", " percentiles) for each wavelength.\n", " \n", " Returns\n", " -------\n", " data_scaled : pandas DataFrame, shape (n_spectra, n_freq_point)\n", " DataFrame containing all scaled Raman spectra.\n", " \n", " \"\"\"\n", " return (data - median) / var_25_75" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# compute the statistics on the training data\n", "med, var = fit_params(spectra)\n", "# transform the training and testing data\n", "spectra_scaled = transform(spectra, med, var)\n", "spectra_test_scaled = transform(spectra_test, med, var)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEWCAYAAAAkUJMMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VNXWwOHfSmihI1IDVpDemwiKCNIVUEQsFKVY8IpX\n5VMsF7zXqyi2iwUbKjaKCAgCIoqIqIBAkACKFGmhIxGEEFLW98c5iZMwk0xCZibJrPd55mGy55Q1\nJ8OsnH32XkdUFWOMMSZUIkIdgDHGmPBmicgYY0xIWSIyxhgTUpaIjDHGhJQlImOMMSFlicgYY0xI\nWSIyxgsReURE3g51HGlE5BYR+TJE+35dRB7P4nUVkVrBjMkULmLziEwgiMgOoAqQAvwFfAHco6p/\nhTIuc6az/V2JiAK1VXVrHsTSGhgHXAakAluBScCXwE6gjqpuy7TObGCbqj54tvs3oWFnRCaQrlHV\n0kBToBkwJhA7EZHIQGw3zATld5UVEWkLLAG+BWoBFYG7gG6qGgd8DQzMtM45QA9gSnCjNXnJEpEJ\nOFXdDyzC+ZIDQESKi8hzIrJLRA643T9RHq//n4jsE5G9IjLMs/tHRN4TkUkiskBETgAds9qeiJwr\nIp+LSLyI/CEi34lIhPvaQyISJyLHRWSziHRy28eJyIce8VwrIhvdbSwVkXoer+0QkQdFZL2I/Cki\n00WkhLdj4WW7F7jvrYj78xAR2e7G87uI3OLRvtxjPRWRO0VkixvTqyIi7muRIvK8iBx2t3GP5z5y\n8bt6T0Se9Ph5tMfv5vZM76+iiMwTkWMi8pOIPJkp7roistj9PWwWkf4eq08ApqjqM6p6WB1rVPVG\n9/UpZEpEwABgk6rGZvfeTP5licgEnIjUALrjdLOkGQ9cgvOFVwuIBv7lLt8NuB/o7L52pZfN3gz8\nFygDLM9qe8ADwB6gEk4X1COAikgd4B6glaqWAboCO7zEfwkwFbjP3cYCYJ6IFPNYrD/QDbgQaAwM\nyfbAnLmfUsBEoLsbz2XAuixW6QW0cvfX340fYDjO8W4KNAf65CAGb78rz9e7AQ8CVwO1cX5Hnl4F\nTgBVgcHuw/P9LQY+BirjJJHXRKS+iJQE2gIzswhvNnCuiLT3aBuInQ0VeJaITCDNEZHjwG7gIDAW\nwP3LfQTwT1X9Q1WPA0/hfDGB86X6rqpuVNWTONcMMvtMVb9X1VQgMZvtJQHVgPNVNUlVv1Pn4mgK\nUByoLyJFVXVH5usPrhuB+aq6WFWTgOeAKJxEkWaiqu5V1T+AeXicUeRQKtBQRKJUdZ+qbsxi2fGq\nGq+qu4BvPPbZH/ifqu5R1aM4STo7Xn9XXqT9bjao6gk8fjduF+n1wFhVPamqm8iYJHoBO1T1XVVN\nVtUY4FPgBqACzvfRPl8BqmoC8AkwyN1fbaAFTmIzBZglIhNIfdy/7K8E6gLnuu2VgJLAGrdbKR7n\nAnkl9/XqOF+IaTyfe2vLbnsTcP7C/9Lt9noYwL24fh/Ol+lBEZkmItW97Ks6zoVy3PVS3f1Heyyz\n3+P5SaC0l+1kyf1ivxG4E9gnIvNFpG4Wq/japz/HLzNfv6vMMm97p8fzSkCRLPZ9PtAm7Xfk/p5u\nwTl7OoqThKtlE+cU4Aa363MgsEhVD2azjsnnLBGZgFPVb4H3cM4kAA4DCUADVS3vPsq5F8vB+au4\nhscmanrbrMfzLLenqsdV9QFVvQi4Frg/7VqQqn6squ1xviQVeMbLvva6rwPpZ3Q1gTj/j0K6EzhJ\nM03VDG9KdZGqXo3zhfwr8FYu9uHP8fPKy+/K27Y9t3eex/NDQHIW+94NfOvxOyqvqqVV9S73zPdH\nnDOqrCwH/gB6A7di3XKFgiUiEywvAVeLSBP3jOIt4EURqQwgItEiknaNYwZwm4jUc68d+JzDAuln\nKD63JyK9RKSWm0D+xOmSSxWROiJylYgUB07hJLNUL7uYAfQUkU4iUhTnmlMi8EMujsM64AoROU9E\nyuExOk1EqohIb/daSiLOUGpv8WRnBjDKPQblgYdyuH7678rHtod4XNdJ78JT1RRgFjBOREq6Z3OD\nPNb9HLhERAaKSFH30cpj4Mf/udseLSIVAUSkiYhM89iHAu/j/MFQHqcb1BRwlohMUKjqIZwvkLQB\nBA/hdJetEJFjwFdAHXfZhTgX7b9JW8ZdJzGLXfjcHs5F9a9wvth/BF5T1W9wrg+Nxzmj2o9zAf2M\nYcuquhnnr++X3WWvwRnufDpHB8HZ1mJgOrAeWIPz5ZwmAmeQxl6cv/o74Axfzqm3cObdrAdicAZX\nJOMkYH9izPy78nxtIU6iWoJzvJdkWuQeoBzO8fwAZ5BHorvucaALzrW7ve4yz+D8HlDVH4Cr3Md2\nEfkDeNON39P7OGdi01U1q8+EKSBsQqvJ99y/mDcAxVU1OdTxFDQi0h14XVXPz3bhvN/3M0BVVR2c\n7cImbNkZkcmXRKSvOHODKuD81TzPkpB/RCRKRHqISBERicbpPpsdpH3XFZHG4mgNDA3Wvk3BFbBE\nJCI1ReQbEdkkzkTAUW77OHEmEK5zHz081hkjIlvdiW5dPdpbiEis+9pEt68/bVLkdLd9pYhcEKj3\nY4LuDpxhxNtwupRy00UVrgR4AmckWgzwC1662QKkDM51ohM4XZDPA58Fad+mgApY15yIVAOqqepa\nESmD0x/eB2cewl+q+lym5evj9Ce3xhki+hVwiaqmiMgq4F5gJU5/8URVXSgidwONVfVOERkA9PWY\nhW2MMaYACNgZkTsZb637/DjOX2XRWazSG5imqomq+jvOhdDWbkIrq6orPEbM9PFYJ2345kygU9rZ\nkjHGmIIh29pTecHtMmuGc0bTDviHiAwCVgMPuLO/o/l7dBQ4JVmicWbF7/HSjvvvbgBVTRaRP3EK\nJR7OtP8RODPvKVWqVIu6dbOaI2iMMSbNzp07iY+PJzk5+bCqVsp+jZwLeCISkdI4ZTzuU9VjIjIJ\n+A/O5MH/4PQh357FJs6aqr6JMwyUli1b6urVqwO5O2OMKdDSLtmICJMmTeLgwYOMGzduZzar5VpA\nR825k/8+BT5S1VkAqnpAVVM8JiG2dhePI+Ms7BpuWxwZZ2qntWdYR5zKwuWAI4F5N8YYU/jFxcXR\nu3dvPv7YKeF31113MXasr9KDeSOQo+YEmAz8oqoveLR71pLqizM/BGAuMMAdCXchziTEVaq6Dzgm\nIpe62xzE36Nw5vJ3dd9+wBK1iVHGGJNjqspbb71F/fr1+eqrr/jrr+DdwzKQXXPtcIoSxopIWin7\nR4CbRKQpTtfcDpxhuqjqRhGZAWzCmQU+0i0ZAnA3Tv2rKGCh+wAn0X0gIltxZqKnVVs2xhjjp23b\ntjF8+HC++eYbOnbsyFtvvcXFF18ctP0HLBGp6nKc+QyZZS7X4bnOf3HuMZO5fTXQ0Ev7KZwS8sYY\nY3IpNjaWNWvW8OabbzJs2DCCPfg4KKPmjDHG5C8bNmxg7dq1DBo0iD59+rB9+3YqVqwYklisxI8x\nxoSR06dPM27cOJo3b86jjz7KqVOnAEKWhMASkTHGhI2VK1fSvHlznnjiCW688UZiYmIoUaJEqMOy\nrjljjAkHcXFxXH755VSpUoXPP/+cnj17hjqkdHZGZIwxhdhvv/0GQHR0NNOnT2fjxo35KgmBJSJj\njCmU4uPjGTFiBHXr1mXZsmUA9O3bl7Jly4Y4sjNZ15wxxhQyc+fO5a677mL//v2MHj2aVq1ahTqk\nLFkiMsaYQmTYsGFMnjyZRo0a8dlnn9GyZctQh5QtS0TGGFPAeRYpbdmyJeeffz4PPfQQxYoVC3Fk\n/rFEZIwxBdju3bu58847GTBgAAMHDuTOO+8MdUg5ZoMVjDGmAEpNTWXSpEk0aNCApUuXkpiYGOqQ\ncs3OiIwxpoDZsmULw4YNY9myZXTu3Jk333yTCy+8MNRh5ZolImOMKWA2bdrE+vXreeeddxgyZEjQ\ni5TmNUtExhhTAPz888+sW7eOwYMH07t3b7Zv306FChVCHVaesGtExhiTjyUmJvL444/TsmVLHn/8\n8fQipYUlCYElImOMybd+/PFHmjVrxpNPPsnNN9+cb4qU5jXrmjPGmHwoLi6ODh06ULVqVRYsWED3\n7t1DHVLAWCIyxph85JdffqFevXpER0czY8YMOnXqRJkyZUIWz5yYOCYs2kyxqrVaBGof1jVnjDH5\nwNGjR7n99tupX78+3333HQB9+vQJeRIaMyuWuPiEgO7HzoiMMSbEZs+ezd13382hQ4cYM2ZMvilS\nOmHRZhKSUgK+H0tExhgTQrfffjvvvvsuTZs2Zf78+TRv3jzUIaXbG+AzoTSWiIwxJsg8i5Reeuml\n1K5dmwcffJCiRYuGOLKMqpePCni3HNg1ImOMCaqdO3fSvXt3PvjgAwBGjBjBmDFj8l0SAuhYt1JQ\n9mOJyBhjgiA1NZVXX32Vhg0bsnz5cpKSkkIdUra++fVQUPZjXXPGGBNgmzdvZtiwYSxfvpwuXbrw\nxhtvcMEFF4Q6rGwF6xqRnREZY0yAbd68mY0bN/Lee+/xxRdfFIgkBM41omCwRGSMMQEQExPDu+++\nC8C1117L9u3bGTx4cIGqlD26ax2iikYGfD+WiIwxJg+dOnWKRx55hFatWjFu3Lj0IqXly5cPcWQ5\n16dZNE9f14joAJ8ZWSIyxpg88v3339O0aVOefvppBg0axLp16wp8kdI+zaL5/uGrOL1/65pA7cMG\nK+SBOXPmMH/+fI4dO8bQoUPp0qVLqEMyxgRZXFwcHTt2JDo6mkWLFtn3QA7YGVEOvPHGG1StWpUm\nTZpw8cUX8/777wNOPai33nqL119/nenTp/u9vS+++II6depQq1Ytxo8f73O5//3vfzRs2JAGDRrw\n0ksvpbfHx8fTr18/6tatS7169fjxxx+z3aeIcOutt6b/nJycTKVKlejVq1eG5ebMmYOI8Ouvv6a3\nRUZG0rRp0/RHVjF7OnXqFK1bt6ZJkyY0aNCAsWPH+vX+AFJSUmjWrNkZ8YFzAdgznrJly2ZY/4IL\nLqBRo0Y0bdqUli1b+hWrMTm1adMmAKKjo/n000+JjY0tVEloTkwc7cYvCWjRU1Q1rB4tWrTQ3Bo5\ncqROmjRJVVVXrlypFStWzPD6/fffr2vWrPFrW8nJyXrRRRfptm3bNDExURs3bqwbN248Y7nY2Fht\n0KCBnjhxQpOSkrRTp066ZcsWVVUdNGiQvvXWW6qqmpiYqEePHs12v6VKldImTZroyZMnVVV1wYIF\n2qRJE+3Zs2eG5fr376/t27fXf/3rXxnWzY3U1FQ9fvy4qqqePn1aW7durT/++GO2709V9fnnn9eb\nbrrpjPgyS05O1ipVquiOHTvS284//3w9dOhQrmI2JjtHjhzRwYMHK6DffvttqMMJiNlr92jdxxbq\n+Q99rsWq1lIN0PeynRHlwPr166lTpw4AF154IcWKFQOcZP7QQw/RvXt3v+tErVq1ilq1anHRRRdR\nrFgxBgwYwGeffXbGcr/88gtt2rShZMmSFClShA4dOjBr1iz+/PNPli1bxtChQwEoVqyY3xdDe/To\nwfz58wGYOnUqN910U4bX//rrL5YvX87kyZOZNm2aX9vMiohQunRpAJKSkkhKSkofOeTr/QHs2bOH\n+fPnM2zYsGz38fXXX3PxxRdz/vnnn3W8xqSdBVz48HzajV/CnJi4DK9/+umn1K9fn48++ohHH32U\n1q1bhyjSwApW0VNLRDkQGxtLnTp1UFVeeeUV/vvf/wLw8ssv89VXXzFz5kxef/319OUvv/zyDF1H\naY+vvvqKuLg4atasmb5sjRo1iIuLO2OfDRs25LvvvuPIkSOcPHmSBQsWsHv3bn7//XcqVarEbbfd\nRrNmzRg2bBgnTpzw630MGDCAadOmcerUKdavX0+bNm0yvP7ZZ5/RrVs3LrnkEipWrMiaNc41yoSE\nhAzvw7MbMqv3Ck4XW9OmTalcuTJXX311+j59vT+A++67j2effZaIiOw/ptOmTTsjoYoInTt3pkWL\nFrz55pt+HRtjPG99oEBcfAJjZsWmJ6MhQ4bQr18/oqOj+emnn3jyyScL/IAEX6zoaT6ze/dujh8/\nTo8ePYiLi6Nx48aMGzcOgHvvvZd77733jHXS7inizcyZM/3ab7169XjooYfo0qULpUqVomnTpkRG\nRpKcnMzatWt5+eWXadOmDaNGjWL8+PH85z//yXabjRs3ZseOHUydOpUePXqc8frUqVMZNWoU4CSt\nqVOn0qJFC6Kioli3bp3XbWb1XsG5vrRu3Tri4+Pp27cvGzZsoGHDhj7f3+eff07lypVp0aIFS5cu\nzXLbp0+fZu7cuTz99NMZ2pcvX050dDQHDx7k6quvpm7dulxxxRVZbssYb2cBJ08n8+wXv9KnWTSX\nXXYZ9erV44EHHqBIkcL9FVq+ZFGOngx8KaKAHUURqQm8D1QBFHhTVf8nIucA04ELgB1Af1U96q4z\nBhgKpAD3quoit70F8B4QBSwARqmqikhxdx8tgCPAjaq6IxDvJzY2liuuuIIlS5Zw9OhRGjZsyI8/\n/shll13mc53LL7+c48ePn9H+3HPPER0dnf6XPzjdUNHR0V63M3To0PQuuEceeYQaNWqkP9LOLPr1\n6+f34AFwJtg9+OCDLF26lCNHjqS3//HHHyxZsoTY2FhEhJSUFESECRMmZLm9rN5r586d038uX748\nHTt25IsvvqBhw4Y+39/333/P3LlzWbBgAadOneLYsWPceuutfPjhh2fsY+HChTRv3pwqVapkaE87\nnpUrV6Zv376sWrXKEpHJVuazgKT4/fzxxSucbNAR6MSIESNCE1gIuEXCAy6Q6TwZeEBV14pIGWCN\niCwGhgBfq+p4EXkYeBh4SETqAwOABkB14CsRuURVU4BJwHBgJU4i6gYsxElaR1W1logMAJ4BbgzE\nm1m/fj3NmjUDoEKFCtx8883Mnz8/y0SU1VlCcnIyW7Zs4ffffyc6Oppp06bx8ccfe1324MGDVK5c\nmV27djFr1ixWrFhB+fLlqVmzJps3b6ZOnTp8/fXX1K9fP32dTp068f777/tMbrfffjvly5enUaNG\nGc44Zs6cycCBA3njjTfS2zp06JDtGU9Wrx86dIiiRYtSvnx5EhISWLx4MQ899FC27y/tDGfp0qU8\n99xzXpMQeL/OdeLECVJTUylTpgwnTpzgyy+/5F//+leW78EYgHJRRYlPSEJTUzi+dj7xy6aARFCp\naadQhxZ0fyYEpzBrwK4Rqeo+VV3rPj8O/AJEA72BKe5iU4A+7vPewDRVTVTV34GtQGsRqQaUVdUV\nqqo4Z0Ce66RtaybQSQJUPyM2NjY9EQFcc801LFiwINfbK1KkCK+88gpdu3alXr169O/fnwYNGqS/\n3qNHD/bu3QvA9ddfT/369bnmmmt49dVX0wclvPzyy9xyyy00btyYdevW8cgjjwBOld+tW7dyzjnn\n+Nx/jRo1vHYnTp06lb59+2Zou/7665k6deoZ14gefvhhv97rvn376NixI40bN6ZVq1ZcffXVGYZj\n+3p/vngemxMnTrB48WKuu+66DMscOHCA9u3b06RJE1q3bk3Pnj3p1q2bX/Ga8JaUkkrS4d0c+Ogh\njn79JsVrNqT60Fcp07hz9isXMsGqNScahHMvEbkAWAY0BHapanm3XXDOaMqLyCvAClX90H1tMs5Z\nzw5gvKp2dtsvBx5S1V4isgHopqp73Ne2AW1U9XCm/Y8ARgCcd955LXbu3BngdxxaGzZs4J133uGF\nF14IdSjGFDgXPDyfk1tXcmT+S1ToPIJS9a9MH+W5Y3zPEEcXXGkDNxKSUtg35T4S920JyB/6Ab/S\nJiKlgU+B+1T1mOcJi3udJ+CZUFXfBN4EaNmyZZB6PUOnYcOGloSMyaE1a9bw888/A1UoWasNJe6c\nTETxkqEOK6T6NHO69ics2sy+AO4noMO3RaQoThL6SFVnuc0H3O423H8Puu1xQE2P1Wu4bXHu88zt\nGdYRkSJAOZxBC8YY45eEhAQefvhh2rRpw3/+8x80+TRA2CehNMGoNRewROR2u00GflFVzz/P5wKD\n3eeDgc882geISHERuRCoDaxS1X3AMRG51N3moEzrpG2rH7BEg9HXaIwpFJYtW0aTJk145plnGDJk\nCDExMZxTtpTXZSuUzH+38i4sAtk11w4YCMSKSNrkk0eA8cAMERkK7AT6A6jqRhGZAWzCGXE30h0x\nB3A3fw/fXug+wEl0H4jIVuAPnFF3xhiTrbi4ODp16kTNmjX56quv6NTJGRXXs3E1Plyx64zlezau\nFuwQw0bAEpGqLgd8XdjyOg5SVf8L/NdL+2qcgQ6Z208BN5xFmMaYMBMbG0ujRo2Ijo5m9uzZdOzY\nkVKl/j4L+ubXQ17X89Vuzp6V+DHGhIXDhw8zcOBAGjduzLJlywDo1atXhiQETkkfb3y1m7NXuOtT\nGGPCnqryySefcM8993D06FHGjh17Rn1FE1qWiIwxhdrgwYP54IMPaNmyJV9//TWNGjUKdUgmE0tE\nxphCJ23wrIjQoUMHGjduzH333edXkVIR7zXWAlOzxYBdIzLGFDLbt2+nc+fOvPfee4BTVPfBBx/0\nu1J2VBHvX4u+2s3ZsyNrjCkUUlJSeOmll2jUqBE//fSTX/ex8iYhKTVH7ebsWSIyxhR4mzZtol27\ndvzzn/+kY8eObNq0icGDB2e/ohe+Cn0GqwBoOLJEZIwp8H7//Xe2bdvGxx9/zLx586hRo0b2K/kw\numsdoopGZmiLKhrJ6K51zjZM44MNVjDGFEg//fQT69atY/jw4fTs2ZPt27dTpkyZs96uZ6HPvfEJ\nVC8fxeiuddLbTd6zMyJjTIFy8uRJHnzwQS699FKefvppTp06BZAnSciEhiUiY0yBsXTpUho3bszz\nzz/P8OHDiYmJoUSJEnm6j7R78MTFJ6A4FRXGzIplTkxctuua3LFEZIwpEPbs2cPVV18NwJIlS3j9\n9dcpV65cnu9nwqLNJCSlZGhLSEphwqLNeb4v47BEZIzJ15yb1Tm3t//ss89Yv349HTt2DNj+9vqo\nKeer3Zw9S0TGmHzp0KFD3HzzzTRt2pRvv/0WgB49elCyZGBvWGfDt4PPEpExJl9RVaZOnUr9+vWZ\nOXMmTzzxBG3btg3a/m34dvDZ8G1jTL4ycOBAPvroI9q0acPkyZNp0KBBUPdvw7eDzxKRMSbkUlNT\nERFEhI4dO9KiRQvuvfdeIiMjs185APo0i7bEE0TWNWeMCamtW7fSqVMn3n33XcApUvrPf/4zZEnI\nBJ8lImNMSCQnJ/Pcc8/RqFEjYmJiKFasWKhDMiFiXXPGmKDbsGEDt912G6tXr6Z379689tprVK9e\nPdRhmRDxmYhE5N6sVlTViXkfjjEmHOzatYudO3cybdo0+vfvj9hd58JaVmdEldx/awOtgXnuz72A\nlYAlImOM31auXMnPP//MiBEj6NGjB9u3b6d06dKhDsvkAz6vEanq46r6OFAdaKqqo1R1FNAMsOEk\nxhi/nDhxgvvvv5+2bdvy7LPPkpiYCGBJyKTzZ7BCFeCUx8+JQNXAhGOMKUyWLFlC48aNefHFF7nz\nzjtZu3YtxYsXD3VYJp/xZ7DCR8BKEfnU/bkv8GHgQjLGFAZ79uyha9euXHjhhXz77bdcccUVoQ7J\n5FPZJiJV/beILATSPkV3qupPgQ3LGFNQxcTE0KxZM2rUqMG8efPo0KEDUVFWp8345u88okjgkKo+\nD2wXkfMCGJMxpgA6cOAAN954I82bN08vUtqtWzdLQiZb2Z4RichjQDvgYuB9oATwMdA+sKEZYwoC\nVeWjjz5i1KhR/PXXXzz55JNcdtlloQ7LFCD+XCPqhzNSbi2AqsaJSNmARmWMKTBuvvlmpk2bRtu2\nbZk8eTL16tULdUimgPEnESWqqoqIAohIYG8GYozJ9zyLlHbp0oW2bdsycuRIqw9ncsWfa0SzRORV\noJyI3AZ8Cbwb2LCMMfnVb7/9RseOHXnnnXcAuO2220JaKdsUfNkmIlV9BvgcmAs0Af6rqi8GOjBj\nTP6SnJzMs88+S5MmTVi/fr0NQjB5xp/BCk+p6iPAQi9txpgwsH79em6//XbWrFlD3759efXVV6lW\nrVqowzKFhD9dc928tPXM60CMMfnXnj172L17N5988gmffvqpJSGTp3wmIhG5Q0RigLoistbjsQX4\nNbsNi8g7InJQRDZ4tI0TkTgRWec+eni8NkZEtorIZhHp6tHeQkRi3dcmilumV0SKi8h0t32liFyQ\nu0NgjPHmhx9+4PXXXwdIL1Lar18/q5Rt8lxWZ0QzgBuA+e6/aY92qnqjH9t+D+9nUy+qalP3sQBA\nROoDA4AG7jqviUjalc9JwHCcKuC1PbY5FDiqqrWAF4Fn/IjJGJONv/76i1GjRtG+fXuef/759CKl\npUqVCnFkprDKqvr2UVXdCjwLHFDVbaq6DUgQkZbZbVhVlwF/+BlHb2Caqiaq6u/AVqC1iFQDyqrq\nClVVnAm1fTzWmeI+nwl0EvtTzZiz8uWXX9KwYUNefvllRo4caUVKTVD4c43oTeCkx88ngDfOYp//\nEJH1btddBbctGtjtscwety3afZ65PcM6qpoM/AlU9LZDERkhIqtFZPWhQ4fOInRjCq/du3fTs2dP\nSpQowbJly3j55ZcpU6ZMqMMyYcCfRBShqqlpP7jPi+Zyf5OAi4CmwD7g+VxuJ0dU9U1VbamqLStV\nqpT9CsaEkTVr1gBQs2ZNFixYwLp162jf3ip4meDxJxH9LiJ3iUikiESIyEhgR252pqoHVDXFTWZv\n4dz5FSAOqOmxaA23Lc59nrk9wzoiUgQoBxzJTVzGhKP9+/dzww030LJly/QipVdffTUlSpQIcWQm\n3PiTiO4AOgEH3EcHnMEDOeZe80nTF0gbUTcXGOCOhLsQZ1DCKlXdBxwTkUvd6z+DgM881hnsPu8H\nLHGvIxljsqCqTJkyhfr16zNv3jyeeuopK1JqQsqf+xEdwPmizxERmQpcCZwrInuAscCVItIUUJyz\nqjvcfWyRiRLfAAAgAElEQVQUkRnAJiAZGKmqKe6m7sYZgReFM6k2bWLtZOADEdmKMyhiQE5jNCYc\nDRgwgBkzZtCuXTvefvtt6tatG+qQTJgTXycRIvKAqj4vIi/iJI4MVPX+QAcXCC1bttTVq1eHOgxj\ngsqzSOmUKVM4fvw4d999NxER/t6SzIQ7EVmjqtmOmM6NrM6Itrn/bshiGWNMPvfrr78ybNgwhgwZ\nwrBhwxg8eHD2KxkTRD4TkarOcf+dHLxwjDF5JSkpiQkTJvDEE09QqlQpSpcuHeqQjPHKZyISkdl4\n6ZJLo6rXBSQiY8xZW7duHbfddhvr1q2jX79+vPzyy1StWjXUYRnjVVZdc6+4//YGqgMfuT/fBOwN\nZFDGmLOzf/9+9u/fz6effsp119nfjCZ/8zlYIX0BkdWeF6jcYdSrVLVVoIMLBBusYAqr5cuXs379\neu6++24ATp48ScmSdkNlkzcCOVjBnyEzpTNVtj4PsM5mY/KJ48ePc88993D55Zfz0ksvpRcptSRk\nCgp/EtEDwHci8pWIfA0sc9uMMSG2aNEiGjZsyGuvvcaoUaOsSKkpkPyZ0DpfRC4B6rtNm1Q1IbBh\nGRMcc2LimLBoM3vjE6hePorRXevQp1l09ivmA7t376ZXr17UqlWL5cuXW3UEU2Ble0YkIlHAKGC4\nqq4BokWke8AjMybA5sTEMWZWLHHxCSgQF5/AmFmxzImJy3bdUFFVVq1aBThFShcuXEhMTIwlIVOg\n+dM19467XFo53r3AUwGLyJggmbBoMwlJKRnaEpJSmLBoc4giytq+ffu4/vrradOmTXqR0s6dO1uR\nUlPg+ZOIaqvqU0ASgKqeBOwGdKbA2xvvvYfZV3uoqCrvvvsu9evXZ+HChTzzzDO0a9cu1GEZk2ey\nvUYEnBaREriTW93q2KcDGpUxQVC9fBRxXpJO9fJRIYjGt/79+zNz5kwuv/xy3n77bS655JJQh2RM\nnvLnjOjfwBdADRGZAnwDjAloVMYEweiudYgqGpmhLapoJKO71glRRH9LSUkhNdW5H+U111zDa6+9\nxtKlSy0JmUIpywmt7uTVqji3ZrgMp0vuB1U9GJzw8p5NaDWe8uOouV9++YWhQ4dy2223MXx4rm79\nZUyeC1X1bVRVRWSxqjbk7xvSGVNo9GkWHfLEkyYpKYlnnnmG//znP5QuXZpy5cqFOiRjgsKfa0Tr\nRKSZqsYEPBpjwlRMTAxDhgxh/fr13HjjjUycOJHKlSuHOixjgsKfRNQM+ElEtgEncLrnVFWbBzQy\nY4LgsTmxTF25mxRVIkW4qU1NnuzTKOhxHDhwgMOHDzNnzhx69+4d9P0bE0r+JKJrAx6FMSHw2JxY\nPlyxK/3nFNX0n4ORjJYtW0ZsbCwjR46kW7dubN26laio/DViz5hgyHbUnKpuA0oBXYEuQCm3zZgC\n7SOPJORPe145duwYd999Nx06dGDixInpRUotCZlw5U+Jn0eBqUA0UAP4WERs+LYp8HyNF836xihn\nZ8GCBTRo0IA33niD+++/34qUGoN/XXODgGZuRQVE5L9ADPB0IAMzprDZvXs3vXv3pk6dOsycOZM2\nbdqEOiRj8gV/JrTuI2PCKuK2GWOyoaqsWLECcIqUfvnll6xdu9aSkDEe/ElEfwAbReRtEXkLiAUO\ni8gLIvJCYMMzpuDau3cvffr0oW3btulFSjt27EixYsVCHJkx+Ys/XXPz3UeaFQGKxZhCQVWZPHky\nDz74IImJiTz33HNWpNSYLPhzY7zJwQjEmMKiX79+zJo1iw4dOvD2229Tq1atUIdkTL7mzxmRMYVS\nhZJFOXoyyWt7TqWkpCAiRERE0KdPH7p06cLw4cOJiPCn99uY8Gb/S0zYGntNAyIjMt5aKzJCGHtN\ngxxtZ8OGDbRr147Jk53Og4EDB3LHHXdYEjLGT/7MI7rOnzZjCqLM/wFykjpOnz7NE088QfPmzdm2\nbRsVKlTIy9CMCRv+/L97zEvbo3kdiDHBNmHRZpJSM05fTUpVv24VvmbNGlq0aMG4ceO44YYb2LRp\nE/369QtUqMYUaj6vEYlIV6AbEJ1pmHZZIDXQgRkTaGdzq/AjR44QHx/PvHnz6NWrV16HZkxYyWqw\nwkFgA3AK2OjRfhx4OJBBGRMMOb1V+DfffENsbCz33nsvXbp0YcuWLZQoUSLQYRpT6PnsmlPVGHfo\ndh3gA+BbVZ2sqjNU9XDQIjQmQDrWreRX+59//skdd9zBVVddxaRJk9KLlFoSMiZv+HONqBNONYXF\nACLSVERmBzQqY4Jg/nrvlao82+fNm0f9+vV5++23efDBB1mzZo0VKTUmj/kzj+jfQBvgGwBVXSci\nNkPPFHje5hB5tu/evZvrr7+eunXrMmfOHFq1ahXM8IwJG/4koiRVjRfJMN8ikJXyTSEyJyaOCYs2\nszc+gerloxjdtQ59mkWHOiyfVJXEuF+BnulFSi+77DKrD2dMAPnTNfeLiPQHIkTkQhF5ET/qzYnI\nOyJyUEQ2eLSdIyKLRWSL+28Fj9fGiMhWEdnsjthLa28hIrHuaxPFzYgiUlxEprvtK0Xkghy8bxME\nc2LiGDMrlrj4BBSIi09gzKxY5sTEhTo0AMpHZaygkHzsMIc+/TcHPhqdXqT0yiuvtCRkTID5k4ju\nAVrgDNmeDZwG7vNjvfdwhn97ehj4WlVrA1+7PyMi9YEBQAN3nddEJNJdZxIwHKjtPtK2ORQ4qqq1\ngBeBZ/yIyQTRhEWbSUhKydCWkJTi1zydYBh3bQMiANVUjq9byN7Jd3Fq53puu38s7du3D3V4xoQN\nf4qengAech9+U9VlXs5SegNXus+nAEvd7fYGpqlqIvC7iGwFWovIDqCsqq4AEJH3gT7AQnedce62\nZgKviIioqnUb5hNnM08nWCIjhf2fPEXClhWUOL8xVXrcy7W3diMyMjL7lY0xeSLbROSOkMv85f4n\nsBp4S1VP52B/VVQ1bUjSfqCK+zyajN19e9y2JPd55va0dXYDqGqyiPwJVATOGFouIiOAEQDnnXde\nDsI1ZyOn83SCKTk5mWcX/kJSilKyTjuiLm5F6cZdQIQJizbn6+tYxhQ2/nTN7QaSceYSfYDTNXcK\naAy8ldsdu2cuQTl7UdU3VbWlqrasVMn73BGT90Z3rUNU0YxnFlFFIxndtU6IInKsX7+etm3bsnnZ\nHABKN+hImSZdSRuQ4y15GmMCx59E1FZV+6vqbFWdDdwEtFTVO4Ccjmc9ICLVANx/D7rtcUBNj+Vq\nuG1x7vPM7RnWEZEiQDngSA7jMQHUp1k017eIJtL9go8U4foW0SE720hMTGTs2LG0aNGCnTt3EhlV\nLiRxGGMy8icRlRERz2RQHSjjPk/M4f7mAoPd54OBzzzaB7gj4S7EGZSwyu3GOyYil7qj5QZlWidt\nW/2AJXZ9KH+ZExPHp2viSHF/LSmqfLomLiSj5n766SeaN2/Ov//9b2666SZ++eUXSta5LOhxGGPO\n5M88ov8DfhSRXwEBLgHuEZFSwEe+VhKRqTgDE84VkT3AWGA8MENEhgI7gf4AqrpRRGYAm3C6AUeq\natpwq7txRuBF4QxSWOi2TwY+cAc2/IEz6s7kI1mNmgv2WdHRo0f566+/WLBgAd27dwecM7QUL3+7\nRGacM2eMCbAsE5GIRAAHcJJPfbd5k6qmdaI/52tdVb3Jx0udfCz/X+C/XtpXAw29tJ8CbvAZvAk5\nX9daAnUNJvPk2a4VDlPu1D5GjRpFly5d+O233zKU57n0ogp8v+2PM7Zz6UV2XyFjginLRKSqqSLy\nhqo2BdYEKSZTSATzjCNt8mxCUgqpp/5i/dSJ/LD+S2pcWJs777yT4sWLn1EjbscR7wnRV7sxJjD8\n6Zr7RkR6q+pn2S9qzN+8JaGs2s9GWjfgyS0r+OPL10g5EU/ZNtcT3XOozyKlBWGekzHhwJ9ENAQY\nJSKJQALOdSJV1XMCGZgp+IJ5RhQXn0DysYMcmjOeohVrUOm6xylerTb7T/i+h2P5kkW9Fj4tX7Ko\nl6WNMYHiTyI6N+BRmEIpGGdEqsry5cud5Fa2MlUGPEnx6nWQSCeZZJX0fIVhYy+NCa5sh2+7o9dK\nA01wbgeR9jAmS76SQF6dEe3atYuePXtyxRVXcGLnegBK1GyYnoQg66T3Z4L320D4ajfGBEa2icgd\nav0DsASnsOgS4KkAx2UKgUCdEaWmpvLaa6/RoEEDli1bxsSJE7moYQuvy0ZnUU7IV6mh/FCCyJhw\n4s+E1vuAlsAOVb0cpxK3VTAw2cp8m4Xs2tPMiYmj3fglXPjwfNqNX3LGBNjrrruOkSNH0rZtWzZs\n2MA//vEP/q97/RyXE8qvJYiMCTf+XCM6paoJIoKIFHMnn9r/VJOt08kpOWoHJwmN/uRnklKds6a4\n+ARGf/IzKcnJ9G1Rk4iICG688UZ69+7NkCFD0uvDpU2QzclN+HKzjjEm7/lMRCJSRFWTgX0iUh6Y\nBywSkT/IWBHbGK9OJnkfsearHWDc3I3pSSjNif3bGNh7FC/86wHuvPNObrrJ+1zpPs1yXscuN+sY\nY/JWVmdEq4Dmqnqt+/PjItIJp7jo/IBHZsJSvMdAAU0+TfwP0zm2ciYRJcpQtWrVEEZmjAmUrBLR\nGUObVPXrAMZiCpkKPubpVPBjnk7i3s0cnv8iyX/soVTDTlS4ahh9+vQJRJjGmBDLKhFVEpH7fb2o\nqi8EIB5TiIy9pgGjZ/5MUsrfXW1FI4Wx1zTwuU6kQIpC6ukENPk0lW94gqiLWhBpdUiNKbSySkSR\nOPOH7CvA5EpOBwN8+eWXHF01h7Kt+hB1QVOih7+BFHHOnlJskqkxhVZWiWifqv47aJGYoMlcpTqQ\nI8X8GQxw9OhR7r//ft577z2KnnseZZr1RIoUTU9CxpjCLUfXiEzB51mlGpzh0WNmxQKEZPTYrFmz\nGDlyJIcOHWLMmDF8dLqVJSBjwkxWE1q93jfIFGxZ3awuELKanLpr1y4GDBhAtWrV+Omnn3jqqaco\nUaKE1+0UL+LP3GtjTEHk84xIVc+8Y5gp8IJ564M5MXEZBivExSfw4Cfr2LDmRx4b1o/zzjuPJUuW\n0KZNG4oWdc6CTid7n2Pkq90YU/DZn5lhJpj11Z6YtzHDiLnkPw8SN+1fPD78Br799lsA2rdvn56E\ngh2fMSZ/sEQUZoJZXy1tDpFqKsfWzGPv5LtJ3LOJCp3v4PLLLw95fMaY/MGfWnOmEAlFfbVDs54k\nYesqSlzYnIpd76FIucpERHj/G8jqvxkTfiwRmYBISkpCNRWRCErV60DJOu0o1eCq9CKlWbH6b8aE\nF+uaCzNpAwji4hNQ3OrWM38+41YLZ2Pt2rW0bt2av2IWAlCqfgdKN+zkVxIyxoQfS0RhJvMAAoCk\nFOWJeRvPetsJCQmMGTOG1q1bs3//fiLL2l3mjTHZs0QUZrwVIc2q3V8rVqygadOmjB8/nsGDB7Np\n0yZK1rI7yhtjsmfXiEyeOHHiBElJSSxevJjOnTsDzp1YPW/rkCa7O7QaY8KLnRGZXPviiy94/vnn\nAejUqRO//vprehICGHdtA4pGZLwuVDRCGHet7+rbxpjwY4mogMuqhI43ET7GC/hq9+bIkSMMHjyY\n7t27M2XKFE6fPg1AsWLFMizXp1k0E25oQnT5KASILh/FhBua2Ig4Y0wG1jVXgOWmgGnbi87h+21n\nVm9qe9E5We7rsTmxfLxiF8d/Xc7Rxa+jiX/x2GOP8dhjj52RgDzZUGxjTHbsjKgAy00B0x1HvNeU\n89UOThL6cMUuTv95kMPzniOy7LlUGfQC2qI/xYsXz13wxhjjskRUgMX5KFTqqx1yXvRUVXln+ucA\nFClXmSo3PU3Vgc9TrPJFTF25O4cRG2PMmSwRFWC5ud5Tslik3+2///47Xbp0Yd+0Rzi1y+nyK1Gj\nHhLhLJuidttUY8zZs0RUgKX6yAO+2gFOnk7Jtj0lJYX//e9/NGzYkJUrV3Ju15EUr3nmSLdIq5Rg\njMkDlojCjK8c5dneu3dv7rvvPq688ko2btxIl+tvQeTMj8qlF1UISIzGmPBio+YMAJqSTGpqKhER\nEQwcOJCbbrqJm2++GRFhx5EtXtfJaoCDMcb4KyRnRCKyQ0RiRWSdiKx2284RkcUissX9t4LH8mNE\nZKuIbBaRrh7tLdztbBWRiWJVNXMlcd8W9k25j0mTJgFw4403csstt6QXKQ3mXV2NMeEnlF1zHVW1\nqaq2dH9+GPhaVWsDX7s/IyL1gQFAA6Ab8JqIpF1ZnwQMB2q7j25BjL/AS01K5OjSd9n/wQOkJhzj\n/PPP97qc3TXVGBNI+ekaUW9givt8CtDHo32aqiaq6u/AVqC1iFQDyqrqClVV4H2PdcJC7cqlctTu\nKTHuF/a9+w+OrfyU0o06U33oa/Tq1cvrsnbXVGNMIIUqESnwlYisEZERblsVVd3nPt8PVHGfRwOe\nE1b2uG3R7vPM7WcQkREislpEVh86dCiv3kPILb7/yjOSTu3KpVh8/5XZrpuafBpUqXzjk1Tsfi8R\nJUr7XLZPs2ievq5RhlI9T1/XyComGGPyRKgGK7RX1TgRqQwsFpFfPV9UVRWRPJukoqpvAm8CtGzZ\nslBNfvEn6aRZsGABf678lHJtrifq/CZUHzYJifTvI2CleowxgRKSMyJVjXP/PQjMBloDB9zuNtx/\nD7qLxwE1PVav4bbFuc8zt5tMDh8+zK233krPnj05sWkpmuLcmsHfJGSMMYEU9EQkIqVEpEzac6AL\nsAGYCwx2FxsMfOY+nwsMEJHiInIhzqCEVW433jERudQdLTfIY52wkVX1bVVl2rRp1KtXjxkzZjB2\n7FiqD3oBiTzzfkA23NAYEyqh+JO4CjDbHRpcBPhYVb8QkZ+AGSIyFNgJ9AdQ1Y0iMgPYBCQDI1U1\nrQzA3cB7QBSw0H2EjTkxcdw/fR2p7s9x8QncP30d4HSl7dq1i8GDB9OkSRMmT55Mo0aNeO/h+V63\nVaj6K40xBYpomNULa9mypa5evTrUYeSJeo8vJCEpNUObqqJ71rPro0cA5xberVq1IjLSGfXWbvwS\nr0VRo8tH8f3DVwU+aGNMgSQiazym2+Sp/DR82+RQ5iSUdHQfB6Y9yu6PH+Xbb78F4NJLL01PQmBD\nsY0x+Y9drc4n5sTEMWHRZvbGJ1C9fBSju9bxe5SapqZwfPVc4r/7ECIiOafrPVx++eVel03bZm73\nZYwxec0SUT4wJyaO0TN/JinF6SaNi09g9MyfAd93WvV08NN/c2r7GqIubsU5XUZSpOy5RET4Ptm1\nodjGmPzEElE+8MS8jelJKE1SivLEvI0+E8bp06dRTUUkgtINO1O6wVWUrHcFVm7PGFPQWCIKgJx2\nsx09mZSj9lWrVjF06FCOV21H2RbXUKqe9244Y4wpCGywQh6bExPHmFmxxMUnoDjdbGNmxWaY35Nb\nJ0+e5IEHHqBt27YcPXqUouWrnX3AxhgTYpaI8tiERZtJSMp4F9SEpBQmLNrscx1fvWme7cuXL6dR\no0a88MILDB8+nI0bNxJ1cUBGUhpjTFBZ11wey829e3xN5fJsT0pKIjIykm+++YYrr7zyLCI0xpj8\nxc6I8lhu7t1TPurMkjsAsmsNzz77LAAdO3Zk06ZNloSMMYWOJaI8lpsJoycSMw5KSDn5J4fmTmDH\n1LFMnTqV06dPA1CkSMYT2EgffXq+2o0xJj+yRJTH+jSL5voW0enJIFKE61tkPW8nrUCCqnJi01L2\nvn0XJzd/T7n2t7By5UqKFSvmdb2b2tTMUbsxxuRHdo0oj82JiWP6T7tJcS/wpKgy/afdtDz/nGwn\nkaYcO8ThBS9RrPLFVOx+L8Uqne8zCQE82acRAFNXOvuLFOGmNjXT240xpiCwoqd5rNm/v/Q6/6dC\nyaLE/KvLGe2pqalUG/AkURe1ACBx72aKVa2FRDjdezvG9wxYrMYY4y8rehpkWd3jJzs5mZy6ZcsW\nrrrqKg5+MpZTuzcAULx6nfQkZIwx4cASUSaBnJCaJjk5mQkTJtC4cWPWrVtHxe73UrxGgzzbvjHG\nFCSWiDLJzYTUnOrVqxf/93//R9euXdm0aROlG3exGnHGmLBliSiT3ExI9YcmJ5Ga6gyPGzZsGNOn\nT2f27NlUr179rLZrjDEFnY2ay6R6+SivdzDNakJqdhLjfuXIwom8ev5u/vGPf9CvX78Mrwveb9Vt\n50jGmHBgiSiT0V3rMGZWbIbuOW8TUtMqbMfFJxApQooq0ZmSVerpU8R/9wHHV88lssy51K5d2+s+\nb7n0PD5csctruzHGFHaWiDLx5w6mc2LiGP3JzySl/j1XCMhwJnVq9waOzH+R5D8PULpZTyp0GEy3\nbt287tPmAxljwpklIi+yu4PpuLkb05OQT6mpEFmEKjePp0TNhtnu88k+jSzxGGPCkiWiXIhP8D5X\n6ORvP5J0ZDfl2vanxPmNqT70NZsTZIwx2bBE5CfPa0KZpZw4yh+L3+Dk5uUUq3IxZVv3RSKLWhIy\nxhg/WCLizFt7d6xbiW9+PeQ16XhSVU5s/IajX79FalIC5a8YRNnW1yGRZx7WSBsCZ4wxXoV9Ikqr\npJA2Si4uPsHrCDZvUo4d4sgXEyletTYVu99L0Yq+q16nhFdJP2OM8VvYJyJvlRSyoprKqe1ribq4\nJUXKVabqLRMoVuUi64YzxphcCvvKCjmpmJD0RxwHPh7DwZnjOLUrFoDi1WpbEjLGmLMQ9mdEviop\neNLUFI6tmk388o+IKFKMij3uo7gfQ7KNMcZkL+wTUce6lbK9JnTwk3Gc2hFDyUsu45yr7yKydIUc\n76d8VNHchmiMMYVaWCeiOTFxTF252+trmnwaIiKRiEhKN+1G6abdKFWnXa72UzRCGHet3ebBGGO8\nCdtE9NicWJ9nQqf2bOLIwomUadaDsi2vzVUCii4f5bNEkDHGmL+FZSKaExPnNQmlnk4gftn7HF/z\nOZFlK2U5HDs73z981dmEaIwxYSMsE5G3m9yd2hXL4fkvknLsEGVa9KL8FYOIKJa7Wz/Y9SBjjPFf\nWCYiX0O2I4oW59xbnqFEjfq53rZdDzLGmJwJy3lEaTe5O7n5B/78cQYAJc5rRLXbXzmrJBRdPooJ\nNzSx60HGGJMDBT4RiUg3EdksIltF5GF/1hnWogKHZj/FoTlPcfK3H9EUp5r22U5M/f7hqywJGWNM\nDhXorjkRiQReBa4G9gA/ichcVd3ka50jR45wf/+rSDh+gvIdBlO2VV+vRUpzKvPdWY0xxvinQCci\noDWwVVW3A4jINKA34DMR7dy5k3bt2rG97q0UrVgjxzuMECheJDLbW4kbY4zxT0FPRNGA54zUPUCb\nzAuJyAhghPtj4vLlyzcU27q/RW53mvznwd8jS58TLZFFimlK8umUv/6I6/vksT9yu70QOhc4HOog\n8gk7Fn+zY/E3OxZ/C9hf2wU9EflFVd8E3gQQkdWq2jLEIeULdiz+Zsfib3Ys/mbH4m8isjpQ2y7o\ngxXiAM9ZpzXcNmOMMQVEQU9EPwG1ReRCESkGDADmhjgmY4wxOVCgu+ZUNVlE7gEWAZHAO6q6MZvV\n3gx8ZAWGHYu/2bH4mx2Lv9mx+FvAjoWo2j2sjTHGhE5B75ozxhhTwFkiMsYYE1JhlYhyUw6ooBGR\nHSISKyLr0oZbisg5IrJYRLa4/1bwWH6Mezw2i0hXj/YW7na2ishEEZFQvJ+cEJF3ROSgiGzwaMuz\n9y4ixUVkutu+UkQuCOb7ywkfx2KciMS5n411ItLD47XCfCxqisg3IrJJRDaKyCi3Pew+G1kci9B+\nNlQ1LB44gxm2ARcBxYCfgfqhjisA73MHcG6mtmeBh93nDwPPuM/ru8ehOHChe3wi3ddWAZcCAiwE\nuof6vfnx3q8AmgMbAvHegbuB193nA4DpoX7POTwW44AHvSxb2I9FNaC5+7wM8Jv7nsPus5HFsQjp\nZyOczojSywGp6mkgrRxQOOgNTHGfTwH6eLRPU9VEVf0d2Aq0FpFqQFlVXaHOp+l9j3XyLVVdBmSu\ncJGX791zWzOBTvn1TNHHsfClsB+Lfaq61n1+HPgFpypL2H02sjgWvgTlWIRTIvJWDqgwlspW4CsR\nWSNOaSOAKqq6z32+H6jiPvd1TKLd55nbC6K8fO/p66hqMvAnUDEwYQfMP0Rkvdt1l9YVFTbHwu0m\nagasJMw/G5mOBYTwsxFOiShctFfVpkB3YKSIXOH5ovvXS1iO2Q/n9+6ahNM13RTYBzwf2nCCS0RK\nA58C96nqMc/Xwu2z4eVYhPSzEU6JKCzKAalqnPvvQWA2TpfkAfdUGvffg+7ivo5JnPs8c3tBlJfv\nPX0dESkClAOOBCzyPKaqB1Q1RVVTgbdwPhsQBsdCRIrifPF+pKqz3Oaw/Gx4Oxah/myEUyIq9OWA\nRKSUiJRJew50ATbgvM/B7mKDgc/c53OBAe4olwuB2sAqt7vimIhc6vbtDvJYp6DJy/fuua1+wBL3\nL+kCIe1L19UX57MBhfxYuLFPBn5R1Rc8Xgq7z4avYxHyz0aoR3EE8wH0wBklsg14NNTxBOD9XYQz\nwuVnYGPae8Tpn/0a2AJ8BZzjsc6j7vHYjMfIOKCl+2HcBryCW4UjPz+AqTjdCkk4fdZD8/K9AyWA\nT3Au2K4CLgr1e87hsfgAiAXWu18W1cLkWLTH6XZbD6xzHz3C8bORxbEI6WfDSvwYY4wJqXDqmjPG\nGJMPWSIyxhgTUpaIjDHGhJQlImOMMSFlicgYY0xIFeg7tBoTKCKSNrQXoCqQAhxyf26tTr3Cs91H\nD+Ap98daOBMBE4AYVb3tbLefxX77AetV9bdA7cOYnLDh28ZkQ0TGAX+p6nOZ2gXn/1BqHuxjOXCP\nqq7LwTpF1KnlldN9TQM+VNXPc7quMYFgXXPG5ICI1HLv5fIRzqThmiIS7/H6ABF5231eRURmichq\nEcJ25zQAAAH3SURBVFklIpfmYD+1RWS5iKx112/ltncTkSUiMh9nMiIi8qR7r5hlIjJDRO5x2y8R\nkS/dArhL3dg7Al2BieLcd6amzyCMCRLrmjMm5+oCg1R1tVtLy5eJwLOqusKtdPw50NDPfewFOqlq\noog0BN4A2rmvtcS5l9YeEWmPU8qpMc6M9vXAMne5t4DBqrpDRDoAE1W1h4gsws6ITD5iiciYnNum\nqqv9WK4zUMfjViwVRCRKVRP8WLcE8LKINMK5PnWBx2vfq2paCf72wGxVTQQS3TMlRORcoBUwJx/e\nFseYDCwRGZNzJzyep+LcoTJNCY/nQu4HNowGfgducbfpeZO7E17XyEiAA+rcEsSYfM2uERlzFtyB\nCkfdazoROJWL03wFjEz7QURykhTKAXvVGU00JIvlvgd6i0gxESmLcx8qVPWQG9e17r4jRKSxu85x\nnNtEG5MvWCIy5uw9BCwCfiDjXStHAu3cu15uAobnYJsvA3eJyM9AdZzuuTOo6nfANzhVkD/HuUb0\np/tyf+AedxsbcKosA3wM/MsGK5j8woZvG1PAiUhpVf3LvevmD8AA1f9vz45tAIZhGAhSVRbJ1m48\nVdZJVkhHGLibQN1D4Pu074K/bERwvj0zd5IryRIhTuMjAqDKRgRAlRABUCVEAFQJEQBVQgRA1Qft\nlggg8ZifHAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f052549e0f0>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaIAAAEWCAYAAAAkUJMMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX2wPHvSWgRBESpoYiASG8BRJqI0hV0UdBVQZoF\nRVexoL9dwbX3smtBUBQVcBERBESRJiq9BVCUHoLSJNQAKef3x70TJmGSzIRMJsmcz/PMkzvvbWfu\nTObMfe/7vldUFWOMMSZUIkIdgDHGmPBmicgYY0xIWSIyxhgTUpaIjDHGhJQlImOMMSFlicgYY0xI\nWSIyuU5EHheRcaGOw0NE/i4i34Y6jnMlIleKyO5Qx2FMbrNElA+JyA4RSRSRYyLyp4hMEJFSoY7L\nX6r6rKoOCXUcHqr6qap2Cca2C/p75ZHhdXgeVfJw/xeLiIpIEa+ygSKS4sZyRETWiUivvIrJ5B1L\nRPnXtapaCmgKNANGBWMnIhIZjO2GmTx5r/LAtapayuuxJ5CVvZNILvrZPbZlgbeBySJSNrd3EqTY\nA9m/iEjYfh+H7QsvKFT1T2AuzpccACJSXEReFpFdIrJXRN4VkSiv+Y+IyB8iskdEhri/NGu78yaI\nyDsiMltEjgOdstqeiFwkIl+LSIKI/CUiP3j+YUTkURGJF5GjIrJZRDq75aNF5BOveK4TkY3uNhaK\nSD2veTtEZKSIrBeRwyIyRURK+DoWPrab7le0+wt6mxvPdhH5u1f5Eq/1VETuEpHf3Zj+KyLizosU\nkVdE5IC7jXsz/lIP8L3qKSJr3F/0cSIy2kf8A9xjf0BEnvCaH+W+X4dEZBPQMsPxqOcezwT3+F7n\nNW+CiLwtInPcM4ofRaSSiLzubu9XEWmW3Wtyt5Xd+/eoiKwHjotIERGpIiJfiMh+9xiO8Fq+lYis\ndI/HXhF51Z212P2b4MbbJsOxTQUmAiWBOl7bu1xEfnJjWyciV3rNqykii93Pwzz3ff4kw7EfLCK7\ngPl+bC+zz1dtEVnkfn4PiMgUr3WuEJEV7rwVInKF17yFIvKMiPwInAAu8ef9KJRU1R757AHsAK52\np6sCscAbXvNfA2YA5YDzgZnAc+68bsCfQAPgPOATQIHa7vwJwGGgLc4PkRLZbO854F2gqPtoDwhQ\nF4gDqrjLXQzUcqdHA5+405cCx4Fr3PUfAbYAxbxe63Kgirv/X4C7Mjkuadv12qcCRXC+oI4Add15\nlYEG7vRAYInXegp8jfMruzqwH+jmzrsL2OQe9wuAeZ595PC9uhJo5B7rxsBeoE+G+N8HooAmwCmg\nnjv/eeAH97hUAzYAu915Rd3j+DhQDLgKOOr1+icAB4AW7ns8H9gO3A5EAk8DC3y9jgyvz5/3b60b\nX5T7OlcB/3LjugTYBnR1l/8ZuM2dLgVcnvG99Np32vvmxjwcOA1UcMuigYNAD3e/17jPy3vt62U3\njnY4n49PMuzvY5zPTlRW2yPrz9ck4AnO/D+1c8vLAYeA23A+oze7zy905y8EduH8rxYBiob6uydk\n33mhDsAePt4U55/7mPvFosD3QFl3nrhfDLW8lm8DbHenP8BNIu7z2pydiD72mp/d9p4CvvKsn2G7\n+4CrM/4DkT4R/RP43GteBBAPXOn1Wm/1mv8i8G4mxyVtu+5zz5eJJxElAH8DojKsN5CzE1E7r+ef\nA4+50/OBO73mXU32icjne5XJ8q8Dr2WIv6rX/OVAf3d6G26CdJ8P40wiao/zgyPCa/4kYLTX+/y+\n17z7gF+8njcCEny8jgT3MT2A92+Q1/zWwK4Mr3kU8KE7vRgYA1yUYZm09zLD+5bsxpMEJAI3ec1/\nFJiYYTtzgQE4PzCSgfO85n3C2YnoEj+3l9Xn62NgrPf76JbfBizPUPYzMNCdXgg8lZvfHQX1YVVz\n+VcfVT0f5xf1ZcBFbnl5nDOdVW71QQLwjVsOzplFnNd2vKd9lWW3vZdwfgF/61ZLPAagqluAB3CS\nwz4RmSy+L25XAXZ6nqhTxRKH8+vT40+v6RM4v5QDoqrHgX44ZzR/iMgsEbksi1Uy26c/xy+jzN4r\nRKS1iCxwq6kOu/FdlGF9f2PZ6TVdBYhzj6f3fO/jutdrOtHH84zHuY+qlnUffbz2k9375x1jDaCK\n57Pkfp4eByq68wfjnGX96lZVZdf4YKmqlsU5O52Bk4C993Vjhn21wzlbqQL8paonMokzs9h9bi+b\nz9cjOD/olrtVmIPc8nTHzpXxPfLn81XoWSLK51R1Ec6v25fdogM4XyINvL40yqhzQRfgD5wqIo9q\nvjbrNZ3l9lT1qKo+pKqXANcBD4p7LUhVP1PVdjj/wAq84GNfe9z5gHNR1o0p3v+jkOY4TtL0qJTu\nRanOVdVrcL6IfsWp8gqUP8fPJx/vFcBnOF+g1VS1DE41pwQQi/f+q3tN7wGqSfoL3NXJ2XHNij/v\nn/fnKQ7nbLqs1+N8Ve0BoKq/q+rNQAWcz8tUESmZYRtnUdVjwN3AbV7XtuJwzmC891VSVZ/HOXbl\nRMT785Ld/0JW28v086Wqf6rqUFWtAtwJvC3ONdl0x86V8T2y2x9giaigeB24RkSauL9I3wdeE5EK\nACISLSJd3WU/B+5wL2Sfh1O1kqnsticivdyLsYJzbSkFSBWRuiJylYgUB07iJLNUH7v4HOgpIp1F\npCjwEM51kJ9ycBzWAh1EpLqIlMGrdZqIVBSR3u6X2imcaiZf8WTnc+B+9xiUxamuCUTae+U+Px/n\nl/lJEWkF3BJgLKNE5AIRqYpTveaxDOfs6RERKepeVL8WmBxgvP7EEMj7txw46jZgiBKn8UdDEWkJ\nICK3ikh593OX4K6TinOdLpUsLtir6l/AOJzrT+BUtV0rIl3d/ZQQp69VVVXdCawERotIMbfxw7XZ\nvNZMt5fV50tEbnTfH3CuAak7bzZwqYjcIk4jjn5AfZzrk8aLJaICQFX349RDe/4BH8WpLlsqIkdw\nLqjXdZedA7wJLPAs465zKotdZLo9nBZK83D+8X4G3lbVBUBxnIvpB3Cqlirgo9myqm4GbgXecpe9\nFqeZ8OmADoKzre+AKcB6nAvi3v/QEcCDOL9C/wI64vyCDtT7wLfuPtbgfJkk4yRgf2LM+F7dAzwl\nIkfdss8DiGUMTlXOdjemiV77OY1zLLvjHNe3gdtV9dcAtp+tQN8/VU0BeuG0HNzurjMOKOMu0g3Y\nKCLHgDdwroclulVozwA/utVil2cS0utADxFprKpxQG+cqr/9OGc0D3Pme+3vONc7D+I0zphCFv8H\n2Wwvq89XS2CZ+5pmAPer6jZVPegei4fcGB4BeqnqgcxiCFeiameGhZk4TW03AMVVNTnU8RQ0ItId\np/FExioWU8C4zap/VdUnQx2LSc/OiAohEblenL5BF+DUw8+0JOQftzqph1uVEg08CXwZ6rhM4ESk\npYjUEpEIEemGc7YzPdRxmbMFLRGJSDW3tdAmtyXJ/W75aHE6Qa51Hz281hklIlvE6RzZ1au8hYjE\nuvPedK9XeDp2TnHLl4nIxcF6PQXMnThNq7fiVCnlpIoqXAlOldghnKq5XzhTzWYKlko4TaSP4VRX\n362qa0IakfEpaFVzIlIZp9njahE5H6dOvw9wE3BMVV/OsHx9nH4QrXCaPc4DLlXVFBFZDozAuUA7\nG3hTVeeIyD1AY1W9S0T6A9erar+gvCBjjDFBEbQzIlX9Q1VXu9NHcX5ZRmexSm9gsqqeUtXtOBfP\nW7kJrbSqLlUna36Mk9A863zkTk8FOnvOlowxxhQMeTLQn1tl1gznjKYtcJ+I3I7TvPIhVT2Ek6SW\neq222y1LcqczluP+jQNQ1WRxOgxeiNNSx3v/w3B6pVOyZMkWl12WVT9HY4wxHjt37iQhIYHk5OQD\nqlo++zUCF/REJM6Q+F8AD6jqERF5B/g3Tlv7fwOvAIOy2MQ5U9WxOENwEBMToytXrgzm7owxpkDz\nXLIREd555x327dvH6NGjM44SkWuC2mrO7QD3BfCpqk4DUNW9qpri1ZGylbt4POl7Pld1y+JJ39Pd\nU55uHXFGRy6D017fGGNMDsTHx9O7d28+++wzAO6++26efDK4Ld6D2WpOgPE4Ay2+6lVe2Wux63H6\nuIDTEay/2xKuJk5HyuWq+gdwRJzh2QVn9OCvvNYZ4E73BeardYwyxpiAqSrvv/8+9evXZ968eRw7\ndizP9h3Mqrm2OKPPxorIWrfsceBmEWmKUzW3A6epMaq6UUQ+xxmCPxkY7vbSBqd3+gScodrnuA9w\nEt1EEdmC09u5fxBfjzHGFEpbt25l6NChLFiwgE6dOvH+++9Tq1atPNt/0BKRqi7B9+COs7NY5xmc\nYT4ylq8EGvooPwnceA5hGmNM2IuNjWXVqlWMHTuWIUOGkNeNj0N6e1xjjDGhsWHDBlavXs3tt99O\nnz592LZtGxdeeGFIYrEhfowxJoycPn2a0aNH07x5c5544glOnjwJELIkBJaIjDEmbCxbtozmzZsz\nZswY+vXrx5o1ayhRokSow7KqOWOMCQfx8fG0b9+eihUr8vXXX9OzZ89Qh5TGEpExxhRiv/32G5de\neinR0dFMmTKFzp07U7p0ab/X/7/psUxaFkexSrVbBCtGq5ozxphCKCEhgWHDhnHZZZexePFiAK6/\n/vqAk9AnS3eREuTumXZGZIwxhcyMGTO4++67+fPPP3n44Ydp2bJljrYzaVlcLkfmmyUiY4wpRIYM\nGcL48eNp1KgRX331FTExMTneVrDPhDwsERljTAHnPUhpTEwMNWrU4NFHH6VYsWLntN1IkTxJRpaI\njDEmg+lr4nlp7mb2JCRSpWwUD3etS59mWd1OLXTi4uK466676N+/P7fddht33XVXrm375tbV+GTp\nrlzbXmassYIxxniZviaeUdNiiU9IRIH4hERGTYtl+pr4bNfNS6mpqbzzzjs0aNCAhQsXcurUqVzf\nx9N9GnHr5dWJDPKQP0G7VXh+ZfcjMsZkpe3z84lPSDyrPLpsFD8+dlUIIjrb77//zpAhQ1i8eDFX\nX301Y8eOpWbNmkHdp4isUtWcX3DKglXNGWOMlz0+klBW5aGwadMm1q9fzwcffMDAgQPzfJDS3GaJ\nyBhjvFQpG+XzjKhK2agQRHPGunXrWLt2LQMGDKB3795s27aNCy64IOj79Vwvsw6txhiTRx7uWpeo\nopHpyqKKRvJw17ohiefUqVP885//JCYmhn/+859pg5TmVRLyXC8LJktExhjjpU+zaJ67oRHRZaMQ\nnGtDz93QKCSt5n7++WeaNWvG008/zS233JLng5S+NHcziUkp2S94jqxqzhhjMujTLDrkzbXj4+Pp\n2LEjlSpVYvbs2XTv3j3PY8ir62KWiIwxJoNrXl3I7/uOpz2vU6Ek3z14ZZ7s+5dffqFevXpER0fz\n+eef07lzZ84///w82XdGmV0vy21WNWeMMV4yJiGA3/cd55pXFwZ1v4cOHWLQoEHUr1+fH374AYA+\nffqELAkBdLqsfJ7sx86IjDHGS8YklF15bvjyyy+555572L9/P6NGjcrxIKW5bcGv+/NkP5aIjDEm\nhAYNGsSHH35I06ZNmTVrFs2bNw91SGnsGpExxhRS3oOUXn755dSpU4eRI0dStGjREEeWnl0jMsaY\nEKhToWRA5YHauXMn3bt3Z+LEiQAMGzaMUaNG5bskBL77VAWDJSJjjPFS4fziAZX7KzU1lf/+9780\nbNiQJUuWkJSUdE7bywvefaqCyarmjDHGy49b/wqo3B+bN29myJAhLFmyhC5duvDee+9x8cUX53h7\necnTp0pGbVkVrH1YIjLGmCDbvHkzGzduZMKECdx+++0FfpDS3GaJyBhjgmDNmjWsXbuWO+64g+uu\nu45t27ZRtmzZUIeVL9k1ImOM8dK2VrmAyjM6efIkjz/+OC1btmT06NFpg5RaEsqcJSJjjPHy6dA2\nZyWdtrXK8enQNtmu++OPP9K0aVOee+45br/9dtauXZung5QWVFY1lwumT5/OrFmzOHLkCIMHD6ZL\nly6hDskYcw78SToZxcfH06lTJ6Kjo5k7d659DwTAzogC8N5771GpUiWaNGlCrVq1+PjjjwFnPKj3\n33+fd999lylTpvi9vW+++Ya6detSu3Ztnn/++UyXe+ONN2jYsCENGjTg9ddfB5yLn02bNk17lC5d\nOm1eVkSEW2+9Ne15cnIy5cuXp1evXumWmz59OiLCr7/+mlYWGRmZbp9Zxezt5MmTtGrViiZNmtCg\nQQOefPLJdPMHDRpEhQoVaNiwYbpyf45PVsv4e3yNORebNm0CIDo6mi+++ILY2FhLQoFS1bB6tGjR\nQnNq+PDh+s4776iq6rJly/TCCy9MN//BBx/UVatW+bWt5ORkveSSS3Tr1q166tQpbdy4sW7cuPGs\n5WJjY7VBgwZ6/PhxTUpK0s6dO+vvv/9+1rYqVqyoO3bsyHa/JUuW1CZNmuiJEydUVXX27NnapEkT\n7dmzZ7rlbrrpJm3Xrp3+61//SrduTqSmpurRo0dVVfX06dPaqlUr/fnnn9PmL1q0SFetWqUNGjRI\n95qyOz5ZLePv8TUmpw4ePKgDBgxQQBctWhTqcIIOWKlB+l62M6IArF+/nrp1nbs01qxZk2LFigFO\nMn/00Ufp3r273+NELV++nNq1a3PJJZdQrFgx+vfvz1dffXXWcr/88gutW7fmvPPOo0iRInTs2JFp\n06alW+b777+nVq1a1KhRw6999+jRg1mzZgEwadIkbr755nTzjx07xpIlSxg/fjyTJ0/2a5tZERFK\nlSoFQFJSEklJSemar3bo0IFy5dLXyftzfLJaxt/ja0xOfPHFF9SvX59PP/2UJ554glatWoU6pALN\nElEAYmNjqVu3LqrKf/7zH5555hkA3nrrLebNm8fUqVN5991305Zv3759uqosz2PevHnEx8dTrVq1\ntGWrVq1KfHz8Wfts2LAhP/zwAwcPHuTEiRPMnj2buLi4dMtMnjz5rGSSlf79+zN58mROnjzJ+vXr\nad26dbr5X331Fd26dePSSy/lwgsvZNUqpx9bYmJiutfhXQ2Z1WsFSElJoWnTplSoUIFrrrnmrH1m\n5M/xyWoZf4+vMYEaOHAgffv2JTo6mhUrVvD0009bg4RzZI0V/BQXF8fRo0fp0aMH8fHxNG7cmNGj\nRwMwYsQIRowYcdY6nnuK+DJ16lS/9luvXj0effRRunTpQsmSJWnatCmRkWfGfjp9+jQzZszgueee\n8/u1NG7cmB07djBp0iR69Ohx1vxJkyZx//33A07SmjRpEi1atCAqKoq1a9f63GZWrxWc60tr164l\nISGB66+/ng0bNpx1TciY/Eq9Bim94oorqFevHg899BBFithXaG4I2lEUkWrAx0BFQIGxqvqGiJQD\npgAXAzuAm1T1kLvOKGAwkAKMUNW5bnkLYAIQBcwG7ldVFZHi7j5aAAeBfqq6IxivJzY2lg4dOjB/\n/nwOHTpEw4YN+fnnn7niiisyXad9+/YcPXr0rPKXX36Z6OjodGc2u3fvJjra962JBw8ezODBgwF4\n/PHHqVq1atq8OXPm0Lx5cypWrBjQ67nuuusYOXIkCxcu5ODBg2nlf/31F/Pnzyc2NhYRISUlBRHh\npZdeynJ7Wb3Wq6++Ou152bJl6dSpE998802Wicif45PVMoEcX2Oysn37doYNG8att97KgAEDGDZs\nWKhDKnyCdfEJqAw0d6fPB34D6gMvAo+55Y8BL7jT9YF1QHGgJrAViHTnLQcuBwSYA3R3y+8B3nWn\n+wNTsosrp40VnnvuOX3wwQfTno8cOVIff/zxHG1LVTUpKUlr1qyp27ZtS7uYvmHDBp/L7t27V1VV\nd+7cqXXr1tVDhw6lzevXr59+8MEHZ61z1VVX6e7du88q9zQ4iIuL0zfeeENVVRcsWJDWWOG9997T\nYcOGpVunQ4cOumjRohw3Vti3b19azCdOnNB27drpzJkz0y2zffv2dI0V/Dk+WS0TyPE1xpfk5GR9\n44039LzzztNSpUrphx9+GOqQQoogNlbIs9ZqwFfANcBmoLKeSVab3elRwCiv5ecCbdxlfvUqvxl4\nz3sZd7oIcACQrOLIaSK65ZZbdOLEiWnPFy1apE2bNs3RtjxmzZqlderU0UsuuUSffvrpdPO6d++u\n8fHxqqrarl07rVevnjZu3FjnzZuXtsyxY8e0XLlympCQkG7dlJQUrV69elrLOG++kol3Irryyit1\nzpw56ea/8cYbetddd2lERIQ2adIk7fHoo4/69TrXrVunTZs21UaNGmmDBg10zJgx6eb3799fK1Wq\npEWKFNHo6GgdN25clsfH+9hkdQyzmmdMVjZt2qRt2rRRQLt37647d+4MdUghV+ATEU413C6gNJDg\nVS6e58B/gFu95o0H+gIxwDyv8vbA1+70BqCq17ytwEU+9j8MWAmsrF69eq68KflZbGys/uMf/wh1\nGMYUWDNmzNBy5crpxIkTNTU1NdTh5AvBTERBv9ImIqWAL4AHVPWId7NdVVUR0WDHoKpjgbEAMTEx\nQd9fqDVs2JBXX3011GEYU6CsWrWKdevWMWjQIK699lq2b99O6dKlQx1WWAhq820RKYqThD5VVU/n\nl70iUtmdXxnY55bHA9W8Vq/qlsW70xnL060jIkWAMjiNFowxxi+JiYk89thjtG7dmn//+99pg5Ra\nEso7QUtE4pz6jAd+UVXvn+czgAHu9ACca0ee8v4iUlxEagJ1gOWq+gdwREQud7d5e4Z1PNvqC8x3\nTyGNMSZbixcvpkmTJrzwwgsMHDiQNWvWWJ+gEAhm1Vxb4DYgVkQ8nU8eB54HPheRwcBO4CYAVd0o\nIp8Dm4BkYLiqprjr3cOZ5ttz3Ac4iW6iiGwB/sJpOWeMMdmKj4+nc+fOVKtWjXnz5tG5c+dQhxS2\nJNxOIGJiYnTlypWhDsMYEyKxsbE0atQIgK+//ppOnTpRsmTJEEeV/4nIKlWNCca2bYgfY0xYOHDg\nALfddhuNGzdm8eLFAPTq1cuSUD5g41MYYwo1VeV///sf9957L4cOHeLJJ5/MdqxDk7csERljCrUB\nAwYwceJEYmJi+P7779Oq5Uz+YYnIGFPoeK59iwgdO3akcePGPPDAAzZIaT5l14iMMYXKtm3buPrq\nq5kwYQLgDBo8cuRIS0L5mCUiY0yhkJKSwuuvv06jRo1YsWIFERH29VZQ2E8EY0yBt2nTJgYNGsSy\nZcvo2bMn7777brrbpZj8zRKRMabA2759O1u3buWzzz6jf//+6W5Fb/I/S0TGmAJpxYoVrF27lqFD\nh9KzZ0+2bdvG+eefnyvbnr4mnpfmbmZPQiJVykbxcNe69GlmN1YMFqtENcYUKCdOnGDkyJFcfvnl\nPPfcc2mDlOZmEho1LZb4hEQUiE9IZNS0WKavic92XZMzloiMMQXGwoULady4Ma+88gpDhw4NyiCl\nL83dTGJSSrqyxKQUXpq7OVf3Y86wqjljTIGwe/durrnmGmrUqMH8+fPp1KlTUPazJyExoHJz7uyM\nyBiTr61btw6AqlWr8tVXX7F+/fqgJSGAKmWjAio3584SkTEmX9q/fz+33HILTZs2ZdGiRQD06NGD\n8847L6j7fbhrXaKKRqYriyoaycNd6wZ1v+HMquaMMfmKqjJ58mRGjBjB4cOHGTNmDG3atMmz/Xta\nx1mrubxjicgYk6/cdtttfPrpp7Ru3Zrx48fToEGDPI+hT7NoSzx5yBKRMSbkUlNTERFEhE6dOtGi\nRQtGjBhBZGRk9iubAs+uERljQmrLli107tyZDz/8EHAGKf3HP/5hSSiMWCIyxoREcnIyL7/8Mo0a\nNWLNmjUUK1Ys1CGZELGqOWNMntuwYQN33HEHK1eupHfv3rz99ttUqVIl1GGZEMk0EYnIiKxWVNU3\ncz8cY0w42LVrFzt37mTy5MncdNNNNkhpmMvqjKi8+7cO0AqY6T7vBSwDLBEZY/y2bNky1q1bx7Bh\nw+jRowfbtm2jVKlSoQ7L5AOZXiNS1X+q6j+BKkBTVb1fVe8HmgHWrtEY45fjx4/z4IMP0qZNG158\n8UVOnToFYEnIpPGnsUJF4KTX81NApeCEY4wpTObPn0/jxo157bXXuOuuu1i9ejXFixcPdVgmn/Gn\nscKnwDIR+cJ9fj3wSfBCMsYUBrt376Zr167UrFmTRYsW0aFDh1CHZPKpbBORqj4lInMAz6foLlVd\nEdywjDEF1Zo1a2jWrBlVq1Zl5syZdOzYkagoGzDUZM7ffkSRwH5VfQXYJiLVgxiTMaYA2rt3L/36\n9aN58+Zpg5R269bNkpDJVrZnRCLyf0BboBbwMVAC+AxoF9zQjDEFgary6aefcv/993Ps2DGefvpp\nrrjiilCHZQoQf64R9cVpKbcaQFXjRaR0UKMyxhQYt9xyC5MnT6ZNmzaMHz+eevXqhTokU8D4k4hO\nqaqKiAKISHBvBmKMyfe8Bynt0qULbdq0Yfjw4TY+nMkRf64RTROR/wJlROQO4Fvgw+CGZYzJr377\n7Tc6derEBx98AMAdd9xhI2Wbc5JtIlLVF4CvgRlAE+AZVX0t2IEZY/KX5ORkXnzxRZo0acL69eut\nEYLJNf40VnhWVR8H5vgoM8aEgfXr1zNo0CBWrVrF9ddfz3//+18qV64c6rBMIeFP1Vw3H2U9czsQ\nY0z+tXv3buLi4vjf//7HF198YUnI5KpME5GI3Ckia4DLRGS11+N34NfsNiwiH4jIPhHZ4FU2WkTi\nRWSt++jhNW+UiGwRkc0i0tWrvIWIxLrz3hR3mF4RKS4iU9zyZSJycc4OgTHGl59++ol3330XIG2Q\n0r59+9pI2SbXZXVG9DlwIzDL/et5tFXVfn5sewK+z6ZeU9Wm7mM2gIjUB/oDDdx13hYRz5XPd4Ch\nOKOA1/Ha5mDgkKrWBl4DXvAjJmNMNo4dO8b9999Pu3bteOWVV9IGKS1ZsmSIIzOFVVajbx9S1S3A\ni8BeVd2qqluBRBGJyW7DqroY+MvPOHoDk1X1lKpuB7YArUSkMlBaVZeqquJ0qO3jtc5H7vRUoLPY\nTzVjzskif9iSAAAgAElEQVS3335Lw4YNeeuttxg+fLgNUmryhD/XiMYCJ7yeHwfeO4d93ici692q\nuwvcsmggzmuZ3W5ZtDudsTzdOqqaDBwGLvS1QxEZJiIrRWTl/v37zyF0YwqvuLg4evbsSYkSJVi8\neDFvvfUW559/fqjDMmHAn0QUoaqpnifudNEc7u8d4BKgKfAH8EoOtxMQVR2rqjGqGlO+fPnsVzAm\njKxatQqAatWqMXv2bNauXUu7djaCl8k7/iSi7SJyt4hEikiEiAwHduRkZ6q6V1VT3GT2Ps6dXwHi\ngWpei1Z1y+Ld6Yzl6dYRkSJAGeBgTuIyJhz9+eef3HjjjcTExKQNUnrNNddQokSJEEdmwo0/iehO\noDOw1310xGk8EDD3mo/H9YCnRd0MoL/bEq4mTqOE5ar6B3BERC53r//cDnzltc4Ad7ovMN+9jmSM\nyYKq8tFHH1G/fn1mzpzJs88+a4OUmpDy535Ee3G+6AMiIpOAK4GLRGQ38CRwpYg0BRTnrOpOdx8b\nReRzYBOQDAxX1RR3U/fgtMCLwulU6+lYOx6YKCJbcBpF9A80RmPCUf/+/fn8889p27Yt48aN47LL\nLgt1SCbMSWYnESLykKq+IiKv4SSOdFT1wWAHFwwxMTG6cuXKUIdhTJ7yHqT0o48+4ujRo9xzzz1E\nRPh7SzIT7kRklapm22I6J7I6I9rq/t2QxTLGmHzu119/ZciQIQwcOJAhQ4YwYMCA7FcyJg9lmohU\ndbr7d3zehWOMyS1JSUm89NJLjBkzhpIlS1KqVKlQh2SMT5kmIhH5Eh9Vch6qekNQIjLGnLO1a9dy\nxx13sHbtWvr27ctbb71FpUqVQh2WMT5lVTX3H/dvb6AK8Kn7/GZgTzCDMsacmz///JM///yTL774\nghtusN+MJn/LtLFC2gIiK70vULnNqJerastgBxcM1ljBFFZLlixh/fr13HPPPQCcOHGC886zGyqb\n3BHMxgr+NJkplWFk6+qAVTYbk08cPXqUe++9l/bt2/P666+nDVJqScgUFP4kooeAH0Rknoh8Dyx2\ny4wxITZ37lwaNmzI22+/zf3332+DlJoCyZ8OrbNE5FKgvlu0SVUTgxuWMSY7cXFx9OrVi9q1a7Nk\nyRIbHcEUWNmeEYlIFHA/MFRVVwHRItI96JEZY86iqixfvhxwBimdM2cOa9assSRkCjR/quY+cJfz\nDMe7B3g2aBEZY3z6448/+Nvf/kbr1q3TBim9+uqrbZBSU+D5k4jqqOqzQBKAqp4A7AZ0xuQRVeXD\nDz+kfv36zJkzhxdeeIG2bduGOixjck2214iA0yJSArdzqzs69umgRmWMSXPTTTcxdepU2rdvz7hx\n47j00ktDHZIxucqfRPQU8A1QVUQ+wrkNxOCgRmVMmEtJSUFEiIiI4Nprr+Wqq67izjvvtEFKTaGU\nZYdWt/NqJZxbM1yBUyX3k6ruy5vwcp91aDX53S+//MLgwYO54447GDo0R7f+MibXhaxDq3ujue9U\ndb+qfqWq0wtyEjImP0tKSuLpp5+madOmbN68mTJlyoQ6JGPyhD9Vc2tFpJmqrgl6NMaEqTVr1jBw\n4EDWr19Pv379ePPNN6lQoUKowzImT/iTiJoBK0RkK3Acp3pOVbV5UCMzJozs3buXAwcOMH36dHr3\n7h3qcIzJU/4kouuCHoUxYWjx4sXExsYyfPhwunXrxpYtW4iKigp1WMbkuWyb4KjqVqAk0BXoApR0\ny4wxOXDkyBHuueceOnbsyJtvvpk2SKklIROu/Bni5wlgEhANVAU+E5FRwQ7MmMJo9uzZNGjQgPfe\ne48HH3zQBik1Bv+q5m4HmrkjKiAizwBrgOeCGZgxhU1cXBy9e/embt26TJ06ldatW4c6JGPyBX96\nx/1B+oRVxC0zxmRDVVm6dCngDFL67bffsnr1aktCxnjxJxH9BWwUkXEi8j4QCxwQkVdF5NXghmdM\nwbVnzx769OlDmzZt0gYp7dSpE8WKFQtxZMbkL/5Uzc1yHx5LgxSLMYWCqjJ+/HhGjhzJqVOnePnl\nl22QUmOy4M+N8cbnRSDGFBZ9+/Zl2rRpdOzYkXHjxlG7du1Qh2RMvubPGZExJhveg5T26dOHLl26\nMHToUBuk1Bg/2H+JMedow4YNtG3blvHjncqD2267zUbKNiYA/vQjusGfMmPCzenTpxkzZgzNmzdn\n69atXHDBBaEOyZgCyZ+fbP/no+yJ3A7EmIJk1apVtGjRgtGjR3PjjTeyadMm+vbtG+qwjCmQMr1G\nJCJdgW5AdIZm2qWB1GAHZkx+dvDgQRISEpg5cya9evUKdTjGFGhZNVbYB2wATgIbvcqPAo8FMyhj\n8qMFCxYQGxvLiBEj6NKlC7///jslSpQIdVjGFHiZJiL3/kNrRORTnDOg6qq6Jc8iMyafOHz4MI88\n8ghjx47lsssu484776R48eKWhIzJJf5cI+qMM5rCdwAi0lREvgxqVMbkEzNnzqR+/fqMGzeOkSNH\nsmrVKhuk1Jhc5k8/oqeA1sACAFVdKyLWQ88UenFxcfztb3/jsssuY/r06bRs2TLUIRlTKPlzRpSk\nqgkZyjQYwRgTaqrKTz/9BJwZpHTlypWWhIwJIn/OiH4RkZuACBGpCYzAj/HmROQDoBewT1UbumXl\ngCnAxcAO4CZVPeTOGwUMBlKAEao61y1vAUwAooDZwP2qqiJSHPgYaAEcBPqp6g6/XrUxrpqPzUr7\nVZV85AB/fftfEreuYOHChXTs2JErr7wylOEZExb8OSO6F+fLPhX4EjgNPODHehNwmn97ewz4XlXr\nAN+7zxGR+kB/oIG7ztsiEumu8w4wFKjjPjzbHAwcUtXawGvAC37EZEwaTxJSTeXo2jnsGX83J3eu\n54KrhtCuXbtQh2dM2PBn0NPjwKPuw2+qulhELs5Q3Bu40p3+CFjobrc3MFlVTwHbRWQL0EpEdgCl\nVXUpgIh8DPQB5rjrjHa3NRX4j4iIqlq1ofGL54Oy/8tnSfx9KSVqNKZctxEULVuJyMjILNc1xuSe\nbBOR20Iu45f7YWAl8L6qng5gfxVV1XNTvT+Biu50NOmr+3a7ZUnudMZyzzpxAKqaLCKHgQuBAz5e\nwzBgGED16tUDCNcUVsnJyaimIhLBeXXbElWrJaUad0FEQh2aMWHHn6q5OCAZmOg+TuN0cm0MvJ/T\nHbtnLnly9qKqY1U1RlVjypcvnxe7NCEwfU08bZ+fT83HZtH2+flMXxPvc7n169fTpk0bjq2bC0Cp\nBp04v0lXS0LGhIg/jRXaqGpakyERmQ4sV9WWIrIpwP3tFZHKqvqHiFTGGb0BIB6o5rVcVbcs3p3O\nWO69zm4RKQKUwWm0YMLQ9DXxjJoWS2JSCgDxCYmMmhYLQJ9mzkn0qVOnePbZZ3n22We54IILiKza\nJWTxGmPO8OeM6HwR8U4GVYDz3elTAe5vBjDAnR4AfOVV3l9Eirst8+rgJLs/gCMicrk4P1dvz7CO\nZ1t9gfl2fSh8vTR3c1oS8khMSuGluZsBWLFiBc2bN+epp57i5ptv5pdffqFk3St8bsvOi4zJW/6c\nET0C/Cwiv+L8j14K3CsiJYFPM1tJRCbhNEy4SER2A08CzwOfi8hgYCdwE4CqbhSRz4FNONWAw1XV\n861yD2eab89xHwDjgYluw4a/cFrdmUJg+pp4Xpq7mT0JiVQpG8XDXeumndVkZk9CYpblhw4d4tix\nY8yePZvu3bsDUKxIBKeSzx6/t1gRu4+QMXkpy0QkIhHAXpzkU98t3qSqnv/6lzNbV1VvzmRW50yW\nfwZ4xkf5SqChj/KTwI2ZBm8KJH+q2HypUjaK+AzJKHHnOs47Fg/0pEuXLvz222/phufxlYSyKjfG\nBEeWP/1UNRV4T1UTVXWV+/D909OYXJBdFVtmHu5al6iiTpPr1JPHODjnTfZNfoLkjd9x6pRTg2xj\nxBmTP/lTB7FARHoHPRJjyL6KLTN9mkXz3A2NiNqzmj3j7+FY7DyuH3A3v21cl2kCKhtVNKByY0xw\n+JOIBgJfikiiiPwlIodE5K8gx2XCVJWyUQGVe2t+YQpbJ/+bBpdUZcXyZUyb8DZRUZmv16tJ5YDK\njTHB4U8iuggoCpQCyrvPrTOOCQrvKjaPqKKRPNy1rs/lVZUffvgBcDorz5s3jxUrVhATE5Ptvhb8\nuj+gcmNMcGSbiNzWa6WAJji3g/A8jMl1fZpF87cW0US6nUsjRfhbi2ifDRV27dpFz5496dChA4sW\nLQKgQ4cOFCtWzK995bQa0BiTu7JNRG5T65+A+TgDi84Hng1yXCZMTV8Tzxer4klxu4SlqPLFqvh0\noySkpqby9ttv06BBAxYvXsybb76Zo0FKz6Ua0BiTe/ypmnsAiAF2qGp7ztx2wZhc50+ruRtuuIHh\nw4fTpk0bNmzYwH333ZejQUoDrQY0xgSHPx1aT6pqooggIsXczqf2n2qCIrNqsfi/jpGamkpERAT9\n+vWjd+/eDBw48JzGh/NU9wXaedYYk7syTUQiUkRVk4E/RKQsMBOY67aY253ZesacC18dU0/v28aR\nuW8x9pI93HXXXdx8c2Z9pQPXp5nv60/GmLyTVdXccgBVvU5VE1T1n8DTOMP6WL8iExTe1WWafJpD\niyfyx0f/oMjJQ1SqVCnE0RljgiGrqrmz6jxU9fsgxmJM2tnJv8Z9xa+TnyPpr910uvZGpk54l3Ll\nyuX6/nIyrp0xJndllYjKi8iDmc1U1VeDEI8pZHL6RZ9y6jipyaepd8fzjLjv1qAloZyMa2eMyV1Z\nJaJInP5DNiq+yZHpa+J5eOo6klKcptjxCYk8PHUd4PuL/ttvv2Xy3J/4+bzLSbyoPtFD3+NEkaJB\nSw5ZtdCzRGRM3skqEf2hqk/lWSSm0Bkzc2NaEvJISlHGzNyY7ov+0KFDPPjgg0yYMIGoihdT/tam\nSJGiSBFnzLdgJQfr0GpM/hDQNSJjAnHoRFK25dOmTWP48OHs37+fUaNG8enplmkJyFvGlnS5wVcL\nPU+5MSbvZNVqzud9g4zJLbt27aJ///5UrlyZFStW8OyzzyJF/BueJzc83LUuRSPT/94qGinWodWY\nPJbpGZGq2gjb5pyUjSpKQmL6syJVpei+X4GeVK9enfnz59O6dWuKFg3RrRcy3lzebjZvTJ6zeyKb\noMl4O4Xkw/vY978n2Trh4bRBStu1a5cuCUVmMlJCZuXn4qW5m0lKzXANK1WzvQmfMSZ3WSIyQfPl\namegUtVUjqyayZ7x93Bq9yYqdbub9u3b+1zn5tbVAio/F9ZYwZj8wZ+x5ozJkeOnnabR+6c9TeKW\n5ZSo2ZwLu95LkTIViIjw/Rvo6T6NAJi0LI4UVSJFuLl1tbTy3GSNFYzJH+yMyARFUlISqqkAlKzX\nkQt7/oMKN46hSJkK2a4bU6MclcqUQIBKZUoQUyP3O7OCjb5tTH5hicjkutWrV9OqVSuOrZkDQMn6\nHSnVsLNfI2V7RjuIT0hEOTPagff9iHJLn2bRPHdDI6LLRiFAdNkonruhkXVmNSaPWdWcyTWJiYk8\n9dRTvPTSS5QvX54itS7yuVxW6SivRzuw0beNCT07IzK5YunSpTRt2pTnn3+eAQMGsGnTJqJq+76j\nfFYtpK0BgTHhx86ITK44fvw4SUlJfPfdd1x99dU53o41IDAm/NgZkcmxb775hldeeQWAzp078+uv\nv55TEgJrQGBMOLIzIuMX79s5lC96mpJrP2Ph11Np1KgR9913H8WKFaNYsfTD8/gaWcFTnhm7fbcx\n4ccSkcmWpyXbidPJnNj8I7u+e5fUk0e5ccj9TPzPC2clII+MjQ6yK/ewBgTGhBdLRGEo0JvVeVqy\npRzZz4GZL1OswsVc2O8p4ms1oHjx4pmudyo5NaByY0x4skQUZgK9K6mqsmXdUqJqNKFImQpUvPk5\nile5FImIDMqtGYwx4ccaK4SZrPrpZLR9+3a6dOnCvslPcHKXk6xKVK2HRDiNCYIxEKkxJvxYIgoz\n/vTTSUlJ4Y033qBhw4YsW7aMcl3uoXi1Bmetk6J2zwRjzLmzRBRmyp7nu8Wad3nv3r154IEHuPLK\nK9m4cSOXdfobImd/VKKz6dtzQSb7yqzcGBOeLBGFmVOZtFg7efIUqalOI4LbbruNTz75hK+//ppq\n1arluG/Pk9c2IDIiffVdZITw5LVnn10ZY8JXSBKRiOwQkVgRWSsiK92yciLynYj87v69wGv5USKy\nRUQ2i0hXr/IW7na2iMib4s+ommHuRNLZLdZO/fE7W8eN4J133gGgX79+/P3vf08bpPRcBgfN+AGz\nXz7GmIxC2Wquk6oe8Hr+GPC9qj4vIo+5zx8VkfpAf6ABUAWYJyKXqmoK8A4wFFgGzAa6AXPy8kUU\nZKlJpzj842ccWf4lkSXLUqNGjUyXzUnfnqzugGr9hIwxHvmp+XZv4Ep3+iNgIfCoWz5ZVU8B20Vk\nC9BKRHYApVV1KYCIfAz0IcwSUaB9gjxOxf/CgVmvkXxoD6Uad+GCToPo1atXrsZmA5gaY/wRqkSk\nOGc2KcB7qjoWqKiqf7jz/wQqutPRwFKvdXe7ZUnudMbys4jIMGAYQPXq1XPrNYRcoH2CvKUmnwZV\nKvR7mqiLmwYlPhvA1Bjjj1BV2bdT1aZAd2C4iHTwnqmqStZ3CwiIqo5V1RhVjSlfvnxubTbkAukT\nBDB79mwOL/sCgKgaTagy5J2gJSGwAUyNMf4JSSJS1Xj37z7gS6AVsFdEKgO4f/e5i8cD1bxWr+qW\nxbvTGcvDhr9VXwcOHODWW2+lZ8+eHN+0EE1xBiKVyOCeENsdUI0x/sjzqjkRKQlEqOpRd7oL8BQw\nAxgAPO/+/cpdZQbwmYi8itNYoQ6wXFVTROSIiFyO01jhduCtvH01oZVd1ZeqMmXKFO677z4OHz7M\nk08+yYfHmyKRedePxwYwNcZkJxRnRBWBJSKyDlgOzFLVb3AS0DUi8jtwtfscVd0IfA5sAr4Bhrst\n5gDuAcYBW4CthFlDhYe71iVDNx0ihLSqr127djFgwABq1qzJqlWrGD16dJ4mIWOM8UeenxGp6jag\niY/yg0DnTNZ5BnjGR/lKoGFux1hQrNz5FxlaR5OSqvxvxmz6NBtKjRo1WLRoES1btiQyMtL3Rowx\nJsSsf2EBNmlZXLrnSYf+YO/kJ/hs9DAWLVoEwOWXX54uCWXW49d6AhtjQiU/9SMyAfIMOqqpKRxd\nOYOEHz6BiEjKdb2X9u3b+1wns6aINnypMSZULBHlEzntmAqw74unOLltFVG1WlKuy3CKlL6IiAjf\nJ7uRIj5HzbZbOhhjQsUSUT4wfU08D05Zi2cUuPiERB6cshbIvGPq6dOnUU1FJIJSDa+mVIOrOK9e\nB7Ibbi+zWzfYLR2MMaFi14jygVHT1pNxKNJUt9yX5cuX06JFC46ungVAyXrtKVm/Y7ZJCDK/dUN2\nt3SYviaets/Pp+Zjs2j7/HymrwmrLlvGmCCyRJQPJPoYEdtX+YkTJ3jooYdo06YNhw4domjZygHv\nKyejHXiGEopPSEQ5M5SQJSNjTG6wRFRALFmyhEaNGvHqq68ydOhQNm7cSFStmIC3k5PRDgIdSihU\n7KzNmILJrhH5cC4NB4IlKSmJyMhIFixYwJVXXnlO2wp0tIOCMIr2uQwAa4wJLTsjyiAU1VDFi/h+\nG5K2reDFF18EoFOnTmzatOmck1BOZDZadn4aRbugnLUZY85miSiDUHyhZbxmk3LiMPtnvMSe/41h\n0qRJnD59GoAiRUJzAlsQRtEuCGdtxhjfrGoug9z4Qgu0au9wojMatqpy4pdF/DVvLKmnTlC23d9Z\n9v0HFCtWLLAXkcs8see36kpvdu8jYwouS0QuT/LIrDeNv19o09fE8/DUdSSlOFuKT0jk4anrgMyv\nVZSJKkpCYhIpR/ZzYPbrFKtQiwu7j6BC9dpZJqELzivKoRNJPstzW34fRfvhrnXTXSOC/HfWZozx\nzarmSH9dyJdAvtDGzNyYloQ8klKUMTM3+lw+NTWVo1tXAlCkTAUq3fIClW59kWLla5Bdt6Anr21A\n0cj0CxWNFJ68toFfsRYmdu8jYwouOyPC93Uhj+gAq6F8naFkVv77778zdOhQti1aRMVbnqdEtYYU\nr3Im4SVksi2PglBllpfy+1mbMcY3S0Rkfv1HgB8fuyrX95ecnMxrr73Gv/71L4oXL06tv40kqerZ\nZzH+VAfal68xpqCzqjnyvnlyr169eOSRR+jatSubNm2i/623+xyep9Nl5YOyf2OMyU8sERF48+Ss\nevBnelknOYnUVGfIniFDhjBlyhS+/PJLqlSpwrRVu32uklm5McYUJlY1R2DXWrLrwf/3y6vzydJd\n6dY5Ff8ryYve4b814rjvvvvo27dvuvknMhlrLrNyY4wpTCwRufy91pJVh9eM66eePknCDxM5unIG\npS+qSJ06dXI1ZmOMKQwsEfnJ088osybe8QmJ1Bo1O+2+PifjNnBw1mskH95LqWY9KdNxAN26dcvL\nkI0xpkCwROSHjNVxmUl3c7nUVIgsktYsOyvFIoXTKWd3pS0WaXdNNcYUfpaI/JBVPyNvJ377maSD\ncZRpcxMlajSmyuC3kYjIbNeLjBDwkYgiIywRGWMKP0tEWfi/6bFMWhaX7W20U44f4q/v3uPE5iUU\nq1iL0q2uRyKL+pWEwP8b4xljTGFkiSgT/zc99qzWbxmpKsc3LuDQ9++TmpRI2Q63U7rVDUikHVZj\njPFXWH9jejdAiBQhRTVtSJ9Pl2WdhABSjuzn4DdvUrxSHS7sPoKiF1bLURwi4OukK7ux5owxpjAI\n20SUcZRsT/Wbp19QZrVxqqmc3LaaqFoxziClf3+JYhUv8bsazvc2Ays3xpjCJGxHVvA1SrZHZg0T\nkv6KZ+9no9g3dTQndzmdWItXrnNOSQicgVUDKTfGmMIkbBNRZqNk+6KpKRxeOpU9H9xL0v4dXNjj\nAYpn0yQ7EAXhDqjGGBMsYVs1F4h9/xvNyR1rOO/SKyh3zd1ElrogV7dvt3MwxoQzS0SZ0OTTEBGJ\nRERSqmk3SjXtRsm6bXO8vbJRWd811W7nYIwJV2FbNZeVk7s3sefDERxdPQuAknXbnlMSKhohjL4u\n/O6aaowx/rAzIi+ppxNJWPwxR1d9TWTp8jlujl02qiglixexajZjjPFDWCYi7/sHeZzcFcuBWa+R\ncmQ/57foRdkOtxNRLGet1g4nJrH2yS7nGqYxxoSFsExEL83d7LM8omhxLvr7C5SoWv+cth+sO7sa\nY0xhFJbXiPa4t3I4sfknDv/8OQAlqjei8qD/ZJuEykYV5fV+TdP6+GQc/MCaXRtjTGAK/BmRiHQD\n3gAigXGq+nx261wUmcimqa9x4refKFapjt+DlHoaHXi3cPMME2TXg4wxJmdEC/A4MiISCfwGXAPs\nBlYAN6vqpszWqVmzpu4/eIgTJ05Qpt0tlG55vc9BSotGCP1aVWPBr/styRhjwp6IrFLVmGBsu6Cf\nEbUCtqjqNgARmQz0BjJNRDt37qRt27b0f/AZ3l9/koREZ4QFATwpuWxU0bQzH2OMMcFV0M+I+gLd\nVHWI+/w2oLWq3pthuWHAMPdpQ2BDngaaf10EHAh1EPmEHYsz7FicYcfijLqqen4wNlzQz4j8oqpj\ngbEAIrIyWKeXBY0dizPsWJxhx+IMOxZniMjKYG27oLeaiwe8e51WdcuMMcYUEAU9Ea0A6ohITREp\nBvQHZoQ4JmOMMQEo0FVzqposIvcCc3Gab3+gqhuzWW1s8CMrMOxYnGHH4gw7FmfYsTgjaMeiQDdW\nMMYYU/AV9Ko5Y4wxBZwlImOMMSEVVolIRLqJyGYR2SIij4U6nmAQkR0iEisiaz3NLUWknIh8JyK/\nu38v8Fp+lHs8NotIV6/yFu52tojImyKScVi9fEdEPhCRfSKywass1167iBQXkSlu+TIRuTgvX18g\nMjkWo0Uk3v1srBWRHl7zCvOxqCYiC0Rkk4hsFJH73fKw+2xkcSxC+9lQ1bB44DRm2ApcAhQD1gH1\nQx1XEF7nDuCiDGUvAo+5048BL7jT9d3jUByo6R6fSHfecuBynEEn5gDdQ/3a/HjtHYDmwIZgvHbg\nHuBdd7o/MCXUrznAYzEaGOlj2cJ+LCoDzd3p83GGBasfjp+NLI5FSD8b4XRGlDYckKqeBjzDAYWD\n3sBH7vRHQB+v8smqekpVtwNbgFYiUhkorapL1fk0fey1Tr6lqouBvzIU5+Zr997WVKBzfj1TzORY\nZKawH4s/VHW1O30U+AWIJgw/G1kci8zkybEIp0QUDcR5Pd9N1m9AQaXAPBFZJc7QRgAVVfUPd/pP\noKI7ndkxiXanM5YXRLn52tPWUdVk4DBwYXDCDpr7RGS9W3XnqYoKm2PhVhM1A5YR5p+NDMcCQvjZ\nCKdEFC7aqWpToDswXEQ6eM90f72EZZv9cH7trndwqqabAn8Ar4Q2nLwlIqWAL4AHVPWI97xw+2z4\nOBYh/WyEUyIKi+GAVDXe/bsP+BKnSnKveyqN+3efu3hmxyTenc5YXhDl5mtPW0dEigBlgINBizyX\nqepeVU1R1VTgfZzPBoTBsRCRojhfvJ+q6jS3OCw/G76ORag/G+GUiAr9cEAiUlJEzvdMA11wRhqf\nAQxwFxsAfOVOzwD6u61cagJ1gOVudcUREbncrdu93WudgiY3X7v3tvoC891f0gWC50vXdT1nRqEv\n1MfCjX088Iuqvuo1K+w+G5kdi5B/NkLdiiMvH0APnFYiW4EnQh1PEF7fJTgtXNYBGz2vEad+9nvg\nd2AeUM5rnSfc47EZr5ZxQIz7YdwK/Ad3FI78/AAm4VQrJOHUWQ/OzdcOlAD+h3PBdjlwSahfc4DH\nYiIQC6x3vywqh8mxaIdT7bYeWOs+eoTjZyOLYxHSz4YN8WOMMSakwqlqzhhjTD5kicgYY0xIWSIy\nxibwtwwAAAKPSURBVBgTUpaIjDHGhJQlImOMMSFVoO/QakywiIinaS9AJSAF2O8+b6XOeIXnuo8e\nwLPu09o4HQETgTWqese5bj+L/fYF1qvqb8HahzGBsObbxmRDREYDx1T15QzlgvM/lJoL+1gC3Kuq\nawNYp4g6Y3kFuq/JwCeq+nWg6xoTDFY1Z0wARKS2ey+XT3E6DVcTkQSv+f1FZJw7XVFEponIShFZ\nLiKXB7CfOiKyRERWu+u3dMu7ich8EZmF0xkREXnavVfMYhH5XETudcsvFZFv3QFwF7qxdwK6Am+K\nc9+ZapkGYUwesao5YwJ3GXC7qq50x9LKzJvAi6q61B3p+GugoZ/72AN0VtVTItIQeA9o686LwbmX\n1m4RaYczlFNjnB7t64HF7nLvAwNUdYeIdATeVNUeIjIXOyMy+YglImMCt1VVV/qx3NVAXa9bsVwg\nIlGqmujHuiWAt0SkEc71qYu95v2oqp4h+NsBX6rqKeCUe6aEiFwEtASm58Pb4hiTjiUiYwJ33Gs6\nFecOlR4lvKaFnDdseBjYDvzd3ab3Te6O+1wjPQH2qnNLEGPyNbtGZMw5cBsqHHKv6UTgjFzsMQ8Y\n7nkiIoEkhTLAHnVaEw3MYrkfgd4iUkxESuPchwpV3e/GdZ277wgRaeyucxTnNtHG5AuWiIw5d48C\nc4GfSH/XyuFAW/eul5uAoQFs8y3gbhFZB1TBqZ47i6r+ACzAGQX5a5xrRIfd2TcB97rb2IAzyjLA\nZ8C/rLGCyS+s+bYxBZyIlFLVY+5dN38C+qvqplDHZYy/7BqRMQXfBBGpDRQH3rckZAoaOyMyxhgT\nUnaNyBhjTEhZIjLGGBNSloiMMcaElCUiY4wxIWWJyBhjTEj9P06mtiabX1BgAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f0521334cf8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "regression_experiment(spectra_scaled, spectra_test_scaled,\n", " concentration, concentration_test)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "nav_menu": {}, "toc": { "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 6, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }
bsd-3-clause
dsavoiu/kafe2
examples/jupyter_tutorial_de.ipynb
1
76203
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "# Jupyter-Notebook-Tutorial: \n", "# Anpassung von Modellen an Daten mit *kafe2* \n", "\n", " Johannes Gäßler, März 2021\n", " Günter Quast, April 2020\n", "---\n", "## Grundsätzliches zu Jupyter Notebooks\n", "\n", "Diese Datei vom Typ `.ipynb` enthält ein Tutorial als `Jupyter notebook`.\n", "*Jupyter* bietet eine Browser-Schnittstelle mit einer (einfachen) Entwicklungsumgebung für\n", "*Python*-Code und erklärende Texte im intuitiven *Markdown*-Format.\n", "Die Eingabe von Formeln im *LaTeX*-Format wird ebenfalls unterstützt.\n", "\n", "Eine Zusammenstellung der wichtigsten Befehle zur Verwendung von *Jupyter* als Arbeitsumgebung\n", "findet sich im Notebook\n", "[*JupyterCheatsheet.ipynb*](https://git.scc.kit.edu/yh5078/datenanalyse/-/blob/master/jupyter/JupyterCheatsheet.ipynb).\n", "Grundlagen zur statistischen Datenauswertung finden sich in den Notebooks \n", "[*IntroStatistik.ipynb*](https://git.scc.kit.edu/yh5078/datenanalyse/-/blob/master/jupyter/IntroStatistik.ipynb)\n", "und\n", "[*Fehlerrechnung.ipynb*](https://git.scc.kit.edu/yh5078/datenanalyse/-/blob/master/jupyter/Fehlerrechnung.ipynb).\n", "\n", "In *Jupyter* werden Code und Text in jeweils einzelne Zellen eingegeben. \n", "Aktive Zellen werden durch einen blauen Balken am Rand angezeigt.\n", "Sie können sich in zwei Zuständen befinden: im Edit-Mode ist das Eingabefeld weiß, im\n", "Command-Mode ist es ausgegraut.\n", "Durch Klicken in den Randbereich wird der Command-Mode gewählt, ein Klick in das Textfeld einer\n", "Code-Zelle schaltet in den Edit-Mode.\n", "Die Taste `esc` kann ebenfalls verwendet werden, um den Edit-Mode zu verlassen.\n", "\n", "Die Eingabe von `a` im Command-Mode erzeugt eine neue leere Zelle oberhalb der aktiven Zelle, `b`\n", "eine unterhalb. Eingabe von `dd` löscht die betreffende Zelle.\n", "\n", "Zellen können entweder den Typ `Markdown` oder `Code` haben.\n", "Die Eingabe von `m` im Command-Mode setzt den Typ Markdown, Eingabe von `y` wählt den Typ Code.\n", "\n", "Prozessiert - also Text gesetzt oder Code ausgeführt - wird der Zelleninhalt durch Eingabe von\n", "`shift+return`, oder auch `alt+return` wenn zusätzlich eine neue, leere Zelle erzeugt werden soll.\n", "\n", "Die hier genannten Einstellungen sowie das Einfügen, Löschen oder Ausführen von Zellen sind\n", "auch über das PullDown-Menü am oberen Rand verfügbar.\n", "\n", "---" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Übersicht: *kafe*2\n", "***\n", "\n", "\n", "*kafe2* ist ist eine erweiterte Version des seit 2012 entwickelten Pakets *kafe* zur Anpassung\n", "von Modellfunktionen an Daten.\n", "\n", "Unterstützt werden verschiedene Datentypen wie einfache indizierte Daten, zweidimensionale\n", "Datenpunkte (eine Größe *x* und eine abhängige Größe *y*) sowie Häufigkeitsverteilungen\n", "(Histogramme).\n", "Unsicherheiten sowohl der abhängigen als auch der unabhängigen Größen und gegebenenfalls deren\n", "Korrelationen werden unterstützt.\n", "Dazu wird aus verschiedenen Arten von spezifizierten Unsicherheiten die globale Kovarianzmatrix\n", "erstellt und in der Anpassung berücksichtigt.\n", "Im Vergleich zu vielen anderen Anpassungswerkzeugen ist diese Möglichkeit ein\n", "Alleinstellungsmerkmal von *kafe(2)*.\n", "\n", "Unterstützt wird auch die gleichzeitige Anpassung mehrerer Modelle mit jeweils eigenen und\n", "zusätzlich allen oder mehreren Modellen zugehörigen Parametern an verschiedene Datensätze\n", "(\"Multi-Fit\").\n", "\n", "Zur Minimierung des Abstandsmaßes zwischen Daten und Modellfunktion(en) werden numerische\n", "Verfahren angewandt, die aus der quelloffenen, *Python*-basierten Softwareumgebung *SciPy* oder\n", "dem am CERN entwickelten Paket *MINUIT* stammen.\n", "Das jeweils minimierte Abstandsmaß (oder auch die \"Kostenfunktion\") entspricht dem mit einem\n", "Faktor Zwei multiplizierten negativen natürlichen Logarithmus der Likelihood-Funktion\n", "$-2\\,\\ln{\\cal L}$ der Daten für das gegebene Modell.\n", "Für Gauß-förmige Unsicherheiten der Datenpunkte entspricht dies der Methode der kleinsten\n", "Quadrate (auch \"$\\chi^2$-Methode\").\n", "Andere, auf dem Likelihood-Prinzip beruhende Kostenfunktionen für die Anpassung von\n", "Wahrscheinlichkeitsdichten an Histogramme oder an indizierte Daten sind ebenfalls verfügbar.\n", "\n", "Zur Bestimmung der Unsicherheiten auf die Parameter des angepassten Modells wird die Methode der\n", "Profil-Likelihood bereit gestellt, mit deren Hilfe Konfidenzintervalle für die einzelnen\n", "Parameter sowie zweidimensionale Konfidenz-Konturen für Paare von Parametern bestimmt werden\n", "können.\n", "\n", "*kafe2* enthält eine stand-alone Anwendung *kafe2go*, die Anpassungen ohne die Erstellung von\n", "eigenem Code ermöglicht;\n", "Daten, Modellfunktion und Optionen werden dazu in einer Konfigurationsdatei im *YAML*-Format angegeben.\n", "Mit dem folgenden Konsolenbefehl kann daraus ein Fit erstellt werden:\n", "\n", "`kafe2go <name>.yaml`\n", "\n", "*kafe2* kann aber ebenfalls und sehr viel flexibler über ein *Python*-Interface verwendet werden.\n", "Eine Einführung in die Möglichkeiten gibt dieses Tutorial.\n", "Generell ist die Vorgehensweise folgende:\n", "\n", " - Definition und Initialisierung eines Daten-Containers für die jeweilige Anpassung \n", " (Klassen IndexedContainer, XYContainer, HistContainer, UnbinnedContainer).\n", " - Erzeugung eines geeigneten Objekts zur Durchführung der Anpassung, die den Datencontainer mit\n", " einem Modell verbindet (die allgemeine Klasse *Fit* bzw. spezialisierte Klassen\n", " *IndexedFit*, *XYFit*, *HistFit*, *UnbinnedFit*).\n", " - Durchführung der Anpassung mittels $<$Fit_Objekt$>$.do_fit() und Ausgabe der Ergebnisse auf der\n", " Konsole mittels $<$Fit_Objekt$>$.report() oder durch direkten Zugriff auf die\n", " Ergebnis-Variablen des Fit-Objekts.\n", " - Gegebenenfalls Erzeugung und Anzeige von Ergebnisgrafiken mit der generischen Klasse *Plot*.\n", " \n", "**Die folgenden Beispiele zeigen die konkrete Vorgehensweise.**" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Allgemeine Einstellungen und nützliche Pakete" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from __future__ import division, print_function # Python2-Kompatibilität\n", "import sys, os\n", "\n", "# Zeilen mit % oder %% am Anfang sind sogenannte \"magische Kommandos\",\n", "# die den Zellentyp oder Optionen für die Anzeige von Grafiken festlegen.\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Imports und Voreinstellungen für *kafe2*:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from kafe2 import config, XYContainer, Fit, Plot\n", "\n", "import numpy as np, matplotlib.pyplot as plt\n", "\n", "# set better default figure size for kafe2\n", "# plt.rcParams['figure.figsize']=[12., 5.] \n", "# !!! must be done after importing kafe2 (will else be overwritten)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***\n", "## 1. Einfaches Beispiel zur Funktionsanpassung mit *kafe2*\n", "***\n", "\n", "Der folgende Code illustriert die Anpassung von Funktionen mit dem Anpassungswerkzeug *kafe2*:\n", "```\n", "# Create an XYContainer object to hold the xy data for the fit:\n", "xy_data = XYContainer(x_data=[1.0, 2.0, 3.0, 4.0],\n", " y_data=[2.3, 4.2, 7.5, 9.4])\n", "# x_data and y_data are combined depending on their order.\n", "# The above translates to the points (1.0, 2.3), (2.0, 4.2), (3.0, 7.5), and (4.0, 9.4).\n", "\n", "# Important: Specify uncertainties for the data:\n", "xy_data.add_error(axis='x', err_val=0.1)\n", "xy_data.add_error(axis='y', err_val=0.4)\n", "\n", "xy_data.label = 'Data' # How the data is called in plots\n", "\n", "# Create an XYFit object from the xy data container.\n", "# By default, a linear function f=a*x+b will be used as the model function.\n", "line_fit = Fit(data=xy_data)\n", "\n", "# Perform the fit: Find values for a and b that minimize the\n", "# difference between the model function and the data.\n", "line_fit.do_fit() # This will throw a warning if no errors were specified.\n", "\n", "# Optional: Print out a report on the fit results on the console.\n", "line_fit.report()\n", "\n", "# Optional: Create a plot of the fit results using Plot.\n", "plot = Plot(fit_objects=line_fit) # Create a kafe2 plot object.\n", "plot.x_label = 'x' # Set x axis label.\n", "plot.y_label = 'y' # Set y axis label.\n", "plot.plot() # Do the plot.\n", "\n", "plot.save() # Saves the plot to file 'fit.png' .\n", "# plot.save('my_fit.pdf') # Saves the plot to a different file / with a different file extension.\n", "\n", "# Show the fit result.\n", "plot.show() # Just a convenience wrapper for matplotlib.pyplot.show() .\n", "# NOTE: Calling matplotlib.pyplot.show() closes all figures by default so call this AFTER saving.\n", "```\n", "\n", "Fügen Sie den Code in die leere Zelle unten ein und führen Sie sie durch Eingabe von `shift+return`\n", "aus." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# einfaches Beispiel: Geradenanpassung mit kafe2\n", "# -> Code hier einfügen \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.1 Korrelierte Unsicherheiten\n", "***\n", "\n", "Zur Illustration der Möglichkeiten zur Behandlung von Unsicherheiten fügen wir eine weitere\n", "korrelierte Unsicherheit der abhängigen Größen *y* ein:\n", "```\n", "xy_data.add_error(axis='y', err_val=0.3, correlation=1.)\n", "```\n", "\n", "Fügen Sie diese Zeile in den obigen Code ein.\n", "Die Ausgabe können Sie etwas übersichtlicher gestalten, indem Sie auf die Ausgabe der Daten und\n", "des Modells verzichten.\n", "Modifizieren Sie dazu die Parameter der *report()*-Methode:\n", "```\n", "line_fit.report(show_data=False, show_model=False)\n", "```\n", "Wiederholen Sie nun die Anpassung.\n", "\n", "Wie erwartet wirkt sich eine solche allen Datenpunkten gemeinsame Unsicherheit nicht auf die\n", "Steigung der Geraden, sondern nur auf den Parameter *b* aus.\n", "Dessen Unsicherheit wird nun größer - entsprechend der Wurzel aus der\n", "quadratischen Summe der Unsicherheiten von +/-0.58 aus der\n", "ursprünglichen Anpassung und der zusätzlichen korrelierten Unsicherheit von +/-0.40." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "##Code aus dem vorigen Beispiel kopieren und ergänzen\n", "# ->\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***\n", "## 2. Vergleich von zwei verschiedenen Modellen \n", "***\n", "\n", "Einfache, in den Parametern lineare Modelle reichen in der Praxis nicht aus. \n", "Das folgende Beispiel zeigt die Anpassung eines linearen und eines exponentiellen Modells an die\n", "gleichen Daten.\n", "\n", "Um eine Modellfunktion für *kafe2* zu definieren, genügt es, eine *Python*-Funktion\n", "zu schreiben.\n", "Wichtig:\n", "das erste Argument der *Python*-Funktion wird als unabhängige Variable interpretiert.\n", "Das erste Argument wird während der Anpassung also nicht modifiziert und es ist die Größe,\n", "die vom Fit als x-Achse interpretiert wird.\n", "\n", "Definition von zwei Modellfunktionen:\n", "```\n", "# Our first model is a simple linear function:\n", "def linear_model(x, a, b):\n", " return a * x + b\n", "\n", "\n", "# Our second model is a simple exponential function.\n", "# The kwargs in the function header specify parameter defaults.\n", "def exponential_model(x, A0=1., x0=5.):\n", " return A0 * np.exp(x/x0)\n", "```\n", "\n", "Hier die Definition der Daten als *kafe2* `XYContainer`:\n", "```\n", "# The data for this exercise:\n", "x = [19.8, 3.0, 5.1, 16.1, 8.2, 11.7, 6.2, 10.1]\n", "y = [23.2, 3.2, 4.5, 19.9, 7.1, 12.5, 4.5, 7.2]\n", "data2 = XYContainer(x_data=x, y_data=y)\n", "data2.add_error(axis='x', err_val=0.3)\n", "data2.add_error(axis='y', err_val=0.15, relative=True)\n", "```\n", "\n", "Damit die Daten in der grafischen Ausgabe später klar gekennzeichnet werden,\n", "werden noch Namen für den Datensatz und die Achsenbeschriftungen gesetzt:\n", "```\n", "data2.label = 'Datenpunkte'\n", "data2.axis_labels=['x-Wert', 'y-Wert']\n", "```\n", "\n", "Dann wird je ein Fit-Objekt mit den beiden Modell-Funktionen und jeweils\n", "den gleichen Daten erzeugt:\n", "```\n", "# Create 2 Fit objects with the same data but with different model functions:\n", "linear_fit = Fit(data2, model_function=linear_model)\n", "exponential_fit = Fit(data2, model_function=exponential_model)\n", "```\n", "\n", "Damit alles schöner aussieht, definieren wir noch LaTeX-Ausdrücke für die Funktionen,\n", "die Namen der Parameter und die Legende in der grafischen Ausgabe:\n", "```\n", "# Optional: Assign LaTeX strings to parameters and model functions.\n", "linear_fit.assign_parameter_latex_names(a='a', b='b')\n", "linear_fit.assign_model_function_latex_expression(\"{a}{x} + {b}\")\n", "linear_fit.model_label = 'lineares Modell'\n", "exponential_fit.assign_parameter_latex_names(A0='A_0', x0='x_0')\n", "exponential_fit.assign_model_function_latex_expression(\"{A0} e^{{{x}/{x0}}}\")\n", "exponential_fit.model_label = 'exponentielles Modell'\n", "```\n", "\n", "Der Code zur Ausführung der Anpassungen sieht wie folgt aus:\n", "```\n", "# Perform the fits:\n", "linear_fit.do_fit()\n", "exponential_fit.do_fit()\n", "\n", "# Optional: Print out a report on the result of each fit.\n", "linear_fit.report()\n", "exponential_fit.report()\n", "\n", "# Optional: Create a plot of the fit results using Plot.\n", "p = Plot(fit_objects=[linear_fit, exponential_fit], separate_figures=False)\n", "p.plot(fit_info=True)\n", "\n", "# Show the fit results:\n", "plt.show()\n", "```\n", "\n", "Fügen Sie den Code in die leere Zelle unten ein und führen Sie sie durch Eingabe von\n", "`shift+return` aus." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Vergleich von zwei Modellen mit kafe2\n", "# -> code hier einfügen \n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.1 Hypothesentest zur Bewertung der Modelle\n", "***\n", "\n", "Die grafische Ausgabe lässt nicht klar erkennen, welches der Modelle akzeptabel ist. \n", "Dazu kann ein Hypothesentest ausgeführt werden, der die sogenannte $\\chi^2$-Wahrscheinlichkeit\n", "angibt - also die Wahrscheinlichkeit dafür, einen schlechteren Wert von\n", "$\\chi^2$ am Minimum zu erhalten als den beobachteten.\n", "Ein höherer Wert entspricht einem besseren Fit.\n", " \n", "Berechnet wird er aus der kumulativen Verteilungsdichte der Chi2-Funktion:\n", "```\n", "from scipy import stats\n", "\n", "def chi2prob(chi2, ndf):\n", " \"\"\" chi2-probability\n", " \n", " Args:\n", " * chi2: chi2 value\n", " * ndf: number of degrees of freedom\n", "\n", " Returns:\n", " * float: chi2 probability\n", " \"\"\"\n", "\n", " return 1.- stats.chi2.cdf(chi2, ndf)\n", "```\n", "\n", "Geben Sie den Code für die $\\chi^2$-Wahrscheinlichkeit in die leere Zelle unten ein und\n", "überprüfen Sie die beiden Ergebnisse, die Sie oben erhalten haben.\n", "\n", "**Hinweis**: Sie können die Werte für $\\chi^2$ und die Zahl der Freiheitsgrade entweder\n", "aus der Ausgabe der vorigen Zelle abtippen oder Sie können die Werte über die Properties `goodness_of_fit` und `ndf` der Fits beziehen.\n", "Das Property `cost_function_value` ist nicht geeignet, da es neben $\\chi^2$\n", "auch Korrekturterme enthält." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Überprüfung der Qualität der Anpassungen\n", "# -> code hier eingeben\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Bei der Anwendung von *kafe2* außerhalb dieses Notebooks empfiehlt es sich, die\n", "$\\chi^2$-Wahrscheinlichkeit einfach über das entsprechende Property der Fit-Objekte\n", "zu beziehen. \n", "Für die obigen Fits könnte dies z.B. über `chi2_prob = linear_fit.chi2_probability` erfolgen." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2 Untersuchung des nichtlinearen Modells\n", "***\n", "\n", "Bei Modellfunktionen, die nichtlinear in den Parametern sind, ist die $\\chi^2$-Verteilung\n", "um das Minimum nur näherungsweise eine Parabel, bisweilen weicht sie sogar stark davon ab.\n", "Ob die Abweichungen vernachlässigbar klein sind, kann mit Hilfe der Profil-Likelihood und\n", "durch die Darstellung von Konfidenz-Konturen überprüft werden.\n", "```\n", "from kafe2 import ContoursProfiler\n", "\n", "# Create contour plot and profiles for the exponential fit:\n", "cpf = ContoursProfiler(exponential_fit)\n", "cpf.plot_profiles_contours_matrix(show_grid_for='contours')\n", "plt.show()\n", "```\n", "\n", "Geben Sie das Code-Beispiel in der Zelle unten ein und überprüfen Sie damit die Anpassung des\n", "exponentiellen Modells." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Überprüfung der nichtlinearen Anpassung\n", "# -> code hier eingeben\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.3 Asymmetrische Parameterunsicherheiten\n", "***\n", "\n", "Wenn die Abweichungen groß sind, müssen asymmetrische Unsicherheiten angegeben werden.\n", "Dazu wird in der *report*-Funktion der Fit-Klasse die Option *asymmetric_parameter_errors=True*\n", "gesetzt.\n", "```\n", "exponential_fit.report(asymmetric_parameter_errors=True)\n", "```\n", "\n", "Es empfiehlt sich, in solchen Fällen mit stark asymmetrischen Parameterunsicherheiten die\n", "Konturen zu dokumentieren, wenn mehr als ein Parameter von Interesse ist." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# hier Code zur Ausgabe asymmetrischer Parameter eingeben\n", "# ->\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Hinweis**: Sie können über `Plot.plot(asymmetric_parameter_errors=True)` auch in der\n", "grafischen Ausgabe die asymmetrischen Parameterfehler einblenden." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.4 Beeinflussung der grafischen Ausgabe\n", "***\n", "\n", "Die grafische Ausgabe war noch nicht in allen Belangen optimal. \n", "Es wurden in der Legende z.B. zwei Datensätze angegeben, obwohl es für beide Modelle nur den\n", "gleichen gab.\n", "Außerdem lassen sich Markereigenschaften und Farben anpassen.\n", "\n", "Zur Beeinflussung der Grafik enhält *kafe2* eine Methode `Plot.customize()`, mit deren Hilfe für\n", "die verschiedenen Grafikelemente (*plot_types*: 'data', 'model_line', 'model_error_band',\n", "'ratio', 'ratio_error_band') Werte für *matplotlib*-Parameter angegeben werden können.\n", "\n", "Die für einen *plot_type* relevanten Parameter und deren momentane Werte lassen sich über eine\n", "Funktion der *Plot*-Klasse anzeigen:\n", "```\n", "p.get_keywords('model_error_band')\n", "```\n", "\n", "Die verwendeten Namen für Objekte und mögliche Werte entstprechen den Bezeichnungen in der\n", "Konfigurationsdatei *matplotlibrc* für *matplotlib*.\n", "\n", "Zur Änderung des Namens für den Datensatz und die Unterdrückung der zweiten Ausgabe dient\n", "folgender Aufruf:\n", "```\n", "p.customize('data', 'label', [\"test data\", None])\n", "```\n", "Das erste Argument spezifiziert den Teil des Plots, der modifiziert werden soll.\n", "Das zweite Argument spezifiziert welches Keyword gesetzt werden soll.\n", "Das dritte Argument ist eine Liste mit Werten, die jeweils für das Keyword bei den vom\n", "Plot-Objekt verwalteten Fit-Objekten gesetzt werden sollen.\n", "\n", "Alternativ kann für das dritte Argument auch eine Liste an Tupeln aus Fit-Indices und\n", "Werten übergeben werden:\n", "```\n", "p.customize('data', 'label', [(0, \"test data\"), (1, None)])\n", "```\n", "Mit dieser Syntax genügt es, nur für einen Teil der Fits Werte anzugeben.\n", "\n", "Auch Marker-Typ, Größe und Farbe des Markers und der Fehlerbalken lassen sich anpassen:\n", "```\n", "# data\n", "p.customize('data', 'marker', ['o', 'o'])\n", "p.customize('data', 'markersize', [5, 5])\n", "p.customize('data', 'color', [(0, 'blue'), (1,'blue')]) # note: although 2nd label is suppressed\n", "p.customize('data', 'ecolor', [(0, 'blue'), (1, 'blue')]) # note: although 2nd label is suppressed\n", "```\n", "\n", "Ebenso können die entsprechenden Werte für die Modellfunktion angepasst werden:\n", "```\n", "# model\n", "p.customize('model_line', 'color', ['orange', 'lightgreen'])\n", "p.customize('model_error_band', 'label', [(0, r'$\\pm 1 \\sigma$'), (1, r'$\\pm 1 \\sigma$')])\n", "p.customize('model_error_band', 'color', [(0, 'orange')])\n", "p.customize('model_error_band', 'color', [(1, 'lightgreen')])\n", "```\n", "\n", "Es ist auch möglich, Parameter über die *matplotlib*-Funktionen zu verändern. \n", "Um die Größe der Achsenbeschriftungen zu ändern, verwendet man z.B. folgende Aufrufe:\n", "```\n", "# Größe der Achsenbeschriftungen\n", "import matplotlib as mpl\n", "mpl.rc('axes', labelsize=20, titlesize=25)\n", "```\n", "Achtung: der obige Aufruf führt zu einer globalen Änderung der *matplotlib*-Parameter.\n", "Plots außerhalb von *kafe2* werden also auch beeinflusst.\n", "\n", "Natürlich muss nach diesen Änderungen die Ausgabegrafik neu erzeugt und angezeigt werden:\n", "```\n", "p.plot()\n", "plt.show()\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# code zum Testen hier eingeben:\n", "# --> \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.5 Ausgabe der Anpassungsergebnisse als Variable \n", "***\n", "\n", "In vielen Anwendungen ist es nötig, die Ausgabe einer Anpassung im Programmcode weiter zu verwenden.\n", "Dazu dient die *kafe2*-Funktion *Fit.get_result_dict()*, die ein *Python*-Dictionary mit den\n", "Fit-Ergebnissen zurückgibt.\n", "\n", "Zum Beispiel:\n", "```\n", "result_0 = <Fit_object>.get_result_dict()\n", "```\n", "\n", "Eine formatierte Ausgabe erhält man mit folgender Zeile:\n", "```\n", "print(\"\\n\".join(\"{}\\t{}\".format(k, v) for k, v in result_0.items()))\n", "```\n", "Die im Dictionary enthaltenen Werte können auch über Properties des Fit-Objektes\n", "bezogen werden.\n", "Achtung: die Namen der Properties sind zum Teil etwas unterschiedlich,\n", "mehr dazu weiter unten." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Ausgabe hier testen \n", "# --> \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.6 Nicht-Linearität durch Fehler in *x* - Richtung\n", "***\n", "\n", "Wenn die Fehler in x-Richtung vergrößert werden, wird auch die Anpassung einer Geraden\n", "zu einem nicht-linearen Problem.\n", "Zur Illustration wiederholen wir die gleiche Anpassung wie oben mit vergrößerten\n", "Unsicherheiten auf die x-Werte:\n", "```\n", "# The data for this exercise:\n", "data3 = XYContainer(x_data=x, y_data=y)\n", "data3.add_error(axis='x', err_val=1.0) # Was 0.3 before.\n", "data3.add_error(axis='y', err_val=0.15, relative=True)\n", "\n", "# Create 2 Fit objects with the same data but with different model functions:\n", "linear_fit2 = Fit(data3, model_function=linear_model)\n", "\n", "# Optional: Assign LaTeX strings to parameters and model functions.\n", "linear_fit2.assign_parameter_latex_names(x='x', a='a', b='b')\n", "linear_fit2.assign_model_function_latex_expression(\"{a}{x} + {b}\")\n", "\n", "# Perform the fits.\n", "linear_fit2.do_fit()\n", "\n", "# Optional: Print out a report on the result of each fit.\n", "#linear_fit2.report()\n", "\n", "# Optional: Create a plot of the fit results using Plot.\n", "p2 = Plot(fit_objects = linear_fit2)\n", "\n", "p2.plot(fit_info=True)\n", "\n", "# Create a contour plot and profiles for the linear fit:\n", "cpf2 = ContoursProfiler(linear_fit2)\n", "cpf2.plot_profiles_contours_matrix(show_grid_for='contours')\n", "\n", "# Show the fit results.\n", "plt.show()\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# obigen Code hier eingeben:\n", "# --> \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Kleine Übung: Hinzufügen eines quadratischen Modells\n", "\n", "Als kleine Übung soll ein weiteres, quadratisches Modell, $y(x) = ax^2 + b x + c$, hinzugefügt\n", "werden und zusammen mit dem linearen und dem exponentiellen Modell in einer Grafik dargestellt\n", "werden.\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# eingenen Code hier eingeben:\n", "# -->\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.7 Relative Unsicherheiten\n", "***\n", "\n", "Wir hatten schon gesehen, dass *kafe2* die Angabe von relativen Unsicherheiten \n", "erlaubt, die wir in diesem Beispiel genauer untersuchen wollen. \n", "\n", "Anpassungen mit relativen Unsicherheiten leiden darunter, dass die Schätzung\n", "der Parameterwerte verzerrt ist.\n", "Denn Messwerte, die zu kleineren Werten fluktuieren, bekommen dadurch kleinere\n", "Unsicherheiten;\n", "für nach oben fluktierende Messwerte sind die Unsicherheiten entsprechend größer.\n", "Wären die zufälligen Fluktuationen genau umgekehrt, würden andere Unsicherheiten zugewiesen.\n", "Richtig wäre es, die relativen Unsicherheiten auf die wahren Werte zu beziehen,\n", "die wir aber nicht kennen.\n", "Stattdessen ermöglicht es die Option ``reference='model'``,\n", "die Unsicherheiten auf den Modellwert zu beziehen - immer noch nicht völlig korrekt,\n", "aber deutlich besser.\n", "\n", "Der Effekt lässt sich illustrieren, wenn das Beispiel der linearen Regeression aus\n", "2.1 wiederholt wird,\n", "aber dieses Mal die relativen Unsicherheiten auf die Modellwerte bezogen werden.\n", "Die Unsicherheiten werden nun statt über eine Methode des Datencontainers mittels\n", "der Methode ``add_error()`` des Fit-Objekts angegeben;\n", "die entsprchende Stelle im Code ist mit `-->` markiert.\n", "Im Code unten wird das ursprüngliche Ergebnis aus 2.1 verwendet und ebenfalls in der\n", "Ausgabegrafik angezeigt, um den Unterschied darzustellen.\n", "Auch Profil-Likelihood und Konturen werden angezeigt, um die Nichlinearität zu demonstrieren.\n", "\n", "``` \n", "data1_4 = XYContainer(x_data=x, y_data=y)\n", "data1_4.add_error(axis='x', err_val = 0.3)\n", "data1_4.label = 'Daten, modellbezogene rel. Unsicherheiten'\n", "\n", "# Create Fit:\n", "linear_fit4 = Fit(data1_4, model_function=linear_model)\n", "# --> Relative uncertainties with reference to model specified here:\n", "linear_fit4.add_error(axis='y', err_val=0.15, relative=True, reference='model')\n", "\n", "# Optional: Assign LaTeX strings to parameters and model functions.\n", "linear_fit4.assign_parameter_latex_names(x='x', a='a', b='b')\n", "linear_fit4.assign_model_function_latex_expression(\"{a}{x} + {b}\")\n", "\n", "# Optional: Assign LaTeX strings to parameters and model functions.\n", "linear_fit4.assign_parameter_latex_names(a='a', b='b')\n", "linear_fit4.assign_model_function_latex_expression(\"{a}{x} + {b}\")\n", "linear_fit4.model_label = 'linear m. rel. Unsicherheiten'\n", "\n", "# Perform the fit:\n", "linear_fit4.do_fit()\n", "\n", "# Optional: print report.\n", "#linear_fit4.report(asymmetric_parameter_errors=True)\n", "\n", "# Optional: Create a plot of the fit results using Plot.\n", "p4 = Plot([linear_fit, linear_fit4])\n", "# Assign colors to data ...\n", "p4.customize('data', 'marker', [(0, 'o'), (1,'o')])\n", "p4.customize('data', 'markersize', [(0, 5), (1, 5)])\n", "p4.customize('data', 'color', [(0, 'grey'), (1,'red')]) # note: although 2nd label is suppressed\n", "p4.customize('data', 'ecolor', [(0, 'grey'), (1, 'red')]) # note: although 2nd label is suppressed\n", "# ... and model:\n", "p4.customize('model_line', 'color', [(0, 'mistyrose'),(1, 'orange')])\n", "p4.customize('model_error_band', 'label', [(0, r'$\\pm 1 \\sigma$'),(1, r'$\\pm 1 \\sigma$')])\n", "p4.customize('model_error_band', 'color', [(0, 'mistyrose'),(1, 'orange')])\n", "\n", "p4.plot(asymmetric_parameter_errors=True)\n", "\n", "# Create contour plot and profiles for the linear fit\n", "cpf4 = ContoursProfiler(linear_fit4)\n", "cpf4.plot_profiles_contours_matrix(show_grid_for='contours')\n", "\n", "# Show the fit results.\n", "plt.show() \n", "``` " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# obigen Code hier einfügen:\n", "# -->\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Im Vergleich zum Ergebnis aus 2.1 ändern sich die Zentralwerte und die Unschicherheiten werden \n", "asymmetrisch. Einen großen Effekt haben die beiden Datenpunkte ganz rechts, die nun bezogen auf das Modell kleinere Unsicherheiten und damit einen größeren Einfluss auf die Anpassung bekommen. Als Konsequenz liegt die angepasste Gerade oberhalb von der aus Beispiel 2.1." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## 3. Besonderheiten komplexer (nichtlinearer) Modelle\n", "---\n", "\n", "Als weiteres Beispiel für eine nicht-lineare Anpassung dient eine gedämpfte Schwingung eines\n", "Fadenpendels.\n", "Die zugehörigen Messdaten sind in der folgenden Code-Zelle enthalten:\n", "```\n", "# The data:\n", "t = [ ... ]\n", "t_errors = 0.05\n", "\n", "a = [ ... ]\n", "a_errors = 0.05\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# The data:\n", "t = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0,\n", " 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0,\n", " 19.5, 20.0, 20.5, 21.0, 21.5,22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0,\n", " 28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 31.5, 32.0, 32.5, 33.0, 33.5, 34.0, 34.5, 35.0, 35.5, 36.0, 36.5, 37.0,\n", " 37.5, 38.0, 38.5, 39.0, 39.5, 40.0, 40.5, 41.0, 41.5, 42.0, 42.5, 43.0, 43.5, 44.0, 44.5, 45.0, 45.5, 46.0,\n", " 46.5, 47.0, 47.5, 48.0, 48.5, 49.0, 49.5, 50.0, 50.5, 51.0, 51.5, 52.0,52.5, 53.0, 53.5, 54.0, 54.5, 55.0,\n", " 55.5, 56.0, 56.5, 57.0, 57.5, 58.0, 58.5, 59.0, 59.5, 60.0]\n", "t_errors = 0.05\n", "\n", "a = [ 6.06, 5.17, 3.29, 0.64, -2.26, -4.56, -5.74, -5.58, -4.12, -1.62,\n", " 1.11, 3.56, 5.12, 5.43, 4.41, 2.53, -0.18, -2.78, -4.65, -5.5,\n", " -5.04, -3.25, -0.75, 1.79, 3.88, 5.31, 5.2, 3.92, 1.74, -0.85,\n", " -3.13, -4.71, -5.06, -4.26, -2.48, -0.13, 2.19, 4.07, 4.9, 4.64,\n", " 3.16, 1.17, -1.54, -3.26, -4.59, -4.64, -3.69, -1.83, 0.38, 2.76,\n", " 4.16, 4.58, 4.13, 2.45, 0.28, -1.8, -3.53, -4.43, -4.31, -3.03,\n", " -1.05, 1.06, 2.79, 3.97, 4.4, 3.37, 1.92, -0.14, -2.29, -3.7,\n", " -4.28, -3.84, -2.44, -0.59, 1.27, 3.11, 3.9, 4.02, 2.85, 1.21,\n", " -0.64, -2.51, -3.41, -3.84, -3.34, -1.75, -0.17, 1.85, 3.23, 3.72,\n", " 3.4, 2.54, 0.67, -1.13, -2.8, -3.77, -3.65, -2.89, -1.43, 0.42,\n", " 2.2, 3.26, 3.42, 3.25, 1.88, 0.33, -1.35, -3.02, -3.41, -3.32,\n", " -2.2, -0.77, 0.92, 2.44, 3.31, 3.44, 2.77, 1.25, -0.13, -1.69, -2.78 ]\n", "a_errors = 0.05" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Die Amplitude in Abhängigkeit von der Zeit ist durch folgende Modellfunktion gegeben:\n", "```\n", "# Model function for a pendulum as a one-dimensional,\n", "# damped harmonic oscillator with zero initial speed:\n", "# x = time, y_0 = initial_amplitude, l = length of the string,\n", "# r = radius of the steel ball, g = gravitational acceleration, c = damping coefficient.\n", "def damped_harmonic_oscillator(s, a0, l, r, g, c):\n", " # Effective length of the pendulum = length of the string + radius of the steel ball:\n", " l_total = l + r\n", " omega_0 = np.sqrt(g / l_total) # Phase speed of an undamped pendulum.\n", " omega_d = np.sqrt(omega_0 ** 2 - c ** 2) # Phase speed of a damped pendulum.\n", " return a0 * np.exp(-c * s) * (np.cos(omega_d * s) + c / omega_d * np.sin(omega_d * s))\n", "```\n", "\n", "Daten-Container und Fit-Objekt werden wie üblich erzeugt:\n", "```\n", "# Create data container:\n", "data3 = XYContainer(t, a)\n", "data3.add_error(axis='x', err_val=t_errors)\n", "data3.add_error(axis='y', err_val=a_errors)\n", "data3.axis_labels = ('Time t (s)', 'Amplitude A (°)') \n", "\n", "# Create fit object from data and model function:\n", "fit = Fit(data3, damped_harmonic_oscillator)\n", "```\n", "\n", "Das Modell enthält eine Anzahl an Parametern, die durch \"Hilfsmessungen\" festgelegt sind. \n", "```\n", "# Relevant physical magnitudes and their uncertainties:\n", "lm, delta_lm = 10.000, 0.002 # length of the string, l = 10.0 +- 0.002 m\n", "rm, delta_rm = 0.052, 0.001 # radius of the steel ball, r = 0.052 +- 0.001 m\n", "# Amplitude of the steel ball at x=0 in degrees, a0m = 6 +- 1% degrees:\n", "a0m, delta_a0m = 6.0, 0.01 # Note that the uncertainty on a0m is relative to a0m.\n", "```\n", "\n", "In der Anpassung wird dies berücksichtigt, indem die entsprechenden Parameter sowohl als\n", "Parameter der Anpassung als auch als zusätzliche Datenpunkte berücksichtigt werden.\n", "In kafe2 werden solche durch Messungen eingeschränkte Parameter mit Hifle der Methode\n", "*Fit.add_parameter_constraint()* berücksichtigt und deren Unsicherheiten in das Ergebnis der\n", "Anpassung propagiert:\n", "```\n", "# Constrain model parameters to measurements:\n", "fit.add_parameter_constraint(name='l', value=lm, uncertainty=delta_lm)\n", "fit.add_parameter_constraint(name='r', value=rm, uncertainty=delta_rm)\n", "fit.add_parameter_constraint(name='a0', value=a0m, uncertainty=delta_a0m, relative=True)\n", "```\n", "Als Alternative könnte man die Parameter mit der Methode *Fit.fix_parameter()* auf feste Werte\n", "fixieren;\n", "die Unsicherheiten auf das Endergebnis der Anpassung müssten dann allerdings mit Hilfe der\n", "klassischen Fehlerfortpflanzung berechnet werden.\n", "\n", "Als weitere Besonderheit bei nichtlinearen Anpassungen ist zu beachten, dass es häufig\n", "Nebenminima der Kostenfunktion gibt - die Konvergenz zum globalen Minimum kann also nicht\n", "garantiert werden.\n", "Es ist daher notwendig, \"vernünftige\" Start-Parameter für die Anpassung zu wählen.\n", "Dies geschieht mit Hilfe der Funktion *Fit.set_parameter_values()*:\n", "```\n", "g_initial = 9.81 # Initial guess for g.\n", "fit.set_parameter_values(g=g_initial, a0=a0m, l=lm, r=rm)\n", "```\n", "Wenn die Startwerte gänzlich unbekannt sind, sollten Werte in einem großen Bereich ausprobiert\n", "werden, um zu überprüfen, ob die Anpassungen jeweils zum gleichen Minimum konvergieren. \n", "\n", "Ein weiteres Mittel zur Verbesserung der Konvergenz liegt in der Beschränkung der Parameter\n", "auf \"vernünftige\" Intervalle.\n", "Die Parameter *a0*, *l*, und *r* sind zum Beispiel per Definition positiv, können während\n", "der Anpassung jedoch auch negative Werte annehmen.\n", "Der folgende Code beschränkt die erwähnten Parameter auf positive Werte:\n", "```\n", "fit.limit_parameter(\"a0\", lower=1e-6)\n", "fit.limit_parameter(\"l\", lower=1e-6)\n", "fit.limit_parameter(\"r\", lower=1e-6)\n", "```\n", "Aus technischen Gründen können Parameter nur auf geschlossene Intervalle beschränkt werden.\n", "Als untere Grenze wird hier deshalb ein kleiner Wert nahe null angegeben.\n", "Da kein oberer Wert angegeben wird, sind die Parameter nur einseitig beschränkt.\n", "Es ist auch möglich, Parameter durch die Angabe von zwei Intervallgrenzen enger einzugrenzen:\n", "```\n", "fit.limit_parameter(\"g\", lower=9.71, upper=9.91)\n", "```\n", "Im obigen Falle beruht die Beschränkung auf der Einschätzung, dass Ergebnisse außerhalb\n", "dieser Grenzen sehr unwahrscheinlich sind.\n", "Es macht auch Sinn, Parameter basierend auf den physikalischen Gegebenheiten des Systems\n", "zu beschränken.\n", "Zum Beispiel liefert die Modellfunktion nur für $c < \\frac{g}{l + r}$ reelle Lösungen.\n", "Man kann dies folgendermaßen berücksichtigen:\n", "```\n", "c_max = 0.9 * g_initial / (lm + rm) # A little lower than our best guess for the limit.\n", "fit.limit_parameter(\"c\", lower=1e-6, upper=c_max)\n", "```\n", "\n", "Nach diesen Vorbereitungen kann die Anpassung wie üblich vorgenommen werden. \n", "Im folgenden Code-Beispiel wird auch gezeigt, wie man über Properties\n", "auf die Fit-Ergebnisse zugreift, fall sie im Programm weiter verarbeitet werden sollen\n", "oder eine spezifische eigene Ausgabe erfolgen soll.\n", "```\n", "# Perform the fit\n", "fit.do_fit()\n", "# Optional: Print out a report on the fit results on the console.\n", "#fit.report(show_data=False, show_model=False, show_fit_results=True)\n", "\n", "# Custom printout of results:\n", "print(\"cost function at minimum: %.4g \" % fit.cost_function_value,\n", " \" number of degrees of freedom:\", fit.ndf)\n", "print(\" --> probability: %.1f%%\" % (fit.chi2_probability * 100))\n", "print(\"parameter names:\\n\", fit.parameter_names)\n", "np.set_printoptions(precision=5, suppress=False)\n", "print(\"prameter values:\\n\", fit.parameter_values)\n", "print(\"parameter uncertainties:\\n\",fit.parameter_errors)\n", "np.set_printoptions(precision=3, suppress=True)\n", "print(\"correlation matrix:\\n\", fit.parameter_cor_mat )\n", " \n", "# Optional: plot the fit results.\n", "plot = Plot(fit)\n", "plot.plot(fit_info=True)\n", "plt.show()\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Code hier eingeben\n", "# --> \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## 4. Aufbau einer Kovarianz-Matrix aus einzelnen Unsicherheiten\n", "---\n", "\n", "Behandelt werden: \n", " - der Umgang mit komplexen Unsicherheiten\n", " \n", "Eine der besonderen Stärken von _kafe2_ ist die Unterstützung von korrelierten Unsicherheiten.\n", "Damit sind Beiträge zur Unsicherheit gemeint, die einige oder alle Werte in gleicher Weise\n", "beeinflussen - z.B. weil sie mit dem gleichen, mit einer systematischen Unsicherheit behafteten\n", "Messgerät aufgezeichnet wurden.\n", "Häufig handelt es sich also um gemeinsame Unsicherheiten von Gruppen von Messwerten.\n", "\n", "Zur Angabe von Unsicherheiten dient die Funktion:\n", "> `add_error**( [axis], err_val, name=None, correlation=0, relative=False)` \n", " Add an uncertainty source to the data container. Returns an error id which\n", " uniquely identifies the created error source. \n", " **Parameters** \n", " • axis (str or int) – 'x'/0 or 'y'/1 \n", " • err_val (float or iterable of float) – pointwise uncertainty/uncertainties for all data points \n", " • name (str or None) – unique name for this uncertainty source. If None, the name\n", " of the error source will be set to a random alphanumeric string. \n", " • correlation (float) – correlation coefficient between any two distinct data points \n", " • relative (bool) – if True, err_val will be interpreted as a relative uncertainty \n", " **Returns** error name \n", " **Return type** str \n", "\n", "Sie gehört zur Container-Klasse, kann aber auch über eine Fit-Klasse aufgerufen werden.\n", "Mit diesem recht einfachen Interface lassen sich sowohl unabhängige Unsicherheiten als auch\n", "gemeinsame absolute oder relative Unsicherheiten von Datenpunkten angeben.\n", "Die angegebenen Unsicherheiten werden in eine Kovarianzmatrix der Datenpunkte umgewandelt.\n", "Bei mehrfachem Aufruf werden die sich ergebenden Kovarianzmatrizen addiert (wie es den Regeln der\n", "elementaren Fehlerfortpflanzung entspricht).\n", "\n", "Ein sehr einfach gehaltenes Beispiel soll das illustrieren.\n", "Wir betrachten die Mittelung von vier Werten, die von zwei Gruppen mit unterschiedlichen\n", "Messverfahren durchgeführt wurden.\n", "Jede der beiden Gruppen gibt zwei Messungen an; in der ersten Gruppe gibt es eine absolute, den\n", "beiden Messungen gemeinsame Unsicherheit; die zweite Gruppe gibt eine zwischen ihren beiden\n", "Messungen korrelierte relative - also z.B. durch einen Skalierungsfeher verursachte -\n", "Unsicherheit an.\n", "Den Messungen liegt weiterhin eine gemeinsame (theoretische) Annahme zu Grunde, die zu einer\n", "allen Messungen gemeinsamen, absoluten Unsicherheit führt.\n", "\n", "Bei diesem einfachen Problem nutzen wir die einfachste Datenstruktur von *kafe2*,\n", "den _IndexedContainer_, zur Bereitstellung der Daten: \n", "```\n", "from kafe2 import IndexedContainer\n", "idx_data = IndexedContainer([5.3, 5.2, 4.7, 4.8]) \n", "```\n", "Als Modell wählen wir eine konstante Funktion:\n", "```\n", "# The very simple \"model\":\n", "def average (a):\n", " return a\n", "```\n", "\n", "Die Unsicherheiten werden dann folgendermaßen angegeben \n", " (Anm.: Für _IndexedContainer_ entfällt die Angabe des '_axis_'-Parameters!):\n", " 1. jeder Messung eigene, unabhängige Unsicherheit \n", " `err_stat = idx_data.add_error([.2, .2, .2, .2])`\n", " 2. die den ersten beiden Werten gemeinsame Unsicherheit \n", " `err_syst12 = idx_data.add_error([.175, .175, 0., 0.], correlation = 1.)`\n", " 3. die den letzten beiden Werten gemeinsame, relative Unsicherheit \n", " `err_syst34 = idx_data.add_error([0., 0., .05, .05], correlation = 1., relative=True)`\n", " 4. die allen Werten gemeinsame Unsicherheit \n", " `err_syst = idx_data.add_error(0.15, correlation = 1.)`\n", "\n", "Wir sollten noch passende Namen für die Daten angeben:\n", "```\n", "idx_data.label = 'Testdaten'\n", "idx_data.axis_labels = [None, 'Messwert (a.u.)']\n", "```\n", "\n", "Das Ausführen der Anpassung ist mittlerweile ja gut bekannt:\n", "```\n", "# Set up the fit:\n", "ifit = Fit(idx_data, average)\n", "ifit.model_label = 'Mittelwert'\n", "\n", "# Perform the fit:\n", "ifit.do_fit()\n", "```\n", "\n", "Die Ergebisse erhält man natürlich mit der _report()_-Funktion, ggf. auch als grafische Darstellung:\n", "```\n", "# Report and plot results:\n", "ifit.report()\n", "p=Plot(ifit)\n", "p.plot()\n", "plt.show()\n", "```\n", "\n", "Die Beschriftung der x-Achse ist noch nicht passend - hier sollten nur die Indizes\n", "der Messungen stehen.\n", "Mit ein wenig Hilfe von *matplotlib* lässt sich das erreichen.\n", "Dazu muss auf das *axis*-Objekts der erzeugten Grafik zugegriffen und die entsprechende Anpassung\n", "durchgeführt werden.\n", "Dazu folgenden Code nach der Zeile *p.plot()* vor *plt.show()* eingefügen:\n", "```\n", "# illustrate some a-posteriory fixes to plot layout by accessing the axis object\n", "_ax = p.axes[0]['main']\n", "_ax.set_xticks(range(4)) # Integer axis ticks\n", "```\n", "\n", "Wenn ein Problem mehrere Beiträge zur Gesamtunsicherheit enthält, möchte man in der Regel\n", "gerne studieren, welchen Einfluss einzelne Komponenten haben.\n", "Dazu kann man komfortabel mit den Funktionen *disable_error()* und *enable_error()* arbeiten\n", "und entsprechende Anpassungen durchführen:\n", "```\n", "print(\"disabling common sysytematic error\")\n", "idx_data.disable_error(err_syst)\n", "_ifit = Fit(idx_data, average) \n", "_ifit.do_fit()\n", "_ifit.report()\n", "# do not forget to switch on again \n", "idx_data.enable_error(err_syst)\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Code hier eingeben\n", "# -->\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "## 5. Anwendung aus der Praxis: Anpassung einer Breit-Wigner-Resonanz \n", "---\n", "\n", "Behandelt werden: \n", " - der Umgang mit komplexen Unsicherheiten\n", " - das Erzeugen einer ansprechenden grafischen Ausgabe\n", " - das Studium des Einflusses einzelner Fehlerkomponenten\n", "\n", "Typischerweise sind die Unsicherheiten der Messdaten deutlich komplexer als in den bisher\n", "behandelten Beispielen.\n", "Meist sind Unsicherheiten in Ordinate und Abszisse vorhanden, und zusätzlich zu den unabhängigen\n", "Unsicherheiten eines jeden Datenpunktes gibt es allen gemeinsame, korrelierte Unsicherheiten.\n", "\n", "Mit der Methode *add_error()* bzw. *add_matrix_error()* können Unsicherheiten auf die '*x*'- und\n", "'*y*'-Daten spezifiziert werden, entweder in Form von unabhängigen bzw. korrelierten, relativen oder\n", "absoluten Unsicherheiten aller oder Gruppen von Messwerten.\n", "Oder durch die Angabe der vollständigen Kovarianz- oder Korrelations-Matrix.\n", "Alle so spezifizierten Unsicherheiten gehen in die globale Kovarianzmatrix für die Anpassung ein.\n", "\n", "Als Beispiel betrachten wir Messungen eines Wirkungsquerschnitts als Funktion der Energie in der\n", "Nähe einer Resonanz.\n", "Es handelt sich dabei um kombinierte Messdaten der vier Experimente am Beschleuniger LEP des\n", "CERN, die auf Effekte durch Photon-Abstrahlung korrigiert wurden:\n", "Messungen des hadronischen Wirkungsquerschnitts $\\sigma_{e^+e^- \\to {\\rm hadrons}}$ als Funktion\n", "der Schwerpunktsenergie $E$.\n", "```\n", "## Data:\n", "# Center-of-mass energy E (GeV)\n", "E = [ 88.387, 89.437, 90.223, 91.238, 92.059, 93.004, 93.916 ] \n", "E_errors = [ 0.005, 0.0015, 0.005, 0.003, 0.005, 0.0015, 0.005 ]\n", "ECor_abs = 0.0017 # correlated absolute errors\n", "\n", "# hadronic cross section with photonic corrections applied (nb)\n", "sig = [6.803, 13.965, 26.113, 41.364, 27.535, 13.362, 7.302 ] \n", "sig_errors = [ 0.036, 0.013, 0.075, 0.010, 0.088, 0.015, 0.045 ]\n", "sigCor_rel = 0.0007 \n", "```\n", "\n", "Als Modell verwenden wir eine modifizierte Breit-Wigner-Resonanz mit von der Schwerpunktsenergie\n", "abhängiger Breite (\"$s$-dependent width\", mit $s = E_{CM}^2$):\n", "```\n", "## Model:\n", "# Breit-Wigner with s-dependent width\n", "def BreitWigner(E, s0 = 41.0, M = 91.2, G = 2.5):\n", " s = E*E\n", " Msq = M*M\n", " Gsq = G*G\n", " return s0*s*Gsq/((s-Msq)*(s-Msq)+(s*s*Gsq/Msq))\n", "```\n", "\n", "Der Daten-Container mit den Unsicherheiten wird wie folgt erzeugt:\n", "```\n", "BWdata= XYContainer(ECM, sig)\n", "# Add independent errors:\n", "error_name_sig = BWdata.add_error(axis='x', name = 'deltaE', err_val = E_errors ) \n", "error_name_E = BWdata.add_error(axis='y', name = 'deltaSig', err_val = sig_errors )\n", "# Add fully correlated, absolute Energy errors:\n", "error_name_ECor = BWdata.add_error(axis='x', name='Ecor',err_val = ECor_abs, correlation = 1.) \n", "# Add fully correlated, relative cross section errors:\n", "error_name_sigCor = BWdata.add_error(axis='y', name='sigCor', \n", " err_val = sigCor_rel, correlation = 1., relative=True) \n", "```\n", "\n", "Ob es sich um unabhängige oder korrelierte Unsicherheiten handelt, wird durch den Parameter\n", "*correlation* bestimmt;\n", "für unabhängige Unsicherheiten ist er Null, für allen Dateneinträgen gemeinsame Unsicherheiten\n", "ist er Eins.\n", "Werte zwischen 0. und 1. sind ebenfalls zulässig;\n", "allerdings wird in der Praxis die Kovarianzmatreix zur Beschreibung der Gesamtunsicherheit meist\n", "aus unkorrelierten und vollständig korrelierten Komponenten zusammengesetzt.\n", "Die in der Fuktion *add_error* angegebenen Namen erlauben es, später auf die einzelnen\n", "Fehlerkomponenten zuzugreifen.\n", "\n", "Anpassung und Ergebnisausgabe folgen der üblichen Vorgehensweise:\n", "```\n", "BWfit = Fit(BWdata, BreitWigner)\n", "BWfit.do_fit()\n", "BWfit.report()\n", "# Optional: plot the fit results\n", "BWplot = Plot(BWfit)\n", "BWplot.plot(fit_info=True)\n", "plt.show()\n", "```\n", "\n", "**Verschönerung der grafischen Ausgabe** \n", "Damit die Art der Daten klar beschrieben ist, sollten noch passende Namen vergeben werden.\n", "Die Zeilen unten müssen dazu vor der Erzeugung des *Fit*-Objekts eingefügt werden.\n", "```\n", "BWdata.label = 'QED-corrected hadronic cross-sections'\n", "BWdata.axis_labels = ('CM Energy (GeV)', '$\\sigma_h$ (nb)' )\n", "```\n", "Alternativ können die folgenden Zeilen nach der Erstellung des Fit-Objektes eingefügt werden:\n", "```\n", "BWfit.data_container.label = 'QED-corrected hadronic cross-sections'\n", "BWfit.data_container.axis_labels = ('CM Energy (GeV)', r'$\\sigma_h$ (nb)')\n", "```\n", "\n", "Es sollte auch noch ein passender Name für das Modell in der Legende für die grafische Ausgabe\n", "gesetzt werden.\n", "Dazu wird die Zeile unten nach der Erzeugung des *Fit*-Objekts eingesetzt:\n", "```\n", "BWfit.model_label = 'Beit-Wigner with s-dependent width'\n", "```\n", "\n", "Falls ein schön gesetzter Ausdruck für die Modellfunktion gewünscht wird, können LaTeX-Namen für\n", "das Modell, die Parameter und die Modellfunkton gesetzt werden:\n", "```\n", "# Set LaTeX names for printout in info-box:\n", "BWfit.assign_parameter_latex_names(E='E', s0=r'{\\sigma^0}', M=r'{M_Z}', G=r'{\\Gamma_Z}')\n", "BWfit.assign_model_function_latex_name(r'\\sigma^{\\rm ew}_{e^+e^-\\to{\\rm hadrons}}')\n", "BWfit.assign_model_function_latex_expression(\n", " r'{s0}\\frac{{ {E}^2{G}^2}}{{({E}^2-{M}^2)^2+({E}^4{G}^2/{M}^2)}}')\n", "```\n", "\n", "Anmerkung: Die Verdopplung der Klammern \"{\" und \"}\" ist notwendig, weil sie in *kafe2*,\n", "ähnlich wie in der Python *format*-Funktion, auch zur Übergabe von Parametern genutzt werden.\n", "\n", "Wir haben bereits gesehen, wie man die Bezeichnung für das Band für die Anzeige der\n", "Modellunsicherheit modifizieren kann:\n", "```\n", "BWplot.customize('model_error_band', 'label', [r'$\\pm 1\\sigma$'])\n", "```\n", "\n", "In diesem Beispiel ist allerdings die Modellunsicherheit extrem klein (weit unter 0.1%) und daher\n", "in der Grafik nicht sichtbar.\n", "Unterdrücken kann man die Ausgabe in der Legende mit folgender Angabe:\n", "```\n", "BWplot.customize('model_error_band', 'label', [None])\n", "```\n", "\n", "Manchmal wird das Unsicherheitsband von der Line überdeckt; in solchen Fällen solle eine\n", "gestrichelte oder gepunktete Linie für das Modell verwendet werden:\n", "```\n", "BWplot.customize('model_line', 'linestyle', [':'])\n", "```\n", "\n", "Nun können noch die Ränder des Plot-Bereiches angepasst werden.\n", "Dies gelingt über die Properties *x_range* und *y_range* der Plot-Klasse:\n", "```\n", "BWplot.x_range = (88, 94)\n", "BWplot.y_range = (0, 45)\n", "```\n", "\n", "Da es sich um eine nichtlineare Anpassung handelt, sollten noch Profile-Likelihood \n", "und Konfidenz-Konturen angezeigt werden.\n", "Die folgende Zeile muss dazu vor *plt.show()* eingefügt werden:\n", "```\n", "ContoursProfiler(BWfit).plot_profiles_contours_matrix(show_grid_for='contours')\n", "``` \n", "!!! Geduld: die Berechnung der Konturen ist rechenaufwändig und dauert eine gewisse Zeit!\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "''' the data for the Breit-Wigner example'''\n", "# Center-of-mass energies E (GeV):\n", "ECM = [ 88.387, 89.437, 90.223, 91.238, 92.059, 93.004, 93.916 ] \n", "E_errors = [ 0.005, 0.0015, 0.005, 0.003, 0.005, 0.0015, 0.005 ]\n", "ECor_abs = 0.0017 # Correlated absolute errors.\n", "\n", "# Hadronic cross sections with photonic corrections applied (nb):\n", "sig = [6.803, 13.965, 26.113, 41.364, 27.535, 13.362, 7.302 ] \n", "sig_errors = [ 0.036, 0.013, 0.075, 0.010, 0.088, 0.015, 0.045 ]\n", "sigCor_rel = 0.0007 " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# obigen Code hier eingeben \n", "# --> \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Studium des Einflusses einzelner Fehlerkomponenten** \n", "Um den Einfluss einzelner Fehlerkomponenten auf das Ergebnis zu untersuchen, kann man einzelne\n", "Quellen von Unsicherheiten mit der Methode *disable_error()* abschalten und eine neue Anpassung\n", "ausführen, hier gezeigt für die korrelierte Unsicherheit der Schwerpunktsenergien:\n", "```\n", "print('!!! disabling error component ', error_name_ECor)\n", "BWfit.disable_error(error_name_ECor)\n", "BWfit.do_fit()\n", "BWfit.report(show_data=False, show_model=False)\n", "\n", "# do not forget to switch on again !\n", "print('!!! re-enabling error component ', error_name_ECor)\n", "BWfit.enable_error(error_name_ECor)\n", "\n", "#### fallback option with new fit object\n", "#print('!!! disabling error component ', error_name_ECor)\n", "#BWdata.disable_error(error_name_ECor)\n", "#_fit = Fit(BWdata, BreitWigner)\n", "#_fit.do_fit()\n", "#_fit.report(show_data=False, show_model=False)\n", "#BWdata.enable_error(error_name_ECor)\n", "```\n", "\n", "Das Ergebnis ist fast identisch zum vorherigen, lediglich die Unsicherheit der Masse ist nun\n", "kleiner.\n", "Dies war auch so zu erwarten, denn eine korrelierte Änderung aller Energien sollte die Breite\n", "oder Höhe der Resonanz nicht beeinflussen.\n", "\n", "Mit der Methode *enable_error(error_name_ECor)* wird die Fehlerquelle wieder aktiviert." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# hier ausprobieren\n", "# -->\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***\n", "## 6. Anpassung an Histogramm-Daten\n", "***\n", "\n", "Im Prinzip lässt sich auch die Anpassung einer Verteilungsdichte an eine Häufigkeitsverteilung\n", "als Funktionsanpassung auffassen.\n", "Allerdings gibt es einige Besonderheiten, die berücksichtigt werden müssen:\n", "\n", "- Der dem Wert einer Verteilungsdichte (PDF=Particle Density Function) entsprechende\n", " Funktionswert für ein Bin entspricht dem Integral der PDF über das Bin\n", "- Die Unsicherheit eines Bin-Eintrages ergibt sich aus der Poisson-Verteilung, die nur\n", " bei sehr großen Zahlen an Einträgen pro Bin durch eine Gauß-Verteilung angenähert werden kann.\n", " \n", "*kafe2* bietet daher eine spezielle Methode zur Anpassung einer Vereilungsdichte an Histogramme,\n", "die Klassen *HistContainer* zur Abspeicherung der Histogrammdaten und *HistFit* zur\n", "Durchführung der Anpassungen:\n", "```\n", "from kafe2 import HistContainer, HistFit\n", "```\n", "\n", "Als Kostenfunktion zur Bewertung der Übereinstimmung der angepassten PDF mit den Bin-Einträgen\n", "in der Häufigkeitsverteilung wird das Doppelte des negativen Logarithmus der Poisson-Likelihood\n", "verwendet, andere Optionen sind konfigurierbar. \n", "\n", "In diesem einfachen Beispiel verwenden wir die Häufigkeitsverteilung von Gauß-verteilten\n", "Zufallszahlen, an die eine Gaußverteilung angepasst wird.\n", "```\n", "def normal_distribution_pdf(x, mu, sigma):\n", " return np.exp(-0.5 * ((x - mu) / sigma) ** 2) / np.sqrt(2.0 * np.pi * sigma** 2)\n", "```\n", "\n", "Die Daten werden zufällig aus der Standardnormalverteilung erzeugt:\n", "```\n", "# create a random dataset of 100 random values, \n", "# following a standard normal distribution with mu=0 and sigma=1\n", "data = np.random.normal(loc=0, scale=1, size=100)\n", "```\n", "\n", "Der Datencontainer und das Fit-Objekt werden analog zu den früheren Beispielen erstellt:\n", "```\n", "# Create a histogram from the dataset by specifying the bin range and the number of bins.\n", "# Alternatively the bin edges can be set.\n", "histogram = HistContainer(n_bins=10, bin_range=(-5, 5), fill_data=data)\n", "\n", "# create the Fit object by specifying a density function\n", "fit = HistFit(data=histogram, model_function=normal_distribution_pdf)\n", "```\n", "\n", "Durchführung der Anpassung und Ausgabe der Ergebnisse unterscheiden sich nicht von der\n", "Vorgehensweise bei den früheren Beispielen:\n", "```\n", "# do the fit\n", "fit.do_fit()\n", "\n", "# Optional: print a report to the terminal\n", "fit.report()\n", "\n", "# Optional: create a plot and show it\n", "phist = Plot(fit)\n", "phist.plot()\n", "plt.show()\n", "```\n", "\n", "An dieser Stelle sollten wir noch einmal die Möglichkeiten zur Anpassung der grafischen Ausgabe\n", "anschauen.\n", "Der Plot-Adapter für Histogramme kennt als *plot_type* die Werte *data*, *model* und\n", "*model_density*.\n", "Über den Aufruf von `print(phist.get_keywords(<plot_type>))` können die möglichen Parameter zur\n", "Einstellung ausgebeben werden.\n", "Hier ein Vorschlag für Code zur Anpassung der Grafikausgabe, der vor dem Befehl *phist.plot()*\n", "stehen muss:\n", "```\n", "## reprise: plot customization\n", "# data\n", "phist.customize('data', 'label', [\"random Gaussian data\"] ) \n", "phist.customize('data', 'marker', ['o'])\n", "phist.customize('data', 'markersize', [5])\n", "phist.customize('data', 'color', ['blue']) \n", "phist.customize('data', 'ecolor', ['blue']) \n", "# model\n", "phist.customize('model_density', 'label', [\"Gaussian PDF\"])\n", "phist.customize('model_density', 'color', [\"black\"])\n", "phist.customize('model', 'label', [\"entries per bin\"])\n", "phist.customize('model', 'facecolor', [\"lightgrey\"])\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# hier ausprobieren \n", "# -->\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***\n", "## 7. Likelihood-Anpassungen\n", "***\n", "\n", "Wenn nur wenige Messungen vorhanden sind, ist es nicht möglich, eine sinnvolle\n", "Häufigkeitsverteilung zu erhalten, denn eine grobe Einteilung in Bins würde die Messungen\n", "verfälschen, während eine zu feine Einteilung zu Bins mit sehr wenigen oder gar null Einträgen\n", "führen würde.\n", "Das oben schon angewendete Verfahren zur Anpassung einer Verteilungsdichte an eine\n", "Häufigkeitsverteilung ist dann nicht anwendbar.\n", "In solchen Fällen verwendet man eine direkte Anpassung mit Hilfe des\n", "Maximum-Likelihood-Verfahrens and die ungebinnten Daten.\n", "Auch dieses Verfahren ist in *kafe2* implementiert.\n", "Dazu müssen nur die passenden Klassen importiert werden:\n", "```\n", "from kafe2.fit import UnbinnedContainer, UnbinnedFit\n", "```\n", "\n", "In diesem Beispiel verwenden wir zur Illustration 160 einzelne Messungen der Lebensdauer von in\n", "einem Detektor gestoppten Myonen aus der kosmischen Strahlung.\n", "Die Häufigkeitsverteilung ist eine Exponentialverteilung über flachem Untergrund:\n", "```\n", "def pdf(t, tau=2.2, fbg=0.1, a=1., b=9.75):\n", " \"\"\"\n", " Probability density function for the decay time of a myon. \n", " The pdf is normalized to an integral of one for the interval (a, b).\n", " :param t: decay time\n", " :param fbg: background\n", " :param tau: expected mean of the decay time\n", " :param a: the minimum decay time which can be measured\n", " :param b: the maximum decay time which can be measured\n", " :return: probability for decay time x\n", " \"\"\"\n", " pdf1 = np.exp(-t / tau) / tau / (np.exp(-a / tau) - np.exp(-b / tau))\n", " pdf2 = 1. / (b - a)\n", " return (1 - fbg) * pdf1 + fbg * pdf2\n", "```\n", "\n", "Zu beachten ist, dass die Häufigkeitsverteilung für alle möglichen Parameterwerte auf Eins\n", "normiert sein muss!\n", "\n", "Zur Vorgehensweise bei der Anpassung gibt es nur eine kleine Besonderheit: \n", "der Untergrundanteil ist auf Grund der geringen Anzahl an Beobachtungen mit einer großen\n", "Unsicherheit behaftet und kann daher bei der Variation im Verlauf des Anpassungsalgorithmus sogar\n", "negativ werden.\n", "Um diesen \"unphysikalischen\" Bereich des Parameters zu vermeiden, gibt es die Option\n", "`fit.limit_parameter(<name>, lower=<min>, upper=<max> )`.\n", "\n", "Alle weiteren Schritte im folgenden Beispielcode sind bereits bekannt:\n", "```\n", "data = UnbinnedContainer(dT) # create the kafe data object\n", "data.label = 'lifetime measurements'\n", "data.axis_labels = ('Myon Life Time ' r'$\\tau$' ' (µs)','Density' )\n", "\n", "# create the fit object and set the pdf for the fit\n", "LLfit = UnbinnedFit(data=data, model_density_function = pdf)\n", "\n", "# assign latex names for model and parameters for nicer display\n", "LLfit.model_label = 'Exponential decay + flat background'\n", "LLfit.assign_parameter_latex_names(t='t', tau=r'\\tau', fbg='f', a='a', b='b')\n", "LLfit.assign_model_function_latex_expression(\"\\\\frac{{ (1-{fbg}) \\, e^{{-{0}/{tau}}}}}\"\n", " \"{{{tau}(e^{{-{a}/{tau}}}-e^{{-{b}/{tau}}})}} + \\\\frac{{ {fbg} }} {{ {b}-{a} }}\")\n", "\n", "# Fix the parameters a and b ...\n", "a = 1.0\n", "b = 11.5\n", "LLfit.fix_parameter(\"a\", a)\n", "LLfit.fix_parameter(\"b\", b)\n", "# ... and limit parameter fbg\n", "LLfit.limit_parameter(\"fbg\", lower=0., upper=1.)\n", "\n", "LLfit.do_fit() # perform the fit\n", "LLfit.report(asymmetric_parameter_errors=True)\n", "\n", "pLL = Plot(LLfit) # create a plot object\n", "pLL.x_range = [a, b]\n", "pLL.plot(fit_info=True, asymmetric_parameter_errors=True) # plot the data and the fit\n", "#pLL.axes[0]['main'].set_xlabel('Life time '+r'$\\tau$'+' (µs)', size='large') # overwrite the x-axis label\n", "\n", "cpfLL = ContoursProfiler(LLfit, profile_subtract_min=False) # Optional: create a contours profile\n", "cpfLL.plot_profiles_contours_matrix(parameters=['tau', 'fbg']) # Optional: plot the contour matrix for tau and fbg\n", "\n", "plt.show() # show the plot(s)\n", "```\n", "\n", "Interessant ist die spezielle Form der grafischen Darstellung der Daten, bei der in diesem Fall\n", "jeder Messwert durch einen Strich dargestellt wird.\n", "Die Dichte der Striche pro Längeneinheit entspricht der Verteilungsdichte." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "''' the data for the myon life time example'''\n", "# real data from measurement with a Water Cherenkov detector (\"Kamiokanne\")\n", "dT = [7.42, 3.773, 5.968, 4.924, 1.468, 4.664, 1.745, 2.144, 3.836, 3.132,\n", " 1.568, 2.352, 2.132, 9.381, 1.484, 1.181, 5.004, 3.06, 4.582, 2.076,\n", " 1.88, 1.337, 3.092, 2.265, 1.208, 2.753, 4.457, 3.499, 8.192, 5.101,\n", " 1.572, 5.152, 4.181, 3.52, 1.344, 10.29, 1.152, 2.348, 2.228, 2.172,\n", " 7.448, 1.108, 4.344, 2.042, 5.088, 1.02, 1.051, 1.987, 1.935, 3.773,\n", " 4.092, 1.628, 1.688, 4.502, 4.687, 6.755, 2.56, 1.208, 2.649, 1.012,\n", " 1.73, 2.164, 1.728, 4.646, 2.916, 1.101, 2.54, 1.02, 1.176, 4.716,\n", " 9.671, 1.692, 9.292, 10.72, 2.164, 2.084, 2.616, 1.584, 5.236, 3.663,\n", " 3.624, 1.051, 1.544, 1.496, 1.883, 1.92, 5.968, 5.89, 2.896, 2.76,\n", " 1.475, 2.644, 3.6, 5.324, 8.361, 3.052, 7.703, 3.83, 1.444, 1.343,\n", " 4.736, 8.7, 6.192, 5.796, 1.4, 3.392, 7.808, 6.344, 1.884, 2.332, \n", " 1.76, 4.344, 2.988, 7.44, 5.804, 9.5, 9.904, 3.196, 3.012, 6.056, \n", " 6.328, 9.064, 3.068, 9.352, 1.936, 1.08, 1.984, 1.792, 9.384, 10.15, \n", " 4.756, 1.52, 3.912, 1.712, 10.57, 5.304, 2.968, 9.632, 7.116, 1.212,\n", " 8.532, 3.000, 4.792, 2.512, 1.352, 2.168, 4.344, 1.316, 1.468, 1.152,\n", " 6.024, 3.272, 4.96, 10.16, 2.14, 2.856, 10.01, 1.232, 2.668, 9.176 ]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Likelihood-Anpassung hier ausprobieren\n", "# -->\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***\n", "## 8. Multi-Fits:\n", "### simultane Anpassung von Modellfunktionen an verschiedene Datensätze\n", "***\n", "\n", "Sehr oft sind die Modelle zu komplex, um alle Parameter in einer Anpassung an ein\n", "einziges Modell zu bestimmen.\n", "Modellparameter sind oftmals das Ergebniss mehrerer Modellanpassungen, oder der\n", "selbe Parameter kommt in verschiedenen Messreihen vor.\n", "\n", "Für solche Fälle bietet *kafe2* die Möglichkeit, mehrere Anpassungen unterschiedlicher Modelle\n", "mit gemeinsamen Parametern an verschiedene Datensätze durchzuführen.\n", "\n", "Dazu muss zusätzlich das Paket *MultiFit* importiert werden:\n", "```\n", "from kafe2 import MultiFit\n", "```\n", "\n", "Wir betrachten als einfaches Beispiel die Bestimmung eines ohmschen Widerstands bei\n", "Zimmertemperatur, der sich bei höherem Stromfluss erwärmt und so seinen Widerstand gemäß seines\n", "Temperaturkoeffizienten ändert.\n", "Zusätzlich zum Strom durch den Widerstand wird daher noch die Temperatur für jeden vorgegebenen\n", "Spannungswert gemessen.\n", "Es müssen also Triplets von Messwerten ausgewertet werden.\n", "\n", "Die Temperaturabhängigkeit wird empirisch durch ein einfaches quadratisches Modell beschreiben:\n", "```\n", "# empirical model for T(U): a parabola\n", "def empirical_T_U_model(U, p2=1.0, p1=1.0, p0=0.0):\n", " # use quadratic model as empirical temperature dependence T(U)\n", " return p2 * U**2 + p1 * U + p0\n", "```\n", "\n", "Der Widerstand als Funktion der Temperatur ist durch den Temperaturkoeffizienten $\\alpha$ gegeben\n", "und wird folgendermaßen modelliert:\n", "```\n", "# model of current-voltage dependence I(U) for a heating resistor\n", "def I_U_model(U, R0=1., alph=0.004, p2=1.0, p1=1.0, p0=0.0):\n", " # use quadratic model as empirical temperature dependence T(U)\n", " t_ref = 0.\n", " _delta_t = empirical_T_U_model(U, p2, p1, p0) - t_ref\n", " # plug the temperature into the model\n", " return U / (R0 * (1.0 + _delta_t * alph))\n", "```\n", "Das Modell für den Widerstand enthält also in diesm Fall das erste Modell für die Abhängigkeit\n", "der Temperatur von dem durch die angelegte Spannung bestimmten Strom.\n", "\n", "Hier die Daten für dieses Beispiel:\n", "```\n", "# the data \n", "U = [ 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, \n", " 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 ] \n", "I = [ 0.5, 0.89, 1.41, 1.67, 2.3, 2.59, 2.77, 3.57, 3.94, 4.24, 4.73,\n", " 4.87, 5.35, 5.74, 5.77, 6.17, 6.32, 6.83, 6.87, 7.17 ]\n", "T = [ 20.35, 20.65, 22.25, 23.65, 26.25, 27.85, 29.85, 34.25, 37.75, 41.95,\n", " 44.85, 50.05, 54.25, 60.55, 65.05, 69.95, 76.85, 81.55, 85.45, 94.75 ]\n", "sigU, sigI, sigT = 0.2, 0.1, 0.5 # uncertainties\n", "```\n", "\n", "Die Fit-Prozedur unterscheidet sich kaum von der bisher vorgestellten Vorgehensweise. \n", "Zunächst werden die Daten-Container und Anpassungen für die beiden Modelle definiert:\n", "```\n", "# Step 1: construct the singular data containers and fit objects\n", "TU_data = XYContainer(U,T)\n", "TU_data.label = 'Temperaturen'\n", "TU_data.axis_labels = ['Spannung (V)','Temperatur (°C)']\n", "fit_1 = Fit(TU_data, model_function=empirical_T_U_model)\n", "fit_1.model_label = 'Parametrisierung'\n", "\n", "IU_data = XYContainer(U,I)\n", "IU_data.label = 'Ströme'\n", "IU_data.axis_labels = ['Spannung (V)','Strom (A)']\n", "fit_2 = Fit(IU_data, model_function=I_U_model)\n", "fit_2.model_label = 'Temperaturabhängiger Leitwert'\n", "\n", "```\n", "\n", "Dann werden beide Anpassungen zu einem *MultiFit* zusammengefasst.\n", "```\n", "# Step 2: construct a MultiFit object\n", "multi_fit = MultiFit(fit_list=[fit_1, fit_2], minimizer='iminuit')\n", "```\n", "Erst jetzt werden die Unsicherheiten - dieses Mal zu den\n", "Fit-Objekten, hinzugefügt. Dadurch können auch die in beiden\n", "Datensätzen gemeinsamen Unsicherheiten auf der x-Achse berücksichtigt \n", "werden. \n", "```\n", "# Step 3: Add errors (to the fit object in this case)\n", "multi_fit.add_error(sigT, 0, axis='y') # declare errors on T\n", "multi_fit.add_error(sigI, 1, axis='y') # declare errors on I\n", "multi_fit.add_error(sigU, 'all', axis='x') # shared error on x axis\n", "```\n", "\n", "Es folgt noch die Definition aussagekräftiger Namen für die Ausgabe:\n", "```\n", "# (Optional): assign names for models and parameters\n", "multi_fit.assign_parameter_latex_names(\n", " U='U', p2='p_2', p1='p_1', p0='p_0', R0='R_0', alph=r'\\alpha_\\mathrm{T}')\n", "multi_fit.assign_model_function_expression('{p2}*{U}^2 + {p1}*{U} + {p0}', fit_index=0)\n", "multi_fit.assign_model_function_latex_expression(r'{p2}\\,{U}^2 + {p1}\\,{U} + {p0}', fit_index=0)\n", "multi_fit.assign_model_function_expression('{U} / ({R0} * (1 + ({p2}*{U}^2 + {p1}*{U} + {p0}) * {alph}))', fit_index=1)\n", "multi_fit.assign_model_function_latex_expression(r'\\frac{{{U}}}{{{R0} \\cdot (1 + ({p2}{U}^2 + {p1}{U} + {p0}) \\cdot {alph})}}', fit_index=1)\n", "```\n", "\n", "Der Rest läuft dann genau so wie schon oft gezeigt:\n", "```\n", "# Step 4: do the fit\n", "multi_fit.do_fit()\n", "\n", "# (Optional): print the results\n", "multi_fit.report()\n", "\n", "# (Optional): plot the results\n", "plot = Plot(multi_fit, separate_figures=True)\n", "plot.customize('data', 'marker', ['.','.'])\n", "plot.customize('data', 'markersize', [6,6])\n", "\n", "plot.plot()\n", "\n", "plt.show()\n", "```\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# eigenen Code hier eingeben\n", "# -->\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" } }, "nbformat": 4, "nbformat_minor": 4 }
gpl-3.0
probml/pyprobml
notebooks/book1/20/fig_20_37.ipynb
1
553
{ "cells": [ { "cell_type": "markdown", "id": "010480a7", "metadata": {}, "source": [ "LLE applied to (a) Swiss roll. Generated by [manifold_swiss_sklearn.ipynb](https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_swiss_sklearn.ipynb) . (b) UCI digits. Generated by [manifold_digits_sklearn.ipynb](https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/20/manifold_digits_sklearn.ipynb) ." ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }
mit
NAU-CFL/Python_Learning_Source
02_Setting_Up.ipynb
1
84564
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Setting Up Python Environment\n", "\n", "Setting up Python environment consists of 4 main elements\n", "\n", "1. Install Python Environment and Necessary Tools\n", "2. Execute Python Commands\n", "3. Run Sample Python Program\n", "4. Install Python Packages\n", "\n", "We will go with Python Anaconda distribution for our course because it has really comprehensive in terms of 3rd party packages and it is really powerful with it's own package manager; ```conda```. \n", "\n", "Installing Anaconda is straightforward: [download](https://www.continuum.io/downloads) the binary and follow the instructions. But careful to install Python 3.5 version.\n", "\n", "> If you are asked during the installation process whether you’d like to make Anaconda your default Python installation, say __yes__\n", "\n", "the ```conda``` command is a tool that keep your packages organized and up to date.\n", "\n", "### Jupyter Notebook\n", "\n", "Jupyter notebooks provide a browser-based interface to Python with:\n", "\n", "- The ability to write and execute Python commands directly in your browser\n", "- Formatted output also in the browser, including tables, figures, animation, etc.\n", "- The ability to mix in formatted text and mathematical expressions between cells\n", "\n", "### Let's Start Jupyter Notebook\n", "\n", "- Notebook is running at http://localhost:8888/ in default\n", "\n", "\n", "> Demonstration Starts\n", "\n", "\n", "#### Dashboard\n", "\n", "It's the main page when you hit http://localhost:8888/ . \n", "\n", "#### Open a new File\n", "\n", "\n", "#### Running Cells\n", "\n", "#### Edit Mode\n", "\n", "#### Shortcuts" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAF3CAYAAABDkvcgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXd8U9X7xz/PvTdd6V50F8roghYoZcqeyqhUREBxgKAI\nuPXrQPSnIAgqKMoQcIHIkDJUVLbsUWahg9FFodABpbtknN8fabGTJmmSm7b3/XrlpdxxzpM0uc85\nzyTGGCQkJCQkmiec2AJISEhISIiHpAQkJCQkmjGSEpCQkJBoxkhKQEJCQqIZIykBCQkJiWaMpAQk\nJCQkmjGSEpCQkJBoxkhKQEJCQqIZIykBCQkJiWaMpAQkJCQkmjGSEpBoNhCRLREtJqJUIiomokNE\n1KXaNR8T0Y3y87uIqE21895EdJiIsohoumnfgYSE4ZGUgERzYjWAgQCeBNAewC4Au4nIEwCI6H8A\nZgCYCqArgCIA/xCRRaUx5gP4A8AgAC8TUYDpxJeQMDwkFZCTaA4QkRWAAgAjGWN/VzoeC2AHY2w2\nEd0AsJAxtqj8nD2AWwCeYYxtLD92EUAEY6yUiD4DcIIxttnU70dCwlBIOwGJ5oIAgAdQVu14CYCH\niKgVAA8AeypOMMbyARwH0KPS9ckAoojIFkB/AFeMKbSEhLGRlIBEs4AxVgjgKIAPiMiTiDgiegqa\nB7wnNAqAQbPyr8yt8nMVzAbwNYDbAI4wxs4ZXXgJCSMiiC2AhIQJeQrA9wCuA1ACOA1gHYAIbQdg\njJ0hIi8AdoyxPKNIKSFhQqSdgESzgTGWwhjrD0AOwJcx1h2ABTQmnpsACECLare1KD9XeRyVpAAk\nmgqSEpBodjDGShhjt4jICcBQAFsZYynQPOwHVlxX7hjuBuCIOJJKSBgfKTpIotlAREOgWe0nAWgL\nYAGAYgB9GGMqInobwP8APAsgFcAnAEIBhDLG7okhs4SEsZF8AhLNCQcA8wB4Q+PY/Q3ALMaYCgAY\nYwuIyAbACgCOAA4CeFhSABJNGWknICEhIdGMkXwCEhISEs0YSQlISEhINGMkJSAhISHRjJGUgISE\nhEQzRlICEhISEs0YSQlISEhINGMkJSAhISHRjJGUgISEhEQzRlICEhISEs0YqWyERLOEiGQA7Mpf\ncmgaznDlLwKgrvRSQNOVrABAEWNMLYbMEhLGQCobIdEkICIBmuYw3gB8Kv+X53l/nuedAdip1Wpb\npVJpA0Cm71w8z5cSUQkR5RNRgVKpvKFWq69B06cgo/xV8f93mPQjkzBjJCUg0Wgob/geCqALgA4A\nfGUymT8AX4VC4YxK5k0LCwu1u7u7ytramu/QoQPn5eUFOzs72NnZwdLSEg4ODnB0dISdnR3kcjkE\nQUBpaSnS09MBAIwxMMZARFCpVCgrK0NJSQnKyspQVlaGzMxMVPx2srKykJaWpkxJSUFeXl6V3TXH\ncfd4nr+lUqnS1Gp1GoAUaJrZnAJwTVIQEmIjKQEJs6TaAz9CJpN1U6lUoWq1WkZE8PPzUwQGBgq+\nvr7k7e0NLy8v+Pr6wsfHB97e3nB2dgYR6TTnhvXr8e/GjeCIcP9XQQTiOBARiOdBPA+O58EJAkgQ\nwMtksLG1hZ2jI+ydnGBjawu1Wo3i4mIUFRUhPz8fly5dQkFBAXJzc1VJSUksNzdXAACe5/PVavUx\nxlgsgFhIikFCBCSfgITo1PbA5zju/gO/Xbt2iu7du8siIiIQERGB8PBwyOVyvc05daFUqeBOhEEd\nOgAo3w0AUKvVUKnVUKrVUKhUUKpUuKdUokypxL2yMpQWFqL02jXcvHcPZSoVSolQyhggCOCtrOBp\na4s23t5w8/bmW3h5gYhw8+ZNxMfH26empg4+efLkgJycnPuKgeM4STFImAxJCUiYnPKa/YMADJPJ\nZD2IKJQxJiMiBAYGKrp162b0B34dctX4NwHgeB4Cz8NSh7EYY7inVKKgtFTzyslB/rVryLx3D8UA\nlIIAK7kcHdu1o0eGDBFs7O1x584dpKSk2CcmJg4+d+5cZcWQx3HcCcbYYQC/AzgrKQUJQyGZgyRM\nAhF5AhhBRKMADGWMyVq1aqXo06dP9Qe+aDKuX78eCZs24WRyMt6LijLqXKUKBe4UFeF2YSFuFxbi\nrkKBIiLwcjlsHB3h27Yt7J2ckJeXh4sXL+LkyZMsISFBXVRUxMtkskyFQrEFwHYA+xljZUYVVqJJ\nIykBCaNAmmV1ewCjBEEYrVQqI4iIRUREqIcPH85PmDAB7dq1E1vMKmzYsAEXN24EB9w3CZkSpVqN\nO4WFyC4oQHZ+Pu4olSiTyWDp4ACvgAD4t2mDvLw8nDp1Clu3blVmZmYKHMeVMMb+ZIz9DmAHYyzH\n5IJLNGokJSBhMMpt+30AjJLJZKMVCoWPhYWFauTIkVxUVBQ98sgjcHFxEVvMOtm4cSMubNiAISIo\ngLooLivDrbt3kZmXh+zSUpRaWMDa2Rn+QUGwtLHB5cuXsWfPHuWpU6cEIlJzHHdcpVLFANjOGLsk\ntvwS5o+kBCQaBBE5ABgOYBTHcSPUarXc09NTGR0dLYwaNQp9+/aFpaUu1nTx2LRpE86vX4+hZqQE\nqlNUVoYbd+7g+u3byFYqwdnbw9nHB16tWuHGjRv466+/1LGxsVAoFJxMJktWKBQx0JiNDktJbhK1\nITmGJfSCiDoCeInjuIlqtdrKx8dH/eSTT3Ljxo1DeHi4oGt4pjnAceZfRUVuaYm2Hh5o6+EBNWPI\nzs/HtfR0JMbHo8zKCv169OC2bNmCEydOYPv27QFbtmx5NTc3902e59OI6GsAPzLGbov9PiTMB2kn\nIKE1RGQFYAzP8y+rVKrIFi1aKKdPny4899xz8PHxEVu8BhMTE4Mz69bB094eYX5+YoujM3HXruEK\nEd6dPx+urq4ANOGt//77Lz7//HO2c+dOqNVqhVqt/gXA0vIwVIlmjvkvfSREh4haEdF8QRAyAaxp\n3759xKZNm5CRkSF88MEHTUIBAJqQUDWAdYcPiy2KXtwpLIRfcPB9BQBodjf9+/fHn3/+SdevX6c5\nc+ZYeHl5TQRwUhCE00T0DBFZiye1hNhISkCiVoiII6KHOY77E8BVW1vbN2fMmOGYmJiIs2fPcmPG\njIEgNC1rYkVewEdjxogtis6o1GrcUioR1rlznde4u7vj3XffRXp6urBt2zZ069YtHMCPgiBkEtFC\nImptOoklzAVJCUhUgYhciegtQRBSAezw8/MbunLlSrp58ya/aNEiBAYGii2i0aDychFWMpPkphmU\nzLw88I6OCAkJqfdanucxatQoHD58mLt8+TJeffVVBwcHh9cAXOF5ficRjSQi3vhSS5gDkhKQAKBx\n9BLRTxzH3ZDJZPPHjx/vc+zYMaSkpPDPP/+8qElcpqLCHNQYSc3OhnfbtnB3d9fpvjZt2mDhwoXI\nzMzkV61ahZYtWw4AsF0QhHQierc8+kuiCSMpgWYOEbXheX49gDMODg5PzZ8/X3bjxg3u559/pm7d\nuulchK0xQ0SN8v2qGcPNsjKEd+mit/zW1taYPHkyrl69yp88eRJPP/20l4WFxZzyqKI3yoMCJJog\nkhJophCRBxEtJaJEd3f3x1auXImcnBzurbfequJYbE4QEdSM4dudO8UWRSdu5uWBHBwQHBxskPG6\ndOmC1atXIyUlhZswYYIDES3keT6FiCaV922QaEJISqCZQUQORDSHiFLt7e2nfvbZZ3xycrLw/PPP\nNzlHr65UrKJbODQuC0hqdjY8W7eGl5eXQcf18vLCzz//jKSkJHrsscdaAFgtCEI8EY2mxrhlkqgV\nSQk0E4jIiojeEAQhzcLC4t2ZM2dapqWl8W+99RasraUIQeA/x/CYbt3EFkVrGGO4WVqK8MhIo5my\n2rZtiw0bNlBsbCz69u0bACCG5/kTRNTXKBNKmBRJCTRxiEggokmCIKRwHLfw+eefd0hJSeG++uor\nODo6ii2eWdEYF7dZ+flg9vYGMwU9iIiICOzevZvfvXs3Wrdu3QnAfkEQ/inPHpdopEhKoIlCGkbz\nPB8PYPWjjz7aIjExkZYtW2Zws0FTgeM4oJEpgtTsbLj5+8PX19dkcw4cOBCJiYn8pk2bKqKJzhDR\nr1KeQeNEUgJNECLqIwjCcQAxffv2DYiNjcWmTZuobdu2Yotm1lSYg9JyGkc1ZsYYrhcXI8yIpqC6\nICKMGTMGiYmJwnfffQcnJ6fHASQR0TdEpFucqoSoSEqgCUFE9kT0HYB/w8LCOu/evRt79uzhIyIi\nxBatUUBEYIxh2a5dYouiFTkFBVDb2iI0NFQ0GQRBwJQpU5CRkcF/8sknvJ2d3Ys8z18iovGS87hx\nICmBJgIRDeF5PlEQhMlffPEFYmNj+YEDB4otVqOiYifw2iOPiC2KVqTl5MDFzw/+/v5iiwIbGxvM\nmjULycnJ/JgxY+wBrCOiLUTkIbZsEg9GUgKNnEqr/3/69OnT4vLly9zrr7/eKJ2cYtOYQkQZY8go\nLERYZKRZlcB2dXXF+vXrafPmzZDL5SM4jkuSdgXmjfl8eyR0pmL1b21tPWn58uXYs2cP17JlS7HF\narRU7AQaA7eLiqCwsRHVFPQgoqOjkZKSwo8ZM8YOwDqO46RdgZkiKYFGSOXVf6dOnVrEx8fzL7zw\ngrT6byCN6fNLy86Gk48PWrVqJbYodeLq6ooNGzbQ5s2b4eTkNJzn+URpV2B+SEqgkUFEQwRBuL/6\nP3HihLT6NxAVO4FfDh0SW5R6uVZQgLCuXcHz5l/sMzo6GomJiUJ0dLTkKzBDJCXQSKi8+u/du7e0\n+jcCFXkCpQqF2KI8kLziYpRZW2tVNtpccHV1xcaNG2njxo3SrsDMaLZKgIh6E9F2IrpORGoiGlXt\n/IdElEBEhUR0m4h2EVHXatfsL7+34qUioqXVrmlPRHHl84zWU9YhPM8nCYIwedmyZZLt30hU7AQm\n9+8vtigPJDU7Gw6enmjduvHlZj3++ONISkoSjB1BRETvlP8mv6x07Idqv1c1Ee2odp83ER0moiwi\nmm5oucyRZqsEAMgBnAXwElCrPzAJwHQA7QH0ApAKYCcRuVS6hgH4DkALAB4APAG8XW2cZQAWAhgD\nYDER2WorIBHJSNMc/J/evXu7X758mXvxxRel1b+RICKgEfTcvnb3LjpERkLWCJvfAFUjiGxtbSsi\niAwWl0tEkQCmAjhXy+m/8N/v1QPA+Grn5wP4A8AgAC8TUYCh5DJXmq0SYIz9zRibzRjbBqDGU5Ux\ntp4xtpcxlsoYSwDwOgB7AGHVLi1mjGUzxrLKX4XVzvswxn5mjB0FcAyAVq25iMid47h9giDMWLJk\nCfbu3Sut/vXkwIEDOH/+fJVjsbGxiIqKwt27d+8fIyIcunAB648erXLt9du38c6vv+LGnTtVjp9K\nScHplBTjCV4LBSUlKLG0RGj79iad1xhER0cjOTmZ79Onjy2AP8pX7w1a4ZQvstYCeB5AXi2XlFX7\nvd6tdr4zgEWMsfMAtgLo1BB5GgPNVgnoAhHJALwAzZeq+uriSSLKLjf5fEo1m3bnE1HP8lT6zgDS\ntJgvguf5c3Z2dt33799PM2bMkFb/WnDkyBGMHj0aimo2/YyMjBrHOnXqhC1btsChUk4AEaFn+/YY\nFh5e5VpvZ2fMHz8entUK7sktLaGutnPILSzE2+vW4eqtW1WOV79OX1Kys2Hn4YGmUgLE1dUVe/bs\n4T744AMCMI/juA1E1JA2dt8C+J0xtreO8/2I6BYRJZKmn4ZztfPJAKLKlUl/AFcaIEujgFgj2P4a\nGyJSA3iUMba92vHhANYDsAFwo/yaU5XOPw/NQ/0GNDuEBQCOM8bGVLpmGIBNACwAvMsY+xIPgIie\n4jhudVBQEL9z507e29vbIO+xqTFt2jR069YNzz777P1jpaWl4HlebzPJ0aNH8esXX+B0XBzmj69u\nJdANxlgVxb3+6FHcLS7GCw3M4t4RF4f2jz2GCRMmNGgccyQmJgZPPvmkWqFQJKpUqhGMMZ22WUQ0\nDsC7ALowxhREtA/AGcbY6+XnxwIoBpACoDWAeQAKAPRg5Q9CIuoE4G8ATgCWMsZeNdT7M1ckJYAH\nKgFraOz8rgCmABgIoCtjrNYKY0TUD8AeAG0qf4GJyAKAJWOs4AEyCAA+A/D6008/zVasWEFWVlJH\nv8TERMyePRvfffddldLXarXa4Jmyx44dw7qFCxHu6opAT0+Djl0bN+7cwZc7duDN4cPhoUVZ76Ky\nMvyRnIwp77+PsLDqVsmmQVxcHPr376+6c+dOoVqtfowxtkeb+4jIB0AsgEGMsQvlx6oogVruaQXg\nKoCBjLF9lY7zAOwYY7WZk5ockjnoATDGShhjyYyxE4yxKQCUACY/4JYT0PgX2lQb5149CsCF47id\nRPTa119/jR9//LFZKoArV65g//79VY75+flh9erVNXofGKNUQkV0kCkUAAB4OTlh4YQJNcpUbDh6\nFOfT02tcn5qdDVsPD7Rr184k8olBhw4dcOnSJX7AgAF25RF5r2npJ4gA4AbgNBEpiEgBoC+AV4jo\nXm1jlC/UclDz96pqLgoAkJSArnAALB9wvhM0EUOZ2g5IRGE8z5+xtLTsu3PnTpo5c2aztf+fPXu2\nxjEbGxvY2dmZZH4xPneqpbl9n+Bg2FZbBChVKqTfuYOQiAg09QWCs7Mz/v77b+7NN98kAF8CWFOL\nr606uwF0ANARQHj5KxYaJ3E4q8XkUb57cIEOv9emSLNVAkQkJ6Jw+q8rUkD5v32JyIaI5hJRNyLy\nI6LORPQ9AC9o7PsgogAimlV+zr88z+AnAP9WbEe1kGE0x3HHQ0JCPOPj47lBgwYZ5b2aG2q1GpMn\nT8auaiWbx4wZg379+okjFMyndpCnoyMC3KuW5N+fkIDfYmPRvkMHkaQyLTzPY8GCBVi3bh0EQZjA\n8/xRIqpzi8YYK2KMxVd+ASgCkMsYSyj/vS8o/037E9FAaKJ/LgH4x0RvyyxptkoAQBcAZwCcgmb1\n/gWA0wD+D4AKQBCA36DJF9gOjaPoofJwUQC4B00s8T8AEqDJBdgEoErSWV0Q0YsANkdHR1seO3ZM\naMrhn4wxVF6IcRyH+fPnY/DgwSJKVROO48AA/HH6tNii1MDH2RmjR45EYOB/EcbFxcXIyMgQUSrj\nM378eBw9epRcXFxCBUE4QUS62MIq63QVNMEb26D5Ta8EcBJAH8aYeaeIG5lmqwQYY/8yxjjGGF/t\nNYkxVsYYe4wx5ssYs2aM+TDGRjPGTle6P4Mx1o8x5sYYs2GMBTLG3q0lT6AKpOEjAMtefvll2rBh\nA9nY2Bj77YpGSkoKBg8ejKysrCrH3dzcRJKobirMMkmZ5mcdSL99G0GdO6PydyUvLw/vvvtujc+2\nqdGlSxecPHlSCAgI8BAE4Vh5Mli9MMYGVDiFGWOljLFhjDEPxpgVYyyAMTaNMZZtXOnNn2arBMSg\nPOpgGYAP33nnHSxevNisasEbA39/f/zzzz9o0aKF2KLUCxEBRGbXVKZUocAdjkNoNVOQl5cX1qxZ\nA/dqpqPr16+bUjyT4OfnhyNHjgidOnWy5zjuXyIaIrZMTYWm/QQyI4jIiuO4TRzHTV29ejXmzZvX\n5BzAJ0+exMiRI6FUKu8f4ziuUVS6BMy3lHR6Tg6sXV0RHBxc77UlJSV49913cerUqXqvbWy4uLhg\n3759fGRkpCWAHUTU9JIlREBSAiaAiBw4jtslCELU1q1badKkSWKLZBRCQ0MRExMDQRDEFkUvKiJ1\nDJXdayjSb99Gu44dYWtbf9kpa2tr/Pzzz6jeV7qp5APJ5XIcPHiQe/rppzkAvxBRk0/mMjaSEjAy\nROTI8/xemUzWc9++fdzIkSPFFskgpKen48MPP6zycLGxsWm0Rc2ASjsBM3pglimVyAXQvgHJYSqV\nClFRUThx4oThBBMRmUyGH3/8kd5++20AWERE74gtU2NGUgJGhIicBUHYZ2NjE37w4EGuZ8+eYotk\nMAoKChAdHW22JhR9qPAJvLdhg9ii3Odabi4snZ21MgXVBc/ziImJQfsmUHSuAiLC/Pnz8eGHHwLA\nPCL6QGyZGiuSEjASFQrA1ta2w4EDB/jISK0CGsyWwsKqQU+hoaEIr1ZorbFTodAe7dJFZEn+Iz03\nF23Dw6sUutMHQRCqRBap1WqsX7++iv+msUFE+Oijj/Dqq68CwMdE9KHYMjVGJCVgBIjIief5vba2\ntqH//vsv37Fjx/pvMmOOHj2Kp59+GiqVSmxRjArHcSAiRASYRwl5hUqFHLUa7Y2gbBljyM/Pr1Fi\nuzGyaNEizJ07FwA+IqJZYsvT2GicHjwzhogceJ7fLQhCh/3793NNodBX165dsXnzZqOYfkpLS5GU\nlISysjJ06dJF1JBZc/MJZOTmQtZAU1Bd8DyPqVOnGnxcsXjvvfegUqkwe/bsT4hIwRj7TGyZGgvS\nTsCAEJE1z/N/W1tbhx88eJCrbC75+OOPa5hUzJWTJ0+itLT0/r95njeoAlAqlYiPj8f6X9dh4Zz/\nYctPn2LHpqVITk422Bz6UOETMJfooLScHLQKDYWzc/WS98bh5s2bmDlzJgoK6qx1aFYcOnQI27Zt\nu//vDz74ALNnzwaA+UQ0QzTBGhmSEjAQRCRwHLdBJpN13bVrVw0fwIABA5CUlCSSdNqTlZWF1atX\no6yszOBj37x5Ezv+/BNfzJ+NjavnIP/ybxgUXIjXnwiAk+VdJMTHG3xOXahQAocvXRJVDgBQqtXI\nUqkQ1sl0ja08PDwwbty4RhPhdenSJQys1p/ho48+wsSJEwHg6/L+ARL1IJmDDEB5mdrlAEbExMRQ\n9+7da1zz0EMPmVwufXB3d8fy5csNNp5SqcSFCxdw8vhhXL96GrbcbUS0sUN4X2+4Of/XQCrE3xZn\nL5zE8BEjRDMJEREIwL74eAwSOZLmxu3bkDk5GcUU9CB69epl0vkaQm35NkSEH3/8ESqVCr/++usv\nRJSrbU+C5oqkBAzDJwAmr1q1Cg8//LDYsujEtWvXcPfuXYOHDxYUFODkyZOIPboXxblX0KaFEuN6\ne6BdyzBwXE3TUkhrNxxOSkN6ejrEKqZ3P0Q0KkqU+SuTmp0Nv65dRa+xtHXrVly+fBlvvfWWqHLo\nAsdx+OGHHyg7O5vbu3fvdiLqXbnul0RVJHNQAyGimQDe//jjj/Hcc89pdQ9jDK+++qpZ+AiWLFkC\nCwsLg42Xk5OD7du2YfFns3Dsr2/RwSUFMx/zw1Mj2iMowLVWBQAAXu52cLAsRPzFiwaTRVcq/B5i\nZ9eq1GrcUirRwYSmoLqIiopC//79xRYDgMYH8P3332t1rYWFBWJiYriwsDBLnud3EVFrI4vXaJF2\nAg2g3Ob41euvv44PPtA+V4WIMHbsWGRlZWlVCsCYLFiwwCDj3Lp1Cwf+3Y/4M/thi5sYEOKEiNBg\nWFlq9xUjIgT72eBiXCwefuQR0Rq8wAx6CmTm5YF3dERISIjIkmg+ky5mkjeRk5ODsWO1N/Pb2tri\nn3/+4YODgx3z8vL2ElFXxtgtI4rYKJF2AnpCRJFEtHb8+PFYuHChzvf37NkTASLEo1+5csWg4+Xk\n5GDTxg1Y9uVsXD+3HsM7qvDKuA7o1dlPawVQQXCAKwpyU0SrkV/hExA7RDQ1OxvebduabeXV2bNn\ni1Kp9NFHH9V50eTm5obY2FjO2dnZSxCEbUT0oM6AzRJJCegBEbXgef6PoKAg7vvvv6fGUg7677//\nNpjTNz8/H9u3bcO3X8xGxtn1GNUFmPlEB3Rp7wVB0O/z8PVwgK2Qj3iRooQ4jgOI8OWOHaLMDwBq\nxnCzrAxhERFmW5JjwoQJyDTDngt10bJlS2zfvl0AEAnga7HlMTcax9PLjCAiC57nt9jb2zvv2rWL\nN0S/V6VSieeee87oPoKhQ4fi888/b9AY9+7dw759+7Dki/9D4pGfMLTDPcx8ogM6h3iC5xv2deI4\nQpCPFRLiYkWxy1eYgzqJ2OXtZl4eyMHBLExBdREUFGQSE9GhQ4fwxRdfGGSs7t27Y8WKFRyAqUT0\ngkEGbSJIPgHdWUxE3f/44w/y9vY2yICCIGDatGkoLS01qo+gIStLxhji4uKw66+tKMmOQ/cga/SO\nCIGlhWG/QiGt3RC79yoyMzPh5eVl0LHro8Ic1DsoyKTzViYtJwcewcEmf+8NITk5GXK53ODmK7Va\njRdeMNzzetKkSdi7dy9++eWXb4noImPskMEGb8RIOwEdIKIpAKYtW7aMDF0RtGvXrnB1dTXomAsW\nLMCmTZsaPE5WVhZ+/H4lYn5eCF/ZBcx4rDUG9QgwuAIAgJbejrChu6KYhCp2AmLBGENmSQnCu3Qx\nW1NQbZSVleGjjz4y+Lh9+vQx+KLohx9+QM+ePSEIwlYi8jHo4I0UaSegJUTUE8DSadOm4fnnnzf6\nfIyxBj8Ihg0bhg7VWhLqglKpxL/79+Pwvq1w4q7j6UF+CPB1apBM9cFxhEAfGRLiTmPgwIEmfRiK\n/eDNys+H2s7O5AliDSU4OBjLli0zyFiG+N4/CJlMhi1btvCdOnVyyMrK2k5EPRljpfXf2XSRdgJa\nQETePM9vCw4O5hYvXmz0+YqLizF27NgG+wjCwsL0/kGlp6dj2TeLcOSvFejTphDTxnQwugKoIKS1\nG3Izk0zeQL1iJ3Dh2jWTzltBanY23Fu2hJ+fnyjzi83hw4cxa5bxi4C6u7tj+/btAsdx4QCWk9ja\nX2QkJVAPRGQlCMI2d3d3x3379nGGTKyqCxsbG7z//vs6t2lMSEhAcXFxg+ZWKBT45++/8cPST2FT\neAwvPtoS/bq21DviRx8CfJxgyfKQkJBgsjmB/3YCW06eNOm8gGYFfKO4GGGRkaLvSBrK7du3MWXK\nlCpFCLXBwcEB7777rpGkqkpERAS+//57DsAzAGaaZFIzRVIC9UBE3xJRp+3btwumjNvu2LEjdIk8\nKikpwezZs3X+4VUmMzMT3y37Gid3r8bg9go8F9W+Sn0fU8HzHAK9BcTHGS7TPzk5Gbt3765yjDGG\nUaNGYec1V3UPAAAgAElEQVTOnQD+6zHcNzgYH/72W40xvvrrLxypVlyuVKFAyb17DZYvt7AQKltb\nhIaGNngssXF2dsYzzzyj833t27c3afLkk08+iWeffRbQtKg0j7RoEZB8Ag+AiB4HMOm7774TPWtS\nrVY/sLCatbW13k5gxhiOHTuG3X/+CjfhGqaOagN3F9M//CsT0toN5w8lICcnRyeH+b179zBv3jwM\nHz68yt8sIyMDeXl5Va4lImzbtu3+yrvivz3btUNULX/vyf3711ilX711CxuPHcMH0dEQKv19Lt+8\nCW8nJ9hYapeblJqdDRdfX/j7+2v3Rs0cbQsm1ve9NjYrV65EWloaDh48uJ6IAhljefXf1bSQdgJ1\nQERuPM+v6NWrF9NnVWNIcnNzERUV1WBTT20UFxdj3do1+Oe3JejqdxvPj+4gugIAgNa+TrBQ33mg\nSSghIaGGQ1Imk+GRRx6p4Vzt06cPxowZU2OMyg/1imSxujIUbK2sIK/2UA/18cH/jRlTRQEAwLm0\nNJxJTa1yrEyhqLVXAWMMGYWFCOvaVdQHojEpKiqqcezo0aOYMUPcsv+CIOCnn37iLC0tXYjoS1GF\nEYmm+Y0zAES01NbW1n7z5s2i+41cXFzw+eefVzEPMcawdOnSBjmPMzIysOLbL3H9wlY8OdAFQ3u1\nMant/0HIZDzaenGIjzsDQLNizM/Pr3KNSqWq0eeYiBAZGQm5XHdFZsgCcmO6dUOvwMAqx86mpWHO\nli01rr1TVASFjY1ZJ4g1BIVCgejoaKSlpVU57uvra7DaVQ3B19cXX331Fc8Ye46IHhFbHlNjHr94\nM4OIHmeMjVmxYgVvLvVbAgMDq6wSc3NzoVAo9LahxsbG4oflC2BXehovjG6Htv4uhhLVYIQEuCIz\n7QLu3LmDl156CXv2VC0L3759exgyX6PCJ/DzwYMGG7My3dq0wezo6CrHisrK8N2ePZA5OYlSS8oU\nyGQybNq0Cb6+vlWO+/j4iF5AsYJJkyahS5cuap7nfyQiR7HlMSWST6AaROQmCMLykSNHsrFjx5pt\nmIa9vT1eeeUVne9TqVT4a8cOxB74DZGtFBj2UPsGl3swJGo1w/6TqQht7YY2fs4QDiYiISHBoI1u\n6qIiRNTVhA8mS5kMdnZ2CO3cGTzPm2xeU2Nvbw9A47MxRYSdrhARYmJiuODgYOfi4uIvAdTsWNNE\nMZ9fv/mw1Nra2mHZsmWim4HqIj09HaNHj4ZCodDpvuLiYqz56Xuc2f8zRnW1wvC+7cxKAQBAQVEZ\njpy9Bp7nYGkhoI0HIf7CWZPMXfH3HlrNxGRMCktL4ebrix49elQ5PnPmTBw+fNhkcpiC2NhYTJ48\nGQBw48YNkaWpSXM1C5nXE0BkyqOBzMoMVJlFixYhOzsbfn5++O6773TqBZubm4tVK5YgK2kHnnnY\nB51DPI0oqXYwxrD3eApUKvX9Yw52Vpj1Qh+4OtkAAIJbuSAj+XwNf4AxqDAHmZLU7Gw4eHqideuq\nPU/mzp3b5JLG2rZti2XLlqG0tBTPPvusyZMBtWHSpEkYMmSIWhCEH5qLWUhSAuWUm4FWjB49mo0b\nN05scWpQWloKCwuL++0GdSlel5GRgdXLF4G7cwxTotrBz9PBWGLqxMUr2Thy9hruKVR1XtOupQt4\nRa5JEsfE6CyWcfcuOkRG1lDo9vb2NWzoS5YswenTjbdLooODA2xtbWFlZYXt27fD3d1dbJFqQERY\ntWoVJwiCC4BmES0kKYFyKqKBzNUMZGVlhenTp9d6TqVS1RqCBwCXL1/GTysXwZXFY3JUCJwcrI0p\n5gNRVHvYt2/rjlkv9IG1Vd07GmsrGVq5MyRcPG9s8e77BDJu3zb6XABQUFKCIktLhGrZ3/nRRx+t\n8+9srhQUFNR63BAl2I2Fr68vFi1axANoFmYhSQngv2ig5cuXm6UZqD4uXbqECRMm1FjBxsXF4dcf\nvkJru2uYOCL0gQ9bYxN36RaGv7QOpWVKne8NCXBB2uWzRn8AVij/dSayxafm5MDewwNt27bV6npf\nX1/07t27yrFbt8y3W2JcXByeeeaZendWKpWqTmUhFi+88EKzMQs1eyVQnhS2cvDgwUyX/qWm4PTp\n0zh69Gi91wUHB+Onn36qYs8+deoUYn75BmGeORg7NBgymbiRJ8EBbvh7xVM6t5wEgMCWLkBZFhIT\nE40g2X9UJIs907evUeep4FpeHkIjIxsULfPTTz/h22+/NaBUhiMoKAg///xzvX6WK1euYOLEiaI0\nEqqLCrNQc0gik5QA0VIbGxvbNWvWmJ0ZaMeOHQjSssGJo+N/i5UTJ07g9w3LEOlfiKj+geA407+v\n/SdSUVzyX/SSIHB6yyG3sUBLNzXiLxjXJFThGDZFiGhRWRkKBKHBtYLefvvtOs2EYiOTybTKAwgM\nDMTq1avNrnBec4kWatZKgIhGM8bGrFy50izNQLNmzYKTk27lm48fP46t675BR58CPNy7jSg/rFs5\nhfjj30u1lkjQl5BWzki5dBolJSUGG7M69x3DRpvhP1Kzs2Hr4YHAalnFDYUxhi1btkCp1N3sZgj0\nNU+5uJhfsiKgiRYKCwtjPM//QETmkdlmYJqtEiAimSAIXwwdOlRtbmYgfYmNjcVfm1fC2zYH6/+6\nKNrKqoWrLT5/awhsbQyXFBQU4ApWmoWkpCSDjVmdCsewKcwS1/LyEBIRYRQH6d27d3HgwAGDj1sf\nV69exaRJk0RTQMagvMggEZErgNfElscYNFslAGCSUqlstWDBAs6ctqHnz+tn8jh37hz+2PQdugWU\n4KVxkfhhTpSBJaubi1eyEHvBuMk/dnJL+DorEX8hzmhzVPQY/t3IYZjF9+7hLs9rHRWkC0SEZ599\nFgMGDDD42PUREBCAzZs369wHozqzZs3S+3dgDFq2bImXX36Z43n+HSJyE1seQ9MslQAR2fA8P3fo\n0KEsLCxMbHHuExsbi5UrV+p8X1JSErZt+A6dfAsw7CGNCciUkUC/7YyHp5vxd8rBLR1xNTEWZWVl\nRhm/YidQpmMmtq6k5+RA7uamtb+nody6dQvHjx83+jxEZJCdzSuvvGJ2u4l3330XVlZWlgBM0/XG\nhDRLJQDgZQDOS5cuNZ8tADTdjnRtX5meno5NvyxHkGs2RvZtV6sJ6FZOIQqLG974pC4+fKkfvFvY\nG238CkJau0FVfAuXqjV2MRQVn93oyEijjF9B+u3bCOzUCTY2NkadpwILCwusXbvWKMrz6tWrBjef\nubm5oXPnzgYds6G4urrinXfe4YloJhE1jaYP5TQ7JUBEzjzPvz9t2jQyt6qNRKRTEbGcnBz8+vNy\n+FilI3pgUJ3RNynX8/DaZ38bSkwkJucYbCxdcLCzgrejAvEXLxhl/Ps+AaOMrqFMocAdjkN7E+5A\nnZycsGTJElhq2eBGW27duoVXXnnFaDszc+PVV1+FXC4nAP8ntiyGpNkpAQD/s7CwsDFFQ2tt0Wcl\nVVhYiLU/fgc7RQLGDQt+YB+A7uE+WD57RENEvM+eY8lYtfk0GGPIvl2EnDuGb3TzIIJbOeBKQizu\nGaClY3U4jgMBgBEdw2k5ObB2da3R9MbU3DZAVnSLFi2wbds2o2b/pqam4tixY0YbXxdsbW0xd+5c\nHsDTRGR4h45INCslQEQ+RPTqW2+9xZlLSOivv/6KDRs26HSPUqnEhl/XQplzEhOGBWqVgGWoaqED\nurXCwjcH4+jZDCzadAiLNhxCVq7pShmEtHaDojATV65cMfjYFTuBfCOGoabfvo224eGi19GfN2+e\n3u1IK2Ps8tcuLi5Yu3atUefQhRdffBH+/v4qnufniS2LoWhWSgDAbGtra/6NN94QW477uLu719r2\nsC4YY/h9+zZkJu3G+CGt4Giv+yrsUmqu3j6CsnsqbPj7ArbFnkfb7paw8lRi4+64GnWBjIWzgzU8\n7EuREH/ROBMQ4fv9+40y9D2lErmMoYMJS1XXxYIFCzBq1Cid74uLi9O5hHlDsLOzwzfffGOy+erD\nwsICn376qaBSqUYQUZ0djYioNxFtJ6LrRKQmohofNhF9TEQ3iKiYiHYRURvjSl87zUYJEFEgEU3+\n5JNP+IoGF+bAwIEDdQqpi4uLw7kjWzGyh6veztjs20X46Nv9Wl27ZXcCVv52CgCQc6cYK2JO4nxu\nGoaM9UD/Qd54OMoXGSU5+Puw4VfmdRHsb49LF08aPIKkwjE8qpYm84bgWm4uLF1cRDcFAZr3qquP\noKCgAB9++GGz8QHUxbhx4xAaGqrkeX7hA8oMyAGcBfASask/JKL/AZgBYCqArgCKAPxDRCbvuNNs\nlADHcZ96enqqzTXFXlusra0BQY7zV3JQUqrfiqxXZz8sfHOwVte6Otng2aiOuJJ+G8tijqNAnofH\nn2mJ1m00CsjVzQo9B7vi8KVkJFzN1kseXQlp7Yay/Ou4evWqQcclInAcB38jZa+m5eaiTVgYHBzM\no5R3Zf744w9cuPBgh7udnR02b94sqilLrVbXf5GR4TgOCxYsEFQqVU8AtZaTYIz9zRibzRjbBqA2\nRfEKgE8YY38wxi4AeBqAF4BHjSZ4HTQLJUBEkWq1OvrTTz8VDB0hoQ+pqanIztbvgdm2bVs8PfVt\nZCqD8F1MPG7l6NdoXtsEud4R/jiXdAs//H0SDm2VePypVnByrvoZdgh3hk+oDDEHLuJuQale8uiC\nq5MNXOUlSIiP13sMlUqF/fv3Y9u2bdiwcQN+WvMTVv6wGmcTE3D+eobBwx4VKhVy1Gp06NjRoOMa\nim7dumG/FmYwMRMri4qKMHbsWLMoNPfwww/joYceUgmCsICIdHqOElErAB4A7jfNZozlAzgOoEdd\n9xmLJq8EiIg4jlvQrl075VNPPSW2OAA0GZGlpfo/LAMCAjDlpTdg6dUPq35PwcUrDevQdOxcxn0f\ngUqlvr/DYIxh19Gr+O3IObTtboURo/1haVnTEUhEGDTUG/dsi/DbnotQq437IyUihLS0Q2LcCahU\n+vkikpKS8Ov+P/Dn9dM4UJaCU5Y5iHcoQLangMSCXANLDGTcvg2Zk5NZmIJqw83NDTNmzKhxPDY2\nFnl5eSJIVBO5XI7XXnvNLBLJiAgLFy7klUplCIAJOt7uAY2JqHqhpVvl50xKk1cCAAap1ep+c+fO\nFcylkfePP/5Yo2uUrjg5OWHy1JcQ1H0cNh3Mx64jV/V++CpVany9VpNR+tKcP3Hk7DWo1Qzb9iVh\n14VEdB3igH4DvR5YBdTKWsDgkd64lJuJA7FpesmhC8EBrijNz0Bqaqpe91tZWYGBIXL8UPSaOBLd\nxw5DZPRg+HYNRsZNw5u10rKz0ap9ezg7Oxt8bGNx7949LF68uMFlIAxJr169dGqraky6d++ORx99\nVC0IwjwiEt/EoCdNXgnwPP9ely5dVI899pjYotzHUD8qmUyG6MfGYOhj03E0xQ6/7Liol5/goc5+\neG+qplnJZ68NRr/Ilti08yKOpl5B/yg3dI7UrlyKj68cnXo7YtfZJKRn3tVZDl3wcLWFk1Uh4i/q\nFyUkl8shgENpYfU8B0J+oWFDXpVqNbJUKrM1BdVGTEwMfv/9d6xdu1b0cFZzZu7cuZxSqfQB8LgO\nt92Exk9QPU69Rfk5k9KklQARBatUqn6vv/46b05F4gwJEaFHjx546vk37/sJburpJwAAWxsLrP87\nDmcyUzHkMU8Eh+pWyrprD3c4tgQ27o7T23GtDUSEYD9bJF44qZez0NbWFgI4lBVVzQkgAoJbtzSQ\nlBpulJuCQkJCDDquMRk1apTZrLhrQ6lUGjwwQB9CQkIQEhKi5nn+ZW3vYYylQPOwH1hxjIjsAXQD\ncMTwUj6YJq0EALzo7OysjI6OFlsO7NmzB2fOnDHa+AEBAZg6/U1YevXD6t9TcOGydn4CtZohL1/j\nn1Cp1NjwTxy2Hr+AvsPd70cA6QLHEYaO9MFtLg/b9ycZ1YkX0toNRbfTkJ6ervO91tbWkBFfixIw\nfNmI1Jwc+AUFwc3N/AtQHj16FBkZGRAEQa88AlNx7949vPjii3r7hAzJnDlzOJVKFUlEnSqOEZGc\niMKJqGL7F1D+7wo78GIAs4hoJBF1APAzgAwA20wrfRNWAkQk5zhu8osvvmgWEUHHjx/Xupesvjg6\nOt73E/x2KB87D9fvJ/h42b/469BlqNUMm3bGIy77GvoMbYHTsfrXB7K3t8CARzxw+lo6Tsdn6j1O\nfXi3sIO9hX4mIY7jYGcjr2EO0gR6GE4NqNRqZCkU6GBmBdFqQ61WY+3atVW61JkrNjY22LZtm9Ez\nlrVh5MiR8PDwUAKYVulwFwBnAJyC5gv1BYDTKK87xBhbAGAJgBXQRAVZA3iYMWa8So910GSVAIAJ\narXaZurUqWLLAQB47733TGJbrewnOJZqj7V/XqzS5rE6rz3dHeMebo+texM1JqBoT4x81B9PPtMw\nhdWmnQPadbHB9iPxRisroTEJWSMhLlarHUdZWRnOnj17vzuZg9wOZUUliPl4GbbOXVHl2qz8fPzv\n11+RklV1R3U+PR3nddh53MzLA+fg0ChMQRzH4dtvv631e7p48WKj93jWFVNVYa0PQRAwffp0gef5\niRVN6Rlj/zLGOMYYX+01qeI+xthHjDEvxpgNY2woY8x0GZeVaJJKgIhIEISXR4wYwfz9m1TVV62o\n8BNMnPImbqqC8N2Wuv0EDnZW2HnkKo6nJaP/yBYIaG24bOo+/T0ha6EwalmJkNZuKMhNQUZGRpXj\neXl5NUpOX79+Hb/99huKijRKydHWHmVFJRj9wYt49P0XAGh8AmcvXoa7vT0+Gz8erdzdq4xhIQi4\nW1x191BQWortp07VOA5o2kh6tW0Lc6lVpS/jxo3TOxKrOfD888+DMWYJTdJXo6JJKgEAPZRKZfsZ\nM2Y01fenFa1atcLU6W/C2nsAVv+RirhLmrDkyiai4+czsO/iJXQf7IygkNrNAFt/S0FRke5OXpmM\nw9CR3sgoycHOo8Zx4vl6OMBWyEdCQkKV47/88gtOV+sQFhAQgDlz5sDV1RUAYC+3g6KotEoCFIHg\n41m37T7Iywu9qzWDseB5OMnlUFVzUBeVlSGzrAzhXbqYXRP1Cg4fPlxvpjAAeHh4YNiwYSaQSHeS\nk5MRF1d3xzm1Wo0PPvgAAQEBsLGxQZs2bTBnzhyDyuDh4YFBgwaB5/lXH1BKwixpkg9JInrJ399f\nOXiwdqURjEViYiK+/vprUWVwdHTEpCkvIrj7OGw+XIhf/jiP8W9vBgAkpeRg+7GLCOlli04RrnWO\n4e0rx77d+rWPdHO3Ro9BrjiUeNUofQhUKjV2HzyP37duqmISmj59OsaNG/fAe+VyOVRF1ergEODi\npFtZB0uZDL2DguBczYyyat8+nLtxw2xNQYwx7NixAy1bthRblAZhY2ODFStW1Hl+/vz5WLFiBZYu\nXYrExEQsWLAACxYsMHhhuvfff59UKlUrAKbv7dkAmpwSICJ3AE/MnDlT4Dhx397NmzcxYoRh6vg3\nBJlMhtHRj2HYmOmIy3RCZHsfpGTcwYa95+EZyqN33wcnKUZ2c8eIKP3NamEdneEVIsPmfy8gv9Cw\nxcdkMh6zpvaBi60KmZm6OaE1SqBa5rYBo4O6tm6NYSNGwMvL6/6x9PT0BmWLGxIiwty5c3X2VRUX\nFyMmJsZIUumOh4cHlixZUuf5o0ePIioqCsOGDYOfnx+io6MxZMgQnDhxwqBy9O7dG0FBQUqO4xpV\ngbImpwQATOI4jn/22WfFlgP9+vWDuXQvIyJ0794dL776AUptOuLNr/ZC6VSEIY/4GN1UUaWsxO54\nvTObs3KL8OT/YpCZXVDleI+OPrCmvBomofqQy+VQFd+DukqYoWE+C8YYbpSU1DAFJSUl4b333jPI\nHGJhbW2NAwcOoKCgoP6LTcSDvsM9e/bEnj17cPnyZQDAuXPncPjwYTzySK213xokw8yZMwXGWBQR\n+Rh0cCPSpJQAEfE8z88YN24cuRipEmRjx8/PD65e/rDys4dXqB3yCnRvoPLDyiSdfQTWNgIGj/BC\nUu51HDylX1kJR3srfPrKAHi62VU5zvMcgnwsEH/+lE55CfcTxor/W5kTEbJy7uglX2Wy8vPB7Oxq\n1AoaPHgwvvzyywaPry+HDh3CgQMHGjQGEWHx4sWws7Or/2Iz4J133sETTzyBoKAgWFhYICIiAq++\n+mq95kJ9eOqpp2BpackATDH44EaiSSkBAA+rVCrvV155RWw5zIqkpCTs3bsXAHDg4AGk3DyB518f\nhpbBnZBw7R6uXrut08OzfZgTzsTqXmTNx88W4b0csOvMJa3KShw7l1ElvNVCxsPfq3bndXCAG3Iz\nk3SqziqXy8FXyxrWKIGGt15Mzc6GW8uWWtWIWrNmDT788MMGz6kNx44dM7sm7oZk7dq1NTLIN2zY\ngHXr1mH9+vU4c+YMfvrpJyxcuBBr1qwx+Pz29vYYNWoUz/P8DCIy35TrSjQpJcDz/IxOnTopIyMj\nRZVj2rRpZmP3BYDt27cj8VI8Zs1+ExtjfkCnvi5o1c4DQUHBaBPSFdfzrHD+UpbWYZyR3dzxUD1+\nhLro3qsF7FsybNoTh9KyuqtB3sopxPq/LkCh1E6mAB8nWLI8xOtQXlpTP4hQVvRfaCcBCA1smAmP\nMYYbxcUI69IF2vilJk6ciBdeeKFBc2rLm2++afB8FWP0e9aXO3fu1IgUevvtt/HOO+/g8ccfR2ho\nKJ588km89tprmDfPOB0iZ82aBZVK5QwRegPoQ5NRAkTUWqVSDZk5c6aoJQ/VajX69Olj1ObbutK7\nd28kZ5xA0o1dSM86hbIyBVQqNUAEbx8fhEX0RBHccSoxG4XFxu0axXGEYSN8kEt52LYvsc4dSAtX\nWyx+Zxgc7LT7HAWBQ6CPgIQL2pfmkMvlkFUvImcAx3BuYSFUtrYIDQ3V+p7KzmMAZmVvr49p06Zp\nFWZqCmbOnInwau07i4uLa2QWcxxntAY1HTp0QM+ePVW61BMSkyajBACMl8lk7IknnhBVCI7jMH78\neFFlqM6Bw7tx83Yihk5ww+ipfog9fgobvz+AvNvlSVOOjoiI7AELhwCcuXQXt3J1K0D31edxOvkI\n7B0s0P9hTVmJMwmaoolHzlzD8fMZ9dz5YIJbueLWtXjk5mpnqpLJZLCxtK5mDkKDq0akZmfDxde3\nQaGXS5YseWDEi7YcOnQIW7dubfA4D2LevHnw8DB5GXytGTlyJObMmYMdO3YgLS0NW7ZswaJFi2DM\nmmLTpk3jVSrVQ43BQdxklADP86MHDBhA5pJKLjaVVzn+Pm2RmabAuSN34dvaAVGT/ZBfko61K3Yh\nofzBa2llhY6dIuDu2wGJ1+7harr2foJefTyQclW3lWvbQAe0jbAuLytRiIOn09DOv2HO/DZ+zpCp\nbutkErIvLx1xnwZqAcYYMgoL0SEyUitTUF289957mDZtWv0X1sPly5cxaNCgBo/zINzd3e8n4Jkj\n33zzDcaMGYPp06cjJCQEb7/9NqZNm4aPP/7YaHMOHz4cPM8zACONNomBaBJKgIg8VSpV56eeeqpR\nZeoZk48++giHDx9GYWEhrqRewLAxHeHtGYjff8hAcvwdjH6+DXwC7+HPmH/x95bTKCtTgON5BAYF\noU1oN1y/q72foEtXN7QP071ZSt8BXhDc72HT7ot445mecHKw1uet3kcm49HWi0PChbNa3+Mgt61W\nSZSQcCVVbxnuFBVBYWOjkymoLqr3ndCnIutzzz3XLPsBnDlz5n6pablcji+//BIpKSkoKirC5cuX\n8X//939GbZbj5OSEoKAgRkRRRpvEQDQJJQBgBMdxzNBxv7pQUlKCd955R7T5qzNs2DD06tULO/76\nEyWUiuFjIzD2ud7oM7AH4o+p8PtPVxHe0x39RjsjMSEOv6zYi1s38jR+Am9vhFfyExRUz6o1AOmp\nhffLSlwrycbOo4apnRUS4IYbqRe0bonoILdDWWElcxAIzo76109Ky8mBo7c3WrVqpfcYtZGdnY2o\nqCjcvWvcZj0NZd++fWbRA5jnefz222+iyjBx4kQOwEAiMmst3CSUAMdxUT179lSL2brv1q1b6N+/\nv2jzV6dnz564fPkyTl/ch17DAmAjtwTHcYh8qC2enDoUFvDClpVpKMxXIHpqK5BVNn5dvQunjlwF\nYwwOlfwEZy/f1bqhPWMMH8869UAfwZlTOfhm0QUwxuDmbo3uA11wMOEqklIaXlairb8zBFWu1olj\ntnLbqlnDBLi56v89upafj7CuXQ2+ynRzc8NXX31Vb2z+oUOH8P333xt0bl04depUvQ3rb9y4gYkT\nJ8LV1RU2NjYIDw+vUeepoYSFheF///ufQcfUlccffxyMMQHAEFEFqYdGrwSISM4YGxIVFSVqYfGW\nLVti6NChYopQBYVCgd93xKBFgBJBHbyrnHNrYY/xU/qha89InN5bgn1b09H/UV8Ed+Oxb+dhbP3l\nKIoKSzV+gs5d4O7XAYkZClxJz613lUdEGB7lh9s5de8eOnZ2wWeLu93P8gzv5ALPYBk2/3uxwWUl\nLC0EtG5BiL9wTqvrbW1tq9QP0rgE9FvJ5hUXo9TKymi1glq1alWvnyE3Nxdjx441yvza8MYbbzxw\nMZSXl4devXrB0tIS//zzDxISEvDFF1/AyUm3DnaNgYCAAAQGBioBmG93HjQBJQBgEGNMFhVl9qY3\no1NaWoqs8vr3R44cQVZ+PPo+ElJrSr0g8HhoYAjGTRoMdYk7tqxMhZ2jBR5+yhPXMy9j7fLdSL2S\nBY7jEBgYhDahXXHjrjXOX8qu108QEekGX/+6d8BEVLVyJxEGD/NGqU0hNu/Rv6xEBSEBLrh29Szy\n8/PrvbaiiFyFcqMGlI1Iy86Gg5cX2rRpo/cY2sIYQ2xsbI3jUVFRovoA6itBMn/+fPj5+WHVqlWI\niN2wqWEAACAASURBVIiAv78/Bg0aZHDzmbkQHR0tCIIQRUTid7+pg6agBEa2adNGaeyuXY2Bb7/9\nFvv370d+fj72HdqB0O7OcHZ9sPnAy9cZT74wAGEdO+HojgKcO5KNh5/0g71HATav3YMDOy9CpWYa\nP0GXXiiGO04l6OYnKCpS4Nc1D7b5V5SVSMy5gcNndG8XWZl2LV3AKXK1aoIil8tBKgZFqeb9EEe4\nm69fj+Zrd++iQ2SkyXrz/vjjjzh3Trsdj7nw+++/o0uXLhg7dixatGiBzp07Y9WqVUabLzMzU9Q+\nCKNGjYJSqXQE0F00IeqhUSsBIuIEQRgdHR0tWoJYSUkJli5dKtb0VZg0aRIef/xx7Nm7GyqLTHTt\nrZ1itLAQMHB4GMZMHIiiHEf88XM62rR3RNchtog9HosNqzU5BQ4ODujctQcsHDV+Am0a2isUakx9\n5gB8fOX1Xuvrb4vwXvb451QSrmlRVqIurK1kCHBnWpmENFnDlUtHEK5l3tJ5zoLSUhRZWiLEAFFB\n2kBEWLJkCQoKCrBw4UKTzKkLarUaK1eurHE8OTkZy5YtQ2BgIHbu3Ilp06bh5ZdfNkoJBwDIz8/H\nF198YZSxtaFr166wtbVVwYxNQo1aCQDoqlQqnUeOFC8UNykpyWxipJ2cnJCVlYXYc/vQpZ8vLK10\nW5H6t3bH0y8NRrt27XFg623cTC/CkHFeKChNx5rlOxF/7hosLS3v+wmSMhS4kvZgP4FMxuGt98IR\n2kE7m2+3nu6wb8mwcc+FB5aVqI/gVs5Iu3z2fhexuqgoIldaoQSIENRad9NEanY27Dw8jN5HujJE\nBMaYQfIJDA3HcUhOTkZhYdWFglqtRkREBD755BOEh4djypQpmDJlCpYvX24UOQIDA/H5558bZWxt\n4DgOY8eO5WUymfEy0xpIY1cCo+zs7JQ9evQQTYCOHTuK6oirzp69u2DplI/2nf30ut/SSoaHoyMQ\n9cQA5KTLsX/rDUT0dYNfsAI7thzAXzGnoFCoEBgYhLbtu+FGgTXOJWXh3gP8BB07u8LZRbvyDzzP\nacpK4A5+/zdJ73DDoFauQFlWvSah6jsBKpdBV67l5aF9ZCQsLS31EVdvevfuDVtbWyiVShw9etSk\nc9fHvHnzavgnPD09a1RWDQ4ORroOfZt1xdR/k+qMGjUKCoWiDRG1E1WQOmjUSkAQhMd69+4tVK8L\n0tyIi4vTFC27cQNxSUcQ2a+lXg+yyrQJ9sTTLw2Gr08Q9m/RlGHo+YgDkhIv4JcVe3HzRh68vLwQ\nHtELJdQCpyv5CRhjWPvj5Tof4PU92O0dLNDv4RaITUu7X1ZCV+Q2Fmjppkb8hfMPvM7KygoWHH+/\niBwRgemYMVxUVoYCQTBIgpg21Pb5ERG+/fZbnaqoikGvXr2QlJRU5VhSUhKaci/wQYMGwcLCQg0z\nzR5utEqAiAKUSmW7yZMniy2KqBQUFOC9994DEWHf/j2QuxYhsL1X/TdqgdzWCqPGdcUjj/bFtUQL\nnD2Ui+5DXMFZa3IKYg9fgb29PSK69oClU+tyP0EBkq8WgONqjxQpLlJi+pRD9dYaahfkiDadNGUl\ncu7UbOCuDcGtnJFy6TRKSurumUBEsJPbobQiYUyPqhGp2dmwbdECgYGBesmpC4cPH8b7779f4zjP\n81izZg3c3Oruj2wOvPbaazh27BjmzZuHq1evYt26dVi1ahVmzJhh1HnLyspEq+wrl8vRr18/8Dw/\nWhQB6qHRKgEAIwVBUA8ZIl4exs6dO0WbuwI7OzusX78eN2/exIVLx9C5t3+DatZUh4gQ0tEXT780\nBO4urXHoj1y4elohsAuP/buOYMv/s3feYXFWaf//PFMZhmGG3nsooaWQ3ns0GnvXWHfVta2677qW\n9d33t667rrq66rq2daObGHuLUaNGTWKaCSEQYCgJhDa0oQwMDEx9fn8MgRAggSQwYfVzXbmUZ545\n58zDcO5z7vs+33v9bux2kUlTsgiJmURJjQOX3M7VawZPk/RWy7jrvnRkw9ipLFwahizIxnvf5ONw\njFzxcWJ8IK6uxgErz+Px8/HttxMorzKMqJ9qk4mJU6eOiXKsTqcbsjLZ2VrffPPmzb0ZOtOmTePj\njz/m7bffJiMjg8cff5znnntuVAq8HMv777/PO++8M6p9nIhzzz1X4nQ6ZwuCcNZVuxq3RkAqla5e\nsmSJx3KiW1tb2bBhg0f6Ph61Ws2OnT/gpTMPOBh2pvDVenPp9XNZeu48ynIFaso6yVqipbbhEOte\n2kJlmZGk5GQS02dSZ/Y+YZwgNc0PpdfJXXgKhZSVF0RQ1Wnkmz1lIx6zRq0kyt9BUeGJZY59vdV9\n2UGCgFIx/IB6l81Gm0RCembmiMd3KqSlpQ3rO2+xWEZNKnmkBAcH96tmtmrVKg4ePIjFYqGwsJCb\nb7551Mdw8cUXM3/+/FHvZyh61I0lwNlzorSHcWkEBEGQiKI4c8GCBR4bv5+fn0eP5x9LW1sbuYW7\nyJwdcUZ3AccjCAJTZsaz5vYVaLyiyfneREyyN74h7bz7xjd89u5egoNDmJw1hy5JCDnD1B060eGw\noGAVM5cGsF1fRmnFyKuZpcbpKCvOxmodehy+Pr69p4YFBMJDh+9SqWpqQh0cTEpKyojHNlxOZTL/\n+OOPefLJJ0dhNCNn6tSpXH/99R4dg1qtJiEhwWP9h4WFERsbawdmemwQQzAujQCQ4HK5fDxdJm80\nJ9yTIYoilZXuWr379u3DpWgmdfLJSxmeCfwDNVx5ywLmLZ7N4QMi3RYXZSVVfPvFLt59fRtOh5Ss\n6bNR6iZwoLRtQGH4Y2ltsfLL67fRZRk6HXTy1ADCUqR8sLVgxGJ2E+ODcFjqKS0tHfIetVqNo6PH\nXzxCj0plSwvJU6YwWhLmu3fvPiV/+TXXXMOaNWtG9J4nnngCiUTC/fffP+L+fubkzJw5Uy6TyWZ4\nehzHM16NQBaAp8tIepI9e/bw0ksv4XA42JuzneTJfiiVY1fSVCKRMHNBEtf+cgUyVxgJKaHMPz+U\nDmsN61/5hsNFjWROnkJo7CRKDQ4ODXGewM9fySP/b+oJ3UOCILDsnEi6vTv4YIt+RGmjOl8vwrU2\nivSFQ96jVqtx9IjICSOoLGa122kVhFF1BUVFRZ3Sil7oUYMdLvv27ePVV18dUJXrZ84c06ZNw+l0\nTj7bJCTGrRGIiIiwe+qQVmdnp8f9rZMnT+bBBx+ksLAQk6WKzOmxHhlHcJiOa25dxJyFM6nUg1wh\noAvt5ItPtvHVJ7nExMaTdJI4QXyCLxLJiZfg3upjZSWqRzTG1Dgdh/T7sNsHz0hSq9VgdeB0OBAQ\nsHQNL4ukqrkZVVDQqLqCIiMjRz3u1dHRwXXXXce//vUvdDrdqPVTWlpKYeHQxngsuP/++z32t5uV\nlYUoil7A6KeRjYBxaQSkUun0mTNnjt2y9zgeeeSRk2acjDYqlQqdTkd2zl5C42T4BXhONEwmk7Jg\neRpX3rQc0RpMU52TkBg4VJrP+pe/A5eqN06wv8h4QqVQURSxWgcPKEfF+JA5x5fN2cXU1J9cHO4o\nE+MDsXfUcfjw4PpFPj4+SI8eGBOgsrpuWO1WNjeTOGnSSeWdR8qJ4hengl6vP6FU85133snq1atZ\nsmTJGe33eKRSKW+99dao9nEypk2bNixhwdHgGPd1lkcGMATjzggIgiABsrKyPPccr7322lFd/Q2X\nlpYWDlfmkjp1dDKCTkZJgYHsnX0Ta0R0AGt+tZSMSZNprJTg5QPdzlre+fc3lOQ3MnXaLLz8JpB7\naOg4gaHGwq9u/gG7ffDV2qy5wWhiXLz3bf6wZSUCdN6EaLrRD5EldOypYQGBuJiTP0+bw0GzKJ5x\nV1B2djZn+uxLUFAQ77333qCvvfPOO+Tm5vKXv/zljPY5GAkJCTz++OOj3s+JuOaaa0Z1t3MitFrt\n0eDwNI8MYAjGnREAEpxOp48njcD06dM9mpPtdLpXynl5eQhKMwkpniny/f0X+UQcVxdYoZCx7PxJ\nXHrdMgRbEPZuUGrMbP92N5ve28+ECamExU6i1ODkUMXAOEFklJo/Pz0DuXzwr6ZbViKKJrGVTdtL\nhx0fmBjjS2nhPhwOt+E4+gzBbQRqy6p4ac1DiIgolYre157fvJltgxSoqW5uRhkQcMZrByQmJp5x\nHZ2goCCeeOKJAddramq49957eeutt8ZM+fRsPcswVpyNweHxaASywO1f+ynS2NjIL3/5S0RRJDd/\nH7GpGuRyz4io3v7AOYRFDi4MFzuhR4wuOYOuNi+kSisVlcW89ep3yCQ6kjJmUtfhTW5JIzZ7/xV9\naNiJM220OgULzwlhX0UFeSXDU/xMTQjC2m6gvLycW265pd/KWK1WE58QzzVP/w+S4yap25ctY+px\nWvc5R47w1q5dxKeno9Vqh9X/cNFqtWN29mX//v0YjUamTp2KXC5HLpezbds2nnvuORQKxVlRJvK/\njaysLFwu11kVHB6XRsCTQeGzgfvvv5+6ujoaWspH7XDYmcBLpWDVpdNYffliFEIILpdIe2cNH731\nHSV5TaRPnkW3JJT9RU20dwwejHU6XVg6B7p9kie6ZSU+3amn2TS0rER1XRvtHVaC/L0JVHehLyzk\n9ddf5+qrr+69RyqV4qPy7jkw1t8IKGQyNMedBE4OD0fr70/mlCkjeBpD4ykf9bJly8jPzyc3N5e8\nvDzy8vKYNm0a1113nXuXOUqr9rq6upOqu44mRUVFHDlyxCN9T5s2DZfLdVYFh8edEfB0UPhPf/qT\np7oG3Kcv09PT0ev1yLwtRMaedafQB5CUFs71d6wgMTEdCWqctLFvTzZfvn+AuPgMVP4TyD3UPmic\noPywmXvv2DXoqnTh0jAkAd28903BoLIS5k4rD/39W0zmbrf8RayGkoJ9/VxBR9GqNb2B4ZraxhN+\nnsb2dqInTOjnCjp06BDPPvssNpttOI+kl4KCAm688cYxW3W//PLLvUZHrVaTmpra759arSYgIGCA\n0ueZZPPmzWzcuHHU2j8ZNTU1fPnllx7p+2wMDo8rI+DpoLDD4eBsUSw9WLif6GTNmB9YczpdvPTE\nyP+AfDReXHj1TM65YAEqRQgiDgx1h3lv7VZkYmDPeQInpRVN/U4QJyZrefr5WYOuSt2yEpFUdjSy\n5ceBshIatZL1f72E6DC3y2ZifCBdbdWDVprSqjV0d1gQOPkJ3aqmJmLT0vD37ytIn5CQQGRk5Ign\n8+TkZNatWzfo56urq+Pfb64jNzd3RG2eiLi4OAoKhpbRGAuf/RVXXMGqVatGvZ+hWLZsGXfccYdH\n+j4bg8Meq8h1ing0KCyTyXjooYc80vexOBwOTG3N1BxoRCY7SFxSCFFxgchko2+gaqtaCA4/tewK\nQRBInxpDdHwQX32SQ2VFOd32RjZ/toOJ6cmkZ02l8kghnSWNpE0IQNET6/DVKoZsMzhExcwlAWz7\nqoyaejPJsQHMzxpcljg00Ac/ryMU6fUDJAR81T7YOxtBIycqcuhAu8PlotHhYN5xriCJRMLll18+\n3EfRy1Ff/LGIosj+/ftZ98mXFLY6OVBSziOhoYSGnn4CwMqVJ5au+e677067j5OhVp+8ytxo4ung\n9MyZM+U1NTVnTXB4XO0E+IkHhZ9++mm6u7uRyWT88qa7WT7zZloPhfP1Wwb+9dddfPbOPgpyKukc\nwr9+JoiKC+TS60+viI+vzpvLbpjLkpVzUcqCcGFBX3CQLZ8WEhaWhlU2dJzA0ukYIEM9OSuAkCQJ\nn20vIfkE7jFBEJgYraYof++A1b7GR4Oz03pS1Yja1lZkfn7Dcpds2LCBzz77bMD1hoahg9lWq5X3\n3/+Q597ehDF0KrNueogaWTDvfPDxoG6snxl/nG3B4XFnBEJDQ3+yQeGurq5eueKoqCjOPfdc7v/1\ng9x3x//j/IW3orJksfszM28+nc27r+1mz7YSGutMZ2WWhyAITJ2dwHW3rSAyPBEBGc2mKja+uxuX\nNQilLoHcw2ZqG80cK/BfXtbOQ/fvHdDWilVRZM7x5YudQxezAXeWUGdr1YBKVm7pCCsIAicSEKow\nGolKTh6Wbr+fnz+vvL6B77/f2jumo9lJR1NVj+Xhhx8mMSmJa9dcx4evv8CBj/5FW20lCYsuZvcR\nIzt27Dhpnz8zfDz1d3G2BYfHlRGQSqVTZ8+e7bGg8Il8qWPBo48+OuCaIAgEBwczb948fnHzbTzy\n279w7cX3E6dbyaFdCj58pYQ3nt3Jt5sOUl7agN1+6nV7R4OAIA1X3rKQeYtmIUWHExO7tmdTlt+N\nLnAih2qdlFY098YJ0jP9eeq5WQB0dPTtCI7KShQZa9l1AlmJiBANvnIzRcfl/qvVapwWK4gitiHk\nJZwuF412O5lZWSd1KRQVFfHh53voVk7itQ1b+eSTjbhcLuLi4vjggw+Qyfo8saIokpOTw9vvfUDw\n1CVc/9r33PD6VpwOO+t+tQKljxZl8hw+2fIDra2tJ+x3uPz4449nNNYwUkRRHBMJ6aE4cOAAjz32\nmEf6PiY4PNkjAziO8WYE4uLiRl4E/EzQ0tIy6IGbsw1vb28mTZrEFZdfycMPPMZt1z/M7NSraS+P\n5JsNBv795G42vr2P/P2VmNuHrrh1POb2Lja9u29UxiyVSpi1KJnrbl1JSFA8Ik6OVBaz45tyVN4J\nNHT4kFfSiNXmNmBKLymtLVZuvX57P0MQHetDxmxfvswuxtAweNql2yWkoih/X7+VoFqtRuoCe7eN\n8iODG5F6kwmJVntSV5DRaGTtuo8xS9OYe/7v0MZdwjub8nj//Q9wOp39is/YbDY+/Ohj/r5hI7Pu\n+Rvn/v5VoibPJiQxg4see4O2uirq9PuJyVpAhd2bzZvPTCGjoKAgtm3bdkbaOhUEQWD58uUe6z8l\nJYUFCxZ4pG+tVotarXYAp1YI/AwzboyAIAiCw+EIi4yM9Ej/vr6+PPfccx7p+1SRSqXEx8dzzjnn\ncO/dD3D/nX/k/EW3oe6ezp5NHax7Joe3X9nFnq0lNNSe2G1UmFOF5DTrFp+MkHAd19y6mBmzpyPF\nh46uen7Yko+51Q8LweQUN9HWEyfQ+Sl4+Y35dFn6xwhmzwtGE+3i3S35vUbjeFITgmg3lmMw9FUQ\nOyod4eiyEhkRMuj7KoxGwhMTTxig7e7u5o3/vMMho46kKRciCAJypZqAxEt5ae3nXH755b3PubGx\nkRdefo23dxWjnnUJyYtWIz0mSNxtNiEIAiqtP1K5gpCspXx7oIiamprhP9QhiI+P59e//vVpt3M6\nHHtWY6xRqVQsWrTIY/1HR0eLgGcms+MYN0YA0LlcLq+RyOOeSWQyGQEBnsvJ379//2m9XxAEgoKC\nmDt3Lrfc9Et+/8BfuO6S+5kQcC6H9ij56NVS1j6zk2825lJWUj/AbTRrUTKrLhv9gLxcLmPhynSu\nvHE5AbooXHRTmK/ncL4duxBJ3iEztY3tCAL4+iqoqerksUf7xNGkUgkrz490y0psG7yGQFSoFrW0\nHb1e33vNx8cHGRJsXVa81QNPLLtEkTqr9YSuIFEU+eDDj9ld2Eni1CuRyhR0tjWyef2v8QuOJ2X+\nfbgUUezcuZPc3Fz++uJr7DAKJFxwKyFJmQPa2vzkvURPmUdQgvs8QkhSJs3KYL7eMvoZPD8zukRH\nR8s4S4zAeEoRjQC3tO5PjaamJp577jn+85//nLE2VSoVmZmZZGZm4nReSnV1NSUlJRSVHmRLzhFE\n2SHC4pTEJgUTlxSMr3Z0iqYMRWRsINf9ahnbvyrkYI6ehqZKmrZrmTg5jFJDE2ZLM4nRAUyZFkjm\nFP9+79X5KVmwMoStH1cwodifScdpK0kkAhOjvNAfzGb58uUIguB2ByHBPoSMdENbG4Kv7wm1grZv\n384XW0uJmHg13hr3gkGtDeaq+z5FIpESGjOZDvNqHnvyddTBGpSZS0mfu6rf6v8onz9+B8ZyPTe/\nubP3miAIhE1ZyM7d77PSYBhRvYCfObuIiooSFArF4LnMY8x42glEAj/JL76/vz//+Mc/Rq19qVRK\nbGwsK1eu5N67f8v/3P0YFyy5HY19JtlfWlj/7AE2vLyLXd8VU29oHbOsCqVSzvILJnPxNUvxVgZT\nUljBJ+v3YajSUNOi6o0TSAdxU6Wk6oif4jWkrMTE+EBMjYepr68HQKFQ4CVTYLMMLuNcaTQSEh8/\n5PevtLSUtz74HkXwIgLCkvq9JpG4MwE7LZ00dmopaAmj0iwnbsayQQ3AF3++i8M7vuDG17eiCQrr\n91pQ/ERaFP7s3Ll70HGMlAMHDtDdPXopxSfjk08+8VjfJSUlp73DPlWCg4NxuVxjUwrwJIwnIxAh\nCAJhYWEnv3MU+N3vfueRfsF9EMnX13fM+gsICGDOnDncfOMveOSBvzAzYzVJQedxZJ+Kj187zNq/\n7eDrT3MpK67DNoTf/UwSnxTCLb8+h5TUJBJSg6g1VHFwTxe1zRp3nMDcN4mVl7X3xggWLg1H6JGV\ncDr7nwuIjdChEtp6XUKCILgPjHVZMRpb+t0riiKGri4mDaEe29zczNp1H9EqJhOTsoCG6nycjv7y\nEQ0NDezcm0OVBSIX/5pOexCb/vSrAW198ee7KNn6KTf863u0YQPjhoJEQsDEmWzP1WM2D122c7hs\n27aN77///rTbOVW+/vrrM5bxNFLMZjN79uzxSN8xMTE4HA5/QRA8lu14lPFkBCL9/f0dCsXQp0dH\nk/DwcI/062mUSiWvvfYal116GQ/99o/ccdMjzJ+0hq7qeLa808Drf93NJ+v3krv3CO0nEHI7XVTe\nSu7/40VceMVipPjioA39ARNHKtQcKG3H0NgOiLQ0W3nu6YKesUtZsTrCLSuxp7xfe1KphOQIOUUF\nOb07G61ag72rm87O/llTje3tiBrNoK4gm83Gf9a9S3GdmuSpF2Pr7mDrR3/oNQJOl5OSkhJ2Hyyi\n3SuQ4JQsVLoQfOLPo6mmnrqiA71tff74HeR/8RaXPLEBuUpNR3MDHc0NOKz9V+qhyZOot0rPSIrn\nr371q5OeIh5N/vnPf+LnN7gS7Wgzbdo07rzzTo/0HRUVBe4DKZ5Z1R7DuIoJhIWFeezUk6czKTzJ\nhg0bAPeOJCYmhpiYGJYvX05LSwulpaUUlRSyf3Mhu77IRRciEpPkT1xSCKERujOubZSSEUlEzHl8\n/UkOR8rLMVS3YKzzprvbSofFxtRpgWRN7ztMGBLqzYzF/mz9+jAJUf5MiO6LH6QmBJG7rQSj0Uhw\ncDA6H18QISa2v8unsqmJwLi4o3+4vYiiyMcff8qOPBMTpv8SmcILGV5ccc+HCIKApcvCwQI9Va0W\nVBHJaANDEXoOoqlD09GmXsuR7J2EJk9CkEjIfv9lBEHgzVsW9evnwj+uZdLq63t/lim9kEZO5Mec\nPObNm3daMghKpfKU3/szp84xsc0IoOoEt44648YICIIQpVKpPL51GmtcLhf33nsvzz//vEf6FwSh\nn1Dasfj7+zNr1ixmzZpFd3c3ZWVllJSWULw/l/wfypCru4lK9CEuKYTohCCUylP79Znbu9D4qnp/\n1viquGTNHPL3R7Bl0z5szg6yd0lpT1fR2dVIWkIASkXfV3vKtECqKjp5/7sC7r5iFj7e7t1kfKQf\nSrGWoqIigoOD0ah9kBy3zBBFkZqODhZPnz7AoO3atYuNWwoJTbkStW/fCWJBEGhsbCRPX0KzS4F/\n0lQUqv41AgRBQJe4grrCV2goPUhoymT+kDv82rfBEzIo2n6QxsZGQkIGT2n9mbOXY2JLHs90GTdG\nQCaTxWSe4VJ+4wGLxcLs2aen1TMWeHl5kZaWRlpaGi7XRdTU1FBaWoq+5CDf5ZYhSssIiVUQmxRE\nfFIIWr/hiYgdzK5g44a9/P6ZK/pdFwSBzGmxRMcH8enbezBioLzEQmO9jM7uRjIn+KPVeHEgu4mk\niVpWrIrknbXlfLhFz/WrJyEIAjKZhKQIGfr8HBYuXOjOEBL7r6qbOzpw+fgMOCBWVlbG+ve3IA2c\nj93aSXenCS+1DpfLxeHDhymqrMXmE0xwTBIS6eB/ZkrfMNq8Uyjft4OQ5EkjWtH7RcZTKyopLi4e\n90ZAFEWPiboddQWOdf9+fn4oFAqXzWbzeKbLuIkJiKIYER8f75G+Kysrz0gQ7lTw8fHx6KGaU0Ei\nkRAdHc2yZcu45877eeDXf+LiFXfizzwOfG3jrefyWP/iTnZs0WOoaj6hdHNUXCB3PHzukK/r/NWs\n+dViFi2fg0KhwtJh5/OP2/khuxlDQzsOp4s3/1WKt1rG0vPDKGyoYXdu32Gr1PhAGqr1NDc3uwvO\nH2cEKoxGDKZ21q59l507d7oVXE0m/v2fDzDaE4hOnMuPXz+HRCqjq6uLfftzyK2oRxKWRGD8xCEN\nwFF8Y+ZyeO+PFG5+d5hP141EKkUaNoHC4kMjet9gZGdn88wzz5x2O6fKZZdd5rG+b775Ztra2sa8\n35605LPiwNi42An01BHwHY5o12jw0ksvsWbNGtLS0jzSv6fo6uri4Ycf5tlnnz2tdvz8/Jg5cyYz\nZ87EarX2uY0O5FGwoxyZdzeRE9TEJ4cSkxCE0qvPbeQXcPJSixKJhGlzJxCbGMxbL39PYEgb+3Zb\nMBodzJ7mze13u1fxMbEaMub68sWOImIjdIQHa5gQ7Y98u56ioiK0Wi0SUaC09Aic414lljU1YbKp\n2bfPyaFDX5KZuQuZXIq+xovUuZciU3hx8e3rMBqN5OqLaXYo8EucgtJbM6xno9RGIvFNpTLnB9LP\nvWpkzzUyAX3uZ3R3d/eTohgpSUlJHsvQATyqIXTLLbd4rEZIRESE2Nra6vGqUOPCCABqAI1meH9Y\nZ5rf/OY36HSnpqE/nrFYLCxZsuSMtqlUKnurWIniRRgMhp5Davl8f/AwLkkZITEKYpMCiU8OuO5D\nugAAIABJREFURec/fO35wGBf7npkNTu26MneXYihuoN3DjeycpWdqanBKBUy5swLobbqCO9+k88d\nl89AqZCRGC5Fn5/LspWrkIoCwSHuwLLJYqG+qwtkicyadQc1Nfv5+uv1eAUGkrnkd8gVKlyii7LD\nZegrDNjUQQQnJp909X8sLpsFQa5FUFpx2m1I5cPPftOGxWDYK1JdXU1iYuKw33c8vr6+HtXxOe+8\n8zzW97x58zzWd1hYmLSgoMAzk9oxjBcjoAHGrAD38XhqBwKQk5NDeno6nkiNDQgIYPXq1aPWviAI\nREZGEhkZydKlSzGZTJSWllJcWkTet/ns+eogvoEuopN0xCeHEh7ld9JsI6lUwsKV6SSnR/D2a1ux\nykx89J6RxsU2Fs4K5cCPzcxfHMpn79Xw+fZDXLJsIqnxgXywOx+HYwUyUUCr1dBlsbArNxdDWxex\nKXOx2y2Ul3+FQ2rBO3gqTqed7u5uDhYUUtHcgVd4IoHB4b3ZPyfC0W3G0lhEl7EISXcFOrVIZGoq\nEtnIAucqrT/dUm8MBsNpGYGf8QwajUaQSCRjdwBoCMaLEfABz+0EPMnjjz/O22+/7elhjAk6nY4Z\nM2YwY8YMzGYzN910E9etuY7ig3nodx1BqtITNUFNXHIIMQlBeKmGNoyhEX7c9chqvvwwhxLJYX7c\n1cqRw2Ukxnjz/bcG5q8MZvsnR5hQ4k9yXADSH4qprq7ujQkcOnyYrbmllAkBqPwE6urW0WktIX7G\nLygv3EJw/Hz2FWTT5JDhlzgVpfrE301Hl4nOhiK6m4qQWKtQayQkTYwjJPF8AmNTUHiPvNqWIAgI\nfmEYDHUjfu/PeB6NRoNUKtV6ehzjxQho4KdpBNauXeuRXYCncTgc3HrrraxYsQJRvJDa2tqeMwn5\nbMsvxSk5QnC0vMdtFDJo7EAul3HBVTOoLIvlw//soNVkZEuZketuiCJlopbqyg4+2VHIXaGzmRAq\nUF5WilQUEIHquiZMogKl1yxKS8vp6v6IhCmzSJq6Grl/JtmFFVi9AwlOTBnS/WPvbMbSWER3kx6p\nvRYfXymxGQmETLiIgNhk5F6qfvcf3vkVE+aO7OCWly6YyvqSEb1nMPLy8vDz8yM6euzVjSsrK2lt\nbWXy5LGX1zcYDNTW1jJ9+vQx77snFvGzERgmHjUCjz322KAFXcaCsZSLOJ4ffviB+fPne6RvPz8/\nVqxYAbhXvBEREURERLB48WLa29spLS2lpLSIg98dZO/X+fgE9LiNkkIIj/bvpycUkxDMnQ+t5q1X\ntlErr2HDW7WUz+rgnKXRfFxTxXtfFzA9NYLPcvJw2Ry0NLdyRLTSgRJf30yaW3aDLIkOs4LvNm/A\nJItBEZZAYEhkP/ePKIrYO4xuV09DLq72YiSudjQBgUy+5BpCkycjUwx9OKvgyw1EZs7CSzP8ecHb\nL5C66j04nc7TCnDm5+fj4+PjESNQU1NDdna2R4xAQ0MD3377rUeMQE9hofHnDhIEYT7wW9z1fsOA\ni0RR3HjM62rgr8CFQABwBHheFMVXjrlHCTwDXAkoga+AO0RRbDzmnnTgbcAfWAueiwmc6VOv44Un\nn3zSY0bgRPj6+jJt2jSmTZuG3W6nvLycktISigpyKdpdgcSriKgJarcCamIwXioFSi85N/96GYUH\nqtj0/i72ZTeQm51LWJCK1vZaIoy+SOwOzK1WWppbqZY6sMvSMZn02BzN6MLPwVC1nyaxmPhVF6FU\nu/92RVHEZq6ns74Qi2E3TnMZgrMDiegNkgBEWSKWtnakMsUJDQDAhY+9MeJ8dS+NDotDpL29/bTk\nF6677rpTfu/pMnfuXObOneuRvqdOnXpspa8xJSYmBlEUVSe/040gCHcC/wOEAnnA3aIo7ut5zRd4\nB5gJvCyK4iPDbfdUdgJqIBd4HfhokNefBRYB1wCVwArgJUEQDKIobuq55+/AucClQDvwIvAhcOyM\n8xLwFHAI2AieMwKPPDLs5/lfxfvvv+/pIZwUuVxOcnIyycnJrBZXU1dX1+s2+uGjUr4XKmjvbEKQ\nCMxaPIGps+O5+5GLeemJL2hurmPv/gYiQlTsKjlCgJcOi6mTsIgQ6is7cAo6HK567E4LzS178YqJ\nInbpHSi8NVhNNbRXZ2Mx7MTZUYlotSGV+SOVR6DUZKLSJaHSTkCm0NBQ+k/MjQbCJk454Wc5lQNL\nSm8NJpdbDM1TGjw/c2r4+PjgcrmGFQwSBOFK4G/ArcBe4D7gK0EQkkRRbMK9MD/Sc/0/giB8LYri\nsErHjdgIiKK4GdjcM7DBvrWzgTdFUfyh5+d/CYJwOzAD2NRjsW4Grjo6SEEQbgKKBEGYIYri0Sri\nkaIo/qfn9TIgUD6I7O5/Ow8++KDHylqeTu756fL555+POHVQEATCw8MJDw9n0aJFmM1mSktL+eNj\nT6MvsvDdxkJ8/fYSlyJn0TkpIESzR56H2WQk31BLrNqOw9JJV2cXnS4VDpcNl9QbqX80fhnzCEic\nh6n0G7pq9+DoqEO0Cci9QlB4z0Yd4p74lT4RuI+19CGRBGM2Gs/k4+lFrvLG7nKn8/7M+EIulyOK\n4nDdDPcBrxwzJ94OnId7Ln0SmAr8RhTFEkEQ3gCmAaNjBIbBLuACQRDWiqJYKwjCYiARt8sH3G4k\nGfDt0Tf0DLwKtwE5agTaBUGYAxwGYuGn6ZbxlHS2p1m7du1p549rNBqysrJ44fm/kpuby9atuygq\nruHQgTYK9x1G4dWFLshKlwU0fjK2HTyCpEtCW6sViz0GQVKPMiQKVUgwVsNWqoo/QcAbhSoKH91l\n+IZOQqVNQCo/8WJOptTR0Xz6JSEHbVvhhcMFVuvgdRB+5uxFIpEgiuJJt389ctNZwJ+PXhNFURQE\nYQvuORPcu4ALBUEoB84B/j3ccYyGEbgbeBWoEQTBATiBX4qieLREUihgE0Xx+ErgDT2vHeV3uA2H\nArfb6SpPGAGXy0V9ff2YSUmLokhDQ0OvpskVV1xBXd1PLwXwhRdeOGOfWy6XM336dKZPn47FYsFg\nMJCbm8u2bTuorWvH0qmg+nA9XV0OOsxm7DaASuSqcLCqsdcLKH1S0YVloAlOR+4d2uu6cdhdOOwn\nlhRxOqCjyYjZeOLPY7N0sOP1v7Dk7seH/+FEERfubKrToaOjg4ceeogXXnjhtNr5ue/hY7PZYHjS\nPYGAFPcceSwNQHLP/z8JfAf8CdgoiuKnwx3HaBiBe3AHJ87HLZG6APinIAi1oigOuziqKIqbBUEI\nwB04vhy46ljv080338yyZcu45ppreq/t3LmTv/71r7z99tuo1X2rs9/+9rdERUVxzz339F4rLi7m\ngQce4IUXXiAmpq/K29NPP43FYuF///d/Afcv6o477kCtVvO73/2OY0Xs3n33XQoLC/njH//Y/wHc\ncw9XX311P+G37du3s2XLlgH3PvPMM0ydOrW36PXevXtZu+4ZSovLmT4rDZmsL+OjqPAIXiolcfF9\nBqmjo4tDJVWkpMaiUvUFHqsq63G5XMTG9d1rtzsoO1xDZFQIPj598agmowmLpZvomD4b7HQ6+eyT\nH1i2YgY+mr7Skh1mC2azhbDwPrnmo214qZT92rVa7XR2duHnp+nn7+7s7EIqleDl1Tdel8uF1WpH\nqZT32/E5nU6AUTnan5KhISnVm6YmJQfz2jhcQo8BAIhH4oxG6kxHrcxALqiRmGV0d1Vgl9UgEYa/\nILG2l+KS5dL85SsnvM9ht+OsP3TS+44nWHlmssiamppOu41TQRAEjKPkLjub++7JDkIQBEE8zXJ9\noihWARMEQfAXRbHlpG84dhyn0/HxCILgBTyOO2Poy57LBYIgTMEd1f4OqAcUgiD4HrcbCOl5rRdR\nFG2ATRAEV8/Pva/9+98Ddztz585l48aNA64/9dRTA66lpKQMeu99993Xrx+FQsHjjz9OVFQUKlX/\nQP6qVatYunTpgDbuv//+AUXp09PTCQ4OHnDv8uXL+93b1taG0tvEzXelMSkrEpmsb7I5eABU3nIS\nk/vaMbV2kbPXyYw5Efho+ibVA/tcOBwups/uEym0WGx89ZmJ2fODCQ337XdvbY3IeRf33etyiezP\nUbDkPF+SJvapVOblGMjebeS62yb1+xz/+kcFaZPCmT2/r42igno2flDKbTcuQenV91V7/Z+7CAr2\n4YLL+gQBK4+08PLff+DeBxcTEtY3tjdf3UNXl53b7+jLGWhttvD7+zdy528WkprZ5y57b30OBw8Y\n+MWdc2g3ddPe1o2p1cJr/9jF1GkJxCdEIaBEQElRYTV5uSVkpKfjbGkjwO6DzceP1tYORFFEJhTh\nJZOjQIrV1IJDFkNb66f4BazAP3AuEyfGER4RTsWRb8nNeZWLLu0vAPft1/cTHDKZjEnXU1vjwE9r\n4MLls/nb3/7GM8880+93/tRTT6FSqbjrN3cBdwHutMlHHnmE3//+9/1OA7/++usYDIbeRQq4Fyp3\n3303DzzwQD8ZhLfffpuvv/6atWvX9hvblVdeydVXX81FF13Ue23Hjh2YTCaO584772Tq1Knccsst\nvddycnL4v//7P/79738TGNi3GPjDH/6At7d3vyp8VVVV3HXXXTz55JOkpKT0Xn/hhReoqqriqaee\nQi6Xc/XVV2OxWLjqqqtO63N8/fXX/OMf/xjwtz3U5/j973/fb1yn8zmOMtzPYbe7K+ANwwA04fao\nHC8XO9icOSIDACCcjgHqmZx7U0QFQdAAbcA5oih+fcx9LwOxoiie0xMYNuIODH/c83oyUATMOiYw\nfGw/1wNvWq3W//qDU1u2bCFH/29+eY87be1wqZEJSZ6TrTibsNkctLd102bq6v1vm6mbdpMDcxtY\nOkQQFQgokQheaHz80elC8NMFodPq8PLyoqWlhXqDgaqCAoSWZpx2O+XdVlxtJppb29jX3UVXTQ3p\n3iqcEhVd2nSiY6djt4u0mix0WdV0dnoxfcZcpkxehDAMF2V52RYS4wt49NF7x+Ap/cx44aWXXuKO\nO+5wiaJ40m2uIAh7gB9FUfx1z88Cbk/L86IoDlzljoBTOSegBiZA7ymZeEEQJgEtoihWC4KwDXha\nEIS7caeILgKuB+4FEEWxXRCE14FnBEFoBczA88DOwQxADy7ghJLD/y1IpVKOde/+7/9sYsPGmzw3\noDGku9veO7n/4bef84u75tBm6sZsctFmctFtoXclL5Wo0PpG46cLISogEF2CDp1Oh1arRafT4evr\ni0wmo7Ozk+LiYvT5+ZTt34+zsRFXSzOCzg9LQABOiYSkOgMupZJN2nBUQV0gSPATXXhbuzB3HaSx\n2kZY7DksWric2tqDlB76AinN5B/cj9IrhaDgVHS62N6C8gM+V5eJkBCPHwz9mbMQQRCGuwp/BnhD\nEIT99KWIegNvnO4YTsUdNA34HhB7/v2t5/qbuNOVrgT+AqzHfdCrEnhIFMVXj2njPtzbmw9w+/w3\nAycq9ukA9/bJk2mLY4FMJsPp6PtePPH8hR4czZlDFEW6uuy9q/ejq/l2UzfmNpF2kwtrt9AzyXuh\nUkRTXRyPny6EuNBAtMnuyf3oP41GM2S2WHt7Ozk5ORTm5VGRm4vL2AgtLbhcLiShofgvWIhfRARV\nebm0Hcyl2+mi0ieYbqUabRQ4uh24OsxMjIqiurQIc+tBWgQze02VBASGcekli7nppqspKSlh//4i\nDh3ej6FKhVyRTFBwKn5+8f2kJJzORsLDT34St7u7G4VC8ZPMgvspYrfbj3pTToooiu8JghAI/BG3\nGygXWCmK4mkHNE7lnMA2ThDR7jn1e8tQr/fcY8WdRXT3MLvtAHck3xPSES+++OKYFaRWKBTYbH1G\nIDp28NKOY4E+v47UjOGlqIqiSEeHtWcl3027qatnorfSbhIxt7mw26S9K3mlQoNOG4OfLpSwKH+0\n6dreVbxOp8PHx2dEh6dMJhNFRUUU5uVRlZsLzc3EIBIrirTYbJjCIwifPJmsOXMoO3SIkm++IgsX\nh1XeFFuhO24y3QY9oSnJmA43YnFYifTzQ0yYgLO0mFStk722H2lvDWPBgt/0q7VcX19PUVER+/fr\nKSnNpdagRCZPIjAwFV/fCKRSIxERJ68O99xzzzF79mwWLFgw7M99pvjxxx+pq6vr518fK5qamqit\nrcUTlQOdTiculwtPnEHq6OhAIpF0Dvd+URT/CfzzTI9jvGgH9RoBT1BeXj5mfXl5eeF0CDgczn6Z\nQZ7gT49sZv0nNyCRSHC5XHSYrb2r+D6/vA1zm4i5TcTpkCLghQQlKi9ftNoEt7sm3r+fq0an06FS\nqU67pF9zczN6vR59Xh6G/HwkLc3ECQIr/f2x6XzJbWmlRasjbtYsVi9ahEKh4MN167DlHeDyyHDi\n/HQUtpoxRiZiVaiQaGQEJk6gXJmLXSalVhS5eEoW69rNeJtaeXByJrusTnZ/+TlBQUFkZGQgCAJh\nYWGEhYWxZMkSjEYjer2enBw9+qJ8imsgOBiGUxVv1apVxMXFndYzOR08JZmu1+vZs2ePR4xAbm4u\nmzZt4g9/+MOY911TU4MgCB4/5XdageGxQhCELCB7//79HtP5GCtKSkp48+3HuP03KWg0Y+f6cjpd\nA4KuVRUtIMroaBfpaBcRXQoEFAh4ofbW9QRdg9Fp+9w0Ryf60XDbiaLYO8nqDxygXq9H2tpCglRC\ncmAQ0TothQ2N7GtpoTMomJT585m/cCERERFs3bqV7R+8T1SzkYuSEvH1UvJRYRHvWOQkLL2cr3Z+\nizxDTfTcaWy+7j5SEyKZHxnHBTodpq4uvtn1A3MUEmbMnIbe6uCg3JvpF1/KynPO6U31O56Wlhb0\nej3e3t7/9d/b00EURZxO55DPcTQxGo0YjUZSU1PHvO81a9bw7rvvlthstpST3z16jJedgBnwWJ3f\nscTb2xsBOV0WOxqNF/98dju/uHMOCsXp/arsdudxWTVHffLuzJpOc19mjYASX00oWm0mfrogUqL9\n+k3wWq12TLK0Nm3axHnnnUd9fT16vZ7C/fsxlpSgaDMxQSZjVlAgCWmpWB1O9hlq2FxfjysiksxV\n5zFv/nyCgoIwmUysfe01qrd+z3y1F4JGwzsH85kVHcXnrVaCZq/AIgp0WJtIznRP1F4x8dgkdtRh\nYRyqrubclBSqklPJLchFm5fHp90ubpk9k23r36S2spLLr7120Mpz/v7+Hq1cNV4QBMEjBgDcux9P\n7YB6zr6MfYHj4xgvRqADfhpGwMfHBwE5lk73qSVBELB02k5qBKxWx3FuGncA1tzmot3koqvz2Mwa\nL7S+0ei0wUT4BaKL67+S12q1HvujBPfKsKamhmeeeQb9/v2YKytRtplIUipYGBhEXGQEMqmEFksX\nWw6XkW+zI4uNZcbV1zJ79uzeg1N6vZ5P169DXlLMmvhYonVaviw5xLlJibxYUEpXwgxiohLYV5CD\nRCMjKD0Fc6UBVUw8duNh/ENDqT5yBKcosjI1lbdMrRQYKsjyVuGLk1sSonlv6xZeqTVw8Q03kpSU\n5LFn9jPjD7PZjNPp/NkIDBMzeC4mYLVakclkY1KQ2m0EFHSY3Vowv7p3PqIoYrHYBqzij6ZPmttE\nuruE3kleJvVGp3Vn1sQGB6BLGpg+ebZloLhcLqqqqtDr9RRlZ2M6Us5SrZaE0hKSgwKJiY5E2jPm\nOrOZPdU1lAA+ScksXb6cadOm9R7ms9vtfPnll2R/+gkplg5WZ6ThJXd/1VckJvDK/jwO66JJzZzt\nNji1VWhTw1BqfTFjAAScUjkqtTfNOh3Vra3EBQSwInMSGzvMhFlMtB4qJTbAn9smpfJxUSkb/vYU\n8y+/ksVLlpzSs3388cd5+OGHTztOcqoUFBSQnp7ukb5/qpjNZtHlch0vnzPmjBcj0Ame2wn84Q9/\nYM2aNaSlpY16X3K5HKXCh00f51BU0DBoZo1C7oNOG42fLpTQSH+0adp+K3mNRnNGJhOXy8Wjjz7K\n44+PQMtmBDidTioqKigsLKR43z7MVVX4mM0kqVVMDAoiMiYGicT9OURR5EhLK7sNBioVSgImT+GC\nZcuYNGlSv8yOhoYG3l+/ntYfd3NeoD9T4ib2exbflR9hu9OLuOlLkckVNJrb6bQ2EZm5rPceQSLg\nkspp6WwjJDmZQzk5xAUEEBcQwKSUVAoPHiCoqZmD2dlkzZrN1Rmp7Kys5tt/v0ZNZSWXXnnliGTP\nHQ4HUqnUYwagtbWVJ554gvXr13uk/7vuuovnn3/eIwuTL774gjlz5gzqzhttmpqanPQscD3JuDAC\noii65HJ5u9Fo9EgVnuuvv57Q0NCT33iGmD1rKUXFQfhIQomM8xsQdPX29h6TCUMikfSTBTgTOBwO\nysvLKSwspGTfPjqrq9F2dpLio2ZiUBDh8bH9PpvLJVLcZGR3XT2NGg3h8+Zz5dKlpKam9ps0RFFk\n3759fPX2BvyqK7klaQJBajU7K6rYUVnJ7xbOp6y5hQ/rTGiyVqLxc3+u8soyZL4yAtP6XDnWulq8\nNApqmxq5cNFKduzZg9PlQiqRMC8hAUNLCwXV5cxsNLJv315erW3m1UsvINLXwgdfbeLlmmouu+FG\nYmNjh/VMZDIZDz744Jl5wKeARqPh73//u8f6nzx5ssd2pt98800/ja+xpKKiQgCaPdL5MYwLIwAg\nCIKhuLjYI0ZgrDMHli5ZztIlywH3aryhocFjktL33Xffabdhs9koKyujsKCAkn376K414GfpItNX\nQ3JoMKGDnAlwOF0crK/nR6ORw4KEWeedz6qFC4mPjx9wr8Vi4ZOPPqL4q81ME0SWZ2Yg6ykvKZNK\nuHPWTDqsNtYXl9EamUlqgntH53S5qGuowTcxBC//vpVgZ2khvrNm0GHrIjg4GKdOh6GtjWg/P2QS\nCasyMnjb3EZ1h4mYhgZW+unoslmJ9ddxu9qbD/T5vPn0kyy96hrmzp3rsRX+cJHJZGfc2I+EX/zi\nFx7r+9lnn/VIv6Io0tnZKQCjozE+AsaNEXA4HJUlJSUTPT0OT3Drrbfy2WefeXoYI8JqtVJaWkph\nQQGHsrOx1dURaO1mmtaXlIhwgtSDa/B32x3srzWQ3dpGd0gIaVdexZY33uCxCy4YdKKqqKjgw3Xr\nsOcd4IrIcJKD+t8zMyoSURRZd7CAAlUIyVkLeiflRrMZS5eRyMyF/d4TuGQVru42LHZ3XCZwwgQO\nFRQQ3VO5y8/bmwVpGXy3dw8xCoGo9jaqS0sImDIVH6WC6yel813ZEba8/E+qKyq46NJLB4gP/sxP\nm9bWVmw2mwQweHos48YIiKJYbbVa7cBPqryYRCLhySef9PQwhkVXVxclJSUU5udzODsbR2MDoXY7\ns7VakqMjCfD2HvK97d1W9tbUkGexIEZGMfnCi5k7dy4BAQGsOu+8ftLg4I4nbN26lR+O5v5PTMa3\nR5paFMV+q+8fq2v4pgMiFixF4dU3GVfUHEHmKyMgtX9WjyAIuJDiVEgwGo1kTJvGD9nZLBZFJD3t\npoWGUpmQyLclhVypU1NfVo5eqSQtLR1BgGWJ8UQbm/no0494taaaK264ccBuzmQy8e6773Lbbbed\n2gP/mXGLwdA79/+8ExgBhpqaGo/tq998801uuOEGj/Q9caJnN0A7duwYMt/9qEBb4cGDlOfk4DI2\nEu5wsMBPR3JsLDrViQ+NNXVa2FNdRaHDhTI+njnLlzNz5sx+gdXjg6wmk4kP3nmHmm3fs0DtzdyM\n9N4A8q7KKjYWFfPEOSsAqG03805lA5K0hfiH9Mlc251O6htr0cQF4hV4nDSHICAqvHF5QYOxgcUL\nF/Odry+1bW1E9gQQBUFgaUoKG0wmvjMaWKX14UhxMTZBwp9yCvjPFReTFBTAbWpv3j+wj9cbGjjn\n2uvIysrqNVA5OTkDZIzHmoKCArZv384dd9zhkf7z8/OJiorySGD2+MXCWFJT0zv3/7wTGAE1LS0t\nMpvN5hE56V27dnnMCHiaF198kYyMDLRatxJme3s7RUVF6A8e7BVoixZdLPX3JykhHo1SeZIWwdDW\nzu6aGg5JJGhTJrJy+XKysrJQnuS9hYWFbFy/HsWhYq6PiyVK11+dM1Ct5veLFwFgczjZUFSKIXgC\naan9T+w2mNvpshiJzBzosxckElwKHyTyLqoa64iMjMQ/Pp5DJSW9RgDASybj3MxMPtjZjr7bSorS\ni8rSEm5LT0bRk07s563i5knpfHXoMJv+8TxV51/A+RdcgEKhYMmSJSd9TqONw+FgxowZHuv/2Wef\n5S9/+YtH+t67dy/ff/+9R4Ly1dXV4Bbg9HjZwPFkBAyiKFJXV9evEthY8corI6v29N/EG2+8QVdX\nF7t27UKfl0dVXh5Ci1ugbYV/AElJiaiHYZhFUaSspYXdhlpqVN4ET5/BJUuXkpGRcdLDaTabjY2f\nfsqGF//BFeGhnJfel/t/LEmBfcVavig9xF6JloTpiwfIPFfUViHzleA/MfH4JmjdvQ3fRRchSGwY\n21uxWq2kZWWxLzeXRcetHsN8fZmVls6OnH3EqGSEOZ3UV1fSEhbam1Emk0o4LyWJ6PoGPnv/Heqr\nq7lizRqPBmOPMnnyZI/2/9JLL53U8I8WoaGhrF692iN9l5WVIZPJWuxHK8t4kPFkBGrA7UvzhBHw\nJFarleeff57f/va3Y9rvUYG2wgMHqC0oQNLaQpwgsCowgKTk5EEn4cFwulzoG43saWigyVdL9JKl\nXLN4MSkpKcPajtfX1/P++vWY9u5G097Gojkz+/V9NH3zWPLrG/ispZvAWefj7dN/t9DtsGNsqscn\nyh9VyMCJWBEYDEo1TsGEFSdGo5G0tDR+0GioN5sJO66U47SoKKqam9lYXsrNoQHY20zoc/YjnzWL\nAP+A3vFlhIYQolbz1o7vebWulguuv+Enf0DLUwYA8Og80tLSgkQiqfbYAI5hPBkBA/RjzhAgAAAg\nAElEQVTzpf1kUCqVdHd3j3o/oijS2NjolmTOyaGhqAhpawsTpFJWBwYyYWIKyhHISdgcTvLq6/jR\n2ExHYCBJF1zIhQsXEhMTM6zJXxRF9u7dy1cbNhBQW80vEicQOCmj3z0/VtewNjuHly++oPdai6WL\nDYer6EqYQXRUwoB2G9rNdFuMRGbMGHQcmpQMHEoVdoeAVeI2ApMnT0YbHc3hiooBRkAQhF5ZiS+M\nTVwWGoi9qYn87P1EZWby683f8f61l6OSy/nPgYNolUqi66r44O/PUHXxpaxYudKjMh0/M/ZUV1eL\nNput0tPjgPFlBEwSiaTbYDB4pKqMKIrYbDaPrVweffTRUWn3qItNr9ejz8lxC7SZTEyQy5gTFER8\nWiryHv+2xTa8navFZifbYGB/ezv20DAyrr2WefPnExJyfInUE7TRm/v/JdMlsCwjvTf3/1hidDqe\nXnVO789Ol4t39SUc0kaRmjl7kElepLLBgNxHwC9lwuCdCwISpTeWjm5ksSE0NjYikUhImz6d3MJC\n5g0SUPRRKlmeOYlNu3eS09bBlMBAio1Gaov0PLF8IV49k/y1kzMI1bgD3dE1tWxe9waGioohRehG\nE08mO/zUqaqqcnAWZAbBODICoiiKSqWyrqamxiOC662trdxzzz0eO1p/Jjkq0KbX69FnZ9NSVtYr\n0LYoKIjYHoG2Y7HY7NzwwQe8f83VQ7Zr6urmx5pqDnZ1I4mJJevyK07pSP6RI0f4cN06HHkHuDI6\nsp+f/1hq2tqxO529kyr0yELYlcTOd8tCHE+HzU5LSwPqMC3e4UMbJcFbTXejDZmfD/XGBgDS0tLY\nqVbT2NFByCDFjeIDAshMnsiWgweIUnmRFBiIvrERs1yBPSgIhUJBmG/f+6ZHRRCh9e0Roavlkhtv\n7FdUfjRpb2+noKBgTPoaiptvvpmXX37ZI4keXV1dfPXVVx4pogNQXV19VhwUg3FkBACcTueRI0eO\neMQI+Pv7c/vtt3ui6zPCUYG2wsJCirKzaTtyBG9zO0leXqwICiImOqo3zXIwvBVyHl60cNC0uoaO\nDvZUV1PkEvGekMiCZcuYOXMm3ic4FzAYTqeT77//nh0ffkBUi5GL01IGzTTqtjvwkstwiSJ/3rqd\nVy++AEEQKGtu4aNaEz5ZK/D1G1weuMFsxmppIixj8pAuKWtTA17pauxO8NKoqD7sTuCIjY3FNyqK\nwwbDoEYAYF5CAjUtzXxiqOCmsGCS/APYU1lJnkLOlKwspBIpVoezN6YR7qvpFaF76+mnmH/5Facs\nQjcSfH19eeqp06pPftqsWrXKIwYA3AuNQ4cOeaTvtrY2Ojo6ZLgLxXuc8WYEcnbs2LEAD43b09rw\n+/fvJysra9j3DxRoq8TH3EGy2puUoEAiY2NOOPEfz5Tw8N7/F0WR6rY2dtcYKJfJ8UvL4Lzly5ky\nZcop/WG3trbywTvvYNi2lUUaNXMy0gedpA/U1vG3H3ax/spLidZpee0Sdw3mTpuNt0rKaYnKIHXC\nUMFWkeqmeuTeIn7JA2MFR2nL3oP3Obdgd4LSW0WT2UBXVxcqlYrU6dMpLC5mzhA55m5ZiUzebm/n\nm6YW9OZO/KQSNEcqKFAo8ImK5t7PvuKTNVf17rZUcjlXZ6Syo6KK79b+65RE6MYjl112mcf6Tk1N\n9UghGXCfD+kh1yMDOI5xZQSA/UajUdbU1HRWpNeNNS+++CJ//OMfiYyMHPIeh8NBWVkZer3+GIG2\nDiZqfJgYFERYfNxpHZARRZHSpmZ219VRp1YTOnsOly9dSlpa2ilLbRcUFLBx/TqUh0u5IT6OSO3Q\nElFJgQG8fFH/tD5RFPmoqJR8r2ASp8wb8vOZuq2YWox4B/vgEzm0FlPAohVIvH1wOAXkKiWtPRlC\n0dHRpKWlsUelotliIXAI6Qt/b28WprtlJS4I9GeSVkNbdxelhw6hUCj516WrB7jbBEFgflwMkS2t\nfPjVJl4x1HDZDTf+5DLhfgpkZ2cjlUq7nU5niafHAuPQCIB7Rbxy5UpPj2XMee655wZdHdpsNg4f\nPkxhQQGl2dmDCLQNFF0bKQ6ni4LGBvY0NNKi8yN+xUquX7yYCRMmnHLbNpuNLz7/nJzPNpLabRky\n9/9YBjuPsLfGwDcdLsLmLuTTf/2ZJZf+kqCI2AH3NZjN2LuaCEufiHACd8v/Z++846Mq0/59nanp\nvUEK6T2hNxFRUbFioYoFUbFt0Vd311d335/rrmtDXdfeQGwoRUVAmoK4SCe0dBLSey8zk2lnzu+P\nECSkzSSTTECuz4c/OOV5nkwm5z7PXb633MkZmZMrZosMuUKBUWahpqaGsLAwIiMjcQsOJr+mplsj\nYDktLdEhK/FjbiajXJzxcnImUrRwKjsblVoFPbiTIny8edDVha+z0/lk2ctctai9UY69KlstFgvb\ntm3juuuus8t4F7GdtLQ0BEE4JkmS6Oi1AAyvziJ9c0oul2vS0tIcMrnFYuGdd95xyNxApz4BBoOB\n9PR0vvryS1566im+fO45Kld/xYS6Gu4PHslDY1K5PDKCEQPsLWAwm9lfUso76elstcCIOXM5UlXF\norvvJiYmpt9jV1ZW8v4bb5C+6nNudFZxW2J8jwagqa3n9NjK1la+KqpCSJiC38hR3LL0r3j6dg34\nSpJERWM9CicRr15cQR0IchkWhTMmvQGljxs1NTVAu+JmwsSJ5Ld07QWSX1fH4i++oM1kOiMrIQSM\nZENNPRZJwtfVlVClkqL09DOpziZRRGs0dhrHXa3m7tQkLtG3sv3dt1i9apXdUoQPHTrEiRMn7DJW\nf6mtreW7775z2PxmsxnjOZ/5UHLgwAGT2Ww+6LAFnMN5tROQJMmiUCjS0tLSZvR9tf2RyWQUFBQ4\nYmqgPaMhJyeHrIyMdoG26mqCzO0CbfFhofi42E+pUmMwcqi8jCOtGizBIYy+8SamTZuGv78/MXFx\nGI3GfjWTlySJAwcOsP3LVfiWl3J/bAx+rj0HkLNqavm/H3awbtGCLgbHaBZZlXmSsoAokhLaYyVq\n585jWSwiFYW5OAWNoqW5Dmc/F9zCgukLQSbHonJBr9GhDvCk8nSGEEBiUhKHnJxo1OnwPiv4Hebt\nzUcLF56ppeiQlfh6bwu7G5qY4evNCA8PjI0N5Bw9ikqlosYC/++Hn/j6zvmdfj6ZTOCqmEhCa+v4\ndv3XvF9ayvzFiwcsKT558mSHykRAu16QKDruJfinn34iPT2dxx9/fMjnbm5upqioSAkcHvLJe+C8\nMgIAoige2r9//yU4SE30lVdeGdL5NBpN+4M/Pf2MQFuQycQMHx/iIsPx7MeDuDcadG0cKC3tsW8v\nwIQJE/o1tlar5duvv+bk9m1MkgvMPEv3vyfi/Hz5dN5t3e44tuTlt8tCTLgSWQ/xCLPJyMmje3CO\n1SG2NeA5NaLHaztoOrwXl5sewaJ0Ra9pwyvIl9JDFWfOx8TE0ObkxFObNvHW3LkoTruWVN2MO9LT\nk0mJp2UldG2EuzgT5u2Nsa6OzLQ0xkydwsp5t/S4o4rz9+NBV1fWHD3I8uoqrrvzLsaNGzeg3Z2j\n+xs4WjMpLi5uOASFHePO6IbzzggAaRUVFcoLOTjcIdCWefw4xceOIdXXEWaxMNPHm6Dgkfy/H3dy\nz5xUu85Z2dLK/rKe+/YOlIKCAr7+9FMsGSdYGBpMTA+5/+cil8m6jQOkV1WzsU6H79SbcHH37ObO\ndlRqZ2bcdh8/F55Cri08kxV07NX38RubRMiVXTO+BIWyPWagdkbTpMPF043iogJ0Oh0uLi4olUri\nx4/Hubz8jAHojYlhYZSelpW4X63CRS4nyteP3NraMy0qoeciRG8XZ+4bnczWk/lsfOs/lNx4MzfO\nnt2preZFrCcsLMxhcw+3oDCcp0YALrzgcGNjY/uD/9gxSk+cQKivJxyJa3x9iYuJwUX16x/8HWNG\n22VOSZIoamzqs29vb/e3tbX1Wg8giiI7d+5kz9frCGus55bEuD5VRstbWgj26DlDqLGtjS9Py0KE\ndiMLcS51Oh2a5jqcfJxwD2/PrIpbPA+zVtfputoj6Rz4f8twT5jUbgRUzrQ01WPSnqKpuYmampoz\nLSOnX3YZRbt306zX97kbkwkCs5KSWNXcxPe1dcwN9EcmCMT4+ZFdW8vxtMOMnzwFJycnmvV65IIM\nN3Vnw6eQy7gxIZawymo2rllFZUmJTSJ0GzZsYMaMGWeUYC/iGIZbUBjOv8AwODg4DJCfn48kSQMe\np66ujt27d/PeG2/w7yefZPu/X0O96yeul8Gj8XEsSElm7MgRnQwAwJVRkQOa12KRyKyuYcWJdL5q\nasZ82QwWPv00f/zLX5gwYYLVb5h5eXm96tA3Njay/L332LP8Qy4XTdyZktSnAShubOKR9Zsw9eAz\nFi0W1mTmctIzlKjR1mXN1Oh0WAxNeMSHITvtr3f288F9VOdUW/9xKUx5/ilkaicEQYbg5IymScu1\nj91FUNwoamtrz1wbGxuLc1AQ+Wcd6w13tZqrUlLJkak50tzeW1whkxHn54epqopjR45gMpnIq2vg\noW839ThO6ohAlsZGYtn3Xz5Y9jKZmZl9zm2xWNi8eTPuPWQkDSWO/LsdDgy3oDCchzsBRweHAd56\n6y0efPBBm5u9dAi0ZWVlkXX0KNXZ2SgaG4mSy5jt70eUjQJttmISxfa+vTV1tPj6EnXDjdxw+eVE\nRPSvdiA2Npannnqq23Pp6els/PxznE6d5J6oiF7f7M8mzMuTNYvmn9ErOpddhUXsMqkJv7R7WYhz\nMYkitVoNckGHV5z1xlOQyRCcXNA3mLCIIgpf9zMZQtAu6hc7fjyn1q9nfGioVWNG+fmRHJfADxnH\nCHV2IkCtQiWXE+/jS1ZpCSdUSsaOG8fyubN7HSfAzZUHRiezIecka//9KiW3zeWaWbN6rNOQyWS8\n9957Vv/sg0VxcTHvvPMOy5cvd9gaPvjgA2677TaHuJKHY1AYzkMjAO3B4QMHDjgsOPy3v/3N6mrO\nvgXaEnp84NmLNpOJIxUVHGpswhA0gqSFC7l0+nRGnlUB3F/i4uI6/d9oNPL9pk0c3biBJEMbN6Qk\n2WTYBEHo8frChka+rmjEdew1ePh0LwtxLrVaLbqWelReKjwirfMFmzUtCDI5gtoZk5n2DCF/Typr\nqjpdl5SSwolNm9AYDLhZKSx4WXQ0FQ0NrC8vZslIf5QyGc5KJXFe3mQXFJClUpOcktLnOCqFnDlJ\n8YSVVbDt048pKyxk/p13Dmt3T1hYGG+++aZD11BdXY2Pj0/fFw4CwzEoDOepEQDSysvLHRYc7mtO\nSZIoLS1t7751+DANp/Jxam45LdDmR0RocBf9e1upaGlh9Yl0/ufSaT1e09G395hOByGhjL3lNqZN\nmzZofwSVlZWs/ewzWg4d4KZAf0ZHWScZfbKunmgfn14lLLRGI5/nnKI+JInEGOs1+Gva2sDYjHtK\nMDIr3VwNv/yE3/2ydiMgthsBjwAfSgtLO2knxcXFoQoI4FRdHaOD+047hXYX0HUpKXzV2i4rcX1A\n+3fJTa0mxt2DvJO5qNRqYuNiERAoa27By8mpS4wA2g3mpNBggj3cWbPrR96rqGDOkiVER/egjupg\nBEGwWU/K3gyWGq81pKWlIZPJ9BaLZdgEheE8NgIwvILDFouF4uJisrKyfhVoa2khzsWJa/z8GRUW\nZpNOT1+McHfHrQeNnlqtlv0lpWSJ7X17p3XTt9eeSJLEli1b+HblSsZKZu6Pje61qfzZ1Ot0PLl1\nO1/Mn9sl9nH2+OuzT3LCyZ/YcTOsdl3pzSYaDHqwtOAZZ31aq/eU6QiCgMzZFZMZDBodHv7elOuy\n0Gq1Zz5HZ2dnoseNI2/TJquNAICvqyuXJafw08H9RGq0xLu1Vx57OTszShQpysxApVYRER5BaVMz\nzx/dzTu33NDjeMGeHjx0lgjdZfMXcNmMGfzhD3/g+eefd0j/3ot05fDhw8hksmOiI4skuuF8NQId\nwWE3RxoBURQpLCxsf/AfPIimtAT3Vg2xri4k+PsTbKNAmy0IgsDSSRM7HStrbmZ/WbnNfXsHglar\n5Zu1a8naupmCI4d5/c47UCmtd2/5urjw9aKFvX5Oh8rK2aaxMHL6lV2KwXqjRqNFr2lA5anEMyrc\n6vuUXu07JUHtjCjJ0Gt0BESGcuq0htDZxjQ5NZU1mzejMxpxsUE4LzkoiJKoGL7PzSRIrcbrdLV0\ngJsbpmYzp46fQK1WM3VUKJNDe9aK6qCTCN3yDyjMz+eKK64YNgagurrapn4SFyLDMSgM56kROB0c\nPvDzzz9f8fTTTw9phlOHQNvhw4d549VXuSYpES+tjkR3V7sItNnKQPr2DpRTp07xzWefYUk/zt2j\nQvnHkrv7NU5vBqBGo+WLgnJIuhzfIOsCsO1I1OgNCIYWXJNHIO/GndIXglyOpHLBoG3D1ccTk7w9\nsB8R8auaeXx8PIqAAE7V15NiQzVvh6zEqsZGNtZWcMeIAGSnvzcjPT0xNjSQfeQIqskqq12eZ4vQ\nrftxC43JYykpKXFoXjy079g/+eQT3njjDYetobW1lby8PMaNG+eQ+SsrKzuCwgccsoBeOC+NAIAo\niht37tx5hUajGXTJXaPRSF5eHlmZmeQeOoShogIffRtXerizJCiIQDfXIa/CFC0WMmtq2F9VTb2X\nF2FXzuSOK68kLi5u0NciiiI7duxgz9frCG9q4JakhG591j1xvLKKOD8/q3oUG0URsyCjrakWvU6D\nk4t1v2uN0USLaEYyNeIZ188+voIMSemKXqNDJpOh9PPolCEE4OrqStSYMeRv22aTEYB2WYlrT8tK\n/NLQxGW+3u3TIhDu44Opto70tMOMmzoVT4/2gG9mdQ2jvLx6/bwjfLx5yNWFddnHWbnsJa663b4i\ndLYSFxfHM88845C5O9i6dStardZhRmD16tUAFmCrQxbQC+etEQA2ms3m17ds2cK8efPsPrherycv\nL4/MjAzyDh/GWFmBv8HAJE9P4kJG4t+DjPBgYzSLHKus5GB9PRo/f2Jm30zh0aPc//DDQ/JH3tDQ\nwNpVq6jc/V9merkzJSWp23lb9AY8nLq6obRGIy/s2s1Hp/sA9EWIpwdPJEfzVW4Ox36owiv5EoIj\n4ntVAQWo0Wgw6ppRuMnxjLatD1FLxlG8AWRyRKUz+tb2ojLnczSEOkhKTeXb7dvRm81n2khay0hP\nTyYmJLH76GFG6fSMcmkvPBMQiPbzI7u2huOHDzN+yhRcXVxpatPzxdHdPH/tzC5jtZlMbM3N59bk\nBNzVahanJrPjVAHb332b0qIibr7ttn7pPQ0UNzc3h/dGmDt3rkP1ijZs2GCRyWR7RVFscNgieuC8\nNQKSJBUolcq8lStXxtjLCOh0OnJzc7sItF3i5UlcWJhdBdpsXpvRxKHyMtKaWzGPHEnKol/79rbq\ndGg0mkEvBjpx4gQbP/8cl4K8PnP//7lzF1dGRXJdXOd2ia4qFV8unGuTwYr08eaJiWP48VQBmw9v\nJqMom5CUqXgH9JTiKlFrNCE3tOAUHYDC2bYHn6hpxVhViqmhBnNtNZqW9jd0jwBfSvIKu3RXS0hI\n4DtfXwrq6kgMCrJpLoBJo0ZRUl/PhqI87lP743I6ZVgmCMT5+ZNZW8PxtDTGT57MtPAwLhnVvVvs\nm4xsAs962MpkAlfHRBFaU8f69et4v6TELiJ05yOCIAy6e7QntFote/bswWKxrHfIAvpAsEflq6MQ\nBOF5T0/PP9fX1yv629CkQ6At88QJCo8cwVJXy0izmXhvb+L8/ewu0GYrZ/r26g3IwkYxfubMfvXt\nHQgGg4HvN23i2KaNJBvbuD42ps/cf7NoQWsy2v3zq2hpZVNeAfvaQBccT2jCuC41A816PUcamzCU\nHyJ4zhT8xiRZPX5rcRknVm5CFAWM2hZcJT1X3TKNibdcSUVOAaVf7eb5J/7WxeB++O67GHbuZHaS\n9XN1mtdg4Is9vxDVWs+cQP9ORsYgmsmsq8N1VDjjJkzo18OsUdfGmpw8aoNHcf2ddzF27NhB3zk2\nNjbi5ub2m9c4+u677zp6GcdKkuSYnpa9IP/73//u6DX0m2effVZrMBgeuPrqq/sV/CorK+ONZ58l\nd/t23PNOMlGt5PqQECYGjyTY08OqrX1eXT37SkqItXO9QrVGw478U2xrbKI5IpJLF97OvLvuIjEx\ncUi39BUVFXz6wQeUb9/KDd6eXB4ZYZVomkwmnPn8DpWVo5YrekwBtQV3tZpxIwKJc5ajL8+nID+L\nysYG5ConnF09EASB0qZmGvUtINURcv105DbMq/byIHBMDMGTEvGOH0FUciCXXtuelirIBEoPZDE2\nOrFLrYXBZOLQvn2k+vhY9fl0mVehwMvdg33lFbiLRkac5UpTyGR4qlVUVFXRYjYTGBh45gG+u7AY\nXxcXVIreX4KclUrGBPjTWlrCrkOHaLZAVHR0v7vBWcPvfvc7EhIS8Pe3rrBvsGhoaLCbEGJ/WLZs\nGRkZGfmiKP7dYYvohfNRO+hsDioUioaNGzf262aDwYDU3MT8kUEsSklmfHCwTQFOaPdZZ9dYpx/T\nF5IkUdzYxOqMTFaUVVCZksr1jz/O4888w+WXXz6khTaSJLF3714+evFFVIcPsDQ2mtEjbHd1mESR\n9w4c6lELqD8IgkBCgD+PTRrLk7EjuLwhF93P68jYvpri3ONUalqQtTXjHO6HspdeBT2h9vLEydcb\ntZcnIr9KL7t4eWBW0CU4DO0uIZmPD0UN/Xf5Rvv5kRQbz3aNnhpD56YnLkoVMV6e1Ofnk52dhYSE\nJEn8t7CYd/ZZl3WokMu4KTGOWz1cyFz9BR+9/Tb19fX9Xm9f/OMf/7BZWsXe5OTk8PTTTztsfovF\nwrp160STyfSNwxbRB+e1OwhAEISPoqOjF+fl5dm8RxZFkVeeeYbE0mJmRvWtRjlYSJJEbl0d+yur\nqHR1ZcTYcVx65ZU29+39+eefqaurY86cOQNaj0aj4Zu1a8n/8QemquRcERkxoApnSZJYtHodf7ns\nUsaOtL8/WpIkyppbOFxRyfdlNRwUlYieasLuuorg6dNQOjmDDZ4Ps64NhYszmtpqhLIcrrtiOrLT\nP//u99dxw4gxzJ7dVd/n3TfegF9+4YYBaNWbRJGvDh5EVVFyRlbibOp1Wk7p2ggfM5oapZpjFVX8\nbqrtTWJqNFrW5ObTGhHD7LsXk9RPN9Zwp7m5Ga1WaxeJlP6wf/9+pk6dCnCpJEl7HLKIPjjfdwIA\nG/Pz8xUnT560+Ua5XE7i5MnktGrtogpqK2bRwrHKSt4/foJvdXqcrpnF3X/7Px5+9FFSU1Nt3qpP\nnjyZ1tbWAa0pPz+fd15+mapNG1gU6MdV0VEDlrgQBIEVc24hMWBw3AKCIBDq5cmtifFcFeTN1MhA\nQv1V+LpZaM08SPWJ/dSdyqG1ugKDphVJtPQ63k9L/wSAXKHAIoHZZD5zzsnfk/Kaym7vSx47lhJR\nHNCuRymXc11qKnUeXuyoa+xy3tfFlTC1iuL0DEJl9MsAQLsI3dLRScRUFLP236+yZfNmh2bPDBae\nnp4OMwDQLuGtUCiagP0OW0QfnLfZQWfxoyAIxo0bN6qeeOIJm29OSUnhoIc7Zc0thHoNjfiWwWxu\nF3RraETnH0DCnLnMnzGDkJC+K0N7w8nJiXvuuadf94qiyI8//sjer9cR0dLILckJ3TZzsYZ9JaUE\nubkR4eN95pjzEAQHDWYzRZJASGQEqlAVU6+bSVNTE42NjdQ3NtNQWUObKNEsAUonUDsjU6qQK1XI\nFEpkcjmCICP6rlvQ1FTS1tyESmovEFSddhN6BPhQllvQJUMI2l1Cm0+7hGIG4Af3c3XlsqQUdh3a\nT/hZshIdBLl7YGxq5OTRY6hV6k6VuN9l5jAzOtIqt6ZaofhVhO6zlZQXFzNv0aIBidCZTCZyc3NJ\nTu5nbcYFxjfffGM2m83fDaf+Aedy3u8EJEnSCoLww/r16/v1IY8aNQrv6BjSq6v6vrgXqlo17C4q\n6vUajcHIzlMFvJWZzS8ubsTfvZg/PPcct99xx4ANwECor6/no3ffZf+K5cwULCxKTuq3AZAkiXXp\nmX3WUWw7mY/BbO71GlvJratH7+lFs9hGQEI4crkcX19foqOjmTxxPLNmXMrMyeOYnhLLhDB/kjwU\njBLa8NXV4lpfgrIyH1l5LoGBKmTlJ3HT1BDg6XbGAEB7mmiLQUdLN43m/fz8GJmQQH5d3YB/luQR\nI4iIjOH7Jg3Np3ciWa1aXsovAiDUywsfk5HMtDQazopD+Lm6sOZE3z0GOugQobs3IoTWndt5/5Vl\n5Ofn93vdH3/8McePH+/3/fbEYul9xzfYFBQUkJubqwA2OHQhfXAh7ASwWCzf7d279/r6+np8fa1r\nW9iBIAiMnjqVvUePcrUo9lvW2dNJzZoT6Uw/3XnqbDr17Y2IYNKimV369tobs9lsVSrh8ePH2fTF\n57gU5HNPVCQjPQZWayAIAq/ecG2f11kkidUnMrh73JgBzXc26bW1qGMTqZJpSUzsGuORyWW4e7jj\n3svPKEkSSKeDwd3EETz8vdGf1hDq7o05Zdw4ftizB9FiGZAbTRAEroqP54umRjbUVnLHiAA0ZjP3\nhra7NgQEIn19ya2tba8qnjIVd3d3poWHMS3c9ky5YE8PHkxN5NucXL549RUumzefGZdffiYWYi1L\nlixxWD7+2Zw4cYLVq1fzr3/9y2Fr+PrrrxEEwSxJ0naHLcIKHP/bsg+bLBaLsGXLFu68806bbx4z\nZgw/+/qSW1dHcj9FrpyVSt6cfVOnY7/27RVwj4tj5lVXMXHixCFJ8XznnXcIDg7uMUhsMBjYtHEj\nxzdtJMVk4Dobdf8HyrlFZANFazRSJMlQOTuj8FXi6tU/A9vTw78DFy8PRJWMmu+tl8QAACAASURB\nVJqabiWbExIS2OblRUljIxE2vpCci5NSybWpo/l6Tyt7GpqZ7tu5NkTgdIvKmlqOHT7MhClTBpQK\n6aJSsiglkd2FJfy0/ANKi4qYs2ABrjZUxw+XmgAXFxceeOABh67h448/tgA7JEnSOHQhfXDeu4MA\nJEmqlMvlR5YvX96v6K6vry/hEyZwvJvUv36shYKGBr5IT2dlVRV1Y8cx+09/4rG//Y3p06cPWY7/\ngw8+SExM9w/a8vJy3v33v8lZ/SU3u7twS+LAOprtLS7haEX3wVJrMYkijW1t/b4/u6YWi68vDYZW\nAhLCB7SWfV9+3+M5QRBQ+XfVEOogICCAwLg48qxsO9kbaaWlyASBSYlJ/NdgpqRN3+UaudDeotJS\nU82xI2kYTZ1TSz8+fBTNOemmvSEIApdFjuKu4ECqt27kvVdfpaSkZMA/y1ATHR3NqFGjHDZ/Y2Mj\nOTk5giRJ3zlsEVZyQRgBAFEUv927d6+k0+n6vrgbxk+eTIlCSYOufw+is/v2rm5qQbzschY+9TR/\n+POfberbay/UajWpqamdjkmSxJ49e/joxRdwSjvI/bHRpAYNXN53x6kCYgb41lvZquHO1V/b9MA6\nm/T6BlzDRtGMgZHduIJsGmv73l7PO/l7UlHbfQxJEARSxo+n2GTCMoCMM4PZzOasLFyUSiaNGkVA\nWAQb6ptp6yaDRymXE+/ri76sjBPHjnXK8onx8+XH/AKb54/09ebBpHi8s46xctnL7Nu3r8cMuqqq\nKj7//HOb57iQ+f7775EkSQD6V8Q0hJz3dQIdCIIQCeSvWLFCWLJkic33m0wmXn3mGRLLSrkq2vqH\nyLl9eyOnTkUE7r33XoepNnbHr7n/25mqUgw4938w6C7jxhoa29p4q6AYzwmTyHVu4bKH5w/C6n7l\n5N6jmHbl8fxTz3S73oqKCt7829+4wd2dMG/vbkawnRa9nlV79xDd2sBtgX7dzqsxGshpasIvNo6U\n0anIhIH/fkWLhR35hew1WUi47kZuvvXWLrvZr776iuTk5GGREdTf75C9mTZtmnjgwIF9ZrN5uqPX\n0hfD6ykwACRJKpDL5dvffPPNfqWcKJVKxlx2GSe0WqvyvNtMJvYUF/N2egY/ypWELVzIQ//4B/fc\ndx8///wzWq22P8sYFLZs2cILf/vb6dx/f7vk/g8G5/7x5tc3UK3p252aWV2DPGgEtbom/AfoCrIG\nD38fWo1tNDU1dXt+xIgR+EVF2eQSOlhczI5eal08nJyYmZJKlkzFsZbuPxM3lZoYDw9q8/LIzclF\nYuAveHKZjGtio1jg70XBt2v54I3/UFXVeRe0cOHCYWEAAF577TX27dvn0DWkp6ezd+9euSiKjmug\nYAPD70kwAERRfOvo0aOKQ4cO9ev+SZMmYQoIJKO659hAi97AD/n5vJ2dwz4PL1KW3Mujzz3H/AUL\nzhSlfPLJJw6XzoX2DKGtW7eyacVyjmzdzAPJCUT5Dry/8J6iEnb0w8VgKzqTiZd//qXXayRJIqOp\nGe9R4TSYdQN2BVmDR4APeszU9vCQFwSB5AkTKNTrrXYJlTU1MbaPNOEYf3+SYuPZ1tpGbQ9uM08n\nZyJcnCnLyqKwoLDL+Vf+u7dfLreEAH8eTIhBnXaAj15+iaNHj9o8xlAQHx/P5MmTHbqG5557Drlc\nXg8MS9XQc7mgjACwRS6Xly9btqxfN/v4+BB7ySUcrq3t4v+s1WrZmJPDu/mnyAoOZdrDj/D4P//J\nTTfd1EVMbDhsRzty/w98vJyFPp6sv2Nhv3P/z+VoZaVVLQ8HSmpQYJ/ppjVaLbVOLiiUSiy+znj4\nD9zI9YWzhxsWtbzH4DBAYmIiRg8PKpqbu5yTJIlWg6HTsdtGj8bHCm2oy6KjcRsZyvq6Bkw95MH7\nuboRolRQkH6C8vLyTuemhIVwpLx/QXwfF2fuG53M6IZq1r66jK/XrsVkMvVrrMHihhtusDmt1Z60\ntLTw3XffiaIovi1J0vD6cHrggjICkiSJoii+9c0330j9FcaaOm0ade4eFDW2b/XLmptZl5nFRyWl\nlCUkMeuxx3j8739n5syZw+Jt/1wkSeLYsWO89+IL6H/eyZKIMKaEhdr1D+P3UyfbLLRnL9ZnZfPw\n+l9jbRlVNTiHhlHZXId/on1ae761oPfK8zMZQrU9G4GQkBC8IyK6LRz72+bN7D51ql9r65CVqHHz\nZmc3shIdjPTwxF+0kHP0aKcdy6XhYVwW2f+sGYVcxk0JsWQdPcKPH7w76CJ05xuff/45RqNRAD50\n9Fqs5byWku6OZ5999iTwPwEBAbJLLrnE5vu9vLzILSlh/y+7KWxu4RejCcW48cy66y5unjuXUaNG\nWV0Mc+TIEfR6Pd52Cg72hV6v57v169n12acktzSxICEer24aqphFS699fYcz8f7+XBYejlqhQJIk\nNpaU4T1+AvlNFURfNwUn94F3fJMpFYyMj+z1mtrSShTVWiZPmNjteUEQaNZqSd+/nwQfn05FiDNj\nYwckK+GiUqF2cmZfWTlBgoRvD1LZns5O6FpaKauvx9vfz67pyVdEhnN5yAjSjx5lX3YOviODHSoZ\nLYqiQ3cA0P4CtnjxYnNDQ8MGi8Vy3hiBC2onACBJUg2w+s033zT3p2xcEAQuu+oqSEhEduVM7vjr\nX/n9E08wduxYmwXdXFxc+Oyzz2xeQ38oKyvjvddfJ3fNV9zi7sLshLhuNeYNZjO3fL6KFr2hm1G6\nZ09RCWvTrZciGGw62laWNDXT4u5BVXUV36/+FoXaPmm4E27p2rqxyxoCfCivq+5VmiA+Pp4v09LY\nU9jVNz9QUkeOZFRkNJuaWs/ISpyLgECUry9OLc2cOHy4S7KCJEn8dduOfsUIAt3dCHR344ExSUSX\nF7Hm36+ydcsWh4jQVVVV0Z+MQHuze/ducnJyFBaL5W1Hr8UWLpgU0bMRBOESYM/WrVuZNWtWv8Yw\nGAyoVKph4d/vjY7c/x1ffUlQTRW3xkbj3UfVaF5dPeHeXlZLZKw6doLZCfEOcwH1xPc5JzkVm4DG\nSYEm2YfUay/t9Pv678ffEjNtLCNiw+0+d/WpEgo/+4l//PFJfHx8OHnyJJ9++inPPvvsmZcFi8XC\nS888Q1hREdMHQapcbzLx+b69BNZXsWhEALIevqtmi4Ws2lpkI4IYP3kyTupfdwR7ikrwdHIiOSig\n3+uQJImDpeVsb2hh5IwrmXv77QMSobOV6upqmpqaiIuLG7I5u2PWrFnSjh07CkVRjJbOowfrBbcT\nOM0+uVye8dprr/VbQUqtVg97A9Da2sqnH3/MD+++w2RtK4tTkvo0ANBeQGSLRtKiManDzgCIFgvZ\nbXqCIiOp1DYQkhzd5fflO2oExnOK/woOZ7D7k4Elbfx35bcUHcnulCHk6urKvHnzOq1BJpORNHEi\np7SDI1XupFQyK3U0hWpX9jZ2DUB3oJDJiPfzxVRZyfEjRzCZf41XTgsPs8oAVLVq+OOGLd2eEwSB\nyWEhLIkIoWXnNt5/5RVO9TPm0R8CAwMdbgCqqqr48ccfEUXxP+eTAYAL1AhI7RHiN7Zv3y4UFxc7\nejmDwsmTJ3nn5Zep2byRRUH+zIyOHJa5/4PFqYZG2ry8EQQBk4cSn5CuXc+SrpzCqDGdO1t5jfDH\n3a9rjOa9u5/iwJqtAKRvb+/9kf3zIV6b/TvMxs7ukpCkaGKnjcXipDiTIRQcHMzo0aO7+KWTkpLQ\nurpSO0h1I6FeXkyIT+RnvZnSbmQlOlDJFcT7+KItKSX9+HFEi21um2a9nkemdB//6CDE04MHUxIZ\neSqbz19Zxq6ffnK4kudQ8dFHHyEIggH41NFrsZUL+amxSiaT6T744ANHrwNoF3TTWFH41Bdms5kt\nW7bwxbKXGZGXw9KkBCJ9+h943pFfwPJDaZ2O7Skq4YODhwe61EElvbqagIRECqvK8I4Ps3rX5hMc\nyJgbZnQ5/tCnLzB5fns66g9vrQIgYcZEHt/wNopzUmsjJ6bgPTIAdYAn1TXVvc4XHh6Oe0iIXbSE\nemJKRAT+YeF8V9/UraxEB85KJbFeXjScKiArM6vL7sRikfjd+u+7jRHE+fsRH9B3H20XlZI7UpO4\n3KLn5+Uf8MUnnwxa4WSdHSS77YHZbObtt982i6L4mSRJ3VcQDmMuWCMgSZLWYrEsf++998wGg/VB\n0MEiOjqaI0eODGiMuro6Pnz7bQ6uXME1cliYnDjg3P8rIiMIOCfVtdVoYNHo1B7ucDxGs0ieWWRE\neDhlLXWMTOg9k8dWHt9gXVzP2d+T8pre+1DI5XISJ07k1AA7vvWGTBC4LikZjZcfW2obenU9uavV\nRLu7UZ2bS15eXqeqYplM4M6xqTTpe95RWIMgCMyIDOeukQFUbdnA+/9+jdLS0gGNeS56vZ4FCxZg\nNPZPa8qebNq0iaqqKgXwjqPX0h8uuBTRs3n22WeL2tra/piYmEhKSopD1xIVFdVvVcOO3P8v330H\n+YmjLIoKJ97f3y4xC0EQiPPv/IYX7evbbWbRcCGzppZstTNTr76a47mZlOcX0Vhfj0UUUbs6oxgi\nsT5tUysNGUXMvHRGr78LmUzGgb17iXJywsVOBXvnolYo8HR3Z195BZ6iiaDTGVTd4axUorCIFFdW\noXBxxcvrV4nqUC9PPJzUmESRxzdt4/LI8H732PB2cSbFx5uC7Ez+e/Q4ah8fgoOD7fK9lcvlzJo1\na0gD0D0xf/58S319/SGLxfKco9fSHy6UfgLdIklSjkKh2LVs2bLpCxculA/3QG936PV6Nm7YQPr3\nmxgtmrg2JXlYP6CHgozaOkIvn8mYMWP4k48Pubm5ZOTlUHhkDycFM/IAdzzCAvEOCTwTAxiMHHIP\nf29qzXoaGhrw8+vZVRIVFYXryJHk1dbia4M2v63E+vtTGhvP9szjhDir8evF4AS6uWNqaiLv+DFU\nahUjgkZ0Ot+iNzArNnrAbUE9nNQsTk1iR34hW995i5KiIm6+9VbU6p6NlDUIgkBQUNc40FCTlZVF\nenq6DHjT0WvpLxdkiujZCIJwNbB97dq1zJ0719HLAaxXOiwtLWXdZ5+hO3KY60cGkRzY/zS+3thT\nVMLuomL+9/LpfHrkGCq5nIWjHbtz6gmt0cjrOfnc8Kc/M3Fi50Blc3MzhYWFFBUXkV9aRGldFXrM\nGBWg8vNA7eeOq48nrl4eOLm74uTugtrFGaWTCrlS2e3vxGKxYDYYMbbpMWjb0LdqaWvRom1soaGk\nEmWllj/d+WC3DWbOZu2aNeR/9RV3pA6um80kinx58ADOlaXcMyIARS9FgRIShfUNNDo7MXrylC5d\n+YxmkXvXfcd7t95ol+yw7Jpa1pdW4jZxCvPvXtypN/L5yq233mrZtGlThdlsjpYkyfF+537wWzAC\ngkwm2xkTE3NpZmamwtaCr8HgkUce4amnniI0NLTb8xaLhT179rBz9VeMqKniFity/wfCgdIykgIC\ncFOrEC0W9haXMj3CcQ05euNwWTnbFWr+9OJLfXa80uv1VFZWUl1dTW1tLdV1NVQ11tHQ2oxREjFj\nwYwFCxIWAQS5DEEuY993PzB19tVIoogkWpAjIEeG4vQ/Z4UKfy8fgnz8CR4xkhkzZvS508jKyuKT\nf/6TO8LC8BrE3yVArUbD6r2/MNGo5Rr/3vs8SEicrK1D5+nB2MlTurhXDpdVEO3r023leX9o0LWx\nJjuPupBR3Hj3YsaMsa296LZt25g+fTouVugsDTb79+9n6tSpAHdJknTeNlS44I0AgCAIE4GDK1eu\nZPHixY5eDvn5+cjlciIiIrqca2lp4Zu1aync+SOXqJVcHhFx3ko8DAYrj6fjfOPN3Hn33f0eQxRF\nNBoNGo0GnU6HXq/HaDRiNpsRRZGNGzcye/Zs5HI5SqUStVqNs7MzLi4uuLu74+zsbLNf22g08vxT\nT5HS2MjEMNt7ANvKsfJydh86wAJ3J2Lcen9gipKFA5VVvFjVwLdL78bHffB6X0P7bmXLyXyOCCrG\n3Xwr191wg1VNl4xGI0uXLmXlypUOr+GRJIkZM2aI+/btyzWbzSmSJJ23ubC/CSMAIJfLvw4KCppd\nUFCgGKg/crA4efIk3372KbKsTG4ODyNiAKmffWGtS0pnNKGUy/odHLQnTW163jxVxNynnu7SNe18\n4Ksvv6Rk3ToWDkGSgiRJbExPpzYvm/uDfPHoQ++q1WTkp4pKoiIjGT95EmpV938j9mzacqyiik1V\ndfhdMp35d93VRY13OLN582ZuuOEGgBslSeq5H+l5wAWbInouFovl6YqKCtl//vMfRy+lC2azmc2b\nN/P5yy8xMi+XB5ITB9UA7C0u4X+3/mDVtccqK7nv6+HRJjWjuhrVyGDi4+MdvZR+kZScTJ1SScsA\nUzCtQRAErk5IQPIPYmNNfZ99DdyVKmYFB2OoKOfE0WOYxa56RK0GA3M+X9PvFqDnMmZkEEtjwjHt\n2cX7L79Edna2XcYdbCwWC48//rgol8v3AZsdvZ6B8pvZCQAIgvCBi4vLvZWVlXIPj8Hd8lrLDz/8\nQM6JEzQc2MdVPl5MDLFPCl1vnKyrZ6S7u9XBPq3RaLdeBAPhvWMnCJq3kHnzB7d95GBhMBj411/+\nwjitlnF9NJCxF6VNTXy79xeuFMxM8/k1FVSSJDI1WpLdO9eIaI1Gshsb8Y2NJXXM6C4tKtOrqon3\n97PrztBgNvNd9kmynN2ZOmceV119tc1ijUPJqlWruOOOOwCmSZLUe0Pq84DfzE7gNM+2tbWJr776\nqqPXgSRJHDlyhA9ff51fvviceyPDmRQaMiS+zlg/X5uyPYaDAajWaKh1cmG0jYHE/jDQor6eUKvV\nxE2YQH5jz30A7E2olxfjT8tKlJ0lK7Ghuo4faxu6XO+qUhHj6Uldfh452dldWlSmBAXa3TWoViiY\nl5zAtSqBA5+sYOWHH9LS0gK062Pdeeedg6K91B+MRiNPP/20WS6Xb7oQDAD8xoyAJEnlkiS9vmzZ\nMrG6uvdy/8FEr9ezds0a1v/ndW738WD57BsIch/cBjWinTRc2kwm/rFjF0bz0EoGZ1TV4BIWRtQg\nqHGey2AWUCYmJ1OrUKAdwkrXqRER+Ia2y0roxfbvwc1B/jwW2X2A2tPJiUhXV8qzs/sUgrPX90oQ\nBKaEhbAkPJjmHe0idAUFBej1eh5//HGHB4I7+PDDDykuLpaLovi/jl6LvfhNGYHTvGQ0GnXPPeeY\n4r7S0lLefe018teu5jZPN26Mj0OtHNyavQOlZfzuu012GctZqWT0iCBqBkkPpjskSSKjtZWkKVOH\nxE2wYsWKQRs7Pj4eVUAA+YOoJXQuMkHguuRkWjx92VJbb9Vbta+LK6FKFUXp6ZSWdS/5UKPRcvOn\nX6HvoZ9Bfwj18uSh1ESC8rP47JWXycrKYuzYsXYbfyBoNBr+93//VwQ+lSRp+DTYGCC/OSMgSVKD\nKIrPv/vuu1JBweA3S+/AYrHw3//+lxUvvojrsTSWxseS1E3x12Bse8O9vXjl+t579drCzYnxhHgO\nXUyltLmFFjePIcsI6q36d6A4OzsTPW7ckLqEJEnin9u24e/nT4ZMyfEW64QMR3h4EChB7tFj3Qrl\nBbi58p+brkVt5wp2F5WSO1KSmGHWs+vD9/jik0/Q6XR2naM/vP7662i1Wgl4xtFrsSe/OSNwmjeA\nhj/+8Y9D4mhsaWnhk+XL2fHeu0xt07A4Jbnb4puc2joe/36r3ecPdHMb1H4AB0vLKD/twx0MMqqr\n8YqOIWwI8uuHgqSUFKplMtqGqEm7IAj8ZeZM5o0ZQ2JMPNtbddRZ6Y4K9fbC22AgK+0Ijd0Yrihf\nH7u7amo1WnYVFHF5VDh3jvSn4vvveP/fr1FWVmbXeWyhrq6OF154QZQk6U1Jki4offrfpBGQJEkn\niuJfv//+e+H48eODOldOTg7vvPQSdds2c+fIQK6I6rn4K97fj9uSEu2yGxiqBwyAm1rNyrSjgzJ2\ne/MYAymTJw8bv/BAiY+PR+7n120T+sGiQyl2RkwMziND+a62EbOl7++ZgECkry/Ora2cSDvcqxy6\nJEl2cQ19cuQ4fq7tBW5Rvj48lByPR/pRPl72EgcOHHBIkPiFF17A0C5H/PyQTz7I/CaNwGlWKBSK\nwieffNIyGF8qk8nE999/z6pXlhFSkMcDSYmEe3v1ed/0iFEDftgdrajk/m+GLrc/McCfv17RVaPf\nHpxqaETn6TWkKrDPPDO4u303Nzeixo7lVH39oIz/Q24u/9q+vdtzSrmca1NSqXL15Kf6rtlB3SET\nBGL9/ZDXN3Ds8GHa9G3dXlfQ0Micz9dgFgcWLP7TZZeQOuJXXSEPJzX3jE5ikqaRLe+8ybo1axhK\nefiioiLeeOMNiyiKL0qSNDyaGNiR36wRkCTJZDabn9i2bZtszZo1dh27traWD99+m7RPPuZapYz5\nSQm4qIZG3hjaU0Dfv2X2kM3XHatPZNBsh6KojOoaAhOThlRsbCh0aZJSU6kQBPRm+wVVO0gZMYIn\nr7qqx/MBbm5MS0rmgFkgX2udr10uyIjz80OsrmpvUdnNTjPK14cVc2ejkNv/sSKXyZgVG818X0/y\nv17DB2/8h6HI8JMkiZtuukk6/fD/96BP6AB+s0YAQJKkb4F19913n8VeX6j09HTeff55zL/8zL1R\n4QMq/npn/0EadN2/dfWGq0rl8J7AAa6u/FxYNKAxjGaRk2YzqRMnDqkr6Mknnxz0ORISEpD5+lJg\nB5fQuemmQR4eKPoQtBsTHExYZDQbG1tptdIQqeRy4n190ZWWcuL4sW5bVAb2M9W5pKnnHslnkxjo\nzwPxUSgO7eOjZS9z7Nixfs1nLStWrCAjI0MQRfEeSZIG3hpwGPKbNgKneUSv17fcf//9dukPffTQ\nIUxZ6dybkkSg28By/6eGhXKg1LpgWFMv/WUdwRVREcxOGJi8Q25dHWYfP5KTk+20quGDh4cH4amp\n5A/QJbS3sJC/bNjQpyzEuQiCwDUJCYh+QWys7VtWogMnhZI4b2+aCgrIzMjo1T9vEkWrJCZKmpr5\n3frNVtcc+Lq6cP+YZJJrK1j/xutsWL++253JQCktLeXRRx8VBUH4WJKkLXafYJjwmzcCkiTViqK4\ndNOmTYI93EJXXnMNith4/ls48ASCsSNHcF1cTJ/XZdfUcu/X64dNVWV3SJLE4rXfcKis3Op70mtq\nCR0zFm/vwdNRciTJY8ZQJkkYe+kL3BdTwsN5e+5cZP3YKTkrlcxKTeWU0pX9jda9iQO4qdREu3tQ\nk3uS3NzcLlXFHeTU1nH3mm/7/F6Genqw9o55yG1o/KOUy7k5MY6b3dQc+eITVrz7rl2//5Ikcd99\n91kMBkOdJEmP223gYchv3ggASJK0ThCEdQ899NCAK4lDQkK4+vZF7DdbyK0dmhhSrJ8vn82/bVhn\nzwiCwDs330iElQ90ndFEIQKp48YN8sq6UlJSMiTzJCQkIPPxocjK3UB1ayv/3rWr0xtzfx7+ZxPm\n7c34hER26U2U660Ptno5OxPu7ExpViZFPbj9UoIC+WT+LX1+LwVBwKmfBZNjRgbhbTRQU1qCOABj\nei7vv/8+P/zwg8xsNi85H5vH28JFI3AaSZIe0Wg0LQ8//PCA3UJTp04l4brr2VBW0S+ffneYRQuf\nHune/ymXyYaFvk9fuKpUZ1L/Ovgk7SjV3aQdZtXUIAQEkpSUNFTLO8Pvf//7IZnH29ub0ORk8qyM\nC2gMBq6MibHpjdkapoSH4xsawfq6xjOyEtbg7+ZGsFzBqRMnqKio6PYa9x5k21sNBixWpKj2xS9F\nJTQGBTP//qUo+pDLtpbS0lIee+wxC3BBu4E6uGgETiNJUq3ZbH7g22+/Fb766qsBjSUIArfOmYPr\nxMmszT1pF50dhVxGjVZLcWP7S8lgFmcNJSGenuTVdX0TzqhvIHL8hD67hw0GL7/88pDNlTRmDKUW\nC6Zz3mJbDQZ2nDzZ6ViUnx+jg4Ptvga5TMZ1ycm0evmy1UpZiQ5GenrgJ5rJPnqEuj6MWbNej8Zg\nRLRYmP/FOquDwT2RV1fPTo2ey+YvJC4ubkBjddDhBjKbzbXABe0G6uCiETgLSZLWAesefvjhAbuF\nnJycWHjPPTRHRLEx96Rd/JV/mj6NUd5elDQ188j6TV0eHOcjM6MjuTS8cyvLr9MzOdFmINVBmjFD\n2a8gMTERydub4nOqcdNKS9ENocicp5MTV6aMJl1QcqLV+iQYAYFwHx88dG2kpx2mubnnB3teXQMP\nr/8euUzGqoW3Ee7Td91MT9RpdXxdXEHMrOu54sor+z3OuaxYsYIffvhBJoriBe8G6uCiEejKI1qt\nttkebqHAwEBuuWcJ2a7u7Cm2n585zMuTtYsWDItuX4NBrVZHHcJ52zzGFvz8/DA4O7P2nFTHy6Oj\nuWmIs6LiAgKIj41nW4uOeqP12TYCAtF+fjg1t3A87TBaXffighNCRrJ8Tnv9irdL//sst5lMrMrO\nw33yJdw2b57dYmG/lWygc7loBM7htFvowW+//dYu2UJJSUnMuH0Ru3QGcuwYKDaKIh8ePDysM4L6\njZOa2+66i7PbgG7YsGHQK3kdhf+IEeDiYjdZ5oFweUwMTiNCWV9bb5WsRAcyQSDWzw9qazmeltal\nordR14beZEY1QLE50WJhdWYu+vgkbl+yBCenrhpc/UGSJG677TaLXq+vv9Czgc7lohHoho5soaVL\nl9ql78AVV1xB4k2zWV9eSWVra7/GyK2t6xRIc1Up0ZlM1A0DdUV70tE8JnX06E7Hb7zxRm6//fZO\nxywWC3v27LG7hMCbb75p1/E6aGtr47rrrmPfvn2djt977714hYZSMoTKoj2hksu5NiWFSldPdtXb\nth6FTEa8nx/GigqOHz2K+XQRmsUisXjt+i4xgLLmFptaVUqSxIbsk5QG5y8RkgAAIABJREFUBrNw\n6QN27Um8YsUKDh8+LDtdFPabcAN1cNEI9IAkSY/odLrWhQsXDtgtJAgCt82ZQ+DlV7I6v8BmOYV6\nnY4nt/7QSWJAEAQenTYVfwcETgeTjKoaXELDiI6O7nRcJpN1cQ8ZDAZ27drVpTdteXl5r77pvrBH\niuhPP/3EI4880umYs7MzmzdvZurUqZ2OBwQEEBgbO6SCcr0R6O7OtKQU9pslq2UlOlDLFcT5+KAp\nLib9xHEsFgsymcC6O+YT6+/b6drSpmb+ssW6XtcAO08VctzZnVvvX2pXRdnfqhuog4tGoAc6ish2\n7dolfPLJJwMeT6lUsmjxYhTjJrIqO9cmlU9fFxe+uWPhkOoPOQJJkshs1ZA4ZYpVzWOcnZ3561//\nyphzWk7u3buXt99+u9MxjUbDypUrrdKbWbZsWbfHdTpdtwbirrvuYuPGjZ2OpaSk8OKLL3a5tjv/\ntSAIJI8fT5HBYHPl72AxNjiY0IhoNja2WC0r0YGLUkWMlyf1+afIyspCkqRu3UBTR4Xy1uzrrRrz\nYGk5u81w9d332LWC3Gw2c/fdd/8misJ64qIR6IXTbqEVDzzwgOXw4cMDHs/NzY27HngAXVwiq7Oy\nbcru6Ul+ugOzaOG+r9dTZ+Ob23CitLmFZjd3Rp/jCrKVefPm8fTTT3c6JpPJcHNzw3KO3/29997j\nscce63TMaDQye/Zsfvrpp07Hd+zYwfvvv99lvg8//JCbbrqp0zE/Pz88PKxvvJOYmIjJ05OypuHh\nieiQlTD7BbGptsHm2NNRTRu+aicqc3LIz8/vsaq4r+81tO8OtzRpmLpgEZdccolN6+iL3/3ud+za\ntQuz2Xz7b80N1IFwQQYW7YggCE4KhWK3v7//mKNHjyrsoWZZVlbGytf/zaiyEuYnJXb7h3Cssop4\nPz+bKinTq6oJcnc7b11Em3NPcio2kf/561+HdfXzYCBJEq89/zw+mZnMjI119HLOUNLYyPq9v3CV\n3MJUb0+r7tGJIs/kFvDPuCiadVpKzGZix4/v04WTUVVDuLdXJ/HDk7X1fFVeTcrcBdxym32r4j/9\n9FMWL14M8KgkSW/YbeDzjIs7gT6QJElvNptvqampab7iiissRjvkboeEhLDwoYcp8A/ku5ycLm9Z\nOqOJF3ftxmxjtkhKUOB5awBEi4VsnX5YNI9xRCtDQRBInjCBQr1+2LiEoF1WYlx8Irt0RqtlJVzk\ncpYlxuAklxHo7k6QACePHaOquqrX+5r1el7YtfvM/wsbGllTWknsjTdz86232vV7kZaWxtKlSy3A\nJ8DgZAKcJ1w0AlYgSVK5KIqzs7OzLee6DvpLdHQ0cx96mCxPHzbn5nUyBC4qJV8unDtgOeiChsbz\nJoW0oKERnZf3kDaP6YmFCxc6ZN7ExESMHh5UDrNq8KkREfiEhvNdXSOGHl5MevuehXh54WMykpV2\nhIaGnhvZTAsP47lr2gu/ihubWFVURvh1NzJ3wQJkdpTKqKmpYfbs2WaLxXIMeMgu8sHnMReNgJVI\nkrQXeOTdd9/lww8/tMuYSUlJ3Lz0AY66uLEtL7/TH5I93no2Zufw8SC1fbQ36dU1BCQkDmnzmJ74\ny1/+4pB5Q0JC8I6IIK+21iHz90SHrERLD7IS+Vod9x/P7tEQdLSodNVqSE87TGsvadKCIFDc2MQX\nhWWEzrqBBXfcYTdNIGjv+Ddnzhyxpqam2Ww23yxJ0vDSYHcAF42ADUiS9CHw7iOPPCLt3bvXLmOO\nHTuWm5Y+wHdNGtamZ9r1zf3RaVNZMt4x0gu2YDSLnDSZGT1pksNdQQCXXnqpQ+btcAkV6HTDbgfn\n6ezMFcmpnEBJRmvnimAvpYIXEqJ7/d0JCMT4+aFobGxvUdnWvbBiYUMjnxeWEjLrekLCw+1eA7Jk\nyRJ++eUX6bQBcFzn+mHERSNgO49ZLJb91113nVhebr02fm+MGTOGaouFDBc3tp7Mt+sDYDg8VPsi\nt64Os++F2TzGVhITE9G7uVHdz6LCwSQ+MJC4mDi2tmhpOEtWwk+lIsAK12VHi0pLTTXHjqRhNHWO\nr+XV1fNFUTlh197I7XfdhUql6jYbq78sX76cL774AuD3kiTtsdvA5zkXjYCNSJJktFgst2q12vrr\nr79e1Nuhj65CoWDjxo3M/f0fSHN25fvcPLvI7J7LgdIynvh+66CMPRAyausIHT3mgm0eYwujRo3C\nIyxs2LmEOrgiNpZmD29eLiyxSVaiA6VMTryvH/qyMk4cPXamB0BmdQ1flVUTddMt3H7XXSiVSi69\n9FKeeOIJu6x7//79PPTQQxbgA0mS7GdZLgAuGoF+IElStSiKN2RkZFjuvfde6dzc8/4yfvx4bn34\nEY67e7I+O8fuWjKTQ0O4e9wYq3Kzhwqd0USBBKnjxzt6KWf48ssvHTa3TCYjedIkCrTaYecSgnZZ\nCblSheTtx882ykp04KRQEOftQ3NRIRnp6RwsLWNdTSOJt81j/u232zUGAFBYWMjs2bPNkiQdBP5g\n18EvAC4agX4iSdJhi8Vy55dffsmf//xnm+/fu3cvBQUFXY6PGTOG+b//A7l+gazOyLK7XPToEUF2\nHW+gZNfWIvg7pnlMT2zfvt2h8ycmJqJxcaFW270ap6N5/PLLmTVmHPvMEqf6WZzoqlIR7e7Oj0eO\n8V5mHhNvv5Pb5s7ttVJ8/fr1aLppQNQbtbW1TJ48WWxoaCgXRfEWSZKGTp/7POGiERgAkiStAR59\n7bXXbFK4lCSJNWvWEBAQ0O35xMRE7nj0UcrCwvk8IwudDbK+tvLSz7vtqm5qK+l19UROcEzzmJ74\n+OOPHTp/REQE7iEh5A8Dl5AkSewrKupyfFxICCHhUWxsbEXTj6ZJoiSxp1VHjsIZvVyJQqnsM37l\n5+eHLcq+Go2Ga665RmxoaGgWRXGmJEkDV4O8ALloBAaIJElvAv/6xz/+waeffmrVPYIg8Prrr+Pm\n5tbjNVFRUdzz2P/QFJ/EyswsGnvIphgoi0an0uAgJdKmNj2lcoXDmscMV+RyOYmTJnFqGASH9xcX\nc7y8vItrShAEZiUmYvINZKON3cj0ooU1VbUcVbowZ/oM5o0axc5Vqzhw4ECv91166aXce++9Vs1h\nNBq59dZbLenp6QZRFK+SJOmU1Qv8jXHRCNiH/wOWL1myRNq8ebPdBg0ODub+xx6DiVP4OPskZc32\nLyIK9fLkklH2U2S0hczqGlQjQ34TzWNsJSkpiRZnZ+od7BKaGh7OQ9OmdfuW7qJSMSs1lXyFMwea\nrPtuNhpNfFpZS7G7DzdPnkpiUBDjQ0NJFkU2fPwxmZmZA16zxWJhyZIl0s6dOy2iKN4kSdL5USzj\nIC4aATtwuuLwIWDTnDlzLPv37+9yzS+//EJaWprNY/v4+LD0D3/A9+pZfFZUQmZ1zcAX3Asag5H/\n2bSFBt3g7DzOJqOpidhJkzo1j7lIO1FRUbiOHDnk8tIHi4tptGFnOMrHh7HxCfykM1LRh6xEka6N\nj2sa0AUFs2DqJYSdlQ02PTKS0MZGVn/wAUXduJ+6Y8WKFV1iBJIkcc8997Bq1SosFssdkiTttPqH\n+Y1y0QjYCUmSzBaLZYHJZDpw1VVXiYcOHep0fufOnf1uhu3i4sI9999P4rwFfNPQzK6CwkHLHHFT\nq1g0JrVH1Ud7UaPRUuPkzOhzZKCHAwsWLHD0ElAoFCRMnEj+APoi2IrGYGBbTo7NEg2XREbiHTqq\nR1kJSZI41NTCqiYtXpGx3D5pMj4uLp2uEQSBWXFxeJeX8/l771kl+R0bG8uOHTs6Hfv73//OZ599\nBvDH0zG7i/TBRRVROyMIgqdcLt+pVCrH7Nu3T3au1v1AkCSJX375hR1ffE50cyO3xMeitnM6XU/z\ngn0Lz3aeKuD/t3fv8VFV1wLHf2sevMMrQOQNQhPeIiAICiQiVpEGEKv4qFdABfWi+EBAqlaq3mqF\nWlTaahHhYtUCgoBVqUqliMBNJAQIytNEXglJCCEJkJlz1v1jJjQEAnlMMklmfz+f+YBndk72yJyz\nzt5nn7W2XtaGab/9bYlqB1SmlStXMnr06GB3g6SkJBb99rfc1a4djeuWvSZvZcg6dYr3v9lAt7ws\nYiOan92eb9t8eiyDRKlF767dubZTJxwX+R6d8XpZunMndvfuPP7009QrEiwuZvbs2QULNGao6svl\n+DghxYwEAkxVT1iWNczj8STGxMRYiYmJAdu3iDB48GDufPwJUtp3ZMH2nZWyjHDXsXTGLPkgYKuU\nVJUd2SUvHlPZqkIAAF+SwTotW1bIg2OqyntxcWy4wDLlsmhcty7RPXuxDTfbs31TNOn5+bx7+BhJ\n9Rrx8wEDGdK580UDAPi+4w7b5lRWFp5SFF566aWXCgLAr00AKB0TBCqAqmZZljUsJydn59ChQ62E\nhISA7j8yMpJJ057COfBa3tmznx0VfJ+gW4vmvDN2dMAqmxUUj+nVq1dA9ldT1apVi65XXcW+CpgS\nEhEua9iQqzt0CNg+u0ZEEOlPK/F1xnHeSTvOmVZtuX3gNUQVsxy6sJwzZ1i+cyf5UVGMnzqVRo1K\nVr/gscceY9asWQC/UdUXy/cpQo8JAhVEVTO9Xm9MTk7O9sGDB593j6C8wsPDeWDKFLrcNo4VJ3L4\n5PvdAX+wrLCm9c6djvgp6wTbjlw8P3xxdqSm0qhTZ9q3bx+IrtVo3bp3J93tJruc6Um8tn1ebeth\nkZG4ApiiGSDmZz/D2aIV6y2hQ7dejOs/gPASPAOSlpPD37//HseVV/LA44+fV2P6QlSV5557jtde\new3gGVV9vvyfIPSYIFCBCgLBqVOntg0ZMsT+5pvA5qyqVasWY2+9lVGPPMr2ZhG8k7ij0p4ydTiE\nvyUkljrwVKXiMcUJ9hPDhUVGRlInIqJcq4RUlcdXriTpaNmCdmnUdrkYN2AAvxx6HT/v2pVaJZju\n25uezkc//kjEddcx6dFHueyySz/VrqrMmDGD2bNnA8xU1RfK3/vQZG4MVwIRaeRwONa4XK5By5Yt\ncxStRxsIqampLF2yhMzN3zI8vAl9W7eq9JNsvtdCBNwXOfD3pGfwwck8HnrhxRId7MEQGxvLqlWr\ngt2Ns5YsXkzqxx/zyypQcCeQVJXNycnE5+fTJzaWMbfcQq1al85G6vF4uO+++3Tx4sUCPKaqr1V8\nb2suMxKoBKp6wrbt4V6v9+PRo0frO++8E/DfERERwaRHHqHPPffyqcfmbzt2cjLAudgvZV9mJqMW\n/42cM8WnZ9mRVnWKxxSnKgUAgO49e5LmcpFbgtKmtipPrFwZsBu+FeW018uaXbtIqF2bEZMmcdvt\nt5coAOTm5nLttdfaixcvtoC7TAAov5AMAiIyU0S2iEi2iKSKyAoRiSz0vktEXhaRRBHJEZFDIrJI\nRFoW2c+/RMQu9LJEZH6RNj1EZDuwz7bt92zbfmvixInMmDEj4Gv93W43I0eO5O6npnOsSw/+kvQD\niUdTKy0bZdcWzfnk3rvPK4tZkLraVzzGotdVV1XZqaCqKCoqilrNm5col5BDhKeHD+fayy+vhJ6V\nzbGcHD7cuZPjnTpx7xNPMHTo0BJ9HzIyMoiJibHi4uLOAPOB6SJywv/aKCI3FrQVkTEi8rmIpPuP\nzfNWIZTm+PWfA8YE4ONXOSEZBIDB+IpLDwCuB9zAWhEpuPtZD+gNPA9cCYwBooCPi+xHgbeACOAy\noCVQtDbhn4DfA7cCc4Engd+8/PLLTJ06lUCloS4sMjKSh596is63jePj3NN8uCOJ7BIWCS+vogdz\nRl4eI979X3anZ/BDejqeJk2rRB3h6qRevXp06tOHvcfPTd2cdeoUj370EfszMs7ZXpIbscGgquw4\ncoRlP/5I06FDeWjaNCIjIy/9g0BKSgoDBw70bt26Ndu27aHAWmA60AfoC3wFfCwiXf0/Uh/4N77j\nsbiroNIev6+JSPEJv6opc08AEJFmQBowRFU3FNOmH7AZaF9Qlk5E1gFbVfXxi+z7gKp29P/9Q+AV\nVY0XkckiMn/s2LEsWrRISvNQTGns2rWLNR9+SP6ORK5rHh6UewWqiip8uDOJM0NiuP+hh8jKyqJx\n48aV2o/qLC4ujr+//DITIyOp6/Yt1bVsm7ScHFo2bBjk3l3aGa+Xr/bs4UDdugwcPZoRN9+M212y\nJcdxcXGMHDnSm5GRcdTr9Q5T1d0XaiciGcCTqrqw0Lb2wAGgt6omFmlf5uO3RB2vJkJ1JFBUY3xX\nBZklaJNVZPtdInLMP2R8qdBookC2iAwSkRb4rlqSAVT1z6o69qOPPjozYMAAb0nzpZRW165d+e/p\n0+nxq//iMwsWbtvO0ZOly8leXiLCaa+X/fZ/isc888wzLF26tFL7UVIPP/xwsLtwntTUVFbGxbE7\n7T/PhDgdjmoRAI5mZ/P+zp2ktmvHnY8/zqjRo0scAN577z2uvvpqTU9P3+H1evtfKACIiENExuEb\nwX9byu6V6fitSUJ+JCC+y+LVQJiqDi2mTW3gGyBJVe8ptP0+fF+Kw0Av4BVgs6reWqjNjcBSoBa+\npWxzi+y7l9PpXON2u1t/8sknjuuuuy6wH7CQ5ORkVi9fzrH/20y/Wi6iO3akjrvi004AxB86zOeO\nWjzxu98Vm0J77dq1iAjDhw+vlD4VZ8GCBUycODFov//HH38kLS2N/v37n91mWRbvLlhA7tq1jK4m\ntZhtVf4vJYX43Fw6DBnCbXfeSdOmTUv0s5ZlMWPGDF599VWAJcADqnpOVkMR6YHvpF8HOAncqaqf\nFWlzsZFAuY/fmsAEAZE/AT8HrlHVIxd43wV8hG++MEZVi72MFpFo4Eugs6oeKLS9FlBbVS+YIF5E\nwh0Ox1Ig+g9/+INMmTKlwqZsLMti8+bNrFu5Aue+vURHNOfKli0rvOTkom3bqT3iF/zq3nuLbXPg\nwAGSkpK4+eabz27Lz8/nzJkzhIWFVWj/gsU3VabnJG1buHAhHTp0ICYm5py2mzdvZsWrrzIhKoo6\nlZAzqjyO5+Wxdu9esiIiiBk7lpiYmBKnCMnMzOT222+3v/zyS1T1CeCPeoETlf/YbAc0wjdnfz++\nKd3vC7UpNghcYH/RlOH4re5CejpIRN4ARgDRFwkAS4G2wA0XCwB+WwABznncUVXzL/YFUtUM27Zv\nsG177qOPPsq9996rgShgfyFOp5NBgwbxyDPPEnnn3XxqwVvbEtmbcbGZsPI5cfo0KSUoHtOxY8dz\nAgBAWloaEyZM4MCBA+dsrwkXL5mZmYwYMYLt27efs338+PHnBQDwTe05wsM5UORGcFViqxL/0098\nsH8/rgEDmPz001x//fUlDgCJiYl06dLF+uqrr06q6g2q+tqFAgD4Mveq6n5V3aqqs4BtwKPl6H6Z\njt/qLmRHAv4AMAoYqqrnLaouFAAuxzcCuORZUkSuAdYDV6jqjjL2624RWdCpUyfXunXrHG3atCnL\nbkrs0KFDfLZmDcnfbqTDqVyGdWhPq4aBveremJzC+gaNeOp/fhew2gEzZ84kIiKCqVOnnt1WkHCs\npPPNFUlVzxnNvfPOO8THx/Pmm2+Wa79vzZ9P/rp1xFahmswFMnJz+XL/fo43a8Y1o0Zx/fXXl2jt\nf4Hly5dz9913Wx6P5wfLskYWvhovCRH5EkhW1QmFtrUH9gNXlmAkUO7jtzoKySDgXwt8BxALFL7R\ndEJVT/sDwHJ8y0RH4ls5VCBTVT0icjlwJ/APIAO4At8S0BRVLdfEvoj0dTqdaxo2bNhs9erVrmuu\nuaY8u7skVeWHH37gi08+Ie27eLrYXoZ2aE+LBoFZaviXhERa3Ho7t1Vwnv4dO3bwzDPP8Pbbb9Os\nWbOz2z/++GOaNWtG4f+Ptm2jqhe8Qv3uu+/o06fPeduLntgTExNJSUlh5MiRZ7edOXOGsWPHMn36\ndAYPHlzsz5bVxo0bWTV3LveVMCVDZfDaNluSk0nIy6PlgAGMue022rUrebU627Z57rnneOGFF3A4\nHEtt2x6vqhfNfyIiLwGfAilAGHAXMA3fiP0rEWmCb6qoNbAGGAf8ABxV1dSKPH6rm1CdDpoMNAT+\nhe+mUMHrNv/7rfGd/NsACf73jvj/HOhvk4/vGYPPgV341hIvxRdYykVV4y3LuiI7O3tTdHS0vvHG\nGxU6/SEidOnShYcee4wxT04jtWdv3ko+yPKdu0jLKV8uooLiMb2uuCJAvS1ejx49WLFixTkBAHxP\nUxcdHezbt49bbrmF5ORzF3u88sorjBs37pxt6enpxMbGsnXruVUK8/Lyzttv7dq1WbNmzTkBAAJX\ni6Fr1644mjblxyoyJZScmcl727eT1KgRwydP5uGpU0sVANLT07npppvsF154QYEZtm3ffqkA4NcC\nWAR8D3yB71mBGwpVEosFtuJb9KHA+8B3wCT/+xV2/FY3ITkSqC5ExA3MAaYMHjzYXrx4saNDAFP/\nFseyLLZu3cr6zz8na+d2otTm2nZtyzRNVFA85snZs3FV8ZuZBdLT088LJFXJn+bNgw0buLlbt6D1\n4cTp0/x7/36Sa9cmauhQfjFqFM2bN7/0DxayfPly7rnnHuv06dO5tm2PU9VPK6i7xkWYIFANiMhw\np9O52OFwtJg3b55j0qRJlfLAl2VZbNu2jX//859k7EikQ/4Zrm7Vks7hTUv0+1WV1xMS+dk944mN\nDbkLrAqzfv16Pps3j4ldu140WV9FyLcs4lJSSMjNpWnPntw4Zgw9e/Ys1fcxPT2dhx9+WP/+97+L\niKxU1cmqeul6kkaFMEGgmhCRhviGrA9ER0fbCxcurJRRAfjmbHft2sWGdes49F08zbKz6N+iOT0j\nIqjlKv4k9FPWCd49lsmE3zxPZfU1FKSnpzNnxgyG16lD50oasdiqJB09yua0NLRdOwaPHMmQIUNK\nfaN/2bJlTJo0yXvixIlcy7IeBD4obvWPUTlMEKhmRGS4y+Va5Ha7W8yZM8c5efLkSksDoaqkpKSw\n8Ztv+OGbDdRKPUqv+vXo27oVzeqfn/bi0x/2sKdzFI8/84xJGBdg8+bMoc6WLdzYteulG5eDqnIg\nM5ONhw5xMjycPsOHc/3w4TRp0qRU+0lPT2fixIm6atUqc/VfxZggUA0VHhUMGDDA/uCDDyptVFDg\n+PHjxMXF8d3XX5N7YB/tvR56t2hO1+bNcDudWLbNa9t20OeBydxwww2V2rfyeu6553j++apdpGrd\nunV88cYb3Ne9O84AVwcrkHL8OJsOHiQ9LIzIa67hhptuoixLlpcvX84DDzxgZWVl5di2ba7+q5jq\ncafOOIeqZgOTRGRZXFzcom7durWYO3eus7LuFQA0adKE4cOHExMTw65du4jbtIlV8XF8tj2JrrVr\nUc/tJq9xk2qZMbSikvkFUrdu3VjbuDE/ZWXRoYSpGEpCVTl44gSbDx4krV49OsTEMPrGG+nUqVOp\nv1uF5/4dDsdq27bN1X8VZEYC1VzhUcHQoUPtd999t9JHBQUyMzPZtm0bCd9+y/E9uwnv2o1Hpk0z\nU0EVQFV57eWXabhtG8OjogKyv+Tjx9ly8CDpDRrQrm9frvv5z4mKiirTv59/5Y99+vTpHNu2J2Ou\n/qssEwRqCP8KokUiEvHHP/7R8eCDDwbt5KuqHDx4kGbNmlG3btGkjEagfPHFF3w9fz4Te/bEUcZ/\na8u22XPsGPGpqZxo2JCOV11F9PXXExkZWabvj1n5U/2YIFCDFB4VXHnlldbvf/9757Bhw4LdLaOC\nHD58mHmzZjGyYUPalfJG7WmPh+1HjrD9+HHONGtGl0GDGBIdTYcOHcp08s/Ly2PevHm89NJLVl5e\nXo5Z+VN9mCBQA4nIEJfL9arX671qyJAh9pw5cxz9+vULdreqjZSUlFI99RosqsqcF18kPCmJYSWs\n0JWWk0PioUPs8Xhwt27NldHRDBo0qMw1nz0eDwsXLmTatGlWdna2An8GfquqaZf6WaNqMEGghvLX\nSRjldDp/b1lW51tvvVVffPFFKWk5v1AWGxtb5YrNF+ezzz7j27feYsJFHtjKtyx2p6WxMz2d9Dp1\naBYVRf+hQ+nbt2+xtR0uRVVZtmwZM2fO9O7bt8+FLy3Dry+UjNGo2kwQqOFExAnc43K5XrRt+7L7\n779fnn32WVq1ahXsrlVZ33//PV26dAl2N0okJSWF+c8+y6gmTWjdqNHZ7arKoRMnSDp6lP0eD9Ki\nBZH9+9P/6quJioo6p35BaX355Zc88sgjVlJSktPpdH5uWdYMVU0IxOcxKp8JAiFCROoAD7lcrmdF\nJGzy5MmO2bNnmzq/1Zyq8srzz9Ny716iO3cmPTeX71NT2XPyJKcaNqR5VBR9Bw2id+/e5f63jo+P\n56mnnrK/+uorh9PpjLMs60lV/TpAH8UIEhMEQoyINAKeFJEnw8LC3LNmzXJOmTLFrOKpxtasWcO6\nN9+kad26ZNetS1jbtvQcOJDevXvTrl27cq8S2717N7/+9a916dKl4nK59ni93qeAj81N35rBBIEQ\nJSKXAc+IyKSIiAidPXu2a/z48dUm06fxH0ePHuWjDz4gom1bevToQefOnUtcyetiDh8+zNSpU1m2\nbJk6HI6jlmXNAharqlX+XhtVhQkCIU5EOjkcjhds2x7XtGlTa/r06c4JEyZU6VTKFe31119nypQp\nwe5G0MTFxTF//nzee+8927Ksk5ZlzQbmq2rF1Dw1gipUi8oYfqq6z7KsO4ArMzMzl8ycOdPTqlUr\n+1e/+pVu2rSpRtTyLa2UlJRgd6HSnTp1ir/+9a9ERUVZV111FUuWLDmUn58/y7Ks9qo61wSAmsuM\nBIxziEg4MN7lck3xer3tOnbsaD399NPOO+64g/r1A1Nu0qg69u7dy5///GfefvttKzs72+FwOP5p\n2/brwKdm2ic0mCBgXJCIOIAbHA7Hf9u2PaJBgwb2xIkTnQ8++CBaytkNAAAGxUlEQVRRAchVYwSP\nZVmsWbOGuXPn2uvXr3e4XK4TXq/3LeAvqrov2P0zKpcJAsYliUgHYJLL5Zrk9XqbXHHFFfazzz7r\niI2NNTeSq5HU1FQWLFjAm2++6T18+LDL6XTGW5Y1D1iqqqeC3T8jOEwQMEpMRGoDtzqdzkcsy+of\nERHhfeihh1wTJkwoU575qiovL69apJMuCdu2+de//sXrr7+ua9aswbZtj23bS/Dd6I0Pdv+M4DNB\nwCgTEekNPOhwOO6xbbtO69at7QkTJjjGjBlD7969q3X66OqUNuJC8vLy+OKLL1i1ahUrV670ZmRk\nuJxOZ7JlWX8EFqlqZrD7aFQdJggY5eJ/+GwEEOtwOH5h23b9li1beseMGeOKjY0lOjq61HVog23D\nhg1ce+21we5GqRw5coRVq1axaNEiOy4uDo/H43C73fs8Hs9HwCpgo6rawe6nUfWYIGAEjIjUAgYD\nsS6X6xav19umdu3a1s033+wYNWqUjBgxIqSfPwgkVWX79u2sXr2aFStWeOPj412A7XQ6N1mW9RGw\nWlV3B7ufRtVngoBRIfxZTLvjCwhjvF5vPxHRnj172qNGjXLeddddZpVRKeXn57N+/XpWrVrFhx9+\n6E1LS3M5HI5TqvqJqq4C/qGqGcHup1G9mCBgVAp/moqRIhIL3KCqtTt27OgZPHiwu0+fPvTr14/e\nvXubZxH8VJXDhw8THx/P2rVrSUhI0ISEBDs3N9fpdruPFJrm+VpVzwS7v0b1ZYKAUelEpB4wDLjJ\n7XZf7fF4egBuESEyMtIzYMAAd9++fenbt29QAsP777/PHXfcUWm/r/AJf+PGjSQkJGhcXJyVkZHh\nAnA6nVm2bW9W1W+A1cA2k7zNCBQTBIyg899L6A70Bfq63e4BXq+3h6oGJTCMHz+ehQsXVsi+C074\ncXFxbNq0iW3btumWLVsKn/BP2La9SVXjgHggDjhoTvpGRTFBwKiSLhUYLr/8cs/ll1/uatu2rbRu\n3ZqWLVvSrl072rRpQ+vWrQkPDw/KMlWPx8ORI0c4dOgQBw8eJCUlhYSEBPLy8jhy5Ii1e/duLXyF\nr6qbbds2J3wjaEwQMKqNIoGhF9DG7Xa3B9p6PJ5wCiVEdLvddnh4uNWgQQNnv379HOHh4YSFhREW\nFobL5aJp06Y0btyYsLAw6tevj8vlwuFw4HA4EBFs2z77ys/P5+TJk2dfWVlZHDx4EBHh9OnTpKam\nkpyc7N2/fz/Z2dmuIn0+43K5Ui3L+tG27RTgR+A7zAnfqCJMEDBqBBFxAZcBrYE2hf90uVztHQ5H\nUyDMtu0GlmXVV1V3WX+Xw+E45XA4TonICRHJ8Xg8h1X1J+AQcND/Kvh7ljnRG1WZCQJGSBIRN9AA\nCAPqA058I4mClwXY/pcHOOl/5ZmHroyaxAQBwzCMEGaKyhiGYYQwEwQMwzBCmAkChmEYIcwEAcMw\njBBmgoBhGEYIM0HAMAwjhJkgYBiGEcJMEDBqHBGZKSJbRCRbRFJFZIWIRBZpY4uI5f+z8OuJQm1q\ni8ibIpIuIidFZJmItCiynx4isl1EDonImMr6jIYRKOZhMaPGEZF/AO/jy8/jAv4H6AF0VdVT/jYt\nivzYCOCvQCdVTfa3+RNwE/BfQDbwJmCp6uBCv+vfwNvAHuADoLuq5lTcpzOMwDJBwKjxRKQZkAYM\nUdUNxbRZCdRX1eH+/24IHAPGqeoK/7YoYBdwtapu8W87oKod/X//EHhFVeMr+jMZRqCY6SAjFDQG\nFMi80Jv+UUHBSKBAX3yjiC8LNqjqD0AKMLBQu2wRGeTfRx8gObBdN4yK5bp0E8Oovvy1jl8DNqhq\nUjHN7sU33bOi0LbLgHxVzS7SNtX/XoHpwOdALWCmqqYHot+GUVlMEDBquvlAN+Cai7QZDyxR1fzS\n7lxVPxORcKC2qp4sYx8NI2hMEDBqLBF5A980z2BVPVJMm8FAJPDLIm8dBWqJSMMio4EI/3tn+YNH\nqQOIYVQF5p6AUSP5A8AoIEZVUy7SdCIQr6o7imyPB7zAsEL7jALaAd8GuLuGETRmJGDUOCIyH7gD\niAVyRSTC/9YJVT1dqF1D4FbgsaL7UNVsEVkAzBWR4/gKyswDvilYGWQYNYFZImrUOCJi41sNVNR4\nVV1cqN39wB+AlheazxeR2sCr+AJKbeAz4GFVTauQjhtGEJggYBiGEcLMPQHDMIwQZoKAYRhGCDNB\nwDAMI4SZIGAYhhHCTBAwDMMIYSYIGIZhhDATBAzDMEKYCQKGYRghzAQBwzCMEGaCgGEYRggzQcAw\nDCOEmSBgGIYRwv4fn4lrnFEmabwAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1043bc4d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "N = 20\n", "theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False)\n", "radii = 10 * np.random.rand(N)\n", "width = np.pi / 4 * np.random.rand(N)\n", "\n", "ax = plt.subplot(111, polar=True)\n", "bars = ax.bar(theta, radii, width=width, bottom=0.0)\n", "\n", "# Use custom colors and opacity\n", "for r, bar in zip(radii, bars):\n", " bar.set_facecolor(plt.cm.jet(r / 10.))\n", " bar.set_alpha(0.5)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Additional Software \n", "\n", "We will be needing the QuantEcon.py package from QuantEcon organization." ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [default]", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
luctrudeau/Teaching
IntroductionIOAsync/IntroductionIOAsync.ipynb
1
213534
{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Introduction à l'I/O Asynchrone" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#Le Socket de Berkeley" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Il est difficile d'imaginer le nombre d'instanciations d'objets de type Socket depuis leur introduction en 1983 à l'université Berkeley.\n", "\n", "Le Socket est l'interface de programmation la plus populaire pour faire de la réseautique.\n", "\n", "Elle est si populaire, que tous les systèmes d'exploitation l'offrent et tous les étudiants sont introduits à la programmation réseau avec les Sockets." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Exemple d'un Socket client qui se connecte " ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true, "slideshow": { "slide_type": "skip" } }, "outputs": [], "source": [ "from IPython.display import Image\n", "from IPython.display import display" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "import socket\n", "\n", "sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n", "sock.connect((\"etsmtl.ca\" , 80))" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#Exemple d'un Socket client qui envoi des données" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "msg = b'GET /ETS/media/Prive/logo/ETS-rouge-devise-ecran.jpg HTTP/1.1\\r\\nHost:etsmtl.ca\\r\\n\\r\\n'\n", "sock.sendall(msg)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#Exemple d'un Socket qui reçoit des données" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA\nAQBIAAAAAQAB/+GkOGh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2lu\nPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4KPHg6eG1wbWV0YSB4bWxuczp4\nPSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS4wLWMwNjAgNjEuMTM0\nNzc3LCAyMDEwLzAyLzEyLTE3OjMyOjAwICAgICAgICAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9\nImh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRm\nOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpkYz0iaHR0cDovL3B1\ncmwub3JnL2RjL2VsZW1lbnRzLzEuMS8iPgogICAgICAgICA8ZGM6Zm9ybWF0PmltYWdlL2pwZWc8\nL2RjOmZvcm1hdD4KICAgICAgICAgPGRjOnRpdGxlPgogICAgICAgICAgICA8cmRmOkFsdD4KICAg\nICAgICAgICAgICAgPHJkZjpsaSB4bWw6bGFuZz0ieC1kZWZhdWx0Ij5QcmludDwvcmRmOmxpPgog\nICAgICAgICAgICA8L3JkZjpBbHQ+CiAgICAgICAgIDwvZGM6dGl0bGU+CiAgICAgIDwvcmRmOkRl\nc2NyaXB0aW9uPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAg\nICB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iCiAgICAgICAgICAgIHht\nbG5zOnhtcEdJbWc9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9nL2ltZy8iPgogICAgICAg\nICA8eG1wOk1ldGFkYXRhRGF0ZT4yMDEwLTA4LTI1VDA5OjMwOjQwLTA0OjAwPC94bXA6TWV0YWRh\ndGFEYXRlPgogICAgICAgICA8eG1wOk1vZGlmeURhdGU+MjAxMC0wOC0yNVQxMzozMTowM1o8L3ht\ncDpNb2RpZnlEYXRlPgogICAgICAgICA8eG1wOkNyZWF0ZURhdGU+MjAxMC0wOC0yNVQwOTozMDo0\nMC0wNDowMDwveG1wOkNyZWF0ZURhdGU+CiAgICAgICAgIDx4bXA6Q3JlYXRvclRvb2w+QWRvYmUg\nSWxsdXN0cmF0b3IgQ1M1PC94bXA6Q3JlYXRvclRvb2w+CiAgICAgICAgIDx4bXA6VGh1bWJuYWls\ncz4KICAgICAgICAgICAgPHJkZjpBbHQ+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNl\nVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8eG1wR0ltZzp3aWR0aD4xOTY8L3ht\ncEdJbWc6d2lkdGg+CiAgICAgICAgICAgICAgICAgIDx4bXBHSW1nOmhlaWdodD4yNTY8L3htcEdJ\nbWc6aGVpZ2h0PgogICAgICAgICAgICAgICAgICA8eG1wR0ltZzpmb3JtYXQ+SlBFRzwveG1wR0lt\nZzpmb3JtYXQ+CiAgICAgICAgICAgICAgICAgIDx4bXBHSW1nOmltYWdlPi85ai80QUFRU2taSlJn\nQUJBZ0VBU0FCSUFBRC83UUFzVUdodmRHOXphRzl3SURNdU1BQTRRa2xOQSswQUFBQUFBQkFBU0FB\nQUFBRUEmI3hBO0FRQklBQUFBQVFBQi8rSU1XRWxEUTE5UVVrOUdTVXhGQUFFQkFBQU1TRXhwYm04\nQ0VBQUFiVzUwY2xKSFFpQllXVm9nQjg0QUFnQUomI3hBO0FBWUFNUUFBWVdOemNFMVRSbFFBQUFB\nQVNVVkRJSE5TUjBJQUFBQUFBQUFBQUFBQUFBQUFBUGJXQUFFQUFBQUEweTFJVUNBZ0FBQUEmI3hB\nO0FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB\nQUFBUlkzQnlkQUFBQVZBQUFBQXomI3hBO1pHVnpZd0FBQVlRQUFBQnNkM1J3ZEFBQUFmQUFBQUFV\nWW10d2RBQUFBZ1FBQUFBVWNsaFpXZ0FBQWhnQUFBQVVaMWhaV2dBQUFpd0EmI3hBO0FBQVVZbGha\nV2dBQUFrQUFBQUFVWkcxdVpBQUFBbFFBQUFCd1pHMWtaQUFBQXNRQUFBQ0lkblZsWkFBQUEwd0FB\nQUNHZG1sbGR3QUEmI3hBO0E5UUFBQUFrYkhWdGFRQUFBL2dBQUFBVWJXVmhjd0FBQkF3QUFBQWtk\nR1ZqYUFBQUJEQUFBQUFNY2xSU1F3QUFCRHdBQUFnTVoxUlMmI3hBO1F3QUFCRHdBQUFnTVlsUlNR\nd0FBQkR3QUFBZ01kR1Y0ZEFBQUFBQkRiM0I1Y21sbmFIUWdLR01wSURFNU9UZ2dTR1YzYkdWMGRD\nMVEmI3hBO1lXTnJZWEprSUVOdmJYQmhibmtBQUdSbGMyTUFBQUFBQUFBQUVuTlNSMElnU1VWRE5q\nRTVOall0TWk0eEFBQUFBQUFBQUFBQUFBQVMmI3hBO2MxSkhRaUJKUlVNMk1UazJOaTB5TGpFQUFB\nQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUEmI3hBO0FB\nQUFBQUFBQUFBQUFGaFpXaUFBQUFBQUFBRHpVUUFCQUFBQUFSYk1XRmxhSUFBQUFBQUFBQUFBQUFB\nQUFBQUFBQUJZV1ZvZ0FBQUEmI3hBO0FBQUFiNklBQURqMUFBQURrRmhaV2lBQUFBQUFBQUJpbVFB\nQXQ0VUFBQmphV0ZsYUlBQUFBQUFBQUNTZ0FBQVBoQUFBdHM5a1pYTmomI3hBO0FBQUFBQUFBQUJa\nSlJVTWdhSFIwY0RvdkwzZDNkeTVwWldNdVkyZ0FBQUFBQUFBQUFBQUFBQlpKUlVNZ2FIUjBjRG92\nTDNkM2R5NXAmI3hBO1pXTXVZMmdBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB\nQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBWkdWell3QUEmI3hBO0FBQUFBQUF1U1VWRElEWXhPVFky\nTFRJdU1TQkVaV1poZFd4MElGSkhRaUJqYjJ4dmRYSWdjM0JoWTJVZ0xTQnpVa2RDQUFBQUFBQUEm\nI3hBO0FBQUFBQUF1U1VWRElEWXhPVFkyTFRJdU1TQkVaV1poZFd4MElGSkhRaUJqYjJ4dmRYSWdj\nM0JoWTJVZ0xTQnpVa2RDQUFBQUFBQUEmI3hBO0FBQUFBQUFBQUFBQUFBQUFBQUFBQUdSbGMyTUFB\nQUFBQUFBQUxGSmxabVZ5Wlc1alpTQldhV1YzYVc1bklFTnZibVJwZEdsdmJpQnAmI3hBO2JpQkpS\nVU0yTVRrMk5pMHlMakVBQUFBQUFBQUFBQUFBQUN4U1pXWmxjbVZ1WTJVZ1ZtbGxkMmx1WnlCRGIy\nNWthWFJwYjI0Z2FXNGcmI3hBO1NVVkROakU1TmpZdE1pNHhBQUFBQUFBQUFBQUFBQUFBQUFBQUFB\nQUFBQUFBQUFBQUFBQjJhV1YzQUFBQUFBQVRwUDRBRkY4dUFCRFAmI3hBO0ZBQUQ3Y3dBQkJNTEFB\nTmNuZ0FBQUFGWVdWb2dBQUFBQUFCTUNWWUFVQUFBQUZjZjUyMWxZWE1BQUFBQUFBQUFBUUFBQUFB\nQUFBQUEmI3hBO0FBQUFBQUFBQUFBQUFBS1BBQUFBQW5OcFp5QUFBQUFBUTFKVUlHTjFjbllBQUFB\nQUFBQUVBQUFBQUFVQUNnQVBBQlFBR1FBZUFDTUEmI3hBO0tBQXRBRElBTndBN0FFQUFSUUJLQUU4\nQVZBQlpBRjRBWXdCb0FHMEFjZ0IzQUh3QWdRQ0dBSXNBa0FDVkFKb0Fud0NrQUtrQXJnQ3kmI3hB\nO0FMY0F2QURCQU1ZQXl3RFFBTlVBMndEZ0FPVUE2d0R3QVBZQSt3RUJBUWNCRFFFVEFSa0JId0Vs\nQVNzQk1nRTRBVDRCUlFGTUFWSUImI3hBO1dRRmdBV2NCYmdGMUFYd0Jnd0dMQVpJQm1nR2hBYWtC\nc1FHNUFjRUJ5UUhSQWRrQjRRSHBBZklCK2dJREFnd0NGQUlkQWlZQ0x3STQmI3hBO0FrRUNTd0pV\nQWwwQ1p3SnhBbm9DaEFLT0FwZ0NvZ0tzQXJZQ3dRTExBdFVDNEFMckF2VURBQU1MQXhZRElRTXRB\nemdEUXdOUEExb0QmI3hBO1pnTnlBMzREaWdPV0E2SURyZ082QThjRDB3UGdBK3dEK1FRR0JCTUVJ\nQVF0QkRzRVNBUlZCR01FY1FSK0JJd0VtZ1NvQkxZRXhBVFQmI3hBO0JPRUU4QVQrQlEwRkhBVXJC\nVG9GU1FWWUJXY0Zkd1dHQlpZRnBnVzFCY1VGMVFYbEJmWUdCZ1lXQmljR053WklCbGtHYWdaN0Jv\nd0cmI3hBO25RYXZCc0FHMFFiakJ2VUhCd2NaQnlzSFBRZFBCMkVIZEFlR0I1a0hyQWUvQjlJSDVR\nZjRDQXNJSHdneUNFWUlXZ2h1Q0lJSWxnaXEmI3hBO0NMNEkwZ2puQ1BzSkVBa2xDVG9KVHdsa0NY\na0pqd21rQ2JvSnp3bmxDZnNLRVFvbkNqMEtWQXBxQ29FS21BcXVDc1VLM0FyekN3c0wmI3hBO0ln\nczVDMUVMYVF1QUM1Z0xzQXZJQytFTCtRd1NEQ29NUXd4Y0RIVU1qZ3luRE1BTTJRenpEUTBOSmcx\nQURWb05kQTJPRGFrTnd3M2UmI3hBO0RmZ09FdzR1RGtrT1pBNS9EcHNPdGc3U0R1NFBDUThsRDBF\nUFhnOTZENVlQc3cvUEQrd1FDUkFtRUVNUVlSQitFSnNRdVJEWEVQVVImI3hBO0V4RXhFVThSYlJH\nTUVhb1J5UkhvRWdjU0poSkZFbVFTaEJLakVzTVM0eE1ERXlNVFF4TmpFNE1UcEJQRkUrVVVCaFFu\nRkVrVWFoU0wmI3hBO0ZLMFV6aFR3RlJJVk5CVldGWGdWbXhXOUZlQVdBeFltRmtrV2JCYVBGcklX\nMWhiNkZ4MFhRUmRsRjRrWHJoZlNGL2NZR3hoQUdHVVkmI3hBO2loaXZHTlVZK2hrZ0dVVVpheG1S\nR2JjWjNSb0VHaW9hVVJwM0dwNGF4UnJzR3hRYk94dGpHNG9ic2h2YUhBSWNLaHhTSEhzY294ek0m\nI3hBO0hQVWRIaDFISFhBZG1SM0RIZXdlRmg1QUhtb2VsQjYrSHVrZkV4OCtIMmtmbEIrL0grb2dG\nU0JCSUd3Z21DREVJUEFoSENGSUlYVWgmI3hBO29TSE9JZnNpSnlKVklvSWlyeUxkSXdvak9DTm1J\nNVFqd2lQd0pCOGtUU1I4SktzazJpVUpKVGdsYUNXWEpjY2w5eVluSmxjbWh5YTMmI3hBO0p1Z25H\nQ2RKSjNvbnF5ZmNLQTBvUHloeEtLSW8xQ2tHS1RncGF5bWRLZEFxQWlvMUttZ3FteXJQS3dJck5p\ndHBLNTByMFN3RkxEa3MmI3hBO2JpeWlMTmN0REMxQkxYWXRxeTNoTGhZdVRDNkNMcmN1N2k4a0wx\nb3ZrUy9ITC80d05UQnNNS1F3MnpFU01Vb3hnakc2TWZJeUtqSmomI3hBO01wc3kxRE1OTTBZemZ6\nTzRNL0UwS3pSbE5KNDAyRFVUTlUwMWh6WENOZjAyTnpaeU5xNDI2VGNrTjJBM25EZlhPQlE0VURp\nTU9NZzUmI3hBO0JUbENPWDg1dkRuNU9qWTZkRHF5T3U4N0xUdHJPNm83NkR3blBHVThwRHpqUFNJ\nOVlUMmhQZUErSUQ1Z1BxQSs0RDhoUDJFL29qL2kmI3hBO1FDTkFaRUNtUU9kQktVRnFRYXhCN2tJ\nd1FuSkN0VUwzUXpwRGZVUEFSQU5FUjBTS1JNNUZFa1ZWUlpwRjNrWWlSbWRHcTBid1J6VkgmI3hB\nO2UwZkFTQVZJUzBpUlNOZEpIVWxqU2FsSjhFbzNTbjFLeEVzTVMxTkxta3ZpVENwTWNreTZUUUpO\nU2syVFRkeE9KVTV1VHJkUEFFOUomI3hBO1Q1TlAzVkFuVUhGUXUxRUdVVkJSbTFIbVVqRlNmRkxI\nVXhOVFgxT3FVL1pVUWxTUFZOdFZLRlYxVmNKV0QxWmNWcWxXOTFkRVY1SlgmI3hBOzRGZ3ZXSDFZ\neTFrYVdXbFp1Rm9IV2xaYXBscjFXMFZibFZ2bFhEVmNobHpXWFNkZGVGM0pYaHBlYkY2OVh3OWZZ\nVit6WUFWZ1YyQ3EmI3hBO1lQeGhUMkdpWWZWaVNXS2NZdkJqUTJPWFkrdGtRR1NVWk9sbFBXV1Na\nZWRtUFdhU1p1aG5QV2VUWitsb1AyaVdhT3hwUTJtYWFmRnEmI3hBO1NHcWZhdmRyVDJ1bmEvOXNW\nMnl2YlFodFlHMjViaEp1YTI3RWJ4NXZlRy9SY0N0d2huRGdjVHB4bFhId2NrdHlwbk1CYzExenVI\nUVUmI3hBO2RIQjB6SFVvZFlWMTRYWStkcHQyK0hkV2Q3TjRFWGh1ZU14NUtubUplZWQ2Um5xbGV3\nUjdZM3ZDZkNGOGdYemhmVUY5b1g0QmZtSismI3hBO3duOGpmNFIvNVlCSGdLaUJDb0ZyZ2MyQ01J\nS1NndlNEVjRPNmhCMkVnSVRqaFVlRnE0WU9obktHMTRjN2g1K0lCSWhwaU02Sk00bVomI3hBO2lm\nNktaSXJLaXpDTGxvdjhqR09NeW8weGpaaU4vNDVtanM2UE5vK2VrQWFRYnBEV2tUK1JxSklSa25x\nUzQ1Tk5rN2FVSUpTS2xQU1YmI3hBO1g1WEpsalNXbjVjS2wzV1g0SmhNbUxpWkpKbVFtZnlhYUpy\nVm0wS2JyNXdjbkltYzk1MWtuZEtlUUo2dW54MmZpNS82b0dtZzJLRkgmI3hBO29iYWlKcUtXb3dh\namRxUG1wRmFreDZVNHBhbW1HcWFMcHYybmJxZmdxRktveEtrM3FhbXFIS3FQcXdLcmRhdnByRnlz\nMEsxRXJiaXUmI3hBO0xhNmhyeGF2aTdBQXNIV3c2ckZnc2RheVM3TENzeml6cnJRbHRKeTFFN1dL\ndGdHMmViYnd0MmkzNExoWnVORzVTcm5DdWp1NnRic3UmI3hBO3U2ZThJYnlidlJXOWo3NEt2b1Mr\nLzc5NnYvWEFjTURzd1dmQjQ4SmZ3dHZEV01QVXhGSEV6c1ZMeGNqR1JzYkR4MEhIdjhnOXlMekom\nI3hBO09zbTV5ampLdDhzMnk3Yk1OY3kxelRYTnRjNDJ6cmJQTjgrNDBEblF1dEU4MGI3U1A5TEIw\nMFRUeHRSSjFNdlZUdFhSMWxYVzJOZGMmI3hBOzErRFlaTmpvMld6WjhkcDIydnZiZ053RjNJcmRF\nTjJXM2h6ZW90OHAzNi9nTnVDOTRVVGh6T0pUNHR2alkrUHI1SFBrL09XRTVnM20mI3hBO2x1Y2Y1\nNm5vTXVpODZVYnAwT3BiNnVYcmNPdjc3SWJ0RWUyYzdpanV0TzlBNzh6d1dQRGw4WEx4Ly9LTTh4\nbnpwL1EwOU1MMVVQWGUmI3hBOzltMzIrL2VLK0JuNHFQazQrY2Y2Vi9ybiszZjhCL3lZL1NuOXV2\nNUwvdHovYmYvLy8rNEFEa0ZrYjJKbEFHVEFBQUFBQWYvYkFJUUEmI3hBO0JnUUVCQVVFQmdVRkJn\na0dCUVlKQ3dnR0JnZ0xEQW9LQ3dvS0RCQU1EQXdNREF3UURBNFBFQThPREJNVEZCUVRFeHdiR3hz\nY0h4OGYmI3hBO0h4OGZIeDhmSHdFSEJ3Y05EQTBZRUJBWUdoVVJGUm9mSHg4Zkh4OGZIeDhmSHg4\nZkh4OGZIeDhmSHg4Zkh4OGZIeDhmSHg4Zkh4OGYmI3hBO0h4OGZIeDhmSHg4Zkh4OGZIeDhmLzhB\nQUVRZ0JBQURFQXdFUkFBSVJBUU1SQWYvRUFhSUFBQUFIQVFFQkFRRUFBQUFBQUFBQUFBUUYmI3hB\nO0F3SUdBUUFIQ0FrS0N3RUFBZ0lEQVFFQkFRRUFBQUFBQUFBQUFRQUNBd1FGQmdjSUNRb0xFQUFD\nQVFNREFnUUNCZ2NEQkFJR0FuTUImI3hBO0FnTVJCQUFGSVJJeFFWRUdFMkVpY1lFVU1wR2hCeFd4\nUWlQQlV0SGhNeFppOENSeWd2RWxRelJUa3FLeVkzUENOVVFuazZPek5oZFUmI3hBO1pIVEQwdUlJ\nSm9NSkNoZ1poSlJGUnFTMFZ0TlZLQnJ5NC9QRTFPVDBaWFdGbGFXMXhkWGw5V1oyaHBhbXRzYlc1\ndlkzUjFkbmQ0ZVgmI3hBO3A3ZkgxK2YzT0VoWWFIaUltS2k0eU5qbytDazVTVmxwZVltWnFibkoy\nZW41S2pwS1dtcDZpcHFxdXNyYTZ2b1JBQUlDQVFJREJRVUUmI3hBO0JRWUVDQU1EYlFFQUFoRURC\nQ0VTTVVFRlVSTmhJZ1p4Z1pFeW9iSHdGTUhSNFNOQ0ZWSmljdkV6SkRSRGdoYVNVeVdpWTdMQ0Iz\nUFMmI3hBO05lSkVneGRVa3dnSkNoZ1pKalpGR2lka2RGVTM4cU96d3lncDArUHpoSlNrdE1UVTVQ\nUmxkWVdWcGJYRjFlWDFSbFptZG9hV3ByYkcmI3hBOzF1YjJSMWRuZDRlWHA3ZkgxK2YzT0VoWWFI\naUltS2k0eU5qbytEbEpXV2w1aVptcHVjblo2ZmtxT2twYWFucUttcXE2eXRycSt2L2EmI3hBO0FB\nd0RBUUFDRVFNUkFEOEE5VTRxN0ZYWXE3RlhZcTdGWFlxN0ZYWXE3RlhZcTdGWFlxN0ZYWXF0a2xq\nakhLUndnNlZZZ0N2MDQya1ImI3hBO0o1TVk4NStaTmRzTGFPTHk5WXJxRjNQVmZXTWljSXZjcVdX\ncCtaQXlySktYOExzTkZneEUzbU1nQjBBM1B4NUJoV2grUXZPR29lWWImI3hBO1hYUE1HdFJ3WEVV\ncXlLa2NvbG4yTmZUVUxTSkZQU2kxSHRsTU1IcTRwU3N1ejFmYTBmQk9IRGk0SUhxZWY5dm5aUk9v\nL250RmEzOXomI3hBO2JSYU42OFVFcnhwUDlaNDgxUmlvYmo2VFVyU3RLNVhMVzBhcHlzUHNxWndF\namtva0Exdzh2OWtoL3dEbGYvOEEyb2YrbnY4QTY4NFAmI3hBO3ozbDlyWi9vUi8yMy9ZLzhlYkg1\nL0VrQWFEdWYrWHYvQUs4NC9udjZQMm9Qc21BTE9YL1kvd0RIbFh6cCtjazlxWXJQUTRBbHkwVWMm\nI3hBO2x6Tk9BeGlhUkEzcEJRZUpkYS9FYWtWMnlXZlZHSnFMVjJQN1B4elFHWEtUd25rTy93QXl3\nK0g4Mi96QVJ4SzErczBZTkNqMjhJVWsmI3hBO2RpVVJUK09VZVBtRzU1ZTUyMzhrZG5UUEJIaDQv\nS1p2NVdmdWV3L2w5NXN1dk0raEcvdXJZVzAwY3JRUHdyd2NxcXR5UUdwQStPbTUmI3hBO3pZWVpt\nVVFTOGIycHBJYWZQTEhFMkIvYXliTFhYdXhWMktwWHIvbWJSZEF0UHJPcVhLd3FmN3VQN1VqbndS\nQnVmMWVPUXlaSXdGbHkmI3hBOzlKb2N1b2x3NHhmM0QzbGova3o4emJQelJxOTFwOEZqTGJMREg2\nc1V6c0hES0dDMGNLS0l4cnNLbXUrK1Y0YzNIZTJ6bDlwOWxmbEImI3hBO0c1aVVqekE2Zmo0TTB5\nOTFMc1ZkaXFVYTE1djh0YUl3VFZOUWl0NVNPWG83dkpUeDRJR2FuMFpYUExHUE11YnB1enMrZmZI\nQWtkL1QmI3hBOzVuWkRhWDUvOG5hcE1zTm5xa0xTdHNrY25LRm1QZ29sQ1ZQeXdSendseUxabjdJ\nMVdJWEtCcjUvZGJJTXRkYzdGWFlxN0ZYWXE3RlgmI3hBO2tYNTlhcC94eTlLVS93QTkxS3YvQUNU\nalAvRTgxK3VseUQyWHNuZyt2SjdvL3BQNkhuV20rVjcvQUZDelc2aXVMU05IWmxqaW11RVMmI3hB\nO1ZpcG9Tc2YyeUsrMlk4ZFBZQnNCM1didGdRbktJeHpsdzdXQnQ4MDU4dmVTdGJpMXl3dVpyYWVT\nMGduam1tZTNodUdxaU1HSVYvVFYmI3hBO0t0MCsxbHVMRHd5QjUvQXV2N1I3VThYQkxHQUlHVzNx\nbkQ0N0NSUDJNOHZ2Si9rV09LNHZHOG42Z1k0MWttbGtNL29vRlNyTWFQZHAmI3hBO1Fld1g2TXlU\nR0FGOEgzT2p4NXRSS1FqK1lGa2djNW5uN292Sk5DMDk5VTE2enNvYmYxaGNUcURiSzNHc2RhdW9Z\nbmFpQTcxekF3UjQmI3hBO3A4bnNPMWMvZzZZa1M0VHNML1Q4cmV3ZjhxMDh1LzhBVW9uL0FMaVUz\nL1ZUTmlNWS9taDRxV3RuSVVkUktqNVNlUTZ4RzhQbVc4WFYmI3hBO0lYUmhkU0c2aEJBZmR5V0FZ\nR25mWWpiTmJkWkxsM3ZjaVBpYVRoeEhuanFKK0QzMjE4eDZRK2xSUXRvVjVGcER4S0kwRnFseGIr\naVImI3hBO3Q4TnMwNDQwOXMybmpBamtmeDduejQ5blNqS2hPSEVQNlhDYi93QTRSUnZsS1R5c21u\nR3o4dlN4dGJRdTd2QXJIbkcwakZpSFIvM2kmI3hBOzdtZ0REcGtzY29rZWx4OVpoelJsZVVHNWRU\nMStQSXA1bGppT3hWNTE1MS9OcHZMdXZTYVZCWUxkbUZFYVdScFNoRHVPWEdnVnYyU00mI3hBO3c4\nMnE0SlZUMHZabnMvOEFtY0l5R1hEWlBUdStMempVZk9PZ2FucThtcWFqb0RYYzhocVk1TDJYMHg0\nQUJWQm9Pd3JUTWI4ekc3NGQmI3hBOzNlanNQS0llSEhOS01lNFJBKzRzbTByemRkK1lkRTFieS81\nYjh2dzZmTTFvWkZGcTZvQ1BVUkhCK0dNY21WelNweklqbGxsaVFCVHAmI3hBOzgvWitIcy9Oam5r\na1pna25sM2ZIdnBoMm8rVXZQT21XVWw3cUZuY1cxcERUMUpubFFnY2lGSDJYSjNKQXpHbnA1eEZr\ndTkwdmJXbXomI3hBOzVCamhFOFI4aCt0QWFSWWVZZFp1bXROTFNhN3VWUXl0RWowSVJTQVdxektP\nckR2bGVMRktmSnl0ZnJzR2xBT1FmVjNCa1dtYUQ1NjgmI3hBO3VYWDZjdnJTZTJ0N0JKSlRLOHFs\nZWZBckdwQ09TUTBqS0dIaFhNbU9HV081SG9IUzUrMGRQcmVIQmpCSEhJWHNCNlJ1ZnVTYnkvb1cm\nI3hBO3IrYi9BREI5V1dibGN6bHBycTdtSmJpdlZuYnUyOUFCNG50MXlqRGk4U1c1ZHIycHI0NkhD\nT0NQbEVkR1g2NytSK3NXVm9ialM3dGQmI3hBO1RrVGQ3WXA2RG5wOWlydUQzUFVmVG1UTFJEb1hT\nYWYycUpCR1NJdWpSajM5TmordDdQcDlyOVVzTGEwNW1UNnZFa1hxTVNXYmdvV3AmI3hBO0ozSk5N\nejNqbGZGWFlxN0ZYWXFsRXQxcVY5cUYxWTJjcVdjVm1VVzRuSUVrekdSQTQ5TkQ4S2lqZmJZTlUx\nSEhiS3lTVFEycHpZNDQmI3hBO1k0Um5JR1JsZERrTmpXNTVuM0N1bTd3VDh5cm96K2NiNlAxNUxs\nYlFyYkxMTXdaeVl4OGZRS28vZUZ0bEFHYXJVRzVsOUM3RXg4T20mI3hBO2lhRWVMZmJ6NWZaVEpm\nSzM1dWFab0doV21tUmFPenRBZ0VzeXlxdnFPU1daaU9CNnN4NzVrUjFnQXFuUzUvWmpKa21aSEp6\nSlBMdjMmI3hBOzczcVhrN3pSSDVtMFZkVWp0bnRWTWp4K201RFY0R2xWWVVxUG82NW5ZNThVUVhs\nZGRwdkF5eXgzeGNQVkxQelcxVDlIK1NMN2lhU1gmI3hBO2ZHMWo5L1VQeGova1dHeXJWU3FCYzdz\nREI0bXJqM1I5WHk1ZmJUemI4a2RMK3MrYXBiMWdDbGhBekszY1NTL3UxKzlDK1kyaGp6THYmI3hB\nO1BhelA2WVkvZkw5QS9TOTN6WXZGUEx2emM4cjZEZkkycXhYOXJhYXpFb1dTQ1dhT1AxMVhvdEdJ\nK01EcDkyWVdxeFJPOTFKNnYyZTEmI3hBOzJiR2ZETVpTeEh1QlBEK3p2WXQrWFhuclY5QllhYzhS\nMUN5dVhLVzFxSENsSjI2ZW5JMzd2aXg2aXZ2NDFvMCtZeDI1dTI3YjdNeFomI3hBO3g0bGlFbzh6\nNWVZNTI5UTBQUnRldXRmL0FNUmE0a0ZsT3NEVzl0cDlzZWJLamtFK3ZOL3V3aW13SHc5OHpZUWta\nY1V0bmxkVnFjTU0mI3hBO1BnWVNaQzdNai92UjArOWxXWHVvUU41cmVuV3N4dDJrTXQyQlUyc0NO\nTktBZWhaSXd4VUh4YWd5Sm1CczVHUFN6bU9LcWozbllmTS8mI3hBO29mTmV1M2svbUh6VmRUd0Ft\nVFVydmhiSzNXa2o4SWxOSzlCeEcyYWdmdk1udkw2UEwvQk5GNXdoL3N2N1hyNmZrL3BUeHFzcVdz\nTkEmI3hBO0FmUml1R2Y1bDVMaGxQOEF5TEdiSHdQS1B5ZUovbFlqbExMTDM1RDl3SDZVMDBQOHM5\nSzBXU1dTeHY3MkY1d0JLWTJpU29Va2dWV1AmI3hBO2xUZitiSlJ3MXlQM0Q5RFRsN1RPUTNLTVQv\nV001ZjdxUllsK2N0dGI2WG8xbGJSM2Q1TlBlU25rczkxTktoamhGVFdObTRWNU91L0gmI3hBO01Y\nVmpoaUJaMzgzZit6Y3pseXlrWXdBaU9rWWpjK2RYeUJRbjVNZVZOUDFPMjFMVUw2TnBVVjB0NE9M\neVI4V0FMeWJ4c3RhaGt5V2smI3hBO3hBd3N0UHRGMmhPR3BFWUg2WTl3UFBmcjhIb0dxZmw1NWN2\nZE91YlZJWGlrbWpaWTVUTk8vQnlQaGJpemtHaDNvY3ZscDRrVTZqQjImI3hBO3huaE1TSkJvOTBm\nMVBDWUcxWHlsNWtlSzZXYUdhM1l4M1VjRTBsdTBrWjMrR1NNcWVMYk12YnB0bXNIRmpsUmU5a01X\ndHdpVWFQZFkmI3hBO0JvK1lMMnpTQitrZElUVjlEOHkzVWRxd0pkYjRRM0VhRlI4U3k4MVdSU3Zm\nOTVteWh1TGpJL0Y0ZlVIdzhweFpjTVRMK2pjU2ZkVzMmI3hBOyt4VFB5ZDVndU5iMDZlZWRZaTF2\nY1BiQzV0K1hvVGlPbjd5TG52eE5hZC9uazhPUXlEaTlwYU9PQ1lBdjFSQm8vVkcraHI4ZVNmWmEm\nI3hBOzY5Mkt1eFYyS3BiclZscGpXOHVvWFN0SEphUk8vd0JhaGRvcGxSQVdJRWlGVHgyK3lkdmJJ\nVEFxeTVXbHk1T0lRanZ4SGtkeGZ1UDMmI3hBOzgzelpwTmxjK1lQTXR0YXU5WnRTdWg2MGhxeG83\nY3BYSUJXdEZxZW96VTRZOGM5MzBYdFRQK1cwcE1kcXFJcjVmYzlyaC9KcnlVSXcmI3hBO0o3WjNr\nN3Nrc3lML0FNQ1pIL1htekduaDNCNFdYYk9wdmFjcTkvN0F5dlNOR3N0RzB1SFRkTlQwYldEbDZh\nc1N4SE5pN1ZKM05XWTUmI3hBO2FCUW9PdG5rTTVHVXR5ZWJ6bjg0dGF0YlpyTFROUWcrdmg2M0t4\ncTdRK25TcUsxVnJ5cjhRM3pCMWN3S0IzZXI5bk5OS1hGa2dlRCsmI3hBO0hsZDlmMUwvQU10UExo\nMUhRNWRTdGJtZlI0cnFVb1k3UmtySXNWQUdNaFN1ek02MHl6Qml1SU4xYmk5cTY4UjFFb21NY2hq\ndGNyKzYmI3hBOys4b0R6dStnK1h2TUZqWTZ0SnFPczJjMExTM2l6WGtoa1VNL0ZPSVV4cit3MVIr\nT1U1dUdFZ0RaSHZkajJXTTJwd3luakdQRklHaFUmI3hBO0JYbjM5NkxIbXY4QUp6U3JBM09tV0VW\neGVvdFliZHJkMms1ZHF5ektRUGNoamt2Rnd4RmdidEo3UDdUelQ0Y2tpSTlUeEN2bEg5VHomI3hB\nO2p5dGEzbXNlY0xDT01WbXVMcFpKU3RSeFFOemtZZUhGUVNNeDlORXl5VzdydHZQSEJwREhySWNJ\nL0h1ZlR1YmQ4MmRpckM5WXZycnkmI3hBO3g1UDFDS2EwSWFLQjBpMUtFaGtsbWtIQkpaZ1Q2aXlN\nN0F0VUVWL2F6R25Jd2dkdmk3M1RZbzZyVXhJbHprUFNlZ0c1QTZVQnk1ZTUmI3hBOzRIcGxsZjNs\nNmtGZ3ZLNiszR0E2eG40YWJoblpSWDZjMW1QR1pIWjd2VzZ2SGhpUEVCSVBRQytUS1kvSlg1cFNG\nUUxlN1VNUUE1dUYmI3hBO0tpdmMwazZabFIwMlN4WjI5N29jL2JtaTRKY01mWFJyMDllajZCVm83\nYUJFa2xMZW1vVXU1cXhvS1ZKOFRteHQ0Y1JKNVBIUHpkdHQmI3hBO1Qxblg0R3M0L1VzTFdBUnJM\neVVEbXpGblBFbmwwNGpwMnpYYXNHVXR1VDIvczlQSGd3bmlOVGtmczZNaDhoYXhiZVgvQUN0YjJK\nMCsmI3hBOy92TDBzOHR4OVV0bmtCWjIrR2hQRWJSaFJtUmp5Q01RS0orRHBkYm81NTg4c2hsQ0lr\nZjRwRGwwK3hPWS9Pbm1DOWFWZEo4czNFeGkmI3hBO1l4eUc1dUlMYmd3QU5HV3JrR2hCcGt2R2tl\nVVdrOW1ZWVY0bWFJditiR1VyKzVpZjVrNlg1anZ0RmsxZlhyYlRMT095NGlFUXROTGQmI3hBO0gx\nR0NoT2RVUWlyVnBsR29qSXh1VmJPMzdFellNZVlZOEp5U011ZDBJN2IzVzVZNytWT202WnJ2bUNi\nVDlSaU0xbEZhbTVGc1haVWEmI3hBO1dPU05BekxId1Z0cE80eXZTd0V5YjVPZDdRYXJKcDR4TUNC\nS1ZpNjNyM20zdk52YndXOEtRVzhhd3dSZ0xIRWdDcW9IUUFEWVpzZ0smI3hBO2VEbk15Sk1qWktw\naFl1eFYyS3V4VmlYNXE2aTlqNUcxRjByeW5DVy9JZEFzcmhXNUhzT05SbEdwSjREVHR1eEl4T3Fp\nWmtDTWQ5L0wmI3hBO2w5cjUrMFhYYnZSdFNpMUt3bFJMdURsNlRzRmVuTlNqYk5VZlpZak5iajhT\nQnNBL0o3dldmbE5SSGh5VGlSZC9WWDZXVEg4NWZQQUYmI3hBO2ZyOFgvSW1IL21uTGhtekgreDFj\nK3pPellnbXh0L1QvQUd2b0RUV3ZHMDYxYStDaTlhR00zUVFFS0pTbzUwQkpvT1ZjMmJ3WllGNTcm\nI3hBOy9LL1VQTXV1blVvcjZPS1Awa2lXS1FOVmVGYTBvRHRVMXpGemFiamxkdS83TjdlT2x4ZUdJ\nWHZkMyt4bVBsZlJGMFB5L1phVUdWMnQmI3hBO282U09vb3JTTVM3a0E5aTdITW1Jb1U2UE5sT1Na\nbWVjaVQ4MEI1cjhnK1gvQURNVWx2a2VPN2pYZ2wxQzNGK0lKUEUxREtSVStHVjUmI3hBO01NWjh3\nNWVpN1R6NmIrN2x0M2N3d2sva0hCNi9JYTAzb2Y3N050OFhYK2YxZitOY3AvSlE4M2JIMnAxTmNv\nZkkvd0RGTTM4bytROUImI3hBOzhyeHViRkdsdTVSeG12SmlHa1lmeWlnVlZXdllENTF6SWhBUkZC\nMGVxMWVYUExpeUhpTElzbTR6c1ZlY2ZubHFmMWZ5MWEyQ21qM3QmI3hBO3dDdzhZNFJ5Yi9obVRN\nUFd5cU5kNzAvc3RnNHM4cC96WS9hZjJXdy84bjlhOHVhSmQ2bGZhdmVKYXpTUnh3V3daWFlsU1Mw\naCtGVzcmI3hBO3FtVmFUSkNBTm5kMkh0Rm90UnFNa1JqaVpSaVBMbWVmM0I2dFkvbUY1TnY3eUt6\ndGRVamt1WjJDUlJsWFhreDZBRmxBcWUyWmtjOEomI3hBO0dnWG1jL1pPcHhRTTV3cUk5MzYyUWxW\nUFVBNWE2NjN6SHJrMTFyM20rNWtpcnl2cnd4V25JRWdCNU9FSy9pTTA5R2VUNHZwWm5IUzYmI3hB\nO0hZamlqRC9aVit0OUwydHRGYTJzTnRDT01NQ0xIR3ZncUFLQjl3emNQbWp3YnpEYi9tRjViOHph\nbHFzSXVMZGJxZVNYNjFBUFVnZEcmI3hBO2NsT1d6SnNPaXNLak5aUEhsaklrZGU1NzdTNnZRWjhF\nY2VReDlNUVBWdDl2NmlrV28rWlBPSG14b3JXNW5tMUl4dFdPMmhqRk9SMnImI3hBOzZjS2lwOTZa\nQWpMazJOdVRpbjJmb3daUU1BVDNIaVAza3ZYUHlvOGlYZmwrMG0xRFUxQ2FsZUtFV0NvSmhpQnJ4\nWWlvNU9hRnFkS0QmI3hBOzN6UHdZZUFlYnh2YS9hWjFlVytVSThoK240cy95OTFUc1ZkaXJzVlE4\ndW9XY1Y5YjJNa29XN3Vra2tnaW9hc3NQSDFEV2xQaDlSZnYmI3hBO3hWWGRFZFNycUdVOVZZVkgz\nSEZVRGZQbzFpa2IzU1JSaWFSWVloNmZJdEkvMlZWVkJKOGZsdjB4VlZsaTA2RjRWYTNYbE0vcHg4\nWWkmI3hBO3c1Y1Mvd0FSVlR4RkZPN1VIYnFSaXFLeFYyS3V4VktvUE5PaFhHcHlhWmIzQm12b1g5\nT2FHT09WL1RiNGgrOFpWS29DWTJBTEVBMHgmI3hBO1ZHNmhxRm5wMWpQZlhzb2h0TFpESk5LUVNG\nVmVwb0FUaXFJeFZEaS90R3R4Y1JTQ2VFeWVrSGdCbUhQMVBTSS9kaHZzdnMzOHREV2wmI3hBO0Rp\ncUl4VmhINWhmbDNkZWJMcXptaTFCYlJiV05rOU40eklDV0lQSVVaYWROOHg4Mm5HUTdsM1BabmJF\ndEpFaU1STGlMRWY4QWxRZC8mI3hBOy93QlhxTC9rUTMvVlRLZnlNZTkyZitpekovTWo4eW0zbFg4\nbXB0Rzh3V2VxWE9wUjNVZG94a0VDd2xDemNTRlBJdTMyV0lQVHRsdUwmI3hBO1NpQnUzQjdSN2V5\nYW5GNFppSWkzcCtaTG9VQ3VnNkVseUxwZE90VnVRM3FDY1F4aVRuV3ZMbHhyV3ZmRlVkaXJzVmRp\ncnNWZGlyc1YmI3hBO2RpcnNWWTU1ajByekJMcmVsYXRveTJrc2xoRmRReXcza2trU2tYUG9rRldq\namwzWDBlNHhWalhsUDh0dFM4dWFkNW9XUzVlZTcxaU8mI3hBO2FsOWJTczF4Tkk1bVpaV2prRVNM\nTXZxMEI5VGZ4VUFVVXNRMGY4bTlidjdlMWttczR0S3M3SzdaN2ZUQkpKYmN4OVZ0b1JlQXA5YVom\nI3hBO0psZUJ5T2RXUElua0R2aXRwdGQva2ZxVEtVMDYrdDlOTnpidXQ5TmJoMWQ3cGx2RVc0b0F2\nSjFTOFVWcUR0MTZZcmFZSDh1ci9TL3kmI3hBOzV0ZkxsdHA5cmR5alU3U2VUVDNrZTRzekd0eEcw\nZ1l5UnFSRlJTekx3Tk4rdUtwTC93QXFLOHd5UTJ0dk5xTmloUkhEWHNTVGlhMVImI3hBO3hkVnNy\nUlN4SDFYL0FFdFY0c3crRmVuU2l0c204dS9senF3ODEyL21Mek1tbTNVMXZES0lvb0ZlVVIzQmlz\nSW9wNHZXUWNXQXNaRFgmI3hBO3F2SUFFN25GVi9tdjh1TlYxbnk3cW1sd1hVRWMxOWYzMTVHNzgr\nS3BkMlUxcWl0UlNhcTB3SjlzVUpIci93Q1NkNU5lM2cwaE5OWFImI3hBO3BwTGsyT2xYS3VJYkw2\nekJhS2JpMlZVZFVtV2UybGJZVW8reFdweFRhdGUvbFY1b3ZZN3EwdUxqVHpiYzVCWlBXVnFwSnFE\nM3dOemImI3hBO3VqUlM4ZVlVeE1TcitLbWhDcXBEK1R0d0xtYWRocDZUeDNkdFBwOTVIR1JNaVE2\neTJveVBVcDhFandNSXZoYmZpTjZZcWxIL0FDb1gmI3hBO1V2OEFDSDZDOWVINno2M3FmVy9yVS9w\nZXI2ZkQ2NzZIby8zM0w0dUhQci91ekZiZTE0b2RpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1YmI3hB\nO2RpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1Zk\naXJzVmRpcnNWZGlyc1ZkaXJzVmQmI3hBO2lyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGly\nc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGkmI3hBO3JzVmRpcnNW\nZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRp\ncnNWZGlyc1ZkaXImI3hBO3NWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJz\nVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnMmI3hBO1ZkaXJzVmRpcnNWZGlyc1Zk\naXJzVmRpcURuMW5SN2ZVTGZUYmkrdDRkUnVnVGEyVWtxTE5LRkZXTWNaUE5xQWIwR0tvekZYWXE3\nRlgmI3hBO1lxN0ZYWXE3RlhZcTdGWFlxb3dYMWxjU3pSVzl4SE5MYnR3dUk0M1Ztalkvc3VBU1ZQ\nenhWV3hWMkt1eFYyS3V4VjJLdXhWMkt1eFYmI3hBOzJLdXhWTHRkOHg2RG9GbXQ1cmQvQnAxbzhn\naFNlNWtXTkRJd0xCQVdwdlJTYWUyS3ZPL08zNW82ZmZXeVdmbFB6dDVlMHNTaWx6cVYmI3hBOzFQ\nNjA4WUovM1JDQjZkYWQzYjZCMXhTeGI4di9BQ1grVGRuNXNzOWF2dk84Zm12emRKT3B0cEpycEtQ\nZE1RRWRZbFo1R2V2MmVVakQmI3hBOzJ4VmpPcy84NWIrYWJmVjc2RFQ5SjArV3dpdUpVdEpaUFg1\ndENya1JzMUpBS2xhVm9NVnBCLzhBUTMzbmYvcXphWjkxeC8xVnhXbGEmI3hBO3kvNXl6OC9YbDVC\nWjIraWFhOXhjeUpEQ2xMamQ1R0NxUDd6eE9LMGovd0E3ditjZy9Na0htR2Z5cjVQbitxQ3hmNnZm\nNmpFb2VXYTQmI3hBO0h3dkZEeURjRlJ2aHFQaUxkNmRWUUdLUzIzL09VV2hXUTh3eno2NHRxQVpt\nOVc1TjF3VWJreVdqUEtVVWQrY1lBeFY5Sy9sRDVnOHcmI3hBOytZdnk5MG5Xdk1IcG5VYjFIZGpF\nbnBobzFrWkkySzFJNU9xaHRxRGZwaWhtT0t1eFZKOVc4NWVVTkd1aGFhdnJtbjZkZEZCSUxlN3Um\nI3hBO29JSkNoSkFiaEl5dFFrSGZGWGxmbmp6VHFmbWU4bDB6VC96RDhzK1dQTFoyZTd0TlNqdU5R\nbVVudlV3TEdLZnNvLzhBc2lNVXFIbG0mI3hBOzMvTEQ4cXZKM21MWC9MR3UyL21YV0liZEh1bVc4\naGw1RXlDT0ZmVGdadUNHV1FibXA5OFZZWC8wT0Y1ay93Q3Blcy8rUnN1SzA3L28mI3hBO2NMekov\nd0JTOVovOGpaY1ZwbFA1Y2Y4QU9TbXJlWi9NRWxwcVdsV3RocEZsWjNOL3FWNmtrak5GQmJ4bHVR\nQjYvR1ZIMDRyVHo3ekQmI3hBOytmMzVxK2RQTVg2TzhuK3ZZVzhyc3RqcDlqR3NseTZqZm5MSlJt\ncnhGVzRrS1B4eFdsMXQrWW4vQURrWjVNMWF4dHRaRjNLdDVLa00mI3hBO0Z2cWtJbGhtZGlGQ0Nj\nRGx5LzFaSzRxK3ZGNWNSeXB5cHZUcFhGRGVLdXhWMkt1eFYyS3ZtYi9uTUx6Qlc1OHZlWGtiN0NT\nNmhjSjQmI3hBOzh6Nk1KK2poTGlrTUo4cWZraHBHdWVYYkhWSlBNVjNIZTNrZnFQcDlqb3QzcVBw\nVlk4UTA4TGhLbGFFMXBTdE1VMnpiOHY4QThrTlEmI3hBOzhyK2NOUDhBTU1ObHF1dEpwN1BJbHZO\nYVdOaEdYYU5rUmkwMm9OSU9ESGx0RWR3TVVXOWExclhmTTJtYVBlNnRMNU4wK0cxc0lIdVomI3hB\nO3pjMzhhc0k0a0x1YVEyMDRKRk9sZDhVUGxyOGs5SDFqekYrWjlyY1djTnZkWGRwNjJwU3Bkc3lR\nRmwyRFA2YXlOVDFaRk5LZTJMSXYmI3hBO3ExYkg4eTFZTXVuZVdnd05RUTEwQ0NQK2VPTEY4aDMw\nK3FlU1B6Ymx2ZFpzMHViL0FFblZQcmM5c1daWTVUNm5yS3lPVlp1TGhneU0mI3hBO1ZQWTA3WXNu\nMXRvMzVpK1k5UzB1MzFhMzhyTnFPbVhDaDB1ZEkxQzF1dmg3L0JjZlVucU9oV25JSGFtTEZPdksz\nblR5M3E4OG1rMlMmI3hBO3lhZnFWbWdlWFJyeUJyUzVqanJRT0luQTVKVWo0a3F2dmlySThWZGly\nNGMvT25WaDVtL09QVmxFNlJXNlhhYVpGTkt3V0tOYmZqQXomI3hBO014SUFYbUdZbXRNV1FaQ2Yr\nY2U5TVkwcy9OVXVvMTZOWWFOZlhhSC9BSjZ3ODR4OUxZb3Q2TCtVMzVkUytUYlRWb0xqeXpxSG1i\nOUsmI3hBO21BSDZ4YldGckNpUUZpQTBkNWQ4ajhUMSt6MnhWQS9uNVBCcFg1ZlRSbnlQWTZHK3Az\nRWRyQmZBMmJYQ2NXOVk4VnQwYW5KSWlDZWUmI3hBOzFjVkRILzhBbkdqeWZxTjNwbXNhMm5sL1N0\nYnQ1Sm83T0k2dGNORDZiUkw2a25wcUxPOURjdlZTcHF2VEZTOUYvTUx5bjV0UGtIekgmI3hBO0JZ\nK1ZQTCtuTlBhTnpuMHE1bCt0ZWhFNnpQR0VGaEI2cFlSMDQ4MXJpcnhEL25IbnoxYitWZk50d2pX\nRWQ1ZGF0RXRwYXlTWENXM0ImI3hBO3VmTGdIa1VwKzhJQStJcnVCdmlrdnA2Kzg3cWtLcjVuOG9h\ncmFXOFR4ekdiNnZEcVVDUEV3a1NYL1FwTG1RY0dVTUdNWXBpeFpUb20mI3hBO3U2UHJtblI2bHBG\nM0hlMk10UWs4UnFLcWFNcDdoZ2VvTzR4VkhZcTdGWFlxN0ZXS1hkemU2dDVudTlEazFSdEp0N1ZF\nZUswdHdFdTcmI3hBOzFIUU04eXpTQThZVVkrbWZSSE1NTjJBSUJWZkhuNTMzZGxQK1ordVJXUFA2\ncll5aXpReVNTVHlGNEZDU2w1WldkM1BxaDkyT0xJTSsmI3hBOzB6L25MTFhkTjAyMDA2Mjh1MmEy\nOW5ESGJ3ajFaZGtpUUl2NERGRlBvMzh1dk1tcGVadkplbDY5cU5xbG5kYWpHMDMxYUlzeXJHWFkm\nI3hBO1JrRnR6eVFCdnB4UXhIL25KVFh4cEg1VWFqRXJjWnRWa2hzSWovcnQ2a2crbUtKeGlrUFB2\nK2NQZkw5SS9NUG1GMSswMFduMjcvSWUmI3hBO3RNUHhpeFV2b2UvMWZTdE9UbnFGN0JacDE1WEVx\nUkR2M2Nqd3hROEgvUGk0L0pmemZwL3FSZVlMVC9GbHNoWFRyaXhEM2htQXFSYnkmI3hBOy9WbGxx\nckd0RCt5ZCtsUVZJZWEva2o1Mzg1ZVZOZGZRTkhTSytrMWlYNnVtbVhqbUdGTG1ud3piL3ZrTkFW\nWWNCeUh5R0tTK2xmS1AmI3hBO2tyekpIcnplYXZPT3FSNmhyeGdhMXRMT3lReFdObkM3Qm5XSU44\nYnN4VWZHKzlOc1dMT01WZWVuVmJqVmZKMTc1dTFiVkpJTk5ndEomI3hBOzdwdEYwNlJyYjBmUlJt\nYUM1dVU0M0xUb1Y0dUVhTUJ0dUo2NHErTi9KM21uL0QzbkN4OHlUMmcxR1N5bk56OVhkeWdlV2g0\nc1hvLzImI3hBO1hJYnAyeFpQZDlKLzV5MTFyVTlVczlOdHZLMEp1TDZlTzJoSDF0L3R5dUVYL2RY\naTJLS2ZTZUtIeTcvem1CNWc5WFd0Qjh2bzIxcmImI3hBO3lYczZqb1d1SDlPT3Z1b2hiL2dzVWg3\nRCtRbmwvd0RRbjVVNkZDeThacnlJMzh4NkVtNll5cFg1UmxCOUdLQ3piVWRZMGpUWS9VMUcmI3hB\nOyt0N0tQcnp1SlVpSDN1VnhWOGYvQUo0ZVdQeTIvVHk2ajVHMXEwdUh2WkdOL3BOcVhuamlmY21X\nRm9Fa1FSbW02MTJQMmZoNkxJTS8mI3hBOy9Kejh5L3pWMTd5Ny9oblJyYTAxRFVkTm9zdXZhblBS\nYmUzWThZMWtnU3MwemppMUdOTzNJZHlvZXplUVBKamVWZEp1WUxpOWJVZFQmI3hBOzFLN2wxSFZi\nMG9zU3lYVTRVT3lSTDhLTFJGQUdLR1RZcTdGWFlxN0ZVbjgyUTZEK2dyeSsxdTBpdTdQVFlaYnho\nS29Zb0lFTWhkR08mI3hBOzZNQXYyaHZpcjR6L0FDVDh1eStiL3dBMUxKYm1SMVZHbTFHOG5VSkt3\nTVlMSzFKMW1ScXpNZ1BOVDF4WkY5bVd2bEx5L0RDSTVMRzImI3hBO3VYSFdXVzJ0Z3grZnB4eHIr\nR0xGTkJBcVFyREJTR05GQ1JxZ0FDcUJRQURvQUJpcjV6LzV5ZDg0Zm9iVU5MMEl3UWFySkxDMTdJ\nbCsmI3hBO2dtU0xreGlqWkVIR2pIaSsrS1F5Nzhydnl3MGZWL3k5MGkvMWNYRUVtcFJHN2tzTE80\nbXRyVUpNVDZYR0pHN3c4YTcvQUlZcTg2L04mI3hBO3lmeUYrWEg1aDZWWjJIbFd5MU95K3BtNTFT\nMHZUSk9aV21sWUlWbG5NeFYwRVo2Z3FlVzQ2VVZUcVQvbkovOEFMdlNkQ2xYeW41WWsmI3hBO3N0\nVmFNcEJCOVh0cmUyUnFiRm1nY3N5Zy9zaFJYMnhXbUJmODQ0K1M5Vzh5Zm1MQjVobVJtMDNSNVd1\nN3U3ZGZoZTVJSmpqVTlPZk4mI3hBO3VaOEFQY1lxWDJWaWgyS3ZHZjhBbkpzYVBwWDVmWGw5RkFJ\nTlgxYWVDeCtzd00wTHlMdkk0bTlNcjZ5K25HeTBrcUJYeHhTR0FmOEEmI3hBO09MZjVmV2VzMmVz\nNjdmcEhKREhORlpXOGMxdmIzRVpLcjZzMVJQSElRYVBIUXFSNzF4VXZvMjE4bWVVYldhS2UzMFRU\nNHJtRmc4VTgmI3hBO2RwQWpxNm1vWldWQVFSN1lvVEs0aG5rVWlLY3cxN2hRZjE0cStSUHpBODMy\nL21IODByblE0ZEp0dFF2SDFCZElpMUc0VkpIa0tTaUImI3hBO1NCd29BSHJTaDZZcGZRcC9KM1FK\nWWtndTlWMW03dG8xQ0pieVg4cXhxaWlnVlVpOU1CUU9nR0tIejdvM25yOG9QTC9uWFhiSFcvS0Um\nI3hBO1dvNlREZlRSNmRxRzk1TUk0bktMNmtkMUlWa1Z1UEt0YTcwb2NVby84M1B6dzhqNnA1T244\ncCtSOUxObmIzelJtK3VSYngya1lpaWMmI3hBO1NoSTBqK0lsblVWSkFGUEd1eXRNdy81eEw4bDZo\ncDJpNnA1bXZvakVtcm1LSFR3NG96UXdsaThncit5N01BUDlYNVlxWHY4QWloMksmI3hBO3V4VjJL\ndXhWZ3Y1M1czbUM4L0xYVnROOHYyY3Q5cVdvQ08yU0tFVllSdklETVRXbTNwaGwrbkZRK1d0Qy9M\nWDg5OUF1bnU5RTBqVTkmI3hBO091cEVNVWsxc1JHNWpKREZTVmF0S3FEaXlaRlphUi96bEpQZVFR\nU1hHdXdSeXlJanp2TzNGRlpnQzdmSDBYcmloOWR4UituRWtZWm0mI3hBOzRLRjVNYXNhQ2xTVDFP\nS0huZm5qOGh2SlhuVFhuMXpXWnI3NjQ4YVFoWUprU05VakZBRlV4c2U1UFhyaW0yZjZmWTIxaFlX\nMWphcncmI3hBO3RyU0pJSUU4RWpVS28rNFlvUy96SDVSOHNlWmJVV3V2YVpiNmpDdGZUOWRBeklU\nMUtQOEFiUS82cEdLc0xpLzV4dy9KMk82OWNhRVcmI3hBO0FvVmhhNnVtakJGT3hsMytSSkdLYmVn\nYVZwR2xhUll4MkdsMmtOalpRaWtkdmJvc2FDdlg0VkFGVDNPS0VYaXJzVmZQdi9PVXVoK2QmI3hB\nO1BNVjFvV21hRm8xNXFGbmFKTmMzTXR0QzhpZXJLUWlLU29weVZZMlAreXhTSGxubC9TLytjaXZM\ndGgrajlFMC9XckN5NXRLWUliZGcmI3hBO3BkcUF0dXAzTkJpbDZiK1N4L1BlODg5MjU4NFM2ckRv\nZHRCTk5NbDdHWTRwWDQrbkdsU3ExUEtRUFQvSnhRWDBSaWg1RjVYL0FPY2ImI3hBO1BLbWdlYkxU\nektOVHZyNjl0Sm11UkhjR0hnOHJBL0UzR05Uc3pjdXZYRk52WGNVTUk4MWZrdCtXbm1lNWt1OVUw\nV0lYMHBMU1hsc3omI3hBOzI4ck1lck9ZaW9kdmR3Y1Z0S3RGL3dDY2N2eW0wcTdXNkdrdGV5b2Fv\ndDdLODBZSThZeVFqZjdJSEZOdlM0NDBqUlk0MUNSb0FxSW8mI3hBO29BQnNBQU1VTjRxN0ZYWXE3\nRlVIY2F0YXdhclo2VzRiNnpmUnp6UWtENGVOdVl3L0kxMi92VnBpcnJQV3RIdlpMcUt5djdlNmtz\nWE0mI3hBO1Y4a01xU05BNHJWSlFwUEJ0anMyS3BWYy9tRDVOaXRyZTRoMWUwdkk3dTZTeGdOcmNR\neWhwMzM0Y2cvRUVMdWQvd0FTTVZWbDg2ZVYmI3hBO3BYNFdtcTJkNXdtK3IzSmd1cmRoQS9weVNm\ndmYzZ0svREMyd3EzdFFFaFZFZjRwOHNmb2o5TS9wZXkvUTVQRWFsOVlpK3JWTGNhZXQmI3hBO3k0\nVjViZGV1S3FmK01QS1hLQmYwM1ljcm1FM1ZzUHJVTlpMZFF6Tk1ueGZGR0FqRXNOdGppcXJONW04\ndHdYc05qUHExbkZlM0xpSzMmI3hBO3RYdUlsbGtjcWpCRVF0eVppc3FHZ0hSaDRqRlV1Yno1b3FY\nbHhCTXN0dkJhVFBiM1dvWEhwUVdxUEVzanYrOWxrUU54V0ZtSVNwVWImI3hBO2tBYjRxN1V2ekY4\nazZmbzM2WWZXcktheVl1bHUwRnpCSVo1STZjb29LUFNTUVYreXByaXFaWEhtWHk1YndQY1hHcTJj\nTnZFcGVTYVMmI3hBOzRpVkZWWlBSTE14WUFBU2poL3JiZGNWUzlQekI4bVRORkhiNnhhVFhNOC8x\nYUcwRnhESE84bjFnV3pjWTVualk4WlBEcit6eXFLcW8mI3hBO24vR1hsRDZyOWIvVG1uL1ZmVyty\nZldQclVQcCt2MDlMbnk0OC93REo2NHFuR0t1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMksm\nI3hBO3BENWg4dmFuZjZucDJwNlpxTWVuM2VueDNFUU10djhBV1VkTG4wK1h3K3BEUWowUjN4Vkl2\nTC81VzJYbC9TdGVzcmFSYnROV2dtZ1MmI3hBO3FtM200U21WdUVseFdZTjhVeG8vcDdkU0dPS3Nj\nMHo4bEx5OFdHNjF5YTJqdUxhVmt0Yk1STExDTFJyYTN0dURyRDlWVVNVdEFRVSsmI3hBO0VWNkd1\nS2JUVFUveVIwelVVamltMUdSSWhhUFpUZWxFcXM2djlhK1BseU80K3VtbFFlbnZpdG8wL2w3ZmFk\nNVF0ZEYwZWUzUzhpMUsmI3hBOzF2amRMQjZjWTlHYU5ta01Ka2Jrd1NQcHpGZmJGQ1VEOGhyTnJh\nT3puMXVhVzBkMnViOGZWNFZsbHUyK3NuMVk1RkE5Rk9WNHg5TUsmI3hBO1J0U3RLMVUyeUh5dCtY\nMTNwR3ZycmwvcS93Q2s3NzZ2TGF1UmJyQUdFcVdVWWFpdS93QVFYVHhYeExIcDB4UTE1aS9MV0RX\ndEUxRFMmI3hBOzJ2MmhXL3ZMdThNb2pERlRlV3N0cVZweUZlSW01VjcweFZBYTcrVVNYK3NhbnFk\nanFwMDk5V002WGNIMVpKWXpCY3dXa1VpS0M2Y1gmI3hBO0wySWs1anFXb1FjVldTL2xEUE5KT0pk\nY1l3bVJuc0N0c3F6Mm9lOGU4NVJUTElQM2l5U2ZBL0hwMURBa0ZTaTQvd0FyVUF1bzVkVWUmI3hB\nO1NHZTR0cG9oNlNxMGNkdHF6YXFJeXdiNGlYa01mS2cyM3BYRkNTLzhxRTByL0RmNkMrdHcrbi9k\nZlhQcXA5ZjBQVDlMcjYzRDFxZjcmI3hBO3M0Y2Y4akZOdlZjVU94VjJLdXhWMkt1eFYyS3V4VjJL\ndXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjImI3hBO0t1eFYyS3V4\nVjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYy\nS3V4VjJLdXhWMksmI3hBO3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1\neFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3UmI3hBO3hWMkt1eFYyS3V4VjJLdXhW\nMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJL\ndXgmI3hBO1YyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4\nVjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYmI3hBOzJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYy\nS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjImI3hBO0t1\neFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhW\nMkt1eFYyS3V4VjJLdXhWMksmI3hBO3V4VjJLdXhWMkt1eFYyS3V4VmFqT1N3WkNvSFExQnI5Mktx\nVnpOY1IwOUdBems5Z3dYOWVLb1pidldHUCs4Q3hqeGFaVCtvWXFpSTImI3hBO3Z6OXRZMTlnU2NW\nVjFEZHo5Mkt0NHE3RlhZcTdGWFlxMHhZS1NvcTNZVnBpcmtMRlFXSEZ1NHJYOGNWUWx4Y2FpckVR\nV1lrSFp6SXEmI3hBOy9oVEZWcVM2eXgrS0NHTWU3bHYxREZVVEdMdi9BSFlVSCtxRC9IRlZVVjdt\ndUt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMksmI3hBO3V4VjJLdXhWMkt1eFYyS3V4VjJL\ndXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3Um\nI3hBO3hWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYy\nS3V4VjJLdXhWMkt2Ly9aPC94bXBHSW1nOmltYWdlPgogICAgICAgICAgICAgICA8L3JkZjpsaT4K\nICAgICAgICAgICAgPC9yZGY6QWx0PgogICAgICAgICA8L3htcDpUaHVtYm5haWxzPgogICAgICA8\nL3JkZjpEZXNjcmlwdGlvbj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAg\nICAgICAgICAgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iCiAg\nICAgICAgICAgIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUv\nUmVzb3VyY2VSZWYjIgogICAgICAgICAgICB4bWxuczpzdEV2dD0iaHR0cDovL25zLmFkb2JlLmNv\nbS94YXAvMS4wL3NUeXBlL1Jlc291cmNlRXZlbnQjIj4KICAgICAgICAgPHhtcE1NOkluc3RhbmNl\nSUQ+eG1wLmlpZDo1N0JFMzhGNDRDQjBERjExOTlDQ0VDRjU3QUY0MzlDRTwveG1wTU06SW5zdGFu\nY2VJRD4KICAgICAgICAgPHhtcE1NOkRvY3VtZW50SUQ+eG1wLmRpZDo1N0JFMzhGNDRDQjBERjEx\nOTlDQ0VDRjU3QUY0MzlDRTwveG1wTU06RG9jdW1lbnRJRD4KICAgICAgICAgPHhtcE1NOk9yaWdp\nbmFsRG9jdW1lbnRJRD51dWlkOjVEMjA4OTI0OTNCRkRCMTE5MTRBODU5MEQzMTUwOEM4PC94bXBN\nTTpPcmlnaW5hbERvY3VtZW50SUQ+CiAgICAgICAgIDx4bXBNTTpSZW5kaXRpb25DbGFzcz5wcm9v\nZjpwZGY8L3htcE1NOlJlbmRpdGlvbkNsYXNzPgogICAgICAgICA8eG1wTU06RGVyaXZlZEZyb20g\ncmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICA8c3RSZWY6aW5zdGFuY2VJRD51\ndWlkOjc0ZGUzOTk3LTEzYzYtN2E0Yi05YjI1LTE2ZWZjYzAwZmIxNDwvc3RSZWY6aW5zdGFuY2VJ\nRD4KICAgICAgICAgICAgPHN0UmVmOmRvY3VtZW50SUQ+eG1wLmRpZDowNjgwMTE3NDA3MjA2ODEx\nOTBGMUMwNEJFRkI3OEFDOTwvc3RSZWY6ZG9jdW1lbnRJRD4KICAgICAgICAgICAgPHN0UmVmOm9y\naWdpbmFsRG9jdW1lbnRJRD51dWlkOjVEMjA4OTI0OTNCRkRCMTE5MTRBODU5MEQzMTUwOEM4PC9z\ndFJlZjpvcmlnaW5hbERvY3VtZW50SUQ+CiAgICAgICAgICAgIDxzdFJlZjpyZW5kaXRpb25DbGFz\ncz5wcm9vZjpwZGY8L3N0UmVmOnJlbmRpdGlvbkNsYXNzPgogICAgICAgICA8L3htcE1NOkRlcml2\nZWRGcm9tPgogICAgICAgICA8eG1wTU06SGlzdG9yeT4KICAgICAgICAgICAgPHJkZjpTZXE+CiAg\nICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6YWN0aW9uPmNvbnZlcnRlZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6cGFyYW1zPmZyb20gYXBwbGljYXRpb24vcGRmIHRvICZsdDt1bmtub3du\nJmd0Ozwvc3RFdnQ6cGFyYW1zPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAg\nICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxz\ndEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0\nOmluc3RhbmNlSUQ+eG1wLmlpZDpEMjdGMTE3NDA3MjA2ODExOTEwOTlDM0I2MDFDNDU0ODwvc3RF\ndnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0wNC0xN1Qx\nNDoxOToxNSswNTozMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNvZnR3\nYXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAg\nICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAgPHJkZjpC\nYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAgICAgICAg\nICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hhbmdlZD4K\nICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNl\nVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPmNvbnZlcnRl\nZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6cGFyYW1zPmZyb20gYXBw\nbGljYXRpb24vcGRmIHRvICZsdDt1bmtub3duJmd0Ozwvc3RFdnQ6cGFyYW1zPgogICAgICAgICAg\nICAgICA8L3JkZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNv\ndXJjZSI+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+Y29udmVydGVkPC9zdEV2dDph\nY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpwYXJhbXM+ZnJvbSBhcHBsaWNhdGlvbi9w\nZGYgdG8gJmx0O3Vua25vd24mZ3Q7PC9zdEV2dDpwYXJhbXM+CiAgICAgICAgICAgICAgIDwvcmRm\nOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9uPgogICAgICAg\nICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkY5N0YxMTc0MDcyMDY4MTE4RDRF\nRDI0NkIzQURCMUM2PC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6\nd2hlbj4yMDA4LTA1LTE1VDE2OjIzOjA2LTA3OjAwPC9zdEV2dDp3aGVuPgogICAgICAgICAgICAg\nICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1c3RyYXRvciBDUzQ8L3N0RXZ0OnNv\nZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPgogICAgICAgICAg\nICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAgICAgICAgICAgPHJkZjpsaT4vPC9y\nZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJhZz4KICAgICAgICAgICAgICAgICAg\nPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAgICAg\nPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxzdEV2\ndDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0Omlu\nc3RhbmNlSUQ+eG1wLmlpZDpGQTdGMTE3NDA3MjA2ODExOEQ0RUQyNDZCM0FEQjFDNjwvc3RFdnQ6\naW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0wNS0xNVQxNzox\nMDo0NS0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNvZnR3YXJl\nQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAgICAg\nICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAgPHJkZjpCYWc+\nCiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAgICAgICAgICAg\nICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hhbmdlZD4KICAg\nICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlw\nZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPnNhdmVkPC9zdEV2\ndDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnhtcC5paWQ6RUY3\nRjExNzQwNzIwNjgxMUE0NkNBNDUxOUQyNDM1NkI8L3N0RXZ0Omluc3RhbmNlSUQ+CiAgICAgICAg\nICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMTVUMjI6NTM6MzMtMDc6MDA8L3N0RXZ0Ondo\nZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2JlIElsbHVzdHJh\ndG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmNo\nYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAgICAgICAgICAgICAg\nICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAgPC9yZGY6QmFnPgog\nICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgIDwvcmRmOmxp\nPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4KICAgICAg\nICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkYwN0YxMTc0MDcyMDY4MTFBNDZDQTQ1\nMTlEMjQzNTZCPC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6d2hl\nbj4yMDA4LTA1LTE1VDIzOjA3OjA3LTA3OjAwPC9zdEV2dDp3aGVuPgogICAgICAgICAgICAgICAg\nICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1c3RyYXRvciBDUzQ8L3N0RXZ0OnNvZnR3\nYXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAg\nICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAgICAgICAgICAgPHJkZjpsaT4vPC9yZGY6\nbGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJhZz4KICAgICAgICAgICAgICAgICAgPC9z\ndEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAgICAgPHJk\nZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDph\nY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0Omluc3Rh\nbmNlSUQ+eG1wLmlpZDpGNzdGMTE3NDA3MjA2ODExQkREREZEMzhEMENGMjRERDwvc3RFdnQ6aW5z\ndGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0wNS0xNlQxMDozNTo0\nMy0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdl\nbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAgPHJkZjpCYWc+CiAg\nICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAgICAgICAgICAgICAg\nICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hhbmdlZD4KICAgICAg\nICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0i\nUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPmNvbnZlcnRlZDwvc3RF\ndnQ6YWN0aW9uPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6cGFyYW1zPmZyb20gYXBwbGljYXRp\nb24vcGRmIHRvICZsdDt1bmtub3duJmd0Ozwvc3RFdnQ6cGFyYW1zPgogICAgICAgICAgICAgICA8\nL3JkZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+\nCiAgICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpGOTdGMTE3NDA3MjA2ODEx\nQkREREZEMzhEMENGMjRERDwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0OndoZW4+MjAwOC0wNS0xNlQxMDo0MDo1OS0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAg\nICAgICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2\ndDpzb2Z0d2FyZUFnZW50PgogICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAg\nICAgICAgICAgICAgICAgPHJkZjpCYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+\nLzwvcmRmOmxpPgogICAgICAgICAgICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAg\nICAgIDwvc3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAg\nICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8\nc3RFdnQ6YWN0aW9uPmNvbnZlcnRlZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAgICAgICAgICA8\nc3RFdnQ6cGFyYW1zPmZyb20gYXBwbGljYXRpb24vdm5kLmFkb2JlLmlsbHVzdHJhdG9yIHRvICZs\ndDt1bmtub3duJmd0Ozwvc3RFdnQ6cGFyYW1zPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAg\nICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAg\nICAgICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAg\nICAgPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpGQTdGMTE3NDA3MjA2ODExQkREREZEMzhEMENG\nMjRERDwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAw\nOC0wNS0xNlQxMToyNjo1NS0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0OnNvZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFn\nZW50PgogICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAg\nICAgPHJkZjpCYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgog\nICAgICAgICAgICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6\nY2hhbmdlZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkg\ncmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9u\nPnNhdmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlE\nPnhtcC5paWQ6RkI3RjExNzQwNzIwNjgxMUJERERGRDM4RDBDRjI0REQ8L3N0RXZ0Omluc3RhbmNl\nSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMTZUMTE6Mjk6MDEtMDc6\nMDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFk\nb2JlIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAg\nICAgPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAg\nICAgICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAg\nPC9yZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAg\nICAgIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291\ncmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9u\nPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkZDN0YxMTc0MDcy\nMDY4MTFCRERERkQzOEQwQ0YyNEREPC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAg\nICA8c3RFdnQ6d2hlbj4yMDA4LTA1LTE2VDExOjI5OjIwLTA3OjAwPC9zdEV2dDp3aGVuPgogICAg\nICAgICAgICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1c3RyYXRvciBDUzQ8\nL3N0RXZ0OnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPgog\nICAgICAgICAgICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAgICAgICAgICAgPHJk\nZjpsaT4vPC9yZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJhZz4KICAgICAgICAg\nICAgICAgICAgPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAg\nICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAg\nICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAg\nPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpGRDdGMTE3NDA3MjA2ODExQkREREZEMzhEMENGMjRE\nRDwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0w\nNS0xNlQxMTozMDo1NC0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0\nOnNvZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50\nPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAg\nPHJkZjpCYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAg\nICAgICAgICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hh\nbmdlZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRm\nOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPnNh\ndmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnht\ncC5paWQ6RkU3RjExNzQwNzIwNjgxMUJERERGRDM4RDBDRjI0REQ8L3N0RXZ0Omluc3RhbmNlSUQ+\nCiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMTZUMTE6MzE6MjItMDc6MDA8\nL3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2Jl\nIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAg\nPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAgICAg\nICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAgPC9y\nZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAg\nIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNl\nIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9uPgog\nICAgICAgICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkIyMzM2NjhDMTYyMDY4\nMTFCRERERkQzOEQwQ0YyNEREPC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAgICA8\nc3RFdnQ6d2hlbj4yMDA4LTA1LTE2VDEyOjIzOjQ2LTA3OjAwPC9zdEV2dDp3aGVuPgogICAgICAg\nICAgICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1c3RyYXRvciBDUzQ8L3N0\nRXZ0OnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPgogICAg\nICAgICAgICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAgICAgICAgICAgPHJkZjps\naT4vPC9yZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJhZz4KICAgICAgICAgICAg\nICAgICAgPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAg\nICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAg\nIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpCMzMzNjY4QzE2MjA2ODExQkREREZEMzhEMENGMjRERDwv\nc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0wNS0x\nNlQxMzoyNzo1NC0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNv\nZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50Pgog\nICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAgPHJk\nZjpCYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAgICAg\nICAgICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hhbmdl\nZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBh\ncnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPnNhdmVk\nPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnhtcC5p\naWQ6QjQzMzY2OEMxNjIwNjgxMUJERERGRDM4RDBDRjI0REQ8L3N0RXZ0Omluc3RhbmNlSUQ+CiAg\nICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMTZUMTM6NDY6MTMtMDc6MDA8L3N0\nRXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2JlIEls\nbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAgICAgICAg\nICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAgPC9yZGY6\nQmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgIDwv\ncmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4K\nICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9uPgogICAg\nICAgICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkY3N0YxMTc0MDcyMDY4MTE5\nN0MxQkYxNEQxNzU5RTgzPC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAgICA8c3RF\ndnQ6d2hlbj4yMDA4LTA1LTE2VDE1OjQ3OjU3LTA3OjAwPC9zdEV2dDp3aGVuPgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1c3RyYXRvciBDUzQ8L3N0RXZ0\nOnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPgogICAgICAg\nICAgICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAgICAgICAgICAgPHJkZjpsaT4v\nPC9yZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJhZz4KICAgICAgICAgICAgICAg\nICAgPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAg\nICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxz\ndEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0\nOmluc3RhbmNlSUQ+eG1wLmlpZDpGODdGMTE3NDA3MjA2ODExOTdDMUJGMTREMTc1OUU4Mzwvc3RF\ndnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0wNS0xNlQx\nNTo1MTowNi0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNvZnR3\nYXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAg\nICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAgPHJkZjpC\nYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAgICAgICAg\nICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hhbmdlZD4K\nICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNl\nVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPnNhdmVkPC9z\ndEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnhtcC5paWQ6\nRjk3RjExNzQwNzIwNjgxMTk3QzFCRjE0RDE3NTlFODM8L3N0RXZ0Omluc3RhbmNlSUQ+CiAgICAg\nICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMTZUMTU6NTI6MjItMDc6MDA8L3N0RXZ0\nOndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2JlIElsbHVz\ndHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0\nOmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAgICAgICAgICAg\nICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAgPC9yZGY6QmFn\nPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgIDwvcmRm\nOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5jb252ZXJ0ZWQ8L3N0RXZ0OmFjdGlvbj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0OnBhcmFtcz5mcm9tIGFwcGxpY2F0aW9uL3ZuZC5hZG9iZS5p\nbGx1c3RyYXRvciB0byBhcHBsaWNhdGlvbi92bmQuYWRvYmUuaWxsdXN0cmF0b3I8L3N0RXZ0OnBh\ncmFtcz4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRm\nOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPnNh\ndmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnht\ncC5paWQ6RkE3RjExNzQwNzIwNjgxMUI2MjhFM0JGMjdDOEM0MUI8L3N0RXZ0Omluc3RhbmNlSUQ+\nCiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMjJUMTM6Mjg6MDEtMDc6MDA8\nL3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2Jl\nIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAg\nPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAgICAg\nICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAgPC9y\nZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAg\nIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNl\nIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5jb252ZXJ0ZWQ8L3N0RXZ0OmFjdGlv\nbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnBhcmFtcz5mcm9tIGFwcGxpY2F0aW9uL3ZuZC5h\nZG9iZS5pbGx1c3RyYXRvciB0byBhcHBsaWNhdGlvbi92bmQuYWRvYmUuaWxsdXN0cmF0b3I8L3N0\nRXZ0OnBhcmFtcz4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6\nbGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0\naW9uPnNhdmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5j\nZUlEPnhtcC5paWQ6RkY3RjExNzQwNzIwNjgxMUI2MjhFM0JGMjdDOEM0MUI8L3N0RXZ0Omluc3Rh\nbmNlSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMjJUMTY6MjM6NTMt\nMDc6MDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50\nPkFkb2JlIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAg\nICAgICAgPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAg\nICAgICAgICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAg\nICAgPC9yZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAg\nICAgICAgIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJl\nc291cmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5jb252ZXJ0ZWQ8L3N0RXZ0\nOmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnBhcmFtcz5mcm9tIGFwcGxpY2F0aW9u\nL3ZuZC5hZG9iZS5pbGx1c3RyYXRvciB0byBhcHBsaWNhdGlvbi92bmQuYWRvYmUuaWxsdXN0cmF0\nb3I8L3N0RXZ0OnBhcmFtcz4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAg\nIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RF\ndnQ6YWN0aW9uPnNhdmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpp\nbnN0YW5jZUlEPnhtcC5paWQ6MDdDM0JEMjUxMDJEREQxMTgxQjU5NDA3MENFQjg4RDk8L3N0RXZ0\nOmluc3RhbmNlSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMjhUMTY6\nNDU6MjYtMDc6MDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2Fy\nZUFnZW50PkFkb2JlIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAg\nICAgICAgICAgICAgPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFn\nPgogICAgICAgICAgICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAg\nICAgICAgICAgPC9yZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAg\nICAgICAgICAgICAgIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5\ncGU9IlJlc291cmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5jb252ZXJ0ZWQ8\nL3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnBhcmFtcz5mcm9tIGFwcGxp\nY2F0aW9uL3ZuZC5hZG9iZS5pbGx1c3RyYXRvciB0byBhcHBsaWNhdGlvbi92bmQuYWRvYmUuaWxs\ndXN0cmF0b3I8L3N0RXZ0OnBhcmFtcz4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAg\nICAgICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAg\nICA8c3RFdnQ6YWN0aW9uPnNhdmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxz\ndEV2dDppbnN0YW5jZUlEPnhtcC5paWQ6Rjg3RjExNzQwNzIwNjgxMTkwOThCMDk3RkRBMzlCRUY8\nL3N0RXZ0Omluc3RhbmNlSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDYt\nMDJUMTM6MjU6MjUtMDc6MDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpz\nb2Z0d2FyZUFnZW50PkFkb2JlIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4K\nICAgICAgICAgICAgICAgICAgPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxy\nZGY6QmFnPgogICAgICAgICAgICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAg\nICAgICAgICAgICAgICAgPC9yZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5n\nZWQ+CiAgICAgICAgICAgICAgIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpw\nYXJzZVR5cGU9IlJlc291cmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZl\nZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAu\naWlkOkY3N0YxMTc0MDcyMDY4MTFCQjFEQkY4RjI0MkI2Rjg0PC9zdEV2dDppbnN0YW5jZUlEPgog\nICAgICAgICAgICAgICAgICA8c3RFdnQ6d2hlbj4yMDA4LTA2LTA5VDE0OjU4OjM2LTA3OjAwPC9z\ndEV2dDp3aGVuPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJ\nbGx1c3RyYXRvciBDUzQ8L3N0RXZ0OnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxz\ndEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAg\nICAgICAgICAgICAgPHJkZjpsaT4vPC9yZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRm\nOkJhZz4KICAgICAgICAgICAgICAgICAgPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8\nL3JkZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+\nCiAgICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpGOTdGMTE3NDA3MjA2ODEx\nQUNBRkI4REE4MDg1NEU3Njwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0OndoZW4+MjAwOC0wNi0xMVQxNDozMToyNy0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAg\nICAgICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2\ndDpzb2Z0d2FyZUFnZW50PgogICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAg\nICAgICAgICAgICAgICAgPHJkZjpCYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+\nLzwvcmRmOmxpPgogICAgICAgICAgICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAg\nICAgIDwvc3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAg\nICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8\nc3RFdnQ6YWN0aW9uPnNhdmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2\ndDppbnN0YW5jZUlEPnhtcC5paWQ6MDE4MDExNzQwNzIwNjgxMTgzNDM4M0NEM0E4RDIzMDM8L3N0\nRXZ0Omluc3RhbmNlSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDYtMTFU\nMjI6Mzc6MzUtMDc6MDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0\nd2FyZUFnZW50PkFkb2JlIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6\nQmFnPgogICAgICAgICAgICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAg\nICAgICAgICAgICAgPC9yZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+\nCiAgICAgICAgICAgICAgIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJz\nZVR5cGU9IlJlc291cmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwv\nc3RFdnQ6YWN0aW9uPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlk\nOkY3N0YxMTc0MDcyMDY4MTE4MThDODVERjZBMUE3NUMzPC9zdEV2dDppbnN0YW5jZUlEPgogICAg\nICAgICAgICAgICAgICA8c3RFdnQ6d2hlbj4yMDA4LTA2LTI3VDE0OjQwOjQyLTA3OjAwPC9zdEV2\ndDp3aGVuPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1\nc3RyYXRvciBDUzQ8L3N0RXZ0OnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2\ndDpjaGFuZ2VkPgogICAgICAgICAgICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAg\nICAgICAgICAgPHJkZjpsaT4vPC9yZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJh\nZz4KICAgICAgICAgICAgICAgICAgPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3Jk\nZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAg\nICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAg\nICAgICAgICAgICAgPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDowNjgwMTE3NDA3MjA2ODExOTBG\nMUMwNEJFRkI3OEFDOTwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0\nOndoZW4+MjAxMC0wMS0wNlQxNjozMjoxMy0wNTowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAg\nICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpz\nb2Z0d2FyZUFnZW50PgogICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4vPC9zdEV2dDpj\naGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSBy\nZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+\nc2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0Omluc3RhbmNlSUQ+\neG1wLmlpZDo1N0JFMzhGNDRDQjBERjExOTlDQ0VDRjU3QUY0MzlDRTwvc3RFdnQ6aW5zdGFuY2VJ\nRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAxMC0wOC0yNVQwOTozMDo0MC0wNDow\nMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdlbnQ+QWRv\nYmUgSWxsdXN0cmF0b3IgQ1M1PC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAgICAgICAgICAgICAg\nICA8c3RFdnQ6Y2hhbmdlZD4vPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjps\naT4KICAgICAgICAgICAgPC9yZGY6U2VxPgogICAgICAgICA8L3htcE1NOkhpc3Rvcnk+CiAgICAg\nIDwvcmRmOkRlc2NyaXB0aW9uPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgog\nICAgICAgICAgICB4bWxuczppbGx1c3RyYXRvcj0iaHR0cDovL25zLmFkb2JlLmNvbS9pbGx1c3Ry\nYXRvci8xLjAvIj4KICAgICAgICAgPGlsbHVzdHJhdG9yOlN0YXJ0dXBQcm9maWxlPlByaW50PC9p\nbGx1c3RyYXRvcjpTdGFydHVwUHJvZmlsZT4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgICAg\nIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOnBkZj0iaHR0\ncDovL25zLmFkb2JlLmNvbS9wZGYvMS4zLyI+CiAgICAgICAgIDxwZGY6UHJvZHVjZXI+QWRvYmUg\nUERGIGxpYnJhcnkgOS4wMDwvcGRmOlByb2R1Y2VyPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4K\nICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg\nICAgICAgICAgICAgICAgICAgICAgIAo8P3hwYWNrZXQgZW5kPSJ3Ij8+/+IMWElDQ19QUk9GSUxF\nAAEBAAAMSExpbm8CEAAAbW50clJHQiBYWVogB84AAgAJAAYAMQAAYWNzcE1TRlQAAAAASUVDIHNS\nR0IAAAAAAAAAAAAAAAAAAPbWAAEAAAAA0y1IUCAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAARY3BydAAAAVAAAAAzZGVzYwAAAYQAAABsd3RwdAAAAfAAAAAU\nYmtwdAAAAgQAAAAUclhZWgAAAhgAAAAUZ1hZWgAAAiwAAAAUYlhZWgAAAkAAAAAUZG1uZAAAAlQA\nAABwZG1kZAAAAsQAAACIdnVlZAAAA0wAAACGdmlldwAAA9QAAAAkbHVtaQAAA/gAAAAUbWVhcwAA\nBAwAAAAkdGVjaAAABDAAAAAMclRSQwAABDwAAAgMZ1RSQwAABDwAAAgMYlRSQwAABDwAAAgMdGV4\ndAAAAABDb3B5cmlnaHQgKGMpIDE5OTggSGV3bGV0dC1QYWNrYXJkIENvbXBhbnkAAGRlc2MAAAAA\nAAAAEnNSR0IgSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAADzUQAB\nAAAAARbMWFlaIAAAAAAAAAAAAAAAAAAAAABYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABi\nmQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9kZXNjAAAAAAAAABZJRUMgaHR0cDovL3d3dy5p\nZWMuY2gAAAAAAAAAAAAAABZJRUMgaHR0cDovL3d3dy5pZWMuY2gAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAuSUVDIDYxOTY2LTIuMSBEZWZh\ndWx0IFJHQiBjb2xvdXIgc3BhY2UgLSBzUkdCAAAAAAAAAAAAAAAuSUVDIDYxOTY2LTIuMSBEZWZh\ndWx0IFJHQiBjb2xvdXIgc3BhY2UgLSBzUkdCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRlc2MAAAAA\nAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAA\nACxSZWZlcmVuY2UgVmlld2luZyBDb25kaXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAB2aWV3AAAAAAATpP4AFF8uABDPFAAD7cwABBMLAANcngAAAAFYWVogAAAA\nAABMCVYAUAAAAFcf521lYXMAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAKPAAAAAnNpZyAAAAAA\nQ1JUIGN1cnYAAAAAAAAEAAAAAAUACgAPABQAGQAeACMAKAAtADIANwA7AEAARQBKAE8AVABZAF4A\nYwBoAG0AcgB3AHwAgQCGAIsAkACVAJoAnwCkAKkArgCyALcAvADBAMYAywDQANUA2wDgAOUA6wDw\nAPYA+wEBAQcBDQETARkBHwElASsBMgE4AT4BRQFMAVIBWQFgAWcBbgF1AXwBgwGLAZIBmgGhAakB\nsQG5AcEByQHRAdkB4QHpAfIB+gIDAgwCFAIdAiYCLwI4AkECSwJUAl0CZwJxAnoChAKOApgCogKs\nArYCwQLLAtUC4ALrAvUDAAMLAxYDIQMtAzgDQwNPA1oDZgNyA34DigOWA6IDrgO6A8cD0wPgA+wD\n+QQGBBMEIAQtBDsESARVBGMEcQR+BIwEmgSoBLYExATTBOEE8AT+BQ0FHAUrBToFSQVYBWcFdwWG\nBZYFpgW1BcUF1QXlBfYGBgYWBicGNwZIBlkGagZ7BowGnQavBsAG0QbjBvUHBwcZBysHPQdPB2EH\ndAeGB5kHrAe/B9IH5Qf4CAsIHwgyCEYIWghuCIIIlgiqCL4I0gjnCPsJEAklCToJTwlkCXkJjwmk\nCboJzwnlCfsKEQonCj0KVApqCoEKmAquCsUK3ArzCwsLIgs5C1ELaQuAC5gLsAvIC+EL+QwSDCoM\nQwxcDHUMjgynDMAM2QzzDQ0NJg1ADVoNdA2ODakNww3eDfgOEw4uDkkOZA5/DpsOtg7SDu4PCQ8l\nD0EPXg96D5YPsw/PD+wQCRAmEEMQYRB+EJsQuRDXEPURExExEU8RbRGMEaoRyRHoEgcSJhJFEmQS\nhBKjEsMS4xMDEyMTQxNjE4MTpBPFE+UUBhQnFEkUahSLFK0UzhTwFRIVNBVWFXgVmxW9FeAWAxYm\nFkkWbBaPFrIW1hb6Fx0XQRdlF4kXrhfSF/cYGxhAGGUYihivGNUY+hkgGUUZaxmRGbcZ3RoEGioa\nURp3Gp4axRrsGxQbOxtjG4obshvaHAIcKhxSHHscoxzMHPUdHh1HHXAdmR3DHeweFh5AHmoelB6+\nHukfEx8+H2kflB+/H+ogFSBBIGwgmCDEIPAhHCFIIXUhoSHOIfsiJyJVIoIiryLdIwojOCNmI5Qj\nwiPwJB8kTSR8JKsk2iUJJTglaCWXJccl9yYnJlcmhya3JugnGCdJJ3onqyfcKA0oPyhxKKIo1CkG\nKTgpaymdKdAqAio1KmgqmyrPKwIrNitpK50r0SwFLDksbiyiLNctDC1BLXYtqy3hLhYuTC6CLrcu\n7i8kL1ovkS/HL/4wNTBsMKQw2zESMUoxgjG6MfIyKjJjMpsy1DMNM0YzfzO4M/E0KzRlNJ402DUT\nNU01hzXCNf02NzZyNq426TckN2A3nDfXOBQ4UDiMOMg5BTlCOX85vDn5OjY6dDqyOu87LTtrO6o7\n6DwnPGU8pDzjPSI9YT2hPeA+ID5gPqA+4D8hP2E/oj/iQCNAZECmQOdBKUFqQaxB7kIwQnJCtUL3\nQzpDfUPARANER0SKRM5FEkVVRZpF3kYiRmdGq0bwRzVHe0fASAVIS0iRSNdJHUljSalJ8Eo3Sn1K\nxEsMS1NLmkviTCpMcky6TQJNSk2TTdxOJU5uTrdPAE9JT5NP3VAnUHFQu1EGUVBRm1HmUjFSfFLH\nUxNTX1OqU/ZUQlSPVNtVKFV1VcJWD1ZcVqlW91dEV5JX4FgvWH1Yy1kaWWlZuFoHWlZaplr1W0Vb\nlVvlXDVchlzWXSddeF3JXhpebF69Xw9fYV+zYAVgV2CqYPxhT2GiYfViSWKcYvBjQ2OXY+tkQGSU\nZOllPWWSZedmPWaSZuhnPWeTZ+loP2iWaOxpQ2maafFqSGqfavdrT2una/9sV2yvbQhtYG25bhJu\na27Ebx5veG/RcCtwhnDgcTpxlXHwcktypnMBc11zuHQUdHB0zHUodYV14XY+dpt2+HdWd7N4EXhu\neMx5KnmJeed6RnqlewR7Y3vCfCF8gXzhfUF9oX4BfmJ+wn8jf4R/5YBHgKiBCoFrgc2CMIKSgvSD\nV4O6hB2EgITjhUeFq4YOhnKG14c7h5+IBIhpiM6JM4mZif6KZIrKizCLlov8jGOMyo0xjZiN/45m\njs6PNo+ekAaQbpDWkT+RqJIRknqS45NNk7aUIJSKlPSVX5XJljSWn5cKl3WX4JhMmLiZJJmQmfya\naJrVm0Kbr5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaL\npv2nbqfgqFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LCsziz\nrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9j74KvoS+/796v/XAcMDs\nwWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbP\nN8+40DnQutE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W\n3hzeot8p36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXrcOv77Ibt\nEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4qPk4+cf6V/rn+3f8B/yY\n/Sn9uv5L/tz/bf///+4ADkFkb2JlAGTAAAAAAf/bAIQAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB\nAQEBAQEBAQEBAQEBAQEBAQEBAQICAgICAgICAgICAwMDAwMDAwMDAwEBAQEBAQECAQECAgIBAgID\nAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD/8AAEQgAqgD+\nAwERAAIRAQMRAf/EAaIAAAAGAgMBAAAAAAAAAAAAAAcIBgUECQMKAgEACwEAAAYDAQEBAAAAAAAA\nAAAABgUEAwcCCAEJAAoLEAACAQMEAQMDAgMDAwIGCXUBAgMEEQUSBiEHEyIACDEUQTIjFQlRQhZh\nJDMXUnGBGGKRJUOhsfAmNHIKGcHRNSfhUzaC8ZKiRFRzRUY3R2MoVVZXGrLC0uLyZIN0k4Rlo7PD\n0+MpOGbzdSo5OkhJSlhZWmdoaWp2d3h5eoWGh4iJipSVlpeYmZqkpaanqKmqtLW2t7i5usTFxsfI\nycrU1dbX2Nna5OXm5+jp6vT19vf4+foRAAIBAwIEBAMFBAQEBgYFbQECAxEEIRIFMQYAIhNBUQcy\nYRRxCEKBI5EVUqFiFjMJsSTB0UNy8BfhgjQlklMYY0TxorImNRlUNkVkJwpzg5NGdMLS4vJVZXVW\nN4SFo7PD0+PzKRqUpLTE1OT0laW1xdXl9ShHV2Y4doaWprbG1ub2Z3eHl6e3x9fn90hYaHiImKi4\nyNjo+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A3+Pfuvde9+691737\nr3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvd\ne9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+69173\n7r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuv\ndF579+VfQnxkw0WX7l7DxG2JqxC+J27CJ8xu7N21hTitr4mKszE9KZU8bVTRJRQuQJZowQfZJvPM\nWzbBF4m6TrGTwXLO32IKtT500jzI6lX2w9k/c73i3A2Pt/tU95HGaSznTFaw8P7W4lKxK1DqEYYy\nuAdEbU6L98av5mfxj+Ue/P8ARnset3ltnetTDX1GBw3YGCx+FO6osZFNU1v936vEZ3cFDPUw0ED1\nP208lPVNTo7rGfHIEJth592DmG8+gszLHdkEqsihddMnSVZhWmaEg0qaYNJQ93/ufe8Psvyz/XDm\nVNvu+XUaNZpbKZ5fpmlIVPGWWGBwrOwj1orxhyqlxqTVYP7GnWLXXvfuvde9+691737r3Xvfuvde\n9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737\nr3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3SX3nvfZ/XW2spvHfm5sJtDa\n2Fp2qcpn9w5GlxeLo4hwolqquSOMzTPZY41vJK5CIrMQCnuru1sYGuryRIrdBUsxAA/M/wAhxPl0\ndcv8ub9zZu8Owcs2dzf71cNpjhgjaSRz8lUE0AyzGiqAWYgAnrXt+X/862eoGT2L8Rce1LCfNR1X\nc26sV/lMilSvn2LtHJRWpebFKzMQs9tS/YodMvuFeZvdYtqs+WloOBncZ/5toeH+mcf7Qceup3sP\n/d4RxGHmT31lDyYZdqtpO0H0vLqM93zitWA4H6lhqTrX53jvTce9c/lt4773Nldy7kzdU9bmdxbk\nylRkspkalgFMtZkK+aSeUqihVBayIoVQFAAiELue83hZRNdX0hqaBpHY/lUnrpWZeRfbLlqO3kk2\nvYeUrOPSgZobS2iUZoNRjjXzJ8ySSakk9RuvqfsLe2/9o7W6Mxu5Nw9q1e4cPNs6PaFPUyZXH5ui\nyVLU4/L09XCqrQLi6uOOZqt2SnpFQyyyIiFvcrch8g77b7zBvO6x/TWsBLAMRrc0IA0gkqM92qhp\ngA1qOe33uPvge0u8+2O6e2nIN4N73/dEWCSSKNxa28YkR3fxnVFmchdMQg8RAza2caNLfQ8xiV8e\nOx8eUlhnyaUVKmRnpwRTzV6wRrWSwAxwkQyVAYqNCekjgfT3PXXHXqb7917r3v3Xuve/de697917\nr3v3Xuve/de697917r3v3Xuk5u7d+1dg7cy2797bhw+1NrYGkeuzGfz2QpsZisdSpYGWqrKuSOGP\nW7BUW+p3YKoLEAsXNzb2cDXN26x26CrMxAAHzJ6Nti2HeuZ92g2Hl21uL3erlwkUEKNJJIx8lRQS\naCpJ4AAkkAE9Uhd+fzyestq19Zgvj911kuz5aaSan/vru6rqNn7UleN5FSqxGESkqdzZmilCqQao\nYiTk+ngExNvPu3YW7mHZYGuCMa3JRPtVaF2H26D10Z9sf7t7nDerWPc/dHdodmRwG+ktVW6uQCBV\nZZiy28TjI/T+qXHH0r6z387H5mZasaoxsHUW16a50UGH2RkKuALpRV1zbi3LnKt3GgkkSKCzHgDS\nqgub3W5pkbVGLaNfRYyf+PMx6yl2z+7u+79Y24ivG328m83lvEU+fAQW8KgZplSaAZJqS47Y/nd/\nL/DVCNnMJ07u+lLN5osntHN4upMbNGbU1Tt/deLihkQRkKzwzLZ21Kx06b2/uxzNE36yWsq/NGB/\nIq4/wHpLvH93P7DbhERttxv9hPTBjuoZFrn4lntpCQa5AdTgUIzWwTpH+eX03uqoo8R3l1zuTqqr\nneOB90bbqv7+bSjJvrrMjSRUeL3Vi6f6AR01JlXB+rW5A02n3c2u4YRbvBJbsfxqfET7SKBwPsD9\nYte43927z/ssUl/7b7tab3AoJFvcL9FdH0WNi8ltI39KSW2HoK9XN9f9j7C7W2xQ70623ft7fG1c\njdaXObaylLlaBpkSN5qSaSlkc0lfTCVRNTzBJ4WOmRFbj3KdlfWe424urCVJrduDKQR9mOBHmDke\nY65980cpcz8k7zJy9zdYXW271F8UNxG0b0JIDAMBqRqHRItUcZViM9LX2q6D3Xvfuvde9+691737\nr3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691jmEzQyrTvHFOY3EEk0TTwxzFSI3l\ngSaneaNHsWQSRlhwGX6jRrQ6eP8Aq+z/AA9XjMYkUygmKoqAaEjzAJDAEjgSppxoeHWrl/MR+J38\nyDtrtbJZBcF2N8gev8TLVTbanoV6x2FszEsAzePZfWuI7h3vnGgSkmWE5HJ0tFmK1kZZI3VVYxbv\nvt7vHMV0J9x3bVCDhPAKqg/oqJSK0wWPcfMnroR7QffO9svZbl1tp5M9uxb7m0QEl0d0WW4unAyb\nidtuWQJrGpYUrElToRTxA/p3+Sj80uzTSV3ZeT2F8ftv1AieaHL5GPe29lp5lV0kp9v7VqKvD+VU\nPriqcxQTRtZWQHVpMNr9r+Vtvo90sl3MPORqJX5ImnHyYv0Eefvv/e/XN/iW2wTWXL22NUBbOIPP\npPk1zceKwb+nAlufSma2t9MfyL/iLsF6PJ9q5Lfvfmfgu1Qm58zNtPaDzA3ikptubSnpMwqRnkxV\nWXrYXIsylbqR5a2tpYReBYxRQw/wooUfsAA6w+5h5n5l5uvzuvNe4325bmf9Fup5Z5KE1oHlZmAr\n5A0+XVr3W3TvVHTmHXb/AFR1vsjrnDiNI3odm7ZxG3o6nxlmEtc+NpKebIVLOxZpZ2kld2LMxYkl\nRUnj0R0HVLn88jvHP7M2r0Z1ZtHcmY2/lNxZ7ce/c5PgMrW4ivTHbcx8G38HBUVNBPT1ElFkqrcl\ncwjLGNpKIMRdVIhz3b3ea1t7TbraRkkd2kbSSpoo0rUgg0JZvzXrpt/dv+3G18wb1zJzrvtnb3Vn\naWsFlCJo0lQyTuZ5iquGUPGtvCNVKhZSAaFutdL/AEwdt/8AP0uxf/Q33N/9c/cIfvPcv+Uif/nI\n3+frrB/ULkb/AKMu0/8AZJb/APWvr3+mDtv/AJ+l2L/6G+5v/rn79+89y/5SJ/8AnI3+fr39QuRv\n+jLtP/ZJb/8AWvr3+mDtv/n6XYv/AKG+5v8A65+/fvPcv+Uif/nI3+fr39QuRv8Aoy7T/wBklv8A\n9a+vf6YO2/8An6XYv/ob7m/+ufv37z3L/lIn/wCcjf5+vf1C5G/6Mu0/9klv/wBa+vf6YO2/+fpd\ni/8Aob7m/wDrn79+89y/5SJ/+cjf5+vf1C5G/wCjLtP/AGSW/wD1r69/pg7b/wCfpdi/+hvub/65\n+/fvPcv+Uif/AJyN/n69/ULkb/oy7T/2SW//AFr69/pg7b/5+l2L/wChvub/AOufv37z3L/lIn/5\nyN/n69/ULkb/AKMu0/8AZJb/APWvq+j+Sl3r2zmj8iMT2Bu+GbpDqTbmN3rnc7uaeoyOVh3du6nj\nqzkqvdmUq6mpp8DgNm7Fq/LRIVggeQzMA7ktkp7fRvZcnx31/IxaUyTMzsTpQdoNSTQaUDemT8+u\nF33z7q15n+8ld8p8n2UKpYR2e2wQ2sSJ4twwErqEjVQ0puLloK01Eoq1oF6rc+f/AM7t5fMDsaso\n8ZXV+E6O2pkamDr/AGcry0qZNImMH99N004Kit3DlkUvDHICmMpnEEQ1momnhLnPm+65mvisZZNp\njY+GnCv9Nx5sfIH4RgZ1E9Vfuvfdp2D2G5TjuLyOK49x76JWvrogMYyc/SWzfggiOHZTW4kBkc6R\nFHFXr7BXWU/WSKGadikMUkzBSxWJGkYKCAWIQEhQSOf8fbkcUsz+HCrO58gCT+wdJL7cLDa7c3m5\nTw29ovF5XWNB9rOQo/b1ylp6iDT54Jodd9HliePVptq061Gq1xe3097mgnt20zo6N6MCD/OnTW3b\nvtO8Qm42i6t7q3BoWhkSVQc41IzDyPn5HrD7a6MOrl/5IG6O0F+Vm6Ni7XzcVL1hU9V5Xe3aOI+x\no6pMtWYfJ0u3NkxPXzQNV4zKY3J7keohWGRPLSyTh1dSDHkT7R7f4GxT7gw7ri4oPmsYoD/vTOPy\n64qf3knOC7t7rbRydAwaHZ9oMj+qz3smplP/ADYgtmH+n4eu2N7lbrnT1737r3Xvfuvde9+69173\n7r3Xvfuvde9+691737r3Xvfuvde9+690W/5f9wVXQnxk7q7ZxlXHQZ3amxsl/datmhpqmGk3jnHg\n23syolpayKekrI4d1ZijZoZEZJgNBFm9kXM25ts2wXe5Rmk0cJ0HBo7dqGhwe9lwePDqW/YfkKD3\nO94uXuR7xDLtt9uUf1KAspa1hBuLtQyEMpNtFKA6kFT3A461Sf8Ah2b+YF/z/wC/9hX0p/8Aa494\n6/64/Of/ACm/9UYP+tXXbb/gHfuuf9Mv/wB1Ldv+2/r3/Ds38wL/AJ/9/wCwr6U/+1x79/rj85/8\npv8A1Rg/61de/wCAd+65/wBMv/3Ut2/7b+vf8OzfzAv+f/f+wr6U/wDtce/f64/Of/Kb/wBUYP8A\nrV17/gHfuuf9Mv8A91Ldv+2/r3/Ds38wL/n/AN/7CvpT/wC1x79/rj85/wDKb/1Rg/61de/4B37r\nn/TL/wDdS3b/ALb+vf8ADs38wL/n/wB/7CvpT/7XHv3+uPzn/wApv/VGD/rV17/gHfuuf9Mv/wB1\nLdv+2/pTbL/nE/NbaW79s5/fG/6ntTatBmqFsx1zR7R6m2dU7zp5JPGMFFubD9U5PLYj7yR1vJTQ\nvOVBVCrMGUVclc283b/zHb7fc3eqzOppB4UI7VUmlRGCKmi1BBz1j596T7tn3bvaL2T3fnDYeXRB\nzKBDb2bm/wBzfTcXEyRhwkt68bmKMyS6XRlbw6EEdCZ/OuoexKb5DbH312dSYjaG1tw9c4fa/XlJ\nHn49xSVUm2KPH7h38PtsNSS19LBid3b+kokqqylpPv1gDxKUWyGXPnJ/NHMe/G7sYVeyjiREJkRa\n0qzGhYEdzMOGaelOgP8AdA+8l7B+yvtAnLvNe5zwc1Xe43N1dIlndShSxWCJfEjiZGHgQRPRWIUu\nQaNq6pm/jm2v+eioP/OLP/8A1m9gz/Wv5y/5R0/5yx/9BdZSf8Hr92f/AKPN3/3L73/rR17+Oba/\n56Kg/wDOLP8A/wBZvfv9a/nL/lHT/nLH/wBBde/4PX7s/wD0ebv/ALl97/1o6ciEsjRypPFLDBUQ\nzRiQJLDUQpPDIqyxxSrqikBsyqw+hAPsEX1nPt15JY3QAuYXKMAQQGU0IqKg0OMdZUcqczbTzpy3\nY82bCzvsm42yXEDOjxs8Uihkco4V11KQwDAGhB8+uPtL0f8AUOXLYGnkaGpztDBOlhLCabMTNE5A\nJjaSmxc8Bdb2YK7WPB5B9jaw9vOatys47+0gU20qBlJkRSVPA0LAivz6xZ5s++b937knmW+5S5g3\naePe9uuHgnRLO6lVJYzR1DxxMjFTVTpJAII4jrH/ABzbX/PRUH/nFn//AKze1f8ArX85f8o6f85Y\n/wDoLoPf8Hr92f8A6PN3/wBy+9/60ddHObbAJ/vFQnj6Ciz1z/gL4YC59+/1r+cv+UdP+csf/QXX\nv+D1+7P/ANHm7/7l97/1o6tj2tlq3oj+UTU5DHq2K3N82vkFuB5pI3kgrY+rNk68bWUMUoKytRvm\n9ntAVbieky8oJKMAZK9xbn9wcmwbJbGhkEcGMdka1Y/mVUH1DGvWCv3LNkPvD95/dvdLfY9aWTXm\n60ajAXd5OUgUg4/TWaaSMj4HhQrSgIqt946ddsesUxrAIIsdQT5TJV1bR4vE4yngqaibJZbIzCCg\nx8EVKjSyz1L3KxqVeTSVUhiPYq5O5bfmfeksCStoo1ysOIQEVA8tTEhR6V1UIBHUAfeV97rX2G9s\nLnm1USfmGdxa2EL/AAvdSKzK8gBDGGFEeaQArrCCIOjSKw2VviH/ACPOtqPa+E3x8x6zM9h79y1F\nTZGTqzD53Ibc2RstatFqf4PlMjt6poM7uDOUpKioalq6PHxymSJY6lQtQ+U+27Zt2zWwtNrhSGED\n8Iy3zY8WPzYk9fPhz37ic7+5u9ycw89bldbjubsSDK5KRAmuiCIUjgjB4RxKiD0qSejyZz+UV/L9\nzGPmo6Toldr1bo60+b2pv7snEZiiaRGid4Jf73VFHOGidlMdTBPCQ3KE2IU3Nvb3kRgvI45YDxV1\nDKftBBHRFsm/b5yzuCbty5e3dhusRqk1tNJBKpBr2yRsrDPoeqkvln/Jc3/1ji8xvr447iy3bu18\ndE9ZU7BzdHRRdn4+jhWSSofFT4alocNvrRGLiGnpMdX2VUjgq5HLLD3Nvtfbyxtf8tLonAqYCaq3\n/NMnKt/RJ0ngNPA9L/u5/f8Ad4sr6DlD30kF1tMjBI91VAs0B4D6xI1CzRcKzogmTLSCapZDFfyE\nOrWodlfIzuyvoUhqd1b+wPVmHkaNkZaDrXCfxDMVFLrVXMGWyG7YBM1rNPREcFGHuR+VdubaeW7K\nwkBWVIAzAihDvV2BHqGYg9YQ/eJ52g9xPfDmbm2zlWfbp9zkjt5FYMslvbBbW3kRgSCrwwo60NKN\njrYL9n/UMde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3XvfuvdUl/zy+0P7s/HTr3\nq+lqPDX9pdjDIVkOv/gXtjr7GtkMlD4wQW0bkzuGk1chdFrXYERR7ubh9PscG3qaPcT1PzSMVP8A\nxpkPXRT+7d5N/fHuxuvOUyarbZdp0KafDcX0miM1+dvDdrTia8aAg6q3vHfrtb1hlqKeDT554Ydd\n9PllSPVptq062F7XF7f19q7Wwvr7V9FDLNppq0Iz0rWldINK0NK8aH06D2/c3cqcq+F/WfdNu23x\n9XhfVXMNv4mjTr8PxXTXo1pq0106lrTUK4f4hj/+V6j/APOmH/o/2r/cO+/8oV3/AM4ZP+geg9/r\nue1H/TT8vf8Acxs/+t3Xv4hj/wDleo//ADph/wCj/fv3Dvv/AChXf/OGT/oHr3+u57Uf9NPy9/3M\nbP8A63de/iGP/wCV6j/86Yf+j/fv3Dvv/KFd/wDOGT/oHr3+u57Uf9NPy9/3MbP/AK3dGo+CfWdP\n3n81PjZ1+VjyGIg7Cpd+7kjjZJqV8H1rS1O+K2irmXWqUuWjwRo25UsagKpDMp9y/wC02xXlnc3m\n538MkLiNYkDoyk6jqcgMBw0rn5nrmx/eLe7XLnMXL/LvI3Ke5WO42z3k99cta3EU6oYYxBbq5iZw\nC31Fw2kkEaFNDUEb4PuauuU/XvfuvdJ7d25sbsvam5945mTxYfae3s1ubKyllTx43A42pyldJrch\nE0UtKxuSALc+2Lm4jtLaS6lxFGjOfsUEn+Q6Ndi2e75h3yz2Dbxqv767ht4xk1kmkWNBQZNWYcM9\nfPm3hujKb33bunembk82a3fuPN7oy81y3lymfydVla+TU12Ourq3Nzzz7wuuriS7uZLqXMsrs7fa\nxJP8z19S2w7NZ8ubFZcvbcNO32FpDbxD0jgjWJB+SqOk6DGCDLKkMQIMk0lxHFH/AG5XI50Rryf8\nB71bQSXVxHawissjqq/axAH8z1fe93suX9mu9+3FtG32VrLcSt6Rwo0jn8lUnrZ5/k7dnfG/pL4f\nQVu/u+ejdmb97U7F3v2LuXbu4+0th4HceIj+8h2lhaDIYfI52myNDHLitrJXU8LxgiOu1AXc+8vR\nu/L20xptcl7aRtbxrHpaaNWUKoABUsCDSmKdfNhc+2/vV7j39zz5Zcrcx30O83c139RBtt7NDK1x\nK8jvHMkLI662buDEVBz1Zr/s9fw2/wC8m+lv/Q+wP/1X7Y/rfyv/AMp9r/zkX/P0v/4Gv3//AOmO\n5h/7Ipv+gevf7PX8Nv8AvJvpb/0PsD/9V+/f1v5X/wCU+1/5yL/n69/wNfv/AP8ATHcw/wDZFN/0\nD1Rr/Oq7y6l7oxvxtk6i7V2L2LQ7fru3k3LTbP3bhs3PiqvIU/WLYKfJ42hrZa2niq4aStWnneIR\nMY5UDagR7iT3V3fbd1jsDtlxDOiGbUEdWoSItNQDUVo1DSnEddIf7vL23559vbzm5ee9k3Labm6j\n2s27XVtLCJFRtw8ZY5HQIxUtCXQNqAZGK0IPVDXuHuumXR2P5a+1cFu35+fF2h3TDTVGCo937rzi\nQ1ctPHEdz7X623ju/ZUoScnyTQbo27TPEApJlCqCGZbzR7OTwJd38DU+oaKJl/0qsyt/N0/l1y9/\nvNtr3a45a5S3W3DnZoL6+iloKjxpYYJICTxBEVtdEeVAxPw9bwvud+uQHXvfuvde9+6900Yfb+C2\n8lfHgcNisLHlcrW5zJx4mgpcfHkM1kmWTI5asjpIokqMlkJEDzzuDJM/qck8+/de6d/fuvde9+69\n1737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvdamf87jtD+93yswfXlLUa6DqTrnCY+s\npderwbn3nJLu3JTWBtH9ztusww02v+3e5BAGOHuxuH1PMSWSnstoFBH9N+8/tUp+zruJ/d08m/uL\n2Suea5kpc77u0zq1Pit7QC2jHz03CXeeHdSlQSabvcX9Z+9HX/l2bP8AjXvH5KZfIfK/Mdf0PUWw\nusc7l5MX2FmKfHY3ce7spXYvF4bF0dE1VT1+WrKbHVtVXLHTCR1akW68i+QPttNtvL/K77puc0UH\n1dw2kuwXUsQ0gKDliG18K8euOH359v5594Pfe25B5A2y/wB2bl7Z4fGS2ieUQz3zmZmlZRoiV4fp\nQDIVB0k1pwuEyWd/kotVyYzYXx6p+5cxG8URxHVHTfZWfq2nmJEUMM2VjwOOqXk40mOd1JNgbggC\niT3F5c1eHZvPdS/wwwyMf5qoP5HrH6z+5V76CAXnM9ttPL9gQT4u5blZwKAOJIjlmkUDz1ICOJFK\nEsbdfdB7oJbqf+SZ2Vn4JBrpKjtGlg6ViqIiryrKZMxPuKBEkgTUpV5FdiFBOpSWf6571cf8k3ZL\n9x5GXTBX/eg3l0Yj7svtlswpzx7rcn2sowy7cJd2KnApSJoGJBNCCFIFSQKGkOb4Nd17rDLt/wDl\nkfCLqhZlZVbsbsDOb4qaT9uX9wvsDeUdPJJqjGj9p1DOupSoe1TuXuRc/wBhY2NtX/fspkI/5xtT\n+X+XpRHyb9yDZCDunN/Nu+FT/wAQNvWzVsjFL2AsBQ57gaBqEErUQOrP5bPzD6w3cN9dc74+Hnx5\n3W1BXYhs70/1RX7pyFNiclUwGtoaWXsba0rCKengW5uknpCa7Ev7o23+5Nx/a7jYwD/hcWvz/wCG\nJ6f6vPpRHzv9xvZx/iHJXNm7sBg324C2qdPE/RXZA7vQEUzT8PRkG+C/zK3GA++P5mHbA8oUT0mw\nuv6TZBjADQuKfJ4be9IbyUx4YUsZSU67MwBLf9UeaJ83e/XP2RxiP+ayDy+QznpSPvJ/d/2k6eXP\nZ/Y+34Wvb5ryvmNUcto3BuI8Rqr24Bp1i/4aups6dfYnzU+Z+85WbzSyf6Vo6UvUxJ4KSf8A3OYv\ndbBqekJjuSWIPBVfT71/reLNm93XdZT/AM1qZ8viD8Bjq/8Awasu2jTyp7ee323oBQD92lqKTqYf\noyW3xN3cAK8QTnokf8wL+Xt8YfjD8ZN2dpUGa7a3X2C2S2ptLY1TvzfkGWplzeZzMMmSnlpaDB4h\nJ5BtyjyFT4/82ZYVsqrf2E+dOStg2DYJNwR7mS91IkZkkqNTNnAVfwhj6VHWRX3XPvT+8nvJ7xWP\nJd1b7HY8rCG5ubxbKyMTeDFERGoZ5pSo8doI9XxaWOSada7vuEuurPUOvpquupXx2Oh+7ymVlpcR\ni6BVLT5Cvy1XBjoaOlUFdVU/3JZATa6+xx7dbd+8ebbUMKxQEzH5eGKqf+cmjrFX76nOh5K+7pv0\nkL6L7dEj26L+l9Y4SdfztBcH8vzG7N15/LM+HG1dg7J2znuh9h7izu39p7ew2c3BWwZKeszuZxuJ\npKTK5mqmavUyVGUr4pJ3NlGpzYAWAyEueUeWry4e6ubOJ7iRizMakkk1JOeuLOyfeU99eW9nttg2\nLmbcbXZrOBIYYYzGqRxxqFRVGjgAOJqSckkknpY/8N1/CP8A7xu66/8AOPIf/XH2x/UjlP8A5QYP\n2H/P0af8Fd94v/prt2/3tP8ArX17/huv4R/943ddf+ceQ/8Arj79/UjlP/lBg/Yf8/Xv+Cu+8X/0\n127f72n/AFr6Il/Ma/ly9I0Pxf3dvj4/dPYLaO/+taqi3pUHakORWtzuzqATU278XNTSVs9NPFQY\nqrOVv4zMP4cUjYeRlcIc8cj7SnL8t3stqkV7AQ50VqyDDilaYB18K9tBxzkr90372XuNc+8tjy57\npb/c3/K+7o9ov1JTRDdPRrWQMEVlLyL9NTVoPj6nHapXVh9489dp+ucQpvuKWSrpxVU8FVT1EkGt\n4jKkMqu8QliZJI/KgKkqQbMfauyumtJtdC0TKVda01Iwoy1zTGVNDpYBgKgdB7mfl+PmPa/pAwi3\nCGWOe2mK6zBcwtrhlC1UsoYaZUDL40LywswSRutlP44fy9vjn331Xge1fi58rPkp1/S5CKOHM4KL\neuErq/Y+5o4ZZsjtTLUeAweyqymq8TJXkRszlaqncVETvFUI5m3ZOSti3iwXceXdyv4YzgrrWqN5\nqwUIQRX1NRkEgg9co/dX71Hu77Z843HJfvbyPyfuV5H3Ry/SzCO7gJAS4hknluVdJNGexSjr4boj\nxMgHGX4MfzDuu9VT0/8AzGty7plj0y0eP7iwuXyVKjxzyPFTVFVuDJdtQzwLGw1P9kFf9Bi0qvs2\nPKPO1j3bZvkkh8hOrEfYSxm/478qdR4n3kvuq810i599prOyQ4d9qlijYggAsqwR7YQa8B41R8Wv\nUT01Vfav84zohGn3t0v1P8mdtUJ1V+Z6+8UW5qmONlGnG4vAVu2cxI9RGrFfHtep0ki4U2QttuPu\nfs+bu1tr+AcWj+I/YFKNn/mkf8nS2Dkn7gvuWwj5d5h3zk/d5Pgivqm3Un/fkk6XEQCmgOrcY6+R\nOWC46i/nCdF7l3Auxe+9mb3+Mu/I6mOhrKPfFHVZPbFFWyuYkpq/NxYvE5zCtrA8kmRxFHSwg3eY\nKGYK9s9zdouJvo95ilsLytCJASgPoWoGX7WRQPM9Bznv7hXuTtG1nmX2x3DbuceWShdHs2WO4dAK\nlkhMksMuPhWC6lkciixkkA2y4zKYzN42gzOGyNDl8RlaOmyOLyuMq6evxuSx9ZClRSV1BXUkktLW\nUdVBIrxyxsyOjAqSDf3I8ckcsayxMGiYAggggg5BBGCD5EdYO3lnebddy7fuEUkF/BI0ckciskkb\noSrI6MAyOrAhlYAggggHqd7v0m697917r3v3Xuve/de697917r3v3Xuve/de6RG/uyuveq8DNujs\nre+1dh7eg1q2X3ZncdgqKSVI2l+1pZcjUQfeVsiKfHBDrmkayorEge0l5f2W3Qm4v5o4YR5uwUfY\nKkVPyGT5dCPljlDmrnXc12blDbr3c91an6VtDJM4BNNTCNW0ICe52oijLEDPROG+eVHv+RqP4t9B\n9z/JJ3aWKl3fjsF/ou6eknhfxyQy9n9kR4ilbTID6qWhq0ZVLKWBTUF/64LenTy9Z3V+fJwvhQ/8\n5ZaD9it1Po+7NPyuon96OZ+X+UVABa1km/eO6BSKgjbrAytw8pJoiCQCAQ1NQT5Ddr5jvHu/tDtn\nPQUlJkd8bwy2X+xoMg2WocbQCb7PEYqiyrQUpydJisRSwU8dR4ohOkQcIgbSMZ973GXd92uNymAD\nzSlqA1AHBQDioCgAGgrStB13i9q+SLD239udm5H2xnktNtsIotbp4TyPTXLI8dW8NpJWeRo9TaCx\nXU1KkG/ZX0P+tjP+R38YOsd3dMdnd7dk9abM3pm9z9q1W29lV289q4XcsmJ23s3CY9Za/b75qjrV\nxrZLM5+rpp5IBHJJ9iFYlQB7y72jl6wg2Swsr6CKWW2tx8aK2l3AMhXUDQlq1pnr5tfc73n5w3b3\nV5s5m5U3fcbDbd63aQt9LcywCe2t3eOyWUxOniLHBp0hqqCSQB1sO47G47EUcOPxNBRYugpl0U9D\njqWCio4E/wBRDTU0cUMS/wCCqB7EKRpEoSNQqDgAKD9g6hC6u7u/na6vpZJrpzVndi7MfUsxJP5n\nqb7v0n697917r3v3Xuve/de697917rXZ/nz9oaaToTpekqL+ap3L2hn6TVbT9tFHtTaNRoB9Wv7v\nNrc2tp4vc2hH3h3Dts9qU8S0rD7OxD/OTrq3/dmcm1n5n9wp0+FLfboWp/ETc3S1+Wm0NPnngOtc\nj3B3XWbo338v7rE9w/Nr42bMlggq8Ti+wF7Oz6Ovk8GO6px1VvKmWtWxUY7MZGhjoypBEskgU2F/\nc3+zlh3Xu6sOCpEp+063H5Uj/b1yn/vNecQtnyv7fwtUvLcbhMteGhRbWzU89XiXYqeGnFamm8/7\nnDrkt1737r3XvfuvdcJYo5o5IZo0lhlR4pYpUWSOWORSrxyIwKujqSCCCCD70QCKHIPVkd43EkZK\nyKQQQaEEZBBHAjyPWoT/ADPfgHW/GPfdR2f1nhqqXoXfWRlnpo6WJ5oettyVksk0+0qxo47U+AqC\nxfDyyG/iDUzFngEkuNfP3JMuxXLbntyE7LI3Af6CxPwn+gT8B8vhOaFu6n3O/vV2Pu7scPIXOtws\nfujZQ0DOQo3KGNf7eMk5ukUVuYhQtQzxgp4iw1N+416zr6Mj8X/lP2r8TOx6XsLrLJoUmRaHdG0s\no1RLtjeWG16mxubooJoW8sDHyUtVEyVFLLyjaGkRz3l/mHceW74Xtg2Dh0NdDr6MP8BGQeGKgxJ7\ny+y3JPvjyk/KvOMJ1KddvcxhRcWstKeJC5BFCO2SNgUkXDDUEZd0P4wfJnrf5W9V4fs/ruuQCdIq\nPdO16ipilzeydypCklft7NRosTa4WbVT1ARIqymKTRjS1hlPy/v9jzFty7hZHjh0r3Rv5q3+Q8GF\nCOvnv95PZ7m32S51uOTea4j2kvbXCqRDd25JCTxE1weDpUtFIGjbIqTE+zvqKeiRfPLrz4o7r6O3\nTnvlNBt7E4TCYevi2/vkx0FP2Dg8w9LU1OPouvq99GSyGcq6qPXFikaWmrnS08LxhiAnzhZcuXO0\nSTcwhFiRTpkwJFahIEZ4lieCZDeYI6yL+7NzV73bJ7j2W2eyzXU+43Fwhns6u1jNEGVXe+QVjSFV\nNGuSFkhBrHIrkVId/It3PvzK9M9w7cy9Vkq/rfae+MDH17UZEShKPK5nF5HIb4w2ORjPDS0NNKMd\nVmGKd1E9dJIURpWMgP8AaK4vJNruoJCxsY5l8MnyLAmRRxoB2mgPFiaCucmf7ybZuWbH3A2DdrFI\nYubb7bZjfLHSrxxSIlnLIe0s7Dx4tbICUhRAzBAFvO9y51zb697917r3v3Xuve/de697917r3v3X\nuiJ9yd99u7x7Yyvxi+KGMwB7D25i8Plu4O5d5wtX7E6PxO4oTU4ahiwkB827+yM1jb1NDjmK0saG\nN59cJnNOEN03nc7rcm2DlxU+tRVM075jgDZUafxysMqvAYJqK6cleQPbHkTYOSIPeP3umuv6q3c0\nsW17VaHRebxLAdMrmY4tbCKT9OacVkY6lj0v4Qln9efA3qDBZyl7A7hq8/8AJvt9FDz9id4VQ3XD\nQ1DSyVLxbP2PVmfZ2zcTTVUpajp6aleSjCoEmJUN7vZcn7ZDML3dC+4bn/v2c66Hj2RnsQA/CAKr\n5HpLzX95nnzcttflfkJLXk7kMmi2Ozr9MXWgUG6vFpdXcrKKSvJIFlqxaOhp0vfmZ2XH0p8T+9t+\n0siY6pwPW2axe3pYtMMdHuPc0Mez9otGqaQqQbizdJZF0kgaQQSCFnNN+Nq5cvLxe1kgYL8mbsT/\nAI0w6DP3fuUH9w/e/lrliYGWG53eKScHJeC3JurqpNcmCGWpNacTXrRC94gdfS51jmRpIZY0fxu8\nbosmnV42ZSqvpuurSTe1xf2otJo7e7inmTxIkkVmStNQUgla0NNQFK0NK1oeHRNzHt15vHL1/tG3\nXP0e4XVnPDFcaPE8CSWJkSbw9cfieEzB9HiJq06da11C6b4l/wA3LE/FL499c9C4j40/3og2JQ5W\nOr3O3cAwUm4ctnM/ldx5bKyYkdWZk0P3GQy8gSI1dQY4lVNZCj3NJ95qmv7t/wCzj/rh1y3H91/Q\nU/rx/wB0b/vq9GN/4f6/8BN/9jv/APoa96/15f8ApG/9nH/XDrf/ACa//wDD4/7o3/fV69/w/wBf\n+Am/+x3/AP0Ne/f68v8A0jf+zj/rh17/AJNf/wDh8f8AdG/76vVt/wAMPmJsb5k9X/3323T0eB3X\nhqg0W/8AYdHlMpuMbHyFXX5dcHjqndFbtbalDmazJ4PHR1si0sBWlafwuSVDvLOxblLvG0QbpLF4\nDTpqCatdBU6Tq0rXUtG+EUrTNKnnL7u8h2Xth7k7tyBYbh+9YNquBAbnwfp/EkEaGZfB8afR4UrP\nF/atq8PX26tCm/8AZt1HHXvfuvde9+691phfzYe0P9Jnzc7Qjp6j7nFdc02A6vxJ1avF/dnHiq3B\nT2BKp4N55fJrYf65sSR7xZ9xtw+v5suAprHAFiH+0FWH+9s/X0Gfcg5N/qf93TZnlTRe7s824y44\n/UPpgb51tIrc1/LgB1W/7A3WWvV6n8hnrFc53b333LVQ00kHX/X+1+s8JUooZZMhv7LTbpzMiMR/\nxcMVTbTSmlbgpHVaASC3vKb242/938o25YUluGeZv9sdKn841Q9fPx9+TnL+uH3jN3iifXZbPDb7\ndEa8PBTxJ1+Wm7nuF/KuCSBtE+xz1iL1737r3Xvfuvde9+690nd27S2zvzbWa2dvLB43cu19xUE2\nMzeDy9NHV4/I0NQAJIaiCQEXVgGR1s8ciq6FWUENyxRTxNDOqvC4IZWAIIPEEHBB9D0s27cdw2i/\nh3Tap5rbcreRZIpYnaOSN1NVdHUhlZSKhlIIPA9ajn8xX+W9uH4o5eXsfrhcnunoTO1xRKySNqnL\n9b5KqmtT4Hc0sSkVGIqmcJQZIhFkf9icJL4nqMc+fORDsLHddqDNtDN3LxMJJwK+cZOFJyDRWJJB\nPbz7oH3vE934k9vvcF4YfciCGsMw0pHuUca9zKtaLdooLzRIAkiBpolRVeOOrnD4bMbhyNLh8Bic\nlnMtWv4qLF4ehqslkauSxbx0tFRRTVNQ+kE2RSbD3GkUUs7iKFWeQ8AoJJ+wDJ6zuv8AcLDarR7/\nAHOeG2sYxV5JXWONR6s7kKo+ZI6P58L+2O0Phf3Fiewc3uDAbG2VXT0uH7Q2JuzOqc3uHbckqPJS\nz9c4Fc3vzGbioElaoxddU4uCCCoBWWX7eSeOQccn7pecqbqt3dusVg/bNGzd5XyPhLqkDrxUsgHF\nSwDE9YnfeW5B5a+8P7eS8ucuW8+4c32xM+23cEJ+mSUYdTuE3hWjW8yjw50iuJJAdEqwyvEimyvu\nz+eTV5Oofa3xc6cra7J1864/Gbr7LR6qrqKqokaljTDdebVrZ5qupmkdXpXnyhJYhZKNrlPY23b3\nbaRvp+XrUmRjQPLkknHbGhyfSr/avl1ip7d/3b0FnEN6959/jjs4l1yW23kKqqo1Ey31ygCqACJA\nltQCpScYboIOuf5fvzg+d278V2n8x98br2Nst3NTT0+7jHDvU4yqeOaox2xusoYKfC9e0tZ4tLvW\nU1CUfTN9nVC9yyx5M5t5wuV3DmiaSG04jX8dDxEcWFjB/pBfXS3Q85s+9H93L7tOwz8l+wO22W5c\nwgaWa1qbTxFBCyXm4EtNfMlagRSTVFY/Hh8tjXp3p7r7obrzb3V3V+Bi27s/bVPJFRUayy1NVVVN\nTK9TX5TKV9Qz1ORyuSq5GlnmkJLM1lCoqqs47Ztlls9km37egS1jGBxJJySSckk5J/ydcmufufea\nfc3mu65z5yumu9+vGBdqBVVVAVI40WixxxqAqIowBU1YliJ3tf0Duve/de697917r3v3Xuve/de6\n97917qszeO4s78J/kR233NuzbmZ3L8Y/kXWbRzm8t77Yx1fncz0Vv/au3aTaslfu/C0Uc1bUdcbk\nxtMkxyFOkr0VSniaMAxCYBXU83Km93O6XMbybBfFGeRAWa3kRQlXUZ8JgK6hXScU4VzC2Datt+8T\n7U7F7fbHd29n7x8px3UNrZ3EiQxbzZXM7XIS1mchFv7eRiggcqJozrDVDmOwvZm99ndi7cx279h7\nowW8dr5eETY3PbcylHl8XVoQCyx1lFLND5oidMkZIkja6sAwI9jW1u7W+gW5s5Elt2GGUhgfzH+o\ndYr8wcub/wAqbtLsXM1nc2G8wNSSGeNopFPzVwDQ8VYdrDKkg16pz/nl9of3Z+OnXvV9LUeGv7S7\nGGQrIdf/AAL2x19jWyGSh8YILaNyZ3DSauQui1rsCIw93Nw+n2ODb1NHuJ6n5pGKn/jTIes+v7t3\nk398e7G685TJqttl2nQpp8NxfSaIzX528N2tOJrxoCDqre8d+u1vXvfuvde9+691737r3XCWRYY5\nJXNkiR5HP9FRSzH/AGAHt62gkuriO1hFZZHVVHzYgD+Z6LN73ey5f2a737cW0bfZWstxK3pHCjSO\nfyVSetur+SX1Y2wPg9gN21tN4Mx3TvrefZVYZFtUigSuj2Vg42Yi/wBrNjtoishW5XTWFuC7e807\na2jsrWKyh/sYYlRfsRQo/kOvlr5k3695p5i3DmjczXctyvp7qU+slxK0r8c/E56t29vdEvXvfuvd\nMO6dxY3Z+2Nx7tzMhhw+18Dl9xZWVQC0WNwmPqMnXSAEgEpS0zH6/j2zcTx2tu9zLiKNGY/YoJP8\nh0Z7LtN3v28Wmx7eNV/e3MUEY9ZJnWNB+bMOvnz723Zk9+bz3dvnNv5MzvPc+f3Zl5NRfXk9xZWr\nzFe+trM+qrrHNzyfeF13cyXl1Ldy/wBrLIzt9rEsf5nr6luXdjs+WeX7DlvbhTb9vs4baIcKRwRr\nEgp5dqDpMjTca5I4UuNcsraIol/tSStY6Y0HLG3AHulvBJczpbQissjhVHqWNAP2npRu+6Wex7Td\nb1uLaNvs7eSeVv4Y4kaRz5cFUnrbh/kk9YNsj4UY7fFbRx0uX7v7D3t2PUAReKSPGU9fHsrC0yr9\nUoTBtSSrp15GisLD9XvNS2to7K1isof7KGJEX7EUKP5Dr5aOZd+vOauZNw5o3HO4blfT3Uua/qXE\nryvnz7nOfPq3v290S9YKqqpaKCSqramCkpoQGlqaqaOngiBYIDJNKyRoCzAC5HJ96ZlQamICjzPT\nsMM1xKIbdGkmbgqgsx88AVJx0Au8Plf8Y9gCUbw+QHT+DnhDs+PqewtsS5chIhO3jw1JkqjKzHxE\nGyQsSWUDllBJrrmPYLOv1V7aow8jImr/AHkEn+XUmbD7I+8XNBX9w8r79cxNSjrY3AiyaZlaNYhm\nvFxwJ4A0KZvX+bx8GNoGWKi7Kzu+auFgklJsrYu6akXKFwYsluDHbdwlStrC8VU4BNr3DWDd17l8\no22EneZh5JG5/mwVT+R6nHl77iX3kt+CvcbRbbbAwqGu7y2XzpmOB55l+xowaCvmKk237/Po6+pF\nkj6v6B3luBm1rFWb93VhNnrDz+1LJjtvUu+DU3H6oxVRW/D+wxee8NkuNvspXPrI6p/JRJX9o+3q\nf+Wf7svmmch+cuaNvtVFKrZW011X1Aknaz0/JvDb/S9Fc3J/MX/mGfLPCZvZ3VHQeHq9nbkpKzB5\nOm2b0tmuzqSqxeRRqepotx5Hece7NnTU0kLFJGmoaeCxOpf6B6fnjnXmSF7XbrNTayAqQkDSgg4I\nYvrSn2qB1NG0fdP+6t7Hbjbb/wA78z3Cb/aOs0bXe7RbeyyRnUrwJaG2ugwNCAkzvXgeq8N64ftT\nb9ZuDY3b3be2+qpMfVzY7cPVuJrpjTx1VGwjrqCbYHSuFyWxcRmIGJjenyTYyTWuhyum4BN3FuML\nvabncx2xU0aJTio4jw4FMasPRtB8j1lXy9f8lbpb2vMnImxXe9rLGJINxlQairZRxe7tLHeSxN8Q\nktxcLQ6lBrkJBW9P4Is9Dh96dhViostLNuiox+wdvrPpAely+2NtV2689lqMMxs9LuPFSnSDwCV9\nluvbIfgWWdvLWRGtfQopdiPslQ9Dk2/Pu59tzcbftUBNGFur3s9K4aK4uEtoYn4YksLlRU8cHrZd\n/ksV3XO8OmN+5ik6x642x2Psnsap25Vbi23tmkp8/U7Qz209t7n29TVW4a+bKbpq4aSTL1tGPuay\nZpUpg7s8jyH3kxyLY7UvL9ruVpbQw3MsXcyr3EglT3MWelRwLHrg/wDe75t9wpPeXf8AkfmPftz3\nHYdvvh4EM01IVR445oz9PCsVsHCyAFkhU1HyHV1vsbdYpde9+691737r3Xvfuvde9+691737r3Xv\nfuvde9+691jmhhqIZaeoijngnjeGeCZFlhmhlUpJFLG4ZJI5EYhlIIINj70QGBVhUHq8ckkUiyxM\nVlUggg0IIyCCMgg5BHDokO6PgT1Mu4Mhvjo/cW/vi7v7JSiqyGa6Mz/93ttZypTyGJdz9bV0GR2F\nmaMSSl3jShpnkaxMl/YTuOTtt8ZrvaXm2+8Y1LW7aVY/04jWNh8tIr69ZGbN95zng7XFy57j2m18\n58sQrpSLeIPHuIVNK/T36GO9iegoGM0gUYCda3f81PdHbf8AswlB1H2125jO5Mn1BtbHUlLufHbF\nx3Xk6vvalot1zU+a2/h8lkcR/Gf4bU0JknphBFLD4rRIQfcF+4lxuX76XbdyuVupLaMAOIxH/aAP\nRlUldVCuRQEUwOut33Kdm5F/1rJeeuRtim5fs9+vZGa3kvJL5SLRntg0U8sccvheIs2lJNbK2vva\nvVZHsA9ZidDt8XenNg98dv1+0e0+wd99ZbAwm0KjK1u6Nhdebu7HyL7kqsnjqHBYKfGbRwG4Z8bF\nkoKqef7qpiSnVaR01h3QGa+RNr5dtuXDu3MVukv1F0UjJheaiqoHBEcqC2sEkAYGeuW/3uef/ene\nfepPbv2W3efb/wBz7FHcXiR7lbbaHlnlZstc3FukrJA1uyIrNIA7kLSp6uQ2l/Jb+N2+KeOp238t\ne4quOQkBK3r0YSpRlYoVno87jsbWU7hh+mRFPuRbbZeSbsaoLG1I+cOk/sZQR+fWEe+e6/3qeXJT\nDu/NO/ow803RZlPnUPDPIrD5qSOhKX/hP71ewDL8m+2SCLgjbu2bEf1/z3tf/VPlb/o32n/ONf8A\nN0ED95L7wANDzjzFX/ntm/6C64yf8J+OrZUeOT5MdsPHIrI6NtzbJVkYWZWBmsQwNj7dg5Z5ctpk\nuLextUnjYMrCNQVYGoINMEHIPRfuvv8A+92+bZcbNvHNe+3O03cLwzRSXkzRyxSKUkjdS1GR1JVl\nOGUkHB6vJ6l64wXTHVfXXVG3GllwHW+yttbJxdROkaVVbSbaxFJikyFasQEZr8iaUzzsP1TSMfz7\nOyfM9REqlsDpUVu4aShVi8NTIV/1CR2P0/LSg/7x7ZedU4g9GVttU9yaKyAfMn/N0HmZ7fx+KD6c\nNWVJX6BqmGC4/NyEmseP8faKXc0j/CT+fQq2/kO6vSNVxGgP9Et/lHRV+++5qPsrrLfvVVft7MYf\nC7/25ldpZvL4LdNHS5xMBnKaTH5iDHvXbVylBTVNfjZ5IC0sNQipI3oY2sHd53Rb6wm250ZYpkKM\nVcBtLYalUIBIqMg8eHU1+2Pt9ccoc47Zzra3dvcbjtd3HcwxTWzNCZ4WDxFwlzG7KkgV6KyElR3D\nqkeo+Fnx/wAM+jF7U7H3TJA9QzR57fEdcZUlRo6dJ02ntDajhad2DAoULsACbXBiduVdliNI455C\nK/FJX9uhE4fl10Vi+8L7o7gNV5fbTZIwUVhsylCMsVNzdXI7hg1qAOGc9M1f8Zdo41I4KP4qJlJa\nkfZUstbD3rkHrJ6eMPVqtGu/RjqyeWCYGaPwOiqQVRL3L1rsxsrmO62/bibyJwyNpnchkIYMF1lS\nQaHKkfLpBzB7npzRsV7sXOPOsacuX9tLBcxGXZ7dHguVaJojKLVJkV1LICsquasNR6N9tur/AJn2\nH2dt3r3qfY+8dgbH2rh6LA7Z23j+vtj7WpcVisdAfs6aKv3fio80DHTsFZpapnkdfWWlLEiSW+9y\nLs/opMin/hcafzZQf5/z6gux5U+43y+A25XO2XMq+Zvr25+Xw28zRnIrXQTkmumlGuu+Mn83TsVv\nHnuy977VppwY5Er++KXD0LRMY471VB17nskkqaFD6WhYixNtZsUT7B7lX2Jp5Y1PrcBR+YjY/wCD\noUWvvF9xPlNde27Pt19MuQU2ZpXrk9r30MZBrioYDIzpGELmf5PvySzeNym7O7PkNsKhxuGx1bns\nrXSZXfvYNdj8dQUX3+QqJ/43jNuwGopaaObUEqHQ6BaQhrqkl9st9lja53a9hCIpZjWSQgAVJOoL\nkCvn+fQjsPv5+0e33sOye3fKu5yXdxMkMSCOysUeR30Iq+DJOdLMUpVAc5UEULh8W/5TPxq+RXXe\nF7Owfyl3bvrAZJI4spjtrbN25svPbYy4i8tftnctDlM7v6TEZ2gE0epXVo5Y7TwmWCaKQ35e9uNh\n3yyXcIdwkmhbiERUZG81YFpNLDHyIyKgg9Jvef78Xu97T813HJ25cl2O27pCSY5Lm6nu4biKtEuL\nd44bISwvRqEEFWrHIEljdOrDtk/ycvg9tLwtl9n707Emg8DLNvbf2bi1yw8+Wam2SdmUE/lexeN4\nTC1raNJKkbWnthylbU8WKWcj/fkjf4I9A/lT5dYqcxff7+8dvmoWN/t21RtXFpZQmgPkGu/q3FBg\nMGDDjqrQg4exPiP8X+szTybI6B6nwdZSkGDLJsjA1+ejKgqp/vBlKOtzbEAn61B+p/r7E9ny1y/Y\nUNpZWyMOB8NS3+9EFv59QJzL76e8vOGpeY+aN8ubd/iiN5MkJ/5sRukP7E6ME701FTPJI8FJSUkD\nO7u0cFNTU0EZZndmKxQwQxLck2VVH9PZ0SqLU0CgfkB1FqrLcShVDPO7UAFSzMTwHEkkn7SetCT5\nTdj0Hb3yP7w7KxE5qsHvDs7d+V29Usnjao222ZqoNuzPGQpR5cJBTlgeQSb3+vvDrmG+Tc99u7+I\n1hluHKn1XUdP/GadfTh7LcpXXIntLy5yhfro3Gw2a1inWtdNx4StOAfMCYuAfToBPZN1JvWzb/IS\nhq5+qvkdmXpZYaCftjbOBgmkCqJMjtrYOKp8pAE1tIrU61kDHUBcSj83Ay55MtntOVLCF/iNuG/5\nyEuP5N183f3pt8t+YfvD83bjakGFd3kgqOBNoqWrEZNQWhJBBoeIoDTq/D2JuoC697917r3v3Xuv\ne/de697917r3v3Xuve/de697917r3v3Xuve/de60HPlJ2h/po+RfdXaEdR91Qbv7G3PkMHNr8n+/\nYgyU2P2rD5LkSfbbbo6WPULBtFwALAYccw7h+9d8u9wBqks7lf8ASVon7FAHX06ezHJv+t97T8vc\nmumi5sNpt0mFKf4wYw9yaeWq4aRqcRXJJz0Avsn6k3rZi/kD9Yfwzp7vbu2rp9FV2V2Zj9mYmWVL\nyS7c61wxqI6ukcghKWszG9KmCQKQXkoPULIh95ictbf+6uXrKwIo6QKWH9Nu9/8AjTHr5m/fznL/\nAFwPejmbm1H8S2ut2nWFq1rbwN9PbH/snij+Q4DHV/fs76iLr3v3Xuve/de64sqsLMLj/Y/8R79S\nvWwxXI6hyYygm/ztLFJ/g4LD/bEkW90MaHiK9KEvLmP4HI+zHUM7b28xu+DxEjXJ1S46klfng+uS\nFm+n+PuvgQHii/sHSgbvuoFFuZwPlIwH7AeqFv51nem4+qo+kOseqN0ZvrzMZ2Pd+8d3VexcvXbQ\nydTgoxQ4Db2OrKzb9RQVVZiclV1GVeWCRvC0lKjFWYArDvutu8+3C02/bpHglfW7mNihK4VQSpBI\nJL1BxUDrpp/d4e2u087PzHzjzvZW+62FsbW1tVvIkuo1mOueeRVnV1SWNVtgrqNYWRgCAc692W7l\n7fz6NHne1uyc0jwx07plt87nyKPBE2uKBlrMpMGhjflVPAPIHuFpN03OYUmuZ3FKZkc4/M9dTrH2\n/wCQ9sYNtuybRbsGLAxWdvGQxwT2RjJGCeJ6HH4IdbT92/Nz43bRr1XKUcXZCdl7leqLVU5x3VtD\nU73kXIySF3+xzlTj1pG1E+aSQLe/uYPZ2xLS327yVLBUiUnz1HW//HUPXNX+8x5rjttq5W9urMqs\nTzXF/LGoACiJFtrYgDFD412BjGk049b0fucOuS3XvfuvdEO/mZ9mHq34S955WnqRT5PdG3abrnFJ\nrKSVEnYGSpNsZWOBhyJYNtV9dUcWOmE25t7B/Pt/+7+U7uRTSSRBEPn4hCH/AIyWP5dZMfc95PHO\nn3iuW7KVNVnZXbX8hpUKLKNriIn5NcJCn2uPLrUN+PfyX7k+L+9E3v0/uypwNbN9vFm8LUqa/a+6\nqCnlMi4zcuCkdabI03qcJIDHVU3kZqeaJzq940bLv26cv3X1e2SFGNNSnKOB5OvAj54I8iD13c90\n/aDkD3l5ePLnPtilzbrqMMq9lxbOwp4lvMBqjbAJU6o5NIEsbqNPWwr0b/PH6X3JjaSg772NubrX\ncqJElXnNo0rbx2TVyAMJqtacTw7rwwdrFKYU2S0i4M5IGqa9o929qnjCbzDJBP5sg1xn50+Nfso3\n+m65X+5H93B7hbRdvde2O5We77QSSsN030t2o8l1UNtLTNZPEgqaUiFTQ3dZ/Ne+A1LjDlE74jrV\nPlWGho+vO1Gyc8sQc+IUNRsinlpvKUsslR4YSSPWAQfYlb3G5NWPxBeV+Qjmr+wxin50Hz6gmD7k\nX3nZ7z6JuWTGcVdr7bfDANM61vGDUrlU1Nx7cdVA/PD+bxL3ds7N9N/HfDbh2hsfccE+L3lvvca0\ndDujc+EmSSnrdv4XEUVTkEwOCyqG1RUSVBraqnbxGOnVpVkjPnD3LO7Wr7XsivFaOKPI1A7r5qoB\nOlT5knURii5rnj92j7iKe3W/23P/ALrXFrf8x2jCS0s4NT21vMCGSeWV1QzTRn4EVBFHINYeUhCt\nGfuI+ukXUWurYsdRz102kpAt0jdrCedgfBTCzo58zj1absqBmtZT7EHLGxTcxb1DtkQPhs1ZGH4Y\nwRrb9mF9WIHn1D/vx7s7X7Le2O5c8X7J9dFCY7OJj/b3sikW8QHEjUPElpUrCkj0ovW61/K3+PeU\n+OXwz6121uejlod9b5fI9sb7pqhWSqp8/vk01TQUVfHJeSLJ4naNHjKKrViStVTSDj6DL4IkaiKM\nARqAABwAAoAPs6+aW6urm/upb69dpbyeRpJHY1Z3clmZj5lmJJPmT1Yb730x1737r3Xvfuvde9+6\n91737r3Xvfuvde9+691737r3XvfuvdFi+aPaH+hv4p989hx1H2lfh+uc7j8HVa9H2+590xptLas1\n7gnx7kztKdIILfQEEg+yDmrcP3Xy7eXoNHWBgp9HfsT/AI0w6mP7vfJv9f8A3t5Z5UdPEtrjdoXm\nWldVvbE3NyPzt4ZM5A4kECnWh/7w/wCvpe6gZSp+0x1ZUA2aOnk0H6WkYaIv+sjD2e8s7d+9uYLP\nbyKpJOuof0AdT/8AGAeoo99edD7e+zvMnOEb+Hd2e0z+C1aUuZV8G2z/AM9EkYxn0z1vL/y6Op/9\nC3wl+OeyJqb7TJydd43eWdhdNNTDnuxpqnf+WpKxiNUlVjKvcjUhuWCrAEU6FX3mIxqx6+ZQYHR1\nfdet9e9+691737r3Xvfuvde9+691737r3WmX/Np7Q/0l/Nzsimp6j7nFdaY7bfV+JfVq8f8AAMec\nruCn0gkR/bbzz+TjsCb6dRsSQMW/cjcPr+bJ1U1jgVYh/tRVh+Ts/X0Dfcb5N/qh93TaJZU0Xu8S\nz7jKPXx38OBvnqtILdvzpkAE1rewJ1l31eX/ACHesVz/AHx3r3DVQU0tP1x1ztvrrD1CAMr5TsTL\nzbkyNQj83yGMoNpNSykWKR1Wjm9/eUvttt/0HKMDMKSXDvKfzOlf2oqnr5/fv085f1u+8XutvE+u\ny2a3t9vjNeBiTxpx8itzPOp/0v5DaS9jrrEDr3v3Xuql/wCcX0523298ZcY/WtGc5ieut4Rb/wB6\n7WxtFnMnuvOUVLjKzb+Ol25icHi8nLlVw394KmqrIn8Sx0yGe58JHuP/AHF2Ld9/2iO22kK5jl8R\nkLaWaikDST2mmokgkVxSpx1mX9yX3c9tvZ73Kvd79xHnt0vdu+kguViMsUGuaOWUzqlZVV/CjVXj\njkK9wYKhLDUK4sGBV1JcLJG6yRv45HicxyIWjkVZY2W6ki4I940XVpdWM7W15G8VwvFXBVh+Rof8\n/Xd7YOYth5q2qLfeWb213DZpxWOe3lSWJh8nQstRwIrVTggHHXvafo4697917r3v3XusFVVU9FA1\nTVzJBCoNmkNjK40jxQILvPL6x6VBIB1GygkG+zbFum/3QtNriaR8VPBEHq7cFH8zwAJx1G/ub7tc\nge0GwNzFz5uENna0Phx1DXFwwFfDt4QdcrnHAaUrqkZFqwuU/lZfy3tx987z2x8lO9ds1WD6M2dk\nabO9dbP3BQvBWdt7go5IqrGZqux9VH+91/j51SZ3cNT5KRFp4xNB907ZP8pcp2fKlgYYyJNxlA8W\nT1I/Cvoi1NPM8T5AcEvvIfeM5l+8HzYL+7VrTk2yZ1sLKoPhq1A00xGHuZQq6yKrGAI48BnfbQ9i\nnrHPr3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917qkv8Anl9of3Z+OnXvV9LU\neGv7S7GGQrIdf/AvbHX2NbIZKHxggto3JncNJq5C6LWuwIij3c3D6fY4NvU0e4nqfmkYqf8AjTIe\nuin927yb++Pdjdecpk1W2y7ToU0+G4vpNEZr87eG7WnE140BB1VveO/Xa3rFPBDUxtDPGk0TW1Ry\nKGRtJDLcHg2YA+1Vne3e33C3djI8VytaMpowqCDQj1BIPyPRFzLyvy7zls0vL3Ndlbbhsc5QyQTo\nskTlHWRNSMCp0uqutRhlB4jo18Hzk+YdNDDTU3yV7kp6enijgggg31nIoYIYkEcUMMUdUqRxRooV\nVUAKBYezn+t/NH/Kfd/85G/z9Rd/wNfsB/0x3L3/AGRQ/wDQPWT/AGev5k/95N90/wDofZ7/AOq/\nfv6380f8p91/zkb/AD9e/wCBr9gP+mO5e/7Iof8AoHr3+z1/Mn/vJvun/wBD7Pf/AFX79/W/mj/l\nPuv+cjf5+vf8DX7Af9Mdy9/2RQ/9A9HQ/l8fPL5TZL5b9Udd7l35vPuXH9q5MbLqsJvze+4K3E7a\nxBrKDPbm3rQY8SyxVmfwe2MLWClWW0P7r6r8ESn7W3++bxf3VzuN1PNaQQqoV3JXW7VBoTxARh8q\n9c/P7wHkv2n9tuTth2Xkrl/aNs5h3PcZZWmtraOKX6a0i0vGWVQQjy3MLf0jHQcD1tv+5p65X9e9\n+691737r3WjH8nfjh8o9ud/dq0u7uoOxd8bpym7chu3cO5utNib63lsvIZfe5TeNcuH3Mm2qGLLG\nkmzphqHSMKlTHIlyUPvHe79rubb67lvZXtPFmkZz+o3FmLH/AEP1PXbLln7/AD93PlXlvb+V9ug5\nhG37bYwWsX+Jwj9O3iSJMfV47UGOgH/0H/IL/vHT5Af+ie33/wDWX2n/ANaTmn+O0/5yN/1r6PP+\nTi/sB/vnmL/sjh/7a+tqj+TF0fuLp/4i1Gc3ttbK7Q3r272bvPfWWwefw9dgc5isZRVFPs7B42sx\nOSgpq+hpvHtuatpklQM0VcHF1dT7yJtLWOxs4bGH+yhiSMfYihR/g64n808wXnNvNG5c1bh/ufud\n/cXUma99xK8rZ/0znq2z2/0Q9e9+691737r3RDvkb/Lc+KPyYqq/Pbr2NNszfmScTVnYnWFXDtDd\nGQqF8hWpz1OlHXbX3ZUh3B8uWxtdNZAocLdShv8AbNu3SLwdyginj8g6hqf6UnKn5qQehfyf7gc8\ne399+8uSN23DarwkFjbTyRCTTwEqKQkq/wBGRWX1HVQ3Zn8hfs+ilrpemvkBsTclPUzPNRUPa20s\n5tOvx0ZBK0kud2PUbkx+RBZReVcPS2DkCMaRqBN37W8pXTaokuLf/mnJUf8AVQSdZXct/wB4L94n\nYohFuE+0bvQU1XlkFbhQVNlJZ1pxqakniTnorGU/kt/PrH1HhpMd0pnI7Mfu8X2FWw04IdkC6c1g\n8PVXZVDD9q2lhexuAV/6z+w/8pV3/wBU/wDoDqQP+Tl3ux/0YeXv2Xn/AG09CBs3+Rp8x87PR/3y\n7B6E69xytrqqrH1+7t6bhBZEdY/4M+26XbtTHGXZG/y+I6k41KQ3s2sva7lGzYNKk9yR/vyTH7Ix\nHX7DUevUdc1f3gH3iOY4Gt9vudr2VGFCbK0BehFKB7yS7Kn+kmlgcqRilpPxm/ksfGHpDK4zePZ1\nbmPkfvzGNHLTVO/qGkoNgUlRCAIKik66iqcrT1hi9VostX5WnUlWSNXRW9jy1trWxgFrYxRw2y8F\nRQo/YABU+Z4nz6xB5h5k5i5u3WTfear673LeZfjnuZXmlIHAa5GZtK8FUHSowoAx1cJFFFBFHBBH\nHDDDGkUMMSLHFFFGoSOOONAESNEAAAAAAsPb3RL1k9+691737r3Xvfuvde9+691737r3Xvfuvde9\n+691737r3Xvfuvde9+691qvfz1ctvKo7366ky+BzWI6z23sWLAba3Jk6KelwO4N55aurNwbrXBZC\nZUpq96PDvioKhYtRilgIc3IUQX7mbXv+873Em32lxLZwQABlRipdiWahApw0A/MHrrl9w3nz2g9s\nfau/uecOYtm27mbdd2eRop7qKOVbeCNIoA6MwYVk+okWtKrIpA8zRf8AxrE/87Gk/wCpyf8AFfcc\n/wBTuav+jfd/842/zdZw/wDBK/d//wCmx5e/7LYf+guvfxrE/wDOxpP+pyf8V9+/qdzV/wBG+7/5\nxt/m69/wSv3f/wDpseXv+y2H/oLr38axP/OxpP8Aqcn/ABX37+p3NX/Rvu/+cbf5uvf8Er93/wD6\nbHl7/sth/wCguvfxrE/87Gk/6nJ/xX37+p3NX/Rvu/8AnG3+br3/AASv3f8A/pseXv8Asth/6C69\n/GsT/wA7Gk/6nJ/xX37+p3NX/Rvu/wDnG3+br3/BK/d//wCmx5e/7LYf+gurhf5HXWsW/wD5j7n7\nOeJarEdK9VZSagrYwJEp93b/AKpNs49Q/wClPuNrSZtSQdX7drWJtPXtrslzsvLzfXRtFezzsxVh\nRgqgKoIP2Fh/puuP336/dTYvc73hgHKl9b7hyxte0wwRzQSLJC8srPPM6OpIJAkjiahwYacQetuz\n3IHWFvXvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xv\nfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3SH3p1j1t2Q\nmOj7E692Pv2PENVPiY96bTwO6Uxb1ogWsfHJnKCuWiarWliEpi0mQRrqvpFvVI4de6QX+yu/Gb/v\nHbor/wBFHsD/AOx/3up9T17r3+yu/Gb/ALx26K/9FHsD/wCx/wB+qfU9e69/srvxm/7x26K/9FHs\nD/7H/fqn1PXuvf7K78Zv+8duiv8A0UewP/sf9+qfU9e69/srvxm/7x26K/8ARR7A/wDsf9+qfU9e\n6Xeyurus+tv4n/o6662LsH+NfZ/xj+5W0dv7V/i38O+7/h/8T/gWPoPv/sPv5/D5dfi80mm2tr+q\nTx690uveuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvf\nuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+69\n1737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xv\nfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+6\n91737r3VM/x7787j3R/Ot/mCfH3cHYOfyvS/WHx4+N+6dgdd1U0Dbe2ruHdmA25Vbjy2LhWBZ46r\nL1FXI0xaRgS5sB7959OEDwwfOvVwG4txbf2hgM1urdmdw+2Nr7bxVfndxbk3Fk6LC4DAYTFUstdl\nMzmsxkp6bHYrFY2igeaoqJ5I4YYkZ3YKCffum+iL9DfzUf5eXyd7Pbpjov5Y9Vb/AOz2asTHbQo6\n/KYfIbkkx8VVUVsWzJtx4vDUG+JaWjoZqh0w81cy0sTT28IL+/dWKMBUjHVgHv3Veq7O/wD+bT/L\ni+L3YVd1R3l8tur9mdj4mQQ53Z9NJuDd+a21VNFTTrQ7qp9j4Pcq7VyL09ZFKtNkWpp2icOEKc+/\ndWCMcgY6MJiPmB8W898fpvlZie/eq6v440uOrcpVdyjeGIh2HSU+PyDYitgrM1UVEUNJlafNJ9i1\nDIFrfviKYRedljPutaTWlM9Vafyqvm3ub5gdtdh53sX+Yz8WO9t2U+x5YaH4dfF/rLcuy9kdZQpm\n8LJW9jY3fvcNLiu5u2p4kjTHVMwphhqBqvUmlqiNR7q7rpGAR8+jO72/nQfyueu6LAV+7Pmd1RRQ\nbmnzUGHjoBuncNbMdvZiq2/lp6vG7c25lsjiqGnzdBUUq1NXFBTzz00yxO5ik0+60I3Pl0vfkf3r\n0ZvPofoPuXBfOFehepd6969LZfZncvWGR2ln8J3Qo3DU19N0nJkctgd0UTYXsk4qooq1IEgqYpqQ\nwVGuEVdFUe60AakUqadL35TfzAfhn8KH29T/ACj+QuweocnuuB6zbu383U5HK7ry2OimkpZMvSbR\n2xjs5udsHHVwvCa40goxMpj8msFffuvBWbgOhu6W7y6e+RvXeD7a6J7I2h2t1vuNZv4RvDZOZpM3\niKielk8Ndj55aZ2kx+XxtQDFV0VSsVXSTAxzRo4Kj3WiCDQ8ekh8gPlf8cfirQbUynyL7i2X09jN\n8ZWvwm1MjvbIti6HM5XF45stkKOnqzDJBG9JjkMzmRkUIPr7914KTw6Bn40/zM/gV8wd35Dr744f\nKDrPszfmOgqattl0dbk9v7ryFFRRSTV+Q2/t/d2M2/ld0Y7HQRl6moxsVXBTIQ0jqGUn3WyjLxHW\nT5OfzLvgh8Nd1YrYvyW+TXXXV+98xQw5Sk2dXTZjcG6oMVUl1o8rl9vbQxO4cvgMVkGicU1TXw00\nFSY38Tvoe3uvBGbgOhJ3F80filtX49UXywzXfnW0XxuyKYp6Huah3BT5nYtSc1mY9u4+GPL4UZBP\nu23BJ9jLCVE1NWK8MyxyI6r7rWlq6aZ6X/dvfnTnxv2WnYvefYOA6z2RLn8JtaPcm5Jp4Ma24dyV\nX2WCxIengqZPusnVjxxDTYt9SPfuvAE4HQD98/zGvg98Ydybt2b358lOuOsd3bH29gN1bl2vuGty\nH94aPBboqUpNv1dJhsfjq3I5mXKzMTFT0MdTUmNHkMYjjdl91sKxyB0Z7rTsnY3cXX2ze1estx0O\n7+vewtuYrduzN0Y1alKDP7czdJHXYrK0iVkFNVpBWUsquqyRo4Bsyg3Hv3VSKGh49a4uwe//AOYb\n3hjv5yvUXx93jujeXceA/mA4342fHvcWXymBo8H8Yusd0Z2Sg3d2EJchJQzx7e642dDWVkMdLHkM\ni1cKfw08xuvvXTtFGknhTq37DS7Z6/8Alt0N1Rnvmtv/ADPYuM+JuVwVN8Y9zPtqqTuiPE57Dpkv\nk3uet/u02dn3pDLteqpagxV8VMpkb7eOnR6yOu31TipNMV6C/eH86n+VjsNcOdzfNPqWlbOz5Knx\n8FB/enP1QbE5etwNfJkKPb+3MpVYalhzGOqKcT1iQQyPBJoZgjEe634bny6PJN8gujabpYfI6o7c\n67g6EbakG+V7hm3bhYuum2jVRxvTZ8bresXEHH1JmRI28t3mYRAGQhffuq0NaefWvL/MB/nSfH3t\nKm+FOzv5ffzNxeY7F3D/ADHfjJsntnA7Fh3Bhc3nejNyR79xe9cZW027ds4s5TZ2QzsmIhqpqTyI\nJpIB5BrF9dOLGRXUMU62Etk/IrpHsftXtXo/Y/ZG3Ny9tdH/AN3f9LWxMbNUPnNif3tonyO2/wCO\nRSU8cMX8XokMkOh3uo5t7303QgV8um/FfKD495nc/fWzqHt3ZP8AeL4u0eCyPyGoazLx4uLqDHbm\nwWW3Pg8jvfIZNaPGYjH123sDWVgnaYxR09M7uyge/deocfPouHTn81r+Xd3/AFfaNF1F8r+sd3S9\nL7G3D2d2bIs2dwlHtfrvalZR4/ce95chuTC4egye18PW5KmjmraKWpp1NTD6iJYy3utlGHEdFP8A\ngd/PJ+KXyt+Ku7fkf2/vbrn46Zjriqrcn231vX7wye65upNmZrtFetOsstuncP8AdfBiufeeQyOO\nRJIaKJDUVqqI0Xn3qvVmjZTQZ6Ebvn+Yp8F+6urvkh1r11/Mew/Qm5+laTZ2V7T7n6uWiyua6hx8\nna2ztoLJT5Ldez8/snLQbg3ZlaXbVZ9qKx6aTKBGMTkH3vrQVgQacejifIz5ufE34fbI2rvr5K9+\n7G6s25vFUj2hWbnrpJc5vPx01JUVNXtzauBoK3ceeipIK6CSrloaB4KQVEXl8QkjB91UKzcB0s/j\nr8ovj18tuv4+0fjb27svuHYprnxVVm9nZQVb4jMRU9PVyYTcWJqEpc3tnOR0dXDM1FkaalqhDNHI\nY9Dqx914grg9D1791rr3v3XuqCfi5/3EH/zQP/FWfid/7zG1PevPpw/2Q+3pJf8ACnnL7yov5aFH\ngtvZqTbuzt8/JnpHZ3c2bY5U4zGdXVkm58tLV56DDRmurMHDvzDYFp4UeFpbKFYvoR9nrcPx/OnQ\nQ77/AJR3zt78yXw63PkO7/5d+w9vfFLszq7tbpzdHxm+O2+NhbkptrbNqKTIY3aeD3Kd47ixVdsf\nK0KxVEVMYnppaiKGXUUMol11sOorxz1shdr1e7KDq3squ2FBPU75otgbxq9l01LTJWVNRuym27kZ\ntuQU9JIGjqp5cwkKpGwKuxCng+99NDjnh1r/AP8Awm82/wDGbcn8tOl3vFSbH3X3nvDfHbmR+Zm5\nt4QYjNdg5He0vZe58liYe0K/OSZDKjDnY+PxVdRx1ci0kreWs8a1UtW3vXTktddPLy610MRHvTcv\n8n3+Sd1ZFm9k7b6i7J/mI9sY3sHM9r0GVyPTUe8KTtvL03WVF25RYXK4euyGwqiny+elyNMKiBHp\naeSRpofD5F907+Nj5062P6H+Vd88d4/OD4d/MXtzub4RbfynxY3DWw1cfxz6E351ZuXf3WmfxlJt\nvPbF3BkardWZpcrR0G1UqqPDpMEhx6V9QtmjkKD3TWtQpUVz0mv+E7vx96F3l8At+7m3d0n1Jufc\nu+/kH8jdn723Hn+udn5fcG79pwbvalp9sbnzVfh58nndv09NK0cdHVSy08aMQqAH37r0pOr8uqYN\nnQfw7+Q/8UMBBNVPitsfzpdsYDA0tTVVFUuMxFJ2LvmaGhpTUSSGKD7mplmZVsGmmkkN3difeXTn\n+iH/AEvR5etuv/ln3h/O6/mu5Pqff/xP273P15F1Hsvb2H+XPUe5ez81H8f81s4xUg6axOD3Zt0Y\nba9VRw45txSiCZKs5WiYupq5xN7qpKiNa1p1cJ/KX/l3d3fAKq+W8na/ZXUu7cR8ku4aHuvAbH6S\n2puXY3XXXG68rHuKPftNtvaW4K3JRYLDZaKbEQ0dPTTulPS42OCyxwxD3vpt2DUp5dAD/Oqw+I3B\n8nP5KOFz2Lx2bw2S/mIbZpcjicvQ02SxlfTPSYXXT1tBWRTUtVA9uUdGU/09663Hwb7Ogw/nfbM6\n12L8nP5PPZvVOIxW1Pl/lP5gPVOxNpZDZuOoMRurdfRtXWUtJ2lis5LjxSzZrauJrsnhKOSOsEtL\nTUeZrIyY4qmoEnutx1owPw06g/yIsRsHtnt3+bt2N3RtXFbg+W9d88+2dhdqHemNxeezO3+moY/4\nVsfr6iOThq6rH7Vp8zjtw42Wjj00U9JjaSEqyU0QTw69JUBQPhp1Rn3NBQ7a/le/z5eseqnjb4pd\ndfzPdjYvoCDGapdp4aeo7oxUO9dt7NqkSOhO3MLicbt0UsVOpiFPLHMHl8/lf3Tg+NSfip1saf8A\nCj2qpq3+W9hK2iqIKujq/k/8Z6qkq6WWOopqqmqN5+WCop54meKaCaJwyOpKspBBIPv3TUXxfl0l\n9h9fbC33/wAKPvlVLvjZG0N5SbZ/l8dTZbbkm69tYbcT7fytTvPaOKqMnhHy9FWNishPjK2ameaD\nxyNBM8ZJRmB91sn9Ifb1sJYbCYbbmKoMFt7EYzA4TFU0dHi8NhqClxeKxtJELRUtBjqGKCko6aMf\npSNFUfge99NdUOfybP8Asq/+d3/40X3T/wC4mZ968+nH+Ffs693P/wBxHfw6/wDGdHb/AP78Le/v\n3Xh/ZH7egb/4T1/HfoTsP+Xd2XWb56X6t3VkezO/vknsnsLMZrYm2a3O702j/eefFR7c3Jnpcacz\nlsRTY6slhhhmnZIEkIjC39+63KSG/LqizqWoTfH8rH+RB0V2zlaqn+Kfbf8AMo3/ALd78XIZepxW\n2MjisZ3jkztXZm58p9zDBQ7ZzNPuLOzypIyQRPTmr1RyU6yp7pw/GxHxU6vp/nndJdMdb7B/lc1/\nXfUfWGwq7A/zXfhvsfB1uy9g7U2tV4bZU2N7XyMu0MVU4PE0M2O2vLkMVSztj4SlI01NE5j1RoR7\npuMkk19D09/y7I3x/wDPS/ng4+uX7SuqaH4i5Ono6giKqnx1R1mKuGuhgciWSlemydM4kAK6Z4zf\n1rf3Xm/s1/PouOz/AIsz/Nj5bf8ACnH4t0m8G2DkO4G+BOCxW7vs3yFPh8zjetuxtyYZ8lQxSwz1\nWFq8rhIaevSNllajll0HXp9+62TpVD9vQ4/y6e7u2/j18nup/wCVH8+/jN0DR99be+LeSo/j58nu\njqLbuS2r210Ls/I3qtpZvCz7Uwed2hBXS9fS11UjR0FLkclikkmxUEpgnl91pgCNak0r1UHs7E4q\nD/hHv2vl4Mbj4ctXbyxUFbk4qOmjyNZBT/zC+vFghqq1IxU1EUKqAiuxCgcW9+8ur/6P/q9Ori/5\n3PUfVXW/8hjvtOvOtNgbFXH9ZfFPBUP9z9n7e221Jhaj5M/HrI1GJp3w+Po3ixtRkYVqJIQRHJOo\nkYFxf37y6pGSZBX59Ed3hsz5J91/z4crgurt6/HLbvYnUn8vzpTI/Hym+V/Wmf7L2lFsrK4PZ1Vv\n3J9U4HCbl228G+oN2biyyyZBfPMuPevjAVImZPdWwI81pXy6tn/lpfy3fkV8PPlB8uvkT3B2f0Hl\nsf8AK/GbCq831h8devdz9adfYTfWxfuaWPdNBtfP5LNRUcuXo8pXz1PiqfXX19RJpCOqR+6o7hgA\nK46uy976b697917qp/5H/wAmn4hfKD5A7z+TW+sx8gdrdr7/AMPtbA7oyvVHeG7OtaDJYvZ2EoMB\ng6WSg24YNUcFBjYiwZ2VpQXsCffqdXEjAUFKdKXpz+UT8Nuotl90dd12J7S7t2X33tPH7I7C278h\n+3t79u42XbWOyD5eKi2/T7gyQTbFY2ZSmrRX0XhyEFZQUk8E8UtPGw9Trxdia+Y6Dzoj+Sl8WPjv\nv/Y27Nhdp/MGr2T1puWi3Zsb4+br+TO99wfHnAZnD1SZLbsqdcTLCMnT7bzEUdbSQ1tZUx/dRI8o\nlAt7914yMRmnVv3v3VOtMPuHJfBbt/de99/7r/4T1fPXH/Pvc6zVbdfUXVXaGH6I3n23MBk4Mru3\ncfXvZG0+q99dfNuakXIZfN5LaZTKRRy1c9PK0kjHXT41DGoaerg/gR/Kg2Vtn+Uh1L8A/nJsLbXZ\nb1lPuTevZG1PvpWi2dvPee+Nw76x9Htfdm3qymyWK3RsSlzsVDJlcXWjyVUdUIZpKSfS++qM/fqX\nocfi5/KW6F+KPZO1OytqdzfMDsqTr+hydB11sPu/5G7q7F6s2CmTxFbt9p9s7CnpcbhoKqgwWQlp\naN6hag0sbao9MoEg91ouWFMdGr+JPxG6c+FHVE3THRlFn6DZE+9N3b9kg3JnZ9xZH+8O9siMpnZB\nkKiKGQUslWLxRWtGvAPv3VWYsanosVJ/KM+HNF8cdpfFeDC7/HUuyfkXTfKXBUbb6rmzkfbFJlch\nmIaupzRpfNUYMVuTlJoioQqQL8e/dW1tWvnTpw+YP8qD4k/M/snbfeG+KHsvq35AbUxkOCxHfnx7\n7IznUfav934VqY0wuRzWHFVjMxTLT1ckCT1dFNWwUzmCKeOElPfuvK7KKeXRiPij8S+vviFsXNbL\n2Pu3tzsWu3TuWbdm7uxe9uys72z2jurMPj6HFUxzW8twEVUmPxmNx0cVJSQxw0tOC7LH5JZXf3VS\n2rqoX+ev0JN8ju1P5T3Wddg9/wCR2Vn/AJuUWJ7AzXXcm4MZm9o7Yy+IxlFVbhj3Vt6JqrZ89CGM\nkGQZ4hBMgYNxb3rpyM0DH5dHW+M/8oj4p/Gvuql+SL5rvj5D9/YbETbf2d258qO5dx917v2Bgqmj\nmoKvGbLky0ePxWIWekqZYxUNSy1sEU80UM0cU0qPvqpdiKcB0k/kl/JS+F/yQ74zfyXeo7w6I7o3\njjpsT2LvP409u5nqKq7LoKqjgx1dDvOlx9JkaKqfKY+nWGukpI6OXIqNVU00nr9+68JGApxHRh9v\nfy1vhhtf4aZj4DYjpjEQ/GTcWJqcfuLZcmRzE+Uz2UrK+jzE288ru2SuO5anfSZ7HU1dBlPuRUUl\nRSwCnMUUEMUfuta21avPoiFP/wAJ3/gVV0OKx2/N1/K7t+k2t/BIuvIO1/kTuXdtJ1dQYHK43K0e\nL67xxx9Fi9uUMn8JgppLQSS/ZBoEdEkkDe6t4reVOrPdv/EbpzbPyy39808XRZ9O8eyeqMD0xuev\nmzs8225dkbcyuOzGMgo9vGIU9JkVrcXEXqA5Z1BFuffuqajp0+XRnffutdFi6B+I3Tnxq3v8iuwe\nr6LP0u4/lJ2vW9z9ryZnOz5ekq9718dRHUT4OlmijXC44rUtanQso459+62WJAB8uvbg+I3Tm5vl\nlsH5p5Siz7949bdUZ7pjbFfDnZ4dtxbI3HlcjmMnBWbeERp6vItW5SUpUFwyKQLce/de1HTp8uvf\nEn4jdOfCjqibpjoyiz9Bsifem7t+yQbkzs+4sj/eHe2RGUzsgyFRFDIKWSrF4orWjXgH37rzMWNT\n0XTEfylvhDQfCKH+XxlutcjvH420WZzO5sRht27mymQ3bt/dWYz+U3N/erb29aN8dnMLn8ZlczU/\nbVFO6H7aaSllEtNNNDJ7q2ttWrz6APbf8iT4d4qu61yO7ex/l93DU9M9l7D7Q6jj7j+S28d9Y3rf\nK9d1dTXYTBbRwdVT0uDxm16qrliaspxTNNOKSFfMqKyv7rfiN8s9Cz8rP5QfxT+WPd7/ACSzOd76\n6T7zyW1aPY+7+yfjb3Fneo8/2DtLHRU9PjcHvb7CnyVDloKKkpIYBLHDBUzU9PBDNLLFTUyRe60H\nYCmCOmzqr+S98Gul+tPkv1P17tzsvB7V+WOJ6ix/bk0Xau7P7yVGS6SnymT2Tu3bu6Y6qLPYPd53\nLmKjL19as7mvyUhklUoWjPuvGRiQT5dLf4m/yrvjT8R+2818gcHuDvXvDvvL7Ni65pu5fk33BuHu\nbfu2+vopqaf+521q7LpRY7C4h5KOMB0pTVxwh4I5kglmik91pnLCmKdAziP5FvwSwHVHyE6EwkXe\n+N6I+RP92hmumU723xWdb9d/3c7G2v2pLJ1NtvJ1VdT7Wrtybv2TiJMlWVDV9bLS0CU0U0MDSpJ7\nrfiNUHFR0fD5NfEbpz5bfGjdXxM7hos/W9Qbyx2x8Vm6PAZ2fBZ6Sk693Ztfem3BT5yCKWenkizm\nz6JpmCnyxq6GwY+/dVDFTqHHoDPl1/K6+JPzSj6yyfa23N47d7K6XxVPg+qu8Op98ZrrfuTZGIpl\nHix2O3jhHtkKGKYvNDDkKasipaiaaWnWJ55mk91tXZeHDoRviF8IOtfhtjt5xbP7C767c3Jv6qxE\nu5Owvkb25nu49/TY7b8demC27QZ3Nx08eJ25ipMrVSx0tNBErTVDvIXbSV915mLenRyvfuq9e9+6\n91737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3X\nvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+\n691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3\nXvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9\n+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691//9k=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "recvd = b''\n", "while True:\n", " data = sock.recv(1024)\n", " if not data: \n", " break\n", " recvd += data\n", "\n", "sock.shutdown(1)\n", "sock.close()\n", "\n", "response = recvd.split(b'\\r\\n\\r\\n', 1)\n", "Image(data=response[1])" ] }, { "cell_type": "markdown", "metadata": { "collapsed": false, "slideshow": { "slide_type": "slide" } }, "source": [ "Quoique les versions de l'interface Socket ont évolué avec les années, surtout sur les plateformes orientées-objet, l'essence de l'interface de 1983 reste très présente dans les implémentations modernes." ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "slideshow": { "slide_type": "fragment" } }, "source": [ "```2.3.1.5. Making connections\n", " connect(s, name, namelen);```\n", "\n", "```2.3.1.6. Sending and receiving data\n", " cc = sendto(s, buf, len, flags, to, tolen);\n", " msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);\n", "```\n", "\n", "Extrait du [manuel system de BSD 4.2](http://www.cilinder.be/docs/bsd/4.2BSD_Unix_system_manual.pdf) [1983]" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#Socket Synchrone\n", "Le Socket Berkeley de 1983 est synchrone\n", "\n", "Ceci implique que lorsqu'une fonction comme ```connect```, ```sendto```, ```recvfrom```... est invoquée, **le processus bloque jusqu'à l'obtention de la réponse**. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Notons la présence dans le même document d'une fonction d'I/O asynchrone. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Fail Whale\n", "\n", "Le Socket synchrone n'est pas efficace en conditions de charge élevée\n", "\n", "Le déploiement de réseaux haute vitesse combiné à l'explosion de la popularité des réseaux sociaux le démontre bien" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "![FailWhale](FailWhale.jpg)\n", "\n", "Les sites de réseau sociaux ne savent pas comment gérer cette impasse. \n", "\n", "La situation est telle, que les pages d'erreurs de Twitter deviennent célèbres." ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "slideshow": { "slide_type": "slide" } }, "source": [ "#Le Problème:\n", "\n", "Lors d'un appel bloquant, le processus et ses ressources sont suspendus. Lorsque la charge augmente, la quantité de ressources suspendue devient ingérable pour le système d'exploitation" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "# La Solution:\n", "\n", "**Il ne faut pas bloquer**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Le Socket Asynchrone\n", "\n", "Dès 1983, le socket de Berkley offre un mode asynchrones. Cependant, il n'est pas très utilisé, car ils sont beaucoup plus complexes et prône à l'erreur." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#Le Patron Reactor\n", "\n", "En 1995, le Patron Reactor est découvert\n", "\n", "ce patron simplifie grandement l'I/O Asynchrone\n", "\n", "http://www.dre.vanderbilt.edu/~schmidt/PDF/reactor-siemens.pdf" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Une influence est du patron Reactor est la fonction Select" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "*Select est la fonction asynchrone présentée dans le même document que le Socket*" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Exemple d'un Socket client asynchrone qui se connecte\n", "# (Avec le Patron Reactor)\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "import selectors\n", "import socket\n", "import errno \n", "\n", "sel = selectors.DefaultSelector()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "def connector(sock, mask):\n", " msg = b'GET /ETS/media/Prive/logo/ETS-rouge-devise-ecran.jpg HTTP/1.1\\r\\nHost:etsmtl.ca\\r\\n\\r\\n'\n", " sock.sendall(msg)\n", " # Le connector a pour responsabilité \n", " # d'instancier un nouveau Handler\n", " # et de l'ajouter au Selector\n", " h = HTTPHandler()\n", " sel.modify(sock, selectors.EVENT_READ, h.handle)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "class HTTPHandler:\n", " \n", " recvd = b''\n", " \n", " def handle(self, sock, mask):\n", " data = sock.recv(1024)\n", " if not data:\n", " # Le Handler se retire \n", " # lorsqu'il a terminé.\n", " sel.unregister(sock)\n", " response = self.recvd.split(b'\\r\\n\\r\\n', 1)\n", " display(Image(data=response[1]))\n", " \n", " else:\n", " self.recvd += data" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Création d'un Socket Asynchrone" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)\n", "\n", "sock.setblocking(False)\n", "try:\n", " sock.connect((\"etsmtl.ca\" , 80))\n", "except socket.error:\n", " pass # L'exception est toujours lancé!\n", " # C'est normal, l'OS veut nous avertir que \n", " # nous ne sommes pas encore connecté\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#Enregistrement du Connector" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "SelectorKey(fileobj=<socket.socket fd=63, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 52631), raddr=('127.0.0.1', 5001)>, fd=63, events=2, data=<function connector at 0x10a29d840>)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# L'application enregistre le Connector\n", "sel.register(sock, selectors.EVENT_WRITE, connector)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "slideshow": { "slide_type": "slide" } }, "outputs": [ { "data": { "image/jpeg": "/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA\nAQBIAAAAAQAB/+GkOGh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8APD94cGFja2V0IGJlZ2lu\nPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4KPHg6eG1wbWV0YSB4bWxuczp4\nPSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS4wLWMwNjAgNjEuMTM0\nNzc3LCAyMDEwLzAyLzEyLTE3OjMyOjAwICAgICAgICAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9\nImh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRm\nOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpkYz0iaHR0cDovL3B1\ncmwub3JnL2RjL2VsZW1lbnRzLzEuMS8iPgogICAgICAgICA8ZGM6Zm9ybWF0PmltYWdlL2pwZWc8\nL2RjOmZvcm1hdD4KICAgICAgICAgPGRjOnRpdGxlPgogICAgICAgICAgICA8cmRmOkFsdD4KICAg\nICAgICAgICAgICAgPHJkZjpsaSB4bWw6bGFuZz0ieC1kZWZhdWx0Ij5QcmludDwvcmRmOmxpPgog\nICAgICAgICAgICA8L3JkZjpBbHQ+CiAgICAgICAgIDwvZGM6dGl0bGU+CiAgICAgIDwvcmRmOkRl\nc2NyaXB0aW9uPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAg\nICB4bWxuczp4bXA9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC8iCiAgICAgICAgICAgIHht\nbG5zOnhtcEdJbWc9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9nL2ltZy8iPgogICAgICAg\nICA8eG1wOk1ldGFkYXRhRGF0ZT4yMDEwLTA4LTI1VDA5OjMwOjQwLTA0OjAwPC94bXA6TWV0YWRh\ndGFEYXRlPgogICAgICAgICA8eG1wOk1vZGlmeURhdGU+MjAxMC0wOC0yNVQxMzozMTowM1o8L3ht\ncDpNb2RpZnlEYXRlPgogICAgICAgICA8eG1wOkNyZWF0ZURhdGU+MjAxMC0wOC0yNVQwOTozMDo0\nMC0wNDowMDwveG1wOkNyZWF0ZURhdGU+CiAgICAgICAgIDx4bXA6Q3JlYXRvclRvb2w+QWRvYmUg\nSWxsdXN0cmF0b3IgQ1M1PC94bXA6Q3JlYXRvclRvb2w+CiAgICAgICAgIDx4bXA6VGh1bWJuYWls\ncz4KICAgICAgICAgICAgPHJkZjpBbHQ+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNl\nVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8eG1wR0ltZzp3aWR0aD4xOTY8L3ht\ncEdJbWc6d2lkdGg+CiAgICAgICAgICAgICAgICAgIDx4bXBHSW1nOmhlaWdodD4yNTY8L3htcEdJ\nbWc6aGVpZ2h0PgogICAgICAgICAgICAgICAgICA8eG1wR0ltZzpmb3JtYXQ+SlBFRzwveG1wR0lt\nZzpmb3JtYXQ+CiAgICAgICAgICAgICAgICAgIDx4bXBHSW1nOmltYWdlPi85ai80QUFRU2taSlJn\nQUJBZ0VBU0FCSUFBRC83UUFzVUdodmRHOXphRzl3SURNdU1BQTRRa2xOQSswQUFBQUFBQkFBU0FB\nQUFBRUEmI3hBO0FRQklBQUFBQVFBQi8rSU1XRWxEUTE5UVVrOUdTVXhGQUFFQkFBQU1TRXhwYm04\nQ0VBQUFiVzUwY2xKSFFpQllXVm9nQjg0QUFnQUomI3hBO0FBWUFNUUFBWVdOemNFMVRSbFFBQUFB\nQVNVVkRJSE5TUjBJQUFBQUFBQUFBQUFBQUFBQUFBUGJXQUFFQUFBQUEweTFJVUNBZ0FBQUEmI3hB\nO0FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB\nQUFBUlkzQnlkQUFBQVZBQUFBQXomI3hBO1pHVnpZd0FBQVlRQUFBQnNkM1J3ZEFBQUFmQUFBQUFV\nWW10d2RBQUFBZ1FBQUFBVWNsaFpXZ0FBQWhnQUFBQVVaMWhaV2dBQUFpd0EmI3hBO0FBQVVZbGha\nV2dBQUFrQUFBQUFVWkcxdVpBQUFBbFFBQUFCd1pHMWtaQUFBQXNRQUFBQ0lkblZsWkFBQUEwd0FB\nQUNHZG1sbGR3QUEmI3hBO0E5UUFBQUFrYkhWdGFRQUFBL2dBQUFBVWJXVmhjd0FBQkF3QUFBQWtk\nR1ZqYUFBQUJEQUFBQUFNY2xSU1F3QUFCRHdBQUFnTVoxUlMmI3hBO1F3QUFCRHdBQUFnTVlsUlNR\nd0FBQkR3QUFBZ01kR1Y0ZEFBQUFBQkRiM0I1Y21sbmFIUWdLR01wSURFNU9UZ2dTR1YzYkdWMGRD\nMVEmI3hBO1lXTnJZWEprSUVOdmJYQmhibmtBQUdSbGMyTUFBQUFBQUFBQUVuTlNSMElnU1VWRE5q\nRTVOall0TWk0eEFBQUFBQUFBQUFBQUFBQVMmI3hBO2MxSkhRaUJKUlVNMk1UazJOaTB5TGpFQUFB\nQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUEmI3hBO0FB\nQUFBQUFBQUFBQUFGaFpXaUFBQUFBQUFBRHpVUUFCQUFBQUFSYk1XRmxhSUFBQUFBQUFBQUFBQUFB\nQUFBQUFBQUJZV1ZvZ0FBQUEmI3hBO0FBQUFiNklBQURqMUFBQURrRmhaV2lBQUFBQUFBQUJpbVFB\nQXQ0VUFBQmphV0ZsYUlBQUFBQUFBQUNTZ0FBQVBoQUFBdHM5a1pYTmomI3hBO0FBQUFBQUFBQUJa\nSlJVTWdhSFIwY0RvdkwzZDNkeTVwWldNdVkyZ0FBQUFBQUFBQUFBQUFBQlpKUlVNZ2FIUjBjRG92\nTDNkM2R5NXAmI3hBO1pXTXVZMmdBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB\nQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBWkdWell3QUEmI3hBO0FBQUFBQUF1U1VWRElEWXhPVFky\nTFRJdU1TQkVaV1poZFd4MElGSkhRaUJqYjJ4dmRYSWdjM0JoWTJVZ0xTQnpVa2RDQUFBQUFBQUEm\nI3hBO0FBQUFBQUF1U1VWRElEWXhPVFkyTFRJdU1TQkVaV1poZFd4MElGSkhRaUJqYjJ4dmRYSWdj\nM0JoWTJVZ0xTQnpVa2RDQUFBQUFBQUEmI3hBO0FBQUFBQUFBQUFBQUFBQUFBQUFBQUdSbGMyTUFB\nQUFBQUFBQUxGSmxabVZ5Wlc1alpTQldhV1YzYVc1bklFTnZibVJwZEdsdmJpQnAmI3hBO2JpQkpS\nVU0yTVRrMk5pMHlMakVBQUFBQUFBQUFBQUFBQUN4U1pXWmxjbVZ1WTJVZ1ZtbGxkMmx1WnlCRGIy\nNWthWFJwYjI0Z2FXNGcmI3hBO1NVVkROakU1TmpZdE1pNHhBQUFBQUFBQUFBQUFBQUFBQUFBQUFB\nQUFBQUFBQUFBQUFBQjJhV1YzQUFBQUFBQVRwUDRBRkY4dUFCRFAmI3hBO0ZBQUQ3Y3dBQkJNTEFB\nTmNuZ0FBQUFGWVdWb2dBQUFBQUFCTUNWWUFVQUFBQUZjZjUyMWxZWE1BQUFBQUFBQUFBUUFBQUFB\nQUFBQUEmI3hBO0FBQUFBQUFBQUFBQUFBS1BBQUFBQW5OcFp5QUFBQUFBUTFKVUlHTjFjbllBQUFB\nQUFBQUVBQUFBQUFVQUNnQVBBQlFBR1FBZUFDTUEmI3hBO0tBQXRBRElBTndBN0FFQUFSUUJLQUU4\nQVZBQlpBRjRBWXdCb0FHMEFjZ0IzQUh3QWdRQ0dBSXNBa0FDVkFKb0Fud0NrQUtrQXJnQ3kmI3hB\nO0FMY0F2QURCQU1ZQXl3RFFBTlVBMndEZ0FPVUE2d0R3QVBZQSt3RUJBUWNCRFFFVEFSa0JId0Vs\nQVNzQk1nRTRBVDRCUlFGTUFWSUImI3hBO1dRRmdBV2NCYmdGMUFYd0Jnd0dMQVpJQm1nR2hBYWtC\nc1FHNUFjRUJ5UUhSQWRrQjRRSHBBZklCK2dJREFnd0NGQUlkQWlZQ0x3STQmI3hBO0FrRUNTd0pV\nQWwwQ1p3SnhBbm9DaEFLT0FwZ0NvZ0tzQXJZQ3dRTExBdFVDNEFMckF2VURBQU1MQXhZRElRTXRB\nemdEUXdOUEExb0QmI3hBO1pnTnlBMzREaWdPV0E2SURyZ082QThjRDB3UGdBK3dEK1FRR0JCTUVJ\nQVF0QkRzRVNBUlZCR01FY1FSK0JJd0VtZ1NvQkxZRXhBVFQmI3hBO0JPRUU4QVQrQlEwRkhBVXJC\nVG9GU1FWWUJXY0Zkd1dHQlpZRnBnVzFCY1VGMVFYbEJmWUdCZ1lXQmljR053WklCbGtHYWdaN0Jv\nd0cmI3hBO25RYXZCc0FHMFFiakJ2VUhCd2NaQnlzSFBRZFBCMkVIZEFlR0I1a0hyQWUvQjlJSDVR\nZjRDQXNJSHdneUNFWUlXZ2h1Q0lJSWxnaXEmI3hBO0NMNEkwZ2puQ1BzSkVBa2xDVG9KVHdsa0NY\na0pqd21rQ2JvSnp3bmxDZnNLRVFvbkNqMEtWQXBxQ29FS21BcXVDc1VLM0FyekN3c0wmI3hBO0ln\nczVDMUVMYVF1QUM1Z0xzQXZJQytFTCtRd1NEQ29NUXd4Y0RIVU1qZ3luRE1BTTJRenpEUTBOSmcx\nQURWb05kQTJPRGFrTnd3M2UmI3hBO0RmZ09FdzR1RGtrT1pBNS9EcHNPdGc3U0R1NFBDUThsRDBF\nUFhnOTZENVlQc3cvUEQrd1FDUkFtRUVNUVlSQitFSnNRdVJEWEVQVVImI3hBO0V4RXhFVThSYlJH\nTUVhb1J5UkhvRWdjU0poSkZFbVFTaEJLakVzTVM0eE1ERXlNVFF4TmpFNE1UcEJQRkUrVVVCaFFu\nRkVrVWFoU0wmI3hBO0ZLMFV6aFR3RlJJVk5CVldGWGdWbXhXOUZlQVdBeFltRmtrV2JCYVBGcklX\nMWhiNkZ4MFhRUmRsRjRrWHJoZlNGL2NZR3hoQUdHVVkmI3hBO2loaXZHTlVZK2hrZ0dVVVpheG1S\nR2JjWjNSb0VHaW9hVVJwM0dwNGF4UnJzR3hRYk94dGpHNG9ic2h2YUhBSWNLaHhTSEhzY294ek0m\nI3hBO0hQVWRIaDFISFhBZG1SM0RIZXdlRmg1QUhtb2VsQjYrSHVrZkV4OCtIMmtmbEIrL0grb2dG\nU0JCSUd3Z21DREVJUEFoSENGSUlYVWgmI3hBO29TSE9JZnNpSnlKVklvSWlyeUxkSXdvak9DTm1J\nNVFqd2lQd0pCOGtUU1I4SktzazJpVUpKVGdsYUNXWEpjY2w5eVluSmxjbWh5YTMmI3hBO0p1Z25H\nQ2RKSjNvbnF5ZmNLQTBvUHloeEtLSW8xQ2tHS1RncGF5bWRLZEFxQWlvMUttZ3FteXJQS3dJck5p\ndHBLNTByMFN3RkxEa3MmI3hBO2JpeWlMTmN0REMxQkxYWXRxeTNoTGhZdVRDNkNMcmN1N2k4a0wx\nb3ZrUy9ITC80d05UQnNNS1F3MnpFU01Vb3hnakc2TWZJeUtqSmomI3hBO01wc3kxRE1OTTBZemZ6\nTzRNL0UwS3pSbE5KNDAyRFVUTlUwMWh6WENOZjAyTnpaeU5xNDI2VGNrTjJBM25EZlhPQlE0VURp\nTU9NZzUmI3hBO0JUbENPWDg1dkRuNU9qWTZkRHF5T3U4N0xUdHJPNm83NkR3blBHVThwRHpqUFNJ\nOVlUMmhQZUErSUQ1Z1BxQSs0RDhoUDJFL29qL2kmI3hBO1FDTkFaRUNtUU9kQktVRnFRYXhCN2tJ\nd1FuSkN0VUwzUXpwRGZVUEFSQU5FUjBTS1JNNUZFa1ZWUlpwRjNrWWlSbWRHcTBid1J6VkgmI3hB\nO2UwZkFTQVZJUzBpUlNOZEpIVWxqU2FsSjhFbzNTbjFLeEVzTVMxTkxta3ZpVENwTWNreTZUUUpO\nU2syVFRkeE9KVTV1VHJkUEFFOUomI3hBO1Q1TlAzVkFuVUhGUXUxRUdVVkJSbTFIbVVqRlNmRkxI\nVXhOVFgxT3FVL1pVUWxTUFZOdFZLRlYxVmNKV0QxWmNWcWxXOTFkRVY1SlgmI3hBOzRGZ3ZXSDFZ\neTFrYVdXbFp1Rm9IV2xaYXBscjFXMFZibFZ2bFhEVmNobHpXWFNkZGVGM0pYaHBlYkY2OVh3OWZZ\nVit6WUFWZ1YyQ3EmI3hBO1lQeGhUMkdpWWZWaVNXS2NZdkJqUTJPWFkrdGtRR1NVWk9sbFBXV1Na\nZWRtUFdhU1p1aG5QV2VUWitsb1AyaVdhT3hwUTJtYWFmRnEmI3hBO1NHcWZhdmRyVDJ1bmEvOXNW\nMnl2YlFodFlHMjViaEp1YTI3RWJ4NXZlRy9SY0N0d2huRGdjVHB4bFhId2NrdHlwbk1CYzExenVI\nUVUmI3hBO2RIQjB6SFVvZFlWMTRYWStkcHQyK0hkV2Q3TjRFWGh1ZU14NUtubUplZWQ2Um5xbGV3\nUjdZM3ZDZkNGOGdYemhmVUY5b1g0QmZtSismI3hBO3duOGpmNFIvNVlCSGdLaUJDb0ZyZ2MyQ01J\nS1NndlNEVjRPNmhCMkVnSVRqaFVlRnE0WU9obktHMTRjN2g1K0lCSWhwaU02Sk00bVomI3hBO2lm\nNktaSXJLaXpDTGxvdjhqR09NeW8weGpaaU4vNDVtanM2UE5vK2VrQWFRYnBEV2tUK1JxSklSa25x\nUzQ1Tk5rN2FVSUpTS2xQU1YmI3hBO1g1WEpsalNXbjVjS2wzV1g0SmhNbUxpWkpKbVFtZnlhYUpy\nVm0wS2JyNXdjbkltYzk1MWtuZEtlUUo2dW54MmZpNS82b0dtZzJLRkgmI3hBO29iYWlKcUtXb3dh\namRxUG1wRmFreDZVNHBhbW1HcWFMcHYybmJxZmdxRktveEtrM3FhbXFIS3FQcXdLcmRhdnByRnlz\nMEsxRXJiaXUmI3hBO0xhNmhyeGF2aTdBQXNIV3c2ckZnc2RheVM3TENzeml6cnJRbHRKeTFFN1dL\ndGdHMmViYnd0MmkzNExoWnVORzVTcm5DdWp1NnRic3UmI3hBO3U2ZThJYnlidlJXOWo3NEt2b1Mr\nLzc5NnYvWEFjTURzd1dmQjQ4SmZ3dHZEV01QVXhGSEV6c1ZMeGNqR1JzYkR4MEhIdjhnOXlMekom\nI3hBO09zbTV5ampLdDhzMnk3Yk1OY3kxelRYTnRjNDJ6cmJQTjgrNDBEblF1dEU4MGI3U1A5TEIw\nMFRUeHRSSjFNdlZUdFhSMWxYVzJOZGMmI3hBOzErRFlaTmpvMld6WjhkcDIydnZiZ053RjNJcmRF\nTjJXM2h6ZW90OHAzNi9nTnVDOTRVVGh6T0pUNHR2alkrUHI1SFBrL09XRTVnM20mI3hBO2x1Y2Y1\nNm5vTXVpODZVYnAwT3BiNnVYcmNPdjc3SWJ0RWUyYzdpanV0TzlBNzh6d1dQRGw4WEx4Ly9LTTh4\nbnpwL1EwOU1MMVVQWGUmI3hBOzltMzIrL2VLK0JuNHFQazQrY2Y2Vi9ybiszZjhCL3lZL1NuOXV2\nNUwvdHovYmYvLy8rNEFEa0ZrYjJKbEFHVEFBQUFBQWYvYkFJUUEmI3hBO0JnUUVCQVVFQmdVRkJn\na0dCUVlKQ3dnR0JnZ0xEQW9LQ3dvS0RCQU1EQXdNREF3UURBNFBFQThPREJNVEZCUVRFeHdiR3hz\nY0h4OGYmI3hBO0h4OGZIeDhmSHdFSEJ3Y05EQTBZRUJBWUdoVVJGUm9mSHg4Zkh4OGZIeDhmSHg4\nZkh4OGZIeDhmSHg4Zkh4OGZIeDhmSHg4Zkh4OGYmI3hBO0h4OGZIeDhmSHg4Zkh4OGZIeDhmLzhB\nQUVRZ0JBQURFQXdFUkFBSVJBUU1SQWYvRUFhSUFBQUFIQVFFQkFRRUFBQUFBQUFBQUFBUUYmI3hB\nO0F3SUdBUUFIQ0FrS0N3RUFBZ0lEQVFFQkFRRUFBQUFBQUFBQUFRQUNBd1FGQmdjSUNRb0xFQUFD\nQVFNREFnUUNCZ2NEQkFJR0FuTUImI3hBO0FnTVJCQUFGSVJJeFFWRUdFMkVpY1lFVU1wR2hCeFd4\nUWlQQlV0SGhNeFppOENSeWd2RWxRelJUa3FLeVkzUENOVVFuazZPek5oZFUmI3hBO1pIVEQwdUlJ\nSm9NSkNoZ1poSlJGUnFTMFZ0TlZLQnJ5NC9QRTFPVDBaWFdGbGFXMXhkWGw5V1oyaHBhbXRzYlc1\ndlkzUjFkbmQ0ZVgmI3hBO3A3ZkgxK2YzT0VoWWFIaUltS2k0eU5qbytDazVTVmxwZVltWnFibkoy\nZW41S2pwS1dtcDZpcHFxdXNyYTZ2b1JBQUlDQVFJREJRVUUmI3hBO0JRWUVDQU1EYlFFQUFoRURC\nQ0VTTVVFRlVSTmhJZ1p4Z1pFeW9iSHdGTUhSNFNOQ0ZWSmljdkV6SkRSRGdoYVNVeVdpWTdMQ0Iz\nUFMmI3hBO05lSkVneGRVa3dnSkNoZ1pKalpGR2lka2RGVTM4cU96d3lncDArUHpoSlNrdE1UVTVQ\nUmxkWVdWcGJYRjFlWDFSbFptZG9hV3ByYkcmI3hBOzF1YjJSMWRuZDRlWHA3ZkgxK2YzT0VoWWFI\naUltS2k0eU5qbytEbEpXV2w1aVptcHVjblo2ZmtxT2twYWFucUttcXE2eXRycSt2L2EmI3hBO0FB\nd0RBUUFDRVFNUkFEOEE5VTRxN0ZYWXE3RlhZcTdGWFlxN0ZYWXE3RlhZcTdGWFlxN0ZYWXF0a2xq\nakhLUndnNlZZZ0N2MDQya1ImI3hBO0o1TVk4NStaTmRzTGFPTHk5WXJxRjNQVmZXTWljSXZjcVdX\ncCtaQXlySktYOExzTkZneEUzbU1nQjBBM1B4NUJoV2grUXZPR29lWWImI3hBO1hYUE1HdFJ3WEVV\ncXlLa2NvbG4yTmZUVUxTSkZQU2kxSHRsTU1IcTRwU3N1ejFmYTBmQk9IRGk0SUhxZWY5dm5aUk9v\nL250RmEzOXomI3hBO2JSYU42OFVFcnhwUDlaNDgxUmlvYmo2VFVyU3RLNVhMVzBhcHlzUHNxWndF\namtva0Exdzh2OWtoL3dEbGYvOEEyb2YrbnY4QTY4NFAmI3hBO3ozbDlyWi9vUi8yMy9ZLzhlYkg1\nL0VrQWFEdWYrWHYvQUs4NC9udjZQMm9Qc21BTE9YL1kvd0RIbFh6cCtjazlxWXJQUTRBbHkwVWMm\nI3hBO2x6Tk9BeGlhUkEzcEJRZUpkYS9FYWtWMnlXZlZHSnFMVjJQN1B4elFHWEtUd25rTy93QXl3\nK0g4Mi96QVJ4SzErczBZTkNqMjhJVWsmI3hBO2RpVVJUK09VZVBtRzU1ZTUyMzhrZG5UUEJIaDQv\nS1p2NVdmdWV3L2w5NXN1dk0raEcvdXJZVzAwY3JRUHdyd2NxcXR5UUdwQStPbTUmI3hBO3pZWVpt\nVVFTOGIycHBJYWZQTEhFMkIvYXliTFhYdXhWMktwWHIvbWJSZEF0UHJPcVhLd3FmN3VQN1VqbndS\nQnVmMWVPUXlaSXdGbHkmI3hBOzlKb2N1b2x3NHhmM0QzbGova3o4emJQelJxOTFwOEZqTGJMREg2\nc1V6c0hES0dDMGNLS0l4cnNLbXUrK1Y0YzNIZTJ6bDlwOWxmbEImI3hBO0c1aVVqekE2Zmo0TTB5\nOTFMc1ZkaXFVYTE1djh0YUl3VFZOUWl0NVNPWG83dkpUeDRJR2FuMFpYUExHUE11YnB1enMrZmZI\nQWtkL1QmI3hBOzVuWkRhWDUvOG5hcE1zTm5xa0xTdHNrY25LRm1QZ29sQ1ZQeXdSendseUxabjdJ\nMVdJWEtCcjUvZGJJTXRkYzdGWFlxN0ZYWXE3RlgmI3hBO2tYNTlhcC94eTlLVS93QTkxS3YvQUNU\nalAvRTgxK3VseUQyWHNuZyt2SjdvL3BQNkhuV20rVjcvQUZDelc2aXVMU05IWmxqaW11RVMmI3hB\nO1ZpcG9Tc2YyeUsrMlk4ZFBZQnNCM1didGdRbktJeHpsdzdXQnQ4MDU4dmVTdGJpMXl3dVpyYWVT\nMGduam1tZTNodUdxaU1HSVYvVFYmI3hBO0t0MCsxbHVMRHd5QjUvQXV2N1I3VThYQkxHQUlHVzNx\nbkQ0N0NSUDJNOHZ2Si9rV09LNHZHOG42Z1k0MWttbGtNL29vRlNyTWFQZHAmI3hBO1Fld1g2TXlU\nR0FGOEgzT2p4NXRSS1FqK1lGa2djNW5uN292Sk5DMDk5VTE2enNvYmYxaGNUcURiSzNHc2RhdW9Z\nbmFpQTcxekF3UjQmI3hBO3A4bnNPMWMvZzZZa1M0VHNML1Q4cmV3ZjhxMDh1LzhBVW9uL0FMaVUz\nL1ZUTmlNWS9taDRxV3RuSVVkUktqNVNlUTZ4RzhQbVc4WFYmI3hBO0lYUmhkU0c2aEJBZmR5V0FZ\nR25mWWpiTmJkWkxsM3ZjaVBpYVRoeEhuanFKK0QzMjE4eDZRK2xSUXRvVjVGcER4S0kwRnFseGIr\naVImI3hBO3Q4TnMwNDQwOXMybmpBamtmeDduejQ5blNqS2hPSEVQNlhDYi93QTRSUnZsS1R5c21u\nR3o4dlN4dGJRdTd2QXJIbkcwakZpSFIvM2kmI3hBOzdtZ0REcGtzY29rZWx4OVpoelJsZVVHNWRU\nMStQSXA1bGppT3hWNTE1MS9OcHZMdXZTYVZCWUxkbUZFYVdScFNoRHVPWEdnVnYyU00mI3hBO3c4\nMnE0SlZUMHZabnMvOEFtY0l5R1hEWlBUdStMempVZk9PZ2FucThtcWFqb0RYYzhocVk1TDJYMHg0\nQUJWQm9Pd3JUTWI4ekc3NGQmI3hBOzNlanNQS0llSEhOS01lNFJBKzRzbTByemRkK1lkRTFieS81\nYjh2dzZmTTFvWkZGcTZvQ1BVUkhCK0dNY21WelNweklqbGxsaVFCVHAmI3hBOzgvWitIcy9Oam5r\na1pna25sM2ZIdnBoMm8rVXZQT21XVWw3cUZuY1cxcERUMUpubFFnY2lGSDJYSjNKQXpHbnA1eEZr\ndTkwdmJXbXomI3hBOzVCamhFOFI4aCt0QWFSWWVZZFp1bXROTFNhN3VWUXl0RWowSVJTQVdxektP\nckR2bGVMRktmSnl0ZnJzR2xBT1FmVjNCa1dtYUQ1NjgmI3hBO3VYWDZjdnJTZTJ0N0JKSlRLOHFs\nZWZBckdwQ09TUTBqS0dIaFhNbU9HV081SG9IUzUrMGRQcmVIQmpCSEhJWHNCNlJ1ZnVTYnkvb1cm\nI3hBO3IrYi9BREI5V1dibGN6bHBycTdtSmJpdlZuYnUyOUFCNG50MXlqRGk4U1c1ZHIycHI0NkhD\nT0NQbEVkR1g2NytSK3NXVm9ialM3dGQmI3hBO1RrVGQ3WXA2RG5wOWlydUQzUFVmVG1UTFJEb1hT\nYWYycUpCR1NJdWpSajM5TmordDdQcDlyOVVzTGEwNW1UNnZFa1hxTVNXYmdvV3AmI3hBO0ozSk5N\nejNqbGZGWFlxN0ZYWXFsRXQxcVY5cUYxWTJjcVdjVm1VVzRuSUVrekdSQTQ5TkQ4S2lqZmJZTlUx\nSEhiS3lTVFEycHpZNDQmI3hBO1k0Um5JR1JsZERrTmpXNTVuM0N1bTd3VDh5cm96K2NiNlAxNUxs\nYlFyYkxMTXdaeVl4OGZRS28vZUZ0bEFHYXJVRzVsOUM3RXg4T20mI3hBO2lhRWVMZmJ6NWZaVEpm\nSzM1dWFab0doV21tUmFPenRBZ0VzeXlxdnFPU1daaU9CNnN4NzVrUjFnQXFuUzUvWmpKa21aSEp6\nSlBMdjMmI3hBOzczcVhrN3pSSDVtMFZkVWp0bnRWTWp4K201RFY0R2xWWVVxUG82NW5ZNThVUVhs\nZGRwdkF5eXgzeGNQVkxQelcxVDlIK1NMN2lhU1gmI3hBO2ZHMWo5L1VQeGova1dHeXJWU3FCYzdz\nREI0bXJqM1I5WHk1ZmJUemI4a2RMK3MrYXBiMWdDbGhBekszY1NTL3UxKzlDK1kyaGp6THYmI3hB\nO1BhelA2WVkvZkw5QS9TOTN6WXZGUEx2emM4cjZEZkkycXhYOXJhYXpFb1dTQ1dhT1AxMVhvdEdJ\nK01EcDkyWVdxeFJPOTFKNnYyZTEmI3hBOzJiR2ZETVpTeEh1QlBEK3p2WXQrWFhuclY5QllhYzhS\nMUN5dVhLVzFxSENsSjI2ZW5JMzd2aXg2aXZ2NDFvMCtZeDI1dTI3YjdNeFomI3hBO3g0bGlFbzh6\nNWVZNTI5UTBQUnRldXRmL0FNUmE0a0ZsT3NEVzl0cDlzZWJLamtFK3ZOL3V3aW13SHc5OHpZUWta\nY1V0bmxkVnFjTU0mI3hBO1BnWVNaQzdNai92UjArOWxXWHVvUU41cmVuV3N4dDJrTXQyQlUyc0NO\nTktBZWhaSXd4VUh4YWd5Sm1CczVHUFN6bU9LcWozbllmTS8mI3hBO29mTmV1M2svbUh6VmRUd0Ft\nVFVydmhiSzNXa2o4SWxOSzlCeEcyYWdmdk1udkw2UEwvQk5GNXdoL3N2N1hyNmZrL3BUeHFzcVdz\nTkEmI3hBO0FmUml1R2Y1bDVMaGxQOEF5TEdiSHdQS1B5ZUovbFlqbExMTDM1RDl3SDZVMDBQOHM5\nSzBXU1dTeHY3MkY1d0JLWTJpU29Va2dWV1AmI3hBO2xUZitiSlJ3MXlQM0Q5RFRsN1RPUTNLTVQv\nV001ZjdxUllsK2N0dGI2WG8xbGJSM2Q1TlBlU25rczkxTktoamhGVFdObTRWNU91L0gmI3hBO01Y\nVmpoaUJaMzgzZit6Y3pseXlrWXdBaU9rWWpjK2RYeUJRbjVNZVZOUDFPMjFMVUw2TnBVVjB0NE9M\neVI4V0FMeWJ4c3RhaGt5V2smI3hBO3hBd3N0UHRGMmhPR3BFWUg2WTl3UFBmcjhIb0dxZmw1NWN2\nZE91YlZJWGlrbWpaWTVUTk8vQnlQaGJpemtHaDNvY3ZscDRrVTZqQjImI3hBO3huaE1TSkJvOTBm\nMVBDWUcxWHlsNWtlSzZXYUdhM1l4M1VjRTBsdTBrWjMrR1NNcWVMYk12YnB0bXNIRmpsUmU5a01X\ndHdpVWFQZFkmI3hBO0JvK1lMMnpTQitrZElUVjlEOHkzVWRxd0pkYjRRM0VhRlI4U3k4MVdSU3Zm\nOTVteWh1TGpJL0Y0ZlVIdzhweFpjTVRMK2pjU2ZkVzMmI3hBOyt4VFB5ZDVndU5iMDZlZWRZaTF2\nY1BiQzV0K1hvVGlPbjd5TG52eE5hZC9uazhPUXlEaTlwYU9PQ1lBdjFSQm8vVkcraHI4ZVNmWmEm\nI3hBOzY5Mkt1eFYyS3BiclZscGpXOHVvWFN0SEphUk8vd0JhaGRvcGxSQVdJRWlGVHgyK3lkdmJJ\nVEFxeTVXbHk1T0lRanZ4SGtkeGZ1UDMmI3hBOzgzelpwTmxjK1lQTXR0YXU5WnRTdWg2MGhxeG83\nY3BYSUJXdEZxZW96VTRZOGM5MzBYdFRQK1cwcE1kcXFJcjVmYzlyaC9KcnlVSXcmI3hBO0o3WjNr\nN3Nrc3lML0FNQ1pIL1htekduaDNCNFdYYk9wdmFjcTkvN0F5dlNOR3N0RzB1SFRkTlQwYldEbDZh\nc1N4SE5pN1ZKM05XWTUmI3hBO2FCUW9PdG5rTTVHVXR5ZWJ6bjg0dGF0YlpyTFROUWcrdmg2M0t4\ncTdRK25TcUsxVnJ5cjhRM3pCMWN3S0IzZXI5bk5OS1hGa2dlRCsmI3hBO0hsZDlmMUwvQU10UExo\nMUhRNWRTdGJtZlI0cnFVb1k3UmtySXNWQUdNaFN1ek02MHl6Qml1SU4xYmk5cTY4UjFFb21NY2hq\ndGNyKzYmI3hBOys4b0R6dStnK1h2TUZqWTZ0SnFPczJjMExTM2l6WGtoa1VNL0ZPSVV4cit3MVIr\nT1U1dUdFZ0RaSHZkajJXTTJwd3luakdQRklHaFUmI3hBO0JYbjM5NkxIbXY4QUp6U3JBM09tV0VW\neGVvdFliZHJkMms1ZHF5ektRUGNoamt2Rnd4RmdidEo3UDdUelQ0Y2tpSTlUeEN2bEg5VHomI3hB\nO2p5dGEzbXNlY0xDT01WbXVMcFpKU3RSeFFOemtZZUhGUVNNeDlORXl5VzdydHZQSEJwREhySWNJ\nL0h1ZlR1YmQ4MmRpckM5WXZycnkmI3hBO3g1UDFDS2EwSWFLQjBpMUtFaGtsbWtIQkpaZ1Q2aXlN\nN0F0VUVWL2F6R25Jd2dkdmk3M1RZbzZyVXhJbHprUFNlZ0c1QTZVQnk1ZTUmI3hBOzRIcGxsZjNs\nNmtGZ3ZLNiszR0E2eG40YWJoblpSWDZjMW1QR1pIWjd2VzZ2SGhpUEVCSVBRQytUS1kvSlg1cFNG\nUUxlN1VNUUE1dUYmI3hBO0tpdmMwazZabFIwMlN4WjI5N29jL2JtaTRKY01mWFJyMDllajZCVm83\nYUJFa2xMZW1vVXU1cXhvS1ZKOFRteHQ0Y1JKNVBIUHpkdHQmI3hBO1Qxblg0R3M0L1VzTFdBUnJM\neVVEbXpGblBFbmwwNGpwMnpYYXNHVXR1VDIvczlQSGd3bmlOVGtmczZNaDhoYXhiZVgvQUN0YjJK\nMCsmI3hBOy92TDBzOHR4OVV0bmtCWjIrR2hQRWJSaFJtUmp5Q01RS0orRHBkYm81NTg4c2hsQ0lr\nZjRwRGwwK3hPWS9Pbm1DOWFWZEo4czNFeGkmI3hBO1l4eUc1dUlMYmd3QU5HV3JrR2hCcGt2R2tl\nVVdrOW1ZWVY0bWFJditiR1VyKzVpZjVrNlg1anZ0RmsxZlhyYlRMT095NGlFUXROTGQmI3hBO0gx\nR0NoT2RVUWlyVnBsR29qSXh1VmJPMzdFellNZVlZOEp5U011ZDBJN2IzVzVZNytWT202WnJ2bUNi\nVDlSaU0xbEZhbTVGc1haVWEmI3hBO1dPU05BekxId1Z0cE80eXZTd0V5YjVPZDdRYXJKcDR4TUNC\nS1ZpNjNyM20zdk52YndXOEtRVzhhd3dSZ0xIRWdDcW9IUUFEWVpzZ0smI3hBO2VEbk15Sk1qWktw\naFl1eFYyS3V4VmlYNXE2aTlqNUcxRjByeW5DVy9JZEFzcmhXNUhzT05SbEdwSjREVHR1eEl4T3Fp\nWmtDTWQ5L0wmI3hBO2w5cjUrMFhYYnZSdFNpMUt3bFJMdURsNlRzRmVuTlNqYk5VZlpZak5iajhT\nQnNBL0o3dldmbE5SSGh5VGlSZC9WWDZXVEg4NWZQQUYmI3hBO2ZyOFgvSW1IL21uTGhtekgreDFj\nK3pPellnbXh0L1QvQUd2b0RUV3ZHMDYxYStDaTlhR00zUVFFS0pTbzUwQkpvT1ZjMmJ3WllGNTcm\nI3hBOy9LL1VQTXV1blVvcjZPS1Awa2lXS1FOVmVGYTBvRHRVMXpGemFiamxkdS83TjdlT2x4ZUdJ\nWHZkMyt4bVBsZlJGMFB5L1phVUdWMnQmI3hBO282U09vb3JTTVM3a0E5aTdITW1Jb1U2UE5sT1Na\nbWVjaVQ4MEI1cjhnK1gvQURNVWx2a2VPN2pYZ2wxQzNGK0lKUEUxREtSVStHVjUmI3hBO01NWjh3\nNWVpN1R6NmIrN2x0M2N3d2sva0hCNi9JYTAzb2Y3N050OFhYK2YxZitOY3AvSlE4M2JIMnAxTmNv\nZkkvd0RGTTM4bytROUImI3hBOzhyeHViRkdsdTVSeG12SmlHa1lmeWlnVlZXdllENTF6SWhBUkZC\nMGVxMWVYUExpeUhpTElzbTR6c1ZlY2ZubHFmMWZ5MWEyQ21qM3QmI3hBO3dDdzhZNFJ5Yi9obVRN\nUFd5cU5kNzAvc3RnNHM4cC96WS9hZjJXdy84bjlhOHVhSmQ2bGZhdmVKYXpTUnh3V3daWFlsU1Mw\naCtGVzcmI3hBO3FtVmFUSkNBTm5kMkh0Rm90UnFNa1JqaVpSaVBMbWVmM0I2dFkvbUY1TnY3eUt6\ndGRVamt1WjJDUlJsWFhreDZBRmxBcWUyWmtjOEomI3hBO0dnWG1jL1pPcHhRTTV3cUk5MzYyUWxW\nUFVBNWE2NjN6SHJrMTFyM20rNWtpcnl2cnd4V25JRWdCNU9FSy9pTTA5R2VUNHZwWm5IUzYmI3hB\nO0hZamlqRC9aVit0OUwydHRGYTJzTnRDT01NQ0xIR3ZncUFLQjl3emNQbWp3YnpEYi9tRjViOHph\nbHFzSXVMZGJxZVNYNjFBUFVnZEcmI3hBO2NsT1d6SnNPaXNLak5aUEhsaklrZGU1NzdTNnZRWjhF\nY2VReDlNUVBWdDl2NmlrV28rWlBPSG14b3JXNW5tMUl4dFdPMmhqRk9SMnImI3hBOzZjS2lwOTZa\nQWpMazJOdVRpbjJmb3daUU1BVDNIaVAza3ZYUHlvOGlYZmwrMG0xRFUxQ2FsZUtFV0NvSmhpQnJ4\nWWlvNU9hRnFkS0QmI3hBOzN6UHdZZUFlYnh2YS9hWjFlVytVSThoK240cy95OTFUc1ZkaXJzVlE4\ndW9XY1Y5YjJNa29XN3Vra2tnaW9hc3NQSDFEV2xQaDlSZnYmI3hBO3hWWGRFZFNycUdVOVZZVkgz\nSEZVRGZQbzFpa2IzU1JSaWFSWVloNmZJdEkvMlZWVkJKOGZsdjB4VlZsaTA2RjRWYTNYbE0vcHg4\nWWkmI3hBO3c1Y1Mvd0FSVlR4RkZPN1VIYnFSaXFLeFYyS3V4VktvUE5PaFhHcHlhWmIzQm12b1g5\nT2FHT09WL1RiNGgrOFpWS29DWTJBTEVBMHgmI3hBO1ZHNmhxRm5wMWpQZlhzb2h0TFpESk5LUVNG\nVmVwb0FUaXFJeFZEaS90R3R4Y1JTQ2VFeWVrSGdCbUhQMVBTSS9kaHZzdnMzOHREV2wmI3hBO0Rp\ncUl4VmhINWhmbDNkZWJMcXptaTFCYlJiV05rOU40eklDV0lQSVVaYWROOHg4Mm5HUTdsM1BabmJF\ndEpFaU1STGlMRWY4QWxRZC8mI3hBOy93QlhxTC9rUTMvVlRLZnlNZTkyZitpekovTWo4eW0zbFg4\nbXB0Rzh3V2VxWE9wUjNVZG94a0VDd2xDemNTRlBJdTMyV0lQVHRsdUwmI3hBO1NpQnUzQjdSN2V5\nYW5GNFppSWkzcCtaTG9VQ3VnNkVseUxwZE90VnVRM3FDY1F4aVRuV3ZMbHhyV3ZmRlVkaXJzVmRp\ncnNWZGlyc1YmI3hBO2RpcnNWWTU1ajByekJMcmVsYXRveTJrc2xoRmRReXcza2trU2tYUG9rRldq\namwzWDBlNHhWalhsUDh0dFM4dWFkNW9XUzVlZTcxaU8mI3hBO2FsOWJTczF4Tkk1bVpaV2prRVNM\nTXZxMEI5VGZ4VUFVVXNRMGY4bTlidjdlMWttczR0S3M3SzdaN2ZUQkpKYmN4OVZ0b1JlQXA5YVom\nI3hBO0psZUJ5T2RXUElua0R2aXRwdGQva2ZxVEtVMDYrdDlOTnpidXQ5TmJoMWQ3cGx2RVc0b0F2\nSjFTOFVWcUR0MTZZcmFZSDh1ci9TL3kmI3hBOzV0ZkxsdHA5cmR5alU3U2VUVDNrZTRzekd0eEcw\nZ1l5UnFSRlJTekx3Tk4rdUtwTC93QXFLOHd5UTJ0dk5xTmloUkhEWHNTVGlhMVImI3hBO3hkVnNy\nUlN4SDFYL0FFdFY0c3crRmVuU2l0c204dS9senF3ODEyL21Mek1tbTNVMXZES0lvb0ZlVVIzQmlz\nSW9wNHZXUWNXQXNaRFgmI3hBO3F2SUFFN25GVi9tdjh1TlYxbnk3cW1sd1hVRWMxOWYzMTVHNzgr\nS3BkMlUxcWl0UlNhcTB3SjlzVUpIci93Q1NkNU5lM2cwaE5OWFImI3hBO3BwTGsyT2xYS3VJYkw2\nekJhS2JpMlZVZFVtV2UybGJZVW8reFdweFRhdGUvbFY1b3ZZN3EwdUxqVHpiYzVCWlBXVnFwSnFE\nM3dOemImI3hBO3VqUlM4ZVlVeE1TcitLbWhDcXBEK1R0d0xtYWRocDZUeDNkdFBwOTVIR1JNaVE2\neTJveVBVcDhFandNSXZoYmZpTjZZcWxIL0FDb1gmI3hBO1V2OEFDSDZDOWVINno2M3FmVy9yVS9w\nZXI2ZkQ2NzZIby8zM0w0dUhQci91ekZiZTE0b2RpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1YmI3hB\nO2RpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1Zk\naXJzVmRpcnNWZGlyc1ZkaXJzVmQmI3hBO2lyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGly\nc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGkmI3hBO3JzVmRpcnNW\nZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRp\ncnNWZGlyc1ZkaXImI3hBO3NWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJz\nVmRpcnNWZGlyc1ZkaXJzVmRpcnNWZGlyc1ZkaXJzVmRpcnMmI3hBO1ZkaXJzVmRpcnNWZGlyc1Zk\naXJzVmRpcURuMW5SN2ZVTGZUYmkrdDRkUnVnVGEyVWtxTE5LRkZXTWNaUE5xQWIwR0tvekZYWXE3\nRlgmI3hBO1lxN0ZYWXE3RlhZcTdGWFlxb3dYMWxjU3pSVzl4SE5MYnR3dUk0M1Ztalkvc3VBU1ZQ\nenhWV3hWMkt1eFYyS3V4VjJLdXhWMkt1eFYmI3hBOzJLdXhWTHRkOHg2RG9GbXQ1cmQvQnAxbzhn\naFNlNWtXTkRJd0xCQVdwdlJTYWUyS3ZPL08zNW82ZmZXeVdmbFB6dDVlMHNTaWx6cVYmI3hBOzFQ\nNjA4WUovM1JDQjZkYWQzYjZCMXhTeGI4di9BQ1grVGRuNXNzOWF2dk84Zm12emRKT3B0cEpycEtQ\nZE1RRWRZbFo1R2V2MmVVakQmI3hBOzJ4VmpPcy84NWIrYWJmVjc2RFQ5SjArV3dpdUpVdEpaUFg1\ndENya1JzMUpBS2xhVm9NVnBCLzhBUTMzbmYvcXphWjkxeC8xVnhXbGEmI3hBO3kvNXl6OC9YbDVC\nWjIraWFhOXhjeUpEQ2xMamQ1R0NxUDd6eE9LMGovd0E3ditjZy9Na0htR2Z5cjVQbitxQ3hmNnZm\nNmpFb2VXYTQmI3hBO0h3dkZEeURjRlJ2aHFQaUxkNmRWUUdLUzIzL09VV2hXUTh3eno2NHRxQVpt\nOVc1TjF3VWJreVdqUEtVVWQrY1lBeFY5Sy9sRDVnOHcmI3hBOytZdnk5MG5Xdk1IcG5VYjFIZGpF\nbnBobzFrWkkySzFJNU9xaHRxRGZwaWhtT0t1eFZKOVc4NWVVTkd1aGFhdnJtbjZkZEZCSUxlN3Um\nI3hBO29JSkNoSkFiaEl5dFFrSGZGWGxmbmp6VHFmbWU4bDB6VC96RDhzK1dQTFoyZTd0TlNqdU5R\nbVVudlV3TEdLZnNvLzhBc2lNVXFIbG0mI3hBOzMvTEQ4cXZKM21MWC9MR3UyL21YV0liZEh1bVc4\naGw1RXlDT0ZmVGdadUNHV1FibXA5OFZZWC8wT0Y1ay93Q3Blcy8rUnN1SzA3L28mI3hBO2NMekov\nd0JTOVovOGpaY1ZwbFA1Y2Y4QU9TbXJlWi9NRWxwcVdsV3RocEZsWjNOL3FWNmtrak5GQmJ4bHVR\nQjYvR1ZIMDRyVHo3ekQmI3hBOytmMzVxK2RQTVg2TzhuK3ZZVzhyc3RqcDlqR3NseTZqZm5MSlJt\ncnhGVzRrS1B4eFdsMXQrWW4vQURrWjVNMWF4dHRaRjNLdDVLa00mI3hBO0Z2cWtJbGhtZGlGQ0Nj\nRGx5LzFaSzRxK3ZGNWNSeXB5cHZUcFhGRGVLdXhWMkt1eFYyS3ZtYi9uTUx6Qlc1OHZlWGtiN0NT\nNmhjSjQmI3hBOzh6Nk1KK2poTGlrTUo4cWZraHBHdWVYYkhWSlBNVjNIZTNrZnFQcDlqb3QzcVBw\nVlk4UTA4TGhLbGFFMXBTdE1VMnpiOHY4QThrTlEmI3hBOzhyK2NOUDhBTU1ObHF1dEpwN1BJbHZO\nYVdOaEdYYU5rUmkwMm9OSU9ESGx0RWR3TVVXOWExclhmTTJtYVBlNnRMNU4wK0cxc0lIdVomI3hB\nO3pjMzhhc0k0a0x1YVEyMDRKRk9sZDhVUGxyOGs5SDFqekYrWjlyY1djTnZkWGRwNjJwU3Bkc3lR\nRmwyRFA2YXlOVDFaRk5LZTJMSXYmI3hBO3ExYkg4eTFZTXVuZVdnd05RUTEwQ0NQK2VPTEY4aDMw\nK3FlU1B6Ymx2ZFpzMHViL0FFblZQcmM5c1daWTVUNm5yS3lPVlp1TGhneU0mI3hBO1ZQWTA3WXNu\nMXRvMzVpK1k5UzB1MzFhMzhyTnFPbVhDaDB1ZEkxQzF1dmg3L0JjZlVucU9oV25JSGFtTEZPdksz\nblR5M3E4OG1rMlMmI3hBO3lhZnFWbWdlWFJyeUJyUzVqanJRT0luQTVKVWo0a3F2dmlySThWZGly\nNGMvT25WaDVtL09QVmxFNlJXNlhhYVpGTkt3V0tOYmZqQXomI3hBO014SUFYbUdZbXRNV1FaQ2Yr\nY2U5TVkwcy9OVXVvMTZOWWFOZlhhSC9BSjZ3ODR4OUxZb3Q2TCtVMzVkUytUYlRWb0xqeXpxSG1i\nOUsmI3hBO21BSDZ4YldGckNpUUZpQTBkNWQ4ajhUMSt6MnhWQS9uNVBCcFg1ZlRSbnlQWTZHK3Az\nRWRyQmZBMmJYQ2NXOVk4VnQwYW5KSWlDZWUmI3hBOzFjVkRILzhBbkdqeWZxTjNwbXNhMm5sL1N0\nYnQ1Sm83T0k2dGNORDZiUkw2a25wcUxPOURjdlZTcHF2VEZTOUYvTUx5bjV0UGtIekgmI3hBO0JZ\nK1ZQTCtuTlBhTnpuMHE1bCt0ZWhFNnpQR0VGaEI2cFlSMDQ4MXJpcnhEL25IbnoxYitWZk50d2pX\nRWQ1ZGF0RXRwYXlTWENXM0ImI3hBO3VmTGdIa1VwKzhJQStJcnVCdmlrdnA2Kzg3cWtLcjVuOG9h\ncmFXOFR4ekdiNnZEcVVDUEV3a1NYL1FwTG1RY0dVTUdNWXBpeFpUb20mI3hBO3U2UHJtblI2bHBG\nM0hlMk10UWs4UnFLcWFNcDdoZ2VvTzR4VkhZcTdGWFlxN0ZXS1hkemU2dDVudTlEazFSdEp0N1ZF\nZUswdHdFdTcmI3hBOzFIUU04eXpTQThZVVkrbWZSSE1NTjJBSUJWZkhuNTMzZGxQK1ordVJXUFA2\ncll5aXpReVNTVHlGNEZDU2w1WldkM1BxaDkyT0xJTSsmI3hBOzB6L25MTFhkTjAyMDA2Mjh1MmEy\nOW5ESGJ3ajFaZGtpUUl2NERGRlBvMzh1dk1tcGVadkplbDY5cU5xbG5kYWpHMDMxYUlzeXJHWFkm\nI3hBO1JrRnR6eVFCdnB4UXhIL25KVFh4cEg1VWFqRXJjWnRWa2hzSWovcnQ2a2crbUtKeGlrUFB2\nK2NQZkw5SS9NUG1GMSswMFduMjcvSWUmI3hBO3RNUHhpeFV2b2UvMWZTdE9UbnFGN0JacDE1WEVx\nUkR2M2Nqd3hROEgvUGk0L0pmemZwL3FSZVlMVC9GbHNoWFRyaXhEM2htQXFSYnkmI3hBOy9WbGxx\nckd0RCt5ZCtsUVZJZWEva2o1Mzg1ZVZOZGZRTkhTSytrMWlYNnVtbVhqbUdGTG1ud3piL3ZrTkFW\nWWNCeUh5R0tTK2xmS1AmI3hBO2tyekpIcnplYXZPT3FSNmhyeGdhMXRMT3lReFdObkM3Qm5XSU44\nYnN4VWZHKzlOc1dMT01WZWVuVmJqVmZKMTc1dTFiVkpJTk5ndEomI3hBOzdwdEYwNlJyYjBmUlJt\nYUM1dVU0M0xUb1Y0dUVhTUJ0dUo2NHErTi9KM21uL0QzbkN4OHlUMmcxR1N5bk56OVhkeWdlV2g0\nc1hvLzImI3hBO1hJYnAyeFpQZDlKLzV5MTFyVTlVczlOdHZLMEp1TDZlTzJoSDF0L3R5dUVYL2RY\naTJLS2ZTZUtIeTcvem1CNWc5WFd0Qjh2bzIxcmImI3hBO3lYczZqb1d1SDlPT3Z1b2hiL2dzVWg3\nRCtRbmwvd0RRbjVVNkZDeThacnlJMzh4NkVtNll5cFg1UmxCOUdLQ3piVWRZMGpUWS9VMUcmI3hB\nOyt0N0tQcnp1SlVpSDN1VnhWOGYvQUo0ZVdQeTIvVHk2ajVHMXEwdUh2WkdOL3BOcVhuamlmY21X\nRm9Fa1FSbW02MTJQMmZoNkxJTS8mI3hBOy9Kejh5L3pWMTd5Ny9oblJyYTAxRFVkTm9zdXZhblBS\nYmUzWThZMWtnU3MwemppMUdOTzNJZHlvZXplUVBKamVWZEp1WUxpOWJVZFQmI3hBOzFLN2wxSFZi\nMG9zU3lYVTRVT3lSTDhLTFJGQUdLR1RZcTdGWFlxN0ZVbjgyUTZEK2dyeSsxdTBpdTdQVFlaYnho\nS29Zb0lFTWhkR08mI3hBOzZNQXYyaHZpcjR6L0FDVDh1eStiL3dBMUxKYm1SMVZHbTFHOG5VSkt3\nTVlMSzFKMW1ScXpNZ1BOVDF4WkY5bVd2bEx5L0RDSTVMRzImI3hBO3VYSFdXVzJ0Z3grZnB4eHIr\nR0xGTkJBcVFyREJTR05GQ1JxZ0FDcUJRQURvQUJpcjV6LzV5ZDg0Zm9iVU5MMEl3UWFySkxDMTdJ\nbCsmI3hBO2dtU0xreGlqWkVIR2pIaSsrS1F5Nzhydnl3MGZWL3k5MGkvMWNYRUVtcFJHN2tzTE80\nbXRyVUpNVDZYR0pHN3c4YTcvQUlZcTg2L04mI3hBO3lmeUYrWEg1aDZWWjJIbFd5MU95K3BtNTFT\nMHZUSk9aV21sWUlWbG5NeFYwRVo2Z3FlVzQ2VVZUcVQvbkovOEFMdlNkQ2xYeW41WWsmI3hBO3N0\nVmFNcEJCOVh0cmUyUnFiRm1nY3N5Zy9zaFJYMnhXbUJmODQ0K1M5Vzh5Zm1MQjVobVJtMDNSNVd1\nN3U3ZGZoZTVJSmpqVTlPZk4mI3hBO3VaOEFQY1lxWDJWaWgyS3ZHZjhBbkpzYVBwWDVmWGw5RkFJ\nTlgxYWVDeCtzd00wTHlMdkk0bTlNcjZ5K25HeTBrcUJYeHhTR0FmOEEmI3hBO09MZjVmV2VzMmVz\nNjdmcEhKREhORlpXOGMxdmIzRVpLcjZzMVJQSElRYVBIUXFSNzF4VXZvMjE4bWVVYldhS2UzMFRU\nNHJtRmc4VTgmI3hBO2RwQWpxNm1vWldWQVFSN1lvVEs0aG5rVWlLY3cxN2hRZjE0cStSUHpBODMy\nL21IODByblE0ZEp0dFF2SDFCZElpMUc0VkpIa0tTaUImI3hBO1NCd29BSHJTaDZZcGZRcC9KM1FK\nWWtndTlWMW03dG8xQ0pieVg4cXhxaWlnVlVpOU1CUU9nR0tIejdvM25yOG9QTC9uWFhiSFcvS0Um\nI3hBO1dvNlREZlRSNmRxRzk1TUk0bktMNmtkMUlWa1Z1UEt0YTcwb2NVby84M1B6dzhqNnA1T244\ncCtSOUxObmIzelJtK3VSYngya1lpaWMmI3hBO1NoSTBqK0lsblVWSkFGUEd1eXRNdy81eEw4bDZo\ncDJpNnA1bXZvakVtcm1LSFR3NG96UXdsaThncit5N01BUDlYNVlxWHY4QWloMksmI3hBO3V4VjJL\ndXhWZ3Y1M1czbUM4L0xYVnROOHYyY3Q5cVdvQ08yU0tFVllSdklETVRXbTNwaGwrbkZRK1d0Qy9M\nWDg5OUF1bnU5RTBqVTkmI3hBO091cEVNVWsxc1JHNWpKREZTVmF0S3FEaXlaRlphUi96bEpQZVFR\nU1hHdXdSeXlJanp2TzNGRlpnQzdmSDBYcmloOWR4UituRWtZWm0mI3hBOzRLRjVNYXNhQ2xTVDFP\nS0huZm5qOGh2SlhuVFhuMXpXWnI3NjQ4YVFoWUprU05VakZBRlV4c2U1UFhyaW0yZjZmWTIxaFlX\nMWphcncmI3hBO3RyU0pJSUU4RWpVS28rNFlvUy96SDVSOHNlWmJVV3V2YVpiNmpDdGZUOWRBeklU\nMUtQOEFiUS82cEdLc0xpLzV4dy9KMk82OWNhRVcmI3hBO0FvVmhhNnVtakJGT3hsMytSSkdLYmVn\nYVZwR2xhUll4MkdsMmtOalpRaWtkdmJvc2FDdlg0VkFGVDNPS0VYaXJzVmZQdi9PVXVoK2QmI3hB\nO1BNVjFvV21hRm8xNXFGbmFKTmMzTXR0QzhpZXJLUWlLU29weVZZMlAreXhTSGxubC9TLytjaXZM\ndGgrajlFMC9XckN5NXRLWUliZGcmI3hBO3BkcUF0dXAzTkJpbDZiK1N4L1BlODg5MjU4NFM2ckRv\nZHRCTk5NbDdHWTRwWDQrbkdsU3ExUEtRUFQvSnhRWDBSaWg1RjVYL0FPY2ImI3hBO1BLbWdlYkxU\nektOVHZyNjl0Sm11UkhjR0hnOHJBL0UzR05Uc3pjdXZYRk52WGNVTUk4MWZrdCtXbm1lNWt1OVUw\nV0lYMHBMU1hsc3omI3hBOzI4ck1lck9ZaW9kdmR3Y1Z0S3RGL3dDY2N2eW0wcTdXNkdrdGV5b2Fv\ndDdLODBZSThZeVFqZjdJSEZOdlM0NDBqUlk0MUNSb0FxSW8mI3hBO29BQnNBQU1VTjRxN0ZYWXE3\nRlVIY2F0YXdhclo2VzRiNnpmUnp6UWtENGVOdVl3L0kxMi92VnBpcnJQV3RIdlpMcUt5djdlNmtz\nWE0mI3hBO1Y4a01xU05BNHJWSlFwUEJ0anMyS3BWYy9tRDVOaXRyZTRoMWUwdkk3dTZTeGdOcmNR\neWhwMzM0Y2cvRUVMdWQvd0FTTVZWbDg2ZVYmI3hBO3BYNFdtcTJkNXdtK3IzSmd1cmRoQS9weVNm\ndmYzZ0svREMyd3EzdFFFaFZFZjRwOHNmb2o5TS9wZXkvUTVQRWFsOVlpK3JWTGNhZXQmI3hBO3k0\nVjViZGV1S3FmK01QS1hLQmYwM1ljcm1FM1ZzUHJVTlpMZFF6Tk1ueGZGR0FqRXNOdGppcXJONW04\ndHdYc05qUHExbkZlM0xpSzMmI3hBO3RYdUlsbGtjcWpCRVF0eVppc3FHZ0hSaDRqRlV1Yno1b3FY\nbHhCTXN0dkJhVFBiM1dvWEhwUVdxUEVzanYrOWxrUU54V0ZtSVNwVWImI3hBO2tBYjRxN1V2ekY4\nazZmbzM2WWZXcktheVl1bHUwRnpCSVo1STZjb29LUFNTUVYreXByaXFaWEhtWHk1YndQY1hHcTJj\nTnZFcGVTYVMmI3hBOzRpVkZWWlBSTE14WUFBU2poL3JiZGNWUzlQekI4bVRORkhiNnhhVFhNOC8x\nYUcwRnhESE84bjFnV3pjWTVualk4WlBEcit6eXFLcW8mI3hBO24vR1hsRDZyOWIvVG1uL1ZmVyty\nZldQclVQcCt2MDlMbnk0OC93REo2NHFuR0t1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMksm\nI3hBO3BENWg4dmFuZjZucDJwNlpxTWVuM2VueDNFUU10djhBV1VkTG4wK1h3K3BEUWowUjN4Vkl2\nTC81VzJYbC9TdGVzcmFSYnROV2dtZ1MmI3hBO3FtM200U21WdUVseFdZTjhVeG8vcDdkU0dPS3Nj\nMHo4bEx5OFdHNjF5YTJqdUxhVmt0Yk1STExDTFJyYTN0dURyRDlWVVNVdEFRVSsmI3hBO0VWNkd1\nS2JUVFUveVIwelVVamltMUdSSWhhUFpUZWxFcXM2djlhK1BseU80K3VtbFFlbnZpdG8wL2w3ZmFk\nNVF0ZEYwZWUzUzhpMUsmI3hBOzF2amRMQjZjWTlHYU5ta01Ka2Jrd1NQcHpGZmJGQ1VEOGhyTnJh\nT3puMXVhVzBkMnViOGZWNFZsbHUyK3NuMVk1RkE5Rk9WNHg5TUsmI3hBO1J0U3RLMVUyeUh5dCtY\nMTNwR3ZycmwvcS93Q2s3NzZ2TGF1UmJyQUdFcVdVWWFpdS93QVFYVHhYeExIcDB4UTE1aS9MV0RX\ndEUxRFMmI3hBOzJ2MmhXL3ZMdThNb2pERlRlV3N0cVZweUZlSW01VjcweFZBYTcrVVNYK3NhbnFk\nanFwMDk5V002WGNIMVpKWXpCY3dXa1VpS0M2Y1gmI3hBO0wySWs1anFXb1FjVldTL2xEUE5KT0pk\nY1l3bVJuc0N0c3F6Mm9lOGU4NVJUTElQM2l5U2ZBL0hwMURBa0ZTaTQvd0FyVUF1bzVkVWUmI3hB\nO1NHZTR0cG9oNlNxMGNkdHF6YXFJeXdiNGlYa01mS2cyM3BYRkNTLzhxRTByL0RmNkMrdHcrbi9k\nZlhQcXA5ZjBQVDlMcjYzRDFxZjcmI3hBO3M0Y2Y4akZOdlZjVU94VjJLdXhWMkt1eFYyS3V4VjJL\ndXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjImI3hBO0t1eFYyS3V4\nVjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYy\nS3V4VjJLdXhWMksmI3hBO3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1\neFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3UmI3hBO3hWMkt1eFYyS3V4VjJLdXhW\nMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJL\ndXgmI3hBO1YyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4\nVjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYmI3hBOzJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYy\nS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjImI3hBO0t1\neFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhW\nMkt1eFYyS3V4VjJLdXhWMksmI3hBO3V4VjJLdXhWMkt1eFYyS3V4VmFqT1N3WkNvSFExQnI5Mktx\nVnpOY1IwOUdBems5Z3dYOWVLb1pidldHUCs4Q3hqeGFaVCtvWXFpSTImI3hBO3Z6OXRZMTlnU2NW\nVjFEZHo5Mkt0NHE3RlhZcTdGWFlxMHhZS1NvcTNZVnBpcmtMRlFXSEZ1NHJYOGNWUWx4Y2FpckVR\nV1lrSFp6SXEmI3hBOy9oVEZWcVM2eXgrS0NHTWU3bHYxREZVVEdMdi9BSFlVSCtxRC9IRlZVVjdt\ndUt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMksmI3hBO3V4VjJLdXhWMkt1eFYyS3V4VjJL\ndXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3Um\nI3hBO3hWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYyS3V4VjJLdXhWMkt1eFYy\nS3V4VjJLdXhWMkt2Ly9aPC94bXBHSW1nOmltYWdlPgogICAgICAgICAgICAgICA8L3JkZjpsaT4K\nICAgICAgICAgICAgPC9yZGY6QWx0PgogICAgICAgICA8L3htcDpUaHVtYm5haWxzPgogICAgICA8\nL3JkZjpEZXNjcmlwdGlvbj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAg\nICAgICAgICAgeG1sbnM6eG1wTU09Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9tbS8iCiAg\nICAgICAgICAgIHhtbG5zOnN0UmVmPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvc1R5cGUv\nUmVzb3VyY2VSZWYjIgogICAgICAgICAgICB4bWxuczpzdEV2dD0iaHR0cDovL25zLmFkb2JlLmNv\nbS94YXAvMS4wL3NUeXBlL1Jlc291cmNlRXZlbnQjIj4KICAgICAgICAgPHhtcE1NOkluc3RhbmNl\nSUQ+eG1wLmlpZDo1N0JFMzhGNDRDQjBERjExOTlDQ0VDRjU3QUY0MzlDRTwveG1wTU06SW5zdGFu\nY2VJRD4KICAgICAgICAgPHhtcE1NOkRvY3VtZW50SUQ+eG1wLmRpZDo1N0JFMzhGNDRDQjBERjEx\nOTlDQ0VDRjU3QUY0MzlDRTwveG1wTU06RG9jdW1lbnRJRD4KICAgICAgICAgPHhtcE1NOk9yaWdp\nbmFsRG9jdW1lbnRJRD51dWlkOjVEMjA4OTI0OTNCRkRCMTE5MTRBODU5MEQzMTUwOEM4PC94bXBN\nTTpPcmlnaW5hbERvY3VtZW50SUQ+CiAgICAgICAgIDx4bXBNTTpSZW5kaXRpb25DbGFzcz5wcm9v\nZjpwZGY8L3htcE1NOlJlbmRpdGlvbkNsYXNzPgogICAgICAgICA8eG1wTU06RGVyaXZlZEZyb20g\ncmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICA8c3RSZWY6aW5zdGFuY2VJRD51\ndWlkOjc0ZGUzOTk3LTEzYzYtN2E0Yi05YjI1LTE2ZWZjYzAwZmIxNDwvc3RSZWY6aW5zdGFuY2VJ\nRD4KICAgICAgICAgICAgPHN0UmVmOmRvY3VtZW50SUQ+eG1wLmRpZDowNjgwMTE3NDA3MjA2ODEx\nOTBGMUMwNEJFRkI3OEFDOTwvc3RSZWY6ZG9jdW1lbnRJRD4KICAgICAgICAgICAgPHN0UmVmOm9y\naWdpbmFsRG9jdW1lbnRJRD51dWlkOjVEMjA4OTI0OTNCRkRCMTE5MTRBODU5MEQzMTUwOEM4PC9z\ndFJlZjpvcmlnaW5hbERvY3VtZW50SUQ+CiAgICAgICAgICAgIDxzdFJlZjpyZW5kaXRpb25DbGFz\ncz5wcm9vZjpwZGY8L3N0UmVmOnJlbmRpdGlvbkNsYXNzPgogICAgICAgICA8L3htcE1NOkRlcml2\nZWRGcm9tPgogICAgICAgICA8eG1wTU06SGlzdG9yeT4KICAgICAgICAgICAgPHJkZjpTZXE+CiAg\nICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6YWN0aW9uPmNvbnZlcnRlZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6cGFyYW1zPmZyb20gYXBwbGljYXRpb24vcGRmIHRvICZsdDt1bmtub3du\nJmd0Ozwvc3RFdnQ6cGFyYW1zPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAg\nICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxz\ndEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0\nOmluc3RhbmNlSUQ+eG1wLmlpZDpEMjdGMTE3NDA3MjA2ODExOTEwOTlDM0I2MDFDNDU0ODwvc3RF\ndnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0wNC0xN1Qx\nNDoxOToxNSswNTozMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNvZnR3\nYXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAg\nICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAgPHJkZjpC\nYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAgICAgICAg\nICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hhbmdlZD4K\nICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNl\nVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPmNvbnZlcnRl\nZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6cGFyYW1zPmZyb20gYXBw\nbGljYXRpb24vcGRmIHRvICZsdDt1bmtub3duJmd0Ozwvc3RFdnQ6cGFyYW1zPgogICAgICAgICAg\nICAgICA8L3JkZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNv\ndXJjZSI+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+Y29udmVydGVkPC9zdEV2dDph\nY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpwYXJhbXM+ZnJvbSBhcHBsaWNhdGlvbi9w\nZGYgdG8gJmx0O3Vua25vd24mZ3Q7PC9zdEV2dDpwYXJhbXM+CiAgICAgICAgICAgICAgIDwvcmRm\nOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9uPgogICAgICAg\nICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkY5N0YxMTc0MDcyMDY4MTE4RDRF\nRDI0NkIzQURCMUM2PC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6\nd2hlbj4yMDA4LTA1LTE1VDE2OjIzOjA2LTA3OjAwPC9zdEV2dDp3aGVuPgogICAgICAgICAgICAg\nICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1c3RyYXRvciBDUzQ8L3N0RXZ0OnNv\nZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPgogICAgICAgICAg\nICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAgICAgICAgICAgPHJkZjpsaT4vPC9y\nZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJhZz4KICAgICAgICAgICAgICAgICAg\nPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAgICAg\nPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxzdEV2\ndDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0Omlu\nc3RhbmNlSUQ+eG1wLmlpZDpGQTdGMTE3NDA3MjA2ODExOEQ0RUQyNDZCM0FEQjFDNjwvc3RFdnQ6\naW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0wNS0xNVQxNzox\nMDo0NS0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNvZnR3YXJl\nQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAgICAg\nICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAgPHJkZjpCYWc+\nCiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAgICAgICAgICAg\nICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hhbmdlZD4KICAg\nICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlw\nZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPnNhdmVkPC9zdEV2\ndDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnhtcC5paWQ6RUY3\nRjExNzQwNzIwNjgxMUE0NkNBNDUxOUQyNDM1NkI8L3N0RXZ0Omluc3RhbmNlSUQ+CiAgICAgICAg\nICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMTVUMjI6NTM6MzMtMDc6MDA8L3N0RXZ0Ondo\nZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2JlIElsbHVzdHJh\ndG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmNo\nYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAgICAgICAgICAgICAg\nICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAgPC9yZGY6QmFnPgog\nICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgIDwvcmRmOmxp\nPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4KICAgICAg\nICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkYwN0YxMTc0MDcyMDY4MTFBNDZDQTQ1\nMTlEMjQzNTZCPC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6d2hl\nbj4yMDA4LTA1LTE1VDIzOjA3OjA3LTA3OjAwPC9zdEV2dDp3aGVuPgogICAgICAgICAgICAgICAg\nICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1c3RyYXRvciBDUzQ8L3N0RXZ0OnNvZnR3\nYXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAg\nICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAgICAgICAgICAgPHJkZjpsaT4vPC9yZGY6\nbGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJhZz4KICAgICAgICAgICAgICAgICAgPC9z\ndEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAgICAgPHJk\nZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDph\nY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0Omluc3Rh\nbmNlSUQ+eG1wLmlpZDpGNzdGMTE3NDA3MjA2ODExQkREREZEMzhEMENGMjRERDwvc3RFdnQ6aW5z\ndGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0wNS0xNlQxMDozNTo0\nMy0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdl\nbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAgPHJkZjpCYWc+CiAg\nICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAgICAgICAgICAgICAg\nICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hhbmdlZD4KICAgICAg\nICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0i\nUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPmNvbnZlcnRlZDwvc3RF\ndnQ6YWN0aW9uPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6cGFyYW1zPmZyb20gYXBwbGljYXRp\nb24vcGRmIHRvICZsdDt1bmtub3duJmd0Ozwvc3RFdnQ6cGFyYW1zPgogICAgICAgICAgICAgICA8\nL3JkZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+\nCiAgICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpGOTdGMTE3NDA3MjA2ODEx\nQkREREZEMzhEMENGMjRERDwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0OndoZW4+MjAwOC0wNS0xNlQxMDo0MDo1OS0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAg\nICAgICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2\ndDpzb2Z0d2FyZUFnZW50PgogICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAg\nICAgICAgICAgICAgICAgPHJkZjpCYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+\nLzwvcmRmOmxpPgogICAgICAgICAgICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAg\nICAgIDwvc3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAg\nICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8\nc3RFdnQ6YWN0aW9uPmNvbnZlcnRlZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAgICAgICAgICA8\nc3RFdnQ6cGFyYW1zPmZyb20gYXBwbGljYXRpb24vdm5kLmFkb2JlLmlsbHVzdHJhdG9yIHRvICZs\ndDt1bmtub3duJmd0Ozwvc3RFdnQ6cGFyYW1zPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAg\nICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAg\nICAgICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAg\nICAgPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpGQTdGMTE3NDA3MjA2ODExQkREREZEMzhEMENG\nMjRERDwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAw\nOC0wNS0xNlQxMToyNjo1NS0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0OnNvZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFn\nZW50PgogICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAg\nICAgPHJkZjpCYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgog\nICAgICAgICAgICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6\nY2hhbmdlZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkg\ncmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9u\nPnNhdmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlE\nPnhtcC5paWQ6RkI3RjExNzQwNzIwNjgxMUJERERGRDM4RDBDRjI0REQ8L3N0RXZ0Omluc3RhbmNl\nSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMTZUMTE6Mjk6MDEtMDc6\nMDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFk\nb2JlIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAg\nICAgPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAg\nICAgICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAg\nPC9yZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAg\nICAgIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291\ncmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9u\nPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkZDN0YxMTc0MDcy\nMDY4MTFCRERERkQzOEQwQ0YyNEREPC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAg\nICA8c3RFdnQ6d2hlbj4yMDA4LTA1LTE2VDExOjI5OjIwLTA3OjAwPC9zdEV2dDp3aGVuPgogICAg\nICAgICAgICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1c3RyYXRvciBDUzQ8\nL3N0RXZ0OnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPgog\nICAgICAgICAgICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAgICAgICAgICAgPHJk\nZjpsaT4vPC9yZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJhZz4KICAgICAgICAg\nICAgICAgICAgPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAg\nICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAg\nICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAg\nPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpGRDdGMTE3NDA3MjA2ODExQkREREZEMzhEMENGMjRE\nRDwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0w\nNS0xNlQxMTozMDo1NC0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0\nOnNvZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50\nPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAg\nPHJkZjpCYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAg\nICAgICAgICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hh\nbmdlZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRm\nOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPnNh\ndmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnht\ncC5paWQ6RkU3RjExNzQwNzIwNjgxMUJERERGRDM4RDBDRjI0REQ8L3N0RXZ0Omluc3RhbmNlSUQ+\nCiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMTZUMTE6MzE6MjItMDc6MDA8\nL3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2Jl\nIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAg\nPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAgICAg\nICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAgPC9y\nZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAg\nIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNl\nIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9uPgog\nICAgICAgICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkIyMzM2NjhDMTYyMDY4\nMTFCRERERkQzOEQwQ0YyNEREPC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAgICA8\nc3RFdnQ6d2hlbj4yMDA4LTA1LTE2VDEyOjIzOjQ2LTA3OjAwPC9zdEV2dDp3aGVuPgogICAgICAg\nICAgICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1c3RyYXRvciBDUzQ8L3N0\nRXZ0OnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPgogICAg\nICAgICAgICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAgICAgICAgICAgPHJkZjps\naT4vPC9yZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJhZz4KICAgICAgICAgICAg\nICAgICAgPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAg\nICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAg\nIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpCMzMzNjY4QzE2MjA2ODExQkREREZEMzhEMENGMjRERDwv\nc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0wNS0x\nNlQxMzoyNzo1NC0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNv\nZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50Pgog\nICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAgPHJk\nZjpCYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAgICAg\nICAgICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hhbmdl\nZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBh\ncnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPnNhdmVk\nPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnhtcC5p\naWQ6QjQzMzY2OEMxNjIwNjgxMUJERERGRDM4RDBDRjI0REQ8L3N0RXZ0Omluc3RhbmNlSUQ+CiAg\nICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMTZUMTM6NDY6MTMtMDc6MDA8L3N0\nRXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2JlIEls\nbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAgICAgICAg\nICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAgPC9yZGY6\nQmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgIDwv\ncmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4K\nICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwvc3RFdnQ6YWN0aW9uPgogICAg\nICAgICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlkOkY3N0YxMTc0MDcyMDY4MTE5\nN0MxQkYxNEQxNzU5RTgzPC9zdEV2dDppbnN0YW5jZUlEPgogICAgICAgICAgICAgICAgICA8c3RF\ndnQ6d2hlbj4yMDA4LTA1LTE2VDE1OjQ3OjU3LTA3OjAwPC9zdEV2dDp3aGVuPgogICAgICAgICAg\nICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1c3RyYXRvciBDUzQ8L3N0RXZ0\nOnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpjaGFuZ2VkPgogICAgICAg\nICAgICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAgICAgICAgICAgPHJkZjpsaT4v\nPC9yZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJhZz4KICAgICAgICAgICAgICAg\nICAgPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAg\nICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxz\ndEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0\nOmluc3RhbmNlSUQ+eG1wLmlpZDpGODdGMTE3NDA3MjA2ODExOTdDMUJGMTREMTc1OUU4Mzwvc3RF\ndnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAwOC0wNS0xNlQx\nNTo1MTowNi0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNvZnR3\nYXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAg\nICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgICAgICAgPHJkZjpC\nYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+LzwvcmRmOmxpPgogICAgICAgICAg\nICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAgICAgIDwvc3RFdnQ6Y2hhbmdlZD4K\nICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRmOnBhcnNl\nVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPnNhdmVkPC9z\ndEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnhtcC5paWQ6\nRjk3RjExNzQwNzIwNjgxMTk3QzFCRjE0RDE3NTlFODM8L3N0RXZ0Omluc3RhbmNlSUQ+CiAgICAg\nICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMTZUMTU6NTI6MjItMDc6MDA8L3N0RXZ0\nOndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2JlIElsbHVz\ndHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0\nOmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAgICAgICAgICAg\nICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAgPC9yZGY6QmFn\nPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgIDwvcmRm\nOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNlIj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5jb252ZXJ0ZWQ8L3N0RXZ0OmFjdGlvbj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0OnBhcmFtcz5mcm9tIGFwcGxpY2F0aW9uL3ZuZC5hZG9iZS5p\nbGx1c3RyYXRvciB0byBhcHBsaWNhdGlvbi92bmQuYWRvYmUuaWxsdXN0cmF0b3I8L3N0RXZ0OnBh\ncmFtcz4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6bGkgcmRm\nOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0aW9uPnNh\ndmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5jZUlEPnht\ncC5paWQ6RkE3RjExNzQwNzIwNjgxMUI2MjhFM0JGMjdDOEM0MUI8L3N0RXZ0Omluc3RhbmNlSUQ+\nCiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMjJUMTM6Mjg6MDEtMDc6MDA8\nL3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50PkFkb2Jl\nIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAgICAgICAg\nPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAgICAgICAg\nICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAgICAgPC9y\nZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAg\nIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJlc291cmNl\nIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5jb252ZXJ0ZWQ8L3N0RXZ0OmFjdGlv\nbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnBhcmFtcz5mcm9tIGFwcGxpY2F0aW9uL3ZuZC5h\nZG9iZS5pbGx1c3RyYXRvciB0byBhcHBsaWNhdGlvbi92bmQuYWRvYmUuaWxsdXN0cmF0b3I8L3N0\nRXZ0OnBhcmFtcz4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAgIDxyZGY6\nbGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6YWN0\naW9uPnNhdmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDppbnN0YW5j\nZUlEPnhtcC5paWQ6RkY3RjExNzQwNzIwNjgxMUI2MjhFM0JGMjdDOEM0MUI8L3N0RXZ0Omluc3Rh\nbmNlSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMjJUMTY6MjM6NTMt\nMDc6MDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2FyZUFnZW50\nPkFkb2JlIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAgICAgICAg\nICAgICAgPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFnPgogICAg\nICAgICAgICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAgICAgICAg\nICAgPC9yZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAgICAgICAg\nICAgICAgIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5cGU9IlJl\nc291cmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5jb252ZXJ0ZWQ8L3N0RXZ0\nOmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnBhcmFtcz5mcm9tIGFwcGxpY2F0aW9u\nL3ZuZC5hZG9iZS5pbGx1c3RyYXRvciB0byBhcHBsaWNhdGlvbi92bmQuYWRvYmUuaWxsdXN0cmF0\nb3I8L3N0RXZ0OnBhcmFtcz4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAgICAg\nIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8c3RF\ndnQ6YWN0aW9uPnNhdmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpp\nbnN0YW5jZUlEPnhtcC5paWQ6MDdDM0JEMjUxMDJEREQxMTgxQjU5NDA3MENFQjg4RDk8L3N0RXZ0\nOmluc3RhbmNlSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDUtMjhUMTY6\nNDU6MjYtMDc6MDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0d2Fy\nZUFnZW50PkFkb2JlIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAgICAg\nICAgICAgICAgICAgPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6QmFn\nPgogICAgICAgICAgICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAgICAg\nICAgICAgICAgPC9yZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+CiAg\nICAgICAgICAgICAgIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJzZVR5\ncGU9IlJlc291cmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5jb252ZXJ0ZWQ8\nL3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnBhcmFtcz5mcm9tIGFwcGxp\nY2F0aW9uL3ZuZC5hZG9iZS5pbGx1c3RyYXRvciB0byBhcHBsaWNhdGlvbi92bmQuYWRvYmUuaWxs\ndXN0cmF0b3I8L3N0RXZ0OnBhcmFtcz4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAg\nICAgICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAg\nICA8c3RFdnQ6YWN0aW9uPnNhdmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxz\ndEV2dDppbnN0YW5jZUlEPnhtcC5paWQ6Rjg3RjExNzQwNzIwNjgxMTkwOThCMDk3RkRBMzlCRUY8\nL3N0RXZ0Omluc3RhbmNlSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDYt\nMDJUMTM6MjU6MjUtMDc6MDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpz\nb2Z0d2FyZUFnZW50PkFkb2JlIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4K\nICAgICAgICAgICAgICAgICAgPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxy\nZGY6QmFnPgogICAgICAgICAgICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAg\nICAgICAgICAgICAgICAgPC9yZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5n\nZWQ+CiAgICAgICAgICAgICAgIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpw\nYXJzZVR5cGU9IlJlc291cmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZl\nZDwvc3RFdnQ6YWN0aW9uPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAu\naWlkOkY3N0YxMTc0MDcyMDY4MTFCQjFEQkY4RjI0MkI2Rjg0PC9zdEV2dDppbnN0YW5jZUlEPgog\nICAgICAgICAgICAgICAgICA8c3RFdnQ6d2hlbj4yMDA4LTA2LTA5VDE0OjU4OjM2LTA3OjAwPC9z\ndEV2dDp3aGVuPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJ\nbGx1c3RyYXRvciBDUzQ8L3N0RXZ0OnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxz\ndEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAg\nICAgICAgICAgICAgPHJkZjpsaT4vPC9yZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRm\nOkJhZz4KICAgICAgICAgICAgICAgICAgPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8\nL3JkZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+\nCiAgICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDpGOTdGMTE3NDA3MjA2ODEx\nQUNBRkI4REE4MDg1NEU3Njwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0\nRXZ0OndoZW4+MjAwOC0wNi0xMVQxNDozMToyNy0wNzowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAg\nICAgICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2\ndDpzb2Z0d2FyZUFnZW50PgogICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4KICAgICAg\nICAgICAgICAgICAgICAgPHJkZjpCYWc+CiAgICAgICAgICAgICAgICAgICAgICAgIDxyZGY6bGk+\nLzwvcmRmOmxpPgogICAgICAgICAgICAgICAgICAgICA8L3JkZjpCYWc+CiAgICAgICAgICAgICAg\nICAgIDwvc3RFdnQ6Y2hhbmdlZD4KICAgICAgICAgICAgICAgPC9yZGY6bGk+CiAgICAgICAgICAg\nICAgIDxyZGY6bGkgcmRmOnBhcnNlVHlwZT0iUmVzb3VyY2UiPgogICAgICAgICAgICAgICAgICA8\nc3RFdnQ6YWN0aW9uPnNhdmVkPC9zdEV2dDphY3Rpb24+CiAgICAgICAgICAgICAgICAgIDxzdEV2\ndDppbnN0YW5jZUlEPnhtcC5paWQ6MDE4MDExNzQwNzIwNjgxMTgzNDM4M0NEM0E4RDIzMDM8L3N0\nRXZ0Omluc3RhbmNlSUQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDp3aGVuPjIwMDgtMDYtMTFU\nMjI6Mzc6MzUtMDc6MDA8L3N0RXZ0OndoZW4+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDpzb2Z0\nd2FyZUFnZW50PkFkb2JlIElsbHVzdHJhdG9yIENTNDwvc3RFdnQ6c29mdHdhcmVBZ2VudD4KICAg\nICAgICAgICAgICAgICAgPHN0RXZ0OmNoYW5nZWQ+CiAgICAgICAgICAgICAgICAgICAgIDxyZGY6\nQmFnPgogICAgICAgICAgICAgICAgICAgICAgICA8cmRmOmxpPi88L3JkZjpsaT4KICAgICAgICAg\nICAgICAgICAgICAgPC9yZGY6QmFnPgogICAgICAgICAgICAgICAgICA8L3N0RXZ0OmNoYW5nZWQ+\nCiAgICAgICAgICAgICAgIDwvcmRmOmxpPgogICAgICAgICAgICAgICA8cmRmOmxpIHJkZjpwYXJz\nZVR5cGU9IlJlc291cmNlIj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OmFjdGlvbj5zYXZlZDwv\nc3RFdnQ6YWN0aW9uPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6aW5zdGFuY2VJRD54bXAuaWlk\nOkY3N0YxMTc0MDcyMDY4MTE4MThDODVERjZBMUE3NUMzPC9zdEV2dDppbnN0YW5jZUlEPgogICAg\nICAgICAgICAgICAgICA8c3RFdnQ6d2hlbj4yMDA4LTA2LTI3VDE0OjQwOjQyLTA3OjAwPC9zdEV2\ndDp3aGVuPgogICAgICAgICAgICAgICAgICA8c3RFdnQ6c29mdHdhcmVBZ2VudD5BZG9iZSBJbGx1\nc3RyYXRvciBDUzQ8L3N0RXZ0OnNvZnR3YXJlQWdlbnQ+CiAgICAgICAgICAgICAgICAgIDxzdEV2\ndDpjaGFuZ2VkPgogICAgICAgICAgICAgICAgICAgICA8cmRmOkJhZz4KICAgICAgICAgICAgICAg\nICAgICAgICAgPHJkZjpsaT4vPC9yZGY6bGk+CiAgICAgICAgICAgICAgICAgICAgIDwvcmRmOkJh\nZz4KICAgICAgICAgICAgICAgICAgPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3Jk\nZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSByZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAg\nICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+c2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAg\nICAgICAgICAgICAgPHN0RXZ0Omluc3RhbmNlSUQ+eG1wLmlpZDowNjgwMTE3NDA3MjA2ODExOTBG\nMUMwNEJFRkI3OEFDOTwvc3RFdnQ6aW5zdGFuY2VJRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0\nOndoZW4+MjAxMC0wMS0wNlQxNjozMjoxMy0wNTowMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAg\nICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdlbnQ+QWRvYmUgSWxsdXN0cmF0b3IgQ1M0PC9zdEV2dDpz\nb2Z0d2FyZUFnZW50PgogICAgICAgICAgICAgICAgICA8c3RFdnQ6Y2hhbmdlZD4vPC9zdEV2dDpj\naGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjpsaT4KICAgICAgICAgICAgICAgPHJkZjpsaSBy\nZGY6cGFyc2VUeXBlPSJSZXNvdXJjZSI+CiAgICAgICAgICAgICAgICAgIDxzdEV2dDphY3Rpb24+\nc2F2ZWQ8L3N0RXZ0OmFjdGlvbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0Omluc3RhbmNlSUQ+\neG1wLmlpZDo1N0JFMzhGNDRDQjBERjExOTlDQ0VDRjU3QUY0MzlDRTwvc3RFdnQ6aW5zdGFuY2VJ\nRD4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OndoZW4+MjAxMC0wOC0yNVQwOTozMDo0MC0wNDow\nMDwvc3RFdnQ6d2hlbj4KICAgICAgICAgICAgICAgICAgPHN0RXZ0OnNvZnR3YXJlQWdlbnQ+QWRv\nYmUgSWxsdXN0cmF0b3IgQ1M1PC9zdEV2dDpzb2Z0d2FyZUFnZW50PgogICAgICAgICAgICAgICAg\nICA8c3RFdnQ6Y2hhbmdlZD4vPC9zdEV2dDpjaGFuZ2VkPgogICAgICAgICAgICAgICA8L3JkZjps\naT4KICAgICAgICAgICAgPC9yZGY6U2VxPgogICAgICAgICA8L3htcE1NOkhpc3Rvcnk+CiAgICAg\nIDwvcmRmOkRlc2NyaXB0aW9uPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgog\nICAgICAgICAgICB4bWxuczppbGx1c3RyYXRvcj0iaHR0cDovL25zLmFkb2JlLmNvbS9pbGx1c3Ry\nYXRvci8xLjAvIj4KICAgICAgICAgPGlsbHVzdHJhdG9yOlN0YXJ0dXBQcm9maWxlPlByaW50PC9p\nbGx1c3RyYXRvcjpTdGFydHVwUHJvZmlsZT4KICAgICAgPC9yZGY6RGVzY3JpcHRpb24+CiAgICAg\nIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOnBkZj0iaHR0\ncDovL25zLmFkb2JlLmNvbS9wZGYvMS4zLyI+CiAgICAgICAgIDxwZGY6UHJvZHVjZXI+QWRvYmUg\nUERGIGxpYnJhcnkgOS4wMDwvcGRmOlByb2R1Y2VyPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4K\nICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIAogICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgIAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg\nICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgCiAgICAg\nICAgICAgICAgICAgICAgICAgICAgIAo8P3hwYWNrZXQgZW5kPSJ3Ij8+/+IMWElDQ19QUk9GSUxF\nAAEBAAAMSExpbm8CEAAAbW50clJHQiBYWVogB84AAgAJAAYAMQAAYWNzcE1TRlQAAAAASUVDIHNS\nR0IAAAAAAAAAAAAAAAAAAPbWAAEAAAAA0y1IUCAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAARY3BydAAAAVAAAAAzZGVzYwAAAYQAAABsd3RwdAAAAfAAAAAU\nYmtwdAAAAgQAAAAUclhZWgAAAhgAAAAUZ1hZWgAAAiwAAAAUYlhZWgAAAkAAAAAUZG1uZAAAAlQA\nAABwZG1kZAAAAsQAAACIdnVlZAAAA0wAAACGdmlldwAAA9QAAAAkbHVtaQAAA/gAAAAUbWVhcwAA\nBAwAAAAkdGVjaAAABDAAAAAMclRSQwAABDwAAAgMZ1RSQwAABDwAAAgMYlRSQwAABDwAAAgMdGV4\ndAAAAABDb3B5cmlnaHQgKGMpIDE5OTggSGV3bGV0dC1QYWNrYXJkIENvbXBhbnkAAGRlc2MAAAAA\nAAAAEnNSR0IgSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAASc1JHQiBJRUM2MTk2Ni0yLjEAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFhZWiAAAAAAAADzUQAB\nAAAAARbMWFlaIAAAAAAAAAAAAAAAAAAAAABYWVogAAAAAAAAb6IAADj1AAADkFhZWiAAAAAAAABi\nmQAAt4UAABjaWFlaIAAAAAAAACSgAAAPhAAAts9kZXNjAAAAAAAAABZJRUMgaHR0cDovL3d3dy5p\nZWMuY2gAAAAAAAAAAAAAABZJRUMgaHR0cDovL3d3dy5pZWMuY2gAAAAAAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZGVzYwAAAAAAAAAuSUVDIDYxOTY2LTIuMSBEZWZh\ndWx0IFJHQiBjb2xvdXIgc3BhY2UgLSBzUkdCAAAAAAAAAAAAAAAuSUVDIDYxOTY2LTIuMSBEZWZh\ndWx0IFJHQiBjb2xvdXIgc3BhY2UgLSBzUkdCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGRlc2MAAAAA\nAAAALFJlZmVyZW5jZSBWaWV3aW5nIENvbmRpdGlvbiBpbiBJRUM2MTk2Ni0yLjEAAAAAAAAAAAAA\nACxSZWZlcmVuY2UgVmlld2luZyBDb25kaXRpb24gaW4gSUVDNjE5NjYtMi4xAAAAAAAAAAAAAAAA\nAAAAAAAAAAAAAAAAAAB2aWV3AAAAAAATpP4AFF8uABDPFAAD7cwABBMLAANcngAAAAFYWVogAAAA\nAABMCVYAUAAAAFcf521lYXMAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAKPAAAAAnNpZyAAAAAA\nQ1JUIGN1cnYAAAAAAAAEAAAAAAUACgAPABQAGQAeACMAKAAtADIANwA7AEAARQBKAE8AVABZAF4A\nYwBoAG0AcgB3AHwAgQCGAIsAkACVAJoAnwCkAKkArgCyALcAvADBAMYAywDQANUA2wDgAOUA6wDw\nAPYA+wEBAQcBDQETARkBHwElASsBMgE4AT4BRQFMAVIBWQFgAWcBbgF1AXwBgwGLAZIBmgGhAakB\nsQG5AcEByQHRAdkB4QHpAfIB+gIDAgwCFAIdAiYCLwI4AkECSwJUAl0CZwJxAnoChAKOApgCogKs\nArYCwQLLAtUC4ALrAvUDAAMLAxYDIQMtAzgDQwNPA1oDZgNyA34DigOWA6IDrgO6A8cD0wPgA+wD\n+QQGBBMEIAQtBDsESARVBGMEcQR+BIwEmgSoBLYExATTBOEE8AT+BQ0FHAUrBToFSQVYBWcFdwWG\nBZYFpgW1BcUF1QXlBfYGBgYWBicGNwZIBlkGagZ7BowGnQavBsAG0QbjBvUHBwcZBysHPQdPB2EH\ndAeGB5kHrAe/B9IH5Qf4CAsIHwgyCEYIWghuCIIIlgiqCL4I0gjnCPsJEAklCToJTwlkCXkJjwmk\nCboJzwnlCfsKEQonCj0KVApqCoEKmAquCsUK3ArzCwsLIgs5C1ELaQuAC5gLsAvIC+EL+QwSDCoM\nQwxcDHUMjgynDMAM2QzzDQ0NJg1ADVoNdA2ODakNww3eDfgOEw4uDkkOZA5/DpsOtg7SDu4PCQ8l\nD0EPXg96D5YPsw/PD+wQCRAmEEMQYRB+EJsQuRDXEPURExExEU8RbRGMEaoRyRHoEgcSJhJFEmQS\nhBKjEsMS4xMDEyMTQxNjE4MTpBPFE+UUBhQnFEkUahSLFK0UzhTwFRIVNBVWFXgVmxW9FeAWAxYm\nFkkWbBaPFrIW1hb6Fx0XQRdlF4kXrhfSF/cYGxhAGGUYihivGNUY+hkgGUUZaxmRGbcZ3RoEGioa\nURp3Gp4axRrsGxQbOxtjG4obshvaHAIcKhxSHHscoxzMHPUdHh1HHXAdmR3DHeweFh5AHmoelB6+\nHukfEx8+H2kflB+/H+ogFSBBIGwgmCDEIPAhHCFIIXUhoSHOIfsiJyJVIoIiryLdIwojOCNmI5Qj\nwiPwJB8kTSR8JKsk2iUJJTglaCWXJccl9yYnJlcmhya3JugnGCdJJ3onqyfcKA0oPyhxKKIo1CkG\nKTgpaymdKdAqAio1KmgqmyrPKwIrNitpK50r0SwFLDksbiyiLNctDC1BLXYtqy3hLhYuTC6CLrcu\n7i8kL1ovkS/HL/4wNTBsMKQw2zESMUoxgjG6MfIyKjJjMpsy1DMNM0YzfzO4M/E0KzRlNJ402DUT\nNU01hzXCNf02NzZyNq426TckN2A3nDfXOBQ4UDiMOMg5BTlCOX85vDn5OjY6dDqyOu87LTtrO6o7\n6DwnPGU8pDzjPSI9YT2hPeA+ID5gPqA+4D8hP2E/oj/iQCNAZECmQOdBKUFqQaxB7kIwQnJCtUL3\nQzpDfUPARANER0SKRM5FEkVVRZpF3kYiRmdGq0bwRzVHe0fASAVIS0iRSNdJHUljSalJ8Eo3Sn1K\nxEsMS1NLmkviTCpMcky6TQJNSk2TTdxOJU5uTrdPAE9JT5NP3VAnUHFQu1EGUVBRm1HmUjFSfFLH\nUxNTX1OqU/ZUQlSPVNtVKFV1VcJWD1ZcVqlW91dEV5JX4FgvWH1Yy1kaWWlZuFoHWlZaplr1W0Vb\nlVvlXDVchlzWXSddeF3JXhpebF69Xw9fYV+zYAVgV2CqYPxhT2GiYfViSWKcYvBjQ2OXY+tkQGSU\nZOllPWWSZedmPWaSZuhnPWeTZ+loP2iWaOxpQ2maafFqSGqfavdrT2una/9sV2yvbQhtYG25bhJu\na27Ebx5veG/RcCtwhnDgcTpxlXHwcktypnMBc11zuHQUdHB0zHUodYV14XY+dpt2+HdWd7N4EXhu\neMx5KnmJeed6RnqlewR7Y3vCfCF8gXzhfUF9oX4BfmJ+wn8jf4R/5YBHgKiBCoFrgc2CMIKSgvSD\nV4O6hB2EgITjhUeFq4YOhnKG14c7h5+IBIhpiM6JM4mZif6KZIrKizCLlov8jGOMyo0xjZiN/45m\njs6PNo+ekAaQbpDWkT+RqJIRknqS45NNk7aUIJSKlPSVX5XJljSWn5cKl3WX4JhMmLiZJJmQmfya\naJrVm0Kbr5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaL\npv2nbqfgqFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LCsziz\nrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9j74KvoS+/796v/XAcMDs\nwWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbP\nN8+40DnQutE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W\n3hzeot8p36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXrcOv77Ibt\nEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4qPk4+cf6V/rn+3f8B/yY\n/Sn9uv5L/tz/bf///+4ADkFkb2JlAGTAAAAAAf/bAIQAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB\nAQEBAQEBAQEBAQEBAQEBAQEBAQICAgICAgICAgICAwMDAwMDAwMDAwEBAQEBAQECAQECAgIBAgID\nAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD/8AAEQgAqgD+\nAwERAAIRAQMRAf/EAaIAAAAGAgMBAAAAAAAAAAAAAAcIBgUECQMKAgEACwEAAAYDAQEBAAAAAAAA\nAAAABgUEAwcCCAEJAAoLEAACAQMEAQMDAgMDAwIGCXUBAgMEEQUSBiEHEyIACDEUQTIjFQlRQhZh\nJDMXUnGBGGKRJUOhsfAmNHIKGcHRNSfhUzaC8ZKiRFRzRUY3R2MoVVZXGrLC0uLyZIN0k4Rlo7PD\n0+MpOGbzdSo5OkhJSlhZWmdoaWp2d3h5eoWGh4iJipSVlpeYmZqkpaanqKmqtLW2t7i5usTFxsfI\nycrU1dbX2Nna5OXm5+jp6vT19vf4+foRAAIBAwIEBAMFBAQEBgYFbQECAxEEIRIFMQYAIhNBUQcy\nYRRxCEKBI5EVUqFiFjMJsSTB0UNy8BfhgjQlklMYY0TxorImNRlUNkVkJwpzg5NGdMLS4vJVZXVW\nN4SFo7PD0+PzKRqUpLTE1OT0laW1xdXl9ShHV2Y4doaWprbG1ub2Z3eHl6e3x9fn90hYaHiImKi4\nyNjo+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A3+Pfuvde9+691737\nr3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvd\ne9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+69173\n7r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuv\ndF579+VfQnxkw0WX7l7DxG2JqxC+J27CJ8xu7N21hTitr4mKszE9KZU8bVTRJRQuQJZowQfZJvPM\nWzbBF4m6TrGTwXLO32IKtT500jzI6lX2w9k/c73i3A2Pt/tU95HGaSznTFaw8P7W4lKxK1DqEYYy\nuAdEbU6L98av5mfxj+Ue/P8ARnset3ltnetTDX1GBw3YGCx+FO6osZFNU1v936vEZ3cFDPUw0ED1\nP208lPVNTo7rGfHIEJth592DmG8+gszLHdkEqsihddMnSVZhWmaEg0qaYNJQ93/ufe8Psvyz/XDm\nVNvu+XUaNZpbKZ5fpmlIVPGWWGBwrOwj1orxhyqlxqTVYP7GnWLXXvfuvde9+691737r3Xvfuvde\n9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737\nr3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3SX3nvfZ/XW2spvHfm5sJtDa\n2Fp2qcpn9w5GlxeLo4hwolqquSOMzTPZY41vJK5CIrMQCnuru1sYGuryRIrdBUsxAA/M/wAhxPl0\ndcv8ub9zZu8Owcs2dzf71cNpjhgjaSRz8lUE0AyzGiqAWYgAnrXt+X/862eoGT2L8Rce1LCfNR1X\nc26sV/lMilSvn2LtHJRWpebFKzMQs9tS/YodMvuFeZvdYtqs+WloOBncZ/5toeH+mcf7Qceup3sP\n/d4RxGHmT31lDyYZdqtpO0H0vLqM93zitWA4H6lhqTrX53jvTce9c/lt4773Nldy7kzdU9bmdxbk\nylRkspkalgFMtZkK+aSeUqihVBayIoVQFAAiELue83hZRNdX0hqaBpHY/lUnrpWZeRfbLlqO3kk2\nvYeUrOPSgZobS2iUZoNRjjXzJ8ySSakk9RuvqfsLe2/9o7W6Mxu5Nw9q1e4cPNs6PaFPUyZXH5ui\nyVLU4/L09XCqrQLi6uOOZqt2SnpFQyyyIiFvcrch8g77b7zBvO6x/TWsBLAMRrc0IA0gkqM92qhp\ngA1qOe33uPvge0u8+2O6e2nIN4N73/dEWCSSKNxa28YkR3fxnVFmchdMQg8RAza2caNLfQ8xiV8e\nOx8eUlhnyaUVKmRnpwRTzV6wRrWSwAxwkQyVAYqNCekjgfT3PXXHXqb7917r3v3Xuve/de697917\nr3v3Xuve/de697917r3v3Xuk5u7d+1dg7cy2797bhw+1NrYGkeuzGfz2QpsZisdSpYGWqrKuSOGP\nW7BUW+p3YKoLEAsXNzb2cDXN26x26CrMxAAHzJ6Nti2HeuZ92g2Hl21uL3erlwkUEKNJJIx8lRQS\naCpJ4AAkkAE9Uhd+fzyestq19Zgvj911kuz5aaSan/vru6rqNn7UleN5FSqxGESkqdzZmilCqQao\nYiTk+ngExNvPu3YW7mHZYGuCMa3JRPtVaF2H26D10Z9sf7t7nDerWPc/dHdodmRwG+ktVW6uQCBV\nZZiy28TjI/T+qXHH0r6z387H5mZasaoxsHUW16a50UGH2RkKuALpRV1zbi3LnKt3GgkkSKCzHgDS\nqgub3W5pkbVGLaNfRYyf+PMx6yl2z+7u+79Y24ivG328m83lvEU+fAQW8KgZplSaAZJqS47Y/nd/\nL/DVCNnMJ07u+lLN5osntHN4upMbNGbU1Tt/deLihkQRkKzwzLZ21Kx06b2/uxzNE36yWsq/NGB/\nIq4/wHpLvH93P7DbhERttxv9hPTBjuoZFrn4lntpCQa5AdTgUIzWwTpH+eX03uqoo8R3l1zuTqqr\nneOB90bbqv7+bSjJvrrMjSRUeL3Vi6f6AR01JlXB+rW5A02n3c2u4YRbvBJbsfxqfET7SKBwPsD9\nYte43927z/ssUl/7b7tab3AoJFvcL9FdH0WNi8ltI39KSW2HoK9XN9f9j7C7W2xQ70623ft7fG1c\njdaXObaylLlaBpkSN5qSaSlkc0lfTCVRNTzBJ4WOmRFbj3KdlfWe424urCVJrduDKQR9mOBHmDke\nY65980cpcz8k7zJy9zdYXW271F8UNxG0b0JIDAMBqRqHRItUcZViM9LX2q6D3Xvfuvde9+691737\nr3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691jmEzQyrTvHFOY3EEk0TTwxzFSI3l\ngSaneaNHsWQSRlhwGX6jRrQ6eP8Aq+z/AA9XjMYkUygmKoqAaEjzAJDAEjgSppxoeHWrl/MR+J38\nyDtrtbJZBcF2N8gev8TLVTbanoV6x2FszEsAzePZfWuI7h3vnGgSkmWE5HJ0tFmK1kZZI3VVYxbv\nvt7vHMV0J9x3bVCDhPAKqg/oqJSK0wWPcfMnroR7QffO9svZbl1tp5M9uxb7m0QEl0d0WW4unAyb\nidtuWQJrGpYUrElToRTxA/p3+Sj80uzTSV3ZeT2F8ftv1AieaHL5GPe29lp5lV0kp9v7VqKvD+VU\nPriqcxQTRtZWQHVpMNr9r+Vtvo90sl3MPORqJX5ImnHyYv0Eefvv/e/XN/iW2wTWXL22NUBbOIPP\npPk1zceKwb+nAlufSma2t9MfyL/iLsF6PJ9q5Lfvfmfgu1Qm58zNtPaDzA3ikptubSnpMwqRnkxV\nWXrYXIsylbqR5a2tpYReBYxRQw/wooUfsAA6w+5h5n5l5uvzuvNe4325bmf9Fup5Z5KE1oHlZmAr\n5A0+XVr3W3TvVHTmHXb/AFR1vsjrnDiNI3odm7ZxG3o6nxlmEtc+NpKebIVLOxZpZ2kld2LMxYkl\nRUnj0R0HVLn88jvHP7M2r0Z1ZtHcmY2/lNxZ7ce/c5PgMrW4ivTHbcx8G38HBUVNBPT1ElFkqrcl\ncwjLGNpKIMRdVIhz3b3ea1t7TbraRkkd2kbSSpoo0rUgg0JZvzXrpt/dv+3G18wb1zJzrvtnb3Vn\naWsFlCJo0lQyTuZ5iquGUPGtvCNVKhZSAaFutdL/AEwdt/8AP0uxf/Q33N/9c/cIfvPcv+Uif/nI\n3+frrB/ULkb/AKMu0/8AZJb/APWvr3+mDtv/AJ+l2L/6G+5v/rn79+89y/5SJ/8AnI3+fr39QuRv\n+jLtP/ZJb/8AWvr3+mDtv/n6XYv/AKG+5v8A65+/fvPcv+Uif/nI3+fr39QuRv8Aoy7T/wBklv8A\n9a+vf6YO2/8An6XYv/ob7m/+ufv37z3L/lIn/wCcjf5+vf1C5G/6Mu0/9klv/wBa+vf6YO2/+fpd\ni/8Aob7m/wDrn79+89y/5SJ/+cjf5+vf1C5G/wCjLtP/AGSW/wD1r69/pg7b/wCfpdi/+hvub/65\n+/fvPcv+Uif/AJyN/n69/ULkb/oy7T/2SW//AFr69/pg7b/5+l2L/wChvub/AOufv37z3L/lIn/5\nyN/n69/ULkb/AKMu0/8AZJb/APWvq+j+Sl3r2zmj8iMT2Bu+GbpDqTbmN3rnc7uaeoyOVh3du6nj\nqzkqvdmUq6mpp8DgNm7Fq/LRIVggeQzMA7ktkp7fRvZcnx31/IxaUyTMzsTpQdoNSTQaUDemT8+u\nF33z7q15n+8ld8p8n2UKpYR2e2wQ2sSJ4twwErqEjVQ0puLloK01Eoq1oF6rc+f/AM7t5fMDsaso\n8ZXV+E6O2pkamDr/AGcry0qZNImMH99N004Kit3DlkUvDHICmMpnEEQ1momnhLnPm+65mvisZZNp\njY+GnCv9Nx5sfIH4RgZ1E9Vfuvfdp2D2G5TjuLyOK49x76JWvrogMYyc/SWzfggiOHZTW4kBkc6R\nFHFXr7BXWU/WSKGadikMUkzBSxWJGkYKCAWIQEhQSOf8fbkcUsz+HCrO58gCT+wdJL7cLDa7c3m5\nTw29ovF5XWNB9rOQo/b1ylp6iDT54Jodd9HliePVptq061Gq1xe3097mgnt20zo6N6MCD/OnTW3b\nvtO8Qm42i6t7q3BoWhkSVQc41IzDyPn5HrD7a6MOrl/5IG6O0F+Vm6Ni7XzcVL1hU9V5Xe3aOI+x\no6pMtWYfJ0u3NkxPXzQNV4zKY3J7keohWGRPLSyTh1dSDHkT7R7f4GxT7gw7ri4oPmsYoD/vTOPy\n64qf3knOC7t7rbRydAwaHZ9oMj+qz3smplP/ADYgtmH+n4eu2N7lbrnT1737r3Xvfuvde9+69173\n7r3Xvfuvde9+691737r3Xvfuvde9+690W/5f9wVXQnxk7q7ZxlXHQZ3amxsl/datmhpqmGk3jnHg\n23syolpayKekrI4d1ZijZoZEZJgNBFm9kXM25ts2wXe5Rmk0cJ0HBo7dqGhwe9lwePDqW/YfkKD3\nO94uXuR7xDLtt9uUf1KAspa1hBuLtQyEMpNtFKA6kFT3A461Sf8Ah2b+YF/z/wC/9hX0p/8Aa494\n6/64/Of/ACm/9UYP+tXXbb/gHfuuf9Mv/wB1Ldv+2/r3/Ds38wL/AJ/9/wCwr6U/+1x79/rj85/8\npv8A1Rg/61de/wCAd+65/wBMv/3Ut2/7b+vf8OzfzAv+f/f+wr6U/wDtce/f64/Of/Kb/wBUYP8A\nrV17/gHfuuf9Mv8A91Ldv+2/r3/Ds38wL/n/AN/7CvpT/wC1x79/rj85/wDKb/1Rg/61de/4B37r\nn/TL/wDdS3b/ALb+vf8ADs38wL/n/wB/7CvpT/7XHv3+uPzn/wApv/VGD/rV17/gHfuuf9Mv/wB1\nLdv+2/pTbL/nE/NbaW79s5/fG/6ntTatBmqFsx1zR7R6m2dU7zp5JPGMFFubD9U5PLYj7yR1vJTQ\nvOVBVCrMGUVclc283b/zHb7fc3eqzOppB4UI7VUmlRGCKmi1BBz1j596T7tn3bvaL2T3fnDYeXRB\nzKBDb2bm/wBzfTcXEyRhwkt68bmKMyS6XRlbw6EEdCZ/OuoexKb5DbH312dSYjaG1tw9c4fa/XlJ\nHn49xSVUm2KPH7h38PtsNSS19LBid3b+kokqqylpPv1gDxKUWyGXPnJ/NHMe/G7sYVeyjiREJkRa\n0qzGhYEdzMOGaelOgP8AdA+8l7B+yvtAnLvNe5zwc1Xe43N1dIlndShSxWCJfEjiZGHgQRPRWIUu\nQaNq6pm/jm2v+eioP/OLP/8A1m9gz/Wv5y/5R0/5yx/9BdZSf8Hr92f/AKPN3/3L73/rR17+Oba/\n56Kg/wDOLP8A/wBZvfv9a/nL/lHT/nLH/wBBde/4PX7s/wD0ebv/ALl97/1o6ciEsjRypPFLDBUQ\nzRiQJLDUQpPDIqyxxSrqikBsyqw+hAPsEX1nPt15JY3QAuYXKMAQQGU0IqKg0OMdZUcqczbTzpy3\nY82bCzvsm42yXEDOjxs8Uihkco4V11KQwDAGhB8+uPtL0f8AUOXLYGnkaGpztDBOlhLCabMTNE5A\nJjaSmxc8Bdb2YK7WPB5B9jaw9vOatys47+0gU20qBlJkRSVPA0LAivz6xZ5s++b937knmW+5S5g3\naePe9uuHgnRLO6lVJYzR1DxxMjFTVTpJAII4jrH/ABzbX/PRUH/nFn//AKze1f8ArX85f8o6f85Y\n/wDoLoPf8Hr92f8A6PN3/wBy+9/60ddHObbAJ/vFQnj6Ciz1z/gL4YC59+/1r+cv+UdP+csf/QXX\nv+D1+7P/ANHm7/7l97/1o6tj2tlq3oj+UTU5DHq2K3N82vkFuB5pI3kgrY+rNk68bWUMUoKytRvm\n9ntAVbieky8oJKMAZK9xbn9wcmwbJbGhkEcGMdka1Y/mVUH1DGvWCv3LNkPvD95/dvdLfY9aWTXm\n60ajAXd5OUgUg4/TWaaSMj4HhQrSgIqt946ddsesUxrAIIsdQT5TJV1bR4vE4yngqaibJZbIzCCg\nx8EVKjSyz1L3KxqVeTSVUhiPYq5O5bfmfeksCStoo1ysOIQEVA8tTEhR6V1UIBHUAfeV97rX2G9s\nLnm1USfmGdxa2EL/AAvdSKzK8gBDGGFEeaQArrCCIOjSKw2VviH/ACPOtqPa+E3x8x6zM9h79y1F\nTZGTqzD53Ibc2RstatFqf4PlMjt6poM7uDOUpKioalq6PHxymSJY6lQtQ+U+27Zt2zWwtNrhSGED\n8Iy3zY8WPzYk9fPhz37ic7+5u9ycw89bldbjubsSDK5KRAmuiCIUjgjB4RxKiD0qSejyZz+UV/L9\nzGPmo6Toldr1bo60+b2pv7snEZiiaRGid4Jf73VFHOGidlMdTBPCQ3KE2IU3Nvb3kRgvI45YDxV1\nDKftBBHRFsm/b5yzuCbty5e3dhusRqk1tNJBKpBr2yRsrDPoeqkvln/Jc3/1ji8xvr447iy3bu18\ndE9ZU7BzdHRRdn4+jhWSSofFT4alocNvrRGLiGnpMdX2VUjgq5HLLD3Nvtfbyxtf8tLonAqYCaq3\n/NMnKt/RJ0ngNPA9L/u5/f8Ad4sr6DlD30kF1tMjBI91VAs0B4D6xI1CzRcKzogmTLSCapZDFfyE\nOrWodlfIzuyvoUhqd1b+wPVmHkaNkZaDrXCfxDMVFLrVXMGWyG7YBM1rNPREcFGHuR+VdubaeW7K\nwkBWVIAzAihDvV2BHqGYg9YQ/eJ52g9xPfDmbm2zlWfbp9zkjt5FYMslvbBbW3kRgSCrwwo60NKN\njrYL9n/UMde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3XvfuvdUl/zy+0P7s/HTr3\nq+lqPDX9pdjDIVkOv/gXtjr7GtkMlD4wQW0bkzuGk1chdFrXYERR7ubh9PscG3qaPcT1PzSMVP8A\nxpkPXRT+7d5N/fHuxuvOUyarbZdp0KafDcX0miM1+dvDdrTia8aAg6q3vHfrtb1hlqKeDT554Ydd\n9PllSPVptq062F7XF7f19q7Wwvr7V9FDLNppq0Iz0rWldINK0NK8aH06D2/c3cqcq+F/WfdNu23x\n9XhfVXMNv4mjTr8PxXTXo1pq0106lrTUK4f4hj/+V6j/APOmH/o/2r/cO+/8oV3/AM4ZP+geg9/r\nue1H/TT8vf8Acxs/+t3Xv4hj/wDleo//ADph/wCj/fv3Dvv/AChXf/OGT/oHr3+u57Uf9NPy9/3M\nbP8A63de/iGP/wCV6j/86Yf+j/fv3Dvv/KFd/wDOGT/oHr3+u57Uf9NPy9/3MbP/AK3dGo+CfWdP\n3n81PjZ1+VjyGIg7Cpd+7kjjZJqV8H1rS1O+K2irmXWqUuWjwRo25UsagKpDMp9y/wC02xXlnc3m\n538MkLiNYkDoyk6jqcgMBw0rn5nrmx/eLe7XLnMXL/LvI3Ke5WO42z3k99cta3EU6oYYxBbq5iZw\nC31Fw2kkEaFNDUEb4PuauuU/XvfuvdJ7d25sbsvam5945mTxYfae3s1ubKyllTx43A42pyldJrch\nE0UtKxuSALc+2Lm4jtLaS6lxFGjOfsUEn+Q6Ndi2e75h3yz2Dbxqv767ht4xk1kmkWNBQZNWYcM9\nfPm3hujKb33bunembk82a3fuPN7oy81y3lymfydVla+TU12Ourq3Nzzz7wuuriS7uZLqXMsrs7fa\nxJP8z19S2w7NZ8ubFZcvbcNO32FpDbxD0jgjWJB+SqOk6DGCDLKkMQIMk0lxHFH/AG5XI50Rryf8\nB71bQSXVxHawissjqq/axAH8z1fe93suX9mu9+3FtG32VrLcSt6Rwo0jn8lUnrZ5/k7dnfG/pL4f\nQVu/u+ejdmb97U7F3v2LuXbu4+0th4HceIj+8h2lhaDIYfI52myNDHLitrJXU8LxgiOu1AXc+8vR\nu/L20xptcl7aRtbxrHpaaNWUKoABUsCDSmKdfNhc+2/vV7j39zz5Zcrcx30O83c139RBtt7NDK1x\nK8jvHMkLI662buDEVBz1Zr/s9fw2/wC8m+lv/Q+wP/1X7Y/rfyv/AMp9r/zkX/P0v/4Gv3//AOmO\n5h/7Ipv+gevf7PX8Nv8AvJvpb/0PsD/9V+/f1v5X/wCU+1/5yL/n69/wNfv/AP8ATHcw/wDZFN/0\nD1Rr/Oq7y6l7oxvxtk6i7V2L2LQ7fru3k3LTbP3bhs3PiqvIU/WLYKfJ42hrZa2niq4aStWnneIR\nMY5UDagR7iT3V3fbd1jsDtlxDOiGbUEdWoSItNQDUVo1DSnEddIf7vL23559vbzm5ee9k3Labm6j\n2s27XVtLCJFRtw8ZY5HQIxUtCXQNqAZGK0IPVDXuHuumXR2P5a+1cFu35+fF2h3TDTVGCo937rzi\nQ1ctPHEdz7X623ju/ZUoScnyTQbo27TPEApJlCqCGZbzR7OTwJd38DU+oaKJl/0qsyt/N0/l1y9/\nvNtr3a45a5S3W3DnZoL6+iloKjxpYYJICTxBEVtdEeVAxPw9bwvud+uQHXvfuvde9+6900Yfb+C2\n8lfHgcNisLHlcrW5zJx4mgpcfHkM1kmWTI5asjpIokqMlkJEDzzuDJM/qck8+/de6d/fuvde9+69\n1737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvdamf87jtD+93yswfXlLUa6DqTrnCY+s\npderwbn3nJLu3JTWBtH9ztusww02v+3e5BAGOHuxuH1PMSWSnstoFBH9N+8/tUp+zruJ/d08m/uL\n2Suea5kpc77u0zq1Pit7QC2jHz03CXeeHdSlQSabvcX9Z+9HX/l2bP8AjXvH5KZfIfK/Mdf0PUWw\nusc7l5MX2FmKfHY3ce7spXYvF4bF0dE1VT1+WrKbHVtVXLHTCR1akW68i+QPttNtvL/K77puc0UH\n1dw2kuwXUsQ0gKDliG18K8euOH359v5594Pfe25B5A2y/wB2bl7Z4fGS2ieUQz3zmZmlZRoiV4fp\nQDIVB0k1pwuEyWd/kotVyYzYXx6p+5cxG8URxHVHTfZWfq2nmJEUMM2VjwOOqXk40mOd1JNgbggC\niT3F5c1eHZvPdS/wwwyMf5qoP5HrH6z+5V76CAXnM9ttPL9gQT4u5blZwKAOJIjlmkUDz1ICOJFK\nEsbdfdB7oJbqf+SZ2Vn4JBrpKjtGlg6ViqIiryrKZMxPuKBEkgTUpV5FdiFBOpSWf6571cf8k3ZL\n9x5GXTBX/eg3l0Yj7svtlswpzx7rcn2sowy7cJd2KnApSJoGJBNCCFIFSQKGkOb4Nd17rDLt/wDl\nkfCLqhZlZVbsbsDOb4qaT9uX9wvsDeUdPJJqjGj9p1DOupSoe1TuXuRc/wBhY2NtX/fspkI/5xtT\n+X+XpRHyb9yDZCDunN/Nu+FT/wAQNvWzVsjFL2AsBQ57gaBqEErUQOrP5bPzD6w3cN9dc74+Hnx5\n3W1BXYhs70/1RX7pyFNiclUwGtoaWXsba0rCKengW5uknpCa7Ev7o23+5Nx/a7jYwD/hcWvz/wCG\nJ6f6vPpRHzv9xvZx/iHJXNm7sBg324C2qdPE/RXZA7vQEUzT8PRkG+C/zK3GA++P5mHbA8oUT0mw\nuv6TZBjADQuKfJ4be9IbyUx4YUsZSU67MwBLf9UeaJ83e/XP2RxiP+ayDy+QznpSPvJ/d/2k6eXP\nZ/Y+34Wvb5ryvmNUcto3BuI8Rqr24Bp1i/4aups6dfYnzU+Z+85WbzSyf6Vo6UvUxJ4KSf8A3OYv\ndbBqekJjuSWIPBVfT71/reLNm93XdZT/AM1qZ8viD8Bjq/8Awasu2jTyp7ee323oBQD92lqKTqYf\noyW3xN3cAK8QTnokf8wL+Xt8YfjD8ZN2dpUGa7a3X2C2S2ptLY1TvzfkGWplzeZzMMmSnlpaDB4h\nJ5BtyjyFT4/82ZYVsqrf2E+dOStg2DYJNwR7mS91IkZkkqNTNnAVfwhj6VHWRX3XPvT+8nvJ7xWP\nJd1b7HY8rCG5ubxbKyMTeDFERGoZ5pSo8doI9XxaWOSada7vuEuurPUOvpquupXx2Oh+7ymVlpcR\ni6BVLT5Cvy1XBjoaOlUFdVU/3JZATa6+xx7dbd+8ebbUMKxQEzH5eGKqf+cmjrFX76nOh5K+7pv0\nkL6L7dEj26L+l9Y4SdfztBcH8vzG7N15/LM+HG1dg7J2znuh9h7izu39p7ew2c3BWwZKeszuZxuJ\npKTK5mqmavUyVGUr4pJ3NlGpzYAWAyEueUeWry4e6ubOJ7iRizMakkk1JOeuLOyfeU99eW9nttg2\nLmbcbXZrOBIYYYzGqRxxqFRVGjgAOJqSckkknpY/8N1/CP8A7xu66/8AOPIf/XH2x/UjlP8A5QYP\n2H/P0af8Fd94v/prt2/3tP8ArX17/huv4R/943ddf+ceQ/8Arj79/UjlP/lBg/Yf8/Xv+Cu+8X/0\n127f72n/AFr6Il/Ma/ly9I0Pxf3dvj4/dPYLaO/+taqi3pUHakORWtzuzqATU278XNTSVs9NPFQY\nqrOVv4zMP4cUjYeRlcIc8cj7SnL8t3stqkV7AQ50VqyDDilaYB18K9tBxzkr90372XuNc+8tjy57\npb/c3/K+7o9ov1JTRDdPRrWQMEVlLyL9NTVoPj6nHapXVh9489dp+ucQpvuKWSrpxVU8FVT1EkGt\n4jKkMqu8QliZJI/KgKkqQbMfauyumtJtdC0TKVda01Iwoy1zTGVNDpYBgKgdB7mfl+PmPa/pAwi3\nCGWOe2mK6zBcwtrhlC1UsoYaZUDL40LywswSRutlP44fy9vjn331Xge1fi58rPkp1/S5CKOHM4KL\neuErq/Y+5o4ZZsjtTLUeAweyqymq8TJXkRszlaqncVETvFUI5m3ZOSti3iwXceXdyv4YzgrrWqN5\nqwUIQRX1NRkEgg9co/dX71Hu77Z843HJfvbyPyfuV5H3Ry/SzCO7gJAS4hknluVdJNGexSjr4boj\nxMgHGX4MfzDuu9VT0/8AzGty7plj0y0eP7iwuXyVKjxzyPFTVFVuDJdtQzwLGw1P9kFf9Bi0qvs2\nPKPO1j3bZvkkh8hOrEfYSxm/478qdR4n3kvuq810i599prOyQ4d9qlijYggAsqwR7YQa8B41R8Wv\nUT01Vfav84zohGn3t0v1P8mdtUJ1V+Z6+8UW5qmONlGnG4vAVu2cxI9RGrFfHtep0ki4U2QttuPu\nfs+bu1tr+AcWj+I/YFKNn/mkf8nS2Dkn7gvuWwj5d5h3zk/d5Pgivqm3Un/fkk6XEQCmgOrcY6+R\nOWC46i/nCdF7l3Auxe+9mb3+Mu/I6mOhrKPfFHVZPbFFWyuYkpq/NxYvE5zCtrA8kmRxFHSwg3eY\nKGYK9s9zdouJvo95ilsLytCJASgPoWoGX7WRQPM9Bznv7hXuTtG1nmX2x3DbuceWShdHs2WO4dAK\nlkhMksMuPhWC6lkciixkkA2y4zKYzN42gzOGyNDl8RlaOmyOLyuMq6evxuSx9ZClRSV1BXUkktLW\nUdVBIrxyxsyOjAqSDf3I8ckcsayxMGiYAggggg5BBGCD5EdYO3lnebddy7fuEUkF/BI0ckciskkb\noSrI6MAyOrAhlYAggggHqd7v0m697917r3v3Xuve/de697917r3v3Xuve/de6RG/uyuveq8DNujs\nre+1dh7eg1q2X3ZncdgqKSVI2l+1pZcjUQfeVsiKfHBDrmkayorEge0l5f2W3Qm4v5o4YR5uwUfY\nKkVPyGT5dCPljlDmrnXc12blDbr3c91an6VtDJM4BNNTCNW0ICe52oijLEDPROG+eVHv+RqP4t9B\n9z/JJ3aWKl3fjsF/ou6eknhfxyQy9n9kR4ilbTID6qWhq0ZVLKWBTUF/64LenTy9Z3V+fJwvhQ/8\n5ZaD9it1Po+7NPyuon96OZ+X+UVABa1km/eO6BSKgjbrAytw8pJoiCQCAQ1NQT5Ddr5jvHu/tDtn\nPQUlJkd8bwy2X+xoMg2WocbQCb7PEYqiyrQUpydJisRSwU8dR4ohOkQcIgbSMZ973GXd92uNymAD\nzSlqA1AHBQDioCgAGgrStB13i9q+SLD239udm5H2xnktNtsIotbp4TyPTXLI8dW8NpJWeRo9TaCx\nXU1KkG/ZX0P+tjP+R38YOsd3dMdnd7dk9abM3pm9z9q1W29lV289q4XcsmJ23s3CY9Za/b75qjrV\nxrZLM5+rpp5IBHJJ9iFYlQB7y72jl6wg2Swsr6CKWW2tx8aK2l3AMhXUDQlq1pnr5tfc73n5w3b3\nV5s5m5U3fcbDbd63aQt9LcywCe2t3eOyWUxOniLHBp0hqqCSQB1sO47G47EUcOPxNBRYugpl0U9D\njqWCio4E/wBRDTU0cUMS/wCCqB7EKRpEoSNQqDgAKD9g6hC6u7u/na6vpZJrpzVndi7MfUsxJP5n\nqb7v0n697917r3v3Xuve/de697917rXZ/nz9oaaToTpekqL+ap3L2hn6TVbT9tFHtTaNRoB9Wv7v\nNrc2tp4vc2hH3h3Dts9qU8S0rD7OxD/OTrq3/dmcm1n5n9wp0+FLfboWp/ETc3S1+Wm0NPnngOtc\nj3B3XWbo338v7rE9w/Nr42bMlggq8Ti+wF7Oz6Ovk8GO6px1VvKmWtWxUY7MZGhjoypBEskgU2F/\nc3+zlh3Xu6sOCpEp+063H5Uj/b1yn/vNecQtnyv7fwtUvLcbhMteGhRbWzU89XiXYqeGnFamm8/7\nnDrkt1737r3XvfuvdcJYo5o5IZo0lhlR4pYpUWSOWORSrxyIwKujqSCCCCD70QCKHIPVkd43EkZK\nyKQQQaEEZBBHAjyPWoT/ADPfgHW/GPfdR2f1nhqqXoXfWRlnpo6WJ5oettyVksk0+0qxo47U+AqC\nxfDyyG/iDUzFngEkuNfP3JMuxXLbntyE7LI3Af6CxPwn+gT8B8vhOaFu6n3O/vV2Pu7scPIXOtws\nfujZQ0DOQo3KGNf7eMk5ukUVuYhQtQzxgp4iw1N+416zr6Mj8X/lP2r8TOx6XsLrLJoUmRaHdG0s\no1RLtjeWG16mxubooJoW8sDHyUtVEyVFLLyjaGkRz3l/mHceW74Xtg2Dh0NdDr6MP8BGQeGKgxJ7\ny+y3JPvjyk/KvOMJ1KddvcxhRcWstKeJC5BFCO2SNgUkXDDUEZd0P4wfJnrf5W9V4fs/ruuQCdIq\nPdO16ipilzeydypCklft7NRosTa4WbVT1ARIqymKTRjS1hlPy/v9jzFty7hZHjh0r3Rv5q3+Q8GF\nCOvnv95PZ7m32S51uOTea4j2kvbXCqRDd25JCTxE1weDpUtFIGjbIqTE+zvqKeiRfPLrz4o7r6O3\nTnvlNBt7E4TCYevi2/vkx0FP2Dg8w9LU1OPouvq99GSyGcq6qPXFikaWmrnS08LxhiAnzhZcuXO0\nSTcwhFiRTpkwJFahIEZ4lieCZDeYI6yL+7NzV73bJ7j2W2eyzXU+43Fwhns6u1jNEGVXe+QVjSFV\nNGuSFkhBrHIrkVId/It3PvzK9M9w7cy9Vkq/rfae+MDH17UZEShKPK5nF5HIb4w2ORjPDS0NNKMd\nVmGKd1E9dJIURpWMgP8AaK4vJNruoJCxsY5l8MnyLAmRRxoB2mgPFiaCucmf7ybZuWbH3A2DdrFI\nYubb7bZjfLHSrxxSIlnLIe0s7Dx4tbICUhRAzBAFvO9y51zb697917r3v3Xuve/de697917r3v3X\nuiJ9yd99u7x7Yyvxi+KGMwB7D25i8Plu4O5d5wtX7E6PxO4oTU4ahiwkB827+yM1jb1NDjmK0saG\nN59cJnNOEN03nc7rcm2DlxU+tRVM075jgDZUafxysMqvAYJqK6cleQPbHkTYOSIPeP3umuv6q3c0\nsW17VaHRebxLAdMrmY4tbCKT9OacVkY6lj0v4Qln9efA3qDBZyl7A7hq8/8AJvt9FDz9id4VQ3XD\nQ1DSyVLxbP2PVmfZ2zcTTVUpajp6aleSjCoEmJUN7vZcn7ZDML3dC+4bn/v2c66Hj2RnsQA/CAKr\n5HpLzX95nnzcttflfkJLXk7kMmi2Ozr9MXWgUG6vFpdXcrKKSvJIFlqxaOhp0vfmZ2XH0p8T+9t+\n0siY6pwPW2axe3pYtMMdHuPc0Mez9otGqaQqQbizdJZF0kgaQQSCFnNN+Nq5cvLxe1kgYL8mbsT/\nAI0w6DP3fuUH9w/e/lrliYGWG53eKScHJeC3JurqpNcmCGWpNacTXrRC94gdfS51jmRpIZY0fxu8\nbosmnV42ZSqvpuurSTe1xf2otJo7e7inmTxIkkVmStNQUgla0NNQFK0NK1oeHRNzHt15vHL1/tG3\nXP0e4XVnPDFcaPE8CSWJkSbw9cfieEzB9HiJq06da11C6b4l/wA3LE/FL499c9C4j40/3og2JQ5W\nOr3O3cAwUm4ctnM/ldx5bKyYkdWZk0P3GQy8gSI1dQY4lVNZCj3NJ95qmv7t/wCzj/rh1y3H91/Q\nU/rx/wB0b/vq9GN/4f6/8BN/9jv/APoa96/15f8ApG/9nH/XDrf/ACa//wDD4/7o3/fV69/w/wBf\n+Am/+x3/AP0Ne/f68v8A0jf+zj/rh17/AJNf/wDh8f8AdG/76vVt/wAMPmJsb5k9X/3323T0eB3X\nhqg0W/8AYdHlMpuMbHyFXX5dcHjqndFbtbalDmazJ4PHR1si0sBWlafwuSVDvLOxblLvG0QbpLF4\nDTpqCatdBU6Tq0rXUtG+EUrTNKnnL7u8h2Xth7k7tyBYbh+9YNquBAbnwfp/EkEaGZfB8afR4UrP\nF/atq8PX26tCm/8AZt1HHXvfuvde9+691phfzYe0P9Jnzc7Qjp6j7nFdc02A6vxJ1avF/dnHiq3B\nT2BKp4N55fJrYf65sSR7xZ9xtw+v5suAprHAFiH+0FWH+9s/X0Gfcg5N/qf93TZnlTRe7s824y44\n/UPpgb51tIrc1/LgB1W/7A3WWvV6n8hnrFc53b333LVQ00kHX/X+1+s8JUooZZMhv7LTbpzMiMR/\nxcMVTbTSmlbgpHVaASC3vKb242/938o25YUluGeZv9sdKn841Q9fPx9+TnL+uH3jN3iifXZbPDb7\ndEa8PBTxJ1+Wm7nuF/KuCSBtE+xz1iL1737r3Xvfuvde9+690nd27S2zvzbWa2dvLB43cu19xUE2\nMzeDy9NHV4/I0NQAJIaiCQEXVgGR1s8ciq6FWUENyxRTxNDOqvC4IZWAIIPEEHBB9D0s27cdw2i/\nh3Tap5rbcreRZIpYnaOSN1NVdHUhlZSKhlIIPA9ajn8xX+W9uH4o5eXsfrhcnunoTO1xRKySNqnL\n9b5KqmtT4Hc0sSkVGIqmcJQZIhFkf9icJL4nqMc+fORDsLHddqDNtDN3LxMJJwK+cZOFJyDRWJJB\nPbz7oH3vE934k9vvcF4YfciCGsMw0pHuUca9zKtaLdooLzRIAkiBpolRVeOOrnD4bMbhyNLh8Bic\nlnMtWv4qLF4ehqslkauSxbx0tFRRTVNQ+kE2RSbD3GkUUs7iKFWeQ8AoJJ+wDJ6zuv8AcLDarR7/\nAHOeG2sYxV5JXWONR6s7kKo+ZI6P58L+2O0Phf3Fiewc3uDAbG2VXT0uH7Q2JuzOqc3uHbckqPJS\nz9c4Fc3vzGbioElaoxddU4uCCCoBWWX7eSeOQccn7pecqbqt3dusVg/bNGzd5XyPhLqkDrxUsgHF\nSwDE9YnfeW5B5a+8P7eS8ucuW8+4c32xM+23cEJ+mSUYdTuE3hWjW8yjw50iuJJAdEqwyvEimyvu\nz+eTV5Oofa3xc6cra7J1864/Gbr7LR6qrqKqokaljTDdebVrZ5qupmkdXpXnyhJYhZKNrlPY23b3\nbaRvp+XrUmRjQPLkknHbGhyfSr/avl1ip7d/3b0FnEN6959/jjs4l1yW23kKqqo1Ey31ygCqACJA\nltQCpScYboIOuf5fvzg+d278V2n8x98br2Nst3NTT0+7jHDvU4yqeOaox2xusoYKfC9e0tZ4tLvW\nU1CUfTN9nVC9yyx5M5t5wuV3DmiaSG04jX8dDxEcWFjB/pBfXS3Q85s+9H93L7tOwz8l+wO22W5c\nwgaWa1qbTxFBCyXm4EtNfMlagRSTVFY/Hh8tjXp3p7r7obrzb3V3V+Bi27s/bVPJFRUayy1NVVVN\nTK9TX5TKV9Qz1ORyuSq5GlnmkJLM1lCoqqs47Ztlls9km37egS1jGBxJJySSckk5J/ydcmufufea\nfc3mu65z5yumu9+vGBdqBVVVAVI40WixxxqAqIowBU1YliJ3tf0Duve/de697917r3v3Xuve/de6\n97917qszeO4s78J/kR233NuzbmZ3L8Y/kXWbRzm8t77Yx1fncz0Vv/au3aTaslfu/C0Uc1bUdcbk\nxtMkxyFOkr0VSniaMAxCYBXU83Km93O6XMbybBfFGeRAWa3kRQlXUZ8JgK6hXScU4VzC2Datt+8T\n7U7F7fbHd29n7x8px3UNrZ3EiQxbzZXM7XIS1mchFv7eRiggcqJozrDVDmOwvZm99ndi7cx279h7\nowW8dr5eETY3PbcylHl8XVoQCyx1lFLND5oidMkZIkja6sAwI9jW1u7W+gW5s5Elt2GGUhgfzH+o\ndYr8wcub/wAqbtLsXM1nc2G8wNSSGeNopFPzVwDQ8VYdrDKkg16pz/nl9of3Z+OnXvV9LUeGv7S7\nGGQrIdf/AAL2x19jWyGSh8YILaNyZ3DSauQui1rsCIw93Nw+n2ODb1NHuJ6n5pGKn/jTIes+v7t3\nk398e7G685TJqttl2nQpp8NxfSaIzX528N2tOJrxoCDqre8d+u1vXvfuvde9+691737r3XCWRYY5\nJXNkiR5HP9FRSzH/AGAHt62gkuriO1hFZZHVVHzYgD+Z6LN73ey5f2a737cW0bfZWstxK3pHCjSO\nfyVSetur+SX1Y2wPg9gN21tN4Mx3TvrefZVYZFtUigSuj2Vg42Yi/wBrNjtoishW5XTWFuC7e807\na2jsrWKyh/sYYlRfsRQo/kOvlr5k3695p5i3DmjczXctyvp7qU+slxK0r8c/E56t29vdEvXvfuvd\nMO6dxY3Z+2Nx7tzMhhw+18Dl9xZWVQC0WNwmPqMnXSAEgEpS0zH6/j2zcTx2tu9zLiKNGY/YoJP8\nh0Z7LtN3v28Wmx7eNV/e3MUEY9ZJnWNB+bMOvnz723Zk9+bz3dvnNv5MzvPc+f3Zl5NRfXk9xZWr\nzFe+trM+qrrHNzyfeF13cyXl1Ldy/wBrLIzt9rEsf5nr6luXdjs+WeX7DlvbhTb9vs4baIcKRwRr\nEgp5dqDpMjTca5I4UuNcsraIol/tSStY6Y0HLG3AHulvBJczpbQissjhVHqWNAP2npRu+6Wex7Td\nb1uLaNvs7eSeVv4Y4kaRz5cFUnrbh/kk9YNsj4UY7fFbRx0uX7v7D3t2PUAReKSPGU9fHsrC0yr9\nUoTBtSSrp15GisLD9XvNS2to7K1isof7KGJEX7EUKP5Dr5aOZd+vOauZNw5o3HO4blfT3Uua/qXE\nryvnz7nOfPq3v290S9YKqqpaKCSqramCkpoQGlqaqaOngiBYIDJNKyRoCzAC5HJ96ZlQamICjzPT\nsMM1xKIbdGkmbgqgsx88AVJx0Au8Plf8Y9gCUbw+QHT+DnhDs+PqewtsS5chIhO3jw1JkqjKzHxE\nGyQsSWUDllBJrrmPYLOv1V7aow8jImr/AHkEn+XUmbD7I+8XNBX9w8r79cxNSjrY3AiyaZlaNYhm\nvFxwJ4A0KZvX+bx8GNoGWKi7Kzu+auFgklJsrYu6akXKFwYsluDHbdwlStrC8VU4BNr3DWDd17l8\no22EneZh5JG5/mwVT+R6nHl77iX3kt+CvcbRbbbAwqGu7y2XzpmOB55l+xowaCvmKk237/Po6+pF\nkj6v6B3luBm1rFWb93VhNnrDz+1LJjtvUu+DU3H6oxVRW/D+wxee8NkuNvspXPrI6p/JRJX9o+3q\nf+Wf7svmmch+cuaNvtVFKrZW011X1Aknaz0/JvDb/S9Fc3J/MX/mGfLPCZvZ3VHQeHq9nbkpKzB5\nOm2b0tmuzqSqxeRRqepotx5Hece7NnTU0kLFJGmoaeCxOpf6B6fnjnXmSF7XbrNTayAqQkDSgg4I\nYvrSn2qB1NG0fdP+6t7Hbjbb/wA78z3Cb/aOs0bXe7RbeyyRnUrwJaG2ugwNCAkzvXgeq8N64ftT\nb9ZuDY3b3be2+qpMfVzY7cPVuJrpjTx1VGwjrqCbYHSuFyWxcRmIGJjenyTYyTWuhyum4BN3FuML\nvabncx2xU0aJTio4jw4FMasPRtB8j1lXy9f8lbpb2vMnImxXe9rLGJINxlQairZRxe7tLHeSxN8Q\nktxcLQ6lBrkJBW9P4Is9Dh96dhViostLNuiox+wdvrPpAely+2NtV2689lqMMxs9LuPFSnSDwCV9\nluvbIfgWWdvLWRGtfQopdiPslQ9Dk2/Pu59tzcbftUBNGFur3s9K4aK4uEtoYn4YksLlRU8cHrZd\n/ksV3XO8OmN+5ik6x642x2Psnsap25Vbi23tmkp8/U7Qz209t7n29TVW4a+bKbpq4aSTL1tGPuay\nZpUpg7s8jyH3kxyLY7UvL9ruVpbQw3MsXcyr3EglT3MWelRwLHrg/wDe75t9wpPeXf8AkfmPftz3\nHYdvvh4EM01IVR445oz9PCsVsHCyAFkhU1HyHV1vsbdYpde9+691737r3Xvfuvde9+691737r3Xv\nfuvde9+691jmhhqIZaeoijngnjeGeCZFlhmhlUpJFLG4ZJI5EYhlIIINj70QGBVhUHq8ckkUiyxM\nVlUggg0IIyCCMgg5BHDokO6PgT1Mu4Mhvjo/cW/vi7v7JSiqyGa6Mz/93ttZypTyGJdz9bV0GR2F\nmaMSSl3jShpnkaxMl/YTuOTtt8ZrvaXm2+8Y1LW7aVY/04jWNh8tIr69ZGbN95zng7XFy57j2m18\n58sQrpSLeIPHuIVNK/T36GO9iegoGM0gUYCda3f81PdHbf8AswlB1H2125jO5Mn1BtbHUlLufHbF\nx3Xk6vvalot1zU+a2/h8lkcR/Gf4bU0JknphBFLD4rRIQfcF+4lxuX76XbdyuVupLaMAOIxH/aAP\nRlUldVCuRQEUwOut33Kdm5F/1rJeeuRtim5fs9+vZGa3kvJL5SLRntg0U8sccvheIs2lJNbK2vva\nvVZHsA9ZidDt8XenNg98dv1+0e0+wd99ZbAwm0KjK1u6Nhdebu7HyL7kqsnjqHBYKfGbRwG4Z8bF\nkoKqef7qpiSnVaR01h3QGa+RNr5dtuXDu3MVukv1F0UjJheaiqoHBEcqC2sEkAYGeuW/3uef/ene\nfepPbv2W3efb/wBz7FHcXiR7lbbaHlnlZstc3FukrJA1uyIrNIA7kLSp6uQ2l/Jb+N2+KeOp238t\ne4quOQkBK3r0YSpRlYoVno87jsbWU7hh+mRFPuRbbZeSbsaoLG1I+cOk/sZQR+fWEe+e6/3qeXJT\nDu/NO/ow803RZlPnUPDPIrD5qSOhKX/hP71ewDL8m+2SCLgjbu2bEf1/z3tf/VPlb/o32n/ONf8A\nN0ED95L7wANDzjzFX/ntm/6C64yf8J+OrZUeOT5MdsPHIrI6NtzbJVkYWZWBmsQwNj7dg5Z5ctpk\nuLextUnjYMrCNQVYGoINMEHIPRfuvv8A+92+bZcbNvHNe+3O03cLwzRSXkzRyxSKUkjdS1GR1JVl\nOGUkHB6vJ6l64wXTHVfXXVG3GllwHW+yttbJxdROkaVVbSbaxFJikyFasQEZr8iaUzzsP1TSMfz7\nOyfM9REqlsDpUVu4aShVi8NTIV/1CR2P0/LSg/7x7ZedU4g9GVttU9yaKyAfMn/N0HmZ7fx+KD6c\nNWVJX6BqmGC4/NyEmseP8faKXc0j/CT+fQq2/kO6vSNVxGgP9Et/lHRV+++5qPsrrLfvVVft7MYf\nC7/25ldpZvL4LdNHS5xMBnKaTH5iDHvXbVylBTVNfjZ5IC0sNQipI3oY2sHd53Rb6wm250ZYpkKM\nVcBtLYalUIBIqMg8eHU1+2Pt9ccoc47Zzra3dvcbjtd3HcwxTWzNCZ4WDxFwlzG7KkgV6KyElR3D\nqkeo+Fnx/wAM+jF7U7H3TJA9QzR57fEdcZUlRo6dJ02ntDajhad2DAoULsACbXBiduVdliNI455C\nK/FJX9uhE4fl10Vi+8L7o7gNV5fbTZIwUVhsylCMsVNzdXI7hg1qAOGc9M1f8Zdo41I4KP4qJlJa\nkfZUstbD3rkHrJ6eMPVqtGu/RjqyeWCYGaPwOiqQVRL3L1rsxsrmO62/bibyJwyNpnchkIYMF1lS\nQaHKkfLpBzB7npzRsV7sXOPOsacuX9tLBcxGXZ7dHguVaJojKLVJkV1LICsquasNR6N9tur/AJn2\nH2dt3r3qfY+8dgbH2rh6LA7Z23j+vtj7WpcVisdAfs6aKv3fio80DHTsFZpapnkdfWWlLEiSW+9y\nLs/opMin/hcafzZQf5/z6gux5U+43y+A25XO2XMq+Zvr25+Xw28zRnIrXQTkmumlGuu+Mn83TsVv\nHnuy977VppwY5Er++KXD0LRMY471VB17nskkqaFD6WhYixNtZsUT7B7lX2Jp5Y1PrcBR+YjY/wCD\noUWvvF9xPlNde27Pt19MuQU2ZpXrk9r30MZBrioYDIzpGELmf5PvySzeNym7O7PkNsKhxuGx1bns\nrXSZXfvYNdj8dQUX3+QqJ/43jNuwGopaaObUEqHQ6BaQhrqkl9st9lja53a9hCIpZjWSQgAVJOoL\nkCvn+fQjsPv5+0e33sOye3fKu5yXdxMkMSCOysUeR30Iq+DJOdLMUpVAc5UEULh8W/5TPxq+RXXe\nF7Owfyl3bvrAZJI4spjtrbN25svPbYy4i8tftnctDlM7v6TEZ2gE0epXVo5Y7TwmWCaKQ35e9uNh\n3yyXcIdwkmhbiERUZG81YFpNLDHyIyKgg9Jvef78Xu97T813HJ25cl2O27pCSY5Lm6nu4biKtEuL\nd44bISwvRqEEFWrHIEljdOrDtk/ycvg9tLwtl9n707Emg8DLNvbf2bi1yw8+Wam2SdmUE/lexeN4\nTC1raNJKkbWnthylbU8WKWcj/fkjf4I9A/lT5dYqcxff7+8dvmoWN/t21RtXFpZQmgPkGu/q3FBg\nMGDDjqrQg4exPiP8X+szTybI6B6nwdZSkGDLJsjA1+ejKgqp/vBlKOtzbEAn61B+p/r7E9ny1y/Y\nUNpZWyMOB8NS3+9EFv59QJzL76e8vOGpeY+aN8ubd/iiN5MkJ/5sRukP7E6ME701FTPJI8FJSUkD\nO7u0cFNTU0EZZndmKxQwQxLck2VVH9PZ0SqLU0CgfkB1FqrLcShVDPO7UAFSzMTwHEkkn7SetCT5\nTdj0Hb3yP7w7KxE5qsHvDs7d+V29Usnjao222ZqoNuzPGQpR5cJBTlgeQSb3+vvDrmG+Tc99u7+I\n1hluHKn1XUdP/GadfTh7LcpXXIntLy5yhfro3Gw2a1inWtdNx4StOAfMCYuAfToBPZN1JvWzb/IS\nhq5+qvkdmXpZYaCftjbOBgmkCqJMjtrYOKp8pAE1tIrU61kDHUBcSj83Ay55MtntOVLCF/iNuG/5\nyEuP5N183f3pt8t+YfvD83bjakGFd3kgqOBNoqWrEZNQWhJBBoeIoDTq/D2JuoC697917r3v3Xuv\ne/de697917r3v3Xuve/de697917r3v3Xuve/de60HPlJ2h/po+RfdXaEdR91Qbv7G3PkMHNr8n+/\nYgyU2P2rD5LkSfbbbo6WPULBtFwALAYccw7h+9d8u9wBqks7lf8ASVon7FAHX06ezHJv+t97T8vc\nmumi5sNpt0mFKf4wYw9yaeWq4aRqcRXJJz0Avsn6k3rZi/kD9Yfwzp7vbu2rp9FV2V2Zj9mYmWVL\nyS7c61wxqI6ukcghKWszG9KmCQKQXkoPULIh95ictbf+6uXrKwIo6QKWH9Nu9/8AjTHr5m/fznL/\nAFwPejmbm1H8S2ut2nWFq1rbwN9PbH/snij+Q4DHV/fs76iLr3v3Xuve/de64sqsLMLj/Y/8R79S\nvWwxXI6hyYygm/ztLFJ/g4LD/bEkW90MaHiK9KEvLmP4HI+zHUM7b28xu+DxEjXJ1S46klfng+uS\nFm+n+PuvgQHii/sHSgbvuoFFuZwPlIwH7AeqFv51nem4+qo+kOseqN0ZvrzMZ2Pd+8d3VexcvXbQ\nydTgoxQ4Db2OrKzb9RQVVZiclV1GVeWCRvC0lKjFWYArDvutu8+3C02/bpHglfW7mNihK4VQSpBI\nJL1BxUDrpp/d4e2u087PzHzjzvZW+62FsbW1tVvIkuo1mOueeRVnV1SWNVtgrqNYWRgCAc692W7l\n7fz6NHne1uyc0jwx07plt87nyKPBE2uKBlrMpMGhjflVPAPIHuFpN03OYUmuZ3FKZkc4/M9dTrH2\n/wCQ9sYNtuybRbsGLAxWdvGQxwT2RjJGCeJ6HH4IdbT92/Nz43bRr1XKUcXZCdl7leqLVU5x3VtD\nU73kXIySF3+xzlTj1pG1E+aSQLe/uYPZ2xLS327yVLBUiUnz1HW//HUPXNX+8x5rjttq5W9urMqs\nTzXF/LGoACiJFtrYgDFD412BjGk049b0fucOuS3XvfuvdEO/mZ9mHq34S955WnqRT5PdG3abrnFJ\nrKSVEnYGSpNsZWOBhyJYNtV9dUcWOmE25t7B/Pt/+7+U7uRTSSRBEPn4hCH/AIyWP5dZMfc95PHO\nn3iuW7KVNVnZXbX8hpUKLKNriIn5NcJCn2uPLrUN+PfyX7k+L+9E3v0/uypwNbN9vFm8LUqa/a+6\nqCnlMi4zcuCkdabI03qcJIDHVU3kZqeaJzq940bLv26cv3X1e2SFGNNSnKOB5OvAj54I8iD13c90\n/aDkD3l5ePLnPtilzbrqMMq9lxbOwp4lvMBqjbAJU6o5NIEsbqNPWwr0b/PH6X3JjaSg772NubrX\ncqJElXnNo0rbx2TVyAMJqtacTw7rwwdrFKYU2S0i4M5IGqa9o929qnjCbzDJBP5sg1xn50+Nfso3\n+m65X+5H93B7hbRdvde2O5We77QSSsN030t2o8l1UNtLTNZPEgqaUiFTQ3dZ/Ne+A1LjDlE74jrV\nPlWGho+vO1Gyc8sQc+IUNRsinlpvKUsslR4YSSPWAQfYlb3G5NWPxBeV+Qjmr+wxin50Hz6gmD7k\nX3nZ7z6JuWTGcVdr7bfDANM61vGDUrlU1Nx7cdVA/PD+bxL3ds7N9N/HfDbh2hsfccE+L3lvvca0\ndDujc+EmSSnrdv4XEUVTkEwOCyqG1RUSVBraqnbxGOnVpVkjPnD3LO7Wr7XsivFaOKPI1A7r5qoB\nOlT5knURii5rnj92j7iKe3W/23P/ALrXFrf8x2jCS0s4NT21vMCGSeWV1QzTRn4EVBFHINYeUhCt\nGfuI+ukXUWurYsdRz102kpAt0jdrCedgfBTCzo58zj1absqBmtZT7EHLGxTcxb1DtkQPhs1ZGH4Y\nwRrb9mF9WIHn1D/vx7s7X7Le2O5c8X7J9dFCY7OJj/b3sikW8QHEjUPElpUrCkj0ovW61/K3+PeU\n+OXwz6121uejlod9b5fI9sb7pqhWSqp8/vk01TQUVfHJeSLJ4naNHjKKrViStVTSDj6DL4IkaiKM\nARqAABwAAoAPs6+aW6urm/upb69dpbyeRpJHY1Z3clmZj5lmJJPmT1Yb730x1737r3Xvfuvde9+6\n91737r3Xvfuvde9+691737r3XvfuvdFi+aPaH+hv4p989hx1H2lfh+uc7j8HVa9H2+590xptLas1\n7gnx7kztKdIILfQEEg+yDmrcP3Xy7eXoNHWBgp9HfsT/AI0w6mP7vfJv9f8A3t5Z5UdPEtrjdoXm\nWldVvbE3NyPzt4ZM5A4kECnWh/7w/wCvpe6gZSp+0x1ZUA2aOnk0H6WkYaIv+sjD2e8s7d+9uYLP\nbyKpJOuof0AdT/8AGAeoo99edD7e+zvMnOEb+Hd2e0z+C1aUuZV8G2z/AM9EkYxn0z1vL/y6Op/9\nC3wl+OeyJqb7TJydd43eWdhdNNTDnuxpqnf+WpKxiNUlVjKvcjUhuWCrAEU6FX3mIxqx6+ZQYHR1\nfdet9e9+691737r3Xvfuvde9+691737r3WmX/Np7Q/0l/Nzsimp6j7nFdaY7bfV+JfVq8f8AAMec\nruCn0gkR/bbzz+TjsCb6dRsSQMW/cjcPr+bJ1U1jgVYh/tRVh+Ts/X0Dfcb5N/qh93TaJZU0Xu8S\nz7jKPXx38OBvnqtILdvzpkAE1rewJ1l31eX/ACHesVz/AHx3r3DVQU0tP1x1ztvrrD1CAMr5TsTL\nzbkyNQj83yGMoNpNSykWKR1Wjm9/eUvttt/0HKMDMKSXDvKfzOlf2oqnr5/fv085f1u+8XutvE+u\ny2a3t9vjNeBiTxpx8itzPOp/0v5DaS9jrrEDr3v3Xuql/wCcX0523298ZcY/WtGc5ieut4Rb/wB6\n7WxtFnMnuvOUVLjKzb+Ol25icHi8nLlVw394KmqrIn8Sx0yGe58JHuP/AHF2Ld9/2iO22kK5jl8R\nkLaWaikDST2mmokgkVxSpx1mX9yX3c9tvZ73Kvd79xHnt0vdu+kguViMsUGuaOWUzqlZVV/CjVXj\njkK9wYKhLDUK4sGBV1JcLJG6yRv45HicxyIWjkVZY2W6ki4I940XVpdWM7W15G8VwvFXBVh+Rof8\n/Xd7YOYth5q2qLfeWb213DZpxWOe3lSWJh8nQstRwIrVTggHHXvafo4697917r3v3XusFVVU9FA1\nTVzJBCoNmkNjK40jxQILvPL6x6VBIB1GygkG+zbFum/3QtNriaR8VPBEHq7cFH8zwAJx1G/ub7tc\nge0GwNzFz5uENna0Phx1DXFwwFfDt4QdcrnHAaUrqkZFqwuU/lZfy3tx987z2x8lO9ds1WD6M2dk\nabO9dbP3BQvBWdt7go5IqrGZqux9VH+91/j51SZ3cNT5KRFp4xNB907ZP8pcp2fKlgYYyJNxlA8W\nT1I/Cvoi1NPM8T5AcEvvIfeM5l+8HzYL+7VrTk2yZ1sLKoPhq1A00xGHuZQq6yKrGAI48BnfbQ9i\nnrHPr3v3Xuve/de697917r3v3Xuve/de697917r3v3Xuve/de697917qkv8Anl9of3Z+OnXvV9LU\neGv7S7GGQrIdf/AvbHX2NbIZKHxggto3JncNJq5C6LWuwIij3c3D6fY4NvU0e4nqfmkYqf8AjTIe\nuin927yb++Pdjdecpk1W2y7ToU0+G4vpNEZr87eG7WnE140BB1VveO/Xa3rFPBDUxtDPGk0TW1Ry\nKGRtJDLcHg2YA+1Vne3e33C3djI8VytaMpowqCDQj1BIPyPRFzLyvy7zls0vL3Ndlbbhsc5QyQTo\nskTlHWRNSMCp0uqutRhlB4jo18Hzk+YdNDDTU3yV7kp6enijgggg31nIoYIYkEcUMMUdUqRxRooV\nVUAKBYezn+t/NH/Kfd/85G/z9Rd/wNfsB/0x3L3/AGRQ/wDQPWT/AGev5k/95N90/wDofZ7/AOq/\nfv6380f8p91/zkb/AD9e/wCBr9gP+mO5e/7Iof8AoHr3+z1/Mn/vJvun/wBD7Pf/AFX79/W/mj/l\nPuv+cjf5+vf8DX7Af9Mdy9/2RQ/9A9HQ/l8fPL5TZL5b9Udd7l35vPuXH9q5MbLqsJvze+4K3E7a\nxBrKDPbm3rQY8SyxVmfwe2MLWClWW0P7r6r8ESn7W3++bxf3VzuN1PNaQQqoV3JXW7VBoTxARh8q\n9c/P7wHkv2n9tuTth2Xkrl/aNs5h3PcZZWmtraOKX6a0i0vGWVQQjy3MLf0jHQcD1tv+5p65X9e9\n+691737r3WjH8nfjh8o9ud/dq0u7uoOxd8bpym7chu3cO5utNib63lsvIZfe5TeNcuH3Mm2qGLLG\nkmzphqHSMKlTHIlyUPvHe79rubb67lvZXtPFmkZz+o3FmLH/AEP1PXbLln7/AD93PlXlvb+V9ug5\nhG37bYwWsX+Jwj9O3iSJMfV47UGOgH/0H/IL/vHT5Af+ie33/wDWX2n/ANaTmn+O0/5yN/1r6PP+\nTi/sB/vnmL/sjh/7a+tqj+TF0fuLp/4i1Gc3ttbK7Q3r272bvPfWWwefw9dgc5isZRVFPs7B42sx\nOSgpq+hpvHtuatpklQM0VcHF1dT7yJtLWOxs4bGH+yhiSMfYihR/g64n808wXnNvNG5c1bh/ufud\n/cXUma99xK8rZ/0znq2z2/0Q9e9+691737r3RDvkb/Lc+KPyYqq/Pbr2NNszfmScTVnYnWFXDtDd\nGQqF8hWpz1OlHXbX3ZUh3B8uWxtdNZAocLdShv8AbNu3SLwdyginj8g6hqf6UnKn5qQehfyf7gc8\ne399+8uSN23DarwkFjbTyRCTTwEqKQkq/wBGRWX1HVQ3Zn8hfs+ilrpemvkBsTclPUzPNRUPa20s\n5tOvx0ZBK0kud2PUbkx+RBZReVcPS2DkCMaRqBN37W8pXTaokuLf/mnJUf8AVQSdZXct/wB4L94n\nYohFuE+0bvQU1XlkFbhQVNlJZ1pxqakniTnorGU/kt/PrH1HhpMd0pnI7Mfu8X2FWw04IdkC6c1g\n8PVXZVDD9q2lhexuAV/6z+w/8pV3/wBU/wDoDqQP+Tl3ux/0YeXv2Xn/AG09CBs3+Rp8x87PR/3y\n7B6E69xytrqqrH1+7t6bhBZEdY/4M+26XbtTHGXZG/y+I6k41KQ3s2sva7lGzYNKk9yR/vyTH7Ix\nHX7DUevUdc1f3gH3iOY4Gt9vudr2VGFCbK0BehFKB7yS7Kn+kmlgcqRilpPxm/ksfGHpDK4zePZ1\nbmPkfvzGNHLTVO/qGkoNgUlRCAIKik66iqcrT1hi9VostX5WnUlWSNXRW9jy1trWxgFrYxRw2y8F\nRQo/YABU+Z4nz6xB5h5k5i5u3WTfear673LeZfjnuZXmlIHAa5GZtK8FUHSowoAx1cJFFFBFHBBH\nHDDDGkUMMSLHFFFGoSOOONAESNEAAAAAAsPb3RL1k9+691737r3Xvfuvde9+691737r3Xvfuvde9\n+691737r3Xvfuvde9+691qvfz1ctvKo7366ky+BzWI6z23sWLAba3Jk6KelwO4N55aurNwbrXBZC\nZUpq96PDvioKhYtRilgIc3IUQX7mbXv+873Em32lxLZwQABlRipdiWahApw0A/MHrrl9w3nz2g9s\nfau/uecOYtm27mbdd2eRop7qKOVbeCNIoA6MwYVk+okWtKrIpA8zRf8AxrE/87Gk/wCpyf8AFfcc\n/wBTuav+jfd/842/zdZw/wDBK/d//wCmx5e/7LYf+guvfxrE/wDOxpP+pyf8V9+/qdzV/wBG+7/5\nxt/m69/wSv3f/wDpseXv+y2H/oLr38axP/OxpP8Aqcn/ABX37+p3NX/Rvu/+cbf5uvf8Er93/wD6\nbHl7/sth/wCguvfxrE/87Gk/6nJ/xX37+p3NX/Rvu/8AnG3+br3/AASv3f8A/pseXv8Asth/6C69\n/GsT/wA7Gk/6nJ/xX37+p3NX/Rvu/wDnG3+br3/BK/d//wCmx5e/7LYf+gurhf5HXWsW/wD5j7n7\nOeJarEdK9VZSagrYwJEp93b/AKpNs49Q/wClPuNrSZtSQdX7drWJtPXtrslzsvLzfXRtFezzsxVh\nRgqgKoIP2Fh/puuP336/dTYvc73hgHKl9b7hyxte0wwRzQSLJC8srPPM6OpIJAkjiahwYacQetuz\n3IHWFvXvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xv\nfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3SH3p1j1t2Q\nmOj7E692Pv2PENVPiY96bTwO6Uxb1ogWsfHJnKCuWiarWliEpi0mQRrqvpFvVI4de6QX+yu/Gb/v\nHbor/wBFHsD/AOx/3up9T17r3+yu/Gb/ALx26K/9FHsD/wCx/wB+qfU9e69/srvxm/7x26K/9FHs\nD/7H/fqn1PXuvf7K78Zv+8duiv8A0UewP/sf9+qfU9e69/srvxm/7x26K/8ARR7A/wDsf9+qfU9e\n6Xeyurus+tv4n/o6662LsH+NfZ/xj+5W0dv7V/i38O+7/h/8T/gWPoPv/sPv5/D5dfi80mm2tr+q\nTx690uveuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvf\nuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+69\n1737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xv\nfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+6\n91737r3VM/x7787j3R/Ot/mCfH3cHYOfyvS/WHx4+N+6dgdd1U0Dbe2ruHdmA25Vbjy2LhWBZ46r\nL1FXI0xaRgS5sB7959OEDwwfOvVwG4txbf2hgM1urdmdw+2Nr7bxVfndxbk3Fk6LC4DAYTFUstdl\nMzmsxkp6bHYrFY2igeaoqJ5I4YYkZ3YKCffum+iL9DfzUf5eXyd7Pbpjov5Y9Vb/AOz2asTHbQo6\n/KYfIbkkx8VVUVsWzJtx4vDUG+JaWjoZqh0w81cy0sTT28IL+/dWKMBUjHVgHv3Veq7O/wD+bT/L\ni+L3YVd1R3l8tur9mdj4mQQ53Z9NJuDd+a21VNFTTrQ7qp9j4Pcq7VyL09ZFKtNkWpp2icOEKc+/\ndWCMcgY6MJiPmB8W898fpvlZie/eq6v440uOrcpVdyjeGIh2HSU+PyDYitgrM1UVEUNJlafNJ9i1\nDIFrfviKYRedljPutaTWlM9Vafyqvm3ub5gdtdh53sX+Yz8WO9t2U+x5YaH4dfF/rLcuy9kdZQpm\n8LJW9jY3fvcNLiu5u2p4kjTHVMwphhqBqvUmlqiNR7q7rpGAR8+jO72/nQfyueu6LAV+7Pmd1RRQ\nbmnzUGHjoBuncNbMdvZiq2/lp6vG7c25lsjiqGnzdBUUq1NXFBTzz00yxO5ik0+60I3Pl0vfkf3r\n0ZvPofoPuXBfOFehepd6969LZfZncvWGR2ln8J3Qo3DU19N0nJkctgd0UTYXsk4qooq1IEgqYpqQ\nwVGuEVdFUe60AakUqadL35TfzAfhn8KH29T/ACj+QuweocnuuB6zbu383U5HK7ry2OimkpZMvSbR\n2xjs5udsHHVwvCa40goxMpj8msFffuvBWbgOhu6W7y6e+RvXeD7a6J7I2h2t1vuNZv4RvDZOZpM3\niKielk8Ndj55aZ2kx+XxtQDFV0VSsVXSTAxzRo4Kj3WiCDQ8ekh8gPlf8cfirQbUynyL7i2X09jN\n8ZWvwm1MjvbIti6HM5XF45stkKOnqzDJBG9JjkMzmRkUIPr7914KTw6Bn40/zM/gV8wd35Dr744f\nKDrPszfmOgqattl0dbk9v7ryFFRRSTV+Q2/t/d2M2/ld0Y7HQRl6moxsVXBTIQ0jqGUn3WyjLxHW\nT5OfzLvgh8Nd1YrYvyW+TXXXV+98xQw5Sk2dXTZjcG6oMVUl1o8rl9vbQxO4cvgMVkGicU1TXw00\nFSY38Tvoe3uvBGbgOhJ3F80filtX49UXywzXfnW0XxuyKYp6Huah3BT5nYtSc1mY9u4+GPL4UZBP\nu23BJ9jLCVE1NWK8MyxyI6r7rWlq6aZ6X/dvfnTnxv2WnYvefYOA6z2RLn8JtaPcm5Jp4Ma24dyV\nX2WCxIengqZPusnVjxxDTYt9SPfuvAE4HQD98/zGvg98Ydybt2b358lOuOsd3bH29gN1bl2vuGty\nH94aPBboqUpNv1dJhsfjq3I5mXKzMTFT0MdTUmNHkMYjjdl91sKxyB0Z7rTsnY3cXX2ze1estx0O\n7+vewtuYrduzN0Y1alKDP7czdJHXYrK0iVkFNVpBWUsquqyRo4Bsyg3Hv3VSKGh49a4uwe//AOYb\n3hjv5yvUXx93jujeXceA/mA4342fHvcWXymBo8H8Yusd0Z2Sg3d2EJchJQzx7e642dDWVkMdLHkM\ni1cKfw08xuvvXTtFGknhTq37DS7Z6/8Alt0N1Rnvmtv/ADPYuM+JuVwVN8Y9zPtqqTuiPE57Dpkv\nk3uet/u02dn3pDLteqpagxV8VMpkb7eOnR6yOu31TipNMV6C/eH86n+VjsNcOdzfNPqWlbOz5Knx\n8FB/enP1QbE5etwNfJkKPb+3MpVYalhzGOqKcT1iQQyPBJoZgjEe634bny6PJN8gujabpYfI6o7c\n67g6EbakG+V7hm3bhYuum2jVRxvTZ8bresXEHH1JmRI28t3mYRAGQhffuq0NaefWvL/MB/nSfH3t\nKm+FOzv5ffzNxeY7F3D/ADHfjJsntnA7Fh3Bhc3nejNyR79xe9cZW027ds4s5TZ2QzsmIhqpqTyI\nJpIB5BrF9dOLGRXUMU62Etk/IrpHsftXtXo/Y/ZG3Ny9tdH/AN3f9LWxMbNUPnNif3tonyO2/wCO\nRSU8cMX8XokMkOh3uo5t7303QgV8um/FfKD495nc/fWzqHt3ZP8AeL4u0eCyPyGoazLx4uLqDHbm\nwWW3Pg8jvfIZNaPGYjH123sDWVgnaYxR09M7uyge/deocfPouHTn81r+Xd3/AFfaNF1F8r+sd3S9\nL7G3D2d2bIs2dwlHtfrvalZR4/ce95chuTC4egye18PW5KmjmraKWpp1NTD6iJYy3utlGHEdFP8A\ngd/PJ+KXyt+Ku7fkf2/vbrn46Zjriqrcn231vX7wye65upNmZrtFetOsstuncP8AdfBiufeeQyOO\nRJIaKJDUVqqI0Xn3qvVmjZTQZ6Ebvn+Yp8F+6urvkh1r11/Mew/Qm5+laTZ2V7T7n6uWiyua6hx8\nna2ztoLJT5Ldez8/snLQbg3ZlaXbVZ9qKx6aTKBGMTkH3vrQVgQacejifIz5ufE34fbI2rvr5K9+\n7G6s25vFUj2hWbnrpJc5vPx01JUVNXtzauBoK3ceeipIK6CSrloaB4KQVEXl8QkjB91UKzcB0s/j\nr8ovj18tuv4+0fjb27svuHYprnxVVm9nZQVb4jMRU9PVyYTcWJqEpc3tnOR0dXDM1FkaalqhDNHI\nY9Dqx914grg9D1791rr3v3XuqCfi5/3EH/zQP/FWfid/7zG1PevPpw/2Q+3pJf8ACnnL7yov5aFH\ngtvZqTbuzt8/JnpHZ3c2bY5U4zGdXVkm58tLV56DDRmurMHDvzDYFp4UeFpbKFYvoR9nrcPx/OnQ\nQ77/AJR3zt78yXw63PkO7/5d+w9vfFLszq7tbpzdHxm+O2+NhbkptrbNqKTIY3aeD3Kd47ixVdsf\nK0KxVEVMYnppaiKGXUUMol11sOorxz1shdr1e7KDq3squ2FBPU75otgbxq9l01LTJWVNRuym27kZ\ntuQU9JIGjqp5cwkKpGwKuxCng+99NDjnh1r/AP8Awm82/wDGbcn8tOl3vFSbH3X3nvDfHbmR+Zm5\nt4QYjNdg5He0vZe58liYe0K/OSZDKjDnY+PxVdRx1ci0kreWs8a1UtW3vXTktddPLy610MRHvTcv\n8n3+Sd1ZFm9k7b6i7J/mI9sY3sHM9r0GVyPTUe8KTtvL03WVF25RYXK4euyGwqiny+elyNMKiBHp\naeSRpofD5F907+Nj5062P6H+Vd88d4/OD4d/MXtzub4RbfynxY3DWw1cfxz6E351ZuXf3WmfxlJt\nvPbF3BkardWZpcrR0G1UqqPDpMEhx6V9QtmjkKD3TWtQpUVz0mv+E7vx96F3l8At+7m3d0n1Jufc\nu+/kH8jdn723Hn+udn5fcG79pwbvalp9sbnzVfh58nndv09NK0cdHVSy08aMQqAH37r0pOr8uqYN\nnQfw7+Q/8UMBBNVPitsfzpdsYDA0tTVVFUuMxFJ2LvmaGhpTUSSGKD7mplmZVsGmmkkN3difeXTn\n+iH/AEvR5etuv/ln3h/O6/mu5Pqff/xP273P15F1Hsvb2H+XPUe5ez81H8f81s4xUg6axOD3Zt0Y\nba9VRw45txSiCZKs5WiYupq5xN7qpKiNa1p1cJ/KX/l3d3fAKq+W8na/ZXUu7cR8ku4aHuvAbH6S\n2puXY3XXXG68rHuKPftNtvaW4K3JRYLDZaKbEQ0dPTTulPS42OCyxwxD3vpt2DUp5dAD/Oqw+I3B\n8nP5KOFz2Lx2bw2S/mIbZpcjicvQ02SxlfTPSYXXT1tBWRTUtVA9uUdGU/09663Hwb7Ogw/nfbM6\n12L8nP5PPZvVOIxW1Pl/lP5gPVOxNpZDZuOoMRurdfRtXWUtJ2lis5LjxSzZrauJrsnhKOSOsEtL\nTUeZrIyY4qmoEnutx1owPw06g/yIsRsHtnt3+bt2N3RtXFbg+W9d88+2dhdqHemNxeezO3+moY/4\nVsfr6iOThq6rH7Vp8zjtw42Wjj00U9JjaSEqyU0QTw69JUBQPhp1Rn3NBQ7a/le/z5eseqnjb4pd\ndfzPdjYvoCDGapdp4aeo7oxUO9dt7NqkSOhO3MLicbt0UsVOpiFPLHMHl8/lf3Tg+NSfip1saf8A\nCj2qpq3+W9hK2iqIKujq/k/8Z6qkq6WWOopqqmqN5+WCop54meKaCaJwyOpKspBBIPv3TUXxfl0l\n9h9fbC33/wAKPvlVLvjZG0N5SbZ/l8dTZbbkm69tYbcT7fytTvPaOKqMnhHy9FWNishPjK2ameaD\nxyNBM8ZJRmB91sn9Ifb1sJYbCYbbmKoMFt7EYzA4TFU0dHi8NhqClxeKxtJELRUtBjqGKCko6aMf\npSNFUfge99NdUOfybP8Asq/+d3/40X3T/wC4mZ968+nH+Ffs693P/wBxHfw6/wDGdHb/AP78Le/v\n3Xh/ZH7egb/4T1/HfoTsP+Xd2XWb56X6t3VkezO/vknsnsLMZrYm2a3O702j/eefFR7c3Jnpcacz\nlsRTY6slhhhmnZIEkIjC39+63KSG/LqizqWoTfH8rH+RB0V2zlaqn+Kfbf8AMo3/ALd78XIZepxW\n2MjisZ3jkztXZm58p9zDBQ7ZzNPuLOzypIyQRPTmr1RyU6yp7pw/GxHxU6vp/nndJdMdb7B/lc1/\nXfUfWGwq7A/zXfhvsfB1uy9g7U2tV4bZU2N7XyMu0MVU4PE0M2O2vLkMVSztj4SlI01NE5j1RoR7\npuMkk19D09/y7I3x/wDPS/ng4+uX7SuqaH4i5Ono6giKqnx1R1mKuGuhgciWSlemydM4kAK6Z4zf\n1rf3Xm/s1/PouOz/AIsz/Nj5bf8ACnH4t0m8G2DkO4G+BOCxW7vs3yFPh8zjetuxtyYZ8lQxSwz1\nWFq8rhIaevSNllajll0HXp9+62TpVD9vQ4/y6e7u2/j18nup/wCVH8+/jN0DR99be+LeSo/j58nu\njqLbuS2r210Ls/I3qtpZvCz7Uwed2hBXS9fS11UjR0FLkclikkmxUEpgnl91pgCNak0r1UHs7E4q\nD/hHv2vl4Mbj4ctXbyxUFbk4qOmjyNZBT/zC+vFghqq1IxU1EUKqAiuxCgcW9+8ur/6P/q9Ori/5\n3PUfVXW/8hjvtOvOtNgbFXH9ZfFPBUP9z9n7e221Jhaj5M/HrI1GJp3w+Po3ixtRkYVqJIQRHJOo\nkYFxf37y6pGSZBX59Ed3hsz5J91/z4crgurt6/HLbvYnUn8vzpTI/Hym+V/Wmf7L2lFsrK4PZ1Vv\n3J9U4HCbl228G+oN2biyyyZBfPMuPevjAVImZPdWwI81pXy6tn/lpfy3fkV8PPlB8uvkT3B2f0Hl\nsf8AK/GbCq831h8devdz9adfYTfWxfuaWPdNBtfP5LNRUcuXo8pXz1PiqfXX19RJpCOqR+6o7hgA\nK46uy976b697917qp/5H/wAmn4hfKD5A7z+TW+sx8gdrdr7/AMPtbA7oyvVHeG7OtaDJYvZ2EoMB\ng6WSg24YNUcFBjYiwZ2VpQXsCffqdXEjAUFKdKXpz+UT8Nuotl90dd12J7S7t2X33tPH7I7C278h\n+3t79u42XbWOyD5eKi2/T7gyQTbFY2ZSmrRX0XhyEFZQUk8E8UtPGw9Trxdia+Y6Dzoj+Sl8WPjv\nv/Y27Nhdp/MGr2T1puWi3Zsb4+br+TO99wfHnAZnD1SZLbsqdcTLCMnT7bzEUdbSQ1tZUx/dRI8o\nlAt7914yMRmnVv3v3VOtMPuHJfBbt/de99/7r/4T1fPXH/Pvc6zVbdfUXVXaGH6I3n23MBk4Mru3\ncfXvZG0+q99dfNuakXIZfN5LaZTKRRy1c9PK0kjHXT41DGoaerg/gR/Kg2Vtn+Uh1L8A/nJsLbXZ\nb1lPuTevZG1PvpWi2dvPee+Nw76x9Htfdm3qymyWK3RsSlzsVDJlcXWjyVUdUIZpKSfS++qM/fqX\nocfi5/KW6F+KPZO1OytqdzfMDsqTr+hydB11sPu/5G7q7F6s2CmTxFbt9p9s7CnpcbhoKqgwWQlp\naN6hag0sbao9MoEg91ouWFMdGr+JPxG6c+FHVE3THRlFn6DZE+9N3b9kg3JnZ9xZH+8O9siMpnZB\nkKiKGQUslWLxRWtGvAPv3VWYsanosVJ/KM+HNF8cdpfFeDC7/HUuyfkXTfKXBUbb6rmzkfbFJlch\nmIaupzRpfNUYMVuTlJoioQqQL8e/dW1tWvnTpw+YP8qD4k/M/snbfeG+KHsvq35AbUxkOCxHfnx7\n7IznUfav934VqY0wuRzWHFVjMxTLT1ckCT1dFNWwUzmCKeOElPfuvK7KKeXRiPij8S+vviFsXNbL\n2Pu3tzsWu3TuWbdm7uxe9uys72z2jurMPj6HFUxzW8twEVUmPxmNx0cVJSQxw0tOC7LH5JZXf3VS\n2rqoX+ev0JN8ju1P5T3Wddg9/wCR2Vn/AJuUWJ7AzXXcm4MZm9o7Yy+IxlFVbhj3Vt6JqrZ89CGM\nkGQZ4hBMgYNxb3rpyM0DH5dHW+M/8oj4p/Gvuql+SL5rvj5D9/YbETbf2d258qO5dx917v2Bgqmj\nmoKvGbLky0ePxWIWekqZYxUNSy1sEU80UM0cU0qPvqpdiKcB0k/kl/JS+F/yQ74zfyXeo7w6I7o3\njjpsT2LvP409u5nqKq7LoKqjgx1dDvOlx9JkaKqfKY+nWGukpI6OXIqNVU00nr9+68JGApxHRh9v\nfy1vhhtf4aZj4DYjpjEQ/GTcWJqcfuLZcmRzE+Uz2UrK+jzE288ru2SuO5anfSZ7HU1dBlPuRUUl\nRSwCnMUUEMUfuta21avPoiFP/wAJ3/gVV0OKx2/N1/K7t+k2t/BIuvIO1/kTuXdtJ1dQYHK43K0e\nL67xxx9Fi9uUMn8JgppLQSS/ZBoEdEkkDe6t4reVOrPdv/EbpzbPyy39808XRZ9O8eyeqMD0xuev\nmzs8225dkbcyuOzGMgo9vGIU9JkVrcXEXqA5Z1BFuffuqajp0+XRnffutdFi6B+I3Tnxq3v8iuwe\nr6LP0u4/lJ2vW9z9ryZnOz5ekq9718dRHUT4OlmijXC44rUtanQso459+62WJAB8uvbg+I3Tm5vl\nlsH5p5Siz7949bdUZ7pjbFfDnZ4dtxbI3HlcjmMnBWbeERp6vItW5SUpUFwyKQLce/de1HTp8uvf\nEn4jdOfCjqibpjoyiz9Bsifem7t+yQbkzs+4sj/eHe2RGUzsgyFRFDIKWSrF4orWjXgH37rzMWNT\n0XTEfylvhDQfCKH+XxlutcjvH420WZzO5sRht27mymQ3bt/dWYz+U3N/erb29aN8dnMLn8ZlczU/\nbVFO6H7aaSllEtNNNDJ7q2ttWrz6APbf8iT4d4qu61yO7ex/l93DU9M9l7D7Q6jj7j+S28d9Y3rf\nK9d1dTXYTBbRwdVT0uDxm16qrliaspxTNNOKSFfMqKyv7rfiN8s9Cz8rP5QfxT+WPd7/ACSzOd76\n6T7zyW1aPY+7+yfjb3Fneo8/2DtLHRU9PjcHvb7CnyVDloKKkpIYBLHDBUzU9PBDNLLFTUyRe60H\nYCmCOmzqr+S98Gul+tPkv1P17tzsvB7V+WOJ6ix/bk0Xau7P7yVGS6SnymT2Tu3bu6Y6qLPYPd53\nLmKjL19as7mvyUhklUoWjPuvGRiQT5dLf4m/yrvjT8R+2818gcHuDvXvDvvL7Ni65pu5fk33BuHu\nbfu2+vopqaf+521q7LpRY7C4h5KOMB0pTVxwh4I5kglmik91pnLCmKdAziP5FvwSwHVHyE6EwkXe\n+N6I+RP92hmumU723xWdb9d/3c7G2v2pLJ1NtvJ1VdT7Wrtybv2TiJMlWVDV9bLS0CU0U0MDSpJ7\nrfiNUHFR0fD5NfEbpz5bfGjdXxM7hos/W9Qbyx2x8Vm6PAZ2fBZ6Sk693Ztfem3BT5yCKWenkizm\nz6JpmCnyxq6GwY+/dVDFTqHHoDPl1/K6+JPzSj6yyfa23N47d7K6XxVPg+qu8Op98ZrrfuTZGIpl\nHix2O3jhHtkKGKYvNDDkKasipaiaaWnWJ55mk91tXZeHDoRviF8IOtfhtjt5xbP7C767c3Jv6qxE\nu5Owvkb25nu49/TY7b8demC27QZ3Nx08eJ25ipMrVSx0tNBErTVDvIXbSV915mLenRyvfuq9e9+6\n91737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3X\nvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+\n691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3\nXvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9\n+691737r3Xvfuvde9+691737r3Xvfuvde9+691737r3Xvfuvde9+691//9k=\n", "text/plain": [ "<IPython.core.display.Image object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Le Reactor\n", "while len(sel.get_map()):\n", " events = sel.select()\n", " for key, mask in events:\n", " handleEvent = key.data\n", " handleEvent(key.fileobj, mask)" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }
lgpl-3.0
ThunderShiviah/code_guild
interactive-coding-challenges/graphs_trees/check_balance/check_balance_challenge.ipynb
2
4276
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<small><i>This notebook was prepared by [Donne Martin](https://github.com/donnemartin). Source and license info is on [GitHub](https://github.com/donnemartin/interactive-coding-challenges).</i></small>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Challenge Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem: Check if a binary tree is balanced.\n", "\n", "* [Constraints](#Constraints)\n", "* [Test Cases](#Test-Cases)\n", "* [Algorithm](#Algorithm)\n", "* [Code](#Code)\n", "* [Unit Test](#Unit-Test)\n", "* [Solution Notebook](#Solution-Notebook)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Constraints\n", "\n", "* Is a balanced tree one where the heights of two sub trees of any node doesn't differ by more than 1?\n", " * Yes\n", "* Can we assume we already have a Node class with an insert method?\n", " * Yes" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Cases\n", "\n", "* 5, 3, 8, 1, 4 -> Yes\n", "* 5, 3, 8, 9, 10 -> No" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Algorithm\n", "\n", "Refer to the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/check_balance/check_balance_solution.ipynb). If you are stuck and need a hint, the solution notebook's algorithm discussion might be a good place to start." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Code" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%run ../bst/bst.py\n", "%load ../bst/bst.py" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def check_balance(root):\n", " # TODO: Implement me\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unit Test" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**The following unit test is expected to fail until you solve the challenge.**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# %load test_check_balance.py\n", "from nose.tools import assert_equal\n", "\n", "\n", "class TestCheckBalance(object):\n", "\n", " def test_check_balance(self):\n", " node = Node(5)\n", " insert(node, 3)\n", " insert(node, 8)\n", " insert(node, 1)\n", " insert(node, 4)\n", " assert_equal(check_balance(node), True)\n", "\n", " node = Node(5)\n", " insert(node, 3)\n", " insert(node, 8)\n", " insert(node, 9)\n", " insert(node, 10)\n", " assert_equal(check_balance(node), False)\n", "\n", " print('Success: test_check_balance')\n", "\n", "\n", "def main():\n", " test = TestCheckBalance()\n", " test.test_check_balance()\n", "\n", "\n", "if __name__ == '__main__':\n", " main()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Solution Notebook\n", "\n", "Review the [Solution Notebook](http://nbviewer.ipython.org/github/donnemartin/interactive-coding-challenges/blob/master/graphs_trees/check_balance/check_balance_solution.ipynb) for a discussion on algorithms and code solutions." ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
NeuPhysics/codebase
ipynb/matter/.ipynb_checkpoints/stimulated-checkpoint.ipynb
1
331449
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Stimulated Oscillation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define functions and classes" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import sys\n", "sys.path.insert(0, '../../module')\n", "import neuosc as ns\n", "import numpy as np\n", "import scipy as sp\n", "from scipy.linalg import expm\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<module 'neuosc' from '../../module/neuosc.pyc'>" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "reload(ns)" ] }, { "cell_type": "code", "execution_count": 244, "metadata": { "collapsed": false }, "outputs": [], "source": [ "thetav = 0.537#*sp.pi/180\n", "fraction = 2\n", "lambda0 = np.cos(2*thetav)/fraction\n", "alpha = 0.1\n", "omegam = np.sqrt(lambda0**2+1-2*lambda0*np.cos(2*thetav))\n", "beta_r = 1-1/fraction" ] }, { "cell_type": "code", "execution_count": 245, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def lambda1(beta,x):\n", " \"\"\"perturbation of matter\"\"\"\n", "\n", " return alpha*lambda0*np.sin(beta*x);" ] }, { "cell_type": "code", "execution_count": 246, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def hamil(beta,x):\n", " \"\"\"\"Hamiltonian of the system with perturbation\"\"\"\n", " \n", " return (-omegam/2 + (lambda1(beta,x)/2 )*((np.cos(2*thetav)-lambda0)/(omegam)) )*ns.pauli_matrices(3) + (lambda1(beta,x)/2) * (np.sin(2*thetav) /omegam)*ns.pauli_matrices(1)" ] }, { "cell_type": "code", "execution_count": 247, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def sliced_evo(beta,x,deltax):\n", " \n", " return expm(-1j*hamil(beta,x)*deltax)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Calculate the evolution matrix at anytime" ] }, { "cell_type": "code", "execution_count": 248, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def evo(beta,x,deltax):\n", " \n", " evo_mat = np.array([[1,0],[0,1]])\n", " \n", " for xi in np.linspace(0, x, np.floor(x/deltax)):\n", " evo_mat = np.dot(sliced_evo(beta,xi,deltax), evo_mat)\n", " \n", " return evo_mat" ] }, { "cell_type": "code", "execution_count": 249, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def evo_00(beta,x,deltax):\n", " \n", " evo_mat = np.array([[1,0],[0,1]])\n", " evo_00_list = np.array([])\n", " \n", " for xi in np.linspace(0, x, np.floor(x/deltax)):\n", " evo_mat = np.dot(sliced_evo(beta,xi,deltax), evo_mat)\n", " evo_00_list = np.append(evo_00_list, np.absolute(evo_mat[0,0])**2)\n", " #print xi\n", " #print np.absolute(evo_mat[0,0])**2\n", " #print \"\"\n", " \n", " return evo_00_list" ] }, { "cell_type": "code", "execution_count": 279, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.99992305093046641" ] }, "execution_count": 279, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "np.absolute(sliced_evo(beta_r*(1-0.09),1,1)[0,0])**2" ] }, { "cell_type": "code", "execution_count": 278, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " 1.11803398875" ] }, { "ename": "NameError", "evalue": "name 'norm' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-278-5c0bbf795ab6>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mabsolute\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m0.5j\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnorm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m0.5j\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mNameError\u001b[0m: name 'norm' is not defined" ] } ], "source": [ "print np.absolute(1+0.5j), norm(1+0.5j)\n" ] }, { "cell_type": "code", "execution_count": 292, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x11357e6d0>]" ] }, "execution_count": 292, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAncAAAJVCAYAAAC8rtNfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8VXW9//H3J5A0h4gsBsGrJSZUplmK3bpiZR25pl77\npWJOZGlxadYktStWN8dK0StpOWcZqRkWDkTOAwZOqKBwr6iAHhRFEQJBP78/vuvr2Xuxho2Ch/Pl\n9Xw89uO71/qu+buG915r73PM3QUAAIA0vK2zFwAAAABrDuEOAAAgIYQ7AACAhBDuAAAAEkK4AwAA\nSAjhDgAAICHrTbgzs4+Y2V1m9qCZTTCzTUuG+7aZTTezh8zs23Xjm9kGZnZJ1v8RMxu9BpZ1u2xe\ny8zs+292egAAYP2RZLgzs6FmdlGu928k/cDdt5f0J0nHFIz3IUlflfRxSR+RtJeZvb9m/C9J6pH1\n30nSUWa25ZtchYWSvinpjDc5HQAAsJ5JMtxJKvrLzAPd/bbs/d8kfbFgmO0kTXH3Ze7+qqRbJO1X\nM/5rkjY2s26SNpb0iqSXJMnMPmdmd5rZNDMbb2Ybt7Tw7s+6+1RJK1oZHgAAIEo13FlBv4fNbJ/s\n/ZckDSgY5iFJnzKzXmb2Dkn/Lql/zfhXSloq6WlJcySd7u6LzGxzScdL+oy77yRpmqTvvbnVAgAA\nqNa9sxdgTTKzuyW9XdImknqZ2X1Z1Q8kfUXSWDP7kaQJCnfYmrj7TDM7VdKNkpZIuk/hzpwqxt9F\n0kpJfSX1knSbmU2W9EFJgyXdaWaS1EPSndlynixpr4JV+JO7/9cb3gAAAGC9Zyn+b1kz203S4e4+\noqR+W0mXufsuNdP5maQn3f1XBeNf6u5DzOx/JN3l7r/N6i6QdL2kf0o6yN0PehPrcaKkl9395290\nGgAAYP1S+1jWzNrMbKaZzTKzY0uGGZvVP2BmO9aNmz32nGRmj5nZjWbWM+u/h5lNzX55OtXMdm8Y\nZ6fsV6yzzOysusUuWMb3ZOXbJJ0gaVzJurw3K7eU9B+Sflcyfgx8T0j6dFa3saQhkmZIulvSv8Yf\nZJjZxmY2sGa5a9cDAACgSmW4y34kcI6kNoVHjMPNbFBumGGStnH3gZKOVBaaasYdLWmSu28raXLW\nLUnPStor++XpYZIua5jVOElHZPMZaGZtFYvuWvVHFcPN7FGF4DXX3S/OlrOfmf21YbgrzexhhUev\nI939parxJf2PpE3M7CFJ90i60N0fcvfnJB0u6fdm9oDCI9kPVCzz68ysj5k9Jem7kk4wsyfNbJNW\nxgUAAOu3yseyZrarpBPdvS3rHi1J7n5KwzC/knSTu/8h654paaikrcvGzYbZzd3bzayPpJvdfbvc\nvE3Sc5L6SNpc0t/dfVBWd6Ckoe7+9Te/CQAAANJR91h2C0lPNXTPzfq1Mky/inF7u3t79r5dUu+C\neX9R0jR3X5GNN7ehbl7BcgAAAKz36n4t2+qvLVr5bpgVTc/d3cya+pvZByWdImmPFucPAAAA1Ye7\neWr+e3AD1HwHrWiY/tkwGxT0n5e9bzezPu7+jJn1lbQgDmRm/SVdLekQd3+8YR79S6alhnHT++kv\nAABIlruv8R9P1j2Wnarw44WtzKyHpAMUfmjQaIKkQyXJzIZIWpQ9cq0ad4LCDyaUlddk4/eU9FdJ\nx7r7XXEG7v60pJfMbJfsu3iHxHHypk0Lv6U45pjm8rnnQvmXvzT3/853QvnCC6E866xQfv/7oRw2\nLJRTp4by+ONDue++odxss1D+5jehPPzw5v7x9a1vhXKHHZr7x9fQoaEM+XTVV69exf0lV//+xf03\n2aR5HfKvT34ylKNHN/d///tDOXJkKK+4IpTveU8oDzoolGPGhPL++0O5117N2/b880P5/PPFbXLn\nnaF88slQ7rrriU31s2aFcuLE5vEOPTSUjzwSyjPPbN7Ggwc3t/UPftC8jePrjDNCuffexdsnzmer\nrYrrt9++vE3qXh/6UHH/LbcM5cEHF9fHbXzaaaHcaKPmtozb6PrrQ7n77qEcNSqUJ50UyvnzQ/mV\nrzSP9+tfh3Lp0ub+8XiYNCmUCxYUtemJuuOO0H3ttc31cRtfd10oTz+9eT3jepx3XvPybrdd8/of\nd1wo/+3fqrdP/vhr3L49ehTXxXE237y4Ps4zHgfx9eEPNy9zPB7jOsX9KB4PQ4Y0b5O4je65J5RH\nHNHc/8QTQ7lsWfM2iPXnnBPKlSuL2sR16aWhnDOnuS3j8l52WWi7q69uHi/uU2PHhvInP2nexvk2\nieeFd72ruT6uT9k+H+dT9tpkE9e22xbXxWNz112b+3fr1ryN29qa6+O54Ec/al6nQYNCGc8lf/xj\nKL/xjea2jNvo0UdD+V//1dz/hBNCGb7T7jr55Ob6eM567bVQxnNwbJtTTw3lww83jxe38dFHh/K3\nvw3lxz52oiTX1luH7nhcH3tsKD/xieb1j9MpuzZ8+tPN+3L+NXhw+TXpbW9r3sb5V7wGDh/e3L9v\n31DGa+j3vtdcH6+5p5zS3HZxWfPnvv/5n1DGa3ysb28P5bhxzf1jG8Q2i9eHWB/n9/LLoYxZINZ/\n85uhvP325raM2/jzn29ergMPjOu2dlTeuXP3lWY2StINkrpJusDdZ5jZUVn9ee4+0cyGmdlshT/8\nO6Jq3GzSp0gab2ZHKPxXh/2z/qMkvV/SidnfeJOkPbJfno6UdLGkjSRNdPfri5b55yV/Ee5b3wrl\nzTcX1w8bFsq5ufuSy5aF8mMfC+UruT99/FL2W9qvfrW5f/53KuPHF48fPfpo8XitePbZ4v4vvxzK\n22+vHv+UU5q7X3utufvAA0P53HPN/ZcsCeVOOxVPN67TfvsV1//pT6E8+eTi+u9/P5Q33VRcv3v2\nh3Lm5e7hxm24V/Znol99tXj8o48u7h9demkoX3yxuP7BB6vHr1K2TO3ZN1Efe6x6/AsvDOU//1lc\nH9ssvz/HfeITnwhlfn+M8/3yl4une+21ofzJT4rrf/jDUN5yS3H9nnuGcsGC4vqjjmruzm+nn/2s\neLzoL38JZTwu8558snp8adX9PC9/vMVzxMKFocxv8+ia7OPo3XcX13/jG6GcNau5/9KloWzL/j5A\nbMPo8cdDGds878YbQ5k/zqMf/ziUZeeJeO4s26b5Nskv3wUXhDJ/Xonqzk8vv1x/PNx1V3N3fr+5\nvvBq0bGscb/Ji232298W1x+T/Yfx/Llg+fJQfuELoXz++eb6eM464IDi5b0t+0eXp51WPN94nSs7\nzuL5oWyb/+53xf2jv/+9evxHHikfN45Tdq2N5+ff/765f36/+cUvisePx1nZOeiqq0L5q18V159w\nQiinTGnuH9tg771DGc/FUTzu4/Usf+6cNq16uW64IZR1+/uaUvsfKtz9OknX5fqdl+se1eq4Wf/n\nJX22oP9PJf20ZFrTJH24bnnLdtrYP4asvHhyiIGkTAw0q+uZZ0JZFt6efrp6/PzJoVE8kZQpOym/\nWfEiVhZUJk0KZdlBflb21wrHFf7FQWlCdp/39NOL6+PBd90qe1izp56qrq8TL95r0owZxf3jifGe\ne6rHnzmzun7RolDm97e4/86ZUzze7NmhjME7L4a7s88urr/11lCecUb18pW1aRRPlGXyF4I1oe44\nietWJn+xyps4sbo+rvPKlcX1ZcdRvNhdeWVx/QMPhLLsYhfDZNnFNKprs7rAUBUI3qiy/TiakH/O\nlPPLX1bXX355KBcvrp5+2XWhLDTGc8of/1hcH4PEJZcU18fj+te/Lq6P6tqsbp+cP7+6/o2I+2OZ\niy+urq9bp7hNpk+vro/X5Lx4jsuf9+M2jx+W8uIH7RjiytSdJ9aUVP+37OvyDZT/5J7/lJ0/GeQ/\nGZ17bvX86nbMsot6Z6j7BJFf13xQyO+kDz3U3J3/NJu/A5b/5DNgwNDqBcrkT7T5+caAEpUF+qju\nAlB2d2xtWLGiur7sYhHlT3z5bZFv0/zJPR/q8hfPeJcoav5gMbR0ucoCS5Tfxvk7MXn33ltd/1aq\nC//5OwR5+Ta7887q+rFjm7vz55zJk5u78xe5/B2JYGj5Aq6H6j4Q5kNZ/CAb5dss353/cJTvzu8z\nZUEles97hlYPsB6oO08//HBzd/5u7vnnN3fn2+S885q78216333N3X/4Q/XyvNmbDrXcPZmXJA8R\npP61++7V9V//enX9vvtW12+6aWvLsS6+tt66uv6gg6rrv/jF6vp3v/uNLddmm1XX77VXdf3QoZ2/\nbdfW65OfrK4fNaq6/hvfqK7fbbfq+o02emPLPWBAdX2/fp2/bdfWa889q+uPOebN1R98cHX9Bz7Q\n+dugq7323nvtttnIkdX1u+zS+dugq72GDauurzs3vtk2rTs3hxi25vNQUv9bNvxaNp31AQAAKTN1\nxq9lAQAA0IUQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACA\nhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAAS\nQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI\n4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGE\nOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACAhBDu\nAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAASQrgD\nAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4A\nACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIbXhzszazGymmc0ys2NLhhmb1T9gZjvWjWtmvcxs\nkpk9ZmY3mlnPhv43mdliMzs7N4/hZvZgNo/rzOzdb3y1AQAA0lQZ7sysm6RzJLVJGixpuJkNyg0z\nTNI27j5Q0pGSxrUw7mhJk9x9W0mTs25JWibpBElH5+bRXdKZkoa6+0ckPShp1BtZYQAAgJTV3bnb\nWdJsd5/j7iskXSFpn9wwe0u6RJLcfYqknmbWp2bc18fJyn2z8Ze6+x2SlufmYdlrEzMzSZtJmrda\nawoAALAeqAt3W0h6qqF7btavlWH6VYzb293bs/ftknrnpulNHSEcjpQ0XSHUDZJ0Yc2yAwAArHfq\nwp3X1EfW4jCrTM/dvW4+ZraBpK9L2sHd+ymEvB+2uGwAAADrje419fMkDWjoHqBwB65qmP7ZMBsU\n9I+PUtvNrI+7P2NmfSUtqFmOHSTJ3R/Puv8oqfDHHdKYhvdDsxcAAEBnuzl7rV114W6qpIFmtpWk\n+ZIOkDQ8N8wEhR83XGFmQyQtcvd2M1tYMe4ESYdJOjUrr8lNM38ncJ6kwWa2ubs/J2kPSY8UL/KY\nmlUCAADoDEPVfNPppLUyl8pw5+4rzWyUpBskdZN0gbvPMLOjsvrz3H2imQ0zs9mSlkgaUTVuNulT\nJI03syMkzZG0f5ynmc2RtKmkHma2r6Q93H2mmZ0k6VYzW5GNc/ia2AAAAAApsfCVtzSYmbf+NUEA\nAIDOZHL3Vn63sFr4DxUAAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDC\nHQAAQEIIdwAAAAkh3AEAACSEcAcAAJAQwh0AAEBCCHcAAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3\nAAAACSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh3AEAACSEcAcAAJAQwh0AAEBCCHcAAAAJIdwB\nAAAkhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh3AEAACSEcAcA\nAJAQwh0AAEBCCHcAAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDCHQAA\nQEIIdwAAAAkh3AEAACSEcAcAAJAQwh0AAEBCCHcAAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3AAAA\nCSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh3AEAACSEcAcAAJAQwh0AAEBCCHcAAAAJIdwBAAAk\nhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh3AEAACSEcAcAAJCQ\n2nBnZm1mNtPMZpnZsSXDjM3qHzCzHevGNbNeZjbJzB4zsxvNrGdD/5vMbLGZnZ2bRw8zO9/MHjWz\nGWa23xtfbQAAgDRVhjsz6ybpHEltkgZLGm5mg3LDDJO0jbsPlHSkpHEtjDta0iR331bS5KxbkpZJ\nOkHS0QWLc7ykZ9z9A+4+SNItq7muAAAAyau7c7ezpNnuPsfdV0i6QtI+uWH2lnSJJLn7FEk9zaxP\nzbivj5OV+2bjL3X3OyQtL1iWEZJOjh3uvrC1VQQAAFh/1IW7LSQ91dA9N+vXyjD9Ksbt7e7t2ft2\nSb1z0/TGjvjYVtJPzWyamY03s/fWLDsAAMB6p3tNvdfUR9biMKtMz93dzOrm011Sf0l3uPv3zey7\nks6QdOiqg45peD80ewEAAHS2m7PX2lUX7uZJGtDQPUDhDlzVMP2zYTYo6D8ve99uZn3c/Rkz6ytp\nQc1yLJS01N2vzrqvlHRE8aBjaiYFAADQGYaq+abTSWtlLnWPZadKGmhmW5lZD0kHSJqQG2aCsjto\nZjZE0qLskWvVuBMkHZa9P0zSNblpNt0JdHeXdK2Z7Z71+oykh1tYPwAAgPWKhdxUMYDZnpLOlNRN\n0gXufrKZHSVJ7n5eNkz8VewSSSPc/d6ycbP+vSSNl7SlpDmS9nf3RVndHEmbSuoh6QVJn3P3mWa2\npaTLJPVUuNM3wt2b7iKGx7utPkkGAADoTCZ3b+Wrbas31bpw15UQ7gAAQNexdsId/6ECAAAgIYQ7\nAACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4A\nAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMA\nAEgI4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAA\nICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACA\nhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAAS\nQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI\n4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGE\nOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICE1IY7M2szs5lmNsvMji0ZZmxW/4CZ7Vg3rpn1\nMrNJZvaYmd1oZj0b+t9kZovN7OySeU0ws+mrv6oAAADpqwx3ZtZN0jmS2iQNljTczAblhhkmaRt3\nHyjpSEnjWhh3tKRJ7r6tpMlZtyQtk3SCpKNLlmc/SYsl+eqtJgAAwPqh7s7dzpJmu/scd18h6QpJ\n++SG2VvSJZLk7lMk9TSzPjXjvj5OVu6bjb/U3e+QtDy/IGa2iaTvSvqpJFuttQQAAFhP1IW7LSQ9\n1dA9N+vXyjD9Ksbt7e7t2ft2Sb1z0yy6M/cTSWdIWlqzzAAAAOutunDX6uPPVu6kWdH03N3r5mNm\nO0h6n7v/ucV5AQAArJe619TPkzSgoXuAwh24qmH6Z8NsUNB/Xva+3cz6uPszZtZX0oKa5Rgi6WNm\n9ni2zO81s7+7+6dXHXRMw/uh2QsAAKCz3Zy91i4LN85KKs26S3pU0mckzZd0j6Th7j6jYZhhkka5\n+zAzGyLpTHcfUjWumZ0maaG7n2pmoyX1dPfRDdM8XNJO7v7NgmX6F0l/cfcPF9Q5v7UAAABdg8nd\n1/gTyco7d+6+0sxGSbpBUjdJF2Th7Kis/jx3n2hmw8xstqQlkkZUjZtN+hRJ483sCElzJO0f52lm\ncyRtKqmHme0j6XPuPrNhsQof7wIAAKDmzl1Xw507AADQdaydO3f8hwoAAICEEO4AAAASQrgDAABI\nCOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAh\nhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ\n7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4\nAwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEO\nAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsA\nAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAA\nABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAA\nSAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEhIS+HOzNrMbKaZzTKzY0uGGZvVP2BmO9aNa2a9zGyS\nmT1mZjeaWc+G/jeZ2WIzO7th+I3M7K9mNsPMHjKzk9/4agMAAKSpNtyZWTdJ50hqkzRY0nAzG5Qb\nZpikbdx9oKQjJY1rYdzRkia5+7aSJmfdkrRM0gmSji5YnNPcfZCkHSX9q5m1rca6AgAAJK+VO3c7\nS5rt7nPcfYWkKyTtkxtmb0mXSJK7T5HU08z61Iz7+jhZuW82/lJ3v0PS8sYZuPs/3f2W7P0KSfdK\n2mJ1VhYAACB1rYS7LSQ91dA9V6uGqrJh+lWM29vd27P37ZJ656bpZQuUPcL9gsIdPwAAAGRaCXel\nISvHWhxmlem5u7c6HzPrLun3ks5y9zktLhsAAMB6oXsLw8yTNKChe4DCHbiqYfpnw2xQ0H9e9r7d\nzPq4+zNm1lfSghaX+XxJj7r72OLqMQ3vh2YvAACAznZz9lq7Wgl3UyUNNLOtJM2XdICk4blhJkga\nJekKMxsiaZG7t5vZwopxJ0g6TNKpWXlNbpqr3Ak0s59K2kzSEeWLO6aFVQIAAHirDVXzTaeT1spc\nLDwRrRnIbE9JZ0rqJukCdz/ZzI6SJHc/Lxsm/ip2iaQR7n5v2bhZ/16SxkvaUtIcSfu7+6Ksbo6k\nTSX1kLRI0h6SXpb0pKQZkl7JFu1sd7+wYTm99afIAAAAncnk7q18rW31ptpKuOsqCHcAAKDrWDvh\njv9QAQAAkBDCHQAAQEIIdwAAAAkh3AEAACSEcAcAAJAQwh0AAEBCCHcAAAAJIdwBAAAkhHAHAACQ\nEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh3AEAACSEcAcAAJAQwh0AAEBC\nCHcAAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh\n3AEAACSEcAcAAJAQwh0AAEBCCHcAAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRw\nBwAAkBDCHQAAQEIIdwAAAAkh3AEAACSEcAcAAJAQwh0AAEBCCHcAAAAJIdwBAAAkhHAHAACQEMId\nAABAQgh3AAAACSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh3AEAACSEcAcAAJAQwh0AAEBCCHcA\nAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh3AEA\nACSEcAcAAJAQwh0AAEBCCHcAAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3AAAACakNd2bWZmYzzWyW\nmR1bMszYrP4BM9uxblwz62Vmk8zsMTO70cx6NvS/ycwWm9nZuXnsZGbTs2md9cZXGQAAIF2V4c7M\nukk6R1KbpMGShpvZoNwwwyRt4+4DJR0paVwL446WNMndt5U0OeuWpGWSTpB0dMHijJN0RDafgWbW\ntprrCgAAkLy6O3c7S5rt7nPcfYWkKyTtkxtmb0mXSJK7T5HU08z61Iz7+jhZuW82/lJ3v0PS8sYZ\nmFlfSZu6+z1Zr0vjOAAAAOhQF+62kPRUQ/fcrF8rw/SrGLe3u7dn79sl9c5N0wvmMbehe17BcgAA\nAKz3utfU50NWGWtxmFWm5+5uZq3OpwVjGt4PzV4AAACd7ebstXbVhbt5kgY0dA9Q8x20omH6Z8Ns\nUNB/Xva+3cz6uPsz2SPXBS0sR/+SaeWMqZkUAABAZxiq5ptOJ62VudQ9lp2q8OOFrcysh6QDJE3I\nDTNB0qGSZGZDJC3KHrlWjTtB0mHZ+8MkXZObZtOdQHd/WtJLZraLmZmkQwrGAQAAWO+Ze/UTUTPb\nU9KZkrpJusDdTzazoyTJ3c/Lhom/il0iaYS731s2bta/l6TxkraUNEfS/u6+KKubI2lTST0kLZK0\nh7vPNLOdJF0saSNJE939WwXL6q0/SQYAAOhMJndv5attqzfVunDXlRDuAABA17F2wh3/oQIAACAh\nhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ\n7gAAABJ0Y3EOAAAZKklEQVRCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7\nAACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4A\nAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMA\nAEgI4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAA\nICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAASQrgDAABICOEOAAAgIYQ7AACA\nhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgIQQ7gAAABJCuAMAAEgI4Q4AACAhhDsAAICEEO4AAAAS\nQrgDAABICOEOAAAgIYQ7AACAhBDuAAAAEkK4AwAASAjhDgAAICGEOwAAgITUhjszazOzmWY2y8yO\nLRlmbFb/gJntWDeumfUys0lm9piZ3WhmPRvqfpgNP9PMPtfQf7iZPZjN4zoze/cbX20AAIA0VYY7\nM+sm6RxJbZIGSxpuZoNywwyTtI27D5R0pKRxLYw7WtIkd99W0uSsW2Y2WNIB2fBtks61oLukMyUN\ndfePSHpQ0qg3ue4AAADJqbtzt7Ok2e4+x91XSLpC0j65YfaWdIkkufsUST3NrE/NuK+Pk5X7Zu/3\nkfR7d1/h7nMkzc6mY9lrEzMzSZtJmvcG1hcAACBpdeFuC0lPNXTPzfq1Mky/inF7u3t79r5dUu/s\nfb9suMZx+mfhcKSk6QqhbpCkC2uWHQAAYL1TF+68xelYi8OsMj1395r5uJltIOnrknZw934KIe+H\nLS4bAADAeqN7Tf08SQMaugeo+c5a0TD9s2E2KOgfH6W2m1kfd3/GzPpKWlAxrXmSdpAkd3886/9H\nSYU/7pDGNLwfmr0AAAA6283Za+2ycOOspDL8kOFRSZ+RNF/SPZKGu/uMhmGGSRrl7sPMbIikM919\nSNW4ZnaapIXufqqZjZbU091HZz+o+J3C9+y2kPQ3SdtI6itpqqTt3f05M/uJpA3d/Zjc8nrrNxsB\nAAA6k8ndW3n6uVoq79y5+0ozGyXpBkndJF2QhbOjsvrz3H2imQ0zs9mSlkgaUTVuNulTJI03syMk\nzZG0fzbOI2Y2XtIjklZKGpk9tp1vZidJutXMVmTjHL6mNgIAAEAqKu/cdTXcuQMAAF3H2rlzx3+o\nAAAASAjhDgAAICGEOwAAgIQkHe4OO6y6/vvfr67fa681tyxoTVtbdf13vlNd/7nPVddjzXvPe6rr\n9923uv5Tn1pzy4I14/3vr64fMKC6HliTNtmks5eg60ky3PXrF8r3vre4fu+9Q/m2krX/z/8M5eab\nF9fHgPHhDxfXDx1au4hd1gc+UF3/ta9V19cF6rJtut12odxgg+L64cNDueGGxfWHHhrKjTYqrh80\nqLj/uqR//+r6rbYq7h+PhzJf/Wp1/THHVNcffnh1fdlyf/rTobSSrxJ/5jPV0y3bF9Yl//Zv1fVl\nHyA33jiUZcF5v/2qpxvPYWXq2nTXXYv7x+One8nfWajb19YFZeeAqO7DSN22LfuAGc8xZfv7wQdX\nT7euzYYNq64vm++6pOyavPXW1ePVnYPqrjuHHFJdv/32xf3jOaxM3XJ94hPV9W9GkuEuXujL1AWU\nd7xjzS3LuqruQC87UcSLTf5E8+53hzJecL/yleb6Aw5o7v7kJ5u789PLt8EXvlC+rFJ98OlKyk4k\n8aK0887N/eM2j9s037Yf/Wgo89t4i+yfAb7rXaH81rea6/MnvPxxlT9h5tug7mK0007V9THgrAvq\ngmT8wFgmv//HDysxkH/wg831X/xiKPMXh9hW8c5afhsfeGAo44ecr3+9uX7UqOLliOrabMSI6vr3\nva+6/q1U94EtfuArc9RRzd0x8MZzU77N4/HzkY+E8l/+JZQ9eoQyBvnvfa95vHjc9u1bPN986Muf\nH+ra7KCDquvjcq4L6j4M1T25yW+L/I2W/NO82BZ9+hQPH6f3+c8394/D77hjKPPb+N//PZTxOIzD\nR9/4Rn7J17wkw11e3c5f9yiwVT17Vtdvu211/doIlR/6UHV93YFft+3iwbHZZs39Y9iLIS9/cYwn\nyiFDiqdbdzep7iSwut7Kvwj09rdX1+e3Zd7HPlZdf/TR1fWxTfOP3mIbxQDwznc218fw9q//Wjzd\nuk+xAwdW16+usk/5a0OvXm9u/C23bO7OB/D4YarsrlJss7JH2CNHhjL/uHTTTUP58Y8XT3+bbYqn\nF3WFu6Nlyu4utir/KDB/3MabBGXn2P33D2XZOTaGtvxd0m7dQhn3md69m+vrzg+rK4bPriju32Xy\nx218mhevH3FbR/E4KQuR8Titu9M3eHBzd/44eiseM68X4S4ePAsXFtfHhpwxo7h+4sRQ/vGPxfUX\nXhjKb36zuP7HPw5lbPD8o8P4CbLsMfIOOxT3j9bmRa7sDl8MQ2WPjeLOvMcexfVxXX/+8+L6GGBm\nziyuP+KIUE6aVFwfp/ub3xTX/+hHoYyftvNtEqdfFiLjp/ayQJ+/mDeqC3era3UvwGUnxHiiKwuP\n8UT57W8X18eL3JVXFtfHu0oXXFBcH4+Dn/60uD7ezYoXxfxF77OfDWXZnc+y/lHVRXNNt1lZG5Td\n+Yr7Z76t4/FZFtLifMqeZsTAffzxxfXxbtNxxxXXx3NT2dcx4p3JOJ38No53jcruvG+2WfkxFs97\nZR8a6vbnKJ6Xy75HGO8wxw+sefFOXT4oxO6y/SreqcuLbR3357x4bil7uhK3ed1Ni913D2XZvl23\n3aoCStyP8+fVeA7Zc89Qlt2dj/tr2V3FeK4oe6wZ74yVfU1gt91CWbbuZdfiuC/mr7l1+1qcXrzz\n/lZIMtzFk3g8COJ3IOKOFS8K8VNsvOUaT5z5gzGGw3gijdOJASf/XYr89wMaL0LbbbdqYGi8Y3fI\nIas+rtpww44D6Zxzmi9S3bqFT15xJ7/66o5bxbFe6ng8c/vtYdh4mzgu8ymnhPK++5pPCvGEdvnl\noTz11HCijp/24iO/888P5UEHhZNd/O5cvM0dP+nsskvY7vHEFJc7rnM8GOPw8UQVT4Tx03g8uOPd\npfzFMgaJKH9Q5e+A5MNY4+OqHXZo3qb5+X31qx2POKONN+64YI0b13xhiCe8eMGbNKl5H4nrGC+o\n998fli+eiGKbXXppKB98sPkDQLzY3XZbKE87LZzI4zLE4+Gii0J54IFhn4ptFe84xEdwO+0U9tH4\nSONLXwpl/JQbv5sa7xjGx0z5RxEnnBDKeBHN36mOASPuW/mLeuPjqe7dVw0EjY/6hwxZ9WLd+J3E\nkSOb71iYhX0pHlv5ABqXNS7D3Xc318dzx2mnhXL27OYgFtvuxhtDee21zW0e968JE0J58snh8Xs8\nl8S7P7/6VSj33z+0yz77hO4YuOOd8u23D+sTP7h+97uhjBefeD6Jy/vlL4cy/2Ht4os7pte4HvG8\ncsklzePlz50/+UnH+003XTXQxH1JCnd+82Eg7mPSqnekN988rGOc5m9/21wfg0M8x9x3X3P/2D7x\n6cPUqc3jx+Nl3LhQXnRRx/m2cbq//nUoTzwxPF6Pj9jj3dSf/SyU++wT1idu6/ghJh5nAweGdTnp\npNA9dmwo47Edt3ncN+PxlD/3TZkSyvjdwbi8cR++665QxjuP+fHjubxHj3A+zofauF7Sqt8Z3XDD\ncI6P8m323veGYzfuR5dd1lwf98t4Drv++lDGMBXXJX64vuqq5vHj9SN+ZeSMM0IZz//x2htvuHzn\nOyFAxuMijhfvlLe1hfWJX4+Ix1/8mkX//uH6/8tfhu74wbbx+tG9u3TDDc3r+2bvKrfE3ZN5SfLJ\nk93d3TfayP2pp8L7JUvcpfD+rrvcX3vNfddd3R95xH3ZstBfcv/f/3WfPt195Ur3gw8O7599tqP+\n6qvdn3jCffly96OPdp892/3xxzvqf/xj9xdeCNM8+GD3WbPcZ8xwX7Ei1O+/fxj3lVfc29rcp01z\nf/hh95deCvUf/KC/7lOfcr/++rCMTz/t3r+/e7duHfVDhriffnqYx+zZ7nvt1bGO7u677eZ+wAHu\nTz7pft997scf31z/H//h/r73uS9Y4H777e7jxzfXf/OboXvxYvcbbgjL0Vj/y1+G7hUr3P/yl7DO\njfXXXhu6X3st1MdttGBBeD9rVsfwN94YhpPCfCIpTPe229xffTWs8113hfexfupU9wceCNv00EPd\nb73V/cUXO+ovuii00dKl7j/4gfs997jPm9cxv+99z/2558I+cswxYVr/+79hepL7Hnu4//Of4TVi\nRFiWWbPCPCT3fv3C8qxc6X7gge5XXRXaY/5890GDVt3mp5/uPmeO+2OPuR90UHP9l74U9pH5893v\nvdf91FOb64880n2LLdyff979llvcJ05srh8zJnQvXRrqnnyyuf6ii0L3ypXuf/5zxzZ65ZXw/rbb\nOoafMKGj/v/+L7x/9tmO+uuu69iGd9/d3GYLFoR2WLEiHGfXXddcP3ly2CfjNv3zn8P7WP+LX4R5\nLl7sftxx4Th49tmO+Y0YEbpffDEMe8cd4ViPbfbxj4f2XLzY/YQTwvhPPBGGf8c73DfcMGyDZcvc\nv/Md98suC/Xz54flbdxmI0e6n3aa+9y57o8+6n7UUaseJ1/6UljnqVPdzz23uf6449z79g3H+E03\nhWVtrB87NnQvX+7+17+Gtm2snzCh4zj60586ttHzz4f3Dz3UMfw113Rso/vvD/2WL++onzgx7KvS\nqm3y2GNhn1q+3P2jH3X/3e+a66+6KrTZ4sXuX/ua+wUXhG0Y68eMCcfN88+7n3hi2KYvvtixPPvt\n597e7r5wofs554R1WbCgY/ne/373l18O459zTjjXzp8fptG3b8e5ZvHi0B7nnRfq581z//znO7bR\nq6+GZfnxj8P8Zs50P/bY5m160knh3Pj88+7/+If75Zevem7r2zfsQ5Mnuz/4YHN9HH7FinCei+f3\n6NZbO5bn6qs7ttGcOeH9U08Vt9kttzRv8yVLQpvF6efbZOrUMM6SJe7bbx/2pcb6iy4KbfbCCx37\ncWP9t78d2mzBAvef/SwcS0uXdizP7ruHbfjMM+6/+Y37uHFhWrHNNt88tFl7e1jPyy/vOC4HD+7Y\nRs8/737xxe5nnRXq588P2z9uo3/+M0z7+OPD/vHoo+7//d/N2/Tcc8P5cvHicA6P15fokkvcBwwI\nyzZ5cjieG+vjufLVV5uvR0uWhPeNbdx4nD34YHgfz/exzeJxdM01zdu0vT3MK26js89urv/b3zqu\nUR/8YDhWQgxbC3lobUy0s15qbM2c228vrXJ395tvDjtaVf2KFeX1d93VsaMUuf/+sOOWmTUr7PRl\n5s8PF+syixZ1BM0iy5Z1nFzcw4k5XtTdw7rPm9fR/corHSEpeuGF5vHnzm2uz09v5szy5XEPAabK\nnXdW1996a3Wb3XprOMjKTJkSLrplpk8PB2uZ2bOr2+Tpp8PJs8yLL4aLapnly8N+EcWLV2N3Y5uv\nXBlOfo1imHYP4z79dHN94z772mvN8ysST3Zl7rmnuv6OO5rXIe+uuzqCXpFp0zqCTZGHH64+jh5/\nvCOsFmlvDxeXMi+9FOZRZsWK6vr8No4Xt0aNx+Frr4UPH40WLWrufuKJVZehUeMHpiLTplXXT5nS\nEeSK/OMf9ee+/Do0mjmz44N4kSeeqN4vn322epu//HL40FZm5cqOMFymcRu+9tqq27jx3Oq+6rkz\n3iSIGtvYfdV9oO44fOCB6nPftGnV16v77qs+9z30UPW5b9asVde50dy54cZGmYULq7f50qUhvJZ5\n9dXqevf6c1V+G+f34fx5pPFc6t7x4SXKb4+VK5vrH3mkuM3WVrhL7n/LprQ+AAAgXWb8b1kAAADU\nINwBAAAkhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh3AEAACSE\ncAcAAJAQwh0AAEBCCHcAAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDC\nHQAAQEIIdwAAAAkh3AEAACSEcAcAAJAQwh0AAEBCCHcAAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3\nAAAACSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh3AEAACSEcAcAAJAQwh0AAEBCCHcAAAAJIdwB\nAAAkhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDCHQAAQEIIdwAAAAkh3AEAACSEcAcA\nAJAQwh0AAEBCCHcAAAAJIdwBAAAkhHAHAACQEMIdAABAQgh3AAAACSHcAQAAJIRwBwAAkBDCHQAA\nQEIIdwAAAAkh3AEAACSEcAcAAJCQ2nBnZm1mNtPMZpnZsSXDjM3qHzCzHevGNbNeZjbJzB4zsxvN\nrGdD3Q+z4Wea2eca+vcws/PN7FEzm2Fm+73x1QYAAEhTZbgzs26SzpHUJmmwpOFmNig3zDBJ27j7\nQElHShrXwrijJU1y920lTc66ZWaDJR2QDd8m6Vwzs2yc4yU94+4fcPdBkm55MyuOdc/NN9/c2YuA\nN4H267pou66N9kNe3Z27nSXNdvc57r5C0hWS9skNs7ekSyTJ3adI6mlmfWrGfX2crNw3e7+PpN+7\n+wp3nyNpdjYdSRoh6eQ4U3dfuDorinUfJ6iujfbrumi7ro32Q15duNtC0lMN3XOzfq0M069i3N7u\n3p69b5fUO3vfLxuuaZyGx7Y/NbNpZjbezN5bs+wAAADrnbpw5y1Ox+oHkRVNz929hfl0l9Rf0h3u\nvpOkuySd0eKyAQAArD/cvfQlaYik6xu6fyjp2Nwwv5J0YEP3TIU7caXjZsP0yd73lTQzez9a0uiG\nca6XtItCMHy5of8ASQ8VLK/z4sWLFy9evHh1lVdVDnujr+6qNlXSQDPbStJ8hR87DM8NM0HSKElX\nmNkQSYvcvd3MFlaMO0HSYZJOzcprGvr/zsx+ofAId6Cke9zdzexaM9vd3W+S9BlJD+cX1t1buYMI\nAACQrMpw5+4rzWyUpBskdZN0gbvPMLOjsvrz3H2imQ0zs9mSlij88KF03GzSp0gab2ZHSJojaf9s\nnEfMbLykRyStlDQye2wrScdKuszMzpS0IM4HAAAAHawjOwEAAKCrS+Y/VLTyx5bx1jKzAWZ2k5k9\nbGYPmdm3sv5v5I9Y72Rm07O6szpjfdZHZtbNzO4zs2uzbtquizCznmZ2ZfZH3x8xs11ov67DzL6b\nnTenm9nvzOzttN+6ycwuNLN2M5ve0G+NtVXW9n/I+t9tZv9Su1Br44t8b/VL4bHvbElbSdpA0v2S\nBnX2cq3vL0l9JO2Qvd9E0qOSBkk6TdIPsv7HSjolez84a7sNsracrY67y/dI2jl7P1FSW2ev3/rw\nkvQ9SZdLmpB103Zd5KXwN0S/kr3vLumdtF/XeCl85/z/JL096/6DwvfTab918CXpU5J2lDS9od8a\naytJIyWdm70/QNIVdcuUyp27Vv7YMt5i7v6Mu9+fvX9Z0gyFk9bq/BHrXcysr6RN3f2ebLhLG8bB\nWmJm/SUNk/Qbdfy5I9quCzCzd0r6lLtfKIXvQLv7i6L9upLukt5hZt0lvUPhh4m03zrI3W+T9EKu\n95psq8ZpXaXwo9JKqYS7Vv7YMjpR9qvpHSVN0Wr+EeuC/vNE+74VfinpGEmvNfSj7bqGrSU9a2YX\nmdm9ZvZrM9tYtF+X4O7zJP1c0pMKoW6Ru08S7deVrMm2ej3juPtKSS+aWa+qmacS7vhVyDrMzDZR\n+LTxbXdf3Fjn4T4z7beOMbO9JC1w9/tU8kfKabt1WndJH1V4lPNRhb9kMLpxANpv3WVm71K4W7OV\nwkV/EzM7uHEY2q/r6Iy2SiXczVP4w8bRADUnYHQSM9tAIdhd5u7x7xm2W/j/w8puRS/I+ufbsb9C\nO87L3jf2n7c2lxv6hKS9zexxSb+X9Gkzu0y0XVcxV9Jcd/9H1n2lQth7hvbrEj4r6XF3X5jdqbla\n0q6i/bqSNXGunNswzpbZtLpLeqe7P18181TC3et/bNnMeih84XBCJy/Tes/MTNIFkh5x9zMbquIf\nsZZW/SPWB5pZDzPbWh1/xPoZSS9lv/YzSYc0jIO1wN2Pc/cB7r61pAMl/d3dDxFt1yVk2/0pM9s2\n6/VZhT/8fq1ov67gCUlDzGyjbLt/VuHvv9J+XceaOFf+uWBa/0/S5Nq5d/avTNbgr1X2VPg15mxJ\nP+zs5eHlkvRJhe9r3S/pvuzVJqmXpL9JekzSjZJ6NoxzXNaGMyV9vqH/TpKmZ3VjO3vd1qeXpN3U\n8WtZ2q6LvCR9RNI/JD2gcOfnnbRf13lJGqPwI7TpCl+m34D2WzdfCk835kt6ReG7cSPWZFtJeruk\n8ZJmSbpb0lZ1y8QfMQYAAEhIKo9lAQAAIMIdAABAUgh3AAAACSHcAQAAJIRwBwAAkBDCHQAAQEII\ndwAAAAkh3AEAACTk/wNezxTFEL8RHQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11867b190>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "endtemp = 10000\n", "step = 1\n", "\n", "sliced_evo_lt = np.ones(endtemp)\n", "\n", "\n", "for temp in range(0,endtemp):\n", " sliced_evo_lt[temp] = np.absolute(sliced_evo(beta_r*(1-0.09),temp,step)[0,0])**2\n", "# print np.absolute(sliced_evo(beta_r*(1-0.09),temp,step)[0,0])**2\n", " \n", "plt.figure(figsize=(10,10))\n", "plt.plot(sliced_evo_lt)\n" ] }, { "cell_type": "code", "execution_count": 298, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x1181eb710>]" ] }, "execution_count": 298, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmwAAAJPCAYAAADBrYi9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWuQZld53/tbfZ2RNNLoghAIARYIgowxULZClS+ZGNsR\nHF8rOSbkg21yKlBJVKl8ceCUK8dSUklMquwPhIQoMXaRL8Y+VYkL5wCGOJ7YKSc4YBCyQZFkbrqg\nEdJo7tPdb3fv82H1pt95573stfe6/Pd+n39VV093v2/3M3vvtdZ//f/P8yxXVRUGg8FgMBgMBl2s\nlA7AYDAYDAaDwTAfRtgMBoPBYDAYxGGEzWAwGAwGg0EcRtgMBoPBYDAYxGGEzWAwGAwGg0EcRtgM\nBoPBYDAYxNGZsDnn7nXOPeKce8w5994Zr/nAwc8fcs69aez7v+6cO+Wce3ji9fc75550zn3+4OPe\nrnEaDAaDwWAw9BWdCJtzbhX4IHAvcDfwTufc6yZe83bg1VVV3QW8G/jQ2I9/4+C9k6iAX62q6k0H\nH5/sEqfBYDAYDAZDn9FVYbsHeLyqqq9VVTUCPgr85MRrfgL4CEBVVZ8Bjjvnbjv4+o+AF2b8btcx\nNoPBYDAYDIZBoCthux14YuzrJw++F/qaabjvwEL9sHPueLcwDQaDwWAwGPqLroSt6blWk2rZovd9\nCLgTeCPwTeBXAuMyGAwGg8FgGAzWOr7/KeCOsa/vwCto817zsoPvzURVVc/W/3bO/Rrwu5Ovcc7Z\nIagGg8FgMBh6g6qqWqd7dVXYPgvc5Zx7pXNuA3gH8LGJ13wM+FkA59xbgDNVVZ2a90udcy8Z+/Kn\ngYenva6qKvvo6ccv/dIvFY/BPuz+LeOH3bt+f9j96+9HV3RS2Kqq2nXO3Qf8HrAKfLiqqi87595z\n8PMHq6r6uHPu7c65x4GLwLvq9zvnfhP4K8DNzrkngP+nqqrfAN7vnHsj3jr9KvCeLnEaDAaDwWAw\n9BldLVGqqvoE8ImJ7z048fV9M977zhnf/9mucRkMBoPBYDAMBXbSgaEITpw4UToEQwfY/esv7N71\nG3b/lhcuhq9aAs65qq+xGwwGg8FgWC4456gKFh0YDAaDwWAwGBLDCJvBYDAYDAaDOIywGQwGg8Fg\nMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIyw\nGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAY\nDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjD\nCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwG\ng8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaD\nOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvB\nYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8Fg\nMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIyw\nGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAY\nDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjDCJvBYDAYDAaDOIywGQwGg8FgMIjD\nCJvBYDAYDAaDOIywGQwGwxgeeaR0BLPxn/4TVFXpKAwGQwm4qqej3zlX9TV2g8GgiXPn4JZbYGsL\nVsS2s6MRbGzA2bNw/fWlozEYDKFwzlFVlWv7frEpyWAwDB17e/Bbv1U6iuk4c8YTo7NnS0dyNV54\nwX8+c6ZsHLPw2tcexmgwGOLDCJvBYMiKJ56Av/23Na29mgw9/3zZOKahjkmRsI1G8Oij8NxzpSMx\nGIYLI2wGgyErzp2DS5fgwoXSkVyNmgwpEo/Tp/1nRRXr2Wf953PnysZhMAwZRtgMhoHi0qXSEUzH\n+fP+8ze/WTaOaaitUFPYwvDMM/5zfW/V8Ja3wFNPlY7CYOgGI2wGwwDxla/A93xP6Simo1Zh6kVe\nCX1Q2BQJ26lT/rOiwra3B5/73GGMBkNfsRSE7S1vOZTsDYZlwPPP+5yi3d3SkVwNZYXNctjaQZmw\nffObfhwoWvAGQwgGT9guXYLPfMYIm2G5cOGCVxaefLJ0JFdDWWE7exZWV3UJ2/q6EbZQfP3r/rMR\nNkPfMXjC9hd/4T9fvFg2DoMhJ2oV6ytfKRvHNKgrbC9/ua4l+spX6hK2jQ1twqaaX/ff/ztsb5eO\nwtAHDJ6wPfaY/2y7K0NsVJVmxR4cPu+KhO3cOXjZy3QVtle9Sldhe9WrNJ+5U6fgzju1CZvqGvC3\n/pbPsTMYFsEIm8HQEp/7HPyVv1I6iumon/evfrVsHNNw7hy85jW6CturXqWrsL3qVboK21136RK2\njQ3NNeD0ad+X0BwgQxMYYSuMD3xAcwI2LMYLL8Cf/ZnmInXhArzoRZoK2/nznrApKmw1YVNV2O68\nU3O+eOYZf08Vx8I3vgF/6S9pWqIPPeQ/G2EzNMHgCdujj/pJTnFAbG3Be9/rYzT0DxcveltU0c64\ncAHe8AZT2EJRW6KmsIVBXWF7/es1N+1G2PqNqsrb32/whO2xx+DNb9YcrH/yJ5602WDtJ+r79r/+\nV9k4pqEmbKoKW60UjUalo7kS4wqb2tFZdQ6bGmGrz179ju/QI2xV5Qnbd36n5hrwhS94u9bWgH7i\nC1+Av/yX880VgyZs58/7ieS1r9UcrCdP+s+qHekN83HxIlx/vSfearhwwS/uFy7oPfvnzsGNN8It\nt+i12zl7Fl78Yr2cp60tT4xuv12v6OBb34Kbb/b3VI2wnT7tW6G89KW6luj3fI/WszaOb3xDb1Ol\nhLNnvcL2+c/n+XuDJmyPP+4XrWPHNAfEyZNwww22u+orLl6EH/gBXcJ27JhXPdRs0fPnfWy33aaV\nx1ZVXr06ftwTECVb9PRpH9MNNxz22FPBqVOe5F5/vR5h+/rX4RWvgOuu01sDdnbgkUfgnns014C9\nPfjBH4T/9t9KR6KLWmz53d/N8/cGTdgee8znVVx3nd6A2NryC/1b36oXmxK++lX4lV8pHcV0XLwI\n3/Vd/rNaPtaFC/65v/NOPVv03Dm/uL/kJVrXbWsLnIMjR7z6p1R48PzzcNNNsLKiR4z6QNiOHdNT\n2B55xPfVu/VWzTXgU5/y10/tuinh4kVf3PWf/3Oev7c0hE1td/UnfwJ33+1VBrNEZ+Phh+EXfgG+\n+MXSkVyNixf9s3XPPXp5bDVhM4WtOc6e9QoW6Cps4BVApTy2PhA2xTXgC1+A7/5uuPZaTcL24IN+\n82Lr02xcugQ//MPezXv66fR/b9CE7dFHfTXatdfqDdaTJ+HECd3BOhrBP/gHvkdQSVy6BJub8L73\nlY1jGi5e9Pfvnnv0bFFT2MJR26GgqbApE7bbboNrrvEd+5VynpQJ20MPwRvfqLkGPPUU/OEfwk/9\nlBG2ebh40W/y/tpfg49/PP3fGzRhU7ZElQnb/j68613wr/4VfPnLZWO5dAn++l+H//2/4b/+17Kx\nTOLSJX3CpqawbW/752tz0xS2ENSWKHjCplR48MwzXmFzzhNxJQtN2RJ96CFdhe3Xfx3e8Q5du1YF\nly75jcqP/3geW3RpCJvS7qrOX/v+7/c3W2kHU1XwD/+hrw760R8tH9ulS36B+mf/DP7RP/KLvQpq\nhe17v9dbokqxqSps58/7Rd05bYXt5pu1FLY+WKKgZ4uqKmxV5S1RRYVtbw/+/b+Hd79bY3367Gd9\nnth733t4zJgK6jXg3nvhD/7Ar+0pMVjCduaMv3i33aY3WOv8teuv1xus//Sfein8Yx/zC0TpwVrv\nYH7mZ/zXv/3bZeMZRz1Yb73VKzOPP146okNMKmwqPcXOnfNqB+gpbOqWaK2w3XijEbamUCVsTz/t\nC0huu00vZeeTn/RxvelNGoTtmWf8xnM08j1V/8bf8GuUwpxWr0833+zV0j/4g7R/b7CE7bHH4NWv\n9jt5tQFR26GgRdj+9b+G//Af/IA9flxjsNYDYmUF/uW/hF/8RV8Or4CLF31soGeL1oSt/jh1qnRE\nHrXCBnoKm7IlagpbOC5e9PPHi14ER4/6eWN3t3RUHrW65pxeys6/+3fwnvf4f197rcYa8PKXw6/+\nKnzta/BX/yr8nb/jydvXvlY2tnrTDvBjP5a+vUdnwuacu9c594hz7jHn3HtnvOYDBz9/yDn3prHv\n/7pz7pRz7uGJ19/knPu0c+5R59ynnHPHQ+N67DFfcAB6A2KcsF1zjUZsv/mb8C/+BXz60353BX6S\nUxisNSn6oR/y9/Tf/tuyMdUYH6xKhG1vz+eKHT3qv1ayReuCAzhU2BR2ytAfhc0IWzN8/et+oXfu\nkBipbNzr/DXQ2rQ/+ST80R/5/DXQ2LRfvny4Bhw7Bn//7/vc6ttvh//xP8rGNr4+/diP+Ty2lPNZ\nJ8LmnFsFPgjcC9wNvNM597qJ17wdeHVVVXcB7wY+NPbj3zh47yTeB3y6qqrXAL9/8HUQHn3U56+B\n1kAdz18DjR3M5z/v89Y+8QlvodVQGKzjAwLg/e/3+WwKi8IkYVNp7XHhgo/LOf+1UuFB3dID/H3d\n2PDKlgLOnDGFLRS7u74A4pZb/NdqhO0Vrzj8WqmBeq2wgRZh+/CH4W/+Tb9mgoagcOnS4eazxsqK\nT0W5fLlMTDXG14DXvc6fqvHww/Pf0wVdFbZ7gMerqvpaVVUj4KPAT0685ieAjwBUVfUZ4Lhz7raD\nr/8ImFbv9O33HHz+qdDA6oIDOCQeCknh4/lroDFYH34YfuRHfBPYcSgStje8Ad72Nm+Plsb4YH3z\nm32vOAW7trZDa6gqbKCVx3b2rLbCNk7YVKpEn3vOK39ra/5rZcJ23XU6laKKCtvuLvzarx3aoaC5\nBtRQc4CcS2+LdiVstwPjnbqePPhe6Gsm8eKqquqsm1PAi0MDGydsq6u+jUBpNg5X2qGgsYO5fPnq\nHQz42Epfs7p1xjj+yT+BD30oT6PCeRgnbNdd549BS7m7aopJwvYd36FF2GqFDbTy2CarRJUUNlVL\ntG7pUUOprUdtidZQcVouXvT9LV/7Wv+1CmH75Ce9zVgTSdBwgMYt0XEorE/jecyQvr1HV8LW1K11\nLd9HVVVVyOv9e64kbKCTxzZJ2BQGxKwdjOru6uUvh+/7Pvif/7NMTDXGCRvo5LFNU9iULNFJhU2F\nsI0XHVxzjZ9HSj//4OM4fVqzSnQ8fw20FTaVXmwPP3xon4HfLG9vlz8f9sEHfSuPcaisAdMEBRWF\nbXwN+MEf9Pl1zz6b5u+tdXz/U8AdY1/fgVfQ5r3mZQffm4dTzrnbqqp6xjn3EmDqf//+++//9r9P\nnDjBiQMmVFsZdV4FHO6ubr11wV9OiMn8NdDYXc1T2BQGxDQyed11ZXdX9WI+Pli/93s9ify7f7dc\nXNA/hU3FEh1X2Jw7tEWnPX85cfGidwnqMaqksE0jbN/4Rrl4xjHNElVQ2OojqWo4d+i0jG9mcuKJ\nJ+CP/xg++tErv6/gANWVvpO45pryqQGTCtvGhj+q6uMfh5//eTh58iQnT56M9ve6ErbPAnc5514J\nPA28A3jnxGs+BtwHfNQ59xbgzJjdOQsfA34OeP/B59+Z9qJxwjaOWl1zY7qewmCdzF8DjQExT3Iu\nTdgmB0SNo0fLErbLl/3gXF09/N4998AHPlAuphqThO2OO/zCurPjYy6J8+e97VJDSWEbLzqAQ1v0\njjtmvycHxgsOQJ+wqSpsCmsAHB5JNY7aASpF2D7zGfiBH7g6/URhDZiXw1Y6LWZays6P/7jPY/v5\nn79SSAJ44IEHOv29TpZoVVW7eDL2e8CXgN+qqurLzrn3OOfec/CajwNfcc49DjwI/L36/c653wT+\nGHiNc+4J59y7Dn70y8CPOOceBX7o4OvGGK8QraHQi+3kSd9DZhwqlqiy5KxIJiftUIDXv973BSq9\nYF24cKWKtbbmSZJCl/DJogMlhW286AB0Cg/GCw5Aq+hAlbDt7HhbanxzoGKJTipsUN5puXTpyjmj\nhsL61DdB4W1vg//yX7zNHRtdFTaqqvoE8ImJ7z048fV9M947qcbV3z8N/HDbmCbz10Ajh+3kSfiF\nX7jye0ePeqt0f9+XKpdAHy3R0grbNMK2vu53zp/73NXEPCcmFTY4rBSdHBe5Md7WA3SLDkCn8GC8\n4AD8vd3a8p3f6zyoUjh1yldu11AhbE8+6Z+ttbEVTkFh29+HP/szPcKmvgbMEhRKFx1MU9huvdU7\naX/4h777QkwM8qSDWYSt5GDd2vJ9ur7v+678vnPllSzlHUyfCBtoFB7MImwKhQeqbT12d/2zNn7d\nVBS2SUvUOU8sFfrXqSpsk3YolF8DAP7iL/y9HN8YgDZhKy10qLosVTU7Zecf/+PDBvQxMVjCVp9y\nUKO0JTotf61Gadl51g6m9IAAXcI2bWcFuoRNpfBAVWGrieS4yq2qsIFOHlufCJuCJTreMHccqoSt\nnmdLnkaiugbs7Pgc5mkq99vednVf0xgYHGGb1tIDyu+uvvSlq2XwGgqDVbXPjeruyhS2dphU2G66\nyS+iKfI9QjBph4InbIoKG+gQtml92FQJW+k1AK5smDuO0oLCLMJW9zDd2sofUw1VB2iWupYSgyNs\np07BkSNXT76lc9hmKTJQnrCpKmy7u/5jWmVj6d3VLMJ2553+mpVUjZQVtsm2HisrfsEvfTj9eA+2\nGiqW6CyFrXThwd6eJ5PjLReOHTPCNg/TCg6g/Po0i7BB+XVANYdt3pqeCoMjbNMqRKH8YFUeEKoJ\np/XOyk22Xab8YJ1F2Jzz/dhKniuqrLBNNs4FjTy2WQqbiiWqqLA995yPYzyxvz6vs/QxgKqW6LSW\nHlB+075ofSotKJjC5jE4wjbNDgVdyRk0BqvigJg1UEGDsM2K7aUvTdfpugmmEbabb/ZVhSVVmaq6\nWmEDjTw2ZYVN1RKdzF+Dwwa/pRPVFRW255/3z9krX3n1zxTWAGVBQTGHzRS2CJhWcADlB+vWli5h\nmyU5b276xMpSR6bMI2ylJ5FZChuUn0imETbnyqts29veAt3cvPL7prDNxzRLVOF4qlOnplfClc5j\n29/3bT3GzxGFQ/WvFOr8tWntmxTWgFlzrRXFTYcpbBEwS2FTzxEoHdu0B69uOVKKfKgrbPMIW8kk\n3WmEDXweW0nCNllwUENBYZtG2Exhm49pChuUJ2zPPOPV0sn59rrrylqiX/0qvPrV039WmrApK2zz\nLFFT2HqOeYRN2RItPSAUB2ufCVvJ2M6fn07Y6ua5pTDZ0qOGgsI2zRI9dsyrgqUrWFXbeqgStml2\nKGisAfNUrNKxKa4Bo5FPpZjWOqN0/9J561MqDIqw7e/D449P38UoDIgjR6b/zHZX0zFvB1OaFM0j\nbEeO6FmiUN4S7ZvC5pwnSiVVtv19n3eoWCU62dKjhiphK110oJ7HrOgAzSs8W1/3ZG40yh8XzF8D\nUmFQhO2pp/wuedou3izR6aiqxbGpWqKl8xdUyeQ8S7Skwjat4AA0FLbJg99rlLZFz53zz9mkwmAK\n22wsUthKNYGdt2lXXp9KOkDz3B/llJ1UGBRhm1VwABpyuOKA2NnxSbCzziQsqbDNS+osnb/Qxxw2\nBUtUVWGbPPi9RunCg2l2KBhhm4dZhG1jwy/yOzv5YwLtwjNll2UeKSq9PpnC1gGz8tdAn7CVlpxn\nQXWwllaxVBW2/f3Z1+2Vr4RvfKNc1e8sha1unFvy+JtpliiUV9imFRyATpVonwgblLVFVdcA0CVs\ni9YnU9h6jOefh1tvnf6z0jls83ZXJS3ReZIzGGGbBdUctvp+rq5e/bOjR71a8/TT+eOC2QrbkSP+\nWp4+nT+mGtOKDsAUtnlQbesxj7CV3Lj3OY+55PqkKiiYwtYRW1uWIxCKeXFB2VyxeYP1yBFfvVdK\nLVJV2C5cmK5i1SjZ2mNW0QGUz2Prm8JWuuhgf99fl/FjqWqUJGxVpUvYlC1R1T5siwQFU9h6jHnk\no84rKrXAq8rhfbVE64TTUrliiypYS8U1K3+tRsk8tlltPaB8HtusooPSB8DPUtiOHvVzWann7Pnn\nPTGblvtakrC98ILPyZ1GvkHbElVN2VFdA8AUtl5jnsK2slJWLZonh5eWnPtoiULZ3ZWywjaPsN1y\nSznrUVVhqyptS3SawuacJyVnz+aPCWbnr4G/x6VI0Tx1DXQt0ZIO0N6eb40xeQJJDcthmw5T2Dpi\nkb1XerCqWqKLdjCqA0KVsJXMYVtE2I4cKafKqCpsFy/6xWpj4+qfqVqiULbwYFYPNiirsC0ibCWP\np1K1RGuhY1qvMzBBYRZMYeuIeQoblN3FqFqiygOiCWFTHKzKCltJu1ZVYZulroGGwjbNEoWyhQeL\nFLZShO3JJ+GOO2b/vOTxVPPWgCNHvMpVImVnkdBROodNddNuCltHqCpsVeUT5BUt0UXXTJmwlVT/\n5vWIU85hK6n+zWrrAWUVtlkFB6CtsJUsPFAlbIuKbkoXHcxaA5wrtw70fQ1Q3LSnwqAI2yKFrVRi\n59aWt1tWZlxtdUtUdbCW2l3VO+FZOR/KCltpS3SewqZI2Exhm45ZLT2gLGFbtAaUtESbKFlG2K6E\n5bBdiaUibKV2V/NyF8As0VlQJWz1zmpWzodyDlvJCW6eJfqSl2haoseP+2u6u5s3phqLFDazRK9E\nkzVA0RKFcoJCE8Jm69PVMIWtI5pYoqo7GNW2Hqp92KBcbIsGqils0zGv6EBVYVtZ8cn9pSprZ1WJ\ngi5hO3bME7YSJ1eopsVAMweoxDqwaJ5VzmFTLopLgUERNlWFrUlz2lJNYJXlcNXBuoiwHTnizyvc\n388XUw1lwjZPYbvxRh9Xifs5T2GDcrbo7q4nubNiK1klOo+wbW56oru9nTcmaGaJqipsyoKCsiVq\nCltPoSw5z5tE6oTTEouVsuSsbonOgnPliNH585qWaFXNV9icK1cpOk9hg3KFB3Uz32nHjIGuwgbl\nbFHVTTtYDlsbNFmfTGHrKVQH66IBAWUHq6KKBfNPEwBdwgbl8thUFbbLl31X/Gmd8WuoErZSCtu8\nggMoVyW6vw/PPjv73GYoR9hULdFFnQJAm7CpniVaSmHb2/Muyrz7mQKDImx9lZyh3KBQVtjmtc4A\n3Rw2KEcmVfuwzWvpUaNUa49FlmgphW1ewQGUU9hOn/b3clqj4RqqClspS3R7229WZnUKAF3CVs9l\nJXISVdt61HHNKjxLhUERtr4rbCUePHU5XFH9a0rYShAj1T5s81p61DCF7Uo0UdhKELZ5LT1qqBI2\n9TVAkbCtrvq8xFLKfB/TYlJhUIRNNYdtUVsP0LZESxC2qmq+88uNRVYt6CpspSzReQUHNW65pQwx\nmnXwe41SB8DPqxCFckUHi/LXoCxhU7REFxFJ0G3rAWWVLEVBoUT+GgyIsO3v+4am82R65d2VWaJX\nYmvrsNpsFpR3V6o5bKWUv3kFBzVKxXb2rGbRgaolqkzYFhV4lbJElRW2RWsA6BKjkmuAEbYOWHSA\nLWjnsJW0RBXzxJrsYCyH7WqoWqJNFLZS6l9fLdEbbvBFB7lzi5QJm7IlukhhK7k+LZprSwoKig5Q\nE5clBQZH2OZBebCq7q5Ud1ZgOWzTsOgsxZLtRhYpbKVi62vRwZEjPr8o9xh44YX5RBK0CdvFi/lJ\nrnpaTJ8FBVPYeogh5AgoDtbNzcOzM3OiqcKmTNgUFbZScTVR2EqR3L4qbFDGFm1CPlTbetQJ9LnJ\nh7Ilajls4TCFrSOaPHTKOWyqO5hSTX37TthKWI9V5Z/vebFtbvoWA7kVBlWFbWfHf8x71lQVNihD\n2Jo4BqoKG5RZB5RdFnXCZgrbIQZD2JoOVNUBoWqJQpnBqp7Dpkgmt7Z80c3a2uzXrKwckracUM1h\nqwsO5uW+1tWYuVXmRVWiUKZStMlcq0zYShQeNLVEVQWFEg7Q/v7i5rSmsPUUTUmRDYgr0TThVJGw\nWQ7blVhkh9Yoof41aZxbgrAtskPBE+Bjx/ITo6aWaO7TDpqSotyErUkrICinsKlu2lUdoFqVnLeZ\nKtXU1xS2jlCVwkE74bTvCpsyYcsdWwhhy02MmjTOLaWwzSs4qFHCFlW1RFUVtt1dv7jPU5hB1xJV\ndoBU14D1dX/PR6M8MdUwha0jmjx0R474G7u7myemGqo7GGgWWwnrse+ErYSK1ZSwlVD/mlqiua9Z\nE4UN8hce7Oz4e7RIlTTCdogmcYG2JWqb9kM0bU6rmmOdAoMhbE0Gq3NldjGqluho5PME5jUbBt3B\nan3YroSyJapadNCUsOVW2E6f9nboorMKlQmbIikCs0QnodqHrUlcUGYdsKOpOqLJgIAyeWyqFUL1\nNVu0KKgSNsthuxLKlqhy0UETSzS3wtYkfw20CVtuha3JPAu6lqjlsF2JJsofmMLWSzSVw5V3VyWS\nOptKzoo7GGVLtERs58/rWqKmsIWhSYUoWJXoOMwSbYc+57CBKWy9RFOFzSzRQzS9Zqo7GCNsV0LZ\nEjWFLQxNCg5At0r0mmt865ic+cJ937Qr51grEzbl2GJjMISt74O1xO4qRHJWHBDr6z4HT7FCyIoO\nrkSf23pAfgW875aoc/mVrKYb0GPHNC3Rukm54sZdPYct91xrCltHNM1fKJHD1lQON0v0EE0IW4lT\nGPb3m1039Ry2nNesPoGhz4Qtd2whCpsiYYP8tmjIpl3REgVdB0g9h01xfUqBwRC2vlcIldjBDGFA\n5N5d1RtDyqRaAAAgAElEQVSDlQUjR90SzUk+Ll70f3NRf6wSx2Y1tUSPHMl7OkTfFTbQJmyKawDk\nd1qanCYAtgZMwhS2jggZrKo7GGXJ2QarR9OBqkzYcqt/TQoOwJPg9XW/gOSCqsLWRJEE3aIDKEPY\n+myJQv514PJlv1FS7BTQdwcoBQZD2EKKDhR3V6Us0SEobDlja0rYlHPYcsfWpOCgRm4yeeZMc4Ut\nZ1zb280W+Btu8P+HnKqkKmELaeuhaomWIGzKpKjJNTOFrYdoOomo9mGrLZecB0wPwRLNncMWorCV\nyGFrosrkJh9NFTbIH1t9+PsibG7mjavpfLa+7l+Xa07b2/NVjOvri19rlughVPuEqlq1YFWi0zAY\nwqaqsDXNEagT6HM+eOq7K1VLVDEu0LVEQxS23IRN1RLd2vIksQly5rHVyt8iCw20LdESCpuqJdr3\nTbspbD2Eag5bPfE2meBy26JD6CRtOWyHULVEVRW2/f1mh9JDGcLWZD6DvIQtJC5lS1RVYcu9PikT\nNlVBoapMYesMVYWtaVxg+QvjsBy2cAxFYct13c6f9/dydXXxa42weSgTtqFYokbYPFRz2La2/Pnb\nTeaN2BgMYVPNYWsq00P+1h7qg9Vy2MKgqrA1aZpbIycxalpwAPnbejQtOgBfKZrrtIMhEDazRA8R\netpNzuIW1Ry2UuoaDIiwmcIWjiEUHShboltbeSc41T5sTW1HyBtb04IDMIWthjJhazrX1mMzZ4FX\n3xW2lRWvKuUcAyEOkOIakAKDIWyqOWyhhE2x6MD6sB2i6WCte4rlVGWGYonmVNiUCZti0YEyYWsa\n28qKLjFS3bSDrpKVe30yhS0CVI+mahoX5LdEVRW20cgnhDdpHaCawwb5rUdVS1S16KDpKQeg29YD\njLDVCIktty2qmrLTdNMOZQibYlGcKWwRoHo0lbIlqlp0UO9gmlTWKg/WnEpWfTrAxsbi1+ZWi0xh\nC4cRtnCE5AvnXAfq3nVNxqaq8gdl1D9T2K7EYAibakm3uiWqqLBduhRGinISNtXYzp9vpq6B7tFU\noEvYcp9zGkqMzp5NG08NZcIW4mbkPJ6qnmebbECVU3asT6iHKWwREKKwKQ8IVUs0NylquoNRzWGD\nvLE1tUNB+2gqVUu0TrrOlZMYUiV69Gi+uJQJW0hsOY+nColLWWFTtURLbNpNYesI1RyBEJle1RLd\n2PCS/u5u+pggnLCp7q5yEqMQwmYKm0eIwgZ5W3uELPI58+vUCZuiJapsO6oTNlPYrsQgCFtVNZ9I\nNjb86+ucn9RQtkSb7mDqY7NykY8QwmY5bB6hCptqDlvOaxaisEG+61YfZ9ck5wny3s82pCiXjaxu\niTaBMmFTzmEzha1H2NnxFYUrDf43zuW1RZUtUdUKIbNEw2GWaDhCnn/IF9v2dvPj7EBX+VtdzTun\nmSUaDlWFrap0c6xNYeuIkIcOTA6vERJbTuvRCFs4zBINR0ivM8hnPYYs8KBriUJeWzSUsKmuATlT\ndkLdjFxrwPa2F2GaHP9kClvPEDqJ5BwUITK9qiUK2gpb7t1V09hUc9hyxrW/76+Zol0bOm/kVNgU\n4wJtwhZCjHL2YQtZA9SL4pTXgFzWuylsHTEUhc0sUQ/LYQuHag7bxYv+OjQ9KDknmVQlRm2IpKIl\nCqawgX7hmWJsIWvT2pr/yJWXbgpbR4ROIqo5bMqDVbXowCxRjwsXmtuO6+te+cpR9RuSvwbalmhO\nwqYYFxhha4OQeXZzM29F/hAUNsgbmylsHREiOYP27irXQ7e353ckIcdmKQ5WI2weIQqbc/kW+ZD8\nNdAmH7mULMtha4eQuVbVEnUuv5KlSthCXDNVQSE2BkHYQgYq5M9hU7RE64m3aSWaMmHLWbk0hD5s\nkM+uVVbYhmSJqhK2Y8fyELa6qrCpMqm6aQcjbBBOilSL4mJjEIRNWWFTtUTb7GAUB0TOndXOjie4\nTftjqeawQb5FXpmwqVqPqsof6Cpso5HPk1xba/Z61T5soC0o5FoDQlvu5FwHzBLtiNAdjOWwtRsQ\nioQtp+0YOlBVLVHIp/4NzRJVrBI1S7TdGqBoiYKuwqYsKJjC1iOoK2yKeWKhu76cAyKkdUZNinKU\ndA+JsJklqkuM2uSw7ez4QpLUUCVsymuAsqCg2oetTdGB6sY9JgZB2IaSw5Z7BzMEha22QXJYQpcu\nhQ1U5Rw2KzrQtkRD4nLukLSlhipha5Nbp7gGgK7CproGgClsvUKbth6Kg/XIEZ+LsbeXNiYIn0Ry\nD9YQYpRrd9VGYVPOYctxzZQVNlVLNDQu0I1NlbCZJeqhStiUU3ZMYeuINo1zFQdEfch6jgdvSGXT\nuaxHs0TDoaqw1Qeshypsim09QNeuzTVvKDdPV60SrceA4jmnbXLYVNenmBgEYVM+mip0sOZq7aG8\ngzHCFo7z54ehsOUikjVZa9rWBnSLDkBXYVMlkpubh4QlNVQt0dp673trJzCFrVdQ3l2pDlZ1S1Qx\nfyF0oFoOm67CFponBrqkCHTVP9Vr5ly+daCNJZorLtU1IFRQyLU5rlOWmrZ2io1BELah5LBBvtMO\nhtKHDSyHDbQtUUUiqZ4nFkomcylZoeQjJ5EMmc8g3zqgWiWqTNhUFbY6vzpEmY+JQRC2oeSwgVmi\nYJZoKEYj/xG6kOaILXSxWl/PU3jTxnZUtfdAl+iqEknIdzyVqsvSNo85Rwsl1Ry2kvlrMBDCpprD\ntrfnF58Q+VR1sCqXTeckbKpxXXdd2K4vl8IWSozqc05TqzJmibbDUCxRyKuwKVaJhm7aV1b8Wpbj\nfqoqbCXz12AghE21aWLoeZ2QzxIdmsKmOFhzqVihdiho23s5YhuSigW6sW1umiWqqrCFxgX51gHV\nHDZT2CKgTY6A4kCFvJaoYv7C/r5u6wDVHLa2hC3HNVOteGwbVw7yoWrX7u768dn0vE7IRyTNEg2H\nMmFTzbE2hS0C2jYmTO3Ft9n1qVqiuUhRTdZWAp7MZc9hu3AhrBIT8pFJZYVNMS7QVdhqIhnaCkXR\nqgVtS1RVUMi5PikWnpnCFgFtEptXV9NPJMoDQtUSbTMg1Alb6o2BuiWqSD5U44L2ZDJH3p+i8gft\nYst1PJUpbOFoY4mawtYTtJHDc+yulAeEquTclrApDta1Na9GjEbpYgKzRNtANS7QJUbKJLfNXJvr\neCrVLgbq65MpbFdjEIStbcJp6kFhCls4QisxIe9gDd1d5bAe2xA2s0R1e52pEqM2cdX5bru78eMZ\nx9AsUSNsml0Meq+wOefudc494px7zDn33hmv+cDBzx9yzr1p0Xudc/c75550zn3+4OPeeTGoDlZ1\nwhZqI9dtSlJiSJYo5IlNWWEbEvlQP5pK0RKFPJWiqpZoVelaoqGkCPI2djeF7Wp0ImzOuVXgg8C9\nwN3AO51zr5t4zduBV1dVdRfwbuBDDd5bAb9aVdWbDj4+OS+OtsQoB2ELnURUdzD1wfSpB4URtnAo\nK2zb27oKmyphU42tLWHLFZuiJbqz41XG1dXm71F1WUC3sbspbM1wD/B4VVVfq6pqBHwU+MmJ1/wE\n8BGAqqo+Axx3zt3W4L2Na5FMYQtH28GaelC0tR1VB2sOJUu16GBvz3+sr4e9LweZVFWxYFg5bJBH\nYVPNY25zzVRdFtAVFFRz62KjK2G7HXhi7OsnD77X5DUvXfDe+w4s1A87547PC6Jtwumy57ApDtY2\nA0K1Dxvo5rDlIJJt2kCAbg6bVYlqK2yKfdjazLObmz7nL3X6ieoaMBp5Kzlko6fsssREV8LWtGFB\n6FGpHwLuBN4IfBP4lXkvVlXY2sj0yjsFs0TNEg1BG+IBugu8WaLtCVsOMqnYpLwNKXIuz8a9raCQ\na9MestFTXjdjIqBn9VQ8Bdwx9vUdeKVs3mtedvCa9Vnvrarq2fqbzrlfA3532h+///77qSr/YH/m\nMyd461tPNA48Vw6bKWxhMMIWjvPnNS3RLgt8LvUvBGtrvtP/7m5Yt/9QDNESTR1bG0tUWZWsHaDj\nc72lblA9iadNuk69Aa2qcEU/BKFrwMmTJzl58mS0v9912vkscJdz7pXA08A7gHdOvOZjwH3AR51z\nbwHOVFV1yjn3/Kz3OudeUlXVNw/e/9PAw9P++P33389oBP/8n8Nb3xoW+LLnsLWpEFImbKnj2tvz\nk3voNVPOYctBipQVttDTIZw7zMdKSdhUe8QNzRLNlVsXOmeArsJ2zTVw+nSaeGq0WZvGD6Zvc72b\nInR9OnHiBCdOnPj21w888ECnv99p2qmqatc5dx/we8Aq8OGqqr7snHvPwc8frKrq4865tzvnHgcu\nAu+a996DX/1+59wb8ZbrV4H3zIqhzc4KdHPYVDtJgy5hy2XVHj0avnvLlcOmmFs3tAUeDmNLmcfS\n1hJVVYtUY8vxnA2RsCmuAXDoZqQkbKVz2DrvE6uq+gTwiYnvPTjx9X1N33vw/Z9t+vfbMuprr4UX\nXgh/XwguXw7fxecYqFXV7rrlULJULdG2AzVHbG3It6rtCLonHUD62HZ3vZobquApk9xclmgb9VuR\nSEKedUC1D1ub+QwOyeRNN8WPqUbpHLben3TQRWFbVkt0a8vLxyEHrIPu7mrZCVsb8mFFB+1jS7nI\nt62sVc5hUyWTqkQS8uVYK/Zh66qwpURpha33hK2twqZM2HLsYNpcM2XCljqutgM1h5LV5ZillAfT\nD22Bh/SxDc12BN2TDnJcM7NEw9FG+QPd9SkmBkHYVHPY2pDJzU3fh2ZvL01MMLwBkSOHrYvCpkg+\nVle97bazkyYm0LUdQTc21bhAl+RC+7lW9Zotc451W1KUK5fZFLYO6KIWKSps9RFQKQdrlxyBZe3D\nNjRLFNKTyaFaoooKmzL5yKVkWdFBGJQdoLaWaA6nxRS2DlCfRBQHq7Il2mZAHDnilaL9/TQxQfud\nVQ7Cpko+hqgWpSZG6iqW4jWrqnbP2saGL/JIOW+0zbFWJWy5ctjark+msImjLflQ7sGTmhh1kZwV\n5fC6P1bKwaqcw9aFGKWMTZVIgi6ZVC2GAF0yubPjjzEKLaJyzpO2lNetSxcDVcKmuAZAeoVtfz99\n25BF6D1hU51EwBS2NlDNX1DPYWuzyOewRFXHpmpsqnGBrpvRVsWCPLEprgEwPMKWeg2on//QjUFM\n9J6wtR2sqnkVkH6wtpWcVfuwQXrrUTWHrbaDFJUs1dw60FWyVG1H0I2tbVyQPrYua0DKHOv9/XbX\nbZlz2Ernr8EACFtbyVm5B0/qXUzXxoQpYYQtDKORr/ZcXQ1/b+rYupCiHHl/ikpWF6t2WS3RLoQt\nR2yKCltbtaieM1K2A1LtYlC6pQcMgLB1UdgUS83BLNG2xCj17koxh60tKQLdhXTZc9i69DpT7KuX\nOl+4y/mRqpZo6rYebeMaP7MzFYa2aY+J3hO2LgqbatFBDkt0aArbsuawtSUekJ5Mqlq1oFsQ0Tau\nlZX0ffVUCXiXHDZlS1SRsMHyOkCmsEWAssKmqmR1iSt1PlaX/DpVwqaqsFnRQfj7lPOxVNU/1bw/\nyBOb4qa9C2FLncdmCtts9J6wtR0Q1oct/H2pieRo5JWC9fXw96oO1hyETXWBV7UdlQs11MmHKslt\nSz5yKGyKc62ywmY5bLPRe8LWVmFbW/PHP+3uxo8J/O/e22tHPpbVEu0yIFQrhHLYjqqWqKrtOBr5\nIo02hRqqJBd0yaSyJap8zRRz6yB981xT2Gaj94St7e7KubSDop5EnAt/r+ruSpmwLWsOm1mi4Rii\nigW6dm2OogPV+9mlsbui8geWw1YSgyBsXSa4lIStS46A6g5GdUCo7q5Sx6WsyLS1HdfW/OdU6rfy\nNVMmH8oEfGiWaOpr1tZ2BF1LVHUNiIneE7YuxCjloFAmbENU2FIP1rbXTL3oYBnz69RboSjHpkjY\nlE86ULZE2861qkUHyutTLPSesKnuSLvs+lQt0fV1n7A9GsWPCbQJ2/Z2+53yMpIi0FWylK+ZWaLh\nUL5mQ7VEFR0g1bSYmOg9YVPtwaOssLUdEM6lJZNdc9hSkty2ysfGRtriFlVSBLpqUZdrpkqKIO0G\ndHfXb9baFFEpk9wc6p9iF4Mh5rApp+zEQu8JW9cu18tI2LoO1lS7mC5ntanae86lTe43SzQcqnGB\nLgFXjQu0Tzpo+6xtbPgmyPv78WMCbcLWpa2HKWziUM1fGKLkDLoKm3Jyf8rYlBfSrtdMkeQuq1qk\nWtwFui4LtF8HnNMuiku1BuzteaLa5n6awtYDqFYIdRkQR48upxyuTNi6LvKpYlONC3RjU7Udods1\nSzmfqRJJ0L2fe3s+37fLGFAkbCkFhXo9b9sOyxQ2cSgrbEPb9YEuYUsZV5fO+JBeLVJUsUBX/VON\nC3TJh7LCprppr+eMNuQDdAUF1TXAFLYeQHWwdm03knKCUx0Uqgrb7q6fdOv+YKFYVktU1XpUjQt0\nlawYhK2q4sZUQ/Wkgy5rAKSNTbUPW5e46nUzVd6fKWwRoDpYVYshQHt31XZApCRFXRYrSB+bFR2E\nQTUu0K1g7XLN6vOBd3bixlRDVZWMQdhSxqbYh63Lpn1lJe0Y6EImY6H3hE21QqjLYE1tiSrvrhQV\nti6LKKTNx1JW2FRjUyVFoE0+uoyBlLaoqsvSdaOn6gClzGHrQiQh7frU5TmLhd4TNtVcMVVLtKp0\n23qo5rB1UbFgOSseq0o3NtW4QFf960o+UluPqiRXWWFT3bR3uWbKG/cY6DVh2931fnWbZo6gOyBS\nTm6j0aFF0QbLqLCpW6KK7UZGI1hd9R9toEo+ljnvT5WwqZ50oJzDpkzYlBW2Lhv3GOg1YasZ79Cq\ncFI2TVQeEKqErevOSjW21LZjl8lN2RJNmUCvSj5i2HuKFayqRBJ016eUOWxdLVHVzXEs9Jqwdc2r\nUN3B1E0TUyTpdt31LSNh67qzUu7DprpYqVqiq6u+WjjVebqqOWzq97NLDpuiywK6DlDKHDZlQcEs\n0Y7omgSonKSbaoKLkSOgSNhSS+FdFTZFtUhV+YPlJZOqiqmywqbaKaArYVOteFRtNwLaG/cY6DVh\ni1G5tGyDVbkKR1VhU7ZElRW2IVqikC62roUaypaoKplcVlVStShOWWEzS7QjlBU21diGaomur/uc\nv93duDFBnCpRxbyKjQ1v7e3txY0JtBerrvczFTHq2qB5WcmHalsPdUu07Vybmkh2JWwp5tquYzMW\nek3YhqywpbREVXcwFy92y/tLRYxiLFaK6p9z6RYFVRULdMmHalxglmgbqLosoNsntOv6lCplR0Fd\ng54TthgqluKAgLSWaFeFLaVapKj+xbBEVdWilORDVZVUJZNDJmyqsalWr4Ju0YFqbh2kW58U8teg\n54QtRmK/4oCA5bREVfudDZl8pIpNlRSB7kLa9ZotYw5bVflq+iEqbCmvWZdnbW3N9/JMkX6iqrAp\nVIhCzwlbV0VGVXKG5bREVcmHKpGE4SpsyjlsygqbqlqUSsna2vK5mG17cSp3Cki1PtXXbKXD6q9c\nFKe4BsRCrwmbusKmOFhNYQuH8lmiqsqHalygG5tqXKAbm3Jz2qEWnsHytZ0ySzQChq6wpRisqpLz\n/r63NjY22v+OVGQyhiWq2qJCmeSqXjNVVVLZEk2psHWJa23NW4Qp7D3VPOaupAiWzwEyhS0CVJvT\ngi6ZVCWS9VFGba0N0CUfZomGQ9kSTWlVqToGygpbl/msPlUmlZKleM1iKWyprpni0VSWwxYByhOc\nag6balwxBoQVHYQjlV2rqmKBNvlQjAt0Y+tKikCXTKqSIkir/qkqbGaJdoSqigW6SlbXAaGqyIBu\n0UEqUhTDRk5l1yorbKpkUjUuGK4lCrq5YqouC2jnsCmuAbHQa8KmWnSwu+vzItbX2/8O1cGqagfB\n8vVhi2EjL6ta1JVMKpKPemxWVbyYaqjez66bdtCd01SJJOjGproGxEKvCZuqwqa+g1FV2MwSDYOy\njTxktUhVZV5d9R+pjmdTvGaxLFFF8qGaFgNpSa6qwmaWaEdYUmc4usa2vu7Pnox9/qQy+VBtNxJj\nElElH8toicay9xRjU7ZEVTfuqnGB7nNmVaLCUE7qHOokkur8SeUctqEm9oPuxKtuiSpeM9C29xQV\nGdC9n6qbdtDd6KmuAbHQa8IWqzlt7JwP5UmkqyUKaRYF5Rw21T5syjZynV/XFvXzH3ts1vmla2vt\nf0cqUhSLgCsqWaqtM0CXGKn3YVN8zlTXgFjoNWHrSoxS5XwM2RKFNGRyyJbokSO+mnN/P15MoG+J\ndrlmKyveft/ZiRcTHD5nQyzUAN3YVOMCXTdDOWUnxTWrzzjtujk2S1QUqtaj6oCAOApbiolEXS3q\nElvdnFOR5Kq2qADd50yZfKjGphoX6KpFyn3YUtzP0cgr36ur7X/H0aPpGrsbYesIVetRVcUCXfVP\nOYctlpIVO7ZluGYpCFuMuFIt8F1jU03uTxmX6uZY1RJVXgOGumGJhV4TNtX8BdUBAbpkUj2HLYb6\nt0wKm+rkqxoX6MZWp4x0yftTb+uRwt5TbZ6u6gDF2rCkyku3HLaOUN1dqQ4IiJNwqmrvqVqikCa2\nIdvIoJsruWyETTUu0LVEd3d9KoQqyR3qpn1tzee/xs5LN0s0ApQVNuUJbqiDVdneS0XYFG1H0I1N\nNS6IsyioVnAvmyWqvGkfMmED3TEQA70mbKoVQsqWqOqOVJUUga4qoxoX6MamOmeA9thUvJegvWnv\nugasrXmVblm6GMRSsVQ3ejHQe8KmulNQ3F3FKJsG3YVUuQePqsKmrEouG8lVvWZDJ7nKikyK+6ma\nFqN8zUxhi4Ah765SLVYbG97j7wLVhVS1DxukiU2dfCjGpkqKQPuaKc6zoLtpj7EGQDoHSLGtR0zC\npqr+dUWvCZuqkjV0yVl1d5WCFO3ve0tiY6Pb71EtOjBLNBzK6QopcsWUnzPV+xmLsKnGppoWA7ob\nvRjoNWHb2dHcLasmnKpLzjHsvVSqZJfO+KB9zcwSDYOR3HCsrcHenv+ICdXm6coJ9LY+hcMs0QjY\n3Oy+kKbYkapaosqSs+ouPtY1M0s0HKokdxmvWde4nNOeNxTXANCNTXUzBdqxdUWvCZvqzVWWnFWv\nmWpLg1gDVbnoIJVapEiMVEkRWAJ9Gww5LQa016dle87MEu0I5R3MkCde1dg2Nvx5dDFtl1gDVVlh\nS5H3FytdQfGapax4VDw2K+a8oTjXKpMPVTKp/pyp3s+u6DVhU765sXZ9MY/YGPoOJoXton7NFBer\nmqx1TVdIof6pbgxA934uwxhQtB0hHTFSVCWViw7MEo2AIUvOa2uwuhq3aeLQJ16IH5uyJRrLdrx8\nOf7GQHXiVd0YwPAJm/rmOCaULdGhP2eq80YM9JqwKcv0ij14lIsOVBNOlS3RWNV7sc/eU594hzwG\nVNt6gG76iSr5Bl17T/X5B+372RVLT9hUFTbQJR/qC6kiyVUtOoA0qqRiXKC7MRj6KSSgG5u6whaT\nfNQbsy6H0oMukQTteaMrek3YFAcE6A5W9V2f4iKvusCDrl2rPPGqPmc7O4dqZxeokiJIp/4pVjwu\ng8ui+pzFjm1vzxPd9fV4v7Mtek3YVMmHDdZwqMY2dEsUlovkql4z9c2U4jXb3/fFH11PIVG20FQ3\n7cu0maqV765FVDHQa8KmaDuCriWqnCOgGpuyJRrLeoxdjak68YLu8WyqCzzEyRODdJupGM3Tl2UN\nUH7OVDctKnYo9Jywqcr0MSc4RfKxTMqHqu0Ica+ZWaJhUH3OlMdm7LlWnXwM2WVZWzs8ZzkWVOcN\nlYID6DlhU9zBwPAH6zLlsKnGBbqxLQP5UF0Ulu2aKc6zMPxNO8SPTXXeUGnpAT0nbIoDAoY/WJdp\nUVBW2GLGpjjBKVuiqmNTNbEf4hMjVasWhm+Jgm5sqmMzBnpN2BQnkVoijlFRojwgYrc0GI00F/ll\nKTqIGZvqThl0yaRqXDD8hbQmuYqnyqi6LKBtcStu2mOg14RN8ebG2o2C7mBNIYWvr8epwlElucpF\nB8rkQ5nkKj5n6oRNca5dXfUfo1H331Vj6K2dQHveUIwrBnpN2GIpbMoDQjE21cUKdHdXygvpMvVh\nU72f6paoYmyxLFGIP9eaJRoO1XnDLNFIGPrNVY1NVfkD3d3Vsp10oDg2Id41U20doLwxUJ3PQHdO\nWyZBQbXljlmikaBo76lPIkNe4EF3UYhN2HZ3fc5N1yNmQLfoIHZcMHzysWyELVb6SezYlkFhUyW5\nqpv2GOg1YVMsOlCW6VVz2GIOCFUyWT9nsRKb67hi5f2ZJRoG1UWhJvCK/bGU1aIUdq3i+qTuZqiO\nTVPYImDoN1c1tthNE9WvWayFNGZic6yCA0hDchWVXNDetKiSD9WFNPbmWHGuVX7OVOdaVas2BnpN\n2IZedKDqxTsXd1AsgyUKcS0+1bggXmwbG57g7u93/101VNMC1BdSxdwi5XysZbFEFddOVSIZA70m\nbKo3N2ZeheKAgLiTr/JipUomY9vIin3YnIu7KMQ6LByW5zkDbbVo6C2UVOMC3TGg+vzHQK8JWyyF\nbTSKl1ukPCBUY1POYVMlRuoLvOL9jJ33pzo2l0X5ULVEq0qb5Kpes50dTfXbLNFIiLWLX1+PNyhU\nVSzQtRBUJxHQjS22JapYdAC6GwP1sRmbfMRqhaJKPmLGtr3tVdyVCKur+nwW+5qpbqbMEo0AxZJu\n1QEBuouCslqkGtsyFB2A9thUXRRixra764lHjPYx6uknMZ+zoVu1ED8tZhk2U13Ra8KmuLtSlelB\ne7AqX7NYE4kVHYRjWTYGqtdMdc4A3RZKqnHB8jxnOzvxipUGZYk65+51zj3inHvMOffeGa/5wMHP\nH3LOvWnRe51zNznnPu2ce9Q59ynn3PFpv1d1d6U6wSkPVtXdleoir5pbB8tzzVQX0pgb0GVxDFQ3\noG71l5wAACAASURBVMu0BsSKK3ax0mAUNufcKvBB4F7gbuCdzrnXTbzm7cCrq6q6C3g38KEG730f\n8Omqql4D/P7B11dBcSJZlglOdbAqK2xWdBCOmNdM+TlTvZ/K12wZLFHlNSB23l9MUhR7TR9KDts9\nwONVVX2tqqoR8FHgJyde8xPARwCqqvoMcNw5d9uC9377PQeff2raH1fcxahOIjGThyF+wqnyoqAY\nm1mi4bDnLBzLohapKjK1vTf0LgaxVSzl2LqgK2G7HXhi7OsnD77X5DUvnfPeF1dVderg36eAF0/7\n40N/8GJOcLu7XiqOkTwMutdMWfmISYxiJ/abJRoGZVVSlXzEVotU84VjxqXcxUB1DQDdjV5XdCVs\nTXl/k2JdN+33VVVVzfo7q6sN//oCLMMEF3tAqFYIKS+kqhOc8jVTLdRQVouW6TlbhrlWNTZl21F1\no9cVXfWWp4A7xr6+A6+UzXvNyw5esz7l+08d/PuUc+62qqqecc69BHh22h+///77v/3vEydOcOLE\nifD/Abq7K+VdQuwBccMNcX6Xuo2sOInEtkRVFTbVuECXGKnajhA3/WRzE86fj/O7YsYFh/czxhyp\numlRFxTaxnby5ElOnjwZJxC6E7bPAnc5514JPA28A3jnxGs+BtwHfNQ59xbgTFVVp5xzz89578eA\nnwPef/D5d6b98XHC1gWqOxiVh24aliGHbXfXq7gxbWTVooPYjXNVSa7icwa6YyDFfFZVcRqkxt4c\nP/dcnN8VMy7QXQdUN1OgE9ukkPTAAw90iqXTUlRV1a5z7j7g94BV4MNVVX3ZOfeeg58/WFXVx51z\nb3fOPQ5cBN41770Hv/qXgd92zv1fwNeAn+kS5yIoDwhFIgm6i4KqigW612xZig5Ui25AV8mKGdfq\nqv+IdZ6rbY7DoTw2ldenoViiVFX1CeATE997cOLr+5q+9+D7p4Ef7hpbU6g+eKpxge6AGG+a2PVo\nmNjXLHbRgarCtgxqkVmi7VCTj1iETbEiP5UlGgPLsDEAXZLbFb0+6SAWYj94iseSDDVHYBJ108Sd\nne6/S1mmjz3xxuwMrmqJxryf4/ZeDKheM+WNnuqJAinmWsXYVDftoDtvdIURNnQnOOVJRHlAxIot\nxSQSswlsrNhidgbf3fUkRrV9TKxrtrbmFdzd3Ti/b1nmDdWNXsy4YuewKa9PinGB7rzRFUbY0J3g\n1tf9grC31/13LZPkHJOwKcYFuiS37g8XI6kctBeFZSAf6vOG4okCy/KcLcN8BmaJykF1dxVT+VAm\nH6pyeOxJRLWnGPjYYqh/ys+Z8qKwDHl/oBub6mk3EI9M1mpwLPVb1aqFuPfTLFExqE4iEG+wKg8I\n1UVBlUhC3JMOQJfkLsPGYH8/XuUkaM9nseaNvT1PQNbXu/8u0M2tg+VwDNRjM0tUCMpy+LKQD9Vr\nphgXaCtsynl/ipupumoylo2srHzE3IAePRrXele9ZrFIriqRBN31qarib467wAgb2mpRrNhUSRHo\nDtYU10yx6ACWg+SqjgHla6Y6n6k3p1W0RJelehXijYGdHb+Z6toiKhZEwigL1URY0B2syjtSUyXD\nEUthUyVFoHs/VZ9/0J03Ll/WnGdB936qxgW6z5lSwQEYYQO0FTYbrOFQVdjUiw6GTnKX5Tkz8hEO\n1cIz0C08i9nFQHWjp5S/BkbYgLh+dy2hxkKsiUR5gluWwapedKCosKmeDgHLMTZVY0uhsKleM1WS\n65yukqW6meoKI2zEfehi9qCC4Q8I0CVG6tdM0RJVvZegez9V4wJdq0rdEo0Zm+rGAHTVP9Wx2RVG\n2NAeEKoPXqwJLkUVjuruyooOwrEsG4PYcZklGgZlS1R10w66YyDmmm6WqBiUB4QqmVSuwlGdRJTt\nvWUoOlDNFVMmH6qxxVbYNjd9L7wYZ8OqzrXqhG1ZrlkXGGFDlxTB8BcFm0TaQTU2VRULtK+ZYlyg\nq8zHJmzO+ST6mD3iYiHmXBszLohniapu9CyHTRCqEy/oxqa6wIPuYFUuOlgGhU2VTKpfM9vohUGV\n5No1C4dZooKIeXNT7GBUB4RiXKBLJusz/Eajbr+nqnTJh2pcsDxjQD2HTVFhg7ixLcNzBrqxqcbV\nFUbY0CVFoLtTiBVXCslZ/X52jW00gtVV/xELdvh7OFSfs7W1eP2xVMlHCsKmej9VKzFh+Bs9s0QF\nobqzAt0Hr1aLdne7/R7lSSTFYI1ReKAaF6R5zvb3uz9noLsoxI5LuT+WKikCXadFWS1SJZOqY7Mr\njLChPYkMPTblHDbV2FItVop92GryoTgGVOMCXcKmbInGmM/29+PnlyqvAapjQPmadYERNnQfOtCd\neEGbfCjfzxgKW2wiqWqJQhwyWZ9CYmkBYVg2khtrbC5D83TQdTNU4+oKI2wsx4BQJZMpBoTyYI1B\nPpSfs1RksmtsOzveXlXt96d4P1MUt6j2YYM49l6KwjPl5yzGNdvb8ykP6+txYgJtl6ULjLDhJ/K9\nve5Juqq2I+guCqpxQZrBGoN8pIpLVWGLEZv6c6YYW13cUuerxoCyJRrjmqXIYx76GrBsqmQXGGEj\nXpJuqt2V6oMXi7Ap5omBrvqnGhekK4joStiUr1mqMRBjPls28qF4zZZhDVCMC8wSlUWMiUS5SlR1\n8lUerKpkUlXFAl31L0VcyuRDeWyqKmzK10z1OVOdz2J2MTBLVBCqD57yojB0tUg1gT5FnpjyNTNL\nNBwxYrt0SdN2BF1LNIXLoto6A+LElkrFUl3Tu8AI2wFMDg/H0K+ZKplUJUVglmgbpIqt6xhQVbFA\nl3wsm8uiOp9BnGfNLFFRDFkOT1GFA8PPYbOig3Coxqa8MVBV5i9fhmuuiRNPDWVLVJV8GGFrB+XY\n2sII2wFU1aJYu4TYVTgwbJILurEtm1qkmsM29OdMlRSB7lmiKSzRtTXfYkXxVJlYrVBS5ImpCgpd\nYITtAMrkY8g5AstGPlR3faawhUNZyVUlbOqWqGLhGegKCqrzGWjH1hZG2A6gmnCq/NCpxqa+kFrR\nQRiGnsOmutFTVbFAV/1TzsdSnWtTCgqqYkdbGGE7QKwJTnHXl5KwKcrhMSaR/X3fOHRjI05MNVQX\nhc1NfxrA/n6337NMlmgstUj1aCp1hU2xGlN9rlUkbOqCglmiglAlRqoDFXQHaz3xVlX731EvorHz\n/lSLDpzTzUdZBktUMbYUhG1jw+didd0YqFZjpiCSoD/XdsGyrU9dYITtAKrESPmhUy2bXlnxFbE7\nO+1/h3IibCqZXpUYmSUaDlVLNNbGQNWuTZXDpkqMlFUs5bm2LYywHUBVYVMdqDDswap+zVRjS3X4\nu6olOhp1U3JB165NQYqge2z1ofSKNrLy2FQmbKqCglmiolB98FTjAl1VErpft5SJsIpFB9CdGFWV\nNmGLfT+d8xaf4hiIMW+kOOkAus8bo5FX0WMeSg/DtkRrkqu4MVBdA8AsUVmoko8Y+VjLOCBiKGyp\nSJHyNetCjEYjv4iursaLCXQtUdAdA7HsvdiNc6H7NUup/A3VEt3dTUdyVSsxzRIdMGLtFGJPJPUg\nG43a/w5lyVl1sKoSSUgXW1cymZLkKlqioLsoqBYdQPd5YxnHps1n4VDtYtAFRtgOoJxwOvTBqriQ\nqhJJ0LVEUxJJRUsUuquSdcVkbOVDOYet61yrGhfobo5tDWgHs0RFMWQvfhkHhPI1UyYfXUmuIpEE\n3craVO1jhqywqcYFaXPYupDJlERSleTGyPtLNae1hRG2AyiTj66DQrmTtOpgNYUtHMuosMW4Zqk2\nBoqtM2DYjoG5LOFQjW1312+kYqvfXWCE7QBdJ7hUVTgw7MGaihjFsBCWsehAkeQq57Bdc42vpmwL\nVQsNdK1H5aID1U276pwB2muAkh0KRti+ja43N1UVDugSNuU+N6rXTHlHqqoWKSts11yjqUqaJRqO\nIbf1SPWcbWx0P9JOdQyoVYiCEbZvQ3VAwLB3V6qxLaMlqjoG1HPYuihsKVtnKFuiqvOZFZ6FoT65\nouupMst0zbrACNsBYpCiFJMb6D54ynK4FR2EI1YCfWyoW6JdYkvZnLbr2FSNTVX5g+WzREF7ru16\nzZQKDsAI27cRYxJRHhCKO9KUVTiq1yxGDlvKa2aWaBi6KmyXLqVR2GLlsCnGpjqfge7mWJ2wLds1\nawsjbAdQlelBd3fVdUDs7Picv5UET+GQLVFVMplaYety2keq2LoqbKqnCYCuJaqusCmqksrrk+pc\nazlswlDd9YHuYB36NUuhFq2t+QTd3d32v0PVekx1zVZX/XXrmieTSv3rqrApkiLQJUap4lpfh709\n/9EWqkdTqc+1ioTNLFFhqD50oBub8g5G9Zo5p5tboXrNQLdHXNe2HuqW6DKpRbHGpuJcu4zrk7Kg\n0BZG2A6gvINRjU11cgN9MqlIPlSLDkA3tq5xmSUajlRxQZxFXrFHXOr1SVHJUl4D2sII2wFUdwmg\n++DVA7VtblFKyVlZDu+SK1ZVMBr5/kexoX7NFO3aGApbigV+Y8M/J23H5t6et+1TPGeqlih0I5N7\ne9pjM+X6pEgmleeztjDCdoAYD51yW49U+VjOtc/HUia5qrFtb/sFIfbZk6BrO4JubDHaeqRQ2Or+\nWG3ntJoUpXjOVBd46EYm6+rtVNdsiPMZaBM2U9hEEWPXt2yWKHQnH6q7PtX8OmWrNuVBycqWqGLj\nXOg2p6VWsZQVtraxLWNaDOg6QMprQFsYYTuAMhsfamyqcUF6u7Yt+VC1akFXYUt5zq+qwgbdxkAq\nqxaGa4mquyzLRiaV14C2MMJ2ANWHDrQHa9cJTjWHLXUCvSrJVVSxoBth2931NlWKc35V23pAt7Gp\nSopA1xJdxubp0C223V2/oVqmM7i7wAjbAWIk0C/bDgZMYWuDrpaossKmaImmJJLKCltX8qEYF+iS\nSVsDwqFKvsEsUWmsrfkGnZZAH4auSbrLeM1UJzjVxH7oFlvquFRz2Loopqp5YqDb1mOZLVHF+awm\nuYpdDNrCCNsYVB885cGqSj6ULVHlooOu10xRYUs58aq29YBu6p+qigW688YyF561jS3lfLay4ivq\nFRXTtjDCNoaugzXlrm+Ig1XVdoTlLTowhS0MXa9ZSkv02mvbk0lVFQt0yaQqkQTd2FKTItXNcVsY\nYRtDF2KkOiCqKq3yoTpYlSc45aIDVVVSOYdN1RLtEpsqKYLltPeU5zPVNQB0CXhbGGEbg+qD1yWu\nnR1/qPFKojs91Bw21dhUbUfQVf9SW6JdFbaUlujFi+3eu6w5bKptPZRdlq4kN2WeWNc13XLYhKHK\nxrsM1tSy7hBJLujatSmvWX2c0d5eu/erWo8XL3p7MAVitPVYNoVN2RJVbesRI4FeNS1mGdentjDC\nNoYhyuHLuoMZqoWQkoA7p5tA3IWwpSRF6+v+uo1G7d6f0hJVzWFTtkRVF/iVFf+s7ey0e7/qNVMW\nFCyHTRyqg1U1LtDdXalboor2HujG1pWwpVLYoJvKllpha2uJ2kkH4UhpiYJujrWq0AHadm0bGGEb\ng/KAUIwLdHcwXRohpzzKCHSLDqBbbKoK28WL6UgRdMtjS53D1kVhUzwya38/z7zRBiktUdDduKtu\n2kH3mrWFEbYxqLb1UH7oVHcwq6u+GXIbq2o08u9fXY0fF+gWHYApbG3QVmHb3/cWl2IFa442RW02\nU/Xz71z8uECbfKhu3FXTYkBXUGgLI2xjUB2syoRNOba2ZFI5r0JZYVMuOkitsLUhRjUpSkU+VHPY\n1tb8/7nNqTIp4wJte0913lCNC7qv6WaJCkN1sKrurEB/sLaJTTlPLDWZVO13plp0AO1jS2mHgm5b\nD2i/kOaIq8t8phhb6hQP1XUTtNenNjDCNgbVm6saF+hWFUI3wqasYqlaCKqWaMq2HtBeYUtNJFUt\nUWi/yCvbjqlz2NrGtrvrq0zX1uLHBMNcA8AsUXmoKlnqhE1xgYf2sSlPIjnIZBtitL/vc/82NuLH\nBNoKW9uig5SJ/aBriUL7MaAaF+jOtapxgX5sZokKQ/XBW1vzsnabnA/VPDHQHayqRBJ0iw5SJ4Mr\nK2xtiw5yWKLKhK2tJarqGKhaouprQMr5THl9agMjbGNQLTqA9rGpkiLQjW3ZFTbFRWGICluOuFRz\n2LpYoopxga4lqro2ge4aAGaJyqPrYFXcXeUgH0PLX1jmooMuCpsqYVNV2FJbol0UttTqn1mi4VBV\n2IZ4zcAsUXm0vbl7e96uXF+PH1ONLrsrVXtPNTZVFQvSX7MuClvquExhC0PXHLaUsak6Bqp5zKB7\nzZRVrC5r+t5e2jW9DYywjaHtYK0fulT5O6BLPpRzBJRVSeVr1oZ8qFuiigrbsrf16NK7LhW6jE1l\nG3mZ1wDVNb0NjLCNQZUUgW5sQ9xdqSp/kL7ooK3Clvpebmx4FXtvL/y9qkdTKVuiqcnHdde1I5Oq\nxRCgO9fmIGw7O+1OrlC+Zmp2KBhhuwKqkjNoJ5wq764UJzjla9ZWyUo9wTnXrUGtqsKWg7C1WUhT\nE6Nrr21H2JZZLVJdA1ZWvHW4sxP+XtXNsWKFKBhhuwKqkjPoPnhdd6SpB2sXOTwVVE8TgO5tPVKi\n7XVTPZoqtSW6tubPw21znq4qYVO2RJe1rQforp2qcbWFEbYxKA8I1djaxlVVeXqKKcrh6+vt7T3V\nooPUahF0U9gULdEc16xNHtvenid5KZ8zVcKmfNKB6hoAuptj1TzmtjDCNoa2gzX1QAVdObztDmY0\nOlQAUkF1gnNO135vq7BduODzklKii8KmaImmzmGDdupf/YylTLi+9lr/zIRCdQMKy2uJgu5cq7pp\nbwsjbGPocnNT7vpgmANCdRLJsbvqEpuiwpaaFEE7wjYaecUo1ZFZ0E1hSz1vtCFsqVUs0C06qEnR\n0BLobX0Kg1miPYCq6gG6D16Xa5Z6B6O8u1Jtn6GssLWJrS44SKkWqRYdQLtebDmIpKolurbmn5XQ\nYwDrXpwpNwbK61OXXLFlzGNuCyNsY1BOUFSVw1WJJGjHpto+Y2gKW648McW2HtAuhy1HXKpVotBu\n3shhIyuvT6pkUnnT3gZG2MagvMCr2nv1JBJqIajbjqqx5diRKuaJQTvClisuVYVN1RJVVdig3eZY\neQ1Y5thU42oLI2xjUN0lgO6Dt7rarnWA+jVTtGv39mB/39s2qdBWYVMtOlBW2JY5h60LYVOcN3Lk\niam6LNBe/bMq0TC0JmzOuZucc592zj3qnPuUc+74jNfd65x7xDn3mHPuvYve75x7pXPusnPu8wcf\n/6ZtjKFo+9CpV4kqkg/VuECXTNYFB6nzsYaksKVumgvaVaJtiFEuwta2SjRHAn3oXKtKJGG5LVHV\n3Lq26KKwvQ/4dFVVrwF+/+DrK+CcWwU+CNwL3A280zn3ugbvf7yqqjcdfPy9DjEGQfWhg+ENVuVr\nptoENtc1Uy06aGuJKtqOsNyWqGqVKLRb5JXnM9XYqipPiofqNWuDLoTtJ4CPHPz7I8BPTXnNPXjy\n9bWqqkbAR4GfDHh/VnRh48taNg3t1SLFuGC5r5kVHYTDLNFwqBcdtNmAmiUa9p7R6DClJhXMEj3E\ni6uqOnXw71PAi6e85nbgibGvnzz43qL3f4dz7k+dcyedc9/fIcYgKC/wQxusqqQIdMmkcrsRZYUt\nlyUaWnij2tZDmbCpKmxmiQ5rDVC1ROemLzvnPg3cNuVHvzj+RVVVlXNu2nQ1+T035XuT738auKOq\nqhecc28Gfsc5951VVZ2fF2sMbG561l9VYXlC6g+eYmzqOWyKsSm3G1lmhW119fDw65DnRrmtxzIT\nNtWxqZ6yExpbjo3x2ppfz3d3w4q1VC3Ruf+Fqqp+ZNbPnHOnnHO3VVX1jHPuJcCzU172FHDH2Ncv\nO/gewNT3V1W1A+wc/PtPnXN/AdwF/OnkL7///vu//e8TJ05w4sSJef+dhXDOT7yhD9LWFhyfWnIR\nD+qDVXWCUya5oeQjR26dusJ2+nTYe3IQSThU2ULuTy5L9Jlnwt6jXnSgSD5UnQzQnWtzxDV+DGAI\nYdvejrOZOnnyJCdPnuz+iw7QpUHAx4CfA95/8Pl3przms8BdzrlX4pWzdwDvnPd+59wtwAtVVe05\n5+7Ek7WvTAtgnLDFQn1zQwnbsg9Wxd2Vaqk5tFOyctzLjY3Dg+lDckuWWWGDwzy2G29s9vqq0s1h\ny3HNjh714yz0OctBJo8eDVf/lj2PWTUtBg6vW8j8tLXVfCzPw6SQ9MADD3T6fV1y2H4Z+BHn3KPA\nDx18jXPupc65/w+gqqpd4D7g94AvAb9VVdWX570f+EHgIefc54H/F3hPVVVnOsQZhCHlL9THq6Ts\n2wVmibaBatFBvSMNjU2VsOVW2JpiZ8er+anHpmoO28qKbkFEmwrWXGvA0FyWHHliymQyFK2ni6qq\nTgM/POX7TwP/x9jXnwA+EfD+/wj8x7ZxdYWqtKuqYoHugFDekSpPcLX6F0J0VIsOLl2CF08rh4qM\n0ErRnMpfG/LxoheliWccdR7bsWPN35NjbB47BucDM6ZVVSzIN5+FWty5FbYQqBI2O+lgAsol3aoP\nneqAsCrRdgjNY9vfz2ejDUVhy2GHgq6KBeGFB7u7/llbX08XE/iNRxvyYZZo2HtyCQqqbkYbGGGb\ngCoxUiVFoKv+KVuibclHahULwmOr7aCU/ZSgHzlsTZGjQhT0CVsIMarjSnnSB7RT2HJYomtrPudv\nby/sfbY+6W6OQ2GEbQKqFUJt48qlyCgOiDqu0P5YqhPc+fP5CFtIbDlVLFWFLZQY5SKSqkdTQXiu\nWK4Fvq3ClrPiMQTK65OqoGCWaE+gqrCpxgW6sa2t+UmuLr5oClX178KFsHyftgi1RHPkr4G2wmaW\naDhCyWROIqlI2ECXfKhu2sEs0UFDVdpVjQuGFdvenid4qfNk2ipsOQjbkBQ2s0SHRdhyzBltiw5y\nXDPVLgaqm3bQJpOhMMI2gbYT3LJLzqo7mNDY6ua0qfNklAlbqMKmmlsH2kUHRtjCLVFVhS0XmQyd\nN3IcsA7am3ZlMhkKI2wTGFJJt7pMryiH5zhNANqRD9UctgsXTGFr09ZDkRSBbmy5iKTqGgDhc+1o\n5FNDUhcEqRaegbagEAojbBNQlcOVdzBDik01LtDNYVO2RJddYWtzMH0uuzZUyVIvOlC0RE3FMkt0\n0FDdXSlbouqDNeS6Ke/6cuawWdFBGFRz2NbW/MfOTvP3qFqiykUHqpaokSJtQSEURtgmcOwYnDsX\n9p4cN3djw0+6ITtl5cGqSoyUJ5FclmhobDlVrNA2LcuusEH48VTLTthUN+3g56aQDajqxhi0YzNL\ntCcIHay5kjqd86RtKGqRKjHKOYm0yWFbZoVtddWrRU3HQFXlW+RVc9gg/HgqVcKmbokqzrWqcYF+\nbGaJ9gChhC1XUieE7xSUdzCqgzUXyQ1N7Id8OWyqbT0gjExevuwn3RxjM7QaM5clCu1iUyRsOeO6\ndMkfg9UUuXLYVNeAoR1NZZZoT3D99WGELVfuAugmnJolGg7lHDbVth4QRthy2o7KlmgIYdvf96kX\nOcZm26OpUmNlpZ0qqUiMlNcA1diqygsxprD1AKEKW04mrko+1IsOhjLBLXtbDwgjbDmVP2VLNETJ\nqueM1H0IQfdoKvDrgGIFa2i6grks4evT9rZvnJ5jDITCCNsE2hC2XBOvqhyunCOgaomGxrW/7xf5\nXEUHim09YDgKm6olmkvFAl1LFPw4U1wHQh2g3KQotChOcQ1QtUPBCNtVUFbYlOVw1d2Vsiq5s9M8\nT6ZWZFYyjNg2CtuyW6JtFDZFwqaq/EHe9JPQwoNcsV1/fVgXg1zz7Oqq/xiNmr9HdQ1QrRAFI2xX\nQZmwqe4ULIctHM6Flejnyl+D4ShsueNSPPwdwhW2nO1GFI+mAt11QJWwwXAcIFPYeoTQPmw2IMKV\nv1ytUKBdT7FcalFIbLny10C3rQeYwtYGIcQotyWqWHQAuqcwqBM2RSWrzbqpWHAARtiugurOCrQt\n0ZC4RqNDCT01QmM7exZuuCFdPOMIiS1XSw/QbZwLw1HYLIctvOggpyUaUnSwu+tTG9bX08YE2oRt\nKOuTKWw9wuamV4CaMvKck4jqg6caF4THdu6cnxRzIFRhy0XYTGELh7LCpkrYlC3RkKKDej7LUVV4\n/fV+U9kUynOtqstiOWw9gnNhlTjqA0JRcs45IJQVthDykdsSNYUtDKHNaZVz2HJWvY9GsLfX7PWq\nlmjONUBZYRtKyo5Zoj1DiC2ac9cXuiNVTuxXJWymsFnj3Dao72XTtgaqyf05SZFzYQ1qc/dhU1wD\nlAmbWaLpYYRtCkIHa66be8MNcOZM89er9uDJuYMJnUQsh80a57bBykrYs2aWqEdI4YGqwpYzLUaZ\nsKlaj6pxtYERtilQJmyK+QsrKz7hdmen2euVJxFT2MIUtvqeb2yki2ccqgobhBUemCXqEVJ4kDM2\n1TVgSIRNWWEzS7RHUB2sbQhbrgcvJH/Bctg8hpDDlrPgAMIVtpyErWnhwe6uz9vKRXJVLVEIPzZL\nsXGuETYP1fYZoXHlHgMhMMI2BSG92HLK4aoKG4QRI9W4wBQ2CFPYctqOEK6w5Y6tiZJV56/lOqsw\n9KSDnCRXlUyGWqK54qoJTlMCoprDVndiUKwSzblpD4URtikYksKmOFhzK3+qg1U5h60pKVJW2HKT\nj6YKW047FLQtUVXCproGQJjKpro53t72CnOOo/ZC14AzZ+D48XTxdIERtilQHazKhG0ICltVaSts\nuYjR+rq37HZ3F79WWWErEVsTYlSCSA6BsJkl6qFM2BTTYkKL4kxh6xlC+7DlmuCGQthUc9i2tg6r\n/XJA1RJ1rnkeW86WHjAMhS1nSw/QVbFA13pUbesB2oSt6djMGVdoUZwpbD2DKWzhCNldqVqiPOx0\nZAAAIABJREFUOdU1CLcecxE2aH7dcrb0AG2FramSZQrbIZqSyfr8YUWFLWceM+gSNtV1E8LWAVPY\negbVBy+EsO3v+y7iuSrRhmCJ5iZsqgobNCdGprAdomlslsN2iKaEbWcH1tbynD8MZom2wfHjzfuE\n5m6dETLXmsLWMwyBsO3s+AGRqxIttOhAkbDl3lmp5rBBc0vUFLZDNCVGuS3RIRC23HGprgEwHMKW\nW2Fr6gCZwtYzhAzWnHL40aM+EbyJF68sOefsj2UKWzs0zUdRLjpQbZxbyhJtknStTNhyzmebm77w\npslcm/uaGWELhylsA4bq7sq55iqb8oB44QW48ca08dRQVthCG9TmtkSbKmyqlmgJhU3REl1d9UnX\nTRQG1aOpcif2O+fHW9PYTGHzc/oLLzR7be7jn0IJmylsPUJI49zcg1WZsDWVnHMTtqZxlVDYmizw\nVZWfGJnCFo7Qxrk5oVoQ0fRoqhLd55vmsRlh8xiCwlZVfn01ha1HUG3rAdqErelCmpOwra35Aowm\nPcVUc9guXfIWTa6Ea+h/0cFolPf4JwhT2EoQNkVi1NQSzT2fQZjCZpaodtFB0xzr+jV2+HuPoGqJ\nQhhhyzkgQqqqzpzJR9ica66yqeaw5c5fg/639aiPpcpVdANhOWy51aJrr22u/ikStlIKW5N1wNp6\neNx4Y/8VNmV1DYywTcVQCFvOuG66CU6fbvbanAobhA1WRYUtd/4a9F9hK6ViKTbOhbAKViNsHn23\nROvedbk27jfc4Of2JsUtqoRNOX8NjLBNxXXX+cltf3/xa42weQyBsKk2zs3d0gN0FbaNjWbHZuXO\nrQPdPDHQJmyKpAiab9xVCdtolLd33ZEj/m81mdNUiw5MYeshVlb8pKVYbq5K2EIqhF54Ie+g6LvC\nVsISDVHYchKj+tisRbGVIEXK6p+qkjWEogPVth4lSG7TPLYLF/KOgaZpMaaw9RSquytVwtZUYauq\nvDlsoKuwqRM2xbYe0IwYqStsuclHk9iqKr/yodqHDfrf1qMEYWu6cT99Gm6+OX08NUxhGziMsIWh\nKWE7f97Htb6ePqYafVfYSuSwqbb1AG2Frc9tPba2vOW8knFVCKkSVS06MMJ2iKYK2/PP+zUjF0Jy\n2Iyw9RBNerHt7vp8mpzkoylhy71TvvHGZoQtd/4a6CpsTVWsEjlsTe09U9gOod7WYxFhK2E7qlq1\nEFZ0YJaoR1PClltha9rWQ/lYKjDCNhNNerFtb/uBmrN1gLLC1kQKVydsuRW2pkUHqm09TGE7hHpb\nj0XEqMQ129z0G9/RaP7rSlmiim09rrnGrz2LCm+UCVtuha1pH0JT2HqKJoO1xIBQJWzHj/u4FlXW\nKhO2s2c1c9isrceV6LvCpmqJllCxnGtWeFDKElXMYauPzVJcn1Rz2G6+uZkDZApbT6E6IFQJ29qa\nn+AWxaZK2KqqzAHrqpZok9j29sospENQ2IywHaKJ+lciNtWiA2hmi5rCdohbboHnnlv8OlPYeoom\nhK2ETN+UsJWwXZrsrkoQtib5Cxcu+Ou1tpYnJvBxbW8vbjSp2tajxGkC0FxhU22cW6pKVJEUQXPC\nlnuuDTnpIPd16zthK6GwNSFsprD1FH1X2J57Lu+AgGaVorlbekAztSh3wQH4aryNDdjZmf861Ry2\n3E1za4SQyZwIaU5bog9bnxU2s0SvhCpha3I81c6Of9Zyzre33OJVvUUwha2nGAJhu+WW9PGMowlh\nU7VES+2smhQeqOawlcgTA11LdHPTL0aL8jjNEr0SypaoYlsP0CVsx483d1lyKvOmsA0cqoTtmmt8\nRdWiqqpvfQte9KI8MdVQtUSbkKISChs0I5Ol2no0UdhyxwW6ZFL5FAZ1wrZIySox1zZR2OpKzZyt\nncDPVYs27qqWaO78NTCFbfBo0oethEzvXLPB+txz+QlbU4Ut94C44YbF97KkwtaEsCk2zjWF7Wos\nKjyoD+QusdFTVLGgWZWoqsJWIrcOtBW2RYQtd/4a+GdsZ2fxXGtHU/UUTfqwlRgQ0MwW/da3zBKt\nceut8Oyz81+jrrCpWqKmsF2JRYUHW1veOs15mgD0P4dNtXFuyTVAUVBo4rKcPp1fYXNuscq2t+ef\nwxLrQFMYYZsB5d3VIsJWVf7BzE3YVC3RF71oMWErpbA1IR8lrMchFB0oKmyl4lK3RJsUHZSyROdV\ncZcibE0Vts3NPPHUULVEYXFrj3Pn/D3PvZkKgXBoZaGawwaLCdvZs37i3djIFxOYwtYGprCFo88K\nW4mWHtCMsJUik6oK29qan0Pn3c9SJLcJYSuZfjKv8KaEJQqLCw/UD34HI2wz0WfCViJ/DbQJ27e+\nNf81qjlsVVXu8HdT2MKxSGEr0dIDdEkRNCs6KOVmLLJFlRW2U6fgxS/OE0+NtTX/fM+7ZiUVtnmW\nqHr+Ghhhm4k+E7YS+Wuw+DzRqjKFbRKLiNHWlq9Ay9nQF4ahsJWyHhcpbGaJXgnVo6lg8TqgTthu\nvTVPPONY1NrDFLb2MMI2A30mbKUUthtvnK+wXbzoyUeJvIoLF+Y3qM198HuNRe0zSrT0gGEobKUs\n0UU5bKqWqHIOW0kyuUhhU7VESyhssDiPzRS29jDCNgNNCVuJwaqssM0jbCXUNfBJpLfcMt8WzX3w\ne41F7TNK5K+BJ9b7+4d9pqZBua1HKYVtUWylLNHaqp2XQK9O2EpsjhedJ6rc1kOVsJnC1h5G2GZg\nc9MvWNvbs19jCtuVWETYShxLVWNRHlsphW2RklWKsDm3ODZlS1RZYStB2FZXF5+pq0zYSm2OF50n\nqmqJVpVPAylB2BYdT2UKW3sYYZuBukHtvMF66ZImYSulsB096knurMW0lMIGi/PYSips8xbREgUH\nNRYRI1VLtKrKkY9FsZUibLCYTKoWHezt+ZNdcqdSQH+LDs6c8XGViE01h21RWw9T2HqORbZoKclZ\nVWFzbn7hQUnCtqgXm2rRQakcNlhMPlQVtsuX/eK+upovphqqOWygS9gWFR1sb/v7mfPsyRqL1gDV\nth6l1ibQzWFbZImawtZzLBqsTz8NL31pvnhqqCpsMN8WLdEXqEYThU2xcW4pSxSaqX+KCltJFUu1\nrQcsPp5K1RItFRfoKmw1yZ3V76wkYZtniW5tebW0xEZvkSVqClvP0VfCVkphg/mnHZS2RBflsFnR\nwZVQVtgW5daVIJKg29YDFh9Ppdo4tyRhW1R0UIqwrazMt5JL5a/BfEv0hRf8pr6EWtpEYTPC1mPM\nI2xVBU89Bbffnjcm6LfCppjDtrvrF4VSu755k0iJY6lqmMIWjiZHU5kleiUWEbZSpAiaFR2Uup/z\nbFFVS7SUHQr+em1vzy4kLOWyhMAI2xzMI2znzvldTgn1Q1lhUyVs83LYahWrxK7vZS+DJ56Y/XN1\nhU2RsCkrbKUt0T4SNmVLtFRbD+gnYStVcACHOdazbFFT2HqOeYStlB0K8wnb9rafRErYe6BbdDBP\nYSu5s7rjDnjyydk/V89hUyw6UK7ELB2bIjFSJkWL0mJKKqaqhG1eDltJhQ3m57GZwtZzzGvrUcoO\nBb8j3d72yZuTeO45/1CWUItg/mkHpQnbrBy2UvlrYApbG9Q5bLOawJZqmgvaZHJRDlspwrax4T/P\nOomkpO24iEw+9VS5jbsqYZuXw1ZSYYP5KSimsPUcx47NHhAlFba6R9w0la0mbKWgaomqKmw33+wX\nylnKR+kctlnko6rKEbaVFX8Sw6xclFJNc0HXdgTt2ObZospFB1//OrziFfniGYcyYVNV2GYVHlSV\nKWy9h6olCrNt0W99q1z+Guhaotdd54sLpi0KJRU257zKNssWLa2wzbJESx1KX2OekmUK23TMI2xV\nVVbJWkTYVIsOvvENI2yTmGeJKihs0yzRra3D012UYYRtDuYRtpKWKMwmbKUVtnmWaMmjqZybbYuW\nOpaqhjJhm0eKSil/MD82ZYWtNGGbRYq2tz0BXym0IswjbKqW6GjkiZGaJVpVPq5bb80fE/hrdunS\n9HOIVRW2PjTNBSNsc2EKWzhULVGYTdhKHUtV4447ZuexlbZEZylspVp61FhE2FTbepS2HWfFVjIu\nmN9TrLQlOmsNePJJuO02T3RLYBZhu3DBb1BLzRsrK7NTdlQVtj40zQUjbHPRR8JWWmGbZYlevux3\nfiUl51l5bKawTUdfFTblth6lFbZZhK1kXDD/eKrSlugsIvmNb8DLX543nnHMImwl7dAas/LYTGHr\nBiNsc9BHS1RVYavVtVLVqzC7F5uCwqZI2ExhC0eTxrmKlqiCwqZoic4rOihZcADahG1WHpspbN1g\nhG0OZhG2/X145hl4yUvyx1RDVWG74QY/ieztXfn90nYoaCtssyxRZYVNlbCpK2xmiV4N1SrRuvBm\ncj6DsgUHoE3YZrX2KK2wzWrrYQrbADCrD9tzz/mfbW7mj6mGqsK2uuoJxmRsKoRNNYdtmsJWVWVz\n2K69drbCrGyJllaxlA9/7yNhK3k01crKbGXy6183S3QWZlmipRW2WZaoKWwDwKw+bKXtUNBV2GB6\nHpsKYeuTwra97ReMurFobrzqVfD449N/pmyJllTY1te9GjOtQg50yaQCYVMsOoDZTotZorMxzRKt\n85hL3stZlqgpbAPArIFauuAAdBU2mN7aQ4GwqeawzWqeW9IOBbj7bvjyl6f/zBS26XBuvi1a+vB3\nRdsRFhcdlI5tGpk0S3Q2pilstR1aMo/5hhv8GJw8VcMUtgGg7iezv3/l90seR1JjGmGrKj8oSkrO\nML3wQIGwzVPYShK2Wc1zz58vS4puv90votOKSNQVtpIVj7NiG438vS7VBqKvOWxPPOHbZ5TCtI17\nVVmV6DxMy2ErbYfC4QHwk3OaKWwDwMqKn8QmJ5Knn9a0RM+c8RNfKQuthrIlOiuHrfRgnZbHduFC\nWYXNOXjd66arbOoKW0kyOct6LN06Q90SnUXYvvhF+O7vzhvPOKYpbM89569XyTGgTthmKWylMS2P\nzRS2gWDa7krVElXIXwN9S3Ty0PDSChtMz2MrbYnCbFu0tMI275xTBYXNCFsYZhG2M2f8vHbnnflj\nqjGttUfpggM4zLGenM+efbY8YZuWw6agsMH0PDZT2AaCaYRN1RJVyF+D2ZJzacJ29KhXHyd3paoK\nmwJhe93r4Etfuvr7prDNxqwcttKkaFEOW0kyOYuwPfwwvP71vvq8FKadJ1q64AC8tb6xcTUJN4Vt\nPqa19jCFbSCYpbApWqIqCpuqJQpX57Ftb/sdaskWLTBdYSvZ0qPG3XfPJmyWwzYdqgrbvBy2ksUQ\nMDux/6GHytqhMD220gUHNSZt0cuXfUJ9acdANYcNpluiprANBNN6salaosoK2wsvaOxgJvPY6pYe\nJSuXQFdhU7VE+6iwlSZs9TWbtNCgvPo3S2H74hfhDW/IH884pm3aFSxRuJqw1epa6flsmiWqpLBN\nWqKmsA0Ek73YdnY8+bj11nIxgd/1bW35yrMaKgqbag4bXK2wlW7pUUM1h+0Vr/AEd3LBUrdEFXPF\nSqtYKyteSVa0a2cRNlWFTcEShemErfTaBNMtUXWFbdCEzTl3k3Pu0865R51zn3LOTf3vOufudc49\n4px7zDn33rHv/5/OuT93zu0559488Z7/++D1jzjnfrRtjDEwubt65hk/IErmVIDfQU0OViWFTdUS\nnezFVrppbg1VhW11FV77WnjkkSu/r6CwTSNFo5Fvw1OyUnoWmSydJwazyaQiYdvbgz//c/iu7yoT\nU41pRQeqlqhC/hro57CNK2x7e/7ZKz3XNkEXhe19wKerqnoN8PsHX18B59wq8EHgXuBu4J3Oudcd\n/Phh4KeBP5x4z93AOw5efy/wb5xzxZTAScKmYIfWmLRFVRQ21T5soKuw3XTT/9/e3cfIVV53HP8d\n2+u33fWyaxNsjCsgsmWMWhSahBcF2SKmIoXYEIk0SDQRpFIlmhYhhFpSqYJ/0vBHIU0a/mkxsqKE\nJIQCjgyipOAkUpIGh3djxy/YYINtkMEF48Y2cPrHcx/m7uyd3fXumnuu/f1IK+/Mzo6vfefO/O45\nz/PcoYvnRhjDJlW3ReuusC1eLD311ND7c3WtzpZQ1GU9pM7j2CIGtm3b0glW3SdUnSYdRG6J1m3G\njHS1j0OHWvdFrbC9/Xb6nJ/UgH7jeDZxhaTVxferJV1R8ZhPS9rq7jvc/YikH0paKUnuvsndN1f8\nzkpJ97r7EXffIWlr8Ty1aA9sEWaIZu2BLUqFrb0leuhQqnzUWZHJOo1hq1vV4rkRKmxS9UzRuits\n552X3nS3bRt8f92TIaTOFbYIgS1qha2q7fjss/WPX5OGbtu776avCK3HqIHNbOg4tjffjFlha8qE\nA2l8ge0Ud99bfL9XUtXLZL6k8sicXcV9wzm1eNzR/M4xU1Vhq3uGaNaUCluurtU9EFaKW2GTUlu0\nPI4tSmCrmilad4Vt0iTp8sulNWsG308oGl7V0h7u0u9+l64dW5eqClvdC+Zm7Z8Br7ySjtUI72dR\nA5s0tC0aqSVarrA1ZcKBNEJgK8aoPV/xtaL8OHd3SRVzjyrvG4uJep6j1qSWaJQK24wZ6c0sVxmi\ntEOluGPYpOoKW5SWaLQKmyStXCk99NDg++pe0kOKXWGraon+5jepfXXhhfVsk9QKbOUZrBEmHEhD\nK2xRJhxI8QNbHsvsHqfCNnt2cytsU4b7obtf0ulnZrbXzOa6+x4zmyep4iqNelXSgtLtBRpcPavS\n/junFfcNceutt374/bJly7Rs2bIRnvroVbVEL754wv+aMYlaYZNabdH582MFtugVtnJgq/vSVNnH\nP562q1whitB6XL5cuuaawdfPrXtJDymFsqrrr0YIbFXVv7vvlq67rt6KUVdXqpoePtxaEzHCkh7S\n0EkHUSYcSOm9qzzBK1pgyxW2d99NE5jqrjBLabveeScN0+nqOrYVtnXr1mndunUT9nzDBrYRrJH0\nFUm3F38+WPGY9ZIWmtnpkl5TmkxwdcXjym8VayT9wMzuUGqFLpT026oNKAe2Y6V9HbaoFbZDh9Iy\nH1HCR26LRgxs7WPYIpz1SanC9swzrdtRWqJdXSm0bd6cKh5HjqSZVXUvNjxjRjp5WrtW+vKX031R\nKmyRW6LlbTtwQLr//urFkT9quco2bVrrklR1tmmz9kkHUSYcSOn9/uWXW7cjBbbyGLYoEw6kdGKQ\nCwqnnHJsK2zthaTbbrttXM83njFs35R0iZltlnRxcVtmdqqZrZUkd39P0tckPSrpRUk/cveNxeOu\nNLOdks6XtNbMHil+50VJPy4e/4ik64uWay3a12GLGthydS3CuApp8NIeES5LleUBpx98kG5HrrBF\nCWzS4LZorq5FeK21t0WjVNiitkTbx7Ddd5900UXSvHn1bVPW3d2qZOVLUkWYudfeEo1WYYvcEs2B\nLcr4taw88aBJY9jGXGFz9zclLa+4/zVJl5VuP6IUvNof94CkBzo89zckfWOs2zaRqlqikSYd5MGT\nUcavZeWJB5EqbF1daZ+++WY6aCNc+D1rXzw3yhg2Kc0UzUt71D3hoOyyy6QbbkjV5enTY1TYmrSs\nx6pV0k031bc9ZT09rTAZZfyaNPQzIFqFLQe2Q4fS/1+U99ryGLZIFTZp8NIeTRrDFuD8JbbywXrg\nQBpjESWNV1XYoigv7RHlslRZuS0a4cLvWdQxbNLgCluECQfZySencU6PP55uR6iwzZghbd+eFtku\nq/tKB9LgMPn730tbtqTQG0F5pmiU8WtScyYdvP56Oh4iVCWlwS1RKmwTI8iujasc2HbvTu3QCK0g\naXBgi1hhy2dXkSps0uCJB5EqbAMDqVKUP7Qit0SjVNikwW3RCFWspUulM89MVcmlS6Vvf7s1aaPu\nbSu3RO+5J4396+qqd5uycmCLVGHLYzUPH06zaXfvTtXwCMqBLVI7VBrcEo1WYSsv7UGF7ThSDmyR\n2qFS7Apb1JaoNDSwRTlYy4vnHjqUpsLXeYmlskWLpJdeShMOIlXYpBTY1qxJ4xIjzF4dGJC+//1U\nYbv55nRFhnPOSdsYIbAdPJiCx+rVaXZoFDmwvf++9MIL9V+SqixPPHjttXRiHOW4bEpgi1ZhKy/t\n0aQK23hmiZ4QyoEt0oQDKXaFrb+/1d6LFtjKa7FFmnQgtcaxzZmTXntRqrnTp6eW7dat8SpsCxem\n19eTT8aosGXTpqXFfS+/PFVnfv1r6VOfqneburvTB9XDD6cq4OLF9W5PWZ50sG1bOqmKciIltdqi\nO3fGaYdKQ1ui0QJbeQxbhIkt2Zw5KeBKVNiOK9OmpUrH4cOxA1vEClvklmgewxapwia1xrFFaodm\nuS0aoYrVLlfZIkw6qDJ1amqP1r1tucK2apX01a/Wuy3t8qSDSO3QLJ+4Rxq/Jg2tsEW4XFbWvqxH\ntApbbok2qcJGYBuBWetgjdwSjVZha0JL1L114d8ocoUtYmDLM0WjtUQlacWKNI4twqSDyGbOTK3t\nn/9cuuqqurdmsNwSjTThIMsVtkgzRKVU+ZbSEApaoqNXnnRAhe04k9dii1xhe+ONWBW29lmiEQPb\nwYOpghpl0LU0uMIWqe0oDa6wRdu2fDH4556rv4oV2cyZ0s9+Jn3hC/FOCHJgi1xhi7QGW5arbBED\nWxOW9aDCdpzJB2u0wNbTk2aevfdeevFFq7BFbYnmMWzRxq9JrQpbpCU9shzYIlbYJk2SPv956Ve/\nirdtkeT/m2jtUIkK21hFDmz796dORtQKmzsVtuNO1JbopEmtgzVahS23RI8cSUtVRAofeQxbtPFr\nUuwxbIsXp8tTvf12vAqblMaxSVTYhjN7tnT22dIFF9S9JUN1d6f32H37YlySqixfT5QK2+hNnZq+\nDh6MV2HLy3r84Q/pczS3lqMjsI1CucIWaaaLlALH/v2tlfuj6OtL/2f79qUzrSizHaVWSzRyhS1i\nS7SnJ1UnX3ghZhXrs59NYS3itkXxyU9K69fHOh6znp40kzbKJanK8rIe0SYdSHEDm9Rqi0abdHDS\nSen/bN++eCftwwl2WMTU25sO1OnT430Y9PWlbevujjUWK1f/duyINz5gYCDuwTowkAYQ79kTr8Im\npbbo+vXxwqSUriLwne+kD3xUM4tbTejuTpNaorVDpfR6f/llacqUeCd5s2alQLR/f6yTdim997/y\nSnrNRVm7TpImT07btn17vM+n4RDYRqG3N13GJVI7NOvrS2tjRRq/lg0MpDWVIo1fk1KYHBhIs+Wi\nvfnmxXM3bowZ2M46K1Wao524ZNddF+9DC6OTX1PRJhxI6VjcsCFedU1K72HbtqX3tMmT696awfr7\nW9sWzezZ6bOTwHacmTVL2rQp1oSDrK8vHRARP6SiBjYptUW3bo1XYZNiB7YlS9KfEStsaLYc2KJW\n2DZsiDfhQEqfT1u2xGuHSikMvfRSrPFr2Zw56fMp4mdAJwS2UcgVtqiBLWqFrb8/HaxRA9uWLfEq\nbFKaeLBpU8xQlANb1Aobmiu/piJdkirr7U3DO6JW2CIHtsgVtm3bqLAdd/LBGrUlSoXt6EWvsEWc\nJSqllqhEYMPE6+9Ps0MjHpP55InAdnRyS5QK28QgsI1Cb2+6sDQVtqMTObCdfHIacBq1wibFDGz9\n/dLcuTGrf2i2JUvSOnoR5dd71Jborl0xA1vkClsObFTYjjP5gzNqYDtwIGaFrb9f2r07ZmD72MfS\nGnERA9tpp6U/IwY2SVq7lpmYmHhmsa6FWZaPxagVNiluYNu7N2Zgmz07za5tUoVtSt0b0AT5YI3a\nEpXiVtikuIFNinmw5gpb1CrWuefWvQXARyt6S1SKGXZz9SpqS1SiwnbciV5hk2JW2JoQ2KiwARhJ\nb29aRyxiFStyhS2/90etsEkxT9o7IbCNQm9vKtfPnVv3lgxFhW1s8v9XxIN1YCAtAktgA2KYP1+6\n/vp4V2CQYgc2KmwTK+DLL55Zs1JFJtKVBLLIFbYc1CIGtsgVNjPpu99ttUYB1KunR7rzzrq3oloT\nAhsVtonBGLZRWLRIeuCBureiWhMqbBHPYCKPYZOka6+tewsANEHkMWz5ZJ0K28SgwjYKkyZJF1xQ\n91ZU6+tLlb+I7bPILdFZs9KB2qSDFQDazZkj3XhjzA5Q5Apbf3/qZkQ9aa9CYGu4efNSqd6s7i0Z\namAgtRIiHhBm6SoMUWdiAsBodHVJd9xR91ZUmzUrBcqIJ+1TpkhXXBGzMtmJuXvd2zAmZuZN3fYT\nyb59McvhAIBj7/DhNMMWkpnJ3cdcXiGwAQAAHGPjDWy0RAEAAIIjsAEAAARHYAMAAAiOwAYAABAc\ngQ0AACA4AhsAAEBwBDYAAIDgCGwAAADBEdgAAACCI7ABAAAER2ADAAAIjsAGAAAQHIENAAAgOAIb\nAABAcAQ2AACA4AhsAAAAwRHYAAAAgiOwAQAABEdgAwAACI7ABgAAEByBDQAAIDgCGwAAQHAENgAA\ngOAIbAAAAMER2AAAAIIjsAEAAARHYAMAAAiOwAYAABAcgQ0AACA4AhsAAEBwBDYAAIDgCGwAAADB\nEdgAAACCI7ABAAAER2ADAAAIjsAGAAAQHIENAAAgOAIbAABAcAQ2AACA4AhsAAAAwRHYAAAAgiOw\nAQAABEdgAwAACI7ABgAAEByBDQAAIDgCGwAAQHAENgAAgOAIbAAAAMER2AAAAIIjsAEAAARHYAMA\nAAiOwAYAABAcgQ0AACA4AhsAAEBwBDYAAIDgCGwAAADBEdgAAACCI7ABAAAEN+bAZmYDZvaYmW02\ns/8ys5M6PO5SM9tkZlvM7O9L919lZhvM7H0zO7d0/+lm9n9m9nTxdddYtxEAAOB4MJ4K2z9Ieszd\nF0n67+L2IGY2WdK/SbpU0hJJV5vZWcWPn5d0paRfVDz3Vnf/RPF1/Ti2EUGtW7eu7k0cvW2aAAAE\nwElEQVTAOLD/mot912zsvxPXeALbCkmri+9XS7qi4jGfVgpfO9z9iKQfSlopSe6+yd03j+PvR4Px\nptNs7L/mYt81G/vvxDWewHaKu+8tvt8r6ZSKx8yXtLN0e1dx30jOMLOnzGydmX1mHNsIAADQeFOG\n+6GZPSZpbsWP/rF8w93dzLzicVX3jeQ1SQvc/a1ibNuDZna2u78zhucCAABoPHMfS6aSzGyTpGXu\nvsfM5kl6wt0Xtz3mfEm3uvulxe1bJH3g7reXHvOEpJvc/akOf0/lzzsERAAAgJDc3cb6u8NW2Eaw\nRtJXJN1e/PlgxWPWS1poZqcrVc7+QtLVFY/78B9gZnMkveXu75vZmZIWSnqp/RfG848GAABokvGM\nYfumpEvMbLOki4vbMrNTzWytJLn7e5K+JulRSS9K+pG7bywed6WZ7ZR0vqS1ZvZI8bxLJT1rZk9L\nuk/SX7v7/nFsJwAAQKONuSUKAACAj0Yjr3TQaTFexGNmC8zsiWKR5BfM7O+K+0e18DJiMLPJxULW\nPy1us/8awsxOMrOfmNlGM3vRzM5j/zWDmd1YvG8+b2Y/MLNp7Lu4zGyVme01s+dL93XcX2Z2S5Fj\nNpnZn430/I0LbCMsxot4jki60d3PVmp//02xv0ZceBmh3KA0rCGX5Nl/zfGvkh5297Mk/YmkTWL/\nhWdm8yX9raQ/dfc/ljRZ0pfEvovsHqVsUla5v8xsidK4/iXF79xlZsNmssYFNg2zGC/icfc97v5M\n8f0BSRuV1uIbzcLLCMDMTpP055L+Q60JQuy/BjCzPkkXufsqKY0rdvf/FfuvKaZImmlmUyTNVJq8\nx74Lyt1/Kemttrs77a+Vku519yPuvkPSVqV801ETA9tYF+NFzYrZwp+Q9D8a3cLLiOFOSTdL+qB0\nH/uvGc6Q9IaZ3VMsRv7vZtYt9l947v6qpH+R9IpSUNvv7o+Jfdc0nfbXqUr5JRsxyzQxsDFLooHM\nrEfS/ZJuaF8E2dPMF/ZrQGZ2uaTX3f1plZbfKWP/hTZF0rmS7nL3cyW9q7YWGvsvJjPrV6rOnK70\n4d5jZteUH8O+a5ZR7K9h92UTA9urkhaUbi/Q4JSKYMysSymsfc/d83p9e81sbvHzeZJer2v7MKwL\nJa0ws+2S7pV0sZl9T+y/ptglaZe7P1nc/olSgNvD/gtvuaTt7r6vWCLrPyVdIPZd03R6r2zPMqcV\n93XUxMD24WK8ZjZVadDempq3CR2YmUm6W9KL7v6t0o/ywstS54WXUTN3/7q7L3D3M5QGPD/u7n8p\n9l8juPseSTvNbFFx13JJGyT9VOy/6F6WdL6ZzSjeR5crTfxh3zVLp/fKNZK+ZGZTzewMpYsE/Ha4\nJ2rkOmxm9jlJ31KaNXO3u/9zzZuEDszsM5J+Iek5tcq9tyi9MH8s6Y8k7ZD0RRZIjs3MlipdJm6F\nmQ2I/dcIZnaO0oSRqZK2SbpW6b2T/Recmd2qVJR4T9JTkv5KUq/YdyGZ2b1Ki//PURqv9k+SHlKH\n/WVmX5d0ndL+vcHdHx32+ZsY2AAAAE4kTWyJAgAAnFAIbAAAAMER2AAAAIIjsAEAAARHYAMAAAiO\nwAYAABAcgQ0AACA4AhsAAEBw/w851QUyqTTO5AAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11e3d8ed0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "endtemp = 100\n", "step = 1\n", "\n", "sliced_evo_lt = np.ones(endtemp)\n", "\n", "\n", "for temp in range(0,endtemp):\n", " sliced_evo_lt[temp] = np.real(hamil(beta_r*(1-0.09),temp)[0,1])\n", "\n", " \n", "plt.figure(figsize=(10,10))\n", "plt.plot(sliced_evo_lt)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 261, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x135fbcd90>" ] }, "execution_count": 261, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAJPCAYAAAAub+ODAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmQZtlVJ/a7mZV75pdZVV3VrV7UrUZLd0ujZSRa4MBE\nzYilx9Igj/CE3MQwYBFWxyDC4wkcgIFALTNGjglwyEK2R8xgBDECJgwBwyY0LCpZHpgBIdHW3pKQ\n1HvXlpX7ns9/3LrKL7/6vvfucn7fPffLdyIqursq+/Tr8+4753d+Z7mmqiq00korrbTSSiuttKJb\nxnI/QCuttNJKK6200korzdKCtlZaaaWVVlpppZUCpAVtrbTSSiuttNJKKwVIC9paaaWVVlpppZVW\nCpAWtLXSSiuttNJKK60UIC1oa6WVVlpppZVWWilAqKDNGPN/GWOeN8Z8quZn3muM+aIx5jFjzGuY\nz9NKK6200korrbRSqrCZtl8C8NCgPzTG/BcAXlxV1UsAvB3A/0l+nlZaaaWVVlpppZUihQraqqr6\nGIDlmh/5LgC/fONn/xOAJWPMrcxnaqWVVlpppZVWWilRcve03QHgya5/fgrAnZmepZVWWmmllVZa\naUWt5AZtAGB6/rm9V6uVVlpppZVWWmmlR05l/u8/DeCurn++88bvHRNjTAvkWmmllVZaaaWVYqSq\nql5SKllyM22/A+AfA4Ax5psAXK+q6vl+P1hVleivX/qlCkCFn/5pWb1VVeHbv93qvnZNVu/KitX7\nhjfIP/O73211/9qvyes+e/adACpsbMjqfewx+8yPPCL/zO96l9X9kY/I656YsLql9X70o1bvj/2Y\nnM53vvOdqKoK3/u9Vvfjj8s/N1Dh9Gl5vb/yK1b3v/gX8rq/67us7qtXZfU++6zV+8Y3yr6/qqrw\nr/+11f3BD8rb48EHre7dXVm9jz9u9X7f98k/8w//sNX9p38qr/tFL0r/xrvfnfv1R3/E83mPPGJ1\nP/aYrN6dHav3gQfkn/kjH7G6f+In5HU/9FCaz2MJe+XHrwH4MwAvM8Y8aYx5mzHmEWPMIwBQVdUf\nAPgbY8yXALwfwA8yn6dbnngCWFwEnn1WXveXvwzMzgJ/8zeyej/zGWBsDLh6VVYvADz3nP3rpUvy\nutfXgaWlo/+GlDj7Pn0TN5su7lm/9CVZvTs7wMGB/fvDQ1ndT97oDmWc6a98xf71mWdk9e7u2r8a\n8XwUeP5G+nf5srzur33t+H9DSpjv0Ol071JSvvxl+1dp3/TVr9q/MvyS8xsMW6+t2b+6b11KnnsO\nmJvj+Dx3LqRtfeWK/evKiqxeAHjqKftX6dgC2HMxNyfv81KFWh6tquphj5/5IR9dBwfA+Hj6Mzm5\ncgV44AGOM7h2DXjwQQsqXvtaOb2XLgGvfCUnCF26BLzsZfJBaHfX/nLPfe+9crqvXQNe8QoeaHvN\na4AvflFW76VLwAteAGxsANevA2fOyOn+2tesnRlBaHkZePnL5W39/PPAuXNW/+GhTUqk5NIl4KUv\n5XzjTz4J3H+/ff7775fTe+2a1ccCbX/rb8knk7u7NiDff7/9xm+7TU73009z/TTD1s4enY79xs+e\nldP93HM2pjz5ZPPPhsrTT9tvXNrWV69av//kk0BVySZoTz0F3HcfB7Q9/zzwt/82J76kSO7yqLdI\nA5WrV60zkD78h4fA6qoFEy4LkJLr14EXv9jaQpp9vXKF98EuLl7ArbfKH/7lZT5okwaxly8Dt9wC\nnD8vb+vLl4FXvUo2CF24cAHAEUCWzjqfeQa4+25gYcG+T0n57GctaJP2Hfv79hu//375d+iAxOXL\n9r+TKu79AdbWr3+9vM+7csUCk/Pn5W196ZI9dwzQdvWq9XnSoO2ZZyxwveWWtDPd/e6cXLtmgbe0\nXwKsjV/+cvl3eO0acPvtwMyMjWGS8tRTliCRjrVVZZ/7la9sQVu0SH9YLgg56lZKVlaA+XnLoKyu\nyuq+ft2yNJOTHN0Mpm15Gbj11gu4/XbOO3zZy+x/w5XZpOTZZ61uaUr/8mXLLDFA25Ur8kybCxxX\nr3IA8jPPWId+yy3y3+LGBvDqV3PsfOaM/RYZoP78eQuCJJ67O/A/+6wFhNK+w53pc+c4oM0lk9KJ\n6nPP2TMt7Zeefhq44w7g9Gl50La8DLzwhUflVyk5ODhKGKS/l6eftmfj1lvlv5ennrLf+LVrsno3\nN21l79w5+e8lVYoBbdIve2UFuPNO69gl5bnn7Mfa6ci/7JUV24fHcI4OtEl/sO6ZFxbkbf3009YR\nLCzI2rqq7Ht82cvk32E3K8EAE/fdZ9+lBEvTrXdiArjrLvmeJQfaGGd6a+uItZKUq1eP3qG0X3L2\nYJyPZ5+150M6Ebl61YJuxjt0LI10ouq+8de+Vr601g3apMHE8rKNW1tbsv1yq6u2f+v22znVlttv\n54G2++6zfdOScu2afX8LC/IAOVWKAW3SwXN19ai3SFKuXLEfFQO0PfvsEUsj7RyXl20piQGOl5as\nQ9jclNV9/bp1BHNzsu9xddVmWbffLh/grl3jgbbV1SNbSzqalRV77qTtDNiA6UpJDKbt3nvl7by2\nZp35rbdy3uGZMxxbX75s2yuk/dLVq/aZGaDN2Vr6e9nZAU6dst8iIwacO2dtIl3yf/JJCwjn5mSB\nirPzuXOcM93pcHze9etHzKMkE/vEEzZJXViQB4SpUgxok0a7rtS4sSH7st3h73TkA/7qqkX/0h/W\n/r4FE4yetmvXjoCEtHNcW7N2ZoC2pSXLEEq/w+Vl+w4ZDmx9/ejsSX4vLDt36z53Th60ra9bYFVV\nss/t7MxgDpz/kLb1wQGwvW0BsvSZ7n6HpYA2ByQYZ3pjw+pNLY/2EzfYIM0AddtZ+h06WzO+l40N\na+exMdkWmfV1+8wt05Ygkmj34MAenjvvtNnWzo6c7m7QJp3ROmcg7RzX1mwfXqdjAdz2tpzup5+2\ndmYFfEaAc3ZeWpJvnN3ctLpvuYUT4Obn5cvFLDsD1h6zsxx7rK9bezC+l4UFy6RIl79YYMLZeX5e\nvrTmzjQTtEkzsaurVu/sbFmgzb3Hs2flz7QD3gymbXGRwzw6W8/Py4Irp3dxUf6ZU6UY0Cb5QjY3\ngakp2ychXbZzTkb6owKODhKDSVlYsH8/O2udupQ4h85wju655+c5Ae7sWVv6kWRinW5GudjZQzo7\ndAGO8czuTDtbS4oDbdIlDqdX+lsBjgNkSVu773BszIIJSVu7M720JM/iOVtL26NUps29x9tukwVX\nzs7SvhQ4svXsrOw7dAy6S7Albe3O9B136NvTVgxok2Q8trbsCwHkP1rndJeWeEzbzIxssOgGbdK6\n2SCFxUrMzdm+tokJWSbW2UPazoB1vA7USzowZnnU2UMaAO3v23LJ9LR8sOgGbdJnmgUmNjaOfJ50\n0ud0M870xgbH1t12ln6H7kyzmCXG9+JiC/NMS+t2fYmnTtlWJ8kpYGcPhs9LlWJAmyRrtblpHQzA\nA22Mw9/NWjHYQUBe99aWtTXj8HczQJJMSneAY4FYaTsfHlonNjNj+1IYpSQmKyFtZ6fXGI5uB1JK\nAm1zc/bvGWea8Q6B4+dD2ud1AwlJNr2baZMsn1fV8aRP0h7doE36HbIAcveZZlSIWIlIqhQD2iT7\nrNwLAcoCbaUybQzQ5qhxVzphMG0AD7Sx7Dw2xin5uwDHYtoYQWh+3v699LfISp4Afp8mUE4iAvDA\nhAMSjqmRjC9uV+fiomy1ZWfHtvSMj/OSnIkJ2++4tyenu7t/UPJ8XL1qK1oANzFrQVukSH5UzPIo\n64ACPNDmpuEADtPmHLp0EJqZsQ5M+h1ev84N+IwA152IsEA9g2m7etUyEowz7d4hK8CxetpcOVDS\n1pcu2WZ+oJwA192zxChxOxArfa6vXbMN/dL2WF3ln2ljuH3N0iXu06ft30vbw035t6AtQUph2lyw\nmJqy2YrklBYrWDDLo91MG4sal36Hy8u8AOeCMsvpAjwmZWrK9opJLu5dW7PZMhO0Mfp/utlBqdJa\nVR0lOdLfy9YW73xcvmwHSaTt3N2zxGrbADi2npmRt7Pb8QhwmMdhVFueeEJOb/c7ZADkpaUjnycZ\nx1OlGNAm3QzuXrZ0RuucrnTG0p11Mvo73Ac7Py9L6bN62nqdLks3I4NzAU66LM8CKc4exvBszQBt\n3SBF8ntx29JPnZK9T3Fvz5a3T50q60xvbh4lIpJ2fv55258JWHtID6Ox/QcreQLkdbsl14D9b0j2\nCHfHAMkBGPaZdnFcG9tWDGgrpTy6vW0n1gDZ7HB31zr0iQlOD5c7/NJb3i9dso6X4RidndkBjlHG\nlF4W+vzzR05X+pnZAW56msu0LS3JNoRfuXLExC4tyQW4UhOR3glgKVbC9VIC1t6SoI05jMY6072g\njdHGAsjvxHO63Tcjqde9w+lpXjWuBW2RwiyPsgKcJGjrLn+dPy97X97OznGgKU0zLy5yGE2W0+0G\n3mfPyjowFyyk1y50O11pJ8OydVVZW8/MyC8E7h5EOHtWFrR1fy+Sth4GOAZ41YWJCdl1M93fIfNM\nS9vDnenpaR5oO3dO9naBnR1bCgSOFjBLiCv5O3tIky/sRATQt2D3RIK2YWW0khl+bw+XJNDsdo5T\nU7KlaBfgZmbs3x8eyugd1js8fVp2YagLcKdOWVtI9Ydtbx85XUZ5lMFq7u7aQD82ZhleybU+3Uyb\ndLAoEbQ5IAHIs7zdAU4yUe0GEuxEpISetl4gIVnCZAHknZ2jb5wB2twzM25E6GYepRd/p8iJBG3M\nQYTuwy+puxu0MYCVc45TU/IBbmrKfrSSlP6wmDZJW3dnncbY/4aUbhaQAI4HfElbM8sbly4d9WlK\n2hk4DpBLAW3duhk3iDjdkt8Lk2ljnWlgOKCNGQMkv8VuOzOZNuk7U7ttLf3cqdKCNqJzlPywukEb\nIwg558gMcJK2ZoFjgPcOt7ftnqWxMY5uZ+fTp+V7Uhi27tbrbCE1ibmxcTRpxwxwkoG590yz2jak\n7cECE0ymjQXaukv+ExOybDoTtLEAcm9sYYE21nJdQN7WqVIMaJM02uOP2+AJcMsQLNBWItMGyPaO\nDCNTBmRBbLcjAHgBbm5OfvUCw9bd73BszO7ckwpwu7tH3zir5A/Y55dkJZh9ZyzQxvpeuu0sHfBZ\ntu4uB7rJQ6nn7k1yWH5ashev286Tk7LrM7r9x+Sk7JlmxttUKQa0SR5QN1YPcJpQuwHQ7q6MXuYh\nYpYD9/aOgwkp9oDJtLHs0e10pXV3Bzhph86ydXewB3gglmGPYTBtJYC2w0Pr4xi2ZtnZ6Wawmr1n\nWro/jNV73Mu0MRIR6ZaQEtljCSkGtEmWTg4OgDvvtH9fSsAfFtMmmdG6rNMY+8/SLA2j7Arc7Awk\n7dEN2qR7R7rfIcuhs8qjgLytWfZg9Q+WmIg4wOa+cVYiwgZtrDPNLDUyYwDjmZ1uSeaRCdpapi1R\nJibkWKveUpJk7wgrG+oGbZOT1hZSILaXHWSwHQC3p42xDBLgBSGGbsY7BMpk2nrZn1KSnF72R+ob\nZ/Zpss40i/3p1c0q+QOyAIj9jbPZY6AM0HZ4eHNpvgVtEcLKwqWbUN2lvoA8aHN07djYEXCTkO7t\n8UzQJt3TVhor0e0YmbqZ/T/MACd99hjfoWs0Z03aOTuPj9tEVXspqfcbl+4BZTDewM0rcliJCAsA\nSYO269ePLl+XfIclgjbnOxjssYQUA9qkM1oGaHMvmzUdyApw7p41wK5JkNpL1lsqkGQ1e1mJjQ39\nrES/ACfl0Lv3kpXEtA2LeZTyHWtrR5OBAK/EDfBYzVKYtsuXj7boS08X996IUEpPG4tpu3YNOHPG\n/r3kmV5ZOVq9I62790xLkRjdLL3T3YK2CJGeSmKvoQDKCfjdus+elbsu5vp1u37CCaunbWLCDpYw\nAhHzHUpeF7OxwdlL5u68ZazIGdYgQqcjd6ZXVuxiUyeSQWh5+Sh5AsoAbf38kuQz91YXpJ67+yoy\n5pkugWk7OLDfuRvOkzzT3WBQWne3rSXPRvfkOdCCtmgpgWnrDm4Ar6QL2A9Baktz9yFlLVYEZG09\nrAAneb1SL6iXXHLKWnGxvm6deWn9P93Z8sICRy8gD9pYSU43qykZ4HrP9JkzcgCZaWt3yT1QDmjr\njgHuaiUJ5rHfMEkJw1fs8qiTmRnZ9ptUObGgjbGn7erV45finj4td2dZL2jrdOSa77t1S/bK9Tp0\nSVt392BI6+52BpL3Vva+Q0lbd4M2F5QlHPrW1lG/I8ANcGfPyiUi3d+45BBTbxYu6Zd2d49/L6y9\nhp2ObCLSe6b39mR0s23NiAFM0NbLLBkjs9ewF6Sw7CytmwXaep9ZsvokIScStHVncNJNqN1M29KS\n3MvuDfjSgWgYoE3yXsLeLJxV5pbslei1h6Stux2v5KBKrwNj9rQtLMj2lzLOdL/SiaRfcr1yQBmJ\nSC9IYdpaquzvbino3tUp2dPWu/KDAVIA3jdeImjrdOR6sfsxvJLrZlKlGNDGKjVKXmTee0Als87e\nbIgV8Eth2no/LKnndu/LBU9JewwzwEl9L716WcwBIH+mu0FbaewPwGuQl0xE+r1D7bbe2zs+HVhK\nyb/X1hMTMrZmlqGHBdoWFqxeKXv0+jzJyeVUKQa0sXrajJE7/M4ZOJF2YMzSGoOV6NekzHIGUs/d\n63RLBW1LSzJsSq9eqW8FuNnWTPaYVTqZm7MTpQzdrLMnaed+QIJlaykANMxEpIQkh8VoDtLNuNbL\nGLl4269c3DJtEcKaHgVkD393eYMJgEpk2ljP7HRLfLC95Q3pwMnS3S8QSXwvbCAxjPNx6pTt75Po\n/+m1x+KiHGjrl/RJ2MPtluseRGCBNunVC932kOoRZiYiwwZtEt94ry+dm5PreRwW0wbwQGzLtEUK\ni2kD5BxNP2fABG0Sjqaqbm5iLwG0scAEkw1jsnj9yqNS5WIWe8wsrfWy6VL+gwliWe0Vu7sWuI6P\ny+oFbj7TkiClX8Bn+GkmiGWCNikig5mIsNhSoD/LK3U+2p42AWGCNqmMhdnTxuzhOnXqaCEwE7Qx\ns3CpD7b3mZlZOKvELambyR4P0x5SwZMFjvvpljrTvXY+dcqyjhJ9vP2ABKsFQjIojwLTJlku7h1y\nY8Ut5kopKf/Rb+VHC9oihA3atGdwLN39plL39mQcer91AEyQIlUeHYWeNtaZlmSP+wFk7f2UJX7j\nvedOso+XeUH6sM50qUybVNmOOeTGKo/23g8KyMWA5eXjC7QlyRcJKQa0SU3D9d4PCvBYCekgNAwH\nJunQh1kOLKE8OgqgjV0eZX0vLKaN+Q5Z7DHA+17YTBtjOlC6LD+sIQdWIiLNtDF0904AA7JERvfq\nLslvXEKKAW1SB3R/3/Z2uP4OQLbUyHToDNaql5GQ1D3sQQTtzzwqoE17n2Y/3UymTXLSrrcUzVjp\nIKmbVbLrp5vNHkveLuCEdd2gpG5WbHG6WX2a3d8KIJfkMOO4hBQF2qQmZfo5sBJ62oYRlAFra4n9\nUP0AEGuUnLWzSNKhD3Mwo4ThGlawODy09yl2O3UpxqP3AuwSgTfA6w+TnLRbWbFLU51IfuPdZ2Ns\nzCbxBwfpunsDvtS56x0Yc7oZ5VFJpm1zk9MC0e9Ml5CoSkhRoE3qgPaCthICHItZ6mePM2dktkuz\nQcowGu/Hxy0FL+HQ+11FJnljBoMBYg4isBvNu0snUv6j99YTaSa2tADXC1JY98cCcs+8snK8Zwng\n2XpqSgYAHRxYcDnWFbGZ7LEUaOu9T5dV4gZkWTxWHJeQFrSBF/CZIEXqEtt+h1+qf5A9iDAsVkIK\nAO3tHT8fCwuy13ox7LG6epztkGaPGd9LL4AF5BgP1rogwC5DPnPm6J9ZQUhady+jyRoYkwqeKyvH\n7y0GZP0Ha8q/txwo2afJuiJxc5OT5LCZNlYcl5AWtEHupayvA/PzR//MvMRWatHkIOaRUS5mrkeQ\nCkK9zAFgHbzEsslex8s8H1Jn+vr1myepWO9wZkYGxPY701IMEHPJ9eamXWwqrXuYiYj0lD+rH6pf\nuZg15MBsY2GUR0+dssyexAaBXn/Kun3I6WaVR9vp0QiRYn+YPW29VPDSkgywAm5mraQy2kHOQHtp\nrdfRzM5a0Jwq/ewhdRlxP9Am8Q4PDmzPC2O4pjcLdw6d0f8jufGe1XjP7HfpPR+SQaiXpVlYkEtE\nehMzqSl/FgPUj7XS3g/FZtq6n1n6akdGDGAmIm1Pm5CUwLT17o3pdCyQkGhiX1s7zuJJfVSDmDbJ\ni5mdSDaa7+8fdwasK24AHosnyWhOTR3v4ZK8EaHbzsbYcy0R8HttPTvLYcMA3vfCBG2soAzYhJKR\niEjZ2U35d/dwSX6HowDaWMNXAM/WzJ425jVnLWiLEMnp0X5MCqP8ZYx1PKl3HlbVzX0YzMMvBSZY\nzFK/HT2STblM59hbSmJkhgA3WLBAmySwYpa/etmfnR2ZxKzX1mfOyAShfqUkVv8P+x2WdqbZE8DM\ncjHD1kx7zM9z+rwlqwsSUhRokwrKvVmFVEbrroTqFokPq9/kEJtpY4A2qXJxDgfGyDqlQGy/Z5a6\n9Jmd4TNAW79vnAUm3M5HxvlgMm2s3iKmX5Lqeex3phcXZSa5WS0hzO+wH0BmPTcrAQZ4E9HG6Opr\nO3GgbVDpJJUNA3gf1jADJyDLiPV+sBJ2HmYQktbNGEQYBNpYAY7leJkBn6lbotR4eGh/dfclMgMc\ns2eJBbxPn5YBVoPKo5p7Hgd9hyzWSrLncVhM26lT+qetJeTEgbannrrZ+CwHBsgcJHaWNcx+hv39\n9FISu/w1rADHBG0lgFhmeZQF2lilaHc2ukv+JbDH/YA3a22LVM/jsEEsa5iEyUxr73lk+yUWiych\nxYA2KfYHOD7hCXBBmwS7NGymjWUPqR6/69eB5547/nslsnjMd3jqlG72uJ/uEnraWICQbedhnenx\n8SPWMEWYwHuY/pRVsgPKKI8ye/yGHRNb0BYoUkzb3h5w7tzx39PuDHIwbZr7MPo1m2p/hwCv34UJ\nUtqetuPS73vRzqYPk1mSWhdRKmjrl4ho9qXAcBN3diLCStzn52XKxRJyIkHbsD5YKd2j8sFK6d7f\nB17/enm9QJkOrMR3WFVcpo251ofRE8tqrXC6SzsfLHAMDNefzszYykAq87i1xS3597M1g6kvlWmT\nmkyVkKJAm9REI2PC0+kuDbSVmNGWCLz76ZYqJZUI2g4Obt7DVcKZLrE8ygxwKyu2aV1a97AHxqRA\nSq+tZ2dlpotXVm5u65HqPWYx9VVlv/PueFtCyZ/pTyWkKNAmwbT1LmUF9Gdwo8S0SThHJivBtMfa\n2vF7+KRKScxyIOvsMYFE29N2s26WPba2jp9pKd0lJpNON2PysMQY4AiS7uEaySnd0t6hlJw40FYi\nSzNspk17T1uOd5hqj4MDa+vuuyWdbgkANMxBBKkermEtwJXUXSJoG2ZPGyDjP7a3j98uA+j30wDP\n1uxnHuaZ1j6Y0TJtQtKCtuO/x9yHpN0e+/vcEjcr65yYOJ51SunOUR5NBYRspm1UQJtm4D1ItxTT\nxtrDxR7cYfqPXr3MnWepZ299/ebSeQlMG1O3hBQD2pwDS71KYlRAWwmlpBLt0e+DlQgW/cryQLmg\njfEOmUF5dlZm+osF2jY3bdO6tF4gz/mQ2FvHeubr149fCSilu6p4CWWJMWBlxV4P1qtX+8R8y7QJ\niev/0bzzjFlK6tW7uCh3JVRpTNuwWQmJHYH99AIypSSmk1ld7e94NQPNfmd6cVFm+mtQT6zE7sHe\nRvMS+jT7netOJ903DQI/Et94PwZI4h1ubFjgzWDTB1VbpO7aZMQA5uL2zU1OqwnQgjZR0b4Pqd9B\nktyW3i1SI8jMi5lL7e/o1X3mTPr1OYNAm3YANChbTtU9qGfp1Kn067fYTewMJmVri8e0ra3d/A6Z\nqxdmZzk+T3syubJyM4MnpbvfM58+bd9tqrD8R78ERyq2XLvGW5LfgjZB0R7wr1+3GX23dDrpZRnm\ntRr9sizJa6wYvRL93uH0tMwVNxsbN2fhEhd3Dxu0SQ4iMBxYvxKVMdb26+tpupmgbVAgYgU4Flt6\n+rQNfCni1tUwQGw/pk2KeWSVMPslIlK6mX3Ng/oHJfx0r52lnnl/vy2PFiHMgC91GX1vtry4mA7a\nVldvBoPuYmmJ62JYO3pYmVa/dyh1V14/4M0qyzvdjKZtJrM0P58OrDY2bl4VAch8i8O2h1RQ7hfg\nWJN2Evd4umceVjmwROAtpZtdXSiNaev3vXQ6MjGgBW2Cwjr8EgH/8NAClbEei0o889razewPIJN5\nsvoZ9vctsOx16BJl3X7vcHZWrlzcmy2zyvIAj2mbnJRZRt3P8S4upn8vgwKcRGLGZI+ZAb83CM3M\n2N+XSHIYjAfzTLMnxPvZWgrE9op20La8zJuI7rWHiwmpA4X9vkOplqFB1YX27tEIYTEes7PpfTT9\nnAzAYwcBGXuwWIlBz7y4yOkPk2pSZjVADxu0STC8QH/HOzWV7sDqWAmJM90vCKU+s7t6q9ceEqX5\nfvaQKhcPApqaz/SwmbalpXS/VCrT9vTT/Rckp56POnswEpGpKZlEtV35ISjMQQTmAWXpZrISjBIm\nYAMcQ7dkDxejl6YuwElMj/a+w4UFmSZl1g0ig1gJCd2snrbDQ8uk97LpEkw9m6UZ5pmWYPH6JU8S\nZXmgvz0ky8W9wuxpk2B/5udvbgmRYOoH2UPqfLBiQFseFRTW4dcehAaxeKx+KInegEEOXeLD6meP\n8XFLuVdVuu5hshISzpHpZFjMI5OZZrLH/Z5ZIuCzk75hs8eMxGx62gLn1O9l0JAD60xrZ9r66ZZg\n6ofNtEmc6aoaPPjXgrYIYTka5gfLmsKR0t2PpZmZkcmyBoE2hgMzhvcemayExDqRQaBN8+XaTJDC\n7NNkJSLMpI/1Dofd02YMrxdPuz2GXS6en08HbWymjeGnDw4sk+4G/Zy0TFuklOrAmAGOwbQxe9qY\nGT4reGrOx9KcAAAgAElEQVTv/2Gu/GCC2GGWR5mN90w2vcREhOk/WLbWXhFhgbaqskClH0jRzMSy\nKiL9fKnT3YK2CNF8+OucLjPAMVgJJojVntEye7iYfYkM0Ob2cPWbiGaWkrQOIrCB1TDbCaSCMivA\nMc8HK+CXOIjgYku/tS2sb1wqgWKUuAeBtrk5mX5KCSkOtGktjzKBFRMQDptp0w6AWP0uOZi2vb20\nHj8XhHoduhQrwTofrB4/Nns8TJamZKaNYWtmDJiclLnlox9o292V+cZ7he3zWEwbw3cAtlyc+g6l\npCjQprk8mmN6lNX/ox1Y5SiPag74/YC3m3JMWb5cap8ma3p0lJg2Cb0bG/1vAGD1LAG8hIGZiCwt\npfeHLS/b/tduGR+333jKzrMcZINmpo0ZW6SkKNDGymhPcnl0ENOmuccvR3k09Zm3t4fLLDndKc+d\nq09TK2hjs8fDBMgSdl5fv3lVhNPNWhlUKtOmtRSdoyLCalVglkdb0BYpzCxLM3PAHkQYdoDTmg25\nq7cYk0PMy6RZjobNdgxzEKGEPitWeXTYfZoSz7y1NfgeT609fsPuaZPQPWyGF+DtaWP70nYQIULm\n5ixNnCKllkeZgwiD+qFSpMSeNjfu3dt4LwU0e4GElO5+JW6nW6tDr+vhYpxpiUCxump7W3pFe3mU\nxbQxQdva2s2X3AM8W2tP3Fm2Zn+HLKZt2IMILdMWKfPzvG36zPIGS3fqB1tVg1kJ5ui0VlaixEwZ\n4Nma6dCZgwiDJu1Sm7a3t+0Ow17RXh5l9nANc3gCSH/uvT07WNMvMSvRHszyaOq5GwS8S2TaJHye\nlBQF2liHXzsbxgpwrkmdUQ4ssTzKbrwfNmhj9bSxy6MMWzsGNbVpm3WmNzdvvv/R6WbYWvuZZpWi\nV1ZsH16/iWitfgkYfqIqBdoWFm7+fQmmbdDwFZA2fNUybcLCAhMSL5tZHh2UhZ8+DVy7lqa3tBJm\nnW4WszQ1JXMvIcseLEeztta/HMg806UysanP7MAEQ/ewy6PMu4tTz/TGhm2z6RUJe2xt9WdimUlw\nqq3ZFaJ+fkmCaRv0vaSejxa0CQvT0aQe0vX14WbKgHUQ29vyejWXN5p0pzJt/fRKjOwzS6+s5tnV\nVV5fUd0Sy9SL7ofd/yNxputKr6lnem/vZt3aBxFYDBCTWWJ+LyWWR+viSyqorwPfWu0hJUWBNraj\nSXkpW1v9QZvEJuVBwSI1y2Kzgzl0p9yZurXVv6F/ejoNHAPDb7yX0D0oU5b4DgcFuLm5dFuzkpEc\nAS7V1o4t7S0HLixYv8QoF0slfQx7MKeWB8UAzT1tOSaiWT1tAJdpa6dHI4R9+FNp5n56FxctlZsi\nm5ucqbVBjnF83DrzlKbtHOXRhYU0lmZ1dXCJSjPzOOyVHxIgdlDpdXycW7YrLcClnr3d3f6rM8bH\nj77zWMnVeM840+x32DJtRyLBtA3SPTubFgPa8qiwMA///HwaIzZI79RU+gFdXe3f0MkqFRgjM6U1\nyB4SrBUDtNU1g2t1ukD/plyAx0p0OuklzP19jnN0u/ZGhWmbnU3rpxykF0gHyDkGEZjDRsy7aTUz\nbcM+06nJ06BL7gEbAzY24nW306PCwjz8nU5a3xIToe/s9M+WWUwbIFNaY9i5TrcEkzLski6zP2xm\nhhPwZ2fTS/6soOyceW85EOAGOFbA73TSmPo60HbqlO7yKIOZHmQPVy5OkVKZNhbQZDFtzG+8ZdqE\nhT2Fw1qPkOIYAZ4zGBSEAB7Tlspo1ulOZQ5KXvnRrxcvtTRfd+5YZzq1ZDfIzgAvwM3Pp2X3QP2w\nUUqf5v5+f0YC4K2EkZgeHeSbJPp4B9l5b09vv9woscesPjwg/Xy0oE1YUkHK4aH91c+JsRwYu0mZ\nybQxevyYIDZV9yC9UithWP0/gzaPs5g2zWe6zqGzzrQEe5zDHprLo4N8U2oLxCB7GKO753HY5VGJ\nvtW68igDeDvdLdOmSKTYn3606kkEbXVM2+nTaSxNjkEEZoBjnY+ZGdtLlyJ1U55amUdmIsJi2lhB\nqE43iz0GZJKcYZdHWaAN4H4vWnvaBoFjZiLCZNpSE7NBCXA7PRopLCoYOJmgrY5p02yPUQJtqY2z\nTvcwmUepMz2I8WYEIcCWMVMCfonfeNOZZtiaOR3Imh4FeLaWmkwd5taDuTnrl1I2CORi2lLt0a78\nEBTNoI1Jq+Zg2k4qaBt2/0+q3rppSVYQkljLkSMLn51NX0Y9SqCN1RMrseZo2H2rTN2pAb9uWnJq\nKr3nsZ+dx8ZsRUpjS0iO8mhqz7ukFAXamKUTrUEZaJm2YelmZ+GMIHRwcHSvZq+wy6OsLJzRowPw\nvhd2nybrTLOuQJIIcCyAXCLT5vT2a+tZXEwrYzJjQA6mTaI8Ogi0pbLHUkIFbcaYh4wxnzfGfNEY\n86N9/vy0Mea3jDGPGWP+kzHm5XX6mEwbqylXM2hjBri63oCTCtqG3cPFemaJLPzggOPQ64LQSf3G\nWQGOyTwOu+TP1H3qVDobxnrmJv+hcfkyMxE50aDNGDMO4H0AHgLwAICHjTH39/zYjwP4RFVVrwLw\njwH8b3U6NZdHR82hS9ij3+FnbrxPfeZBQEJCNzMIDRu0MXWzpuEAvcCbqTsH09YmZsdlaQm4fj1e\nbw42TEJ3HRNbGtMm0acpJUym7UEAX6qq6qtVVe0B+HUAb+75mfsBfAQAqqr6AoB7jDHnBilkTcoA\nJxO0NdmDkcGdZIfOeGYms5QjwDEduuYznQu0sZYNl2gP5pnWmpjlYOrZ06OMCtGJYNoA3AHgya5/\nfurG73XLYwDeAgDGmAcB3A3gzkEKNWfhzHJgieVR5p62UkHbqJRHnW5W6YRVHtUKvJ3uUWHaUhck\nV9XofeMskMIq+QPlJmaMCpHEJfdSwgRtPm3K/wuAJWPMJwH8EIBPAhj4uWsOcMxyYIlZ56ixEszy\naGnAyulmOXStiVkdSNnf5wxmMN8hK3im2vnwcPjDNUzdqexPrvIoi6nXzLQ1JZMp37iUDPhfF5Gn\nAdzV9c93wbJtX5eqqtYAvM39szHmKwD+pp+yRx99FF/6EvC5zwEXL17AhQsXgh8oB2jTDFJKbNp2\n4++lgTZmeXTUeto0Z+GD1iOMjQ2+bcVH9vc5N7WwQduwS/4S9mCt9clVEWEOIqQ899ZW/zuzNTNt\ng3SPjR3FxEH2unjxIi5evBj/H/cUJmj7OICXGGPuAfAMgLcCeLj7B4wxiwC2qqraNcb8twA+WlVV\n35spH330UfzJnwDPPANE4DUAefa0uVJBVfUf2faRUSuPSjh0xq0WOZyBRDY7SqAtlWnL1ePndKeA\nNtb5GHZ5VHMisrVlbyFh6C6xAsAEhBsbdqF1rzCZNqat3XMPsteFC8fJpHe9613xD1IjNNBWVdW+\nMeaHAHwYwDiAX6yq6nPGmEdu/Pn7YadKP2CMqQB8GsAP1OnUPD06CLSlZuFueWq/f3dignO3JKAb\ntA17RN3p1lgeZbISOzt2DxRDN5Npy9m0PTUVrvfw0H7Hs7OD9cZKiUwbs2S3ujr4TEsAZNa91nXf\neMrC6Fw9bSlxfHu7f6wF+KAttWomIUymDVVVfQjAh3p+7/1df//nAF7mq6/EPW3A0UGKAW2Hh5ZV\n6tffcfq03sWKrI3mucqB09PAel8O2F83YzCDaY/VVeDOOzm6mT1tzB4/hq03Niz7wyqPDvI7J5Vp\n61eyk9C9uckD3sxEpN8zS+lmXL1VB7zZAFnDMEJRNyKwmbYUhz6IaXO6Y5/bh66NlVLLo0zQNijA\ndTppd4TmKJ1IMAesjJa1w4mdiDAA4c7O8IEEwGPaUqdHmSU7pu7VVXuXcD+9qeeO2Yc3bCIjNTHb\n2KgHmqyYmBpvpaQo0KY54A8aRADsAdvcjNPbVN7Q2hvAWvlR9w5TM7idncHvkNVrpf1MM85HVQ0O\ncCUmIqm6mc3xdYCQBZBTb8wodRBhe7t/v5xE682gdygBrIYdA1L99MFBnmpLC9oihM20sRqgO534\nMub29uAPVvNOq6byaOzodN07nJtLY8PW1gbT7lqv/GEyB3W2np6OT0R2dmxQ79f/pZlpYyU5ORur\nU5OcQT18KWCCmYgwbz0ZpDu1F8qVz/uJ5h5hFtPG7DtrQZuwMEHb3Fx8EAKa+6Fim0VXVy3o6yea\np3Dq1iOwHPrCQlqP3/q6PQf9JNXWu7v9ba05U64DhJ2OBbmxegcxmql2HsR2AHr7KeuAxNxcvJ0B\n7iDC2trg76VEECtRWhvEpqfoXVmp7+HS2Kd5eGgT83692BIJ8LDXtkjolpIWtN2QFDYMaM7gYj+s\nuhH1VHuwMmWg3tbz8/GMGLtczOpnGMSYMjPliYm0i6rrAGFKIsJsjl9Z6V92BfQ2hNfZI+VbcbpZ\ngxmbmxxb5+pbXVy050datwSDV1oLhHuH/VYzpfppJlvaMm3CwgRtU1NpAa7OGaQAIOYhqmtSZoKJ\nFEYsl0NPsXVV2QujT5+++c+YmXKnkzbx2gQINZ7pnZ36UlJquacuYUgBsQxwDOQtF8faugkcswJ+\nSu9xnW7HNsX2+DGZJZY/ZfYesytELWgTlJmZtL1kJW6PZ5Y36mh3iXJgXVN/7HMz17bUOfSUZz44\nsBnnoF17Kdej1DmZ+fn0lTDDLgdKTDTmCHAp5WIWSw/wp4sZtmYxvEC9PSQSd0YMyMUspQDkum9F\noiJSd+60VlukpCjQltpozmy6ZDneOr3MnjaJhnCGrdnLdRlMW5NjnJpKmy5msGFONyPgs+zsdNcF\nZdYy6hTfxO7RyeXzGAE/tY2lqSISaw93vR7jPeboPQbS+ryb/FLq9CgTxLK+RSkpCrQxDygz69Qa\n4JiAkGXrXExbij3q9AKWEYstY7J2hzndjIDfZGeWQ09hwwCePZh9Z7ma+lOqInUBP7Xawkqu3SX3\ng64qTG0nyMEsLSzE9/g1tRIwmTZWktMybREyPn40lRIjo1YelWAl6hrCNS4yzvUOU5m2utswUhw6\nE8Tm2Es2Pm6DXwoAGqQ7lamvc+gptq4DEsO4LzVW6pilhYV4gMxMRJjscV1ixiqPpvbhNZWiGW0s\nzJ62duWHMnHXOTECvsQW7xzlUeYBZZVHmTucmOXRlJ62OoeeGiyY9sgR4FJszWStWGCCzRzkYtpi\nwUSuiggrEWHqTl1zlMNPt9OjaVIUaAP0sjR1WSerPCrxzCwKO8dUErs8ygjKAK9pm820MRIRgFeK\nlgj4LOYxV3mUCeo1lotZ5VEm01anO4UNc7qHXRFx33dsxSxXkpPCHktKkaCNEeC0OsdcTZdMpq3E\nQQSW03W6WesRNF5GzywXN71DFtNWYnmUmaiyvnGt5WKfRCR2MpV5Plhnuu4dGsNNcpiDTCkxUUqK\nA22sUpJW58h2uqUNIuQq97B6UoB055iDWWIGOK0AiDmIkIM5SLGH2znWb+M9kO7zciVmLDZ9acnu\napTWzU7MGMAb4LWbpFyvB3BZXikpDrS15dHjeg8OODQzE7RpzcJZrKZPeVQj88js4cpRSpII+MNO\nRFJ7bXO9Q1YiwkxUNbPppSVme3uD93QCae03TT1+LNCWamspKQ60MddFlFYedQtbtQ05HB7aXwwQ\nW2J5NOcgQoqTqVuQXGLTttZ7Xn3YwZTEjPXMORKRUsujrPOhNTHb3c3DtGmttkhKcaCN1cSutQzh\nk9GyGn5Tl2MO2lmk1aGzSmtspi1HOZAd4Fg9oCymjVVaGxuzv1KuQBo2O8jUXWp5VHMiMuzpUSCd\nacsB2lKJHSkpErRpDfijNErO2h0G6AbeOQYRtK78qCtxaA5wpTVt50zMWBPAmv10jneolWlj+Y86\nlh5IX+tT4oocKSkOtGkureVyjixnwLiGBmjfoaRuJtNWV+JglotZiYjWpm22PXL0aWpNRLa27BSg\ntO4S3yGQZ3oUSGPamOXRJnu0TFuEMJu2U3q4qmrwJBW7tFYi01ZaFq41wLEHEXKU1tj9YbHCYvE2\nNuwy2kGicdqa2XjPHETY2LDN6tK6mWc6V3mUVREB0pi2vT2ePVqmjSDMQQStzEHLtPnp1loeZTJt\nrJ4lIF95VCNIcf+vjPOxtWXvnx0kqbZmAE2mz2NfzcZillglbnZ5lKG7zi8B1q/EgraNjcHfSyr5\n0jRA1zJtEcLsh0qp3+dorHa6tTFtTf0MTLaUuS1dK9PGcLqHh7w+zRLLo01BiMUsOd3amvp9zjQD\naI6N2aoGYzAjxR7r683AuzSmjVkhSokvq6scttT5u7oBupZpixCNpbWVFWBxcfCfT03ZbDpGcjVt\na2XamI3muQYRUnUzS5iDHFiK7u3tZlCvrTzqw6QwBxEYug8OgM9/Xl4vwEuuU9ccsZg2NmhjMm2l\n9Wnu7tb3Jcbq3dmxy3kHScu0RYrG/p+mLHxxMf5SXyZoY+1pyzU9OjZm/ywWIG9tDf5otZZHWf0/\nzJ6ltTWg06nXrS3AMfs0c7F4t95aD57rxAdoarQHq3zuU11ISXIG+SWt5eKcZEMKWzo7O/jPW6Yt\nUpiltZS9MXVOZnrafngxsrkJzM0N/nNWiYPJtLHeoTEWDMRe6lsHJjSXR3NkyvPz8YnIxkbzmU7J\nlksbnvApjzJ2Wk1NDWYsmqQuwQH49mAw01qZpbU1TjkQKHMimtW20ZRMtjciRAqLpZmbs8EkVm/d\nAU1hreo+WIB3+NlMGwsQTk3FX8y8uTk402Jlyk63tkGEJqA5Nxd/XQwTAK2v1wc4FtPGBISLi7YF\nQ1p3ip1XV5vZUo22bmKmGbvDnO7YZ65L3FPsXFV5F4ozKheseOh0t+XRCGEF/IWFeIaG2ZPiE/BT\nnEEdSGEBq/l5G1wZumPt0bS2hZUpA7wglDKh1ZQpp4BjZhZex+KxdocBXJAyMxPP1DcxSyy/xGY1\nGUnO6dPxl7rnGq5xZeiYa86cXsbNNTmHjVhtLC3TFikzM/E9S3XOcWoqLctqygxTDj+rtFYHJlIu\njG8KQgsL8aU1nyw8xtZNk0Mpdq4DxwAvCE1O2v+fGHDlkylrnDxklXua2PTJyTRgxQLILKYt140I\nAC/JSbUz63upiwHGxF9zxmaPS2PamO9QUooDbSmMGGvHFzMzZGYsW1uDl3qyytBA2jZsFtPmQ42z\nzkfqosk63bHfCzPrZNq6Tjdzw/vCQjx7zG7qzxHgmKxmbI9w0x6uVGY6l/+ItbUPe8wE9S3TFifF\ngbaUpv6mlR+sLFxrxlLnDFJ7/FjMI0s3s8/Kp6lfW7mYzbTlsHVKUG56Zq3fC5NpY50PdiLCKAey\nzzTD1k12TqlqsZk2RmLWMm0kYQV8RzHH9gaw+l1yTeGwwDHALZ3E6mYGoSZnkNpPmYN51Mq01dl6\nft4Cq5hvnLnGhhnwc5VHU8rFTbaenY0bgmEm1+zvpem5YyoXzDYWdtyqG56I7fFjvkNJKQ60sRxY\nytJG5iCCD/qPYQ/c5BCDZs45aRerOxc4BtL7BxmlNWbJLqdDn5qKC/jMvlXmFUi5yqPsRCT2TDN7\nj3OUAwGbYMf2rTaBY41MW53usTH7KzZxZ71DSSkOtGksreW6dw4AlpbiJp4OD4+aWPuJRjsDwG/+\nJvDMM4P/PMWh1zmZycl4B+aTKWtbRJqLDdOq22d3GPMdMpIcJvvDXKEU+9zsd5ijHAjEA+SccevU\nqfhElTUE0/QOU0CspBQH2tilNY0NnYyyHbsnhVUeveUW4L77Bv95CtNWZ49OJ63RPFf/D4t5ZE5E\nT0/H74Bjgc3c7DHjfGgEx043q2+V9Q5zscdAWrmY2UtZWmLWZOeUcrGkFAfamBNgGktJPlNaDCqY\nbedY3d/wDfX3vDIHETSubWGeaeYKgybnmALacpSLmcCb1SDPnrTTZo/cTJs23WyfV6c7ZXk7KzFr\nsnPKvkRJKRK0aSvbMZ1BLio4xc5N9/CxenQAnY33bFDPKo/m6tNk6479xplMWw7dGisAAM/WzN5j\nnwnx2FstWN/iKO5pc7pjSq8+MaCdHo2QEsujGqeSmvSOjdlhBcbSRuakHZN5ZDFtGsujbKaN5RxZ\nZapRHEQYH0+bmGeCeoat2clkU8mfdUUWs1ys7TsEmu3R6cQBZGZyLSnFgTatpaQc5Q2AB1JSpmlz\n7Z0CeMwju5SkLcDlZB6ZDl0jm85KcpomxFO+8ZyJCKsvUWsLBMvWucvFLH8aW3plDl9JSs3/uk5J\nKfcAnA8r5/4fFkjp1l3n6PpJTtDGYh419iUCPMdbao8f6z2yr1bKcTUbcBSI6t51ne5Bwiz5a3yH\nOVkrjeXRpmf+6leBL34xTjerCsCstkjKiWHamg4okJax5JrCYYGUFN2jWB5lghSN/T9sYMV4h03M\nEpBWHi2NafMBYyzdqSCWNYiQi2ljslYay6NNz/yqVwF33hmnm+WbmMm1pBQJ2hgfrNOtkXbPMQ2X\nojt3eZT1wZ608mhppZOm3YOATpaG1WvlC9oYTdsaE5GczJLGaguzPLq1Zfv4BsnsbD0DXCfMxL2E\n8mhxoI2VZQE6HTrrIPkwbRp7R3J9sCexPFpaCbMpcKboZg8i5JiWBLhMW4nlUY3fOIvVZMatjQ07\nMTtINLKa7SACSUosj5YIUlJ051xEyvpgx8ZsZhgzTcsuneQoj7LZYwZbCqQlIjnLowwmxenWVj7P\nNYjg/F3svZU5e0C1JSLM3mMfNl1bX7OkFAfa2EybtowlV1aRonsUBxFSdOfs/4m19fJy8xJj1oQn\nq5EY4AY45iACi2lLmbTLBWJZyWRKYsYeRmOB2FxbD2J1b2zYK9LqhMXUp7xDSSkOtJXItGmcHMoJ\nUrQyjywQy8zgmCzN1NTgP2efaUZJN0U3m2ljscc+Pk9b03YuNj1F9/p6PZjQWHrNOU0be+7W1uyN\nKXXCOtMp37ikFAnamI33DEA4NRV/LQ/rgy2Vlcg1iACkAWRGEDo8tL9Yk1QskLK7m6ekC3BLa9qm\naZk9bezyaK7zEat7fb3MHq7SKiI7O/XJpNMd89ybm3ZAQlqvtBQH2phZFitjOX3aZggxwvxgfQIc\nq4md5QxmZiyFHipMZ8Bq6ne2qJvCYgX8lKDclC2XWh7VxqbnHERg92lqOx+7u83MdGyycHDA011a\neZTZi93kl9ryaKSw2A6A58AmJ+OvMFlfb0b/2rJOZr9Lk607HWuzUPGl3TWVR31L/owzPTNjx/oZ\nrASrhMnUnXqmc/atanqHAG8QgZmosr7xtTVrZ0ZilnNgTGMisr1dv6akLY9GCrPfZXravrhQaQIp\nExPxoG17m0PZMnu4fD7YmN1QPstTJyctaxYqvg2ujNKaRva4SffERHwywnLoTUAC4JaSWMNGCwvA\n9evhepkBzoEJab0A/4aIOhkfjzvTrIrIzk49kEjR7fMdsu6mZZXlAW51oQVtEZLyspscWKcTV8Ys\nsSl3Z4c3Tdtkj9lZy9KEivtg67LO2Gk4ZpMyi3bPybQB8ckI60z7gDaNpaQm3zQ3F5eI+J7pmASK\nffl6rtJa7GXjJQ6MNfkPt1ojZpo25ztksqVteTRCYpkUHwfmSj6hwpwOZLESa2vWQdUJi8VbWIgH\nxyxmKWeTMqvPCrAAOabHr8Qm9iYg4XQzSkmx4AdoTnKYPo+VBMfa2bHpuUprk5O6+njZzBIzcS8N\nxLLYUmkpDrSlBHzW4Wc5MIC3h8unHBhbLm6ydSw41gDaWAGfwf4Aaewxi3lkJTnMLLwpwM3NxYFj\ngBcsfM5HCjPd9Mys4Zqpqfg2FmYMyNmXqK0HlMW05YwBbXk0UmKdI3sQoella+sN8MmyYgEyc4VB\nLmqcqXtmJi4I+ZRHp6Z4LI22jJZdSqqzx9SU/e+z+qG0NW0zh2tYiUhO0KaRWfLxHzMzceuqcva0\nMXv82vJohLDWUAC8D9b1BjAyfOYk1ews54NlZW9ONyvAsRzvwgKwuhqulz2IwLqrl9n/02SPlDPd\n1P8zORl/+TqrHMjqeWQBTR8gMT0d38bCZGkYPi93eTR2Gn8Uy6Mt0xYpzGlJbbqrileGYDsDxuHP\nXR5lr88IFd+r2bSVZZiltaZ3GAuQfe/xZNmD+Q4ZAJmV8AG8ki7A83nsCkBMsuBzpmMBMmtwJzdb\nGlsxk5QTA9rYrATjIB0eWoau7nLciYn47L60Hr/coI1la1afVaruUSyPMkvRzAy/tPJoCjhmMryj\nWB6NbRnKOX3OZNNZ/sMY++exA0dSUhxoY5dHmXX2UN2+WScLtLE+WK3MQS7QxuqzStGdEyDHMge5\nS0mxiVlV1Sdm7J62GFv7TLzu74evi2CX5XOCNpbPSxnOYzL1rN2UzDjeZOv5+fiBIykpDrRpReiM\nAOc7/aUxwOViDpglbiZoi23aLrE82mSPFDuzzgdr0s7Zom5akpnkxO7aY/kP5kQj83zkbLyP7aXM\nPT2qiSAB/NsrYq+klJIiQZumEiZTN5NpywmAxsYsuxDaG5C7xK0NtLHtkYvFSznTOZm2GHDFbKz2\neYdLS5xlskA8aGOW7HIxbeyKCCvpY60TYVa1YvspmQBZUk4MaGMPIjA+LJ9AUSLTFjtNm7OfAeAB\n5FKZthIDnFamrU6Y5dESfZ7GYaPcZ1rbxDzr6j7fEqa2lTCScmJAW+6ethjdGnraNPWO5GyOB3Qy\nbS0r4a8X4APkUFv7JpPMnkdN/jR3eZRVmtda8mcBZJ/pUZZfmp6O203ZgjaSsJtyNbESuUFbSgbH\nABMamANN05LsoJxrxxczwGljrXyCEHtwR1tixmSPmWw640znLvmnDNc0JarabrVgxhdJKQ60lVoe\nZQ4ilLanLVb3KA8iMEoQTrcmB+YzLakxwLH6f9jlUeaaklzDVyVOiGtlj5l9iXXDNdPTwBNPhOkF\nuPZomTaSaAMSALe/ozTmAOA5dDZb6uPQWXu4NAErpm5nizqHrjHAsVgJDT1Lmnxe7j1tJYI2bYMI\nPs2Tzi8AACAASURBVHoXFuyvUNEA2mK+RUk5MaCN2TvC0p17L5k2gJy7p40FkGOnaXP2pABcZklb\npswcRCitbQMotzyaaxrf+Y7Qb1wDqI/pS8y59JvpP2J1S0pxoE2jA2OBFOb4O7uHKxfTVmJPW+w0\nLXsQgdV472NnbUwbaxCBOSBVqs9jPfPqql0HUScsRszdbMMA9drY45y3h6TqbnvaCJLiwErL8HOD\nNqZDbwcRjou2AMcuj9ZJqcNGMbpXVprLRCW3QGiqLuzu5gNtTjcL1GsD3iymLXfcakFbhGjrs/LV\nzeoN0AYkgLzTtOygrInVzN3TFlsezV3y1wSA9vZsU3adaAOaAM9/sHuWcpVHgbhzndse7IpIaLl4\ndRXodPx0hwrT1pJyYkAbswzx+OPNPxObdTJBW+4s/CT0tPlMSwL6ysWse01zDnwAZZ5pNtPG/F60\nlQMZgwi7u/Z5fMA3q52AVX1iAW/XEhJ6N+3uLjA1Vf8z7SCCMknJDFnOYHcXOHOm/mc++1ng+efD\n9Po2g7PWIzAnMbWBFFavldNbNy0J6LMHq98lN6OprXTCDMrsRbWsb7w0ps1nxQWQ5j/qhF0higGa\nTXoBbvk8xh7b2zxAKCnFgTZmT1vsCzl71t5JVicvfnG4Xg3lURaLx1qBUlXAn/1ZmF6AZ2sfOwP6\nAj4LEK6v22tmfPRqups2Z4DTVtJ1ulkgltkCwWDafOwMxJ2Pra1mBk/bO/TRC/BiQOz3srbWXHpt\np0cjhN2jwwJAd98dTgVrAG2aStE+7/DWW4Fz58L0An5gQiNoy9nT9hu/Afzpn4bpXVtrtrMx+vqh\ncga4FJDCWp+xtQXMzMjrZraxsJg2X9AWU/b3ARLaSv4hPk9TH+/mZvOgSsu0Rcj4+FGfUIj4HNDZ\nWWBjI/yZWIffB7S1/T83620CBf2kRNDGZI99SmtvfzvwileE621ipYE4W/s4XW3tFczBDOZA0M6O\nX4BjMY8nhWljAomcJX+Ay7SxEtUWtEWIMfZXKGvlc0Dn5+NAW84eLm0O3Vf3/LwFStJ6Y4Py7m4z\nmIgByBsbwNxc888xS2sslmZ6mnOmgTh7rK01r8/Q1l7hy7RpWoGyvW3fvU8Pl6ZExAdMaANtzBaI\nlmk7Lu0gAlFiGzqbXvbUVPwltrl6uGI/WB8wEaO7qiygbpqWjAHIGqbhQnWvrvpd18IK+J2O3QUW\nKixbh2ThobodmKgTjT1tufsSNbHH7J62nOVRbSs/WAlDiD1YMVHTcI20FAna5ubiAn7uaUlNDt0H\nTMQ6mbGx5iw8BiDnzrJi7LGz0wwkAF6Am5uzJZZQYTlHJmjLHeA6HeD69XC9pQ0i+AZlZsmfuQA3\nBrQ1sdKAvjM9ykybtpYhSSkStC0s2FJIiOQeJWc2Vu/vh/f4+ey7mZsLL2H66AX0lYtZoM3XgcUG\niybdk5MWOIaK77oZTUwbO8A16Z6ZCU9EfPS6u2ljWkJyB2VGIrK0FA6OfXW3TNtxYa0pcbo19bS1\noI0ok5NxCxBZO1hYLJ6vQ49ZUuijOwYc+4yoA9xBBE1Mm68Di+nxy11K0lYe9dE9OWl9Qaj42GNq\nKhwg++g1RleAyz1cMz0dl4jk7D0G4gAQuxzYpPv06XCArIFpY8aAFrRFSMxL2dxsHlGP7eHy3XjP\n7A1gBbhQJ3P9us2Em4TJtJUI2rSxxz4lnxKZthhw7Fiu3JN2WgKc7zPHAGQfIBELvFkVkdx+mjlc\nE5OI+NgZ0JWIhNxc0w4iREjM4V9ZaQYTKQ6MsfE+xDkyyjKs8gbADUInpTzKCkLA6Pa0xYBjN1iT\n61YLIM4eviVu1jtkJSKuXByzfJnBpOQGbSkglqHbx85AnK9mn2nGNy4tRYI2Zn8Yg86P1R3iHGNK\nazmZgxLLo1NTtvwrrRfgNm3H2GNUe9pik4Xc3ziLqWf2LM3NhYM2n0TE3VvJSCiZFZGYlUG+7HGo\nnQEdiRkrBrD8UgzzKC0taBPQy6KCSwRAuZ+Z2cMVs6aE3bTNLI/mdI4zM+FTr8wznXNaEogHm00l\n7phJfHZQzpnklMi0xe4XZZVe2YkI45YPJnssLR5HTZ9oCnC+TuYrX4nLOnOyEtqYx/19/+3gVdVM\ndXdLyzzerNunp40V4GJWlZR4pnP3/8QEISaIZQLC3EybJj8NjC7TFttq4ssexwBkSTkxoC13Fv7g\ng3ENnaWxNLlBigNq6+t+S22dlBrwGc/sJpGbmnKZ5VFN9tDALLF6QGOHBZj2aBoYA+LBVU6mbXaW\n08bCXHMUy7T5gnrGmY5ZVcU809JCLY8aYx4yxnzeGPNFY8yP9vnzRWPM7xpj/toY82ljzPf76NXk\n0HMHZaZubc/s6xzPnOEAZG2lNdYz+/SzOd0nAbT5njtmgBsb46yL0PaNs7+XnExbzKqSEpm2kESE\noZvV4w3E21pSaKDNGDMO4H0AHgLwAICHjTH39/zYOwB8uqqqVwO4AODnjDGNx5/laGKZA2a/S2kB\nX4M9WJS+tgDH6u/IbWfg5JxpX3vMz/NuW2C+Q01DH0ymjWUPH1vHTNNWVZk9bXt7zT6PWR4dadAG\n4EEAX6qq6qtVVe0B+HUAb+75mUMAnRt/3wFwtaqqxteoyaG3TFu43ljdbMajRHuwznTOa3kAXWea\nDSR8S2ul7WnTCJAZTJsPkHC6GbaOmaY9PDz69+qE3dMWs04k5yDCqIO2OwA82fXPT934vW55H4AH\njDHPAHgMwD/1UazJoecOQkzd2oJyqcxjzgDn9IZk4bnBsdOt6R3mZtpY34tGEFtakuML2jQx00w2\nzPd76XTsHdgh4tO6oe07lBYmaPMJEw8B+ERVVbcDeDWA/90Y09g+rmkKx/eAagNAuUEKs+G3RHuw\ngpBbChtyzZmW8ijrGy+tZBer2zfAafNLOb9xbX6JpTskboU+86VLwPPPN//cxAQHIGvz09LCnB59\nGsBdXf98Fyzb1i3fD+DdAFBV1ZeNMV8B8DIAH+9V9uijj379769fv4CDgwtBD1Ni6WSUQVts8Mzt\n0EsOcD7PAfgPImizB3OFQc6SXazu3CsdmP409LmryvYEMkB97vJojG5mH94TT/gxaCxWM1ccv3jx\nIi5evBj2H44QJmj7OICXGGPuAfAMgLcCeLjnZ54A8G0A/oMx5lZYwPY3/ZR1g7a/+itdIKXE0okG\n0KYl6/TVrRHEshy6bxDS1PCbOzGLAUAXLwJ39DaN9JHY52axEr7fIeNqNqc75HtxPzs/X/9zMe+w\nRNDGZNruuMOu3fDRrWm5bmpsuXDhAi5cuPD1f37Xu94V9hCeQgNtVVXtG2N+CMCHAYwD+MWqqj5n\njHnkxp+/H8BPA/iAMeb/A2AA/EhVVdeadGujxrUwKaG6S2MeWaBNy4XgWs4Hszyam5lmf4ehQWhr\ny+5KaxLWnjY2kAi9E5l1Pg4OrJ1bps0Kk2ljJte+JX93AbzvgnVmci0t1OW6VVV9CMCHen7v/V1/\n/yyA7wzVy3To2lZ+lBjgSgNtbpKKcVlwifZg97S1iciRvPrVwKtexdGtAbRpOR8hzBKD/QH4SV/I\nczOZNjZoa7K18+U+ibiTknra2rtHE/X+x/8I/PVfN/+cRufYgjYrue0cq5sFJjT0tGnbtTeqPW3a\n2GNmyZ/1zCHLqLX4DzbTxvJ5LFazBW1k0QRSXvhC4Lbbmn9O0wfrq1vbM7eg7WbduZm2UIe+ve1X\nDmTZ2u2lCp2mLQ14O90t03aklwVSSiyPlsq0hYDvkPe4u8vzS9LSgrZEvcYAr3lN889p+mCBMh06\nyxlsbQFTU/J6gTKZNiZo29gAFhebf06TrXOXdGN1l/qNtyDlSHZ2OL6JfYtDacz06qrdGyetlyFF\ngjZWU27MdSDMTHlz095X1ySsMlWJKx1idG9s8D5Y9pqS0liJ3GtbYnSXOmzEAm3b29wkhwGuWAwN\nwPV5q6ucJKdUEMuy9caG38RrC9oihfWyjbEgaW1NVi8Qd/g3N+3lt02iiXnUANpCHW+JTgbgBaIQ\nh87sd4kpvfokOdoCHLP/hwHamKwE63yE+GlNoG1jw15hJq07pA/vpCRmrGeWlha09UinY8FSiN7S\nDr/r52m6d46ZKc/NhV9homFaMgZIzMw0/5wmlobZtM10jiwwUWopicW0bW5ygASg4wYATaCNpds3\nwWFVtQBd9mCSL9LSgrYemZqyfQS+UmKT8tYW1+n6PPPCQhg4drpzgjZNQALwt/X8PLC87K+XyUow\nd+2xALKWxupQe5TY08Z8h0zgXRpo8/VL2hKz3KCtZdoiZXbWAo8QYQUi9gfLarr0LbuyHFgoOAa4\noI31Dre2OCU7wH9qbWEhPBFhlkdz7tqL0b215QckFhbCwDHA6x88PLRMehObHtPHy/R516/7gQkg\njKlnMiklgrYQcKzlGwda0AYUCtoWFoCVlbB/h/myc5Y3YnT7BqHJSevMQ66i8R2d1hTwNTiZGHv4\nAsLJyTDQxu7/yTk8EaN7eRlYWmr+ubk5e/5DhFni9tFrjAVuWgLczo5/khOSuLfl0Ti9LdN2s97c\nNyIUCdqmp8OCkAMePqxETBM7szyaM8AZYwFyyGDG2hpveCJ3vwvTyczNhZeLV1b8wISm/p/cZxoI\nf+69Pb9EJBQcA/nXtsToZgY4X90veAHHT5cK2pgVIi3fuG8vdozulmkjS6jhNjYs0Mu9HoHV7xJa\nagwJcKG6fUenNQV8DZlhpxPOHockIlr6f3JvvAfs+dzY8NetISiXCNqYAGhiIozV1PDMms5HiUwb\nk01vQRtZYkCbD5AAwg8pm6Xx0d3pcNaUALoAUG7QNjUVfgG2r60nJ+NKawxwVapD9wUpnY6ufqic\nZzpGt6895ufDwHGIbqaf1lLyd7pzMm2akusWtFk5EaAt1IFpod19n3tuDlhf99er4fBrCvi+73Bm\nxv4sI8PXloXnLo9OT4cB5JAzHQqQ2aWkUWXaFhbC1/qwbB1i58ND3oJ1FovHZI9Z3zgLaAK8Mx3T\nAiEtJwK0hfa7aCkVjHrGosUZhDRth04us4BVSH8Hq0+TeaY1scdspo1xPnyXpwI2GWGc6YmJsCGm\nEN0sP21MmecjFCCzk+ucJV2ABwiXlsITEWlpQVsf3aEv28c5xjiwUQZtTKaNdQMAwGPxmD1cJTJt\ns7PhS65zn2lmaS2mL5FZLs5dDoxh2nztwQr4MzO89orQ+KIhuS4xboUmOAxpQVuPsJq2Y0Fb7oxF\nU4DzdQahttZQSirxTMeCttz20PIOAV5pbX/fb0gF4DFt2kr+uVma0GEjtz/Pl03XklyzQH3IO2Sd\n6RifJy0taOujW0tDp4bDry3AtaDtSC+rT9P3maemrGNkPHeJZ5pZ/joJZzpEN5tNZ3wv09PhQGJs\njLMwetTbekIBMvNMS0sL2nqENZXUlkePC7M8OjHB6eEC9AQ49jv0sfPkpNXNABPa7KGhPMoqB2o5\n00zdId84i7UaHz/qRZXU63RrOdMaBhFCd7m2oI0smpg2dnm0DXBHEuIMRp2VYJZ7mCB2lM80s2m7\nZdqOCwtYAXYSUwNLo+FMO6AZOk2bG7RpOtPS0oK2HmE5g1D2Bxjt/p9QO7sLsBkBLrR0osEZaHiH\nMbpHGbTFMm0taIvTzSqPzs7qYGk0nOmYa85YbSwa7NGCtkjRxLSFlDdixt/bAGfF9wJs4GQEOGYi\nwrTHKCciMQ6dWfIv7UyH6GYN1wB67KHhTAM8/xF6pjXYowVtkaLtgLbl0XDdLIYGaHva+unW4hx9\nr94q8UwzBxFOQsm/qmxyxkj6VleBa9f8flaLPdiMt6/u3d2wVSWsNhYN37gG0Ob5WeuSEgNcqUsK\ntQS40D1LIc7AF0gAepwB+x2yAv4og7aY8uiTT7YT0U4OD205zmdaMtR//NzPAZ/+tN/ParGHhjPt\n5NlngcVFv58d5fLo2NhRj5/POWVIC9r66GaVR0MdupYAxwCxoXpDQVvIaP2ogzZNpSQtZ5r1DmMc\nus+zhAa4kBsRSjzTof7j7W8HPvEJf92MJKfEMw0Ad99t1/v4yiiXR12Pny8jzJC2PNojmhaRjnKA\nY64wCNU96qBNU3l0lEv+MU3bY2PAbbc1/1wM0zbqZzq09LqwwNG9vl6ePTT0tIVWRFZW7JCIj2iy\ntbS0oC1R9wc+AHzmM80/5xrofff0VJWODI65s4hZHg3VPcoBTtO1XqOciMTorqr811idhDPNZI+v\nXMm7AHcYuhkJdmgisrMDzM/7/awmW0tLC9oSdW9sAI8/7q/b9/C78saoOgM2aAtl2kY5wMXYWkN5\nVAs7yAITrpTqMxHNbCc4CWeaqXt6GrjlFnm9pdpjlFczxeiWlranrUdCA/5b3gI8/LC/bt/n1sD+\nMHWzBxHa8uiRsG75AFqmrVdCbM1mlnIHOE1+ui3536x7ctLvZ5nlUS3s8caGXarM0C0tRTJtzG3Y\nMYefASY0sD9M3UzmoAVtx0VTKck3GSnxTDvdvrYO9R1aApyWM60lEWFN+a+v84AEszzqa2tNicjq\nqr2vlKFbWooEbZqcQeiddiGgLTeQYOrWVh7NbWttTpdZHmWwEhp27QHhbHqJTNv6ul9vkaYzzT4f\njDPNBBIamEdNyeTOjv+EbAvaIkSTM2AxHhqABFO3pvJoaIBjZJ1agITTzQj4octTQ8sbGpqUQ85e\nqeXR1VW/SUxtZzo3SAnVu7vLAxK7u/7lUS2gre1ps9KCNgHdjICvobzB1D02dhTEfYQNrFj2aFmJ\nIwlZnloyKzHqoM034I+Ph102Hsp2aAn4JS5BX1nxX5bLOnsllvxjdEtLkaBtYsI6Dl/RVB711c08\nRGtrvJ1FrOdmrvxg29oHTGhjJRjOkWnn3V0eM729bScEfST0G2clIhp6Yh1A903MQoGEpvJ5bjY9\nVPfmJqdf7vDw6J5oH70akkmgBW10WVoClpf9f77E8qiWpsvJSZsB+wqz/4dVHmUCIF8wwQQSTOfI\nKgdqcrosVqLUnjaWrTc3/ZenttOjOnU7AOt7Fdmon2mGFAnaZmbCLrDVcvi1BLiQfrmlJRu0fGVr\ny74fH2GVizU5dF/d09NhV28xyxtMh57bzjG6WWeaXQEorSdWS3J9EsqjpSbXLWgrFLSFvuwQp8ss\nJWkBbSG6p6fDAPLKCqe3aNRB2/y8tbOv7q0tTskO4GW0GuwMWLttbnJ0s8qjJ4GVKLHkH6JbSy8l\nU7emgTENZ5ohxYI2VnmDXWdngLaZmTCWhsUOAhZ4MADyqIM2Y8LYNqZDZ42/a7AzYNnjtTWO7tAA\nN+rl0dlZO4wjrVdTP1RbHj0SNmjTYo+Q55aWIkFbqNFC+3800MwhehcXw0qY7Iy2tAwuFCD7sjSu\nAdunKRfgbtMPeYejDtpCS9EaWiBKBW2Li/4AWZNfKg20zc7atTcM3ZqSaw1numXaIoT5wbJ1Mxx6\naAlTE+3OcAbMZw4ByCF6AR4TG8NKMPqhQoOQhhImUzf7HWoIcFNT/oNMTBDLDPi+DJBL3nynaUPs\n0en4M5qhurUk11rO9NycHebLJUWCNi31e6d7lHvatAQ4LSs/pqb8183EgDYNTJuGnrZOxzI0vju+\nNCUiId+4hgA3N8dlabQkIgx/6nYP+rLprMRsakrHcB5rBZbTrQG0dTphCaW0FAvaNLBhQNghnZ8H\nrl/3+1k2aGM4GadbQwa3t+f3swDP1qGgjVkeZQX8kJUwoc/s/h1f3RocemgiouEdLi76+yVAx/ei\npTwaYmfAxgBfgKzFHlrKo6z+cYDHHjOkSNA2Nha2tJFNu4eUMX3BhBamTQtADnEGnU55Qcjp1sJK\nhNia0bMEcAO+hl2MzKAcslx3cpKX5GgpF2tglgBeewU7BjDYY2ZVKwQcO91tTxtZWAFuYiLcgeUu\nJYUeIt/7HwE9AS6U/dHg0DUxbawyREhpTQtoKzHAhbLHWkpJLD/N7GkLKTWG6AXC4osWpo3FPIaS\nL6HJJGs4rwVtkRIa4HzLgRMTOnolNAUhX91VZX+F2NrXgWkKQi3Tdlw30x4aQKyG8ujSUhh7POrL\ndWMSEV/di4v+jeah5VFmDGAm16xycWji7vvMbPa4XfkRISGHNJRZKq0fSkuPjgPHPleYAC1oG5bu\n554D/viP/Z+DdW+lFnuwA5yG8qiW76XE8mjI5HJoebTEGBBi6xjQFtITyzzTIX3eLdMWIazDH1Me\nzR3wx8Z0fLChQTmE1dQShEosj5496/8MgI6VH0zdzPPx+78P/Lt/J693bMwmn77TtJq+Fw0glhXw\nQ76VUN3scjEDpISCtlBWU8M33jJtkcIKcKX2tPn2BcToZoIUDUybhhK3080IcHffDTzwgP9znITy\nKIuluf124IUv9PvZEDu7tRKM/p8QO2tZGL29DXz5y34/C/C+cU3lUQ1sqSZ7hMTEkGpcy7RFCivA\nhYI2DQFfS1YRw7QxQFtIcAN0AG+AW0rSUFrTAtqY38vf+3vAbbfJ6wV4YKLEROT22/2fAQD+8A/9\nQV6JoI3Zp/m+9wHvfrffz7LtoYU9zgnaAsyrS7TstNLAWo2NHQ0B+PSTaXhmoO1p66ebNVrfgrYj\n0TJp9zu/A/zRH/k/R6mgjaF7asr/jmMnvlPOJYK2EN8Rqvttb/P/WaY92vLojf9+vv90mmhh2jQE\nfFc68Q3krADXgrZ4vTG6GfeDAqMf8JkBLuSZr13zf4ZQ3VreIWvKP/RMv/KVwEMPyetmgzaWPULe\n4733+gNeTSBWQwxgSNGgjfGyQ0Hbzg6vwTXm8EuDNhY4BlrQ1itteXQ4urWcj+/4Dn/gHapb0wRw\naVf3aQJtpbHHWuzBPh/tIEKEsHqtQoDE+rqegK/BGbSgLV6v060hwIXamnEzidOd+0yH6tbyjZcI\nvJnN4CWClFB7aGCP2eXRkL5mZnk0J9NWLGhjMm2+h98BjtKcoxamjXUjghaH3jJtx+V3fxf42Mf8\nnyPE8bLOdOjCaC3fuJa1Lazk2r2PkIRBU0XER0pMRNq9dXxpQVuPhKyhODgAzpzxXyarxaFrASla\nmLbHHrMLaKV1l8q0sUprL3mJXVzqKxoC3MGB/b4Z33howA8BsSUybWwQWyKz1DJtR8J65t1dC/59\nWxVapi1SNOxpC8negLCD9MM/DPzyL3N0l1oeDflgQxaRAsD99/vr1hCESmTaFheBN73J/zk0sMch\nJSqnW8P5YIK20I33GuxRIkhZXwcWFuT1AtzEvbSVH6ur9q5SRmLGkKIHEXL3tDE/2Le9DfjCFzi6\nmeVR3zISwLs82TEjvgH3/HlgetpPt5agzAZtrNKaFlaitHcYqpsF2tbWgPl5v591ulntFRq+F2YM\nWFmxYMJHNJVHS/vGd3ftXaW+0pZHI4X1wWoBbWfOAK94BUd3ieXREjO4ra0wZ6Chp+3w0P5iXXHD\nCspra/6sRInsT6huVtO2YyV8RYs9WN84Mwbs7fn7j1Agsb3NWRlUYnk09Ny15dFIYZZHWZfjanFg\n6+v+zqDE8iigI4Pb2AgPcLl72lxwK61PMwS0aWF/tEzauXYCH9nbC7trM8R/bG35M96Ajm9cSwwI\n0buzY3/Wt79Ukz209Gm2TFuEsBwv6z5MQE+A2962/UW+ejVcGK+F8dDiwFjrEUo906yS7tZW2OZ9\nTfYoLcBdvw4sLYXpZjw3a+AD4D1zyJTu9rY90xqGazQA79C2ntw9bUWDtlEOyuz+Hw0OPXRSV4Nz\nZL7DEFZic9MfTJyEM816h8vLOoBEqG5Ny3VDkkkNAFnT9xLyzL7DV1qShVDdzJaQkSqPGmP+xOf3\nhi3MjEVDjw5bt++HFQokWCsd2Pt/tPS7MFgJLU5Xyw6nkDO9s8Mr2Z2ExEyTbka5mLm2JcQe7ipD\nn+duQVu8Xqdb5d2jxpgZALMAzhljznT9UQfAHewHa5IQx7uxEVa/Z1za7XRrcGCs/T+h5Q0tDeEl\n9rvs7vo3EncvIm0qA2hxukzdzJJ/6PlgMUujvlwXKPcbZ94g4vP/qQm0hYDYkH5KLX6JIXXmfQTA\nPwVwO4C/6vr9NQDvYz6Uj7DARCjTpiXAzc5yLvUNBRKho9M7O34/y/qwqkpPf9gwQGxu0Kbhe9Hi\n0LUETy3PrEW3lsSMZQ8t5y5UtxbQlrs8OtC8VVW9B8B7jDH/XVVV7x3iM3kJC0yEgEEt018AcPq0\nBac+EhI8Qw4oexEpw9aHh2Eb7+fmOOAYGA4D1OT0QnqhuvX6SInlUS1AIlR3C9ridWsBKT5JVrf4\nnmst587pZkwun8jyqJOqqt5rjPnPANzT/fNVVf0K8bkahQUmmAd0cpLHLE1OWnDqI6EOnXn3aO6A\nHwoGl5b8wXGJWXhIWS1ELxD+zPPzdj2NtG4t5VFNPW3Mb9zXL7Fs7Rr0GbsHmUlOTBLs8x5DwaAW\nEKsJtKlk2pwYY/4NgHsB/DWA7kfNCtpYjsYh/6pqZl9CD+jSkt1y7SOhB6nUewlZwWJqyg8gh4JB\nLbvlmKBNC9BkfS8a7AzoGTZaWOCAY0AHQHZ6Nay40NDjxz7TrKQvFLSxegfVlke75LUAHqiqkJsc\n+cJyvG4KxycLDnW6s7N2wtJHYrJwxsSTplJSKEBeXvbTqyFwAjoceugzT03ZVQ0+EvoOWdecaQFt\nWs5eCHtcoj00gZT5ebsI2kdYYIJtD9ZwTQhoc+ukfMiX0sqjPiTppwG8gP0goaIBTJS4HqGqeNOj\nmsqjs7N2MWqTaAKaGgJcDHscUi4OPR9sNl1Sr9PNeofT0/4AOeQ9hi65ZvRZxejWAtq0VFtCyqMl\n+rwQgDw5aRNKHwZ55MqjAM4B+Kwx5i8AuIJTVVXVd/Eeq1k0gIkSg7JrvGf0d5RaOtHQVxSqO+ZM\n+9g69JlnZvzAMWCfmbnzjMGmawpwvuwxwOtpY/VZxepmfOPT0/5nOvR70XALjCYQy+wfdJWt7fWV\nygAAIABJREFUpuvtRhG0PXrjrxUA0/X3WYXNtDECnAbQVmLJLka3b4+flr4igHumWaCNCVKGcfak\nQVvIM4eevelpvz7Nw0O/nXxOxsaOVt80/TuavvEQnxei9/RpDjgG9JANWnzezIx/y1DMvbcM5jHk\nG2eIz/ToRWPMPQBeXFXVHxtjZn3+PbaEXoHEOPyaVn6wsk42kGDao8Tt4CyH7tsfVmLJH9AT4DQk\nOa6M5Nt4b8yRbmnQpiERiSlD+075a0rMNJRHY1ZV+QLkUNCmgXlkiM81Vm8H8H8DeP+N37oTwG8x\nH8pH2DSzBlbiJDBtuQOcJgfGdOgaQJs2AOSjO4SxAnjDEwDvGw/RrekbZ4G2UhMz1jsMZY9DB5l8\nV8JoYdrUgzYA7wDwLQBWAaCqqscBnGc+lI9oyWi1BLhSQVvuBldNPW1M9tg3yWHundJUWmM59FDQ\nxrB1DGhjBjgN7PGlS/56S03MmGdaw8J5LUxb7pUfPqBtp6qqr5PFxphTUNLTpqE8WhpI0QQkNCzX\n1dTTxmSPfd8jc6O5pp42X1szQdvjj/tNsDopkWmbmMjPHv/e7/nrBMpm2lg9XCG7KbWANmaPn/aV\nHx81xvwEgFljzLfDlkp/l/tYzeLr0F1ACR0l9z38pfX/xHxUAK8/LMSBsZg2JmjTUg4MYSVYyzG1\n9bT52IPJSnzyk8B73uOvm8205S6tsWz90pf66wR09B4DPIDMTERY9nDDNVpArHbQ9mMALgP4FOwl\n8n8A4CeZD+UjrEwZ0DNpp4FZAnT0Bmjp72CXTjSANi1nWkPAZ7ISAPBP/on/z7KZttz2YJ3p+Xng\nda/z11vqN66h5M/yH45l8x2uAbiJSM7yqM/06AGAX7jxS42wDijQ9rT1irP15GT9z2lqcNXQ08Zq\nnAXKBW0M3W5dRWkB7pu/OYwFKpFpK7Hk76oyPkMommKAhjPNYtNDfanTfSKZNmPM3zfGfNIYs2yM\nWbvxa3UYD1cnrPKG060BtDEzlhBh7rvRAGJZTFsL2o7LX/6l/9JSp9u3BcKY8CycVR7NHeBOEtNW\nWuI+6oMImsgG5iCCatAG4D0Avg/A2aqqFm786pCfq1GYTJuG8qimjEXDZBnL1svLwGOPhen1vQJJ\nE2jTkIh89rPAe9/rr5vF/gA6BhFYAS50Ahgok2nztbUm0Bbi8zY3dYC2UOBdGtnwiU8AFy+G6Q1p\ngZAWH9D2JIDPVFXlOSM2HBn1nraPfczv3rRQ3ZpAmwam7QMf8NcJHDE6PoMZmvpdfIMFk3m87z7g\n3e8O0537Gy/xTDOZtvX1sH4eDexxKJAAdDBta2t2j1mI7lFlj5nA+4UvBN7yFn+9uZk2n+P2IwD+\nwBhzEYBbg1dVVfW/0p7KQ9g9bbkDHAB86lPAG98oq5sN2kLulgztaWPY+h/+Q8sAhYjT3fQ8MUxb\n7vUqzETkBS9ovgewW0LYH98N9t26GQEuFKSw1vrE9P/46H7/+4Fz54Cf/Vk/vVrOdGgMCLkGj8G0\nuaSwE1DTCtmoUNrC6BjgHXI+QsBxCHvMEB8z/M8A1gBMA2hoRR+esHvack9LnjsHfPd3y+uOcehM\nViJ3gDs8BG6/3V9viO5Q0MZu2s59plns4DPP+Ot0wpweZSYijL5EwD/Afc/3APfe66+3xDMN5Gfa\n3DOH9Gkyz3TuXuwY4B1CvrAqIgzxedQXVFX17fQnCZSQDzYkq3C6GQAoJMDNzfF6A2IcugZWojTa\nXVtPmwbQxnCOp04B99zjr9f9OyWe6e3t5p9jlkc1lfzZoI3RAhFS8o+d8m+SjQ0bX6T1ArrKo6zq\nQm7Q5gNn/sAY8530JwkU36widBUAoCPAtYMIx0XLyo8Q3SzQFrMwOuQdljZcwwxwzDPNZCVY9gh9\nhyHl0fX1MDDBBEDMQYTc73B52V7U7ivOzj7DVyX2aY4iaPtBAB8yxmyHrvwwxjxkjPm8MeaLxpgf\n7fPn/8ONdSKfNMZ8yhizb4xZ8tFd4vSob58EwJ0sCwVtWmh3ljPQ0u8y6n2amhy675leX7fLWX0l\n5ExrW/nBAMghyfXqKrDk5f2tsIAmwC2PMmJLiO69veadm90yNmZ/+d6Kw4iJ2krcqqdHq6qar6pq\nrKqq6ZCVH8aYcQDvA/AQgAcAPGyMub9H989WVfWaqqpeA+B/BHCxqqrrPg/O7GljTa35Uu5ON+Pw\nM50Bu/+HxbSxnAGrHLi2FtbQH6I71B5jYzYD983CNbESPv5jeZkDJABdIDZ3gHNtLCz2WEvA18C0\nlZj0scmXEN25BxF8luuOGWO+1xjzUzf++YXGmAc9dD8I4EtVVX21qqo9AL8O4M01P/89AH7N56EB\nbpYV0ixaWimJ6QxWVznTToC+njbffhcGiF1ZARYX/fU63bnLxSx7xHzjvo43tG9Vw5lmDiJoYo9D\nm/pDRANoi7FHicN5jN5Bp/uk9rT9HwC+GRZUAcD6jd9rkjtgd7w5eerG790kxphZAN8J4Dc99ALw\nd7qxAa60UtLEBLC72/xzzA821NbMnrYQ2l1LKUlD6YRZSmICby2shIaJ6JhhI1b/j4Z9mpp62pjJ\nE9vWOYmMEisiLPEBba+vquoHAWwBQFVV1wD45J4eBZOvy98H8P/6lkaBMPaHBdrYk3Yhum+5Bbh2\nzU8vM+AzDv/hYZwzYLBhgO0H8Z3iYzRta8qUgfygjVkeZZf8tdiDyZbmPtOaetpY4BjQ0+etpSKS\nmz1mic+j7t7oTwMAGGPOAfDpzHoawF1d/3wXLNvWT/5rNJRGH3300a///YULF3Dq1AXaziLWVFIo\naAvRPTPjd69jLO2ecxBhc9MuPwzpd2E6g7Nnba+TtG52ENIA2hisBHMQgc20sUAba7kuaxBBU++x\n081gNTW0sRwchA0ihOrWlIgMk2y4ePEiLobchxUpPo/68wB+C8B5Y8zPAPivAPykx7/3cQAvMcbc\nA+AZAG8F8HDvDxljFgF8K47Kr32lG7QBwIc/nJ8KDg2eDlhVVfPSxJiMNndDJxOkhDoZJmibnvYD\nyJoCXIitQ7aDA2FDMKEOndm3yhrMODz02zqvKcDlZtM1+SUgf3m0VKZNW+8xw9aDvvELFy7gwoUL\nX//nd73rXf5KA6TxUauq+jfGmL8C8IYbv/Xmqqo+5/Hv7RtjfgjAhwGMA/jFqqo+Z4x55Mafv//G\nj/6XAD5cVZVHGDwSDQEuVPfkpA34PiXbmMNfGu3O7OGam/PblM9u2mbYo9SmbW0ghVG2M+bouX1A\nmxaWhglScpdH2T1toQvWS0tEQnWzetq0DNcYc4Q/QskECRn4qMaYM13/+DyOypeVMebMjd62Wqmq\n6kMAPtTze+/v+edfBvDL3k98Q0o8oIB9yU1OrKrClwKzmTaG4/V1YDGN1WfPAp/+dPPPaQIpWs50\nqO75ebvP7OzZZt0npWnbJ5iX2tNWInushaUpcbgmRDfzTLPK5ylEhirQBuATqB8meJHwswQJM4P7\nxCf89mCxnIHL0kPunWP14QH5l+vG9OhoYK1KLSWFno/Tp22P39131/8cszyqhWlzuhmgfn7e7uhr\nEm3ssQamTQtoY5dHS9xdmrsCwGQ1GTLwWFRVdc8QnyNYmBncY4/5gQTWQSr1gMZ8sGtrzf0/sSsM\nWBkty4GxQZvPShht52NU+3/cQuKQ4ZrTp4HrHvP1moavcts5VnenY1cYNYmm6dGJCWBnp/nnfEr3\nvcICm0yyQUP/IEOYy3Wpwvxgf/zHgTfXrQHu0s0AE9ocGEv3zIz9a9P6DHa5h8mksAJcqD0++lHg\nX/0rP92aysWsd5i7bOf0hrDpzB5QZjkQaF6/w2Z/Qu2xtMQByKOciDjdIc+9uGh7vJuEWR6NBYS5\nrrJiLtelihZqnKGb6XQ19UqMjdmBAR97MFcYMHsltDBt998PnD/P0c06exqcbow9rl4Fnn22/meY\nfVYxzHTush27TUFLC0SJFZEQ3aHPHQKOWTFg5Jg2xC/XpQq7fp+zzq7RgeUEyOzyqJaeJeaZftWr\ngG/8xuafYztHLeVRJtMGNDNomvqsnG5m2c6XeQyRz38e+OAHm39Ok62ZwzUaQFtMYsYEVqwkJ+f9\noz6gLXa5LlVCnG5o/T4306atVJAbtGljHlkBjr2IlBnwGSBWQ6YcY+uXv9z2qzXpDS2vhNhDC/AG\nwsrFIfLa1wL33tv8c+98J/DP/3mYbma5mDUxzzzTH/+4HdBrElZixryabW+PN+jGEB8407tc9z8A\neDf1qTwkN5Bwulk9bVqmv5zu3KBNWxBiMW25z7QmgMwqyTjdOZn6T34y3OlrYCU0lUc7neaJ5Vhh\ngjZfkBIDJFhn+vWvB+680083i2ljxYDSQFujeWOX67JllAMcu+myNNCmrTzKsnVuOwM8W1cVdxBB\nU3nU19ahwvZLPgE/JsD5lkdZFZG3vQ143es4ulnlUSaQiDnT586V1wLhOzE/cqANAG6AtOxArVt8\ns4rQJbWADqaNyf5oyuByM21sABTy3BpAG8vWh4e2zyt0WtLn3O3u6rlLEfCzxy232OEQab2A/f+a\nnQ3TPTGRF0wwz3RVhV/NxgRtOcExwLO1+8YZd0RrLI9qnh5VKbkPKMDtadN2QHOXR7WU7ABettx9\np12dlMgeHxw093n1iu+501ZKYn7juXv8dnc5ti7RT1dV3IR4iUwbs0LESiaZ/kP7IIJKyX1AnW4t\n5VGmM8gNkJnl0cces1cwhepusocDXyH2MMbvPZYI2nyuFOsV33NX4pnWtEsNyB/gSjzTbil4CLPk\nfrYpMSsRtGlMRHIDZIa0oK2P5M7grlwBvvzlcL2jzLSxyqMf+5hdphwiPs7A2TmkHOh0j2KA63TC\ndAKjzbSxWQkmaIspRTfZWlsby9gY5x0CfrYu1U9r6rVl+4+iQJsx5lPSDxIquZ2u080IcL/0S2E6\nAR0HtERnAAA/+ZPhupvsEQM0AR2lJMaZHhsD7rknTG9u9gdombZeaZm2NL3A6II2NtOmqTyqchDB\nGPPdfX67AmAAvID2RJ6S2+kCcWDCJ4P7B//A78qhbmE1xwP2gG5uNv9ciUzbm97kt3S2W1hO11e3\ntgDHKumGOF13JZq07hIDXImshDY/zXqHABe0lcYej40d3cNbV5VgJiJM3Qype9RfB/CruHmRrgEw\nTXsiT+nuDajrKSiRaZucBP7u35XXC5SZwbEHEVh9eDGgbVRZidiBD18gEVp+1RDgtLESTXcAO91a\n9rTl9tPM8ijLzkCcb2KdaTdt2vSOtC0bzjk9WmeGTwH42aqqbiqFGmPewHskf3Evpa7HosQMjjmI\nUOJ6hBKnR0tl2lhDH7FnOnd59NIlzv4wjT1tPn1nVRX+3D623tkJ90saEhEWaIsFEj72uHLFrpwJ\nEaY9nO66d7S/D0wHUkUhcSv0fExM6Fz58d8DWB3wZ28hPEuwlJrBsVY65K7flwjaWMGTCdquXgXW\n1sL0lhjgfCftmKXXy5fDS6+5y6Mx75DF8AJ+tmYBCSD+TPucO1Z5lBm3trc5ZzqWeWTFAF82jN0z\nLS0DzVBV1f9T82d/yXmcMPF1NMwMTkuvRO4m5aqyfW+lgTYWQGYGuGeftcxEiDBLa+z+n729+uWo\nzPLG3JzdBh8iuc806xtPOdNNtt7eDmdScvtpZnmUybSxAOH6OjA/H6bXVze7PMr6FhkSPD1qjHmH\nMeatxpgIFywrPi/l4kXgK18J01tir4TvB8vKWFw/DGPzeInlUSZom5/Xcy2Pr+7YAMdigJg74HKf\naW2gLXefJstPayuP+lZbWCB2dzccePvqjkkmfb9xZrxlSMzKDwPgP4e9RD6r+Bz+1VVdl42znIHv\nB8sqJe3tWTDB6v/RVh71aSTW1KScG7SxAxyrdMIs+WvracvJtJ2U4RpgdJm22BUopTJtGqdH+0pV\nVe9jPEiM+DiDb/xG4MEHw/RqyOA0lQN9MhbmB6utPOrLtGly6KMc4JhDDixbl9gCoQ145z7T7PJo\nTNUid++xtp62lmm7IcaY/0b6QWKEBSZ8Dz9r4ik2C3fTXXXCYtpi6GuA98H67MMDuEG5ZSWO69VU\nSvLR6xrRS2SPNYG23OVRTb3HQMu0xerWNkCXi2mLvcbqfxJ9ikhhlZJ8Dn9VARsb4Y2XU1PN+5Bi\nDlH3vhtp3Sw7A22A6xUNAa7E8mhskiOt1+lmJSJuEWmdsEpJKfYYxZ62lESElZiVxh4DfnGLdaar\nKu4KtZxM20AzNFxVdZ7wLMGSs//H6Q29W/L8ebtGoE5SMrimf/ekgLbpab9loRqZtpwBjrWnTRsr\nwUpwAF7A911EGstKMIAEwO3jbROR43pHmWljJSJjY+FxXGtP23kADwFY7vNnf8Z5nDDxcTRs0BYq\nk5N+z5yS0TLWI5QG2s6etUMoTf9uC9qOS4ytZ2aarznTVh5lvkMmiHW6m0BbqG5fhpf1jZ+k8iiT\nTc9ZDiyxPMo80yype9zfBzBfVdUne//AGPNR3iP5C6unbWvLrgqpkxhGArCoPmdZRhto89U9Oxum\n1xi/ABfz0Wpo2mYGuFDneMstwBe+UP8zGnv8SiuPAnZv3Pp6fWLGYiVSkknWQvFSy6MlMm0MgsTp\nzlUeZb5Dlgzsaauq6m1VVX1swJ89zHskf2GBiTvvbP6Z2MZ7X9CWUh5t0q0JtP3O7wC//dsc3T62\nZmbhLGfAnqRi9IC25dHjEnumz54Frl2T181MRFi2ZrLHCwuWqa8TjYkZi2nz+cZbpm04EjuIoEJY\nAa7TAe6+u/5nUpg2VgbHavhllaEB4Du+A3jRizi6cw9maHLoc3PA177W/HOsSd1Ye7DKdkzg7XMv\nYco3nrP/R1MFgAnazpxpBsfMRISVPAH6etrOnrXXmEnr9o1bsX66BW0R4vNSmBdgxyL0tjx6JA88\nYLNahm5fW2sK+Kzg6XuvY2wPKOtMswAy85k/8hHgfQ3bLFMyfB/2+KSAtsNDTsLga2dN3zi7p42V\nmC0s2E0MdcKciI79DjUOIqgX5p42Bl0LWFaCdZBYh7TE5boArzzKKkM73Yweru7L1wftHYvdS+bL\naJ6U8uj3fi/wxBP1P8NkjzWCNgZAdhN/ly8Dt91Wr5uRiMTGgBJ72sbGgOeeq/8ZZnIdY2vfuNUy\nbUMU3yyccY2VxvIoi5UocXoU4PbSlDaIADTbmu10NdmjqprvJE4pjzZJrD18ExFNoI0JkO+6yy45\nr5PYkn+TnWNjQE6m7fDwaHVMqHz2s/V/zk6uWYMIsUvh1Q0ilCA5m7Y1lkdZo+SlgjZWeZS5HoH1\nDgEeaGNORLMCXFM5JlYvkP9Mx5aSWHvafuM3gA9+kKObZWvf5Fob08byHffcY3816WYl16zyaArw\nzsW0FV0eZTXIs8ujzOlRhuNlHv5Sy6OjyLQx2WNt5dGXvrT5Z9g9XNPT4bpZ5VFmsvDss/YXQ3fO\nnkdtTJvPAIw2cOx0M8qjo8q0FQ3acva0xX6wQPOm/tiD1DJtx4XFADFZidzl0VgHVlp5dHy8+Uy1\nAe64xNrjZ34GWFnh6PYFyIzyqDamzZ2Nur5VjWc6Z3k0No77AGSWtOXRPsJk2n7sx4D3vrf+Z7Q1\nsbMzFpYzuHKF00vDZCVygzaW0/1n/wz4hV8I180608wJYOakXYk9bTltXVVxtmaV7ACerY1pBhNa\nQVuu8mhs3JqcBHZ3w/89CWlBWx9hHlAfWV5udsz9JGevRGwQYtp6fx/4vd8b/Oerq7aJmdH/o41Z\nAnigbXcX+PjH63/G5x7YfsICyD6Xr2tjf4Byp0dzgbbYxntfRpMF2n77t/32KvZKiaAtJ3vcMm1D\nFp/gubfHycJjX/bP/zxw4UL9z/zLfwn81E+F685ZHt3b08e0AfUXAbtMqWXarMTa+T3vaZ7E/P7v\nB9761nDdvvYIfe7uy9fr9GoLcH/+58ClS/K6fez8h38IfOxjYXqd7lygLQUc+/S0xZZHfQL+hz8c\nrrsJTGhMrkucHm1BW6T4BM+9PUtlhgizPHruHHD+fPi/5yPM8qgPOGaBtliA/A3fALz61YP/3AG6\n0Czcl2mrA4x1uksDbffd1/wzt98OvOIV4bp97PHYY8BTT4Xr9gn42gIcAPzojzbrZiRmTfcxDxKf\npm1tZ3p9vZk9ZjJtt9wC/MRPhOvOzbTFlvxLmx7NCdqKHkRgMUA+i0hTMpamZ37zm4E3vjFctw+I\nXV7mMW2h4BjgBrjz5+uf++DA/6aAbvGxxw/8gP3rr/xKuO5cE2Cxdn7HO4Avfan+Zw4PecxjrDQx\nQCl2ZrUTAMC3fuvgP6uqOHbJx87veIe9cihUcpZHY890E2BzulkDY3fdBczOxumu8x+XLjUztf2E\n6ad/9VftM/2jf1SvO3bfalUNTqBbpm3IkrNslzI51HT4Z2ftXZExuusOkisHhjJLPk5md1dfedSn\n3yUmUPjYo+lqrhTdLHukMAc+QTlmoafPN37mDPD614frbgJXKSVuVk/bW98KfNu3Df5zl2iGsrw+\nycLhobV1qPh84//23wJ/8RfyumPB8Td/c/PPsAcRYnQ3Ncg33WowSJjPDAB//Mf1fx7jm4xp/sZj\n32HOQYTimTafsl0KAzQIiKQETp/DHxPgmgK+c25TU2F6S+1pa3ruFCDRdO5+5EeAra043U223tri\nsBIpu/aanpnJtB0eckDsr/4qB0gAPP8RC1KYV/742APwK7OH6o4FEi9+cXMbC3PlR8ogU509FhaA\nb/qmcL2+Zzpm9+CZM8C3fEv9z6SUMeveU8u0DVlyMkBMViIlwDU1oc7NnRzQ5sO0McAxwO13eewx\n4DOfCdc9qkwbC0w88EC4Th+9AM/WsSCFyaT42ON1rwNe8xp53cwzrZFp8wH12vz0I480M+UsgFzi\njQhFg7amF1JVaRM+TYefyUqwmDaWk9EI2po+LBY4BrjTowDwd/5OuG5WyZ/NtOXq8VtYAB5+WF4v\nwOuJZa6a0Th5mNNPl8i0aXyHvrZmnY/SbkQYadDmnHkMAGJlcL5NuYyyXeoHW7fTSiNo8+lZYrE/\nTIB89iwwPx+ue5SZNk09fsw9baPKtLF0s8APUC7TxnqHLN1uQTLD1i3TNmTxabyPbYwssTzKYtpc\nQyeLpWGtV8k5iMBkPDQ6dBbTxtyJlxO0aetp656Yl9bNZh4ZIHZUmTYm8GaW/MfHOSuUWqZtyOID\nUmJeCMB16KzyKItpc7oZwSJ3eZQ1iMBkPJilE43scVMLRCwgZAb8XKxErF7Av3IRKrmZtlJ72hhJ\nn0Y/zUomgZZpUyesfgZgNEtJsY7AV7fGAMcoj7KZNhYgzHmmv/hFztVs7h3GZOGs0hqTWWIxKU53\nrp5Ylq1ZvYNON/PCeE3feM4zHQusnG4G0+bbe8yQkQdtsSAlN9PGKCWlZixNLJ420NbkDC5fBr7w\nhTi9uZk2bQ696Zk/8hHg8cfDdbOABJCXaWOWuFMSs9KuQGK9Q3c3bV2iwWTaWO0VWtlSBrACeExb\nWx6NlCYnw3ToTJDy7/993A4YH3vEOnQfQKjRodc9cwxgA7hON+e+LCbT9oY3AG96U5zunImZtjP9\n/7d33nFWVdce/+0ZQAQsFBUQFFCqvYFiCfYSa0SUp9gV8anRaGyRZ4lRJCaisQR70FgIaECjsUWU\n2BABK4OIKAgiSBOUNjPn/bFn57R9zr1z9lpz75ms7+fD5849F9Zc9tln77VXzaOlLY/uUc443sZs\naeOY0+VqaRP3aAa4FAkA+PprYN68dNlcpywgW3slrkQEIL/u0TTZ7du7KRJp2bRclrbaWv17OTKi\nOU+dnJaDvM5pDredy5pX6oNZOR1EipEtlrYw/00xbWJpywjngg6kV7TnPLF066Yby9eXUiciZBkP\nzwMmTkz/O1wnOO5TOOeiyxXDxXXq5FJiyzUEQixtPqW2tLmseaW0tHElInAezLjuoYt7tNCeKJa2\nBoQzEeHAA9NvJqcrKavsUlrasi6OXbsWtiqW4wmuVIWMXe7h3LlAVVXy5+W4oJc6BKIck0k4Y9oa\nm6XNdX5wWGmKmR/lFrfKuW9xukcLrdNiaWtgOC1LlZWFaxaVoyupVJY2l01oq63S/w6npa3cgrY5\nDyL77ZfewqxcLUulsrRlndMdOgALF6b/nbxa2srNtda0KbBuHb1coHFa2jjv4cSJwIoV2WSXyj3K\nqcRykWuljdOyVFHBo7RxupJKbWnLuuEXKgVRjpY2LiWWU0lp3jw9Do8zTrMcrcdclraNNuI7mJXS\n0laO7tEOHYBFi5I/f/ZZnbmcBS5LW6E57RK3yhUS0qyZVo4LrdVPP11/2VzKsZFd6B5KyY8GhHOD\nq6gobdA2h9m9HF0nhZRjI5tjs3DZ8Js2LY2lrRwPInm1tL33HvDUU8mfu5SLKDQen3wCLF9ef9mc\ngfdcY12sUs+RbT16dP1lGkplaXONW+W4hy1a6EPfypXpf2+PPeovm0s5Bkob48dFo1baXE/hedvg\n8pg9WswGx+keLbfx4FS8C4111vEwxW25LNNccxpIV5w4rcdAuoUoiWLif7iCtrOO9ZIlwPvvp/8d\nl/UjbawHDaq/TANnTBvXnK6pSU+g49wTd94ZOPHEbHLzaGkrlXvUYbkrPcVscOVmleCOZ+C0tHEV\n100bZ/NZ1hIXpUpE4LIclONBxMiurtZuFErZP/0EvPpq8ucuc/rUU4FDD6WXXYz1GAD69q2/7FIW\nIs06Httum/65KWKb9RlPG+uDDy6/Voac1uNnntF/zjjD/rmL1aqYtTrrvlVK63HWe5jl0EVBrpU2\nzjptXFaJykrg++/1QpVk/s6jpY1rg+MOJHaRzWGV4ExEKDTWrm4IjrEeOTJ9ceSMact6eCrGerzp\npkCbNvWXXYylLet4TJumu1bsuaf9c5e4s7T/q1k7srgDC411TU02ZRAo7lnkdI9mYcBPLqXuAAAg\nAElEQVQAYLvtkj/fsCH5YFWIQmPtoniXyj2a1dK28cb6de1a7TZuSMQ9mgCXVcIsTFzaP5eljUsh\n5FTaxo8Hbr45XXa5xfhxx2lyW9qoZZ9ySvrnLuNRTPHULBtcMe7RrMpEMRtcVssSAIwYkfyZy5xO\nG+f169OzmtPgsv4Y2aUorltdDaxaVX+5ANC/P9ClS/Ln69dnnx+F1o+sc7qUiQhZ16VWrfRrln7K\nrjRqpY17g8sykcwmwHHC51RiuRRCLosmoNtUrV2b/DlnIgKXpc1lUy5mrLPK/vFHnhpwRx6pN6Ik\nXKwShTblrBucUtqSnpapm1WZqKwsXOLCRWlLcqsBOnEjLV4qiUKKJqcikdX6A5QuEeG11+ov01BI\niXWxtHEpyKUu+ZF17rVsKUpbveGMaRs3Drj+enrZrVrpm500kVxiuDjdxcW4ZbJaJbjqLBWKpSnX\nTLu0Oc256LqMB6CL96bJ5rDSzJwJfPhh/eUWIzvrWCtVODEjqzJx773AmDHJn7u4kk46CejcOfnz\nqqp0y3USXBZNgNc9+tVX6Uoql6XNRekupMS6Ksgc7lFOl38xh2CucBMucq20FVPtOOtiAOgNIQku\nV1I5xlkBfKfldet0jF8SLuMxfDhw9tk8sgtZ2iZPLlxg1UYxrqSsc3r5cmDBguTPXZW2bt3oZRea\nd/fcU3+Zxcp2GetCCnJWZeKzz9I/d7EcFFPGYMCAbHK55jSne3TNGuD225M/57K0dekC9OxZf7lA\ncXGrLgoyx5yurS2cbMTZxspFaStFBmmulbZCk9/lVAEAhx+e/BlXgLyLu6eQEnvZZbrYZBa4rBJp\nVjagPK1hxcgGgA8+qL9cTlfSww8Do0Ylf+4y1jvtlH7/XZS2tHmX9oy6ynYZ6+rq9PuYVZm4/35t\nqU/CNTswbTwOOAAYOpRebrm6R4F0FzdnyQ8TM1VfCikS3Ja2LHN6woT0z8sxexQQS1smOF1JV1yh\n08WTyKOlbd68bHKNbA5lYvvt9WvS5C/H4HigsIIMAAMH1l9uMeZ8F+txGtxjnWV+FNrwd9wROOGE\n+sstRrbrWKcp7VmViU6dgL32Sv7cJeaRq0OEsYYlKUAu4/zee9plnISLe7RHD2Dw4OTPuSxtrsk1\nhSxtLvODQ0FOc8kDvL1HOZMVuci90sbp3uAMjkxaHDkViauuAvr1yyaba6ybNOEbj0LWQc7EjE6d\ngI4ds8nlciVdfjlw3HHJn3OeaF2sElz9YznddkByKQCz0GcpccGdacfxvCiVbpVwsf489lj65y7u\n0V69Smdp47L+uMyP2bOBKVOSP//mm2xz+qSTdFmYJMoxexQQS1smCikpLosuZ42vNIWQU5Fo1w7Y\nd99ssospNeAy1hyWx8bYe9Rlg9tuu8KLI4eC7HlufSs5T8pcrqRWrYDNN7d/5qJIcAZWcz4vXN6F\nXr3SP3/hBeCVV7LJLlX2qGvVA659CwAmTUr/PMt4NG2a/u/KNURGYtoywLnBcWrohSxL5VZLDSjO\nAsQx1pyWNtex5uoQwVXyo1QbvhnnrL0U89aKDNBW1iTZS5dmX+w5OyJwuUcLyXa5h7ffDhx1VPLn\nixYB7dtnk83ZxoorOB7Q5Xe4ZKf1Fq2oANq2rb/MUhbXzaN71OH2lR7OmLYmTdJrfHFtFpwxbZyB\n91zKBKelrRw7RHC6v7hbIKVtylwuO073KNcz/sMP2WQauVzlEYrpEMEhmzOr/Wc/0z0xs1AqS5vL\neFx5pX697z775y7PyyGH+DHIUWpredtYlaPxZcECbaxoaBq1pY1TQy9H92geG8YDvIkZnJa2UrhH\nORVvrjnN6bLjdI9yWtMLufWS4LbE5s3Sxu0R4dhfOOtpFoJ7nc5qTS/VPXQd6yeeyP5vs5Jrpa2Y\nyV+O8R1c7lFOs3sx48FRuLecLW0cVk1O5ZgzTpPL0lYql52r7ELWY64i15yWWC4FmXs8ONe8rJa2\n5cuTP3cZ59tvT6/xVo7POKf1mHM9BdxKimUl10pbMTckb4uBi9xSdkRwHetSWdrKbTEo9amTQzZn\nI3pOSxuXZbocrT9A6ZRY7jAFrrmXdazNGCb1F3UZ527dgN69kz/PozXdRSGcPh148sl02VnHeost\n0lvscdGoY9q4FAmAbzEoVxdmqWSXq3WQKxGB00VVKvcodxxeObpHuUIginGPtmiRXXYpFORyPYik\njbVLDJeJs+ZSYrm8LZyWNq57+Nxz6Z+7jHWfPpI9Wm9KGc/AucFxukc5N/y8Wdq4FE1T4iJrIdKa\nmuT6UHl0+efR+kMhuxS1B8s1BrRUShv3YTJLDFfTptpKkxTE7nqYLMU6zWlNd5F9wAHpn7vOvbT9\nlotcW9qKCQYvR6sEl5LCXf2Za6w5ExG47mGapc1UBs+yoJtCpEn3qlxj2jgtbeIe9eFMRMhjTFsp\nY21d4pm4smk5ldhSWtOzyr7ggsK1KbkUZC5ybWkzFYmTaqVwKRIAr5k5b6ZxgE+ZKFf3aKFN2SUj\nKY/xUFyWtlJZf4zsclPaijmIcCZ9cChteTyIuMxpI5srMSNv1vSKCu1Z4GplWIqDGSe5VtqUKp1r\nrRzjXThN4/ffD/zmNzyyG5t71OU7G9l5XNBLcQov15IfnCEQparTVq7u4rwdrgE+JZYr1hYorMRm\nfcaVSh8P7jmdN/dorpU2IP2hLWf3aClKfrgsBkkteYKyy01pK1Uigmsa+U8/Ae++Sy+b0w3BmVnG\nteh6HjBvXrrsvM1pzo4ZnK61clynuZQUI7tUSmy5zWkjO28lg0rlHs11TBuQPnDlqrTlseTHtdcC\n//63/TNj2i63xaCUljbX4phJGYCc4/HWW8llCFxkuy66tbV6jtliBKurgY03zib7oYeADz5I/pzL\nbcftDizHDa6qKrk2WTlb2riUFDOvk2Rz7Vtcc89ViU373pyHPs5DDheN3tLGtRisWlWeCzqXpc3E\nDybJzRp4D6QrsSNGAH/7G71coHwtbTvtxKe0FVpkpk/PJpvL0hZMzLDhMtZXXw20bp38eTlu+MVY\n2sox/gcA7r2XXi6n+5zrIALwzelSuUddx4PLkMGttIl7NANpA+capJw0iTwPWLkyu5KyaJFuGm2D\n01zrMvkLLTKugfdJsrMqEYXkArz9Ul3Go1SncADo1Cm7bK74n7R57TIe7dql96UsR1cSZyICp2ut\nXz9g0CB6uZKIEKbQPSzHZKNCsjmtxy57gGSPZoQzpi3pZpsaWlkL633wAXDmmfbPKAIj02p8uSix\naZY21wc26R5ut112uZWVwJdfJn9ejk3ugcJWTa4Nv1074OCDs8nmjP9p1gxYt87+GZf12MguxzI2\nXIkIhcrYeJ4esyy0b5+8Lm3Y4BecrS+ljD12mdMzZwLLltk/27Ah+zgXGo/164GNNqKXTeEu5nKP\npj3jnHOPi0Yf08axwZkHeYstsslO4803gX/8I9u/rajwNyLbZuO6wXGcDIH0sT7/fOD777PJXbEi\n/XOXhZfTPVporLMuuoVcSZWV2e/jo48Cm2wC/PKX8c9cF/RmzdILkXIpbevXuy3oXHXJTPFlm6Xf\nRUHeaKPkcTb/l6zehbQ57TrOpQi8d7UsAcAf/wjsv3/8+lVX+Z/Xl0LuUZex5nSPclnqFy8GXnst\n+fP168U92uBwuanS5NbW6omfdfLvs48O7Lfx+99nk2ngdBdz1MMDCo911lNnoXY+XI2IOd2jrifl\nNCuNy1ivWgUsXGj/zHVBT1Mmxo5NzwBNI02RqK3lczW6PC9Gafr2W/vnLt85TTmeNi2bTEOhOc2p\ntGUdj9ra5AOj65wGslu10yjG0sZ1EOGytLmM9T//mf65uEdLQJqSwpU96rK5AVppa9Mm+79Pg8uE\nzeWyAwrXrcs61t2769ek7+36wCbNuxkz0t2yhUgba84NzmWs03C1SqQpE4sXA7ffnk1uMYpEVstS\noefQdcNftMh+3WWs08Y56XqxpM3pdet4rD+A25p31VXAmDH2z1zn9GGH+etTlHbtgL32yiaXU2nj\ncvkDwDffAGvW2D9zGevzzkv+zCignDHCHLAqbUqpI5RSVUqp2UqpqxL+zgCl1HSl1CdKqUn1/R1c\n2aNcigSQ/p1vvRU45pjsstO0/xdeAN54I5tcbvdomsXDxSpRqGgjhyVl4sRsMg1pY+2ywRVaZFzG\n+s47gYsvtn/mqqSkKRNA9gbpXMoxwLvBAUCrVsmyOSxtHTtmk2koNNYccVaA21gnxeAZuVzZo4MG\nAaefnk1uIZdduVraAGD06GTZWcd6iy2Anj3tn7k+443OPaqUqgRwN4AjAPQBMFgp1TvydzYHcA+A\nYzzP2xHAwPr+Hq7MMi5FAkhf0DfeGOjaNbvsQhNp9uxscteuBV5+2f5ZubpHC8nmSvdOOkEXC5d7\ntJBVwmWsOeN/0hIRdt8d+MtfssktFGeVdZwB3qDtbt2SnzcuS1ttLbD99tnkArwxbVzZo7fdllxU\nnCJ7NOkZd9lfCrnsuCz1FEpb0lrM5SFyTZBqjO7RvgC+8DzvK8/zNgB4CsBxkb/zPwDGe573DQB4\nnlfvkHPO7NFSKBKuVrxCE+moo7LJvfdeXanfxrp1yTE2xcA5HlwZYGnj3Levdn9k5c03gVdesX/G\nucG5zGvOIOW0sW7bFth002xyueKsgNLF/7hsRIWydF2ew0JjnfU7F+o/7TLWvXsD++2XLNfV0lao\n7mUWCu1bLgrhrbfqPzZc53SHDsDhh9s/c+1rWoqCwJxwKm1bA5gfeP9N3bUg3QG0UUq9rpSaqpQa\nUt9fkmbxGD8+e+ZhqRQJVyte2nj07AkccEA2uWlWh8ceyybTUGih4bLicSYiuJ46//xn+3VO9yjX\nZkFRw4ljrBcsAD780P6ZyzgDvPODK16O8zlcsSI5m9u1byWXgsxZpy1NaSvH7jIAsHp18meusvv0\n4e2oYoNCaWtU7lEAKREB/6EpgN0BHAXgcADDlVL1ci4Vsiw9+mh9pPmkPbCcioSrFa+Quzjrg3XD\nDcmftWyZTaah0FiXo3s0LRHBNcYPALbZxn7dNUU97VlZs4avITjXidZlrBcsSP6MW7Fylc1R5DRN\nrutB9bnn7OVgjOxyHGvOOV2oWHnWseYsRbTttsmfcc5pLveoqzW9MfYeXQCgc+B9Z2hrW5D5AL73\nPG8NgDVKqTcB7AIgFnl1Q0BrGDBgAAYMGACg8EZkq4NTDNyWNk7ZacpE1snfujWwww72z/r1Sw72\nLIa0B/bRR4E99sgum8uVxLkpH3cccOyx9s9qaniaupueoxzZkhTxPxzJRr17J3/GmRHNqRByzWnX\ng2oarocczhZInHOaw9IWdBdH9xHXcR45Ehg3zv4Zt8s/D+7RSZMmYdKkSdkFFvt7GWVPBdBdKdUF\nwEIAJwMYHPk7EwDcXZe0sBGAfgCsJQWDSluQtIVmt92AwdHfWCRpisSsWbrUQFY4rXiciRlpymD7\n9tnkGtlJ3/nbb4Hnn3eTzZU9ynWibdeu4dtYmd/HFaTMaWnLOtY775wcD0eREV0q9yiHy58i1nan\nnZJll6OVhtvSxhHTFnQXR2WUq0XTyM67ezRoTAKAG2+8MbvwtN/LIhWA53nVSqmLALwEoBLAQ57n\nzVRKDa37fLTneVVKqX8C+AhALYAHPM/7rD6/h8uylDZB09wqxcpOi2njsrS5NiLmsHYA6WO9777J\nAaqusrkKK5bzppzmktl88/K0tHFuypxzeu1a+2f/jZa24cPTu1qUo4LMaWkbOxaYOxc4+eT4Z8uW\nuSvItnlQruMM8FlLKyrS24WJezSC53kvAngxcm105P3tADKWxyxNG6vevYEuXbLJLSR77drsGyfA\np0xwKcdGdtJ37to1PZbCRTbXhs85Hpyt2ThdVOUY08YltxjZzZtnl8011mnfeckSXTQ6K02aJGef\nc1uAyjFOEwDef99+/cUXtbJx6qnZ5CaNR7kqVgBfnGZNTXJGtEt8MFA4NIuLRtERgeuU9U00Aq+O\nmhq3jgZp3/mWW4ARI9xkcyhXnJalQjFLHMqE57lbHrkSEbg2obTyCOW66BrZpXAHluN3NrK5EhGS\nvvOVV6aXi3GRXa4WIE5LG5AeU3n00dnlJo0HRT3NvLWxMmu07XtzZo9efXV2uQV/L5/ohoHrgTUl\nLmwZJpzFZE8/PTngvxhKFdPm8sBOmqTH9Ior4p9xLTRm0eVwB1Js+Bwu7mCHCFu8C+fGyXWidRkP\nzqDtxpaIcOGFwB13ZJNbSDZX0kfSvS0WTkvbtdfqQuo29tpLF43OStKBslzDNoxsDoXQdPJYvz4+\n3pzFdV1i3gvRKCxtHMpE27bahZF0YuE6VTRvDmy2WXbZXA8Wp6Xtm2+S62VxWTw4T1nci6OLMlFT\nY2+wzqm0laulLa3Gl+u8q6lJ7g9arptnmtyNNwb6988mt5BsCktb2j3MejDjzh7ljGvm2LdKFdPm\n2uWjZcvkPYCrFmNS8gMFube0cbvtbA8W1yJDJZvDSsOppNx8MzBlSrJsDmWC85TlOh6cSR+AvTFz\nXi1tFAoQR9D2qFHA/Pn2z/JoaeNUvF3n9Jdf2gv3Vle7xRxxuwMbWmnjdENfc432TmUN7eG0aiaN\nNUVMW9pey0WjsLRxKm02jZl7g+Pa8DktbS7jUSj9ncNNRbXZ2yhnS1ufPvbrnIkI3JY2jmfRVZG4\n5Ragc2f7Z1OnJgflF0PSd/Y8Pksbt+LtWgNu/Pj4taRA/2IpVXINRYF129rE6SECkgP+XWVzuV45\nD+6clrZGr7S5KhNJZncupc31wXrxReDtt+PXzSRyie/gqkuWdurkjGnjtLSV6/xIGuuPPgLmzMku\nl/ukzDUeSffR9R62bw90T+jt8v77ugRGVpLGw8QqcrQi4zzkuN7DAw7QpYGiLF2aXSaQPqfz6B7l\nXJdc4R5rrhAZUdoywGnxSLK0rV4NLF/uJpfz1Pm739HLNWPBkXmYZml78UXg00+zy+aMaeNMRODa\nPJPGesyY7DIBXtdabW2yZYrLqsl5EAGSa7gVA9dBJK/W0k03tY/H1tFO1/WE09JW6KBarjFtSd/5\nvPOS+yUXQynGmiKmTdyjGeCM/0mytA0ZAkyfnl3u+vW6F58NipilE06gl2uCtjlcjYU2uKqq7LIl\nESFM0li3bZtdJsCraD72GHDRRTyyuawSaQeRjTcGHnggu+y07+w6p1et0m5Watnc67RtrFu1Si+r\nUQjOg0jamsflBeC0tFH0427o+EHXmDZxj2aEO6bNdrNXr84uE9BWjbTWGi7fedgw4OCD49ddxwJI\nXww4lGPDXntllz1pkrbWRSnnRARu96ht7p14IrDLLtnlcgXHF6JcY9rSNuV99+UpGO26dhirw5df\nxj/L40GEwmLF5fKfMkUnq9hwbWSedKDk9AC4unS5rbxcddrS1mkuRGlLYdEi++CffXZ2mYBfA84G\nhYuDw4UJJC8GXG5oANh+e7sSWh/+aOlmS2GVyKOlLUlB9jygU6fschcvBj75xP6Z63gMH54/S1uh\nhuAuG9zy5cB338WvU1jDgq9Byjl7NGmsXa0/nIrE008nf8ZVioI71pZDQXYtgg4AX38NvPNO/Dqn\nt0UsbSkkDZy52a7xYePGxa/ttpsuNpmVtGrJrhMpyVVQzpa2H38EXnjB/pnrwgsAPXvGr7kuummW\ntoULk/ssFgN30kdSRrSrIpGEqzKx6ab2g87y5To2rBxj2tKsx65jPXGifQ2hqNLfsaP9eSvn7NG0\nhDGO2DDAfTx+/evk/zOX244ze5RLQTZ7uEtrRwCYOTN+zdWimbYHTJyYXW4hcq+0pU1Qiptt24xc\nJ+gmm9gVCYBGabMtYIsXA99/n10ukG5pcxmPu+7SipsNV6vEkCHAJZfEr3Oaxh95BPjtb3lku471\n228DEybEr7vO6Z12Sv7MVZlImtMmTKFcLW1JJRAoDiI2KNzQSYc+Tkvb8uU8rmiKOCsuS1vfvsDx\nxyfL5nCPjhkDTJ7sJrehkycoDiKbbgocfrhdtvQeLQFcwfGGbt3i1yhSsrmCUJMsKc88k12mgcvS\nlobrYtCyZfIm5HqaTbKGucJdXPfJJ+PXXOd0587JTdApsr9s99BsyK7Pou0+fvaZW9bynDm6jIoN\n1zl96KHAwIHx667jDPCFV6RtcF9+aY+jK5Y5c+xdPijqnXFZ2tISVbgamdtq2VHIBfgUZIo5vdNO\nPHtAmkeEk0attLmeZg84AOjaNX6d0+zOZWmj8LEnTdI1a9wsmpdemvwZ12LAfcracUd62Rs2uFsl\nAHvPQ86gbS5Lm+ml6kLSxjxiBDBjRna5S5Ykf+Y6p/ffn8flDySPNffzsnJldtlTpuhenlEo5nTS\npsw1p41sDrfdnntmlwno/++iRfbs4tmz3YLvkw7BFHM66SDCmYzWrl12uYVoFEqb7WavX+9WddzI\ntt0U7gBXDquE6wMLJE/S3/1OV4DPyi67JGcucmUlUcXo2BawQYOA665zlx3FtJ9ymXu77gpcfnn8\nOqcricvSVlsLbLVVdrkAn4ujS5fkzyjmdJI1jNM9yqm0ufQ1TWLOHOC997L/+0K1KTnmtGtXCyB5\nTxw8GDjrrOxyzcHcJnvaNOCOO7LL5vTiJCnIFFm6SXN6yy2zyy1E7pW2pJudFNheH9KClMvVPTpx\nInD33fHrzZsDBx6YXS7AZw4uRVaS6wnOWHkaMgDaKIgusnfbzT6/Vq8Gfvghu9yKCv39OOKhuALN\ngeSxPvNMe73DYtl3X2CzzeyfTZni5g5Ms4ZRWCW4CpEmPeMtW7oXwrVZtm+91U2mUnwWoELKsYvn\ngitkyKw/SffR5QCVFi/N5fLnrtXJBVMkUsORNEFdsvcKyeYOcHWZSJ99Zr/OmT0KAB06ZJebNh6L\nF/MFuLouBjU1uszFrrvGr3PFd1RW2t2brrLPOy+7zKBsmyLluvCuXWsvsEyRHZ40Hh06JLehKlZu\nmrvoiy+yy+bahIBkZYKzubbr2nT99XaL99FHJ6+HxWLWvGj2MkVMG0fBVyB5nXZVNI3LL8n1mlYV\noRCc7lEul3+hmEcucm9pS1p0XSphF5L9m9+4neI43aNJUMhNWnhPPRUYOdJNbpplyeUB4Oo7Z1iw\nIH6NMyiXs3OBK1wZYNdeC7z5Zvw6RRYml1Wi0Di7WPHSyvq4zumqKnsCBqeljaK+nE32HnvYEzbq\nQ9KaR9ERIUnxdhlnIN1q5epdaN3aPtaVle4llDi+M8A31oXmNBeNQmmz3ezKSprAS47B53SP3nIL\ncOSR9HIBvhNcmhsaSM5KLFY2xynL0KJF/BqXe5RiAUuSff31ujyKC1zxgyaWLwqne5QrrgjQzeRd\nlG9O9yhgzy7mqh1GUU+T83lJUyZcxuP994FXXolfp7C0cWZiNvQhh+I7f/UVsHRp/Dq39ZiL3Ctt\naQGMXBO0ZUu31kqc7tGOHe2ZK5yWNq4HtqZGf+c2behlU4zHTjvpk2cUik2I69SZNB4bbaTnjqts\nDmXissvs1zndoxRzuqYmuY+ny/euqbHXXORsF8aViEBRT7OQbBe4DqqzZtmvuwbHA7xB/Vxjzeke\nraqyH0jz6h5ttDFtnBP0tNPc+jRyukc5LUtcCjLnoptm/aGYH7ax/umn8rUccI4112n5+OOBqVPj\n1ydPTt78ioXTlWSC+qNyXMf6yiu1Mvj44+HrVPPj5JPj1zlbK5X7nOawtG2zjf16ObtHjeyGVNoo\nvnMSnBnRnPXbcm9py+NiUOhmuzy0nDFcpbC0USy6XEps0vd+8023UgNcp3ugNAoyRcswW2KRSzC/\nIY/rh816B9DM6WOOsX83roKv5TzOAJ8F6JxzgM03j1/ndo+W61hzeswAXdswClfnCUDco6ksWWLv\nD8o9QSmCUG2Lb14tbeWstHEpsUnlEQAe9zmny59TQXb93s2a2RfHvfdObgVULHl0Jd1wg/06xfxI\nGmsuqwTnOFPInjvXbuV1ld2smT0LnMLSVoo5/dln7oaMr76KX6c4qF52mX2doDqIJIVAcJF7pS2p\n1Qz3YuAyQZXiS0PmdgfmzdLGbXm0yd56a/eOCLZSBeWsSAB8lrZmzeyWNs57WM7KxN5761ZWUSg2\nuCSrJlchUs5xHjUKePRRN9nduule0VFcFeQkC14eLG1J1iWXrhbffWfvQEJxEEma0xTdh9IyubnI\nvdJ2wQX2wozlvsHZZFNUw66o0JXAo/w3W9o43aNJliWX8Zg/397Ng3NOz5jhtuimyabY4GyLLsV4\nvPoq8I9/8Mi2jcfChbqRvGtHFU5remOxtFVVuccW9erFUzA6bZzzGNMGuGVy77+/vS7iypVaoXOB\na04D6WPNRe6VtqZNdTZnFM74nw0beJQJ81C5ZFL99a+64GuUco9ps8mdPdueJVcfOC2PkybZi766\njnXfvvbrnIvuCy8At9/uLpsje5TLZQfoDeGpp+LXucZ6+XL9Wq4KEJcy0aQJsGxZvOsG1TrNFfid\npCDPmMHTa5PC0lZdrQ8HtusU8yNJIenVK7vcpHE+91y9D7jAqSDbxiMp9ImK3CttnH34khbHv/3N\nfjqvDz/9pCu9B6HYhJLKY5SzpS2px9/f/55dpoEzpg0Arrgifs117m22WbwCu5HLeVJ2JUlBXr6c\nz9Lmeg/POQc4/3y7bI6xNvfV5WCWtMGddRYwZkx2uQCfMmH+39E1j3NOn3aavc9ufUiLW7UV1i6W\ntIOIqyLx+98D99wTv869ftjcyMWSNM6uVjaAV0H+8UdgxYrwNarkiSRyr7QlxYZxT9C5c91kA8DT\nT4ffUygS550H9OkTv85paaPo42mz0ri0azLMng08/HD8+h/+ALz9trv8pPo/rkpsKeb0pZe6ya6o\niMs2iy6Xpc11PLp3t/cI5RrrZs2Azp3d5KYpEq5wuZKaN9dNtKMHM6qYJducbqv7JKcAACAASURB\nVNsW6NTJTXbaWLso3macoxYZCkXiZz+zX+ea0+aechxEXGKDDZyWegB47rnwe4pxTiP3Sluapc11\n4JYtA2bOtH920EFusoH4qfONN9yadgPJ7UTK2dIG2BeDgw/W1eNdiCrGhh9+AP71LzfZp58O7LNP\n/LrrRsQ5p5OUtuOOS17si+Wzz7QynPR7s8JpaWvosabo4lBRAbz7rpuMJJKSPiiKvtrGmjv22HWs\n05S2nXfOLtfU8Yt+b4pxvuACYNCg+HVOpY0iick2zhdfDJx9tptsrkQEw267hd9zK22MohsGTkvb\ngw/q12gG0i67AL/4hZtsQPfGC0JRdyqtz5pLOyggPabNdfKvXavjMLbbzr9WWwv07Okmt3Nn4Ouv\n3WQkYZt7nuduATIZSZ4XPr1SWJYqK+1JDrW17hscAEyfHn5vZJarpY3bUh/93hQbXJKF+Oyz7c9+\nfeAM2raNNafSRjHWY8dq99cpp4SvN28ObLWVm2wz1sFxpXCPJilAS5fytH2jUo7XrYtfr63lTa5x\nHeu9944/c3PnAqtWuclNo1FY2r75Jn6dU9ulWAz69o0rUa4TCEjfhMrZ0gbErQcU4/zb3wJdu9o/\ns51G64NtcTQLmMsippT+w2GVuP9+4C9/iV+nWHiBeBFLzwO22MJNdl4tbbNm+YkHBopxto0FoMe5\nRw832ZwbnO15WbTInjhVHzgtbQDw8svxaxRrk22sKdyjSXP62WeB0aPdZHNZ2ioqtGcr6i6muIec\nMW22Of3WW24yC5F7pS3JdM2ptFG5OKLffa+9+B5YCqvEO+8A48fHr1ONdfR7U4xz8+Z6M4ty8snu\nhVltNXqoglBt93HFinjQa31JavtEsfAOGgQccED4GuWiG13QOS1tr79uL/ZZX268MfyeYpwHDrRf\n5+wAwKVMXHedm0wAmDfP3nydYqyT4FImKJTjpDkNuCVPANoaFrXUU4yF+b7R+cGlHAN0BdZt+xYn\nuXePBm92cOJQLOhjxvCdsmw3u7YW2H13N7lcRXsB4IMP7NfnzqU50QZdowDfOFPKjo41xbwDtPL3\nxRdA797+tdNPd5fbsaM9hZ7rIEKhSFRU+Cf8qCvJdU6vWWMvZAzY6x3WFw5XUqtWdtdcuW9wSfPD\nFVtRVsC97iCgY6pscbUUY22LH+Sy/hiia2x9eeMNYNo04IQT/GsLF9pDLuqDaekVXS8onhfORATb\nnHbdwwv+Tl7x/JgNMnpTLrsMuOsud9m2m821wVEpErbYOKqgyyjG+uFaJ2nPPePfj2ucqWQnBVZT\njbOt1pIrd99tdxdzHkQorB02FynFWF91lbaq2aA4iPTrF36/YEFyclOxcM5pzkSEOXPiMY8HH+wm\nE0jOWhw7Fhg50k12y5Zx+Z4XjzfNApelrbJSl6KI0rMncMstbrKBeLxW0qGnPmy8sS4Lw2Vp40yu\nsT2L/fu7yU0j90qbSZ/nqD3FGeCaZFZ1XXSXLLFf51LaKNK9AftYL13qXlqF09J2zz3A9deHr1FZ\n2gCeAo2bbGK30rz2GvDRR26ykywpFMqP7bRMOdY2zjrL7d8fe2xcabPVz6ovSRsFl6XN1FCkUL4n\nTgy/32UXYPBgN5lp98nVWpp0uK6o4FHaKCxtr7yiC39HadmSpoxSVNFp1cpdJmAf6y+/1HGPLnBa\nj19/PW4k4V6Xcu8eBYBNN+VR2pIC7+fMcbcs1dTwBHQmbfQUE/SBB3RcW1Qu4J5JZVPazjjDTSbA\na5UAdPBsEErleMstw+9/+9t4YHt9SavT5hoQnkdLW4cOwLffxq+3aaPXFRdsc49iziX1O1y+nCd7\n1Fh/XJUUgCcusU0bYJtt7J+dd56bbJuCTDHOAJ+lzZaYZ2S7jvXZZwM77BC+1qGDe2kmwL5+mEPO\nE09kl8uptNXWAhdeCAwb5l+T4rpFYLsphx8OXH21m9y0Dc61vdLkycA114SvUSgSRnmyLY4c2aPV\n1foE51ING+Cr1O95dmWEK0iZKiljp53smVS2lm31IW2ck7Jsi8WmpHz/vT4tu8JlaXvwQXvbMK7M\n1NNOc5Np5NoOIo8/Hl9T6guX9ccQLXPEmQF88MHASSe5ybYpyBQJKgDfWNu6qQA0a5PtIFNTA7Rr\n5yYXSE+gcIFTabPBbWlrFEqbbSPq2BHYfnt6uQaKE3M0sH/ZMvc+a9262SvTc3VEoJqgtrE+9lh3\nuUm17/7xD7sLoT5st128bRjVQpCkIHO1ZuvcOV6Lqr48/LCOJQ1iKy+SBS5LW4sWdpcRV2Zqs2bA\n0Ue7ya2sBFavtn8WLdhdX5KsPxRz+phj4msyZwZwTQ1NXcOo7KRWgfXFFj9IYWmztdYD+BRkimSj\nJNmXXALccYebXM44TSA+p6W4bhHYNiLODQ7Q5TlciZqZL7zQ3YIH+FaJ4P+fq1kwlSnYNtaHHOLe\n8ift/5yUdVYsv/oV8PHH4WuU42HbPFu0cJdrm9OVlTQLb1SZoGhDA/BZ2jgLRiclqlBk0wJ6rQha\nOPbYQ29yLnApEoB9rLlr7bmO9Ysv6pCQm2/2r3meu1UaSLa0uVrTN98c2Hbb+HUuBZlKaVu1iqf4\nsm2cPY9m7l14YbwAvLhHiyDpdMhVadv0ynThoovijapN2rMrtu+dB0tbVDbFSTlNub7oIjfZXPMO\naPiDCNXCG6VXL+DAA93l2Cxt5d6ajbMEChCfe+3bu1uBON2jSYc+Tkub61hHY3iNXIpnPGmsXRXk\nhj6IUI1HdbVOiKKWbRtno9C7xmlutJF9rxX3aAEacoMz7YUo2oFEF5pf/9rddQLwuTiSxplTSXFd\ndE2AbDQ+bIcd3GsWJS0GXBsc50GEYoP75S+BM88MX6OaHzYLEFerKfNcuj7jTzwRHw+KcTb/nqNj\nBldwPMB36KustHsoFiwo77hVrrFOOohwWdrGjwemTHGTa4iWOcrjnBZLWxE0pKWN0n9ve7AosnC4\nlDZO96hNNpVVwtYSiuIEl2TR5LI8clraKBbHLl3igcoUijeQ7B4t5zkNxDe4114DXn3VTWaTJjps\nwGbF49jguC1tVGMdrU02b5573+HLL4+HJFDNaa6xTrO0uc6PUaOA4cPD11xbYwWJtnbkUto457SU\n/CiChrS0USptHIsuwGtpa0h34Kef0rWEit43zhNcObuSbOO8ejWweLH7vLZZjynnNEciAuecBoCt\ntw6/f+ABGrm2Qx+FMsE5p7nG2sy5devi8WCuiRn77RdPZlq2zL08DpB8EOGytFE8L7bOB0nZqvWl\nS5d4DOxf/qKf+6jFuj4kxWlyzWnuRIRGYWnjsnjY5M6aldywuT6sXx836XOe4MrdKmEb68ce0xmJ\nFLJtAa4cGxylu7ihrMfr1ulXCrddVPaKFcAPP7jJBfgSEbiUY0BXn6co8WHDdh8nTdIFqV3gTETg\nWj9Mb2FbXFufPm6ybYfraIZ0VmwHEU5LG5cFaPhwe9mc+tKli13ZjHbRqC+lOFxzukcbhaWNK7bI\nNvmnTXOTaRg1Sr/efrt/bf16mlIijcXSRsXatbogpint4Hm61lIeLW0c1mMz51wrm9uUY4p+qUDD\nWtqoFl3bhn/KKe4FkgH7WAPJJW6KhdOVlHS4jrrE6otSuj5lVHarVjoRxoUkyzQFDR3TRjGvH388\n3tWieXNdV9KVpDntuifmMU4zDbG0pVBZGe+rxqlBX3EF8Kc/ucvhUmIb2tIGAAMHussGgLff9n82\nv4fL0lbOrqQkl/8mm7gvYqNH62K1HNgsbVOn0txDrpgUm9K23Xba5eZKVZVd+Svng0hDK8hU/YWj\n88O1+4uBM6atupqn+0STJnG5VIXKk+K8r7rKTW6e4zRtNAqljWvg1qyJX+vdO95eKAtdurjLSMI2\nSefN48m0o9rgHngAGDo0fO1//gc47jh32UD4O1L1S7WN8xNPAC+95CbXyOaytK1eHV54a2vdrR2A\ne927NGyWtiVL4iUC6kseFQnDiBHxa/vv7yaTqwyFkc3lik4aa1dlYtaseOLI0KHAYYe5yQX4LEBK\nxcfDKHEUSizXnF68WIdTBNljD73nutDQB5HLLgPuvNNddhKNQml74w3gzTfD16hOFVFqapL73NWH\na68FzjnHXY4N2yRdtcqPXaKUy3mqoGw11b27/7NZdFx7S9rG47HH3GQaOC1tAPDhh/41qkX35z+P\nX7viCvdOC0ByVXNb7E59sCkSP/2U3L+xPrz2GnDXXeFrlPXwoptn27a6I4oLDb3BjRoFPP+8u+zF\ni+OyKdaPjz6yX6c4uNusx5Su6KDsyZP1q+tBlTM5b/p0fVCnls2ZiJDkiuakUShtAPB//xd+Txng\nGrRKUE1QW0+7/v11lX1XuCbSypXxrKlVq+KnIyqolIkddwyPdW2tzjJzjeGybXBUTJ8edukCwIQJ\nwPz5bnKN0hbc8KmU44su0v0eg2y6qXs7OSB5rCkyXqNyXdvmGGzKCOVBhKMGXEMnIgDAv/7lLnvd\nunjSEsX6YYuJo1qXbNZjyrEOzmvXA7vhu+/iMW2LFtHEadqgeF4aOqaNm0ajtEWZMcO9+WyHDvEa\nX5T+++j369XLPdsJSJ5IrguNLX3+7LNp0t8POyy+QFKNdbQgJOWiGx3ntm3d5QK6PZatPMRbb7nJ\nNSft4P+fajySqqVTyE6ytLlaq5s00QeP4KbDtQEBetOjWOR//vO4S5trg6Oy/ixdSleE1UYwG3/V\nKhp34LHHxotwU61LDZ30QcGECfFrt9yiw0Jc2XhjYNiw8DWK9cOMc9D4whnTBgC77eYuO4lGo7TZ\nrCaLF7vLjSpXlBscV2xAdDEwG2nQRZhVbpTvvnOTaTjmmLiV5vvveZQJzkX3mmtorKVpv9OV1q11\n4oHhq69o3IGcfQltrqSOHcP/jyyY8QyWJXE97BmibeoAnX137bXusrnWD0736D33AC+8EL/+i1+4\nywbCe8BXX+lXV3cg50GEM35wxQrggw/89xRF24F4EgIl55wTj19bvZqmwHp0baKa07W14XEGgCFD\ndHcYLhqF0nbmmcB118WvcyhXM2YA//63u9yKivgDS7XBRRcDI9c12NykdXM8uLYN/403gKefppfN\nuehSBprb2GUXdxnt2oU3oqi7Iys2RYJSQY5a2iieF+MuDt6zgQPdN3tAH0SOOspdjg3bWK9fz2dp\no1AkbOy/v3uTe0A3SD/ySHc5UWzr0qRJem1yhdNtBwDvvuv/XF2tg/pdOeYYdxlJ2Mb666/jra2y\nED30USlt992nvSJBqGQn0SiUti23tCsSFK6q6Enr+uvdZQLAk08CY8eGr3FZgKjktm0bT8s+91ya\nDc62CQHAt9+6y/7gA2D2bP89lXLMGZR79dXxoNxOnYBBg9xlRxdHKiXcZpV4+WX32mGA3dJG2Xw9\nqLRVVtJYf2zjQUVU9sqVenzKuSOCDSrZPXqE53G09VRWbOvSE0/QzGlO9ygQnh9UWf4HHBAP4Tn3\nXOCmm9xlJ+0Bq1a5y44e+qgOIraQIVHaiiDJr0xhlbBp/xTMmRO/9vzzevF1xWZpo7L+RGX36EHj\nDuTc4IDwovLOO7pchCtJljYKpa1z57jrj7IURXCsKeIoAeDzz/XYBpk6FXj0UXfZNksb1WGkY8fw\nhk+16NrWjp13pqll98Yb4ULfJtDc9TnnTEQYNUr//6OyOcZaKZqySkmKBAWcYw0AXbuG5XKsHYBu\nY7X55jyyAfewHiC+VlOORxRR2orAtnmaWjWurF4dTvumMDED9lPPDz8Af/iDu+wk9ygFXJN/+XLg\nlVfi12+80V02EP7OX35JI9M27z7/nO5kaCv6yrHBde0KHHigu1yKGNIkopa2Vat0D0iOEAjODa5z\nZ5pyEUuWhOu0GWs3laWNI2i7U6d4UD9XnTaqnrdK6ezI4HgMGQKceqq7bE5L2777hsu/cB5EqPaX\nqiq/NIlho43icyYLXPuWrVaiKG1FEL0hnkeTOWSYOdP/efBg4Kyz3GUOH+4uI4noeMyeDfz4I49s\nysk/b1742g476PgrCjp29H+mOBUCyXXauLpaUI31J5+EXfOU7uIobdsCl17qLjtqaTNuCY5EFSpF\noro6XvyX8gAVlbvVVu7jwRm0bVNiuWRTjbORGXwW27enadvEGdPGeQ+jStusWTRekuefB557LnyN\nSvnm2re23DKeKSoN44sgWuLCuAMpYq0Are0HZVMsBj17xl0FgK515Up0glKm2TekmZlqrI89Vpcm\nMfTpw2Nyp4Q7tihYG6u6mmacbVXiDzoI2Gcfd9lJJT84SsJQjfPLL8evffEFz4JOuVHYnnEORcLI\nphjr554L1+r85z+1MuGKUUaCdc64FAmAztLGaT2Oeipefz1eRJoCz6Nbm6KWeqqYNpsSK5a2IohO\n/qlT6eKjttwybJ7lLK67117arO3K3Lnh2KLNNnOXaeBS2mxV8+fPp0ugCLo3qqv9wskuJCltxx7L\nI5tyMQguWI88QtN6q3PneJcJrkW3thZo08a9QDKgN6Gvv/bfU3YAiPLFFzSHqKFDdbcJA2cIBKUi\nweXyB8JdPp58kkamSWYLrtVz5tDEuXFa2qKWR6pxNqVxoslLwZI5VCxYoF85ChlzWh5FaSuC6OSn\nSBE29OwZvikjRsSzPrNQUaFjJYJQbXBvvBEOdu7aVafEUxAda6oT/hlnALvv7r/3PO3SpbCWRhVk\nypPyjz+GT56DBsWzPrPKjrr8qRIRunfX423429/cZQL2g8jnn/OU/KitpS1DEXRpUy26wfkcZPVq\nd9kdO+pipIZ3342HF2QlatWkUiTef19bwIJwbXBB74gLLVrocIrgvJ4wAbj1VnfZNusxlYL81lvh\nsB6qddqsx1FlkyLb+ne/Aw491H8/daq7TEN0PV27lq5IPpfLP4lGo7QFT3BUMUtA/HQ4bx5NxfRV\nq8IVvAEdiMnhOqmtDcd0ucDpHo22Vgq+uvDss9qaZHjqqXiv2iyY/3dQ+a6t5akBZxR6CiV27715\naslVVMQVkk8/tSeY1BebpY3y/xCURTWnDz1UWwOj7L23u+yogvzUU+4yDcuWAS++6L9ftYpmg7Nl\nzFON9YEHAhdf7L8/6yxt+aXAdhihat0XDFP48Ufd95aqFEWw/h3VOLdurV+Da3W/fjo5w5VOncJF\ngCk7OkTX04svtnecqS8//hhWjgFR2ooiekPatKGzLE2aBDzzDI2sILZecGvW0JiZe/QI1ymi3OC4\nlLYmTcK1j8yiQOHGXLYs3Mfzz392lwn4G1lwrJcvp1GsuMYZ0GMdXHQvv5ymCKz5f0djXiiSYKKW\ntjlz6CzqTZvqgroGKoumrY7fVlvpTc6V998HRo7031PHVgaflzvvtGfJ1Zc994xfo5rX++8frsu5\n0UY0oSaAfqajLjAKS9748eFOJKYdIMeGTzXOnTvrkITgvOYKGaI0vkyfrjtyUGOzmk+fLkpbQZo0\n8f3fgB/vQkXwZh99tC586kqwhk4QCsvS5ZeHXXSvvebes9LApUwsWBDe3Gtq9MJI1cuTi5Ytwyfj\n116zNwqvL5xK2yOPhN07bdrYk2LqizkYRAtOBt14WYla2ih6HRqOOy5s4aYqRFpZGT+EUW1wEyeG\nxyPa/seVli3D7ynK2Jx4Ytji73laIeKIl6OM8fO8sCWzWTPgoYfc5a5ZE35vFEOKQ98WWwAXXui/\nv+QSYMwYd7kA31jPnw/89a/++3btaNYlQ1A2FVttpV+j+3bUi0ZJo1DannginKlF7ToJ0r59ssJV\nH4zpPhrQSbHBRV2NFPEXhhkzwiZ9KmUianmkXHQvuAA46ST/PUW6vqFLl/gpnKIfa9Om4ey31atp\nNk5D1KpJWfIjaoWgyogOWtooXSdRy+ONN9JYY814BN3nXCU/+vfXyicFHTrQ1O2LEl2X5s7VrxQK\n8pNPAjff7L+n3gOCNQj79dOuPFeiY0xZxPfMM4FttvHfU64dK1eGn0WqOf3ss+H31M8KVZeMIH36\naCWbqwCzjUahtEW12nnz4k1cXRgwwP+ZaiIppf8YDd0obzYXQn2JLo6UGxyg3SWGMWNoMg+jcRxU\n1e4BoFevcKzEWWfRNfS1ZQ9RKLFVVeEWXsGYPGoolbZttw1vlsad4krU0kbZ//app+KuE4pCwWZM\ng9/1xx9pxvqWW7RyZaB8XnbfPW45oFDiKivDBxozLlTPS5ApU4D33nOXawhaCKnGetCgcGUCiqLL\nBs5ODgAwbpz/80cfxZPqssDVEhDQczroIRs6FLj3XhrZzZrFx1rqtBUgeqKiaKtkGDo03O+RcnEM\nPli1tVqJozgdPvFE2BRO7V+PTtBoIGYW9t8//juoToe2aulU9/Cjj4DPPgtfO/hgd7lRy6OtRpkL\nwf//Aw/Quc+5xrpp0/Dh7PjjabNHqf7/QaLN6FevpmnqDujC08HuLJSt6qL38PDDgSuvpJEL6GD7\nIBwb3L336sxlCvbeO+x+phprW/JVr17ucgHdyPw3v6GRZSMap7psmbvMa68Nv6+poVM8+/cPe7Eo\n94B16+Lrc8+eNLJtNAql7eijw+8pLUvRB+svf6Gz4lVXh5U2qkkUVaJuuokmY80QNTNTLLpNmoSV\nS1th0qxwKm1AuPVYjx56k3MlOqaUp+YRI3Tco2Hhwnjl/qxwjfWHH4aD4ysqaJRjTkxskrEomYWd\nY8NftYqmlAig4+Weftp/T6WkRGWYOU4Rw3XQQe4ykmjRIjzW774bVzyzUFkJfPWV/55yXYr2sD79\ndBrF2xCNeaSYHz17Ajvu6L8fOVIH9VPAvQeYUjbmWae0mkZpFErbsceGAxYpNzhbHZagadiVN97Q\nr9Qn5SAtWsRbbWSlXz/g178OX6OI74g+VEuXuss0PP88MHq0/37uXJqToYFjMdhrr/B7qvsH2CvT\nUzF7drgA53ff0YxHtMQC5SEnyj776MMZBR06xAPMqepDBe/huefGa6C5EAy8p5rTZkMz39vzwnFX\nLpx/fjhulRKbq3HGDHe50X1l3To6xTvKZpvRlX3q2DFeg5Aizju6LplsWgruvDPsgXvkkXBBbVdM\n6IbxmFF1Y7LRKJS26EMVLBzqyty54YbxAG2Aq9ngvvySzgUWNc1Snir69AlbgTp0oDHDG+XYLOyU\nMUvRmLvRo2myvwwcStt224W7C7RtC/zsZ+5yAf54F5P4EtycXYm6+H/4gc59PmxYuLtA27Z05QaC\nY21eKebH1Km01ug0Xn+dZqw32US/GmWFsvVWdE6fdlo4rMWFV14Jd1ugIhrPfNNNtIpEkMWL6RSJ\nLl3CCmfz5jTJXZWV4cM0VVejJKgOZoD/Xb/9lnbvstFolLbgDe7RQ2fPUPD88/EN3iw+FBhX7uzZ\ndDJvvDGsuEXLabgQXRzbtqWpWWQWFFOAc+ut3WUaOINCAeDkk/Vrba12d3C4vygV788+Cwfh7rkn\nTR0ugyllEHT9uxLtFXvaab6V2pX27fXGY5g1i26sv/vOf8arq7XbhCLGNOhWawgo3FRNm2pl2MyL\nyZPjNf2yEn1eOnaktU5fdVX4PUWJlajlcf58d5mG++4LWx6ffhq4+24a2VGL2Nq1NGvsypXhRJWL\nLuKtd0Z5cN1+e/1KtSal0SiUtpqacBwXV1o9oM3MwexJV0ydF0rtvFmzcNzZyJF02YdLloQrm3/y\nCe1Ym2KTVEVIAb+KNwenneYXcjYmclvh5PoS3YTuvDNcasWFhx4KW3W7ddOnZyqCSgpAkz16+OG0\ntReDRMd69mytUFCwYQPw8MP+z1Ru/+hmds45dGU6bIdeKqtHcKwp62bNmqXbSxlGjqR1rwVp3Vq7\n0F0x1lwzHhTPiSFaPxKgs+LNnKn3AQD4+GP9SrEHRGPRW7cGBg92l5vE8cfTyNltN3+sOZVMQ6NQ\n2ozp3ig+559P6/4K0r07nRKw556+C4yyiKxSdAGcUSZMCFdiB2iUFIPZHL7/nm6RefDBcMmP/v3p\ngnKDVbyjbjAXKiv1CdZkTFIU7E1i7Fhay41RHqqr9fymsExTtfCysWyZ7jAQJBrI7YKxoPzpT3Sn\n+3btwu87daJzn//iF3HLZv/+NLKDShvlBhdMUjFwFFOtrdUFgSksS+3aaQuvGY+zz6YrJmuLxaZK\n0Fu6VJdNAvzSOBTeBTOmZh+/8EK6gsC//GX4ULP77v7/wZXgnOY0EBgahdJGuVlGuemmcJba1Kk0\nmUNGllnQN9mE7oGlqJlTDObhomyhY9KyBw+m+3+0bh22JG2+OV0F+TFjfKuEWSSD9bOyYk6uHPfS\nVipjyhQa2QMH+hv+11/TtGUD9HgsXepbCK++Wls5KfjjH4FXXw1fo65tCITr7rly3nnh9zfeCNxx\nB5384H1r0wbo25dG7uLFvsW4Rw8amQB/CISxypjYNirvQvTQ16cPjdwVK3TB4SCUtR6NocSMA8WB\nylgezbMX7RjhQp8+4Zp406bRyV61yt8DW7cGdtmFTraNRqG0mYnOsdB27BjuDwfQZviYxXfcuHjC\nQ1aiCQ0nngj8/vc0soMYpY1q3PfYwz99U8XgATpO4t13/fcvvBCvvk1Bba1WvilOW9HF0MRMUPDU\nU/FkFSr317hx/thSWjrMeMybp18XL+ZtcXbppXSyTMFsyjACm5WKyjo4YgRw223657VrtSWSMvnK\nZF7ut1+456sLtsxIqppn113nZ0ua55FKSfzpJ7+e3LnnhrN2XRg7Nvx+n33CSgsVlM+gWZOoa1Ia\nonX7zFriyqxZfkWF2lra+pE2GoXSZiYOh6XtvvvC7YQA2qwWswjcfz+dzCgvvkgXM3frrX6cgRkH\nqhpwH3ygC70CtK4TW3kPE5NBybRpdBmNZl6YzfL888MZji40bx6f05StvcwJnzJO0yg8ZkF8+GG6\n2NJoIk2HDnRujkMO8S2vxxxDIxPw58Xy5XQybRhLL6XSZubF8uV03/+SHrU8MwAAGqlJREFUS8Ju\n+AED6ALvmzWLKxKUlj2qGolBot/3nXdoLVfGu1BTQ9sfdPPNeZS2Bx8E3nwzfI0y3MIohLfdFg+1\noKZRKG0Gc1OGDYu3pcmKbQJR1RYC/Kw1SkXwqKP0q1kcf/qJrmXH/Pn+pmy+M6UFwbipbriBbjGw\nWQIpH1ijSFC2TjMYJfDtt/1eja5EXQPduunim9RQBlZz1j0aP96P2Vq3TrsxqZSUV1/1s/gqK3VN\nSQrM9wuuGyecQCPb9nsolTaTYDR0KJ3C0rSpflbMeFDW8QsqbWZOU655HElztsxZqg4RgwfrhDxA\nr62UHq7gWF94oY4DpcDWwJ2i6oHB7LW22EpqGpXSZk6F991H13cuWv2/ooLOKtGjh1+ZnipmBPCt\nVEHLI9WmF3R5/fvfNDKDmEW3VSu6wOpdd41fC/ahc+HOO/XmA/DUFbr+ev36979r5YKCqAWMq1Dt\nPvvQxQ6aCuwc1vS5c/3Fdu1a/UqppBgWLqRL+IhulEceqTNIKTjySP9ns24EWwC5QlGYNgkzLm++\nSWfFCyoSNTXxJA1XOBqZX3ppvGsBlXXwySd9K/ftt8fb+LnQtGl4rKnWJZvVn2of793b94JwhGhF\naVRKW3DTDLZhceGWW8KNn2tr6Rb0Aw/0LW3HH69jGigJmoOp3I3BhyhYU4cKY4l4+GHt1qVg553D\np6pevejiO/78Z/80yFFUkaNCeufO4feUmaNnnOErsTU18d/lStBaQJHwAYRL2FDHLAX53/+li1s1\nlo5gEhbVBnf++f7zwTEev/sdnSyDLRnNlKNwJaq0UR4cunb1EzKGDQP+7/9o5G7YEI8L5pjTn35K\nKy841pMm0cVpXndd+L1SdOvHzJl+31TuwrpAI1Pagu4YqgnaurWvkU+dql+prFajR2sTMMBTWy5Y\niuP882lkBr8jZdYooLMBTRPsDz8EvviCRm6TJnoszHisW8fT53XvvemDUDmsd8FevdTyu3XzF91v\nv43Hzrny6KP69YQT6FwnwblgNmSqg9n22+tEIGpatNBlbMz3ffnleMJUViZM8BVZDsWbA2OtCipU\nVM940Ppz//10BYEBbeU1SWLNmtF14rApDzaPgyvU60ezZv6+MmsWMHw4jVyzrwB6bDyPx5p+7bW8\nzeKBRqS0de+uNwwD1eZZWemb86nKF9i46y7athqAv4Dtuitd4c277orLp6Kigse8bBZvo0DMnctj\nwaqtpUvKMER7kFJQWenXB6S+h9df75cWOPts+rY8HJalYAackU/V9WTw4HATbEoWLQqHKFAFQAcD\n1leupK3UH+TSS4HLLqOR1bGjPpwF5zPVprx6tV/3s6qKRmYQ0zP2zjvpSu+Y/7tR3ior6ZSJYcP8\ncB7qYrIrV4aTuagMJMHSSWaMOeJkZ8+m7eZjo9Eoba1bhx/YYcNo5AYXLE5/dVWVH09DhVFc582j\n2+C23dYPJN5hBxqZhjFj6OJygpgFLHj/qK2EgC5oHM1QcuGkk/zK64MHA48/TiO3slIfQNat4+1B\nyoG5hxMn0sVGBeu9mRqMVM/LsmV0bjobwcBnSsuSYdQoGpmG5s39xIxRo2iVoBYtwvP5oINo5D7x\nhK/8cPfDpCr5EayoUFVFe8jp29cvpzJwIG1B2UWLdCawgeo7B+VwZlz/+c90nWuSaDRK25QpfgPl\nNm2An/+cRm5wAeMwp3LRpYvucwjojcNW9iIrJsnjnXfoZDYEQaWNajG47z7/51/9ikamobrad8s8\n+WS41pwL5v++cKEvnzIjmpNg4Uqqfr1Nmvjt5IKWZAruuQd45hn9c4cOdMk1huDhg2p92mIL/2dq\ni/Qll/g1zwC6uFVAH0QmTfJjbakSBoJ9abmtKFSYHrc1Nb6HiCpk6MMP/U4Fw4fTK0HBGNOLL6aR\nGXw2qOPOrr6ariVWMeRIDSmMiQ1YtkxvSBQEbzZV30ADVW9NG1995dc8A+ishME4M6oMzCTOOINW\nXtOm/kmZKhuOsuhtlGefDZfioAr6NUpbba0fI8aRPUot86CDeAqENmmiN/o1a/gKewI6xo+6oXR1\ntW+hp4pb/d//pZFjY84c3qbaVVX+AZVq/gWVNvO8UFFZCVxwgf/ehC1QsGGDVtqMskY1Hv/4B42c\nJILueaoOEcFDKbW1dNttfQNJQ9ColLagBk3VasoE4W7Y4GeIUBGNkaMOYqc8xRqCSix36xiT+EHF\nhAm+6ZoqzojT9RWFsmk3oO8ldZxm0PJI7Xr917+AIUP855yqnIgZjx9+4K0Hx0H37r6SErSQuWDW\nofXr6ayZhvHj/RguDoJuQKr1iUpxsHHYYeFC3zfcQCv/n//0x4FqblPWN7MRtB5TfefgYY8qucHw\n0ku8xfGjNCqljbL1kcEEb770Ev2CHq3KH62r44pSfkFW6g3OyOeE+kT00kt0rUsMDRkTRmXWN/fw\nX/+id/lTlg9JwliWhgyhkWfGtaaGPrCamyuu8O8hlZJinrt163hrqgHAccfRyvvpJ1/ppJrbJsOf\no5zDiy+G6y9Sx9ouW+a756ngXveDB2rKHq8AMHkyXdcaQzSOmdP7AjArbUqpI5RSVUqp2Uqpqyyf\nD1BKrVRKTa/7c51NTn0wbkCq7C8DRwHS6CJAvYGuWgV88on+uVMnGpmHHaZfP/yQfvJHoVaIlOIP\nJOaEqoaTWXSffz7s+qGgIcbXPDdUm4eRM3s28Ic/0Mg0nHJK+D1lk3SDWTeoxsOsoQ1xINl2W1p5\n997rH96pLEJmHBpiblMrRJ4HvP46rcxovDh1PFews0ywVAcFy5fT38foPeNokRiETWlTSlUCuBvA\nEQD6ABislLLZe97wPG+3uj83u/5ec8OpEhEMnkfblsfITHvvypIl9DLbtNGvnOVPDL/8Ja28igp6\n076pfWRrk0KFuYdU7i+DUnTJDYaG2NjMJko1t82cfuwxGnlBoiEPhx5K/zvMmFNl8ZnxpQoxSYP6\noPrDD35sM5VsY/2qrtaFo6nXpSDUh6jbbqNXvqNz+O9/p5UP+M82tdXK8+gMGIaoMYcjPjgIp6Wt\nL4AvPM/7yvO8DQCeAmAzhrMYW6kHrlUrXdKBkpsjKmowIJUKrtNyQ7TrCNbdo+Ctt+gVnwMO0K/U\nSSpBzKbM4Z75299o5ZmAXDPvqArgBjGyTVcAarmccCj3Jpubas0zcbyPPKLLO1DG2h5ySPg9hzua\nWtk0SltNjS6IPno0rfwggwfTyvv2W/rkmoaI+zStsaj38SefBH7xC9o+vdE4RGrFOwqn0rY1gGBZ\nxm/qrgXxAOyjlJqhlHpBKZU55DNaTJD6BMdReyW66QRT4ano2JFeJsCThBDMdgV4SqxQK8ZmHDxP\nu47/+Eda+YCvTFBvcBzlC0wrNqPEjh1L/ztMZwuq6vEGjoNI+/bh9xxKCrX7y2RWr1mjLVeUHR2i\nG37XrnSyDdRxYeY5mTxZv1LW0zSN3c3zwhGuQH0Y4TxEGoyiSb0HvPWWLur87LN0MqP7uOkXzQWn\n0lbMLZ0GYBvP83YF8CcAmQ2tN96oF3GTLkx9GqAqbBok6qrjSKSYNIleJsDT5HjFivB76mxagLZe\nHeAvKrW1uk6gWdgpePRRbeE1GXzUtdTuvptWHuArJWZh51BSqK2DBmM1peSii/SrUTQ5xoOjULSR\nW1WlrRNU9O+vX01CEEeLL2p3nTn4UravMpg1zlTsp7YsNW8OTJtGK9N4QBYv1q+U39korVwJTRwH\ns6hiSX2YjMJZtGEBgGDXus7Q1rb/4HneqsDPLyql7lVKtfE8L7a13hCwQQ4YMAADBgwIff7gg3rT\np67gbeBoe2Qmuwno57BemZZC1JgabV260Mk0D6yp8k5VSy0IV/KE6UEa7EXqyrJlet699pp+Tx1T\nyYGZ02ZxpFRSWrTQri+uBd0UDKXELOjffqtfqWNtAR18zwFHzbrBg/UB2xyqueN/KOFQjs3/39S/\npNwDTJF56lhNYx018bC33konu1073UOXqwYoh9JmWnpNmjQJwCSMHeu7dzngVNqmAuiulOoCYCGA\nkwGEPPZKqa0ALPY8z1NK9QWgbAobEFbabBiT9YIFbl86CWoLDeDX/xk5Ur9SPrBNm+pFhrpht8Fk\npVIu7GYBM/XZzMOQB4xrl3JRMPFPnAVfqTGbsalbZDoNUDBkiI4nos7wNAT7eFJjDn15mtPUvZAB\n//kwVe/zpLQZNzTlPbzwQn1INXFylOOxbBlPco3B7LmUyV3mkMdlreKIKTWGi6VLBwAYgEGDgEGD\ngBtvvJH+l4FRafM8r1opdRGAlwBUAnjI87yZSqmhdZ+PBjAQwDClVDWAnwCckiiwAKZ1STBdmAPK\nhyraZoUyvZnLZWIw5nxKZdZY1ozrJE+FTs3JilJpM1aaX/+aTiY35h5+/rl+vfRSOtmcMTTcmPU7\nTyVnOHo0mnvI3U2FA+N2jSZTuGBKnpi1Lk+tEk1/b8rn0riL89QT2dwzkxBEXW4s9vs4hXue96Ln\neT09z9ve87xb666NrlPY4HnePZ7n7eh53q6e5/X3PC9zAYKdd6b61ulQTibzoE6cqF8pXY0NBWVQ\n7sCB+pXLksLJ/LqUG8qK5nmyQkShzmgE+DtwcGCClMeN06+USltD9Tukao8F+Bu8mR8cIRDcUCop\nRhZ13FlDYJR6Smv6b3+rX7mNLxzx0qbUzOGH08sOkiO9Ph3ujA1OPvpIv+bplGW4zrkcsk/eqtHb\noOyNGS3MmidM3Bml5bGhlLajj6aTFY1DpNzg8mh5jGbaUbrW9tqLTlYalAYCcw+N5yKPHHssnSwO\nZcrGfvvxyebex3OoJthpKFfaWWfxyab8P3DWEgqy5550svKotEahKnAKAB060MlKw5Qd4ICqxyvg\nW2K54Tw8UGZdN5SrlbKBPHUGdJCVK/lkBzniCDpZ1K0LS0EeD9t5PhA3gm1Ss+++DfN7+vVrmN/j\nSrt2DfN7KC1LnJaUYIYTZ/HDHXagk9VQSizn76E8Oe+yC52sNM45p2F+jyuXXNIwv4fSOshJQylA\nlEoKdZumIMH19KpYE0k6KMcjWteQizyHnjQapc1UYm8sv8eVI49smN9DaUnhtJYGlYe8nAw5A1ov\nu8z/+cAD+X4PJZyb8t57+z9THkQ4aajvmRc37O23+z/vvz/f78lLbGUw5pE7OJ4KTqNI0BWfZ69O\njr96aTjqqFJ/g+LIi2LSUBxzjP8zpaKZV4InzYYKaHeF83QcdNvlRUmhdMVHMUVw80QwXo7TKttQ\ncVeumO4kQL4tS1QEE9wayhPFgShtRRAs2JsXZSj4kFI3yM0jwXZe11xTuu9RLnAUec0zQUUtLxtc\nsJYVZTA4EM6Sp+7Xy0Xwe1JbUoKy81KKKPg9e/cu3fcoF4KHHMq4xIamUSpt1IX52rb1f86LWTX4\nwN50E63syy+nldfQ5GXR5aRHD//nvLj8g+y6K628YAPpaP3EPGBaC1ERVNryosQGraUnnUQrOy/W\ntSDB3sIHH1y675EVjl7chrzMaRs5UUHqx4QJtPI4g0UbAuokjYZI+qBWJIL1oKjr6FDWZkvCdBig\nIhjfkUclxXQRoSKoBOZRqadOShg+nFaeDU5rL3XniYawVP3qV7TygklReWiBF+XMM2nlBeNW8/iM\nGxql0kYdj8H5wJqCfNtvz/c7glYVCo47jlaejbvuopUXtJBSu7gvvphWng3qoPOg9Ziaqio+2Qbq\nLLNevWjlBTF136itg0Gox6MhEpkoy59EobaMvfACrTwbebJ4P/ww/+848URaeaZnKgcNWVWiUSpt\neTJ9Gj/7lVeW9nvUB04X8YgR+pWr9xwHlAVCoxgXB2d9K2qMUkwdZxWEOpmE8+RtClBTb0JBqDsL\ncMbumrZsp57K9zuo4RwPc4AKJg6UO8YKxlHvzDyL1LGUnM+4qYv6pz/x/Q5DTpKXi2PBAmDmTJ6b\n86c/8WRUDRkCfPGFfqVm0SK+diATJ9L24DMMHapfDzuMXvZ77wErVtDLbdlS9yXkGI9p03Sjag5L\n7F138cjddlu9MXO42BYvBiZP5nnGJ0ygLRZt2HlnbY299lp62dOnA998Qy8XAMaP54mFGj5cl83g\nsNjfdx9fa6xhw8L1Hqn48ku9fnBYv595hqf2mVL6UPb44/SyZ8wAPv2UR1EeNw7YZx96uTvvrOfz\nRRfRy46ivBzktyulvDx8T0EQBEEQBKUUPM8jP142SveoIAiCIAhCY0OUNkEQBEEQhBwgSpsgCIIg\nCEIOEKVNEARBEAQhB4jSJgiCIAiCkANEaRMEQRAEQcgBorQJgiAIgiDkAFHaBEEQBEEQcoAobYIg\nCIIgCDlAlDZBEARBEIQcIEqbIAiCIAhCDhClTRAEQRAEIQeI0iYIgiAIgpADRGkTBEEQBEHIAaK0\nCYIgCIIg5ABR2gRBEARBEHKAKG2CIAiCIAg5QJQ2QRAEQRCEHCBKmyAIgiAIQg4QpU0QBEEQBCEH\niNImCIIgCIKQA0RpEwRBEARByAGitAmCIAiCIOQAUdoEQRAEQRBygChtgiAIgiAIOUCUNkEQBEEQ\nhBwgSpsgCIIgCEIOEKVNEARBEAQhB4jSJgiCIAiCkANEaRMEQRAEQcgBorQJgiAIgiDkAFHaBEEQ\nBEEQcoAobYIgCIIgCDlAlDZBEARBEIQcIEqbIAiCIAhCDhClTRAEQRAEIQeI0iYIgiAIgpADRGkT\nBEEQBEHIAaK0CYIgCIIg5ABR2gRBEARBEHKAKG2CIAiCIAg5QJQ2QRAEQRCEHCBKmyAIgiAIQg4Q\npU0QBEEQBCEHiNImCIIgCIKQA0RpEwRBEARByAGitAmCIAiCIOQAUdoEQRAEQRBygChtgiAIgiAI\nOUCUNkEQBEEQhBwgSpsgCIIgCEIOEKVNEARBEAQhB4jSJgiCIAiCkANEaRMEQRAEQcgBorQJgiAI\ngiDkAFHaBEEQBEEQcoAobYIgCIIgCDlAlDZBEARBEIQcIEqbIAiCIAhCDhClTRAEQRAEIQeI0iYI\ngiAIgpADRGkTBEEQBEHIAaK0CYIgCIIg5ABR2gRBEARBEHKAKG2CIAiCIAg5QJQ2QRAEQRCEHCBK\nmyAIgiAIQg4QpU0QBEEQBCEHiNImCIIgCIKQA0RpEwRBEARByAGitAmCIAiCIOQAUdoEQRAEQRBy\nAKvSppQ6QilVpZSarZS6KuXv7aWUqlZK/YLz+wiCIAiCIOQVNqVNKVUJ4G4ARwDoA2CwUqp3wt+7\nDcA/ASiu7yOUjkmTJpX6KwgZkXuXb+T+5Re5d4INTktbXwBfeJ73led5GwA8BeA4y9+7GMA4AEsY\nv4tQQmTxyS9y7/KN3L/8IvdOsMGptG0NYH7g/Td11/6DUmpraEXuvrpLHuP3EQRBEARByC2cSlsx\nCtgoAFd7nudBu0bFPSoIgiAIgmBBaX2JQbBSewO4wfO8I+reXwOg1vO82wJ/50v4ilo7AD8BOM/z\nvIkRWWKBEwRBEAQhN3ieR26I4lTamgCYBeBgAAsBTAEw2PO8mQl//xEAz3me9wzLFxIEQRAEQcgx\nTbgEe55XrZS6CMBLACoBPOR53kyl1NC6z0dz/W5BEARBEITGBpulTRAEQRAEQaCjrDsiFFucV2hY\nlFKdlVKvK6U+VUp9opS6pO56G6XUK0qpz5VSLyulNg/8m2vq7mOVUuqwwPU9lFIf1312Zyn+P/+N\nKKUqlVLTlVLP1b2Xe5cTlFKbK6XGKaVmKqU+U0r1k/uXD5RSl9WtmR8rpZ5QSm0k9658UUo9rJT6\nTin1ceAa2f2qu/9P111/Vym1bcEv5XleWf6Bdql+AaALgKYAZgDoXervJX88AGgPYNe6n1tBxy72\nBjASwJV1168CMKLu5z51969p3f38Ar6VdwqAvnU/vwDgiFL///4b/gD4FYC/AphY917uXU7+APgL\ngLPrfm4CYDO5f+X/B7rk1ZcANqp7/zSAM+Tele8fAPsD2A3Ax4FrZPcLwIUA7q37+WQATxX6TuVs\naSu2OK/QwHiet8jzvBl1P68GMBN6QToWekNB3evxdT8fB+BJz/M2eJ73FfRk7qeU6gBgE8/zptT9\nvTGBfyMwoZTqBOAoAA/Cz96We5cDlFKbAdjf87yHAR077HneSsj9ywtNALSoS9RrAZ2kJ/euTPE8\nbzKA5ZHLlPcrKGs8dOJmKuWstBUsziuUHqVUF+iTyHsAtvI877u6j74DsFXdzx2h75/B3Mvo9QWQ\ne9wQ3AHg1wBqA9fk3uWDrgCWKKUeUUpNU0o9oJRqCbl/ZY/neQsA/AHAPGhlbYXnea9A7l3eoLxf\n/9FzPM+rBrBSKdUm7ZeXs9ImGRJljlKqFfTp4Jee560KfuZpe6/cwzJDKXU0gMWe501HQjFruXdl\nTRMAu0O7VHYH8COAq4N/Qe5feaKUag1tWekCvZG3UkqdFvw7cu/yRSnuVzkrbQsAdA6874ywtiqU\nEKVUU2iF7THP8/5ed/k7pVT7us87AFhcdz16LztB38sFdT8Hry/g/N4C+gM4Vik1F8CTAA5SSj0G\nuXd54RsA33ie937d+3HQStwiuX9lzyEA5nqet7TOqvIMgH0g9y5vUKyV3wT+zTZ1spoA2MzzvGVp\nv7yclbapALorpboopZpBB+lNLPBvhAZAKaUAPATgM8/zRgU+mggdWIu6178Hrp+ilGqmlOoKoDuA\nKZ7nLQLwQ132mwIwJPBvBAY8z7vW87zOnud1BXAKgH95njcEcu9yQd24z1dK9ai7dAiATwE8B7l/\n5c7XAPZWSm1cN+aHAPgMcu/yBsVaOcEiayCA1wr+9lJnZxTI3DgSOjPxCwDXlPr7yJ//3Jf9oOOh\nZgCYXvfnCABtALwK4HMALwPYPPBvrq27j1UADg9c3wPAx3Wf3VXq/9t/0x8AP4OfPSr3Lid/AOwC\n4H0AH0JbazaT+5ePPwBugE7c+hg6AL2p3Lvy/QPtjVgIYD107NlZlPcLwEYAxgKYDeBdAF0KfScp\nrisIgiAIgpADytk9KgiCIAiCINQhSpsgCIIgCEIOEKVNEARBEAQhB4jSJgiCIAiCkANEaRMEQRAE\nQcgBorQJgiAIgiDkAFHaBEEQBEEQcoAobYIgCIIgCDng/wG+7H4Sw/RrYAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x115281490>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,10))\n", "plt.plot(evo_00(beta_r*(1-0.1),10000,1))\n", "plt.ylabel(\"1,1 element\")" ] }, { "cell_type": "code", "execution_count": 264, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x1133ca890>" ] }, "execution_count": 264, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm0AAAJPCAYAAAAub+ODAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcV2Xd//H3NewKKMQ2+z6siqDgVre4kGSWlnW7ZHqn\nFqVWZpbZr7uwbDHNNrvNTNMy02zV1BZLzB1FQXZm3wcBWZJFGOb8/riYwmGW73fmnO91ltfz8ZgH\nMEzzfScz13zOOdf1+RjP8wQAAIBwy3IdAAAAAH2jaAMAAIgAijYAAIAIoGgDAACIAIo2AACACKBo\nAwAAiIBAizZjzF3GmA3GmBW9fMwPjDGVxpjlxphZQeYBAACIqqDvtP1M0oKe/tIYc4akMs/zyiV9\nTNJtAecBAACIpECLNs/znpK0pZcPea+ke/Z/7AuSDjfGTAwyEwAAQBS53tOWK6nxgD83ScpzlAUA\nACC0XBdtkmS6/Jm5WgAAAF0Mdvz6zZLyD/hz3v73vYUxhkIOAABEhud5XW9KDZjrO20PSbpIkowx\nx0na6nnehu4+0PM8eZ6nzZs9/fd/e5oyxdNtt3n/fj9v4X37yle+4jwDb/zbBfn2+997mj7d04kn\nelqzxtO+fd1/3Jtvevrudz1NmODpqqs87drFvx9v/NvF8S0ogd5pM8b8StJJksYZYxolfUXSEEny\nPO92z/MeNcacYYypkrRD0kf6+pxjx0q/+pX05JPSxRdLhxwinX++NGRIkP9PAOBg7e3SQw9JCxdK\n99wjzZ/f+1o0dKh01VXSvHnSl78sfexj0o9/bNcxAOhLoEWb53nnp/AxV6b7ebOypJNPln7zG+mS\nS6R775X+/Gf7fgDIlM9+Vlq82BZsZ5yR+v/uqKOkX/5SOuccqaREWrpUys0NLCaAmIh0mTN3rrR8\nufTGG9J3vysFeEcSAzBv3jzXEdBP/Nt1z/Okn/9cuv9+6R//SK9g6zRqlPTXv0qf+IS9U7dvn/85\n+feLLv7t0B0T5LNXvxhjvN5yrl8vvec99pHD7bdnLheAZHrgAel//1f6yU/sujMQe/bYoq+11d5x\nGz7cl4gAHDLGyAvgIEIsijZJ2rpVKiuTXnhBKi3NUDAAibNrlzR1qn0ketJJ/n3eM8+0xdvll/v3\nOQG4EVTRFunHowc6/HDp05+WTj1Veuop12kAxFFjo70onDfP34JNsnfuvvxl6c47/f28AOIjNnfa\nJLvP5Mc/lu67j8INgP+uucbeabv1Vsn4fg0tLVkivetd0ssvS4WF/n9+AJnB49EUc+7ZI+XlSU88\nIU2fHnAwAIlRVycdfXTwBdXnPmdbiXz3u8G9BoBg8Xg0RUOHSosW2ZOlf/+76zQA4mDtWmnWLOna\na4O/A3bVVXa/3I9/HOzrAIie2N1p63T33baP25/+FEwmAMlx7bX2cei3vpWZ11u9WjrxRLuHbuTI\nzLwmAP/weDTNnG+8YR+Trl8vTZgQUDAAsbdvn1RUZBt4Z3LLxXveI517rnThhZl7TQD+4PFomkaO\nlN7/fvvW1uY6DYAoam+XjjtOmjw583tkL7xQ+trXpBdfzOzrAgiv2BZtkvR//ycVFLA3BED/PPGE\nPdz0l79k/rU/+EHp0kvp2wbgP2JdtA0fbsfD/PGPrpMAiKJf/Uq6+GJp0KDMv3ZWlvSZz0g1NVJz\nc+ZfH0D4xLpok+xm3uZmu7cNAFK1erW94Dv3XHcZhgyR3v1u6fe/d5cBQHjEvmgbPNie/JozR1q3\nznUaAFGwbZv09rdLX/2qlJvrNsull9ppCb/+tdscANyL7enRrq6+Whozxi5+ANCb3/5WuuMOe2I0\nDP70J1tALlniOgmAVHB6dIDmz5cef9x1CgBR8Oijdnh7WMyfL61ZI23d6joJAJcSU7TNmyctWyZt\n3Og6CYAwe+01e2crTEXbsGF2QP1jj7lOAsClxBRtI0bYvSGzZkmbN7tOAyCs5s2z/R3LylwneauL\nLrKnSZ991nUSAK4kZk9bp/e9z75ddJEvnw5AjFRVSe94h9TSYsdWhc0tt0jPP8+hBCDs2NPmk1NP\nlZ580nUKAGH0l79Ip58ezoJNsncAn3xSisC1NoAAJLJoe/xxFj0AB3v0UWnBAtcpelZUJB16qO0h\nByB5Ele0TZliC7af/cx1EgBh8u1v2zmf73636yS9O+006c477SB7AMmSuD1t0n8W5mefDd9mYwCZ\nt3u3NH68tGqVnVccZjU10nvfK11xhfSJT7hOA6A77Gnz0Zw50jvfKf3zn66TAAiD556Tpk8Pf8Em\nSSUl0pe+JP31r66TAMi0RBZtknTccXahBoBnnrGnRqPiuOPsKdIIPCgB4KPEFm3/9V/SE0+4TgEg\nDJ57Tjr2WNcpUldYKA0aZFuUAEiOxBZtM2ZIe/ZIN97oOgkAl66/3k5LmT/fdZLUGWMPJNxyi9Te\n7joNgExJ5EGETuvX2/1t69dLEyf6/ukBhFxHh/S2t0nLl0djP9uBmprsqK3PfU768IddpwFwIA4i\nBKCiQjrxRLufBUDyrF0rjR0bvYJNkvLypIULaRYOJEmiizZJOv54u6EXQPI895zd1B9Vc+dKS5a4\nTgEgUxJftHWewgKQPEuWROsAQlczZ9q+bdu3u04CIBMSX7TNnSu9/LK0bp3rJAAy6YknpAcesKPt\nomroUGnWLE7CA0mR+KLtsMOkm2+WTj6ZsTBAknzhC9Ktt9qmulF2zTXSRz7CPFIgCRJ9evRAZWXS\nww9LU6cG+jIAQmDnTmnCBGnjRmnECNdpBu5Tn7IHEz7/eddJAEicHg3crFm2VxOA+Fu2zF6gxaFg\nk6Sjj5ZeecV1CgBBo2jbb9YsaelS1ykAZMKyZfZ7Pi5mz2b9ApKAom2/44+Xnn3WdQoAmfDcc/Eq\n2qZNk9rapM2bXScBECSKtv3mzpUqK6Xbb3edBECQvv996amnpLPPdp3EP4MG2QvPb3+bIfJAnHEQ\n4QAvv2znD27aZGf7AYifY4+1xc1JJ7lO4q/qavv/6Q9/kI45xnUaINk4iJABs2dLhxxiFz8A8bN3\nr7Rypf1ej5vSUunMM+2jXwDxRNHWxezZnMIC4mrNGik/Xxo1ynWSYBx9tPTSS65TAAgKRVsXs2ZR\ntAFxtXy5dNRRrlMEh9ZFQLxRtHXBogfE15Il8S7aZsywB6refNN1EgBBoGjr4rjj7ML+2GOukwDw\n0y9/Kf3619IHP+g6SXCGD7dNg++7z3USAEHg9Gg3HnnEzvNbsyZjLwkgYO99r/ThD8e7aJOkF1+U\nTj/dPgrOz3edBkgmTo9m0IIFUn29tGOH6yQA/LJ0qTRnjusUwZszx7b+eP5510kA+I2irRuDBkkV\nFdLata6TAPDDxo12SHxhoeskmTF9um1tAiBeKNp6MH26tGKF6xQA/LB6tf2eTkrT7BkzWL+AOKJo\n6wEDmIH4WLnSzudMCloXAfFE0daDOXOkxx+XXn/ddRIAA9HUJP3gB9LJJ7tOkjnl5XYcX1ub6yQA\n/ETR1oO3v12aOVP61KdcJwEwELfeamcKn3ee6ySZk5UlXX65Xcf27XOdBoBfKNp6kJUl3XCD9PTT\nrpMAGIhXXpHe9a7k7GfrdOON9lcOVAHxQdHWi5ISafNmaetW10kA9NeKFdIRR7hO4cZRR9l+bQDi\ngaKtF1lZtrv46tWukwDoj82bbb/FpDaZPeIIWn8AcULR1ocZM1j0gKhKWquPrmbMkFatcp0CgF8o\n2vowfTqLHhBVy5cnq9VHV6xfQLxQtPXh+OOlhx+W6upcJwGQjhUrpEWLpHPPdZ3EnbIyacMGqbra\ndRIAfqBo68MJJ0jnnCN96UuukwBIx4MPSh/7mG33kVSDB0vf/rZ0yimS57lOA2CgKNpScNFFTEcA\nomb5cjvZJOk+8Qmpo0OqqXGdBMBAUbSloKxMqq2V2ttdJwGQqiS3+uhq6lRp3TrXKQAMFEVbCkaM\nkCZNYl8bEBW7d0stLbbXIqTJkynagDigaEsR/dqA6KiuloqKpCFDXCcJh2nTOEUKxAFFW4pmzqSz\nOBAVK1dKU6a4ThEeNNkF4oGiLUVz59rTaG1trpMA6E1bm/TZz0of+IDrJOHR2WSX9QuINoq2FJ19\ntn3E8N3vuk4CoDe//a102mnShRe6ThIehx8uLVwove99rpMAGAiKthRlZUn/8z+0/gDCbvVqadYs\n1ynC55vflJYtk3btcp0EQH9RtKVh2jQOIwBht2aNPTiEtxoyRCotldaudZ0EQH9RtKUhL0/avt2+\nAQgniraeTZ1K0QZEGUVbGrKypIoK+h0BYdV5UZWb6zpJOE2ZwvoFRBlFW5omT+ZKFQir9eul8nJ7\ngYWDsX4B0cbSlqYpU+jXBoSR50m33y4dc4zrJOFF0QZEG0Vbmi64QPr5z6W//c11EgAHeuYZ6ckn\npa9/3XWS8DriCOm11+waBiB6KNrSVF4uffGL0u9+5zoJgAMtXSrNny9NnOg6SXgNH27Xruuvd50E\nQH9QtPXDtGl27wyA8Fi92n5vondz50otLdKOHa6TAEgXRVs/lJbagdQAwmPtWuaNpiIrSyoulmpq\nXCcBkC6Ktn4oKJBaW6U333SdBECn6mqprMx1imgoK5MqK12nAJAuirZ+GDLEXqmy6AHhsGuXtGmT\nbYCNvk2eTL82IIoo2vqJkVZAeKxfby+kBg1ynSQapk61kyMARAtFWz/NnCn9/vfSvn2ukwDJ1tEh\nfeYz0rve5TpJdEyZIr3yiu1tByA6KNr66Yor7KJH6w/Areees49Gb7rJdZLomDPHbvO47jrXSQCk\ng6Ktn8aNky6+WFqyxHUSINnWrJGOPppHo+kYMkS66y7p4YddJwGQDoq2AWAzL+De+vVSRYXrFNEz\nebJt+9He7joJgFRRtA1ARQVNdgHXOofEIz0jRtjpEfX1rpMASBVF2wCUlkp1dRxGAFyqqqJo66/y\ncvvfD0A0ULQNwIgR0vjxUmOj6yRAMnV02Ed8JSWuk0QTTXaBaKFoG6DychY9wJWmJmn0aGnUKNdJ\noqmsjDttQJRQtA3QtGnSP//pOgWQPJ4nfe5z0vz5rpNEV3k5TcKBKKFoG6CrrpLuvFN69lnXSYBk\nqaqSnn5a+ulPXSeJrpNPti1TfvYz10kApIKibYDKyqRzz5Weesp1EiBZ1qyRjjpKGjbMdZLoGjVK\nuuMO6ec/d50EQCoo2nxQXm43QwPInLVrba8xDMz06fSbBKKCos0HJSVSba3rFECyVFbSVNcPOTnS\n669Lu3a5TgKgLxRtPigp4U4bkGl1dVJxsesU0TdokJSfT5NdIAoo2nxQVGRbD+zZ4zoJkBy1tRRt\nfqH1BxANFG0+GDrUXqnyiBTIjPZ2e6FUUOA6STwwkg+IBoo2n1RUSCtXuk4BJMMDD9gDQMOHu04S\nDxRtQDRQtPnkwx+WPvYxadMm10mAeNu9W/rUp6S77nKdJD5OOEH63e+kFStcJwHQG4o2n5x3nnT8\n8dKTT7pOAsRbVZU0caI0Z47rJPExa5Z02WXSj37kOgmA3lC0+WjqVOaQAkFjQHww5s+XVq1ynQJA\nbyjafMQJLCB4FG3BKC/nohMIO4o2H5WW0q8NCBpFWzBycqRt26QdO1wnAdATijYf0WQXCF51NUVb\nELKybM9JWhcB4UXR5qP8fKm1lSa7QJCqquyjPPiPC08g3CjafDRkiJSbKzU0uE4CxNOePXbcEpMQ\ngsEcZSDcAi3ajDELjDFrjTGVxphru/n7w4wxDxtjlhljVhpj/ifIPJkwY4b097+7TgHE01VX2Z5i\nNNUNRmmptHq16xQAemI8zwvmExszSNI6SadJapb0oqTzPc9bc8DHfFHSKM/zrjPGjNv/8RM9z2vv\n8rm8oHL6belS6bTT7NH5nBzXaYD42LNHGj3abkEYM8Z1mniqr7f97371K+nUU12nAaLLGCPP84zf\nnzfIO21zJVV5nlfned5eSfdLOqvLx3RIGr3/96Mlbe5asEXN0UfbOwEvvug6CRAvtbV2+wEFW3AK\nC6UvflH6zW9cJwHQnSCLtlxJjQf8uWn/+w50q6RpxpgWScslfTrAPBlTWsq+EMBvlZUcQMgEmoQD\n4TU4wM+dyvPMBZJe9jzvZGNMqaS/GWNmep73r64fuGjRon//ft68eZo3b55fOX1XUGAfMwDwT3W1\nbWCNYBUVsX4B6Vq8eLEWL14c+OsEWbQ1S8o/4M/5snfbDvQ/kr4pSZ7nVRtjaiVNlvRS1092YNEW\ndoWF0jPPuE4BxEt9vS0oEKyCAqmxUerosL3bAPSt682k66+/PpDXCfJb8iVJ5caYImPMUEnnSnqo\ny8c0yB5UkDFmomzBFvkuQUxGAPxXX28LCgRrxAi7b7C11XUSAF0FVrTtP1BwpaS/SFot6QHP89YY\nYxYaYxbu/7CvSTrBGPOqpMclfd7zvNeDypQppaW2AWhEDrwCkdDQYO9iI3idaxiAcAms5YefotTy\no9OECdLy5VJ2tuskQPS1t0tjx0p1dfZXBOvii6WTTpIuucR1EiCaotjyI9FmzZLuust1CiAerrhC\nOvlkCrZMqaiQlixxnQJAV9xpC8i6ddLs2XZDLz9ogP7zPNtUt6ZGGj/edZpkaGiQjjlGuvde6Z3v\ndJ0GiB7utEXM5MnSzJmMhAEGavNmO9eXgi1zCgqkK6+UnnjCdRIAB6JoC1BJCadIgYGqq6PVhwvl\n5bY3HoDwoGgLUEkJix4wULW1FG0usH4B4UPRFiA6iwMDx502N4qLWb+AsKFoC1BRkf2BA6D/uNPm\nxvjx0s6d0r8OGioIwBWKtgBRtAEDV1Njm70is4zhaQEQNhRtAcrLs6Ng2ttdJwGiq7KSos0VLjyB\ncKFoC9DQoXYz71NPuU4CRNP3v28veioqXCdJpuJiacUK1ykAdKK5bsD++Efpox+V2tqkLEpkIC2T\nJ9sGr3PmuE6STM8+K512mrR0qTR1qus0QHTQXDeizjpLOvRQjs4D6erosPuppk93nSS5TjhB+tCH\naLILhAVFWwaUlLAvBEhXW5t0+OHSIYe4TpJs06dLa9a4TgFAomjLiIICO8sPQOpo9REOZWU8KQDC\ngqItA/LzKdqAdNFUNxwYxweEB0VbBtDrCEgfRVs4dLb96OhwnQQARVsGFBdzpQqki6ItHA45RBoz\nRmppcZ0EAEVbBvB4AUhfba1UWOg6BSS7htXWuk4BgKItA/LypE2bpK1bXScBomH9eumll6SjjnKd\nBBIXnkBYULRlwKBB0gUXSP/9366TANFw3XXSNddI2dmuk0CSpk2T7rhDevNN10mA8Nu7N7jPTdGW\nIT/6kR1nxaIH9G3ZMumDH3SdAp2uvlr617+kJ590nQQIv49/PLjPTdGWISNG2Mek7AsBetfRITU1\n2f6GCIdhw6STTpJWrnSdBAi/IFt8UbRlUF6e1NzsOgUQbp2TEEaMcJ0EByoslBobXacAwi/I7xOK\ntgzKy7N3EAD0rKGBU6NhxPoF9M3zgv0+oWjLoNxc7rQBfamvp2gLI4o2oG/bt0vGBPf5KdoyKC+P\nxwtAX+rqKNrCiO0dQN+amuzoyqBQtGUQvY6AvtXV2SkiCJecHOm116Q9e1wnAcKrvp6iLTYqKqTK\nStcpgHCrrLQXOAiXIUM4AQ/05W9/k2bMCO7zU7RlUFGRvVJ97jnXSYBw+s1vpJdflo4/3nUSdKe8\n3PbQA3CwZcukX/xCuuyy4F6Doi2DBg+WbrlF+uQnXScBwumee6TbbrMtPxA+F10kLVwobdvmOgkQ\nPqtXS6edJk2dGtxrULRl2Ic+JK1aJe3b5zoJED719dLkya5ToCfnny8deaS0dKnrJED41NXZJ2pB\nomjLsEMPlcaPtz+cALwV7T7Cb+pUae1a1ymA8KmtpWiLpeJiW5ED+I+tW+0IKx6NhltpKafgge5k\n4uQ7RZsDxcWcwAK66rzLFmRjSgwcF51A97jTFlNFRSx6QFeMr4qGoiIuOoGu9u2zzfODXsMo2hzg\nThtwMPazRQMXncDBWlqksWOl4cODfR2KNgdY9ICDNTRIBQWuU6Av48ZJu3fbGYsArHXrMnPynaLN\nAfaEAG/ledKrr9qpIQg3Y7jwBA7kedLvfx/sJIROFG0O5Oba5pR//rPrJEA43Huv3TJwyimukyAV\nxcX0agM6LV8uPfig9NnPBv9aFG0ODBok/fjH0te+5joJEA6PPCL9v/9Hu4+ouOIKO9nljTdcJwHc\nW7HCTkIIut2HRNHmzLveJa1caW+rAknX0MCQ+Ch517ukKVPsDysg6Sor7VzeTKBoc2TsWNtIlM28\ngD0qn5/vOgXSUV5Ok11Ast8HmbropGhzKDfXHhMGkqy9XdqwQcrJcZ0E6cjNlZqbXacA3GtulvLy\nMvNaFG0O5eSw6AEtLdKECdKQIa6TIB05OVx0ApL9PsjNzcxrUbQ5xJ02wO5n49Fo9LB+AXZfenNz\n5p4UULQ5lJtr9/IAScYkhGjiSQHwn33po0Zl5vUo2hwqLWUjL1BfH/yQZfiPcXyA/R4oLLRNpzOB\nos2hsjKpqsp1CsCtpUszd1we/snJkbZskXbscJ0EcOeee6RZszL3ehRtDs2YIb34ovT0066TAG48\n9JD0wgvSGWe4ToJ0ZWXZC8/Fi10nAdxoa5PuvDOzjfIp2hwaP1769relm25ynQRw429/k66+WsrO\ndp0E/XHdddIll0j79rlOAmReTY00dWpmJiF0omhz7JRTpDVrXKcA3GhszOyCB39dcIE0bJjdlwgk\njYtDVBRtjpWW2n/49nbXSYDMo91H9E2eLK1f7zoFkHkUbQk0bJg0bhz9jpBMDQ1SQYHrFBiIoiJO\nkSKZXJx8p2gLgaIiHi8geXbutCcPx493nQQDUVjI+oVk4k5bQhUWSnV1rlMAmdXYaOf1Zaq/EYJB\n0YakomhLKBY9JFFjI49G44D1C0nkeRRticWihyTiEEI8sH4hiVpbpUMPlUaPzuzrUrSFAIsekmj9\neqmkxHUKDFRurrRxo7Rnj+skQOb885/SlCmZf12KthAoKZGWL2f4MpJj1Srppz9lEkIcDB5smyNz\nghRJsXOn9NGPSp/7XOZfm6ItBCoqpDPPlL71LddJgMx4+GHpooukY45xnQR+eN/77GQEIAnWr7dd\nH848M/OvTdEWAsZIH/qQtGyZ6yRAZlRV2YsVxMPNN0uvvGLvQABxV11tG+O7QNEWEiUl7GtDclRX\n22HjiIfBg+04sqoq10mA4NXUuNuPS9EWEtnZ0oYNUkeH6yRA8JiEED+5ufZEHRB3zc3uTr5TtIXE\nsGHSqFHS5s2ukwDB8jw7ti0nx3US+Ck7m3F8SAaX6xdFW4iw6CEJtm2ThgyRRo50nQR+yslh/UIy\nULRBEosekoG7bPGUk0PbIiRDS4u9yeICRVuI0GQXSUDRFk/MUEYSdHTYvZsUbVBJiT1VB8RZdbU9\naYh4KS6maEP8VVdL48fbEVYuULSFSFmZ9PLLdqM2EEc7d0p33inNnu06CfzWWbSxfiHOLr5YOucc\nd69P0RYip55qR8HcfbfrJEAw/vEP+0P9ox91nQR+GznSPiK9+WbXSYBg7NkjLV0q3XSTuwwUbSEy\nZox03XV2EC0QR/X1dnTV0KGukyAI990nff/7rlMAwWhutnvZBg92l4GiLWTKy6XKStcpgGA0NNi7\nMYino46Stm61bV2AuKmvd98UnKItZEpK2MyL+GISQrwZI+Xl0foD8RSG9YuiLWRycqTXXrPPzoG4\nCcOVKoJFv0nEFUUbDjJ4sH1mzpUq4ojHo/GXm0vRhniiaEO3CgrsFwcQJ3v3Shs3umtKiczIzZUa\nG12nAPxH0YZuMRkBcdTUJE2a5PbkFYJXUEDRhniqq3P/pICiLYS404Y4qq6WSktdp0DQCgtZvxA/\n7e22aCspcZuDoi2EKNoQRytX2qkfiDfWL8TRH/5gv7ZHjHCbg6IthKZMkf78Zw4jID4aGqQvflE6\n91zXSRC0zu0dmza5TgL455OflL7zHdcpKNpC6aSTpBNPlO6913USwB/PPiu9+912VBvibfRo6aKL\npMsuc50E8MeWLdIbb0hnnuk6CUVbKBkjzZ8vrVrlOgngj5oa9rMlyXXXSS+84DoF4I/aWruXzRjX\nSSjaQquwkBNYiI+aGqm42HUKZEpOjh1ntWOH6yTAwNXWhmf9omgLqUmTpLY21ykAfzQ2uu9vhMzJ\nyqJ1EeKjpcX2HwwDiraQys6WWltdpwD80dpKU92kyc/naQHiIUzrF0VbSI0ZI+3eLe3a5ToJMHBh\nWvSQGRRtiIswrV8UbSFljH1Eyt02RN2ePdK2bdL48a6TIJMo2hAXFG1ICXtCEAcbNtiCLYvVJlEo\n2hAXLS0UbUhBcbE9dQdEWU2NVFTkOgUyjaINcbBvn1RVJZWXu05iUbSFWEmJtGaN6xRA/3medM89\n0lFHuU6CTKNoQxxcdZV0zDHSyJGuk1jG8zzXGfpkjPGikNNvy5dLJ5wgPfWUNHu26zRA+mpqpLlz\npRUrwvN4AZmxY4fdl/uXv9h1DIiiigo7d3TatPT+d8YYeZ7nezte7rSF2MyZdhTMP/7hOgnQP/X1\n0vTpFGxJdOih0re+JX31q66TAP3jefZucWGh6yT/QdEWchUV9nk6EEUNDfYxGZJpwQJp7VrXKYD+\n2bRJOuQQewESFhRtIVdSwmEERFdDA5MQkqyw0LZL2LPHdRIgfY2N4bvopGgLuYICNvMiuhhflWyD\nB9t9bc3NrpMA6QvjRSdFW8jl59svnASew0AM8HgUnWsYEDVhXL8o2kJu9GhpyBBpyxbXSYD0cacN\nPC1AVIVx/aJoiwCuVBFFnhfOxwvIrIIC1i9EE3fa0C8seoiizZulQYOkww5znQQu0WQXUVVVJZWV\nuU7xVhRtEcCihygK0+gXuMNFJ6Joxw6pspKiDf1QUCAtWcJhBESH50k33CAdd5zrJHCNi05E0cc/\nLp12mjR2rOskb0XRFgEXXmhHwTz3nOskQGqqquyFxo03uk4C18rKpJYW6Ze/dJ0ESN2zz4Zz/Qq0\naDPGLDBww8HVAAAgAElEQVTGrDXGVBpjru3hY+YZY14xxqw0xiwOMk9UFRRI73uftHSp6yRAaqqr\n7Ri2Qw5xnQSujRwp3XqrdP/9rpMAqWlvl5qawnmIKrCizRgzSNKtkhZImibpfGPM1C4fc7ikH0l6\nj+d5MyR9IKg8UVdaymQEREdNjZ3mAUjSkUdK69a5TgGkprFRmjBBGjbMdZKDBXmnba6kKs/z6jzP\n2yvpfklndfmYCyT91vO8JknyPG9TgHkiLTtbamtznQJITX19uIYsw628PDvOCoiCpqbwtfroFGTR\nlivpwO2nTfvfd6BySWONMU8YY14yxnw4wDyRRtGGKGlrk3JyXKdAWIwaJe3bJ73xhuskQN/a2uzP\n3DAaHODnTuWs4xBJsyWdKukQSc8ZY573PK8ywFyRNGkSV6qIjrY2+zULSJIx9odgayttYBB+ra3J\nLNqaJR14gzFf9m7bgRolbfI8b5ekXcaYf0qaKemgom3RokX//v28efM0b948n+OGG3faECVhXvTg\nRucaRtGGsOvPRefixYu1ePHiQPIcyHgBNf8yxgyWtE72LlqLpCWSzvc8b80BHzNF9rDC6ZKGSXpB\n0rme563u8rm8oHJGhedJhx4qvfaaPY0FhNmECdKKFdLEia6TICzOPVc6+2zp/PNdJwF6d8kl0okn\nSpde2v/PYYyR53nGv1RWYHvaPM9rl3SlpL9IWi3pAc/z1hhjFhpjFu7/mLWS/izpVdmC7Y6uBRss\nY+zG7ro610mA3r35prRtmzRunOskCJPCQntABQi7urrwHkQI8vGoPM97TNJjXd53e5c/3yzp5iBz\nxEVJiW2lMGOG6yRAz9autV+rgwa5ToIwKSyUVq50nQLoXVOT9NJL4f05y0SECJk2TbrvPsZZIdwu\nvdQ2gwYOVFQkrV7N+oVw+9//lS6+OLyn3ynaIuSaa6RnnpFeecV1EqB7O3ZIq1ZJX/+66yQIm3e8\nwz4puPtu10mAntXUSO9/v+sUPaNoi5CJE6V586Tly10nAbrX2GgbqRrft98i6kaPlm64QXr8cddJ\ngJ41NoZ3P5tE0RY5hYX2iwoIo8bGcM7rQzhMmSJV0oUTIdXRITU32wvPsKJoi5icHKmlxXUKoHth\nv0qFW50NdoEw2rBBOuwwafhw10l6RtEWMSx6CDOKNvRm0iT7g7Gjw3US4GBRWL8o2iImJ4eiDeHV\n0BD+RQ/uDB1q97Zt3Og6CXAwijb4LjfX9pEBwog9behLbq7dNwSEDUUbfJedLW3aJO3Z4zoJcLAo\nLHpwKz+fC0+EU329PewXZhRtETNokN0XwpUqwqajw45/KSpynQRhlp/PCXiEU3W1VFrqOkXvKNoi\niEUPYVRXJ40ZIx16qOskCDPutCGMmpulF16wk4fCjKItgo46SvrhDxkHg3C56CLpnHNcp0DYFRfb\nBuGsXwiTG26Q3v1uqaLCdZLeGS8C3znGGC8KOTNlyxbbpPLpp6XyctdpAGnnTmnsWDvGikHx6M32\n7dLMmfaH5Ic+5DoNYJ10kvSVr0innOLP5zPGyPM832fDcKctgsaMkY49Vlq50nUSwOrcy0bBhr6M\nHi1dfbW96ATCorbW3gUOO4q2iMrP5zACwqOmJhoLHsKhtNT+kATCYO9e2/Q5CiffKdoiKjubcVYI\nj6amaCx4CIeiIoo2hMeGDdK4cdLgwa6T9I2iLaKYQYowaWuzFxJAKjqfFLBVGWHQ1mZbaUUBRVtE\n5eTweBTh0doanUUP7o0aZfc/btvmOglA0YYMyMujaEN4RGnRQzjk5dGvDeEQpYtOiraIYsFDmFC0\nIV2sYQiLKG3voGiLqMMOk/btsz2PANeamuwgcCBVeXlMdkE41NSEf+ZoJ4q2iDKGK1WEQ0uLtHWr\n/XoEUsX6hTBoapL+/Gc7aSgKKNoi7NhjpZtucp0CSXfJJdJll0lZrCZIQ36+tGaN6xRIujvukN75\nTumYY1wnSU2fy6wx5u+pvA+Zd/PN0m9/K23c6DoJkmzZMunaa12nQNS8+93SU09Jjz7qOgmSrKFB\nesc77NOrKOixaDPGjDDGvE3SeGPM2APeiiSxeyUEJkyQjjxSWrXKdRIk1Ztv2lm4Eye6ToKoyc6W\nFi6UnnvOdRIkWWNjtBqD99b/d6GkT0vKkbT0gPf/S9KtQYZC6vLz2RcCd5qb7Q9fZo6iP8rLpYcf\ndp0CSRabos3zvO9J+p4x5lOe5/0gg5mQhuxse1wZcCFqCx7CpahIqq93nQJJ5XnRG8HX56Qtz/N+\nYIw5QVLRgR/ved7PA8yFFGVn28aAgAsUbRgITpDCpS1b7LzRUaNcJ0ldn0WbMeZeSSWSlknad8Bf\nUbSFQHa29PLLrlMgqRobafWB/svJscO629ujMawb8RLFi85Uvk2OljTN8xjtG0ZcqcKlxkZp6lTX\nKRBVQ4ZI48fbpwVR++GJ6Ivao1EptT5tKyVFZMBD8uTn01Uc7kTxShXhwoUnXKmrkwoKXKdITyp3\n2sZLWm2MWSLpzf3v8zzPe29wsZCq3Fzbkb6jg+amyLyaGqmkxHUKRFnnhefxx7tOgqSprpbKylyn\nSE8qRdui/b96kswBv0cIDB8uHX643RcSlYG3iIedO+2VKkUbBoI7bXBhyxY7vuo733GdJD193pvx\nPG+xpDpJQ/b/fomkVwJNhbQcfXT0vvAQfVdeKZ18sjRypOskiLL8fGnlStcpkDR33mm/9ubPd50k\nPaav8wXGmI9J+qiksZ7nlRpjKiTd5nneqZkIuD8D5yB60dgoVVTYod3DhrlOg6TIzpaef14qLHSd\nBFFWUyPNnSv98Y/SiSe6ToOkuOwyac4cO5UjCMYYeZ7n+3CsVHZBXSHp7ZK2S5LneeslTfA7CPov\nP18qLpbWr3edBEmxZ4+0eTPtPjBwJSXSBRdIL7zgOgmSpLbW/tyMmlSKtjc9z+s8gCBjzGCxpy10\nOg8kAJnQ2ipNmsT4KvijvNxuCgcypa7OTuSImlSKtieNMf9P0iHGmPmSHpTEtLiQyclhMgIyp6mJ\nu2zwD+P4kEmeZ39e5uS4TpK+VIq2L0jaKGmF7BD5RyV9KchQSF92NnfakDlNTfbuLuCHSZMo2pA5\n//qXfUoQxUNUqcwe3SfpJ/vfEFI5OdK6da5TIClaWija4J9Jk3hSgMxpa7Nfc1HU5502Y8x7jDGv\nGGO2GGP+tf9teybCIXV5eVJzs+sUSIqWFvoCwj+dRRtNApAJsS7aJH1P0sWS3uZ53qj9b6MDzoU0\n5eZStCFzorofBOE0cqRtV/T6666TIAniXrQ1SlrleV5H0GHQf3QVRyY1N3OnDf4qKJAaGlynQBLU\n1ES3v2QqY6w+L+lRY8xiSXv2v8/zPO+WwFIhbZMm2b5Ze/ZIQ4e6ToM4a2+XVqyQpkxxnQRxUlgo\n1ddLs2a5ToI427FD+vWvpc98xnWS/knlTtvXJe2QNFzSyP1vo4IMhfQNGiTNnCn94AeukyDurrlG\nmjqVgwjwV3GxtHSp6xSIu4cekkaMkM4913WS/klljNVKz/NmZChPTxkYY5WCpUul00+XNm6UjO/D\nMwBr5kzprrvszFvALy+/bGfZvviiHcsHBOHGG6VNm6Sbbgr2dVyOsXrUGHO63y8M/82ebX/dsMFt\nDsRbc7MdnQb4afZs6Ywz7DxbICiNjdFev1Ip2i6X9JgxZjctP8LNGPvFyIEEBGXXLtuYctw410kQ\nR+XldpM4EJSoF22pNNeNYM/g5GKcFYLU0mK/xrJSudwD0pSdLS1b5joF4izqRVsqzXWzjDEfNsZ8\nef+fC4wxc4OPhv7IzqZoQ3CYOYogsX4haFFfw1K5Xv4/ScdLumD/n9/Y/z6EEDNIEaTmZk6NIjgU\nbQjS7t3S9u3ShAmuk/RfKkXbsZ7nXS5plyR5nve6pCGBpkK/Mc4KQWJQPIKUk8P6heA0NUV/e0cq\n0fcYYwZ1/sEYM14S0xFCKi/PPrMHgsCdNgQpO9u2Y9i713USxFF9vZ28EWWpFG0/lPR7SROMMd+Q\n9IykbwaaCv2Wn0/RhuBQtCFIgwfbR1ds8UAQqqulkhLXKQamz6LN87x7JV0rW6i1SDrL87xfBx0M\n/UPLDwSlo0Natcq2ZQCCwhqGILS3Sw8/LE2b5jrJwPRYtBljxna+Sdog6Vf73zbsfx9C6PDDpdGj\npfvuc50EcfPd79qvrSOOcJ0EcVZcbGfbAn7629+ktWulSy5xnWRgeuvT9rKk3mZHFfucBT4wRvrJ\nT+ww3Asu6PvjgVQ98oh0/fXSEI4hIUCXXSadfbb0/vdH+5QfwmX1aunMM6WxEb/l1GPR5nleUQZz\nwEennSbV1kpvvikNG+Y6DeKisdHeBQGCdMop0rHHSi+9ZMdaAX6oqZEmT3adYuBorhtDQ4bYK9S2\nNtdJEBeeR7sPZE5pqb3wBPxSVycVFrpOMXA0140pxlnBT6+/Lg0fLo1kqB0yoKjI/pAF/NLaGu1J\nCJ1orhtTOTkcm4d/uMuGTKJJOPzW1iZNmuQ6xcDRXDemKNrgJ/qzIZPy8mj7Af/s2ydt3BiPgy00\n142p3FyuVOGf1lZ7IQBkAkUb/LR5s22HFYeT7721/JBkm+saY5ZKOnX/u87yPG9NsLEwULm50uOP\nu06BuKBoQyZ1XnR2dER7TiTCIS6PRqUUijZJ2l+kUahFCHfa4KeWluh3Ekd0jBghjRpl55DG4ZEW\n3KqpicfJUSm1x6OIIB4vwE+rVsWjxxGigzUMfvA86YEH4jPJhaItpkpKpA0bpH/8w3USRN3dd9vx\nL8ce6zoJkiQvzw74BgZi+XLpqaekq65yncQfFG0xNXSodMst0qJFrpMg6h57TPrOd+zcUSBTLrhA\nWrhQ2rXLdRJEWV2dNHu2NHGi6yT+6FfRZoxhnG8EnHWW9OqrrlMg6pqa4rMfBNFxwQVSfr6dGQn0\nV1NTPJrqdurxIIIx5pxu3u1JMpKyA0sE37ztbdKePdIbb9DJHv1Hjza4Ul4uVVZKRx/tOgmiqrHR\nFv9x0dvp0fsl3aeDG+kaScMDSwTfGCNlZ9t2DeXlrtMgijo6aPcBd4qLGWeFgWlsjM8hBKn3om2F\npJs9zzvoUagx5tRuPh4hRNGGgdi40e5lG85lGhzIz5fWr3edAlEWt8ejve1pu0rS9h7+7v0BZEEA\nGGeFgeDRKFzKz7d3SoD+SszjUc/z/tnL370YTBz4jcHLGIi4XaUiWvLyKNrQfx0d9qZFnC480z49\naoy5whhzrjEmpWkKcItFDwPBnTa4lJ9Pg130X2urnTkap+0d/Wn5YSS9Q3aIPEKOxwsYiOZmDiHA\nnQkTpG3bpN27XSdBFFVXS2VlrlP4K+27ZZ7n3RpEEASDUTAYiNWrpXO6a/4DZEBWlr1oaGqK3w9f\nBO9Pf5KmTnWdwl/9ba77Eb+DIBhTpkgrV0ovsgsRaXrsMemll6TTTnOdBEmWn297tQHpqKmRbrtN\n+vznXSfxV3/HWH3V1xQIzJgx0vXXS1//uuskiJqHHpKuvjo+418QTRdcIF12mbRvn+skiJJVq6S3\nv12qqHCdxF89Fm3GmBU9vUmakMGMGKD3vldaweAxpKmhQSotdZ0CSffxj0uDBkn19a6TIErq6qSS\nEtcp/NfbnrYJkhZI2tLN3z0bTBwEobPth+fZKQlAKmj3gbCoqJCqquL5QxjBqKuTiopcp/Bfb0Xb\nI5JGep73Ste/MMY8GVwk+O2QQ+yR5y1bpLFjXadBVFC0ISw6J7sAqWpulo45xnUK//XWXPeSXv7u\n/GDiICidkxEo2pCKnTulHTukceNcJwGkSZOktjbXKRAlbW326yZu+nsQARGTk8NkBKSupcV+zfA4\nHWHAnTaki6INkcY4K6SjtdX+oATCYNIkijakp7WVog0RlptL0YbUdd5pA8KA9Qvp2LVLevNNO8Iq\nbijaEoLJCEhHSwt32hAehYW0/EDqamulgoJ4bu+gaEsIBscjHa++Kk2e7DoFYOXlSa+9Ju3d6zoJ\nouAXv5COPNJ1imAYz/NcZ+iTMcaLQs4wa262s/tefFGaMcN1GoTZE09IZ50lLVtGXyyER3Gx9OCD\n8WzjAP/861/ShAl2fKPL5uDGGHme5/u9Pu60JURurvS5z0k33+w6CcLu73+346so2BAml18uXXSR\n6xQIu4YG+zg9rtNcKNoS5Iwz7NUH0JumJrsfBAiTz37Wfm2+/rrrJAizxkYpP991iuBQtCVIQQGH\nEdA3JiEgjLKy7N2T2lrXSRBmFG2IjQkTpM2bpfZ210kQZs3N9nE6EDadk12AnlC0ITYGD5be9jZ7\nCgvojufZRY87bQgjJiOgLxRtiBXGWaE327fbX0ePdpsD6A532tAXijbECk120ZvO/WxxbEqJ6GMy\nAvpC0YZYyc+nyS56xn42hBnrF3rT0WG/PuJ8+p2iLWFY9NAbijaEGZNd0JuWFumww6SRI10nCQ5F\nW8JQtKE3L7wgTZniOgXQvfx8tnegZ/fcE9/xVZ0YY5Uw69bZMTD//Kc0a5brNAiTJUuks8+WnnnG\njgwCwsbzpPHjpSeflKZPd50GYbJzp+2O8NJL4fjaYIwVfDF5svTpT0s/+5nrJAibJ56QzjuPgg3h\nZYz0hS9IH/6w6yQIm5oaqagoHAVbkCjaEui//ktatcp1CoRNU5Nd9IAw+/Sn7fq1Z4/rJAiT2tpk\nXHBStCVQbi69jnAwmuoiCoYMsf3aGhpcJ0GY1NVRtA2YMWaBMWatMabSGHNtLx83xxjTbox5f5B5\nYNGgEt1h5iiioqjI/pAGOrW22p9tcRdY0WaMGSTpVkkLJE2TdL4xZmoPH3ejpD9LoqVnBhx+uH20\n8MYbrpMgTCjaEBU0CUdXra3SpEmuUwQvyDttcyVVeZ5X53neXkn3Szqrm4/7pKTfSNoYYBYcwBg6\ni+Ot9u6VXn9dmjjRdRKgb7QuQldtbXY2bdwFWbTlSjrw26pp//v+zRiTK1vI3bb/XfT1yJC8PIo2\n/MeGDbaVwqBBrpMAfaNfG7pqa+NO20ClUoB9T9IX9jdhM+LxaMbweAEHam5Oxn4QxAPrF7pqaUlG\n0TY4wM/dLOnAsa35snfbDnS0pPuNnU49TtK7jDF7Pc97qOsnW7Ro0b9/P2/ePM2bN8/nuMnCoocD\nNTYyvgrRweNRHGjbNmnHDrdF2+LFi7V48eLAXyewiQjGmMGS1kk6VVKLpCWSzvc8b00PH/8zSQ97\nnve7bv6OiQg++9GPpGXLpDvucJ0ErnmedOml9k7bDTe4TgP0bfNmqbzc7sMErrxSWr9e+utfXSf5\nj8hNRPA8r13SlZL+Imm1pAc8z1tjjFlojFkY1OsiNfPnS7/4hR1dhGR7/nnp0Uelj33MdRIgNWPH\nSu3tdmQR8MtfSnfe6TpFZjB7NMG+/GV7avCb33SdBC795Ce2eP/pT10nAVL3ox/ZC8/nn3edBC5t\n325Pjb7xhu2MEBaRu9OG8Js5U1rT7cNqJAn92RBFF15ox1lxPZ9sjY1SQUG4CrYgUbQlWG6ubUiI\nZKNoQxQddpg0YoRt9YDkamy0B1OSgqItwbKzGWcFW7QladFDfBQWMoM06Roa7J22pKBoS7BJk2xT\n1Y4O10ngEnfaEFW0/gB32pAYw4bZOaQbNrhOApeamujRhmgqKOBOW9Jxpw2JwpVqsm3fbjdyH3aY\n6yRA+li/0NDAnTYkSEEBi16SdT4aTcrJK8QLd9pQUyOVlLhOkTkUbQnHlWqy1dUl6yoV8cL6lWw7\nd9rtPTweRWIUF0tLl7pOARc6OqRbb5WOPdZ1EqB/uNOWbJdcIp1+ujQ4yCnqIUPRlnAf+ID0+OPh\nmtmGzHjxRfto4Utfcp0E6J9Jk6R9+6T77nOdBJnmedIjj0h33+06SWZRtCVcfr700Y9KTz/tOgky\nbe1aac4ce4oYiKKsLDt+7Yc/dJ0EmbZpkzR0qDRmjOskmUXRBpWXS1VVrlMg0+jPhjh4+9ul1atd\np0CmJe0AQieKNignh3FWSZS0ppSIp7Fjpb177cBwJEfSWn10omiDsrMp2pKIog1xYAxrWBK1ttp/\n96ShaAMLXkIxCQFxwRqWPBRtSKzDD5f27LE9b5AcLS0UbYgHirbkaWujaENCGWP3tTU3u06CTHnz\nTWnbNmn8eNdJgIHLy7N3jpEc3GlDohUXS7W1rlMgU1pbbY+rLFYAxEBhoVRf7zoFMqmuLlmTEDqx\nZEOSPTpdU+M6BTJl1SqposJ1CsAfRUX2hziSYdkye3o0iWsYRRskSTNmSL/4hbR7t+skCNru3dJH\nPmKnYQBxUFwsrVghtbe7ToJMuOYa6atftc11k4aiDZKkyy6z+5wefdR1EgRt+XK7B+jjH3edBPDH\nEUfY/U1f/rLrJMiE2lrp7LNdp3CDog2SpEMOkRYskF591XUSBK2x0e4BAuIiK0v6xjekxYtdJ0HQ\nOjqSPc2Fog3/VlDACawkoKku4mjyZPblJkFbm503Ony46yRuULTh33Jzbe8uxFtTE0Ub4mfCBOn1\n1+1IK8RXQ0MyT412omjDv+XkULQlAXfaEEeDBtm+g21trpMgSBRtwH65uTweTQKKNsQVTcLjj6IN\n2G/8eGnHDsZZxR2PRxFX+flceMYdRRuwnzF20WtocJ0EQWlvlzZsSOb4F8RfQQHrV9xVV9u+fElF\n0Ya3YNGLt+Zmadw4acgQ10kA/7F+xd/69VJ5uesU7lC04S0KC+2II8TTXXdJxxzjOgUQjIICZpDG\n2Q9/aLfwJHF8VSfjeZ7rDH0yxnhRyBkH//iHdNZZ0sqVNGCNm61b7Q+1lSuTvScE8VVfL82cKT35\npP0V8TJ3rnTjjdLJJ7tO0jdjjDzPM35/Xu604S1OOcVORnj2WddJ4LfKSqmsjIIN8VVYKH3mM9L3\nv+86CYJQXS1Nn+46hVsUbTjI5Ml23wDipapKKi11nQII1sknS+vWuU4Bv23dKu3ZY7scJBlFGw6S\nkyO1trpOAb/V1ib71BWSobTU3pFBvDQ22qcExvcHjtFC0YaDMBkhnlpakjtkGcmRnS1t2SLt3u06\nCfzU0mIbwCcdRRsOQtEWT62t9GdD/GVlMd0ljlpaWL8kijZ0Izubx6Nx1NJiC3Ig7ujXFj+sXxZF\nGw4yaZK0caPd9In44E4bkoKiLX5aWynaJIo2dGPIEPt4gUUvPtrbpbY2Fj0kA0Vb/FRVSUVFrlO4\nR9GGbnECK15eftkeQhg+3HUSIHgFBfa0IeJh+XLp6aelWbNcJ3GPog3dOvZYadEie4cG0eZ50nnn\nSVde6ToJkBmFhfZC5c03XSeBH77/femzn+X0u0TRhh585Su2meHSpa6TYKBee03atk266irXSYDM\nmDdPGjrUzqpE9NXVSW9/u+sU4UDRhm4NHSrNnk1n8ThoaGCOLJJl2DDpE5+wd9sQffX1rGGdKNrQ\no7IyO68S0dbYKOXnu04BZBbj+OKho8P23GNmskXRhh4VFdkrHERbQwMLHpKnuNg+VkO0tbZKY8Zw\niKoTRRt6VFhI0RYHnTP7gCQZP17auVPascN1EgwEj0bfiqINPaJoi4eGBh6PInmMsRcrrGHRRtH2\nVhRt6FF+vh0dQtuPaGNPG5KKoi36KNreiqINPRo6VJowgeHxUceeNiQVTwuir7JSKi93nSI8KNrQ\nq8JCNvNG2dat0vbtzBxFMlG0Rdu2bXYSwrRprpOEB0UbelVWJt1/v+sU6K+LLpIuuEAaPNh1EiDz\nCgulVavsVBBEz7e+ZbsYHH+86yThYbwIfDUbY7wo5Iyj5mZ7lbNqFSNEoqa9XRo5UtqyRRoxwnUa\nIPNaW6U5c6TvfU/6wAdcp0G6zjhD+vjHpfe+13WS9Blj5Hme8fvzcqcNvcrNtXNIV6xwnQTpamiQ\nJk6kYENyZWdLn/60fcSG6KmqYj9bVxRt6FNRkS0AEC1VVfbxNpBkFRX2ewHR0tFh9yMWF7tOEi4U\nbehTTg4nSKOIprqAfVrA+hU9GzdKo0czCaErijb0KSfH7m1DtLS02B9YQJKxfkUT61f3KNrQJ65U\no6m52f7AApJs4kTp9delvXtdJ0E6WL+6R9GGPuXmSk1NrlMgXVypAtKgQbZJeGur6yRIR0sLRVt3\nKNrQp+JiqbqaXkdR09TEogdI9jAVTcKjpa6OPbndoWhDnw47TDr0UKmtzXUSpKq9XVq3Tpo82XUS\nwL2yMk6QRsmOHdKjj0pHHuk6SfhQtCElM2dKt97qOgVSddll0gkn2NNXQNKVl0vPPec6BVJ1553S\n4YdLCxa4ThI+TERASqqqpKOOsvtCRo1ynQZ9GTfONkRm5ihgt3ccf7z0wAPSySe7ToO+fOpTUkmJ\ndNVVrpP0HxMR4FRZmX1bt851EvRlxw77NmmS6yRAOJSWSpdeKj31lOskSEVtLU11e0LRhpRNniyt\nX+86BfrS0GA38Brfr/GA6Covl2pqXKdAKurq7OERHIyiDSkrLuYEVhTU10uFha5TAOGSl0froijw\nPPtzhjWsexRtSFlRkb1tjXCrr+eoPNBVXp4d7YZwe/11afBgexABB6NoQ8rodRQNnY9HAfxHfr4t\n2jjTFm48Gu0dRRtSRtEWDQ0NPFoAuho1ShoxQtq0yXUS9Ka2lqKtNxRtSFlhob1S7ehwnQS9YU8b\n0D22eIQfTcF7R9GGlI0YIY0Zwwy/MNu2TVq5UpoyxXUSIHx4WhBuW7dKv/mNbeaO7lG0IS0zZ0rf\n+IbrFOjJJz4hve999GgDujNtmvTII+xrC6tf/EIaO1Y65xzXScKLiQhIy2uv2U3u27ZJw4a5ToOu\nioqkv//dNhMF8FZtbdJxx9kxSaee6joNurr8cmnqVOmTn3SdZOCYiIBQmDDB9mujyW747Nplfyix\nnw3o3qRJ0llnScuXu06C7lRX28k76BlFG9JWUECTyjCqrbUF2+DBrpMA4VVezkVnWFVV8ZSgLxRt\nSJC0/qQAAB6MSURBVBudxcOpsZH+bEBfSko4QRpGHR3250p+vusk4UbRhrTl5krNza5ToKvmZvtv\nA6BnjOMLp02b/tNLDz2jaEPauNMWTs3N9t8GQM8KC20DavpNhgsXnamhaEPaCgt5vBBGTU0sekBf\nDjlEGj3aHtpBeDQ2sn6lgqINaSsvlyorXadAV1VV9tEPgN7RZDd8Vq2iKXgqKNqQtsJC26+tsdF1\nEnR64QVpyRJp1izXSYDwY19buKxbJ91wg/Se97hOEn4UbUjboEG2+eF557lOgk5f/ap0/fXSxImu\nkwDhd/TR0o03Sjt2uE4CSXr2Wen975dOPtl1kvCjaEO/3HCDtHSptHev6ySQ7OPqM85wnQKIhquv\nthNdnnrKdRJIdo90SYnrFNFA0YZ+GTbM9tOpqnKdBB0d9jQckxCA1AwaJB17rLRmjeskkKSaGoq2\nVFG0od/Kyuw3G9xqa5MOP5z+RkA6Kiq46AyL2loOUaWKog39VlJC0RYGdXX2NByA1LF+hQd32lJH\n0YZ+Y9ELh7o6Ho0C6WL9Coddu6StW6WcHNdJooGiDf3GohcO3GkD0ldUJNXXS/v2uU6SbLW1dmZy\nFtVISvjPhH4rLqZoCwOKNiB9I0ZIY8dKLS2ukyTbmjU01U0HRRv6rbNo8zzXSZJr927bVHfqVNdJ\ngOgpKWEkn0t790p33SUddZTrJNFB0YZ+O+wwKTvbNqmEG9/8pjRunHTCCa6TANFTWir94Q+uUyTX\n44/bC//PfMZ1kuigaMOAPPigdNttrlMk11NPSddeKw0d6joJED1f+pK908M2DzdWr5be+U7bsgip\noWjDgMycaeeQvvGG6yTJVFdHfyOgv8rLpXnzpJdfdp0kmSor7b8BUkfRhgHJypLy8qSmJtdJkqe9\nXWputpMpAPRPSQnD412pqrJN2pE6ijYMWH6+1NjoOkXytLRI48fbkWIA+of1yx3G76WPog0Dlp/P\nnTYXaKoLDBxFmxueZ39u8KQgPRRtGLCCAnvFhMyqrWX0CzBQFG1ubN5snxKMHOk6SbRQtGHAysoY\nvOwC8/qAgSsq4vSoC7W1PCnoD4o2DNjkydLata5TJIvnSS++yMkrYKAmTLCjrDZtcp0kOTxPuvtu\nafZs10mih6INAzZ9ur3T9uyzrpMkxz332PEvCxa4TgJEmzHStGk02c2kykrp17+2ffKQHoo2DNio\nUdIPfyhdc43rJMnx179K119vpyEAGJgbbrBd+bdvd50kGdavl+bMYXtHf1C0wRdnnim9+ipzSDOl\nupr+RoBfTjnFzu9dudJ1kmSoqrIjxJA+ijb44vDDpcGDpS1bXCdJBppSAv6aNs2OVULwqqsp2vqL\nog2+ofVHZmzdKu3ZYxvrAvBHebktJhA8Ljr7L/CizRizwBiz1hhTaYy5tpu//5AxZrkx5lVjzDPG\nmCODzoRgFBRI9fWuU8Rffb1tU2CM6yRAfJSW0rooU7jT1n+BFm3GmEGSbpW0QNI0SecbY6Z2+bAa\nSf/led6Rkr4m6SdBZkJwiovpd5QJ9fX0NwL8Rr/JzGhvt09kiotdJ4mmoO+0zZVU5Xlened5eyXd\nL+msAz/A87znPM/btv+PL0jKCzgTAlJebo9yI1j19fauJgD/dN5p4zBVsKqrpdxcafhw10miKeii\nLVfSgQNCmva/ryeXSno00EQITHm5PcqN4HR0SE88Ic2Y4ToJEC9jxkhDh0obN7pOEm933inNmuU6\nRXQNDvjzp3zNYow5WdIlkk7s7u8XLVr079/PmzdP8+bNG2A0+G3uXOmFF6T775fOO891mni6/357\npXrHHa6TAPFTXi49+KB0xRWuk8RTdbV0++3S0qWuk/hv8eLFWrx4ceCvY7wA7wUbY46TtMjzvAX7\n/3ydpA7P827s8nFHSvqdpAWe5x20q8AY4wWZE/757W+l226THn/cdZJ4WrhQmjlTuvxy10mA+Hnu\nOenUU23romHDXKeJnz/+0V5w/ulPrpMEzxgjz/N8Py4W9OPRlySVG2OKjDFDJZ0r6aEDP8AYUyBb\nsF3YXcGGaDn2WBpUBqmmhlNXQFCOP95+f9GvLRg1NUxBGKhAizbP89olXSnpL5JWS3rA87w1xpiF\nxpiF+z/sy5LGSLrNGPOKMWZJkJkQrJwce5W6e7frJPFUW8uiBwSppMR+n8F/FG0DF/SeNnme95ik\nx7q87/YDfn+ZpMuCzoHMyMqyJ4MaG+3+EPinvd3+d+XkKBCcwkL6TQalpkaaP991imhjIgJ8x6IX\njKYmacIE9toAQSosZLJLULjTNnAUbfAdRVswqqq4ewkErbBQqqtznSJ+Ojrsf1ea6g4MRRt8V1Eh\nrV3rOkX8VFYyrw8I2uTJ0rp1rlPET329NHasdOihrpNEG0UbfHfEEdKLL9JZ3E/btkn/93/SnDmu\nkwDxVlFhDyLs2eM6SXx0dEjnny996EOuk0QfRRt8d+qp0uuvS7fc4jpJfNx7rz2A8JGPuE4CxNuw\nYbZ10Re+4DpJfFRXSy0t0o039v2x6B1FG3x3yCHSt78tPfKI6yTxsXq19M53SoMDP+8N4He/s537\nd+50nSQe1q+Xpk6VjO+tZpOHog2BmDzZXl3BH5WV9rENgOCNHWsPJFTR7t0XlZUcovILRRsCkZcn\ntbVJe/e6ThIP69ez6AGZVFzMKVK/cPLdPxRtCMSQIdKkSba3GAZm716ptVUqKnKdBEiO4mImI/iF\n/mz+oWhDYEpLebzgh4YGOx6M/WxA5pSVsX75pbaW/mx+oWhDYOh35A8WPCDzKirstgQMTHu77dHG\nkwJ/ULQhMFOmSGvWuE4RfY89ZnvfAcicyZMp2vxw6622AB450nWSeDBeBDqgGmO8KOTEW61cKR1z\njPTwwwwJ7q+nn7YNKZ94gj0hQCa1t0vjxkl33CF98IOu00TTrl12b/PLL9vtMklijJHneb43OeFO\nGwIzY4Z0003S/fe7ThJdTz9tf2BQsAGZNXiwXbuuucZ1kuiqqpJyc5NXsAWJog2BmjVLWrXKdYro\nor8R4M7pp0tbt0qbN7tOEk1VVcxL9htFGwLFsfmBob8R4I4x9i43a1j/sH75j6INgcrOtsPOGQfT\nP5WVXKkCLnHh2X+VlTwa9RtFGwKVlWXHwdBZPH07dkhbttjpEgDcoGjrP+60+Y+iDYErLbVXXEhP\ndbV9NJPFdyngTFkZ61d/cafNf/w4QOBmzpSWL3edInoef9yewAXgzowZ0ooVrlNEz29/K+3ZQ1Nd\nv1G0IXDz50s/+pHt24bUrFkjfetb0v9v796jo6zOPY5/t1wCKIeAYlFAQS4NILcA4a4WEAFRQXSp\nFQvFLlGrR1F7RG3VLi+lFxeWqnAsVYueFqm0FNSKSgteMcpFICRcBERQkYoKNYAB9vnjGSQikAAz\ns9935vdZa1aSyWTeJ2x4ed537+fZN98cOhKR7Na2rf171IVn5XkPV18Nf/2rZgqSTX+cknJ9+sCo\nUfDkk6EjiY/XX4dzz4WCgtCRiGS33Fz41a/sHCaV89FHVnnbs2foSDKPkjZJi65dYfny0FHER0mJ\nbQMmIuGNHGkzBWVloSOJhxUrdP5KFSVtkhYtW2rz+MOhpE0kOnJybDumDz4IHUk8lJTY3q2SfEra\nJC2aNYP1620/P6nYypUqlReJkmbNrKJbKqadXFJHSZukRU4OnHyy+rVVxu7dluBqv1GR6FDrj8p7\n7z01BU8VJW2SNi1a2B0kObT166F+fahRI3QkIrJX69Zal1tZJSW605YqStokbfLyYO7c0FFE30MP\nqWpUJGratIGiotBRRN/48bBjhyW5knzOex86hgo553wc4pRDW7LE2n9Mm2Yf5duWLYOBA2H+fGjY\nMHQ0IrLXZ5/ZlnzjxsG114aOJrpOPNFaFmX7nTbnHN57l+z31Z02SZt27exkN2dO6Eiia+FC6N1b\nCZtI1NStC7NmweTJoSOJrk8/tV0QtJ4tdZS0SVrl58PixaGjiC71NxKJri5dbHeE3btDRxJNK1ZY\nqw+X9PtLspeSNkmrtm21ndWhqL+RSHTVqgX16sHGjaEjiSadv1JPSZukVdOm8O9/w9atoSOJpr1X\nqiISTc2bq1/bwej8lXpK2iStjjkGWrVS6fyB7N5t/xm0bBk6EhE5GPVrOzglbamnpE3S7vTTNUV6\nIEuXwkkn2RSMiERT69b2b1W+ad06q3rv0CF0JJlNSZukXX4+PPAAbNkSOpLoKC2FwYNhzJjQkYjI\noRQUwIsvWqWk7DN6NIwapcrRVFOfNkm7sjIYNAguvxxGjgwdTTS88QbceCMUFoaOREQOxXu48krb\nR3nKlNDRRIP3VqCxcqXt5iLq0yYZpFo16N/fmu2KWbbMpo1FJNqcg1tusalAMZs2QZUqStjSQUmb\nBNGypRbzlldUZNvkiEj0NWtmewSXlYWOJBqKi7VtVbooaZMgWrSwSiMxxcVWVSsi0ZeTY7uWrFsX\nOpJoWL5c5690UdImQTRvDhs2wPbtoSOJBpXKi8RLXp5aF+2lmYL0UdImQVSvbnfbiopCRxLeli1W\nidakSehIRKSy2rWDd98NHUV4paXw2mvQvn3oSLKDkjYJpkcPuP9+22A4W+3ZY0UZo0bZQl4RiYf8\nfHjmGdi8OXQkYV1/PeTmQs+eoSPJDkraJJhx4+D99+Hll0NHEs6qVbat129/GzoSETkc559vBQnj\nxoWOJKx58+DRR6Fq1dCRZAclbRJMnTrQrx8sWhQ6knCKimyaxSW9m4+IpFJODtx0E7z6auhIwikt\nhY0b1VA3nZS0SVCtWkFJSegowtECXpH46tDB/g3v3h06kjBKSmxtsu6ypY+SNgmqVavsLkZQ0iYS\nX7VrQ4MGsHp16EjC0Pkr/ZS0SVCnn25Xa7t2hY4kjKIi7YQgEmfZXEWqpC39lLRJUMceC40aZecU\naXExrF1r/Z5EJJ7atcvOLfnWroWpU6GgIHQk2UVJmwR34YVw6aW2qDVbeA/nnAP33AM1aoSORkSO\nVOfO8OST2bct3513wtChVkwm6aOkTYL7xS+sknTevNCRpM/KlXDMMTBmTOhIRORoDB4MgwbBww+H\njiS9Fi6EESPsPCbpoz9uCc456NYtu9aFLFpkV+giEm/OwSWXwNtvh44kfXbuhDVrtN9oCEraJBLa\ntoWlS0NHkT7aIF4kc7Rvb+va9uwJHUl6FBfDaadZrzpJLyVtEgnt2ilpE5F4qlsX6tWzxfnZYMkS\nO2dL+ilpk0ho3doW8mbLPqTvvqtWHyKZJJtaf8ybBx07ho4iOylpk0ioUcP6/UyYEDqS1LvxRvt9\nlbSJZI727eH55zN/d4TJk+Ef/4CLLw4dSXZy3vvQMVTIOefjEKccneJiOPNMmD/f1ktkop07bSrl\nww8hNzd0NCKSLOvXw8CBth/plVeGjiZ1LrgAhg9X0lYR5xze+6TvKq07bRIZrVpBr16ZXYVVVGQJ\nqRI2kcxyyilw882Z37ronXegS5fQUWQvJW0SKZleRbp4sdaCiGSqtm0ze3eETZtg+3Y49dTQkWQv\nJW0SKR06WA+zTKWqK5HM1aaNNc7euTN0JKmxbJklpi7pk35SWUraJFI6d7bb75m6hHHxYjvpiUjm\nqVULmjWz5CYTvf66FVxIOEraJFIaNYLq1eHxx0NHknz3329X4b16hY5ERFKlSxeYNi3zLjxnzLCt\nukaODB1JdlP1qEROYSH06QPvvw/HHx86muTwHurXt98tUytjRQRKSuDss+HBB2HYsNDRJM+IEdCz\nJ1x1VehI4kHVo5I1CgrsanXBgtCRJM+6dbblixI2kcyWlwc33JB5VaQLFmi/5ChQ0iaR1LEjLFwY\nOorkeecdnfBEskV+fmYVVH35pW0Qr4bg4Slpk0jaW5CQKRYutBO5iGS+/HwrOtq1K3QkybFkiW01\nWL166EhESZtEUkEBvPVWZizm3b4dXn4ZOnUKHYmIpENuLpx8su3yEne7dsHEidCtW+hIBJS0SUQ1\nawYnnGCLX+PuqqugTh3o1y90JCKSLn372pZW27aFjuToPPGE7eRy662hIxFQ0iYR5Ry88QY89xx8\n/HHoaI6c97aJ9JQptkm8iGSHX//aPk6fHjaOozVvHlxzDTRuHDoSASVtEmE1a9qUYpwLElauhNq1\nbapERLLHscfC4MHW5ifO3nwTuncPHYXspaRNIi0/P94FCYWF0LVr6ChEJIS4n7+2bLH9RvPyQkci\neylpk0jr0QNeey10FEeusFAFCCLZqlMnWL4cSktDR3Jk5syx36FKldCRyF5K2iTSeve2xOdPfwod\nyeGbNAmeegqGDAkdiYiEUKsWdOgA48fHrxK+sNCKqMaMCR2JlKdtrCTyXnkFzjsPPv0UqlYNHU3l\ndewIEyZY4iki2WnJEhg4EKZOjde54Kc/tY/33hs2jrjSNlaStc44Axo2hGXLQkdSedu2wapV1m9O\nRLJXu3Zw+eXx29bq9ddtr1GJFiVtEgvdu9tJJC7mz7c7bTk5oSMRkdC6dbMWRnFRVmYFFGqoGz1K\n2iQWzjjDpknjYs4cXaWKiOnd25K23btDR1I5s2ZBkyZQt27oSGR/StokFvr2hdmz4Xe/Cx1JxSZO\ntCKE738/dCQiEgX161sSdMcd0S9IWLQIfvQjuOuu0JHIgagQQWJj4UI4+2zYvBmOifDlRvfucM89\n2rZKRPZ57z0YMAD++EdrZRRV994Ln38Ov/lN6EjiTYUIkvXy86FePdsHL6q2boWlSzU1KiLf1KyZ\n7ZAQ9WUe//oXfO97oaOQg1HSJrFy1lkwd27oKA7uzTetGWXNmqEjEZGo6dkTXn01dBQH99VX1p9N\nF53RpaRNYqVPH/jLX+CLL0JH8m0bN8Ldd9v6OxGR/fXta0nbhx+GjuTbdu6Eiy+2ZsC5uaGjkYNR\n0iaxMmSILeq97LLQkXzbuHE2BXLzzaEjEZEoqlsXRo+GNm1sKUWU/POfsGEDzJwZOhI5FBUiSOyU\nlkKDBrBuna1xi4qWLeHpp60/m4jIwfTvD9dcA0OHho5knzFj4IQTrMJVjp4KEUQSatWytW0vvBA6\nkn3WrLEp2/btQ0ciIlHXvz+89FLoKL5p9myLS6JNSZvE0uDBMHmybRcV2rZttk/fwIHRbkUiItHQ\nv79ddJaVhY7E+sb97Gfw2WdWRCXRpv9iJJaGDYPt2+G660JHAg8+aAuL77kndCQiEgdt29qjXbvw\niduCBTBlit3500Vn9GmIJJaOPx7+9jdbNPvVV2FjmTYN7rsPGjcOG4eIxINz8Pe/Q506VgAQ0vTp\nMHw4nH562DikcpS0SWw1aAB5eTBvXrgYNm60u2zaWFlEDteFF8KMGWFjeOEFW9oh8aCkTWJt6FCr\ndgqxS8J771lBxLBhUKVK+o8vIvE2ZIhVnM+Zk/5j79pl22mVlkLXruk/vhwZJW0SazfcYN27f/KT\n9B/7kUfsCvWRR9J/bBGJv5Ytrb/j0KHw5ZfpPfacOba0pKQEqlVL77HlyKlPm8Te1q3QqJFNUx53\nXHqOuWcPnHqqTS20aZOeY4pIZjr7bGu6e9FF6Tvm1VdDixZqBp4q6tMmchD/9V82TXnbbenpMr5j\nB9x4ox1XCZuIHK1LL4VJk2DLlvQcb/x4eOopm56VeFHSJhnhl7+00vU770z9sZ54wjZVnjo19ccS\nkcx3ySVQu7atMduzJ7XHWrcO7r0X5s61bfckXjQ9Khlj7VooKLD983JyUnecLl3spHfOOak7hohk\nF++hc2drHzRgQOqO8/Ofw+bN8NBDqTuGaHpUpEJNm1qzytGj4ZNPkv/+//kPXHwxfPQR9OuX/PcX\nkezlnO1HOnaszRqkwtixVvhw5ZWpeX9JPSVtklEmT7btWMaOTc17f/EFvPGGWnyISPINH24XhBde\naC05kmnFCnjsMViyBDp2TO57S/poelQyzpYt0Lw5zJpl7UCSobDQKrumTVMjXRFJrV69rLrz8svt\nDtzRKimBm26yZO2++47+/aRimh4VqaR69WwD5AEDrGjgaL39tq1fu+wyNaEUkdS76y5b5jFixNG/\n144ddv468UQYM+bo30/C0p02yVgLFljiNmPGkd9xW7AArr8efvADu/IVEUmH0lJrvjtpkjXxPpIl\nGRs2WNHUhg3w7LPJj1EOTnfaRA5Tp07w4x/DeefB448f/s8XFVn/t7w8+OEPkx6eiMhB1aoFDzwA\nV1xh06SHe9+irMzOfatX2/tIZtCdNsl4RUXWpuO882DiRJs+PRTvbXri4Ydt/YfusIlIKDt22Fq0\nU06x81KPHhX/zLPPwrXXQtu29nky1sXJ4YnlnTbn3ADnXIlzbpVz7taDvGZC4vvvOudU0yJJ16YN\nvPKKbXF11llWWXqgff68hwkT4NxzYeZMeO45W1ciIhJKjRp2LjrzTLvwvOYaKC7+9uv27LHz3EUX\n2czAww/D9OlK2DJNypI251wV4CFgANAauMw512q/1wwCmnvvWwBXARNTFY+EM3fu3NAh0LkzPPoo\njBoFq1bBCSdA48a20HfYMPt+zZq2fqRPH3jpJasSzfYTXhTGTo6cxi++yo/daafB7bfb1lM1akB+\nvs0YjBwJ/fvbOaxqVbvg7NgRZs+2BK9GjWDhS4qk8k5bAbDae7/Oe18GTAUu2O815wN/BPDevwXk\nOue+k8KYJICo/MdRpYrtGfrMM9Zr7fe/h4YNoXdvaza5bJlVit5yC9SvHzraaIjK2MmR0fjF14HG\nbuBA2zd08WKYMwfq1rUtsPLyYM0aWLkS7rjDkjrJTFVT+N4NgQ/Kfb0B2L9hwoFe0wjYlMK4JMs5\nt6+5ZCq3ixERSYXvftc+qklu9knlnbbKVg7sPwGligMRERGR/aSsetQ51w2423s/IPH1bcAe7/0v\ny71mEjDXez818XUJcKb3ftN+76VETkRERGIjFdWjqZwefQdo4ZxrAnwIXAJctt9rZgLXAVMTSd7n\n+ydskJpfXERERCROUpa0ee93OeeuA2YDVYA/eO+LnXOjE9//X+/98865Qc651cCXgFqYioiIiBxA\nLJrrioiIiGS7SG9jVZnmvJJ+zrnGzrl/OeeKnHPLnHP/nXi+nnPuJefcSufci8653HI/c1tiHEuc\nc/3LPd/JObc08b3fhvh9spFzropzbpFzblbia41dTDjncp1zzzjnip1zy51zXTV+8eCcG5M4Zy51\nzv3JOZejsYsu59xjzrlNzrml5Z5L2nglxv/pxPPznXOnVhiU9z6SD2xKdTXQBKgGLAZahY5LDw/Q\nAOiQ+Pw4YAXQCvgV8D+J528FxiU+b50Yv2qJ8VzNvru8hUBB4vPngQGhf79seAA3Af8HzEx8rbGL\nyQPrbTkq8XlVoI7GL/oPrMXVGiAn8fXTwAiNXXQfQG+gI7C03HNJGy/gWuCRxOeXAFMriinKd9oq\n05xXAvDef+y9X5z4/D9AMXZC+rpZcuLjkMTnFwB/9t6Xee/XYX+ZuzrnTgJqe+8LE6+bUu5nJEWc\nc42AQcBk9rXc0djFgHOuDtDbe/8Y2Nph7/0XaPzioipQyzlXFaiFFelp7CLKe/8q8Nl+TydzvMq/\n13Sgb0UxRTlpO1Dj3YaBYpGDSFQHdwTeAr7j91X/bgL27m5xMjZ+e+0dy/2f34jGOB3GAz8B9pR7\nTmMXD02Bzc65x51zC51zv3fOHYvGL/K89xuBB4D1WLL2uff+JTR2cZPM8fo6z/He7wK+cM7VO9TB\no5y0qUIi4pxzx2FXBzd477eV/563+70aw4hxzg0GPvHeL+Lbja0BjV3EVQXysSmVfKzqfmz5F2j8\nosk5Vxe7s9IE+4/8OOfc8PKv0djFS4jxinLSthFoXO7rxnwzW5WAnHPVsITtSe/9jMTTm5xzDRLf\nPwn4JPH8/mPZCBvLjYnPyz+/MZVxCz2A851za4E/A32cc0+isYuLDcAG7/3bia+fwZK4jzV+kdcP\nWOu9/zRxV+WvQHc0dnGTjHPlhnI/c0rivaoCdbz3Ww518CgnbV8353XOVccW6c0MHJMAzjkH/AFY\n7r1/sNy3ZmILa0l8nFHu+Uudc9Wdc02BFkCh9/5jYGui+s0BV5T7GUkB7/3t3vvG3vumwKXAP733\nV6Cxi4XEn/sHzrmWiaf6AUXALDR+Ufc+0M05VzPxZ94PWI7GLm6Sca78+wHe6yJgToVHD12dUUHl\nxkCsMnE1cFvoePT4elx6YeuhFgOLEo8BQD3gZWAl8CKQW+5nbk+MYwlwTrnnOwFLE9+bEPp3y6YH\ncCb7qkc1djF5AO2Bt4F3sbs1dTR+8XgAd2OFW0uxBejVNHbRfWCzER8CX2Frz36YzPECcoBpwCpg\nPtCkopjUXFdEREQkBqI8PSoiIiIiCUraRERERGJASZuIiIhIDChpExEREYkBJW0iIiIiMaCkTURE\nRCQGlLSJiIiIxICSNhEREZEY+H+OS3ywOMMzcwAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x10abc8a50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,10))\n", "plt.plot(evo_00(beta_r*(1-0.09),1000,0.1))\n", "plt.ylabel(\"1,1 element\")" ] }, { "cell_type": "code", "execution_count": 252, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 0.+0.j, 1.+0.j],\n", " [ 1.+0.j, 0.+0.j]])" ] }, "execution_count": 252, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ns.pauli_matrices(1.0)" ] }, { "cell_type": "code", "execution_count": 253, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 0.+0.j, 1.+0.j],\n", " [ 1.+0.j, 0.+0.j],\n", " [ 0.+0.j, 0.-1.j],\n", " [ 0.+1.j, 0.+0.j]])" ] }, "execution_count": 253, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.append(np.array(ns.pauli_matrices(1)),np.array(ns.pauli_matrices(2)),axis=0)" ] }, { "cell_type": "code", "execution_count": 254, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def evo_01(beta,x,deltax):\n", " \n", " evo_mat = np.array([[1,0],[0,1]])\n", " evo_01_list = np.array([])\n", " \n", " for xi in np.linspace(0, x, np.floor(x/deltax)):\n", " evo_mat = np.dot(sliced_evo(beta,xi,deltax), evo_mat)\n", " evo_01_list = np.append(evo_01_list, np.absolute(evo_mat[0,1])**2)\n", " #print xi\n", " #print np.absolute(evo_mat[0,0])**2\n", " #print \"\"\n", " \n", " return evo_01_list" ] }, { "cell_type": "code", "execution_count": 255, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x13539ea90>" ] }, "execution_count": 255, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnkAAAJPCAYAAAAAKsIRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsfXfYZUWRdzUMDCJBRTKDIGEIghkRAyOiArpgWAO68oEB\nFTEtAqIoI8qaUBfEVVYEAwrm/QBBgisIkqODZCQMoEMcYBhmGOB8f5yp7/apW9VV3afPuZf79u95\n3ue+fTpUdaqqzq6qKigoKCgoKCgoKJgsLDNqBgoKCgoKCgoKCvKjGHkFBQUFBQUFBROIYuQVFBQU\nFBQUFEwgipFXUFBQUFBQUDCBKEZeQUFBQUFBQcEEohh5BQUFBQUFBQUTiE6NPOfcTs6565xzNzrn\nDhTCHLnU/yrn3Au978c65+Y55+aQ8C9wzl3onLvCOXeJc+6lXeahoKCgoKCgoOCpiM6MPOfcsgBw\nFADsBABbAMDuzrnNSZhdAGDjqqo2AYC9AeB7nvdxS+NSfB0ADqmq6oUA8IWl7oKCgoKCgoKCAg9d\nzuRtAwA3VVV1a1VVSwDgRADYjYTZFQB+DABQVdVFAPAM59xaS93nAsADTLpPAsCqS/9/BgDc2QHv\nBQUFBQUFBQVPaUzrMO11AWCu574DAF5mCLMuAPwzkO4nAeB059zhUBupL2/PakFBQUFBQUHBZKHL\nmTzre2kuMt4+APDJqqrWB4BPAcCxsYwVFBQUFBQUFEw6upzJuxMAZnjuGVDP1IXCrAf68useVVV9\nfOn/vwaAY7hAzrnyKG9BQUFBQUHBUwZVVdGJr1bocibvUgDYxDm3gXNueQB4JwCcRMKcBAB7AAA4\n57YFgPlVVc1T0r3LObf90v93AIAbpIBVVZW/p+DfIYccMnIeyl+pv6n6V+rvqftX6u6p/dcFOpvJ\nq6rqcefcvgBwOgAsCwA/rKrqWufch5b6H11V1anOuV2cczcBwCMAsBfGd86dAADbA8Bqzrm5APCF\nqqqOA4APAsARzrlpAPAo1KdyCwoKCgoKCgoKPHS5XAtVVZ0GAKeRb0cT975C3N2F738BgJfk4rGg\noKCgoKCgYBJRXrwoGDvMmjVr1CwUtECpv6c2Sv09dVHqroDCdbUOPGo456pJzVtBQUFBQUHBZME5\nB9VT6OBFQUFBQUFBQUHBiFCMvIKCgoKCgoKCCUQx8goKCgoKCgoKJhDFyCsoKCgoKCgomEAUI6+g\noKCgoKCgYAJRjLyCgoKCgoKCgglEMfIKCgoKCgoKCiYQxcgrKCgoKCgoKJhAFCOvoKCgoKCgoGAC\nUYy8goKCgoKCgoIJRDHyCgoKCgoKCgomEMXIKygoKCgoKCiYQBQjr6CgoKCgoKBgAlGMvIKCgoKC\ngoKCCUQx8goKCgoKCgoKJhDFyCsoKCgoKCgomEAUI6+goKCgoKCgYAJRjLyCgoKCgoKCgglEMfIK\nCgoKCgoKCiYQxcgrKCgoKCgoKJhAFCOvoKCgoKCgoGACUYy8goKCgoKCgoIJRDHyCgoKCgoKCgom\nEMXIKygoKCgoKCiYQBQjr6CgoKCgoKBgAlGMvIKCgoKCgoKCCUQx8goKCgoKCgoKJhDFyCsoKCgo\nKCgomEAUI6+goKCgoKCgYAJRjLyCgoKCgoKCgglEMfIKCgoKCgoKCiYQxcgrKCgoKCgoKJhAFCOv\noKCgoKCgoGACUYy8goKCgoKCgoIJRDHyCgoKCgoKCgomEMXIKygoKCgoKCiYQBQjr6BgAlBV9V/B\nUwePPw6wZMmouSgoKJhkTLSR5xzAP/7RD63TTwe49NJ+aHUN5wD++c+B+5FHuqN14IEA3/nOwP3s\nZwMcf3x39Hw8/jjAggX90OoayywDcNRRA/cpp3RnQPz97wCnnTZwH3RQ/TcJOPvsul30gde8BuCV\nrxy4/+M/AM49tzt68+cP/r/mGoDDD++OVp/YYw+AE0/sh9bRR9fyEXHMMQBf+EI/tAHqvjcJ2HNP\ngOc9rx9a99xTy0fEnDkA73xnP7THAlVVTeQfAFQAVXX55VUnOPPMqvr+9wdugKraYIOBe/Hiqnry\nyTy0liypquuvz5MWhzvvrKrHHx+4Aarq4ovr/+fPr91dAaCq1lmn6f7wh7ujt2jR4P99982bN7++\nFy7sttzuu6+qHnxw4Aaoqg98oOn+3e+6ob3LLs284TxiH5g/v6oOOyxfenPmVNVDDw3cAFX1298O\n3IsX56O1ZElVLVgwcC+zzHA57rJLPno+zjuvSesDH+ivznLjrLOq6rTTBm6Aqtpxx4H7wAOrau7c\nbmh/+MPNcltvvW7L8YMfrKrHHqv/nzMnL60FC+o2ifjqV6vqrrvype/jyiur6oADBu4NNmjmZYst\nqmqffbqhffnlTVqHHtpv219jjaq65x5b2Noky2sLTfRMHsBgCeuJJ+qRci586lMAH/6w7D99OsB3\nv5uW9uLFAIccMnB/73sAM2cO3PffD3DssWlpc1h3XYD/+i/eb9GifHQA6pmzu+8Oh/GXHV//+uas\nYhucfDLACisM3Dfc0PQ/4ACAz38+Pf1llgG46ab6/4ULm36LFgH84Q/paVNssAHAjjuGw/gzDn1i\nzz0B/u//zZeeP7t11lkAn/vcwH3//QAXXJCe9lZbAey/f/PbE08M/p8+Pd+M6EEHAay0Up60YnHv\nvWH/448H+OY309P/xCfqGROEcwCPPdZ00z6Ril12Adh5Z9n/a18D+N3v8tC68ca4frR4cbP9tMUP\nfjCou0cfbfrde2+7GcyVVgLYd9+B+zOfaab3yCP5toAccwzA178u+19zTT2LngsHH2yfkV+4UO8f\nMXAO4Ne/HrjvvhvgttsG7ttvz0fLgok38hD//GdTOfSB669Pi3fDDQCHHjpwP/RQ03+vvQDe//6B\n+9BDAdZfP40WgjbyrvZ37b47wJpr2sOfeSbAZZel0XryyWaHuu66cPhvfCMsiCzwFZ2Pn/2sqZie\nfBLg8svT6Tz8MMCttza/hersRz9Kr9M5c+KWVn784/RByKJFTaV65pkAr361HP6AAwC22y6NFoIq\nT4onn2yXPoIOKjTMmNGujfztb/aw++8P8OlPp9M68kiA//3f5rd585puLOfbbms3AOHacVfyKrbO\n1lqrKZtzQMrbd75Ty9M2oDrKp7XSSrWRibjiim73/eZM+7DD7Fu19tgDYPXV02mtvz7A+ec3v11x\nRdONebvnHoDnPCedVgom3sjLNZtxxx31TBDCH6VKSG20NB7dE3fSSU33OecAzJ2bRisW557brkzv\nuGP4m1ZOqeV43HHNDnXAAXqcroQYNSROOgngxS/uhhaHvfZKN1bOOy/OYABIL8fFi5turV3nmDXR\n2rPPww9/2N8BlzvuALjoorS4VdXfnicJOJuL5Yfldtdd/fJhkdVWaG1l/nyAq65qlz7O+uTkGwDg\nzjuHZ5FofuiA2jdeXvSiesYtB7RyPOywwapIKqz9tK3unDsX4C9/aX67+WY+bO46tWDijbxcAnnG\nDIBddx24uRFeiNa114b9v/pVeXo5Vig+8kh4duKee4YNR6vhps2GjRPaKpN77w13ym22GV5iwHLE\nXzqbgaDGjIYnnxxeNtTqjLa3cT19e/jhg/aq8UyXp2IHHG94Q23wxuBPf6p/n3wS4AMfGJ5Zz4lc\ndXbeeU33ffelpSNh2jSAb33LFratsv761wFWXDEuzjnnDP6fPr3fQ3ExdTZv3nD4X/2q/tUM/Ni2\n/9KXAjz3ueEwP/950015s25diF3mBmiGP/jgekCVAxofsXzuumu9hcqHf+gtJ60cmHgjLxWLF7cX\nTj622ALgz3+W/Q86qB5ppYA2nBe8AGD77eXwa6yhny6inRuXBkd9GvWBB2S/efOaZaEZeWecEfZf\nffXh/Vo+LrmkPlUdwtVX89/nzGm6L7oofEJ1n330Ze6ujLgvf7np1pY3KS64IKwc9t9/WAlLdaft\ntXrvewFmzZL9zzhjeCacQhrIoEHvl3NoJvHqqwE23lj2zynwq6q5DxJnzJHXT30qLr0LLgC45RbZ\n/4kn0rdR0HzPmQOw995y+AsvjG9zv/lN033MMfa4OffOalhrLTs9rb3cemvYMJw/v/3Mt9/2b7xR\nDhdqOxLoxMkll8SnARDfVmJx8snDxrC0zy6krwDqiZ2uByBTxsijHeSqqwA22UQO/5WvhP050Glf\nqnS1xoc8xirrP/6x6b7pJtm4QMQalLiEQJf8Hn20ucmUYtGi5vLFlVfG0fVRVQDPepbsf//96Wn7\nNHxoU/lWRU3DHXZY033UUfVsroRLL9UFBsWFFzbdp5xii3fPPc2RKTW4cGYrBL8ct9su/locNIJp\nuWnlfeqpzVkcDloa0pUYaKhi3q6/vp7RknDBBfKyTW4sXAjw5jcP3Mgj/mpL9bRMttsO4O1vj4uD\nM1CxOPHE5t4vDZx8pPtTQ3EuuigsY3feebCq0vbgmeXwglVuafsz3/Y2gG23lf3bDAJp3H/8A2DT\nTe3xLXKSrmRRvaalj5MoVMfErprccEO+wxFa3R5/fD3D2iWmjJGHwAo///zwTJ1/p5QVmiDVOhnt\nCG3W72NpUdARH6ZH4/32t2Fl8OY31zOLIWgbZK1LWDmWumLTkMqxzVKFFRpv/v2DAM1lxre+VW6v\nxxwD8LGPxfMTgvWkW9vyTynHVENdOmSDoLxb6FC5M3v24P8ddpCNjti2nmNvFc0PnT2TQJe7c8xo\nasa0Xz7bbisfqECZizwdfHA8L/TwQq5lxxNOaLpztH1twIZ5obqy70u8TzpJ3vqCQCOP9gV6alwr\np5kzm/dX5kROHW/FxBt5dPaszWm1rkEbAAquHMaKRovi29+20fGPhnPQljMteKrsLQMAePDBtHhd\n7tWgszrnn18ve0pXWuS8TqBr0L1mOcrR2t4sm/B9WK6VodfB+Ibkn/40vMxPgUuotM4p6GlADn7c\nBQvyXYHypS813bF7S3NAGnTg4TrkibYvuheLw1//2nT7s4z33TdsINGZptQVHVqODz/cPD3bphzp\ngLBtncUu5+622/DqhxUpl/n7g6mTTx42sHOhjz16E2/k0SsxsPFxS19+Z4tdGrPAb/h/+5t9dqPt\nLM+CBfpeDErDejddH9fSYB1yiuvLX847qgwp+BtuGB5N0nLzr76JgVbH3KwbNSK0a0to2+/zOgQ/\nf89+NsD//I/sz8WXeKWGE03nvvuG9w7RMLEvXEiz2hQHHhj2T9kf9dOfDv5///uHBxXYb9saCBRb\nblnPJMbEkepUMxiqqtnPcrRTSlOaxdaMYwrutgAKfxbs2c8e3nv7iU/YaGmg5fipTwFsttnAnVKO\nqSsVXcgWf+uMts83Blxb8Pn/t38DePe7ZV7aoBh5GSAtbyxDcj5nTvOi3FxHxX34Ded5z6vvE9PC\n5aC18srDyw6pjYuWG8Wdd9b7otrg6KObbnp9h5/+5z8/2D+BeW4zE0U7vF+OM2cCvPGNTX/NOJHC\naf6HHgrw8Y8P3PTeJQBdyEmGEtLCvN57b35h8/vfy3733Td85QCibdun+XjJS4b3DtEw2n5BqWyo\nbHnwQdt+xTbwDcNjj9VXJnLtw7r99vqGAB+pbUZbZvzlL+sDCV0AnwXzjblvfGPg34Vx8otfNN3U\nQEg9zKaVf45T4JoMofzggIme7v7Rj9rz4s/+bbdd+kXQ//3fTTd3wMPXIVyb0FawpLqh5dIHJt7I\no5AaKZ2hydHZpU2XqJzp8keXVj3d1E8FtvYKBULj8YtfHDaE2oLWhSYUcY9fFwKbnijMVWd04/gh\nhwzvqUuFtoeRzlp3UW7a+57aSWfr7Bn15zbkx9aZpOjoqeMjjhie7coNbQZKcqcgZU9hCmi673pX\n003bZ5u3hXHpDvP22GPN+zP72AqSeqUH/U6NE+rfxWqUROuss+pfHIRQo+7hh9vTpG2ftgNr+4yd\nhcu5XYqepC0zeRlAlQO6tRmpHLj44qY79p6zNtBmeaiB2fdTKzGgSyjYubHT97GfzYpUXnI+6SOB\n5gXLr489j/RwDd2HJJ387av8Y2jjd7rXJ3U/Zgyse6Nilx25K2voKUWav5/8xJY2ReyBgdDVU1ZI\ns9j4Hfc+xpbbKEH7jGR4IdrkiepPSgsNpy71Kt3eMIo753LjKW/kOed2cs5d55y70TnH7lBxzh25\n1P8q59wLve/HOufmOeeGtho75z7mnLvWOXe1c+5rKbwtu2zTHXvFgwW4NIDA92iljbWpG25zAAWG\nNvobRcei5YGd/cwzw+G6oE1hHXWPg0CiRvEoFZk0yy0ZnDmVr3XWmvKg1WnsVQ0psL5a8lQwUvqE\nNpDBgyiTXG4pe9ik8qCveqA+7VK20LYv7X/OPQOdspwubeOZqMuQnXPLAsBRALATAGwBALs75zYn\nYXYBgI2rqtoEAPYGAP/s0nFL49J0XwMAuwLA1lVVPQ8ADo/hS5rZo6dnumik9IJS2mhzPardBilX\nx/jo40UMLDdNqeaoQ+vdchqokdJHZ5cMJEkQ96ngUmnlvr3eAus+yz7Kz7pcq30fJWi5WU4d58Yo\nB9jaJe2UFytPqU/gpUCaJexyJpS2/dgTuimnbHNjFIP/LmfytgGAm6qqurWqqiUAcCIA7EbC7AoA\nPwYAqKrqIgB4hnNuraXucwGAm1f6CAB8ZWmaUFWVcltVE9KSVR8Cm04300bb18WpIUidVDMQEH08\n+YTlhksD2pJVl8DRpEarT2VrvfgWw+EhIxyd98GrdbQdqzSsj5JboBlOfWz5oMA6wz210l2fozTu\nNBlCwR0qyg0qv1AWW+VaTrQ9mTkOdUv7a+q72DGIvdCbou83k0PoY6sRoksxtS4A+M35jqXfYsNQ\nbAIAr3bOXeicO9s595I2TEqF3UXh042idF/IOCyjIVJ5aPM4NwVeFEl5wXLMdRFxDqAA0UbhfdSt\ntCwj8XLkkd3yY+FF+94HYnkapaLDWWzp/dhx2FtmLbc+oM2gp86epUB6nUOjjTyOw/5pOsAZ5aqA\nFePEE75GhCf02xwm0hB4lKc1rEVKu50WbxoAPLOqqm2dcy8FgF8CgPLssh2LF9cPWnfRICQjD0ey\n2HHaLpnmAAoUevmqL4icq/+66jz0GSnKwyiWyyTELqN1WW6UtlV59Kl8rXnvc5k71kgbRftDmigr\nqLIdh4HiKPcfSYidOR4FrLTbvj+bA5KR14eRLF2LNo51ikBdRmeS8YR0lwPELo28OwFghueeAfVM\nXSjMeku/hXAHAPwWAKCqqkucc08651arquq+4aCz4aab6qeB7rlnFgDMUhXdggW1kZcT2mZy+rQJ\nfYZllJBOffqCfFSdCAXNJZcAbLjhsP8oOze+DTxOI1ztAEGfBkLsKdE+oPVT+n2UgwzNMJd4f+wx\ngOWX744vjgfq9ttZX4agxAs+xYayRKrDRYua96hOFWirTLfcUsve0P2iuXlp+55wn8ByO/zw+glQ\nWo7HHns2AJwNX/rS8GHQXOhyufZSANjEObeBc255AHgnAJxEwpwEAHsAADjntgWA+VVVKS/Uwf8A\nwA5L42wKAMvzBh4AwGzYaKPZMHv2bFhppVkNH+lIeBeKTtqnNg6KjcK6bDGKPWbSrE7MQ9Z9QdpM\nPo6zjaOYccGN29a3G6W9tH1CKyd6yWoXaDtLNor9lhJyvRoQA1pu+OyXZrD3MXsmyVykPQ4zo5Q3\nvKi+j8Gste33OfuvAXmQ7yKdBQCz4eCDazulC3Rm5FVV9TgA7AsApwPANQDwi6qqrnXOfcg596Gl\nYU4FgL87524CgKMBYB+M75w7AQDOB4BNnXNznXN7LfU6FgCeu/RqlRNgqZFo56v5O6DX/O0D1iUE\nel9Vl7Dy1Ce0GYFxWqKibomnPjftW+u0z3JEoUffBrXS7sLIs7Z12v663E8jgS7XSstl47BURTHK\n/kplhmbcjWImmdKkLyONsk7xhCqWG84KS7znPNGq6Wj6/de/zke7LbQZ0S7R5XItVFV1GgCcRr4d\nTdz7CnF3F74vAYD32nkIuym6qIS2gjfnYYZc6HOUpBlKyAO9l3AcFNwolS7SoicJKUYxwEHQdoTX\nCPW5EZ7ygsAnwzQB/de/ArzoRd3yhpAGOFK4PmAd4NxyC8Caa8rxugSl9Ze/ALz0pQO3dnfpKJHj\ntYhc+MY3AF7zmuHvUhvIOQDSdA7lQXt6rEtYZxv7wMS/eCFBu8G7D8OKdt5xmJFCaDyMgkdpGh5/\n/cfbR4XY2aAulzUQ+I6sdU/eKHEPuRBplH2BvolMgeWVew9vCJqiG4eZqRtu4L+ftnS4Pwo5R29R\nkF7rGIfVgHGQ/xLo9grktY995DiIHwc5pYHeu4sYRR1POSNvFLMZEk369uU4ggpkfLiZ5ok+k5YT\n0n4sTYEde2x3PGlAXpDX009vfu9D0SENFMzjtCdPglQefbzWkWoQTet0PaQJ6XTtOCwzIm680Rav\nz32VtI0vtxzv/1RY7u6TJ211BMuN3tfYh1yzfh8lJHlF93h2WV4Tb+RJSlUz9vrgibrHUbBQXr70\npaYby+vRR7vjAZWBdMCijzsOY0HLLdfbrBZohpB0YGUc9kohkIdzz61/zzij+b1PUJoXXFD/jqK8\npFlsvNCaypDzzuuPN4Qkx0ZpiCKwvKSTjKOUvdLzWaPkSWrrsae6xwHjsPo0Cl4m3siTGqN0B1uX\nGMeGLyGWVzoyzgmsQ7qUNw77kWKBJwrpTF9OWAUtPoNEDYajjsrPkxWU5xNPrH/pIKKPmTwJ9O7I\nPiG9sY1GMEXOF0AkjMO+51hIB5+Qp5R3XtsCBzRS/+1z8Cq1G7q/dxxk7TgMHmLR5yz2xBt5Ukc5\n8EA+/Cg3n48DrLxQI2WUp0W1O676hDZjjCel+1R0Eg36qPg4zIBqGEW50dkL6x1/fUDqd6O4YoaC\n7nsbhTLGKz7wGTjpRD51//a3/fGIQFpf+Up/NCVIRp61Dsdhxn0UwO1MCOtERFmuzQBJOeCegz7f\nkqMYx5GItRz6ULraEsE4Q6vbPmfyqBuNvHEoX60djXJLA92HOk7lJS1zH3JI090lr1Jd4OlkvC5n\nFHIO9wojLxJo3Y7yVQntxaNR6gdNT45i0Ip7QKXrWsZhBnSUM59TxsiTChn3rEib+XPSRtBXJKwN\noI/LQ7URLuLii7vnhQJ5wGVGhNaJ6V1sfcBap33OuEgzoIhxuDRUM1D7GExQ4D5UfCd2FAbAzTfz\n36X+KZ1SHoUS/vznm+5xWK6VjN+f/7zpHmWfuP/+pnscBrltn/7rAvgs6GGH8f7jMGlCUfbkZYS2\nr4HOZvSBO+jjbgQSL3QquA9ovIxC6eLxdG3pBUFPiI0SfcxIxaY9DspjHGfyKA1c8hvFUujdd/Pf\nx6HutBk6ahSPwwwogsoM6RnHLqC1YfoAwlNh/zj2kT551Z4DG8c+0icm3sij0Jas+qA5Do1Og6ZU\n+3ir0Jr2OMwMUCAv9C5EuhzU5awQrTt8woneBC+Vm/UqjDaQ2pU0oMHLVfuYcZdo0CWrce7P47BB\nnu7fRYyi3KSB4ThsmRnn/W7Wurr00m75mFSUPXkZIS1ZjYMQHAdYeRnlHsanEj73uaZ7lMuz3/9+\n/Uuvc5HqcBQzx4gDDmi6x6mP9HFnnwbJWKHA77hfaZTG8VMRoxy80nDjNJiVeBnFDDt145L7OAxw\nEGVPXg+QCle7Ib5PXjT/UY4ujzmm+R0VXZ8zURLGwdCUeOzy/kAJqUubffSFW28N+8cqvpyITXMc\n2h1VtuecMzpeNEjbKUYJTS+McnvAOBkp0opEH7oq9mk03C8+DjPt55/Pfy978jJiHKbAMW28e2kU\nhmVb4OZWxChnpKTv41CO9JqNceRxlDxJh4esM1KSu09o2y9yvtcp0ZBAX3npo9xiZ/9HCavsxe/0\n8ENOjPOggvJ2xBF8OOki+gcfzMfLvHlx4cfJOLYOuspybQvQwlu82BZO+96GB0nQjEOjpJB4o4qs\nS+UhpS2dphonaEp2FEp3nDa+U1j3SI3DTJ6ELl6ZeCo95TROBjkFrjzELn2OchUFf/EqmlFA02F9\nQquLPveLW6HxcMst3dGeeCMPgYVML5rUpuVz3Bgf28gwvHRtwigwDh2F4rrr6t9xetZsHDd0U0in\nkUc5wzxO+40QqcZyH+0vdSlqlNtR8PuZZ3bPgwTcl4pAnvp4GYQidiBzySXd8hNC6qW+47DMPQ4y\nReOpy1PdU8bIQ0j3R0l7y7qYybP6S08YjQKjWGrRyo3e8zYOnRkxjgIm1b8PaNfgjIPysBqi43Ch\nuva9D9rUfxzaGZX/iP32C8frQg+kbiUaZdvXMA4zy5T3U08dDR8hlD15GUEFTBf7Zaw8IKyjonGY\nkUKMw34aDVh+Z53VH61Y/6fSsmMXvOUy3ka5zI2/OCM1DopNwjgYCH3S1qDdk9clbr89Lvw4lJeE\ncVqupW5JV03V8pwyRh5iFEYehdRI++g41oZ+4YXN8JqRR9NdsCCOL0uaVv8//zkunRT85S/8d22j\n7VNJ0PRh5I2Sl1SMAy+4sX0cyimXYd7HQHIcykuiLRkrsYP/Lvtt7HaUcdjLOA7QeCpGXgvQJ600\nI28UMwTSiwzS4+Nd8iKFj93M2sVTYtYZgj6MZWs7GoeZlHESdlLd4P7TUS7XjuMyrISvf53/Pg7L\n3FRWWO8iPffcbvjJgRzlFtt+pIu/x2m5dhxkyzjLOwlluTYjrrlm1BzoHeYzn+HDj4NSsc7kjQLW\n8umiQ2kGeKpx3AdoueFdfjfc0PzeJ6/4bNc4XbKduuzYBe/aIY9xmpGisBp5dF/0KLYLjJK2ddlR\nQ5dtgfbP+fOb/uMwUzpOM3m0PKT9gWUmLwNSKz5H4WtGXp8do6uZvKm+t0yiud56YV76KDdNkeES\n83HHNf1HeYBgHC4pHwcloWEcT9dSTJtmCzdOB1ZSw+WEtFw7SlBePvGJsH8OjIPhmAp8NhXvyL36\n6vq3zOT1iFFuREbQ/Q7WjaMpvNM4dCQm0RiFcRyLcZoBRaywwqg5sKOP08qpdTPOS1YUfe5t1J4r\n64K2VWaphpKrAAAgAElEQVQsv3z9u9xyfDqj2Fs2SkM+diYv9TWhPiYJ/vu/61/p3tk+eNFojoMx\niDw87WnhcGUmr0fkaBiLFqWlGWvk5YB2PxTS7PL5MkTb5Zo+FV3qfkltCWbhwrR0YzBORjAFNdSf\n/vTm91HwMgpYDczLLgvH09JNgfUVCGrsjcOeR+tzZeOwUrHaany4URzQo+WF2yso+uDtoYeabuvE\nBHVTAzXHpInkj31gFJgyRl6f1n3qzeQ4pdvlNH2u5douQGcIYjHKUTkFbW/SjB7l+c472/HFpTnq\ndHzQcvv973masc+c5UDsMjdiFDNSEkZxQlraS0b7QKyRl4P3cRrQxLYTHOBo4WL9U5C697MLXn7+\n8zw0r722PS+py/19Gu5TxshDaJWS4+qPWJqI//zP+hfX8bV0uhh5SOGf8Yw4XrrYy6iF63MGNNbI\ni53NjQF9PFziRaPRx8lMSoNeOYM06BLfKPdE4aytpOioYT5OhkUfdZgLfc5Qaf2yD2PZaqyNQmdZ\neRnH/XLWmbyctGL9+yynKWPkWfdr/eQn3dGWQHmSRnCjAPK+6qqj5SME5PGMM5ruLhE7Kk+dzbBg\nHE/wWiEpCdzD0mdeUusGB2ep6eaI06cysQ4GpBm91HRzYhwHhhI0wyp2yT6FZupKWBeDCq0cratO\n4yQny0xeBkh3DvWBXMs7XXRea/hx2BdCkUto5oAmFLucyesLfRoM2ig8By+xdx2utFL9G6t0ciD2\nuqBVVhk9L4hRtn1JbtF3wWNp033XFqQasVrb73O/F13Rie0L8+a150ErR2kfr7StQPLnoO0btxrH\nP/qRTisXpoyRh/vdujIcQkgdwXax90KL86tfhXnB6xDGaRR05JFNdxcGQWoasXXYxTJ36mxFH0ad\ndqI3dQbBgtQDUn0MeFLz28f+wL7umutCvqE/GhupdU43/+fAOM2epRrmWrwcB/g0GtQQleLlaF+p\nZf2HP+RJx4IpY+StvXb9u+66/dPOVYF9GFb09Q3JYNAa+zjM9OWO14ZGl8u1GrDO0EAf5WzhKC+w\njkWqohvlPiV68bBGG59Hi4F1uSx2NrvPS6QpRtHe6POLVvQxk5zLcB+FrO0yXmzfltq+dK1QF5gy\nRt7LXlb/Wl8qaAOt06VucO9jhJZ66bF2X1IKKC3rtSVdzORpuP56nmbbfUk5gKNnpG1d3umjHK19\nQeMlxzN6OZZzuoLVkNT2ztI8pLzlnaroYtHHTAv6Y55WXDEfLxS03K68MkwjVQ+McuViHLYuSDLj\nr39turF/T5+ezkvqcm0XT5ZKmDJGHoIquj6Ubuws1yiXa7WlYyn+scfG8xILPHWMdZc6Su9CWZ9y\nShrNLnihadIlEkmRaenkgNVYiV2q0k4Yp8AqsLtYIo2N893vNuN1KUNyHToah2XvXEukFqTO+I5i\n0Jo6wOnjQnUrKG08mEf9rc/ucWH6MLjbYsoYeXTERq9FQPQpaKSrUmLTyQnKk5UmNSRylCM9NUYF\nyDOf2Z6GFW1nI1KX/lJw6aVNt1Q3uE/Vii5mM3Lt7+pi8zmtO2lv4ygOYlDgNRpdGikSUmn1MTDU\nTloi73jxsBZOcqcgdXBArx2yxouJE2v8jtOBMeRRu6UCw+Hb3TlpS24J5XRtB8A18VHuGcCKXWut\n5vczzwzHy8HLc55jCz9rVn4erLjqqqabGnnSm5hWgRVC27If5XLHNdc03S94AR+OHljpA5pBZN3P\n1UXfSH2iqY+ZvK6eg+tjJlmqQ7rFQUsnhbbVyKOypI8ro1LbzQUX5OdFoy3xQp/rGsWF1hKvO+8c\nDpfjgv/UFRvtTfOcmDJGHhU0223XP23EKG8Pjx3po7Abh2nnNdZouvvc16BBU2zWcu9iRJd6sXAf\nS1bjhN/8pumWlMIo6lAa0Ejos45TDck+Np9rilzaujBjRn5ecl2d1cW+cmudnX12002fXhvn/t0F\nrMu1tK3HruK1wRipyW7xX/9V/2Khv/nN/dHWZgBSBTJ1W5bfYgXADTc03TgrNIr9NFQgj7NAedGL\n6t9x3LMxyvsFU0flXUBLe5QHLygtq0EUa3CN0sijhmuOF1diZ2te8hIbjRzlpl0fJIEeDOjjiclc\n7aTPPoM3Z6Ru+UhpX1Y33rE5CkwZI0/aGD/Kqz6sl7Fq6SBiOv/tt9tofvzjTfcHPmBLf5QGWBfL\ntbECQtov2McskCbkttiiXTpdAu+4il2u7aLcNt646bb2ry42n6fu391ww+b3q6/mw7UBbi+x8tQn\ntHKzzrCffHIefnxYjdqddgqHo8ixLBmbxvOeV//SPMXu+7WA0rjnnvr3wAPr3z63eFjroov2Y8WU\nMfIQ4/DWXqxCesc78qU7DsuuVoxiWSwXPvjB+lfLw3nndc8L5WGXXWzx6Gb0PtoOXnUUi5S2oOWH\nvhoxyiX31DRXX73pvvzypjvH0h492Swp1802a0cnZXBmPVChGeZoSPQJaSKii20+mlGnGXnvfnf9\nS3k9/niddlv8+7/ztCn61H1trmXJjSln5NGKvuWWcPgU4ap1ytirP6SN813svdBmgayKrgtYyxHD\nHXYYHy+FFsK6V4cqhc98hg9Hle44Ga50U3UOpF4fRN1//GM+niQaklszRHMsO9KZ9tgtHdbwOWZ5\nqBtndaj/JpvY0qcH0WJAL3O3IuYaja6AtLWT4tbDJDl4saYpGaSPPZafFwq6bzy2r1jpWOKg++CD\nbTz0gSln5CGwMr7znf5oIVKFWI49BTni+Hjb2+rfcXzPU9rz0qZzz52blgYahzRcHxtwcxnmljxr\nszyxV6ig//Of3/z+j3/IfFJI+9liy+PVr65/6SW2tJ3lmFGge2GtwBkE676kLvqptd9Jdf+KV/Dh\nLeWG/ZPGee9761+6fEhn8vCEdY4tHxRa/jfdtP6lg9P585vhutiTR68RwXak3a5A86Dpti6MaKl/\nSwPrnOhCJ+fGlDXyEFYhZ13i4kArmt7fozWEb387nbbGS6o/7jnr4hSaho98xBbuoIPq39g7sHJC\n2+dFN593MQpHpJ7qboPzz+d5sOLQQ+tfagxTRZdjuVYrl+23r38PPzwcDnnBGa0+y/vTn65/cQmr\ni31J1jRWWCGNZhflhQYUNUKk5dpRAHmgM+j/9m9Nt9VYjsEVVzTdeFBghx1saaK/djddF5DyT1+4\nsJZLzNOnXQwGcmMMmvZ4ow+hqI26cekP3e97Xzxvm2/Ox0md2sa3gBFd7HWUeD3qKJ6mBO0KEW5k\nnKtz0lk0ekJYUi7PfW4e+gAAF19c/261VThc6hKNBbvtVv9qe59oeVkfG0+BlkbKu64AgzxKj7Hn\nWBaS2j4aCOuvr9MIpROCVbGhgT5zZv3785/H8ZJjOQ2Bd27uuCMffhyMPATtA6nLs1juOfqKlYec\nRg7WVaqOivVHoL6wPNWJab70pfUv7uPVaPW5LWeMmna/iG18p56aj1Zqw0cBnnN0kGsJL0ej1dLA\nJQVUntYXL5DH97+//qXvnFqWP6RlHsmt4UMfCsejdwKGoNHGmSfMvwRp6fid76x/6RKiZbkWgXVl\nPe34rGeF04spf+sJP9r+cDZs333DNGg8nJ299lqdt9wYxcwCTRPLG2fycEvHz36Wll4bYFq//nU4\nbXr58ShmQHPRlAyuNrRHMSMlGd7aVTSpF1ljHm+9VQ9D3VtuyYeXdEuf5TlljTxEn3vJ6OxXLLS7\ndkINx7pU13bW0ZpOCvbbr+nGE10aLxT0GgmLkSe9e6hBErjSoYYUAS2lEesvLR2vvHL9m3IYAMP8\n859xvNElecvsayy0NrtwYf2LS32poM/MxZRb6ik9az8NgZ7MtaYxe7YtvCR728wKxfYbDP+e96TF\nawPML15LddddzbT33DMuHUQb3uhdc/i70UZh2jT8Jz+ZzgMFzY+0B1Yrt9hyaWMLfOEL6XFzY8oZ\nebjHgEK6/y3nCM56FYpEm7pxpiBnmhroElTOmTwKyhsaCgiJJj3dR9PLsVxmxStfmSedPmCdZZPc\n0jcAgD/8wcYDxkdeaHpvfWuYTgzaGurUmJHSpTPHMby861163JR0EV3cL3jHHWnxtO8x+D//x5aW\ntFzb50wW7mPbe+/m9zXXbJduyoCRLmfjwSkqxyRa1u8hoI6hA2sEtll6hytCkmN9zM6m0thgg/a8\nSJhyRh5eRyItv/WxnHHddWF/a3q4V087WJADr3td/YtLWHSk0oWySO0w226bJx0A+3NSUpq4Wf9j\nH2uXTps41rZNNxz3MasYC3xzWdrvFsNLW6FvHeDkUC40jqQUqGy47LL619r+fGhXFFGgIZBLluL1\nG5jXLpWylDYeZNHSyQHr84PW/n7jjXbatBzwVztkpKWTAnoNTuxMXp8DaY3mi19sS0e7NqcNppyR\nh/jUp2zhuhAsBxyQFi9WQKWkKeGFL2y6cTM/ostLpvHqiraGZEo5SW9bWjtll7MVsTQlf7yeBDcP\nW+PlmBGV2g3+Yjv71rfi6KTwEhsfYW37uEctJm3pO85W4+Z6ikMOqX+//vX6F9trTBncfXccT/SJ\nMCk8rppoRiTO5LSRc6n9jMq3lHToHaxaHVvv6ouVg10MHK3hu5BztJxi751N9ffDoF7Q+hMeeBwl\npqyRh6CjgC4saq3xvOUt/Pfddw+nRx9MT1F0sf4IupzW5V5G6b1cK69SPDzckFJuqfmlx/oRL395\nk04bwx2B+4zQH99vpnj968PpSDxx4VOFuiQ0f/KT+veSS5r+XW4PoHt62iowDId7cnP2UzwUI8WT\nZmhyIrZfrrce/72Lg2XajK9ULv/xH+1pL1rULn7bmbw2tKx1ivvEaTniaeYuEHvXpva9DXL1qy4H\n/VPeyENgIdMTm21H/34cKa4k9KSRP+55oUZeCNdcw39PHQVJJ5/e9CY7TxqNWH8tXEpd5holInBm\nhYbPecEppk2X8a+/Phxe+n7ssc3v66wTjgcwuI/MWqf77990j9IYsV6DEEsnlLfYtt+lUtAQ27/a\nDsY0uqEwRx7ZLs0u2iOuTGg0KayrT21gzSeeJt1rr+Z3nP09++xsLA3xhAeC6IBP4h23GrWlmxJH\nSqNcodIhNAGlPb0Ts88hlgctHLrxSaccjTD2YmaENGUuGX+WO4cocgnWHMrC6k+Xd63GXBtl0naW\nMZW2xViJbeuxBkTMckhbQ6lPgU3TvOACPlyskZJSBrfdFh8HQH6XuYuZKLpHEdO48874tCw8tJFN\neFqdpoW/eDKV0pDujKSgsjbEq3R6W2sneEEz7llGf3p4BL9LL/5w0PqTNCmC7ZTS0IzqFEj96ayz\n4uJL7pyYeCNPO5QQu5eszeWhdFRppSlBmskLLTnnakzafhpKx/KmZKrS/fKXben86EdN/xh61k6p\nXR0gxXv2s23hLIg1mLR0rOnGpIGg+7g0nqk/ltsoZo5TZ7RC6aK8wjC4XP3LX6bRlkDbWwgPPRT2\nl/Kl3U1nTUdS3j5i8mOhSf3bpC3RyjU4oNcxtbnTFZFaZ48/zvtL76+34YWW4xFH2Hi00gkNYqXf\nc84J09hww7B/F5h4I2+ffWzhuujk2l4nDW1H6W1o4PKZFV1OP2v5kw5HxKafIw0tLdwjRAVUmyfH\n2vKfalyH4llnjqRn8VIN0RxhaTg03KX3ZPHJw512SqefqoBS4229dTieJU3cmqFBOy2ZA9aTwNbB\nmhRu553D8VIQywMFvQEg5RBcrA7pcyZKo03ze/PNtng5eIhtX5/4RP3b5UFFiok38qzostNa3drp\nRvpQtZReDG+SP90P2IURrKUVK0g++lH+O71pv42RovGi8UyXazU69G5ACzQe6JaDLka6kvv73w+n\nnYOH1LhaWnQzPobHJS/rKyUxStfq1sLlGBBaaVF88YvhdP71X5vxrQrUwpM1fGp5dgnrPt02A8O2\nBmbbPtUF6PVeVuM4BnTGXZvBo8B7HBGSbs+BKWfk/eIXTbd0xw5eRNmmkcYqLukFB8RXvxqOH8NT\nSlwfsbfVx+AVr+C/a4JGWrqjj29L6XGzAdJSVWr+tMMy9DvedxYCxtl4YxsPX/pSmCbihBPC9FLK\nAA8A0YfitbQ1Qd1G0eGMu+RvTSd1YBBDKzfalJvV3Tb9LtI46KB26eUwrKS9eQjrKe+cOP54G60+\njTmtP6UejsMDVpJ/KE94XyeGoa8BaWnS12Q++EGZVltMOSPvtNOabumggDarZkGsAkrtOF3OplnD\nt32yzQfOIlKhKM2CaehjRuBlL0uLl0qPAwoemmZqOV10Udg/NJOnCebXvjYtHvWXnvpLmWXsapYm\npv2lGpax4XMMXnPFjx0Mc6CDTE3pWgel3/62nYdY4HN5qWni4QcNfvrSlSexhnuOgU0s8ACFZXDO\n8dDH4CEV+LJIF+jUyHPO7eScu845d6Nz7kAhzJFL/a9yzr3Q+36sc26ec26OEG8/59yTzrlnhXjQ\nKqWL27LbjjBSw6UYL9bOqaUtvZYQA4xjvatQ2tjd1h3iTXLH7i076qj6N+deRlw2TDXUU79LAyVL\nGlK50jvG8PuJJ8q0AAA228zOS9s+L8U/91xbvJgwmhtfeenTkG2btrRaosXnrpai/ejPf7bxkCr/\nujCSRzGoz3l1E0B8f+cg7VeTbi6IlaF77MF/v/fe4fRz6Nw24XOgMyPPObcsABwFADsBwBYAsLtz\nbnMSZhcA2Liqqk0AYG8A+J7nfdzSuFzaMwDgdQBwG+cfx2f92+VIxNpQ8Pezn+Xj5eBRCxt73Bwv\n2O1qFgRgYBDRtE8+uV26bQQ3hqUXDtM06NKoNd0UXmLLHrcHtJ0NCgnZVCH4kY/w3+nytZS+9f3U\nLkC3hCCPdH+lb6zEzk7QeHgp8vnn8+HweTMEfUIrBm0NHgw/axb/XZNzXNnEPsGW2me6MJLbGndt\nBq3SAZxYnZWTNwq8lqRtmWs8/+lPw3G07Tqpg4E+jb0uZ/K2AYCbqqq6taqqJQBwIgDsRsLsCgA/\nBgCoquoiAHiGc26tpe5zAeABIe1vAYDxcbAwJCMvx0jN2hAopA2hkiKIecha4gWXp+mMHII+sh77\nXmcKb1b/VGEZCp+rE9Knjay89DG4wKfqKA9oMMQKei5OLqEX6889yWWdebK2p9h4+F52inFsLccf\n/pAPh3fWoZtuiXjuc2VeEHQfUq4226WBkJtWjj2gbRF7Ej8Uzqr/0P2ud9nCS3QQuFRtAX0lKGaQ\nyYWX0OZ6tFS8//3t4lvQpZG3LgDM9dx3LP0WG6YB59xuAHBHVVXCA1FNaJVAl5pGoWxTOyu6U++I\n8oH390gdQrtSpY+RSdtyksJZ0tVOxeYa4Y/COKaQZnli+sYD0vAskafYurcI7L7qLGZmRct/qpJN\n4cmKNnegAbTrQ6nlQGk98ogtPNUXG21kowcwbOTTtDVgOFyaT0Hq9iR8y1e6dFpzt7kiSkobkest\nX8u1JrFtlb780YV9oaFLI8/KPq0iMZ5zbkUA+CwAHBKIH4Wco6L117fFQbd2esrKU8y7nqmzFrHA\n9EJ7pLS4uXiS0nnwQXsaua4zoHUjPf8VKoOu6ipHH0A/SaFptHMZK6FyQ8WcOlsWi5h06WwZjRNb\nXjnypN3liHtof/UrW3oS71SOSfEsaUmgJ+0xHn0yzFquMQbGD35gDxuCNusacwebtazxZgepvHNN\nZKTg7W+30dZ47uKu1//8z/xpxqJLI+9OAPC3o8+AeqYuFGa9pd8kbAQAGwDAVc65W5aGv8w5J9xQ\nNRv+/OfZMHv2bAA4mw2x7771r9QQfv/7ADcCrMpDepTd2vG6mF62dkZJkHQxUtP8uxA4NIx2sjfV\nQKIDA0s54uPf9A3ZWAGshZe+4wbllHK0zli1RYxBgG40sL773TgaqW2f67/WZ6ZSkcKrtZ1wS+Qx\n6R9zTHpcK+idfan91lKO6IdGGc4W0rjf+14cLxIP9N11S1yrW6MdK5tD6cdebG1d+n3LW8L+bS6R\njonjh7vrrrMBYDY8+STaKfnRpZF3KQBs4pzbwDm3PAC8EwBOImFOAoA9AACcc9sCwPyqquZJCVZV\nNaeqqjWrqtqwqqoNoTYaX1RVlSBeZsOrX42FN4sNge8BSpUlPepugdSgc10FkgM5jLO2kO5Mo5fL\naqPnXEYgB+slxrnLkUuPPh1EgfuGfvrTvLxQxCi62DRj02ljvCCk/agUbbcuhAxQaxxrfruYYema\nZkzfSjVWpO846I/lzYK2skGjbXkf1mrI5B6E5ZSLqTKFXh9DETNpEtsOPvc5Pvxaa80CgNmwzDJP\nQSOvqqrHAWBfADgdAK4BgF9UVXWtc+5DzrkPLQ1zKgD83Tl3EwAcDQD//xEy59wJAHA+AGzqnJvr\nnNuLI6Pz0c4/BbmEGC55WdO1gKZx7bU23rR0KOgda5a06C89+YXfP/xhGy/43JRELxRfM8y18BK0\nGVCu/Gna2j7Sl7+8/o19czR1NB/6FjuAsSoXvJexzYxUqsKmt92nGmgxaFtX1nDcoFYzDGLzI70c\nMgoDymo8t8lzrmXAY48N8xBjmLWtQwz/v//bdOcsNw1HH50nHZSXMXvyQmE4dHFQ0YpO78mrquq0\nqqpmVlW1cVVVX1n67eiqqo72wuy71P/5VVVd7n3fvaqqdaqqml5V1Yyqqo5j0n9uVVX35+G1+RsD\nqzJFWGfy3vvecDjN/eCDephvfSvMgxW0/PCZlzblqtGQcNNN9S93n1Yq8M3ZbbYJ84Dfv/a1dvRi\njDwaLnbZIdVAsMTTyim1XUive0hlwNFMNZzwu/QCDeL5zw/7h2hZ3al1K33nLmXFsNrgQvsuhWtj\noOK3Rx8Nx6X3WKa2vy4G2gjtWby77kpLNyWOtd/iPkyN9imn2MJZaMYCVzS0fh9jjON+7tT2k1Mv\napgyL17QJ0wQmoDHX3qqyAdeLxK7l0D7/thj4XQ0hJb1nrX0CmnttBV9Yw8ROzLheKcX3qakwfl/\n5jNx8SyQlo6lX3pxp4QUQyN0+XAK2ho9FuAVPbmNvjaGRi4BG1tuIbqaod6WZ9yeIqUb6tddXDdl\nST8EDDuHvTJ/4C+dSLW2n9QtNqE41L333vFpAugGbsg4xl96bVeuOrVugYhBbPu79VZbuBgjD2e8\nc02OdIkpY+Rpy92aEE0RPH/4Ax83VmBIG0a1Rumc3CHwyhQJGO5FL+L98RJgGj4GeLGtdXSTOuOS\nopRoGOvj87ng06e85Fo+o+Ho9oDY+BbaufpZmzqNHXRptDV6MWHxqoo2hmIIOLsoxY8x8mJ5wH1J\nFLH14fPYZXvx8ZrXhHmz0NS+WwdvlIfPf97Ok8SD9VnK2D601VZhuiHggZVcAxwJ2sAqJ41RYOKN\nPG2EalVKOXhAxBp5q66aj7Y0co/N5yabpNGLQVczBhqdUJjYX2u6uEyGLxOEjDxtuTYWGE97CzOl\nPuj9i7Ttn3pqfJo+Tj89HP/pT5f9crWn1EFGyKCidxVq/Yr6v+51Yd5wAErBta22MhQhnf6MqYdF\niwAWLpTjSqeTJVjbhFYflrRzh0fgnZSW+NYZ4li9mGNyREKuPY2abI65W9Pqjo3fBSbeyLOi7QxE\nTNqpyx7UX3sv1tJopU7/la/YeJJop4wqtThoIMQKmC46Vu7OeeGF9a9ktPj1FDuTF1s+WryQP/32\ntKeF/fHusNNOs9GMRYjH3DMEOdPD61xSaVjv7KSI2csoAWe9NKT0W23/szQj1XbwieGwnUrpWmjH\nhjv44HB4qk+kA2sxPKE/Dha0ePT79tvbwlnCtJVTWroITq6myEALcCtVMfIywHoHUc4ZGikMdhjt\nriZrI7dM72tppc7kjdMIDZFrdMl17tT2o8HCY1U16zq13D74QRsP1I1L9inGsrUt491/VqTUbdtR\neGw8bZARs+wYm1/rAMcyMMRDR1YaViNPSgd/8ZJlP1yuAY6Vp1T/EC+xMiJmJWfatMH+Omkfeogn\n+l16TUlrdzi40+qDPpcZQ0MDveBaio/ulL3OqXqT7r/s0tibeCNv/vywf87Rt3U5AzttVzMKIeUh\nGXlaeA0YTloGihkVSeWBb6pKkF6woOmsvHI4ndClrm3rzPoElJ++r9zo/xZerG8hS/5SfGs6fphc\nV9G04cFabh/9qI02fVszhicrJJ6//31bPGv6oZm82DStvEjpb755/esbGtYTvlZecuXl9tv1MDkM\nRy6ctjLkf4/dV2kdpFnDUf+YV4cQV15pC0fvX9XyimUTs8UjdsB35JFxPOXAxBt5sYgdfXGVFNvg\nY3nS6OCpVe7gRSyNtuH9cJZZgxC23bYW8lK+jzrKxuPqqw+H8w8dhA6saG6tXOgTPNa6DS3XanGl\nizg1Hii47QGpiszKyyc/Gcejll4MT/TaDSlNel0O9aeHnGJkxotfHPbHvZyxykYC17ZwRs1qJKfW\nlaVdp14PFCtDY/s/t4wcO6iIBTXMq4qXjzFpSe7Y+G3oaHWw335xvGm0OVmLOoD64fVcGqTDkneS\n97wwfWl7RQ5MGSNP6+SpjTxGiVjdbbB48eB/y/6atifmJEh5bPtQdY6n3Dja/gyTTwOvmpEEaOoI\nNgbUUJYU3Zln8vGlmcvYOvdHuBjPOjOHv6kzeXRvH4X0ZFSIl9yjaK4tLL+8vC9xwQJ7mrG8x8q1\nUL+S7ps866wwDxpSZK82k9eVcaLBIpdS277VMKeyIRQvVU7F9h1rO82Zxn77hQfqkizCtsXJWAS9\n5J8zEAHiDwB99rNx4WMwZYw8xJ578t9TG2NqI7U0whRIr2TQW/p9PkKIHQFb0wopYTRWOBqWWTb6\nHX+tlyNLZRISoNoTYm96E//dwjvm22rgtjU8U2c3QjRS/dF94IHhcJaHwLV8Sf7WF1a4dFNnVqQ0\nc4PmXeLXsgVEclt5kHjyv6fuR5VoxF4bJKWH8I1Qui8tV7mFwlH5GLOaEwOJ95124v21eD7wJHOb\ndmMoRnEAACAASURBVGVpJ3QGftllB3SwH2j6kvrvvLOdR4w/ffqAdheYMkYeVgYu1eE9b7QD/uxn\n9a92NYOFlu/2O1vMiCuWthQ3VZFTvO997fjgjJUY4ZbyviBCu5AXQevKEufXvw6HxzufrJCEC1cG\nXRsAbcNw4WMHTdpMHh4OwPihy6hzDKaskGbTY/tjrMKjStcab9llbfIrBV3ESzUE8KWfgw7i/ffY\no/6l9+NJdCS55F+9gnHwKbA276IDAPzyl8M8Ub2i7RPX2lfsgPqNb7SFD/m3veydtldK6xe/qH9v\nu6353T+Zbb0Bg7pxS0tMueU+gEgxZYw8iuWX56dU6YxMyujrz38e/kY7nz9ixl/t4XmKlJFu21E2\nKs8Uo5H+TzsSFXr4/VWvGnyLmcmToJWbpJi5Oms7+o4xpJCv3LMZqaPuGN7x961v1ePE0uBAl5Y5\nXjQabeoMw+WaSUkx+pZdFmDHHfVwPiyz2BJvVhoI7Uok7nsqrdhwL3xhOJ6l/2u87rNP2H+zzeS0\nfUjLjL7MojJEoql9t/pb43HppA5sfFj0ROhAmrXf5tBFuWb7JUw5I6/tyBg7iWTsAAyf/uHCcEIT\nby6XHvBGvOQlYV59GpoAbbtHLhahZcc//pH/7k/fp8zkxRpm0kjSMvsaazhJwHCrrjpsENM6o88a\npbbtWKQo3Y024meL2vJiOdmu9YVcdeb/+nytvHI9uAwpNun7295m48GPZ9lDSoFxuBmh2IENfXub\n4h3v4NOzyssQL3iKnb640BWkO9b8OtD25FG8612DtGL48MNTvh54oJ5MaGssxxjmKXRiwNFoqyes\nejFHfspMXiZwDYGbmdHihTZUhgRRiFZXBpavhCXa1pGddMIO4d9Cz/mvtNKwwo1t3FIc7YLU2PKN\nWa611mXqd3/2jgoedB9/PJ+GlVer8aPllbvzSjN8NB6l79Ttz2aE0rGGCUGKx129IyndWOXxnOfU\nssfKu7V/ceVIlVxqndEl87YGgGVQQd3ScqsG2l41OlK9pmzL2XJLWziEv5dMouf//+ijgwMEuQZb\nKXWpxaNhzjnHzotlgBNq033dHyu1r5yYMkYeh9gOuMIKtkbJGU6W5doQbQB55CvxY0lTa8z4XbpY\nErHXXja6KQcI/F+u83796+H4Unr+d0u5xcxm5Oq0lDf8f4UV7LMbfQwiAOoZV3SHLnDtYunPAqsx\nm0r7T38aTi80I2ZBKC0fBxwwHNenRd8BpcBH3DEOraM2By+0ZUcM/y//0nRbBwahNNu2H4k2pnvL\nLXI8Wt8WmbHiigAvf7ktPMIf4FC9Ii0FSltjqNv6nUsn5ioqf/UkVbZ+4ANN2lo8aYJD6qd4gt/C\ni1WWpLTtWEw5I0+ryBA4QcfF5yqYdraUisVLQSXa9GZ6znihcbU0KaRw0nUQfnjOWLHQ9OGXGz31\nKNGOvUDV51VTslTIxwooi5BA2nTJNlaBxQpsLT7HpyWNEO9tlTIaK1x6mlGnAd9e1eKtt94gHNfv\nQ/1ScmPckD+N74fH2SEa77HHhuNpxmlsue22m87rKqsMnuOS8p5abqHvUjhNVksGA9dvY3iw0KKQ\nZvIkvkLfcSuQRBMv87W2Vymdm2/W04ltZ5p8jDHI/LRwFYv2FSluLIqRlwmhiuT86XeLYg3NrLQR\nmtaG85vfhEcnXFpUAF9zjU67zcZ/31hJXa5FnrQTlwh/hBeD0Owr4vLLbWmlKhmqdPG7pez8k31+\n+I99zDZy1vaBWY06+psyk6fRim33Fhr0+0c/aiv3d797EI/r9ylIMewt4ekF4n5cpKvxTQ+apRjT\nWrlYjTzuexslGmswUPi0LffkWeqM+vvXb1iWa/1wqYa7xNMojONcOkoajIWelMxRbmW5NjO4iqTf\npXjSTJ6WRk5hH6Lz6KPxxgRAfRIR3Xj4I5UHyZ8aJ1x8TcmmdP6VVx7sowzVU6wisgwKANINJXqz\nesxMHn5/xSt4GtOm1Qrnssv4+CedVP8+5zk8vXXWqdOgSpfrC1xbd05/blCCdA1OzP6zVMWWw9BK\nNVZS2r5l5QFfx+Fo+vFDsvKQQ8K80HS171aDIZSm79921tvStjjlT2nTZ7akdGLbJz73yOVVyruW\npxTDivr7tGfM4E+8S0aTHzdle4/FMKftm/Iu8ciliaextXDc9zKTlwmaoWVV8m1GdJLgSDWYOBqU\nnqbYtEZmUdoW+LzQfT+h/If2BllgGU1ybiooUut9o43iwkvKgtJtY2zgLxpzNB08rRtSFpKxws1W\nUNqLFg32r1Fo5fyMZ/DxNCMgZFjFKNWY9qfJHI6XUNyYfbzIq1ae9BoJv+1zbgvt2L6i5c3vi5a+\nG5K1Gqx5tcgsmtb228fRlvDPfzbd+KJNqL1RfrWDSlo7w++zZsnhOdltLU8/rvU2CY2WRCPU97R2\nFFtuEq9dYsoYeQDDyiZ29K9NhdP9QHQmxA+fMmKzjNBShWCqwSBd8iuVmz8jJfEo8RpbbqnlDABw\n111Ng4UqohDNEC38jveXHXOMnh7mw1d0mmEeo+hijRupLKoK4Iwzmmla+xnl5SMfieM1ZhnFatyl\nKHiarrQRnqZx7rn17yqrDL61HRhajEJJcdF+2sXKg4UPzn+VVeQ7zjBsTF8HGOwH5OKnzAqhf6z8\n4cLTeB//OM9LTHtLnRn1sdpq9XviGC9Uhxb5KRnyG2xg40eSOf62FUqP0qa84v8Iuu+d0rbigx9s\n8hobPwZTzshDWIVgbGfnvnENPEXx+W4uvjVNi8K2xt9kE1t42nnRLXVAidc2ii4Uj/J2wQXD39uM\n8Ol3VFKnnMKHp/CVrlVg+rRTZiVD4aRRMF3+0+qMLmejPy7tWA2y0MWm/v+Wti5dIBxrsALYjO2q\nAnj44WF+Q3UoAU/Bc7xa4nODCK39cGnQcDGDklB7tLTllHJ7wxt4XjXjhXNLM3kaUmQxhXXlQ1tF\nsdSxZBj5/hZeOP8Ywydk3ALU9w1qd3OGePX/pysVmnz64hd5mv6b6GUmLxO4zh5rMMQaR1KDjxWa\nGi8Imr+qAli8mOclRgBztK28//3vzY7BzRBYlYY1vI9QneFpSQushlFbf3oQhjOOAeJmoWn4tu1N\nUpwcn5wA9kH3slgVHfWngwVO+EoGp/brI6a9hsqNKyuaBu1nDz4IcPLJchyAprEbUsJ+GIk2/o/u\nuXN5mho0Q0uqF4lPTf7EyDeJZshY4cDJXku+KM22/VRyS/UeMpZ90DdZKa8///nwLFdoFYYDnQGV\neKG48cZh4ytWV0u80nzSV6mk9oFp4clcbu8rR7sLTLyR9+Y3D/5PMbR8JSQJD+1xYUnY+24tPg3n\nx8f3eLm0fvMbGy+xhpaGHXYYjs8JwVDne/jhpuBIFZoa708+qQu5VOMjtvPi/hqaBp3Ji1WaWnjt\nO1eOtE4tvGi0NaNQovfiF4f5QLQdXC1ZIu8n5MJLV6hwYSlPMeXGpWOZSQnN9Ph+/h1hEu2VVuK/\nh+iE/C1KVzMIadv/938P8yGVG8bfcsv6VL9mMHBxLe0tReFLhnxIZmn1QXmm8pymgVdohdqvtQ1Y\ndRLim98c5tki9/F2hiuvbBpvdJDjx+WuKbPIqyOO4L9bBxFtMPFGHoIrfEvh+hvnueloSzqSsE+F\n1Ak44SJ1cGsjSzVa1lhD5ts6k/ehDw3Hb7P5XDLsf/e7YTrc/yHlcvDBchq+O1WA05F3qM6OP74W\nRlbereXoh5f2+lCk1hmXDv5y/v5AR4onGQj4+/e/67wBAJx3Xtg/VO60Hun/NGyssevDMpNCy5LW\nKbo1fgHkO9asA4FQGwkZTsstNziQoyl46ZJuyRDn2oxkOKXqmE03lWn5v29/ezidkGFP60+aybPK\nJ6shZml/XNuylNv668t+lkHue95ji+////znN8O1NdKKkZcBUuelbqsg8sEZUlYDoe2MgtQwpLRC\nSjJ29GjhXRL0vnCRhBp23vvvH04r1CHWXHOYZiiv+Ctd5MylJeV3hRXqi6VjhKT1O1d2IV5+8Ytw\n2lYlHArH0efavlTHIXeMwtfSpTxxBif+7r23nkYMJIPDUm4Ylvuu0fRp+7AYeX5cv71J7zlztDle\nOMOIXv1B6XPphQwZLU8cjxy0WaBQHVL5Zhng4OXZUtqURui7ZNjTuFp9WvupFE+q0xAk+SblGydg\nJNpav6MrcFK5IV/ONQ9GcWlbZasUvwtMvJHngza6e+4ZPAeU2oFCcf00aNxHHwWYMycc79BD5fQ5\nBWBVftoGWYD0Z6lC4Pj0y0UrT60DbbfdsL9l+cJ/joumG6N0Y2ZEraCCxi8rS7vD37YGg9RmUpVB\niGZoWbyq6uV13GtqgTQq59xIQ6LNgb68YlF0VVXv1wltCA/BUveWfs7F0wwpa7uT4r/rXfW9aS94\nAe9/+eXDfTA0k0dpx6xUUJ5/8IPmywYp6fn+jz9en9TneOV4iJ31pvEpbw88EO6TbY0TzV8ztKS9\ntG1nt3JMZCA/2iA1dLhPkyWx8jEFE2/kSdY9/i5Z0nSH0okZ0XG0fSxaNHgtgabx1rfWU/jSc1wS\nr9zUtyRwtc6HJwwlIWdtxNQdGulKCBkbXLj99pPzxnXYNrMUvtunhXdZpQhPDnRmxc+H9jYoxpdQ\nVfVeQLrkHIovzWJzyiNmj53VIH3/+2VeKX06KpfaspSGhHe8A2DjjQHWXVcOE+prfp1y5ZYyQxDq\n174brz4KzeTh/xpteudaiCefF0ovVN7czArllUsboJa1p54a5jHEs1XuP/54s77wm5WWpvBjdRSG\nP/PM4bi4WmLpjyFaofC0/UqyHsuI5j1Vx0j93Bqf8k7L1J8BbGukFSMvIz772fAJFwkWodlWcaWE\n5zrMGmvwDdNPg0s7ZGgdeeSwX46ZPKkD+b9cfI32Zps13xi1KBPOOOZox5zQ+va3w3zGCC6ON5/W\nhhsO8+GHtRgMa6xRLzlrvPg0pHKiyDGTR3m/+26dLqVvMRA03izfQ32NmwHlZIjPd4hGiNdQPw/J\nCYxrLRs8QRhqX1o/1JRwSGZYr0lK/f7ww80LwiU58Ne/NvnT5DjeleZDM5w03rl+ft99w+3taU9r\nbm+JNfYsBql11tx/StNvf21gmcjgQNsYx8vGGw9WuqR+RdOT6MTwloqJN/I0ZSGFAxhcZoz+knCx\ndMKUu+hCQpDysvrqwxtRJQPUcggE/f/xj+HvlkYplS83IxWTVlUNnsSyCJ5QZ5cUnURbU7ptRuEh\nUKWrKY8UgyH23j3a9ldbjTdGU5SHtlzrY5NN9MtSfd6tswshmv53rc5Dp2uxTrly02hbeLUoOmkW\nmM7khdrPe9+bxosfzjKT54cN8WaZCdZA4+2zT5MXSzvWeHn+8+vyl9pjirFnnbHiylwrtzXWAHjt\na5vhQzzGzJpT+qGws2fzPFJa/nfLQMCXZ/PmDd+6INVpjLzi/MtMXkfQKny99eorAUIKQetQoUan\n8eLTwgMIUniA4ctjOR44vmnn23XX4bQpQnlZYQWALbbg43FlEzNyraq680l3hXFC0qIArMu1VQVw\n9dU22hw0IbrppnJZ0BkgWm5rr60bO1beaPiQQqiqejMyurmZoVjFlaKkuXRx9gXdnEDlZoik9sPB\nouj871w9SvlJmcmLafsbbzw8C8zxhnUo4cUvHjZWKK1FiwA+9zmZZ8uskFRm2sCOprXuuvwpSSk8\nwGCwa20TEm9cWE2nWHkMyaDYfsbV4YoryqskHCwzeRKfzg1m6ylva68dvoTfqqslYFi8dSHUvqR+\nGiO32l6ArWHijbxY4ei7tdkzrGxLBcUqLj/8H/84TEdKzzpykNJ6+ctr4c/FQyxYAPDpT/Ppr7Ya\nv5nc77xUecTUiQZtlCUpAFqGtLNWVX1Qx0qbpsuVu4911hlcZGsx9CwzIZog0uL7CNGjMytc2iE8\n73n1PlSJF2721ZI+7nmV2lusopIUpVbukhKmBp///4IFAAsXhvM9cybAW94S5j1UjtLshsXostCS\nwmsyiIsnlRVXxhrt1VfnjVuOdmydc7yFwoT6VYrBwJUTdXPltmgRr2M0N8cD5+bqfJ115DqO2cvI\nuWNnirk0HnlELjcfsTOi/neLDGqLiTfyJFgMCG26mTPyuP+1RhardDVF6IeLFSwaYgwtizLzecEL\nNy11I4WLUWwcD9J9aym0KbjO/NnPhv2pYEF37Eg1xVDShKjfvrgZPPy1Pj7P8aIpSo52iHeLoROi\nxfEe8pcGGRw/PkKHYPy0ECuu2OQ5VhlRvml7y1EHUnirDPJ5kQY8xx1XG8gabauM4XiwzthbjDzt\n9D8XP3RfntVgoLQOOmjY3zrJIaUfij99erjNaP3K4m/Rj9StyR+alibfKN7znmEdU4y8zNAqQ7qY\nEiCsjPw7eyyGFceT79aUj9SBMI6/MZTSSBmRScBwn/xkkzdOkUkCGsOtuGJzhC0ZDiEeLR2Uxkce\n8MZ+Ll0r7RiDdKONBndkceVG06azZ1pbDil8Gi51T57vJ5Wbc8PP61nTpv5S+lK5Uf5C7YOjo5Wz\npjw0epR3/F24UE7TT8tX/P4SJKd8LEqa66c0HxQ0LYtR6H+X2qdUjiEDFGdvQ7z65fKGN8ivzEi8\ntzESubQkN+bv+usH7s03l5eapb7AuSkt3Ofsh3niCYDf/rYZx/e31BnHG5ce5Yfjl4aN6Xd+nb/s\nZRCcyQ0NfqxGoMT7SivV21ukcukCE2/kxRgrW24J8PGPD9yWB5f9isdlSjyl6MfNees/QH3i6/TT\nm7yh/7OfLT+1pgl7i0FAsdlmgysZON4lAY1uSTBQmlq5cR3GIpCRJ6rYLDQp7RAsI2Pq7wtoyVjx\nw4bw8MOD+BpvfrhQuXIKg8a99175NQmu/aXu4ZPC4r1nXNrahuzYOqXpaO1Rik/zpClZiRZN09rP\nqSFFaa+33uBUrZYvi4EQa8iH+oJPU6O9/vp1XmL6uWXfm2QQ0BOtIUMI8dOfDv63lJMW1udN6r8c\nYicHNBklxefKll58nNLvQrxwtKW2H5IhKcaspezbYKKNPPoCgg+t8gB0IUlnMzD8TjsNpx1jOGnW\nPX4/5phhXmMbKc2Xn1aIRx+SoKKGHCegtdmGECwdSOuQAOFNvBItibYWLlSnIWMlZBxLwt1P56GH\nAE45JZy+xNtVV9XxOXohviVaFJrC14SmRMf/hgdmQrRwT2SIV+qvDUokgU77aagMJdoxM3WWfo/h\npH7qh1l22XoDvJ8W4iMf0fdUaQZqKLw2UNRgMXatShqgOcCl/NF8zpjRvAUhpq1T97rr1jdAcHWc\n0u/8cCEZ5Ls1eWZtnxI/iGnT6rIL0ZbatsaLJZ9++pZ+5WPLLQd7jjkUI68FVl45LIDpd01ISgqC\nE9i+4aAZL1aDgYbnZuuQljQTEGrEKYjtFJyfj1BYiwFlqTPff6ut6hkJWodcuVloS7AKOapk/f9D\nsxch2p//vOwnpae9xCDx5qdpgVRnmkD2L+C1GEjz5+u0vvCFZpxvf3v44XKA4RmsUN5ir1Dh0pDy\nZpkpkZRPjKLjEDOgSemnUjzaN2hcrS1oMkED5X3aNPv1HD5/XFoWGeLTWnvtem8bzQtNixp9frlJ\nclhrb5Y6i2mPlDeOV4kXSttSx6E6x7gSjRjZa7UrrO0vBdP0IE9daIXPhZcaQkhgc4aVFpdirbUA\ntt++GV8DGnlSh+XoPfFEvd/H33/W9jJRa2eWBHSMkAvBYtSFOihnrMRA66xLljSvw9GEpjSIoLS0\nuuKu4Jk2rXmK2k9vyy2HlYefnt9mrMot5KblYNl87j+HJJVTLK1VV21e/3PjjcPpbropwKtexedp\n442b+2043rVBjrXfaX1HUy4cbRqWO3GJ7mWWqWUJfos9wBKjKKm/NuAJ0dbaF42nyTufPv3V6oyj\nrcmQmLxSflZZpTkjH6Jl+R7DK9ceQ+E5vxgdFXOVlv89ZGBKsldza/Ksjc6xYKJn8mIbhlXpculb\nwko8VFV9zx2ekNN4x19/Jk9SHjTOF7/YvJqB4y220WmKjPJFBXaM4PBRVQDbbguw1158fKmDcR2S\n8qopX82A4HgFGMwWhZSPJGhCii223F7ykvq6nNT0qKHO5Yn7FqM0AQB++MN6Tx1tx3ghaihdqf1p\nwj+mHP32NX368LJmqH375TZzJk/jhhv4/Gl1FtP2EWuvPVynF10kKzpKOxYhXgDqy2ipf0gJc2lz\niJlJ0dqr79YMBMn4CLVHyovVoJB4wZOdlJZWfzGGEgDAOefUe3Gtxk4ozxZdTONq8kyqcy6f/sEc\nSzksWQLwP//D86LJhC4w8UaehJCSldy0M4eMGf9/rjOGeOU6BMc7N5OnCYqbbhpOyzLCD/FiHblw\ngscyayOVm1RHPrRyDc0QhGhz8Mthzz3rGTGrsvF5oQaJpGRD+Q7xbGnr2tNi0n5ULmwIXHvVZr1f\n8IKB4LUYIPhNah9a26e8htqrVi9UCWP46dNrQ88q7FPafsjtXPNEPvrhU5AWY1iTV1ZeEIcd1uSP\na29WWRmilSLvQvFDbUirk5hT7qH0QmXMyRA/nP9LaWkyJwSrYfbEE8NPkMYa5ladxPHClbH/ok8o\nbam9aTKjS0y8kWdtxKmd11fClg7GwWpoUUgjMc6o4mj64a3K5dhjw3xw9GfMkA2CkEEa4jlEOyQM\nLMrKAs3gpLTokinHC8VqqzXDhhSbn5YfT0KMARCK7/PA5cFiCGgCmcbXDDV8fYHjLaSoLO3AMioP\n8cYNKnwZIvGitX3J6Av185B8lHjheNXS4mCJj8vlfngLLyHaUvtqa+xw8SVerXViMRhoOGoMU74l\nHSUN0mh86o4pR+vA1D9QGMoL4uMfB9hmG70f+mlKcp+rMz8+109jDXOfTjHyWiJlpKE1Sq1DpSgT\nSclqgod7akjqFDHGLRdOQqicqqreO8XdP2cRepqxqgkO6n7kETm8ZKyEym3zzevXGiTaPvzpe4l3\nf5ZnueWay2d+PI3W5z5XL/1byw0gzgCgbl954FUHoXJbZ51hXnxw7fHWW3neaB1Omya3G01AS33h\nuOP49CivofaoKQ+aL4qqGpwu5GjRtDjerPuUpL5A07Yqqqqqnz573/t43rX4CxY0efGNY5pPLp3N\nNmveLRc7oKF5sdzCwKUd6+ZoW+NL7c3388vQ3+Mq0Q7xYoG1vd53X5OOpg9pWlbdTSHJVr9MLf1I\n4pELj7xY9W0KJt7Io4WHT1NZDS3fzS21+GmFOveNNwJceCFPm+PVj7/VVgNjwo9vOXghNTpJoefu\nvJQX3yCIpR2rtGn6N95Y13+I15i8WwwlLb7k5kbdIYPAd0+fHn7HNoeykfb+0MMLXFvfYIO6TXO8\nSwL9m9+UeZP6XYhvzk154aANvqwyg/It+fnwy02qM6tiCxkrIcXFKUKMGzJQUzafV1X9VjVA8zQ1\nx2tMncQMaDRZzaW3YMHAMKXpxQyuJNqSu6oA/vY3gMMPl+sI06f+e+/N80vjh/oOF89iDHHti6Pt\nh7HUaYj3EKRys6TNHXIrBy86BFd4v/lN/cs1xpj74zjjxU83ZN1TpDRagOa9XiGDE6B+ceDBB3Xa\nEi1N8XG8a4oNy5ymRTuj1DktHYj644lAyitN178DTKIdK3hCCAk9ALm9pdLWBHZI8fn+SCtkuNM0\nrIMpDppyCQ1wON5iBW7MoIK6Od5oOYbyHaKtGV4xijCljiztjctTKL5zzT2Blr4g0Y5t6xKs8hIP\nrITiprR9y4DoiiuG+ZJkMX5fYYV6AOGn7Z+wt+Y7BKlvYDpUZ4X+t/TjlDoPyTyun9K0P/YxPt8x\nvOXGRBt5AOmdN9RwqIDG/2mjD3VW6rZc2kvjf/jDw98p3/6pvYce4nkIKfQdd+TzsMceg3BSh6P/\nS+Xm0/Td667L8+QjxTiWePXDz5hRz56G6iDlUmmJVz89ajhpApqjZaFtdfvfOf/YAU5IyKUYWtoA\nB//XDCGaNoXWvkLlKNUhV44S7djL2jV/Cq7fcnxItKWwscYO9z1Ux1x7mzu3/j33XIBrrpF5pfG3\n2aY+da6VU8gY4L5h+7OceJbS1AwtP51Q2w/x4mOzzQC23lrm1cfMmfWJfalcQnXu3ypBeQ/lW5O9\n1n5KaXNhpX6qySuLToo1lmMx0UaeVvg77DB4cxXDhyxsTG/ePF6A4/9aZ5V4jRHgL385wNOeNnBL\nSne11QBe9CKZF01wzJw5fKM7AMCznmXjlesgoRGbH/egg+r7AyVIHYgKlpBA5gxO3x26uV8zVjSE\nyp0K5JCA5gxGaaTK8arlReLdF8hcnUq0tbadcucaV05c3DYvrCAtiScufemNX0lmaGXux9EMhDYn\nqGladAk+1N72268+WS7xIuWFA8YJlSMXF/vt0UcPpxeSGXi5MaUv5UVrc9JrGDQuxwuHkDyj36mB\njLLXoqM0vUDLYbXV+Ls1Q7xjetOn14PqUN/S2rrViJN48bdDabI3Vl5pMuOJJ/QXYtpg4o08q6Kz\nNGpM76qrmt8xLFXSUufTOpQmwClvvpsThNJoz8KrhJCgCRm/NLzEN0C9GXjVVQEuuUSmqXV2awfk\n6CPuvjteCKJbErxSepzhhP9zBmmIdggWZUPBCTapDENtP+WiUik+5VUaRAAA/O53ALfdpqcVai/U\nndIvqcwItT1Ky2rUhXgJ8ea78X9Me9q0cPvz4/3tbwA//jFPWzO0OIT6qRbXj5fab0P+IQN1+eUH\n5ablm9bht741nJ4m76T/LeWmDRIoLOUWaq/S/xiOu/Cco8Xxatl7i3jmM+tnD084Qc4nLTefX+uA\nmOYP3ddeC7D//nL8tph4I8/qLykfrmHgSI8qZYwXatCc208r5Pbjcw2Ho03jUmgdgCsHGl8qR/TT\nlDA1SP18XX99M22KmHKj6VDeJQH6yCN2YyWkTADCM8ecYc4JaI4W5c1SZyGhSOP7MzmUd1qnwV7r\n7QAAIABJREFUobbv54NLi3OH4kvKgnNffHHzu6Y0JdohJR1yS22fyhAOUr9OkRGc248n0ZLaH0eb\n413jNZRnzhjmeMVtJCFYykXLC5ce9/ax1jcs97ftuWdceIlWqNws8ssiczg+uPjUzfUNymso3zFu\nSX7+7nfh+rfy4iNWH3eBKWPkvfOdTT9L55YaBhU8kjHjxw0hhjaXPnVLnVnqpJbOqfmHOq/PC40v\nGXwWpJSbxjvHi8RTrKCJiS8pB6mcYmhbyw3x9KcDPOMZvFEoGXGaMgj1O1+RvfKV4fiUHqco/LjU\nbVWaAAD//CfAo482v1mUCaXNKTaaDw4WeaXJCM6fKztOZqCftZ9Rf+47/lrvGvN55XhZe+3BlU1W\nXjTDa9ll65eC/PBcOT7zmXa+OV60cqS8+vH8XxoWL7nW2pu1LaPbsvwvhffTx2/z5w+2QlH6FoPU\n6uby6n/jaFl54fIdU2ddYOKNPCxE2gGlzi4pDz+8P5Pnh6UIKboddhi8gSl1AN/90EMDBRMyXrQO\nwvEW6gBVVb+SccQRfHzKq2aQUOPFj2/pMK9/vVxulnLk8i7xKuXXjxsSLCGE4msGgUWIcTygwWQp\np5AyQn/qx5UhVw6hfscpE5onzZCSDCuubmLq7MQT674Qq0ykOqS8xRrmMc+WXXddWDlZylQzEDTj\nxNKeAJp7u3yZ65cT1/58/ik0YyQk/17xisEeZD8+10832GD4W4hXrVwo7/Q711d83jbeuHlq1vdP\nealBKifOTdMNhcf/r7xSjh+qI40Xq6z2/8e7Ff364+K2Xa7tGhNv5CG4Rhy7Nwgri27MTRHYMVd/\nVBXAzTcPTtNqvHKNMsRLm0anCS7KC6WDAttiIGjlxsWn/q99rZ3XULntsQfAZZfpiitGmWjGsP9/\nbL4pQuGtykgyXnxjVVMeFuOF450rR0xrzhyASy8N59+Sz+WXr39f/WobL6FyjG37HK8x8oqGv/tu\ngL//3WZQhGSC1DdiZAwNH+ojiNDBC1oumgyz1Jlm3Ejtj+ZD49UiM0L+IWPFOf7VnFB7u/rqMG80\nfUkmUFC5QP24/ISM41A8TcbQvHB8vuxl9cSQz4u1DgHkS/Ipr31goo08AL3D+OGsJw5xQ6hf8b6i\n4+JqtLVRUii+79Y6CMdTiHao03LxOcVGedH8Y+pM69x+na6wQr30EhLQnLFM8xviTev8WnxKi2tf\nXD5DvNA8aOWkuf30JeMFoDnr5YfRBjSWGQYKSvvXvx5etqNpagJ7//3rK4Q0xeVDKlet7dP/OcPS\nSksK79P141vafki+0bRj64zjncJabgAD45yDpc5ijGeaFy7tEK9aHfppa7xRUAOTfqO0/QOFHG+U\nJ4vhZG2P6EfDUCOLo63pbik+lydJ1ob6hk/74IMBdt65ma7Ge9eYaCMv1AEkA8H3l4QmXl3CVTzX\n2aUOonVerYOFGqkPSzlw3y0IlZvvxwmZkJvjQSs3Gh/dmmILCWg/jH8VDeUxVslKeeEEjZ8W+lsO\ny9xyyzB9319y+3mW0qczK5yBiu4114xL29IGODcNu+qq9dNzErT2Y+kbMQZCqO37aVZVvbROX7mJ\nafuSjLDwxsUJtT+rkRbDeyh+iNeqqu9ro4jppyEDgdLn4nP58Pt1jPyi6Wn9nvJLjZUQ3/7BkRSZ\nYGlvVPb6/HC8h3RajAyxlBv1k9pbyDBfZpmBfcDxotHuAhNv5GmGUii81Ij9GQKp0YZo+2E52pw7\nxLsmsLlGZRFiEu/+98cfD8dHA4AzrDihpNG01JlV6VJe/XAcD6uv3ry4k/KqldvKKw/+P++85iZ+\ni9Ll/P24Ps0rrhh+4USrc0vbf/BBgIULh+vQT983jgHqvS3+s1Qa79S92WYAb3mLznuofqX2FWo/\nfnwJFmVibfuU1vrr17PPPm8SLSvvFgNDkhmSP80HR1Prt1I8jjfq5sr86U/n0/Tj+ulJSltrr5rB\nifKPSwvjh+rQ543yHsoD5Q3dtK9YZaVWDlzeKE+S/JLyhd+uuqo+GW+tk1A/5HjjvoUMYo13jRc/\nXant58TEG3mavyb0JP+ZM3nlwjUKqfPj9yOOqPd3UX8pPuXNd1sEMuUl9hJfHxddBHD55bygkjpI\nyAjMUWdSeN8tdboYQ4rGp7zNnQvwpz/V7p12Ath222ac665rxqcburk65AQ0x+uTT/J80vQ4N6bH\npf+Pf/C8ceWGaTg3WEKTBDBXDujeaqva4AnxKqVF801/c1wfJCkTTrGF2j7lM0YeaYqPpu2nh9+u\nvLLe+yu1N8qbZnz4NDXD6bLL6oMtHI8A9suQrcaGT2MZogVTDHcuLuXVjyvx6vvvsAPAG984nLdQ\nOdL/0X/evLrvUl65OFq+LbxzkGQvDeOjqgC+8IXhbyl33Epumnao7Ut1kMpLH+jcyHPO7eScu845\nd6Nz7kAhzJFL/a9yzr3Q+36sc26ec24OCf8N59y1S8P/1jm3Kp+ubLxwFW/dFKsZLyHBKqXtp8t1\nMI13ySDw+ZTKwzKq4nhA4PuSGi9UiEjl2LbOQkLQupQcqzxoPgDqKzfmzGn6a0qX0vJ5sxozFJ/5\nTK0spPZlUcLI+7LLDudFqmMuLY73Noa7pKSkuCHerPGtio+2Nym+/z9tAzFKVQtP88C1p+99T6bF\ntU+aJs0fl0/ODQBwxhl6fGosxRobVpkh1RGNr7V9GiZG5zz96fVMbophRWUIvtnu80p5oelY+iFH\nD7HGGrKMkcqNC+PTCPGi1WGoTv1vnKwNyV6tTilCOq4LdGrkOeeWBYCjAGAnANgCAHZ3zm1OwuwC\nABtXVbUJAOwNAN/zvI9bGpfiDADYsqqq5wPADQBwEE+/6d5663rJDcCm2EL+IeMF/a0VLfFuNXZo\nXkMC+UBiZnMdwqdZVfWI8nWvk3mlPFIDwNJhJIFNacSMLi11KBl6/v+ckczxFltn1N+HNGjwyykk\nxChCQo66pXIGkC8CDwnBmGVFTUhqik7ql+uvP5xmKJ+pCNWLVqf4/8KFw7xY5JVmAGy4Ic8bl3/8\nXX55nldtT96b3jS4giLUZyz+NC8hpcu5aZoxxorWXqkb/0fjjLbH2Flsi2Hvx6dhNfnWVp5JbWCt\nter653gNyYznPGeYjoW3GHkm6TxKj9PtWr6ttEP5y42uZ/K2AYCbqqq6taqqJQBwIgDsRsLsCgA/\nBgCoquoiAHiGc26tpe5zAeABmmhVVWdWVYULUhcBwHoccVqR669fP0Dt+4fCS/6cIacJnib/vH+o\n0VL4tPHdO9ooOV6e+cz6rjmr0AKoBb2/mdTnlcuDpsjQfcIJg/u7uI6vKXirENQUG2cgcLyE6oyj\nRaEZ09KsD9KOGU1SGiHFZTG80B9n8kIzoiHaobRpOVjdEn30mzlzmK/UcvHpWAS41BewHLi2f9tt\ntjqJKad1160PoUi8cu1nueXqN0V9XrnwnHu55Zp7UENKWSpfLn2L0uUg9VOpnC19QaK18sqDQYWl\n31rklR+eyxN1S/+jm0uLxvH9Dz20vpYopKM0XjU5v+mm9X53LgzNR4wRd/PNMASpHGmdSW4rbS4f\nmm7Pja6NvHUBYK7nvmPpt9gwIbwPAE7lPHIqQpoeN0qicf3Li6l/7Gk0ideHHwZYsmSYt9tvr/dl\nxSoyrVwAwqdMfd4lIYdufJOWho8pl9S7wzjeMH2uHChtmu/Y9iXlzf+flgumYxEkId4t5SSlT2fy\nfF4xrg9NCErKItbNKS7Km88TjWulRRFjeHHlFEpf66cx5aQpJx8YdqONeOV/5ZUAF1ygG2dWg4Cj\nTxFqb7Fpx5ZTyPCi/RIAYL31mmF9f4sBaXUD1AOCO+4YzmNIvqE/rX/6LJvW9h9/HOD++2XepLxK\n9YuYNauZFwqrIYX+115bb5sJGWI+LamPSn02tv34aYV0XS50beRZs0Cbkymec+5zAPBYVVU/5/3l\nzqkJ5FCjpUKPKmEMu3hxbYBpjdpPi6MdUpy4H47rQPjgci4lClBf7bDppnYhyglBGo4Lb0lb45W6\nrbxxaVuNtFCnteTN50Uy+igti7INlZPW9n3e8ACFf5AilE+LorIYMyGhKLUfrp/64PJ92WUA55/P\n05ZgMRIpL9SPSyNnudHwEm9+XGpIofuQQ2AIoX5maV8c/AMRUjla2hfNmzbosC6/Sf3U541+izEg\nadrUv6rqS67xyTVajlyZUV79tHbdNcybj6qqB+l4WIZLL5TXkF5Yb716DzHNuzVtqQ2EypWGCRl6\nljqk/iF315imB2mFOwFghueeAfVMXSjMeku/BeGc2xMAdgGA10ph5s6dDQAAs2cD3HXXLFhuuVkk\njcH/ISHKKVZO6XKdCmfTtt4a4K9/bdLSDALff/fda+OK493Pg58PvELDVxqakPPT4sqFE4I0vOWU\nKM2Dz7uf1syZANdfz9PWOrcksC0CmsKSb80wt5Yz/V8rRz9fiB13BDjrLN5fih9Kz3evuWY96tcE\nNn7LuY+S8/f9KG2uX4bS9g8R+Xmj6UrxQ4YWxwun+PBbjCHO8WotNy5sSMlp5aDxwrl9oKLff/+a\nZ/9JMYwb0xco3xa5T/2l+M7Vy5iXXw7wmtc06UvlGOIldtaby+OKKw7To/XGtd1p0wbbciRaUvux\n1IPUpvB/qyymaae0ASkvnOwN9QWLPg25H3zwbAA4GwBqO6ULdD2TdykAbOKc28A5tzwAvBMATiJh\nTgKAPQAAnHPbAsD8qqrmhRJ1zu0EAPsDwG5VVS2Swt1xx2y4447ZMHv2bFh77VlBAVynKytd9A+5\nOT9Mc+bM+vFsnxaFVaBzDT9kPIU6l8+jxJtFQIeEIEfb54tTdIjNN29epms1zDl/Wq5cmYaES0yd\ncQgJaOovKTKJd+p+2tMA1lmHTztWmYSUlSSwpXzF1hn1l9IPtW2fbx9anYXq0sIbV27+/1jHVAn7\n/YLLC8e7VIchmcLtAfXjanIjVA5+PE7WUn+KV7+63ttWVfVbtpKxQmnT9oMGIs2bJve59J54YnAN\nCeXlpz8dpGXpxxotPz51h9rr1lsDHHAAzwuNr5WDJs8o7ZT7Bbl0JP6sMoLzpzQ4/099apBWqA61\ntCzyDrHKKrMAYDYA1HZKF+jUyKuq6nEA2BcATgeAawDgF1VVXeuc+5Bz7kNLw5wKAH93zt0EAEcD\nwD4Y3zl3AgCcDwCbOufmOuf2Wur1HQBYCQDOdM5d4Zz7Lws/mmK0KA/OTYUiR8t6uoeLT3nhOiAn\neEL5jDEg/e8a775/qOyqqhaaNG+UhxDvNK6l84eutHAO4L77woaUtc6keggpuiVL6jIJGQShfIZ4\nsRpx6A7NvlHjRDOkNGPD0lek9Py8SmWrGSc0PPWX0j377HpLRqhv0HKyGMccTyl1GNNGQvKNc9P/\nrcYuAMDvfw9w4YV8OjQ9SbZy7Y+j/bGPAbzjHXHtT5IhixcP59VirPjumNOzKbL6ec9rXrtCw2kG\nJ+WFy5dE2ypDLP2UM1ApLasMoXRofACAN7+5PpzE1ZnEZ6hOQ33hgQfqy+opT12h6+VaqKrqNAA4\njXw7mrj3FeLuLnzfJJ4PXdlop/YkY4X6WTqA1oEsxovkjjUAYi+EtfDO/U/jrrVW85um0C3+2tUO\nlBbNy0MPAfzylwDbb9+kE1tnAADvfW/doSltDlUFcOaZ9eXSN900bNRJvEjtjcbj2gBemGxtA36a\nUnvjBKulPcYqPpo+V0eUb/+0px8+VH6hOlu4sH65BA8iaYqTM1Z8Xmh+rcaHxS31JS7vIXknoY3M\nCNGmfHC8OQfw2GN22jHl6Jc77hHkDAhJF0h1rtGS/K2rBZS2ZKwsXNgcbNMwEqR+bpEhlM8Qbe5/\na1/wQe8JDckJWm5cOfpuy6DBv5yeXoLfNTq/DHmcoBk7IeOHq2Q6MpGEoNQBtM5qFdgcf/g/hsWl\nuxQBbFUOXPiQoHnb2wYPsfvhFyyQedOEnqWOuTr105g3r+nPnSjV8m0pJw4PPcTz1kZZSAqexpfC\n0/SlcqP+GCfldG2qQOfC4rf3vKd+Io3mk/IfosUh1FdC1+LQ8MgLHmqxGh8Wt5SexD/X/mhYizyS\n/H2EvnOylfKG/fOuu3jaNM2YcsT0uDLg8hsyBjjalv2qmqym9CSdRb9hud1/v403DTEyROKP0xsU\nVsMK/bfYYvgKsPPOA9hnn4E7VG5aX4iVxX1jyhh5UueOaYQhd0jxWQSJn65V8HDx/bCc4NE6BE07\nhjYNb+m8K63UNJbR75FH2hsnoToOKQ8fa69d3w0XW2cab1x8+i2k2PywljoKCXCtL0iCzafN1fn0\n6bZySb0Xj9KTytaPt8kmAzenyOibpz6tZz6znrULGSWhvPrldO219YsotNzWWosvN85tmbW2KkLO\nT+Kdg9a2Q3FT2j4ne6Wn/CwyJKbt42E6ymeMnqB5Q39tRt1HqNwkAyQmrCbv6HerHuH6jyRDpP9j\nyg3dGu++X6hskFdf/sW0L0p73XWHn7zMiSlj5AHoQtMiBEPumJGHtuE7prNTf0nwcP9Tt5a2ZKzQ\n8JoBQMuNliv9lXi1Cmial5CxwPEq1ZlGOyR4pHQon5qgoX4W2jF9geZNou27/ZnjVIPSwuu8ecPt\njfIiGSscb29/O8AqqzTTQLziFfzFylK/9vNK29Mf/jAcXzKkubRpuVjDh4wXnx+u/dGw1vZFaXPx\nubhc2w/x7Q/GrEo3tu0DDE6Wc/mnvGt1auHFqjdCtNEA5vpKiJeQjqLuGN4l2WvVpxYZYi03Gj9U\njlyY2KvYaF5e85rmIw250fmevHFDqGFop8+kDss1Hj8dTXFZeJN41XjBuCHjhvLy0EODi4qlDhXK\nL2dwhjo3x5t/R5ZVIIcENCdkQ7yhWzKeKaqq3piN5cblVTOO/bCUP03QUMQI8BhBJbU3qU3E1hlH\nm8ub//288+rfWbPCykNSJjTtFVfkaVnqLpQXvz1JWwBC7c1Sp9Rf4iVES0qL8sPJGum71nfo/yGj\nzh9kcG1QK7e2L6o861lhmqFBRawxrOWF/i/RlngLpa3pKIqQ4eW78dvf/gZw9dUAL3jBcDlx9KRy\nCcl9LnyId0s5SkagxFtInml9IwcmeiZvhnf7Xqjzcm4Am6Dh/LmKbHM3nc8LxxtNQzJeOEOHc+O9\ndBxtC++acRzijaYZmo2gbk1g++FDxgnHB833brvVS2t+2n/5S/0CiZQfSmvbbfnOr7U3Py2uTjXa\nMe3Ld4fa/o03Ni/+9v1z1qEkFM87r5nmOusMGyeSO1YmaP02ZCDQ77Q9or+UVkpb992UB0lpazKE\n5j9mqdiPR9O0yFrKj/9Sg6XcUgwtdK+wQr2/i5YDjSPVacxFzFpefIR0ENdepbau1VkoTctAAYH/\n/+hHsryS6FvLLRQ+xHuoHDX5ZpH7nL/UD3Ngoo28l72sudE6pjPThoGNTupAUqPkjAmtA2m8+G6L\nQve/WZWmlA+avsQ7TdsXLDEGSozg4HgLKQepM9N659LeemuAf/kXvXNLdbjWWvWzUX5eaFzJQKC8\n7bMPwMUX22lr/iEhKrV9AIAf/rDpDikTq9tPj/LCwTmAV72qvhKB8qLxRmmh22qsaPF9GeIvn/lh\npfaWUk5WJe7z/6//ypcVlzct39RtVWShtk/5qqr6oMqaa8p8WupUMxAk+oj3vGeYd8nNpR3iNRSe\n+lH5JuUd+xGXLxrWAk6vWK5QmT69SVuSMf7/KTJCywvlLVSOmv7SZu6o26J/22CijbzUC1+pW1L4\nktEnVaTW6LQOEuIN6YYaUUixhRplSFlwvEuKzc/H/2Pv3cN3K6ty4TEXIMhBQFEEUVHRhDQlFdRA\nUdHM82Gnl5WaZlKGu65Ct352WDvNytxZ6JWZ5peHvc38itQdlkpbKzwraikJJB44gyIKcnCtNb8/\n5np6x3u/9z3GeObv97b1l891res3x3wO4x7jGac133nAfuTtsUbFSfV/vmo/VQBGrAqLar0FBM71\nx1mguZh8H2ZOAVDFrmz/+ut54Mv2bLOfMDzwwGU6StIbefKX8c8KqUa311a0PrXnEe+Knqr0MJg9\n5jGLd4VVChsmP6OzRJYldRYjVBKek1SjAgFphuPRj14uMlv/nHjWs6coW2XPooLTN7Vnijeux9Zn\nvP1V2Kg4ZryqMYLtKcqE9uTHsQKUja/wvuKKVd69TzH3ti1d5PUk2SzZRBvdjpnTsICdBT1cuxrA\nIzmjpNuDhfH2jTmJ7/PzWUBXgYth7XWwqDC/9trlYilzZhaQsfUUz6xPFXVsHz0PZi/YP/dTPIx3\nw+b/VoMg0gob6gb30PdVA7aSM8KWJT7sVwUCexF4tue9tl+lVTGidIdyoxyMF0tkr3gF56+KtmgP\nkY6w9by8Nlpf+YLa08y2FXbUDWuZbtrDRK0v450VH8r3KjHFn7vVrbj9MT5ZrlZYsJ+1aM/8fPSb\nXns66yzOe51tSxd5ZnGiqyYXFuRY0lVjlVF6+qCD6obCsLW3nCt5s6QbOXNWFB57rJYtCnrYHyUe\nhbUSWJgeEMsZZ6zKHiUPZj++9QRwpvusqEM9mpldddV0XxzKWU0uGXZ/rAot33wQxLXVnvXojb0y\ng+1ZFLB37Vq8F5HZj5/n56pWtb9HPpL347Fau5pcIvqjHzU777xFX5TIIlvtLVaypvYQfQHHMCyV\nYiYqEJDO4hnDxnDOwcLmMzmZTk44wezOd+bz2ythIp/fa6/lHMVaT0wZhumBi8c8ZkGrGHPyyTGv\nar70elbr4Z4pvWb5NMLmW9a/GW1LF3k9zs7G+/uQoqTb+v2YQw5ZHh9h+bEfm+6FUdiyRHjYYbUg\np4oVnyxe+tLpb/VexjvcYfndYVmw8bgYnvZTWyYLoxErC9DIO2uZM2dBrxLAVVGBvCsFAX4WDeVQ\n2CrfNVVJth0rXUd7hLQqXpi8Fb1FfeNotmNHjKUSsCPb97x83377Ta9kQWzMJioxhNHZAyyXXrr6\nUXRVvLBiRq3dxiO2KNEdf7zZc5+r9xCxtL4o3vjxyp6wX81n6yvfwLHoC5Ft9+gR9clihKePOIJj\n9fPV2k95itnjHrcqX4SN6XUcpxj17W8v48G1PPYnPMHsGc+o58OIN2ssTyjbZ3vee2WY8V5n29Kv\nUIk2umqU/jij2zqNbq9iqBpCFoiYbNWE3pN0fcscKsNWCcA4xj+9lumpqldcD7GpBKbkZLxxfk8y\nUX2qOGFJF8f3BkUlK8PKsOHfqDiJsGX36LECFOVgemI2wF7VU9UDzmPYKjGkJ+ZEiavHT1VBwvrY\nWN/YnmHLYswxx/DPHLI9bWPUHvcUUr32yWyppyCoxISemPK0p00v+I54IdYopig9+fFVbEi39c48\nc7U/ineMd68ecfyTn8wvZFRsH/e4+p9S1iq+s9H2/St5SVBkG61oZSiIxYz/hBVh8w3HD8P0P6Md\nO/hYhkUFMdYqelN6zIIew6aKr0riUrRPBipAK7mjAB21DBs79nQU6JhOFS+GtRIUM1vHfoW9R489\ne85kZ0kXeStskR4YzVqURL1MkR4VPUdPVewVPeH6ba2rr56+UINYVPxS/FksbcdRTKnYekZnecDL\nwfRYiWcZr97i5bzzpndzsj1D3swm2+fzIl4o3+c/b7Jl9tbWa7eU+HURG9I9RVymx/POWxRXvkU5\nqCe3I7aN/AdoM9qWL/J6DCN7WSijWQB+5SvN3vUubaSM7rkh149v584+2+y005bnHnpojpXxauf9\n32g80tFPfZEe//RPzd75zmW+1WIk05PnhXIpHaBsLBFmelL25LFGe4L9LCjuscf0d599NC+Pca7t\nox4RG/5lsnm5PZbqHvrxTOf+WBUMODbDGtF+LdwnxpvpEfsjOtJLbwxB/KxwYn0/93OL21HMzF7+\n8ukLHlGB4LEde+wyLuTHbF3RiA37KrG3xz7R9lFWFWMYL+V3kZ9ed53ZV7+6OHfhhatjq3oahulW\nHxWDsP3VX00/8ffKNscvIz/K9JjRZot7UTOsCkuW232LijgW/za7bfkiL6NZYMoCizLSK64w++IX\np4ILx/ckj2rAxmN/E/X97jf9Y4Y69x1C0XjW33BHhZIf/7//N5ctCnpZwcoKAoWttXveM7aBdi57\n+oxhU7Iw3FU9vuIVU+JttOfJeLX5mV6ZreOe+b473pHjwz2f+1Jy7FcPXlTsDc+1m8+zV6pkjRW/\nkR6xn/FRSbgnvjHZ2Fxmb4j9qKOW36cX4VbYcJz6z5iiL7nE7FOf4nqt2o/vj+wx+wkeZW10Zvtz\nsJ15ptk73rHKq43NCs6sQGVyN/rb317uP+GExX8wM9k87f02izFMTi9Hxkth898fxvGR7TO/7fn5\nHxvb881uW77IiwJ2NbG1Y5bYMECfc87ynDam903mEZ0lBLPFVR0MNCiXMrJqIMrWj4q6dqz4Z0Ev\noxFbtIft+MQTpyTGsGV6vPWtc6ysX+1hVY/btk0vFc0SXSWRsf5MbrMp4B93HLdNpUeFrXojc1RU\nVJKyl5O9nDjDinyZ3pS9qf4oufS8TzArdlhj9lNNwGothi3j7edF9L/8Sy2+MV6RvVU+/1YtTiLb\nZ3s250X1KKfSWxTP5tjPMccsnhKPZOvxywgbrs14MZqtj4VmhJVhmRtrW/O5IvONjbYtX+QhXSkI\n/NzMmVUx0lpUrCi6YtTs/VsMe6PRKKNCCfFXC6uqM6uA/oxn8PFRcRLROD9KoihzJgvTy9OetviA\nvbIJJktkH3P0iHIzOXsL0Mz2q9iyZJIluqhgiAJwJAv2+3NsfdU89qwAyLBEYxmWqh49zeSs+Ira\ng4hXVHhhkmV7mBUn1fiW2Zdfn2HD9SIdZbaPvHBthp21ih8qbFmhpXirPWayITYssJgsDNtm7GFr\n1St5ivZYe999aDb9yqbGb3bb0kXem9/cVyBEAToqnPxYZQwbuZKH83Ft36rJI1ob20bGxl48AAAg\nAElEQVQKqSjo+fHjaPbgB5s961lcDsZL6YXtuQq4KGPVuSNeGZbW3vAGs5e8ZJVvZn+VpBwFuUp/\n9pZ/leiUnhU21NOf//n0Mxz2I9Z2fPOb87EVe/R/2cuJFd3aXnuZPfvZcWJDLBmtdJPtURU7S9rX\nXDO9DLziK8ovcV4l0fl5mZ95LD3YsriP2KJipR23/i99ieutEg8Zr0qOUi2LEUw3OD6LV4ofrsdk\n87wOPnj1XIQN+xRdzadmZg95CJdJ6Q1plC3ys3E0+8xnVvl5rOtsW/oVKtiqAVwFjigI4hq+ZQ6B\ndAvg/h1eFQdi2H2SZcWNmdmVV04fmG9t333nFS9Z8cGw+vVUcYOJDbEw2f14poc29z3vmZ4yO+GE\nVVyeVtgqeolk98cnnTS9Oy2zP6RZ8M+SbDW5RAVJlDyYvbGgyPR0wQVmRx+93K+wK3vyNPYpvfUm\nrqOPnorMG27g/YxXpsfWFyU+hrWX9u3Tn17lndkbK9oUXSlWohjgadUXYespCJTeGLb2Eu0IC+vP\nclBEsxbpISrq/Dk8rthPpbDy+C65xOyb35xegnznO69iZ/J4e6zuWSbLLW+5/Jou7K/oUeUBhuWv\n/3r65KNvmNOyPd5I29JX8sy0s0fO3MaqAIz9uDbjXzHSDCszShUwlVEyLN/4xqLvJ3/S7Fd+ZXW9\nyCizxNaOs6Tr5VZ6zfQ4B9s73zndXxLxn1OsRHvoW+u7972nz/xEWCM9+v5qEdfo6if9EBvrx3NR\nUEReKFeEvY15/OPN/vt/13qI9NgeFqn4qV+f0covMz1W9KqwbIQ+4ACzn/iJBZ8ocfljtofYssTn\nG0uyni8rThgd8c78NNMbw9a+u8pkUzGnxw+jfVD8kHej0b7RVqt+2Yvd8/3kJxcvNd5339xXmN4j\nOvPbzI+rsdX3M7mRxgIPW+ZLG21bush70YsWx9nGqyTux6okXwkIlQIzw+qbcoCsIOgtRjKsKCfi\niApOhRX1NgcL9kfOa2Z2m9tMX+5g/dWA3fPmcwyeWSCp6DELitWgF/lCZc8YdlwrSrrYcDz+lHyn\nO5ntv3+sB7WHe++9/NLyOb7B9Ip7FtkUNqZXhaWHxkL+Oc8xu899VsepPUMsaMNeL9hQbzivci9j\nVpyg73jeEZY5fjyOi58dkXfkCxt57Y1qFXtrx1EMyewHeVafFI72RPklk03ticKS6VmN79Fjjx7M\nposJv/iLMZbNblu6yGvfc22tGgSjwJElfHRS5txtXJVmDqYKzEpB0HPTagVblti8HjztsUXJxc/p\necLwwguXP/OFvLCh3jz/LGAjVoZdOTNLDmwPPe9oLmuVgkAFRRWQKwUBs4lsT/1akX0qvbXjStLN\nClBs3/622T/8wyoWhjUqRrB/587pJbHZ/ChxVWIM0wOTJfPjaM+QN9tDbNEeZr6g+v16c/TE+Pnx\nBx44fdYRCwQcq7ApWuktKgQy+6rGYt+/0fjG9KL4sb5sT6t0FTvDomJKo7/4xekf4le8Djlk+o9l\nhHWz25Yu8nqMEMdnicqv6+eqYLQZRhphxbFtnQgrm88SXI8DRQFY6RGDAa4/F4uZ2de/rhO+CqDj\nON0Pee21qzhRVgzIimbYmRxRgMbCytNMtgxLbyHFsKBeXvMasw98YBl7JXn0FAwf+tB0n4vCqQoG\n35+NV7zf/Gazr30tx8p8DXn78aefvni/Zq+fK6wq/kUxK4oZERZsuGblnZIZL8R2zDGx7yisldir\nfCezH8Tr183WznyD6Q/3M8JSwR7phfVXYnNU+GRY1HEWz+Y+6Ig5imHz9O/8jtmHPxzzZrJn8W8z\n25Yu8szqBQILgn5+lCz8+Hvcw+y3fsvsh35oMb6S2HqSsMKq8CJW5hC+Rc6tsEWJTeFqdBYUmdwe\ne+a8vo9h8WPbud/4DbNPfKKOTa3n50StGqD9+GuvXTwws9HElt1Po4oV1MuHP1zDrrBgY/1f+ML0\nPsosqSL2du6666YbwCM/r2JTV8XxOLJ/s9X7u+YUCFlhhXuK89SeZVh8n6IR2/77L9MRL5w/DNP7\nLA89NMaq6EoMibBl9oY007WXRdGZ/ZmtPsDQg0WNn4NNxV7lVwwf8lJ6y2iFvVoLML+t4s7WrmDf\n7Laln65lyqsUUipwZEn4nvec7u+51a3Mjj/e7CtfWV27Svd87kYZeJSkq1gy3r6/J7FFDoTBQTkn\nk2XbtsXrMHC+Kk48/3bsnzaO9BglXWyqvxqgG+3HX3xxf0GAWPz6SGdJF30lC+YVLH4uS8IKZ7U4\nMTP72Mf4+Aib2lPPgz3NzbAi/fjHTw9CnH32fL/tvUdK7ZkaG8UcP5Zhw/a855lddNHyehkvZn8M\ni4o3DJuanxUrCisbk2Gp+uk4mv3Mz0xPn5uZ3eIWZne9a2z7GZbMV3riWeQLbC5bN8oLkV6yK3f+\nbRWRnrP4xuzPn2dr47jsNovNblu+yMsMoTXsrxR4aBRZQO81Uo9NJWWVHKvO68cqbJUg6I/RQRgu\nHK8cbM5ld4aV7ZvCguc8/nacJVXPS2H161UCdJbY2rl//dfpdQVMDs8PaYW1p1jBwiHDzvbBz2Pj\n8TjDxpI08o7sU7XM/qLiJIoLTE6VuCI9RYmM8ckSm8LCWm8SjnihbEyvjPZrX3WVxpYVK1nsV1ja\nWOYfKAujGZZDDln+vFhWgEZYerH6NicvMH6+P6Mz3ptFV+Mw0yHbM7TJSvzbzLbli7yMjgJsoz/1\nqek1I1HB0FpUrPgxPQVCo9ubwlkS9mtjEIycdxynm4c/+Unej1iiAiEKHFU99STdrFjxDfXA1o7W\n9bJUeFf0yPixJMxoPxfpN75xOj7ooFW52t/en6iQl/IFFuCYLKz4YC0rKKqFlJKF7SnbI0b7tXF+\nVpw0uuo7uFbE2/erPfdrt6eLUS8Mi+eFLYpnX/ua2bvepfu9HpSfRjEj0vM3vrEojLICQcXmaE9Y\ncaL8NCp23/CG6Ynd9llF5M2wtrzQa/uIXfVHMaJ6YaKNOemk6Wd2xJXFM+aXPf/5V/SuXWY33hj7\nbUazVs2XbPw62pYu8szyjfbjWEAdx8XPrqpA8IGGzVeBQ/Gem4Tb1yKyoIdG9QM/sLgnCPtVUMyC\nIPJjcits7dwLXzj9bU8jVRwkSj4qsNzmNqtj8G8WBJVskR5xLEsWEa3mH3vs9MLPT3xiwXuPPepY\nkY4SGev386Mk3LBFe8Zsnx3j2lGxosar/iwAM70i7zbmi1+c7glsNh3tMVuvN55VZD388OlNBApL\nZvs///PT/XGvfrXRNo5mf/mXq9gU9qioY/3R+HE0u+mmVT0oPap+lJ3pRWFlNsFoM7Orr+4vEKo4\nvd+qPVVYzaaYcumlq7zb+Oz71/e+9/Qfz0xPivatQvvPp6k9bvJEubu6/0xubBUb2Oy2pR+8iJJw\nFGiiar3iIMiv6qwbScLPepbZ/e8fBx5WcGYBF7FESZnxVoWVwub7WYuwZEHQ82rHP/qj/EW6KFvr\nr+6p0qPvZ7JGemI0m/8jPzJ9Ig55V7EyX0Deas/aFeuo2EHevZ/Vw77Ib1Wxwsaz/oh3ZgM+qTb6\nq181O+20nK+KMYp361d6Zdj82re7Xc47KgCYnnr2NPuk5Ac/ON2GoPqrBUFWjGSxWRVOyCvSYxT3\nfcsKAlw/8oUe38DY3c6dcsr0nwHPr5KzFG/PC+WOjlX8qsQzpFm8Yliz2kDt6ThOedm33vi30bbl\ni7zWMqPEQMOMn218NSn3vDBxo0mYBZ5qEET6k5+c/iccGXF2s3mFVkHTy1gpEKLEx5z18MOnb5Aq\n51V6xrUz3qzfr8eSaCWR3exmXLYoCCIWlvjUT3uKV6Nx3d4k7Ocq7DgGeXkax2Z+VN0z38/8VCVZ\ns+WrNVkijPZ07vsuswJAFQw4NvNLnION6TnS4a/+ao47isXIy9M9sVbFfbY+20O2tm8q1mY06iGj\nkR9ixdi6557TrT2RLEqPjLfq91gQO45XWKpvs/Bxq2pPzC8UFrPpZ+q73U33ZzFmo23LF3nVxIb9\nrNho87KAjHTFIea8eDLijVg9nQVoT19wgdmb3rS8Rqa3iDejo2SCraIX5sxKD1GgUeMb3XNFlK3J\n5Kgk4Hbu4IOnKzDVROZ5R1jbeJYkVXJo9IMetHqOJRulN1w702PF76J97fVTbJG9qT2MsCucar7C\n8ulPTz8LMz1G2CLsSk/Im/kGyhPpOdszxIu6UHplvHpl8TEgwqpiTs87IpWeEGuPHtA+o4JlGPJ7\nGbOcFeXLtu6FF073vWeyRDGjJ9d7WbIreSpPIL85e6Zk2ey25Yu81r785emN8pEhqIKAje8pZtr4\nLLAwLIw2M/ujPzL7wz/UvDMjVbwZ7eWIsGaBJsLCAg/yzvTC9Io4MUB73pkuKslDzW00c+YscSm9\nHnGEHstaJSAzWVRiY3p79KPNfvzHF+vMsb+f/ukYG5Mn8jvEwnhHSVi1LKBXihU8VnqdY/vnnrsq\na1ScKD9VxYqS+/WvX34FEWsKe7aHSGc+r4qXChYcH/naOE7fwD7nnI3FDIZVFTMYeys5ScVepMdx\nKvCuvjrmjbKoPY1i7cc/vrwOwxLpLcOC2D2N8yp68edwLvLCmNKTszarbekiz2yhzI9+dCqM/PnM\nKFWx4zc6SmTMyH2/2njsbzTiaJ9TiQonpD2v9lQWKz48/fznL59X2LJAw7CgrFmxUimslB6jxKbk\nULJke5Y58ziavfjF0wfiWZJTQU4VACiLP98TkBs991uirU/pVfFu9P3uZ3aXu9SDIPOz6h5H/UpP\njD8L6MpeEFfk55Ec0Z71YmN6YXSkJ+T93vdqvWV+qwpMhbeShJF3ZF+RfUa2/tGPLvOJbIDxQhmr\ne+zHqhyEY7MYMo7LD6xkWLL+CMsDHjC9J7Lit55mts3Gq/jnx0V6UFhYPFB7HGH5/nvyNtBUkcb6\nm7LbCxPZRmZG18Yz5+65fyZKyiogIO9KUv63f8t53//+Zre9rdlnP6tlRz6VpMsSXbVYiRKZCgaV\npMt4q6DZu6eI1Wx60qz9T7mqJ+SVJWnFu5o8cG3EorB7LGq9Hixez9u3m11++bxixbesn2FV83F8\nVBiddBL3S7+uKmaqic2vjTTDhvMrBUKjGS/flF6Z71QLI+xX9lX1hYpee/esHTO/9byw+XX//u/N\nPvIRPR9jBGLJsKFcyN+3KIaw/le9avr78z+fY2G8GLZ2rpI/1R57GuchbxUjFHaVFzIs62xbvsiL\nAo9SdrSRm+HciG2jhpAFEhUEG4+NvNQ3CtB+LeWsOMYf/8IvmO23n9nv/z7H1lPMeD2owkmtGyU2\nxTvSE5MVeUXYFPZqoqtiU8VGRS9qT6tBMMKurhBkfqjWxv6NFitR0n3Ws8xOOEFjqyThSJYs3rG1\nsz3tta+sRXsaxas2VmEZR7OXv3y6NQdfGRTx7vGVKIYgnywestiLa3zqU8vnenJW5ofRfMQ0J4Yg\n7l77y+JfNX+qmGM22Ummh8wvGTZ/rvdp7s1uW/rnWuV8rB8TG9tI5ezKgTxdfe9do1UiVIbljyOD\nZQE5M7povNJLhCfD2s7tu+/06R7lzJlezVbfy8T0yHjf8Y6rsrKgWd1Ts+kVEG95y/J6fmwUBCvY\nsSnbZeOjfrVHLCkz268UWkirPfZYK0kUsbS2777cb3sDsEouKukqbL6pJB4lNuXXPdh67BGxMj15\nbNiq9sbWjIqVL395dY2Id2RfDI9aG7FE8RCxYPPj/LveIvvMcpDHUs0TDGuPvTF5KvYXYWvnorcB\nZDnOYx2G6TOkjFekl3buoQ9dfkVKNX9GWDe7bekizywOPJGyWVJlm8+cGemeAMzGowOztbJAVE2y\n2O/H+fGVpIu429hLL51+Fkc9svk991r4tVrz33b08zGRIe9TT50eIvBYUBe9e3rWWavYK4FEJV2F\nPcOW2T4mD8SC61WKQC9bpCdFI7ZID5kf3uEOi/fCMb1GvJ/4RI1F+WmW2Bi/l7xkeoBBydWTZNt4\n9dnGzG8z7MxPkTe2qr3hseft57b2Yz9m9vCH57yq/ZGfeixsDyt6ZXvm/RKLvLn35FUKGLae0ksb\nWy1WGDbP1zcVw1pfJWdV453KQRW9jOP0jfrHPEZjy2ItYl1H29JFHirzh39Y93sHyoys9UVJ1tPo\nnL0OhDTORV6RgTJ8c4xSza8EmssuMzv99OV+plfFKyqk/Pg99lh1zosvXv2CCeO9bdt0FTErGHr2\nFFs1kLS+c84xu/Zabm892Dyv1p+9rZ7x6gmK2Z5mNNvzyPY9FsR14IH1+cj7R37E7LjjVrG08dWb\nzZXe2nH71qqXNeJVjSGoC99X2TMVH6NYaWb29Kcvn4+Sbhav/DGOP/bYxYvA2fyGNSoAeu/Ja/3M\n9qJ4iFhYO/zwVezYsjhf8VG1NvKO4p0q9NmeRbIoG1B6Y3t4+eVm73gHH490ZutRnvB067/ppom/\nx+bly/x2s9uWL/KaMo8/3uyZz9SG0cb7vnbM+lvzhpAFUYUN6cgQVNDKCitMFgyncr6NJF1P+7Wu\nuCJPdNEeeSyezt7y/xd/sfzqmSp2Rld/5kHZEFsWSPzcl7887o/2MAqKanyW2PyxSjaMzvQWJZMs\naSKvzBdU8nj966ef2JF3pjfPy2Px/WwsYlHjGR0lWcSukihiUdgre4q8jzlmenI6kiVLup5GLNWC\nRfktru/HM2xMJz/xE6vn/DoqvjGM7e8v//L0awTDEsVyjxX71Z4qrMir0Vkx7Fvmpwp7FlNwvTbm\nne+Msff6aXX8OE7fw0VsUV74/hcvNtDQEPBJpoozY6s4O9JZcsiMFmlVPESBpDKf0ex8Neki73/+\n58X3VNu5KCkrXl6P1YdGqoGnl1Z6yBIfzs8CSetrH9T2/QxbxEvRyj57AzSOYTbh8VeTB/ZvpJBS\nxQ7K8b73LV4Iq+REvaEtZ4VT5oNRDEE9VenItnv02M6xRKX8tFKseLlb8/9JZzjnFgSRXlUhxezt\nFrcwe8ITVnkrX/BrqbbnntNLzxELzme2zPTUs6fYsmJFxdpeP81iCmLBPfvgB2vYldwb1WP1PkrW\nv462pYs8s9x5K4Hm7nefjqNgktFRckA6wjq3WGnrqPmIu+LMiD0LwPgBc8aPBWiFJcOGesex/rga\nmDJskd5w/UxvcwIyO77++sU7EZG3p/28SiFVSS5RkvSy9dqbP84CdFa8KBtp7UtfqmFB/pXCSRUM\nSlbGi9FtfCW++RbtaTQfebfPXzHsTJboielhmF6QfY978H6Gza+/777LvHpiSqPn+GWEC/VsNr0v\n7uUvjwuALL5FvuF1UNlT35i9Rf0Md6QXnFONKYw3w175ZSyyvx49+iKv9WX2xnS+WW3Lv0KlSkeB\nZr/9zH7ohxbj/NwKHRkZo9t8ZhhtbLtnrFKMoKxZAI+cuYItCritPf3pkzNkia5SxFUcSAWl3oCN\ndLanrR8dH/lVAgnyVFgRS3ui1yfeyPaxfxjMbrhh8TOE3zPkndGZ7bM9Nps+0YX9PXpQfunnM3t6\n4APNPvQhrhdlf9WYgOv5/gMPNLvmmhgb6qnnqnZWKPX4BmJ7+MPNHvUos9e9TuvJr8XWZ7yyhM90\nOo7TT8WoB98fxZTI3rJCqWIHfs/233/6FnW0x5X4FumpZ0/3hOqgYm8q1kZ6waZ8Q+kNsZmZ3fe+\ni9ejsH4VvxCr8pMon7I1kI72dLPbli/yKs7rx7e+1jJnrTpzlFQZHRnGMJi97GWLJMACrkp06ICR\nXL6/B5vSQWtPfOL0v+tvfWt5jBrPsFawoOzDYHbaaVPBongxh8uSSzsXJdnPfGZ1TaW3aA89HelK\nycF4R3psY97ylunfpz+9WL+aXJB/lCyYHk8/3eyiizjWKECr/koxY2b2iEeYHXLIoshTMUPZm9l0\nD+jFF5s97GGr60f2d+qpZvvss3ihLM5VCR+b0mtWgEYFabanSCv7QlrZPq6XxTuGrd2qU7V93xjv\nSI9RAaD0juMrWFh8q9h2ZU/HcXHlNMLi+9G+0B4yLB5Htb+KTdFzYoYfz+S9zW2Wx/R8GWQdbUv/\nXJsFwWqg8WOjQIP9jVbJIcPGxlcDLsOK/XvuqRNfLzZm8JHDM7kyLFmSzbAOw3R/y/779zmv543Y\nFe/MabOAX00GFXtgLdtTVhD4sZlesuTjMWb34LUCD7FWA3Q7ZsXLRvw0SsKt75przM48My6ccJ/G\ncXGVW2FTyaOCPfJTv1ZWrGR+yvTCaByfxVrPR/HajHiG8yt6Q2zIz8ditqc9ekIsWQ6qjFd+rLBE\nOeqxjzW75z379MLws/7IFzwvhh1p3BPEGtk+w3brWy/f/1/N7etqW/pKnpk2SkW3ljkIrs8Mxa/H\nPugdYYlehlwJghl9xBGLy/FZQeH7sqCZFQB+vWrgUdhYcvF/zeJvsFaCnMKiElsUWLApuaPkofB4\nGo9xXmb7ivdRR2nbR+yeVkmSYWV6RBmy5IC8e+yT2VOErRJDGG+FPUuyiAXX9+244xbfH0XsvbbO\nsOH4ql6yYoXRyCuL1TfeaHbJJRpLBduNN063CfTqrZJHsB/1oLBlrzrqtafMd5heItrzfcQjzM49\nN/azamxT/bgea5necH6kJ8RW1Vtmb1Ge2Gj7/pW83c0bQo+DVIKgSg5zsUbOibwVFoW9WgCwoFnB\nEsniaVxPYUPnxc8ZoVyILQpyDL+ne1/UzGTxxwprpQjL7O05z4mxZh+v/83fNHvqUxe0Ssq+P5PN\n0xE21Fv0UEhPQI76Vav4qbJdxFrFEsUQVbzc8pbTf+QybBVbV9iULzQs7T5KxKqw+77IfiLs/vgr\nX8njF8PSZLn2Wq6XSA9Zf+SnVaysf449IY16rrwiimFXMUHpBWWrxN7I9hVW5FXVC6NZvGN9LN59\n/z15m9giQ4iSC3PG1irOi+vhcYYlopUzVx3Ej6+MVdhVf4TFt4peN4KtqifVH/GOnDkKNP/jf0w3\n1LN+tnZkPxE+PP7RH11+gW9k+0r2bduWn9CNijrPJwv+LAhif3uFBMNaKep67BN5+zY3hkRYo31Q\nfsrWZ/y+9S2zz31utR8TOuJW8a/ql+M4/cR+8cU1rD7xZcWK1wuTi+myYm+++Xlm/IG8DNscv65i\nzewF+WF/Ncb02pvPUZ5XZj/oZ9jPxmdY/Fzmt9lLyzNfifBFe4p6QCzraFv659peZWcOkAW5LNFl\nvDPsfmw1qUYBmzkgw4p8VKLLsGDwbMcqKDKslSTLaIUt0iPiYXryLdrTW93K7La3XRRbqviJsJiZ\n/eRPxrhYY4FE2b5KsmrPovFKzxW/9PTv/Z7Za1+bY+1JJpmvqFbxU4Yjwsp8LfNLtae+/7d/O8fG\nbCLas2rMaA+FVbBmvBVeZl9+bOPRY2/jOH2Rx3+CkGGpxogK9p49rXzTPIulCouaz7AwbNV8yWw/\nwoprZFhYi+ytNaYHtMWKnnseomRybnbb0lfyzOrKZkm3HWcBupoYFW+/lsLmW1RgRnSGreJcWdDM\nsPh1sqCJ89UeMjpbS8ld0QsLUr17inJHWFr/E54w/QyXBWw87rV9lmTbsUrwymaUbBk2T++99yQ3\n668mEyUb0higfWN7GPHy7frrzc4/P7ZtP5+tVbX91l72ssU3es3i+1NRlh7fYHpj7wpTNOq14nfK\nvliir+jNYz/9dLMvfnExbk7sVAVAFM8Y1p6vc0T2VN3TObG2tcsvN3v/+/OYwXibTVd//WuacL6n\ne3KSindVPSAe1a/8tPof7HW1LV3k9X52ygfBrFjJkoVft+LMFcOoBmhG9yRt38bR7LOfNfvwh1ex\noCwZFiZ7NWAzZ0Ia9ZYFCsQSYWVrVr6gUu2P7Mf39yY+v37F9rO1VX+jI+wMGysQqt9krdhyTxJG\nvbCm9jDz+de8hmNVWJQsVdsfR7Mjj5yebsTxcxI+w47jlb9nSXbOPmXYPaasAEA/xlbRQxRLM99R\nesG5kR4ze2p0T97IsKK9nX662YUXrvJCLMpOvvIVs1/7Nc6Prad8gTUVi3v1kPlOxd6U7a+rbeki\nLyukIoeqFAiNxvGNZutFvCPn3rHD7Oqr60YWFU5RP8PS3viP45ksERbfKgWBWk9haeOZLAxLllQZ\nNj++x56iPc/0UE0mDKvnXcGarZ1hUdiZHAwb9rPx2dcRkNecAqLR/h7KzG8jn9+xY/VcG1+NQVXb\nb22PPVbvo0TeKHfVHjNs0aedGFb0U+QdYfGNJfoIq+eN89s4tsfZnquYgecivVQKgmxPMz9EWa67\nzuyqqzSWCKs67rG/r30t7lf2NvdnbuTVS8/NE75hDNjstqWLPLO+QoolLn/89reb/e7vLuhq0q0k\n4eydVy9+8cTf82a8GI5KIIoCDxpgViDg2hddZPb1r6+O97yVnth6G3HeNk7tMfJSQVON93gr9uaP\ns6BWxernet5V21drM5olfIUd5WbYqgGc6Qn10BOAmT2YmT3oQatY/ZqZzz/+8YsP17P+bD7aW9X2\nWTzDtVHu3kSmsJlNVxF9U4WUxxrxriR8HKuSZ1Y4qfFoI9meMTqytyxmRON78kBmf+edp9eLsCLO\nLPYyrLim8uveJ1QzvSpsPb6D/RHvHuwbbVu6yIsqaBUU/TE6wFFHmZ10Ut15mZFnvP14FhSria2a\nPDJnxsaSboblQx8ye97zVsezoJnJwvTk1+yRu0dv2KfkV4FEBfBKQPZ0hjXirbBUkizKqcaz+ZXE\nhthVP2KPipGqPSn7araOH4iP9hDXuu99lwselfj8fGVvlT31je1JpBfPy9NMNhyPSffoo5f1ll1p\nqRZxas8qvsD0yLDgvKqtIy9FZ/EM9ZL5CsMS8c+wNp6ZbyCtjisxA5vqZ2uZmX3jG2bnnLM8vxJD\nWEzK7Kuao6p++/0vXmygRQG50b5l9yU95jFmd7yj7s8SYzvuTWy4VhRwI2xzAi7P6WYAACAASURB\nVE9PAZHJ+SM/sjp/TpCMgmDvT3kZXQ2SjTfqRdlbBc/b3z7d54J6Pftss3e/W89ta9900/KNzBGW\n7BUWUfHhx1cKhCjIbUZBULUntQdRjFB+W9EbYo34KXvL4hnzjWqCzwqGSLZIT1miQ+wRFsQe+ZHC\nlxUAyEftcVbMKBr7orgf6SnDEukpwtb8r+IbLD9kfsj0gPOZbBhDvN4++9nlNU45ZZmO/HpOPs1o\nf64az9bV1lrkDcPwyGEY/nUYhvOHYfhvYszpu/s/MwzDse78G4dhuHwYhn+G8bcchuF9wzCcNwzD\ne4dhOEjzXxyrQFMJsI3ec0+z73xn1eirhlENNKyfyVUpRuYGHtWU3iI5W3vwg82e9KTFOnOCZCVZ\nRHJV9YIyR0Gy0cyZ2wthI71FieojH1kNmq997fSi1qwgMJt+Jkdsme1X9eSxV4Om0pNvGy0IPC+F\nXWGNYoSiI7nb+wWZbFgoeb5MljmFEx4zvSDvOb4T6amNrSQ6FRMi7MrefJHm56Pe0B6PPHJ1LeRV\nsT/Fu7cAUPYW2V9EZ37R/rNa8Q1Po5683P4cWxvnVfXKsNzpTmb77best+qrZ3riH9KR7yisfu66\n2tqKvGEY9jCz15jZI83sGDN72jAMR8OYR5nZUeM43tXMnmtmr3Xd/+/uudheZGbvG8fxbmZ21m5a\ntizQ4JhoE7OXYlYLjmyjWZBk+NCo/NxMFqRVwGatR042d07gQbn9fKU3v3a0Byogo6xZMYPO/IlP\nmH3+88vjURdqLd9UElTYGY+IN9NbtHa0Z1mBkPHOCoRKQcD2hO25wspiRERXkoVvCmtEMz1UCwQm\n29wkrPTYe7Ui0mOlWEHsbO0DDsj1iH3jaPY7v2P2SMg8TI+R/UV6beMZ7+x1G9lbFxALw8b4R3mS\nnWdYPL9I7ijfIhami43kKEZn9hXROB/tl8W3rfTFi+PM7IJxHL80juN3zOzPzezxMOZxZvYmM7Nx\nHD9qZgcNw3Db3fQ/mtnVZN1/n7P77xMUAJZMkO51gGg89uNaUcBmzuzpV7/a7P7312spXr2y+T48\n77GqpJwldH+cBUXWX9lTJUtWpLHxiFXRHmc7d/nlq9gqARpxMOyIj83xPKI9Y3rbtWt6t1tlT5C3\nLwJVgZAVAJlvZPYW9WcB2fOq6o3JrRJohBX1xOgIq2+bZes4X9ERtspDIhUsTFds/JFHTldz2HrZ\nHrNbF1DuXr1E2JV9VPsj3tXixfcffHBufwwL68tihGrMXhUWZieVXy4q9sWwRNiY7Jnevpfvybud\nmX3V0RftPtc7Btuh4zi29Hm5mR2qBqqN9bRZbNCVZIIbj+MzI0VszEgPPnj6FmUl6Pl+hbXR7edn\nFXhUoGO0woZjVZCs6l3pCfsryQJ5YX/F2dWeqhfCqmDP9Ii06lN7jH8RS5uDhdOLXmT2R3+kcVcT\nmRqv9iwrEBgexTvb8yjRIa+IxrV37uRyK6wqiTNfifTW+5MUw4K82xiGna3HsOHajI5e1LwZsTez\nvwh7+x72HPtisiB2P6dS1DEb6MXSjlGWI49cvDYoi72IxfNDuW+6SWPzDdes5AHWeuyxEs+UXDg/\ns7dsj9fR1vlZs2ALlhqKWJ1n4ziOwzDI8VGyQGX3FmltTKWgUOurxIb9nu4Negpr63/Naya97L23\nTnS+od4iPbIghngjPVWTCWJjcjO9sCTM9FrFivaFc1hgigIHzlVYVWDx8lcDTRUfylgNkiqxebrn\nDfHK3ip+reYrPbGkgmu98IXT8fOfv4xZjWe+lhUIjG5jM16RXpC3x17Ro58f7Vlmf8quq4WT58v6\ns6uK/jvNBxwwxUaGs1cvqp/F+UhvvlVtG7Fkxcscv2W4xtHsgx+cnn6N/BYb2muG5R73MHvXu5ax\n4Z4quXFtxK/yKa6h7K2Ss5gONquts8i72Mxu7+jb23SlLhpzxO5zUbt8GIbbjuN42TAMh5nZFWrg\nO9+53W64wWz7drNrrz3JhuGkf+9jwaQd9wY5leiqxYoKPAyr51NJshkWsymgRQ5329su01mxgbyP\nO87sAQ+IsfXoPQvQlUSGdOb8uF62p2ydLFBkQS/Dxlo7Xw00UVBSe8awZclG7VmEzdPIr7pHEd3m\n79pldsMNq1gYdma7vi8r4pDO7FXpTcUMlbgqvOfo0c+vFCfKj7LYin1zih1F+1tl9thjVU4VrzK9\nVvJAhk0VhRXbxvFZ8RL5LaORX5t70UXLfcrvcM3MBrx93fe+ZoccstzvWyWmVeIyiz9YkPbkrB07\nPmDvfOcH7LzzpjplHW2dP9d+wszuOgzDkcMw3MzMnmpm74Ix7zKzZ5iZDcNwfzP7hvspVrV3mdkz\ndx8/08z+Wg18whO22957b7ft27fbfvudFDoIGnxvkMsKhorD+DnVz5r540pgYVhYv5/3pCeZHXTQ\nYgxz7ijJnnji9A3NyIkq2OYERT9X8fZzK4WXkhWT7h3usIq1EjiYnEy2DFv7i7wVjetGelB71uMr\njHeGrZd35teMNpve+l/Fwo49rfycJQePHc9FvFXMYFi83BFvNh6xR+sjVmZ/WTyr6AWx+qZkyXwh\nwpYl9IremV4iPXnat4x3xdbnxiSkf+7n9NoZ1tZ+6qdWsXzuc2Zf/rLG0sb37CnKncV9ZQMVe4z0\ntm3bSfakJ223o4+e6pR1tLTIG4bhrMo5bOM47jCzU83s78zs82b29nEczx2G4ZRhGE7ZPeZMM/vi\nMAwXmNnrzOzfX5k7DMPbzOxDZna3YRi+OgzDs3Z3/Y6ZPXwYhvPM7KG7aYFdGxkaYmWTK87ek3wQ\nizdK9b905nwoW4SdGTnOYcnjoINWx+7cOb3KQ10Kb2tVv4uqAvacoOjnsqCFWJTzV7EiTjOzH/sx\ns8MOW8aqxqvk4OVCvhG2duz/Rr6Q3WzOeFWCpqLVHma00gVLor2JzPf710igLtgeRPuCjdmnXx+P\n2ViMGe3cueeu9rP5LMn2FCuZLL3FCVsLZVfjI6yRLAwb0hVs2K/GK+x+TvXp2ipv1APy7o1JKkeZ\nmT3sYWaPeASfi1gY/eQnTx8cQCxvf7vZW9+6jLXybk3fqrnZz2UxYk6+je4bZ1g3u8mfa4dhuLmZ\n7Wtmtx6G4Zau6xaWPxxhZmbjOL7HzN4D514H9Kli7tPE+a+b2ckV/lEh1fqjja8WH9l4XB95K6wo\nSxa0KoGIzWf9GbZxXDxYkAWGYeDf0MySNJOtN0ArOgtqPVg9jYmt3c+D/ZWk6VuUlNke+6b0xPaY\njWW8cDwWFJFsUWKr7PHcp2sj7L7fbPmFsFVsqm8czR7+cLM3vSm3N68nhjXSyxlnmF3hbl7p5ZXR\nSm9s/Sh+VeVkSfaGG6Z3P7b/PFXtFdfLkm5vQp8TmxVvj7eC1R9X4lnFpzO/ZVhVAdrGZbE10rNf\nD+UYx8V3mj1P5rdRPoz2KLJPj0etn8UQFrc3q0X35J1iZr9oZoeb2Sfd+W/Z9P6774mWORCOYYGl\nza0UH1FyYeM9FuXMGVbEEwUiVRBEAZqNZTgibJFjZ8WPCoqsQOj5n24U1CKsHkuW2BhdTZqIB48j\nbDiuJ5kMw/Q/5/ZVjUpwriYbxJIVBLjHjH87zhJ8VRaz+pU85ldM7kMPNXvoQ1exIu+soIhsv714\nu9FZ4undM5yvZGHYotjbY0/Pec50E/8Tn7jsx5/5zKLArcbuNubcc6eHAxjWSkKfG5ureUDpzbcs\n3jUdVO1fxSTcU2WPOBdxVuwpip/VWMuwZ/kws+1KHlBYM3odTRZ54zj+gZn9wTAM/3Ucx9PXC2M9\nrVpIVTbOr6OKl8yo/Xo9Vy8qWCNeOKaCtSfQ4Bv9I4NXeJVzV4Kib2wPsz2O9jCzAU9XPxgfyYVr\n//AP6z1TAd9sccO45400C9DtXCtyqnsW6QXpKACjHj1vNj7yhR77Qz1txpU8PM7sz4+PsDF+yBP7\no8RWpSsxhfmw2tMoXiks3/gGl81sepfokUdyrH491Ln/JBbzhSxmoE4q/UwPyCvKWdW1Mz3gfEX3\n5ig/TvVnsRvnI7ZqrK3uqZI9izEMm++v/FzLYvhmtfTp2nEcTx+G4YFmdqQfP47jm9cHa3NaT7FS\n2bgeB/L8IkNgWFXBgHL08orGqmSSBRqzxU+xc3hXHCgLisy51Vy1dpZcFFaV2CI6CzSNfsELFk+M\nVYKex75t2+ID8a1f2RPOn5PIMr2oPcyKF7WnlWJEYffjmd7MNn4lD5NDBWsFe5TIkEektyieKRqx\nII02VI29qJcMC45HHtUYw9bA/krM6KVRVn+uV29z45eyzyx+ZrHX9/XYNsOexSg/pxp7cZ3enBXF\n7iwGVbFvdkuLvGEY3mpmdzazT5vZTtf1PVHktZYVK8wB/uqvpp8A2s8sra9aAKh+FqAR60aerlXO\ny2jfKomHBRr/yoEe3lHiy5IyYmF0FqAryaCapNWeKjoKNL0FQdUmcG6ELXo5LaMjvWB/ZOtZomNy\nqj2tYGd7vv/+HEuWTCr7U002kb0qLPe6l9mHP6yxVXh7vBEWRrM+j1XFs8oeIh82XvkXyoJYUPZq\nrM1oJgvbh/a6HpSB2V/PQ2zZnlfms/HYj9jVnvm1It2xPpw/55u/c2Jpljcq/cr225h1f/Gi8p68\n+5jZMeO4ThjraypZMCP3x8Ow+t1RFjSrAZqt71s1sWVGxvhWgrMqVhC3x9rOtc/gNPpjH5t+VnnQ\ng2pYooCPuskcpDdAo55bv0oOvYWUX6O32EC9tLHbt5t99atmF1xQ21OvF8QSYcMHa6JE1qPnDEvP\nlxs8jbyiRKVoM7O99or3NMOmdMWwo21nelS2P45mj3uc2Vln1fXWu2dKb348S2xqT3t4R37a+hrP\nqiwMS4QN9yGLrxFvj33HjumLEFkMiXhFOYbFR8SW+RLOZXvq/2PI9qxi28o3DjxwdX77skxVb9V8\nWLX1SBYWgyr0OlrlPXn/YmaHpaO+CxtTpioIlMFjU849Z+OzpJs5pzJKxV8FeM+3tauvjrG1tvfe\nq3K/971TodfrVKpPOQzOxcBT0YvqR97Reo2ufi8R+WRrI5a99za71a1iPaJsWbGibprO7CnC7sdX\nsaAcLOkqupqoemnlp9g/DGaHH746NsOC8UbZV4/tY7/nxbD58T2+EfUrrChXhXeEtR37v5n9+T3F\nlslVLRgyPSp7VTEE6SxWKuyRXnr9FulIRqUHtp7HcuqpZi996SqWG25Yfml5pLfKLxOVPBDtqbLX\nKNZi/zpa5Urerc3s88MwfMzMbtx9bhzH8XHrg7U5LUqyGOgi56gWI42uOrM/lz0luo5CKQvwvo/p\nMQrIileP3nAtxKKCIBuPfRjUIh2ofVB6xfUUtkhulkRRLkWr9ZieItmzZJIleGZ/OBax4J567JUC\noBKQe+gokbE9feUrzd75zjqWaqJTvP267XNc2N+buBTvCDvzraqfRn7J/NRj9fMxeVbsD2nc80p8\n6imscOyOHcvrV77+EvFmOFQ8y/a44reVnMXmV2It0mz+jh157M14V2zd02z8ZuSFdbVKkbd999/R\n7N+/M0tKge++VklsWXLwY1sfKyD8GBzP1meJrDW18axYibChLMqosd8nigxbJYBGeBvNZGPjswIh\ne4daNYBX95TJ4bGxYoXppSJ3hb+SrXoPSw8vZY9svMcS7ZnCxvTA9Mh4VQMy9kdYzMwuuaQWQ+Ym\nEyaLP8f0iE+6V3hl2Cv21c5VYkbFTxEb4mLj73c/s698pWYTlbxQlVthrei5vWSevXM0iiHVPWS2\n3Rtre/TG9ORbT6zNsPg1q282yPJjJfb22ECjM2zrbOnPteM4fsDMvmRme+0+/piZnbNWVJvUlPOa\n6eTkjegVrzB7xjPmGaEfHxmCn++xbfSRb+yLsDz0ocv9PlHg2LZelpgyuRFbT8BXBYHZdOP5u99d\nS5p+fcVLjY/0juthf28B0EMr/lnS7eVdLbRYf4S9UhC088pvewqpar9fz4+7/HIuN0sO2I/rVX2B\n6WUcp9fmZImtGhMqesziofLTLPYiP+TFxp988uJ1Q1VZWIt8oarHHt/YYw+z/fZbvKGA6S3CVskx\nSq+VmBPprVpIPfCBXC8ZVoXF6wH/Zlgr+bES/y6+eLkwn5sXPLZ1tcpnzZ5rZu+w6bNjZmZHmNkZ\n64O0uY0FltZw49EI99/fbN99F3RbZ26SzoIgw1blHfGKsP6X/2J2yinL/f5vVBCwRMbG9hYsKGu2\nvqff974F7ZOmx1INgp7OcLOkGyW6ngIgwub7v/Slxc3IuF6WdHfsmF4oO3ePcGwl+bRzEbYIC/LC\nsdXxjGYJncUQ/JKLsq8KbzbHy1JJForuiQmYcDJfqO4xYmOxt5Jk8VykV6VHv6cnn7w8pvqevCwW\nK96IzV+BZfbmafWydyV3pFfEhuMzvVVz1p57mt3nPpqXn++P58aQCKvaA1w7s8HrrjP7X/+rZgOV\nq4zrbJUHL37BzE4ws2+amY3jeJ6Z3WadoDarbQPpso1vx36z2Oe42rFy9shhkJ+nFTbFm/VHRlsN\nDnglLytWFM6ovycRYj8Leo32x4gn0luGLcJbScIqyLLg77Hi2pme3va2WDbE0tprXzt9BLySZBm2\nOQUE01sUFJWfIp359Zz5raEvqFsbKkkzotvcqLCKElvGq5pEq77AbCLy00yuLK7geCVrmxv5wv3u\nZ3aXu/B+JXdk26of1/P9/kqeb5tRCCmsFfuK9Fa9jzzTQ8U3EDuOqeitEkuj+IT0t761PD+SXWFF\nPa6jVYq8G8dxbA9c2DAMe5pt/XvyhqH2pGbmEFlxoLBWf6Ji/ZViJgoOe+6p50bOzBJMjy7mJl3f\n7nzn1b4ocCDuLKjifOyPkm41+Gf2FQXF66/XWCN7+/a3l/t67LcnaCrZ1R6wgiCy5cwXehId0xPa\nx86dsR9mcmcFg1/PN5ZkK3rr2bOIrsjmWzWGIJ/MT9UeZkk78oUsYVdtuxLPzFZjvYohDFvGu6d4\nYbJmevMN4xWunfHKaC8H/s30lr3eBdeq+M7jH5/7RmZvqId1tEqR98FhGF5iZvsOw/Bwm366ffd6\nYW1OU0ZopoMHbnR2JQ95qUCEdBSQoyCoEn6WqBpdCQ6HkRfmRAFW4Yj6kbdyQMSeXfo+7TSzH/xB\nXYyoPdy1a15g8v1z7S2yr0pS9v34Ymp2HNmfsg/GO0pcCmuUbDwWFhSV3hQvhZ3xjnzNN8R27LGr\n6zNbjvbc982RRWHL9ihLdB5rZH9qTyM/jZIiYvO87nSnHCvrx/VYAeD78ZitvWvXNFfZJ9OT0uN/\n5JW8aqxVuvCysD1FbIpG3MhbYfHnotiLdObzVd5mZieeuLgYUtGzXzPz281ulSLvRWZ2pZn9s5md\nYmZnmtmvrg/S5rXof7pmeUBWSbZqCLiWWhsDDXOYbK0MS29wwP/5+DGscEK9RLwybEoWPGbY9tpr\n+T7KLMk2eufO6SboamBiwaFqbwxbzx5GsmDAYEkXx+H4jeyZl61qE7t2TU+qoi4aHf0vvFpIKVkq\nhZTa05vdbAr0TO5ILwy74h/JEmGLYkivvSFWFTNQ9ghb9F7GKNa+4AVmz3nOfKy9BYFae449qn6c\nj3pTdM/avbGW7UO0px57FmsZFoZNYf3IR8xuvHF5vep9b9meIa30wJ5kj2yGxV6lh81ulW/X7jSz\nP9n973uqRUmWbXw7zhJdO64G9MiBMqzVhJ8lKi9ba3MCT4X39u1mn/605pVhy5JTVKzsscfy1Vec\ny5x9HBdFntJTJZn02BvTSzUpR+P9X9avsCJu5KXoucnE01deucqf2Vu2VutXfj1HlmhPs/UYrbBH\nskRYW3GssKFclbUVL4YNz6G9RtiYXnBtRqOf9mLNvqhSKYTm8vb9yj6j+Fa5VSZam8miZI1iSIQN\n5VY0YsnoNue886aXIx9wAJcjwjqOi1taev2wnRuGRZEXxYy2nvrPP+O1jlZ5uvaxwzCcMwzD1cMw\nfGv3v2+uD9LmtblXVhrd5iEdBcbIUNhYj005cyXhV7GhrFWsfkyWeA49dPqneGXYEBfr91h8a0Ue\n8lZ827nsSl4W0CNnRv5KL7h2dc9Y8sT+LHn0Fisq0eFYlUw8feSRy3grSbjHlquyRXJ6LJ5H5AuR\nvXmaJdWK3q+5ZhWLonv0kO1ZRc+V+wUjudtxNenOiW9etijhZzGhx68zrFl8q8YzhUX5beYLLEf1\n6jHjlfmGl2PHjtV+FjMa3ezxnHOWb82p6g11iE9EY3+0p1ExvI5W+bn2D8zsmWZ2q3EcD9j97xbr\nhbU5TRmhGTecdtybDNDZd+1aLhjYepHzqgBdTVyZ0Xk+2M/w4LwevTBejHdF75ViBf+HhViUHvBK\nHpM9Cgaoh0qx4rFlQa6CxWxRXCOeKEAze0NejHdlD3E+k/2ggxb3t+BctOdqEo36Ixrx9saQarFR\n9VukUTf+OPuOc7a2onv17OcjFpSV8epJulUsKoZkSbeiB9Wv1suwRvEti5UZVuVLStae+Db3Sp5v\nEe/IprL81eirruK8IlrlW7ySF9kA7inKjnrYzFYp8r5qZp8bx5G8Ive7u0VGaLa8MZkRKgdg/e2G\nXDUf50aBJ3NmtXYlKPYYuT+HelN6iRxE0dWxOB715vWgsCK2dhN1xD/TE3NmRrOAi2tnesTx97jH\n9D6qbA/92m3MHe4Qy63sN0oGlYA9jstXX5UeK7bOeGdJtuL36Ke+IbZqsZFh7bE/XI9hZT7f42tV\n7MwX0C+z+DancFL9UbxUWJB3pMfMvth6EdbqE9PsP6U9hVUUc5BXT3yr5hQ1X2H18xm+LJ82us1R\nfqto1EN1vtpDZT/raJXPmr3QzM4chuEDZnbT7nPjOI6/vzZUm9SygqCSZNs5XC8KyP6pK9YfYWl0\n9AqVSsBGvpkRZ7Ry7h4HqdKZ3lQB4Ok5iaq1KjYW8P0aKtDM3aNsfHvgRPVHxcoLXrB4GXLvHjHb\n69Fz9sHuDA+uPXePMz9FbFmBUEn4mCwiOavJA7Eir+oeK701+rLLpn+Izc9nWHH9im1X9zzzLdTT\n5z+/+Mh9JEdFj1XeGVbf1J7i7SVKL0pPmaxRv5dFxZSeeFbZU5yP45V9ebr5K+uvYkFZMr173ohN\nxc7NbpUreb9lZteZ2T5mtv/ufwesD9LmtQ98oFYQtON//Eezt741D4IqoDe690qeotn8dlx1zqrz\nKxp5R8VKNQArXWRJWGFRdE8gacfVgoKNj17FUOFVxTpnT7Pksddei+9oblQPEXY23hdKyvcie1BB\nc84eR7wr9lbFiuOrvoKyKSy9STfireabLT4Qj9ii+IbY5yTNbM+i5Ily/+u/zosR55475ZiqX7f+\nyy6LZanYW7slSMmtaJSNyRrFEIUtm6t4VbAyGvEwbAwr6lPFmKre/HivJ2afCjfqcbNb5UreYeM4\nPny9MNbTvvCFxXHkME3hb3vboj9KBr6fbVblSl71xmSc11sAZFgjmq2FessSV6QDPz8K0CoItj6P\njf0MxJwv0yvTaSWA+3Mq8KgAyvQa6TFKLqxf7SGTtaKHShLG+ZHsLOAq/hFWVQAo3pX5HktmbxWs\nyrajuVlCUL5RTbqKtxr/gz9odvObL2OLfMHT1SugKHfFdzJZUE+Is2q7L3kJ1wvyZtj+9m/1+Ep8\n27mT5xiFpRoPsxjiG2Jd1z15zKaYLBG2Rh9xxOpamX0hlii341i/Z+1cZKvraJUreWcOw/Cj64Pw\nH9ciB0Jnai0KemqzzjxzeoVIND9LHlmhExlVVih5rD3Jh2FVeomCXNXBGO4oeURrR1j9WnMKCpU8\n5mLDtXF8ZQ977I3NrRQcPdgqyaTdyJwVAExPjDf2R7yj+cwv/Xp4XMGqxvf47V57LZ+r2BvjpX76\ny+wVX1eEemXFCcNa8VPExeJTT8zBVonzfm3PN9KzWv/aa2NZGO3nq1+Lemw90rOKIZkvRDkF6aov\nNfqyy8wuv3yZf1sv+jSY7z/gALOjjtLYUG+IJcvNFXtTfriuVinynmdm7xmG4YbvtVeo+BY5kDdc\n31cJFGyzLrrIbJ998vnIr31cHo12M4wK5/cE2bnfKIyCXBRYMFio5NH6UI+VwJI5a6a3aL0MawVb\nNB6xMGysnwVo5DVXD6y/sucKO5OrhzfrzxLZlVeufvlEBWjfj3vYgwUDPsqCWP25Y45ZXjN7ulb5\nuPrpL9KbWf4aCdQbw1r107l7zmRBv1TjlR7afJSpJx7iXjH7QRrtredKntJD1ddQLpUH5uYYhp3J\ndtZZ099nPCPGFumxJ6ZU91T5MWJh8Q35bnarvAx5//WxX2/zijXjG++PWV8U9FQie/KTzY4/3uxT\nn4odzOPcc0+z889fxZMlXoWNYfXze8ZHATvjHRVG7ThzQDWX6TFbG9eKEiGbw7D4oKvsS8mNuFXi\nUnL2BHTEgntUsbfePZ6btCPbjPQUYcPxSJ91ltk3vsGxeOy+MbkqWJG+9FKzq6/u8/Nt8F/03hjR\nzqmf/jJ7ZS+EVfEtiq8VX0A6s5+KLvw8laCVHvzYajz0/f6vn1N912avfWU5q5IXovwZYavmmEiP\nXl8nn2z2lKeY/fVfbz62NrZ3TyuxvdHRRZJ1tMrLkLcNw/D0YRh+fTd9h2EYjlsvrM1puCEq8Phx\nfl5P0JvT7/keeODiHWesWGnns0CUOQxiU7Rfv/cN8SqQsLXZGDxG2XzflVdON0C3/rn3SCls2J8V\nL37OZhUrSo659oY2hMVJNckqvVUeOvLjVaJTBUAUsKOCobIPl16q9xT1iHQvVk+/6lVmf/ZnsZ78\nObNlPTPfYHPZHuOVvExvba1t2xa/PqgY4nWBdNUecAzK1uM7WUFQSfDtnC+ys3iI2BCDSvjMbyty\nR3tWxVrZ00o8UzSTO8LGeGTYfH9P7EQsn//89I69uXqP8hmus9mt8nPtWWs3jwAAIABJREFUH5nZ\nA8zsJ3bT1+4+913f2islMmVjX5bo5hYIvh+N0v/0gYmOYZ3jMJVElzkQrl8p2rLiA/sqAbudu/RS\njg3XZlixuGHzq8mj0cq+5qytsFX2MLI3xOp5KWxKVuyvPHTEdNHbFwXsrD9KZK0pe6sWHz1YVAJo\ndE+M6YkZas+wXyW27CdXJUekR6UDpKNEGdkvHnvMPbFwHM2e8IRV2aI98lgPOojHIKUnRlf0wvZs\n504du5nOGDaml7k5JtOzn496yLBl+Q/XZTFhGMwuvNDs2c/Wa0d6Z3uoeK2jVYq848dxfJ6ZXT+B\nHL9uZnvFU7472q/8yrKysytSL3vZYm4lUPQWCNjvjWyPPWr35M11mF7ar88CT0+SVXTFAaMg6Mch\nNpUks0SG2BgWPIcBXGFRa6uAzNbOZIkCld/Da65ZvDoCeTG5GW+GDe9pU/NRF2yPK/N9i/qzpIsJ\ngu1pRU8ZdiW3kqMnBlWSJKPbz7Wqn8nBYgQrdtoYpKPPNmb8UBampwyrH9deBN7GZnps8x/yELOn\nPa0/9t7pTmZHHx3z87SyzUgvrG8YFnlGxYhMFs9DxdpsbcQW2QD2+78sdiM2hr0qJ/oCG1+xt+g2\nHhXLNrNVXqFy0zAMezRiGIZbm9n3xNcv9t57+lsJPMNgdu97mz3sYbWNa+ciI/VNGXU7x976r7BH\nDqOw9tLKgRg/NrcSsL0sUcCOAg1iyJxZzcPxlfnY7535/PNXk17vHkZJk8nC9kwFmosvXh5bDYKZ\nPTZe1fmKv5KjUmwgnek9iwts/Yqe1J4q3kxPkax4rnL1v8ceN2IDHnsl0WV6Q7riOxHW1g4+2OzY\nY/NYyPyyukdIH3ig7ve8VPEyR+5GY5EXYWW8FTYVr3pyTCU+ellQTmZf1bivsDHeUaxW81Fvauw6\nWuVK3qvN7Awzu80wDC83s7PN7LfXimqTGisg0BAiA882rpq0s403Wy7ysL/XYeZgjbBHV0Cj5FFJ\nygxr68fXBLBAg62ypx5blFTVfJS13XyOzvrlL/O1e/dQBSalt7/4i+kqXSVI4twsCGbjqy8C9/MZ\nHcnZa+sKa2XPsfUk+KzwiXhXZa30ZfY0JxFWbCZLlFU/rWDPfAXXx3jmj6N4hrJkWJX9RnpiOaqt\nN/dzlw2L/8Uoi4eR3B7b3ByE2DztZWH+obB6GnU8x68qvLP5DBs7XlerPF371mEYPmlmD9t96vHj\nOJ67Pkib27JA4/sy52vzepM2m49YqvfkqcDB1u7BqrAjViZXtRiZk4zYvUKqqT1lvBjvOQHdP2GI\nVyva/5gVlkpAVfbijxnWt751dT4mD8Uv00Ojmd6q9+Rdfz1/VxiuzeSM9JTpJUps/hzTkyoIEE+U\n9KKYE8muZMV96Ik/lWKE8c9kYfuAxUo1nmV6VL6TYWc6V3MVlqxfjc/05M9lftcrNz4RnWFHPbM9\nrMrN9ODXqsRuxo/FXuWXiIU9dIT82vHBB9dlnWNv62qyyBuG4ZaOvNzM2vcgxmEYbrn73rzv6sYC\nWxRQs+QSBbUoUFU2Hou8XgeqJLJKwcHWz+5lRGwbTVStH+/vYoHmPvexpcZeiqkCC9NbhhX7/RVY\n5azKnnCtrGBAOSLsXneIDfVTSaqIXRUz57r//mXrfe5zcaKLipEe20fsipdvmd/2Jtksphx11JRE\nIlmUrKxA6NkzNb7aX9kH9a7NCKvij7zbfyqq2FUhNdcvq/7jx0d+rAoCtscZdi83nuuxV5TD72EU\noxhWhq1iX6iPKL5V853/T2mkt0c+0uyxj138OqNsgsnSY2/raNGVvE+ZWcT6TpuMZS0tMwTflxlG\nm5cVCJX+yCiVA7W+Cm8cmyWbCnZPV4IgBhK2XqR3H8AVltvdbnGPC+qCYcU+JXclcZmtPq3GigWc\nq9Zi4yNsCrsf4/eB8akm1ai48P3tCuJjHhOvZ7aw8aggYDjm2j7SVfv0a1b3kAXzCPvjHmd2+OFm\n739/LMu3v212wQV6XypJtjcpz0naDLs/F9lbxRajPaxgV7F2jl9mWFEvaj7aPssT6onmqtyeV4aV\n6dnzzeI4ys30wNZSvM2mF4CfcQbHyrBl+S775aEdH3HE9IWZql+reNb6o/y42U0WeeM4Hrle1utv\nFUOoOp9fj63t50f97Vx0I7Lvv+SSxc9azDlVkKwEKs87CwYs8FTXRqwRdt9fuZKnrtwhliwIR31R\nUPWfdlLOmgUatWcYDFBnEXYlG45hclYTFZv/S780FSv/8A+5ztu9e9Xio2I/WeGFOsCx/m9lPPZh\nDIjGR7JG8y+7bBUL2l/mdyqJVuSO9iFaP0p0yKtqAxm2TE++n/GJsPh+nJONz/zY08ynq3Heyx3N\nf93rlp8UVrrwPLL82ZNjIuyNvs99zG55y9X1cE/R3iKdZ/cQ+3P+F5s5MQaxMttfR9vSL0M2ixOd\ncj50AD+3GtQUb7XxquhrP39lgYKtXUk21YDtWyY3WwuxR3rx57IreT0FQVTMZLpk2MyWr+ThFwiU\nXHP00KtnLFZUYutJXGwu9m/bxn8+Y9jVFbuqXiI5omIjku3UU2NdMNuPEp3CHvlZliyU7/c+XZvp\ntcdGqvvix/fwUljn2q/3j8xWld6yPVbjlY1gcRLF3rl6YX2NftvbOFbUE8MW2VcWrzK/zHIWylmR\ntR1Xr+RV/DqKOZne1tm29MuQWcD3m6QCNJvrz7XjnmSD5xgWxO77o7UqNPZlsrDk4bFHclcTVxb0\nzj9/+d2BzGHU+7YQS0VOZi8Ke5vPChVsWZCq7hmTzcvi+7N78pjtZQFU7VnFV9h6hx6q962il8z2\noz6G/cEPNjvhhJou2nG18NkMP0SZqnLP1Suu/Y//OH36rcdGvC6U3yLvbK3K+Agb+oKKAW2usk/V\nr7D78R4L9rMc5WklWya3X4/JgnMi+1JrqfFRvIp4RXmFYfV0Za2eK3mKN5OVyab05tdZR9vSL0M2\n0w7UlP/1ry/6lNH6454kXUk2HgszKhbQKw6BtDKsCr3Zzl0Nep/97PS5J1WseCy49txE5s9Vk65a\nr52vrMXk6k3Kfo0XvjDGdsQRXPZqEGN6ryZ8M7Mjj1w81Yb8ohflRsmiynuOrH58xW8U36r9VOyT\nyRLFr0xvFVtvV3uU3tQ+MN/yx4rOsFb9VOUBhlvtke+P9ijLG9WCgMV6JVNV7khvkSzevhAbyqHk\nVnrI/FCNr45tNON91VXLr5vK4l3GO7O3yPbX1SpF3vfsy5AjBzIz+/jHp6tFmRFt9sajw2Af8mqt\np5ipOntG+6TLdDPHuZGOgsUP/uDyeHSY7EZknNsTWCJZmJ4iZ830ouwlsi+ltxNPNLvnPXl/G3Ov\ne5kdcMDq3IzOgmZlTyuJ0s+tJs2NJoPqnvu1o5jA+Ck9KFnZ/HauqvNKkmX9bO099qj5QjvHjlkf\n41XF2rNn6KfMRphcWR5Q2MymK6Dve18uG+rF0xvZs0rM8fwiXfhz63q6ttrPsDY68ys/7xa3iHl7\n2RRvFatZXohsfx1tS78M2Uw70Diafe1rq+MqhlF19izRteaNMnK+3iBWdfaMzow0C+5zk/aDHmT2\n9Kdzp2B6qWBRelF0T0DHvuweKZRDFQwV3mr9is300HhctbcsKPp+ZesVORndK1u051Ewx7UriWlO\n0sZzHk8Wnyp6UljNlh+WyQoCpotIN0rWHr9U2KI8gLdcVGNIJrcf/9a31tZTelJje+WOaM838kvE\n49fqyTlz8kiWo6p+1fq3bZsuJGR6y94vmOnC21vEax1tS78MOXKgdt7/XVcSVQkgcxglS48zz3F2\nRkdGinyyJI20Cg5MFhWg5yZVlRirSVfti9lUpLaW2YPSC+tH3tn6fjwWBEoniu4J0Aobw4JzK2Or\nth3JUklGkVwZr2wP1XhPIxbGPysIerBHWJ/6VLMvfIH3R36v3pOHuKM97okpqCffH/FTcuG5yh6z\n+F7xFZw3JwfNsW3kF+H0MSSLpSi30gPyinw3W4/tUSZXFu8Y70rsRr1FOWsdrfLtWttd1H1PFHbY\nomKFjcPkovpxvZ5E1+hdu8y++U3uMG0sGohaC7FV+yu0x+DlVgZfdUZPKwepYGFrV4KeSpKRDVST\n9r77mu25Zz1AZ/ZWDSyVQOXHVmyKzVX2WuUd+U41OSheivdG7NOPz3hFelEFQ4bdH0c/mVbtrcIL\nsT75yWZHHz0VeZV4x/gzmq1T7e+J1b7f6yCLZ4x3ZY89X+SpfKV6a0zVlv/lX6b7ztvtG9F4pidm\n+wpbr715uid2Z+tjf6MzP2R01MdsgmHDty5ke7DZrfJz7fdsY4lS9XuazWX91YSvHNLM7MYbeR8L\nRGp9NR/7K8ULk636tvqMriThSsD3T9z2BlzljEzuSiDJbKin8GH9FaxVLH796IsDlT3MEmNVNmYT\n0ZOXjI5sP5OlJxlFvFpf5oe4lko+Sm9mZre/veYXzc1iQKQHj7Ua73B+tP9Rgs/6e33L90V6a7TC\nrvqZHvz6FV/xdMU+fPO83/9+sze/Odebmq9wKtzRHmS+grxU7K76fRSfmFwVe+ql8dhjY/PW0bZ0\nkWemky4qdU4S9nRPovN0u9qjjBINJEtciu6RRfHLZMkCeIYF+yMsl1yyOj+bW8Gu5K6sHwULpgeF\nzeuhJxEquXrs0fOu9EdrVWVj6ym/6uE9V5ZK8lByzsWS2Ws7vstdtJ9u5HvXFb303rvGkjjjz/ym\nWgDMlc3ngcrXhTZiT7gGm+tlj7ApuSI9MGxsfLQew8biU8U3qvmTydqbA1VfNv5VrzI77bS+uK7y\nAJNV8V5HK/1c+73alPJb8wbrx7O57RwaSqV4UA7p11RBDZ+A9LwVP0ZnWKL18UpeJGcUoCvOi/0q\ncPmvTGRJtbpHkR6i9SM99tpDT1Cr2oSStRKQd+0y+9a3dH9vkG39/lvNkZ/2+hWjs/mKjrApOVni\ni7Dg2IrNRDaAxxuxPzae3XzubT/SY9SnsLB+Nl/JxvqzwmajvBnteWU25Oep+BLZouf94z9es20z\ns0c/evppt+LTzE+V7aPcTA898Y3NZ7qq5Bicl+1Zxrsqm4on62jySt7uL1v8+TAM/zQMw/8zDMNe\nru+v1wdpc5tyIFRqJVBkyaQn0W3bNhVwLHh7+vDDp3+IrRdHlAD8eiqA+3Pq5ZFV3hU6S7L4t3dP\nqsUI0tddt3kFAfaxgF5JNr2Jr+1hlPAb/brXmV14YX2PMt5KFuan0fpV3pVk0Jus2P5WArjCkska\n6Q1l3Yjeev2yJwnP+T5sT3/mx1EeqPoZ6qFazJgtfrHx6zEbwlhb3TOF5dhjzY46Kh//uMeZ/ezP\n5r7CclRmX1m8ymyiN94xPVTiD5s7N9ZiP+pRYVtHi36ufaOZfcDMnm9mh5vZB4dhOGR33x3XC2tz\nGiofPx32iEcs+tv4no3z/XMS3Z57rn73lBn8/vvXk6SiFZYo0XnaB8XoZbV+fK+zVh3W88iSql87\noyt6+bd/M3vTm1b1lCWTjJfXA8qaBY4qlt6+cTT7yleWeas9rhYUvYmO9VVtP5Mts4FofOuL9qCn\nWKlgjeZHemNj2RjFazP8muGsJHiFXa1d3UMfzyq8mR7Y2kwPhx22eDl5T6zF9X1/JSe1c9HV1wh7\n5FfKF6I9yGjkzXypGgeqtopYfD/DyrC0MT32rLCso0U/1956HMc/3n186jAMP2Vm/zAMw2PXB2fz\nG3NIs+ncne+sb2LG8aq/EkT9cRQsMueqOrcK8FlSzJy9nVPOzfRQce4e2RuNH7dnvNu5KKlWEjrq\n5eKLa0Gzxx5Uwq4Ejp6A79dXfag3hj3bMzx34419NlJJ2EqPkdxMDxU/VdhwrOKj9FLF6udH/Nie\nVRN45hvqahxiU/OjPsSWJUmVdNl6/hweR9jmxnkcf+KJZvvtl9vMOPKnayt+U8VSjc1RTGp09mtA\nJCej1XzEhmMrsTbbQzVX+U5vHlGy4dx1tKjI23MYhn3GcbxhAjS+dRiGy8zs78xsv/XC2pzGlItB\nsCdJYn/v/GqiZGtX+5ncOD+i2fzoHVdsraoe5wZRPyfbgyypMiztnHLeww83u/rqWtDsTTzMvqJ+\nP7+iN6Vzj82vhQGvam/I6wtfMPuzP6vZSOVKcSRnliwi3mw91I1fm9nuHN/owRYl7YhXNdFFvqHu\no4xkjbD1+EK0dtX2WTyr6C3qz/Sg9K5o3+baTzvX+43gyvoMa098Qpphqdhn5gtsbM8eR9gRC8Om\nxv9Hvycv+rn2T83s/v7EOI7vN7MfN7N/WR+kzW9M8ejslUAROVVvoGnnqoEA160anZqv6CgYMH5R\ncZLpEelKEMXiI9sDnBuNr+jl3vc2e+xja0Fzjj3g+GrBkOmN6YrxUnx67Y2t8cUv6n6GDccybHOw\nzN2XdlwpLiLfwHOZDTBdKFl75PZy9iZlhk2th0k3S/ARVoVNyRlhbWPm3C9YSehqPGJDvflzPfbG\nsAzDcmE+d48VVpbPKnKytTwvf9+37+/Zpx451VyFna2n8gAbr7Cto8kreeM4/r44f46ZPXxtiDax\nqUDj+6Pk0Oisn42vbLQyDM+r4mzY3xMMKtjUNwr9WFyroseKs/v1du5cfNTey6p06OXo1QGee+1r\np5fB3upWcbJhBYHSQ6UgyGSryhMVF1kC9zqpzmdr+YTj14uwKd5K7iip4tiegMyScEX/1WSSrafm\nRzaUyT3XT9X4qq9leurRYy8/3EM/Vq2jiplID7hGT8xgcmQyRliqsRfpLD6qnFGVU8W3Xbtq6yFW\n3PMeW0ZZb397s+98h/dXYkaGVWFZR+t+T94wDL8wDMNTh2H4nnn9So+RqvFR8VF15jZXja8G4Gpg\nmENXg7Knsa+qR09XEuXOndPDKoccsjyfrT1XF14P2PeXf9kXNHsDdq/9VeViNlZ9oXU7nrtnHqtf\nK5IturLSa8vDYPbGN5q9/OVavoqf+v5KQq/6huIVxZRo/Z7iZI6fsvFsn7C/erUs62dYKjbA9tjP\n792DqD/CirKibL5VsSkabYDprXfPmdyZ7VdjZWZPOL+SA70cFT9qFxKe/3yzn/zJ3P6Qdy9WXGsd\nbc7LkAczO9HMzthkLJvemOFg0qkk6OpG9xql+m2+EoDV2tXkU10f5/YGsaoDRNja8Y4dkwOyPVV7\npOiKLMwBswKEFQSed4Qvwsr6qwEfx3tslbmed++e+T70v2zfFK7eRGdmdsUV+diKr2XFRTVR+fGR\nHNU9ZXh8m+OnV1453Xva61sRnclZ1QNij/jjT3+R7D28VX91fFU2hk1hRbryPsooNkeyZvGll85k\nU3lI+X1Pvmv0jh3ThYSePWpjMj157JGtbHbrLvLGcXzNOI6njuP4PfOULdvYXbv0PXkZ/eY3m73h\nDYu1q86M44eBO2DkvGefbfbJT+ZBsYolwsbwoLMpuefoNcPuf65VONn8KIErWVDubdumN6CrPasE\nYYW7gr2SbBjNxrMArXC347l75nn7taJ9ywJ0RW5Pv+AFZr/+6/0FiCoYegqATC+Zvaqxql8lRTY2\n29N3v3vS3Vzsc/a0uudZEm20/+nPy+bXjPKA4l3Zo2x8JNuuXWbXXFOPpT3+4PWm1vs//8fs+uvj\nfer9/GBGV2M5k73q00gjFswxKnZm+4D8qljX0WZ91mwYhmdtNpB1NHQwfzyOqwVDO87of/qnxfqV\nJKwMj228wt363/GOeO25QTRKdN6ZW9D0uHt5Z7Sa336uZXuqZIqSAc6Jio8nPcnsuON0skJ+ja4k\n+Ag7S1zRej1JvSqHXyvasyzx3fGO9cTI5K7aG6N7rmZEvlAJ5hVbVjgrSXxuoqsWG57eCHa/nop1\nyu/U2nOSbpTUmSw4lu1pxa+r95Yx/v5+sAhbJEcPzdY744zV8WyPfV9FTiY3yzmejmxArZftIcPS\niryqn2X2qLBG8WSz29xv1/5mZdAwDI8chuFfh2E4fxiG/ybGnL67/zPDMBybzR2G4d7DMHxkGIZz\nhmH4+DAM94sxLB+3YmHbtvlGqdY2qwW9j398uiyM4xntmzcK5WxZkIx4RcWP2fQaDM+nslZVr5Vi\nxv9cWw1kc/WAtArYqDeUPcKCc3sSekW2KEGoe/Jw7NOetjzGr11NsmZmD36w2SMfqftVEdBru4ze\nrG+6er2pYF61ZZV8kDebH/Vn9tXjl75le8aws9ir9JLpSfUrWT1dkTUb24Ot0ew/pUxPmWzK3qI9\n+b3fW9xDrPB5mvGOYljrU/YVyZnt0R/8gdlf/EW8x9V9YHJF9pLtmVov8j22b/4YfW2zW/RZs39W\n/8zsNtnCwzDsYWavMbNHmtkxZva0YRiOhjGPMrOjxnG8q5k918xeW5j7CjP7jXEcjzWzX99NCwzT\nXwwuWK33GqVvUZJW/WZmf/u3fDxeKUNDQCfMjDDDopwC+ZtNeovmVpMNw1JJZNGVvGpSreqB0XMK\nhizB+7lV7JmeehOjp3HswQcvirNozzLe++wTB3gcn9lLBbun2ZdlGM3WY+MVDoUl28Pq/Ki/Vy8o\nN6Mj7H58JdFV5Gr0FVeYffCDejxireqlUhCotauxttF4D7HCFu2bbz2x6mMf03JGtu/H41+lV99X\nseVorTb/Ix9ZxdYT66sxBOeqCwmblU+9HKxvHS16QvY2NhVZV5O+DxXWPs7MLhjH8UtmZsMw/LmZ\nPd7MznVjHmdmbzIzG8fxo8MwHDQMw23N7E7B3F1mduDu+QeZ2cURCJZ0s0uyFdqvlxldo7/0JbMb\nbpjopz51euqvUiy05vlsNJlgf6PZuVbY3Oxmy2tHclccSmHvdUCvm8gZs+Dvcav+Yaj/9NfzItJe\n7HP0ymRlcvix1bUr/dE+MHtja1VsF+leP2fzEVtWAPQWBNX5kazVq7OVmOOPe+2vojePhc27293M\n7nWvmh4zWdWeVwsAxruyR9n9XWp9TytsGX300WbnnhuPj/zQn2N42lpzfQH7kffRR+f2mWHDsRXf\n8LWBkiWLGVkMifxoHS0q8v7GzPbf/V68pTYMwwcLa9/OzL7q6IvM7PjCmNvZ9K1cNfeXzOzvhmF4\npU1XIh+gACjlVzYyonH9dlxZ73/+z+lzanvvzTc7u5LnWxY0ce0KjX1+vYMOqsmdJU1FZ+PbwzLM\nYZRMyrkRO+LOgmBvoswC6hzsSk9ZYozWY1ijtbMk28NbJX21VjVx9d4gXg3gWQFQTUSRnhrd++4w\nT59//vQiasSmsGAijtbO/HjHDrNrr+1P2C0Wqn7PO1uvilXJxYoZted+jcr9XcizzWuys3wT2c8r\nXmF24YVmf/zHZp/6lB6f2QD7q/SqsFTzBGJ5+tPNTj7Z7K/+qh7vGLY5e6ge7qvaSKSnNv4/+osX\n0cuQnx30Pa2wdhX2kA9Zas8zs18ax/GMYRh+3MzeaMHLmXFzejYyolubk9jaRuP4RmMw92u3cRlW\nFnR6Cga2npnZbW+by52txejK+Epg6qWVLMw5e/WIckVrq/Uq+4h6Qjriz3D7sdHaUVCLZK/IooI3\nw4Z9DLsqGKoBvJ2r3JPH1mK8UVamp0bjqx3UnjLMf/u3HFuG/SlPMbvd7fhP3chD+fGNN67KWbE3\nVZgz7NF6F1ygZWf/oY705OlofFsvuy0Ix3v6vPOWcVXj2YUXTn/xqeJKbG3n2rEqQnwOQ2wVW1Zy\nVOIr871oLK6d8dq1a3XPKjaC8jHZKva1jrbOFxpfbGa3d/TtbboiF405YveYvYK5zxjH8b/uPv7/\nzOwNCsAf/uF2+/a3zX73d82+852TbBhOMrPNuyevmoxwTuSAUQA1M9trrxrWucUP9kXBvR1X5Yiw\n9iQAtW+RjGxtFSiUbHgVEXkw3ai1okTF5Mxk83rIEmMFd2bLWeJSiZFhV7Qaq5Ks8sPIz1UAz7BG\nOoz8sFdPrb/3CoOnfask3XbuLncx228/s1/91Yl+9rNjvTAs7W/1/ZJ+/cqVPKWHRl96qdnf/I2W\nPfLDLLYqvbU9jK7kZTbSimPE6nlF+90bM1BvZmZ3v/v0yq7M3lAuNbbql0wnka2rOODnZ3KztRjv\nLGZE9uznt7E33PABe/3rP2AXXWS2fbutpc19urbSPmFmdx2G4chhGG5mZk81s3fBmHeZ2TPMzIZh\nuL+ZfWMcx8uTuZcMw/Dg3ccPNbPzFIBf+qXttt9+2+0FL9hue+55EnW+1iKjZHQ7h8eZUTYMmRH4\nvtbG0eyUU8xucQttVBEWdi8Z0uxc9V4flDsrIHroShKOAolaW8mCNP6vn81n9JwglumtV6+RbOpq\nBsoR7QnbI1xPJTaGVd33puRkOvE0vhC2V28VbCrYY1+2J6q/elUoiifZnkVJu0dWtp5v1T3riTHI\n2/ddfXUuW1acVGIlzvdXX6PxTBfsBc4MS5QrMluO9Hj3u5s98YmxnlVcruwJ8o5id+YrKJefW9Vb\nlnNQ7rkxCX3l5jc/yZ773O12u9ttt+1rqvLWdiVvHMcdwzCcamZ/Z2Z7mNmfjuN47jAMp+zuf904\njmcOw/CoYRguMLPrzOxZ0dzdS/+smf3h7s+qXW/TU7m0MUMyq73wMKKX5cwDtKdb8FJXhfDeGwzI\ne+9tduKJXK5q8lH9Xm9+vSy4Z4mnqteI9tgifsi7J6l6HTT6L//S7A53qAUi5ewKi8KGfRvVq+ff\n+tkrhBhW5PWd70xXGaqFEvKuYFf3rOzYsfj5rWLLPX5Z1XPkd5Eesj1RuFs/K/KqyQX/MmxRDHnW\ns8zue9/pHq8sSSvZ1NoR7X8mzooNlcTNzO5xj+nlvmyPqzGC0Ygb56uLCZku/Lk5McPLpuaq/oqe\ncX0/V+1BZe2MF9q+H9949MYAphe2VraHbD7j4df2clx1la2trfX7s+M4vsfM3gPnXgf0qdW5u8+f\nbWb37cMx/Y2CUDVRmU0vxr344lqA9vPNpifG1FWhFthwLq5fcQiReKXpAAAgAElEQVQ0uOhmzyzw\nzPkyCFsrG5/R0XrqJ3Cz5U9aZUmx8fF6etWrzB71qDwoVgNLZQ8Rj+rP9MrG+wdYVMBEuo356Z+e\niq2nPCUez+Yr+6okD7PpaXQmN+pR6ZDppUdvyhcqCT9au5IcsoKB8cK+Kjacv8ce8f2AFTz+b2XP\nsm8rR/bjed/97mYPf7jZa16zjNPHjEwPc+Nb8zMvKxuP/M2mn8nNzG5961hPeO6P/9jsta/NY4qS\nJVq/13ZR7mxtzHlsfGavnq7aD86P7Ckar+JAxusjH5nevLGuttYi7/92w82ae6Mo0j/0Q9P/Dnfu\nzNdrc8zMjj/e7LDD8sCEvOcWF3guuselJ3FmeorWUuMriS5bj+E866zpJuYMqyo+/Bw2HvtU4KkU\nF2ytCs5qUG00Jp8IK85tL/HOAu5GgyCT47rruJxZgI7sN9Kjn3vDDfwzTxH2zMcrNtBo9etDxUb8\n3yjRqbVb7FTYoxjV6LaOsn02v13JQ9kq9tMTM6p5ANfL1mZ6YOMR/2GHTb/Y7LNPvfho/YccMr29\noZI32rnMJlBXnmZ6wLUy7GpPe/yYycLknBsDIvtT/JjsDMs6r+KZrfeevO+aVkkG1UTF1utJ2u2c\nCpoq8FSTherP7nHBuegwkcFnQa9Hr5GOIzwKS7uKFwWpiqOq/kjvjI4CSxaYegOJGu+v5FXuyVO6\nqCTGHuytj92k73XWm2SRrvq9n9OK2+yKeJZoKomK4ccXgbOxkdzR+EgP4xhfJWf7xPDsvTfHEcWr\n6B7ingLCr4GyqT42tmdtxKv2OLMhpScWz5AXuyUom49r4fhMrkpMQDkreYTR0Z4yXjg2ozPsVaxs\nfqNbDF5n+091JS/buEZXjTSbrxwoC5qRETG5FDZ/Tt18XpGnJxC0cxWDzxwoC9BsPq7dvtKhZIwC\nsG/ZnmKiw7lRcREF+6gfZVU0jsefa30/8lYyswBdCYI9L4hlazE5K0kW8Vf06PvxP2VRku3hzfaA\n0fj1BPS1CAvGg0pSxXMV+2T0OE5XpG5+83jtuXqck4TbuZ7/4FT2rBITemJ5pONoLZ9jIl4VLJWY\nhbwV1iyuox7V+mq8wu37qrTa8znjG82KOXV+M9t/yit56HzVRKcCbGa0fr4yUm8IWcD1cqkgyXj7\nnz+UXhg2n+Aqzpol/EbfeONC3oqzRg7F7mX0DoTrXXDB9A1hFfQ8feSRWk9sPjqt2rNoLaaHuXrH\n8Whj1UTnW+YbbP448heRI3aFpc3JksNVV00vAMb+TC9Rfzu+2c3qhUhvEvW82J5F79ZsjfXd+c6r\nclSSqu/3/ymo2nOjlZ9slh6r9sf4R/GJ8WrnsniUzWdY/fieWKiwZXrxvLI9ZbS6/UlhrcrSI6sf\nr/R2zTV8j7I9Q+xtzZ49vuiiPNY++cm21ralizzcrGxjzeJE5+kocPUGcBzLjBDXiXgzo4s+FaV4\n4PrZuCyIIf3qV5u9+MV5wK4WFAzLz/4s7/+1X5u+AoB8EMvP/7zZaafpPWTzPS9Pt3PXXWf2hS/U\ng/3cgB+N3+iVPOTNsON64xi/7y37qoNfM0rgr3yl2Rln1OyxJxnts8/iPZW9Pp6trfTG+llijfzm\nXvcye+ADc79CPbS12S8PlcTIkm6GtUrjej16jLBFtFq7Gu+UXFE8i+wrso+Mlxofyab0quSo9mf5\nE8dmfut5nX32dBW86pfMdtG2I95sX9orfJTct7zl9AaHdbUtXeSZ5c4eGVVP4usJ0NivDAvnK+xV\n3nOv5FUDcFUvnu7FwsYzvbXjAw4w+4Ef0Lwreu0J8Jg82Np/8ieal1qrEkSZXth6+A3gLGghL7+W\nws7mj2P+vrcs6aGskU6yAiAqVnCO+tygWhtxRmtX9F7ZczZOJSa259ddZ3bZZRxrdBUxw8Z0XsWm\ndBCt73WRFRRq/1WCZ2srbGp+tm8YQ3rjD9KZfVVkU/sU6SHTE66l7CeLh5He2kMNc3OUsu2KzbS2\nc6eOtQz3ZrctXeQpo2x9rDioGnyb0xugI6NtYyPH7XEIv8Zm3ZNXSRY9QTHSS+RgbL2KHvAYZcmc\nXcni5/uCwNN+bSYXW6sniFaSfgs47Goak1utq2xXzW/j/WeD2hwVoHFPHvSguJ8FymgPEXvWP8c+\nehJ65teRr1UTE+Pd5r/0pWZvecsq1uwTWRk2JTfTI9I9tt2jR5V01XqVPcvyRIbVn2PvS2Vr9+oh\n8rvqeNQr6iWLKSzOZ/vQE4v9WI+h4pe9MaJin+qWIa8XFrs2q23pIs8sTlZVo8zoyAGi4NBaxbmj\noIXnKoEE+xWt1pujJ0a3c9UArcare/KUHnCM4oV66Amafr4ft23baj/DkgW5qqz+3E03LX5y9HqL\n5EZeje4Jmq1/587Vd4dliaf1HXqo2Qkn6H6/FsMS6aXaX1k78pvI1yK94frRXKYXL0dkP21ORRa/\nfoStJ0H3Fi+9evT+Nzd2oh7VeE9XC4JIb1n8ibBl8aw6PuIV+WWkp2r+VNj9esirjYn8htlutGdR\nnEfZPL7ofntcazPbli7yogRQKSaq9O///uL7jpEzZ8ml9VWwtXM33ji9wwvXzQJJFniUA21ETwwL\n461kjbBXgjvjHY2PElcUNLPgct/78rmRnrKgl8na+vwN/HPs75nPnJ6U9K0SNFt/9EnByhWjiG7H\nb3jD9JUGvzbTS5bomF6yuVkSzuSo+D2je7CotX1TiS/STRTfPC+W4K+5xuzv/77Gi62HY9W+Ra8P\nUrzb8Re+YPbe99b3OIvzkay41vnnm1155eravmV7FukFx0fze+JyRU+ol8zWs3iJcuD6VbrHTxGr\nH++v5GU6XUfb0q9QMdOBrbUswfu5amPNFp966jEiZVhRAse1fuZnpuOTT16VjWHP1kNaOSQL2Ewv\nWb9fOyswMgdUQQjX9ryr43uLIVzf9/3ADyyuSEVrRbw9rfqy5MGwMT34c8cea3bggXEAVnjGMX+F\nCtuDCFslOUR66dXbRv1GrV0tEDJ7Y31ZvMNjtYdRX0SjLbOxb3tbHy/lO5ne8Snl6txxNPvlX17u\nz8YzrEyeTG9mZp/9LO9HLJntK6zKRhp92WWL11H12FOvLzDZcXxEM14VPXisldirZGfY27mKvayj\n/ae6ktdaVhBkc5lRszU+9zmzr399vgNGcjDD6Ek2SpYsSEeJpuoQ2Kf2gelNBYfoKpBKklW51Vgm\nm8eCslaDu8JeGR+t7/cww9aTTDI9ed7RK1Syp2t7kkE1kUX9VT3g+Ag700uGnc1HfpGemB5UjPDj\nFdZM9sh+1VrtZdNVXh57BWs7ZjZWkTOKVz0FQVWvLF8prDfdtIolWlvxwvFon9/61rw8oLBkesH1\nqrTn5f+q+KWwKiyVeOfpfffl2NR+b3bb0kWeWT1RRnQ7jja2NT/3kkumV3D4+dVipZ2vJLYe7Kq/\nRy8ZNpwb6bGdqwSHDFtPsP/FX5xeLeFlqQQatQ9YMKBsPUnT92cFRaQXJbufo36yYmtFdKQnr4fs\nfW8ZbhZwGe8ee6okxh57Y4lHrZ3pTa2vxjJslZjg+5Qesc+vH2HLEvYwTPdbRnJneqjorZ2bcyXP\n48jsa6NYGTb828a///1m//RPdftpNO5ZRe+VK3lRTFB6ifIh6kKNZ7HX257aA4W1mmcqsflud+PY\nFO7Nblu6yFOGU01sja4YNVvDbPoZN3MCpLNgHgX3LKgq2bLE5vU2N9ExLJ63wsaw4vwsyGFguOMd\nzR7ykDjxZWuroNl7JS8KHD32WS0QVOCLsFZp1edtgn1uKQuCEa+q72T2VEm6DBvbA4aNrZ3tQUXv\nmb1lesCxyLuCJfIdtUd+7ec+1+z2t1/VSxafIr36c+14I/fkZX7Ti/X/Z+/dY3bfqvLQ8Vtr39kb\nucllXyoFOZabF1TcVmJQsdkhsBHTUrVRj9aUHsU2qemxRxNYmFh7YjlJDdbSai2gDecEgZJW9BgL\nLQblchREBbkJstEilftm77Uv6z1/vHtmje/5njHGM+bv9y5wfWsmX95vvvMynvnMcftd34o3Jhv7\n+R+2j/QTx/g51T02278IvBrbsYUqjmBd9Vde1oMfzPt7nhhWBQvrj2sZP0Xo9S3zV4coF3WSN0qm\nCJmzj5SU1b0sdAi+f+UMujefP+c5/Iesf/EXzX76p49jnVFqv7bM+KLkJOLt2c82e8lLjvKmjlcd\nhRrouglGpiN+Lh/oKmwdp8hkR/OzQOjrqpwosG0R6DwWVTfVAJ/xqgarKih2sf3X/2r2u79b+4Ro\n7Vj3OLI92e3Mzpwx+7VfOy77ec8zu/762jbYWmd9yGg/fdrsgQ+c0222Z1F/9msvFefMptlaM6yK\nT8K67+s//Trxs2M7ir76+l//68f92ac+Ffttde6ur618jJf1yEeef09qJy6odlnFLOxf6cchykX9\n4EWkOGoyMcYpTs+Pwf8rI8B6R7m/7uv2jhmxffSjx/FlBshk4PveKjzjfzW5uN/99k9qeoPKxkfG\nzIJwNpZhZdg7+8ASAlx7hS2qd2Sz+f3aunuqOFQlcCm8q2dAu0F6cMR4rnjs7pnq7MeTpF//9Ud5\nQOwR75Ut+Plwrre+la/za75mH7R9fyUIs/4eC7MrVp/RbZwv4o31Z4E147zSzcpWKp8U7amXjbyx\n+FPNjWtlCQf2H2ek/Fz+8m02ttKfytcyO1V9gtn+lVHqHkS8oOxOzMvmG3Wmi1uVizrJG6UbHNSE\nAMfieN+vMoJRz5w5WwtiQ2fE2tl4bGOKpxgj8lAZN1t3NL7Chv9HvGTG/qu/ava5z5l98zfrexZx\n49dWBfBsnX6M/9USZQ8ZN14nqz3FeuTQkcfKtqJ6tWdKXQ02nqds7Z4nZS62bmz3ReGtwurnrXQd\nZXv8iEXViQiP6kOiPYtk+/7RWv340Wf26VqPQ8Wa+eKuvo1L2dh3/K/y5rF11zK+Gwdj0b21TDbD\nztadzYe8ZXGE4ca5qnUqtqDGvPH/+H6cAY18wpblor5cqyoC9h310V4pzjOfuf+pKqYI7DucH+sZ\nlgrbaH/KU/Y3fEbtbC1R0I3WoRpjJNv3z+bL1jr6RJe5I1mIdaz17W83e897+mvx+3aop2u7jomt\nveN0WT3iTQ1cuBYcn/Hm5TOHGsmK1lUFukjfOnZYzaXwFsnE8dF8fi7sO+ZSg2hUj2yh2lM1iFb9\nOz4js1MlQKtYvSxlLZm+XX+92ROfeHxstJ/qnnXX4sc+8IH7eudhwY6/qtZSrSvjpVrn7B4znFH7\n+E1dXNPW5aJO8kZRlW60ZRvp66P/ddedv+zo5ZntL6di/yx4KQaTYRvtz3622dOffrS9o6SZE/TY\nuo6F1aO2DGuFLeKlmjvDM+qKI/NzZkGQyfLY1+inEqxmH0Ia3/36r5u97W3aHNFaIkdX8ZZh2yLQ\njbrfw64dsrl8WcMTYst4Q6wZtsousc78KZsr07fKP6lYq6CPPDMuImw/9EMxnspWKv3ya830zc+9\nLGbf9m3H5/NzsbZoz7LxEW+nTx/9uczMx7MYM/ootsWwY/9MHzLOsb+fA/vMxDw/FmUwu9yyXNRJ\nXqUIVZAc41TFQTnf/d1m3/M9ev9RzwJPpGQ416zxZglB12DU+gxWdm9ZN8hWxq04ZNY+87Tjspj9\nl/9i9upX9/XzNa/Zv4mfrYXx7Ofo7BOT/aY37W/ix7VEsnGfIt58XdEHnCvDglhVB+3/79hhNleE\nBceztbH5oj2Ngm6ELbPLzGdh3cuO+ma4qz2JeItwIhcdbE984v4XXxhPTJ7KI66VtaGsUf+KrzB7\n3OP4OisuZmzLjx3fVT/FifpQ2VKGZXZdFefRnjEsHX3z8w2eRlLMDngOUS7qJG+Uyul1Nh7rikFl\n/VUHjW2s3lmrsrbu5QxcVyeByAJnZoBePv5fOZaIJ1yrOt6vxeNV1/WGNxytY382fvz/5jfrjs07\n6MrBRljYOjPZVRCPsEXrxv5ZMOjYRuSgq+ARyWJz+aLyUtkC091INvaNdL0byLL6+I5dqah8abYn\nlW1V/jTTN+Qt8m+RnEr3cX5cm+prmfyKgwyr5ylai+cteok54s5speK5smPfn/GE/Sq7U22h6s+w\nYZKHPmHrclEneZHzqILBqJsdVZJR7xqUYux+/sxAsvFVoGJzVUZRBd3MSSm8dMarjiaSxxwL68v6\nKzyO9tn3ln3Hdxzvr/LkPxXHFmFTg0c0VydQjnrGm8L5pz+9v2xcBcZoXZEfYOOjdarrxv+rYFLZ\nApsP/8e+z33unCw1yPq6uqeVz1ATABUn8sKwqQlCFtAr3ffzR3vq19XxrSoXKu9RXFJkVTFHiQtR\nfyaL1Stesj1G7FFcULDhU8nI6dblon+6NnImbOPNNAPBtq7isPZRZ6e+FUON1lmtDfsznvz4yvgy\nHtaOZ22IreIJ65mRVY4J+yCPHnu1zmUx+9Zv3b+93mNTHQ3uVRZ8xvcYhLvBI0suIv2r5s+wRf1f\n9CKzO+7I567kZ1jRLr3sinM2ly9b+RS2TiZ7tzN78pPN7ryTy4r2uNKJLLD69TG7jWRXa+nyhvXo\ndUIRbxU2xgObL+rv5XXel7p2z7q8R7dV4NwRj1nd8+DnY2vLbKOSzdorXkd7FhfYWvx8y7J/r22G\ne+tyUSd5ymb4vpGSRXNV/VUDZME6CgaKo2GyKiXNAh3OF/GAPz6PshE3yn7ta83+5t+MxysOWnGK\njLfR9s/+mdn731/zWM3Ngu6svijj/WcVXPwcXd4YD15W1r8KwhW2apy6xx5rFmxwfBbIugH/+75v\n/5LW8UqcWR3BuX0wURMElBvJUvSdccP8G+OpE4T9+AwLtinYFJ6ygM7a1T1GeYgN11HpbrVns2uL\nfG+FJdMnv7YMa2XXXR7YXIod+naGzT+Q4sd/0Rft39136XLtRoVtRnSGAOuZUrLxlTGrga0KJpUT\nVAwiwnbbbfv3xCFPODfyu9sd/fH5ilcm28zsVa/KjR8dE2LDdXZ4MzN7xCP2v6NZ8ZjtOe5p5yW/\niqPJZPn/2fzqU8kRb1VyoWBdkxD4uUZ9OFOcO+PBz6/YSqS7n/uc2Yc/nPdlc11zzf5l4ApvDDvO\nx/QrWnPGi5qMsD3045mdev2rgqQShDP/qO75+B6xdnhSZHf22ONkeJC3jKeoHum+yrvH0Hl91W5n\n9o/+kdnP/mzMW4Sd7SH26fLA5vbjK14q/fLr8Xt66tSlBy82KRGBkVIxJYvmYg69Cso43mNh7Z0A\nrmKLlNS3feYzx7GhkjIFv/feo29Gn+ElWosv3rFgXQmKEQ9RoPJcZPONunoZKJON2KK1jDb/qepb\nFHwy3phsdXzlFLM9zZw9cqAGPmVP/Xhmp/e/fy47CkRVezVXZDveTissjIdOMlLZAv7P2qK5UE7G\nYyY7w13Fha5vzbB315olCJmNK/qW2VKFBftGOlP5YtYf16basSpbmTuKA6ydraPizY+JeNm6XNSX\na83y4JRt9GhXnFw1HmWz9lGP7v3BuRFHpdRRf8bLkKmcgfL/33PP0cu1GS+VbC/Pj1ccjxoUlQRC\nnU/BpgTJDBvKjoInW8v4rgoeyjr92Gc96/wrHCqsqoNmWH1/P/fQUxyv8tbdU8R63XVm115br2vU\nleBQzcF0hNlpF0uVECAvHd5wvrNn92dAswCv2G0VhLP1R69hymSxuRh2nEPRR5wv870Rtqgv1tU4\ngv8jT1mcYFiYTVd2Fq218m8es2p3KIvx0tHXiCesM9xblRN9Jg/rUZBkc61xmqgoUbBG48rmZlgU\n42UG4j9VJ2h2/ieDVB4r2dV4lhCoQbFysFV/xOZ1aOZMnu+b1RkPZmY/8APH54vkRcGju04zsxtu\n2P9F9sHGM/xRsFAc7k/91HFZyINvR55Uh55hy9bl65FsJTB2g3BkC1VyEsmqeKr8m9/jj3/8uCwc\nW2Fh7cgbC8qKLWTrxjalPcMezcd48+tg2Ko9R54zncC1IU8o37dX+sOwsLUx3qI4lMmOeJu1S8U/\nRnYZ8XSoclEneWbnDcTXM6VVnGDXgY//s7rHmgUaValnldTPqSYEHhvDGmGvZCu84rhonV0HWzn4\njNeO08N2JXggtptvNvvar+0F6VFXftWErXPL9ighqOxstD30ofsHdjL9qmxnZk/N9gc1qn9Q9lj1\nMTie2Snri7z4+uifBXw2PwtWlS3410h4+Ti2q1+Vj1GDcLUnM3EB2975zn2ym/X38nB8xlO2JxEP\nmU54u8zOSCGvVbxDLKyN+STFv3XWmelupftsrcgbjkXeEPeW5aJO8sbmZIHMt6tOEOuKQY3v0Dko\nlwxQnoplVklZ3WPLHE3UztbBZKNhRLx2f/EiSl6yPcqCLmJDeYrTQ2xq8PCylcCH7ZHuK05wDU9V\nEI4cNM5bYUEequCh2grzIYNDNeBX9aov8ohjVVtgdcZDhQW5YfMzfYsusat2xvQv0wEce/XVZrff\nzoNw5UMqXqL+bG2/93uc10jfWF/GE8PC1hnpE9MJhgXb0acwbnCuCGvH3zFdxPmzdUayMx1AbEye\n7xPxxnjZslzUSd4olVLObnw3yEb9K6VUA51fUxU8MgMaMtV7LSLH4otqvE94wvH+bDybX10nw1oF\nC9YfseFafLu6Zx3ZLHhUOhLpvpoQIFY2tsLaTQi6QbcKdBVP2fwMm8KDWlf6KAkB/o9zM32L9KnS\nEcSi2AJeXan2TJGFa2PzjzmuvHJ/XyDGhWhPItmMl8y/Yd9v/MacV8SGsiOeojijxg021mPxJWvP\ndCeKFdg2wzNiy/ShimFr9DOyS+9DIg62Khd1khc5aEZ+pgijPvpie+WAlaA86tG7cyoH+0u/ZPbS\nl2pO0bczLNddd1wJ0dEwLFFAV4Pu136t2T/8h/U+MGxKQhBhZbKqwJf1774stKM/FS9s7X5spPvY\nt5pb0W0cz+ww443tmbJHjFeGRU0gMt5G37Uvr632rLI95FXRB1WfonVkax3/R3v6pV/KsSl2GcnK\nbAvbh775UiUTEbZKdmQbN9ywv9UA50ZbyNYd+aNqHQpPHvsoH/uY2Sc/Gdtp5ouxL2LJbKWDvfIh\nvs54QdkRL37NmR0jL35+3LNDlIv+6Voz7qBHURQhMnb/f6XUmQFmQbcKwuO73/zNo+NnEwQzs8c8\nJsZWrTtbZ8YLM3TV8TDeMmyZcUfj2XyIDedHbNlc0Z4pWGf0MZu/M3dUx/HMYbP+zBYyHhReR98I\nS2Qr2M6Cx/j/3Dn+IvAub6oO+P7VGfcoiPp2pV7pfiSP7emDH2x2xRW6z8B1Mx78/JVO4HvKcI8z\nWRkvXdtQ7TT6ZRrUF2VuxNqNUf/9v8e8IXaG9Z/+0/3LgJlPqOy6sqWIt2hsFh8z/fJYM16Z7iM3\n+P/W5aJO8pgTZHVmEJnC+7n9d2q7YsysLZPF1s3GVg798suPY2HYUP64LykzgIqXCHsU6JhjQS6i\nudWAn/EWYVXO5EXYMgce8VIFceyvBDZ1z6qEoLM2xKacEVB49SXiLZqPrXvUl+X8gxf33nv0yXIl\nMcp4qxIAHJ/5M4Yj8neZPrLxke2wdUf+TfUZTF8iu4x49vN1X1Ku6J/ia5kP6/q3CEu154i18ncY\nh8zOH8z4/ljPdPfyy/f3REa6zrD68ZUtKbxlvFSyFNtAWcgj82+HKhf15dpR/MZHdfw/czyZ42Dt\nlWIwbJUjyIIPyvbycLyvq9hwXddee/4FyoqxRrxkxovrjxwLW3fl7BkPWeDL1pZhi/YgCyaqLFVH\nMk5Z34y3Li+RPMUpZutie5atJUtOGLbRjsHDJwudM3mKT6jsHufzRVl3xKu6ZxFPWM/OlrG5GA9+\nbMYjw4K8RXaK2FQfgbxGtpHtcYXNryvCVvn9LA5kvKJss6MHM5FteCwRj8hDhJ2ttWMLCm/VnkX+\nLvPdme5jO+LeslzUSV7maHwf9dcSsK3jNDPn4GVEATky5tH2iEccXzcbqwaADBvOffp0PTdi6yQM\nrL06y5jN5bmLsEZ7Vq3Nj0VsONbs6AthfZ9Tp3QeI4fu/694Y30z3hRelOQgSgg8j9meZUE0W0sn\nCKNsxoM/k1cF2cyHRIEs4tn39fPP2ELl77p19CGMh06Az3jy4yt/l+kbW4uCzWOpbEXlGfe0wqbY\nAluLwrv//q/9Nc7bGKPeH13pJ/aP1uJL5Hsjf4WyVf3Oxle6H2E7VLmokzyzPHiM9kqJqo0f/2fG\nnRlgFNgip8WU9sUvNvv6r583qEhexBvO7S/XVsaqGpASKCtsWb3CqgRKxJVhw7HvfKfZpz51fC6W\nMCiBMMJeJQRsLRFvbJ0ZT91Axxw0k+37ZwkAW0vVP5o/Cx7+d5vZujJeWH/ccz9e0Te27qjOZHd5\n8v0RS8ZbtK4IS8RTpn+sfurUfs/QFhTOM15nxs/6N+a3lT1ivFRrG+Wxj93fT+nHRD4l4kH11aqd\n4/yILetb2QLjJfOtDPf4LjrZ5LEdolz09+SZ5UrolVR1wFhXAqGXFRkzOkFcSxZUr7zS7AEP6Btv\nZgSVUqLxRbJUHhlvWXtlMJGznw0mEW/RHrJ2P/bTn+ZcjEt/1Z4zLFE700fPC+JQHayaQCi8Z/qW\nBdUoeCAnnf7ZOnEus+OXayueMh7Y/BUXyBvTl8w2/Fjf3g18mf/DdWU8qVirhAHn8vNtdU9ed89U\n/VP9m6q7bM+Qt2h+jyV70Af1r+JN8W/YznjzWJjNK+tEeZ0Ylq1VxXaocuLP5I06/l85YF8f/1cG\nGxlkpZRsboZNwe6xZv0VbGPsuPm8MgjF6eEYVsf/GbZoT9U9qhx6hGvoG9bZWP/Wfz+X/3k4tpbu\nnuP8WfDIeMv2Jwt8XlalI0zfMjuL2jMdGE9WdhKOijd88KLiSdnDLNDhfL5E+pLVVR6iuhJ00Ray\ndUZY2boznVBsx9czziOekMdovIpVwTbrO9WYFPlav4cMW4QnlK8AACAASURBVLQOxfeytaF8nC/7\nNSuUv0a/KmwdXzvqF+rBi0tn8gjZVSDCeqQovr1y8FjPnLcS2BQDyoJNZMzR2O7TtVHgq3iOsFX3\n5FV7FGFRgkXl9LJ78hjWKGFQ9xz/Zw6dYVcdsl9nxyErvHtsEecoB9szHnDuyqGzdY26n3tcro2w\nZLbQacf5EYvXv8rOsiCs7D/ylPkMxKrykPnOiJdKnxnWbK3RXFW92rOK50x3mX/q7JnHmsUBnDva\nU79+9T44hsXPgzxlWP38mS107FCJp/6F2pk/q3hkMWGrciLO5EUb7+ujRE4Mv8OxmRJGjm3MFQXk\nqO77ZoEtk11hV7CxsVXQjHjE+ar2KiF4/evNfud3Yh66xozYor6ZvuHYW289Ov/4P7r0h/WKZ1x7\nhBXH+7FsbrbnEU+K7Xh5HluWuHf0jWGL7BTnGP19QnD33ccTBPYKlYwD1edk2LNggvP5up/Lt3vZ\nWWDM5queKIx0ucKd7XHHX47xM/fkVdgrHv18GVbm3yJbyHiIuIxkdbFE9U589Dwgj5m+Vv5sFCU+\n+r6VT0Esb3ub2RvfGOtIxtOlM3kbFGboUT0zEJxL7R8FQtWAGM4oYWBz+7VFsrPApjpoxVEwrBH2\nqh15QtxmZq96lSZb2ePMoUdYfIn24PLLzR72sOPY8cELj7XDc7SnGbZs7g4Whiuqj++y2yoUXc30\nja1FsSVmR2ZmH/zgUdvAM3kRL0rg6/gYxIZ227GzTLYyX2ULLLBViY5Sz/bMr83jiGwB1+brbGzG\nG2tXZOEeep78OjMesnWo/i3SryrJi87kIW8Mi+cN1xrx5EuGNfMRme9kXPr/P/xhPl59qwfOu3U5\nEWfyukeX4/tRZ0rq+88Eoyh4RH0zA/HYIqdXOapo7bhW5qDxnjyVxyzwsTkY9vEdGox/YWcmO2pH\nWZUjUp0eG4t1fPCicjSR/kXtTPczJ8b2BPugLCVod84IMN4qu6qCQ9dufbn99qP16GXIFY+Z7rO1\nMqzRnkT6U2GJEoZMZzP9ivwbG4uyfF2xy0j/8H+GNbp1YdQrXpU9qnhkWDNbyHhgc0c8ITacn2Hx\nWCN/F+1ZtC7VF0eyM95UX+nrDBvyNO4LVOwys4VDlYv+TB4ar1mcIEQG4eca7ZmBRA46Ulo/R7Tx\nlUOunKDHguN9nfGC2BDH6Fs5GuSJYR0lc4DIsa+P78Z75iIniFhYwsCwRzz6PhlWZQ/wwQvGQ6VP\n2doQazS3/06RHfGU6SPbQ4U3XJeXre5ZZDu4VobNvy5lhscqGcnWlmFj/iziIcPSsctIv3BdyFM0\nH2LzYxW7zHxUhSXyX11d9+3VHjOsuKeKD1F4iNoj3j0vY47u5drKbte0Z77W81bZUdSe2dpoG99l\n/i3yvR73ocpFfybPrFZSxYnNtEfBJDIgP97PnQUPJsvjq7BgO65Ncciqo8kcycxa/Hc49y238LER\nlogn7B/NpzjBLIj69uzFukrgy4L4mpvNM9kRT4q++fki3jLdQ9kRFiY7W1uE1czsQQ9ax2O0liiY\nVDqAPEY8ZD7E9498TLRWpl+ZvrF2xb8xrNnaVF+bxYHMrhgP2J7Nl83vS8Y5q0fYVVtgdcYTrhux\nqHa7pt3rGxZlz6J2xU7NzK6/vo5RDOulnzXboGSBLVLKUR/jzcz+w38w+3f/jrdnzoAF8cqAsvfk\n+bnH/5Es1o68VMGiOpM36uOVFMhDVme8RFhx3dmeju++6qvMnvEMjQc/P3OaVXCZufcim9tfrmW8\nITeMJxYA8H8lyM4GB88T22PE4mUhj9ke+b5R4PNYsD+TNXjxxc91/fX9PVawe1mZz/ByIx4ZD2t9\nCOKO6qoteJ+S8cB4yvac8fjbv232iU/Euq/wNMYpuu7XXO2xmdmdd55/UhN9LfO9kWzkLesf8crW\nznhiPFZ2G8nq+BycL/Mh6oGiIovxcuONZs95zvl6xBvb0wt1T95Ffbl2lMrxVAbxe7/H21Vn0A10\nUb1SSlavAh2u1c9RnfWpeKgcdsQT66+8D0nhKcMWOWyFt8iYfbvq9LKbhSue/PzRWhiPlS5XsrK1\nMSdbOT3kVdmjDJdfM8PG1p75jCxBUO1MsdvKtmb8WcZDtWfVnOoBdYQv40X1GZHdnzljR0q2x5Es\n3zfzA5W/8/2Xxeyee45jY/UMS8ZbhFXRT1X3WXs0V2bXrJ2tFXliPkXZM7+Oym6R52uuifc02sMI\n26HKiT+T5xUjUgQ/n28fc3lZlUEhtsiAIqWJlDKrq8bPlJLxNCOL1WccPMPC5lKNVwkmFXbFmDOn\nx3itnq5la2Hzj+/Y/6wtSi4qWZXsaF+Qt8hB+zVXtqHqQLUvaiCrsGYJAmLz9U6gZFgrXjKslc+J\ndKZzVhvrGS+qb818lO+X7XG2Z9keRO0Rj3484u+8BzTaEz9vhpXhQaydPc32rOI1wpLZPYsDiD3i\nAXlEzioeq/kiXY+wHaJc1EneKJmSjvbRNorfuOuu4+2V0xxtzGEzbFEd58uMnWGLjB/7Ky8y9W2V\nAVWBrNs/MmbFgKpkoxuEEXtlzNifjWft1Z5lQdxjRx1h8/nvEYfisDPZbD71VQx+rmpdkSy/tk4Q\n9mvNAp0aZCPZDIsShNfsqYJVqePaK3/G9rjr37K1RD7p7/293Id0eejacTa+o2+R3WU8ZT4r4/FN\nbzJ7xzuOYuv+rFnFI8qeqUe8Va9QUexKHa/4EF+/dLl2gxIFk64i/JN/cn7OTrKiOnSPFzdbMUY/\nNguEyAuO75zx9HMp665kq0G5wtp1HJkDrtoZFtWYZ7FFex6NZ1yscYIRtkg28oj6GekbG5vxgvIj\nW2DtbL7OAwMZT0x2hpXtk6IzXu7Zs2bvepe27gxrp575Wi8jq68JqhFvo/2ZzzS76aZY97OxUZ1h\nrWyB8ebbrr76eF+PLVtnZAujZD4m6/+zPxvz5uMC46ajT4q+M33O7DSy8UpO1y4jfxfpl+fR9zlE\nuaiTPLO+IvjvR98q2FSBkClahg0VAfEw3BjwK6eXBU4vO+Lt7Nn9m/8RW+XUFJ6wP+MlCxaMJ9XA\nvexsLX5s5+Wga7CxPfMcKLzP6n40l+LQM9tR9nR2z3BdKBux+fk7B4bYntkZrkMJwvhdtaf/5t9w\n2apPqPYswl75t65tVLxE+jmLTfGNlV9XfAbzl7vd+QSvso0MG+Ow8jFZf7Oj73+MfG20p4r+4B6O\n9ttuM7vqKq0/4833VXyryouyxxW2aE8PUS7qJK9DdmYQ43/VEbHNHuPZU3t+js676fA7RSn9eBaU\nfb/qiO2OO7isCGvFE8MWOeiZJ6YzrCzgd3hXnWAnUGXY/NxVMEHeI966e8J4Zjxl2COecI8r3a4C\nFQvK1Xjkya+v81BSJDvChvKVoO7ljpv4q0CU7ZESGBE7w1LtcRUkI94q7Gy8+ss0mSzEzXjCvtme\nK/qG2BiWDCvOn/kUpl+o02vek5fxgNhf/er952Mfm/OKMctjrfQrqke8Yv+Mx+77eQ9VLuokz0w3\n7tHXjxttXUfE2tFBZ9ii4FEF9CyQVVgZtgjLeNEwvnDYz+X7d3jy32F7FByqPc6CZBSUsa7M57Ex\nJ7gsZnfdpe2BWmevruli9Tz7/5U9ifr7eoY9ChZjfBTYsJ0FC8SNsrP5O7+Sg/0rO2PYK97ZPkTY\nxhkhHKfoh8fG5FZrURKAzh57WZVvxf5Y7yYnyrr9OrK1KD4n0zemX0z3GYeRP8v8Iep3xlv1s2Zs\n7gz7qD/pSWZf/MVmH/rQ8f6ed48z871RfIy48vN6bKw901eGzfOA69i6XNQPXjCnVSlptPGRojBZ\nUaKFshi2qM6wjHqEldVHX7YW9dH4K67YPzoeXWpBXMzYu0lfx2DQuCOe/NjM+BUHj1h8wfaPfzzX\npwpLVMexg4cIS8Sjx4K4KifJeOrwhtgiXFmgQqwRduyP9c6eqnaGshT5ahAf5dnP1mVHPCn6yfqr\nB61jvjU/Jdbd8zXvS1X3MNPPCBvywniatbNIR9h4tjYzs6//eo7F92d22+UN1/aMZ5jdfHPeP/MZ\nCm++jdmZYpd+bWpciLAdohw0yVuW5ZZlWd69LMt7l2X50aDPz9zX/o5lWb5KGbssyw8vy/KuZVn+\nYFmW/zPHoCVW439sZ0qJfbOEIApG2N9ji9qVwMSwdbB2eMuOLjN8vmTBBMcqBsOwZjx1nSYbv8U9\neRG2bp1hHd+Ps1fIk+cGeVL0pXJ6WeDzMiP9ivYxWnfl0Jm+ZQlBhg25UXmr7DoKfApvp06ZPeUp\n2rqj9myPGe/s/8qn4PwKtmotzG4V35v52orH0T/bM1b3/dUznl4Wk43Y2VoU7KP9Wc8ye9rTNP+G\nWFXdr2KUEgPX8ObnQ6wZj6x/pm8Vb4cqB7tcuyzLaTN7sZk9zcw+YmZvXZbltbvd7l2uz9PN7Et3\nu91jlmX5OjP7OTO7ORu7LMs3mdmtZvblu93u7mVZvjjGsP/MHA+2K0Ezc+A4h58/M4jRf+aSlcdS\nOT2PlSl95qCjeuTsI5wV1vE/rk3hKcPG6ijL1zs6oQY2P0/m/CPsEW8ei5/Py373u/f3uVQ8+rn9\nXJkDVgJZtt+4Dhzr5x5tarDAeuaQMzv1GKLgEq17htfMFpAnxhsbm/HIePHzd/WtCrq+fwcb9sH+\nkd12zuQp+uPnjrCw8RFWRd+Y7M6eqXbJ2kefju9VeMvqeDtKFhe6vPl+ft0Rdpxfsa3IFiLdP0Q5\n5Jm8J5vZ+3a73Qd3u93dZvYKM3sW9LnVzF5qZrbb7d5sZg9YluXhxdj/zcx+6r7vbbfbfSwD0VXK\n0e77RsGmcno4PpMdYfOX21RjzGRnSt95Wz32j5yel1UFMhyPa/HfRUGWYa1kMR4Vhz/jBM2OPq2m\nOH/EynjJsHrZd96p61/mxConGfEUOWjkLcLm2yLdV4KHsscZttl7QBmvWcJQ+aeMN0U2ysK1K3ba\nCbqzTyVX/o3tKWKbvSevmpth8Wvu7DHDhn0Z59EeRfXKLj3W2RdcZzwib6weYWNrjbAoe+a5QawZ\nb+O7SH/V9wmy9i3LIZO8G8zsw65+233fKX2uT8Y+xsy+cVmW31mW5Q3LsnxNBGBGSZVkozJuJRj5\n8ZXjUY2xcuBVfzV4YLvi9KogXBl7J8gy3iqesD3D6uue44in0Y57HwWPDGtVx/Gepyc+0exv/a2j\nGCJHkzk53zfTRz9/NF+EJXKC2dzd4IFYfd2P/cM/3D8ws8ZOFZ4Qa+RTlGQ4GuvXydoUu42wYhvu\nYRbYIjtTAz6zRZyv48+yPUNciMXzwrBHvFU+hI3NeIjwennVHmf6xeo4n+JrFf+XtVe2EMn2dc9r\nhp3peoQ1i6d+/KHLIZ+uVZew1F2OlMvM7IG73e7mZVm+1sz+HzN7VAokcTTooEd/P1YNDn5stPGd\nl4XifH4tmROMHDbrj1gj4414RJ4ix9ENulE94q267FgFuqg/trP+agJ65ZX7z+hIV+HFY6+Cy6iP\ntgc8QAsmSqCrgoPHEs3XSdzVuRFLZZc4H+NttzP71//6KE/Rq5CqYBLJxv4VdpSt2CWus/Ih0Z5G\nWLt7iP2jPal8AvN3bK0Zb7iOTLeZLuN4v0bG68yeRnNjf8YD4ozWxtoRy+zTtR4b4421Z+MRd9en\nMCzIi8pb1J/pl4Jty3LIJO8jZnaTq99k+zNyWZ8b7+tzeTL2NjN7lZnZbrd767Is55ZlefBut/tL\nBPDCF56xj3zE7BWvMDt79qlm9lTbjzvar+PEWP+O01QdjR/fMdYI+/j/nnvMLrssDzZjju6RL5Pt\nx774xWa33GL2nOdoBhMF3RnelEDH+lcOOpId8Xj/+9fBwvOSJSNRf19X39WE7d1Ah22MN8TauT8V\n9S1bN2KJ1pYFXcTm3wlZBb6ZPYuSm/F/ZAvMp1Q8RT5FafffIdYqyHb3NOMp8xmKvmX+LVonYsG+\narJS+Te2p5E+oeyIx87aovYMm8d+773Hb0nxYzNfi9gZj2i3Xvab32z2kY/EWNUEFOsVb6x/xtvQ\nv7/8yzfYmTNvMDOzM2fsIOWQl2vfZmaPWZblkcuyXGFmf9fMXgt9Xmtm32NmtizLzWb2yd1u99Fi\n7GvM7JvvG/O/mNkVLMEzMztz5ozdeOMZ+zt/54xdffVTbT8mdtCdjVSCC3M83fsbFKfmsVbGi0me\nb+/eNN11HGZmv/ZrOs9+fGUwDKufj2FRAl3loBWeqiPdLDgg9sqxeGwKlohHdLCMJ8ZrFHQRK8Om\n6lu17gg7W1sUTNjDMv7/6p4pz4uyZ4zHZTF7+cvNXvlKPl/FY7QnTBbim9EBxOL7Z1h9W7bHmS+O\n1pHtaaZvkU/A+X0d+yNPlT5Wup/pV2VnEW/KHncSd7P9LyFdfnnMI+Ml2jPE6teOnC7L/lcyfL0T\nTzOsFW+qLSCWhzzkqXbmzBk7deqMveAFZ+wQ5WBn8na73T3LsjzPzH7dzE6b2S/c93Tsc+9rf8lu\nt/vVZVmevizL+8zsdjP7vmzsfVP/ezP798uyvNPM7rL7kkRWMqfo+1ROLFMEbMf5o4TBt884HoZV\nMd577+Vn8ro8oQExY0TZj33s/ixehj3jMXMsCjbfV0kQsrVEONUgzP7PHAtiY+MRW+bkGLaKh4zH\njBePha0Vx1dYo+Dg5/bz+JLZCmL3Y/GnnbqvUGE8KkH5ec8ze9SjzF7/ek12tcfRHmaBDHnN1lq9\neiay40hWJLvSTzZe5S3yt1mb4r/YWjo+xP9f8ZDx5mVHPiiKC4xHrN911z7JU/062jViwbGRvpmZ\nPfrRx3lD/6bELEWfovki3jIekZcty0F/8WK3273OzF4H370E6s9Tx973/d1m9t09HLFS+vaOcbJ2\n1p/VK0fD2iuDyYzb1++5x+z0ad5fff9RxlvGw5OetDfC8b62yFFlPEa8KXuaOQ4mK2rH77pHuplj\nwbqCtXKiqE+K/kUON0pW1LVk2JTLaZGDjpIXVlcCG+7Zs59t9rKXcd78WqpApbT7tZ0+HfdnPEb1\nMb4jW/WHvq4+Ie3bM1mZ7Ajrspi99KX7VwZFQTfjLfJnii9W7NTPx3jDuXx71w4RC5OdrUXdU98e\nxZiIF4bNbH9gNWIFymacL4vZjTeaPeEJHCsbP4st6o864OVUe3yoclH/4oWZZkCVE1PbmcFEisGw\nZO2qUkaOBOtV0I14muEtCibYPxpfYYnaO9gyZ5QZdyVbwabuUVSPcEc8jVK1M15w7kh2tJYKW1VH\nHrJA52Ux7JXDH/8/9alm113Hg67HE/EW2SVrZ0E2s1MWyDJ/p+h61Fb5Q5TFsHZePWO27z/Ooiq6\n7+W9+c1HeVTvyRtlJBiV/0LZiv9Dbqo9VXU74nGtHWe8Kbej+HWo8ireK91HH4PtHb/PsKm8Klj8\nXFuXE5fk3Xab2Qc/yNsjJ1Y53DFPZICZo6mUFN+TpzroSCl9e8dgkBeFN5w7wo5ri8b7wgwI6yo2\nz5PHUu0p42nWCXb3KAsmbK0MS8Rj5vwzJziTrETYFH2MeEGsGfZobTP3zq7ZQ4XnzBYyrGpi1NEn\n78+YLFZnWCsfkt1DjHhwfo+j2lOG7cd+zOy1r615QdmnTu1xe9kz/i2y00q3WX9sUxItxlPkQzL/\nxtbJ9C/iJfIZmWzWn8mP1pzZZVX3shS7RDxbl4s+yTM7bjDDaZgdJ7vjkCMlZPWOMWfBIzMI/x3K\nRmzMUXUul2G7GiwyY654rYw5c4oVT0w24w37M2xq8pI5PfwOeczW5uszl5KZLMUWfN2vJdrj7tO1\nSpD19Qwrw4Z1BQvy5tetYGX9PReRbXT1LbJLP85jyfZ41i4r/WP6de+9Ry/9Kf4t0ufOFZ1l2d8L\nyWRVvN3//maf+YymjxEv0Z5G+qEmSsxnZXakYItiWORDMl1H+Vn8VOqzZ7VZe+T/WDvOhbIz37t1\nOeg9eV8IBcl84hPNrrnmaB9FyXzfNcGke7ZCSUYQW+QMsM7mY7yYmZ09GxuU6mgi7FXw6RozOkWV\nJ7aWyLiZ8TPesnrEA3JS7Vmknyi7w2O17khWxiMbH2GreMP2KOCr2DIHnemXwlsVRCPsy7I/K8TW\nEvHU8SEVLxGPbG0RliwhqHjf7Y4neQx7xONTnmL2O7+T+5DMTr/9280e/vBcNuNtLY9VnPD9KjtT\nfQpbC5Nd6ReLCx5rhoXxgmudPTBkeBgWL0v1fxHWri0cqpy4M3mVImQOuDJ2rGfjGTaGVU0IKieY\nrQ1lMZ7+4i/2T/hFgY1hyYKb78/aGK9e9ngXU8Wjn08NutlaIqyzgS0LBszRVPqF2DuvxWE8KYGJ\n8ezXkgWXSveRR9832lPGg9nx+7syXmcOxlgwYPXIjrG/30OPtfN0LbPTyodUvGY8KfoW8ch0ubon\nL7LzH/kRs1tvjbEyLFWyUiUvGW9Y95e5/diqnumT4ksVrJ4D5r9m78ljWDz2l798/9Lxqr+q+xWv\nVYyKsDOe/Fjfv8KS9d+qXPRJnuoUMwMa/ytOEuuoGF0HXSVGVfBQ1+bbGBaz8y+ZZO1R4GIOXMU+\n/leDSYbNz4Xf4dorLDhevQSK7dnczElWwQOx+7kiLFVgQ1mVE6zWglgZL37+KtApwWTUo0t/kb5G\nwaHSP7bOt7zF7L3vzfeM1TMdiLBlgXAmAYgCXcWLl5fxhrbAZEW+GHH7dqx33h5Q2WmVACi2MuvP\n/HjFzys8VbajYGG8RbIYr295y9E607FMNsOi+rdTp/b+AffQH2QwHjEO+D6d252Y/m9VLvokz6zn\niLKEANtHvUoQmKMa7ZmSYr1KPrJggXXmiKr73EaAxP6RMSoJA3MGOP6aa8xuv92OlNnXlPj/K16y\nPcbxmWPJjnQzbBlvKD/ieeaevChYVNjYWtboWxZcFCxYZ0le5rDXBl3f9zd+w+xXfkXnNUtuMn1D\n3hBblHxEtsDW5rHMnMnLfG8mW/W1Ub17T171JKbngWH17TN7OMNbxEHHZ+Datrx3toqfbG0Rlo6v\n9f2ZnV51ldmddx6VVfkIZqeqXUa8HqJc9EleRzGUQOXbK4fMxnePdP2lmtE/U7rxvxosfL1KAB7+\n8Bhrx0FHjiVyopdfvn+Luho8VGyzvEXjmexK/yqeMqzYFulvpvtZne1HJD/DktlGtKcdB428jTas\nR0nejC1kvLK5f+iHzP7Fv+A8RXvO2pFzhiULujj3KFlgw7GRfkV1LyPCquh2ZqfIezY+4mn2ASmU\nHfm7aA8rH6H6DMWXMqyIZw1vDBvOFenjLbcclRPxqNphxBtb54gxla1U/gxlZfp1oc7knYgHLzpK\nmjkW1u7nzYKPEtiq9iqIYp+qnRmQL1724x+///vQh473jxwJ8pgFgMhhM2wdp1hhQyzMaWYJA/JU\n8cjq1SWBUe8Ej2Uxe81rzB760Dl9y/QjChYzgc8XvNyh6ovigJHnjNeIF4+tOjvL5s4CXcWrn697\nGSjyb16Wn0vF2vWtXn7EW+WfFKwR9i3vZYziQNbusXXOeGZ7zHxr5Utx/ijmRbLVZKar69/7vWZf\n9EVm73tf3p/xjLIVbLj2zL9hXdUvVd9wbVuWi/5MnpnusLuOZvRVAhszIC/Lz8+cYiR7tEX1Skmx\nf+Sgr7hCM6gIT9bGnGIV2JQzK1Ugwzo67Kx+7tz5s0JbPfGlYs148tyamf3bf8v3KOMxk6UEukj3\nfTvjKdJ9bI8CW8bDblffxO/Hz56NHf9XPFVBWOE944lhi/wEk5XtGfKq6nbFY8ZTxWPU39c7dort\nmS14XpR2nNvPz3jJ2iMeIp4qrIrsrc6AVnbM+nd97cxDloiNHYBHthPxhlgZduy/Vbnok7xq481q\nY/Z1P69ajxxNN7Dh3FVCgLKxnhk3Yst4jBxJB2uEPcKm8tjdwzGWOWhfHwkDrjsy9g6PyBvWz57l\nvw2J68Z1VU4P9a3Sp4ynK6/c/4ZllfyoDpqtTQ2qme2g/vrxnWCiJE5sHWwsC8Js3SqPmX5kexy1\ne+zKfZVdHxLxlLVXvFU+I7IF/7+yx5ndZnFAwRbxyhKlikfEhjz6PmseWIliDO5px+coe8bqOBdy\nw/Ysui8zqnf29NKDFxuWWUdTBbJOHQ1qlM4TOR1Hg7JxXZUT9P0zbL5kBsTavWxfZ1i3ugyEPGI9\ncthYH69wUYy3c7NwhMVzc8cdZve7X64Dvih7hjxG+oSyfN3Lu+qqPc4qWYl4QGyMJxXL6N9ZW2fP\nEKuqT4wLJfCxPYywef2sgqjHrvBotu7BC+bfxveR3fr2KiHwZYa36OALeVD3DNda2WWGtZLtecLx\nlY/JsFW2wGzDY1HiY6QTjIfuQUZHn5gtZHFBiY8Rj9i+Zbnok7yZIDu+jxw0tvu6n1c1CP8j5FnQ\n9fOMNub8I6XE+Srjngl0EW5WzxwPw+pLhbV68AJ58nWlv9+3jhNk2FWHrfI2/v+2bzN7/vN7e1rp\neuaYfLt/iW/kRDsPMyA2LzsLHtie2fUaW4j2oPIRuA6PPdK/zhkpNn8kG3mJeMS1RDz5+RnWaO2+\nrdojhjVaW5WQKj6E8RBhjXhV9aviFW2B2YbH5i87RvqFYyte/FyMm8ivZ76X8ZbxlGGN4gbOPfyV\nl41rq2J/FaOqPT9UuegfvDCbM5jRN9r48Z2vj/+r4OKLf6lv19GMwpTW948c0TiLyNbBeKuCcHWa\nPuM14lRx0BFWxhPyyHjNAt2o+7XOYmP9GW41WUGsD3kI/wm/qG52VCcUffN11h4FPsZL52wtS4Sy\nwFVhz2y62jNcS6b7VfsrX2n2jnccfZKdBTp8EbgvGa9R0EUs2R7jWlTZ2D/TfbanSnvka2fsUrE7\n5FFpr3hjPCl2628fQZ58nMl8hsKT6u8qv85kV7x2r5KocWHMpfgYth7GE9tjLzOzjS3LRZ/kKYqQ\nnfVhDnqMw3oUPColjRx25mg8VsQTBV2s73b7H9JmLAKr0AAAIABJREFUDxB0HXQlG7Ejd0rwiWQr\nTpDNFQULhh37+5v4u0eXnctpin4hNl+vHEnkFHGu0XcmecnWVjnFiCdsz4JHhZ3Vu4Guo1/ZHr7j\nHby/l7/m3jL/vecl8xmR/1N128+55p68aE8Ru587k636lMrOIqzY3vEZWdKH9cg2fN9x5UHVR0Wf\n/PzRng7ZfmzlIyJeo3X7eudMsuJrd7s8OY54y3iJ2g9VTuTl2szRKA5aVcQsGI2CZ/IiRYkccCW3\nCnSf+9z+ZcMdhxzVVQNCrIrT7CSgERdKMImwV/0j48V65CT9fH7dVTLC1sJ4H/VOUFacYFXPkpUO\ntmidmV16LGNMhg05zQLdVslK5Bcyu589+PK84boyn8F4jHhYYwuVLCWRYnvKZFW6j7J9HXlS4gTT\nfVXXkVfFNpBHdqYPsUWyZy9zj7k/8xmz+9+f72HFG65nzSV3nMuvMdozZtesf8Qr1hV927pc9Eme\nme6wFQeN82UKOepeMaozeWrQxXrlWCIl9UeXHYesOEXPW4a1WsupU/VReeeSaRV0GW++P86hGDfW\nI6xZEI6CBbb7+pozK53kJOJFTVY6WFVemH6x/jPBhOm+ol++sP4vepHZd30Xny/DomBV1p21j//9\nWSElOcE6w575BMWHMOxKYjTqw8dkdjm+R04zrFF99koEw462wfYMHxRDbLi2zA7X6Juyx8irxzZz\nuTbCrvjaDEtnT3FPWP9DlYs+yXv9683+5E9i48Z65aC7gS9S4lHWnMmrAryyNobbY/H1TmIV8aI6\nQVxr5qCxngUfxgXjVU0YKtkZFmzPeBp9u/q3RULAeKo4HXNXPHb2tLIzL9tjrWwnwp4Fj4w3hk1N\nVu53v/1fFfj8mvAAKEoIqj2MdB95jA4MVTtFbB4PykJs2K74coYt2lPWv9qz3W7/u8SVr44SgoyX\nDvbOnlWJl59b2UOmA4pf9+Mrntm6FZ4Y9myPItk4ntmO4udZnfG6Vbnokzwzsxe/+Pz/mWLMOGg/\nD46tjFups+QikpclI1X/ykErBoU8Zrz49iiQZcbdOYLDtbBAFgVSxTF1zvIoe5zJiniJeFaCSeag\nce61TpDVI16Uy45ZoMpsJ6tnvKjYqnV3A1/GU1e/sj1jsnF8dulv9swxYmNYh+xKBxRf69dZYa/8\n1S/+4v5EAnIYxRFFdueePeZ7oz1T/FvndoCM18gXZv4u838Vb9heYfdY/NWiTHYUT5kshiXb00OV\nE5HkmenGrSidn2/GafpSbXzkxCKsTAm3cIrMsSiJlO/bDTZ+bffe2zfuyAkqjiRaC8O55j4RxUF7\nrFlyw+qzBxXR3BEWxOpfocLmY3ukJgxKoMr2OOLR9+8e8GS6zHQd+zLbYPqQ8ZK1V/6rCmS+7hMG\nhaeO7o/voz278879OxgrfzfLU9Se+Sv2VKuifyoW5NXLirCibIY7WluFTbWNzF8p/outpXt5tpO4\nI69MvyIeI14ibMgb9t+ynIgk77u+S1PSykGPtijY4FjfP1JS9RRupZRRoOkEtsxAzHoJAvKayc54\n89+pvCnBpEqksjrDqzpoJZig7E7w8POucYrKupV2NZGqggfWo+RkzOWxYP8q2KAsxTYiH4CyGFZV\n/5jsao8jHjxPFVbkNEryMv+l8FoF+N1u/yPyV1yR86r6M8SSJceZv/rH/9jsxhvjOILYzPpn/9W1\nZLL9XJGdKrK7PiTi8dw5sz/6o9x/IdfVnnV4jWJ7x25xPao/U7BuVS76JO9v/+29AaoGowT4UY/6\nK4FulCyQMWyZUiIeP1/m0D3WDMvaQIc8Zgbj5fi+DEuFtcKmYMkcdoVFPdsRYfFYs0DosTHZKpZs\n3RFvrN3fkxcFhxknmOlytsdRf9a+5gwoyq9soRN0GU+q/kV2VfkrXJua5OEes7pyJg+xeSyMR3UP\nFZ+CXDEsl11m9rCH1f4PeZ3dU9a/OpPHfEymj8qeVVjY3B7fy15m9pGPxImUrzN/w/awe5YRsSEP\nGY+ZnVb6xfTxUOXEvSfPrFbKyJjH2K7j8fXZ+2kiJ+jbooAfOXTkolJC9T4RlcdoLT//82ZXXx0n\nK4hbMaDqTF5lvBFWhZfumRY/90wQXoNNPas4g9XLxXWr+hbpchZMqv5Zu1If45ndRXvUSVa6PG3B\nGwYd3+af1OzcE4X1DBvjMeI54zHiDedSbKFKjBhWv07fvvZMXrS2yr9Fa2F2zeod/1b5jE9/+uha\nM92PeJu9dcHM7OMf12M7483LmdGvjOcty4lL8jKDqZxe1D7qo28VTCInWClKpHReViQvcpJ+LWsS\nKZzP90PjrdbyiU/s/y6/fN5hV0EYsfk68lbxvvY0fXaQkfEY6VeEbS0WJXmJsHreZ3jz4zt7xOaL\n1sbm9u0qb8gDzsc4rXjuBLYoeGS6znhj2KK1RFjW3I6iJieZT1H9V9Ze8ZbpemS3a5IVtrY1CWkW\nB2btNJM15J07x/tXPM/uqZ/r3nuPjlN48v09zx3ZGa+HKhf95dquUo66bxvzZE5x9PFyse+Mo6kC\nm8eWOUW2lqieYVENTEkAIuzf8R1mz3gGX3fGm+IE0dFke8qMO9sThZcqmOB8WTLC1tJx2Bl2pm8K\nD1myMpx6JTvjjel2hXW0Md4iHtfcW4b9K1nZnjLZW9+PmgXlisc190TN+IwKK/OPCrasPdsTVZ/Y\nWiLZyFPFG/NvXhbiRSzY3o1ZnQMeL+fGG4+ureLZ12d5G/WHPCSfX/XF2K741gzrIcqJS/IypY0c\nRWbcfp7RnhkMKqV6qaVjnJUTVLBVga5j3IyXDPtXfqXZYx/b5zFr7yYAGXYW6BTZfnykjxkWJXj4\nOSLZEdbMFiIeFCxRYJvVv8jBehyKvjFsbN0qtmrdHTv245lsfLdmxqvqvyJeMx63Tk7UoJrpZ8Zb\nZZeejypZqbAhZxVvTHaELUoYIh8Q8er7qrqvYs1028zsuc81e9SjzrdFthLx1tV9ttYIJ/JW+YwI\nW0ffDlVObJI3E0xQSUffLNCp97H5+SLjx7qSAFROEOeecdCsf+YEGXb8rnI8GY+VI1ITgAxLR3a2\nhyyYVImU6rC7ul85xSxBuOMOs9///Ti4VPpS1btB17czLJXtbBlMMp+BfSNb6QRZJQFlWFBepPtq\nItXhje0pw5L5kGiPM2wV9syfRbKj/tWeVnao+ubIt2Y8sbUpPFVYULaf99Sp/c+dKbai6tvsWe2M\nh8hnsPG4buTR16urBVuVE5fkmeUGhIqQBbbMCTLZihOsHHampLgWNBDEPnuEVtUrniJjjtq7PGVO\nE7FFPEUGqxrrrCPKHEvVzvrMno3FOs7teTMz++f/3OyP/zjmsRs8oj2M7Kyywyyw+TITTPw6sZ7J\nznS9k6youu95YT4haq+SwBlesv74v+JDFGzM7/v1R+2KnUV7Fu352rOMkU5EdsqwZz5mC58xSnaA\nrfDG6hUPFW+MB98vs0vGa8UT8sqwHqqciCSvm0hlwSByLL4+/q+UzsuKsGX9qwSA9V+TOG1xJg/x\nZgbl17ImWFTYzMxe9SqzN77xaDtz0DgXw1LtseJ4onrH8VR73MGWzb0sZs9//v7nuBB3FNjMtMvc\nvnT0x8+Ldf+i5szOkRfVTpEbNXAxfVN0X0lemKzRNwq6EeesrmCLeIuCLMpTsDLskey1Bzgea+R7\nGdaO/iBPCs8ZFuSJ8do5MVFhYbYQ+VZmhwz7LDZW7yagHd6Qh9/6LbO3vvVoe+bvtionIsnrGlR0\nn0jkJLHeUcrZJLBygh4L9lccDZOtroU57Cx4ZIHOY/Fzzp4RRWx+7te9ju85rmWrSwaMZ4WnLR3P\n7AEP1h/2MLObb66D8Iw+sf6Zbvt2vw7kJbLriAfPmxpMGG9+vsyOsU3lKbv9JKpHPFTjO3sW8YQ8\n+v8zXUfsWO+eLeueYe/43ky/ujxltsN0psLi5zVbd2Iia2eyK2wKbx5/1f6CF5i95CXH25GHjq/N\nfIbH8trXHucRuT9EOXFJnlkvWek6vU6wULBkSlwZhB83+neUMgtsUR1lRbxUga8y7q3PMpqd/+k0\nhgudpsqTWc8J+nmiYOLbsT/Wu7xFa1Ec9Dgzh7aC+qnKVpKVji0oDtvLmtU3xluENcKeJSuV/qnJ\nCpPtv4v6V9h8UZMT5L3aM8TC1rK17ndswc+T+beMp4g37O95YjxEPPqxiC3Tt7XxNLIN1p7xptqG\nx+oLs40q6YvqjAfco0y2X+fW5cQleZHBREo52n3f0Q/r7LuOg86wYHtkAJnxek4yp8awmPXOGFS8\neLnYljnVqK4mDBE2vz7FoUc8dfcc62owYf3Z+LW3C2S24NeQYRvtnUS8wlbpC2JlwQTHszrjrcNr\ntYez+qZiiYKR2f6y9V131TxFwazawyqQVe1VIrXWZ/j6+IH6Svcr3+vbtrYFxK7aaeSLIx47Z7Gr\ntTBsiCXChrxhW2UbDLsvuHam55md+vkVW0DZyNOhyolL8sx6Stpx0KP/hz4UG/NMUhdhZdje/va9\n484MRll3J3hg/8jRZFiyQFfxVDkePz5zgg97WO3Q12KpnKCqb1F/L1dxPJ09VoMqtiPWWZ4qfUH9\nynjpOOyqznitgoOCTdH9U6fOn4FWsHkc111n9rnP8aQOdR/tVsFWtXd8SKRPWQI6g81jiXjDumKX\nnSRP8Wf/83+afexjvD1K6vy6Ix4jXnz9nnvMbr897l/5kKqO2H19zRUdPx+2d/Qt04mIBzOzRzwi\n5sXPt3U5cUlepz7joEe57bb9Z2Uws/e0RNg++EGzF73ofN/MgVdnnLa4JJo5Paxna5s5YxC1s0D2\nZV9m9hM/cbx91D3WtWekOoHNj89487I6yYq652xPqqQPsW91yV3hxfPIeFnjsKt6hhWxVNgyfYnq\nETbco/EAiuet0v2ormBhvGb9K/8V8cr2v6v7uHa2R2972/6nsTJsOD6yhYonXMuLXmT2K79yHHum\n+5mvHfMo+vQLv2D2B38Q8zpzEKv6szW2YGb2mMeYPfjBvF3Bxtoz2b7+nd+5v29ZxbpVORE/a4ZH\nuqrjiZxepISjbnb+bNoaY/bzMWz+e9/3s5+NHc/onzm1ipeojoHSy4oCWdaf1btYVN4e+lCzK6/U\nHQ/ypshW+rNkI+Ox4k3RPz9HliB47NGeYt9OstLhVdkj5EgJdAwbwzK7pxFP2I4+p2OHVXLMZHnc\nSrLS4UHlrcLq66Mvwxrp/uxlyIi3t799//esZ/E9w/6+3jmryNqxKGfyFB1gsjLZHVtR9C2rR9g8\nliqGPe1pZg960L7uL9F3sEXtSjwdshm2Q5UTdybPTA/KzDj9eKx/4ANm/+k/7b8biWX3SKNztBkF\n2ZGs4Fqj/hG2LvZKVuRoKmw4d2Xc1Z53E6WoXZHN9rAKJllQZU6PrUXF0tlzhZcqKaz0J8KOc7E6\nYlMTLaz7uRnWile27iyxU4IL8hTtUdUe2RnjNeJty0Qqq7Pko7IFxJrJ6pyBwvl9ifxbtufKZcVI\nv05B1Pbtle4zHv08yh5iUX1z5BOyeoZtps50IMPmZSsxbNbXIs9blhNxJk/Z6NOnj9fRAZvlhnvt\ntefvVRgy1yZ1kYOPlPJBDzL7yZ8835b1nznL2HGK43s0mIErCzaVw15zJk9xelWwUWXjXJFxIxbV\n0WT6qDjsztlZJegyXhmnax10todMNo6pEoDsPjdlj6tkJAtkyOvaQFYF2U996vwPtkdBl61FxRLp\n+rLsfymF2VaEtbINX/dY8N5FhiXTCYYN+0YJZ8RrJSuqX3fd/jKxH58djGV76LGxuVj91lvNPvpR\nvb+CjdUZtspu19wugNjwuypurD3AOVQ5cWfy0PFkSpkpoZ9r1P/G3zC75Zb9/zffrMnK2s16Srnb\nmT3ucXsngE6S9V97ljFbS5Y4RQ46MuaKh4o3X8+ccOSQR1F5WxuEVV6U9jVYGW+IrcLaSQjUS3/V\nHiLW0aYkCLO8RfqZyfLY/uzP+FoiHlSsbK7Rb9yT98pXmr3whXzPvJwIe+YzKqy/9EtmP//zfLya\nEPi5vaxOAqDyiOUHfkDDVtlCx7+dOmX2zd+8v0yM7YrssZaZPR31hzzkKC8KdoaNYVnjexnWjOco\nRo3/qz1VsVU8oewty4lI8jLHM+qqg/bzRk7wmmvOnxnsJivM8bDxzGlHRxpV/0y2ihXnxrVWWLzc\nymHj3ArWKDnGOjoaj91jqYw3w5phZ04wwhbVK9mzPEbBA+fObMN/N5P0MeyZvnkeMcjiXCpvXWwK\nb3/xF/sb+T12dU9nz8Z6Hv78z3Xdj3xIhY21Y+kkSjgf2uW5c+cvbXb9GbNTnP/WW82e/vQY2xjH\n2tee9bnhBrMv//Lja2G6Hu1pxrOXNXvQinX8369b8b1+XUwWtiOvWM/iQqVvyFuFrdInZgtblROR\n5M2ezYg2MqqzQNdJ4qL+0XgWVDuJlnr2a4bHKFBlOA/laMy4E/R9s2CCWKszBkqgY2vD4BDxEgWT\nbO7ZeqbbkVP068SEYo0TzAK8X7sSTBDLuFzJZKMsRT/VPfP1T3zieH8mezZZYbKxr5eX7XHEY3eP\nfWG20E1WlD0ZpWOnWEesij9TeUNsDGu2FsVOo3olq5Jt1juTp/jeNfq25gAo2tNIP7M9PHVq/+oZ\n5C2rb1VO3D15ZrrDVpyeH8cUpXOZx0w/xYuyRt/MCeJatrzsyHhidT9WdYKdPVN49nLvd7/9fZTX\nXJPvMWJVHfRov+wyDWvmaNRg0nGCagLB9ozxgli7gc0XpZ7ZUoYVsXzyk7Gs0R/rHVtAHGi3ZvwX\nV2Z0XeU1ws18hu+/Nlnx5au/2uzRj+b9q4DP/N2s/1rjUyJ/Nv5n9UNhY3tW1bOYFfGK97BXduix\nIS/ZHrP+3T3q8qbsKXLIfKmvX331/p2UGdZDlRN5Jq8KFtkpXP/d+L/jBCuly5IZjzUzAKa0bC2Z\nI2G8KAlEZTBZPcO2JgFFY/Z7dtll54+wsj327Z0EtGrHtUc8YTsbi7grrFV/Nj/KQqy///vn3x3m\n5XXtrqqbHa+//OVmr371cR4jrLieBzxgHku0x9We+fo3fmPcPmOH2J75jJ/8yZg31n/GFhjWRzxi\nfy9zB6uCZWbPugfkmd1iO+vv18fqHayRvxr1zBaQ5y3PMuL4Kl5GWFUe1mCN9hCxIXbkndVHnKmw\nHqKcyCRv7eXa0a9yPKP/jOxRrxLQSukyx9ORZdY7Y1AlcX5/FGyzZxURWxQ8KuyRMa/RL6xH2BhP\nkePxTysqwaSDVU1W3vnO4zx63AqWqH823mz/I+CMJ6yv2bMKWyV71P3YG280u+mm87J8yYJHZYeR\nbfi2Zz7T7AlPOKpPGVY16FbtM/qWJU5bXpnIeMPxyJvHzuqVb2WyVLvN9qzC6mWrvHR4jXxGhG3G\nbiuss3sYYfVrWXtW8VDlxCV5ZrrjyZRyfDfmG3VsnzmT50uUvPj1KAYzxmaOpmvMmcEg1iiRQtnI\nO66b1VUDY05tPGFYORrEphpzhR3rmX5lPI36+KUVlZctHDS2+8uOzCnOYEEeluX4a058YbrvsauX\nmCpeImxM1yMsXl6FbZY3X48OYlHXGdbunma2kLVnPoT5s2ydKpZ77+09qBElCBX2mT327eMlvhHv\nlY/w41j7lvoX8TTakCfclywurLUFXHu1Z5X/2zrWb1VOXJK3hVL6/30bSxjWZvdrzqyMPpFxb305\ng2HLnJ7HUhnM2qPy7GzZcJjMuBnPlazPfnZ/j5/afybIsj5mZpdfztftZWV77AOdb2d4Igfsky/V\nFhiWDDu7x8XM7O///dxhz8juYmOy/Z54LMhpNJcfv9XZDPRXQxbuMauzPWU8ZUmd4kOQl60TpwxL\nhT3ixfPYwYpzqzrgeY/sFPWtap+RHfEWHfwjzoy3SJaaxLH+TN86MYqtZY1PuZTkTZaKXKyjUlZO\ncHznx47/u47FbF2yEhlz5sD9HDPBpHI0kcPG73Atd9xx/onHGQed7bkSyBDruXP7oKgY6913n0+2\nFB47l6jYnnqsI7nMeFB5Q57RCaL88f9TnsKxrdkzxH755Xue/fhv/dbz7w5Tgixi8aVKENSz4Ey2\nn5/t8SEPvlB2doAT+Rhfn70S4ftXPiTikdnCLC/Ry5Ij7Ii10reKt7V2uiY57mCr7JhhRx/CsPm+\nmf51sOGeMewve5nZG9+Y88SwsbV0D7aw/6HKiUvyOkrLDMD3M8uVdrR3HHTWH+vZkUUWTDqOpsLm\n+cgSAsYL4vbf/cmf2JGi8Kb0Z3uaJS/RWvy6uwcRmb757xWHjLyanX9RaTc4ZHWU7Tny7ddfv7+/\nTAkeXSeY6aOvK7q/JiHo6IASHLD/lmf7vTycD/Unwhr197jVPeskM5FdRray9tLd2jhRYUUeuzx1\nfEiWOGX+bo2uVzxW+qbqX4Slu+fjisVrXnO8XeFti1jvC9a3Khd9kmc279CjjVSd5FYOm/VHZz2w\nRfXKKa7hCcczJ5cZCK5lWY5eMuximXGCyFuGffayjtK/4qWrb1skViirqiPHqqxOslLV2R56Hrv6\nVN2vVSUAXjbzKRG20Z7pm7LHo/3cuf2LlyPd9vIUO+6cfR3vCsv2WLmKgvVqDzJesv4zcaLCymwD\n62uxVn5/9GH9sU3Rt9kDRaZPlT5ueTCG3FSyGXZfXxvrD1Uu+iQPyTbTM25lo6v2tUF3vMMNsTID\nRafn28f/mVPMlNKsF0yqIOvHMexrk7zKCQ5s4ybmLHFC3jtnI/zYqj+T5ftH2JBHlTfEVjnoSFbk\noDtnddZgU3hE/eqcQV+DlcnOkr4x1nPN7pP07YqP8VjvuIPzNP6PEgC2xx0sV15pdvZszeu4LaKT\nEGy5Z7hPVb3CpthGJ7EfPqvSfT8X1j2v587tdeKqqzT/lsVTladR9+OjPWV9x3d48NXFhv9XMQzx\nII+Zv1PixCHKiUjy1iQEfp7IgHx7FUw6T3CZ5fd3KU5v9qjI91WxKk7P982M3Se2iIVhUx0R29cu\nj7PJR1TPgipiZ5whr53ANZMco3ycm+mX78uwbI29E2QjbF198/0xWWF26MeqdtnVJ1yb2f4F4KOv\nX1tlt9UeV3t2xRVmd911lLfsakAlW9lTlaeuP2RYPacVr52EcsyFvGG7qvssRp07dz7ObO3fogPF\nGaxd/1X5GDOzpz0txjL6ITbcE5wb26N7PhHLIcqlJE9Qyiypu+eeOrnpOJLOZSD/fRZMIoM61OUM\nNXiMcYzXU6fMHvawWNYWyUpkzBmvHuuM7MyBo1Pz7ZXTi/Z07dmxSBbi9k9qzsra6sxLpW+V/vi1\ndbCx/oqu+7Wt3TOGxY//4i/uHZz5eZj+qYlQhL3iLdN9nH8tTwrvFdaIx5nkOKtnvnfIrg4yOlhU\nnqp9UHhai7VT/5ZvMfvu79b0je1hxIuyZ1Ec2LqcuCTPjG981j8y5te/3uxNbzo/DhVlyIrmrhTD\ny0bsY2wVhNc4mjXG3w0WkUF5HjpnQCMDYzyw5CQKJl19itojbJ4nv/bICa5JrJT+zOEiL35s5pAr\nW1B4y8ZnBxkM6xrdV86eRbLZno22rbH5+RmP/gwD8jb+j4Iy9q32FM9mVHsY2SnjdK2/UvpH+sjs\n0nPD/JuSKI3ylreYve51GvbxXXWQweJCh5cubxFPnT1Gnipdr+qVz1CTPgWLwvOhyolL8ioD6wSP\n97//fH303drxRNjG/S1eFsOiKinywHhRDEwNFtj/kAlohM2sfhmyx65gY7x1ziBgAoD6pzhJtu7R\np3u7QJaMIK+HDLpsLdlau3vYSY47e8p48v2YXR7q7JhSz2xB2eNK/9S1zfizrc8Mdw8cM33z+9Hd\nMzOzD39Y76/4/cgW2DqVxEnhMfJXSrKsrHttXdH9Lm+zPmTLctAkb1mWW5ZlefeyLO9dluVHgz4/\nc1/7O5Zl+Sp17LIsP7Isy7llWR6UY1hn3KhYXuF+8AePyuk67BljH+Mvu2wfsMe75EZblGhVSrqF\nASFPVeLkecPvtjyryIzZyz537mi94nF2zyrsKAv7Mye5BW8dB42OKGtfG0SR12qPGY/RJSuGxZeu\nnWaJGNbRR/j2rXVd4VEJspH+zQZ8ZS2doDsje62P6WKLeKtkPfnJZt/+7Xn/zhkpP0/F25a8oo+Y\n4e1QccHLHj7Dj+vqm8euYjtUOViStyzLaTN7sZndYmaPM7PvXJblsdDn6Wb2pbvd7jFm9g/M7OeU\nscuy3GRm32pmH6pxbGfsqKTXXmv2+Mefr4+zQmPcWtlmecAf8pgDHmMzB92RbTZ3tiySzRICxMbm\nrnhh2CIn6PtGjifjMZK9NrCN7xl2xlvX8XQcUZRg4lqYw976zF33qDxLjjuy1PZobb49stMI2yF9\nCNYV3fd2OaPrCk+Vz8h8zBY+IsOe7WmGreINsfr6gx50tF7dxJ9h8e3VHkRYFey+RAkm4wnrzN91\n9S2zU7RFdpDB+nb9WcYLw7ZlOeSZvCeb2ft2u90Hd7vd3Wb2CjN7FvS51cxeama22+3ebGYPWJbl\n4cLY/8vM/ncFREQ+++mmqD8qwvg/Ch6+b8dgzOYCo+/LAggaUDT32uSFGQieScl49MnymkQJecf6\n7bdzRxI5oix5wbnX8IZ7hPMzLGsdzyGxbclTZ3wVLLr6syXWyA6xruqyYhuqnWc+Y0a/1vAY8RIl\nM55ThZcutmz+DBv7lZxqbiZLXVuEZbRFdqryFvGojmdJW5WgeuwzdojYo/7Mt2Y+JNP197xnfztX\nxxYOVQ6Z5N1gZh929dvu+07pc300dlmWZ5nZbbvd7vcVEGwz1jimyPH4eiRbNaDZ4KE4wU4QnnXo\n4zsFG8qaMeYO1vHd3Xdz2Qwbrm3NERvb48ghj89xHx3jiTnN2T2s6gxbtIcMy5qzPN32ymFXZyPW\n2m32gEGGTeFtxjbUtXSSFcTKsM8mXmzPmO4CXxorAAAgAElEQVT7+lpeqldcqGdAmc/Y0g6z+SLe\nMn+m6IeKLeMt81+ZLbA9n8FaYWO8KPrI9uQ3f9Psv/03fc/9Wrculx1mWjMzUyEvdZf7Oi7L1Wb2\nY7a/VCuNX2Mwo3QdTUf22qPNLFGqsG+RnPi1ZkHW9xvtDCtbp8KDGoTHO8JGHV/9ETmaKNCpThJ5\nZXXkAedjDnsm0J0+rfMYyVawrQlkfo9YPbNbxWEz2WyuDlY/PsKq2Oka3Y94w7VFvLFA5tvX7CGe\noc/WFmFhdrrVnp07F79YN/Mpkc/o8FbJUvUz4w39maJvEU+zdpn52qjui5LEVTxG4yssfp5qrh/7\nMbM//EOz226LsWT1Lcshk7yPmNlNrn6T7c/IZX1uvK/P5cHYR5vZI83sHcuezRvN7P9bluXJu93u\nLxDAmTNn7Ld+y+zP/szs2mufamZPpZtTPdYfBeG1jmZLp4nYxv+VkxxlS6weCxoQ4y3CqmJDWZXx\nX3758T2rHA07GmVzI5YKG3M04/uK10gfZ/Up6u9vRK6SF9zzLbF0eI70SXHQXezIezY+slMVW7TH\nmLiPUo1HH9JJQJmdKgE/woayKizIc3fP1pz5G/J8W5ZYzZ5YiHiNsFZvC0BeGbY1J0Wy/mwPmf7g\nnnZkdRLQoftMdoQb7VaVFWH90z99g5058wb7xCfM/tW/soOUQyZ5bzOzxyzL8kgz+zMz+7tm9p3Q\n57Vm9jwze8WyLDeb2Sd3u91Hl2X5SzZ2t9u9y8weNgYvy/InZvbVu93u4wzAmTNn7K67zD77WbOH\nPvT891sFYeaIqo3tvMJCVRS/jsgJMiXuBCozPegqsv2aGI9rjJe1V0e+Xna2lmju7OwYHkREe+p5\nYu1D9vg+q6u8VTxXCWgWlBFL9hNEFdb3vMfs0Y82u+GGGnumf5HsLKgilqgerUXxIXjQgWOrnzW7\n7LJ4vOpDmP5FgY/NhdiQpw62CgvDttZHZAf7uLYIa6Z/s/4swsbWMtoqu0Rb6GBZ41MiLFF9bYKp\nYmV7hng7tlDJHvVHPvKpdubMU+2Xf9nsh3/Y7MUvfqFtXQ52T95ut7vH9gncr5vZH5nZ/73b7d61\nLMtzl2V57n19ftXMPrAsy/vM7CVm9oPZWCamwtFVBDV4jLbMQY++HSWcHY/GPMaqBuTXNctTlvRl\nR0UzPFZY1fYomCDWUe/yELVHWHCtjEeVNxVrR7/YHm+FpbKNP/qjmlePq6v7HburksQooWU8eXlD\nli9b2WGEXQl0qu5vFZTZnmV1Zc8ybOxhLxV75t9mfUa2Z9lLpT0vnYfeZvYoW4viQ5h+rUmkIh7V\n8dVBxBZ7qta3LIc8k2e73e51ZvY6+O4lUH+eOpb0eVSFoXLo3c2qjkSUbL6676Maz7AxA4oMpqOk\nKk+IzSw3bsTiOdjC0WwRTCKsHX1ivOCee4eNDlDB2uFt9sfucY8qbBUvKtZRv/nm/askZvfUY4/G\nKjywepfHtQcRh6xXga7rS1nyq9gK0+21QXfr5KXjew+lT1gfsiu79LyuSVb8nkXYowRz9FUTd6yr\nPCprUfSL6WPEw6x+HaJc+sUL0zcnMubxP1OiC3nk69fC6t0jiQpL1h7JRmy+L+MV55rhkY0f7ezd\nhsxBq7ytCSaMF6Z/DOssTzMJAFs7wzaTEPiiOmhfz4KFx3chEye/Ftxj5lOUgwRV9rvfbfbBD+a8\ndc6edQ/0oj2K6pWvZYn72j2ZWYtvj7BlvndtXOjsIWLJDmiidW9hC5nuZ/qnrFvhLVtLtGesrvLS\njWGXkrzJMmNAlZLec8/+5v3KQa81brPc4PDGUWyPEtDIYStKOOM0IwPJksALmRyfOxc7nmxdM3tY\nOS7/fcVj5JgiHtasxc+hYtvKAXd49nNvlawo+lYFRtT98X0X2wyvv/3bWn+GZeDFV/hEPMzsOdYZ\nj4gTecSx6p5l2DtxITqoUPcUZd1zj/4UPOOpigMoe1bX1/jDyk6VPe3umRrDUN8qO1WwVjxeSvIm\ny8xmZJuz2+3fsXbZZccVofOKgBnZqgGNNqwrR3C+rOHJrD5K8lgYVsUYZ9o9F8x4EeuWZwgqx+J5\nwP6VA18ju+rPsCH2LZPjyglWWKskrxO4qrVke5ZhY/u21icgViw43t/fxfZttzs6f2dPr73W7NOf\nPiq/o2/RHuI62J5WsrpriXTG/x/5ECarSm7vusvsiiti2bO8DVkou8tb1l/RT+wbYV/r97O1Rv5t\nRt9m7dS3X0ryJstMcImCzfj/nnuOJnlqIlUpgtk6rGb50WSmVMrca46aMmOusOK6ugYWjUdZDGsl\ney22ag/N9u3Rb7Ay/cv0pXpd0OxZycpBz8rKeOwGutGvksXW2U1IlWQ5so0tDxTNzL7pm/T+VXKs\n6MOonz7dx4p76HlhWNbs2VYHb4o/6yaQd92VPzEdxZnMR8za5awdVuM9Nt93y5hV6URk92inDOva\ng9YKy1blxCV5ZseDqHrkcvas2f/4H8eD7hi3hWPJsDGsnSOTLZ3erBPEEjn0C+WIMkdzCF4YT2qi\nz3hi9UrWWuyMZ2UPq1eodJxg1u73cCsHrQSHDBsmUp4npn8zdsawfcM3HH3QJuKd8YbyVH0Zxd9O\nomDN3vvJ9vRQ/qriaZRDJlYjxlQ84XjlPXlb8oTtHV79HuOes/+7dtn1MX5PcS3RHvtS+fXMR/h7\nw7cuB3269guhbOHQR/1Tn9p/x5QyG9v5hYFMEW6/3ezOO4/3j8avOZr061Sxqke6vq6se2sefftw\nmKpTZLyostZiZ7xhyWTNYK/e6xglx0xWJ0HYiidlT6O5sb3zfkuVJ+9DVGzd+t137+8hrvorvHX3\n6A/+YP8y+mrPGBbkBRPQrROALfY0w57J6iZK0fjRxmQrvGWvZ1F56yRWbE8Re8bLvfcevayt8Jph\nP6T+KTweopyIM3lbBWE8IjY7akDVxo7+M8ZrZnbNNftET1FaxdFUxljV1SCNjobV/bi1vGH/bDyT\n3THmmfZuIhYFYc+5on9b6aPHviY57mLDg5Atk5UsGGSyGNZsrahvXtYWvLH6uIe46s98Bta7vnMk\neNFaKtup9jSbe01yHGH1a60SANUWRj3jMfPdfjzbMzyoyGSN+yg7/qpz8BZhq/xbhiU6+GLjOyc2\n/HjfN7KFNckuw7JVOXFn8syOb6S6WV/2ZefHYxuro6xlmXvr/ygPfnDPUc0kK4g9wtZxkszR4Pwz\nBjHrwKOnkrE+G9iUdtWB+/HM0SiBLsOyJvAhbxGHfi5V91UnyrBFl6w8b+fO9X4KbOaovLJLP9bX\n1ybmiAXv78r0rZOsKNie9CSzxz4275/xxnhSsIx6dAazy2PWn2Eb/Ye+r7G7Tn18N2yt68+il0Kr\ndtixFcabssfZFR0lno66ctaS7TGTNeZWE07EwubbqpyIM3mdYFFt9GWX1cFj1ljN1geXtU5xVraZ\n7gRHX+RN3TM/vuJhhneGrbpkGTkSBbt6Vog5moq36iCju+fRqx0ibFvqWyd4nDvHg64yF+7BGt1n\n2FiiHtmpWZ4cs0BVJddKIFOxrTnY6tS9TAXL4E3dwxnbiOLAwILtmewtecW1Zwf7lazR7rGuPcjt\n6Fv34H/NwVcXq+/73veaveUt2/ivrculJG/C0VRBd+1GVwbo16YkBJHBdI+CZg2KOejsqOgQTi9z\nsuxH2n17N+H07adO7ROjWWyKU/R9u8ltl9e77z6a5A157OzZlrp/6pTZhz60PytVzYc8jbkOmayo\nCQPTfS+f2fiMrmfjFd1Hfxe9J2/NHnfHo12uCfhbjfdtaw6wOwet2YMXWPdjZ+1yq4MvrHudZVgH\nx6puR/0zLN0D7Ajbz/2cHSmKrWR7vGU5cUme2TrjjoIs1tW5u0ceqtIrjuaQiVXmoCPjPqRjUcb7\nsWuSFV+/9lqzz362Z9yzDrvas6pdqY/XBzFs587FZwyWJT9TMvpne3bNNUcvv80kw5ktrNU3hXfU\nfb/uLfRtto54/P+4x7P65dfqefN1piO+76w/m9lzNSlk2Hz/ClvFW7ZnVX+PrTP3LK/KWtjBF8ry\n2LfCyrCpa2M8+rE333z+e7O530K+lOStKExR8Pc7FUVixowb7y+dKHN3s31VyRWnuGXym41HLKMv\nJoF+nbPrjrCo86ODVubKsHXu+/Dz+/oIfKhvGeezsiodwcu1mYPe2iEvi9kDH1jP53mKfqSdyfal\nc0ZgtEfjsT/DEgVhBcvas0TMDpktrJ17xlaYr/X1jHPF33Wwdn3G7IEiW0vHVvAF1xlva/esO97z\nzrAxO7yQ2Hxu0PFvP/iDZl/yJcfnxrV0fMpW5aJP8qKNnDGgyGBGvXMaXal72WaxE2TYIwNSDQJl\ne4ebjc94G/1G/d579wnDGuPbgmesr3HQCrbf/V2zn/iJ/ngMJsqerQl00XzsAMnrW2euqP6f/7PZ\nO96xzk7X2MKh6gwLYl8ra9Y2cA8Hrllsa/0h29ND7SH6Vi/b88p4juzS83qoPevsKeJU5+omhZ0D\n6s6ezmAfMWYtz7jfW+xZxtOW5cQleWs2gynllkdFZnMGqBj3FsaqJIWsv8fix9577/lfDtmapyr5\nOXuWX/pjxrzlno0yjvK681fYDpn8Kk5QDSZK+/h+LRZWz+zoiiuOv49SPaBRsOHaomQhmrvrI9Ye\nRKgHFREPXtYa3rI9VHlj61Z4GvNla6/2eK2dIo/K+MqfMWzdq1FbHvBsmWCaHX190Jp9wD1QeDl7\ntpdgXkryJsvWSunn7SqpWS85qbCN+Xz/UZ+5Eb46U7L12Ytx6U+RvSVvy2L2uc/t7/EaXLHLG0w2\nw4J7XMk2M/vKr4yxd5Nldd0Kj3im2N8jla29CiZd2/BrUtZW6X4n0F19tdkdd8zZnbJWtoe+3rX5\nrQ6Ixndopx0fMuuvFGydg4gteFlTnzlQjHhYc0a0q1/VvWQKbx196yTuqg/wdXxHZPfAMzrAUbB8\n7nP7e7KVtRzyFy9OXJJn1j+aZE6Qta1xsApWNv4zn4mN+9w53UHP8PLhD5u98IV1fz+n59CfSt/i\nSHcL3ivHo2CrZN90k9n3f39/bQzb7JkRVp+5f3A2mFT17/1es4c/fH4PUfeV5Djb063PXozvqz2d\nkdVJOCvb6R4oHpI3j3mLudf4GEX/OnN3DiS7SR/O19Wvs2fNPvYxjbcxf7Z2PIgY37O+f/7n+x8A\niHipZPt7iBVs2XxbxqjIzg9RTkSSt3YzcOOzwLalLGW+97zH7Jd/+Xyf7OxFFdi62AcXSn/G07lz\n272aYYujT7+u2eQ4csjR2hRsUYIwxs7yFsnuvivM/78mmHTP8nST4U6yMqs/VX/cN78XDNssj2p/\nTBjMONaIty5Pa5O8zNcqByi+dPUxerKc1dcmBEr/jPctH7x497vN/viPdeyKjvj/o0TKzOxP/7SH\nlenymveCYuK+lT9DHlj7VuVEJHlbOkUWTG6/fX/pTxk7e6Ykqpvxoyz8f4t1Y3/kOXL4zNFg+5pE\nagseWUIaOewtDhKyh0iUs4yRLCXobvEbrDg/22MWhLdwuNHaooSzq2+HqGMgG9+PeranM7x43pXx\nUf+BbRyMRQlhB1vHjlHfoqB71VX7M04d/9WxazN+Voj1X6sfrP322/drVOcbdo52MaNPvmxpG8xO\nse+VV24rO9M/s3xP1xyEZnNHWLYqJy7JMzt+tNBxNGzj7757f7N2x/g62CoD/PEf59gy510ZQCV7\nfD7/+XF/fPWHH7fm6JLJ2vos0Ph+CwfdqWeXYphT7JxJMVuX6Ge8d7FszZuXhzyNtjEucvZ+D7o/\n0r7255HWHPBsnVCo+lbx2F1L93YBP3Y8LOPLGv1j46Nfe2G8bX0Ac9dd5xMexYeo9xgr2O53P7Pr\nrtN467Qrun/99Ufn2mJPM2zqns7w2D2A3qqcuN+u3bLeddDdjb7zzqO/lsCc4A038CO8yCFHvJjV\nDhyxnj69v29K4cnPzxR6a4OpDNLziL9lWznFC4Gdza/o20yQHWXGkWWXhTpzKbLWJid4oLGF8zc7\nb5fKT9+N//3rg/zaGS94YNjFOnvGwY9V/BvjsXvw1UmW1YOj2Tpijd4RycZXB8xrfYjK61q7XJZ9\nkvcN3xC3dw+IVH82sH3JlxytR5x318ZuVYj6H0KfsvqW5cQleWZzBhVtfHaGQJGVKe1b35qvhRmY\nx6OehWH9T5/eOzVfZg0KHV9l3Gv3rNu/wsoCeBXQI15n+kdnRGf07VCBsLunh3CaSpK3LEefFj4k\nT/hU8mgzO/7Qkd/TQ/Ey6uq7Nj22GSwzZ0Q7drrm4Kk7fnCh2sLWezZbj2wBZXf2rJMoRXUvu/IZ\nh7zFo9KJbE+33rNDJXkn7nLtrGKw+bySmtUGYtaXPb7vYl+rZFddtX8EvOqvKr1f+/iOnTHorjOS\nvWa+NWfL/LrM5p5YVX/3dMjK1rmlI8K1+To6ROy7ds86CYPnCXnz+je77o6us3Y8k8fm8mXrRH7c\nQ1z1n7G7rQ++ojNe2Kbqh9enNUlf5gcOzVP3DBSzyw6W7lrU+dFPqLK30sfOPkT+SvVPfi5WZ7q+\nVTnxSZ7Z3Nk3v/Gdsxf4mfV/1rP2l2NnsK9V8MsuO3qpuFpL96jd88Y43zJ5YfNXCYJfW3Qk6vvP\nOA6lv/9k+lbdJ6QcVWeyu4mV52WrsxHduvKePOT2Qp0BHbLOnTue5Pn2Q2JRnxKt7M7ssGeSq/lm\n7Shqx4OrKpHP/MBuN/eUeqc9688SKRVLN7Fas7bOWWzGefdgrDs+soUKy9o93rKciCTPf5r1E4po\nc8fYzhkp/FybAGRBt1KybrKC7Z21+HqXNzbXlmcY2I3Ko99ax7OF8XssiK26Fww/Z4KuEqwU3rLA\nN3icxerHjzambxkvo6x5X6DCkxm/BL/VnnV1P0sYtk44O0E3qkfrqH6pYQ2vChfjc4u5tzxg6p6I\nOHQ9OrO4tSzklfHcsdst7a6yhS3LiUvytnSaoy073Vw5mrVOLwpGswYxihLoqrUoR5ezjiczVsa7\nGti2drBdR8Tax/de38Z3/kzeFVfsn/T2Y/BzLVZsv/PO/VN/o68va4JsxUtmp8wusY7cKnbmE9Qu\nr9VZbI/FfzIeOrrf5dH3/3zrPrPFNdh8qey8yxt+brUHa3lG3Wdzz6wz4k2ZD+2wEz+x3rm/VNGv\nisfO3N2YdCnJmyyVQzZbl913j5IyLLNKGN2/1XUM2Vkhs23XsuZM3gxP6vjR5stssqH2V3WGOWx/\nAz/7zVX83OLo09fvvvt8klftIWI51BlQZpd4ltFjMeufScE1bekz8DM7GNtCv7J65F8ybBGPrB0D\nXfdVNOo6WIK+1o6j5Hxm7rUJhMfQuTIx9qSSzR5WivpjPxZHfFH3NMK61WXxMT/rv4V+RAcsfvwh\nyolJ8nzZKmgzh11desHPjjErlyTWKGXnnpQ1a0HesnXM8ITjx/zqfJ2EcqY/OiaVZ+aw/Z6dPn08\nSPpPlK1gV4ILe1HujL50nWYnkRprjbB0zwxXa8mw+fkqnpjsrQ8y2NrUubdMVrp1L0t5kAI/mf/r\n6H6kE1vsSRUHcK34ibcD4FnuCAuLMd2DEGxHef7AFHnz35mt90/VGdVsLWi3nRMP6oMYnpdLZ/Im\nyxqHXNW9AWUOe0ssqtKrc3ls3vjUy7Uzj7d7Jz3q99yz7Y3Ka/Z0zVx+XcjPLLbx6XnzezZksHeF\nrZGNa6mwHSoxUuuYxOFBBCZ9mYNek7CytUdnsS8ET92zkuNzC/04lB2vsSPWXu25slb/uSb56MrK\n1jY47lxtUngcpcvzshx/WGx8srHsxMMafYoOaBjvvj7m6sw9036IcuKSPDPugGc2x29MZEDsMzqL\nw7DNBpeu8ZrpL3SNsFRrwUDneTt79ugb3f2nwotyKjxz8H5s17mvPePZaVcctsdSzb026RufCuf4\n2dGXCouve64iO2W8dHjzZVn0n2wbWDpn/7fWx0weft+xI+zPDhRnzjKy/syGUR+qPdvqzDHyOGPj\ns7Kq+VHfzNbFmMqOGc843tsKG1c9nBXNXa2NjVfXyvzbjN36/tl8W5YTl+TNKg5rj4JHhIFhUoxd\nXQvi6TqS6ubyLS9ZIW933XX0tQ7IF+5JJttsPnnuOlw294wj8f2ZE1R+h5IFVYWnzh5Ga0O8bO6K\nh+6Rb1XP7kvyRdHt6lPVkSGrOvu/Zo869czet5bF1tJdW4at+9lNbjrJ8qHPzvqSze/7RrzNJj5q\nO/pidrmWjTXb9nLt7FpU2dVcXZ62Kic2ydviLdrj/0xW9dkNdP7TLHaaM04KL/1tuRaPFXkbbZ2n\nF7s8dgxOuZTieevMbTbvNMee4RnRC8lThk1ZR8fuqvmq4KS+poTx2P3s2JqXV9n4mKtzD+dM4hRx\n0zm72q1jWWOnW/gr5KPyA9G4aJ0Z52uSEza/7+99BuoHk5XxUGFXeGYHserYbkzLbAN1JuNixv8o\nsdyPv5TkTRZG6trAhmfLRtk6MVIMKDr7NjNXx5FgXbmPKTvL2D2bofDoMaqBjhnjFkF01kHjnlZn\n8rLgwnis1oIOOQp0XX1SHHI1X5WsdA7GsrNbOA5LhK361ZLRv0pAcU+Vg6kKm6KfytjuJc+uHUeX\nAqO2zmc1vquf43PGBzCeZmRjf0XfFLtTD8CxKD7F92W8dPxV1zZQfhZPq6tDFS8siYv0bcty4pK8\niPwZR6Y4reqzcoJbnV5m68QxlTFXn53Eaqt1et5Qducp0vGpyO4Eui3PMHhZo14lt9ncgxfksbN2\n5M2X6szH2iNjVWfUvpns6lNNxMY6ozPuKk8dXroHVKOOdlT5lAr76M/6qTwitu5eedkzZ46z+fxn\np6+yp5637HUmOL7St4iHbO6KJ7Y2Px/GAWUdo6z1V7MnOraYq8PTluXEJXlm2zrJzJgjDB0lrhKG\njlJWRzFMlrKGbC2R45k9K7NWNhvveWUYuoFuJvFX1jraor7KPXn4uaWjUtfB2s1y3pg+bpnkXajL\nteg3ZnR/6+CC8vznTND0cyl2OEr0oAabF9u6B1PdJ9HN9DOHKudMP7ysWR/C3pPn9Q1/k5wlkFv4\nq6g9OvO3hS5XPFavmFL1bWaPOycqtiwnLslTFEets43vflZHi9WlnKg+YyAzR8Yzrz3pOjVsZ3ys\nDUbs/2odanv3Mzqzo8jewvFEvCv9O+ue0beKJy8f7RSxsb5Re/bZ/Rk0dvlsqz1QdET9VHS76/8q\nLNXTuMhNpoMKlqxfxmM2bgs73Mo2/DqWxez9769lz8ry3/ui3NvI5jY7foA9c9vOqJ8+PXcyweOu\n+lY8RGtFfduyXEryBMeVJXmRDPXzEIlXtK5DyFKdIta3uFzbccidYFTJXnNJYJSZh0xQN3Fd0dkJ\nLLO/dYvykKvRztqUPet+qpd6Dmln0fjqwNCfWZm5ZDW7Z53PWd3uYGPtin7id1s/eIG2FvWPSnVQ\nWmHpJhCsfTx0NPCYmV111fExa/e00i/Ub3zZciajczZ1tEeyx8FYZ/z4ZFi8rir6V12p8AcdW5YT\nk+T50r28FjnNNYYxPrv3Iamfa2VdiKdrM4X3dbPjzr+SXb0ORuXN467W1ZWFcirs6rr9XJXMNUfG\n0RoymZ0Ec8tP5WzZKNWDFzM8dS/XKnNF/dlBa9Sf3QDPcDIsFS/q04vZPFWSV2HIZLG58T7eqn+k\n+zNneVQ7m/FnY/4nPpFj2MrOqvmyA9G1/gd13a97yO68Ygp53PKqCVvzpTN5k2Wt4pjFCcYWBrDF\nGYbZhABLFQirNXYCXccJVthnedvC0XzgA/vfb43Gr723ke2pn2vr197g5+zlWiyq08v6K5+j4H2W\nSmI0KxP3wSznjZ3Jy9az9Vnv7NMXxaaxfzansg/qWtbsVTU3azfT/KPv2zlYqPRnzafZdlefsCh7\njp+R3St7tOag9POd5FW3jFxK8laWTFG6ijM+VYPA77Ob+LNx6vzddajt1WfnklXnjMCMA+o4yerB\ni+wSwL/8lzmWmT2MzjAcYs86QddMPyPW0dUZ7J1xEU9+jkNfrsWkDu/Jy9bTTTbWJAhYZhKdLX1M\nFhj9d9EBTvVy9wzzmrPYa87yVNi6B45m668+rXnrAs7jE60Z3Vf7Y338tjeO9yV78AK/6xzw4NyV\nPm5ZLvokr9qEqF9l3NmYjozuGS31M5KlYpk5A1U9TJHdk9dZv4JpNonsGusLXtDDls1rxn8gnMkf\n33UusUdzrQlGbH51ri0/M7mqna35VG5V8GPUy7VsXdWezdyqgDgjWWvvo+x+bn2AreoyW2t2QK7K\nVLFsra/RwRd+ztyqoHz6eSoeq3XM7tnM2wciTGb1LUT42b3UvFU5cUnejFP4QglsHYWK1pEZ8RrH\nojxhuOZybfczC3TR96pMj/3xj5/HqMw/g1FZQ+dTPfPMytY2gPNW9WELHX07xEvN/Sdert06oG95\nuRb5UA4KcHzFb/R9thbVpjNsh7xcq2CJ5q5kVXxnPG7lI9aOV/zZWjs069+TF31uYWeXLtceqGyh\nnFnCYHZ+c2ZPaUeYZo/Goz5V8jBzmWfm5+FmDKT7OXPvkOqwK2M9BHaGDfVjq0sq2ZqUp9sOjaH7\nqeCeweC/V++bG3uEl6w6dlZh3sK21D4qJmU8+4z2bQv9qB62mXkYYnadGGMOlfhvOefMZ6THnTmy\n/tmeKZdro3mZ7M4emdVPXF9K8ibLoZWWyTo0BmV+xZHgZ/eyUWc8GmDnFQNRO37vS2f+ruPpGPfM\nGYaq31aJlCozclSKLXR1uTte4be7Z1vxGj0QdfXVZmfPnq93EtCo36x+brmHh+Cz8kldO+t8Kk/X\nsqLylM2tHKRW8th8Ff5D6X41f9am3jpkVl+uxTN76tq6usnmvnRP3oHKoR3UFnNUBjczv6qUfu5Z\nA1Cwmp2/J7AykEMHh8ppZutgjkOZewJKpWwAACAASURBVKvPbO7KGW6Bqft0reL8Dv2p6H62nq2w\nj3L6dI1tjUz2ZGc1/yjKPXdVe5fHaL6BR/VvM9hUXUcsKIeVrWRt8Tl7tSlay8was3lY2yEu185i\nrGSp/GXzHSrJu+ww037hlEM6gUrWoWVnTnNrGbO84P084ynRLe7Jy4x29j15Uekad4eXbG0on/VZ\nqy+zTrRjC9H3F0Lvuvp2IRPRC22PHd1fK2OLm/jVH7NX1zt72fvUKbN77jkcb51Lw1skPxdK7yrs\nWWIzo2cZj92DYF9nfbsPXlQyLyV5k+VQypkZd1f21lgjpVTWcSGwma27XBvV/fdrXtEyg2kLWWr/\n6HLtbFDtys72oXspWZVdPUSTzXMoXZ6dT7k9IJq7K7M7z4yMQ34yfWN9Z367Vuk3ytVX85v2WZlZ\nJx6Uds6oRv2yA8VqTJcvFavCX9W3wyvekzczr399le/bvSevkuHffrFlOTFJHtZVQ1HHdcZeiCCz\ndu6tL9fivF8Il2s7e7rWyW21H5msrS7FzPLKytZYuv18mb20HrV3H3xh86y1w86Tqgq2CKe6npnP\nrrwZrGs/r7hCxzazvi3eG6qOm5m7K6tKFqNfWumuI5Nhtu4p5cpOt4gxvv3SmbzJopK/xaW9Qzsa\nNYjM4D809kM4mq3uh+s8eKHOPcrM+waVeRnuCuNWGL4QbEF1okrfQ2FQ9O1QMg65h9gela5NqGdr\nsz6ztl5hrcZlc1VjlmXbg97ML1T2cmjdV+x1lLX+fcsXOLO2Le6b9Gu5lORNlkNtfMe4O0bI5uvO\nvyZ4dA1rhs/qqHhrB9Qdv4XMC+EED63bM2tDR9Xd22rcjC2p/IwymzDM7rkyx4X6ZJcJP996dSHs\nckts3VsLqnFb+ZIZfZuV0dH9qMzONXi88ko+rpqHfUZ4t3x7wqUkb7KoDrp7WSRzPJXsrQ2Jfc46\nmlnHrh4hnzpldtVVRkuX+4rHQ16yulCBjxn+Vve9Rd+jjnReYVD1uVCfh8QyO+8o7ExeNOfsfZYX\n4nLtVnxV7Vs+eDH7qR6Yz8wxy8fsWjt9q/V2MWZXTaK5Z31t92RC9v1W9hbJWpZLSd506RpINK7q\nn4051Ocoa56u3Rp7NJ///lDr3noNSt+tLsd2gsgo3QOVQ/HU4e1C7JnZhf35rTVn/g4tszuPL1vZ\n/lbYMxlbnX2dtSlfvlDOfG7h3y4klq2xrd2HC/0TfpfekzdZDq0QTFYXwyGcwqGUcS3W6EmlLT/X\nzrtmjq3XlJUuhrXYLr+8j1WVPYtty8u1XWyzZ7uze/IiWRfqU8Gg9jukXUZzHQpT516+aMyhbhXq\n9N/qPubZT+VMnmrbHTubGa/03UqXl+VSkjddLoRTxMtnKLuLKRrfwRaN7R7xzshW11hddhxl7anw\nag3Zk16qs5rFHvWbefps7SW6qn90jwubb8t7VWY+lbmjcqiANoM1ehpxlo+qfebsRYV9ax6Z7EOd\nPes8cIFtXR2v9lidJ/Mxs+vtXiLuPuDCytr1bxU3MrydhyGrNfyVTfKWZbllWZZ3L8vy3mVZfjTo\n8zP3tb9jWZavqsYuy/LTy7K8677+r1qW5Yti+Uc/t77HJStdZazGzSpUB8uF+twC4+x9lIpxH3rd\nMwkAltnANnuG4bLLjtZnXmTadbhVXZkvsrNorguVUM3MrfqjQ1wSXbvuSrdVXZjB1tV1lNPxvbO2\nvZZP5fPQMrrzZWVr39v9ZP5t6/X7z7+SSd6yLKfN7MVmdouZPc7MvnNZlsdCn6eb2ZfudrvHmNk/\nMLOfE8b+v2b2+N1u9xVm9h4z+z9iDNpn99RuVrb+kfZDBpNuv7WYfABVefp83GtWYft8PnixNabZ\n+5mycqH2qnP5p6vzW+vlzL2zn6/7LA8po3oobAbb1pfit8R2aPtEudXZX7MLF6PW+JBDX66tDnYV\nWVvZ27L8FU3yzOzJZva+3W73wd1ud7eZvcLMngV9bjWzl5qZ7Xa7N5vZA5ZleXg2drfb/cZutxvv\nh36zmd0YATi001TK58uRMwzqWZy1mFAua1cv18465m5/VraW0dWBLX7259AOqoOtmmOrNShzq4FO\nxbLm7OxW+rLl3layo374PZbZtXbmmpXV5bmDaStf0j3TfCHOuFe8Rf2z0pXZxdThba1eYWHYDvWL\nF4dO8m4wsw+7+m33faf0uV4Ya2b2/Wb2qxGAQynAjJIe6rNz8/nWwWL28oeCrSu7mneUNZde8PtD\n38jMSrT+7hE/rqXqr/KdYTj0AU2mX9Xl2gr72rUo95apQVGVVfXHfsp78rbWeXXcFk87zh7Udu7N\nWyvjQp6I2ErfVN5nrgZs8YBT9onyOvq25Rnkv6pn8lTYwpaTQcvy42Z21263+49xn/xT7de5J697\nKlx1IGuMeiuHsVbZ2eXaCuOhz1oc8jR99z6wGQd9oT5nHPShMW9xuRb7XYizZBE2VS8u5Nn/rXzo\nWuxM1iiziUCFfYuHZyoZ2I73vq79PMSZvLV2usa/qdjXHoxkfdU5Op9/Vd+T9xEzu8nVb7L9Gbms\nz4339bk8G7ssy/9qZk83s2+JhJ85c8be8579/x/4wFPN7Kmfl6OkrZWv6zyyvpGzm735XO1vdvj7\nQrprYGXW2R9SvyJMWz9UVLVfyMtAXbtlc6kJ91Z7hvWZe/Iu9CfDv3Yv1toK27cLzUsnSfn/2/v+\noN2q6rxnBxD5IVyJhh+CXAgIGEEJGaVNRUJQKXGwk2kiOE06tBMzMUw7bSYGTSYDk0ximtTYWNow\n/shURiVM2kGcwYmUekeTIRpFDDeIyFStQASiRVGigN39432373vWPeusZ629z/t93737mfnmfOe8\n5+y9zt5rr/XstX+c2vKxtirylt8YNNvbapqON/o7hqg9a3WsGa5lRz3uuWcPrrlmDz79aeAByYwa\nYW6S9ykAp6eUdgN4CMDrAFwh7rkFwFUAbkwpnQ/gsZzzwymlr2nPppQuAfCrAF6Rc/6Olvk111yD\nW28FPvAB4LTTFtdaG64pzOXAvM6lRV6a7HM6kwIt/M4agQhBiBr91kZxzhVe7H0ew1Xk3SpSzOiX\n9Xu0PFrYjqi+tNB5ryzeutR+l9c9hEA+Y8ng1csWkTyvvWJJHqvPU1/NsWT2yl5rQ2rSlnnU2qA5\nZJPHH/mRC/H611+Ihx8Gzj4buPXWa+3MnZiV5OWcn04pXQXgzwEcBODdOefPpZR+cfn79TnnW1NK\nl6aU7gfwbQBXTj27TPodAJ4B4La0KK07cs5vHJNhLmVdf16m5W1ArZ3KGOZyVGzDGTuPRvKsd5K/\n1xjNVjLVliOTh3dOnlcH5jTQ7HPyPs9cKQlrf8vWdRuJSEXJWvQdPPOQ2PvmaBObbo8ePavNIzqK\nwtSpJiubV1Sm7TRcW2N7Zd4tdXynDtci5/xhAB8W164X51exzy6vn87mX6uEUwZaQ+2cvFqD3sLw\ntJaJwVwyWt8wjKzeixKqqDMZw9xzx2pk25RMWnl7ENWrFk6kVV20Lsc50rRkt65vQrY5yy26wMkq\nD0u2mmkV7H3euozYkKgs8jk2nRYRUC3vsed36sKLLUetcZTp1OQ9t1IyhkcbFqyVuabBtHJo8h3K\nc9pEZnn/+vW5yqGgZs5KKyeiyRLRL1bGVoY7IhtjaOeULdKZ2NTRI1N0oZj3OmPP2Ly9tkTez7Yt\njyy17dhbP2Oo1ZeovWP0LmqXvMO1miwectxiFKWTvCA2YQy1ypmr4UQada2Bqb1/rIzKvkCty6P2\nnTxptp4bxeibJSP7Dq31jCm/1hEoj0Oz0EqPChjD73ECLWXVZPTkMbfeyfTGYOniXHrmaaesTFFy\nErG9rRe9SWzSvrFztmv0jJWt5thJXiVqDbJHAWontc7R8Lx5t5aJQSsZZXot5zJa16138b7j1MIL\nr1HTZPMOTzJg847eV1OXBeycPLbOIlM+5soremQW+sy1UKym3Aq85EWm542wT+mblKX1QjEJj2wa\n5tIrjYhNIapvUTsoselNpDvJC6KVgfI4OJm3JktrI6mdr1+LEgP2HbT7NtGbjDb6qXee24FZx+2w\nx5XlpFrIpj1Xm95YGl5ZrftkuTzyCJ9ubXtrbUumYJXL3HMZGVms+2qnfrQot7lshUemWtms52um\noxR4o9jRTpen3CziXmNDduoXL7YcUQXZRANi8/amF5HFmwfbYKZkav1ZM3k9OqQ6dW8rRyXPW87J\nY9/BypudjyTzY/KeS+9atNPa9njnndzzDLR2Ndc0gSlYaddGUDyyab9t1TdZPai1Ld6OeYsO9lzT\nLKbQyhZE646JrNXqS5+T1wCW49Luq2nMWgNi87Jk98hqNebtMFwbbbytIwcemeY+zmEEa42mPJ8y\nSnNPQYj0wrV7W5VPOZ53Hi+z9n6tyIr3HadgPXPQQW1ksMp5CrXDtVre23FOnpauxHYYDdDebY5v\nc3sXy2yy3Kae7yQviLmcTI0MmvOsldkjw6aPLZajt3ISLcotOo+tRZ1q92xqTt5O0LeW7dV7PPPM\ndjJ59a+WXDOOTctDkjyvjJbsU3v4abK2Lp8WesXKaN3HyjbHVBn2HWrKsTbP2qlJY4iOPjHHTvKC\nYAs5Mmm6Vd61BplR1qji1zb+kv4mt1DRZGhhaFiDzD5vyehp+HMb6hYkj02jVduYQq2jqyUxU6ht\nn975TAwsna8dHfG27zGwc6a8HZuIDWF3XTj00JhsWvl5ELVX3rr0Tv2YureVv7BkqOnweMslpU7y\nwmilAB6Ds+nNkD1oLRN735xh+VYyemTzDgW01DP5m/yUmFeGVvq3fr11ubQkTtp1K80565QlBAWt\nInkt5oKWozZcq5Ujm26kg82mXdB6HhwjS8Ezn+nLy6tnNXPLrN/naAtRmbyLPTx155UxovOd5AVR\n28hbrMCJKr6lGB6wBpR15NbxjjtsWef6rJnsNXrfcSrNVkbNa5AY1Dp2r9FsIctWOA9W1ui7RGyJ\nZuBbkbaWTpcdrt2KOo3OQfb6hZb6ptmrqB1sIUtt+bSwb6yPatUWPKjV9bF36SQviNqKj5A8Le/W\nhjkylDfXhHitfDzl1qp8DjuMe35KxrnKp0UdS3llJM96v6gjsyZNr6dbY+wiR+3dmN+iebaMwHs3\nVJ9rmoVHhlZ65M2HQet2yE7LWAc759hLiLxRxZYLCKLPRaajRH11NCorMSWb9DEtjp3kBTFXI1/H\nVn3xwoNNOYtyfM1rhudzTP7VnIX8Vq01IXwKrKHV7mcN8iYjebWGWZNt/Tqbxz/8Q1sZpyDvadVu\n2fKaklXbI8trI7zRII/TLfBG8iyZLVk8bWFTW6jId2LQSo+sdhiZj2rJuMlOhSWL9btXZg1T5XjI\nIb48NNn7nLwGYAt9juHaVkSgRhYtTyvvTTRqdqVSbfTVen7TS+U9RyaSVzD3sIZH/9g03/nOxbEQ\nBEt26/dIO5XvV6v7kUnmGsnbjsO1Wl145+R5ZWFk9A7XWjK1XHjRyl5ZsltyrF+rzYO12Z55lbXt\nTsvTKl8PorJMtZFO8oKoNYLWEJUn71rDK8+nhss0WeZaMLAVRMoiqDUGei5nyqbPyFYwV/TCKscp\nsHn8/M8vjnMMf2gyade9baOlM7aiilEiUKNnrCxemTSHH7G11j2t9Yl9F49M3jnE3rqcc1PfWn3z\n2GBW1lbTKKbIcTSPqbbTv3gRBKsgLSN5UaPnVeYWhLPWUbGNt+U+edr9X//6+PUIAY022oJoZ0Lm\nPwbtN295WbJ6e+Pr6bJ5nXba4njwwdPv4NVfD+Z2aEw7ZYdr2fJoOV9Qk8XSjzmjigWy3LQOT61T\nttqIB1abiPqN7aj7BZFy0t7vu98dv86WY025PfigLy/LT6zf1yN5QbRu7JE8teutGlBBy2hZ1NCU\nOVYMWu+Td9NN4/fPEWWcay5jDeT7zK2HTLmxebYqzylo90SJEetEPBF3TTaLGFjORObNyjr2bHmm\n7O9myTRnW/CSY8vZskN88vcxzL3Ze2SEQiLaDq13mpOAFjsfLRctYirBLAppOZWok7wgvMoqzyPK\n6nUCVnielWEq3MsqPNuYtesnnDB+3yb2yXvLW8avb2IoWd7vHXqJdCIKpPyt9mm0ypGRkc27dhqB\nvI+BNvSyFWSl9SKQOWSUz8j93WpJiaddFrCRvOiRJQwM2DYQJSkRfYvaee8WIprt8HQqCn7hF7g8\nvPomMSZb+ZpN6+HalDrJC6O1o2uZpzx6h6wkWnySqNbBtZijEnUOmpGcc7g26kxrnK0Fr6GtNdQe\nGdg6q223HrTe342Npq3DS9Qte+UtT7nwZUruqBP16iGD2kjenXfGZGZknXvhRctoWasotkx3Dr9w\n5JF1MtZEQL1+soBpl53kBdHKMHkaUNToaT1jtjHXRKTY7062JAKWjNFeubdn7JGJLR9vBEAzgp7V\ntZbMXqeyiUieVh5ztE/tHk1PtOe9baTGeHuJeXS4bYrkac+weqS9i2Z7PLYjGgEtshx3HHc/q7cM\nou0x6hcYWbz2rLbDyMBL0qIdHA2bXCyYUid5YbAV7DWODLzKVvbe0WS3GnVESSxD28rZzuHoNMPj\ndT6eSJ71u9dQtyi3aMRgzjqujb7Wlr8HraLXrNMdu77VmyGX9DzttFWHWUuHkeV73xuee+fBvehF\n079bHYApfWPrP1q3HpJn2bxo5JeVrQUZrp2G4m2njEzadUuPCtZl6SQviFrj2CJPViG8PRcJz1J5\niVZ7XLFzL2oaVqvyY5yJt9F6Za4xNF6ZWSfLEi9tiHHqGS1iF42MepyJVm7s+0YjoDVbgXj1pzYC\nz0B7hi0/Vt8YeOfkRaNmlj0cg7fzpdkULU8POdbscdROterETpWffPbRR8fz9nbu57C9tT4+pU7y\nwogqcUQBZJ6tohlzkrxy3nq41isHsK/BjhoWb2NnInna9Wid1jhZFrWG2dvjXa8/tvyiQyxa+lNE\nQXN0Xn3R3qXGsbHfrtWuR8tzSiYLln7U6tkmFl6wQ8wWcY8Qhai90mzGlAyWLrIRy1a2xINS1uyi\nh2hnTcuXka2FP+gkL4i5HNo6Wi2Vr+15jE1CZjcLjX6SSOuFag51CnLoxSoXq0cXjUhNIVpXbHl6\nZCiI6t/73784eo2iBiaS10r3tSOzgECiFdHU3qXGeM9dbjUyecmJtx1HbIaUsYXzHfu9ZmoM+/61\nMtfIZKW5SSIl8/TqEasDEdladSpS6iQvDNZhzWEEvRWvES22MTMbDmtoPSfPKr+x3596ange7S1a\njZ0Bqx+tnK/H0LDvYcn0Uz8VewcNnmFvdogqWs5TMkhEI3eso2OiPmwkr7Y85PUaslIbUSnHmoUX\nEpsarm05VzZabi10P2rXo1FcBrWyeslgpGNYUBvJW7/ev3gRhKZ8c4zX1+YRdXQFO324VjOKtY7O\nkmkrPlXXQs8sGS2ZTz11cfQO7WloQfJY2TWnu8n2Oich0GT7xjemZfVGJVsuiLL0hu2Eeepw7s+a\nWfoZgbctsHauBq06E7V+gZGRJW/s754Odu3c2Skf3yN5QXgruiWRqjUkXiNY0xNoFcmrGa5lV3xp\nv88ZyZPXLVISdYAR2VjDUzu81pIst4qolGNE9+faDNnSt4getpItUm6avFIfosP+2nOb+BzcVkby\nClg7FvULY7+xUUZLxhaysYiS4ALWDkZQ6+M7yauAVfjlM1yWkhcww2eWokevWw1nzqEXeT/bsDTZ\nxsq3dm4jayytfKfAkjarPOYwgpaMUWdSI6M1DOmVQUMNWYk6/JbRMjaKvXv3dN7eiOgmInnRcpRg\n9K/1cK2mny3nWdZGpmS6NWD1pratRGSO1pX2ezlqw7Ut5uQVMPrXSV4QlrLdcMP4dU35PM7EMlat\nnW1Lg93KgGuyMY3bK0s0klez8CJqoGsIFFu2UWPIllsEJa3a6QES24GssOU2dj0ajY22gRqyUp7x\n1qElW0TfWg2fWc65Rbl5CVRtp38dcr5z6w41S3JqEPUH1nOeURTvl2k85dZJXhBWoV99NXdfQY1R\ntCpc9ihYQ1QQiWbUGruaBiPh3aCTJViRqJl1TytCMLXX3Ng5A+09vZG8SLlZ9c86dkv/JFoMO7Lk\nzKtnc0R9WkUdtfymoA1zR22GNlUkEgFt6XTXf49E8mr3yWs1JCo32Z9ClEBptsYqJ085RiN1Xr/r\nka3AsgV9uHYDiDZyxuhpeVkyRIesWhJQbzl4G7+V7zpqF154oxhavlPyH3ooJ1MrvWq5urb22FK2\nWt1vQYYLonUXLTdG9y0i5dU7loDWkLxo5CnSmZCyaOdRUtfCD0iweXpJHpvvFLS8jjiCk5ltpzXl\nWNsuLf2L2JRop6Jg/fdO8oKobVASkRWsmizscEdL2TREG7HmrFvIZhlati4jw7WavIcfPi2T1/C0\nGPbxRgy8zpftlXvAEoQawimhlVttJ8sqZwbe4VqvrWhJ8rR7o8SJlc2zD6jXbnnrdE5by0ZI2XY5\nVqdsvR98MCcz205r4NV9r3+IoNUWKikB3/1uXI4pHHAkz6usEjXOhCVIXqdSI5u3HKKyMfAO11rv\nwg7D1YTlvY36sMOG5y1InnWfl/TV1CV7b1T3NYPMDNc+/fT49VZkTju2IFLePNm6rYnkyTRY+ybr\nkHWyDMnbquFahkhp90b9QctIngZvp8EioDWyROuM/c4ugzn17brreDk8OOBIXm30Z85InrUZckuy\nIlEbxShgGzETPat1bKzTHYP2HiwR0u4rw701JM+C1/GzhpwBazCjkbwakldW0hdYOhwlfRFYq5Cj\ndWZd1z4lGJG9lhBo6WrnU6glv5bMLUcmvHU8B8mzfFa0vbZEre5rIxMt/ClrG7yjTC1wwJG8qFEs\n8JAT+TurfDIdK3w/JZuE5tBqo4otJthKeId5LNk1WSKNudVQnwQjm/U+XlISlXUM1r1RfZO9conI\nRHjNScq8n/nMadm8Bnvs99ara9nrTLk9/vi0rOy2JZoMWp3KBQOM7W0VWSnDlFpUqAXJK2lZdsz6\nnc03As0GWDa2hgxr8NorqxytDs4cnQpLxjlwwJA8ec4aRYmWkbza4bKIUrKyeY8tGvNcCy9akjz5\njLcu54zGFrQmxZpsNQRUk4V9B0u2MbBRKymbjL5q5acRgBoDHiVxUiaW5DEE1LtIhCUtEmVqg5av\ndm0dUXumzUWr+QQWa6+8HZ855uSxxN0qR0YWFlFSp5VvJDBR28GRui5H7+bAAUPyvI7OY5g1B2XJ\nJA2wNMyWLDIfZsjqySfH02B7ZtHGLI2jJyLqlUmr0wJZTi3mWXq/GKIZmhqirt3X2lB7ZLOGIb2R\nUK0tMLrPkrxoObHt1ENWWN3WyFyJhtVEGa2yLb9H9UyTTZanx+nKua+W/bdInjbUFwHri7Q6jvgo\nViYJb2TYqtMaWaKEXSvPloEJzTdZiytryonFAUfytJ6Zdb1grGFZJE+L+tRGViQYpZXzkgq8UUV5\ntPJmDJJ34UW0/DYZyfNGZxmywk5mtowd60w8YB1PLcljt87w3sPI4DXYEbKigY2WWSRPK8ex+vNG\n8gosAjqV59h9nnIr0ddoREoO10qZItMDZBrscK2lbxbG9JwNTHhJnGXfmLpn6n1KJvYobe3f//14\nPgyiNqKTvAbwEgPtuYKxcL2m6JYsspGXcy3CZ+UbMTwsKdG2DtGchVVucy688JI8Bk88MZ4GK2OB\n1ZtsEdnTzmsjUgxYYxXtVGjDZXNE8jRZveVWQ1bk7ywxt4iENrQ8ViZW5NtLhtlyq4nkyXOvzZDl\n2aJj6LVXWl2yREs7164xMnvbq0SkU+GVTcrIbrb9d3/nl8MioFZntpO8BvAaoEhEynKK1sILL0kp\niDgPy0BrDUKbl8TK1nK4NnosiAzXymFuOUQV/UyXREQ2i1zUOjhNlu99T89Te0bK7I3oae8aiYBa\n5MKrXxoB3YpInnaU6WyS5FmOTiJiM1gyZrVTLZJnpcvAan9bEcnT2k8tcbfsQUuS520bMp8LLrDz\n9Mpm+QUZ2JkDneQ5SR7TK7KIj6UA0bkXNT0Py8mykSoNkeiQVybWiUQWEGiOjiXo2jESIbAcs1U+\nrFG0MOYYpCyPPDL+rCaLtVBAM9Atyk1et3Sd7ZWzxJeBRcyt6zJvJroZJaBsm9AcHFNurP2R91tH\nOSevpb5Z9p+tY7YtMD5LI3neyLFMfw6S550qw5K8SDuNRvIKpN2bAwccybMUwjJ6TK9IUxZv79ty\nHhI1Q1aWk7UWFrQYrtW+3VvbY7MaL9OYNZIn85IRgK0geQXsJqBaXXvlWE+r4BnPGJfVWnRU5pKx\nhIBxHrULL6JRxkgkz5r3Fm0TbFTOIxvbkfZ2Kphyi7Ztb7mxbW4KbLlsh0hedC6j1TGS+TDtVIO3\nDVi2l9E3C94Rnk7yGoA1QFrFa+lNXfOSPK3CtYaiITJkVaDlLX9nyYqW/hTYPL1DBZahqSF5sjGz\nxEqr0xbDjpZ+WeXEGhwmkieHdC1CXvLWyKFWflKWsXdge+6s42oZyWPJiTfKMwfJk/A6WbbcGKdr\n2RVrGNJqAywhGIM3ysN2vlqQPKv9yPuiNliipb55OxdWW4jUqTUHlA3gdJJXAW/Fs0Nh67AieZos\n2sILtsfGOA/5PTwtmqEZErZRW7JFSJ6Wt3dVGlNOFtjhWm0T1Sg5HgOro1Zk1Bs5tob6xp6xhoE0\nWaxvZlrGtiaSx5Jh1rFFIgRsubFkRSs3ibEyYTtFrLPVbIOmr1P5WvdobcVqnxbJY/yCJmuU5Gnn\nn/40l+/UtWidWnO1LXsw1mZq5+RZxxribsnKDiVLPeskrwLeyAobKl6Ht+duKUCRWTo6K9+xxiG3\nTPFOhLfIH0tWIr1yLS/v59+2guSxvU0JJqIz95w8dkiUWXjBRgik7lt1LBEZBmI7Y+yxZm6Zd7g2\n2vGZc7jWiihbBFU+L8+ZToWEVUoeigAAE2tJREFUd7iW7fxHCIHMOzonT95/4YVcflPXop2KI44Y\n/521b5FOhTZ1gSXsbCQvMnVGG67V9KlH8hqAjWZoJI/psbWK5Mlj+ZwSa1DGlFI6Yu9kYKsBRSOg\nTK9cKxeW5LERqZbDtdacPMt5FKNZwDhdTd+ic/LYqM+YY2Ac85jMLMljt1BhIgRWhNw6Wp0JLR+G\n5EWdrnVsOVWhwCKarB7KupXnjL5JeCNUmsza8568ve2PJTHy82+MP/K2U012LRDB2t6aSJ4V7Z8j\nksfaRKsO5X2d5FWAnfjIOrYxsITGchJaJM9yRjKfdUiSZ0UqpYzsQoLIMJB1j2WALZk059uC5Mke\nW6tInmzsjBG0yk2mZRmgIoPl3GuGayUskme1U7mKtyaSV2AtdpBtpIbkWbIWsKREaytsVM4jr9bR\nsZyuFg3XZGk5XMtGf2oieewClWiEXSs3huTJa2NR+TEZZB6svSuomTcuZdL0jCV7cyy80Dr/Mu9j\njx2/PgcOOJLn7Y1b52Ng7lnPWzo4qwFpiJA87f3YyArb02XKRDNObJ1Zw0IFEZLHDp/Vrq6VYBq/\nVQcWWdHKzTLIjNOtJXlyla1WHiefPJ7eOrwrJNmFGPIbqxHd1/KWiBJ3LZLHEF82+mcRdEv3LbLC\n6JuEpn/sVj01UR+2/bDtkSUnc0TyNFkskifRYjpK+Z0lmFodb2K41upI9zl5DeCN5EUK2+s8tN63\nRfoiBs1r1LUoRW0kL0JWZDlovSOtt6Q15si8S+/qWq2HZpWbVgZjeWvPaEbR28Fhv1k6lbe2ulbK\nxnZ0tPYpV+NGInns3FntuoaWkTyZhrXQx2oLLebkFViREylL+YqOfF47Z+bxMls1AcCznjUuk2ab\nJRjibum+Fj3Tykv7SolVBkwkj5335iV5lk0Zqx+2U8FGjLWO+BwLLywbodm5TvIqYO27JSuhKEAB\n0yuPRDzW89bInXfhRVnpJNNnZJFpekmeFc2IkDxZR6WcpQEuDp6NXrSM5LFGjyXs8npkKxDNsFod\nHC/JG3NSVoRAe2+rh2tF8iyCANjlJmX1Rgo0WA51DGxHxCqnTQ7XynOLJEtizpATCxYxLGlq3/SN\ndmLH2oJVh08/PS6rVm4aybNsLVOn3gVSmr3TOpRavkwkT4PVPjUCpfmFFpE8y+53kjcDvCTPKmyG\n5DGOev06G8mzjIactB8hCAXe4VppsCUYg20Zq2JINZLHRvIYQ8P2QNnhWk3/rE4FQ1Yso94qkjfH\nnDwtkqd1dFhyHCk36aijex5asjDOw3qGjeTJIzsnl8nbAhthKbDOZVtZz0O7x4oCWZEqLR1ZjpKw\nAf5InmZTtM6uBobkSXlZkifLzRvxZGyINxBRytEqN2kHvSNwDKxhbe28k7wKWM63RSQv2rPyRvKe\nesqXzxi8u4mzkTzLuDINyHpGkrwik0XyrHmJNQsvSl4lj1IOxYhaJM9aTVtD1Ass46fpjaUrjNPV\nhqS057Q2IA30o49O5ztWblZnTCMVbLRHAxPJi7TldRnZxUiRDk+EGK5fZ4mUtehoTN8k2OFa7zCj\nZSPGSJ6lb2PPAPZwrZVPhOTJdqrZKxkBLeWoDYFasjL3WDoq58Fp9i0SxbagdRylDLt2Dc+14Mkc\n2O9JnhXJ08KrBRECwBBDQG/EmnHTjEIBs+UAq9gayStDwjIdmbeUNUJANaMoy00O18rrLUmdlkYh\n4KW8yuopi+RZBrlmyL3Auy0Om0/Z4mcKVr2zkTxZ/qecMjxnys3bTrVy0+YCsbK0nFvGdl7l/Vq6\nYzYm6hylXStEgo2Wyd/lViFjYKcLaBFQrdxYorEOSZxkJ50dHdAiUlo+DMmTeOKJ4bmmV1pEyhrJ\nKWBssTeqZUWxWZLHtFN5TbYnzadb88g7yasAu39ZgaxoafTGKiNK8rS8i8wl70KspJF47LHx5zW5\ntGvrsJyu1phl3lbUceyataef1vuRvcsCjSBEohfs0KXs2WpzVwpakDw24mZF8mTe3mGhsTQsg82S\nPPnO1kKLFmRFM8RaeRZ4F3is51XQKpInIRc7MCTP20nSnOxxxw3PreHyCMljy1GrQ/kFBw1MREq+\njyRSMg2tI1h0XZuTJ9Nh5jbKZ0qkScoit1PSInla3Vi6P1aOMq0nn5xOw7Jrmg5YsjBtUMqq6b62\ngIwdDajBrCQvpXRJSunelNIXUkq/ptzzR8vfP5tSOtd6NqV0TErptpTSfSmlj6SUdo2lW6AVMktW\npIKNwTsMpCm+VEpr3sfznjc8Z3r/Mk2NWFmRPNmDkedMJM9yjprxkg5NGh45VKoZ0wKmnKS+aAZC\nm6tS8pRfIGF1Y+oaS1akA7MIQWQlpoSlFwVekmdNq5CdDMDWfSuSV+rQiuR95zvDcyZC4CV5JQ1t\nYrdcCKWly8wtq43kyXaqlZvVoR4brvXOT5VpaSTPqjNmNMAanmVtjBzqs8gJE2SQaUjyLyN0Rae9\nkTxvRBTY1z5/61vDc60z4J2OIvOWvp4ZqdAieXL0zZpOMWavWmE2kpdSOgjAfwZwCYAXArgipXSW\nuOdSAKflnE8H8AYA/5V49moAt+WcXwDg9uU5Ic/iqBmcAisixURWLCMolUeLZli9bDmfK9LzkO/H\nkjyZjjVc65mLsWfPHgD7NmYZtdAieVbeRx01PG9J8rRpAEXGE04YPmfVmSSFU3lrKOVWnIU0zNFI\nnjbXp9Tfel4FMprBRvJkm7GiFQxZsUheybsQJmuz3wL5vWiGuFvDtdIBycixbBNFZiuyOj7tYM/g\nmkXmNVJh2Vwrki9/bxHJs6KxWiQvQnQtEmt1Pgs8kbw9e/bsoyuR0SfZbq1IXpHROwQ61hZk3tJH\naQEEbToFGwFtSfJKnsV+W5F22TFsiTkjeS8FcH/O+Us556cA3AjgteKeywD8NwDIOX8CwK6U0nHG\ns99/Znn8Z4wwcgJk6bnISpJGQirYWGTPUhbLSLKRPCssz0TLZI9NW8avzR3QyLFVbtK5j6VhkTwt\nb3ndmlRsEbZ1WQrk9jTe/QflMG6BVYdjjd/7FRNJTgq0j4uz6Y7p21NPTZM8a2d9rTyk3lqyjPWM\nvaSiyHLkkcNzbfuNAql/Whsby6uAJQiSrJS0S91KW2R1Khb57Blcs4Z4NRxzzOJYyqscZeeiQNaH\n1H1m4QU7t1Hb+qPIaA0RMmUgSZs3kleIuiwvi+R9+9vD35lIntU2tO2rLCJlzRNnSB47B7EcS3v1\nRvKkzRiLTnpHFIoeWVM8ZMewJYhmE8bzAHxl7fwBAC8j7nkegBMmnj025/zw8v+HARzLCCN7uMVw\nWYZeNnY5d+Goo/Rej4YyN6VAm1cjFeq5zx2eS+Jh9SZf/GLgtYJmW5v8FkW3PrFmDZNcdhlw332r\nc1mOwL51YZEzOR9Ei+T90A8Nz885Z3jOzEN69rOH58WQaLIWlKhhKQ/53paxPfrofdOUPUxtfzct\nj6I3cmhK5l2cdIHVVsbukbJoUVQt8llgESVmuPb446dllWmUSHlpl895zvBci/pIPWV66dIZrkfp\nzz8feMUrhr/LzliRoTiLcm6RPGv188UXA2ecMZ53gdWhKW1Hkj2LWOzePZ7uFKTeyLYv9ay0Hbl4\nS7YxZsh9HYcfDpx77vCaNVQu9abYChnJszp5L3oRcOedq3MmMGG1HzlSUd5/LO/1tKyRsDH9szrh\n2nzvYivLUZI871xGZghV6pu0mdKGSD3bBOYkeWR/D8zrprH0cs45pWTmc/XV+P5qvF27gC9/eVXI\nu3cDz3/+6l5pFH72Z4fnN988nCNwyy37OqB1Z3LddcBFF63On3hiOF/mx34MeMELFv9L43jaacN0\nf/mXgR//8dX5r/wK8NKXrs5POgm4667V+a//+lAJ138DgLe/fV/SVwxLSgtDVQz0c54DfPjDq/vO\nOQe49trVeXGABZddBuzduzr//d8f/v6xj+073Hziiav/jz12WG633w5ccMHq/E1vWpWPnCd4rKD9\nl18OvPKVq/Nf+iXg9a9fnZ9//rDB//RPL8qyYO/e4TDrO96xeL91yDzLux13HPCJT6yun3km8JW1\n7st6PgDwEz8BfPKTq/Pbbx8a6Y99bEgwzz4beJnoOr3whav/b74ZeNWrVuef/zxw+umL/yXZW28H\nwEK/Lr98df7Wty50sOCVrwT+5m9W52ecsUobAG66aWH0C/buBX74h4d5nHnm8LwYwec+d1hOP/mT\nwN13r87PPnv43Hq+APC+9wFf//rq/AtfGDruV796qBPAsPN1333D9vfNb66+klDqtujbD/7gMJ03\nvnGoD9ddt7BBBb/xG8C9967OjzkGOPXU1fkddwzr4o47sA/OOmt4Xtr56acP2+WllwIf+cjq/IIL\ngAsvXJ2ffPLQMX3oQ8C73rU6v+22YT6/9Vv7kpf1d/3t3wZe/vLV+Uc/urIhRx65KDstOnvZZcBn\nP7s6v/bahQ0ruP76RT0WnHbakIC+971De7h37/D344/fV2+KLT7xxKFdvvBC4ItfXJ1feeWwg3Lq\nqcDHP746/+AHFzpS8OCDw074FVfs60vWfc1RRw3bxqc+tbKpu3YBv/u7+w4pr8u2bn/f9jbgD/5g\ndf47vwM8/vjq/IwzhvO5zz9/6Af+8i+Hdfy2tw1tMbBqA7ITes45Q1v6hjdgsBL+JS9ZvFvBb/7m\nkHzt3TtM8z3vAc47b5iHtJkl/R/4gWFaJ5wA/MVfrAiWlPWiixb1VHDDDcOtmW68cejrTzppESgp\nOOKIhV0qeOihYZ0+9NDKpsipHzJo8DM/s9Dndf1thZTZ2Ls34ZTOB3BNzvmS5fmbAfy/nPPvrd3z\nxwD25JxvXJ7fC+AVAE7Rnl3ec2HO+asppeMBfDTnLFwFwJC/jo6Ojo6Ojo7tgpxz0zjfnJG8TwE4\nPaW0G8BDAF4H4Apxzy0ArgJw45IUPpZzfjil9LWJZ28B8C8B/N7yePNY5q0LqqOjo6Ojo6NjJ2E2\nkpdzfjqldBWAPwdwEIB355w/l1L6xeXv1+ecb00pXZpSuh/AtwFcOfXsMum3ArgppfSvAXwJgAiC\nd3R0dHR0dHR0zDZc29HR0dHR0dHRsXWYdTPkrQCzAXPHZpFSOiml9NGU0t+mlPamlP7N8rq6sXVK\n6c3LOrw3pfSqtevnpZTuXv72n7bifQ5UpJQOSil9JqX0oeV5r78dgJTSrpTSn6WUPpdSuiel9LJe\ndzsHKaV/t7Sbd6eU3p9SOrTX3/ZFSuk9KaWHU0p3r11rVl/L+v/T5fW/SimdPClQznm/+cNiaPd+\nALsBHALgLgBnbbVcB/ofgOMAvGT5/5EAPg/gLAD/AcCbltd/DcBbl/+/cFl3hyzr8n6sos6fBPDS\n5f+3Arhkq9/vQPkD8O8BvA/ALcvzXn874A+L/UT/1fL/gwEc3etuZ/xhsaXY/wZw6PL8T7GYi97r\nb5v+AXg5gHMB3L12rVl9AXgjgP+y/P91AG6ckmd/i+QxGzB3bBg556/mnO9a/v8tAJ/DwnhpG1u/\nFsAHcs5P5Zy/hIXiv2y5mvpZOeeyych7QW6G3VGHlNKJAC4F8C6stj3q9bfNkVI6GsDLc87vARbz\nnXPO30Cvu52EgwEcnlI6GMDhWCxG7PW3TZFz/jiA/ysut6yv9bT+O4C1jVz2xf5G8rTNlTu2CZYr\nps8F8AnoG1ufgEXdFaxvkr1+/UH0+t0U/hDArwJY30K019/2xykAHk0p/UlK6c6U0jtTSkeg192O\nQM75QQD/EcD/wYLcPZZzvg29/nYaWtbX93lOzvlpAN9IKYltmFfY30heX0WyjZFSOhKLnse/zTk/\nvv5bXsSee/1tQ6SUXgPgkZzzZ6BsXt7rb9viYAA/isXwzo9isYvB4Hvfve62L1JKz8YicrMbC8d/\nZErpX6zf0+tvZ2HT9bW/kbwHAazvh30Shmy4Y4uQUjoEC4J3Q8657G34cFp8qxjL8PQjy+uyHk/E\noh4fXP6/fn1tz/KOmfCPAVyWUvoigA8AuCildAN6/e0EPADggZzzXy/P/wwL0vfVXnc7AhcD+GLO\n+WvLqM3/APCP0Otvp6GFrXxg7ZnnL9M6GMDROee17/sMsb+RvO9vwJxSegYWkxJv2WKZDniklBKA\ndwO4J+f89rWfysbWwHBj61sAXJ5SekZK6RQApwP4ZM75qwC+uVwdmAD8HJTNsDvaIef8lpzzSTnn\nUwBcDuB/5Zx/Dr3+tj2WZf6VlNLy44m4GMDfAvgQet3tBHwZwPkppcOW5X4xgHvQ62+noYWt/OBI\nWv8cwO2TOW/1SpTWfwD+KRarN+8H8Oatlqf/ZQD4J1jM5boLwGeWf5cAOAbA/wRwH4CPANi19sxb\nlnV4L4BXr10/D8Ddy9/+aKvf7UD7w+Kzg2V1ba+/HfAH4MUA/hrAZ7GIBB3d627n/AG4BovFandj\nMeH+kF5/2/cPi9GOhwA8icXcuStb1heAQwHcBOALAP4KwO4pefpmyB0dHR0dHR0d+yH2t+Hajo6O\njo6Ojo4OdJLX0dHR0dHR0bFfopO8jo6Ojo6Ojo79EJ3kdXR0dHR0dHTsh+gkr6Ojo6Ojo6NjP0Qn\neR0dHR0dHR0d+yE6yevo6Ojo6Ojo2A/RSV5HR0dHR0dHx36I/w+va8ur+3cVTAAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1353179d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,10))\n", "plt.plot(evo_01(beta_r,10000,1))\n", "plt.ylabel(\"1,2 element\")" ] }, { "cell_type": "code", "execution_count": 256, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 0.56206046+0.81906661j, -0.09061432-0.07075996j])" ] }, "execution_count": 256, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.dot(evo(beta_r,5000,1),np.array([1,0]))" ] }, { "cell_type": "code", "execution_count": 257, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[ 0.56206046+0.81906661j, 0.09061432-0.07075996j],\n", " [-0.09061432-0.07075996j, 0.56206046-0.81906661j]])" ] }, "execution_count": 257, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evo(beta_r,5000,1)" ] }, { "cell_type": "code", "execution_count": 258, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([[-0.45279719+0.j, 0.00967713+0.j],\n", " [ 0.00967713+0.j, 0.45279719+0.j]])" ] }, "execution_count": 258, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hamil(beta_r,1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
trangel/Data-Science
deep_learning_ai/Tensorflow+Tutorial+dropout.ipynb
1
96963
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# TensorFlow Tutorial\n", "\n", "Welcome to this week's programming assignment. Until now, you've always used numpy to build neural networks. Now we will step you through a deep learning framework that will allow you to build neural networks more easily. Machine learning frameworks like TensorFlow, PaddlePaddle, Torch, Caffe, Keras, and many others can speed up your machine learning development significantly. All of these frameworks also have a lot of documentation, which you should feel free to read. In this assignment, you will learn to do the following in TensorFlow: \n", "\n", "- Initialize variables\n", "- Start your own session\n", "- Train algorithms \n", "- Implement a Neural Network\n", "\n", "Programing frameworks can not only shorten your coding time, but sometimes also perform optimizations that speed up your code. \n", "\n", "## 1 - Exploring the Tensorflow Library\n", "\n", "To start, you will import the library:\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import math\n", "import numpy as np\n", "import h5py\n", "import matplotlib.pyplot as plt\n", "import tensorflow as tf\n", "from tensorflow.python.framework import ops\n", "from tf_utils import load_dataset, random_mini_batches, convert_to_one_hot, predict\n", "\n", "%matplotlib inline\n", "np.random.seed(1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that you have imported the library, we will walk you through its different applications. You will start with an example, where we compute for you the loss of one training example. \n", "$$loss = \\mathcal{L}(\\hat{y}, y) = (\\hat y^{(i)} - y^{(i)})^2 \\tag{1}$$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "9\n" ] } ], "source": [ "y_hat = tf.constant(36, name='y_hat') # Define y_hat constant. Set to 36.\n", "y = tf.constant(39, name='y') # Define y. Set to 39\n", "\n", "loss = tf.Variable((y - y_hat)**2, name='loss') # Create a variable for the loss\n", "\n", "init = tf.global_variables_initializer() # When init is run later (session.run(init)),\n", " # the loss variable will be initialized and ready to be computed\n", "with tf.Session() as session: # Create a session and print the output\n", " session.run(init) # Initializes the variables\n", " print(session.run(loss)) # Prints the loss" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Writing and running programs in TensorFlow has the following steps:\n", "\n", "1. Create Tensors (variables) that are not yet executed/evaluated. \n", "2. Write operations between those Tensors.\n", "3. Initialize your Tensors. \n", "4. Create a Session. \n", "5. Run the Session. This will run the operations you'd written above. \n", "\n", "Therefore, when we created a variable for the loss, we simply defined the loss as a function of other quantities, but did not evaluate its value. To evaluate it, we had to run `init=tf.global_variables_initializer()`. That initialized the loss variable, and in the last line we were finally able to evaluate the value of `loss` and print its value.\n", "\n", "Now let us look at an easy example. Run the cell below:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Tensor(\"Mul:0\", shape=(), dtype=int32)\n" ] } ], "source": [ "a = tf.constant(2)\n", "b = tf.constant(10)\n", "c = tf.multiply(a,b)\n", "print(c)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, you will not see 20! You got a tensor saying that the result is a tensor that does not have the shape attribute, and is of type \"int32\". All you did was put in the 'computation graph', but you have not run this computation yet. In order to actually multiply the two numbers, you will have to create a session and run it." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "20\n" ] } ], "source": [ "sess = tf.Session()\n", "print(sess.run(c))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Great! To summarize, **remember to initialize your variables, create a session and run the operations inside the session**. \n", "\n", "Next, you'll also have to know about placeholders. A placeholder is an object whose value you can specify only later. \n", "To specify values for a placeholder, you can pass in values by using a \"feed dictionary\" (`feed_dict` variable). Below, we created a placeholder for x. This allows us to pass in a number later when we run the session. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6\n" ] } ], "source": [ "# Change the value of x in the feed_dict\n", "\n", "x = tf.placeholder(tf.int64, name = 'x')\n", "print(sess.run(2 * x, feed_dict = {x: 3}))\n", "sess.close()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When you first defined `x` you did not have to specify a value for it. A placeholder is simply a variable that you will assign data to only later, when running the session. We say that you **feed data** to these placeholders when running the session. \n", "\n", "Here's what's happening: When you specify the operations needed for a computation, you are telling TensorFlow how to construct a computation graph. The computation graph can have some placeholders whose values you will specify only later. Finally, when you run the session, you are telling TensorFlow to execute the computation graph." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.1 - Linear function\n", "\n", "Lets start this programming exercise by computing the following equation: $Y = WX + b$, where $W$ and $X$ are random matrices and b is a random vector. \n", "\n", "**Exercise**: Compute $WX + b$ where $W, X$, and $b$ are drawn from a random normal distribution. W is of shape (4, 3), X is (3,1) and b is (4,1). As an example, here is how you would define a constant X that has shape (3,1):\n", "```python\n", "X = tf.constant(np.random.randn(3,1), name = \"X\")\n", "\n", "```\n", "You might find the following functions helpful: \n", "- tf.matmul(..., ...) to do a matrix multiplication\n", "- tf.add(..., ...) to do an addition\n", "- np.random.randn(...) to initialize randomly\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# GRADED FUNCTION: linear_function\n", "\n", "def linear_function():\n", " \"\"\"\n", " Implements a linear function: \n", " Initializes W to be a random tensor of shape (4,3)\n", " Initializes X to be a random tensor of shape (3,1)\n", " Initializes b to be a random tensor of shape (4,1)\n", " Returns: \n", " result -- runs the session for Y = WX + b \n", " \"\"\"\n", " \n", " np.random.seed(1)\n", " \n", " ### START CODE HERE ### (4 lines of code)\n", " X = tf.constant(np.random.randn(3,1), name = 'X')\n", " W = tf.constant(np.random.randn(4,3), name = 'W')\n", " b = tf.constant(np.random.randn(4,1), name = 'b')\n", " Y = tf.constant(np.random.randn(4,1), name = 'Y')\n", " ### END CODE HERE ### \n", " \n", " # Create the session using tf.Session() and run it with sess.run(...) on the variable you want to calculate\n", " \n", " ### START CODE HERE ###\n", " sess = tf.Session()\n", " result = sess.run(tf.add(tf.matmul(W,X),b))\n", " ### END CODE HERE ### \n", " \n", " # close the session \n", " sess.close()\n", "\n", " return result" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "result = [[-2.15657382]\n", " [ 2.95891446]\n", " [-1.08926781]\n", " [-0.84538042]]\n" ] } ], "source": [ "print( \"result = \" + str(linear_function()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*** Expected Output ***: \n", "\n", "<table> \n", "<tr> \n", "<td>\n", "**result**\n", "</td>\n", "<td>\n", "[[-2.15657382]\n", " [ 2.95891446]\n", " [-1.08926781]\n", " [-0.84538042]]\n", "</td>\n", "</tr> \n", "\n", "</table> " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.2 - Computing the sigmoid \n", "Great! You just implemented a linear function. Tensorflow offers a variety of commonly used neural network functions like `tf.sigmoid` and `tf.softmax`. For this exercise lets compute the sigmoid function of an input. \n", "\n", "You will do this exercise using a placeholder variable `x`. When running the session, you should use the feed dictionary to pass in the input `z`. In this exercise, you will have to (i) create a placeholder `x`, (ii) define the operations needed to compute the sigmoid using `tf.sigmoid`, and then (iii) run the session. \n", "\n", "** Exercise **: Implement the sigmoid function below. You should use the following: \n", "\n", "- `tf.placeholder(tf.float32, name = \"...\")`\n", "- `tf.sigmoid(...)`\n", "- `sess.run(..., feed_dict = {x: z})`\n", "\n", "\n", "Note that there are two typical ways to create and use sessions in tensorflow: \n", "\n", "**Method 1:**\n", "```python\n", "sess = tf.Session()\n", "# Run the variables initialization (if needed), run the operations\n", "result = sess.run(..., feed_dict = {...})\n", "sess.close() # Close the session\n", "```\n", "**Method 2:**\n", "```python\n", "with tf.Session() as sess: \n", " # run the variables initialization (if needed), run the operations\n", " result = sess.run(..., feed_dict = {...})\n", " # This takes care of closing the session for you :)\n", "```\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# GRADED FUNCTION: sigmoid\n", "\n", "def sigmoid(z):\n", " \"\"\"\n", " Computes the sigmoid of z\n", " \n", " Arguments:\n", " z -- input value, scalar or vector\n", " \n", " Returns: \n", " results -- the sigmoid of z\n", " \"\"\"\n", " \n", " ### START CODE HERE ### ( approx. 4 lines of code)\n", " # Create a placeholder for x. Name it 'x'.\n", " x = tf.placeholder(tf.float32, name='x')\n", "\n", " # compute sigmoid(x)\n", " sigmoid = tf.sigmoid(x)\n", "\n", " # Create a session, and run it. Please use the method 2 explained above. \n", " # You should use a feed_dict to pass z's value to x. \n", " with tf.Session() as sess:\n", " # Run session and call the output \"result\"\n", " result = sess.run(sigmoid, feed_dict = {x: z})\n", " \n", " ### END CODE HERE ###\n", " \n", " return result" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "sigmoid(0) = 0.5\n", "sigmoid(12) = 0.999994\n" ] } ], "source": [ "print (\"sigmoid(0) = \" + str(sigmoid(0)))\n", "print (\"sigmoid(12) = \" + str(sigmoid(12)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*** Expected Output ***: \n", "\n", "<table> \n", "<tr> \n", "<td>\n", "**sigmoid(0)**\n", "</td>\n", "<td>\n", "0.5\n", "</td>\n", "</tr>\n", "<tr> \n", "<td>\n", "**sigmoid(12)**\n", "</td>\n", "<td>\n", "0.999994\n", "</td>\n", "</tr> \n", "\n", "</table> " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<font color='blue'>\n", "**To summarize, you how know how to**:\n", "1. Create placeholders\n", "2. Specify the computation graph corresponding to operations you want to compute\n", "3. Create the session\n", "4. Run the session, using a feed dictionary if necessary to specify placeholder variables' values. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.3 - Computing the Cost\n", "\n", "You can also use a built-in function to compute the cost of your neural network. So instead of needing to write code to compute this as a function of $a^{[2](i)}$ and $y^{(i)}$ for i=1...m: \n", "$$ J = - \\frac{1}{m} \\sum_{i = 1}^m \\large ( \\small y^{(i)} \\log a^{ [2] (i)} + (1-y^{(i)})\\log (1-a^{ [2] (i)} )\\large )\\small\\tag{2}$$\n", "\n", "you can do it in one line of code in tensorflow!\n", "\n", "**Exercise**: Implement the cross entropy loss. The function you will use is: \n", "\n", "\n", "- `tf.nn.sigmoid_cross_entropy_with_logits(logits = ..., labels = ...)`\n", "\n", "Your code should input `z`, compute the sigmoid (to get `a`) and then compute the cross entropy cost $J$. All this can be done using one call to `tf.nn.sigmoid_cross_entropy_with_logits`, which computes\n", "\n", "$$- \\frac{1}{m} \\sum_{i = 1}^m \\large ( \\small y^{(i)} \\log \\sigma(z^{[2](i)}) + (1-y^{(i)})\\log (1-\\sigma(z^{[2](i)})\\large )\\small\\tag{2}$$\n", "\n" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# GRADED FUNCTION: cost\n", "\n", "def cost(logits, labels):\n", " \"\"\"\n", "    Computes the cost using the sigmoid cross entropy\n", "    \n", "    Arguments:\n", "    logits -- vector containing z, output of the last linear unit (before the final sigmoid activation)\n", "    labels -- vector of labels y (1 or 0) \n", " \n", " Note: What we've been calling \"z\" and \"y\" in this class are respectively called \"logits\" and \"labels\" \n", " in the TensorFlow documentation. So logits will feed into z, and labels into y. \n", "    \n", "    Returns:\n", "    cost -- runs the session of the cost (formula (2))\n", " \"\"\"\n", " \n", " ### START CODE HERE ### \n", " \n", " # Create the placeholders for \"logits\" (z) and \"labels\" (y) (approx. 2 lines)\n", " z = tf.placeholder(tf.float32, name='logits')\n", " y = tf.placeholder(tf.float32, name='labels')\n", " \n", " # Use the loss function (approx. 1 line)\n", " cost = tf.nn.sigmoid_cross_entropy_with_logits(logits = z, labels = y)\n", " \n", " # Create a session (approx. 1 line). See method 1 above.\n", " sess = tf.Session()\n", " \n", " # Run the session (approx. 1 line).\n", " cost = sess.run(cost, feed_dict = {z:logits, y:labels})\n", " \n", " # Close the session (approx. 1 line). See method 1 above.\n", " sess.close()\n", " \n", " ### END CODE HERE ###\n", " \n", " return cost" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cost = [ 1.00538719 1.03664088 0.41385433 0.39956614]\n" ] } ], "source": [ "logits = sigmoid(np.array([0.2,0.4,0.7,0.9]))\n", "cost = cost(logits, np.array([0,0,1,1]))\n", "print (\"cost = \" + str(cost))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "** Expected Output** : \n", "\n", "<table> \n", " <tr> \n", " <td>\n", " **cost**\n", " </td>\n", " <td>\n", " [ 1.00538719 1.03664088 0.41385433 0.39956614]\n", " </td>\n", " </tr>\n", "\n", "</table>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.4 - Using One Hot encodings\n", "\n", "Many times in deep learning you will have a y vector with numbers ranging from 0 to C-1, where C is the number of classes. If C is for example 4, then you might have the following y vector which you will need to convert as follows:\n", "\n", "\n", "<img src=\"images/onehot.png\" style=\"width:600px;height:150px;\">\n", "\n", "This is called a \"one hot\" encoding, because in the converted representation exactly one element of each column is \"hot\" (meaning set to 1). To do this conversion in numpy, you might have to write a few lines of code. In tensorflow, you can use one line of code: \n", "\n", "- tf.one_hot(labels, depth, axis) \n", "\n", "**Exercise:** Implement the function below to take one vector of labels and the total number of classes $C$, and return the one hot encoding. Use `tf.one_hot()` to do this. " ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# GRADED FUNCTION: one_hot_matrix\n", "\n", "def one_hot_matrix(labels, C):\n", " \"\"\"\n", " Creates a matrix where the i-th row corresponds to the ith class number and the jth column\n", " corresponds to the jth training example. So if example j had a label i. Then entry (i,j) \n", " will be 1. \n", " \n", " Arguments:\n", " labels -- vector containing the labels \n", " C -- number of classes, the depth of the one hot dimension\n", " \n", " Returns: \n", " one_hot -- one hot matrix\n", " \"\"\"\n", " \n", " ### START CODE HERE ###\n", " \n", " # Create a tf.constant equal to C (depth), name it 'C'. (approx. 1 line)\n", " C = tf.constant(C, name='C')\n", " \n", " # Use tf.one_hot, be careful with the axis (approx. 1 line)\n", " one_hot_matrix = tf.one_hot(labels, C, axis=0)\n", " \n", " # Create the session (approx. 1 line)\n", " sess = tf.Session()\n", " \n", " # Run the session (approx. 1 line)\n", " one_hot = sess.run(one_hot_matrix)\n", " \n", " # Close the session (approx. 1 line). See method 1 above.\n", " sess.close()\n", " \n", " ### END CODE HERE ###\n", " \n", " return one_hot" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "one_hot = [[ 0. 0. 0. 1. 0. 0.]\n", " [ 1. 0. 0. 0. 0. 1.]\n", " [ 0. 1. 0. 0. 1. 0.]\n", " [ 0. 0. 1. 0. 0. 0.]]\n" ] } ], "source": [ "labels = np.array([1,2,3,0,2,1])\n", "one_hot = one_hot_matrix(labels, C = 4)\n", "print (\"one_hot = \" + str(one_hot))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Expected Output**: \n", "\n", "<table> \n", " <tr> \n", " <td>\n", " **one_hot**\n", " </td>\n", " <td>\n", " [[ 0. 0. 0. 1. 0. 0.]\n", " [ 1. 0. 0. 0. 0. 1.]\n", " [ 0. 1. 0. 0. 1. 0.]\n", " [ 0. 0. 1. 0. 0. 0.]]\n", " </td>\n", " </tr>\n", "\n", "</table>\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1.5 - Initialize with zeros and ones\n", "\n", "Now you will learn how to initialize a vector of zeros and ones. The function you will be calling is `tf.ones()`. To initialize with zeros you could use tf.zeros() instead. These functions take in a shape and return an array of dimension shape full of zeros and ones respectively. \n", "\n", "**Exercise:** Implement the function below to take in a shape and to return an array (of the shape's dimension of ones). \n", "\n", " - tf.ones(shape)\n" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# GRADED FUNCTION: ones\n", "\n", "def ones(shape):\n", " \"\"\"\n", " Creates an array of ones of dimension shape\n", " \n", " Arguments:\n", " shape -- shape of the array you want to create\n", " \n", " Returns: \n", " ones -- array containing only ones\n", " \"\"\"\n", " \n", " ### START CODE HERE ###\n", " \n", " # Create \"ones\" tensor using tf.ones(...). (approx. 1 line)\n", " ones = tf.ones(shape)\n", " \n", " # Create the session (approx. 1 line)\n", " sess = tf.Session()\n", " \n", " # Run the session to compute 'ones' (approx. 1 line)\n", " ones = sess.run(ones)\n", " \n", " # Close the session (approx. 1 line). See method 1 above.\n", " sess.close()\n", " \n", " ### END CODE HERE ###\n", " return ones" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ones = [ 1. 1. 1.]\n" ] } ], "source": [ "print (\"ones = \" + str(ones([3])))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Expected Output:**\n", "\n", "<table> \n", " <tr> \n", " <td>\n", " **ones**\n", " </td>\n", " <td>\n", " [ 1. 1. 1.]\n", " </td>\n", " </tr>\n", "\n", "</table>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 2 - Building your first neural network in tensorflow\n", "\n", "In this part of the assignment you will build a neural network using tensorflow. Remember that there are two parts to implement a tensorflow model:\n", "\n", "- Create the computation graph\n", "- Run the graph\n", "\n", "Let's delve into the problem you'd like to solve!\n", "\n", "### 2.0 - Problem statement: SIGNS Dataset\n", "\n", "One afternoon, with some friends we decided to teach our computers to decipher sign language. We spent a few hours taking pictures in front of a white wall and came up with the following dataset. It's now your job to build an algorithm that would facilitate communications from a speech-impaired person to someone who doesn't understand sign language.\n", "\n", "- **Training set**: 1080 pictures (64 by 64 pixels) of signs representing numbers from 0 to 5 (180 pictures per number).\n", "- **Test set**: 120 pictures (64 by 64 pixels) of signs representing numbers from 0 to 5 (20 pictures per number).\n", "\n", "Note that this is a subset of the SIGNS dataset. The complete dataset contains many more signs.\n", "\n", "Here are examples for each number, and how an explanation of how we represent the labels. These are the original pictures, before we lowered the image resolutoion to 64 by 64 pixels.\n", "<img src=\"images/hands.png\" style=\"width:800px;height:350px;\"><caption><center> <u><font color='purple'> **Figure 1**</u><font color='purple'>: SIGNS dataset <br> <font color='black'> </center>\n", "\n", "\n", "Run the following code to load the dataset." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Loading the dataset\n", "X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Change the index below and run the cell to visualize some examples in the dataset." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "y = 5\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztfWuMXdd13rfucx6cIWdIiiJF6mU9bFnPmJHt2nUUyzbk\nRywUBYwYSKEWBvQnLRw0RSy3QIEUKKCiQJD+KAoIjRsBceO6SRwJhpFUZiw0bvyibMvWwzQlmRJJ\nkRySQ3Je9312f8ydu9da5+49594Z3kvhrA8gZ5+799lnn33Pvmetvdb6FjnnYDAY8ofCuAdgMBjG\nA1v8BkNOYYvfYMgpbPEbDDmFLX6DIaewxW8w5BS2+A2GnGJLi5+IHiGiY0T0GhE9sV2DMhgMVx80\nrJMPERUB/BLAxwGcAvAjAJ93zr2yfcMzGAxXC6UtnPsggNecc28AABF9DcCjAIKLf35+zh284YYt\nXBIgytxyS9fZvi6zn8Rbxn6SY+2yT89VmJ9rHkN6s15lJ1jefdZnIFR78uRpLC4uZvpyt7L4bwBw\nkh2fAvD+2AkHb7gB3/rr/71+oB++jE80RR9aytSOiGk7qWFQuI716cLN5JeZGgcFynJK5BTE2lGk\nZRhyXOHvggKfp/qLHLvYoCJPuKjKKKGmWrlobbY+s0rHmdvpw6RXji9+9vy5RNS4butHPvlotjFg\nBBt+RPQ4ER0loqOLi4tX+3IGgyEjtvLmPw3gEDs+2P1MwDn3FICnAODee+7WL6oeiP3Mucirn/+4\nxt7u6R5YH6yW1O+fFMEoWMcP0m+2rO9fOUoXekWqj7dfCo3MN/90AB2DNxXf2QCjyAoXORoXolOV\nmgT/DA69BzfEOVt58/8IwO1EdAsRVQD8NoBnt9CfwWAYIYZ+8zvn2kT0LwH8LYAigK84517etpEZ\nDIariq2I/XDOfQvAt7ZpLAaDYYTY0uLfGrSmFt59lnq46/u5Po8imiBF91S5vit3VEls8Qe35sUH\nqd6z7lMQv5dYQ1WVbdsgbkoMKOnp2xxg+z/DdePov2eT7jTrnYb3W9KWi2wGuCRYE7/vUJ3ecwob\nBfvtk20Oc+81GHIKW/wGQ04xRrE/IrZEReOwHJrVaU1cawCbjEN/0TB+WdWHy3af8rrxPrPUpG8z\nJkL2P0gPN6KCRUXx/g0HEXM37y19VtzfJ6ZOZr1eWD2I3QkFHseYKL8dBk178xsMOYUtfoMhp7DF\nbzDkFCPX+TdU3pi6q10cpXlsiL0BRHRhytYuhqwReOkTh9y0iGmQYbtR5NKxMKJY19z0qfsYfCbj\nJjwXqkBslkPBQWk/c9e33Xr3MbNrVu2bXXu4+J9o7TB7APbmNxhyClv8BkNOMQZTn2P/c4QD5MPe\neRFPQC1Biu6ziYnpKDYuunHugGB3aREvwgMQEg1T441G0wUEwIhcqL0OM2oO0dowQUVYPUiNPTRX\nLjZe7bnX35SYvpdsz19MZHfqTkP9u9TD2f/ScQPp1tVVe/MbDDmFLX6DIacYg9ifQUDRASMhr7uI\nSB3rIubpJeN1tr6DnT6lP1EGoET9WECN6C3rPu8gxCeDI0V8EpzwsGdnev89ohKE+khpDgFikmBv\nm1gCNm2bAUO658XVisFhb36DIaewxW8w5BS2+A2GnGJsUX1RjSUrYeVAXBLDaLLhcQjtK3Momfpg\nKI8+aLvlcH1EzV4hhDdSYt55g/vAxc9McYiwD2JmtAwfb9p42KjB7HOQ9dsYhJ6lP+zNbzDkFLb4\nDYacYvSBPRviScQWFxOjpVlnEM831mxwjohUJ1y8HMwEmM2G5yJk9xSdq6zifDjIJXSUMn1mVD+2\ng3hiWKUtO6VG+KzMLUXgULzPoYYVBam/m8Pe/AZDTmGL32DIKWzxGww5xehNfRv6TcqcN4T5KrvK\nj5COm+b3D+vMQVPOIFaXVKhgoFnMHTdGAsr1zoxTmo6ADBiwIlGO8VS8W4cbesIDJBoZTYLbhsy2\nvmz3mTatulSbzbDpm5+IvkJEC0T0EvtsnoieI6Lj3b9zma9oMBiuCWQR+/8UwCPqsycAHHHO3Q7g\nSPfYYDC8g7Cp2O+c+79EdLP6+FEAD3XLTwN4HsCXBrt0TKxVLTOSymV3fAvzqUmBN5teESXsCEvl\nfe4rdAMxMXfrnnsx77ys6cWuhtAfVrO2QWSPnqMJQYbofoCTwo93zOQYjo7MimE3/PY55850y2cB\n7BuyH4PBMCZsebffrf/Ehd3viR4noqNEdHRxcXGrlzMYDNuEYXf7zxHRfufcGSLaD2Ah1NA59xSA\npwDg3nvu7glD2UkoIPjyYiRnkucNkcrItWJi8xBybkz8cykPxcDuecRCkJmPMNhqAMTUlIwYQNqO\ntIvTm4SPs1kF0g9WRu+8ITFM4FM4cO3qe/g9C+CxbvkxAM8M2Y/BYBgTspj6/hzA9wDcSUSniOgL\nAJ4E8HEiOg7gY91jg8HwDkKW3f7PB6oe3uaxGAyGEWKMZB5h3Sxm2Mqq18cj0LLpRVkd9TSBRCy3\nADLVqAsMq7GLLrITZ0ZsT9naRU+LMbUksio4BdroFfZ8yx5xmXFvIBqJmfFSmT0UYx5+W4f59hsM\nOYUtfoMhpxix2O96YhnFTGBROTSjZ2DMThdzBczaR3B82osvLCtHY2Eich33uktlNA54CUY9zlJu\niLwYdkkUqk+qzwz96WZpcr4+g00j6AkIIGGqRMxDbliEyUIUsn4Xkf6iKu8QsDe/wZBT2OI3GHIK\nW/wGQ04xUp3fgek7UZfJrUcsRXPHCTNXRM+MKOURK5qojbvwqqqM4YtRLo/ovfXvMj27zOwaGW+M\nYEPq8pmGEa/LqCeH3V6Vrr1tZB4ZT4xtTIQjYyLNAmQeA0QT2pvfYMgpbPEbDDnFaE19joteMXex\nMMOGFHkHMNcEzHtRIo6MLm0p001WE17UshXzDIx4egVze2sbmDeBOSc96wrFsq/LmAcgTQgyjCkt\na7RexEyc+sD1r70KnIPxiMVBIhGHv/Yg2ou9+Q2GnMIWv8GQU1wz1N39mmTua6PLoQJNVB/Rdv23\n2VPSe0TclqzYkWAbIb1nFwvl5rw/6DRqot3yS9/vldtXLom6qTvu65WnD93GOs/Gabhx9SyIb06H\nKrMLtyEfuYEcOzP3n60me9tB1NoBLteFvfkNhpzCFr/BkFPY4jcYcoqxkXnECPPT+tg2sEuI/rfX\nzKNHEfOyi0UeZvaKE9ye4U6SdqtXvvTyD0Wz+vFeAia01tZE3eJ5z8d66295VvbKjp1qIP2vmxpv\nuGpIbN0DNGaajPe2HXeTbfxRktu0TXPgUdib32DIKWzxGww5xRjEfsf+9+DkHllTRA0rakbo4DZB\nf0PgsIErac6SbKQlsSsk7XavvPiLn/bKK68fE+06LX/eympd1K0tr/bK+5cu98rlHbPBUWj1I7sJ\nLJs7ZGb6i4zkJnGdK+PFUk2j0VIDX2A4M2h22JvfYMgpbPEbDDmFLX6DIacYuc7f4/KIkmNmpFpM\nmbkyklfEAgijXWTV6QIXXr9CuGWEpCPUZYeZ8wDgwqsv9Morx170/bVl5N7qqnf3XW02Rd0aJwgt\nFPteNzWkGDlLDCqiUIACX1REGU5PW/+9mW0z9g5JxpkN2Uc5TO9Z0nUdIqLvENErRPQyEX2x+/k8\nET1HRMe7f+eGuL7BYBgTsoj9bQC/75y7C8AHAPwuEd0F4AkAR5xztwM40j02GAzvEGTJ1XcGwJlu\neZmIXgVwA4BHATzUbfY0gOcBfGnT/roCykCU9UF5OMZqFlEdIvJfLIIuO986736QSDg+jvC1Os1G\nr3z2Z/8g6lbfeLlXrrCvt96Qon2t7sX+WlOqDsW9+3vlidldfkwDidvZauO8dIGDKAVeNlPf8Fa0\n4dSbWKRnONowYjDdBkfDgTb8iOhmAA8A+AGAfd0fBgA4C2Bf4DSDwXANIvPiJ6IdAP4SwO8555Z4\nnVt/JfT9LSKix4noKBEdXbx0qV8Tg8EwBmRa/ERUxvrC/6pz7q+6H58jov3d+v0AFvqd65x7yjl3\n2Dl3eH7O9gQNhmsFm+r8tO5r+ycAXnXO/RGrehbAYwCe7P59JssFezrNIInqBK1NNntYJEVe3C04\nozIVU+HEcAeI3AttZzRrK6Ld2z/5+1556fjPRd10ZcKfl3hdfm11VbRrMD1/pdkWdbfefnevXGL9\nxeYmeyTcIPn4Qnr+AObT6Lj6IxVNl9nCm/FeInUulkdSQEeLDn6nWez8HwLwzwD8nIg2nMX/LdYX\n/deJ6AsA3gTwuYGvbjAYxoYsu/3fRfg36OHtHY7BYBgVRh/VtyHbDu1iFZHfQ158ujJrmu8hIa6k\nOpREHGEjVWN1uVc+8f3/I9qtvHm8Vy53iqKu1vEifJ157q0sLYt2qw0fyZfMyL2YQ++9v++Y4gQS\nkXRdkVwIQ0WupUNCwx2GSFyGjMTM3jr83cYIX2VK9/DzPVh0ZH+Yb7/BkFPY4jcYcoqRi/3B3f7t\nz54UBpOz4pz4sZ3pbHJjzFtRe/E1Vrz7xMkf/V2vvHLyuGjXqnlxfrUmd+obLX/c4F58Ncnb3yr6\nr/7+j/2WqJveNc+GG7nPrKaLyHwMs0udQlbPw6ysK9pUxFKbJU1JfMKPXdLplYvVKTmOicm+l9Kj\njHtRDuQXuynszW8w5BS2+A2GnMIWv8GQU4wxV9/WTRVZLhP+IFTB+dtTGmrGPrIRT9SvXBDHCy9+\nt1funDvVK5ed/I1ukT++ojj3L1/yhJudNovkY2m3AeCmB9/fK7/rgfcjBBfRhWOUK0HdVTvPCdNn\nrHGYVz+uCXPvOVZWJCjNKxd75ca5t0Rd+8I5f7AmTaaOmVML/AaYjg8AU/f4Oa5ef3NqlBuIBK2q\n5zGSDyIj7M1vMOQUtvgNhpxibOm6YmaLzI5kUfNSLGpGjiTzQAKeZGkRl9Ul0hS3uuDF+aVjR0Vd\nYcWL7MRE+1pd9nFl2Yv6dWV6WmEmvRa7t7ve/0HR7tc/80975YoSUbMiSlARyEsWE9kzB83oS7E5\n7tRlAFNriYnzF870ys0Lb4t2qwu+rliXxCfVgl8mBUiPSs5A6Ap+YI2F86LdctObAQ9+4oCoK5S9\nShYX32OzZaY+g8GQEbb4DYacwha/wZBTjC9XX0q5iRBzhqq0Hh8h+shMISnGpeqSgNnIdUS71qp3\n010+8Yqoa5w70SsXWtLcVGv4flZWmGtuoyHadVjkXkdNY3lmple+9yOf6JXf97FPiXbVSel+yiFV\nea/VpvVRF6nLBp6XMZWjkXXaXFrsldfO/Eo0a557s1duLyuquIafR+r4+S2QfO8V2r5ubU3OdzPx\newCJus8m+6DNnoNaQ7pTT095ItQDKldBKJAvlX49AjP1GQyGzLDFbzDkFKNP17Uh8UTINlKRdiGe\n/ZTmMHie5bS4xMXcsPmq0/ai4drbb4hmqyc8d36pJU1Pk2zKV1pSXVhiKbRqdd9/qyNNfS0mXham\npPj+oc8+2iu/64EH/ThK0sPPsUi1dKRd0rddotQbPj9pSyoX5/07plCQ75uEidvNy9LjcelXXmWq\nn/Wifu3yZdGuxCIUy0VpihPfIbuWHm+TeeotKb7DpMXnQJ53hac9Y2rFjuv3i3a3Hv5wr1wsVxCE\nsGhqj8rt9YK1N7/BkFPY4jcYcorRiv3OIemKlGkHPL7NGUlaFGknT8pIfBDzzlM1nLjh8vEf98qN\n05JsQ0xqSYp4NSZCrtTkbn+LqQEtZgmo16UXXzPx93b/J/+JqLvpnvf5AzYFLRXIInbxIXefpSWD\n1aldarlJLd8j/Pt0LL1Yc/GsaFc79XqvnFyRXnFlMDG65PtvV6VH4tISozZvS9WkWPDj6LA51SpM\ng3EaXrwixf61um9bnpgWdbMHb+6V33u/n/tD77lbtJue3ekPXPj53l66jjjszW8w5BS2+A2GnMIW\nv8GQU4xU53cAkq45xMXIPLQuL6j6M+bdipGjC70+Eh2VSL3w0us/65UbZ7yuWtSWSWKpsZtST15m\nnnsryzINV4NF5DWYnq+6wF0Pf7pXPnjXfaKuwyLcXCesr8fJSJm+3mF6cl16rTkWQafr6pe8/t5e\n9GQYhYbUpyvMBFlWJjCCr2swL8dE7YE0aj7KcXVVjoOj1fZzs6a8JmnS6/K77pBzeuutd/bK+268\nRdTN7bu+Vy5VqsFrc6Rnu7+ZexDDnlN/s2DTNz8RTRDRD4noRSJ6mYj+sPv5PBE9R0THu38tC6fB\n8A5CFrG/AeCjzrn7ANwP4BEi+gCAJwAccc7dDuBI99hgMLxDkCVXnwOwIZ+Wu/8cgEcBPNT9/GkA\nzwP40iad+aAU0qYhf+wiYr8Qi1Kmvqy8+lwc1kFEvm71/BlRt/TWL3vlAk+L1ZEidZF5mSVK2m42\nvCdZQwV/NNlxnYnRt3z4E6IdF/XbLSkCC+88JrK7tiSo4Bx2TnPRs8Ck9gVmmlNBM2VuIizI74LY\nnBTYJFQnpEci9/hrtaQnY22Fz4dXF+pKZF9hasCFVclp2GHkG7P7PInGbff8mmh36D339Mo79+yT\nY1RegxxBr7vUcxV+HgO8J1Gk1NUh5P5MG35EVOxm6F0A8Jxz7gcA9jnnNlbHWQD7gh0YDIZrDpkW\nv3Ou45y7H8BBAA8S0d2q3iHwm0NEjxPRUSI6unjpcr8mBoNhDBjI1OecuwzgOwAeAXCOiPYDQPfv\nQuCcp5xzh51zh+fndvVrYjAYxoBNdX4i2gug5Zy7TESTAD4O4D8BeBbAYwCe7P59ZrO+HJzPZ0ZS\nGU6E267+TepvBoyZ6VKpoENHSjdr1bz57dLxF0Vdm5mUmk1mUlOK2sSE1xFLyr23WPJtpydl3e4Z\nrw9fWfH88PULkkf+5A+/7ftTJrxCx+v2HeayCqXzl5m7LCe5AICZijexTZC/l7L6Xsolb9oqVGXU\nYLPtx7XMIhTXGtLNOGHXbildvs5yEjR41F1NtquVvJnuwPukLn/bfYd75d37b+iVU6SlNKyJjT1z\nMX3bxZ5bNgxOGDPAQGJ9hpDFzr8fwNNEVMS6pPB159w3ieh7AL5ORF8A8CaAzw18dYPBMDZk2e3/\nGYAH+nx+EcDDV2NQBoPh6mPEUX1A0jUBkTINOX4cISQT6Z1S/HvqYvri/fpTXnyLr73UKzevLIq6\ndqs/B5zmg+PkDx0llk8y7ryqkhOrzFVwrX7Ff752TrRrv+W957SXYJWJ7BUW/VZWnH3Fkuf6aysu\n+vLkbK88O+n7KKm0YUVm6uskUpzvOHbc9uqH5sdbWmKqVEuqJg0WhVfZ7ckxDjwg30V7b7nDj3d+\nj6gT5CHikQsTxmg1LuZTKozLrI9EqVlcZeyolF+dJbYRvurLxbJUpSr7vXdhaV4Z14bg+TDffoMh\np7DFbzDkFCPm8HPwHHmFdNUGIvx+0PEp4rRYwE5/LJ+VO+lrZz0NtFMeZ02xU812y0mKzR3mPVcs\nqtRPZX9zJUUoUZ7wYt6++Xl/TlV5mLFba83Miqq1NRZsw3i9y9UJ0a7IVIJGQ45xpenPm2KWi7Sa\nxai1VbAN37nnVgcevATI9GKVvTeIukPv9p6M173r3b3y5I6dop2g/9bqJOdkZF6HKc88pp4livik\n0/RjbNdkYFLjsk8HtrLgU4C1WdZfACgxlaas1NoSI2cpisAe+bAvve49TOc/8klRV56T6k4W2Jvf\nYMgpbPEbDDmFLX6DIacYOW+/V8/C5hTNly/09wivuahMBQb6D+or3ox28fjPRTserddR0XrCMsfL\n6idUmobkGAtMPy1XpJdZoeD160ppgrVTfZSYHl6X+wZU9OdxYo9iSX7VwrSqTJVNTmZ50fdRVffC\nTX1Om/o4qQibxpLi7d9zy2298sF//GlRV53y5kgeKamJSZpr3ty5cu6kqFs543MqcPKRkorUK7Nx\nkTLTgeVooLbcBxJDYV6N1JTfywTbY3EtOY91Nt8l9l10nErv3vBRlaVTb4q63bv2YlDYm99gyCls\n8RsMOcXo03V1JR7SURDCdS+cJivGqy8Ce1RURMKILRaOMS6+JUlQUWSpn9otZVfkHm5c/VBpt7hX\nmVOqQ6PBzWNSvGyyYJsKE9OVo5cQ+wtF+fvNs/YWmFrRUSawGg+aUePotPsHUq2pe+GpsUolOQ5u\nYksYp6Gmuavs3t0ra8qMBuP4b172Xo31C6dlu0uMI7ApyTwqbH7abPylqvZ49JNMKidXgXP/k1wy\nHfZsNpr+Gbu8eEW0W0z8cVE9uJzwJWEPVgL5XNVZw/mMfIEx2JvfYMgpbPEbDDmFLX6DIacYuc7f\nQypZX6RORFzF3HbDhAmLJz3P/tJpX9b6XYPlz1MqLojpewW2p6BJLohFCnYUg2eTjauo3DdbTR4l\n5/vQ/JEVTrYxIXW/iSlv6qsxs9TKmnS/XVr2kWWljpyDaUbSkRS5e68Cu3bSCse7CaIWtTfQOOtN\ncecunJJdMJfYIpuPKXXPPPKwuPM6UUdl33Z52e8HXFA6OTl/Le1WKyI/C/LLaDE9f23NuwGfPy8j\nQovsPZuoB6vGiGHW2HcxvUe67N55+AO98q6bbpdjjETChmBvfoMhp7DFbzDkFOMT+xVcTLRndTE+\nBi5qrl6+IGrOvOpTaidtntJK9sAj4XTa6YR5/xVYaqkkNdwwD1uTcdHpi/O0X9yEpNOBIfGip2tK\nz7o6uzeeDny1Lkk0Oi1/PKm49EvMPMZNT/peEk5eoVSHIuujwHgLdVAm5/cvQaomE1Oem49rT1rC\nTVhUXFvz+y15r76FBf9MnL+kCDUYl2BJpQ3jz6P+rpvsvDpzyKs5ubSmd3hvxamd86Lu1ptv7ZWv\nZx6P8ywVGABMTe/olSnFc2liv8FgyAhb/AZDTnHNiP2SdjtUE+f84CQaZ155QdRxT76E+5Il2jPN\no6CE1CIXtZgc2lQj4WQQTgWh8F38TkeK7GXmZSZSRJVk/00mKjd0Gi5WbjGRtKMCUmZYVtqpKZVC\ni90PF2vbitykzMZRLctHqVLxxwnz2CQ1HwkjQllVKsxqwwfs8CArp9QlHiykd73XGFHJpWWvAiyu\nKFKOtu+zOiHHWNnBOA33SFF8P8vau/vAoV55eqfMWzvBOBTLVWmtKBbY3AnnSh38Rn3bARiM57sL\ne/MbDDmFLX6DIaewxW8w5BRj1PkDKYaxWRouDnm0fNFHdy2c+KWo4+a9YsHrXKWinIKE2XK0h59j\neniR6ZZt1ZCb6bSunVB/L771YxYlx+x7nOBxfSC+qLgx0GY6OteNd6k8idWKN2cV1Rw0mbms3vDj\nLymbI7HjYlkOpM3MosT2LHQ0p2PjXVmV5J41RpjaZjq5fj74vkpLRVjWGanGCtuzaBQkoelN9/oU\n3e+6+z5Rt2f/wV55kpnsgDRJSmiMcUvcUDm6N/tgU2R+83fTdP+EiL7ZPZ4noueI6Hj379xmfRgM\nhmsHg4j9XwTwKjt+AsAR59ztAI50jw0GwzsEmcR+IjoI4NMA/iOAf939+FEAD3XLTwN4HsCXNu9t\nXTxxKdNEOHNu0IqhzEaXzp3plZeXlkQdN6MVeabfoo7eYd5zyp2rzY+ZuOdU8A73BHRazHXax42d\nxzjbEnbTbZUmq4CwaYub6WYZ93+pKBlBGnXGRQ+dOZcRcSQsuKYk++CmytW67MMxj78C99BUpCJt\npprUlSnxIjPHtZz/XiYUb//kjD+e3SWDYQ7s9tx2Oxi3/dx10mQ3M+fnqlDQtCIMEak8a3BNtJ0w\ni+q68MW9mpFd/M/65v9jAH8A6Z25zzm3sdrOAtiXOstgMFyz2HTxE9FnACw4514ItXHrP2V9f3KI\n6HEiOkpERy9dvtKvicFgGAOyvPk/BOCzRHQCwNcAfJSI/gzAOSLaDwDdvwv9TnbOPeWcO+ycOzy3\na2e/JgaDYQzYVOd3zn0ZwJcBgIgeAvBvnHO/Q0T/GcBjAJ7s/n0m0xVdf90kdhTsSunkly95F97l\nVRkhNsk8KssFFqVVlKahCovockrXbgnX3LDpibfTGj4nttT6b5Hp+dzkiILS65mJTXWBmVn/A1ti\nJI8ry3IPpMPMaOWCfAwm2GQViJkEVTtOVNJYk27GnH++wt2WC3LfoM35/gtytg7d8+u+fO8He+Xp\nXTIqrszMlgXFfEIBgpeU9sz3gZROHlG1g09q2hI3OPFseq9rcHNeDFtx8nkSwMeJ6DiAj3WPDQbD\nOwQDOfk4557H+q4+nHMXATy8/UMyGAyjwMhTdG/wocUEGC3ucOsYF91qK5KQ4a3XjvXKV5ZU1NYk\ni9pi4vBEUZuvuFiupof6i2QddTfNlhdlE2Xa40QZJU3IL1z3eGpplZKLjWNCReRxs2CNRbE1alIs\n53kBUqm8mMheYGOcVtfqNLjXpIrqY16DVca511EuiY6lqppROQgO3HFXrzy3n6fvHjyCTZ+VsqJF\nPUx5u5i5LXwUfeL5teVAwuMYcg44zLffYMgpbPEbDDnFSMV+54Ak6e/hlkRkMkHmwc4/dewl0e48\ny1y6qqiqm23fS6nkxXIe4AIA0xMTrJ0mqPBtuSCuySW4JUCL/UUm9upf3jLbqOZkGBOTMgiFe6Cl\nCB/Y9aosrVdlShJITE54umvNWddOOEkH86yrynbcUrJjUvEAcjMEKzeVCpPwMWpLwK98WrXlurdW\nFKZmRTuelgxKjXNsrkosU25pQmVI5sFNKX68MImGeFS5lSDlxZdNnJeXzS7aD2MHsDe/wZBT2OI3\nGHIKW/wGQ04xBjKPDe1E66q8hTKaMB30/KkTvfIvX/h/sh0nxFTqUp0ROXLiyVQEITsuqf2AEtNX\ni0yPLZelVxlPm11SEWJTLNXWzA6pJ0+ztFOcs76kyDH5GIsl2X+JmyM5WQhJHbdYZHkH1DugyEhB\nd7Ax6XtxLAqxokx4InKS7ZC4ROUPIEYQqr609qo35TaY/l9U801sXM223GNZ4WT6TK+fnJH7BhVG\naCr2ENRxS+UnSNgzwdO0kYpQFP2pZ7PAnvfqjCddqR58l2hXmvGUGTpa1Hj7DQZDZtjiNxhyipGK\n/QRumoo1k2YlAAAUn0lEQVTZTCR46q1f/MORXnn5ksyEKkT2gg7KYcE8TI3QGVM5554OHOqUuJcg\nm7pEBwf5uqmqNNPtmfdi3e55yXzGve4KbPw6AIirQQXlFcdNVtwzsFjUIrsvd9Q7gHv4TTJuPs25\n3yHOpS/r2kw85qQf9VXpldlgnHu1llLBal5F2jHp1ZTpKamOcUdJ0qZklum3w1KWcZUFAJK1y74P\npd502HOwsrIm6losQGoHS3tWVJ6AxDVN/cplgVptpsa1zp4UzWYe9N70xWmptmxcbhDh3978BkNO\nYYvfYMgpbPEbDDnFyE19G9pNjMOw3ZIRaL/66Q965eWLZ4PnJTp/MkPHcb58/3lR6YhF1q6odD/O\nW19mev2Mcp2dY9zuM1NS59/BXHWriqSjzPcpmClHmz4LTC8spPIOsPHzNNlaj+XkEorr3nECUmb2\nazWlnlyveRdqPfVF8uPiORTXVHQhz893YUnq0wnbF5qb8aa42aac7wpT+rUpbmmZuXmLqEzZbpKZ\nYCsVtY/Cngmdtp3neuQRf5ogpcXus6UoXlzFfzc8r8PamVOiXXHh7V55xy1S5x/Gv9fe/AZDTmGL\n32DIKUYu9rsNUS5F2OHllgun3xJ1CyeO+3ZMdKuoKLMpVnfpyoqo42ZA7vmmySWKjLNuekKKlzuY\nR94sE+d3MZEUAKoVXzelx8jE/kJJmdh4Omxmcuwos1EHzLNuQqkOTDXh99yUkj3AI+jUOIiJpQXG\nv0cNTUzi763Vkrz9dSbmNli53pbXWlzxYvnZxcuiLmE2seU1b6abWZGqVHWC8S7qFG6s/2qVqQdJ\nmGRFm0+JzePqiowWBVOZVqthkph2m38XyvuPc/WzS3eUqjbLVTztmboh9w8g/tub32DIKWzxGww5\nxRiz9ErU1zzf3Gs/l/lBVla9CJ/w1E9KxJti4l+tJsWuVsuLa0UmWxWVnMTPmlTi3wwTG3dO+vKE\nUmGI7ZA7ldm22WLZdwuKHIOJgzzLrfbA49yCa6tSveHU4zwDsean4CQmbaVWJB2WfZeJ9gWpBaHC\nxeiGCrZhZCqtDk8vJttN7vXcfPce/rioazb9PK4t+YQvq0vSs/MSm4NGTVoMlldZluG6F/UnG+p7\nZxYUnbWYp0Ku16S60Fj1z2018d6LRR24xkT4VlvqYI2mV2m4KvueD3xYtJve57MFx3gGs8Le/AZD\nTmGL32DIKWzxGww5xeh1/q7O3lFEjsde+kmv/MarkphzoszSU3ECTFLmGqYL79q5Q9S1mVsfT2O9\nQ0Xdzc16s93uWUm2Mcv0/CnmVVat6igzRhqpuPkdNykp4k+eJssx8o2mMqNxLz5Xktcmfsz2DVJR\nZkyfJhVmlghCDK9bclJRQHpiJuo1UmJRhKUS07VLchw7rz/UK9/8j35DjlFsVLAoQRVF2Wbz02pK\nD0J+zIk3CsrEW2CRk6Q2SDhJaqKu3aj5VOd1pv+32/I7E3edIqj1H0wx79C9Bw6KdkVFLiM7Cad+\nDyHT4u8m6VzGOmlt2zl3mIjmAfwvADcDOAHgc865S6E+DAbDtYVBxP7fdM7d75w73D1+AsAR59zt\nAI50jw0GwzsEWxH7HwXwULf8NNZz+H0pdoKDQ5Ksi6JvnXhD1P3se3/fK6+tylRbhWkvmk8yc57m\nrOcBO2XFuT8340X4pOUbzipO/Dl2PDcpbVtTzONP8PQpHr0KSweWToXlr12ZkNcucxWBifYlFQDU\nYt5/pYr0LkyI8dkxkbSjSEsS5nFWSJTHGRNZO8yDrdPWxCfMc6+m8iSwIKCEqTeptw0j0air9GtF\nRo4hv2s5H0XmTVeckmrW5LRU//r3lz4WdcGagaj1gwgFuQ2Skkt7NmZB1je/A/BtInqBiB7vfrbP\nOXemWz4LYN/AVzcYDGND1jf/h51zp4noOgDPEdEveKVzzhGl6EQBAN0fi8cB4Pp9e7c0WIPBsH3I\n9OZ3zp3u/l0A8A0ADwI4R0T7AaD7dyFw7lPOucPOucNzu3Zuz6gNBsOWsembn4imARScc8vd8icA\n/AcAzwJ4DMCT3b/PbNZXu9XC+XPrmsKPv/sdUbe86H87ioqwUui4Lf971Vbmmg4zbXFyBkBG19Ud\nc79VphvGV4mqMtNxEswC0+W1vthmnO1OKXRFTtygzJ2ct76gyd0ZiOn1Op85d+ntlHm0m0rzzc5L\nFJllm+U4qJPff2m2pM7fYm6pjYbU+Tsd30ebuTtPz+4S7aY63h13+dj3RF35xvt75cKE39vQhKbc\nXTtFaMrT7HEzcUG7TPMcitpfG0Hwr1fsSuguIqn6uKmP6/kpF15+mNpsGNzdN4vYvw/AN7oPeAnA\n/3TO/Q0R/QjA14noCwDeBPC5ga9uMBjGhk0Xv3PuDQD39fn8IoCH02cYDIZ3Akbq4be2uoKffP+7\nAIBzb74m6gpMLtKmM576qclMT1RQXGiMEKSpxKICi0BrMrNX0pTiamunFy814YNj4nyB9dFUnIPS\nC1GKlyWmflSqsn8qMPMYI9QoV1Q4HfNkbCoTG5hKQ0wE1g5gXDVZVVz69TVvIqzVmNlPzcdqzYv9\nLeXR5hJ/PD3h536yKr0mK2yMyYVfqXH4tNzJdXf2ytXdB0S7UpmZYJWroSDpYJ9rMxonMHEFvRWW\nzQwo03XLdlmj8ISWGNM+FGmipeg2GAyZYYvfYMgpbPEbDDnFSHX+xtoa3vhZl6VH6YhFRiJZUTo/\n55yXemdYKWqoFMk8qo/n7VterYl2c6teh56alLo8T9zMo9ac4mEvCDJIlSOvw85LjdFfr9n2+vTk\nlORo59yQbcUKs7bi70fkMVC2pzabx0uXZTxWg+0jTLD9hrqKmFtjOn9HmzSZS/KNB67vlVtqHEXm\nMqz9xNqLPkfD8hnPWT+5/xbRbvrG9/TK1V3S0ZRHUbqIuY0/PIM4yoZ1eb2n0J9YtV+P/Yrrh9xu\nqeqMt99gMGSFLX6DIacYLZmHS3zKZO2lxcTjqiItEBINI5ck7aXFzXtKDuJegg0mKi81pfrx+tmL\nvXKiRNS9c178nmAehKREe+JReMocCZbSuVSW99li3oaXl735rVyVqkmBuHehnIM6S0NdZ6mxdFRf\nh83q+ctLoq7NRPGJKR8V1yJ5nyiwqET1fXZWPclm8YKP3Oso4pCd016ZIqU+rbGoRJ6Sq3hRpq5u\nLHvv0MasFPsre2/slaf3ePWjNKNczZkupSXo/lErfRB5/rTHXxakxhFRCYYx9tmb32DIKWzxGww5\nxUjFfiJCsctjr7PG8oyyWpznIlSFZcdNlGjFRVsdbMN3SmtMNG6qHfc3r7BAk9WGqDu419fNMnFV\npw0rMmtFSwUOiTRWSgTmO+Gnz3uxuaxE6mlGOKIzCfMNfp7mi0qSOGR63odX77zrvaJu19weX97j\n201MSeKQMlNbdLDN4tteND/1yo975V+cflu0m530fUyqQKopplrtrvpr651tYgFGtZPHRd3yCe9J\nusZE/fLO3fJa13m+vKl9kjuvvHPeX0uRs0huvrDoHQ/sCfSReobDR5al12AwZIYtfoMhp7DFbzDk\nFCPW+X2UlSbYhOBGV9F0TA/iHnOJimxqixTXiigj6c9r3lSEGjV2fOKSjHa7wNJEz0776LQdUzJS\njVh+vlZB3mdlx1yvPLPvZlE3zXTL667z+edqK9IUxwkxNZf79LTnfZ9h/c3smhftZnZ6Uo2JiUlR\nV2b7KqVIDjvu5VhUXpmH7rirV77hNh+Rt3jmlGh34pUXe+XXX3tF1O2q+HdTh5k0dyZyvDwysN2Q\n32eVzX+F5ylfOCParS14b8L6azJvRHW/zy0we/eDoq4gSEb95zpqMKqSh/YKBnDb2/A0HCSHn735\nDYacwha/wZBTjFbsB/VSIVdV6idBoKA58Zgo3mxz0V6a6YSZS3m0cbE/YaKRJg7hqZobSiVYYqmm\n5/ff2ivvveV2OQ42kKJKpzW5YzZY59hvcXWGienKi6/A5keL29xTssTMgKTaNRqcpEOKiiWmknH1\nTM9VqJ0eF1cj9hy4UbTjx4v3HhZ1b7IUbifPnOiVz1y8LNpNsmdpQpk+5yeZibDJvnfF9VdlORmo\nIT0ql44zNWBmTtTtuuNe378Q9bWaGXbxCwb6aJ6+AF/gsLA3v8GQU9jiNxhyClv8BkNOMXJT34Z7\nrtZVhQnPaRNe/xTJWlVKhF6v6oS+5PubUK65dabmlxTr5YFb390r3/beB3w7RbDZ6fiLaXNki3Hf\nN1rSfViSNcSiF8P88/yY6/9FpeOWS951tlTW+x5lVubmPGXq43q9ruNpypmJsFRWewNsjDPzMqPT\nPR/5RK9cr/n8AZfPShfhc8yF9+23Xhd1yyveTXon0+tLet7Y1Ferqo7dS0URmkh9PWJmC6caDENH\nBkabusH6hr35DYbcwha/wZBTjJbMg4iJpYpXn5ullOxSKLAUz0zkTUiLRTwFVX+Pvo1xbKCpTIIN\npmLMqeiuW+6823fBxttsSFGQ8wWmSDSYGuCc9gLrH9kYE/t1VF9BeN2xNN+KcIQ7PHbUXPFDrraU\nNVc8a6jNVZxrscPG0VFRjlwlSBKlErB7q7B0XQdue7dod+h2z+FXW5bekBdPv9krX2HehUtLV0S7\nBlMriioV+aGbbuuVZ2+8TdQFifYjZjqNOKdf4JxtsPVlevMT0S4i+gsi+gURvUpEHySieSJ6joiO\nd//Obd6TwWC4VpBV7P8vAP7GOfdurKfuehXAEwCOOOduB3Cke2wwGN4hyJKldyeAjwD45wDgnGsC\naBLRowAe6jZ7GsDzAL606RW7IqsmfxAipDqFe7Tx7LWdtrYKhMVtnnqrxgg8llUgCFU9Z92NTJwE\nJFdfre7prfnuvh5HosYhJGfluQfGkVdkASmaOo/v3KcERm4lEPMmr8VF6pTqwNONRWjI+bEmZxHq\nR6ydSG2mVMEit1xwVSd8Lzt37xF189dd5/t7Hw/KUSoM8+bUFOKcxKRUkoQjjs83/zweyZOpKsXh\nF7EYXK10XbcAOA/gfxDRT4jov3dTde9zzm2ERp3FejZfg8HwDkGWxV8C8GsA/ptz7gEAq1Aivlvf\nsej740NEjxPRUSI6utZo92tiMBjGgCyL/xSAU865H3SP/wLrPwbniGg/AHT/LvQ72Tn3lHPusHPu\n8FR1tMYFg8EQxqar0Tl3lohOEtGdzrljAB4G8Er332MAnuz+fSbLBTfMSgVFXsnlBp0KWpjw2OdJ\nRO9pq4i8OkvtvcbKLSenYO9+H2VWqkrSy9U1T+DJ9xuUWi88FPUYhUlTTQE3x/E9ER2BJsg2FOml\njMJjUXeqXYWRY5ZSnnv8vHBUn/D+U/sB3IOT96dNjqKdruMRisX+nouA9NZLeTzyPYtC/70jfZ7e\nj6KAXg8gSLg5CKlGVtIObhrW+xLDKP1ZX8X/CsBXiagC4A0A/wLrUsPXiegLAN4E8LnBL28wGMaF\nTIvfOfdTAIf7VD28vcMxGAyjwojTdcHL7VpqSbi3mKzjZrskCXuV8SMp9EtiDm7dq0zLDLgTjNt9\neXlF1EnSCyaiK/mde/+lzGPcxKbEbS6aVxgnflnx9Il2FSnOc1NUpcLFd9kHT3+lg21EIE6AlEPX\nadUhFFSUbhfzVmTnFfqL7+vH4ToKmD51XgdxmEr+HLaxBTn3NUQqr3CzmPTOPV/1pYbxEjTffoMh\np7DFbzDkFLb4DYacYsRRfej93GgVhRNsao59zsEv9H/VR4u146Y9AGgw05wjlu55codot1ZjBBsk\no/WIpcYuFrnOrPRurvNrV1Smx2oCDJ6HsMp0+bLS67nOr+sqYj+g0vccfZzV1FdOEXiyeYwQiRYj\nZrq42242M11clw/o61FmDH0YiRANnZaK6gtfO2QWjHP/6wjLLCOUsDe/wZBT2OI3GHIKGsZEMPTF\niM5j3SFoD4ALI7twGDYOCRuHxLUwjkHHcJNzbu/mzUa8+HsXJTrqnOvnNGTjsHHYOEY0BhP7DYac\nwha/wZBTjGvxPzWm62rYOCRsHBLXwjiu2hjGovMbDIbxw8R+gyGnGOniJ6JHiOgYEb1GRCNj+yWi\nrxDRAhG9xD4bOfU4ER0iou8Q0StE9DIRfXEcYyGiCSL6IRG92B3HH45jHGw8xS4/5DfHNQ4iOkFE\nPyeinxLR0TGOY2Q0+SNb/ERUBPBfAXwSwF0APk9Ed43o8n8K4BH12Tiox9sAft85dxeADwD43e4c\njHosDQAfdc7dB+B+AI8Q0QfGMI4NfBHrdPAbGNc4ftM5dz8zrY1jHKOjyXfOjeQfgA8C+Ft2/GUA\nXx7h9W8G8BI7PgZgf7e8H8CxUY2FjeEZAB8f51gATAH4MYD3j2McAA52H+iPAvjmuL4bACcA7FGf\njXQcAHYC+BW6e3FXexyjFPtvAHCSHZ/qfjYujJV6nIhuBvAAgB+MYyxdUfunWCdefc6tE7SOY07+\nGMAfQNIzjmMcDsC3iegFInp8TOMYKU2+bfghTj1+NUBEOwD8JYDfc86J5HKjGotzruOcux/rb94H\niehuVX/Vx0FEnwGw4Jx7ITLOUX03H+7Oxyexro59ZAzj2BJN/qAY5eI/DeAQOz7Y/WxcyEQ9vt0g\nojLWF/5XnXN/Nc6xAIBz7jKA72B9T2TU4/gQgM8S0QkAXwPwUSL6szGMA865092/CwC+AeDBMYxj\nSzT5g2KUi/9HAG4nolu6LMC/DeDZEV5f41msU44DA1CPbwW0Hlz+JwBedc790bjGQkR7iWhXtzyJ\n9X2HX4x6HM65LzvnDjrnbsb68/B3zrnfGfU4iGiaiGY2ygA+AeClUY/DOXcWwEkiurP70QZN/tUZ\nx9XeSFEbF58C8EsArwP4dyO87p8DOAOghfVf1y8A2I31jabjAL4NYH4E4/gw1kW2nwH4afffp0Y9\nFgD3AvhJdxwvAfj33c9HPidsTA/Bb/iNej5uBfBi99/LG8/mmJ6R+wEc7X43fw1g7mqNwzz8DIac\nwjb8DIacwha/wZBT2OI3GHIKW/wGQ05hi99gyCls8RsMOYUtfoMhp7DFbzDkFP8fgF2n+Z2727kA\nAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc55956c358>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Example of a picture\n", "index = 0\n", "plt.imshow(X_train_orig[index])\n", "print (\"y = \" + str(np.squeeze(Y_train_orig[:, index])))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As usual you flatten the image dataset, then normalize it by dividing by 255. On top of that, you will convert each label to a one-hot vector as shown in Figure 1. Run the cell below to do so." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "number of training examples = 1080\n", "number of test examples = 120\n", "X_train shape: (12288, 1080)\n", "Y_train shape: (6, 1080)\n", "X_test shape: (12288, 120)\n", "Y_test shape: (6, 120)\n" ] } ], "source": [ "# Flatten the training and test images\n", "X_train_flatten = X_train_orig.reshape(X_train_orig.shape[0], -1).T\n", "X_test_flatten = X_test_orig.reshape(X_test_orig.shape[0], -1).T\n", "# Normalize image vectors\n", "X_train = X_train_flatten/255.\n", "X_test = X_test_flatten/255.\n", "# Convert training and test labels to one hot matrices\n", "Y_train = convert_to_one_hot(Y_train_orig, 6)\n", "Y_test = convert_to_one_hot(Y_test_orig, 6)\n", "\n", "print (\"number of training examples = \" + str(X_train.shape[1]))\n", "print (\"number of test examples = \" + str(X_test.shape[1]))\n", "print (\"X_train shape: \" + str(X_train.shape))\n", "print (\"Y_train shape: \" + str(Y_train.shape))\n", "print (\"X_test shape: \" + str(X_test.shape))\n", "print (\"Y_test shape: \" + str(Y_test.shape))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Note** that 12288 comes from $64 \\times 64 \\times 3$. Each image is square, 64 by 64 pixels, and 3 is for the RGB colors. Please make sure all these shapes make sense to you before continuing." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Your goal** is to build an algorithm capable of recognizing a sign with high accuracy. To do so, you are going to build a tensorflow model that is almost the same as one you have previously built in numpy for cat recognition (but now using a softmax output). It is a great occasion to compare your numpy implementation to the tensorflow one. \n", "\n", "**The model** is *LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX*. The SIGMOID output layer has been converted to a SOFTMAX. A SOFTMAX layer generalizes SIGMOID to when there are more than two classes. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.1 - Create placeholders\n", "\n", "Your first task is to create placeholders for `X` and `Y`. This will allow you to later pass your training data in when you run your session. \n", "\n", "**Exercise:** Implement the function below to create the placeholders in tensorflow." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# GRADED FUNCTION: create_placeholders\n", "\n", "def create_placeholders(n_x, n_y):\n", " \"\"\"\n", " Creates the placeholders for the tensorflow session.\n", " \n", " Arguments:\n", " n_x -- scalar, size of an image vector (num_px * num_px = 64 * 64 * 3 = 12288)\n", " n_y -- scalar, number of classes (from 0 to 5, so -> 6)\n", " \n", " Returns:\n", " X -- placeholder for the data input, of shape [n_x, None] and dtype \"float\"\n", " Y -- placeholder for the input labels, of shape [n_y, None] and dtype \"float\"\n", " \n", " Tips:\n", " - You will use None because it let's us be flexible on the number of examples you will for the placeholders.\n", " In fact, the number of examples during test/train is different.\n", " \"\"\"\n", "\n", " ### START CODE HERE ### (approx. 2 lines)\n", " X = tf.placeholder(dtype=tf.float32, shape=[n_x, None], name='X')\n", " Y = tf.placeholder(dtype=tf.float32, shape=[n_y, None], name='Y')\n", " keep_prob = tf.placeholder(dtype=tf.float32, shape=[2], name='keep_prob')\n", " ### END CODE HERE ###\n", " \n", " return X, Y, keep_prob" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "X = Tensor(\"X_1:0\", shape=(12288, ?), dtype=float32)\n", "Y = Tensor(\"Y_1:0\", shape=(6, ?), dtype=float32)\n" ] } ], "source": [ "X, Y, keep_prob = create_placeholders(12288, 6)\n", "print (\"X = \" + str(X))\n", "print (\"Y = \" + str(Y))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Expected Output**: \n", "\n", "<table> \n", " <tr> \n", " <td>\n", " **X**\n", " </td>\n", " <td>\n", " Tensor(\"Placeholder_1:0\", shape=(12288, ?), dtype=float32) (not necessarily Placeholder_1)\n", " </td>\n", " </tr>\n", " <tr> \n", " <td>\n", " **Y**\n", " </td>\n", " <td>\n", " Tensor(\"Placeholder_2:0\", shape=(10, ?), dtype=float32) (not necessarily Placeholder_2)\n", " </td>\n", " </tr>\n", "\n", "</table>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2 - Initializing the parameters\n", "\n", "Your second task is to initialize the parameters in tensorflow.\n", "\n", "**Exercise:** Implement the function below to initialize the parameters in tensorflow. You are going use Xavier Initialization for weights and Zero Initialization for biases. The shapes are given below. As an example, to help you, for W1 and b1 you could use: \n", "\n", "```python\n", "W1 = tf.get_variable(\"W1\", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed = 1))\n", "b1 = tf.get_variable(\"b1\", [25,1], initializer = tf.zeros_initializer())\n", "```\n", "Please use `seed = 1` to make sure your results match ours." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# GRADED FUNCTION: initialize_parameters\n", "\n", "def initialize_parameters():\n", " \"\"\"\n", " Initializes parameters to build a neural network with tensorflow. The shapes are:\n", " W1 : [25, 12288]\n", " b1 : [25, 1]\n", " W2 : [12, 25]\n", " b2 : [12, 1]\n", " W3 : [6, 12]\n", " b3 : [6, 1]\n", " \n", " Returns:\n", " parameters -- a dictionary of tensors containing W1, b1, W2, b2, W3, b3\n", " \"\"\"\n", " \n", " tf.set_random_seed(1) # so that your \"random\" numbers match ours\n", " \n", " ### START CODE HERE ### (approx. 6 lines of code)\n", " W1 = tf.get_variable(\"W1\", [25,12288], initializer = tf.contrib.layers.xavier_initializer(seed=1))\n", " b1 = tf.get_variable(\"b1\", [25,1], initializer = tf.zeros_initializer())\n", " W2 = tf.get_variable('W2', [12,25], initializer = tf.contrib.layers.xavier_initializer(seed=1))\n", " b2 = tf.get_variable('b2', [12,1], initializer = tf.zeros_initializer())\n", " W3 = tf.get_variable('W3', [6,12], initializer = tf.contrib.layers.xavier_initializer(seed=1))\n", " b3 = tf.get_variable('b3', [6,1], initializer = tf.zeros_initializer())\n", " ### END CODE HERE ###\n", "\n", " parameters = {\"W1\": W1,\n", " \"b1\": b1,\n", " \"W2\": W2,\n", " \"b2\": b2,\n", " \"W3\": W3,\n", " \"b3\": b3}\n", " \n", " return parameters" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "W1 = <tf.Variable 'W1:0' shape=(25, 12288) dtype=float32_ref>\n", "b1 = <tf.Variable 'b1:0' shape=(25, 1) dtype=float32_ref>\n", "W2 = <tf.Variable 'W2:0' shape=(12, 25) dtype=float32_ref>\n", "b2 = <tf.Variable 'b2:0' shape=(12, 1) dtype=float32_ref>\n" ] } ], "source": [ "tf.reset_default_graph()\n", "with tf.Session() as sess:\n", " parameters = initialize_parameters()\n", " print(\"W1 = \" + str(parameters[\"W1\"]))\n", " print(\"b1 = \" + str(parameters[\"b1\"]))\n", " print(\"W2 = \" + str(parameters[\"W2\"]))\n", " print(\"b2 = \" + str(parameters[\"b2\"]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Expected Output**: \n", "\n", "<table> \n", " <tr> \n", " <td>\n", " **W1**\n", " </td>\n", " <td>\n", " < tf.Variable 'W1:0' shape=(25, 12288) dtype=float32_ref >\n", " </td>\n", " </tr>\n", " <tr> \n", " <td>\n", " **b1**\n", " </td>\n", " <td>\n", " < tf.Variable 'b1:0' shape=(25, 1) dtype=float32_ref >\n", " </td>\n", " </tr>\n", " <tr> \n", " <td>\n", " **W2**\n", " </td>\n", " <td>\n", " < tf.Variable 'W2:0' shape=(12, 25) dtype=float32_ref >\n", " </td>\n", " </tr>\n", " <tr> \n", " <td>\n", " **b2**\n", " </td>\n", " <td>\n", " < tf.Variable 'b2:0' shape=(12, 1) dtype=float32_ref >\n", " </td>\n", " </tr>\n", "\n", "</table>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, the parameters haven't been evaluated yet." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.3 - Forward propagation in tensorflow \n", "\n", "You will now implement the forward propagation module in tensorflow. The function will take in a dictionary of parameters and it will complete the forward pass. The functions you will be using are: \n", "\n", "- `tf.add(...,...)` to do an addition\n", "- `tf.matmul(...,...)` to do a matrix multiplication\n", "- `tf.nn.relu(...)` to apply the ReLU activation\n", "\n", "**Question:** Implement the forward pass of the neural network. We commented for you the numpy equivalents so that you can compare the tensorflow implementation to numpy. It is important to note that the forward propagation stops at `z3`. The reason is that in tensorflow the last linear layer output is given as input to the function computing the loss. Therefore, you don't need `a3`!\n", "\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# GRADED FUNCTION: forward_propagation\n", "\n", "def forward_propagation(X, parameters, keep_prob):\n", " \"\"\"\n", " Implements the forward propagation for the model: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SOFTMAX\n", " \n", " Arguments:\n", " X -- input dataset placeholder, of shape (input size, number of examples)\n", " parameters -- python dictionary containing your parameters \"W1\", \"b1\", \"W2\", \"b2\", \"W3\", \"b3\"\n", " the shapes are given in initialize_parameters\n", "\n", " Returns:\n", " Z3 -- the output of the last LINEAR unit\n", " \"\"\"\n", " \n", " # Retrieve the parameters from the dictionary \"parameters\" \n", " W1 = parameters['W1']\n", " b1 = parameters['b1']\n", " W2 = parameters['W2']\n", " b2 = parameters['b2']\n", " W3 = parameters['W3']\n", " b3 = parameters['b3']\n", " \n", " \n", " ### START CODE HERE ### (approx. 5 lines) # Numpy Equivalents:\n", " Z1 = tf.add(tf.matmul(W1, X), b1) # Z1 = np.dot(W1, X) + b1\n", " A1 = tf.nn.relu(Z1) # A1 = relu(Z1)\n", " A1_dropout = tf.nn.dropout(A1, keep_prob[0]) # apply dropout (*)\n", " Z2 = tf.add(tf.matmul(W2, A1_dropout), b2) # Z2 = np.dot(W2, a1) + b2\n", " A2 = tf.nn.relu(Z2) # A2 = relu(Z2)\n", " A2_dropout = tf.nn.dropout(A2, keep_prob[1]) # apply dropout (*)\n", " Z3 = tf.add(tf.matmul(W3, A2_dropout), b3) # Z3 = np.dot(W3,Z2) + b3\n", " ### END CODE HERE ###\n", " \n", " return Z3" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Z3 = Tensor(\"Add_2:0\", shape=(6, ?), dtype=float32)\n" ] } ], "source": [ "tf.reset_default_graph()\n", "\n", "with tf.Session() as sess:\n", " X, Y, keep_prob = create_placeholders(12288, 6)\n", " parameters = initialize_parameters()\n", " Z3 = forward_propagation(X, parameters, keep_prob)\n", " print(\"Z3 = \" + str(Z3))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Expected Output**: \n", "\n", "<table> \n", " <tr> \n", " <td>\n", " **Z3**\n", " </td>\n", " <td>\n", " Tensor(\"Add_2:0\", shape=(6, ?), dtype=float32)\n", " </td>\n", " </tr>\n", "\n", "</table>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You may have noticed that the forward propagation doesn't output any cache. You will understand why below, when we get to brackpropagation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.4 Compute cost\n", "\n", "As seen before, it is very easy to compute the cost using:\n", "```python\n", "tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = ..., labels = ...))\n", "```\n", "**Question**: Implement the cost function below. \n", "- It is important to know that the \"`logits`\" and \"`labels`\" inputs of `tf.nn.softmax_cross_entropy_with_logits` are expected to be of shape (number of examples, num_classes). We have thus transposed Z3 and Y for you.\n", "- Besides, `tf.reduce_mean` basically does the summation over the examples." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# GRADED FUNCTION: compute_cost \n", "\n", "def compute_cost(Z3, Y):\n", " \"\"\"\n", " Computes the cost\n", " \n", " Arguments:\n", " Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)\n", " Y -- \"true\" labels vector placeholder, same shape as Z3\n", " \n", " Returns:\n", " cost - Tensor of the cost function\n", " \"\"\"\n", " \n", " # to fit the tensorflow requirement for tf.nn.softmax_cross_entropy_with_logits(...,...)\n", " logits = tf.transpose(Z3)\n", " labels = tf.transpose(Y)\n", " \n", " ### START CODE HERE ### (1 line of code)\n", " cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits))\n", " ### END CODE HERE ###\n", " \n", " return cost" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "cost = Tensor(\"Mean:0\", shape=(), dtype=float32)\n" ] } ], "source": [ "tf.reset_default_graph()\n", "\n", "with tf.Session() as sess:\n", " X, Y, keep_prob = create_placeholders(12288, 6)\n", " parameters = initialize_parameters()\n", " Z3 = forward_propagation(X, parameters, keep_prob)\n", " cost = compute_cost(Z3, Y)\n", " print(\"cost = \" + str(cost))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Expected Output**: \n", "\n", "<table> \n", " <tr> \n", " <td>\n", " **cost**\n", " </td>\n", " <td>\n", " Tensor(\"Mean:0\", shape=(), dtype=float32)\n", " </td>\n", " </tr>\n", "\n", "</table>" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.5 - Backward propagation & parameter updates\n", "\n", "This is where you become grateful to programming frameworks. All the backpropagation and the parameters update is taken care of in 1 line of code. It is very easy to incorporate this line in the model.\n", "\n", "After you compute the cost function. You will create an \"`optimizer`\" object. You have to call this object along with the cost when running the tf.session. When called, it will perform an optimization on the given cost with the chosen method and learning rate.\n", "\n", "For instance, for gradient descent the optimizer would be:\n", "```python\n", "optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate).minimize(cost)\n", "```\n", "\n", "To make the optimization you would do:\n", "```python\n", "_ , c = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})\n", "```\n", "\n", "This computes the backpropagation by passing through the tensorflow graph in the reverse order. From cost to inputs.\n", "\n", "**Note** When coding, we often use `_` as a \"throwaway\" variable to store values that we won't need to use later. Here, `_` takes on the evaluated value of `optimizer`, which we don't need (and `c` takes the value of the `cost` variable). " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.6 - Building the model\n", "\n", "Now, you will bring it all together! \n", "\n", "**Exercise:** Implement the model. You will be calling the functions you had previously implemented." ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,\n", " num_epochs = 3000, minibatch_size = 32, print_cost = True):\n", " \"\"\"\n", " Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.\n", " \n", " Arguments:\n", " X_train -- training set, of shape (input size = 12288, number of training examples = 1080)\n", " Y_train -- test set, of shape (output size = 6, number of training examples = 1080)\n", " X_test -- training set, of shape (input size = 12288, number of training examples = 120)\n", " Y_test -- test set, of shape (output size = 6, number of test examples = 120)\n", " learning_rate -- learning rate of the optimization\n", " num_epochs -- number of epochs of the optimization loop\n", " minibatch_size -- size of a minibatch\n", " print_cost -- True to print the cost every 100 epochs\n", " \n", " Returns:\n", " parameters -- parameters learnt by the model. They can then be used to predict.\n", " \"\"\"\n", " \n", " ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables\n", " tf.set_random_seed(1) # to keep consistent results\n", " seed = 3 # to keep consistent results\n", " (n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set)\n", " n_y = Y_train.shape[0] # n_y : output size\n", " costs = [] # To keep track of the cost\n", " \n", " # Create Placeholders of shape (n_x, n_y)\n", " ### START CODE HERE ### (1 line)\n", " X, Y, keep_prob = create_placeholders(n_x, n_y)\n", " ### END CODE HERE ###\n", "\n", " # Initialize parameters\n", " ### START CODE HERE ### (1 line)\n", " parameters = initialize_parameters()\n", " ### END CODE HERE ###\n", " \n", " # Forward propagation: Build the forward propagation in the tensorflow graph\n", " ### START CODE HERE ### (1 line)\n", " Z3 = forward_propagation(X, parameters, keep_prob)\n", " ### END CODE HERE ###\n", " \n", " # Cost function: Add cost function to tensorflow graph\n", " ### START CODE HERE ### (1 line)\n", " cost = compute_cost(Z3, Y)\n", " ### END CODE HERE ###\n", " \n", " # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.\n", " ### START CODE HERE ### (1 line)\n", " optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)\n", " ### END CODE HERE ###\n", " \n", " # Initialize all the variables\n", " init = tf.global_variables_initializer()\n", "\n", " keep_prob_train = [0.9, 1.0]\n", " \n", " # Start the session to compute the tensorflow graph\n", " with tf.Session() as sess:\n", " \n", " # Run the initialization\n", " sess.run(init)\n", " \n", " # Do the training loop\n", " for epoch in range(num_epochs):\n", "\n", " epoch_cost = 0. # Defines a cost related to an epoch\n", " num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set\n", " seed = seed + 1\n", " minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)\n", "\n", " for minibatch in minibatches:\n", "\n", " # Select a minibatch\n", " (minibatch_X, minibatch_Y) = minibatch\n", " \n", " # IMPORTANT: The line that runs the graph on a minibatch.\n", " # Run the session to execute the \"optimizer\" and the \"cost\", the feedict should contain a minibatch for (X,Y).\n", " ### START CODE HERE ### (1 line)\n", " _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y, keep_prob:keep_prob_train})\n", " ### END CODE HERE ###\n", " \n", " epoch_cost += minibatch_cost / num_minibatches\n", "\n", " # Print the cost every epoch\n", " if print_cost == True and epoch % 100 == 0:\n", " print (\"Cost after epoch %i: %f\" % (epoch, epoch_cost))\n", " if print_cost == True and epoch % 5 == 0:\n", " costs.append(epoch_cost)\n", " \n", " # plot the cost\n", " plt.plot(np.squeeze(costs))\n", " plt.ylabel('cost')\n", " plt.xlabel('iterations (per tens)')\n", " plt.title(\"Learning rate =\" + str(learning_rate))\n", " plt.show()\n", "\n", " # lets save the parameters in a variable\n", " parameters = sess.run(parameters)\n", " print (\"Parameters have been trained!\")\n", "\n", " # Calculate the correct predictions\n", " correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))\n", "\n", " # Calculate accuracy on the test set\n", " accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n", "\n", " print (\"Train Accuracy:\", accuracy.eval({X: X_train, Y: Y_train, keep_prob : [1.0, 1.0]}))\n", " print (\"Test Accuracy:\", accuracy.eval({X: X_test, Y: Y_test, keep_prob : [1.0, 1.0]}))\n", " \n", " return parameters" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Run the following cell to train your model! On our machine it takes about 5 minutes. Your \"Cost after epoch 100\" should be 1.016458. If it's not, don't waste time; interrupt the training by clicking on the square (⬛) in the upper bar of the notebook, and try to correct your code. If it is the correct cost, take a break and come back in 5 minutes!" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Cost after epoch 0: 1.855791\n", "Cost after epoch 100: 1.338880\n", "Cost after epoch 200: 1.070437\n", "Cost after epoch 300: 0.961697\n", "Cost after epoch 400: 0.848927\n", "Cost after epoch 500: 0.733514\n", "Cost after epoch 600: 0.657072\n", "Cost after epoch 700: 0.650445\n", "Cost after epoch 800: 0.551813\n", "Cost after epoch 900: 0.490129\n", "Cost after epoch 1000: 0.495716\n", "Cost after epoch 1100: 0.460395\n", "Cost after epoch 1200: 0.470017\n", "Cost after epoch 1300: 0.433413\n", "Cost after epoch 1400: 0.385584\n", "Cost after epoch 1500: 0.386923\n", "Cost after epoch 1600: 0.343508\n", "Cost after epoch 1700: 0.351981\n", "Cost after epoch 1800: 0.331312\n", "Cost after epoch 1900: 0.399522\n", "Cost after epoch 2000: 0.287658\n", "Cost after epoch 2100: 0.303283\n", "Cost after epoch 2200: 0.258900\n", "Cost after epoch 2300: 0.270582\n", "Cost after epoch 2400: 0.286239\n", "Cost after epoch 2500: 0.223930\n", "Cost after epoch 2600: 0.285352\n", "Cost after epoch 2700: 0.254146\n", "Cost after epoch 2800: 0.247626\n", "Cost after epoch 2900: 0.256016\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8leX5+PHPlQ0ZQEgIe8qUpUQQB4gigqPU1WodbbWi\nLbbfqm3F2traautP7bCOumqtWlerqEVERUWQIYS9ZO+VsBOyk+v3x/Ock+ckJ8kJ5uRkXO/X67w4\nz/2Mc9+I5zr3FlXFGGOMqU1UpDNgjDGmabCAYYwxJiQWMIwxxoTEAoYxxpiQWMAwxhgTEgsYxhhj\nQmIBwzRrIvKBiHw30vkwpjmwgGHCQkS2i8j4SOdDVSep6r8inQ8AEZkjIj9ogM+JF5EXROS4iOwX\nkTtruf47IrJDRE6IyDsikhrqs0RkuIgsFZF898/hnnODReRDETkoIjbhqxmwgGGaLBGJiXQefBpT\nXoDfAn2BHsA44BciMjHYhSJyKvAMcAOQAeQDT4XyLBGJA94FXgHaAf8C3nXTAUqAN4Gb669oJqJU\n1V72qvcXsB0YX825S4EVwFFgATDUc24asAXIBdYBl3vOfQ+YD/wFOAQ84KZ9ATwKHAG2AZM898wB\nfuC5v6ZrewFz3c+eDTwJvFJNGc4DdgN3A/uBl3G+NGcAOe7zZwBd3esfBMqAQiAPeMJNHwB8DBwG\nNgDfqoe/+73ABM/x74DXq7n2D8CrnuM+QDGQXNuzgAnAHkA853cCEyt9xinOV03k/13a6+u9rIZh\nGpSInAa8ANwKtMf5dfueiMS7l2wBzgXaAPcDr4hIJ88jRgFbcX4NP+hJ2wCkAQ8D/xARqSYLNV37\nKrDYzddvcX5116QjkIrz63sKTo39n+5xd6AAeAJAVe8F5gG3q2qSqt4uIok4weJVoANwDfCUiAwK\n9mEi8pSIHK3mtcq9ph3QCVjpuXUlcGo1ZTjVe62qbgGKgH4hPOtUYJW6USGEzzJNnAUM09CmAM+o\n6peqWqZO/0IRcCaAqv5HVfeqarmqvgFsAkZ67t+rqo+raqmqFrhpO1T1OVUtw2kW6YQTUIIJeq2I\ndAfOAO5T1WJV/QJ4r5aylAO/UdUiVS1Q1UOq+paq5qtqLk5AG1vD/ZcC21X1n255lgNvAVcHu1hV\nf6Sqbat5DXUvS3L/POa59TiQXE0ekipd672+tmfVdK9phixgmIbWA7jL++sY6AZ0BhCRG0Vkhefc\nYJzagM+uIM/c73ujqvnu26Qg19V0bWfgsCetus/yylHVQt+BiLQWkWfcDuTjOM1bbUUkupr7ewCj\nKv1dXIdTczlZee6fKZ60NjjNbNVdn1IpzXd9bc+q6V7TDFnAMA1tF/BgpV/HrVX1NRHpATwH3A60\nV9W2wBrA27wUrtE2+4BUEWntSetWyz2V83IX0B8YpaopwBg3Xaq5fhfweaW/iyRV/WGwDxORp0Uk\nr5rXWgBVPeKWZZjn1mHA2mrKsNZ7rYj0AeKAjSE8ay0wtFLz39AaPss0cRYwTDjFikiC5xWDExBu\nE5FR4kgUkUtEJBlIxPlSzQEQke/j1DDCTlV3AFnAb0UkTkRGA5fV8THJOP0WR92hqb+pdP4A0Ntz\nPAOnr+AGEYl1X2eIyMBq8nibG1CCvbz9Bi8BvxKRdu6zbgFerCbP/wYuE5Fz3T6V3wNvu01qtT1r\nDk5H/k/c4bc/wfnv9ymA+983AScA4f4b8PVVmSbIAoYJp5k4X6C+129VNQvnS+cJnJFEm3FGL6Gq\n64A/AQtxvlyH4IyKaijXAaOpGIH1Bk7/Sqj+CrQCDgKLgFmVzj8GXCUiR0Tkb+6X8gSczu69OM1l\n/w/4ul+qv8EZPLAD50v9YVX158WtkZwLoKprgdtwAkc2TtD+USjPUtVi4JvAjTgj3r4HfNNNB6fJ\nrYCKGkcBzoAD00RJ4AAHY4yPiLwBfKWqlWsKxrRIVsMwxuU2B/URkSh3ctpk4J1I58uYxqIxzU41\nJtI6Am/jzMPYDfzQHepqjMGapIwxxoTImqSMMcaEpFk1SaWlpWnPnj0jnQ1jjGkyli5delBV00O5\ntlkFjJ49e5KVlRXpbBhjTJMhIjtCvdaapIwxxoTEAoYxxpiQWMAwxhgTEgsYxhhjQmIBwxhjTEgs\nYBhjjAmJBQxjjDEhafEBQ1X52yeb+HxjTqSzYowxjVqLDxgiwrNzt/L5BgsYxhhTkxYfMABSEmI4\nXlgS6WwYY0yjZgEDSGkVy7ECCxjGGFMTCxhASkIsxy1gGGNMjSxgACmtYjheWBrpbBhjTKNmAQOn\nScpqGMYYUzMLGLhNUtbpbYwxNbKAgVPDyCsqpbzctqs1xpjqWMAA2rSKRRWrZRhjTA0sYABpSXEA\nHMwrinBOjDGm8QpbwBCRF0QkW0TWVHP+5yKywn2tEZEyEUl1z20XkdXuubDvuZqeFA9ATm5xuD/K\nGGOarHDWMF4EJlZ3UlUfUdXhqjocuAf4XFUPey4Z557PDGMeAUhLdgKG1TCMMaZ6YQsYqjoXOFzr\nhY5rgdfClZfapPlrGBYwjDGmOhHvwxCR1jg1kbc8yQrMFpGlIjKllvuniEiWiGTl5JzcAoJtW8US\nEyVWwzDGmBpEPGAAlwHzKzVHneM2VU0CporImOpuVtVnVTVTVTPT09NPKgNRUUL7pDgLGMYYU4PG\nEDCuoVJzlKrucf/MBqYDI8OdibSkeA7mWae3McZUJ6IBQ0TaAGOBdz1piSKS7HsPTACCjrSqT+nJ\n8daHYYwxNYgJ14NF5DXgPCBNRHYDvwFiAVT1afeyy4GPVPWE59YMYLqI+PL3qqrOClc+fdKS4tmw\nPzfcH2OMMU1W2AKGql4bwjUv4gy/9aZtBYaFJ1fVS0uK51BeMaqKG6yMMcZ4NIY+jEYhPTme4rJy\n20jJGGOqYQHDle5O3su2fgxjjAnKAoYrwxcwjlvAMMaYYCxguDqkJACQnVsY4ZwYY0zjZAHD1cGt\nYRywGoYxxgRlAcOVGB9DYly01TCMMaYaFjA8OqQkWKe3McZUwwKGR4fkeLKPWw3DGGOCsYDhYTUM\nY4ypngUMD6eGUYSqRjorxhjT6FjA8MhIiaegpIzjhaWRzooxxjQ6FjA8eqclAbDpgC1CaIwxlVnA\n8Di1SwoAa/cej3BOjDGm8bGA4dExJYF2rWP5ar8FDGOMqcwChoeI0DMtkR2H8iOdFWOMaXQsYFTS\nI7W1BQxjjAnCAkYl3VNbs+9YAcWl5ZHOijHGNCoWMCrp1zGZcoXVe45GOivGGNOoWMCo5Ny+6cRE\nCbPXZ0c6K8YY06hYwKikTatYRvZKZfa6A5HOijHGNCoWMIK4YGAGm7Lz2HHoRKSzYowxjUbYAoaI\nvCAi2SKypprz54nIMRFZ4b7u85ybKCIbRGSziEwLVx6rM35gBwBrljLGGI9w1jBeBCbWcs08VR3u\nvn4HICLRwJPAJGAQcK2IDApjPqvo0T6Rru1asWKXdXwbY4xP2AKGqs4FDp/ErSOBzaq6VVWLgdeB\nyfWauRB0TEngoC11bowxfpHuwzhLRFaJyAcicqqb1gXY5blmt5sWlIhMEZEsEcnKycmpt4ylJcWT\nk2cBwxhjfCIZMJYB3VV1KPA48M7JPERVn1XVTFXNTE9Pr7fMpSfHc9AChjHG+EUsYKjqcVXNc9/P\nBGJFJA3YA3TzXNrVTWtQaUnxHM0vsRnfxhjjiljAEJGOIiLu+5FuXg4BS4C+ItJLROKAa4D3Gjp/\n6cnxAOw/Znt8G2MMhHdY7WvAQqC/iOwWkZtF5DYRuc295CpgjYisBP4GXKOOUuB24ENgPfCmqq4N\nVz6rM6p3KgCz1u5r6I82xphGKSZcD1bVa2s5/wTwRDXnZgIzw5GvUPVJT6JfRhILthxiypg+kcyK\nMcY0CpEeJdWo9ctIZktOXqSzYYwxjYIFjBr0SU9i95ECCkvKIp0VY4yJOAsYNRjQMRlVeGXRjkhn\nxRhjIs4CRg3O7N0egAfeX8/ynUcinBtjjIksCxg1aJcYx7l90wD42JY7N8a0cBYwavHyzaMY1q2t\nLURojGnxLGCEoHdaItsP2t4YxpiWzQJGCHq2T2TvsUIbLWWMadEsYISgV3oiAFtzrJZhjGm5LGCE\nYEiXNgBc/Ld5HMsviXBujDEmMixghKBn+9b+94u2HYpgTowxJnIsYIRARLjvUmeX2G3W+W2MaaEs\nYITopnN6kZESz8YDuZHOijHGRIQFjDoY2CmFNXuORTobxhgTERYw6mBE93ZsPJDHsQLr+DbGtDwW\nMOpgdB9nban3V9mmSsaYlscCRh2M6NGOIV3a8Mvpq/nTRxsinR1jjGlQFjDqQET4yQV9AXj8080R\nzo0xxjQsCxh1dOGgDK44rQutYqNR1UhnxxhjGowFjJMwpGsbCkrKOHSiONJZMcaYBmMB4yR0T3Vm\nft/+6jKrZRhjWoywBQwReUFEskVkTTXnrxORVSKyWkQWiMgwz7ntbvoKEckKVx5P1tmnpHHBgA4s\n2nqYxdsORzo7xhjTIMJZw3gRmFjD+W3AWFUdAvweeLbS+XGqOlxVM8OUv5OWEBvNX64Zjggs2GJr\nSxljWoawBQxVnQtU+/NbVReoqm+j7EVA13DlJRxSEmIZ1CmFhRYwjDEtRGPpw7gZ+MBzrMBsEVkq\nIlNqulFEpohIlohk5eTkhDWTlU0Y1JElOw6z52hBg36uMcZEQsQDhoiMwwkYd3uSz1HV4cAkYKqI\njKnuflV9VlUzVTUzPT09zLkNNGlIR1RhweaDDfq5xhgTCRENGCIyFHgemKyq/rYdVd3j/pkNTAdG\nRiaHNeuTnkTruGh+/t9VXPSXuZHOjjHGhFXEAoaIdAfeBm5Q1Y2e9EQRSfa9ByYAQUdaRVp0lHBq\n5xQANtiy58aYZi4mXA8WkdeA84A0EdkN/AaIBVDVp4H7gPbAUyICUOqOiMoAprtpMcCrqjorXPn8\nuk7t3IYl24/UfqExxjRxYQsYqnptLed/APwgSPpWYFjVOxqn9OR4//uSsnJioyPeLWSMMWFh325f\n02VDO/vfH823fTKMMc2XBYyvqXv71jx+7WkAHMm3taWMMc2XBYx60K51HABHbDFCY0wzZgGjHvj6\nMaa9vZpDeUURzo0xxoSHBYx60Cc9EYBtB08w4oHZrNlzLMI5MsaY+mcBox7EREeREFvxV7l0hw2z\nNcY0PxYw6snHd4xlxo/PAeCw9WUYY5ohCxj1pFtqawZ3aUN8TBSPfbKJzdl5kc6SMcbUKwsY9ayo\ntByAv32yKcI5McaY+mUBI0zeW7mXN5fsinQ2jDGm3ljAqGeXn9bF//6F+dsimBNjjKlfFjDq2V++\nPdz//liBLRVijGk+QgoYInJ1KGkm0KG8YlQ10tkwxph6EWoN454Q04xHcVk56/Ydj3Q2jDGmXtS4\nvLmITAIuBrqIyN88p1KA0nBmrLlYuOUQp3ZuE+lsGGPM11bbfhh7gSzgG8BST3oucEe4MtXU/W7y\nqazcdYyP1+1n+6ETkc6OMcbUixoDhqquBFaKyKuqWgIgIu2Abqpq619U48bRPWE0fOOJXHYcyo90\ndowxpl6E2ofxsYikiEgqsAx4TkT+EsZ8NQs92yeyft9xThRZ650xpukLNWC0UdXjwBXAS6o6Crgg\nfNlqHq4d2Z3DJ4q5880VZG0/THm5jZgyxjRdoQaMGBHpBHwLmBHG/DQro/u055Zze/Ph2gNc9fRC\n7vrPSopKyyKdLWOMOSmhBozfAR8CW1R1iYj0BmpcLElEXhCRbBFZU815EZG/ichmEVklIqd7zk0U\nkQ3uuWmhFqYxuv7MHv7305fv4ZVFOyOYG2OMOXkhBQxV/Y+qDlXVH7rHW1X1ylpuexGYWMP5SUBf\n9zUF+DuAiEQDT7rnBwHXisigUPLZGHVLbc0Xd49jyx8uJiZK2JJjq9gaY5qmUGd6dxWR6W6NIVtE\n3hKRrjXdo6pzgcM1XDIZpz9EVXUR0NZt9hoJbHaDUjHwunttk9W1XWuio4RBnVPYdTifyU/OZ9aa\n/ZHOljHG1EmoTVL/BN4DOruv/7lpX0cXwLuc6243rbr0Jq9VbDTzNh1k5a6j3PbKUhZuORTpLBlj\nTMhCDRjpqvpPVS11Xy8C6WHMV8hEZIqIZIlIVk5OTqSzU6Oz+qQFHN/4wpcRyokxxtRdqAHjkIhc\nLyLR7ut64Ov+PN4DdPMcd3XTqksPSlWfVdVMVc1MT28UMaxaU8f1CTiOj4mOUE6MMabuQg0YN+EM\nqd0P7AOuAr73NT/7PeBGd7TUmcAxVd0HLAH6ikgvEYkDrnGvbfJioqPon5HsP06Mt4BhjGk66jKs\n9ruqmq6qHXACyP013SAirwELgf4isltEbhaR20TkNveSmcBWYDPwHPAjAFUtBW7HGca7HnhTVdfW\nsVyN1qu3jCI5wVmR5WBeMU9+tpmCYpubYYxp/CSU/RpEZLmqnlZbWqRlZmZqVlZWpLNRq/ziUm56\ncQmLtjqDyG4d05t7Lh4Y4VwZY1oiEVmqqpmhXBtqDSPKXXTQ9wGp1L7SralG67gYRveu6AD/cO1+\n22jJGNPohfql/ydgoYj8xz2+GngwPFlqGYZ2q9gjY/uhfA7mFZOeHB/BHBljTM1Cnen9Es7Cgwfc\n1xWq+nI4M9bcjejRLuD4N++tYd1e253PGNN4hdyspKrrgHVhzEuLkpIQy2u3nElcjHDl3xcyc/V+\n9h8r5C/fHk6P9omRzp4xxlQRah+GCYPRfdozrGtb//GynUcZ+8gcnp+3NYK5MsaY4CxgRFhMdBRP\nXz+Cd6ee7U974P31PDzrK3ILSyKYM2OMCWQBoxGYOLgjw7q1DQgaT83Zwk9fXxHBXBljTCALGI1I\n/47JAcdzN+Xw/qp9rN17LEI5MsaYCjaXohFJiA1cKqSkTJn66jKiBLb+8ZII5coYYxwWMBqZJfeO\nZ9HWQ3Rp14ornloAgG0FboxpDKxJqpFJT47nsmGdOb17Oy4d2smfnldUGsFcGWOMBYxG7YnvnM6z\nN4wAYOmOIxHOjTGmpbOA0cgN7+7M0/juC4uZuXofm7NtT3BjTGRYwGjkOiQn+N//6N/LuORv8yKY\nG2NMS2YBown4722j/e+LSss575HP+OvsjRHMkTGmJbKA0QRk9kwNON5+KJ+/zt7EvE05lNsQKmNM\nA7GA0UT8/KL+DOyUEpB2wz8WM+DXs5j66rII5coY05JYwGgipo47hXenns3UcX0C0ovLynl/1b4I\n5coY05JYwGhC4mKi+PlFA/j9NwdXOWc79hljws0CRhPUIcjOfMcLbGKfMSa8LGA0Qb3Sqm6wdCC3\nMAI5Mca0JGENGCIyUUQ2iMhmEZkW5PzPRWSF+1ojImUikuqe2y4iq91zWeHMZ1PTt0NSlbQJf5nL\nLS9lUVhSFoEcGWNagrAFDBGJBp4EJgGDgGtFZJD3GlV9RFWHq+pw4B7gc1U97LlknHs+M1z5bIpE\nhBk/Poc7xvcLSP943QE+XLvff1xaVt7QWTPGNGPhrGGMBDar6lZVLQZeBybXcP21wGthzE+zMrhL\nG/5vfF+W/mo8X/7yAvplOLWOjQdyATiWX8Ip937Ai/O3RTKbxphmJJwBowuwy3O8202rQkRaAxOB\ntzzJCswWkaUiMqW6DxGRKSKSJSJZOTk59ZDtpqV9UjwZKQl8dMdYeqcnsiX7BAD7jhcA8OhHNiPc\nGFM/Gkun92XA/ErNUee4TVWTgKkiMibYjar6rKpmqmpmenp6Q+S10erbIYmsHUfYc7SAIyec/cDz\nikrZdvBEhHNmjGkOwhkw9gDdPMdd3bRgrqFSc5Sq7nH/zAam4zRxmRrcfE5vDuYVcd1zi3j0ow3+\n9E/WH4hgrowxzUU4A8YSoK+I9BKROJyg8F7li0SkDTAWeNeTligiyb73wARgTRjz2iyM7JXKd0Z1\nZ/uh/ID9M44X2hwNY8LlWEEJPae9z7srqvs93HyELWCoailwO/AhsB54U1XXishtInKb59LLgY9U\n1dtukgF8ISIrgcXA+6o6K1x5bU5O794u4Dg+Joq8wlJeXridxz/ZFJlMGdOM7TyUD8Bz87ZGOCfh\nF9Y9vVV1JjCzUtrTlY5fBF6slLYVGBbOvDVXndokBBynJsYxZ0M2L8x34vHN5/ZCEPYdK6B3etX5\nHMYYU52wBgzT8IZ1a8uQLm246NQMWsXF8MaSnWw8ULFL33ee+5L05Hg+XneAjQ9MIi6msYx7MMY0\ndhYwmpmk+Bj+9+Nz/MczVzsr2XZp24o9RwtYseuo/1xOXhFd2rZq8DwaY5om+3nZzJW6GyxdOaJr\nlXPZx239KWO+LqXlrBRtAaOZ2+zO/D6rT3u+uHtcwLkDx4sikSVjTBNlAaOZax3vtDoO69qWLm1b\nccnQTv5zP//vSnJyiziaX2ybMBlzkgSJdBYajPVhNHOv3XImmw7k0iouGoAHJg/2B4fcwlIu+ds8\nTumQxIIth/jXwlRe+N4ZLN1xhLH9nFnz6/cdJzEuhu7tW0esDMY0Zi2pScoCRjN3SockTvEsh94u\nMY4191/EkRPFfL4xh1+9s4bsXKdpavG2w0x7axUzVu3jmRtGcNGpHZn02DwAtj90SUTyb4xpPKxJ\nqgVKio+hW2prRvdpX+XcV/udPo9bX17K3qMFDZ01Y5qcltQkZQGjBevZ3tm5b3CXFP5w+RAANmdX\nzNl4a+lu//sS21vDmKBaUpOUBYwWLDpK+PSusbw+ZTTXjqxYJ7JzmwRio4XXFu/0p/W99wPW7DkW\niWwa06ipGy9aQk3DAkYL1zs9iaT4GESEa0d2B2DvsUL6pCex91jgPI1Pv8oGYEtOHkt3HGb9vuPM\n25RDTq4NzzUtV7kbMVpCTcM6vY3fHy4fzK7D+Uw4NYN5mw76+zN8/vzxRnYcymfrwTyW7zwacM6W\nGTEtlS9gtAT2f7jxExFe+cEobhzdk3j3yz+zR+Dqt28t2+1fndNrtrvnxomiUg7mWY3DtBzl1iRl\nWrqiUqeTe1i3tlXOHTpRzE8u6MsjVw31p/3o38uYtWY/k5+cT+YDs/nTRxu48M+fN1h+jYmU8vKW\n0yRlAcMENW3SAMb0S2fKmN5Bz6cnx3PZsM7c6jn/0br9/lFWj3+6mU3ZeWgLqq6blqmsBf0bt4Bh\nguqTnsRLN40kI6Vif42P7hhDQqzzTyY9KZ6E2GjuuXig/3xSfNUusdwi2+3PNG8taZSUdXqbWv3t\n2tNo0yqWfhnJrP/dRJZsP8IZPSv6Nnq0b82OQ/m8u2JvlXsP5RWzLecE0VHC4C5tGjLbxjQI6/Q2\nxuMbwzr715YSEUb2SkWk4tfU+z85F3D2Nq5s04FcvvnUfC59/AsWbD7YMBk2pgGVlVvAMCZkSfEx\n/H7yqUHPfbI+219l/3Dt/jo/e9fhfLJzbd8O03i1oAqGBQxTP24Y3ZNXbxnlP75ulDMJ8I2sXURH\nCQM7pVSZ1wHOMNwvNh1kxqq99Jz2PsfyA2sp5z78GSMf/CS8mTfma2hJTVLWh2HqzVl90pj3i3F0\nbtuK6Chhz9EC5mzIoXdaIqd1b8u7y/dwMK+IWWv286t31jC2Xzq5hSUs23mUru2crWI35+QxotLc\nD4BtB0/QKy2x2s8uKi1j2luruWN8P1uK3TQoa5KqJyIyUUQ2iMhmEZkW5Px5InJMRFa4r/tCvdc0\nTt1SWxMd5fRv+JYaKVdl/MAOnCguI/OB2fzqnTUAfL4xh2XujPED7naxU/+9jMKSMiBwwcNxj86p\n8XMXbD7E9OV7uO+9NfVaHtP4rdp9lBmrqg64aCgtKF6Er4YhItHAk8CFwG5giYi8p6rrKl06T1Uv\nPcl7TSM2pm86I3q0464L+3Fm7/akJsZx+ERx0GtLypz/6/YfL+Snr6/g5nN7+WsdofD9ylN1Ak1s\ntLW2thTfeGI+AJcO7RyRz29Jc43C+X/VSGCzqm5V1WLgdWByA9xrGolWcdG89cOzOOuUNKKihH99\nf2RI981au5+rn15Yp0UNS8ud2sjnG3Poe+8HJ5XfxmDv0QLufHMFRaVlkc6KCZFN3KsfXYBdnuPd\nblplZ4nIKhH5QER8Q21CvRcRmSIiWSKSlZOTUx/5NmHi3fnPZ/mvL6R3evC+Cd8vx5oUFDtfrMcL\nmscEwfveXcvby/YwZ4P9W24qWlKTVKTr7cuA7qo6FHgceKeuD1DVZ1U1U1Uz09PT6z2Dpv60iotm\nZM9UAPpnJPP/rhxCu8Q4fnBO8OVHKistK+flhdt5bu5WCkvK+NeC7Qy8bxaLth6qMgek3PN/cXm5\ncs/bq1m+80i9lSXcmv+c4eajJTVJhXOU1B6gm+e4q5vmp6rHPe9nishTIpIWyr2mafr3LaPYf6yQ\nbqkVI5m6BOmruOL0LizZfpjUxHhW7nI6xu95ezX/cXcBfHDmev+18zcfrDIWPq+4lJSEWACWbD/M\na4t38tX+40z/0dkB1+UWlrB422EuGJhRL+UzLY+NkqofS4C+ItJLROKAa4D3vBeISEdxpwyLyEg3\nP4dCudc0TbHRUQHBAqB9Ypz//aNXD2PS4I784fIhzPvF+bw79Wz+eIWzfex/PFvGeq3cfYwj+YGd\n6bmFFU1Uczc5zTvLdx5lfqXZ5ne9uZKb/5XFHtu/3Jwk//LmLaBaGLYahqqWisjtwIdANPCCqq4V\nkdvc808DVwE/FJFSoAC4Rp36XdB7w5VXE1mpnoBx1YiuXDWia8D5gZ1Sgt43smcqw7q14bl526qc\nm7FyLy/M30Zmz1TiPCOmpryUxdrfTfQfr9vnVHLzChtLH0jL+bXaXPh33GsB/+nCOnFPVWcCMyul\nPe15/wTwRKj3mubJGzCCGd6tLRsemMjri3cRJVBYUs6DM9fTNyOJW8f28QeMXmmJbDt4AoA/fvAV\nAO+v2hfwrLatnc/65fTV9GqfyO4jTs1i+c4jdEiOp10teTEV7nxzBat2H2P2nWMjnZWIKm9BTVI2\n09tEXEJsdK3XxMdE892zegLO+lKPfbKJ68/sQVpSPB/dMYaj+SV8sGafP2D4dExJYP/xirWoUlrF\nUlBcxqvNVzBLAAAbmElEQVRf7gy4btrbq3lm7lY+uXMsOw7nB8wq/3DtflrFRjPGXYDxRFEpSvDl\n3OtLU/gKentZ4+pWLC9XoqIavl2oJTVJRXqUlDEA3HvxwIC1qGrSLbU1a+6/yN9U1S8jmZG9Uuna\nLrBv5NqR3bjn4gEBaa3joqvtr9h28ARvZO1i3KNz+MizUOKtLy/lxhcW+4/P/OMnDP7Nh1Xu33ko\nv8qvzaP5xazZcyykcnmVljWFkNG4lEbol35LapKygGEahVvG9OasPmlf6xkdkuMDjru2a+2fLd6u\ndSxpSfEs3XGEn7y2vNpnPPi+M/pqystLeX3xzqBLtucG6e/YdvAEYx75jKfmbA5I//Yzi7j08S/q\nXBbvsigmNJEardSSFh+0gGGajTPcOR79MpLonZ7IJUM60amNEzDSk+Pp2MYJKL6Obl+6V55nh8Bp\nb69m7d7Qagd73VrLF5VGYW044KzQG+rMbd93T7EFjDqL1IxrX62yJTRJWR+GaTY6tklg+0OXBKSp\nKnde2I9Lhnbi6qcXVrlnwqAMikrLOa17Wy4cmMHH6w8wf/NBZq52mqS+89yX/mszH/iY527M9B97\n28xr+4LPLSwlPqn2vhofq2HUXVmEmvFaUJ+3BQzTvIkIP7mgLwBXj+jKM3O3svGBScRECZ9tyGZw\nlzYB+5ZfN6oHCzYfCvqsg3nFXP7UAv9xXnEpB44VcrSgxL+PR0mZcrywxD9p0Ce3sJS0pMDaTE1K\nShs2YKzZc4zUxDg6t62YRFlaVs7MNfu5bGingB0WKysrV/8KxZHkW0+sobWkJikLGKbFuHviAO64\nsB9xMU5LbHWzu71fPN/O7EZhaVnQ/crnbMjx94ckxjm1h6U7jjD0tx/xzeGd+es1p/mvzS2s2hdS\nk5IG+LU8d2MO97y9mtl3jvX3s3hraP/4Yht//OArysuVb54WdCk3AIpLy2kVF3rtKVysDyP8rA/D\ntBhRURLSEN6fTejPwE4p/OayQfzxiiGcP6BD0Ou8necnigP7KN5ZsTdgVvk3npjvb+vempPHY7M3\noaq8vGgH762sCEa+H/JvLdsd9jWKfj9jHXuOFrDj8Img533DkQ/m1bxqcGNZWTdyo6Qi8rERYTUM\nYyrpm5HMB/93rv/4G8M60y21NYfyilm+8whPzdkS0nOue/7LgOMNB3Jp1zqO65//kr3HCrlmZDd+\n7W4mdUbPdnRq08r/5fPV/lzmbMxhXP/gwao++IJTSWnwb7xo94LafkEXn2Tz2ff/uZgRPdpx+/l9\nT+r+yiJVw7C1pIwxfiLC6d3bceGgDC4P0jTTrnVgf8U1Z3Srcg3A1FeXceYfP2HvMeeX+7q9FaO1\nzn7oU/4wc31AZ/fBSvuB5BeX8ut31nCsoIQZq/by5Geb2Xu0wL9DYV354sC3nqk6GADwd+jX9n1Y\ndJIB47MNOTz60caTujeYutQwDhwv5Kk5m+tci8v2TAL1aUmr1VrAMKYO+mYkVxmJ5VtOpGf71nz1\n+4lcN6pH0Hu35gQ2/SzdUbHcernCs3O3BgzrrdyP8eaSXby8aAd/n7OF219dziMfbuCshz5lwK9n\nccK9r7xcKSkrp6xcueONFTz4vrNJpapSWs3Iq4JqAo6vBlJbDaNyk9TSHUf8+5RUx/slm19cP+t4\n1eWX/tR/L+PhWRvYnJ0X8j3Ldh5h5B8+4Z3lgTPcW1AFwwKGMSfjnaln883hzpag/Tokc27fNP5+\n/QgSYqPp1NYZdXXNGd3Y+MAkzu2bxmXDnGvP7VsxOfH1JTurPHe5u8c5UGUFXp+5G6turvRddyb6\nL95axZDffsjOw/lMX76H5+Zto6C4jD99tJFT7v0gIGgE+54rKC7jzSW7UFV/U1NtP6C9NYyc3CKu\n/PsCfvbflTXek+8JKAdzA8s5d2MOPae9X6cvc6hbwDjs/t3WZe6Eb8Z+1o7DJ/25TZ31YRhzEoZ3\na8v9kwdz4HgR91w8gB7tK9aeSkuKZ9ZPz6VPehKx0VG8fLOz5Mnj1zqjpmavO8APXsriYF7wgOBT\nubPZ1+TinXjok7XjCLsO5/Nfdwn4T9Yf8J/bfugEz8x1+l32Hi2ke/vWPDVnc9Av5N++t5Y3snax\nOSePf87fHjQflXkDhq+GtGhL8KHJPic8NancosARZL5BAEt3HA66S6OXt6ZSl2G1vqVX6tKa5Aug\nlfeL9+WhJYyWshqGMSepTatYXptyZkCw8BnQMaXKF4vP+EEZ/Pj8U/zHvoUOfTUWn+zcIsrKlaU7\njtDvVx/wwPsVm0Z5pz30du9/M6tiV+O/zt7kf7/t4AniY5zRYTsOn2Bzdh4Pz9oQNG9Ltju/nr2r\n/P5z/nYW1hAAikoqvqh9w4e9TWvBeM+fKApsvvJ98UbV8vP/jjdWMOoPn/iP6/JL33dtXfpffJMz\n4yr9d/V9bISmgTQoCxjGRMA3hlUEhzsv7AfAPRcPDLjm/VX7OP33H3Pl3xdUGYn07TO6+9/79kR/\n/NOKdazyikr9a2ttO3jCP/dkx6F8PlgduOS711Z3td/Ka2j5aiy5hSWUlyuz1lQszuj7Iv1sQzYP\nzHCCWm1fxN4gkVcUfHvd2r7+py/fQ7ZnYEBdOr19gwu8+Zy1Zh9Z2w9Xd4t/NFnlHwJlDVTDCNbh\n3tAsYBgTAd5dBy8b1pntD11CRkoC90wKXF3X98V9ydBO/rRF91xAZo92/uMLBwWfgPjHK4aQkhDD\n9OV7/P0hz8/byp8+3khCbOD/+uMHBg7frVxDyMkr4qWF2xny24+45rlF3PbKUv+5FTuPUl6ufP+f\nS1js+cL9/Yx13Dt9NR+vO0Bl3ufnFpaSW1jC64t3Ulxajq+v37ep1erdx/zb9Nbk5GoYFYHrtleW\ncVWQ5WN8isucayvPai+vFDCW7TwS0ORWH5a7He7TlwffdbKhWB+GMRGQEBvNd0f34OxTAlfovXVs\nH644vSvHCkp44tNN9M1I5pVFO/jZhP6M6pVKebnSsU2Cv7P27FPa863Mbtz91uoqnzG8W1tax8UE\n9FVsP5QPOAs13nfpIDYeyGNIlzYs3HqQ2euzq83vuyv2+me7L94W+Cv8L7M3sv1Q1cl///jC2djq\n31/u5M1bRzOocwpJ8TE89MFXFHhGRuUVlfLEZ5t55vOtbMnJo8xt21m49RAje6Vy2RPOLPR1v7uI\n1nHVf2XVZUl4Xw2jLnNIfAHMVyspKi3jnrdX+9PL1QnwVzy1gPEDO/D8d8/w31tYUsbuIwW19skE\nU1hS5g+Y8zcf4vLTutZyR/hYwDAmQu6fPDhoenpyPOnJ8f6lRaaOc/o7vJs6+Vo/0pLiERFm/Pgc\nbnxhMdFRwrcyu/La4l20T4oPaFqKkor29j9dPYwOKQn0zUgG4OCJ5JMqQ2piHIdPFDN9ec2bKX3r\nmYUM7dqGnNwi9h0LbFrJKyz110I+35jjX9vr43UHAmonS7YfYay7iVUwZeXK8/O2cunQznRsk0BO\nbhHtE+OCbqrkq2E8N28rY/ulh9T5fdwNDL55L6t2HwvYRKpclePu3/cCT5/PuQ9/yq7DzmrGa+6/\niKT4GDbsz6V9UhxpSfG8u2IPGSkJ9ElP4tEPN3D/5FMDViQY/cdPOOJfqyyyHSXWJGVME3RuvzSS\n4mO4+ZxeAAzu0oZlv76QJfeO5+cXDWDZry8EAudYTBzc0bm3bxodPAsuAgzr2rbaz3rkqqFV0tKS\nnLknU8edwqNXDwt637j+6QHbt67afaxKsACnScq3Ve6m7Dx2Hc4P+rzDJ5z+io0HcnlxftV93Ddl\n5/LA++v56RvLKSwp44wHZ/Pz/64K+qwSN2DM33yIZTuPciKEuSCHTzjNer6AkV9prolqRROi7++9\nuLTcHywAjrjPuOivc7n4sXmUlpXzf6+v4JpnF/HnjzfwRtaugKViAH+wgMhvrGUBw5gmqENyAmvu\nv4ihNXzRA/zEHY112bDOXHm605QRbFJddJTw4OWDq2xCBTBhUMcqaWf2bg9AbLRw1YiuzPvFuIBf\n/0t/NZ4XvndGrU0wCbFR7D6ST3FpOZMGd0S1otmsss3Zeew/Vsjtry7jt/9bV+X8fjcYLdp62L8F\n71vLgrf5e/s7cnKLgm6U5fPa4p08P28r693hzAUlZew9WsCCSnuflJU7KxVDRQ2wcl/Gkfxi/2dn\n5xax1jPb3zeRs6aZ+yc7q76+WJOUMc3YnRP6c+eE/oAzX+CuC/sxtn/wZp3rRvXgulE9OF5YQkyU\n8OHa/STFx9LGs/TJuP7p3DWhv38Ir+8Xb7fU1vzrppFszclj28ETtA9xKfcOyQms2u1MiLtsWGeW\n7TzCgeNF9MtI4qfj+1FcWs4db65AFZ78bAtPflb9Ol47PTWT382oCCiHTxST6s7G/827axjbPz0w\nYOQFBoy1e49x7/Q1/OO7mbRPiueetwP7hwqKyzjroU+rfL7TJBUYICoPHth5OD9gOf0vt1U0XW08\n4PQ13ffuWv+Ww5X3jd9/vABVrXG5+XCScK6DIiITgceAaOB5VX2o0vnrgLsBAXKBH6rqSvfcdjet\nDChV1UxqkZmZqVlZWfVaBmOMs/aSqrNJFcBfPt7IY59s4ifnn+IPSNX59KsDvL54F3dO6MfM1fu5\n8vQujH1kDgDjB2Yw2x2yO/1HZ3H//9axYtdRHr5qKN/KdNbkKi9Xev9ypv95Azul+H/tj+7dnoVb\na54kCPDyzSP538q9vJkVvMbxzA0juPXlpQFpN47uwbsr9lapffROT6yyzAtU9Of4PHvDCJ6cs6XK\nCK8RPdr5axPjB3Zga84JklvFBlw3eXhn3l2xl5duGhmwnzw4o+KGd2vr79v6ukRkaSjfrxDGGoaI\nRANPAhcCu4ElIvKeqnrrktuAsap6REQmAc8Cozznx6lqYL3PGNPgMir1efgWXDxczfIlXucPyOD8\nAc7Q3wEdUwJGJg3slMzs9QcQgZ7tE/3PTfSMhvJ2Wn9x9zi6tmtNz2nvA/DqLaPYkpPH+D/PrTEP\nN/xjcY3ng81NeWnhjippvdOCBwsgIFiAsy98MN41xFbsOsbYfunsP14QcI1vRFrl2g1UDAaYOu4U\njhWUsOtwPgUlZYzo3i5oB399Cmcfxkhgs6puVdVi4HVgsvcCVV2gqr6/vUVA5MaLGWNCNqRrGwD6\ndqj76Kq4mCjato7l1rG9GTegA73TEnngm4NplxjHXRP606VtK87snRr03i7ujoCzfnour91yJiIS\nMCN8eLeKPp3fTT612jz86pKKSZKJcdG8435B905LJMbzpdsnPXAWf4/2FfNn3v7RWTx8ZdUBAXVx\nMK+I3umJVZqefPYcLQiaDnDNswsZdv9HXPr4F9z28tJaJzrWh3AGjC7ALs/xbjetOjcDH3iOFZgt\nIktFZEp1N4nIFBHJEpGsnJyqi7IZY+rfiB6pzL5zDDecGXxl3tqsuG8C90wayOnd2/Hpz87zr/A7\nuEsb5k87v0ofyNPXn85j1wz3t90P6JjC6D5Ox3tMVMXX2Gu3nOlfuuOqEYG/P31xoHObBK735Ns7\na/6Tu8ay6cFJ/uPK+5FcOrRihn6/jOSAAALQtV0rOiTHk5xQNQD0SU+kZ6XrwalZJcXHVkkH6NQm\nIWg6OJ37PhcOymiQbXIbxSgpERmHEzDu9iSfo6rDgUnAVBEZE+xeVX1WVTNVNTM9vfox2saY+nVK\nh+SwN4H4TBzcicnDa/q9Cad1b0uruGjm3T2O1245k9ZxMbz4/YrJc3eMd5Zg+fRn5wXMc7g6syKw\niAgiwpWnd+U7o7qT7o4aO7dvGk9fPyJgq9qk+Bj/0vYZKfH8/brT+eLu81l87/gqQ24Bnrkhk2dv\nzOTakd252hPMerRvHRBgvLPufcOma3NO37TaL6oH4RwltQfw7iTT1U0LICJDgeeBSarq771S1T3u\nn9kiMh2niavmhkpjTIvTLbUV9106yP9lnpGS4O9zGdsvnUuGdOKK07tw/oAO3HZenyprQfXLqNqs\n9qdvOXNLCkvKKC4t55YxvYNu79u3QxK/uWwQk4d38Y/EguDLlPRo35rY6Cj+eMUQ/jl/G7hdHKd0\nSPI3SY3slcozN2TSx+3kv+nsXsTFRHHfu2sDnvXzi/pz1Yiu/sUX+wcpQziEM2AsAfqKSC+cQHEN\n8B3vBSLSHXgbuEFVN3rSE4EoVc11308AfhfGvBpjmigR4aZqfomLCE9ed7r/ODY6sEY0eXhnoqOE\n308+la7tqjYXJcRG8+MLAreQnT/tfP/8ChHh+2dX/eyXbhrJzNX7OHC8kM825LD5wUnEeALVkC5O\nH1CMu898ohswokUCmpaiooQbzuxRJWBUHiEVbMXkcAhbwFDVUhG5HfgQZ1jtC6q6VkRuc88/DdwH\ntAeectsmfcNnM4DpbloM8KqqzgpXXo0xLY9358QbRvcM+T5fx3tNxvRLZ0y/dArdSX4xlWo1mT1T\nuevCfgzuWhE4AP/mW17eORczfnwORz0zvx+9ehiLtx3yr0YcbmGduKeqM4GZldKe9rz/AfCDIPdt\nBYKvN2CMMU1EQmw0vdODz3b31lx8qwn7Rnn98uIBtPI0gY3pl05eYQmD3ZqJz1Ujulbp3A8nm+lt\njDERdvM5vSgrV/9kxSlj+gScf+mmkZHIVhUWMIwxJsLaJ8VX2UCrMWoUw2qNMcY0fhYwjDHGhMQC\nhjHGmJBYwDDGGBMSCxjGGGNCYgHDGGNMSCxgGGOMCYkFDGOMMSEJ6xatDU1EcoCq22SFJg1oLrv7\nNZeyNJdygJWlsbKyQA9VDWlviGYVML4OEckKdV/bxq65lKW5lAOsLI2VlaVurEnKGGNMSCxgGGOM\nCYkFjArPRjoD9ai5lKW5lAOsLI2VlaUOrA/DGGNMSKyGYYwxJiQWMIwxxoSkxQcMEZkoIhtEZLOI\nTIt0fmojIi+ISLaIrPGkpYrIxyKyyf2znefcPW7ZNojIRZHJdXAi0k1EPhORdSKyVkT+z01vUuUR\nkQQRWSwiK91y3O+mN6lyeIlItIgsF5EZ7nGTLIuIbBeR1SKyQkSy3LSmWpa2IvJfEflKRNaLyOgG\nL4uqttgXEA1sAXoDccBKYFCk81VLnscApwNrPGkPA9Pc99OA/+e+H+SWKR7o5ZY1OtJl8OS7E3C6\n+z4Z2OjmuUmVBxAgyX0fC3wJnNnUylGpTHcCrwIzmvi/se1AWqW0plqWfwE/cN/HAW0buiwtvYYx\nEtisqltVtRh4HZgc4TzVSFXnAocrJU/G+ceE++c3Pemvq2qRqm4DNuOUuVFQ1X2qusx9nwusB7rQ\nxMqjjjz3MNZ9KU2sHD4i0hW4BHjek9wky1KNJlcWEWmD82PxHwCqWqyqR2ngsrT0gNEF2OU53u2m\nNTUZqrrPfb8fyHDfN5nyiUhP4DScX+dNrjxuE84KIBv4WFWbZDlcfwV+AZR70ppqWRSYLSJLRWSK\nm9YUy9ILyAH+6TYVPi8iiTRwWVp6wGh21KmPNqmx0iKSBLwF/FRVj3vPNZXyqGqZqg4HugIjRWRw\npfNNohwicimQrapLq7umqZTFdY7732USMFVExnhPNqGyxOA0Rf9dVU8DTuA0Qfk1RFlaesDYA3Tz\nHHd105qaAyLSCcD9M9tNb/TlE5FYnGDxb1V9201usuVxmwk+AybSNMtxNvANEdmO00R7voi8QtMs\nC6q6x/0zG5iO0yzTFMuyG9jt1lwB/osTQBq0LC09YCwB+opILxGJA64B3otwnk7Ge8B33fffBd71\npF8jIvEi0gvoCyyOQP6CEhHBaZNdr6p/9pxqUuURkXQRaeu+bwVcCHxFEysHgKreo6pdVbUnzv8P\nn6rq9TTBsohIoogk+94DE4A1NMGyqOp+YJeI9HeTLgDW0dBliXTPf6RfwMU4o3O2APdGOj8h5Pc1\nYB9QgvOr42agPfAJsAmYDaR6rr/XLdsGYFKk81+pLOfgVKFXASvc18VNrTzAUGC5W441wH1uepMq\nR5BynUfFKKkmVxac0Y8r3dda3//fTbEsbt6GA1nuv7N3gHYNXRZbGsQYY0xIWnqTlDHGmBBZwDDG\nGBMSCxjGGGNCYgHDGGNMSCxgGGOMCYkFDNPoicgC98+eIvKden72L4N9VriIyDdF5L4wPfuXtV9V\n52cOEZEX6/u5pmmyYbWmyRCR84CfqeqldbgnRlVLazifp6pJ9ZG/EPOzAPiGqh78ms+pUq5wlUVE\nZgM3qerO+n62aVqshmEaPRHxrQT7EHCuu7fBHe6Cf4+IyBIRWSUit7rXnyci80TkPZzZsIjIO+4C\ndGt9i9CJyENAK/d5//Z+ljgeEZE17n4K3/Y8e45nX4J/uzPWEZGHxNnbY5WIPBqkHP2AIl+wEJEX\nReRpEckSkY3uOk6+hQxDKpfn2cHKcr04+3SsEJFnRCTaV0YReVCc/TsWiUiGm361W96VIjLX8/j/\n4cz6Ni1dpGcv2stetb2APPfP83BnHrvHU4Bfue/jcWbB9nKvOwH08lyb6v7ZCmc2dnvvs4N81pXA\nxzh7pmQAO3H27zgPOIazNk8UsBBnxnp7nBm1vlp72yDl+D7wJ8/xi8As9zl9cWbuJ9SlXMHy7r4f\niPNFH+sePwXc6L5X4DL3/cOez1oNdKmcf5z1pf4X6X8H9or8KybUwGJMIzQBGCoiV7nHbXC+eIuB\nxersA+DzExG53H3fzb3uUA3PPgd4TVXLcBZ4+xw4AzjuPns3gDhLmvcEFgGFwD/E2aVuRpBndsJZ\notrrTVUtBzaJyFZgQB3LVZ0LgBHAErcC1IqKhemKPflbirP2FcB84EUReRN4u+JRZAOdQ/hM08xZ\nwDBNmQA/VtUPAxKdvo4TlY7HA6NVNV9E5uD8kj9ZRZ73ZUCMqpaKyEicL+qrgNuB8yvdV4Dz5e9V\nuRNRCbFctRDgX6p6T5BzJarq+9wy3O8BVb1NREbhbJ60VERGqOohnL+rghA/1zRj1odhmpJcnK1c\nfT4EfijOEumISD93VdLK2gBH3GAxAGf7VJ8S3/2VzAO+7fYnpOPsdlbtap/i7OnRRlVnAncAw4Jc\nth44pVLa1SISJSJ9cBbL21CHclXmLcsnwFUi0sF9RqqI9KjpZhHpo6pfqup9ODUh3/LY/XCa8UwL\nZzUM05SsAspEZCVO+/9jOM1By9yO5xwqtqj0mgXcJiLrcb6QF3nOPQusEpFlqnqdJ306MBpnpVMF\nfqGq+92AE0wy8K6IJOD8ur8zyDVzgT+JiHh+4e/ECUQpwG2qWigiz4dYrsoCyiIivwI+EpEonNWN\npwI7arj/ERHp6+b/E7fsAOOA90P4fNPM2bBaYxqQiDyG04E8253fMENV/xvhbFVLROKBz3F2rqt2\neLJpGaxJypiG9QegdaQzUQfdgWkWLAxYDcMYY0yIrIZhjDEmJBYwjDHGhMQChjHGmJBYwDDGGBMS\nCxjGGGNC8v8BjEfu4v46ofwAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fc4fde59e80>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Parameters have been trained!\n", "Train Accuracy: 0.986111\n", "Test Accuracy: 0.8\n" ] } ], "source": [ "parameters = model(X_train, Y_train, X_test, Y_test)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Expected Output**:\n", "\n", "<table> \n", " <tr> \n", " <td>\n", " **Train Accuracy**\n", " </td>\n", " <td>\n", " 0.999074\n", " </td>\n", " </tr>\n", " <tr> \n", " <td>\n", " **Test Accuracy**\n", " </td>\n", " <td>\n", " 0.716667\n", " </td>\n", " </tr>\n", "\n", "</table>\n", "\n", "Amazing, your algorithm can recognize a sign representing a figure between 0 and 5 with 71.7% accuracy.\n", "\n", "**Insights**:\n", "- Your model seems big enough to fit the training set well. However, given the difference between train and test accuracy, you could try to add L2 or dropout regularization to reduce overfitting. \n", "- Think about the session as a block of code to train the model. Each time you run the session on a minibatch, it trains the parameters. In total you have run the session a large number of times (1500 epochs) until you obtained well trained parameters." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.7 - Test with your own image (optional / ungraded exercise)\n", "\n", "Congratulations on finishing this assignment. You can now take a picture of your hand and see the output of your model. To do that:\n", " 1. Click on \"File\" in the upper bar of this notebook, then click \"Open\" to go on your Coursera Hub.\n", " 2. Add your image to this Jupyter Notebook's directory, in the \"images\" folder\n", " 3. Write your image's name in the following code\n", " 4. Run the code and check if the algorithm is right!" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "import scipy\n", "from PIL import Image\n", "from scipy import ndimage\n", "\n", "## START CODE HERE ## (PUT YOUR IMAGE NAME) \n", "my_image = \"thumbs_up.jpg\"\n", "## END CODE HERE ##\n", "\n", "# We preprocess your image to fit your algorithm.\n", "fname = \"images/\" + my_image\n", "image = np.array(ndimage.imread(fname, flatten=False))\n", "my_image = scipy.misc.imresize(image, size=(64,64)).reshape((1, 64*64*3)).T\n", "my_image_prediction = predict(my_image, parameters)\n", "\n", "plt.imshow(image)\n", "print(\"Your algorithm predicts: y = \" + str(np.squeeze(my_image_prediction)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You indeed deserved a \"thumbs-up\" although as you can see the algorithm seems to classify it incorrectly. The reason is that the training set doesn't contain any \"thumbs-up\", so the model doesn't know how to deal with it! We call that a \"mismatched data distribution\" and it is one of the various of the next course on \"Structuring Machine Learning Projects\"." ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "<font color='blue'>\n", "**What you should remember**:\n", "- Tensorflow is a programming framework used in deep learning\n", "- The two main object classes in tensorflow are Tensors and Operators. \n", "- When you code in tensorflow you have to take the following steps:\n", " - Create a graph containing Tensors (Variables, Placeholders ...) and Operations (tf.matmul, tf.add, ...)\n", " - Create a session\n", " - Initialize the session\n", " - Run the session to execute the graph\n", "- You can execute the graph multiple times as you've seen in model()\n", "- The backpropagation and optimization is automatically done when running the session on the \"optimizer\" object." ] } ], "metadata": { "coursera": { "course_slug": "deep-neural-network", "graded_item_id": "BFd89", "launcher_item_id": "AH2rK" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
anthonyng2/FX-Trading-with-Python-and-Oanda
Oanda v1 REST-oandapy/04.00 Order Management.ipynb
1
11756
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "<!--NAVIGATION-->\n", "< [Account Information](03.00 Account Information.ipynb) | [Contents](Index.ipynb) | [Trade Management](05.00 Trade Management.ipynb) >" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Order Management" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Orders](http://developer.oanda.com/rest-live/orders/)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Creating Orders" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`create_order(self, account_id, **params)`" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from datetime import datetime, timedelta\n", "import pandas as pd\n", "import oandapy\n", "import configparser\n", "\n", "config = configparser.ConfigParser()\n", "config.read('../config/config_v1.ini')\n", "account_id = config['oanda']['account_id']\n", "api_key = config['oanda']['api_key']\n", "\n", "oanda = oandapy.API(environment=\"practice\", \n", " access_token=api_key)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "'2017-01-28T21:54:17.120062Z'" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "trade_expire = datetime.now() + timedelta(days=1)\n", "trade_expire = trade_expire.isoformat(\"T\") + \"Z\"\n", "trade_expire" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For a detailed explanation of the above, please refer to [Rates Information](02.00 Rates Information.ipynb)." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'orderOpened': {'takeProfit': 0, 'side': 'buy', 'upperBound': 0, 'expiry': '2017-01-28T21:54:17.000000Z', 'trailingStop': 0, 'stopLoss': 0, 'id': 10618881403, 'lowerBound': 0, 'units': 1000}, 'price': 0.742, 'instrument': 'AUD_USD', 'time': '2017-01-27T13:54:18.000000Z'}\n" ] } ], "source": [ "response = oanda.create_order(account_id,\n", " instrument = \"AUD_USD\",\n", " units=1000,\n", " side=\"buy\",\n", " type=\"limit\",\n", " price=0.7420,\n", " expiry=trade_expire)\n", "print(response)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "expiry 2017-01-28T21:54:17.000000Z\n", "id 10618881403\n", "lowerBound 0\n", "side buy\n", "stopLoss 0\n", "takeProfit 0\n", "trailingStop 0\n", "units 1000\n", "upperBound 0\n", "dtype: object" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.Series(response[\"orderOpened\"])" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "order_id = response[\"orderOpened\"]['id']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Getting Open Orders" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`get_orders(self, account_id, **params)`" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'orders': [{'takeProfit': 0, 'type': 'limit', 'side': 'buy', 'trailingStop': 0, 'price': 0.742, 'upperBound': 0, 'instrument': 'AUD_USD', 'id': 10618881403, 'units': 1000, 'expiry': '2017-01-28T21:54:17.000000Z', 'stopLoss': 0, 'lowerBound': 0, 'time': '2017-01-27T13:54:18.000000Z'}]}\n" ] } ], "source": [ "response = oanda.get_orders(account_id)\n", "print(response)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>expiry</th>\n", " <th>id</th>\n", " <th>instrument</th>\n", " <th>lowerBound</th>\n", " <th>price</th>\n", " <th>side</th>\n", " <th>stopLoss</th>\n", " <th>takeProfit</th>\n", " <th>time</th>\n", " <th>trailingStop</th>\n", " <th>type</th>\n", " <th>units</th>\n", " <th>upperBound</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>2017-01-28T21:54:17.000000Z</td>\n", " <td>10618881403</td>\n", " <td>AUD_USD</td>\n", " <td>0</td>\n", " <td>0.742</td>\n", " <td>buy</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>2017-01-27T13:54:18.000000Z</td>\n", " <td>0</td>\n", " <td>limit</td>\n", " <td>1000</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " expiry id instrument lowerBound price \\\n", "0 2017-01-28T21:54:17.000000Z 10618881403 AUD_USD 0 0.742 \n", "\n", " side stopLoss takeProfit time trailingStop \\\n", "0 buy 0 0 2017-01-27T13:54:18.000000Z 0 \n", "\n", " type units upperBound \n", "0 limit 1000 0 " ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.DataFrame(response['orders'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Getting Specific Order Information" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`get_order(self, account_id, order_id, **params)`" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "response = oanda.get_orders(account_id)\n", "id = response['orders'][0]['id']" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'expiry': '2017-01-28T21:54:17.000000Z',\n", " 'id': 10618881403,\n", " 'instrument': 'AUD_USD',\n", " 'lowerBound': 0,\n", " 'price': 0.742,\n", " 'side': 'buy',\n", " 'stopLoss': 0,\n", " 'takeProfit': 0,\n", " 'time': '2017-01-27T13:54:18.000000Z',\n", " 'trailingStop': 0,\n", " 'type': 'limit',\n", " 'units': 1000,\n", " 'upperBound': 0}" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oanda.get_order(account_id, order_id=id)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Modify Order" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`modify_order(self, account_id, order_id, **params)`" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "response = oanda.get_orders(account_id)\n", "id = response['orders'][0]['id']" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'expiry': '2017-01-28T21:54:17.000000Z',\n", " 'id': 10618881403,\n", " 'instrument': 'AUD_USD',\n", " 'lowerBound': 0,\n", " 'price': 0.704,\n", " 'side': 'buy',\n", " 'stopLoss': 0,\n", " 'takeProfit': 0,\n", " 'time': '2017-01-27T13:54:20.000000Z',\n", " 'trailingStop': 0,\n", " 'type': 'limit',\n", " 'units': 1000,\n", " 'upperBound': 0}" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oanda.modify_order(account_id, order_id=id, price=0.7040)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Close Order" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`close_order(self, account_id, order_id, **params)`" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "response = oanda.get_orders(account_id)\n", "id = response['orders'][0]['id']" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'id': 10618881403,\n", " 'instrument': 'AUD_USD',\n", " 'price': 0.704,\n", " 'side': 'buy',\n", " 'time': '2017-01-27T13:54:20.000000Z',\n", " 'type': 'BuyLimit',\n", " 'units': 1000}" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oanda.close_order(account_id, order_id=id)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now when we check the orders. The above order has been closed and removed without being filled. There is only one outstanding order now." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "{'orders': []}" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "oanda.get_orders(account_id)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<!--NAVIGATION-->\n", "< [Account Information](03.00 Account Information.ipynb) | [Contents](Index.ipynb) | [Trade Management](05.00 Trade Management.ipynb) >" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
alexandrejaguar/strata-sv-2015-tutorial
resources/Running the Notebook Server.ipynb
3
14625
{ "metadata": { "name": "", "signature": "sha256:ee4b22b4c949fe21b3e5cda24f0916ba59d8c09443f4a897d98b96d4a73ac335" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Running the Notebook Server" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The IPython notebook server is a custom web server that runs the notebook web application. Most of the time, users run the notebook server on their local computer using IPython's command line interface." ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Starting the notebook server using the command line" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can start the notebook server from the command line (Terminal on Mac/Linux, CMD prompt on Windows) by running the following command: \n", "\n", " ipython notebook\n", "\n", "This will print some information about the notebook server in your terminal, including the URL of the web application (by default, `http://127.0.0.1:8888`). It will then open your default web browser to this URL.\n", "\n", "When the notebook opens, you will see the **notebook dashboard**, which will show a list of the notebooks and subdirectories in the directory where the notebook server was started. As of IPython 2.0, the dashboard allows you to navigate to different subdirectories. Because of this, it is no longer necessary to start a separate notebook server for each subdirectory. Most of the time, you will want to start a notebook server in the highest directory in your filesystem where notebooks can be found. Often this will be your home directory.\n", "\n", "You can start more than one notebook server at the same time. By default, the first notebook server starts on port 8888 and later notebook servers search for open ports near that one.\n", "\n", "You can also specify the port manually:\n", "\n", " ipython notebook --port 9999\n", "\n", "Or start notebook server without opening a web browser.\n", "\n", " ipython notebook --no-browser\n", "\n", "The notebook server has a number of other command line arguments that can be displayed with the `--help` flag: \n", "\n", " ipython notebook --help\n", "\n", "<div class=\"alert alert-failure\">\n", "It used to be possible to specify kernel options, such as <code>--pylab inline</code> from the command line. This is deprecated in IPython 2.0 and will be removed in IPython 3.0. To enable matplotlib based plotting for the Python kernel use the <code>%matplotlib</code> magic command.\n", "</div>\n", "\n" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Configuring the IPython Notebook" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The notebook web server can also be configured using IPython profiles and configuration files. The Notebook web server configuration options are set in a file named `ipython_notebook_config.py` in your IPython *profile directory*. The profile directory is a subfolder of your IPython directory, which itself is usually `.ipython` in your home directory.\n", "\n", "You can display the location of your default profile directory by running the command:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!ipython profile locate default" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "/Users/bgranger/.ipython/profile_default\r\n" ] } ], "prompt_number": 7 }, { "cell_type": "markdown", "metadata": {}, "source": [ "The default version of `ipython_notebook_config.py` lists all of the options available along with documentation for each. Changes made to that file will affect all notebook servers run under that profile. Command line options always override those set in configuration files.\n", "\n", "You can create a new profile:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!ipython profile create my_profile" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[ProfileCreate] Generating default config file: u'/Users/bgranger/.ipython/profile_my_profile/ipython_config.py'\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "[ProfileCreate] Generating default config file: u'/Users/bgranger/.ipython/profile_my_profile/ipython_qtconsole_config.py'\r\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "[ProfileCreate] Generating default config file: u'/Users/bgranger/.ipython/profile_my_profile/ipython_notebook_config.py'\r\n", "[ProfileCreate] Generating default config file: u'/Users/bgranger/.ipython/profile_my_profile/ipython_nbconvert_config.py'\r\n" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "And then view its location:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "!ipython profile locate my_profile" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "/Users/bgranger/.ipython/profile_my_profile\r\n" ] } ], "prompt_number": 5 }, { "cell_type": "markdown", "metadata": {}, "source": [ "To start the notebook server using a given profile, run the following:\n", "\n", " ipython notebook --profile=my_profile" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "More details about IPython configuration files and profiles can be found [here](http://ipython.org/ipython-doc/dev/config/intro.html)." ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Securing the notebook server" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The IPython Notebook allows arbitrary code execution on the computer running it. Thus, the notebook web server should never be run on the open internet without first securing it. By default, the notebook server only listens on local network interface (`127.0.0.1`) There are two steps required to secure the notebook server:\n", "\n", "1. Setting a password\n", "2. Encrypt network traffic using SSL" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Setting a password" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can protect your notebook server with a simple single password by setting the `NotebookApp.password` configurable. You can prepare a hashed password using the function `IPython.lib.passwd`:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from IPython.lib import passwd\n", "password = passwd(\"secret\")\n", "password" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 1, "text": [ "'sha1:6c2164fc2b22:ed55ecf07fc0f985ab46561483c0e888e8964ae6'" ] } ], "prompt_number": 1 }, { "cell_type": "markdown", "metadata": {}, "source": [ "You can then add this to your `ipython_notebook_config.py`:\n", "\n", "```python\n", "# Password to use for web authentication\n", "c = get_config()\n", "c.NotebookApp.password = \n", "u'sha1:6c2164fc2b22:ed55ecf07fc0f985ab46561483c0e888e8964ae6'\n", "```" ] }, { "cell_type": "heading", "level": 3, "metadata": {}, "source": [ "Using SSL/HTTPS" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When using a password, it is a good idea to also use SSL, so that your \n", "password is not sent unencrypted by your browser to the web server. When running the notebook on the public internet this is absolutely required.\n", "\n", "The first step is to generate an SSL certificate. A self-signed certificate can be generated with ``openssl``. For example, the following command will create a certificate valid for 365 days with both the key and certificate data written to the same file:\n", "\n", " openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout mycert.pem -out mycert.pem\n", "\n", "In most cases, you should run this command in your profile directory, which will make it easy to use the generated key and certificate.\n", "\n", "When you connect to a notebook server over HTTPS using a self-signed certificate, your browser will warn you of a dangerous certificate because it is self-signed. If you want to have a fully compliant certificate that will not raise warnings, it is possible (but rather involved) to obtain one,\n", "as explained in detail in [this tutorial](http://arstechnica.com/security/news/2009/12/how-to-get-set-with-a-secure-sertificate-for-free.ars)\n", "\t\n", "When you enable SSL support, you will need to access the notebook server over ``https://``, rather than plain ``http://``. The startup message from the notebook server prints the correct URL, but it is easy to overlook and think the server is for some reason non-responsive.\n", "\n", "Once you have generated the key and certificate, you can configure the notebook server to use them, by adding the following to `ipython_notebook_config.py`:\n", "\n", "```python\n", "# The full path to an SSL/TLS certificate file.\n", "c.NotebookApp.certfile = u'/Users/bgranger/.ipython/profile_my_profile/mycert.crt'\n", "\n", "# The full path to a private key file for usage with SSL/TLS.\n", "c.NotebookApp.keyfile = u'/Users/bgranger/.ipython/profile_my_profile/mycert.key'\n", "```" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Running a public notebook server" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "<div class=\"alert alert-error\">\n", "Don't run a public notebook server unless you first secure it with a password and SSL/HTTPS as described above\n", "</div>\n", "\n", "By default the notebook server only listens on the `localhost/127.0.0.1` network interface. If you want to connect to the notebook from another computers, or over the internet, you need to configure the notebook server to listen on all network interfaces and not open the browser. You will often also want to disable the automatic launching of the web browser.\n", "\n", "This can be accomplished by passing a command line options.\n", "\n", " ipython notebook --ip=* --no-browser\n", "\n", "You can also add the following to your`ipython_notebook_config.py` file:\n", "\n", "```python\n", "c.NotebookApp.ip = '*'\n", "c.NotebookApp.open_browser = False\n", "```" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Running with a different URL prefix" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The notebook dashboard typically lives at the URL `http://localhost:8888/tree`. If you prefer that it lives, together with the \n", "rest of the notebook web application, under a base URL prefix, such as `http://localhost:8888/ipython/tree`, you can do so by adding the following lines to your `ipython_notebook_config.py` file.\n", "\n", "```python\n", "c.NotebookApp.base_url = '/ipython/'\n", "c.NotebookApp.webapp_settings = {'static_url_prefix':'/ipython/static/'}\n", "```" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Using a different notebook store" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default, the notebook server stores the notebook documents that it saves as files in the working directory of the notebook server, also known as the\n", "`notebook_dir`. This logic is implemented in the `FileNotebookManager` class. However, the server can be configured to use a different notebook manager class, which can store the notebooks in a different format. \n", "\n", "The [bookstore](https://github.com/rgbkrk/bookstore) package currently allows users to store notebooks on Rackspace CloudFiles or OpenStack Swift based object stores.\n", "\n", "Writing a notebook manager is as simple as extending the base class `NotebookManager`. The [simple_notebook_manager](https://github.com/khinsen/simple_notebook_manager) provides a great example\n", "of an in memory notebook manager, created solely for the purpose of\n", "illustrating the notebook manager API." ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Known issues" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When behind a proxy, especially if your system or browser is set to autodetect the proxy, the notebook web application might fail to connect to the server's websockets, and present you with a warning at startup. In this case, you need to configure your system not to use the proxy for the server's address.\n", "\n", "For example, in Firefox, go to the Preferences panel, Advanced section,\n", "Network tab, click 'Settings...', and add the address of the notebook server\n", "to the 'No proxy for' field." ] } ], "metadata": {} } ] }
bsd-3-clause
justanr/notebooks
hexagonal/refactoring_and_interfaces.ipynb
1
25224
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "I've been thinking a lot about software achitecure lately. Not just thinking, because I wouldn't come up with these ideas on my own, but consuming a lot about it -- books, talks, slide decks, blog posts. And while thinking about all this, I've been hacking away at some projects in my spare time. And I noticed something, there's a lot of things in these projects that look a lot like this:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "@app.route('/register', methods=['GET', 'POST'])\n", "def register():\n", " form = RegisterUserForm()\n", " \n", " if form.validate_on_submit():\n", " user = User()\n", " form.populate_obj(user)\n", " db.session.add(user)\n", " db.session.commit()\n", " return redirect('homepage')\n", " \n", " return render_template('register.html', form=form)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is a bog standard user registration endpoint. We create a form, check if it's valid, shove that information on a user model and then into the database and redirect off. If it's not valid or if it wasn't submitted (the user just navigated to the page), we render out some HTML.\n", "\n", "It's all very basic, well trodden code. Besides, who wants to do registration again? It's boring. We want to do the interesting stuff. But there's some very real consequences to this code: \n", "\n", "## It's not testable\n", "\n", "Everything is wrapped up together, form validation, database stuff, rendering. Honestly, I'm not interested in testing if SQLAlchemy, WTForms of Jinja2 work -- they have their own tests. So testing this ends up looking like this:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "@mock.patch('myapp.views.RegisterUserForm')\n", "@mock.patch('myapp.views.db')\n", "@mock.patch('myapp.views.redirect')\n", "@mock.patch('myapp.views.url_for')\n", "@mock.patch('myapp.views.render_template')\n", "def test_register_new_user(render, url_for, redirect, db, form):\n", " # TODO: Write test\n", " assert True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "What's even the point of this? We're just testing if Mock works at this point. There's actual things we can do to make it more testable, but before delving into that, \n", "\n", "## It hides logic\n", "\n", "If registering a user was solely about, \"Fill this form out and we'll shove it into a database\" there wouldn't be a blog post here. However, there is some logic hiding out here in the form:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class RegisterUserForm(Form):\n", " def validate_username(self, field):\n", " if User.query.filter(User.username == field.data).count():\n", " raise ValidationError(\"Username in use already\")\n", " \n", " def validate_email(self, field):\n", " if User.query.filter(User.email == field.data).count():\n", " raise ValidationError(\"Email in use already\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we call `RegisterUserForm.validate_on_submit` it also runs these two methods. However, I'm not of the opinion that the form should talk to the database at all, let alone run validation against database contents. So, let's write a little test harness that can prove that an existing user with a given username and email causes us to not register:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from myapp.forms import RegisterUserForm\n", "from myapp.models import User\n", "\n", "from collections import namedtuple\n", "\n", "from unittest import mock\n", "\n", "FakeData = namedtuple('User', ['username', 'email', 'password', 'confirm_password'])\n", "\n", "def test_existing_username_fails_validation():\n", " test_data = FakeData('fred', '[email protected]', 'a', 'a')\n", " UserModel = mock.Mock()\n", " UserModel.query.filter.count.return_value = 1\n", " form = RegisterUserForm(obj=test_data)\n", " \n", " with mock.patch('myapp.forms.User', UserModel):\n", " form.validate()\n", " \n", " assert form.errors['username'] == \"Username in use already\"\n", " \n", "def test_existing_email_fails_validation():\n", " test_user = FakeUser('fred', '[email protected]', 'a', 'a')\n", " UserModel = mock.Mock()\n", " UserModel.query.filter.first.return_value = True\n", " form = RegisterUserForm(obj=test_user)\n", " \n", " with mock.patch('myapp.forms.User', UserModel):\n", " form.validate()\n", " \n", " assert form.errors['username'] == \"Email in use already\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If these pass -- which they should, but you may have to install `mock` if you're not on Python 3 -- I think we should move the username and email validation into their own callables that are independently testable:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def is_username_free(username):\n", " return User.query.filter(User.username == username).count() == 0\n", "\n", "def is_email_free(email):\n", " return User.query.filter(User.email == email).count() == 0" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And then use these in the endpoint itself:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "@app.route('/register', methods=['GET', 'POST'])\n", "def register():\n", " form = RegisterUserForm()\n", " \n", " if form.validate_on_submit():\n", " if not is_username_free(form.username.data):\n", " form.errors['username'] = ['Username in use already']\n", " return render_template('register.html', form=form)\n", " \n", " if not is_email_free(form.email.data):\n", " form.errors['email'] = ['Email in use already']\n", " return render_template('register.html', form=form)\n", " \n", " user = User()\n", " form.populate_obj(user)\n", " db.session.add(user)\n", " db.session.commit()\n", " return redirect('homepage')\n", " \n", " return render_template('register.html', form=form)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is really hard to test, so instead of even attempting that -- being honest, I spent the better part of an hour attempting to test the actual endpoint and it was just a complete mess -- let's extract out the actual logic and place it into it's own callable:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class OurValidationError(Exception):\n", " def __init__(self, msg, field):\n", " self.msg = msg\n", " self.field = field\n", "\n", "def register_user(username, email, password):\n", " if not is_username_free(username):\n", " raise OurValidationError('Username in use already', 'username')\n", " \n", " if not is_email_free(email):\n", " raise OurValidationError('Email in use already', 'email')\n", " \n", " user = User(username=username, email=email, password=password)\n", " db.session.add(user)\n", " db.session.commit()\n", " \n", " \n", "@app.route('/register', methods=['GET', 'POST'])\n", "def register_user_view():\n", " form = RegisterUserForm()\n", " \n", " if form.validate_on_submit():\n", " try:\n", " register_user(form.username.data, form.email.data, form.password.data)\n", " except OurValidationError as e:\n", " form.errors[e.field] = [e.msg]\n", " return render_template('register.html', form=form)\n", " else:\n", " return redirect('homepage')\n", " \n", " return render_template('register.html', form=form)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we're beginning to see the fruits of our labors. These aren't the easiest functions to test, but there's less we need to mock out in order to test the actual logic we're after." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def test_duplicated_user_raises_error():\n", " ChasteValidator = mock.Mock(return_value=False)\n", " \n", " with mock.patch('myapp.logic.is_username_free', ChasteValidator):\n", " with pytest.raises(OurValidationError) as excinfo:\n", " register_user('fred', '[email protected]', 'fredpassword')\n", " \n", " assert excinfo.value.msg == 'Username in use already'\n", " assert excinfo.value.field == 'username'\n", "\n", "def test_duplicated_user_raises_error():\n", " ChasteValidator = mock.Mock(return_value=False)\n", " PromisciousValidator = mock.Mock(return_value=True)\n", " \n", " with mock.patch('myapp.logic.is_username_free', PromisciousValidator),\n", " mock.patch('myapp.logic.is_email_free', ChasteValidator):\n", " with pytest.raises(OurValidationError) as excinfo:\n", " register_user('fred', '[email protected]', 'fredpassword')\n", " \n", " assert excinfo.value.msg == 'Email in use already'\n", " assert excinfo.value.field == 'email'\n", "\n", "def test_register_user_happy_path():\n", " PromisciousValidator = mock.Mock(return_value=True)\n", " MockDB = mock.Mock()\n", " \n", " with mock.patch('myapp.logic.is_username_free', PromisciousValidator),\n", " mock.patch('myapp.logic.is_email_free', ChasteValidator), \n", " mock.patch('myapp.logic.db', MockDB):\n", " \n", " register_user('fred', '[email protected]', 'freddpassword')\n", " \n", " assert MockDB.commit.call_count" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Of course, we should also write tests for the controller. I'll leave that as an exercise. However, there's something very important we're learning from these tests. We have to `mock.patch` everything still. Our validators lean directly on the database, our user creation leans directly on the database, everything leans directly on the database. And I don't want to do that, we've found that it makes testing hard. We're also seeing if we need to add another registration restriction -- say we don't like people named Fred so we won't let anyone register with a username or email containing Fred in it -- we need to crack open the `register_user` function and add it directly. We can solve both of these problems.\n", "\n", "## The Database Problem\n", "\n", "To address the database problem we need to realize something. We're not actually interested in the database, we're interested in the data it stores. And since we're interested in finding data rather than where it's stored at, why not stuff an interface in the way?" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from abc import ABC, abstractmethod\n", "\n", "class AbstractUserRepository(ABC):\n", " \n", " @abstractmethod\n", " def find_by_username(self, username):\n", " pass\n", " \n", " @abstractmethod\n", " def find_by_email(self, email):\n", " pass\n", " \n", " @abstractmethod\n", " def persist(self, user):\n", " pass" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Hmm...that's interesting. Since we'll end up depending on this instead of a concrete implementation, we can run our tests completely in memory and production on top of SQLAlchemy, Mongo, a foreign API, whatever.\n", "\n", "But we need to inject it into our validators instead of reaching out into the global namespace like we currently are." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def is_username_free(user_repository):\n", " def is_username_free(username):\n", " return not user_repository.find_by_username(username)\n", " return is_username_free\n", "\n", "def is_email_free(user_repository):\n", " def is_email_free(email):\n", " return not user_repository.find_by_email(email)\n", " return is_email_free" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These validators are simple enough that closures work instead of full-fledged objects. The important part here is to maintain a consistent interface -- if we need to use classes all of a sudden, we need to define a `__call__` on them to maintain this interface.\n", "\n", "We can also change our register callable to accept the repository as well:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def register_user(user_repository):\n", " email_checker = is_email_free(user_repository)\n", " username_checker = is_username_free(user_repository)\n", " \n", " def register_user(username, email, password):\n", " \n", " if not username_checker(username):\n", " raise OurValidationError('Username in use already', 'username')\n", "\n", " if not email_checker(email):\n", " raise OurValidationError('Email in use already', 'email')\n", "\n", " user = User(username=username, email=email, password=password)\n", " user_repository.persist(user)\n", " \n", " return register_user" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Of course the tests break now, and that's okay. We made a *very* sweeping change to the architecture here. We need to go back through and alter the tests one by one, but instead of patching everything out we can do something better: Dependency Injection." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def test_duplicated_email_causes_false():\n", " fake_user_repository = mock.create_autospec(AbstractUserRepository)\n", " fake_user_repository.find_by_email.return_value = True\n", " checker = is_email_free(fake_user_repository)\n", " \n", " assert not checker('[email protected]')\n", " \n", "def test_duplicated_username_causes_false():\n", " fake_user_repository = mock.create_autospec(AbstractUserRepository)\n", " fake_user_repository.find_by_username.return_value = True\n", " checker = is_username_free(fake_user_repository)\n", " \n", " assert not checker('fred')\n", "\n", "\n", "def test_register_user_happy_path():\n", " fake_user_repository = mock.create_autospec(AbstractUserRepository)\n", " fake_user_repository.find_by_email.return_value = False\n", " fake_user_repository.find_by_username.return_value = False\n", " registrar = register_user(fake_user_repository)\n", " \n", " registrar('fred', '[email protected]', 'fredpassword')\n", " \n", " assert fake_user_repository.persist.call_count" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But to test that our validators function correctly in this context, we need to fake out `find_by_email` and `find_by_username` indpendently. This is a symptom of our code not being Open-Closed.\n", "\n", "## The Open-Closed Problem\n", "\n", "Revisiting the other major issue from how the code is laid out right now is that it's not Open-Closed. If you're not familiar with the principle, Wikipedia says this:\n", "\n", "> \"software entities (classes, modules, functions, etc.) should be open for extension, but closed for modification\"\n", "\n", "Or in a different way, \"You should be able to change functionality without editing existing code.\" -- I believe I need to credit Sandi Metz with this, but I'm not sure. We've actually already used this idea by injecting the User Repository. In tests, we inject a fake or in memory repository, but in production it can be a SQLAlchemy implementation, or maybe wrap that up into a caching repository. We can do the same thing with the validators." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def register_user(user_repository, validator):\n", " def registrar(username, email, password):\n", " user = User(username, email, password)\n", " validator(user)\n", " user_repository.persist(user)\n", " return registrar" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Of course, our tests break again, so let's revisit the currently breaking one first:" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def test_register_user_happy_path():\n", " fake_user_repository = mock.create_autospec(AbstractUserRepository)\n", " registrar = register_user(fake_user_repository, lambda user: None)\n", " \n", " registrar('fred', '[email protected]', 'fredpassword')\n", " \n", " assert fake_user_repository.persist.call_count\n", " \n", "def test_register_user_fails_validation():\n", " fake_user_repository = mock.create_autospec(AbstractUserRepository)\n", " fake_validator = mock.Mock(side_effect=OurValidationError('username in use already', 'username'))\n", " registrar = register_user(fake_user_repository, fake_validator)\n", " \n", " try:\n", " registrar('fred', '[email protected]', 'fredpassword')\n", " except OurValidationError as e:\n", " assert e.msg == 'username in use already'\n", " assert e.field == 'username'\n", " else:\n", " assert False, \"Did not Raise\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll need to tweak the validation logic some to make up for the fact that we're passing the whole user object now:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def validate_username(user_repoistory):\n", " def validator(user):\n", " if not user_repoistory.find_by_username(user.username):\n", " raise OurValidationError('Username in use already', 'username')\n", " return True\n", " return validator\n", "\n", "def validate_email(user_repoistory):\n", " def validator(user):\n", " if not user_repoistory.find_by_email(user.email):\n", " raise OurValidationError(\"Email in use already\", 'email')\n", " return True\n", " return validator" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The tests for these are pretty straight forward as well, so I'll omit them. But we need a way to stitch them together..." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def validate_many(*validators):\n", " def checker(input):\n", " return all(validator(input) for validator in validators)\n", " return checker" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And then hook it all up like this:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "validator = validate_username(validate_email(user_repository), validate_username(user_repository))\n", "registrar = register_user(user_repository, validator)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Our neglected Controller\n", "\n", "We've spent a lot of time looking at how to compartmentalize the registration logic and portion out its concerns. However, the controller itself needs some attention as well. When we last left, it looked like this:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "@app.route('/register', methods=['GET', 'POST'])\n", "def register_user_view():\n", " form = RegisterUserForm()\n", " \n", " if form.validate_on_submit():\n", " try:\n", " register_user(form.username.data, form.email.data, form.password.data)\n", " except OurValidationError as e:\n", " form.errors[e.field] = [e.msg]\n", " return render_template('register.html', form=form)\n", " else:\n", " return redirect('homepage')\n", " \n", " return render_template('register.html', form=form)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "But we can do beter than that. The problem here is that the logic is set in stone, nested flows of control. But mostly, I really like any excuse to use class based views." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class RegisterUser(MethodView):\n", " def __init__(self, form, registrar, template, redirect):\n", " self.form = form\n", " self.registrar = registrar\n", " self.template = template\n", " self.redirect = redirect\n", " \n", " def get(self):\n", " return self._render()\n", " \n", " def post(self):\n", " if self.form.validate_on_submit():\n", " return self._register()\n", " else:\n", " return self._render()\n", " \n", " def _register(self):\n", " try:\n", " self.registrar(self.form.username.data, self.form.email.data, self.form.password.data)\n", " except OurValidationError as e:\n", " self._handle_error(e)\n", " self._render()\n", " else:\n", " return self._redirect()\n", " \n", " def _render(self):\n", " return render_template(self.template, self.form=form)\n", "\n", " def _redirect(self):\n", " return redirect(url_for(self.redirect))\n", " \n", " def _handle_error(self, e):\n", " self.form.error[e.field] = [e.msg]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now *that* looks like a lot of code. However, each piece is much simpler than the original function. This speaks to handing out actions, as if it were *controlling* things. We can test the main logic of it as well. Even though we *should* test it, I might just leave it alone. Maybe run it through an acceptance test.\n", "\n", "## What did we gain?\n", "\n", "Everything is much more high level. The controller, validation, registration, even the form. Nothing's concerned with more than it needs to be. Sure, there's still some plumbing to do with the SQLAlchemy implementation of the `UserRepository`" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
nicolas998/Analisis_Datos
02_Medidas_Localizacion.ipynb
1
338351
{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Medidas de Localización " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Medidas típicas, que son paramétricas:\n", "- Media: $\\mu = \\frac{\\sum_{i=1}^{N} x_i}{N} $\n", "- Desviación $\\sigma = \\sqrt{ \\frac{1}{N} \\sum_{i=1}^{N} (x_i -\\mu)^2}$\n", "- Asimetría.\n", "- etc...\n", "\n", "Existen otras medidas que son no paramétricas, estas pueden ser:\n", "- Mediana.\n", "- Quintiles.\n", "- Deciles.\n", "- ..\n", "- etc.\n", "- Cuantiles.\n", "\n", "Dependiendo de la medida esta puede ser o no robusta, esto significa que no se vea afectada fácilmente por aspectos tales como:\n", "\n", "- Cantidad de datos.\n", "- Calidad de los datos.\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "___" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Ejemplo de medidas paramétricas:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-0.0108811294739\n", "1.04385100251\n" ] } ], "source": [ "%matplotlib inline\n", "import numpy as np\n", "import pylab as pl\n", "\n", "Serie = np.random.normal(0,1,1000)\n", "# Impresión de la media y la desviación\n", "print Serie.mean()\n", "print Serie.std()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Pero miren lo que pasa con la mediana " ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-0.054493753954\n", "-0.054493753954\n" ] } ], "source": [ "print np.percentile(Serie,50)\n", "print np.median(Serie)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Que ocurre " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "- La media esperada es 0, sin embargo esta presenta una diferencia.\n", "- Igualmente ocurre conla desviación estandar.\n", "___\n", "- Pero no ocurre lo mismo con la mediana, en 1000 datos se presenta dos ordenes de magnitud más cerca de 0 \n", "\n", "**La siguiente figura ejemplifica esto:**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Definición de función para graficar " ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "def GraficaHistogramaParam(Values,bins=15):\n", " # Genera el histograma de valores\n", " h,b = np.histogram(Values,bins=bins)\n", " h = h.astype(float); h = h / h.sum()\n", " b = (b[1:]+b[:-1])/2.0\n", " # Obtiene la figura \n", " fig=pl.figure(figsize=(10,8))\n", " ax=fig.add_subplot(111)\n", " ax.plot(b,h,'b',lw=2)\n", " ax.fill_between(b,h,color='b',alpha=0.2)\n", " ax.set_xlabel('$X$',size=15)\n", " ax.set_ylabel('$f(x)$',size=15)\n", " ax.set_xlim(-3,3)\n", " ax.set_ylim(0,h.max()+0.05)\n", " ax.grid(True)\n", " ax.legend(loc=0)\n", " # Grafica las localizaciones\n", " ax.vlines(Values.mean(),0,h.max()+0.05,lw=2,color='r')\n", " ax.vlines([Values.mean()+Values.std(),Values.mean()-Values.std()],0,h.max()+0.05,lw=1,color='r')\n", " pl.show()\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true, "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "def GraficaHistogramaNoParam(Values,bins=15):\n", " # Genera el histograma de valores\n", " h,b = np.histogram(Values,bins=bins)\n", " h = h.astype(float); h = h / h.sum()\n", " b = (b[1:]+b[:-1])/2.0\n", " # Obtiene la figura \n", " fig=pl.figure(figsize=(10,8))\n", " ax=fig.add_subplot(111)\n", " ax.plot(b,h,'b',lw=2)\n", " ax.fill_between(b,h,color='b',alpha=0.2)\n", " ax.set_xlabel('$X$',size=15)\n", " ax.set_ylabel('$f(x)$',size=15)\n", " ax.set_xlim(-3,3)\n", " ax.set_ylim(0,h.max()+0.05)\n", " ax.grid(True)\n", " ax.legend(loc=0)\n", " # Grafica las localizaciones\n", " ax.vlines(np.percentile(Values,50),0,h.max()+0.05,lw=2,color='r')\n", " ax.vlines([np.percentile(Values,10),np.percentile(Values,90)],0,h.max()+0.05,lw=1,color='r')\n", " pl.show()\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Grafica de las medidas de localización paramétricas" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/usr/lib/pymodules/python2.7/matplotlib/axes.py:4747: UserWarning: No labeled objects found. Use label='...' kwarg on individual plots.\n", " warnings.warn(\"No labeled objects found. \"\n", "/usr/lib/pymodules/python2.7/matplotlib/collections.py:548: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n", " if self._edgecolors == 'face':\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHuCAYAAAAflzENAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmclvP+x/HX1LQXRZQWhpSKFCVZm0SURKFdiuz7cmSX\nXehQidKiY2uRomPPUcfvRJxQloqikDWytC8z8/vjM3Mm01Sz3Nf3ey3v5+Mxj7numXtmPj7muufT\ndb2v7wUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgWl+S7AhebNm+csWLDAdxkiIiIiRbEA\naLGjJ5RxVIhXCxYsICcnR28O32677TbvNcT6DdRz3/0H9dzD2196Xsh+oLeAe643J29A853NNokY\n4MS95cuX+y4hcdRz99Rz99Rz99TzcNIAJyIiIhIxGuAkEP379/ddQuKo5+6p5+6p5+6p5+GUiIsY\ngJzcc8oi8ZCWBvqd9ict96VT/w/80n4gMZVmrzE7nNF0BE4CMXv2bN8lJI567p567p567p56Hk4a\n4EREREQiRqdQRaJIp4780inUcNB+IDGlU6giIiIiMaQBTgKhzIR76rl76rl76rl76nk4aYATERER\niRhl4ESiSNkfv5SBCwftBxJTysCJiIiIxJAGOAmEMhPuqefuqefuqefuqefhpAFOREREJGKUgROJ\nImV//FIGLhy0H0hMKQMnIiIiEkMa4CQQyky4p567p567p567p56HkwY4ERERkYhRBk4kipT98UsZ\nuHDQfiAxpQyciIiISAxpgJNAKDPhnnrunnrunnrunnoeThrgRERERCJGGTiRKFL2xy9l4MJB+4HE\nlDJwIiIiIjGkAU4CocyEe+q5e+q5e+q5e+p5OGmAExEREYkYZeBEokjZH7+UgQsH7QcSU1HKwJ0E\nLAaWAIMK+XwfYAHwMTAHOLgYXysiIiISK2EY4MoCj2CDWFOgF9CkwHO+Ao7FBrc7gceL8bXigTIT\n7qnn7qnn7qnn7qnn4RSGAa41sBRYDmwGJgGnFnjOu8AfudvvAfWK8bUiIiIisRKGDNwZwInAebmP\n+wKHA5dt5/nXAo2A84vxtcrASbwo++OXMnDhoP1AYqooGbh0N6XsUHH2vnbAOcBRxf3a/v37k5GR\nAUD16tVp0aIFmZmZQP7hYT3W40g9hnDVk7THEK569FiP9Tiyj/O2ly9fTlGF4QhcG2AwlmMDuAHI\nBoYUeN7BwLTc5y0t5tfqCJxjs2fP/t8vqASgkCMP6rlDuUfgZs+apZ479pffcx2Bc0KvLe5F5SrU\neUBDIAMoD/QAZhR4zt7Y8NaX/OGtqF8rIiIiEithOAIH0BF4GLuqdBxwL3BB7udGA2OBrsA3uR/b\njF3AsL2vLUhH4CRedOTBL2XgwkH7gcRUUY7AhWWAC5oGOIkX/eHySwNcOGg/kJiKyilUiaGtg5ni\nhnrunnrunnrunnoeThrgRERERCJGp1BFokinjvzSKdRw0H4gMaVTqCIiIiIxpAFOAqHMhHvquXvq\nuXvquXvqeThpgBMRERGJGGXgRKJI2R+/lIELB+0HElPKwImIiIjEkAY4CYQyE+6p5+6p5+6p5+6p\n5+GkAU5EREQkYpSBE4kiZX/8UgYuHLQfSEwpAyciIiISQxrgJBDKTLinnrunnrunnrunnoeTBjgR\nERGRiFEGTiSKlP3xSxm4cNB+IDGlDJyIiIhIDGmAk0AoM+Geeu6eeu6eeu6eeh5OGuBEREREIkYZ\nOJEoUvbHL2XgwkH7gcSUMnAiIiIiMaQBTgKhzIR76rl76rl76rl76nk4aYATERERiRhl4ESiSNkf\nv5SBCwftBxJTysCJiIiIxJAGOAmEMhPuqefuqefuqefuqefhpAFOREREJGKUgROJImV//FIGLhy0\nH0hMKQMnIiIiEkMa4CQQyky4p567p567p567p56HkwY4ERERkYhRBk4kipT98UsZuHDQfiAxpQyc\niIiISAxpgJNAKDPhnnrunnrunnrunnoeThrgRERERCJGGTiRKFL2xy9l4MJB+4HElDJwIiIiIjGk\nAU4CocyEe+q5e+q5e+q5e+p5OGmAExEREYkYZeBEokjZH7+UgQsH7QcSU8rAiYiIiMSQBjgJhDIT\n7qnn7qnn7qnn7qnn4aQBTkRERCRilIETiSJlf/xSBi4ctB9ITCkDJyIiIhJDGuAkEMpMuKeeu6ee\nu6eeu6eeh5MGOBEREZGIUQZOJIqU/fFLGbhw0H4gMaUMnIiIiEgMaYCTQCgz4Z567p567p567p56\nHk4a4EREREQiRhk4kShS9scvZeDCQfuBxJQycCIiIiIxpAFOAqHMhHvquXvquXvquXvqeThpgBMR\nERGJGGXgRKJI2R+/lIELB+0HElPKwImIiIjEkAY4CYQyE+6p5+6p5+6p5+6p5+GkAU5EREQkYpSB\nE4kiZX/8UgYuHLQfSEwpAyciIiISQxrgJBDKTLinnrunnrunnrunnoeTBjgRERGRiFEGTiSKlP3x\nSxm4cNB+IDGlDJyIiIhIDGmAk0AoM+FeHHq+cSO8/z789pvvSoomDj2PGvXcPfU8nNJ9FyAikuec\nc+DZZ207IwMOOQRat4aWLeHQQ2H33b2WJyISGsrAiURRDLM/c+fCEUdA2bL2tmnTts+pX98Gua2H\nuj32cF+rMnAhEcP9QASKloHTACcSRTH7w5WTY8Pbe+9B//5w4YWwfDksWgQLF9r7JUvsFGtBdevm\nD3WHHmqDXa1aAResAS4cYrYfiOTRAJdPA5xjs2fPJjMz03cZ8VXIH64o9/y556B7d6heHV58EapU\n2fY5WVn5Q13e2xdfwIYN2z53r71smGvVyt5atrSPpUzuADd71qzI9jyq/vJ7rgHOiSi/tkRVUQY4\nZeBExKuNG+Fvf7Ptiy8ufHgDO63aoIG9de5sH8vKgm++yR/oFi60oe6HH+Dll+0tT61alqk77LD8\noa5OnfyDaSIiUZKUly4dgZN4idGRhwcegOuug333hYkTIb2U/6zMzrahbvHi/KHu889h3bptn7vH\nHtsOdfXqFWGo0ynUcIjRfiCyNZ1CzacBTuIlJn+4fvnFjqj9+ScMHw5HHhnMz8nOhhUrbKhbuDD/\nSN2aNds+t2ZNaNEif6g79FDYZ58CQ50GuHCIyX4gUpAGuHwa4BxTZiJgMcnAXXopjBwJhx9u713K\nyYHvvvvrUPf557B69bbP3W23/KGuZUto2X0/9mUZ/1YGzjll4NyL4mtL1CkDJyKhtXgxjBoFZcrA\nVVe5//lpaXa6tF49OP54+1hOjuXnts7ULV4Mq1bBW2/Zm/mKBixlwJwVtG2rHJ2IuJeUlx0dgZN4\nicGRh86d7SKD006Dm2/2Xc325eTATz/9dahbOnclv2AL0J14IowYAQ0bei40iWKwH4gURqdQ82mA\nk3iJ+B+ut96C9u2hUiV44YXo3WGheat0HuVibqg8nHXroHx5uOYauOmm7V9FKwGI+H4gsj26mb14\no3vnuReVnmdl5Z8yHTAgesMbQDpZXM4IBg+ezckn210j7r0XGjWyNe00UwQnKr/ncaKeh5MGOBFx\n6qmn4OOPYc89oXdv39WUzi67wO23w/jxNrx9/70tSNy+vZ1qFREJik6hikRRRE8drV1ry4b89BPc\ncQd06uS7opJp2cpeOj+Yl///ICvLTgc/8ohdyZqeDpddBoMH26AnAYjofiCyMzqFKiKh8sADNrw1\nbgwnneS7mtQqWxZOPx2mT4euXW2ge+ghOzL3zDOaM0QktTTASSCUmXAv7D3//nu4/37bvuYaWz4k\n6ubNm73Nx6pXt4sZnnwSmja1gbVvXzjmGDt1LKUT9t/zOFLPwykGL6EiEgU33gjr10Nmpt2+Ku6a\nNIEJE+DWW22omzPH/rsvuwx+/913dSISdcrAiURRxLI/8+fbLanKlrWrNOvX911R6RSWgduR1avh\nscdg6lS7rVfNmjBkCPTvH48jkd5EbD8QKSpl4ETEu5wcWzYkJwfOPDP6w1tJVKsG111nWbjmze0e\nsOeeC23awLx5vqsTkSjSACeBUGbCvbD2/OWXYfZsG2IGDvRdTWoVloHbkYYNYexYuOsuW//uv/+F\n1q3hvPNsqJOdC+vveZyp5+GkAU5EArN5M1x9tW0PHAi77uq3njBIS7MrcJ9/Hvr0sVOoY8fa1aqj\nRtnVqyIiO6MMnEgURST7M3IkXHop1K1r+a9y5XxXlBrFzcDtyLJllofLO5XaogU8+igccUSpv3X8\nRWQ/ECkuZeBExJvff7crMAGuvDI+w1uq7buvXeBw3312d4r58+HII+Hss20JEhGRwmiAk0AoM+Fe\n2Hp+992wapUdUcrM9F1NMIqbgduetDQ4/ng7rTpggA27Tz5pmbmHH4YtW1LyY2IhbL/nSaCeh5MG\nOBFJuWXLYPhw2776ahtQZOcqVYJLLoHJk+0U6urVdgVv8+bw73/7rk5EwiQpL6vKwEm8hDz7c+aZ\nlnnr2BHuvNN3NamXygzc9uTkwP/9n91+7Icf7GM9esDQoZYpFEK/H4iUlDJwIuLcu+/a8Fa+vB1N\nkpJJS4Njj7WFj88/3/o5eTIccIDdkmzTJt8ViohPGuAkEMpMuBeGnufk2AULYEtk1K7tt56gpSoD\ntyMVK9oAN3UqtG0La9fCoEFw0EEwc2bgPz50wvB7njTqeThpgBORlJkyBd5/H2rUsNtESerUqWOn\nT0eMgHr1YMkS6NABunWDb77xXZ2IuKYMnEgUhTD7s2GDLUb77bdw003QtavvioLjIgO3I5s2wbPP\n2gLAGzbYUbqbboJrr7XtxAjhfiCSClHKwJ0ELAaWAIMK+Xxj4F1gA3BNgc8tBz4GPgLeD65EEdmR\nYcNseNtvP+jSxXc18Va+vB3hfP55W35kwwa45RZo2tRuXSYi8ReGAa4s8Ag2xDUFegFNCjznV+Ay\n4MFCvj4HyAQOAVoHVqUUizIT7vns+cqVtu4b2LIhZct6K8UpFxm4HalVyxYAHjUKMjJs+ZbOneHk\nk+HLL72WFhi9trinnodTGAa41sBS7EjaZmAScGqB56wE5uV+vjBJORUsEkq33mprlrVpY2/iVqtW\nMGmSrRlXuTK88goceKAdlVu3znd1IhKEMAw+ZwAnAuflPu4LHI4dcSvoNmANMHSrj30F/AFkAaOB\nMYV8nTJwEi8hyv4sWgTNmlk5EydCgwa+Kwqe7wzcjvzyiy2i/Mor9rhbNzvVGksh2g9EUqkoGbh0\nN6XsUGn3vqOAH4A9gJlYlu7/Cj6pf//+ZGRkAFC9enVatGhBZu79ffIOD+uxHkfqMYSinv79Z5OV\nBV27ZtKgQf5pxVat7PNxfLya/P6HoZ6tHy9fPpsuXaBbt0wuvhimTZvNk09Cv372ed+/L3qsx3q8\n7eO87eXLl1NUYTgC1wYYjGXgAG4AsoEhhTy3sCNwRfm8jsA5Nnv27P/9gkoACjny4KPnb74JJ5xg\np+1eeAF2283pj/cm7wjc6FGz/jc4hdFdd9n/l4EDYUxh5yYi6C+/5zoC54Rez92LylWo84CGQAZQ\nHugBzNjOcwv+x1QGquVuVwE6AJ+kvkQRKSgryzJXYFdEJmV4i5K+fe3900/bhSYiEh9hOAIH0BF4\nGLsidRxwL3BB7udGA7WB/wK7YEfnVmNXrO4JTMt9XjrwTO7XFqQjcBIvITjyMH48nHsu7LknTJuW\nrPXHwpyBK+iKK2DOHBg8GG67zXc1KRaC/UAkCEU5AheWAS5oGuAkXjz/4Vqzxi5W+PlnO0130kk7\n/5o4idIAN28eXHgh7LGH3bEhVoO2BjiJqaicQpUY2jqYKW647Pn999vw1qSJ3c4pqXyvA1cULVtC\nw4Z2CvXpp31XU3p6bXFPPQ8nDXAiUizffQcPPGDb11wDZfQqEmppadCvn20/+CBkZ/utR0RSQ6dQ\nRaLI46mjfv3gqaegXbv8QS5ponQKFWDLFjjlFDsK9/LL0KmT74pSRKdQJaZ0ClVEUurDD+00XHq6\nheMlGtLToVcv236wsBsSikjkaICTQCgz4V7QPc/JsWVDcnKge3eoVy/QHxcJUcjA5enaFSpVglmz\nYP5839WUnF5b3FPPw0kDnIgUyT//CW+/DdWq2cKwEi3VqkGXLrato3Ai0acMnEgUOc7+bN4MTZvC\n0qVw7bXQs6ezHx1KUcvA5fnuOzsSV6YMLF8Odev6rqiUlIGTmFIGTkRS4rHHbHirXx/OOMN3NVJS\ndetCZqZd1DBihO9qRKQ0NMBJIJSZcC+onv/2G9x+u21fcYUF4sVEKQOX56yz7P2oUbYgc9TotcU9\n9TycNMCJyA7deSesWgWHHAJt2/quRkqrWTM46CD44w944gnf1YhISSkDJxJFjrI/X35p2bfNm23t\nt8aNA/+RkRDVDFyet96C666DjAw7NV62rO+KSkgZOIkpZeBEpFSuuw42bYKOHTW8xUnbtlCnjl3I\n8OKLvqsRkZLQACeBUGbCvVT3fM4cmDYNKlSASy5J6beOjShm4MCOuPXubdtRu5uGXlvcU8/DSQOc\niGwjOxuuvNK2+/aFWrX81iOp16ULVK0Kc+fam4hEizJwIlEUcPZn4kQ7QrPbbvDCC1C5cmA/KpKi\nnoHLM2IE/OMf0K0bPP+872pKQBk4iSll4ESk2Navt+wbwMUXa3iLs549bVmYF16AZct8VyMixaEB\nTgKhzIR7qer5ww/DihXQoAGcckpKvmVsRTUDl2ePPeCEE+yU+cMP+66maPTa4p56Hk4a4ETkf37+\nGe65x7avvjrCy0tIkeUt7DtuHPz+u99aRKTolIETiaKAsj8XXACPPw5HHKFbLe1IXDJweS64AD74\nAO67DwYN8l1NMSgDJzGlDJyIFNlnn8HYsXaj86uu8l2NuNSvn70fNswWbRaR8NMAJ4FQZsK90vb8\nmmssC3XaabDffqmpKe6inoHLc8QRsM8+8MMPMGWK72p2TK8t7qnn4aQBTkSYORNef92uOL3wQt/V\niGtlyuRn4R54QGclRaJAGTiRKEph9icrC5o3t1Ool14K/fun5NvGWtwycAAbN8LJJ9uFDG+9Be3a\n+a6oCJSBk5hSBk5EduqJJ2x4q1ULevXyXY34UqECdO9u2w8+6LcWEdk5DXASCGUm3CtJz1evhptu\nsu3LL7c/4lJ0ccnA5TnzTChfHl55BRYv9l1N4fTa4p56Hk4a4EQSbMgQW/utaVPo0MF3NeJbjRrQ\nqZNtDx3qtxYR2TFl4ESiKAXZn2+/hUaNYMMGW8S1efMU1ZYAcczA5Vm+HM44AypWhG++sbs1hJYy\ncBJTysCJyHbdcIMNb8cdp+FN8mVkwFFH2e/GyJG+qxGR7dEAJ4FQZsK94vT8gw/gmWegXDnLvknJ\nxC0DlydvSZGRI22QCxO9trinnoeTBjiRhMnJyb/TQo8eUK+e33okfFq2hIYN4Zdf4OmnfVcjIoVR\nBk4kikqR/XnhBejaFXbZBV58EapVS3FtCRDnDFyeV1+FW26BAw6AhQttsd/QUQZOYkoZOBH5i02b\n4NprbfuCCzS8yfadcALUrAmffw6vvea7GhEpSAOcBEKZCfeK0vNHH4Uvv4T69eH004OvKe7imoED\nSE/PX9g5TAv76rXFPfU8nDTAiSTEqlVw++22fdVV9gdaZEe6dYNKlWDWLJg/33c1IrI1ZeBEoqgE\n2Z8rr4Rhw+DQQ2H0aPsWUjJJyMDleeABmDwZ+vQJ4QUNysBJTCkDJyIAfPWVnT5NS4Orr9bwJkXX\nu7ddwDB5Mnz3ne9qRCSPBjgJhDIT7u2o548+Cps3w4knQuPG7mqKuzhn4PLUrQtt28KWLTBihO9q\n9Nrig3oeThrgRGJu40aYMMG2e/b0WopEVL9+9n7UKFizxm8tImKSciJFGTiJl2Jkf6ZMsQV799vP\nToPp9GnpJSkDl6d/f/j0Uxg+HC67zHc1uZSBk5hSBk5EGDXK3p9+uoY3Kbm8o3B//ztkZfmtRUQ0\nwElAlJlwr7Cef/WVLQFRvjx07Oi+prhLQgYuT9u2UKcOLF9ud/DwRa8t7qnn4aQBTiTGxo619+3b\n262zREqqbFm7IhVsaRER8SspJ1SUgZN4KUL2Z/Nmu1H9zz/DmDFwyCGOakuAJGbgANatg06d7EKG\nd9+FNm08F6QMnMSUMnAiCfbyyza87b03tGjhuxqJg8qV82/BpqNwIn5pgJNAKDPhXsGejx5t77t1\n08ULQUlSBi5Pjx52OvWFF2DZMvc/X68t7qnn4aQBTiSGvvkG3ngDypWDzp19VyNxsuee0KEDZGfD\nww/7rkYkuZLy73Jl4CRedpL9ue02uOMOOP54uO8+h3UlRFIzcHm++MIuaKhSBVasgOrVPRWiDJzE\nlDJwIgmUlQXjxtl2Xl5JJJUaNYKWLWHt2vxT9SLilgY4CYQyE+7l9fz11+2m43Xq2B9ZCU4SM3B5\nzjrL3g8bBps2ufu5em1xTz0PJw1wIjGTd+eFrl2hjPZwCciRR8I++8APP8Bzz/muRiR5lIETiaLt\nZH9++AHq17ftl1+GmjUd15UQSc/A5XnhBbjrLmjeHD76yMPVzsrASUwpAyeSMOPHWwbumGM0vEnw\nOna0CxgWLACdZRNxSwOcBEKZCffeems2Y8bYdrdufmtJiiRn4AAqVIDu3W3b1cK+em1xTz0PJw1w\nIjHx4Yfw9de2Ttfhh/uuRpLizDOhfHl49VVYvNh3NSLJoQFOApGZmem7hMSZOzcTgNNOs5XyJXit\nWmX6LsG7GjXs/qgAQ4cG//P02uKeeh5OGuBEYmDlSpgxw646PfVU39VI0vTta++fftp+F0UkeBrg\nJBDKTLg1YQJs3jybI46AWrV8V5McSc/A5cnIsGVFNmyAkSOD/Vl6bXFPPQ8nDXAiEZeTA48/btu6\neEF86dfP3o8caYOciARL68CJRNFW61/9+9+QmQm7725rv6Wn+y0tCbQO3LZycuz+qEuWwJgxMHCg\ngx+qdeAkprQOnEgC5N2L8tRTNbyJP2lp+UfhHnwQsrP91iMSdxrgJBDKTLixahVMm2Z/PBs0mO27\nnMRRBu6vTjjBFpD+/HN47bVgfoZeW9xTz8NJA5xIhD31FGzcCIcdZqdQRXxKT4devWz7wQf91iIS\nd8rAiURRWho52TkceCAsWgT33QfHH++7qORQBm77Vq+2deHWr7f7o7ZoEeAPUwZOYkoZOJEYmzvX\nhrfq1aFtW9/ViJhq1aBLF9vWUTiR4GiAk0AoMxG8vIsXTjkFypVTHssH9bxwvXvbotKTJ8N336X2\ne+u1xT31PJw0wIlE0B/swuTJtt21q99aRAqqW9eOCm/ZAiNG+K5GJJ6UgROJoMfSLuJiHuOQQ2zN\nLXFLGbid++QTGDAAdt0VVqyAqlUD+CHKwElMKQMnElNjOA+A00/3XIjIdjRrBgcdBH/8AU884bsa\nkfjRACeBUGYiOB98AB9xKNWqQbt2+R9XHss99XzHzjrL3v/975CVlZrvqdcW99TzcNIAJxIxo0bZ\n+5NPhgoV/NYisiOZmVCnDixfDi++6LsakXgpTQZuH2DP3O+xEvge2JiKogKgDJzEwpo1ULs2rF0L\nU6bAfvv5riiZlIErukmTbDmRNm3g3XdT/M2VgZOYKkoGrjh3TkwDugJ9gf2AX4FVwCagRu7bWuA1\nYBSwptgVi8gOTZ5sw9tR/If99jvadzkiO9Wlix01njvX3tq08V2RSDwU9RRqC2AysAdwSe7j9sCZ\nQB+gE3AEcAqwABgOnJ/qYiU6lJkIRt7p0/PY9tJT5bHcU893rnJl6NbNth94oPTfT68t7qnn4VSU\nAe4Y4HigBzAa+GEHz10PzATOAT4DrihtgSJiPv4Y5s2DKlXgTJ7zXY5IkfXsCWXLwgsvwLJlvqsR\niYeiZOB2Bf4o4fcvzdemkjJwEnmXXgojR9rSIVOfT1P+yiNl4Irvllvg1Vfh8sth2LAUfVNl4CSm\nUrUOXGED2FDg/7Z6fDjQtIhfKyLFtH49PP20bWvtN4mivn3t/bhx8PvvfmsRiYOSLiPyC7D10ozv\nAY2ALqWuSGJBmYnUmjrVFkRt3BgaNSr8OcpjuaeeF90BB0DLlnYRTt59fEtCry3uqefhVNIBbjnw\nG3+9ivUFoF5pCxKRbT32mL3X0TeJsryFfYcNg02b/NYiEnUlXQduMHARUBU7+jYHWApkAgNSUViK\nKQMnkbVoETRtCpUqwWuv2UUMLVspA+eTMnAlk50NZ54JX39tkYA+fUr5DZWBk5gK8l6oG4BaQAYw\nEtgFuA2YUMLvJyLb8fjj9r5DBxveRKKqTJn8o3APPKDZS6Q0SjrAZed+7UrgeWy5kEbAkSmqSyJO\nmYnU2LgRnnzStvPW0toe5bHcU8+Lr2NHqF4dFiyAkrxM6LXFPfU8nEo6wI0FrgNabvWxD4ADS12R\niPzP9OmwahU0aGCnUUWirkIF6N7dtlOxsK9IUpXmXqgAZYGs3O3uwArgnVJ+zyAoAyeRlJkJ//43\nDBpk2aE8ysD5pQxc6fz2G5x8sl3IsGiRXV1dIsrASUwFmYHLk7XV9hTCObyJRNKXX9rwVqGCnXYS\niYsaNaBTJ9seOtRvLSJRVZQBrgPQugTfezfsNKskkDITpTcm93an7dtD1ao7f77yWO6p5yWXt7Dv\n00/DypVF/zq9trinnodTUQa4N4D9gL8DRTnQXQW7qOFG4OGSlyaSXJs3wxO5S2Xv7OIFkSjKyIAj\nj4QNG+wWcSJSPMXJwNUCrgeaA18BS7BbZW0BagB7Ai2ANdittv6T0kpLRxk4iZRp02zR3owMeO45\ni/psTRk4v5SBS4158+DCC6FmTfj2W6hYsZjfQBk4ialUZuB2wy5YuApoDzyCXbBQEdgdWAW8DpwK\ndCVcw5tI5IwaZe+7ddt2eBOJi5YtoWFD+OWXFN7gXiQhijrAPQW8nbudA/wMPIOdIh0CjAPeBNal\nukCJJmUmSu7rr+HNN6Fcufygd1Eoj+Weel46aWlwySW2fcst8OGHO/8avba4p56HU1EHuC+BHls9\nviqAWkTsodTbAAAgAElEQVQEGDvWzgplZtqCpyJxdvTRFhfYvBl69LCb3YvIzhX15Mwx2BG3jdiC\nvTWBB4GPge+DKS2llIGTSNiyBfbeG374wU6jtmpV+POUgfNLGbjU2rDBbrG1bBmccw6MG1fEL1QG\nTmIqlRm4/8Pue9oDO1W6JzAIG+B+Af6FnU7thQ13IlICr71mw1u9epYPEkmCihXh3nstNjB+PEyd\n6rsikfArzkK+2cCH2G20XgDaYcNac+AB4CfgNOwChheBfVNaqUSKMhMlM3q0ve/atfgXLyiP5Z56\nnjr77w9XXmnbAwfCN98U/jy9trinnodTSe/EcOtW298BrwH3YkfoGgMPAeeXrjSRZPnuO3jlFShb\nFjp39l2NiHvdu8NRR8Eff0Dv3pCVtfOvEUmq0t5KqzC7Yov/FufW2ycBi7G15QYV8vnGwLvABuCa\nYn6teJCZmem7hMgZPx6ys+HYY2H33Yv/9a1aZaa8Jtkx9Ty10tJg8GD7/Z8zB+6+e9vn6LXFPfU8\nnIIY4P7AhrcBRXx+WWxduZNyv64X0KTAc34FLsMunCju14qEXna2XX0KdkWeSFLVqAF33GHbd9wB\n7+gO2yKFCmKAA1iKLe5bFK1zn78c2AxMwhYE3tpKYF7u54v7teKBMhPF8+ablvmpXRtal+TOwyiP\n5YN6HozDD7d7pWZlQa9edko1j15b3FPPwymoAa446gLfbvV4Re7Hgv5akdDIu/PCaadBmTDslSKe\nXXIJHHCA/cPm/PO1WohIQem+C8Du7BD41/bv35+MjAwAqlevTosWLf53Xj/vXxd6nNrHecJST1gf\nT5s2mxdfhDJlMunSJf+oTl6+qrDHq4FqsN3P63Gwj1cDmbkfC0M9cX18zz3Qs+dspkyBTp0yOfts\nANuHwrL/JuVxnrDUE7fHedvLly+nqMJwl8U2wGAsxwZwA7ZkyZBCnnsbsAYYWsyv1UK+ElpDhsD1\n19uK9A8/XLSv0UK+fmkhX3dmzLAsXOXKsGCBLTfyP1rIV2IqlQv5Bmke0BBbKLg8thTJjO08t+B/\nTHG+Vhwq+K82KVxODjz+uG2X9uIF5bHcU8+Dd8opcPzxsG6d3Wpr5szZvktKHL2eh1MYBrgtwKXA\n68BCYDKwCLgg9w2gNpZ1uwq4GfgGqLqDrxWJhNmz4auvoGZNOOII39WIhE9aGtx0E9SqZTe7Hz/e\nd0Ui4RCGU6gu6BSqhFLPnjB5sq08f+GFRf86nUL1S6dQ3Zs/P/9ihpkzoX17dApVYisqp1BFEunX\nX2H6dPsbdKoWvxHZoRYt4NxzbV7r0wd++cV3RSJ+aYCTQCgzsXNPPQWbNtm6b3vtVfrvpzyWe+q5\nW+eeC/vtN5uffoIBA0q3hIEUnV7Pw0kDnIgHOTn5a7/pzgsiRZOebnGDKlXgpZdgFMXIHYjEjDJw\nIh7MmWPLhtSoAa++an+YikMZOL+UgfNr5ky44QaoyHr++0klDjrId0UiqaUMnEhIjR5t77t0Kf7w\nJpJ0J5xgy4tsoBI9esD69b4rEnFPA5wEQpmJ7fv9d3juOdvu2jV131d5LPfUc/fyev63v0EjPmfh\nQtuW4Oj1PJw0wIk49swzsGEDtGwJ9er5rkYkmipXhmfpTXo6jBxpmTiRJFEGTsShnBxo3hw++QTu\nuQc6dCjZ91EGzi9l4MKhZas0rrg8h+HDYffdbb9KxRXdIr4pAycSMvPm2R+ZXXaB3HsZi0gp9O0L\nhx1m6yr27QvZ2b4rEnFDA5wEQpmJwuVdvNC5M5Qvn9rvrTyWe+q5ewV7XqYM3Hkn7LorvPUWDB3q\np6440+t5OGmAE3Fk9WqYONG2U3nxgkjS1awJgwfb9k03wQcfeC1HxAkNcBKITJ0f3MakSbBunWXg\n9t039d+/VavM1H9T2SH13L3t9fyYY6B7d9i8GXr0gDVr3NYVZ3o9DycNcCKO5N15oVs3v3WIxNUV\nV8B++8GXX8Jll/muRiRYGuAkEMpM/NX8+fDhh1C1KrRvH8zPUB7LPfXcvR31vEIFuPdey5dOmABT\npjgrK9b0eh5OGuBEHMi7eKFjR6hY0W8tInHWoAFcdZVtn3cefP2133pEgqJ14EQCtm6drU3155+W\ng9t//9J/T60D55fWgQuH7e0HOTlwzTXw9ttwxBH2XreskyjROnAiIfDccza8NW2amuFNRHYsLQ1u\nvdUW9333XbjrLt8ViaSeBjgJhDIT+fJOnwZ98YLyWO6p5+4VtefVq9vglpZm68TNmRNsXXGm1/Nw\n0gAnEqDPPrMjAJUqlfy2WSJSMocdBv362d0ZevaE33/3XZFI6miAk0Bo3SDz+OP2/qST7ObbQdKa\nZO6p5+4Vt+cXXQRNmsCKFXZRg+LQxafX83DSACcSkA0b4KmnbFtrv4n4kZ4O99xjR8GnTrXlRUTi\nQAOcBEKZCZg+HX77DRo2tCMAQVMeyz313L2S9Lx+fRg0yLYvvRS++CK1NcWdXs/DSQOcSEDy7rxw\n+ul+6xAROPlky6GuW2d5uE2bfFckUjpaB04kAEuWQKNGtjL866/bHRhSSevA+aV14MKhuPvBmjU2\nvP34o60T9+CDARYnUgpaB07EkzFj7P0JJ6R+eBORkqla1fJwZcrA0KHw5pu+KxIpOQ1wEogkZyY2\nbcoPSru8eEF5LPfUc/dK2/ODD7arUQH69oWVK0tfU9wl+fU8zDTAiaTYjBn2R2HffaFZM9/ViEhB\n55wDzZvDTz9B//5aWkSiSQOcBCLJ6wbl3Xnh9NNtFXhXtCaZe+q5e6noedmycPfddkr1lVdg5MjS\n1xVnSX49DzMNcCIptHw5/OtfUK4cdOzouxoR2Z7ateHmm2372mvhk0/81iNSXBrgJBBJzUyMHWun\nY447Dnbd1e3PVh7LPfXcvVT2/PjjoUsX2LgRevSA9etT9q1jJamv52GnAU4kRbZsgXHjbFtrv4lE\nw9/+Zgv9LlpkS4uIRIXWgRNJkRkz4NRT7Y/BtGnB5t+0DpxfWgcuHFK1HyxeDAMGwObN8OKLdlRO\nxCetAyfiUN7FC926ub14QURKp3Fju8UW2CD3/fd+6xEpCg1wEoikZSZWrIDXXrMbZ3fu7KcG5bHc\nU8/dC6rnvXrB4YfDqlW2Plx2diA/JpKS9noeFRrgRFJg3Dh7wW/bFmrU8F2NiBRXmTJw++1QvTrM\nmgUPPOC7IpEdS8qJHmXgJDBZWZCRYUfhRo60f8UHTRk4v5SBC4cg9oP//AeuvNKOpr/zDhx2WEq/\nvUiRKAMn4sDMmTa87bWXXuxFou7oo21JkS1b7Mb3q1f7rkikcBrgJBBJykzkXbzQtaudhvFFeSz3\n1HP3XPT8iitg//3hq6/yL25IsiS9nkeJBjiRUvj+e3jpJRvctPSASDyULw/33AMVKsCTT8KkSb4r\nEtmWBjgJRFLunTd6tJ1qadsWatb0W4vuy+meeu6eq57vtx9cfbVtn3++3SYvqZLyeh41GuBESmjT\nJhg1yrZ79PBbi4ikXrdu9o+z1astD7dli++KRPJpgJNAJCEzMX06/PyzXYHasqXvapTH8kE9d89l\nz9PS4JZb7Oj6e+/BHXc4+9GhkoTX8yjSACdSQsOG2fuePXXnBZG4ql4d7rrL9vG774Y5c3xXJGKS\n8mdH68BJSi1YAC1aQOXKdgeGypXd/nytA+eX1oELB5f7wYgR8I9/2BH3jz+GatWc/FhJKK0DJxKQ\nESPsfefO7oc3EXHvwguhYUO7mOHKK31XI6IBTgIS58zEb7/BM8/YdvfufmvZmvJY7qnn7vnqebly\ndiq1XDkYPx5mzPBShhdxfj2PMg1wIsU0YQJs2GB3XcjI8F2NiLjSoEH+wr7nnmsXMYn4ogycSDFk\nZ9sK7cuWwYMPgq/lkZSB80sZuHDwsR9kZ8NFF8EHH1iEYsYMXcQkqacMnEiKvfGGDW977gnHHOO7\nGhFxrUwZuP12qFLF7sIyfrzviiSpNMBJIOKamRg+3N537w5ly/qtpSDlsdxTz90LQ89r14YbbrDt\nyy+HL7/0W0/Q4vp6HnUa4ESK6KuvbMmQcuXgtNN8VyMiPp14Ihx/PKxbB337QlaW74okaTTASSDi\neO+8kSMhJwdOOMEW9wwb3ZfTPfXcvbD0PC3NjsLtvjvMnQtDhviuKDhxfD2PAw1wIkWwbl1+1kX3\nPRURgF13tTwcwG23wUcf+a1HkkUDnAQibpmJSZPg99+hSRM48EDf1RQuDNmgpFHP3Qtbz9u0sUzs\nli3QuzesX++7otSL2+t5XGiAE9mJnJz8+57q6JuIFHT55bD33rB4MVx/ve9qJCmSsnqN1oGTEnvn\nHTjqKDtd8sorUKGC74q0DpxvWgcuHMK0HyxcCAMG2MUMM2faBQ4iJaV14ERSIO++p127hmN4E5Hw\nadoUBg607X797JZ7IkHSACeBiEtm4qef4PnnbfHOM87wXc2OhS0blATquXth7vmAAXDQQfDDD3a3\nhriIy+t53GiAE9mBxx+HzZvh6KNt8U4Rke1JT4c774SKFWHyZJg40XdFEmfKwIlsx5YtFkz+4Qdb\nA+7ww31XlC9M2Z8kUgYuHMK6H0yfDnffbbnZTz+FevV8VyRRowycSCm8+KINb/XrQ+vWvqsRkag4\n7TS78OmPPywPl53tuyKJIw1wEog4ZCby7nvao4etuh52Yc4GxZV67l4Uep6WBrfeakfgZs3KvxAq\nquLweh5HGuBECvHpp/D221CpEnTu7LsaEYma3XeHW26x7UGDbJkRkVTSACeBiPq98x55xN536gRV\nq/qtpajCco/IJFHP3YtSzzMz4ZRTYONG6NMHNm3yXVHJRP31PK40wIkU8Mcf8NRTtt29u99aRCTa\nrr0W9toL5s/Pv2+qSCpogJNARDkz8eSTdvP6Qw+FBg18V1N0UcgGxY167l7Uel6lii0tkpYG991n\nd3aJmii/nseZBjiRrWRn//XiBRGR0mrRIv9q1D59YM0a3xVJHETg2rqU0DpwUiQzZ0KHDrDHHvDP\nf9rCnGEU1vWvkkLrwIVDlPaDzZvhrLNg6VI45xwYN853RRJmWgdOpJjyLvc/44zwDm8iEj3lysFd\nd9n78eNhxgzfFUnUaYCTQEQxM/H11/Dyyza4nXaa72qKL2rZoDhQz92Lcs/33x8uvdS2zz0Xfv7Z\nbz1FFcXX8yTQACeS67HHLKPSvr2t4SQikmq9etkFUr/8YkOc0j1SUsrAiQAbNkDdurBqlZ3eOPhg\n3xXtWJSyP3GkDFw4RHU/+PFHu0hq7VoYO9YGOZGtKQMnUkRTptjw1qgRNGvmuxoRibPateH66237\n8svhyy/91iPRpAFOAhG1zETU7ntamChng6JKPXcvLj0/6SSLa6xbB337QlaW74q2L2qv50mhAU4S\n7/334YMPoFo1OPFE39WISBKkpcGNN1redu5cGDLEd0USNRrgJBBRunde3tIhp54KFSv6raU0onSP\nyLhQz92LU8933TX/9lq33QYffeS3nu2J0ut5kmiAk0RbudLyb2lpcOaZvqsRkaRp08buubxlC/Tu\nDevX+65IokIDnAQiKpmJsWNh0yY48ki7CjXK4pINihL13L049vzyy2HvvWHx4vyLG8IkKq/nSaMB\nThIrKwsefdS2dd9TEfGlYkW7S0PZsnZB1b/+5bsiiYKIXm9XbFoHTrbx4ot2x4W6dWH6dCgToX/O\nRHX9q7jQOnDhELf9YMwYGD0a9toLPvsMatTwXZH4onXgRHYgb+mQ7t2jNbyJSDwNGAAHHgg//AAX\nXeS7Ggk7/dmSQIQ9M7F4Mbz1FlSoAKec4rua1IhjNijs1HP34tzz9HQ7lVqhAkyeDBMn+q7IhP31\nPKk0wEkijRxp7zt2hF128VuLiEie+vXhmmts+6KLYMUKv/VIeCkDJ4mzejXUqQNr1ti/cBs29F1R\n8cUt+xM1ysCFQ1z3g5wcuOIKeOcdaNcO3nxTMY+kUQZOpBBPP23DW/Pm0RzeRCTe0tLg1lttod9Z\ns/IXGxfZmgY4CURYMxM5OX+972mcxDkbFFbquXtJ6XnNmnDzzbY9aBAsXOivlrC+niedBjhJlNmz\n7QKG3Xe3UxMiImHVrh107gwbN0KfPrbouEgeDXASiLDeOy/vVMTpp0O5cn5rSbU43SMyKtRz95LW\n82uvhdq1Yf78/PumuhbW1/Ok0wAnibFiBcyYYaudd+vmuxoRkZ2rWhXuvNNycffdZxc2iIAGOAlI\nGDMTo0bZ7bPatbN8SdwkJRsUJuq5e0ns+SGHwFlnQXa2nUpds8btzw/j67logJOE2LgRHn/ctuN2\n8YKIxN9FF8H++8Py5XDllb6rkTDQOnCSCM8+a/9ybdAAJk2y0xFRFtf1r6JC68CFQ9L2g6VL7Ujc\n5s0WB4nLXWRkW1oHTiTXsGH2vkeP6A9vIpJM++8Pl15q2+eeCz//7Lce8UsDnAQiTJmJDz+E99+H\nKlXs1llxlcRskG/quXtJ73mvXnDoobBypQ1xLk4uhen1XPKFZYA7CVgMLAEGbec5w3M/vwA4ZKuP\nLwc+Bj4C3g+uRImqvKVDunSBSpX81iIiUhplysAdd9g/SF96CcaP912R+BKGk0llgc+B44HvgP8C\nvYBFWz2nE3Bp7vvDgWFAm9zPLQNaAqt28DOUgUuoX3+FevVgwwaYNg323tt3RamRtOxP2CgDFw5J\n3g9efRVuuQUqV4aPP7Z8r8RHVDJwrYGl2JG0zcAk4NQCz+kC/CN3+z2gOlBrq8+HYRCVEBo/3oa3\nww+Pz/AmInLSSdC+PaxbB3372hJJkixhGODqAt9u9XhF7seK+pwc4E1gHnBeQDVKMYUhM5GVBSNH\n2nbPnn5rcSHp2SAf1HP31HOTlgY33mi3BZw7F4YMCe5nheH1XLaV7rsAbAAriu0dZTsa+B7YA5iJ\nZen+r+CT+vfvT0ZGBgDVq1enRYsW/7s9SN4vpx6n7vH8+fO917N2bSZffw277TabChUA7PN5fwDy\nbskTxcergWrwl89T4HGY6o3b49Xk/TaFo54kPf788/mhqsfn4113hT59ZjN8ONx2WyYdO8Iff9jn\n4/Z6HvfHedvLly+nqMJw6rENMBi7kAHgBiAb2PrfE6OA2djpVbAhrS3wU4HvdRuwBhha4OPKwCVQ\nhw4wcyZcfjn06+e7mtRKcvYnDJSBCwftB2bIEHjuOWjc2K6618Va0ReVDNw8oCGQAZQHegAzCjxn\nBpD3J7gN8Ds2vFUm/0BEFaAD8Emw5UoULFliw1v58nb1qYhIXF1xBdSvD4sXw/XX+65GXAnDALcF\nu8L0dWAhMBm7AvWC3DeAV4CvsIsdRgMX5368Nna6dD52ccNLwBuuCpft852ZyMu+nXgiVK/utRRn\nlA1yTz13Tz3fVsWKcPfdULYsDB8O//pXar+/79dzKVwYMnAAr+a+bW10gceXFvJ1XwEtAqlIImvt\nWnjiCdvWfU9FJAmaNoWBA2H0aIuMLFwIu+7quyoJUhiOwEkM5QU0fXj2WfjzTzjoIMuEJEVeyFnc\nUc/dU8+3b8AAaNIEvv8+tTe89/l6LtunAU5iJSfHTiGAjr6JSLKkp9tdGsqVgwkT4JVXfFckQdIA\nJ4HwlZn4z3/g008t99a+vZcSvFE2yD313D31fMf23Rcuusi2zz0Xfvut9N9TGbhw0gAnsZJ339Nu\n3ewKVBGRpOnTxyIkP/5oyyhJPIVhHTgXtA5cAvzwg90uKzsb/vlPqFVr518TVVr/yi+tAxcO2g+2\n7+uvoVcv2LQJXnxRyylFTVTWgRNJidGjYcsWOPbYeA9vIiI7s88+cMkltn3eefDrr37rkdTTACeB\ncJ2Z2LwZRo2y7STc97Qwyga5p567p54XXa9e0Lw5/PwzXFrYQlxFpAxcOGmAk1iYPh1++gkyMqBl\nS9/ViIj4V6YMDB4MFSrApEkwbZrviiSVNMBJIFyvGzRsmL3v0QPSkpLsLEDrY7mnnrunnhdP/fr5\nFzJccAGsXFn876F14MJJA5xE3scfwzvvQOXK0KmT72pERMLlzDPh0EPhl1/ylxiR6NMAJ4FwmZnI\nWzqkc2eoUsXZjw0dZYPcU8/dU8+LL+9UaqVK8PzzMGVK8b5eGbhw0gAnkfb77/DMM7bdvbvfWkRE\nwqpOnfzba110kWWGJdo0wEkgXGUmJkyA9euhVSu7gCHJlA1yTz13Tz0vuW7d7LVy1SrLwxV1eVRl\n4MJJA5xEVnZ2/unTpC4dIiJSVGlpdiq1cmVb3HfiRN8VSWlogJNAuMhMzJwJX30Fe+4JRx8d+I8L\nPWWD3FPP3VPPS6d2bbj6atu+5BK7g83OKAMXThrgJLKGD7f3Z5wB6el+axERiYpTT4U2bSxDPHBg\n0U+lSrgkZcUs3Qs1ZpYtgwYNbHB75RWoUcN3RW7pHpB+6V6o4aD9oOR++sku/Fq71rLEZ5/tuyLZ\nmu6FKrH16KP2r8YTTkje8CYiUlq1asHf/mbbl18OK1b4rUeKTwOcBCLIzMT69TBunG1r6ZB8yga5\np567p56nzsknW374zz/h3HO3fypVGbhw0gAnkTNpEvz2GzRuDAcd5LsaEZFoSkuDm2+GatXgjTdg\n/HjfFUlxKAMnkZKTA4ccAgsW2OXwnTv7rsgPZX/8UgYuHLQfpMZrr9kgV7UqfPYZ7L2374pEGTiJ\nnblzbXjbZRfLv4mISOmceCK0bQtr1sCAAboqNSo0wEkggspM5C3c27UrVKgQyI+ILGWD3FPP3VPP\nUy8tDW680f5h/NZbMHr0Xz+vDFw4aYCTyPjpJ5g61W7MfMYZvqsREYmP3XeHG26w7WuusaWaJNw0\nwEkggrh33pgxsHkzHHUU7LVXyr995Okeke6p5+6p58E54QQ47jhYtw7697fbFYLuhRpWGuAkErZs\ngcces+0ePfzWIiISVzfeCNWrw9tvw8iRvquRHdEAJ4FIdWZixgz4/nuoXx9at07pt44NZYPcU8/d\nU8+DVb063HSTbQ8aBEuXKgMXVhrgJBKGDbP3PXpYBk5ERILRrh106GCLpp99dv6pVAkX/SmUQKQy\nM/HZZ3Y4v2LF5K77VhTKBrmnnrunnrtx3XWw227wzjuwYEGm73KkEBrgJPQeecTed+pkC02KiEiw\ntj6VesMN8MUXfuuRbWmAk0CkKjPx55/w1FO2rYsXdkzZIPfUc/fUc3fatrV/OG/cOJt+/SAry3dF\nsjUNcBJqTz4Ja9fa7bMaNPBdjYhIslx7rS3w+957MHSo72pka7oXqoRWTg4ccAAsWQL33QfHH++7\novDQPSD90r1Qw0H7gRtz5sAVV9jdbz78EJo29V1R/OleqBJp//qXDW81a4LWkRQR8eOoo+CUU2Dj\nRujXz9blFP80wEkgSpuB+/e/7abKAKefDunppa8p7pQNck89d089d2/evNlccw3suSd88AHcf7/v\nigQ0wEnIbNxomYt27WDFCmjcGHr29F2ViEiyVa0Kt95q24MHwyefeC1HUAZOQuTjj6F3b1v3rUwZ\nOOccGDhQR98Ko+yPX8rAhYP2A/fuvhumT4cWLeD996FcOd8VxZMycBIJWVl2SP6ww2x4q1sXxo2D\nCy/U8CYiEiZXXgm1asH8+XDvvb6rSTYNcBKIombgli+3tYYGDYJNm6BrV5g0CZo1C7S8WFI2yD31\n3D313L2te16lCtx+u23feacNcuKHBjjxIicHJkywQW3OHLtly8MP28rflSr5rk5ERLanVSs480y7\nGvWss+wf3+KeMnDi3MqVlm2bMcMet2tng1v16n7rihJlf/xSBi4ctB/4s3693R3n++/h5pvtaJyk\njjJwEjovvQQHHmjDW+XKdij+/vs1vImIREmlSvb6nZZmWbgPPvBdUfJogJNAFMzArVkD551ni0Gu\nXGm3xpo8GU4+2V4ApPSUDXJPPXdPPXdvez0/5BA7CpeVZadSN250W1fSaYCTwL3zDhx8MIwda5ec\nX3kljB4Ne+3luzIRESmNSy+FevVg0SJbH07cScqxD2XgPNi0yXboIUMgOxv23x/uusveS+ko++OX\nMnDhoP0gHBYssFxzWhq8+y60bu27ouhTBk68WbjQduJ777UrTvv1gyef1PAmIhI3zZvbIuzZ2XYq\ndcMG3xUlgwY4SansbHjoIWjRYjYLFkDt2vD443D55VC+vO/q4k3ZIPfUc/fUc/eK0vOLLoK994Yv\nvrBVBSR4GuAkZb79Ftq3h6uvhs2b7YKFyZMt6CoiIvFVsSLccYfdBvGhhyz7LMFSBk5KLScHJk60\nf4H9+actCXLzzZCZ6buy+FL2xy9l4MJB+0H4PPKILdLeoIHd37pyZd8VRZMycBK4Vauge3fo08eG\nt6OPhilTNLyJiCTR+efDvvvCl1/CDTf4ribeNMBJib3+ui3KO3WqHT6/+WY7dL7bbsqp+KCeu6ee\nu6eeu1ecnpcvn38qdcQIePvt4OpKOg1wUmzr1sEll8BJJ8GPP9r9TCdNgtNO06K8IiJJ16QJDBhg\n8Zqzz4a1a31XFE9J+XOrDFyK/Pe/drn40qWQng4XXGBLhJQt67uyZFH2xy9l4MJB+0F4bd4Mffva\nqdRLLrFsnBSdMnCSMlu22H3vjjjChreMDAuqDhig4U1ERP6qXDk7lVq2LIwcCbNm+a4ofjTAyU59\n8YUNboMH2z3veveGZ56Bxo23/zXKqbinnrunnrunnrtX0p4fcIDdoQGgf39YvTplJQka4GQHcnLg\n0Udtle1582DPPWHUKFvnrUIF39WJiEjYDRgAjRrBN9/ANdf4riZelIGTQn3/ve14b7xhjzt2hOuu\ng2rV/NYlRtkfv5SBCwftB9GwdKnl4bZssdULOnTwXVH4KQMnJfLcc3DQQTa8VasG990Hd96p4U1E\nRIpv//1tfTiAc86BP/7wW09caICT//n9d1uQt3t3+O03OPxwW5T3+OOL/72UU3FPPXdPPXdPPXcv\nFdfgpnwAAAx5SURBVD3v18+WF/nuO7jqqtLXJBrgJNesWXbU7dlnLd82aJBd9r3HHr4rExGRqEtP\nt5UMypWDJ56AV1/1XVH0KQOXcBs2wPXXw7Bh9rhJE7jrLthnH791yY4p++OXMnDhoP0gep58EoYP\nh9q14dNPYffdfVcUTsrAyQ599BEceqgNb2XKWEbhiSc0vImISDD69LGzPT/+aAcM/vEPyM72XVU0\naYBLoI0b4Z57LOO2aBHUr2+D2/nn22HuVFBOxT313D313D313L1U9rxsWbswrlkzWLnS1oc76ig7\noCDFowEuQX75xa4m3XtvuOkmu9XJmWfCxIl2U3oREZGg1a4N48fb4vA1asDcudCqFVx4Iaxa5bu6\n6FAGLgEWL4a//x2eesoyb2CXdV95JbRp47c2KRllf/xSBi4ctB9E35o1tkD8lCl2KnW33ewI3Tnn\nJPs2jcrAJVhOjl1ZevLJljMYM8aGtyOPtJ1l4kQNbyIi4lfVqnDttbYCwiGH2BG488+H1q3h/fd9\nVxduGuBiZtMmO9LWogUcdxy88gqULw9du8LUqXb1T6tWkBbwsVflVNxTz91Tz91Tz91z0fP994fH\nH7d8ds2a8OGHltM+5xzLysm2NMDFxKpVcO+9dgVpv37w8ceWLbjwQhvibroJMjJ8VykiIlK4tDS7\nzda0afZ3LD3dLrBr2NDWJd2yxXeF4aIMXMQtXQoPPWS/5OvX28f23RfOOgtOPFE3nY8rZX/8UgYu\nHLQfxNvy5XD//fmnUps1g0cfhaOP9lqWE0XJwKVo0QhxKScH/vMfePBB+Oc/7TFYZqBfPzvsHPQp\nUhERkSBlZMDIkTB7tv29++QTOOYY6N3bHu+1l+8K/dIp1AjZvNkuPmjVCo49FmbMsEPMp5wCkybZ\nv0zatAnH8KacinvquXvquXvquXs+e56WBu3awfPPw8CBdiuuZ5+FRo1g6FD7u5hUGuAi4Pff4YEH\n7NRo794W7tx1V/tlfukluO02C4CKiIjEUcWKlul+7jk7hbpmjV292qwZvPWW7+r8CMGxGicimYFb\ntgwefhjGjYO1a+1je+9t+baOHe0XWpJJ2R+/lIELB+0HyfWf/1g+7vvv7fEZZ9h6p/Xr+60rVbQO\nXES9+y6cfrodVRs+3Ia3li1tmJs61ZYE0fAmIiJJdfTRdjTu4ovtYr2pU+GAA2wZko0bfVfnhga4\nkNiyxX4ZDz/cFtudNs1uMN+pk53vHz3afmHLROT/mHIq7qnn7qnn7qnn7oW15xUq2Dpxzz9vObn1\n623JrAMPhNde811d8HQVqmd//mmnSB96CL791j5WrZodgevZ0xY0FBERkcLVrm058blz7bTql19a\nzOiUU2DYMMuPx5EycJ58842dEh07Flavto/Vqwd9+9rtrypV8lufhJuyP34pAxcO2g+koLzVGsaM\nsSNyFSrAoEFw/fXR+ruqDFwI/fe/0KMH7LefHXVbvdpuezV0qJ02PeOMaP2SiYiIhEW5crYe6rRp\ndleHjRvhjjugcWN48cX8dVPjQAOcA1lZMH26Zdtat4YpU+zjHTrYfUvHjoW2baOTbyuKsGYm4kw9\nd089d089dy+KPd9jD7ug4fHH7YDJN9/AaafZqdUlS3xXlxrKwAVozRq7xdXf/263BAGoUgW6dbOj\ncLVrey1PREQk1g491C4EnDoVHnsMXn8dDjoIrr4abr7Z/iZHlTJwAVixAkaMsCtH//jDPlanji3C\n26ULVK7srBSJKWV//FIGLhy0H0hx/Pqr/W1+6SV7XKeOZdHPOCMcdzDamjJwjn3zDfTpY1e83H+/\nDW/Nmtn29Ol2VamGNxEREfd23x0GD7YzY40a2SLA3btD+/awcKHv6opPA1wKlS9vh2mzs+0XYsIE\n+0U57jgoW9Z3dW5FMTMRdeq5e+q5e+q5e3HrebNmlj+/4QZbtmvWLGje3E6r/vmn7+qKTgNcCtWu\nDQ8+aIPbkCF2nl1ERETCpWxZW291+nS7u1FWlq0M0agRPP10NK5WDdlZ38A4y8AtX25XuOy2m5Mf\nJwml7I9fysCFg/YDSZVFi+C+++Czz+zxkUfCo4/akTkflIETERER2YkmTSzydNttUL06vPOOXcF6\n7rkwYwb89pvvCrelAU4CEbfMRBSo5+6p5+6p5+4lpedlytjtt6ZPt6W+AMaPh1NPtQsgDj4YrrgC\nXnjBrmj1TevAiYiIiOSqVg3+9jdbs/WNN+wOSosWwSef2Nvw4fa8Aw+Edu0gMxOOPdYWD3ZJGbgU\nUwZOXFD2xy9l4MJB+4G4smEDfPopfPCBDXSffWb3Xd1akyb5A13btrDnniX/eUXJwOkInIiIiMgO\nVKwIrVrZ2wUX2D1W8wa6efNse9Eie3v0UfuaAw6wYa5dOxvoUn33JWXgJBBJyUyEiXrunnrunnru\nnnq+rQoVoGVLOP98u9/q7NkwZgxceKF9vEIF+PxzuyNTz56w1162RMn558PEibaIcGnpCJyIiIhI\nKZQvD4ccYm8DB9rp1c8+gw8/tFOuH39s8aolS2zQA2jQwI7MHXecva9Xr3g/Uxm4FFMGTlxQ9scv\nZeDCQfuBRMWWLXa7rq0HuvXr//qcfffNH+j69VMGTkRERMSr9HRbhuTgg6F/fxvoFi/Oz9AtWADL\nltnbhAlF+57KwEkglJlwTz13Tz13Tz13Tz1PvfR0u93m2WfDiBHw1lvw5JO2ztyRRxbte4RlgDsJ\nWAwsAQZt5znDcz+/ADikmF8rjn3++XzfJSSOeu6eeu6eeu6eeh689HRo2hTOOit/nbmdCcMAVxZ4\nBBvEmgK9gCYFntMJ2B9oCJwPPFaMrxUP1qz53XcJiaOeu6eeu6eeu6eeh1MYBrjWwFJgObAZmASc\nWuA5XYB/5G6/B1QHahfxa0VERERiJQwXMdQFvt3q8Qrg8CI8py5Qpwhf61Ramq3Y/MsvPqvwb9my\n5YnvQdAK9lc9d089d69gz9X/4On3PJzCsIzI6dgp0PNyH/fFhrDLtnrOP4H7gDm5j9/E8m4ZRfha\nsKN0DVJct4iIiEgQvsSiY9sVhiNw3wH1t3pcHzuStqPn1Mt9TrkifC3spAkiIiIiUjzp2KSZAZQH\n5lP4RQyv5G63AeYW42tFREREJAAdgc+xU5035H7sgty3PI/kfn4BcOhOvlZERERERERERERcuxM7\nejcf+Bd/zc5JMB4AFmF9nwbs6recRDgT+AzI4q9HqiX1tIi4W+OBn4BPfBeSIPWBWdhryqfA5X7L\nSYSK2HJp84GFwL1+ywmHalttXwaM9VVIgpxA/lqD9+W+SbAaA42wF10NcMEpi8U2MrCLqZS/Dd4x\n2F14NMC5UxtokbtdFYsr6fc8eJVz36djmf+jC3tSGBbydWX1VttVAa1qE7yZQHbu9nvY1cMSrMXA\nF76LSAAtIu7e/wG/+S4iYX7E/nECsAY7o1LHXzmJsS73fXnsH4urCntSkgY4gLuBb4Cz0dEg184h\n/0pikajb3uLiInGVgR0Bfc9zHUlQBhucf8LOpizc3pPiZCZ2eL3g2ym5n78J2BuYADzkob442lnP\nwfq+CXjWeXXxVJSeS7ByfBcg4lBVYCpwBXYkToKVjZ26rgccC2QW9qQwLOSbSicU8XnPoqNBqbKz\nnvfH1vFrH3wpiVHU33MJTlEWIBeJg3LA88DTwAuea0maP4CXgVbAbL+l+NVwq+3LgKd8FZIgJ2FX\nL9X0XUgCzQJa+i4ixrSIuB8Z6CIGl9KAJ9EZK5dqAtVztysBb6MDIEzFdvz52L8m9vRbTiIsAb4G\nPsp9e9RvOYnQFctmrccCyK/6LSfWtIi4WxOB74GN2O/4AL/lJMLR2Om8+eS/jp/ktaL4awb8f3t3\nrJJlFAdw+IfR0NQVBA6tBQ3dgdgkgjcRQbR9bQU5CE5iF6Jj0BU4NXQDDY3RHfSBwxH8Ckxx8Cg+\nz3bO9OOdDu/L+z/fGs/8e7WYmwMAAAAAAAAAAAAAAAAAAAAAAAAAANezV/1oDDg96nxq+uHZ3kn1\ndk4aAAAX2Wwc1p6v7O1Ub+bkAABwmbXGNXGfz9YvqnfzcgAAuIpP1e/qabU7uQUAgCtYr5bVcfVg\nbgpw36zNDgC4o342PqM+ahzkAAC45T5U76s/1ZPJLQAAXOJ19bJ6WP2qPs7NAQDgf7aq7ZX1QWMu\nHAAAt9CravHP3rPGTLiNm88BAOAi29WXxs8KX1f2HzduY1g23sLt33waAAAAAAAAAAAAAAAAAAAA\nAAAAAAAAAPCXU2qlZ783n8AFAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f31591d8890>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "GraficaHistogramaParam(Serie)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "slideshow": { "slide_type": "slide" } }, "source": [ "## Gráfica de medidas no paramétricas " ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnAAAAHuCAYAAAAflzENAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4FWX6xvFvIHRQFBRUYKMIIhZQULGsBFEURBRUiiCC\nvfcVu9jFsgqIghRdLBQRlLXjKutvrYsKFsAKKlYURXpJ8vvjSTYI4ZAy875T7s915coccpI8PmZO\nnszc8w6IiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiGwsy3cBLrRq1apgzpw5vssQERERKY05\nQOtMT6jkqBCv5syZQ0FBgd4cvt1www3ea4jEG6jnSXiDEv9fqufu3yLZc4f7uXqejjeg1ZZmm1QM\ncOLewoULfZeQOuq5e+q5e+q5e+p5NGmAExEREYkZDXASigEDBvguIXXUc/fUc/fUc/fU82hKxUUM\nQEHhOWURt7KyQD978ZdV+FKp/5dSEu3nErAse83JOKPpCJyEYubMmb5LSB313D313D313D31PJo0\nwImIiIjEjE6hioRJp1aSQadQJRPt5xIwnUIVERERSSANcBIKZSbcU8/dU8/dU8/dU8+jSQOciIiI\nSMwoAycSJmVjkkEZOMlE+7kETBk4ERERkQTSACehUGbCPfXcPfXcPfXcPfU8mjTAiYiIiMSMMnAi\nYVI2JhmUgZNMtJ9LwJSBExEREUkgDXASCmUm3FPP3VPP3VPP3VPPo0kDnIiIiEjMKAMnEiZlY5JB\nGTjJRPu5BEwZOBEREZEE0gAnoVBmwj313D313D313D31PJo0wImIiIjEjDJwImFSNiYZlIGTTLSf\nS8CUgRMRERFJIA1wEgplJtxTz91Tz91Tz91Tz6NJA5yIiIhIzCgDJxImZWOSQRk4yUT7uQQsThm4\no4D5wOfAoBI+3heYA3wIvAHsXYbPFREREUmUKAxwlYH7sUGsJdAH2H2j53wFHIoNbjcDD5Xhc8UD\nZSbcU8/dU8/dU8/dU8+jKQoD3P7AF8BCYB0wETh2o+e8BSwt3H4HaFSGzxURERFJlChk4E4AjgTO\nKHzcDzgAuGAzz78caA6cWYbPVQZO/FA2JhmUgZNMtJ9LwEqTgct2U0pGZfmp7wCcChxc1s8dMGAA\nOTk5ANStW5fWrVuTm5sLFB8e1mM91mM93uxjiFY9ehytxxCtevQ4Vo+LthcuXEhpReEIXDtgMJZj\nA7gKyAeGbPS8vYGphc/7ooyfqyNwjs2cOfN/P6Cp5vAvc/U8RJs5AqeeuxfJnif8CFwke55wcbkK\ndRbQDMgBqgK9gOkbPacJNrz1o3h4K+3nioiIiCRKFI7AAXQG7sOuKh0L3A6cVfixUcAYoDvwTeG/\nrcMuYNjc525MR+DEj4T/ZZ4aysBJJtrPJWClOQIXlQEubBrgxA+9sCeDBjjJRPu5BCwup1AlgTYM\nZoob6rl76rl76rl76nk0aYATERERiRmdQhUJk06tJINOoUom2s8lYDqFKiIiIpJAGuAkFMpMuKee\nu6eeu6eeu6eeR5MGOBEREZGYUQZOJEzKxiSDMnCSifZzCZgycCIiIiIJpAFOQqHMhHvquXvquXvq\nuXvqeTRpgBMRERGJGWXgRMKkbEwyKAMnmWg/l4ApAyciIiKSQBrgJBTKTLinnrunnrunnrunnkeT\nBjgRERGRmFEGTiRMysYkgzJwkon2cwmYMnAiIiIiCaQBTkKhzIR76rl76rl76rl76nk0aYATERER\niRll4ETCpGxMMigDJ5loP5eAKQMnIiIikkAa4CQUyky4p567p567p567p55HkwY4ERERkZhRBk4k\nTMrGJIMycJKJ9nMJmDJwIiIiIgmkAU5CocyEe+q5e+q5e+q5e+p5NGmAExEREYkZZeBEwqRsTDIo\nAyeZaD+XgCkDJyIiIpJAGuAkFMpMuKeeu6eeu6eeu6eeR5MGOBEREZGYUQZOJEzKxiSDMnCSifZz\nCZgycCIiIiIJpAFOQqHMhHvquXvquXvquXvqeTRpgBMRERGJGWXgRMKkbEwyKAMnmWg/l4ApAyci\nIiKSQBrgJBTKTLinnrunnrunnrunnkeTBjgRERGRmFEGTiRMysYkgzJwkon2cwmYMnAiIiIiCaQB\nTkKhzIR76rl76rl76rl76nk0aYATERERiRll4ETCpGxMMigDJ5loP5eAKQMnIiIikkAa4CQUyky4\np567p567p567p55HkwY4ERERkZhRBk4kTMrGJIMycJKJ9nMJmDJwIiIiIgmkAU5CocyEe+q5e+q5\ne+q5e+p5NGmAExEREYkZZeBEwqRsTDIoAyeZaD+XgCkDJyIiIpJAGuAkFMpMuKeeu6eeu6eeu6ee\nR5MGOBEREZGYUQZOJEzKxiSDMnCSifZzCZgycCIiIiIJpAFOQqHMhHvquXvquXvquXvqeTRpgBMR\nERGJGWXgRMKkbEwyKAMnmWg/l4ApAyciIiKSQBrgJBTKTLinnrunnrunnrunnkeTBjgRERGRmFEG\nTiRMysYkgzJwkon2cwmYMnAiIiIiCaQBTkKhzIR7Sej5mjXw7rvw22++KymdJPQ8btRz99TzaMr2\nXYCISJFTT4UnnrDtnBzYZx/Yf39o0wb23Rfq1fNanohIZCgDJxImZWNK7e234cADoXJle1u7dtPn\nNG5sg9yGQ9122zkoThk4yUT7uQSsNBk4DXAiYdILe6kUFNjw9s47MGAAnH02LFwI8+bB3Ln2/vPP\n7RTrxnbaqXio23dfG+waNAi4QA1wkon2cwmYBrhiGuAcmzlzJrm5ub7L8M/hC3uce/7kk9CzJ9St\nC888A7VqbfqcvLzioa7o7bPPYPXqTZ+7ww42zLVta29t2ti/ldtmBrg49zyuItnzhA9wkex5wpVm\ngFMGTkS8WrMG/vY32z733JKHN7DTqk2b2lvXrvZveXnwzTfFA93cuTbU/fADPPecvRVp0MAydfvt\nVzzU7bhj8WwmIhInaXnp0hE48SPhf5kH4a674IorYOedYcIEyK7gn5X5+TbUzZ9fPNR9+imsXLnp\nc7fbbtOhrlGjEoY6nUKVTLSfS8B0CrWYBjjxQy/sGf3yix1R++MPGDYMDjoonO+Tnw+LFtlQN3du\n8ZG65cs3fW79+tC6dfFQt+++8Jeds+zFUv8vpSTazyVgGuCKaYBzTJmJQsrAZXT++TBiBBxwgL13\nqaAAvvvuz0Pdp5/CsmWbPrcev7Av77PvoE60aWNH6nbeGf797/j1PO4i+XOe8AEukj1POGXgRCSy\n5s+HkSOhUiW45BL33z8ry06XNmoEhx9u/1ZQYPm5DTN18+fDr3/UZwadmDGk+PN33hlOOw3at1eO\nTkTcS8vLjo7AiR8J/8u8Irp2tYsMjjsOrr3WdzWbV1AA2+/XhPdow7OnTvvfsiZLl9rHjzwShg+H\nZs381ikeaT+XgOkUajENcOKHXthL9Oqr0LEj1KgBTz8d/TsstGlrL5XvzbL/l+vX29InDz5oF0dU\nrQqXXQbXXLP5q2glwbSfS8B0M3vxRvfOcy8uPc/LKz5lOnBg9Ie3kmRnQ58+MHjwTI4+2u4acfvt\n0Ly5DXb6XR6euPycJ4l6Hk0a4ETEqUcfhQ8/hO23h5NO8l1NxWy1Fdx4I4wbZ8Pb99/bgsQdO1p+\nTkQkLDqFKhImnVr5kxUrbNmQn36Cm26CLl18V1Q6G59CLUlenp0Ovv9+u5I1OxsuuAAGD7ZBTxJM\n+7kETKdQRSRS7rrLhrcWLeCoo3xXE6zKleH442HaNOje3Qa6e++1I3OPP67f7yISLA1wEgplJtyL\nes+//x7uvNO2L7vMlg+Ju1mzZm7yb3Xr2sUM48dDy5Y2sPbrB3/9q506loqJ+s95Eqnn0ZSAl1AR\niYOrr4ZVqyA3125flXS77w6PPALXX29D3Rtv2H/3BRfA77/7rk5E4k4ZOJEwKRsDwOzZdkuqypXt\nKs3GjX1XVDalycBlsmyZLTkyZYrd1qt+fRgyBAYMSMaRyNTTfi4BUwZORLwrKLBlQwoK4MQT4ze8\nBaFOHbjiCsvCtWpl94A97TRo1w5mzfJdnYjEkQY4CYUyE+5FtefPPQczZ9oQc/rpvqsJVkkZuEya\nNYMxY+CWW2z9u//+F/bfH844w4Y62bKo/pwnmXoeTRrgRCQ069bBpZfa9umnw9Zb+60nCrKy7Arc\np56Cvn3tFOqYMXa16siRdvWqiMiWKAMnEqaUZ2NGjIDzz4eddrL8V5Uqvisqn4pm4DJZsMDycEWn\nUlu3hgcegAMPDPxbSVhSvp9L8JSBExFvfv/drsAEuPji+A5vYdt5Z7vA4Y477O4Us2fDQQfBKafY\nEiQiIiXRACehUGbCvaj1/NZbYckSO6KUm+u7mnCUNQO3OVlZcPjhdlp14EAbdsePt8zcfffB+vWB\nfJtEiNrPeRqo59GkAU5EArdgAQwbZtuXXmoDimxZjRpw3nkwaZKdQl22zK7gbdUK/v1v39WJSJSk\n5WVVGTjxI6XZmBNPtMxb585w882+q6m4MDNwm1NQAP/3f3b7sR9+sH/r1QvuuccyhRIhKd3PJTzK\nwImIc2+9ZcNb1ap2NEnKJysLDj3UFj4+80zr56RJsNtudkuytWt9VygiPmmAk1AoM+FeFHpeUGAX\nLIAtkdGwod96whZUBi6T6tVtgJsyBdq3hxUrYNAg2HNPmDEj9G8fOVH4OU8b9TyaNMCJSGAmT4Z3\n34VttrHbRElwdtzRTp8OHw6NGsHnn0OnTtCjB3zzje/qRMQ1ZeBEwpSibMzq1bYY7bffwjXXQPfu\nvisKjo8MXCZr18ITT9gCwKtX21G6a66Byy+3bXEsRfu5uBGnDNxRwHzgc2BQCR9vAbwFrAYu2+hj\nC4EPgQ+Ad8MrUUQyGTrUhrdddoFu3XxXk2xVq9oRzqeesuVHVq+G666Dli3t1mUiknxRGOAqA/dj\nQ1xLoA+w+0bP+RW4ALi7hM8vAHKBfYD9Q6tSykSZCfd89nzxYlv3DWzZkMqVvZXilIsMXCYNGtgC\nwCNHQk6OLd/StSscfTR8+aXX0kKj1xb31PNoisIAtz/wBXYkbR0wETh2o+csBmYVfrwkaTkVLBJJ\n119va5a1a2dv4lbbtjBxoq0ZV7MmPP887LGHHZVbudJ3dSIShigMPicARwJnFD7uBxyAHXHb2A3A\ncuCeDf7tK2ApkAeMAkaX8HnKwIkfKcjGzJsHe+1l/5kTJkDTpr4rCl7UMnCZ/PKLLaL8/PP2uEcP\nO9UqIUrBfi5ulSYDl+2mlIwq+lN/MPADsB0wA8vS/d/GTxowYAA5OTkA1K1bl9atW5NbeH+fosPD\neqzHelz2xwMGzCQvD7p3z6Vp0+LTim3b2seT8HgZltOISj2ZHi9cOJNu3aBHj1zOPRemTp3J+PHQ\nv7993PfPS2IfQ7Tq0eNYPS7aXrhwIaUVhSNw7YDBWAYO4CogHxhSwnNLOgJXmo/rCJxjM2fO/N8P\naKo5/MvcR89feQWOOMJO2z39NGy7rdNv78zmjsDNmjXzf4NTFN1yi/1/Of10GF3SuYkYiuRrS8KP\nwEWy5wkXl6tQZwHNgBygKtALmL6Z5278H1MTqFO4XQvoBHwUfIkisrG8PMtcgV0RmdThLc769bP3\njz1mF5qISHJE4QgcQGfgPuyK1LHA7cBZhR8bBTQE/gtshR2dW4Zdsbo9MLXwednA44WfuzEdgRM/\nEvyX+bhxcNppsP32MHVqstcfi1MGbmMXXQRvvAGDB8MNN/iuJqESvJ+LH6U5AheVAS5sGuDEj4S+\nsC9fbhcr/PyznaY76qgtf06cxXmAmzULzj4bttvO7tiQ5EHbm4Tu5+JPXE6hSgJtGMwUN1z2/M47\nbXjbfXe7nVNa+V4HrjTatIFmzewU6mOP+a6m4vTa4p56Hk0a4ESkTL77Du66y7Yvuwwq6VUk0rKy\noH9/2777bsjP91uPiARDp1BFwpTAUyv9+8Ojj0KHDsWDXNLF+RQqwPr1cMwxdhTuueegSxffFSVM\nAvdz8UunUEUkUO+/b6fhsrMtHC/xkJ0NffrY9t0l3ZBQRGJHA5yEQpkJ98LueUGBLRtSUAA9e0Kj\nRqF+u1iIQwauSPfuUKMGvPYazJ7tu5ry02uLe+p5NGmAE5FS+ec/4fXXoU4dWxhW4qVOHejWzbZ1\nFE4k/pSBEwlTQrIx69ZBy5bwxRdw+eXQu7fvityKewauyHff2ZG4SpVg4ULYaSffFSVEQvZziQ5l\n4EQkEA8+aMNb48Zwwgm+q5Hy2mknyM21ixqGD/ddjYhUhAY4CYUyE+6F1fPffoMbb7Ttiy6yQLyY\nOGXgipx8sr0fOdIWZI4bvba4p55HkwY4Ecno5pthyRLYZx9o3953NVJRe+0Fe+4JS5fCww/7rkZE\nyksZOJEwxTwb8+WXln1bt87WfmvRwndFfiQlA1fk1VfhiisgJ8dOjVeu7LuimIv5fi7RowyciFTI\nFVfA2rXQuXN6h7ckat8edtzRLmR45hnf1YhIeWiAk1AoM+Fe0D1/4w2YOhWqVYPzzgv0SydGHDNw\nYEfcTjrJtuN2Nw29trinnkeTBjgR2UR+Plx8sW336wcNGvitR4LXrRvUrg1vv21vIhIvysCJhCmm\n2ZgJE+wIzbbbwtNPQ82avivyK2kZuCLDh8M//gE9esBTT/muJsZiup9LdCkDJyJltmqVZd8Azj1X\nw1uS9e5ty8I8/TQsWOC7GhEpCw1wEgplJtwLquf33QeLFkHTpnDMMYF8ycSKawauyHbbwRFH2Cnz\n++7zXU3p6LXFPfU8mjTAicj//Pwz3HabbV96qZaXSIOihX3HjoXff/dbi4iUnjJwImGKWTbmrLPg\noYfgwAN1q6UNJTUDV+Sss+C99+COO2DQIN/VxFDM9nOJPmXgRKTUPvkExoyxG51fconvasSl/v3t\n/dChtmiziESfBjgJhTIT7lW055ddZlmo446DXXYJpqaki3sGrsiBB8Jf/gI//ACTJ/uuJjO9trin\nnkeTBjgRYcYMeOklu+L07LN9VyOuVapUnIW76y6dDRSJA2XgRMIUg2xMXh60amWnUM8/HwYM8F1R\n9CQ9AwewZg0cfbRdyPDqq9Chg++KYiQG+7nEizJwIrJFDz9sw1uDBtCnj+9qxJdq1aBnT9u++26/\ntYjIlmmAk1AoM+FeeXq+bBlcc41tX3ih/RKX0ktKBq7IiSdC1arw/PMwf77vakqm1xb31PNo0gAn\nkmJDhtjaby1bQqdOvqsR37bZBrp0se177vFbi4hkpgycSJginI359lto3hxWr7ZFXFu18l1RdKUh\nA1dk4UI44QSoXh2++cbu1iBbEOH9XOJJGTgR2ayrrrLh7bDDNLxJsZwcOPhg+9kYMcJ3NSKyORrg\nJBTKTLhXlp6/9x48/jhUqWLZNymfpGXgihQtKTJihA1yUaLXFvfU82jSACeSMgUFxXda6NULGjXy\nW49ET5s20KwZ/PILPPaY72pEpCTKwImEKYLZmKefhu7dYaut4JlnoE4d3xVFX5oycEVeeAGuuw52\n2w3mzrXFfmUzIrifS7wpAycif7J2LVx+uW2fdZaGN9m8I46A+vXh00/hxRd9VyMiG9MAJ6FQZsK9\n0vT8gQfgyy+hcWM4/vjwa0q6pGbgALKzixd2jtLCvnptcU89jyYNcCIpsWQJ3HijbV9yif2CFsmk\nRw+oUQNeew1mz/ZdjYhsSBk4kTBFKBtz8cUwdCjsuy+MGmWlSemkMQNX5K67YNIk6NtXFzRsVoT2\nc0kGZeBEBICvvrLTp1lZcOmlGt6k9E46yS5gmDQJvvvOdzUiUkQDnIRCmQn3MvX8gQdg3To48kho\n0cJdTUmX5AxckZ12gvbtYf16GD7cdzV6bfFBPY8mDXAiCbdmDTzyiG337u21FImp/v3t/ciRsHy5\n31pExKTlRIoycOJHBLIxkyfbgr277GKnwXT6tOzSnIErMmAAfPwxDBsGF1zgu5qIicB+LsmiDJyI\nMHKkvT/+eA1vUn5FR+H+/nfIy/Nbi4hogJOQKDPhXkk9/+orWwKialXo3Nl9TUmXhgxckfbtYccd\nYeFCu4OHL3ptcU89jyYNcCIJNmaMve/Y0W6dJVJelSvbFalgS4uIiF9pOaGiDJz44TEbs26d3aj+\n559h9GjYZx8vZSSCMnBm5Uro0sUuZHjrLWjXzndFEaEMnARMGTiRFHvuORvemjSB1q19VyNJULNm\n8S3YdBROxC8NcBIKZSbc27jno0bZ+x49dPFCWNKUgSvSq5edTn36aViwwP3312uLe+p5NGmAE0mg\nb76Bl1+GKlWga1ff1UiSbL89dOoE+flw332+qxFJr7T8Xa4MnPjhKRtzww1w001w+OFwxx3Ov33i\nKAP3Z599Zhc01KoFixZB3bq+K/JMGTgJmDJwIimUlwdjx9p2UV5JJEjNm0ObNrBiRfGpehFxSwOc\nhEKZCfeKev7SS3bT8R13tF+yEp40ZuCKnHyyvR86FNaudfd99drinnoeTRrgRBKm6M4L3btDJe3h\nEpKDDoK//AV++AGefNJ3NSLpowycSJgcZ2N++AEaN7bt556D+vWdfetEUwauZE8/DbfcAq1awQcf\npPhqZ2XgJGDKwImkzLhxloH76181vEn4One2CxjmzAGdZRNxSwOchEKZCfdefXUmo0fbdo8efmtJ\nizRn4ACqVYOePW3b1cK+em1xTz2PJg1wIgnx/vvw9de2TtcBB/iuRtLixBOhalV44QWYP993NSLp\noQFOQpGbm+u7hNR5++1cAI47zlbKl/C1bZvruwTvttnG7o8KcM894X8/vba4p55HkwY4kQRYvBim\nT7erTo891nc1kjb9+tn7xx6zn0URCZ8GOAmFMhNuPfIIrFs3kwMPhAYNfFeTHmnPwBXJybFlRVav\nhhEjwv1eem1xTz2PJg1wIjFXUAAPPWTbunhBfOnf396PGGGDnIiEKy2r9mgdOPHDwfpQ//435OZC\nvXq29lt2dqjfLpW0DtyWFRTY/VE//xxGj4bTT/ddkUNaB04CpnXgRFKg6F6Uxx6r4U38ycoqPgp3\n992Qn++3HpGk0wAnoVBmwo0lS2DqVPvl2bTpTN/lpI4ycH92xBG2gPSnn8KLL4bzPfTa4p56Hk0a\n4ERi7NFHYc0a2G8/O4Uq4lN2NvTpY9t33+23FpGkUwZOJEwhZmMKCmCPPWDePLjjDjj88FC+jaAM\nXFksW2brwq1aZfdHbd3ad0UOKAMnAVMGTiTB3n7bhre6daF9e9/ViJg6daBbN9vWUTiR8GiAk1Ao\nMxG+oosXjjkGqlRRHssH9bxkJ51ki0pPmgTffRfs19Zri3vqeTRpgBOJoaVL7ZcjQPfufmsR2dhO\nO9lR4fXrYfhw39WIJJMycCJhCikb8+CDcO65sM8+tuaWhEsZuLL76CMYOBC23hoWLYLatX1XFCJl\n4CRgysCJJFTR6dPjj/dbh8jm7LUX7LmnHS1++GHf1YgkjwY4CYUyE+F57z2YM8fC4h06FP+78lju\nqeeZnXyyvf/73yEvL5ivqdcW99TzaNIAJxIzI0fa+6OPhmrV/NYikkluLuy4IyxcCM8847sakWSp\nSAbuL8D2hV9jMfA9sCaIokKgDJz4EXA2ZvlyaNgQVqyAyZNhl10C+9KSgTJw5Tdxoi0n0q4dvPWW\n72pCogycBKw0Gbiy3DkxC+gO9AN2AX4FlgBrgW0K31YALwIjgeVlrlhEMpo0yYa3vfbS8Cbx0K2b\nHTV++217a9fOd0UiyVDaU6itgUnAdsB5hY87AicCfYEuwIHAMcAcYBhwZtDFSnwoMxGOotOnJV28\noDyWe+r5ltWsCT162PZdd1X86+m1xT31PJpKM8D9FTgc6AWMAn7I8NxVwAzgVOAT4KKKFigi5sMP\nYdYsqFVLt82SeOndGypXhqefhgULfFcjkgylycBtDSwt59evyOcGSRk48SPAbMz558OIEXb07aqr\nAvmSUkrKwFXcddfBCy/AhRfC0KG+qwmYMnASsKDWgStpALsH+L8NHh8AtCzl54pIGa1aBY89Ztta\n+03iqF8/ez92LPz+u99aRJKgvMuI/AJsuDTjO0BzoFuFK5JEUGYiWFOm2IKoLVpA8+YlP0d5LPfU\n89LbbTdo08YuwilaiLo89NrinnoeTeUd4BYCv/Hnq1ifBhpVtCAR2dSDD9p7HX2TOCta2HfoUFi7\n1m8tInFX3nXgBgPnALWxo29vAF8AucDAIAoLmDJw4kcA2Zh586BlS6hRA1580S5iELeUgQtGfj6c\neCJ8/bVFAvr29V1RQJSBk4CFeS/U1UADIAcYAWwF3AA8Us6vJyKb8dBD9r5TJw1vEm+VKhUfhbvr\nLs08IhVR3gEuv/BzFwNPYcuFNAcOCqguiTllJoKxZg2MH2/bRWtpbY7yWO6p52XXuTPUrWv38y3P\ny4ReW9xTz6OpvAPcGOAKoM0G//YesEeFKxKR/5k2DZYsgaZN7TSqSNxVqwY9e9p2EAv7iqRVRe6F\nClAZyCvc7gksAt6s4NcMgzJw4kcFszG5ufDvf8OgQZYdEj+UgQvWb7/B0UfbhQzz5tnV1bGmDJwE\nLMwMXJG8DbYnE83hTSSWvvzShrdq1ey0k0hSbLMNdOli2/fc47cWkbgqzQDXCdi/HF97W+w0q6SQ\nMhMVN3q0ve/YEWrX3vLzlcdyTz0vv6KFfR97DBYvLv3n6bXFPfU8mkozwL0M7AL8HSjNge5a2EUN\nVwP3lb80kfRatw4eLlwqe0sXL4jEUU4OHHQQrF5tt4gTkbIpSwauAXAl0Ar4Cvgcu1XWemAbYHug\nNbAcu9XWfwKttGKUgRM/ypmNmTrVFu3NyYEnn7QvI/4oAxeOWbPg7LOhfn349luoXt13ReWkDJwE\nLMgM3LbYBQuXAB2B+7ELFqoD9YAlwEvAsUB3ojW8icTOyJH2vkcPDW+SXG3aQLNm8MsvCbzBvUjI\nSjvAPQq8XrhdAPwMPI6dIh0CjAVeAVYGXaDEkzIT5ff11/DKK1ClSnHQuzSUx3JPPa+YrCw47zzb\nvu46eP80spwiAAAgAElEQVT9LX+OXlvcU8+jqbQD3JdArw0eXxJCLSICjBljZ2Nyc23BU5EkO+QQ\niwusWwe9etnN7kVky0p7cuav2BG3NdiCvfWBu4EPge/DKS1QysCJH2XMxqxfD02awA8/2GnUtm1D\nrE1KTRm4cK1ebbfYWrAATj0Vxo71XVEZKQMnAQsyA/d/2H1Pe2GnSrcHBmED3C/Av7DTqX2w4U5E\nyuHFF214a9TI8kEiaVC9Otx+u8UGxo2DKVN8VyQSfWVZyDcfeB+7jdbTQAdsWGsF3AX8BByHXcDw\nDLBzoJVKrCgzUT6jRtn77t3LfvGC8ljuqefB2XVXuPhi2z79dPjmm5Kfp9cW99TzaCrvnRiu32D7\nO+BF4HbsCF0L4F7gzIqVJpIu330Hzz8PlStD166+qxFxr2dPOPhgWLoUTjoJ8vK2/DkiaVXRW2mV\nZGts8d+y3Hr7KGA+trbcoBI+3gJ4C1gNXFbGzxUPcnNzfZcQO+PGQX4+HHoo1KtX9s9v2zY38Jok\nM/U8WFlZMHiw/fy/8Qbceuumz9Fri3vqeTSFMcAtxYa3gaV8fmVsXbmjCj+vD7D7Rs/5FbgAu3Ci\nrJ8rEnn5+Xb1KdgVeSJptc02cNNNtn3TTfCm7rAtUqIwBjiAL7DFfUtj/8LnLwTWAROxBYE3tBiY\nVfjxsn6ueKDMRNm88oplfho2hP3Lc+dhlMfyQT0PxwEH2L1S8/KgTx87pVpEry3uqefRFNYAVxY7\nAd9u8HhR4b+F/bkikVF054XjjoNKUdgrRTw77zzYbTf7w+bMM7VKh8jGsn0XgN3ZIfTPHTBgADk5\nOQDUrVuX1q1b/++8ftFfF3oc7OMiUaknqo+nTp3JM89ApUq5dOtWfFSnKF+lx/4fLwPs0Z8/3rZt\nbiTqS+rj226D3r1nMnkydOmSyymnANg+FJX993+PoWzPj9njIlGpJ2mPi7YXLlxIaUXhLovtgMFY\njg3gKmzJkiElPPcGYDlwTxk/Vwv5ih+lWOBzyBC48kpbkf6++xzVJWWihXz9mT7dsnA1a8KcObbc\nSORoIV8JWJAL+YZpFtAMWyi4KrYUyfTNPHfj/5iyfK44tPFfbVKyggJ46CHbrujFC8pjuaeeh++Y\nY+Dww2HlSrvV1owZM32XlDp6PY+mKAxw64HzgZeAucAkYB5wVuEbQEMs63YJcC3wDVA7w+eKxMLM\nmfDVV1C/Phx4oO9qRKInKwuuuQYaNLCb3Y8b57sikWiIwilUF3QKVfzYwqmV3r1h0iRbef7ssx3W\nJWWiU6j+zZ5dfDHDjBnQsaPvijagU6gSsLicQhVJpV9/hWnT7LX/WC1+I5JR69Zw2mk2J/XtC7/8\n4rsiEb80wEkolJnYskcfhbVrbd23HXao+NdTHss99dyt006DXXaZyU8/wcCBOujlil7Po0kDnIgH\nBQXFa7/pzgsipZOdbXGDWrXg2WfhwQd9VyTijzJwImHaTDbmjTds2ZBttoEXXrBfTBJdysBFy4wZ\ncNVVUK0azJoFe+7puSBl4CRgysCJRNSoUfa+WzcNbyJldcQRtrzImjW2tMiqVb4rEnFPA5yEQpmJ\nzfv9d3jySdvu3j24r6s8lnvquXtFPf/b36BxY5g717YlPHo9jyYNcCKOPf44rF4NbdpAo0a+qxGJ\np5o14bbb7Aj2iBGWiRNJE2XgRMK0UTamoABatYKPPrJfPp06eaxNSk0ZuOgaPx6GDYN69Wy/CuKK\n7jJTBk4CpgycSMTMmmW/ZLbaCgrvZSwiFdCvH+y3n62r2K8f5Of7rkjEDQ1wEgplJkpWdPFC165Q\ntWqwX1t5LPfUc/c27nmlSnDzzbD11vDqq3DPPX7qSjK9nkeTBjgRR5YtgwkTbDvIixdE0q5+fRg8\n2LavuQbee89rOSJOKAMnEqYNsjGjR9u9HFu1grFjPdclZaIMXDzceSdMngxNm9q9U2vXdvSNlYGT\ngCkDJxIhRXde6NHDbx0iSXXRRbDLLvDll3DBBb6rEQmXBjgJhTITfzZ7Nrz/vh0R6NgxnO+hPJZ7\n6rl7mXperRrcfrvlSx95xI7GScXp9TyaNMCJOFB08ULnzlC9ut9aRJKsaVO45BLbPuMM+Pprv/WI\nhEUZOJEwZWWxckUBO+wAf/wBEyfCrrv6LkrKShm4eCkogMsug9dfhwMPtPeh3rJOGTgJmDJwIhHw\n5JM2vLVsqeFNxIWsLLj+elvc96234JZbfFckEjwNcBIKZSaKFZ0+DfviBeWx3FPP3Sttz+vWtcEt\nK8vWiXvjjXDrSjK9nkeTBjiREH1CS956C2rU0G2zRFzbbz/o39/uztC7N/z+u++KRIKjDJxIiC7J\nupf7uITu3W2BUYknZeDia/16GDgQ5s2DE06wK1Ozgv7NpwycBEwZOBGPVq+G8fQHtPabiC/Z2XDb\nbXYUfMoUW15EJAk0wEkolJmAadNgCfVo1gx23z3876c8lnvquXvl6XnjxjBokG2ffz589lmwNSWd\nXs+jSQOcSEiK7rxw/PF+6xAROPpoy6GuXGl5uLVrfVckUjHKwImE4PPPoXlzqMkKnp9Zy909GSUU\nysAlw/LlNrz9+KOtE3f33QF9YWXgJGDKwIl4Mnq0ve/FJA1vIhFRu7bl4SpVgnvugVde8V2RSPlp\ngJNQpDkzsXZtcVD6DEY7+77KY7mnnrtX0Z7vvbfdYgugXz9YvLjiNSVdml/Po0wDnEjApk+3Xwo7\n7wzteNt3OSKykVNPhVat4KefYMAAnf2UeFIGTiRgRxxhp2YuvxzuujtLuakEUAYueX780fJwy5fD\n8OF2dWq5KQMnAVMGTsSxhQvhX/+CKlWgc2ff1YjI5jRsCNdea9uXXw4ffeS3HpGy0gAnoUhrZmLM\nGPtD/LDDYOut3X5v5bHcU8/dC7Lnhx8O3brBmjXQqxesWhXYl06UtL6eR50GOJGArF8PY8fattZ+\nE4mHv/3NFvqdN8+WFhGJC2XgRAIyfToce6z9Mpg61WIxbdoqA5cEysAl2/z5dr/UdevgmWfsqFyZ\nKAMnAVMGTsShUaPsfY8eIdwsW0RC06JF8UUMAwfC99/7rUekNDTASSjSlplYtAhefNFunN21q58a\nlMdyTz13L6ye9+kDBxwAS5bY+nD5+aF8m1hK2+t5XGiAEwnA2LH2gt++PWyzje9qRKSsKlWCG2+E\nunXhtdfgrrt8VySSWVpO9CgDJ6HJy4OcHDsKN2KE/RVfRBm4ZFAGLj3+8x+4+GI7mv7mm7DffqX4\nJGXgJGDKwIk4MGOGDW877FDKF3sRiaxDDrElRdavt4V+ly3zXZFIyTTASSjSlJkounihe3c7DeOL\n8ljuqefuuej5RRfBrrvCV19V8A4NCZGm1/M40QAnUgHffw/PPmuDW5mXHhCRSKpaFW67DapVg/Hj\nYeJE3xWJbEoDnIQiNzfXdwlOjBplp1rat4f69f3W0rZtrt8CUkg9d89Vz3fZBS691LbPPNNuk5dW\naXk9jxsNcCLltHYtjBxp2716+a1FRILXo4f9cbZsmeXh1q/3XZFIMQ1wEoo0ZCamTYOff7YrUNu0\n8V2N8lg+qOfuuex5VhZcd50dXX/nHbjpJmffOlLS8HoeRxrgRMpp6FB737u37rwgklR168Itt9g+\nfuut8MYbvisSMWn5taN14CRQc+ZA69ZQs6bdgaFmzZKfp3XgkkHrwMnw4fCPf9gR9w8/hDp1Nvig\n1oGTgGkdOJGQDB9u77t23fzwJiLJcfbZ0KyZXcxw8cW+qxHRACchSXJm4rff4PHHbbtnT7+1bEh5\nLPfUc/d89bxKFTuVWqUKjBsH06d7KcOLJL+ex5kGOJEyeuQRWL3a7rqQk+O7GhFxpWnT4oV9TzvN\nLmIS8UUZOJEyyM+3FdoXLIC774YtLY+kDFwyKAMnRfLz4Zxz4L33LEIxfTpkVVIGToKlDJxIwF5+\n2Ya37beHv/7VdzUi4lqlSnDjjVCrlt2FZdw43xVJWmmAk1AkNTMxbJi979kTKlf2W8vGlMdyTz13\nLwo9b9gQrrrKti+8EL5kF78FhSypr+dxpwFOpJS++sqWDKlSBY47znc1IuLTkUfC4YfDypXQn/Hk\n5fmuSNJGA5yEIon3zhsxwmIuRxxhi3tGje7L6Z567l5Uep6VZUfh6tWDNzmYIUN8VxSeJL6eJ4EG\nOJFSWLmyOOui+56KCMDWW1seDuCGG+CDD/zWI+miAU5CkbTMxMSJ8PvvsPvusMcevqspWRSyQWmj\nnrsXtZ63awcXMIz16+Gkk2DVKt8VBS9pr+dJoQFOZAsKCorve6qjbyKysTu4kiZNYP58uPJK39VI\nWmgdOJEtePNNOPhgO13y/PNQrVrpP1frwCWD1oGTTNq0zeLR8QUMHAh5eTBjhl3gIFJeWgdOJABF\n9z3t3r1sw5uIpEfLlnD66bbdv7/dck8kTBrgJBRJyUz89BM89ZQt3nnCCb6rySxq2aA0UM/di3LP\nBw6EPfeEH36wuzUkRVJez5NGA5xIBg89BOvWwSGH2OKdIiKbk50NN98M1avDpEkwYYLviiTJlIET\n2Yz166FJE/tresQIOOCAsn8NZeCSQRk4yWTj/XzaNLj1VsvNfvwxNGrksTiJJWXgRCrgmWdseGvc\nGPbf33c1IhIXxx1nFz4tXWp5uPx83xVJEmmAk1AkITNRdN/TXr1s1fWoi3I2KKnUc/fi0POsLLj+\nejsC99prxRdCxVUSXs+TSAOcSAk+/hhefx1q1ICuXX1XIyJxU68eXHedbQ8aBHPn+q1HkkcDnIQi\n7vfOu/9+e9+lC9Su7beW0orKPSLTRD13L049z82FY46BNWugb19Yu9Z3ReUT99fzpNIAJ7KRpUvh\n0Udtu2dPv7WISLxdfjnssAPMnl1831SRIGiAk1DEOTMxfrzdvH7ffaFpU9/VlF4cskFJo567F7ee\n16plS4tkZcEdd9idXeImzq/nSaYBTmQD+fl/vnhBRKSiWrcuvhq1b19Yvtx3RZIEMbi2LhBaB05K\nZcYM6NQJttsO/vlPW5izIrQOXDJoHTjJpDT7+bp1cPLJ8MUXcOqpMHaso+IklrQOnEgZFV3uf8IJ\nFR/eRESKVKkCt9xi78eNg+nTfVckcacBTkIRx8zE11/Dc8/Z4Hbccb6rKbu4ZYOSQD13L84933VX\nOP982z7tNPj5Z7/1lFYcX8/TQAOcSKEHH7SMSseOtoaTiEjQ+vSxC6R++cWGOKV7pLyUgRMBVq+G\nnXaCJUvs9MbeewfzdZWBSwZl4CSTsu7nP/5oF0mtWAFjxtggJ7IhZeBESmnyZBvemjeHvfbyXY2I\nJFnDhnDllbZ94YXw5Zd+65F40gAnoYhbZiJu9z0tSZyzQXGlnruXlJ4fdZTFNVauhH79IC/Pd0Wb\nF7fX87TQACep9+678N57UKcOHHmk72pEJA2ysuDqqy1v+/bbMGSI74okbjTASSjidO+8oqVDjj0W\nqlf3W0tFxOkekUmhnruXpJ5vvXXx7bVuuAE++MBvPZsTp9fzNNEAJ6m2eLHl37Ky4MQTfVcjImnT\nrp3dc3n9ejjpJFi1yndFEhca4CQUcclMjBkDa9fCQQfZVahxlpRsUJyo5+4lsecXXghNmsD8+cUX\nN0RJXF7P00YDnKRWXh488IBt676nIuJL9ep2l4bKle2Cqn/9y3dFEgcxvd6uzLQOnGzimWfsjgs7\n7QTTpkGlEP6c0TpwyaB14CSToPbz0aNh1CjYYQf45BPYZpsAipNY0jpwIhkULR3Ss2c4w5uISFkM\nHAh77AE//ADnnOO7Gok6/dqSUEQ9MzF/Prz6KlSrBscc47uaYCQxGxR16rl7Se55dradSq1WDSZN\nggkTfFdkov56nlYa4CSVRoyw9507w1Zb+a1FRKRI48Zw2WW2fc45sGiR33okupSBk9RZtgx23BGW\nL7e/cJs1C+97KQOXDMrASSZB7+cFBXDRRfDmm9ChA7zyimIeaaMMnEgJHnvMhrdWrcId3kREyiMr\nC66/3hb6fe214sXGRTakAU5CEdXMREHBn+97miRJzgZFlXruXlp6Xr8+XHutbQ8aBHPn+qslqq/n\naacBTlJl5ky7gKFePTs1ISISVR06QNeusGYN9O1ri46LFNEAJ6GI6r3zik5FHH88VKnit5agJeke\nkXGhnruXtp5ffjk0bAizZxffN9W1qL6ep50GOEmNRYtg+nRb7bxHD9/ViIhsWe3acPPNlou74w67\nsEEENMBJSKKYmRg50m6f1aGD5UuSJi3ZoChRz91LY8/32QdOPhny8+1U6vLlbr9/FF/PRQOcpMSa\nNfDQQ7adtIsXRCT5zjkHdt0VFi6Eiy/2XY1EgdaBk1R44gn7y7VpU5g40U5HuKB14JJB68BJJq72\n8y++sCNx69ZZHCQpd5GRTWkdOJFCQ4fa+1693A1vIiJB2nVXOP982z7tNPj5Z7/1iF8a4CQUUcpM\nvP8+vPsu1Kplt85KqjRmg3xTz91Le8/79IF994XFi22Ic3FyKUqv51IsKgPcUcB84HNg0GaeM6zw\n43OAfTb494XAh8AHwLvhlShxVbR0SLduUKOG31pERCqiUiW46Sb7g/TZZ2HcON8ViS9ROJlUGfgU\nOBz4Dvgv0AeYt8FzugDnF74/ABgKtCv82AKgDbAkw/dQBi6lfv0VGjWC1ath6lRo0sTt91cGLhmU\ngZNMfOznL7wA110HNWvChx9avleSIy4ZuP2BL7AjaeuAicCxGz2nG/CPwu13gLpAgw0+HoVBVCJo\n3Dgb3g44wP3wJiISlqOOgo4dYeVK6NfPlkiSdInCALcT8O0GjxcV/ltpn1MAvALMAs4IqUYpoyhk\nJvLyYMQI2+7d228tLqQ9G+SDeu6eem6ysuDqq+22gG+/DUOGhPe9ovB6LpvK9l0ANoCVxuaOsh0C\nfA9sB8zAsnT/t/GTBgwYQE5ODgB169aldevW/7s9SNEPpx4H93j27Nne61mxIpevv4Ztt51JtWoA\n9vGiXwBFt+RJyuMiUaknSY+XUfTTE4160vz4009nR6qeop+POuD8+2+9NfTtO5Nhw+CGG3Lp3BmW\nLrWPJ+31POmPi7YXLlxIaUXh1GM7YDB2IQPAVUA+sOHfEyOBmdjpVbAhrT3w00Zf6wZgOXDPRv+u\nDFwKdeoEM2bAhRdC//5+alAGLhmUgZNMfO/nQ4bAk09CixZ21b0u1oq/uGTgZgHNgBygKtALmL7R\nc6YDRb+C2wG/Y8NbTYr/8KkFdAI+CrdciYPPP7fhrWpVu/pURCSpLroIGjeG+fPhyit9VyOuRGGA\nW49dYfoSMBeYhF2BelbhG8DzwFfYxQ6jgHML/70hdrp0NnZxw7PAy64Kl83znZkoyr4deSTUreu1\nFGeUDXJPPXdPPd9U9epw661QuTIMGwb/+lewX9/367mULAoZOIAXCt82NGqjx+eX8HlfAa1DqUhi\na8UKePhh29Z9T0UkDVq2hNNPh1GjLDIydy5svbXvqiRMUTgCJwlUFND04Ykn4I8/YM89LROSFkUh\nZ3FHPXdPPd+8gQNh993h+++DveG9z9dz2TwNcJIoBQV2CgF09E1E0iU72+7SUKUKPPIIPP+874ok\nTBrgJBS+MhP/+Q98/LHl3jp29FKCN8oGuaeeu6eeZ7bzznDOObZ92mnw228V/5rKwEWTBjhJlKL7\nnvboYVegioikTd++FiH58UdbRkmSKQrrwLmgdeBS4Icf7HZZ+fnwz39CgwZb/pyw+V4fSoKhdeAk\nkyju519/DX36wNq18MwzWk4pbuKyDpxIIEaNgvXr4dBDozG8iYj48pe/wHnn2fYZZ8Cvv/qtR4Kn\nAU5C4TozsW4djBxp22m472lJlA1yTz13Tz0vvT59oFUr+PlnOL+khbhKSRm4aNIAJ4kwbRr89BPk\n5ECbNr6rERHxr1IlGDwYqlWDiRNh6lTfFUmQNMBJKFyvGzR0qL3v1Quy0pLs3IjWx3JPPXdPPS+b\nxo2LL2Q46yxYvLjsX0PrwEWTBjiJvQ8/hDffhJo1oUsX39WIiETLiSfCvvvCL78ULzEi8acBTkLh\nMjNRtHRI165Qq5azbxs5yga5p567p56XXdGp1Bo14KmnYPLksn2+MnDRpAFOYu333+Hxx227Z0+/\ntYiIRNWOOxbfXuuccywzLPGmAU5C4Soz8cgjsGoVtG1rFzCkmbJB7qnn7qnn5dejh71WLlliebjS\nLo+qDFw0aYCT2MrPLz59mtalQ0RESisry06l1qxpi/tOmOC7IqkIDXASCheZiRkz4KuvYPvt4ZBD\nQv92kadskHvquXvqecU0bAiXXmrb551nd7DZEmXgokkDnMTWsGH2/oQTIDvbby0iInFx7LHQrp1l\niE8/vfSnUiVa0rJilu6FmjALFkDTpja4Pf88bLON74pKFsV7JErZ6V6okkkc9/OffrILv1assCzx\nKaf4rkg2pHuhSmI98ID91XjEEdEd3kREoqpBA/jb32z7wgth0SK/9UjZaYCTUISZmVi1CsaOtW0t\nHVJM2SD31HP31PPgHH205Yf/+ANOO23zp1KVgYsmDXASOxMnwm+/QYsWsOeevqsREYmnrCy49lqo\nUwdefhnGjfNdkZSFMnASKwUFsM8+MGeOXQ7ftavvijKLYzZGNqUMnGQS9/38xRdtkKtdGz75BJo0\n8V2RKAMnifP22za8bbWV5d9ERKRijjwS2reH5cth4EBdlRoXGuAkFGFlJooW7u3eHapVC+VbxJay\nQe6p5+6p58HLyoKrr7Y/jF99FUaN+vPHlYGLJg1wEhs//QRTptiNmU84wXc1IiLJUa8eXHWVbV92\nmS3VJNGmAU5CEca980aPhnXr4OCDYYcdAv/ysad7RLqnnrunnofniCPgsMNg5UoYMMBuVwi6F2pU\naYCTWFi/Hh580LZ79fJbi4hIUl19NdStC6+/DiNG+K5GMtEAJ6EIOjMxfTp8/z00bgz77x/ol04M\nZYPcU8/dU8/DVbcuXHONbQ8aBF98oQxcVGmAk1gYOtTe9+plGTgREQlHhw7QqZMtmn7KKcWnUiVa\n9KtQQhFkZuKTT+xwfvXq0V/3zSdlg9xTz91Tz9244grYdlt4802YMyfXdzlSAg1wEnn332/vu3Sx\nhSZFRCRcG55Kveoq+Owzv/XIpjTASSiCykz88Qc8+qht6+KFzJQNck89d089d6d9e/vDec2amfTv\nD3l5viuSDWmAk0gbPx5WrLDbZzVt6rsaEZF0ufxyW+D3nXfgnnt8VyMb0r1QJbIKCmC33eDzz+GO\nO+Dww31XVHZxv0eiGN0LVTJJ+n7+xhtw0UV295v334eWLX1XlHy6F6rE2r/+ZcNb/fqgdSRFRPw4\n+GA45hhYswb697d1OcU/DXASiopm4P79b7upMsDxx0N2dsVrSjplg9xTz91Tz92bNWsml10G228P\n770Hd97puyIBDXASMWvWWOaiQwdYtAhatIDevX1XJSKSbrVrw/XX2/bgwfDRR17LEZSBkwj58EM4\n6SRb961SJTj1VDj99HgffUt6NiYtlIGTTNK0n996K0ybBq1bw7vvQpUqvitKJmXgJBby8uyQ/H77\n2fC2004wdiycfXa8hzcRkaS5+GJo0ABmz4bbb/ddTbppgJNQlDYDt3ChrTU0aBCsXQvdu8PEibDX\nXqGWl0jKBrmnnrunnru3Yc9r1YIbb7Ttm2+2QU780AAnXhQUwCOP2KD2xht2y5b77rOVv2vU8F2d\niIhsTtu2cOKJdjXqySfbH9/injJw4tzixZZtmz7dHnfoYINb3bp+6wpDmrIxSaYMnGSSxv181Sq7\nO87338O119rROAmOMnASOc8+C3vsYcNbzZp2KP7OO5M5vImIJFWNGvb6nZVlWbj33vNdUfpogJNQ\nbJyBW74czjjDFoNcvNhujTVpEhx9tL0ASMUpG+Seeu6eeu7e5nq+zz52FC4vz06lrlnjtq600wAn\noXvzTdh7bxgzxi45v/hiGDUKdtjBd2UiIlIR558PjRrBvHm2Ppy4k5ZjH8rAebB2re3QQ4ZAfj7s\nuivccou9T4s0ZmOSSBk4ySTt+/mcOZZrzsqCt96C/ff3XVH8KQMn3sydazvx7bfbFaf9+8P48eka\n3kRE0qBVK1uEPT/fTqWuXu27onTQACeBys+He++F1q1nMmcONGwIDz0EF14IVav6ri7ZlA1yTz13\nTz13rzQ9P+ccaNIEPvvMVhWQ8GmAk8B8+y107AiXXgrr1tkFC5MmWdBVRESSq3p1uOkmuw3ivfda\n9lnCpQycVFhBAUyYYH+B/fGHLQly7bWQm+u7Mv/Sno1JCmXgJBPt58Xuv98WaW/a1O5vXbOm74ri\nSRk4Cd2SJdCzJ/Tta8PbIYfA5Mka3kRE0ujMM2HnneHLL+Gqq3xXk2wa4KTcXnrJFuWdMsUOn197\nrR0633Zb5VR8UM/dU8/dU8/dK0vPq1YtPpU6fDi8/np4daWdBjgps5Ur4bzz4Kij4Mcf7X6mEyfC\nccdpUV4RkbTbfXcYONDiNaecAitW+K4omdLy61YZuID89792ufgXX0B2Npx1li0RUrmy78qiSdmY\nZFAGTjLRfr6pdeugXz87lXreeZaNk9JTBk4Cs3693ffuwANteMvJsaDqwIEa3kRE5M+qVLFTqZUr\nw4gR8NprvitKHg1wskWffWaD2+DBds+7k06Cxx+HFi02/znKqbinnrunnrunnrtX3p7vtpvdoQFg\nwABYtiywkgQNcJJBQQE88ICtsj1rFmy/PYwcaeu8VavmuzoREYm6gQOheXP45hu47DLf1SSLMnBS\nou+/tx3v5ZftcefOcMUVUKeO37riRtmYZFAGTjLRfp7ZF19YHm79elu9oFMn3xVFnzJwUi5PPgl7\n7mnDW506cMcdcPPNGt5ERKTsdt3V1ocDOPVUWLrUbz1JoQFO/uf3321B3p494bff4IADbFHeww8v\n+28AkwkAAAydSURBVNdSTsU99dw99dw99dy9IHrev78tL/Ldd3DJJRWvSTTASaHXXrOjbk88Yfm2\nQYPssu/ttvNdmYiIxF12tq1kUKUKPPwwvPCC74riTxm4lFu9Gq68EoYOtce77w633AJ/+YvfupJC\n2ZhkUAZOMtF+Xnrjx8OwYdCwIXz8MdSr57uiaFIGTjL64APYd18b3ipVsozCww9reBMRkXD07Wtn\ne3780Q4Y/OMfkJ/vu6p40gCXQmvWwG23WcZt3jxo3NgGtzPPtMPcQVBOxT313D313D313L0ge165\nsl0Yt9desHixrQ938MF2QEHKRgNcivzyi11N2qQJXHON3erkxBNhwgS7Kb2IiEjYGjaEceNscfht\ntoG334a2beHss2HJEt/VxYcycCkwfz78/e/w6KOWeQO7rPvii6FdO7+1JZ2yMcmgDJxkov28/JYv\ntwXiJ0+2U6nbbmtH6E49Nd23aVQGLsUKCuzK0qOPtpzB6NE2vB10kO0sEyZoeBMREb9q14bLL7cV\nEPbZx47AnXkm7L8/vPuu7+qiTQNcwqxda0faWreGww6D55+HqlWhe3eYMsWu/mnbFrJCPvaqnIp7\n6rl76rl76rl7Lnq+667w0EOWz65fH95/33Lap55qWTnZlAa4hFiyBG6/3a4g7d8fPvzQsgVnn21D\n3DXXQE6O7ypFRERKlpVlt9maOtV+j2Vn2wV2zZrZuqTr1/uuMFqUgYu5L76Ae++1H/JVq+zfdt4Z\nTj4ZjjxSN533TdmYZFAGTjLRfh6OhQvhzjuLT6XutRc88AAccojXspwoTQYuoEUjxKWCAvjPf+Du\nu+Gf/7THYJmB/v3tsHPYp0hFRETClJMDI0bAzJn2++6jj+Cvf4WTTrLHO+zgu0K/dAo1Rtats4sP\n2raFQw+F6dPtEPMxx8DEifaXSbt20RjelFNxTz13Tz13Tz13z2fPs7KgQwd46ik4/XS7FdcTT0Dz\n5nDPPfZ7Ma00wMXA77/DXXfZqdGTTrJw59Zb2w/zs8/CDTdYAFRERCSJqle3TPeTT9op1OXL7erV\nvfaCV1/1XZ0fEThW40QsM3ALFsB998HYsbBihf1bkyaWb+vc2X6gJdqUjUkGZeAkE+3n7v3nP5aP\n+/57e3zCCbbeaePGfusKitaBi6m33oLjj7ejasOG2fDWpo0Nc1Om2JIgGt5ERCStDjnEjsade65d\nrDdlCuy2my1DsmaN7+rc0AAXEevX2w/jAQfYYrtTp9oN5rt0sfP9o0bZD2ylmPwfU07FPfXcPfXc\nPfXcvaj2vFo1WyfuqacsJ7dqlS2Ztcce8OKLvqsLn65C9eyPP+wU6b33wrff2r/VqWNH4Hr3tgUN\nRUREpGQNG1pO/O237bTql19azOiYY2DoUMuPJ5EycJ58842dEh0zBpYts39r1Aj69bPbX9Wo4bc+\nCYayMcmgDJxkov08OopWaxg92o7IVasGgwbBlVfG6/eqMnAR9N//Qq9esMsudtRt2TK77dU999hp\n0xNOiNcPmYiISFRUqWLroU6dand1WLMGbroJWrSAZ54pXjc1CTTAOZCXB9OmWbZt//1h8mT7906d\n7L6lY8ZA+/bxybeVRlQzE0mmnrunnrunnrsXx55vt51d0PDQQ3bA5Jtv4Ljj7NTq55/7ri4YysCF\naPlyu8XV3/9utwQBqFULevSwo3ANG3otT0REJNH23dcuBJwyBR58EF56CfbcEy69FK691n4nx5Uy\ncCFYtAiGD7crR5cutX/bcUdbhLdbN6hZ01kp4pmyMcmgDJxkov08Hn791X43P/usPd5xR8uin3BC\nNO5gtCFl4Bz75hvo29eueLnzThve9trLtqdNs6tKNbyJiIi4V68eDB5sZ8aaN7dFgHv2hI4dYe5c\n39WVnQa4AFWtaodp8/PtB+KRR+wH5bDDoHJl39W5FcfMRNyp5+6p5+6p5+4lred77WX586uusmW7\nXnsNWrWy06p//OG7utLTABeghg3h7rttcBsyxM6zi4iISLRUrmzrrU6bZnc3ysuzlSGaN4fHHovH\n1aoRO+sbGmcZuIUL7QqXbbd18u0k4pSNSQZl4CQT7efxN28e3HEHfPKJPT7oIHjgATsy54MycCIi\nIiJbsPvuFnm64QaoWxfefNOuYD3tNJg+HX77zXeFm9IAJ6FIWmYiDtRz99Rz99Rz99LS80qV7PZb\n06bZUl8A48bBscfaBRB77w0XXQRPP21XtPqmdeBERERECtWpA3/7m63Z+vLLdgelefPgo4/sbdgw\ne94ee0CHDpCbC4ceaosHu6QMXMCUgZMNKRuTDMrASSbaz5Nv9Wr4+GN47z0b6D75xO67uqHddy8e\n6Nq3h+23L//3K00GTkfgRERERDKoXh3atrW3s86ye6wWDXSzZtn2vHn29sAD9jm77WbDXIcONtAF\nffclZeAkFGnJTESJeu6eeu6eeu6eer6patWgTRs480y73+rMmTB6NJx9tv17tWrw6ad2R6bevWGH\nHWyJkjPPhAkTbBHhitIROBEREZEKqFoV9tnH3k4/3U6vfvIJvP++nXL98EOLV33+uQ16AE2b2pG5\nww6z940ale17KgMXMGXgZEPKxiSDMnCSifZz2ZL16+12XRsOdKtW/fk5O+9cPND1768MnIiIiIhX\n2dm2DMnee8OAATbQzZ9fnKGbMwcWLLC3Rx4p3ddUBk5CocyEe+q5e+q5e+q5e+p58LKz7Xabp5wC\nw4fDq6/C+PG2ztxBB5Xua0RlgDsKmA98DgzazHOGFX58DrBPGT9XHPv009m+S0gd9dw99dw99dw9\n9Tx82dnQsiWcfHLxOnNbEoUBrjJwPzaItQT6ALtv9JwuwK5AM+BM4MEyfK54sHz5775LSB313D31\n3D313D31PJqiMMDtD3wBLATWAROBYzd6TjfgH4Xb7wB1gYal/FwRERGRRInCRQw7Ad9u8HgRcEAp\nnrMTsGMpPteprCxbsfmXX3xW4d+CBQtT34Mirvqgnodv4/6q5+5FtedRrCkoUe152kVhgCvttdcV\nWfLky6ysrKYV+Hwph1de+ceWn5QGR7lbrUc9D1kJ/y/Vc/ci2XOH+7kPkex5sn25pSdEYYD7Dmi8\nwePG2JG0TM9pVPicKqX4XLD8nIiIiIgEJBubNHOAqsBsSr6I4fnC7XbA22X4XBEREREJQWfgU+yC\nhKsK/+2swrci9xd+fA6w7xY+V0RERERERERERFy7GTt6Nxv4F3/Ozkk47gLmYX2fCmztt5xUOBH4\nBMjjz0eqJXhaRNytccBPwEe+C0mRxsBr2GvKx8CFfstJherYcmmzgbnA7X7LiYY6G2xfAIzxVUiK\nHEHxWoN3FL5JuFoAzbEXXQ1w4amMxTZysIuplL8N31+xu/BogHOnIdC6cLs2FlfSz3n4aha+z8Yy\n/4eU9KQoLOTryrINtmsDWtUmfDOA/MLtd7CrhyVc84HPfBeRAlpE3L3/A37zXUTK/Ij9cQKwHDuj\nsqO/clJjZeH7qtgfi0tKelKaBjiAW4FvgFPQ0SDXTqX4SmKRuNvc4uIiSZWDHQF9x3MdaVAJG5x/\nws6mzN3ck5JkBnZ4feO3Ywo/fg3QBHgEuNdDfUm0pZ6D9X0t8ITz6pKpND2XcJV2AXKRJKgNTAEu\nwo7ESbjysVPXjYBDgdySnhSFhXyDdEQpn/cEOhoUlC31fAC2jl/H8EtJjdL+nEt4SrMAuUgSVAGe\nAh4DnvZcS9osBZ4D2gIz/ZbiV7MNti8AHvVVSIochV29VN93ISn0GtDGdxEJpkXE/chBFzG4lAWM\nR2esXKoP1C3crgG8jg6AMAXb8Wdjf01s77ecVPgc+Br4oPDtAb/lpEJ3LJu1Cgsgv+C3nETTIuJu\nTQC+5//bu2OVrqMwjsMfjIamriBoaDVoaGuMahGhO2iKINpsK8ghcJK6kBwFr8BJohtwcIwuIEho\nOIJ/BVMaPJbPs513+nL48eNwDuc99bPxjb+YG+daeNQ4zvva8X/82dRE/7/laq8x59+qtblxAAAA\nAAAAAAAAAAAAAAAAAAAAAADg73ys9hsNTr903DX901Ftt3o9JxoAAGd50lis3V+oPa9ezYkDAMB5\nlhrPxH0+Gj+o3syLAwDARXyoflT3qvXJWQAAuIC71WG1Vd2YGwW4bpZmBwD4Rx00jlFvNRZyAABc\nce+qt9Wv6s7kLAAAnONl9bC6WX2v3s+NAwDAn6xUqwvjzUZfOAAArqCn1dqp2nKjJ9zjy48DAMBZ\nVqvtxmWFnYX67cZrDIeNXbiNy48GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJzwG3AIgaEqxTDQAAAA\nAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f31588ee690>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "GraficaHistogramaNoParam(Serie)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Caso con menos datos \n", "\n", "En un caso con menor cantida dde datos se espera tener una mayor diferencia entre ambas medidas, de ahí si inestabilidad:" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "6.24550468821\n", "6.24046491251\n", "0.00197201571583\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python2.7/dist-packages/ipykernel/__main__.py:1: DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", " if __name__ == '__main__':\n" ] } ], "source": [ "Serie = np.random.uniform(2.5,10,2e5)\n", "print Serie.mean()\n", "print np.median(Serie)\n", "from scipy import stats as st\n", "print st.skew(Serie)\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Ejercicio para observar robustez en ambas medidas\n", "\n", "En el siguiente ejercicio generamos 200 veces series aleatorias cada una con 25 entradas, \n", "luego vamos a comprar como son las diferencias entre las medias y las medianas encontradas para cada uno de los casos." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true, "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "medianas = np.zeros(20000)\n", "medias=np.zeros(20000)\n", "for i in range(20000):\n", " Serie = np.random.normal(0,1,25)\n", " medias[i] = Serie.mean()\n", " medianas[i]=np.median(Serie)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false, "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "def ComparaHistogramas(Vec1,Vec2,bins=15):\n", " # Genera el histograma de valores\n", " h1,b1 = np.histogram(Vec1,bins=bins)\n", " h1 = h1.astype(float); h1 = h1 / h1.sum()\n", " b1 = (b1[1:]+b1[:-1])/2.0\n", " h2,b2 = np.histogram(Vec2,bins=bins)\n", " h2 = h2.astype(float); h2 = h2 / h2.sum()\n", " b2 = (b2[1:]+b2[:-1])/2.0\n", " #Genera la figura \n", " fig=pl.figure(figsize=(10,8))\n", " ax=fig.add_subplot(111)\n", " ax.plot(b1,h1,'b',lw=2,label='Vec 1')\n", " ax.plot(b2,h2,'r',lw=2,label='Vec 2')\n", " ax.fill_between(b1,h1,color='b',alpha=0.2)\n", " ax.fill_between(b2,h2,color='r',alpha=0.2)\n", " ax.set_xlabel('$X$',size=15)\n", " ax.set_ylabel('$f(x)$',size=15)\n", " ax.set_xlim(-1,1)\n", " ax.set_ylim(0,h1.max()+0.05)\n", " ax.grid(True)\n", " ax.legend(loc=0)\n", " # Grafica las localizaciones\n", " pl.show()\n", " return h1,h2" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHuCAYAAAD5vvpJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcVNWd//9XVe97NzvIJiD70iAiiyiLIOJCzGQkLgGS\nzMQkJiHJxMRkMtHML4kxexyzmK8rKCqLCAKCoDSLsoqICigubMpOA129d1f9/jhd3VjQ3VVd91bd\nqno/Hw8eVdV97+XTeDl8vOdzPgdERERERERERERERERERERERERERERERERERERERJzCFe0AImHI\nkCG+t99+O9phiIiIiATjbaAw1JMSIqkDfD6fL9oxSIy4//77uf/++6MdhsQA3SsSCt0vEiyXywUt\nyNHc1ociEtv2798f7RAkRuhekVDofhG7KakTERERiQNK6kQCzJo1K9ohSIzQvSKh0P0idlNNnYiI\niIiDqKZOxCJFRUXRDkFihO4VCUWi3C+tWrXC5XLpVxC/WrVqZemffbKlVxMREZGEVlxcjGbHglP3\nRM6661l6NefS9KuIiEgEuFwuJXVBauzPStOvIiIiIglMSZ1IgESpe5Hw6V6RUOh+EbspqRMRERGJ\nA6qpExEREcuopi54qqkTERERaYEpU6Zw3333XfD1JUuW0LFjR7xeryW/z/z58xk9ejRZWVmMHz/e\nkmsGQ0mdSADVvUiwdK9IKHS/RN+sWbN4+umnL/j63LlzufPOO3G7rUmLWrduzQ9/+EPuvfdeS64X\nLCV1IiIikhCmTZvGqVOn2LBhQ/3XiouLWb58OTNmzMDn8/Hb3/6WXr160aZNG6ZPn05xcXH9sRs3\nbmT06NEUFBTQtWtXnnrqqYv+PhMnTuRLX/oSHTt2tP1nOp+SOpEA48aNi3YIEiN0r0godL8YLpd1\nv0KVkZHBrbfeypw5c+q/Nn/+fPr168egQYN46KGHWLp0KevXr+fIkSMUFBRw9913A3DgwAGmTp3K\n7NmzOXnyJDt37qSwsNCqPxZLKKkTERGRhDFz5kwWLlxIVVUVAHPmzGHmzJkA/POf/+RXv/oVnTp1\nIiUlhfvuu4+FCxdSW1vLvHnzmDRpEtOnTycpKYlWrVoxZMiQaP4oF3BKUjcF2AvsA35yke/fAbwN\n7AJeBwaf9739dV9/C9hqa5SSEFT3IsHSvSKh0P1i+HzW/WqJMWPG0KZNGxYvXsxHH33Etm3buP32\n2wHzNO6WW26hoKCAgoIC+vfvT3JyMseOHePw4cP06NHDwj8J6zlh79ck4GHgWuBTYBuwFNhz3jEf\nA1cDZzEJ4L+AkXXf8wHjgNORCVdERERi2YwZM5gzZw579+5lypQptG3bFoCuXbvyxBNPMGrUqAvO\n6dKlC1u3hvbsyOq9XZvjhCd1I4APMU/cqoHngGkBx2zCJHQAW4DOAd9PlH57EgGqe5Fg6V6RUOh+\ncY4ZM2awevVqHn300fqpV4BvfvOb/OxnP+PgwYMAnDhxgqVLlwJwxx13sGbNGhYsWEBNTQ2nTp3i\n7bffvuj1vV4vFRUVVFdX4/V6qayspLq62vafywlJ3SXAofM+H677WmO+Dqw477MPWANsB/7T8uhE\nREQkrnTr1o0xY8ZQVlbGzTffXP/12bNnc/PNNzN58mRyc3MZNWpU/dO5Ll26sGLFCv74xz/SunVr\nhg4dyq5duy56/Tlz5pCZmcm3v/1tNmzYQEZGBnfddZftP5cTnnD9G2ZK1Z+Q3QlcCXz3IseOB/4G\njAH8a4w7AkeAtsDquvM2BJznmzlzJt27dwcgPz+fwsLC+v9r8tc56LM+A/zlL3/R/aHPQX32v3dK\nPPrs7M+Jcr+MHz9eO0oEyeVysXbtWsD82e3fvx/A3yol5BzNCUndSOB+TGIH8FPACzwYcNxg4IW6\n4z5s5Fr3AR7gjwFf1zZhErSioqL6AUqkKbpXJBSJcr9om7DgWb1NmBOSumTgfWAi8BlmBettfH6h\nRFfgNcxTvM3nfT0Ts9CiBMgCXgF+Wfd6PiV1IiIiEaCkLnhWJ3VOWP1aA3wHWIVJ0B7DJHT+yedH\ngF8ABcA/6r5WjVlg0QHz9A7Mz/IMFyZ0IiIiInHPCU/qIkFP6iRoiTJFIuHTvSKhSJT7RU/qgmf1\nkzonrH4VERERkTDpSZ2IiIhYRk/qgqcndSIiIiJyASV1IgHO7yUl0hTdKxIK3S9iNyV1IiIiInFA\nSZ1IgERYnSbW0L0iodD9En1Tpkzhvvvuu+DrS5YsoWPHjni9Xkt+nx/96Ef07t2b3Nxc+vXrx9y5\ncy25bnOU1ImIiEhCmDVrFk8//fQFX587dy533nknbrc1aVF2djbLli3j3LlzPPXUU8yePZtNmzZZ\ncu2mKKkTCaC6FwmW7hUJhe6X6Js2bRqnTp1iw4aGLeKLi4tZvnw5M2bMwOfz8dvf/pZevXrRpk0b\npk+fTnFxcf2xGzduZPTo0RQUFNC1a1f/Hq0XuP/+++nduzcAI0aMYOzYsUrqREREJM64XNb9ClFG\nRga33norc+bMqf/a/Pnz6devH4MGDeKhhx5i6dKlrF+/niNHjlBQUMDdd98NwIEDB5g6dSqzZ8/m\n5MmT7Ny5k8LCwmZ/z/LycrZt28bAgQNDjjdU6lMnIiIilmm2T10LkrFGteDf9tdff50bb7yRY8eO\nkZqaypgxY7j11luZPXs2/fr1429/+xsTJkwA4MiRI3Tr1o3y8nJ+97vfsX37dhYtWhTS7zdz5kxO\nnDjBihUrLvhePO79KiIiIokiyg9ZxowZQ5s2bVi8eDHDhw9n27ZtvPjii4B5GnfLLbd8rrYuOTmZ\nY8eOcfjwYXr06BHS73XPPfewe/du1q5da+nP0BhNv4oEUN2LBEv3ioRC94tzzJgxgzlz5vD0008z\nZcoU2rZtC0DXrl1ZuXIlxcXF9b/Kysro1KkTXbp04aOPPgr697jvvvtYtWoVr7zyCtnZ2Xb9KJ+j\npE5EREQSyowZM1i9ejWPPvooM2fOrP/6N7/5TX72s59x8OBBAE6cOMHSpUsBuOOOO1izZg0LFiyg\npqaGU6dO8fbbb1/0+g888ADPPvssq1evpqCgwP4fqI5q6kRERMQysbL36/jx49m1axdHjx4lJSUF\nAJ/Px1/+8hceeeQRPvvsM9q1a8eXv/xlfvWrXwFm9euPfvQj9uzZQ15eHr/+9a/5yle+csG13W43\naWlpJCc3VLn993//N/fee+/njrO6pk5JnYiIiFgmVpI6J7A6qdP0q0gA1b1IsHSvSCh0v4jdlNSJ\niIiIxAFNv4qIiIhlNP0aPE2/ioiIiMgFlNSJBFDdiwRL94qEQveL2E1JnYiIiEgcUE2diIiIWKZV\nq1YUFxdHO4yYUFBQwOnTpy/4uvrUNU1JnYiIiMQELZQQsYjqXiRYulckFLpfxG5K6kRERETigKZf\nRURERBxE068iIiIiCUxJnUgA1b1IsHSvSCh0v4jdlNSJiIiIxAHV1ImIiIg4iGrqRERERBKYkjqR\nAKp7kWDpXpFQ6H4RuympExEREYkDqqkTERERcRDV1ImIiIgkMCV1IgFU9yLB0r0iodD9InZTUici\nIiISB1RTJyIiIuIgqqkTERERSWBK6kQCqO5FgqV7RUKh+0XspqROREREJA6opk5ERETEQVRTJyIi\nIpLAlNSJBFDdiwRL94qEQveL2E1JnYiIiEgcUE2diIiIiIOopk5EREQkgSmpEwmguhcJlu4VCYXu\nF7GbkjoRERGROKCaOhEREREHUU2diIiISAJTUicSQHUvEizdKxIK3S9iNyV1IiIiInFANXUiIiIi\nDqKaOhEREZEEpqROJIDqXiRYulckFLpfxG5K6kRERETigGrqRERaaMMGWLsW7rkHMjKiHY2IxIuW\n1tQlWx+KiEj827ABJk2Cyko4cgT+8Y9oRyQiiU7TryIBVPcizXn3XbjpJqisLALgn/+E5cujG5M4\nn8YWsZuSOhGREBw6BJMnw9mzMGQI3H23+fpXvwrHj0c3NhFJbKqpExEJ0unTMHo0vP++Sej+/ndI\nSYFvfhN27ICpU2HZMnAlysgqIrZQnzoRERuVl8ONN5qE7tJL4c9/hrQ0cLvhf/8XsrNhxQp45JFo\nRyoiiUpJnUgA1b1IoNpa+PKXYdMmaNsWHn4YcnNh+/YiADp0gJ/9zBz7gx/A3r3Ri1WcS2OL2E1J\nnYhIE3w++Na3YOlS8zTu4YehffsLj5s8Ga6/Hioq4LbboKoq8rGKSGJLlMoP1dSJSIv87//CffdB\naqqpoSssbPxYjwemT4djx+Dee+GBByIXp4jEj5bW1CmpExFpxKOPwn/+p6mb+93vYNy45s/ZuRO+\n8Q3zhK+oCK6+2u4oRSTeaKGEiEVU9yIAr8w5yre+UQvAj3988YTOX1N3vsJCmDnTJHV33GFan4iA\nxhaxn5I6EZEA7z/wApNndmSPrw9zx/yTf7+pIqTz77oL+vaFw4dNPZ6ISCRo+lVE5Dx79/ioGDSc\nwtod9V+rzm/L8du/z4l//za1OflBXefAAbj9drON2Lx5ZvGEiEgwVFPXNCV1ItKszz6D7xRu5IUT\nYzmT1JqSr3+fti/PIf3QPgBqM7M58cW7OH77D6hud0mz13vhBfjNb0z7k127oFs3u38CEYkHqqkT\nsYjqXhLTmTOmLcltJ/4KQPmUL+AZez2f/HoeB3/8MKX9LiepzEOHp//IwJsvpdsvv8quZXOavOYt\nt8DYsXDuHHzlK6bfnSQujS1iNyV1IpLwKith2jQ4995BbmExXncSnuu+ZL7pclE6aCQHf/YIn/xy\nDueumICrtoY2Lz1J9/tn0vOH08h6Z/NFr+tywS9+AQUFsGED/P73EfyhRCThaPpVRBKa1wu33gqL\nFsFf03/M9yp+z9mRk/ns7t80ek7K0YO0Xj6HvI3LcddUA1BSeBVHZ/2Uc2Ouv2Dz19dfh9mzzT6x\nmzfDsGG2/kgiEuNUU9c0JXUicgGfD773PbNLRJuMUg67OpNWdoZP7n+Sip4Dmz0/6cxJWq18loLX\nFpJUXgpAeY8BHJ11L6cnT4fklPpjH3wQFiyA3r3hrbcgM9O2H0tEYpxq6kQsorqXxPHggyahS0mB\nRbfMJa3sDOU9BgSV0AFsOrKfE1/+Lh/+dTnHpn+PmrzWZHz8Hpf+4isMurkHbZ97CHddsjd7tlko\n8cEH8KMf2fcziXNpbBG7OSWpmwLsBfYBP7nI9+8A3gZ2Aa8Dg0M4V0TkAnPmwE9/amZK//eXPq54\n/S8AnJ5ye8jX8mZkc/rGGXz455f47Os/p7J9F1KPH6brH2Yz6IaudHzkPrIqTvKb30ByMvzjH7B8\nudU/kYgkOidMvyYB7wPXAp8C24DbgD3nHTMK2A2cxSRx9wMjgzwXNP0qIudZuRJuuglqauC//gu+\ncekr9P7OdVTnt+HDPy8zmVc4vF5ydqyj9dInyPhkNwC1aRmcmvZ1/p75I375ZDfatoV334V27Sz4\ngUQkrsTy9OsI4ENgP1ANPAdMCzhmEyahA9gCdA7hXBGRetu2wb/9m0noZswwTYHbP/NnAIqvvTX8\nhA7A7aZk+Hj2//IpDvzsETyDRpJUWU67+Q9z35yeLC+4gw4ndvHVr5q6PhERKzghqbsEOHTe58N1\nX2vM14EVLTxXpFmqe4lf+/bB1KlQVmZev/tdSDvwAXmbVuJNSeXMhC+GdL2te7Y3fYDLRVm/yzn0\n44f5+NfPcnbkdYCPqcXz2MUQ7l4xlaX/tU6ZXYLQ2CJ2s+B/ScMWymg2HvgaMCbUc2fNmkX37t0B\nyM/Pp7CwkHF1O3T7/6Lpsz4D7Ny501Hx6LM1n/v2HcekSXDyZBH9+sEvfjEOlwv2PfQTTgKFo66j\nNie/PlEb0W84gKWfP7v71ywbdjU5W1Zz/c7NTK19maI/v8yqxX247k8PwLRpFK1f74g/L33WZ32O\n3Gf/+/379xMOJ9TUjcTUyE2p+/xTwAs8GHDcYOCFuuM+DPFc1dSJJLCSErj6ati5E/r2hX/9y7QU\ncXvOMvj6S0gqL+Xj3zxHZZdeEYspqeQM23+ziusOP0ZrTpsvXnYZ/OQn8NWvgtsdsVhExFliuaZu\nO3AZ0B1IBaYDSwOO6YpJ6O6kIaEL9lwRSWBVVWa7rp074ZJL4KGHGnrEtVnyOEnlpZT2HRbRhA6g\nNiefXv9zGyMK9jGbv3Ams5OZH/6P/zC9VkREQuSEpK4G+A6wCrPC9XnM6tW76n4B/AIoAP4BvAVs\nbeZckRY7/3G4xDavF2bNgldfhfx8+NvfoFWrum/W1tLuObPP6+nr72jR9ZutqWtGTqaX++8+wcOu\n79Gu7BM+/ve6rkxz54Z1XXEmjS1iNyfU1AG8XPfrfI+c9/4/6n4Fe66ICPfcA88+CxkZ8H//B507\nN3wvb8My0o4coKpNJzyFV0UtxuF9PHz9xqP8v5c6Mmndz/kw82Fce/bARx9Bz55Ri0tEYo8TntSJ\nOIq/gFVi2x//CH/6EyQlwe9/D/36ff777ef9CYDT130Z3Ekt+j38iyHC9Z0vfkb/7qV8fDybTTmT\nzReXqpIk3mhsEbspqRORuPPssw1bcd1/P4wc+fnvZ+zbRc6O9XjTMjh79c0Rjy9QSjL84dufkJ5a\ny0PHbjVfXLw4ukGJSMxRUicSQHUvse3VV2HmTPP+e9+D66+/8Jh288yWYGeuvglvZnaLf69wa+rO\n171jJT+54zArmUI1yfjeeANOn7bs+hJ9GlvEbkrqRCRuvPUWfOELUF1tdor4ylcuPCa5+AStVs7D\n53JxevKXIx9kE24df5KhhbCOa3DV1uJdtqL5k0RE6iipEwmgupfY9MknMGUKeDwwaRL84AfgukiX\npzYvPIK7upLSQaOo7tA1rN/Tqpo6P5cLfvWfB1iTfiMA7/9uiaXXl+jS2CJ2U1InIjHvxAmTyB0/\nDsOHwy9/2Ujv3ppq2s7/GwCnp9we2SCD1Cq3hkFfGQJA5/dW8tbmyihHJCKxQkmdSADVvcSW0lKz\nj+tHH5kNGf7wB0hNvfixBWsWknrqKJUdu1M68Mqwf28ra+rON+zqXA5k9SMHDw9/qYiyMlt+G4kw\njS1iNyV1IhKzqqvhS1+C7duhQwfTiy67iXUP9W1Mptx28blZB0kdb7a4Hvbp0vqVvCIiTXH2qGYd\n7f0qEmd8PrNbxJw5kJcHjz8O3bo1fnzmu1voN2sktZk57HvoZXxp6RGLtSXSP97NpffN4BCd6cpB\nli93MXVqtKMSkUiI5b1fRURC9t//bRK6tDT461+bTugA2j/zZwCKx33B8QkdQEX3vtTktaYLhxnK\nW8yaZWoGRUQao6ROJIDqXpzv//4PHnjALIZ48EEYOLDp41OOf0rBa4vwud0UT5puWRx21dQB4HZT\nMuxqAO7qsIQTJ+CrXzVPKCU2aWwRuympE5GYsnAhzJ5t3v/853BVENu2tl3wd1y1NZQMu4aaNh3s\nDdBCJZePA+DLGUvIyoIVK+Bf/4puTCLiXKqpE5GYsW4dTJ4MVVXwrW/B17/e/DmuygoGT+1M8tlT\n7P/5o5T3KbQ/UIu4qirp/a2JuKsqePieA3z3911JT4edO6FPn2hHJyJ2UU2diMS1d96Bm282Cd2X\nvgRf+1pw57VaOY/ks6eo6NaH8t5D7A3SYr7UNEoHmY1rb3a9xJQpUFFhdsuoqopycCLiOErqRAKo\n7sV5jh2D666Dc+dg/Hi4554gO5L4fLSfZxZInJpyu+VtTGytqatTMnwcAPlFi7n3Xmjf3myHdv/9\ntv/WYjGNLWI3JXUi4niPPw5HjpgFEb/6FSQlBXde9pvryPjoXWpyCyi5cpK9QdrEM+QqfC432TvW\nk8tZfvUrs0Dkt7+FDRuiHZ2IOImSOpEA2p/ReRYsMK+zZpkWJsHyP6Urnvjv+FIa2WYiDFbv/Xox\ntTn5lPcaiLummrxNqxg6FGbMMKtg77gDzp61PQSxiMYWsZuSOhFxtIMHzXRjWhqMHBn8eamffkLe\nhpfwJqdQPPHf7AswAkqGTwAgv+hFAL75TejbFw4dgm9/O5qRiYiTKKkTCaC6F2dZvNi8jh4N6SH0\nDG73/EO4fD7OjZhEbV5rW2KLRE0dUN+vLvf1FVBTTXIy/PrXJtGdNw+eey4iYUiYNLaI3ZTUiYij\n+adeJ04M/hx3aQltXnwMgOLrb7chqsiq7tCVyg5dSfacJXvnRsDsoPHDH5rv33WXeaIpIolNSZ1I\nANW9OMexY/DGG5CSElyTYb/Wy54iqayEsl6Dqeje17b4IlFT5+dvROyfggX44hdh7FizKvjOO6G2\nNmLhSAtobBG7KakTEcdassQsCBg+HLKzgzzJ66Xds38B4HQcPKXz8wy7BoD8dUvq9wpzueAXv4CC\nArMS9g9/iGaEIhJtSupEAqjuxTn8U6/XXhv8OblvrCT98EdUt2pX/3TLLpGqqQMo7zWQmux80o4c\nIP2j9+q/XlAA991n3v/P/8COHRELSUKksUXspqRORBzpzBkoKjI92a65Jvjz/G1MTk+aDknJ9gQX\nDe4kPEPHApC/fsnnvnXVVWaXjepqs9tEWVk0AhSRaFNSJxJAdS/O8NJLUFMDhYWQnx/cOemf7CF3\n6xq8KWmcGfcFewMksjV1ACWX103Brl18wfe+/32zeOKDD8yOG+I8GlvEbkrqRMSRWjL12m6eqaU7\nO2Yq3uw8G6KKrtIBV+JNSSVrz5sknzzyue+lp5s2J8nJ8Pe/w4oVUQpSRKJGSZ1IANW9RF9pKaxe\nbd4H+3Aj6VwxrVbMBeD0lNvsCSxAJGvqAHzpGZT1vwKA/A3LLvh+377wrW+Z99/6Fni9kYxOmqOx\nReympE5EHGflSqiogP79oV274M5p8+L/I6myHM+AEVRd0sPeAKOoZPh4APLXvnDR7995p/kzO3gQ\n1q2LZGQiEm1K6kQCqO4l+kKeeq2pod1z/wfA6SmRa2MS6Zo6gJJC07AvZ9ta3OWlF3w/KQluusm8\nf/zxSEYmzdHYInZTUicijlJZCcuXm/cTJgR3Tv66JaQeP0xV+y6UDh5tX3AOUJvfhvJL++OuriRn\ny+qLHuNP6hYtgpKSCAYnIlGlpE4kgOpeouvVV8HjgZ49oXPn4M5pP+9PAJy+7sumB0qERLqmzq9k\n+Djg4qtgwfy5DRkC5eUNTz0l+jS2iN2U1ImIo4S612vG3rfIfvsNatMzOXvVjfYF5iAl/t0lNi5v\ndG+wm282r489FqmoRCTalNSJBFDdS/TU1MDSpeZ9sEldu7pmw2eumYY3I8umyC4uGjV1AFWX9KCq\nTUeSz54i653NFz3m2mshLc3snfvhhxEOUC5KY4vYTUmdiDjGhg1w+jR06QI9gljAmnzqGK1eeR6f\ny0Xx5On2B+gULlf9Fmj565Zc9JCsrIbE+KmnIhSXiESVkjqRAKp7iZ5Fi8zrhAlms/rmtF30D9w1\nVXgKr6K6XZAFeBaKVk0dgMe/u0TRi40e45+CffJJ9axzAo0tYjcldSLiCF7v55O65riqKmm74B8A\nnJ5yh42ROVNZ70JqM3NIP7SPtP3vX/SYYcOgfXs4fNjsoysi8U1JnUgA1b1Ex9atcPSoaZzbv3/z\nxxesnk9K8XEqOvekrN/l9gd4EdGqqQMgKRnPkDEA5G946aKHuN3qWeckGlvEbkrqRMQR/E/pxo8P\nYurV56N93QKJ09fdFtxcbRyqr6trZHcJgBvrFgQvWgTnzkUgKBGJGiV1IgFU9xJ5Pl9DUhfMqtes\nt98g8/23qM3K5dzoKfYG14Ro1tQBlA4eiS8pmax3t5BcfOKix/h71lVUwMKFEQ5QPkdji9hNSZ2I\nRN2uXfDJJ5CfbxKQ5vif0hVP+CK+1HSbo3Mub0Y2pX2H4fJ6yX19RaPHTZtmXtWzTiS+KakTCaC6\nl8jzP6UbN87sXdqUlKOHyC96EZ87ieJrb7U9tqZEtaaujmf4eAAKXmt8CnbiRPWscwKNLWI3JXUi\nEnWhTL22m/8wLm8t566YQE2rdvYGFgNKho4FIGfLalyVFRc9Rj3rRBKDkjqRAKp7iawPPoDdu03i\nMbyZB1+uijLaLP4X4Iw2JtGuqQOoad2Bii6XkVRZTs621xo9Tj3rok9ji9hNSZ2IRJX/Kd3VV0NK\nStPHtl7xNMklZyi/tD8VvQbaH1yMKKmbgs0vWtzoMcOGQYcOpmfd2rWRikxEIklJnUgA1b1Eln9F\nZrNTrz4f7eb9BYDT199ub1BBckJNHUDJsKuBun51jTyGU8+66NPYInZTUiciUXPwIOzYYYr4R45s\n+ticra+SsX8PNXmtOXfFtZEJMEZUdutDdUE7Uk4dI3PPm40ed8MN5vWFF9SzTiQeKakTCaC6l8hZ\nXDdbOGoUpDfTmaS+2fCkWyE52ebIguOEmjoAXK6Gp3XrGt8LtnNnKCw0PesWLIhUcOKnsUXspqRO\nRKLGn1hc28yDt7SD+8h942W8ySmcGf9F+wOLQR7/7hJFjSd1oJ51IvFMSZ1IANW9RMaxY6ZvWkoK\nXHVV08e2e+4hXD4f50ZNoTa3IDIBBsEpNXUAZX2HUZueScbHu0n99JNGj5s40TwV3bRJPesiTWOL\n2E1JnYhExdKlZnuw4cMhO7vx49yes7R+6QkATk9xxgIJJ/KlpFI6aBQA+euXNnpcZiZMmGDeP/lk\nBAITkYhRUicSQHUvkTF/vnltbuq1zdInSCovpbTPUCq7XmZ/YCFwTE1dnRL/FOzaxlubgHrWRYvG\nFrGbkjoRibgzZ6CoyLTZuOaaJg6sraXdc38FnNFs2Ok8Q0bjc7vJ3rmRpHPFjR7n71n36afqWScS\nT5TUiQRQ3Yv9li2DmhqzEjM/v/HjcjetIu2z/VS16Yhn2NjIBRgkJ9XUAXiz8yi7bAguby25b7zc\n6HHqWRcdGlvEbkrqRCTi/Ktem2s4nLdhGQBnx94E7iSbo4oP9btLrG16Fax61onEHyV1IgFU92Kv\n0lJ45RXzfvz4po/N3branDOomc7EUeK0mjoAz1DTry5v00pc1VWNHnd+zzp/faPYS2OL2E1JnYhE\n1MqVJpGjJ5dyAAAgAElEQVTo3x/atWv8uJSjB0k/9CG16ZmU9+gfuQBjXHX7zlR26k5SWQnZO9Y3\neewXvmBeNQUrEh+U1IkEUN2Lvfx7vTa36jV366uA6b9GkjN2kAjktJo6v5IgGxFPmNDQs27fvggE\nluA0tojdlNSJSMRUVsLy5ea9v1daY3I3mzlap069OlnJsHEA5K9bYpoBNiIzs6GuUT3rRGKfkjqR\nAKp7sc+rr0JJCfTsaWq6GuX1klP3pK50oHOTOifW1AFU9OhPTW4rUo8fJmPfriaPPb9nXW2t/bEl\nMo0tYjcldSISMf6p1+ZWvWZ89C4pZ05Qnd+Gqo7d7A8s3rjdlAw1LWCam4IdOhQ6doTPPlPPOpFY\np6ROJIDqXuxRU2O2BoPmp15ztqwBoHTACHC5bI6s5ZxaUwfgCbKuTj3rIkdji9hNSZ2IRMSGDXDq\nFHTpYqZfm5K7eRWgerpwlA64Am9qGpkf7CTl2OEmj/X3rFu8GM6ejUBwImILJXUiAVT3Yo9Fi8zr\nhAlNP3xzVVeR/dYGAMoGjIhAZC3n1Jo6AF9qOqUDrgQgb8NLTR57ySVmGraioqExtFhPY4vYTUmd\niNjO6zU7F0DzU69ZuzaRVFlOZadLqclvY39wcaxk+DgA8tcubvbYadPM62OP2RiQiNhKSZ1IANW9\nWG/bNjhyxDQb7t9MH+HcLWYXCc/AKyMQWXicXFMH4BlyFT6Xi5w31+EuLWnyWH/Pus2b1bPOLhpb\nxG5K6kTEdv5Vr+PHN7/uwd+frkz1dGGrzWtFec+BuGuqyN20qsljMzMbGkKrZ51IbFJSJxJAdS/W\n8vka6umaa2Xi9pwlc++b+NxJlPUZan9wYXJyTZ1f/e4S65peBQvqWWc3jS1iNyV1ImKrd96BTz6B\n/HwYMqTpY3O2F+HyeinvMQBvRlZkAoxznmHXAJC3cYXpK9OEwsKGnnWvvRaJ6ETESkrqRAKo7sVa\n/qd048ZBUlLTx9ZvDTY4NqZenV5TB1DVsRtV7TqTXFJM9tuvN3msetbZS2OL2E1JnYjYKthdJKBh\nkYS/FYdYwOU6bwp2SbOH33ijeX3xRfWsE4k1SupEAqjuxToffAC7d0NWFgxv5qFWytFDpB/aR216\nJuU9BkQmwDDFQk0dQMnlZgo2v+hFU+TYhE6dYNgw07Nu/vxIRJc4NLaI3ZTUiYht/L3pxo6FlJSm\nj83d9iqAWSCRnGxzZImlvNcgarNySfvsE9I/2dPs8f4FE+pZJxJblNSJBFDdi3X8U6/+VhlNqa+n\nGzTKxoisFQs1dQAkJVNSeBUAeUFMwU6cCBkZsGWLedoq1tDYInZTUicitjh0CN58E9LSYGRz6x58\nPnK2rgGgNAaaDscij7+urqj51iYZGQ01kOpZJxI7lNSJBFDdizUW1+1MNWqU2amgKekfvUtK8Qlq\n8lpT1am77bFZJVZq6gA8g0biTU4ha/c2kk8da/Z4/xTsU0+pZ51VNLaI3ZTUiYgt/BvDBzX1usU8\npfMMGNH8lhPSIr70TMr6Dcfl85G3YVmzxw8dqp51IrHGKUndFGAvsA/4yUW+3xfYBFQA/xXwvf3A\nLuAtYKt9IUqiUN1L+I4fhzfeMIsjrrqq+eNzN5strEpjbGuwmKmpq1MyfBwQ3BSsy9XwtE4966yh\nsUXs5oSkLgl4GJPY9QduA/oFHHMK+C7wh4uc7wPGAUOBEbZFKSJBW7IEvF7TxiQ7u+ljXdVVZL+1\nAYCyAforbCfP0KsByN22BldFWbPHq2edSGxxQlI3AvgQ88StGngOmBZwzAlge933L0bzNWIZ1b2E\nzz/1GkzD4ax3t5BUUUZlp+7UFLS1NzCLxVJNHUBNQVvKu/fFXVlRP+XdlI4d4fLLTc+655+PQIBx\nTmOL2M0JSd0lwKHzPh+u+1qwfMAaTNL3nxbGJSItcOYMFBWZLaeCmW3K8bcy0arXiCgJYRUsqGed\nSCxxQofPptubN28McARoC6zG1OZtCDxo1qxZdO/eHYD8/HwKCwvr6xv8//ekz/rsV1RU5Jh4Yu3z\n739fRHU1DBs2jvx82L7dfH94XT1X4Oe3X13IB0DPgaaezv/0y1+v5uTPI/oNd1Q8wXxek9+WTsCY\nDcvA62X7jvVA4/99CgqKSE2FrVvH8f77cOSI+b5T7rdY+jxu3DhHxaPPzvnsf79//37C4YRpy5HA\n/ZiaOoCfAl7gwYscex/gAf7YyLUa+77P18zWOCJijWnTYOlSuOcemD696WPdnrMUTmgN+Pjgn2vx\nZmRFJMaE5vPR6/s3knL6GHsff4PSwc03e/7lL+Gll+Dee+GBByIQo0iCc5kuACHnaE6Yft0OXAZ0\nB1KB6cDSRo4N/AEzgZy691nAZOAd60OURHL+/zlJaEpL4RUzm8r48c0fn/PmOlzeWsp7DIjJhC7W\nauoAcLnq94INZncJUM86q2hsEbs5IamrAb4DrAJ2A88De4C76n4BdMDU3f0A+DlwEMiu+/oGYCew\nBVgGvBLB2EXkPKtWmaL6/v2hXbvmj8/dshqIra3B4kF9XV2QSV1hIXTqBEeOwKuv2hiYiITFCTV1\nAC/X/TrfI+e9Pwp0uch5HqDQrqAkMflrHSR0oTQchvP2ex0Ym61MYq1PnV9Zn2HUZmSRsX8vaYc+\npLJLryaPd7ngppvgkUdMz7rJkyMUaJzR2CJ2c8KTOhGJA5WVsHy5eT9hQvPHpxw7TPrBD/CmZVDe\nY6C9wcnnJSfjGTwagLx1jVW7fJ6/Z92SJWaFs4g4j5I6kQCqe2mZ116DkhLo2RM6d27++JxtZh6v\nrO9QSHbKpEFoYrKmro6nvrXJ4qCOP79n3fz5NgYWxzS2iN2U1ImIJRYuNK/BNByGhqlXj+rposIz\neDQ+dxLZu94g6cypoM6ZVtcWXj3rRJxJSZ1IANW9hK6mxkzLQXBTr/h85G41OxrEctPhWK2pA/Bm\n5VDWZygur5e811cEdc748ZCZCVu3wvvv2xxgHNLYInZTUiciYdu4EU6dMtOuPXs2f3z6R++Rcvo4\nNXmtqep0qf0BykWV1DUYDnZ3iYyMhiexTz5pT0wi0nJK6kQCqO4ldIsWmdeJE81Kyeb4n9J5BlwR\n3AkOFcs1dQAlw0y/utzNq3BVVQZ1jn8KVj3rQqexReympE5EwuL1NiR1QU29YpIIgLJBI22KSoJR\n06YjFZ17klReSs72tUGdM2RIQ8+6NWtsDlBEQqKkTiSA6l5Cs22b+Qe+bVvTdLhZNdVk1+03Wto/\nNvvT+cVyTZ2fvxFxXpBTsC5Xww4Tjz9uU1BxSmOL2E1JnYiExf+Ubvz44GZSs97dQlJFGZUdu1HT\nKohtJ8RWnrop2Pz1SyHIPbJvvNH8t1bPOhFnUVInEkB1L8Hz+RqSutB3kYjdVa9+sV5TB1DRvS81\nea1JPXmEzL07gjqnQwcYNsw0nH7+eZsDjCMaW8RuSupEpMXeeQc+/hjy802tVTAakjrV0zmC203J\nsKsByAtyL1hQzzoRJ1JSJxJAdS/B8z+lu+YaSEpq/ni35xxZu7fjc7sp6zfM3uAiIB5q6gA8Q+uS\nujcCt+BunL9n3bZtsHevXZHFF40tYjcldSLSYv5dJIKdes3ZsQ6Xt5aKS/vjzci2LzAJSWm/y/Em\np5C5582gd5dQzzoR51FSJxJAdS/B2bcPdu+GrCwYHuQDq5zNq4H42RosHmrqAHzpmZRfNhiXz0fu\nltVBn6eedaHR2CJ2U1InIi3ywgvmdexYSEkJ7hx/whAPiyTijWfIVQDkBrllGJg6yksugaNH1bNO\nxAnCSeq6AVcAI4BLgTRLIhKJMtW9BGfBAvPqn4JrTsrxT8k4sBdvWgblPQfaF1gExUtNHUDpYPP0\nNG/TKtNROgjqWRcajS1it+QQjnUBtwB3Aj2AU8BpoAooqPtVCqwE/gl4LI1URBzj0CF4801IS4NR\nQc6k5mx9FYCyPkMhOZShRyKhsnNPqvPbkFJ8nIx9uyjvUxjUeTfcAP/8Z0PPuvx8mwMVkUYF+6Su\nEHgeaAvcXfd5IvDvwB3AVGAUcBPwNvAQ8A2rgxWJBNW9NG/xYvM6ahSkpwd3jr+ViSeOtgaLl5o6\nAFwuSutqHXM3rQz6tA4d4PLLTc+6556zK7j4oLFF7BZMUjcWuBaYDjwCHGni2HJgNfA14D1gdrgB\niojz+Kdeg131is9H7jZTdKV6OufyDBkDQN7G5SGdp551Is4QxKY+5AFnW3j9cM61ks8X5PY3ItK0\n48ehY0dwu01xfHYQnUnSP97NgFsHUJPbin0PrwpuPzGJOHfpOXp/61pwu9n56im82blBnVdRAZMn\nQ1mZWRHdr5/NgYrEOZcZI0MeKIN5UnexpOyPwIbzPl8JXGwrbyckdCJioaVLTR39FVcEl9DBeate\nB4xQQudg3qxcynv0x1VbQ872tUGfl57e8NRWPetEoqelq19PAk+c93kL0Bu4OeyIRKJMdS9Nmz/f\nvAa76hUgd9MqAErjqJ4O4qymrk6pfwo2hNYm0LAKds4c9axrjMYWsVtLk7r9QDGfXz37ItA53IBE\nxLnOnIGiIjP1es01QZ5UU032W+uBuid14mieIaOBusUSIZStnN+zbnXw/YtFxEItTer6YNqWnAVe\nA/4/YCamb51ITFMvqcYtXw7V1VBYCAUFwZ2T9e5WkspLqezQjZpW7ewNMMLiqU+dX0X3ftRk55F2\n9CBpBz4I+jz1rGuexhaxW0uTugqgPdAd+BuQC9wHPGlJVCLiSKE2HAbI3VpXTzdIq15jgttdv0I5\nL4TWJmB61rlcpu6yuNiO4ESkKS1N6rx1554AFmFal/QGRlsUl0jUqO7l4kpLYZUpjSOUBw719XRx\n2MokHmvqAEr9U7Ahtjbp0MHsA1xZCc8/b0dksU1ji9itpUndo8CPgcvP+9qbwICwIxIRR1q1yrSu\n6N8f2rcP7hy35xxZ723D53ZT1vfy5k8QR/AMNAtact7agKuiPKRz1bNOJHpamtSdBn4L7Dzva78G\n/h52RCJRprqXi1u40LwG3XAYyHlrPS5vLRXd++HNDLL/SQyJx5o6gNr8NlR0uQx3VQU5dYtcgjVu\nHGRmwvbtsGePPfHFKo0tYreWJnV+5y9cnw+8Eeb1RMSBqqpg2TLzfvz44M/L2Wzq6TyDg9wgVhzD\nv7tEboitTdLTYdIk814960QiK5ikbjLQkj4ErTBTtCIxRXUvF3r1VSgpgZ49oUuX4M/L3WL2e43H\nejqI35o6aGhtkldXExkK/yrYp56Cmhoro4ptGlvEbsEkda8APYA/AX2DOD4Ls3DiZ8BfWh6aiDiF\nf+o1lFWvKSc+I2P/Xryp6ZT3HGhPYGKb8l6DqU3PJP3A+6QeORDSuYMHQ+fOcOyYetaJRFKw06/P\nAQ8Cd2H60j0K/AT4JvAfwD3A74HVwNOYRRM/AqosjlfEdqp7+bzaWliyxLyfMCH483K2vgpAWZ+h\nkJxiQ2TRF681dQAkJ1PW3/x8uSE+rVPPuovT2CJ2CzapawUkAT8AJgIPA4eBdKA1ZuHEKmAacAuw\n0fJIRSQqNmyAU6fMk5eePYM/L3dz3dRrnG0Nlkg8Q64CIC/E1iYAU6eqZ51IpAWb1M0F/EugfMBx\n4BnM9OqDwGPAGqDM6gBFIk11L5+3aJF5nTDB/CMdFJ+PnK1rgPitp4P4rqmDhgUuOdtfg5rqkM71\n96yrqoLnnrMjutijsUXsFmxS9xEw/bzPP7AhFhFxGK+3IakLpZ4uff9eUk8dpSa3gMrOITzeE0ep\nadORyg5dSSrzkL1rU8jnq2edSGQFm9QtABYD+zD1dUOBKUAnm+ISiRrVvTTYvh2OHIG2bU3T4WDl\nbKl7Std/RAiP92JPXNfU1fEMrttd4o2XQz7X37PuzTdh926LA4tBGlvEbsEmdRsw+7xOx0yztsMs\nlNgFnARexUzF3ga0sTxKEYkK/6rX8eNDy81y6/YMVT1d7Cut61eXF2K/OjA96yZPNu/Vs07EfqE0\nH/YCOzArX18ExmMSuCGYla/HgC9gFkksAS61NFKRCFHdi+HztWzqlZrq+l0ISge2pMVl7Ij3mjqA\nsr5D8aakkrlvF8mnjoV8vn8V7Jw56lmnsUXs1tIdJX5x3vtPgZXAA5gneX2BPwPfCC80EYmmd9+F\njz+G/HwoLAz+vKz3tpFU5qGyQ1dqWgW5Saw4li813bSloWFFcygGDTINq9WzTsR+4W4TdjF5mIbF\nIVTgiDiH6l4M/1O6a66BpKTgz8vdYv7ljudVr36JUFMH4Cmsa23SgilYlwtuusm8T/SedRpbxG52\nJHVnMQndV224tohEyIIF5jWkqVfO60+XAEldoiita22Su/kV0406RDfcoJ51IpFgR1IH8CGmIbFI\nzFHdC+zbZ1YrZmXBFVcEf567tISs97bic7kpS4CnWIlQUwdQ1aEbVa07kHzuNJl7d4R8fvv25j5K\n9J51GlvEbnYldSISwxYvNq9jx0JKCDt8Zb+1HldtDRWX9sWbmW1PcBJ5LlfD07oWtDaBhinYuXOt\nCkpEAimpEwmgupfwp149g0ZZHJEzJUpNHYBncMtbm4CpzUxLg02b4OBBKyOLHRpbxG5K6kTkcw4f\nNk2H09JgVIi5We6W+N8aLFGVDRiOz51E1u5tJJ0LvTAuMxOuMustePZZi4MTEUBJncgFEr3uxT/1\nOmqUaR4brOSTR8n4ZDfe1DTKew2yJziHSZSaOgBvRjblvQbh8nrr9/UN1fXXm9dnnrEwsBiS6GOL\n2E9JnYh8jn/q9dprQzsvt+4f+rLeQyE5hEI8iRkNrU1aVlc3ejRkZ8M778CePVZGJiKgpE7kAolc\n93LoEGzcaBZH+KfKgpXjb2UyOHG2BkukmjoAj3+xxKaVZsuREKWmmi3nAObNszKy2JDIY4tEhpI6\nEak3Z475t/qaa8wTlaD5fPVP6koHJk5Sl2gqu/amJrcVqSePkP7Rey26hn8Kdt68FuWFItIEJXUi\nARK17sXna+j479+vM1hpB94n9eQRanLyqezc0/rgHCqRauoAcLnwDDJJe96mlS26xOWXQ6tWZgu6\n7Qn2x5eoY4tEjpI6EQHgjTfMP7StW8OVIS5erV/1OmCE2TpA4lbpkLrWJhuXt+j8pCSYNMm8T9QF\nEyJ2UVInEiBR614ee8y83nhjaHu9Ql2NFVA6KLGmXhOtpg5Muxqfy0XW22/gLvO06Br+KdjnnmvR\nrmMxK1HHFokcJXUiQmlpw6pXf+f/oNXUkLNjnbnOgBHWBiaOU5uTT0W3vrhrqsh5s6hF1xgwADp2\nhGPHYP16a+MTSWRK6kQCJGLdy+LF4PGYf2y7dw/t3Kzd20gq81DZvgs1rTvYEp9TJVxNXR1PoZmC\nzW1haxOXC6ZMMe+fftqqqJwvEccWiSwldSLCo4+a12nTQj83Z8tqQLtIJJLSwaMByGvhPrDQMAX7\nwgtQVWVFVCKipE4kQKLVvRw4AOvWmR5ikyeHfr5/v9dEbGWSiDV1AOU9+lObmUPaZ5+QdujDFl2j\nRw/o2RPOnIFVqywO0KESbWyRyFNSJ5LgnnzSvI4bF2JvOsBd5iHrva34XG7K+l1udWjiVEnJ9fWT\nuZtanpEl4hSsiJ2U1IkESKS6F68XnnjCvA+1Nx1A9o71uGuqqejeF29WjrXBxYBEramDhrq6lrY2\nAbjuOvP60kumpjPeJdLYItGhpE4kgW3caKZf27WDK64I/fzcLXVTrwnWykSgdJDZMiz7zSJcVZUt\nukanTjBwIJSXw9KlVkYnkpiU1IkESKS6F39vuhtuCL03HUBugi+SSNSaOoCagrZUdO5JUmU52Ts3\ntvg6U6ea10RoRJxIY4tEh5I6kQTl8cDCheZ9yL3pgOSTR8n4eDfe1DTKew2yNjiJCZ66VbC5YayC\nvfZacLvhlVfg1CmrIhNJTErqRAIkSt3LwoVQVgaDB0PXrqGfn7P9NQDKehfiS0m1OLrYkMg1dXBe\na5MW9qsDsw/s8OFQUwOLFlkVmTMlytgi0aOkTiRB+adeW7JAAhpWPfprqyTxlPcegjc1nYxPdpNy\n7HCLr+OfgtUqWJHwKKkTCZAIdS8ff2wWSaSlNWyuHhKfj9yta4DEraeDxK6pA/ClpFJa18omnNYm\n48ZBSoq5Jz/91KLgHCgRxhaJLiV1IgnI35tuwgTIygr9/LQDH5B64jNqcvKp7NzT0tgktpQWXgWE\nt7tEdjaMGQM+Hzz/vFWRiSQeJXUiAeK97sXrbUjqWrItGNDwlK7/FabKPUElek0dgGewmX7P2brG\nFMa1kH/bsHiego33sUWiL3FHY5EEVVQEhw5B+/YwbFjLrpG72V9Pp/50ia66XWeq2nUm2XOWrPe2\ntvg6Y8ZAZia89Rbs22dhgCIJREmdSIB4r3t5/HHzetNNLXzIVlNDzvYiAEoHJG49Haimzs8zJPzW\nJunpprYOYN48C4JyoHgfWyT6lNSJJJBz5xraRtx4Y8uukbVnO0llJVS170xNmw7WBScxy1Pf2mRF\nWNfxT8E+84yprxOR0CipEwkQz3UvCxZARQUUFkLnzi27Rk7dLhKeBH9KB6qp8yvrezne5BQy33+L\n5OITLb7OFVdAfr6Zft2508IAHSKexxZxBiV1IgnE35vuC19o+TVyN5v9XstUTyd1fOkZlF82BJfP\nV5/0t0RystlhAhJj2zARqympEwkQr3Uv+/bBpk2mdmnChJZdw11eSta7W/C53PX9yRKZauoaePyt\nTTaGNwU7ZYp5ffZZs1I7nsTr2CLOoaROJEH425hMnGhWGbZE9o71uGuqqejWB29WrmWxSezztzbJ\n3fxKWNnY4MFmZfZnn8Hrr1sVnUhiUFInEiAe615qa8PvTQeQWze1VjpYW4OBaurOV3VJD6oL2pJy\n5gQZH7zd4uu43XDddeZ9vPWsi8exRZxFSZ1IAnjtNfPko2NHGDq05dfJ3WLq6UoHjrAoMokbLhee\nun2Aw9ldAhpWwS5cCNXV4QYmkjiU1IkEiMe6F/8CiZtvBperZddIPnWMjI/ew5uSRnmvwdYFF8NU\nU/d5pYVjAMgNs7VJr17QvTucPg2rW77uwnHicWwRZ3FKUjcF2AvsA35yke/3BTYBFcB/hXiuSEI7\ncwaWLDHvW9qbDiBn22sAlPUegi8l1YLIJN6U9h+Bz+0m+90tuD1nW3wdl+vzPetEJDhOSOqSgIcx\nyVl/4DagX8Axp4DvAn9owbkiIYm3upf5801vussvN9OvLVU/9TpI9XR+qqn7PG9WDuU9BuKqrSG3\n7n8CWspfV7dkCZSVWRCcA8Tb2CLO44SkbgTwIbAfqAaeAwJLuU8A2+u+H+q5Ignt0UfNazgLJPD5\nGhZJDFTTYWmcx6Ip2M6doV8/KC2FZcusiEwk/jkhqbsEOHTe58N1X7P7XJGLiqe6l717Yds208Kk\npb3pANIO7iP1+KfUZOdT2aWXdQHGONXUXai0frHEyrD3+po61bzGyyrYeBpbxJmSox0AEM7f+qDP\nnTVrFt27dwcgPz+fwsLC+r9g/kfi+qzP8fb5iScAiigshPR08/3t2833hw8P/nPBmgUMBEoHXMHW\n93cADQmNfwpSn/UZYH15KR+nZzHx+GHS9+9l46ljQGj3m//zpEnwpz8V8fLLcObMOPLznfX3S5/1\n2arP/vf79+8nHC1cB2epkcD9mLo4gJ8CXuDBixx7H+AB/hjiuT6fdoeWIBUVFdX/hYtltbVmCuvo\nUTMFW1jY8mv1mXkl2e9t5fB3fkvJlddaF2SM27pnu57WXUSnv/03eZtXceiHf+b47d8P61p33QVv\nvmlWcH/taxYFGCXxMraI/VymTUHIOZoTpl+3A5cB3YFUYDqwtJFjA3/AUM4VSSivvGISus6dYciQ\nll8n5eghst/bijclDc+QMdYFKHGrvq5u4/Kwr+VfBRsvU7AidnJCUlcDfAdYBewGngf2AHfV/QLo\ngKmd+wHwc+AgkN3EuSItFi//J/344+Y1nN50AAVrXwDMNlC+9AwLIosfekp3caUDRwKQs3Mjrory\nsK41YQIkJ8O6deZ/UmJZvIwt4lxOSOoAXgb6AL2AB+q+9kjdL4CjQBcgDygAumKmYRs7VyShFRfD\n0qUmmfMXm7dUwSvPAXBu5GQLIpNEUJvXiopuvXFXVZCzY11Y18rNhVGjzHay8+dbFKBInHJKUifi\nGOcXrsaqZ5+Fqiq44gro0KHl10k5/inZ72zGm5KKp/Aq6wKME+pT1zjPEHO/5L4e3pZh0DAFO3du\n2JeKqngYW8TZlNSJxKHztwULR/5riwAoHTwaX3pmmFFJIvEMHg2Evw8swNVXQ3o6bN8OH38c9uVE\n4paSOpEAsV738t57sGMHZGVBuD9KK//Uq1a8XpRq6hpX3msgtRlZpB/aR+qnn4R1rfR0uOYa837e\nPAuCi5JYH1vE+ZTUicQZ05sOJk82/xi2VMqJz8h6ZzPe5BQ8hWOtCU4SR1IyZf2vACB306qwL+ef\ngo3lpE7EbkrqRALEct1LTU1D3VH4U68v4PL5KB00Cm9GVvjBxSHV1DXN3wIn7/XwW5uMHGkWTezZ\nA++8E/bloiKWxxaJDUrqROLIypVw/Dh07QoDB4Z3La16lXB56rYMy3mzCFd1VVjXSk6GiRPN+2ee\nCTcykfikpE4kQCzXvVjVmy755BGyd71hpl6HatVrY1RT17SaNh2o7NiNpDIPWbs2hX2986dgY3GT\noFgeWyQ2KKkTiRMnT8KyZeB2ww03hHetAv/U68Ar8WZkWxOgJCT/FGyuBatgCwuhbVs4dAg2hZ8j\nisQdJXUiAWK17uXZZ6G6GkaMMP/whaNg9fOApl6bo5q65pX6W5u8viLsa7ndZgEQxOaCiVgdWyR2\nKKkTiRP+3nTTpoV3neRTx8h++/W6qderww9MElpZn6F4U9LI/PAdkk8eCft6/inY+fPNwiARaaCk\nTkSayScAACAASURBVCRALNa9vP22+ZWTYxq1hiN/7Qu4vF5KB4zAm6mp16aopq55vtQ0yvoOAyB3\n8ythX69PH+jSBU6cgNdeC/tyERWLY4vEFiV1InHg/N50aWnhXcvfcLhk5KQwoxIxPIV1rU02ht/a\nxOVqeFqnVbAin6ekTiRArNW9VFc3/OMW9tTr6eNk79yILymZkqHXhB9cnFNNXXD8W4blblkDtbVh\nX++668zr4sVQURH25SIm1sYWiT1K6kRi3IoVZuVr9+7Qr19418pfu7hh6jUrx5L4RKrbd6GqTUeS\nS4rJtCAR7tbNTMOWlJj7X0QMJXUiAWKt7uXRR83rtGnh9aYDNRwOlWrqguRyNayCfWOlJZeMxSnY\nWBtbJPYoqROJYcePm10k3O6Gf+RaKrn4BDlvrTdTr8O06lWs5RlSNwVrQWsTgEmTzP/ELF8O585Z\nckmRmKekTiRALNW9PPOMaeswahS0aRPeteqnXvsPx5uVa02AcU41dcEr6zccX1IyWXu2k3T2dNjX\na98ehgyBykp48UULAoyAWBpbJDYpqROJUT6fdb3pQA2HxV7ejCzKeg3G5fWSu3WNJdf0P52eO9eS\ny4nEPCV1IgFipe5l50547z3IzYWxY8O7VtKZk+S8uQ6fO4mSYVr1GizV1IXG39rEqinYiRMhKQnW\nrjV965wuVsYWiV1K6kRi1OOPm9cpUyAlJbxr5Re9iMtba6Zes/PCD07kIuoXS2xaaR41hyk/H668\n0nRJWbAg7MuJxDwldSIBYqHupbKyYdXfzTeHfz1/w+FzV6rhcChUUxeayi69qMlrTcqpY2R8+I4l\n14ylKdhYGFsktimpE4lBy5ZBcTH07Gn6dYUj6cwpcrYX4XO78Vw+zpL4RC7K5cIzaBQAuRa1Nrnm\nGrOLyubNcOCAJZcUiVlK6kQCxELdi3/q1YredPnrlpip137Dqc3JDz+4BKKautD5W5vkvR7+lmEA\nmZkNNaXPPmvJJW0TC2OLxDYldSIx5uhRWLXKFIiH25sOGhoOl2jVq0RA2YAR+FxusnZtwl3mseSa\n/r8H8+ZZcjmRmKWkTiSA0+tenn7aFIaPGQMFBeFdK+nsaXK3r8XndlOiqdeQqaYudLU5+VRc2hd3\nTTU529dacs1RoyA7G955B3bvtuSStnD62CKxT0mdSAzx+RqmXq1YIJG/bgmu2hrK+gzT1KtEjGfI\nVYB1rU1SU2H8ePNeT+skkSmpEwng5LqX7dthzx7TyuGqq8K/nvZ6DY9q6lrGU78P7MuWtDYBmDrV\nvM6bZ9klLefksUXig5I6kRjyxBPm9frrITk5vGslnSsmxz/1Onx8+MGJBKmiRz9qs3JIO3KAtEMf\nWnLNYcOgdWv45BPYts2SS4rEHCV1IgGcWvdSUdEwtWTF1Gve+qW4a6op6zOU2twwi/MSlGrqWsid\nhGfgSMC61iZJSTCprs2iv4ej0zh1bJH4oaROJEYsXQpnz0Lv3nDZZeFfTw2HJZpKh5gtw6xqbQJm\ndxWA554zi4lEEo2SOpEATq17eewx82rFU7qkkjPkbH0Vn8tNyfAJ4V8wQammruVKB5kndTk71uGq\nrLDkmgMGQKdOcPw4rFtnySUt5dSxReKHkjqRGPDpp7Bmjamj8z+NCEfe+pfM1GvvQmrzWoV/QZEQ\n1eS3oaJzT9yVFWTv3GjJNV2uhr8fTp2CFbGTkjqRAE6se5k7F7xes+I134LOIwWvPA9o1Wu4VFMX\nHn9rk4I1Cyy7pj+pW7TI7JHsJE4cWyS+KKkTcbjze9NNmxb+9dyes+RuWY3P5aLkCq16leg5N8Zs\nBVGw+nnLpmB79DB7Ip89a3ZeEUkkSupEAjit7mXLFti3z+weMWpU+NfLX/8S7poqyi8bQm1e6/Av\nmMBUUxeeyi69qOjWh2TPWfKLXrTsuv5tw55+2rJLWsJpY4vEHyV1Ig7nf0p3ww3h96YDTb2Ks5y5\nxjx+brPkMcuued115vWll8BjzfayIjFBSZ1IACfVvZSXw/MmB+Omm8K/nttzrn7q9dwVWvUaLtXU\nhe/sqOvwJqeQs+1VUo4esuSaHTvCoEGmt+PSpZZc0hJOGlskPimpE3GwF1+Ec+egb19TJxSuvI3L\ncFdXUn7ZYGrz24R/QZEwebPz8Awdi8vno/Xypyy7rn8Kdu5cyy4p4nhK6kQCOKnuxd+bzooFEqCG\nw1ZTTZ016qdglz5h2cat1177/7d33/FRVfn/x19TUiGdTgIBAmIBpNoREZVFcFVYFV2Bn+suNhQU\n1LWtuoq9rF91dW1rA9uCqEtRV4OiKKDSlCpFAUNPzySZ8vvjJCSElnLvzCTzfj4eeeTO5Oacs+vl\n5jP3fM7ngNNpSgHt3m1Jkw0WTvcWaZoU1ImEqV9/hc8+g6ioqhyhhnAWFZC48OOKVa9nNrxBEYsU\n9TgRb1IaMVs3WFazLjUV+vUDrxfee8+SJkXCnoI6kRrCJe/l1VfNQ4uBAyExseHtJX1ZMfXapQfe\nlJYNb1CUU2cVp4vcU4cDkPbBy5Y1O2yY+R4uq2DD5d4iTZeCOpEwFAjAK6+YYyu2BQNI+fQdQKte\nJTzlnW4u9JRP38VZUmRJm4MGQXQ0fPUVbNliSZMiYU1BnUgN4ZD38vXXsGEDpKXBiSc2vD1ncSFJ\nX88FoECrXi2jnDrrlLXtSHGX43CVFJH8P2vmS5s3h5NPNh+SKleRh1I43FukaVNQJxKGKhdInHsu\nuFwNby9pwX9xlnko7nIc3tRWDW9QxAZ5g84HoMX7L1rWZrhNwYrYSUGdSA2hznspKoJ3K7bCtGzq\nVQWHbaGcOmvlnzAEf1QMCUsXEL1lgyVtnnIKxMfD0qWwdq0lTdZbqO8t0vQpqBMJMzNmmCr4xx4L\nmZkNb89ZUkTSwjkAFAzQqlcJX/645hT0M/sRp334iiVtxsTAGRVbHE+bZkmTImFLQZ1IDaHOe7G6\nNl3iV7Nxlnoo7nIs3tTW1jQqgHLq7LCvZt2H/wa/35I2KwsRv/mmZWXw6iXU9xZp+hTUiYSRTZtg\n/nyzYu8si+oDp1ZMvRao4LA0AsVH96UsrQ3RO7aQsPgzS9rs1w+Sk2H9evjhB0uaFAlLCupEaghl\n3surFbsknX46JCQ0vD2Hp5jEr2YDkN9/SMMblP0op84GTid5p5mNjlvMesmSJt3uqg9JoZyCVU6d\n2E1BnUiY8PuratNZNfWatGA2rtISSjodg7dFG2saFbFZ3mmmEHFy9vs4C/MsaXPoUPN9+nTLZnVF\nwo6COpEaQpX38uWXsHkztGwJ/ftb02bqJ1r1aifl1NmjvFV7irr3wVnm2Zc+0FA9e0KbNrBtGyyw\nZieyOlNOndhNQZ1ImHi5Ynek4cOtqU2339SrVr1KI7NvwcQsa2rWORxVeyirZp00VQrqRGoIRd5L\nYWHVpuMjRljTZtLXc3F5iinJ7I63RVtrGpX9KKfOPgX9z8QXG0+zHxcTu3GVJW1WTsH+5z9QXm5J\nk3WinDqxm4I6kTDw3ntQXAw9ekCHDta0maKpV2nEAjGx5A8wi3vSPrCmZl1Wlqn9uGcPfPKJJU2K\nhBUFdSI1hCLvxeradA5PCUlffgSYJx5iD+XU2SvvdLOlStp/XwWvt8HtORxVNetCMQWrnDqxm4I6\nkRDbsMEkbsfEwBCLqo4kfjPPTL12PIryVu2taVQkyEq69qKsdQZRe3aQ+M08S9qszKubNcs8HRdp\nShTUidQQ7LyXf//bfB88GJo3t6bNVO31GhTKqbOZw0HuwIqade9bU7MuPR2OOcYEdB9+aEmTtaac\nOrGbgjqREPL7q4K6886zpk1HqYekBRVTr1r1Ko1c3qnDCTicJC34CFfuLkvaDOUUrIidFNSJ1BDM\nvJfsbPj1V2jdGvr2tabNxIXzcBUX4unQjfJW6dY0KgelnDr7eVNbUXRsf5zeclLnTrekzbPOAqcT\n5s2DvXstabJWlFMndlNQJxJClQskRowwf2SssK/gsPZ6lSYid9D5gHU161q0gN69TVmTGTMsaVIk\nLCioE6khWHkv+flVf1CGD7emTUdZKUlfmkSh/BO016vdlFMXHIW9B+KLTyB+3XLi1i6zpM1hw8z3\nYE7BKqdO7KagTiREpk8HjweOP94kb1sh8ZuPzdRrRhblrTOsaVQkxALRMeSdZJatps162ZI2Bw+G\nqCiYPx9++82SJkVCTkGdSA3ByHspLIS77zbHo0ZZ1+6+gsMnaNVrMCinLnjyKrYNS5v7Jo7ysga3\nl5AAJ50EgQC8806Dm6sV5dSJ3RTUiYTAgw9CTg507w5nWxR/OcpKSZ7/AaCpV2l6PJndKW3XCXfe\n7n2FtRuqchXs669b0pxIyCmoE6nB7ryXTZvg0UfN8ZQp1i2QSPz2E1zFBXjSu1DexqK9xuSwlFMX\nRA4HuYPM07oWs6ypWXfaaRAfD999Z6Zh7aacOrGbgjqRILvpJigtNU/oevWyrt3kT8wckgoOS1OV\nd/IwAk4XiQvn4d6V0+D2YmPh8svN8YQJ4PM1uEmRkFJQJ1KDnXkv8+ebFa8xMXDDDda16ygvI/kL\nM/WqgsPBo5y64PIlpVLY62Qcfh9ps1+zpM3LL4c2bWDFCnjhBUuaPCTl1IndFNSJBInPZ54GAIwd\nawoOWyXh209xF+ZR2r4zZW0zrWtYJMzkVi6Y+OAVs8qhgWJjYdIkc3z77bBnT4ObFAkZBXUiNdiV\n9/LSS+ZpQKtWMGaMtW2nqOBwSCinLvgKe52KNyGZuE2rif9xsSVtDh4MffqYgO6uuyxp8qCUUyd2\nU1AnEgS5ueYpAJinArGx1rXtKC8jef4sQEGdRAC3m7xTTOVgqxZMOBxw881m0dJzz8HKlZY0KxJ0\nCupEarAj7+Wee2DXLrMwYojF1UYSFn9mpl7bZVLWLtPaxuWwlFMXGnkDzwMg9eO3cHhKLGkzKwtG\njqxKk7BgZvcAyqkTuymoE7HZmjXw9NPmacCUKea7lVRwWCJNaUYWJR2PwlWUT3L2+5a1e9VVkJgI\n2dnaE1YaJwV1IjVYnfcyaRJ4vTBihCk2bClvOcnZlVOvKjgcbMqpC53KHSasmoIFSEqCa64xx5Mm\nQYk1DwH3UU6d2E1BnYiN5swxX/HxcO211refuPgz3AV7KW2bSVn7ztZ3IBKm8k46B787ioQlnxGV\n84tl7V5wgZmK/fVXeOQRy5oVCQoFdSI1WJX3Ul5eVYvuyishLc2SZveT8rFWvYaScupCx988icLe\nA3EEAqR99Kpl7bpcZtEEwAMPmODOKsqpE7spqBOxydNPw7p1kJ4Oo0fb0IG3fF8+kQoOSyTat22Y\nRTXrKvXpA2eeCR6P2QFGpLEIl6BuKLAaWAfccohznqr4+TKgd7X3NwHLgR+ARfYNUSKFFXkvO3fC\n3Xeb45tugqioBjd5gIQl2WbqtU0HStO7WN+BHJFy6kKr6LgTKE9uQcy2jTRfusDStidNMju/vPsu\nfPGFNW0qp07sFg5BnQt4GhPYHQOMBo6ucc4wIAvoCvwF+Ge1nwWAQZhAb4DNYxWplTvugPx8GDAA\nTj3Vnj72Kzhs9ZJakcbA6SLv1OEApFm4YALM1mFjx5rj667TvrDSOIRDUDcAWI954lYOvAX8vsY5\n5wGVSRPfAslA9U2W9BdNLNPQvJfly+HFF00h08mTbYq3vF5SKqdelU8XMsqpC728gSMASPn0XZzF\nhZa2PWaM2c5vxQrzb7qhlFMndguHoK49UD0VdUvFe7U9JwB8CiwB/mzTGEVqJRCA668Hvx9GjYLO\nNi1ITfh+Pu683ZS1ztDUq0S0srYdKc7qgctTTMr/3rO07er7wt52G+zda2nzIpZzh3oAmKCsNg71\nvONUYBvQEvgEk5v3Zc2Txo0bR2ZmJgDJyckcf/zx+z41VeY56LVeAzz55JP1vj5mzoT587OJi4Px\n483PlywxP+/Xz7rXrac9QTcgf8AQFq3+Dqh6alSZ56XX9r+unlMXDuOJ1Nc/duvFqPUrSHv/Rea1\nzQSs+/eWnJxNVhasXz+Iu+6CkSPNz+tzf6ieUxcu9zu9Do/XlcebNm2iIcJh2vJE4G5MTh3AXwE/\n8FC1c54DsjFTs2ACt9OB7TXa+htQCDxW4/1AwI49X6RJys7O3vcPri48HjjqKPjlF7jlFvjDH6wf\nGwBeLz2HtiUqdxcb7ptGacduNnUkR7Jo1RJNwYYBZ0khXa89B2d5KSveX0+ZxU+v16+HSy81qRRL\nl8Jxx9WvnfreWyTyOEzeTp1jtHCYfl2CWQCRCUQDFwMf1DjnA2BMxfGJQC4moIsHEirebwacDayw\nd7jS1NX3pvv44yag69TJFDC1S8IPXxCVu4uyVumUduhqX0dyRArowoM/rjn5/QcDFeVNLJaVBRde\n2PB9YRXQid3CIajzAtcB84CfgLeBVcD4ii+A2cAGzIKK54GKjVxog5lqXYpZQPER8HGwBi5Sads2\nuP9+czxlCrhtTGyoKjg8RKteRSpUbhuW9tG/bVmqevXVkJBg9oWdOdPy5kUsEQ5BHcAc4ChM2ZIH\nKt57vuKr0nUVP+8FfF/x3gbg+Iqv46r9rki9Vc9xqK1bboHiYhg40JQxsY3PR/Ln5i9K/gDt9Rpq\nqlMXPoq796EsrQ3RO7aSsORzy9u3Yl/Y+txbROoiXII6kUbr22/hjTdMgeEbb7S3r8SF84jK3UlZ\ny3aUdjzK3s5EGhOnk7yB5wHQwuKadZUuuAC6dDFpFo8+aksXIg0SKXM3WightvD74cQTYfFiU9Pq\n+uvt68tRXsYxF/cg9pe1bL94AnuGj7WvM5FGKGrnNrJuPA9/dCzL5/2GLyHZ8j6++w7GjzflTtau\nhYwMy7sQadQLJUQarWnTTECXmgp/+pO9fbWa/iSxv6ylrFU6e8+xYzNZkcatvGU7irr3xVnm2Zd7\narW+fWHwYLPaffJkW7oQqTcFdSI11DbvpbDQLIoAsyKuWTP7xhS1YyttX7gXgJyxtxCIiravM6k1\n5dSFn9xBZsFEi1kWbAFxCJMmQXQ0vPMOfHlAVdRDU06d2E1BnUg9Pfgg5ORA9+5w7rn29pX+5E24\nSooo6D2Qop4n2duZSCNW0G8wvth4mv20hNiNq2zpo21b7Qsr4UlBnUgNtakltWlTVaL0lClmn1e7\nNP9uPqkfv40/Kprtl2u+J5yoTl34CcTE7lsZnjbrZdv6GTsWWrWq2uu5NlSnTuymoE6kHm66CUpL\n4eyzoVcvGzvyltPhQVNHYffwcZS3bGdjZyJNw76adbNfA6/Xlj5iY6tWu2tfWAkXCupEajhS3sv8\n+TBjBsTEwA032DuWVu88Q9zGnyhr0Y7dWu0adpRTF55KuvaktHUGUXt2kLRwrm39nHkmHH887NkD\nf/vbkc9XTp3YTUGdSB1UbhMEZvqldWv7+nLvyqHdc3cBsP3yyQSiY+zrTKQpcTj21ayzcwrW4TCF\nx51OePZZWLnStq5EakVBnUgNh8t7eeklWLHC5NKMGXPI0yzR/qmbcRUXUNjzZAr7DLS3M6kX5dSF\nr7zThhNwOEla8BGu3F229dO1qylK7POZOpWHK4mqnDqxm4I6kVrKzTW5M2BKGsTG2tdXs2Vf02L2\n6/jdUeSMmWJfRyJNlDelJUXHDcDpLSd17jRb+6rcF/bzz+H9923tSuSwFNSJ1HCovJd77oHdu83C\niCF2brvq89HhwasB2DPscspbq2R9uFJOXXjLPf18AFq8b1/NOoDkZBPYAUyceOh9YZVTJ3ZTUCdS\nC2vWwNNPmxyaKVPMd7u0nPE88euWU57ail3nXWFfRyJNXGGfgfjiE4hfv4K4NUtt7evCC6FzZ+0L\nK6GloE6khoPlvUycaCojjBhhig3bxb13J+2eMXO82/84mUCMjXO80mDKqQtvgaho8k46B7B3wQSA\n2w0332yOH3gAtmw58Bzl1IndFNSJHMGcOTB3LsTHw7XX2ttXu/+7FXdhHoXHDqCg3xn2diYSAfbV\nrJv7Jo7yMlv76tcPzjjDTL9qX1gJBQV1IjVUz3spL6+qRXfllZCWZl+/8SsX0eLDVwi43Gwfe7O9\nc7xiCeXUhT9PZndK23fGnb+HpC8+tL2/G280+8K+/TYsWLD/z5RTJ3ZTUCdyGE8/DevWQXo6jB5t\nY0d+Px0eugZHIMDuoZdS1jbTxs5EIojDQW7F07oWs16yvbu2bavKHV17rfaFleCKlEcBgcDhigeJ\nHMTOnZCVBfn58MQTcNpp9vWV9v6LZN73Z8qTW/DzIzMIxMbb15lIhHHl76XrhKEALJ/9K94WbW3t\nz+MxCyd27IDnn4e//MXW7qQJcpiZmjrHaHpSJ3IId9xhAroBA+DUU+3rx5W3h/SnbgFg+2U3KqAT\nsZgvMYXCXqfg8PtIm/267f3FxppalqB9YSW4FNSJ1JCdnc2yZfDii2b7n8mT7U1va/fsHbjz91DU\nvQ8FJ5xlX0diOeXUNR65gyoWTMx6+fDbPlhkyBCzL+zu3VX7wiqnTuymoE6khkDAbPfj98OoUab2\nlF3iVv9Ay5nPE3A6yRl7ixZHiNiksOcpeBOSidu8hvgfF9nen8NhSpxU7gv744+2dymioE6kpr17\nB/HFF2bbn/HjbezI76fDg1fj8PvZc9bFlKV3sbEzsYPq1DUibjd5p5wLBGfBBEC3bnD++VX7wp5+\n+qCg9CuRS0GdSDUeT1UuzDXXQFKSfX2lzn6d5iu/xZuYwq6RdkaPIgKQN3AEAKkfv43Dc4i9vCx2\nzTXmA+Jnn8GsWUHpUiKYgjqRah57DH75JZtOneCCC+zrx1mYR/qTUwDYPnoi/rjm9nUmtlFOXeNS\nmpFFScejcBXlk5w9Myh9JifDVVeZ46uuysbjCUq3EqEU1IlU2LYNpk41x1OmmG1/7NLun3cRlbuT\n4q49yT9lmH0dich+8gadD0CL94MzBQswciR06gTbt2tfWLGXgjqRCrfcAsXFMHDgIAYMsK+f2PUr\naPXuMwQcTnLG3qrFEY2Ycuoan7yTzsHvjiLhu8+JyvklKH263eb+AoOYOvXg+8KKWEFBnQjw7bfw\nxhsQFWW2+bFNIECHB6/B4fex98yRlHbsZmNnIlKTv1kiBX1OxxEIkP7UzUEpbwL77ws7ZUpQupQI\npKBOIp7fDxMmmONLL4WcnGzb+kqZ9xYJSxfgbZ7MzlFX29aPBIdy6hqnXReOxx8dS+rHb9Nq2pNB\n63fIkGyio+Gttw7cF1bECgrqJOJNmwaLF0NqKlxxhX39OIsKSH/CPAbccckE/M0S7etMRA6prH0n\nto2/G4D0f0yh+ZLsoPSblla1L+x112lfWLGegjqJaIWFVVMhEyZAs2bQr98gW/pq+8I9RO/OoaTT\nMeSdNsKWPiS4lFPXeBUMGMKuc8fg8PvofOsfiMr51fY++/UbxLhx0KoVLFsGL79se5cSYRTUSUR7\n4AHIyYHu3eHcc+3rJ3bjKlpP/wcBh4OccbeaMvMiElI7L7qWomP6E5W7iy5TLsBRan+9kdhYmDjR\nHP/1r5Cba3uXEkH0l0Ui1qZNpi4dmKd1lXHWEqunYgIBMh66FofPS+7pv8fT+Rhr25eQUU5dI+d0\nsfW6ByhLa0OzVd/R4cFrbF04UXlvOeusA/eFFbGCgjqJWDfdBKWlcPbZ0KuXff0k/+8/JC75HF+z\nBHZedJ19HYlInfkSktky8VH8UdG0+PAVWsz4l+19OhxVHySfeQZ++sn2LiVCREqBrEAgSMvWpXGY\nPx8GDYKYGJgxA1q3tqcfZ0kRx448iugdW/lt3K3knjnKno5EpEESF/yX9s//Db87irX/mk9Rz5Ns\n7/P++2HmTBg8GD79VCUrpYrDXAx1viL0pE4ijs9XVcJk7Fj7AjqANi/dT/SOrXg6dCP3DBv3HROR\nBsk/9Vz2nHURTm85nadciHtXju19XnstNG+ufWHFOgrqJOK89BKsWGFWoFWWF6jOqpy6mF/W0foN\nk7RnFke4LGlXwody6pqW7ZfeSHHXXkTvzqHLzSNxlJdZ2n7Ne0v1fWEnTkT7wkqDKaiTiJKbC7fd\nZo4nTTIr0WwRCJDx8HU4vWXknjqckq49bepIRCzjdrPl+ocoT0qj+fKvSX/czu1ljFGjzL6wmzdX\nLdwSqa9ImcFXTp0A5tPwP/5hFka8+KJ9OSxJ2bPImnw+vrhm/PzITHxJqfZ0JCKWi12/gsz7/ozD\n52Xj3a+yZ/hBHulbaPFiuPpqiIuDtWshPd3W7qQRUE6dyBGsWWNWmlWuPLMroHN4Ssh49HoAdo68\nWgGdSCPjyepBzpibAeg49S/Erf7e1v769zcLt7QvrDSUgjqJGBMngtcLI0aYYsOH0tCcujb/fpCY\nnF/wpHdh7xCtdm3KlFPXdOUOvpC9A8/DWVZK1k3n48rd1eA2D3dvmTQJoqLMvrBffdXgriRCKaiT\niDBnDsydC/HxZsWZXaK3bKDNqw8BFYsjXG77OhMRW20fdyslnY4mevuvdL71YvOp0Cbt22tfWGk4\nBXXS5OXkwPVmNpQrrzSbah9OQ/Z+zXj0BpzlpeSdNJSSo3rXux1pHLT3a9MWiIpmy8RH8SYkk7jk\nM9o/c1uD2jvSvWXcOGjZEpYuhVdeaVBXEqEU1EmTNm8e9OwJ69dDhw4werR9fSUumE3ygo/wxcaz\n49KJ9nUkIkHjTW3N1gkPEXA6afP6IyR/+q5tfcXFVe0Le+ut2hdW6k5BnTRJZWUweTIMHQo7d0Lv\n3vDccyZn5Ujqk1PnKCsl4xFT0XjXBX/Bm9yizm1I46OcushQfHRfto820Vbm3eOIXb+yXu3U5t5S\nuW3h7t1wySXmu0htKaiTJufnn+Hkk03NJ6fTlAp47jlTbNgurd94lNitGyhtm8mesy+xryMRCYm9\n54wm78RzcHmK6XLT73EV2PMYzeGAv/4VmjUzMw09ekB2ti1dSROkOnXSpEybBuPHQ2Gh2f5rE9/c\nUQAAFLxJREFU6lTzqddOUTm/cNzIo3CWeth86z8pPra/vR2KSEg4Sj3mSd2W9eSdMoz1T3xoPjna\nYNs2Uyh95cqqQO/uu2s32yCNn+rUSUQrLDT7uF52mTk+4wyYPt3+gA4g47FJOEs95Pc/UwGdSBMW\niIlly6RH8cUnkPTVbNr+6x7b+mrXzhRI/9OfTFA3dSqceips3Ghbl9IEKKiTRm/pUpMz99prEB1t\nPtE+/DAkJtavvbrk1CV8+ykpn8/AHx3D9j/av6WQhBfl1EWe8lbpbL12KgGHg3Yv3kvSFx/W+nfr\nmq/rdlelj7RsCYsWmQ+q06fXcdASMRTUSaMVCJgtv044waxu7dQJXn8dRo60b7eI6hzlZXR4yBS9\n2/X7K/Gmtra/UxEJuaKeJ7Fz1NUAdLrjMmI2r7W1vz59TFHiQYOgoAAuvdTMTBQW2tqtNELKqZNG\nadcuc1ObPdu8vuACuOkmiI0N3hhav/Yw6U/dQlnrDDY88DaBqOjgdS4ioRUI0P4fU0j8LpuSzO6s\nfnUR/mYJdnfJjBnw+ONQWgpdusDbb0PfvrZ2KyGgnDqJGNnZZkXY7NnQvDk89BDcfntwA7r4lYto\n+8K9AOSMuVkBnUikcTj4bfw9lLbtSNym1WTeM85EXfZ2yciRZkaic2ez0v+kk+CRR8Dvt7VraSQU\n1Emj4fXCHXfA4MFml4gePUxuyZlnWtvPYfNefD7avDyV7n86BVdJEfn9zqCo50nWDkAaDeXURTZ/\nXDO2THoMX2w8KZ/NoPVrDx/2/IbuK12pc2cT2F10EZSXw803wznnmPuiRDYFddIobN4MAwfC/feb\n13/6E7zwArRtG7wxRG3fQrerz6T9s7fj8HnZfc5otl1zf/AGICJhp6xtJtuu/jsA7Z+5jYRvPglK\nvzExJph74glISoJPP62awZDIpZw6CXv/+Y8J4vLyzL6t998P/YK85WZS9vtk3nMF7oK9eBOS2XbV\nvRT1PDm4gxCRsNXivX/SctZLeBNSWPXm95S1ywxa3zt3wp13wpKKB8fXX28qAMTEBG0IYrH65tQp\nqJOwVVICN9xgnsiBqdF0992QnBy8MTg8xWQ8NpGWM80gCnucxLbxd+NLSgveIEQk/Pn9ZDx2A82X\nL6S4ay9Wv7KQQGxcMLvntdfgn/8En8/sef3229C9e9CGIBbSQglpUn780azoeuEFU0F98mQzzRCM\ngK4y7yVu7TKOvqwPLWe+gN8dRc5lN/Lr5H8ooJN9lFMn+zidbL3mfspatiN+3TI63v/nAxZOWJVT\nd4juGTcOXnrJFC5evtyUQnnxRdvXb0gYUVAnYSUQgOefNwHdqlWQkQH//rfZ2DoYtecqRkGraU/S\nfcwA4javobRNBzbd/Sp7h15q25ZAItL4+ZslsmXS4/ijY0ib8yYt3/6/oI/huOPMArLf/c7Mdvz5\nzzBqFOzdG/ShSAho+lXCxt69Jndu5kzzevhwkwgcHx+8Mbj37CDzb2NIWjjPjGnQBWz/400EYoJY\nL0VEGrXEhfNo/+ztBFxu1j73GYW9TwvJOObMgQcegOJiSE83wd6pp4ZkKFJHyqk7PAV1Ye7rr+Hi\ni2HLFhPE3XYbDB0a3DEkLpxH5l1jiNq7A198Ar9deScF/QcHdxAi0iS0evNx0uZOozy5Jaum/UB5\nq/YhGceWLWbrxFWrzETDnXea0lBud0iGI7WknDpplHw+uO8+U65kyxY4+miYNi24AZ2jrJT0xyfR\ndcJQovbuYE5GFhseeEsBnRyRcurkUHZccj1F3fsSlbuTLpMvwFFWamtO3aGkp8Mrr5h8u0AA7rkH\nTj8dfvkl6EORIFBQJyGzdaspHHznnSa4u/xyePllcxMKlphNq+k+dgCtpz1JwOlkx6hr2HHZjdrH\nVUQaxuVm64QHKU9tTbOfFpPx8HUhG4rbDdddB88+a8pCff21WR373nshG5LYRNOvEhIffWT2bt2z\nx6xove8+OPHEIA4gECBt1ktkPHI9rtISylq0Y+u1U/FkHRfEQYhIUxe7cRUd770Cp7ecTXe8wO7z\nrwzpeHJzTWmoBQvM6yuugKeegmbNQjosqUE5dYenoC5MlJaaxQ9PPWVeDxgAf/+7+fQYLK78vXT8\n+5WkfD4DgLyThpLz/27FH9c8eIMQkYiR9MWHtHvhHvzuaNa8+CXFxw0I6XgCAXjnHXjySbPNWLdu\npqbd8ceHdFhSjXLqJOytXQsnnGACOpfLVD1/+ungBnTNv/+CYy7pQcrnM/DFxrP1qnvZds19+wV0\nypOS2tK1IrWRN3AEe84cyRfeMrpMPp/4lYtCOh6HwyxMe/116NSp6t78xBOqadfYKagT2wUCptZc\n796wbJkpjPnyyzBmTBDLvnm9tHv2DrpddQbRO7ZS0vkYNt4/jfxThgVpACISybb/cTKedp2I3vUb\nR487ge6X9yd19hs4ykpDNqasLBPYXXghlJXBjTfCsGGwY0fIhiQNpOlXsVV+PowfD2+9ZV6ffbYp\nV9I8iDOd0Vs30un20TRf+S0Bh4Pdw8ex88LxWtMvIkHlLMqnxQcvk5w9C1dxAQDlyS3ZdeFf2Dnq\n6pCVPQHIzjYrYwsKoFUrE+ydfXbIhhPxlFN3eArqQmDxYvOIf+NGs7H0rbeagsLB2xkCUuZOo+PU\nq3AVF1Ce0pJtV99H8dF9gzcAEZEaHKUeEhfOJXXedGK3/AxAwOUmd9D5bB99A0W9TgnujbLC9u1w\n++2wdKl5feONpnhxdHTQhxLxFNQdnoK6IPL74bHHzBM5rxe6djU3hszM4I3BWVRAh4euIW32GwDk\n9x3Eb1feib950hF/d9GqJQw4up/dQ5QmQNeK1MUB10sgQNzapaTOnU7C99k4/H4AirN6smP0Dew5\nZzSB2LigjtHnM+kyzz9v7uW9e5tFFF27BnUYEU9B3eEpqAsCvx9+/BFuugk++cS8d/HFcMMNwf2k\nF79yEZ1vu4SYbRvxR8Ww/fLJ5A46v9affPWHWmpL14rUxeGuF/ee7aR8+h7Jn8/EXZgLgDchhV3n\nX8nOi66lrG3HYA6V5cvNB/OcHLPLzzPPmDJUIXiAGJEU1B2egjob7NoF334LCxeaYpZLlph8DIDE\nRJOfcVowtzz0+Wj92sO0f+4uHD4vnoyubL3uAcraZQZxECIi9ecoKyVx0SekzH2LuM2rAQg4neSd\nOpwdo2+goN8ZQYusCgth6lT4+GPz+qKL4F//gqQjT3hIAymoOzwFdQ1UXg4rVsA335gA7ptv4Oef\nDzyvVSvo189UL2/VKnjji9qxlU53XEbC9/MB2H3OaHZePIFAlJJBRKQRCgSI/XklqfOmk7j4Mxw+\nLwAlmUez45Lr2TPsj/jj7V9xFgjAf/8LDz4IHg+0bg2DBkH//mZqtndvSEmxfRgRR0Hd4Smoq6Nt\n20zgVvkU7ocfoKRk/3NiYuCoo8x2Mz17wnHHBTeQA5M7l/TVbDo8cDXugr14E5LZdtW9FPU8ud5t\nakpNakvXitRFfa8XV+4uUj6fQcr//oM7bzcAvmaJ7Boxjp0XT6A0I8vqoR5g82YzHbtmzYE/69jR\nBHf9+kGfPuartXZabBAFdYenoO4wPB4TtH3zDXz1lfm+deuB56Wnm8CtVy/o0cPUOApaVRC/n+ht\nG4lfu4y4dcuIX7OUuHXLiflt075TCo87kW1X3YMvqWHVjPWHWmpL14rURYOvF285iYs/I2XedOJ/\nXglAwOEg/8Rz2DH6BvJPPNvW4p8+nwnq1qyBVavM188/mxp3NbVpY3ao6NcP+vY1QV+HDsrJqy0F\ndYenoK5CIACbNu3/FG75cjO9Wl18PBxzzP5P4ZKTgzNGZ2E+cetXELd+OfFrfiBu7TLiNvyIq6To\ngHP97ijK2nYkd9AF7B3yhyBWMxYRCZ3YTatJmTedxG8+xuk1N3BPehd2XHI9u4ePw988MSjj8HrN\n35TVq83XqlWwbh0UFx94bkpKVaBX+UQvK0u37YNRUHd4ERvUFRaaBQzffGM2cF60CHbu3P8ch8OU\nG+nRwwRwPXqY1y6XzYPz+4nZuoG4dcuJW7vUPH1bv5yY3zYf9HRvUhqejCw8HY+itEM3PB26Utam\no4oIi0jEchXkkvz5TFI+fZeovWYrCF9cM3afO5Ydl0ygNLN70Mfk98OWLfs/0VuzxhSjr6lZMzP7\n07ev+erTB44+Wrd1BXWHFxFBnd9v9vCrXMywcCH89JN5v7rExP2nUY85xv4dHszTt+XEr1tO3Jof\niF+7jNgNP+LyHPhxzu+OoqxdJzwdupoALqMrpR264ksIzqNCTalJbelakbqw9XrxeUn4/gtS5k2n\n2Zof9r2d3/9Mdoy+gbxThgXhk/qhBQKmuHH1J3pr1pgqCjXFxMCxx5ogr18/M3XbowfExgZ/3KHS\n2IO6ocCTgAt4EXjoIOc8BfwOKAbGAT/U4XebVFAXCJg8uIICkwu3cKHJhVu8GPLy9j/X5YIuXaqm\nUXv0MLlxtuU1+P3EbPm56unb2orct5xfDnp6eXILStOz8GQeRWmHrng6dKOsTQdwhe5j2qtz32Ts\n0MtC1r80HrpWpC6Cdb3E/LqelI/fIunrOTgr9pYtS2tDWbtMfAnJeBNS8CWl4U1MwZeQgi8xxbyX\nkLzfsT++ue1JcLt3V+Xp/fSTCfh+++3A89xuszCv+hO9Xr0gIcHW4YVMfYO6cHjA6QKeBoYAW4HF\nwAfAqmrnDAOygK7ACcA/gRNr+bu2Ki83AVZJifmqy3FxcdV7Nb8qz/F49j8uLTXfDyUtzQRulU/h\nunc/wqebQABHaQmukiKc1b88ReY9T/GB7xcX4iwpxFlciNNTvO93XcUFRG/5GVdpyQHd+N1RlLXv\nhCejmwngMrpSmpEVtKdvdVFQXBjqIUgjoWtF6iJY10tpRhY5f7qDHZdcT/IXH5Dy8TtE79pG9O6c\nOrUTcLnxNU/C1zwJb0KyCQATkvEmpeJNTMWXmGpeVwaH1Y+bJ9XqyWBaGpx8svmqVFBggrzKJ3qr\nV8Ovv5ri9j/+CK+9Zs5zOExO3vHHm4cV0dHmKV90tPmKiqo6buh7UVGNI/cvHIK6AcB6YFPF67eA\n37N/YHYe8GrF8bdAMtAG6FSL322wQYPMI+LS0v0DLY/HrAYKhagoc/FmZu6/mCHDsYVW7zyNc1sh\nzvWFVcFZRUDmrAzUKoK1gwVgDVWe3JLSjKx9wZt5+pYR0qdvIiKRxt8skT2/+yN7zhlN9LZNuIry\nK74KcBYXmOPCPJwV77mK8nEVF+AsLjTfy0px5+3GnbebmHr074tPwJuYwpaJj5I75A+1/r2EBDPt\n2q/aTHVJiVmAUT3Q27jRvLduXT0GVw8u1/4Bn9t9YBBYPRiMiYErr4RRo4IzPgiPoK498Gu111sw\nT+OOdE57oF0tfrfBli+HvXsP/jOH48AIv/I/bPVPDDExVa8rj2NiDn5e9XZq/qzygjnUJ4bCn3fR\n89WDzUAfmt8dhT8qFn9UDL7oGHMcHbvvuy8qBn9MnDmOjtv/Z9WO/dExlCa3xhdfY9WVF9iSW6cx\nhdLmjRsp2nyQRA+RGnStSF2E8nopIglikyAWqGXVJ4e3HJenCFdJAW5PIa6SItwlBbg8heZ7SRHu\nknxcJYW4SwpxlRTi8hTiKi3G5SnGVVyAq7iAwjz/QXPn6qpdO/M1eLB5XVZm6udt2GCe7nm9Zvas\nvNwcV76u/r3m8ZG+fL79jytn02pryJCG/++ui3DIqRuJyYv7c8XrP2ICswnVzvkQeBD4quL1p8At\nQGYtfhfM07wuFo9bRERExA4/Y9LO6iQcntRtBTKqvc7APHE73DnpFedE1eJ3oR7/x4iIiIhI3bgx\nEWkmEA0sBY6ucc4wYHbF8YnAN3X4XREREREJkt8BazDTpH+teG98xVelpyt+vgzoc4TfFRERERER\nERERkXDwB+BHwMf+T/VqGgqsBtZhFl5IZEoFPgHWAh9jSuYczCZgOabw9aKgjEzCRW3uFU9V/HwZ\n0DtI45Lwc6RrZRCQh7mP/ADcEbSRSbh5GdgOrDjMObqvAN2BbsDnHDqoc2GmbDMxCy6Ujxe5HgZu\nrji+BbPS+mA2YgJAiSy1uVdUz/s9gaq8X4kstblWBmGK5IuchgnUDhXU1fm+0gjqI9fLasxTl8Op\nXvS4nKrCxRJ5qhe3fhU4/zDnhkMZIAmu2twrDlYgvXWQxifho7Z/V3QfEYAvgUNUwQXqcV9pqkFd\nbRyqoLFEntaYR+BUfD/UP5oApkbiEqpqI0rTV5t7xcHOSbd5XBJ+anOtBICTMdNps4FjgjM0aYTq\nfF8Jhzp19fUJZquwmm7DFCs+koC1w5Ewd6jr5fYarwMc+to4BfgNaFnR3mrMJy1p2mp7r6j59EX3\nmMhTm//m32NqqhZjqje8j0kXEjmYOt1XGnNQd1YDf782RY+l6Tjc9bIdE/DlAG2BHYc477eK7zuB\nmZipFgV1TV99C6RvtXlcEn5qc60UVDueAzyLydXdY+/QpBHSfaWGz4G+h/iZChdLpYepWqV2Kwdf\nKBEPJFQcN8NsWXe2/UOTMNCQAukSWWpzrbSm6unLAEz+nUSuTGq3UCKi7ysXYOahSzBPX+ZUvN8O\n+G+181S4WMB8Sv6UA0uaVL9eOmNu0EuBleh6iTQNKZAukeVI18q1mHvIUuBrzB9riUzTgW1AGSZm\nuQLdV0REREREREREREREREREREREREREREREREREREREREREREREREREREREQmYqsBHwAzOoKlb9\nj4r3vgGuC83QRERERKQuzsYEcD2rvXchcHVohiMiIiIi9eEENgNPVbzuDVwfuuGIiIiISH3dA+wG\nsoB7QzwWEREREamnTMAHzARcoR2KiIiZQhARkbr7FTMFG4cJ7kRERESkEboTuBnwAhkhHouIiIiI\n1MN4oD8QBewE7grtcERERESkrkYAv6/2+glM3ToRERERaSTOAabUeK8HpmbdkOAPR0RERETq4vfA\nHMyCiI+rvZ+E2VXCh3la91DwhyYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIi\nIiIiIiIiIiJN0v8HnEprz5BsSlgAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f31589f0fd0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "HistMedianas, HistMedias = ComparaHistogramas(medianas,medias)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Suceptibilidad a Datos Atípicos \n", "\n", "Un dato atípico se define como aquel dato que se encuentra fuera del rango de oscilación de los datos, o bien que no es coherente con la física del fenómeno que se está sensando, los siguientes son ejemplos de datos atípicos:\n", "\n", "- Valores exageradamente altos.\n", "- Valores negativos en casos de fenómenos sin valores negativos.\n", "- Valores fuera de un rango definido.\n", "- Secuencia de valores con el mismo valor (no es tanto atípico, pero si es un indicio de problemas)\n", "\n", "Una forma de identificarlos es a partir de la media de los valores y la desviación, o los percentiles sobre los que se ubiquen.\n", "\n", "- $ValAtipico > \\mu + N \\sigma$, donde $N$ oscila de acuerdo a lo fuerte que se quiera hacer la pregunta \n", "- $ValAtipico > P_{99.9}$\n", "___\n", "\n", "Dependiendo de la cantidad de registros en los datos, de la cantidad de valores atípicos y de los valores que estos tengan pueden tener o no consecuencias sobre la serie y sobre posteriores análisis que se realicen sobre la misma.\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Ejemplo de robustez ante datos atípicos" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiQAAAGnCAYAAACHP0ybAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXm4HGWZ9//pk5OTkIWcAEkgCRKWhC1AAEVAlCOKwzIi\noo7ipRh11NFBR8d3VGQcx1ffcRzHZRx/bu87MG4gCoIgyDbkIA4jGEhACEsgZCMkIRvZk5Okfn/c\npzydTnV37fVU9fdzXefKqe7qqifn7ur+1n1/n/sBIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGE\nEEIIIYQQQgghRMk5FJgDPA48BnysyX7fAhYCjwAn5zM0IYQQQnQKBwOzBn8fAzwFHNuwzwXAbYO/\nvxL4fT5DE0IIIUSnchPwuobHvge8vW77SWBSbiMSQgghhPN0pXisaVg55oGGx6cAy+q2lwNTUzyv\nEEIIIUpOd0rHGQNcD/wNsDng+VrDtte4w+TJk70VK1akNBwhhBBCFMyzwFFhd04jQzIcuAH4CVay\naeR5zPzqM3Xwsb1YsWIFnufpx5Gfz3/+84WPQT+Kics/iodbP4qHez/AkVHERFJBUgP+A1gAfLPJ\nPjcDlw3+fjqwAViV8LwiYxYvXlz0EEQDiolbKB5uoXiUn6Qlm1cB7wIeBeYNPvZZ4GWDv38fm2Fz\nAfAMsAV4b8JzCiGEEKJiJBUkvyNcluXyhOcROTN79uyihyAaUEzcQvFwC8Wj/DSaTYvEG6w5CSGE\nEKLk1Go1iKAz0pz2KypEf39/0UMQDSgmbqF4uIXiUX4kSIQQQghROCrZCCGEECJ1VLIRQgghROmQ\nIBGBqB7rHoqJWygebqF4lB8JEiGEEEIUjjwkQgghhEgdeUiEEEIIUTokSEQgqse6h2LiFoqHWyge\n5UeCRAghhBCFIw+JEEIIIVJHHhIhhBBClA4JEhGI6rHuoZi4heLhFopH+ZEgEUIIIUThyEMihBBC\ndDi/+AWccgoceWR6x4zqIelO79RCCCGEKCNXXw1btqQrSKKiko0IRPVY91BM3ELxcAvFIxmbNsGa\nNcWOQYJECCGE6HA2bYK1a4sdgzwkQgghRIdz5JFwzjnwf/9vesdUHxIhhBBCRGLjRpVshKOoHuse\niolbKB5uoXgkw4WSjQSJEEII0cHs3Ak7dhSfIZGHRAghhOhg1q6Fgw6CCRNg9er0jisPiRBCCCFC\ns2kTHHIIrF8Pe/YUNw4JEhGI6rHuoZi4heLhFopHfDZtggMOgDFj4KWXihuHBIkQQgjRwWzcCGPH\nWtmmSB+JPCRCCCFEB3P77fD1r5sw+cY34Iwz0jmu1rIRQgghRGg2bYL994eenmKn/qpkIwJRPdY9\nFBO3UDzcQvGIz6ZNbpRslCERQgghOhjfQzJ8uDwkPvKQCCGEEDnzxS9aY7TRo02cfPnL6RxXfUiE\nEEIIERpXSjYSJCIQ1WPdQzFxC8XDLRSP+PglmwMPlCARQgghREH4s2wOOqjYWTZpeEiuAi4EVgMn\nBDzfB/wKWDS4fQPwpYD95CERQgghcuaii+D974fp0+Gtb4UFC9I5bhF9SK4G/h34UYt97gUuSuFc\nQgghhEiRKpVs7gPWt9nHpdk8IgSqx7qHYuIWiodbKB7x8Us2BxxQ7AJ7eXhIPOBM4BHgNuC4HM4p\nhBBCiBD4s2yGDy92gb08GqM9DBwKbAXOB24CZgTtOHv2bKZNmwZAb28vs2bNoq+vDxhSv9rOZ9t/\nzJXxaNu2fVwZT6dv+7gynk7f9nFlPGXZXrOmnz/+EY4+uo8DD4Rbb+1n6tR4f//+/n4WL15MHNIq\npUwDbiHY1NrIc8CpwLqGx2VqFUIIIXJm9GhYudKyJKefnt4Cey42RpvE0IBOG/y9UYwIx2i84xDF\no5i4heLhFopHPHbvhu3bTZRAsVN/0yjZXAucDRwELAM+DwwffO77wFuBDwO7sLLNO1I4pxBCCCES\nsnmziZGuwfREkTNtXJr9opKNEEIIkSPLllmZ5vnnbfuTn4RDDoH/9b+SH9vFko0QQgghHMSf8utT\nZMlGgkQEonqseygmbqF4uIXiEQ9/yq9PkQvsSZAIIYQQHYrfpdWnSA+JBIkIxJ9fLtxBMXELxcMt\nFI94qGQjhBBCiMJRyUY4j+qx7qGYuIXi4RaKRzxUshFCCCFE4TSWbIpcYE99SIQQQogO5YorLEPy\n2c8OPTZ+PCxaZP8mQX1IhBBCCBGKRg8JFFe2kSARgage6x6KiVsoHm6heMSj0UMCxRlbJUiEEKIk\nbNwITz1V9ChElWj0kEBxU38lSEQgmtPvHoqJWxQRjxtugA9+MPfTlgJdH/FQyUYIIURkli6FuXNh\n166iRyKqgko2wnlUj3UPxcQtiojHkiWwdSssWJD7qZ2nqOtj+fJCTpsaKtkIIYSIzNKltjT8Aw8U\nPRLhc8YZJhTLiko2wnlUj3UPxcQtiojH0qXwlrfAgw/mfmrnKer62Ly53FkSlWyEEEJEwvNg2TJ4\n61uVIXGJ7dvhhReKHkU8PA+2bJEgEY4jv4J7KCZukXc8Vq+GMWOsRPDss3ZnLoYo4vrwPBMkK1fm\nfupU2LIFRo6EYcP2fvzAA+UhEUII0YSlS+FlL4OeHjjhBHjooaJHJHbssH/LmiEJ8o+AMiTCMeRX\ncA/FxC3yjocvSABe+Ur5SBop4vrYvt3+Lasg2bhx3xk2UNwCexIkQghRApYuhcMOs99PO00+EhfY\nts3+LasgaZYhGT7cyoMvvZTveCRIRCDyK7iHYuIWecdjyRJlSFpRxPVR9gxJM0ECxUz9lSARQogS\nUF+yOfJIMySW9YuwKmzfDuPGldfUGjTl16cIH4kEiQhEfgX3UEzcokgPSa1mZRtlSYYo4vrYts1i\nsnZtOdv5B3Vp9SmiW6sEiRBClIB6DwlY2UY+kmLZvt28FgceaNOyy4ZKNqIUyK/gHoqJW+QZj61b\nLb0+YcLQY8qQ7E1RHpKRI+Hgg8tZPlPJRgghRCSWLYNDD4Wuuk/s006DP/wh/6mZYoht22C//Wx9\noTL6SNqVbCRIhBPIr+Aeiolb5BmPev+Iz0EH2c9TT+U2DKcpqg/JyJEmSMqYIWlXspGHRAghxF40\n+kd85CMplioLEmVIhDPIr+Aeiolb5BmP+h4k9ahB2hBFeUj226/cHhKVbErGfffZYlZCCFEEQSUb\nUIO0otm2bShDUlYPiUo2JeO734Ubbih6FPkiv4J7KCZuUbSHBGDWLHjiiaEW5p2MPCTRUcmmhKxb\nB4sXFz0KIUSn0kyQ7LcfHHcczJuX/5hE+QVJq5JNEQvsSZCEoBMFifwK7qGYuEVe8dizB5Yvt2m/\nQcjYahRxffjTfg8+2Eo2npf7EBLRKkMyfDiMHp3vAntpCJKrgFXAH1vs8y1gIfAIcHIK58yVThQk\nQgg3WLXK1kvZb7/g59UgrTj8DMmoUTBiBGzYUPSIotFKkED+ZZs0BMnVwHktnr8AOAqYDnwQ+G4K\n58wVX5CUTf0mQX4F91BM3CKveDQr1/goQ2IU6SGB8pVtPK91p1YopyC5D1jf4vmLgB8O/v4A0AtM\nSuG8ubB7twVt5Eh48cWiRyOE6DTaCZIZM+ymSZ9P+eOXbKB8gmT7dujuhp6e5vvkPdMmDw/JFGBZ\n3fZyYGoO502Fl14y088RR3RW2UZ+BfdQTNwir3gsWRLcFM2nqwte8QqVbYpcywbKJ0jalWsg/wxJ\nd07nqTVsBxY/Zs+ezbRp0wDo7e1l1qxZf0rD+W+2vLenTu3jgANg9Oh+br0VTjut2PHktT1//nyn\nxqPtfubPn+/UeDp9O694LF0Ke/b009/ffP9Jk/r5+c/hwguL+3sUvV3E9bF9ex8jR9r2wAC88II7\nf492288/D2PHtt7/oIP6WLMm/PH93xfHvHtvFApxmQbcApwQ8Nz3gH7gZ4PbTwJnY0bYejzPQZPG\ngw/C5ZfDa14DEyfCpz5V9IiEEJ3ExRfDZZfBJZc03+fmm+E734Hbb89vXALOPx8+9jH796tftZk2\nX/ta0aMKx7x58N73wuC9ZyBf/rJVCf75n+Odo1arQQSdkUfJ5mbgssHfTwc2sK8YcZZ162w+9rRp\nnVWyEUK4QTsPCQzNtHHwnq7SVL1kU0YPybXA/cDRmFfkfcCHBn8AbgMWAc8A3wc+ksI5c6NTBUl9\nCk64gWLiFnnFo52HBKwPxtix8MwzuQzJSYq4PqouSMroIbk0xD6Xp3CeQuhUQSKEKJ7Nm2HrVvti\naIefJZk+PftxCcNfXA/KJ0hadWn1KeO030rTKEg6JSXqm5WEOygmbpFHPJYts3JNLUQVvtP7kRRx\nffiL68FQt9ayUNWSTaXxBcmYMdZGV3P9hRB5EcY/4tPpgqQI6ks248fbdlkWOnSxZCNB0gZfkEBn\nlW3kV3APxcQt8ohHGP+IzymnwGOPwY4d2Y7JVYrykPglm1rNsiRlKduEKdnkvcCeBEkbOlWQCCGK\nJ0qGZPRo84888ki2YxJD1JdsoFw+kjAZkrwX2JMgaUOnChL5FdxDMXGLPOIRRZBAZy+0V8T1UV+y\ngXL5SMIIEsi3bCNB0oZOFSRCiOKJKkjkI8mPPXtgYGDvtWDKliFpV7IBCRKn6FRBIr+CeygmbpGX\nh0QZknDkfX342ZH6GVBlEiTtVvr1OfBACRIn8Dwz9Iwfb9vTpsFzzxU6JCFEh7B7N6xYAYceGv41\nxx1nX4jrW62/LlKhsVwD5RIkUUo2eU39lSBpwaZN5qAePty2DzvM7lg6oReJ/AruoZi4RdbxWLnS\nsrMjRoR/zbBhNtvmD3/Iblyukvf1ESRIyjTLRh6SklFfroGhXiSrVxc3JiFEZxDVP+IjH0k+bNs2\nNOXX55BDymNqDTPtF1SycYZGQQKd4yMpwq8wMACPPpr7aUuDPCRukXU84gqSTvWRFOUhqUclm2RI\nkLSgkwVJEfz61/DOdxY9CiHcIEpTtHr8DEknlJaLJEiQTJxoX967dhUzpiioZFMyOlmQFOFXuOce\nuysUwchDsi9f+AJcf30x5846HnEzJFOmQHe3CZpOoggPSWPJprvbShyul/V37jTTdKOgCkIlG0fo\nZEFSBPfcY6o9r66Aovw88ww8+WTRo8iGuIKkVpOPJA8au7T6lKE5mp8dCbNoo0o2jtDJgiTveuzK\nlVZ7nTHDVjgV+yIPyb5s3VrcgpeuekjABEmn+Uhc8JBAOXwkYcs1oJKNM3SyIMmbOXPg7LPt7ytB\nIsKydav76fG4xPWQAJx4oi20J7IjqGQD5RAkYWfYgH0HrluXzwJ7EiQtCBIkndKLJO967D33wDnn\nWBMo+UiCkYdkX4rMkGQZj40brc7f+PkTlgMOgA0b0h2T6+R9fTQr2ZRBkETJkAwfbi0v8ng/SZC0\nIEiQqBdJNtxzD7z2tSZIlCERYdm2rThBkiXLllm5JkyNP4hx4+TFyppmJZsyeUjCkpePRIKkBUGC\nBDqjbJNnPXbxYti8GY4/3j6EJUiCkYdkX6rqIUniHwHo7e28DIk8JOEJu7CeT14+EgmSFjQTJIcf\nXn1Bkidz5lh2pFZThkREY+tW+6CsWgk1iX8ElCHJg6BOrVAOQRJ2YT2fvKb+SpC0oJMzJHnWY+fM\nMf8IyEPSCnlI9mXrVuvwW8SXb5bxSJoh2W8/a861Y0d6Y3IdF9aygXIIEpVsSobnmSDxV/qtpxME\nSV543pChFUyQLF9evTtekQ3bttndW9V8JEkFSa1mZRtlSbKjnYfE5c+wOIJEGZIC2bYNurqCU3Kd\nIEjyqscuXGh/5yOPtO1Ro8w0XLUvmDSQh2Rftm610kYR7xeXPSTQeWWbvK+PZiWbUaNshWaXPTxR\npv2CSjaF06xcA50hSPLCz47UzyaQsVWEYWDA7kInT67erLclS5ILkk40tuZJswwJuF+2UcmmZLQS\nJJ3QiySvemx9ucZHxtZg5CHZm61b7W50woRiMiRZxWPXLvsymzo12XE6LUPiiocEqilIlCEpkFaC\nZPRo60dStbuyvNmzZ2iGTT0ytoowbNtmgmTixGqV+F54wURWT0+y44wbpwxJljQr2YD7gkQlm5LR\nSpBA9cs2edRjH3vM0sqHHrr348qQBCMPyd4UnSHJKh5p+Eeg80ytrvQhAfebo6lkUzI6XZDkQVC5\nBuQhEeHYutXuUIsSJFmRhn8EOq9kkzcq2aSPBEkTOl2Q5FGPre8/Uo8yJMHIQ7I3RWdIsorH0qXJ\nmqL5dJqptQgPSVlLNlE7tea1wJ4ESRPCCJLnnsttOJVj1y747W8h6DNEHhIRBt9DUrUMSVolG2VI\nsqXZ4nrgviCJ2qk1rwX2JEia0OkZkqzrsfPm2SyCSZP2fW7KFFi1ykSLGEIekr0pOkPiuoek00yt\n8pCEJ2rJBvLxkUiQNKHTBUnWNPOPgKnxCRPcvsMQxVPvIVm9ujrT8NPykHSaqTVvyuoh2b3bxj56\ndLTX5THTRoKkCc3axvtUvRdJ1vXYVoIE5CMJQh6SvfEzJKNGQXe33fXliesekk4r2eR9fbSa9jt+\nvH3pb9uW65BCsWmTlV/qm1GGIQ9jqwRJE9plSEaPtpTXqlX5jakq7NwJ998PZ5/dfB/5SEQ7fA8J\nVKcXyUsvmXGwtzf5sTrN1Jo3rTIktZqVbVzMksQp10B5SjbnAU8CC4FPBzzfB7wEzBv8+fsUzpk5\n7QQJVLtsk2U99oEH4JhjWn/oKkOyL/KQ7I2fIYFifCRZxMP3j0S9ew2i0zIkLnlIoJqCxPUMyTDg\n25goOQ64FDg2YL97gZMHf76U8Jy50OmCJEvuuWff7qyNqBeJaIfvIYHqzLRJyz8CnSdI8qZVyQbM\nR+KisTVql1afMnhITgOeARYDA8DPgDcF7JeC3s+PHTvsZ8yY1vtVWZBkWY9t5x8BZUiCkIdkb4rO\nkGQRj7T8IzAkSKrqc2skz+tj1y4rrXV3N9/HVWNrlUs2U4D6r43lg4/V4wFnAo8At2GZFKdZv96y\nI+3SplUWJFmxdSs89BCcdVbr/SRIRDvqPSRVyZCkNeUXbLbaiBGwZUs6xxND7Nhh5ZpW3xFVFCRZ\nZ0ha6LtQhNHeDwOHAluB84GbgBlBO86ePZtp06YB0Nvby6xZs/6kev36YB7b69bBiBH99Pe33n/T\nJli8OP/x5bH9zW9+M5O//65dfcyaBXPntt5/2bJ+nnkGzIJU/N/Dhe358+fz8Y9/3JnxFL29cCEc\ndZRtb9zYP2iCzu/8WcRj6dI+LrggveP19vaxYUP7660K23leH3ff3T+YHWm+/8aNsHZtcX+PZtub\nNsHWre2/3xq3ly6FNWta7+//vrigO/XTgdvrtq8g2Nhaz3NAkDvDc4X77vO8M89sv9+CBZ539NHZ\nj6cI5syZk8lxr7jC8z73ufb77d7teT09nrdtWybDyJxHH03/mFnFpKxcdpnnXX21/X7VVZ737nfn\ne/4s4nHmmZ53773pHe/YYz3vscfSO57L5Hl9LFvmeVOmtN7nlls87/zz8xlPFL71Lc/767+O/rrH\nHvO8Y46J9hrCJS3+RNKSzVxgOjAN6AHeDtzcsM8khjwkpw3+vi7heTMljKEVqt2LxFe+aRPGPwLQ\n1WUdW5cvz2QYmbJ9O5x0UvqGwqxiUlaq6iFJq2QDnWVszfP6aDfDBqpZsnHdQ7ILuBy4A1gAXAc8\nAXxo8AfgrcAfgfnAN4F3JDxn5oQVJKNGmVtZvUjC8dJL8PjjcPrp4fYvq4/E7xqqtY6ypWp9SAYG\n7LNkSqMLLwHqRZINrRbW83FZkMSZZZPHAntJBQnAb4CjgaOALw8+9v3BH4D/D5gJzMLMrb9P4ZyZ\nElaQQHWNrfU1wWasXAk//nH4N+h998ErX9n+zsKnrM3RfIG6aFG6xw0Tk04iiwzJ3XfDf/1XuH3T\njseKFba20/Dh6R2zkzIkeV4frRbW85k40TIKrq3JFXVhPZ88FthLQ5BUDgmScPz61/De98KFF4bL\nEoUt1/iUOUMCypBkTRZ9SH75S/j+99vvlwVp9iDxUYYkG8KUbLq77XvEtcxd3JINZF+2kSAJQIIk\nXD124UL4+7+HU0+Fk0+G229vvX+Yhmj1lLU52qpVNh0w7QyJPCR7U58hGT3aymRJp7guX26ZvDC+\nsLTjkbZ/BDorQ5K3h6RdyQbcLNvELdlA9s3RJEgCkCAJx8KFcOyx8KUvwbXXwgc/CJ/4hM3Rb2TN\nGssYvPzl4Y9f1gzJqlVw3HHpCxKxN/UeklotnSzJ8uWW4bIp5/mSZlM0n04SJHkSpmQDbgqSuCUb\nyL4XiQRJABIk4eqxCxfC9On2+9lnw/z59qH6ylfCE0/sve+991oztCj18TJ7SE4/XR6SrKnPkEB6\nguS1r7UsSTvSjkcWGZJOKtnkeX2EKdmAm4JEJZuSIUHSnj174NlnhwQJ2N/s+uvh8svhNa+xWryf\n+o7qH4HyZkhWrzZRtmRJto70TqfeQwImSHz/Thy2b7dswlveAr/9bfLxRSULD4kyJNkQVpAcfLB7\n69kkESQq2RRAFEFS1V4k7eqxzz9vdcjGN3atBn/5l3aH+b3v2Yf72rXxBMn48bB7t6UYy8SqVSZU\nDzjAZk6khTwke9OYIUk69ff552HyZMv2hcmQlMFD0kkZkjyvj3YL6/m4miGJ6yFRyaYAogiSTu1F\nUl+uCeKYY+D3v4cjjoATT7Q715NOinaOWq2cWZJVq2z65hFHyEeSFbt3W9+OESOGHktaslm+HKZO\nNV/USy+ZQMkLz5OHpEyUuWQjD0mJ2LULNm+2CzksVSzbtKvHthMkYF8W//qvcNVV8I//aN1Xo1JW\nQTJxIhx+eLqCRB6SIXxDa/3iZmkJkloNXv3q9lmSNOOxYYNdH1E+d8LQSYJEHpL2+DPR2q1k34wD\nD5SHJFc2bLCLOMqX57RpnddzIowg8fmzP4OPfjTeecpmbN21y1aLPuggZUiypNE/AukJEggnSNIk\nC/8IdFbJJk+yLNlk6TvbssXGPWxYvNcrQ5IzUco1PlXMkLSrx0YRJEkoWy+SNWvs/dPdnb4gkYdk\niEb/CKQjSA491H5/zWvaG1vTjEcW/hHorAyJa2vZwJCpNazHcNcuOP54+MEPko2vGUnKNSBBkjsS\nJOFYuBBmzMj+PGUr2fj+ETBB0mmZs7yo70Hik2aGZNYsy1qsy2kZ0N/9LrrHKgxjxph4c619edkJ\nK0hGjbLSddgs1U032c3M5z6XzUyvJDNsQNN+c0eCxGhVj929275ojzoq+3GUUZBMnGi/p50hkYdk\niKwyJL4g6e62XjK/+13z/dOKx65dtibUZZelcri96Ooy033ZZqrFIW8PSZiSDUQr23z96+a3+8lP\n4O1vT/97JckMG8h+gT0JkgYkSNqzbJmZmxq/ELKgbB6S1auHMiSHHGJ+kq1bix1TFWnmIUnSh6Re\nkICVbfLwkdxxh32GHHNMNsfvpLJNXoTt1ArhBcnvf2/lnYsvhnPPhc98Bt70JptkkRZJSzZZL7An\nQdJAHEFy2GH2pVmlJlit6rF5+UfABMny5eXp81JfsunqStfwLA/JEEEZkv33t6nA27ZFP97OnZaK\n9mMHZmxtlTZPKx7/+Z+2SGVWdIqx1UUPCYRvjvaNb8Df/M2Q4fRjH7OlNmbPTu+7JWnJBrIt20iQ\nNBBHkIwaZXchndKLJE9BMnq0/X2zNFKlSb0gAc20yYogD0mS9WxWrLAvjvrZB6edBo8/nnzBvlas\nXQt33WXp+axQhiR90i7ZLF4Md98N73vf0GO1GnznO/baL34x9lD3ImnJBrLt1ipB0kAcQQLVK9u0\nqsfmKUigXD6S1auHPCSQrrFVHpIhgjIkEF+QNJZrwL5wZs2yVHoQacTj2mvhwgvT7z9ST6dkSPK8\nPtIu2fz7v1uWrDF7MWIE/PKX1svphhvijbWetDIkEiQ5IUHSHgmS5ihDkg9BHhJIV5BAuOm/Sbj6\nakvJZ4kyJOkTpWTTTpBs3Ghlu2a9miZNghtvhA9/GB55JPJQ9zlXUkFy8MHp+lrqkSBpQILEcMVD\nAtafoSzG1kZBkma3VnlIhsgiQ+L3IKmnVYO0pPF49FEba9Q1nqLSKYKkrB6Sq66C17++9bIBp5wC\n3/62mVyTGLfTyJD8x3/ApZcmO0YzJEgakCBpza5d1p/hyCPzO6cyJKKRIA8JpJ8hOfNMePBBM72m\nzX/+p031jds1MyydUrLJk7CdWqF1hmT3bvi3f4O//dv2x/mLv4B3vxve+tb478c0PCRZIkHSgASJ\n0aweu2SJfeGGvTtIg7IIEs+zL8MJE4YeO/xw85CkMUtIHpIh8vCQgGUXZsyAhx7a97kk8RgYgJ/+\nNPtyDXROhsTFtWygtSC56SZbYfqVrwx3rC98wb6fLr883mdKGiWbLJEgaUCCpDV5l2ugPIJk/Xr7\nkqz/oNp/f3ssSZpV7EsrD0mcv3UzQQLtp//G4bbbTOjk0VzQxQzJSy/BO99Znun8jUQRJOPH2/5B\n09G//nX4xCfCn7ery5ro3X+/zcCJSholmyyRIKljzx67cMePj/7aqvUiaVaPLUqQlMFD0liu8Umr\nbCMPyRDNMiQTJ8bLkCxb1lyQNGuQliQeWfceqcfFDMmSJTbD6Mkn0ztmntdHlJJNrWY+ksYsyQMP\n2HTziy+Odu6xY+Hmm+F//2944olor1XJpkRs3Gh9L7q7o792v/06oxdJEYJkyhQzhe3ene95o9JM\nkKRpbBVGmh6SgQF7zcEHBz9/1lnw3/+d3vtv9Wro74e3vS2d47XDRUHix+iWW4odR1yiZEgg2Njq\nN0KL831zxBFw3nn2voyCSjYlIm65xqdKZZtm9dgiBElPj819j7qMd9409iDxSStDIg/JEGl6SFau\ntNcNHx78/KRJ9vPYY3s/Hjce11wDF12U3xeDiyWbNWuswVaagsRVDwns6yNZssQa4tU3QovKCSfs\n+55sh0o2JUKCpD1PP52/IIFy+EiyLtmIIdIUJK38Iz6tpv9GwfPy6T1Sj6sZkje9yaY+l6ULs8/A\ngJVhomQWwRroAAAgAElEQVQ2GgXJv/+7vQeSlE9OOAH++Mdor1HJpkQkFSTHHgvz5qU3niIJqsfu\n3Gkf3kcckf94yuAjaSVI0ujWKg/JEM1Mrb299tyOHeGP1awHST1BxtY48Zg/39LmZ58d+aWxcTVD\nMnWq9WC57bZ0jpnX9RE1OwJ7C5JNm0yUfuxjycYRV5AoQ1ISkgqSc8+FO+9Mbzyu8dxz5ufo6cn/\n3C97WbwMSZ6zW7Iu2YghmnlIarXora3DZEh8Y2vSWSFXXw3veY/NlsgLVzMkBx1kpauy+UjiCJJ6\nD8lVV8HrXte6EVoYDjnE+kKF9S16njwkpSKpIDntNLuLD7Oyo+sE1WOL8I/4xCnZ/Pa3cPTR+Zlh\nm2VIpk6156LctQchD8kQzUo2EL1sE0aQHHaYpeiffXbosajx2LHDZpa85z2RXpaYkSNNqG3fnu95\nW7FmjcXpwgvNS5FG47m8ro8oC+v5+BmSKI3Q2lGrRfORbN9uPqlmXikXqKQg+fzngxsZtSOpIOnu\nthRkVbMkZRMk11xjqer587MZUyPNBEl3t33hLVmSzzg6gXaCJEpmLIwgqdWSr2vz61/DzJk26ypv\nxo1zq2zjZ0gmTrRS9733Fj2i8ERZWM/HFyS/+pVlS04/PZ2xRCnbuF6ugYoKkptugjlzor8uqSAB\n+LM/gzvuSHYMFwiqx5ZJkAwM2OqYF1xgUyzzoJkggXTKNvKQDNHMQwLRe5G06kFST6OxNWo88uw9\n0ohrZRs/QwLwxjemU7Ypg4ckaiO0dkQRJK6Xa6CCgsTzLK36+OPRX5uGIHnDGywFWZUGafUsXGjd\nJYsg6gJ7d91l4um9781PkDTzkEB6xlZhNPOQQDYlG0iWIVm5En73O3jLW+K9PimuGVv9DAmYILn5\n5vJ0bY1TsvFF8vLl8OY3pzeWmTOVIXGaF1+ELVuiz8+GdATJYYfZMco+28Y1D8mkSfaBGtaHce21\ntiKlb0bM2keyebN9oI4ZE/x8Gs3R5CEZIi0Pye7dJhYmT26/77HHWpbh+edtO0o8fvITuOQSa7xY\nBEkzJGvX2mqzaeB5djxfkMycaSWxOJ/Z9YSNx3/9V7LzxCnZdHfb/zduI7RmzJwJCxaEuwF2fcov\nVFCQPPus3cU/8UT0LEUaggSqU7apZ/t2++CeNq2Y83d12ZfG8uXt99261VLAf/EXdmcydWr2PhK/\nXFOrBT+vmTbpsWdP67R5FEGyapVd82FmjtVq1rU1aj+SInqPNNLbm0yQzJtnZsw02LjRYjdihG3X\naumVbdrx1FPw+tfbZ0Rc4pRsAL76VfjAB+KfN4hx46zBXJjsq0o2BbBoEZxyiq1HE7VJmQTJEI31\n2EWLrGySprqPSlgfya23witeMeTn6OuL5ymKQiv/CMhDkibbt9uXWbOps1EESZgeJPXUr2sTNh5z\n51pm76yzwp8nbZKaWleuTG9ZjMYVsSEdQRImHtddZ/9u2hT/PHEFyWWXNc+gJiGsj0QlmwJ49ln7\n8J85M7qPJC1BcvbZ8PDDpkirQpHlGp+wPpJrrrFyjU9fX/Y+klb+ERgSJGWpk7tMK/8IRBckYfwj\nPnE6tvrZkWbZszxIWrJZudK+0IJWrI3KmjVD5Rqfs8+2rHbWa4Fdd50J2c2b4x8jysJ6eRDWR9Ip\nJZvzgCeBhcCnm+zzrcHnHwFOTuGcTVm0CI48Eo4/PlpN0vNMkMRZ6beR0aPhla/Mz0yZBY31WBcE\nSZgMyYYNViO+5JKhx17zGjMU7tqV3djaZUjGj7cvpPXr459DHhKjlX8EshUkJ59smdd168LFY/t2\n+xK87LLw58iCpKZWv7dSGo0GgzIkPT3WWPLWW+Mft108HnvMvpSPO66YDElWhO1F0gkZkmHAtzFR\nchxwKXBswz4XAEcB04EPAt9NeM6WxM2QbNliDWPSeqNVoWxTT1kEyY03Wi+Y3t6hx/LwkbQTJLWa\nVv1NizCCJOwXZ1RB0t1tPSTCrLK6cSNceaWVkF/2svDnyII0MiSQjiAJypBA9l1br7vOfGX7758s\nQ+KiIAmTIekED8lpwDPAYmAA+BnwpoZ9LgJ+OPj7A0Av0OKjOxnPPhsvQ5JWucan7IKksR5bFkHi\nz65pJOuyzerVrQUJJPeRyENitOpBAnYdb95svWjaEbYHST3+9N9m8Vi/Hr7wBfscWrkSfvCDaMfP\ngqSm1pUrzbeTRkmlfspvPRdcAPfcE7+jbKvrw/PgZz+Dt7/dvpSTZEhcK9kcc4yZWtvNQOyEks0U\noP4rYvngY+32ifgREI6tW01YTJliabmnnw4/3TNtQXLCCZZ1qW81XWZcECTtPCSrVsGDD5pBrpGs\nBcmqVa09JJDPTJs5c/JrlV8U7TwkXV12LYdZzyZqhgSa+0hefBGuuAKOOsq68t5/P/z0p8V0Zm0k\nDVPr8cenlyFpLNmAzRY58cRsDOjz5tnsrJe/3IylVcqQ9PTYZ8sTT7Terwwlm6RzJsJa9BrtXIGv\nmz17NtMG55X29vYya9asP6levz7Yavu552DatD66uuAPf+hn3Dh49tk+Zsxo//p77ukfNJ2FP1+r\n7Xvv7efEE+GOO/r4yEeSHy/v7W9+85t/+vtv3QqrVvWzaBEcfnhx49u4EZYta/78jTfCn/95H6NG\n7fv8sGH99PfDrl19dHenP76nnuofXM2z+f67dsGiRfHPN3/+fD7+8Y+33P8d7+jjjjtgw4Z0/38u\nbdtqvhbPZvuPGtXPbbfB+9/f+njLl/cxdWq08592Gsyf389XvjKfT3/647zwAnzsY/3cfju86119\nPPQQLF7cz/PPw/Tpxf+9AJ57rn9w6YJ4r1+2rJ8zz4TVq5OP58UXwfOC4/fGN/Zxyy2w337Rj9/q\n+vjqV/s5/XSo1foYO9a+HyZMiDf+7dvhhRdav//y3p40qZ+f/xxmzWq+/zPPwOtel+14/N8XR53i\nmhKnA7fXbV/BvsbW7wHvqNt+kuCSjZeUm2/2vAsuGNp+4xs974Ybwr32F7/wvEsuSTyEvfjpTz3v\noovSPWZezJkz50+/P/qo5x1zTHFj8dmzx/NGjfK8jRuDnz/zTM/79a+bv/744z3vD3/IZmwzZnje\nggWt97n9ds97/evjn6M+JkHs3Ol5tZrn3XZb/HOUgV/9yq7tVvT1ed7dd7feZ/duz+vp8bxt26KP\n4VWv8rxPfWqO95GPeN748Z738Y973vLl0Y+TF/Pmed6JJ8Z77Y4dntfd7Xn/8i/2/0zKn/+5xTCI\nBQs8b+pUu9aj0uz62LPH86ZN87z582378ss979/+LfrxfT71Kc/7ylfivz4LvvQlG1crzj/f8269\nNZ/x+BA+aQEkL9nMxcyq04Ae4O3AzQ373Az4HvPTgQ1AJpO7fEOrz/HHhze2pl2yAXON9/ens5Jl\n3vjKF9wo14AZQ5v5SJYssaZH557b/PVZlm3CeEiSmlrrYxLEqlVWK1+xIv45ykA7DwmEm2nz4otW\nyoiTfu/rg+98p48xYyxV/o1vWKnYVZKYWlevtr/nIYekN8smyEMC5ocYOTKeAb3Z9fHgg+Z/OfFE\n207DQ+JSyQbCGVvLULJJKkh2AZcDdwALgOuAJ4APDf4A3AYswsyv3wc+kvCcTfGn/PrMnBne2JqF\nIJkwwb7I/+d/0j1u3rgiSKC5IPnZz2ydkJ4WHTezEiQ7dphfqH5mTxCHHWaehaymH/tCpOqCpJ2H\nBMIJkjj+EZ8rr7TXf+Ur7YWoCyQxta5caSvUTpqUjqm1mYcEsunaet11Zmb1+8BUzUMC4XqRdMIs\nG4DfAEdjU3u/PPjY9wd/fC4ffP4k4OEUzhmIaxkSKO9sm/qaoEuCpJmxtdnsmnqy6kfi30F2tbma\nRoywD/UoqxbX099GTZmHpfqCpN20X8hekOy3H8yb1x/vxQWw//72hRRn0U9fkEycmO20X5+4giTo\n+tizB37+cxMkPkkzJHEW18uaadPMtNyqz1EnZEicojFDcswxJlLClEwkSJrjkiAJypAsWGBfPq9+\ndevXZtWPpF0PknqynGmzYoV9EUuQhOtFkkSQlI1hw+xvFiczkGaGZOfO9tnEs86yz+003sf3329N\nCY87buixpBkSF0s2XV3tb8A7YdqvM+zZYx0U66fYjRxpd9QLF7Z/fVaC5Iwz7OJK484iT1z0kECw\nILn2WrsDGjas/euzKNuE8Y/4HHFEuIWwgmjnIXnhBZvW2AmCpN0dqr/ceyvi9CCpp108XCNut9ZV\nq0yQHHSQfU4mmVa+dq1N723VRn/4cDjvPPj1r6MdOygefu+RetLIkLgmSKC9j6RTSjZO8PzzpoQb\n75zCNkjLSpAMH25fgnfdlf6x82DzZvsQc+VOslGQeF64co1PFoIkTA8Snyy7ta5Y0RmCxAUPSRmJ\na2z1MyTd3SZq1q6NP4ZWhtZ60vCR7N4N11+/ryCpoocEWvtIdu60m3Z/hWVXqYwgaSzX+IRtIZ+V\nIAF4wxvgzjuzOXZW+PXYZ56xu/p2/oi8aPSQzJ1r/7785eFen4WPJK+STRgPyckn24d+lZujueAh\ngfKtLRTX2OoLEkjuI2llaK3nvPPg3nst1mFpjMe999rMp8bsbtU6tfq0ypD45ZoiF3gMgyNfM8lp\nNLT6FJ0hAfOR3HlnOVd6dalcA5YhWb586G/pZ0fCXmhZ+Ehc8pC87GX2Pi5biTAKrgiSshG3W+vK\nlUPv70mTkr23wmZIxo+HU0+1hTLj4s+uaaSqGRJ/kb2g75kyGFqhQoLE5QzJkUfaCsCPPprN8bPA\nr8c+/bRbgmT0aPswWLvWsgDXXQfvfGe0Y6Rdtlm9OnzJJokgCeMhOeQQmDy52mWbMB6SAw+0L99m\nmSLPszJvJ3lIkpZswN7nSYytYTMkEL1sUx+PgQH45S9tMb1GquohmTDBSjLPP7/vc2Xwj0CFBEmz\nDMn06dY0q9WCTdu22QdXu7uuJJR1ts3ChTBjRtGj2BvfR3LffXYRHtu4vnQb0hYkUTIkEyfa+23j\nxvTOD/YBvHatHb/qgiSMh2TYsNZ+h7Vr7RhZXvOuEdfUmmbJJmyGBIYESZypyvfcYzeCgyuR7EUa\ns2xcLNlA87JNGWbYQIUESbMMSU+PLXb15JPNX7t+vWVHsqyvlU2Q+PVY10o2YGWJZcuimVnrSdtH\nEkWQ1GpmbI0z06aVZ2HVKvug7+6uviAJU7KB1mWbNMo1ZfOQxMmQbN5s14n/ZZZ06m+UDMn06Sai\nHnoo3P718WhWroHqZkigubFVJZucaZYhgfbzs7Ms1/i89rXWwnjLlmzPkzYuCpJDD7V433ADvOMd\n7fdvJG0fSZRpv5CNj+SFF0yIgASJT6teJJ3mH4F4plZ/yq9/s5aGqTVshgTizbbZsQN+9St429uC\nnx850kTWwEC04/q4LEh8H0kjKtnkyEsv2ZuwWR2/XQv5PATJ2LFm0irLTVVfXx8vvWQf/occUvRo\n9ubQQ+Gqq+Doo60dexzSKtvs3m3vnygfsnEFSSvPwooVQ3HqBEESJmXeqhdJ0h4kUE4PSdSSTX25\nBpJnSF58MXyGBEyQ3HCDlUna4cfjzjutEVqz+NZqyco2LnZq9VHJxgEWLbIP+WYlFxcyJFC+ss3C\nhVbucm2q2KGHmsCMU67xSUuQrFljd57d3eFfowxJMsJ4SCD7kk3ZiFOyaRQkeWdIzjzTFsU780xr\nQRCGVuUan7iCxPPs/edqP4/jjrNFRhvL0SrZ5Eircg24kSGBcgmS/v5+J8s1YB6Srq7mKdkwpOUj\nieIf8cnCQ7JiRecIEnlI4hHH1JpFhiSKIBk2DK65Bj7wARMl11/ffN/+/n62bYNbb4W3vrX1ceP6\nSAYG7OYjTFfoIhg92q7/xu7kKtnkSDNDq8+RR9qF1cy/kZcgmTXLDLSLF2d/rjRwVZCcfDJ861vJ\nVllNy0cS1T8C2WVIOqlk44IgKRtpZkji9FTyvOgZErAM7Uc+ArfdBn/3d/A3f9N8fbLf/AZOOWXv\nMQcRN0PicrnGJ8hHogxJjrTLkAwbZn6DBQuCn89LkHR1wbnnliNL0tfX56wgGTsW/vqvkx8njbJN\nlLbxPocfbqI06nTGdh4SP0MyYYIJ37imPdcJ6yFpJ0gOPTTZOMrmIYljam0UJKNHm0CIY87fuNFK\nHXENoS9/OTz8sF07r361tXOop6+vL1S5BuJnSFxcWK+RIB+JPCQ50i5DAq19JHkJEihX2cZVQZIW\naQmSqBmSUaOsE2WaWYx6U+uwYSaSVq5M7/iu4NfwkwgSzzNBMmVK+uNzmTRMrRC/bBNlym8zxo+H\nm26yhmennbb3AnxbtsDtt8Mll7Q/TpIMSVkFiTIkOdEuQwKtfSR5CpI3vMGa9rh+9+qyhyQtzj47\nuY8kjiCBeKv+tvIs1Jtaobplm507rYYfxkTcTJBs2GCLXib9gC6bhySNkg3EN7ZG9Y80o1aDT37S\nOrF++MPwmc/YNfyVr/RzxhnhzhE3Q1KGkk1QLxJ5SHJiYMBa5bab/ulKhuTgg6174IMP5nO+epYu\nDZ8R2LjR/rZRyxFlYsIES9vPmxf/GHE8JJDuqr+7dg11afWpqiAJ6x+B5n1IOtE/AlZu2bEj2s2Q\naxmSel71KivhzJsH55xj/UrClGsgfoakDCWb6dPt2q8vq6lkkxNLl9qHb09P6/1cyZAAXHQRfO1r\n8VoiJ+Hzn7cMzVe+0t6UNmlSH9OnuzflN22Slm3ieEggnrG1mWehvkurT5UFSdg71IMOsmu78TpL\nowcJlM9DUqtFy5J4XrDgLjpDUs+ECWZkfcMb4Nln+7j44nCvS5IhcV2QdHfv65lUySYnwpRrwDIo\n69cHX4x5C5LPftYu6L//+/zOuX493HijZWZ+8Qt4z3tar+9T9XKNTxqCJG7JJq0MSb2h1aeqgiRs\nDxKwssz++9v1XU+nZkggmrF1/Xr7Wzd+AbuSIfHp6rLP0jVrzGMShip7SGBfH4lKNjkRxtAK9qY9\n7rjgsk3egmTkSBMHP/85XH11Puf80Y/gwgtt6vFvf2sX1mtf29z4eNdd/R0hSJL2I4lbsokjSJp5\nFuqn/PpUVZBEKdlAsI8kLUFSNg8JRDO2BpVrIH6GJM6U3yjcf39/6H2TzLJx3UMC+/pIVLLJibAZ\nEgj2kQwM2Idc3sGaMMEc4p/5jJlcs8Tz4Hvfg7/6K9seNcq6GZ5/PrzylcEeiuXLOyNDMmGCNVqL\n4yPxU9pxSzZxmqMF0UkZEpcESRmJUrJpJkjiZkiito3Pkk7LkKhkkxNhMyRggqTRR7J+vaX5ivBK\nHHMM/Oxn1gK91WrESbn3XpsKetZZQ4/VavAP/wD/+q9Wf73hhr1fs3FjX0cIEohfttmwwT6c4nxA\nTZ5smbmtW8O/pplnoX7Kb/3xqypIotyhNhMkSXuQQPk8JBCtW+vKlcHZP1czJFHiUWUPCezdHG3X\nLht3FCFfFKUXJFEyJDNn7pshybtc08hrX2sm0wsvbN7EKSl+diRIdL3tbdYX5ROfgC9+0e76Pa9z\nPCQQX5DE9Y+AlRAPOyydrr2NU36huoIkiocElCFpJI0MiUum1riMGVPtks2UKTaj6sUXLRM0dmw5\nJiiUWpB4XvQMiWuCBGD2bHjHO+Dii1sbTeOwapUJjne/u/k+p5wCDzxga0BceqnNQti1q58DD0x3\nLK7i+0h27472urj+EZ+oPpJmnoWgDMmBB9oHUdrvp6JxqWRTRg9JFFNr2iWbrEytPlHiMXZstUs2\ntdqQj6Qs5RoouSBZs8amOPX2htt/6lT7QFu7dugxFwQJWHbi0EPhve9NdzrwVVfBW95id0atOOQQ\nyxJ0d9v8/qlTy6Go02DCBMsoBC3b3YokGRJIb6ZNUIakVrOYVi1LEkeQ1N/Nb9xoNzJlMPhlQRqm\n1gMOGOpTFIUqZEjKIkhgyEciQZITzz4bPjsC9iHdmCVxRZB0ddmMmyVLrF9IGuzeDT/4gXUzDMPI\nkfDjH8Pll8O73tWXziBKwllnWZYkCnF7kPhENba28pA0ChKoZtkmqodk4sS9MyR+D5I0xHYZPSRp\nlGy6ukxYRCkxDwxYo66wN49xiOohqeriej6+j6QsU34BQjRgdpco5Rofv0Haa15j264IErA3+q9+\nBaefDkcdZb1CknDnnfbBceqp4V9Tq8GnP53svGXkrLOswdLll4d/TdIMyeGH2xTsJAR1afUpQpDs\n2WN/lyVLzB+zZMnevy9bZmuRnHNOvOMn9ZB0sn8ETBCEzQQ2EyQw5CMJEsJBrFljn7NdjtwCV3lx\nPZ8TToAf/rA8U36hAhmSsIZWH1czJD7+dOBPfSr5wm/1U32jUsb6eBLOOgvuuy/asuoueEiCurT6\n5ClIPvtZmDHD2pOfdBJ89KM2c+vFF63/z4c/bDPKzj9/31Vao5DUQ5KmICnjNZJGhgSi+0iy9o9A\ntHhUfdovDH3XvfSSMiS5sGjR3lNZwzBzpi3K5LNunbXZdYljj4Vrr7V1GX7723jjW7rUShDXXJP+\n+KrIEUfY3f2SJbbWUBiSlmz89Ww8L34JIcjQ6pOXIJk71+7E7rzT/najRzff9+CDoy/wVs/WrfZl\nEhZlSPYmrKl1YMBaIjQTEVFn2rjkHwF7D23ZEv3aK1PJZvz4oYxYWQRJx2ZI/Dth1zIkPuecA//0\nT7buTZwP8P/3/+Cd72z95dCKMtbHk1CrRfeRJC3ZjBtnd/vNuuU2EhSTIEOrT16C5IorrKfN8ce3\nf79F6YMRRFQPyUEH2d25f72n1YMEynmNhDW1vviizdQaNiz4+YkT3cuQRInHsGEwYkS0PkBQrpIN\nWNnm/vtVssmFOB4S/wvEv5hcFSQA738/nHsuvOtd0WbeDAyYIIlbrulUogqSpCUbsDLH00/Hf33R\nGZK777as0vveF27/pIIkqodkxAjb3z9np2dIwpZsWpVrwN73UTIkWTdFi0McH0mZSjZgguSBB5Qh\nyZxt2+xNPmVKtNc1zrRxWZAAfOMb5pL+x38M/5pbbjFT7PHHxz9vGevjSck7QwJWjnvqqXD7BsWk\nyAyJ51l25EtfsoXswhBl2mkQUT0ksHfZptM9JGEFYTtB4mLJJmo84vhIyiZIZs7UtN9ceO4563TZ\nLKXYCn+mDbgvSIYPt9V5f/jDvb0vrfjud5UdicNJJ5n3pnF12CC2bLFp1VH8DEFEESRBNJvyC9kL\nkhtusMzdW98a/jVplGziCBL/y1MZEsuQtDNvh8mQuFayiUqcDElZOrX6nHCC/auSTcbEKdf4lClD\nAnY38stfwoc+tO9aPI0sXAiPPGLN0JJQxvp4Urq7bbHB++9vv6+fHUnazyJKyaaZh6RZyWbcOJsW\nHGd6Yzt27YIrr4QvfznaVM68PSQw1Itk82Zrpx12ifp2lPEa6emxm5xt21rvt2pV+TIkUePRCRmS\nY4+1m/ZOyJAcANwFPA3cCTRrebMYeBSYBzyY4Hx7EcfQ6uNnSHbvtnJIls160uLUU+HrX7f28uvX\nN9/vBz+wbq8jRuQ3tioRtmyThn8Ess2Q1GpW0nzhhfjHb8bVV1um4dxzo70uSuvyIJKUbPzsSKd0\nIG5GmLKZMiTBlE2QjBhhNz2dIEg+gwmSGcB/DW4H4QF9wMnAaQnOtxdJMyQLFthFOXZsvLJPEbz7\n3Tbr5tJLg9dd2b7dSjsf/GDyc5WxPp4GYQVJGv4RsPfw0qWwc2f7fYNi0srUCtmUbbZtgy98wbIj\nUb/c8za1wr6CJC3Keo2EMba2EyR+GSxs356qeEjKVrIBa3T58pcXPYpwJBEkFwE/HPz9h8DFLfZN\n/Z4kSYbkwAPtTfXHP7pfrmnkX/7FZtFceeW+z91wA5x8cnyhJqxkM29e+0XpkvYg8Rkxwr4k46xp\n43dpbSWMshAk3/62/Z1Oi3F7UaSptdP9Iz5hRGE7QTJypH2Gho2lMiTF8Z73pDfVPWuSCJJJgJ+0\nWzW4HYQH3A3MBT6Q4Hx7kSRDApYl+e1vyydIurvhuuvs5+c/3/u5NM2sZayPp8GYMdZZdO7c1vul\nlSGB8D6SxpisWmXiOqhLq0/agmTDBvjqV+H//J94rx83zsqkcReQjOMhqRckaX4wl/UaSSNDAuGn\n/npePtN+5SEpP+06td4FBL0tG+/PvcGfIF4FvABMGDzek8B9QTvOnj2baYNtMnt7e5k1a9af3mR+\nOq6vr489e+CZZ/pZtgxmztz3+TDbvb39/OpXcNBB8V5f5PZBB8GVV/bzgQ/A0Uf3cdJJcNVV/Tz5\nJLzxjcWPr+zbZ50FP/pRP7t2Nd//4Yf7B++2k5/v6KPhttv62X//aK9/6imYPLn1/pMn9/H88+n9\nfe68s4+LLoKVK/tZuTLe8UaNsv/vmDHRX791q70+yvkmTICnnupn0yY4//xk//8qbPf2wv339zNy\nZPP9ly/vZ+FCOOaY5scbMQJWrbL3b6vzbdoEXV39/P73bvz//e1162DixGiv3769j/32c2P8Lm77\nvy9evJi8eZIhsXLI4HY7Pg98sslzXliWLfO8gw8OvXsgP/iB540a5XnveEey4xTJtdd63uGHe96a\nNZ7313/teZ//fHrHnjNnTnoHKxnXX+95F17Yep+3vc3zfvazdM733e963vvf336/xpj86lftx3nN\nNZ739rfHH1s9zz/veQcc4HlLlyY7ztSpnrdkSbzX7r+/523YEO01c+d63qxZ9re6+eZ45w2irNfI\nBz7ged/7XvPnt2zxvJ4ez9uzp/VxLrnE837xi/bne/ZZz5s2LdoY4xA1Hv/0T5736U9HO0dvr+et\nWxftNZ0MzRMVgSQp2dwM+OvRvge4KWCfUYDv7x0NvAEIudZkcxYtiu8f8Tn+eEv/lq1kU8873gFv\ne5v1gbjmGvjLvyx6RNXgVa+yqb+tygppeUggfrfWVlN+fdIs2Xzxi9aRNWnZI4mxNUkfEnlIjHYl\nGyEpLakAAB+cSURBVH/KbzvDctipv66tY+PTKR6SMpFEkPwzcC427fecwW2AycCtg78fjJVn5gMP\nAL/Gpggn4tlnkxs3/S6mZRYkYOvd9PTA2Wen+2Hrp+I6kYMPNm/GggXN90nTQxJ26m9jTFpN+fVJ\nS5AsXGgN+j7TbC5dBOIKkoEB8yOE7QrrM2GCeRiWLdM1Au3//mH8IxB+6m9ehtao8YjqIfE862Mj\nQZIdSVb7XQe8PuDxFcCFg78vAmYlOEcgSQ2tYHcJU6eWX5AMG2at4sNMGxXh8af/zpwZ/HxafUjA\nRMPWrfYlEaUnzgsvwCmntN7nkENMkCRZURjgc5+DT3zChFpS4s60iZMdATPB9vTYl4+Ld+p5M25c\na5EaVpBMnGgzFdtRlQzJjh32Pur0PjZZkiRDUhhJpvzWM3NmOh+wRdPTk7yFeSP1JqVOpFU/kp07\n7cstrY6ftZqVbdplSRpjEiZDMmaMZRSSNCN7+GGbkfbxj8c/Rj1xMyRxepD4TJiQflO0sl4j7ZrT\nlTVDEjUeUTMkKtdkTykFSRoZErBpspdckvw4onq0EiSrV9sdX1eKV08cH0m7pmg+Scs2V1wBf//3\nMHp0/GPUE7dba9wMCQwJEtE+QxUlQ9JJHpLt28vXFK1slFKQpJUhmTYt/cxCVShrfTwtZsywBfSW\nLdv3uTTLNT5hfCSNMWm10m89SQTJPffAM8+ka5iOmyGJ04PEZ8KE9JtDlfUaaWdqjSJIXMqQZO0h\n2bZNGZKsKZ0g2bjRPpjS/kIQop5azbIk//3f+z6XpqHVJ+qaNrt22Qd9mHEkEST/9E/WJr6nJ97r\ng0giSJQhSU6aptZOy5BIkGRL6QSJP+VXxqJsKWt9PE2alW2yEiTtSjb1MVm9un2XVp+4gmRgAH7/\ne3jjG6O/thVxTa1JPCTnnw+vD7LgJ6Cs10haGZJx4+xLut0yC/KQiLCUTpCkMeVXiDC0EiRp9SDx\nmT7dptaGbakextDqE1eQPP44vOxl9sWTJkVkSP7iL9IXJGUlLVNrrRbOR1KVDEkZF9YrG04Jkhtv\nbL9PWoZW0Zqy1sfT5OSTzT/R+OGdhYdk7FibtRPkWfGpj0mYpmg+cQXJAw/EW0CvHUV4SLKgrNfI\n2LGWGQhaMdzzomUAwwiSPNaxgejxGDHC/gZhWyYoQ5I9TgmSv/or+M1vWu+TlqFViHb09MArXgH/\n8z97P55FyQai+UjyyJA8+KCt6ps2RcyyEUN0dVm5Iig78NJL9kUd9u/cburvwICdJ60p8mlSqw2J\nszBIkGSPU4LkpptsqeRWpUBlSPKhrPXxtAkq22RRsoH2U3/rYxJ2yi8kEyQuZUiSeEiyoMzXSLMY\nhC3X+LTLkKxda80n05wi34w48YjiI9G03+xxSpCccQb8/OdW7228K/VRhkTkSTNBUnSGJOyUXzDh\n8sILlo4Py6ZNJv5PPDH8a8KSd6dWsS/NjK1xBEmrDElehta4RPGRaNpv9jglSAD6+uBHP4KLL7YO\nkfXs2mULZE2bVsTIOouy1sfT5owzYO7cvevMWXhIoL0gqY9JlAzJyJF2J7h2bfixPPQQnHRS9HVj\nwuALkigCCeQhSZNmZbOogqTd1N88Da1x4hE1QyJBki3OCRKA886D730PLrzQnP4+S5faxZJmTwQh\nWrH//jYDxhfHu3fbF3sWd31hpv76RMmQQPSyTVblGjCPQk+PNZ6LgjIk6dEsS6UMSXNUsskeJwUJ\nwJvfDF/7GvzZn9l0SNCU3zwpc308berLNmvX2od5mP4fUTnsMPtC2LYt+PlGD0mWguSBB7IxtPrE\nMbbKQ5IerUo2UbJ/LmVIsvaQqGSTPc4KEoB3vtO6RJ57LixZMtQUTYg8qRckWZVrwETOEUcMCfBm\nROnS6uNShgTiGVuVIUmPNE2tnZQhkSDJFqcFCcD73w+f/CS87nX2paAMST6UuT6eNq96lb33ovZo\niEMrH4kfkyhdWn2iCJIVK+xuMEvxH1eQuJQyL/M1kpap1aUMSR4eEpfef1XEeUEC8NGP2uJeP/mJ\nBInIn6lT7U7qqafyESTtfCRRDK0+UQSJnx3JcnmGODNtlCFJj7RMrQcdZGXMZh2Gq5QhUckme0oh\nSAA+8xmbffO61xU9ks6gzPXxLPDLNln1IPGZMaN5hsSPSVRDK8QTJFkSJ0MiD0l6pGVqHT7cjtVs\nBleVPCQq2WRPaQQJwLvfbalqIfLGFyRZekggXC+SrDMkWRtaIZ6pVRmS9Agq2cSdQdaqOVpebePj\nIg+JW5RKkIj8KHN9PAvqMyR5lGyCenT4MckyQ7Jnj/VdecUroh0/KlUwtZb5GgkShC++aC3eo/ae\naWVszbNkk7WHRIvrZY8EiRAhOPZYWLcOHnkkW0Fy4IHm3Xjxxeb7RJ3yC5aGX706eEG1ep56yu5o\ns76rrYKptcwElWyilmt8mhlbPc/dlX59lCFxCwkSEUiZ6+NZ0NVls20efjhbD0mt1rxsU+8hiVqy\nGT7c7n5bCR3Ip1wD8Uyt8pCkR1CGJK4gaZYh2bzZ3nd5iUh5SMqPBIkQITnrLPs3ywwJtJ9pEydD\nAvaa559vvU8ehlaoRsmmzOSRIXE9OwLRZ9koQ5ctEiQikDLXx7MiT0ESlCHxYxLH1ArhfCR5CpKy\nm1rLfI0EmVpXrUo3Q5L3lF+tZVN+JEiECMnLXw4f+lD2H0qtpv7G6dLq006QbNsGTzwBJ58c/dhR\nkYekWPbbz/xEO3YMPaYMSWskSLJHgkQEUub6eFaMGGGLPmZNKw/J6tVwwAHxVuFtJ0jmz4djjsnn\nSz+qINm9GwYGLAauUOZrpFbbN0uSxEMSJEjyzpDk4SGRIM4WCRIhHOOoo2DxYsuGNBJnyq9PO0GS\nl6EVogsS39CaZffYTqOxbJa2qbVqGRJ1as0eCRIRSJnr42Vn5EgTD889t/fjfX19sQ2t0F6Q5OUf\ngSFTZVC/lSBc849A+a+RRmNr2iWbvJuixYnH6NH23mrW+r4elWyyR4JECAdp5iOJM+XXxyVB4n+w\nb98ebn/5R9InrZLN6NEmLBtLH66vYwMwbJi9F7dubb+vSjbZI0EiAilzfbwKBE397e/vzyxDsmaN\npdiPOSbesaNSq0WbaeNaDxIo/zVS//ffvt2+lMePj36cWi04S5J3ySZuPML6SFSyyR4JEiEcpJmx\nNe6UX7Ba/7p1Zg5t5A9/sFlEXTl+IkTxkbhYsik79SUbf9HIuB6dIB9JGTIkEM5HsmePXTc9PfmM\nqVORIBGBlL0+XnaCSjZ9fX2JTK3DhtkXx8qV+z734IP5GVp9yi5Iyn6N1GdI4pZrfFzIkMSNR5gM\nyY4dlh2RqTpbJEiEcJAsMiTQvGzzwAP5+Ud8orSPl4ckfer//kkFSdUzJCrX5IMEiQik7PXxsjNl\nin1Ibtw49Fh/f3+iDAkECxLPy9fQ6hMlQyIPSfrUm1rTECT1GZKBAXvvxvGkxCVLD4lm2OSDBIkQ\nDtLVBdOn721s3b3b0uBJWtcHCZLnnrPsQxKhE4coplYXSzZlJ8uSzbp11sAvT09SXMJkSCRI8qEE\nbxdRBGWvj1eBRh/Jccf1xe7S6hMkSIoo14A8JEWTZcmmiKZoWXpItLBePiQRJG8DHgd2A6e02O88\n4ElgIfDpBOcToqNonPqbZMqvT5AgKaJcA9EFib4Q0iXLDEneTdGSoAyJOyQRJH8E3gz8tsU+w4Bv\nY6LkOOBS4NgE5xQ5Ufb6eBVoNLbecUd/IkMrNM+Q5D3DBqKZWuUhSZ+sMyR5G1rlISk/SQTJk8DT\nbfY5DXgGWAwMAD8D3pTgnEJ0DI2CZO3a5BmSKVP2FiQDA/DII3DqqcmOG4eyl2zKTpqm1k7IkChD\nlz1Ze0imAMvqtpcPPiYcp+z18SowY4aVbPx1NsaO7Us9Q/LHP8IRR9iHct6U3dRa9mvE//t7nmU3\nkpilDzjAjuU33Stiym8SD4mm/bpBd5vn7wKCdPNngVtCHD/k0lnG7NmzmTZtGgC9vb3MmjXrT28y\nPx2nbW130vb++9uCes88089DD8EFFyQ73tln97F5M9x5Zz89PfDEE32cdlox/79Fi2DDhnD7L1zY\nz86dAPmNr+rbu3bBSy/1sXEjeF4/c+fGP9599/UzdiysWWOied68/sFsnjv/32bbY8fa9dXf33z/\nhx7qHxQtxY/X5W3/98WLF1MUc2huaj0duL1u+wqaG1s94Q5z5swpegjC87yzz/a8u++2308/fY53\n443Jj3nYYZ63aJH9Pnu2533ve8mPGYfHHvO8Y48Nt+973+t5//Ef2Y4nKlW4RkaP9ryHHvK8o45K\nfqwTTvC8efPs90sv9byf/CT5MaMQNx7XX+95F1/cep8f/9jz3vWuWIfvaIiYlEirZNOsoe5cYDow\nDegB3g7cnNI5hag89VN/161Lp1dIfdmmiJbxPvKQFM+4cfDkk8n8Iz71zdGKmPYbl7Fjw037Vckm\ne5IIkjdj/pDTgVuB3ww+PnlwG2AXcDlwB7AAuA54IsE5RU74qThRLPVTfzdt6ktVkGzcCEuWwPHH\nJz9mHKK2jndNkFThGhk3zgRvGoKk3thaNQ+JZtnkQzsPSStuHPxpZAVwYd32bxgSK0KICBx9NNx9\ndzpdWn18QTJ3LsyalazRWhJGj4adO+2np6f1vupDkg29vekJkvqpv1XLkGiWTT5kPctGlJR6k5Io\nDn/q7+rVMGZMfyriwRckRZZrwFZODTvTRn1IsiHNko2fIfG8Yqb9xo2HZtm4gwSJEA4zbZqJh+ee\ngwMPTOeYviApqmV8PWF9JC6WbKpAb6+VBNPMkGzeDMOGlSdeYTMkEiTZI0EiAqlCfbwKDB9uouS+\n+2DGjL5UjulKhgTKLUiqcI2MG2d3/2mUAv0MSVFN0eQhKT8SJEI4ztFHQ38/iZui+UyeDPPmWROr\nww5L55hxCWtslYckG8aNs3/TzJAU0TY+CSNGWJnJ+twEo8X18kGCRARShfp4VTj6aMuQ7NzZn8rx\nJk+G9eutXFNrNmE/J8JmSOQhyYbeXvs3zWm/RWVI4sajVmufJVGGJB8kSIRwnBkzYMuW9D7kx42z\nu72iyzUQ3tTqYsmmCvgZkokTkx/LFyRly5BAex+JBEk+SJCIQKpQH68KRx9t/559dl8qx6vVLEtS\ntKEVwmVI9uxx8wuhCtdIb6+ZpdtNuw7DfvtZ+eOZZ8rlIYFwGRKVbLJHgkQIx/EFSRpN0Xx+/GM4\n55z0jheXMIJk+3b7ouvSp1XqjBuXTrnGZ9IkWLCgehkSTfvNB13iIpAq1MerwoQJ9qWxbFl/asc8\n44ziGqLVE8bU6qJ/BKpxjcycCZdemt7xJk6Exx8vl4cE5CFxBQkSIRynVrNeEWn1IXGJMBkS+Uey\n47DD4Mor0zvepEmwcGH1MiQq2eSDBIkIpAr18Soxdmw1YxLG1OqqIKliPJIycaJ5fqrmIVHJJh8k\nSIQQhRE2Q6K703LgN1gryzo2Pppl4wYSJCKQKtTHq0YVYxJGkMhDUh786cNFlGyy9pBIFGePBIkQ\nojDkIakWEyea52n8+KJHEg3NsnEDCRIRiOrj7lHFmISZZeOqIKliPJIyaZKZr4cNy//cWfchkSDJ\nHgkSIURhjB1rgmPXrub7yENSHo46Cs4+u+hRREceEjeQIBGBqD7uHlWMSVcX7L8/bNzYfB95SMrD\n5Mlw/fXFnDsrD8nu3fbjQt+eqiNBIoQolHY+EldLNqI6tMqQ+NmRohei7AQkSEQgqo+7R1VjUlZB\nUtV4lJWsPCQq1+SHBIkQolDaGVvlIRFZ0ypDsm2b3n95IUEiAlF93D2qGpN2GRJ5SEQYsvKQKEOS\nHxIkQohCadc+3tWSjagOYTwkInskSEQgqo+7R1VjIg+JSIMsPSQq2eSDBIkQolDCCBJ9IYgsGT3a\n3md79uz7nLq05ocEiQhE9XH3qGpM2pla5SERYUgSj2HDTPRu2bLvcyrZ5IcEiRCiUMpashHVopmP\nRCWb/JAgEYGoPu4eVY1JWU2tVY1HWUkaj2Y+EpVs8kOCRAhRKPKQCBdolSGRIMkHCRIRiOrj7lHV\nmKgPiUiDpPFoliFRySY/JEiEEIUiD4lwgWYZEpVs8kOCRASi+rh7VDUmYVrHuyhIqhqPspKVh0Ql\nm/yQIBFCFMr++9sXQVAPCJCHROSDPCTFI0EiAlF93D2qGpPubmtMFXR36nnuLm5W1XiUlaw8JK6+\n/6qIBIkQonCa+Uh27jTB0t2d/5hEZ6EMSfEkESRvAx4HdgOntNhvMfAoMA94MMH5RI6oPu4eVY5J\nM0Hiqn8Eqh2PMiIPSflJct/xR+DNwPfb7OcBfcC6BOcSQlSYZsZW+UdEXowdC0uX7vu4pv3mR5IM\nyZPA0yH3rSU4jygA1cfdo8oxaZYhcbUHCVQ7HmUkSw+JMiT5kIeHxAPuBuYCH8jhfEKIktGsfbzL\nJRtRLeQhKZ52JZu7gIMDHv8scEvIc7wKeAGYMHi8J4H7gnacPXs206ZNA6C3t5dZs2b9qS7oq19t\n57PtP+bKeLRt2z6ujCet7c2b+/nDH+Cyy/Z+fuTIPkaNKn58nRaPsm77xHn9s8/Cpk37Pr99Ozz9\ndD/9/cX//1zf9n9fvHgxcUijlDIH+CTwcIh9Pw9sBr4W8JzneV4KwxFClI3PfQ6GD4d/+Ie9H7/n\nHvjiF2HOnGLGJTqH//kf+MQn4Pe/3/vx17wGvvQl+1dEo1arQQSdkVbJptkJRwFjB38fDbwBM8MK\nx2m84xDFU+WYyEMikpI0HpplUzxJBMmbgWXA6cCtwG8GH588uA1W7rkPmA88APwauDPBOYUQFaTV\nLBtXBYmoFq08JJplkw9Jpv3eOPjTyArgwsHfFwGzEpxDFIRfGxTuUOWYlNHUWuV4lJGk8dAsm+LJ\nY5aNEEK0pFVjNN2dijzQLJvikSARgag+7h5Vjok8JCIpSePR02NrJ+3YsffjEiT5IUEihCicMraO\nF9WiVgvOkmhxvfyQIBGBqD7uHlWOSRlNrVWORxlJIx5BPhJlSPJDgkQIUTjjxpmptbEVkTwkIk8a\nMyS7dtm/Wm06HyRIRCCqj7tHlWPS0wMjRsCWLXs/Lg+JCEsa8WjMkGjKb75IkAghnCDIR+JyyUZU\nj8YMiab85osEiQhE9XH3qHpMyiZIqh6PspGFh0T+kXyRIBFCOEGQsdVlQSKqx9ixKtkUiQSJCET1\ncfeoekyCMiQuT7msejzKRloeEpVsikOCRAjhBEHt45UhEXkSlCGRIMkPCRIRiOrj7lH1mMhDIpKQ\nloekPkOikk2+SJAIIZygbIJEVI/GDIlKNvkiQSICUX3cPaoek2aCxNU71KrHo2xk4SFRySZfJEiE\nEE4QNMvG5cZoonpolk2xSJCIQFQfd4+qx6Rsptaqx6NsZOEhUckmXyRIhBBO0FiyGRiwf4cPL2Y8\novPQLJtikSARgag+7h5Vj0mjIHHZPwLVj0fZkIek/EiQCCGcoFGQyD8i8iZolo3LorhqSJCIQFQf\nd4+qx6TR1OqyfwSqH4+ykVUfEmVI8kOCRAjhBL6p1fNs23VBIqqHPCTFIkEiAlF93D2qHpORI6FW\nsy8BkIdERCONeIwebWWa3bttW9N+80WCRAjhDPU+EnlIRN50ddl7bssW29a033yRIBGBqD7uHp0Q\nk3pB4nrJphPiUSbSisfYsUM+EpVs8kWCRAjhDPXGVtcFiagmY8YM+UhUsskXCRIRiOrj7tEJMWnM\nkLj8ZdAJ8SgTacWjPkOikk2+SJAIIZyhvn28PCSiCBozJBIk+SFBIgJRfdw9OiEm8pCIuGTlIXE5\nS1c1JEiEEM5QJkEiqkl9hkQlm3yRIBGBqD7uHp0QE3lIRFyy8JCoZJMvEiRCCGeon2UjD4koAnlI\nikOCRASi+rh7dEJM6k2trpdsOiEeZSILD4kW18sXCRIhhDPIQyKKRhmS4pAgEYGoPu4enRATeUhE\nXOQhKT9JBMlXgSeAR4BfAuOa7Hce8CSwEPh0gvMJISqO1rIRReNnSDxPgiRvkgiSO4HjgZOAp4Er\nAvYZBnwbEyXHAZcCxyY4p8gJ1cfdoxNiUqbW8Z0QjzKRtodkYACGDbMfkQ9JBMldwJ7B3x8Apgbs\ncxrwDLAYGAB+BrwpwTmFEBWmTKZWUU38DImyI/mTlofkfcBtAY9PAZbVbS8ffEw4jurj7tEJMRk1\nyu5Md+yQh0REI20Pibq05k93m+fvAg4OePyzwC2Dv18J7ASuCdjPizKY2bNnM23aNAB6e3uZNWvW\nn9Jw/ptN2/lsz58/36nxaLuf+fPnOzWerLZ7e+G22/pZuxZGjSp+PM22OyUeZdlOKx5jxsDKlf3c\ncw+MHOnO/68M2/7vixcvJg61WK8aYjbwAeB1wPaA508H/hHzkID5TPYAXwnY1/O8SPpFCFFBpk+H\nW2+F174WHnwQpiinKnJkyRJ49avhrrvgoovgqaeKHlF5qdVqEEFnJCnZnAf8HeYJCRIjAHOB6cA0\noAd4O3BzgnMKISqOP9NGHhJRBPUeEpVs8iWJIPl3YAxW1pkHfGfw8cnArYO/7wIuB+4AFgDXYVOF\nhePUp+CEG3RKTPyZNvKQiCikFQ/fQ6KF9fKnnYekFdObPL4CuLBu+zeDP0II0ZbeXli3zsytI0YU\nPRrRafT0QK1moliCJF/SmmUjKoZvVhLu0Ckx6e2FF16wck0tqcstQzolHmUhzXiMHQtr1ridoasi\nEiRCCKfo7YUVK+QfEcUxZgy8+KIyJHkjQSICUX3cPTolJr4gcf3utFPiURbSjMfYsRIkRSBBIoRw\ninHjhko2QhSBMiTFIEEiAlF93D06JSb1HhKX6ZR4lAV5SMqPBIkQwinkIRFFowxJMUiQiEBUH3eP\nTolJby9s3Oj+3WmnxKMsyENSfiRIhBBO0dtr/ypDIorCz5C4LoqrhgSJCET1cffolJiMG2f/ui5I\nOiUeZSFtD8n69cqQ5I0EiRDCKZQhEUUzZoz9K0GSLxIkIhDVx92jU2IyZgx0dbmfLu+UeJSFtD0k\n4P57sGpIkAghnKKry8o2ypCIolCGpBgkSEQgqo+7RyfFpLfXfUHSSfEoA2l7SECCJG8kSIQQzlEG\nQSKqi58hUckmXyRIRCCqj7tHJ8Vk3Dj3vww6KR5lIAsPiTIk+SJBIoRwDmVIRJHIQ1IMtaIHUIfn\neV7RYxBCOMDNN8Mxx8CMGUWPRHQiCxfae2/uXDj11KJHU15qtRpE0Bnd2Q1FCCHicdFFRY9AdDLy\nkBSDSjYiENXH3UMxcQvFwy3kISk/EiRCCCFEHb5/SYIkX+QhEUIIIRqYOBGeeQb237/okZSXqB4S\nCRIhhBCigXXr4IADih5FuYkqSFSyEYGoPu4eiolbKB5ukXY8JEbyR4JECCGEEIWjko0QQgghUkcl\nGyGEEEKUDgkSEYjq4+6hmLiF4uEWikf5kSARQgghROHIQyKEEEKI1JGHRAghhBClQ4JEBKJ6rHso\nJm6heLiF4lF+JEiEEEIIUTjykAghhBAideQhEUIIIUTpkCARgage6x6KiVsoHm6heJSfJILkq8AT\nwCPAL4FxTfZbDDwKzAMeTHA+kSPz588vegiiAcXELRQPt1A8yk8SQXIncDxwEvA0cEWT/TygDzgZ\nOC3B+USObNiwoeghiAYUE7dQPNxC8Sg/SQTJXcCewd8fAKa22Ncl86wQQgghHCMtD8n7gNuaPOcB\ndwNzgQ+kdD6RMYsXLy56CKIBxcQtFA+3UDzKT7vMxV3AwQGPfxa4ZfD3K4FTgLc0OcYhwAvAhMHj\nfRS4L2C/Z4Aj24xHCCGEEOXgWeCovE42G/hvYGTI/T8PfDKz0QghhBCi4zgPeBw4qMU+o4Cxg7+P\nxsTLGzIelxBCCCE6iIXAEmw67zzgO4OPTwZuHfz9CGD+4M9jNJ+JI4QQQgghhBBCCNHZnAc8iWVc\nPl3wWDqVq4BVwB/rHjsAMyE/jfWc6S1gXJ3KocAcrCT6GPCxwccVk2IYibU2mA8sAL48+LjiUTzD\nsAy9P8lCMSmOxezbBLVU8RiGza6ZBgzHLvhjixxQh/JqrHFdvSD5F+BTg79/GvjnvAfVwRwMzBr8\nfQzwFHZdKCbFMWrw327g98BZKB4u8LfAT4GbB7cVk+J4DhMg9ZQqHmcAt9dtf2bwR+TPNPYWJE8C\nkwZ/P3hwWxTDTcDrUUxcYBTwB6xLteJRLFOxHlevZShDopgUx3PAgQ2PRYpH0YvrTQGW1W0vH3xM\nFM8krIzD4L+TWuwrsmMalr16AMWkSLqwDO4qhsppikexfAP4O4Y6hoNiUiRBTVAjxaM7s6GFwyv4\n/CIcHopVEYwBbgD+BtjU8Jxiki97sDLaOOAO7K68HsUjX/4cWI35Ffqa7KOY5Mur2LsJamM2pG08\nis6QPI8Z+HwOxbIkonhWMdSl9xDs4hf5MRwTIz/GSjagmLjAS1hbg1NRPIrkTOAirExwLXDO/9/e\nHaNkDkVhGH5tBHs3YGHpDgQrRVegjYjbcBVuwNpSsBZXMAzD1FOPhTuwsrg/RMTmL+SqPE+TkPYj\n5N7knJPGvSKTeZ5Wx+fqrvEz3bXymL0g+VXtNl5Lb1anLcVJzHVfXazOL1oeiny+jeqm0dFx/ea6\nTObYbukO2KoOGztzecxz1djA7lRn1WN1nkxmeT8E9ahRk/jt8jhpdBH8y+C0WW6r/9VLo6bnslEt\n/dA3adf6YfYbnwj+tAwePE4ms+xVvxt5/G3ULZQ8voqDlo2sTObY6eMhqPIAAAAAAAAAAAAAAAAA\nAAAAANbyCh7Zi/9wpQU1AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f3150a271d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Serie = np.random.normal(0,1,50)\n", "fig = pl.figure(figsize=(9,7))\n", "pl.plot(Serie)\n", "pl.grid(True)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "### Incertemos un dato loco, que se salga " ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "[<matplotlib.lines.Line2D at 0x7f31507b1cd0>]" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAGnCAYAAABhFoffAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VFXCgPF3QuhVRAIKKwhiwYK49hbFjr3rJ6LrqrtW\niiBYQVBQBBXLqmtjXfsqLOKqYInYwIYFxAJSRCBIr6kz3x8TEKkpk7kX7vt7njyZudMOXELenHvP\nBCRJkiRJkiRJkiRJkiRJkiRJkiRJkiSVQSwFzzEdWAoUA4XA/kBD4EVgx5LbzwEWp+C1JEmS1phG\nMjrWdjfQs+TyDcDAtI5IkiRFwjRg23W2fQ9klVxuUnJdkiQppX4GJgCfA5eVbFu01u2xda5LkiSR\nmYLnOASYA2wHjGH9WY9EyccftGrVKjF16tQUvLwkSQqJqUDr0t45FREyp+Tzb8Bwkiem5pI8DDMX\naArMW/dBU6dOJZFYr00UkE6dYN68Prz1Vp+gh6ISffr0oU+fPkEPQ2txn4SL+yN8YrFYq7LcP6OC\nr1cLqFtyuTZwLPAtMBLoXLK9MzCigq+jSpaXB0VFQY9CkhQlFZ0JySI5+7H6uZ4FRpM8P+Ql4FJ+\nX6KrEDNCJEnpVtEImQa028D2hcDRFXxupVF+PjRtmh30MLSW7OzsoIegdbhPwsX9seVLxZuVlVfC\nc0LC4/DDoV07GDo06JFIkrZUsVgMytAWFT0nRFuJvLzkhyRJ6WKECDBCJEnpZ4QIMEIkSelnhAgw\nQiRJ6WeECDBCJEnpZ4QIMEIkSelnhAhIvk+IESJJSicjRMTjUFBghEiS0ssIEfn5yc9GiCQpnYwQ\nrYkPI0SSlE5GiMjLg1jMCJEkpZcRIvLyoH59I0SSlF5GiMjLgwYNfj83RJKkdDBCRH4+1KsHhYXJ\nlTKSJKWDESLy8qBmTahe3dkQSVL6GCEiLw9q1Eh+eF6IJCldjBAZIZKkQBghIi8veSjGCJEkpZMR\nImdCJEmBMEJkhEiSAmGEiPx8I0SSlH5GiJwJkSQFwgiRESJJCoQRIiNEkhQII0Qu0ZUkBcIIkTMh\nkqRAGCEyQiRJgTBC5BJdSVIgjBA5EyJJCoQRIiNEkhQII0RGiCQpEEaIXKIrSQqEESJnQiRJgTBC\nZIRIkgJhhMglupKkQBghciZEkhQII0RGiCQpEEaIjBBJUiCMELlEV5IUCCMk4hIJZ0IkScEwQiKu\nqAhiMcjMNEIkSellhETc6uW5kDwkY4RIktLFCIm41YdiwJkQSVJ6GSERZ4RIkoJihETcuhGSnx/s\neCRJ0WGERNzq5bmQ/FxQkFwxI0lSZTNCIm7tmZBYDKpVczZEkpQeRkjErR0h4HkhkqT0MUIibu0l\numCESJLSxwiJOGdCJElBMUIizgiRJAXFCIk4I0SSFBQjJOLWXqILRogkKX2MkIhzJkSSFBQjJOKM\nEElSUFIVIVWACcBrJdcbAmOAH4HRQIMUvY5SzCW6kqSgpCpCrgO+A1a/4XcvkhHSBnin5LpCyJkQ\nSVJQUhEhzYATgceBWMm2U4BhJZeHAael4HVUCYwQSVJQUhEh9wI9gPha27KA3JLLuSXXFUJGiCQp\nKJkVfPxJwDyS54Nkb+Q+CX4/TPMHffr0WXM5Ozub7OyNPYUqi0t0JUnllZOTQ05OTrkfH9v8XTbp\nTqATUATUAOoBrwL7kYySuUBT4D1g13Uem0j4O+MDd9FF0KEDdO6cvN6rFzRokPwsSVJZxGIxKENb\nVPRwzI1Ac6AlcB7wLskoGQmUfFujMzCigq+jSuLhGElSUFL9PiGrpzYGAseQXKJ7VMl1hZBLdCVJ\nQanoOSFre7/kA2AhcHQKn1uVxJkQSVJQfMfUiDNCJElBMUIizgiRJAXFCIk4l+hKkoJihEScMyGS\npKAYIRFnhEiSgmKERJxLdCVJQTFCIs6ZEElSUIyQiDNCJElBMUIiLJGAggJXx0iSgmGERFh+PlSt\nCrG1ftWQESJJShcjJMLWPRQDyVkRI0SSlA5GSIRtKEKcCZEkpYsREmHrLs+F5PX8/GDGI0mKFiMk\nwjZ2OCY/P3nSqiRJlckIibANRUhGRvJk1YKCYMYkSYoOIyTCNhQh4HkhkqT0MEIibN3foLuaESJJ\nSgcjJMKcCZEkBckIiTAjRJIUJCMkwja0RBeMEElSehghEeZMiCQpSEZIhBkhkqQgGSERZoRIkoJk\nhESYS3QlSUEyQiLMmRBJUpCMkAgzQiRJQTJCIswIkSQFyQiJMN8nRJIUJCMkwpwJkSQFyQiJMCNE\nkhQkIyTCXKIrSQqSERJhzoRIkoJkhESYESJJCpIREmFGiCQpSEZIhLlEV5IUJCMkwpwJkSQFyQiJ\nMCNEkhQkIyTCXKIrSQqSERJhzoRIkoJkhESYESJJCpIREmFGiCQpSEZIRBUVQSIBmZnr32aESJLS\nwQiJqNXvERKLrX+bESJJSgcjJKI2digGkitmjBBJUmUzQiJqUxFSo0ZypkSSpMpkhETUxt4jBH6f\nCUkk0jsmSVK0GCERtamZkCpVkiesFhamd0ySpGgxQiJqUxECnpwqSap8RkhEbew36K5mhEiSKpsR\nElHOhEiSgmaERJQRIkkKmhESUUaIJCloRkhEbWqJLhghkqTKZ4RElDMhkqSgGSERZYRIkoJmhESU\nS3QlSUGraITUAMYDXwHfAQNKtjcExgA/AqOBBhV8HaWYMyGSpKBVNELygCOBdsBeJZcPBXqRjJA2\nwDsl1xUiRogkKWipOByzsuRzNaAKsAg4BRhWsn0YcFoKXkcpZIRIkoKWigjJIHk4Jhd4D5gEZJVc\np+RzVgpeRynkEl1JUtAyU/AccZKHY+oDb5E8JLO2RMnHevr06bPmcnZ2NtnZ2SkYjkrDmRBJUkXl\n5OSQk5NT7senIkJWWwK8DuxLcvajCTAXaArM29AD1o4QpZcRIkmqqHUnEPr27Vumx1f0cEwjfl/5\nUhM4BpgAjAQ6l2zvDIyo4OsoxVyiK0kKWkVnQpqSPPE0o+TjGZKrYSYALwGXAtOBcyr4Okqx0syE\nzJ+fvvFIkqKnohHyLdB+A9sXAkdX8LlViTwcI0kKmu+YGlFGiCQpaEZIRLlEV5IUNCMkopwJkSQF\nzQiJKCNEkhQ0IySiXKIrSQqaERJRzoRIkoJmhESUESJJCpoRElFGiCQpaEZIBCUSLtGVJAXPCImg\nggKoWhUyNrH3jRBJUmUzQiJoc4diIDlLYoRIkiqTERJBm1ueC8nb8/PTMx5JUjQZIRFUlpmQRCI9\nY5IkRY8REkGliZDMzOQ5I0VF6RmTJCl6jJAIKk2EgCenSpIqlxESQZtbnruaESJJqkxGSAQ5EyJJ\nCgMjJIKMEElSGBghEVSaJbpghEiSKpcREkHOhEiSwsAIiSAjRJIUBkZIBBkhkqQwMEIiyCW6kqQw\nMEIiyJkQSVIYGCERZIRIksLACIkgl+hKksLACIkgZ0IkSWFghESQESJJCgMjJIKMEElSGBghEeQS\nXUlSGBghEeRMiCQpDIyQCDJCJElhYIREkEt0JUlhYIREkDMhkqQwMEIiyAiRJIWBERJBRogkKQyM\nkAhyia4kKQyMkAhyJkSSFAZGSAQZIZKkMDBCIsglupKkMDBCIsiZEElSGBghEVNcDEVFULXq5u9r\nhEiSKpMREjGrD8XEYpu/rxEiSapMRkjElHZ5LiTvl59fueORJEWXERIxpT0fBJwJkSRVLiMkYsoS\nIZmZyc9FRZU3HklSdBkhEVOWCAFnQyRJlccIiZjSvkfIakaIJKmyGCER40yIJCksjJCIMUIkSWFh\nhERMWZboghEiSao8RkjEOBMiSQoLIyRijBBJUlgYIRFjhEiSwsIIiRiX6EqSwsIIiRhnQiRJYVHR\nCGkOvAdMAiYC15ZsbwiMAX4ERgMNKvg6ShEjRJIUFhWNkEKgK9AWOBC4CtgN6EUyQtoA75RcVwi4\nRFeSFBYVjZC5wFcll5cDk4EdgFOAYSXbhwGnVfB1lCLOhEiSwiKV54S0APYBxgNZQG7J9tyS6woB\nI0SSFBaZKXqeOsArwHXAsnVuS5R8rKdPnz5rLmdnZ5OdnZ2i4WhjjBBJUqrk5OSQk5NT7sfHUjCG\nqsAo4A3gvpJt3wPZJA/XNCV58uqu6zwukUhssE1UiS65BA4/PPm5NPr3T0ZI//6VOy5J0pYvFotB\nGdqioodjYsATwHf8HiAAI4HOJZc7AyMq+DpKEWdCJElhUdHDMYcAFwLfABNKtvUGBgIvAZcC04Fz\nKvg6ShEjRJIUFhWNkA/Z+GzK0RV8blUCl+hKksLCd0yNGGdCJElhYYREjBEiSQoLIyRijBBJUlgY\nIRHjb9GVJIWFERIxzoRIksLCCIkYI0SSFBZGSMS4RFeSFBZGSMQ4EyJJCgsjJEISCWdCJEnhYYRE\nSGEhVKkCmWV4n1wjRJJUWYyQCCnr8lxIzprk51fOeCRJ0WaEREhZzwcBZ0IkSZXHCImQ8kRIZibE\n41BUVDljkiRFlxESIWU9KRUgFkuGi4dkJEmpZoRESHlmQsBDMpKkymGERIgRIkkKEyMkQowQSVKY\nGCERUp4lumCESJIqhxESIc6ESJLCxAiJECNEkhQmRkiElGeJLhghkqTKYYREiDMhkqQwMUIixAiR\nJIWJERIhRogkKUyMkAhxia4kKUyMkAhxJkSSFCZGSIQYIZKkMDFCIsQIkSSFiRESIb5PiCQpTIyQ\nCHEmRJIUJkZIhBghkqQwMUIixCW6kqQwMUIixJkQSVKYGCERYoRIksLECIkQI0SSFCZGSIS4RFeS\nFCZGSIQ4EyJJChMjJEKMEElSmBghEeISXUlSmBghEeJMiCQpTIyQCDFCJElhYoRERDwOhYVQrVrZ\nH2uESJIqgxESEfn5yQCJxcr+WCNEklQZjJCIKO+hGEi+t0h+fmrHI0mSERIRFYmQqlWhqAiKi1M7\nJklStBkhEVHe5bmQPIRTo4azIZKk1DJCIqIiMyHgeSGSpNQzQiLCCJEkhY0REhFGiCQpbIyQiCjv\nb9BdzQiRJKWaERIRzoRIksLGCIkII0SSFDZGSERUZIkuGCGSpNQzQiLCmRBJUtgYIRFhhEiSwsYI\niQgjRJIUNkZIRLhEV5IUNqmIkCeBXODbtbY1BMYAPwKjgQYpeB1VgDMhkqSwSUWEPAUcv862XiQj\npA3wTsl1BcgIkSSFTSoi5ANg0TrbTgGGlVweBpyWgtdRBbhEV5IUNpV1TkgWyUM0lHzOqqTXUSk5\nEyJJCpvMNLxGouRjPX369FlzOTs7m+zs7DQMJ5pSESHz56duPJKkLV9OTg45OTnlfnxlRUgu0ASY\nCzQF5m3oTmtHiCqXMyGSpFRbdwKhb9++ZXp8ZR2OGQl0LrncGRhRSa+jUnKJriQpbFIRIc8DHwO7\nAL8AlwADgWNILtE9quS6AuRMiCQpbFJxOOb8jWw/OgXPrRQxQiRJYeM7pkaEESJJChsjJCJ8nxBJ\nUtgYIRHhTIgkKWyMkIgwQiRJYWOERIRLdCVJYWOERIQzIZKksDFCIsIIkSSFjRESEUaIJClsjJAI\nKCqCWAwyK/DWdEaIJCnVjJAIqOgsCCRPas3PT814JEkCIyQSUhEh1apBYSHE46kZkyRJRkgEVHR5\nLiQP5zgbIklKJSMkAlIxEwKeFyJJSi0jJAKMEElSGBkhEWCESJLCyAiJgIr+Bt3VjBBJUioZIRHg\nTIgkKYyMkAgwQiRJYWSEREAqluiCESJJSi0jJAKcCZEkhZEREgFGiCQpjIyQCDBCJElhZIREgEt0\nJUlhZIREgDMhkqQwMkIiwAiRJIWRERIBLtGVJIWRERIBzoRIksLICIkAI0SSFEZGSAQYIZKkMDJC\nIsAlupKkMDJCIsCZEElSGBkhEWCESJLCyAiJAJfoSpLCyAiJAGdCJElhZIREgBEiSQojIyQCjBBJ\nUhgZIRHgEl1JUhgZIRHgTIgkKYyMkAgwQiRJYWSERIBLdCVJYWSEbOUSieQ5IUaIJClsjJCtXH4+\nVKsGGSnY0zVqJJ9PkqRUMEK2cqk6HwSSMVNQkJxdkSSpooyQrVyqlucCxGLJEHE2RJKUCkbIVi6V\nMyHgeSGSpNQxQrZyRogkKayMkK1cqpbnrmaESJJSxQjZyjkTIknakLc+/5F4PNiVBkbIVs4IkSSt\n6+FRH3L8a7vR/qYugYaIEbKVM0IkSWubvWAZ1+V05rLGTzE171P27H0lRcXxQMZihGzlUrlEF4wQ\nKd3GfPETb3z2Q9DD0FpW5hUGPYQKOWpgN1rGsnnsqouYfONbzMqfyO69LqOgsDjtYzFCtnLOhEhb\npoVLV3HwLTdy3MsHc9LLR1K76585deAQPv/x16CHFmmPvfEJtW/fluv++WLQQymXW555jamJd8jp\ndR8Azbarxw+3vsFvhdPYtdfF5BUUpXU8RsgGTJ29kMZdO3LBkEcCKcNUMkKkLc+Q4e/RpO/e/LJi\nCl9e9g2r7viFPofexeQFk9j/qT3ZpstRdL7/cabNWRT0UCOn35h7aVt8IQ//cCP79O7C8lUFQQ+p\n1CbP/I07v72Ce48Yxvbb1l2zvUnDOvzUdxRLinNp0+vCtM70GCHrmL1gGXsPOoFtq+7A6zOfo0HP\n/XnirfFBD6vcwr5Ed2VeYdrLWwqrqbMX0qbHX+j5cWduaDeYX4a8RLtWTalWtQo9zuzAj4OeYOFN\ns7m83TW8M+MtdnqgBU27nkbXx19i/pKVQQ9/qzd+8i/8Wv1t3rx+ID92/5zZeVPZvveRW8TsVDye\noMO9l/Pnap24+uTD1ru9Uf1aTO0/krzEMna+8by0xZURspbFy/No2+9Umlfdm0kDH2XRkPe5eJdu\nXP7O6ezS469Mnvlb0EMsszDOhHw1dQ6XDH2SHbqdSe2+21G3967c/9/3UzNAbdWWrsinZre9uGDI\nI0EPJaXi8QTXPvYCbe5rS80qdZjZaxL9Op28wfs2qFODuy4+nVlDXmZGl5l0bHUa/5r4ONsN3J4L\n73sszSOPli7PPcxedKLZdvVo2XQbfr3nvxy4bUcOeHw/hgx/L+jhbdJfH3qaRfzMmN63b/Q+DerU\nYEr/V4kniml941ksXVH5v6PDCCmxMq+Q3W45j7oZjfn6jn+QkREjIyPGw3/7P2b0+J46VevR9qG2\nnDf44S3qEE0YIqSgsJjH3xzH4bfdSq2u+9L+8d15Z/pbdGx1KhOv+JGe7YbQ7cP/Y69eVzN7wbLU\nDVZbncsfeYKq8Xq8PHsQR/btG/h7HKTCR5Nm0KR7Rx77/g4ePWo4Xw8c+oep8k35U+P6PH71xSy4\nbzRvnvkpz8+5NfTfDLdU85esZHzh4ww+55o12zKrZDD6lhsZsP+/6DHufE64465Q/pv8cOJ0nv61\nJ/8+89/Uq73pqfF6taszdcDLZMaq0+rm01i4dFWlji1Wic99PHAfUAV4HLhrndsTiZD8Otai4jht\nenZmeXwhP985nDo1q23wfq98+C2X/udqCmLLGXrcQ/z1+APTPNKyu/12KCyEfv0q/ly/rfiNE/sP\n5seFP9Cobl1qZ9ajTtV61Ktej3o16tKwVj0a1qlHo7r1aFS3Lp//PIVRP7zO9KpvUq0gi71rdeTC\n/Tty6bEHUatG1T8897Q5izhuSHd+TrxL/wP+Sa+zj6n4gNMkHk9wxt338U7uS3T/883cev6JZGRU\n5pdWNC1ense2fVvz1HEjaLdTMw584ARaVTuYL/oPpVrVKuV6zh9+mc+ZD97KNjW25YrDT+OCI9un\nbd8VFBZzzuChjFx8B0fX7saIHj3W+7ooq7v/8za9P+3E2M7jOKTtjikaqQAuuu+fvDVjJLn3vrbB\n28dP/oUOj51FPbZnXO+n+VPj+mke4YYVFBazXY8jObTxybx+Y49SPy6voIhde3dmaXEu39/2Xxpv\nU7tUj4vFYlCGtqisr7YqwA/A0cCvwGfA+cDkte4TigiJxxO0u/EaZuZ9y5S+b9Cofq3N3v/qx57j\n0Z970ipxHMOvGkjbFo3TNNqyu+kmqFUr+bm8FuctZvDHg3n484c5ueV5ZK3owKIVy1i0chlL8pay\nNH8pywuXsqJoKXnxZeQllpIfW0JdtueoZh25+vgTS/0f4h0vvsVtn19OK45h9PX3sGNWg/IPPA1W\n5hWy761XM73oEy7euSdPTulP3eId+efZgzn9kD2CHt5W5Yy77+eTOe8y597/AjBz3hL2vvM0amc0\n4rt+m/8Jb123PPMad357BXtWOZtqGdX5Km848Yx82lY5jYv2P42/n3hYhaNgbROn5fLKJ18wdsoX\nfLfoC+ZV/Yx6BW144cJHOe7PbVL2OqcOHMKY3H8zs8+Hm/3/LJ0KCouZkbuYnZttG/RQyiweT1Dr\n+j3pc9C9m/wBaemKfA7t153vC9/iudNe4azD9lrv9tFf/sD7301iwq+T+HnZJOZnTKSw9nRi+Q2p\nXphFrXgT6lfJomGNLJrUaUKz+lm02K4JrZtksU+rZrTavmGZxt7xzkF8NG8U8wa9W+ZYLygsZvfe\nlzK/aBrf3TKqVDN0YYmQg4DbSM6GAPQq+TxwrfukLEK+mjqHXs8Po9PBx/J/R7Uv02MPvfVmJix7\nkx9ufJdm29Ur9eNm/baU0+7ty5fxf9Gq6CSO3/lYrjzhaHb703ZlHX6l6t4dtt8++bmslhcsZ+j4\nodw77l5ObnMytx5xKy0atEj5GNc167elHH9PLybHR3LT3o9w+4UnbfL+8XiC8d//wsufjGfsz+Mp\nihdydrsTueak7DJ/YyqLaXMWse9dZ1M1VoMJNz/P9tvWZWVeIRc98Aivzu/HbpzJf666PXT/JrZE\n85esJOuOVjzX8Q3OPaLdmu2Ll+exx60XsiK+kG9vGlGqr+GZ85bQ4e4uTOd9hhz+NNeccjiQ/Hc0\n6tPJPDhmBB8vHMHK6lNpWdSRM9uexvWnHVfqnwQh+X/Sq598wQdTv2Dy4i/4reoXJKqsosGq9uxc\nZ18ObrEvJ/95X7L32inlMy/xeIJWPToBMHXQM+V+/q+mzmH5qnwO3aNFhcc0b9EKdut7OgvrjqXa\nipa0rprN0a2zubTDEey1U5MKP//GxOMJxnz5ExmxGMfsu3O5n2fQK+9wy0fXsvKeiaX6+7zykWd5\nZHoXjq3TnVVFq5i6dBK/MYmCWtOptrIF27EHreu1pX3ztmS3bcvhe+zEzHmL+X5WLj/NmcuM+bnM\nWjyXeStymZ8/l6XFuazMyCW/xkyyVh1Bt0Ou5fozOmx2LP/54BvOeb0DYy/8rNz7sag4zkkD7ubR\ny/5Wqh8KwxIhZwHHAZeVXL8QOAC4Zq37VDhC5i1awXlDB5OzaigtizoyI/YudQpbcWX7rvQ5/6TN\nVl/HOwfx9vyn+KbrWHZp3qhcYxj7zTQeHP0/Pvh1NHNrvE/NvJbsWftYzmx3DJcffygN6qTwhIxy\nuOoq2H335OfSyivK45HPH2HghwPJbpFN3+y+7NJol8ob5EYMGf4eN3z0V5olDmJ01/vX/AQ1e8Ey\nXhj7OaMnjefrBeOYV3U8iVgxjQsOZM+GB5ARy+CT+aNYVmsiTVd14PidTqb7yR1TOmP1zoQpnPDv\njuxZvSOf9B203r+1qbMXctYDt/N14llOrH8Dz117TaUE0ZDh7zH0w8d5stPtHNWuVcqfPyxOHjCY\nCb99wqwh/1nvtoLCYva5+WqmFYzn02vfYI+WWRt9nsGvvssNn1xCm9gJvNvrHpo0rLPR+372wywG\njxrJmF9GsLDWOBqvOpz6mVkUxFeRH19JYWIVhayiKLaS4tgqijNWEq+yiniVlcQSmWyzat9kcLTc\nl1P+vC+H79kybYd65i9ZyZ/6HMKxWRcxolfXMj/+gZFj6fLheSRiRdy1//P0OLNDuccyI3cxew7o\nSFZmGyb0e5TXxk/ixXE5jM/NIbfGB1QtaMxOVY7g6FbZXHLUEbTfeftyv9bMeUt47v1PGTN5HN8u\n+oT51ceTUVSXeOZyPrroSw7a/U/let4mXU+hw5868mzXK0r9mFc+/JaeIwbRtNaf2GeHtmS33YNj\n9mlTof8H5i9ZSfenn+OlGUOJU8SZza7lvks6bTCQl67IJ+uW/Ti/ZVeevOaScr9mWYUlQs4kOQuy\nyQi57bbb1lzJzs4mOzu7VE9eUFjMFf8Yxr9+uZXm8cP59yV3cugeLViZV0ivf73Ck5OHkJ+xkFOb\nXMeDl16ywf9oLrrvnzw/awCfXP4Bf26zQ/n+lOtYmVfIsHc+5YXPRvPl4jEsr/0t2644mAOzjuGi\nQ47h6HZtaFivZkpeq7TOv3QB++5fwFV/aUCNzBqr/4FsUGFxIU9OeJL+H/SnfdP29DuyH3tl7bXR\n+6fDvEUrOP7um/m6+AV2ih/PL/HPya/5M3VW7M3ONQ/g0JYHcNaBB3DoHi3W+w9+8szfGPLa/3hj\n6ih+rT6G2nm7clDDk7ki+2TOOGTPcn9DuP+/79Pt43M5N6sPz3X72ybv+8ZnP3Dxc9ezMGMy3fYc\nxICLTkvJN6KCwmJOGHAnOcsfZt+qnfi8+Cmu3ukBhl5+XoWfO2zmLlzODne15j+nvL3RQ1zxeIIO\n/W7nw6XPMOai0WTvvdMfbp+/ZCUdBvRiYvGr9N33cW4+7/gNPs/GzMhdzJCRb7F45TJqV69Jneo1\nqVezFnVr1qRezZo0qF2L+rVr0rBuLbapU5Pm29UP/LygjybN4PB/HcDA/Z8tdUTE4wnOHfwQr8zv\nxx37PkPNatXo9sm5XLTDnTx97aVlHsOk6fPY7/7j2KXGEXzWfwiZVf64FqKgsJjhH3/LC+NyGDc3\nh9waY8ksaESTRHvqZDagbrX61K9en/o16rFt7fo0rFOPxvXqk9WgPlkN6rFkxSr++8V4PvnlE2YU\njyO/5nTqrWjPrnUOIrv1gZx/2IG0a9WUY/rdwVcLPyR38P/KvF/e/WoqR79wAPN6zwzN4a14PMHQ\nke9z9/tDmVt9LO0zOnPPuVf94d/9ATffwC8rfmTW4Fcr9d9iTk4OOTk5a6737dsXQhAhBwJ9+P1w\nTG8gzh8AhKneAAAQN0lEQVRPTi3XTMiAl0Zz+7jrqRavz30nDuaSY/df7z7xeIJH3/iYO965l9nV\ncvhzlb/wwIXXcMBuzQG47p8v8uCP3Rl9QQ4d9mld5jGU1ozcxTz8xnu8PnkMPxW9S0Gt6RCvSmZ+\nY2oUZVEn1pgGVbNoVLMxWXUa03ybLHZs1Jg22zeh7Y5NyvQfWUFhMW9P+Im3vv6az2Z+xZTlX7Og\n6tfEM5ezTZ2arIgn39SoQY0G639Ub0Dd6nUZ/v1wdtpmJ/of2Z8Dmh1QaX8v5fH4m+N4e9KXnLDX\nfpx56N4bPXl4Y5avKuDBUe/zwpejmFT4GolYMbtXOYWLDziDKzseRo1qmaV6nr888BRPz7qBgfs9\nR8+zji716w98eQx9PulGjfi2PHTKkDIfNlzbxGm5HHH/hRRTyLtXPUf7nbfn2Xe/5JLXz2OnjCP4\n8Ob7K/U/y1m/LeWDSVP5avp08goLiMfjFMWLKS75HE/E12yLJ+LUqlaTh6/oVOq/43WdcMddTFow\ngZlDXtjsfc8f/A9eyu3Pcx1fX3PY5vE3x3HlmIvYgf159/oHaNl0m3KNY0s0ZPh79Bh3Pu93GrfZ\n6fjFy/PYv++V/FL8Oa9fNHzNzNobn/3AKS90ZN+aZ/Fh3zvXC4mN+eS7mRzxxDEcXPd83r31tlL9\nX1ZUHOfVj74l57uJLFyxhMWrlrIkfwnLC5ayvGgJK+NLyC8556yoyhJiiarswP7s1/QgTtnnQM44\nZK8NnsezMq+QbXvvR6fW3XjsqotKNf7V2vfuStUq1Rjff921FeHw0aQZdHv+YT4repKs/IPpesg1\n1KxWjS4fnsfEq79O++HgsMyEZJI8MbUDMBv4lAqemPrKh99yxSs9WJoxla573l3qnyjHfjONri88\nwIT4MJoVHMMBTQ/l1fn9eenkMZx56J5l+kNVVDyeYPaCZUyemcuUufOYNi+XWYvmMXfZPH5bmcui\nwnksi+eyqkouhdXnQpV8qqxqQo3iJtSlCdtUbcJ2tbLYvm4TmjfMYvqCOXw772t+KfyKFbUmkZnf\nhO2K92bXBu04sOXenNh+bw7efcc1f095RXkszlu80Y8Dmx1IdovstP6dBCEeT/DauO948J0RfLxw\nOKuqz6B18Slc0O4MupzaYYOH0IqK4xx62418seo//PfcUZy4/65lft28giL+8uDjvDi3L1mFBzL4\n1Fs5P3ufMj3HfSNy6P7RhRxc6xLG3HTbH76xz16wjEPu/DtzEl/x4lkvcurBbcs8xtWmzVnE2IlT\n+PznKXyXO4XpS6fwW9EUllefQiJzOTVWtaJ+ogXVYjWJxTKIkUGVWBViZJARyyCDKsRiycvTCz6n\nTY1DmDDgvjKPY9ZvS/nTPa0Zecb7nHTAbqV6TPcn/sO9P15Jv/bP8PrE9xlf8CRd2jzI4EvPKvPr\nbw3OuPt+3pzzNDP7fLTROP3sh1kc+cgZbBNrwRe3PLXe9P4Pv8xnv8GnUS+jKd/0+ddmZ3Tf+vxH\nOr5wLCc1uq5ch4Mqw7Pvfkmnt07gm799s8lDdmubvWAZze7ZkQ8unBD61Ubzl6yk21PP8tLMoeTX\nnczNrYdv9L1mKlNYIgTgBH5fovsEMGCd2xNNupxC3cxGbFO9EY1qNSKrbiN2aNCI5o0a0arJdrTe\nvhELlq7k/Mdu5aeMkZy+7c0Mu+ZvZf4pGJL/mV3z5JO8O+cVhpxwD5ceF66f9Ddk/pKVfDcjl+9/\nncu0ebnMWDCX2UvnMm/lXBYVzqVB1Sz2ztqbI3bdm5P337NMJ9bqdx9NmsHg10fw7uxXWVLza5rn\nH8+Zu59Bj9NPYPtt6zJv0Qra3d6JFYn5fNr91XKfP7Ta/CUrueyRxxi54G4aF+7HoJNu5cIO+27y\nMUXFcY6/407eW/4Q/f88jN7nHLvB+8XjCf760NM8/WtPLmxyJ09f+9dS/wT64GtjefTj5/gh9l8S\nVVZRc1Vrto21pnnt1uyyXWvat2jNIbu1pl2rpmWa3p02ZxG73HMAF+x4Q5mn9I/pdwdTFk9m2uB/\nl+lxQ4a/R/fPTqXJqiMZc+1jpf6mszWKxxPs3PNiihOF/Dzo2fX23cOjPuSasedwbP3reL13z43u\n26Ur8tnr1r8wPz6FcdeO3Ojf6Utjv+b8USfQqVm/ch3CqUwH3dKbX1ZMYdaQl0t1/7MGPcC4Oe9v\n8FyksIrHE+R883Ng54iFKUI2J9HzqVeZs3g+ucvns2DlfBYVzGdZ8XxWMp/8KvMpqjYfquSzX/xa\nXr72xtAv19SWb+K0XO7+70jemPEq82t+RNaqbJYyi+2r7MWXfR9N6cmlC5eu4rJH/smI+XfRqLA9\nd594K52P2W+9+02aPo/D77uQYvJ596rnS3Xi3qjxkzn7xXNpHGvLR70e3WCgxuMJXhz7FUPGPMeX\nBc9TragRRza6gF4nn73Bc2wq4n+ffs9JrxzOg4e9ypUnHVqqx8yct4QWQ1rzxlkflWsJ6+wFy2iy\nTZ3Az80Ig4VLV9H8tsM4svF5jOp9PZDc/xfc+w9emteX2/cZVqrzZOLxBEfd3pePlg/jP2eMWm+2\n7bE3PuFvOafRpc2DDLn07Er5s1TE4uV5NL5tb7rsMYC7Lzljk/ctKo5Tq+euDMl+YoNvc64NK2uE\nBClRGsXF8VLdT0q16XMXJf7+j38nLhn6ZKX+O1y0bFXi7EEPJqpc3yyxXZcTEo+/OW7NbfeNyElk\nXL9D4pBbbkqsyi8s0/MuWLIysXvPvyUyu7VKDBvz2Zrt7301NdGhb79Eta67JTK7t0gcfMuNiREf\nTUzZn2dj+j3/RiKjR5PEhxOnl+r+2X36JFp171y5g4qQjyfNSGT0aJIY8NLoxJLleYk211+aqN61\nbeLtL38q83Nd8dC/ErGe2yUGvDR6zba7Xh6TiN3QKNHv+TdSOeyUe+i1DxIZPZompvy6YJP36/Ps\n64maXfbxe1AZAWU62TPQmZBECN6sTAqLpSvyueKRJ3l57gAaFO1O69rt+KxgGLfv+zQ3nXtcuZ+3\n2xMvc9+PV7FXxvlMzfuUFdWmskfsHK46/AIuO/6gtM4UnDpwCKNz/8W0Wz7c5PLYaXMW0er+nXn7\nvPFb9dLjdFu9sqtmwZ+oH2vOZzc9Xeq3iF/XAyPH0uWjc/i/pv1o2qARgyZfwdBDX9kiZg326nUN\nq4qW89M9T230Po26HMfpO1/AP6/qnMaRbfm2qMMxRoi0vqUr8vn7Y08z7tePePHyASlZQj72m2l0\ne/EhTtmjA9effnRK3wm0LOLxBLv0/Asr40uZMejlja60OOy2W5i3cg4/DHo8zSPc+l320DBmL5nH\na72ur3CAjvniJzo+15GizCU8c9wbFVr1lU5zFy6n+Z170me/RzYY+KPGT+aUV7NZeMuMwN/raUtj\nhEgKtaUr8ml201Hs0+Bo3u/Td73bf5q1gF0ebMPYC79Iybt1qnLNnLeEeYuXp+z9ltJlwEujueXT\ny5nZ+9v1ZoPa3vB3tq2xHWP7bvw3zmrDjBBJoTdxWi7tHt6fa3e9Z70TGA+6pTdL8hfx3d2PBDQ6\nRcXO119CzczafDPwwTXbps1ZRKuhO/HlX7+jXaumAY5uy1TWCCndu85IUgrt0TKLZzqO4L6fruT5\nnAlrtk+aPo/xhY/xxMU3Bjg6RcXo7kOYFB/Og699sGbb1U89zo4FHQ2QNDFCJAXi/Ox96LLzw3R6\n/TQmTssF4OJ/DmIPzi/37/iQyqJl0224fvcH6ZbzVxYuXUVeQRFvLXyIPsdfF/TQIsPDMZICdUSf\n2/hy8RjevOx5Dvv3Pnx6ybdb3PkF2rI173YOO9TaicNb7c8/vhnEsns/CXpIWyzPCZG0RSkqjtOi\nxznMrjqWvTMuKNfbu0sVMXFaLns9sheZRQ342y59t8pfBJkunhMiaYuSWSWDL28ZRqvijgy7rFfQ\nw1EE7dEyiytaDCYey2fgRWcGPZxIcSZEkiSSv227PL+bTL/zcIwkSQqEh2MkSdIWwQiRJEmBMEIk\nSVIgjBBJkhQII0SSJAXCCJEkSYEwQiRJUiCMEEmSFAgjRJIkBcIIkSRJgTBCJElSIIwQSZIUCCNE\nkiQFwgiRJEmBMEIkSVIgjBBJkhQII0SSJAXCCJEkSYEwQiRJUiCMEEmSFAgjRJIkBcIIkSRJgTBC\nJElSIIwQSZIUCCNEkiQFwgiRJEmBMEIkSVIgjBBJkhQII0SSJAXCCJEkSYEwQiRJUiCMEEmSFAgj\nRJIkBcIIkSRJgTBCJElSIIwQSZIUCCNEkiQFwgiRJEmBMEIkSVIgjBBJkhQII0SSJAXCCJEkSYEw\nQiRJUiCMEEmSFIiKRMjZwCSgGGi/zm29gZ+A74FjK/AaSqOcnJygh6C1uD/Cx30SLu6PLV9FIuRb\n4HRg7DrbdwfOLfl8PPBwBV9HaeIXdLi4P8LHfRIu7o8tX0Xi4Hvgxw1sPxV4HigEpgNTgP0r8DqS\nJGkrVBkzFNsDs9a6PgvYoRJeR5IkbcFim7l9DNBkA9tvBF4rufwe0B34suT6A8A44NmS648D/wNe\nXec5pgCtyjheSZIUXlOB1qW9c+Zmbj+mHAP4FWi+1vVmJdvWVepBSpIkbch7wL5rXd8d+AqoBrQk\nWUWbm3GRJEkqtdOBX4BVwFzgjbVuu5Hk4ZbvgePSPzRJkiRJkqQQOZ7kLMlPwA0BjyWKngRySb7X\ny2oNSZ6I/CMwGmgQwLiirDnJQ5uTgInAtSXb3S/BqAGMJ3lo+TtgQMl290ewqgAT+H1hhPsjWNOB\nb0juk09LtoV+n1QheaimBVCV5Bf5bkEOKIIOA/bhjxFyN9Cz5PINwMB0DyrimgDtSi7XAX4g+XXh\nfglOrZLPmSRX/B2K+yNo3UiuvBxZct39EaxpJKNjbaHfJwcBb651vVfJh9KrBX+MkO+BrJLLTUqu\nKzgjgKNxv4RBLeAzoC3ujyA1A94GjuT3mRD3R7CmAduus61M+ySIt1PfgeQJrav5ZmbhkEXyEA0l\nn7M2cV9VrhYkZ6rG434JUgbJmdpcfj9U5v4Izr1ADyC+1jb3R7ASJMPwc+Cykm1l2iebe5+QypAI\n4DVVNgncT0GpA7wCXAcsW+c290t6xUkeIqsPvEXyJ/C1uT/S5yRgHslzD7I3ch/3R/odAswBtiN5\nHsi6sx6b3SdBzISs+2Zmzfnj27wrGLn8/u64TUl+wSu9qpIMkGdIHo4B90sYLAFeJ/l+SO6PYBwM\nnEJy+v954CiSXyfuj2DNKfn8GzCc5O+JK9M+CSJCPgd2JjnlXI3kb9wduakHKC1GAp1LLnfm92+C\nSo8Y8ATJlRj3rbXd/RKMRvx+Vn9Nku8ePQH3R1BuJPkDa0vgPOBdoBPujyDVAuqWXK4NHEvyPMMt\nYp+cQPLs/ylA74DHEkXPA7OBApLn51xC8gzntwnxsqqt3KEkp/+/IvnNbgLJpezul2DsSfL3YX1F\ncglij5Lt7o/gHcHvP7i6P4LTkuTXx1ck31Zg9fdy94kkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZK0\nlfl/z/gv2a2gjQYAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f3150900710>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Serie2 = np.copy(Serie)\n", "Serie2[10] = 50.0\n", "fig = pl.figure(figsize=(9,7))\n", "pl.plot(Serie2)\n", "pl.plot(Serie)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "Ahora veamos que ocurre con la media:" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-0.121089383472\n", "0.885952982227\n" ] } ], "source": [ "print Serie.mean()\n", "print Serie2.mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Y que ocurre con la mediana:" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "-0.104065434749\n", "-0.0182564049349\n" ] } ], "source": [ "print np.median(Serie)\n", "print np.median(Serie2)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Introducción de múltiples Outliers\n", "\n", "Que pasa si se introduce una alta cantidad de datos atípicos?, es decir como es la tasa a \n", "la cual la media puede ir pasando a ser cada ves un estimador con un mayor error?." ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def CreaOutliers(vect,NumOut,Mult=10): \n", " # Encuentra el rango de oscilacion \n", " Per = np.array([np.percentile(vect,i) for i in [0.1,99.9]])\n", " # Genera los aleatorios \n", " vectOut = np.copy(vect)\n", " for i in np.random.choice(vect.shape[0],NumOut):\n", " p = np.random.choice(2,1)[0]\n", " vectOut[i] = vectOut[i] + Per[p]*Mult*np.random.uniform(2,15,1)[0]\n", " return vectOut" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'Serie3' is not defined", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-41-6af41c11682d>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mprint\u001b[0m \u001b[0mSerie3\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mSerie\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[1;34m'----------'\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmedian\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mSerie3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;32mprint\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmedian\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mSerie\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mNameError\u001b[0m: name 'Serie3' is not defined" ] } ], "source": [ "print Serie3.mean()\n", "print Serie.mean()\n", "print '----------'\n", "print np.median(Serie3)\n", "print np.median(Serie)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": { "collapsed": false, "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "# Definición de variables\n", "N = 1000\n", "S1 = np.random.normal(0,1,N)\n", "Medias = []; Std = []\n", "Medianas = []; R25_75 = []\n", "# Introduccion de outliers\n", "for i in np.arange(5,200):\n", " S2 = CreaOutliers(S1, i)\n", " Medias.append(S2.mean())\n", " Medianas.append(np.median(S2))\n", " Std.append(S2.std())\n", " R25_75.append(np.percentile(S2,75)-np.percentile(S2,25))\n", "Medias = np.array(Medias)\n", "Medianas = np.array(Medianas)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Resultados:\n", "\n", "Según lo obtenido la mediana se ve altamente afectada, y la desviación también:\n", "\n", "## Caso de una distribución Normal" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false, "slideshow": { "slide_type": "subslide" } }, "outputs": [], "source": [ "# Definición de variables\n", "N = 1000\n", "S1 = np.random.uniform(0,1,N)\n", "Medias = []; Std = []\n", "Medianas = []; R25_75 = []\n", "# Introduccion de outliers\n", "for i in np.arange(5,200):\n", " S2 = CreaOutliers(S1, i)\n", " Medias.append(S2.mean())\n", " Medianas.append(np.median(S2))\n", " Std.append(S2.std())\n", " R25_75.append(np.percentile(S2,75)-np.percentile(S2,25))\n", "Medias = np.array(Medias)\n", "Medianas = np.array(Medianas)\n" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": false, "scrolled": false, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxQAAAFOCAYAAAAfCVspAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8U9X7wPFPRkdSSlsoUAplb1nK3gVkqoAgIEtABQRB\n2YKgbEWmyFfgxxBZskEEkS17y6rsTRmlUOhM0jTJ+f2RWkFQaCmkLc/79crL3uTec5571Zw8954B\nQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCEEAD8A\nt4GQB94bD5wGjgOrAB8XxCWEECJt8QQOAMeAU8DXie8PB64DRxNfDV0RnBBCCNepAbzKwwlFPUCb\n+PfYxJcQQghhTPynHtgPVAeGAX1dFpEQQgjg7x/vrrALuP+P9zYDjsS/DwC5X2hEQggh0ipT4j/d\nAR1/tx8a14QjhBDiL65MKJ7kfWC9q4MQQgiRJmhxdnm6DfwOnEx8vxfObrJzAF/XhCaEEMKV8vFw\nl6e/DAFWvthQhBBCpAM+OLs8BQPZcT6h0ACjcSYVQgghXjC9qwN4jE5AY6Duv+1QsGBBdfHixRcW\nkBBCpEMXgUKuDuI5iAJ+BcoD2x94fzaw9p87S3shhBD/KVXairTW5akhMABoClj+baeLFy+ilErT\nr2HDhrk8howSp8QoMaa1V3qIEyj4gr63XwR//u7OZMA5gcdRIOCBfd7mMU+800N7If/NynWQ6yDX\nwVUvUqmtcOUTisVALZwNRSjO2ToG4xxwtzlxn31AD5dEJ4QQIq3ICczDeRNMCywAtgLzgbKAAi4D\n3VwVoBBCvMxcmVC0ecx7P7zwKIQQQqR1IcBrj3n/vRcdiBBCiEeltS5PGUZwcLCrQ3gq6SFOiTF1\nSIypJ73EKcRf5L9ZJ7kOTnIdnOQ6pJ70On+3Suz3JYQQ4jE0Gg2k3+/41CTthRBC/IvUaivkCYUQ\nQgghhBAixSShEEIIIYQQQqSYJBRCCCGEEEKIFJOEQgghhBBCCJFiklAIIYQQQgghUkwSCiGEEEII\nIUSKSUIhhBBCCCGESDFJKIQQQgghhBApJgmFEEIIIYQQIsUkoRBCCCGEEEKkmCQUQgghhBBCiBST\nhEIIIYQQQgiRYpJQCCGEEEIIIVJMEgohhBBCCCFEiklCIYQQQgghhEgxSSiEEEIIIYQQKSYJhRBC\nCCGEECLFJKEQQgghhBBCpJgkFEIIIYQQQogUk4RCCCGEEEIIkWKSUAghhBBCCCFSTBIKIYQQQggh\nRIpJQiGEEEIIIUQaZjKZuHjxImaz2dWhPJYkFEIIIYQQ4qURFRXFmjVrWL9+fZr9gf6gdevWEZg9\nO1XLlCEwWzY2bNjg6pAeoXF1ACmklFKujkEIIdIsjUYD6fc7PjVJeyGESHL16lVqVaxIXrMZMxCf\nIwc7Dh3C19fX1aE9VkREBAXz5KGdyURe4Aqw2MuLy9evp0rMqdVWyBMKIYQQQgjxUhjYqxfNIyKY\nFxPD0pgYSly7xtcjR7o6rH914cIFsur15E3czgf46nRcvHjRhVE9ShIKIYQQQgjxUgi9fJmKdjvg\nvC1f3mrlWhr7cf6goKAg7lqtRCRu3wUirFaCgoJcGdYjJKEQQgghhBAvhUo1a7LQ0xMrEAssNxqp\nVKuWq8P6V4GBgXwzcSIzDQbm+/gw02Bg4pQpZM+e3dWhPSS99q+VPrFCCPEfZAxFEmkvhBBJTCYT\nbd5+m62//45DKdq3acP0uXPR6XSuDu0/Xbx4kQsXLlCkSBHy58+fauWmVluRXhsbaSCEEOI/ZKCE\nwhPYAXgA7sAaYDCQBVgKSeMUWwGRjzle2gshMoCrV69y4cIFChUqRN68eZ98wBNERUWh0+nIlClT\nKkSXfsmgbCGEEC8DC1AbKAuUTvy7OjAI2AwUAbYmbgshMqDZM2dSrnhxejZpwiv58pHVy4suHTti\nsVhSXKaPj89Ln0ykJkkohBAvpePHj1O3enVKFirEpx9//EwNk3juTIn/dAd0wH2gCTAv8f15QDMX\nxCVEunb79m0+7taNZg0aMGnCBOyJg5XTkrCwMAZ++infmM3cMZn4GphhMnF22TJ6devm6vBEovT6\nOFweYQshUuz69euUKVGCWjEx5AJ2GgyUaNyYxStWuDq0VJOBujyB8+bXEaAgMB0YiDOp8Ev8XAPc\ne2D7QdJeCPEY0dHRlC1RgqK3b5PPZmOH0Uhw27ZMmzXL1aE9ZO/evXSrX58GcXGEA3+lEGFAT19f\nbt2/78Lo0j/p8iSEECm0YcMGCtntVAaCgHfMZlatWYPD4XB1aOLxHDi7POUGauLs9vQglfgSQjyl\nDRs24BcVRWubjUpAT5OJ2XPnkpCQ4OrQkkRGRtKr6wdcjIsjGrj9wGc3AW/pspRm6F0dgBBCvGie\nnp6YNX/fkDEDep3urzs1Iu2KAn4FyuH8bRGA80ZlTiD83w4aPnx40t/BwcEEBwc/zxiFSBccDgcP\nzmv0199p6Yne0IH9KG+6xBdloNMJSFAwBMir0bDe05P/mzLF1SGmO9u3b2f79u2pXm56bT3lEbYQ\nIsViYmJ4tWRJsoeFkcNq5bDRyAf9+jE8Da+WmlwZqMuTP2DDOYOTAdgIjAAaABHANzgHZPvy+IHZ\n0l4I8Rj37t2jVNGiVL5/n/x2O9sMBkq89RYLly51dWhJXq9SngEJf9DAH2JtMPUqLNQUpEXrNjR+\n4w0qV67s6hDTvYwwbewPwBs47yqVSnxPpgEUQrwQERERTBw/npuhodRr3Ji2bdtmqCcUGSihKIVz\n0LU28bUAGI+zvVgG5EHaCyFS5MqVKwzq04cboaHUqlePL0eMwN3d3dVhJfnko66YNs5nZpF4HAra\nnfWk8Lu9GP3NOFeHlmFkhISiBs5FCufzd0IxDueq4uOAz3AOsJM7TkIIkUwZKKF4VtJeCJFORUVF\n0bhOLcKuXMDugMIlS7Nm4xaMRqOrQ8swMkJCAZAPWMvfCcUZoBZ/943dDhR7zHHSQAghxH+QhCKJ\ntBdCPGdWq5UTJ07g5uZGyZIlU3XVabvdzqZNm9i6dSs5c+akTZs2BAYGplr5L7uMmlDINIBCCJEK\nJKFIIu2FEM/RnTt3eL1aNcxhYVgdDgqVKcPaLVswGAypUv7x48epV6M6rfTxWNCwHiN7jxwlX758\nqVL+yy612oq0PMvTf04DKLN2CCHE357XzB1CCPFfBvTqxatXrjAwIQEH0O/IEcaPHcuXI0akSvkj\nBg5guFssPRJniP0yxsa4kSOZ9sMPqVK+SB1pLaFI0TSAQgiRmkwmEx+2b88vv/6K0dOTkV9/zUc9\nerg6rP/0zxsrI1KpMRdCiP9yJiSEjxMS0OCcera2xcLxY8dSrfz7d+9S+IEeVIW1Ds7f+defh8JF\n0trCdr8AHRP/7gj87MJYhBAvqT7duxP122/ssVpZGB3NVwMGsHHjRleHJYQQac4rZcvym7s7CkgA\nNhsMlCxXLtXKb9S8BV9ajVyywakEGJtgpFGLd1KtfJE6XJlQLAb2AkWBUKAzMBaoB5wD6iRuCyHE\nC7V5wwb6Wiz4AEWAd00mtkhCIYQQjxg/dSoXihShsZcXDYxGDFWr0v+zzx67b3h4OG/VqY2f0UiJ\nvHnYtm3bI/tERETw6ccf07RBA8Z/8w19Bg6k9ofdqRqXmfrxfnQaNJQOHTs+pnThSul1wJ4MshNC\nPDcVihfngzNnaJi43cfDg0rDhzNo0ONmsU6bZFB2EmkvRLoVGRlJbGwsgYGBaLVprVPJ32w2G+fO\nnUOv11O4cOGkNX02bdpE106duHPvHlUqVsQcE03F8ycZqLVx2A7va4wcDPmT/PnzAxAXF8drJUuS\n+8YNCiQksNdopFKLFvwwf36yYzpw4ACLFyzA3dOTbt27U7BgwVQ954wio8zylFLSQAghnpsdO3bQ\nonFjGtnthOl03MqRgz1Hj+Lj4+Pq0J6aJBRJpL0Q6Y5SikF9+zJt2jSMOh158uVj7bZtBAQEvJD6\n4+Li+HLwYI4ePEiREiX4asIEsmTJkqwyzp8/T4WyZXnbZCIXsEOv56DNRlRm0CV+M3XQZKLxlO95\n7733AFi7di2D27Wjd0wMABagv17PvaioZK09sXnzZlo3bUojsxmzRsPOTJno1a8fHh4e1K9fn9de\ney1Z55KRpVZbkXbTXSGEcJFatWqx58gRKowbR5upU9l/4kS6SiaEEOnbypUr+XX2LE7rrVzWmKl1\n5Txd27d7IXUrpWjaoAFHZs6kxoEDXF+0iNpVqhAfH5+scnbt2kURjYZCgAGob7ORAJyzOz+3K7jo\nAD+/v1cHsNvtuD1Qxl9jsR0OR7LqHvX553Q2m2kBtFeK2jExLBw7iruTv6BRzer8/LMM0U1taW2W\nJyGESBOKFi1K0aJFXR2GEOIldPjgQVrEx5HV3bn9obLx+pGjL6Tuq1evcvzIEWbFx6MDylmt9L91\niz/++IOqVas+dTlZs2YlQqPBgfPudQTgroE3LNBKD7ts4Fe5NI0aNUo6pnbt2nxiNLLWZKKg3c5O\ng4HGdeqQKVOmZJ2DKS6OB28B+QLV3e1MyApvetro1utjmjVrlqwyxX+TJxRCCCGEEGlIgUKF2Olh\nJCGxt942h4b8efMkq4xjx47RqV1LWjVrxIrly5/6OI1G88hCYA6SusY8tTfeeIM8pUuz0MuL9Vot\nP2hg6muwsAZo88IZd09+/X07ev3f97Z9fHzYc+gQxiZNOPDqq9T56CN+WrHiiXXZbDZOnz7NpUuX\nUErRpnNnFhiNnAOOAyuAdxMzjCLuEBkdk6xzEU8mTyiEEEIIIdKQzp0788vSJVQ8dIicei1n3bRs\nnL/gqY8/efIk9WpXZ3C1OLJlggE9dxIXF0vHTp2feGyePHmoUKkSkw4coLrZzFEPD3yCgihfvvy/\nHnPixAnCwsIoXbp00jgPvV7Ppu3bWbx4MWfPnuX01G+5l2DmvlXxe7SR3r174ebm9khZQUFBLF61\n6l/rioyMZNWqVVgsFho3boyXlxeN6tTkflgocVYHtWrXZeHyVdgSEpg3axYOux0VHoa3NoHbNugf\n5UHDBg2e4iqK5EivA/ZkkJ0QQvwHGZSdRNoLkS45HA727dtHdHQ0FStWJGvWrE997IC+vTGGTGFE\nPef27xdhwN5CHA45/1THm81mxowYwZEDByj6yisMHzPmX8eR9e3Zg2WL5lHUz40TETaWrv6FOnXq\nJH3++++/88vKFcTbbNy+cY34uFgaNm3Bx598muynHnfv3qVy2bLku3+fzA4Hu/R6KlSqQLHbu5lY\nNoF4B7y1x8ibvUfzae8+ScctX7aMQZ9+QmRsDI0bNGT6j/OS3Y0qo0qttkKeUAghhBBCpDFarZZq\n1aql6FiLxUzmB34iummTN7DZYDAweuyTlwLbvn07a5fO52RdEz7usDUM2rd+hxvhEWg0GpYtXUrv\nLp3p7Wfmhl3HQasvB46dIDAwMCWnxaTx4ykXHs6QhAQAVgHT9uxlZJ0ENBrw1EGLABN/HD380HEt\nW7WiZatWKapTPB0ZQyGEEEIIkYGcOXuSCbtg9kFYcxLaLYE3mrVO9XouXbpEVX/wSRw8XicH3L0f\nhcViAWDMkEEsym1mYCBMCbLzllsUP8yZ89iyoqKi6Pzuu5QICqJh9eqcOXPmkX3Cb9ygUGIyAc6F\nR7VaHT/fcN4fT3DAunADRV8pk7onKp5IEgohhBBCiAxk776DLP8S1t+AGSFQMJ+OrNmyp3o9ZcqU\nYcstxdU45/b8K1AgKBCDwQCAyWwm+wPDJHLo7Fw4f54eH37Ix127cvSoc+YqpRQtGjUifvVqply/\nTvW9e6lbrRoREREP1ff6m2+y1GjkOhANzDQYaNqqFaticlF2a2aKbvBCFajIJ717P3RcTEwMY0aP\npnvXrixZsgTpBpn6pMuTEEIIIUQG4pPZi+y+kawaAUpB42Ge+Pr6PlOZJpOJ69evExgYmDT+oFy5\ncgweMYZSgwfhZ9CDu5F1m9YnHdOybTt6zJvBtwEmbljh27vuqGXLaBkfjwN4fdEiNmzfjtVqZfe+\nfZzDufZECaX4PSGB3bt307Rp06Ty3n33Xa5evEjbMWOw2my0btaM72bMQCnFiRMn8PDwoFSpUg+t\nKm6xWKhesSLay5fJER/P2kWLOBUSwsgxY57peoiHpdcBezLITogMymw2s3HjRuLj46lTpw7ZsmVz\ndUjpkgzKTiLthXjpzPtxLp9/9jGd61o4GepJaGxedu75I1mrTT9o8+bNtGneHC8gym5nzoIFtGjR\nIunzqKgo7t69S1BQEO7u7knv22w2Rgz5nNXLlpApUyb0bp5UPHqUxomf/wzcadKE/fv2cfvOHQ4D\nfjinqX3Ly4tOo0ezbMEcwsPvULtOXT7s8Qk/r1qBVqvjvU6dn2qtoNWrVzPovfdoExuLBogBpur1\nmCwWdDrdkw7P8FKrrUivjY00EEJkQFFRUVSvUAF16xZewBW9nu1791K8eHFXh5buSEKRRNoL8VLa\ntWsX27ZuJau/P507d8bLyytF5cTExJA/MJCxsbG8BpwBehqNnLxwgZw5cyarrIY1alBp925qJG5v\nAY5Wr87po0dpaoljhx3eAXYD14KCuBsVQb/SJvw8YP01PbuuO+j5qoMEh4Yfznixbdc+SpYs+Z91\nfvD+++ycO5f2ids24BudjujYWDw9PZMVf0aUWm2FjKEQQqQZE8ePx+/aNfrFxtI9NpZ6UVH07t79\nhdStlOLkyZPs2bOHmBhZ9EgIkb7VqFGDYcOH07NnzxQnE+BcOdtXo+G1xO1iQE67nXnz5iW7rA7d\nuvGD0cgR4BAw32ikfdeuRNoS6KaDj93gohYOuulp1rYtWXTxfL0HvtkKmy/YiDY7GF4NxtZS9C8b\nx6RvRieVHRYWxqD+/ejaoT0rV64EYM+ePfy8ZAlhwB/AbeBnjYa6wcGSTKQyGUMhhEgzrl+5Qr74\n+KRbJQWU4nho6HOvVynF++3a8duaNWTX64nQ69m4Y8cT73wJIURGlytXLu4mJHAJKADcAkKt8cyc\nMBK71cKQL4c/dVnt2rfHarUybcIEtFot4wYNon379kSEh9Pgyy+po4MDSkPFV19lzvf/wxprZxDg\nCVxS8H+AzQ46LQRmUvwREw1AREQEVcqWoYnlHmWxMWjNam5cvYrJaqVaQgLVgXnAQSBKo2Hv6tWP\nxBYbG8u0778n7HooNerU5e23337GK/dySa+Pw+URthAZ0Ny5cxnTsyefmkwYgLmenpRq25YZ/zLN\nYGpZtmwZI95/n+/i4vAE1gGbS5Tg8MmTz7Xe50m6PCWR9kKIZ7RwwQJ6dulCLms8YVoYURXeKQQF\nfnLjXmR0qtztP3jwIMePH+fmjRv8OGkcwXozf9yHTomfK2Ag8OMbUMAX3ttk5OupP9CqdWumTZvG\n7qH9+clgBuBUArxu8+GrSd/y7ccf85nJhBY4ASzJlYuL168/VLfZbKZm+XIUuH6J8vZ45miNdBow\niEFffPHM55XWycJ2QogMp1OnTpw6cYL+//sfKEX9mjWZ+N13z73ec+fO8ZrZzF9NYnVg+uXLz71e\nIYRID9p36ECcycTcMX1ZG2yigI9z9ih3nYa4uLikhOKv5D25K2ADVKxYkYoVK9KpdUs+9zWTWQtL\n78NdwB9nFyk3YNSfAXh6eDBo1GBatXaurWGxWPDDnlSWrxbirQm0bduWuTNmMPrkSXIoxTGlWDp3\n7iN1//rrr2S6FcoSj3g0GmhjN1Fk1CgGDhmCVqslJCSEX3/9FS8vL9q3b4+fn1+yzy+jkzEUQqRj\nJpOJ77//nuHDhrFjxw5Xh/PMNBoN4ydPJtZk4n50NGs3bnymvr9Pq1SpUuw3GPhr5MQmrZZXihV7\n7vUKIUR60bRpU67E6TlwG67HwsD9bpQoXowsWbIAMGnCOPx8vDB4utP+3eaYTKYU1ZPZLwvXbFpa\n+UJxTxgPjADWauCtJm9y7sotTpy9Qpdu3ZKOeeutt1iW4MY8ExywQkeLgTbvtmHfvn1gt2LJ7EWm\nWrXYc/gw9erVe6TOuLg4cmoUf+VB2bRgdziw2Wxs2bKFmpUrs+2LL/hp4EBeK1nykfUxRPqlhHjZ\nmUwmVaFUCdUkt0ENKahRuX2Mas6sWa4OK11yOByqT8+eysfDQ+Xz9lYFAgPV+fPnn3jcjRs31Jw5\nc9T8+fNVVFTUC4j06eHsISCkvRAi1Rw6dEhVKF1MBWTNrJo0qKPCwsKUUkqtXr1aFQ40qovDUdET\nUC3Ke6qPu72fojouXbqkAvx81Mc59GpADo3ycndTTd94Q/3www/Kbrf/63EHDhxQ9apUUuUKF1Kf\n9+unDh8+rPy9jWpJWdT+qqgaOY3qs769H3vstWvXVDbvTGq+N+pUFlQHHw/VtN7rSimlyhYrprqB\nmpb4qu7mpkaNGpWic0uLSKW2Ir32r028BkK8vBYuXMi8QR+x6ZU4NBoIiYE6f2biTpTMUJRSN2/e\nJDIykoIFC+Lh4fGf+548eZI6VatSwWYjTqPhup8f+44exd/f/wVF+99kDEUSaS+EeM4++bgb+W7N\npG9d5/aJG9BmeW5Onk/ZpBqhoaEsmD8fa3w877RqRc6cOfnzzz8JCAh4qrUnAEYMH4550SjGFnEA\ncC4W6p/NypWwu4/d//Dhw/Tt2oVbt25Rs3ZtJs/4PzJnzkz+nDnpEBbGXxPkbgQKfPIJk6ZMSdG5\npTUyhkKIl1xUVBQFPOxJj2gLGCDaZEYplaL+qwICAwMJDAx8qn0H9erF+zExtEn8sfqV1cq4r75i\n3KRJzzNEIYRIM+x2O3a7HYvVztEbOkgcx3DiBmTLlj3F5QYFBfH5kCEA7N69m7rVq1LYS8uFaCsd\nP+zCN5Of/GPe02Dgpl2Hc5k8uJcAHg8suvdP5cuXZ+eRo4+8/0bTpqydP59WZjORwB6jkV5NmqTo\nvDIyGUMhRDpVp04dVt3R8tsduGGBnhfceaNeXUkmXpCwW7co9sCd72IJCdz+x8whQgjxrHbt2sWE\nCRNYunQpdrv9yQc8wf379xnYrzfvtniDyZPGp6hMpRSjhw3D22Agk8GTFfN/YO0JO959IHNf6Lnc\njW8mT3vmWAHavfM2c4Ni2F04itOlzaycN+ehMYO///47JQrnwS+zkTcbBBMeHg5Ax44dWR+XmX5n\ndXx3BVqfNjJo2Khk1z9xyhTKt2rFBG9vfsqWjXFTp1K3bt1UObeMRBIKIdKp4sWLs3jVGgZG5aXc\n8cxYyzVi7uJlrg7rpRHcoAE/GgzEAXeApUYjwQ0bujosIUQG8t3UybRr34gLN4YzYfKHlHutBE0a\nB9P1gw6EpmCNHrPZTO0aFYkMmc5budfzy7zhfNSlU7LLWb58OYunTOBCzgRi8irqeSgyaeDY23Cs\nGeTz1nBo/75kl/tPVquVG3ciaOQc942fG9TwUZw/fx6Ay5cv06r5m0yoE8r5QWaK2vfQuvkbAAQE\nBLD/yHH0zT7ldOWOTF+0nM4ffJDsGDw8PJj1449EREcTGh5O5/fff+bzyojS661M6RMrhHCp+Ph4\nurz3HstWrUKn1dK3Tx9Gfv11mnlCJGMokkh7IdIlq9WKn583u0/pCcqrZfDHFo5stDGkJRy5rGPB\n7iwcOX6arFmzJh2zb98+vvi8N/fvR9CwUTOGj/waNze3pM9/++03xgxsza4vY9BoINYM2bvqCb9z\nn0yZMj11bJ981I38y2fSx9e5HWKFJhFwuZ1z++crMNtRnXVbdz3zdSiaN4gvjddplwNuxkPl00aW\nb9xGpUqVmD9/Phumf8xPbWIBsDvAOFBHZFQMBoPhmet+GcgYCiGEcCEPDw/mL13KXLsdrVabZhIJ\nIUT6duXKFZYtW4bZbEarVeTOo8HhUCycY+P6HMiaGZpXtXPqhol169bRsWNHAM6ePUuTN+sxqUcc\nRYJg6Jxp9IuJ5rv/zUwq22az4elG0tg7dz1oNZpkd3sKyB3EYTxQyrluwwELeOr+/vxMtBafoKyc\nPn2a7NmzP5T0JNfSNWt5q/7rjLxj5bbJytAvh1KpUiUA/Pz8uHDHmUjotHDlHrjpdUmTaiilWL9+\nPX/++SdFihShWbNm8l39nKTXqyp3nIQQ4j9ksCcUQcB8IDvOKQ5nAt8Bw4EPcfY6AxgMbPjHsdJe\niHTj1KlT1K5RmXeKWHAAC47aadPVjUEjdZTIbiJsHvglPkhoOcGLNzr/j06dOgEwfvx4rh0cwtTe\nCQBcD4dXP8zEnYi/Z/6Liori1dJF6VjlLjWL2Zm2xRObX01Wr9341DEqpYiIiKB+jWr43rmJP3bW\nR8ZjUw5aFgB3Nzd+uemO1l2HTybF7btWRo4czae9+6f4ulgsFi5dukS2bNnIli1b0vs2m43G9Wph\nCz9O+UALS457MHjYN3T/uCcAA/v0YeWsWVSIj+eohwc1W7Rg1rx5KY4jI0qttiK9NjbSQAiRSuLj\n49m0aRNms5ng4GCyZ0/5zBypJSEhAZvNJo+sn0EGSygCEl/HgEzAH0AzoBUQA/zX1FrSXoh0o13L\nZrwW+wv9qjr/mx27S8OMk77ciYwjk1FPkQA7n70dz9FLOmZu8+XoiTNJU1VPnTqVA+sHsnCoBYCQ\ni9BokB/Xb957qI7Q0FAGD/iEa1cvUalKTUaM/gaj0fjYeCwWC6O+HMrh/bvJV7AIrzd+i96fdCP8\nbhR5gwIwx1m4ez8KN52er74eiwNwOBxMnvgVk/tF8E59uHYLqnQwsu633bz66qupfs0SEhJYtGgR\nt27domrVqtSqVQtwTgNeokAB5sfHkxkwA50MBrb/8QfFixdP9TjSK+nyJIR4ZrGxsdSpXAm3W9fI\nqtXQ265jy+49lChR4onHKqXYuHEjFy9epHTp0tSoUSPFcVgsFlasWMH9+/c5cfgwC376CZSiYd26\nTJo+nfGjRxN68SJV6tThsyFD0Ovlq+slE5b4AogFTgO5ErczStIkXjKXLl1izZo1uLm50apVK7Jn\nz07k/bvJVa/bAAAgAElEQVQUzP53Alw4i6JMqTKs2fA7NpuNCeO+5vttv5EjZ2527R330Lo3bdq0\nYdKE0Xw6xUaR3DYmrzAyaPCwR+oNCgpi4ZLVgPN7fNLEcSxbOhej0YvBQ76mfv36SZ+1adEUzYWd\nfFrQwuZjf/DBTwtZ+o2iYWUo1OwmfUpCv0pw+q6dOiOGsGnHPvLnz8/QIZ/xjrMY8uSEWhW0hISE\nPJeEws3NLekpzYPu37+Pn7s7mePjATAAOdzdZZVr8ZAXuIagEBnXmFGjVGs/D+UIQqk8qO+zaFSD\n6lWf6tiPPvhABXp5qcqeniqb0ajGjByZohhMJpOqVLqket3fSwV761V+UHtAHQPV2MNDZTMa1Ud6\nvfoBVC2DQXVs3TpF9bxsyLgrZecDruJ8UjEMuAIcB+YAvo/Z39X/KoR4xJEjR1S2LJlUt2B31b6q\npwrK6a+uX7+uvp/6nXo1j5c68wnqdC9UmSAvNWPa909d7q1bt9RnA/qprh90UKtWrXri/t+MHa1e\nK+2ldixHrZiByp7NqPbu3auUUio8PFz5GN1VfBeU+gjl6IYq44/aNAVl2YnS61COwSj1ufP1Xjkv\nNWfOHOVwOFSO7D5qyyyUCkHd3YXKm9uo9u3bl+LrlRIWi0XlzZFDfaLRqLWgBoEK8PNTUVFRLzSO\ntI5UaivkNp8QL7Hrly5RjfikAXpV3RXTn2IthZCQEJYtXkw3kwkPnH1OxowZQ7cePZI9+G7+/Pn4\n37zEWn8TXW5CTcAv8bOO8fEc1GgYnthlpZbZzCsrVzLNZPrXR/QiQ8sErAA+xfmkYjowMvGzUcBE\nIPnzQgrxgg37vC+jGsbSraZze+BqG+PHjmbyd9OIuHuHutP/B0CPnp/S9aPuT11uQEAAY8dNeOr9\nFy6cxeyv4qhY1rl97pKJ5csWUaVKlaTBy44Hfm7aHGCxgrsb+Bjg4E2olAssNjgSpqFtrlxoNBoW\nL1lN61ZNKJJXx/mrVrp160nlypWfOq7U4OHhwaadO+nQogWzz52jcL58bFi2jMyZM7/QOF4WklAI\nkQHZbDZGDRvGulWryOrvz1eTJ1O+fPlH9qtSuzaTVi2jjT0OHy1Mjvegct3qTyw/PDycbG5ueCRu\newPebm5EREQkO6G4c+cOpTQWNBrI5QYngAZAAs4O824aDSQmFH/1bVHSJ/5l5AasBBYCPye+F/7A\n57OBtY87cPjw4Ul/BwcHExwc/FwCFOJpRdy9Q7EHepYWy25j+93baDQavhg+ki+Gj/z3g1ORh7sH\nkdF/b9+Lgj9OH+X+/fv4+/tTv1493tm+jfcLmNl62517Gg/6/c/Oqp2gdDYaLlfUK+xJSLiDisEN\nk7pL1a5dm1OnL3Py5Ely5sxJkSJFXsj5/FORIkU4EBLikrrTqu3bt7N9+/ZULze99j1V8oNCiH/3\nSffu7Jw/n5YmEzeAJV5eHDx2jEKFCj20n1KKz/v3Y/J3U9FqoHa1aixe88sT7+DcvXuXogUKUD8m\nhsLAMY2Go9mzc/TPP1m/fj0Wi4WGDRuSJ0+eJ8a6Z88eWjWsz/psJrJq4ZWLYMF5t0Or1ZLZ15cW\n0dFUtNn40WAgR6NGLFq5MsXX5mWRwQZla4B5QATQ54H3cwK3Ev/uA1QA2v7jWGkvRJozcthQti2f\nzKL3TMTGw9tzjAz5agbt2ndI2sfhcLBt2zbu3LlD5cqVyZ8/f6rHsfinn+jf70MGdTdz6w58v0BD\nmboBhJ3y5PCBY9y8eZMWTRsRGX6LbDlzs2rdJi5fvszly5d59dVX8fHx4dChQwQEBBAcHCxTsqZD\nMsuTNBBC/Kus3t58HRvLX8P15ri5Uefrr+nXr99j94+PjychISFZCxvt3buXNu+8w/WwMIoWLMjs\nefPo0Lo1fvfvY1SKk1otW3ftomzZsk8sa97cuQzs05t70THk12gY7XDgDvyfuzuZGzXC28uL0EuX\nqFKnDp8PG4a7u/tTx+lKVquVa9eukT179hf+mD2DJRTVgZ04H2D99eX/OdAGKJv43mWgG3D7H8dK\neyHSHJvNRv8+PVmwYAF6vY5+/Qcx4LPBST/I7XY7rVq/xemzeyhYTM++7fEs/mk19erVS5X6Q0ND\nebtVU44dPoGHwQM98RSu4o02zo5Wq+F+rI6enUcwcdwoelSPoE5xB9O3u3PV8Rqbf98riUMGIgmF\nNBBC/KsAPz8GR0YSlLj9P09P3h43jl69eqV6XQ6HA61Wy+eDBrFv0iTaJTjnQN8J3Khala179jx1\nWZ3btcPw0080Stw+D8zNn5+QS5dSPe7n7ciRIzSpXx9dfDz3ExIYN2kSH/Xo8cLqz2AJxbOQ9kKk\nOytXrmT02PcZMx1McRATqRjR28CVy//Ml1OmYrXy5Gigof7Q0tw8cY9x5X/G16hlUkEHPm7Q65SG\nQuVqoI06xtb+zj5Rdgdk6+XBmfPX0sT04iJ1pFZboX32UIQQac1nQ4Yw0WhkM7BAr+dspky0bt36\nudSl1Tq/RsKuXydXYjIBzpXIbt9OXuNXqFgx/vT0xJG4fVyrxcNgYOXKlVit1lSK+PlTStG8USOG\nRESwNzaWDfHxDB8wgBDpyyuEeAqXL1/GHB1H98bRTOgSzZCusdy4fjdVxo8lJCRw5MBR6g8phVar\nIXfZrPj6uDM4yEHHPNAsJ8wtrbh99QKRcQ4ciV/IcfFgTXAkrUKd3vz+++/UqV2eiuWL8tWYEcle\nHVz8N0kohMgAlFIPNTR9+vdn3Jw5xLZsSd5u3Th47Nhzv6P0euPG7DIaicC5gNAGg4F6DRsmq4w+\n/frheOUV+mfKxOdeXixTDoLMl/m2TyfqVq+MxWJ5aP+YmBiOHDnCjRs3Uu9EUkFUVBQR9+/TJHE7\nL1BZp+PEiROuDEsIkUqUUqxatYpRo0axdOnSFP/Qt1qtXLhwgcjIyKT34uLimPLdRNyi7JztCfs7\nQ5eSCk83LUuWLHnmmyt37txBq9MypthS5jTdwPVjEWh0eqwPnILVAffv3+NsaCxvT4EZW6HhJCPv\ndWiPj4/PM9XvCkeOHKFVyzfp1voPJn9xjrWrxzFyxFBXhyXSgBc7Sa8QaZTValU93n9feXm4Kx+D\nQY0YOlQ5HA6XxOJwONSo4cOVl4eHctfrVbtWrZTZbP7PY6Kjo9WsWbPUt99+q06fPq2Ucp7Tjh07\nVP5cAWpJVZRqg3K8i2qUz6hmzJiRdOz+/ftVDp/M6hVvL+Xr4aHGDB/+XM8vOex2u/L39larQF0H\n9SeoPF5eL3QedjLuOhTJ9cKuuXh59P7kI1WquJca3F2rypX2Uh+83zbZ373Hjx9XefJkU3nzZVLe\n3h7q2ykTlVJKDRs+VBUp6aE+D0apr1Cr2qL8PVDvZUfVzOGlgitVUPHx8SmK+9q1a8o/q1F1bIPq\n2wPlkxnl4YkqX7mc8vc2qm9Lon4si8rmqVUNmnmqk9H+qlNPT+WXWacGDx6k7HZ7susMCQlRjRrX\nVK+VK6T69OnxxHbhefh88GdqaG+Uuul8hWxDFSqY44XHkRbxkrcVrr7+QqQJwwYPVnV9jOpODtSV\n7KjSmY1q7pw5Lo3J4XA8VaNz//59VaJQPtW0uFF1L+eh/H2Mavv27UmfZ/f1VjeaOhMK1QY1pKRG\nDR82LKmOQD8/tdyIsvqgrnmjAtzd1P79+5/XaT2VY8eOqRoVK6pCQUGqYd26KovRqGr4+KgAg0EN\n6tv3hcbCS95IPOCFXneR8YWGhqosfh4q8hhKXULF/okKDDCoU6dOJaucIkWD1LR57uqeMqgTVz1U\nYC4vdfDgQdWhY0vV/mMvVSK3Rt37ApU7E2pPKZSqhrJXRdXK4aUWLlyYotj79Omp+nRHOSKcr/nT\nUUUKoT7/fJA6dOiQeq9VC9X6rcZKq9Woc5Zs6qrKrq6q7Kr9R77qu+++S3Z9N27cUDlyZFYTpurV\n1j169UYTo2rbrnmKYn8WI4YPVz0765ISip2rUa+UyPPC40iLSKW2Iq12eRoMnARCgJ+A9NlhT4jn\nbMu6tQzVm/DXQV499NWa2LL2F5fGpNFoksZV/JcZ06dTznCTnxubmBYcz//VMjHw078XcKpZvTqj\nzrqT4IALMbDghoEaNZ2rQJlMJsLv36dJ4ko6AVqorBJYt27dczmnp3Hz5k3q1KhB1oMHaRAaSvju\n3ZSrUIGhy5ax5dAhvp440WWxCSFST2RkJNmyuuOTOHGblxECc7g91G3pSSwWC5cu3qB1B+d3Ze48\nWipWjefXX3+l3GtVOP+nnkpvG8k3CcLioLSX8zitBkp52Lhz506KYo+OvkehAn9v588LCTZQykH5\n8uWZt3QFS375lYCcfpw47BwTZ7MpTh1VBAQEJLu+jRs3UqO2gy7dtZSvpGXWggRWLF+DzWZLUfwp\n1fn991n5mzeDxmj53w/QrqeRgQNHvNAYMrq0mFDkA7oArwGlAB3wrisDEiK5li5ZQpE8geTM6sNH\n73d8pO9/avHPkYM/7X9PzhCi9GQLDHwudaW2iDu3KeHzd1/gElkgIuJe0vb/zVvIlYBKeK3Q8to2\nT/oMGUmVKlWSPncD1ie2SeEO2Gd3zjjlKlu2bCGfw0F5nIsjNImPZ/vu3dSqVYtXXnnFZXEJIVJX\n4cKFsStvJs/REn4XZi7WcDvCjZIlSz51GR4eHvj4erJ9i/M7KzpKcfiQg2+/m0CH9h0pmr8RK+bZ\n0Hl44u/jxeDresx2OBwDy+5pqZl4cyW53nqrFV9/68ahI3D+IvT/EsJuw8RJk+ja/QMSEifWmDH9\nR7o1s9Kvo423K1sJyFaO5s2bJ7s+d3d3oiP/bqNiokGn0z7VTafUFBQUxN59R0lw70HI1Q7MmLmc\n9zp2eqExiBcvC3AW8MO5ttVa4PV/7OPqJ0RC/KudO3eqnD5Gtbs26uobqLfyGtTHXd5/LnWFhISo\n7Jm9VacsBtUyi1HlzZFd3bx587nU9SxWrlyp3mnYULVv3lwdPnxYKaXUhg0bVF5/owrpiIrogWpe\n3FN1/6DTI8fGxsaqti1aKHedTrnrdKpz27bqypUryieTUfnoUK96oLLoUP6eerV3794XfWpJli9f\nropmyqRGgRoN6jNQ7nq9stlsLokH6fL0F5dcf5GxnT9/XtWs/prK4mdUVSqVVCdPnkx2GYF5ciqD\nEVUlWK9yBGpV237+qni5zOr3339XSil1584ddePGDRUeHq4aBddQbjqdCvDzUUsWL36m2P9vxnSV\nM6e3yuytVT6+GtXv50pqVkRjVfb13GrIl4OT9jtz5oyaM2eO+uWXX1L8PRYdHa2KFcujOnXxVJOn\n6VTJ0l7qiy8GPVP8InWRSm1FWp2jvCswEedkMRuBDv/4PPEaCJH2DBk8CPe14xhWwvnf6PkYqH/M\nn8u3UvaI+nGUUqxbt44TJ07g6+sLOO8ENW/enKxZs6ZaPalh4YIFfP7RRwxNMBEJjHf3YsuePZQp\nU4aZM6YzbOhgYk0Wmjd9i+lz5mE0GpNmTNFoNHz5+eds/vZbhpjNKGCYhwfnHQ6Ku7tzJi4Oo0FP\nvEZH3/4D+GLEKJedp9lspmLZsrhfvUpAfDzHjUY+6NuXEaNcE5OsQ5FE2guR6lavWsWcWZPRanX0\n/PRz6tevn+wyipUuytXLF/lyXhB5ingQWMCdVgXPsfm3/Y9dEFQp9UwLysXFxTFs6CCOHt5HgUJF\nuRMTSc43b1GrU14ATm2/w6YvTOzfdSTFdTxOREQEEyaM5fbtUGrVasR7770nC+OlIRm5rSgInAKy\n4nxCsRpo9499XJjLCfHfvvnmG/VeQXelWqJUS9SGGqgyRQqkah2f9emtSvh5qc8CtKp8Vi/V6d1W\nLpvd6UkqlSiuVrmhojydr6F6VM+uXR+7r8PhUGNGjlSZPD2Vh16v2rdqpWpVqKBGg9qc+PoSVDlQ\nf4DaBirA01OtWbPmBZ/V40VFRalRI0eqbh9+qBYvXuzSfyfIE4q/uOzfgciYVixfrnLnNKpl41AL\nx6ByZDOoLVu2JLucmbNnKp9sRpW7qEEFt/BRngaN0us16pVSBdWqVavUK6+VUpl8vVXV2tXVlStX\nklX2H3/8of73v/+pFStWKJvNphwOh2r4eg31bhVPtbEPqm9DNxXg760a9SqkFqtmarFqpjpOKa3e\nfLthss9DpG+kUluhT41CUll5YC8Qkbi9CqgKLHpwp+HDhyf9HRwcTHBw8IuJTogn6NKlC5WnTaXt\nkbvkcbcy94YnP/z0XaqVf/v2bWZMn86lQvFk0YPZEUex9esICQmhdOnSqVZPalEO9dAXjR4emrP9\n+PHjbNmyBV9fX3Q6HdPHjqW3xYI7sOqXX7AFBXFKp6NS4iJEx4H8icf6AKXd3DCZTC/mZJ4gc+bM\nDP3iC5fUvX37drZv3+6SuoV4mcyZNZnJfU28U8+5HWc2M3f2VOrWrZuscrp80AWjwcDYcWM5uPE0\ni7ZloWwlNxZOu0uHji2p8P27lGvUmrOzD/B643qcOXEanU73xHLnL5hHv4G9qNI0CxfnmfhxwSy+\n/24mhw8d4tY4C3od1CuRwM4LHhxedp+om8dxN2r5c9M9dmxbnJJLIkSaTCjOAF8ABsCCc/zEwX/u\n9GBCIURa4ufnx/6jJ5g3bx6xMTGsb9yYcuXKpaisw4cP0+uDTly/eZMqlaswbe48IiMjyerpRhZ9\nPAAGLeQ2JG+GkRfpwz596NO3DyOsJiIV/M/dyPouXQD49ddf6dCqFVVsNsL1eq5otWQxmRiHc8aI\nAIsFN4uFvdmycTEuDgdwMi6OPomDr0OBo3Y7k0qVctXppRn/vLEyYoTMYCLE86DRaLE/MP+DzQ6a\nFA4ybte2PR7unsxe1J1XK7sB0OFjI2M/iyGoYXE8/TNR+rM6rPx+H6GhoeTLl+8/y1NK0bNnDybu\nLUq+V7ywJTjoU+kIO3bswKEUdgfoE3MSm0PDD7N/JDw8nISEBN78+k1y5cqVovMQIi0mFMeB+cBh\nwAEcAWa6NCIhksnPz4/evXs/Uxm3bt3ijdfrMNE/huq5YeKxzbR8szGbdu1Bn9mXiXdNdPR1sC4a\nrtq0lClT5l/LMpvNTJk0ibMhJ8gWlIeu3bpRqFChZ4rvaXXp2hUPDw8WzpyJp9HI6mHDqFChAgC9\nP/qIHiYTpQBltdIViAO+BNyBZUCY2cyfFy6wdetWNBoNWbNmpU3z5sy1WIi22Zg8ebLMoiSEeGF6\n9BrEh51bEmc2Y02A4TONrPq5b4rKio+P5/Tp05w8FofZ5IPBqOHiGRu2BIXWw/nL33I3DnOUicyZ\nMz9VeRaLlTzFjQDo3bTkfcWAzWajdu06tJi5nfcqmtl42h195tzUr18fd3f3FMUuxIPS6yAMpWSQ\nncjgli1bxuJ+H7I6dwwADgXeR/XcDL9LREQEnVu35MSp0xTOn4/ZPy351+5ONpuNetWq4nv6BPVV\nPHPi4QJauvXqyTcTp7zAM3pUVm9vRsfGkiVxeyBQAWcfR4BrwLpcubhw/fpDx1mtVq5fv062bNnw\n9vZ+cQGnIxl5oF0ySXshUt3GjRuZO+c7dFo93XsOoHr16skuw2KxEFy3GmbtTaLvxRIfY6ZC9czs\n22YlX4HihDki8Q/Ox42fT/Nh606MGTH6qcqtWKUsxepH8e6QQM4dimVks0vs232Y/PnzM27sGI4c\n3EPBIiUYOmwUPj4+yY5bZCyp1VakxScUQgjA29ub0HiFQzkXM7qd4EwqDAYDBQoUYMehP56qnP37\n93P37Gm2esaj1UAHT8h938GKhbOp1+gtXn/9n7Myvzj16tVj0S+/0Nlu5zbOgVOXgCo4v90uabUU\nKVbskePc3d0pUKDAI++LNGsRj06uIUS65HA42LFrK7/v3INOp6XUqxWpVq1asmcumjt3LviFMWZt\nCeKibCwbc5l9S+LZsmk7JUuWZOnSpVy6dIlXJ/WhcePGT13u6hW/0rrt2zQZs59sOfyY98NPFC1a\nFIChX0pXSPF8SEIhRBpVr149xhcswZuXQ6jiZmZRnBdDh/RP9uPp+Ph4fHVatIltnVEDnlqomtPO\nmTNnXJZQKKVo1LQpQ3bupEdEBFl1MCUHTLoL4xM0ZPP2JsLdnZ0zZrgkPpGqXsPZ3vgBqTd/shAu\nMGnyeNZvmcW8vT4kWBX93xlP9uwBvN/5g2SVcyvsFvledWfRkAv8MiUUg0FDghWyZcuGVqulTZs2\nKYovV65c7N5xEIfD8a8LyIWFhdG6Qyv279qPf0A2Zk+fTaNGjVJUnxCQfh+HyyNs8VKIj49nzpw5\nXL92lcpVq9GkSZNklxETE0PZokXoFB1GY3eYbYVjXnAHIzMXr6VOnTrPIfIn+6x/bzasmM2bReKY\nth2aeWso5q6YGmugTbce1AoOplq1avj5+bkkvvQujXV5isU5PEYD3AU+Aba8oLqlvRCpqvbrlXi3\nfyjVGzrHKfz6UwyH1pRn+dJfk1XO1q1beefdJmT3tbBnvoOsvjBokoaTN2qybv325xD53yrVqISh\nmpaaX1TkxqEwVrbcyKG9hyhcuPBzrVekPdLlSYiXgIeHBz169HimMry9vdm6dx9d2rbh20MHcXfX\nYjHp6NnzY5clE5GRkUybNp2rX1jJ4gW9akDpCXosdZowt2s36tWr55K4xHOjgDJAGFAU57h7BWx1\nZVBCpEQWv6xcPX+Z6g2d29fOO/D19U92OXXr1qVy+WpUKrgZ/8T7Jj3bKiq2OZaK0T7KYrFw5MAR\nvtjeC61OS/7gIIo0zM+ePXskoRApJgmFEC+BfPnysXnvPkwmE+fOncPf35/cuXO7LJ7Y2FiMHjr8\nnDf4CPCBUnkMdPzgw6Rkwm63s2bNGm7dukXu3LkJDQ3F09OTli1bykDC9OcSzmQC4CzO8RQjkIRC\npEPDvhhL3ddrcPl0JAlW2LPewZ7dw1JUVosWrVg0ew8JCSbc3GDrfsiX9/l+N1utVtwMWsZknorB\nz4O6X9Xg7pl7ZG2V9bnWKzK2tPI4PLnkEbZIE+Li4vhi8AAOH9hDvgKF+HrCd+l6Hu9Tp05x8+ZN\nSpUqRY4cOZ5bPQ6Hg0qvlaRu9vN0q2JjyzkNw7f5EnL6AlmyZMHhcNCsUSMu7d1LAauVbVYr5TPp\nyeLpzp+efuw9egx//+TfEXyZpLEuT/0BG/DtA+91An58AXVLeyFS3eXLl1mxYgU6nY53332XwMDA\nFJVjs9lo3qwh58/sx+CpuBSq+L+Zc2nduvVD+8XGxuLl5fXIwO9du3bx89qfyZwpMx91++ipvrff\nbd+Sq44jtP3+Ne5cimVS/W2UKFqafbv2P9XCeSJjSa22ImUrsQghUErRuvmb3Nwzl+FlTpDn7hqC\nq1UkNjbW1aGlyKA+fXi9QnlGtXqHkgULsmXL8+virtVqWbthG2fdg6k1MwsLr5Rl49adZMninEB2\n48aNnNu7l29jY+lrtfI98EecjZXeJuqYwpkyceJzi008FxOA3MDvOJOLnvy94LkQ6U7+/PkZMGAA\nffv2/c9kwmq1MmDAJxQrmotKFYuzcePGhz7X6/WsXrORgkUqYTE5eLsG9O7VmTmznctvnT17lhIl\nC+Lv70eWrJlZ/fPqpGOXr1jOmy3e4E+f/ay7upyiJYtw69atJ8a+ZfMW3plQGi8/d/KVy0KtLoVp\n3OANSSbEM5EuT0Kk0N27d9mzdx/hn8fjpoM6hezsDI1l9+7dNGzY0NXhJcvevXtZOnsWhzHjZzWz\n0w7t3mlB2P3IZE+F+LQCAgJYvW7zYz8LDw8nL39/QQUBVgUWBSU1CZwMe3KjKdKc/kBJoCEQA0x3\nbThCPH8DB37KyZB5LP7RzNVrN+nQoTm//baTcuXKJe2zd+9ezp06wPFZFgwecP46vNqlF+07dOSt\npvVp8UkCLbsX4tRhCx827kDpUscpWLAgfQf1odXS+hSsHQTA8k6b6NCxA1s2/ffNIL+sftw6FY1f\noBGlFHfOmsleL/tzvQ4i45OEQogU0ul02B2KBDu46UApsCQo9Prk/28VHx/Phg0bMJlMBAcHkzNn\nzucQ8b+7ePEiFXUa/BJ7htTUQUycidjYWJcsHFelShX6OhyE4BzBuxAo6QbX7TA1wchXb771wmMS\nqeLPxJcQL4WVK5ey5f/Zu+uwKrI3gOPfS3NpkLIVRQG7uxu71u5cY1WMde3u1l1du9u11lgLO9cW\ngzAI6Za83Pn9MYjrT1QQBNTzeR4e78ydOXPO3YW575xz3nMkFrvCUNIJ+nSP4/Dhw+8FFAEBARTP\nr0BfV94umhe0tRS8ePGCAP9AOv4sd+Y5VdSnXE0jbt++jZ2dHZERkRjnNkgpxzS/EfdPf/7Xa9nC\nlXTr0pkKP+Ul2CuWJH8lPXv2zNyGCz8cMeRJEL6Qubk5rVu1pNUOJdvvQP+DuiQZ5KZmzZrpKufN\nmzfUql6eBZO7sW/NAMqWLs69e/e+Uq3lNLJXrlzBzc2Nt2PLS5YsycVENS/V8jF7VaCRpKJjq2Zp\n6kLPbPb29mzZs4c55uY4a2hwzswMN7SoEmbAgN8m065duyyvkyAIQnoZKPXxD3y3/TpAC0NDw5Rt\nSZI4cHAvZ25Gc+k+qNWwdJ8CW1sbChUqhFoNXm7xAMTGqHF/EJsyxKqIXVH29z9LwKMQnh5/zpXf\n72NlY/PJ+gQHB2NsbMzOrXtoWrgfQ9tN5OrFGxgYGHzyPEH4XkmCkBMkJiZK8+fOln5q00wa6zJC\nCg8PT3cZ8+bOlTrU1pPUJ5Ckk0jrRiLVrVnhK9RWkh4+fCjls7KQKtoYS3mMlVKfrp0ltVotSZIk\nrVy2TDLS1ZEsFUhW2khnWiGNq6AlVSlb8qvUJa3e1k9IH+S0rIK4XwjZaNu2bVJuW31p1hSk/r21\npIIFraTAwEBJkiTJw8NDmjlzplSojLU0ZF9VydxKW9LQQMplrie5u7tLkiRJW7ZulnJZGUjOXWyk\nwrG0nLgAACAASURBVMVMpb79u6f8TfTw8JAMzQ0lpbWhZFjATNI3NpBcXV1Trn3q1CmpaZtmUuNW\nTaTDhw9Lx48fl0wtjKVilfNJJhaG0vxF87L+AxFyHDLpXpFTMoCkV/JnIAjfvl+GDSJ//Bpc2svb\nj15Au/m5eeLhm+nXqlqmJH3iHtHfRiImCWo/NWD0ivUpGUU2btzIzlnDONLoDbrJw7iM12vj/ToQ\nU1PTTK+P8PXksCxP2UncL4RsdfLkSWbPmUZwWATNmjozfco0Rv0ymAP79mCqTCIoJolx1xphY29E\n0PNo5le7RuDrkJTzHz16xL///ku+fPmoU6fOe/PafH192bhpI3Hx8RgZGnD1xnkMlIbUqdmIsZPG\nUWl+AzS0NLg25hSqmHh+PlqDItWtCPONYV6F01w4fRknJ6fs+FiEHEJkeRKEb9CtW7eYOWMGy5cv\nJyIiAoDqNeux8YySgDBIVMHCA7pUqy4Pm/L29ubevXvExsZmyvWfeXrRylz+cqXUhIZKeV2Kt/Lm\nzUtgnALN5D8tPtGQJIFSqcyU6wuCIHxvYmNj8fDwICYm5oP3JEli+eqV+CjfYDGyHIfcz1KucgWu\nn9uH5+JYni5MYHKLJDZ3vwLA3SP+FC32/uJyTk5O9OjRg7p1636QJCNPnjxMnDCRggXys3LNXEq2\neYZZ2RuMcBlCscHlcOxRjuJdylB2Yk0khYoi1eXJ12Z5lBSqYIW7u/tX+lSEH42YlC0IWeTw4cP0\n79uJ3q3ieeinw+rfF3P1+j06dOiA28O7FOixAJBoUK8q25evYdzIX1i3dg22BrpEa+hy7Iwrjo6O\nGapDCYfibA+6y8g8asJVcPSNkmklSqS8X69ePfI4lKfB8VtUsYhlzws9Zs6Ygo6OTgZbL/ygFMBP\nQH3ACvkhlpS8XwJaZl/VBOEdX19fDh06hEKhoG3btmleh+f06dN07NIRLQNt4iLi2LxhE21at0l5\n38vLi8vXr9LmxSQ0dbQo0q0iu60mMKJ2DIZ68jGdq8JvuyKYVf4SsaFw5uS5dNd/+coFjN2Um9I1\n5SQaEUEqLl17lfK+jrEuSYkSbqf8cGyYmyCvKDyv+xPQPABPT0/s7OzSfU1B+K9vtTtcdGEL3xwn\nh/ysGO1NvcrydudxulRqMIeRI0cCkJiYSGJiIkqlkuPHjzOqeweulHuDmTas9Vbwp7oYNx8+zlAd\nPD09aVKnFhqxUQTHJtKzd28WrVj13lMvlUrF9u3b8fHxoXLlyjRo0CBD1xSyRw4Z8rQAGIG8/sRr\n3h+rKwG9s6AO4n4hfNLTp0+pVqcmuZo4ok5MIsLVg5uXr1GgQIFPnhcdHU2+QvlourcV+esUwv9f\nP/5qvJunD59gkzw5+smTJ9RoWodWXhNRKBTyJOyC0ymgGcWlyXEY6sGKkwq23C3GytWbKFGixBdN\nkC5ZpiiDf9emRDU5oNgwxZc9S4KpvsQZDS0Nbow/y9hho1m0dAGGuXQJ9A5DQ1OBXaV8vLoTwIK5\ni+jXp1/6Pzzhm5dZ9wrRQyEIWSQ8PIrCed9t2+VJICI8PGVbW1sbbW1tQB4z28QsATN5k062Er+4\nema4DnZ2djz08MLDwwNTU9NUV/XW0tISKQSFzNID6ALsze6KCML/i4qKQkdHh1+nTiS/Sz3sRzcF\nwG3yX0ydPZ2Na9Z/8vwXL16gzGVA/jpyWleb8rmxLGbJs2fPUgKKokWLks86DzeH7qdAl7L4HHyI\nlbEFlSo1xm7UfqzNtIlK1OPk6UPY29t/cVsG9h/Gwr5T6TdXRWhAIkd+j2D54pUc+edv1OpEdqzf\nRtOmTRk6dChXrlyhQ+d2jLrbCrP8hgS5RzCq0gjatGqDhYXFF9dB+LGJORSCkEWcnZszaqEePv5w\n6TasP6RP448sgFesWDFOhesQmShvHwiAYoU//bQsrXR1dXFycko1mBCETKYB3MnuSgjCf4WHh1Oz\nUX1y2VhjZGrC7Xt3MHJ69/fQ0Ck3AcGBnyhBlidPHiL9Iwh5EgRA5Ktwgp4GpvRsREVFIUkSZ46d\nokx8AV65uGIfkIsLp135c/1Wrt56yKa957h1x42oqCi8vLy+uE1Dfh5Gvx6jWfazP3+M9kZP3wBH\nR0cO7f6LI3sP07SpHCwZGRlhYGCAbbFcmOWX09daFjXBLLcxvr6ZnwhE+HF8aQ9FFeTFiaIBC6Az\n4AMczKR6CcJ3Z+nyNfwyTE35LkcwMTZkztxZPHjwgJs3b+Ls7PzeGNbmzZtzun1X7LdvJa+hNv6J\nWvx9el821l4QvshaoBswNZvrIQgp+g8fwvOChpQ+/jeqkEielu1H/LQjmJbOh1qlxmvuSSYPdPls\nOWZmZqxcvpLhNX/BtnRu/O/7MW3KNPT09KhWswJ3bz9AkmD27FlsWbfpg/MLFy6Mm5sbpcqVQMdU\nk3D/KDr/1IVVy37/YPL156hUKtZtWE3z8QWp1y8f904G0bKNM48fPsPS0vK9Y+3t7QlwD+PF9UAK\nVrbC/ZwfUYExFCpUKF3XFIT/+tIxUzuApsAT4AxwEagBTMqken2OGBMr5HhPnz6lb9efePzMneL2\nRVi/bTfFixcHICgoiKoVS1PWMhxzpZoD97U49s85Klas+F4Zbm5uHDp0CENDQxo2bJhyviB8Tg6Z\nQ7EK6Ao8Au4DyX1uKZOyh6ehjHzAFuRJ3RLwJ7AcMAd2AwWAF0BHIDyV88X9QnhPnqKFsTgyDf3i\nck+C37ztKNadwtfbG4WmJpra2sydMYuRw9Lyv6c89Onp06fY2dlRpEgRmjavj7nDEwbNsyHQJ5Ff\nar9i87r91K9f/4Nzy1UpS5E+plQZ4EhcZAJ/1jzG0mmraN26dbra5OnpSY16FVn+skbKvtn17jF/\n/DoaNmz4wfFHjh6he89uaCs1UcdL7Nm5L9X6Cd+/7E4b2wWwBEYBb4CZQERGKyMI34vY2Fia1KtF\nZ737PG4ZQ1e9BzStXzslreCyJYtoVDCYvb1iWdMxnoXN3/CryxASEhJSykhMTGT40L4c2T2bO6d/\npWb18hw/fjy7miQIX8IJuIscSDgApYCS//lJi0RgZHJZVYAhyWX9CpwC7JEfbP2amRUXvl958+Yl\n+vJDACS1msRrT3jt85pCD/dh/+Yq+e/vZuK0qXh7e6epvIIFC9K4cWOKFCkCwLUr1+k8NhcaGgps\n8utQ9ycDrl27luq5z9yeUapDYQD0jHWwa2zL48fpT75hbm5OVFgsYa/jAIh7o8LfM5JcuXKlenyL\n5i147ePPjQv/4vvqtQgmhAzLyBwKFXAVmIP8Rz61J0OC8ENyc3NDJz6cIQ4SVvrws4OEMXEpN4qQ\nIH8crRJTjneyhX9v3cTIUEnr5g2Jiopi165dqKIecOmPaDb8FsOeGTEM/TkrkuIIQqapk8pP3f/8\nmxb+yEEJyMNsHwN5kFPObk7evxlI3yNd4ZsSHx+faWX9uXQF4RM34dt6Mi+qDcf8VQRGhfKgUyQ/\nANr5bTEokp9Xr159pqQP/fPPP+gb6PHwyhsAkpIkntxQfXTOmr2jPff2yAk34iIT8Djhh4ODAwD3\n79/HuW1zqtStyux5s0lKSvrodc3MzJgwYSJTq91i09AnTK36L85NWlGmTJmPnqOvr0+hQoXQ09NL\ndzsF4f99aUDRByj9n+0kIPN+2wXhG3fs6BECohKISu5wiEoA3/DYlNWmGzRpwfLLSp4GQFAUjD0I\nXWpA1OYk9CPOMXL4QAICAihTJAGN5N/ScsXAPyDsk9eNiYnh3r17vH79OtX3d+7YQTH7POTNY86w\nof3f6xERhK/EBpgB7EPO9jQNSFuS/w8VBMoC15PLCEjeH5CBMoUc7MKFC1jly4PS0JD89kW4e/fu\n50/6jNKlS/P47n0Wd/mZjZPmcOHkaVRB4bxxvQVA7LX7xHp4pzvr0uz5c+k0uA/ULsW0bi8Z4+zF\noEqvMNN1oGvXrqmes33jDq7MfsqK0odYUGQPzeu2plWrVjx//pzaDeoQVw/y/laMtYc3MG7Cpzvh\nxo+bwM5Nf9Go6BCWzV7P2tUb0z0XQxC+1Jf+nzYRaIP8lOg88BwohLyAUVYQY2KFHM25cQ0UIZfx\n9YamueGIDyQY2PD0xbsv+ksXL2T2rOlERb+hfEE1Z6eCjjY88oZGcwzZf/gUbVvV59TSGOzzw9iV\nWjwLq8bfJ86nes3bt2/TsklDTBSJ+EUnMGbcr/w2eWrK+66urnTt7MyeVTHktobBE/VxKtObRUtW\nfeVPQ8gOOWQORXXgBPIX/qvI9amKPGS2CXAlHWUZIt9vZiAnAAkDzP7zfijyvIr/J02ZMiVlo06d\nOtSpUycdlxWyS3BwMHaOxbHaMh7jxpUJ23mK6HHreOXumelP1U+fPk27Lp2RdLWRYuLYuWULzZ2b\np/n8uLg4TMzNqOi+mqSoWELPPcBn6i4mjxrL6NGjiY+Pp1u/ARw9eABdpQGzp01l2JAhgPwg6PHj\nx5ibm6dMjF68eDHb3fdS9w9nACJfhrO34gbCAkMztd3Cj8fV1RVXV9eU7WnTpkEm3CsyWoAZUBuo\nh9x9bQRcAI4CezJY9qeIgELI0bp0bEUFk8MUsAK3V/DUFzRs27Fl+4eZmmpWr4pG2DW0FRCTAAWt\n4dRDLYLCE9m8aSMjRw4lKjqO2jUqsWP3IaysrFK9pn2BvEy39KVTHgiIg8o3lew4eopq1aoBMHbM\nKEw1lvDbUPl4t2fQepANz9xT780Qvm05JKC4CjwABgHq5H2awB9ACaBaGsvRRr6vHAeWJu97gjx0\nyh+wRV48L7WsBeJ+8Y1ydXWl8yQX8lxcnrLPy74rlw8dTxkWlJni4+Px8/PD1tY23QFLcHAw+YsU\npsCCnnhN3IpJFXvCLz+hbZMW7Nq2nZ4DB7HHJ4S4WX9C4GuU/ZzZt+b3lHSu/2/ZsmVsvLudBhtb\nIkkSjzbd5tKI01y7fJUSJUpkRnMFAcg5C9uFIT8pepsu1hI5sCjB1w0oBCFHmzBlNtWr/kNeY3kk\noG+UHlevz0z12EKF7fhrzzXWtgIbQxh0BLR15fzgPXv1pkfPXiQlJaGl9fFf14SEBLx8/PgpeSCi\ntR7UyyUvkPc2oDA2NuP5Y23eJtp57g3GxkaZ1GJBSFUZoBfvggmQh8guIe3rUyiA9YAb74IJgMNA\nT2Be8r8ibfl3xsbGhmgPb1RhkWiZGZPgG0RsQOgHaVAzi66ubrpTp75+/ZodO3YQHx9P7rx5cB+x\nlur3FmFQxJb4gHCOlnDB3d2dk2fOEPfHYTA2BWNTYjoP5MTp0x8NKDp27Mis+bO5PPEM/lc8SXju\nT80mRtStX4Uli/+gW9fumdFkQcg0mb1SdhByICGCCeGHpFar2bNnDydPnkRLncSoohKSBONvS/j6\n+qaa9lWpp8u4GtApOefN1nbQ+W/tlPcVCsUngwkAHR0d8ttYcdg/gFa2EJoA50MU9CpWLOWYgYMG\nUaXy7/QcFUZuq0TW79Fl85ZlmdNwQUhdBFAYePp/+wuS9kQe1ZHXsrjPuyBkPDAX+V7Tl3dpY4Xv\nSPHixenfsxcbKw7EsEYpIs/8y9Qpkz+auSirvXr1inJVq6BoWhUM9Yn28UPHzBCDIrYA6FqbYuaQ\nH29vbyzMLQhYMxdNPy8wNEaRIGHTuOZHy7a1teXG5esMHTGMV16B/PW4AHr6Gng8iqdn1QF07tQF\nTU3NrGqqIHxWZgcUgvDDkiSJnl078PT2SWKj3rCkMnRPntOnUMSxZtnCVFPzmVtYEPFEg7cPcaPi\nwcTEJN3X37H/IK2bNWa2n4LnEfH0HzyIWrVqpbxvaWnJjZsP2bRpE2+iozlxsgXlypX7orYKQhrt\nQu5dGAtcTt5XA7lXYWcay7jExxOINMhQ7YQcb/Hc+bRu1hx3d3dK/jyZSpUqfXFZCQkJuLu7Y2pq\n+tGsS+kxZ9FCFD2bYT5bXq9Co1gBwsctJfDoLayaVyDs6lMiHnvj6OhIhZKOvLh2hiJLBxL3IgDP\nkX/SYMG0T5ZfsGBBunXqikr7Fnr68q9AESddJElNVFRUSpIPQcgJREAhCBn0zz//cOvWLSRJ4pLr\nCR7PiqHT8ve/AWkgBxyp6TdgEFXXrkapHY21gcScq0rmL//0jSY1VapU4YnXS9zc3LC2tn5v5e23\nLCwscHH5/AqwgpBJxvFuyNLbbrcE5DkU47KrUsK3pVatWu89HPkSnp6e1GrUhEi1BonhwfTu0YPf\nly7OUBak4PAwNEoUJiksEg1TI3QcCpOvYCFeDFjP08Q/UKhh19bt2NjYcPLsaZz+noCBo7yYXvwT\nX46fOP7BYqb/r0KFCgwZFsXDmzo4VdBlx4pI8hfI+0UPnQThaxIBhSBkwKzZ09iwcSHObVWcPKLA\n0iARPR3o3wD6rwGFAtQSjL+jz6bdI5EkiXPnzvHy5UvKlStH6dKlKVy4MJeu/cuKJQvxfRPFn1u7\nf3Rc7eeYmpqmzJkQhBwgHvgF+A14G+F6Ii+IKghZpmPPPvg7D0bdaRRER7B1aE0a1v6Ltm3bfnGZ\nDgULcXDEHEJHzUPDUB9dSyt6NmjGM89nvPR+RZ0atVIyimlqaqKOe7f2kBSfmKYhS0WKFGH9um30\nadKdN9Gx2BcvxOGDx0U6WCHH+Vb/jxRZO4RsFx0djY2NBdfctbCx1SDAX03lQjGs7gVNS8HonQpO\n3NOhUpWqDB45jsaNGzNkUB/OnNhDqQISF91g1pyl9O0/ILubInyHckiWp5xA3C8EDMwtiNn6GMzk\nLHmKNROYaqfL5MmTAbkHOSwsDB0dHQwNDT9b3oMHD6hepzotdzencINCPDvizoFOB0lSQ/EZnTCr\nXgyfxccoKVlyZN9Blq1cwbTlC7H6rT2JLwMJ/eMEHdp1wN3Hm9LFijNj0mSMjD6eJEOSJGJjY1Eq\nlZnzgQhCssy6V3xJAdpARSA/oPN/723JaIXSSNwghGzn5+dH6TJFcAvQSHla1LgSBHprER7xhhJO\nxdix53BK1pAbN27QoklN4uMS0NYAXR0IjdUmNCxSrFQqZLpsDCiOAF2ByOTX0kfqISGvdv21ifuF\nQMlKVXlUtzdSqwEQF4PB8Nqsm+hCp06diIyMpFm7Dty8dhV1koo+/fqzetnSj/YCHD16lA7dumKY\nV4/BD/ul7F9WdA0auW2peV4OUpLiEzll0puIsHD09fXZsWsne48cxMzIhLv3H/C8gBV0aAIHT1P4\neQA3XM+LidZClsuutLHFkW8QhZCHhauSy1Ahd21nVUAhCNnOxsaG3LnzsmiGD71/1uDE4USeuSVS\nv6Y+lhaaHDzxnMDAwJSA4s6dO8TGJHChG5Sxhl2PoN+xRIKDg8mbN282t0YQMk0IcrDw39cfCygE\nIUvs3rSeWo2akHhsHaogP1o0aUTHjnJisMEjXbhllJuEy6EQE822gY2osG49/fv3+6CcpKQkOvfs\ngXLjbCL7/0p0QDSG1oZEeEcSE/gGpZUKSZJQKBQkvZHThr8NErp06kyXTp158uQJFRs3xPDiVhSa\nmkitG/GgQE10lUosctuybM5cEhISUCgUODs7Y26e2nqNH3fr1i28vb0pU6ZMutPgCsKXSm9AsRS4\njZxb3B8oCxgDq5FXzxaEH4aGhgZHj5yhV+8OrFlyHz09JR1aRLNhcQwAtSpD187NOXnqGnZ2dmho\naFDWWg4mADo5wcATn77G1atXGfhzb3x9XlO5aiU2rt2GtbX1V26ZIGRIr4+8FoRs4+joyPPHj3jw\n4AGmpqY4ODik9EBcuXGD+CkbQUtLXiOiZS/2HznC+l3bCA0Lo2WTpsyZNgNtbW3Cw8NJTErCwLEo\nag0tVjutI3dFG3yu+aH361Didh7iTt/VWFQtSsCfrgweOgQdnfcHc7wNOP4rSUsTnb/3E6lKokv7\nLigrV0VDX5/Rkybx76VLaX7oNHL0cHbv20rBUqY8uRrC2jUbade2XeZ8iILwCR9LxfcxFYEZyBPq\n1Mgrnt4GxgALM7dqgpCzBQYGEhAQwN49xwgLi6Ftm7aUdlSlvF+iGMTGBVOtWjmeP39O+fLl8YjU\nJSxWfv9BIMQnKYiIiEi1fF9fX1q0akLLiVqseOCEQTEPWrVtlhVNEwRB+O4YGRlRrVo1HB0d3/tC\nXzB/fjRunpc3JAntC3/jeuEcr3vXgdXD2XzrPENGjQDA3NwcUzMzQtr8jMmUIZif2EBEux4kGZqi\n3noI3RpVCDp4G50t95k2wIWlCxalXEetVqNWq7G3t6dYgYLE9RlH3LFzRPQcDVbWaFaqgFat6mg2\naURc67bEb9lOeNv2/DZ9eprad/36dXbv38a8exUYfdiB306WpHefnqhUqs+fLAgZlN6AQgEkfx0i\nCHibyNkXKJpZlRKEnG7T5g0UK16QPv0bUdQ+P4ePHKZBw+as2qzkmSecOg91W0FQACRGRzJt+lRK\nliyJtr4hDn9C091QfSsULizRrl1TkpKSPrjGgQMHMDRVcWmHH9cOBtFrbn4e3Hv40QBEEHKg2cDA\nVPYPQn44JQjZ7s+lizHbvhjjQY0x6lIZi+cPMevWBPNuTTCo5ITVxvHs2ikvm6JQKBgxcDAqz1cY\ndW6GXoUSmPRrj3GnpjiXKMPEgiU4fegINy9eZWD/ASgUCtRqNaPGuqA0VKJvoGTg0EH8c/AQXSzy\nUWzZThIOnkJ3/mwUWlpISUmoPbxQJA9zUpcqjbe/f5ra8fLlS+zKmWJgImdoLlzOBAl1ltwzPDw8\nuHjxIiEhIV/9WkLOlN4hT4+AUshp/24g5xFPAgYAHplbNUHImby9vXFxGcahq7rYFdPgzg1NejTt\nwovnfjRv0ZcS9VaglQS77KGlBRwNhW67dtG2TTtMdGLYOwy8w2CWOdRcAkYmwfj5+ZEvX76UawQE\nBDBzxgT6dY+hhEMMc1dE4PsshqQkCX19/WxsvSCkS3cgtbyct5FTyU7K2uoIwoeKFi3Ks/v3uHTp\nEnp6eri5uTHv5smU95PCotDW1U3ZPnruAoo8BYnedwqTAe1RR8cQc/Q8nWYtSDUN7ao/VrH3/EE6\nvxiPhrYmZ9vvYOnKZaxavBSADRs3MqxzT2jdgqQb/6IICITKlZHCQtFd8ztN27dPUzvKlCnDo6HB\nvHoYRf4SRrhu9cXc3CzdczDSa+K0ySxftQKzIjZEeATy1+591K1b96teU8h50htQzALe5iybBBwF\nzgHBwE+ZWC9ByLE8PDywd9TDrpjcZV62kjbmuRR06NSWf29cxlALcmnJwQRAc3MoGKSNh4cHFoYa\nVCwIFQtCkhq0NSEqSvXBiqf79++nUb1EZk6Qt6tUUONUzY/pM+Z8MB5XEHIwS+T7w/8LAcRkICHH\nMDc3p2VLOelY+fLlmbdsCf7Dl6Bpn5fopfuYNv63lGO1NDWRGvYhZMoqwlftQ+3rRz4ra9q0aZNq\n2f+4nsZhZDWUVnJaWKexNTg1/zTTJk0FoE/v3jg5OnLlyhUsq9Xi9MWLbC/hgAR0HTAAlxEj0tQG\ne3t7Viz9nUHVB6Klo4GRoRFHD534qmtWXL9+nT82rKHJo0noWRrx+rQbHbr8RJBfgFgr4weT3iFP\nJ4ADya89AQfkG4YNcmAhCN+0wMBATpw4wc2bNz+6srWdnR3P3OLwcpeHKd27pSLQP44nr+6iqU7g\nfH8ITgL/hOQyE8A7JomGDRviEarHwlNw1xv6bQMNhQbTp8/4IP+4Wq1G+z/hvrYWaGvrMnb0r1+l\n3YLwlXgDtVPZXxPwyeK6CEKaWFhYcPfaDbobFqbhwyg2LVzGL0OHpbw/YeQwlAeWIrUbhapYQ3RU\nEjvWrfvoF2hbKxtC77xO2Q65+xpba9v3jqlcuTIjR46kW7dubFqzhrg3b4iPiWHN8uXpSiXbtUs3\nggNDefzAnReePpQqVSqdrU8fd3d3rKoVQc9SvofZNnAkOjKKyMjIr3pdIefJqeGjKbAOcEJOLdgH\nuPaf90VecSHTXb16lVatm1C8lC6vvOKpVbMJmzfuSvUmsWHjOlxchlOgsB7eLxJo0rglz5Muonnf\nn4vdVcw5C39chgr6cDESjPPk5sQpVwBGDu3Hk8ePscmdl4lTZ9OkSZMPyvfx8aFCBSdGD4nCsZjE\nrMVKqtboy8KFy7/2xyB8J3LIwnYuyBkAxwFnkvc1AOYA85J/vjZxvxAynaurKyvWbSTuzRsgniSF\nhHODpgwd/PMH9ww/Pz8qVq+McVkrNHQ0Cbr4kivnL1OkSJHsqXwmunPnDvWaN6LetdEY5DPn1V93\neDriEH4vfEQPxTciKxe2y45FijYD54ENyMOyDID/zioSNwgh0xVzKMAvs9/QqI0+cbESnatHM33S\nxlS7sR89ekSPnu3x8HhJiZIO9O09hEmzxxATHMHhjknULASzz8HsS1CwmAYxmsYkhih55uaR5jkQ\nT548YeqUMYSEBNCwUWtcXMaJRY+ENMshAQXIwcMI4O0g9HhgGTCerFmLQtwvhK/C39+fkuXLkHtA\nFYwdbfGcd4qeTTsyZ8bsD44NDQ3lyJEjJCUl4ezs/F2l/160bDGTp0zByNYMVUQ8xw4eoVKlStld\nLSGNsjKg2AQMA6KSX38qoOid0QoBJsAdoPAnjhE3CCHT6elpcyPECqWBPBJw5i9vKJl/Ai4uLu8d\nFxERgaOTHcOnJFK/hTb7Nyfy1yZTWrf9iaWLl6JQJaKWwNIS1u3SonxFBSWLSWgqzTi84zjly5fP\njuYJP5gcFFAAGAKOya8fI99Psoq4XwiZSqVSsXDxUjZv20G8ow5Vdw0A4M2rEM6WmUlk6I+XiS8o\nKIiAgAAKFy6MUqn8/AlCjpFZ94q0zKHoxbs//r2Qg4ZeqfxkRjAB8ircQcBG5Ewga3k3EVwQvpoy\n5RzZtUbOihz4OolzR1SUK1fug+Pu3btHLusknj1MYN6YaPLkl4hPCKd3j754uHuhpa+HtjYoDwqq\n7gAAIABJREFUkqCjs4ptG5IwNFIQFRyDiYlJVjdLEHKCaOTMgDfI2mBCEHjz5g3tunVH38QEi7z5\n2LR5c4bK69a7PzM2H+eJsgxJGu++Rik0NfhRY1dLS0tKlCghgokfWHqzPGUFLaAcMBS4ibw696/A\n5P8eNHXq1JTXderUoU6dOllWQeH7tH3rAZyb12fjohCiIhOZOHFiqqnvVCoVnk/CaVQBqjnBvEnx\nBAVoYmJiQkBAABpJ8azsCt2rwvMgqPibmlhJon3Hn7Czs8uGlgk/AldXV1xdXbO7GqnRRl4UNT/w\n/ynKtmR9dYQfTb9hw/g7Op74y27EvfBiYLdW3Lh+nT59+lChQoV0lRUZGcmBfXtInB4IseH4LivL\no7nHMC2ZB49ZJ+nXv99XaoUg5Gxp6eLYyLtxrgo+Pea1T4ZrJGeMuorcUwFQAzmgaP6fY0QXtvBV\nJCUl4evri6mpKcbGxqkes3TpUm6cc2HHUjUAbu5Q4ycdQsPi8fLyolhROxLWwNv5aK1XwgupJHfu\n3BOT1IQsk0OGPBVHnntXCLlHXIX80EiFPJfC6OOnZhpxv/jBmefNR9i+U2CTB7o4o5AS0S7phNbh\no/y5eDFdu3RJc1nh4eFY5c5H4swQ0NKBwGfora9HkfyWdOvYhTEjXdDQSG8CTUHIPpl1r0hLD4Ul\n7wcRtQA18CC5AiWQbxQXMlqZZP7IqQbtgWfIGUEeZVLZgvBJmpqa5M+f/5PHqFQqzEw0kX8NwFAJ\nWlryg9dChQphoNThonsCtewhIgYe+EFgzFP8/f2xtbX9RMmC8N1Zijx0tQzy3/aygDGwGjn7kyB8\ndabm5oR5PIM7N1FoqNH9+28UCgVJ3boxpGOnjwYUkiSxe/duTri6ks/amlEjRmBmZka9+g05v6ML\ncZUHo+nlipmuHpdPnf/oQyhB+BGkJYxuDrRI/rkCnATyIgcWNZNfn+D9tK4ZNQzYDtxDXpn7w5QJ\ngpBNWrduzZ5jOqzbDRduQPfRSrp36wnIkf7MOYtotgwaLAWnadCmEdgX0MPb2zubay4IWa4iMAN4\ngxyBayIHGGOAhdlYLyGHkyQJtVqdKWWtXrgA5ch+aG5Zi0bBAik9xYpi9kSHhqJSqYiPj//gvGmz\nZtF3ygw253Zg/tNXlK9Rk+joaP7as53+tQtT5vYMWpu+5MYlVxFMCD+89HZx+AP1+bDHwAk5x7hN\nZlQqDUQXtpCtLly4wMzp44iOjqRJ0zb8NmEqWlpyh19YWBhF7PIwvlcsjapC1Bto5WLAM/dXmJub\nZ3PNhR9FDhnyFIocVHgCHsAA4CxQBLmXO205lDNG3C++IZIkMW7CJJYtW4o6SUWnrt3ZsPp3tLW1\nM1Tuw4cP2bx5M8vXr4cd29BwcoLpM7C6dJnXL16gVqup17QJB7Ztx9DQEEmS0DMyIuHMQ7DNC4B+\n92asHdCTrl27ZkZTBSFHyMosT/9lAOROZb9t8nuC8F2TJInhvwyiSZMGXL91Fz1DE34ZMSYlmAAw\nMzNjx86/mLvZgOYjDGjlYsDWbXtFMCH8iB4h9zKDnOFpHPLK2dOQAwxBeM/adetZdegYCYfdUZ32\nZ//TV0yYOj3D5ZYoUYIFCxawd9MmTAf/jNrBCbvbdwjVkDD0uIxJ+GOuGWjx86hRAKjVapISEsDE\nLKWMWH0DVqxcjQhQBeFD6Q0o9iNP0u4MFEz+6Yy8AN2BzKyYIGQmSZL4888/6d2nFytXrvzirvQN\nGzdw/upuzvjl4WJIbiwKPWPEqMEfHNe4cWN8fIM5f+kBPr7BNG3aNKNNEIRv0SzePfmahJzp6RzQ\nEBieXZUSMk98fDyRkZGZUlZwcDAr1q0npvMvYGkLxqbE9vmN42fPZUr5d+/e5cy5C3Ru24Hb169T\nrWpV1P06o2FrjUJXF40xgzh36SIgz6dr3q49/NwZHtyGXRvgyhXuPw/h8OHDmVIfQfiepDeg+Bk4\njBxUeCX/bAKOAh9+qxKEHKKJc2OGjhzK39ePMmrcKKrWqvpFT5mu37hIi55aGJtqoqmp4Kef9bl5\nM/XpQ3p6ehQqVAg9Pb2MVl8QvlUnePewyRNwQE70YYMcWAjfsImTp2NobEou69xUqlaXkJCQlPfu\n37/PgQMHePz4cZrK8vf3x6lcRR77R8Ojf1P2K57exdbaKsN1vXbtGtXrNGT5PWOW3VZSuUYdtBUK\nNG/eS7kXJN28R27bdyO3d25YD9fOQ/9+sGYvNDlJkm0DPD09M1wfQfjepHcdihjkoGIMYIf85MkT\nedEiQciRHj16xNlz5+h3qRN5ylsT9CSEPyps59y5c9SrVy9dZRUsUJQLrmp+GiyhoaHgpms8+fMX\n+Uo1F4TvUsjnDxFyur/++oula3eh6v4C9HJx98ov9Oo3hCN/7WLG7HnMXbwMrcIVSfS4xoJZ0xky\neOAny1u0ZBmhDi1Iaj4BZlUDHy80dHUxfHCZZa4Zjz2nzFpITK1ZUCF5VWtdU7z9bpDnxQv8G/yE\n2syU2H/O89LSmhFjxjF/1gz09fVxKlYSN8MuSCWHQ4w/Wj5HKVNmXYbrIwjfmy9JltwM2APsRp5w\nFw30R56sLQhflUqlYsKUiTiUK0GVOtXStJCXu7s7BlZK8pS3BsCyuAXmhU158uQJd+7coVffrnTu\n3p7jx49/tqwRv4wkwq8AXSqGMbBRJNsXSyxdvAaQ17A4deoUe/bswcfHJ0PtFIRv2BHk1LBvXx9O\n/vf/f8S4kW/YpcvXeFOwGyitQUOTxJIjuXb9Gl5eXsxesJCYCbeJHHSI2HFXcRk77r3ei9QEhoSh\nsrIHE2uY8i9YlMfi8S0e37mNg4NDhusbHRMDBpbvdhhaEZ+o4valy0xq0Y64fy6QNGIxAbP28eel\n2wxzGQPAX3u2ktt7JQZ7CqCzx56xw/ul+0GUIPwI0htQdEUOJtyRFyp6m3ZBExibifUShFSNm/Ar\n2133UXx1Iwx/tqdVhzbcv3//k+dUr16dmKAYfP8NACDoSQhhXuHkzZuX+o1qo+lwk1y1HtGrfyf2\n79//ybKUSiXnz11jybw9jBu2ngf3n2Fvb49KpcK5ZSOGjunCqp2jKVPOibNnz5KUlJRpbReEb0QI\n79YuCkF+8BTykR/hG1WwQF70Q66AlDwf7fVlcufOi4+PD7q29mCSPHTIsjA6Zja8fv36k+W1ad4E\n5Zkl8Oo+xEej//wK3bt1JXfu1PLApF/frh1Rnh8PLy/Bc1eUFyfRp2sH9PX1iYmJJantQGg7AIqX\nJXbCWnbv3QtA0aJFeeHhxv0b5/D3fcmUSb9lSn0E4XuT3iFP45B7I3YCff+z/xqQ8TQMgvAZ23ft\noPap3pjaW2FVqQCht3058NcBSpUq9dFzLC0tWbFkJcNrD8fQVkm03xumT5nBsZNHaDHKiraj5YXs\nzGx0WLRgNu3atftkHXR0dGjQoMH79dq+nYDoRyy7VYy4mCQm1A+hcaP6aGlpMWniRH6bOCXjjReE\nb0Ovj7wWviP9+/dn664DPDlUGYVRHvC/xqbTx8mbNy8q/2fgfgmK1oAHx1HEhlOoUKFPlte6dWvm\n+PgydWYzEhPi6dy5M3NnTsu0+vbu3ZOY2FiW/D4cDYWCcbMm8tNPHQEwMFCiFf6MlMc/YUHo6r/L\naKylpUXhwoUzrS6C8D1Kb0BRBHlxu/8XzbsubkH4anT19IgPjUnZTgiNRd/u86nsBw4cSPv27fHy\n8qJAgQJYWVnRf1BvdPTeddLp6muiSmOPws2bN+nasxPPPV7hUNKeujUaUKyqLppaClYPcaesRQx3\n/4GgcBX1XObj4FSKNm3apL/BgvBtOwRsRR7elJDNdREykZ6eHpdd/+HMmTNER0dTo8ZqbGzkXon9\nO7fRvlNrVCjQ09biyF/7MDD4fGb54UOHMHzokK9SX4VCQf58eahRrRK5zExxdn6Xea979+7MXbqc\n0HlDUOWxQ7l7GbOmi4dAgpAe6V3IwgN5UvY/QBRQGjnTU29gNPICd1lBLFT0g1q/cT1jp46nuEsN\n3rwIx3/vY+7evJNyI0uPy5cv06ptU3ovyY+BiRYbRr5i0ti59O8nT9pTq9UcO3aM169fU7ly5ZRe\nkNDQUIo7FaXdckdKN8/Nlc3POTHNCx39JOadL8qIcv9ycbGa4gXk68zfAd5aA1mxcvUXt1uSJCRJ\nQkPjS6Y9CT+iHLKw3Q6gJaAC9gHbANcsroO4X2QDlUpFcHAwlpaWaGpqZnd1+P2PNYyZNY+YtqPQ\nfO2J+bUDPPz3JlZWcgapgIAAlq1YSUh4BG2aN6NJkybZXGNByBrZtbDdn8AyoHryxfMjd2kvAP7I\naGUE4XP69u7L1j824fAkFw11KvDvtVtfFEyAPLdi1/YD3Ntmwbkl+kwdv+C9YKJjp1aMndSDY1cn\nU79hNXbs3A7I6RAt7Qyp2CE/Ovpa1BlUFB1DDbp06Etf+7vEx6i5kZwpUZLg4gOIiHzzRXWUJImJ\n48diaKCHUl+Xfr27kpAgHvQK34wuyClihwJ5kB9GvQTmAiWysV7CV6alpYWNjU2OCCYApsyeQ8yk\n/dB6KEmDlxBZoi7bt29Ped/a2prZM2ewZuVyEUwIwhdI75Cn+YAJcArQA84C8cBCYGXmVk0QUtes\nWTOaNWuWKWUFBgXy2j+Q+Ph4/AP8UavVaGhocPLkSR4+vcyWm9Zo6yh4dl+fAbUG0LlTF3LlykXQ\ni0jiohPRM9TmzmEfgnzCcXIsSWBAMBYWZoxaC4dvwusQcPfRYH7/L0uCtn7tWo7tW4XHogSUuvDT\nyr+YPiU3M+csyJT2C0IWiEbumdgGWAE/AQOR04/njG+bwncvIT4OjM1TtlWG5sTHx2djjQTh+5Le\ngAJgAjAbcETu4XBDHv4kCN+U48ePM2LsULptKo++iQ7rB65CW1uLMS7jCAgIoEhJXbR15F7AIiV0\niYuNJy4ujhIlStCmVXsWVD2CvrlEkFsgvbpoMn/eYPbu2UrL1s74RVzBsKIWJt6JaAYoaN68+RfV\n0fXsMX5pEIOtmbw9vnksv504jtwpKAjfFD2gHtAIKAa8Sse5GwBnIBAombxvKtAPCEreHo+8kJ7w\nHQoODmb//v2oVCpatmxJvnz50nV+1y5dWDevO4n9F4CfJ5r/bKTltMsfPT4qKoqjR4+SkJBAo0aN\nsLW1zWgTBOG79qUDst8AN4HriGBC+EbtObCLBr8WxaG+LQUrWNB2SUl27dsBQJUqVbh6MopHN2NJ\nSpLYOCeMkqWLp3Tfr175JwunruLFjRBunAdT4yT8X8fy8O4Zrl66gEO+Zjw9b41+XFUuXbhOrly5\nvqiOVjZ5ufPqXdx/56UCa+vMSaMoCFlAA2gMbEEOBn4H/JADi0+n/XnfRuD/x6FIwGKgbPKPCCa+\nUz4+PjiWLM/IBecZvew2TqUq8OjRo3SVUaF0KSTvpzCvN+xdgkJbFze31FfxDgkJoUT5SgxYupUh\nm47jULocbm5umdEUQfhupbWH4gjyH+9PTdqQkCffCcJXFxgYyMGDB5EkiVatWn3RPAoDpQFB/nEp\n25H+sSiVciaS4sWLs/bPLQxo1pvwsGiKORYiNDQIfX09ChUtwP7dB6lSpQpGxjo8fhLLocPgfhzM\nTWHdvgj+2H+df+88zXA7f/1tMtUqH+D50kgMdCXOPdbm7PllGS5XELKIH/Iw2WNAz+R/v2ScyUWg\nYCr7s3vSuZAFZsyaT6hpJ5Ic5gEQ77WCkWMm8c+xA2kuY8OuvagG/QHV28plnN3G2u27aN/+wzTh\nc+Yv5HXROiQOlKeGKo6uYOiY8Zz9+1AmtEYQvk9p7aFwBkohL0QUjFikSMhGL168oGS5Uqw8v5ZV\nF9dTslwpPD09013OiGGjuL7Wh/1j7vD3zPvsHPwvlcpU5fnz5wC0bdOWoMBwfHx8CQgIodMae9Yl\ntqfeBGuatWiMmZkZFhZW/LFOQaPqcjAB0LkZPHrslSlttbKy4tYdN9r9/DsNeq7g9r3HmbJqrCBk\nkcmALdAO+IsvCyY+ZRhwD1gPmGZy2UIO4ecfTJLBuySSkpETgUGf/soRFBTErVu3UlboVurpQXTo\nuwOiQ1GrEnEsVwltXT0KFS/BrVu3AHjl509iofLvrmdXHl+/Ty/MJwg/urQ+3ZkH9ABikceybgJ8\nvlKd0kKkAfyB9ejXE4+8flSeKk90vjXnPHkem7Jry850l+Xl5cXvf6xi644tKHPrYe1owdNjL/j7\n0DGqVasGwPnz5/l5Qg/GXqqSct5E+3P8c+g8urq6ODerR2zUS+4fAmND2HoIFm4rzL0H6Q9yBCGz\n5JC0sU7IKWPfdtc1Qu6peIR8X0nPUvIFkXvL386hsOLd/IkZyIFL3w9PQ5oy5d2aAnXq1KFOnTrp\nuKyQ3dav38jw35YSU+YgaCpR3u/EqL71mDFtUqrHb9u2gwFDhqKdqwCqkFds3bAOa2srGrVoTUzL\nUaBOQnl0Gfq6uoQ2/xWpbm/49280/+jH9YvnuHvvPsPnLidm4gnQM0RvaRf6VbFnxeKvO3ctODiY\nxcuW4h8ciHODxp9dZFUQvoSrqyuurq4p29OmTYNMuFekpwAt5J6KPshjYs8hBxcHgcSMViSdREDx\nA2vcqgnaPXJRtJ2cddLr6GMiVnnjevzsF5W3aNEitl1bT8c9jVAoFNzf84wni325fe0uAE+ePKFG\n3cpMf1wPA1Mdwvximehwmheer8iVKxeSJDFyxGB27thCPltt/EM0Ofr3WcqUKZNpbRaE9MohAcV1\nYAmwC8iHHFi4Ivd4bwN+TUdZBXk/oEjre+J+kYWioqK4ceMGSqWSSpUqZUraWEmSmDJ1JouXLCUp\nSUWPnr1YtXwRWlofjtp+/fo1dsVLEDvsAuR2gle3Ua5uiM9zDzw9PVm7aQsKhYKmDerRdcgo3iz/\nz4OfsZUwj/LF+7k7U2fOZsniRUhqNa3adWD7xnXo6elluC0fExERQamK5VDXc0LHKR9hK44yftBw\nxoxy+WrXFATIvHtFerI8qZBXPT2EnFe8J/JTod+RJ9dFZ7QygpAWTeo3Ycn85eSulh80FNybc5nB\nbQZ8cXmvA/ywKmv29peK3OWsuBBwN+X94sWL07N7b2ZX3EbRmrlwOx3ApImTUiZaKxQKli5bzZCh\nLoSEhODk5ISRkVHGGikI34diwO3k1+2RA4xmQF3knu70BBT/zxZ4Ow6lDfAgA2UJmcDLy4uqNesT\np5UHdVwopYrn5ew/R9DV1c1QuQqFgunTJjH9Iz0S/18HHZuixOZOHiKVvxxaprl5+fIlFSpUoEKF\nCoA8JCohLAgiAsHECmKjIew18boGPHnyhPmzZzJ35nTUanWqgUtm27t3L0kl81Fo9TAAzBpXYGb1\n0SKgEL4ZX5rlyQB5op0RIsuTkMV+GTqcjnXbsc1+GVvtltCqijOjR777o/v8+XPOnTuHr6/vB+fG\nxMQwYtQQqtYsS6eubfH29qZenfrcW+9OqFcEiXEqzk//94MhEYvmL2Xrn3vpXGUUi2av4KmHOz/1\n6MTff/+dckzRokXlidoimBCEtzR514NdHzie/NoLsE5HOTuBK8gBijdyT/k84D7yHIrawMhMqK+Q\nAX0GDCfY+mciq18iuu4D7rzSZeXKVVlah8KFC5Pg7w7+yRmcvO+SGOZLgQIF3jvO0tKSvn16g0sZ\nWDccfqsO9o1Rx0VibGwMgIaGRpYEEwBxcXFoWhimbGtZGBMfG/eJMwTh26VEXhX7AhADbEe+QWQH\nSRDUarWkVqvf27ds5XJJaWYkWZYoKBmYGku79ux+733nlo2k+h1tpaXniku9puSTChbOLUVEREiL\nliyUDIyUkpa2ltS8jbMUGRmZ6jXd3Nwk01ymUu05DaTGf7aQzPNaSDt27vhqbRSEL4WceS+7XUNe\nELUW8hy8Usn7q5J18/Cy+z/FDyNPQQeJpvclOkvyT7mlUp9+P2d5PTZv3irpG5tJxnblJH0Tc2n3\nnr2pHqdWq6V6DZtIOub5JMp0kpSFKkhde/XL4trKPD09JaNc5lLRzWOkMrdWSrbNq0ld+/TMlroI\nPxYy6V6R1jFT64COgDtyNo0dQHhmVOALJX8Gwrfi5cuXjBg3iucvX1C9clXmz5qHgYHBZ8979OgR\nnp6eODo6UqRIkU8e+/z5c5zKlkChLZG3lCned8NQxysIeh2AkZERoaGh5C+Ym8MhJdHSljvnXOq9\nYqrLOpydnVGr1Zw/f55Xr15RunTpVOdAjHAZwS3Du9SYVle+5j8ePJ38kLvX7rx33JMnTzh+/DgG\nBgZ06tQp5YmXIGSVHDKHohbyMFkT5CFOfZL3zwWKImd/+trE/SKLtGrXheNPrEgstQRU0SivNmbZ\n1D7069cvy+sSEBDAixcvKFy4MJaWlh89Tq1Ws2vXLh65PcbJ0YHOnTunDH/Najdv3mT4r6MJCg6m\naYNGLJw9N8PDxQThc7J6DkUf5G5mP6Ap7y8w9LYSYh0KIVURERFUq1ODPH3Lkndobc6sukybTu34\n58in16GaPW8Wi5YuIH85a17c9GfR/CX06dXno8dfunQJpEQW3amNRV59Xj2MZHzFSzx9+pQKFSqg\npaWFOkkiIV5CS1ue6Bcf+2587HCX4ew9up/clfPy4ldP5kybzaABg967RqIqES39d7822kptVCrV\ne8ecP3+etu2b0/gnfYL8JBYtmc21K3cwMzNL70cnCN+6C4AlYAz8J2cna5AXSBW+I+vXLKdeoxZ4\nHM9DUmIM7Tr+RKVKlXBxGcOFK9fQ0TekSf3a/DrWBX9/f44ePYq2tjZt27bF3Nw8U+tibW2NtfXn\nR9VpaGjQpUuXTL32l6pYsSJXz5zP7moIwhdJa0Cxhfe7RFKLZMQjICFVFy5cQL+IGaUmNgbAqnJB\ndpr/SlhY2Ee/ZHt4eLBg0XxG3W+JsY2SgKfh/FJ5OO3atMPExCTVc7S1tbG2U2KRVx+A/CWMMTDV\nQkND7o0wNjbmp04dmNjiHxr3MeL++TgU8ebUrl2bO3fusGv/bjo/HIiusR7hnqG4lHWhe9fu7/Wk\n9OjSg8YtmmCUzwT9XEoujTrLr4PHvVeP0eOGMmGNEQ3aynMpJvcK5Y/Vf/Db+N8y9kEKwrdJxfvB\nBMDz7KiI8HXlypWLu7cu4+3tjb6+Pl5eXlSpUY9YtR7YN4M8Dbm95U8uXL7C9cvXUambouANEyfO\n4s6dK9ja2mZ3EwRB+EJpDSh6fc1KCN83bW1tEqPjkSQJhUKBKi4RddKnM2e8evUKW4dcGNsoAbAu\nZopRLiX+/v4fDShq1qxJ8OAEXtyNoGAZEx6cCUJK0KZ48eJIksSePXuwtclPQnx9nv39BoeCRdl6\ndhJ6enq8fv0aSwdrdI3ltICmduboGesTHBz8XkBRuXJl/tp9gBkLZhIc68ek4RM/6MUICw2lsINO\nynaB4hASHPDFn58gfOOaAUOAwsjrUHgD/ZEnZp/JxnoJX4GGhkbKBOiOXfsSm7cHRFwD5zWgUBBX\n1JkzCy2QFNNAaywACREuzJw5n1WrlmRn1QVByICsSV8g/NDq1KmD0QRdrvXdRa7a/2PvvuNjvv8A\njr/uLnfJXTZBBLH3VmrV3iP2CFp7FK2iWqpVo9qi9lY1W0ptVbXF3ptYQQgiIsi6JHe5+/7+OM2v\nKlYkksj7+Xh4yH3v8/l8P5+r5nPv72flJXDBcTp91OmFuyEVLVqUuxcecPPofXK/nxX/v29hirLg\n7e393Dw5cuRg4fzF9KjVHYOLFnOMwrrVGzEYDHTv05O1f61G62pHfJSFGhVrM/7HiQlzZUuXLk3w\nyTvc3hdIjg9y47/kFHqtAzly5HjmPrVq1aJWrVrPrUe9eg2ZOXwDI+bb8SA4njVz41gwr/FrfGJC\nvDM6YZve9Au2TTy0T65rgC+RgCJdiYyM5Muh33Li5AVKlijExJ++e+FUzoiIKNBlBrUW/lmXoLZ7\n8nORhHTxlpLcvWv7p+Dv78+2bdtsI8rt27/SWjshROpL7QV7SSWL7NKZ8PBwvh//A9dvBfLB+1X4\ntP8nLz3waMPGDXTu+hF29mrU2LFu1Xo++OCDl94rOjqa4OBgcubMiYODA7du3aJoyQJUaeZGg46u\n7NkQya4VDzngd/Sphddbt26lw0cdiIqIIkfunGxcvYGSJRM7J+vFYmJi6Nu/O2tWr8fR0YHRo3+g\nT+++r12OEG8ijSzKPgv8iG3b10igNLaRiTLANmynXac06S+SgdVqpWKl2pwLyE2cxhedZQMFvE5y\n+tQBtFptonkmTprKtz8tJsYYASXaQt7a2J2cRQ7LDe4HexITvwKUaAxaH6ZPHUju3Llo3qYDluLt\n0ETcJIf1NieP7MfJySnR8oUQby65+orU7mySSjqId1xkZGTCHuChoaFky5btuZ3Wy/z999/4ftSM\nP0NKodGoUBSFtvkuULp4bbZs2vxUWkVRMBqN8lRMpHtpJKAwAkWBmzwdUBQAzgMpd/Tw/0l/kQwu\nX75MuQr1MbpeB5UGFAWnqOLs3r404bC4/1IUhTFjf2TGrHmEPX6Mys6AnUZDfm9P3itdmj9WrUCj\ntmPIkM8ZM2YEBYqX5Xr576FIE1AUHFa354fOlRk06NWPGPlt2XIWr1iNs6OBkcOGJLpbnxDi/5Kr\nr0jqwXZCpIiYmBiatmmJh2c23LN40PvTfmTPnj3JwQRgm8+rwD/fKRQFLBYFv/0HuXr16lNpVSqV\nBBNCJJ+72A6j+69qwLW3XBfxBlQqFShW/r//ioJitbxwi1WVSsXIEcNp0rgRukJdUdrexdwqiOuW\nUgTdDWLsdyM5efIw3333LSqVikcPwyBb8X8yE5upGKEPwl65jnPm/kyfoSPZmacd63UV+KB2Pfz9\n/ZPeaCHEK5OAQqQpX40cwQnlMaUebqRUyDr+vnyKKdOnvVGZRYsWpVCBYgxveQ2/NY+EqdmTAAAg\nAElEQVQY/WEgcVlz4lIsH8HBwclUcyFEIn4GpgFVsT0B88a2ycdPwJzUq5Z4XQULFsTdzRHCWoFx\nDYR1RKVEvtK0UP/L1zB5NgIlHlQqTJ6N2Xf4Bt/8cJvyFapz4MABAOrVrYvDruEQ8xiCz2A4s4B6\ndW3n5xqNRqKjX7zT8E8zZmPssQgq+0LDz4iu0YeFi5e+eeOFEC8lAYVIU/YePojbJ81R2+vQOBtw\n7t2EvUcOvVGZKpWKrX/v5twBC5MmqjmXowHO3/QnLiCI4sWLv1ZZMnVCiNfyE7AW2A4YgF3YAok5\nwMxUrJd4TVFRUYSEBEF8AQj/FeJzoSguHD58+KV5vbK4wh5fWOoAG8vAhRkodp0wG6Zj1M7g08++\nBmDB3BnUzwe6STlxXdGQaeNGU61aNTp92BNXt8y4uXnQvGUH4uLiEr2Poiig+tfXGrVGfmcL8ZZI\nQCHSlDy5vDHuOwfYOofYfefIkzPXG5cbFhaGV568hJ+6Sdi89UT2+oGNq1aTOXPmV8r/+4rlZMnu\ngb2DPQ2a1iMs7NWH4YXIwBTga8ADeB+ohO2guxGpWSnx+qKiorCzM4D9JNCvB4ef0GhzExER8cJ8\nQUFB7PDbA23Ww1AzlO0Oj86C4cn5PXaFeBhmO6bEycmJDauWE2eM4nFoMD17dmf8hMms33Kd+Hyh\nxOd/yPb9UYz4diwAwcHBzJ49mzlz5nDv3j0G9euNYWF3OLYWdszBcfdsunb+MEU/FyGETWov2Esq\nWWT3jjh+/Dh/btqIk6Mz3bp1Izo6mko1q6Mq5IU1Jg7nR3Ec2bPvjU5RjYuLI3/xIhgGNCTrh7UJ\nW3+IB9/+zjX/y7i4uLw0/7Fjx2jgU48uf9UjW1F3Nn9xFKfbnmze8OKTvoVITWlgUbYB29awrYG8\nT65dA1YDE4GYt1QP6S+SgaIolChRkSuBdYhX9QXLblzthxEQcA4PD4/n5tuwYQOdv55PRLNN/784\nyQWc1oJdMfRx3enZpRTTp01INH/d+q3Y6d8BXNraLkRtpXz2n1ixfB7l369GnK4uKAr25p0cO7KX\nvXv3s2jlapwNBkYP/4IKFSok58cgxDtHFmWLdG/z5s00aFKbC+bf2eo/m/feL43BYODS6bPM7juU\nb9p1R29wIG/hglSpU4PAwMAk3ScgIIBYjUKOAc3RZnLGs3t97HJk5ty5c6+Uf8+ePZT2zUeu97Ki\nM2hp8H159uzam6S6CJFB2GE7Y+IrbLs6zQRmAbewjU7sRM5BSldUKhU7d26kWqULuGkrU6LgPPz8\n/n5hMAGQLVs2LKGXwGy0XXh0HQ3xuNMVR2MpfFvnZ+JPY5+bP3/enGjN+xNea0wHyJc3F8O+GkOE\nfX9isiwlJuuvRNj3Y/g3Y+nevSv7tm5i87o/JJgQ4i2SgEK80Pr166nTvCn1WzVn587XP4Pqj1V/\nULpqRYq9/x4zZs96aj7rVyM+p+/iwnT8viD9FhWlSB175v08D1dXV2rVqsXocd9D74qUPzeBR3Vz\nUbtxA8xm82vXwd3dnZjQR5gfRQJgiY7FePv+K496ZMmShfvnwxPqHnz+Ie4ezz/MSQhBb2xbw5YD\nmgPDgKGAz5NrBZ+kESkoMjKSgICA5645eF2enp7s2rmRR4/ucO7swVfakrVixYo0b1gTx9/fx7Ct\nO4Y/qjF96hQeht0mKvIBCxfMQqfTPTf/2LEjyK7fhvOD2jiH1cdD/RuTJn5HcMgDrLoSCems2uLc\nC5GpqEKkFnlCJJ5r3bp1dB7QH6cJn6HEmWje0ZdNK1dRs2bNV8r/999/03PQALL98gVqvT0j+07G\nzs6Obp27cOXKFR49ekzWPFkS0mfOrSU84jEAp06dwj63Bzl71AUg71etOPzzLgIDAylYsOAz97p5\n8yYDvxzI9cDrVH6/MhN/nJhwGJKXlxe9evbktw+G4tykPNE7ztCiiQ9FihR5ppzE+Pr6MnfBHH6p\nvYUsRVw5t+Y6i+fLziFCvEAb4AfgQiLvncd22F0bYPbbrFRGsnDhEvp9MgA7+0xo1XFs2byOihUr\nvvV6qFQqfls8n23btnHr1i3KlevPe++998r5s2TJwoXzx9i1axdWq5VatWrh6upKC596nPrxR4x6\n2xkYhqhxNPfpmFLNEEK8hKyhEM/1QaP6XO/ZEOfWti/1j+f+wQcHbrDm12WvlL9dlw85UtWLLL2b\nAxC+5TD6MX9wPzgUo9YBU0gghd5z4uP5RQm7E8d034usWfEn1atX5/Tp09Rq0Zj3L01G46DD/CiK\nA3k/4cblq2TLlu2p+4SHh1O8THEK9yyIdy1vTs8+g8dDD7b9tT1hj3RFUdi0aRPnz5+nUKFCtGrV\n6oX7p/+XyWRi9erVhIWFUbNmzSSdoC3E25TKayhCgHrYTspOTGlgB7YF2iktw/UXV65cocx7HxBT\neB8YCkPYBtxD+hEacguNRpMqdTp8+DBz5y9BrVLxSb+elCtX7o3Ks1qtfD5kOHPnzkGlUvHxxx8z\n8acfUKtl4oUQryO5+goZoRAvZrX+62fltb6EGxwcsD6ZZgRgeRjBjZs3ie4zAuXDfhB2nwCf4oz8\n4Cxubq7MmDKP6tWrA1C6dGnqVK3OgVpjcKpTnMcbTtCrV89nggmA/fv345TPiapfVwHAq0J2fnKb\nTK9+fZj602ScnJxQqVT4+Pjg4+OTpI9Bp9PRsePzn34FBQUxZtz3hDy4T9N6DenVo9drfVZCvGPc\ngdAXvB8KuL2lumQ458+fR+temRjDkzMFMzcn5mYv7t+/T/bs2VP03pcvX6Zl24+4evkcuXIXZNXv\ni4iKiqKxT1uMOYaCYmHlHw3w27n5jdY4qNVqpkwex5TJ45Kx9kKIpErLAYUGOA7cxjbvVrxlX/b9\nhE59e6PExGGNMxE9ah6frVn3yvmHfDqQtbVqYI01oTI4EP7TSuKijCg+HWwJMmfF3Kwrn+fzYNiw\nYU/lValUTJswiZbt2hC4+AAlihZl1PDEd5rUarWYouJQFFvAEx8bj1WB7Q/9adzShz3bdqXol/vQ\n0FAqVK1Itg/L4lwlOyMnjiPozh2+Gzk6xe4pRBpnB1he8L4F2+94kQLy5ctHfPgJMIWCLgtEHkOt\nin/hAur4+HgCAgIwGAx4e3sn6b4mk4madRoTkvlzlDqduRHyJzVq18fTMzvGTJ0gz2BQqTCq9fw4\nYTprV/2a1CYKIdKYtDw2+Bngj20fc5EKmjVrxoqfF1B643Eq7PDnr1VrqFat2ivnL1GiBIf37KPl\nYyea3IJtG/4kf9HisO1JUBIdhf2BHRQuXPiZvDExMVSuVZ37VXPgvXIQV3KqqdW4PtZ/j5g8UaNG\nDVwUVzZ13szphWdY3mQ1OT/8gJLLPuHMhfPcvHkzyZ/Bq1izZg1u1fJS+ocW5OtUkcrrejFt2tQU\nvacQ6cCvwJ+J/Nn45D2RQsqUKcPAAb3RXyiJ6/XaGK41Zvlvi9FqtYmmv3fvHsWKVaB8+cYULvwe\n7dt3xWJ5UTyYuOvXrxMVp0bJ3Q/snMAURrRZzXW79yBiK1zoBYoCWldiY01v2kwhRBqSVkcocgKN\nge+BwalclwytSZMmNGnSJMn5ixYtyhcDB2M2m8mXLx+rliyiZsNGmJfPwXzvDm1btaBFixbP5Nu3\nbx8P1SYqTegGgGvlIuzP+iHXrl17ZlG2vb09e3fsZcDAAaz5ZgO5h7Ugb/+GKBYrisWa4nNqLRYL\navv//6+kcdBisTwb+AiRgSzF9jDoRUODS95SXTKk77/7lo86tSMoKIhixYqRI0eO56bt1u1TbgQ2\nIN78IxDDpk0NWLBgAb17v95GXO7u7pijQyEuFDQGuPQVdDmP4pLbtm3s4mIQOAWu/UCgJS+rV6+h\nTZvWb9hSIURakFYDiinAF8DLTx0Tb01sbCwPHjzA09MTO7sX/9M5cOAAPy9Zwq49ewgNfYDGoKdw\nnjzs/usvAi9d5Pz582TKlIncuXMTExODwWB4Kv/169exxJpQrFZUajVWUzwWk5mQkJBEd3lycXFh\n/rz5nKl+gYhTtwhee4TQZYeoUqkyuXK9+UnbL9KsWTNGfDeKi1N34lo8O1fGbqVrt64pek8h0riu\nqV0BAUWKFHml3ezOnj1HvHkUqFSAAaOxNcePn+M14wmyZcvGwIGfMfPnqphcqmPWaMAlt+1NrQFc\nvOHWArDEctHYiy49BmG1WmnXru1rt00IkbakxSlPTYH7wCnS7y5U6d7OnTup5dOcqg0as2LFSn5f\nuQIPzyyUrFCanHlzcfz48efm3b59Ow1atWRtkWw87NSUODWYlq3gUr4CDBw2DCcnJypWrMj0eXNw\ncnXFNXNmGrVqgdFoTCijTJkyWCJjOdv+J+4u2s7pZt+jUqnJmzfvc++r1WrZs3UnzbKUweP3q3Qu\nW58Nf6xJ8cXRuXLlYv+uPXgeiCXyh6P0bNCR6ZNkypMQIn0oVKggGs1G2wvFjN7wNyVKFHomXWho\nKOfOnXvqd/V/jfthNOt+n8X3fQvj4e6K6tQ0sJjh5nYIuwhFlwAKZPkQY/bpTJo6P4VaJYR4m9Li\nF/YfgI+AeMAB2yjFGqDzv9IoI0eOTHhRs2bNVz4bQbzc3r17adS6Lcb+34FWh/2Mr9GYImjq1weP\nUl5cW32G04O2cftGUKIjFVUb1ud812Y4+DYDIHrcHGIuBqNu044i477n3IEDzJv/M0Pnz8ZhyyJU\nTgZiPxpCO8+8zJs2HbBtCVijUSOOBl7DmskVTUgYLWvU4vdFi97qZyFEeuHn54efn1/C69GjR0Pa\n/B3/tmW4bWNfV2BgIFWr1iMqyhWL5SGVK5dk8+bVT625mDJlBl99NQKdLjtq9WO2bFlHpUqVXlju\n1atX8WnVgcsXToLWGVxqQsQJyD4YvAZD2Goqeszn8IGtKdxCIcTzJNe2sWm9s6kBDOHZXZ6kg0hB\n7bp0Y7X/VfA/CWoNSpbs5PCG5n4fJ6RZ5jmWCyfO4eXlxfXr1zGbzRQsWBCNRsN7tWpw7cvu2Deq\nBUDMvGVE7zmHNlNmmkdFsnLxYtp368LWqkUx9GwPgOnQSTw++5FLR/8/8mEymZg1axYXAgKoWKYM\nPXr0kD3GhXhFqXwORVoi/cUrMBqNnD59GoPBQKlSpZ76XXvmzBmqVGmE0XgY8AY2kClTfx48CHrh\nCHBcXBwmkwm9Xs/69evZu3cvP/+ylDjPcaDWY7g/nOW/ziZLlixcunSJokWLUrly5ZRvrBAiQUY6\nh0J6grcs4MolHLQxFAjZhNpeR0Cjzwk7dYHYsGgcMjvy4Oxd4mPNODs7U79FMw4dO4ZapyWfV052\n/7WZXh078eXg7zHZ6zCfvojxu6lodPY4a+1pO3Uq9+7dI0+OnKgOnkTp0Q6VSoXl0Em8/7NoUKfT\nMWjQoFT6FIQQIuMwGAxUqVIl0fcuXLiARlMNWzAB0JzIyA95/Pgx7u7uz6RXFIUvh45g6pSJoFJT\nqXJ1Nm1cSZs2bWjfvj3jf5qF2RzPp9Pnc+jQcSZPXohKVQ1FGcPnn/dgzJjEtwgXQqRd6fXplTxx\nSkE1Gzfghm9FMnVuDEDUnpOEdRwNKgtZS+Uk+Fgg82bN40pAAFMP7cKwZgbY2WHsOxIflTOL58xj\nzs/zmDhzBrcCA3Eb+ylxe44Rt/MQWUvkJvJKCD/PnMOIH38gzM2AysUJTvpzcNduChV6dt6uEOL1\nyQhFAukv3tCxY8eoWbMVRuMJICuwCxeXDjx6FJzoqPHChQvpP3gysbl2g507unt9aFHTysrfn56y\nGhQURKFCZYiNPfmk3Ps4OJTjypXTKb6ZhhDCJiONUIi3rELpMlzcfQrlo0aoVCqMu09RvXoNRg/7\nmlu3blFiVgny5s1Ls46+0K4RKp0OALuOTTk1fCYqlYp+fT7mwLGjRHRrgr5GBaJ++gWfqz/gkNWF\n0EMB9G76MbcDb7Fr1y5MJhO1FtZ64aFLQgghUkeFChUYPLg3kyaVQKcrgMUSwLp1KxINJs6cOUPf\n/kMwZR4B2iwAmNwGsf/Aszs53bt3D53Om9hYAxALZEWny0VISIgEFEKkMxJQiGd8PfQrNtWuyd0q\nfVEb7FHfCGG63168vb0pXbo027ZtY9K0Gdy+doOYVaEYOvqAWo1x1RYyOf9/p994iwWVgz3ma0G4\nl8+LQ1bbe1kqF8CqUjAajTRv3jyVWimEEOJVfffdCLp27cjdu3cpWrTocx8AtW7dBVNsfYg8CFkG\ngkqFyniAnImcg5EjRw6ijYHYplIpQAPgXqKHnQoh0jYJKMQz3NzcOHXwMH5+fsTHx1OtWjVcXV0B\n+GXBQj77ZhTG5p/A/ShUoeEEF2qMyl6HNSqOyNy5E8rp26Ubf/m2w/6LLkTuv0xkQAjOBbJx+8/T\n6O0dZERCCCHSsNOnT7N9+3bc3Nzo2LEj+fPnJ3/+/C/MExh4EdgBkT5wqQrYuWBvPcYvm/Y8k/br\nb8aicWqExW0JWCPh3gd88klPnJ2dU6hFQoiUkl7n18qc2FTikdObsFHroVA5+LErFKsAJSrDhcOw\n4zecw4JYMHkybdvahre3bt3K99Mmc+fWLe7cvImLZyYsUSY2rd0gu3kIkYJkDUUC6S+S4M8//6R9\n+67Ex9dGqw0mZ85ITp48iKOj4wvzFSpUjqtXPwE6Aeuxtx/MokUT6dChwzNp8xUoy42Y+WBf3nYh\nYg6dGp/it6U/J3+DhBCJkjUUgpiYGHbu3InZbKZmzZqJ7raR3GKNRsic3fai/kcwqj20+wzWTsVx\n4ggUg55uQwZjsVjw9fWlQYMGNGjQAIDHjx9z7949cufOjV6vT/G6CiHeGQuBJtgOPS355FomYCWQ\nGwgE2gGPU6Ny76K+fQcTE/MNUBazWSEoaBRLliyhX79+L8y3du1SqlVrQGzseCyW+/Ts2SPRYALA\n2zsngecOoNiXB0XBXjlIvjwFUqA1QoiUJpv6p1OPHz+mVKXKdPxuHF1mzKNQ6TLcuHEjxe/bqlVr\n9JN6wY0LEB2BvdWM29b5GEYNwqFLW+zbNkU9bQyTf3n2CZObmxtFihSRYEII8boWAQ3/c20YsB0o\nBOx88lokweHDh8mXryR6vSuVKtXh9u3bhIc/Av5ZGK0iLi4nYWFhLy3rzp07xMXFYbWWws6uFLt2\n7XnuydpzZ/+Em3UCzlE+OEdWI6/nRb74YnDyNUwI8dZIQJFOjR03jlvFyhH5x24iF2/iYYfefPLl\n0BS/7/xZ0+lcrgBeY1tTdMN4/t64noZ164LFkpBGiY9/4WFHQgjxmvYBj/5zrRmw5MnPS4AWb7VG\n74h79+5Rv35zbtz4ktjYMxw/XpHatZtSt25d7O3nA+GAP/b226lbt+5Ly+vdezAxMcswmVYRE+NH\nYKAXixcvTjRtkSJFuHL5DAtnd2HZoqGcOrFf1k8IkU7JlKd0KuDWbUzla8GTL+7WClUJ3PNXspVv\nsVg4c+YMZrOZMmXKYG9vD4C9vT1zp09l7r/S6vV6Nvo0JVarA4MevhnPsJmzk60uQgiRiGxAyJOf\nQ568Fq/pyJEjqFRlANuOexbLUIKCfmbz5tVYrV+zbdtHODm5MH36tFda9/bo0QOgxJNXKmJjSxAa\n+uC56T08PGjTps2bN0QIkaokoEinalepxPYlCzA2aAEOehyWzKJ6xfeTpWyj0UjtJk24cDsItb0D\nWdVqDuzYgaOjIyEhIeTMmROz2YyDgwMajYZKlSqxfcNGxs+cgTneTP+ff6FJkybJUhchhHgFypM/\n4hX5+/vTrl1Xrl71Jz4+E2ACdMA9LJYYvLy82LBhZUL6kJAQevToz/Xrt6lTpwrDhn2Ond2zXyFq\n167Lli1fExc3E7iGXr+E2rV/f1vNEkKkEgko0qlP+vXj7MWLLKmQE5VaTfV69Zn04w/JUvYPEyZw\n3t0Ny9pVoFZz55sR+LRvz9mTJ1E7uRAX/hjFFIedVsv4ceMZ+OknVKlShQ1VqiTL/YUQ4hWEAJ7A\nPSA7tgXbiRo1alTCzzVr1qRmzZopXLW0LSoqiho1GhIW1gNFmQz0A2phZ1cLnW4TX301AoPBkJA+\nMjKS8hWqc+9RU+KVzhw9ORv/i1dYvmzBM2UvXTqH9u27s2OHBwaDG1OmjKNatWpvr3FCiBfy8/PD\nz88v2ctNrxPdZRvAJ2JiYoiPj0/yvFNFUXj48CFarRYXF9vBc807duTvGtWw6+ALgOXAQeI7fYR1\n7S4oVBS2/gnDPoNf/DD0rctfvy3J8B20EGnNO7htbB7gT/6/y9MEIAwYj21BthuJL8yW/uI/jhw5\nQv36PYiIWPXkigW9vh69erXDx8fnmbUS69ato0v3WUSqdtguKFFoojyIjHj03E02FEWRtXRCpAPJ\n1VfIoux0xmq1EhwcnLBrhl6vT3IwERUVRa36TfHyzodHtux07t4Hi8VC+RIl0K3bgGIyoVitqFes\nROPmbgsmABr4gNUCDgbi6vty8ODB5GqeEEIk5nfgIFAYCAK6AeOAesAVoPaT1wJ48OABn38+lHbt\nurJo0WL+G1C5u7tjNocC0U+uGFEUE4MHD0504bWiKFiVf3/fUCdcfx4JJoTIWGTKUzpy/fp1qtVp\nyP0HD8Acy/djx/LlkKRvsTfwi684EuaGacgDiI9l9crGlJ4+g6FDhrDvyBEOlCiNSqcjp4cHt4xG\nzGGhkDkLnDsFpjhwccfhwlFy1OiafI0UQohnJX6QAbx826EMJiIigrJlqxASUhWzuSSbN0/iypXr\nDBv2OQsWLCAs7CGNGjWkXbsWrF7dhZiYKuj1+/nwww/JnTt3omXu23eY6IhDoBsK2hrYK9No0rzt\nU9OihBAZW3p9hJAhh7C9CxYjqGgXqDsUHt5CPbkCOzeuTPJ0o6JlKnGp/CTIVQV2fQ0HJ6NSLLRs\n157fFswnODiY+Ph48ufPz6jvv2fS7DmoCxQm+tQxHAqXxc4cS2nPzOzevAmtVpu8jRVCvJF3cMpT\nUmWo/uK3337j449/JTp66ZMr99BqK+PllYd790oRF1cAg2Eh8+dPxN7enkuXLlG8eHGaN2+e6KjC\nkSNHqFOnLdHRC4AFQAA6+wAiwkMSdv8TQqRfclJ2BrFx40b6fz6MiPBHRIRHQLeetjcyeWMt3oxF\nixYlOaDIl8ebqzf9sDy4DHe3wN+3UPSObP6mI0NHjGT6xAkJab/79ls6tGnDrVu3cHFx4caNG7i5\nudGgQYNEd/oQQgjx9plMJhTF6V9XnLBYzNy/X4y4uF8BMBobMHhwV+7du/bS8q5evYpK9R5QFJgI\ngNVSmNjYWOzt7QkPD2fDhg2YzWYaNWqEl5dX8jdKCJHmyTfBNOzEiRN06NYLY6/fIVtBWNoffu0E\nfbeAORZuHERXIuk7K82aOoGKH9TioRni+3wDmbICEPvRl2yb/exUqmLFilGsWDEAqsiOTkIIkeY0\nbNgQO7uvUKkWoigl0etnkDdvMS5dyvmvVN5ER0e+UnnFixfHav0CuAPkAP4mUyYPXFxcCA0NpWzZ\nyjx+nBtF0WNnN5xDh3Yn9BNCiIxDFmWnYdu2bSOuUmcoVhsy54Ju8+DaXpjdGH4ogTryLn379k1y\n+Xny5OHKhdM0qV4BO/+jCddV/sfJmT17cjQhgaIo/PXXX8yZM4djx44la9lCCCFsvLy8OHhwF9Wr\nH6Bw4TF07VqMyEgjVutCYDtwAzu7T2natOkrlVe2bFm++24Y9vb1cXauiZvbt2zatBqVSsXYseO4\nf/99oqOnYDT+QGRkNwYMGJqi7RNCpE0yQpGGubi4oAs7Qcw/F0JvoLV3wBKwHUdnNxYsnk+5cuXe\n6B6urq4smDuHclU+4OFnjVAcnbE7tY8ZfrveuP7/UBSFDt06s/PUERwrFubR2FH8+O0o+vVJejAk\nhBDCJiwsjOXLl2M0GvHx8aF48eL4+W0CbGsqli7dB7QFPgUiUZQ4fvnl7iuXP3jwZ3Tp8iEhISHk\nzZs3YavY27fvYzYXTkinKEW4ezf5+g4hRPqRXhfsZYhFdpGRkZSuUJlg92LEZSmI/uBCFs6aRrt2\nbZN9S77IyEj++usvTCYT9evXx9PT85k0Bw4c4ObNm0RFRXH2wkWyZM7EJ/37kTlz5heWvX//fpp1\n70SRM7PQ6O2JvR7MuVJ9CQ97KIv6hEghsig7wTvdX9y/f5/SpSvy+HEB4uNd0On82LJlfcJhcnPm\nzOHzz9cTE9PnSY44NJoumEyxqNUvn6SgKApxcXE4ODg8896CBQsZMOAnjMYZgAG9/is+/rgSkyeP\nT74GCiFSlCzKzgCcnZ05ffQgixcv5tGjx9T/ai2VK1dOsXv5+vo+9/1+AwazdNUG4g2ZiQu7Ae2/\nRHPoInMXvY//yeO4u7s/N+/9+/dxKuqNRm8LHhzyZUet0xIeHk7WrFmTvS1CCJFRTJs2gwcPShEf\n/ykA8fHF+OSTLzlz5hAAdevWRaX6GigD5MbefhW1ajV+pWBi2bLl9OrVl7i4GIoWLc3mzWvw9vZO\neL97925cvXqDKVOaY7VaaN7clx9/HJMSzRRCpHHp9enVO/3EKa3Yu3cv85f8RkR4ONt27yV2+GUY\nUxAmbIGCZW2Jvm3B+GZV+PLLL59bzq1btyjxXlly/zEM12oluTdjA8ovuwk4f1EOPxIihcgIRYJ3\nur/o3bs/8+dbgdZPrgTg7T2NmzcvJqTZu3cvvXoNICzsAbVr12LBgtkvPRD17NmzVKpUh5iYmUB+\nNJpFFC16nHPnjjyTVlEUFEV5pSBFCJG2yAiFSFFbt26lZcfOxDQfDg7RYNwMYTcgNhLcs/0/YZZc\nLz0p29vbmzXLV9Cpc1cu3L1HsXKl2bDxLwkmhBDiDTVv3phly3pjNJYG3NDrF9GsWeOn0lSvXp3L\nl0+/VrlHjhxBpfoAKAiAxdKVCxfmYTabnzl3SKVSye9zITI4CSjSsT179vD9pF2RbgsAACAASURB\nVOmYTGb69+hM27ZtklTOkSNHWL9+PVt3HUCrc6Bvjw+Zt3QZMV2nQ9X2tkQqDfw9Gux0MKkX9B4P\nt6/A9qXk693jpfeoV68e94PuYLFY0Gg0SaqnEEKIpzVp0oSJE0cwYsRY4uJiaNu2LZMm/Zjw/unT\np1mxYiU6nY4ePbo/9zTs//L09EStvgKYAS1wCScndzl3SAiRqPT6SOGdHsJ+FQcPHqRuk+bEtBgP\nDk44rBnCwmkT6NDh+esgEjP062+Z/ssiYr1Lw+WjkLsVhpAdeGQ2cKv1eCjXyJZw61zUy77CajGD\ne3bbvxw7e+wfBnHs4H5KliyZ/I0UQiSZTHlKkOH6i6ioKO7cucONGzdo3boDRmM1NJo4HB1PcvLk\nYfLnz//SMqxWKz4+bdm71x9FKYCiHOLXX3+mVatWb6EFQoi3Jbn6ivTa2WS4DuK/WrbvxHp1Bag3\n0HbhzCaK7BvLxZOHX7mMy5cvU7ZqDWKmXgCXzBASCANKQ80FeF0czmOrCmO3mRBnRL+gL2t/XUjZ\nsmX5ZsxY/ty8BTd3d2b99CN16tRJmUYKIZJMAooEGaq/+PPPP/H17Yxa7YTR+ACrtQZge9CkVq+j\nV69czJ0785XKslqtbN26lZCQECpVqkSRIkVSsOZCiNQgaygyuAsXLkKJ8v+/oFi5fSf4tcq4c+cO\nulyFiXF5su1rtjzgkhVi7pM1mxff9ujEzAWjsbOzY+T82TRs2BCA+bNmJFMrhBBCJJeHDx/i69sF\no/FroDBwGRgFNAWcsFrdePz41U7IBlCr1TRq1ChF6iqEeLdIQJFOeXl6cnXDGNDpwd4JVg7FLbPT\na5VRokQJ4m/6w/k9UKIGHFwDUY9wODOWbxfOomXLlvTp3euFZfj7+zN73i+YTGa6d+lEpUqV3qRZ\nQgghkujatWvY2WXFFkzw5G9X4ByQGYNhK506zU+1+gkh3l0SUKRTPbp04vBxf+J2bQYUdNpMdO70\neouys2bNyvo/fqe1b1uMRiMarY6KlSoybMiAV3oqdf78eSpVq0X0+/1Ba2BZo2b8uWYFtWvXTmKr\nhBBCJJW3tzcm0z3gLuAF3MXO7jGZMm1Br9fz7bc/4uPjk8q1FEK8i9Lr/NoMNSc2MYqi8MOPPzH+\np0lY4s181LkzM6dNTNIOHFarlYiICFxdXV+69Z/FYuG7H8ax5s+/CQ0NJSRnfWj5ZArUyeVUufsr\nB3b9nZQmCSGSkayhSJCh+ov583/hs8++RKfLg8kUyLRpE+jVq+drlxMZGUnHjt3Zvv1vHB1dmTZt\nAh9+2CnhfUVRZKtYId4Bsig7A3UQacmAwV+wYNsRjC3GQPAl+P0rGHgcPPLDpa2UOT+OUwd3p3Y1\nhcjwJKBIkOH6i8DAQAICAihQoAB58uRJUhmtWnVg8+Zw4uI+Be5iMAxnx4715MuXj5YtO3H06F5c\nXbOwYMEsWrRokaz1F0K8PRJQZLAO4k1YrdZkO8HUJXNWIr89Blme7GW+oDdEW+G9zjhu7MuE4QPo\n17dPstxLCJF0ElAkkP4iCZydPYiKWgB4AKBWz2XUqEJs2rSLkycLER8/CLiAwfAxR4/6Ubx48VSt\nrxAiaZKrr0ieb5kiTVq+fAUu7lnRanVUrl6P+/fvP5MmNjaWw4cPc+LECSwWy0vL1Gi1EBed8NrO\nHEO22zsouO9zvv+iL30/7p2sbRBCCPH2ubq6AzefvFKwtw/C3d2dY8f2ER8/BHAA3gPqsn///lSr\npxAibZCAIo3YvHkzX3wxjKlTp2I0Gjl69Ci5CxTDTmdP8bIVuXLlymuVd/LkSXr2G0hk1a1YfY0c\nf1SKlu0+eirNvXv3KFa6PPV9P6aGTweq1qpPTEzMC8v9asjnGGa2Ar+FaFYOwzXAjzMnjnDl7DE+\nG/CJzKkVQoh3wLx5UzEYxqDTTcNgGIa3dzhdu3bF0dEVuPoklQW1+goeHh6pWVUhRBqQXr/9vVND\n2D9NnMKocbMw5uiGQ9RJcutvEBx8l4haM6FgY1SnF5D94nQCr/oDMH7CJA4fO0PxIvkZ8c0wnJye\n3S522rRpDJ1/hbhys2wX4o1oVrljNsUmfOlv5fsRm0K8MNcdB4oVh9XtGdqqDKO+/eaF9V2+/HfW\n/LWFLO5ufD10CLly5UreD0QI8cZkylOCd6q/eJvOnj3Ljh07cHNzw9fXF4PBwLJly+nVaxCKUh87\nu8uUKePO7t1/JWlDECFE6pM1FOmwg3j8+DH79u1Dp9NRs2ZN7O3tURQFB4MzpnrnwSkPKAoOu8qi\ndjRg/PBgQl7HuXnp0LIhGzfv4mGkhvi8Q7F/vJ2imQM5emg3Wq32qXutWLGCnl/OIrrGHlCpIfQQ\nmU60Jez+7YQ0RctW4tL7kyB3VduFE4toYbeLdSt/fRsfhxAiBUlAkSBd9hdp2cmTJ9m/fz/ZsmWj\ndevWEkwIkY7JSdnpzPXr16lYuRYma2EUawQ5PS0cObwLBwcH4uNNoM9uS6hSgT4n8Y9OgSkadI4Q\nFYLx0T2W7HqA2aMjhC+Dmz8TV3knlw6X5fjx41SuXPmp+7Vu3ZoZcxZydk81LM7F4PYGFiz5+ak0\n5UqX5Pq53zDlqgxWM/pLf/B+ZzlDQggh0iJFUTh79iyPHz+mbNmyuLi4PJPGZDIxZcpUTp48R7ly\nJRk0aCA6nS5Z61GuXDnKlSuXrGUKIdK39Pr0Kt09cWrQsDU7jr2P1XEoKAr20V34vG9evv9+NHUa\nNGN/YGZMhb6BRycwnO1HvQb12HnkIqacNVBf3YjFHI+5zE9wbCAUbQvBxyBODbEP+fZzX0aPHvXM\nPePj41m/fj0PHjzggw8+oESJEk+9/+jRI2rWb8K1m3ewmuOoUa0qG9eseGa0QwiR/sgIRYJ0118k\nxmq10rbth2zZsgs7u8zY2T1iz55tT/1eVxSF+vWbcOBAEDExRdHrL1GlSg62b98s69uEEImSKU/p\nrIMoWLg8AY9ngn0l24WoX2hb7wB/rFxEREQE3Xt9wp69e8ma1ZNf5k6hUqVKbNy4kYCAAG7dusUv\naw5jfBQE7TZC9vKgKLC0Kty/StkyxTl5zC9J9bJYLFy7dg2dTkfu3Lml0xHiHSEBRYJ0118kZtmy\nZfTpM5bo6OGADpVqF8WLn+LcuaMJaS5evEj58jUwGodgm4AQj8EwkUWLZjJhwjRCQu5Tv34dZs6c\ngl6vT62mCCHSkHd5ylMuYCmQFVCAn4HpqVqjZKC1U0PkZNAtA8UIUbOx15UCwMXFhdUrlz6Tx8fH\nhzZtO7N1236MceFgiQKPYrY3VSrbz5GeWOLvJ3pq6Z07dxjz3Xju3ntAsyZ16Nmz+zNpNBoNhQoV\nSplGCyGESBZXr17FaCwK2KYvKUo5AgNXPZUmLi4OtVoHaJ5c0QBqunXrjdHYAqjJ8uXbePSoG2vX\nrniLtRdCvOvS4raxZmAQUByoBPQHiqZqjZKB2WwBUzDcyQx3soM1E3GmFweEK1euZNuuAIxOl8D9\nPNi5wPbPIC4Cbh+AiyshcjOXLl+iUpU6REREJOQNCwuj7HtVWLjNgU1XGjFw+Ay+GTE6pZsphBAi\nBZQuXRqD4QwQBYBavY9ixUo+laZYsWJkz+6GVrsZuIVWuxlHRxWKUhKoCOQkNrYjf/65DqvV+rab\nIIR4h6XFgOIecPrJz1HARcAr9aqTPHJ4ZUel7QCON8HpPlqHQnjn8nxhnmvXrhFjqQkqB1B7gTkG\n7lyF6dlhTUewywb5f8ZUOoQzQXn4bOCwhLxr164lWleJ+DwTwPMjjAU3MmXKVN6FoX8hhMhoWrRo\nQbduzbC3H4ST02By5DjMihWLn0qj0+nYv38XTZt6kD//Dpo08WDEiOGo1dH/ShWFVmsv01uFEMkq\nLU55+rc8QFngSCrX443NnDmOqh/UJV45gIpw3F2vMmzYgRfmyZ07N1bjCDB8AbiDYoJym0FjsCU4\n1wcs4aDSEOfWnSPHvkjIGx8fj1X9rzmyaj0WS3wKtEwIIURKU6lUzJgxha+/Hkp4eDj58uVLdAON\nrFmzsnbtyoTXkZGRTJ48E7N5GSZTdgyGQ4wY8Y0EFEKIZJWWAwonYDXwGf+M8f7LqFGjEn6uWbMm\nNWvWfFv1SpISJUrgf+EEW7ZsQafT0bx580S3/Pu3Bw8eoFZlwhqSF9TuoHGGU+3BqTBYzRC8Eor1\nAcAuaiuFyuVLyOvj48Owr0cTd3saimNJDPfG0qFzV+lEhHhH+fn54efnl9rVECnM09MTT88Xj27/\nm7OzM6dOHWHq1GncvRtCw4bTadWqVQrWUAiREaXVb5daYBPwNzA1kfffiV07Xmb8+PF8M+ou8XwL\nSjiY54L9Yij7GYQcQ3PHDwfHnGjsnHGxf8jhg7vIkSNHQn5/f38GDRlByP0HNG1Uh1Ejh8sBREJk\nELLLU4IM0V8IIURSvMvbxqqAJUAYtsXZiUnTHcSlS5cYMGg412/cIiY6EqwqKlWqwPz508iUKdMr\nlXH//n169vqUvzbvxGqtAJrBYG0BnY5B5mKgKBg2N2ZQ2/eoU6cOFStWxGAwpHDLhBDpRQYKKAKB\nCMCCbVOP9//zfpruL14mNjaW6dNncOlSAO+/XxatVsvKlevJlMmNUaO+pkiRIqldRSFEOvYuBxQf\nAHuBs9i2jQX4CtjyrzRptoO4d+8eRYqVJSLTlyiO5eHmdxDhgE7rSaFCZ/jss17Y29u/cMpTbGws\nxUu+T9Cjupi1jVBF/YwStRVUsdAvDHTOAKi2dmFSzzIMGvS8uEsIkVFloIDiBvAe8PA576fZ/uJl\nLBYL1avX49SpcGJiCqHVHsVqfYDF0hCV6jFOTsc5e/YEefLkSe2qCiHSqeTqK9LiLk/7sdWrDLYF\n2WV5OphI07Zs2UK8Uw0Ur0HgWg2KrQFlKyZTN86fP8+AAbvo2/cPihevwIMHDxIt49ixY4Q+1GJ2\nngT6eigev4PaDjSOsLUXPA6AgHUoV9diNpvfcguFECLNeScDp6NHj3L27DViYvoAdTCbB2GxmIB8\nKEp1YmKK8Ntvv6V2NYUQIk0GFOmaVqsF67+26LMaASvQBhhPTOxyoo1/EhJSm3HjJiVahkajQVH+\nHShYbIuw443w2B5W1AO/H9C51MTR0TEFWyOEEGmeAuwAjgO9UrkuySomJga12pH/d9U6bEsMbf2D\noqhlK3AhRJogAUUy8/HxwU19GbvATyFkMZytD6pPAHtso/I2ZnM5AgPvPpXXbDajKAoVKlQgby5H\n7CO7QdRK9BFtKFS4EGo7PcTHQN5dkOVb7OIOU7du3bfaPiGESGOqYhvJboTtINRqqVud5FOhQgX0\n+ijU6i1AEBrNSlQqK7bjmg6h11/A19c3lWsphBBpe9vYdCcuLo5Hjx5x6MBO+vUfyJZtfxEfNxzo\nge2jHgHKOiASmIjFUgqAoKAgmvr4cu7cERwd3Vm4YA77921l5Mjv8b+4ikqVKvL18C+5cuUKn342\nlNOnq+PhkYV5G1ZSuHDh1GuwEEKkvuAnf4cC67Atyt737wTpbZvxfzg7O3PwoB89e/bn6tXfKV++\nLBUqfM2ff27F3d2NH3/cTcGCBVO7mkKIdCSlthhPr/NO09wiux07dtCyZXusVi0qlYlRo4YzatR8\noqPPYRumvgmUwDZUrQHq0bq1K6tXL6FU6Sr4X2uARfsNWE6jtzTi2NHdFC9ePDWbJIRIxzLIomwD\ntl+okYAjsA0Y/eTvf6S5/kIIIdKK5OorZIQiGYSHh9OyZXuiokZgW0t+jpEjR1KlSjUOHapJbGw1\n4HcUpRRW6x7AjMHQnIoVq2M2m7lw/hhWl32g0oDde6g0TTh06BD29vYEBgZSpEgRcubMmbqNFEKI\ntCcbtlEJsPVny3g6mBBCCPEWSECRDK5du4Za7QEUBm4BBdBqvRg58gtu3rzJzZs3KVRoMmPGTOL6\n9fxYrbHUqlWDgQM/xc7ODr3BhWjLGbArB4oZtfUsBw5oGDBgGDpdQUymKyxcOBtf3/ap3FIhhEhT\nbmB7iiOEECIVpdfh8DQ1hB0SEkKuXHkxm7WAO/AQOzsrN25cempkwWKxcP36dXQ6Hd7e3v8MM7Fy\n5Uo+6twPi7oBauUs5cpk5eyZM8TGrgY8gcvo9V0JCQnC2dk5NZoohEhnMsiUp1eRpvoLIYRIS2TK\nUxqgKApr1qzh0KHDWK0K8AdQGTiJStUce3v7p9JrNJpEF9Dt3n0QjTo75lg1qHNz+dJJdLp8xMZ6\nPklRGI3GjeDgYAkohBBCCCFEmiLbxr6BAQO+oGvX0UyerMdiKQ7MxbYlejn0+gIEBAS8tAyLxcKC\nBfOIjf0dGIfVOg+zuSQxMReBK09SHUKliiZXrlwp1hYhhBDpi7+/P0WKlEKnc6BgweKcPXs2task\nhMig0utweKoPYYeGhpIzZwFMpqvYpjmZsO3itAhwQ6+vQ0DAOby8vF5YjsViwcHBkfj4k4ALAI6O\nfejcOQ+LFy9Do3FDpYpmw4Y/qFWrVso2SgjxzpApTwlSvb9ICTExMXh75ycsrDyKUgK4SKZMh7h5\nMwAnJ6fUrp4QIp1Irr5CRiiSKDIyEpXKEXB7ckUHuODo+Cl6fT2mTBn3TDBx+PBhPvlkIEOGDE0Y\nvdBoNHTs2BmDoQ+wG41mGg4OZxgzZjQhIUGcOLGNkJBbEkwIIYRIcPnyZUwmOxTlPWwHp5YhPl6P\nv79/aldNCJEBSUCRRB4eHphMUcB3wG3gFyCAAgX0tGzZkIULfydv3hL06vUJRqOR7du3U6eOD7Nm\nKUye/IBy5apw5YptStOCBbMZMqQ+77+/hObNgzl+fD8eHh44OztTqFAh9Hp9KrZUCCFEWpMpUyZM\npnAg5smVWMzmR2TKlCk1qyWEyKDS63B4qg9hX7lyhaJFq2K1lgIuALmBcCA/4AcMBIrh4LCY+vUz\ncfduCMePNwXqA6BSzaZ3bx1z505PnQYIId5pMuUpQar3Fynl008HsWjRH5hMedHpAunUqRnz5s1O\n7WoJIdIR2eUplalUKqzWKGAQUAG4DjQBqj350xqA2NhR/PVXbQoWLI1trYWNomQiMjLkbVdbCCHE\nO2L69Mk0alTvyeLsIjRp0iS1qySEyKBkylMSLFq0mHr1mj955QtUB+pgCyjuYTvc7h+RqFRqunVr\nj8EwCTgLHMRgWESXLnJQnRBCiKRRqVQ0btyYIUOG0LRp04SzjYQQ4m1Lr799Um0Ie82aNXTu/ClG\n46fYBngmAXmB89gWZpcHjgI5gKbASvT6cKKjwxg/fiI//7wUnU7H6NFf0r69BBRCiJQhU54SvLNT\nnoQQ4k0lV1+RXjubVOsgfHzasWmTF7YRCYDjwAwgDtgFZANCgdrYDrmrDHyHyRSHVqtNhRoLITIi\nCSgSSEAhhBDPIdvGphIXF0dUqsf/uvIYyAp4YQsmALIA3tjWUZjJk6ewBBNCCCGEEOKdlF6fXqXa\nE6fz589TqVINjMY6KIodsB5oCazDNlJRB9gDfIzB4I6jox27dm2mRIkSqVJfIUTGJCMUCWSEQggh\nnkNGKFJJiRIlOHHiIP37Z0etXottrcQ2bB/lMKAYMBiw49tvP+P27QAJJoQQQqSImzdvsmPHDm7c\nuJHaVRFCZGASULyGCxcuMG3aNA4ePEivXj0wGNyBekBhbB/lNGAWtpEKO0qWLIlOp0vFGgshhHhX\nLViwkKJFS9OmzQCKFy/L7NlzU7tKQogMKr0Oh7/1IeytW7fSqpUvFksx7OzC8fKyPRkymXRASeAE\ntsCiGnCI7NlDCAoKQKPRvNV6CiEEyJSnf3knpzyFhobi7Z2f2Ng+2NbthaHXzyUg4CJeXl6pXT0h\nRDohU57esj59PsVobE5cXGOio30JClKIjzcDXwEfAmNQqS6RN+82fH0LcuXKOQkmhBBCpIigoCB0\nukzYggmAzOh0Wbh169aLsgkhRIqQk7Jf0aNHD7Ht5gSgIjbWCa3WgNXq9uSaMy4ueZk/fyp16tR5\nTilCCCHEm8uXLx8Wy2MgEMgDBGE2P6BAgQKpWi8hRMYkAcULKIrCnj17uHbtGuXKvcehQ7uJi2sI\nPEKvD8BgcODhQz8UpSpwHqs1mNKlS6d2tYUQQrzj3NzcWLXqd9q27YhK5YDVamT58qV4eHikdtWE\nEBlQep1f+1bmxPbrN4ClS1ehKJ7Ex1/F0zMbd+/ewcnJhcmTJ1ClSmVatGjPlSsX8PLKzR9//Erl\nypVTvF5CCPEysoYiwTu5huIfRqOR27dvkyNHDhwdHVO7OkKIdEZOyk7hDuLcuXNUqlQLo7EF8Ae2\nQ+seUa5cQQ4c2I2Dg8O/K/PPfxAhhEgTJKBI8E4HFEII8SZkUXYKCw4ORqvNAuzCdlhdL2AIFy5E\nMXv27KfSSjAhhBBC/K+9+w+To64POP5OciTNJSoC5SggRBKl5kEDIhRJKiA8eRKl2lLKg6ViQa0V\nqlBaBfrEEutjlaf6EGoBW2gSqIpWUbGofVAwiqKAYhAIokFSfoUfMQZICBhy1z8+M+zc5m5vc7Mz\nO3P7fj3PPrc7M7vz2bnd+ez350jqVY6hGMW8efPYvv1RYAiYnSydzHPP7cfatV5ASJIkSQJbKEY1\nMDDAtddeQ1/fduAmYBDYQn//XSxY4DgJSZIkCerbv7a0PrEbNmxg4cLjWbPmbrZv38YZZ5zJsmWf\nsJuTpEpzDMULHEMhSaNwUHaJCWJoaIgNGzYwffp0Zs6cWdp+JWm8LFC8wAKFJI3CAoUJQpJGZYHi\nBeYLSRqFszxJkiRJ6joLFJIkSZLGzQKFJEmSpHGzQCFJkiRp3KpaoFgE/Bz4JXBul2ORJFWX+UKS\nuqyKBYopwL8RSWIu8DbgVV2NaBxWrVrV7RDaUoc4jbEzjLFz6hJnD5gQ+aIMfmaDxyF4HILHoXOq\nWKA4HFgLrAO2AZ8H3trNgMajLh/SOsRpjJ1hjJ1Tlzh7wITIF2XwMxs8DsHjEDwOnVPFAsU+wIOZ\nxw8lyyRJyjJfSFIFVLFA4RWIJEntMF9IUgVU8SqqRwBLiT6xAOcDg8CFmW3WArPLDUuSauU+YE63\ngyiY+UKS8pmwuaKPeHOzgKnAahxkJ0nakflCkjSqxcC9RM3S+V2ORZJUXeYLSZIkSZIkdc5YFyk6\nGngS+GlyW7ITz61CjMuBx4A7C4wPxh/jy4DvAHcDdwHvr2CMvwPcQnRvWAN8rIIxpqYky/+nuBCB\nnY/zQ5l164CfJctvrVCM2WO5K/Al4B7if35ExWI8MLPsp8k2RX138hzH84nv9p3A54BpBcVYhnbP\n94cBzwN/mlnWS8fhaLqfM8tQh5xXhrrkrKLVId+UoWfzxRSi2XoWsAsj94c9GvjaOJ/b7RgB/hA4\nhGILFHli3As4OLk/k+hKUMXj2J/87QN+BCzoeIT5YwQ4B/jsGNvklTfO+4HdCootlTfGK4HTk/t9\nwEs6HmFn/t8Qs+etJ36odFqeGGcBv6KRFL4AvKOAGMvQ7vl+CnAjcB2NAsUseus4HE13c2YZ6pDz\nylCXnFW0OuSbMpSaL6o2bWy7FykaaXaqsi5wlCdGgJuA3xQQV1aeGB8lPnQAm4kS+t6dDzH3cXwm\n+TuV+NJs7HB8kD/GfYE3AVe02KYT8sY51rpOyBPjS4iC+PLk8fNEjUqndeI4AhxHDBR+cIztxiNP\njE8lz+knkmQ/8HABMZah3ePwPqKm8YnMsl48Dt3MmWWoQ84rQ11yVtHqkG/KUGq+qFqBop2LFA0B\nRwJ3AN8A5u7Ec7sdY1k6FeMsojXlls6HmDvGyUQSeIxorl5TwRgvAj5ATGNZpLxxDgHfBn4MvLuC\nMb6c+EG4ArgduJxGC1VVYsw6mWgeLkKeGDcCnwQeAB4BNhH/9zpq5zjsQyTPy5LH6TUreu04dDtn\nlqEOOa8MdclZRatDvilDqfmiagWKdi5SdDvRlWAe8Cngq4VGtKNeiXEmUbN3FlFr02l5Yxwkmqn3\nBd5ANNt1Wp4YjwceJ/okFl3Tk/dYzieS6GLgTKJ2ptPyxNgHvBa4NPm7BTivYjGmpgJ/BHyxs6G9\nIE+Ms4GziR9NexPf8VM6H2Ip2jkOy4jPyRDxHUy/h712HLqdj8pQh5xXhrrkrKLVId+UodR8UbUC\nxcMM73f8MqJElfU0je4u3yT6he2WbDfWc7sdY1nyxrgLcA3wGYpLPp06jk8CXwdeV6EYdydK/G8h\nxidcDbwRuKqAGPPEmR7L9cnfJ4CvEM2kVYrxoeR2W7LuS8SJvkoxphYDP2F4F5sqxLg78R25Gfg1\n0Yz/ZeJzWkftHIdDiSb++4nxE5cSLRaH0lvHods5swx1yHllqEvOKlod8k0ZejpftHORogEapefD\nib5h7T632zGmZlHsoOw8MU4iTiIXFRhf3hj3IGZhAJgOfA84tmIxZh1FsTNm5ImzH3hRcn8G8ANg\nYcVihPgfvzK5v5ThV0KuSowQP2CLHOCbJ8aDiVlspifrryRapOpoZ8/3K4ATkvvz6K3j0O2cWYY6\n5Lwy1CVnFa0O+aYMPZ8vRrpI0XuSG8Qbuos4MDczfDqvsi5wlCfGq4n+aM8RfdtOq1iMC4juRKtp\nTCO2qGIxvppopltNTHf6gYLiyxNj1lEUP2PGeOM8IFm2Ollf1e/NPKLG6A6ipqSoWTfyxDgD2ECj\ngFaUPDF+kMY0gFcStVF1NdZxyMoWKKC3jkMVcmYZ6pDzylCXnFW0OuSbMpgvJEmSJEmSJEmSJEmS\nJEmSJEmSJEmSJEmSJEmSJEmSJKk3Tel2AFJNbSauQnlH8niQmKv5nq5FJEmS1AWTux2AVICVxA/8\nK0ZYd2GyLu9VQIeSW2ov4LqcrylJklQ7Fig0EQ0RVyE/CejPLO8DTgUeYHhhoBMeB37b4deUJDWs\nJCqEBoFtwEPEFXx/r4sxTVRzgHcntz2b1s0FTi49IlWaBQpNVD8DfkkUCkAxgQAABqlJREFUKlJv\nBrYCq4BJmeWnAWuSdfcCZzetn5M8Zyvwc+D4EfY3CJyQefzxZNtngPuJlpFpmfVLiS5SJwP3AU8B\nXwF2z2xzGHA98ATwJHATcMSo71iSJrYh4FtEi/D+xLn7GOCqbga1k/4AOIfIAdcDb8isW04UlLYC\ntwKv7cD+HgJ+03S7ZIz9TQEuBi4HfkDks5OAtwHvBL4OfL8DsUlSpa0gujSdAXwvs/xaYElmPUTt\nyyNEYWB/orCwHjgzWT+Z+OG/CpgHHAncRrRGnJp57eYCxRLg9cB+wGLg/4B/yqxfCjwNXAMcRBQU\n1gGfzmxzDHAKcCDwSuBTwEZgtzaOgSRNNCuBrzUt+yRxLk0tIipfNgK/Bv4X+P2m56wiflT/M1Fh\n8xjwLwyvSJpBFFSeJnLE3xPdWldktpkGLAMeJX6U/xCY3yL+fuBjmccnAltotLBcQLQGDLR4jZ0x\nALwfmEXkt/2JPLLrGPt7NZEvU3+TuX8x8Mcdik+SKm0lkXR2JVoIZhM1Ws8C+zI8KT1A/GjPOhu4\nO7m/EHg+eV5qPlGAaFWgaPbXRItJaimRgF6UWfYPTds0m0QktuZ4JakXrGT4+LcDiHP1jZllJwB/\nQpz3DwK+QJxXd8lsswrYRJyH5wB/RtTUZ7vxfJqo5DmW6OJzdfKc5ZltLibOyYuJip//IAoge40S\n/2uIXHFA8vjFyeMTk8cXjPK88RoAXpp5fBJR0ZUabX/7MLxA8Zbk7yLgXzsWnSRV3EoaBYbPErVQ\n5wLfbFq/B3Ey30IkgfS2NbkBnEW0LmTtQhQyWhUoTiSahNcnr/kMUaBJLSW6RGWdRnRtSu0J/DvR\nDWtT8jrPA+eN9KYlaYJbSfzwT8+p6QQbrVptZxDnzSMzy1YRXXmyrie6+ADMBJ5jeJfZfqLVIy1Q\nzEi2+YvMNpOBtcBHWsST7bY6N3kP85LHHwf+iijYXA68qsXr7Kx9iLyT1Wp/S4n3M0C0tO9BtPZM\n7WBMmkD6uh2AVLDlNJqtP9S0Lh1D9B7g5g7u8wiiNmspcQLeBLwV+ETTdtuaHg8xfFzTlcDvEi0m\n64huVjfgCV1S7/ou8SO4n+iyehrxo3djsn428YP+cOL8OTm57UfjPD9EjLPLWk9j8PFsouLo1sz6\nZ4C7Mo/TbbIFk0Gi29PcFvH/KHP/fKLLVjr9+J3AfxO54XHgq0R3reZJRE5hePfYRexYQGr2UXYs\nULTa34eJFvSniAq2zxAVbFOBdxCFqf8aITb1KAsUmqjSvrA3ECe+3YmTZdbjRHP1HOJkOZJ7iJqd\nfYnBbRCJqtWEBvOJa1R8NLNsVptxN7/O+2i0rAzgbCaSettW4FfJ/bOI/v4XE91TIcY5PEAUOh4G\nthOTbjRXxIxVoTOSSWOsT7cZbGO7dybxZVucP0/EC/EeX0G8v+bCz7VEwSX1yBj72pMYk/eXTctb\n7W+IKExAFNxuIFrLLyHGgWwmKsqa86p6lLM8qRe8Bng5wxNImhguAD5ItAIcSPS5PZXGSf5bRNek\nq4hm6dcDFxFN6KO5lyiE/DnRV/a9jG+KvV8AbyeaoQ8jTv5OTStJDR8GjgMOJSqODiS6ud5InItf\nzM5Xnt5H5IvDM8v6ifyQ3ea3wILMsilEjlgzxuu/mSh0nEcM7N6faNneRGM2wHR83Ujn/M1EASC9\nPTvCNlmLiQHqWe3u7xVE/kkHox9HVK5tYvi07OpxFig0ETVfdG5zchtp/X8CpxM/3FcTs0K9i0YN\n2BAxwG8ycAvRh/cjRKvHaK4jZgxZRjRlHwv8Y1NMzTFml6dOJ/ry/gT4HHGhvnUt9itJvea7wO3E\nOLmNwAaidWIOcBTRNai5AmgSrVsbNhPdZS8E3kh0YboieU56jt4CXJZss5io+LmM6GZ1aYvXPopo\nbf4GMXj7TUTL84NE3khzy3yiG1PzWLvxOIjospXVzv76iG5S54zyutNGWS5JkiRV0gp2nDYW4voI\n24iW6GOIsQFbia47C4kxdNlJNL7DjrMVNb92Om3sZmJ8xbnAt2lcwwGiG9VFxLSxzxJjNLKDv5sd\nQHQjGszcthMVRxDTlv8d0Wp+OTEQuhOWEJVnzcba3xLgdU3LLiFaVF7K8EHrkiRJklqYRhQc/rbb\ngZSkj5GnKJ9JXOPp7eWGI0mSJNXLwcQ4uDnAIcQYtqeBvbsZlCRJkqR6OBi4jeiitJGY5eiQrkYk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZJUVf8P1nlu5yriD4MAAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f31583ee790>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = pl.figure(figsize=(13,5))\n", "ax = fig.add_subplot(121)\n", "ax.scatter(Medianas,Medias,c=np.arange(5,200))\n", "ax.set_xlabel('Mediana',size=14)\n", "ax.set_ylabel('Media $\\mu$',size=14)\n", "ax = fig.add_subplot(122)\n", "ax.scatter(R25_75,Std,c=np.arange(5,200))\n", "#ax.set_xlim(0,1)\n", "ax.set_xlabel('Rango $25%$ - $75\\%$',size=14)\n", "ax.set_ylabel('Desviacion $\\sigma$',size=14)\n", "pl.show()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Caso de una distribución uniforme" ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": false, "scrolled": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAFOCAYAAAAM3hvdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xdc1PUfwPHXHRzj2KAow4ki7oFbUdw7zdylpi01G/40\nUytHVq5yZDkq0xxpmuXOmZiJe6fixJwIKCj74O7z++OIHKhgwIG+n48HD+77vc/3833fofe59/cz\nviCEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgghhBBCCCGEEEIIIYQQQgig\nGLAdOAH8Bbydvt8d2AKcATYDrhaJTgghRF77HrgBHL9v/1vAKcxtxaS79o8EzgJhQMu8CFAIIUTB\nUhSolv7YETgNlAcmA8PT978PTMz70IQQQlhAEFCdexOOJpgvQunStwun/64AHEnfXxI4B2jzJEoh\nhBAF1iqgOeYrVUXS9xVN3xZCCPFsKMm9CcdyoGkm5UZivij1j41A3dwLSwghxMMUlKs9JTFf1dqL\nOdm4kb7/Bv8mH0IIIZ49ZYFGwB4gBKiZvt8buHJXuSuAT55GJoQQAgBrSweQBY7ASuAdIO6+51T6\njxBCiGeTNeCGufeiFuYej9IPKSvthRBCWEB+Tzh0mJONRZiHVIG5V6MoEAF4AZH3H+Tn56fOnz+f\nVzEKIURBdB4oY+kgcsAV4Jf0x/sBE1AIuIp58ZF/+Kbvu4e0F0II8Vj/ub3Iz0OqNMA84CQw/a79\na4C+6Y/78m8ikuH8+fMopZ7KnzFjxlg8Bnlt8trktRX8H8Avlz/D88oq/p3D4Q/YANGY24oe6dul\nMA+92nf/wfmxvchv/+7yWzwSU8GMR2IqmPEolTPtRX7u4WgAvAQcAw6n7xuJeVWq5cArwEWgmyWC\nE0IIkeeWAo0BD+AyMBrzUrnfY55IbgD6pJc9ibmtOAmkAYOQIVVCCGER+Tnh+JOH98A0z8tAhBBC\n5As9H7K/90P2f5b+I4QQwoLy85AqkYng4GBLh5Br5LUVTPLahMhZ+e3fXX6LBySmrMhv8YDElBX5\nLZ6corF0ALlEpY85E0IIkQmNRgNPbxuQHdJeCCHEI+REeyE9HEIIIYQQQohcIwmHEEIIIYQQItdI\nwiGEEEIIIYTINZJwCCGEEEIIIXKNJBxCCCGEEEKIXCMJhxBCCCGEECLXSMIhhBBCCCGEyDWScAgh\nhBBCCCFyjSQcQgghhBBCiFwjCYcQQgghhBAi10jCIYQQQgghhMg1knAIIYQQQgghco0kHEIIIYQQ\nQohcIwmHEEIIIYQQItdIwiGEEEIIIYTINZJwCCGEEEIIIXKNJBxCCCGEEEKIXCMJhxBCCCGEECLX\nSMIhhBBCCCGEyDWScAghhBBCCCFyjSQcQgghhBBCiFwjCYcQQgghhBAi10jCIYQQQgghhMg1knAI\nIYQQQgghco0kHEIIIQqK74EbwPFMnhsKmAD3u/aNBM4CYUDLXI9OCCFEpiThEEIIUVDMB1pnsr8Y\n0AL4+659FYDu6b9bA7OQNk8IISxCPnyFKKCUUvz666989NFHzJ8/H6PRaOmQhMhtO4GYTPZPBYbf\nt68jsBRIBS4C54DauRmcEEKIzFlbOgAhxJN5f9gwls6dS7mEBJbr9fy6fDmr1q9Hq5XrCOKZ0hG4\nAhy7b783sOeu7SuAT14FJYQQ4l/yzUSIAigmJoavvvqK/gkJtAT6JiZyYOdO9u3bZ+nQhMhLemAU\nMOaufZpHlFe5G44QQojMSA+HEAVQXFwc9tbW6A0GwPwf2c3Kitu3b1s2MCHylh9QEjiavu0LHATq\nAFcxz+3grueuZlbJ2LFjMx4HBwcTHByc44EKIURBERISQkhISI7W+agrQQWZUkouZImnl9FopEpA\nAD7h4dQyGjkD7HB1Jez8edzd3R97vBAajQYKZhtQElgLVM7kuXAgELiFebL4j5jnbfgAW4EyPNjL\nIe2FECJf2759O3v27KFYsWL06NEDa+u87S/IifZChlQJUQBZWVmxOSQEU/36zHV2JrxSJbaEhEiy\nIZ52S4FQwB+4DPS77/m7M4eTwPL0378Bg5AhVUKIAuaLzz+nR/v2bPzoI8YNGECHVq0wmUyWDivb\nCuLVrayQK1ZCCPEIBbiHI6dJeyGEyJcMBgPOjo68lZqKK2AE5jk6Mu/XX2nevHmexSE9HELkc6dP\nn6ZmxYrYWlsTUKIE+/fvt3RIQgghhCgAEhISsNJocEnftgLcNRpiYjJbHTx/e1qvbskVK2FxBoOB\ngJIl6RQRQTulCAVmOjsTFh4uQ5+ExUkPRwZpL4QQ+ZJSisDKlXENC6Oe0cjfwAZHR46dOoWvr2+e\nxSE9HELkYxcvXiQ1Lo4XlMIOaAoU02g4evTo4w4VQgghxDNOo9GwbvNmVJ06zLCzY1+JEqzesCFP\nk42ckt+Xxf0eaAdE8u+KJGOBV4Go9O2RwMY8j0yIx3B3d+e2wUAM4AYkAddTU/Hw8LBwZEIIIYQo\nCLy9vdm+a5elw/jP8nsPx3yg9X37FDAVqJ7+I8mGyJcKFSrE/957j0EODnxpY8ObDg6069KFypUz\nW81TCCGEEE8iMjKS9evXExoaigyRzJ8Kwvjdkty75voYIB744hHHyJhckW9s27aNo0ePUqZMGTp0\n6PDPWEghLErmcGSQ9kKIAmzfvn10aNGcajoNF1ONVGvUhKWrV6PV5sw19djYWBYsWMDt27dp06YN\ntWvXzpF6C5KcaC8KQmNTkgcTjn7AbeAAMBSIve8YaUCEEOIRJOHIIO2FEAVY1TJ+fBh1ga52kKIg\n2ODA27O/pWfPnv+57tjYWGpXrUqxyEiKGAxssbPjm8WLef7553Mg8oIjJ9qL/D6HIzOzgY/TH4/H\n3NPxyv2Fxo4dm/E4ODiY4ODgPAhNCCHyp5CQEEJCQiwdhhBC5KiLV6/RzNH82FYDQaZkwsPDc6Tu\n+fPnUzwykhHJyQDUSExkxNtv5+uEY82aNRw8eJDSpUvz0ksvYWVlZemQgIJxdask9/ZwZOU5uWIl\nhBCPID0cGaS9EKIAa1qnNp7HDnDcoIhTkGxtzYJVq2nbtu0DZU0mExqNJstDm8eOHcvZjz+mX/pn\nxA1gqKsrEQ+5D8bFixdZsmQJRqORHj164O/v/8Sv60mMHD6chbNmUSYxkat6PRWCgli1fv1/Hl72\nrC6L63XX4+eB45YKRAghhBBCWM7AYe/xWwoMN8EcBb4KZs+cyYoVK4iLiwMgJSWFPt27Y29ri4Ot\nLd27diUsLOyxdbdp04bN9vYcxbxc6lw7O9p36JBp2TNnzhBYtSobx45l28cfU6dGDVavXs2Ho0Yx\nYvhwjh/P3a+rsbGxzJgxgxcTEmiqFD0TEjiwcyd79+7N1fNmVX5POJYCoUA54DLQH5gEHAOOAo2B\nIRaLTgghhBBCWMze0FD6KUVtzPMELqelEblpEzP69yewYkWioqJ47913CVu9mufT0rBJTeXozz9T\nu2pVvpk795F116lTh7mLFjHX15f/ubhQtksXZj7kmE/HjaN2XBwd0tJoZzQSnJDAiy+8wOFJkzg5\nZQqN69Zl9+7dOf8GpIuLi8POygp9+rY14Gptze3bt3PtnNmR3xOOnoA3YAMUw3xfjj5AFaAq0Alz\nD5cQQgghhHjGOLm4cMPaPCV5GtANmK0UX8bHExgRwbB33+WHb7+lSUoKG4ARwDvAUIOB/73zDrGx\n9687dK/OnTtz5vJlImJjmbdoEdbW1gzo3x8ne3sKOTszacIEAG7fuoXrXcMzXQFno5GuJhOdgU6J\niXzy4Yfs3buXNk2b0rBmTWZMm/bIZXxNJhPLli1j4sSJbN68+ZFx+vj44OXjwx9WVsQBRzDfsK5W\nrVqPfgPzSEGcNC6EEEIIIQQDBg6k9uzZjImJ4VRqKh3veq5iaipz1q+nsNFIGFAUcEl/zhNw0emI\niIjA1dU1y+cbPWoU+5ctY0ZyMonJyXz+yScUL1mSzj16MPKPPyiSmIgW2GhlRUmjMeM4V+DojRu0\nbtqUlomJFAOmhYWREB/PqI8+euA8Sil6PP88J7dto3JKCrNsbHh9+HA+HDMm07i0Wi2btm+nT48e\nfH/0KCWKFWPzkiX55mbDT+uEQZkEKIQQjyCTxjNIeyFEARcZGcl3333HhlWr0B47xoSUFFKBIXo9\nl4H3ExP5BDAAg4HSmCcA/+ziwt/Xr2Nvb5/lc9UICKDL6dMEpG9vBpK6d2fB0qVMnzqVaZMnYzKZ\naBAczB/r19M/KQkd8INeT7kGDTBu3Uqb9M+cq8AvXl6EX7v2wHn27NlD9+bN+TYhARvgFtBbp+N6\ndDTOzs5P+lY9kWd10rgQQgghhBAAeHp6MmrUKLbt3Emxdu1oamVFKysrGr70EjVr1iTMyor5QCtg\nBjBcp2Olmxu/rl+frWQDoFDhwly5a/tv4K/jx0lMTGTI0KFcunGDK1FR/LRiBeOmT2dl8eIs8fVl\n4EcfUbtuXVLvWjEqDR66bO2tW7fwsrLCJn3bDXDIR3MysutpvbolV6yEEOIRpIcjg7QXQjyCwWDg\n3YEDWLpsGXa2Noz48CPe+d9QS4f1SCkpKWi1WnQ6HVeuXKFVo0bERUURl5pKl27dGDdxIkWKFLnn\ny77RaGT0iBEsmPcd1lZWDHl/BO8OG/ZA3YcOHaJ5o0ZUTUggBTgPVLWxQR8czKpNmx4Z14ULF6hV\nrRp14uNxUYoQvZ7RU6YwcNCgB8pGRUVRwc+PN+PiCATWarXsLF6cv86dy/N7azwrdxp/EtKACCHE\nI0jCkUHaCyEeYeTQ/3Fo0Rx+8EwixgjPXdcz6ftFdO7c2dKhZVlqairnz5/H0dERX1/fTMtM+uQT\nVn8xgYVOiSQp6HJHz9hZ39DzxRcfKDt9+nTmvv8+LxkMtAX0QFUrK2Lj47Gzs3tkLKdPn2byp59y\nOyaGbr17061bN4CMyeN33yNk37599OvRg7+vXaN6pUosXrmSEiVKPNmb8B/IkCohhBBCCJFrNq1d\nzXjXJIrqoLwdvOuYyKbVqywd1iPFxsbSr1d3KpUpTrtmjQgPDycgIOChyQbA+pUrGG+fSBkdVLaB\nkbaJrP95RaZlS5QogZuNDb0wD3WKB9BosLZ+/FpM5cqVY97Chfy8di3dunXDaDTyzptv4mhnh6Od\nHUPfeQeTyQRA7dq1OXHhAvHJyew8cMAiyUZOkYRDCCGEEEJkyt2jEGEp/26HGa3xKFLEcgE9hlKK\nF9q3RndsFUuqXKZF0p80C6pPzEPuDv4PV3d3LqT9u33epMW1UKGMbZPJRFJSEgCtWrUiwcuL92xt\nWQz01esZ8s47WUo47vf5pElsXbCAaQYDUw0GNnz3HV9On57tevK7p7U7XbrIhRDiEWRIVQZpL4R4\nhL1799K+RTO6OqZxS2nZp3Fhz5GjeHp6WjSuXbt2MWzAG0RFR9O0eXOmzZmLg4MDUVFR+JcsRnSP\nFKzSL6u33O7M29OX0L59+4fWd/DgQVoHN6aXTQqJaFivHAg9dJiSJUuy8IcfeGvAAJJTU6lWPoCV\nv23E2dmZqVOmcCU8nKAWLejTp889w6Gyqnn9+tTYvZvA9O29wOkmTVj/++/Zf1NySU60F3IfDiGE\nEEIIkak6deoQevAw69evx9bWllndu+Pu7p4r54qJiWHRokUkJCTQtm1bqlatmmm58+fP06l1K77W\nJVDFGsauW8krve6wbPUabG1tMRhNxKWCqy2YFNxMVo9djSowMJBdBw/xyy+/YG1tzbhevfD29ubw\n4cMMHzSIzaZkAqxh0tkwenTowJ+HDzN2/Pj//Jo9vb25rNUSmD6M6rJWSxFv7/9cb37ztF7dkitW\nQgjxCNLDkUHaCyHygVu3blG3RhUCbW7iY5vKwku2LF7xKy1btnyg7OzZsznw4VDm2ZmHOMWboFC0\nNUkGAxqNhlf6vMSO9Sto72XgcootkW4V+H3XXnQ6Xbbjmj17NvuGD2VGmvlcqQqKpGoxpKai1f73\nmQnnz5+nQa1alEtORmk0nLO3Z/fBg/lqvob0cAiRTyml+GHBAtavWIF74cK8P2YMpUuXtnRYQggh\nRJ7bvXs3hw4domTJkrRt2zbToUdz58yhgV0U82sbAAgunMioIW/R8sTpB8o6OjpyTWlRCjQauG4C\nva0NGo2GLVu2sOaXVVRHyy9nrPEKKMv2kD/vSTYiIyO5ceMGfn5+6PX6R8bu5eXFMY0VqQp0Gjik\nwNPF+YmSjX9Wy3JxccHLywsAPz8/jp46xerVq9FoNHTq1InChQtnu+78TiaNC5ELpkycyITBg2nw\n22/oFy+mQWAgV69etXRYQgghRJ76ctpUurVtzvGvhzHile681vclMutVjL11kzL2hoztMk4Q+5Cb\n3HXu3JlrHl68mGjLpDhonaRn7PhPAOjfsycLjQmsJpkjujSSLl5k+/btGcd+MXEi/iWK0z24AX6+\n3vz6669cuHAh05gAOnToQPH6DWhq48hrNo70srZn7g8Ls/0+hIeHU8mvNO3q1KJC6VIMHfxmxjmL\nFCnC66+/zmuvvfZUJhvw9HanSxe5sChfd3fmx8RQNn17pI0NNT/7jKFD8/fNksSzQ4ZUZZD2Qohc\nkpCQQJFC7pxsaaC4AySmQaVtDiz77Xdq1659T9nt27fTu3N7VtZNxNcBBhyyp2SLXsyc+12mdd+5\nc4fZs2YRFXGdJi1a0q5dO4xGIzY6HbH2Cuv0T7c3tfbUnPg5gwYN4sCBA3Rq2pi9RRJxsYKGF+BS\nKtja21OtVi1+2bgx07keJpOJTZs2ERkZSb169fD398/2e9G0Ti3anDvEe44mYk3QKM6BcfMX8fzz\nz2e7rrwm9+EQIp8ymkzY3LVtoxRGo9Fi8QghhBB5LSYmBicbK4o7mLf11uDvak1kZOQDZZs0acKE\n6bPoecyT6tsc8QnuypQZXz20bmdnZ94fMYLPp8+gXbt2AFhZWVEjoBxzjObvxuEm2GTUULNmTQBO\nnDhBsKMWHx2MjoQyafAXsD8pCet9+/hs3LhMz6XVamnTpg19+/Z9omQD4NjJU/SxN08Md9XCcyRy\n7OjRJ6qrIJKEQ4hc0P/11xmi17MD+AHYYGtLly5dLB2WyENKkszc8D1wAzh+174pwCngKPAL4HLX\ncyOBs0AY8ODMUyGeISaTiaNHj3LgwAEMBsPjD8gBXl5eOLt5MPOshlQTbLoOB6PTCAwMzLR87759\nuXD1BpExccz5/ofH3rU7M8vWrmOBV3F8jbbUNtrw4eTJGb0p/v7+/JlgIjoNjiVBZwVWgA7olJzM\n0X37CAsLIyiwGkVcnWlWrw7h4eH/4R34V9lSJVmbbE6EkkywRaOn7BMmLyL/UEJYktFoVFMmTFBN\nAgPV861aqSNHjlg6JJFHTCaTGj9utNLb2ygbnZXq0eU5lZCQYOmwHgAUxHFEQUB17k04WvDvxbOJ\n6T8AFYAjmL9LlATOkflFNkv/KYTIdYmJiapFcH3l5+WgKhZ3UlUrlFE3btzIk3OfOXNGBVYsp7Ra\njSrhVVht375dKaVUXFycMhgM2a5vw4YNqnTRosrJ1la1a9JERUVFPVDGZDKpiIgIlZSU9MBzo0e8\nrwo72CtfW53qBeo6qGugetjaqrcHDFDFPQupr3006moAapK3VvkX81UpKSnZjvN+f/31l/It5K7q\nerio4k561adrF2U0Gv9zvXmBHGgvntbxu+nvjxBC5K1ly5YxfuQrbBqRiLsj9Jllh3e1l/jy628t\nHdo9CvAcjpLAWqByJs89D7wAvIS5d8METEp/biMwFthz3zHSXoin3vhxYziyZgrLeyeh1cCwtTpu\nFX2e+Yt/yrFzmEwmPhs/jp9+XIC9vT0jx0y4Z36CyWRCq9Vy69Ytuj/fnl1796MUfDBqFB+OyXwo\n0/3CwsJoGBjIrMREKgBTdTqu1qnDpp07sxXr+fPnOX36NCPfeYfUiAhMgNbDgxIlinN83x5CiqdS\nxtZcttwVJ37ZuZuKFStm6xyZuXPnDkePHsXFxYXKlSs/0Y0CLUGWxRVCiHxmx+8bGdg0EV8P8/ao\njsn0W7DVskE9O/oDS9Mfe3NvcnEF8MnziITIB06fPMpz5ZMy7rzdqWIqw3cef/RB2TThk49Zt/hz\nFnROJCoe+r36Iu7uv9G4cWOAjGVkB7/ejzIJB9n4dhpRidBkzhdUqlqddu3aYWVl9cjlZnfs2EEL\noEH69kepqfiHhmI0GrGysspyrH5+fvj5+dG8eXMOHz7MurVrWThtKs9F/k0NEzQ8B3vKgpsVRCcb\ncHFxeXylWeDs7ExQUFCO1FXQyBwOIYTIQUW8inHo73+XDDgUDkWKFrVgRM+MDwAD8OMjykhXhnim\n3L59m0/Gf8zFS1f56agNhjRQCpYdsaFS1eoZ5S5evMiBAwdISEh44nOtWLaQLzslElgcWleAoY2S\n+GXF0gfKhYaGMizQgJUWijpCd78ERr8/FEe9PY56O8aN/vChS9S6u7sTrtViSt++ANhoNJTy8iS4\nTiAnT57MVsw2NjbUqVOHVYsX8YMmiVdtYKw9dLGGvpch+LoDvV7qja+vbzbfDXE/6eEQQogc9O6Q\noTRcvoTWE6PwcDKx9bgVm7bOtnRYT7uXgbZAs7v2XQWK3bXtm77vAWPHjs14HBwcTHBwcE7HJ0Se\ni4+Pp2G96tTwvkrHAAOTV2opNk6Hg94GT+9SbPhiJkophv/vbRZ8/x2+rjZEp1izfvN2qlSpku3z\n6fV6IuP+3b4Rr0Xv4PRAOR9vL0KvRuPnBiYFS8OsqOh2ib0vG4lNMdLy22n4l69Iz549Hzi2Y8eO\nfF2+PC+ePEn5lBSWG40EFzIxs9ItNkfHEFSvDu5OjtyOi6dN69bM+n4BDg4Oj4w7IiKCxKQkHO4a\nMOSsAVPVeox89126du2a7feioAsJCSEkJCRH6ywYg8eyT8bkCiEsJj4+njVr1pCcnEzLli3z5dWx\np2gOR2vgC6AxEH1XuQqYeztqYx5KtRUow4O9HNJeiKfS4sWL+XHmADZ8aO61uHAdqgyxYd/+w5Qr\nVw4rKys2btzIkP5d2N0zAVc7+OE4TDvnx5GT57J9vnXr1vFq32682zCJqAQrfjzmyJ79RylRosQ9\n5Q4ePEi7lk2p76O4FqcIjzbwWysDNdLvd/fVX3CiXF9mf7cg0/MYDAZ+/PFHzpw5w5wZX3CzmQGN\nBg7EQvNQWBUAZe3g3cs6dqfY4lnEk96vDuDdocMemDPx6dgxTJk8CXulcE01MMMOrppguEbP1tBQ\nqlatmu334WkkcziEECLd5cuX2bBhAzqdjs6dO+Pq6mqxWBwdHenVq5fFzv8UW4o5sSgEXAbGYJ4c\nbgNsSS+zGxgEnASWp/9OS98nmYV4ZiQmJuLp8u8/+SJukJpqJCAgIGOexKlTp2hZIhXX9NVnuwXA\na79dfKLztW/fnpVrtrBy+VLs9Y7smTfwgWQDIDAwkEPHT7Fz504cHR2ZMekTDkTvoUZh83CvAzE2\nlPIp/tDz2NjY8PLLLxMTE8PMaZ8TmwpuNvDbDehXGILTp1vMLJ5K+cOpfFU+noGTx2Jtbc1b7w7J\nqGfnzp18N/1zTpdPobAOep+D3nE6atSqxS8TJkqykcMK4tWtrJArVkI8Q44fP07TBg2omZZGkkbD\nJRcX9hw5gqenp6VDy7cKcA9HTpP2QjyVLl68SO3AynzRN55qpeDjFXbovFrx40+rMsr808MR2iMB\nN/sn6+GIjo4mLCwMX19fSpYsme04jx07RssmQQQXNXIzRcMN6yLs3HswSxO1h739Flt/mk839wQW\nXtfhZ21kfYB5hsefd+Dlc3CuCfweDaMNFfnz8F8Zx86ePZvDE4byjU8SAEYFNvs0GFJTszUB/Vkg\nPRxCCAG8/9ZbvBQXR8f07ZkGA5M/+4zPp0+3aFxCCGEpJUuWZMOm7Qx79w0i10XSpGkLpky9987d\nrVq1okOP/vjP+xYfVxtupuhYv/mXLJ9j06ZNvPTiC5Qpbs3ZiymMGPkRw94blfG8yWTi8OHDJCQk\nUKNGDRwdHR+oo0qVKhw8dpKtW7diZ2dH+/btHzvv4h9TZnzJ8gYNObhvLwOKFWfe1zN5Ifw6pbVJ\nfB8BcyuZy0Wngr3+3jrLli3L9HgtsWngag1rY6C0T1FJNnLJ03p1S65YCfEMqVm+PH3DwjIG9a8H\nbnTtysLlyy0ZVr4mPRwZpL0Qz7yLFy9y8+ZNAgICCAsL45efV2Cvd6D/K6/g7e2d6TGpqal4FXVn\n1bR4GtaAa5FQs5eezVv3UqlSJVJTU+nSqS0nDu+msLMVEQl2bA0Jxc/P77HxnDlzhr49X+D4qTOU\nLVWc+UtWUK1atcceFxcXxw8//MDZs2dZOO9bBnkl42ylmHpNz+KVq2jRokVGWaUUw995m0Xz51HK\n0YbwZMWq3zZRt27drL9xz4icaC9kWVwhRIHXvG1bfrS3Jw64AazS62nerp2lwxJCiAKhZMmSBAYG\nEhoaSpsmjbBaM4lriz+mdrXKXLlyJdNjoqOj0WrSaFjDvO3tCTUrWnP27FkAvv32WxIv7eLUhwns\nHnKHQbUjea5NE9LS0h6o65eVK+n/Ynf+9/Zgzp07R9sWwfTyOcHJtwy4xZ8juHYNggKrcfjw4Ue+\nDicnJwYPHsyMGTPYe+gIhvZvc63pG6zevO2eZAPMX6KnfDmTPw4eYfLytZy6cFGSjVwkCYcQosD7\neMIEKnTuTDedjtfs7Hhp6FB69+lj6bCEEKJAGTdiKHMrJ/JxRZhVNY2u7reZNfPLTMsWLlwYrZUt\nm3aZty9chr3HUilfvjwAoTtDaOWfhC59hNJzVSDi+mUGD3r1nnpmf/0Vwwf2oc615djsnkNQ3Zqk\nJd3mrXqKgSuhZCrsrqron3CU1k0ac+3atSy9lmLFilG7fgNq1KlHsWLFHlrO39+foKAg3NzcslSv\neDJPa3e6dJEL8Qz65//9/UsfigfJkKoM0l4Ika6af2m+Kx5OTXfz9tQzcLHe63w5e26m5Xfu3EmX\nF9rh4QKsLUIsAAAgAElEQVTXIg1MmvgFhQoXYfaXU9i/fz/erop9I8DRFkauglN3YNMhaxISkjPm\nSpT28WRlUBTV05fFrb9Sy5EbJmysIDENEhqCLv3yeJdwJzpPmPPYVQDj4uIIqlkT+2vXcFeK/Vot\nm3bsoHr16g89RinFN3PnsnntWor4+PDBmDH4+Phk7w18SsmkcSGEuIskGkIIkXVXr17lswljuRF5\nlebN2vNcl278b+FM5lRKJDoFpv6tZ/6ULg89PigoiPMXrhEeHo6XlxdrV6/mvTf7MrZhIq0awfgd\n4DsS9Dqw1sHG6bCxv+KtN19Dq9HyyutvYkhNw0lnrm/5Gbgea+JQPXCwAr+d5gnfXrbmJXMjDCpL\nE8q/nDED37//5tOUFDTAKuDd119nx/79Dz3mo1GjWPrllzRJTOSitTV1Vq3i6KlTeHh4ZPNdFZl5\nWltnuWIlhBCPID0cGaS9EM+kmzdvUiOwAu16JBNQBeZNhTYtXsXKqGHZkkXY29kx6uPP6PXii1mu\ns0bFMkyrc57GpczbH2yFSGu4GAUnr4FJY0ViEnzY3YjRBF+s1tO27XOc/3MNEwITGbsHurrCgPQR\nUK//BVtuwiBv2Jtsx5XCZdix9wC2traPjOOtN97A7ptv6J2+fRb4wMeHsIfMR1FK4azX81FyMumd\nO8zT6+k/fTqvvfZall//00p6OIQQeeLy5csM7NuXEydOUK5cOeYsXPhE660XVElJSWzfvh2j0Uij\nRo2ytD68EELkZ6tXr6ZyrVRGTDTf9a9esJGm5b7mzp0kPp38+RPVaTQasblrVdmkVFixD8q5grcO\nwm8bcXOEN9uD3g4c7RPZFZVIm37DGP7rCqK0sZxKigSMANR1hf3O5bjWtBl1S5Rk0JtvPjbZAGjU\nvDmjFi+mZWIibsD3trYENW366NhNJnR3beuUwmg0Zv9NEJmShEMI8UgGg4GWQUE0uXKF141Gfo+O\npnnDhhw/exZ7e3tLh5frYmJiCK5fC6fUSOys4d1EB0J27XvkJEQhhMjvjEYjNnd9d7ex1WA0mv5T\nna8OfIdXJn/A5CaJ3IiH7w7Cm9VgQpB5SNSgbbD1CiwJgddag6sDpF1P5oMx4/hgzDgiIiKoW70q\nUWFxuGiN/HxTx8bflxAYGJitOLp27crpEyfo+NlnGE0m2gYHM23WrIeW12g09Ondm3lLl9IqMZGr\nGg2ndDo6dOjwn94P8a+ntTtdusiFyCHHjx+nU4MG/BoXl7Gvh7MzP2zdSq1atSwYWd54b8jbxP05\nl9ktDGg0MPZPK84XfY5FP2X95lj5kQypyiDthShQlFJs2LCBS5cuUbNmzYzP4cuXL3PgwAE8PT2p\nX7/+Y+e0Xb9+neo1KvDqMCPlq1gxa4KJquW7MOvreU8U04oVKzh16hQ3Iq5x/uRR9A6OXLl8iQkB\nZ2lewlxu6Sn49ABY6WFiPxgwW8/0rxfxfOfOGXVFR0ezfPlyDAYDHTp0yNJ9Ox7GZDJhNBrR6XSP\nLZuWlsYn48axed06PIsWZcLUqRkrbj3rcqK9eFobG2lAhMghFy5coG6lSqxNSsIeSAE66vVsO3Dg\nmfgw7t6pLR35jV4Vzdu/X4Rx56qyY+8Ri8b1X0nCkUHaC5HvmUwmZs36ij93bSbsRBimtAjqVjex\n/ncNo8dMwa+MPz27d6JuRSvC/jbSoFE75i9chkajISIigtDQUFxcXAgODr7nTtqnT5/mo9FDiYyK\noGmTNowaOQZr6+wNflFK8carfTi461da10hk/QE9Qc17MnPWt4wYNoS/Vn3JyvYmUk3QbhUcjQJn\nB9C7FWP02AnZmiMiLEMSjoeTBkSIHKKUom+PHvy1bh2NExPZpddTslkzflq9+plYFeqLKZNY983H\nrO2UiE4LL26wo1TzV5kybeZjj92+fTunTp2ifPnyNGnSJA+izTpJODJIeyHyLYPBwIIFC5i/YA6G\n1FM0a2lg+UITYb+DnR1c+BuqtLbB3cWJ+cNu0iwQklKg7mBHPpu6DE9PT9q3a0adGhr+vmLC27c6\na9Zuy9IV/6w6c+YMjRtU49y8JBzs4E4C+L1ix4HDYXh6etLzhY78tnkLSoGLHczqB6cjIKHMe0yY\nODnH4hC5RyaNCyFynUajYcHSpcyfP5/jhw/zapUqvPLKK09tsnH/sIR3hgzl1F/H8Jy5HK1GQ4tm\njfj4s8c3kiOGDWPJnDlUMJn4TKulz6BBfDZZGlchRNYYjUbad2hGYtoxDh64w9lrOnaGaAk7YMLO\nPM+b0iVAZw1XI27RuKp5n70t1Clv5NKlS4wZPZQZ4+Lo0QnS0qDViwdZuHAhXbp04dixY3h4eFCh\nQoX/FGdsbCxeHjoc7JIAc++Fp5uO2NhYSpQowaoNm6lfqwo9yx/nrZaQmgatp+np3rLMfzqvKFie\nzm8McsVKPAOUUqxatYpDhw5RunRp+vTpc09Xuci+bdu28UKPLhStW4pbYRE0q9+EHxcsRqPREBcX\nh9FoxNXV9bH1XLx4kerlyzMlORknIA4YZmfHsdOnKV68eK6/jqyQHo4M0l6IPGEymfhy5jS2bf+N\nIp7ejP7wk0d+Hmzbto23h77A8lA7arjd4NJNHdFREFwrleVfQ1Bt+HK+hnk/F0dvZ8+LDU7zbldF\n+HUIekfPL2u206F9cw5visO7qLnO0ZMhIv5V1q37mRJFFZeuG2jX/gUGDR6KjY0NAQEBaLXabL2u\nhIQEKgaU4v1O0bwQpFgWomHGhiKcCAvHLj0z+uuvv2jdohH+RUxcu2WkXOW6rFz9W7aHbwnLeBba\ni++BG8Dxu/a5A1uAM8BmILPWXwnxtBsx4n+qQoCD+ug9VFA9B9X5+dbKaDRaOqwCrWhxb9V2y0D1\nupqu+idOVl5VSqi1a9dmu559+/apss7Oahlk/JRxdlYHDhzIhaifDCDfss0s/acQz4j/DXtbVa3r\nrqb87KNe+6iI8ilWWEVFRT20/MqVK1Xz9oXUBeWlOvayVa3ba9W6rdaqdz8r5aDXKK1Wo2oGBqhz\n586ps2fPqvLlSqhCbnbKQW+jZn01UymlVIf2TdR7g6yV6Srq2mFUWT+9KlvaSy36FKWOoOJCUWVL\naJR3ETtV3Eev2rRqpJKSkrL92k6dOqXq166s3F31KqhedXXmzJkHyty6dUtt2rRJhYaGSltVwJAD\n7UV+z1aCgHhgIVA5fd9kIDr99/uAGzDivuPS3x8hnk4xMTEUL16U8MMGPNzBYIDKDR1YuHgrdevW\ntXR4BZLJZEKn09E/eQpanbmnaM8bK3mjag8GDRqUrbri4uIoW6IE3WNiqAPsAZa7uXHu0iUcHR1z\nPvgn8CxcscoiaS9ErlNK4eBox9rwErh7mq/qj+x2k26tJ9C/f/9Mj4mIiKBK1XKMmqalam0dw/re\n5lq4lqCGTXnjjf+RkpJCxYoVKVHCvASUyWQiMjISV1fXjJ6FGzdu0KljC06dOo0hVfHhBx/w6aef\ncn1LKs7pH0VvTwIfbxj6MnQZYk+txu/zwYdjcv09EQVHTrQX2es3y3s7gZj79j0H/JD++AegU55G\nJEQ+EBcXh5OjNe5u5m0bG/D1tuL27duWDSyfiI+P5/jx49y6dSvLx2i1WirWqMyJr/4E4E74TS6v\nP5Xt9d8BnJycWL9lCxuKFaO3RsNvxYqxYevWfJNsCCEsQIHmrm9dWitzkvAwRYsWZcP6bSyZ4U2v\nRqn4FG7E0SN/U79+E3r26MDUyb2oWbM8ixcvMten1VK0aNGMZAOgSJEihO4+yvkL17h16w6jPhhD\n5Ur+LFpn/u54LRKWbYStO2HCXGjfKImTJw7lzusXz7SCcHWrJLCWf3s4YjD3aoA5/lt3bf9Drlg9\n5W7dusX+/ftxcXGhdu3a2R5zWtAZjUYCawTwXKtwXupiZNhHEBpqzZvvDufD0WNzdAWSgmb79u10\n79qRQi5wLSqVqdO+pP8rr2Xp2PPnz9OqQ2sio6JITTIwZfJkBg8a/J/iMZlM+fLfp/RwZJD2QuSJ\nt94ZwO7DK+g9XM/Zo6n8MiuNI4dP4unpmeU6wsPDqV2rIge3J1HMB06GQYO2dly8eD1jftnNmzeZ\nNu1zoqOv06JFB1544YV76jh9+jRtWwejVXHciEygbll4qQGsOgj7L2p4bdBHjB4zLtPzx8fHs2bN\nGpKTk2nZsiW+vr5P/oaIAuNZaS9Kcu8cjvt7PDK7hGmxcW4i9x09elR5FXZVTSo5K38fB9WpfUuV\nmppq6bDy3JUrV1TLFg2Ui71WdfbXqIVtUK397VWXjm2VyWSydHgWkZKSojwLOautU1FqB+rMElRh\nd3t19uzZLNdhNBrV9evXn2gcc0GCzOH4h6X/FOIZkZaWpiZO+lS1aN1Avdi7izp//ny26/j9999V\nUH0XZbpJxo9/GSd14sQJpZRSsbGxyt/fV736sk5Nm4zyL6tXU6ZMvKeO2NhY1ap1I2VtrVHujijD\nIpRaikpdjPJy06r9+/dneu6YmBhVsWIp1bKFo+rRw0F5ejqpw4cPZ/+NEAUOOdBeFMTlAW4ARYEI\nwAuIzKzQ2LFjMx4HBwcTHBycB6GJvDDw1Zf4pGUs/etBqhFazPmThQsXPnQc7NPK09OT0mUrce7g\nHla0N6HVQFf/JIrN/52rV68+k1eerl+/js4qjWbpo6DK+kJggA1hYWGUKZO1JRj/GZbwtAkJCSEk\nJMTSYQjxzLKysuL94aN4f/ioJ64jICCAk6dTOXQUalSF3/+AmNtkzOP4+eefqVDuFrNnpALQqnki\nDZuPZ9iw9zPqePud1yjkdYCt+3T0a2/AOn1xQystuDrrH9ojO23aFwTWuMo3cwwAfL8A3ntvIFu2\n7H7i1yOeHQUx4VgD9AUmpf9elVmhuxMO8XS5EP43LZ8zP9ZZQZNSiVw4f86yQVnAS317cOTcTuxt\nVUY/p04LOisNaWlpOX4+pRSxsbG4uLjkyyFCYB6vnJSiYe9JqFMBrkTC4TOGLCcbT7P7L7yMG5f5\nkAkhxOMlJSWxbNkyYmJiaN68OVWqVAHM9/E5efIkpUqVwt/fnwsXLvDZhNHExETRunVnXn3ldRIT\nE4mIiMDHx+ee+RZZ4eXlxdy5C2neuTeuLloSErUsW7YKBwcHAJKTk3F3/3deiIcbJCcb7qnjzz//\nYOl6I6X8tLgX1TBwvuLF+vDLAR12zt5UqlQp03PfuHGZ6tX+rat6VZgzJyJb8QuRXy0FrgEG4DLQ\nD/OyuFuRZXGfWW1bNFIftrFSppmo6ImoSsUd1MqVKy0dVp6KiIhQTq56NS+6pSpWyk4NrY0K6YZ6\nuYpONa5XM8eXHNy1a5fy9nJTTo42qoini9q+fXuO1p+T1q5Zozzc9Kp+NRdVyM1eTZs6+Ynr+uOP\nP9QrA19Xg955S508eTIHo7Q8ZEjVPyz9pxD52J07d1RYWJhKSEjI2JeQkKBq1Kqs6rUuql4Y7Kvc\nCzuqNWvWqJ+WL1OuHo6qZrNiyt3TUY38YLgq6uWm3h9np75ZaqsCKtorJxdbpbPVKPciNsqjsLPa\nsWPHE8UVHx+vzp49qxITE+/Zv3v3buXkZKvefAP1x2ZUu9b2ql+/nveUadCwqpq9UKduKXt1LtpW\nlfWzUv4lPVW/3t1VZGTkQ8+5dOlSVb68Xp07g7oVhXq+k50aPPjVJ4r/US5duqTatApSPt5uqnFQ\nDXXq1KkcP4fIHqS9eChL/21ELrpy5YqqVrGs8vLQK0e9jRrx3pACO2chMTFRbdq0SW3YsEHFxcVl\n+birV68qR1d7VaiIjbLVaZSttUa5OGhVp3at1O3bt3M0xjt37qgins5q7VcodRy1eS6qcCFHdevW\nrRw9T06KiIhQO3bsUOHh4U9cx4YNG5RzEQ9V4Ys+qtzYbsq5kFvGOOmnAdKA/MPSfwqRTy37aaly\ndbVXpfycVaHCTmrbtm1KKaXmzJmjGrQrokJMtdQOVVtN+z1AlSrjo5xc9OrLI7XVOtVMLbzWUOmd\nbFXPl/UqSjmqKOWo9pzRK3s9atHRcmq3qqambSytCnm6ZGu+WGhoqJo5c6Zas2bNA+3ewYMHlWch\nJ/V8U3sVGKBV7q46NXjwaw/Uv3//fuXp6aSe7+as6gc5q1q1K6r4+PjHnttkMqnx48covd5G2dhY\nqR7dn7snEcsJqampqmKFUmrcECt1cSfqq7EaVbxYIXXnzp0cPY/IHp6B+3A8qfT3RzytTCYTV65c\nwcnJCTe3+xcpKxhiYmJoUqc29tE3sNHAdb0zIXv34e3t/dhjDQYDbo6OtEtNpSpwCVig0XDizJkc\nHz50+PBh+vYK5tiKOxn7ar3ozMy5m57qe37Ua9aI1IG18O5ifo1nx/9M0A13vvlqtoUjyxkWXHVk\nCfCiBc77MNJeiAdcuXKFqtXKsex3HRWqWLPr91Te7KH4+2IE06dP56/YWQyY7APArRup9A04jZ2j\nFd9frp1RxwD/AzQJNjD1G/Mkib/DTTSuksTWuKoZZbqUDCdk64EsfW7P+HIqk6eMoXE7W47sTqNW\njdYs+H7pP/+XadywBv2aHObl9qAUdPvQjjqtPmbYe+9l+vq2b9+Og4MD7dq1w9bWNsvvjVIKo9GY\nK3cJP3PmDK2a1+BCSALpL4v6XV2YOHUNjRo1yvHziax5Fu7DIUSmtFotxYsXL7DJBsCno0dTN+oS\noXZx7LCLo2v8DUYNeTdLx169ehW9Tsc/zVZxwM/RkbNnz+Z4nF5eXly+nsKV9KG6EdEQftmAl5dX\njp8rP0lKTkbn5pCxbe3mSHJKsgUjemrUwDx/sLClAxHiYU6fPk1AJTsqVDF/qW7QVIeTs4bLly/T\ntGlTti66Q9iBeOJvp/HVkL8xKgOxNxM4uPEmABePxxN1LZ7fVlkxZ3oqWzak0adTMhorDdHXzRO6\nzx1PIi42NUuLVCQkJPDBqJH8+KcjH8+xZ/keR/7Y+Rt79+7NKHP9+nXqVDQ/1migdvlkrl39O9P6\nfH196d27N507d85WsmGuW5MryQaY72EUeyeNO3Hm7ZQUuB6ZhrOzc66cT+QdSThEvpSSksLOnTv5\n448/SElJsXQ4Tyw+Pp4hQwfTpHkdXnujL9HR0RnPXTx7miYaQ8ZVnGBtGpfOn89SvYULFybRaORm\n+nYSEGk05srKVEWLFmX06I+p85Kebu85UbOnnqHDRmSsivK06t+rD+feWUT0jpPcWHeQS5+toU/3\n/HRhvsAqBlwFTgAngeaWDUeIB5UsWZIzJ5O5dtkIwMljacTcTMXb25u6desyfepsPmx/jY6FD3Pz\nto4e06tTvKoLU18+Rf9SoQwPOohK07B2zRaO72nBvGmVSUrwws5ZR8+KYfSvfYZBQReZO/e7LN0Q\nNDY2FnsHa3xKmL/o29lrKOVvS1RUVEaZBg0bMflHW1LT4Ho0zN+gp0FQk9x5g3KJl5cXvXv3oclL\nDoyfCS366qlVJ5iqVas+/mAhLMCiY93Ef3Pz5k1VPcBfVXd3UtXdnVS1cmXVzZs3LR1WtplMJtW0\neQPVtldh9dXGYqrnW56qclV/lZycrJRSatInn6jmrnqVUBSV4oXq4mqn3nv7rSzXP3fOHOVmb69q\nODoqT71e/e/tt3PrpSillDp06JBasmSJOnDgQK6eJ78wmUxq2pczVMXa1VWNhnXUr7/+aumQchSW\nm8MRh3lpc4BymIdYNcvisd9jXhr97nszuQNbyHwhkZHAWSAMaPmQOi39pxD51PQZn6tChfWqQbC7\ncvfQq6XLfrzn+dmzZ6umrwaoBaqbGrqxkSpZw0XNj2+vpp1trr4400zZ2tmolJQUpZRScXFxytPL\nQzUd7K9aDy+v6vUpqQp5umV5bsLiJYuUg6NWjfjcRZ1I8VHfbyykPAo5qqtXr2aUuX37tmrXOljZ\n2FgpOztrNX7c6Jx7M/KQyWRSS5cuVSNHDFfz5s1TaWlplg7pmYfM+XsoS/9txH8w+LVX1UAPG2Uq\nhTKVQg30sFGDX8v5lTBy28WLF1Xhog5qX2qAOqTKq4OmAFW+mof6888/lVLmyXG9u3RRjjY65Wxr\nozq2bPHAiiOPc/z4cbVkyRIVGhqaGy9BPMWwXANyNJN9WV2jNwiozr0Jx2RgePrj94GJ6Y8rAEcA\nHeYbyJ4j8159S/8pRD527tw5tWXLFnX58uUHnlu/fr0qVbmI+iaxs5qX2kWVqummAoI81AtjApRv\nWQ/16YTxGWUPHDigSlf1VvNUr4yfMtV91L59+x4bw/79+5VHESc15tfyyj9Qr7RalIurjfr9998z\nLZ+YmPhM3gxX5B6e0Rv/iafchbBTvGH971Cj1tYG5pw6admgnoBGo0GZQP27JDomo8qY4Gdtbc3C\nFSuIjY3FaDTi4eGRaT2xsbG8/uqLbN0WQiEPV6Z/+S1t27YFoFKlSg9dM12IfGoR8C4w/a594Vk8\ndifm5OFuzwGN0x//AIQAI4COmJdWTwUuYk44agN7sh+yeFb5+fnh5+eX6XNt2rSh4c/NGFdlMz7l\nXYgJT6PPi/1wMjrSb1p92rVrl1G2cOHC3Lxyh/ibKTh62BJ/K4Xoy7fx9PR8bAx//PEHjbu70aCT\nBw06eRAXm8pLPkdo0iTz4VL29vZP9mKFyEWScIh8p1qdeiw8cZA2yjxBd2GqHdXr1rdwVNlXrFgx\n6tSpx4huR2j9oi27Nhhw1vtSq1ate8q5umZ2K5l/9evbjUK2OwhbZ+Cvs4n06NOV30P25mmioZRi\nzZo1nDhxgoCAAJ5//vmMxEmIbPo8/Wc7sB5I5r9NIC+CeZgV6b+LpD/25t7k4grg8x/OI55xBoOB\n1NRUxo4fza+rfsbRyZFPxkxiwKtvEhkZSeDXgbi7u3Pz5s0HVhssXrw4AwcMYlKdeQQ0L0LYtkje\neH3gQ+fCKfXvxanChQtzcZ0Bk0mh1Wq4dCIJj8KPbjf+ixs3bnDq1Cl8fX3lpqkixzyt3xjSe4BE\nQZSUlES3Du3ZszsUgDp167Fi3foCedUmOTmZzyaO58jRfZQtU4ExH43P1mobSins7XVE7zLimL5g\n0utjbKjc8HPeeuutXIr6QUPeGcjWzYtoG5zMpp121GvYhdlzFuTZ+XNCWloaly9fxt3dHRcXF0uH\nY3EWXBb3H5WA1kAUsBgwZvG4ksBaoHL6dgxw93J1tzDP65iJOeFYkr7/O2AD8Mt99akxY8ZkbNx/\nR3YhjEYjAwa/wQ/fL0RjpfALdOWVWRWJvpzEN/1O8dvardSuXZu5385l6NAh2DnZYm+jZ8OajVSu\nXPmeurZv387JkycpX748TZs2feBcy1cs5513B3Er+jbBzYNY8sNynJ2dadayEQn8TbHytvy58ibf\nf7uYjh075vhr3bhxIy/17kqpAD3hpxMY8u57fDBqzCOPuXPnDp+NH8uFc6eoXrM+Q997HxsbmxyP\nTeSdkJAQQkJCMrbHjRsH/7G9kIRD5EtKKa5du4ZSCh8fn2f6arqzk44dP6RRvYJ5bfX6PaFjjwmM\nGDEiT85/6dIlalQvx/k/knFxhvgEKBtsz44/juDv758nMWzbto1Va1bi7OTC4DffzvaSvGFhYbRr\n2QRD4h1iE9P4+OPxDBk2/PEHPsXyQcLxpEpyb8IRBgQDEYAX5p6TAMzDquDfOR0bgTHAv+uImkl7\n8YzasGED2/8IwaeoN6+//jp6vT7TcpM/n8x36+bSbU1bZlddwOiNtfAuZ15Z6qfRpylneoFuXbvT\ntHUwg/5sTSE/Z/b9cIY9n13k/OmsjhY03/OoRetGfLTWnxKVHFjw/iWu7nfFrXBhlFLUqBhIsWLF\naNy48QOJTE5IS0ujSFF3pq52pXoDe27eSKNnjUg2bfjzoatEGQwGgurVoILDOVoGpLBovz1OpZvx\n08q1OR6fsBy5D4d4amk0Gnx8fPD19X2mkw2lFIkpihYDdQz9XEvzgTaciXbI06tHMTExFCmswyW9\nY8bRAbyL6IiJicmT8/+49Ede7Ps8Jt81nLmzgFp1qhEREZGtOnq+0IH3qt3g8juJnBxkYNqkcYSG\nhuZSxCKPrQH6pj/uC6y6a38PwAYoBZQF9uV5dCJfGjBoAF379OTnazv5cscS6jcJIjk58/vshOza\nTo3BFbFztsXGQUfM9X/L3b6ehoODI0ePHsW/qQ+F/MwflLX6lOXKpWvEx8dnOably5djZZfKiKZH\neK/hIRr1cuPwwWN4vKjDo5eObxd+Q9myZXMl2QC4efMmijSqNzCPJvAoYk2lWg6PvL/T3r17McRe\n4vs+KfSsA7+8kcSWLVu4fv16rsQoCi5JOIR4Qrt27aJxvepU8i/OkLcGPrSx+i80Gg3Obq5U/LwH\nf/i1I6VXZ5zL/Z+9swyP6ugC8Lu7STa7cdkICe7uJFhxK15ci7aFIkWKwwcUaYECLdSgaItTvHhx\nd3fXEEhIiMvu+X5sGqBYApssct/nuc/u3jtz5kwu3LlnZs45mfH09LR4Wy8id+7cxMTp+WmOitAw\n+H2BivuhtuTPnz9d2v9m9GCGzvel5dc+fPWjHyVqqZkxc0aK6xuNRk6cu0ynYuZZ7IwuUCuHcOzY\nsbRSWSHtWADswRxO9ybQHvMKRjXMYXEr83hF4wywOOlzHdAVJbSjAjB42CAWrPiDws0zE3X4Inb+\nTjzUxbF69fNn5f19/bl7IBiACv8ry8Qmh1k+9iK/dznN2Y3RdOrYiSxZsnB9fzCxj+IBuLrnHg6O\nehwcHJ4r87/ExsYyc85vtO7nxYrbhWj2lYFRDU+jc7WlcPPcFGmZh8pjSvLLjJ8t80d4Dp6enmjt\ndGxfYzaSbl6O5/jeyJc+6xMTE7GzITnIi40abDQqjMaU7pBU+FBQnMYVFF6DCxcu0KBODabUjyKv\nNwzdOIfuXSKYPutPi7c14btx9B3YnyztSnBv33mcH9nRpEkTi7fzIuzt7Vm3fjvt2zVh0PiL5Mmd\njbZeBVwAACAASURBVHXrF6coWZUliI6Owc3r8aDt6qUmJiY6xfU1Gg2ZfA1suhxMrVwQGQe7bqpp\nmC1bWqirkLa0eMH5FyUPHJN0KCgAEBQUxI9TfuTrC81wNOiIfRTPmNwLMZTMTURExHPrjBz2DQHl\nAlh06m9UGhVajROO18uRyzcDcw90xcvLCy8vLxrXa8b3Bebjm8+DG4fvMX/uwhSv0F+6dAkHZxWf\nfGmOWlWrrQd/jLmLc6GMyWXEKKjVaTdPrNFo+Gvpaj5pVIfJzjE8uBfLuHHfkzdv3hfWCQwMJBJ3\n+v0VS418Cczaq6VoseL4+SnxGRSe5n3dq6LsyVVIUyZPnsz55f35pZF5Nut+JOQYa094REyatLdj\nxw62bN2CwdNA+/btX7jX+H3k6/692Lr/T7pONBB8M54Jne+xfu1WSpQokWIZO3bsoHGD2hTy0XDx\nfgIf12/Cz9NnfdDb9d5hHw5Lo4wXHxCnTp2iZuNq9D73SfK570v8RdilaE4fO0GWLFmeWy88PJwN\nGzYgIlSvXh03N7fnljt27Bi3b9+mSJEiKX7pFhF++OEHBg/rx9Jr+XB2tyE6wkjz7OdINNlQ9btA\nxCRsHXKI5YtWpHlQg+joaK5du4avr+8L+/kkQUFBDOr3FVcunadoiUC+GTM+3SakFNIHS4wX7+tg\nowwgCmnKtGnT2DjtK5a2NRsYp+9ClenOBD0It7Jm7x+JiYkMGz6IFSuX4ujoyDfDx1OjRo1Uy7l3\n7x5Hjx7F29ubokWLcurUKXbu3InBYKBBgwbY2HxYC75WMDhUQDPMWcW9MG/plaTzgjmfhjVQxosP\niNjYWHLkyUaZQbkp3iYXp1ZdZUmn7axcuuq1niuWoFe/PszfvAqNwQ65eIVydZw5sT2RyuUa0qhh\nc37+/SdUKhXdP++hRFBTsAqKwfFilAFEIU0JCwujVLECVMgQTD5DAlP26ukzeCxfdu8BmGesZsya\nwaq1y/Fw82TIgGEvTB6lkP4sX76czq1aUQG4otHgWbgw67Zt+6CMDisYHOMxJ/zbCtzlaX8KweyP\nYQ2U8eID48yZMzRr3YSzJ8+TLVcW5s9ZSKFChbC1tU33Vc/Y2Fic3VypdmsKtu6O3Ft7lNNd59Cz\n7WeMHDnyg16FVXh7UAyOF6MMIAppTkhICFOn/EjI/SCq1axD3bp1k6+N/W4Mv/w5hYqD8hFyKYID\nP1/h6MFj+Pv7W1SHy5cvc/r0abJmzZpmkUveRzJ4eDAmNJRCmJM/dHF0pO/06TRv3tzaqqUbVjA4\n7gHdgCXp2GZKUMaLDxQR4d69e1SuVY0rVy6ASkXZwLKsWb4m3fI+PXr0CIOvNzXDf0dtowHgeN1J\njG/Xj0aNGqWLDgoKr0IxOF6MMoAoWBUffy/ab6qIT17z/teln+2hQe529OnTx2Jt/Pnnn/T4/HOy\n2NhwIzGRbr16MXzUKIvJf18REbS2tmwzGrFPOjfO3p4y331Hjx49rKpbemIFg+M+UBq4lI5tpgRl\nvPiAKV6mFKdOn6Dur9XxKmhgc/9tZFPnZP3q9emmQ6Va1bjpYyRjz+o83H2B22PWcubYSQwGQ7rp\noKDwMqyZhyMQ+NcjyAPzrFWDN1FEQeF9wmQyobF9/N9LY6e2aJjAqKgounTuzJfR0XR+9Ih+0dFM\nmTiRM2fOWKyN52EymdJUfnqgUqn4qFQpfrWxIQFz1rgtajXly5e3tmrvO9OB1tZWQkHhX0SEY/sP\nk69JHgq2yId3AQON5tfjn03/PDfM+f79+5k3bx6bN29OVX6N5xEREcGw4UNp06EVdarVJFCdkRtt\nZuO65gY7Nm+1iLFx+PBhOnZuw6ftm7Fly5Y3lqeg8Ca8rsHRA3MM9L1AL+AiUNxSSikoWAqTyYQ1\nZi87d/qMBS13cWbtDXb8eIoTi2/QuHHjZ8rduXOHsWPHMnLkSK5eTXlG2uDgYPQaDRmSfjsBGe3s\nuH79umU68B+OHz9O/vxZsLW1IU+ejBw6dChN2kkv5i1fzq3ixSmnVtPTyYkffv+dokWLWlut9x0X\nzD4cu4FfgB+TjilJnwoKFiUqKooNGzawadOm5xoQKpUKRxcnIoOiks9F3osCNRgyeDN27NjkSZZu\nvbpTvX4t2nfpSP1WDfHK4M3ipa+3OzAuLo6KVcvzz6VFqEpfYdrSSTja23H55Dm2rdv80jC0KeXQ\noUPUqFkRj7zryFRyC81b1mPdunVvLFdB4XV5k+URG6AkUBH4BFgETLCATpZAWSL/wHn06BFt2rdg\n3eoN6BzsGTN6LF927Z5u7ZtMJib+MJHV61Zip7Gjdo26VK5cmUKFCiWXuXDhAiWLFKCuIQE7NSy5\no2HLrr2ULFnylfLj4+PJ6O1Nw7AwCmO2/n/R6zl+9iyZMmWyaF+io6PJlSsj/xsTTqNmalavEAZ8\n5cD58zdwdna2aFvpjclkskhc+zt37jD3j7nExsbwScNGT93ntxUrbKna9pxzT0apqpSOujylgzJe\nvH8EBQVRumJ5Egz2SKIJpxgVe7bswN3d/alyixcvpk3HNuSulwPfYt7sn3qU/L0q4ZzDwOamc6hb\npw5f9+xDnRYNiY6OpPbCFmSsnJ3gY3dYU3UuZ46fTnXOiY0bN9J9aEf67KuISqUi5lE8/X1XEBx0\nHycnJ4v0v33HlngV2EjbXq4ArFsUyYZZOdi0fpdF5Ct8WFhzSxVAIuYVjrGYt1iFvYkiCgqpYc+e\nPQwdPJjx48cTGhr6zPUvunUm0vEMc8KrMHp/cUaNG8bGjRvTTT+1Wk3fXn1p27wtxw7vY+2W0dSo\nVYYxY0ckl2nfuhndsyTwZwDMLAmj8hnp0PLZVZDnYWdnR+1G9ZmtVtHPRsUEFeQpko+MGTO+unIq\nuXDhAi5uiTRrpcHGRkXDxmp8/Ujz7VvpgSWMjZs3b1KyVCGOXBnPrZipVK5Shh07dlhAu/eOis85\nKj3xqfABsHXrVirXq0/ZmrVYuHBhmrXTd3B/7OoXoNjOYRTb8z+Mpf0ZNsr8/DWZTNy5c4fo6Gia\nNm3Kjs07cLjizIGfThL4Y2MK9KhApo/zYeeqY/vBPWzatAmXnAbsnO3JWNkcbdCrSAYM+X04d+4c\n8fHxbN26lQ0bNrwweeCTxMXFoXO2S45AZae3QWOjJj4+3mL9T0iIx17/+P1Qp1eRmJhgMfkKCqnl\ndWNAdgAOA8eTfhuBOItopKDwCv5aupRu7T7lM6I5pdES8MNk9p84+dTM1batWxi6Iz9anYYMuRyo\n0MHA1m1bqF69errpGR4eTu9ePVh1SE/WnGru39NRq9A4mjRuSc6cOQm+c5N8TwStyuMED288SJHs\nsLAwFi1ayIybgRgThUPrQ5gz8BQTJkygb9++Fg2laDAYuHs7ngf3BU+DiocPhVs34vHy8rJYG+8y\nP/z4PTVaCH3GmwME5C4cwdDhfdm+5YCVNXsr8QG+BPJiXtU4A/yMOYKVwnvOrl27qN20GTGDx4CD\nI8f6DyQhMZE2rS3v2nPp2lXcmpr9slQqFS6V8nJ50WUuXLhA9bofExr2kPioWCaMH0e3Ll8yY8YM\nSlcuh6FUZgAeHL1FYlQ8rkVy4O7uzoOjN4lNiOXBqSA8C/gQcSuc+2eDMBgMFC5emLuhd9HY2aA1\n2rFv176XrjSXL1+e+92i2fDdGXJWMLDzl6sElg54ZvXlTWjX9gtatVmPq4cGrU7FuK+i+GZ4V4vJ\nV1BILa87vZcBmAkEYd5K9S1Qx1JKKSi8jKG9e7HQNpoRDjDHPo7SkSHMmjXrqTIGLwPXjptnmkSE\nm8dj8fbySVc9g4KCcDfYkTWn2a43eKvJnkfHzZs3AciWvxDDz8G5R3A1CgadhQxZU5arIzw8HEdn\nLW4+tsztfZF9wy/zpUcss74dRv9ePS3aDz8/P7p06UaFUjb0+NyGqmXsaNeuM9myZbNoO5bAGj47\n4Y8e4pv58aM0QxZbIh4pCSCfQ1nM/n4tgBjMk1Stk86VsaJeCunEL7NnE9O9PzRtA7UbEv3NJCZN\nn5EmbZUtGUDQ9G2Y4hMxxsRzb+ZOyhQvRYPmjXHsXpFy96YTeHICQ0aP5ODBg+TLl4++PXqzJPcY\nVpb/kb+r/0r27lV5sP8y9evX57effkWdqGJR4C8sLPkTi4v+zLBBQ5kw8Xuu3bhC2c+yU6xpBh5G\nhNL+85enlHF1dWXn1t3EH/Dm7243yKsvy/Ilqyw6UVS1alVmTF/ImmlZWfS9P98Mn0LbNp9aTL6C\nQnrjhjk61Y/ASeAaMBdoakWdwLwnV+E9xc/NTa54IOJlPgY7qmTYkCFPldm2bZu4eTpJtQ7ZpVhV\nfylSooBERkamq57R0dHi7eMqM1e7yHXxkhX73MTD00Hu3LkjIiIhISHi5+sujnYqcbBDvNwd5ebN\nmymSnZiYKHkL5JC6X2YUf1e1xNRGpB4SWhNx0Wnl3r17FuvHqlWrxN3dQXx97cXFRSvfffedxWQ/\nyfbt26VKzSpSsWoFWbVqVYrrJSQkyICBw8TXxyA2NirR62xl+LBBYjKZ0kTP/7J69Wrxz+wk8/b6\nyepzGaVEOTcZPmLIqytaGZ5OvJce7AWm8fRElybp3J501uVJrH0rPhhad+okDPtOuB1rPmYukWIV\nK6VJW4cOHRIPfx/R6LVio9dK/aafSHR0tKjUaqmZuFhqyV9SS/6S7B2ry5QpU2TipInSpXsX6dOn\nj2TNnV1UarX4ZvGXf/75J1lmfHy8HDlyRNatWycXLlwQERG/bD7y6Z8VZKp0lKnSUWr9r6gY/D2f\nq9ODBw9k0aJFsnXrVomPj0+TfisopAWk/3jxSgyYjY2RVtbD2vdGIQ3p2r691HbRyUV3ZLMr4u2g\nl3379j1T7sKFC/LLL7/IvHnzJDo62gqaiuzevVt8fN3E06ATNzcHWb169VPXo6OjZcOGDbJ27VqJ\niIh4oZyHDx/Kzp075ezZs8nnzp8/LwWL5JWCzmZj498js5uDXLx40SL6BwcHi4eHXrZvRWKjkA3r\nEE9PRwkPD7eI/H/ZvHmzODjbiF8OrWTJZy8Ozhr5888/U1S38+fdxcHZXyoW10rYeuTWcqRgTp3M\nnjXTojq+jN9nTJccufwkY2aD9BvQWxITE9Ot7deF9B9AYoDczzmfF3g2hFD6Ye1b8cFw4MAB0Xt4\nCqMnC5Omi97XT5YuXWrxdoKCgsTNx0uy/9RNCmwZLz5NKki1uh+LiIjB31dK/TNcaslfUj1qvnjk\nyyJFShWRvB/nkWoTq0qWgCzS8YuOKZ6wyJY3s3TfXCvZ4Gj+W1nJXTDnM+XGjB0jtg52YijsI245\nPKRQiULpPgmmoPC68BYaHG8L1r43CmlIbGysfNmxg2Ty9JACWTLLihUrrK3SS0lISJDbt29LXFzc\na9U/dOiQ+Hq4SkAmF/Fx0Unbls2lYK5cYqNWi6ujo7g76eX3Isjd6siY/GrJmy2TJCQkWET3Xbt2\nSamSLhIbRfKRP7+zHD161CLy/6VgkbxSvZmzHDXmlGOmnNK8h5tkyuadorpae0dx8cgmu35GZJf5\n+H0A0rZVI4vq+L5B+g8gQUCt55yvlXTNWlj7VnxQ7Nu3Txq2bC21mjR5ZgLGUixcuFAyNvhIyslG\nKScbpUz8WrHR2klUVJRs2rRJnDzdJPPHAeKWzU9q1PlYMuTxlcEJA2SoDJJ+j/qI3lkvwcHBKWpr\nwsQJ4pvXXb4+UE96bP1YnLz0smjRoqfKHD58WHTuDlJmRGXpI99Ib+MIydEgr/xvxP/SoPcKCpYH\nC4wXr+s0rqDw2hiNRkQEG5vX++en1WqZ+vsMpv6eNnt/LY2NjQ0ZMmR4dcEX0LZZIyYWCqN5dgiP\nA7/5i6hsgk9FuBkZySx7e6bE5mDAviAKF8jPur8Xvfbf9r9kypSJS5fjuHETMmWEy5fh9u14/P39\nX105FUTHhFG5vh612ryHuXI9B7b9lTI/CLVagyQ85OgFKJsUjfbgWbgeeseiOiq8MQuBGUA/zLk4\nAMoB3wELrKWUQvoSEBDAsnkBrywXGRnJwoULefToEdWrV6dAgQIpbsPe3p6EkEeICCqVCmNYJCrA\n1taWqlWrcvbYSY4cOYKXlxcRERF0HdEFtY15p5+dox1aBy0xMTEpaqv3V71JSIhnRrvpaDQapk74\nhaZNn95VfvjwYWwcbMlcPQcAKrWarLVzcX7n+RT3SUHhXefNY0IqKKQQk8lEn+7dcNDZ46Czp0Or\nFhYNA/i2sXPnTgYPGsT3339PWNjrRY0WES5cu0kDc+AUVCqINwoVRFABmYDctrb0GzqC++ERbN69\nj8yZM1usDxkzZmT48LGU+0hHnfouVKyiY/z4H/D09LRYGwAfla3GipmPSIgXjEZh2YxwihR+dT4S\ngN69eyHGMIbPgtYjof4AWL0bQkKtOWmu8Bz6A0swGx2Xk47pmAOP9LeiXgpvGRERERQpU5rey/9i\n2KVzBFSqyIYNG1Jcv0aNGnjGqLjaehx3pqzgUrXB9OzdC1tbW8AcCKNu3boEBARQqlQpom5Gs+/7\nAwSfvs+WPlvJkilLiidVVCoVA/oN5OLpK5w7cZG2bdo+UyZTpkxIgokT0w5hMppIiIrn5G+HCCwe\nmOI+KSi866Rn0qf0JGkFSOFtYuoPPzBv7CD+zheNnRqanNNRsk0PRo791tqqWZz58+bxVefO1IyJ\n4a5Wy3Vvbw6eOIGLi0uqZRXLn4uuHpfolFu4Fw3+86EX5viiCcBUR0fmrFxJ5cqVLd2NZC5cuMCl\nS5fInTs32bOnLJJWaoiNjSVP/myEhNxDrQZ7e2fOnrqcojCRIoKXl55W1WIpkAVsbGD5ThXXwvJy\n/Ohpi+v6vmCFxH//4gD8+4/oMhD1krLpgTJevGVMnjyZITu3ofrjdwASN2wmw/AxXD5+IsUyIiIi\nmPTDZK7fuUWlMuVp1aoVKpWK4OBg1qxZg0qlom7dunh6enL58mW+6PE5ly5fpljRYvz6468YDAaL\n9UdEaNmuNSvXrMCYaMQUb6RCxYpsWLMejUZjsXYUFNIKS4wXisGhkG40q/sx9a+vo2XS7qLNITBa\nVZStB44AEBISwvbt29FqtVSpUgV7e3sravtmZPHxofe9e+RL+j1Gp+OTcePo1q1bqmWdPn2a2tUq\nYW+K5V5kPJUqV2XbP1vJDVyJj8ektaNs2dJM+nU6WbNmtWg/0otfp02jz5SfiR41GWxt0I0aTN9a\nVRk5dGiK6rds25JVSxeQIyNExcC9hyq+GT2Rnj2+eiO9RIS7d+9ia2tr0ReQtwErGhxvG8p48ZYx\neMgQJpjisBtiXvgyXb+BtlpdQm/dfiO5V69epVT5sujK5gGTibj9lzi4a89Lc2ZYChFh7969nD17\nluLFi1OkSJE0b1NBwVJYK9O4LeaY6c2Btv85FBReiI9/Rg5FP/YtOBShxsfPvGx98eJFihTJzfTf\n2jHqm+aUK1c0RRlbrcmhQ4eoVrM8RUvmZcCgviQkPM7iGhEVxZNp8dxjY1m3bt1rbSHLnz8/567c\n4K9/9nL20jWWrVrDtr17CfHypIQLrMsSTcCFbVQpW/qt/5u9iFWbNxP9+VdQsjQUKUlMj/6s2bwl\nxfUT4qKo+4WBDj9l56s52SlS2ZWwsIdvpNOjR4+oWrk0hQtlJ0d2f9q3a47RaHwjmR8gqwHnJ76v\nSvr877HKKtopvJXUqF4d27nzMR49joSEohr2DdWrPZ201Wg08s23YylVpSJ1mjbm7NmzydciIiKe\n+391wPChOH9eleyL+pF9yQAc2lVgyDfD07o7gPmFrUyZMnTs2FExNhQ+SFJrcOTBnBl2BzAf+B2Y\nnfT5k0U1U3jvGDR8JKvjvahzxpFG5xyYGurKqAmTAPi6bxd6fPGQ1Usi2LEhktw5rjJhwndW1vjF\nXLlyhRq1KlOs6W0+m6Jm66E/6N7zi+Tr9erV42d7e+4AB4FNaiHs4j80rFsdk8mU6vbs7e3Jnz8/\nPj7m5IXu7u6EP7jP6hyJlHCCgT5G/CSG/fv3W6iH6UsGgwHNucfbn1TnTuNtSLmfyNVrF6nU2JVS\nVZ0oXsmJ8vUduXj57KsrvoR+X3cns+EYQftiubM3nqvnVzN1yg9vJPMDJITH0U1CXnEoKADw0Ucf\nMXX0GHTN2mLMX4IqGi0VSpVi3LhxHDhwAICv+vVl8t9LCerXhEOlM1O6YgX2799PvpIlcPf2xsHV\nlekznw4scjf4Hvqij7eE6gtn5eadN1s1UVBQSBvWY3bwcwAigBxAMeAAUP0l9dKbdA8ZZknCwsLk\nr7/+kuXLl780N8O7SFhYmMyfP1/mzp37VNjBYkWzy+4tSEK4+fhpEtKhQwsravpyJk+eLPU/85Pt\nUkq2SylZHlRUnF30ydejo6OlVePGogPJ6478/SWS8BOS089BDh48+MbtBwcHi7O9nUSURCQQSQxA\nCng4ys6dO99YtjW4deuWGDJmEn29xqJr0kqcvbzlzJkzKa7/SZO6Uq+jQXYbC8uaoPySo6CztGrd\nUkJCQl5bp5LFc8mepYhcMR+/j0Xatv7kteW9baDEVf8Xa98KhZdw9uxZyZA5k9jnzCpOnZqLg4+X\n/Dl/nuhdnCXH7Q2SV45IXjkiXu0biH+2bOI8srcYTNfE/fxWcfD1lgMHDiTLGv3tGPEqV1DKPlgk\nZYIXiGPRHOLibZC7d+9asYcKCm8/WGC8SO0KR0ngG8xOfibMWWKPAF8DE95UGQW4desWRQvkZtrg\ndkzt35YShfMRHBxsbbUshouLCy1atKBNmzZP7YkPCPyIqb9qSUiAhw9h9jw9AQEVrKjpy9FqtUSF\nP/7/FxmWiK2dbfJvnU7HiG+/xcOg5/Ro+Lgg2GjAw1FDdHT0G7dvMBho2qQJNa/p+SUI6p2HKw8j\nadO5AydPnnxj+emNn58fZ44cZnKd6nxfqSxnjhwmb968Kaq7bNly1q3fy6blKqq7n6aZ32ky3Ioi\nfOsqiubLzfXr119Lp6xZc7Jxl9mh02SCzXu1ZM2WMp0UFBTenJMnT1K8TADUzIdbpTxEr9mM3c8j\n6Na7N2qNBol/vI2V+ARuX72Ktt8XmO4GEztvOYk+nsybNy+5SP++/XCNEPZkaMXezO3QVCyNTZva\nDBzxPyv0TkHhwyK1DiChmI2Oy8Al4DNgC+aVjpOAzqLavT5JBtm7R7uWTcl0cxkjy5r3n3611RZT\n8Xb8+PM0K2uWtkRGRtKieT22bN2JyQSffdaRyZN/+ddR6a0jNDSUosULUKqemkx5bVk2OYwvOw+g\nb5/H0T2NRiMBxQtQ0fsS7QISWXtazW+HvDh++iKOjo4AxMXFsWfPHoxGI2XKlEGv16dYB5PJxMTv\nv2fk0EHEINh72JMYa0Jv68jdG7ews7OzeL/fRjy8/AktsgQSorA/2omOuutMTdo18c1tDRdK1OOP\nJctSLffGjRtUrhSIr2cUEZEmHJyzs2HTruR7965jBafxMcB14Lf/nP8C8ANSFiHA8ryz48W7zoUL\nFzh58iTZsmWjaNGiz1yv16wR50p7kOmr+gBcGbWQe5eiiF+4lv4D+vPTyiXo+7Uh8cwVTLPWYhIh\nccr/iOo5HNf65bDz8yRs0mL+/HU6n3zyCQDlalXnUpe6ONSpiEqtJnL5ZvLO2sjWVX+na98VFN4l\nLDFepDY72GmgEGaD4wDm2OlGzIbHpTdRRMHMrRtXaZHhsbNbWd8EFly7YkWN0gdHR0dWr9lCeHg4\ntra2qXrxtgbu7u4c2HeU7yeN58Hhe3w7sg7NmjZ7qoxGo2Htxu306NKRJvOPkCNHLjZvm5n8whoW\nFkbVsqUh+DZ2KhUP9a5s3bc/2U/jVajVajJlzky8rYoh2yqSpbg7JzcEMeWTPZw7d45ChQpZvN9v\nI+EP70P0bbRnO+Prr6bcE5OeAXoj227ceC25mTJl4uix8+zbtw87OzvKlCmTHMdf4bVoA3zynPNH\ngEFYz+BQsAIzZ8+hW5+vsS1YhsTzh+nRuSNjRw5/qkxI2EP0OQsm/9bn8MU4/y8qVK/KN/8bjr+f\nH6uXb8Dbw5Phe/Zy+vRp6jdpjGvr6mSc2sdcp0ReBvYfkWxwVC5TjrM/L0GqBCICCT8tonKVOunW\nbwUFhZRRk8cDRnbgLOatVcFAJWsp9Rysu9ntDRgy4GupnUcn0b2RiF5Ipex6GTd2tLXVUkgDvu7Z\nQzp6a8VUAJGCSD8fG2nfvFmqZPz+++/iV9BFKn2aWQqUcpda3XKIk5dW9u3bl0Zav32Uq1hT7L0y\nSrNlDaXm+IoS4GUjDwOQyECklo9Ohg7oZ20V30pIfx+OWOB5cZuzA3HprMuTWPtWfHBERESI1slZ\nmHtW2C7CyvuiM/jI6dOnnyo3YfJEMZTII6Uv/CaBZ34RXVYfyV+86Et9szp+1ll8RnSWIrJXishe\nyX3iD/HLlT35enx8vDT7tI3YaLVio9VKqw7tJCEhIc36qqDwPoAFxovUrnCsf+L7ZSAv4AE8xGx4\nKLwhQ4Z/Q4fLF3GfugYRoU3LT+jVt5+11VJIA66cO0sTuzj+3TVWTZfI6IsXUiUjMDCQ0M8eoTv3\niEYJwj/Hw0hMEPLkyZMGGlsPk8nExo0bCQoKIiAg4Cn/jmWL55KnSF7sHG0p1askmy6EYphxAlDR\nsnEdhoz4xnqKKzzJTaACcPU/58sDt9JfHQVrERwcjI2TK3GZk55Trp7YZc3PjRs3yJcvX3K5Xt17\nEhIayrSKw1CpVAzp3oOB/Qa8dKtth0/bseiT+jwqmRfbDJ6E9PiBTxs1Tr5ua2vLwtlzifnlN1Qq\n1Tud70lB4V3idfJw/JcQrGNsXANOAEcxb+96L9BqtcxbvJyQh+E8DI9g+uw/sLFJrV2o8LawfPly\n2jVrRs8uXbh27dpT14qXLc/sWB2xJkgQ+D3KnmKlSz8jw2g0Mn7sGGqWL03rxp9w6dLj3YthurXr\nnAAAIABJREFUYWF42drxeYJQHOgTZ8JOY0NYWFga9yz9MJlMNGrZlHb9v2TMP3MIqFCWpX8tTb5u\nMBgY/b9RbO6xg6tbrpOxRjZ07o4MH/kNP8+clSpfloSEBIYMH0pAhQDqNanPuXPn0qJLHyq/ApMw\nb8HNnnR8DkwELOGkNhDztt+TmMO2awF3YBNwAdgIuFqgHYU3xN/fHztTIuxYbj5x9iAJl45ToECB\np8qp1WrGjPiGB7eDuH/rLoP6D3ylX1+ZMmWYP30m2mF/ENNiFO3LV+fbkaOeKafT6RRjQ0EhHUmJ\nA8hqoBXwKOm7vKCeAPUsp9oruQoUx+zI/owuojgBKliZab/9xqjevekQHU2QWs1KZ2cOnjyJv785\n2WFCQgJtmzZm3fr1aFQqAgMDWbz6bxwcHJ6S07dHd/YtmskAr2hORav5McyZles3cvv2bUJCQhjb\nqxcTIyJQAYlAJ52Oo+fOpUv23PRg7dq1dBjUg4ADw1Hb2RB2+AqHq48n/EFo8suHiPDb9N+YPmca\nly5fJUHthY2zFy4JwRzYtQ1fX98UtdXxi47svLKb4gMCuH/sHsfGH+bkkRMprv8uYaVM42OBrzAb\nA2DeSvUDZmPhTR7aWTAHMMmbJHMRsBbIDzwAxmH2OXQDBvynrjJeWIGDBw9Sq8EnRMXEohYj82fP\npn59y7xCREVFsW3bNkSEihUrvjeBHhQUrIUlxouUVJ4NdMecd2M2Lzc42r+JMqnkKlCC5yeMUgYQ\nBauTM0MGRt29y7+u2yPUavIPH87QoU/7xgYHB2M0GvHx8Xlm9k5EcNbruFg0Dp+kifqWF+1YFm6D\nW6UAIk+cxykylkJRURSNi2OnTodz6dL8vXnzWxvh60WcO3eO6bNmkpCYQLtWbShWrBgAM2bM4Lud\n88k/uzMAYjKxRvspUZGRaLXap2R0+6oP0w9FEt/wV1CpsFk7gEa+wSz8Y+Yr2zeZTOgcdHS50wt7\nN3PAvfWtVtGtUhc6depk4d5aHysZHACOwL/7Zs5iHlveFHdgLxCYJG858CMwBfM2rnuAD7ANcwLb\nJ1HGi9fg7t27fPPdd9y9H0L96lX5tG3bVD9zjEYj9+/fx8PDw2IBGYKDgwmoUI5Yb2dQqdDeDWf/\n9p14e3unqP61a9cYPWEc9x+G0ujjOrRp1doieikovMtYYrxIyZaqdjweENphNiraPedIT2MDzAbO\nZuAQ0Dmd21ZQeCXxCQk8uVahN5mY9cfcZzKNe3l54evr+8LBWqUC0xPvQ9Fx8ei7NcN59WS8Ty4h\nytkB19q1OVGxIpV69mTZ33+/c8bGqVOnKFW+HH/YhrLANY6PalRj586dAAQEBBC09ijhx68jIlz+\nbjX5ixV6xtgAuHDlOvFZK/OvY0xi9spcupqyPBwqlQqNRkNibGLyOWNMorKl0fJEYt4GewDLGBtg\nXun+HrgB3AHCMG+l8sZsbJD0mbK3ToWXEhISQpHA0kyP0rCicCW6fTuBkWPGpFqORqPBx8fnKWNj\n3759fPvtt8yYMYO4uNTHEhjwv6HEVS9Mpm0TybT1exJqF6P/sMEpqnvnzh2Kly3DCjcj+6oXoPuo\n4Yyb+H2qdVBQUHiWd3kkLQvcBQyYB5ZzwM5/Lw4fPjy5YMWKFalYsWL6apcC4uPjiY2NxdnZ2dqq\nvHOYTCbu3LmDo6Mjrq5v57bsRs2b03vqVIZgfgNaqLdHExfDkSNHKFGiRIpkqFQqvuz6JQ3m/kp/\nQzQnYtRsDDPh26sNABpnR/SlClCvfiNatmyZdp1JY76dPBFd31Z49G8HQFhGb/43bixbypenQIEC\n/DblZz6r+Dmx0THkKZSfVUtXPFdO+cAS7Jo/k5j8dUFtg/2h6ZStWDxFOqhUKrr37MGCOgso3Ks4\nD47dJ+xYKPVn1LdUN63Ktm3b2LZtm7XVsMWcyykT8F/nmrlvIDc75q1aWYBwYAnw36npF0ZaeRfG\ni7eJpUuXElEokMSB5ny/UaUqMP6TUvxv8Itf7C9evMiePXswGAzUrFkTtfrZ+c65f/xB1/79ULWo\nj2bLBn6aNZO9/2x57uTCi9i5by+Ow5sn/3aoWJijY83PCxFh6s8/M3fZMpwcHBg9cCCln/CbW7hw\nIaZSeTHeDyHhzj3s+7Vl3LCJ9OvdJ8XtKyi8D1hrvJgFzEw6nvz+vMNa/A948olgjahhqeK70aPE\n3s5G9FobKV+qmAQHB1tbpZdy/Phx+fbbb2Xq1KkSFhZmVV1u374tRfPmEi9HnThobWXQ133FZDJZ\nVafnceHCBdE7O4l7vuziUaaIZNg1VzwDi8r27dtTJcdoNMqUyZOkftVK0rF1S/HJnFF8Zo2UXHJc\nspxdIXpPd2ndrq3UaPCxDP7fEImJiUmjHqUd9Vo0Fd+Z/5O8ckTyyhHJ+PePUqpKxafKmEwmiY6O\nfqmc+Ph4+aRZK7GxdxAbe0cpX7n6K+v8t41ffvtFGjb/RLr26Cp37tx5rf68C5D+YXHzABcxuxqZ\ngPgnPt90paMZ8PsTv9sAP2HesvVvYhtfzBNT/8Xat+KdY8qUKWLfrINw2WQ+9t8VrZPTC8uvWbNG\n9B6e4li3pTjmLypV69aXxMTEZ8o5GzzF5fAG8TDeEvfEm+JaqazMmzcvVbp5ZsokTtVKSYnojVIi\neqM4VS8lhUqVEBGRsePGiUOBAmKzaKlofpgiDp6ecvz48eS6PXr0ELWzg/iN6yoZp/QSGy83cXBz\nSVX7CgrvI6TTeLEGs7P4v0c45jC4OzCvKDxMOrc6PZRJQg84JX13AHYD1Z+4bu1781LWrl0r2T30\ncqsRYmyN9CpgK/VrVLG2Wi9k/fr14qbXS00bGwnQ6SRHpkzy8OFDq+lTu3IFGZRLI6ZayP2qSH5P\nB1m2bJnV9HkRCQkJkqNgfvHo1VYynlkphvF9xCdrZomIiHgjuSdPnpQM2bKIg5enaB0dJHOubJKr\n/UdSbkkXyVq/hNSo9/FbaYC9jGXLl4lTZj/JtOU3ybxnlrjmyyE//fpLiutHRkbKoUOH5Nq1a7Jp\n0yZxcPcQp9wFxd7FVX765bc01PzdhfQ3ONZjduZ2wGxg5ACKYd5aVf0l9VJCYeAUoMO8z3gO8CWP\nncXB7Cz+7XPqWvtWvHNcu3ZNnAxewoipwvytoitTWTp27frC8u5+/sLcHcJpEY4niEPhUrJ06dKn\nyphMJtHY2op7xEXxMN4SD+Mtcf2sjUyZMiVVuhUsU05UZT8SlV4nKr1O1AUKymdffikiIv558ojN\n5q1iFxIudiHhounztfTt3z+5bv1mTcRvXBcpLrukuOySrItGiF+enKlqX0HhfYR0ysPxZArOgUAM\nZn+NqKRzDphXN068qTKpwBuzUyCY+zAPc8jDd4K9e/bQ0i8av6Rk2n1yJ1B8y0HrKvUS+nbrxqfR\n0RQGSExkRlAQ06ZNo18/6+QHOXz0KL8WMaJSgacdNHGL4vDBgzRs2NAq+jyPO3fuUKV0aYJu3ybu\n5GmMs1ZSqHQgMzf988YRUwoUKMCNC5e4d+8e58+fp+nnbTAeucrJZQdxLeDHrrMXuHnz5jsVpaph\ng4aEP3rE2L6TMBqNDPu8G10++zxFdU+cOEH5KlWJQ4MxKgLUKhInrYHiFeDWFb7uWJpqVSqRM2fO\nNO6FwisoidmBOwrzyoYGc5bxrzE7dxd6cdVXchzzlqxDSbKPYA616wQsBjpiDqXe9A3aUEgic+bM\n7Nq8ia8GDyV43XzqVa/KiCFDnltWRAi7FwQFS5lP2NhgzFuMO3fuPFVOpVLxUY1qHOozAptR/TGe\nOINx+Toq9ej/HKkvZszA/jTt2ImYboPg0SMcls6md/fugNlnhPj45LLq+DhstI+fx1p7LRqnx553\nGkc9vj4+KCgovDmp9eHoCVThsbFB0veRwD/AaAvp9SquAkXSqS2L458xI0vD9RhN0WjUsOc++Pm+\nvQ+1h2FhPKmdIT6e0JDnBQdLH7JmzsSmkFO094cEE2yL0tM6e3ar6fM86lSuRNUbNxgMBAM1wh/R\ns9NnZLeQnhqNhgwZMnDy5Emir9xloNpETTXMPXSFnxLNIXffNdq1/ZR2bT9Ndb3qH9eB8HA6aYwc\nM8GxOBOJ+qQFUP9s2OYtxvnz5xWDw/qoME9YAdwH/IDzwG3AEjdnXNLxJKFAVQvIVvgPhQoVYsvq\nla8sp1KpKFq6LMemjcbYdThcPY9qywrK9H028tvSOX/QolNHduYsh5vBk2mzZpM/f/5U6VWnTh3W\nLV7EnIULsbezo+euneTOnRuAwV99xVddPyeub39UQXfRLVxAxz17kut2bv0pa9u0xMbLDbVey/2e\nUxg4eHiq2ldQULAMEUC155yviuWijVgCa68+vZS4uDipWr60FMvgKA1zOYnBxVH27t1rbbVeSKdP\nP5WS9vYyGWQoiEGvl61bt76y3okTJ+Tvv/+WGzduWFSfY8eOia+Hq1TJ5Cx5PB2lXo2qkpCQYNE2\n3hStSiWnQIKSji9BPv74Y4u3s2HDBilgo5ZweyTcHgnTIgaNWi5cuGDxtt5W7EH2OSLxLkicM1JG\npxaNXissOimsuS46Ty85d+6ctdV86yD9t1TtBP5dhpwPbMC84jEPc7I+a2HtW/Hec+vWLSkYUFo0\ndnZi7+gkM2fNTr4WFBQk69atk8OHDz+1FTQuLk7Wr18vy5YtkwcPHrxUvslkku8mTBCPjP7imiGD\n9Bs8WIxG43PLLl68WOo0by6tOnaUM2fOPHN91apVElClohSvUFZ+nznjNXusoPB+QfqPF8wGbgEt\nMEcDyZL0/QbmPbNvC9a+N68kISFB1q1bJwsXLpRbt25ZW52XEh0dLW1btBBXBwfx8/SUObNnv7LO\noH79xKDXSwkXF3HT6y3uY/HgwQNZu3at7Nq164UDS1qzdu1ayZw/n7j4+Eij1q3l0aNHydec1GqZ\nlmRs3AQpbKuRxo0bW1yHw4cPS2YHvQRrzQbHdS3iYmcn9+7ds1gbJpNJlixZIqNGjZLly5dbzT/k\n6tWrsm/fvmeCFtiAhDqbDY54F6STk1oKfOwneh8vsXd1l0k/TpG4uDjp03+Q5C9RRqrWbvDcF40P\nDdJ/AKkJfJL0PTtmh24T5kXASumsy5NY+1Z8MERHRz/1vN6+fbs4uhvEpUhV0Xtnkk87fyEmk0mi\noqKkcOlAcStZWDxrVRL3DL5y9uzZF8qdM3euOObOLdq9u0R75JA4lighY8aNS48uKSh8EGAFg0MP\n/AzEYh4oTJizuv6cdO1twdr35oPm8OHD4qXXy2yQv0C+A3HW6yU+Pt7aqlmMEydOiN7gKfYrF4v+\nwnFxaNZY6jVrlny9Vr3aordRS1lHrWS2txVHWxs5cODAM3LCw8Nl8eLFsmDBAgkJCUm1HiaTSZrU\nqSOlHR1koA1S0NFBvurS5Y369l86f9ZWChR1kc/7O0ueAs7Ss9eLnUPTiv6Dh4m9i6c4Zy8uzh7e\nT60IVg4MkDa2yF0nZLMD4qbXSM0B+aVOg1rJxnyrdp1EV6im8NV2UTX5QZw9veX27dvp3o+3Caww\ngDwHD1KWDyotsfat+GDx8s8i9FknzBHhtwjRZ8orX3zxhZQqU1acGlYXP9MF8ZeL4vbjUClXs/oL\n5dRu1kxsf/tFdOGhogsPFbtlS6VYxYovLK+goJA6SCen8SeJBrpidvLLjnlP7mXMiZwUFAC4evUq\nOWxsksOI5QDUJhMhISH4vCcOeJs3b0bVqAE2Vc0Ts/L9WDbkKZp8/a+FS+jwRSfWrVuPk7MTCyZP\npWTJkk/JCA4OpljpcoR7ZAMbO+z79OPg7h1kyZIlRTqICAsWLMAvV3bi1Goua7V8XqECXbt2tVg/\nz507x6rVf7H5giMOjmq6DDRROfss+vQaQMaMGS3WzsvYuXMnU36fS2y/s8Q6esKJFTRo2pKgG1cA\nWLp2HdXKliHLuXM4u9kR+HlO9s+6xdL5U/Dz88NkMrFo/h8kjrkHOhck50ck3trPunXr6NixY7r0\nQeGFWM8ZTOGVbNu2jd27d+Pj40ObNm2ws/tv6pTXx2g0cv/ODSiQtEvbTkd0eCi/rdyAqNW4NGuR\nnMDU9qOS3Pxt6Qtlebq6orp6Nfm3XL2Gx1uan0lB4UPldRL/fYw53GA2zKEMIzFn+r6C2XFc4QMn\nf/78HI+M5BbgD+wFUKsxGAzWVcyCODs7o752A5MIKpUK07XrOLg8TuCo0+lYMGfeS2UMHTmaewVr\nk9hhEgAxS0bRa8AQli/8M0U69OzTg9XblpOvaUbO7L/OvbOJrFq3BRcXN1q3tkwSwIcPH+KdQYuD\no3kS2tlFjYeXlrCwsHQzOM6fPw85KoKjp/lEwfoEz25MXFwcWq0WNzc3Dp4+w6/TfmXWH9N5tE/L\nnOl/UqmS2RhUqVSoNTYQHw06F/O5+Cglg3j6sBpoBTxK+i6YJ6r+iwD10lEvhVcw9edf6D9qLLE1\nWmK/ZhvT/pjHrk0bnsoKnloSExPp2bcfs+fMRmNji5t3BkK3TYPKXWDap2Bri/hmhWunifplAQ6t\n66NydiRhyp9ULlXqhXKH9evHyrJlibt7D7HXov1rGd9tfGcCVyoofBA878H/MloBv2FOsPQFkA+z\nofEFZmfAGhbV7vVJWgFSsAbbtm2jVauahIfEodcAdvAoRsPDhxHodLp002Pv3r2sXrkSZ1dXOnfu\njIeHh8VkR0VFUaxcWe5kzkhC7pxo/lzIz2O/5dO2bZ8qd+DAAdb+/TfOLi60b98eNze35Gs1GjZh\nY/ZG8FFSVtxjmyi2aSyHd255ZfuhoaFkzOLPoBst0blqMSaaGJ1zOeFu32N//kvu3b1hkQz2kZGR\n5M2Xla5DE6neUMvqBXHMnazjzOkr2Nvbv7H8lLBnzx6qNWhBdI8D4OwNR5fgu3Ugd65dSrGM/oOG\nMnXBGqLL9cTmzjEMl9dw5tihtzZLfXqQNHuc2jEgtcwGumMOKjL7JeUEc7h1a6CMF//BZDKhc3Im\nfv4xyJgDTCYcO5Xlj+H9adCgwWvLHTriGyau/ofoofMgNhrdwHrYRYQSr7IlJiQIMueFIoFQogL8\nNBiC72Cns6dEQCnWLl2Gi4vLC2Xfvn2bBQsWkJiYSOPGjcmRI8dr66mgoPA06TRePMUJzE7iYB5A\nsiV9L4LZ8e9twap73T50li1bJjVqu8rNSHs5dlUrQXFacXPTpms29T///FNcbTUyxBtp4YZ4uzq/\nMtJJatmwYYPkyZFB/LydpGmjus9k+F6xYoV4uehkYAmVtMqvlZyZ/SQ0NDT5+oRJk0VfoKww76Gw\nKFJ0JWtJv8FDX9luQkKCDBz4tbi7aaT8F3lkeFA7+V66il/J7ELABnH0yG7RqEynTp2SkgEFxNlF\nJ6XLFpHz589bTHZKGTZilGid3MQ5S0FxNfjKwYMHU1XfZDLJtGm/S/2mraRbz94Wdap/V+Ht8OF4\nG7D2rXjriI2NFbWtrbA/QTgswmERh9qtZNasWSmq/+DBA6lUo47Y2uvF4JdZVq5cKSIiBUuXE37c\nIuwW8zFoptRr3lLOnTsnKrVGKBgoHDMJx0XYGynY2Mnly5fTsKcKCgopASuMF9FA5qTvTxocOTA7\nkr8tWPvefNDcuXNHDAZHmb3UTi7et5e+Q+2laLHc6RrdyMtRL/9kR6SI+WjhhnTo0OGldYKDgyVb\nvrxi4+wgWncXGT169AvLnj9/Xjzd9LKwP3L8J6ROaXvp2K7lU2UK5Mgsm+sj0s18tMlvJ+PHj0++\nbjQapVOXbqKxtRONrZ00adVW4uLiXtm3Th1aSaUAvSydgPRoiXhn1kmd8WXE1sVbKLFcnF29JDo6\n+pVy3jaOHz8un335uXT4opPs3r37meu3bt2SI0eOvHGmdgUzpP8AshJoDFjOEcAyWPtWvJUEVKoi\nts27C5vuCZPXiN7dM8Uv/x9V+1hsK3wpfBsm9NgheleDnDhxQirVrif0/TnZ4NC07iefd+shIiKF\nSwYIBQPMxsZxEQ7Fia2j0wsnihITEyU8PNxi/VVQUHgxWMHguITZbwOeNjjaA6fTW5mXYO1788Gz\nd+9eKVgom7i66qRa9TLpHvrXUaOWi3kfGxyDvZEypUu/tE6mXDnFrVpxCTg5VQouHSgavb0sXbr0\nuWUnTpwo7aqpZOZXyPiOyObRiJOD3VNlMnq7y6U2jw2OYaVUMmTQoGdkxcfHp8jQEBGJiYkRrVYj\nEXsQOWY+Agshtjpb0Tn7irOrl2zbti1Fst4mjhw5Is6eblJ0dAMpPqGxOBvcZPPmzRZt49SpUzJt\n2jRZsWKFJCYmWlT2uwjpP4DMx+zzF4Z5W27FdG7/RVj7VryV3L9/X6rUqS8Obu6SKU8+2bJlywvL\nbt68WbLmLSTOBh+p16SFqDU2wvho4QcRfhCx/+hzmTJlihw7dkwc3D1FU7eDaKo2E1dvX7l586aI\nmCcU7N08hI4DhWn/iF31xlKldt3nTlTNmj1HtA6OYqPTS65CReXq1atp9WdQUFAQ60Spmgb8AHTC\nvJcrE/ARMB4Y/qbKKLw/BAYGcuL4Zau1b6dzoNPNCKZnhBvxMOUBtGhQ6KV1bl2/RpkdM9F6u+FY\nIAuhm08wa9YsGjVq9EzZM2fOsG6PcPcQ5LWB8REQb4pPvh4fH4+3rw9dtj9kWkXhegRMu6Djr0m1\nn5GVGidMSdprrn5iJ6XO3o52rT+lb9++ZM6cGa1Wm2J5bwsTpkwi54Aq5Otjns+w93Zm9MRvqVKl\nikXk/7XsL9p98RnudQKIPXWdwjOmsW75KjQajUXkK6SIloAj0ACzP+BG4C6wAPgTOGU91RT+i6en\nJ5tXr3hlufPnz1OvSXOiO86GTIVYv/x/qHROcO8sZCwGJhOa++fw8KiAm5sbGtTI8fOYbByIi47j\n0qVL+Pv74+fnx8UTx+jRfyBX5oygbMkSjB/9TXKkqn85evQoXfv0I+67A+Cfh0vLvqN2o2acPrw/\njf4SCgoKliC1Bsc4wAXYBNgDWzDn4ZgATLWsagoKr4+rtx7HvLFUOZCIk6OKPKXV+Pv7v7SOykZD\nfNBDtN5mx+7YWw9wccn+3LIhISHkEFjnDSoVNHOAKjceX+/ZpwfRHlGos2ak2Mo7GGONDB/zDWXK\nlHlKzr+OjiaTicaNG5MtWzZehk6no2njhjT6+m+6N4thxxHYd8KWfafOcOPGANaufXHoyLeZ2LhY\nbF0fp/KxddERFx//khqpo3PXLmRfMxynUnmQRCPHy/Zl1apVNGzY8NWVFSxJJGbj4k/AC2gGfI45\n1Lpi/b2DrFy5kjhnP/jnV8gRSHyLSah3/on977UwFW2B7b2T5HEVGjVqxNf9BxGVtx2myt8BEHNq\nIX0Hj+TQ7ooA+Pv7s2TubEJDQ/Hw8ECtfjZFy8GDB6H4x5AxLwCmBl9zdt4QEhMTlchzCgpvMa/z\nv3MwMAZzhCo1cAbz9iqFVBAdHc2SJUt49OgRVapUIV++fNZW6b0iIcHIgEkOZM1hfoeZMCyGmNjo\nl9Zp16I1c6sNJfPXnxB54joRO04z7sxfzy1rMBgwaM3GBkAeO0h8IoDD4sWL6XWoOm4ZHQFY3vvg\nMy/Qly9fpmxgMWoXjMLeVgj4diSbt+6mcOHCL9Xz95nzGDqkP60G/UhcQj1iYqcCXuzaXYADBw4Q\nGBj40vpvIx1btaPVZ5+i83ZGY2/DqT4r+HbgCIvINhqNhD8IxaGoOWqNykaDrnBWgoKCLCJf4bWw\nBypj3qKbG7jx8uIK1iAqKor2n33JunVrcXJ25adJ3z1lpEdFRTHuh6kYC9eDglVhw69w+QB6J2e2\nbFjDjh07MBiK0bx5c+zs7HgYHoHRqeDjBlwyEXHpcRqvrVu30qBJc+LiE9DZa1m5dBEfffTRUzo5\nODgQe2o3JMSBrRYu7MfJzUMxNhQUFKyCtbe7vZTIyEgpXjCP1MjuIF8UthdPZ71s3LjR2mq9V3zZ\nrZNU+dhZdl92lcVbncXbx+G5jsj/ZeLEiRJYvqzUqVtXbty48cJyR44cETc7G9mVGQnNhbR1QWp+\nVC75ul9mH+l3qL5MlY4yVTpKYOs8Mnny5KdktG7RSIY2RGSB+fjxU6RWtfIp6t/169dFr/cVMAkq\nEVQizi6VZMOGDSmq/zayaPEiKV6ulBQuXVx+m/6bRWWX/KisZB7cUsomrpMiR38RRy8POXbsmEXb\neNcg/X041JhDp8/FnJcjFHOY9fLprMd/sfateGtp3KKtaIs0E/rcFtpvF72btxw4cCD5+po1a8Sp\ncAXhLzEf86MEGzuZOOmH58pbs2aN6D0zCe12CV+cFn3W0vK/EaNERCQ0NFQc3Q1C983CTyJ8uV6c\nPLyecQz/vGsPUWXIL/jnF0o3FfQuElheySquoJCWkI4+HC9L2JT80EZJ3JQiZs2ahXvEVbLax/2f\nvfsOj6LqAjj825LNZtMLvfciPfQaehMJTUCQJlJs9KIfJRZEbIBYEZAmShOQLihREEFAQHoPoZcQ\nSM+2+/2xIRADAWWTJeG8z7OPuzN3Zs4kuDdnbiM2Bl4oBsNfepEDJyJcHVqO8eEHM2jb7iitg3fi\n7u7G2NHpuzPdy7Bhwxg2bNgDy1WtWpXh4yfS5q03SbJaKVqwEL8uXpq6f+L4txjVaji5yppIjrdy\n/VQitfKcJyEhAZPJ0XVo7187adXszjlL5YWPNx94qPsrWLAg+fPn5kzEBGzWgcBGtJojBAcHP9Tx\nj6NnuzzLs12ezZRzr/xuCe27dWGHsR2evt7M/OzzB7YkCae7iKNL7jqgd8p/k10akQAgOTmZuXPn\ncunSZerXr0ezZo4vpg3r15Hc/2/wzgc++Ul+qhebNm2iRo0aQMqYsrvHWGi06HQ6XujX557Xadu2\nLZ++/xYT3nkRszmZPj2fY/z/xgKOsSDagMJQNmXcVvmWaHzycvLkSapVq5Z6jjPnL6K1vfKFAAAg\nAElEQVQa/w+8ckHsFSjcGvO5+c7/oQghnOphE462OJq8w8l4pVjxEE6dPMmu88nU8YRaOph0Aa7r\npXvHv6GU4vLly3h5eeHt7Z1u/4zPZnDk0hkazepEbOQt3p78Du3ataNUqVJOuf6xY8eY/OF0Etou\ngqDyRG7/H0NHvcH3C+YAYLGYMXooWjzrxbkjiWw8HsP0RUvZumMnO8N/Qa/XY/T2J2zlBaoUUbi7\nwRvLNehMXg+89qlTp2jdujOnTh1CozmLwTANi93CrVg7JcqUZ/OGtVSvXt0p93k3q9XK9evXCQoK\nynbdF/Lnz8+u337HYrGg1+vTDUQVWWICsATHLFUii8XFxTFi9P/4fcdu/P28MSdaMFtsPNetPUuW\nr+LwJSOJXtXx+KQ/70wYwbChr+Ll40fcjVOOhAMwxJzCz+/ORA516tTB6+Z5EheOxlq2IR4/f0mL\nZ9pnuOho37696du3d7rtBQoUwHz1DNy8CH75IfocydcjyZcvX5pyzRrWZdvXX5LQazXo3PD4riuN\nW9Zx0k9JCOFqU3DMJnIaGAdkPPrW9Vzd+pShgQMHqhc8Uaqw47U3LyrQaHjwgUIp5Vjno0L1qsoz\nyF+5e5rUmHFvpJs6sVDJwur5vS+pEeptNUK9raoPq6fC3gxzWgxTp05V7jUGK15XjteQa8ro6ZO6\nv0Dh3OqLvVXUT6q++knVVw17FlQUKqHcc+dTO3bsUEopNePT6SpvYU+VO49eBeXSqYLFPdWEif/L\n8Lp2u10VL15RaTQfKEhWsEYZPXWqdGWTemW0URUoblTefp4qKSnJafeqlFLh4eHK1z+PMnoFKS/f\nIOkCmAOQ9Q+JnsIxXuO2FsC3wBu4dsC4q38Vmc5ut6sGTVop9wo9FF1+VdR4XeGeV1F6mXL3LqYM\nuYMV3WyK7krR7rQyuJuUzWZTS5cuUx5+eZSuwWjlUamjKlG2ooqJiVFKKfXlV18rd6OXMnj4KZN/\nHlWlbiM1dtyEh57i+17enfKBMgXmV941OypTYD71wUfT0pWxWq2qT/9BSmdwVzqDuwrt8pzTv++E\nEGnhhPoi/RQQ9zYGKAQMA2rgWI9jPdAFePg5PQUAhQoWxEt/50dv0oCHydOFEWUvzw/oR1zTUlS/\n+i3BZ2Yzc/kiVq1alaaMUmn/39BoNOm2PQqTyYQu8cqdDfGXcTfemWUpOSkZ7wBHK4DFbMfgZoP8\nhVFoMKcMHn9p8Cs81/VFYmK0xMRoadX8Wcb9b2KG142NjSUy8hRKvQosA75Er1Ns2g4Tp+j55U8d\n5qR4du/e7bR7jYmJoV3os9wqv4Ck5teIq7SMDp2f48aNG067hngizAGqprwvBKwE/IGXgEmuCupJ\ncPXqVf78cyfJTedCwYZQ/13wyQunXyTZ2ASLoQBoUuokUyEsFjMHDhygXbunCd/4I2+29OGDAU3Y\n++fveHt7s3fvXoaNGk9yg78wt4omsfA44qJuMvntNzEY/vu6jq+PHsn2n9cxa0RX/vhlAyOHD0lX\nRqfT8c3XXxB36yaxN6NZseTbbDkVuBBPmn/TL8KKY6XYVUBeHH1w3wY+B4rhmO5QPITOXbpQf8p7\nPBUXTzE9jDOb6DtogKvDyjb+2P4HlT6fgUajwZDLD58udfllyy+Ehoamlnl10CtM6/kJNd5qQGxk\nDCcWHKLH73OcFkO3bt14Z8rHWDf0xexXHtPBz5n01p1koXv353ivx3c07RnI3NFn0FjsuFsuY/D2\nS+3upNVqGfDCIFAGbHY7fZ7v8cA1OTw9PdHptOhVKEVMW2lfMJ4fLsC7o8y885mRgEANXl4aoqKi\nnHavp06dQmPMA7mbOzYENULnVZRjx45Rp450ZRAPrQzwV8r7zsBOoA3QGJgLjHVNWDmfm5sbymYF\nWzJo9aAUKB2UHAUnPwSS4fwqCKiB7s/e2LQGqlSvC9h5fdRw3n03bT64Z88eNHlbgZeji6oq9hKn\nfhyK2Wx+pIQDoHLlyg81vspoND7SdYQQWethWzj+yRPH4D9vZErcf61MmTKs3xLO6sohvJ2/Mp1H\njyNs0ruuDivbsKGI/nkfAHaLlRub93P+3Pk0ZUaNGEXY0AkkfBNF4C4Tv/38q9PGbwD4+Piwf/cf\njOtYkpcrXmLZvM95+aVBqfs/+mA69Sp2Zuarp/i+o53o8bBtgMLNlkR0dDQABw8eJLhOfaae1jH9\nghf1mjRn+/bt6a5lt9t57bVhFCtWkdq1Q3j55YF46Dawp1U8U6rA7ubw/RwrB/fbmD7ZTEKCY1C7\ns+TPnx9zzDmIj3BsSLyA+dbpB65rIsQ/6ABLyvumOFrJwdFVN49LInpCBAQEENqhI+5r2sLh+bCx\nL9i0UHw46Nzo1/s5il+diOeWytiu/Q7tF8HAY1B9CJPf/5AtW7akOV/hwoXRRP8J1pSpxqN+x8cv\nKMMHJidPnmTWrFksWbKE5GSZK0AIcX8moA/wG5CAo++tc5YBdj5Xd3cTmcg3bx6lzRWgfJpVV+7l\niildmRJqwoQJrg4rnSNHjqjCQe5KvUvqq1FZX7V582allFLdevVTmuen3JlScvAs1aRt+3TnadHi\naQWlFHysYJACgyrljVLd77wKeKD0bhrl5e2u2rXr6PR7mTb9U+Xhk0f5FH9GefjkVe9N+cjp1xBZ\ni6wfw7EDx+KxDYFEoFLK9jrA+fsdlAVc/avIEhaLRY0cPVZpPQIUxV5TtLqlaHxUubl7pU49u3Xr\nVoVXfkW/vQqv3IoazylKNVB+eQqo6Ojo1HPZ7Xb1XM8XlGdgSeVT/Bll8g5S69atu++1t2zZokx+\nQcpUs7fyKt1QVa5RVyUmJmb6PQshnIMsnBZ3FvAscAKYjWP6W5lpRLjE4BcHMOPHH0mo0xIVG4f7\ngoV069Yty+NISkpiyZIlREVFERISkq5V4YdVK7lyy8zRq1A2N1yKgUMXkyhSpAgAsfEJqLy5IeJv\nsNvAJ4i4+LSLEyql+OmnjcAnOB4EFwAU5xN8+OJ4LJ0KKxacgWS9iR7PPkedOtV58cUXnX6vQ157\nmebNGnP06FFKl55EhQoVnH4NkeONxtEldySOLlR/p2xvj6N7lchEer2eD6ZMxsvLh/c/nIH+2Eks\n13fx6Refps4qVapUKUi6AT8PgY6ToFF/AOLm9OGjqdN4+80wwDEmbuH8r/njjz+4fPkywcGfpH6v\n3Uu/wUNIeHoOlGsHSnH8+3Z88803DB48ONPvWwjxeHjYhKMfcA7HPOqtgVZ37bs9v6Ssw/EvLFww\nn9fHDCMmNoGn27biq1kL8PJ68JSoAiaFheHt5cXi1avx8/Hhg3XrKFeuXJbGkJSURO1GTTlpNmHJ\nWw7dO++xYOYXdOrUMbXMZ7NmEvC/ftSctpBKhfQcPJNEnXr1KVnSseJ19w7tWD/4FewmH9C7oYm5\nwbMTx6W5juPBgg3046FoF7ixA2LcSbQuYfT+IQzbG4m73sDEyRMYPnx4pt5z+fLlKV++fKZeQ+Ro\nvwG5AB8ci/7d9hUQ75KInkATx79Opw7tOHXqFE89NT31+wggT5489H6+J/O+XwZF76zpYy1SnXMX\nD6U5j0ajoWTJkly8eJFDhw6RL1+++47fiLp2BfJXu30gSbmqcvnylXuWFULkTA87Gf1c0jan3G8d\njr6PGpCTpLQAPZ62bdtG144tWTU2gWJ54LXZ7rgVeIa5C5a4OrTHxs8//8ynX3+KUopXXnwldSGq\nx8W8efN4edq3xI/c6Fj46sQfBH3djWvnz6aWyVeiGL4r30ZrMpJ0JILY5b/yctFgwiaGATDmf+OZ\nuuMolrDvQatF9/5AeuTRMm/ml2mupTV4oZr9AkE1QdlhXS24kR+YAezDZOrH/v070vzhIMSDpKxF\nIguSPOb1hSu0fLo9P1/SYOu/CBKiMX3SgtlTxqdpST548CD1GzXHHlAdlXSVEnn0zJk5g69mzSU+\nIYm+z3elaVNHr+unO3Zl0yU/zK1nwM2zmBY0Y/Xib2jSpImrblEI8S84o7542EHjfXAkE7dffe7x\nelySjcfe5k2b6Ns4keqlINAH3uuZzMaNG10d1mNj8+bNdO7RGWtzM7YWFrr07MKmTZtcHVYaUVFR\nWPKVu7PKboHyxNxIOzPUS/1f5GqvSSQdPYsl8grJa7bTvVv31P17Dx/B0qgz6HSg0WBr8iwHjh5L\ncw6lFFplAb+ULkwaLbpcVXH3+BX0FdEaehMa2pKIiAinTvsrRCZpA6wFjuCYGhfgRR7f8YA5jlKK\nzZs3M3PmTHbuvHdPthVLvqNtcQ90Q/wxjC/NyBe607Vr1zRlXhg0lJjSYcTWWU1cyA6OXPWkToOm\nfL0niG9PVeSZzs+zcuVKABbM/pK63hfQve2FcWZ1poSNlWRDiCdM9louOIcICAzkt4vuKJWERgNH\nz0NggJ+rw3psTP9yOg3fq0/lPo4xpVqdlulfTqd58+YujuyOkJAQdJNaQ63uUKA8hsWjadQ0bXzj\nxr6Or48Piz9Zga+3D+9s3ESZMnfWPQuu8BRbf1tGUkgn0Gpx37KEKk+l7bKk0WioElyHPbuHQfBH\ncPMg9tOLsQfVg2JvY4/eyqIlYaxct5PuXVoza+aMLLl/If6DHji6T83CkWDcntJIh2N8x88uiuuJ\nMujloXz7w0ZU3npw7m0mvj6c0SOHpSljMplYtfQ7rFYrOp3u9tPNNM6fO4+qXN/xQaPBbLZAuVcg\neAIACd5FmfDO+4SGhuLv78+Wn9ZkeD4hRM72X6fFFY+gX79+nLxZiPbvmRgyy0CP6SY+mPrlgw98\nQiil0OjuVEganXMX7XOGatWqMe/Lzwic+Sxur+WjkfEqi+enXedDo9HQukVLYi4msPnHjXTu0oc9\ne/ak7p/wxlhKxZxH16Eguk5FKHBiBx9PTr/+WdSVq3BmOyzOBZtCUZZ4LJVWgW8wFB0K/o1IyDuB\nRYtXsm/fvky/dyH+ozE4WjOGcmd6XHDMXuW8eZzFfR04cICF3y8nPvRPEhrOJqH9H4yfMJGbN+89\nB4xer09NDk6cOMHgl4bSs9cAfvrpJ+rWrY3hxDSwWyHpGrq4Y+Duf+dgg2+66W/vPp8Q4skiLRwu\n4OXlxe879vLdd99x69YtNr/dnEqVKj34wCfEy/1fpke/59BoHRXTb2O28e3sb9OUiYmJYd++ffj4\n+FC5cmWXVGJdunSmS5fO991vsVgICWnDpehXUe4/cebiWpo2fZrTpw8REBDA/v37OXnwBDb7ANDo\nuRj7FTt27KBVqztzMiiliIw8AfZdgDvYzKCpAdYYMAQ6FvCy3AA3P5I0BYiIiKBKlSpZcPdC/Gsl\ngfQLzTgWjfVxwvn9cLSePMWdMYUngMVAESACx2yLT9wMi2azmZiYGC5duoRbYGkwpPy4vQri5hnI\n9evX8fO7fyv7qVOnCK5RnzjTAJSuBD+s7Mtn0ydx8eIidi3zQykbnTp25sf175PoVQSMAZj+fI2B\no50/Y54QQjxOXDJPsXCetWvXqlbtW6qWz7RUa9euTbPv8OHDKn+h3Kp8nYIqX1F/1blbB2W1Wl0U\n6f0dP35ceXkXU3ir1Jevf331yy+/KKWU6tS5l8JjhsJfOV6ei1T9Bm3SnadYsfIKpig4rGCH0hty\nKUNAJUXZjxV5uym8qikqrlVoPdWyZcuy+jadwm63q/Hj31KengHKw8NXvfTSsMfyd5qTkPXrcJwE\nWqS8jwWKp7zvCxy65xH/zjwcMyqC42GaL451P0anbBsDvHeP41z9q3CqhQu/VQUKl1WBuQurV14d\noT777AtlcPdUBqOvKlSkjDL5BCmeWa94xaZoOlvlzl9UJScnZ3jOESPHKG3eMYqqyvEqsVGVKVdD\nKaXUzZs3U9fUWLdunapWu7F6qmpdNXXaJ8put2f6/QohMh9ZuA6HEFmqTZs2tGnT5p77+g3sRavX\n89N8cFHMSTamNNvJwoUL6d27d5pyU6dOZeH8eXj6+PDZp59RsWLFrAg9lb+/P2ZzFOivgTYXqHgs\n5rMEBgYCYLFYQWO86wgjVqst3XkWLvyaRo3aYLVOAHTUr1uXI6cPcfXkSDRaLXazDQ4NwMO9AAEB\nAVlzc042a9YcPpq6jATrbtAYmTu/K7lzT2HixDdcHZpwnpnAdKA/jtlOCuNYBPADIOwRz+0LNABu\nfwlYgVs4pmpvlLJtHhAOjH3Eaz12Dh8+zLp164iMjGTW3GUkllwChjzMWjwA6605WCvuBY9SnL/4\nMYUCZpKwayBRa85TpEQ51vy05r7T2d6WlJiMXZP7zgbdne5Svr6+qZtbt25N69atM+UehRDZm4zh\nENnOqROnqdYuDwAGo45yzX04fiLt7E6vvvoqYSOG0/bwfors2EadKlU4ePCgU+OwWCwsW7aMr776\niiNHjqTbHxQUxPBhQ/HU1MPNPgxPTX06hLZMTXwGD3oeEkdA4nhImoMmcTCDB/VId54hQ8Zg1Vmh\nfDnIE8jWXb9RangtBpnfp9Mfr6L39MJN14CCBU3UrVvXqfeYVVau3ERC8ijQFgNNPhLM41m16vGa\nmUw8sg+AH4BNgAn4Bfgi5fXpI567GHAN+Ab4C/ga8ATyALcXfLiS8jlHCQ8Pp0btRrzxZSSfLTlL\nYrICz/JgKkVS4anYMIJHKQBUviGcizzJpchTJCclceb4QZ566qkHXqNnz66YYqdB9DKI+w3T9cH0\nfyH9d5UQQtyPtHCIbKdipafYOu887d8oSWKMlX0ro3n29bTjFhZ+9SVL3KGhDkBhBUaOHMmGDRsy\nPHd4eDgbNm4iKNCfF198Mc3Tu7uZzWYaNm7NoVPJ2I1lUSPHsfT7ubRt2za1zKlTp7DZEskVZMVs\nXkbdunWYOXN66niTMW+MB4Mdcq2FK8dRdg1z5synV6/nU8+hlGL33zvx8dHSs94h9h7V8/ceM+UH\n1kaj0ZCrWkEKhRShWGI0S5f+jLu7+3/6mbpa3ryB6LSHud2+o+EwuXMHujQm4XQK+B8wCSiP44HX\nYRxjOB6VHqgGvALsAqaRviXjvt0CwsLCUt+HhIQQEhLihJCyxsuvjSWh5FeQN2XR0f294MIXUPR/\nkHQWlBXsSaA1Qszv+PrnRq//d1V/7dq1WbF8Aa//bzIJiYn0Gd2D0aMzd6FRIYTrhIeHEx4e7uow\nsgVXd3cTmejs2bOqdPkSKl/RAOXtZ1KvDBmcrq+wl1ar/vZAJXg6XqPdUPXr1cvwvHO+matMgQUU\nTcKUe7Xuqmip8urWrVv3LDt//nzlmTdEUd+maKAUFcNV7nzFUvfv2rVLefj7KY/enZT7My0VJh+F\nJlAFB9dXVqtVHTt2TGH0Vkw9p5inFG/uUeg9lYdHnjTXsdvtymhE7VqPUhdR9guoGlVQtSa3US+p\nj9SAhPeUZ0E/VahQCbV3797/+BN1vcjISBUYWFB5eD2njJ79lLdPbnXw4EFXh5WjkbVjOEw4uk0d\nwJFgxAH7gfGAhxPOnxc4c9fn+txZ7yNvyrZ8wNF7HOvqX8UjyVeotKL+QUVr5XiVmaLwrKwoPEZ5\neOVS9Ro2VZ4BZZRP4Q7K5B2k1q9f7+qQhRDZDDKGQzyJChcuzKH9Rzl9+jQ+Pj7kzZs3XZmylSow\n6OABPnVTnLPD51b49MWMZ0wZOXYcCV1XQYFgkoErSzqyaNEiBg0alK7s1atXMRsqgyalV6JXFW4e\nv5K6f+i4NzB8OBZTv2cBuPnSWyTO2cmBA8fYvXs30dHRaAqURwUUdBxQtBoYPdBr7OmuZbFAOUeP\nCDQaqFAG5k38mSvbo7i+7zxJUVrOJZYiJKQFp04dSR0jkp0UKlSIw4f3sHz5cqxWK6GhYRQqVOjB\nB4rsQI9jjY1qwAYciYAGRyvHeKA1jrEc1ke4xmXgHFAaOA40wzEQ/RCOcR1TUv678hGu8Vh6uk0r\n5q4ahaX8HEi6BBGfgrEpnPuQ8B3bqVGjBlu3buXKlSvUqPExRYsWdXXIQognkCQc/5HZbOaDKZPZ\n/9cOSpQqzxvjw/D29k5TZtWqVcz45mvc9G6MeWVItmqmf9zp9XpKly593/2//v4HTRs2IGT/ftz0\nekaFvZFuUPk/JcbHgl/h1M9W70LExd27t0eDBg3Qv9keS9AL4FEGtwsTqV03JHX/tajr6MuVTP3s\nVrkkie4HIekWZrOZsmXLorl4GHXhMBQoD4c2g81K4XJl01xHo9HQtHFdXhv/Bx9NUBw4CktWg928\niIjVcUABYAaOrumX2L17Ny1btszwPh9XuXPnZvDgwa4OQzjfABxT4lYj/WxUFYAtKWU+f8TrvAp8\nCxiAUzhmv9IBS4AXuDMtbo7yybQpXLnahx9XFQOdLwSOwKBOUqdaS2rWrAlAw4YNXRylEELkTJna\ntGS321Wn9q1Vm2APteglVK+G7qp29YrKbDanllm6bKnyKZhXlVg0XhWbM0Z55QpQv/76a6bGJR5N\n5+69lLFyJ8Xwk4pea5WHb5D6+++/71t+7tz5ytM7QGl1elWnfnN19erV1H0VgmsoU4Cfcje6K88A\nX6UJyKXAV+XKVUjFx8crpZSqXL2Owt1LkaukwiuXoukkVbNB83TXiYqKUu2ebqI8TW6qcKFAlT9/\nMaXVvqvAomCrAj8Fk5SnZwG1Y8cO5/9gRI5E1nWp+gUYlsH+4SllXMXVvwqn2LJliypespLy8c2j\n2rZ7Vt24ccPVIQkhcgicUF/k1CU/U34+mePChQtUfqokF6Ym4e7mWHut8kQvvliwgXr16gFQr2VT\nrg5sTEBHx5OlK5+voObOayyZtzDT4spJ4uLi2LJlC0opGjdunK71KDMkJCTQruOzbP9jJyaTJzM/\n/YhOnTpleIxSCrvdjk6nS7PdR+9OA5uVydiJAHoAhoB8/P33LgoUKADADz+soOeAISTWfxP8CmPa\n9CofTxzOwAH905zr0KFDtGjTFI27lVtXE+jTuy/hv/zFwYN/AkagAp6ecTRqVJo1a36QlXzFQ0n5\nd5IV/1iuAM2Bv++zvzKwGciVBbHcS6bWF85w9OhRXn55DBcuXKZp0/p8+OE7eHg83NCX6Oho1q1b\nh1KK1q1bZ8sul0II13JGfSFdqv4Dm82GXqdBf9ffmO5uWmy2O2soaDQaRyZym+KJ+kPQarWyaNEi\nIiMjqVmzJi1atHjwQSkuX75MzUYNiSvgmPfdc+QIdv229Z5jNTJy/PhxNm/ejLe3N506dcJkMmVY\nfuHCRezY/jdJXiOw248xdPgbNGvW7L4zVYHjd/rPZAPAYrPwDopAIBB4DjhaoVRqsgHQsWMHPo+N\n5d0PP8Fms/HamJcY8OIL6c4V2qUdzf5XhEYDShJ7PYl3qi1g0ezlNG7cmHXr1rFnzx5KlChBjx49\nnqh/YyLb8McxZe39XMOxSri4h9OnT1O5cl3M1nxACSLOHebChRdYuXLRA4+9cOEC1arVJyGhEqDD\naHyD3bu3UqRIkUyPWwgh7pZd/zpphWPaQx0wC8eAwLtl6hMrpRQtmtQjr+0v+tRLZv0BNzacLMiu\nvYdSnzqtWLGC3q8OJtd7/bEnmbn+xmzW/7CK+vXrZ1pcrnTjxg0++Phjzl25QsuGDflu3jwiduyg\nWGIie41GXhk7ljfGjycpKYlt27ZhtVqpX78+Xl5e6c7Ve9BAVnprMH7gWPQtadS7hMYq5n351UPH\nEx4eTtv2XVCFQ9EmRFLQ4zq7d/x6z+vdFhBUkOigNWByTLHrcbEzH01s+p/GFeT39eWTmBjq4GiH\n7AHsMJg4evQgxYoVe+jzKKXQ6XV8Ef8sbkZHYjO3/07K6Zry1VcP//MQ4p+ysIXDjmOmqKv32e8Y\ngOS6daEe2xYOpRSly1Tl5LkyYBoASRsgaR1aTpCYGPfABft69x7Et4v8sdkmA6DTvkWHDqdYunRe\nVoQvhMghntQWDh2ORaKaARdwzLn+I47pD7OERqNh2cr1dGjflv7zDpMrXyHW/bQ6TRN3hw4d0Ov1\nfDZ3FnqdntHLVuTYZCM2NpaqdetxqWpdLE9VYdn/JhBw5SITzGb0QOOEBMa//TZ9+/enedsWxLkl\nonPXY7uczPbw38mfP3+a850+F4lmYOfUz5oGNTj91bJ/FdOLLw0nofosKNIelOLsti7MmjWLoUOH\n3veYpKR4cMuX+tmqzU98fPy/uu5tX8yfT8/QUDoDJ9DyF4FYrRVYsGABEyZM+FfnMnjo+GvlOWp1\nK0pijIXDm65StuXj+QeSEPexADDfY7vC0S9Q3MO5c+c4G3ke/HeDRg+GJmAOR6O4Z8tq+uMvY7M2\nT/0zwWarzrlzv2dy1EIIkV52TDhqAidxzDgC8D3QnixMOACGvToIy8W9jKqVwMbTifR7visbf9mW\nphJo164d7dq1y8qwXOLHH38kqkAxLFMcT9yT3Qx4jR2U+o/LF3DTagl7503cgr0InfkcGo2GP97Y\nxMg3RrFo7rdpzte4dh0OfPEtqllKgvbFtzSq0+hfxRR1/Ro8VcnxQaMhybsSl69k1KsDOoR24odN\nA0gKmAzJx3CL/Y42bX79V9e9rUqVKsThwVxsOB7wVkOL4p9PUmNjY/npp5+w2Ww0a9aMgICANPs1\nGg25/AvxTb+/+PHNk9y6FAs2HV26dPlPcQnhAvNxJBYZPR2TR+73oNPp0GoAbKRW1yqazp2ffaiE\no1WrhuzcOY2EhCaAFpPpI1q1apKJEQshxL1lx4SjAI751m87D9TKygAuX77MypUrODc6GU8DDKyV\nRIVPD7Jr1y5q166dlaE8FpKSklC+d3XBrhNCBLAbx6T4W3Q6ShQvzsWrl8jbsUjqOIMCTYpxetLh\ndOcbP/Z1jvQ7zqqgqgA806kDE19/41/F1LRpE1bvnUByjS8hPhLT2dk0azo7w2Nmz/oUj9dGsXZd\nKAH+AXw6ewnly5e/b3mlFNu2bSMqKoqaNWumaalp1SoUNAbweBosp8D6J3p9MjkpwSIAACAASURB\nVN26fZJa5urVqwQH1+HWLS8c/auHsWvX9nT9qzdsWE3Dhk25ddaO1apl6NBXaN68+b/6eQjhQn1c\nHUB2lT9/fsqVK8O+Q63B9CIkrSLAz8z8+XMe6vgRI4Zw6lQEc+bkQylF5859GDduTCZHLYQQ6WXH\nhMPlfUmSkpLwMOjwSPnp6bTgZ9KSlJTk2sCymM1mY+vWrWg0GrRbN8Oir+GpKhg/m0Kt5i3Zevok\n3126RPWqVVm7ZAnzF85n1pz5lGhfHq2bjqNf/0Xz4PTzw7u5ubF0wULivnCsgXGvcRcnT55ky5Yt\n+Pj40L59e4zGtL0y5sz8lK49+vHT9wF4eHozZfIkmjVrluH9GI1GZs2c8VD3brfbeSa0G+HbDqAz\nlsAeN4D1635I7TZ37PhpyL0ITG1B2eFSE+rUhjJlyqSeY8KEt7lypRgWi2MmrISE9QwdOpoVKxan\nudZTTz3F+fNnOHnyJIGBgem6oAkhco7ExESMRiNms5lhw8awb98+MPSHhBWAF4kJccTHx6eO31iz\nZg3TZ3yDm5uesaNfTrPmhk6n46uvPuHzz6eilEKvz45VvhAiJ8iO3z4XgLuXIC6Eo5UjjbCwsNT3\nISEhTl10r3DhwhQpVpIha4/Qt5qF9cd1XE02Ub16dadd43FnsVhoEdqB3afPos1XCGWzUWn1t8R9\nN5MWIY34+L3J6aZtHDl8JPsO/s2cvFPQ6rTUq1+Pd996977XuN8A719//ZU2T3cGr6fRWiOYNHka\nO//4Jc31vL29WffjUpRSmTJz0/Llywnffpb4/PtBawDDjzzX40Uiz97u2WcF9xqOtxotGGty8eKq\nNPGcOROJxXKnNcNmK0pk5F/3vJ6HhwcVK1Z0+n2IJ0d4eDjh4eGuDkPcR2RkJK1bd+bYsf0YDB5U\nqFCF/fvNoCkLpump5dzULiIiIvD392flypX06PUKCd7vgT2JX9t0ZuOGH9KNF3yY7ldCCCHS0uNY\nRbYojhVl9wHl/lEm0xdBuX79unq+W0dVsUwRFdqmmYqIiMj0az5OZs2apUx1GyuOmRWn7IqPF6hy\n1Ws+1LFRUVHq6tWrym63/6drlyhVRVFwpaKcUpS1K4+gZ9SMGTP+07n+qw8++EC55R2qqKgcr/K3\nlJvBlLq/Zu0mCu+BiqIWRcETCm2QcncPUsuWLUst8/77HyqTqayCjxRMUx4eVdTIkWOz9D7Ek4vH\noLX4MeHqX4VSSqkKFWorrfZNBUkK/lCgU3BSQYDC54jCXym89ysPk7+KiopSSilVu25LRYFlju/C\nckqR51PVqXMvpZRS33+/WNWq00LVrddKrVmzxpW3JoTI5nBCfeGqaQgfhRV4BdgIHAYWk8UDxgEC\nAwOZ/91y/j4awYq1m564ec0jIiJICK4Pt5voa4VwIfLsQx0bEBBArly5/nPLw/XrV8DoGN+BRkOi\npiqXL99vxs3MUaNGDdziV4DlPCiFNvoTKlWukbq/SqUyELcEIoxwvgLYY0lOLsGuXbtTywwfPpRu\n3Rqh041FpxtN69ZleeedsCy9DyGE61ksFg4d2oXdPhpHtVwJxxj7QGAqxNSDmKcwmBsyZ/aXqZNL\nOP4OuPt7VIMClixZSr/+o9h5ahDbj/elS9f+/PTTT1l8V0IIcUd2TDgA1gNlgJLAZBfH8kSqWbMm\nnuuWwPUroBT6+TOoVr3Ggw90gkYNQzDcegvsyWA+gSlpLiEh6ceCZKYaNWrg6WGDYyXgsC/q6vs8\n36Nj6v7vv18KajDwLjAJqIGb2ymKF7+zBodOp2P27C+Jj48lLu4Wy5d/h7u7e5behxDC9fR6PV5e\nAcDtLpUKvT437u6tATf0+o7kCojl8KE9dOv2bOpxo0YMxBQzBG59Bze/wSMujCGvvsC0T+aQYPoY\nPDuA17MkerzDp5/NdcGdCSGEQ3YcwyEeA+3atWPoX3/xfuMSaA3ulCxZiu9Wr8qSa8+b+zmdOvfi\n13Bv3AwevDdl8gMHhDvb4sWLiY/zAzUQVDKKaN56azJDhrwGkDI408yd/8USKFw4kL59+6Y7lyQZ\nQjzZNBoN8+Z9Rc+eoWg0zdBoDtKwYV2aNKnP5s0rKFo0P2+9tYdcuXKlOa5Tp47o9Tqmz/gGvV7H\n62MW07BhQ9z0H4BKvlNQJaHXyzgOIYTrZNeVxh8kpcuZyGzx8fHEx8c/Uhep/8pms6HVap1+3Yc5\n78cff8zrr6/EbH46ZUsi7u7vOxYPBD76aCrjxr1HUlJhNJpkvLwucPToAZlhSjw2snCl8cfdY1Nf\nHD16lB07dpA3b15atGiBVvvfOiFs3LiRDp16k2h8E5QZ94Qw3p30P/r27Yu/v7+ToxZC5HTOqC+y\na5cq8Zjw9PQkd+7cWZ5sgKNLkjOve/36derVa4bBYMTLK4A5c765b9mmTZui0x3AMX9BLO7u62ja\ntEXq/qpVK6NUIjqdEZ0ukeLFSxIYGOi0WIUQ2dvmzZt57bXhvPXW20RFRQFQtmxZ+vTpQ6tWrTJM\nNn777TdGjBjDO+9M4vr16+n2t2zZkjU/LuKZBr8RqJuKVufLm5PXUrJURY4cyfIhj0IIkWOfbj02\nT6xE9tGkSVu2bfPAYhkInMdkGsumTSuoW7fuPcuvWbOGgQNf49ataJo2bcaCBbPx8fEBoEiRMkRG\ndgVqAHZMpreZPn0Q/fv3z7L7ESIj0sKRKsvri9mz5/Daa+NJSOiMm9s5cuXaz8GDuzNsfdiyZQsf\nfvgVFy6c5ejR0ySrV3HTRxDou4WDB/685wONGTNmMGbCehK9VoNGhyb+c6qXWs6fO37OzNsTQuQw\n0sIhcpSEhAR+++03du7cic1my/Lrb9/+GxZLL8ANKIbZHMLWrVvvW95oNOLp54/R2xcvP780c91f\nv34VKJXySUtSUjEuX76cmeELIbKJsWPDSEj4CHgBiyWMqKhSTJ069b7fEVu2bKFt226sW9eM/fsv\nkKxdBu7jsOhmER1Tn7lz597zuGPHz5CoGoPG8d2kDM04GxGROTclhBAZkIRDPBbOnz9PmUpVaTd4\nJM269aF+s5ZZvnJ7QEAu4ETKJzvu7qfJkyfPPcsePnyY9p26c6L4m0S1+JkfdsXQq9+g1P316tXH\nzW0pYAMuYjRuTbcYlxDiyZSUlAAEpXy6RHLyXqZM+YaiRcsxcOAQ/tni8uGHX5GYOAnoDyjQFkjd\nZ7EVIDY27p7XqVunOp58B/ZoUHbckr+kevXgTLknIYTIiCQcOdDly5dp1rAhvp6elCtRgu3bt9+3\n7Px5c6lb8ynq1CjP/Hlzsy7Ifxg4ZDiXancn5oM/ifvkIPusPnz48dQsjWHOnM8xmd7FZPoQL6/h\nlC/vwXPPPXfPshs3bsRaoisUexrc/UmqOJI1q1em7l+06BuCg+PQap/F3X0E778/wamr3Qshsq+O\nHTvi4fEOjjFgo4DBmM3nSE6O4Ntvf2Pp0qVpyjsSkNstqB0gaSDYjoJ1PUbtbJ5+uu09r9O9e3f6\n9GyM4VphjDfyUrbQH8z95rNMvDMhhLi3nNp/94kew1G9cmVMhw9Ty2olEtjk5cXfR45QsGDBNOWW\nLF7MmOH9mPlKAgADPzMx+cPZdO3WLctjLlk5mFN9voAyNR0b1s+ka+xOvp87O0vjOHr0KL/99hsB\nAQG0b98eNze3e5abNWsWQz5cTUJQXdgzCbwC0MRHcWjPn5Qrd2fhe7PZjJubm0sG1QuRERnDkSrL\n64vk5GSGDBnFjz+u58qVK9jth4BCKXvf5PXXLbz77jup5Tdt2kT79s+TmPghoNDph+LtZSIoKBfT\np79DmzZtMrzezZs3SUhIIF++fPJdJIT412QMxxPIYrFw7NgxLl26dM/9N2/e5NCRIzSxWvECygOF\nNRr++OOPdGUXLfiK93on0DwYmgfD5F4JfLdwZubewH0EV66EYcs8sNshKQHT799Tu2rlLI+jbNmy\nDBgwgM6dO9832QDo0qUL1shf4dA0mH8MFkegBn7AM13TtogYDAap4IUQacTGxuLn503z5k0oXLgo\nGs2alD1JeHpuokyZUmnKN2/enBUr5tG48TJCQpax4oe5REef48SJvx6YbAD4+fmRP39++S4SQriM\nLPyXjURGRhLSuhVRifGYo2/Rq1cvvpw2PU0lYjKZUEAM4ItjBEG0Uvj5+aU7n9HDRPRdXX+j4xzb\nXOGLaR9xtPXTnHyhMLbkRFq1bs0rL7/kklgexoYNG1BWE9RvDYH5HBtbv8CpT17Gbrf/5/nzhRA5\n261bt6hSpS5XrzbEYimP0bgRD48J6PXzsdku07RpbXr27JnuuJYtW9KyZUsXRCyEEI9OEo5spMeA\n/tzs3hKfcS9jvxXL4pDnabJkCV27dk0tYzAYePutt/jw7bcpk5TEZaOR0sHBNGnSJN35ho4YR7s2\nW7gZ7+hS9dEKE6vXjcuy+7lbQEAAe//YRkREBAaDIV33r8fNuXPnsNvLwv7tkBgHHl7w53ryFi6W\nLtmwWq1cuXKFoKAgWVVciCfcsmXLiI4uh8UyA4CkpBaYTA1ZvXoKPj4+VK5cWVoihBA5jiQc2cjB\nvw9g/Ho8AFpfb1RoU/b9vT9NwgEwauxYqgQHs3PnTgoWLEjPnj3TTNl6W+3atdmw6TfmzvkKpRQb\nNg0iONh1M5hotVqKFy/usuuDY3BmVFQUXl5eGI3G+5arVasWBsPHJEZXh+5lIFcBtJeOsGzzxjTl\nfv/9d54O7UKyxY7Gbua7hfN45pl2mX0bQojHVFJSEnb73ett+JOcnEjt2rUxGAwui0sIITKT9PvI\nRoqXLEHyml8AUEnJaDdtp0yp0vcs27x5c8aNG0efPn3Q6++fVwYHBzPjs5l8+vnXLk02nC0pKYk+\nfQfj55+fAgXLsGTJ0gcec/78ecqVC6ZgwZL4+ATw/vsf3bdsgwYNmDRpLG5sRp94k0KWaPbu+D3N\nIoGJiYm0bd+ZmzVnkfjcZRKab6D7833vO/5GCJHztWnTBr1+HbAA2AP0BnLTsGErLBaLa4MTQohM\nklPbbXPkLFVHjhyhUcsW2AvkxnzpKk3q1GP5wm/v2XrxpOv3wst8v+IcicYZYIvEI/5ZNm1cRr16\n9e57TO3aTdm9uyo220jgIiZTB1av/uae3dFuM5vNxMXF4e/vn64bxLFjx6jesC1xnU6mbvPd2Igf\nvp6Y4TmFyAoyS1WqLK8vdu3aRa1azVEqP9AUGIeX1zPMnz+WDh06ZGksQgjxIM6oL6RLVTZSrlw5\nTh48xL59+6Sv7wP8+OMaEo2/gL4I6IuQmDyAtWvXZ5hw7Nv3JzbbFzj+nyqA2dyGXbt2ZZgcGAwG\nAgIC7rkvb968WOOvw83j4FcaEi5jvn6UQoUK3bO8EOKR6YDdwHmgHRAALAaKABHAs8BNVwV3m+O7\nOx6ltnG7GlaqONHR0a4NTAghMol0qcpmfHx8aNiwIVWqVJFkIwNe3j5gPZ362aA5g7+/b4bH5M5d\nELg9fbAFd/c9j5Qc+Pr6MmP6VDzW1sfnl6cxrarG2FHDKFWq1IMPFkL8F0OAw8DtJouxwCagNPBz\nymeXMxgM1KjREDe3ccAN4GeU2kzDhg3vWT45OZkvv/ySiRMnsnnz5iyNVQghnCGn/sWaI7tUiYe3\nevVqunXvT5JbP9w0keTy2s3f+3fg7+9/32O2bdtG69Yd0GqrY7dHUK9eWdauXfbIXdZOnDjB4cOH\nKVGiBBUqVHikcwnhLDmwS1VBYC4wCRiOo4XjKNAIuALkBcKBsv84ziX1xdmzZ+nY8XkOHtxLrlz5\n+eabT6lXrx6XLl0if/78eHh4AI5um3XrNuPIET2JiRXx8FjJO++MYNiw17I8ZiHEk8kZ9UVOqmzu\nJgmHYPfu3axduw5fXx969+6dYbJx24ULF9ixYwcBAQE0atRI1tMQOVYOTDiWAu8CPsBIHAlHNHD7\nf3wNjuaEf34RZHl9ERERQb16Tbl1S4vVepPq1SsxfPjLPP98fzQaLzSaRJYv/5YWLVqwYsUKevWa\nTFzcMhydEiIxGFqQmBgj309CiCwhCcf9ScIhhBAZyGEJx9NAa+BlIAQYQfqEAxwJxz8HXWV5fdG4\ncVt+/TUOpQ7haHDZi06nxWZbAlQD/sDL60UuXDjFihUreOWVVcTFfZJytBWdrgzx8TGyro8QIkvI\noHEhhBAC6gLPAG0AI45WjgXc6Up1GcgHXL3XwWFhYanvQ0JCCAkJydRgDx8+jFLRwDogP7AKm+0z\nHMkGQB202lycPn2aRo0aodQIYANQGTe3z6hRo5EkG0KITBMeHk54eLhTz5lTnm79k7RwCCFEBnJY\nC8fdGnGnS9X7QBQwBceAcT/SDxzP8vqicuWa/P13ArAmZcslHNPj/goUBk5hNLbl3LkTBAUFsXXr\nVvr2fZVr1y5Rt259Fi6cSWBgYJbGLIR4ckkLhxBCCJHe7QziPWAJ8AJ3psV1uSFDBvHCCy8D+4HK\nwBlA4e7eCqOxAmbzIT755COCgoIAx0KjJ0/uc2HEQgjxaCThEEIIkZP8mvICx5iNZi6MJY3k5GRW\nrVrFjRs30Ou1WK09AC8gEaNRR+HChTh58ncCAvJSrFgRV4crhBBOkxOb00G6VAkhRIZycJeqfytL\n6ouEhARq1WrEmTM2lMqN1fo7ABqNEUjGxyeAqKgO2O29gT14eo7h8OG/KFy4cKbHJoQQGXFGfSFz\n6gkhhBCZbPbs2Zw6ZSQ+fgoJCSMxm0fg7x8EmNHrS3Lt2hXs9hcBd6AuOl01/vzzTxdHLYQQziEJ\nhxBCCJHJLl26TGJice48JCzFlSuXSU6eSHz8GBzDTs6n7DNjt59JHcMhhBDZnSQcQgghRCYLCWmE\nybQZuAiYMRgWotW6AUUBN6AX0A03tzfx9Hyexo2r0qhRIxdGLIQQziMJhxBCCJHJWrRowaRJYzEa\nX0anC6VePQ1+fp7A7yklymIwWBk7tjTz54excuX3t/tNCyFEtpdTv81k0LgQQmRABo2nytL6QimF\nzWZDr9fz119/0bJlO+Ljk1DKzJw5X9O9e7csi0UIIR6GM+qLnFrZSMIhhBAZkIQjlUvrC5vNxpUr\nVwgMDJTVw4UQjyWZpUoIIYTIxuLj47l06RLR0dGuDkUIITKNJBxCCCGEC2zZsoUCBYrTpMlzFCtW\nhmnTZrg6JCGEyBQ5tTldulQJIUQGpEtVKpfUF1arlcDAfMTEjAWCgct4eLzK7t2/Ur58+SyPRwgh\n7ke6VAkhhBDZQHJyMsePH+fGjRsAXLt2DbPZjiPZAMiLm1s5jh496rIYhRAis0jCIYQQQjhJbGws\nc+fO5YsvviAiIgKA/fv3U7BgcapVa0y+fIWZMuUDgoKC0OsB9qUceQ2r9ShlypRxUeRCCJF5cmpz\nunSpEi6nlOLChQu4u7uTK1cuV4cjRBrSpSqV0+qLqKgoSpUqT0yMBjDg7h5LePhPhIZ24+LFUCAE\nuAYMZfnyufj4+BAa2hWdLi9m80Xeems8o0YNd0osQgjhLDIt7v1JwiFc6ubNm4Q+3ZzDhw5ittrp\n2KEjX3+zEJ1O5+rQhAAk4biL0+qLWrXq8+ef54BngAhgK5UqleHAgb9Qajl3ftzvU6jQBSIjT3Pj\nxg1OnDhBgQIFKFiwoFPiEEIIZ5KE4/4k4RAu9WLfHnBmGV/2MJNkgTafmegyaDKvvPqaq0MTApCE\n4y5OqS+UUuj17tjtMwC/lK0f4O9/nsTERJKSRgJVgDhgKAZDLMnJCY98XSGEyGxP6qDxMOA8sDfl\n1cql0QhxD3/t3smL9czotODpDj2rJ/DXrt9dHZYQIpMopXDUyW53bdVSsWJ5Ro8eCrwLjAFeAvzI\nkycfe/bscUGkQgiR9bJjwqGAj4GqKa8Nrg1HiPSKlyjFxiOO7lN2O2w6ZqR4SZnqUoicSqvV0qNH\nb9zcPgb+Blbi5naYuXNnExYWRufOHTAYLmAw6IGzREf70rBhG4YMGeniyIUQIvNlx+b0iTjapD/K\noIx0qRIuFRkZSZOGtcnrGU9Mgh2/fKXZsHkrJpPJ1aEJAUiXqrs4rb6wWCyEhb3NunU/U6BAXqZO\nfY9SpUql7j906BDBwbVITh4GFAESMJneZcuWH6lZs6ZTYhBCCGd7UsdwTAT6AreA3cAI4OY/ykjC\nIVwuLi6OnTt3YjAYqF27Nm5ubg8+SIgsIglHqiyrL65du0ahQiVITv44dZuPz9fMnj2Kzp07Z0kM\nQgjxbzmjvtA7JxSn2wTkvcf2/wFfAG+lfH4bR0vHC/8sGBYWlvo+JCSEkJAQZ8coRIa8vLxo2rSp\nq8MQAoDw8HDCw8NdHcYTYe3atSxfvorAQD+GDx9Gvnz5AAgMDMTX15erV3cAtYELWCwnqFSpkkvj\nFUKIzJbdn24VBVYDFf+xXVo4hBAiA9LCkcqp9cXMmTMZNmwcCQk10etv4u9/hoMH95I7d24A9u3b\nR4sWTxMXl4DdbmbWrK/o2bOH064vhBDO9qR2qcoHXEp5PwyoATz3jzKScAghRAYk4Ujl1PoiT55C\nXL3aDigAgMGwinff7cqIESNSy9hsNq5cuUJAQABGo9Fp1xZCiMyQk7tUZWQKjsnMFXAGGOjacIQQ\nQgiH5OQkwCP1s81mJDExMU0ZnU5H/vz5szgyIYRwnew4LW4voBJQGQgFrrg2HCGEEMKhZ8/nMJnW\n4Fgu6gDu7n8TGhrq6rCEEMKlsmMLhxBCCPFYmjr1Qzw8PFi+/Ef8/HyZNu1HKlSo4OqwhBDCpXJq\n/10ZwyGEEBmQMRypsqS++Omnn5g69XM0Gg2jRr1G48aNM/2aQgjhDM6oL7JjlyohhBDiboWALcAh\n4CDwWsr2ABzTrB8HfgL8XBHchg0bCA3tzoYNRtavN9C2bSd++eUXV4QihBAukVOfbkkLhxBCZCCH\ntXDkTXntA7yAPTjG+PUFrgPvA2MAf2DsP47N1PrCYrHQoEEzdu4sCASnbN1B27ZW1qz5IdOuK4QQ\nziItHEIIIQRcxpFsAMQBR3DMS/sMMC9l+zwcSUiWOXfuHKVLV2DXrr2kras12O3yUEwI8eSQQeNC\nCCFykqJAVWAnkIc7MxleSfmcZZ5//gXOnSuK3V4HWJGyVeHhsYlhwxZnZShCCOFSknAIIYTIKbyA\n5cAQIPYf+1TKK8scPHgQm+15IBBHC8dGjMYkli5dQPPmzbMyFCGEcClJOIQQQuQEbjiSjQXAypRt\nV3CM7bgM5AOu3uvAsLCw1PchISGEhIQ4JaCSJUtx48YhlGoIlALCsdkUe/bspW3btk65hhBCOFt4\neDjh4eFOPWdOGTD4TzJoXAghMpDDBo1rcIzRiAKG3bX9/ZRtU3AMFvcjCweNnzx5knLlKmO1+gKJ\nOIaVlKNp0wQ2b16bKdcUQghnk0HjQgghBNQDegKNgb0pr1bAe0BzHNPiNkn5nGVKlixJaOgz6HS5\ngW5AJwyGc5QuXTwrwxBCCJfLKU+3/klaOIQQIgM5rIXjUWRqfXH58mVq1KhLTIwepezkzu3Gn3/+\nTkBAQKZdUwghnMkZ9UVOrWwk4RBCiAxIwpEq0+uLuLg4tm3bhlarpUGDBnh4eGTq9YQQwpkk4bg/\nSTiEECIDknCkkvpCCCEyIGM4hBBCCCGEEI81STiEEEIIIYQQmUYSDiGEEEIIIUSmkYRDCCGEEEII\nkWkk4RBCCCGEEEJkGkk4hBBC/L+9ew+Xo6wPOP4NSaBNELkEgiRKIAE0RbmZiIASRDCJVi4iRSwo\nWEutFyxSbkUT9KGCtgJWwDYUAl6wPliRIvAQgQjegAqBcA9ohEC4SIwSCCWQ0z9+M8/OGXb37Nnd\n2ZlzzvfzPPuc2ZnZ3d/77p55573NSJJUGCsckiRJkgpjhUOSJElSYaxwSJIkSSqMFQ5JkiRJhbHC\nIUmSJKkwVjgkSZIkFcYKhyRJkqTCWOGQJEmSVBgrHJIkSZIKY4VDkiRJUmGscEiSJEkqjBUOSZIk\nSYWxwiFJkiSpMFY4JEmSJBXGCockSZKkwljhkCRJklQYKxySJEmSCmOFQ5IkSVJhqlrh+CBwL/AK\nsHtu26nAMuAB4MAexyVJGlpmE+XFMuDkkmORpBGpqhWOpcAhwM259dOBv0r+zgYuoLppKMTixYvL\nDqEwpm1oMm2qsNHAN4jyYjrwIeBNpUbUgqr97qoWDxhTK6oWDxhTK6oWT7dU9WT9AeChOusPAi4H\n1gHLgYeBmb0Lq3zD9YcIpm2oMm2qsJlEObGcKDe+R5QjlVa1313V4gFjakXV4gFjakXV4umWqlY4\nGtkGWJF5vgKYVFIskqRqmwQ8lnlumSFJJRhT4mcvAraus/404H8G8T593QlHkjTMWD5IUgWMKjuA\nAdwEfA64I3l+SvL3rOTvdcA84Nbc6x4GphYenSQNXY8A08oOomB7AvOJORwQFx1ZD5yd2cfyQpKa\nG/blxU3AHpnn04ElwIbAdkQGVL3SJEkqxxiinJhClBtLGAKTxiVJvXEIMe52LfAkcG1m22lEi9QD\nwHt6H5okaQiZAzxIlBunlhyLJEmSJEmSFDYnJp4/BFwPbNpgv2Y3ffo0cD9wD/3H9JatG2mDmP+y\nPnm/qug0bV8lvrO7gP8GXltYpK1r5cZiX0+23wXsNsjXlqndtL2eGBJ5L/H/9Zliw2xLJ98bxD0e\n7mRwF7nolU7StilwBfF/dh8xD2Iouhh4irivUz0HEWm/E/g18K7MtuXA3cm223oYU2oG8DLwgcy6\nIo4VncSznHLyaBbwx+Rz7wROz2wrI4/y8Xw+s2055f2OZiWfew+wOLO+qDKnk5iW0/18GiieE6l9\nZ0uJ33d6PlJWHjWLaTnl/JYmEPOllxDf20cz26p+/tI1XwFOSpZPpjaRPGs00Y0+BRhL//G7+xEn\nvmOT51sWFWgbOk0bxAnfdcBvqVaFo9O0HUDtcs5nNXh9Lw30PQDMBa5JGfiqGwAADSFJREFUlt8G\n/GoQry1TJ2nbGtg1Wd6YGNIyXNKWOgH4DnBVYVG2p9O0XQocmyyPoRqV+na8g6hINSpIx2eW30zk\nWaqo4+ZAMUF8fzcCV1M7wS/qWNFuPFBeHs2i/v9cWXnUKB4oL482JRp7JifPJyR/iyxz2o0Jismn\nVn7bqfcBP0mWy8yjRjFBeb+l+cCXk+UJwLNEuTDofBpq9+HIej9RMJL8PbjOPs1u+vQJIhPXJc+f\nKSrQNnSaNoCvUTuxr5JO07aI6LWBuDrZ5PyLe6yVG4tl03wrceDdusXXlqndtE0k5l4tSdavIVrL\ntyk23EHpJG0Qv7u5wEVU78IVnaTttUQBdHGy7WWi9XYougX4Q5Ptz2eWNwZ+n9texPc6UEwQPe9X\n0L9MKupY0W48qbLyqN7nlplHzfKhjDw6EvgBtfuWpb/tIsucdmNKdTufWvneUkcSN5WGcvOoUUyp\nMn5LK4FNkuVNiArHy7SRT0O5wjGR6AYi+Tuxzj7Nbvq0A/BOomVvMfDWQqJsT6dpOyh5fndRAXag\n07RlHUutlbYsrcTaaJ9tWnhtmdpNW74SOIVoQclfvrpMnXxvAOcA/0it8lslnXxv2xEnlpcQlyNf\nAIwrLNLyHUxUhq+l/7C/PqJ18X+Bj/cwnknE8fvCTBzp+jKOFY3iSZfLyKM+YC9iONw1xNUrobw8\nahRPuq2MPNqBaA2/Kfnso5L1Zd4Is1FMUF4+QRzf3kNUhqAaNwvNxwTl5dEC4C+AJ4jf+PHJ+kHn\nU5k3/mtFo5sD/lPueR/1b/DU7KZPY4DNiPHJM4DvA9u3EWO7ikrbnxNX8jogs67XLbBFfm/Z93oJ\n+O7gQuu6Vm8sVrVW8Fa0m7bs6zYmWkePJ3o6qqLdtI0iurqfJsbSzupiTN3Syfc2Btgd+BRwO3Au\ncf+jL3Qtumq5Mnm8A/gWsFOyfm+iZW9L4nj2ANESWLQ0v/uI7yf9jsq6gWGjeKC8PLqDGDL8AnEF\nsiuBHXvwue3EU1YejSX+j/cnTl5/STSulnkjzEYxLQP2IU5oe51PAH8J/AxYnTyvws1C8zFBeb+l\n04jRCrOI+xUtAnZp542qXuE4oMm2p4iT2ieB1xEnAHmPEweC1OupdeetICYdQxSs64EtiO6iXigq\nbVOJFuW7kvWTiQmRMxu8TxGK/N4gJi3NJQ5cZRso1nr7TE72GdvCa8vUbtoeT5bHEi003yYK4Srp\nJG0fIIYkzQX+jOhmvgw4uqhgB6mTtI1K9r09WX8FtRuuDme3EOVhWgasTNY/A/yQOH72onDfgxia\nADFeeg4xXKGV77SX8VxFeXn0XGb5WuACouV8BeXkUaN4VlFeHj1GDFlamzxuJk4Sy8qjZjEtIyob\n0Pt8AjiC/kOXyvpfy8rHBOX9lvYCzkyWHyHmkuxEub+lnvsKtVnxp1B/8nCzmz4dB5yRLO8IPFpU\noG3oNG1ZVZw03knaZhMTzybUeV0ZWvkeshN096Q2QbfqNyXrJG2jiJPwcwqPsj2dpC1rX6p3lapO\n03YztRba+VTrCn6DNYXGkyGnUmux353IM4jW19cky+OBnwMH9iimrEuAQ5PlIo8V7cRTZh5NpPa9\nzSTGkEN5edQonjLz6I3E8JvRSRxLiaFeRZc57cRUZD41iwdiztqzxMiQVJl51CimMn9LXwPmJcsT\niUrF5lT//KWrNid+vPnLq24D/DizX6ObPo0lutCXEj0As4oNd1A6TVvWb6hWhaPTtC0Dfkft0nEX\nFBxvK+rFelzySH0j2X4XcXLT7LVV0m7a9iF6DZdQ+65m9yDewejke0vtS/WuUgWdpW0XooejSpee\nbsflRMvpS0Tr6rH0z4OTiMs83km0FM5I1m9P/G7Ty0B28/9yoJiysif4UMyxot14ysyjTyafuQT4\nBf0v21xGHjWKp+zf0YlE49xS+s9PKqrMaTemovKplXg+Qv1h2WXmUb2YtqO839IEolHtLuJ7OzLz\n2qqfv0iSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSRq7RZQcgDWNriLuWpnd9X09cx/r+\n0iKSJEnqsQ3KDkAqyUKiAnBRnW1nJ9s6vYN0X/JIbQ1c3eF7SpIkDSlWODRS9RF31TwcGJdZPwY4\nGniU/pWFbniauJunJKn7FhKNReuBdcAK4FLgdSXGNFxNAz6ePLbKbZsOHNHziFRpVjg0kt0NLCMq\nHan3AmuBxcCozPpjgPuSbQ8Cn81tn5a8Zi3wAPC+Op+3Hjg08/ysZN8XgN8SPSsbZbbPJ4ZgHQE8\nAvwJ+CGwRWafGcD1wDPAH4FbgD0bpliShq8+YBHRm7wtcdzeD7iszKAG6W3ACcTx/3rgnZltFxMV\nqbXAbcDuXfi8FcAfco/zB/i80cB5wALg50RZdjjwIeBjwI+Bn3UhNkka8i4hhkz9PXBzZv2PgNMz\n2yFacJ4gKgvbEpWJlcAnk+0bEBWDxcAuwF7A7URvxtGZ985XOE4H3g68AZgD/A74Ymb7fOA54AfA\nzkRFYjnwzcw++wEfBnYCdgT+DVgFbN5CHkjScLIQuCq37l+J42hqNtEwswp4FrgOeGPuNYuJk+5/\nJhpzngK+Sv9GpvFEReY5onw4kRgye0lmn42Ac4EniZP2XwJ7N4l/HPDlzPPDgOep9dDMI3oTJjZ5\nj8GYCHwGmEKUbdsSZcimA3zem4myMvWpzPJ5wMFdik+ShryFRMG0KdHDMJVoFXsRmEz/gutR4qQ+\n67PAvcnygcDLyetSexMVjGYVjry/I3pcUvOJQuo1mXWn5fbJG0UUfvl4JWm4W0j/uXfbE8fpGzPr\nDgUOIY75OwP/RRxTx2b2WQysJo7B04APEi392WFC3yQagPYnhhBdnrzm4sw+5xHH4zlEo9B/EBWU\nrRvE/xainNg+eb5J8vyw5Pm8Bq9r10Rgs8zzw4lGsFSjz5tE/wrH+5O/s4Gvdy06SRoGFlKrUHyH\naMk6Gbg2t30CccB/nigo0sfa5AFwPNE7kTWWqIQ0q3AcRnQ7r0ze8wWiwpOaTwy5yjqGGDqV2gr4\nd2KY1+rkfV4GTqmXaEkaxhYSFYP0eJpe/KNZj+944pi5V2bdYmKoUNb1xBAigI2B/6P/cNxxRK9J\nWuEYn+zz15l9NgAeBr7UJJ7skNjpSRp2SZ6fBfwtUfFZALypyfsM1iSizMlq9nnzifRMJHrpJxC9\nRRt2MSYNI2PKDkCqgIupdY1/Prctned0HPCLLn7mnkSL2HziIL0aOAj4l9x+63LP++g/9+pSYEui\nx2U5MYzrBjzoSxqZfkqcJI8jhsMeQ5wUr0q2TyVO+GcSx84NkscbqB3j+4g5flkrqU2Onko0Kt2W\n2f4CcE/mebpPtuKynhhWNb1J/L/KLJ9KDAlLL62+FPg+US48DVxJDAfLX+Dkw/QfejubV1eg8s7k\n1RWOZp93BtH7/iei8e3bROPbhsBHiMrWt+rEphHKCodGsnQ87g3EwXEL4oCa9TTRJT6NOKDWcz/R\nOjSZmIAHUZg1uyjD3sQ9Os7MrJvSYtz59/k0tZ6ZiXhFFkkj11rgN8ny8cR8g/OIoa8Q8yweJSol\njwOvEBcEyTfSDNTYU8+oAban+6xvYb+PJfFle6u/R8QLkcYdiPTlK0c/Iio2qScG+KytiPmAH82t\nb/Z5fURlA6JidwPR034+MQ9lDdGIli9TNUJ5lSopvAXYjv6FTFp4zANOInoRdiLG/R5NrSBYRAx9\nuozo+n47cA7RTd/Ig0Ql5UhivO4naO8ygg8BRxFd3TOIAsJL70pSOAN4N7AH0ai0EzGE9kbiOLwJ\ng298fYQoK2Zm1o0jyobsPi8B+2TWjSbKh/sGeP/3EpWSU4iJ59sSveKrqV3JMJ3bV+94v4aoIKSP\nF+vskzWHmECf1ern7UCUPelk+XcTDW+r6X/JeY1wVjg0UuVvyrcmedTb/p/AscSJ/RLiqlZ/Q60V\nrY+YhLgBcCsxjvhLRK9JI1cTVz05l+gu3x/4Qi6mfIzZ9aljifHEvwa+S9zIcHmTz5WkkeSnwB3E\nHL1VwO+J3o1pwL7E0KN849AomvdWrCGG4p4NvIsYInVR8pr0+Pw8cGGyzxyiUehCYhjXBU3ee1+i\np/oaYnL5XKLX+jGizEjLlb2JYVL5eX7t2JkYEpbVyueNIYZhndDgfTdqsF6SJEkaki7h1ZfFhbg/\nxDqiF3s/Ym7CWmJo0IHE/L3sBT5u4tVXW8q/d3pZ3DXE/I6TgZ9Qu4cFxDCtc4jL4r5IzBHJTk7P\n254YprQ+83iFaFSCuCT754ge9wXERO1uOJ1oWMsb6PNOB96aW3c+0SOzGf0n1UuSJEnqwEZExeIf\nyg6kR8ZQ//LrGxP3tzqqt+FIkiRJw8uuxBy8acBuxPy554BtygxKkiRJ0vCwK3A7MQRqFXGVpt1K\njUiSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJElD0/8DDh7f+HDdTzMA\nAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f31508f90d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = pl.figure(figsize=(13,5))\n", "ax = fig.add_subplot(121)\n", "ax.scatter(Medianas,Medias,c=np.arange(5,200))\n", "ax.set_xlabel('Mediana',size=14)\n", "ax.set_ylabel('Media $\\mu$',size=14)\n", "ax = fig.add_subplot(122)\n", "ax.scatter(R25_75,Std,c=np.arange(5,200))\n", "#ax.set_xlim(0,1)\n", "ax.set_xlabel('Rango $25%$ - $75\\%$',size=14)\n", "ax.set_ylabel('Desviacion $\\sigma$',size=14)\n", "pl.show()" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "slideshow": { "slide_type": "slide" } }, "source": [ "## Cuantiles \n", "\n", "Como una medida no paramétrica de la distribución de los datos se encuentran los cuantiles,\n", "el más conocido es la mediana, sin embargo se pueden obtener cuantiles de cualquier medida.\n", "\n", "**Que representan** : El cuantil del 25% igual a 3.56, indica que el 25% de los datos son iguales o inferiores a 3.56.\n", "\n", "Al ser una medida no paramétrica se ve poco afectada por errores en los datos y por datos atípicos." ] }, { "cell_type": "code", "execution_count": 154, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEPCAYAAABiCi5wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACxJJREFUeJzt3X+IbOddx/H3JjdBbYokVrjVRgKaKrZ6myo1lVRH/EH+\nEGPBUkQKjVrE32hBTYLcDSpSpOof+merRbAW+5exv4whY4Vo8Edzm8QYa6mSVpoSE0vaoLbN+sdM\nms11797dzOzuPDOvFwx75syZ5zxzGT489zvPeU4BAAAAAAAAAAAAG+5Lqnur+6p/qn7zZLsDwEF8\n2fzvqepvqxtOsC8Aa++SJbTx1Pzv5dWl1eNLaBOAC1hGcF/SrFTyaHV3s5IJAAP48malkskJ9wNg\nrZ1aYlufrt5TfWs1fWbnmTNnds6dO7fE0wBshHPVK/Z6YWvBhl9Ufb76r+pLqw9Ut1d37TpmZ2dn\nZ8HTwNHY3t5ue3v7pLsB/8/W1lZdIKMXHXG/uHpHszr3JdUf9dzQBmDJFg3u+6tXLqMjABzMMmaV\nwLAmk8lJdwEObdEa90GocQMc0n41biNugMEIboDBCG6AwQhugMEIboDBCG6AwSxzrRI4UfPpU0fO\n9FZOmhE3a2NnZ+fQj7NnD/8eOGkuwGGjbW2VryeryAU4AGtEcAMMRnADDEZwAwxGcLPRzp496R7A\n4ZlVArCCzCoBWCOCG2AwghtgMIIbYDCCm422vX3SPYDDM6uEjWatElbVUc8qubq6u3qweqD6uSW0\nCcAFLGPEfXr+uK+6ovqH6gerh+avG3Gzsoy4WVVHPeL+ZLPQrvpMs8D+qiW0C8Aelv3j5DXVddW9\nS24XgLll3rrsiurd1c83G3l/0faun+4nk0mTyWSJp4Xnz1olrIrpdNp0Oj3QscuaVXJZ9efV+6rf\nPe81NW6AQ9qvxr2M4N6q3lH9Z/ULe7wuuAEO6aiD+4bqg9WHq2cS+pbq/fNtwQ1wSEcd3BcjuAEO\nybKuAGtEcLPRrFXCiJRK2GiunGRVKZUArBHBDTAYwQ0wGMENMBjBzUazVgkjMqsEYAWZVQKwRgQ3\nwGAEN8BgBDfAYAQ3G81aJYzIrBI2mrVKWFVmlQCsEcENMBjBDTAYwQ0wGMHNRrNWCSMyqwRgBZlV\nArBGBDfAYJYR3G+vHq3uX0JbAFzEMoL7D6obl9AOAAewjOD+6+qJJbQDx85aJYxoWbNKrqnuqL5p\nj9fMKmFlWauEVbXfrJJTx9GB7V3Dmslk0mQyOY7TAgxjOp02nU4PdKwRNxvNiJtVZR43wBpZRnC/\ns7qnemn1SHXzEtoE4AJc8s5KuuqqemJN5ipdeWU9/vhJ94LR7FcqEdyspHWqPa/TZ+H4qHEDrBHB\nDTAYwQ0wGMENMBjBDTAYwQ0wGMENMBjBDTAYwQ0wGMENMBjBDTAYwQ0wGMENMBjBDTAYwQ0wGMEN\nMBjBDTAYwQ0wGMENMBjBDTAYwQ0wGMENMJhlBPeN1T9XH6l+eQntQTtt1dZ6PHbaOul/TtbMot+o\nS6uHq++pPlH9XfXD1UO7jtnZ2dlZ8DRsmq2tWpevzTp9Fo7P1tZWXSCjFx1xv6r61+rfqs9Vf1Ld\ntGCbAOxj0eD+6uqRXc8/Pt8HwBE5teD7D/QfwO3t7S9uTyaTJpPJgqcFWC/T6bTpdHqgYxetcV9f\nbTf7gbLqlurp6i27jlHj5tDWqS68Tp+F43OUNe6/r66trqkur15f/dmCbQKwj0VLJZ+vfqb6QLMZ\nJm/ruTNKAFiy45hgqlTCoa1TeWGdPgvH5yhLJQAcM8ENMBjBDTAYwQ0wGMENMBjBDTAYwQ0wGMEN\nMBjBDTAYwQ0wGMENMBjBDTCYRVcHhCOztSb32L3yypPuAetGcLOSjms1PSv3MSKlEoDBCG6AwQhu\ngMEIboDBCG422tmzJ90DODz3nARYQe45CbBGBDfAYAQ3wGAWCe7XVQ9WX6heuZzuAHAxiwT3/dVr\nqw8uqS9w7La3T7oHcHjLmFVyd/Xm6h8v8LpZJawsa5WwqswqAVgjF1sd8M7q9B77b63uOOhJtnf9\nf3QymTSZTA76VoCNMJ1Om06nBzpWqYSNplTCqjqOUsmaLHkPsPoWCe7XVo9U11fvqd63lB7BMbJW\nCSOyVgnACjKrBGCNCG6AwQhugMEIboDBCG42mrVKGJFZJWw0F+CwqswqAVgjghtgMIIbYDCCG2Aw\ngpuNZq0SRmRWCcAKMqsEYI0IboDBCG6AwQhugMEIbjaatUoYkVklbDRrlbCqzCoBWCOCG2Awghtg\nMIIbYDCCm41mrRJGtOiskt+qvr/63+qj1c3Vp887xqwSgEM6ylklf1G9rDpT/Ut1y4LtAXARiwb3\nndXT8+17q5cs2B4AF7HMGvePVu9dYnsA7OHUAY65szq9x/5bqzvm27c1q3P/8V4NbO+6rngymTSZ\nTA7TR4C1N51Om06nBzp2GZe8v7F6U/Xd1X/v8bofJ1lZ29vWK2E17ffj5KLBfWP11uo7q8cucIzg\n5ljMv+hHzveZ43CUwf2R6vLq8fnzv6l+6rxjBDfAIR1lcB+E4AY4JKsDAqwRwQ0wGMENMBjBDTAY\nwQ0wGMENMBjBDTAYwQ0wGMENMBjBDTAYwQ0wGMENMBjBDTAYwQ0wGMENMBjBDTAYwQ0wGMENMBjB\nzUabTk+6B3B4gpuNJrgZkeAGGMypk+4AHLfp9NmR9u23P7t/Mpk9YNUJbjbO+QG9vX1CHYHnaZFS\nya9V56r7qruqq5fSIwD2tbXAe19YPTnf/tnqTPXjexy3s7Ozs8Bp4OhMp8ojrKatra26QEYvMuJ+\nctf2FdVjC7QFJ0JoM6JFa9y/Ub2heqq6fvHuAHAxFwvuO6vTe+y/tbqjum3++JXqd6qb92pke9ev\nP5PJpIlhDsBzTKfTpge8sGCRGvduX1O9t3r5Hq+pcQMc0lHVuK/dtX1T9aEF2gLggBYZcb+7+vrq\nC9VHq5+sPrXHcUbcAIe034h7WaWS/QhugEM6qlIJACdAcAMMRnADDEZwAwxGcAMMRnADDEZwAwxG\ncAMMRnADDEZwAwxGcLPRDriKJqwUwc1GE9yMSHADDGbRW5fBcKbTZ0fat9/+7P7JxD0oGYPgZuOc\nH9C77qwHQ1AqARiM4GajKY0wInfAAVhB7oADsEYEN8BgBDfAYAQ3wGCWEdxvrp6urlpCWwBcxKLB\nfXX1vdW/L6EvcOymFithQIsG929Xv7SMjsBJENyMaJHgvqn6ePXhJfUFgAO42Fold1an99h/W3VL\n9X279h3HxTwAG+/5hu3Lq7uqp+bPX1J9onpV9anzjr2vOvM8zwOwqc5VrzjKE3wss0oAjsWy5nFb\njAQAAICZt1ePVvefdEcAOJjXVNcluAGGck2Cm0FZZApgMIIbYDCCG2AwghsAWHnvrP6j+p/qkerm\nk+0OAAAAAAAAAAAAAMDQbqseaHbbpw81u53eQf1E9Yaj6BQAe3t1dU912fz5VdWLD/jeS4+kR3AE\nLnaXdxjJ6eqx6nPz54/P/35L9dbqivnrb6w+WU2bjcpvaHY15Qurz8yP/drq96qvbHZT7DdVDx/9\nRwDYLC9oFsQPV79ffUez0fc91VfMj3l99bb59t3NwvkZZ6tfnG/fVX3dfPvb5s9hJRhxs04+22x0\n/Zrqu6p3Vb9evaz6y/kxlzZbp+QZ79qjnRdU31796a59ly+7s/B8CW7WzdPVX80f91c/XT3YLIj3\n8tk99l1SPdHs9mawcizryjp5aXXtrufXVQ9VL6qun++7rPrGfdrYqp6sPlb90K5937zUnsICBDfr\n5IrqD5uNsM9V31D9avW66i3Vfc1q4K/ep42d+d8fqX5s/p4Hqh84kh4DAAAAAAAAAAAAAAAAsFz/\nB9hzS1CdsqikAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7efe5f667290>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "S1 = np.random.normal(0,1,100)\n", "a=pl.boxplot(S1)\n", "a=pl.xlabel('Serie')" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "subslide" } }, "source": [ "## Caso de Introducción de Outliers\n", "\n", "QQ plot de las series donde se introducen outliers y la serie en donde no " ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": true, "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "S1 = np.random.normal(0,1,100)\n", "S2 = CreaOutliers(S1,10)\n", "Per1 = np.array([np.percentile(S1,i) for i in range(10,91,10)])\n", "Per2 = np.array([np.percentile(S2,i) for i in range(10,91,10)])" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false, "slideshow": { "slide_type": "subslide" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjkAAAG7CAYAAAAhe4QjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8XHWZ+PFPKQVaLqmgAkWwUWShWCiYpZWgZr1CXHQV\nlcWom3rB/a2otKkRl+Yito5K1pBK9Id4dyXKb10vKHGtpMULAt4qQeQmhDSAyIoEbGtDy/z+OBM6\nSXOZTOZy5nw/79crr8yZczLzfXIC8/R8n+d8QZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKkgjsa2AT8\nDrgVeN8kx20A7gJ+C5xSmqFJkiTl7whgWebxQcAdwAnjjqkHrs08Xg7cWJqhSZIkFc63gZeNe+7/\nAudmbd8OHF6yEUmSpIqxT7kHMInFRFNRN417/ihga9b2EPCsEo1JkiRVkDgmOQcB/wW8H/jrBPvn\njNtOF31EkiSp4uxb7gGMMw/4JvCfRNNV491PVKA86lmZ58ZYtGhR+oEHHijKACVJUsn9ATh2pj8U\npys5c4DPA7cBl01yzHeBt2UerwAeBR4af9ADDzxAOp0O7qutra3sYzB2Yzd2YzduYy/E13XXXcdF\nF13E9u3bAZ6bT2IRpys5tcBbgFuA32Se+3fgmMzjK4g6q+qBu4FtwMoSjzHWBgYGyj2EsjH2MBl7\neEKNG8KJPZ1Os2HDBqqqqkilUrN6rTglOT8ltytLFxR7IJIkqfSGh4dpb2+noaGBmpqaWb9enJIc\nzVJjY2O5h1A2xh4mYw9PqHFD8mPv7+/nyiuvpK2tjcMOO6wgrzm+Uykp0um0TVeSJFWCnp4etm7d\nSlNTE3Pnzt1r/5w5cyCPnCVOhceapc2bN5d7CGVj7GEy9vCEGjckM/aRkRHa2tqoqqqiubl5wgRn\nNpyukiRJJTc0NEQqlWLNmjVUV1cX5T2crpIkSSXV19fHxo0baW1tZf78+dMen+90lUmOJEkqiez2\n8JkUUluTo0TO1+bK2MNk7OEJNW6o/NiHh4dZvXo1tbW1JesUsyZHkiQVVTHaw3PhdJUkSSqa6drD\nc2FNzlgmOZIkldHIyAjr169n+fLl1NfXz+q1rMlRxc/Xzoaxh8nYwxNq3FBZsQ8NDbFq1SoaGxtn\nneDMhjU5kiSpYEbbwzs6OnJqDy8mp6skSdKs5dsengunqyRJUlmUoz08FyY5CVJJ87WFZuxhMvbw\nhBo3xDf2/v5+WlpaWLt2LTU1NeUezhjW5EiSpLyMtod3dnYWfHHNQrAmR5IkzUgh28NzkW9Njldy\nJElSzkqxenihWJOTIHGdry0FYw+TsYcn1LghHrH39fXR3d1NR0dH7BMc8EqOJEmaRnZ7eCqVKvdw\ncmZNjiRJmtTw8DDt7e00NDSUrXvKmhxJkmLm7rvv5uGHH2bp0qUcdNBB5R7OjJVr9fBCsSYnQeIw\nX1suxh4mYw9PpcQ9NDRETU0dJ530Ys488/0885nHcMklH2M2swyljr2np4fe3l46OzsrMsEBkxxJ\nkgoqnU7z0peezZYtL2fHjkEee+xmduz4DZ/4xNf4yle+Wu7hTWtkZIS2tjaqqqpobm6O5f1vcmVN\njiRJBXT99ddz9tnv5fHHf8vYj9mNPO95H+LOO39ZrqFNK67t4dbkSJIUAwMDAzz55Mns/Zm8jPvv\nv7ccQ8pJnFYPLxSnqxKkUuaqi8HYw2Ts4amEuJcuXUo6/RNg17g9mzjhhJPyft1ixZ5Op+nq6mJw\ncJBUKpWYBAdMciRJKqhTTz2VF7zgBPbf/x3AQ0AauI7581exfv1FZR7dWHFdPbxQrMmRJKnAHn/8\ncS644AN84xtXkU7DEUcczSc/+RHOOef15R7aUyqpPTzfmhyTHEmSimTnzp1s376dhQsXjn5Qx8Lo\n6uFNTU0V0T2Vb5LjdFWCVMJcdbEYe5iMPTyVFvf+++/P0572tIIkOIWIPUnt4bmwu0qSpADEtT28\nmOJz7aywnK6SJCljtD28tbW1IrunrMkZyyRHkhS87NXDK7l7ypocVdxcdSEZe5iMPTyhxg0zjz3p\n7eG5sCZHkqSEqaT28GJyukqSpASptPbwXFiTM5ZJjiQpKCMjI6xfv57ly5dTX19f7uEUlDU5cq46\nUMYeplBjDzVumDr2oaEhVq1aRWNjY+ISnNmwJkeSpAqWxNXDCyVu01VfAF4N/AlYOsH+OuA7wD2Z\n7W8C6yY4zukqSVKiJaU9PBf5TlfF7UrOF4FPAV+Z4pjrgdeUZjiSJMXP8PAw7e3tNDQ0UFNTU+7h\nxFbcanJ+AvxlmmPidvUpNpyrDpOxhynU2EONG/bE3t/fT0tLC2vXrjXBmUbcruRMJw2cDvwWuB9Y\nA9xW1hFJklQio+3hnZ2diWkPL6Y4XhVZDFzDxDU5BwO7ge3AWUAXcNwEx1mTI0lKjCS3h+ciKTU5\n03k863Ev8GngUOCR8Qc2NjayePFiABYuXMiyZcuoq6sD9lzyc9ttt9122+24bz/88MNs3ryZNWvW\ncN9997F58+ZYja8Y26OPBwYGmI1Ku5JzOFHnVRo4Dbg6c/x4QV7Jyf7DD42x15V7GGVh7HXlHkbJ\nhRZ39urhN910U1CxZ0vKlZwe4CXA04GtQBswL7PvCuANwP8BdhFNWf1zGcYoSVJRZbeHp1Kpcg+n\nYsXxSk4hBHklR5JU+WwP31tSruRIkhQsVw8vrH3KPQAVTnbBVmiMPUzGHp4kx93T00Nvby+dnZ0T\nJjhJjr1YTHIkSSqjkZER2traqKqqorm52fvfFJA1OZIklcnQ0BCpVIo1a9ZQXV1d7uHEljU5kiRV\nEFcPLz6nqxIk5PlaYw+TsYcnCXGn02m6uroYHBwklUrlnOAkIfZSM8mRJKlEhoeHWb16NbW1tTQ2\nNpZ7OIlnTY4kSSVge3j+rMmRJCmmXD28PJyuSpCQ52uNPUzGHp5Ki7uQ7eGVFnsceCVHkqQisD28\n/KzJkSSpwLJXD7c9fPbyrckxyZEkqUCyVw+3e6pw8k1yrMlJkJDna409TMYenjjHXez28DjHHlfW\n5EiSNEu2h8eT01WSJM3CaHt4U1OT7eFFYk3OWCY5kqSiGhkZYf369Sxfvpz6+vpyDyfRrMlR0PO1\nxh4mYw9PXOIeGhpi1apVNDY2lizBiUvslcSaHEmSZsDVwyuH01WSJOXA9vDycbpKkqQicfXwymSS\nkyAhz9cae5iMPTzliLu/v5+WlhbWrl1LTU1Nyd9/VKjnfDasyZEkaRKuHl7ZrMmRJGkc28PjJd+a\nHK/kSJKUxdXDk8OanAQJeb7W2MNk7OEpdtx9fX10d3fT0dERuwQn1HM+G17JkSQFL7s9PJVKlXs4\nKhBrciRJQRseHqa9vZ2Ghoaydk9pctbkSJI0Q64enmzW5CRIyPO1xh4mYw9PIePu6emht7eXzs7O\nikhwQj3ns2GSI0kKysjICG1tbVRVVdHc3Oz9bxLMmhxJUjBsD69M1uRIkjQFVw8Pj9NVCRLyfK2x\nh8nYw5NP3Ol0mq6uLgYHB0mlUhWb4IR6zmfDJEeSlFiuHh42a3IkSYlke3hyWJMjSVKGq4cLnK5K\nlJDna409TMYenuniTnJ7eKjnfDa8kiNJSgTbwzWeNTmSpIo32h7e2tpasd1Tmly+NTlxm676AvAQ\n0D/FMRuAu4DfAqeUYlCSpHhKSnu4iiNuSc4XgTOn2F8PHAs8Dzgf+EwpBlUpQp6vNfYwGXt4suMO\nrT081HM+G3GryfkJsHiK/a8Bvpx5fBOwEDic6OqPJCkQtocrF3GsyVkMXAMsnWDfNUAKuCGz/SPg\ng8Cvxh1nTY4kJdRoe3hTU1Oiuqc0uaTU5ORifJBmM5IUgCS3h6s44jZdNZ37gaOztp+VeW4vjY2N\nLF68GICFCxeybNky6urqgD3zmknbHn0uLuMp5faWLVu48MILYzOeUm5fdtllQfx9T7Q9/m+/3OMp\n5fboc3EZT7G3jz32WFKpFIceeigLFix46ncQl/H5917Y7dHHAwMDzEalTVfVAxdkvq8ALst8Hy/I\n6arNmzc/9YcSGmOvK/cwysLY68o9jJLIbg+/6aabgol7vJDO+Xj5TlfFLcnpAV4CPJ2omLgNmJfZ\nd0Xm++VEHVjbgJXAryd4nSCTHElKknQ6zYYNG6iqqgqie0qTS0qSUygmOZJUwYaHh2lvb6ehoYGa\nmppyD0dlFlLhsSaRPZcZGmMPk7EnU39/Py0tLaxdu3avBCfJcU8n5NjzVWmFx5KkBHP1cBWS01WS\npLIbGRlh/fr1LF++nPr6+nIPRzGT73SVV3IkSWXl6uEqFmtyEiTk+VpjD5OxV76+vj66u7vp6OjI\nKcFJStz5CDn2fHklR5JUctnt4alUqtzDUUJZkyNJKinbwzVT1uRIkmLP1cNVStbkJEjI87XGHiZj\nryw9PT309vbS2dmZd4JTiXEXSsix58skR5I0qeHhYbZu3cqTTz6Z92u4erjKxZocSdJeHnnkEVau\nfA8/+MH3mTv3QA4+eD6f/OR6GhrOm9Hr2B6uQrAmR5JUEOl0mpe//LXceusynnhiCDiEHTt+zvnn\nn8vTnlaV8836RlcP7+joYP78+cUdtDQBp6sSJOT5WmMPk7EXxw033MCdd/6JJ57oAg7JPPtCtm//\nD1pbL53259PpNF1dXQwODpJKpQqa4HjONRMmOZKkMX7/+9+TTtey90fEGdx5521T/uzw8DCrV6+m\ntraWxsbGYg1Ryok1OZKkMTZv3szZZ7+Xv/71FsZ+THyHpUsv5ZZbfjrhz9kermLJtybHKzmSpDFe\n8pKXcNRR+7Hvvi3A3zLP3saCBU20ta2a8GcK0R4uFZpJToKEPF9r7GEy9uKYM2cOmzZ9jxe+8Ncc\ncMBRHHzwCRxyyEv5xCfWcM4554w5ttTt4Z5zzYTdVZKkvRx55JH8+MfX8sADD/DnP/+Z4447jv33\n33/MMbaHK+6syZEkzdhoe3hra6vt4Sq6fGtyTHIkSTnLXj3c7imVioXHCnq+1tjDZOylFYf2cM+5\nZsKaHEnStGwPVyVyukqSNKWenh62bt1KU1OTi2uqLKzJGcskR5JmaWRkhPXr17N8+fKc16uSisGa\nHAU9X2vsYTL24hkaGmLVqlU0NjbGKsHxnGsmrMmRJI3h6uFKCqerJEmA7eGKL6erJEl5i0N7uFRo\nJjkJEvJ8rbGHydgLo7+/n5aWFtauXUtNTU3BXrcYPOeaCWtyJClgo+3hnZ2dtocrcazJkaQA2R6u\nSpJvTY5XciQpMK4erlBYk5MgIc/XGnuYjH3m+vr66O7upqOjoyITHM+5ZiLXJKcOWJG1vRL4GfBZ\n4KACj0mSVGDpdJquri4GBwdJpVLe/0ZByHV+awvQBnwH+DvgFuDzwBnADcC/FmV0+bMmR5IyhoeH\naW9vp6GhIfbdU9JEir121ePAycA9wL8DpwP/CCwH/hs4aqZvXGQmOZKEq4crGYp9M8An2VOk/DLg\nfzKPHwL8ryYmQp6vNfYwGfvUenp66O3tpbOzMzEJjudcM5FrkvNLYC3wNuBFQG/m+WcDDxZhXJKk\nPI2MjNDW1kZVVRXNzc3e/0bByvXSz1LgKuAY4JPAhzPPdwMLgYbCD21WnK6SFCTbw5VExa7Jmcx8\nYBfwxCxfp9BMciQFZ3T18NbWVrunlCilWqDzOUQFx6/OPN5BYROcM4HbgbuAD06wvw4YBn6T+Vpb\nwPeueCHP1xp7mIw9ElJ7uOdcM5HrHY8PAb4AvJ6oCBmiBOmbwNuJuq9may5wOfBy4H7gF8B3gd+P\nO+564DUFeD9Jqni2h0uTy/XSzxeJ2sbPB36eee504AqimwK+vQBjeSHRvXjOzGxflPn+saxj6oAm\n4OxpXsvpKkmJZ3u4QlHstateA7wO+HHWc5uBdwHfpjBJzlHA1qztIaL78GRLEyVXvyW62rMGuK0A\n7y1JFcXVw6Xp5VqTMx/48wTPPwIcUKCx5HLp5dfA0UQ3JvwUUYKljJDna409TCHGPtoeft999wXZ\nHh7iOR8Vcuz5yvVKzg3AR4C3Atsyzx0EXJLZVwj3EyUwo44mupqTLbv2pxf4NHAoUbI1RmNjI4sX\nLwZg4cKFLFu2jLq6OmDPH0rStkfFZTyl3N6yZUusxlPK7S1btsRqPG4Xb3toaIgLLriAc889lyOP\nPLLs4ynHtn/vYWyPPh4YGGA2ZnKfnP8BFhBNFc3JPLcdeBVw66xGEdkXuIPojsoPADcD5zG28Phw\n4E9EV31OA64GFk/wWtbkSKoIGzdu5KMf/RT33jvAqaeeREtLE6eccspex9kerpCV4j45BwJvBk7I\nbN8GfI2ojbxQzgIuI+q0+jyQAt6d2XcF8B7g/xDdm2c7sBq4cYLXMcmRFHtXXPE5Vq/+CNu3fxhY\nxpw5fcyf/zG+//2rn/qXbTqdZsOGDVRVVdHY2FjO4Uplk2+Sk1TpEG3atKncQygbYw9TJce+ffv2\n9EEHPT0Nv0tDOuvr/6VPOOG0dDqdTj/66KPpCy+8MP2LX/xir5+v5NhnI9S40+mwYye3ut29TFWT\n8y8zeNGv5PPmkhSqLVu2sM8+zwaWjNvzOu6661/4+c9/Tk9Pj+3h0ixMdennr4xNcvYnSoqybwa4\nC9gJHFyU0eUvk/hJUjzdeuutrFhxNtu2/YGxja5/Ye7cI/jwh1u56KKLguuekiZSjGUdDiJKXg4m\nKgD+LdEK5PMzXy8CthDV6UiSZuDEE09k0aKFzJnzxaxnd7LPPmdx2mmnc/HFF5vgSLOU631yOoD3\nE93d+InM188yz3UUZ2iaqezWu9AYe5gqOfY5c+bw7W9/jcMO+zAHH3wWc+a8h3nzjuGYYx7jO9+5\netqfr+TYZyPUuCHs2POVa5LzbPbcHyfb9sw+SdIMLVmyhMHBO7jgglN40Ytu5aqrurn77n6e8Yxn\nlHtoUiLkOr+1OfP9Ley5Qd+ziAqO9yFaUypOrMmRFHtp28OlnBSjJifbO4HDgAHgvszXAPBMovWr\nJEkzMDw8zOrVq6mtrTXBkYok1yTnbqL1ouqBT2a+6onuenxXcYammQp5vtbYw1Spsff399PS0sLa\ntWupqanJ6zUqNfbZCjVuCDv2fOW6dhVEreM/zHxJkvLg6uFS6cxkfutQomUXjgb2G7fvkoKNqDCs\nyZEUKyMjI6xfv57ly5dTX19f7uFIFaXYa1etAK4F/kZUhzMEHAmMENXmLJ3pGxeZSY6k2BgaGiKV\nSrFmzRqqq6vLPRyp4hS78PhSosU4jyJakPNlwDHAL4GPzfRNVRwhz9cae5gqIfa+vj66u7vp6Ogo\naIJTCbEXQ6hxQ9ix5yvXmpyTgHcQLfOwm2i66iGgGbiKKAGSJGVkt4enUqlyD0cKUq6Xfh4GzgDu\nyHxdCPQCJwC/AhYUZXT5c7pKUtkMDw/T3t5OQ0ND3t1TkvbId7oq1ys5vwFqiBKczcBHiGpz3grc\nMtM3laSk6u/v58orr3T1cCkGcq3JuRh4IPO4hejKzqeAhcD5RRiX8hDyfK2xhylusff09NDb20tn\nZ2fRE5y4xV4qocYNYceer1yu5OxDtG7V7zPbfyJqJZckMbY9/Lzzziv3cCRl5DK/tQ+wk6j+5u7i\nDqdgrMmRVBK2h0vFV8yanCeJanGeQeUkOZJUdH19fWzcuJGOjg7mz59f7uFIGifXmpwPAB3AKeSR\nSak0Qp6vNfYwlSv2dDpNV1cXg4ODpFKpsiQ4oZ73UOOGsGPPV67dVVcDBxC1i+8imr4alQYOKfC4\nJCmWbA+XKkeuV2Uap9n/pdkNo+CsyZFUcLaHS+VR7LWrKo1JjqSCGl09vKmpydXDpRIr9tpVAEcQ\n1eZ8Bnh65rkzANsJYiLk+VpjD1MpYh8ZGaGtrY2qqiqam5tjk+CEet5DjRvCjj1fuSY5LyDqsHoz\n8E721OC8AlhfhHFJUtFt27aNG2+8kbvuumvC/UNDQ6xatYrGxkbq6+tLPDpJs5XrpZ/NwI+BVuBx\n4GTgHuCFwDeIViSPE6erJE3p0ksvo739I+y7bzW7dj3Iccc9h29966ssXrwY2NMe3traanu4VGbF\nrsl5DFhGlNhkJznVwO3A/jN94yIzyZE0qauvvpqVK1vYvv1a4LnALvbZp5Ojj/4id999C93d3VRV\nVdHY2FjmkUqC4tfk7AAOneD5vyNa5kExEPJ8rbGHKd/Y163bwPbtlxIlOAD78uSTH+DPf96fN73p\nTdTW1sY+wQn1vIcaN4Qde75yTXK+A7QR3StnVDXwCeCbhR6UJBXT1q33Et3bNFs/O3Y8QW1trfe/\nkRIi10s/VcD3iaapFgAPAYcDPwPqgb8WZXT5c7pK0qRqa8/khhveDLwt80wPMMiCBZ9j48Yvc/rp\np5dxdJLGK8V9cuYA/0DUabUP0d2PfzTTNywRkxxJk9q0aROvfvWb2bHjc8BNwAnst98mTjrpTm6+\nedPo/1AlxUSxa3LeRlRc3AdcCnycKMHZjz3/FFKZhTxfa+xhyjf2f/iHf+Dyyz/KQQe9lXnzPsl+\n+53POefs5kc/+k7FJDihnvdQ44awY89XrmtXfQn4AfC3cc8fktn3lcINSZKKq6+vj7vuupOHHhpi\n586dzJ8/nwMOOGD6H5RUUXL9J8uTRHc8Ht9JdQpwHRN3XpWT01WS9pJOp9mwYYPt4VKFyXe6aror\nOf1Zj68nWoF81Fzg2cC1M31TSSo1Vw+XwjNdTc432dMi/r2s7W8C/0m0xEND0UanGQl5vtbYw5Rr\n7P39/bS0tLB27drEJDihnvdQ44awY8/XdFdy2jPfB4Cvs3dNjiTF2ujq4Z2dnbFZXFNSaVRGG8HM\nWZMjBW5kZIT169ezfPlyF9eUKlwxanIez/E10uxZlVySym5oaIhUKsWaNWuorq4u93AklclUNTnv\nzfHrfQUcz5lEC37eBXxwkmM2ZPb/lr3vyx60kOdrjT1ME8Xe19dHd3c3HR0diU5wQj3vocYNYcee\nr6mu5Hwpx9co1JTXXOBy4OXA/cAvgO8Cv886ph44FngesBz4DLCiQO8vqYJlt4enUqlyD0dSDMwm\nQTkGeAfQSNRKPlsvJFoE9MzM9kWZ7x/LOub/ApuAb2S2bwdeQrSWVjZrcqSA2B4uJVux7pMz3n7A\nPxG1jr8MuIPcr/hM5yhga9b2ENHVmumOeRZ7JzmSAtHf38+VV15JW1sbhx12WLmHIylGcl276kSg\nk2ga6ZNECc4/AkuIrr4UQq6XXsZncl6yyQh5vtbYk+uuu+7i5ptvZvv27Xvta2lpobe3l87OzuAS\nnKSf98mEGjeEHXu+pkty3gncSFTk+zyi6alnEy3zcF+Bx3I/cHTW9tFEV2qmOuZZmeckJczAwADL\nlp3BySe/hFe84l955jOP4bLLLgei9vDW1lYOPPBAmpubvf+NpAlNN131WeAmogTn3iKP5ZeZ91kM\nPACcC5w37pjvAhcQ3ZhwBfAok0xVNTY2snjxYgAWLlzIsmXLqKurA/Zkw24na3tUXMZTqu3R5+Iy\nnkJs7969m7e//QKGht7Bk0+ewo4dc4FFXHzxqxkaGuDuu++ms7OT6urqWIzXbf/eS7FdV1cXq/EU\nc3v08cDAALMxXRHPBqJlG3YAXwQ+T3T34yeAk4HbZvXuezsLuIyo0+rzQAp4d2bfFZnvlxMVJ28D\nVgK/nuB1LDyWKti1117LP//zJTz++I3j9nyYww//PPfeewfz588vy9gklV6+hcfTTVe9D1gEfAA4\nnej+ND/M/Nx+M32zHPQCf0fUJj7aA3oFexIciK7kHEuUZE2U4AQrOwMOjbEny7333suuXdm3wUoD\nXcCB7No156kEJ4mx5yrU2EONG8KOPV+5FB7vBHqIio2PA24GHgRuAP4L+OeijU5SkJYuXcrcudcT\nJTfDwGqgFjiMJUueX9axSaoc+d4nZy7RlNE7gVdTnKs6s+F0lVTB0uk0p576Im69dRG7di0EPgr8\nigULGrn22q/zkpe8pNxDlFRCxZqumsxu4PvA6xjb7SRJszZnzhze855GTjjhHubNu4r99nsuz352\nE1//+mdNcCTlLN8kJ5s34ouJkOdrjT05RtvDFy1axC23/JLh4Yd54IF7uPfefs4+++wxxyYt9pkI\nNfZQ44awY8/XTO94LElFM9Hq4fPnz7eTSlJeCrW4ZtxYkyNVmL6+PjZu3Ehra6tJjaQx8q3JMcmR\nVFbZq4c3NjaWeziSYqjYhcdzM1+jjiTqrKqd6RuqeEKerzX2yjQ8PMzq1aupra3NK8Gp5NhnK9TY\nQ40bwo49X7nW5Hyf6EZ9XcBBwC+AA4GDidaz+nJRRicpsVw9XFKx5Xrp52GimwHeArwN+BBwEtGS\nD6szj+PE6Sopxnp6eti6dStNTU0urilpWsWerjoI+Evm8SuBbxGtX7WJaIkFSZrWaHt4VVWVq4dL\nKrpck5ytwBlEyc6rgI2Z5w8FthdhXMpDyPO1xh5/Q0NDrFq1ipUrV1JfX1+Q16yU2Ish1NhDjRvC\njj1fudbk/AfwFaKVv+8Dfpx5/sVEU1iSNKnR9vCOjg7bwyWVzEzmt2qAY4hWIf9r5rl/JJrG+lmB\nxzVb1uRIMWB7uKRC8D45Y5nkSGU2PDxMe3s7DQ0N1NTUlHs4kipYsQuP5wDvAX4H7ACek3n+IuBN\nM31TFUfI87XGXnr9/f1ccslH+MhH1vG73/1ur30tLS2sXbu2qAmO5z08ocYNYceer1yTnPcDa4Er\nxz3/AHBBQUckKdbS6TSrV3+I5ctfySWXDHPJJX/h7//+ZXzoQ21A1B7e29tLZ2en97+RVFa5Xvq5\nA2gCvgc8DpwM3AM8n6gI+dCijC5/TldJRbJp0ybOPvtdbNt2M3v+03+Y+fNrOPfcl/LGN76xYN1T\nkgTFn646Buif4PknAFslpIB87nNXsW3bBYz9t81Oduw4im3bdpngSIqNXJOce4EXTPD8WcBthRuO\nZiPk+VpjL52//nU7UJX1TB/QDbyZdLq0N/fzvIcn1Lgh7NjzlWuScylwOdEyDvsApwPtwEcz+yQF\n4pxzXsUr5vkEAAAfDklEQVSBB34V2E20nN0gsJ4DD/w6b3jDWeUdnCRlmcn81ruAFuBZme0HgDbg\n84UeVAFYkyMVyc6dO1m+/B+49dY/snv3hcDzWLDgUyxdupOf/OQHzJs3r9xDlJQwpbxPzjOIruY8\nlMfPlopJjlQk/f39fOYzn+HII4/im9/8IXPmzKGx8fW8+93nc8ABB5R7eJISqNiFx9keJt4JTrBC\nnq819tIYbQ//1Kc+RUvLxWzZcj2/+c1m3v/+95UlwfG8hyfUuCHs2PM11dpVE3VTTSQNnFSAsUiK\nqZGREdatW8eKFSs477zzyj0cScrJVJd+2nN8jTTw4dkPpaCcrpIKZGhoiFQqxZo1a6iuri73cCQF\nyLWrxjLJkQpgdPXw1tZWVw+XVDalrMlRTIU8X2vshZVOp+nq6mJwcJBUKhXbBMfzHp5Q44awY8/X\ndDU5Lwb+wtT1OdbkSAni6uGSkmK6mpxLgW1MXZ9jTY6UEP39/Vx55ZW0tbW5uKak2LAmZyyTHGmG\nenp62Lp1K01NTcydW9rlGSRpKsWuyXk+0crj450MLJnpm6o4Qp6vNfb8jYyM0NraSlVVFc3NzRWV\n4HjewxNq3BB27PnKNcn5LHD8BM8vyeyTVIGGhoZYtWoVK1eudPVwSYmT66Wfx4mu2twz7vljgV8D\nhxRyUAXgdJU0DdvDJVWKfKerpuquyrYbOJS9k5yF+byppPJJp9Ns2LCBqqoqUqlUuYcjSUWT63TV\nj4GLGZsUzcs89+NCD0r5CXm+1thzMzw8zOrVq6mtraWxsbFoYyoVz3t4Qo0bwo49X7leyWkGfgrc\nlfk+BzgDOIjoXjqSYs72cEmhmclU0yLgPcApRPfG+Q3waeCBIoxrtqzJkbLYHi6pknmfnLFMciTG\nrh5u95SkSlWKtatOArqBXuDIzHOvI7qyoxgIeb7W2PcWQnu45z08ocYNYceer1xrcl4JXEOU4LwM\nGO03fS7wL8A/zXIchwLfAJ4NDABvAh6d4LgB4DGibq8ngNNm+b5SIo22h3d0dNgeLilYuV76uRn4\nMtGVnOx75tQQJT9HTv6jOfkE8L+Z7x8EngZcNMFx9wIvAB6Z5vWcrlKQstvDk9A9JUlQ/OmqE4Hv\nT/D8I0RXYWbrNURJFJnvU10ZSmodkTQrSWsPl6TZyjXJeQR41gTPnwIMFWAchwMPZR4/lNmeSBr4\nEfBL4F0FeN9ECXm+NvTY+/v7aWlpYdWqVfzxj3/kmmuuYdu2beUeWtGFft5DFGrcEHbs+cq1Jucq\noqmkczPb84A64D+AL+b4GhuBIyZ4/uJx2+nM10RqgQeBZ2Re73bgJzm+v5RI1113HQcffDCnnbaC\nJUtOZe7cZQDs2tXIFVd8ire85c1lHqEklUeuSU4LUTIzQDRddFvm+9eA9Tm+xium2PcQUQL0R6L6\nnj9NctyDme8PA98iKjyeMMlpbGxk8eLFACxcuJBly5ZRV1cH7MmG3U7W9qi4jKfY26effjrr1q3j\nwAMP5JnPfCbnn38hO3b0sadk7TDe/e6X88QTO6muri77eIuxXVdXF6vxuF387dHn4jIe/96Lsz36\neGBggNmYaX3Lc4FTiaa5fgPcOat33+MTwJ+BjxMVHC9k78LjBcBcosLnA4EfAh/OfB/PwmMl2tDQ\nEKlUijVr1lBdXc373reGz3xmPrt2fWTMcXPntnH++Y/x6U93lmmkkjR7pbhPDsAfgP9H1O5dqAQH\n4GNEV3ruBF6a2YboLsujBc9HEF212QLcBHyPiROcYGVnwKEJKfa+vj66u7vp6OigurqazZs3c999\nf2TXrmP3Onb37ucxOPjHMoyyNEI67+OFGnuocUPYsecrl+mqBURrV50DPAd4kqh9/L+ADmBHAcbx\nCPDyCZ5/AHh15vE9wLICvJdUkaZaPfylLz2NH/3oe2zf/i9jnl+w4Hu89KUrSjlMSYqN6S797Et0\n9eRU4AfA7zM/swR4FVGX04uBXUUcYz6crlKiDA8P097eTkNDAzU1NXvtf+yxxzj++FP505/eyO7d\n7wXmMHfu5Tz96T3cfvuvWbhwYekHLUkFUqzpqvOBY4mSnNcS1cl8EDg789zzMsdIKpLR9vC1a9dO\nmOAAHHLIIfzylz/mjW98iPnzlzB//gmcc84D/OpXPzHBkRSs6ZKcNwAfBX43wb5bgVTmGMVAyPO1\nSY29p6eH3t5eOjs7OeywwyY8ZjT2RYsW0dPzBbZvf5Tt2x/lG9/4IkcddVQJR1t6ST3vuQg19lDj\nhrBjz9d0Sc6JwHVT7L8OWFq44UiCaPXw1tZWqqqqaG5uZu7cueUekiRVnOnmt0aIFs18cJL9i4D7\niG4OGCfW5KhijW8Pl6TQ5VuTM1131b5EK35PZjfRvWskFYCrh0tS4eRyn5yvEq00Pv7ru5l9iomQ\n52srPfZ0Ok1XVxeDg4OkUqkZJTiVHvtsGHt4Qo0bwo49X9NdyfkK0TpSU10i+vIU+yRNY7r2cElS\nfmY8v1UhrMlRRejv7+fKK6+kra1t0u4pSQpdsWpyJBVJT08PW7dupbOz0+4pSSqCma5dpRgLeb62\nkmIvdHt4JcVeaMYenlDjhrBjz5dXcqQSsj1ckkrHmhypREbbw1tbW20Pl6QZyLcmxyRHKrLs1cMb\nGxvLPRxJqjjFWqBTFSTk+dq4xj48PMzq1aupra0tWoIT19hLwdjDE2rcEHbs+bImRyoS28Mlqbyc\nrpKKYLQ9vKmpyfZwSZola3LGMslRWYyMjLBu3TpWrFhBfX19uYcjSYlgTY6Cnq+NQ+xDQ0OsWrWK\nlStXljTBiUPs5WLs4Qk1bgg79nxZkyMVgKuHS1L8OF0lzYLt4ZJUfE5XSSXy5JNPsmHD5VRXL2X+\n/IO5+uprOOWUU8o9LEnSOCY5CRLyfG0pY1+58t/44Ac/z8DAcezc+VN+/vPXUFv7crZs2VKyMWTz\nvIcp1NhDjRvCjj1fJjnSDPzhD3+gp+cq/va31wNXA8tIp9/Htm1tNDdfUu7hSZKyWJMj5WhkZIQ3\nvelN/M//PMrf/rZ53N4HOeigk3j88YfLMTRJSjRrcqQiGm0PP/vss9lvv90THLGVQw7xrsaSFCcm\nOQkS8nxtMWPv6+uju7ubjo4O3vrWtzJv3gDwrawj/sb8+RdzwQVvL9oYpuJ5D1OosYcaN4Qde768\nT440iez28FQq9dTzP/jBt3jlK1/Lrl0b2L27mnT6B5x11sv4wAdWl3G0kqTxrMmRJjA8PEx7ezsN\nDQ3U1NTstX/nzp309vby8MMPc/rpp3PiiSeWYZSSFAbXrhrLJEd5c/VwSYoXC48V9HxtoWLv6emh\nt7eXzs7OiklwPO9hCjX2UOOGsGPPl0mORNQe3traSlVVFc3NzcydO7fcQ5IkzZLTVQre0NAQqVSK\nNWvWUF1dXe7hSJLGyXe6yu4qBc3VwyUpuZyuSpCQ52tnGns6naarq4vBwUFSqVRFJzie9zCFGnuo\ncUPYsefLJEfBGR4eZvXq1dTW1tLY2Fju4UiSisSaHAXF9nBJqjzW5EjT6OnpYevWrXR2dto9JUkB\ncLoqQUKer50q9qS3h3vewxRq7KHGDWHHni+v5CjRbA+XpHDFpSbnjUA7cDzw98CvJznuTOAyYC7w\nOeDjkxxnTY6eag9vbW2t6O4pSQpdpa9ddTzwJHAF0MTESc5c4A7g5cD9wC+A84DfT3CsSU7AslcP\nt3tKkipfpa9ddTtw5zTHnAbcDQwATwBfB15b3GFVlpDna0djD7E93PMeplBjDzVuCDv2fFVSTc5R\nwNas7SFgeZnGohiyPVySlK2U01UbgSMmeP7fgWsyjzcx+XTVOUQ1Oe/KbL+FKMl57wTHOl0VmNH2\n8KampsR1T0lS6CrhPjmvmOXP3w8cnbV9NNHVnAk1NjayePFiABYuXMiyZcuoq6sD9lzyc7vyt0dG\nRnjnO9/JkiVLuOiii8o+Hrfddtttt2e/Pfp4YGCA2YhL4fGoTcAa4FcT7NuXqPD4ZcADwM1YeDzG\n5s2bn/pDCUF2e/h9990XVOzZQjvv2Yy9rtzDKLlQ44awY6/0wuPXEdXbrAC+D/Rmnl+U2QbYBVwA\n/A9wG/ANJk5wFIC+vj66u7vp6Ojw/jeSpAnF7UpOoQR5JScEtodLUngq/UqONK0Q28MlSfkzyUmQ\n7IKtpOnv76elpYW1a9dSU1Oz1/4kxz4dYw9TqLGHGjeEHXu+Kuk+OQqUq4dLkvJhTY5ia2RkhHXr\n1rFixQrq6+vLPRxJUplUwn1ypJy5ergkabasyUmQpMzX5tMenpTY82HsYQo19lDjhrBjz5dXchQb\n2e3hqVSq3MORJFU4a3IUC8PDw7S3t9PQ0DBh95QkKVzW5KhiuXq4JKkYrMlJkEqcr+3p6aG3t5fO\nzs5ZJTiVGHuhGHuYQo091Lgh7NjzZZKjshgZGaG1tZWqqiqam5u9/40kqeCsyVHJ2R4uSZoJa3JU\nEfr6+ti4cSMdHR3Mnz+/3MORJCWY01UJEuf52nQ6TVdXF4ODg6RSqYInOHGOvdiMPUyhxh5q3BB2\n7PkyyVHRuXq4JKkcrMlRUdkeLkmaLWtyFDuuHi5JKienqxIkLvO15WgPj0vs5WDsYQo19lDjhrBj\nz5dXclRQtodLkuLCmhwVzGh7eGtrq+3hkqSCybcmxyRHs5a9erjdU5KkQss3ybEmJ0HKMV8bl/bw\nkOeqjT1MocYeatwQduz5siZHebM9XJIUZ05XKS+j7eFNTU22h0uSisqanLFMcopkZGSEdevWsWLF\nCurr68s9HElSAKzJUdHna4eGhli1ahUrV66MXYIT8ly1sYcp1NhDjRvCjj1f1uQoJ64eLkmqNE5X\naUq2h0uSys3pKhVcXNrDJUnKh0lOghRyvra/v5+WlhbWrl1LTU1NwV63WEKeqzb2MIUae6hxQ9ix\n58uaHO3F1cMlSUlgTY6eUq728HQ6zdatW5k3bx5HHnlkyd5XklQZrMnRrJSrPfz666/n2GOXcfzx\np1Fd/XxOPfXF3HbbbSV7f0lScpnkJEi+87V9fX10d3fT0dFBdXV1YQc1hTvvvJP6+jdwzz2XsGPH\ng+zc+Ue2bHkzZ5zxCh599NEZvVbIc9XGHqZQYw81bgg79nyZ5AQsnU7T1dXF4OAgqVSq5Pe/+Y//\n6GZk5F+B1xJdhZxHOv2v7Nz5Yr761f8s6VgkScljTU6ghoeHaW9vp6GhoWzdUy984ZnceOP7gbPG\n7dnAO95xJ5/73OXlGJYkKWasyVHO4tIevnTpccyde9Nezy9YcBNLlx5XhhFJkpLEJCdBcpmv7enp\nobe3l87OTg477LDiD2oKq1f/G/vv3w1cC6SB3cAX2G+/TbztbW+d0WuFPFdt7GEKNfZQ44awY8+X\nSU4gRkZGaG1tpaqqiubm5ljc/+b444/nu9/9OkcfvYYFC47mgAOO5MQTP8v11/+Apz3taeUeniSp\nwlmTE4ChoSFSqRRr1qwpafdUrtLpNH/4wx/Yb7/9OOaYY8o9HElSzORbkxOXJOeNQDtwPPD3wK8n\nOW4AeIxoXuMJ4LRJjjPJyRhdPby1tdXVwyVJFanSC4/7gdcBP57muDRQB5zC5AlOsLLna8vdHl5q\nIc9VG3uYQo091Lgh7NjzFZe1q26fwbFxufoUW3FoD5ckqdziljBsApqYfLrqHmCYaLrqCuDKSY4L\ndrqqv7+fK6+8kra2trJ3T0mSVAj5TleV8krORuCICZ7/d+CaHF+jFngQeEbm9W4HflKQ0SWAq4dL\nkrRHKZOcVxTgNR7MfH8Y+BZRXc6ESU5jYyOLFy8GYOHChSxbtoy6ujpgz7xmUrY3btzIV7/6VZYs\nWcJFF11U9vGUY3vLli1ceOGFsRlPKbcvu+yyRP99T7WdXaMQh/GUcnv0ubiMx7/34m+H9Pc++nhg\nYIDZiON01RrgVxPsWwDMBR4HDgR+CHw48328YKarstvD77vvvqf+UEKzefNmYw+QsdeVexglF2rc\nEHbsld5C/jpgA/B0opqb3xAtaLSIqO7m1cBzgP/OHL8v8DUgNcnrBZHk2B4uSQpBpSc5hZboJCed\nTrNhwwaqqqpobGws93AkSSqqSr9PjnI0PDzM6tWrqa2t3SvByZ7LDI2xh8nYwxNq3BB27PmKy31y\nlAPbwyVJyp3TVRVitD28qanJ9nBJUlCsyRkrMUnOyMgI69atY8WKFdTX15d7OJIklZw1OQk0NDTE\nqlWrWLlyZU4JTsjztcYeJmMPT6hxQ9ix58uanJgabQ/v6OiwPVySpDw4XRUztodLkjSW01UJMFV7\nuCRJmhmTnJjo7++npaWFtWvXUlNTk9drhDxfa+xhMvbwhBo3hB17vqzJiQFXD5ckqfCsySkj28Ml\nSZpevjU5Xskpk+zVw6urq8s9HEmSEseanDLo6+uju7ubjo6OgiY4Ic/XGnuYjD08ocYNYceeL6/k\nlFB2e3gqlSr3cCRJSjRrckpkeHiY9vZ2Ghoa8u6ekiQpRNbkxJirh0uSVHrW5BRZT08Pvb29dHZ2\nFj3BCXm+1tjDZOzhCTVuCDv2fJnkFMnIyAitra1UVVXR3Nzs/W8kSSoxa3KKwPZwSZIKx5qcmHD1\ncEmS4sHpqgJJp9N0dXUxODhIKpUqS4IT8nytsYfJ2MMTatwQduz5MskpAFcPlyQpfqzJmSXbwyVJ\nKi5rcsrA1cMlSYovp6vyENf28JDna409TMYenlDjhrBjz5dXcmbI9nBJkiqDNTkzMNoe3traanu4\nJEklkm9NjklObi/21Orhdk9JklRa+SY51uRMo5Law0OerzX2MBl7eEKNG8KOPV/W5EzB9nBJkiqX\n01WTGG0Pb2pqik33lCRJIbImZ6y8k5yRkRHWrVvHihUrqK+vL/CwJEnSTFmTUwBDQ0OsWrWKlStX\nVmSCE/J8rbGHydjDE2rcEHbs+bImJ8PVwyVJSpbgp6tsD5ckKd6crspDJbWHS5KkmQk2yenv76el\npYW1a9dSU1NT7uEURMjztcYeJmMPT6hxQ9ix5yvImhxXD5ckKfmCqsmxPVySpMqTb01OMFdyXD1c\nkqSwxKUm51Lg98Bvgf8GqiY57kzgduAu4IO5vnhfXx/d3d10dHQkOsEJeb7W2MNk7OEJNW4IO/Z8\nxSXJ+SFwInAycCfwoQmOmQtcTpToLAHOA06Y6kXT6TRdXV0MDg6SSqUSf/+bLVu2lHsIZWPsYTL2\n8IQaN4Qde77ikuRsBJ7MPL4JeNYEx5wG3A0MAE8AXwdeO9kLhtge/uijj5Z7CGVj7GEy9vCEGjeE\nHXu+4liT83agZ4LnjwK2Zm0PAcsne5GWlhZXD5ckKWClTHI2AkdM8Py/A9dkHl8MjABXTXDcjFbc\nDLE9fGBgoNxDKBtjD5OxhyfUuCHs2PMVpxbyRuBdwMuAv02wfwXQTlSTA1HdzpPAxyc49m7guQUf\noSRJKoc/AMeWexD5OhP4HfD0KY7ZlyjIxcB+wBamKTyWJEkqt7uA+4DfZL4+nXl+EfD9rOPOAu4g\nulIzUQeWJEmSJEmS4qyoNxKMuTcSTfPtBk6d4rgB4Baiq2Q3F39YJZFr7Ek874cSFfLfSXSPqYWT\nHDdAcs57LudxQ2b/b4FTSjSuYpsu7jpgmD1XwdeWbGTF9QXgIaB/imOSeL5h+tjrSOY5Bzga2ET0\n//ZbgfdNclxSz/2EXsGe+/18LPM13lyiKa7FwDySU89zPHAc0R/FVB/09xJ9MCZJLrEn9bx/AmjO\nPP4gE//NQ3LOey7nsR64NvN4OXBjqQZXRLnEXQd8t6SjKo0XEX14TfZBn8TzPWq62OtI5jmHqAN7\nWebxQUTlKbP6bz0uNwOcjYLfSLCC3E70r/lcxKmTrhByiT2p5/01wJczj78M/NMUxybhvOdyHrN/\nJzcRXd06vETjK5Zc/36TcI7H+wnwlyn2J/F8j5oudkjmOQf4I1EyD/BXolmaReOOmdG5T0KSk+3t\n7Mnwsk10I8GjSjKieEgDPwJ+SdSmH4qknvfDiS5nk/k+2X/gSTnvuZzHiY6Z6B88lSSXuNPA6USX\n7a8lWvImBEk837kK5ZwvJrqiddO452d07uN4x+OJlPRGgjGTS+zTqQUeBJ6Reb3bif61EHezjT2J\n5/3icdtpJo+zUs/7eLmex/H/uq3k8w+5jf/XRHUM24m6T79NNI0bgqSd71yFcM4PAv4LeD/RFZ3x\ncj73lZLkvGKa/Y1E83Qvm2T//UR/FKOOJsr+KsF0sefiwcz3h4FvEV0Gr4QPu9nGntTz/hBRAvRH\n4EjgT5McV6nnfbxczuP4Y56Vea6S5RL341mPe4luv3Eo8Ehxh1Z2STzfuUr6OZ8HfBP4T6IEbrzg\nzr03EoyKb18wyb4FwMGZxwcCPwNeWYpBlchUsSf1vH+CPZ02FzFx4XGSznsu5zG7GHEFyShEzSXu\nw9nzr9rTiOp3kmIxuRUeJ+V8Z1vM5LEn+ZzPAb4CdE5xTNLP/V5CvpHg64jmJncQ/au+N/N8duzP\nIfqf4xailryQYodknvdDiWptxreQJ/m8T3Qe3535GnV5Zv9vmbrbsJJMF/d7iM7vFuAGov/pJ0EP\n8ABRCcJWonrLEM43TB97Us85wBlEjURb2POZfhbhnHtJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiTN\nXDtjb0g2frucFhPdTyNJ98i4nOjmlpIKJGkLdEpJ9yWiD/cniW4W9hDQB/wbhV+m5VLgxQV+zVy8\nCrgOGCZan2cL8D6Su/JytlDWX5JKwiRHqixp9ize+WyiNa6uAT5MtC7VggK+1zbgLwV8vVz8G9Fd\nm38BvJBoGYNPE8X3tRKPZSLFXu8vhEROkqQJfYmJV2A/EdhJNKU0aj/g40S3ht8G3Mze61cdD3wX\neJRo4b8bgOdn9rUz/XTVSuA2ouU17gAuZOwH9buJlp/YQbRQ6A+AuZPE9qxMDJ+cYN9ria5evSGz\nvTizfR7w08zr/56xC5vOAzYQLd73N2AQSGXtn+73U5d5j7My+3YC780893zGOj8T31yifzx+HriH\n6ErUncAHGPt7mQt0EC2q+AjRWj2fYex01f7AZUTLluwAfk60snyu8UmSVFG+xMRJDsB3GJuEfI0o\naTmDKCl4D9EH9UmZ/YuA/yVaobyGaL2rc4GTM/vbmTrJeRfRGjuvJ7qq9I9EK5+/J7O/BniCKBE5\nOvO+72fyJGcVUQJxxCT77wD+O/N4cebYrUSJz3FEH/jbM3EBNBF98J9BlEC9EPiXrNeb7vdTl3mP\n3wIvzxzzdOAm9k4mrieqqYHoas+HiRaOPQZ4I9EVsbdnHd9MlFhmj32YaOpxVBfR7/cs4O+AzxIl\noqO/n+nikySponyJyZOcjxFdkQB4LrCbKLnI9m2gO/N4PXAvk0/BtDN1kjMINIz7mQuB32Uev57o\ng/ygSV5/vM8w9fTYd7JeezFRApK98OgcokToI5ntLqKFTCeSy++nLvMerxt3zHsZu/LzMZnXmmqh\nxI8RTTOOemCSsY8mOQcSJVxvyTpmH6JFCXOJTxLW5EhJMofoQxmirqM5RFNJj2d91RNdsQE4hWiq\nZ1ce7/UMoqsHo1cXRr9SWa//Q+A+okTqP4G3kXvCM5nxhbk/H7fvJmBJZvtLwDKi6aLLiWIfnTLK\n5fcz6pfjtr9BdLXoRZnt84impm7MOuZfMz/3p8zrXsiehKqK6GrMRGMfHd9ziaajfpZ1zJOZn8kl\nPkkUv4hOUuksIfqwhegfMGn2TBll25H5nib/D8XRfyC9m2jKZyJ/JUomXkxUK/Mh4KPA3xNNa413\nB1ECsIjoSsd4S5i+hX0OexKh3xBd8XkV8DLgy0RTT68gt9/PqG3jtv9EdFWmgajYu4GxRdHnEtXY\nNBH9bh4DLmDvK0ITjX062YnsVPHZpSVJqjhfIioUHu/5RC3lLZnt44g+DOumeK11RNMu8ybZ387U\n01VDjC10ns48oumod06yf7TwuHOCfa8jiueczPZipp+uGu+0zM8cS26/n7rMMYdOsO884M9EdTej\nrznqU8Dmccd/lz0JKETFwtNNV/0NeGvWMXOBPxDV+0wkOz5JkirOl4imgQ4nuuJxMrCaqLPnBmB+\n1rFfJUpiziGagqkB1rDnisL4wuNjiT68cy08fgdRoe+FRIWxzyeakroos/8fiQqNTyEqTG4kmhrL\n7hAa7wKi+paPE3WMVRN1Lv0FuCrruMVEH+j3ZeL7O6IalezC49XAPxO1oR+b2f8X4IAcfz91TJ7k\nzCe6QrOFsdNUozE8BpwJPI8o8XyUaNpuVHNmLNljH1943MmewuMTiKYGHyM697nEJ0lSRfkie24G\n+ARRcjPZzQD3BdqI/vW/k2iK6NtESceoJUT3pXmc6AP0p+yp+WgDbsk6dvw2RB+yvyKa4nkE+DHw\npsy+2szY/pco+biF3Lp/zsr83GOZ191CVOybbTFRMnQeUd3KaAv5q7KOeWdmbI8RJRCbGFscPN3v\npy7zHhMlORBND+0mSmqyzQM+R/T7+AtwJVGik30lZy5Rq/xfMl9dRPcDyk5y9iNKdP5IdFXnBuD0\nGcQnSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkadb+P1Fs2aE5YrSwAAAAAElFTkSu\nQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f31507c0ed0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = pl.figure(figsize=(9,7))\n", "ax = fig.add_subplot(111)\n", "ax.scatter(Per1,Per2,s=40)\n", "ax.set_xlim(-2,2)\n", "ax.set_ylim(-2,2)\n", "ax.grid(True)\n", "ax.set_xlabel('Deciles Observados',size =14); ax.set_ylabel('Deciles Alterados',size=14) \n", "ax.plot([-2,2],[-2,2],lw=0.5,c='k')\n", "pl.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
Yuanyuan-Shi/batterydeg
.ipynb_checkpoints/phy2nn_battery-checkpoint.ipynb
1
36414
{ "cells": [ { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import tensorflow as tf\n", "import matplotlib.pyplot as plt\n", "\n", "from sklearn.pipeline import Pipeline\n", "from sklearn import datasets, linear_model\n", "from sklearn import cross_validation\n", "import numpy as np\n", "numpy.longfloat\n", "import pandas as pd\n", "from sklearn import preprocessing" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "ename": "ValueError", "evalue": "The 'dtype' option is not supported with the 'python' engine", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-31-a7d594b6a404>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_excel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"data0505.xlsx\"\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mheader\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlongfloat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m# clean up data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'all'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfillna\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mround\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Applications/anaconda/lib/python3.5/site-packages/pandas/io/excel.py\u001b[0m in \u001b[0;36mread_excel\u001b[0;34m(io, sheetname, header, skiprows, skip_footer, index_col, names, parse_cols, parse_dates, date_parser, na_values, thousands, convert_float, has_index_names, converters, engine, squeeze, **kwds)\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[0mconvert_float\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconvert_float\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhas_index_names\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mhas_index_names\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 177\u001b[0m \u001b[0mskip_footer\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskip_footer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconverters\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconverters\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 178\u001b[0;31m squeeze=squeeze, **kwds)\n\u001b[0m\u001b[1;32m 179\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Applications/anaconda/lib/python3.5/site-packages/pandas/io/excel.py\u001b[0m in \u001b[0;36m_parse_excel\u001b[0;34m(self, sheetname, header, skiprows, names, skip_footer, index_col, has_index_names, parse_cols, parse_dates, date_parser, na_values, thousands, convert_float, verbose, squeeze, **kwds)\u001b[0m\n\u001b[1;32m 463\u001b[0m \u001b[0mskip_footer\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mskip_footer\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 464\u001b[0m \u001b[0msqueeze\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msqueeze\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 465\u001b[0;31m **kwds)\n\u001b[0m\u001b[1;32m 466\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 467\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0masheetname\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Applications/anaconda/lib/python3.5/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mTextParser\u001b[0;34m(*args, **kwds)\u001b[0m\n\u001b[1;32m 1470\u001b[0m \"\"\"\n\u001b[1;32m 1471\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'engine'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'python'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1472\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1473\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1474\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Applications/anaconda/lib/python3.5/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 633\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 634\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 635\u001b[0;31m \u001b[0moptions\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_options_with_defaults\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 636\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 637\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchunksize\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0moptions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'chunksize'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Applications/anaconda/lib/python3.5/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_get_options_with_defaults\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 670\u001b[0m raise ValueError(\n\u001b[1;32m 671\u001b[0m \u001b[0;34m'The %r option is not supported with the'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 672\u001b[0;31m ' %r engine' % (argname, engine))\n\u001b[0m\u001b[1;32m 673\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 674\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdefault\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mValueError\u001b[0m: The 'dtype' option is not supported with the 'python' engine" ] } ], "source": [ "df = pd.read_excel(\"data0505.xlsx\",header=0,dtype=np.longfloat)\n", "# clean up data\n", "df = df.dropna(how = 'all')\n", "df = df.fillna(0)\n", "df = df.round(4)\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>SOC</th>\n", " <th>SOH</th>\n", " <th>Power</th>\n", " <th>T</th>\n", " <th>SEI_after</th>\n", " <th>SEI_delta</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>80</td>\n", " <td>0</td>\n", " <td>-1.0000</td>\n", " <td>23</td>\n", " <td>0.0</td>\n", " <td>-0.0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>80</td>\n", " <td>0</td>\n", " <td>-0.8947</td>\n", " <td>23</td>\n", " <td>0.0</td>\n", " <td>-0.0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>80</td>\n", " <td>0</td>\n", " <td>-0.7895</td>\n", " <td>23</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>80</td>\n", " <td>0</td>\n", " <td>-0.6842</td>\n", " <td>23</td>\n", " <td>0.0</td>\n", " <td>-0.0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>80</td>\n", " <td>0</td>\n", " <td>-0.5790</td>\n", " <td>23</td>\n", " <td>0.0</td>\n", " <td>0.0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " SOC SOH Power T SEI_after SEI_delta\n", "0 80 0 -1.0000 23 0.0 -0.0\n", "1 80 0 -0.8947 23 0.0 -0.0\n", "2 80 0 -0.7895 23 0.0 0.0\n", "3 80 0 -0.6842 23 0.0 -0.0\n", "4 80 0 -0.5790 23 0.0 0.0" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>SOC</th>\n", " <th>SOH</th>\n", " <th>Power</th>\n", " <th>T</th>\n", " <th>SEI_after</th>\n", " <th>SEI_delta</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1.703816</td>\n", " <td>NaN</td>\n", " <td>-1.647432</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>1.703816</td>\n", " <td>NaN</td>\n", " <td>-1.473957</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>1.703816</td>\n", " <td>NaN</td>\n", " <td>-1.300648</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>1.703816</td>\n", " <td>NaN</td>\n", " <td>-1.127173</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>1.703816</td>\n", " <td>NaN</td>\n", " <td>-0.953863</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " <td>NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " SOC SOH Power T SEI_after SEI_delta\n", "0 1.703816 NaN -1.647432 NaN NaN NaN\n", "1 1.703816 NaN -1.473957 NaN NaN NaN\n", "2 1.703816 NaN -1.300648 NaN NaN NaN\n", "3 1.703816 NaN -1.127173 NaN NaN NaN\n", "4 1.703816 NaN -0.953863 NaN NaN NaN" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_normalized=(df-df.mean())/df.std()\n", "# min_max_scaler = preprocessing.MinMaxScaler()\n", "# np_scaled = min_max_scaler.fit_transform(df)\n", "# df_normalized = pd.DataFrame(np_scaled)\n", "df_normalized.head()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "9760" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = np.array(df_normalized.ix[:,0:2])#first three column are SoC, SoH, power\n", "y = np.array(df_normalized.ix[:,5])#delta SEI\n", "X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(\n", "x, y, test_size=0.2, random_state=42)\n", "total_len = X_train.shape[0]\n", "total_len" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.000000000000000\n" ] } ], "source": [ "print(str.format('{0:.15f}', y[1]))" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Parameters\n", "learning_rate = 0.001\n", "training_epochs = 50\n", "batch_size = 100\n", "display_step = 1\n", "dropout_rate = 0.1\n", "# Network Parameters\n", "n_hidden_1 = 10 # 1st layer number of features\n", "n_hidden_2 = 5 # 2nd layer number of features\n", "n_input = X_train.shape[1]\n", "n_classes = 1\n", "\n", "# tf Graph input\n", "x = tf.placeholder(\"float\", [None, 3])\n", "y = tf.placeholder(\"float\", [None])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Create model\n", "def multilayer_perceptron(x, weights, biases):\n", " # Hidden layer with RELU activation\n", " layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])\n", " layer_1 = tf.nn.relu(layer_1)\n", "\n", " # Hidden layer with RELU activation\n", " layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])\n", " layer_2 = tf.nn.relu(layer_2)\n", "\n", " # Output layer with linear activation\n", " out_layer = tf.matmul(layer_2, weights['out']) + biases['out']\n", " return out_layer" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Store layers weight & bias\n", "weights = {\n", " 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], 0, 0.1)),\n", " 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], 0, 0.1)),\n", " 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes], 0, 0.1))\n", "}\n", "biases = {\n", " 'b1': tf.Variable(tf.random_normal([n_hidden_1], 0, 0.1)),\n", " 'b2': tf.Variable(tf.random_normal([n_hidden_2], 0, 0.1)),\n", " 'out': tf.Variable(tf.random_normal([n_classes], 0, 0.1))\n", "}" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Construct model\n", "pred = multilayer_perceptron(x, weights, biases)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "num batch: 97\n", "Epoch: 0001 cost= 0.001209991\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 0.00404518]\n", "label value: 0.0 estimated value: [ 0.00695085]\n", "label value: 0.0 estimated value: [-0.00441298]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0002 cost= 0.000012889\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 0.0029598]\n", "label value: 0.0 estimated value: [ 0.00522447]\n", "label value: 0.0 estimated value: [-0.00387982]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0003 cost= 0.000008064\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 0.00236373]\n", "label value: 0.0 estimated value: [ 0.00403679]\n", "label value: 0.0 estimated value: [-0.0030103]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0004 cost= 0.000004712\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 0.00176073]\n", "label value: 0.0 estimated value: [ 0.00297401]\n", "label value: 0.0 estimated value: [-0.00228744]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0005 cost= 0.000002586\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 0.00125664]\n", "label value: 0.0 estimated value: [ 0.00207181]\n", "label value: 0.0 estimated value: [-0.00167676]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0006 cost= 0.000001322\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 0.00085248]\n", "label value: 0.0 estimated value: [ 0.00133884]\n", "label value: 0.0 estimated value: [-0.00117343]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0007 cost= 0.000000626\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 0.0005428]\n", "label value: 0.0 estimated value: [ 0.00077347]\n", "label value: 0.0 estimated value: [-0.0007759]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0008 cost= 0.000000277\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 0.00032021]\n", "label value: 0.0 estimated value: [ 0.00036713]\n", "label value: 0.0 estimated value: [-0.00047934]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0009 cost= 0.000000122\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 0.00017164]\n", "label value: 0.0 estimated value: [ 9.82955098e-05]\n", "label value: 0.0 estimated value: [-0.00027397]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0010 cost= 0.000000060\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 7.88420439e-05]\n", "label value: 0.0 estimated value: [ -6.53229654e-05]\n", "label value: 0.0 estimated value: [-0.00014188]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0011 cost= 0.000000038\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ 2.47173011e-05]\n", "label value: 0.0 estimated value: [-0.00015584]\n", "label value: 0.0 estimated value: [ -6.20558858e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0012 cost= 0.000000030\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -4.93600965e-06]\n", "label value: 0.0 estimated value: [-0.00020028]\n", "label value: 0.0 estimated value: [ -1.58995390e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0013 cost= 0.000000027\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.03326344e-05]\n", "label value: 0.0 estimated value: [-0.00021815]\n", "label value: 0.0 estimated value: [ 1.05500221e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0014 cost= 0.000000025\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.77869403e-05]\n", "label value: 0.0 estimated value: [-0.00022158]\n", "label value: 0.0 estimated value: [ 2.61142850e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0015 cost= 0.000000024\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.12067568e-05]\n", "label value: 0.0 estimated value: [-0.00021797]\n", "label value: 0.0 estimated value: [ 3.65599990e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0016 cost= 0.000000023\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.26894224e-05]\n", "label value: 0.0 estimated value: [-0.00021117]\n", "label value: 0.0 estimated value: [ 4.46736813e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0017 cost= 0.000000021\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.33562493e-05]\n", "label value: 0.0 estimated value: [-0.00020317]\n", "label value: 0.0 estimated value: [ 5.17927110e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0018 cost= 0.000000020\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.35872173e-05]\n", "label value: 0.0 estimated value: [-0.00019474]\n", "label value: 0.0 estimated value: [ 5.88148832e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0019 cost= 0.000000019\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.36728990e-05]\n", "label value: 0.0 estimated value: [-0.00018631]\n", "label value: 0.0 estimated value: [ 6.59674406e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0020 cost= 0.000000017\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.37138772e-05]\n", "label value: 0.0 estimated value: [-0.00017807]\n", "label value: 0.0 estimated value: [ 7.33882189e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0021 cost= 0.000000016\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.35760415e-05]\n", "label value: 0.0 estimated value: [-0.00016985]\n", "label value: 0.0 estimated value: [ 8.10213387e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0022 cost= 0.000000015\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.32482159e-05]\n", "label value: 0.0 estimated value: [-0.00016174]\n", "label value: 0.0 estimated value: [ 8.89636576e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0023 cost= 0.000000014\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.26558948e-05]\n", "label value: 0.0 estimated value: [-0.00015367]\n", "label value: 0.0 estimated value: [ 9.74349678e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0024 cost= 0.000000013\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.15904617e-05]\n", "label value: 0.0 estimated value: [-0.00014537]\n", "label value: 0.0 estimated value: [ 0.00010644]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0025 cost= 0.000000012\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.02121043e-05]\n", "label value: 0.0 estimated value: [-0.00013707]\n", "label value: 0.0 estimated value: [ 0.00011584]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0026 cost= 0.000000011\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.85692513e-05]\n", "label value: 0.0 estimated value: [-0.0001288]\n", "label value: 0.0 estimated value: [ 0.00011111]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0027 cost= 0.000000010\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.67848372e-05]\n", "label value: 0.0 estimated value: [-0.00012073]\n", "label value: 0.0 estimated value: [ 0.00010429]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0028 cost= 0.000000009\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.50190496e-05]\n", "label value: 0.0 estimated value: [-0.00011299]\n", "label value: 0.0 estimated value: [ 9.78857279e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0029 cost= 0.000000008\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.33948231e-05]\n", "label value: 0.0 estimated value: [-0.00010575]\n", "label value: 0.0 estimated value: [ 9.17762518e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0030 cost= 0.000000008\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.17221677e-05]\n", "label value: 0.0 estimated value: [ -9.87946987e-05]\n", "label value: 0.0 estimated value: [ 8.61771405e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0031 cost= 0.000000007\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -1.99079514e-05]\n", "label value: 0.0 estimated value: [ -9.19662416e-05]\n", "label value: 0.0 estimated value: [ 8.10883939e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0032 cost= 0.000000006\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -1.79074705e-05]\n", "label value: 0.0 estimated value: [ -8.52420926e-05]\n", "label value: 0.0 estimated value: [ 7.65696168e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0033 cost= 0.000000006\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -1.56797469e-05]\n", "label value: 0.0 estimated value: [ -7.85738230e-05]\n", "label value: 0.0 estimated value: [ 7.26580620e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0034 cost= 0.000000005\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -1.34594738e-05]\n", "label value: 0.0 estimated value: [ -7.22110271e-05]\n", "label value: 0.0 estimated value: [ 6.91190362e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0035 cost= 0.000000005\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -1.12429261e-05]\n", "label value: 0.0 estimated value: [ -6.60941005e-05]\n", "label value: 0.0 estimated value: [ 6.59227371e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0036 cost= 0.000000004\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -9.14186239e-06]\n", "label value: 0.0 estimated value: [ -6.03497028e-05]\n", "label value: 0.0 estimated value: [ 6.29462302e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0037 cost= 0.000000004\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -7.20098615e-06]\n", "label value: 0.0 estimated value: [ -5.49964607e-05]\n", "label value: 0.0 estimated value: [ 6.01261854e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0038 cost= 0.000000004\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -5.56558371e-06]\n", "label value: 0.0 estimated value: [ -5.01796603e-05]\n", "label value: 0.0 estimated value: [ 5.73322177e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0039 cost= 0.000000003\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -4.33251262e-06]\n", "label value: 0.0 estimated value: [ -4.59924340e-05]\n", "label value: 0.0 estimated value: [ 5.44488430e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0040 cost= 0.000000003\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.38628888e-06]\n", "label value: 0.0 estimated value: [ -4.23081219e-05]\n", "label value: 0.0 estimated value: [ 5.15766442e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0041 cost= 0.000000003\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.80141830e-06]\n", "label value: 0.0 estimated value: [ -3.91751528e-05]\n", "label value: 0.0 estimated value: [ 4.86150384e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0042 cost= 0.000000003\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.55554914e-06]\n", "label value: 0.0 estimated value: [ -3.65562737e-05]\n", "label value: 0.0 estimated value: [ 4.55565751e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0043 cost= 0.000000002\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.47731805e-06]\n", "label value: 0.0 estimated value: [ -3.42875719e-05]\n", "label value: 0.0 estimated value: [ 4.25614417e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0044 cost= 0.000000002\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -2.66358256e-06]\n", "label value: 0.0 estimated value: [ -3.24323773e-05]\n", "label value: 0.0 estimated value: [ 3.95327806e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0045 cost= 0.000000002\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.15159559e-06]\n", "label value: 0.0 estimated value: [ -3.10689211e-05]\n", "label value: 0.0 estimated value: [ 3.64482403e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0046 cost= 0.000000002\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -3.83704901e-06]\n", "label value: 0.0 estimated value: [ -3.00332904e-05]\n", "label value: 0.0 estimated value: [ 3.33562493e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0047 cost= 0.000000002\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -4.63053584e-06]\n", "label value: 0.0 estimated value: [ -2.92174518e-05]\n", "label value: 0.0 estimated value: [ 3.03126872e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0048 cost= 0.000000001\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -5.52088022e-06]\n", "label value: 0.0 estimated value: [ -2.86288559e-05]\n", "label value: 0.0 estimated value: [ 2.73361802e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0049 cost= 0.000000001\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -6.49690628e-06]\n", "label value: 0.0 estimated value: [ -2.82227993e-05]\n", "label value: 0.0 estimated value: [ 2.44267285e-05]\n", "[*]============================\n", "num batch: 97\n", "Epoch: 0050 cost= 0.000000001\n", "[*]----------------------------\n", "label value: 0.0 estimated value: [ -7.39470124e-06]\n", "label value: 0.0 estimated value: [ -2.78316438e-05]\n", "label value: 0.0 estimated value: [ 2.17147171e-05]\n", "[*]============================\n", "Optimization Finished!\n", "MSE: 1.16811e-09\n" ] } ], "source": [ "# Define loss and optimizer\n", "cost = tf.reduce_mean((tf.transpose(pred)-y)*(tf.transpose(pred)-y)) \n", "optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)\n", "\n", "# Launch the graph\n", "with tf.Session() as sess:\n", " sess.run(tf.initialize_all_variables())\n", " tf.initialize_all_variables()\n", "\n", " # Training cycle\n", " for epoch in range(training_epochs):\n", " avg_cost = 0.\n", " total_batch = int(total_len/batch_size)\n", " # Loop over all batches\n", " for i in range(total_batch-1):\n", " batch_x = X_train[i*batch_size:(i+1)*batch_size]\n", " batch_y = Y_train[i*batch_size:(i+1)*batch_size]\n", " # Run optimization op (backprop) and cost op (to get loss value)\n", " _, c, p = sess.run([optimizer, cost, pred], feed_dict={x: batch_x,\n", " y: batch_y})\n", " # Compute average loss\n", " avg_cost += c / total_batch\n", "\n", " # sample prediction\n", " label_value = batch_y\n", " estimate = p\n", " err = label_value-estimate\n", " print (\"num batch:\", total_batch)\n", "\n", " # Display logs per epoch step\n", " if epoch % display_step == 0:\n", " print (\"Epoch:\", '%04d' % (epoch+1), \"cost=\", \\\n", " \"{:.9f}\".format(avg_cost))\n", " print (\"[*]----------------------------\")\n", " for i in range(3):\n", " print (\"label value:\", label_value[i], \\\n", " \"estimated value:\", estimate[i])\n", " print (\"[*]============================\")\n", "\n", " print (\"Optimization Finished!\")\n", " \n", " # Test model\n", " # correct_prediction = tf.equal(tf.argmax(pred,0), tf.argmax(y,0))\n", " # Calculate accuracy\n", " accuracy = tf.reduce_mean((tf.transpose(pred)-y)*(tf.transpose(pred)-y)) \n", " print (\"MSE:\", accuracy.eval({x: X_test, y: Y_test}))" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
HUDataScience/StatisticalMethods2016
notebooks/Basic_Python.ipynb
1
60389
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Basic of Python.\n", "\n", "The library we are going to use are the following:\n", "\n", "\n", "* numpy " ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2\n", "43\n", "86\n", "131\n", "178\n", "227\n", "278\n", "331\n", "386\n", "443\n" ] } ], "source": [ "for i in range(10):\n", " y = i*40 +i**2 + 2\n", " print(y)\n", " \n", "i = i+2" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "range(10)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "a\n", "b\n", "tt\n" ] } ], "source": [ "for i in [\"a\",\"b\",\"tt\"]:\n", " print i" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [2, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 5, 2, 3, 4, 5, 6, 7, 8, 9]]\n" ] } ], "source": [ "x = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],[2, 1, 2, 3, 4, 5, 6, 7, 8, 9],[0,5, 2, 3, 4, 5, 6, 7, 8, 9]]\n", "print(x)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "4.7000000000000002" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(x)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x= np.linspace(-1,1,100)" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([-1. , -0.97979798, -0.95959596, -0.93939394, -0.91919192,\n", " -0.8989899 , -0.87878788, -0.85858586, -0.83838384, -0.81818182,\n", " -0.7979798 , -0.77777778, -0.75757576, -0.73737374, -0.71717172,\n", " -0.6969697 , -0.67676768, -0.65656566, -0.63636364, -0.61616162,\n", " -0.5959596 , -0.57575758, -0.55555556, -0.53535354, -0.51515152,\n", " -0.49494949, -0.47474747, -0.45454545, -0.43434343, -0.41414141,\n", " -0.39393939, -0.37373737, -0.35353535, -0.33333333, -0.31313131,\n", " -0.29292929, -0.27272727, -0.25252525, -0.23232323, -0.21212121,\n", " -0.19191919, -0.17171717, -0.15151515, -0.13131313, -0.11111111,\n", " -0.09090909, -0.07070707, -0.05050505, -0.03030303, -0.01010101,\n", " 0.01010101, 0.03030303, 0.05050505, 0.07070707, 0.09090909,\n", " 0.11111111, 0.13131313, 0.15151515, 0.17171717, 0.19191919,\n", " 0.21212121, 0.23232323, 0.25252525, 0.27272727, 0.29292929,\n", " 0.31313131, 0.33333333, 0.35353535, 0.37373737, 0.39393939,\n", " 0.41414141, 0.43434343, 0.45454545, 0.47474747, 0.49494949,\n", " 0.51515152, 0.53535354, 0.55555556, 0.57575758, 0.5959596 ,\n", " 0.61616162, 0.63636364, 0.65656566, 0.67676768, 0.6969697 ,\n", " 0.71717172, 0.73737374, 0.75757576, 0.77777778, 0.7979798 ,\n", " 0.81818182, 0.83838384, 0.85858586, 0.87878788, 0.8989899 ,\n", " 0.91919192, 0.93939394, 0.95959596, 0.97979798, 1. ])" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([-0.31313131, 0.35353535])" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x[[34,67]]" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([-0.09090909, -0.07070707, -0.05050505, -0.03030303, -0.01010101,\n", " 0.01010101, 0.03030303, 0.05050505, 0.07070707, 0.09090909,\n", " 0.11111111, 0.13131313, 0.15151515, 0.17171717, 0.19191919,\n", " 0.21212121, 0.23232323, 0.25252525, 0.27272727, 0.29292929,\n", " 0.31313131, 0.33333333, 0.35353535, 0.37373737, 0.39393939,\n", " 0.41414141, 0.43434343, 0.45454545, 0.47474747, 0.49494949,\n", " 0.51515152, 0.53535354, 0.55555556, 0.57575758, 0.5959596 ,\n", " 0.61616162, 0.63636364, 0.65656566, 0.67676768, 0.6969697 ,\n", " 0.71717172, 0.73737374, 0.75757576, 0.77777778, 0.7979798 ])" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x[45:90]" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([-1. , -0.93939394, -0.87878788, -0.81818182, -0.75757576,\n", " -0.6969697 , -0.63636364, -0.57575758, -0.51515152, -0.45454545,\n", " -0.39393939, -0.33333333, -0.27272727, -0.21212121, -0.15151515,\n", " -0.09090909, -0.03030303, 0.03030303, 0.09090909, 0.15151515,\n", " 0.21212121, 0.27272727, 0.33333333, 0.39393939, 0.45454545,\n", " 0.51515152, 0.57575758, 0.63636364, 0.6969697 , 0.75757576,\n", " 0.81818182, 0.87878788, 0.93939394, 1. ])" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x[::3]" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([-0.7979798 , -0.73737374, -0.67676768, -0.61616162, -0.55555556,\n", " -0.49494949, -0.43434343, -0.37373737, -0.31313131, -0.25252525,\n", " -0.19191919, -0.13131313, -0.07070707, -0.01010101, 0.05050505,\n", " 0.11111111, 0.17171717, 0.23232323, 0.29292929, 0.35353535,\n", " 0.41414141, 0.47474747, 0.53535354, 0.5959596 , 0.65656566,\n", " 0.71717172, 0.77777778, 0.83838384, 0.8989899 , 0.95959596])" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x[10::3]" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 1. , 0.97979798, 0.95959596, 0.93939394, 0.91919192,\n", " 0.8989899 , 0.87878788, 0.85858586, 0.83838384, 0.81818182,\n", " 0.7979798 , 0.77777778, 0.75757576, 0.73737374, 0.71717172,\n", " 0.6969697 , 0.67676768, 0.65656566, 0.63636364, 0.61616162,\n", " 0.5959596 , 0.57575758, 0.55555556, 0.53535354, 0.51515152,\n", " 0.49494949, 0.47474747, 0.45454545, 0.43434343, 0.41414141,\n", " 0.39393939, 0.37373737, 0.35353535, 0.33333333, 0.31313131,\n", " 0.29292929, 0.27272727, 0.25252525, 0.23232323, 0.21212121,\n", " 0.19191919, 0.17171717, 0.15151515, 0.13131313, 0.11111111,\n", " 0.09090909, 0.07070707, 0.05050505, 0.03030303, 0.01010101,\n", " -0.01010101, -0.03030303, -0.05050505, -0.07070707, -0.09090909,\n", " -0.11111111, -0.13131313, -0.15151515, -0.17171717, -0.19191919,\n", " -0.21212121, -0.23232323, -0.25252525, -0.27272727, -0.29292929,\n", " -0.31313131, -0.33333333, -0.35353535, -0.37373737, -0.39393939,\n", " -0.41414141, -0.43434343, -0.45454545, -0.47474747, -0.49494949,\n", " -0.51515152, -0.53535354, -0.55555556, -0.57575758, -0.5959596 ,\n", " -0.61616162, -0.63636364, -0.65656566, -0.67676768, -0.6969697 ,\n", " -0.71717172, -0.73737374, -0.75757576, -0.77777778, -0.7979798 ,\n", " -0.81818182, -0.83838384, -0.85858586, -0.87878788, -0.8989899 ,\n", " -0.91919192, -0.93939394, -0.95959596, -0.97979798, -1. ])" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x[::-1]" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x= [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x[::-1]" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": true }, "outputs": [], "source": [ "y = np.linspace(0,10,100)\n", "x= np.linspace(-1,1,100)" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([-1. , -0.97979798, -0.95959596, -0.93939394, -0.91919192,\n", " -0.8989899 , -0.87878788, -0.85858586, -0.83838384, -0.81818182,\n", " -0.7979798 , -0.77777778, -0.75757576, -0.73737374, -0.71717172,\n", " -0.6969697 , -0.67676768, -0.65656566, -0.63636364, -0.61616162,\n", " -0.5959596 , -0.57575758, -0.55555556, -0.53535354, -0.51515152,\n", " -0.49494949, -0.47474747, -0.45454545, -0.43434343, -0.41414141,\n", " -0.39393939, -0.37373737, -0.35353535, -0.33333333, -0.31313131,\n", " -0.29292929, -0.27272727, -0.25252525, -0.23232323, -0.21212121,\n", " -0.19191919, -0.17171717, -0.15151515, -0.13131313, -0.11111111,\n", " -0.09090909, -0.07070707, -0.05050505, -0.03030303, -0.01010101,\n", " 0.01010101, 0.03030303, 0.05050505, 0.07070707, 0.09090909,\n", " 0.11111111, 0.13131313, 0.15151515, 0.17171717, 0.19191919,\n", " 0.21212121, 0.23232323, 0.25252525, 0.27272727, 0.29292929,\n", " 0.31313131, 0.33333333, 0.35353535, 0.37373737, 0.39393939,\n", " 0.41414141, 0.43434343, 0.45454545, 0.47474747, 0.49494949,\n", " 0.51515152, 0.53535354, 0.55555556, 0.57575758, 0.5959596 ,\n", " 0.61616162, 0.63636364, 0.65656566, 0.67676768, 0.6969697 ,\n", " 0.71717172, 0.73737374, 0.75757576, 0.77777778, 0.7979798 ,\n", " 0.81818182, 0.83838384, 0.85858586, 0.87878788, 0.8989899 ,\n", " 0.91919192, 0.93939394, 0.95959596, 0.97979798, 1. ])" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "careful with \"=\":\n", "\n", "* xx= x means they are the same object\n", "* xx = x .... whatever or x.copy() they are two different objects" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": true }, "outputs": [], "source": [ "xx = x.copy()" ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": true }, "outputs": [], "source": [ "xx+=2" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 3. , 3.02020202, 3.04040404, 3.06060606, 3.08080808,\n", " 3.1010101 , 3.12121212, 3.14141414, 3.16161616, 3.18181818,\n", " 3.2020202 , 3.22222222, 3.24242424, 3.26262626, 3.28282828,\n", " 3.3030303 , 3.32323232, 3.34343434, 3.36363636, 3.38383838,\n", " 3.4040404 , 3.42424242, 3.44444444, 3.46464646, 3.48484848,\n", " 3.50505051, 3.52525253, 3.54545455, 3.56565657, 3.58585859,\n", " 3.60606061, 3.62626263, 3.64646465, 3.66666667, 3.68686869,\n", " 3.70707071, 3.72727273, 3.74747475, 3.76767677, 3.78787879,\n", " 3.80808081, 3.82828283, 3.84848485, 3.86868687, 3.88888889,\n", " 3.90909091, 3.92929293, 3.94949495, 3.96969697, 3.98989899,\n", " 4.01010101, 4.03030303, 4.05050505, 4.07070707, 4.09090909,\n", " 4.11111111, 4.13131313, 4.15151515, 4.17171717, 4.19191919,\n", " 4.21212121, 4.23232323, 4.25252525, 4.27272727, 4.29292929,\n", " 4.31313131, 4.33333333, 4.35353535, 4.37373737, 4.39393939,\n", " 4.41414141, 4.43434343, 4.45454545, 4.47474747, 4.49494949,\n", " 4.51515152, 4.53535354, 4.55555556, 4.57575758, 4.5959596 ,\n", " 4.61616162, 4.63636364, 4.65656566, 4.67676768, 4.6969697 ,\n", " 4.71717172, 4.73737374, 4.75757576, 4.77777778, 4.7979798 ,\n", " 4.81818182, 4.83838384, 4.85858586, 4.87878788, 4.8989899 ,\n", " 4.91919192, 4.93939394, 4.95959596, 4.97979798, 5. ])" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xx" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 1. , 1.02020202, 1.04040404, 1.06060606, 1.08080808,\n", " 1.1010101 , 1.12121212, 1.14141414, 1.16161616, 1.18181818,\n", " 1.2020202 , 1.22222222, 1.24242424, 1.26262626, 1.28282828,\n", " 1.3030303 , 1.32323232, 1.34343434, 1.36363636, 1.38383838,\n", " 1.4040404 , 1.42424242, 1.44444444, 1.46464646, 1.48484848,\n", " 1.50505051, 1.52525253, 1.54545455, 1.56565657, 1.58585859,\n", " 1.60606061, 1.62626263, 1.64646465, 1.66666667, 1.68686869,\n", " 1.70707071, 1.72727273, 1.74747475, 1.76767677, 1.78787879,\n", " 1.80808081, 1.82828283, 1.84848485, 1.86868687, 1.88888889,\n", " 1.90909091, 1.92929293, 1.94949495, 1.96969697, 1.98989899,\n", " 2.01010101, 2.03030303, 2.05050505, 2.07070707, 2.09090909,\n", " 2.11111111, 2.13131313, 2.15151515, 2.17171717, 2.19191919,\n", " 2.21212121, 2.23232323, 2.25252525, 2.27272727, 2.29292929,\n", " 2.31313131, 2.33333333, 2.35353535, 2.37373737, 2.39393939,\n", " 2.41414141, 2.43434343, 2.45454545, 2.47474747, 2.49494949,\n", " 2.51515152, 2.53535354, 2.55555556, 2.57575758, 2.5959596 ,\n", " 2.61616162, 2.63636364, 2.65656566, 2.67676768, 2.6969697 ,\n", " 2.71717172, 2.73737374, 2.75757576, 2.77777778, 2.7979798 ,\n", " 2.81818182, 2.83838384, 2.85858586, 2.87878788, 2.8989899 ,\n", " 2.91919192, 2.93939394, 2.95959596, 2.97979798, 3. ])" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Masking \n", "\n", "This only works with numpy array." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### numpy array vs. list" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": true }, "outputs": [], "source": [ "xlist = [3,4,5,6,7,8,9]\n", "xarray = np.asarray([3,4,5,6,7,8,9]) # np.asarray(xlist)" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 6, 7, 8, 9]" ] }, "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xlist*2" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 6, 8, 10, 12, 14, 16, 18])" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xarray*2" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": true }, "outputs": [], "source": [ "strangelist = [\"toto\",3,{},[]]" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": false }, "outputs": [ { "ename": "TypeError", "evalue": "unsupported operand type(s) for *: 'dict' and 'int'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-60-ad3befd67480>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstrangelist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: unsupported operand type(s) for *: 'dict' and 'int'" ] } ], "source": [ "np.asarray(strangelist)*2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### how to apply masking?\n", "\n", "**Use Numpy ARRAY**" ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 1. , 1.02020202, 1.04040404, 1.06060606, 1.08080808,\n", " 1.1010101 , 1.12121212, 1.14141414, 1.16161616, 1.18181818,\n", " 1.2020202 , 1.22222222, 1.24242424, 1.26262626, 1.28282828,\n", " 1.3030303 , 1.32323232, 1.34343434, 1.36363636, 1.38383838,\n", " 1.4040404 , 1.42424242, 1.44444444, 1.46464646, 1.48484848,\n", " 1.50505051, 1.52525253, 1.54545455, 1.56565657, 1.58585859,\n", " 1.60606061, 1.62626263, 1.64646465, 1.66666667, 1.68686869,\n", " 1.70707071, 1.72727273, 1.74747475, 1.76767677, 1.78787879,\n", " 1.80808081, 1.82828283, 1.84848485, 1.86868687, 1.88888889,\n", " 1.90909091, 1.92929293, 1.94949495, 1.96969697, 1.98989899,\n", " 2.01010101, 2.03030303, 2.05050505, 2.07070707, 2.09090909,\n", " 2.11111111, 2.13131313, 2.15151515, 2.17171717, 2.19191919,\n", " 2.21212121, 2.23232323, 2.25252525, 2.27272727, 2.29292929,\n", " 2.31313131, 2.33333333, 2.35353535, 2.37373737, 2.39393939,\n", " 2.41414141, 2.43434343, 2.45454545, 2.47474747, 2.49494949,\n", " 2.51515152, 2.53535354, 2.55555556, 2.57575758, 2.5959596 ,\n", " 2.61616162, 2.63636364, 2.65656566, 2.67676768, 2.6969697 ,\n", " 2.71717172, 2.73737374, 2.75757576, 2.77777778, 2.7979798 ,\n", " 2.81818182, 2.83838384, 2.85858586, 2.87878788, 2.8989899 ,\n", " 2.91919192, 2.93939394, 2.95959596, 2.97979798, 3. ])" ] }, "execution_count": 64, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x" ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": false }, "outputs": [], "source": [ "mask = x>2" ] }, { "cell_type": "code", "execution_count": 66, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, False, False, False, False,\n", " False, False, False, False, False, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True,\n", " True, True, True, True, True, True, True, True, True, True], dtype=bool)" ] }, "execution_count": 66, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mask" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 2.01010101, 2.03030303, 2.05050505, 2.07070707, 2.09090909,\n", " 2.11111111, 2.13131313, 2.15151515, 2.17171717, 2.19191919,\n", " 2.21212121, 2.23232323, 2.25252525, 2.27272727, 2.29292929,\n", " 2.31313131, 2.33333333, 2.35353535, 2.37373737, 2.39393939,\n", " 2.41414141, 2.43434343, 2.45454545, 2.47474747, 2.49494949,\n", " 2.51515152, 2.53535354, 2.55555556, 2.57575758, 2.5959596 ,\n", " 2.61616162, 2.63636364, 2.65656566, 2.67676768, 2.6969697 ,\n", " 2.71717172, 2.73737374, 2.75757576, 2.77777778, 2.7979798 ,\n", " 2.81818182, 2.83838384, 2.85858586, 2.87878788, 2.8989899 ,\n", " 2.91919192, 2.93939394, 2.95959596, 2.97979798, 3. ])" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x[mask] # x[x>2]" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 2.01010101, 2.03030303, 2.05050505, 2.07070707, 2.09090909,\n", " 2.11111111, 2.13131313, 2.15151515, 2.17171717, 2.19191919,\n", " 2.21212121, 2.23232323, 2.25252525, 2.27272727, 2.29292929,\n", " 2.31313131, 2.33333333, 2.35353535, 2.37373737, 2.39393939,\n", " 2.41414141, 2.43434343, 2.45454545, 2.47474747, 2.49494949])" ] }, "execution_count": 76, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x[ (x>2) & (x<2.5) ] # x[ (x>2) * (x>1.5) ] # both have to be true" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 1.50505051, 1.52525253, 1.54545455, 1.56565657, 1.58585859,\n", " 1.60606061, 1.62626263, 1.64646465, 1.66666667, 1.68686869,\n", " 1.70707071, 1.72727273, 1.74747475, 1.76767677, 1.78787879,\n", " 1.80808081, 1.82828283, 1.84848485, 1.86868687, 1.88888889,\n", " 1.90909091, 1.92929293, 1.94949495, 1.96969697, 1.98989899,\n", " 2.01010101, 2.03030303, 2.05050505, 2.07070707, 2.09090909,\n", " 2.11111111, 2.13131313, 2.15151515, 2.17171717, 2.19191919,\n", " 2.21212121, 2.23232323, 2.25252525, 2.27272727, 2.29292929,\n", " 2.31313131, 2.33333333, 2.35353535, 2.37373737, 2.39393939,\n", " 2.41414141, 2.43434343, 2.45454545, 2.47474747, 2.49494949,\n", " 2.51515152, 2.53535354, 2.55555556, 2.57575758, 2.5959596 ,\n", " 2.61616162, 2.63636364, 2.65656566, 2.67676768, 2.6969697 ,\n", " 2.71717172, 2.73737374, 2.75757576, 2.77777778, 2.7979798 ,\n", " 2.81818182, 2.83838384, 2.85858586, 2.87878788, 2.8989899 ,\n", " 2.91919192, 2.93939394, 2.95959596, 2.97979798, 3. ])" ] }, "execution_count": 75, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x[ (x>2) | (x>1.5) ] # x[ (x>2) + (x>1.5) ] # any have to be true" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The case of the NaN Value" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": false }, "outputs": [], "source": [ "iamnan = np.NaN" ] }, { "cell_type": "code", "execution_count": 79, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "nan" ] }, "execution_count": 79, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iamnan" ] }, { "cell_type": "code", "execution_count": 80, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 80, "metadata": {}, "output_type": "execute_result" } ], "source": [ "iamnan==iamnan" ] }, { "cell_type": "code", "execution_count": 82, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 82, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.inf==np.inf" ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "collapsed": true }, "outputs": [], "source": [ "xwithnan = np.asarray([3,4,5,6,7,2,3,np.NaN,75,75])" ] }, { "cell_type": "code", "execution_count": 84, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 3., 4., 5., 6., 7., 2., 3., nan, 75., 75.])" ] }, "execution_count": 84, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xwithnan" ] }, { "cell_type": "code", "execution_count": 85, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([ 6., 8., 10., 12., 14., 4., 6., nan, 150., 150.])" ] }, "execution_count": 85, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xwithnan*2" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "nan" ] }, "execution_count": 86, "metadata": {}, "output_type": "execute_result" } ], "source": [ "4+np.NaN" ] }, { "cell_type": "code", "execution_count": 87, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "nan" ] }, "execution_count": 87, "metadata": {}, "output_type": "execute_result" } ], "source": [ "4/np.NaN" ] }, { "cell_type": "code", "execution_count": 88, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "nan" ] }, "execution_count": 88, "metadata": {}, "output_type": "execute_result" } ], "source": [ "4**np.NaN" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "nan" ] }, "execution_count": 89, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(xwithnan)" ] }, { "cell_type": "code", "execution_count": 90, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "20.0" ] }, "execution_count": 90, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.nanmean(xwithnan)" ] }, { "cell_type": "code", "execution_count": 91, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "20.0" ] }, "execution_count": 91, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.mean(xwithnan[xwithnan==xwithnan])" ] }, { "cell_type": "code", "execution_count": 96, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([False, False, False, False, False, False, False, True, False, False], dtype=bool)" ] }, "execution_count": 96, "metadata": {}, "output_type": "execute_result" } ], "source": [ "~(xwithnan==xwithnan)" ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([False, False, False, False, False, False, False, True, False, False], dtype=bool)" ] }, "execution_count": 93, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xwithnan!=xwithnan" ] }, { "cell_type": "code", "execution_count": 97, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "array([False, False, False, False, False, False, False, True, False, False], dtype=bool)" ] }, "execution_count": 97, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.isnan(xwithnan)" ] }, { "cell_type": "code", "execution_count": 98, "metadata": { "collapsed": true }, "outputs": [], "source": [ "xwithnan = [3,4,5,6,7,2,3,np.NaN,75,75]" ] }, { "cell_type": "code", "execution_count": 100, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "4" ] }, "execution_count": 100, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xwithnan[xwithnan==xwithnan]" ] }, { "cell_type": "code", "execution_count": 105, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 105, "metadata": {}, "output_type": "execute_result" } ], "source": [ "0 == False" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "1 == True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Your first plot\n", "\n", "For ploting we are going to use matplotlib. let's plot 2 random variable a vs. b" ] }, { "cell_type": "code", "execution_count": 117, "metadata": { "collapsed": false }, "outputs": [], "source": [ "a = np.random.rand(30)\n", "b = np.random.rand(30)" ] }, { "cell_type": "code", "execution_count": 118, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# plot within the notebook\n", "%matplotlib inline\n", "import matplotlib.pyplot as mpl" ] }, { "cell_type": "code", "execution_count": 119, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW0AAAEACAYAAAB4ayemAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADUVJREFUeJzt3X2IZXUdx/HPxx3FddPZwnBLDS1UVMqH0AwLj2SwSU9U\nEJaKFiFB5j89WFDeCJL+iCwkSVPzD9FAk1TW0shDWrpp7vq4hlrSmq752JpO6Lbf/rh3x213Zs65\nc+89537nvl8wdGfumXO+87tz33P2zFxzRAgAkMMubQ8AAKiPaANAIkQbABIh2gCQCNEGgESINgAk\nUhlt2yttX2N7g+2HbB/XxGAAgJ1N1djmR5LWRMSnbE9JWjHimQAA8/BCL66xPS1pXUS8vbmRAADz\nqbo8cqCkZ2xfbvse25fY3qOJwQAAO6uK9pSkoyX9JCKOlvSypHNHPhUAYE5V17SfkPRERNzVe/8a\n7RBt2/zHSwBgESLC/X7OgmfaEbFJ0kbbB/c+dJKkB+fYjrcInXfeebO3eyvT0lv7j8n2azHpb6wF\nazHX22LV+euRsyVdaXs3SY9JOnPRRwMADKQy2hFxr6RjGpgFAFCBV0QOUVEUbY8wNliL17EWr2Mt\nBrfg32nX2oEdg+5jKbKtbdeXWzj6QNfMAIyebcWwfxEJABgvRBsAEiHaAJAI0QaARIg2ACRCtAEg\nEaINAIkQbQBIhGgDQCJEGwASIdoAkAjRBoBEiDYAJEK0ASARog0AiRBtAEiEaANAIkQbABIh2gCQ\nCNEGgESINgAkQrQBIBGiDQCJEG0ASIRoA0AiRBsAEpmqs5HtxyVtlvRfSa9FxLGjHAoAMLda0ZYU\nkoqIeH6UwwAAFtbP5RGPbAoAQC11ox2Sfmv7bttfGOVAAID51b08cnxEPGX7zZJusf1wRNw2ysEA\nADurFe2IeKr3v8/Yvk7SsZJmo93pdGa3LYpCRVEMdUgAk81u9+psRAy8j7IsVZblwPtx1TC295C0\nLCJesr1C0s2SvhMRN/fuj2F8QUtN95usrXXxUL7JgHGxFJ9PthURff80qnOmvY+k63o/6aYkXbkt\n2ACAZlWeaVfugDPtOS3FMwOgLUvx+bTYM21eEQkAiRBtAEiEaANAIkQbABIh2gCQCNEGgESINgAk\nQrQBIBGiDQCJEG0ASIRoA0AiRBsAEiHaAJAI0QaARIg2ACRCtAEgEaINAIkQbQBIhGgDQCJEGwAS\nIdoAkAjRBoBEiDYAJEK0ASARog0AiRBtAEiEaANAIkQbABIh2gCQSK1o215me53tG0Y9EABgfnXP\ntM+R9JCkGOEsAIAKldG2vZ+kkyX9TJJHPhEAYF51zrR/KOmrkraOeBYAQIWphe60/WFJ/4yIdbaL\n+bbrdDqzt4uiUFHMuymwZNjt/sMzovmrlW1/zZmVZamyLAfejxd64G1/T9JpkrZI2l3SXpKujYjT\nt9sm2vjmGXfdb+621sWtPKEnzSQ+xu19zUtvrW0rIvr+KbhgtHc4wAmSvhIRH9nh40R7DpP4hJ40\nk/gYE+0h7nWR0e7377QpAQC0qPaZ9rw74Ex7TpN4FjZpJvEx5kx7iHtt6EwbANAiog0AiRBtAEiE\naANAIkQbABIh2gCQCNEGgESINgAkQrQBIBGiDQCJEG0ASIRoA0AiRBsAEiHaAJAI0QaARIg2ACRC\ntAEgEaINAIkQbQBIhGgDQCJEGwASIdoAkAjRBoBEiDYAJEK0ASARog0AiRBtAEiEaANAIpXRtr27\n7bW219t+wHangbkAAHOYqtogIv5j+8SIeMX2lKTbbd8UEWsbmA8AsJ1al0ci4pXezd0k7Spp68gm\nAgDMq1a0be9ie72kpyXdHBF3jXYsAMBcKi+PSFJEbJV0pO1pSdfZPjwiHtx2f6fTmd22KAoVRTHk\nMYH52W57BKBSWZYqy3Lg/Tgi+vsE+1uSXomIH/Tej373MQm6IWlrXaxJekzaW+vJe4xZ6yHu1VZE\n9H3GUeevR/a2vbJ3e7mkD0ra0P+IAIBB1bk88hZJV9hepm7kfxERa0Y7FgBgLn1fHtlpB1wemROX\nR5rDP9kbPCprPby9juryCABgfBBtAEiEaANAIkQbABIh2gCQCNEGgESINgAkQrQBIBGiDQCJEG0A\nSIRoA0AiRBsAEiHaAJAI0QaARIg2ACRCtAEgEaINAIkQbQBIhGgDQCJEGwASIdoAkAjRBoBEiDYA\nJEK0ASARog0AiRBtAEiEaANAIkQbABKpjLbt/W3favtB2w/Y/nITgwEAduaIWHgDe5WkVRGx3vYb\nJP1Z0scjYkPv/qjaxySyLamtdbEm6TFpb60n7zFmrYe4V1sR4X4/r/JMOyI2RcT63u1/S9og6a39\njwgAGNRUPxvbPkDSUZLW9vN5mzZt0tatW/v5lKGZnp7WihUrWjk2AAxb7Wj3Lo1cI+mc3hn3rE6n\nM3u7KAoVRfF/n3v44UdqZiZkLxtk1r69+uqL2rJlptFjTrLuP50BzKUsS5VlOfB+Kq9pS5LtXSXd\nKOmmiLhgh/sqr2lPT6/S5s3rJa0aYNT+LV9+lmZmLhbX4Bo66sRd7+QxbvDILR23e+xU17TdfZQu\nlfTQjsEGADSrzt9pHy/pVEkn2l7Xe1s94rkAAHOovKYdEbeLF+EAwFggxgCQCNEGgESINgAkQrQB\nIBGiDQCJEG0ASIRoA0AiRBsAEiHaAJAI0QaARIg2ACRCtAEgEaINAIkQbQBIhGgDQCJEGwASIdoA\nkAjRBoBEiDYAJEK0ASARog0AiRBtAEiEaANAIkQbABIh2gCQCNEGgESINgAkQrQBIJHKaNu+zPbT\ntu9vYiAAwPzqnGlfLmn1qAcBAFSrjHZE3CbphQZmAQBU4Jo2ACRCtAEgkalh7KTT6czeLopCRVEM\nY7cYgO22R8CI8RjnUpalyrIceD+OiOqN7AMk3RAR75zjvqjax/T0Km3evF7SqsVNuUjLl5+lmZmL\nJVV/jcPnlo7b5rE57tI/9qQdt3vsOp3se6+2IqLvn7x1/uTvKkl/lHSw7Y22z1zMgACAwVVeHomI\nU5oYBABQjV9EAkAiRBsAEiHaAJAI0QaARIg2ACRCtAEgEaINAIkQbQBIhGgDQCJEGwASIdoAkAjR\nBoBEiDYAJEK0ASARog0AiRBtAEiEaANAIkQbABIh2gCQCNEGgESINgAkQrQBIBGiDQCJEG0ASIRo\nA0AiRBsAEiHaAJAI0QaARCqjbXu17YdtP2L7600MBQCY24LRtr1M0oWSVks6TNIptg9tYrCcyrYH\nGCNl2wOMkbLtAcZI2fYA6VWdaR8r6dGIeDwiXpN0taSPjX6srMq2BxgjZdsDjJGy7QHGSNn2AOlV\nRXtfSRu3e/+J3scAAC2Yqrg/hnGQXXaR9tzzNNm7D2N3tb366r2NHg8ARs0R83fZ9nGSOhGxuvf+\nNyRtjYjvb7fNUMIOAJMmItzv51RFe0rSXyR9QNKTkv4k6ZSI2LDYIQEAi7fg5ZGI2GL7S5J+I2mZ\npEsJNgC0Z8EzbQDAeKn9isg6L7Kx/ePe/ffaPmp4Y46XqrWw/dneGtxn+w+239XGnE2o++Ir28fY\n3mL7E03O16Saz5HC9jrbD9guGx6xMTWeI9O2b7C9vrcWZ7Qw5sjZvsz207bvX2Cb/roZEZVv6l4a\neVTSAZJ2lbRe0qE7bHOypDW92++RdGedfWd7q7kW75U03bu9epLXYrvtfifpRkmfbHvuFr8vVkp6\nUNJ+vff3bnvuFtfim5LO37YOkp6TNNX27CNYi/dLOkrS/fPc33c3655p13mRzUclXSFJEbFW0krb\n+9TcfyaVaxERd0TEv3rvrpW0X8MzNqXui6/OlnSNpGeaHK5hddbiM5KujYgnJCkinm14xqbUWYut\nkvbq3d5L0nMRsaXBGRsREbdJemGBTfruZt1o13mRzVzbLMVY9fuCo89LWjPSidpTuRa291X3CXtR\n70NL9Zcodb4vDpL0Jtu32r7b9mmNTdesOmtxoaTDbD8p6V5J5zQ027jpu5tVL67Zpu4Tbce/OVyK\nT9DaX5PtEyV9TtLxoxunVXXW4gJJ50ZE2LZ2/h5ZKuqsxa6Sjlb3T2j3kHSH7Tsj4pGRTta8Omux\nWtI9EXGi7XdIusX2ERHx0ohnG0d9dbNutP8haf/t3t9f3Z8IC22zX+9jS02dtVDvl4+XSFodEQv9\n8yizOmvxbklXd3utvSV9yPZrEXF9MyM2ps5abJT0bETMSJqx/XtJR0haatGusxZnSDpfkiLiMdt/\nk3SIpLubGHCM9N3NupdH7pZ0kO0DbO8m6dOSdnzSXS/pdGn2lZQvRsTTNfefSeVa2H6bpF9KOjUi\nHm1hxqZUrkVEvD0iDoyIA9W9rv3FJRhsqd5z5FeS3md7me091P3F00MNz9mEOmvxd0knSVLvGu4h\nkv7a6JTjoe9u1jrTjnleZGP7rN79P42INbZPtv2opJclnTnAFzK26qyFpG9LeqOki3pnmK9FxLFt\nzTwqNddiItR8jjxs+9eS7lP3F3GXRMSSi3bN74vvSvq57fvUvTzwtYh4vrWhR8T2VZJOkLS37Y2S\nzlP3Mtmiu8mLawAgEf7vxgAgEaINAIkQbQBIhGgDQCJEGwASIdoAkAjRBoBEiDYAJPI/FlUfHFHd\nd2AAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x105998590>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pl = mpl.hist(a)" ] }, { "cell_type": "code", "execution_count": 126, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.collections.PathCollection at 0x1067e86d0>" ] }, "execution_count": 126, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEACAYAAAC08h1NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXd4FFX3x783IQFCSSjSuyBFmqAUAQmCGlDUV0ClqoiA\niO21oL4Ksf1Q3/dFUWkCIjbyKiCCBQUhgggK0qvSeyeQECAhOb8/zo53drO72WybLefzPPvkzsyZ\nnXN3N2fu3HuKIiIIgiAI0UOM1QoIgiAIwUUMvyAIQpQhhl8QBCHKEMMvCIIQZYjhFwRBiDLE8AuC\nIEQZPht+pdSHSqljSqlNLo73V0ptUEptVEqtUEo19/WagiAIgvf4Y8Q/A0CKm+O7AdxARM0BvArg\nAz9cUxAEQfASnw0/ES0HcMbN8ZVEdNa2+RuAGr5eUxAEQfCeYM/xPwjguyBfUxAEQTBRLFgXUkp1\nATAYQIdgXVMQBEEoSFAMv21BdyqAFCIqMC2klJKEQYIgCF5ARKqo5wR8qkcpVQvAXAADiGinKzki\nitjXmDFjLNdB+if9i8b+RXLfiLwfL/s84ldKzQLQGUBFpdQBAGMAxNmM+RQAowGUAzBJKQUAuUTU\nxtfrCoIgCN7hs+Enor6FHB8CYIiv1xEEQRD8g0TuBoHk5GSrVQgo0r/wJpL7F8l98wXlyzyR35RQ\nikJBD0EQhHBCKQUKxcVdQRAEIbQQwy8IghBliOEXBEGIMsTwC4IgRBli+AVBEKIMMfyCIAhRhhh+\nQRCEKEMMvyAIQpQhhl8QBCHKEMMvCIIQZYjhFwRBiDLE8AuCIEQZYvgFQRCiDDH8giAIUYYYfkEQ\nhChDDL8gCEKUIYZfEAQhyhDDLwiCEGWI4RcEQYgyxPALgiBEGWL4BUEQogyfDL9S6kOl1DGl1CY3\nMu8qpf5SSm1QSl3jy/UEQRCsJiMDePddoGVLICEBKFYMqFYNePhhYONGq7XzDEVE3p+sVCcAWQA+\nJqJmTo73ADCSiHoopdoCGE9E7ZzIkS96CIIgBIMZM4BHHwXOn3ctc9ddwMyZQOnSgddHKQUiUkU9\nr5gvFyWi5UqpOm5Ebgcw0yb7m1IqSSlVmYiO+XJdwTpyc4Fly4BDh3i7Vi2gY0ce9QhCJPPuu8Dj\njxcuN3cu/3/89BNQqlTg9fKGQM/xVwdwwLR9EECNAF9TCACnTwOpqUDt2kC3bsB99/GrSxegXj3g\n9deBs2et1lIQAsOvvwJPPKG3r7wSmDwZOHECuHgRWLoU6NVLH//tN89uElYRjHGa42OI0zmd1NTU\nv9vJyclITk4OnEZCkdi+HUhJAfbtc378wAHgxRf58fb77/mfQhAiif/8BzBmo9u1A378EShTRh9P\nTuaX+ang44+B114DqlTxnx7p6elIT0/3+X18muMHANtUzwIXc/yTAaQTUZptezuAzo5TPTLHH7oc\nOgS0baundgD+IScn8z/CkiU86jGoWxdYtQqoVCnoqgpCQDh4kJ908/N5e8sWoEkT1/LXXw+sXMnt\n114D/vWvwOnm7Rx/oKd65gMYBABKqXYAMmR+P7wYNUob/VKleHFr/35g1iwgLY1H+5MnAyVKsMye\nPcDo0dbpKwj+ZtkybfQ7dnRv9AFg2DDdXrIkcHr5gq/unLMA/AqgoVLqgFJqsFJqmFJqGAAQ0XcA\ndiuldgKYAmCEzxoLQeP4ceCLL/T2l18C998PxMXpfcWL8w/944/1vk8+kfl+IXI4c0a3z58HGjUC\nypUDKlbkp+GJE4Fz57TM1Vc7PzeU8NWrp68HMiN9uYZgHZ9+yl48AD++du/uWrZ3b6B5c/Zjzs7m\npwHzyEcQwhXjaRYA1q2zP3bqFPD778BzzwFvvw08+CBw5Ig+npAQHB2LijjhCS7Zvl23e/d2L6sU\n0KePDmDZsSNweglCsLh82f5p1hWZmcCQITzC//13vf+aEA1ZlZQNgksuXdLtxMTC5cuWdX6uIIQr\nqak8x2/mxht5GnT/fuC999id2eCZZ4A5c/T20KFBUbPIiOEXXHLFFbptHsW4wixTsaL/9RGEYJKV\nxYbdkSVLgJEjeZQ/ciSwYQPQvr0+biwEd+kCNCvg6xga+OzO6RclxJ0zJElP5x8vwOHn+/fzopYz\njh4F6tTRI/3Vq4Frrw2GloIQGD74QK9TNWjAv+dZs+xlGjdmf/5Nm4ALF/T+8uX5f8D8NBAIQtWd\nUwhjOnfmHzbAo59+/Xjh1pHMTKBvX230r7tOjL4Q/ixapNtDhwIffcRebWa2beMnXbPRB4ARIwJv\n9H1BFncFlyjFPvl9bb5bCxeyK9uIEcDNN/Mj7cKFwKRJwOHD+ryXXir4XpcvA998w6HsmZm8ZtCp\nE79PjAw/hBDk9Gndbt4ciI8HPvwQGDiQXTjnzQPy8rRMhQrs5QPYewKFImL4Bbfcey+Pal55hbcP\nHACef55fznjzTaBnT72dmwv897/A++/bR/8a1K0LPPkk8MgjcgMQQouSJXXbiE5Xihd3b7yRjfye\nPUBODq+HjR3LAY6O54Yi8q8mFMrLL3N0bvnyrmWuuIIfhZ99Vu+7cIFvAs8/79zoA/yP89hjPI10\n+bJf1RYEn2jRQrc//7zg8QoVeErz+uuB6tX5CcCgefPA6+cLsrgreMyFCxy9+/nnbMiVAmrWBAYM\n4BzkxYtrWSLg7ruB2bP1vsqVgf79OZXzzp38PubH6Ycf5kdoQQgFdu8G6tfXydkWLwa6dnUuO3o0\n8Oqr3L7ySuDPP4PzBOvt4i6IyPIXqyFEEunpRPwvw6/nnye6dMleJjubaPhwe7nNm63RVxCc0bOn\n/m0mJBC99x5RVpY+fuAA0ciR9r/hceOCp5/NdhbZ5sqIXwgI99yj8/z06wd89plzOSJOBfHDD7z9\nyCO8HiAIocD+/ZyG2ZyGoUwZoHVrfgJes8Z+gffGGzk1eXx8cPTzdsQvhl/wO9nZ7LVjzNlv2OB+\nznPJEv0InZTE0z+q6A+vghAQduzgwcmePe7lUlJ4sGPO0x9oxI9fCBmOHtVGv3r1whe6unTR6wMZ\nGezuKQihQsOGwPr1nIStQYOCx5OT2eB/+21wjb4vyIhf8Du7dvGiGMCLv/v3u5cn4lz/RhBMRoZn\nuYEEIdjk53MhlqNHuc503bocsW4VMtUjhAxZWWy4jZwl27fzqMkVv/4KdOjA7dKlOZe/+PQLQuHI\nVI8QMpQubR/ENW6ca1kirmdqcO+9YvQFIdDIv5gQEEaYaq198AFH7xpPAAaXL3OR9q++0vsefjg4\n+glCNCNTPUJAyM8HevTQbpoAL4zdd58O4Joxg1NAGLhz+xQEoSAyxy+EHGfPshvcypWFy95yC4e8\nh3pyK0EIJWSOXwg5EhOBn34Cnn7atZdOxYrAmDHAggX+MfpEnAH0wQc5yKZxY144Hj0aOHjQ9/cX\nhEhARvxCUDh/Hvjf/9goZ2VxmcaOHbmWrznHjy9s28b50l1VC4uN5VxBEybwArQghDsy1SNENWvX\ncvRvRkbhstddx08i4RJsIwiuEMMvRC1nzgBXX63zqcTF8ch+wADOCLp5M6eV/vlnfc5dd9kXxRYi\nHyIuJ/r995xLv0QJ/t307eu6pGioY5nhV0qlAHgHQCyAaUT0psPxRACfAqgJLvzyHyL6yEFGDL/g\nNf/+t64DkJTEo/lWrQrKTZjAxbENNm0CmjYNjo6CtXz2GfD66zwd6EjJklxV6/XXec0pnLDE8Cul\nYgHsANANwCEAqwH0JaJtJpkXAJQhoueVUhVt8pWJ6LJJRgy/4BX5+ewmuns3b0+dCgwZ4lr+rrt0\n3IDk/498iIDnngPeeqtw2fr1Oed+7dqB18tfWOXV0wbATiLaS0S5ANIA3OEgkw+grK1dFsAps9EX\nBF/Ytk0b/cREnuJxxyOP6PY33wROr0Bw+jQvji9bxvlizOmABeeMH29v9MuUAYYNA6ZMAd54w77K\n1s6d7H6clRV8PYONr4a/OgBTCA4O2vaZeR9AE6XUYQAbADzu4zUF4W+MWqgA0KxZ4bVO27TR7ZMn\nA6OTv/nlF05lUbky54bv3JmnqOrX5xrHRoFvwZ5z54CXXtLbPXtywsDJk4GhQ4FRo4B164C0NJ0/\nf9s2jjSPdHwttu7J/EwKgLVE1EUpdSWARUqpFkRkl3w3NTX173ZycjKSk5N9VE2IBsyuoGfPFi5/\n7pzzc0ORvDzgiSdcF6bZu5enMcaN4zgI801NAD79VI/eGzTgsqGO37lSXDToyBHgySd53+TJ/LmH\nYs6o9PR0pKen+/w+vs7xtwOQSkQptu3nAeSbF3iVUt8AGEtEK2zbPwEYRURrTDIyxy94xYkTQNWq\netpj2zagUSPX8u+8o//B27YFVq0KvI7eQMT5jiZPtt/fuDF7oGzZYn+jK1MGWL7cfurCG86e5Qjq\nvXt5/aRqVeDOO4EqVXx7Xyvo1ImflgDg3XeBRx91LXv+PFCtmh4Y/P47u/2GOpbU3AU/MewCUAdA\nPID1ABo7yEwEMMbWrgyeDirvIFNIZUlBcM2dd+p6p336EOXnO5c7dYqoZk0t+8EHwdWzKHz3nX0d\n1549iTZs0Mezs4mmTycqX17LNGvmuu+FcfAg0bBhRKVK2V8XIIqLI7rnHqItW/zTt2BRu7buw44d\nhcv36KHl584NuHp+AV7W3PVHofTuYE+dnQCet+0bBmCYrV0VwA8ANgLYBKCfk/cI7KcjRDSLFtkb\nqkGDiA4ftpdZvZqoRQstk5RkXzQ71EhJ0br26kWUl+dcbuNGohIltOzSpUW/1oYNRFWqFDT4jq9S\npYh++MGnbgUVMfxSbF2IYIg4N8+MGXpfsWIcyVulCvvrr11rf87//gfcfXdw9fSUfft0VSel2Nuk\nXj3X8iNGAJMmcbtvX+Dzzz2/1sGDPKVx9Kje17QpcOutHAi3dCmwYoU+lpDAU0rO4iRCDZnqcYM3\ndwt/vyAjfsFHcnKIBg4sfNQaG8tTJKHM/Pla344dC5dfsULLN2pUtGsNGaLPTUzkaztOF61aRVSr\nlpa74YaiXcMqJk7UOtevT3ThgmvZceO07FVXuX7CCjXg5Yg/BNetBaHoxMUBM2ey58YNNxQ8Hh/P\n0ZmrVwODBwdfv6Jw/rxue7KoWrWqbmdne36djAz7+geffcYuj8ph/Ni2Lac5iI3lbSOOINQZMEAn\n49u5E+jTh9N7mCECZs1i7yiD4cND06PHn/jqzikIIYNSnO2zd2+u87t+PRvCcuX4sT9cwvHLl9ft\nLVvYODkaYzObN+t2UXLOzJmjC9y3aMGFc1zRpAnwj38As2fz9scfcwxBKFOmDPDaa+yaCXDAXs2a\nPB3WujUHxKWl8VSgQZMm7OMf6YjhFyKSRo3cu3WGMm3b8lx6dja7p/7yC9+4XDFlim537er5dfbs\n0W1nI30zBw/al8788ksOJuvZk9dTQpXHHuP1izfe4O3z54Fp0/jlSIMG/GRTqlRwdbSCCH+gEYTw\nIzGRy1AaDB/uOsp45kzg22/tZT3FnPLBiFx15MABoFcvzl8zd67ev2cP5z2qU4eT34Wqb4ZSwNix\nPI3VpIlzmYQETuPw669cFjQaEK8eQQhBtm4FWrYEcnN5u1o14J//5NQN5coBa9awJ09amj7nH/+w\nN86F8e67wOO2BCo33shZTc1s28ZPEEa6a3cMH84J79w9NVgNEa9PLFzIN9KSJflm0Lev6wpxoY7k\n4xeECOOzz3hB2pN/jWbN2KglJXn+/vv3A3Xr6imc9et15O+ZM3zj2b9fy8fEaNm+fflGcfy4Pv76\n68ALL3h+/VCAiKd/ihdnB4FwQ2ruCkKE0b8/L8CaF3udkZLCRWaKYvQBntbo2VNv9+4N7NrF7YkT\ntdEvVYpHxobRb9KEb0p79/INwOD11z3Ll2Q1+fnAjz9yKooSJXgROD4euOoqru0QLsn7fEFG/IIQ\n4mRn85TO1Kk8BXTxIlChAnvhjBjhWzDVunXA9dfzewJsAHv1YsNoZP0sUUIfBziXzx225Ou5ufyU\nYBQ4KSxQymoOH+YpMVd1mQGeApo4kes3hzoy1SMIgld8/TVHMefkFC7rzLBPmsQ3IADo0EFHy4Ya\nR4/yTc7szQQUvLEZTJpUtMVyK5CpHkEQvOKOO7gWbdu2rmUaNuTKZc5G8zfeqNueLARbxaBB2ujH\nxnIZzu3bOZbh/HlO+dGggZZ/5BFe94hExPALgp/Yto39xuvU4XnxcuXY133qVPto3FCkfXtOUb1m\njX0gV61avIi7bRvPiTvD8DwCQjfideNGYNEivT13LvDee3xDA9il8/77uf+tW/O+/HxO4x2JhOjX\nJAjhQ1YWF/No0oSNyb59PC+fkcGlEocOBWrUsHe9DFVatwZeeUVvnz7NycrcuWmaS1iGar1ac12D\nPn2A2293Lle2LMclGKSl8WcQaYjhFwQfyM4Gbr4Z+OIL93IZGewB4yxiNNRo1YoLvgB8UzMbQkcy\nM+0rhA0aFFjdvGXZMt1+6CH3ssWLa0+qS5f4ZtaxI/DRRzrFRbgjhl8QfOCxx4CVK/X27bcDP/zA\nbo0HDgBvv835YQyGDwf++CP4ehYFpfRiLQC8+CKPmB2Lux88yOmbDx3i7QoVQjfVtdnN1DyPbyYj\ng91br7nGfpSflcWpqR94gL/L+fMDq2swEK8eQfCSw4d5NHj5Mm+//bZOCGbmzBmOgF23jreLmjPf\nCi5c4FGuuY5B7do8TWJEDi9YoPsOcOK2gQODr6snNG7MC7kA1xPo2NH++NmzXMR+w4bC30spjmMw\nxzBYheTjF4Qg8/LLnufNX7tWy8bFER09GhwdfeHIEaLmzQuvcQAQ/ec/VmvrnkGDtK5DhhQ83ru3\n837FxBD9/jvRW28RVa2q98fHh0YpSkg+fkEILosX6/awYe5lr7lGV3TKzeVRZ6hTpQr75D/3HE/j\nOOOGGzj3zVNPBVe3omL+fmbOZA8mg507dbppwD6Z25138vf2zDPs2mmsfeTkAOPHB1bnQCKGXwDA\n0xBDh3KJv6QkTgrWvTv7bpsf5wWNuahH06aFyzdr5vxcq8nL42mbfv04/XOnTtxesIDdHMeO5fn8\ntDRg9Gjg2Wc5F/+mTZwq4pZbrO5B4bRvD1x7Lbdzc4GbbgL+8x/+HsweP+XKcXS0gZHEDgAqVdIl\nLgHg00/DI0WFU7x5TPD3CzLVYxnHjxPdfLP7x/jatYl++cVqTUOPNm30Z7RwYeHyt96q5T/5JPD6\necLs2fZFyZ19919+abWW/mHHDqIKFez7Fx9PVLy4877/618F3yM/n6hhw6J974EEMtUjFJUTJ3h0\n9+OP7uX27ePFSce0vdFOy5a6Xdhi7fHj9p+z+VyreP99Tsy2b59rmX37eEH3vfeCp1eguOoqfkIx\nCtkDPGVz6ZK9nFJAairw6qsF30Op0H1yKwpi+KOYfv2AHTv09r33AkuXcnbCrVs5xa6Rp/zSJU7e\nFcoh+cHGXKLv88/Z08UZRPxZGhGu11/v2dRQIFm4kF1RDcqV43nsxYv59cwz9mUcH3+cq1OFO1df\nzeUsp051fvPt1YunsMaMcR20duyYbickBEbPgOPNY4K/X5CpnqCzerX9Y21amnO5XbuIqlXTcqNH\nB1fPUKd9e/3ZJCYSTZlClJ2tj+/YQdS3r/1n/fnn1ulrYJ6mat+e6NSpgjKnTtn3r02b4OsZaI4c\nIereXfdxxAj38rt3Eyml5ffsCYqaLoGXUz3+MNopALYD+AvAKBcyyQDWAdgMIN3J8QB+NIIzHnhA\n/3j793cvm5amZatUIcrJCY6O4cD27UTlytkb9sREok6diFq0KDhvfO+9RHl51upsvukXL0506JBr\n2UOH7OfAV68Onp7BYskS3b8SJYg2bXIul5dHdPfdWvaWW4KrpzMsMfwAYgHsBFAHQByA9QAaO8gk\nAdgCoIZtu6KT9wnohyMUpHp1/QNevty9bE4OUcWKWn7t2uDoGC6sW2f/VOTqNXAg0aVLVmvLi5ae\n3vSJWMaQf+GFwOsXbPLziZo21X2sUIFoxgyiCxe0zObNRHfeaf99Llhgmcp/463h93WOvw2AnUS0\nl4hyAaQBuMNBph+AOUR00Gbho6C+TehjDkk3yu25Ii6O50adnSvwXPHmzVy9qV49+2MxMTqNw8yZ\nrouaBxNzucQOHQqXN8uYz40UlGLXzDJlePvUKU7PUK0aR/M2a8ZrMvPm6XMeeojTVYQrxXw8vzqA\nA6btgwAcs3o3ABCnlFoKoAyA8UT0iY/XFXwkIUEnnDp+XP/oXXHihG6XLBk4vcKVcuWAp5/mguhb\ntvACeXw8cOWVHAgVSphry3qSLjo7W7dD4cYVCFq0YK+rnj116cUzZ+yTuxkMH85eTqFcWL4wfDX8\n5IFMHIBWALoCSACwUim1ioj+Mgulpqb+3U5OTkZycrKPqgnuaN6cPXgA9kh56SXXsuvW6aCWuDig\nUaPA6xeuxMTYu/uFIvXr6/a8eXzDcsdXX+n2lVcGRqdQoF07rjswdSoHdZkLzRcrxiUbH3mEnwKs\nIj09Henp6T6/j09J2pRS7QCkElGKbft5APlE9KZJZhSAkkSUatueBmAhEc02yZAveghFZ9YsducE\nOBx/3Tr7LJIGeXnAbbex+x8QHgnGBPccO8bfteFeumgR0K2bc9nFiznKFeCb/oEDQOXKwdHTSvLy\n+Mnt1CkuzdigAVCxotVaFcSSJG3gJ4Zd4MXdeDhf3G0EYDF4ITgBwCYATRxk/L7oIbjn0iX7pFO1\naxN9/TXR5ctaZuNGe1c3gGjFCstUFvyI2cW0bFmOzjV7G+XlcVRvYqKW69vXOn0F58DLxV2f0zIr\npboDeMdm2KcT0Vil1DCbNZ9ik3kawAMA8gFMJaJ3Hd6DfNVDsIeI86ucPMmFJWrX5nKAZpYsAVJS\n7EvnVa/OSaqOHeNydWaefpoXML0hP58jf1ev5vzmSUkcNdyuXXjPlYYr+/cDbdrYByPVq6dH94sW\nAbt362OVK3M1sVCtsBWtSFpmgYiIMjOJJk0iatbMfqResiTR4MFEf/xhL//NN0QJCYW7Ij71lHf+\n57m5RK+84trdsUULzluTn++f/gues2GD/VOfq1fVqiwrhB6wKoDLHy8x/P5h82b3CbeM1zPP2Bvx\nffuIRo0qmMCqWDEOWFm2zDt9Fi7kgK/C9AGIhg+3PrApGjlyhOjJJ4mSkgp+J0lJRE88QXT4sNVa\nCq7w1vBLBa4I4a+/OPXsqVN6n7EolZHBi3JmHn8ceOcd+30XL3IFojNn2GWzSRPgiiuKrkt+PvDk\nk8C77xYua+aFF4DXXy/69QTfyc7mBfyDB3m7Rg2eBgzbXDRRgrdTPWL4I4T27XVxidKlgVdeAQYP\n5iRrRDw/O3o0z90aLFwYmFzqTz5Z8KZSqRIHOm3bZn8TUor1M9q7dgF16/pfJ0GIRLw1/JKdMwJY\nvVob/WLF2Lg/+aTOrKkUL6J+/z1whymuuqgjck9Yvryg0b/1VuDoUY5e3bsX+PZbbdyJdEAREfDB\nB/7XSRAEe8TwRwDmCkIDBrCRd0ZsLDBunPai+f5797nYvcFZ3vaxY/U1Y2K4DOErr+hoYbNX0cyZ\n/tVHEISCiOGPAMx54AcOdC9brx67UQI8wl671n96nDxpH+UJcNELI5I1PR246y4OHho4EMjMLPge\nR45wcQxBEAKHrykbhBDAnG+levXC5c0yWVn+02PHjoL1eePi+Abz3HPAW2959j75+f7TSRCEgsiI\nPwIw5vIB+4parjDLmM/1FSPpm5mdO7nSk6PRb9PGdXbD+fP9p5MgCAURwx8BmPPZTZvmXnbtWj29\nEx/P3kD+onx53TYv2L7/vt7fvTsnfPvtNy7v54whQ4CzZ/2nlyAI9ojhjwCGDdPtBQs4AZszzp2z\nl+3Txzs/fVc0a6ZTEJsXbA1uvJFH840b8/bEic7fJzOT86MLghAYxPBHAFddBdx5p97u3x948EHO\nuEnEhnTaNKB1a70QHBPDLp/+JC7OvgB5MYcVpMOH2QPp6685y+cXX9gfb9VKt6dO9a9ugiBoJIAr\nQjh9mislbd9uvz8mxvli6YQJwIgR/tfjyBEe0Rd1qqZLF+CTTzhiFOCbRk6OJHATBHdIAFeUU748\nVwtyrF/jaPQTEoCPPgqM0QeAqlXZpbNECc/kY2KARx/lmIJq1bShv3yZc6ILguB/xPBHEFdcwamW\nly8H7r1XB0jFxPAofNw4Tpdw332B1aNLF9bDWWEXM82aAXv2cARx8eLA+vU6fUPZsgWnigRB8A8y\n1RPh5OSwAY2x4BZ/+TIHcB06xNulSvGo/qabgIcf5gLWZh56SHsl3X038L//BVVdQQg7JEmbEJKM\nHw888QS3k5K4zm/LlgXl5sxhY29MTf38M3DDDcHTUxDCETH8Qkhy9ixPMx05wtvFi3PW0Pvu49H/\n9u2cmG32bH1Ox468XiELu4LgHjH8Qsiydi378Hvi6VO/PvDLL9FR0DuQZGQAaWlcMPziRV7879GD\nn6Lkhho5iOEXQprNmzm+wLGOr5lbbmGXTn8GlXkLERe1ycjg+gaVKlmzTlJUTp0C/vUv/hyzswse\nb9KEj/frF3zdBP8jhl8IeYh47n7KFOCPPzi5XFIS0LkzL/YaWTyt5Nw5NpqTJvFo2aB6dQ5Oe+gh\ndlkNRfbvB7p142pshTFqlH26bCE8EcMvCD6yciVHQB8/7lqmRAlg+vTQGzGfPw+0bWt/s2rWjCOk\ny5XjKO7PP7fPxvrOO1yCUwhfxPALgg/89hvHH5gzjMbF8Uj/xAn71NcAPxUMGBBcHd1h9p6Kj+cg\nvXvvtR/RZ2TworqR/bR0aU6jYcR7COGHRO4KgpdcugT07q2NfoUKXEns5EkOMDt9mhPfNWigz3nw\nQf9XL/MWIvuEd2+8wSN9x2mcpCTOj2T0IytLkuFFKz4bfqVUilJqu1LqL6XUKDdy1ymlLiul7vL1\nmoLgT+bOBQ4e5HZiIrBiBTByJEcPAzyCvvdefipo1Ij35eTYl7y0kj/+AP78k9tly9onynOkeHGu\nj2Dw2WevtAK3AAAaZElEQVSB1U0ITXwy/EqpWADvA0gB0ARAX6VUYxdybwJYCECWk4SQwmzAn3oK\naNjQuVy5cjyaNpg2zXn66WBj3LQATtRXqpR7+Vtu0e0DBwKjkxDa+DribwNgJxHtJaJcAGkA7nAi\n9yiA2QBO+Hg9QfArRMCqVXp78GD38rfdBlSsyO2TJ4HduwOnm+Cc8+fZg+nIkYKlPgXP8NXwVwdg\nHjMctO37G6VUdfDNYJJtl6ziCiHD5cu6uLtSHE3sjthYnToa8G/NYm8x67NiRcGFaEd++MH5uaHM\n5cvAvHnAzTfzYnTt2vxdVazInkmO6cgF9/ia/9ATI/4OgOeIiJRSCi6melJTU/9uJycnI9kxv7Ag\nBIC4OHbRvHiRR//79nFiOVfk5tov6oaCR0yrVlyM588/OQ7hgw9cF9m5dImzoRr07x8cHYvKqVPs\nXnvmDOs8fjwHATpy9iz35733gBdeAF59NbJjE9LT05Genu77GxGR1y8A7QAsNG0/D2CUg8xuAHts\nr0wAxwDc7iBDgmAVXbsSsdknevFF97JffKFlq1Qhys0Njo6F8fbbWq/4eKJZs4jy8+1lzpwhuv12\nLVe6NNHZs9bo64p164gGDSIqXlzr6exVrRpR2bIF9z/5pNU9CC4221l02+3NSX+fzE8MuwDUARAP\nYD2Axm7kZwC4y8n+AH40guCe2bO14ShVimj9eudyR48S1a2rZUePDq6e7sjKImrSxN4INm9O9H//\nRzR5MtHQoWzozcfffttqre2ZNo0oNta9wQeI+vUjunyZKC+P6McfiTp1sj++YIHVPQkelhh+vi66\nA9gBYCeA5237hgEY5kRWDL8QcuTkENWrpw1HmTJEr73Ghp6IKDOTjWeNGlomIYHo4EFr9XZk3z6i\nBg0KN5wA0bPPFnwisJJZswrq2LCha/1HjtTn5ubaP8l07WpdP4KNZYbfHy8x/ILVbNjgfOqgfHmi\nmBj7fTExRHPnWq2xc06eJBo2jG9MzgxmkyZEn35qtZb2nDtn/9m3aEG0ahXRqFF6X3IyUZ8+9n35\n5Rf9Hvv22X9PO3ZY159g4q3hl5QNgmBj/XrgjjvYVdAVZctyuobbbw+eXt6QkcHRxlu3ckRyhQpA\n9+6cEC/UFj8nTdI1oGvX5rxC5cqxrsuW8f4vvwTuuou/n2++4X19+3L+IYOUFO2xNHMmMGhQ8Ppg\nFd6mbJCqpoJgo2VLYMcOLgozcSJ7lRg0agQMH865bpKSrNPRU5KSOONpODB9um4//TQbfQDIzNT7\n69ThtNivvqoN/+zZwIQJWt7sjWU+VyiI5OoRBBMlSnDytV9/ZRfP48fZL37bNvYXDwejH25s3arb\nd9+t22ZXWSNQrmVLdl0F2LXWHEBnbhvpNgTniOEXBBcUL85FYRISrNYksrl0SbfNN9YOHXT7ww91\n2xjhm8/duxdYvFjvb9/erypGHGL4BUGwFCMFBgCsWaPbQ4fq9YgffuDMoufP29ccqFiRR/6PPMLL\nugBH99avH3i9wxkx/IIgWMqtt+r2hAm6XacOL+ga9O3LuZKMNBn163Oqhk6dgO++03JGXQLBNeLV\nIwiCpaxZA1x3nd6eMQO4/35unzzJUz5G2mkzcXEFs6OOGmWfQTXSkUIsgiCEJddey66YBg88wNtf\nfcVFcN54g9daHDEb/ZgY4JVXuI6wUDgy4hcEwXLOnAGSk4GNG4t2XsWKfKMYPhyoV8+zc86d41iM\nhQs5GVyJEkDTplxVrUWLIqtuKVJzVxCEsCYjgxd0Z8/WC7WOtG7Nfv+VK3NltKQkHu17wuXLwOjR\nnM3TVerqTp04u6lRaS3UEcMvCFFIdjZH6E6bxv7wly5xlO6tt3IA1zXXWK1h0dm1C5gyBVi6lJ8E\nEhI49fSwYUC7dt5FHufmAn36AF9/XbhsuXLAokV8kwl1xPALQpTx1VfAkCE8D+6KHj24rm60B549\n8QTn9DcwIrFbteLPb9YsftLIy+PjlSsDmzY5X1sIJcTwC0IU8dlnwMCBrqdEzDRvzjlvEhMDr1co\ncuQIUKuWLtP41FPAW28VnCJas4ZjAM6c4e3UVGDMmKCqWmTEq0cQooQtW3hB0zD61asD//0vF13P\nymIjf889Wn7jRn4yiFamTdNGv1074N//dr4ucO219tXJPvigoLtopCAjfkEIMx56iI0ZADRpAvz8\ns330q8GMGfbF43fuBK68Mjg6hhKtWnHGT4CflPr1cy2bkwPUrMk5mgDgl1/sU0eEGjLiF4QoICOD\njZfBlCnOjT7ATwXdu+vtyZMDq1uoYhhxoHAjHh8PtGnj/NxIQgy/IIQRq1Zxfn2AR/uFGbJhw3Tb\nnMQsmoiL021XbpxmsrN1Oz7e//qEAmL4BSGMMBYeAeDqqwt3bWzaVLczMgKjU6hjTtg2b5572ePH\neXrHwJ9TY1lZwB9/8BrMxo3Wrh+I4ReEMMKcIvrYscLljx7V7ZIl/a9POPDAA7r93nscreuKN9/k\neX6AUzv7I5Br40YOTKtcmReQO3fmCOGaNYGXXgIOHfL9GkVFDL8ghBHmlALLl3Meend8+qluh2Mw\nlz/o1QuoVInbR48CN93EPvpmsrLYCI8bp/cZ5SC9hYjdRlu2BKZOtZ9CAvjG/dprfHMxZxcNBuLV\nIwhhhrm2bJ8+QFqac/fETZs466VRrOTnn4EbbgienqHE3LlA7972cQ8dOnB07qlTwPz59uUab7oJ\n+P57IDbW+2v++9/As8/a76tbF6halbONnjyp9xcrxtfr1q1o1/DWq6fI1dkD8WI1BEHwhG++IWIT\nxq877iDauFEfv3CBaPp0ovLltUzz5kT5+dbpHApMn04UG2v/2Tl73Xgj0dmzvl1r82YipfR7tm9P\ntHy5/g5ycoi+/JKoVi0tU6kSUXZ20a5js51Ftrky4heEMIOI8/BMmWK/v0kTzjOzeTNw9qzeX6YM\nL1g2bx5cPUOR33/n6Zd583R6BoOrrgJGjmRPKF+9eUaMACZN4na7dpx3qESJgnIHD3KcwYkTvD1z\nJjBokOfXsSxlg1IqBcA7AGIBTCOiNx2O9wfwLAAFIBPAw0S00UFGDL8gFIG8POCxx4CJE93LVaoE\nLFhg75su8ILq4sU8zVOyJHtIderkXQI4R7KzeSHXqBSWns4Luq546y0uIAMA118PrFjh+bUsMfxK\nqVgAOwB0A3AIwGoAfYlom0mmPYCtRHTWdpNIJaJ2Du8jhl8QvGDZMi5XOHeuTksAcNnC4cM5VUOF\nCpapF5Vs3KgX4WvWBPbtc39DOXIEqFaN2yVLFlwEdoe3hr9YUU9woA2AnUS016ZEGoA7APxt+Ilo\npUn+NwA1fLymIAg2briBX6dOcUqGixc5krdRI98WJgXvMRvuypULf4owPI4ADs7Lz/e8xoC3+Gr4\nqwM4YNo+CKCtG/kHAQTZcUkQQp9du4C1a9loJCXxI39RUgJXqCAj+1DBnAJ75072qipe3LX81q26\nnZgYeKMP+G74PZ6fUUp1ATAYgNMg89TU1L/bycnJSE5O9lE1QQhtiIBvv+U88Y7pFOLi2FXzn/8M\nj4IggqZBA57iOXCAo6W//BIYMMC1vHmRvmtX9++dnp6O9PR0n3X0dY6/HXjOPsW2/TyAfCcLvM0B\nzAWQQkQ7nbyPzPELUUVeHvDoo9rzwxUxMTyHP3x4cPQS/MPrrwMvvsjtqlXZq8pZTeDFizmRnrE+\ns3hx4cbfjFWLu8XAi7tdARwG8DsKLu7WArAEwAAiWuXifcTwC1HF44/b536PieFi41WrAtu3c04X\nM0V18xOs5fhxoGFDnR+pXDn+zgcN4oXcrVs537+5VkCrVlwMpiieRVa6c3aHduecTkRjlVLDAICI\npiilpgH4B4D9tlNyiaiNw3uI4ReihlWrOA+MQe/eXEilVi29b+1azu9i3ABKlWKf72gvoRhOLFnC\npS+NyGl3VKsGrFxp/xvwBCm9KAhhwsCBOodOjx7sZ+9sQe/sWR4F7t7N2+PHs+++ED4sXw707es+\nEdu11wJz5hTd6ANi+AUhLDh3jr11jAyQa9a4X7ydPJmjdAGgWTP2ERfCi5wc4KuveBF37VquCZCU\nBHTpwhG+nTt7Hzgmhl+wnK1bgYUL2ae8RAmOhrzttsgtZuENGzZwtkaAF/t27XIvf+YMUL48t+Pi\neNrAH9GlQmRgVQCXIODHH4H/+z/O/uhI5co8Vz1qFM9TRzvm+V5P5usTE3U7N5eDeyQwS/AVyccv\n+MS4ccAttzg3+gDnHH/1VX6cNaehjVbMQVnbtvHUjzt+/123y5cXoy/4BzH8gtfMnAk89ZTejo0F\n7rgDePlldl0z8o8A7J1y222eeThEMnXqAI0bc/vCBeCjj9zLT5ig27feGiithGhD5vgFr8jOBmrU\n0DVgO3ViTxWzZ0JuLhuuf/5TF8CYMoWnfqKZ99/n4C2AUyYvWgS0dZLoZOZM4P779faqVc7lhOhF\nFneFoDJjBjB4MLdr1gS2bGEj5ozUVH4KAHhhc+3a6F6gzMzkhe8DtixXxYoB/fuzm2e1ajwFNHUq\nL5Qb3HQTV92K5s9NKIgYfiGodOnCecYBzif+zDOuZc+cAapX56kNgD1bor0oyKZN/Bm6K/xt0LQp\nr6EY3j2CYOCt4Zc5fsErzEW+e/Z0L1uuHE8FGezZExCVwopmzYBff+XqTK5QiqN6ly8Xoy/4F3Hn\ntIhDhzgz4/Hj7J9dvz4v3jkrzxaKmMvWeeKnb5bJz/e/PuHIVVdxmP7q1bz28ccfvHaSmMhPA8OG\nOU/sJQi+IoY/yKxbx5n7nNX8rFiRKyaNGhX6OVmqVtVz1Onp7g3UxYts4MznFoWcHOD0afYaikSX\nxuuu45cgBAuZ6gkic+Zwcq45cwoafYD93N94g2X27y94PJTo00e3x4933h+DTz7Rc9m1a3tm5Ii4\nQHWfPkDp0nyzqFSJp41GjOA5ckEQvEMWd4PE0qXAzTfb10Xt1Ano0IFzd8ybp0fQAJfOW7XKPnIz\nlDh1ihdsDb/8Bx7g3PKOlYaWLAFuv537CABjxwLPPef+vTMygHvu4Yhgdzz6KAeQFZPnViHAEPH/\nblyc1ZrY4+3iLojI8herEbnk5xM1bkzEPx+ihg2J1q61l8nNJZo2jSg+XsuNGWOJuh7z0ktaV4Co\nWjWiF18k+uor7ku3bvbHa9UiOn3a/XtmZRFdd539eQBRhQpEZcoU3D9oEH++guBvLl0imjWLqHNn\nouLF+fdWogRR165Es2cT5eRYrSGRzXYW3eZ6c5K/X5Fu+Jcs0YaqVCmi/ftdy06apGWrVg2NH5cr\n8vKI7ruvoDF29qpShWjLlsLfc8QI+/MGDybatImP5ecTLV1KdPPN9jLTpweyl0I08ttvRDVruv9N\n16tHtGGDtXqK4Q9hzMZxxAj3spcusZE05L/9Nigqek1+PtF//0tUubLzf46YGKI77yTat6/w9zp9\nmqhkSX3ue+85l8vLI7r/fi3XrJmM+gX/8euvRAkJBX/LShXcV7Ys0bp11unqreGXxd0gYBTSAHi+\n2x3x8VycwyDUfd6V4pQM+/cDaWmcYuC223hRNjWV9f/qK8+KTHzyiQ7yatECeOQR53IxMcA77wAJ\nCby9aRP7xAuCr2RmAv/4B7vVArzG9vLLvP6Wl8e/5xdf1Jlmz53j/FQXL1qnszfIslgQMHu8eOKn\nb5YxLwaHMvHxvCB7zz3ev4fZeA8e7D49QWIiBzd9/LE+t0MH768tCAAPPo4d43aFCsCKFVw716BO\nHc4227s3O2dkZvKgZ/ZsYMAAS1T2ChnxB4EqVXR72TL3skT2MuZzIx1zimJPApfMMoWlNxYET5g0\nSbfHjLE3+mZatLD3Tps4MbB6+Rsx/EGgVy/dnjJFT2c4Y8kSYPNmbickACkpgdUtlDAnefNkisss\n4ypBnCB4yqlT+n8vLg647z738kOG6PbKleGVclwMfxDo1UsX4Dh0iIsvG3OIZrZsAQYN0tsDBoSu\nH38guP563f7wQ53K2RnnzvHjtbNzBcEbMjJ0u1o1oGxZ9/KVKtnnUAqnp04J4AoSEyYAI0fq7UqV\neMRgBHDNncuGzJjTL1uWc7fUr2+NvlbgmMVzwgSO0nWEiD+7Dz/k7aZNuQi5pCwWfOHoUZ1OpFQp\nThPiLg/V+fM8MDPW8LKygl9eVAK4Qpz8fKKnn3bvF2z29V+yxGqNrWH4cPvPYuhQoq1b+Vh+PtGy\nZUTdu9vLTJ1qrc5CZJCXR1Sjhv5dzZrlXv6DD7Rso0bB0dERWOXHDyAFwHYAfwEY5ULmXdvxDQCu\ncXI8gB9N6JCfTzRlCke4ujL6HToUjOqNJjIziVq3Lvi5VK5MlJRUcP+AAeLDL/iPl1/Wv60GDVxH\nmh87Zh/g9fbbwdXTwFvD79NUj1IqFsAOAN0AHAKwGkBfItpmkukBYCQR9VBKtQUwnojaObwP+aJH\nuJGbC8yfz/l5jh3jx8n69dkHvmVLq7WznowMdpf76Sf3ciNGcII4ydUj+IsjR4Arr9TTjQ0bAm++\nybEpsbH8vztvHmfQNZwLypQB9u3jBILBxpIKXEqp9gDGEFGKbfs5ACCiN0wykwEsJaL/2ba3A+hM\nRMdMMlFl+IXCIWLDP3Ei3ySNedRSpbhM4cMPy01SCAyff86/MTMVK3KJ0X37eO7fICaGAxQLC8wM\nFN4afl/HStUBmHJK4iAAx3LQzmRqADgGQXCBUkC3bvy6eJFTVhcrxkE1oZYhUYgs+vXjYkEPPsi1\nIAD+/Z08aS9XsiTw2WfWGX1f8NXwezpMd7wjFTgvNTX173ZycjKSk5O9VkqILEqUAGrUsFoLIZoY\nMIAjc6dMAaZNA06c0MeqVAGGDuVX9erB1Ss9PR3pRrFrH/B1qqcdgFTTVM/zAPKJ6E2TzGQA6USU\nZtuWqR5BEMKG3FzOt5WZyW7W9eqFzrqSVVM9awA0UErVAXAYwD0A+jrIzAcwEkCa7UaRYTb6giAI\noUxcnOvUDeGKT4afiC4rpUYC+AFALIDpRLRNKTXMdnwKEX2nlOqhlNoJ4DyAB3zWWhAEQfAaidwV\nBEEIU7yd6pFcPYIgCFGGGH5BEIQoQwy/IAhClCGGXxAEIcoQwy8IghBliOEXBEGIMsTwC4IgRBli\n+AVBEKIMMfyCIAhRhhh+QRCEKEMMvyAIQpQhhl8QBCHKEMMvCIIQZYjhFwRBiDLE8AuCIEQZYvgF\nQRCiDDH8giAIUYYYfkEQhChDDL8gCEKUIYZfEAQhyhDDLwiCEGWI4RcEQYgyvDb8SqnySqlFSqk/\nlVI/KqWSnMjUVEotVUptUUptVko95pu6giAIgq/4MuJ/DsAiIroKwE+2bUdyATxJRFcDaAfgEaVU\nYx+uGZakp6dbrUJAkf6FN5Hcv0jumy/4YvhvBzDT1p4J4E5HASI6SkTrbe0sANsAVPPhmmFJpP/4\npH/hTST3L5L75gu+GP7KRHTM1j4GoLI7YaVUHQDXAPjNh2sKgiAIPlLM3UGl1CIAVZwc+pd5g4hI\nKUVu3qc0gNkAHreN/AVBEASLUEQu7bX7E5XaDiCZiI4qpaoCWEpEjZzIxQH4BsD3RPSOi/fyTglB\nEIQoh4hUUc9xO+IvhPkA7gPwpu3vPEcBpZQCMB3AVldGH/BOcUEQBME7fBnxlwfwBYBaAPYCuJuI\nMpRS1QBMJaJblVIdASwDsBGAcaHniWihz5oLgiAIXuG14RcEQRDCE0sidyM1+EsplaKU2q6U+ksp\nNcqFzLu24xuUUtcEW0dfKKx/Sqn+tn5tVEqtUEo1t0JPb/Dku7PJXaeUuqyUuiuY+vmKh7/NZKXU\nOtv/W3qQVfQJD36biUqpBUqp9bb+3W+Bml6hlPpQKXVMKbXJjUzR7AoRBf0F4C0Az9raowC84USm\nCoCWtnZpADsANLZCXw/7FAtgJ4A6AOIArHfUF0APAN/Z2m0BrLJabz/3rz2ARFs7JVz650nfTHJL\nwM4KvazW28/fXRKALQBq2LYrWq23n/v3AoCxRt8AnAJQzGrdPexfJ7Ar/CYXx4tsV6zK1ROJwV9t\nAOwkor1ElAsgDcAdDjJ/95uIfgOQpJRyG/8QQhTaPyJaSURnbZu/AagRZB29xZPvDgAeBbslnwim\ncn7Ak/71AzCHiA4CABGdDLKOvuBJ//IBlLW1ywI4RUSXg6ij1xDRcgBn3IgU2a5YZfgjMfirOoAD\npu2Dtn2FyYSLcfSkf2YeBPBdQDXyH4X2TSlVHWxMJtl2hdPimCffXQMA5W3Tq2uUUgODpp3veNK/\n9wE0UUodBrABwONB0i0YFNmu+OLO6ZYoDP7y1BA4uq6GiwHxWE+lVBcAgwF0CJw6fsWTvr0D4Dnb\n71Wh4PcYynjSvzgArQB0BZAAYKVSahUR/RVQzfyDJ/1LAbCWiLoopa4EsEgp1YKIMgOsW7Aokl0J\nmOEnoptcHbMtVFQhHfx13IVcHIA5AD4logJxAiHGIQA1Tds1wXdedzI1bPvCAU/6B9uC7lQAKUTk\n7vE0lPCkb60BpLHNR0UA3ZVSuUQ0Pzgq+oQn/TsA4CQRXQBwQSm1DEALAOFg+D3p3/0AxgIAEe1S\nSu0B0BDAmmAoGGCKbFesmuoxgr8AH4O/Qog1ABoopeoopeIB3APup5n5AAYBgFKqHYAM05RXqFNo\n/5RStQDMBTCAiHZaoKO3FNo3IqpHRHWJqC74CfThMDH6gGe/za8BdFRKxSqlEsCLhFuDrKe3eNK/\n/QC6AYBt/rshgN1B1TJwFN2uWLRKXR7AYgB/AvgRQJJtfzUA39raHcELMusBrLO9UqxeYS+kX93B\n3kc7wYFqADAMwDCTzPu24xsAtLJaZ3/2D8A0sLeE8X39brXO/vzuTLIzANxltc7+7h+Ap8GePZsA\nPGa1zv7sH4CqAH4AB5NuAtDPap2L0LdZAA4DyAE/mQ321a5IAJcgCEKUIaUXBUEQogwx/IIgCFGG\nGH5BEIQoQwy/IAhClCGGXxAEIcoQwy8IghBliOEXBEGIMsTwC4IgRBn/D+iOXgc5R837AAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x1065ee490>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mpl.scatter(a,b,s=150, facecolors=\"None\", edgecolors=\"b\",lw=3)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
afeiguin/comp-phys
14_02_multilayer-networks.ipynb
1
194205
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## How a regression network is traditionally trained\n", "\n", "This network is trained using a data set $D = ({{\\bf x}^{(n)}, {\\bf t}^{(n)}})$ by adjusting ${\\bf w}$ so as to minimize an error function, e.g.,\n", "\n", "$$\n", "E_D({\\bf w}) = \\sum_n\\sum_i (y_i({\\bf x}^{(n)};{\\bf w}) - t_i^{(n)})^2\n", "$$\n", "\n", "This objective function is a sum of terms, one for each input/target pair $\\{ {\\bf x}, {\\bf t} \\}$, measuring how close the output ${\\bf y}({\\bf x}; {\\bf w})$ is to the target ${\\bf t}$:\n", "\n", "$$\n", "E_D({\\bf w}) = \\sum_n E_{\\bf x}^{(n)}, \\quad E_{\\bf x}^{(n)}=\\sum_i (y_i({\\bf x}^{(n)};{\\bf w}) - t_i^{(n)})^2\n", "$$\n", "\n", "\n", "\n", "This minimization is based on repeated evaluation of the gradient of $E_D$. This gradient can be efficiently computed using the backpropagation algorithm which uses the chain rule to find the derivatives, as we discuss below.\n", "\n", "Often, regularization (also known as weight decay) is included, modifying\n", "the objective function to:\n", "\n", "$$\n", "M({\\bf w})=\\alpha E_D({\\bf w}) + \\beta E_W({\\bf w}),\n", "$$\n", "where $E_W = \\frac{1}{2}\\sum_i w_i^2$.\n", "\n", "\n", "\n", "\n", "### Gradient descent\n", "(From Wikipedia)\n", "Cool animations at http://www.benfrederickson.com/numerical-optimization/\n", "\n", "Gradient descent is a first-order iterative optimization algorithm for finding the minimum of a function. To find a local minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient (or of the approximate gradient) of the function at the current point.\n", "\n", "Gradient descent is based on the observation that if the multi-variable function $ F(\\mathbf {x} )$ is defined and differentiable in a neighborhood of a point $ \\mathbf {a}$ , then $ F(\\mathbf {x} )$ decreases fastest if one goes from $ \\mathbf {a}$ in the direction of the negative gradient of $F$ at $ \\mathbf {a}$ , $ -\\nabla F(\\mathbf {a} )$. It follows that, if\n", "\n", "$$\\mathbf {a} _{n+1}=\\mathbf {a} _{n}-\\eta \\nabla F(\\mathbf {a} _{n})$$ \n", "\n", "for $\\eta$ small enough, then $F(\\mathbf {a_{n}} )\\geq F(\\mathbf {a_{n+1}} )$. In other words, the term $\\eta \\nabla F(\\mathbf {a} )$ is subtracted from $ \\mathbf {a}$ because we want to move against the gradient, namely down toward the minimum. With this observation in mind, one starts with a guess $\\mathbf {x} _{0}$ for a local minimum of $F$, and considers the sequence $\\mathbf {x} _{0},\\mathbf {x} _{1},\\mathbf {x} _{2},\\dots$ such that\n", "\n", "$${x} _{n+1}=\\mathbf {x} _{n}-\\gamma _{n}\\nabla F(\\mathbf {x} _{n}),\\ n\\geq 0.$$\n", "\n", "We have\n", "\n", "$F(\\mathbf {x} _{0})\\geq F(\\mathbf {x} _{1})\\geq F(\\mathbf {x} _{2})\\geq \\cdots$ ,\n", "so hopefully the sequence $(\\mathbf {x} _{n})$ converges to the desired local minimum. Note that the value of the step size $\\eta$ is allowed to change at every iteration.\n", "\n", "This process is illustrated in the adjacent picture. Here $F$ is assumed to be defined on the plane, and that its graph has a bowl shape. The blue curves are the contour lines, that is, the regions on which the value of $F$ is constant. A red arrow originating at a point shows the direction of the negative gradient at that point. Note that the (negative) gradient at a point is orthogonal to the contour line going through that point. We see that gradient descent leads us to the bottom of the bowl, that is, to the point where the value of the function $F$ is minimal.\n", "\n", "<img src=\"figures/Gradient_descent.png\" style=\"width: 350px;\"/>\n", "#### Illustration of the gradient descept procedure on a series of iterations down a bowl shaped surface\n", "\n", "The \"Zig-Zagging\" nature of the method is also evident below, where the gradient descent method is applied to $$F(x,y)=\\sin \\left({\\frac {1}{2}}x^{2}-{\\frac {1}{4}}y^{2}+3\\right)\\cos(2x+1-e^{y})$$\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.3226478037930326 1.602369170618785\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXd0XOXV9X93Rr33allylyxZkm25N2wMmF5DAiEFAiSBEBISPhLeQnojJEDISyAJEJJQAqEFCGDHvVu2LNlWcZXVrN7L9Of749wZybbKSJqxDcxe61lX0ozu3Gl333P2OftoSil88MEHH3zwYbQwnO8D8MEHH3zw4eMJH4H44IMPPvgwJvgIxAcffPDBhzHBRyA++OCDDz6MCT4C8cEHH3zwYUzwEYgPPvjggw9jgtcIRNO0NE3TNmiaVqpp2iFN0+4f5D6apmlPapp2VNO0Ek3T5gy47Uuaph3R15e8dZw++OCDDz6MDZq3+kA0TUsGkpVS+zRNCwf2AtcppUoH3OcK4D7gCmAB8IRSaoGmaTFAIVAAKP1/5yql2rxysD744IMPPowaXotAlFKnlFL79J+7gDIg9Yy7XQu8qAQ7gSideC4D1iqlWnXSWAus8dax+uCDDz74MHr4nYsH0TQtA5gN7DrjplSgesDvNfrfhvr7YPu+G7gbIDQ0dG5mZua4jrXXAeUWSDBCsj8Yx7W3CxdmBX0O6NW3fUr+BjDRD+LH8MlwoDBhG7DsOFAkEko4AW7uRWHDhJU+bPRiw4SGgSgmu38gygyqExwdoLoAB/jnAv6je0I2E5jaoa8dLD0QEgvRGaPbx3Do6YG2FllRMZCW7rl9X0hQCswm6OuFvj592ws2u9yenQv+o3xvTn8AsPbJe+RcNpPclDAT/IPd34/qA9Uty9ENWEELBL8cN/fg0D/9fa5vAShCSSSAcLefkRm763vUhw0bDgIxkkaE2/sYDDYFPUrOcz0O2VoP7W1WSsWPZX9eJxBN08KAfwLfUkp1enr/SqlngWcB5hbMVYWFhePaX7MNHmqE59qhU4ObI+Cr0bAwGDTNE0d87mBXUGmFMjOU6uuQvvp0stCAKQGQGwi5QTA3SJ5r3AifDIWikV7KaaGMZspo5iQdOJCwNp0oZhJHDvHMIp4IAgfdjwMrrRyhiYM0coAWyrBjQcNADNNJII9E8ogjC20oOnf0gGUjmD8E8wdgPyJ/N2ZA4C0QeAUEXgJa0PBPymaBqu1w5EMofwca9WxrylyYeT1k3wAJWcPvYzgoBaUH4I2X4c1XoKkSAgPhri/A3fdD7uyx7/tCgdkMh4phfyEc2A8HiqDsoPwdICgI5ubArNmQkwc5+ZBfIK+Du+iqh6odUL1DtrWF/YQRGg8TVkPaAlkTl0BAyOD7cbSDZSdYt4FlO1h3geqR2wwTIOBSCFgMAUvAf+5Z/65Q9NJIM2X6t6CUDqoApV/0TCGOLOKYSTw5BA5x8u/BymFaKKOFclo4TAu92ACIIYiZxOkrnslEuf0yNdigyAT7+mCfCfaYoMoqt2lAZgAUBMNfJ2gn3d7pGfCaBgKgaZo/8C7woVLqN4Pc/gywUSn1sv57BXCRcymlvjrY/YZCcsEMVVVYhr8HMnP7TfBMG/y9A7ockBMId0fDbZEQfYGFJa12OGKGIxZZhy1CGhUWMA14e5P9YGYgzHKuIPk91I2Xy4Kdo7RRoX/IK2ihFfnSBmFkBrFk6V+XGcQQMsTVvgMrbRyjkQM0cYBmyrAjJ5dIMohnFonkEU8O/gzxxVcW+bKb14NlPVh2IFeKIRBwEQSugcDLwDhteNZXClqOCmEc/QiObwBLNxj8IGOZkEbWtRA1ceQXaLjHOFwG774hxFFRCkYjXHQJ3HALXHEdhI/vqvK8weGA40dh327Yt0u2B/eDxSK3R8foRJEv21n5MHUG+I3iutVhh/oDcHKrkHv1DmirlNuMAZAyB9IWCllMWCAR4mDvuVJgPwmWrWDdKltbKSKxGsEvT4giYLEs49nvuQMb7ZygmVJaKKeZMky0AuBHMLFk6t+ALGKYgR9nX7A4UNTRRQWtlOvfpSo6UDgvvCLJJI5M/fuUSAgaw1+5KiXEsN8sZFFkEsKotfXfZ4q/kEVBEMwLhtlBEKGfxzRN26uUKhjprRgM3hTRNeAvQKtS6ltD3OdK4Bv0i+hPKqXm6yL6XsBZlbUPEdFbh3vMqIIp6geFL3M/80Z80d1FtwNe6YBn24TBgzS4Plyu0vODIC8IIr1MKL0O+YBUWuGkFU5aZHvMKoTRau+/rwFI94esQMgKkO3MQNlGuXmczuiighYqaKWCFo7Thg35rCQSSiaxrpVBJMYhSNuOmRYO08whmjhEC+UDCCOdeGaRwCziyB7yCg1lA2sRWDbohLEFVK88W/85ELAKAi+FgKWSbhgOHbVQuQmOb4Rj66DthPw9ZgpMuwymXgqTV0LQGE/qSkHlcdiyHrZukNVYL7ctXCakcc1NEDemjMH5hVJwpBw2/0fW9k3Qrte1hIZCXgHMXQBz5sPseZCaNvqw3WaBur1QuRlObIaqbWDqkNvCUyB9MaQtgomLhDz8hni/lQNsB4QonMtRI7dpERCwCPyXCln4zwdD2Fm7sNKrE0UpzZTRymHXZzeEBOLIcpFGJOmDRsjdWDisf4cqaOUwLXQjYUAo/kwnhiydMKYPc+HlenkUlJvlArdIX/tN0OaQ2w1AZiDMCepf+SOcoy5UAlkKbAEOAPrT42FgIoBS6g86yTyFCOS9wO1KqUL9/+/Q7w/wU6XU8yM95uSCHJVT+Ai3MJNbyPbo8wEo6oM/tsPrndA04KSd4S9Ekh8IkwMg3NC/wgwQbpStQ0nqyKk5mPRtj0P212CDRhs0Dvi5znb6Y4HoMhP85apiWiBMC+hfk/0hcJQBWC9WjtLGEf2qqIIW2vUvSgBGphLtIosZxBI9yJWVE1Z6aKbcRRitHEFhAzSiyCCeHOLIHjakF8LYC5ZNkpqybNW1DMAvWyeMiyFgORiih39ynXVwYqMQxomN0KKnt4KiIGO5kMa0yyB2yihesYHHqhPGjs1yQt2yHmp1+S4hCZatgqUrYdVlckL9uKGmqp8wtqyHhlPy94kZ8tzmLRbCmDFTIqvRwmaBmt0S/Z3YANU7Rc8AiM+U9yhjOaQvlUhwKEJyXWRs1j83W0C1y22GVAhYJhcYAUtFz9DOPtY+WmjikIswOjgJelI2ikmudFQcWQQTe9b/O1DU0OmKLCpooRr53GrARCL171AMM4gllXAMw1zo9jigZABJFJnggLlfqwzSJJMwWyeJ2UGSVXAnozAQFySBnA8UFBSoLxQ+zX+o5DssYAXjSD0MA6Wg3iZvarEZivU3+LClnynHihANEv0gwU8X8v0kokgP0Lf+kOIHxnEEWD1YOUQTJTRygEYq9RAaIJUwputEMYMY0onEb5iUoELRRQ117KaOXbRQgeSAjUQzhXiyiSOHOLII4OyrvP4dmcG8DkyvgultEcEB/LIgYIWkpgJWgDHJjSfYDMV/h30vwKn98regSMhYAZMvgkkXQVIuGMYZOm5aB9+7T67KAWJiYclFcmJdtkrSNR8X4cxsludRegDKD8q27EA/GcYnwNJVsPxiWemTxvY4XfVCEs5VswesvfI6JeXBpBX9hBGWMPR+HD2SxrRsBcs2sG4X4RskdRmwQi4wApZLOuqM90Gh6OEUTfqFTjOH6KFB/p0gYpnhIosYpg+aTrXh4Chtrj2U0UyPHl2EE+D6DmUSyzQ3oosqK2zt7V8Hzbi+lzFGnSgC+8liRiD4eeDj5SMQHQUFBWpH4W7+m42coJ3fsJoJ46xaGA16HXDKJppJl13f6qvbISf9YA2CDXL14Pw51ADxRiGN0V49uIMuLJTpMcFBmjhGGw4gAAOZutA9jRimET2k2D0QDqw0UcopCjnFHrqpAyCKKSRTQDw5xA6RAz4NygTmj8D0OpjeAdUBWiQE3SA6RsAKMCa69yQddjjyEex7DsreBrsVUgtg1mdh8ipIzhs/YTjRUA//+x3450swaSp8/QFYvBymZ4HhAjd3UApO1cKhEigtgYPFsj1aAXY91PX3h2mZkDVLBO6LLoHM7DGko8xC4NU7ddF7J7Treq3RH5Jni34xaYWskLOv6l2wn9KJYpuuYxQBdkCTiCJg2QDCSD77aWOngyr9W1BKM6Uu/SKACP1CZybxZBPJJAyDpKPM2DlMi043TZTTghl5zVIJJ1uPUTKJJYWwYdPodiXFLNt0stjSC9W6ZhFugEXBsuboqfI0P+9di/gIREdBQYEqLCykmV6+xVqiCOIxLibw3FQrXzBooY9SVxJJqqMA/DAwnRhySWAW8cwglgA3C5X7aKGevZyikAaKsdGHAX/iySGFBaQwnxDiRt6RowcsH0Hf62D+l6SmtGgIug6CboLA1aC5WfKrFNTtg4Ovwf6/QWcthMTB7C/AnNshaZZ7+3EXfX3w0nPw0/8CUx/c/324/3tSWXQhwm4XYijeB8V7pSKqtKRftwApHZ6ZCzNnCWFk5cCU6RDgbtn1AHQ3wMltsqq2y3tj1wX1qIm62L1QxO6UOeA/xOumFNgP69HFFtnaj+k3BkPAfElF+S8RLcNwdmWSHSttHKGZUpoopYUyrPToe4jTCSObeLIJZ8KgJ/tOzJTrhFFGM0dpxYZCAzKIJId4solnJnFEjXCx1GKDnX2wow929MJuk1xUgmQZloXA0hBYGixpKE9EFiNBKeg2QUSIj0CAfgIBKKKeH7CFlaR7VFS/0OBAUUWnq5S2jBYa9C9KEEZX1jabeKYT4zZhOLDRQgX17KOevbRzHJAvXzIFJFNAArkjRxkgV4/mdyU1ZV4HmEGLhaDrIfgm0TQ0N/sAHA6o2QWH/imrrVIii2lrYO4dMOMq8BvDyW8oKAW7tsErf4G3/wFdnZLC+dX/wdTpnnuc8UIpOHkCdm2VEtrivVIR1dsrtwcHQ3aevnKFNLJyINL9stCzHq+pXKqjTm4TsbvlqNzmFwip80TodpJGRMow+7KDbT+YNwthWLeCo0luM8TpYre+/GcPeoExUPB2am8OhLzCmeCKLuLIJpSzU2MKRQM9uvrRQinNVCNpVD80pupid44eZYQN09dkUaJd7OqD3X1CHId1HjUi5fKLgqUQZ3GI6Jaeii56zFDbpq/2/p/r2qG1Bzr6oL1XVkcf2B3A8z4CAU4nEICXOMQrlHIfBVzCGHO2FxikZrzVVTdeQYsr7xpFoKuUNps4JhM1ZHXUYOilSSeMfXqU0YuGgVgyXaQRQfrIZKwU2A5KhGF6G6y75e/GDAi8FoKullSDu6Rht8mJqvQNOPSGRBpGf6mYyr4Rsq4ZPv0xFlRVwqsvwj9ehBPHpMro6pvg5i/CspXnX9uw2yX9tGurrJ1b+wXu0FApm82bC7lzZDva8tkzoRQ0V+hi90YpSuhplNtC4kSzSF8ia7jqKABlBes+XezepBdJ6JqXcfLpgrdxcB3JTKcrxm7iEO2cAByuptM4V2wwk0Aiz/p/Gw5O0O4ijDKaadPL0kPxJ0svo51JHFOJIXCICy+l4IRVyMK5ikz9QneiERYEw6IQIY2C4PGlqfsscLwJKpvhRPPZ27aes/8nIhhSoiA2FKJCTl+RwfD/rvARCHA2gdhRPMJmSmnmAeazlI9fFUwnZgo5xQGaODygqgMgjQiyiNWlvjiSCB1VpKVQtHGEKjbTQBGdevN/MHEkMYck5pBIHv6EurdD6z7o/ROY3gWHLr76L4CgayDwGqmgGs2J9+R22P00VLwHfW3gFySRRs5NkHmVCOOexkfvwW9/Cnt2yLEuXQmf+xJceQOEDVME4E10dcHxI3DssAjdhTvk+Lr1z0JaOixYqq8lY6+IGgi7VfovqnfCyS1CGN16OXJEqpQ6Z6yAScshdqR+GzNY9+jpKCdh6Gc6YyYErugXvY2DGk5gok0niwM0cYhOqgAwEEAs012EEcOMQQVvK3YqaKWERkpppmKAfpFAiOvCayZxTCRiyOooq4I9fbChR9JRu/qgWZeOQjSYGwzzg2BBiBDHWLULsxVKaqCwEg7UwOF6ONIIVS2n3y84ADJiISMOJsVBWgykRusrSrZhIyQJfBqIjjMJBERA/inbqKCFH7CcvEHC1wsJVuyU0UIxDRTTyBFaUUCEXtUxnRimE8s0oocNo4eDiTZOspFK1tFJtUvLSCSfJOYSQZr7RKTsEmX0Pi4nCC1EOniDrpIO8EEEzRHRWAofPSxieHAMZF4tUcbUSyHQyyfxz10J696He74Dd38TJninku8stLdJpFM5YB0/KsThjCxAzkZZOdJTsnCZEMZ4y4OVgo4avSpqF1TvOr27OzxZCGPSSqlii5ky/FnR0QnWHZKSsm4By27Qy8JF8B5IGIMXSQhhHNQdCg7SpV/cOBv24vVS8GimYRykuslZIeWsNCyjGQsODEAGUa4oPYs4Yhna6sSqoLAPNvXCxh4RvHv0U2ZWACzUiWJBsDQbj0W7UAqONMCu47J2n4D9VWDViSkyGGYkwfQkmJ4IUxNgUrwQRkLE+INhH4HoGIxAQNI+D7GeFvp4lFXntDJrJDhQnKCdYhoppoFDNGPBjgGN6cSQTyLzSWEyUcPWjI8EO1ZOsYdK1lNPIQoHsWSSwcWksdT9KMO1wyboewF6nwb7CUlPhXwTQu4Awxgjg5ZjsOnnsO95CAiD5Q/B4vshYJTHNh4c2A+rC+Sq/orr4bKr5SQ9nvQPiO9VzUnRKaorJUVWXSm/nzx+urAN0kMyaYoI2gNXxhTRM8YDm1kE7qodInZX7YAuqaTDL1BSUBMW9Hd4R6UPf5ayN+qVUVuENGz7kYJ2o1iABCzT1xLRNAaB9GAcdEUZXdTK4RBMHFnE66Y40UwdtELKSRgHaOQgTZTRjEmPMDKI1AtHEsh2Q78YSBjbBhBGdiBcFAKrQmFFCMSO8SNR1yaRxd6T/YThTD2FBsK8STBfXwUZMDHWuxlTH4HoGIpAABro4bv8h2D8eJSLiXSjXNUbsOuEcYBGV5WUU8NII4J83f0ph/gR68ZHgkLRQhkn2UA1W7HSQxDRpLOSDFYTwYRR7lCJwNnzBym9xSInhpD7Ieha0Mb4jaraAVt/DaVvgsEfFt4LKx6GUDequryB99+C55+WLnKrFaKi4eLLhUwuXgPBIdDbI6unp//nzg4pkT1VC/V1UD/g59Yzcg+BgZCWIUSVMUXWJH2bPll0DE+hu1GvjtoqViC1e/uro6IzYOLifrE7KW/kIgR7jaSizHrDnl3vgyFIqqKchOG/cNAObxC9bSBhdCNRlh8hxDGTBHKIJ4copgxKGFbsHKHNtYdSml0pqXQiyHHtIX7Y73qXXVJRzlLaXX39PnE5OmFcFArLQ8ZmMHqqHfZWClkUVsrPp/TGeoMG2amwYHL/mpkCxnNcCe4jEB3DEQhAOS38NxuZQjQ/ZoXbFUnjgRkbR3QPKecH3WmUlkwYs/RgPJeEYUPp0aCLOqrYyEk20kM9RgJJZSHprCSBvEG/kMPC0Q59f4XeP4h/kBYJwV+EkK+C/xg7/h12SVFt/bUQSFAUzP8aLLpv+Iqdc4muLtj4EXzwDqx972wSGAqaBvGJkJwqKylF0kwTJ0kHd1oGJCR6p2dEKbFnObkVKrfIaq6Q2/wCpTdm4gA7kHA3GjNtlQME701gP64/z0hd7F6uE8bcIUuwnYQhHmgH6UH0FH9CXeW0QhiTh+jBsFFBq4swKmjBorftOgnD+V0ajjDqrLCtTyKLLb3SAOw0AJ0d1F9OuyJkZEPRgVBKhOx9J2UVVcm2Qa8NMGiQmSwRxdx0KJgEeWkScZxv+AhEx0gEArCVan7FTlYwkQeY7/Hy3np6KKfZ5SF1gnbsej/pBMJdteM5xHuMMEByxtVsoYrNtHIY0Eggl3RWksrCoY0Jh4Iz2uj9E/S9BvSB/zwI+RoEfRYMY7xCNnfBvr/A9seh9RhET4Il35a+DW/rG+OB3Q6FOyUqAQgJ7V+hYRIxhEcIWSQkjT/l5S6c1VEnNsmq3CxVaiCknL4UMpZC+jJInTt8dZQT9iowb9C9xzaKCSGAFiNk4RS9/XIHtQSBoQkjgHDiyHbFB0N5SPVho5xmXQVp4ojeg2EAJhHl+g7NJG5op+cBzXpO0jihu9EGa1JGuzRESGNhsFgOuQOl4Ghjf2ThJI12vWLaaIDsFJiTDrMnyjZ/4shi9vmCj0B0uEMgAK9Rxl856DG7k2o62UYN26mhUm/aC8LINN3GQIzSYr2SNrPQTSmvcpT3UNiIYjITWcFElg/q1+MWbCeg404xLtQiIPgWCLlrUEvrUaGpHJ6/RATbtAWw9LvieOupDvFPA/raxDuqepduB7IL+nSP0fDk061AErJHjnKUEg3rtAijUm7TYiHwon4bGb9s0Abfn5kOXa4uoZESlzuBP2HEuxJKs3TCOHsfdhTHaKOIevbTQAUtOmFoTCXalY7KIo7QYVK7NVZY2wMfdcO6nv4KqSQ/WBIMS0JkzQ4Cf3frRBQca4QN5bC+TLbOyCLAD3InCEnMTZdtzgQIGl/2+ZxiPATy6WrR1nETmbzFYYppGBOBKBSVdLCdGrZT62o4yiSWr5BHLglMJGJUPRijhQMbx/mAQ7yMhW4mcQnTuZaI8ZQqK4eI4l0PAQaIeAqCvzz2aGMg6orghcvkBHTnJrFLP9+9FBc6bGY4VSyVUU7ScJpBapoQxMzr++1AYqeO/JoqBbbyAaaDm8GhRyyGOIkwQr8NASuHJQwrPTRxSCeMYt14UDSMeHKYwuUkkDskYSgUNXRRTCMlNHCAJpcWOJkormE6eSSQSRzBw5ymuh2wuQc+0kmjTJd2kvzg8jC4OFQijEmjbNY72SxE4VzVOkcnR8LqmXBRpqSjslPA/1N5FhV8Kp+6hsYMYinHzZw2coVUQQu7qGMXtdTRjQHIJp7Lmc0iUj2akhoKCkU9hRTzAl1UE88s8rmTqPE2StqOQcdX5KQSeBlEPjvoTIQx4eR2ePEKCIyAO9ZB3AXUwX2hQCnxiRpoNFhX1C92hydLZdTc22WbWuCe5bxySFOnZWO/S62ryzv5dNNBv6whCcOGiWZKdcI4QBvHAAcGAogjixyWk0DukFVSAE306vGJVBw658kkEMISJpCrF5AMF6mbHCJ6b+iB9T0ietsQb7kVIfCVaLg0VARwdwnDWUa79YisTRXSrAcQFyZk8f0rYWWmlNP6rnv68akkEJBooZBTdGEZctyqGTv7aWAXtezhFB2Y8UMjhwSuYwYLSRnRA8eTaOMYJTxPIyWEkcJiHiaFBePTcZQZun8N3T8RATTyzxB8u+e+JUfXwd+uleazO9aNbzjTJwnWPnGirdreTxjd4gaLf7BYgSy+Xy+nXSCvnzvviXKArUSf0KhHGM4xOsZ0CLx8QA/G0P0cdiy0UOFKSbVyGIUdDT9imc5MbiaeWcQyA+MQ3592TBzUXZ9LaKQOccuNIMBFFnkkkDSMS7NFb9zbqBPGtj7p8jYgg5G+GytRxtIQCHIz4LfYpM/CSRhbj0CT3pMZEwrLpsM3V8OqLIkwLnR/zPOJTzWBAFTQQgHJmLBRQxfVdFJNJ5V0UEIjFuyE4MdckllACnNJHjYH6w300sRB/sZJNhJAGLO5m8mswTDet8+8ATq+DvYKMTKM+C0YR1naOxxK34ZXboa4GXDHWghz01n3k4iueiELp29U3T7p9gZ5faat6S+lTcwBo5vvrSvC2KAL35tB6T0lxsliUuls3PNLH3I3Duy0cdRFGM2U6V5SBqKZwnSuI4Fc4sga0v+sGwuHaHYRhtPEMwQ/PVKfQi4JpBM5ZE+T2SGD2zb2wMZe2N7bX1abFwj3REsfxrIQ9we51XfAjqOw45iswkow6S/95Hi4fBYsnSZrRpKPMEaDTx2B2FFU00mVrls8SxF/YB+N9LruY0QjhTBWk8ECUskh3iNjcseCCt7kIH8HFDO4gSxuGn3T35lQdui4C/qel5NM9PsQdLlHjteF8nfh5Rsl1fLF9yEkxrP7v5Bh6hAb89q9Ml2veie06qWvfkEwYR4s+Y74Rk1cNDofL6WklNqysX85muU242TdCn+lboU/9MWAzHGppoH9NFBMEwexIYOcIslgCmtIIJd4sof8vNlxUE4Le6mnmIbTxgRkEcdycsglgalED6kHKiVzL97rhrXdsL1PxjBrQG4g3BUtvRjLRlFW29INHxyADw7CtiPiEQXgbxSR+2sXwaIpQhgpI8wj82F4fOIJpJU+DtDEUVo5QhvHaHM1HPljoF53rp1MFDeTRRoRJBM27BClc4UTrKOE50lhAfncSSgeuoLveVLII/RBCP8haF7QbporpNdjwb2fbPLoqheyOLUfThVJZOF0pQVJPaUtgAX3wESn0eAoLGiUXU9JbZaUlHVLP2EY0iDwShG8A1eOqFmZaNMJQ0jDOQ8jjGQmspwEfRZ9EEM79DbRyz7qKaKeYhrpwYoBjRnEcDMzySWBGcTgP0yvUY9D0lHvdcP7Xf1zMHID4WvR0ri3LESGKLn1EikoqYb3SmTtPCYlvPHhsHw63LsKFk0V8vg4VUd9HPCJK+PdVbiHI7TqkytOcQwZaxmAgclEM41opurDk1II5xhtPM0+jtLGLOL5GnNIuwCsTpo4yCb+l3iyWcYPRt/8NxRsR6ApFwIvgei3vacI2q3w7FKpGvpGMUR9/IwsT4PDLs/l1H6pjHIShlO3AOnqTpkrJJEyB1Jmjz5tp2wDnGp1e3Olty4bJ+mCt56SMk4a9v2z0qtXSomzWqdeKRVAuK5A5JNI/qD25k6YsXGQJvbRQBH11OhmnnEEM5sk5pJEHonDpnWV3o/xUQ982C02IWYlY54vCYUrwmSljOLk3tQJ68thXalEGzV61m5uOlyZB1fmSpWULx01Mi7IPhBN054DrgIalVI5g9z+IPB5/Vc/IAuIV0q1appWCXQhI8ds7j65tIIstaLwF3RikeHyxDFX95UdbjSrHcVHHOdFDmDGxnXM4GayCDpPAVo3dfyHBwkkklX8avhRsKOBskNI97UvAAAgAElEQVTLCrAdgvhDYPRyx3fLUXgqXwThO9Z9fPo9TB1QXyJEUV8s28aD/bO6DX5SQpsyG5LzZSXlQfAYZmsoC1gLB/RhbBswmnV6v+AduAKMw5OwAxutHHZFGE7h20AA8cx0kUYUkwYtrZV9iNWOM04ppRkrDgIwkE08c0hiNkmkET5s8UazTfowPuwW4qjTo4ysAFgTBleGifAd6OYJvtcsYve6UlhbKiI4iNHgxTOFMC6fBcljHG/yaYTdAU+she+suTAJZDnQDbw4GIGccd+rgW8rpVbpv1cCBUqp5tE8ZmzBVPVw4d8pIJk5JA1ZXTUU2jHxAiWs5yTxhPBDljOB8FHtY7yw0M16HsRMJxfza8IYg5vtUOj+DXR9ByL/AiFf9Nx+h8Pe5+GNO+CyX8Ly/3duHtNd2G3QcljIov6AbBtKoL2q/z4hsUIOyXmyTcqDhCz3OroHg7LqhLEBzBtlRKvS9Te/mWc41Q7/3isUnVTRwH4aKaaJQ7qOIcJ3ol7nFEvWkJVSIBMs9+sRRjGNdOjOuelEkk8is0kkm/ghZ2IA9Dmk03tdjzTyFZlknne0AS4Jk9LaS8Mgzc0oo88iqaiNFbCxHHYel+opfyMsmQars6QfY24G+J2n6xKrVdxuOjvBZIKkJIj6mBBYxSm4/TkpKrhgB0ppmpYBvOsGgbwEbFBK/VH/vZIxEIi7negj4SBN/A+buI4ZfAkPj0UdBg5sbOGHNHGIFfyIeIZ92UYHazE0z5cyzug3z10xu1JSiVX6Fty1WUTjcw1Lj9imNJVDYxk0lYllfHNFf5+FwU+qoZJyB6w88eUaz2ulrGDdq5fVbtAJQ7de9cvRu7wv0gkjfsTd9dHiijAaKcaE5G7CSNGLYvNIIHfYqNWEjQM0uqIM54yZaIL0pJbsKWaYviaHEpJY2yOksVVPS/kjw5NWh8JlYTA3CIxuvHxWm0QYZxKGQRPtYsUMuCRbhG9v+0eZTFBSApWVUF19+mptPZ00zkREBKSnn77y8uDSS717zO7CZofH18L/vCmzRH53K9y2+GPcia5pWgiwBvjGgD8r4CNN0xTwjFLq2XN5TDnEM40YtlDFjcwY89yN0aKGbTRSTAH3eZY8ALofBS0Qov50bjuhNA2ue1YqkZ5ZLN3Sk1bKVXxEKkRMgMgJ0ihnHEUSXCmwdENfO5jaZdhRZy101p2xrYGuM+ZpRGVAfBZMu6yfLOIzxx5VnHZcvWDZpQ9P2ixzMVwRRrZ09gesdJsw7Fho4hANunTtHKQUSCQJ5JKo+zcPp2MANNJDIfXsoY4SGvW0lJFs4ljNJPJJJIPIYdNSFiUNfG91wTtd/Wmp3EC4N1pIY1moaBvuoNcMHx2CN/bCv4rFS8pJGN9cDRfNEMKIHKWN22hhs8HevbB2LaxbBzt2gMXSf3tYGEycCGlpMH06hIcLUQzcBgZCXR2cPAlVVbLduhXaRYKlvBxmzPDu8xgOSsHbRfDwP6HsFFw7G/7wRUiKhNvGsd/zTiDA1cA2pZzdTgAsVUrVapqWAKzVNK1cKbV5sH/WNO1u4G6AiRM916R2O7n8Fxv5Lbv5L5aMaxaHu+hFAq40lnl+58Z0UH0y8OlcIzgavroDDr4uI1EPviYn/YHQNAhNFHdYzTiA5DT5WdPAZpH/M7WLTqEcQz9eeIoQVGI2xEyF2CkQlyld8AEefA0cbaJbWLbq87z3AFY5br88CL5TtzdfDsaRh5lJWqpaTyjto4lDOLBgwI84sslgFYnkE0nGkDoGyHyMcloo1ItJnGXrSYRyOVOYRzJZxI3oSN1uh393w9td8H43dDkgVBMd45pwiTISR3EWae+F94rhjX3w7wOSqooOlRPadbOl29vbhKEUHD3aTxjr10OHXqcwezbcdx8sXgxTpwpxREaO/ppLKXjoIXj0UbjrLiGe84VtR+DBf0i6akYSvHEvXDfHM9eRFwKBfA54eeAflFK1+rZR07Q3gfnAoASiRyfPgqSwPHVQWcTxFfJ5hiL+QRmfY6andj0kLHRhwB+jN2aVBCyBHptMhwu8yPP7HwmRE2DJt2QpJSTQUSNRQkeNRAodNTJn26E74KHkvrqbMQZ/IYSgKBlnGxTV/3NYohBGeLJnCeJM2Gv06GKLkIbtoH58/uBfAKEP6JVSi8HgXkLcRDuNFFNPEQ3sH1Bem8pkLiWJOcSTM2QDnxNtmCiinkJOUUQDPVgxopFNPBeTQQHJTBhB/FZK/KTe0wlja69YhSQY4bMRcF24dH672/WtFByqhfcPCHFsOyribUoU3L4Ebpgrpbbe9JPq7YXCQoksnKtRH+eeng6f+QysXg2rVkH8yEGhW/jhD4U87rkHnnrq/NifHK6H770Ob+4TD69nvwS3L/WsZnReCUTTtEhgBQOiKE3TQgGDUqpL//lS4Efn4/iuYAqHaeVlDjGVaAo8KWgPAgvdBIzwBR8zAnTtwbLt/BDIQGiaRAnB0ZB07jSmUUM5wFY2ILrYOsDaPAz8F0PYzXqEMc/t6M6OhWZKdQWiiHZOAP3ltUm6dB3C8GczOw4qaGUf9ewdULIeTRCLSKWAZPJJHHEwWZ9DOr/f65ZVqXdpzwoUq5Crw2VkqztaBkC3SQwI3yuB90v6jQjzJ8JDl8NVeTI8yRsltnY7HD4Me/bI2rEDioslTQUwbRqsWQOLFsHFF0uU4emT+y9/KQRyxx3wu9+de/Jo7IQfvg3PbIJgf/jRdfDAZd7RjrxGIJqmvQxcBMRpmlYDPIJobCil/qDf7XrgI6WcqiIAicCbmrzqfsBLSqkPvHWcw0FD4x7mUEk7j7GL37CaZE+V1A4CC52eK9k9E4ZoycFbt3ln/58EKJNeIbVdJ41t/T5ShkQhitBvydYvz+0JjApFB5WuJj5nWkrDjzgyyeE2EplNNJMHnY0xEK30UUQDeznFfhro1hv5MonlNnKYSxKT3Bh/fNQiqal/dwt59CmZkbE6FB6KhSvCYaKbkpTDAcXVomd8eFDEcKsdwgJF+H7kGlgzC1I93PWtlAjdu3cLWRQWipbRrVdBh4bCvHnw4INCGAsXei7CGApPPgnf+x7ccgs8++y57UPpNcNvP4Jf/ht6LXD3CnntE8c4YdodfOIaCT1RhXUm6unmAdYRRwg/Z6XXvLA28jAO7Kzil17ZPx1fhd4XIW4f+Gd55zE+TrA3CElYt+vbvaBbiksPxjJ94t7SYY0HB4OZTpeOUU8RZj06iCBNr3OaTTzZ+I3g4KxQHKfd5QJ9QveXiiHI1ciXT+KIhR5KwT4TvNoJb3YJgQBM0/syrggTyxB3U1N2h7jWvrRTBPBGfT5GXhpcmg2X5YgpYYCHL1FtNtEt/v530TAa9D7OgADIzxfCKCiQbWYmGM9Rie+pU/DYY7Kuvx5efRX8z1HXu8kKz2+Fn70rDZXXzoZf3CQTEN2Bbx6Il5FEGA+ykB+xlR+xhR+y3CtNhmGkcJKNmGgf1k5izAi+C/peh+bZYmES+p2xzzH/uEH1grVINCDrLrDulkFKAATKtMXQB0S78F/kVoXUabvHTitHqWcv9eyjlSOAIoBwvZNCCmRDGHnOuw0HZTSzizp2Uksjva7G2C8xizkkjVgxBVJqu7sPXu+Ef3ZJasoP0TDuj5F5GVNGUWDocIiG8epueL1QhiqFBcLV+bAmR6INbzTyKSWRxd/+Bi+/LPpFVBRceaWI3QsXQk6OkMi5RnMz/Oxn8H//J30hX/oSPPPMuSGPbhM8sxEe+1DmrC+aAn+/G5afw2ovXwQyCmylml+zkzwS+R+Wetwvq4saPuBeMrmJWXzBo/t2wd4AnfeA6Q05aUa+AP7eLxA4p1AWEbete/UejF1gOwC6BxrGieA/H/wXSHGB/xwpcR4lemnSo4wiGijGSjegEcN0kphDMnOJZsqIaSmAHqwUUc8u6tjLKbqx4o+BfBJZQCrzSXZrdIBdifD9zy54oxNqbZI3viQMbgyH6yLc95gCOXnvPCak8Voh1LWLn9SVufDZ+bIN8UJu3WyGjRvhX/+SVVUlBHHVVXDbbXDFFVI6e77Q0wO//a0I5d3dQhwPPyyairfR1gO/+490kbf2wMVZ8F9XydySsegtvgjkHGEpafRi4ykKeYVSbvNwr0Y4E0hlEcd4n0xuHP0cc3dgTISo18H0GnTeq0cjPxBjxY9jNKJMYs1i3ddPGNYSQM/RaJF6dPEQBCyQn0fo8B4KNkwDejL200U1AEHEkMoCV2oq0E0vtQZ62EMduznFQRqxoQgngPmksIBU8kkcdhqfE30OaeZ7uwv+1QWNdhmwtCYMfhEOV4VD1ChIw2KT9NTbRfDOfhHBA/wkyvjsfLg6D8K94L/Z2Ajvvy+E8dFHcmIODoZLLoH//V+44QaIPs/uuVYr/PGP8KMfSfrsuuvgpz+FmefgGqy5C37zETz1H+gySeT38JWwcIr3H3sofAzPGOcXlzKJMpp5nTKXxYMnkcmN1LKdY/ybTG706L5d0DQIvlk6oDu/AV0PS0QS8YSkby7EkWtKgaNeOuptxf1bWwWuyEKLlLntoffL1n+uWJwPMWVvxIfEQTsnXNVSzZTiwKZ7S2UzidUkMYcIJrpVOeecarmHOvYM6M1IJZyrmc4CUphBLEY39tVsk4qpt7pklGuvggiDaBnXh4sI7m5DH0Bnn/RlvF0klVMdfdKpfMlM+Mn1klf3dH9GRwds3ix9GOvXS/c3QGqqRBlXXw0rVwqJnG8oBa+/Dt//Phw7BsuXw5tvijjvbTR3SZrqd/8RcfwzBRJx5F4A/qQ+AhkD7iKfQzTxGLt4kks92qkewzQSyOMI7zCNq4f1MBo3jAkQ/Q/o06ORliUiHgffBkFXgl/uuY9KlF20CVuZzO62lQtJ2MpBDRhBbJwolVBB18vWf45OFuMjvz5aXP0YDezHop/kI8lgKleRSD7xZLvdq9OLlX3Us5s69lJPFxZXb8YlTKKAZFLd9FurtEhq6p0uSVM5gFQ/+HIUXBsuNugBo3j6jZ3w2h6JMjaUS+VUfLj0Zlw7W8jDk+kppaQ7+/33hTAKC0VXCQqCJUvgJz+R1FR+/oV1DVNdDQ88IAQyaxa89x5cfrn3j7GhQ6qqnlovxPHZefA/V8PMVM/sf1cv/HhUZlFnw6eBjBGHaeUh1jOHJI93qjdSwib+m8msYQ5f905fyJlwdILpdej7q/g2gd7rsECEZeNUMKaCIUVcfLWI0X2DlAL6pHPb0QaOWrBXgb367K1u5gdI+axfpr5m6mSRK2XJHoAdKy2U6tVS++jQLc8DiSKRfJKYTQJ5BOP+TJMerOymju3UsI96rDgIJ4ACkplHMrNJcruSr80uIvhfO2CL7oiSGyhd4NeFw5yg0b0NNruU2j63VYjDZodpiUIY1+bL3Ayjh0tPu7tFAH/qKTh0CPz8RPhetUoijIULhUQuJNjt8O9/iyD+/vtSzfXjH8N3v+v9yq6yOiGOF7eDxQ63LID/vgqyPGCerRRs7oWfNEvaM8YIrZkXqJniuUbYrAL1s42F3BQxutkCY8W7HOVZivgcM7mVbI/uu4S/UME/yeMrTOdaj+57RNhr+63FLdt0AfoM2xAtVMjEEA8Y9LPYGUuZhCyUThpOXeI0GMCQLBGFMU0sV/wywS9Lth4iCicUim7qXGmpBkqwY0LDj3hmksQcEpmtW4W4f2buwuIijSIasOEglmAWk8piJpBJnFupKYBeh3SBv9wB73aLB9WMAPhCJNwSCZPHEJSW1cFfd8BftokQHh8OX1wMX14COR6cYjwQhw9LddLzz4v54Jw5YhNy003iL3Uh4tQp0Tj+9CeJPBITpSHwrrtg0iTvPa5SEgU+9qGkEIP84UtL4IFLYXqSZ/b/YQ/8pEnmyicapUn0azEQbvQRCAAhswpU36uFaMisgc9ESOWJt8hEoXiSQv5DJQ+zmIV4KLZE8u87+BW1bGcOX2cKHh45O6qD6RVSsdeBo05+dtTpvzcj5KLOWACBQgBalGwN0aBFi8WHMVUm6hlTQPMu25vppJESF2n00gRAKIn6tJi5JDBrxJ6MM9FCHzupZSe1HKAJB4p4QljMBJYwgenEuB2Zmh3yBX+1Q8TwHiX2IbdEwm2R4mo72pRJTSu8shv+vlPmZxg0uCIX7lgqQ5c83aMB4lT7/vvwwgvwwQdSzvqZz8A3viGRxoWUmhqI2lr41a+k+c9kEuH+q1+Fa67xbkmu1Qav7oHffAhFVULs37gYvn4RxHtgrp1NSQT7aIv0AaX5wUNxcEcUBOuR5gU5UOp8oKCgQP1tWyGvdcI/OmXWsgasCoWfxsMCLxQ1WbDzPTZQSxePcTETPDjN0I6VHfyCU+xhNnczlas8tu9PMmyYaaGUBkpopJg2jgEKf0JJYJarWmoss1Zq6WInteyglsO6Z1UqYSwklYWkMp0YtyMXq4L/6KTxZhd0OCSlcEM4fC4CVoSC3yhPuG090qPx0i6ppFIK5k+CWxdKBVWSF7qS29rgnXfgn/+U6imzGVJS4Gtfkyv3JDeuoD//xx1sO9Y65O2Vv7jSg0fcj5oa+MUvJOKw2aQc93vfE8sTb6KjV6xGnlwHtW2QlSx2I7ct8szY3S47/LkdHm+Fk1aYHiAOA7dFna2T+QhEx5kaSJlZiOTpVmiww60R8PNE9y0a3EUTvTzAOsII4Ndc7NFOdQdWdvAodew8P+msjwEc2GnjiD4jo4QWynBgQ8NILDNcTXzRTBv1aGA7isO0sIs6dlPnGuk6lWgWksoiUkc1AtmiYF03vN4Fb3VCm0Oqp67TSWN1GPiPkjQ6eqV66h97xE7EaofpifD5RXDrApg6yqm67qCxEd56S0hj/Xo5+aalSantjTdKg99IWsFbRbU8+Np+rEOYKp8JT5JIdTX8/Ofw5z+LkP/lL0sfhzfTVCBk8fhaaQDsMsGqLPjuZdK57wnbk1orPNkKz7TJBcmyEElVXRUmEehg8BGIjqFE9C47/LIFHtOLeH6WAN+K8Ww47RxCNZckHvawqO7Axk5+TS3byeRGsvk8hk9xAZ1Ynp+kQZ/13eyaxKcRxSR9dGsuccwcdVrKuf8jtLGRk2ylmnbMGNHIIZ4Feo9G/Ch7dIpN8Mc2+HsHtOukcW043BgBl43C3XYgdh2DJ9bBP/dK78bEWLh5HnxuvszU8Ea6qKgIHnkE3n1XopspU4QwbrxR7ENGesy3imr5/hsl9LnLGgMwXgKxWuHDD0XQf+MN+dvtt0tpbkbGuHY9IvackGjj1d1iA3PzPHjwcnmfPIESk5zfXuqQhPJNEfCdWJjvxsffRyA6RqrCqrLCN07Bv7plJvMLKRDnwfOwU1S/hZnc4mFR3YGNIp7hOB8SSyYL+O6IQ4Q+SeihkUY9JdVAsctbKpxUEsglgVzimeV2E9+ZUCgq6WAr1WylhlN044+BeaSwmFTmkDTqcu02O7zSAc+3wx4TBGryxb4lQkwL3Z0HPhAmq6SofrcOdp+AiGARwm9dAPPHX8U8JA4eFOJ44w1p5rvnHtE2cnPde8zRRhuDYSwEohTs2iWk8cor0NICsbFw661SUeXBEUJnwWoTcn9yncziCAsUO/VvXwqTPNA+ppRMhPx1i2xDNbgjGr4dA5NG8VH1daK7iYn+8HYa/L4NvtMAecfhlVSZouYJXMkUjtDKy5QylWjm4YG6Ox0G/JjLvcQzi738nrXcTy63k8GqT1w04qyUauIQTRykmUMu4VvKa/P0SXy5I1qej4QqOnXSqKaGLgxo5JLATWSymAmjTkfadV3j+XbRNcwK8gLhiUTJP4/GRmQgyk/Bs5ukiqq1R1JUv/s8fGmxd7rCXY9bLl3Xr7wilVOPPALf/rYMWRoObxXV8oN3DtHeZ/XewQ2D+noRxF98URr/goLg2mulQfGyy7wrjDd0yHv19AbxqJqaAE/cAl9eKoQ/XliUVOg91gIHzJDsJ1mVr0aP/fM1VnyqIpCB2G+Cm2skKnltgsw88ATM2Pke6zlFN4+x2u0msdGgm3p28xtaKCeURLL4DOkfYyJxYKWdE7RQTjPlNHPINes7kEjiySGebOLJIYL0cffFVNPJNmrYRjUn6URDxhgvJY3FTCByDAO9DpvhxQ74SzvU2OSL/PlIuD0SZo/xpGG2yrjXZzaJIO5nhOtnw9dWyrhXb1mF9/aKtvGnP0mneEgIfPObcsUeGzv8/3qTONyJQAoL4YknxA3XZpNek9tuE20mwnP1LYM/9gnpFn9lt6QU1+TAfatl64n3qskmadDft8k44ZxASVPdEjG2aNYJXwpLx2gbCVtscHkVFJngr6nwOQ9VqDTSwwOsI5IgHmXViAN9xgKFop5CDvEKbRwhhASyuJkMVmLwkt28J6BQ9NFCK4dpoZwWymnjGA7dRj2YOJ0shDDCSB03YTjTU9upYTs1VNOFBmQSyzKdNGLGoJU02cQe/a/tsNsEBmTE6+1RcE3Y2L/UJdXwwjb463Zo7oZJcTLb4fal3p3tsG+fkMZLL4nNyNSp8JWvSB9EwjDZ0nMRbQxHHjabpNaeeAK2b5dI6Y47pOfE2+aGVpuM531ibX+a6stL4RurYIaH5s/tN4kw/lKHRLSrQ0UYvzTUMylLH4HoGEsneqcdrq6WLt8/JsNXPNS3Vkwjj7CJBaTyPRZ5rZtciGQvpbxCK4cJIYFMbiCVRQRxfp3nFIoeGmilgjaO0c4J2jnhsgcx4E80U4glk1hmEEsmwYxwiTsKVNLBJqrYrmsaBiCbeBYzgYWkEjsG0rAr6dN4rh0+6BYXrrxA+EKUVFGljpG7TVZ4YSv8cTPsOwn+RrgmX4hj9UzvRRt2Ozz3nDT87d8vqZ6bboI77xS/p6FOUN4mjdsWTuQn1w0/rfLECUmtPf20VFVNniykcfvtI6fYxoumTvjzFvj9epnBMTUB7rvYc2kq5+fsiVbpHA/R4ItRcF8MzPSwC7GPQHSM1cqk1wHXV0vuelMGLPFQv8ibVPA8JdxJPtfg3cJyIZJ9lPIyrRwGIJJ0EsgnkTy3hheNBxa66KRaXzV0UkU7xzHrA5AM+BNJOlFMJooMoplGNJM9Hi21YWITVWygkhN0uDQNIY0UtyzRB0OrHZ7T0weVVvGg+rze5DdrHDYcfRbJl//yfcmX50+UWeG3LoQ4z2c/T8PBg0IUu3aJ/9Rdd4m4HDXMTA9vEUdogJGfXj+L62YP34x79Kh4Ur3+uswIAbFD+da3ZD6IN21GlIJdx4U0/rFH0lSrZ8L9q6VB0xMk3673bzzVKp+zDH/4Row0/kV76bn5CETHeLywOuww57g0dxVNhlgPyAkKxU/Zzj5O8SsuZuo5iAgUinaO6V3XxbqDrNXVExFLFsHEEkw0QUQTRAzBRA9pDqhQOLBhpp0+WuijFROt9OmrlyY6qXZVRQEYCSScCUSRQQzTiWE6kaR7TaMxY2MndWzgJPupxwFMI5qVZLCMtDFpGk6UmOB3rVJ+26ekrv7bMeJF5e6M8MHQ1iMi65PrZDDTihnwg2tlpoO3YTZLD8TPfiZX6k88ISNYh4s2Hv2wgtr2Po8eh7ukcfy4DJJ6/XWJkgDmz5dI6cYbJfLwJnrN8PIuIY6iKggPEpuRr1/kOWPDcrOkqf7SLs7Ky0Ok1WC8nzN34CMQHeM1U9zbB4tOyByFt9M8k1/sxMy3WIsfBh7nEq/oIcPBjplmymlkPw2U0M4x1Jm+VoA/oRjwR2HHgQ0HdhS2Qe8LoGEkiGhCiCOcCUSQRgQTiWACIcSjeXjY1pmw4mA/DWyhil3U0YeNeEK4iImsJH1cjgBWJTbpT+npg2BNIo17YyBvnKZ/J5vFKO9PW6DHLONfH75KCORcYOdO0TVKSyXaePzxoeeEeyPaiA7x55Grs0ckjY4O+Mc/pIpq61b52+LFQho33ADpHuqfGA6H6+EPG2VcbHsv5KTCPavgtoWeqXxzKPiwW9JUH/ZImfetkfDNGMg/h+aSF2QZr6ZpzwFXAY1KqbMmL2madhHwNuCcK/qGUupH+m1rgCcAI/AnpdQvvHWcAzE3GH6dCPc3iAXAtz2Qjo8gkO+ykIfZyG/YxfdZ4rapnidgJFAve81jFjJ61UwnJtr1SKINE62YaMOOFQN+GDCi6Vv53Y9AIgkmhmBiCSKGQCK8ThJnwo7iEE1spood1NKFhTD8WUYaK5hINvHjauCsssKf2iSFUGeT9MGjCVJbP97yyKKT8OgHkvrQNLhlPnx3zbmb6dDeDj/4ATz5pMzbePddSfkMBk8TR2pUMA9eNmNE0rDZxArlxRely91slrnmP/sZfP7z3u3ZcB2DHd4rkWhj7SGpfLtprhDH0mmeuahst0uk8fs2OGKRMtwfx0sZbvw5KqTswcoe3fxzPPDm4b4APAW8OMx9tiilTjN40jTNCPweuASoAfZomvaOUqrUWwc6EPfFwIZeeKhBDBnneeBKYyZx3EU+z1DEc+znLmaPf6djhDNyEIHdy74NHoAdRRnNrgqqVkwEYWQBqSwnjXyS8B8HkdmUON8+0wb/7pa/rQmDP0TLcKbxpA/sDnivWLrF15dJ6uNbl8D9l0Ca++7w40J7u0QZjz8uV/X33CPpK2dJ68D0lFHTsCuFRr8d5ljhbqQBYvH+/PPS7NfQIKXCd90FX/wiFBScGwPGpk6JCp/eIBMYJ0TDj6+HO5d7zj/sgElI4696mmpRMPwwVdwIRjPHZazowsIuatlOLft1x+iYMWqCTniNQJRSmzVNyxjDv84HjiqljgNomvYKcC0wIoE0d43h0c6ApsFzKZB3DG6vg5LJQ3vIjAZXMpV6unmbI0wggss5j3MoPwZopIe1nGAdlbTQRwAG5pDEciYyj2QCx/nRtSmZsfHjJjhhlavA/4qDO6Mg3QMzvP5TCve/DIdq5WT0y89IRVWUFww9h5TmG7gAACAASURBVMLx4zKoqb5eRq8+8oiI5QNJYyBZ2PV09ljIYzSEYbeLcO+cd+6cEXLVVWJmeMUVMv/c21AKth2RNNVrhSKKX5wlTX9X50v0MV7YlYwZfqIVNvbKqOFbI+HeaJhzDiYt2nBQyCnWcoJ91GNHkcD/Z+8sw6O61jZ877gRkhAjCYEAwUOABIfiLuVQo0J7atSot6cuXw166i3taSmlpXKAnlIBKri7SyAQJApxz0RG1vdjTWiAhMjMHiP3dc0VMrL3Ambm3euV5/FiMh0ZZFSMXmTC8a09eTZQUZRDwDngKSFEAhAORrNpSTrQv64DKIoyC5gFoLTqQ0IGdDexsOXvDHND4NYMeVU6yUzdMP8kljRK+JKDdMSf6EaYFF0NVL/ZV3GG/WQC0IdQ7iKWeFo3yB+8PioN8E0RvJ0rA0e8B7wXIgdJG6t8Wxtnc+DJpfDLfjm/sfg+uD7ePF9GjSE/X34RV1XJL+tzrhk89NcJMpZcHDRM2WkowK0NaLcFuftZvVq6+f3+O+TmyqAxdKjcbdx885VnTcxJkQa+3yEDx9EM2XY7a5h5i+L5eviqAD4zdu1FusLbwXC3n3kadOrjHCWs4SzrSKaQSgLwYCqdGEobOuBntrECVYvoxh3IyjpqIL6AQQhRqijKROAjIUS0oijXA+OFEPcYnzcT6C+EmF3f+VxD4kWXWXvZ/ZL0czYFrYD2SRDtBuvbmXasmhRTyeOsRQHeZzS+JnQIOQICwWkK2UAym0ilmCpa4ckYohhNO4Ixj85MmUGmqd7Lk/WNfh7wYpBUKTVHiqS0Aub+Ae/+JR39Xpgs5bnNIc3dWCorYexYWTBftw5yvTN47ucjlGv1Jh/bSZHF3/rqGkLAiRN/B4wtW2SNw99f2sFOmQLjx1+5Zdjc7EuWQeO/O6VFbJ+28MAI6fjnbaaP4aEaXXsVAoZ5ybT4tWa6QLkSlejZQTqrOctRcnBCIZ7WjCWKOEJxriPVa5NF9PoQQhTX+PMfiqJ8pihKIJAB1CwtRhjvq5eoQHlF8dRS+HSmaetzVeDRAHg6Gw6UN12O4lJ8cecZBvIs6/mA3bzEELMq99oLeZSzkRQ2kEIqxbjgRH/CGElb+lzhzd5YCvWym+rDfMjTwwgv+DZMesSYI3BUaqU095u/S4/xWwfIdFW4lWY4DQY5SLd5MzwxJ59nth40S/ttQ1JUBoPc7fz0E/z2m9SgAujRQ8qgTJokTaVcLPitU1YpFXA/3ygVcT3dpPDkfcOhr5lKgNVde5/ky4FkT0W6R84OgJ4qd1PpMHCIbDaTyk4yKEdHKN7MpAcjadekYdnGYLUAoihKKJAlhBCKovRDKkHkAYVAtKIoUcjAMQO4pSHH9PWEJ8dJW8gx3WFaH9PWeI8//F8uvJ8vpU7MRScCuIdefM4B/sdxbqKb+Q5uwxRTyU7OsZU0DpOFASkn8iB9GEKbRqvdXom0Gr4IJQapvvxCIAw0Uw1Cb5BSI6/8Bql5MKIL/PYwDLBiaUsIuPGeEpYtboHfsER+Ljzd5BRVdZqrvp2GXi93F8uWSTmRc+ekUOHo0fDEEzJoWKLl9lISMmRg/3Y7FJXLtPYnt0rDJnPVoc5r4ctC+R47p4MoV9nFqebQH4DB2FiymTS2kUYxVXjjymAiGE5bepjYjdgY1GzjXQwMBwIVRUkHXgE5BCGE+By4HnhAURQdUA7MEDKfplMUZTawCtnGu9BYG2kQb10HGxPhrq+lE1uYCVeCfs6yqDovH+YGN12mojYm0IHj5PFfEuhCILEOKs2ux8BOzrGGsxwiCz2CULy5ga6MoC1hZhabTKmCl3KkWqlA2ho/E2jevvr1x2H293D8PMS1hQX/lBPJ1rJrrS6KH10eSfGOjvjEpuLbv+HBozpYVHdhXSlo6PVw/Djs2SN1p5Yvl+ZSHh4yNXXddbIYrraUSG1UaqV8+hcbYfNJadl7fbysbQw2UwuuENJT/JN8+LkYdMB4b/iiNUwwsWuvPrIoYxVn2EgKuZTjhjP9CWMobYgjFNdGmqWZA4ccJDx+Drq9CO/cKHvtTeFYJXQ/LTuz7jRzvrYCHY+zBgPwCWNxs8IbQC1KqWINZ1nJKXLQEIwXQ2nDENrQ3oxFvGoqDNL3eU6u/P1+f5mCNEdHVTU6PbyxAl5bIbWP5lwH0+Os6/MtDZpkfSPz+4FUZgTgPzoBnx5pOLnXXfNoyA5Dp5PSIQcOyICxZ48UXNRo5OO+vn8HjQkTpIihNTiZKeVgvtkGeaXQPgjuHy59UszhKw6y+eLHYtlNta8C/JzkTuOBAOioYseYHsF+zvMnp9lHJgpc6EbsT7hZGkuaJ9GN1JxE7/K8rIn8+YRpx9QL8EmEB/3hvQZ4OzeWA2TxCpsZShuepL9d10MEggRyWc0ZtpNOFQZiCGIK0fQlTJUBSiFgZSk8lglntHLH8a4KtsVJWXD7Ath5Gm4fBJ/NNF/htbFU7zjOFZbjZNw1AOiKPMn9PZbKtFbgZMA9vADPqBw8onJwCym+EOhqBg0hoLRUihEeO3bx7cQJ2cUFcofRu7d0HYyPlz87dVJP5LE+KrWy023+JtiQKLvcru0laxujuppvXRla+LwA5hdAth66uMlJ8dv9wFvFv3sBFazhLKs5QzYa/PFgDFGMo32j3TDrwy6L6Gozqqu8IqnSya1sU3FWpPrlkUrzra0mvQnhDmJYxBGC8eYO6m+JtDUKqGA9yazlLBmU4oULo4xv9vao12ZzoByeyoL1GujqBmsjYZSZr4KFkMNlT/8o30f/nQUz+lt211EzYLT0dKWsSodWL4OGvsYFoEvLckJu2kVlhj/lZ4IoPxtE4eYusLkLTl6VeEUW0DW4Jeg8eW4R3Jcv2311ur/PpSjSF7xbN7mr6NpVzo50766uCVNDOZkpFYu/2fq31P1b10mpe3MN/AkBWzXwSYFMUxmQ3XoPB8Aob/PMhdWGFgP7OM96ktnDefQIehLMncTSnzBcLKz80BAcN4B0g882SPXMoZ1MO1aMO6wuM8+6amM6ncmijGUkEoI341FZHc4MaNGzj0w2kMJuzqFH0I1AbqArg4kwedDvSqRr4YVsOQgY4AyfhEoZCFczf7DT82UtbU0CjOsBX91p+e6qmikqoF55EcVZ4BGZj0dkPv7DT6Avdac8ORAlPRTX/EC0xS74toKYGAgIkLdWrSA0VAaNzp2lgZQtUW2sNX+zrG9W7zbMLXWvMUjPjXn5cKhSpqkeC4AHA6C9immqMxSyjmQ2kUIxVfjhzhSiGUt7IlQwpDMnDhtAhneWV1PrjpkeQHq4w6IiaUClxhCQgsJ99CYHDZ+znyA8icNMbjRmRI+Bg2SzxdgyqEFHS9yZSjRjiDJJwLAhlOjh7Tw5yyGAf7WC5wKhpZlLR0LIWYGHvgetHv4zU6ZGLLXrqCtF1VAuqm/cVL8Gla2SeB6+3ASLtsvahhq7DYBTVfBZvrQhLjTIC8b5raVcv5dKF/3FVLKBFNYbbQdccKIfYYyiHX0IMVsbu9o4bAAJ8IGYcNh5xvRjdTbmupOq1JsidcaJp42ii/9mJ/MYZ/ZcZ1PRYWATqfzIcc5TijeuDCSCa2hDT4It8mY/UA7Xp8s6xy2+0gPanAXymryxAl7+FQZ2gG/vgY4h6pynNi7dcTQ0eDgrCgYhCGugcKGtUl4lO6nmb4ItJ+VuY1pvuPca8+42hJCadx/kwe+lst1zui/M9pcaeGpdLJymgJWcYjOpaDHQEX/upzdDiaSFGdvYLYXDBhCQBXAvM/yfFBqbWdQ2rPfClWcZyGxW8wX7eYHBqjkZNoQSqljLWf7gNFmU0R4/nmEg/WhtsZZBIWTnyzPZEOQMW9uZz/CrNt40Bo/bB8HCu+RUuZrU3G2E+XmiqdI1emLc09WZOdPr99WwZY6my9rGdzukV0rHYJh7veykMqeNb7kxTfVxPhyulO+plwJlCjRMpRqPDgM7yGAlSRwnD3ecGUU7JtKRdlih39mMOHQAySqCoWYwAkwzpp0jLFBEDMWHW+nO1xxmG+kMwUJ63zVIIp8/OM0WUqnCcEFNuC+tLRrQsnVS0PKPUukx/lUYBKr4jn1jBbz0ixw2s1TwqLnbaOjEuKuTgo+HC4UarV3vOErKYekeWLBZ1irdXGB6H7h3mExBm7PDK1Ur01RfFkqdqhh3+Kq1FDb0UOn/OQfNhU6qfCoIxZu7iWUU7cw6NGtNHDaA6PSQVwYhZkjLp+og0Fm9fOilTCWaLaTxBQeIJcQiW9sq9GwljT84zUny8cCZkbRjAh2IUrGTqi7WlsLMc1Cgh3mhso1azRrE68vlzmPmQPj6bnWChym7DUdJUQkBu8/I3caS3VJqpFsYfDBDBm5z2vgKAZs0cujvV6NS97QWsg33GpXSVNWCoKs5wz6jIGgvQniIeOIItes2/dpw2ACSWyrfQMFmCCBpWvPPFVwJZ5yYTTxPsJbP2c9j9DPJ86IuKtGzn0y2k84ezqFBRwQtmEVvRtAWbwu7J4LUFXopG/6dJ3vuV0Wqryf02nJ4ReW0VVN3G+AYKaqcYvh+JyzcIvXqvN1hRj/pt9G/vXm/zMuMaapP8mX7fYAzPN0KHvBXr26WSekF+4ECKgjAgxvoyhiiCDGTIKgt4rABJKtI/jTHDiRFq+60aW20x4+b6cYPJJBBCa8wFH8TzV+qyUXDdxxlB+lUoKcFbgymDdcQSU+CrFZ3ydPBpDTYVQ6z/OCDUPV3fe+vMn/wuHSn8fS4zryz6kSDdxt+nq54u7tc9Hp7DB56g2yB/moL/HZAdrT1bw/z75DBwxy2sDVJ1cLHedJRstAAse7wpbGbylOF95FAcIAslpPEfjJxAuJozVjaE29GQVBbxmEDyGqjelZMhGnHSayEhEq4Wd0O1Vq5iW60pSXvsos32MqbDMfDhP8yHQZWcorFJKDHwEjaMZgIehBk9Td7sR7Gp8orxh8j5ES52pwvhBd/gam9zBs8Lt1pNEZK3dPVmVenNsyYyVZJyZU+4gu3Sne/QB+YPQruHmq6V09t7C6H9/PgJ6O+9/W+cuhvkKc6aaoq9GwkleWcJJVi/PFgBt0YSxSBNtI5aSkcMoAIId+8gzpCJxPlRz7Ol2b391pJnnsA4TxFf+awnffYxbMMarQkSLUu1QqSyKWceEKZRW9CsZJ40SWUGWBSKhysgF/awGQLzU69sUJeFb93k/nSVrXtNMq1+gtChZfiKLsNTSX8vF8GjvXH5Rf32O7y33ZqL3A3czZUJ+SU+Mf5UtzQ1wkebyUDh1rp5iIq+ZPT/M4piqgkipY8Rl+GEqlKitkecMgAsvO0HEJa8E/TjlOgh0WFslMj2Ir/UgMI5156MZ+DjfJUP08pK0liLcmUoyOGIB4kjjhCrdoeXJMKA0xLg+3lsDjccsHjTLacbL57aNPnPGpLVZ2ro7ahFwJPV+eLgou97zaEgB2nZdBYuhtKKqSQ4WvTZEqwbaD5z5mnk51Un+ZDug7au8IHIdLpr4UKneUCwQny+ZPTbCENHQbiac21dLJqutdWcMgA8vVWOf9xY1/TjrOgADRCqrpam8lEk0UZv5FEMN5cS+3j9VXoOUEeKzjFLjJwQuEaIplKNB2w0jaqDrQCbkyHtWXwTRjcaMGW+Jd+BRcneGlK015fV6rKz8uVAs3lciPhNWoh9r7bSMuXXiiLtsHJLPlZu6GvnBAfGq2OwOKRCrnb+N7o9DfKGz5tLX1e1JBQr0THJtL4g1OcoRBPXBhLFJPoSBuVFRfsCYcLIGWVsj3wxr6mFel0AuYVwHAviFW5C6ih3Eks2WhYyCGC8CKOUHZxjlSKSaWIVIrJpBQD0AI3rqcLE+mouitZU9ALmJkBK0rh01C4w4KdwrvPSKmS5yc1XduqrlSVu4tTrTuN6mBhjwED5Ofq530yaKxPlLuPoZ3gmYlwQ7z5C+Ig3yMrSmTg2KABD6PT3yMB0EOlz+R5SvmDU6wlmTK0tMWX++nDcCLxskJXoq3jcAHkk7VyK333UNOO836esatDBQn3puKEwgjasoMMfiKR85SyiCM4odAaH9rRkmuIpC0tiSdUVUFDU/miAJYWw7+DpVidJflys3SvfHZiw57fmFRVUbmWD27q5RA7DYMBtp+SqtZLd0NppUxRvTJVzsu0V8kDTWOAbwrlZ/C0sYV+brA0d1NLSug0BSwjke2ko6AwiAgm0oFuBF71aaorYbvfME2gQguv/gbXxcEQEwQUd5fD89lwfQs5AW0LaNHzLUf5jZNE4suj9GUv5wH4nql2NdmqMcDruXKY66lWlj+/Vi9tTRty1dzYVFWYn6dd7zQAjmXADzvlLSVPzmzc2FfKigztpN5AZ5ZOKuF+ViCnxft7wpwQ+EcLcFHhnALBYXL4mUQOkIUXLvyDzkwhmgAb3LXbIg4VQFLywMsd5t3W9GOUGeC2DAhzgS/DrOs2V00GJbzLTk5TyEQ6cCexuOPMUXIA6VpmT8zLh0wd/C/COv++zoqcUWgITUlV2SMZBbB4lwwaB1NlV9qYbvDGdClm6KNiGvdQhdQ7+6FI1sWubSEvLNRqw9Uj2EUGy0gkiQL8cOcOYhhPB6sMz9ozanqiLwQmA9lCiB61PH4r8AxSfboEeEAIccj4WLLxPj2ga6hbVmkFfDPDNKnnp7OkvPP6ttIT3ZoIBOtIZj4HcMWZ5xnEAP6+sq2eCSk3yqrbA4V6mJsLE32k6qk1cHGWUjcNwZFTVXmlsGyvrBluPCHrGv2i4KOb4aZ+5hUxvBS9kCq4H+bJ+oaXIlNUjwVAtEpvZQ1a1pHMCpLIpIxQvHmQPoyknUPZSVsSNXcg3wDzgG/rePwsMEwIUaAoygRgPtC/xuMjhBC5jTmhr6dsH2wqf5TAfwrk1c9wG1AfWMAhVpBEDEE8Qf/LiuHVAaQCXW0vt0neypVTwm+qlD9vCM5Ote9Aaqt1hPl51io7Yq+pqpJy+O0gLNkFqxJkIO0UAi9PgVsHQrTK0vUleum78XG+rG+0cZF1sHv8wV+l7/BsyljJKVZzBg06utCK24lhIOFWH6C1d1QLIEKIzYqitLvC49tr/LoTMHFmHKKCmr7lPVMFd52TKp1vBJm6kqZT7Sv+F6fZTBqT6cjd9Kp1eLA6gOSisQtZ6Eyd/OKY2RJ6WbGzzcUJyrXyy9PF+KVVV63jurhwlu3LsOtUVWkF/HUU/rcHlh+UtcI2AfD4GGnP2ztS/VRiqhY+ypMzHCUGmZ5Ss74BkEIRP3KcbaQBCoOJYCrRdMYKhTcHxVZqIHcDf9b4XQCrFUURwBdCiPl1vVBRlFnALIDIyMgmnfxMFQxPBi1ymM3dChclOWhYTzLrSCaTMrxwYRqduIOedU6edyaAQDyZx17eYZTNGFDVxZ5yqBTSe8GajOwKn6yDeevgsbHyvrpqHRsSc5gzPcbuUlX5pbDikGy9XZ0gg0agD9w1BG7uL1Ua1JjXuJRDFfBOHiwtkh/qG33hsVbQT8UadRL5/MhxdnEOT1y4lk5MJtrmPx/2iNUDiKIoI5ABZEiNu4cIITIURQkG1iiKkiiE2Fzb643BZT5AfHx8o6vJp6tgRDKUCVjXFrpb+Mo4gRx+5DgHyUIAMQRxM90ZRHi9bbg+uPEqQ3mGDbzKFt5mhE13Y52skj+7WLlcc21vmNgTnlsGsW1gRNe6ax3nCsvtJlWVkgu/H4Zf9sOGRJmmi/CX3uHT42Bwx793XGoihBwOfScP1pSBj5OUGHmslbqq1kfJ4X8c5wBZeOPKDLoxmY742kl90B6xagBRFKUnsACYIITIq75fCJFh/JmtKMovQD+g1gBiCpcGD0umVZIp4juOsIfz+OPBjXRlFO0arU8VSUueYxCvspk5bOdVhlrMLbCxnKyUvipqOzvWh6LAN3fBiHdg8kfw1xNcsdZhq+gNcihy5SG52ziSLu/vFAL/miDNmeLaWa7TrcIoo/6hUUY91AXmBMsdp1r1jWpF3B85zjFyaWnsqJpAh+bBPwtgtQCiKEok8DMwUwhxssb93oCTEKLE+OexwGvmPn+aFkamWD54ZFPGDySwkRS8cOUOYphMR5OG/noSzCP05X128zF7eZx+Nmlcc6IKOtnIBinIF9Y9BcP/DRM/gBemxLBoxz6br3VkFUmxwr+Owh+Hpe+Ns5Ocz3j3RpgUC51DLdsenaWD/+TLBpTsGm5/t7ZULx2sR7CDdH7mBKcoIBBP7qUXY4my6QFaR0PNNt7FwHAgUFGUdOAVkJcEQojPgZeBVsBniny3V7frhgC/GO9zAf4rhPjLnGvL1sHYFNlSusFCwaNaIuF3TqMA0+jM9XQxm9vgcNqSY/T5aIUndxBjcxO0J6tgvA0MZtbstgr0aUkLzwHM+T2Ip8fH8WfCEZuqdRSXw8ZEWHdc3hIy5P0B3jINNzkWxvWQg5GWJqEC3s2D/xZDlZC6VI8HwEhv9QKYFgPrSOYXTnCeUsLw4SHiGElbm915OzJqdmHdXM/j9wD31HL/GSBWrXUdq4TJqXBeJ93u+qicoUimiB85xjbSUYCRtONmuqtS0LueLuSg4WdOEII3E+hg9nM0FSEgTw8BVu6avLTbKqe0CC+PLQgxlJd+CWJCzEg+mAX92lt+bUJAeoFMS+0+C9uSYOcZmarydIMh0XDbABjVDfq0Vd+zva41btbIwLGyVM5v3O0nBUc7q1hq0GNgPSks5RjZaIjGn2cZSH/CG21v0MzfrCTJpNdfVXu9NaVwfTp4KrCxLfRX8artFAUs5diFTpDr6MIEOqjaCaKgcD99yKKMhRwilhDCbMTzQ1GkRe2xKuuuo7ZuK51BQ9ugbTw2Zhjv/AX934C4trK4PryzTA/5mvlCw2CA1HxpO7AvWQaM3Wch0+ik6eos22v/NUFOhA/sCB5WTOnrBfxcAu/kwp4KWct6NQhm+6unTwUycGwmjaUc4xyldMSfB4mjNyE2t8O2NxLIYQEHTTrGVRNAPs+H2ZnQzR1WtFHPGzmRPJZyjH1k4o0rN9ONKURbrDvKCYWHiedhVvMRu3mLETZzhRbrAevKrLuGurqtsopLeWYiPDgCvtgkC9Mfr4V3/wInRRajR3SBazpJBd+WnvLm63l5Z5PBAMUVUKiBgjIo0EBqnpQ+P5EJJzMhKQsqa8x/dmktDZj6RcndT88I85swNQWNQQ7+vZ8HZ4zWzv8Jhdv91LUb1mFgIyn8yHEyKaMdLXmBwfSjdXPgMAPFVPIuuwgx8QLT4QOIXsBTWbIzZJKPnPNQw3gmnWIWcIj9ZOKLGzPpwSQ6WqUTJBAv7qM377ObXznBdXSx+BpqI9YDviuCXB0EWumdV1+3VQtPeGq8vJVXSXOyDYlS6uOD1fDvPy97Kd7uMpi4u0BhORRpwFBLQ7mLM3QIkkXu8TGyW6pzqGwlbmljIwrpWvgsH74olMKGAzzhnRCpU6WG/0Y1WgxsIJn/kUgWZXTAj+cZRD/CbLIxxB4xIPiA3RRRyTuMpM4huwbg0AGk3AC3ZMCvJVJj590Q87/5y9CyhGOsJAkPXPgnPZlIB5O8y83BMCLZSQY/kEAcrW1iUr2nMUd+qAJGWSmz9vS4zpd5lNfVbeXpJtNYI7rK3zWVsC8Fckvk7qKovMZNI3cUfl7g7wX+3jV+ekOYH0QFWmYOwxR2l0t9qv8VgwGY1gKeaAWDVQ5wWvSsI5mfSLxQ45hFL+Kbdxxm5xdOsI9M7qe3ySZzDhtA0rVwQzrsKpeeHg+b2XOimEp+5xS/c4oSqhhDFLfRAz9sw31KQeEB4khgFe+xi3cYafWgVm3MtdtCAaQ2bavqrqqmTJZ7uct6iKMhBPxZCnNyYavRX/zRAJgdAO1UzrzqEWwkhR84Si7ldCaAB4ijT3ONQxUSyeM7jjKICLM02ShC2JcU+JWIj48Xe/fuZU2p3HlUCGmVep0ZHShz0LCMRNaSTBV6+tKam+lORxuzi61mP5m8xhYG04an6G/1D+WQs5Chg6SO6mkgweXdViB3GnOmx1i9NddWqBKwuEjWNw5XSmHDp1rBnSr5i9dEINjDeb7lCKkUE40/txFDL4Kt/h51VDRoeYw1GBB8xNgL0vWKouxrqOL5pTjcDuS1HHg1RxbLl0WYr7WwmEp+IpHfOYUAhhPJNDoTaeP+yH0IZSYxLOIIUfhxvZXrIU+2gunp8HOxuh7odWlbvbPqxFUfQPL10hHyk3zZzt7DHb4Og1tagpsFvruPk8sijnCMXMLw4RkGMojw5sChMl9ykGzKeIsRZvM9cagAklQFr+TAbS3h89bgbYYukQp0LCeJn0mkHB0jacctKs1xqMV0OnOGQr7jCO1oSTytrbaWqS1kO+/ruXC9r+xwUoMraVtdrZyukvWNhYWgETDGWwaOsSoO/tXkLIX8lwR2cQ4/3HmAPowhCpdmSXXV2UY660jmRrrSjUCzHdehAkiJQQaOWX6mfyB0GFjDWZZwjAIq6EdrZhJDWxsoRjcWBYVHiCedEt5jF58xHn8r1WqcFXg5SKYYl5XADSpt4OxR20oNhJCt05/ky8E/Z+RO44lW0NNCb4E0illMAltJxwsXbqU719LJ6jW5q4UcNHzKXjoRwAy6mfXYDlUD6dYnXhzbv9ekYwgE+8jkKw6SQSldacUd9DRr1LYW6ZTwCKsZTARPXuTdZVn0AmJOy93Hwfbq1EKu9hpIuQEWFUqr2MQqCHKGWf7woD+EWaizPAcN33OUTaTghjNT6cQ0Otm0YrSjocfA82wkmSI+YDRhtLjsOc01ECOmDjadJJ9FHOYIObTGx+EGlyJowfV0YQnHGEg4g0z38GoSzgq8EQzXpcPL2fCWCi54pnRb2TMFevg0Xxp35egh3gMWhUkfDg8LZYoq0LGMRH7hBADX0onpdLEb22VHYinHOU4eT9K/1uBhKg4VQJpK/ZvyPQAAIABJREFUBiV8x1G2k05L3LmP3oylPa4OmJu9ka7s4zzz2Es0AVar5Uz3hXv9YE4eDPSCKSa+t+tq2XX0gFFNYqVMUy0qlArTE3zgmVZwjZfllHn1GFhDMotJoIAKrqENd9DTruqFjsQxcvmRY4ykLcNomtlefThUCqu6jbehFFDBYhJYzVnccOIfdOZaOjm8j8A5SniMNUQTwGsMs5rUSYUBBiXD2SrY3x6impjZuFrTVQYBf5XKNNXqMtlBdYvR8S/WgiWu6pbcRRwmjRK60Iq7iKVLs3Ws1ShDy6OsxgmFDxlzxe+05hRWI9FhYCWnWEwCVegZT3tuopvVCsuWJowW3EtvPmGvVaVOPJzgpwjoc0aKXG5r17Q0y9XWslush28K4ZMCOFUFYS7wRhDc6w/BFv5EJ5HP1xzmKDmE48NzDGIAYQ6T9rVXPmc/uZQzlxGqXhBfdQHkCNl8wQFSKSaeUO6hlyq5QVtnNO3YRybfc5RYQqw2CNneDb4Nh2vT4NFM+CKs8ce4Glp2hZAyI/MLYUmRbMMd6Amvh8tBWVcLf1+fo5QfOMoW0miJO/fTh7HNLbk2wUZS2EQqt9Bd9V3gVRNA0ijmO46wk3ME4+VwBfLGoqAwmzhOkse77OR9RlstdTe1hczXv50nB0AfbeR73pFbdqsE/Gi0id1XAd4K3NxS2sT2tcJfT4OWpRxnOSdxwYmb6Mo/6OzwaV97IZsyPmc/XWnFDRbILDh8AMmnnP+SwFrO4m7sQZ9GZ9yb3cvwwY0n6c8LbOQ/7OcJ+lktoL4RLAdBH8uSxlOvBjV8yLAxAon2wnktLCiEzwogUyeHLz8LlUOyasuM1IZAsJk0vuYQ+VQwinbMpAcB2H+QdhQMCD5mLwJ4nP44W2A36LABRIuBFSSxlGNo0TOZaG6kK77NrYQX0Z0gZtCd/5JAT4IZQ5RV1uGiwOIIeOC8nFI/WilTWz4N+Aw4SsuuTsCqUviyEFaWgB4Y7w2PhcmpcbWm9usjmSLmc4Cj5NABP55lUHOB3Ab5g1McJpuHiCMUb4ucU9UAoijKQmAykC2E6FHL4wrwETAR0AD/FELsNz52B/Ci8alvCCEWNfS8B8hkPgfJoIR+tOZuetHaRpz5bJEb6MoRslnAQWIIttib71LcFFjQWsq+P5EFg87C8jYXK8JeqV3X3gJGNclVUl5kYaEUmgx2lpphd/tBJyte75RQxRIS+J3TeOPKg/RhDO1txqCsmb9JoYhvOEw8oYy14EWgqm28iqJcA5QC39YRQCYCDyMDSH/gIyFEf0VRAoC9QDwggH1AnBCi4Erni43vI27aO4+dZNAaH+41+gk0Uz85aJjNKtrjx5sMt7p5z+pSuCld7kx+ioBh3o7Vrluoh19KpBruWqNL43gfuMcPJrewjKhhXWgx8CenWUICGrSMpT230aN5926jVKLnKdZSSCUfM7bR3aSqtvEqivIw8H19X961IYTYrChKuys85VpkcBHATkVR/BRFaQ0MB9YIIfKNa1gDjAcWX+l8qRRxgExm0oNpdMK1uc7RYILw4l568TF7WU4S07Cu8cVYH9gVBVPTYHQKvB8Ki+28XbdKyNTUokL4q0z+HuUKrwRJCfVIG6hDHyCTLzjAOUrpRQh3EWsTZmTN1M03HCaFYl5hqMVHERqSwgoB9iiKsh9YCKwS5tu2hANpNX5PN95X1/2XoSjKLGAWQGCPKD5jfPPkaxMZRTt2co7vOEIfQoi08hdHJ3cZRG7NgEcywSM+Br8DJ3DPK7roebbcrisEHKyQVr7fFUGuXs5tzPaHGS2l1IilJsWvRBGVLOAgm0glnBa8zBDiCL1quxTthQNk8TunmEJH4gi1+PnrDSBCiBcVRXkJGAvcCcxTFOVH4CshxGm1F1gfQoj5IG194+PjhSWCh0CgpZQystGQg4ZsyshBQxY6KnHGFWfcccIVZ9yMN3d8iSCIHngRpPoam4KCwkPE8QireZ/dvMMoq8u5tHSWdZBPC+CJKj8yJw3BMz2blodOXggkttauqxewTSNTVL+WQLIWXJF+4nf5yd2Vmr7ijcGAYB3JfMNhytEyg27cQJfm3bsdUEoVH7OHCFpwOz2tsoYGFdGFEEJRlEwgE9AB/sBPiqKsEUL8y4TzZwBtavweYbwvA5nGqnn/RhPOYxI6yskjkVyOk0MCBZxCx8VXvc6440UwrnhSgRYDVegvulUiMADgRRCBdCOQ7gTRnRZE2MyVnj8ePEQcb7GdJSQwkxhrLwknRVoSt0rJ4dFDpeR3aXchkAQnnObp4ero/DSGMgNsLJNBY3mJFDJ0V2T31EuBctYl0MZ6Hk9TwOfs5wT5dCOQh4ijjY0bpDUEgZ5sjnKevfgSTgRDcHPAJpovOUgBFTzPSKuNJTSkBvIocDuQCywAnhZCaBVFcQKSAFMCyHJgtqIoS5BF9CIhxHlFUVYBbymKUj0ePRZ4zoTzNAo9lWRygBwSyCWBQs4Yv/yd8COKtozAh1C8CMabYLwIxo0WVwwCAj1FpJDDMXI5ShaHSGUTAO740YEJdGQS7jbwAR5AOKNoxzISiac1Xa0gZV9bt9UtvcPxIoO5a3dwonUIpd3bkzJuIPN9gGIY6Q2+FvoclehhWzlsKoNNGthTLq+sfJ1gkg/8w1e24FpjZqM+Sqjie47yF6dpiTuP04/hRNrMRUxTEBjI4wRpbCGNrVRSiIIzAj0H+JJwBtCWkYTQCycH2F1tJ50NpDCDbkQTYLV11NuFpSjK/wELhRAptTzWVQhx/AqvXYzcSQQCWcAryN08QojPjW2885AFcg1wpxBir/G1dwHPGw/1phDi6/r+Mo0VU6yJHi1ZHCSNLZxjFzrKccKNVnS6sFtoRWdczZQiEwhKOU8uCWSwk/PswRkP2jOOzkzD08p99hq0PGIUY/uIsXhacGSood1WJXqZ2no3Tw4fuiCVfcd5yzRRHw/zpIqK9ZBQKX01jlbAFg3sr5BzGi7IifBrvGCENwz3AncbVfMwIFhLMt9ymFKqmEQ0t9DdbPam1qCEdM6yhjS2oiEHJ9wII542XENr4igilRTWk8pmqijBA38iGU4HxuFDE3RzbIACKniYVQThxTuMMlk+xpQurKtajVdHBZnsI50dnGcPOspxxYcIBtGGIQTSHWcLfbiKSCGRZaSxGSdc6MQ/6MJ0XKw46XuUHF5gIxPowP30sdh5B89dX6s0SbifJ9ueHXnZ/VUCtmtk6++qMvnlDuDnJL/Y27lBiDOEushbiPGnt5N0sSzWQ7Hh71uRXtq/HqmUA40p2r/P5aZAf08Y5iVvA73MY52sNpmUMY+9HCabbgRyH72Jws/ay2oyBnQk8hPHWAoohNKbNgwljH61XuTp0XKePaSwnnPsxpe2jOMTyy/cDMxlO3s4zweMIdIMGYtmNd5GUshZTvMnqWxCRzlu+NKGoYQzgBBicbLCFVlL2tKfJ+jOLRzlO46zlLOsIZY7iWSYxdcD0IMgphLNbyQxkHBiUcH5qRYaK47opsBwb3l7C8jRydmKdWWymL1RIwNDY3ABurjDIE9pkRzjAV3doZ2rOg6KaqFHsJIkvucoTsYmibFE2XW6qpCz7OFDCjlLJMOI5W486gmGzrgSwSC0lHGO3XRgnIVWa162kc52MriDGLMED1O5agKIjkrS2cpp/iSfkzjhRhsG047RBNENxUbyoj6EMoCniWYKB1nALt4jjxPEcrdVcre3EcNeMvmIPXzMWIvYkZoqjhjkIgUHb67RhVxugCyd1JXK0sufZQZZs/B1krWTmn8OdbHuMJ85OEsh89hLEgX0pTX308euW9xr7jrcaMEgniecAQ1+vYYcDvIVQcTQgYkqrlQdCqjgM/bREX+rz2lV4/ABpJRzJPE7KaxHSxktiKAX99CWEbjZsIx7K7owkrc5zCJO8ivFpDGQf1l8ze448zj9+Bfr+ZKDPE4/1c+phjiip5NMZbW7Cuy4q9DzI8dZRiI+uPE0AxhiQ51+TeHSXUcv7m1Uw4lAsJd5CAzE8zCKncnOCwSfspcKdDxOP4sIJTYEhw0ghZw11hS24oQT4QyiA+MJpLvdfJAUnInlLlrSln18ylqeZDAv0lIle8q66EQAN9KVJRyjP2Fm8VKvS9MKHEcc0RokkMM89pFBCSNpy13E2rUEiQG9cdexpEm7jmrOsposDtCb+/GxwsCdqawjmd2c525ibarV2uGK6H/u/YYT/MJ59uCCJx2YQCeuxcNKhknmIo9EtvEWeioZzPMEE2vR8+sw8C/Wk0UZ8xhnkmSCI2la2QoatHzFIdZwlmC8eIh4eluoZqUW5eSxg7fJI5E2DKU39zWpzb2MTFbzKAFEcw2v2d3uI5syHmY1HfHndYaZXafOlCK6ff1L1kMJ6WzkefI4QXduYRJf0ZN/2n3wAJnSGs37eBHMVl4nmyMWPb8LTjxOP8rRMZ8DJh3rSha0zTSeI2TzCKtZx1mm05l5jLP74JFPEmt5kkKS6c+TDODpJgUPA1p28A4KTnabuprHPgAeoa/VRU4vxb7+NevBgJ4+3M8kvqIbMxxu+tSLQIbxOt6EsJXXyOWYRc/fBl9m0M3YCZLe5ONcDRa0lqAKPV9xiBfZhDNOzGUk/6QnHnaemU5jCxt4DidcGMnbJnUhHmYRBSTRl0fwtsOgupZkDpLFHcQQYiWbhSvhUAGkJW3pwERc7DjnWx8e+DGMN/AikG28SSmZFj3/dDoThR+fs58Sqmp9zq8HMhg8dz1Rz/7O4Lnr+fVAxkWP19VNZWuaVrbMaQp4nLX8xknG04GPGGP3Jk8CA0f5gZ28QwAdGcW7+JngbZHBTpJYTkcmE85AM67UMuRRzkIO0YMgxtPB2supFYcKIFcLHvgzhJcQCLbxJlo0Fju3C048Sl9KqOIrDl72eHV9I6OwHAFkFJbz3M9HLgoiT4/rjKfrxS3J9m5Baym0GFhMAk+xjjKqeJWhPEAfu9916KhkB29znKW0YxTX8Hq9sx1XophU9vAR/nSkJ3eacaWWQSD4jH1oMTCbeJtLXVXTHEDsFB/CGMi/KCGN3XxwQajRErTHj+vownpS2Mf5ix5rSH1jWu9w5kyPIdzPEwU5Yd5cQK+fRPJ4jDUs5hiDieATxtHHDjuKLqWSIjbxAhnsJJa7iOcRkxQgNOSwmVdxxo2BPGMxNQlzsolU9nCemfQgzIZT8fZ92XKVE0IvYrmbg3zJaf6kI5Msdu6b6MoO0vkP+/mUcbgb30oNrW/YswWtpdEj+InjLCaBVnjxMkMcxmmzilI28TIlZDCI55rUoluTSorYzMto0TCCt+yy7lFs9GbpTACTibb2cq5I8w7EzunIZELpw2EWUUaWxc7rijMPEEc2Gr7l6IX7m+sb5iWfcl5hMz+QwBDa8AljHSZ46KhgK69RTBqDmzjfURMtZWzmVcrIYQgv4kd7M63UsnzFIcrQ8hDxNu8/3xxA7BwFhTgeQkExTtqqM9dTW2G8B0FMpiMrSOIoOUBzfcOc7OM8j7KGE+TxCPE8SX+87DAdUxt6tGznLfI4yQCeItREsU4dlWzldYpIZhDPEkQPM63Usuwjkw2kcD1d7MJKuDmAOABeBNGTO8nmEMmsMfvxr1QYv50YQvHmY/ZQga65vmEGKoyzNv/HVvzx4H1GM9rOBRBrYkDPLt4li4PEM5sIBpl4PC07mEsux+nPE7SmSTNxVkeDls/YRxtacCNdrb2cBtFcA6lG6MCQBfoMMJwDfSYo7uDkB4ofOPkbf/qB4guKbcXe9owljS0cZCGhxJnVT+RKhfFpvcN5lL48z0YWcYT76N1c3zCBY+TyEXs4TylT6Mjt9LSa25waCAzsYx4Z7KAX9xDFaBOPp2c3H5LJPuJ4iDYMNdNKLc93HCUXDW8z0m4sha++ACIMoDsOVZvlTXdSBgxDFjQ4/eMO7qPA4x/gPhWcg9VccYOQk7azWc3DHOALBl3w4rqcK+lQ1UZ9hfHuBDGFaJaTxGAi6GGjnu+2jB7BYhL4H8cJwZu3GO6Q/47H+ZFk1tGdW4hmqknH0qNlH/NIYws9+Sft7VSiHeA4ufzBKSbT0a7meRw/gAgD6A5ApTFgVG0BkScfcwoD11hw7Q3O4fJ353BwDgOnUBBVIArBUPj3T0MB6JOhcjkU/QHMAtfBMph4/ANcmj74ZCo+tKYrN3KU78njBK24vO5wqQ5VdToKqDOINERefSY92EkGn7OfDxljskva1UQxlbzHLg6QxWjacS+9LeoAaSkqKSaRZUQwmK7cZOKxitjOHHI5RnduoTPTzbRKy6PDwGfsoxWe3EaMtZfTKBzvXQogBGh3QcVSKP9R7jAAnDuAx1Rwu0benKNAaWJeWXwIusNQ8Yu8lTwpb27DwHceuFqniBfNFE7yG8dZyhBevuzx+tJRtdEQeXV3XLiX3rzJNlaQxD9qCV7NXM5pCpjDdvKp4CHiGGennUMNIYkV6KmkGzebVM8pIpmtvEEFhfTnKSK5xoyrtDy/cpIUinmRwXZ34aDqahVFGQ98BDgDC4QQcy95/ANghPFXLyBYCOFnfEwPFxQDU4UQ9e93hQaKn5GBQ58CuIH7RPC4DtxHyN2FuVAU4+4lFlq8CrrTULEMSv8Nub3B+ylo8RIoljXwccGTTlzLUb6ngFP40/Gix5uiQ9VQefX+hNGP1iwmgaG0IdCOzYvUxoBgJadYxGFa4s5cRtCJAGsvSzW0aDjFSsIYYJIdwTl2sYv3ccGTEcwhwMbnJOojk1KWkMBAwulnhx7tqgUQRVGcgU+BMUA6sEdRlOVCiAsKgEKIx2s8/2Ggd41DlAshejXqpLrjUJYE7mPB5zXwuBacLNQK59IBfP4FXndB8dNQNlcGMt/PwGO8aqetrZ4xqfdkTvALx1jKYF646PlNdftraGH8Hnozm79YwCGetUP9IUuQTzkfsYcDZNGX1jxCX1o6sH4bwBlWoaWMrlzfpNcLBCf4mSN8iz8dGMwLZm0UsQYCwX/YjzNOzLroq89+UDNR3Q84JYQ4I4SoApYA117h+TcDi006o3NbCMmEgN/B63bLBY+aOAWC39cQsAFwg4IJUDADDPlmP1Vd7bW/HyggmqmcYxeFnL3oNWrPaYTizQ10ZTvpHLCw0KM9sJtzPMxqEsjlfvrwIoMdPnjoqeIkvxJMLAFNsGLVo2UPH3KERbRhCMOZY/fBA2ALaRwgi9voQSvsc9BWzQASDqTV+D3deN9lKIrSFogC1te420NRlL2KouxUFGVaXSdRFGWW8Xl7c/IEONnIG8t9OAQdAp//g4qfIXcg6M6Y9RRXqmdEMwVnPDjFyoset8ScxnQ6E4o3X3IQLfr6X3AVIBD8RCJvsI0gvPiQ0Uykg8PMdlyJUs5TQQFtL2SrG042R1jDI6Swge7cQn+ecgi1bQ1aFnKIDvgx8ZI0sz1hKxWbGcBPQoia3zZthRAZiqK0B9YrinJECHH60hcKIeYD80E6ElpmuQ1EcYcWL4P7SMi/FvLHQ+BOcDJPrvtK9Qw3fGjDYNLYSi9mXfShU3tOwxVn7qM3/8dW/kcit9BdtXPZA1r0zGMfG0hhKG14hL4ONdtRH9VGUDoqGvyaSoo5xEJSWI83IQzlVZOn1W2JJRwjnwqeY5DNy5VcCTV3IBlAmxq/Rxjvq40ZXJK+EkJkGH+eATaCnSYJAdyGQMBvsrBfcJ1sDzYD9elOtWUkOsrJYIdZztcY4mjNcCL5ieOkUGTx89sK2ZTxPBvZQAq30J2n6H9VBQ8AN3wBhUoK632uQHCWtfzFA6SyiS5cz1jmOVTwSKGI5SQxlig623kqTs0AsgeIVhQlSlEUN2SQWH7pkxRF6QL4w9/fcoqi+CuK4m78cyAwGCxsv2du3IaA30Ko2ghF98tW40uoz4jpUuqrZwTRHS+CSWad2f4ajeEeeuGFK5+wF71KGl22zE4yeJQ1pFLMMwxkBt2uipTVpTjhjDu+VNQTQIpJYyPPs5ePaUEEY/iIGG53iJRVNQLBFxzAG1dut7OZj9pQLYUlhNApijIbWIVs410ohEhQFOU1YK8QojqYzACWCHHRN2pX4AtFUQzIIDe3ZveW3eJ5q5x8L30NXDqDzzMXHmrKgF997bUKTrRjJMdYioYcvCw82eyLO/fSm/fYxUqSuLYJBVR7RIuebzjMCk7REX+eZgCtbdjTwRJ44EcFBRfdJxAUk8I5dnOOPeRzEle8iWM2UYy2O//yhrCZNI6Sw4PE4esAgVERtVwJ2yvx8fFi79691l7GlRECCm+BiiWyU8t9OACD566vtb023M+Tbc+ObPLpSsnkT2YRwx104bomH6epCASvs40jZPMfxjv8bEgxlbzBNhLJYyrR3EGM3egaqckWXiWfJHpxLz6Eks4OMthBmbFTz5+OhNGP9ow3yYnQltGg5QH+IhBP/s0om6l9KIqyTwjRJAVKWymiXz0oikxl5eyA4kchcD8ozk0a8GsIPoTSknZkcdAqAURB4T568wB/8QMJPEpfi6/BUmRRxqtsJhsNzzCQwURYe0k2Qwy3s4eP2M37ACi4EEJPunAdremLpwMPUVbzI8cpoIIXGGwzwcNUmgOINVA8ocW7UHgDaBaA931NHvBrCCHEcoo/0FOJsxW2zSF4M4VofuUEU4imvQNeYSaRzxtsQ4ue1xlGNwKtvSSbwo/2jOZ9CkmmjCyC6YnbVZTWy6CE5ZxkFO0cSnHA8ZKMNkadhXGP66RuVumLYChUdcAvmF4Y0JLLcZOP1VRuoAs+uPE1h1QzvbIGAsFfnOYZNuCCE3MZ2Rw86kDBGX86EMGgqyp4gHQZdMXZIQrnNWkOICpyJSMmFAV8P5QT6qWvqTrgF0Q3FFzI4pDJx2oqPrgxg24cIpv9DjKhXomOD9nDZ+wnhiA+YDSRxpmHZpqpZi/n2ct5ZtANfzysvRyz0pzCUpF6lW9de4HXPVD2CXg9yLTeHVUZ8HPBk1Z0JtuKAQRgPB1YySkWcphehNp1HjiLMt5gK6kUczPduJFudv33aUYdtBj4ioOE48NkOxd+rI3mHYiKNKgw7vN/gADNQlXXEkR3CjiDHq2q57kSrjgxkx6kUcwO0q22DlNJp4Tn2EAu5bzCUG6me3PwaKZWVnGGDEq5i164OuDXreP9jWyI+ibFAXAOBffRsq1XxZZqXyIBAyVW/uIeSASR+PI1hylHZ9W1NIWzFPIcG9Bi4C2G04dQay+pGRulDC1LSCCGIOId9H3SHECaSEOmxhtcGPeYAfqzoN2j2nqrPRiKSVXtHA3BGYWHiCMHDf/lqFXX0lgOksULbMQFJ+YwnCgH7CZrxnz8RCLFVHEnsQ6rQOCYNZDKUijOkLeSc/L3lhHg11bePEwrdDZ0aryhRkx4TIOi+6BiMbj1M2ltdeFDOApOFF8kkGwduhLIBDqwgiSuIZJoG29rFAiWcYLvOUIEvrzIEELxtvaymrFhctCwnJMMJ5KO+Ft7OarhWAEkKwFeawmVxVd+noff38GkTX/o80/wbbgbWGNsYRukfOvkB+4ToHypnA9RzD+57IwrPoRRZOUdSDW3E8MuMpjHPt5nFM42uhnWoOVD9rCTDIbShtnE253taDOW5zujmepMB2vbvRTH+iS4ekCfmeAbfvHN1QuK0qEwxXhLlT/zT0PictjwGgx6HIY9Cx71m1CpMjXuOQMqfwPtbnBTx8nPlzY2sQMB8MaVWfRmLjtYxRmb9EQopYqX2MRZiribWKYS7bCpiGbMxxkK2Ugq19GZIAeX7nGsABLQASZ/XPtjLSMgcsDl9+cmyQCyeS7sXQCjXoW+s8DZtc7TqDI17jZM/qzaqVoA8SSAbA6rcuymMJBwuhHIjxxnFFE2JXNeShUvs5kUinmBwfSltbWX1Iyd8B1H8MGV6+hi7aWojm3mDSxJYDTc8B08uBdCesCK2fBxDzj2W51dUapMjTu3Bqc2cgeiEu60REsZBiu28tZEQeFWupNPBX9xmVeY1SililfYTDKFPMfA5uDRTIM5Sg77yOR6uuKDm7WXozrNAaSa8Di4ez3ctpySSgP8MI1vn5/C4DnrLuuwUm1q3K2vqp1Y1SqnFTZk8BRDMD0J5icSqbCBtt4cNMa0VSHPMoi+NLw21szVjUDwLUcIwINJNpiSVQPHSmGZiqLwa0UfXiz9kEcNC7jX6Vf0xU48t+wB4PIOK7NPjbv2k/7phjxVvN3djQGkkkK8bEiv6Ra68ywb+J1TVt32HyCLd9mJDgPPNaetmmkkezlPInk8SB+bSseqSXMAuYR3Vp2gVAdvcjcY4F6nXynXu/POqgdU9REHZAABqNoDHuPNfvi/dyD1W4takm4E0psQfuYEE+lolS6nFSSxgINE4suzDCKcFhZfQzP2iwHBtxylNf/f3plHx1Vd+frbGkqyJMuz5UHGA5bjAYxtZLCNQ5ohjI2B0CSEzorpZUKSbifpkZCkV7IeyevkQb9O0gnhhRCGTjpAINA4iRMC2ITBNpaMLXmULdmyLVmWZE2WLalUpTrvj3sFspCsUtW5NWl/a9W6VXfY99SpW/d3zzn77J3HtcyOd3FihnZh9eMDTyrhf5t1PBO6ji/Ibyhofc/7k2cscpY9h7wx73qEBOnyxH40fJIFtNPNljjMlP8jVfyMXVzOdB7mGhUPZdhso5ajtHE3i8gYQbfVkfNNw+RcTyrhO+Ze6pjIv2c+AsFub0+eNhHIhJ4TnpjvdUE1hDyxHw0LmchU8thEdUzP+wZHeZT3WM5U7mcF2dooV4aJwfAc+5hOHquZEe/ixBRPBUREbhCRChGpFJEHBth+j4g0isgu93Vvn21rReSQ+1pru2yDhSLp72F1lhy+nbaeOaFqeOsh28U4F0lzvLFCXglI78+dePk4BOFqZrKbRqr65c72im3U8gNKuIhJ3M/KEfXM+k6tAAAZNUlEQVTkqNjjXU5whDbuZMGIC6rp2eOWiKQDjwAfB2qAEhHZYIzZ12/X54wx6/sdOx74FlCMc7fb4R5r5c4STiiSvuFHbrh+HVTshc3fhovuhEnRJ3kalLRp0PPhuFo2SOQWCMCNXMgfqOI/2M5/cK2nA5HbqOUhtjGXcXyDK0bMoKdilxCGZ9jLNPL4mBtvbiTh5SPXZUClMeawMaYbeBa4NcxjrwdeNcY0u6LxKmBtVPl8oUjAEZF3HriaI9+7mXceuNoRlZt/6Mxo/5/7IOThDTh9mmctkN6fO1EzAuaTxVe4jOOc5mmPJjwG6OExdvJvbGEWY/gWHyWHwSeNKsr52EYtR2jjUyxM2HA8XuLlN54O58TNqHHX9ecOESkXkRdEpLcDMdxjEZH7RKRUREobGxvDKlhEoUhGT4EbHoLqN+HQH8M6T0SkTYGeeo+MJ2bLoy9LKeAWivgdlVRa7srqIcTDbON3VLKGIr7HVYweAZO9FG9wxj72M408rhxhYx+9xFsyfwvMMsYsxmllPD1cA8aYx4wxxcaY4kmTJoV1TFh5OgZi6VrImQjvPTncYoaPZAHeDNYH6ADAl+CRZO9mEXlk8iv2WrNpMPyYHWzjBJ9jCfeyBJ92WylRUEYDR2jlE8wfka0P8FZAauEcWS50172PMabJGON3Pz4OXBrusdEQcSiSDB8s+Qzsfxk6vRrozQDjzYzsbs4AkEmeJ/ZtkUsmt/ERSqmjgqao7RkMT1HO61RzFwu5JQVTiyqx50UqGEc2V43AsY9evBSQEqBIRGaLiA+4C9jQdwcR6TvVdw2w333/CnCdiIwTkXHAde46K0QViuTiT0FPAA561Y2VAR6F9OgVEF+CCwjALRSRj89KK+RFKniJg9zEhXyahRZKp4x0DtPKLuq5hSIyR3BL1jMvLGNMUETW49z404EnjDF7ReRBoNQYswH4soiswbljNgP3uMc2i8i3cUQI4EFjTLPN8kUciqRwudONVfF7uOTTNovkIJlA0AnkKHZdAgPvt0ASuwsLYBQZ3MF8nqScfZxiYYShV17hME+zmyuZwX0s1XDsihVeooJRZHADc+JdlLji6awpY8xGYGO/dd/s8/5rwNcGOfYJ4AkvyxcRaekw70ZHQEIhSLPdiOv9SYJg2Tuom7NAcrRAAG7iQl6igmfZx4NcOezjX6KCpyjnUqbwFS4jTcVDsUAjHbzFcW6haERE3D0fI3PkJ1pmrobOZmjzIjmTH+dnsa/tnTSRwSjSybJu2wuyyOBGLqSMepoJP1mXcX3zn6SclRTyVVaSqZe6YonfUQnAGh1L039VRExyI8Y27j//fpEQOg0y2nr3FUAHDeQwOam6cVYzAwNsCdOHwmD4BXt4hn1cwyz+RcOTKBbpJMifOMxKpqd8tsFwUAGJhMkLnGXjAfu2TTtIvn27wFkaySU8V+dEYQb5zCSft8NIxWswPEE5L3CA65nDlygecaElFG/ZTDVnCWjrw0UFJBJyJsKo8d60QMxpSPNGQDpoJIfJntj2kiuYwX5O0XSebqwQhp+yk5c5yF8yl79lmY55KFYJYfgthyhiHPOxn68nGVEBiQQRpxXiZReWZQJ0EOAMOUnWAgG4gkIMsHWQUO8Gw6O8x0aquJ15fI4lSdVNpyQHOzlJLWdYwzy9vlxUQCJl/FxoOWLfrmmBtLHWzZ7lJAC5FFi37TUzyGcaeZTTMOD2chp5hcPczke4h8X651Y8YSNVjCObVRTGuygJg44uRkr2GPC327fbUwMZS62bbeMoAGOSdNZsAbkcpJmfsYsM0sgk7f3ldk4wGh9/zSIVD8UTmulkBye5nXnq0dcHFZBIyRrtCIjNCX/GD6F6SLcfmK2NYwgZ5DHNuu1YcClTOUwrm6gmQA8BQufEFP4UCzS2leIZmzlKCDOi0tWGgwpIpGSNBhOCQCf4LLnz9WYiTLffRG7jKPkUkpakP/kaij7k+dJDiCAhghhykvR7KYmPwfA61SxggqY77oe2xSLF515I/tP2bPa4rqoetEBOc5QxzLRuN56kk0YWGeSSqV1XimdU0EwN7VyTgq2PfZyK6ngVkEjJ6hUQi+MgIVdA0uy2QAKcpYNG8pN0/ENR4skmqskindUpNnh+gCa+yZtR2VABiRi3Bz7NYr97sAJIgwy7TzrNHAJgPHOt2lWUVCdIiHeo4XKmpVTmypOc4Tu8zXiyo7KjAhIpgS5nmW4xrlTwAKTPBonuR+1PExWAMJ55Vu3Gkh4MAXqG3lFRLLKbBtrpZnUKZRxsp5v/xdsY4Ft8NCpbKiCR0uPmwcq0eLMP7oeMBfbsuTRRQT6FSRHGfTB+xk7+gdfoSdB87kpq8hbHySGDZUyJd1GsEKCH77KFes7ydVZF7RSgAhIpQcstEBOE4EHrAmIwNFPBBOZbtRtrdlLPMU4POhtdUWwTIMRWarmc6SnhIt6b1nkPjXyF5SyyEJUitQSkqTF25wq6LZAMSy2Qnmqg27qAnKGObtoZzxDpehOYNvzUucmwXqQCo60QJQaUUc9ZAikzeP4c+9nMUf6aRXzMkkNNaglIXS10dMTmXP52SPdBuqX5B4FyZ5mxyI49l1PsAWBikrZAeuNcpQF/yVwqaQk7tLuiRMNWaskhgyUp0H21i3qeYS9XMZNPYu8hNbUEJNgDz/8yNuc6Uw+jLV5YgR1ABmRebM8mUE852YxndJIOAv6GCrZQw1oWs44lzGIMT1JGtw6oKx4SwlDCCZYxJelDlzTSwffZTiH5/C3LrM6Z8rRmROQGEakQkUoReWCA7f8oIvtEpFxEXheRmX229YjILve1IawT5uTAT3/ghBfxmjMnIddiYMLgDqf1IaOsmTQYGihjMhcn5US7HdTxCzef+W3MIx3hXpbQQAcvczDexVNSmEpaaMXP8iQN/dPLGbp5kLfwE+SrrCDLcsQGzwRERNKBR4AbgYXAp0VkYb/ddgLFxpjFwAvAQ322dRpjlrivNWGddNJkOLgf3ng1+i8wFGfqIc+SgBjjtEAyL7Vjz+U0R/HTRgFLrNqNBSc4w7/zLrMYy5cofl8AFzOZFUzjBQ4MK82togyH7ZwgDaGYqfEuSsQECPFdtlBLO19jFRcwxvo5vGyBXAZUGmMOG2O6gWeBW/vuYIzZbIzpHbTYBlGOVo0dD5OnwP/7flRmwsKmgPQcg9Ap6wJSTxkAk1ls1a7XdBDg33iHNISvs+pDT033cAkBevilO76jKLYp4QQLmMBofPEuSkQYDD+ihN008iWWc4lHaRy8FJDpcE4e0hp33WCsA/7Q53O2iJSKyDYRuS2sM4rA33wRXv8j1BwbdoHDJtQDZxvsjYEESp2lBwKSx7SkSiK1mwbuZxM1tHM/KygYYO7KNPK4hSJep5oaLMYiUxTgFB0coY3Lkrj76kUqeINjfIaLuMrDGHgJMTokIp8BioGH+6yeaYwpBu4GfiAiFw5y7H2u0JQ2NjbCx292NpRu867AbccdERk7y469wDtANmTa62oK0kUDZUzFrih5yVsc5xv8mS6C/CtXnPep6RPMJ500NlIVwxIqI4EyN3HZ0iT1vjpEM79kD6so5E6PvS+9FJBaOMf1p9Bddw4ici3wDWCNMcbfu94YU+suDwNvAANmWTLGPGaMKTbGFE+aNAkWXgw+H+wqtfdN+tPs3rQmWIot1f02+C4DsRcWpZ5dhAgwjcus2fSSDgL8nF3MZRyPcMOQfc9jyGI1hWyimk6CMSqlMhIoo54xZDGT/HgXZdh0EuT/8i7jyGY9l3ruPOOlgJQARSIyW0R8wF3AOd5UIrIU+CmOeDT0WT9OxLmbishE4ApgX1hn9flg0SWws8TOtxiIpkpnOX7ARtHwCJ2FwHuQuTp6W32oo4RMcpmI3XklXvFr9tNMF59nKVlhzvq9ibl0EOQNN9uiokSLwVBGA4uZnJSei4+zizrO8I9cTl4Mxm88ExBjTBBYD7wC7Ad+bYzZKyIPikivV9XDQB7wfD933QVAqYiUAZuB7xljwhMQgCXFULYDQiFbX+dcmqsgIwvyzzekEyaBd4Ee8F0RvS0XQ4gTlDCFZUmRQKqGdjZwkGuYxUeYEPZxH2E8FzKW31Ops9MVKxynnRa6PBt09pIt1PAqR7iD+VwUo3FPT+8uxpiNwMZ+677Z5/21gxy3BYh8Rt3S5fDko1B1EIo86ANsroJxsyHNgv52b3GWvlXR23Jp5hB+WpnKcms2vaIHw2PsxEc6nx3mTy4INzGXH1HKXk7F7E+jpC5l1ANwCZPjXJLhcZhWfsB2ihjH3THsdUiIQXTrzHXjPh2r9sZ+w36YaCm2VPebkHERpI21Yw+oZQtCOlMptmbTCwyGn7GTXdSzlsWMiyA3wZVcQDbpbNEgi4oFKmhiIqMG9P5LVM7QzffYQi4+vs4VZMTwtp6aAjLGvRmfbrNvO9AFTQehwELIEdPteGD5roreVq9JDMd5hwKW4iPPml0veJ4DbKSK25nHjUQ2npRFOjPI57i68yoWOEIrFzIu3sUIG4PhPymhkQ7uZwUTsBfJIhxSU0DyXQFpa7Vvu3G/48I7xYKABErAdECWPQFpoZIOGpiBvTEVL3iNI/ySPXyMC1gb5UTHQhUQxQJ+gtTSzmzs9QZ4zf9wkG2c4B4Ws4CJMT9/igqIO2XfixZI/W5naaMF4t8MCPg+Fr0tlxO8C6Ql9PhHCXX8mB0soYAvs5y0KL1dZpBPM12cJWCphMpI5CinCUHSCMg+TvE0u1nJdNZQFJcypKaA5ORARgac9qAFcrLcyQEywcIP1r0ZMi6BtPHR23I5QQkTWUBWgvqwN9HJw2xlNmN4gJVWIp0WulnVdFa6Eg1HcO4Xsz2IGWWbVrp4iK0UkMuXWR43l+PUFBARyM2DM+32bdftgsmLos8DYjodD6ysv7BSLICz1NPGkYSePPg05QQJ8VVWkkOmFZszXLGswYPfWxkxHKWNUWQwOQkG0B/lPdrp5qusJNfS/ygSUlNAAIIB8Nmb2Q0480pqS6HQQvdQ99tAF/iui96WSw2OS/B0VlqzaZP3OMkbHOMO5jPF4gD/ZHIRoJ6z1mwqI4+TnGEqeVF3qXpNCSfYSi13sZA5ce5uS00BMQY6OyHbUrrZXpoOQVcbFFp4wvf/CfCB78robbnUspWxzCEvAWP4dBHkJ+xgOqO502JGNIBM0phIDifdtLeKEgknOcuUBG99dBHkp+xkBvnclgBpqlNTQIJBp7WQZVlAat51lrYExLca0uxcsB2cookDFGJvQqJN/pu9NNDBei7FF2aokuEwhVxOagtEiZAQhnrOJvz8j59TRgMdfJFlCZEpMf4l8IIuN9FQtmWf6OPbwZcHk6Kc3d5TB8FyyLLXfVXLVoCEFJBDNPNbDnI9c1jk0WzxKeRpF5YSMS10ESBEQQLPnfoDVbzC4ZiGKhmK1BSQzl4Bsd0C2e6Mf6RF+QTtf81ZWhSQGraQzwWMjjInl2389PBjShlLNmujiE4zFAXk0kIXXRqZV4mA3u7PRO3CqqCJx9jJpUzhM1wU7+K8T2oKSGuzsxxjcUZpdwfU7YTCy6O35d8IaQWOC68FOjjFKfYxA7sRfaPFYPgJOzhCG3/HpZ5GB53ozsBtpsuzcyipS4t73cR6Jnc4dNPDDylhHNn8E5eTnkCD/KkpICfrnGWBxXzGNdshFISZUd6kTRD8f4SsG0HsVP9x3gIMM7A3IG+DDRxiM0e5m0Us9zi721g3jlabCogSAadxUhHlY9lz0wLPso8a2llPcUxCtA+H1BSQhpPOssCiN9LRt53lzCjHGAJbwbRC1s3Rl8nlGG8yjiJGJ1AKzjLqeZJyVjCdT1r2uhqIMe4fvxX/EHsqyoc5TTdAwuVAr6KFF6ngGmaxLAG9K1NTQOo9aIEcfQcKLoJRUXaLdf0eyICsj1spVjs1tFLFBQnU+uimhx9RynTy+HsLoUrCQVsgSjS04SeXzJhGsh2KACF+SAljyGIddrq7bZM4tWWT+jpnAD3fUkiCUA8c2wIXWAhQ6N8Ivo9Cmp2yHeNNQBJq/GMjVTTQwX0sszbbfCjytQWiRMFp/AnXffUbDlBNG19kWcJ1XfWSmgJSV+u0PsTSk+/J3eA/DbOivEkHj0JwN2TdZKVYBsMx/sxkLmbUMDL5eUkLXTzHPpZSENOkPJmkkUsm7SogSgScoZu8OIYE6U8jHTzPflZTyAosZD71iNQUkOoqmD3Xor0/O8tZUUbN9bsZe7Nvjc6OSxP7OUMdM7EXDj5anqIcP0E+x5KYnzuLdPz0xPy8SvITJESmBxNcI+VX7AXgbxK066qX1BSQI5V2BeTwGzB+DoydEZ2drpchfT5k2Am9XM0m0slOmMmDe2hkM0f5BPMpjEM04EzS6VYBUSIgSChhxj8O0MRmqrmZuUwiJ97FOS+e1piI3CAiFSJSKSIPDLA9S0Sec7e/KyKz+mz7mru+QkSuD/ukLc3Q2mJPQEIhpwUy+y+itNMK3X+21voI4uc4b1PIKjISwHc9SIhHeY/J5HAnHuShDwMf6XQTisu5leQmUQSknW4eZhuTyI2J92K0eFZjIpIOPALcCCwEPi0iC/vttg5oMcbMBb4P/B/32IXAXcAi4AbgJ669oTlS6SxtCUj9buhsiV5A/H8AgpC9xkapOME2gnQwi6ut2IuWDRziOKf5PEvJIspQ9xHiI01bIEpEBDFxF5De9LQtdHI/KxJ24LwvXtbYZUClMeawMaYbeBbo//h9K/C0+/4F4BoREXf9s8YYvzHmCFDp2hsavx8WLYa582x8BzjbCOMvhNlRjn+EWiFjAWRamMkOdNFKPhcwKQHCGhgMFTRxOdM8nzB4PmYyhskJ3uRXEpNCRjMtznGwmumikhbWspgi7CWZ8xIvHxWnA8f7fK4B+t8939/HGBMUkTZggrt+W79jB3RFEJH7gPvcj35ZdeUeAOZZbv7980xLhmxX+SODbZgInLJ8siH511ifcAC+eO7HuNRDgqJ18QED1sW6OBSkP0/F/pQRx4WPT1+DRYwxjwGPAYhIqTGmOM5FSgi0Lhy0Hj5A6+IDtC4+QERKIz3Wyy6sWqCv21Khu27AfUQkAxgDNIV5rKIoihJHvBSQEqBIRGaLiA9nUHxDv302AGvd938FbDLGGHf9Xa6X1mygCNjuYVkVRVGUYeJZF5Y7prEeeAVIB54wxuwVkQeBUmPMBuDnwC9EpBJoxhEZ3P1+DewDgsDfGWPCca95zIvvkqRoXThoPXyA1sUHaF18QMR1Ic4Dv6IoiqIMj/jPnFEURVGSEhUQRVEUJSKSVkBE5E4R2SsiIREZ1B1PRKpFZLeI7IrGXS3RGUZ9nDe8TLIjIuNF5FUROeQuB0zgIiI97jWxS0T6O3ckNdGEEEo1wqiLe0Sksc+1cG88yhkLROQJEWkQkT2DbBcR+U+3rspFZNlQNpNWQIA9wCeAN8PY9ypjzJIU9/sesj7CDC+T7DwAvG6MKQJedz8PRKd7TSwxxtiJL5MARBNCKNUYxvX+XJ9r4fGYFjK2PIUTGmowbsTxeC3CmZz96FAGk1ZAjDH7jTEV8S5HohBmfYQTXibZ6Rse52ngtjiWJR5EE0Io1RgJ13vYGGPexPF2HYxbgf8yDtuAsSJy3rSuSSsgw8AAfxKRHW7Yk5HMQOFlEjdbTWQUGGPcnMacBAoG2S9bREpFZJuIpJLIhPMbnxNCCOgNIZRqhHu93+F22bwgIlHmbEhqhn1/SOhQJiLyGgyYSf4bxpiXwzSz2hhTKyKTgVdF5ICrxEmHpfpIes5XD30/GGOMiAzmpz7TvS7mAJtEZLcxpsp2WZWE57fAM8YYv4h8HqdllhghrpOAhBYQY8y1FmzUussGEXkJp1mblAJioT5SIkTM+epBROpFZKoxps5tfjcMYqP3ujgsIm8AS4FUEJDhhBCq6RdCKNUYsi6MMX2/9+PAQzEoV6Iy7PtDSndhiUiuiIzufQ9chzPYPFIJJ7xMstM3PM5a4EMtMxEZJyJZ7vuJwBU4UQ9SgWhCCKUaQ9ZFvz7+NcD+GJYv0dgAfNb1xloBtPXpDh4YY0xSvoDbcfro/EA98Iq7fhqw0X0/ByhzX3txunriXvZ41Yf7+SbgIM7TdsrVB05f/uvAIeA1YLy7vhh43H2/CtjtXhe7gXXxLrflOvjQbww8CKxx32cDz+Pk2dkOzIl3meNYF9917w1lwGZgfrzL7GFdPAPUAQH3XrEO+ALwBXe74HitVbn/i+KhbGooE0VRFCUiUroLS1EURfEOFRBFURQlIlRAFEVRlIhQAVEURVEiQgVEURRFiQgVEEVRFCUiVEAURVGUiFABURSPEJHlbpC+bDcqwl4RuSje5VIUW+hEQkXxEBH5Ds7M71FAjTHmu3EukqJYQwVEUTzEjcFUAnQBq4wxPXEukqJYQ7uwFMVbJgB5wGicloiipAzaAlEUD3HzrT8LzAamGmPWx7lIimKNhM4HoijJjIh8FggYY37l5ufeIiJXG2M2xbtsimIDbYEoiqIoEaFjIIqiKEpEqIAoiqIoEaECoiiKokSECoiiKIoSESogiqIoSkSogCiKoigRoQKiKIqiRMT/B4WNucXoUdTeAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "from matplotlib import pyplot\n", "pyplot.rcParams['image.cmap'] = 'jet'\n", "import numpy as np\n", "\n", "x0 = -1.4\n", "y0 = 0.5\n", "x = [x0] # The algorithm starts at x0, y0\n", "y = [y0] \n", "\n", "eta = 0.1 # step size multiplier\n", "precision = 0.00001\n", "\n", "def f(x,y):\n", " f1 = x**2/2-y**2/4+3\n", " f2 = 2*x+1-np.exp(y)\n", " return np.sin(f1)*np.cos(f2)\n", "\n", "def gradf(x,y):\n", " f1 = x**2/2-y**2/4+3\n", " f2 = 2*x+1-np.exp(y)\n", " dx = np.cos(f1)*np.cos(f2)*x-np.sin(f1)*np.sin(f2)*2.\n", " dy = np.cos(f1)*np.cos(f2)*(-y/2.)-np.sin(f1)*np.sin(f2)*(-np.exp(y))\n", " return (dx,dy)\n", "\n", "err = 100.\n", "while err > precision:\n", " (step_x, step_y) = gradf(x0, y0)\n", " x0 -= eta*step_x\n", " y0 -= eta*step_y\n", " x.append(x0)\n", " y.append(y0)\n", " err = eta*(abs(step_x)+abs(step_y))\n", "\n", "\n", "print(x0,y0)\n", "\n", "#### All this below is just to visualize the process\n", "dx = 0.05\n", "dy = 0.05\n", "xx = np.arange(-1.5, 1.+dx, dx)\n", "yy = np.arange(0., 2.+dy, dy)\n", "V = np.zeros(shape=(len(yy),len(xx)))\n", "\n", "for iy in range(0,len(yy)):\n", " for ix in range(0,len(xx)):\n", " V[iy,ix] = f(xx[ix],yy[iy])\n", "\n", "X, Y = np.meshgrid(xx, yy)\n", "pyplot.contour(X, Y, V)\n", "\n", "#pyplot.plot(x,y,linestyle='--', lw=3);\n", "pyplot.scatter(x,y);\n", "\n", "pyplot.ylabel(\"y\")\n", "pyplot.xlabel(\"x\");" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Stochastic gradient descent (SGD)\n", "\n", "Stochastic gradient descent (often shortened to SGD), also known as incremental gradient descent, is a stochastic approximation of the gradient descent optimization and iterative method for minimizing an objective function that is written as a sum of differentiable functions. \n", "\n", "There are a number of challenges in applying the gradient descent rule. To understand what the problem is, let's look back at the quadratic cost $E_D$. Notice that this cost function has the form $E=\\sum_n E_{\\bf x}^{(n)}$\n", "In practice, to compute the gradient $\\nabla E_D$\n", " we need to compute the gradients $\\nabla E_{\\bf x}^{(n)}$\n", " separately for each training input, ${\\bf x^{(n)}}$\n", "and then average them.\n", ". Unfortunately, when the number of training inputs is very large this can take a long time, and learning thus occurs slowly.\n", "\n", "Stochastic gradient descent can be used to speed up learning. The idea is to estimate the gradient $\\nabla E$\n", " by computing $\\nabla E_{\\bf x}$\n", "for a small sample of randomly chosen training inputs. By averaging over this small sample it turns out that we can quickly get a good estimate of the true gradient.\n", "\n", "<!--To make these ideas more precise, stochastic gradient descent works by randomly picking out a small number $m$\n", " of randomly chosen training inputs. We'll label those random training inputs ${\\bf x^{(1)},x^{(2)},…,x^{(m)}}$\n", ", and refer to them as a mini-batch. Provided the sample size m\n", " is large enough we expect that the average value of the $\\nabla E_x$\n", " will be roughly equal to the average over all of them, that is\n", "$$\\frac{1}{m}\\sum _{j=1}^m \\nabla E_{x^{j}} \\approx \\frac{1}{n}\\sum _{j=1}^n \\nabla E_{x^{j}}$$\n", "where the second sum is over the entire set of training data. \n", "!-->\n", "\n", "To connect this explicitly to learning in neural networks, suppose $w_k$\n", " and $b_l$\n", " denote the weights and biases in our neural network. Then stochastic gradient descent works by picking out a randomly chosen mini-batch of training inputs, and training with those,\n", "$$\n", "w_k \\rightarrow w_k - \\eta \\sum_{j=1}^m \\frac{\\partial{E_{\\bf x}^{(j)}}}{\\partial w_k}\n", "$$\n", "\n", "$$\n", "b_l \\rightarrow b_l - \\eta \\sum_{j=1}^m \\frac{\\partial{E_{\\bf x}^{(j)}}}{\\partial b_l}\n", "$$\n", "\n", "where the sums are over all the training examples in the current mini-batch. Then we pick out another randomly chosen mini-batch and train with those. And so on, until we have exhausted the training inputs, which is said to complete an epoch of training. At that point we start over with a new training epoch.\n", "\n", "The pseudocode would look like:\n", "\n", "`Choose an initial vector of parameters` $w$ `and learning rate` $\\eta$.\n", "\n", "`Repeat until an approximate minimum is obtained:`\n", "```\n", " Randomly shuffle examples in the training set.\n", " For i=1,2,...,n , do:\n", "```\n", "$\\quad \\quad \\quad \\quad \\quad w:=w-\\eta \\nabla E_{i}(w).$ \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Example: linear regression\n", "\n", "As seen previously, the objective function to be minimized is:\n", "\n", "$$\n", "\\begin{aligned}\n", "E(w)=\\sum _{i=1}^{n}E_{i}(w)=\\sum _{i=1}^{n}\\left(w_{1}+w_{2}x_{i}-y_{i}\\right)^{2}.\n", "\\end{aligned}\n", "$$\n", "\n", "And the gradent descent equations can be written in matrix form as:\n", "\n", "$$\n", "\\begin{bmatrix}w_{1}\\\\w_{2}\\end{bmatrix}:={\\begin{bmatrix}w_{1}\\\\w_{2}\\end{bmatrix}}-\\eta {\\begin{bmatrix}2(w_{1}+w_{2}x_{i}-y_{i})\\\\2x_{i}(w_{1}+w_{2}x_{i}-y_{i})\\end{bmatrix}}.\n", "$$\n", "\n", "We'll generate a series of 100 random points aligned more or less along the line $y=a+bx$ with $a=1$ and $b=2$\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.1637760980701564 2.001777141438794\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAG65JREFUeJzt3X2UXHV9x/HPN8uGLIayxERMpoQJkYZGItmyR8FQCgqC4MMCpyJopa3H2B5oC7XRYG1BFLOKD9CDB0+snKhkKHqAQIGKmKRiqXq6aXIEDDkoBHUJEIqLKDubffj1j525uTN7Z+bOw87ch/frHM7ee+fuzu+M6yd3v78nc84JABB/czrdAABAaxDoAJAQBDoAJASBDgAJQaADQEIQ6ACQEAQ6ACQEgQ4ACUGgA0BCHNLON1u4cKHLZrPtfEugZR5/9mWNT05JklbZk971R9yx09cyR3SkXUi+HTt2vOCcW1TrvrYGejab1dDQUDvfEmiZLTuHddWdj2h310WS5kuSsvnNWizT3sHzOts4JJqZPR3mPkouQEgDfZlCmE/b5xZIhDkipK1P6ECnbdk5rOsf2KNnRka1pLdH685eoYG+TLhvvqa0pHLK2E2EOSKFQEdqFEsmo+OTkqThkVFddecjklQ71MvCPJvPEeaIHEouSI3rH9jjhXnR6Pikrn9gT/Vv3PqpklPCHFFFoCM1nhkZreu65wef9w6z+ZyOf+3hrWwW0DIEOlJjSW9PXdcllZRasvmcJOk7V5zW0nYBrUKgI1G27BzWmsFtWrb+Pq0Z3KYtO4e919advUI93V0l9/d0d2nd2SuCf5gvzLdO9kkSpRZEGp2iSIxanZ7Fjs9Qo1zKOkE/OL6OMEfkEehIjGqdnsXQ9gd7RYxoQUxRckFiDDfa6el3+/tLTrP5nEyaUb4BoogndMRacaJQpTCXanR6ltv9795hsRPUafofiytv36Urbt+lTL0TkoA2IdARW+U180rOOL7mmkbTAka0+LnC17omJAFtRMkFsRVUMw+y/fH9tX+YL8y/MXFWzdtDTUgC2oxAR2yFrY3XvK+sE/SfJ/5CmRBlmrpq80AbEOiIrbC18SN6uiu/WGFES9CY9UbfH2gXAh2xFSZ0Jel3Bya8ESr+iUdPffKEkvv8wxMH+jLacMEq70ndyn5m1QlJQIfQKYrYCpoo9OvfjemV8amS+8YnnVfv9neiLnO/9O7J5nP62DnHz/j5xfdoatldoE3MOVf7rhbp7+937FiE2bRs/X0K+o02TZdIisMb9867xHutOKKFyUOIKjPb4Zzrr3UfJRckSrUFuJ4JCPPPjr93+hphjgQg0JEo1RbgWtLbUxLmknTz5LtCjWgB4oBAR6L4OzNNUqa3RxsuWKWBvowezp9fcm82n6NzE4lCpyhiqVonZeACXAHDE5nCj6Qh0BE7de8NOlU66iVoWj+QBJRcEDt17w167ZHeoT/Mi/8QsIoikoJAR+zUtTeor9Tytwcum/Eya7IgSQh0xE7ovUHL6ub3TK0J/D7WZEFSEOiInVB7g1boBA3CmixICgIdsVNtaKKkuhbcYtgikoRRLoilinuDjpeWT7L5nO6+bI33PVLITaKBGKoZ6GZ2tKRvSDpK05u2bHTO3WhmCyTdLikraa+k9zjnfj17TQVCuO613mFxRMuJR/d610JtEg3EVJiSy4SkjzjnVko6WdJlZrZS0npJW51zx0naWjgHOsdXannfgasksUYL0qXmE7pzbp+kfYXjl81st6SMpHdLOr1w29cl/aekj81KK5Eo9S5FG+r+srr5w1OrCHOkTl01dDPLSuqT9GNJRxXCXpKe1XRJBqiq3lmeoe6v0AkKpE3oUS5mNl/SHZKucM79xv+am15UPXBhdTNba2ZDZja0f3+IzXqRaPXO8qx5f4XhicvW36c1g9sCdyryXweSJNQTupl1azrMNzvn7ixcfs7MFjvn9pnZYknPB32vc26jpI3S9AYXLWgzYqyuWZ61rr/yYsm1bD6nQw+Z421iUXyaH3r6Rd2xYzj82i9ATNV8Qjczk/Q1Sbudc1/0vXSPpEsLx5dKurv1zUPShJ7lGeb655Z558URLWMTpQtxjY5P6rYf/7K+tV+AmApTclkj6c8kvcXMdhX+O1fSoKSzzOwJSWcWzoGq6p3cU+l+/9rmbx27XtLMjZyLJitss8iUfyRNmFEu/6XK/195a2ubg6Srd3JP0P3lG1X83GW0d/A8rRnc5pVb/LrMAkOdKf9IGjaJRrxU6AR9ZmRUR/R063cHJjQ+efB3uqe7SxeelCmpoRevlywXAERY2E2imfqP+AgI857uLu+pfGR0XN1zTEce1q2RV8ZLnv77j1nAlH8kHoGOeBj5RclpNp/T4iPmad9L+ZLr41NOh809RDv/+W0l15nyjzQg0BEPN6zyDosjWp4tC/Mif2dnvbNSgThj+VxEn6/U0p+/WdL0Gi21hjoWZ5kOj4zKiS3nkHwEOqKtrG7+go7wpvXXGgJZ996jQMxRckF01VijpdYQyHpnnwJxR6AjmkIuuFWts3NJb0/guHTGnyOpKLkgep59tOQ0m8/pyc+cW/ePYcs5pA1P6Iier6zxDrP5nBbOn6s5cypNVq6MLeeQNgQ6osVXavnD/C2SpKFPnNXwj2P8OdKEQEd0lNXNRzWvoY0qGHuOtCLQMWvqCtYW7TpU745IQJLQKYpZUdeknhZuIcfYc6QZgY5ZUStYi1vCve/jny25p9n9QBl7jjSj5IK6hSmlVAtWf1nk4Xmf8V7L5nM67Q8WNdU2xp4jzXhCR13CllKqrbNSfHrfO+8S7/ry/DclSd/4yzeGakOlDZ8Ze440I9BRl7A16mrB+szIaEmYT7g5mlRXxW2xirbsHFbftd/VFbfvqvgPykBfRhsuWKVMb49MUqa3h40skBqUXFCXsDXqapN6Bu5eWXLv68ZulVS9LFI+esWv+A9K8T0Ze460ItBRl3pq1IHBGjCiRapdFgn6y8CPTk+Akgvq1FSN+rG7Sk6z+VzoskitwKbTE+AJHXVqan2Ub/+5d5jN53TlmX+gvzvzuFDvW+kvA4lOT6CIQEfdGqpR+0ot2fxmSQod5tL0XwZBNfTenm5d867XUzMHRKDDp3x8+RnHL9L2x/c3vyaKL8z/e3KlJKt78hArJwK1mXOubW/W39/vhoaG2vZ+CK/aKJKinu6u+ocAtnBaP5BWZrbDOddf6z46RSGp9igSqYE1UQhzoK0IdEgKP+wv9PDAH91cckqYA7OPQIek8MP+Qg8P/M567zCbz+nG965upFkA6kCgQ1Lw+PJyoYcHloxomZ449O7VdF4Cs41Ah6TgNVDef/LS+tdE8YV5buIMSaLUArQJo1wQWs1lc+kEBWZF2FEujENHKDW3diPMgY6j5IJQqi6b+8A/llwnzIHOINARStVlc394k3de7AQt33gCwOwj0BFKpeGKT/k2qiiGuVRjU2gAs6JmoJvZLWb2vJk96rt2jZkNm9muwn/nzm4z0WlBwxr9uw59fvxPZ3xP3TNLATQlzBP6JknnBFz/knNudeG/+1vbLERN+bBGf5hL0k2T5wd+HxtPAO1Tc5SLc+4hM8vOflMQdd6yuQEjWjJ17GQEYHY0U0O/3Mx+UijJHNmyFiHa/u19JafFES1N7WQEoCUaDfSbJS2XtFrSPklfqHSjma01syEzG9q/f3+Db4fIePxe7zCbz2nbR/5EUvBM07qX2gXQlIYmFjnnnisem9lXJd1b5d6NkjZK0zNFG3k/RETAGi3HLprvXWtoJyMALdPQE7qZLfadni/p0Ur3IiF8YX7lgb+WxBotQNTUfEI3s9sknS5poZn9StLVkk43s9WSnKS9kj48i23ELKi5LotfWSfoXVN/TJgDERRmlMvFAZe/NgttQZvUXJfFjzVagNhgpmgKVV2XxW/TO0pOCXMg2lhtMYWqrstSNDUl7f2Bd5rN57Tzn84K9fPrKucAaBkCPYWWhJkEdO3BqQXFES1HvmpuzZ/9iS2PaPOPfqHicKZiOWfo6Re1/fH9hDwwiyi5pFDNSUC+uvnFB6aXxs309tRcaGvLzuGSMC8aHZ/U5h/9QsMjo3Ji4S5gthDoKVR1ElBZJ+gPp14vKVwIX//AnhlhXhQU8izcBbQWJZeEq1TPDpwEFDCixa8YwpVKJfUuxMXCXUBr8YSeYMXhiaFKHV9cWXJaHuZF1UK43oW4WLgLaC0CPcFCD0+cOCD95mDIZ/M5LTliXuDPrBbCQbV5k7Rm+QIW7gLagEBPsFDDEyXp04u8w2w+p4XzD9VHzzm+7hAOqs1/6aLV2vyhU1i4C2gDaugJFmp4oq9u/vaxDZKkoU+c6V2rdzx5pQW6WLgLmH0EeoKtO3tFyRR/qfLwREna7Y4pmQlKCAPxQqAnWDGMA5+yWaMFSBwCPeHCDk8kzIH4o1M0bfIvlZxm8zk9teHcDjUGQCsR6GkzuNQ7zOZzetOyBTKzDjYIQKsQ6GniK7WcOnajJOn2D5/SqdYAaDECPS3K6ua/couomwMJQ6CnAZ2gQCowyiXGQm0kQZgDqUGgx1SofUFffrbkewhzINkoucRUqIW3vnBw3ZVsPqe/WJNtU+sAdAKBHlOVFt4aHhnV8qvuLym1nJjfKEna9PBerRncxk5BQEIR6DFVbRnbnx96ccn5S5ovSWz/BiQcgR5TQWuPS9LeeZeUnAdtVMH2b0Ay0SkaU/6Ft4pL5IYJ8yK2fwOShyf0GBvoy+jh9W9RprdHS+25kteqhbnE9m9AEhHoCbDu7BV66NArvXN/mHd3mbrnlK7VwvZvQDJRckmAgbsPbvC8Ir/JO84UJhtJ9e88BCB+CPQYCZwZ6gvzX0wt0pjmBk4eIsCB5CPQYyJoZqg/zCXptAM3hp4JGmrZAACxQqDHRPnM0KARLfWEec1lAwDEDp2iMeEfZrjS9pa8Vu8aLaGWDQAQOwR6TPiHGd5/6Me942w+p9s+dHJdP6vSGHTGpgPxRqDHRHFmqL/Ucmz+VknSKctfXdfPqjQGnbHpQLzVDHQzu8XMnjezR33XFpjZg2b2ROHrkbPbzHTYsnNYawa3adn6+2YsojXQl9Hurou88wcnT9KU5jS0HG7QsgGMTQfiL8wT+iZJ55RdWy9pq3PuOElbC+doQrGjcnhkNHgRrbKNKj40/pGG1zYf6MtowwWrlOntkWl6vPqGC1bRIQrEnDnnat9klpV0r3PuhML5HkmnO+f2mdliSf/pnKv5eNff3++Ghoaaa3FCrRnc5q3J4pfp7dHD+fNLrrFRBZAuZrbDOddf675Ga+hHOef2FY6flXRUgz8HBZU6JJe8tLPknDAHUEnTnaJu+hG/4mO+ma01syEzG9q/f3+zb5dYlTokv33otd5xNp/T9/7+tHY1CUDMNBrozxVKLSp8fb7Sjc65jc65fudc/6JFixp8u+Rbd/YKWdk1/4iWbH6zJOl1rzm8ja0CECeNBvo9ki4tHF8q6e7WNCe9BvoyJX/m+MP8KxPvlGSUWgBUFWbY4m2SfihphZn9ysw+KGlQ0llm9oSkMwvnaFKmUHYpn9Y/OHGxbrhodSeaBCBGaq7l4py7uMJLb21xW1KvfPVE6eDa5tc/sIdhhQCqYqZohAwc/njJuX+jCqblA6iFQI+SWy/wDsu3kGNaPoBaCPSo8M0ELQ9zpuUDCINAjwJfmK8bXytJTMsHUDc2uOi0sjVavj15elPDE9mJCEgvAr2TysK82Wn97EQEpBsll0756T0lp61Yo4WdiIB04wm9U771Z95hNp/TT689u65vDyqtsBMRkG4EeieUjWh58/JX67C54f+nqFRa6T2sW79+ZXzG/Qx5BNKBkku7+cL80gMfkyTl6twTtFJpxTmxExGQYgR6O5V1gn5/6sSG6uaVSigvjY6zExGQYpRc2qWFI1qW9PYE7m60pLdHA30ZAhxIKZ7Qm1RtY2fPrttKTpsd0cImzwCC8ITehNDjvrf8lXeYzef0s+ve3tT7Fn82E4gA+BHoTag27tsL17IRLZef8Tod0tX8H0aUVgCUo+TShJrjvn1h/q6xT0mS/oGyCIBZkvon9GbWPqnWOVneCfoTt5wt5ADMqlQ/oRdr4MMjo3KaroFfcfsurf7kd4M7N8tU6px8OH9+ybVWTOsHgFpSHehBNXBJGhkd11V3PlIz1Af6MjPGfX/rDTtK7iHMAbRLqksu1dY4mdG5WUFJ56Rz0icPPp1n8zk9teHclrQVAGpJ9RN6rTVO6l7U6pO93mE2n9OnB06QmTXSNACoW6oDPagG7td7WHf4H+brBH3L2OclSe8/+ZiG2wYA9Up1yaVYKrnyW7vk3MzXg64F8oX5lDM96ZZQNwfQdql+QpcKoV4huF8anbkU7QxlwxOPHdtMmAPoiNQHulS5ll5zHfHtnyk5ZUQLgE4i0NXgYleTE9L3P+udlod5qEW7AKCFUl1DL2posatPvdo7zOZz+sr7T/LO2awZQCcQ6AXli10Vn7ADA95XN39T/iZJ0jknvNa7FmrRLgBoMQI9QKUn7KGnX9Snd53q3ffEVEbPacGMujmbNQPoBAI9QKUnbH+YS9JZB67XDRetnvH9VRftKmhmUTAACEKnaICgJ+kbum8qOc/mc5Kmw79crU7WoEXBwqwdAwDVEOgByocrHqoDGuj6b++8GOZScPgHLdrl36y5Wo0dABpFySXAurNXlNTQ98z7c+81f5hLlceqV9tRiBo7gNmQyEBvtj7tf5L2r21+Yn5jyX2NbswcpsYOAPVKXMmlVfXpgb5MSZjfO3myXtL8imWUejQ0kQkAamjqCd3M9kp6WdKkpAnnXH8rGtWMlo0BL1uj5fLxv21qWn/5Xw0XnpTR9sf3M8oFQMu0ouRyhnPuhRb8nJZoSX36P9aXnDa7RkvQuPY7dgw3/IQPAEESV3JpeKGtorHfSj++2TttxYJbjGoB0A7NBrqT9F0z22Fma1vRoGY1XZ/ecPCJOZvP6QcfPaPpNjGqBUA7NFtyOdU5N2xmr5H0oJk97px7yH9DIejXStLSpUubfLvaGlpoq8hXN1+R36QTMr+noxcc1nSbGNUCoB2aCnTn3HDh6/NmdpekN0p6qOyejZI2SlJ/f3/YPYCaUm0MeLliZ6V/RMu/TAxoTHN179/8cUum6JePa5cY1QKg9RoOdDN7laQ5zrmXC8dvk3Rty1rWBsXOyt1dF5Vc/+LEe7R38LyWLYPb1F8NABBSM0/oR0m6q7Cr/SGScs6577SkVW1y/QN7dNHUfZKv5J7N55QplEJauQxuPX81AEAjGg5059yTkk5sYVva7oWRl3TNvG9458Vp/cXOSjozAcRJ4oYt1qPSGi3Fzsqmh0ACQBulN9B9I1qW5W/1jv2dlUzRBxAn6Qx0X5i/Y+zTcoWP4cjDuktmbw70ZXThSRl1TfcTqMtMF55ELRxANKUv0G94g3e4ZfLNetQd653/Nj9RcuuWncO6Y8ewJt30aMtJ53THjmE2ogAQSekK9Me2SCNPe6dXjF9e8vL4lNM19zzmnTNlH0CcpCfQx34rfftS77R8o4qikdFx75hRLgDiJD2BXrZGSxiMcgEQJ+kIdF8naDa/WbkPvUlHHtYdeKv/OqNcAMRJ8gPdF+ZnjX1Opxy7UG9evlBXv/P16u6yklu7u0xXv/P13nmtzZ4BIEoSuaeoZ/AY7/CbE2fqCff7enDtyZLCr6/ClH0AcZHcQP/Z96T8iHf6TxN/OWOjCsIaQJIks+QynpduvdA7bcWuQwAQdckM9OuO8g6z+Zx+/plzO9gYAGiPWJVcQm02UTai5Xt/f5q65pgAIOliE+ihNpvwdYKemN+oL19ykl73msPb3lYA6ITYlFxqTsPfvsHrBH3fgav0xpXLdd4bFre7mQDQMbF5Qq86DX94h/T9QUnS5om36uGpVdr7gf52Ng8AOi42T+iVptsfe4RJX32Ld/6PEx9kRAuAVIpNoFeahr917GLvPJvP6akNjGgBkE6xCfSgafj/tWjQez2bz2noE2eqsGk1AKRObGroUtnMzu9/Ttq+U5K0Ir9J//qBfi2cf2gHWwcAnRWbJ/QSP98mbb9OkrQmf6PGNFdX3/MYOwkBSLX4BfroiPTN8yVJHzjwMQ1rkaSD49IJdQBpFb9Af+X/JEk3TFygh6ZOLHmJ7eEApFmsauiS9NjYQp2X3ywpuPOT7eEApFXsntCPe83h+vIlJ2nJEfMCX2d7OABpFbtAn3vIHJ33hsX66DnHsz0cAPjEruRSFHbHIQBIi9gGusSOQwDgF7uSCwAgGIEOAAkR65JLNaF2NwKABElkoIfa3QgAEiaRJZeauxsBQAI1Fehmdo6Z7TGzn5nZ+lY1qllVdzcCgIRqONDNrEvSlyW9XdJKSReb2cpWNawZlWaLMosUQJI184T+Rkk/c8496Zw7IOnfJL27Nc1qTqXdjZhFCiDJmukUzUj6pe/8V5Le1FxzWoNZpADSaNZHuZjZWklrJWnp0qWz/XYeZpECSJtmSi7Dko72nf9+4VoJ59xG51y/c65/0aJFTbwdAKCaZgL9fyQdZ2bLzGyupPdKuqc1zQIA1KvhkotzbsLMLpf0gKQuSbc45x5rWcsAAHVpqobunLtf0v0tagsAoAmJnCkKAGlEoANAQhDoAJAQBDoAJIQ559r3Zmb7JT3d4LcvlPRCC5uTNHw+tfEZ1cZnVFsnPqNjnHM1J/K0NdCbYWZDzrn+Trcjqvh8auMzqo3PqLYof0aUXAAgIQh0AEiIOAX6xk43IOL4fGrjM6qNz6i2yH5GsamhAwCqi9MTOgCgisgHelT3LY0SM9trZo+Y2S4zG+p0e6LAzG4xs+fN7FHftQVm9qCZPVH4emQn29hpFT6ja8xsuPC7tMvMzu1kGzvJzI42s+1m9lMze8zM/q5wPbK/R5EO9CjvWxpBZzjnVkd1OFUHbJJ0Ttm19ZK2OueOk7S1cJ5mmzTzM5KkLxV+l1YXFuBLqwlJH3HOrZR0sqTLCvkT2d+jSAe6IrxvKaLNOfeQpBfLLr9b0tcLx1+XNNDWRkVMhc8IBc65fc65/y0cvyxpt6a33ozs71HUAz1o31L2lZvJSfqume0obPmHYEc55/YVjp+VdFQnGxNhl5vZTwolmciUEzrJzLKS+iT9WBH+PYp6oCOcU51zf6Tp0tRlZnZapxsUdW56eBdDvGa6WdJySasl7ZP0hc42p/PMbL6kOyRd4Zz7jf+1qP0eRT3QQ+1bmnbOueHC1+cl3aXpUhVmes7MFktS4evzHW5P5DjnnnPOTTrnpiR9VSn/XTKzbk2H+Wbn3J2Fy5H9PYp6oLNvaQ1m9iozO7x4LOltkh6t/l2pdY+kSwvHl0q6u4NtiaRiUBWcrxT/LpmZSfqapN3OuS/6Xors71HkJxYVhk3doIP7ll7X4SZFipkdq+mncml6S8Ecn5FkZrdJOl3TK+M9J+lqSVskfUvSUk2v+vke51xqOwUrfEana7rc4iTtlfRhX704VczsVEk/kPSIpKnC5Y9ruo4eyd+jyAc6ACCcqJdcAAAhEegAkBAEOgAkBIEOAAlBoANAQhDoAJAQBDoAJASBDgAJ8f8CpYTA+PUV3wAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "from matplotlib import pyplot\n", "import numpy as np\n", "\n", "a = 1\n", "b = 2\n", "num_points = 100\n", "np.random.seed(637163) # we make sure we always generate the same sequence\n", "x_data = np.random.rand(num_points)*20.\n", "y_data = x_data*b+a+3*(2.*np.random.rand(num_points)-1)\n", "\n", "pyplot.scatter(x_data,y_data)\n", "pyplot.plot(x_data, b*x_data+a)\n", "\n", "#### Least squares fit\n", "sum_x = np.sum(x_data)\n", "sum_y = np.sum(y_data)\n", "sum_x2 = np.sum(x_data**2)\n", "sum_xy = np.sum(x_data*y_data)\n", "det = num_points*sum_x2-sum_x**2\n", "fit_a = (sum_y*sum_x2-sum_x*sum_xy)/det\n", "fit_b = (num_points*sum_xy-sum_x*sum_y)/det\n", "print(fit_a,fit_b)\n", "\n", "pyplot.xlim(-1,22)\n", "pyplot.ylim(-1,24)\n", "pyplot.plot(x_data, fit_b*x_data+fit_a);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now write an SGD code for this problem. The training_data is a list of tuples `(x, y)` representing the training inputs and corresponding desired outputs. The variables `epochs` and `mini_batch_size` are what you'd expect - the number of epochs to train for, and the size of the mini-batches to use when sampling. `eta` is the learning rate, $\\eta$. If the optional argument `test_data` is supplied, then the program will evaluate the network after each epoch of training, and print out partial progress. This is useful for tracking progress, but slows things down substantially.\n", "\n", "The code works as follows. In each epoch, it starts by randomly shuffling the training data, and then partitions it into mini-batches of the appropriate size. This is an easy way of sampling randomly from the training data. Then for each `mini_batch` we apply a single step of gradient descent. This is done by the code `self.update_mini_batch(mini_batch, eta)`, which updates the coefficients according to a single iteration of gradient descent, using just the training data in `mini_batch`." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 0: 2.851091506514999 1.7876531781856742\n", "Epoch 1: 2.827178748563592 1.963573397229449\n", "Epoch 2: 2.7801714492150196 1.8619634110879069\n", "Epoch 3: 2.756668947213542 2.0288955459781213\n", "Epoch 4: 2.7076355088367525 1.880872788736252\n", "Epoch 5: 2.6709938639494206 1.9094861291196814\n", "Epoch 6: 2.6459565191117687 2.083968448182042\n", "Epoch 7: 2.592571941252409 1.867303977943171\n", "Epoch 8: 2.5668650012203917 1.9282486257504263\n", "Epoch 9: 2.5260855862259803 1.8254093290530535\n", "Epoch 10: 2.4977119308055653 1.8393082159024072\n", "Epoch 11: 2.461504007375818 1.8187446556619598\n", "Epoch 12: 2.440510503849123 1.9639665902712513\n", "Epoch 13: 2.4192661745417667 2.056408083610859\n", "Epoch 14: 2.3778520184589746 1.9200785689241224\n", "Epoch 15: 2.352636754920605 1.9557702061187\n", "Epoch 16: 2.32668522997869 1.985365726392641\n", "Epoch 17: 2.29093524056995 1.9302755099169442\n", "Epoch 18: 2.264373631096743 1.9014850942257417\n", "Epoch 19: 2.240116842945883 1.935758005663645\n", "Epoch 20: 2.2192529930462856 2.0084713102139746\n", "Epoch 21: 2.1882155215215175 1.954607851080249\n", "Epoch 22: 2.1610945265017794 1.871860736902566\n", "Epoch 23: 2.1460869019987685 2.0191055043901693\n", "Epoch 24: 2.1134743012209274 1.917120770897182\n", "Epoch 25: 2.093876809726992 1.9695147135445203\n", "Epoch 26: 2.0732373408257976 2.009659333749805\n", "Epoch 27: 2.0545056929658063 1.9990817647672674\n", "Epoch 28: 2.0358849885566888 2.0684880037349314\n", "Epoch 29: 2.0127961055519528 1.981549450254667\n", "Epoch 30: 1.9912110003344137 1.9953084240830377\n", "Epoch 31: 1.9702356965968113 1.9337881228020706\n", "Epoch 32: 1.958931435902377 1.9703136538892496\n", "Epoch 33: 1.9320635446309764 1.8826305504717291\n", "Epoch 34: 1.9183934975941435 1.9108781471703922\n", "Epoch 35: 1.9002148717519194 1.933657775282379\n", "Epoch 36: 1.8765188176622247 1.8501242260953568\n", "Epoch 37: 1.8636240317182582 1.8732118340436419\n", "Epoch 38: 1.8580542540860803 2.043103451641688\n", "Epoch 39: 1.8404926684574494 1.9833198887817372\n", "Epoch 40: 1.818471335258018 1.885853165755979\n", "Epoch 41: 1.8104060287044144 1.946463310907274\n", "Epoch 42: 1.7945224315136403 1.955383791204891\n", "Epoch 43: 1.782283463654412 2.0023405102821905\n", "Epoch 44: 1.749520717458214 1.8281773503780525\n", "Epoch 45: 1.7453813582714632 2.003640838074842\n", "Epoch 46: 1.728623006260412 1.9766876117635683\n", "Epoch 47: 1.7084093749222484 1.934436123013543\n", "Epoch 48: 1.6882385559184097 1.8316669036210635\n", "Epoch 49: 1.6872347550750442 1.9027956243651138\n", "Epoch 50: 1.6799350406816318 2.0067968405782595\n", "Epoch 51: 1.6544625765529073 1.8881985255370595\n", "Epoch 52: 1.6437316979583543 1.9255046345948543\n", "Epoch 53: 1.6381622976293797 2.0030543868483233\n", "Epoch 54: 1.619288123392432 1.9054952135108394\n", "Epoch 55: 1.6081107386909623 1.8842249840685168\n", "Epoch 56: 1.606385744453914 1.995354114039655\n", "Epoch 57: 1.590951010569201 1.935539287963154\n", "Epoch 58: 1.5907159977092078 2.0039496119285936\n", "Epoch 59: 1.583681348958318 2.0712979889802097\n", "Epoch 60: 1.5630265005446518 1.9298084540897775\n", "Epoch 61: 1.564720140787769 2.0808310251200517\n", "Epoch 62: 1.5466686232306155 1.9187231079896427\n", "Epoch 63: 1.5388524762367308 1.9621349285397989\n", "Epoch 64: 1.5405490598559062 2.0291358831335318\n", "Epoch 65: 1.5208453821228052 1.8248931026367041\n", "Epoch 66: 1.5213798489903287 1.8930706301200002\n", "Epoch 67: 1.529153914875216 2.1490931535209667\n", "Epoch 68: 1.5022716493694421 1.9262311478789624\n", "Epoch 69: 1.500068778772673 2.0144696446422423\n", "Epoch 70: 1.4895292591761131 1.9988696565984023\n", "Epoch 71: 1.4750010294727158 1.9334703018634691\n", "Epoch 72: 1.468734739081002 1.9509592360886463\n", "Epoch 73: 1.4602541491491496 1.9535588676349709\n", "Epoch 74: 1.4629985193934691 2.087981232637853\n", "Epoch 75: 1.4482903637054756 1.9769627087994208\n", "Epoch 76: 1.4441169372446487 1.9911884358343\n", "Epoch 77: 1.4374914169928699 1.9697513594833118\n", "Epoch 78: 1.4290881203003065 1.9810815298729503\n", "Epoch 79: 1.4246361485906045 2.021522320675344\n", "Epoch 80: 1.416276663539712 1.997969411686069\n", "Epoch 81: 1.4088098511794314 1.9930406863592567\n", "Epoch 82: 1.4068185837259672 2.0164782110987383\n", "Epoch 83: 1.3962324622369873 1.8977840351410191\n", "Epoch 84: 1.401436092664027 1.9950621893919915\n", "Epoch 85: 1.387471145834617 1.8824887521430227\n", "Epoch 86: 1.4014093218694679 2.1053832817280766\n", "Epoch 87: 1.3846125002362668 1.961879809671709\n", "Epoch 88: 1.3803176460734246 1.9693072109387666\n", "Epoch 89: 1.3733167787595022 1.9193370938253795\n", "Epoch 90: 1.3719395040783267 1.9529063749285855\n", "Epoch 91: 1.3657851409032489 1.9519469364018414\n", "Epoch 92: 1.365731695836303 2.0299060306472323\n", "Epoch 93: 1.352704037805701 1.9068562249348497\n", "Epoch 94: 1.358872635570531 1.9505330043142486\n", "Epoch 95: 1.352406342772186 1.924937800945274\n", "Epoch 96: 1.3529921471002395 1.9582904963736072\n", "Epoch 97: 1.3467058766687356 1.964421345479529\n", "Epoch 98: 1.3441056012495736 1.9585772301210544\n", "Epoch 99: 1.338307075761737 1.9641242330382802\n", "Epoch 100: 1.3389750343328595 2.0331089097262622\n", "Epoch 101: 1.3292056062449498 1.970316569830166\n", "Epoch 102: 1.3286221627701793 2.0548925899273556\n", "Epoch 103: 1.3249933581558049 2.0102278112773337\n", "Epoch 104: 1.3141363246433797 1.9167494489192494\n", "Epoch 105: 1.3112904405797088 1.9230166472931127\n", "Epoch 106: 1.3155463891174177 2.0363423473576034\n", "Epoch 107: 1.3066507352411303 2.002921226309002\n", "Epoch 108: 1.3012267385619987 1.992156333232618\n", "Epoch 109: 1.2998811762793303 2.0836475234636054\n", "Epoch 110: 1.2869768488136015 2.0326476069467847\n", "Epoch 111: 1.2782409042449163 1.955308271763259\n", "Epoch 112: 1.2702227407769626 1.843641680619616\n", "Epoch 113: 1.2841364346903865 2.0428258403939537\n", "Epoch 114: 1.2799771181355302 2.027691157552291\n", "Epoch 115: 1.272749198706809 1.9838436304512466\n", "Epoch 116: 1.2751164588056392 2.048106822415394\n", "Epoch 117: 1.2709851254712097 1.9917962774665723\n", "Epoch 118: 1.2762427149034599 2.136723976667836\n", "Epoch 119: 1.2614286952500717 1.9537916421283819\n", "Epoch 120: 1.268051811501334 2.003348786243271\n", "Epoch 121: 1.2705624559612398 2.05644114955335\n", "Epoch 122: 1.2488428579582682 1.824502349600589\n", "Epoch 123: 1.2609746890519609 2.046167589066578\n", "Epoch 124: 1.2649024819516497 2.073455837171682\n", "Epoch 125: 1.2553435081447994 1.9933812628787015\n", "Epoch 126: 1.2598887147760574 2.0313796669882813\n", "Epoch 127: 1.2599147404360962 2.062627907835911\n", "Epoch 128: 1.249692892431034 1.975233671612488\n", "Epoch 129: 1.2442021578463776 1.9552628960704093\n", "Epoch 130: 1.2386105150995876 1.982099666924853\n", "Epoch 131: 1.2355586187412317 1.9757114294223843\n", "Epoch 132: 1.2443294895643744 2.101623933536461\n", "Epoch 133: 1.2299004597831222 1.9768187344562476\n", "Epoch 134: 1.2276038542035699 1.9822626470879492\n", "Epoch 135: 1.2277446415672508 1.9615810105868339\n", "Epoch 136: 1.2286379676808046 2.0355041539229313\n", "Epoch 137: 1.2211714193515004 1.9701469343010707\n", "Epoch 138: 1.2298287656838378 2.024296033663489\n", "Epoch 139: 1.227733776450261 2.035072556742687\n", "Epoch 140: 1.2188039214924324 1.9586362914585522\n", "Epoch 141: 1.221958994511311 2.018941730208499\n", "Epoch 142: 1.2157233735073354 1.9671959386100284\n", "Epoch 143: 1.2124366156263169 1.9592948983993996\n", "Epoch 144: 1.2147369220284092 2.0442536562207776\n", "Epoch 145: 1.205955712341693 1.9694423842214128\n", "Epoch 146: 1.2049971023807025 1.9859694713761042\n", "Epoch 147: 1.2075221330905666 2.009002905561291\n", "Epoch 148: 1.2115221193191605 2.059401540299177\n", "Epoch 149: 1.2025709919887162 1.982096858804897\n", "Epoch 150: 1.2025820405123533 1.9921201608490595\n", "Epoch 151: 1.2044366839866598 2.0146807988967903\n", "Epoch 152: 1.206892541459285 2.037165558406217\n", "Epoch 153: 1.2084186753224047 2.0514455070803828\n", "Epoch 154: 1.2089888077827122 2.051536688143954\n", "Epoch 155: 1.2076227373011457 1.9988099365677854\n", "Epoch 156: 1.2037083483319981 1.9950064987376799\n", "Epoch 157: 1.206526240140426 2.074083444964129\n", "Epoch 158: 1.1969956856897452 1.9783641111066796\n", "Epoch 159: 1.1988308898232631 1.9543139803979717\n", "Epoch 160: 1.1995691446186438 1.937559081054288\n", "Epoch 161: 1.2038438870466412 2.015030834060468\n", "Epoch 162: 1.1985588246541923 1.9698469983800948\n", "Epoch 163: 1.1958191873606725 1.9663497539993224\n", "Epoch 164: 1.186928424021493 1.86455626410724\n", "Epoch 165: 1.1928061814986093 2.0497622851939536\n", "Epoch 166: 1.1865071366714997 2.0408127489658647\n", "Epoch 167: 1.182851618741269 2.0110138481333046\n", "Epoch 168: 1.18782422094513 2.0552683461751196\n", "Epoch 169: 1.1897908718277397 2.0792826146138967\n", "Epoch 170: 1.1895586261808533 2.020543573678281\n", "Epoch 171: 1.1825696897860893 1.9801100085432106\n", "Epoch 172: 1.181820009229163 1.9799370528048312\n", "Epoch 173: 1.1868381738615787 2.0495345787064054\n", "Epoch 174: 1.1839766393778706 2.0473350252553804\n", "Epoch 175: 1.1850485909968755 2.0716526425398674\n", "Epoch 176: 1.1824535090862134 2.011224705734455\n", "Epoch 177: 1.180767591043016 2.004658322219915\n", "Epoch 178: 1.1821388960311063 1.988800626421598\n", "Epoch 179: 1.1880522464685088 2.067303807558048\n", "Epoch 180: 1.1759645896758149 1.9546667268531908\n", "Epoch 181: 1.1790533790141011 1.9842002311282236\n", "Epoch 182: 1.1836537100256175 2.0460500757626106\n", "Epoch 183: 1.1822863317308494 2.025085525889144\n", "Epoch 184: 1.172530841497514 1.9242741669889663\n", "Epoch 185: 1.1823675397686417 2.0441537662254428\n", "Epoch 186: 1.177468047390862 1.9588840402287566\n", "Epoch 187: 1.1801243667511367 1.970880411546426\n", "Epoch 188: 1.1867122725568682 2.071167968819989\n", "Epoch 189: 1.175747819017282 1.9120770900835262\n", "Epoch 190: 1.178488236180694 1.9711391056919325\n", "Epoch 191: 1.1834159610241293 2.076521736901644\n", "Epoch 192: 1.1840720138080807 2.0695169723793168\n", "Epoch 193: 1.1878662150844443 2.1054361965492254\n", "Epoch 194: 1.172204080715583 1.9193349078207402\n", "Epoch 195: 1.1796266578616825 2.021273557852105\n", "Epoch 196: 1.1756283433183137 1.978397476038657\n", "Epoch 197: 1.179347870801012 2.057485247243262\n", "Epoch 198: 1.1771510299609378 1.9839566352038045\n", "Epoch 199: 1.1734142144784492 1.9413638781685132\n", "Epoch 200: 1.1796858491714215 2.0257042728471295\n", "Epoch 201: 1.1828027565096388 2.073049797618982\n", "Epoch 202: 1.1836229294305753 2.105296552012404\n", "Epoch 203: 1.1748330785870187 1.97842429934267\n", "Epoch 204: 1.1710094849765988 1.9225888313967678\n", "Epoch 205: 1.1750019318878657 2.0161089101204266\n", "Epoch 206: 1.1688822960668843 1.9173751852467291\n", "Epoch 207: 1.171000593729568 1.9496922473163611\n", "Epoch 208: 1.1719395299814825 1.9846125819542637\n", "Epoch 209: 1.1653718472989494 1.9657401115851765\n", "Epoch 210: 1.1666777708673137 1.9969331887938948\n", "Epoch 211: 1.1647159687365278 1.9909138128673325\n", "Epoch 212: 1.1754452887943576 2.0857264475141384\n", "Epoch 213: 1.169688967309767 2.054910054131244\n", "Epoch 214: 1.169127580623336 2.0601206215450856\n", "Epoch 215: 1.1652074626875797 1.9973034692573273\n", "Epoch 216: 1.1702852193446573 2.0519593792424358\n", "Epoch 217: 1.1646162669879867 1.968465416447997\n", "Epoch 218: 1.1707704669426298 2.0249056512171877\n", "Epoch 219: 1.1724593556038376 2.082380488563087\n", "Epoch 220: 1.1600188422806863 1.9533301129439185\n", "Epoch 221: 1.1603990597387488 1.9908556837124307\n", "Epoch 222: 1.172306977616543 2.149832223460105\n", "Epoch 223: 1.1533139870665958 1.897368373790175\n", "Epoch 224: 1.1603077278460978 1.9740605449537711\n", "Epoch 225: 1.1610865668922927 2.0156478512874445\n", "Epoch 226: 1.1598149090178131 2.0062030866511695\n", "Epoch 227: 1.1629546106433142 2.010542546698093\n", "Epoch 228: 1.1636366920994934 2.0645587753976815\n", "Epoch 229: 1.158441789962946 1.9732275213983936\n", "Epoch 230: 1.1594068941620521 2.0211588360306543\n", "Epoch 231: 1.157992091904049 1.9899786212760588\n", "Epoch 232: 1.1586025563761901 1.9669302651828673\n", "Epoch 233: 1.158935020774732 1.9624153218725968\n", "Epoch 234: 1.1780146089004881 2.2084053499839253\n", "Epoch 235: 1.1624086023948017 1.9904183594049172\n", "Epoch 236: 1.1687114571640016 2.0243325338089573\n", "Epoch 237: 1.163780074230273 2.0115919918004996\n", "Epoch 238: 1.1593855584185195 1.9610645305963619\n", "Epoch 239: 1.1557913057904843 1.9313205589116578\n", "Epoch 240: 1.1604861873712111 2.0147368305307953\n", "Epoch 241: 1.1643855379493093 2.0308919296252905\n", "Epoch 242: 1.1684656530568671 2.0836439974908796\n", "Epoch 243: 1.156170351707462 1.9437864267698877\n", "Epoch 244: 1.1632490253614063 2.0331559937553387\n", "Epoch 245: 1.1625416949346654 1.9878681854250837\n", "Epoch 246: 1.1743225954897536 2.139668084828036\n", "Epoch 247: 1.160922425872473 1.9673081971292015\n", "Epoch 248: 1.158370283489093 1.9186952135315374\n", "Epoch 249: 1.1590132165288352 1.9575008370562035\n", "Epoch 250: 1.1692487934322693 2.047704473254694\n", "Epoch 251: 1.1661088708383454 2.0272174059642936\n", "Epoch 252: 1.164244940978814 1.9922728331857886\n", "Epoch 253: 1.1740138877833493 2.144034922963351\n", "Epoch 254: 1.1627478961724935 1.9765857849724182\n", "Epoch 255: 1.157342812461918 1.9176534632661586\n", "Epoch 256: 1.167310602022143 2.023937327632803\n", "Epoch 257: 1.1664092885855957 2.0225094450202428\n", "Epoch 258: 1.166403114048588 2.0214241796771435\n", "Epoch 259: 1.1640833336509528 1.9501414768095904\n", "Epoch 260: 1.172884748612123 2.047402314044348\n", "Epoch 261: 1.1733694938120844 2.0709007251204166\n", "Epoch 262: 1.1703883076248496 1.9846698128270954\n", "Epoch 263: 1.1721027556301264 2.037220774305596\n", "Epoch 264: 1.17839549649102 2.1112297457663614\n", "Epoch 265: 1.1654972084590798 1.9444411088542253\n", "Epoch 266: 1.1770102224348051 2.0984330461842684\n", "Epoch 267: 1.1661324837193872 1.9735288321449527\n", "Epoch 268: 1.1684228835987054 2.0136744531303976\n", "Epoch 269: 1.162849000284166 1.9527235425674798\n", "Epoch 270: 1.1734050786860557 2.0986326550647374\n", "Epoch 271: 1.160698086530356 1.968205613519547\n", "Epoch 272: 1.1718205074971704 2.087588337895705\n", "Epoch 273: 1.1707801461385712 2.05541134597421\n", "Epoch 274: 1.1691796980186806 2.0359205380058287\n", "Epoch 275: 1.1681172510742326 2.0465446260179836\n", "Epoch 276: 1.1668021632958008 2.055020724857271\n", "Epoch 277: 1.151646609766444 1.9027054110156603\n", "Epoch 278: 1.1630268716903074 2.0320960711046787\n", "Epoch 279: 1.1532204157848187 1.9267965144776447\n", "Epoch 280: 1.1545101829463142 1.9504711296639747\n", "Epoch 281: 1.1539752359172013 1.9155125002617734\n", "Epoch 282: 1.1605993185017476 1.9984865154380536\n", "Epoch 283: 1.16832157879913 2.0808959291191385\n", "Epoch 284: 1.1571226626221311 1.9496603321626576\n", "Epoch 285: 1.1637392503157475 1.966644596396405\n", "Epoch 286: 1.1703061954315055 2.0508837977273955\n", "Epoch 287: 1.1661373161151396 1.9581123052424907\n", "Epoch 288: 1.1716489545640907 2.0660943356351633\n", "Epoch 289: 1.162210911845686 2.000755633795154\n", "Epoch 290: 1.1665233458674846 2.103888995353846\n", "Epoch 291: 1.152381620806598 2.041867334236522\n", "Epoch 292: 1.1533313698555427 2.0270061674169306\n", "Epoch 293: 1.1540479557480243 2.0564307797064973\n", "Epoch 294: 1.1530786586022215 2.015652244367046\n", "Epoch 295: 1.1586921442683673 2.0977453777519637\n", "Epoch 296: 1.1466277814629358 1.9802845942481904\n", "Epoch 297: 1.1484481049977502 1.9713593809492327\n", "Epoch 298: 1.145805258441764 1.9447097646418092\n", "Epoch 299: 1.1476998763032493 1.9471699750330864\n", "Epoch 300: 1.1475673482226003 1.946809335925523\n", "Epoch 301: 1.1450321497622773 1.9366124455646785\n", "Epoch 302: 1.1610396227941684 2.084448184315205\n", "Epoch 303: 1.15617334776939 2.066528471403558\n", "Epoch 304: 1.157186834932992 2.039126665822382\n", "Epoch 305: 1.1518226564498195 2.0724202431858814\n", "Epoch 306: 1.1475072952738203 2.0187104774884315\n", "Epoch 307: 1.144911046485268 1.9691664109997982\n", "Epoch 308: 1.1436634433193602 1.9981925681435333\n", "Epoch 309: 1.1440556245610136 1.9958492184228103\n", "Epoch 310: 1.1416845744986281 1.9567346183934688\n", "Epoch 311: 1.1465242589209208 1.9965803402508104\n", "Epoch 312: 1.1402822568281583 1.9572394426584003\n", "Epoch 313: 1.1444256744712749 1.9917700404530183\n", "Epoch 314: 1.1341670575342746 1.8563959255071167\n", "Epoch 315: 1.1451735809680927 1.9990284579202906\n", "Epoch 316: 1.1448462684191392 1.946829763991842\n", "Epoch 317: 1.1460292976769055 1.9591527701272857\n", "Epoch 318: 1.1524783638351412 2.0395256491258884\n", "Epoch 319: 1.1481255014746177 1.955782751168601\n", "Epoch 320: 1.1535458673634562 2.018376299089275\n", "Epoch 321: 1.1564232403894963 2.077434874460244\n", "Epoch 322: 1.147254973345927 1.9583338917817799\n", "Epoch 323: 1.1516395714656882 2.009468785579987\n", "Epoch 324: 1.1557673220619185 2.063228215257118\n", "Epoch 325: 1.1534744287737841 1.9935416955109886\n", "Epoch 326: 1.150181727132005 1.949609916674194\n", "Epoch 327: 1.1441988979348574 1.869514673151032\n", "Epoch 328: 1.1501336543379006 1.9673135310095184\n", "Epoch 329: 1.1511906713198927 1.9199337926780946\n", "Epoch 330: 1.1494617877918734 1.9073749427857871\n", "Epoch 331: 1.1469113985657917 1.9805302170310206\n", "Epoch 332: 1.1541405113958176 2.0325597852045463\n", "Epoch 333: 1.1402980906326248 1.8390940750249538\n", "Epoch 334: 1.1531753874448596 1.9989140653485673\n", "Epoch 335: 1.1567599623902975 2.017653960628913\n", "Epoch 336: 1.1581622391493147 2.015007567430858\n", "Epoch 337: 1.1590143212810402 2.0609980775168237\n", "Epoch 338: 1.1510751732507323 2.001375491561636\n", "Epoch 339: 1.1481402813804618 1.9660002677298571\n", "Epoch 340: 1.1493973273100468 1.9400570063599067\n", "Epoch 341: 1.1583282367595962 2.0790651999854237\n", "Epoch 342: 1.1546969443141344 2.019734985064594\n", "Epoch 343: 1.1527831700666127 1.9674135205163883\n", "Epoch 344: 1.1549645414004304 2.0057042393205355\n", "Epoch 345: 1.1576926450047145 2.0576406101941864\n", "Epoch 346: 1.161981814267257 2.0685419449014533\n", "Epoch 347: 1.1618604580758003 2.0649695637689844\n", "Epoch 348: 1.1562319540905006 1.9578249376360854\n", "Epoch 349: 1.1625951733893936 1.9825105915855945\n", "Epoch 350: 1.157983377883249 1.9215557186068493\n", "Epoch 351: 1.1642282348431414 1.9658373090480363\n", "Epoch 352: 1.1528841361924658 1.8699415500500947\n", "Epoch 353: 1.1588619403644715 1.973303504547195\n", "Epoch 354: 1.1644781193218436 2.0546850735644964\n", "Epoch 355: 1.1603904375276721 2.025002971930877\n", "Epoch 356: 1.1549509698733604 1.9856711113014198\n", "Epoch 357: 1.1448840032833865 1.8643261327266034\n", "Epoch 358: 1.1526553868308187 1.9910940344948775\n", "Epoch 359: 1.1590624478940748 2.0905241266197585\n", "Epoch 360: 1.1438425028437778 1.8713452738982141\n", "Epoch 361: 1.1401137304292206 1.8118780505269045\n", "Epoch 362: 1.1495959026983391 1.9370362546355204\n", "Epoch 363: 1.1484417214953213 1.9652754975670976\n", "Epoch 364: 1.1488545201409164 1.990225168446491\n", "Epoch 365: 1.1446320914497148 1.9126347675717308\n", "Epoch 366: 1.149701200028218 1.9804858077778578\n", "Epoch 367: 1.143652647759062 1.867703685220218\n", "Epoch 368: 1.156057605455258 2.0361489292896566\n", "Epoch 369: 1.1523585704588584 2.0066252854364075\n", "Epoch 370: 1.1545886779431278 2.0608739349648895\n", "Epoch 371: 1.1513732490007436 1.9781191873402264\n", "Epoch 372: 1.153112913284324 1.9985838970000227\n", "Epoch 373: 1.1520276656465205 1.9937025191088742\n", "Epoch 374: 1.153933670869458 2.031596796668612\n", "Epoch 375: 1.1538351175449262 2.037474678249571\n", "Epoch 376: 1.1520646242862507 2.017049789453241\n", "Epoch 377: 1.1466829516420303 1.9419215391653144\n", "Epoch 378: 1.163010896069329 2.079237976454214\n", "Epoch 379: 1.1500419394047414 1.9335876359293516\n", "Epoch 380: 1.157359178919251 2.0173619548181474\n", "Epoch 381: 1.1553387148870204 1.9869264142006289\n", "Epoch 382: 1.150777670711536 1.89310014361363\n", "Epoch 383: 1.1604969603315158 2.0407271442227106\n", "Epoch 384: 1.1523358843246543 1.9426426565179926\n", "Epoch 385: 1.1635756840442424 2.004076157846764\n", "Epoch 386: 1.1673614420569172 2.0596411901504927\n", "Epoch 387: 1.1585544994201846 1.9538972375490153\n", "Epoch 388: 1.1635871495397658 2.02419123848167\n", "Epoch 389: 1.1626716170881763 1.9844917942397182\n", "Epoch 390: 1.1640985607676797 1.9942870242566482\n", "Epoch 391: 1.1667433246462153 2.012710781308925\n", "Epoch 392: 1.166057448474898 2.013157912048576\n", "Epoch 393: 1.1625924218958799 1.9780533169102879\n", "Epoch 394: 1.1677546394375398 2.0679503119367917\n", "Epoch 395: 1.165376031086863 2.040136965156445\n", "Epoch 396: 1.158296853822276 1.9564699927587872\n", "Epoch 397: 1.1606700470871392 1.9480817414503098\n", "Epoch 398: 1.168912601731494 2.041150736836026\n", "Epoch 399: 1.1706081338896337 2.021184077249987\n", "Epoch 400: 1.1801842754484062 2.1239415606354117\n", "Epoch 401: 1.1677212057163933 2.012395110885921\n", "Epoch 402: 1.1672601497312562 2.0311179189639055\n", "Epoch 403: 1.1446005340238736 1.745576950488077\n", "Epoch 404: 1.16644155750266 2.0371263086647105\n", "Epoch 405: 1.160096559777111 1.9573745798179463\n", "Epoch 406: 1.1561184001485691 1.9270445802835297\n", "Epoch 407: 1.1564428794892025 1.9534130611724356\n", "Epoch 408: 1.157832333324879 1.9990185814286516\n", "Epoch 409: 1.1542536578440337 1.9603170999631656\n", "Epoch 410: 1.1579641202641253 2.0197871817756243\n", "Epoch 411: 1.1483763991029288 1.9513250981321313\n", "Epoch 412: 1.1404922532824875 1.9209794035824443\n", "Epoch 413: 1.1507849734020454 2.0644281753554914\n", "Epoch 414: 1.1522729146307125 2.014082678488246\n", "Epoch 415: 1.1539226907918823 2.0452288186933716\n", "Epoch 416: 1.1553935535896283 2.0516110385635793\n", "Epoch 417: 1.1522612541246897 2.0132793132417066\n", "Epoch 418: 1.1445911719870643 1.8998976720242748\n", "Epoch 419: 1.15111755242973 1.9942442880638716\n", "Epoch 420: 1.1492918953099753 1.9723618584340097\n", "Epoch 421: 1.1508398588156288 2.0285906972912917\n", "Epoch 422: 1.1457613876618533 1.9442137226381164\n", "Epoch 423: 1.1544611539760208 2.033125521968535\n", "Epoch 424: 1.158597511625977 2.0883628018192923\n", "Epoch 425: 1.1571397943655337 2.030533907318707\n", "Epoch 426: 1.1485143165837068 1.9784233945860508\n", "Epoch 427: 1.154701391933309 1.9971076092250635\n", "Epoch 428: 1.153064423920393 1.9959524721314952\n", "Epoch 429: 1.1567851179708466 2.019159503275338\n", "Epoch 430: 1.1571300814502 2.0130031186865063\n", "Epoch 431: 1.1557711599737877 1.961595185581823\n", "Epoch 432: 1.1546534087018567 1.9417015113839\n", "Epoch 433: 1.1600875830711923 1.9985945740120918\n", "Epoch 434: 1.1621550174809294 2.0081173436065765\n", "Epoch 435: 1.1647858119071102 2.0069931180021467\n", "Epoch 436: 1.171922539030513 2.0754662230190997\n", "Epoch 437: 1.167478389331363 1.9709286580435443\n", "Epoch 438: 1.1584175000364914 1.8390082675323287\n", "Epoch 439: 1.1702472757144489 1.9891024656575065\n", "Epoch 440: 1.171445495576249 2.0087085929409083\n", "Epoch 441: 1.1707096902503504 1.9762975241864922\n", "Epoch 442: 1.1637849791651869 1.9026433988163767\n", "Epoch 443: 1.171386642660623 1.9761437663208812\n", "Epoch 444: 1.1779935021986057 2.046505549169825\n", "Epoch 445: 1.1671231314509358 1.9652553164672595\n", "Epoch 446: 1.1684116342751572 2.0495697045197634\n", "Epoch 447: 1.1647003781266703 1.9978788500721527\n", "Epoch 448: 1.1622405847121584 1.9532584123270598\n", "Epoch 449: 1.163145617594456 1.97476781288562\n", "Epoch 450: 1.1660072402971797 1.9742775233108107\n", "Epoch 451: 1.1754628552358457 2.0751210976336836\n", "Epoch 452: 1.1735655090109642 2.0469302285938347\n", "Epoch 453: 1.169287003886958 2.002149720380278\n", "Epoch 454: 1.1635890708472378 1.9611595279040226\n", "Epoch 455: 1.1715093753124384 2.069328916004224\n", "Epoch 456: 1.1680462317101417 2.0319407602859423\n", "Epoch 457: 1.172094998018456 2.0318137992892273\n", "Epoch 458: 1.160355532966944 1.8619506742616743\n", "Epoch 459: 1.173269399075153 2.027583132221297\n", "Epoch 460: 1.1684714341198927 1.963550735443599\n", "Epoch 461: 1.170713830400304 2.044528597373633\n", "Epoch 462: 1.1771672554199253 2.152225397121842\n", "Epoch 463: 1.165837688657203 2.0185833196372154\n", "Epoch 464: 1.1737217995420748 2.1373669706733183\n", "Epoch 465: 1.1578672638403995 1.9871013310791956\n", "Epoch 466: 1.155718232390874 1.9557080632755361\n", "Epoch 467: 1.1557765390859782 1.9816049106330598\n", "Epoch 468: 1.1618268652269887 2.070405227570197\n", "Epoch 469: 1.161491829599467 2.055096537614472\n", "Epoch 470: 1.1501254958475469 1.9661249599952544\n", "Epoch 471: 1.1572012124584645 2.0097660872796412\n", "Epoch 472: 1.1589604474043982 2.0302610947822126\n", "Epoch 473: 1.1570301975614823 2.023791417809254\n", "Epoch 474: 1.154208144563905 1.9919144916032592\n", "Epoch 475: 1.1519935009767621 1.9600780058834755\n", "Epoch 476: 1.1523555948256758 1.9765881895154538\n", "Epoch 477: 1.157402986756551 1.9904666517287626\n", "Epoch 478: 1.1633983269171395 2.052477744992646\n", "Epoch 479: 1.1599612891715394 1.977522581958186\n", "Epoch 480: 1.1630221140374917 2.0175865662949612\n", "Epoch 481: 1.1603236425247734 2.0134881202380304\n", "Epoch 482: 1.1622428147093367 2.041719852029051\n", "Epoch 483: 1.1663182676893415 2.053700356965903\n", "Epoch 484: 1.1715021454571897 2.1250912513664217\n", "Epoch 485: 1.1693220355043468 2.096288016694156\n", "Epoch 486: 1.162186265069271 2.007679351313094\n", "Epoch 487: 1.156178143974997 1.977949535688021\n", "Epoch 488: 1.1602071602457047 1.994003641212097\n", "Epoch 489: 1.1628305001357682 2.015400203164338\n", "Epoch 490: 1.161280006087401 2.003279628817588\n", "Epoch 491: 1.1599510493939122 2.002753704350214\n", "Epoch 492: 1.1601241418913693 1.98766468931923\n", "Epoch 493: 1.1622395894987398 1.9936463538182703\n", "Epoch 494: 1.157830575420715 1.9005282558070824\n", "Epoch 495: 1.1624944319141972 1.9714438683768225\n", "Epoch 496: 1.1622015660822151 1.9369276388742183\n", "Epoch 497: 1.1688861721589185 1.9886871017866947\n", "Epoch 498: 1.1696200308857707 2.0001774086437893\n", "Epoch 499: 1.1751592349446145 2.0805927706849436\n", "Epoch 500: 1.1726821241284315 2.0608937547750488\n", "Epoch 501: 1.1693244711262787 2.0588277961979427\n", "Epoch 502: 1.164318861403886 1.9568837861962476\n", "Epoch 503: 1.1674620721851714 2.001643097605654\n", "Epoch 504: 1.1686390240785633 2.0403778965299755\n", "Epoch 505: 1.160558346790356 1.9947000458052078\n", "Epoch 506: 1.1550101382922815 1.9553919771250783\n", "Epoch 507: 1.1633863462773795 2.047664305171632\n", "Epoch 508: 1.161234130215018 2.004647106635081\n", "Epoch 509: 1.163735588214571 2.0240105576567906\n", "Epoch 510: 1.154880290041301 1.9186242647350635\n", "Epoch 511: 1.165342490479345 2.0470743379697582\n", "Epoch 512: 1.1643114503808094 2.0418126189070493\n", "Epoch 513: 1.157790152976131 1.9940304144216299\n", "Epoch 514: 1.16612453996357 2.0405570445462846\n", "Epoch 515: 1.1624344094319572 1.9741268566492267\n", "Epoch 516: 1.1655260982797748 2.001969136200936\n", "Epoch 517: 1.1724045019844676 2.091767385080294\n", "Epoch 518: 1.1716510265738609 2.0843143345325106\n", "Epoch 519: 1.1686269961900118 2.073748595118983\n", "Epoch 520: 1.1638694305193875 2.0280956923017217\n", "Epoch 521: 1.1636480533268407 2.0332406500489677\n", "Epoch 522: 1.1603089324484057 1.9955956478220662\n", "Epoch 523: 1.1655246105364943 2.0737222183350674\n", "Epoch 524: 1.1662126905080017 2.076627691101107\n", "Epoch 525: 1.1568865515059628 1.974100652504382\n", "Epoch 526: 1.168518075087314 2.116093664338233\n", "Epoch 527: 1.1739213365871974 2.1025021700328166\n", "Epoch 528: 1.1640961527037137 2.0044410213216626\n", "Epoch 529: 1.1672718428903104 2.0129850523107686\n", "Epoch 530: 1.161172217703352 1.9262876678915872\n", "Epoch 531: 1.1585188388036571 1.9180818748253303\n", "Epoch 532: 1.1653540395516186 2.0225110646631754\n", "Epoch 533: 1.157019824202749 1.9078821673186914\n", "Epoch 534: 1.1661352704968753 2.005397500866252\n", "Epoch 535: 1.1627653941287703 1.9065647246932755\n", "Epoch 536: 1.1578514209429478 1.8395637428079765\n", "Epoch 537: 1.1662191899152756 2.00156943830715\n", "Epoch 538: 1.168201945668109 2.023471497362851\n", "Epoch 539: 1.1665228526276126 2.0644991500670145\n", "Epoch 540: 1.1658816613974488 2.058665702998422\n", "Epoch 541: 1.1643447355846515 1.986067069948219\n", "Epoch 542: 1.162476253404076 1.9906159550427986\n", "Epoch 543: 1.1747341048941513 2.15537441684528\n", "Epoch 544: 1.158303334439897 1.940222766571229\n", "Epoch 545: 1.167750097576072 2.047987879505625\n", "Epoch 546: 1.161499969447288 1.9796463160817586\n", "Epoch 547: 1.1618397809182983 2.0145491275750587\n", "Epoch 548: 1.1530248211180012 1.9542380628345206\n", "Epoch 549: 1.1531222017080704 1.9157917081991016\n", "Epoch 550: 1.1635858828490209 2.0209805841913973\n", "Epoch 551: 1.1579552887038964 1.9522790453630605\n", "Epoch 552: 1.1649831808558848 2.046686158613785\n", "Epoch 553: 1.1640074373615312 2.003159153474343\n", "Epoch 554: 1.1651457482691459 2.0102017022980583\n", "Epoch 555: 1.1715635029370517 2.0164581257660914\n", "Epoch 556: 1.1764307339401388 2.0724774274837436\n", "Epoch 557: 1.1669823043140815 1.9717705460185897\n", "Epoch 558: 1.1744484834107063 1.997186379174134\n", "Epoch 559: 1.169286604704071 1.9482003074049572\n", "Epoch 560: 1.1708232269684675 1.9670896160116247\n", "Epoch 561: 1.177918040159993 2.0833842383961665\n", "Epoch 562: 1.175450588919051 2.0409732812502694\n", "Epoch 563: 1.1757013259264324 2.036028007875955\n", "Epoch 564: 1.169852341967423 1.9178011529882681\n", "Epoch 565: 1.1839854524569744 2.1097700742101275\n", "Epoch 566: 1.1699901890362303 1.9443972610595948\n", "Epoch 567: 1.1784189477903166 2.0134108575047995\n", "Epoch 568: 1.1724111060404596 1.9501752190008588\n", "Epoch 569: 1.1793644855150411 2.058851187496867\n", "Epoch 570: 1.1710704634361726 1.9844881108378327\n", "Epoch 571: 1.170637349147944 2.0128491214203437\n", "Epoch 572: 1.1674859871552459 1.995827220735414\n", "Epoch 573: 1.1602092563525992 1.937681733563966\n", "Epoch 574: 1.1562973452235896 1.9081278689182501\n", "Epoch 575: 1.1601815573497287 1.9425865690783073\n", "Epoch 576: 1.1618195147540886 1.9472110697687859\n", "Epoch 577: 1.1708741364461133 2.043250021263253\n", "Epoch 578: 1.1676068093394385 2.003299759582118\n", "Epoch 579: 1.1651953384573908 1.9480119950750352\n", "Epoch 580: 1.1729481290413073 2.0578489946616196\n", "Epoch 581: 1.1756518105924687 2.081163220123037\n", "Epoch 582: 1.1665099587772048 1.9747648880773814\n", "Epoch 583: 1.167405836182548 1.9592179552107116\n", "Epoch 584: 1.1746998654284155 2.0028697591643874\n", "Epoch 585: 1.1773365248807184 2.0719121468963726\n", "Epoch 586: 1.174884035757471 2.0468189831104544\n", "Epoch 587: 1.166853113745297 1.9770294711982148\n", "Epoch 588: 1.164852928893286 1.9380153940723435\n", "Epoch 589: 1.1641376525904508 1.9377478395940595\n", "Epoch 590: 1.1599106893044446 1.9057579256872386\n", "Epoch 591: 1.1709976070406567 2.029604329245804\n", "Epoch 592: 1.1716528984848746 2.0380568684025455\n", "Epoch 593: 1.1686722556889133 2.0331959031481532\n", "Epoch 594: 1.1632339738919797 1.9820065033475909\n", "Epoch 595: 1.1564164096740799 1.9271097108640185\n", "Epoch 596: 1.1666694828568867 2.0724520045260295\n", "Epoch 597: 1.1537707827222201 1.9181065128036707\n", "Epoch 598: 1.1571075122251715 1.9705058791561187\n", "Epoch 599: 1.1721611168487915 2.1617614972119306\n", "Epoch 600: 1.155183953593385 1.9749704550186957\n", "Epoch 601: 1.1554366688928757 1.9844079087563904\n", "Epoch 602: 1.1647280640469377 2.081337702842052\n", "Epoch 603: 1.1658496108379754 2.1060936098291947\n", "Epoch 604: 1.14758503546801 1.8717290219119311\n", "Epoch 605: 1.1510322758027156 1.9657134666956575\n", "Epoch 606: 1.1535227944197683 1.989369661635029\n", "Epoch 607: 1.1538889452189671 2.0018450944565944\n", "Epoch 608: 1.1635852958354194 2.1179681261409202\n", "Epoch 609: 1.1554217599794048 1.9053692359601369\n", "Epoch 610: 1.1697281053661879 2.063683085157363\n", "Epoch 611: 1.1654273181045691 2.0749523365744253\n", "Epoch 612: 1.1532446422864804 1.9181586657893415\n", "Epoch 613: 1.163051758110536 2.046855736204119\n", "Epoch 614: 1.151106979641301 1.9490453567949784\n", "Epoch 615: 1.1589446331299682 2.0621825131187985\n", "Epoch 616: 1.156008845475296 2.0593705707766103\n", "Epoch 617: 1.1561201349749786 2.077364593638815\n", "Epoch 618: 1.1479035736525844 2.008954274865795\n", "Epoch 619: 1.144524703842288 1.980690356318616\n", "Epoch 620: 1.136992737736608 1.920267931915191\n", "Epoch 621: 1.1449055065162845 2.0256836009563326\n", "Epoch 622: 1.1369548617973584 1.9139524101299534\n", "Epoch 623: 1.1394590802641777 1.9412799156168985\n", "Epoch 624: 1.1440634230707285 1.9759853212911\n", "Epoch 625: 1.1377341050508412 1.8056331460596537\n", "Epoch 626: 1.154621556420888 2.0517240402014973\n", "Epoch 627: 1.1437171562739505 1.9261258346472023\n", "Epoch 628: 1.150385307559757 2.027778902322227\n", "Epoch 629: 1.1530967199002244 2.0626847385825093\n", "Epoch 630: 1.1531172636195939 2.065527734414501\n", "Epoch 631: 1.1490742275494856 1.9638324313626334\n", "Epoch 632: 1.155315310074967 2.102823402912834\n", "Epoch 633: 1.1417601690775259 1.9172810647771976\n", "Epoch 634: 1.1510159534567739 2.010997298421388\n", "Epoch 635: 1.149005741676144 1.9937017899446772\n", "Epoch 636: 1.155222921847631 2.01113908577509\n", "Epoch 637: 1.150820535642392 1.9526606615164677\n", "Epoch 638: 1.1551409338435366 2.000433609996005\n", "Epoch 639: 1.1578834103979951 2.0468988071021372\n", "Epoch 640: 1.1565305856473265 2.0128183635846515\n", "Epoch 641: 1.1591606428192935 2.01835623644454\n", "Epoch 642: 1.1569524851263293 2.045253459625615\n", "Epoch 643: 1.1514787531975645 1.9551687657003172\n", "Epoch 644: 1.163649621435769 2.0838699038768436\n", "Epoch 645: 1.1472411948456802 1.9178902458696894\n", "Epoch 646: 1.1447468750038605 1.8467790295194404\n", "Epoch 647: 1.165686895471076 2.1111351565553234\n", "Epoch 648: 1.1576923239875891 1.9899596857567805\n", "Epoch 649: 1.161485272855309 2.025151149884347\n", "Epoch 650: 1.1597597440083867 1.908835408981916\n", "Epoch 651: 1.1650400581070193 2.0420247761455457\n", "Epoch 652: 1.1675470577075604 2.062979899616677\n", "Epoch 653: 1.159614412837413 1.994903243221295\n", "Epoch 654: 1.1582505049578176 1.9941648150426208\n", "Epoch 655: 1.1634176578590663 2.057592596278545\n", "Epoch 656: 1.1611885297523123 2.007311825230074\n", "Epoch 657: 1.154168506409637 1.9096176697993068\n", "Epoch 658: 1.1658267998253125 2.0735413463909116\n", "Epoch 659: 1.1622960295547577 1.9920497664560168\n", "Epoch 660: 1.1605113725197804 1.9769764654165227\n", "Epoch 661: 1.1688240775030034 2.0720466891643783\n", "Epoch 662: 1.166474635389868 2.043905242100123\n", "Epoch 663: 1.1561023168581162 1.891245447819258\n", "Epoch 664: 1.170902381424022 2.0453216165097943\n", "Epoch 665: 1.1735445476514155 2.0428657951344187\n", "Epoch 666: 1.172054013314705 2.0262399185341877\n", "Epoch 667: 1.1708034841598174 2.0146171031004765\n", "Epoch 668: 1.1671142915453008 1.9348631427426084\n", "Epoch 669: 1.1775445636369115 2.0477901564859926\n", "Epoch 670: 1.1644419422264496 1.919474895221312\n", "Epoch 671: 1.1741559338165275 2.074967660671925\n", "Epoch 672: 1.1731059472314012 2.0687478375680235\n", "Epoch 673: 1.1625465689120127 1.9400170806618209\n", "Epoch 674: 1.1621233434513776 1.9331084122401405\n", "Epoch 675: 1.172690681588269 2.078074424231667\n", "Epoch 676: 1.1673711696972886 2.0179073495059945\n", "Epoch 677: 1.1706102870624606 2.0697200328933634\n", "Epoch 678: 1.1703580494763104 1.9874324564763488\n", "Epoch 679: 1.1619811693165076 1.8821263438324085\n", "Epoch 680: 1.1760639541364406 2.0506844372123743\n", "Epoch 681: 1.1768429181245823 2.0749670618770857\n", "Epoch 682: 1.1636128240680195 1.8879778704396915\n", "Epoch 683: 1.1709499629950786 1.9835964000124204\n", "Epoch 684: 1.176966935674532 2.0451598736206993\n", "Epoch 685: 1.1748268450232888 2.010486718394343\n", "Epoch 686: 1.172105455781458 1.9888604323678445\n", "Epoch 687: 1.1773147388707024 2.0552232315545726\n", "Epoch 688: 1.174981523032786 2.025749691408062\n", "Epoch 689: 1.175802764810576 2.0272108047081865\n", "Epoch 690: 1.1741388731261873 2.0438495359399673\n", "Epoch 691: 1.1645637415696226 1.914852964763105\n", "Epoch 692: 1.1775437201929273 2.0837327430593087\n", "Epoch 693: 1.171021545689541 2.0380823234432075\n", "Epoch 694: 1.1720299111368093 2.077853785353434\n", "Epoch 695: 1.166607405867305 2.0266663943476817\n", "Epoch 696: 1.1616206086636185 2.0041200728231723\n", "Epoch 697: 1.1650256609464475 2.0303823418621296\n", "Epoch 698: 1.164814414701397 1.9838895901176739\n", "Epoch 699: 1.1743731417049934 2.121649344069409\n", "Epoch 700: 1.1729325183302142 2.090510587257664\n", "Epoch 701: 1.167460302805175 1.9853618003596634\n", "Epoch 702: 1.171378151734284 2.053763389219159\n", "Epoch 703: 1.1702239862054735 2.055377866431336\n", "Epoch 704: 1.1655974083142302 1.99677623915332\n", "Epoch 705: 1.1637079902216065 1.9796444231160475\n", "Epoch 706: 1.1657164709848369 1.9887143991472445\n", "Epoch 707: 1.1675292832336142 2.0241719840109442\n", "Epoch 708: 1.1698232737370793 2.035350913839469\n", "Epoch 709: 1.1734883786457513 2.058245749818177\n", "Epoch 710: 1.178176428028091 2.0956221073814563\n", "Epoch 711: 1.1707212472550819 2.0256728162977207\n", "Epoch 712: 1.1575486624890918 1.8194403182077832\n", "Epoch 713: 1.177523685965058 2.0673595592156992\n", "Epoch 714: 1.1747159994855776 2.043155876208187\n", "Epoch 715: 1.1710098799379844 1.9762692647653097\n", "Epoch 716: 1.1640454907921152 1.8903064571396975\n", "Epoch 717: 1.1762622377686232 2.0574860911681907\n", "Epoch 718: 1.1787825645581391 2.002981652644582\n", "Epoch 719: 1.1760841297560203 1.9935265856839561\n", "Epoch 720: 1.1809428938255737 2.0650923158709085\n", "Epoch 721: 1.1765205975787607 1.9578502910758795\n", "Epoch 722: 1.1774642175778434 2.019709090157791\n", "Epoch 723: 1.1680699833280164 1.898312445095025\n", "Epoch 724: 1.1761840770108003 2.0462077852453637\n", "Epoch 725: 1.1718479222055256 2.0058071438445033\n", "Epoch 726: 1.1664817877999039 1.9096610999007464\n", "Epoch 727: 1.1724817886067012 1.9513913121667488\n", "Epoch 728: 1.177878687532817 2.0048043751218154\n", "Epoch 729: 1.1805702427200604 2.038253110489647\n", "Epoch 730: 1.1731762805250165 1.9773643250294353\n", "Epoch 731: 1.1719481861256338 1.9681530248838734\n", "Epoch 732: 1.170958734170868 1.931736000361683\n", "Epoch 733: 1.1809837229509716 2.076098698308606\n", "Epoch 734: 1.1814920816011996 2.1008648023647707\n", "Epoch 735: 1.1739589961909729 1.9850473133869209\n", "Epoch 736: 1.175209416452425 2.010759548096611\n", "Epoch 737: 1.17394430015845 1.980847883428966\n", "Epoch 738: 1.1742166094964246 1.9785416003352714\n", "Epoch 739: 1.176104874697144 1.9923927012366787\n", "Epoch 740: 1.1713424931242489 1.8749667813350874\n", "Epoch 741: 1.179252499460744 1.9830882619410506\n", "Epoch 742: 1.1719552117063976 1.8948350185906075\n", "Epoch 743: 1.1823893626823063 2.0678006992277806\n", "Epoch 744: 1.1780966097356345 1.998036497360876\n", "Epoch 745: 1.179165780753876 2.004630972509234\n", "Epoch 746: 1.1835778630200546 2.0950285707921648\n", "Epoch 747: 1.1766786813161292 2.044100782536718\n", "Epoch 748: 1.160163503077738 1.9177065378896447\n", "Epoch 749: 1.1675883035849126 2.014212936737423\n", "Epoch 750: 1.1634300571662926 1.9721611100038532\n", "Epoch 751: 1.1715877858447237 2.043941039719496\n", "Epoch 752: 1.1584171500053826 1.8746409041865049\n", "Epoch 753: 1.1763127461801561 2.0918118518975723\n", "Epoch 754: 1.1659716692903694 1.9742224619202564\n", "Epoch 755: 1.1646604634177344 1.9361122857977011\n", "Epoch 756: 1.160620833248367 1.8662711354233066\n", "Epoch 757: 1.1661982405581681 1.968819352593975\n", "Epoch 758: 1.1629045745496742 1.9550035485315502\n", "Epoch 759: 1.1647548221153303 1.9730341239745295\n", "Epoch 760: 1.1663056539956702 1.965890594274193\n", "Epoch 761: 1.1779151897816287 2.081608721625768\n", "Epoch 762: 1.1693962316786333 1.941286889886656\n", "Epoch 763: 1.1805267074161756 2.0743145136767094\n", "Epoch 764: 1.1800985705084266 2.0668825274432767\n", "Epoch 765: 1.1726861160529571 1.956012847673854\n", "Epoch 766: 1.1877647813139627 2.083771880721844\n", "Epoch 767: 1.1759959529950046 1.9502345357584432\n", "Epoch 768: 1.180106600845589 2.030203465317662\n", "Epoch 769: 1.1785547996239625 2.0075038810866097\n", "Epoch 770: 1.1721198204166714 1.9509697428767063\n", "Epoch 771: 1.1748246698164564 1.9928669913981039\n", "Epoch 772: 1.1730788942530228 1.9950697028851319\n", "Epoch 773: 1.175246930868462 1.9668602729713875\n", "Epoch 774: 1.1734417451383476 1.9514775324234275\n", "Epoch 775: 1.1865747041781565 2.098993134805362\n", "Epoch 776: 1.188501736263222 2.0506954757968603\n", "Epoch 777: 1.182852656139179 1.9646481114324323\n", "Epoch 778: 1.185967165253824 2.013231001970683\n", "Epoch 779: 1.1844395490522908 2.0910341881077166\n", "Epoch 780: 1.1737915821547968 1.9646164138616604\n", "Epoch 781: 1.191758869935296 2.18962453706787\n", "Epoch 782: 1.1831959356758552 2.1198312684358753\n", "Epoch 783: 1.1723311593442 1.9859166627501075\n", "Epoch 784: 1.1744433846975588 2.019754884079452\n", "Epoch 785: 1.1719566576658207 2.019318801231734\n", "Epoch 786: 1.1710418213323723 1.988913309003219\n", "Epoch 787: 1.1620316669598556 1.8707335762957873\n", "Epoch 788: 1.1703379354775691 1.997393590357857\n", "Epoch 789: 1.1719740907252663 2.025390894214763\n", "Epoch 790: 1.1751951340536277 2.073895434476763\n", "Epoch 791: 1.1649917139926171 1.9780477435131272\n", "Epoch 792: 1.1703869198290446 2.025718385462993\n", "Epoch 793: 1.1702765273424296 2.0614739778898983\n", "Epoch 794: 1.1625825879514962 1.9226274177688791\n", "Epoch 795: 1.1655086323726378 1.9208708143722197\n", "Epoch 796: 1.1691174033705247 1.9006829597676416\n", "Epoch 797: 1.1729928727329737 1.9640889316484784\n", "Epoch 798: 1.1778463811902438 1.9921573108254367\n", "Epoch 799: 1.1773514612461151 1.9667117251989434\n", "Epoch 800: 1.177124613518903 2.0343926448254734\n", "Epoch 801: 1.1749925961056273 1.985964658981048\n", "Epoch 802: 1.179957250611606 2.047084039569667\n", "Epoch 803: 1.178775628421662 2.0210086054432637\n", "Epoch 804: 1.175220208981832 2.02350131862926\n", "Epoch 805: 1.1673621446963132 1.960305978293802\n", "Epoch 806: 1.1791041023504112 2.1120544016014757\n", "Epoch 807: 1.178017568433982 2.0771402984542813\n", "Epoch 808: 1.165647287412458 1.9602070874952493\n", "Epoch 809: 1.1581522666958617 1.9120867281927372\n", "Epoch 810: 1.1574695893847933 1.9553021737969036\n", "Epoch 811: 1.1532611898613325 1.9119749320993886\n", "Epoch 812: 1.1614700136038754 1.98716206728456\n", "Epoch 813: 1.1671994116082518 2.0275299821752375\n", "Epoch 814: 1.1666677665583243 2.0417365532450047\n", "Epoch 815: 1.1697040029415398 2.0734529891667592\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 816: 1.1686166547942265 2.0558238071783412\n", "Epoch 817: 1.1601948873090822 2.010241210464497\n", "Epoch 818: 1.150618385029723 1.9258408855428137\n", "Epoch 819: 1.1636429174708893 2.0233682903580497\n", "Epoch 820: 1.1622884142555794 2.0014636002126447\n", "Epoch 821: 1.1555748556733847 1.906875567540085\n", "Epoch 822: 1.1664335200140223 2.0571278055304023\n", "Epoch 823: 1.1583224588173926 1.9869757506956676\n", "Epoch 824: 1.1702089173813757 2.1543993462777062\n", "Epoch 825: 1.1616518864819756 2.0773275184740485\n", "Epoch 826: 1.1551967684697095 2.0063270888888423\n", "Epoch 827: 1.152287628406903 1.9779246087420448\n", "Epoch 828: 1.157850677359235 2.057287178586857\n", "Epoch 829: 1.1556715647828006 2.0239885485233216\n", "Epoch 830: 1.1565890096397193 2.0503171254560946\n", "Epoch 831: 1.1595389084512515 1.98795193268577\n", "Epoch 832: 1.1589800571798163 2.011033267696134\n", "Epoch 833: 1.1556691202822504 1.9693737537898452\n", "Epoch 834: 1.157665567164785 2.0208205094235487\n", "Epoch 835: 1.1595353260212122 2.063046521990212\n", "Epoch 836: 1.1557062861486722 1.9994191106493338\n", "Epoch 837: 1.1565809689923208 1.983921711149201\n", "Epoch 838: 1.1623608098363054 2.0646902809727394\n", "Epoch 839: 1.1581531743891427 1.987295732082542\n", "Epoch 840: 1.1590402311588939 1.9689879988643828\n", "Epoch 841: 1.1646506455863843 2.0480950713908213\n", "Epoch 842: 1.162215740353453 1.9799758074439537\n", "Epoch 843: 1.1571640072959855 1.921655076066351\n", "Epoch 844: 1.1580560500600952 1.9277735300278482\n", "Epoch 845: 1.1649186113385384 1.9996409990007527\n", "Epoch 846: 1.1646426722474732 2.003677002909093\n", "Epoch 847: 1.163233802067977 1.9591389964503692\n", "Epoch 848: 1.1707356847623558 2.063112166983802\n", "Epoch 849: 1.1649031859386627 1.9707133701977613\n", "Epoch 850: 1.1669768604197768 2.003781069027834\n", "Epoch 851: 1.1666918279123084 1.9670802100651719\n", "Epoch 852: 1.177111771987998 2.082291134554474\n", "Epoch 853: 1.1714490445121664 1.9742670079602334\n", "Epoch 854: 1.1690847946719853 1.9717368670033464\n", "Epoch 855: 1.1704196198091974 2.001142604751988\n", "Epoch 856: 1.1643601918228275 1.9346720864323468\n", "Epoch 857: 1.169987727850821 1.9859981783905607\n", "Epoch 858: 1.1679002555552322 1.9558523607403306\n", "Epoch 859: 1.1700790689829543 1.9659696296969515\n", "Epoch 860: 1.1702633562751767 2.035529723782505\n", "Epoch 861: 1.1668381815422824 1.9730851200413737\n", "Epoch 862: 1.1710780627357755 2.0021502399044393\n", "Epoch 863: 1.1778865245313674 2.0584634789808436\n", "Epoch 864: 1.1706303717546014 1.9793857058274713\n", "Epoch 865: 1.1720638650705177 2.002020048112528\n", "Epoch 866: 1.177027344548512 2.094128393383114\n", "Epoch 867: 1.1590711620519718 1.930179604717959\n", "Epoch 868: 1.1595880558962133 1.9178769953065604\n", "Epoch 869: 1.163754641289815 1.9709385703174107\n", "Epoch 870: 1.1626672733179608 1.9655228206886322\n", "Epoch 871: 1.1630797077085382 2.0002004967166447\n", "Epoch 872: 1.1660986739522754 2.071909935186307\n", "Epoch 873: 1.160184645422692 1.9995763508452455\n", "Epoch 874: 1.160804198929034 2.0300445505981894\n", "Epoch 875: 1.1585661002935455 2.0156828588956004\n", "Epoch 876: 1.1608319160411553 2.0008201812945963\n", "Epoch 877: 1.1675099494614467 2.11487769035713\n", "Epoch 878: 1.1590479574905752 2.005462536710277\n", "Epoch 879: 1.1599498451300045 2.0019678492327615\n", "Epoch 880: 1.1551786199453369 2.0250694826853666\n", "Epoch 881: 1.1446999750255613 1.9146614964687192\n", "Epoch 882: 1.1607304073807792 2.100712842396314\n", "Epoch 883: 1.1587528035888388 2.075430378710201\n", "Epoch 884: 1.1450873628445297 1.9458641513033033\n", "Epoch 885: 1.1516276042155942 1.9869954395285911\n", "Epoch 886: 1.1558943781481392 1.9879195865884405\n", "Epoch 887: 1.1588996968992071 2.0238636993884156\n", "Epoch 888: 1.1589243138387106 1.9685674227858476\n", "Epoch 889: 1.1574874914236424 1.9914169005594886\n", "Epoch 890: 1.1458185129034988 1.8453262503642136\n", "Epoch 891: 1.149657736705517 1.9360649678219166\n", "Epoch 892: 1.1525349621243426 2.0003436914457113\n", "Epoch 893: 1.1566643190248354 2.0899291699728164\n", "Epoch 894: 1.1538013519485895 2.0285061124476362\n", "Epoch 895: 1.1494894712829409 1.9841138725718106\n", "Epoch 896: 1.1467280116705567 1.9875843391309578\n", "Epoch 897: 1.1457867423798365 1.965955036334711\n", "Epoch 898: 1.1500922673760217 2.0171676734984088\n", "Epoch 899: 1.1461515369907496 1.9924543962760368\n", "Epoch 900: 1.1561367888381597 2.124404315519627\n", "Epoch 901: 1.143623481118157 1.9879421847563254\n", "Epoch 902: 1.1371309103687557 1.9300487974583553\n", "Epoch 903: 1.1392961111037059 1.923134522407426\n", "Epoch 904: 1.1407954023431104 1.9720533933578297\n", "Epoch 905: 1.1447308147935196 1.9998299887445616\n", "Epoch 906: 1.1464585126021198 2.0148125135693653\n", "Epoch 907: 1.1404403740371 1.9297813616045891\n", "Epoch 908: 1.1463488767108843 2.0096770631354377\n", "Epoch 909: 1.1546029622929534 2.0832874132502397\n", "Epoch 910: 1.150169572833268 2.03405456699914\n", "Epoch 911: 1.1461421224307 1.940212083531217\n", "Epoch 912: 1.1461235515941184 1.9879469239195826\n", "Epoch 913: 1.1437277165448931 1.9458425306722948\n", "Epoch 914: 1.1465826613349566 1.963993027082908\n", "Epoch 915: 1.153700095135566 2.061082796293308\n", "Epoch 916: 1.145535162769503 1.9399497199454492\n", "Epoch 917: 1.1514181013196756 2.00126064285679\n", "Epoch 918: 1.145316405324972 1.8983230429796274\n", "Epoch 919: 1.14742180546 1.9248133926280373\n", "Epoch 920: 1.1453945133821228 1.9258806454553379\n", "Epoch 921: 1.1564822331850053 2.0417494917942447\n", "Epoch 922: 1.16532666842355 2.111873507098976\n", "Epoch 923: 1.1540591309061792 1.9727663628126484\n", "Epoch 924: 1.1511551928026063 1.9398995635622858\n", "Epoch 925: 1.153896463580002 1.958796187945312\n", "Epoch 926: 1.1585792016906362 1.9770359681201741\n", "Epoch 927: 1.1638372257027831 1.987788305134844\n", "Epoch 928: 1.1693475765031072 2.0466449244121923\n", "Epoch 929: 1.1613297289146602 1.9509056905792623\n", "Epoch 930: 1.1602256163595408 1.907791824877854\n", "Epoch 931: 1.1762509516408628 2.111297411782571\n", "Epoch 932: 1.1699169121556179 2.0205901983640597\n", "Epoch 933: 1.1684207492079968 1.9272494985274782\n", "Epoch 934: 1.1775275555358624 2.0234431331006006\n", "Epoch 935: 1.1835057205367496 2.096536323344183\n", "Epoch 936: 1.1808714871626944 2.06793651984597\n", "Epoch 937: 1.1711764282577117 1.944775568850033\n", "Epoch 938: 1.1765847908624938 2.059669845699896\n", "Epoch 939: 1.1689618571823044 1.99094115269792\n", "Epoch 940: 1.1702445180640104 2.0274149394537373\n", "Epoch 941: 1.1673014771928076 2.006856804873804\n", "Epoch 942: 1.1680741730951625 2.0138214259752067\n", "Epoch 943: 1.1632470351155013 1.9746100270936742\n", "Epoch 944: 1.164775740105387 1.9920699533172106\n", "Epoch 945: 1.1688593880528286 2.0088814901064453\n", "Epoch 946: 1.1747648520414604 2.064169474455046\n", "Epoch 947: 1.166189301475967 1.9512623293150524\n", "Epoch 948: 1.1723293093984961 1.9991619097278583\n", "Epoch 949: 1.1724157247810891 2.0119349303671377\n", "Epoch 950: 1.1749165447698378 2.056822162737071\n", "Epoch 951: 1.1736709326235968 2.0236610959914625\n", "Epoch 952: 1.1750017021555834 2.0385020828048606\n", "Epoch 953: 1.1767926748338744 2.078712474345494\n", "Epoch 954: 1.1712354911892442 1.988543257494375\n", "Epoch 955: 1.1740383287480203 2.053345404770091\n", "Epoch 956: 1.1751871446465831 2.0933373481889297\n", "Epoch 957: 1.1641647182469066 1.9155137587626623\n", "Epoch 958: 1.1691004333247237 1.9414331144327648\n", "Epoch 959: 1.1772536725425993 2.067633262103231\n", "Epoch 960: 1.1779986870370482 2.086082028772622\n", "Epoch 961: 1.1738897563079478 2.047915322270108\n", "Epoch 962: 1.1619161143374852 1.8923934588954494\n", "Epoch 963: 1.1697457741957606 1.9844759110197736\n", "Epoch 964: 1.1697351096822857 1.9741557080092809\n", "Epoch 965: 1.1674910142105261 1.970702981080298\n", "Epoch 966: 1.1708913097774833 2.035510742775975\n", "Epoch 967: 1.163560206727453 1.959034424532293\n", "Epoch 968: 1.1645150122282628 2.0045453242661675\n", "Epoch 969: 1.1679107423551707 2.063905013621921\n", "Epoch 970: 1.1677195713875725 2.0433237073388213\n", "Epoch 971: 1.17002548380566 2.087239453154267\n", "Epoch 972: 1.1669677656803277 2.00776004658578\n", "Epoch 973: 1.1693951222961703 2.0054310660716648\n", "Epoch 974: 1.163591461957682 1.9957651646191144\n", "Epoch 975: 1.1631281436776817 1.996814233291856\n", "Epoch 976: 1.1657782005156223 2.0337180441688014\n", "Epoch 977: 1.1613277185536075 1.9761369889578149\n", "Epoch 978: 1.1715340660463078 2.0889472256757897\n", "Epoch 979: 1.1643274955849614 2.0325757476315434\n", "Epoch 980: 1.169053706321655 2.1097168551532635\n", "Epoch 981: 1.162086973500796 1.9555235042178425\n", "Epoch 982: 1.1659416789106982 2.0106789994605276\n", "Epoch 983: 1.169102413154393 2.0281705562256747\n", "Epoch 984: 1.1554108232659615 1.9228184709910991\n", "Epoch 985: 1.1588930741118912 1.921251824994387\n", "Epoch 986: 1.1550587111137056 1.8840277756684038\n", "Epoch 987: 1.1638976152823144 2.025125792607056\n", "Epoch 988: 1.1671422605177448 2.097307271135845\n", "Epoch 989: 1.1556821951123852 1.9115550838186852\n", "Epoch 990: 1.160829285965992 1.940623122785074\n", "Epoch 991: 1.165446317556802 2.000186893753661\n", "Epoch 992: 1.1718972107106718 2.076132788705562\n", "Epoch 993: 1.163709861587923 1.9829789758500083\n", "Epoch 994: 1.1624906108985786 2.000615035032854\n", "Epoch 995: 1.1613760832770657 1.9794077021416954\n", "Epoch 996: 1.1678270786062839 2.0712825199502247\n", "Epoch 997: 1.1632112053389412 2.0243115044550732\n", "Epoch 998: 1.1598619426016632 1.9867915874642743\n", "Epoch 999: 1.1667041528951323 2.064176860885111\n" ] } ], "source": [ "epochs = 1000\n", "mini_batch_size = 10\n", "eta = 0.01/mini_batch_size\n", "\n", "a = 3.\n", "b = 3.\n", "def update_mini_batch(mini_batch, eta):\n", " global a, b\n", " a0 = a\n", " b0 = b\n", " for x, y, in mini_batch:\n", " e = eta*(a0+b0*x-y)\n", " a -= e\n", " b -= x*e\n", " \n", "training_data = list(zip(x_data,y_data))\n", "for j in range(epochs):\n", " np.random.shuffle(training_data)\n", " mini_batches = [training_data[k:k+mini_batch_size]\n", " for k in range(0, len(training_data), mini_batch_size)]\n", " for mini_batch in mini_batches:\n", " update_mini_batch(mini_batch, eta)\n", " print (\"Epoch {0}: {1} {2}\".format(j,a,b))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Challenge 14.2\n", "\n", "Use SGD to train the single neuron in the previous notebook using a linearly separable set of 100 points, divided by the line $-\\frac{5}{2}x+\\frac{3}{2}y+3=0$ " ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXdYVEcXxt97gYUVsIAIioiIBQOxgbHFGsUaFUs09t41fqbZa9TYEiN2rLFgxRK7sUSsoFgQQVGxAYJSlc7e8/1h2LBSZNlyd5f5Pc99dGfvzLzA7ruzM2fOcEQEBoPBYBgWvNgCGAwGg6F+mLkzGAyGAcLMncFgMAwQZu4MBoNhgDBzZzAYDAOEmTuDwWAYIJ80d47jtnAcF8tx3P1cZVYcx53lOC7833/LaVYmg8FgMJShKCP3bQA6fFQ2FcA5IqoB4Ny/jxkMBoOhI3BF2cTEcVxVAMeIyO3fxw8BtCKiaI7jKgK4SES1NCmUwWAwGEXHuJj1bIko+t//vwZgW9CNHMeNAjAKAMzNzd1dXFyK2WXReP36NSIjIwEAPM9DEARYWlqievXq4Hm2xFAQcXFxePv2LbKzs2FhYQE7OzuYmpqKLYuhIwRHJik8/ty+jEhKSia3bt16S0Q2ytQprrnLISLiOK7A4T8RbQSwEQA8PDzo5s2bqnZZIMHBwahTpw6++eYbrFu3DqVLl8aWLVswevRodO/eHbNnz9ZY3/rM+PHjsXbtWri4uMDZ2Rnnz5/HixcvcOnSJdStW1dseQyRqTr1OCrmevzs186iaSmpcBz3XNk6xR3Kxvw7HYN//40tZjtqxdfXF8bGxli7di2srKxgbGyMUaNG4auvvsLu3bvFlqeThISEYO3atZg4cSIePHiAY8eOITQ0FBKJBDNmzBBbHkNkqk49rvCYGbv+UFxzPwpg8L//HwzgiHrkqEZKSgokEglKly6tUG5jY4OUlBSRVOk2p06dAgBMmzYNHMcBABwdHTFw4ECcOnUKgiCIKY8hIszY9ZuihEL6ArgGoBbHca84jhsO4FcA7TiOCwfQ9t/HotO2bVukpqbCx8dHXvb48WMcPXoUbdu2FVGZ7pIzr/7+/XuF8nfv3kEikcgNX1M8fvwYK1euxB9//IGnT59qtC9d4OXLlxg/fjxq1aqF+vXrY+nSpUhPTxdbVh6YsRsARKS1y93dnTRJdnY2ffXVVwSAWrduTX369KFSpUqRlZUVhYeHa7RvfeXly5dkZGREXbp0oYSEBCIi+vvvv0kqldKgQYM02vesWbMIgPziOI7mz5+v0T7F5NmzZ2RnZ0cSiYS6du1KzZo1IwDUrl07ys7OFlueHMefjylcDPEBcJOU9FuDMnciotTUVPrll1+odu3aVKVKFRo6dCgz9k+wevVqAkBmZmZUuXJlAkDVq1enqKgojfV54sQJAkCDBg2i58+f07Nnz6hfv34EgM6ePauxfsVk9OjRZGZmRvfv35eX5fzuDx8+LKKy/2DGrpsUx9yLFOeuLjQdLcMoPrdv38b27dvx9u1bNG3aFAMHDoSlpaXG+uvduzcuX76MFy9ewMTEBACQkZGBypUrw9PTE7t27dJY32JRrVo11K9fHwcPHpSXZWdnw8rKCoMGDcLq1atFVAfUmXsayenZ8sdsKkZ34DjuFhF5KFNH5VBIhmFQv3591K9fX2v9xcXFwdHRUW7swIf5fwcHB7x9+1altuPj47Fnzx5ER0fDw8MDnTt3hrGx+C91qVSKxMREhbKUlBRkZGRAKpWKpOoDh26/KhHGTkS4cuUKLl++DCsrK/Tq1QtWVlZiy9IMyg71Vbm0MS3D0A+mT59OPM9TcHCwvCwoKIgA0Ny5c4vd7rlz58jS0lJhLr9+/fr05s0bdchWifnz5xMA2rRpE2VnZ1NycjINHjyYAFBgYKBoupLSMkvEVExqaip17NhR4bVhZmZGR48eFVvaJwGbc2foC1FRUWRra0tlypShCRMm0Lhx48jS0pIqVqxIMTExxWozJSWFrK2tydXVlW7fvk1ZWVm0a9cuMjU1pQEDBqj5JyievhYtWhAAKleuHEkkEgJA5cuXJw8PD/rjjz8oMzNT67pKgrETEU2bNk3B2PHvIr6ZmZlOfPgXBjN3hl7x6NEj6tmzJ5mYmJBEIqHevXvTkydPit3egQMHCACdO3dOoXz8+PEkkUgoNTVVVckqk5mZSfv27aPevXuTVColqVRKXl5e1LBhQwJAvXr1IkEQtKYnt7FHJoj/+1E3CQkJtHfvXvL19aXy5cvnMfeca82aNWJLLZTimLv4E5GMEkuNGjVw4MABCIIAjuNUjqlPSEgAAFSpUkWhvEqVKsjMzERaWproc9smJibo3bs3Dh48CBMTE9y+fRvVqlUDACxYsACzZ8/G5cuX0bx5c41ryR3L/oNnTVQqK+7vRt1s3boV48aNK9I+gri4OC0o0i4skxZDdHieV8tmqRxD3Lhxo7wsNTUVO3bsgKurK8qV051jB06fPo3evXvLjR0Avv/+e/A8jzNnzmi8/483KU1oU0PjfWqTW7duYfjw4cjIyCjS/U2bNtWwIu3DRu4Mg6FWrVoYMmQIli1bhlu3bqFOnTo4cuQInj17Bj8/P2RkZODNmzeoUKGC6Bkv84ucSUpKgiAIGv92URJ2n/r4+IDjuCKlz2jVqhXatGmjBVXahY3cGQaFj48Pfv31Vzx79gwbNmxA5cqVcfToUVy5cgU2NjaoUqUK7OzsMGfOHMhkMtF09u3bF4cPH8a+ffsgCAISEhIwYcIEcByH3r17a6zfkmDsAORpv/PDwsICHMehbNmymDJlCo4dO6bxNBuioOwkvSpXcRdUExMTKTg4WL49XllSU1NFiUJg6AYjR44kANSvXz/asGED9ejRgwDQjz/+WOQ24uPjac+ePbR79256+/atypoSEhKoQYMGBICsra3lkTMrVqxQue2CKEm7Tz9ObYFc0THjxo3T6qK1OoChRcukp6fTuHHjyNTUlACQqakpjR07ltLS0opU/9KlS9S0aVMCQBKJhPr160fR0dFKaSipnDlzhvr370+dOnWixYsXU1xcnNiSikVUVBQZGRnRxIkTFcoHDhxIUqmUEhMTP9nGxo0bSSqVyg3C1NSUvL29VdaWnp5OO3bsoBEjRtD3339Pt2/fVrnNgihJxk5EFBkZSWXLliWe5+V/N57nSSqV0sOHD8WWpzQGZ+4jRowgADRy5Ejas2cPjRo1igDQsGHDPlk3MDCQJBIJOTo60uzZs2ncuHEklUrJxcVFJ0LidJmZM2fKR5Rubm4EgKpWrUovX74UW5rSnDlzhgDQhQsXFMoPHTpUpM1D169fJwDk6elJ165do4CAAOrcuTMBoIsXL2pQufooacaew927d+X7CgDQF198QdeuXRNbVrEwKHOPiYkhY2NjmjBhgkL5pEmTyNjY+JMj8J49e5KVlZXCV+hjx44RANq6dWuRdZQ0Hjx4QABo8ODBlJ6eTkREV69eJalUSkOGDBFZnfLk/DwfT3fMmjWLOI6jV69eFVp/2LBhVLp0aXr37p28LDU1laysrOjbb7/ViGZ1UlKNPTdxcXEUGxsrtgyVKI656+yC6qNHj5CdnY3OnRUXfDp37ozs7Gw8evSo0PoBAQHo1KkTrK2t5WWdOnVC2bJlERAQoBHNhsDhw4cBAEuXLpVHlDRp0gR9+vTBoUOH5PfdunUL06dPx88//4xLly59GCnoILVr10bLli0xZ84cbNy4EWFhYfjjjz+wdOlSdO3aFfb29oXWj4yMRPXq1WFhYSEvk0qlqF27dqGLdrpASVk8/RRWVlawsVHq+FGDQGfN3dHREQBw9epVhfKcxznPF4StrS0ePHigYDqRkZFITk6GrW2B53mXeHJCx4yMjBTKjYyMIAgCiAg//vgjPDw8sGzZMvz+++9o2bIlBg8erLOnNu3evRu1a9fG6NGjUbt2bUyePBmNGzfG5s2bP1m3fv36uHv3LsLDw+Vlz58/R0BAgFYTrSnLlssRCo9LqrGXaJQd6qtyKTvn3r17d5JIJLRw4UK6fv06LVq0SH7QwadYt24dAaBJkybRs2fP6ObNm9SsWTMyNjamp0+fKqWjJHH37l0CQGPHjpUfIHHnzh2ysLCg/v37y+ewR40aRYmJiZSSkkIzZswgALR9+3aR1ReMIAh0+fJl2rFjBwUGBhY5WuLFixdUtmxZsrOzo/nz59Mvv/xC9vb2ZGlpqVKqBE3y5l26QU/FvHr1ig4fPkz+/v4kk8nElqMVYEhz7kQfwsU6deqkEMrUoUMHio+P/2RdmUxGY8aMUagrlUppz549SmkoiUyePJkAkIODAzVp0oR4nqeKFSvS06dPadCgQWRlZSWfjyf6YJw1atQgT09PEVXnT1ZWFi1cuJDs7e0JAH3++ee0a9cupdq4ffs2NW/eXP46atq0KQUEBGhIseoYqrFnZ2fTxIkTFSJgnJ2d6d69e2JL0zjFMXe9OKwjLCwM4eHhqFGjBlxcXJSue+7cOZibm6Nbt246tQVdVyEiHD58GNu3b0dCQgK+/PJLTJw4EXZ2dujRoweCg4MVpikAoEWLFsjKysK1a9dEUp0/Y8aMwYYNG9C+fXs0bNgQf/31F+7evQsfHx+MGDFCqbbi4uJARChfvryG1KpO7nn2mzPboryFuDtx1cmSJUswdepUhTKe51GhQgVERETAzMxMJGWapziHdej0yJ2he6xatYoA0MmTJ+Vlt27dIp7nafr06SIqy8uzZ8+I4ziFGPesrCz68ssvyd7enrKyskRUp35yj9g3+Rve1GPFihULzOro6+srtjyNAkOKllEHRIRr167h8OHDePnypdhyDIKhQ4fC1dUVXbp0gZeXF/r27YtmzZrB3t4ekyZNElueAjdu3AARYejQofIyY2NjDBw4EJGRkWp9Tdy6dQtTpkzByJEj4evri8zMTLW1XRQ+jowZ/qWTVvvXNDKZDNHR0QU+//z5cy2q0Q8M1twfPnyIzz//HE2bNoWXlxeqVq2KUaNGISsrS2xpeo2FhQX++ecfTJo0CUFBQfD398fgwYNx9epVnYtCypk+efLkiUL5kydPwPM8ypYtq5Z+Fi1aBA8PD6xbtw5+fn7o168fWrZsiXfv3qml/U+hDyGPmZmZOHLkCNavX4+AgAClQ2eNjIxQs2bNAnPAuLm5qUOmYaHsUF+VS1vTMpmZmVStWjWqUKECbd26lW7cuEGTJk0iADR79mytaGCIT3Z2NlWtWpWqVKlC58+fp3fv3tGOHTtIKpVSz5491dLHvXv3CAD17duXEhMTSSaT0Y4dO4jjOJoxY4Za+igMfdikdPv2bapUqZLCNEq7du0UNoYVhW3btuWZjuF5nlxdXeWRXYYKDC1aprgcPXqUANDhw4cVyrt160bly5cvMeFTjA/rAba2tnnOVC3uUX4fM2PGDDIyMsqTTKxjx47k7Oyslj4KQh+MPTMzk+zt7RUiXHKu0aNHK93e6tWrydraWp4ErEuXLhQVFaUB5bpFcczdIKdlnj17BgBo3LixQnmTJk3w9u1bpKSkiKCKIQYNGjRAREQEdu7cicWLF+P48eMIDAxEhQoV1NJ+WloajI2NFXawAkC5cuWQlpamlj7yQx+mYgDgzJkziIyMzHeD27Zt24p0SlJuxo8fj6ioKISGhuL169f466+/ULFiRXXJNSgM0txz5t+OHTsmLxMEAcePH4ejo2OeNyLDsJFKpejfvz+mTp2KTp065dl9qwqenp7IyMjA6tWr5WWPHj3CkSNH0K5dO7X1kxt9MXYAeP36dYHPZWRkIDk5Wek2JRIJXFxc1PYBbagY5ElMrVq1whdffIEJEyYgPDwcrq6u2L17N/z9/bFmzRrDTMzPEIV27dqhS5cu+OGHH3DgwAHY2tri1KlTsLS0xKxZs9Tenz4ZOwB4eOQfms1xHOzt7XV6z4C+Y5Ajd47jcOzYMXTq1AnLli3DoEGDEBgYiOXLl2Ps2LFiy2PoKFFRUVi1ahUWLVqE69evFymig+d5HDx4EL/99hsyMzMRGhqKIUOGICAgAM7OzmrVp2/GDgB169ZF165dFco4jgMRYe7cueB5g7QgnUAvdqiqwps3bxAXFwcnJyfRz81k6C7bt2/HyJEjFUJle/Xqhd27d8PExEREZR9YcioM6y7+F9KpD8aeQ1paGqZNmwYfHx+kpqaiSpUqmDt3rsL+A0bhFGeHqsF/bNrY2MDFxYUZOwMAkJWVlWdx7+nTpxg+fDiaN2+OR48eITExEfPmzcOBAwfwxx9/iKT0P14lpOqssUdERGDSpElwd3dHhw4dsH///jzfeKRSKVauXInExETEx8fj2bNnzNi1gbLhNapcLP0AQyzOnj1LjRs3JgBkYWFBY8eOlR+xN2/evHwP7mjevDm5urqKIVcBXQ13vH//PpUpU4Y4jpPHnAOgKVOmyO+JjY2lLVu20IYNG+jZs2ciqtVvwEIhGYy8XLx4ER06dEBsbCxmzpyJHj16YOPGjejYsSNkMhni4+MhlUphZ2enUM/JyQlxcXEiqf5A7nn2u7M9RVSSl6lTp+Ldu3fykXrON6LffvsNDx8+hI+PD+zt7TFs2DCMHj0a1apVw6xZs5TencooJsp+GqhysZE7Qwxat25NDg4OlJSUJC/btGkTAaDjx4/Tvn37CIBCKuDXr19TuXLlqFevXmJIJiLFEfuOa7o16pXJZGRkZFRgIq///e9/8hH9x5efn5/Y8vUOsJE7g5GXGzduwMvLC6VLl5aXDRw4EABw/fp1dO/eHQ0bNsTgwYPRr18/TJ48GXXr1kV6ejpmzJghiuaPI2MGNC785DFtw3FcofsFbt26lW/IMc/z2LhxoyalMf6FmTvD4LGxsclz5u7jx4/lz5mYmODMmTMYO3YsTp8+jXXr1qF+/fr4559/UK9ePa3r1YeQR47j0KtXr3xDGXmeh4WFRb7mLghCoRubGOpDJXPnOO5/HMeFcBx3n+M4X47jDDdbPkNvGTZsGE6dOoUFCxYgNjYWgYGBGDRoEKRSKfr27QsAKFu2LFatWoW4uDhkZGTg5MmTaNiwoda16oOx5/Drr7+iUqVKAD4Yeo7RL1++HC1btoRMJstTh+M4NGrUSKs6SyrFjnPnOM4ewGUAnxFRGsdx+wCcIKJtBdURI86dwcjMzES/fv1w8OBBeZmFhQV8fX3RpUsXEZUpok/GnkNiYiI2b96Ma9euoXz58hg6dCgaNWqE+Ph4uLq6IjY2Vr7QyvM8zMzMcPv2bdSsWVNk5fpFceLcVU0/YAxAynFcFoBSAKJUbI/BUDsSiQQHDhzAzZs34e/vj7Jly8LLy0tt+dzVgT4aO/DhG8/333+fp9zKygqXL1/GlClTcOzYMQiCgBYtWmDZsmXM2LWESjtUOY77DsBCAGkAzhBR/3zuGQVgFABUqVLFnZ2YwmAooq/GXlTS09MhCAJKlSolthS9Ras7VDmOKwegGwAnAJUAmHMcN+Dj+4hoIxF5EJGHjY1NcbtjMAwSQzd2ADAzM2PGLgKqLKi2BRBBRG+IKAuAH4Cm6pHFYBg+JcHYGeKhirm/ANCY47hS3IeYp68AhKpHFoNh2IzbdUvhMTN2hroptrkT0Q0ABwAEAQj+ty22O4HB+ASh0ck4EfxfrDczdoYmUClahojmAJijJi0MhkqkpqZi//79CA8PR40aNdC7d2+dm+slInT8w1/+mBk7Q1MY5ElMjJJHaGgo2rVrh8jISHnZzJkzcfbsWbi4uIioTBGnaSfk/38wv72IShiGDks/YIC8ffsWmzdvhre3N8LCwsSWo3GICAMGDEB2djbOnz8PQRBw7tw5ZGZmYuDAgTqThTD3AuqvPT5HKQkbWzE0BzN3A2Pnzp1wcHDAiBEjMGnSJNSuXRtjx47N9/R5QyEkJARBQUGYM2cOWrduDY7j0KZNG8yaNQs3b95EaKj46/wfR8b0/aKKSEoYJQVm7gZEeHg4hgwZgsaNG+POnTt48eIFJk2ahPXr12Pz5s2i6crMzMSZM2dw4MABREdHq739pKQkAICDg4NCeZUqHww0MTFR7X0qAwt5ZIgBM3cDYvv27QAAX19f1K1bFw4ODli5ciXq1q0rmrlfunQJTk5OaN++PXr37o0qVapg6tSpap0qqVu3LiwtLeHj4yP/hiIIAnx8fFC6dGnUrVtXbX0pCzN2hlgwczcg3rx5g7Jly8LW1lZexnEcXFxcEBsbq3U9b9++RZcuXVC6dGkcPXoUAQEB6N+/P5YsWaLWDxsLCwvMnDkTR48ehbu7O/73v//B3d0dx44dw6xZs2Bubg4ASE5OxpIlS9CmTRt07NgRW7ZsQXZ2ttp0fAwzdoaoKHu6hyoXO4lJs+ScLnTixAl5WUxMDJUpU4b69u0rL0tMTKRHjx5RamqqRvX8/vvvBICCg4PlZYIgUIMGDah+/fpq7UsQBNq2bRvVrVuXSpUqRfXq1aM///xT/nxCQgK5ubkRAGrQoAHVrFmTAFD37t0pOztbrVqIFE9R0rWzTxn6B4pxEhMzdwMiJSWFatWqRVKplMaMGUPTp08ne3t7MjMzo9u3b9P79+9p2LBhJJFICACVKVOG5syZQzKZTCN6pkyZQmZmZiQIgkL56NGjydraWiN9FsTs2bOJ4zg6deoUEX34MFiyZAkBoEOHDqm1L2bsDHVTHHNn0zIGRKlSpXDhwgX07NkTW7duxaJFi1C9enWcP38e9erVw4ABA7Bt2zaMGDEC27Ztw1dffYV58+ZhwYIFGtFTp04dpKen48yZM/KytLQ0nDp1CnXq1NFInwVx9OhRtGzZEu3bf4gt5zgOU6ZMgZWVFY4ePaq2fthUDENXUCnlr7Kwwzq0R3Z2NmQyGUxNTQEAYWFhqF27NubNm4fZs2cD+PCtrWfPnjh//jyio6MhlUrVqiEtLQ1ubm54+/YtJk+ejIoVK2LTpk0ICgrCqVOn4Onpqdb+CsPd3R3m5ua4dOmSvCwzMxO2trbo2bMnNm3apHIfzNgZmkKrKX8Zuo2xsbHc2AHg/v37AICuXbvKyziOQ7du3ZCUlIRXr16pXYNUKsX58+fRtGlTzJ8/H2PHjkV8fDz27NmjVWMHAC8vL/j7++PgwYMgIshkMixcuBCJiYnw8vJSuf1vNlxTeMyMXX8hImRkZOjM5rfiwsy9ELKzs+Hv74+///4b79+/F1uOSuTEfN+4cUOh/MaNG5BIJAoRNurE0dERJ0+eRGxsLJ4+fYrHjx/jm2++0UhfhfHdd9/Bw8MDvXr1gouLCxwdHTF//nx8++236NSpk0pt336RgICIePljZuza586dO9izZw8CAgJUMuWtW7eievXqMDMzg42NDebPn6/RiCqNouwkvSqXPi2onjt3jhwcHAgAAaDSpUvT2rVrxZZVbARBIA8PDypdujStX7+ebt++TXPnziWe52n48OFiy9MKKSkptGbNGvr666+pV69etG/fPpUXk2UygS2eikh8fDy1bt1a/j4FQI0aNaKoqCil21qzZg0BII7jFNobMWKEBpQrB1i0jHp4/vw5lSpVij777DPav38/nTp1ijw9PQkAnTx5Umx5xebFixfk4eGh8ML18vKi9+/fiy1Nb8lt7OlZ6g+pZBSOl5dXHjPmeZ5atGihVDuZmZlUvnx5hXZyLo7j6NmzZxr6CYpGccydTcvkw+bNm5Geno5jx46hV69eaN++Pf766y9UrlwZ3t7eYssrNg4ODggICEBAQAD279+PsLAw+Pn5yTf5MJQj9wLquv4NYGpsJKKakkd0dDQOHz6cZxpGEARcunRJqZxCL168wNu3b/N9jogQGBioktbcJCQkYMqUKahYsSKsrKwwcOBAPHnyRG3t58DS0uVDREQEKleuDCcnJ3mZRCLBF198gQcPHoim69GjR1izZg1CQ0Ph5OSEcePGKb21nuM4NGzYEA0bNtSQypJBbmM3lxih4+cVRVRTMomKiip0fv3ly5eoXbt2kdp68eJFoc+r6/zntLQ0tGrVCsHBwXLtu3fvxokTJxAUFARHR0e19AOwBdV8qV27Nl68eIGQkBB52fv37+Hv71/kF4u6uXDhAurWrYv169cjKSkJO3fuhLu7Ow4ePKg1DYIgIDQ0FOHh4aJHEly7dg3/+9//MHbsWBw+fBgymUxrfX8c8hgyv4PW+mb8R/Xq1RUiwnLD8zxcXV2L3FZhobBWVlZo3rx5vs/FxcXh0qVLCA8PL1I/vr6+uHfvnsL7RxAEJCQkYPny5UXWWySUncdR5XJ3dydBEOjgwYPk6elJbm5uNHjwYLp3755G5qmKy+vXr6lcuXJUuXJl8vb2pu3bt5O7uzvxPE/+/v5a1yOTyahmzZpUs2ZNioyMJCKiuLg4atiwIdnY2FB6errGNZw8eZKcnZ3l85Bubm505coVjfebHz///DMBIDMzMypTpgwBoHbt2lFaWprG+2a7T3WLH374Id958iFDhijVTq1atfJtBwB17tw5z/3Z2dn0v//9j0xMTOT3tWjRgl69elVoPwMHDiQjI6N8+6ldu3aB9aAPC6pz584lAOTk5ERff/01WVpakpmZmSimWRi3bt2ievXqyX/xDg4OtH//flG0hISEEADauHGjQvnhw4cJAF24cEGj/d+5c4dMTEzI1dWVfHx8aM2aNeTk5EQWFhYUERGh0b4/xt/fXx7B8O7dO8rKyqLVq1cTAFq+fLlG+2bGrntkZWXRjBkzyMLCggCQVCqlyZMnKz3gadeuHfE8n+9i6s8//5zn/nnz5uW5l+d5qlOnTp50G7kZP358vv3wPE+NGzcusJ7Om3udOnXIyMiIvv32W3myppiYGHJ0dKRGjRoV8qsXB0EQ6NGjR3Tv3j2NJJcqKjnm7uPjo1B+9OhRAkDnz5/XaP/Dhg0jCwsLevv2rbwsIiKCjIyMaOrUqRrt+2PGjx9P5ubmeSJ8GjduTB4eHhrrlxm7bpOamkpPnz4tduSXn59fvsZuZGREDx8+VLg3KyuLypUrV+BIv7DB1rVr1wqst27dugLrFcfctTrnnpycDJlMhmnTpsHI6ENkQYUKFTDy8BAjAAAgAElEQVRq1CjcuHED8fHxn2hBu3Achxo1auDzzz+X61UHgiDgzJkzWLRoEbZs2YLk5ORC73dxcUH16tXx22+/ISYmBsCHAyoWLVqE8uXLo0mTJmrTlh8hISFo1KgRrK2t5WVVq1bFZ599pvUF5rS0NEil0jypEqysrJCamqqRPllaAd1HKpXCycmp2JFfXl5eWLhwIYyN/4sxsbCwwN69e1GzZk2FexMTE5GQkFBgW4XNvzdu3DjfXE59+vTBiBEjiqG8EJT9NFDlcnJyIgB09epVhU+ladOmEcdxlJycXOAnl6EQHx9PTZo0UfjELlu2LF26dKnQemfPniVTU1MyMzOjpk2bkqWlJRkZGdHevXs1rrlv375kZWWlMCqKiYkhU1NT+u677zTef258fX0JAG3ZskVeljNtpAktbMResoiJiSFfX1/y8/Mr8FtAVlYWWVlZFTgCv3jx4if7CQkJoblz59K0adPo0qVLhU7lEOnBtEy9evXI3NycmjdvTrGxsUREFBAQQOXKlaNOnTp98hdiCAwdOpRMTExo06ZN9P79e7p27Rq5uLiQjY3NJ/Orh4SE0NixY6lVq1Y0bNgwunnzplY0+/v7E8dx1LJlSzp58iQdOXKE3N3dycTEhEJCQrSiIYfMzExq3rw5AaCWLVtS165dycTEhOzt7T+5mKUszNgZBbFgwYJ8583r16//SaMuDjpv7u7u7rRr1y4yMjIiiURCVatWJQBUqVIlCg8PV/svRNdIT08nMzMzGj16tEL52bNnCQAdOHBAJGWfZtu2bVS2bFn5C7lChQp0+PBhUbSkpKTQL7/8Qp9//jnVqFGDJk6cqHZjb7r4HDN2RoFkZ2fTjz/+SKampvL3RJs2bYqV9qAoFMfcRUn5++DBA2zZsgVRUVFwd3fH0KFDYWVlpTUdYpGQkAArKyssWbIEP/30k7w8IiIC1apVw4YNGzBq1CgRFRZOamoqrly5AmNjYzRr1gwSiURsSRrhwsNYDN36345ENsfOKIiEhASEhobCzs4O1apV01g/xUn5W6LyuT9+/BgzZ87EsWPHYGxsjB49euCXX35BpUqVtNI/EcHV1RUmJia4ceMGzMzMAACzZs3CL7/8guDgYLi5uWlFCyN/smUCqs84KX8strHLZDLcv38fRkZGcHV1BcdxouphiENxzL3EpB949eoVmjVrhrS0NPTv3x+ZmZnw9fXFP//8g1u3bqFs2bIa18BxHBYsWIBevXqhXr168PLyQnBwMI4fP46+ffsyY9cBchv7k0WqpQJWlaNHj2LcuHGIjIwEANSoUQObN28ucLckg6GAsvM4qlxiZoX8/vvvydjYWGEB8J9//iEAtGLFCq1qOXLkCDVs2JA4jqOKFSvSnDlzKCMjQ6saGHnJPcd+ISxGVC03b94kIyMjhYyHPM+TVCrV+sYxhmZ5/vw5jRo1iuzt7alatWo0Y8aMPJGD0IcFVbFo1KgRtWrVKk95zZo1ycvLSwRFpJFVdUbxyG3sTRefU6ktQRBo3bp1VL16dTI2NqbPPvuMtm/frlQbgwYNUmrHJEM/efnyJVWoUCHP37phw4YKu2yLY+4lJnFYuXLl8Pz5cwiCIC9LS0tDTEwMypUrJ4omNn+qG3y8SenK1DYqtTd37lyMHTsWT548QXZ2NkJDQzF48GD8/vvvRW7jwYMHCq/VHDiOQ1hYmEr6GLrD8uXL8ebNmzx/68DAQOzbt0+ltkuMuQ8ePBgRERH47rvvEBcXh+joaIwYMQJJSUkYPHiw2PIYIqHu3acJCQlYsmQJgA/finP/O2/ePKSlpRWpnerVq4Pn8749iQjOzs4qaWToDmfOnJG/PnJjZGSEc+fOqdR2iTH3Pn36YMKECVi9ejXKly+PSpUqYffu3Zg/fz5atGghtjyGCGgirUBQUBAyMjLyfS4pKUkhjXRhTJw48UOscq5vdzzPw8TEBKNHj1ZZJ0M3sLCwyPcbPBGpfIhOiTF3juPg7e2NO3fuYOHChfj111/x8OFDzJo1S2xpDBHQVL6YT03xFXU/R9OmTbFjxw6FKK4KFSrg8OHDeXKdMPSXAQMG5DtyFwQB/fr1U6ntEhXnzmAAmk0ERkRwc3NDWFiYwjwqz/No3Lgxrly5olR76enpuHHjBoyNjdGoUSOFxFYM/SczMxM9e/bEsWPHwPO8fDF0xowZ+OWXX+T3aX0TE8dxZQFsAuCGD6u8w4joWkH3M3NniI02MjyGhISgbdu2eP36tbzM0dER58+f1+guRoZ+IggCzp49i5MnT8LU1BTffPMN3N3dFe4Rw9y3A/Anok0cx0kAlCKixILuZ+ZedA4dOoRly5YhJCQETk5OmDhxIoYNG8YibFRAm6l709LScPDgQTx58gQuLi7o3r17gUfCMRifQqs7VDmOKwOgBYAhAEBEmQAyi9teSSMrKwtXrlxBVlYWmjRpAgsLC/lzmzdvxogRI1CrVi0MGjQIV69exYgRI/DixQvMmzdPRNX6i7ZzskulUnh6eiI9PR0ODg7sQ5mhdVRZUHUC8AbAVo7jbnMct4njuDzLuxzHjeI47ibHcTffvHmjQneGw6lTp+Do6IjWrVvD09MT9vb22LhxI4APpj9z5kw0b94cwcHB8Pb2xs2bN9GnTx8sWbIEcXFxIqvXPw7eeqXwWNPG/vDhQ7Ru3Rq2trZwdHRErVq1cOLECY32yWB8jCrmbgygAYB1RFQfQAqAqR/fREQbiciDiDxsbGxU6M4wePr0Kbp37w4bGxv4+fnh9OnT+OKLLzB69GicO3cOjx49wuvXrzFy5EiYmJgA+BDpM27cOGRkZODGjRsi/wT6RXqWDN/vvyt/rGljT0hIQIsWLXDp0iV52ZMnT9C1a1dcv35do30zGLlRxdxfAXhFRDlucwAfzJ5RCD4+PpDJZDh+/Di8vLzg6emJY8eOwc7ODt7e3ihdujQAyJNF5fDq1YfRZ5kyZbSuWZ9xmXVK/v+IxZpPBPbnn38iNjZWIVJGEAQQEZYtW6bx/hmMHIpt7kT0GsBLjuNq/Vv0FQDtHqiph0RERKBq1aqoXLmyvMzU1BQeHh6IiIiAg4MDWrVqhaVLl+Ls2bMgIgQEBGD69OlwdnaWn5cqCALOnTuHNWvW4OTJk5DJZGL9SDpL7nn2g2ObaGXe++7du/metysIAoKCgjTeP4ORg6pBsxMB7Po3UuYpgKGqSzJsPvvsM+zbtw9hYWFwcXEB8GHn4pUrV9C+fXsAwKZNm9C2bVt4enrC2NgY2dnZsLa2xqlTp8DzPKKjo9G5c2fcvn1b3q6LiwtOnDgBJycnUX4uXSO3sbvYWcLdUTuHwTg4OOT7QctxHIgI3bp1g729PUaOHIn69etrRROjZMI2MWmZqKgouLq6wtLSEj/++CPMzc2xatUq3L9/H1evXsUXX3wB4EMo3f79+/HgwQNUrVoV3377rXxKpkOHDrh8+TLWrFmD9u3b49KlSxgzZgxq1KiB69evl/jIDG1HxuTm+fPnqFmzJrKysvLdeZiTL4aIsHXrVpbXiFEkihMKWWJS/uoSAQEBVK9ePXl6TycnJzpy5EiR6j5//pwA0IIFCxTKvb29CQDdu3dPE5L1Bl041PrYsWNkZWWlkKY3d172nDIzMzNKTEwURSNDvwBL+asfNGzYEEFBQQgPD0dISAgeP36Mrl27FqlubGwsgA/TO7lxdXUFAMTExKhXrB4h5og9N507d0ZkZCSOHz+OrVu3/nd4Qi6ICOnp6Th9+rQoGhmGD0tUIRIcx6F69epK13NxcYGFhQV2794NLy8v+RTM7t27YWJigjp16qhbql6gK8aeg5mZGTp16oS3b98Weh9bCGdoCmbueoaFhQV++OEHzJ07F23btpXPuR8/fhzfffcdKlSoILZEraNOY7979y727duHjIwMdOjQAV999ZVKaxjly5eHh4cHgoKC8hzIYGJigrZt2xa7bQajUJSdx1HlYnPu6kEQBPrtt9+oUqVKBIBsbGxowYIFlJ2dLba0YpOcnExpaWlK11PnHPucOXPyzJF3796dMjMzVWr36tWrJJVK5W3mHKmm7bN7i0N4eDj17t2bTE1NyczMjAYMGEAvXrwQW1aJA+wM1ZKFTCajpKQkkslkYkspNpcvX6amTZsSADIyMqIePXrQ8+fPi1RXncZ+9erVPOeV5lze3t4qtU1EFBYWRmPGjKEvvviCevToQadPn1a5TU3z6tUrsra2Vjjfk+d5sre3p7i4OLHllSiKY+5sWkaP4XlevqNVH7l79y7atm0LW1tbzJs3D0lJSdi4cSNatWqFu3fvwtLSssC6tWaeVHis6hz7rl27wPN8nqkTjuOwY8cOTJgwQaX2a9WqhXXr1qnUhrZZtWoV4uPjFRaDBUFAZGQkNm7ciKlT82QbYegQzNz1nKCgIKxatQphYWGoVq0aJk6cKN/FqussXboUpqamCAwMRE7eoa+//hqtW7fGjh07MG7cuHzrHb4diYzs/0xYHYun7969K/C4s+TkZJXb10cuX75cYKy+soeOMLQPC4XUY/766y80atQIfn5+sLS0xKlTp9CsWTPs2rVLbGlFIjAwEG3btkXuhHItW7aEnZ0dAgMD862TkpGNyXvvyB+rKyqmTZs2Be4sbdeunVr60Desra3zPaQ75zmGbsPMXU+RyWSYOHEiXF1d8fz5c5w9exYvXrxA06ZN8d133yE9PV1siZ/Ezs4ODx48UBgdxsTE4O3bt7Czs8u3juuc/+LC1ZkIrG/fvmjQQDHvHc/zsLa2xg8//KC2fvSJoUOH5pmmAj5MzQwZMkT7ghhKYXDmnpycjB9++AGVKlVCmTJl0KNHDwQHB3+yXnR0NMLDw/Um7jgkJATPnz/HlClT5IcyW1hY4KeffkJcXJxepAYeOXIkQkNDMWrUKDx69AiBgYHo06cPiAhDh+ZNU5Q75PHc9y3VmmbB1NQU58+fx9SpU1GlShXY2tpi6NChCAgIQJUqVdTWjz7RvXt3fP/993nKFyxYgFatWmlfEEM5lF2BVeXSdLRMZmYmNWrUiHiepx49etDo0aPJysqKLC0tKSQkJN86jx8/pjZt2sijAapUqUK+vr4a1UlElJaWRnPnziVnZ2cqX7489ejRg+7cuVPk+vfv3ycA5OPjo1C+f/9+AkD+/v7qlqx2BEGgH374QWFrfqlSpWjXrl157s0dFTPNr2SnWNA2Dx48oCVLltDy5cvp8ePHYsspkaCkh0Lu3buXANCOHTvkZS9fviRLS0vq379/nvvfv39PVapUoXLlytGCBQvIx8eHGjZsSADo1KlTGtMpk8moffv2BIA8PT1p2LBhZGVlRebm5hQUFFSkNgRBoFq1alH16tXp2bNnREQUHR1NdevWpUqVKqkcm61Nnj59Shs3bqQ///yT4uPj8zyvC/liGAwxKfHmPmHCBLK0tMyzmefbb78lBweHPPdv2rSJAND58+flZWlpaeTo6Eht2rTRmM4zZ84QAFq5cqW8LDo6mqytralbt25Fbueff/4hc3NzMjIyIjc3N5JIJCSRSOj48eOakC0KzNgZjOKZu0HNuZcpUwapqamIj49XKH/58mW+JxgFBwfD3NxcYf7QzMwM7dq1w/379zWm8+LFi+B5HmPGjJGX2dnZoWfPnrh48WKR22nRogWCg4Px/fffo1q1ahg/fjzu3buHTp00f+KQNtC1fDEMhj5hUObev39/CIKAoUOH4uXLl0hNTcXixYtx+fJlDBo0KM/9jo6OSElJQUhIiLxMEAQEBATA0dFRYzpLly4NQRDyZHCMiopSelOSk5MTlixZgiNHjuC3335DrVq1Pl1JD2DGzmCoiLJDfVUubaQfWLt2rXy7dO78IBkZGXnujY2NJUtLS6pZsyb5+fnRlStXqG/fvgSAtm3bpjGNz549IyMjI2rXrh29fPmSMjMzaf369cRxHE2bNk1j/eoLbCqGwVAExZiWMciTmCIiIrBv3z6kpKSgbdu2aN68eYFhc/7+/vj222/lB1JLJBJMnToVc+fO1eiJRps3b8bo0aMhk8kgkUiQmZmJli1b4vjx4zA3N9dYv7oOG7Grh7CwMJw6dQomJibo3r077O3txZbEUIHinMRkkOauLFlZWbh06RLevXuHZs2aKeyY1CQRERHw9fVFYmIiWrZsiQ4dOuR7uHJJgRm76hARpkyZgpUrV8rLeJ7HH3/8oXJ+HIZ4MHNn6C3M2NWDr68v+vXrl+9zN2/ehLu7u5YVMdRBcczdoBZUGfrJ7hsvFB4zYy8+mzdvzjcfDM/z2Lp1qwiKGGLBzJ0hKkmpWZh+6L/0EMzYVePNmzf55oPhOO6TR/4xDAtm7gxRqTv/jPz/zNhVp1mzZvkGAshkMr1JBc1QD8zcGaKRe579+rSvRFRiOEyZMgUWFhYKUzM8z6NKlSosk2MJg5k7QxRyG/uP7WvBroyZiGoMh+rVq+Py5cto3749eJ6HRCJB3759ceXKlXx3aTMMF3YSE0PrfBwZM751dZGUGCZ16tTBiRMnIJPJwHFcgQduMAwbnTD3mJgY7Ny5E69evUL9+vXRu3dvSKVSsWUxNIAuhzwGBgZiy5YtiI2NRaNGjTB8+HC9PnGoJO+Z0GVSU1Nx8uRJJCcno0WLFnB2dtZIP6LHuf/999/o3r07UlJSUKpUKaSmpqJGjRo4f/48KleurDVtDM2jy8a+Zs0aTJgwATzPg+M4yGQy2NnZ4erVq3BychJbHsNAOHPmDPr06YPExER52dixY7F69epCv2HpXZx7eno6vv32W1SrVg2hoaF4//49Tpw4gejoaIwfP15MaQwVePfuHSIjIxVOtdJlY3/9+jUmT54M4EPiuBzdsbGxhR6xl56ejq1bt2LAgAEYM2YM/P39taKXoZ/ExMSgW7dueQ5cX7duHdasWaP+DpVNRqPK9XHisCNHjhAAOn36tEL5zz//TDzPU2JiotIJdgRBoMjISHr9+rXSdRn/IQgCXbt2jby9venAgQOUlpb2yTpxcXHUv39/MjExkZ9qtWXLFp1PBLZx40b5SVAfX0ZGRvkefJKYmEj169eX35OTrG769Oki/AQMfWDFihX5vsY4jiMXF5dC60Lf8rm/e/cOAPIchmxnZwdBEJCSkqJUe/7+/mjQoAHs7e1hZ2eHZs2a4c6dO2rTq28IgoDU1NQPp7Iowfv379GhQwc0adIEEydORK9eveDk5ITCUkcIgoDOnTtj//798q+Z9vb2mPewgsJ9ujRizyErK6vA52QyWb6bgn799Vfcvn07zz2LFi1CUFCQZoQy9Jro6Oh89yAQEaKiotTen6jm3qJFC/A8j9WrV8sNKCUlBVu2bIGLiwsqVqxY5LYePHiA9u3bIzk5GStWrMDixYsRERGBNm3ayDM+lhSys7Mxf/58VKxYEebm5nB2dsaGDRuKbPI//fQT/v77b6xYsQKRkZE4ffo0zMzM0K1bN2RmZuZb5+LFi7h+/TpWr16NP/74A+PHj0dUixkK9+iisQNAx44d833T8TyPdu3awdTUNM9ze/bsybctjuOwf/9+tWtkqEZqaipWr16Nzp07o3v37ti5c6fCtKE2aNCgQb7vQZ7n0bBhQ/V3qOxQX5Urv3zuU6ZMIQDk7u5OI0eOpMqVKxPP83T48GFlvvHQqFGjSCqVUnR0tLwsLCyMOI6jWbNmKdWWvjNmzBgCQF9//TUtXLiQmjZtSgBoxYoVn6ybkZFBpUqVoqFDhyqUHz9+nAAU+HdZvnw5AaC4uDgiypuTPb98+rrE9OnTCYDCWQAWFhYFHlpesWLFAr9iT5kyRcvqGYXx7t07cnd3l/99c/7G3bt3z3MkpyZJT08nFxcXef85rxee5xWO+swP6OMZqoIg0Pr166levXpUvnx58vT0pHPnzin9i2vUqBG1bt2ali1bRm5ublS5cmXq168fOTs7U9euXZVuT195+fIl8TxP48ePl5flHMhtbW1N6enphdaPi4sjALRs2TKF8mfPnhEA2rBhQ7719uzZQwDo77//pk3+TxWM3cbGhgRBUP2H0yCCIJCfnx916tSJGjRoQOPHj6fHjx8XeP/IkSPlh8F8fJ09e1aLyhmfYvHixQWuqRw8eFCrWqKjo+mbb74hIyMjAkCfffYZ/fXXX5+sp5fmri569OhBpqamBICaN29O/fr1o9KlSxPP89SnTx+N9atr5CxSX79+XaH8zz//JAD04MGDQusLgkDOzs7k4eGhsJC4cOFCAkBBQUH51ktLSyM7OzuqUtNVwdgBaP2bU1JSEvn4+NCsWbNo3759GvnW8OzZM6pQoYLc4HOPBnX9g6yk0bBhw3w/iHmepwEDBoii6f379/TmzZsiv1aKY+4qb2LiOM4IwE0AkUTURdX2ikvz5s3h5+eHhQsXYvr06QCAyMhIuLm5ITY2VixZWifnoJGwsDA0atRIXh4WFgaO4z65KYfjOMyZMweDBg1CkyZN0LNnT9y/fx++vr7o2rUr6tevn289MzMzHD9+HD32RcvLni/pgoEDB2LWrFlq+MmKRmBgINq3b4+EhAR5WfXq1XHhwgW17ptwdHREUFAQVqxYgb///hsWFhYYOHAgRo4cqdETvBjqQ8y/k7m5ueZPXFP20+DjC8AUALsBHPvUvZocuc+ZM4cA0Pv37xXKx4wZQxYWFhrrV9cQBIFcXV3J1taWjh49Sm/evKEtW7aQVCqlbt26FbmdnTt3Us2aNQkAlS5dmiZPnkypqamF1sk9Yl+/dSc9fPhQ1R9HKbKysuRrNvhohNaxY0etamHoDosWLSpwWmb//v1iyysS0Pa0DIDKAM4BaCO2uS9dupQA0PPnzxXKe/bsSba2thrrVxcJDQ2lqlWrKryI3d3dKSYmRql2BEGg5OTkIi065Tb2HdeeFVe6Spw/f77ANzEApX9+hmGQnJxM9erVU1jABEBdunTR6oKqKhTH3FUNhVwJ4CcAeQOB/4XjuFEcx93kOO7mmzdvVOyuYL755hsYGRlhzJgxiImJgUwmw86dO3Ho0KECjx0zVFxcXPDo0SMcOnQIK1euxNmzZxEQEIAKFSp8unIuOI6DpaXlJ3OUfLz7dEBjR6U1q4PcUzH5MWbMGFSsWBHOzs6YM2eO0vsoSipRUVGYO3cuevfujR9++AGPHj3SugZBEHDgwAH07t0bX3/9NVavXl3kv5+lpSX8/f2xcuVKtG3bFh07dsTWrVtx6NAhw86/o+ynQc4FoAuAtf/+vxVEHrkTEa1fv544jiMjIyOytLQkAPTFF18Ua6cro2jo0u7TqKgoeRTCx1fuEVvO1axZM8rKyhJV88dkZWXR9evX6cqVKzoRPhoYGCh/LxkZGRHHcWRiYkJHjx7VmgZBEGjQoEF5Qhnr1KlTYt7b0Oa0DIDFAF4BeAbgNYBUADsLq6Npcyf6ENs+c+ZMmjBhAu3duzffreMM9aBLxp5Dzr6Jj6NYCgpbPHDggNiS5Zw6dYoqVaok11a+fHnau3evaHoEQaC6devm+VDkOK5IYbXq4vTp0wVOtc2ePVsrGjRBRkYGxcbGkkwm++S9WjV3hUZ0ZOTO0B66aOxEH2L6V61aRdWrVydTU1Nyd3cna2vrfI2B53kaN26c2JKJiOjhw4ckkUjy3eBy48YNUTQ9ffq00DUMbcXzjxkzJs8HTM712WefaUWDOklNTaVJkyZRqVKlCABVrFiR1q5dW2hYZHHMnWXxZyiNLmd45HkeEydORHh4ONLT03Hz5k3Y2toWmNPDwsJCBJV5Wb9+PbKyshTy2Hx4TwPe3t6iaCos505RnlcX+eX2KcpzykJESE1NVWub+TFgwACsWrUKqampAD7knBk3bhzWrl2r1n7UYu5EdJFEjHFnaA9dNvaCGDhwoNwoc0NEOrPY/vjx43w/gARBQHh4uAiKPuwPcHJyyleXubk5vvzyS63o6Nq1a4GG6+XlpZY+du/ejVq1asHc3BzlypXDTz/9hPT0dLW0nZuQkBD4+fnl+9yCBQuQnZ2ttr7YyJ1RZPTR2AFg8uTJ8PT0BAD5YRwAsHjxYtStW1dMaXJq1qyZ7wcQz/OoVauWCIo+9L1mzRoYGRnJD5LI+XfFihWwtLTUio6OHTuiZ8+e8v5z/n41a9YsNN9+Ufnzzz/Rv39/PH78GACQnJyMZcuWYcCAASq3/fz5cwQHB8sT7hWWMTQmJgavX79Wuc8cRD+JiaEf6Kux5yAIAk6ePIm///4bpUqVQt++ffH555+LLUvO48eP4ebmpjA1k3P+6Y0bN+Du7i6atqCgIPz+++8IDg5GtWrVMGHCBLRp00arGrKzs7Fr1y7s3bsX6enpaN++PcaMGaPyod+CIKBatWp48eJFvh+uwcHBcHNzU7rdx48fY+jQobh8+TIAwNraGosXL4aTkxPatWuXbx2JRIL4+Ph8d64W5yQmtSyoFvViC6r6yR9/P9LJxVND49y5c+To6ChfLLSzsyM/Pz+xZRk0sbGxhS4ab968Wek2U1JS8t0pDYD27t1LTk5O+UYgDR8+vMA2IUZuGYZhE5WYht/O/rdpRd9G7PpEmzZt8PTpU9y9excymQz16tWDsTF7i2oSS0tLmJqaIiMjI9/nld34BwAHDhzAq1ev8pTzPI/ly5fj2LFj6NixI168eCF/7quvvsLvv/+udF+FUeJfOUTEEj0VQtNfz8v/z4xd8/A8X2ByNob6MTMzw8CBA7F582aFaRme51GhQgX5Wo0yPHjwABzH5ZnmEQQBoaGh+Oyzz/DkyROcPXsWkZGRqFevHjw8lJtxKQoldkH10KFDcHd3h5GREezt7TF//nythXbpC7nn2e/Pay+iEgZDc6xYsQLNmzdXKLO2tsZff/0FiUSidHtOTk75zt9zHIeqVasCAIyNjdGxY0eMGDFCI8YOlNAF1b1796Jv376oXT2gcN0AABnaSURBVLs2unfvjnv37uH48eMYMGAAduzYIbY8nSC3sa8f4I4ObnaF3M0APnwLvHDhAs6ePQupVIpvvvkGLi4uYstiFAEiwpUrV3Dr1i1UqlQJX3/9NczMzIrVVlJSEqpVq4bExMQ8IZybNm3C8OHDlW6TLagWAUEQqEaNGlS/fn2F7dM///wzAaDQ0FAR1ekGuRdP2yy/ILYcvSAzM5O6deuWJ9XB0qVLxZbGEIGbN29StWrV5K8DiURCc+fOLfZBLmA7VD/N27dvER4ejgEDBigcfJzzaXr16lWxpOkEH4c8nvu+lThC9Iy1a9fiyJEjAP7bWQp8OGz89u3bYsliiIS7uzvCw8Nx9epVnDx5EtHR0ZgzZ45W1/dK3IKqhYUFJBIJnj59qlD+5MkTAPjkSUWGjL7HsovJ9u3b811E4zgOO3fuZIukJRCe59GkSRPx+hetZ5GQSqXo06cPfHx8sHXrVqSkpODq1auYNGkSbG1t0aFDB7EligIzdtVISkoqcBEtOTlZBEWMkk6JM3cAWLlyJerVq4dhw4bBwsICzZo1Q1xcHPz8/BSmagoiOzsbO3bsQPfu3dGlSxesW7cOaWlpWlCuGZixq85XX30l35qfG0EQ0KpVK+0LYpR4SmS0DPDhTXf27Fn56nivXr2KlCFQJpOhZ8+eOHLkCKpWrQqJRIJHjx6hSZMm8q3t+gQzdvXw5MkTeHh4IDk5WSFCwt3dHVevXi1WSB1DdVJTU5GUlIQKFSro9alLxYmWKZEjd+DDfFj79u0xffp0DBkypMipXw8ePIgjR45g6dKlePr0KcLCwuDr64tr165h3bp1GlatXpixqw9nZ2dcv34dffv2Rbly5VCpUiX8+OOPOHfuHDN2EUhKSsKwYcPkfwtHR0ds3rxZbFlapcSO3ItLv379cPHiRbx8+VJhJODh4QGpVAp/f38R1RUdZuwMQyUhIQFt2rTB3bt35esgOYvdW7duxZAhQ8QVWAzYyF0L0L/pCj4OaeJ5Pt8FNV1kyakwhcfM2BmGABFh9uzZsLW1xZ07dxTejznv2/nz5+vN+1RVmLkrSdeuXREVFQVvb2/5i8TPzw+BgYHo2rWryOo+zdM377Hu4hP5Y2bsDF0gLS0NM2fORKVKlSCVSuHp6an0nhNvb28sWLCgwDQiRISIiAi8f/9eHZJ1HjYtoyTZ2dno2rUrTp48iZo1a8LU1BTBwcHw8PDAhQsXdObYtvwgIjhNOyF/zIydoQsQETp27IjTp0/Ly3ieh5GRES5evIimTZsWqR0HBwdERkYWOjK3tLREQkKC3i2usmkZLWBsbIwjR45g06ZNcHZ2hq2tLVauXImLFy/qtLEDUDD2sAUlM56foXv8888/CsYOfIhmk8lkmD17dpHayM7OxqtXrz455TJ69GidNHYiwrZt2+Dm5gYzMzO4ublh+/btKk0hlbgdqurAxMQEw4cPL1YCILHIvYC6dWhDmJno3gucUTK5dOlSvuWCIBQ5QMHY2BgODg6FGnyvXr2wYMGCYuvUJMuXL8dPP/0kX/h98OABhgwZgpiYGPz000/FapON3EsAuY29buUyaF1L+QMIDJmYmBh4e3tj/vz5uHDhQolZcNMVypYtW+BzpUuXLnI7P/30U77pH2xsbHDnzh3s37+/2JkeNcn79+8xb948AP/lJcr5d/78+Xj37l2x2mUjdwPn45DHIxO0c2K9vnDw4EH069dPfoAxALRr1w5HjhyBVCoVUVnJoU+fPvjxxx+RlZWVx5yHDh1a5HbGjx+PuLg4LFmyRL5jvHHjxti9e7c8j7oucvfuXaSkpOT7XEpKCu7du1esdtnI3YBhseyFExMTg379+uWJrjh79izmz58vkqqSh62tLXbu3JnnSMFWrVphzpw5RW6H4zjMmTMHr1+/xpUrV/Dw4UNcvXpVp40dAMqVK1fo84V9sykMFi1joDBj/zTe3t6YNGlSvs9VqFABMTExWlZUsnn9+jX27NmD+Ph4fPnll2jbtm2++XoMDfpw1gXu3r2rkLqC53nUrVsXt27dAs/zSkfLsGkZA4QZe9GIj48v8LnExEQtKmEAgJ2dHSZPniy2DK3DcRx2796NNm3aIDo6Wl5ua2uL3bt3FzsHPDN3A4MZe9H58sv81x94ns9zpiaDoUlcXFzw5MkTHDhwAI8ePULNmjXRq1cvldZ92LSMAcGMXTmICG3btsX58+flZTzPg+d5XLhwoUDzZzC0DdvEVIJhxq48HMfhr7/+ws8//wwbGxtIJBK0atWKGTvDIGAjdwNg8YlQbLj037GBzNgZDMOCjdxLII9j3zNjZzAYeSix5h4aGorBgwfD2dkZDRs2xOrVq5GdnS22LKUQBELb3/6RP2bGzmAwciiR5n737l00atQIfn5+aNCgATiOw8SJEzF48GCxpSlFten/JQJ7vLCjiEoYDIauUSLNfdasWZBIJAgNDcX+/fsREBCAWbNmYffu3QgICBBbXpHIvYD614T/t3f30VHVdx7H39+bhLAEKIRQCCZGVJKFdNcTrIARCUi1iARwSSmeFihggWKgCAGqy2FbeyJQVmJ1LZ62gQBaLQGf4IBIFCUbHio0cBSxhCiLgYgG5EkKeZjf/pFkkpAJeZqZe5l8X+fkJPfOZO6Hq/nOnd/93e8dTHBQm/xPqZRqQJusCDt27OCRRx4hKirKvW7+/PkAvPPOO3bFarLahX3CXdH8W9R3bEyjlHKiFhd3EYkWkZ0i8omIHBaRX3ozmC916NCBM2fO1FlXfbVihw4d7IjUZNdOeVw27t9tSqKUcrLWHLmXA/ONMf2AQcBjItLPO7F8a8KECWRnZ7Np0yaMMZSUlJCamkpQUBApKSl2x2uQzmVXSjVVi9sPGGOKgeKqny+KyBHgJuATL2Xzmd/+9rfk5eWRkpJCeHg4Fy9epLy8nBdeeIGbb77Z7ngeaWFXSjWHV3rLiMgtQAKwz8Nj04HpgGMKZ3h4OPv27SM7O5tdu3YRHh7OxIkTiY+PtzuaR1rYlVLN1eorVEWkI/ABkG6Mee16z9UrVJtPC/v1ZWdnk5GRQWFhIf369SMtLY2HHmp7+8jlcpGVlcXatWs5e/YsSUlJpKWlOb6XuWqallyh2qriLiIhwBZguzFmZWPP1+LePFrYry8jI4N58+ZhWRYul8v9ffXq1c26g08gmDZtGqtXr3bvAxGhS5cu7Nmzh7i4OLvjqVbya3GXyibDa4GzxpgmNWHW4t50Wtiv78KFC0RGRnL58uV6j0VERHDy5EnatWtnQzL/+/DDDxkwYEC99ZZlkZKSwl//+lcbUnlWWlpKfn4+oaGh3HHHHS3uVd7W+Lu3zD3AROA+ETlY9TWyFa+nqix/+9M6y1rY69u/f7/Hwg5QUlLC4cOH/ZzIPtu2bfO43uVysWXLFj+nadj69evp1asXgwYNIiEhgbi4OPbs2WN3rIDVmtky/wvo266XffrlBVa9X+he1sLuWVhY2HUf79ixo5+S2O96n1Cc8ull586dTJo0qc6RemFhIQ888ABHjx4lMjLSxnSBqU1eoepUFS7DiGdz3cs3amEvLy9n8+bNpKens27dugbv7N4ad911F7179653j03Lsujfvz99+vTx+jadaty4cR6HN0SECRMm2JCovoyMDCzLovYwsMvl4tKlS2RmZtqYLHBpcXeQ22o1Avvs6RtzhOv06dMkJCQwevRoFi9ezOTJk+nWrRurVq3Cm/cOsCyLV155xX2EXl3kw8PDWbt2bZNe4+jRoyxdupTf/OY3N0xPIU/69OnDsmXLgMr9EBQU5F7/1FNP2RnN7dNPP61z8+dqQUFBHD161IZEgU/voeoQtU+g7kwbimX5bsTrypUrlJWV0alTJ6+/9syZM/nkk7rXsV29epVZs2ZRUFDAypWNTqpqsoEDB/LZZ5+xfv16CgsLiYuL49577yU8PLzR3122bBlPPPGEe/nXv/41P/vZz8jMzKz3aeBGsHDhQpKSkli3bh3nzp1j8ODBTJo0qdHhK3+Ji4ujsLCwXoGvqKhoU5+y/MoY47evO++806j6YhZtcX/9z3sFPtvOqVOnzI9//GMTFBRkANO/f3+Tk5Pjtdc/c+aMsSzLAA1+7du3z2vbq+2tt94yvXv3dm8nMTHRHD582ONz9+zZ02C+zMxMn+Rr63Jycurta8uyTFhYmDl58qTd8RwP2G+aWW9vvEOUAHPtlMfHht3uk+3885//JCkpiezsbCoqKgA4ePAgI0aMYO/evV7Zxvnz5z1+9K4tOzvbK9uqbffu3YwdO5bjx4+71+3du5ekpCR3Q7ja1q1b5/Ho3LKsJg/pqOYZPnw4WVlZdO3a1b0uJiaG7du306tXLxuTBS4t7jby51z2DRs2UFBQUKf4ulwuXC4XTz/9tFe2ER0d3eish7KyMq9sq7ZnnnkGoN7JupKSErKysuo9/9y5cx5PQLpcLr755huv51OVJk+eTHFxMXl5eRw4cIBjx45xzz332B0rYGlxt4m/L1Lav3+/x6NVl8vltZOJwcHBpKenX/c5I0d6/0TxwYMHGzxZ99FHH9VbP2TIEPenl9pEhKSkJK/nUzVCQ0NJTEykf//+jjm3UVpaygcffEBOTk6D107ciJyxd9sYO64+7dmzp8cCaFkWPXv29Np2pkyZwh/+8AeCg2vO1VcfJT/88MPcf//9XttWtVtuucVjoaioqPDYrG7ixInExcXVOXq3LIsuXbqQlpbm9XzKubZu3UpUVBRDhw7l/vvvJzIykjVr1tgdyyu0uPuZXW0FJk2aREhISL3hCJfLxcyZM726rV/84hd88cUXLFiwgISEBAYPHsyLL77Ihg0bfHK5eWpqar03LsuyCA0NZerUqfWeHxYWRm5uLjNnzqRr16507NiR8ePHs3fvXmJiYryeTzlTQUEBY8eOrXPjnosXLzJ16lR27dplYzIvae4Z2NZ8tfXZMrVnxcQs2uL37b/++uumQ4cOdWYszJo1y1RUVPg9i7ctX77chIaGuv9d3bp1M9u2bbM7lnKw+fPnGxHxOIvnRz/6kd3x6qAFs2V0nrufOKER2NixYykuLmbz5s18++23DBs2LGDmGC9cuJBHH32U3Nxc2rdvz9ChQwkNDbU7lnKwzz//HMuy6p1/cblcHDt2zKZU3qPF3Q9WvvOPOst2thXo3LkzP/nJT2zbvi+Fh4czZswYu2OoG0Tfvn157bX6t6CwLMuxN+5pDh1z97Gjpy/y3Hs1RwE3ar8YpQLNjBkzCAsLq3MyXkQQEebObVIXc0fT4u5D5RUuHsioOTHT0sJ+7tw5Vq5cSUpKCjNmzNA2qUp5QXR0NDk5OfTt27fOujfeeIM777zTxmTe0erb7DVHW7tZR+1x9s+XjmzRTJGTJ0+SmJjIiRMnCAoKwhiDy+Xid7/7HQsWLPBmXKXaJGMMBQUFlJWV0bdvX8fMv6/N3zfrUNdRu7B/+J8/aPEUwCeffJKioiKgct529ZS/RYsW1bncXinVMiJCbGws8fHxjizsLRU4/xIHqV3Yn3skge6dWjZrwxhDdna2x4uPjDG8/vrrLc6olApsN8RsmUuXLrFx40aOHz9OfHw8Y8aMccwdZq5Vu7APujWc0Xe0rilSeXl5g4/5ok+LUiowOL645+fn8+CDD3L69Gn3utjYWHbs2OHx0nI7XTuX/dXpd7fq9USEUaNG8eabb3o8en/oIZ15o5TyzNHDMi6Xi/Hjx9OuXTt27dpFWVkZb7zxBl9++SU///nP7Y5Xh68uUkpPT6dz587uMfvqMcE5c+YExFxcpZRvOPrIfffu3Rw7doyXX36Ze++9F4AxY8aQlpbGkiVLOHXqlCN6Qfvy6tO+ffty8OBBMjIyyM3NJSIigqlTpzJ+/HivbUMpFXgcXdyre2tf28ypevn8+fO2F3d/tBWIiYnh2Wef9frrtlWnT5/m6tWrREdH+6SRmVJO4OhhmQEDBhASEsKf/vQn940YysvLWbNmDT169OC2226zNZ8T+sWopjty5AhJSUn07NmTmJgY4uLi2LZtm92xlPIJRx+59+jRg7lz57JixQoKCgpITEzk7bff5uOPP+bFF1+0dcZMwlPv1FnWwu5sZ8+eZciQIXVuu1dYWEhycjJ5eXkMHDjQxnRKeZ+jj9wBli9fzvPPP09JSQnPPfccISEhvPrqq8yYMcO2TM+/W8A3l2umIWphd76srCxKSkrq3WbQGOO+TZ9SgcTRR+5QOR0wNTWV1NRUu6MAcKT4As/sOOpebkphd7lc7oZEyh6HDh0iKCjIY3vX/Px8m1Ip5TuOP3J3ktJyFw/+Pte93Fhhz8nJ4e677yY4OJiuXbsyb948Ll265OuYyoPo6OgGbzOod19SgUiLezPELq45+dZYYX/vvff44Q9/yN/+9jeMMZw/f56MjAySk5PxZ7M2VWnatGkEBwd7vM3gY489ZlMqpXxHi3sT1Z4Zc2jJA40+f8mSJQD1jhbff/99du7c6d1wqlG9e/dm06ZNdOnSxb2uXbt2LF26lIcfftjGZEr5huPH3J2gdmFfN3UA3+kQ4vF5ly9fpqCggIiICPbu3etxGAAqL8667777fJJVNSw5OZlTp07x7rvvcuXKFYYOHUq3bt3sjqWUT2hxb0Ttwv4fCTcxJLZ7vecYY1ixYgXp6elcuHABgJCQkHon76pFRER4NWN+fj6bNm2ioqKCUaNGkZiYqCdvG9C+fXvtyaPaBL1Zx3U09SKlVatWMWvWrEZfT0QIDQ2lqKjIK0eMxhgWLVrEihUr3MXcGMPkyZNZvXq1Y3tTFxUVsXnzZioqKhg5ciS33nqr3ZGUcjS9WYcXNbWwG2NYtmxZk46U27dvz8aNG702FJCTk8OKFSvcOarfqNeuXctf/vIXr2zD2zIyMoiJiWHWrFnMnj2b22+/ncWLF+tJZqW8TIdlPGhOW4HS0lJOnDjR4OOpqalERUXRrVs3xo0bR9euXb2W86WXXsKyrHpj+5ZlsX79en760596bVvesHv3bubNm1dnnTGG9PR0BgwYwOjRo21KppzAGENeXh4HDhygV69eJCcn0759e7tj3bC0uF+juf1i2rVrx3e/+12++uorj48PHz6csWPHei1fbdXj+9dyuVwNPman6qEiT29GmZmZWtzbsAsXLpCcnMyuXTU3lO/evTtbt27l+99v1miEqtKqYRkRGSEi/xCRYyLyK2+FsktLGoGJCI8//ni99ZZlcfPNN/v05N2wYcManJHjxNk4X3/9tcf1LperwTdH1TbMnz+f3NzcOuvOnDnD6NGj9Y5jLdTi4i4iQcALwINAP+AREennrWD+Fr/k7TrLzekXs2DBAubOnUtwcM0Hofj4eHbs2EFIiOdpk94wZcoUYmNj64z3W5ZFZGQkc+bM8dl2W2rgwIEe34xEhEGDBtmQSDnBlStXWL9+fb3zLi6Xi+LiYrZv325Tshtba47cBwDHjDGfGWNKgVeBMd6J5V9Pbz3Ct6U10xab2wgsKCiIjIwMioqK2LZtG/v37+fQoUPExsZ6O2odnTp1Ii8vj9mzZxMZGUn37t2ZNm0a+/bto0ePHj7ddktMnz6dnj171pnFY1kWnTt3Zu7cuTYmU3a6ePEiV69ebfBx/VTXMi2eCikiKcAIY8yjVcsTgYHGmNRrnjcdmF61+D3g45bHDSgRQIndIRxC90UN3Rc1dF/UiDPGdGrOL/j8hKox5o/AHwFEZH9z52oGKt0XNXRf1NB9UUP3RQ0RafYFQq0ZljkJRNdajqpap5RSymatKe4fAn1EpLeItAMmAG95J5ZSSqnWaPGwjDGmXERSge1AELDaGHO4kV/7Y0u3F4B0X9TQfVFD90UN3Rc1mr0v/NpbRimllH9obxmllApAWtyVUioA+aW4B1qbgpYSkWgR2Skin4jIYRH5pd2Z7CYiQSKSLyJb7M5iJxHpIiIbReRTETkiInfbnckuIvJ41d/HxyLyioi0me5hIrJaRL4SkY9rrQsXkR0iUlD1vUndB31e3AOtTUErlQPzjTH9gEHAY214X1T7JXDE7hAO8HvgbWPMvwJ30Eb3iYjcBMwBvm+M+R6VkzUm2JvKr7KAEdes+xXwrjGmD/Bu1XKj/HHkHjBtClrLGFNsjPl71c8XqfwDvsneVPYRkSjgIeDPdmexk4h8BxgCZAIYY0qNMefsTWWrYOBfRCQY6ACcsjmP3xhjdgFnr1k9Blhb9fNaoEltZv1R3G8Cvqi1XEQbLmjVROQWIAHYZ28SWz0LLAQ8t7ZsO3oDXwNrqoao/iwiYXaHsoMx5iTw38AJoBg4b4x5x95UtuthjCmu+vlLoEmNo/SEqg1EpCOwCZhrjHFe43U/EJFRwFfGmAN2Z3GAYKA/sMoYkwB8SxM/egeaqvHkMVS+4fUCwkTEWXedsZGpnLvepPnr/iju2qagFhEJobKwv2yMec3uPDa6BxgtIsepHKq7T0ResjeSbYqAImNM9ae4jVQW+7boB8DnxpivjTFlwGtAos2Z7HZaRCIBqr43qU2mP4q7timoIpWN1zOBI8aYlXbnsZMx5gljTJQx5hYq/594zxjTJo/QjDFfAl+ISFzVquHAJzZGstMJYJCIdKj6exlOGz25XMtbwOSqnycDbzbll/zRFbIlbQoC1T3AROAjETlYte5JY8xWGzMpZ5gNvFx1APQZMMXmPLYwxuwTkY3A36mcXZZPG2pDICKvAEOBCBEpAv4LWAZsEJFpwP8B45v0Wtp+QCmlAo+eUFVKqQCkxV0ppQKQFnellApAWtyVUioAaXFXSqkApMVdKaUCkBZ3pZQKQP8PbcgNremv17UAAAAASUVORK5CYII=\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "### We provide a set of randomly generated training points \n", "num_points = 100\n", "w1 = -2.5\n", "w2 = 1.5\n", "w0 = 3.\n", "np.random.seed(637163) # we make sure we always generate the same sequence\n", "x_data = np.random.rand(num_points)*10.\n", "y_data = np.random.rand(num_points)*10.\n", "z_data = np.zeros(num_points)\n", "for i in range(len(z_data)):\n", " if (y_data[i] > (-w0-w1*x_data[i])/w2):\n", " z_data[i] = 1.\n", "\n", "pyplot.scatter(x_data,y_data,c=z_data,marker='o',linewidth=1.5,edgecolors='black')\n", "pyplot.plot(x_data,(-w1*x_data-w0)/w2)\n", "pyplot.gray()\n", "pyplot.xlim(0,10)\n", "pyplot.ylim(0,10);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You will need the following auxiliary functions:" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "def sigmoid(z):\n", " \"\"\"The sigmoid function.\"\"\"\n", " return 1.0/(1.0+np.exp(-z))\n", "\n", "def sigmoid_prime(z):\n", " \"\"\"Derivative of the sigmoid function.\"\"\"\n", " return sigmoid(z)*(1-sigmoid(z))" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## A simple network to classify handwritten digits\n", "Most of this section has been taken from M. Nielsen's free on-line book: \"Neural Networks and Deep Learning\" http://neuralnetworksanddeeplearning.com/\n", "\n", "In this section we discuss a neural network which can solve the more interesting and difficult problem, namely, recognizing individual handwritten digits.\n", "\n", "The input layer of the network contains neurons encoding the values of the input pixels. Our training data for the network will consist of many 28 by 28\n", " pixel images of scanned handwritten digits, and so the input layer contains 784=28×28\n", " neurons. The input pixels are greyscale, with a value of 0.0\n", " representing white, a value of 1.0\n", "representing black, and in between values representing gradually darkening shades of grey.\n", "\n", "The second layer of the network is a hidden layer. We denote the number of neurons in this hidden layer by $n$\n", ", and we'll experiment with different values for $n$\n", ". The example shown illustrates a small hidden layer, containing just $n=15$\n", " neurons.\n", " \n", " The output layer of the network contains 10 neurons. If the first neuron fires, i.e., has an output $\\sim 1$\n", ", then that will indicate that the network thinks the digit is a 0\n", ". If the second neuron fires then that will indicate that the network thinks the digit is a 1\n", ". And so on. A little more precisely, we number the output neurons from 0\n", " through 9\n", ", and figure out which neuron has the highest activation value. If that neuron is, say, neuron number 6\n", ", then our network will guess that the input digit was a 6\n", ". And so on for the other output neurons.\n", "\n", "<img src=\"figures/nnetwork.png\" style=\"width: 500px;\"/>\n", "\n", "#### Network to identify single digits. The output layer has 10 neurons, one for each digit.\n", "\n", "\n", "\n", "The first thing we'll need is a data set to learn from - a so-called training data set. We'll use the MNIST data set, which contains tens of thousands of scanned images of handwritten digits, together with their correct classifications. MNIST's name comes from the fact that it is a modified subset of two data sets collected by NIST, the United States' National Institute of Standards and Technology. Here's a few images from MNIST:\n", "\n", "<img src=\"figures/digits_separate.png\" style=\"width: 250px;\"/>\n", "\n", "\n", "\n", "The MNIST data comes in two parts. The first part contains 60,000 images to be used as training data. These images are scanned handwriting samples from 250 people, half of whom were US Census Bureau employees, and half of whom were high school students. The images are greyscale and 28 by 28 pixels in size. The second part of the MNIST data set is 10,000 images to be used as test data. Again, these are 28 by 28 greyscale images. We'll use the test data to evaluate how well our neural network has learned to recognize digits. To make this a good test of performance, the test data was taken from a different set of 250 people than the original training data (albeit still a group split between Census Bureau employees and high school students). This helps give us confidence that our system can recognize digits from people whose writing it didn't see during training.\n", "\n", "In practice, we are going to split the data a little differently. We'll leave the test images as is, but split the 60,000-image MNIST training set into two parts: a set of 50,000 images, which we'll use to train our neural network, and a separate 10,000 image validation set.\n", "\n", "We'll use the notation $x$\n", " to denote a training input. It'll be convenient to regard each training input $x$\n", " as a 28×28=784-dimensional vector. Each entry in the vector represents the grey value for a single pixel in the image. We'll denote the corresponding desired output by y=y(x)\n", ", where y\n", " is a 10\n", "-dimensional vector. For example, if a particular training image, $x$\n", ", depicts a 6\n", ", then $y(x)=(0,0,0,0,0,0,1,0,0,0)^T$\n", " is the desired output from the network. Note that T\n", " here is the transpose operation, turning a row vector into an ordinary (column) vector.\n", " " ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [], "source": [ "\"\"\"\n", "mnist_loader\n", "~~~~~~~~~~~~\n", "\n", "A library to load the MNIST image data. For details of the data\n", "structures that are returned, see the doc strings for ``load_data``\n", "and ``load_data_wrapper``. In practice, ``load_data_wrapper`` is the\n", "function usually called by our neural network code.\n", "\"\"\"\n", "\n", "#### Libraries\n", "# Standard library\n", "import pickle\n", "import gzip\n", "\n", "# Third-party libraries\n", "import numpy as np\n", "\n", "def load_data():\n", " \"\"\"Return the MNIST data as a tuple containing the training data,\n", " the validation data, and the test data.\n", "\n", " The ``training_data`` is returned as a tuple with two entries.\n", " The first entry contains the actual training images. This is a\n", " numpy ndarray with 50,000 entries. Each entry is, in turn, a\n", " numpy ndarray with 784 values, representing the 28 * 28 = 784\n", " pixels in a single MNIST image.\n", "\n", " The second entry in the ``training_data`` tuple is a numpy ndarray\n", " containing 50,000 entries. Those entries are just the digit\n", " values (0...9) for the corresponding images contained in the first\n", " entry of the tuple.\n", "\n", " The ``validation_data`` and ``test_data`` are similar, except\n", " each contains only 10,000 images.\n", "\n", " This is a nice data format, but for use in neural networks it's\n", " helpful to modify the format of the ``training_data`` a little.\n", " That's done in the wrapper function ``load_data_wrapper()``, see\n", " below.\n", " \"\"\"\n", " f = gzip.open('data/mnist.pkl.gz', 'rb')\n", " training_data, validation_data, test_data = pickle.load(f, encoding='latin1')\n", " f.close()\n", " return (training_data, validation_data, test_data)\n", "\n", "def load_data_wrapper():\n", " \"\"\"Return a tuple containing ``(training_data, validation_data,\n", " test_data)``. Based on ``load_data``, but the format is more\n", " convenient for use in our implementation of neural networks.\n", "\n", " In particular, ``training_data`` is a list containing 50,000\n", " 2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray\n", " containing the input image. ``y`` is a 10-dimensional\n", " numpy.ndarray representing the unit vector corresponding to the\n", " correct digit for ``x``.\n", "\n", " ``validation_data`` and ``test_data`` are lists containing 10,000\n", " 2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional\n", " numpy.ndarry containing the input image, and ``y`` is the\n", " corresponding classification, i.e., the digit values (integers)\n", " corresponding to ``x``.\n", "\n", " Obviously, this means we're using slightly different formats for\n", " the training data and the validation / test data. These formats\n", " turn out to be the most convenient for use in our neural network\n", " code.\"\"\"\n", " tr_d, va_d, te_d = load_data()\n", " training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]\n", " training_results = [vectorized_result(y) for y in tr_d[1]]\n", " training_data = list(zip(training_inputs, training_results))\n", " validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]\n", " validation_data = list(zip(validation_inputs, va_d[1]))\n", " test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]\n", " test_data = list(zip(test_inputs, te_d[1]))\n", " return (training_data, validation_data, test_data)\n", "\n", "def vectorized_result(j):\n", " \"\"\"Return a 10-dimensional unit vector with a 1.0 in the jth\n", " position and zeroes elsewhere. This is used to convert a digit\n", " (0...9) into a corresponding desired output from the neural\n", " network.\"\"\"\n", " e = np.zeros((10, 1))\n", " e[j] = 1.0\n", " return e" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note also that the biases and weights are stored as lists of Numpy matrices. So, for example `net.weights[1]` is a Numpy matrix storing the weights connecting the second and third layers of neurons. (It's not the first and second layers, since Python's list indexing starts at 0.) Since `net.weights[1]` is rather verbose, let's just denote that matrix $w$\n", ". It's a matrix such that $w_{jk}$\n", " is the weight for the connection between the $k^{th}$\n", " neuron in the second layer, and the $j^{th}$\n", " neuron in the third layer. This ordering of the $j$\n", " and $k$\n", " indices may seem strange. The big advantage of using this ordering is that it means that the vector of activations of the third layer of neurons is:\n", "$$a'=\\mathrm {sigmoid}(wa+b)$$\n", "\n", "There's quite a bit going on in this equation, so let's unpack it piece by piece. $a$\n", " is the vector of activations of the second layer of neurons. To obtain $a'$\n", " we multiply $a$\n", " by the weight matrix $w$\n", ", and add the vector $b$\n", " of biases. We then apply the function `sigmoid`\n", "elementwise to every entry in the vector $wa+b$.\n", "\n", "Of course, the main thing we want our Network objects to do is to learn. To that end we'll give them an SGD method which implements stochastic gradient descent. \n", "\n", "<!--\n", "The training_data is a list of tuples `(x, y)` representing the training inputs and corresponding desired outputs. The variables `epochs` and `mini_batch_size` are what you'd expect - the number of epochs to train for, and the size of the mini-batches to use when sampling. `eta` is the learning rate, $\\eta$. If the optional argument `test_data` is supplied, then the program will evaluate the network after each epoch of training, and print out partial progress. This is useful for tracking progress, but slows things down substantially.\n", "\n", "The code works as follows. In each epoch, it starts by randomly shuffling the training data, and then partitions it into mini-batches of the appropriate size. This is an easy way of sampling randomly from the training data. Then for each `mini_batch` we apply a single step of gradient descent. This is done by the code `self.update_mini_batch(mini_batch, eta)`, which updates the network weights and biases according to a single iteration of gradient descent, using just the training data in `mini_batch`.\n", "-->\n", "\n", "Most of the work is done by the line\n", "```\n", " delta_nabla_b, delta_nabla_w = self.backprop(x, y)\n", "```\n", "\n", "This invokes something called the *backpropagation* algorithm, which is a fast way of computing the gradient of the cost function. So `update_mini_batch` works simply by computing these gradients for every training example in the `mini_batch`, and then updating `self.weights` and `self.biases` appropriately.\n", "\n", "The activation $a_{lj}$\n", " of the $j^{th}$\n", " neuron in the $l^{th}$\n", "layer is related to the activations in the $(l-1)^{th}$\n", " layer by the equation\n", "$$a^l_j=\\mathrm{sigmoid}(\\sum_k w_{jk}^l a^{l-1}_k+b^l_j)$$\n", "where the sum is over all neurons $k$\n", " in the $(l−1)^{th}$\n", " layer. To rewrite this expression in a matrix form we define a weight matrix $w^l$\n", " for each layer, $l$\n", ". The entries of the weight matrix $w^l$\n", " are just the weights connecting to the $l^{th}$\n", " layer of neurons, that is, the entry in the $j^{th}$\n", " row and $k^{th}$\n", " column is $w^l_{jk}$. Similarly, for each layer $l$\n", " we define a bias vector, $b^l$. You can probably guess how this works - the components of the bias vector are just the values $b^l_j$\n", ", one component for each neuron in the $l^{th}$\n", " layer. And finally, we define an activation vector $a^l$\n", "whose components are the activations $a^l_j$.\n", "\n", "With these notations in mind, these equations can be rewritten in the beautiful and compact vectorized form\n", "$$a^l=\\mathrm{sigmoid}(w^la^{l-1}+b^l).$$\n", "This expression gives us a much more global way of thinking about how the activations in one layer relate to activations in the previous layer: we just apply the weight matrix to the activations, then add the bias vector, and finally apply the `sigmoid` function.\n", "\n", "Apart from `self.backprop` the program is self-explanatory - all the heavy lifting is done in `self.SGD` and `self.update_mini_batch`, which we've already discussed. The `self.backprop` method makes use of a few extra functions to help in computing the gradient, namely sigmoid_prime, which computes the derivative of the sigmoid\n", " function, and `self.cost_derivative`. You can get the gist of these (and perhaps the details) just by looking at the code and documentation strings. Note that while the program appears lengthy, much of the code is documentation strings intended to make the code easy to understand. In fact, the program contains just 74 lines of non-whitespace, non-comment code. " ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [], "source": [ "\"\"\"\n", "network.py\n", "~~~~~~~~~~\n", "\n", "A module to implement the stochastic gradient descent learning\n", "algorithm for a feedforward neural network. Gradients are calculated\n", "using backpropagation. Note that I have focused on making the code\n", "simple, easily readable, and easily modifiable. It is not optimized,\n", "and omits many desirable features.\n", "\"\"\"\n", "\n", "#### Libraries\n", "# Standard library\n", "import random\n", "\n", "# Third-party libraries\n", "import numpy as np\n", "\n", "class Network(object):\n", "\n", " def __init__(self, sizes):\n", " \"\"\"The list ``sizes`` contains the number of neurons in the\n", " respective layers of the network. For example, if the list\n", " was [2, 3, 1] then it would be a three-layer network, with the\n", " first layer containing 2 neurons, the second layer 3 neurons,\n", " and the third layer 1 neuron. The biases and weights for the\n", " network are initialized randomly, using a Gaussian\n", " distribution with mean 0, and variance 1. Note that the first\n", " layer is assumed to be an input layer, and by convention we\n", " won't set any biases for those neurons, since biases are only\n", " ever used in computing the outputs from later layers.\"\"\"\n", " self.num_layers = len(sizes)\n", " self.sizes = sizes\n", " self.biases = [np.random.randn(y, 1) for y in sizes[1:]]\n", " self.weights = [np.random.randn(y, x)\n", " for x, y in zip(sizes[:-1], sizes[1:])]\n", "\n", " def feedforward(self, a):\n", " \"\"\"Return the output of the network if ``a`` is input.\"\"\"\n", " for b, w in zip(self.biases, self.weights):\n", " a = sigmoid(np.dot(w, a)+b)\n", " return a\n", "\n", " def SGD(self, training_data, epochs, mini_batch_size, eta,\n", " test_data=None):\n", " \"\"\"Train the neural network using mini-batch stochastic\n", " gradient descent. The ``training_data`` is a list of tuples\n", " ``(x, y)`` representing the training inputs and the desired\n", " outputs. The other non-optional parameters are\n", " self-explanatory. If ``test_data`` is provided then the\n", " network will be evaluated against the test data after each\n", " epoch, and partial progress printed out. This is useful for\n", " tracking progress, but slows things down substantially.\"\"\"\n", " if test_data: n_test = len(test_data)\n", " n = len(training_data)\n", " for j in range(epochs):\n", " random.shuffle(training_data)\n", " mini_batches = [\n", " training_data[k:k+mini_batch_size]\n", " for k in range(0, n, mini_batch_size)]\n", " for mini_batch in mini_batches:\n", " self.update_mini_batch(mini_batch, eta)\n", " if test_data:\n", " print (\"Epoch {0}: {1} / {2}\".format(\n", " j, self.evaluate(test_data), n_test))\n", " else:\n", " print (\"Epoch {0} complete\".format(j))\n", "\n", " def update_mini_batch(self, mini_batch, eta):\n", " \"\"\"Update the network's weights and biases by applying\n", " gradient descent using backpropagation to a single mini batch.\n", " The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``\n", " is the learning rate.\"\"\"\n", " nabla_b = [np.zeros(b.shape) for b in self.biases]\n", " nabla_w = [np.zeros(w.shape) for w in self.weights]\n", " for x, y in mini_batch:\n", " delta_nabla_b, delta_nabla_w = self.backprop(x, y)\n", " nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]\n", " nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]\n", " self.weights = [w-(eta/len(mini_batch))*nw\n", " for w, nw in zip(self.weights, nabla_w)]\n", " self.biases = [b-(eta/len(mini_batch))*nb\n", " for b, nb in zip(self.biases, nabla_b)]\n", "\n", " def backprop(self, x, y):\n", " \"\"\"Return a tuple ``(nabla_b, nabla_w)`` representing the\n", " gradient for the cost function C_x. ``nabla_b`` and\n", " ``nabla_w`` are layer-by-layer lists of numpy arrays, similar\n", " to ``self.biases`` and ``self.weights``.\"\"\"\n", " nabla_b = [np.zeros(b.shape) for b in self.biases]\n", " nabla_w = [np.zeros(w.shape) for w in self.weights]\n", " # feedforward\n", " activation = x\n", " activations = [x] # list to store all the activations, layer by layer\n", " zs = [] # list to store all the z vectors, layer by layer\n", " for b, w in zip(self.biases, self.weights):\n", " z = np.dot(w, activation)+b\n", " zs.append(z)\n", " activation = sigmoid(z)\n", " activations.append(activation)\n", " # backward pass\n", " delta = self.cost_derivative(activations[-1], y) * \\\n", " sigmoid_prime(zs[-1])\n", " nabla_b[-1] = delta\n", " nabla_w[-1] = np.dot(delta, activations[-2].transpose())\n", " # Note that the variable l in the loop below is used a little\n", " # differently to the notation in Chapter 2 of the book. Here,\n", " # l = 1 means the last layer of neurons, l = 2 is the\n", " # second-last layer, and so on. It's a renumbering of the\n", " # scheme in the book, used here to take advantage of the fact\n", " # that Python can use negative indices in lists.\n", " for l in range(2, self.num_layers):\n", " z = zs[-l]\n", " sp = sigmoid_prime(z)\n", " delta = np.dot(self.weights[-l+1].transpose(), delta) * sp\n", " nabla_b[-l] = delta\n", " nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())\n", " return (nabla_b, nabla_w)\n", "\n", " def evaluate(self, test_data):\n", " \"\"\"Return the number of test inputs for which the neural\n", " network outputs the correct result. Note that the neural\n", " network's output is assumed to be the index of whichever\n", " neuron in the final layer has the highest activation.\"\"\"\n", " test_results = [(np.argmax(self.feedforward(x)), y)\n", " for (x, y) in test_data]\n", " return sum(int(x == y) for (x, y) in test_results)\n", "\n", " def cost_derivative(self, output_activations, y):\n", " \"\"\"Return the vector of partial derivatives \\partial C_x /\n", " \\partial a for the output activations.\"\"\"\n", " return (output_activations-y)\n", "\n", "#### Miscellaneous functions\n", "def sigmoid(z):\n", " \"\"\"The sigmoid function.\"\"\"\n", " return 1.0/(1.0+np.exp(-z))\n", "\n", "def sigmoid_prime(z):\n", " \"\"\"Derivative of the sigmoid function.\"\"\"\n", " return sigmoid(z)*(1-sigmoid(z))\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We first load the MNIST data:" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [], "source": [ "training_data, validation_data, test_data = load_data_wrapper()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After loading the MNIST data, we'll set up a Network with 30 hidden neurons. " ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [], "source": [ "net = Network([784, 30, 10])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we'll use stochastic gradient descent to learn from the MNIST training_data over 30 epochs, with a mini-batch size of 10, and a learning rate of $\\eta$=3.0:\n" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 0: 9125 / 10000\n", "Epoch 1: 9201 / 10000\n", "Epoch 2: 9285 / 10000\n", "Epoch 3: 9317 / 10000\n", "Epoch 4: 9299 / 10000\n", "Epoch 5: 9388 / 10000\n", "Epoch 6: 9394 / 10000\n", "Epoch 7: 9397 / 10000\n", "Epoch 8: 9425 / 10000\n", "Epoch 9: 9395 / 10000\n", "Epoch 10: 9408 / 10000\n", "Epoch 11: 9440 / 10000\n", "Epoch 12: 9448 / 10000\n", "Epoch 13: 9460 / 10000\n", "Epoch 14: 9445 / 10000\n", "Epoch 15: 9459 / 10000\n", "Epoch 16: 9467 / 10000\n", "Epoch 17: 9466 / 10000\n", "Epoch 18: 9434 / 10000\n", "Epoch 19: 9450 / 10000\n", "Epoch 20: 9463 / 10000\n", "Epoch 21: 9472 / 10000\n", "Epoch 22: 9465 / 10000\n", "Epoch 23: 9482 / 10000\n", "Epoch 24: 9487 / 10000\n", "Epoch 25: 9458 / 10000\n", "Epoch 26: 9481 / 10000\n", "Epoch 27: 9479 / 10000\n", "Epoch 28: 9476 / 10000\n", "Epoch 29: 9479 / 10000\n" ] } ], "source": [ "net.SGD(training_data, 30, 10, 3.0, test_data=test_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Challenge 14.3\n", "Try creating a network with just two layers - an input and an output layer, no hidden layer - with 784 and 10 neurons, respectively. Train the network using stochastic gradient descent. What classification accuracy can you achieve?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Number of hidden layers\n", "\n", "Suppose that we want to approximate a set of functions to a given accuracy. How many hidden layers do we need? The answer is: At most two layers, with arbitrary accuracy obtained given enough units per layer. It has been also shown that only one layer is enough to approximate any continuous function. Of course, there is no way to know how many units we would need, and this is not known in general, and this number may grow exponentially with the number of input units. " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.2" } }, "nbformat": 4, "nbformat_minor": 1 }
mit
JudoWill/ResearchNotebooks
HIVTransTool.ipynb
1
50009
{ "metadata": { "name": "HIVTransTool" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "from Bio import Seq\n", "from Bio import SeqIO\n", "import pandas as pd\n", "import numpy as np\n", "import sys\n", "import os\n", "sys.path.append('/home/will/PySeqUtils/')\n", "from GeneralSeqTools import fasta_reader, fasta_writer\n", "from HIVAlignTools import SeqTransformer, build_aligners" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "import HIVAlignTools" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "HIVAlignTools.build_aligners()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "gag\n", "Fitting 10 folds for each of 20 candidates, totalling 200 fits" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 20.0s\n", "[Parallel(n_jobs=1)]: Done 50 jobs | elapsed: 16.8min\n" ] }, { "ename": "KeyboardInterrupt", "evalue": "", "output_type": "pyerr", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-3-52ec053a8004>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mHIVAlignTools\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mbuild_aligners\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32m/home/will/PySeqUtils/HIVAlignTools.py\u001b[0m in \u001b[0;36mbuild_aligners\u001b[1;34m(base_path, verbose)\u001b[0m\n\u001b[0;32m 382\u001b[0m 'gp41', 'v3']\n\u001b[0;32m 383\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mprot\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mprots\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 384\u001b[1;33m \u001b[1;32mprint\u001b[0m \u001b[0mprot\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 385\u001b[0m \u001b[0mpath\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mbase_path\u001b[0m\u001b[1;33m+\u001b[0m\u001b[0mprot\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 386\u001b[0m aligner = train_aligner(prot, path+'.fasta',\n", "\u001b[1;32m/home/will/PySeqUtils/HIVAlignTools.py\u001b[0m in \u001b[0;36mtrain_aligner\u001b[1;34m(prot, path, train_type, test_size, n_jobs, verbose)\u001b[0m\n\u001b[0;32m 363\u001b[0m \u001b[0mcv\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mcv\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 364\u001b[0m \u001b[0mn_jobs\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mn_jobs\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 365\u001b[1;33m \u001b[0mverbose\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mverbose\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 366\u001b[0m refit=False)\n\u001b[0;32m 367\u001b[0m \u001b[0mgd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.pyc\u001b[0m in \u001b[0;36mfit\u001b[1;34m(self, X, y, **params)\u001b[0m\n\u001b[0;32m 705\u001b[0m \u001b[1;34m\" The params argument will be removed in 0.15.\"\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 706\u001b[0m DeprecationWarning)\n\u001b[1;32m--> 707\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_fit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mParameterGrid\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparam_grid\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 708\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 709\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.pyc\u001b[0m in \u001b[0;36m_fit\u001b[1;34m(self, X, y, parameter_iterable)\u001b[0m\n\u001b[0;32m 491\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mbase_estimator\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mparameters\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtrain\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtest\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 492\u001b[0m self.scorer_, self.verbose, **self.fit_params)\n\u001b[1;32m--> 493\u001b[1;33m \u001b[1;32mfor\u001b[0m \u001b[0mparameters\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mparameter_iterable\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 494\u001b[0m for train, test in cv)\n\u001b[0;32m 495\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.pyc\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, iterable)\u001b[0m\n\u001b[0;32m 515\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 516\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mfunction\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[1;32min\u001b[0m \u001b[0miterable\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 517\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdispatch\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfunction\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 518\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 519\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.pyc\u001b[0m in \u001b[0;36mdispatch\u001b[1;34m(self, func, args, kwargs)\u001b[0m\n\u001b[0;32m 310\u001b[0m \"\"\"\n\u001b[0;32m 311\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_pool\u001b[0m \u001b[1;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 312\u001b[1;33m \u001b[0mjob\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mImmediateApply\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfunc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 313\u001b[0m \u001b[0mindex\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_jobs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 314\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0m_verbosity_filter\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mverbose\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/parallel.pyc\u001b[0m in \u001b[0;36m__init__\u001b[1;34m(self, func, args, kwargs)\u001b[0m\n\u001b[0;32m 134\u001b[0m \u001b[1;31m# Don't delay the application, to avoid keeping the input\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 135\u001b[0m \u001b[1;31m# arguments in memory\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 136\u001b[1;33m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mresults\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mfunc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 137\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 138\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/sklearn/grid_search.pyc\u001b[0m in \u001b[0;36mfit_grid_point\u001b[1;34m(X, y, base_estimator, parameters, train, test, scorer, verbose, loss_func, **fit_params)\u001b[0m\n\u001b[0;32m 309\u001b[0m \u001b[0mthis_score\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mscorer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mclf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mX_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 310\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 311\u001b[1;33m \u001b[0mthis_score\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mclf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mscore\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 312\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 313\u001b[0m \u001b[0mclf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m**\u001b[0m\u001b[0mfit_params\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/home/will/PySeqUtils/HIVAlignTools.py\u001b[0m in \u001b[0;36mscore\u001b[1;34m(self, X, y)\u001b[0m\n\u001b[0;32m 292\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 293\u001b[0m \u001b[0mempty_mask\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0my\u001b[0m \u001b[1;33m==\u001b[0m \u001b[1;34m'XX'\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 294\u001b[1;33m \u001b[0mout_aligns\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 295\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 296\u001b[0m \u001b[0mpos_scores\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mscore_seqs\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0my\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m~\u001b[0m\u001b[0mempty_mask\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mout_aligns\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m~\u001b[0m\u001b[0mempty_mask\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/home/will/PySeqUtils/HIVAlignTools.py\u001b[0m in \u001b[0;36mpredict\u001b[1;34m(self, X)\u001b[0m\n\u001b[0;32m 272\u001b[0m \u001b[0mmax_intron_length\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmax_intron_length\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 273\u001b[0m num_threads=self.num_threads)\n\u001b[1;32m--> 274\u001b[1;33m \u001b[0mstdout\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstderr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mblastx_cline\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 275\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 276\u001b[0m \u001b[0mblast_records\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mNCBIXML\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mparse\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mStringIO\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstdout\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/local/lib/python2.7/dist-packages/Bio/Application/__init__.pyc\u001b[0m in \u001b[0;36m__call__\u001b[1;34m(self, stdin, stdout, stderr, cwd, env)\u001b[0m\n\u001b[0;32m 434\u001b[0m shell=(sys.platform!=\"win32\"))\n\u001b[0;32m 435\u001b[0m \u001b[1;31m#Use .communicate as can get deadlocks with .wait(), see Bug 2804\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 436\u001b[1;33m \u001b[0mstdout_str\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstderr_str\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mchild_process\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcommunicate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mstdin\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 437\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mstdout\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 438\u001b[0m \u001b[1;32massert\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mstdout_str\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/lib/python2.7/subprocess.pyc\u001b[0m in \u001b[0;36mcommunicate\u001b[1;34m(self, input)\u001b[0m\n\u001b[0;32m 752\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mstdout\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstderr\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 753\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 754\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_communicate\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 755\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 756\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/lib/python2.7/subprocess.pyc\u001b[0m in \u001b[0;36m_communicate\u001b[1;34m(self, input)\u001b[0m\n\u001b[0;32m 1310\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1311\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0m_has_poll\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1312\u001b[1;33m \u001b[0mstdout\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstderr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_communicate_with_poll\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1313\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1314\u001b[0m \u001b[0mstdout\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mstderr\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_communicate_with_select\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32m/usr/lib/python2.7/subprocess.pyc\u001b[0m in \u001b[0;36m_communicate_with_poll\u001b[1;34m(self, input)\u001b[0m\n\u001b[0;32m 1364\u001b[0m \u001b[1;32mwhile\u001b[0m \u001b[0mfd2file\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1365\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1366\u001b[1;33m \u001b[0mready\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpoller\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpoll\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1367\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mselect\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0merror\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1368\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0me\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0merrno\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mEINTR\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mKeyboardInterrupt\u001b[0m: " ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "import shlex\n", "from subprocess import check_call\n", "\n", "def score_seq(known, guess, gapopen=10, gapextend=1):\n", " \n", " cmd = 'needle -asequence %(cb)s -bsequence %(seq)s -aformat score -gapopen %(go)f -gapextend %(ge)s -outfile %(out)s'\n", " with NamedTemporaryFile() as conb_handle:\n", " fasta_writer(conb_handle, [('SeqA', known)])\n", " conb_handle.flush()\n", " os.fsync(conb_handle.fileno())\n", " with NamedTemporaryFile() as seq_handle:\n", " fasta_writer(seq_handle, [('Seq1', guess)])\n", " seq_handle.flush()\n", " os.fsync(seq_handle.fileno())\n", " with NamedTemporaryFile() as out_handle:\n", " param_dict = {\n", " 'cb':conb_handle.name,\n", " 'seq':seq_handle.name,\n", " 'out':out_handle.name,\n", " 'go':gapopen,\n", " 'ge':gapextend\n", " }\n", " cmd_list = shlex.split(cmd % param_dict)\n", " check_call(cmd_list)\n", " for line in out_handle:\n", " parts = line.split()\n", " if (len(parts) == 4):\n", " return float(parts[-1][1:-2])\n", " \n", "\n", "\n", "def score_seqs(known_seqs, guess_seqs, gapopen=10, gapextend=1):\n", " \n", " score = 0.0\n", " for ind in range(known_seqs.shape[0]):\n", " score += score_seq(known_seqs[ind], guess_seqs[ind],\n", " gapopen=gapopen, gapextend=gapextend)\n", " return score\n", "\n", "\n", "\n", " " ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 11 }, { "cell_type": "code", "collapsed": false, "input": [ "from sklearn.base import BaseEstimator, ClusterMixin\n", "from tempfile import NamedTemporaryFile\n", "from Bio.SubsMat import MatrixInfo as matlist\n", "from Bio.Blast import NCBIXML\n", "from StringIO import StringIO\n", "from Bio.Blast.Applications import NcbiblastxCommandline, NcbiblastnCommandline\n", "\n", "\n", "class BlastAligner(BaseEstimator, ClusterMixin):\n", " \n", " def __init__(self, evalue=10, word_size=2, gapopen=11, gapextend=1, \n", " max_intron_length = 20, tmp_path = '/tmp/', result_type = 'aa',\n", " db_path=NamedTemporaryFile(suffix='.fasta').name, num_threads=1):\n", " self.evalue = evalue\n", " self.word_size = word_size\n", " self.gapopen = gapopen\n", " self.gapextend = gapextend\n", " self.max_intron_length = max_intron_length\n", " self.tmp_path = tmp_path\n", " self.result_type = result_type\n", " self.db_path = db_path\n", " self.num_threads = num_threads\n", " \n", " def _write_seqs(self, X, handle):\n", " \n", " seqs = []\n", " for row in range(X.shape[0]):\n", " seq = ''.join(X[row])\n", " seqs.append(('Seq-%03i' % row, ''.join(l for l in seq if l.isalpha())))\n", " \n", " fasta_writer(handle, seqs)\n", " handle.flush()\n", " os.fsync(handle.fileno())\n", " \n", " \n", " def fit(self, X, y):\n", " \n", " \n", " empty_mask = y == 'XX'\n", " \n", " with open(self.db_path, 'w') as handle:\n", " self._write_seqs(y[~empty_mask], handle)\n", " cmd = 'makeblastdb -in %s -dbtype ' % self.db_path\n", " if self.result_type == 'aa':\n", " cmd += 'prot'\n", " else:\n", " cmd += 'nucl'\n", " \n", " check_call(shlex.split(cmd))\n", " \n", " \n", " return self\n", " \n", " \n", " def predict(self, X):\n", " \n", " if self.result_type == 'aa':\n", " blast_cmd = NcbiblastxCommandline\n", " else:\n", " blast_cmd = NcbiblastnCommandline\n", " \n", " \n", " with NamedTemporaryFile(dir=self.tmp_path, delete=True) as fasta_handle: \n", " self._write_seqs(X, fasta_handle)\n", " blastx_cline = blast_cmd(query=fasta_handle.name,\n", " db = self.db_path, outfmt=5, \n", " out = '-',\n", " evalue=self.evalue,\n", " word_size=self.word_size,\n", " gapopen=self.gapopen,\n", " gapextend=self.gapextend,\n", " max_intron_length=self.max_intron_length,\n", " num_threads=self.num_threads)\n", " stdout, stderr = blastx_cline()\n", " \n", " blast_records = NCBIXML.parse(StringIO(stdout))\n", " seqs = []\n", " names = []\n", " prots = []\n", " for rec in blast_records:\n", " for align in rec.alignments:\n", " hsp = align.hsps[0]\n", " prots.append({\n", " 'ID':rec.query,\n", " 'Seq':hsp.query\n", " })\n", " blast_out = pd.DataFrame(prots).groupby('ID')['Seq'].first()\n", " wanted_out = pd.DataFrame({\n", " 'ID':['Seq-%03i' % i for i in range(X.shape[0])],\n", " 'want_seq':[True]*X.shape[0],\n", " }).groupby('ID')['want_seq'].first()\n", " out, _ = blast_out.align(wanted_out, join='right')\n", " \n", " return SeqTransformer().transform(out.fillna('XX').values)\n", " \n", " def score(self, X, y):\n", " \n", " empty_mask = y == 'XX'\n", " out_aligns = self.predict(X)\n", " \n", " pos_scores = score_seqs(y[~empty_mask], out_aligns[~empty_mask])\n", " bad_scores = score_seqs(out_aligns[empty_mask], out_aligns[empty_mask])\n", " return (pos_scores - bad_scores)/y.shape[0]\n", " " ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "neg_controls = {\n", " 'env':['gag', 'pol', 'vif', 'vpr', 'ltr'],\n", " 'gag':['ltr', 'vif', 'vpr', 'vpu', 'tat', 'rev', 'env'],\n", " #'ltr':['gag', 'pol', 'vpr', 'vpu', 'env'],\n", " 'nef':['pol', 'gag', 'vpu', 'tat'],\n", " 'pol':['env', 'vpr', 'vpu', 'nef', 'rev', 'ltr'],\n", " 'rev':['ltr', 'gag', 'pol', 'vif', 'nef'],\n", " 'tat':['ltr', 'pol', 'vif', 'nef'],\n", " 'vif':['ltr', 'tat', 'vpu', 'rev', 'env', 'nef'],\n", " 'vpr':['ltr', 'gag', 'pol', 'rev', 'env', 'nef'],\n", " 'vpu':['ltr', 'gag', 'pol', 'vif', 'vpr', 'nef'],\n", " }" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "def get_seq(prot_name, typ):\n", " trans_path = '/home/will/PySeqUtils/TransToolStuff/'\n", " tmp = 'HIV1_ALL_2012_%s_%s.fasta' % (prot_name.lower(), typ.upper())\n", " with open(trans_path + tmp) as handle:\n", " return SeqTransformer.get_from_fasta_handle(handle)\n", "\n", "\n", "pos_names, pos_X = get_seq('genome', 'DNA')\n", "env_names, env_y = get_seq('env', 'pro')\n", "neg_names = []\n", "neg_X = None\n", "for neg_prot in neg_controls['env']:\n", " tnames, tx = get_seq(neg_prot, 'DNA')\n", " neg_names += tnames\n", " if neg_X is None:\n", " neg_X = tx.copy()\n", " else:\n", " neg_X = np.concatenate((neg_X, tx))\n", " \n", " " ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "pos_X_ser = pd.Series(pos_X, index=pos_names)\n", "env_y_ser = pd.Series(env_y, index=env_names)\n", "\n", "X_ser, y_ser = pos_X_ser.align(env_y_ser, join='inner')\n", "X = X_ser.values\n", "y = y_ser.values\n", "in_env = set(env_names)\n", "neg_inds = [num for num, name in enumerate(neg_names) if name not in in_env]\n", "wneg_X = neg_X[neg_inds]\n", "wneg_y = np.array(['XX']*wneg_X.shape[0])\n", "\n", "print X.shape, y.shape, wneg_X.shape, wneg_y.shape\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "(1984,) (1984,) (6782,) (6782,)\n" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [ "Xall = np.concatenate((X, wneg_X))\n", "yall = np.concatenate((y, wneg_y))\n", "\n", "yclass = yall == 'XX'" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 7 }, { "cell_type": "code", "collapsed": false, "input": [ "from sklearn.cross_validation import train_test_split, StratifiedKFold, cross_val_score, StratifiedShuffleSplit\n", "from sklearn.grid_search import GridSearchCV\n", "\n", "param_dict = {'evalue':np.logspace(-100, 1, 20)}\n", "\n", "cv = StratifiedShuffleSplit(yclass, n_iter=3, test_size=500, train_size=100)\n", "aligner = BlastAligner(num_threads=100)\n", "gd = GridSearchCV(aligner, param_dict, refit=False, cv=cv, verbose=5)\n", "gd.fit(Xall, yall)\n" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Fitting 3 folds for each of 20 candidates, totalling 60 fits\n", "[GridSearchCV] evalue=1e-100 ...................................................\n", "[GridSearchCV] ........................ evalue=1e-100, score=928.680000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1e-100 ...................................................\n", "[GridSearchCV] ........................ evalue=1e-100, score=931.140000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1e-100 ...................................................\n", "[GridSearchCV] ........................ evalue=1e-100, score=919.860000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.06913808111e-95 ........................................\n", "[GridSearchCV] ............. evalue=2.06913808111e-95, score=922.960000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.06913808111e-95 ........................................\n", "[GridSearchCV] ............. evalue=2.06913808111e-95, score=934.160000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.06913808111e-95 ........................................\n", "[GridSearchCV] ............. evalue=2.06913808111e-95, score=916.580000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=4.28133239872e-90 ........................................\n", "[GridSearchCV] ............. evalue=4.28133239872e-90, score=935.020000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=4.28133239872e-90 ........................................\n", "[GridSearchCV] ............. evalue=4.28133239872e-90, score=930.240000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=4.28133239872e-90 ........................................\n", "[GridSearchCV] ............. evalue=4.28133239872e-90, score=920.000000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=8.8586679041e-85 .........................................\n", "[GridSearchCV] .............. evalue=8.8586679041e-85, score=916.820000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=8.8586679041e-85 .........................................\n", "[GridSearchCV] .............. evalue=8.8586679041e-85, score=940.280000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=8.8586679041e-85 .........................................\n", "[GridSearchCV] .............. evalue=8.8586679041e-85, score=914.180000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.83298071083e-79 ........................................\n", "[GridSearchCV] ............. evalue=1.83298071083e-79, score=927.200000 - 3.3s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.83298071083e-79 ........................................\n", "[GridSearchCV] ............. evalue=1.83298071083e-79, score=874.660000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.83298071083e-79 ........................................\n", "[GridSearchCV] ............. evalue=1.83298071083e-79, score=894.420000 - 3.6s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=3.79269019073e-74 ........................................\n", "[GridSearchCV] ............. evalue=3.79269019073e-74, score=933.620000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=3.79269019073e-74 ........................................\n", "[GridSearchCV] ............. evalue=3.79269019073e-74, score=897.940000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=3.79269019073e-74 ........................................\n", "[GridSearchCV] ............. evalue=3.79269019073e-74, score=940.380000 - 3.5s" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 3.4s\n", "[Parallel(n_jobs=1)]: Done 18 jobs | elapsed: 1.0min\n" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=7.84759970351e-69 ........................................\n", "[GridSearchCV] ............. evalue=7.84759970351e-69, score=881.360000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=7.84759970351e-69 ........................................\n", "[GridSearchCV] ............. evalue=7.84759970351e-69, score=921.060000 - 3.6s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=7.84759970351e-69 ........................................\n", "[GridSearchCV] ............. evalue=7.84759970351e-69, score=939.420000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.62377673919e-63 ........................................\n", "[GridSearchCV] ............. evalue=1.62377673919e-63, score=935.060000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.62377673919e-63 ........................................\n", "[GridSearchCV] ............. evalue=1.62377673919e-63, score=895.600000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.62377673919e-63 ........................................\n", "[GridSearchCV] ............. evalue=1.62377673919e-63, score=932.520000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=3.35981828628e-58 ........................................\n", "[GridSearchCV] ............. evalue=3.35981828628e-58, score=922.300000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=3.35981828628e-58 ........................................\n", "[GridSearchCV] ............. evalue=3.35981828628e-58, score=928.860000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=3.35981828628e-58 ........................................\n", "[GridSearchCV] ............. evalue=3.35981828628e-58, score=903.040000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=6.95192796178e-53 ........................................\n", "[GridSearchCV] ............. evalue=6.95192796178e-53, score=922.240000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=6.95192796178e-53 ........................................\n", "[GridSearchCV] ............. evalue=6.95192796178e-53, score=932.340000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=6.95192796178e-53 ........................................\n", "[GridSearchCV] ............. evalue=6.95192796178e-53, score=882.340000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.43844988829e-47 ........................................\n", "[GridSearchCV] ............. evalue=1.43844988829e-47, score=884.720000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.43844988829e-47 ........................................\n", "[GridSearchCV] ............. evalue=1.43844988829e-47, score=896.180000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.43844988829e-47 ........................................\n", "[GridSearchCV] ............. evalue=1.43844988829e-47, score=922.260000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.97635144163e-42 ........................................\n", "[GridSearchCV] ............. evalue=2.97635144163e-42, score=914.900000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.97635144163e-42 ........................................\n", "[GridSearchCV] ............. evalue=2.97635144163e-42, score=914.460000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.97635144163e-42 ........................................\n", "[GridSearchCV] ............. evalue=2.97635144163e-42, score=934.300000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=6.15848211066e-37 ........................................\n", "[GridSearchCV] ............. evalue=6.15848211066e-37, score=891.680000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=6.15848211066e-37 ........................................\n", "[GridSearchCV] ............. evalue=6.15848211066e-37, score=943.400000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=6.15848211066e-37 ........................................\n", "[GridSearchCV] ............. evalue=6.15848211066e-37, score=930.080000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.2742749857e-31 .........................................\n", "[GridSearchCV] .............. evalue=1.2742749857e-31, score=922.320000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.2742749857e-31 .........................................\n", "[GridSearchCV] .............. evalue=1.2742749857e-31, score=877.680000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.2742749857e-31 .........................................\n", "[GridSearchCV] .............. evalue=1.2742749857e-31, score=907.720000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.63665089873e-26 ........................................\n", "[GridSearchCV] ............. evalue=2.63665089873e-26, score=923.040000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.63665089873e-26 ........................................\n", "[GridSearchCV] ............. evalue=2.63665089873e-26, score=925.020000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.63665089873e-26 ........................................\n", "[GridSearchCV] ............. evalue=2.63665089873e-26, score=939.060000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=5.45559478117e-21 ........................................\n", "[GridSearchCV] ............. evalue=5.45559478117e-21, score=892.540000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=5.45559478117e-21 ........................................\n", "[GridSearchCV] ............. evalue=5.45559478117e-21, score=923.700000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=5.45559478117e-21 ........................................\n", "[GridSearchCV] ............. evalue=5.45559478117e-21, score=934.220000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.12883789168e-15 ........................................\n", "[GridSearchCV] ............. evalue=1.12883789168e-15, score=951.900000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.12883789168e-15 ........................................\n", "[GridSearchCV] ............. evalue=1.12883789168e-15, score=946.220000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=1.12883789168e-15 ........................................\n", "[GridSearchCV] ............. evalue=1.12883789168e-15, score=902.500000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.33572146909e-10 ........................................\n", "[GridSearchCV] ............. evalue=2.33572146909e-10, score=938.820000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.33572146909e-10 ........................................\n", "[GridSearchCV] ............. evalue=2.33572146909e-10, score=893.400000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=2.33572146909e-10 ........................................\n", "[GridSearchCV] ............. evalue=2.33572146909e-10, score=917.560000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=4.83293023857e-05 ........................................\n", "[GridSearchCV] ............. evalue=4.83293023857e-05, score=920.520000 - 3.4s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=4.83293023857e-05 ........................................\n", "[GridSearchCV] ............. evalue=4.83293023857e-05, score=942.780000 - 3.3s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=4.83293023857e-05 ........................................\n", "[GridSearchCV] ............. evalue=4.83293023857e-05, score=901.340000 - 3.5s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=10.0 .....................................................\n", "[GridSearchCV] .......................... evalue=10.0, score=753.180000 - 3.9s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=10.0 .....................................................\n", "[GridSearchCV] .......................... evalue=10.0, score=729.080000 - 3.9s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "[GridSearchCV] evalue=10.0 .....................................................\n", "[GridSearchCV] .......................... evalue=10.0, score=731.180000 - 3.8s" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "[Parallel(n_jobs=1)]: Done 60 out of 60 | elapsed: 3.5min finished\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 17, "text": [ "GridSearchCV(cv=StratifiedShuffleSplit(labels=[False False ..., True True], n_iter=3, test_size=50, indices=True, random_state=None),\n", " estimator=BlastAligner(db_path='/tmp/tmpjDibUz.fasta', evalue=10, gapextend=1,\n", " gapopen=11, max_intron_length=20, num_threads=100, result_type='aa',\n", " tmp_path='/tmp/', word_size=2),\n", " fit_params={}, iid=True, loss_func=None, n_jobs=1,\n", " param_grid={'evalue': array([ 1.00000e-100, 2.06914e-095, 4.28133e-090, 8.85867e-085,\n", " 1.83298e-079, 3.79269e-074, 7.84760e-069, 1.62378e-063,\n", " 3.35982e-058, 6.95193e-053, 1.43845e-047, 2.97635e-042,\n", " 6.15848e-037, 1.27427e-031, 2.63665e-026, 5.45559e-021,\n", " 1.12884e-015, 2.33572e-010, 4.83293e-005, 1.00000e+001])},\n", " pre_dispatch='2*n_jobs', refit=False, score_func=None, scoring=None,\n", " verbose=5)" ] } ], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "import " ], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 81, "text": [ "'MRVKGIRKNYQHLWRWGTMLLGMLMICSAAEKLWVTVYYGVPVWKEATTTLFCASDAKAYDTEVHNVWATHACVPTDPNPQEVVLENVTENFNMWKNNMVEQMHEDIISLWDQSLKPCVKLTPLCVTLNCTDLMNATNTNTTIIYRWRGEIKNCSFNITTSIRDKVQKEYALFYKLDVVPIDNDNTSYRLISCNTSVITQACPKVSFEPIPIHYCAPAGFAILKCNDKKFNGTGPCTNVSTVQCTHGIRPVVSTQLLLNGSLAEEEVVIRSENFTDNAKTIIVQLNESVEINCTRPNNNTRKSIHIGPGRAFYTTGEIIGDIRQAHCNISRAKWNNTLKQIVKKLREQFGNKTIVFNQSSGGDPEIVMHSFNCGGEFFYCNTTQLFNSTWNGTWNNTEGNITLPCRIKQIINMWQEVGKAMYAPPIRGQIRCSSNITGLLLTRDGGNNETEIFRPGGGDMRDNWRSELYKYKVVKIEPLGVAPTKAKRRVVQREKRAVGIGAMFLGFLGAAGSTMGAASMTLTVQARQLLSGIVQQQNNLLRAIEAQQHLLQLTVWGIKQLQARVLAVERYLKDQQLLGIWGCSGKLICTTAVPWNASWSNKSLDEIWDNMTWMEWEREIDNYTSLIYTLIEESQNQQEKNEQELLELDKWASLWNWFDITNWLWYIKIFIMIVGGLVGLRIVFAVLSIVNRVRQGYSPLSFQTRLPAPRGPDRPEGIEEEGGERDRDRSGRLVDGFLALIWDDLRSLCLFSYHRLRDLLLIVTRIVELLGRRGWEVLKYWWNLLQYWSQELKNSAVSLLNATAIAVAEGTDRVIEVVQRACRAILHIPRRIRQGLERALL'" ] } ], "prompt_number": 81 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
mit
hoh/Hubbub
notebooks/Analysis-ANN.ipynb
1
28236
{ "metadata": { "name": "", "signature": "sha256:5087d4cc9635b7fad9d8507a6fb11981c40db3a17678c6ccaeacdcb010b90212" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "from IPython.display import HTML\n", "HTML('''<h1>Testing with ANN</h1>\n", "\n", "<ol>\n", " <li><a href='#Comparing-real-and-dummy-delays'>Comparison of delays between real and dummies</a></li>\n", "</ol>\n", "<hr/>''')" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<h1>Testing with ANN</h1>\n", "\n", "<ol>\n", " <li><a href='#Comparing-real-and-dummy-delays'>Comparison of delays between real and dummies</a></li>\n", "</ol>\n", "<hr/>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 1, "text": [ "<IPython.core.display.HTML at 0x10fe3f210>" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "%pylab inline" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "# Large plots\n", "import matplotlib.pylab as pylab\n", "pylab.rcParams['figure.figsize'] = 16, 9" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "import pandas as pd" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "from hubbub.generator.generator import Simulator\n", "from hubbub.generator.heartbeat import HeartBeatSimulator\n", "from hubbub.datasets.simulations import simple_log, SIMPLE_LOG as SIMPLE_LOG_SAMPLE" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Warning: This tool is designed for Python 3.\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "#SIMPLE_LOG = SIMPLE_LOG_SAMPLE\n", "#SIMPLE_LOG_SAMPLE\n", "\n", "# Generating \"real\" messages dataset:\n", "SIMPLE_LOG = simple_log(n=200, days=1)\n", "#SIMPLE_LOG[:10]" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 6 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Running simulator" ] }, { "cell_type": "code", "collapsed": false, "input": [ "result_sm = Simulator(SIMPLE_LOG).run()\n", "results_HB = [\n", " HeartBeatSimulator(SIMPLE_LOG).run() for i in xrange(5)\n", "# HeartBeatSimulator(SIMPLE_LOG).run(delay=lambda: 5) for i in xrange(10)\n", " ]\n", "\n", "results_HB[0][:2]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 7, "text": [ "[(datetime.datetime(2000, 1, 1, 0, 0), 10),\n", " (datetime.datetime(2000, 1, 1, 0, 0, 0, 483881), 10)]" ] } ], "prompt_number": 7 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Converting results to timestamps for plotting:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import time\n", "def timestamp(n):\n", " unix_time = time.mktime(n.timetuple()) + n.microsecond/1000000.\n", " return unix_time" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 8 }, { "cell_type": "code", "collapsed": false, "input": [ "r_real = pd.DataFrame(\n", " [(0, timestamp(i[0]), 'SIMPLE_LOG', i[1]) for i in SIMPLE_LOG],\n", " columns=('dummy', 'timestamp', 'source', 'length'),\n", " )\n", "r_real.head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>dummy</th>\n", " <th>timestamp</th>\n", " <th>source</th>\n", " <th>length</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> 0</td>\n", " <td> 9.466812e+08</td>\n", " <td> SIMPLE_LOG</td>\n", " <td> 10</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> 0</td>\n", " <td> 9.466813e+08</td>\n", " <td> SIMPLE_LOG</td>\n", " <td> 10</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> 0</td>\n", " <td> 9.466839e+08</td>\n", " <td> SIMPLE_LOG</td>\n", " <td> 10</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> 0</td>\n", " <td> 9.466841e+08</td>\n", " <td> SIMPLE_LOG</td>\n", " <td> 10</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> 0</td>\n", " <td> 9.466846e+08</td>\n", " <td> SIMPLE_LOG</td>\n", " <td> 10</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 4 columns</p>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 9, "text": [ " dummy timestamp source length\n", "0 0 9.466812e+08 SIMPLE_LOG 10\n", "1 0 9.466813e+08 SIMPLE_LOG 10\n", "2 0 9.466839e+08 SIMPLE_LOG 10\n", "3 0 9.466841e+08 SIMPLE_LOG 10\n", "4 0 9.466846e+08 SIMPLE_LOG 10\n", "\n", "[5 rows x 4 columns]" ] } ], "prompt_number": 9 }, { "cell_type": "code", "collapsed": false, "input": [ "r_dummyHB = [\n", " pd.DataFrame(\n", " [(1, timestamp(i[0]), 'HB{}'.format(index), i[1]) for i in r],\n", " columns=('dummy', 'timestamp', 'source', 'length'),\n", " )\n", " for index, r in enumerate(results_HB)\n", " ]\n", "r_dummyHB[0].head()" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>dummy</th>\n", " <th>timestamp</th>\n", " <th>source</th>\n", " <th>length</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>5 rows \u00d7 4 columns</p>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 10, "text": [ " dummy timestamp source length\n", "0 1 9.466812e+08 HB0 10\n", "1 1 9.466812e+08 HB0 10\n", "2 1 9.466812e+08 HB0 10\n", "3 1 9.466812e+08 HB0 10\n", "4 1 9.466812e+08 HB0 10\n", "\n", "[5 rows x 4 columns]" ] } ], "prompt_number": 10 }, { "cell_type": "heading", "level": 1, "metadata": {}, "source": [ "Analyzing delays" ] }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Computing deltas for n-3 to n+3" ] }, { "cell_type": "code", "collapsed": false, "input": [ "r_mixed = [\n", " pd.concat((r_real, r))\n", " for r in r_dummyHB\n", "]\n", "for r in r_mixed:\n", " r.sort('timestamp', inplace=True)\n", " r['dm3'] = r['timestamp'].diff(periods=+3)\n", " r['dm2'] = r['timestamp'].diff(periods=+2)\n", " r['dm1'] = r['timestamp'].diff(periods=+1)\n", " r['dp1'] = -r['timestamp'].diff(periods=-1)\n", " r['dp2'] = -r['timestamp'].diff(periods=-2)\n", " r['dp3'] = -r['timestamp'].diff(periods=-3)\n", "\n", "r_mixed[0].head(10)" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>dummy</th>\n", " <th>timestamp</th>\n", " <th>source</th>\n", " <th>length</th>\n", " <th>dm3</th>\n", " <th>dm2</th>\n", " <th>dm1</th>\n", " <th>dp1</th>\n", " <th>dp2</th>\n", " <th>dp3</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td> 0.483881</td>\n", " <td> 3.798227</td>\n", " <td> 5.488650</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td> 0.483881</td>\n", " <td> 3.314346</td>\n", " <td> 5.004769</td>\n", " <td> 6.011144</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " <td> NaN</td>\n", " <td> 3.798227</td>\n", " <td> 3.314346</td>\n", " <td> 1.690423</td>\n", " <td> 2.696798</td>\n", " <td> 6.974775</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " <td> 5.488650</td>\n", " <td> 5.004769</td>\n", " <td> 1.690423</td>\n", " <td> 1.006375</td>\n", " <td> 5.284352</td>\n", " <td> 5.995023</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " <td> 6.011144</td>\n", " <td> 2.696798</td>\n", " <td> 1.006375</td>\n", " <td> 4.277977</td>\n", " <td> 4.988648</td>\n", " <td> 5.536058</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " <td> 6.974775</td>\n", " <td> 5.284352</td>\n", " <td> 4.277977</td>\n", " <td> 0.710671</td>\n", " <td> 1.258081</td>\n", " <td> 2.511761</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " <td> 5.995023</td>\n", " <td> 4.988648</td>\n", " <td> 0.710671</td>\n", " <td> 0.547410</td>\n", " <td> 1.801090</td>\n", " <td> 2.071607</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " <td> 5.536058</td>\n", " <td> 1.258081</td>\n", " <td> 0.547410</td>\n", " <td> 1.253680</td>\n", " <td> 1.524197</td>\n", " <td> 1.737170</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " <td> 2.511761</td>\n", " <td> 1.801090</td>\n", " <td> 1.253680</td>\n", " <td> 0.270517</td>\n", " <td> 0.483490</td>\n", " <td> 1.892113</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td> 1</td>\n", " <td> 9.466812e+08</td>\n", " <td> HB0</td>\n", " <td> 10</td>\n", " <td> 2.071607</td>\n", " <td> 1.524197</td>\n", " <td> 0.270517</td>\n", " <td> 0.212973</td>\n", " <td> 1.621596</td>\n", " <td> 8.812251</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "<p>10 rows \u00d7 10 columns</p>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 11, "text": [ " dummy timestamp source length dm3 dm2 dm1 dp1 \\\n", "0 1 9.466812e+08 HB0 10 NaN NaN NaN 0.483881 \n", "1 1 9.466812e+08 HB0 10 NaN NaN 0.483881 3.314346 \n", "2 1 9.466812e+08 HB0 10 NaN 3.798227 3.314346 1.690423 \n", "3 1 9.466812e+08 HB0 10 5.488650 5.004769 1.690423 1.006375 \n", "4 1 9.466812e+08 HB0 10 6.011144 2.696798 1.006375 4.277977 \n", "5 1 9.466812e+08 HB0 10 6.974775 5.284352 4.277977 0.710671 \n", "6 1 9.466812e+08 HB0 10 5.995023 4.988648 0.710671 0.547410 \n", "7 1 9.466812e+08 HB0 10 5.536058 1.258081 0.547410 1.253680 \n", "8 1 9.466812e+08 HB0 10 2.511761 1.801090 1.253680 0.270517 \n", "9 1 9.466812e+08 HB0 10 2.071607 1.524197 0.270517 0.212973 \n", "\n", " dp2 dp3 \n", "0 3.798227 5.488650 \n", "1 5.004769 6.011144 \n", "2 2.696798 6.974775 \n", "3 5.284352 5.995023 \n", "4 4.988648 5.536058 \n", "5 1.258081 2.511761 \n", "6 1.801090 2.071607 \n", "7 1.524197 1.737170 \n", "8 0.483490 1.892113 \n", "9 1.621596 8.812251 \n", "\n", "[10 rows x 10 columns]" ] } ], "prompt_number": 11 }, { "cell_type": "heading", "level": 2, "metadata": {}, "source": [ "Creating the Neural Network" ] }, { "cell_type": "code", "collapsed": false, "input": [ "from pybrain.datasets import ClassificationDataSet\n", "from pybrain.utilities import percentError\n", "from pybrain.tools.shortcuts import buildNetwork\n", "from pybrain.supervised.trainers import BackpropTrainer\n", "from pybrain.structure.modules import SoftmaxLayer" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "alldata = ClassificationDataSet(6, 1, nb_classes=3)\n", "\n", "for row in r_mixed[0][:1000].iterrows():\n", " r = row[1]\n", " alldata.addSample((r.dm3, r.dm2, r.dm1, r.dp1, r.dp2, r.dp3), [r.dummy])" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Randomly split the dataset into 75% training and 25% test data sets." ] }, { "cell_type": "code", "collapsed": false, "input": [ "tstdata, trndata = alldata.splitWithProportion( 0.25 )\n", "# For neural network classification, it is highly advisable to encode classes with one output neuron per class.\n", "trndata._convertToOneOfMany( )\n", "tstdata._convertToOneOfMany( )" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Test our dataset by printing a little information about it." ] }, { "cell_type": "code", "collapsed": false, "input": [ "print \"Number of training patterns: \", len(trndata)\n", "print \"Input and output dimensions: \", trndata.indim, trndata.outdim\n", "print \"First sample (input, target, class):\"\n", "print trndata['input'][0], trndata['target'][0], trndata['class'][0]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Number of training patterns: 750\n", "Input and output dimensions: 6 3\n", "First sample (input, target, class):\n", "[ nan nan 0.483881 3.31434596 5.00476897 6.01114404] [0 1 0] [ 1.]\n" ] } ], "prompt_number": 15 }, { "cell_type": "markdown", "metadata": {}, "source": [ "_Now build a feed-forward network with 5 hidden units._" ] }, { "cell_type": "code", "collapsed": false, "input": [ "fnn = buildNetwork( trndata.indim, 5, trndata.outdim, outclass=SoftmaxLayer )" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 16 }, { "cell_type": "code", "collapsed": false, "input": [ "trainer = BackpropTrainer( fnn, dataset=trndata, momentum=0.1, verbose=True, weightdecay=0.01)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 17 }, { "cell_type": "code", "collapsed": false, "input": [ "for i in range(20):\n", " trainer.trainEpochs( 1 )\n", " \n", " trnresult = percentError( trainer.testOnClassData(),\n", " trndata['class'] )\n", " tstresult = percentError( trainer.testOnClassData(\n", " dataset=tstdata ), tstdata['class'] )\n", "\n", " print \"epoch: %4d\" % trainer.totalepochs, \\\n", " \" train error: %5.2f%%\" % trnresult, \\\n", " \" test error: %5.2f%%\" % tstresult" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "('Total error:', nan)\n", "epoch: 1" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 2" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 3" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 4" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 5" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 6" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 7" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 8" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 9" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 10" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 11" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 12" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 13" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 14" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 15" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 16" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 17" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 18" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 19" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n", "('Total error:', nan)" ] }, { "output_type": "stream", "stream": "stdout", "text": [ "\n", "epoch: 20" ] }, { "output_type": "stream", "stream": "stdout", "text": [ " train error: 99.87% test error: 99.60%\n" ] } ], "prompt_number": 18 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 18 } ], "metadata": {} } ] }
agpl-3.0
gengho/Car2know
Car2know/analysis/.ipynb_checkpoints/draw_map-checkpoint.ipynb
1
5812796
null
mit
banbh/little-pythoner
python/Main.ipynb
1
12235
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "On this page you'll find a series of exercises. We'll be using Python for all the code, but not really. You barely need to know any Python at all. In fact here is all you need to know (at least about Python).\n", "\n", "## All You Need to Know\n", "Numbers: 0, 1, 2, 3, ... (i.e., no negative numbers or decimals)\n", "\n", "Strings: things like `'hello'` and `'the cat on the mat'` and the empty string `''`\n", "\n", "Booleans: `True`, `False`\n", "\n", "Lists: `[]`, but you can make lists (see `cons` below)\n", "\n", "#### Functions\n", "`is_eq_str(x, y)`: `x` and `y` must both be strings; returns whether `x` equals `y`\n", "\n", "`is_empty(xx)` : `xx` must be a list; returns whether the `xx` is the empty list\n", "\n", "`head(xx)`: `xx` must be a non-empty list; returns the first item of `xx`\n", "\n", "`tail(xx)`: `xx` must be a non-empty list; returns a list with everything after the head\n", "\n", "`cons(h, tl)`: returns a list whose first item is `h` and whose remaining items are the items of `tl` (i.e. it put backs a list taken apart by `head` and `tail`)\n", "\n", "`add1(n)`: `n` must be a number; returns a number one bigger than `n`\n", "\n", "`sub1(n)`: `n` must be a number greater than zero; returns a number one less than `n`\n", "\n", "`is_zero(n)`: `n` must be a number; returns whether `n` is zero\n", "\n", "`is_str(x)`: returns whether `x` is a string\n", "\n", "`is_num(x)`: returns whether `x` is a number\n", "\n", "## Getting Started\n", "The above functions, simple though they are, are not built into Python, so you must download a file that defins them. Download [basic_functions.py](../../raw/master/basic_functions.py)." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from basic_functions import *" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_empty([1,2])" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_empty([])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "head([1,2])" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "head([1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that `head([])` is an error since you can't find the first item in an empty list." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[2]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tail([1,2])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tail([1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that `tail([])` is an error since the tail of a list is what's left over when you remove the head, and the empty list has no head." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[1, 2, 3]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cons(1, [2,3])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[1]" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cons(1, [])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_num(99)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_num('hello')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_str(99)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_str('hello')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_str_eq('hello', 'hello')" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_str_eq('hello', 'goodbye')" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "100" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "add1(99)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "98" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sub1(99)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that `sub1(0)` is an error because you can't subtract 1 from 0. (Actually it is possible if you allow negative numbers, but in these exercises we will not allow such numbers.)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# All Strings\n", "Write a function, `is_list_of_strings`, that determines whether a list contains only strings. Below are some examples of how it should behave." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from solutions import is_list_of_strings" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_list_of_strings(['hello', 'goodbye'])" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_list_of_strings([1, 'aa'])" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "is_list_of_strings([])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The last example, `is_list_of_strings([])`, might seem puzzling at first, but really it's not. Suppose you are flying into a strange island and at customs there is a sign that says \"all food in your suitcase must be cooked\". Then if you have a ham sanswich in your suitcase then you are ok, since ham is cooked. What about if you have no food in your suitcase? Then clearly you are also ok. This because in normal language (and in more mathematical language too) when we say \"every X must be (say) big\", then if there are no X's then the statment is true. In normal language it may be less clear what to do with slightly sillier examples; for example, say someone asks you \"Are all the coins in your pocket quarters?\" and you have *no* coins in your pocket. Out of politeness you might say \"I have no coins in my pocket\", but if they forced you to say \"yes\" or \"no\", I think you would say \"yes\"." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Follow the pattern below:\n", " # fill in the blanks\n", " def is_list_of_strings(l):\n", " if is_empty(l):\n", " pass\n", " else:\n", " # do something with head(l), tail(l)\n", " pass\n", "Before you try it, here is a hint. You can do something magical in a function: you call yourself! For example when filling in the blanks above, a good place to try this is in the `else` block. In fact what you want to think about in the `else` block is this: assuming I've broken the list apart into it's first item (`head(l)`) and a list with all the other items (`tail(l)`) how can I figure out the answer in terms of these pieces? If the first item is not a string then we are done (the answer if false). However if the first item *is* a list then we know we have a list of strings if the rest of the items are all strings. So maybe we can 'cheat' and just call `is_list_of_strings` on the tail to answer that! And in fact you can, and it's not even cheating. In fact it's called *recursion*." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.4" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
davisincubator/seal_the_deal
notebooks/kaf_amp_4.0_copy_slow_and_steady_wins_the_race.ipynb
1
20062
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Using TensorFlow backend.\n" ] } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "import os\n", "import cv2\n", "from PIL import Image\n", "from scipy.misc import imread\n", "import matplotlib.pyplot as plt\n", "import skimage.feature\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import LabelBinarizer\n", "import keras\n", "from keras.models import Sequential, load_model\n", "from keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, MaxPooling2D, Lambda, Cropping2D\n", "from keras.utils import np_utils\n", "\n", "from collections import Counter\n", "\n", "from keras.models import load_model\n", "\n", "from tqdm import tqdm_notebook\n", "\n", "import datetime\n", "\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class_names = ['adult_females', 'adult_males', 'juveniles', 'pups', 'subadult_males']\n", "\n", "my_dir = \"/seal_the_data/\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# specify run number, which selects appropriate file name subset and file name suffix\n", "# will need 9 runs total\n", "\n", "# completed runs: \n", "\n", "run_num = 1" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['3.jpg', '7.jpg', '9.jpg', '21.jpg', '30.jpg']\n", "['3.jpg', '7.jpg', '9.jpg', '21.jpg', '30.jpg', '34.jpg', '71.jpg', '81.jpg', '89.jpg', '97.jpg', '151.jpg', '184.jpg', '215.jpg', '234.jpg', '242.jpg', '268.jpg', '290.jpg', '311.jpg', '331.jpg', '344.jpg', '380.jpg', '384.jpg', '406.jpg', '421.jpg', '469.jpg', '475.jpg', '490.jpg', '499.jpg', '507.jpg', '530.jpg', '531.jpg', '605.jpg', '607.jpg', '614.jpg', '621.jpg', '638.jpg', '644.jpg', '687.jpg', '712.jpg', '721.jpg', '767.jpg', '779.jpg', '781.jpg', '794.jpg', '800.jpg', '811.jpg', '839.jpg', '840.jpg', '869.jpg', '882.jpg', '901.jpg', '903.jpg', '905.jpg', '909.jpg', '913.jpg', '927.jpg', '946.jpg', 'train.csv']\n" ] } ], "source": [ "mismatch_id=[3,7,9,21,30,34,71,81,89,97,151,184,215,234,242,268,290,311,331,344,380,384,406,421,469,475,490,499,507,530,531,605,607,614,621,638,644,687,712,721,767,779,781,794,800,811,839,840,869,882,901,903,905,909,913,927,946]\n", "blacklist = []\n", "for i in mismatch_id:\n", " blacklist.append(str(i) + '.jpg')\n", "print(blacklist[:5])\n", "blacklist.append('train.csv')\n", "print(blacklist)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "file_names = os.listdir(my_dir + \"Train/\")\n", "file_names = sorted(file_names, key=lambda \n", " item: (int(item.partition('.')[0]) if item[0].isdigit() else float('inf'), item)) \n", "\n", "# select a subset of files to run on\n", "file_names = file_names[0:1]\n", "\n", "# dataframe to store results in\n", "coordinates_df = pd.DataFrame(index=file_names, columns=class_names)\n", "\n", "#print(file_names[:])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "3991f6452ba648f8a1f4eac62eadabf9" } }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "CPU times: user 3 µs, sys: 0 ns, total: 3 µs\n", "Wall time: 5.96 µs\n" ] } ], "source": [ "for filename in tqdm_notebook(file_names):\n", " if filename in blacklist:\n", " file_names.remove(filename)\n", " else:\n", " # read the Train and Train Dotted images\n", " image_1 = cv2.imread(my_dir + \"/TrainDotted/\" + filename)\n", " image_2 = cv2.imread(my_dir + \"/Train/\" + filename)\n", "\n", " cut = np.copy(image_2)\n", "\n", " # absolute difference between Train and Train Dotted\n", " image_3 = cv2.absdiff(image_1,image_2)\n", "\n", " # mask out blackened regions from Train Dotted\n", " mask_1 = cv2.cvtColor(image_1, cv2.COLOR_BGR2GRAY)\n", " mask_1[mask_1 < 20] = 0\n", " mask_1[mask_1 > 0] = 255\n", "\n", " mask_2 = cv2.cvtColor(image_2, cv2.COLOR_BGR2GRAY)\n", " mask_2[mask_2 < 20] = 0\n", " mask_2[mask_2 > 0] = 255\n", "\n", " image_3 = cv2.bitwise_or(image_3, image_3, mask=mask_1)\n", " image_3 = cv2.bitwise_or(image_3, image_3, mask=mask_2) \n", "\n", " # convert to grayscale to be accepted by skimage.feature.blob_log\n", " image_3 = cv2.cvtColor(image_3, cv2.COLOR_BGR2GRAY)\n", "\n", " # detect blobs\n", " blobs = skimage.feature.blob_log(image_3, min_sigma=3, max_sigma=4, num_sigma=1, threshold=0.02)\n", "\n", " adult_males = []\n", " subadult_males = []\n", " pups = []\n", " juveniles = []\n", " adult_females = [] \n", "\n", " image_circles = image_1\n", "\n", " for blob in blobs:\n", " # get the coordinates for each blob\n", " y, x, s = blob\n", " # get the color of the pixel from Train Dotted in the center of the blob\n", " g,b,r = image_1[int(y)][int(x)][:]\n", "\n", " # decision tree to pick the class of the blob by looking at the color in Train Dotted\n", " if r > 200 and g < 50 and b < 50: # RED\n", " adult_males.append((int(x),int(y)))\n", " cv2.circle(image_circles, (int(x),int(y)), 20, (0,0,255), 10) \n", " elif r > 200 and g > 200 and b < 50: # MAGENTA\n", " subadult_males.append((int(x),int(y))) \n", " cv2.circle(image_circles, (int(x),int(y)), 20, (250,10,250), 10)\n", " elif r < 100 and g < 100 and 150 < b < 200: # GREEN\n", " pups.append((int(x),int(y)))\n", " cv2.circle(image_circles, (int(x),int(y)), 20, (20,180,35), 10)\n", " elif r < 100 and 100 < g and b < 100: # BLUE\n", " juveniles.append((int(x),int(y))) \n", " cv2.circle(image_circles, (int(x),int(y)), 20, (180,60,30), 10)\n", " elif r < 150 and g < 50 and b < 100: # BROWN\n", " adult_females.append((int(x),int(y)))\n", " cv2.circle(image_circles, (int(x),int(y)), 20, (0,42,84), 10) \n", "\n", " cv2.rectangle(cut, (int(x)-112,int(y)-112),(int(x)+112,int(y)+112), 0,-1)\n", "\n", " coordinates_df[\"adult_males\"][filename] = adult_males\n", " coordinates_df[\"subadult_males\"][filename] = subadult_males\n", " coordinates_df[\"adult_females\"][filename] = adult_females\n", " coordinates_df[\"juveniles\"][filename] = juveniles\n", " coordinates_df[\"pups\"][filename] = pups\n", " \n", "%time" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "804b871581404468b7015b1d79b7d30d" } }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n" ] } ], "source": [ "x = []\n", "y = []\n", "\n", "for filename in tqdm_notebook(file_names): \n", " image = cv2.imread(my_dir + \"/Train/\" + filename)\n", " for lion_class in class_names:\n", " try:\n", " for coordinates in coordinates_df[lion_class][filename]:\n", " thumb = image[coordinates[1]-32:coordinates[1]+32,coordinates[0]-32:coordinates[0]+32,:]\n", " if np.shape(thumb) == (64, 64, 3):\n", " x.append(thumb)\n", " y.append(lion_class)\n", " except:\n", " pass" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "for i in range(0,np.shape(cut)[0],224):\n", " for j in range(0,np.shape(cut)[1],224): \n", " thumb = cut[i:i+64,j:j+64,:]\n", " if np.amin(cv2.cvtColor(thumb, cv2.COLOR_BGR2GRAY)) != 0:\n", " if np.shape(thumb) == (64,64,3):\n", " x.append(thumb)\n", " y.append(\"negative\") " ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class_names.append(\"negative\")" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "x = np.array(x)\n", "y = np.array(y)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "encoder = LabelBinarizer()\n", "encoder.fit(y)\n", "y = encoder.transform(y).astype(float)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#my_model = '2017-06-23_model.h5'#what is the model file named?\n", "\n", "my_model = '2017-06-25_model.h5'#what is the model file named?\n", "\n", "model = load_model(my_dir + my_model)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "run number: 1\n", "['0.jpg', '1.jpg', '2.jpg', '3.jpg', '4.jpg']\n" ] } ], "source": [ "test_file_names = os.listdir(my_dir + \"Test/\")\n", "test_file_names = sorted(test_file_names, key=lambda \n", " item: (int(item.partition('.')[0]) if item[0].isdigit() else float('inf'), item)) \n", "\n", "# select a subset of files to run on\n", "\n", "if run_num == 1:\n", " test_file_names = test_file_names[:2000]\n", "elif run_num == 2:\n", " test_file_names = test_file_names[2000:4000]\n", "elif run_num == 3:\n", " test_file_names = test_file_names[4000:6000]\n", "elif run_num == 4: \n", " test_file_names = test_file_names[6000:8000]\n", "elif run_num == 5:\n", " test_file_names = test_file_names[8000:10000]\n", "elif run_num == 6:\n", " test_file_names = test_file_names[10000:12000]\n", "elif run_num == 7:\n", " test_file_names = test_file_names[12000:14000]\n", "elif run_num == 8:\n", " test_file_names = test_file_names[14000:16000]\n", "elif run_num == 9:\n", " test_file_names = test_file_names[16000:]\n", "\n", "\n", "# dataframe to store results in\n", "test_coordinates_df = pd.DataFrame(0,index=test_file_names, columns=class_names)\n", "\n", "print('run number:', run_num)\n", "print(test_file_names[:5])\n", "#print(test_coordinates_df)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "09517be6ec924b95a17cc13d59f29ee3" } }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "completed 0 images at 16:10\n" ] } ], "source": [ "for filename in tqdm_notebook(test_file_names):\n", " file_int = int(filename[:-4])\n", " current_time = datetime.datetime.now().time().isoformat()[:5]\n", " if file_int%500 == 0:\n", " print('completed %d images at %s' % (file_int, current_time))\n", " \n", " img = cv2.imread(my_dir + \"Test/\" + filename)\n", "\n", " x_test = []\n", "\n", " for i in range(0,np.shape(img)[0],64):\n", " for j in range(0,np.shape(img)[1],64): \n", " thumb = img[i:i+64,j:j+64,:] \n", " if np.shape(thumb) == (64,64,3):\n", " x_test.append(thumb)\n", "\n", " x_test = np.array(x_test)\n", "\n", " y_predicted = model.predict(x_test, verbose=0)\n", "\n", " y_predicted = encoder.inverse_transform(y_predicted)\n", "\n", " the_counter = Counter(y_predicted)\n", " \n", " #print(the_counter)\n", " \n", " for key in the_counter:\n", " test_coordinates_df.set_value(index = filename, col = key, value = the_counter[key])\n", " \n", "%time" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " adult_males subadult_males adult_females juveniles pups\n", "0.jpg 6 3 62 28 117\n", "1.jpg 38 10 199 95 534\n", "2.jpg 324 27 821 401 543\n", "3.jpg 69 8 201 157 926\n", "4.jpg 215 36 441 235 711\n", "5.jpg 116 11 250 139 1093\n", "6.jpg 46 5 337 110 1429\n", "7.jpg 15 2 102 85 802\n", "8.jpg 24 4 160 96 538\n", "9.jpg 212 15 1164 303 2154\n", "10.jpg 48 5 190 97 840\n", "11.jpg 13 1 188 227 1780\n", "12.jpg 87 20 498 146 628\n", "13.jpg 57 1 45 29 885\n", "14.jpg 456 23 813 364 1144\n", "15.jpg 69 18 263 109 168\n", "16.jpg 106 10 239 132 517\n", "17.jpg 213 38 997 303 1119\n", "18.jpg 59 11 327 91 863\n", "19.jpg 104 8 198 117 488\n", "20.jpg 50 5 124 79 1258\n", "21.jpg 40 5 150 91 216\n", "22.jpg 53 8 255 113 364\n", "23.jpg 77 11 306 166 580\n", "24.jpg 481 60 509 310 237\n", "25.jpg 51 14 113 91 321\n", "26.jpg 49 5 226 129 859\n", "27.jpg 51 8 295 230 1402\n", "28.jpg 41 1 95 133 1024\n", "29.jpg 75 5 190 96 256\n", "... ... ... ... ... ...\n", "18606.jpg 0 0 0 0 0\n", "18607.jpg 0 0 0 0 0\n", "18608.jpg 0 0 0 0 0\n", "18609.jpg 0 0 0 0 0\n", "18610.jpg 0 0 0 0 0\n", "18611.jpg 0 0 0 0 0\n", "18612.jpg 0 0 0 0 0\n", "18613.jpg 0 0 0 0 0\n", "18614.jpg 0 0 0 0 0\n", "18615.jpg 0 0 0 0 0\n", "18616.jpg 0 0 0 0 0\n", "18617.jpg 0 0 0 0 0\n", "18618.jpg 0 0 0 0 0\n", "18619.jpg 0 0 0 0 0\n", "18620.jpg 0 0 0 0 0\n", "18621.jpg 0 0 0 0 0\n", "18622.jpg 0 0 0 0 0\n", "18623.jpg 0 0 0 0 0\n", "18624.jpg 0 0 0 0 0\n", "18625.jpg 0 0 0 0 0\n", "18626.jpg 0 0 0 0 0\n", "18627.jpg 0 0 0 0 0\n", "18628.jpg 0 0 0 0 0\n", "18629.jpg 0 0 0 0 0\n", "18630.jpg 0 0 0 0 0\n", "18631.jpg 0 0 0 0 0\n", "18632.jpg 0 0 0 0 0\n", "18633.jpg 0 0 0 0 0\n", "18634.jpg 0 0 0 0 0\n", "18635.jpg 0 0 0 0 0\n", "\n", "[18636 rows x 5 columns]\n" ] } ], "source": [ "protect_df = test_coordinates_df\n", "#print(test_coordinates_df)\n", "\n", "del test_coordinates_df['negative']\n", "test_coordinates_df = test_coordinates_df[['adult_males', 'subadult_males', 'adult_females', 'juveniles', 'pups']]\n", "print(test_coordinates_df)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "test_coordinates_df.to_csv(my_dir + datetime.date.today().isoformat() + '_submission_' + str(run_num) + '.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "hide_input": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
mmagnus/rna-pdb-tools
notes/rp18-191116.ipynb
2
17780
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# RNA-Puzzle 18" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Init the library and needed functions." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import rna_tools.Seq as Seq\n", "import rna_tools.BlastPDB\n", "from rna_tools.BlastPDB import BlastPDB\n", "reload(rna_tools.BlastPDB);\n", "reload(Seq);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Create a RNASeqence object." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "rna_seq\n", "GGGUCAGGCCGGCGAAAGUCGCCACAGUUUGGGGAAAGCUGUGCAGCCUGUAACCCCCCCACGAAAGUGGG\n", "\n" ] } ], "source": [ "seq = Seq.RNASequence(\"GGGUCAGGCCGGCGAAAGUCGCCACAGUUUGGGGAAAGCUGUGCAGCCUGUAACCCCCCCACGAAAGUGGG\")\n", "print(seq)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Secondary structure prediction" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ ">rna_seq\n", "GGGUCAGGCCGGCGAAAGUCGCCACAGUUUGGGGAAAGCUGUGCAGCCUGUAACCCCCCCACGAAAGUGGG\n", "(((((((((.(((((...)))))(((((((.....)))))))...)))))..)))).(((((....))))) (-33.10)\n" ] } ], "source": [ "print(seq.predict_ss())" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ ">rna_seq [100]\n", "GGGUCAGGCCGGCGAAAGUCGCCACAGUUUGGGGAAAGCUGUGCAGCCUGUAACCCCCCCACGAAAGUGGG -33.10 1.00\n", "(((((((((.((((.....))))(((((((.....)))))))...)))))..)))).(((((....))))) -32.40\n", "(((((((((.(((((...)))))(((((((.....)))))))...)))))..)))).(((((....))))) -33.10\n", "(((((((((((((....)))).((((((((.....))))))))..)))))..)))).(((((....))))) -32.30\n", "\n" ] } ], "source": [ "print(seq.predict_ss(method='RNAsubopt'))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "GGGUCAGGCCGGCGAAAGUCGCCACAGUUUGGGGAAAGCUGUGCAGCCUGUAACCCCCCCACGAAAGUGGG\n", "(((((((((((((....)))).((((((((.....))))))))..)))))..)))).(((((....)))))\n", "\n" ] } ], "source": [ "print(seq.predict_ss(method='ipknot'))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "ename": "CalledProcessError", "evalue": "Command 'centroid_fold /var/folders/yc/ssr9692s5fzf7k165grnhpk80000gp/T/tmp4ZRI3P.fa' returned non-zero exit status 127", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mCalledProcessError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-11-fa5ebd28a883>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseq\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict_ss\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmethod\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'centroid_fold'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/Users/magnus/work-src/rna-tools/rna_tools/Seq.py\u001b[0m in \u001b[0;36mpredict_ss\u001b[0;34m(self, method, constraints, enforce_constraint, shapefn, explore, verbose)\u001b[0m\n\u001b[1;32m 547\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 548\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"centroid_fold\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 549\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mss_log\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msubprocess\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheck_output\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'centroid_fold '\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mtf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshell\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 550\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m'\\n'\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mss_log\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'\\n'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 551\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;32m/Users/magnus/miniconda2/lib/python2.7/subprocess.pyc\u001b[0m in \u001b[0;36mcheck_output\u001b[0;34m(*popenargs, **kwargs)\u001b[0m\n\u001b[1;32m 221\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcmd\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 222\u001b[0m \u001b[0mcmd\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpopenargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 223\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mCalledProcessError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mretcode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcmd\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 224\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0moutput\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mCalledProcessError\u001b[0m: Command 'centroid_fold /var/folders/yc/ssr9692s5fzf7k165grnhpk80000gp/T/tmp4ZRI3P.fa' returned non-zero exit status 127" ] } ], "source": [ "print(seq.predict_ss(method='centroid_fold'))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# PDB Blast search" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<HTML>\n", "<TITLE>BLAST Search Results</TITLE>\n", "<BODY BGCOLOR=\"#FFFFFF\" LINK=\"#0000FF\" VLINK=\"#660099\" ALINK=\"#660099\">\n", "<PRE>\n", "<b>BLASTN 2.2.18 [Mar-02-2008]</b>\n", "\n", "\n", "<b><a href=\"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed&cmd=Retrieve&list_uids\n", "=9254694&dopt=Citation\">Reference</a>:</b>\n", "Altschul, Stephen F., Thomas L. Madden, Alejandro A. Sch&auml;ffer, \n", "Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), \n", "\"Gapped BLAST and PSI-BLAST: a new generation of protein database search\n", "programs\", Nucleic Acids Res. 25:3389-3402.\n", "\n", "<b>Query=</b> UNKNOWN_SEQUENCE\n", " (71 letters)\n", "\n", "<b>Database:</b> pdb_nucleotide \n", " 19,357 sequences; 3,678,086 total letters\n", "\n", "Searching..................................................done\n", "\n", "<PRE>\n", "\n", "\n", " Score E\n", "Sequences producing significant alignments: (bits) Value\n", "\n", "5TPY:1:A|pdbid|entity|chain(s)|sequence <a href = #16642>105</a> 3e-24\n", "4PQV:1:A|pdbid|entity|chain(s)|sequence <a href = #11431> 34</a> 0.010\n", "</PRE>\n", "<PRE>\n", "><a name = 16642></a>5TPY:1:A|pdbid|entity|chain(s)|sequence\n", " Length = 71\n", "\n", " Score = 105 bits (53), Expect = 3e-24\n", " Identities = 53/53 (100%)\n", " Strand = Plus / Plus\n", "\n", " \n", "Query: 1 gggtcaggccggcgaaagtcgccacagtttggggaaagctgtgcagcctgtaa 53\n", " |||||||||||||||||||||||||||||||||||||||||||||||||||||\n", "Sbjct: 1 gggtcaggccggcgaaagtcgccacagtttggggaaagctgtgcagcctgtaa 53\n", "</PRE>\n", "\n", "\n", "<PRE>\n", "><a name = 11431></a>4PQV:1:A|pdbid|entity|chain(s)|sequence\n", " Length = 68\n", "\n", " Score = 34.2 bits (17), Expect = 0.010\n", " Identities = 23/25 (92%)\n", " Strand = Plus / Plus\n", "\n", " \n", "Query: 1 gggtcaggccggcgaaagtcgccac 25\n", " ||||||| ||||||||||||||||\n", "Sbjct: 1 gggtcagatcggcgaaagtcgccac 25\n", "</PRE>\n", "\n", "\n", "<PRE>\n", " Database: pdb_nucleotide\n", " Posted date: Sep 28, 2018 10:56 PM\n", " Number of letters in database: 3,678,086\n", " Number of sequences in database: 19,357\n", " \n", "Lambda K H\n", " 1.37 0.711 1.31 \n", "\n", "Gapped\n", "Lambda K H\n", " 1.37 0.711 1.31 \n", "\n", "\n", "Matrix: blastn matrix:1 -3\n", "Gap Penalties: Existence: 5, Extension: 2\n", "Number of Sequences: 19357\n", "Number of Hits to DB: 1840\n", "Number of extensions: 12\n", "Number of successful extensions: 7\n", "Number of sequences better than 10.0: 2\n", "Number of HSP's gapped: 7\n", "Number of HSP's successfully gapped: 2\n", "Length of query: 71\n", "Length of database: 3,678,086\n", "Length adjustment: 14\n", "Effective length of query: 57\n", "Effective length of database: 3,407,088\n", "Effective search space: 194204016\n", "Effective search space used: 194204016\n", "X1: 10 (19.8 bits)\n", "X2: 15 (29.7 bits)\n", "X3: 50 (99.1 bits)\n", "S1: 10 (20.3 bits)\n", "S2: 12 (24.3 bits)\n", "</PRE>\n", "</BODY>\n", "</HTML>\n" ] } ], "source": [ "p = BlastPDB(seq.seq)\n", "p.search()\n", "print p.result" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "scrolled": true }, "outputs": [ { "ename": "RfamSearchError", "evalue": "Error: File existence/permissions problem in trying to open CM file /home/magnus/work/db/rfamdb/Rfam.cm.\nCM file /home/magnus/work/db/rfamdb/Rfam.cm not found (nor an .i1m binary of it); also looked in RFAMDB", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mRfamSearchError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-30-fc7568030162>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#seq = Seq.Seq(\"GGGUCAGGCCGGCGAAAGUCGCCACAGUUUGGGGAAAGCUGUGCAGCCUGUAACCCCCCCACGAAAGUGGG\")\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mrs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mRfamSearch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mrs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcmscan\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseq\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/Users/magnus/work-src/rna-pdb-tools/rna_pdb_tools/RfamSearch.pyc\u001b[0m in \u001b[0;36mcmscan\u001b[0;34m(self, seq)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0merr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mo\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstderr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 63\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 64\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mRfamSearchError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 65\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutput\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mof\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 66\u001b[0m \u001b[0;31m# os.chdir(old_pwd)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mRfamSearchError\u001b[0m: Error: File existence/permissions problem in trying to open CM file /home/magnus/work/db/rfamdb/Rfam.cm.\nCM file /home/magnus/work/db/rfamdb/Rfam.cm not found (nor an .i1m binary of it); also looked in RFAMDB" ] } ], "source": [ "import rna_pdb_tools.RfamSearch as rf\n", "#reload(rf)\n", "\n", "#seq = Seq.Seq(\"GGGUCAGGCCGGCGAAAGUCGCCACAGUUUGGGGAAAGCUGUGCAGCCUGUAACCCCCCCACGAAAGUGGG\")\n", "rs = rf.RfamSearch()\n", "print rs.cmscan(seq)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# 3D structure analysis" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from rna_pdb_tools.pdb_parser_lib import RNAStructure\n", "\n", "fn = \"rna_pdb_tools/data/260c8ff6-f24e-4eff-9760-1831407fc770_ALL_thrs5.30A_clust01-000001_AA.pdb\"\n", "\n", "s = RNAStructure(fn)\n", "print s.get_report()\n", "print s.get_info_chains()\n", "print s.get_head()\n", "#print s.view() # image paste here :-)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%bash\n", "cd rna_pdb_tools\n", "./rna-pdb-tools.py --no_hr --get_seq data/260c8ff6-f24e-4eff-9760-1831407fc770_ALL_thrs5.30A_clust01-000001_AA.pdb" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# RNA 3D structure prediction" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# model using SimRNA\n", "#res = SimRNA(ss,seq.get_ss())" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# fake import, should be \n", "res = \"rna_pdb_tools/data/260c8ff6-f24e-4eff-9760-1831407fc770_ALL_thrs5.30A_clust01-000001_AA.pdb\"\n", "# view\n", "view = nglview.show_structure_file(res)\n", "view.add_representation(repr_type='cartoon')\n", "view" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# rna_pdb_tools --get_seq" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%bash\n", "cd ~/rna-bench/opt/xxxcx rna_pdb_tools\n", "./rna-pdb-tools.py --no_hr --get_seq ~/rna-bench/examples/5k7c.pdb" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%bash\n", "cd rna_pdb_tools\n", "./rna-pdb-tools.py --no_hr --get_seq input/5k7c.pdb\n", "./rna-pdb-tools.py --no_hr --get_seq input/tetraloop.pdb\n", "./rna-pdb-tools.py --get_seq input/1xjr.pdb" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "hide_input": false, "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.16" }, "toc": { "colors": { "hover_highlight": "#DAA520", "running_highlight": "#FF0000", "selected_highlight": "#FFD700" }, "moveMenuLeft": true, "nav_menu": { "height": "120px", "width": "252px" }, "navigate_menu": true, "number_sections": true, "sideBar": true, "threshold": 4, "toc_cell": false, "toc_section_display": "block", "toc_window_display": false, "widenNotebook": false }, "widgets": { "state": { "6ceeeae558b24cccb2f19b5ce9e7a1bf": { "views": [ { "cell_index": 17 } ] }, "ba29d5caff4446039cffaf8a7429154f": { "views": [ { "cell_index": 17 } ] } }, "version": "1.2.0" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-3.0
ajhalthor/statistical-learning-with-R
Chapter 2/notebooks/question 8.ipynb
1
1047184
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "**8 (a)** We placed the _College.csv_ file in the _Datasets_ directory. Let us access this file." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<table>\n", "<thead><tr><th scope=col>X</th><th scope=col>Private</th><th scope=col>Apps</th><th scope=col>Accept</th><th scope=col>Enroll</th><th scope=col>Top10perc</th><th scope=col>Top25perc</th><th scope=col>F.Undergrad</th><th scope=col>P.Undergrad</th><th scope=col>Outstate</th><th scope=col>Room.Board</th><th scope=col>Books</th><th scope=col>Personal</th><th scope=col>PhD</th><th scope=col>Terminal</th><th scope=col>S.F.Ratio</th><th scope=col>perc.alumni</th><th scope=col>Expend</th><th scope=col>Grad.Rate</th></tr></thead>\n", "<tbody>\n", "\t<tr><td>Abilene Christian University</td><td>Yes </td><td>1660 </td><td>1232 </td><td>721 </td><td>23 </td><td>52 </td><td>2885 </td><td> 537 </td><td> 7440 </td><td>3300 </td><td>450 </td><td>2200 </td><td>70 </td><td>78 </td><td>18.1 </td><td>12 </td><td> 7041 </td><td>60 </td></tr>\n", "\t<tr><td>Adelphi University </td><td>Yes </td><td>2186 </td><td>1924 </td><td>512 </td><td>16 </td><td>29 </td><td>2683 </td><td>1227 </td><td>12280 </td><td>6450 </td><td>750 </td><td>1500 </td><td>29 </td><td>30 </td><td>12.2 </td><td>16 </td><td>10527 </td><td>56 </td></tr>\n", "\t<tr><td>Adrian College </td><td>Yes </td><td>1428 </td><td>1097 </td><td>336 </td><td>22 </td><td>50 </td><td>1036 </td><td> 99 </td><td>11250 </td><td>3750 </td><td>400 </td><td>1165 </td><td>53 </td><td>66 </td><td>12.9 </td><td>30 </td><td> 8735 </td><td>54 </td></tr>\n", "\t<tr><td>Agnes Scott College </td><td>Yes </td><td> 417 </td><td> 349 </td><td>137 </td><td>60 </td><td>89 </td><td> 510 </td><td> 63 </td><td>12960 </td><td>5450 </td><td>450 </td><td> 875 </td><td>92 </td><td>97 </td><td> 7.7 </td><td>37 </td><td>19016 </td><td>59 </td></tr>\n", "\t<tr><td>Alaska Pacific University </td><td>Yes </td><td> 193 </td><td> 146 </td><td> 55 </td><td>16 </td><td>44 </td><td> 249 </td><td> 869 </td><td> 7560 </td><td>4120 </td><td>800 </td><td>1500 </td><td>76 </td><td>72 </td><td>11.9 </td><td> 2 </td><td>10922 </td><td>15 </td></tr>\n", "\t<tr><td>Albertson College </td><td>Yes </td><td> 587 </td><td> 479 </td><td>158 </td><td>38 </td><td>62 </td><td> 678 </td><td> 41 </td><td>13500 </td><td>3335 </td><td>500 </td><td> 675 </td><td>67 </td><td>73 </td><td> 9.4 </td><td>11 </td><td> 9727 </td><td>55 </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllllllllllll}\n", " X & Private & Apps & Accept & Enroll & Top10perc & Top25perc & F.Undergrad & P.Undergrad & Outstate & Room.Board & Books & Personal & PhD & Terminal & S.F.Ratio & perc.alumni & Expend & Grad.Rate\\\\\n", "\\hline\n", "\t Abilene Christian University & Yes & 1660 & 1232 & 721 & 23 & 52 & 2885 & 537 & 7440 & 3300 & 450 & 2200 & 70 & 78 & 18.1 & 12 & 7041 & 60 \\\\\n", "\t Adelphi University & Yes & 2186 & 1924 & 512 & 16 & 29 & 2683 & 1227 & 12280 & 6450 & 750 & 1500 & 29 & 30 & 12.2 & 16 & 10527 & 56 \\\\\n", "\t Adrian College & Yes & 1428 & 1097 & 336 & 22 & 50 & 1036 & 99 & 11250 & 3750 & 400 & 1165 & 53 & 66 & 12.9 & 30 & 8735 & 54 \\\\\n", "\t Agnes Scott College & Yes & 417 & 349 & 137 & 60 & 89 & 510 & 63 & 12960 & 5450 & 450 & 875 & 92 & 97 & 7.7 & 37 & 19016 & 59 \\\\\n", "\t Alaska Pacific University & Yes & 193 & 146 & 55 & 16 & 44 & 249 & 869 & 7560 & 4120 & 800 & 1500 & 76 & 72 & 11.9 & 2 & 10922 & 15 \\\\\n", "\t Albertson College & Yes & 587 & 479 & 158 & 38 & 62 & 678 & 41 & 13500 & 3335 & 500 & 675 & 67 & 73 & 9.4 & 11 & 9727 & 55 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "X | Private | Apps | Accept | Enroll | Top10perc | Top25perc | F.Undergrad | P.Undergrad | Outstate | Room.Board | Books | Personal | PhD | Terminal | S.F.Ratio | perc.alumni | Expend | Grad.Rate | \n", "|---|---|---|---|---|---|\n", "| Abilene Christian University | Yes | 1660 | 1232 | 721 | 23 | 52 | 2885 | 537 | 7440 | 3300 | 450 | 2200 | 70 | 78 | 18.1 | 12 | 7041 | 60 | \n", "| Adelphi University | Yes | 2186 | 1924 | 512 | 16 | 29 | 2683 | 1227 | 12280 | 6450 | 750 | 1500 | 29 | 30 | 12.2 | 16 | 10527 | 56 | \n", "| Adrian College | Yes | 1428 | 1097 | 336 | 22 | 50 | 1036 | 99 | 11250 | 3750 | 400 | 1165 | 53 | 66 | 12.9 | 30 | 8735 | 54 | \n", "| Agnes Scott College | Yes | 417 | 349 | 137 | 60 | 89 | 510 | 63 | 12960 | 5450 | 450 | 875 | 92 | 97 | 7.7 | 37 | 19016 | 59 | \n", "| Alaska Pacific University | Yes | 193 | 146 | 55 | 16 | 44 | 249 | 869 | 7560 | 4120 | 800 | 1500 | 76 | 72 | 11.9 | 2 | 10922 | 15 | \n", "| Albertson College | Yes | 587 | 479 | 158 | 38 | 62 | 678 | 41 | 13500 | 3335 | 500 | 675 | 67 | 73 | 9.4 | 11 | 9727 | 55 | \n", "\n", "\n" ], "text/plain": [ " X Private Apps Accept Enroll Top10perc Top25perc\n", "1 Abilene Christian University Yes 1660 1232 721 23 52 \n", "2 Adelphi University Yes 2186 1924 512 16 29 \n", "3 Adrian College Yes 1428 1097 336 22 50 \n", "4 Agnes Scott College Yes 417 349 137 60 89 \n", "5 Alaska Pacific University Yes 193 146 55 16 44 \n", "6 Albertson College Yes 587 479 158 38 62 \n", " F.Undergrad P.Undergrad Outstate Room.Board Books Personal PhD Terminal\n", "1 2885 537 7440 3300 450 2200 70 78 \n", "2 2683 1227 12280 6450 750 1500 29 30 \n", "3 1036 99 11250 3750 400 1165 53 66 \n", "4 510 63 12960 5450 450 875 92 97 \n", "5 249 869 7560 4120 800 1500 76 72 \n", "6 678 41 13500 3335 500 675 67 73 \n", " S.F.Ratio perc.alumni Expend Grad.Rate\n", "1 18.1 12 7041 60 \n", "2 12.2 16 10527 56 \n", "3 12.9 30 8735 54 \n", "4 7.7 37 19016 59 \n", "5 11.9 2 10922 15 \n", "6 9.4 11 9727 55 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "college = read.csv(\"Datasets/College.csv\")\n", "head(college) #Use fix(college) in R-Studio to display in internal editor" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I used the _head()_ function to display only the first few tuples of the dataset. In 'R', we would use _fix(college)_ in R-Studio to display in the internal editor. \n", "\n", "**_NOTE_**: All columns may not be visible on print. So lets see the fields in the dataset (for reference)." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>'X'</li>\n", "\t<li>'Private'</li>\n", "\t<li>'Apps'</li>\n", "\t<li>'Accept'</li>\n", "\t<li>'Enroll'</li>\n", "\t<li>'Top10perc'</li>\n", "\t<li>'Top25perc'</li>\n", "\t<li>'F.Undergrad'</li>\n", "\t<li>'P.Undergrad'</li>\n", "\t<li>'Outstate'</li>\n", "\t<li>'Room.Board'</li>\n", "\t<li>'Books'</li>\n", "\t<li>'Personal'</li>\n", "\t<li>'PhD'</li>\n", "\t<li>'Terminal'</li>\n", "\t<li>'S.F.Ratio'</li>\n", "\t<li>'perc.alumni'</li>\n", "\t<li>'Expend'</li>\n", "\t<li>'Grad.Rate'</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 'X'\n", "\\item 'Private'\n", "\\item 'Apps'\n", "\\item 'Accept'\n", "\\item 'Enroll'\n", "\\item 'Top10perc'\n", "\\item 'Top25perc'\n", "\\item 'F.Undergrad'\n", "\\item 'P.Undergrad'\n", "\\item 'Outstate'\n", "\\item 'Room.Board'\n", "\\item 'Books'\n", "\\item 'Personal'\n", "\\item 'PhD'\n", "\\item 'Terminal'\n", "\\item 'S.F.Ratio'\n", "\\item 'perc.alumni'\n", "\\item 'Expend'\n", "\\item 'Grad.Rate'\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 'X'\n", "2. 'Private'\n", "3. 'Apps'\n", "4. 'Accept'\n", "5. 'Enroll'\n", "6. 'Top10perc'\n", "7. 'Top25perc'\n", "8. 'F.Undergrad'\n", "9. 'P.Undergrad'\n", "10. 'Outstate'\n", "11. 'Room.Board'\n", "12. 'Books'\n", "13. 'Personal'\n", "14. 'PhD'\n", "15. 'Terminal'\n", "16. 'S.F.Ratio'\n", "17. 'perc.alumni'\n", "18. 'Expend'\n", "19. 'Grad.Rate'\n", "\n", "\n" ], "text/plain": [ " [1] \"X\" \"Private\" \"Apps\" \"Accept\" \"Enroll\" \n", " [6] \"Top10perc\" \"Top25perc\" \"F.Undergrad\" \"P.Undergrad\" \"Outstate\" \n", "[11] \"Room.Board\" \"Books\" \"Personal\" \"PhD\" \"Terminal\" \n", "[16] \"S.F.Ratio\" \"perc.alumni\" \"Expend\" \"Grad.Rate\" " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "names(college)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**8 (b)**\n", "In the table, we do not want the college name to appear as a part of the data. However, this information may be useful later on. We can store them as row names. Let us now check the current row names of this table." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<ol class=list-inline>\n", "\t<li>'1'</li>\n", "\t<li>'2'</li>\n", "\t<li>'3'</li>\n", "\t<li>'4'</li>\n", "\t<li>'5'</li>\n", "\t<li>'6'</li>\n", "\t<li>'7'</li>\n", "\t<li>'8'</li>\n", "\t<li>'9'</li>\n", "\t<li>'10'</li>\n", "</ol>\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item '1'\n", "\\item '2'\n", "\\item '3'\n", "\\item '4'\n", "\\item '5'\n", "\\item '6'\n", "\\item '7'\n", "\\item '8'\n", "\\item '9'\n", "\\item '10'\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. '1'\n", "2. '2'\n", "3. '3'\n", "4. '4'\n", "5. '5'\n", "6. '6'\n", "7. '7'\n", "8. '8'\n", "9. '9'\n", "10. '10'\n", "\n", "\n" ], "text/plain": [ " [1] \"1\" \"2\" \"3\" \"4\" \"5\" \"6\" \"7\" \"8\" \"9\" \"10\"" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rownames(college)[1:10] #Display the first 10 row names" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_rownames()_ gives us the implicit row names of the table. Notice these numbers are not displayed in the table shown in _8(a)_. Let us change it to the first column enteries. " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table>\n", "<thead><tr><th></th><th scope=col>X</th><th scope=col>Private</th><th scope=col>Apps</th><th scope=col>Accept</th><th scope=col>Enroll</th><th scope=col>Top10perc</th><th scope=col>Top25perc</th><th scope=col>F.Undergrad</th><th scope=col>P.Undergrad</th><th scope=col>Outstate</th><th scope=col>Room.Board</th><th scope=col>Books</th><th scope=col>Personal</th><th scope=col>PhD</th><th scope=col>Terminal</th><th scope=col>S.F.Ratio</th><th scope=col>perc.alumni</th><th scope=col>Expend</th><th scope=col>Grad.Rate</th></tr></thead>\n", "<tbody>\n", "\t<tr><th scope=row>Abilene Christian University</th><td>Abilene Christian University</td><td>Yes </td><td>1660 </td><td>1232 </td><td>721 </td><td>23 </td><td>52 </td><td>2885 </td><td> 537 </td><td> 7440 </td><td>3300 </td><td>450 </td><td>2200 </td><td>70 </td><td>78 </td><td>18.1 </td><td>12 </td><td> 7041 </td><td>60 </td></tr>\n", "\t<tr><th scope=row>Adelphi University</th><td>Adelphi University </td><td>Yes </td><td>2186 </td><td>1924 </td><td>512 </td><td>16 </td><td>29 </td><td>2683 </td><td>1227 </td><td>12280 </td><td>6450 </td><td>750 </td><td>1500 </td><td>29 </td><td>30 </td><td>12.2 </td><td>16 </td><td>10527 </td><td>56 </td></tr>\n", "\t<tr><th scope=row>Adrian College</th><td>Adrian College </td><td>Yes </td><td>1428 </td><td>1097 </td><td>336 </td><td>22 </td><td>50 </td><td>1036 </td><td> 99 </td><td>11250 </td><td>3750 </td><td>400 </td><td>1165 </td><td>53 </td><td>66 </td><td>12.9 </td><td>30 </td><td> 8735 </td><td>54 </td></tr>\n", "\t<tr><th scope=row>Agnes Scott College</th><td>Agnes Scott College </td><td>Yes </td><td> 417 </td><td> 349 </td><td>137 </td><td>60 </td><td>89 </td><td> 510 </td><td> 63 </td><td>12960 </td><td>5450 </td><td>450 </td><td> 875 </td><td>92 </td><td>97 </td><td> 7.7 </td><td>37 </td><td>19016 </td><td>59 </td></tr>\n", "\t<tr><th scope=row>Alaska Pacific University</th><td>Alaska Pacific University </td><td>Yes </td><td> 193 </td><td> 146 </td><td> 55 </td><td>16 </td><td>44 </td><td> 249 </td><td> 869 </td><td> 7560 </td><td>4120 </td><td>800 </td><td>1500 </td><td>76 </td><td>72 </td><td>11.9 </td><td> 2 </td><td>10922 </td><td>15 </td></tr>\n", "\t<tr><th scope=row>Albertson College</th><td>Albertson College </td><td>Yes </td><td> 587 </td><td> 479 </td><td>158 </td><td>38 </td><td>62 </td><td> 678 </td><td> 41 </td><td>13500 </td><td>3335 </td><td>500 </td><td> 675 </td><td>67 </td><td>73 </td><td> 9.4 </td><td>11 </td><td> 9727 </td><td>55 </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllllllllllll}\n", " & X & Private & Apps & Accept & Enroll & Top10perc & Top25perc & F.Undergrad & P.Undergrad & Outstate & Room.Board & Books & Personal & PhD & Terminal & S.F.Ratio & perc.alumni & Expend & Grad.Rate\\\\\n", "\\hline\n", "\tAbilene Christian University & Abilene Christian University & Yes & 1660 & 1232 & 721 & 23 & 52 & 2885 & 537 & 7440 & 3300 & 450 & 2200 & 70 & 78 & 18.1 & 12 & 7041 & 60 \\\\\n", "\tAdelphi University & Adelphi University & Yes & 2186 & 1924 & 512 & 16 & 29 & 2683 & 1227 & 12280 & 6450 & 750 & 1500 & 29 & 30 & 12.2 & 16 & 10527 & 56 \\\\\n", "\tAdrian College & Adrian College & Yes & 1428 & 1097 & 336 & 22 & 50 & 1036 & 99 & 11250 & 3750 & 400 & 1165 & 53 & 66 & 12.9 & 30 & 8735 & 54 \\\\\n", "\tAgnes Scott College & Agnes Scott College & Yes & 417 & 349 & 137 & 60 & 89 & 510 & 63 & 12960 & 5450 & 450 & 875 & 92 & 97 & 7.7 & 37 & 19016 & 59 \\\\\n", "\tAlaska Pacific University & Alaska Pacific University & Yes & 193 & 146 & 55 & 16 & 44 & 249 & 869 & 7560 & 4120 & 800 & 1500 & 76 & 72 & 11.9 & 2 & 10922 & 15 \\\\\n", "\tAlbertson College & Albertson College & Yes & 587 & 479 & 158 & 38 & 62 & 678 & 41 & 13500 & 3335 & 500 & 675 & 67 & 73 & 9.4 & 11 & 9727 & 55 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| <!--/--> | X | Private | Apps | Accept | Enroll | Top10perc | Top25perc | F.Undergrad | P.Undergrad | Outstate | Room.Board | Books | Personal | PhD | Terminal | S.F.Ratio | perc.alumni | Expend | Grad.Rate | \n", "|---|---|---|---|---|---|\n", "| Abilene Christian University | Abilene Christian University | Yes | 1660 | 1232 | 721 | 23 | 52 | 2885 | 537 | 7440 | 3300 | 450 | 2200 | 70 | 78 | 18.1 | 12 | 7041 | 60 | \n", "| Adelphi University | Adelphi University | Yes | 2186 | 1924 | 512 | 16 | 29 | 2683 | 1227 | 12280 | 6450 | 750 | 1500 | 29 | 30 | 12.2 | 16 | 10527 | 56 | \n", "| Adrian College | Adrian College | Yes | 1428 | 1097 | 336 | 22 | 50 | 1036 | 99 | 11250 | 3750 | 400 | 1165 | 53 | 66 | 12.9 | 30 | 8735 | 54 | \n", "| Agnes Scott College | Agnes Scott College | Yes | 417 | 349 | 137 | 60 | 89 | 510 | 63 | 12960 | 5450 | 450 | 875 | 92 | 97 | 7.7 | 37 | 19016 | 59 | \n", "| Alaska Pacific University | Alaska Pacific University | Yes | 193 | 146 | 55 | 16 | 44 | 249 | 869 | 7560 | 4120 | 800 | 1500 | 76 | 72 | 11.9 | 2 | 10922 | 15 | \n", "| Albertson College | Albertson College | Yes | 587 | 479 | 158 | 38 | 62 | 678 | 41 | 13500 | 3335 | 500 | 675 | 67 | 73 | 9.4 | 11 | 9727 | 55 | \n", "\n", "\n" ], "text/plain": [ " X Private Apps Accept\n", "Abilene Christian University Abilene Christian University Yes 1660 1232 \n", "Adelphi University Adelphi University Yes 2186 1924 \n", "Adrian College Adrian College Yes 1428 1097 \n", "Agnes Scott College Agnes Scott College Yes 417 349 \n", "Alaska Pacific University Alaska Pacific University Yes 193 146 \n", "Albertson College Albertson College Yes 587 479 \n", " Enroll Top10perc Top25perc F.Undergrad P.Undergrad\n", "Abilene Christian University 721 23 52 2885 537 \n", "Adelphi University 512 16 29 2683 1227 \n", "Adrian College 336 22 50 1036 99 \n", "Agnes Scott College 137 60 89 510 63 \n", "Alaska Pacific University 55 16 44 249 869 \n", "Albertson College 158 38 62 678 41 \n", " Outstate Room.Board Books Personal PhD Terminal\n", "Abilene Christian University 7440 3300 450 2200 70 78 \n", "Adelphi University 12280 6450 750 1500 29 30 \n", "Adrian College 11250 3750 400 1165 53 66 \n", "Agnes Scott College 12960 5450 450 875 92 97 \n", "Alaska Pacific University 7560 4120 800 1500 76 72 \n", "Albertson College 13500 3335 500 675 67 73 \n", " S.F.Ratio perc.alumni Expend Grad.Rate\n", "Abilene Christian University 18.1 12 7041 60 \n", "Adelphi University 12.2 16 10527 56 \n", "Adrian College 12.9 30 8735 54 \n", "Agnes Scott College 7.7 37 19016 59 \n", "Alaska Pacific University 11.9 2 10922 15 \n", "Albertson College 9.4 11 9727 55 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rownames(college) = college[ , 1]\n", "head(college)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Perfect! If the above table is viewed in RStudio, we would see the column name _row.names_ above the bold college names. We now remove the column **X** from the table." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table>\n", "<thead><tr><th></th><th scope=col>Private</th><th scope=col>Apps</th><th scope=col>Accept</th><th scope=col>Enroll</th><th scope=col>Top10perc</th><th scope=col>Top25perc</th><th scope=col>F.Undergrad</th><th scope=col>P.Undergrad</th><th scope=col>Outstate</th><th scope=col>Room.Board</th><th scope=col>Books</th><th scope=col>Personal</th><th scope=col>PhD</th><th scope=col>Terminal</th><th scope=col>S.F.Ratio</th><th scope=col>perc.alumni</th><th scope=col>Expend</th><th scope=col>Grad.Rate</th></tr></thead>\n", "<tbody>\n", "\t<tr><th scope=row>Abilene Christian University</th><td>Yes </td><td>1660 </td><td>1232 </td><td>721 </td><td>23 </td><td>52 </td><td>2885 </td><td> 537 </td><td> 7440</td><td>3300 </td><td>450 </td><td>2200 </td><td>70 </td><td>78 </td><td>18.1 </td><td>12 </td><td> 7041</td><td>60 </td></tr>\n", "\t<tr><th scope=row>Adelphi University</th><td>Yes </td><td>2186 </td><td>1924 </td><td>512 </td><td>16 </td><td>29 </td><td>2683 </td><td>1227 </td><td>12280</td><td>6450 </td><td>750 </td><td>1500 </td><td>29 </td><td>30 </td><td>12.2 </td><td>16 </td><td>10527</td><td>56 </td></tr>\n", "\t<tr><th scope=row>Adrian College</th><td>Yes </td><td>1428 </td><td>1097 </td><td>336 </td><td>22 </td><td>50 </td><td>1036 </td><td> 99 </td><td>11250</td><td>3750 </td><td>400 </td><td>1165 </td><td>53 </td><td>66 </td><td>12.9 </td><td>30 </td><td> 8735</td><td>54 </td></tr>\n", "\t<tr><th scope=row>Agnes Scott College</th><td>Yes </td><td> 417 </td><td> 349 </td><td>137 </td><td>60 </td><td>89 </td><td> 510 </td><td> 63 </td><td>12960</td><td>5450 </td><td>450 </td><td> 875 </td><td>92 </td><td>97 </td><td> 7.7 </td><td>37 </td><td>19016</td><td>59 </td></tr>\n", "\t<tr><th scope=row>Alaska Pacific University</th><td>Yes </td><td> 193 </td><td> 146 </td><td> 55 </td><td>16 </td><td>44 </td><td> 249 </td><td> 869 </td><td> 7560</td><td>4120 </td><td>800 </td><td>1500 </td><td>76 </td><td>72 </td><td>11.9 </td><td> 2 </td><td>10922</td><td>15 </td></tr>\n", "\t<tr><th scope=row>Albertson College</th><td>Yes </td><td> 587 </td><td> 479 </td><td>158 </td><td>38 </td><td>62 </td><td> 678 </td><td> 41 </td><td>13500</td><td>3335 </td><td>500 </td><td> 675 </td><td>67 </td><td>73 </td><td> 9.4 </td><td>11 </td><td> 9727</td><td>55 </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "\\begin{tabular}{r|llllllllllllllllll}\n", " & Private & Apps & Accept & Enroll & Top10perc & Top25perc & F.Undergrad & P.Undergrad & Outstate & Room.Board & Books & Personal & PhD & Terminal & S.F.Ratio & perc.alumni & Expend & Grad.Rate\\\\\n", "\\hline\n", "\tAbilene Christian University & Yes & 1660 & 1232 & 721 & 23 & 52 & 2885 & 537 & 7440 & 3300 & 450 & 2200 & 70 & 78 & 18.1 & 12 & 7041 & 60 \\\\\n", "\tAdelphi University & Yes & 2186 & 1924 & 512 & 16 & 29 & 2683 & 1227 & 12280 & 6450 & 750 & 1500 & 29 & 30 & 12.2 & 16 & 10527 & 56 \\\\\n", "\tAdrian College & Yes & 1428 & 1097 & 336 & 22 & 50 & 1036 & 99 & 11250 & 3750 & 400 & 1165 & 53 & 66 & 12.9 & 30 & 8735 & 54 \\\\\n", "\tAgnes Scott College & Yes & 417 & 349 & 137 & 60 & 89 & 510 & 63 & 12960 & 5450 & 450 & 875 & 92 & 97 & 7.7 & 37 & 19016 & 59 \\\\\n", "\tAlaska Pacific University & Yes & 193 & 146 & 55 & 16 & 44 & 249 & 869 & 7560 & 4120 & 800 & 1500 & 76 & 72 & 11.9 & 2 & 10922 & 15 \\\\\n", "\tAlbertson College & Yes & 587 & 479 & 158 & 38 & 62 & 678 & 41 & 13500 & 3335 & 500 & 675 & 67 & 73 & 9.4 & 11 & 9727 & 55 \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| <!--/--> | Private | Apps | Accept | Enroll | Top10perc | Top25perc | F.Undergrad | P.Undergrad | Outstate | Room.Board | Books | Personal | PhD | Terminal | S.F.Ratio | perc.alumni | Expend | Grad.Rate | \n", "|---|---|---|---|---|---|\n", "| Abilene Christian University | Yes | 1660 | 1232 | 721 | 23 | 52 | 2885 | 537 | 7440 | 3300 | 450 | 2200 | 70 | 78 | 18.1 | 12 | 7041 | 60 | \n", "| Adelphi University | Yes | 2186 | 1924 | 512 | 16 | 29 | 2683 | 1227 | 12280 | 6450 | 750 | 1500 | 29 | 30 | 12.2 | 16 | 10527 | 56 | \n", "| Adrian College | Yes | 1428 | 1097 | 336 | 22 | 50 | 1036 | 99 | 11250 | 3750 | 400 | 1165 | 53 | 66 | 12.9 | 30 | 8735 | 54 | \n", "| Agnes Scott College | Yes | 417 | 349 | 137 | 60 | 89 | 510 | 63 | 12960 | 5450 | 450 | 875 | 92 | 97 | 7.7 | 37 | 19016 | 59 | \n", "| Alaska Pacific University | Yes | 193 | 146 | 55 | 16 | 44 | 249 | 869 | 7560 | 4120 | 800 | 1500 | 76 | 72 | 11.9 | 2 | 10922 | 15 | \n", "| Albertson College | Yes | 587 | 479 | 158 | 38 | 62 | 678 | 41 | 13500 | 3335 | 500 | 675 | 67 | 73 | 9.4 | 11 | 9727 | 55 | \n", "\n", "\n" ], "text/plain": [ " Private Apps Accept Enroll Top10perc Top25perc\n", "Abilene Christian University Yes 1660 1232 721 23 52 \n", "Adelphi University Yes 2186 1924 512 16 29 \n", "Adrian College Yes 1428 1097 336 22 50 \n", "Agnes Scott College Yes 417 349 137 60 89 \n", "Alaska Pacific University Yes 193 146 55 16 44 \n", "Albertson College Yes 587 479 158 38 62 \n", " F.Undergrad P.Undergrad Outstate Room.Board Books\n", "Abilene Christian University 2885 537 7440 3300 450 \n", "Adelphi University 2683 1227 12280 6450 750 \n", "Adrian College 1036 99 11250 3750 400 \n", "Agnes Scott College 510 63 12960 5450 450 \n", "Alaska Pacific University 249 869 7560 4120 800 \n", "Albertson College 678 41 13500 3335 500 \n", " Personal PhD Terminal S.F.Ratio perc.alumni Expend\n", "Abilene Christian University 2200 70 78 18.1 12 7041 \n", "Adelphi University 1500 29 30 12.2 16 10527 \n", "Adrian College 1165 53 66 12.9 30 8735 \n", "Agnes Scott College 875 92 97 7.7 37 19016 \n", "Alaska Pacific University 1500 76 72 11.9 2 10922 \n", "Albertson College 675 67 73 9.4 11 9727 \n", " Grad.Rate\n", "Abilene Christian University 60 \n", "Adelphi University 56 \n", "Adrian College 54 \n", "Agnes Scott College 59 \n", "Alaska Pacific University 15 \n", "Albertson College 55 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "college = college[ , -1] #Exclude first column\n", "head(college)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note the first column in bold, although not explicitly mentioned, is called _row.names_. This is not a data column but rather the name that R is giving to each row." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**8 (c) i.** Let us now produce a numerical summary of the dataset." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " Private Apps Accept Enroll Top10perc \n", " No :212 Min. : 81 Min. : 72 Min. : 35 Min. : 1.00 \n", " Yes:565 1st Qu.: 776 1st Qu.: 604 1st Qu.: 242 1st Qu.:15.00 \n", " Median : 1558 Median : 1110 Median : 434 Median :23.00 \n", " Mean : 3002 Mean : 2019 Mean : 780 Mean :27.56 \n", " 3rd Qu.: 3624 3rd Qu.: 2424 3rd Qu.: 902 3rd Qu.:35.00 \n", " Max. :48094 Max. :26330 Max. :6392 Max. :96.00 \n", " Top25perc F.Undergrad P.Undergrad Outstate \n", " Min. : 9.0 Min. : 139 Min. : 1.0 Min. : 2340 \n", " 1st Qu.: 41.0 1st Qu.: 992 1st Qu.: 95.0 1st Qu.: 7320 \n", " Median : 54.0 Median : 1707 Median : 353.0 Median : 9990 \n", " Mean : 55.8 Mean : 3700 Mean : 855.3 Mean :10441 \n", " 3rd Qu.: 69.0 3rd Qu.: 4005 3rd Qu.: 967.0 3rd Qu.:12925 \n", " Max. :100.0 Max. :31643 Max. :21836.0 Max. :21700 \n", " Room.Board Books Personal PhD \n", " Min. :1780 Min. : 96.0 Min. : 250 Min. : 8.00 \n", " 1st Qu.:3597 1st Qu.: 470.0 1st Qu.: 850 1st Qu.: 62.00 \n", " Median :4200 Median : 500.0 Median :1200 Median : 75.00 \n", " Mean :4358 Mean : 549.4 Mean :1341 Mean : 72.66 \n", " 3rd Qu.:5050 3rd Qu.: 600.0 3rd Qu.:1700 3rd Qu.: 85.00 \n", " Max. :8124 Max. :2340.0 Max. :6800 Max. :103.00 \n", " Terminal S.F.Ratio perc.alumni Expend \n", " Min. : 24.0 Min. : 2.50 Min. : 0.00 Min. : 3186 \n", " 1st Qu.: 71.0 1st Qu.:11.50 1st Qu.:13.00 1st Qu.: 6751 \n", " Median : 82.0 Median :13.60 Median :21.00 Median : 8377 \n", " Mean : 79.7 Mean :14.09 Mean :22.74 Mean : 9660 \n", " 3rd Qu.: 92.0 3rd Qu.:16.50 3rd Qu.:31.00 3rd Qu.:10830 \n", " Max. :100.0 Max. :39.80 Max. :64.00 Max. :56233 \n", " Grad.Rate \n", " Min. : 10.00 \n", " 1st Qu.: 53.00 \n", " Median : 65.00 \n", " Mean : 65.46 \n", " 3rd Qu.: 78.00 \n", " Max. :118.00 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "summary(college)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the description above, it is easy to observe the **qualitative**(classification) and **quantitative**(regression) variables. The first column _Private_ has only 2 values _Yes_ or _No_ and is hence categorical. Every other field is quantitative with a minimum value, maximum, mean, 1st Quartile, median and 3rd Quartile value." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**8 (c) ii.** We now display the relationship between the first 10 columns using a scatterplot matrix." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7J0HmGxFuXZ/JQsiSSRJUFRETEQFJCiKigkxoCIelatec9ZruGLEdFHM\nAROiAiYUVJKAYgBBiRIknEOQICBIEgT1X+uc/nTTdvf07Alneub9nmdN1a60q96qXWF3z8z/\n+3+xKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApE\ngSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEo\nEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAF\nokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJA\nFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSI\nAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJR\nIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAK\nRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSB\nKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQ\nBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWi\nQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAU\niAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgC\nUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEg\nCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApE\ngSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEo\nEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAF\nokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIAoMrcASQ6dM\nwihwZwXuwuXW8GS4Ff4E02Xec3m4snHDFfA/DTaFy+EWKBurruuR8DlwT5gP/4SyQeVWmrjj\nU2AqNV2KqrwKzoTbG9Vq28djjZ3GLeKdZgW24H5PBJ/3m7ruPai/u5JO+HJzStgZLoW/dpU2\nnfXounUuGwpM5XP8LO7j+PtL436PwO/4fGCDP+CvtWXQuBg0P05lO6jenLPlaLH7CftpPvwd\nysbSum0fVvljuduQYEvYuIvbuL4OtLZ1GKtti0rPzygQBVop8ANyXQhfBw9Iu8N0mIuOG183\nwWVr4LkWfgy/hothXSgbVNc9SHQzfAk85B0MZWOVW+niDq/AVGv6fqryT7hXo0oT6eNBY6dx\ni3inUYGludfZcCJ8Ei6BfaBsUH9Xmslyj6Wg38Cn4Arw3mXTWY+6Z9zeCkzVc7wbt/sH7NB1\n29O5PgdOarBMJ82gcTHW/DhV7ehUbU4529Haa+CgDr5w3R7KBmk9kT6s8sdy9yVBc/ycwbVr\n2+6djBOpw6C2dYqPEwWiQBsF/KRmPvi2XnsqXAZLejGFdjfKdmP0R2gekL7B9cdA882IhzY3\nTtqguq5IvAcrPwnTvL4anDi1QeUuSpGf41VgKjXdlspcBM0D0kT6eNDYGW+7k37yFJhHUSc3\nitsIv2/wV4ax+ruRbcLeR1KC80VtfN24nNUpdTrr0bllnD4KTMVz7DcYPgv2v58a7gBljoe/\nwXoV0HDHGheD5sepaEejanPO+yNa/OZGq9+B/4ed60FaT6QPG7cbt9c9zvFwV5hIHQa1jaJj\nUSAKTESBj5J5v0YBflXTDYpfb5tK+xyFvxeOhuYByTfIbo7LnoTHT7e0QXXdini/ntO0A7j4\nYCdgULnNPPEPr8BUaeqC4VdYdoLmAWkifTxo7Azf4qScbAUeRoFStgoev3ZiX4/V35VnMtwd\nKeRGWKFT2J64fnqtTWc9Ft0xP/spMBXPsf3rYWYd8JOHHaDMddCDk+ui/tWgbKxxMWh+nIp2\nVL3movskGr1qo+Evwq/+2iCtJ9KHi0of/89HkeXPsG4n60TqMKht46/ZLM5x11nctjRt6hTY\ngKL9OknZ3/FcA2tWwBS4T6bMzeA9XWUvxfXa0KzPVVxXXQbVtTvOol3szDtWuaaNjU+BqdT0\nU1TlAPhtV5Um0sfdeadjnHdVP5c9FDiNMCnzZYkbm1Ohu89MU8+0/sm0n1PYZ+BM+C68D14E\n2nTWY9Ed87OfAt19MRnPsV99eh74zYlu8/DuXOenid8DX8K9DrTuuhhW43Os+bE772S0w/vP\nVTuchl/babxf230FfLtzPUjr7jizDNuHneLH7XyWHB8C5zltInXozptxtEjT//h51/8ISUAU\nGFsB34j5eztN83qFZsAk+u9FWZ+E54O/f9Q0v1bjOL6pEXgL/mXBr/wNqmuvOPPajrHKJUls\nnApMlabPoh4bwj496jORPu6VdyrHeY/qJ2gMBfYi3s3nHuDXmnr1WT3TRE+qrU9pO8AZcDp4\nn8eCNp31WHTH/OynQK++mMrn2E+PvggPBTejLwbf2nvdqy41PseaH3vlncp2UN05Ye4VDoY7\n4J2dFg/SulfcsH3YKX5cjt+OuS/s38g1kTr0yptx1BC3vDkglRJxx6OAn9Cs1JXB60u7wibr\n8tMU5AbkQbAbrA6+pfN3h3wD5BuQZn30+4mSE96guvaLu4R8Y5VLktg4FZgKTf16lV+9/AE8\nDZ4M2pPAryNMpI/75Z2qcW69Y8MrsDdJPwCPgZNA69dnPtOTba+iQP+wy1PhPfBoeAO4EZ7O\nenC72AAF+vXFVD3Hh1GXN4EHdr/ueyD4KdI20K8uw6w5/fJOVTuo7qw39wrHwN3BecSDjjZI\n635xw/ThotLH9/O/SH4wuH6WTaQO/fJmHJW6HfeuXde5jALDKLCARL6xL7sHHg8t8ytgkt2/\nUN7y8N8d7o3rW5UngocjH+z7QZn+qssC/P3qapybaD9eLzPvAhir3Eofd3gFpkJTF7bfwWPB\n8fFi0ObBA2ABtO1j8/YbO0TFFqMCH+fee4LzwG8b9ViAv19/N5JNincTSvlVoyQ3wc5FD4EF\nMF314FaxAQosIG46n2P/WMfTG/VZCr/fSjgTFkC/cTHW/Gje6WwHt5vV5p7leLgMdoGboGwB\nnn5aG9e2D8k6LnOP/gz4aleuBVy3rYN5+7WNqFgUiAITUWBjMl8P24MfT38CjoTpsqO50asa\nN/tf/D+DtcCvNLhh3gu0serq12PeDS5iTpLXwL1BG1TuohT5OV4FplpTv6biW1u/llnWto/H\nGjtVftzpVWAet/szbAk+q8Vy+LVB/b0oxeT8/B+K+T2s2inu2bi3wX0719NVj87t4vRRYKqf\nY3//ZIfGvf1E0bA1YEnw06Q/Qr2QHjQuBs2PU90Oqjin7Ee09ihYD2oOWaejwFhat+3DTvFD\nOx5kXM/8pKvb2tZhrLZ13yfXUSAKjFOB15P+Vrgafgnrw3RZ9wHJTxEOhxvBA87n4S5QNqiu\nW5DoYjDfAvDtX9lY5Va6uMMrMNWa9jogTaSPB42d4VudlJOpwDkU5qahGzem2qD+XpRicn76\nUsXfNbkZLgPnwmdC2XTVo+4Xt78CU/kcdx+QXHs+DAvArzNdBI+EskHjYqz5cSrbUfWbC+4m\nNLJ7/vDar0WWDdJ6In1Y5Q/jPoVEzi29bCJ1GNS2XvdKWBSIAuNUwK+m+Qt/M8VWoSJ+otXL\nxqrrmr0ydcIGlTsgW6IGKLA4NG3bx2ONnQHNTNRiVGBQf09mtfzkyjfQzZcyzfKnqx7Ne8b/\nnwpM93PsJ0bNT7K7azRoXAyaH6e7Hd31nkvXY2ndtg8nU8O2dRirbZNZx5QVBaJAFIgCUSAK\nRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSB\nKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQ\nBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAUiAJRIApEgSgQBaJAFIgCUSAKRIEoEAWi\nwDgUePCQaf2nZA8YMu0apLvnkGkfSLolh0jrP+3zv2cPYyuTaJ1hEiZNawX8B8OD/sHdPYhf\nd0DpdyPuvgPiHW8bDYh3PDxoQLxRY43th4yRP9HTq8Dy3O4+47jlePrvfpTb759Qd99yVQLW\n7g7sc70E4WONwz5ZE9xCAbX22R/G/Me/w64Zlnd32EDPkOYa4z+EHdaGXeuGLS/pxq+A/TXo\n2V6B+EFjYKx90DDr0ljz1ljr1sbU0XknFgWiwBQq4H+Q/wc8dIh7PIM0lwyRziRfg88MmfbP\npHvCEGm3Js0dQ6QzyT5w6JBpk6ydAp8g2zcGZH0ncUcNiH8ZcacOiN+NuMsGxG9H3G0D4t2M\n/BNW7JPGA57xgw5pfbImeIoUeCXlnjxk2W5i7L/Vh0x/NunmDZn2o6T79pBpdyTdLUOmTbKJ\nK/A3ith2yGK2It3fYdjN5BtI+4shyzbZ9+GD40h/NWmfNI70STr5CnyYIr87oNjXEferAfHP\nJm7+gPix1iVf1Dhv9TtYe0Az3hcB/ewGInbqF5nwfysw7JuUf+eILwr8WwEXjrvAMJ/gLEU6\nGcYsb5gyLWvYtKar+ppvkA1b5qAyEjdYgbE0ngnxtsB69LIKL7dXmoRNrwJjjZlmbarfym3G\n9fI7dw2bdrz1GLbcXvVK2PgUGO865B7JNW4YG0+/W95Upx+mzkkzPgXG6rNh4gftg4bJb41N\n18sqvNx+aQbVoVeeORmWA9Kc7PY0OgpEgSgQBaJAFIgCUSAKRIFeCuSA1EuVhEWBKBAFokAU\niAJRIApEgSgwJxXIAWlOdnsaHQWiQBSIAlEgCkSBKBAFokAvBXJA6qVKwqJAFIgCUSAKRIEo\nEAWiQBSYkwrkgDQnuz2NjgJRIApEgSgQBaJAFIgCUaCXAoP+0kWv9HMpbHkauwvM1kOkf577\nCPBPPraxnchU/w/gjfj/NEYh9yfe/xOx3xjpjN4Mbodh0i5Duv8C6zPI1upEfnxQok7cNrjq\n09b8f08Pb5t5BPJdRx2PbFlP/wzpE2ETuBf062P/xK591i/e/wXh/1HqF38/4gaNN/8HiX+d\nql9+/5eN9gHo9efA77YwdlFbHt7x6zhufgI3etHCHkeefn/CtUVxMy7LadTo3Ja18k+vD/qX\nAo4Z56R+fdq87T06F+/BvbkZ0cfvn3XfHcb6HyNm90/1Dhp7pim7Nx7XGMu+Fo6GNub9/HcH\ns3m9+jHtu6mNOOTZGVbu5H0l7tM6/kGO84u2L/ink8cy1631YJjxZ1n+KeZBc5xpmub/4doe\nev0/rlMJP6+ZeBz+jUnrfDpb7RoadkzLxvlvHh4P9Vyp0wbQr483JW7dAfHuDZx7+uUfa12q\nMfw+yvgrdNvSnYA349ruXuZfsNsRrIfr1Y9gmDmQZHPLhv3zlXNLlUWtfRbOt2Csjf+oauM/\nYn0JfLlFA/xz2XfAMIvGeIrvLs9rJyYf4n42Vnwz37BpfS48ONZk1CxjGP8lJHKim4jZZjX2\nJYaHRSc+N+p/ASc4Jzfj3Yj7vzqMd9Pu/1Txf31MlXlvDw++QPBe47XnkuHA8WYaIr162W81\npzl29DfHjv1veI2zuiZooVW4F8ZpzfyLQv790zRXd6XxuXoRHADjterjZj3GW8ZUprdepe+g\n+zTT6RfHqZsNDwBuONqYC/ljwPJ8Luwb56LqK7wjbWq7DLR5fvck31dhoqa2zjc+59an+k+t\n1bnmff2GOSf12qgRPNAsv+YQ22s/1ksHx0q3rU7A8+Gb3RFDXFuuG0Db0taq/bq9TD2qfN16\nTiqsV55h0jTzeQ/n/1ubgfh9ro6Ep3eFD3t5FAm3g+s7GZbDXQGqfp3gkXL+TG0dx/a9Lw8c\nb66T47UXkeEL4Dyvue72OqAujJyBP5pjsVk9+9pn2bX8OXAIxKLA0Ar4Ru+KoVOPXsLzqfJe\nLavt5sQHb7y4uJjHiUt/LbaG1XX32/PvEedBdTptH252xARueB15x6tNaVD5nMBcoDyEqM0x\nHdewB4HproKmfZyLXzYDpsC/GWV6bxfQNrYHmWocVFvH65q/WYZ+F3ntaKi4hy4MWfTDQ5lj\n/jeNsJXwu9nw/raraY6B3zUDhvTPJ928IdN2J3PhbWrRq50V3x3XL7y0ML47T1033UrXq7xK\n14xzfDavTXNl416Xd/yfxD0DfgZtzWfSDbL3+CG46XXT43XVu1cdm2Hln+48verXXRfTtN18\nzWvoUP0xyK17N9OUJu/t6On8bJiHIP0eUE8H85wIP4UbwcPNeO04Mny2K9OGXFv2pl3hXl4K\nzh1tzLmq2c6x/M0xtRF5HWfnwEHwXei2kwn4SFegc4/3uX9X+FRcfoxCD51Awfaj813ZVnis\nuzqUVjU26no63UH3bsY1/R4YtW3AurpnaWN7kcl1o+xleDzQV/vrnuVW+HS53rffvbvjvL4A\nmuY+w7H7xD48jvA2zzfZRt98IxGLAtOlQL2R8kF1wa0Hz8lEc7Pqm5+mncfFms2AWexXn9Ji\n6Y7fCczwn3dcP9VSDzX0az+lKd6FX7GYC1o122y7tTUWOf/vtI6r49gpUxcXh0pnuNp6mNXO\nXeT866d5m2n/FTENnhoDtrPaWmHldsf1C7e6g+KMr7J0K225FWe6smbc7Z3ACvPSQ1PlW7YT\nf1/cK6CZrhM1tGPe5cGNm/3j2+Ey47ynVm7TX2FjucPmsZwqa5g8laY7X4XrTqcNqsd9qIh6\nlqZ1CDqVsHuAc8+fwPnbw4d9Ml7z2ep+5i4izM3ndDx3tq2XVZsrzjnWtvrizvo6j3Rbr7Y4\nPrXpaMuiO7X/2a3FQ3sU1RzrPaKnNGjQvZtxTf+6U1Qj+7OpV92z3Cm6bd9ivW+/e/eKc1/R\ntBW5eA18ewAPaGaYS/4ckOZSb09dW5sTRq+7NOP1+zanPvJuxrnQbtEowDS7gAvzKFuzjd3t\nqDjd8pvmNtgA7gVuGnyTpesB8kzQFkAzz9O4HnWtaEJfK410nfyb1x6MnPx3b8Q9FX+Zuvg2\n0TfgZb6pdsFzk692TfPaMheXNdumX6uFsFec8b3CB+XpFTfoPpbfncdDStXPvJpfh6q6qK15\nvg8PhYmY65VfMXL+sG//CFrVadHVv+9ddegOb143/ZW+2Z5uf10305a/WVbTX/HlGqe/rBle\nYdPl1r2b7rmdm6u34R4OPPQ+G/zU2gPSQ8ADkoeaG2C85vNoHzbtiVzYt2c0A6fI3z1mvI1t\nNdz2lWvb7g1q8mSw3t1mWK/5w7H/++7EM/DattaLDKt3IqiF1hwXva4rTLes8tZ1W7fubf5+\nZVZ409V/TNubjpHPvnbce49uxsg6dHSV253BcK07vnld/nIdy/WJl/2sv2nGfxbce/XiHoSf\nDXPSnIxiUaCtAj6EZU1/hTXdZrwPqtfNA7oL78/hCPgo+NbuheABwetRsr9SWSeWpjXb3wzX\n3x3ntfn9xMMJzE3hOnAKvAB2Am0teB+Y7pngAeCRMArW3ebx1tn8auMYcjw9C3YH5zTjDoev\nwEPhD/Bg8G23m529wDfDb4RDwAVgf9gEfPPrZmdn2BZmkrXRbFCefnH9wuu5bWriZqHbPDSV\n3RPPHfBeWB0msvm1Xr4w+Q34IsVPkpp16ldvkvV8xnqFG1ZW5ZXbHV7XTbfSltuMK/+guErT\n1p1o2eZ/d+fmalu2DJ77wn3AT5RWhXXAZ66NOR5OAuf7g2F9eAN8Ai6DqbBhtDGNc4qu84tz\nrjosB+vBrtBt7yLArzb/EL4H94fXwofgWhgFez6VdJ70peTrwRd09nnT1KRpzeum3zTd1818\n4/VXWeV256/wco33cDoPXgSTaYdR2G/B+afbmvfvjmtz3au8ZljTb/nd13VP+1RTk7Xh0A4P\nwHWsx/ooEHH6CJPgaVXAN1ZuTp8H+4KTtYv0pfAIqDfFeEfC3MC1NRdlN366Tnguzn4y8q3O\n9QdxneQeA24ongQfAPNsA2fCTDfrOhmmNm5A1EmN6nD0OvxPAd0ngPrcDmr1e9gbXgD7wR7g\nWHs17Az7gGV5OHIhXBx23eK46RTd075ZAjwoXQHdbzAJGto8aF0CvjT5C9Rz4rMSW6THRHSo\n+cYy9NtXN3Vcr9VfzX0+fKnwZPgOtLFzyLQ13Arvh13hbeDmfHGb40ncH+k6x8wH1yLHX7ed\nSoBzr+PcucY5x7nnnTAK5txou94CrwEPeb7MOAtGzRyvb4IdwLncNWEyzfHwaPgq6J/p5hqp\nXQVrg+uaz6/a7Ayj0AaqGZtpCuxOhVzQZ6udT8P2atm42oi6KMxGc/I4YgIN8w3NxyaQfyZn\n3YzKuVlaoWUl9yCfB9/Zam6k5rVsnF9zUdutWuaf6dk+QgUPn0AlzWsZs9Hsc/veMdDG5pHJ\nsTdbzTnDuaONOVeprXPXbDTXGtectuZa55o3G809in3f9qDkHsm90mw1X3r4ojDWQ4G79ghL\nUBSIAlEgCkSBKBAFokAUiAJRYE4qkAPSnOz2NDoKRIEoEAWiQBSIAlEgCkSBXgrkgNRLlYRF\ngSgQBaJAFIgCUSAKRIEoMCcVyAFpTnZ7Gh0FokAUiAJRIApEgSgQBaJALwXa/uJar7ISFgWi\nQBSIAlEgCkSBKBAFosBoKOBfuvMvMPYy/8DFnP1Ld/kEqdeQSFgUiAJRIApEgSgQBaJAFJi9\nCngGeBX41+x6cTvhm8CctHyCNCe7PY2OAlEgCkSBKBAFokAUmMMK+OmQ//fKf9Dcyzw0+b8D\n56TlgDQnuz2NjgJRIApEgSgQBaJAFJjjCvj/Pn8xxzXo2fx8xa6nLAmMAlEgCkSBKBAFokAU\niAJRYEgFliLdrp20/m7Ti+Bg+AI8DUbKckAaqe5KZaNAFIgCUSAKRIEoEAWiwIxSwG+knQWv\n7tRqP9z/g5vBPwKxP/wvjIzlK3Yj01WpaBSIAlEgCkSBKBAFokAUmHEKPIYaXQU7wrLw37AD\n/BK0D8FvYB/wjz/MeMsnSDO+i1LBKBAFokAUiAJRIApEgSgwYxVYn5qd0amdZ4vb4LTOtc4f\n4CZYxYtRsByQRqGXUscoEAWiQBSIAlEgCkSBKDAzFTiOaj0Tngq3wLfhHbA8eNZ4PdwIfso0\nEpYD0kh0UyoZBaJAFIgCUSAKRIEoEAVmpAJ+QvRK+BT8ETaEt8CVcD28HJ4DI2P5HaSR6apU\nNApEgSgQBaJAFIgCUSAKzEgF/NToB7A9rAs/hj/DfPgp/B1GxnJAGpmuSkWjQBSIAlEgCkSB\nKBAFosCkKOCf4vbPcm/SpzT/mMJL4JI+8b2C/0bg0T0iNibsefD2HnEzMigHpBnZLalUFIgC\nUSAKRIEoEAWiQBSYUgX8R7H1l+a6b3QHAX/pDmx5fS/yPR5yQGop4KhnexENeHCnEZ6iL4Rv\ngb+Y1jRP0g+DbzYDh/AvR5q7w5+GSJskUSAKRIEoEAWiQBSIAlGglwL/JPBEmI7/T+Qfcdis\nVyVmalj+SMPk9syTKe52+BWcDn4P8zvQbZ7K/9odOMT1J0mz+RDpkiQKRIEoEAWiQBSIAlEg\nCkSBFgrkK3YtRBsji4ejQztpdP14cml4PviLatvCd8GDlAcoD0q/Ac0D1nngXwPxzyVuBeb/\nMvinEjcF+8zDl38lZAt4AviLcedALApEgSgQBaJAFIgCUSAKRIEJKJBPkCYg3hhZPdC8EDww\n+XW7V8ErwD93uAF4APon7A2affExuBpeB7uDByzL+QZcC8adDTeAf1/eMv14dF+wvFgUiAJR\nIApEgSgQBaJAFIgCE1AgB6QJiNcn6/6EXwYeZJ4O/nOssn3wfKIucE+A+8Dq8Gg4Ba6Db8LL\n4Ba4HNYDD0j+g62zwN9p8u/Jfw/8s4l+je+5EIsCUSAKRIEoEAWiQBSIAtOpgC/s/f34sZjO\nOk3oXvmK3YTk65l5L0LrK3bdCbr/g7CfIH0dng3+btFXQPMvfbwZjgcPRN0HWf9Yw73hYWAZ\nWr+/QrIoNj+jQBSIAlEgCkSBKBAFosDkK/BFitwSdoQ9wd+1H2nLAWnxd98BVOEQWBH8Sp72\ncngRnAS7wBKg+XtL+v29JT99Ogr8Cp+/1/QYiEWBKBAFokAUiAJRIApEgelU4FZuNg/8tQ8P\nSh+EkbYckBZ/911KFfydomPhH53qfB7Xv1hnnF+t0+4GJ8Nnwa/hvRveBfahv6fkoSoWBaJA\nFIgCUSAKRIEoEAWmWwF/5WMe+OslI285IE1uF+46oDi/Dld2OB4p27k8Hde/WncgLAU3d8J0\nPgd+Dc8/+uBX6/x0ycNRMw2XsSgQBaJAFIgCUSAKRIEoMFCBTYn1Vzp6mV+T+wLc1CuyT9jv\nCZeRtxyQZm4XegiSbrutKyCHoy5BchkFokAUiAJRIApEgSgwUIG7ELsh7NYnlQek78N4Dkh9\nihq94ByQRq/PUuMoEAWiQBSIAlEgCkSBKDARBfwmkr8D/5qJFDJb83b/dbTZ2s60KwpEgSgQ\nBaJAFIgCUSAKRIEoMKYCOSCNKVESRIEoEAWiQBSIAlEgCkSBKDBXFMgBaa70dNoZBaJAFIgC\nUSAKRIEoEAWiwJgK5IA0pkRJEAWiQBSIAlEgCkSBKBAFosBcUSAHpLnS02lnFIgCUSAKRIEo\nEAWiQBSIAmMqkAPSmBIlQRSIAlEgCkSBKBAFokAUiAJzRYEckOZKT6edUSAKRIEoEAWiQBSI\nAlEgCoypQP4P0pgSJUEUiAJRIApEgSgQBaJAFJh1CqxGix7Wp1W3E/77PnGzPjgHpFnfxWlg\nFIgCUSAKRIEoEAWiQBS4kwJ+i+y5He4U0bh4CP4zG9dzxpsD0pzp6jQ0CkSBKBAFokAUiAJR\nIAosVOAf/PwivLWPHn8n/KY+cbM+OAekWd/FaWAUiAJRIApEgSgQBaJAFPgPBf5GyF/+I7R9\nwHZkfSKsCcvDpbAAvtfx44yG5Y80jEY/pZZRIApEgSgQBaJAFIgCUWAmKuB54mD4DqwFV8FZ\ncBd4HJwKu8PIWD5BGpmuSkWjQBSIAlEgCkSBKBAFosCMU2BnarQj3A96fSK1C+GfhoNgJCyf\nII1EN6WSUSAKRIEoEAWiQBSIAlFgRiqwHrU6DHodjqzwUbAC+NW7kbAckEaim1LJKBAFokAU\niAJRIApEgSgwIxX4CbXyK3Rb96jd0oS9A26GK3rEz8igfMVuRnbLyFTqhEmuqX8xZYlOmfp9\nE3EJfBc+Av4y4VTYchT6P/BU8P7+1ZbrYSK2F5lfM5EChsj7z04a3T/Dj8G3OOuAf5bzveD3\nfrVtwTbeHy6CD8NPYRjbjUSvAr9XbH9Mhv2KQh4xGQW1LOM28v0AloVNYcWOXy3/Ck7k58Ol\n8GAw3bWwPqwBfq/aMhwrTv7+NaDzwHQTteMoYDLKaVsPn72r4QLw/2A8HKzPNbAANgF/+dbr\nd8PX4M3wdFgd1Eb9LgTzrQ1q2e/NIlHjso1JfQA8CGq+GMW1zLGmVtodi5wJ/7ySEuyD6TTb\noVVb9Ps8OHaqX27Fb18tA6YzjzjWnI8Oh0fBhuCLW8eKecxvm8w3UTt5ggXc0snvelFtqCLt\nP+eKr8N2sC6cDe+Did6XIu5kPntvgyeD9XC+uhwmYtZ3AawD6j/V9g9ucBw8H9Rzb3A9sN+9\n/wNgKbgEXgFHw+Kyu3Fjf59mVVBvmW5zrt0X/g92hDdCPSt4F87X38LdD3ymFoddzE1fCn6K\n5Np4BbgOrASOL/vyGRCbBQrsThvs4Nlqblj2atm4Jcnn4uYkNxX4gFe5LjJXgw/dVJiT8bFg\nX78d3gzXwU+hrbnYV/2nw3UjUpqdhd8F5UfgwrkVPAFMczAY5yJu+mEmq1eRzsX/s/BK+CXY\n9ytAG9uDTDfBdOgyzD08CNu+Sls66roxM/z78DuoOA+j6ll5vHbMXAZuouZBG/MwMZXPVdV3\nWNcNqmlt2zFQ7bf/vgvXgvF/gD+BY8OXGOohxjkG3wEHgfkdl23tcDJ+BVx87bMbOu6w7Zmp\n6dTXutn3joE2No9Maj8T29h8vnrVr8aVm0CfR58j0zl23HR9quPfA7eNOVdN5nNV9a22VPtK\n/2O5n/PsoeBY3Q4my1x7fc7U6H/greBzMJH18Ujy2xbb1d22auNUufa3/e4LszeAByTv5dxr\nmxwDXj8F2tg2ZLLv1a2N7UWmmuvd7E+VDsOU63x8EthHzqfOv7V+HYhf7b4G4zHHroeqybQV\nKWwrcA/9SngmbAGxWaSAnZsDUu8OdbJx0mniA968Hss/aEJwUnSjWQvPM/C7+OwEk227UqD3\n2qBRsBPGsY3r8XpPJkOzfWNp0Yxv5iu/8eUvt8Lmd+KcNGsxqbYcQthx8Hv4JDTtA1y4+bhL\nM7DL75uzG8HFvmwzPN7bTUcbc5PTbEO1o59r2u64yt90K00zrPyD4kxj/78PFoAbmneBi5Fx\nHwMXIf2OQeM9aLqp9aBgOsPXBbVy0ZoHbczN8aC69ovrF26dxxvnJsDNiXkdU7bT622hyvO5\nfBQ4BlyUDX8ymP6JsDKY5hg4BT4Pmv4jFvra/fCANB+832ehDmGD2mjaJpW23GZct7/SlNsd\n3+ZajSpflauGPmNeOwba2DwydZfrtWV2U+H90ld85avrSt/LNa3hV3XcSnN117Xt93nxWXGM\n1Pgxv3HrwXfBcXcQ2McvBg/ge0Abc5xWW5qudfS63Iqrug9ybZf1FevmXKrfNhlX8+rX8P8a\nJsueQ0EeiNZpFPgF/D4bbe04Mlr3eu6r3d169NKqGVY6Nt0qq+l6L+fJCvPTryXgNeBhxLaY\nZl14AKjpH6GNTcYByfvvD9a3DktVd91unSquGV46Vfpmmgrrl77iK89XuOf74Q+wHHwOToNH\ngGVsCsOabdtv2MRzLZ1vz2NRYDIUqAVh2LJM352nwpwIToZaXFfDfxZMxVsIy/Re86HMDbN1\naGvLkLHa0t3Gscqs9N1u5XMCNE5Xc0Pltc+ymxMXlpog3chvDhvDIdA0r9eF1ZuBXf6NuHZz\n0Z23K1mry2qfmas9FdZ0m/5Ka1g3beJKQxcZtVoblobfQPWhm/t7gAv0UnAieEg8AVxcHKOG\n+9LAuCoT74SsV/uq7O64fuFWoFdcVaxXnGPfQ5/mfY6Ee4EvJ2yvm7MrwefmJnCRNt2Dwbw/\nBjc7chu42XUMaueBaSdia5DZ+jkuL+sUZDtKk07Qv67rft3xpmuGlb/cZjnd/krT7TbLNK77\nujt9zTG+cb1oUfIJ/+y+b68Ce6Wpupm+4vvlrfjKU9emnw/OQRXnOLCddW2cz8vR4CHJthvn\n2HEO8yWPY+socEz9rHPtWJps875auYuu/l1Xwyuu/OVa1+Ke+G2P1xfAauA41ZxXbM9kmWV5\n4Kqxb7k3Qz3LXo/XrPffwGe72d4qp9rsdcVXXDOs4ppu0195DKt+1++hw3GxNTiPvgd8xp1n\nnTNkLVgJFoeprXsErXS23sXCiMZ1r3DTNMO7/VVGpav71LNU1+b7EzgODgOfF9fnh8Jv4WKo\n+RbvmGbf7wVX9cF1z33AZNjGFPL+yShouspwMMaiwHQq4IPuQ97PjHdBXReWB9P6NtHNq5vR\nyTbL9F4u5E5GZYPqWGn6uc1y+qUZFN5975oczdMd19w4uNG3HaXTfTp+8+s/Acq8dlH0DW4/\n6y6nX7q24dUu29Tdrn5lmmfYtJZR6cutMN0qx/GmHmqxCtwdDDN+g47fxdkyTHcFVLiaG+4C\nsx5MhlW9LFfzWrzuFUfwv6xXnoqsOK97lVf3se1l98fjeL4U7goeTExXY2Nl/Jrxy4OHqfrE\nrXSttJOxwXFDYDkezqxL05rtq/AK0602G9fvuuLK7c5T4bpl3WnGujafaURTJ7Vd3FaajFWP\nfulsj2Og2q/r5reuzWc7HU8bgi8jjPfA5AsJ4z00OV7u23E3wD0TloDptmqn9e8221DzvP3n\n+mT6NTvhNa86X9T4xzths6z1oTSdcIEUUP1iWdXmNuWaV6u6lbso9M4/7eeaO2q+cV5VU1/w\n3Q08CDg21NS1ymd+cZjt6B7XbesxrL6lnc9Lt67u2x0Hji1N1znXZ2h1GM9481B8IPwcepkv\nxS7sFdEizLXh8fD2FnkXSxY7IdZbgWcT/A2Y3zt65EPXowX/DV9q0RIXKx+cenBbFNE3i2XW\nhOnk4MToG7JlwTfXk31P7+HbPt9g1qLm9a/hsdDGjiDT49pkbJGnFmmfZfHN2+XgZOlm30XF\nNrqR9+sq6umisyqY1ol1kJnO/javfe7hwYnOzan9Ml57HhkOgMU99ziOrIP6Od50va6xXRsy\n09lON3OOQcOvBXVwoTKPh9TasJvuxfA1GK/ZZ/bJZI/xYetR91UP21ma+GxcA/fuhNcY8y2w\nmxzzudDadvO46fUQo19TL/1rwDGwC7Sxw8i0I6iTmjuuvaeuZj3sj8VttrXGj3Xprlf3tfOO\nz6ftcozZtvHaC8jwlfFmmuT0tlv9qz8s3rFgmM+K5tiy/eqj3zlFv3n0O45M7/hx3Bnn2Fsb\nbKNr8njNza3Pp/edDLPemvUUD+32XT03tsE6G+Yc7Pxh2GSYejj/Nsv0AOFz9VRoY0eSybWu\n+sI2TaU5TmqM2CeOkVqb7Gfv7zPgeu/641rjM+KL0vGaz9M64PjzvuO1F5PhC2AdNeeb6TY1\nUhPr7xhTG8ezz4iuh0nHoGPDtV3dhrUNSPhcOGTYDHMp3VQ/CKOspYv/M6Ae5FFuS6+6+9B9\nH5yY2tjTyLRam4wjkud31FPa2EPJtEWbjCOSx4Xquy3r6qT+dJjNz9X3aF+bxVxJdwU3BbPV\nTqFhp7Vs3MPIt3nLvKOQzYOkc3Ib86DqczVb13Q3hj5X10Mb241MajRb7WQadnrLxm1KPpmt\n5mH10JaNcy5+Gszm5+o7tO+GlvokWxSIAlEgCkSBKBAFokAUiAJRIArMBQVm66l4LvRd2hgF\nokAUiAJRIApEgSgQBRa3Aq+iAu8cohL+ntRIWH0veCQqm0pGgSgQBaJAFIgCUSAKRIEoMKMU\n+CK12RJ2hD3B32mLRYEoEAWiQBSIAlEgCkSBKBAF5qwC/qEIfx/urbNBgdn6i9KzoW/ShigQ\nBaJAFIgCUSAKRIEoMAoK+Jf25oF/TS8WBaJAFIgCUSAKRIEoEAWiQBSIAlEgCkSBKBAFokAU\niAJRIApEgSgQBaJAFIgCUSAKRIEoEAWiQBSIAlEgCsxOBUbxz3xvR1c8Efzv0f6H7EthAfhP\n5PTHokAUiAJRIApEgSgQBaJAFIgCrRQYpT/SYF0PBv/r71pwFZwFHvIeB6fC7hCLAlEgCkSB\nKBAFokAUiAJRIArMegWeQAv/BPfo09JdCF/QJy7BUSAKRIEoEAWiQBSIAlEgCkSBMRUYpU+Q\n1qM1h8Ff+rTqKMJXAL96F4sCUSAKRIEoEAWiQBSIAlEgCsxqBTwg3Qxb92jl0oS9Gy7uEZeg\nKBAFokAUiAJRIApEgSgQBaLAUAosOVSqmZHIw89LwU+RboMrwAPTSrAuXALPgMk0/yuwv+M0\nG+2fNMp/6tXW1EV9ZqvdMcGGjdKzNd6m/oMM0tbyXPVXLs9Vf22Mmc3PlfOx83Jby3PVXzm/\nLTNK35jp35LeMVmveutiaJ6r/tpMdB/Yv+TELBYFVuSuW4F/kOGV8EzYAsZrm5DBScUBMld5\n2nhF66R3E3ftLNft6y21MdsXZ7k2N9I+P7VtY48n02x/3p7URhjyuPm/bpbr85WW2pjNvLN5\n7Nj3bV86OeZmsza2zbmjjTlX+dX82ayPa05bc62bzdq4V2n7ots90mzWxhedO0GshwKj+Dbu\nYbSj+898+1ftroRLe7SxX9DZRGwP/TR4FXG7wnZQtg8e07+pAkbYPYi6r9ay/i7iq8DL4YyW\nZczkbC+jcvecQAXNewh8YgJlzISsy1GJw+FjHdc6bQT7g5uOv8F4zTF3NfhszQT7CpU4C/6v\nUZnn4H8+PBnG+ynrd8jT9rlybvETcT8p/z1MxL5E5nPhI41Cno3/BdCmXY1iWntfQc6JPlff\nooxPt67B1GW034+E5kb1JVw/Fp4JY9mDSPB5WArGO+Ys2zHnGvgMLxajPYV7O359hm7o1GNV\n3G/CR+HoTth4ne+Toe1z5Vzli9W9wGei22qe25eIHzUi343f5/E1jbCZ6H01lZroc3UgZXxu\nyMY5Tx0OzjHfbuR5C/4N4b8aYYvb+xAq8Blwz9LmUzbH3GXgC/nJNsfkD+G98NNG4R/E74FO\nPafavH/b52qq65byx6GAH48fDP4luwPgw7A3fByc1K6ByRzE+1Fe9wM1j7DLYTbY+TRir5YN\nWZJ8vlXZpmX+mZ7Ng/ARE6jkoeT1UDHqtikNsJ+bE+hmnbAVWjZuD/KN50VGy9sMlc05xTdo\nO3el3pBr232frvBhLueTaN4wCXukWZYw7+sn5BM15y7/8mfTbI/l277FYR7W3Fi1NfNaxkyz\nVaiQum7RVbEtO+Fusscy+9wyHANtbB6Z5rfJOMl53Iw6/3WbB6OJ9J1zhnNHG3OuUlvnrl62\nOYHG249N85D352bADPW71vTSfNjquta55g1rDyCheq3XleFJXLd5adZVzKReukexru5Z2the\nZHKvNBXmy3fr5gG9aS/m4rJmwBT6r6Dsydw3T2FVp79oNwijYm5idoT7wZ7wZtgbXgu7wAvA\nk/dU2kYUfuVU3iBlR4EZpECNdcf9bDQPR1eBC37TbK8HDF+6jKrZru5+89pPJ64e1UbN0Hrf\nQL1uhl7j6CbC/UrqXLEraej9obm3cHO6IbgZm4lmnbXu58X+nKl1XljhxfTDl9TOnb30Ki0X\nU9VG6rY1thxnTVPXimuGxz/NCjQnsWm+9bhv59uKw8DvEveyowj0TdGavSJbhvkxp2+dLNe3\nV37U7huyWBSYCwr4aekPYH/wDffy4FeGZpN9lsbsDU8B2+dbvU/BN8CN76ia7fpfeBrYrkfB\np+Gb0G8OJSrWQgEP0z4jH4HHwd06rt9y+CJ4KJ0rdgANda12rK0OrsdqszI49maiXUal3Ft8\nCbYEnxffqr8JfI5id1bgOi4PAvdC24J67QrvhOiFCEOan0z9FL4Gm4L7zD3BX++IjoiwuM03\nO6NiP6Gi/p6Ak9ivuiq9NNdvB9/iTfbJ+5TOvfzo+APgZB+LAnNFgXk09OtwYqfBd3Tc2eK8\nn4asCt+DJTqNOgT3FR3/qDrOVavBd6Da9W38L4fY5CvwFor0dwr8upIv1vzqzFfgrTCXbAGN\n9WWDm76XgXYxPAmu9GKG2guol/PcSZ363Y7rAdeXJbH/VOClBH0VTuhE/R33E/ChznWc4RTw\na5zfhN92kt+G+z74cuc6zmJUYJQOSE6yPpS+6XEQeRDyQLQSrAuXwDNgMs1F7r6wBpwN10Ms\nCswlBRzz/lL/+rA2+DLiWJgt5sLuJ8MelO4HziOXwqjbP2jAa8F23R9mS7toyow016QXgS/q\n7gMXwWS/rKPIkTDfiq8PDwPH4engczaTzU9FPMRtAGvBOfBniPVW4CaC3W+tC/eG8+AaiI1P\ngatJ/lhwn3kvyD4TEWaKjdIBSc0OhB/CA8GJbDXwu/YL4GSYCnOhk1gUmMsKLKDx4ldOZ6P9\niUbJbDMXYIlNjwIeiubqwaipsJ80n9IMGBH/fOopseEU8MWLxCamwIVkl9gMUmDUDkhK51up\nJ8KasDz4ttc3Pn58Pxve/NKMWBSIAlEgCkSBKBAFokAUiAKLQ4G7Lo6btryndT0YvgMeiPzk\n6Cy4CzwOTgV/sTIWBaJAFIgCUSAKRIEoEAWiQBRopcAofYK0My3cEfw9gV5/hWkXwv3LOQfB\nMGbbd4Kl+iT2K3yxKBAFokAUiAJRIApEgSgQBeaQAqN0QFqPfvEPNPQ6HNllR8EK4FfvhvkO\nuL+4/E3od0BamrhR+oSN6saiQBSIAlEgCkSBKBAFokAUmIgCo3QA8M98+xW6rXs02MPMO2A8\nf+bbvxayCty9D58j3L/AE4sCUSAKRIEoEAWiQBSIAlFgjigwSp8gXUyfvBSm8898z5FhkGZG\ngSgQBaJAFIgCUSAKRIEooAKjdECyvgfCdP+Zb+8biwJRIApEgSgQBaJAFIgCUWAOKDBqByS7\n5AY4qYPXsSgQBaJAFIgCUSAKRIEoEAWiwKQoMIoHpO1oeff/QVpA2Pcg/wcJEWJRIApEgSgQ\nBaJAFIgCUSAKtFNglP5IQ/4PUrs+Tq4oEAWiQBSIAlEgCkSBKBAFhlRglD5Bmuz/gzSkREkW\nBaJAFIgCUSAKRIEoEAWiwFxRYJQ+QRrP/0GaK/2XdkaBKBAFokAUiAJRIApEgSgwiQqM0gFp\nsv8P0iTKmKKiQBSIAlEgCkSBKBAFokAUmA0KjNJX7Cb7/yDdkw7cG/pp4D+kvQvEokAUiAJR\nIApEgSgQBaJAFJgjCvQ7HMzU5h9IxSbr/yAtQVl3h34aLDVTRUi9okAUiAJRIApEgSgQBaJA\nFJgaBfodDqbmbpNTavf/QfKTnqfCyeMs/krS7zkgz37EbTggPlFRIApEgSgQBaJAFIgCUSAK\nzDIFRumA9HC037aH/g/rhF/ViftkjzQJmrkK+HtwH4Bvwekzt5qpWRSIAlEgCkSBKBAFosBc\nUGCUDkjr0CH7wp/g7EbnrI7f3yd6SicsB6SGOCPgfQx1fAKsC88dgfqmilEgCkSBKBAFokAU\niAKzWIFROiAdRj/4dbqvwonwHrgddoP/hsdCbPQUeBFVfgd4sPWgezUsDR6W/Drl5mDf/xru\nBxvAxrACfAPmg39MYx48BDw8fwXugFgUiAJRIApEgSgQBaJAFBiXAqP0Z75tmL9ntAW4kf4V\nbARTbd/lBr+ET4GfcsQmT4GVKWobOAK+Ax6WtGXgc+Ch93j4PGwJ9rf9cRssgMNhJfB3yfwU\n6tuwHbwFYndWYBMuvwo+NwfCphAbvwIewr8G6vh18Cu+M8VWpSIfhF+Az8azIDYxBVYj+4dB\nTf0DQb6Qi01MAefs98EJ8CN4HswUew4V8dmxbh8A16jY8Ar4snIvOBJ+Bu+E5SG26KWv492x\n9X7I2Jrho2LUDkjKeQu8DN4DbqyfD1Nl6uMnEceAn179FjaEUTYnq5nS735KdCx44D0KXgrN\nur2hE+4nQqbVToXPwoFwAewAt4L9Iq8HJ5+5Yuo11gK0LWlOBg/46uymz0/kHgdz0Zaj0Uu2\naPj25PkNrA3qeC84CR4Di9s8HFmXp8PxcBX4jLwPus1NjJ/AxgYr4Lzkc+PXt4+Ha+Eg+F8Y\nZEsRueygBCMeN5Gxcw/a7tzjfP5z+CN8Gf4PFrd9hAr48uMKsG6+YPCZykYWEYa0L5FuP3Bt\ntp9fCh6UloPJNMeg89iomC9Z3MdcDo6t3UF9fFkwWbY0BS0zWYWlnDtvRkdNj8Oo8FZwB1w8\nRZX/B+V6INsafgw+9KO6+X4idT8bboK/gAvV4rYXUwE3m1+E14Cbip1Bc+FUe03/Kgt9/+//\nnd9xdSr8YPz/AzvAWfBGGGW7K5V/IXynwzxcw1yo3ZRrToQfA/vSPj0HngS9zAXrEHg07A2P\nh/3hkzBbzcVzT/g2+Kmj48ux5QHHcaVmB8B4FqhPkP6bsBPsDY+Dr8JM0PHN1MP56uHwDvDZ\nejb4XKwPmpq8Ff4EN4LPz+tgqux+FKxmvjX9OMyEOYdqDG1q91coTX0mnwe+FV8Hus257FBw\nfMmx8EBomnOceZeAzcG573B4Gcx0ey0VvBIcO1fAq6BsKTy24fvgfOwGsJc53twsPwzeDi+B\np4Lh6rwWOE6nw+7PTT4DvwKfhTeA86xz7GfB+thPb4TY2ApsRZIXwGPhFeBcsymsC/a1L2sc\n6475LaCNPZtMF4Fj8M/wflgSZrI5zhxDTwfH+6dhG1gaXg/jtY3I8ClwXt0X3J/qr3nnKPwb\nQiwKTJkC+1GyGw75J/wdHIAuDKNmj6LCd4CblW1hT3CC2QvamBOSmviQtzUXyHO6MrvA/gDu\nDpZ/H9C+DE64T4aLwPvLebAJPBeeBdqWcPJCX/sf+5D1iPbZF26SPjaB/B5mbgLbLY47Nyb/\nAHU5Hayffehm93o4H+zjHaBpbkbMs30zEL8Ll+Grd4WPdblZJ59v8NrYHmS6tE3Gceb5BunV\n7TC4BmyrqKOL7G5wLpwAzQ2Zi/sv4TpQ5xeAZnvN3z3mHW+GrwLafJinp4UtSx7LcqMxXrPO\n7+2RyU3Eczrh78K9Ad4NvwPvJRfD5tBtGxFwKFwLPnfmWwqGMRdtx/BJ4Fx6CtwGh0NbM+9H\n2mZukc/D9P925XOsqOEzusLtO8eTeXaBx4DP6FXgM6aWf4B6hm/F7/N6DHwC7AP7wnLa2Dwy\nzW+Tccg8ryedz9Mb4ZHwZvgrvBqWgCPBeegL8HWwfb+Hy+FK+DKog+39KDRtRS5uBvVQg0uh\nW1/D9oA2Vs+uc5f2IPB5sS+qP8pve04E+8q507XgZzCTzbXG57StOU5t50TtDRRgn5ep86/B\nPhXHz4FwFNjXzsO97OkEOl84B58MXmtPBfN9ALYGDxvXgM9PP3O+9t7uF9rYXmRybZ2IzSOz\nz8CuUM/57fjPBteYE8C2ngEvhkG2A5Hq+CtwXjW/mpwKj4fHwrHwR1gZxrIrSLD7WIkSHwW6\nFXDwOWk6gJzk/9y5dnCOmv2YCh/cVWkfVB/+NuZk46TTvVkcT1lOam/rynAPrm+EjcAJ47fg\nYvVt8J4ekM4FJ4Uz4S2grQm/ANt5FuwKEzEXCxeNtuZi9bGWmW3jrfDQTv5lce0rD+hvhk3h\nB6D+avRacONwPLgBdTOrNt8EF6glwDHbvRg9kTAn6bvBeGwzEntvNx1tzLq62ZlK25nC/wa7\nwF/gW+CirIYu4BeAm58NwLAdQHsCuNjsD+r1QVBTNfZgYL/sBpq67Q1/AMvQb1/Nh3nQxsyv\ntluNI7P98R24ARbA9lBmH6mDfb0M3AgvB+t4PPj8fgEMdyytA2Xr43HOOxqeB2+AP8FBMIyd\nRqKvw106iX0z77M7kefqcPJ/pFPeVDv2t317BTgP7QNu5O8BjpGdoGnP5+J6WKURuDT+C+BD\n4DPoWPp059ox4/ryQtC2BfveMdDG5pHJfp0Ks+/ciPocNO1NXFwFe4Ljb0PQ1O48sH0fhBfB\nGWD/fx8OhC3he3AmXAnq8QHYBN7fuX40bplzxh51MU7X50BtN4P7gv1kX8ipYH/aT9bXuhwL\nhp0A3wHn25lsH6Nyh06ggj6Tju+J2l4U4HhYAnwO1NI+dw5yrTkfDDPuXeBatSw0zT5W+0/A\nszqu185Bv4FPQdOexoXxltnLtiHQvl+yV+QQYbbJerc1tfgS1PN+En7r5Jx8EzjmvgKuN47/\nW8Hnqp+dQ8T+jciX4jfPLxphy+G/FF7fCOvndX7bvV8uzcd7AABAAElEQVRkwueuAg+g6ZfA\n5X2owesEuS+cAQ5mGTXzAX9FV6UN8+FvY042Tjo+6FNhd6fQ+eDmSn/Zk/E4mbjx6J5YTeMG\nxsV8ouZiccQECnGxctFqY461oxoZn4vfTf7x8H+gvRoch068y8BDwUnVMBd9N7PHwM3gpsAJ\n9ULYCLT7wNlwsBfjNMuz7910tLE9yOTkPZX2QQo/HtxonQkuUj+FC+Dz4AbJemgL4CV6sN/B\nZxb6/v3jlXjV3zH3VfC58QDjxsoDw9Xg3ODG4Fhw3M6DNuaYVtthD0g7kNb+9uDwLXARvgN2\nA/vnILgMXDDXB8t+C1wLPivaY8Bwx8O7oUwdTobm87QF16Z9GAwyNyu92mEdjxyUcYw42zld\nByQ3xa4Bt8MBsABOh+91/MvgavcA9bBezU0KlwvtG/x0U+Ozab9o9QwZNn9hyKI+VzPHQBub\nR6Yqq03+QXlWI9K6bdqVaMtOuG1sziU+Wz4z6vUO0FYCn5GvgONUXdXYedKy1eJZUPZNPD+q\nC1znjHpmG8FDeX0WvIe6fxF8zr1+I3wJju5cu5E3/GtwAfhsW69Xw0w2NTx0AhV0rdtnAvkr\n6z3x2O+fgv8BN+43gBqeAM5Fhr0e+s0RlxDXnIe4XPj75oZfD80xYlyVY9/2sm0ItE/ds7Sx\nvch0fpuMnTzOwdb7drgOLgbH1vNBXazbw6HspXicd5yzu21NAkz/0EaE884p4DPVbKPz1Gdh\nLLuCBLuPlWiuxjcFnWsazKfBb4B+GuxJ3M6wG5TdgWeJuhgh9yLq+kj4dKPOSzX8M9XrZHBj\nj8q5kPUyJ+NRM/vhsbAOnAm3gJuJsvXx/AFc5P8KW8GD4C6wPVwJlf42/Ob3ICVOkh+CXeG7\n4EbNTcrq8Av4b5gN5jPpovFguBvcG1aGDeC34OLhM7A5uEidB8aZTt3VdkN4CLwDmnY4F5+E\n9cGF/TQ4ETTH5+WwI6wIZ4EbhOky+9jNqW17G3iYsU7fBucqD3BPA8eN48Sx8Qg4F+pZcV64\nGNRJTcrU4ifwjwrAPRks87/A9D+DC0Hz3vaBB0n1VfMal3gX2rLlmeHuU6jfE+HZoD72+/Ww\nLjhmHgNueNycvAZ8htXJMDeJV4Pm2uKYc7NzF3Dc6D4INOe2tWFbMM1MMfvSNjoeLgPr6bhW\ni99B2dZ4rgG1eRg4H50Bjh3HivlvBs2xp39PsHx1eBz47DpmDwI36YeAdhK4WZxMW4vCHg3W\nV7PPboPtvMDsR+vyHLBe2gJ4FHwCYoMVcNw/Aw6FGvPL4P8bHA37wwJ4OawBWo0P/c7ZPl/O\nuU07jIt3wungGKwxgnfhtf14sRczxNakHhuBc4F6bAm2yXV3JdC+BtbbOcPn5FTQTPc5cI5w\nLnWePgs053HHpzqVXYRnL3Ac/70TqOabwqc713GiwKQrsB8lOoAdkKK/wDtS5mLnw/NBeDjs\nBi56PlhtzIVfTbZpk3mIPC6eTi7d5oN/j+7AKbjehzKPmEC5LhAfGyL/+qQ5B5zcFoDj62dg\nX7mIaM8EFxjjbobmeNT/Z3hbJ9w0Lv7qpzk5289lW+F5PthvlabihnU3I6H39VDRxvYg06Vt\nMvbJY5sugtLFg0HptQC/G7jt4L2gPj8GdfwAuKAbJua/Fb4PbljLnoTHMneAT4IL1gVwHrwF\nLONDoLkJ8H7zoI0tSybrYZvGstrMOc7cfL4QrI9jqbQ4A791ts3OZ/vCTWD6HeAjYJu/Crbj\nU1DmJuS7ddFxd8dVK8u4Ahyn74Qt4EKo+/4J/4ngZnoN0NYB7/ETL1ra4eSzzlNp/0XhalJj\n4kz8buSfB8fCN0Cz3dfBs+Ce8HS4HS6Hd8PecCT4PJ4CaqW+vwTHk/1U91A3w3QdA21sHpnm\nt8nYlWd1rk8G2+JYbtbRNjjGd4VXguPgfXA2WHfT/hV+ALbbNq4P2ufANjouTPtTMO1hnet5\nHfdeuA+D4+BQKHPO2KMuxumuQHrv6f2b7THMdtZ8UWlMZ9uth/OEY30mm3NAU6vx1vUIMrjm\nDbL1iHwkrAwbgWuOfb8XuFbZNz7rbwY1vR6aWuu377vDfMlTtiSeG2FeBXRc5zbn3WeDZb8D\n7JvnwZXweehn2xBhv1p2G7N95w+Z0YP/J8DnpNppe47tXDuuxOfmsk6YdfskfBuco9XV/LbX\nODkV7gfaT+A34HOqbQyOX+ed7cD2/hiugtVgLHNs7z5WosRHgW4FHKw1yGugeu3gHUV7LZW+\nBWyLbfgL+PC3MScby/FhnI3mYuGi0dZcrFy0mrYUF+rlG0wX7FXhNPgVvAvq8OMY89DjpOck\nejs0x6H+bmp82q/6Xci018MCPZNom1GW97ANbcyF1M3OeG1FMhwCauLkr8aPADcy6qhmjwEX\n3NKsW6dbiXOBsv7G6X8BrAVnQTP9z7l+FdgPpq88PkNujE37QXAz7P2uBcu/HuZBG1uWTN5n\nqx6ZtybsSLD9v4Zngc/wX+G2jmudvgS2S3/pYBqvbcsBUBo021V5XFxPgGrjN/HfC7YHy/Oe\nF4J5q1zbfBCsDavAp8G0l4CanAPW0UX8cGhr5p3oAWl1yvg8zIdz4f2g7prPps/QmWC9LwDb\nqG77g7p/HLQ/geOjaV/gQp1Ffcotf11XmnJLe9NVXfCOy+aR2jYNa/ch4bNhN3DM2Fc+lxeB\n7X8RWK+3g5s1dan6V3scCzfBefBZMI1aVbs8DG4A8xphFW9e/Y6T74PPj/4rwPLFMWO6s+Fq\n2APamHOV5dW9q37Vjl7Xtt32VF2cYx4AM9Fcaw6dQMWOIO8+ffKvRPjpUDqUVvZNjVvHgH1X\ncU3XdD4rTa0Ncy74I6jx06Dsw3hM/2RwLnlK59pwzcNSjRGfzY/D0tDPtiHCe7tnaWN7ken8\nITO+nXTOm18Hx1pTsxpPtxCuPk09mnqV/w+k+So8EY6B82ApeBQYZ9t11d15zDm7yvW5exAM\nY2q5+zAJkyYKNBXYj4sacN2DuZluFPwbU8mazOqhdWLy4W9jTjaW4+QzG83FwkWjrblYuWiV\nPRKPC3yNIyfPWnyrX1wszONGwXFn/I0Nf02c3W71p+EXd/I8A3cHsKz/hcm0zSjMe071Aene\n3MMFx822G2Pb12yri6w6uph6YHIT52Lh5s60F4Hp1bE0Nlx+BC5k6nsYfB/cBDwLjLds8+p3\n42j/mdYw7+HiXX2oa/iRnTAXwHnQxvodkLanMO9zCKjJhWDdbJvufPCAqN+2fg+sk3m83gnc\nqF4P6uSm07SF4fqP67i/wH0e+AwYbllS6c/C/wR4AXgPNVkGNA9KzTy1iTG9hxv7sq2Z1zLa\n2opkPB8cIy+HN4EbtaPhLqBu6mOY2tou3fLbrhNha1CPHaBsXTy3guF7gmnVRrf6Sb/x3VQa\nw6fqgLQqZb8BDoRLoergveWH8H8dv2NGHZxPalyZxmfBfJXHlxNe286bwIOMz4Hzjm1Wx7qP\nrhu3c+DnYBmfB8MdbzUGvb4AboMLQU2dF32u9oA2Vgck71n1afoNqzY1XXWwHdbBDaj1cZwv\nD/eH5WAmmPq45rQ1n3PXvF5mf6nBV+D1UPqoiX7nxQor1+em/LrqWBpb1mtB7TbvhDsfl3kI\n+AxUHl3XgIeCY8try6x+dOx9E8zzZlgdmrYNF6Zdshk4Dv9epD1/yPQ+HweDdbKdX4WmDmd0\nrqvuzbjSxzDz2tbjQJ13BTWt5820Pm+GlU5n4X84rAQ7wm/AePcV74QloJddQeDuvSISFgUG\nKbAfkc0HsTmYB+WbiXEuiM36l9+Hv4052fiQbtMm8wjkcbFw0WhrLlYuWtpq4GLvZHUMNBcU\nNTTO/nAjckvHb3j1UdM1vDuuNiFOnld14t2Umu7L0HZhIGtP24xQy3bT0cb2IJPjcZBtT6Q6\nnQunghp4TxeOWhQM89oFQtdNv4uBB6aKM8/1nWv9hldZuodD5X8c/nXAdFuBC51p3AztCW76\nXADdNH4Sng7e1zRi/JPA/pgHbazfAelXFPZVuB/YnqPhQqh7W+fCMLXQ3R8cFx+FC6DSWO+L\nwLbfE3YCF1zzqN8JULY3HtPZZ47VY+F0cEF2s3gemM+DS5XhtWO5xrr5lgbTqHlbM69ltDUP\nRLbj7p0C7NtdwPp9DdRFjdzg2OarofrYcWf7LuuEmeds+BC8E9RYrT1YGGc56mA55lMPwxyj\n1Q/GS6XVnYoD0saUeyU4dp0b6r5qYbu8tp3Vfl3rbbjjuupomDgey69Wp3Wu18DdHyzTtpjG\n8dpsrxtux+91nfC6p8+6z9dyYD8fCneB38O7wLltD2hjK5Cp6qBb7SnXMPvI6wpruvaZ84Ha\nfR9uBfPYp++Fu4Jm320Cq3sxjeZao15t7Qgy9jogPYBw2/m+TsGOcXWxX5tut6bqY7zUuKrr\nXxBW5nNoXud454emrcrFruA93ex7zxq7jlufw/PB8i3bOc8xcg08DMq2weM9lqyAcbp7kd77\nDGM+96a1Lo4LzefD+5dG1tW2dIfVta7xJ4P6nACWV1qqrWV6rfsecD06Hc6D7eB2MP+JYLjz\n8Kegl11B4O69IhL27wc7WvRXwIEoo2xrNyrvoiOx6VFgX27j5Lw5OHkvDxeB5mTowuD4Wglc\nYA1zk1p91Owv0xlvmK628iJnYR7LcHPxHHAz/SJwsh0lW4LKHgBuSLYHN3e2tdrtZsRFUVMH\nr3VdTNaC1UAz3Dxq6sKhv2lquTO4ATStmnvocYN7GlwPlutiY5+5yLwd1gHzGVfauoivB2rv\nIjnZtikF+unG28BNgNf3gaqfbbM91kdXLbTHgxuN18IP4MOgmU+tbPflcBQYJsvAlrAuaI5P\n++RVsBSoz+vAOeUlcC8w3xvgblCm7tbly2A+4xe3qdsxYF++A64G+8z6PQ/sc19UHArW/dyO\na/s+BG4m3PxeAG5UNgLbpb6vh1XAsWLe5nhTU/UwbE3otmba7rjJuP4ChbgJPQ2si+35C9iH\n9q1tMUxu77iGe13zy986cY6ZS8FxblrnNuca0y+AeWB5vwPDVoQr4SLQHLc+v45R2/110I6G\n88FN8EPhMDDeZ1fNvP9EzfJKa13bp+lvjt1K8yPCvf8asA3YrsfCC2EDeBm8Gv6n4zqHnAm2\n97twD5gqsx+3hUeBOk+FOQ9oPsPadoucf/10LJRWBtqvd4Bzhqa+9qfhPleaGmq+mPn1Qt+i\nA42aqWuZen8LXgqbg/eqclfCfwzcF3yWNedFn79LoeqLd1rtt9xtLXDMO34121WmHlrp1tTO\ncK/FeOeqs+EBYHnm/Qd8BHxO1NRnz7nnwbAB+Bx+AtR4Q9gYHgIrwMvhCRCLApOiwH6U4oCs\nQau/mJQbTGMhVe+m6wO2V8s6+GCqi5PYbLR9aNQRE2jYoeT9WCe/k5wL54uhxpKLiP5mf1Tc\nWGHN+Kb/FspzgrZvptI2o3Dr6qTbxvYgk4tYP3NzZPlrw7eh2lh6XdQIq7hy1VW8rvS6RYV7\n7cbHZ8Cw6+EMuB1eAS5Gx4Hx94cHgul2AxfiP4ILs2H2b9Ns27xmwDj8y5LWum3VlWcB15+C\nm8F7XtJBf3fbDOvGup7SFW6+SncxfjegXruRsX1fA+0oUAfdyqPreLsJTFvlmO4aWNAJ877q\nYbzhh4AHkrZmXjcIbe3LZLwabKN1tT5uLPTbFutqu9xglK7V5k8TZjsOBrXQX2PA/GKY6Def\n/VXj8Tb8xlV55Vb6yuMYaGPzyDS/R0Y36d7radBdz7q3blH1reuqp22pOlZYpdE1TGocVdjx\nhOl3ozwfLEONfda819Hwe3gO3ABrwUmwL6wC9tfL4HLYA9qYc1XVuenqb15Xna2jfut1Ldim\n0uU9+Jv2Ki6st+15JVj/HcD55TCYCnsshbrxto5i3/wA2pprnWtetzn3qY9xH4a6X7nNMd1L\nx0p3HHmrvmr7S1Az4+3f+8GbwbgPwNfBZ/AUUNfrYP+Ov/qhynYuNJ91ORd8jq3LmqBtA163\nXRfdI50Pw9j2JLIu4ni1DVVP69D0N68rvOlahi8xnIcN9/o7cCacCGpiuPdwfNruyl9l654O\nPkvGOV+tAU27govdmwHx/1uBu/7bG18fBRxkMhvMh8zFxw37XWZDg0agDU5kq8IXwEnKicw+\nqDHlBFdWYf2uK7zpmsdN2zLwCnABGWVTI+0hsBt4bRt1HbPrQtOa49j5rOa00rLcyuO1z4GH\nIhdfzQXmQXAuuME5AbaAk+E4eDz8BL4Ny8MR4IbvAnBxfym4mdsS3JBOth1FgS8H+9i6e491\nQGv2d3dbF6VYVOdNuVCrOhyYtrS+N/7SzbKPhO3gMWCbvMd94RVgvgVgXdTAdhvmYq55fTSo\nr1qJ970U7M9mf3E5bbYed9oVrN+yYH2fDmeCbf8d2Pe2a2mwTU37787FM3F3AuNNp10GNy70\nLfrhAcD45cCybfNSHdfwbg0qDVGTbtUOx7D3FcOq7/HeyZboXHXX0bYY5vhr2g2dC8uUQ+EZ\njbBf4HfzavtP64SrmwcP58LtQW2/DT5/J3RcDx5nwTVwDqwIk2HWUStXf2miX6u2PxD/yqAm\n1UdX42+a4+bu8AX4FLgxPh6eD0+C+8JkmvOfGrtZdixbv/Og+g3vpNkfKMlD4lvgDeB9ytSo\nOabVs3SrNLqGbw2rdvxePwLU7ChYHzyAfAQuBg9Kzm2OkYfDkuCYUEfna/tBjctMa9jxcAE4\n32jN/l0UMvU/f8YtPgbqsAbYhnrOmvXR37zm8k7XxlnGCvAc0Ly+EDYB278SaPb78eCcVqZO\n3vfJ8DfYDszvfL0nxIZUwIEVG6yAA6sYnHLmx/owOTnda+ZXddbU8EudljiGNDeoj1zoW/TD\nic24mhRrrFX65kRacZXda5/hJ4AT34kwquYGzI2Vbbke3ARU+5rtdgx73bTmdTOtabrjDLMM\nN/6682F12BROgW3gbNgMdoQD4BXwUDgOjoZ7wj7wEHDzsC9cCyeBC9Nk26Mo0HFgX7thWBHK\nbINW7a72ukiWv+J1dwEPB8ZZXuVzg38baPNgfbCtp4IbIRfln8HbYC0wr5seN8i22XF8GGiO\nRRdw66xr/I7wW6j64p1Wew93uxWuAetaG183VNZzW7BNoqlLWdNvWs0wdVHne4N9UnFu/O8A\nrfLqGl/XxpVVvrqeTNf+8aDxX1D31rWdbp70N7EuUvWvOlca+68Z5oG6zDQ7wbfA/H+HXeFS\nuBjuBuY9H04H03wGft7xm/dw2A7U0OdsIzgeLGuiZv20asuiq0U/K8z6aXWt3zDHsO77oGmP\n5cJ2OLabdkbnYp1m4CT4n0sZf4RXg/Okz/LPoOqNd1JtG0q7Dhwv9oW6lPXzG1/1Md/SUM/9\nuUZixtvvN3uBOU58jubDu8H4n4J2GlgP1wjN+adp9o1j3PnHfI6dK2Fx2FO5aXOsVruti3p1\nU+HqVP7SVdf5vjR608IUd/43FGrj82J+2155bsH/XvgabAbGXQiTPR4pcvaa4s9lewiN76eB\nk3PTHGCxKDBeBb5Khs+BmynNRUCrSXDR1aLrGmPNuKbfeBfHG8E33XuAE6ObWCfEUbWNqfhP\nYDVoLqalh+1SB69Lj3K7w5p5zKd1h/kmzcVW7d4K2pnwBVgTXHQuAu1/Oiy86PFjX8I+Dw8E\nP5n9GUyWPZ+CrN8DoNrghtw5q9l+Lv8VX+GOt8pTYV4fCY4d/R4W1NyNshtdN3plxv8ZXHzN\nfx9wE6IZZx77quZJw54Ct4HlN+/5HK7dzLkx9n7TbRtww93Bfl8R3FDZ92XW3fqWa7j+5nW1\nx7hm2nquK15XLe0j+0qNmmaZWqVfdDV1Pw+i6Ad1im/eW7/9VFZxXquNGFb1bMYTvLCfTdNc\nP02zElzXCV8B1+fik/BK8DDqwegR4IuFHeH74ObYsfgreE0HnIVv0N2UXwXGTZY121Vl9gqr\nONv5ArDOavlROAa2hzeCL1SeAF8Gx7fPrW1znC2AybTVKewisOzJNMfCLvB3+AXcBJoHsJ+D\nm/QfwTegaerWtNKxGV5+x5Lj4Vxwzn8XfBYcL48DD/POEeuCc9E2YF51d5zpb45H/RX2cvy2\nwXz1TOKdctuQO6wP54Fz332hadZPq7ouulr007Be4ZWm4prtsTzHWJXr4afS6Zb5rD0M9usE\n+ALPun6lcx1nCAUcdHPVHkzD3Qg1B1W3FjUIDa9B2J1mlK4HtXWU2jFKdV2WyrrAOnGrv/5m\nPzjG6rpcgu5kNQ51V4ET4XVwGYy62eZD4CxYH+4HpUNTG4L/Fa6/4kzb1Me4Zv6Ka4Yvx4Ub\nDPvkePDQ+gN4OLgRuBt8DtzUDbMRMc8pMJnmpuB9UOOl2um11my/1802V1rDNRfupcHwe0Bp\n4kKrGae5HpjGA7gLrDp4sFkZfGtb+S7vXKvNraCetZY43jXTitpoj4V7QpVh2HSZmzDf5Np2\nrTQsnXTLb7z+plVcpesVV+1SEzUwrRubCu8uk6gpt125w7O67lL10O1VtwqvdGY3XYV7rdWY\n0V9xbm7XAcdLhXl4eAk4BlcFx4qHIcfLEXAs/BUca26cnwqWo7lJn8znqtqxsPDGj9Khgqru\nureDbb0SjgMPSK+F18NlMA8uhJ/D4fAocAz4/Njmo2F7uAImw9RjL1gb/tgpUO2sa1vzeXh5\nB/0+/3vAT0D7KewDz/aiy0qrprbdetqPHoKcZy3fQ5Jp1NVPOdTxhZ3rJ+A+HtTQ50czXZVZ\nruHltw4+c3/phDlnTbXdnRt8HRyv1tU6XA5l1s0w0aqu+g3rd90Md31y3rL9ZVVeXTfTG+Z1\nvbzS/3cwj5pYnnWODamAg3Wu2pk0fAXwjWIvXFSb1j0Qm3Gj4p8NbRgVraueu+DxOXOiG+Z5\nqz4q13JqUtwCvwvvM8FFZTaYGw5xUt8YloRm27m803W/uNLI9GW9woyzDJ9v77k9HAJu9NcF\n54SdwQ2CG6HFYW549gbr75ixntVurw1vts24ijdcf6XRrQW20hD0L6t0Bhj/a7gQ1MdNhxta\n02jl3mvR5cLF9yed8Cr7Aq73hs+D9Xa8fgtMtxO4mZgu80D2LngcuEmzjlVPvAutwrrDK942\nV1y5Fdd9bXhpZFz5K73XRYXp9gprxrf1v65TtvnrHtar6m2Y1qxr09+Mrzymr/Aq0zDt/uDY\ntY9NfyBsAo4hw9eBl8FL4W3godlDnJvNteBy+B4MM0+SbNxW9e7O2GyH/mqr7fhu5/rjuK/o\n+D+A+zWwzh4mToRHw/ZgOz0MvAM8xBj/MZgsO4SCfg8+p2+GN8LuUHXGO25bkhwngf3gXugA\n+A7cF5wHPgo+x65h/TQk6k7jyOvSchn8Ho565d2NcPWsMVPuHYQNMssqqu3O3SvBOYMyTlLc\nZyhnU7Dvrav1djxo1qvmaetW9TOurLRoxlVYpVFvrdq56GpReVVu5elVjod7+/YWcLxsD3+F\nWBSYsAL7UUI9rDUYvZZRs6p3sz3692rZEB86NdmmZf6Znm0fKujbzbZ2KBlrUfw5frWqPqix\n1O1W35TbzGPYJ2Am2GZUwrq5GLWxPch0aSPjMfirraXJIK2acU1/swzD67rp922ai4buUeDC\nUZuejfE37V1cnNkMGNI/n3TzhkzbncwDifV2w9Csf7XBsKLZ9n7+7jKa5VQeF/dmmV676LvJ\nUKdmHg+Rlc+34+a7tuNW+Iu41u4H5m+WfRXXR0Jb8w39RzqZ3ZwcB3+Da8DnzY24tjWcAlUn\n69D0V516hVe6cittXet252vGNf1qWdfNPBWmW+WX6xhoY/PINL+TcX1cda7yy617NN1mXPmb\nrv4mlbdX2NdIexH8GUznAbWf/YKIfbsiPVCYb6uucC+dM/boET5MkHNV1btc61/+plvtMqzS\nlOt84Xirsa/f+eQweDyY5yHQtGdx4eF8Ms32fBA8KJ0NJ4NrTlv7KRld8zQ33G8G21Ua2N7S\noNzSrPu68lS47iBqjumVxrKci6rMcrvTGl5xuj53m4O2DRjmnqWNuUe6CPaGT8M8WAXUx/nw\nEjgdHAvWq+rSdHvVt9L2cg3rnjssr1lOXXffp8JNezT4EmKQXUGkB+xYDwU85caiQBSYGgUe\nRbFO0Fr3W6BFof/5s94IVR5dJ+K36Jll5obq0Z02dbfbayf7XlZxus18lbbi67rKMfy4TuCO\nuC5qf+hcNw9tBnntQrg47A1dN+3VHsMqvPxma/qr3VWccWXldw2odIZ5vSU8ACqNmxjthkXO\nwp/X81P9loHKb4Qbt3eCmyztV+AGbh04AJppuWxl9yfXz8A39U+Ht8Iz4WB4D7j53hQ079e8\nZ/Naf7WxGV5h5i8zrGiGNcs2vJlGLfuVVWWY382WG5rJMA/XF8HjwHs328jlnbTweqz6NePL\nX23uvvag6hv8+eDLhauhn/lsdT9zHqDVwriptqp7v/tUG5vxy3KxBNhOx76bSzfevlz5IWjd\n+bwe614LM47jhwcux/yDwHs73idiVWc/QToG3g+Ox6r7UvjLutvSvK5yKqx5XWG63VTZTdc0\n5rd9VY7xVU7T34z/CxEnwAtMMEl2L8rZDe4Nvog5Bex3dTHMQ7HXzbpx+a96N9vbDNdfeXRt\nR103545m+6os85Y14yvM8emewUNSrKUCdkJsOAV6DcLhcibVXFRgVRp9HNTE10uD5piqibGZ\nznjf3vk27K/NiFngfwlteH6nHU0dmk1ratKdpnQ1vDBv038D180yjN8JbgQXtNeAbyhvgT2g\nzDzPBeMWh7nxarZXf7Md/fyD6trMY7oqvzvcuGZY3Vt3NSMx4/10YGm4W+e6NvimeTe8GNzI\nbQF+UnA5aHXfRVftfr6JbL61ddNyOPwKXMueDO8AzTo2aYbpr3bpb5p5Kk5/0wyv+ldcuc10\n3f6x0rjRGitNd5m9rpcnsF6kdNez0jfvU2m64yq8mVa/4dIMr7y6rwX74f7wUhhkPlu+ufY5\nLHtWx/O7Cphkt9rVr9iKr/aVewcZKu7D+NcED/0rd8I3wLUdpjkM6kCxIn5fFPwIZrLZZ7bl\n17ADOP/UmKx2lxZE9TXTNNNXHsOk4uu6V9oqvOL8tKyswqpcw8tvnH41d16quQrvhO1mSngI\nPAU2h/Wg7qcrvazq1h03KLxZVvlNX/5mWc1w45vlqsEv4MHNDB2//b0OOHfHBiigULHhFGgO\nvuFyzLxUs6ENM0/V3jXaluB6vvrp3i/cyU4ugPXhbJhNZrs/Oc4GlVblml1/NxWuW29B9f/d\nH9hJ8DPw04cDwcOSb2Otz5fBDY0Liwvh22Fx2Lqdm1bbxqpD9+JZ1+bXyl10tehnrzDzNcP1\ny1jj2BJN40ZCqzJ8I/1pOMhAzA18lbUwoOUP3yr/FKzvJnAGrNG5xll4/9LA637tqjjdamvl\n0y1/pas0XmsVX+0t17jyd5dT4eVWOVWW123NzWFZs/wK63YrTfe9K7w7fV1X+v/P3lmAW1aV\nf/iRAYbubqSlRSWG7g5BGHSQK44CIoqBKNIhKYh/FJDukM6hhm6lY4jhzlBDd4P6f9+Z8+Fi\ne8695+xb59y7vud5Z/Xaa/32yn2uGG7MrdFkOAmWBg/bHdn+JM4PXpScf8fDaXAA+EtST1hn\n/fKZaZ7onxe/UZW0nSruSrhxePdDjHnVwbn7KnhRehq8eFi+mc22t4Ftd356eE510B9a4P2S\nGV8tLY2zfNQR9UZcxJu/mOaD0nyRN+KLz446ViCDF9jusni/vu+LINoZ9UcbDaf9LrbP9Cgb\nrnFFS+uLtDR/+oxifPrMMRTeOyqouD/AfQmeB/fAfElChFrWHZtVrbpzfFZgICswd6Xz6QJW\njx6x+F1G5kWhpw4L9bSlp/JMTsXxhVJ9GtUobVfoVS3OP/cJG4Tnc7gF1od9wAON5uVoS/DL\nsL8cPQVekDwU9ZWpSfStM32K6Wk49UdfivWaJ+J0U3+UiTzhGp/m+5SwG+/r8ByMBPP+BN6H\nsbA9RBm8pc3neAj6I/wD3Md8VoD3izGVxhlftGJ6hMON/IaLlsal/shXLc60ahrUyht11eP6\nK4b11FtXtCPyR1g38LmmR5phLcp4Gfg3eNhaDH4Nz0JnNpYMzrF/wjawAGwHB0FfWfTTvuqP\n8NH4/VMl49M1xfXEsXgm3AOuJ6+Bh077tx94WTRPM9tnNO5jcPzUes9qUc1Cp0iLfOFGvG7E\nhRtphiMu3EgrupGevqPIY5rxrgeuC5EXb5dtPmq4EhZOarL+eEboFmGzpelJsQ69HZWPtHCL\nz4x436d+L3QbwTmwPGwBJ4L73eKwLcSvnXizFRVwQmTLCmQFul8BD+SxYNVbuwuem+7v4Yh6\nC7Vgvmm72GZ1qqZtbBgeVNRfi3xRxk1iZzjFxMS8kEozWbS9u9uU1hu6pHE+L7SMZ0c4XPOn\n/sGE3Yj3gXfAr66al0x/SRIvxnEpxVvKhlLKL9w+e51SNfRuoVTX0CyNszUR39WWxUWx3nqK\n7YhyaXvSdxx+84V/VvwvwsrQ6Lv1Ir0jNJMVNTHsIXKXSiNjbfGDgGN+BvBC+KNK2IviLPAH\neAlaxTxMNzp+6ulbUc96yji2LCcxzqrVE/msM81r/CXgZfYZ6KrNRAV+NIs9pVp91dpXLV93\nxkWfddPnOy7VwHVS8yLkujkGToCDQfMvU+JX//ER+Z8vK9CKF6RV6cKG4NfeKeF5GAMXV/w4\n2WookC4oNbLk6G5QwK8z6YJVT5W+m43h6noyt3ierm7Eoa2aFe16ImaDBeBGcJP0K/Wh4Nfu\nVrTumLeN1JHqqtZR9mP8sfnGOzDOi495dgTjjVsPPCwuA1Hf3fg7OmSQ3KF5UPWAan3RpmhH\nhONZEW+Fkaa/u6xYZ63n+ry0LfH8yB/hD/G4n/Wl2c60X9Fu49J4/S/Dj6EdHoP+aPYzzHEb\nGug6DzTH/mHguuMlcWFw/L8BrWKeA12T0/7Gu2+kD6GPZVJ/tXBH9caz0/YU88dYLT4n8vmx\n6wJwTfKddMXi8tiVOnqybOhUTTc/QpwD/m8T54MnILXP00D2f1kBJ0WrmG09Hy6EOeAVeBQc\nFOvCAzAUstVWICZQ7Rw5pTsUmLGBSlzcXgTH90C4HDUgzZeyxiaQRsZ4/oxI0z08rwMezFeA\nzWA1+CW00uUo+kWzx1sxHPGNuLXqKMaro3FBhHXjg5ppEZ/G+dHKL+ufwBTwazBfmF9zi8+L\ntHpc64qDqX/u8m8wLtoSz0qfEXFk+8KqxX2RWKcnfYZFDBfjIl43LPIU878dGfrIVRNJ2xdx\nNin8zrXzwIuv76C/Xo7o2hcWmth3+3wcuJ68AOriR1rXHQ/SH4H/uzvnQKuYc9jzlL8oaNHf\nCaH6/03Lpf6u1lmsK1pkfK20s0gbAUdG5i64vuN7C+VrPbeQrceDxXaEJrqvwdxwMBwOxm0P\nqcX6ncZlf0WBVhLHL5JrwELgn3AUbSMiXJhcvOsx/wetu0ItDb5VTyUtlseJ7iTJ1rMKpBp3\npLlpv4BjerY5TV97RxpF40NT84YZJ34F+x38GfzS6xfcVrZqelSLq6ePoVfoVyxTrNd8aZlI\nN961MtKiHuO8FJnuIf9aaIfdofgeGvlwQPH/MZ89fSV2NG581Y+M1fpYb1zUUcsNHTpKN634\nvGK5NKw/bObwdJObPqezKtN2pHnti5fQb8NlaUI/96d66G+HeeFPMAS+A37Q+hGo0fwV13Xo\nRHAtaiWzD5PAyXA02GfjesuqPc+4sDQ99afp4bfdb4K/VnennU5l3wDnQ60zY3c+r9G67Lfa\niGNT9xZwrM4CD4JxXwfPG5fCItDXv1rThOa1ZnzRtdSal4Qr4J0aGa4j3i84s8O4GnnSaDfa\nNaCWBt29YaXP7iu/kyhb7yngglTNjPfXDhcnD5cD1dTBMVltXEZaaJOGXydyF3gInKePwLug\n+ZW31S3Vw35radyEmPr+rVYu6izWEBpbJvKkfi88HgL9dchNOMz19q/wF/igEjkd7h/Bd3UX\nrAL+efQtUNZsi22YFPzA5WHFONHSNk+ImfBv9CvyRP7Ik6ZHXNEtlimmRzhtg2UibHrqNxzp\nxr8PMxjZDWZ99bY3Hmd+587YCv5KsjnMB5fBQLFUO8eX43d+OAq84L8Nrtk7w+9hbvDXpGnh\nRXgPWs3cizwPzQv2XwvXcVHGUh07K1/tGcZZR616on3V6j6CyA+rJZSMsy2LgR9k/CXJj+eu\nf9XaTXS3WfQxtIjnRbwPMi7iwzVdNgF1cFz6C5J2IHwHfgZeJD+BbDUUqHU5qJG9T6Ov4elu\nuCfDnYWWuGG6WLk513M5svhYWFtPDRtK/DlV0hx4h1SJH4hRO9Hpjfthx1enT+90oV9urLGI\nxaIV1RnvV/YHYf+IbCF3tm5qa+hTqzp1M0+4zutbYWwl3i9hojXTGPSg0VVL+23/u8tC87TO\niAs3fVbE+WdDHgz9+GRZx/f98A/wwmK6/d4Lwoz34DgCLGNdr4Fly5r1DAbr2KHipn1J/SSP\nN58bz9etlifiIu+EkvX9m5aJetKSEWe+sChjP+Ki6QG7Oyzq7qgu87xRyTAZrvumZwHbcxe8\nBT8G98fLoRn2u+7Sh+78j4Vmulq4vrup4SaYD7ww+pG2GfSgGV/Yyvg8BJc1L8b21Y9OxfEa\n2qR1p/oYXy1Pmr+s37ZYd/q8aF+kRdhL3qMwFewB7g2O8W9CV8158VPwMrECGK5m3a1D9NFn\nRT/DH5qEm6ZHO1wrvcx7SXKdeReMc077p6L2Y1fIVkOBVrogjaUPO4ILlAN1HLiwTwfzwHOw\nFXSXPUxFTri5wMHlIvIS+NxloZXMX9dWhPR9+yXYQ04Zs+xZMHOFMnU0cxkvR1d1oYF7UvaP\nkC5aanYf6BrfamOIJn9h/hlr2S90D1HWOeS8LZrzejR4GHfxjsUf73ibnn+lme1OGvdAyQba\n/3NhdpgV7KtzdnJIxxLBTk3tPDSoY7i+M8PisxyLpnnB0fwzG9N8puudm2uU9flPgGXC5gtP\nDdf3LJaNd3l1jbz1RF9GJr/iTgq20XoD2z4YTNMV8xg2jxbuhNCEf+MwkcalftPVwn5LPFed\nTNPV9Kvj++Dl0D0j2mYbDJvXPct86h9mPst7oEvjI70e1zH3MlS7SPi8seCzbVu0Ge+XzL7N\nVcGEG8Gxt6yBPrbbef5DJdvguL8NlqtS3nf6TgV//VGj0Cfete9nBrgJmkUPmvKFOW6u+SLU\nuMfDsmZ/HafiPJsSpoEYv3jHx3upjvGtVuZVo87MMa7pqruma9g55lqj63i1PsPpGhTpltGv\nxXOjbuPGwEwVvBScDfE8vA2ZZ6QbwfXEfrrOqFP0W428lE1RiY8xQ7Bus+2B/VVb2xsa21ef\nJ2qja5plXC9Mt5xz2zjTtSgf+ayzOJdvJc6zbrYqCsTgqpLUtFFOWH/unB+cBK/AGPDwmS0r\nkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZ\ngaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXI\nCmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxA\nViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQF\nsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViAr\nkBXICmQFsgJZgaxAViArkBVoDgW+0hzNyK3ICmQFsgJZgaxAViArkBXICmQFWliBVWn7hjA7\nTAnPwxi4uOLHaQ2bqDWamVuZFcgKZAWyAlmBrEBWICuQFcgKNKEC3ifOhwthDngFHgV/iFkX\nHoCh0DKWf0Gq/aoWIekwGFTJolb/gX9Vwq3u/JsO7A8PlezIiZSbuWTZZivmxBbfr+a7vgJO\nMFDCdqDMpiXKtUqRt2joD8Ex1Kh9jQIHgXo3i01caYjvP9bEz0s2Tk32ATeGRs1nnwQzNlqw\nRn7XLuvsjn7VeETD0VdSwj6WsR9RaKMyBXupTFfH0Ru0czjEOtRIs5cg8wHQDPPKNkj0wzHo\nvCizXlBsvFl2L3h8QrChf23LyTB9J6V8f2mb9bfKfn85bT2lk/7VSt6RhA1qJXYQXxzvzarX\na/TBtaOMLU2h/SD2hTJ1dFTGel2n+2rcOa9+B09CV80xdDosBO9Uqcy1+y8wX5W0pozqqZfe\nlJ1tsFHedH3Zf62Umxx3a3gObqrEtbLTRuN3hzKHFRfGz+ACeAla2Wah8duCB7fRlY440e3X\nmpVwo86lFJgHbmm0YAvkn5U2qtfU8H6J9g6jzHFQZtyVeFynRVy07Ys//38KHqb884Bp4Bxo\n1HagwM/htEYLkn8y+AjOh3HQFavWL8f1dHB2VyruQtlVKPsybFyyDufobHBbyfI9WWxLKveQ\ncxl4qPbQszloF01wOvx3dlK3AfeZjzvMWT2xjehjoOwhuXqtjcfOTZEt4BJ4vlJ8flw/GDmu\nff9lbDiFdoazShSeijLvwbnwSo3yPyD+BbgBfI/Oxe+A89C4ZrbVaJznkhhvjbZ1BAX8KHN7\nAwW3I68Xest6yJ4UnANvwzXQLOYvGZ7bJoHPSzTKcXcEnFaibGdF3Gt+CM9AnCmd/64D7dAb\n54cf8xzbcB501Xaigm+C9VUz34HzacmKWy1PjmsRBYbSzuJivgtxDtz+YE/TCSd/GZuYQv+B\nIWUKN1mZfWnPfYU2HUK4K5vipZQ/ulBnfwkuR0d89x46ytgwCsXBqUz57izzFSrzQvLtQqXL\nELaPbq6NWjsF2hotVMnvocznLl+yfFrsAwJbpRH4lwLr9xDbF+ZBw0tOWbOsdTSbORc8JK5e\naNialfgpCvHVgr5z341joIy1Ucix19fmund9lUbcRdxBVeLrjXLNcO0oY74ftXXtqmZLEGm6\nH7VSc3/0Q1mzm5q755Q1LznuefXavGRUr8ULBTzYv1eI6+ugZxTb6pmljDkGPCv1hMWcn6lQ\n+c8Ie2nqDfPC4lm3O8xx4b6zUpXKvEDvD2OrpDVtVNlB07Qd6uGGeaBysmXrPwr4Pn2v2Qae\nAjGXi++/GG5VZYr9iHD0u1X71WztDj1D32if4UiLuP7u2t+iDva5FbQotrsV2tyX4ynr1TX1\nY23oLzqORY4d4Qr4BLx8eWGaDvz44K+cxY92RDWv+RNfttoK+HPnoErybLi7QVe+gFaqyk4T\nKeD7/Dp8J2nTvPjz3EgE6cde3/9vYdpKHwfj7gf3Qyt8PaaZVS365eak2a/94UF4AbJ1nwIe\nAm6CvWHKSrW6e8FI+LASNxAcx90asF7SWf/k7lvgwakZ7XEa9SwcBPHReGb8vwL7k+3LCngQ\nfgRcT/xlQJse9oCsl2rUZ+4xL8LBEOcN/9T259CbOvqnb/5yXQ3TGrGzyDw/OOf9td//GcaB\nsA74Fwz3QctYLAYt0+BebqiT/0nw584VYDS4CWbrPwq4SO0L58Mv4DNYBW6EbP1fATejW8A5\n/g/wz22c9y7orWx+zLFf/nmI/Voc3ABbvV90oSltR1rlJUm9vYQuC64la8BAMi+E/snX1XAH\n+IFxRfCQdC80o/2bRm0HtvkpcM93v/eL9+8g2/8qsD1R14Hj3QvmN+F1+CVkq0+Bz8nmuPM/\nsOE6MRqcK45BzyS9YbPykDMqVHvef4j0YvNotcQaccsQ7/+Od3bwQ9HzMAe8XPHjtIblC1LH\n7+kdkv8G/np0DpwHn0K2/qWAm/e1sBm4oTuhZ4Js/V+Bl+ji0jAMFgPHwZng/wC5lW0cjXej\nin5dh9+NsNX7RRea0rxgewn9PiwAV4Hj6F0YaPZrOnwZbARePvwl5m5oZruTxi0Kzpc5wQ9m\n58InkO1/FXiAKNdLD/jzwMXgrwcfQbb6FfCjSow7Lytng+dMP670hjk/LwQ/alSzz4l8rFpC\nlTh/BXPOeNkbAS/DhzAdrAt7w0/B/rWE5QtSx6/J2/PhHWfJqf1EAb9uxhfOQ/DnC1I/ebF1\ndMNF3A8h/c36a7+a9T15GTq2WRvXy+26jedJK5kHuiNbqcF93FZ/Map1sO7jprXU41+ktYf1\nYYtf4dn3dMPz16MOL0cLgT8uFM0PJn+BlrkgeePLlhXICmQFsgJZgaxAViArkBXICmQFyigw\nL4X83xlWuxxZn3/FMBX4p3ctYfmC1BKvKTcyK5AVyApkBbICWYGsQFYgK9CUClxDq4bCSlVa\nNylxe8EHMK5KelNG5T+xa8rXkhuVFcgKZAWyAlmBrEBWICuQFWgJBcbSyh3BX5H83+55EfJC\n5P8Gyf+d2nOwFbSM5QtSy7yq3NCsQFYgK5AVyApkBbICWYGsQFMq4H+ow/8qn/8Bj/nB/y23\n/xunMXAftJTlC1JLva7c2KxAViArkBXICmQFsgJZgaxAUyrgf6zG/+hDd/yHH/q0g/mC1Kfy\n54dnBbICWYGsQFYgK5AVyApkBfqFAqvSi+L/D9IY4vxPwT8PLWP5gtTxq1If/78s/P9B8r/7\nfxT4nwLN1rMKDKb6XWAd+BgugrMgW1agrxVYhAbsBv6nTP0/9vsTPAHNYNPSiJ/DyvA2nAFX\nQrbyCvj3875v/4fHb8Fp4P8YOVt5BfwvWf0MVgO/Np8Dl0Az2GY04nswLfifKT8G3oNs9Svw\nXbJ+ByaDG8D/tLP7+EC3zRHAsTUN3Ap/hmYYW/7/fjkXq5n/P0h3gf9/SZ2Z/9G3c6Hf/P8g\n2aFstRWYmiQ3yAfB/4b7A+B/yjBbzyngf+3kevgdPA1vwolwAmTLCvSlAivy8PthqYr7Ndx/\nwirQ1+Y65Ub2Q3gU/gWXwu8hWzkFZqCYfyayPTxSqcIL528q/uw0roCXozvgJ/A4+D/mvgAO\ngr62fWmAH+M+A9v2Y3BOeaDNVp8CXoZOgbfB/XsPuBEGw0C2A+j8hfApOLZ2AueBZ8y+NO8A\nW8LNHbAYafXYemSK/x+k7+N3ndwPdgPPz66jh0K2fqCA/7nCt5J+eHB3sTw7iWtlr4vX8JId\nmJhy/4EhJct3VGxHEr0UzZ1k8gDqgW+FJK4nvYdQ+YguPMCD6dFdKN/MRZejcb57DzplbBiF\nWupn9qSTXobOgq8kcafifzgJt+NvS8KNeP3iqrbLN1Kokvdg3GfBL99h2+LxsJfOpUjrC/cI\nHtqVX7Qsax29ZYfzoKcgPcS48XvImQO603znvnvHQBlro5Bjr9ltLxro/PfyGbYZHtf3hSKi\nimsZ144y5lqltq5dtcz/Qblfy7dKMkyHfwzsn8Q1o9e9xj2nrLnXued11dT337B6UpHz5HXY\nJYnrTa9nFN+9Z5Yy5hnJs1JXbAEKO76/nVQyPf7nYJ8kri+8jnl/Je0O89J3cgcVTUKaY2H2\nDvI0VZK3x2y1FfDrVpiboi9/tYjIbo8ooL4ehNwQw27D8yhk7UOR7Pa2Ah6yvg4ngBtu2PF4\nlgQ3vL4058Y58E7SiHPxvw898SEjeUy/9aqpH8TeS3p4Jn73hRWTuOytXwE19RcjP4KFXYbn\nVVg5IvrA9dlvwYXJs9/Gfx7Y5mydK6BOo+DmJOtL+C+HgayhY8uLwcUQ5lg7H1aPiH7g+qfH\nQ2GlKn3xB4a9wP/s97gq6U0ZVfZW3ZSd6YFGpV+KrX4mSDfLHnjkgK9SfecuqOB78Itj1r4g\nTA72mgIeiv1IMmPhia4Jn8PHhfjeDjo3bEtqUxAQL0nZGldA3Yrv24uyv/LktahxPS1RbZx6\nePJXur4cp7Yr3m06l51T+V0jQh3m+/NDkR/e/SUpTA1fi8AAdGNsDabv7iNhM+LpT2NrLP3Z\nEa4A++lFyAuRv8TOA/5ithW0jOVfkDp+VR4upq1kWRb3V3BuJZydnlFAfdeH7SrVD8I9BFxM\nuvJnBJXqspMVKKWAf6rm1+U/wLyVGrzIHwqOy48qcX3lOG/aYJ1KAzzEHwd+qR9ZictOYwqc\nQ3b/xGaNSrHJcY+HV+DWSlx2GlPAcbotbFQp5uXoWPBScm0lri+cG3ioh1X/NzSDKw2Ifcg2\nZ+tcAX8p8qJ7GLhva/GuB7KG16PDh+DYcrxrG8IwcI3pT3YWnZkftgD/HPoCOBDcl5aC+6Bl\nLP+C1PGr8gLpZvgyeAP2gHQIZOs5BW6m6t/CqXA4eNBznLrQvgTZsgJ9pcCuPNivY6PheZgL\n/gk7Q1/bGTTAPwH0kPki+CXXTXnziouTrUEFTiG/mt4IL4C/YvuVfDNIf2UgmK1OBf5OvuXA\neeR6Pg348WFLeBf6ynyvtsE/g9oa3oY54Wjob4dYutQj5jlpKKjXj8D1ZxbYC7yADlR7j47H\n2NoG/zvg/zbrj3A+9Ddbhg55AZwdpgT3Svvr+NDfMpYvSB2/KhdNN0cXSie9N2EX82zdr8AG\nVCmfw2WwEPjl9hPw0Pc6ZMsK9KUC/hqzMjguHZ/TgQv/7+EK6ItfamzDD2ARGAOrwmLgAW8E\nuDlnK6fAShTzIuTX7zfAX43U1H0hW3kFfkvRi+DX4KXzNngU+tpsx1rggd6D/YngR7ps9Stw\nJVn9BWE98OOmv6x/C46Ba8D5M9BseTq8CXj59nL0JNwOo6A/mT8ouFa6P/qevRB5SXaPWhf2\nhp/CedASZoey1VbAr1tLgZujX0TuBRf0bN2rwN+o7nJYGJaGm0C9/YJ7NuTLESJkawoF/kMr\nvAgtCQfDorAEXA9HQm+aB5FH4FcwMzhnLgXXKb/U58sRIpQ0N3MPzF+H6WFH2BT8m/psXVNg\nIYo7TleEd8EL/mPgPOpL81B/N/iB4S34GdwDvv9s9SvgeckPyr7ns8Az1CJwBRwPA8n8CHAX\neEmaE3YFLwtPQX8z54+XI9/79+E3sB/sBhvB9nAotIzlC1LHr8pfLzwIfRs8CE0CB0G27lPA\nn2LdIJ1Y64Nf8PwTlt+CX56yZQWaTYG1adBOoOumsA44jn8BrhG9ZcfyoHbww8KW4Bp1O5wM\n2cor4IFuf9gGXJd8t/5yuDW4F2TrmgJ/pbhfzz00x7j9B34/lPWVTcqDT4OTwPe/BTifJocD\nIFtjCqxA9j1gU3BPd29fE34IG8BAMNflw6AN/GXfS4IXJd3vQX+zeemQl+B3anTsOuKngtlr\npDdddL4gdfxKPibZL8aaX0X+DG6W2bpPAfX067sHuzAnmRvmQNR6R/rdm4cwF7VsjSnguLy5\nQpS8Fs9dMDgietgdRP3rghvwh5VnfYZ7ECwHs1TistO4Ah7g/EXDX+HC7sNzFQzENSk06A7X\n+eFB+VD4qFKhHyIPhhXBP8fpC1uWh84GXoxjz38d//9BfueI0KCp2b3gnAm7Dc8NMFD09FLY\nDmdA2EN4LoZm0eArtMX9wstsNX5JvJeaeuwaMg2Flapk9gOEf7r6AYyrkt6UURM3Zauap1Eu\n5r7MGeEJuAX+Da1oTgS/XHwTXoNmuBzbBjcm8TL6MLiIeribpwLOgLFp6elPwHF3GfwLetKG\nUblfS3/Tkw9psrpXpz2rwXtwEYyFon2LiK/Bc3AzpHP+u4S3gxngMfgDnA1ab66nHuJsl8/0\nouTFyHfpoU5L2zwhZsK/bnZbw3wwCi6ET6GWLUiCG9474OHGDa6/W+ha7KeX0lTXLQnvA4vA\nGDgc7gK/mvtLopdmL1Zh8+NZGd4HtXQMtpJNTmMdOwvAM3ABuG7XsplIWAtc528CL56uNe5F\nJ1T8jj/NcRxjenxED/+zMPV7IXON9SC7OWg3wy5wK2i2q6fX4fEP6kf/rE5f2sA/KWuH4+BI\niHnVmZ6OD+eJa4/jqQ/UHQAAQABJREFU7HZwbGjOwS3Ate5FcAz655DNaPbT8aNNBgeBvxw5\nL16FJeBR8Ey2OLwAzpPO9CHL/5h/6bQxONeuhgegXnM+q2k1+5zIS8A1qzMbS4Yd4Qr4BMaB\n+4UfPeYB99OtIFs/UMCbsANV3Mhi8XZCtpo5Oa+Dj+BOeB4c8MOhjDnp1WNImcKVMk6ay8E2\nqfE54BdwF1HDuk5OD59O+t60Q3jYiC488FLKHl2ivIvL4XA+eMgKs//bwR9gdQhbE49xHlom\nrUROjfsT+D4MrsQthLsu7AZ7gQc107wg3AoeFOq15cjou5+q3gKFfMMIO/5629x0zwTH2NPw\nEni4SxdsD4BXgv1z83X83Q+zg7YDWN4x6fi8ELxcGG89xrnJtUEZc5767OVrFPZQsC2sDPbn\nYhgFtvMEsA1PVcIH4BbNcfAcvA63g5eeR2AWqGaHEulcdDN3no6DFaCsHUFB9S1rlrWOrpr9\nVatNwPlStMWIsN++17DV8fjuLaNtA+p+FBh3EJhuOS/O/wTHw2Gg7Qfmfw0+BDVdFcJ85757\nx0AZa6NQe5mCdZaZl3zPwJtwGzh2nENbwkRQNPV5H94FD7DOE/VRp3sh5tdQ/FPCSLgJaplr\nxrBaiZ3Eu1aprWuXdiT4bnwHur4zXdsn+neHOWEMmL+Zzb3GPaesjaDgIWULJ+Ucw/uBGl4G\n6uha6VhRww1ArdeEWjY9CbeCZR0jureA54Vp4G5wXN0OL8MrsCzUsiEk+O4nrpWhk/jhpD/d\nSZ5ayV8lQS12gSvA8eaZx7ng+vA2XAe2L+bDQ/jngkbMsapOD8MDFf9+uPWYa9Ix9WRsII/v\nybHg3P4pfAe+Cdn6kQK+3Fg4HdAOYgfhaGg125cGu5gsWGm4i4UbtZO/jFlePVx8ytgWFHLj\nVM+PQX31q7eHB/2XVFzDP4LeNDcLN42y5mblptWo3UOBZWBjuCYpbF1uNG4sd8DKoIbmd9P5\nG+wFU8GT4Nj9CbiZaB7g3oOdYRg8BjPCoXAOzA31mocM373PKmM+38NOb9sOPPATcKw59vS7\n0Tq+ZgbtT2DbljCAzQH3wbXgheQF2Bu0P4Dj9DmwLv37QDu0QRmbjEJq6+aS2qQELgDT3gCf\ndS84Vmz/R3A9eIFxo90dnFduVKndTuAGiHdnvx+Ec6FojiG1cuxok8NZ4DOmgDJ2BIWuLFOw\nUsay1tEV24nC6uV8UCP1XBeKthsR6nw/OOdcm46FMA9Nzp+wxfCYxzHl+qhtCMY5Lj6HrUDz\nPZ8Er0O8I9+579e0MtZGIcdeT9kIKlaHGcBxYFs9/IVGc+EPWxCPc2JfmAgGgbqoxdIwD4yG\nDyq8gus8slwtc14Oq5XYSbzj3fa6dm0HvvefQcwl+yCnwTtgOw3bvrsg5gvepjT3h0u70DLf\n7SFdKD8dZUeCGvveda1zP1BH54quHA4d2dkkPgFfrWRaAHcUOOacf46bOUFzrlwE5nd9rmZD\niLQ9E1dLrCNuOHlsf1nbiYKOJ9sgaqB7CbiWOi+WAm02uBtuMlCnLUs+63Rch30bj3ErR0QH\n7uekHdNBeqNJ7lXO0yNhpUJh1w7fb7Z+oMBQ+uBk/wwcbB5E9DugWs08BO1VaPQzhJ38ZczF\nxknu4tOozU+Bj+EasA4PYeor+l3oXwVtJDwMVxnoRXOzGNGF59kHN61GbAkyPwlzwDzwOsQm\n4UbuYVZzEZ0dfMaWoHl49YDmmP07rFXBL28eSDaBWyHsMjybww7Q2YYVZcJt1QuShzvHmGPe\nzVTNfMfGuYGNAQ/NxTnhGHecLlJxH8cdBcfBBnAimL4maO3QpqeEueFb1/KFsocSfhm+UYl3\nfPwTrgUPdLbF9+i49T07j6znTLBOzfFTrFsd/gb237F3GswL2hVw0njff/+ZAu/H4HgqY319\nQVqBRvu+fwoTwWD4P3gXZgXN+XIDqOFbcBccBqtCmIcAtVw9InD3gKfB+LkgzHHnIchn3Agb\ngWYdjretDWC+c8vG+zKuEWsjc3sjBRrIOyV5HSOuK/uCa9OKsD58Di/CJ/AZ2F/Ho/MkbE48\n9u0hOANcz58B22u872Nq6MieJ3FYRxk6SJuKNJ9j+51H9sVxYNt9x74X/bIDuOe4358L7nXN\nbkfTQPeDsuY66NrRqPleTwTXIPU6CMbB72AsPAsfgWND/XeHjmwwiebdrJDJvcp4x9mOhbQF\nCVv3ooX4CA6ppJd9j8Mp/3RUVodr2x0/jqV2+Dk8UQn/BXdNWBZeANeYN8G58gDsDSuC/VHb\nemx/Mt1XJePNxB1ZJb4YZTuPKUZ2IfwIZZ3n18BnsA+EzY3HvrWMTdQyLe2bhg7isQ7y++ED\nMNyKmk1Cu11gmsG2oRGvwDqVxrhQvFbxxyLmwqqZT81tf383N2YPUifCceBG7mbgpuFC46FE\nM34cTAuOTe0jeAKWAA8DK1cYiRvaPY0/7EU8M0Sgn7iz0495OuiLaWPgJHCR9rC0NmjXghcF\nD4I/gY3Bcac5BrU/guVGwwkwBNzw3BA8/N4CPWXfp+ID4R+VBzyHuyv4y4djwU32ZPgpOJcO\nANtq/26EX4GHDC1dB/5E2LrN+1fwkHEvuJE5vl6F1DwEOUZNq2advYNqZXozbjseNhKOhX+D\nWuwGXlS2gAXgVrCfW8GvYU5YEowP82CjNstEBK7zzPXLC6Ra+36+B17KJgIPMWPgcmgD63gb\nZoUFIcYb3qYy22X77IN6bQ+HwF1gX42fHLzw/RjGwHBQw7A38LhG2Vc1UaejQA0de7q+g542\n5/4s4F7u+9d1LPsefR93w2Zgf2zzKPAAme1/FfBd3gPLgevmFfAzcBxsANPBvNAGB4Hm+HB/\nWgCmgaJNRoTli+vOK5V451i6fhEcPwZ1Y5/T31fm2LkIXGM2AfeUP8AioB0Ipj0Il4DzYAo4\nHS6GXSG0Up/5YSboyKyjqIn5nZu9rYljwTm1NDgGvAj+CFxHs/UzBYbSn3+BC6mLuG6At6Xs\nj7T2WfgNOBmPBA9Sw6GMOSnVxENio3YYBdwMQ0vdor7mcdN6G8z7S+hN8wAwogsPvJSyRzdQ\n3oVsHMyRlPGw6kYxGC6Db4HmYuNG9AvwfWrfBBdm3WvhK6AdD25GLta+f9+bPAlLgAdGx0Yj\n5iLo+3KjK2PDKPR8mYI1yrj5eLCxTfI4rAjaYnA4uPk4ltxIVoWV4CEYCY4/NXgMYr67uXig\nnREci6+A+TxgvQnbgLq+DB/CdXAmWI99a4My5gHBPixfKPwR4S0KcfMRNq/P9RD3FjwHG8MY\nuAAeAPM8De+D/boCBoHPsE9e7p6FBcCxcT/8FQ6G0TA1hNkGNXLjTm1hAneCz5JRUG1tOIL4\nK6GsWdY6yto5FDyjSmF1+h2cAo6DhcD2u7mfB+r0e4h5hXd8/ndwHc9zgvPSfOrzPKhdhJ/C\n71yeHo4Bx+JOYPpnoGa+B13HQBlro1B7mYIdlBlKmuuS7bKtjiHn0LFgO28G0zaruGvgrgIP\ng2PSNca1bXewn9bhGNR1HKrfSFAvL1qOyY1gdnB9+QWcCUfCS6DWZcy6bOenoM6+I8O6tiUw\nbB+db8ZdDbvA5JCa7XMNmTWN7EP/0TzbPaesjaDgIR0UXpg010Hfhe9yWvCdOFeWAbVcB86u\n+NUuNHYsqKl5dcX8jo/TYUpIzfwnpxH4T4GHwLnr+hRrkvPxOHDdGwTVbAiRPs+1rYwNp9DT\ndRZ8kHx/ruR1jOwH/wSf/wzcBc6VMZCOuXbCarwJxBh0z7GcXAOzQTVblUjLrJkkrojfsb5B\nElfL63twTeoOU6v/K1S0GOE3YHuYG+xPtn6ggJuDgzgGaQxo3VazeWiwBzknUju8B04MB3QZ\nm5hC6uLi04g5yR+B0DTcVGfjQmvbezMMht40Nws3jbLmZuWmVa99m4zXVcl8B3HfhW+B7THP\nleCGPwucA9fDzbAsaIfCLXATRBtceEeBm4z67wHa0uBCvJuBOm058vmObEMZG0YhD0TdYbbB\nuq4F27U4uIm/Cz+ET+AtKI6v4hhT57thSzDtUfBA+wJ8BieAm+Qg8GBgveZzDukfB2fBXeA8\na4My5qHTepcvFL6BsGPKA0HYfng+hmLfDI+EU8E2vw7fg+nBw4X9eR6cW+YV+2Fda8BecB+Y\n3zHzLDimTgPLHgipecAZC9fDN8B3cDq8B/NBakcQcPyWNctaR1nbhYKvwaxJBY4b+38hqIX6\np7xD+CPwPf8dvgKa7sFgmvnVxvLqejU4JgzLvRXXPFG38da5KSwAR4FpjoEy1kah9jIFa5Tx\nwGVf9gPbFn0zTt6Ht8FxsweoQ9o//R9UiD7rRh7rU8+lwHgP0LpqYh7f00twJtwDzqthUMZc\nJ6zbtvqu3wSfL8aHW/T7TNePB2Aa8N2cBpFfHY6HSaAv7Wge7vpQ1kZQ0D2vmq1HpO/Wg77v\n4nl4Fu4G95PQQjf8qY4RH65lHO8bQTucD6mtRsDnjYQD4aZK2PjZ4RlwXXbvexAcY2tDLRtC\nwn9g4loZOokfTvrTneSJZC8lG8OS4Lr7JLiu+HzHnu3WH4QmjnfLpvHhv4H4+0H9J4Jq5qXM\nOlwfLwPrOhnqMefDMfVkrCPPnOSxj/MX8g4h7FqxG9ivbP1AgaH0IQZw0W217h1Fg0fD7nAq\nHA5uQE7+MjYxhRzoDvxG7A4yvwihp5M6/OG66fhFyIXQ9O9Cb5ubhZtGWXOzctPqbpuiSoXV\n4tywJ03yekHyvRtXPID5LqVe80Dpu/fQUcaGUchNtis2OYUHww7gRjQlhLmJjALHjhuF4+op\nuLziN+wYizQPP8atARuDG8Yp4IFNv2Ph4Yr/YNypK3wNdwy48E8HYc6rtgg06Ppu1Hb5Qrll\nCXvhuA32Ajdd+2C73XivgOtBLYyzb14Sj6uELWsf9gfrt1/RfzfeG8D6fC/2/SrQ7NeBcDO4\n8W4FRdueiDdAXcJ8Bw/BHyKi4h6B6yZe1ixrHWVNfe+DF8B36RxVJ7Xx0OxBRP0uqLjqfXPF\nvzOuB2b3hdSmJOBY8L14IFoHRoIHfd+NBzjXs7Fg3aMrru/B+l4Fx5Dvwbji/CSqLmsjV3td\nOTvPNA1ZHFPnwqLg2LgbbKdtNCzqE2H7siU4N68G+22e10AtHHsxLh3fF8FZsAWoyy0wH/wK\nHE/GXQyhh3HDoIxNRaFop/N6Bojx73NMS8POj2PBd6LfA7tzwrgXYW3wvW8Ivr9DoS+tpy5I\ng+iUc+WSCvfgngG+U9+t2t0Mvlv9YrzjJMLv4/8pjK7EqfP8oK0Gaj+XgcSWxH8q3AqnwBIQ\n5tj8JZwGri8LQEc2hESfMXFHmTpIG07a0x2kp0nm2wfugzFwL6hZaBWaOGY+A9eesWC8bXSs\n6Vc//TuB6edUwmvi1rINSHC9PwE2q5WpSrzPOaZKfNmowyjo3HdupLYugXfAfmbrBwq4EcaA\n9qWGX7fVzE3h14VGO5md/GXMxUZNhjRQeJlKGTc6y4amTtBYQIxzMwo7Hs/1EehF10PxiC48\n71LKumk1i21CQ07tpsYsRz2+Jw8dZWwYhZ4vU5Ayi8Mt4Bx03IwCN6PUJifwHtjGj8HNyIOr\nZa4BD3L6XwbrcJMy7y/Aw8+JoHnQNZ8b/F/AfC78D8N0YH7T/wypjSHQlkY04PcwaFuWr1Jm\nEeJOgScgNhqf73yZAVYC++MBxLbGnHoF/9bgIc6DqvVbTh2ci+1gHsOmWccWUK/tQ8a7q2Q+\nnbizC/FHEL6yENdI0LLW0RWbksL7wu1wI+wC9n9XuA7UzTHmGP0MHgT18t2rj9p7ESja3kTc\nV4m8EFdtzauejkHLqrHPuqES9n2YZxu4phLnGChjbRRqL1MwKbMV/tFgW233TWC/9KvJMHBO\nvQXOMfto3xxzJ8Fi4HhQQ8taz57wDGjHg2lefBwfI8E5Z765wPf7Jlj/WFCfm8H95gXw+WXM\ntcpn+Gzfpe/ZsBjW9d3YN8Pvg3lHg/3zgmvY8TAUUhtO4G34ShrZy373GvecsjaCgu55RVua\niNDtPPx7g31Vo9DNd6RujuPQz3f1OaiZ+h0Ophl+GfYCLd7LShOCPfLvEGq1D46hMub7fbrO\ngjuTz/XY5z0Drn+OK7UaB8brd015ouKPOF3nkRpZ5iY4BTYH41+CH0B3m+/pmG6udCbqm6VK\nnbMTd0CV+KaNmqhpW9Y8DYuFL9zmaVn9LXFhnxlcCF28HoMpoDdtCR7m4jA9uBiImjoGYxwa\n9zgsCwvBGHCyZeuaAh4IdutaFX1eelZacDN4eFkLNgE3va/DfjAKPNTeBTG2B+OfDp4Dx9p6\nMGnF78Z9KrhJa0fCleBBeRDsA9qa4CF6NbDMkuDB8EBw0xoHvWFP8pDjYAFw/noJcj7ZVuf1\na7BNJTw1rnPKQ4n6XAC/BQ/wzjHtebAf84CbWRzMLbcu6NZjbvTO7dmSzNa1MjiXnb/fgBmh\nGcyLzv6wBdwGa4Bro/GTgIf3pWAucHzNAersAfF2eBbOhw1gOzD+HFAvtXaczAe+A3UwXg20\nyUEdHDO+h2vB8TgaDoe+tA15uH35O/wQXodV4FegeWnZEpxTHsinhH/CouDc2gF83/uB41M9\nNcfHV+EIGAaa2qud2j8HHgCXg7VgJXgFHoKxoKZDoTvM9vmsdQqV+S58174L+2LfdG3zXWB7\nfO/msXxqowhMCx7+9oQL4VhwD+sv5tj0HajFNPAvUB/NOeOYMF6/8XeC64vm3Nod1E3eg3lB\n2wWcW3vAr2EqqGYLEHkUXAq2ZR5oRjuORnmZcjzZ5u/AGeAcco01XvPiuch435f/UT81VhP3\nLcfUU2C8fsdvmPX5Tk6CS2B/iHUG7/j3YPpZFfTHO8P7hRm3EVxcgwuInwMaMdeOV6sUGEfc\nPlXic1QLKuCAcqA6qEV/gLel7Bhaa9s/ByeZByMXueFQxtwo1MSvM/XYemTykhY6hht6hmu8\nC6iuvA8ePnrbDuGBI7rwUBdyDxH90TzI+G5qbWad9dlDUmyeneVN0/chEJuFG4btWB1i7LyD\n/8Uk/HHFH2PJfG7Qbt76PcDdDg+Cc92xdh/8FR4G031eao77y+Fm8FB0ALjoLwia7XoT2qCM\neaC2vcvXKHwl8bbTA9sDYD+if7r3VuLexXV+q0k72OZ74BMwn+VcC9RIdwyY3/jvgeV3g3pM\nTe6Hx2Bb2BxuhpfgdLBen+lzPFDbh7JmWQ+tXbUlqcA10E38LPBduz5dBK6P6hg6hcY/Jc4+\nrA8ngWUt5wHobPgIRoFjTL/l1PsOsFzoexV+y1p/aBP66DoGylgbhdrLFKyUuRvXdcv3brsM\n2277IY65aK9aGfcgzAH22UPRW2Afoj/mnxlOAPM/CZaNMaw+K1TiLsG9GTTXX9MuhMvA8m/D\nMChjrlW26cdgO+L96I/26pe0z48Qtk/Ohz0rac6l1ByPoyuMxT0RbgH7+R3oDTuah/juytoI\nCqp50b5OhPo47xyXvo/QSdex7btM43znjgtd4++EjcG11XDo/UIlPAb3JHC9eBSmg9RWJOCZ\nwLXDtfkh8J0sA/XYEDL5TNepMjacQk83UNB+2UaZB74Ke4FtSHUq+t03XgfXE9dlx88F4MXF\nMXkreJnxPZwC6ht1qrdt9NnzgmY9jvNz4ZyK/0zcolnPA3BMDf5I/IyQLSvwJQWGEnIQOwhj\nIMag/lLGFgg8TBudCG46z4IT0U3NyV/GJqaQmrj4dGSzkehhODQMHcMNPcM13sPWPmCbbW87\nDIbeNDcLN42ydikF3bT6o3kx8T1NVbJzwyhX5oLk4i7rg5upbRDHjhuKboRjPIWb5jXuOXBT\n0W992oIQB43D8e8OHgod66ldQ+BvlQg3q+vB53sBGQcfQBuUMeuzrcsXCrsx2ibbG33xkO0m\nGn1MXQ8QzvE4vDj3baMbrfkMhxuaGWeZP8OB4DxMzcvfN2BZGJQm4HcDPR08yPicK+AUeBk2\ngulhM/gQroaydiUFu3pB+iF1RP+j76OIUw/b57oo5pHIE3r5fp8Ew1tB2IZ4jHPNCp0Nq4ll\nIs6yJ0PU67vyOY4d4xwDZayNQu0lCk5EGQ9BttXni+3xPb5QCUeabmB/zOP7fDGJt7/puHuE\nsO/ttUq843YXmBQehz3B8eZY9pD4S7gb1NH6rS80HIa/jLlW2a/1K67+tE/R7+hb6qqFc35q\n8MBp+K+wHZwE6nAdeCCeEsL2x/MGTB4RPejGulX2ESMo6J5XtK8SoTauC47hVJfwu0aqQYTN\nr0ZpONXbtEi3rONPc414BhyLq8CK4JqjrmdBXA5Wwn8j3Ab1mGcUn19cx+spa57h8HS9mcnn\neL8A3obQxf6GBqFLuMaLY2ssmDddf8wXeR7Dfx443xxbx8C3wXnjHHLNHgnbg3XY9gVA+wYY\n5zqVmm20nmxZgYYUGErudBCHX7fVzI3Gxci2x2QzzglUxlxsrMfFp5bNTkIsqvHMcNN2GOfm\naJxtcuFzITgJlgQXjk2hNy1fkGqrvRxJvjMPHWVsGIWeL1HQA0dsxl6QPDTVGk/GO56CNJ9x\n74IH1Zehls1EwjvgYWgycIPeCSzvBh5m/EawD5g+BtqgjPkc27p8ofDuhJ0bPjvtW2yk0b9w\nzSfOqzY4CmKTth7jnVexgZvX9LPhGtgZ2iFsXTzppdS0lSKxiuvBxrnvu05tBIFr04gG/R60\nj2iwTJp9XwKhoVp5oFAH42yvcRJaGR8YF2Ujzrzvw9/hVvgEHDO+F/Oob9QZZZ4m7qlK/Ju4\nq4Jj7cBKnGOgjLVRqL1Ewd9RxsOcbUrHg+22zdF+3dAl4qJPoU0cCg3Hmv4Q/rjg+O6mgLAb\n8cT79GJkudfgNFig4tom5/4LUBxPRNVlcUHy/USfou3Rl3DTeP0+33KOE9/1NnAXuBbdButD\nO/wEUpuWgHV2NE/S/F3x99QFyTbdDjE27sBvn9Ql3nmEdcPvu3c+mcfLlfljPEQe0/TPB2Fn\n4EnzxZrzTeK/C35MSJ+zNOHObAgZLOOZpYwNp9DTDRRUr+IYinCqWegQaY6xTyF0ifSRxLk+\neFm9Esy/J5juXnwqqHGUMz3K6soNMDNcD+4FqTm+8wUpVSTxx+09icreggIegLRwJ4Ra61/f\nsxPkJJgRNoWe7M8g6ncxTTdDguMnqxNWC1e/i5cL48mwCiwOLkyPwDiYA7INXAUcq26SjmE3\ngNlgyoof538sxpblxHAaNzlhD3NuPrXMTcevc98BD73yJ/gZeDAKs96r4AA4HuI5eLvFnLv7\nw6QQfbEt+p03EYf3f8x56Jz/BcRar37GD4a0rT8m/FVoh+3gQfCwbtylcDHMAnOC/bfPhqvZ\ndEQ69x8rJKppX9mfefC+EHo9in8x8GDhwcRLXdh9eE6IQMVVvygbSZb1HawHK4Pp9tsLuGYZ\nNVbzD0C7BY4b75vwpy2GvRT8uhLX244H+wNhZrC92iiw3fZH0y+Rblxq5jP9yIrrwTb6vgj+\n34Ea/AU+BG1hWBHcJzQPbluB43xreLgSbsPdF6y/u8y6bHP0L6034uJ59sOx4Xv23W4AtntW\ncK/y0v8xTA2pTVUJmNYTtiqVHg5HwFw98YBKndvizgTq4HzR1MiwbuiE9wu/64tr7F0wA5hP\n/T6Hm8F3HjrH3u448VmvgOuHz/RAb/1rw5ngr0vWtxMY77pU9oMCRbvdbKdjQwttop+64bft\nQcQ57h1nhr0IPg7OGd+zejwLruOmTwvaVeBH5OfB9+FYcy1zXZIT4euglueDY9SLfrasQJcV\nGEoNDlBxMIdft9XMSWO7D4WDYQ9wogyHMuZipyZDahQ+m/hqukVc6BmLhJP5aXgUXCTClsBj\n2koR0UvuITxnRBee5cJ9dBfKN3NRv1r53uIA0Ghbh1HABb1ec8Nxcf8MPGTGGNJN/bbJsVKM\nd5xHXJr/feIXgM7Mfm4MW8FsnWUmvR3a6shXLYubvf1YPkncF7/ttr1vVPzRD/NKhHWLmO6F\nSteD+MvwHJjP+kKzZ/B/AqYbZ361uxM8rMZGPjf+Y8HN+EHwUFA0874IexcSPDB1ZV5dSXkP\nhI3a9yhgnzx42K+bwfGkXx3si37zGC66oWnkj7D5HJPGR9rN+GeCyBPxavt6JT7yu+atAh5i\nVgfjHQNlrI1C7XUW9P1sDjeA7XR/iDYZLvojLvpUdM1vnHr8AfywZZwHYsfYyTASXoVDwYO9\n8ddAjCu8483DoG37NvgxL8w1w7WjjDmH0z7Z1giHG3G6ge33vZnnHvBAalocUPGOtwP413mz\n6ITg+MvBhfh9vx5cu9sOo0K1vhluAtt0OZQ156R7Xi27hASfU239Ca1quWpnW70Y65rv1Ipr\nmmNfc4yo9+/gILgP7gDH5ntwA2hzgONLfa3TcdKRDSHR53hmKWPDKeR7rMe85NuH0CL6G+Fq\nrm0LTHetttwLcAZ8BjeBtj6Y9hi4lqvLzKBGjj+xDtdJXcfupLAU+AzjQm+84832HlPxZ6eg\nQNlBU6imXweLC3grdjYm4G96ofH78Ixtqzynmo62ywXAS5GHVQ8wN8KJ4Oa4B7gp3QnZBpYC\nrk23wgpJtydP/HodU44hTTfGWMTrDjYxsTT/c0n8wvh3gNngATgZ3q/ghtMXZvt/DrbZfjhX\nPMy4Uab9JfiFDvpDB/OIX74tOw24IYYm0+PXzG+/3UBnATdgn+NB37k8FqzHOfoPcOMV5+i1\nsBOcCd8Dn3UO7AlqaB3O31XhW2C9vW2/4IGvgBe6deFd8HClHvZ5UvDgMRGEdnjH+yMcWka8\nYfM7JvWHeVjZCCyn1qa5vg0C9dIcV+r0VVC/U2BJ6Enz+buDWvhOol94xx8eo39eim1bmm6e\namaZyKcrrtljQVOf82F1WBZ2A7Wx3B/gBNgZvgmvwxnwCFwKPWG+Y3XQbENqaT+iX0+SYSTs\nAsvAKrAhrAFpGw8m/A14GJ6AucFxsAE4vrrThlCZ73FjuLpS8UW4MacrUQ07C1Pib6BG9s1x\nqanXB7CZASy0mRD67/sPPUPHyGu8433qKIC7feJX3+dhcXC+7AOuVcYtDe4DouZe0KYD01+q\nhBfE7UubnYevBPZxeXDMa2+DbQ1Tl1Qj/Wlc5FMn4+cA11P7rA6uu7qmLQaadbwCxrluu675\n/t6C4+An0A4fg3n/AvdDtqxAlxUYSg0uboEDLPxdrryXK/AwEG23H9GX4SXb4YJlHS7WqXkA\ncILGs3TjeeGmcfrNH2XcVFyYX4N2cBPt6sJPFQ3bIZToykHODebohp/aGgWWo5m+y6lKNncY\n5dz8OjMPTOlY8ZmGi3ERH26aHvnDLeY5v9IIDz1uIv+Ec2AcjIKZoVFrp0Bbo4Uq+SfDtY1u\ntJoHeMNjwT58ArYz+pi60cdwLScRDtc64uBuunPOsOkehNor/mL5OACa7wHwkGJdD4Hri+Eo\n43w+ArYCN/Y34R64GK6EsmZZ623EBpHZA4MHVw8ToYNutFd/rEFpeuRJ46KMbjE94oyP+tSo\nWMa0YlzU5RgoY20Uaq9R0HX6Paj1TOPTPhb9xXLF/MX0GE+nUu9RcDsUbVoiHEeu9efC3eAY\n2hqqmWuGa0cZc62KNqdtDX/0N8KR1/d0PJjuGN4FTHMuVLO1idwddoXVYXrobnNvuq1Q6dGE\nryjENRK8gcy+M/etqyr+P+LOB1767H+M2dBKN3QKN9IiHG7MhUjX9V3rPgrt4OHete19cE36\nCNI1JcpaZ9QbfstvDtXMsW8+zyxlbDiFnq5R8NfE21bXzeiP7UzbF+1O3UiPuGLYOq+BNN08\nkS/cSNdNn/8i4ZiD5nXsWudMUDTzHVOMzOEJCsRtN+tRWwFv59LKVnbTbbTPe1Eg9Aq3WEdo\n6cTVDL8DT4ELqV9dZob5YU/wgJGt/yqwEF07Fe6HK2EDOBtmAM1xko6VGD/FNPNEWuQ3T8RF\nfl3HmuZhbFk4BY4DL3/fhUXBjeMg6Atz/Nuem8BDwzSgTQKTjvf9VxOD9jGIsG5YaKAu1uG6\nb/8+hf3AsGn+cjAvuOE+Bl4YXwXL3wVLVPxL4zpnfwQLweTg5WNxOBhs86/AA8T3wXe5PIyG\n7rJZqOhP4AXsRmiDovk+x4KH8QXAMvbzPdD0i+0NjfB+yUyPtHDNUC3euDC11TyYGa+mUSb0\nNhxpeLvNfMe7w+0Q+kyJP56H94s+6Tc+zD4GERfldFMNUr9p9lHTvxtcCDvDaVC03xPhe1kM\ntoUVwLHzN5ga+sqirz7f/v2o0hAvCkfC6+C82AZuglHgBc9+3AnODQ+cpjknDoPuPGfZvlR3\ngl0223cmeMnYCPxg5Pu7GmKshkvUl8y22KaOLNqrG/5BFb9r7Tzg8z8C4507gyt+63atqmam\neT7wAuBYWx16yzbmQYeD7XXdVJ/oW7yjcCM++m98ahGOfK4ZsyYZTJdYQ9L8+i0X6wze8f+f\nSbbnr/BncP94G96CbA0ooIjZsgLdoYAL2s8hJrl1xsTWn1o6wc1/OswJ4+BbMCNk6/8KLEEX\n/wELwQXwLlwFHpgcFykEx1uMqdgYjDSfFnGGwx/u+Az88wF4ADP+DfBA4Gbk4SzMw/+xsH5E\n9LJ7Gs9bHi4CNzYPklr0M/zRT/sSluaJ+NAgTfNQp/0UjI+9wLxeVj24eOG5BIxzA9ZsjwcS\n5+jp4LzXtgQPVdZ3E7iZe/m8BxaE7rSZqexeWAcuhSfgePgjaJvAU3AfzA4vQxwg7OfUoIUe\nk08IVv038pioDvWYZSYD3Sgf+o4kznoiTddDVq1DIEkNmfWpyW/hNvB9ealOn0fwC0vbEpHG\npX21bC0zLfI+ht/5ZX8OgsvhL3ASFM255WXo9STBy8SU4GWpJ6xWP0Kb9JmRN97baiR6GHec\nu1adDa/BceD64Tg3bhVwXM4Aw2An2B26y/yItBI4xsPmwxPtjbhGXOeqcyTsOjyPwmLwNain\n7tBQ1/EQLt7xZlyMEz+EhrmW+OvHcHCdm6SC5d8D57HjKerH+yVzbC8FrlO/+VJKzwZcaz6G\n/cAxYB802xnWkQbV+hO6WX6ZqAQ3tLOM4zHKGh+XJrzjzTTXEtfHb8OqsCfMDD01r6i6f5qb\nRraOFUgHbcc5mz/VydNT5uWmmsUza+lo/K7gxPfLm18WjcvW/xU4hC7eBX+Do2AeiPGC94tx\nYFyMnzTdPFpxvBj2MOMhtZjmAcx4f3VYC2LcDsafmnli00vje8P/Kg/xQ8EZ4OGraKFBaKIb\n/mLeCIcOUdbDmzbbBOeLf01fCJ6ARWF7iDIf4p8GPHSLBxrTrNvD8CygnivDR+CcVu8zYUXo\nLvPA6eHkG+BztKsqPI3r5dZ3Z9vehbSPoVPoQfIXYyT6Ylz4I7/hsCgbaRE23XweWsL0e8AL\nWyk8uFEunpUklfb6XteFR0B9VoeOLO1X6rdMtCvaaVz0Wb8Waeb1crwTzAtHwz9gDFQz309x\nznk4dsz05Lwrtj9tW/TFuDTfB4RPgrvhGvBC/TJsBS+C68j1sBlsCq4tmhcp17Sfg5e/7jB/\npToELgP9tnMIXAndac5bzXk22XjfhPFQ8X7x3iMcbmgYbsTH2DLec6eu+LHCS84VsD7EGDDN\nNXx+iHGY1kH0F+b8WgSsp6dsCip2vfO9618QHKf7gO1y3NpmLdo7IfTf+EiL+HAjf/QvwpHu\nRwQvOGFeMGNN8bmRP8p/Spxj0nGrGb8vpHUYr1n+h/AdA1XMPq4LT1ZJ6/dR+YLU+SuOQdd5\nzoGbYy+6Ph10pJVpLiBFl6jxk9QJ6KHwdngTsvV/BTw0Xw0XQmwuxV7HmAq3VnqUjzHm4etz\niI0kLf8Q8W52uqeDX9iOgDZwc5kXfgnnQ1/YdTz0UVgYbHexb0SNt0hL+2ZC5I/0Cbkn/Alr\ncc33K62XHsu4GRqeAZzPxnnQXha0ODSZblpav2nGzQqxoTunnwAPjuklhWCXzHHjmInLkZU9\nA17gPIjeAyuA5mEi2hmu7dTSPkRauKbrL1qUKcanYQ8dXowsH+Mv0uOwGW0wXn93HO587l/g\nE7gWfgXF56ftj/5FWyKsm8aFn+jxFuFwI35tPNvAhuDzO7JLSPwZnAtPge10Dr4Kd0NPWfSx\nWH+xL6YbZ/6p4OewG7g+GPcA2Mcj4Q64AdaCxyA1w7OnEd3g/z11XAXxK9JL+F3vyprjZsGk\n8A/wfxXs/+QVF2e8hSahY6pbpJkx/KlrfJQLv/PBPPZFN/Kbb+YkDu+X0syX2hIE3oc5QD26\n06anMj8IeXl7AY4FNXMttZ3uM4a16F+4E2L/2/Zod6QX3UiPcqarg65p4lzRNS6ND78XuNfg\nbLCt84Pj459QNNep2+DMYkIl7J7QXiMtRw9gBYbSdwdPDEr9QavJEu2OvugaN7xkR1wYrGMI\nuPhbV1p3LX/k89ASbdJ9DlxkXHwWgb62Q2jAiC404lLKHt2F8s1cdDka5/v10FDGhlHo+UrB\nZ3BdgK0vxkOtsVMtvlqZiNP9BBxrUX/4Dd8Kc4Hmxfx1cGP1sONB200jLgR467Z2crbVnfvL\nGeOwMJbo6Ee1fleLM3/Ep/40Lq0z/Klr3ijrQfDjpB3GO0fT/Po9AEac5d8B8wVvVNJH4Z4H\nV0JZs6yH6MvgNAj7DZ7impL2xfalOlRLS/sQ6cVyxXBaZ5SPPLpF/dI8RX/U5RgoY20UUmvn\nlutp6BH1duSmbamWz3Tji/kiHGXeIs8OUI95YHONVaM7wXY7dtaAamb6sGoJdcS5VkUbO3Oj\nr9HfcGPs+/HOuJij+l3DXDvU3Etfan8lcH8a0QN+9xr3nLJ2PQXtt5e+R6Ha2Il3nepj30Of\n1I34cNOyRX/kCTfSIxxuGl/NH3FeDL4CYZ5RrMMzSxnzjORHo81hKfBS7LOsM54Z/mhr0Y38\nneVL06PuYtliOJ6V5g+/a7jjVvdQqGamH1MtIceVHzQDUTsnnYOxlc32p4tHd/TFS02jZhtC\nT12/SHtAXRzcJLMNDAXa6eZXK12td1ymYzgtk8b7y4JfPv3ip5nmpr8eeMDxa+AYCLsXzyKw\nNcwGR4KHcDeavrC5eWjat3rakOYPf6pJxFmX8ZpxqX98ZOWf9EAR9ajhoKSMWRcD6wmtpsEf\n+fGO/y95ma6+C4OH4q7a6VRwAXhY8UDk5h/PjP4Q9SUNIz36rKulbq2yE3L+N2+Ewy3WGfVM\nGhlw4zmRFklpfPgjrVHX5/0F9qoUrLe+yFdsm+FiWoyByiPGp99HYA+4E/woUY+ZbwPYEL4F\nvse/wyvQlxb9TdvwJIGFwDT776VuLvBCOD04J2YH9fKy4vz1a/06sD1sAs1s9ul0eAb8APY1\nSHVIxwFJX7JiWoSruRYs1mtcmtewFnHh142yuqZr4Y+0mYjzQrqsid1kfnjwAurlf3XQ0ucb\njucX4yNsHi3y6TctDRtnuFjG+LA0f+o3Pcp6oXMdNuxe6CUo1gS82epVIN0E6y2T87WuAsUJ\n1dWe/J4KrLPeeiOfX9xclP1a6teNKcCvV/lyhAgDxA6nn2tBjIl6u10rf8R70X4Rlq5U6MH9\nAjgIHq/EVXPcBI+rltCHcdU20Ng8o78dNa9WHuOjHstHvnhemmb6RGCcF85IizJuvu4jhqPe\nSIu8ugvA3TAYumoXU8F+cAbYNi2eHf7xkZV/0vboj3DkiXZGfDFsPtOMjzzhmqZFOM2T+ifk\nmvBv1JXGdYffsf6rSkXRnkbqraddvmv7JT7vQNgfyph1XFWhTPmeKJO+s9DQi32MMw/gXpDc\nv/ywp6mDF6JFYUr4AewAT8D6cAM0u3lBdY76S0n0Wy20CE8IffnfSIu8aWq1uDQ9yhbdeAfh\npmX0F+OjfMS79q8N3aW75xXt1zAafM+az/WZYdGOiNeNuMiTurXSasVbNvoYbsSl9U5dyee+\n54XXj1N+yHoEvgp7wjLwMmTrQAEXu2z1KZBOhPpK9P9cLv4dTeaiAqGhG4yXIs1Dl3W4CWUb\nGAr4zt1sumqxSYT7EhX6BTq+Ho7CvyG0QytazK3on32IuEb7k9YR9RinhRt160ZcuJEWYV3j\nBkGYcR4WjY8DpWHzePDywDIbdIedQSUrQWdrULTTZ0Yf9KdWjC+Go45ifFpH+NM8+i2rpfER\nNi3qNq6rZl2TQ/FZjdQbZaPdxbLRXi/GN8H+xQz9MKwmqR6TEf4A4rK4EP454VZ4HmYFD6l+\n/GsV+z4NnaVKY2M8pEkxBtK4Yr7OwmnZ1F+m7vTdRF0/w9NdF6RJqetQ8KJRfFbaz7TtaTzF\numRRb7U60/ZEvnBdH2O9XRO/4/Eu8BdRPzLZn1in8WYrKpDFKSpSO1xtcNbOPTBSGtUkJq4H\nV8savh/cbONrHN5s/VyBGSv9a3T8pLLEWNL1EK77D7gT3oTbYSloh1azoi7FcJn+VKsj4nTD\nn9Yd8ZGmxqml4fC7p3wIhqO8ZY6AFSDyGVfGpqXQOTAGvBxpHdUZbZ+Qs9y/ZesoauDTy9ZV\nT8unKVF/Le3i3UW6c0zzkHUbGP4T9DdL30/0PY17hg4bb/+NvwiehSHgBxp/bfBA7S9NrWLO\n2ZnBX8XsU7V+E/2FpXp8EdlNnvT59VZpmcAy+v2zzcvhh9BV888ndwT/XM26i9aZXsX8jYar\nPTON0x9Yt37bNB8MrviPwr0MHgTH6h9ge4h5jTdbUYF8QSoqUjsck6B2joGd0pE+pkW67jfB\nsXc07Ap+iXsYsg0MBfxFwUW8u8y6zgcX+/nhAFgbPKy0osVcSdteLS5NL/rryV8rT8QXXXVO\nMT2+khsfm61f2I033a+Vmn/u4bvpirlmeOAZWqjEZ4dFm9NwZ3HF9CjbmVssVwx3Vr6v021v\nLe1MS9PV/lW4A74OHrauhv5q8S7DVSfx1yLHefwZk5dS/6xxX/CjzHzgn4qrVauY+699exOi\nv33ZdtsSZnuqtalWXOT3svccrBMVdcG1Tj/M+OeT0bZwrTb1G9aqtW9CSvf+67Ojz9Yc/oh3\nD3TtNbwwXAOxTuPN1pECToxsWYGuKBALQbVFwnojXX+ax6/908ON4GLmRSlbVqAjBdKxZD6/\nhv0T/gIPQH+xmCf2N/zh1tvHevKbp6hpGk7reI+8U4AHZc208LvhpmHjvQRr/u27dW4L/lKc\n1kmwIbPOt8F1YwSsB2l9oVe4JH8p3XBYWi71R3pah3Gdhc3TWT3WoVXLNyGld/+NdkS7fHrq\nN+za/Fvw3a0Bpv8cToX+ZPYr9Cj2y4uDf+GgBnvAKFgTfgaOQQ/hXoq2AvU6AMzbKuZ89YOG\nc9xfkprJar2TiI/3VnT9iHIbXAQju6FD/hq1KXwMfgDqzKJ9neUrkx59TcvG80zzfWpjYW74\nAYyD3cAPh/6a35O2KpVvCP7y5qXyeRgDF1f8OK1hIWRrtLZvWxkDsG9b0VpPj4nsn9ycDcNh\nb/B/J+KvSG3wMjih7oRsA08Bx0g9luZ7lgLzw7LgmOpPlyO688UhtSfXnFRPnxkWzww38k1F\nhnehGO+fExkn/078kc8v6W7OY2E0dOXgaFv839hovvPYv6KNPlN/PBtvt1mxzmLY50Y76n2o\ndUij5eqpv6P2pM9L/dYb/fKwfCM8B0fCn2Az2BxOBt91f7J4D0Xd7OcH8AmcAWuBv5z5v6H0\noHwovAVe2t3LfgFHQSuZfXYez9FkjY6xaLOK4zTi4r2lrpfV282AxS/cE0Ll/h1EsVvBseCF\nq5ktNFMv10jbPhvcB8atBmuA5vs2v2v73DXwklOvuR77lxwXgnV7znsUfMa6YHu8uLaMTdwy\nLc0NbUYFYtGKSZm20TT5EZwO6cHoYML+jbabsBtPtoGpQIyfjnpvHv/228PI0eDBJFvXFXDO\nqm24UaPhYpz5/gVvwnQQlr4/Dw9ukGPBX5pM85e9AyDMjyBpmYiv1412mH8BsE221eeGGU4t\nnpfGp37zmqcYl9ZRjz/K16or2lGsK+JvJWG1YmLJcK02WF08L/yGQz8vQb4vL8Jq65fmqWEg\nWKqL/fV9Oqbdn+aCn4KHvkUgzPTfVfAgqmataPZjDMxdo/HVxlO1uLR4tfRqcWmZWv60XPjD\njTJp+JdEGu5O25bKfMezwNsQ62A674kutY6kbbeOzsxnpmWKbYjyG+PxFy/PWfGr0Uj84hyP\nub0DfqllS5PwcK3EJH49/GvAQuAltWgbEeGecF4xoVnD+YJU7s0sV65YvywVk7PYOQ+1e8KD\n4ARrJfOLS1dtViroj+Nksa4KUymfLvDFKk0TF/HHwS+zV8Aj0OyaDqaN3WUdaZQ+o5585tHS\n+Rr+cE1P6wq/f8c+CXzVDIlFOQ9YE1Xinfd7wBKwN3iRcXNdFpaHEVDWfMbr4HO3Bjd/L87V\n+lYtjqxfsuhf9CNNrBYX6VHOcPE5livGRf6Ij3DUZ5kVItBFt1h3Wl08/30iPSQ5r+JL74r4\n14Zb4CVYA3aFw6EZ5py/cPSmqZWXIzXyw4xj+LdwIzSDHjTjC3Ov6Yp5sZsHToN1YE6I+ezY\nlFrW0XizTJperZ40PfVHWd20nH7zaWl+4z8FP+K0wVPgWrQGdNUcB1+rVOIvIdYbFm1I21hM\ni3Att1rZNG88I+LS/kdc6ka653vr9ld87TXYD/4GXvRdS7047QdXQjXzw/Zz1RKqxM1L3BVQ\n7XJk9utgKpgdxkG2FlbA27ADrT+zZcn34+LpotGftTm3pDYWO7Wfa+MBq+yBxa9I/Xnc2LfN\noIy5oaltf9bnzDLCVMqc1c+1eY/+OQbKmGOuP48b++baUcZcq/r7fnVqGWEqZdzr+vPY8UNb\nXPgalckzUn/Wxr551u0Om5dK/HPUlapU5hzcH8ZWSWvaqM5urk3b8F5qmH8qUnZi9VITSz/G\nieFgLmsO+LKH5LLP7M1yH/Iwv4yXMceMY6e/2qd0TMpaf55XjhnHTlnL86q2cnle1dbGlCmh\nv+7peV51/O7zflVbn67uV3le1da2mDKMiGPADxLjwDOmf47oL5TPwQ/hPmgJ66+LaUuInxuZ\nFcgKZAWyAlmBrEBWICuQFegnCkxDP/xT/PlhJvA/1jAGWuZiRFuzZQWyAlmBrEBWICuQFcgK\nZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBW\nICuQFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQFcgKZAWy\nAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQ\nFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmB\nrEBWICuQFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQFcgKZAWyAlmBrEBWICuQFcgK\nZAWyAlmBHlPgKz1Wc+tXPBVd2BQmav2uVO3Bf4i9Ct6umtp55PpkmanzbC2b4yFa/kjJ1n+N\ncl8vWbYVir1FIx07ZWxqCm0C/XVe/Zu+XQnvQhnbgEIzlinYImUeoJ2PlWzr4pRbtmTZVij2\nBo28pmRDp6HcxtCf59UV9O+9kvpsRLnpS5ZthWL308jHSzZ0ScotXbJsKxR7nUaOKNnQ6Sjn\n2OmvZ2X3q8vhfchWUKC/vvRCN0sFt6bUufAOeJlw4xkMH8DH0Oo2Gx3YEU4p0ZFBlPkcXoNP\nGizvmHOj+gxiUk6BXz4CJ6x1/gv6yqblwbfDhiUbcDHl1oGyl8/iY71UTAweDtR9EjDOcfgh\nhKmtY9Sxqn6NvhuKdGqTkmMWmBLSZ3dasJLhu7hnwLh6C7RYvtlp7w5gHxs1tfWdvQqfNlDY\nd+6cjLnjetWRTU6i883x5HMcW44nx1bZAyhFOzUPGzeBH57KmBv5GtBd86qzNqip78R5pU7q\nU4+pp311frimWd754rx9E6pZzCvfZSPvPur6Ph7X8laaV5PRXtcqx226p6qBHyjdH5wPvodZ\nYTs4Bxo1x7r7drV55V7k8x33us4N54LvzWeXeRcU61VzrF0P3y751KsptzJ41inaNESovx98\n3FMcp+pT7znIsr5PrZE5NKFE1//12TODc7LMmcK1/AR4Geo157rPdUx5ztGvjq4fjmnjmsXm\noCHbwgXN0qDcjtZQYCjNdNEeCyPBwf4CPAT9wZ6mE8NLdsTFxkPYkBLld6bMS+BCG3YEHjen\nF+EfFf8euH1lh/DgEV14+KWUPboL5dOisbBumEbi3xXSRfvrhF8Dx+iN4CHyQZgRutOWozLf\nvQeYMjaMQs+XKdgiZdppZ1vJtnpgVNvl6yw/J/megjfAd+548P0vAh3ZsyQW59fqxDkHvfz2\nlDnPr+xC5Za1jt6wn/MQ9XgA7gQPV/8H9dhxZBpZyOgh/S34XiE+gr5z371joIy1Ucix1wo2\nD40cDX7ZvwFegedgQdDug8PH+/77j3uGa0cZc61SW9eu1NYi4Hv1AK2tAq6bHmJfhffAd192\nraNor5h7jXtOWXOvc88r2txEqNsKhYR9CT9eiKsW/B2RzqF/wN0V/2G4vWmeUeyDZ5YyNpxC\nTzdQ0Oc4frarlNkR1zHm+PaCJCdBs9g4GjK0WRrTbO3w60222gr4BWlhcLAvCoNhAchWXoFZ\nKToG4sucm9Qv4Ta4Ab4B6n0IuDCr+UC2mej8IPAgnJphN3a/TruBnwm3wAKwFjhuJ4V0QzLv\ndKCbrfUV8MDugS7e+VL4PbicDv5aUcucg8Xx5CHAcdGTF6Ra7Wm2eNf6o+BHsCysBJvCTrAx\nFM2PGOmcqqbvh+TxA9BsxcIDLKxOfwMvRUuDH34cv8/AiaBV089DZnebz/HS6oclL7Bnw8Xg\nhaMdFoM5YT8YiKY+WvGC4NoRaeMzVPlneeIOhmHgnu5e7tz5NawJ/dXci6cENZofjoWfw5Yw\nCPyVz/PN1pCtyRXIF6SOX5CH84/gBXDB1NKNcEJM/rcRBe4ns4cOFw8P8H4R9ivTqrABbAGP\ngQeKu+AD8OvY7DAQzS9Pr4MLbGoutKPhYfBL59fAQ8QkoPkF9HDYzAAWvzjFgeA3xOWxPF6a\nlvzHtXsj8BDivBkDHjo9fHg4cUycBh7ei+YcdPykZvhd8KA60M2DnAeck2FteBSuBOfLkeCf\nGGlemF6Cd8BD9m/BPOq7HnhQCnN+LgKmDURTlz3AdUltvgnuq47TE0BdVwPHa7XxOZj47rYH\nqHBGuBtsx9ywIewJ3wLf+eWwKQxEG0Wn3YerrRW1xrEfANTzLvCdn1HBvf5qGAn9WU8/WD0L\nauZYehG8JLXBZ+BZRi3Ohp0hWxMrMHETt603mjYvD6mlwSykOZDfBBeJmcDF1IU0W3kF3HRc\nQO+oVDErrhckF5IL4e+g3p/CBZXwgbj+uuTFyviBZJ/TWf9U4XhwvD4Jw+FroLngHgznwkpw\nHnjA0yzrQfqncDjsDbfCCmAZv2gdAtlaTwEPH75bD5q/hVPh++DHBeeJ73kIXAxrQ2qOJw8q\nk4ObuRetReEKqLUekjRgzHnh3PkGeKg7BX4ER4HzznXpEvgT7A83wbfAOaV+/8/eWYDbVVx/\n+4Pg7hAswaFYcQkSvBT3AKFcIEWKlqLFNbgUaIu7a9HgFHf3QG4ggeDBte3/e9+bveiwe86V\nfc+9yTnZv+d5M7JnZs+sPbNm5iS0Z8H28AhcDWuBa244eIkdG+Wlw3l6KewM34PzT5/vfF0I\nYk4fStwDtrZ3/s4Lk0EtZDt/AH2le7l7zRJwJ6wN7vOqP6wGO8EHMDbqawZ9ODifFwB9y3rw\nG1gJJgG/pXF/JLgKLNsbXgO/r+enrWF82BJcV66vRtZ+DO5qeBq0gf6jCRz7idOO+CIAAEAA\nSURBVNAXtKe2WhB6wg9wfQZBqdICo9cCi/D6/2uD//Dche8vq9+AaR17I8i/Nh9QcCAeArSd\nB7AickP6DrRnhNp1FXg+yVuGuHLTcjPb3EQ3yEvDoE68x0vLqZ2oX6nqRmQ+CTpZN65h8DH8\nBJvAW/AP8Lv8GqaAZ+EyeB/2h1QeEj4Hv2VH5LfzHUUPLP2pa98bVc0MrKng4CainraNed9W\nM7dRQN/0V7gU7gYP7s4F58VSUK29ZXn2KrgGP4W74D14CaaErpCHg1s70bB1baOr5d6gXR4G\nbayWBH3UH0Gbuqb8wSHVjiT8Hh4GZ4JrwPVqvSfgUdDfrQ55+c1t1zlQRE1Uai5SsRvqaA/3\n0aNAW2gTfcBw+Df0A+39MoT8BvrRd+Ep+Aj0HUWkr9K2K4Pz23n+N3gBfO8t4JoxPgR8vjdM\nC+77rpMxWe412qqoBlHRPa+atPvj4DdzDboWJoVn4AP4O+h3/JZyGSwL2nNdeDuLb0CoX1ob\nukt9eJHffryCLxxAvcEF6q5JHW2mDUZkYV9C57Vzalv4EVwL58EVWfovhN0p++b6K1Va4H8s\nMBM5s1bhfPKd3DpUb/Yfg4tbB9AIctG7+ItIZ6PT0fkU0d1UegxswwPBuaBdvwYP7do977D9\nNcZfIbtDvntQJ17kZuWmVWtdToM6XW3m5Wd/OBqcm33Bw5kOV9uOAL/xnFDpW+mozXcNdERL\nUNh65QWpstWayW6q/KjNXL+rtvWw3B75bV03n2R40THeF2xncah2sPS7+6vl7yE0NRH7f2xk\n1Dg8kfY8YBWVdW2jO3QoL9EPvQVekrTVpeDfcowE7bsypPJXYfNnyzLvILwT9JchL7NDwHZS\n+c2t6xwooiYqNRep2A113GMdmz7c+Xg2vA8fgPnaVr91GFSTh/P+1R62ka+v8j3nQzM4z9VJ\n8Ar4/j3A9fMtuAe9DfrVD0F/OibLvaYrL0iVxn4QmV4kp08eesh3zXi5VMeD/mk4aP+fwG/f\nnerDy3x3ugY78v4BFHYfLap9qahNRP/1HVwL24P28IeD0KpEtNdSkdENoeeEft3wnrp8xbh1\n2evadVoH7eKthId1J7XhovAQ6EBLdc4Czrm+EA79duJDQEcyKbhRumEdDCF/yZsP3LTGNrkB\nHQpXwfpwA3wP2sx/JnI6TAdfwUbQAzx8eMhdDCznPHejSGVa5+yBulR9WsBv+3LGZ4T6pwVh\nCnCjdS44f96CvPYgw0P6irA1uC49+F8Cq8LYriMxwP2gjTxUbwbbgJegqcCDs+svlWn3C595\nIFsdJoS/wZqgXK9zQG8YW+SlSLt4YX8KtOFC8Ax4YJwA1IOwIVwIF8MWoP1rpaVpyPntPFfu\nJ+4tP4JrZmrYANTHMAg8XE8DfWFsld/rFHAPOhC006pwBWin0HVZZKMs3J9wDZgUtGMT7ASN\nLufSfqC9ZoZLQTnP9LWbwyrwH3BvDt1HRH+ubUuNARbQidebVqLDv4We4MIbBkPhhixOUDON\nS0u94U3wnTrycK5ESxWwgE7hJzgKPJwvA26WsRF6+HDTvAZ0yn7jo8HvfCOMTZqbwT4EHi4M\nx4cj4XE4ER6Gk0AtB3vCXbAJpBpI4jjQ7g/CslnaPC+kperXAsfQ9cvhHPg9XAmLgvPgMrgf\nnC+pXFd7gGtuIrCuc2ZTmBK+hVKj/puZRzCEdvoANoYTQNveDK49f8zRxh6+faZt9XG3Qg9w\nz5gJ7gD92O2gxiYb/8h4T4ZDQV/mAVB7xDxdl7iXpS1ge9C2XvAvgvXBQ2Ut5A9Lzu+Q6+bP\nMAn4HV+EG0CfODF4KR4PBsN9cAD4jccm/ZbBapMX4BXwgiPaJLUlyZ8vlH2Ia9t7wLJTwPVg\nXqNrRgb4CEwIjn8ZWBK+A235MnjGcc6PD86pVNpqbPIN6djLeCcsMC51r4aP4BLQUR0Op8Ft\n8An0g1rpdBrSSbvZ+evHT1n6OcJGkA5uQMGBuGloEx1hR2Xdb+AzmBfOBB2C7bkx+Q0Xhycg\n8m4hPgt0lwbyokGdeNlN1D21E/WjquN+AHS2yn5pu2YTaGPwwKGd3OAvBh1sJe1F5sdgWW1/\nIMSllGi7tQQlbWOydtf4ZcH+JL3sNqr8Nk0FB+dlRdu6qXZETRR+D6yrzzJ0PlwK+UPM0uTp\n09ygPfSfD78G1+Ah4HzaGbpCXupv7UTD1rWN7tSavOw1CJteRDzW2J7EY019TvwwcJ/6PXwB\nV8Jb0Bv8VV27exH4J+TlN/cdzoEiaqJSc5GK3VRHuzwP+njH6X5q6Hx9H9YDn60EIfcB5/H6\noM/QdxSRvsp3HQPO7+VBTQDXgO+Ifd7zRfTxdeJ9Qflu8+cwMYbJveamTvTJvc69JS/3ar9N\nupdNQvopeAS+h76gLHsWjITnIOzp9/XcFnsY0W6VZxS/vf0rogFUGtyBiudR1stkuj9q20/h\nHQi7OOe0zWagxgH9rzadHbpLI3hRv+56WfmerrPA2jSt85qyyivWIX9olWdFsuOC9CWVm0Hn\n+CK8C40gF72Lv4h0NjodnU9HtSgVrPsk6CReAQ9nLlQPGzPCrKA8iEzcEuveP3RobhpF5WZ1\natHKSb3viHuwCnl4ehC0n9/vK/DgYJn2HKzGpdy0YFhU5QWpdcvpK5paL1L1qd/Qb+thuaNy\ng50OxoepYUKopIPIfDZ7sCKhG/dnoJ9z874AbCtkvDdMExmdCE+kbr1dkGK42tQDdV6upemh\nR/LgGuIXgv7rIfBvUPRzHoj0cb+GvBr1gtSTgc6SDdY55A9fqd9/mfTM4OXlYcjrNjLOBP1c\n//zDdqbjgqTvcn47z9+Az8G57zqYHPxeSt9/dkvsl394Wdjhl1ljRMq9pisuSLFX+31SNZH4\nEM4CbfkmfALac3VQ7tu9odKaIbtN6QvnhPbsa6015hlFn+qZpYgGUMm9tr16h4I75wo77+3D\nsjAl9AblhUifMAQ827rfd/dlxXNXd7+TV9aHOnNQ6u4R9uKFt8AXVV58F/k6Qh1yLTUJjfWG\nr+F10LmXKm6BsN/WNLEBnAvG/eXFTeoDcDP0QLEg6DTGVv3IwCdNBv898T9m6RsJ34ZZ4AZ4\nDdaG1uRm5oHYsFRjWcAN2EPKTzASYp0R/YXM16cpD+9zw54wHK6H7cG21Prght8Mtu3lZkYY\nG6VNXY95uZa89HjQCWlj162XzpVgPdDW2nU6eA7uhJmhUaXvfhK8VDi3XoA5YDnYCPT7W8Ji\nYJmwGdFfSDvq92ol5/f+MANMCVPBPuBB3O+l/MHOHxpSeVayjP0cWxRj9RukMu2zXcFL55nw\nJ5gL7gHlvj0UKq0ZsqtKOx8NXlzd3wxNm18PqjSPw986j7+AodlAjiI8EWaC6cEx6i+q/bjF\no1LdaYF6mXTa5A7oB8ubyMlfKQ6Gb8AbcXvlQp+iCvHLx2Y8XwD+DpvCy1CquAVep6qXn5Pg\nQdC5vgEHgL9KLQ2LQBwiehEfW+WB1XntJUhNDsfDY7AmeBheGX4FN4O/Iv4aSpUWSC0wXpL4\nB3EPMntmeSMJv4L5QB8Xch06/64G/d+q4Dx0ntXTvkF3u13azUvAGuClyB99dgC1CqwIU4N7\nWg9oNHnp8KD8MXiA1ie9CXfDTHA7nAbORX2YuhH0+zuayNSP0APjDZFRg7APbQwE5/r8sBp4\ncbsJxgHl+7YCv5My30O6l6Y7YWzR6ww09uo45Gur/cA5rtyn/wIXw6egnNNhy5aMDvxxCGV3\ng11g7iw07T5YD9Iue4N9V16qT4W34EVI5VzfC7TnPOCc2xC0Z6nSAh22QH9quAjfh2fAA7aT\n7vMsXIqwvVqYgm5ereGvg//Oyhh+BE9APWpBOu3ifRe0nTYcAEU0HpW0m5tNNa3HA7/PMHCz\nXAVC2t6D2b/AdrSz8Rkg5CHsJTg6MrohnJ53uIG7gQ7qxPvcbHWK7dEmFHoEtJObb2pTD1FP\nwbfwNHwPzkPtJetDqntJnJ9m1DDuBjk7LA1+s8mgiFzDjrVR1czAmgoOzs1U2y5TsH6+2pZk\neDC1Tdf7n8CDyx/AefRDhnPpREh1OYnb0gzis4H1Vs7ltzfpO25tb+EK5ayb72eFYqMta0be\nfC146I81+gXxr0G7eQAKWfZH+E2W4Tf3OzkHiqiJSs1FKnZBnV1p0/nWC/Sp+jEP0NpA7oOF\nwIv3dRB70tXE3Qecs6+BNvwzKH2GvqOI9FXa1sua3+efoK/9APw+vsfnXoymg9nhHLCvL4D9\n0wd7eB0T5V7jnlNU7nVPw1vwBpwAk4Jyr/ZbfgqWcQ/SftpUTQzay8vjgnAP+A2/gUtgGmiv\nelDQc8HOuQqmzfdM0FG5n/ptPbMUkWekwR2oqD20gb7Vs+l3oD3ehkNBO20Mzm/79RU4x7Wn\ndnSOWX4q6A6N4CX9uuNF9fiOopNmdI31Ml58M+hY5wCd2YcwFJ6CjuglCi8C1WywL8+cOE5i\n5aY3LbiI603a6zF4HI6COWEP6CptQ8MXwvngxtgX7gYP9LfDsuCB+xb4BJYEv8VWcBqo/8Bz\n0MtEF2s+2r8Als/e45xyY+xq7cQLzoKzwfevAQ/AWnAfuCloK+3md3PT0ZnODzrua8Dnz4Ny\nA9OWtdRENHYqbA8TwOdQasy3wBZ0UX/5Y9ZVfeWxMAWsBB+D/uA/sCisC4eDc0y57u5tif33\nj2FErdcda/K/b62P2IR00wPR9DAOuF9oSw8+/wd+iysgpI8ZDo1oy6UY16QwFJSHQP28/slQ\nezwMHnifBH2b+/mecBG8Aj4blMUJaqaFaGke8ILkIdQ5bV89lP4G/C6+2wvBSfAZfA03wXvQ\niBqfQWn/w0Ef73dwL1wZPCfNB5vAzHA4uIf3APeFncE9wovmePAgrAeTw+HgN1wO/g1taUoK\n+E2cJ6meIWG+z0emD8bAuBeiNWAzcF93Pp0O2mhvWBtcH6fBnHA9HAZHgjZ1fRjOCp9DqdIC\nHbKAm/tx4MH7OnCR7gmzQS3lpHZRbw2/gYPBw4TOvt50FR2udNgZUHAgOkI3uT4V6ru5jIBD\ncs/OIP1yljecUHsqnd5e8D18CjoHpUMZAgeZ6EJ5YLQ/d8EysDj46859UFQ3UdF52ZrclNx8\n/5QrdD5pDw2pFiKhvePy48bl3HwcrgSl3Z+CM03UUBfQlgeDTWF+cFz2ZTIoov5UGlakYp3U\naaafTQX76pzXts7DonL9zAMfgIf03cADzlbwJZjnJu6BKDQVEdesfjR0HpGHYZzIIIx56AZf\nRCdS6dYiFbM61rWNrpZrSRvO2IEX+WOF+4PfbwvYATw0xgHb72G7Idt3Da+cZfjNrescKKIm\nKjUXqVijOtPRzrzQE9wjf4C+4JxynB4U3wd9vXN0JLwL6fxan/S/YBbIaxgZ+o4i0ldp2yXg\nY/BbXAUPge8/BXz+SRb6/fYF18qWMKZLn+yeU1TudbYRmp3I17BpZFQI/0Ke37Qf6F/cP/3O\nO0PI7+i+vl1ktBH6LfRDB+TKmTY/nSu5IlWTfXjit/XMUkQDqDS4gxVdw2fCEJg4qbsIcX2E\nlyL1LLwJH8GPsCRcC5ZxDnaHtKvfsFSdW8DN5WpwMl0CJ8DhcBrcBjq3Wn5oL0hOVBe9C+z7\nLK7TrDe5CHfLddpF7+IvIp2NNtH55DULGT5bMPdglSx/6izsS3g+uCFaPuy8I/EN4AFwQ50W\nulI70biOftLkJccRvzdJdzTqZpVuOJXqe0By3HPkHv6WdH6OuVF5uFWbwwdgXfGffmwN/wAP\nZHNCrTQ9DfldfpM06CHD93roKCIPOR52GlXNDKyp4ODcWLWth+Uicp644dmGDIeZILQrEfOf\nj4wkvJz4xUl6PuJfw3XgnNwOPNDeCkV1IhU7U9+6ttGV2pDG34Ow4T3E9WmtqQcPvwP9iD4r\npL29KLwGrmnX6DrwOxgCqY/xm/tO50ARNVGpuUjFTtbRP+vv3Cvtv3PGPfp18AB4IbjetYM/\ngE0B6jN4qSX23z/c4y3nfMvLNjp7QdqMNqKf9lV/eSz43Uw3gd9vW1Ang2MY09XZC5JzfGBu\nkA+Q1jaVNDmZHug3TR7eQPwpGJzlLU34CmhX0ecsCm1pZwo4Bw6HNeAIMO0+XUR9qOT7PbMU\n0QAqxZjaU/9ACrkGfKd75zmQrmnzzgNl25a7MQtPIfwKnoaHoTvkflHLc3N39Lnb3qFDqhet\nRUdXAQ+WbjD7weGwF7jpbAvHQa31OQ06iT+GcWrdeDe15wYwb+5dbupdoZE06mEg/z7TPtOe\nn4Dfak3YCHqBv6poZ3+ZugZ0MiuCm2pXqjeNvwrfJC+xH9KV0gZu1pXs5AEj1VASbkpbwZWg\n010Y3ged76UwBawMQ6BWmp2G9BFufKXGbAt4ELgKzoe5wPnr3LgZ8n6+J3kTQCr9qn4i9AaR\nvjAD2Iab902wOTSqlmZg18JlMDcsD66726A1fzklz7X1pDAdTA3Kg07Y+T7itqUN9XF3wgZQ\n79Je2mpVmBNeBm1wOHiw3BJmAS8j18GX4D6qPfV/qXqT0F7pPEyfdzb+Vxr4AfSXn4Lf4wB4\nC5RzfkYYCupJ6G2kwZU/14zHeP2W1b7DzDwbH7RPaCgR10Fv6Al3gvb8FvaBoXA3TAOt6e88\n/ANsA7bhpXgXOBvGdO1KBw+BP4K++AVYB1zvSv+gX/ZHBfXmqKDlbzbN3wKOgLOgN5QqLdBu\nC+xMSTf/anLBeujsWa1AB/NPp/y/YUNYAA4EHXp6kCZZF9qaXv4I28LE8CvwojIAikgH6oLu\nU6Wy3+kdWAEmhLXgIxgISiegLbXxfNAEXp7+Cf7aOg50l7TJZ5A67hNJ39uJDngIOrUd9a+g\njJvzsqCd1gX7cgjk5QHrC3gI/H7Hwb9gU9CW1b4FjwprKmo6bzZLWliCuN9+siSvI1E3vGEd\nqVBnZZvpb1PBPnvI1rb+bUJHdTUVnHeh94n8BM4N1/9W4OHU7+nh8DKYCfzGJ8APoJ+rpHEr\nZRbIc13dWqBeVLGubXSVLqXhO3KNayPX2Rq5/DSpv9K/6cPcH56AdcC/IdH+7iOrgarm2/zm\nfnvnQBE1Ucm51536NS+zz+m82Yu0NrgLlBee18F5dzwsAu4P34PzczuYGGzjcXgSKtlIn6Hv\nKCJ9lf103h8J+tg9wT7pU8VvpP3sQ7zfQ/ljMKbLvSZd+x3tr3uLdp8aZoAL4XOYESppEjK9\n+DQlD+cmrj21rRcCv9cj8Aa4t8lw2APaq1r4HfdFv71nliIaQKXB7az4FuVi73Y96zcuBef5\nr+AfoH30tX+EFcF557w8B0LWuTcSXRyOoP1+XfyOsvlusEAv3qHjXb7Cu3TCR8A7FZ4VzTqd\nirG5ucB06DGZi7Y5Ouv9mZe7MB2L6ABd/EWks7ENnU8l6UCvhniXdtQBeIlVi4DPvstCne3R\nsDH4jTeCbWEu6Gp5IHEDfwZ8r5cU51FnHJSbVXsuSJNT7kYIOzm/zoAekNfUZOhILWP54XBW\nhjbbD7pCJ9HoSHBjWxUuA99fXpAwQgU1k9dUIb89Wc5FbevmmpeHttXA7+A81eel8iB3WJKx\nBXE3aNeebf4Irn/95K7wMZgvxteHrtaJvGBMuCDNSz92ge1hJgg9QOTYSCThMOKWbU278dA9\n4n0IuxqatyO0Jb+55Z0DRdREpeYiFTtQxzm4EmwHu8PZ4JxK+zwl6c9An7QebAjPZ+mYi/rb\nlWF/0D6OWx6FWaGS/Ab9Kz1oR56+yvafgR5wJoQfjXfbNw+yV4B91n+7ftaGMV321T2nqO6k\n4tcQtniX+AptNHY4z7+CP4H7wvGgvdwrop17iM8OobuI6AM6qyVowDm4JngWaU2eUexPW+Wq\ntTGAB4OrPczluxbWTfK2Jv4FhD2GEx8I7vHu5eZrs+/A9aR/d083ry90RNNTuB9sBTN1oGJ5\nQeqAscb0ov3poBPrfdDZPQgvwudZuBRhrXQ6Dek0w6kb+p77oN40Lh0+F1yQn4ALWefm4i8i\nnY1t6XxaUy8eelDbEVz8bqRHgk5Ue/4EHs4MdRA3ggc5L0wfgpvYMdDV6skLrgU3a98/GAZB\nUblZuWm1VytR8DDwghiXyLTujCQuB/um83wCPIAY145+C7kA/Na1lO0dAn4P3zEkCz10FJFr\n2MNOo6qZgTUVHFy1C5K2vg9cJ6+D6+MNmAO8OJ8Pzg3Xy0MwF6gDIOaGPvMweAos52bt3Hkc\nbKM75OFodF+QDqIPjn8oOKe15eawKbi3aBMPDfuCWhDMW9ZEG/obz21bmxu6Pv8I7dEyFLJe\netloT70o00SkORJdEE5Dmw+D4/oOtIm2s88fgxf3XqAegPcg5qR2+AIuA39JTzUViZUgn5+W\nMa7P0HcUkevHfrrnzZA1sAmhPtTxOA7H4/qK7/cu8Q0gr+3JeBMc02uwFYxuude45xSVe90J\nsBwsDe7vbakHBe4H7aBtY77rn7Sj3z7mA9GWf1bmxdmLTVFNQMVrwfc5v3zPK9AbqqkPDyzf\nnjFVamMAmYMrPaiQ9xx5Xn6U71sFzgHPW0PAdaN9tM2D4JyfHI4Hn4Udnybe1nqgyM/qR8y5\n7BobCbblPG2PygtSe6xUR2WmoK/LgJNiN9gMloKOyo3PSeXkrYQLX6cp4TSN3wH1pj3p8Jew\nYtbxKQl1Vi7+InLxu5h1PtU0IQ9OA23nwjW0D9paO2p7bayTuwrC1ncTj0PCBtlzDy/doXF5\niQyEQZ14YUcuSCfzntRGOuP5QRsfCC+ANvsEDoXvQVtpu1fgA3gYtKM23Ru6SvZpCfDbe+go\nov5U8rDTqGpmYE0FB+e817b6t1RuukNh7izTw+o/we/+FHwO1os15Fw4Atz8bga/m/Jy8izM\nagI5z+zvvfAYDAEPIB3ZnCnebp1IydF5QVqV92ujLbIej0N4OHhgcT25fnzuejR8HobDbaC0\nowdsfURes5PxHRwLHuQs5zeynTfhYKj04wfZLfKb+w2dA0XURCW/ZVfpShp+FTzwaZM14B3Q\ndmEzbahP0g4rg4fYB8HLyADQh/nMMsfBpNBe1eKC5Hd4GXYG+629/daGXo6Nfwyvgz63N6Ta\nlYT5R8La4Bhca9vC6JD2k1PBPaeo3OsGtqOy8955PS9oJ7974L6kLZpgKdBO2nRz2BLcx5w/\nRec3VVv+5+D9UWMxE2h6cH7pu6qpDw/8vq7dInLeDm5nxfUo5xq4DJz74Ue0kek5QNvdAs4/\nx/J7uBeaYQfYEO4AbTcbtKV5KGBbh4DfZxzwDGA/FoG2NIIC/doqVD6vHwusRFd1TBfDdaBz\n2BPaM5ko9rN6EFsV1qzCjeTH4neBRdzJWG96kg4fm+v026Rd/EWks9EmOp+8JiHjHNBOlvEi\n9ne4C7SheS7eG+DrLP5vQjdOHewusD/4ndVF4LfoTrlZuGkUlZuV87ItaX/HfRZoC20j2mMI\nfA6O3WdvgE7zIdBOlvsKToAJ4Sp4CZ6BrtQSNO67ywtSZSs3k91U+VGbuR4etO0yuZIfkc6v\n1fgOHkRGwqMQ8yJ8lW0ZvwcWzeKrECo3693hRbDMyeDauxu+hAWh1jqRBm/tRKPWtY2iOpuK\nt+Uqe6DQV8l5sDR44NImYb/niN8JrjfzPOj/EVKZ1qfa3pTwFrgeB8Mj4IHyFugPB8B64IEm\n5De37aIHyCbqNkNXyD5pH/v8LpwDX0DYRx9m/F+g73KvOQiGgHUngKfBus7Xi7O4c9a9RE0D\nHhD3h1Ugr2FkaLsi0lfZv9XAdzsWv+8z8BroX03HN3dsjuM0CPmt/Ib7REYWHkH4Ti6vq5Nz\n84J7IPqsXd1zisq9zj2vNe3Eww9AO2ob3/0KHJPFTY8A54Bl9CGW07bOj6dgOeiMmqmcX3cL\nk+f75qzScJ/secyzKsWqZut3XcPt0YQU0kfFPNIW+hv7l+a9R/phcC2IdvKbhjxDeZk8PTJa\nCV1nfoe8niDDddiW/Gb92io0tj530deL7OvVcB3MDB/CyzAOrAluYh350E7K++CuKuh0Kqno\nQqvUVnflTcGLPGSlcsF2hS6h0bXgTXDxTQU7wuqgdBY6jg1hUuiRpXW+xg+DLcFv4/d2U/LA\n0YjalkE9ADuBY3cT0WE613uD382D8PugA/UQsQJYVjteAfuBdUaCeY1qK4Y21sp14vdNFWn9\nkWtsOdAXRr7xPaA/OCdcT+YdCDeD6/NPsBCob+BvsAY8DkdAJTk3N4IjYReYFupF2vFzcAzz\nwxxZfHxC9wPHMw8sBdpK6ScXAe1i/cvgaDgGdoeQa/UT2AAeAvcoL0RvZGxHuA6cB7vCtfAw\nWG9M18R0UBstBtPBANDXaBvtNB4o49rWC6DEgXpr4nOBdn0e3oLlwcPtpqBPM+9Y2BLughsg\n2iVaE/nt9bk/gf13PPOBB9LQ90T8Jo5jNzgpS09P6NjtWyrTs4Nzoztk3+4H+7c6rAaOpda2\nosmf9TtiZ8DlcC747vjW+hPj9mFGcG9SX4HlnDvDQB/0MPwRisqx588xkbb90a2/04GVQXt8\nAT/C2qBeB9PaZCZYBlxTr4Hlv83CQwkd0wLg/DsFWvu2lWxClZY2xgSb2JdS3WABJ5oTp9pH\nd/MZCrXS6TTkBiAu/ogb1pt0aq+Am/IQeAI+hQFQRC5YbdInV3nuLH8jQh2ki/5uCBvm7Zja\nNOIePE6Fc8Bfoezn4dCdGsjLBnXihTdR1zG0JS/4js+x/wAe0sIO2iq1l5vMh/BdUuYp4mpm\ncG28AxdAV2oJGrdfkxV8SX/qOZai2paK2jZl76KNJfU2Jr44LAKbJ/kdjTZToamjlbLyExFq\nWzfPVLeSuAcmBjfXXcA1nM6Xr0m/Cd+AG7HtGDeUmFcRWvexLN9N2vSqoHaCoUZy8hD4ELiu\nHwEv7s7ffH/JatHU/LkX/AV2B32qYykq655YsPIE1NsBXD9fQNhFm2kTx7Ek/AtGwt/A/LCx\nNj0Tvgfn8P7wHoT0eWHbCH2X8ePg4yz+LuFgcL27nh8H7XM02CfnQBE1Uam5SMWsjgc3/Xpe\ns5DxHIS9YmzaRVt56fgazA9bRRlDfdQ5cDPoMz6DbUG5N7iOteOFMD6ohcFy+5nIpM/Q7kXk\ne+3/UnA92C/T0U/jjiXy8uP4hGcrgONsglS7kfC5h9zukO8bAa7FkPPn1kgUCN3rBlapNxX5\nfp+hoF0+gLCb4d5ZfthUG4YdzbPOC3AoXADmedmaFToq99V7oUdS8RDirl3XdyX1IdP+VJrb\nlcrn8waQ4XqtpmV5cAD8GWK8ziXfd0yWZ755hnn7mCf9YB/w3KSf0i/cA/qNkyDVtCS0u9/9\nXNCXbAauYTU3OFe3MNGGnEu+u1SdW2Bn+n9+K2PQueqoerZSpiOP3MyrTeiOtDMmlF2RTvwb\nXDSD4DVwwbr4i8jF70LX+aRak4TvCbvF4g+HWc05RDk3W+PDwYVr/HuYErpTbhbaqah05G78\nrclfftx4HKN28XuEnSLPMMWD3ctgGPlvEfcgLLY3G3SlRvcF6RoGdwq4IQSr12DAbtpbwSbg\nga6omqnYVLCyh2PnwDK5+geTTueH8fj+MWcM3SjNjzXo2nkM0ro+/wl89iNYzwvhHfBXUCfA\nky2xX/5xIkkP+L2ybA8ll8MQSA8tPp4f3gfX8i1Z3Hl7KxSVde1De+WBwYOLFxHH+RWEfVwv\n2kFbGZr/NljWflrePEPRVh5WzofbYSUw32+mHgHLRx3b1O7fggc4y+p/+4OyHcv6/rfA/qTt\nkeyQmijd3KEaowpPR3AFfAf29x5YANSsYL9iXDG2SNtfibShc9B9OPKs/zQ4xrvA+TMp+G3M\n+ztYNu/jjyIvnYPDSPeHIpqMSvbzAtDeEv1OxxB59scy/4IYh89eBcfWD3rB78C5chB0l9xX\nnH+pzHONFdUgKrrn5bUkGR9B2MA18EqSTu1lPIjyhuadDK4H54YXX9eDa7EvdETzUdi6z8Ix\n8A/wO20F1dSHB/bBM0sRDaDS4CoVnbu+/3kYAb5HH+FYzwGfabPUHmnc52GjkcT1FVfD6aCt\nFoGtwfzwMwsR10e5jnxv2oa2uQS08Z3gGmtL9tv5XKqCBdpjwArVRkuWG7gfcvkKb3ejPhh0\nxn7wWspJX+/6AwN4DP4GLrSXwcVUay1MgzGnUrtFPELf6y9u8aubi1xNDvuAG+pr4AY6Ppjf\nSHLcd0PPbFDaJeyWZf0chI3MmAIWBB1gON6JiXsQPReWAA8SjS7n8rUJ92QD3o7QTWUg7AHO\nnQlhG3Cj2wHUonAYrA6pfUmOcdqZHunb/gqxTpwrsZb+RTykH1QxJtPLgHNFuRmPgB7gM/2l\n7VwFS8PMsAXsDudAXhuRcQq8kz2w3f1gDtDuqc4m8RLMA+tloYdJ391dOpoX7Q/HwmngWlHn\nwV3wvgmkPT3UOI4ZQH8T9o0DzHjkTQWLwZSwEgyH7+HXsBxojyvAg73jtK71pgHlxcBffY+H\n30JIe8b7Iq87QvumH1oYXCPrgvPpQZgJroRJIBS2iHSlPrvmXoBxMrStfmku8D3OIefeWeA7\nHgLfqR1TOTddu7XU5jRmn+1byHQ6jnhmaN+fAuetfZwM3oOLYSg4x8+AgdBdeosXOQedSyHn\nWvQ78jobOnb9wv3g+IeC32gByCveHfPjBwqYp121m99Ru9nPIXAh2PYl4Bxsr96goGN/BFYA\n58jK4Jrrbm3FC5ugL7j+/wqOd1rQTw8AbZCOL+wUofZS1psC9E/OUetuDC/CM2D+9KDOB+fk\nduB6OhieAM9LvndTOAZcy9E+0VJjgwX6M8hPwY3NifMgOIk+z8KlCGul02koFnwa1uOke5Ox\n7J4zzGDSLsQictG7qPvkKg8nrX10ij6XvO0iHc9vo4wL3nzRiSodTTN8DTqD7pQb3qBOvPAm\n6vqrXjX15YHOLMZcKUxtF/HvqHMhuAasYxvhbIl2izzs2B8PC0XkGh5WpGJW5xpC16YbVBCH\nc33CLeDh8x9wEEwFX4EHUzefHeBxWAfOggtAnQG2twmcA0XVTMWmgpUnop62XSapr687EK4E\nv7mXuwOyuN/fOVFp/kSe7XmwMfwARkI8cx59CW+Bz83/EY6CShpK5i65B9ORtu7SSb6bvXkr\nJnlG/XZ35vI6kryVwie2s4Lz03FvnZW/l/B1eBmeA33Y26Cv0hceDB4ywg7aQvt62At7RWie\n7ATK+Wi9TyB86u+IW9/8aPOfxH8P2t08nztnlXPWPOdAETVRqbmDFTem/DcwU1JvfOLa6Viw\nf+K47ZvjCxsYxrM0b1fyHV/YzT69BK77DyHaGkF8NZgSXJ/7Qcg16zc5OTIIh4FtFJFzwf6L\n7/8piUd/4nmUiXzX15PgPNkUnFPTwnwwCXS3XFvvwv2wKqwC74Bro6gGUXFgrvJipLXFLBD7\nc6XvHXYyDNJy+peh8AdoBu24FjjnbH9x6Er1oXHf43ovItezczGv68m4KMvUVo5d3xI2iPkf\n6Uqh/TJfe30M2udK0GbhZ3cnrs+2/9ODdfS1l4F7nFoP9NuuG+frhtBejaBgv/YWHtvKFZ00\no8tOToqbYQGYA6YDne5QcBF3hZyQ44BhveojOj5XrvM9culaJGegEe00bhZqt1SRtkzYdXXi\nLmrl80fhVVgb/LaxuRFtCDlGD1RhCzdrDyUq8sI+YSNDNSEsAVODG81nEM+IjjXqxUhjzjho\nD24vGkFnwp2gTTeB0B5Z5DHCQ+Eu8GAwBEbHQYfXtikPQz3hfvCA4Sb4ErjOnCturHGpItoi\n850TERqfANywJwfH+jl4MLWMm6+HlftgNvBdh0Aladfd4HlwY38B/gyuU/Pysv3Rpd682PXi\neJQ28II4Pzh219Gc4AVhdnD+rAw+D+nHnEeOw/EaimvP8AZQrkfXouwLHlYvhVMg1qr292Az\nMQyHacA29gD16aigW/+cj7e9DtolpD96GBYDx68cu3Isyn47rwxVhJY7HKaA2F+cqxfCZXAd\nLAnWdb92Pivn1AXwGxiahdryaKilHOeMEONK207HY36MyTnk3ukB1oOy6fHgDRgd+pKXrgJ/\nh3uyDgwndE7WUo5TfQtvgutFm4i2ShW2i3ztG/HJiJseAL3gIXgPbK+epT/RNmoTcD675v8C\nyufaIOyQ2s4815k2Nl+9DOfBReA8PRAWhu3gYPD7RltEW/YAfVaqr0joi53jpWpgARd6vUkH\n8URGZ/o+H5Xd8KvZwE1UxQQelarPP8+h2+fCk+Am1RumgVrLDS8Om48S75O9wIUddoxFHmkP\nIDqTkN/XQ8RxYP6RcDc0ig5nIAtlg9EGHox6ZunUTmb5POyVFfn5f375ezLOjsyxLLyc8V5b\nZcwe+NQPEIe0j1pyRv3hnBqSpb1geEHolaXHtMANz/nhwdp54EFjIHi4iDTR/5HrMA44ziHX\n1ORJKX2b9S3zT7gBtOnJMD9U02U82BZc2yo2bX+x9J0h32e7XrTWBy+zk8Ky8Ap0h4bzEvun\n7W4CfcjOoH/yIL9OFpp+BjzUrwraJWS5WIOG6j3oDbbvuPWr1v8tzAzqHdAejll5+LFd95x5\nIPYWoi2/FFt/KhPdIL/BluB4XSP2x4uP60DpezeGuAyZF2OPMLWRz7WTc9Pn00L6/EXSJ4DS\nZz3cEvvlHxeTfBWaYDo4CfRtXl5rKcdsH2Mc0bb9jbzoe4SW0RbOnU3B7/4RjE69zcvXAOeu\nOgbmaInV7o/naOoT2D8Lwz6V3pA+Mx6207+a/hrc8/Rnzo+XQDlvFoRnTdSZ9CeHwfGgH/0J\nTgH1KTjXxgPHH36E6M/zzH0o7GT+gbAwWL4nuJ6cc77nZFB+D8++vvcFWA8Gwp/hDlgMZodn\noFRpgRYLLM+fRxewhRN0C9i6CoPId2KLEznihvWoK+h0jMHxeGgZUHAgLnzb6JPU3554tJ8P\nLZu3oWUiz8PEkKy+hxqdgk7T+A7Q3dLp+P2LygPZqRUq6/Actxt/HC5Nu3EYStgqbBP52ijN\nu52036G7tQQvtB+TFXxxf+oNK1jXatfAZlXquzH0yp79hvBy8ODpgSJ0MJG9ssTshNrei9QZ\nsBVsAudAUTVTsalg5Ymop22XSeofQNw+PgyfQ8wHDx8Rj9C6YjqNm7b8p+C8E9MngvYJ+Y6/\nRSIJ/dYecj1Qe5C+D66Ch+AnWAK2Aeu7ge8LXgbey7iNcAR8AbdCUVnXPrdXf6XgB9APFod3\nQFt8DPbbuLZ4N0vbR/NSwp7mRdzDiXUeBMfmPLPtt0GbOG7tK9+Da9f6zaDffQBsyz6kZcxz\nDhRRE5VsvzXtxkP7cR/4/ZxP34LfTRudD9HXGK99ysdNS8yjKONYnGPfZM+1z7hQCw2jkf4F\nG3L+2ke/k3Mw+msYxJgijDKmtcnF4Pi0UyW5Zu8Bx+9lbw/wsNsdcq+5qRMvGkRd97y8NiTD\nsb8Njl20R2qbsFcaWs55LlE+7Owz55zr4vnsud/EdbQITAXrwtrgd1Nrwf3g+vRy+iRo3/bM\nrT6U893jQRENoNLgChU9P94Hn8O9EOP3XWGnCMMGUSZNW157OCbX05HwGVwGfhfb2BVCCxLR\np+ljtKF1tLN90I6uufXhAbBdv58++xyYFvLSpv3ymWW6/iywGF3evQLnk/dGkk+0JjqdVmIi\nO4nTyV2TF3RjI1vk+h9jcfEXkc5Gm+h81HTgYnwFXLCp3SwX9kvj0QcdQNRxc3FBa/sjQGcw\nOuRmoXMqqpuomL8g+auQDu1V0Jn5q1rYIOwSdor8SqH20s6GR0N3y8Ow/YzNq6Pv708FDztF\ndQ0VnSfDE4ZkjT1D2CuL/4bQA5Eb7ttZnsEs4OHQb/AWuBmrM2Ar2ATcTIqqmYpNBStPRD1t\nu0xS30OWFwO/t89iTqTxyDOM/AjNc01Z33VmfAi4sTsfPXB4GHHMbrS/glQeBNy8PwHLHwMf\nwt3gAUU7DgXf45y2XePOc23vQeY0cJN3XTuWorLuiR2obN99p+PSHo4/tYt/02VfxXxtZNzy\nkZ+GPv8peRZtRd3neDYYPLyEze8nbj3zbOsueBuce2nbxm3HOVBETVRqbqXirDzzgrtTUmZ2\n4q6lD8B3B9GXtH/5Z6bT50NJ27Zr7h14F4qOhar/o1pckPz+aZ8jnh9L5Fs+5oTf1nWinPd/\nBvvkfNAfa9trYUs4DFwLx0F3yL3mpk68yL3OPa+SFiLzLHB8YYuwT35OmB95I5Ly2vE1iHqG\nX2Vp58mD4Np23Wk3/Yzrx7mpn4l68f0sZ/2LoC31oYB98sxSRAOo5JqupPHJ3AEuA8drP8P/\n+U7T+TDGUi3Uxl6Q9E3Xgzaw7I4QmobImaCNvgFtZj3fZTze6fPwZbb5EuTXpP3uB6Xq3ALr\n0X+dkRuNiyZ4gbgfP9JEayI31pjgMeFiUtfkBd3YiAvFvnsY8rByF7igXPxFpLPRJn2yyhsT\nulDDSYSdLBNUyvuJ5+Z/AfZLJ2r5mWF0aiAvd9MoKjer/AVJJ6Tz3CcLHbdjjTDiYacIU/tp\nr/lAbQCWWdxEN2oJ3mWfRtcFqVZDnbRWDeXaaSbdlMtrb9LNS9suk1TYnbiHk5gP/hARB5U4\nMFgnnhtP0+ZHnvPnIXD9usbuhHj+BvFVIC8PAPrXQ8BLj5oL7MeGcBvYxjnghcRDoevZvKGw\nFIS83NwaiQKhdTtyQYpX2E9tpR0fBv1U+B4PDY9AauOwSdjNdEpqXw9zQ2BkVmYFwqvBg8pR\noLaC9yHqXUrc92tDQ/O1rWH+AENWu9REqeZWSm7DMy+5eV1JhmOLORV9NM94pCMMO6TPzBuS\nlL+PeG+opYbRWP+CDeqrKvXffkd+jCdNP8fzXbMyaxCGTiOiL98b1gEvhNpvJQhtSsRvO31k\ndGHoXnNTJ9p3rxvYSn19xbngnA47pbaLeGo714X52qUJHgLXmDb5GHx2I3jRuQsWBstqcy8e\nrgOfW84z3xCYFP4IlnsBfOZ+1Jr68NB+6fOKaACVBrej4jyUsV+pT07tEXH7bDxNm6dNPEMZ\n10Zzg7oGHgft2ROUF3TnnD7X+LkwFN4AL1T2Qa6AHnAv2K5+fAdIpS/sl2aU8f9aQOPWi26h\no8uDjskJ81vQaR0Jz2Zx06X+1wI6BxdIb9gL1gQXUq1k2xPCjDBOBsHPjkBnEArnYNoN2/Iu\n7F7wCtjWB9Bo0un5HRaBKZLBOX6V2ijyIl+bDAPr69DUP+BF+I2JUh22gJvRmC7nwUHg5vll\n1tmjCT0keNjQf1smnTsRz88hf3xw/nj5mh88sK8FW4NzcwG4H/JamowHwAPOvPAreBuehD6w\nMngw2BEuhiY4EEbC1PAALASjU/vy8sHwNKwIU8JwUPbteNA22kw8kGnHSrb0ufmGagKYA/Rd\n2tG/ZRgfPMxdCeoKmBW0k7Ifvs99zAPQFzA9dKV+pHH71SN5yWTEN4AYj/2PMSfFfh5r5MXY\nI224DvSEaWFVGApjquIbRv8i7djlI9DnLggngHmXwZ9hBtgNtoVT4DZwHboeDoWQl3m/8a8i\now5D5/ZGMAR2AOe00h4qwoinaetqV21zP8wDzj/92FSgtKNz8D3oD8NAmzkPvRBY1jacuzfD\nN3AquAcuBENB/zQmSP9yAzheFbZI59aoJ6P+jOemHKu2nRjMd436g8lTsB6cDt/CKqCcl7PD\nUeD7tob94DjQ574LL8AmoD03A6XdFm2JlX+0ywLxMdtVeAwo5IRZCqaHR8GNvlT7LKDD17k8\nC3dCukBJFpYOYHeIuZS267NQxA0j7oVKzQbzgs5Yp2hfG01vMqBJYBuI8WurSvYyLy1j3M3F\n/O8g5CbkL0WlGtMCkzMs18gM4Hd2XRwCHtQmgpgjhgHRinLzVa/BTi2xUX94+PDgns7D5HHL\nDym9yHgABsF9sC948POXR9e9fYv0hsT/Cm76bsheAg6A0ak4nP2TTswKn8A0oM08eEwJt4M2\nEMuEIs+05U1HaJ4yb3lwjWrn68G8dSG0T0QI98vinxJuAfrPvbO8rgruoWG/lYcq+6/cD5xH\n4W/tv88Cx6AMJfIjz1CZfxF8AJ/BmK50LDHGdGwzMADTHi712cb9Ydbv9lfwAPs++FwZ/wJc\nA6GIvxcZdRbuQX8/Ag/97jNeWiTsRfQX80EbpYq05Y8D7ag8wGs3n98L6hJwPVo2tZfzUemf\nehvJFP3wHOgaGt2yH/444PlUOTZxPPY90kRbFDY0X00IjjUtZ9q/HTPUt+hXtJ3S3yqfmS/D\ns7Rti/uG321SsG+2PR04V0uNBRZYjzEOhZtA519rnU6Dbhwx4YwHtX5XV7fnIrXvEUZ8QMEX\n6+C0Sx/YAL6FsE3Yy9C8CON5tTwPbu/B32B0ayAd8DBYVM5JDx8hDyZDIeyft1HeJnmb6RAt\nkzq332ftLUDYndJp2z9/+Sui/lQaVqRindRppp9NBfvqYVXbLpPVd1PzkOI/bYk5kp8b5gc+\nS5+nceeQ8+9duBmUhxJ/MLnGRBU5v7xEebCeAjzsfAa25YHYZ77/SzDPg6QHBfOOh/3Bd6gT\nwV/Wi8q6ttFR+f7vIOwTYdjtK55FPA3z69VnqU3TtN/J9MOg3gTTr2ZxD3UjQd/wA/hM/C4P\nwZ/Atp0DRdREpeY2Km7Ec+0wBF6C6EM+jDEaplgufWbfX8vytJX7QVdJn6HvKCJ9VYwjxhrj\nSMcUzyJ0Ljs3hoDrxu8X5a3/Bbj/bQPa4m1YDW4H1+w7MBd0tdxrnFdF5V7nnhdyPM5R9+Ow\nm+MzzzDsk9owzcvnOzd8bhjxSLunecG4Asz7HagecAeYF3gZOitLf0g4Atrah5yT9sczSxF5\nRhpcoaK++Qjwh6CwkWOLeN4GMYY0jDKGj2d14/lzpD+GSBtq+23Ad78BV8ME8ApcDPbzHbAf\n+mXn5/IwHKxvemZIpQ37pRll/L8W8OBWr7qFji8DThonRanqFoiDtQsrpXqN9j/xG3yStWut\ncBDGU1V6r3nqO5gVXKwHQqNpRQY0O4QNwkaGqcIe5kfcMNbpTMR1gi/C32EveA1KNaYFnAdP\nwiTZ8NzkYs7EXMoe/Txf0nSU1Uc6h+6CnrAK3AdvwcSwB4QWInIJ+N5rYCrYCvxbDg8o+4D9\ncM16Edosi3tQ8R3+qrkE+E4vU4uDh9vRIdfc4bAwePEIexhGXDvad9OOS0WY2tjnpiO0XMi8\n6cDQA8mUsBQ8AQvAHOABTftrG+OWVdrMQ1yRi5/1O6IbKTwv/AXmzFV0bKny6Rh39NvQvs+Q\nVXKPWTCLj+lB/jvG2GLMEfodnceukVnBtaA+An8kcF1eD4uCmg3ugbXBvcwDrpfzeE60LuQa\n9zLkWtY2b2eY9puHYi5E2tC8NF8/EXUMte074JnBtP5Ie64LzTAQroIPYC0I2ebUsEuW8SOh\ndbyIdrd+xQuvhIPhQzgD7J9jM5S8Yk5F6PMoZ7h0lva5c06fNS2EriNiuQvAubg1eBkfAj/B\nNqAPuhS0jT5mcngEZoFP4bcQZ0GipdqyQEzctsqNqc+dnJvCDgU6OCd13OCfq8KWuTbTiZ17\nNMYnPVjHph+dzacjv6Ph51RwAYa0U9jK0EUdYZQJxxDpiYmMhBXA9hpNvbIBpXapFA9bxTOr\nmadtToOLYHa4BRYBHXOpxrWA82DZZHhxwEjnR8SdJ6IiL+IebNSqo4KWXz29uJjvAaNPlu+7\nngQ34JthQngI3IA9/K0DHlquBS/mG0APUCeA77ePT8C/wb890T87d7tba/PC12FfsI+pv9M+\nYaOwm/2OscRzw7Ap0V/ETUcb1rWcdjJvEvDX2uXAdbox/AoWBH2l5ZUHIQ8z9i19D8kuk4fK\nQ8E+puP0hZFO+2I8TUcZQ/UtePiaEYZBvSj6H+NJxxhxwynB/VOZtvw04K/2MWd2I74nfASX\ngWtlHvDQ+wCcAvWk+ejsZOCB2/HOBV6sw1ZEWxTpCNN8487rCUBf8BWE/XoRbwbVD5YE549r\nxbnkjy5eDiyvnGNfgpct23FtvQh/hr7QXdJfXg5++83B7/8N/B6U4wzFWLVNKOIRRr5hakMv\nN7ad5mkvx2v+UTACTgTL+m28UA4B1/cg+DvcD7eBPlj7PgKlOmABjTu2ysvVxVDNBhvxbMXE\nOLFYk6y6iaYbf4zDhVYLeWhyIdtuGkbb5oXi3Wna5zqWGWAruAAaTcczoLBD2MkxpnkxZp+7\nsfh9omxzlh5AuD68ATrpUo1rAb+/6yEOCjFXKo3YZ84VFXNmVOq/+abd4D1geMDzcP44vABX\ng3NrJ7gJfG/oBCJ/gVXgtzA3eJC5A5ynC8FLcAD0B9fxMmCf3JTVsnB/S6x7/vDwfym4bhaA\n1D4k/0f552nauIpQ+0pePvcwqF1/SB5qG9kBPMh8B3FoNEzbJdmlOo7W98vekB9D9CPtgGXM\nj7IRWsZx+mOWF77B4AHtbhiTlfY/7WeMM83Lx8MOzTx4AJznfwAPok/CIDgTjoThoFwf58H1\nJupEq9FP52VeYTvtkM6VfL7pyIszhuUnB+1h3PmiH3Hfd858BmozmBf2glPBc8v70BP0VfoR\nZRv+UON7PKc9AdrdtpyXXaGpaPQoWAP+BCeD758flH2yv4btUb6cbZkXtrONiF9HfHewfW3a\nD7YBy2tTpa/1Qmu/DoRSNbDAeDVoo16b8OavQ6umOXiQXpCqlau3/Pwi7Gz/tVGlNmPBR/uW\nUbHojesgnYPxrA/xC6CR5AVypmRAMdYkqyUa+dpHR6jCVh5IDwGd4fcwIZRqXAv4/W+FvhBz\nwDDmCNGW/DRtXqSjjnkhD+0efDyo3AFHw6OwB3wEx4Lz9DBIdRGJfcFDvm24Zm1jB3CtDgMP\nO1vDzKA8OHug8ODoL/C+y/F0l5bnRV4CvwJt4qFJm4Z9iP4s88JeafznAslz8yq1EfXj+W5E\nPLCFJiGifa07cZZpf5QXJvs3mYku1OG07eUoxhjjsO9txSnyC+mH9NvTZ7n+mv076KrDafaa\nmgXpmFtr1HHGd4pvPC15H8IGoG833z3QX/OVF6fBLbFRf5h2HtaL/I6O24N4qpgj5oUtzEvz\nfWY6fe78nsgHyDZ9Nm8WGv8R1HpwFDiX1gbt7nN9jlp2VNDyp/m+R19km8vAzfAmrAnvQS2l\nL/kUfJfnxuPBPoRSG0Tf4plh2CTCNC8tF21Ge6blHZgAwn6uvSgTeabNd43PB3ODdjgDbodS\nBSygcUu1boGYtK2Xqo+nMZZYXJ3t9ZI0kG/LtO+JMN4ZYZTXCXuQinwdwEhoNOmgVIxzVOqX\nf4ZNIjdf9ioeeKj1EOoh9j4o1bgW2IShLQf+gBOHzvx6SudMOl/SeFjoJyKnw55gvdVgNvgC\ndoZB0BM8rBwGJ4Fz7n44GWzTQ84QcD4/D+4d/4TpwOeXZOFrhNeCbS0FbtaW9W+qPLx0tRbn\nBfbFcfYC/Uwccon+vA7tc2pD4/k8y+dlmcC2PQCm8l3pYc52TwUPWWk/4t1emLxw1lK+Z3lY\nF2YEL7iHgMqPMfrhs/bYIA6lf6O88e2hL7wLY7ocX2Bf4zumNogxmBdrz3LDsgdTEO4FXmjj\n+3v5928WPgC/tWtJ/QoOg8tN1IlmpZ/j5voadorssKH5Kp5HGHmGE/pHBdmG81T/cRbcANrW\ntfAbUPqn6Vti//3Des47w/GzbONeDhaAR8B0LeV7fgvfgn2y3461rfek9qF4i/J1TEfe98TD\nn0Rd59jekH6TNM6jlmfRhqGXo0vgQ7gFBkCpAhZwUpVq3QLpxItJ23qNsefplgw1HEXYydFH\nPMLIS8vqZDw0KA9wXpDqaSOx321pHgr0ygqltqhWL51fxrWLa1Rb3QFrwYHwNpRqXAv0YWhu\ncBtC6qOrzSHz07mTL+cG/zuIw4aHFtuP/E17deVxAABAAElEQVSJW996Hu6Xy+LmuUGb74Wn\nNzj/rPc1eJg5AVTU91A4V5Y2fyj0hodhCXgPukpeCh6EcbMX2G9JbZM9asmPuGGUidA864ai\nnciL8XpxjGeWNX8V8G8OVodjoBek9Ui2KM3zYDRJlt+ZYH4q3wTzwQ+gLZxD8S6iVRVjsoDl\nI23cw6H+KC4GuxA/Gi6EelGMJ/qbt4nPVYzd+JfgmD+H2cEyfnPXhT/oeaifFD6FeD6M+AiY\nBe6EA6Be5HjzCjtVsl/YzDpRLurHswh97uXG/SzKPkt8qizdk9Cy+hZt/hnMCaFox/kccdsx\nLn6DXnA4HAa1kv3wOz4KK4DvivfGOMj6H1V6FnUtnH/uGcj1aplU4c/SvLSMc9H5OTXY5tVw\nEqiXwPiloD8o1QELVDJ8B6qXRevMAvkF2dnue+BR6WIdlTPqz0r55rmgDWP+6Rh0bs9Bo0hb\n++tNJYeXH6O2SG1l3XB6h2XP3iFcFY6HUo1vAQ8Rc0Os2XR+5Edf7Zn5ziM1E9hmyDXnxr8D\nTJtlDiP0fWJdw1ij/pr+a7ANDznxT4o2Ju6BRrxEWc86XsK+gt6glgMvVh5uukJT0ujd4Lvt\nt0rtEnn5/JaC2R9pmbSc+dFWhD6P8mme+Y5dW14MvaCSrBPYzsSVChXIu5k6zeBh0wuslxrl\nu1qTz2M8+XI+85/pnJs9eIPwejg0S9dLUG181frvGvFb+sv+PKAd7gP1J9C+t0Ff6AW27zrb\nCw6HPrA2eLmsF01BRx1Ha7bSDpVkfv5ZtBV+JL8+429M7qWuf/v2CXg50sf0BtvT90S7hj4L\nRT8Np8sy/Ta1VKyh/WhUHxZjiXen70rzos/mRX6EPovnUT/ajbTj1t+qtHxaz/hH4KU9pK+N\nH1suJ65v9IeTUh20QP6DdLB6WbzOLJAurFp0PRZ+LPp8m2m+786XT/uzXb5ynac9oMwHMe7W\nhhN2Scu4cSwEx0B/2BkegFKNb4GHGeIAcF6ka8R4Pk3Wz+sq4oah/NxK63uguAKizFxZ/ENC\nD/herl4G6/gr+RCwrJecI8D8k+FV8FDj4cY6buqW87CljC8FHqytW0vZ3p7QDHEoyB+ofJ99\nFfsSMh1K8yMeYZSJMF/PclH27ayQh+sYaxzotI1Ky5s2P+qbLirf6TfUX3wAa0JcvCq1nx8H\nxVtkfjwztO6msC0cCnOD86beFGOq1u+wUYzZtDbVhh5AT4E1wLWhLYZCXIK8PPrtPUxvA+fD\nY1Bv8keQsJPjj7jjCPtEfmon8wLL5hXtpGdOy7tPqlXhjxCXHH3Ix2AZ11G0bRhtGI92XyHu\nunet6QeWgVrJS7J6Dm6BeKd5aTz6Y16ab7lQ/lmk0/FZ1rSXMUMVoeWjrPnaYkYI32feOqAP\n3w1mB/XpqKD8syMWCAfekTpja9lqE76e7BGLrFZ9dnGGXdpq2+exuP2l2Y1HuXD9hUPH1khy\nQ43xtjauKBN2jLL/IOKBs9TYZ4FpGLLrI+aGFkjjplVbay4tE+vPvHSu5dvwkOF6jEO7l/wo\nExcfslrkYbA3xCbsYed1cGP3oK48VMwB84O/pNtuLXUNjXkgCH9iX+1nqui/407taH6atk6U\nNZ5XPEvtZ5lI+9zLg4o849GfqJ9/rl28YHZW+uOvQZ/qoc6/TVLpe0fljPoz8vM2iDL+DaCX\nXJ97ALXdI+BiuBHqTY632lgdS/rN0rGZ/zTsk2XuTei8M/9q2BHWh9/CebA4eKmKvx0hWhda\nj176z7RSxRxJ84xXyw/7hq2jXr685aJsGqblXTf+qKIPsoxK24k88xf0DxTPdyH+REtO5//Q\nH/8BhsDCueZinBH6OPpg/2Js5kc8QvNSma+ivvFKZavlRXnDL+A0eAfugeFQqoMWiJt4B6s1\nRPHZGMXtcFcVNmyIUXbtIFzIQWtvckHHojZ08/YgdgCsBB6o/MWzkeTa0jaOtzVZJi8vi/4z\njVJjpwWaGHa6rtI5ZDxNV7NQvozptE3rpWWMiz+aebn3gGd516YXIS82sV+Yb94c4CHcfOta\nZgHoDZ+B8tdNL1z9YUlw3ddKa9KQhzr7HP1P27afeZmXlq1UxueqWjnrpPXSeEvF7I8oF88j\nbbsRt+gkEO80XVR+Ey9a/hMjL13pO0i2qNJ7on/x7CxKxq/3+qJ9wR9sngQvAQOgXhVjzfc/\nxp7azPmsRsDSEJf+64gfBs77VcE14j42C8wKzsf8RYOsMVp96J3fOBT2iHQ+TJ+n8ShnXjVb\nWyZ9Zjzfhmn/NsnLUSh8R3yjaCPCKOd3mzQSNQi/oY3D4DaYPGsv+pLvt4/Ni/y0b8bNT/NI\n/izz41m0EXUsFM/SMH1Pmj8z5b1gTgv9oVQBC7iQx1b569hTUM0GU/HMS1QonaiRV4atWyCc\nQSzcSL9JNQ83HpwugcfAX5obSYtmg4mxd2RsfSn8SUcqlGUbygJuvh66VLoBxvqJ/NbmVv6Z\n6aifPov2bTPNj3cY6iM9dFg2ytu/dyH+doRoSxnLXQ1eXJSHHA/Z/k2EP0jF3/QQ7bRWpIUY\nk43FGCMeYZRJxxfxGE/UNYx41DdsS1HHMBTvjdD8fNy8tI7potLO/uB3YtZApXYr5aXv8/t5\nwVoIvHB5AbgK3oNGV2obx+4c93sNBS8/ngfeBnUU+CPWDODfMJwJi8GdoO+vpx/8HPcKoIzr\nf1zz6Vwl2aosW022mT4PO0eYPrONyI/24nnaJ/MsJxG3vPEf4FETNdKXtON6WA78p3sDodK5\nMd8Xiv3ctxiDea0pHYvl8vVS20RZw4infbiffC9KH0LIuXkE/Bqco7X0xzTXWKr0kRtrhNVH\n8zmPDqv+uOWXOH/xDDkBS3XMAuliTmu60QzNMh4k7JfFGymYlcGE02rvuEZScAkY2t4KZbmG\ntEDql6utoWr5rRmkI3Usm/q8cbOG0zmdXo58bNpD+mYQG6/1zoJPYT+o1cFla9raF+IiSfQX\n/TWtYgxpv1M7VItbN30WbeXzzK+ktFzE0z5YJ82v1EZH87T5WlmlaDttI//+eJbm64PuhuXB\nS8JpMDZdjrSFStfgfKSd16/5ING2xG8CL/9enJphQ2gCL5r1ItdoXIrsc4w9P4fCNpZJn0Xc\n5xG3jIp0hKNyf/ln/lm8J/IN07bjua2k+dGqfuicSNQgdF0NgZ6gnfKKfpqfxtN0Pj/fRqSj\nnGGMM/KiTISRH2Ut799yrQ3awDPIqzAheGn8NTwC/4RjwXnthalUFQvEQqjyuMxOLBCTMMkq\nox2wgIvXf5PtPyfxV5jJwL8lGQyNptRxtTW2cIKGg2BoWxXK5w1vgZg/+YFWy8+Xq5R2flWq\nH3kxD6Numk7LuPGmbUU5D4T+s6wZwYO1f+vgDx/nwkpgG69ApQMG2R3SFpS+FGwz+pIPo8Ho\ne6QjjPKRNkzz8vXSZ2mdNJ6vE8+ibv65+cr8iLdkFPxjpqxepfeYl8+v9Br/Sc4K8DkcBydB\noyu+TzrO+CY+0yZPQ/pLvGVvhbXgIFgKmmEjuAXqSZ4DXdfXgxc846H8nMmno5xh+iyNp2Xa\nE4+68V0ijLqtPfeZF5r54Zmo0MnQ738d6NOugckhFH2JdGfDdKztadvyIcuvEwnCuWAe8G/A\nrgX/Nv8+WA9CTREpw/+1QPwq+L9PypzSArW3wLM06QFpKDwGjXg5Ylg///86GG+PdGxuTh4o\n/ecapcZuC6SbXmctEW05xyKethl56WYceVEun478CK3roeps8KJkeQ/Y/urugWtxcHN2o+6s\netPA5Vkj+hLflfYvHUdWrGJQqVylvKjc2rMok/bDvEindSMv6tQy9D3pu6LtSnnxzNA+3ZSF\n9xL+Ffx+fwAvvI2u1D5p3HGb9r+n6w0TQl7aa1WYFVaEersc0eWf5b+YGQ6OOfj5YTdHYp1E\nWOn19lFFaNzysj0cCf44Uwv5TynvgMkg3tFa34q+Mx1LW234/iifD60beV4YN4ZVwHNGqh/T\nRBn/pQXKC9Iv7VEp1ZWLodL76jmvksMwz0OTzspN5Ar4ChpZ/mrTHoW9DE8G12P8Ctye+mWZ\nxrRAbGwxPxxlGu/IqG0r6qbtRl6+rXx+WscLTzw3lCFZA8Z3ANe6/0zLuHlnQF/wn7ysCs7x\novIS5kZvG77HtH1S0U/jvjdVW+m0rHHLV6pTKS/q+iztQ5qfxi1TqR3H012K9xu+A7PDanAg\nrA67w8LghfZIGBsVB8fvGfybMA08CP4LiEaT8+BTcB70gpgfRH+hSvP7FwU6mKj2HpuJd0VY\nqWnrp21E3Dr+LfOqcCh0Vv4N24JZI5cS+uOB74i+xXuzIl0SxDsi9CW+P9KGgc8i/g3xt2B8\n8KLUF1LpQ0tVscC4VfLH5OyV6Jx/9X8x+Neep8KeMBt0hdKF0BXt13ubsRAdRzgM42m+8+ww\neAZ2hUbXxO0coPb6D9wDvwadWTOUGrst4NpR6XpK46Oetv/PfN1I+56IR2tpOuKGHhQ9KERe\n/NLci7x/gZoF3Ij9t/q2vT/oq/8JR4N/a9yZDVk/4hpR748Kfv7vJbLk/wRhy/95kGTkyzjG\nGGcUq5YXzw3TdtJ4lLEN8yu1/XEUqmFYqQ82H/0wvgH4g86kcBaEviVyHqwSGWNJGDZzHuub\n/R9e8G+OPGt4xtgbGk2O2fm3XzYwx51X2CWf35l0fh3k24rnEabP7Y/58Sztn/HtYAXYGjor\n/Z7/nFI/58XZeFcqHUu8J8YZYT7fdDwzlJvBdb0y6HttdyvYDJzT/gji81JVLFBPFyT7ejXo\nqGYG/z3wy+BEWBOeA/+JUq1VabLW+h313l4szGrjOJIHc8Cm8HW1Qg2Y79ypNn8i/yXKvACn\ng3b6DkqVFqi1BWK+Rbuu2bbWrWWjnocDfzmNw9P0PkReeOLSM5L4g/AF+GvlfZDq3TRRIO67\nPbgqf9GvpOhvPKs0zvy482nr5tuJ9iLMP8+/J9Jp21Enwnhm2n/CUyvZnkT7+XZ9pi1PAH2P\nl85xwf+xgVRTk/DZ2CLtkup1EoNgWvBidAmsAY0m1/a8sDrEvHWMqT2qzSXLdYV8d7w/wniP\nafsT+RH6PPL95/wq/9+Njcrt2J+ulW3Ai1ITrA++M94btok0j36havm/KJQkor0k6xfRfHuW\nj3HHM0PPycpn12ehF6UrwHPGi+DYSlWxgB+8XrQWHV0F/LXLDTivdcg4C/wP6dqjmSh0PFSz\nwRK5RmIC5rLH6qSLULtUk8+9tF5brcBYkJ+3TziwZsb+JcwJa8NucB6UKi3QVRaotF5jPsY7\n0/nqM/8Jmz5ycjAt/u1C/PLoButmOxl4afHi5Hy+C5aB5yHk3yx5GCsq+/YV2IeJ4Afwl9C0\nz2nccqYjJFozVWs3/y7TqdL+Rb55P4JjqZXy74l+aP+bwMN+/BLuYfItcP/sD35f/0bbf5lx\nEowtim/qD68LwXvwEGgXL//+8zrnXKPJuXEpTAmO7xvwcqxi3oxK/XKtRV6tQ98Z8zfen+bF\n+6JMhFH2bAr47Wol16bzYGnQx/lDQsyV6Fe8O9IU+VnRv58zcpF8nXza4mlevDtCn8c7IjRv\nKRgGy8FhoFzT2sb5PQLuh1JVLFDtclCl+GjN7sXbb4FKlyM75obsJt0T/PBtyY1fR1DNBp/w\nzF9VYsI5QdWQUUH5ZxULhJ203yrwSpVyjZytDSTmTow1bOP/OIVO67N4UIalBXIWiLmSn0O5\nYu1O5tuJ+Rn5kbZB80zrR/N/s+HfNOgzPTRsC9eBh+65QL09Kvh/pxD6NxQ+ewxWhBXgXigq\n+/U+zA3uAx5W7KeE8uOJZ4bxLMq2FubLVqqfL2N75qVl82WiP1HuZspfAP7AtyN0Vum7o614\np/5mftA3p3Iv3Axugw/A766Nb4AToZEV9gobOdZZwbPBa3As+CPAUrA97AONKP+mxfH544bn\nrB9gQmiPwobtKdueMumaibjvSL9RxNPnH1FmYrDvofghJ9JFQn3NWnAhzAyrwQQQyvcl8tsb\nxhiifJpO24645dIypn2WzzN/NrgC9NlvQfxgdT/xUm1YQKPVi+6goyfD+fBortNO1oNAp6Zz\nb48+ptAfWim4Oc88xKbyl7Ue0Jxm1kHcQ4rfOl1gdjufNq89Suulcet6cNKhaKv4hZJoXWlq\nepufYx0ZwNsU9m8g87axDQ8nbjzPmKhDxabpoaGItElPaC5SuQ7qeLjqjG0covW9iKhKc2jU\nk87/GW17QDbuO91kxbwZwb68D+b57fV/+hPX98AMgorSF/wFbNd2bNO6RWXdBeEnmAKi39Fn\nwxgT0V/EK6XN64jStlurZ7koa59CkWf4NWiTNWEtCEWZSLc3TOul8aj/KRH3x6cio0KoXS0z\nFYyAJcEfc8YE6TO0VxGFPSLMtxH5jv1L0A7jw+9hAPhe98/vYf8MgjFG/lBwbyd64/h3Af+1\nh/KSPBlog/BDRFsUtop0hNXy43nR0G+h7dO17bp3H9Uf+Ld6vlt/FD5mJ+I7gM+9MKmi/bPe\nDODla3PQHt+BPzZMC9ooVPQdUb+1MN92Pm1dx6+9vCBOCKk/t8/2tRlSTU+i6LpK22nIeOq8\n62GA/enk6eAE0IGHM5+d+LvgomhtA+Bxu+U/KdkI8g6i3Q2M4QVdYP566T8dKKJ1qTRdkYp1\nUuc5+vlCwb4uRD0PF40q58w/Cg7Og+2G0Kjrys3GdfU5FNF6VHLjbVQ9y8BeLDi4Rai3eMG6\n9VDNS4y/3heRl5r1oZHX1U2M78sixqHOBjB1wbr1UO1pOvlywY4uSr3FCtath2pepm4t2FHn\njOuq3s7K7R2u+9WN8FV7K4xN5erxo0/BB1oA5gAP6B/CUKjVxYimSpUWKC1QWqC0QGmB0gKl\nBUoLlBYoLVBaoLRAaYHSAqUFSguUFigtUFqgtEBpgdICpQVKC5QWKC1QWqC0QGmB0gKlBUoL\nlBYoLVBaoLRAaYHSAqUFSguUFigtUFqgtEBpgdICpQVKC5QWKC1QWqC0QGmB0gKlBUoLlBYo\nLVBaoLRAaYHSAqUFSguUFigtUFqgtEBpgdICpQVKC5QWKC1QWqC0QGmB0gKlBUoLlBYoLVBa\noLRAaYHSAqUFSguUFigtUFqgtEBpgdICpQVKC5QWKC1QWqC0QGmB0gKlBUoLlBYoLVBaoLRA\naYHSAqUFSguUFigtUFqgtEBpgdICpQVKC5QWKC1QWqC0QGmB0gKlBUoLlBYoLVBaoLRAaYHS\nAqUFSguUFigtUFqgtEBpgdICpQVKC5QWKC1QWqC0QGmB0gKlBUoLlBYoLVBaoLRAaYHSAqUF\nSguUFigtUFqgtEBpgdICpQVqY4FxatNMw7YyASMbt0FH93+M64dOjG086kqjSttooyJyXU1Y\npGKd1PkX/ZSiKtdVdcuV66q6bcp1Vd02PtHnNOqe/h/G9qODLKhyXVU3XKOvq58Y+r+rD7/N\nJ+W6atNEZYGxzQJrMGAPyI3MRgU/qg51ZIPb5vKCtrHa+Q1um68Yn5ecIlqbSo28phzbekUM\nQx0PcV9AI9vn4oK2sZp1G9k2XzO+oj86Oeca2TaOTd9RRPqqb6CR7eOeU1TudY1sG88qnlmK\naGMqNbJtHJtn3VIVLFDUGVdoquGypmVE38KG8CX8Ck6FK+EiqCfdTGenh5PgepghCx1jEfWg\n0lTgLzOXwnngL3ybwd5wNZwGaha4FnRS64ILcgvYE7aFwaBWhOPgYLgfxod9oC/opNzgukt/\n4EUzduJl2tVxng6fwiGgfVxvjt1n2shnzq9UvUm4Yf0dtK36HewI/WEojE7Nz8svAg8dRX7R\n1TYeBD+EP8EHMBucAs+DNpoJHgXHvRdMAn+BF2Ay0A6tyfZcp+fDRaC9t4JdwTbfhq7SjTRc\ndF059ilgALwMjabdGVBR22gL67o2zjBRx7L/S8J3sC18BI5rVnAO/As6Km3zPdwOriXbWAOO\nyOKurd7gehoCx8By4DzbAzqjBal8HhwPN4H/6mJn2BzcEz6Gzso9zDEWkb5KH3IVnAbTgetU\nW+8C2kbba7cX4WioJ/2Rzha1jeO07iXwVxNdoO1osx84914DfdyxoC9vgtZkuV7wJ8jvFfOT\nNxfoL1+FucHvOzFcDI5pUTgbekCRdTUN9YbDpjC61JMX3wCemeyH6VdgHXCtfQuPgPueNjXc\nHl6HtnQ7BTozd9pqv3zeoBZwQXuIczHPCePBn8GFWG/6Nx1+F1wwXjQ8mLsp61iKSFt46BwG\n4yQNzJHln5/k6eB0MP8BF/PkcBF4ufoBnoJ54WrwUJtqAhL+ou636E4N5GWDOvFCN/P3s/q2\npc0fBS8U2v5caAZteAXo6ENHEHk2EknoJn5Ykh5d0SV4sf3WERdRfyp5MFw7V3nzLN9L0L7w\nJjwG18Hh4HzxoOW7tV/Mu0mJuz4nhNBBRDz45fUkGR4Mu1LNNN5U8AUTUc/xLVOw/phe7UQ6\neGsnOmld26h3fcUA/M4j4OssvDTLcw4UUROV9DPj5yrfRdp3jQR92vVwJehP3Bd8dhTMAx68\niugvVLo3V9H1ORT2yOUXTbrX6DuKSF/lOB+EL0H7ux+ZdzqENiOib+oRGXUSnko/b+pEX50X\nAztYfxbKt3e+eCk6INf+vKS1/wK5/DSpb/dSk+4Vro97IOau++mx4Lw+GQ4F18FVoPqA7/HM\nUkQDqDS4SMV21HGN/H92zgPKqur8299fFOzYKwooKvZeIhawYGKJmlhQUUfFXmKJMWLXWBJj\njya2WGKJvRsURcWa2HtBYAQUe++arO95Zs5rtif3TrlTuHc4v7We2X2fvd+z67ks+kBzF5Sf\nk8dx6VnBcet5ynXjTdA+o8BLkvuGfX0UtEVLNJlMQ1qScWrM44G1UHkLOBmdgGPhbegPXphq\nUb1otIvSdzALzAVt1cdU4IQMvYfHCeyzVoHn4HBwMXUiO4HHwU7g2HOB8MDtAroweGlL5YXC\nC1It2twFS9mnGWANcFHvAbuB/VXbgZfuO8F+9oS8HYhqiDOtqyjfR8POt3dgI+gHc4MHmiPB\nDc4xpLSfB7wz4UNwfjr2YhOeWmxIlwvVoAVcA9S84CFQdwdoq/5DBa7vqTxMuUY7J5YA1+Zt\nYTkwvxoOfpB4C56AZaE1KjXffKZzsprWrLVoz4zghcm9Ry3d6DT8jTWoexJXeH9sAfdrP2I5\nrhwv/4LUhgT/R6XGh7ZWTY0P35WX1cjrXBkP60GcXWfHfwh4TlsXHMvuI7atmrUpjasH++M8\ncf+fD0rJy5B98iLjuNWvbczvmUK7GLcxKM9MTdm1IVPxp3kLxCBrPufUmcONbEvw69qpMBTq\nodbkZqXcEJ04HjYjDm/F6k/JFbPSjiU3eet1I7oPvEC5cCkXutEQX0uc6G7KfwL9fkn6JcwB\noY3wuKE/FBE14mqDhWBRcOyo78Hx5GKmtJf56uBfMBCuAm20DiwBIe28NpjWFeSivnuuI3sQ\nHgcfwXqgvbTfTjANqHnAA6Bz0UPcLrAj9IND4SjYH7TTmrA0hMwzEEwrVFhgSlngBB7s+pvK\nsd4e6kYlGyQVeZh1TXXdV31gVT3INVdM+xacd3+DyXAPpOswwSblnPopLJTk8jkrQDXNN9db\nbaT0yyCwnWoYPAlfGSj0PxbwQD4SXgVt5vh6Dxwvs0E5OQZ2gXTcu/778etZKCfr9lmxV/wB\nvx8T6uFNiHHdHf9u8DU4lh3XF0G1yo/HN8L14LlnINiv22EayMtx6Vj9JkuIuWk/Hc8fgx8W\njwQvU+59D0KhwgIdZgFv6062L8BDmQPPhfNpqDW5kASxMRh24lUiFzrrcWH8DM6HWLCcrNrN\n+s3jYXgiaLuIi7Z8SZy2jfA4/BPAhfBicEE4DTpbJ/PAEW146M2UrYcPMrRB9F2bRH8dW5EW\n6dsQdwd4YDkLzgZtqq1dULW39boBzA6dLTdF++BX2Eo0lEJvg5uZffodPAbawQ3zRQgb6Ybf\nsaKNtEuMJeP2gXEQNnU8+XXcd/AJnANngr80+U5LbUBEt5vGU1NdhbVNTzn7u3qF5au9mBdb\nDwGVyrLWUavam4Z/DzHXw40xrusYqER1FHofnFcXgmuI9Tsf0vrD7zoSc8Y2mU/XeOfVsbAq\n3AfOt0lwAkwHeRk3Gt6F0+E8cL+8AtpL7iFDK6zMtSr6rRv+6L97uu233x4ua01n0GDXu0rl\nuuie15yGk2EMTJtknAG/v9a4DpfToiQ4Nl4Hx5HjTNtfAx7yS6kbkceAYzreU7juFa7nEdZN\n36v+XqAGgOG0zca3VMPIaJ/bU5dTmTZPtSAB7bIeLAt3gXM5zlL20X6n/Uz7H+cI3e/AMd3c\nvCVLwweRIXoK/a8FpvnfqCImsYAD0MnxCtSDG8FCUKuKhUS3PXQslfwaNgS/atwHLoBebJyo\nuvNCH3gYQq/heRk8DMQYdOIvDKNgFZgb6uAQqEXdQqM9KPQE+/gFxOLmQqjcXJQbjPYy/SrY\nD46G/rAEnAiLwwKwGxwMa8FIqHThp+gUkwv46uBY2RKWB/v/OLwN6gnwC6K2EseKC76u89CN\n1Yvin0C7aOvbwI3VevaE4bAYLAXHwWbQXmOfqgoVFmiVBY4hd/5AGGtCqyoqk9nLjevDMvAz\ncP1VPsM1RDnPVKw9fkRwTrhG2bajwIPZofAAeEDdDn4PzqmLIS/n82Dw8urHiT5wEOwE1aaw\nt32Od+H64J7kvvMIFCptgd5EPwexf5nLNfklMK2cxpKwN/QF12dtfAE4Rv8ApfRnIn8F5h8P\nrvWhF/A4fuNdGu/79ANbyDFcrdJWT+Ya9yZh9z7H4MOwMnSHmMN4G8brGbgvQj2EtIPzVPfW\nLHJx3KGgfcvN2yxr4RQWaL0FvFX75T7VOALpRE3Tqtnv4iH2x0noZHSR8+tIJfJQ7mQckBV+\nHfdpcLG0bm3k88yzIaj0i48buQvYhRBts/xFUA0b1Mm0YwRUKr/m2bd3wQXOPn6buW8lccb/\nDT6HUWDY9+JBP9VhBN6AGZPI+fFbbuskrjO8Lty+15krfNhQyk3Myrpperiyz8a5wWkDx6mb\nhM9xPBjnwc68e4D9Ns6NQvcFUG4GY8C8V8KU0HgeWlfhg7382efVKyxf7cU8QN/ehkZa1jpq\nUc5d363rga7j1vHsWhlhXcdAJaqj0HhYAVxbfY6H/qjb9dd54TrkLyXGO1dcs23LF+BB1nnj\nYcv41yHVWgQst0Qa2Ul+1wfXjkrkWhV20DaTQVsYF/Fz4a9VeWh2z6lU7nXuec3pQDK8CTMl\nGefA79jaJYkr5R1FZH5N3oo458CcuQK9CTsm/wrjwDkxHGKsWsZ09wld8WObbfN9emELDcBj\nnGeWSuQZyXnSnvoLlT0KcUG37iXBfvwDnKOfw0g4Gtwf7YP9lrvBOPM7nv8JfiB03l4H94P5\n1wS1Nhhe3EBOzoUhubgimFkgvt4XBiltgR5EHwAbwZ+hN9SyZqXx88AC0J7vfl7qc2PWXtbt\nZuuEVNfCw9DTAHJRcIE1726g3Ky08V2wNHQFrUon7Nd0YJ9jgfZiY1xoezzaajm4BFzo+0Mq\nbTIaPNiEJuN5DmrVXt1p+0lwNzgWHTeOC23lOF0G1PKgfcKG5+L3sKkttNO3sAR4OToYjoD3\nIMrjLVRYYIpbwPEqzv0Yz93wz56FcdpFx1OLly6fsyjEs2bD7zzzYOWB0/g+4Dqs/Gj1GmwO\nlretxqV6iIBr+1JpZI35XXfcr1xPVNjHNaRQ0xb4K8ke0EeCv/xvDffAO3A1NCX3KS9iqQy7\nL+Zt7/hy73ScPgtnwa7gs70UxF4aZwrfoe/VvVX/M1DNOo3GuT+9Dk/BKNCOnn88Bzj/ZgDz\nXQjuccr1wr5vAM5lZb/dI3eEA0Bb+n60Q9jpQfzO51o9K9D0KaMw8pR5evU/1YF5OHirXwNu\ngbFQy4qNob36sBcVeWB1Qt4NvwMXsXiOG/NPkvBH+E8B83+VxR+F+y54yZoIXUFuwuKBwr4q\nbRL+hogsrgeuC+G+YJm3IJU2ceFM56s2Xwxq1V59abtjYzAoD2N/B7+CaadZwcOcG4DjxH5q\nu25Z+Hzcb8B04zaD7cFfGfyqOQkKFRaoJgt4IEoVa6Rx+XUhzdca/8pkdg1R7lVvgnXH2uN8\n+XcWjueb7i8oG4FzbSA4p1yXUrnezATOxVqVfY5+p32o5T6l/ehI/6dUvi7Ehegy/K/BIPga\nmpL2dX9PFeG87Q17uHd/+Dl4mfgEZgb3wPR8QbDhF8HxuI5jtXijU7V/nWvdQNfLzdowN3gh\nso9ejrzQbANHQMxhvA19NByyz9OB5a6EXrATfAiPg1oMPC/k7WxaoSYsEDfMJrJM1UnaxwOX\nk9KNZVuog1pXLCTt0Y+jqSQ2nMH43WSt37jvQBvqj2e6MPw2i3MhcLN24d0TDoH9oCvIftpv\n+xj9D7uEG/10fA0CL5seSk6GVBcR+BV4ifJyOX3meoG/FmpRXojd6LST6gnbNfga47VJrE+6\nHsy0m+NlD3gAPobjwIvUoWB9L0OMMbz/byD8DCznB45/QqHCAp1lAQ8mO8KS0LvEQ10b2lMe\nrBz/zhUPRrohn+W8Cum/GDYGyy0K5jkWXIeWgOHgwWshuAwmwebgfHoauoKepBOTu0JHOqEP\nb/CMLcFxko6t1Qk7Lhx7/4D7IdUZBC6B8eA6vBScl/kt1w/GwuXwAtwD64HP8OPgdKB8rnKt\n1y8LwgLg2m7etF0Eq0buQ/ZpV/gAxsEbcCP8Aq4D97lp4D2oAz+wSsj+eglSztkZwLp0LaMd\nvFheDfOA8/ZceAiegLw8S/gB27NaKRnv+yyXXqpMETcVWGBINiiciE44XQ91PaHWZNuD6Ivh\nYRV2ZFrKWc8OYD1ulrpO5FLP8dAa8bqWlSgXbXLhrAadTCNGtKEhN1P2fbBfLiz2Uze1gX4P\n+Kk99HtZfAeWhVTrEHgdwnZu6m4ynS2/UNsGv1hVoqEUmpgV/ATXurTPhMzVBimm3QT3gXlv\ng+8zv+PtQTC/acFn+E8CNwbz3g8Pg/mOgo7UeCqvq/ABblb2wcNGV9SpdMoPTpXKstZRK5qf\nhr4GHlxcD9JxHWM13BjDjoFKVEchx57zyDqtL9aeeG7EO6e+BQ9W8XzD4ffrs3ud4Zhr+i3n\nfPsnWOeB0FlyzXDtqESuVbY/bBz9jDj7/gTMCrUoLx/uOZXKvc49r1IdTUFt6xp7PzhOzoa8\nDiPCX/3D7s4J97q34I7MnYS7GCwBkS//vnxW4LPC/1jmPw43NACP5T2zVCLPSGMqKZiU2R5/\n7HUxn2yzttB1/HlGsp2/AvsU+dO+O59PgTPBctH3t/E7Z50jcQbzHBFlXTfnhlKyHi9avotS\nWHd/mCrlTbVQeQs4wJzUdXAJzAWXQq3KCaX8CmHf2qpVqMB6rM+6p8v8af0vEjcHxIZrmgvC\nPWCZP4C/KH0NP4VDoStoJjqhbbqB88wF2gUxFDYzTyyW9+OfEerhEkg1moAbh/QBLyovQa1q\nZho+C9h/7bMQaBNtEdoAj+mDwcVfv5cf5+HS4KJ/PnwFjiW/xK0Hv4Z9YC+w7EBwo9wGjoOV\noFBhgY62gAdXx+vvYPYyD3NMS3tpASqK+lxznFsegJTxj4Nx+m+B5+BScN3ZHNT0cDoMghPB\nQ52HszVhbVgdhsEfYXGoFYVdbG/4vSR+Dn3hWCjUOgu4Dx0Lrq2usQNhQ3D93QhCru2bwAQ4\nBLYG12zPBuY3rR+8Cq7pru/uBc4fzws3gPuncdYlyrEd4dXwfwGnQrVoWxpyOcwEl4Ltd+y5\nn00Lx4HzcTEwfhTsC54bQsaLl+CHYT34GELv4jkLToHtwLnqBcv9b0HYFN6DUrI9F4J7ainm\nI/4VKFRY4EcWGELIG3WqxwjEZpPGV7vfSRATM/y6wypsuBPbCXtb5kadxoU/XCdvTHDjIo+L\no/Y9F+YBv4q8DB+B9U9J+TVtRBsa4ELmoh42KOeGLXS1xwPwOHjgN07beImoJrkh2raZK2yU\nX4HdHM6D6H/YJ8K62mP3zDXdcKR7eFOLwljw65njbAxcCW42Hv4s54Ex1ZMEjk4j2tk/nvrq\nKqzTg6l99ADaFXUqnbq9DR2zrHXUipzHXkA8tMXYdUzqT8NpnGOgEtVR6A3I12vdUb+u8yji\ndL+GkTA3PAKuW/uD2hEeAvvxHSwJqZxvfvHuDLlmuHZUIteq1C7h13U/vwvsowdwD7OLQC3J\ni7h7TqVyr3PPq0RHU+iJEgX/Qdw5SbyHei/afbO4GXEdf6/A2VmcztZgvOPQeaPf9+SFQH9g\nXLzHdG9wX0k1gID5Kj1TDKOs47xSvURB1wAveFeB88m5ZJtfB9urXaJfur8H9/21YTykfTU9\n8ke89Rkf9aZ1acODoJysy8tVoRIWmKZEXBH1Ywv4VdqNw4H8JkwHtSonVHsq/UJkvaXqnzN7\noGkuCiHHnofagaB9u4OXo9lgXqh1dcs64ALUErmQuSD2gyj7c/z3gbbpSnIO+XXLMeFi7gUn\nlfH/B+dnrmkHgBdq0w6EyfAqaCvHzFPgQt8L/gWfg3V4WUpl+UKFBTraAjvwgB7wZfIgx2Mo\nHYfGOw/aKueB9crrucriedGG8aRPANeWQTAJ/Jrv3LwPjoSLwMPvOJgW/Kd1S0GqqC+NqyW/\nF1L77wXpE1gUXD/6QKHmLdDU+0/Tlqeqz+BmGA1DQbmmD4GH4Y9wFKjFYY8GX+N4njXz61iv\n4znGdMwd638Tqkn2w70q2mrbHGuefxYB90H90YfT8Xuh+SmsAAvB2+DZybXkNTCv4ajTPXAs\nfAipzQ8n7JlKux4BhVppAV9MofIW6EnSsuDGsSVsAQ64WpYTKJ1EbemLm6aK+mKSRzie5UT+\nFJzI+v1q6SLhZWANcJOqAyf993A2uDhG/XhrTjG3PHCEPfKdiAVOu/n1Unc8aBsP/KuAi2hs\nJnh/JBfRy+EmOBBmgFqQ79v37CXGMZFeogn+j7SHlx/L/QkcS5PAr40Lgl8h68G0gfA8LAFq\nvkan4e8v+LsS3JHE5b3+4nQK3ArWlz8QElWosECTFnDu+0vXOFgV8vMy5j1JDTJs3rbK57wD\nrjeLZS5OSXnYWghcc5yDHspWBOfkIDgKdgPXlSfBNr4Mx4Oqg0XgH1BKtmF7uAaug13A50xp\n2a5Uhu2bdrgS1gEPm0dCoeYtcDtZXFNdW0MD8WwIps0Py4PjyfPUcrA2+MHZC82a4JnqXtgc\nPG+5nv8KXId9F/4yonxX+vPzx3FlnL+63AnVpHoaY/82Az/orQwzg+21PzEeXTPcEw8GP5b+\nFc6AfeBoMN0PLl6CvoWYS9bzb1gU3Eetz/1SaeONwbLWMQcUaoUFNFyh8hZwEC4EDuh5wME3\nEWpd+QWmLf35mMIx2WPSRn3xHO02axZpfi8/TnYvD4/BvOBYHAAujubxgHEb5OskqmYUi1fY\nJxbDtAMRNxOR5lshS9wF18POaFgli0udowh40Lfcu+DXovthRqh22Wcvv154PJAp4wLDMXb0\ne/B7HMJGbiT22Y3AfMNhGHioWRLciNyIXwcPPaPgQbgejgMPfKXUn8hnYVOYAB4YzetmX6iw\nQEst4KXdg6Hj1jH9HwgZDsV41+0VkW1wrWd28MAUimdEONyl8UwGD1vqaXA+nQkngWvz87AX\nePh1Hni488D1KPwVDgXnWildSuTF8A04x8+B68D2VJvs65dwLGi7G6DUmkt0oZwFHBfHg2ur\na6xr7T3guuu6/BY8A7PB++A42x0ce7OAMs21dmYDqB+sA47NnuBe4bhxre8OKvaHdDxdTbz1\nV5P+QGM2B9vl/uQ5J2Qfoh/GOQ6VfdRu7mUXwKWgnJ8/gdgHR+K3/16oXGOs2/r0G28+ba6s\ne9kGX8f/8d2dApeB4+IM+BUsBDWl9GXVVMM7qbFf8xwP6G54LvIfgIeoWtWnNPw7sF9OovZQ\nTypxUoZ9nJgx6XVdNF3oIs7F7ga4Cz6BRcE4F4UrYQXYDdyg1oLtodYUC1Uc4F2k7H/YIPoz\nLonzMOVY+xdok+dALQLvNfj++8f0Y2E7+CXsCV4IFob9oNr1PQ10nLho22/lGFGOS9McpyHD\nLrivw7YwPTwA2sU6noVdYV94EXYB5+rysBE8BQ/DADgOyul0Ep4Gx6B2NP9fwU3KNhQqLNAS\nC3xEJsf4/HAZjAcVa4BjSSKsOwHaKp/ZAxz71qliDUrHr/7NYC9w/nk5eAbUseA6bB7jfg8n\nwmpwI7hm3wergvOllDYg0nV7XdgJdoE14GewJUxpaZuwj20ZCfPCjAaQ62t+zW1IKP6UtMCx\nxLpWusa61m4Cvm/luHHMuAfOCt+B62kvcIxdA46venCsOYa9pDq+zgXfk3tDvK+x+NUTjU5D\n/MQs7KWi2mRfD4fFwXPOdKANHoeQ809b+BHB/s0A5t0QZgP1Gti/Rw2gO2ElcH6PBm1kHeoN\nMP/bsDd8CKZ19Jiehmf4Pq+HBeAdeAF89mBwbx0ChbqABXyR70IdHA/rw83gQKw1eegsxbAK\nO+LkdcGaVKJe49NnOUldEIz7BrxIuVjq/hFuARfEVyAvJ9sl+chOCJ/MM0a04Tm3UtaFK7VD\n3m+fjdNejqkIa68lYRbQPl9DP0i1K4HJaUTmPxP3rhLx7RnlV2TbPHOFlQ6lnG2PceKGGOND\ne4Qd8vaKsOlvwrrgwvsEPASLQHfYBxxnO0Frpa23yBVyY7Ot1t8SjSdTXUsylsgzPXE+a/US\naV0h6lQ6cXsbOmJZ66gF/YNGOmZfBddJ32uM4dRv3MvghcV4x0AlqqOQa0e+but3zpSLN304\n7JsRa40HMQ80rkXTwlbgmrYHNKeTyDC6RCbf359KxLckykOwa0clcq0q1f+Ic/39AraDncD1\naBuoFZ1BQz2bVCr3Ove8lmp+Mu4Ov4LlShTyEuyhf44s7TNc1+kXQNuOhdfAseeh3T1FeYHy\nnTheR8Lp8HkWjndlmTyHEGfdR0JeA4iwrGO4Eg2j0JhKCubK+PyF4CN4EtaA6GvMz1eIcz80\n3j3MC8an4AVTu5nmWLX/1qPrGdV46zAc7iP4n8nC7pcPQSlZ9qxSCRXE/YwytqdnmbKbEF9f\nJq0qoysdNFXZmQ5o1GzU6eCZAIeDBzIHZq3JCWfbQ/qNa6sWaKYCJ988SZ7p8LvRWW4GOBii\nHXPhz0v7v5+PrIGwfeqetTNsHW40P95H9D/C2utFMN4vP1vB65DKzWdGcP5q45ALk2nVLm0T\n/Z4maWzYIKLM44LfDSLN/rppjIKr4JdwPYyF2BxOxH85tFbaLr+4OwZVLdi1saXF3ylpAcez\n43Jw1ojFcWOsZ1E/OI5p0xzDfhBpq1wT8s+KeRPxMZ88gPWASXAceIgyj/udB07XHefVS2AZ\n07ycXgDNybkS8ybNWy3rU9g9bOLlyPb+Dezr0XAtFPpfC2xJ1BXgGixnwGlwKIQWwvMGuH+p\nZ2FNcO023rPU1aDmhMfhTBgNvpMHwb1tbXgKVgLHtvLdhczrxeEPWcS9kVCFrn337PMobASb\ngxca1wvT7JdrRcizkrYxPZX5HKPOJfs/NziXzfc5+GFmZfACpsw/H0yAmcE8HaXeVHwbfFLm\nAXcTbxvmh8ll8lRVdN74VdW4KmiMg8sX2hecsNrLW36tyX6ocJ1Y7a1SdWsz433eCHBiLwxO\n/nNgA3BjOgjmgPMh6hmCf0OoxY3KPkS/8TZIG0R8FtXguHl4ATgJjmqIafwpXVv59ev2LC51\n7iJgfX8EyyptuT1cY6DK5eL+VtLGeOcRFWHnm7iBKDfDkbAk/AS2gE1hNXAT3Rh6wXFQiRxr\nvoO+WWHHpDZ2w/brfKHCAqUs4Bh1DP4UroRtIMZwzHuiflDE6Srd9HDUEFnBnxkp8z747Hi+\n1YRf1zX5G+gBXmScL/tDH+gLe4KHXg9VzrEVIObVcPwt0Q1kWgoOTDLvit/17LokrrO9YYew\nezx/TObZD3dBODkSCrfBAsvw92rw7OP7c0/aGhw3ur5n1+LQS3j6wc7gPv4RaHPHXh9wj3LO\nPAZfg7KOG8FLw9rghcqDvq7jWvn+bgL3xniHniWMdywfCVNStvd6eBX+CcMgrxeIsL2/zVz7\nEXs43gal+50R5nfOKvMbFm34MXSH72AyTAIvQQ/BL2AF6AfzwinQkfJy5vv2neVlG30/X4Dt\nLFTjFvBFx0R00or/xCAWU7w1o2h/uE4y/aUmcEs6NS2Zog7dPPEcF600n/HGuYn3h1TPE3CS\ne3AeD9q+pRsyWdtVbpAj2lDjHZS1/fY3b5u8PSJPuF9T5nXQBgeAB6cVwY0glYexT+E9cExa\n/izoaLkJ2IeZK3zQUMr5nt0EUlvoTwl76Aamj4aQXy7vj0AL3IXIswqUa/uspFn/t/AiuJi7\n2fWBlmo8GetamjmXb3rC9nH1XHxXCZ5KRzxcVSrLWkc1aTEa8wL43hzX6Vg1TmIsp2HjnOu6\nN4Pz2HTHQCWqo5DjttSz8m0wjzgH34G8HiXipHxkK8PuLbZnErwBPssPYcvCMuABrzWaSGbX\njkrkfM/bIH0XttPwIHB9cB2oJXmhdQxVKvc697xScr13HXQ9fBN8jzHGHO/u50/ClRDaDU+a\nT/uaN96B5WOupHHGO1byeeN5+byGrTv2WvPl1/YBxJnPM0slchyPaUHBdcjjJWY82A7b5HO1\n29zgeL8eTBPTpJTfOM+aad6wl3GuG5b9DZhPv8/TFh9k4fweYj9KzXXLeZk7vgxHE98TWirn\nqG3wHOe4cD99DrzI6a4KNaNKB03NdLCNDY1FXNeB2QMWbGOd1VDcCdVeyteV2iw2ew/zciAY\nNwO8DC4ebpoPgYvQs/AAdIeR8BrUorRB2CG1j3ERTl37+QYsDQuAC5KLzGEQlx4PUHvDDeC8\n1X7LwiCYBVyItF8tSDv41Sy1Qdpu05Xp4lgYDGp8o9Pw1wuiY6k5zUmGy8Ev4cpN/VjIH7at\nb13YEPwCPgHugPh6h7fhl06/aE4yUGiqtoDz8FZwLLi+OU77Q8ix61gW/Xm5zqkNwAPuDgba\nINsTzwrX6uLZ0Z67iBsI7mel5k9L5xXFy+oiUrSHdpkGPoJT4HRQb8BOMNpAJyps4SO1kXJ+\ne7gcZQB5AD0JTjAwlev39N+9qDe4v8wHHqp9p8rxsyL0yvyDcC+AI8GL0sLguNTu8gm4v7n+\nfw+fg/MgfiWaA79pjsEz4BiIsngbFO/NeOu2DseXz9oCroDO1mk80I+8/WATeAm0wc7wN/AS\nuiWUkv0IRV+dm8rwf0B7e8mYDbSX4/WQzD8Q91HYFc4F9TP4Z4Ov8U/MacvvDb6zyY1JDf/k\nbUDmzzu+o0vB99YSaftbYUnoC3PBO1APj0OhLmKBIfTDwfEdOEg/Aweq1Jqi3box4fQPq7Aj\n0+bqiUmd1p36XyO/dhSf6wJ7FTjJzeeGpH87qAadTCNc0CqVh+rUJuFP7Z/ax/i3IWwTaS56\ny8H8cCJoP933wTza7EKYATpLK/Mgn53/UtfS5w8lY2qH8EefdYOwR4wbw7EBzI5/PHiQKaeZ\nsoS7cV+ANcANeHfQdralpVqQjB4so71j8K9forBtqisR35Ko6clk3/Nf/1pSthbyeCG9vQ0N\ntax1VIvWpSGOh3myBsU49R2KaTFe8uFI0z0HfOfmcQxUojoKxbPCjWfqBu5pYh7ngO6qEPLg\n5IVh04hohduDvO4NefUiwgPaxfAH+ByibWfj90DcnCaSoTXzNa3PtSqel7phE23wJqwNzvOd\n4SvYE2pBXiRubkND3evc80rJj0mOF9f9Q0FbmV/bPQCTMr/x2ixsWo//C3gC3O9NvzPzm8ew\nmMcDtHmivOPPtJGZm+aPcqlrumUt5yU81QACppcal2m+cv5hJIwpl5jFO35tj7a4EhxLPlO7\n6Up6fjR+cpIWeWI+WlfE6feCGjZM+63/fRgOjlt1LXwHrxjI5IXKd6X9x8EbcDE8BNZxFrSX\npqOiLbPK/g/XS9s1cAFsATWlSgdNTXWyDY31BYvqzENo4xNr56+TWTuFa8v1h+bC4wUgJrF5\nh4AL49zg1xEn6ipwNdS6XABDYZPUHjGmzOPC58IYh6yP8XuIN975+Sy48N8I78Lh4OXSDW0x\n8IDh4rMj1IrCJqkdIi7tg+naY3ZwfBh2kXUR9gDn5vB7yOsQIn4D2tQxNi+sBE+DuhCWgv3g\nCmhOvgcPBW7m64JfKy3rgd2DwyLg2PVZaZ8Itkn7UrpfiRrOIc6NrhK5Yd0FbuKqFzgXtb/j\nyI28UMss4LrmmPgQvLh5UGrq/ZumnYPIuzVxLRmHZGtW1h3SH8+IONemONA9j995MRpuAPP/\nElxrHNst1TJkPBfWBuu/BZwfzge1M3gg9NB2NBwMD4LP3Q0+h+GQahoCm4Ltc+/I94OoNim1\njXW7xt4DHia1i/awD+fD1Czt8j6sDIPAdzUY1DqgHT8FL/Y9wIvKZ7AwqD6gfc3n+tsf+oJx\n/4EZMvRbh9Jv/vUNIP0q6mkMNf41Tvlsx557aWfLvdp9yvXAtfRs0A6/gMXBNs4ISr/zzz3J\nfkX79bvPqIhrDDXuf+FPXfPNAXvCYbAxjIevwX3jYXgO1oNZ4SH4BNYC1y1l29tLtv8FeAtu\ngrPAc4l++3wRLAfHQ6Eat4AD3cHjZM1Ta13Ltz/CwyrsiBPBCR31lPNHunZ08XJxNc7FI9LC\nfYQ4v3xMBPPdAyvBlNDJPHREGx58G2XL2cT4IPqubWKsjcfvpmT4GvgtaJPIq+sm8BK4IK8P\nxs0PnSE3Sts/c4UPG0o5+2sdtjvctH+p38uIeSaA/R4H98OvYSbIy43C8XMwDICrwfJfghfM\nv0BPcOxbp3Kjsb6x4MbhxrIuzAIe/GyDbbod+kLoITy+G8fzo+Clw/J1UIk8INjW1bPCA3G3\nhuPg+cxveC5orezj/mA/ls8K+7wnQFucCPdCR8pLhDasVJa1jmrRHjREe8bc1e/7020Oy7je\nxVwYjN+ycUjE2yrVkbvcM6NN4XpIGgWuM5bZEa4C54rzcxoIOdZM3wv6R2TiLoDfA7TvxrXo\n5/A0eDCbDpRzyEvT2+C8DD2Gx7K2wTnmIVObOM/DNo7Pt8B5Zdsq0cwUir6nNoq4cH2Oz309\nc22Hh33jTwMP89WoM2jUzW1omHvdi+A78H1cDHOAci3UZo5Tx2zYT7/jpz6L025hR/O41pon\nLRNlw7XO8DfnRt3hlss/jjqnh9AAPJbxzFKJXBvHtKDgH8ljfz4Ex2ravuba3Fx61GW+1J5R\nzuc6d0zzPZh/azgbboITYF5wv9sTUlnWi0x7aCMqGZ1V5DuwLdo/tDge2xnrQsRXrVvpoKna\nDrVzwzxUxKDsSraKfrXVXNYTSutM/aYbFr+iuADPDU5MFxI3r2dhDTDP5eBEHwwPwqrgZaCW\n5AHDcWN/VPh1Q6nf/KHeeMZDX6gHD67aw826O1jOg0Y/+DNcAj5nTfCrZy3IBTzts+23Xyrv\n79kY3fBLh3ksuxZ44fkTKC8y64L2GQ6HwbngJr8OWM7x5mXzSFgPPoAXQP0B3DhOgldhCxgJ\njju/vN0JA8G2eGBYHt4D1wTH8tIwFlz446s53jbr/qwGN103muuysE438EDqe78WbKv93x4+\nhVXAi/qjoNwkF4AnDGTaFPdJuCgLe2BdErSV428pcH5eCeNBLQw7gnlHgbbdAByjuheDB/Ad\nQNtdD69AV9M2dOi8rFOO2ZD2CMVYzqcbDsxrme/0tJPyz0urNc13OjCLfAj3bxlZ1A/OJviu\nBt+tY8L5dCncDWPgKdgbnAvOGfMox8Y42Bx8/8+B9poLHgc1EFYD5+Cc0CPjS1zHrx98xoJz\nbmmI8Ye346kOsgAAQABJREFUzdIG6XuyQts+D5wPO8E0YNyuYPuOAOfGxtDV5Lrlu90X9Lt+\nOrfde/uDcr35FmIP0obmXRiU6do07OqYUelYDP9XxE8P2th8lg39B4/x8Y7CjXTrz8dFmm5v\n+A0cb6AT5fjYA2aHfBvDJtFuXZXPF+mNqf9Nj/jIH+muGe5B2su11nyiTd2XDoBUXmhnSiPa\n2d+H+pzryjb5vGcMZHoN93NwrLXnPplVXzidaYEhPMzJGjg4w9+Z7WiPZ0W70z4YN6zCyp2U\n1pVifVF/xMdz82kR70R+G5ZIyk7E78bkJmn609DZOpkHjmjDQ++gbNggdcMOYaewQ7hvUc5F\nz6+WbiLm0xa6xplvPGib97JwlNU9B1wgO1IrU7nt8ZBViYZSKPpkPSn2IcJ5v33+GhYGDypv\nghcbDywfgouxhyvLDwelWw/3gPH3gva1bnGR3hCM+yWkeoCA468PbADmcZyOgWPBTd3nPQip\n6gnUpRGt8HtosJ2r58qsT9g+pPobgcvhZ2DaTuBFURv9GQbDc7AaqBkbnYaDjxc85UHikAZf\n4x/r3AQ2g89gbxgKL8JssC48Aj+F0+FcUGeCG+GB0Bv+CYeDbXsFLKtOhdsbfJX9sax1TEn1\n4uHnQYwj31fgmAq/boyziEvD+h1funeB79x8joFKVEehqF83nl/OjbzblXmYByzHwFNg3o8z\n1/o85Oj+A26Ai0H1gAGwBnjxjnk4A37HkHP0FvAg6Xz2In0CWP8p4PP0vw6OmxthMuwPk8Cx\nWIlcq2xvKXye8brxPvTLOAgticf0tSKiitwzaMvNbWjPvZQ9LSk/L37fzVGgbS6BL+DbLBz2\n0XUfGp/Fhx3DjXzWFbaNtHDNE2nhRrnUjfy64S+V/j3pH4FnFOV4NH+EjWuNhpHZNb8luo9M\n+TbZp2ivbop582nl4tJ69dvPNC7q/Yp49wBt3g1SnUzAfXOxLNJ5afvOysJtdRangndg86yi\nS3B95kzghelgeBlqRja6UNMWiAOnA7DWFX2IPrVHf9I6w5/Wmz5Lv3nSOMfgEVk8TsMX+tlx\ne8I1sDz8HGpJ3VvY2NQO2uVK8NDtghKH5ZijLnbmWQhmAfMoDxoucBvBLrAvVLuiT+l4Sf22\nP2xjvP594DsYATvAObA9XAeXwqzguHFz8NC1ImwK88N6oAaBm7w2+yvcC1eDm6f1pnqbgJtH\nPZjvMfCAPgHWh5vA9zwKOltubFuB79pD6qGwM4QOwXM3XALaSDmu8tJeaby2s271NPwZroDX\nYSB4mL4TfA+6gyEOHuY7E6zTy5gbo23bDNzMa13OP8dKPewO9ttxGeM2XKKalXljfJt5WLMl\nWpch6s67+VreIGI4+C4vB+fLsWDYA/c04KFnI7gV6uEDcA4tC6YtCquC73kiPASPwgrg/FBf\nwbpgvPn+CMqwY9d55rP+CY4t17YXoD88AstAe6ipd6Stwl6Rbw7iemQPfhlXe+XbsghxZ4Fj\n/TxYEmpN9td3GnoHjxfjlbOIu3B9L9OBeVNbzUm4dxZvmu9SN5UX47BtGh9+09J6fVbkDzfy\nlnPjmY6j2WC1chnbKd527QDXwy3gWqydVLQ5+pSPMz7aG2lNxXkRcg6lsp8qnqXd5RS4ANwP\n14ZUxxN4CZxbvt9J0J56jcr2gz/Bm9APDgP30o/BPdw9pGYURq6ZBk+BhqYDeQo8vt0fGROq\n3SumQuuO+rWb/rBfLACPE6cifm78m0KU2xX/Z1m6eZxoO0MtyXkV/UvbHX00LrWNC5ubwsYw\nCyjjvgQXNOuKsr/PwjPgunCeDr+GkXA21JqtaHKD7F/00Qj7nPb7csL290PYBuyzh/F3M7+b\nsGgf8/0Z1gDt6gHdcvIJaFsPcruBh3m1XKPzw9+Z8fkefR+2wzH6AKwLa4Lp18AQsB0hD3cd\nrel5gP12nqh6WFoPcr44bpR+D3nl5MaVpuufkGUekxSKepYhbkFYCwbAFeBhRL3T6DR82Bif\n+XWs5/MkXKteL4nbgmNi2qQTMWbz4zeyGO/4ySvitK0Xi/ZU1F2uzmhzbzIsCWPBdfhW8KDn\nO3PczwCjM+z7IeAh0PE+HRwPS0Af8IPBSNgfHFfOud9AH1Dvw0DYBRy71u8YOh20p3PX8eWl\n6gFYH6zHOO0T8xRvuyhs9H/Upl9ss3PKOOVc/jvYx3lhQUjf1UqE/ZBgP16G5eFJWBdqSdHf\naLOXQvv8zyziMtxZwUNu2M0ky+XLdjMhp7kIp3mjTD7OsPU7tuI5uhGPtyE+4gyrfD2u7zM3\npHTcHy8hF4Nr22T4HTjebUte+b5Ee0vlzZc1rE2di6mibNTtumSc8/cxcA/cCFJ9RWAw/Byu\nhYMhyuNtF11HLYtCHVwKR4B79VbgmHoGCnUBC3jwcZCJgyj8urWmtO1pX4ZV2BE3NOspRSl7\nxfPj2eFG3m+pS/938BPoBYeDC50b1CjoTJ3Mw0a04YG2N/pWykZpnPnExctDQqTZ96gj8phm\nPu1kXH4BdHH0INeRWpnKbUelG9BQyka/rCf84Ub/I834FA9gPtuDzEfgF+Z0U3ajeAG0X9Rl\nee3mAcj4D8ADmpoET8EYWA8WAO3omHwP7oZloS/8CaxnKVBeKHyWB7krwQOFl5M6qETTU8g2\nr54rvD7he3JxhlfI4rSp49U+WX4RUH8F+5JqFAEPcmpFeBA8kPQEbeBBaDMYB85zeRU8qPq1\nfzioOeEKsOyZsCMo81tPDwPoFvA56lS4vcFX2R/LWkdny7XIMSQxLlNXf1PhKBd5HIOPg+Px\neVC+c9MdA5WojkLxnHCjXeFGvG74Hc+7gWP7LXD8Oq593+ZxHjj2rWNjeA+Mt91Rr+Pfegyb\n5ry8GezfJHBs5bU5Edrh1+AcHgfmfx/OAev5Gnz+02C7HOeVyPUi2hZtTl2fFUQ+wz5b1zjX\n3HehO4QewnMDuOaELsbzUgQ6yT2D52jvSjWKgs9BP1gSboJ3wIuwcz9s4zsI+4T9wj7hlor3\nvUYdUT7yp/FpWhrflD+eF2UdU+bvA2oAmOa6VImGUcj1LNVaBOyTdYdcI/JtiXanbpon/KXS\njTM976ZxUT7ifGfmd5yOhXOhOdmPs5rLNLWmVzpoplZ7dZV++6XBSdXesk7rDqX+mMwXkujm\nuxLEYaAb/r/CruBmqT6EveAwuAY6WovygE3BtszVDg+Lvqc2Kef3cdoibKR7F6wDHkBtkyjz\nxWFkoYaYxj/O5R0g7JcktdnrAeMXsAC4SXaEwl5Rd9hKN2QeF/M/wjdgeA1wkXdz8JB3CSwM\npln2QVgaPNAr4+6Dz2B9sE9bwWlwD1hO+/4W7oArwMODmgAe7OIA5BhdDdxEV4bRYH2doWN4\nyB/AA9ts4PtRH8N18B1MhPOhnDx43gqjQPtY56egPBw+CR7+nJsvgIdjbT8SZoLzwOek8l0c\nD3eDac+Dz6k1rUCDj4SlwC+fqWJspXGl/OZT4Tr2lDb10uhB1MuoY83LQHsonpGvKx8ffdDd\nGXz/Z8IJ8EvYDizjuuL7+wJuhk9AvQ0ewpYFx6B5P4OzQbstCabND6eC9f4cZgTH2y3g+u4Y\nng1CtmO/LOBYfAIce/NmcR3hhC3so+ut78d+S7w7349rr+/K8W2f14QN4T8Q8lC6K9he16Ra\nkPO0F4zJGqu9B4P2nwSLgZqh0Wn4m46n8Os6/7Vbqm5ZIPKFTQ2H3yyRnmVvSIs8unl/5Etd\n6/N9OP7qoSM0kEqfgYezyn+C65hQaR9sS7Q50tJwxOXzGV8qLi0bz7Gvjlc1Dxj/LKwOj0Ch\nwgIdYoEh1OrgK0WHPLADK833wUlk3LAKn+kCaB15rLNUXPr8D8jjRhxxLqj6XaRvBA+nV8Fx\n8Cq8DnNAR8qN2ue74b8CtmckVKp7KJi3g2HrzcdHnO6/szweTg1/A1HOcORxIzOvXApHggeJ\nd6EvtKeWoTI3SS8DT0G0aWb8lWgohexHaod8uKm01A76x4FjxkuLhxgPaV9C5Av/R8SFLV/G\nfw5Y7gJwQ9GW32fot765QfWB/hAbEd6yGk9KXdnUphM8gNnG1ZvO9qPU9D3MQorPd3PV31L5\na08cYiyzGVwCHgJtU14ecn1GUzI9PVCZ14Py7XoqlGWtoy1akMJXgIfXCXAGpDYk2PC/usX4\nybu+H0njIy7iUzefdm9W/m3cj8Gx5rxyzpu3lL2JblZ15Ig2pc9M2xLpeddx7zy5KKnDONeT\nKJ8vE2vB+uTZD2L+2P7DsrBxHrIta/+0t4dvw9pdOcaWhvky9PcHD+XpGJtIeChUIt9v3ial\nwrYr39964lz/Poc9wAui+59rgevH1pBKe9jvWdPIDvZry5vb8IwRlD0ZFodFsnpmw30c8u89\n7BbxYa80PvVHvnDT/MZF3nDzcVEu3CifDxvvHv501ua1cdUAMM13VomGUcj9NtVBBMZmEY6D\neoj2hJv2x7g0HH7dSItyEY60iI8ykR7xjrXwR5pz7gFoSZ8tb19uKcMNxLtmTpXy5RZqmQXS\nxbplJaovV/TBydYRivqj7lLPmZ3E/bMML+OeDY+Ak3ow7AMeTH8Kt4KHxQ+ho7QUFfvV70BY\nFNycXSy6QaWaLlewlB3MEvHhxnx0YfsneOAPaZ+L4W/gAdWvVqavCpuDm9kqMB7aU1dRmZvO\nQrASbAXtpeh3ftxYf6SF3/AHoI20hWXcEBwrvivfXXfQNh7S3galjZ6HnmAdMi/4hXFfsMwi\n8CRYl1+wHwP76yVK1cMr4POqTR7c8rKPn+Ujmwh76f13iXQPtekYjCwepn1GUzLdA2Q1yUOf\nX32XgMPgFNgS7oSYe9fg3wFSlRqfphsv9jWIvGk8yT/Ya4bMPw+uY+8v4LwaAu2teEdpm/RH\nOH3exwR2zSJMd045zxwbyvHh+3RMqOXhLfgDzAGmacPTwMP2R/AIXAjK+jaFZWAjcO79Aqzv\nRXC+in7nmofSaD/edlPUGa4V60/DxmkD59Y/wP4p1wUvPnOBa8G1cAL0BjUfaA/Hk7arNb1G\ng8dljT4V1zU1v46UspVFwn7aLZ8nHW+RL3XDbz2RN1+HaSHTYr2KsroDYQHQ9r6rjtJNVOyl\n4WjYHXpB/ozSXPsp8oOiD0ZE/39IzDxpfU3ld1yOAueYHzlaok/INLYJnNuFCgv8yAJuWA42\nB6NuCsGaUtr2tE9+HalEHuBjwjblps9yIwxb6jp5TwInpxcm7W28B//O1HAe9lzugW7w9+Ti\nWhN8isxN2SWfln8/ht8ANwH9Xgy0l4d/D/rGDQQ3sdHQUVqcim2rbmhlPMb5VbYSDaWQ7U9t\nEOGmXNO+g/FZ+TSvfu1jmvUaDr7O/KZHmnbdGpQHAPOuayDT6rjmtawHu9ZoPJnrWlMgyTs9\nfp/r8yuRm6uXvLaqBxU4ztpbjtfb21CpZa2jUh1OwXpwHoX64PEA4OH9Uohx4xjxXURYf4rx\naTj1R5lyblwwn6eOmUDFmHMMVKI6CsXz8m3JhyNfuKaHP9xYewyn/kjXdZ07Ft4H50rwBf5T\nYAXwsCrmPQZCf8dzZQRa4E4kj2tHJXKtChvY7vCXctP+vkLeSeD7sv3uUx9CrAmz4/fC7brk\n5cLL5NMwH3SmzuBhN7fhgSMo656X6iMCvtdnIWwWbmo34yI+dcOf5tUf+dP0lsSl+V3L0zLh\n9z3p3w1CA/D4XM8slWgYhcaUKLgtcT7Pd+7ZJtqQuqX6ntqgVHqUj3yRx/g0Lg1HGV1tsx/M\nAq5za0B/KCfzn1UucWqPr3TQTG128+Dh4OwKKveFoiP6Fs/SdaylNjTuMBgH64GbqnJim3cX\n2BBcgG6AtmwAFC8rDyTx7LKZWpkQG2hLioVNwlYRXigr7CHqPVgXtIWHVxfC34Ffo9PDHsGy\nWpgUF04vO9r8XBgLTUnbqPa2T2Ot//0bfS/nmtM0x0UfCBvhbZBp2rw3mOaBZTrw8uN4UuYx\nTfevcBp4udSGxu0NHgheBL8cK+uYBjwghnyGdlwMtN+fYDxUg+yfY6WtcpxJV9NydOg+8GAT\nqsfzAjifTFeOh1DqjzjdcvFpnsjne1F+DLoDPJTsDHtAe8+tfLuaC9u2aF+a92XiHePOOeeA\nct35GpwzyguQaV6A5oCXYAmwvoFwEHi4NL9zKtYTXdcjuQSugpHQGUr7mH9erBvmsQ/xYch+\nj4dT4FiI9cBLxFqwAZjXPPVwONg3bXgOTIZak/uMB/9lIOxRqg9pWmrb1J+WKxdvnqhLN83n\nu0jDMR4jv2WV4+pkuNhAB+sa6n8AHoNeEG1J20n0jxRp4f4okUA+Pg2nfsul4fBrJ/dBx5z7\nm+NWm6h/gZe6eijUQgvEQGth9qkym4Ouq6mz+hTP0XUSpxM54j4g/m3YCoybBB4i/FLs4aE7\nXAenQ0fIjXlVWDepfB78bZkbLkwtkf1NFeGwlRuUB4+5wLRDwMOc6ROgPywBB0BT8iDjl8CN\n4C2wr8/AT6ApvUii+X+dZOqR+DvSG7ZIXf0R9tnhz9vbi41pXh5jzOlemMVfibsQPA9fgXZe\nH56En8Kh8Dk8AB6aQivj0Y4bgnYZlIVXwy1U/RbwnS2Va6ZjxDnk5cgxIo4d3VTGxXhL41N/\n5ImyXoQizkPLCTA7bA6OuV9AqL3mVXNtjOdFuyKs64E/yi+J38tR2MN4/XE5wtsg7dYHvDiJ\nlyX74uVgC9ga+sCa4FqrvR+F1WE8aI8R4KViSilsYX+j/2lbPHQOgCPBfUktAsfD+dAP/grf\ngGuIfZsM9t/1YgnoCPkutGdH6B4qdQ8U5buXsE+4kaarjDef0p/mizjdVFF3Gqc/yubri/Ab\n5HFP9MLqHrASHAGdJc8tjpnURumzo/1pXEv8aTn9QZRNw2GLtIxri3ug7A3Lg2PzNnAsFyos\n0GYLDKEGJ504+MKvW2tK2572ZViFHYmNJCZqS928LS33MTh5TXPBcYP5BBaF0GA8pntA7Qid\nR6UuKl7Ers78bhCVyktMa2yS2sVyaVi/aJfwP4JfW3nJ+TN4EDsGekEpPUTkzRCLo4vqFWD5\n5rQxGTz4PAYXwSSwjTNDJRpKoehfczaK/qY2CX+kpXWlcXl/PMvNVFvqjoal4YMs/CWutjTN\ncWlaKg92N8FucFLmOmasLzQeT10EWulOT37b6QGrK+pUOnV7GzpmWeuoVB76HctnwgLQD9J5\nFWMrxkpb3Bh/jq1dwOdan2Prncz18u1cvhjeAtMdA5WojkLpXCjX9jRPtNG84f8i8Ucdkebc\nCL/9iHL6jTf8IdhX+/Z3uBai3B34PdSa9xWINWQ7/ObpC+U0kYSh5RKbifc50Zem3Ohb9CX6\nd3ZW/yy4u4N7hHvW83A9vAuu+ePhLxDygDoS7oyIdnIXzeoNu08g7PpeqUZQ8ORc4aUIp+84\nbBE2irBuSt52af40X/jT/Mal+fP+KKPreHGseiH/Cszrvqbmhv3hRDgSzD8tVKJhFBpTpqB1\nRht18+2PsG5rSOtKy6Xx6XMj3vnmvHNN8zyjfSzvWHUe+j4HQSrteFYaUfj/a4G4+f43pvDl\nLRCTLh9fy+HO7JMTNJWTWdkG02Y1gF6FOWBFuB/GQuhuPC/CehHRzu4+1LctuKC4YPwjc3Eq\nUmsWY+1Q7n1EvBvgnKC9tN+C4EbsoWoXMN4vRdrwJDgINgDLe+BaE9zkXSCV+V0U/bI0FzQl\nN/eVwMuB7+pW6EyFDcK17SrC+o2TiAvXNBXhKOsYM87Dq+PKw8A5oD27gQcgD9OmhWbCswas\nBr8HbephXTtrn2WhUPVawPd0OTg3PTy9CR58HAup8mMlTWupP8bZ1xR4DWYE/evCbDAv7Afm\newk8wLflgEvxFsnnpf0r5Z8hqylNM8qwcyPiwzXNc4RhD2fOIfU5dIfVwTX1S9gQXLv8pWoe\neBmOAdPeB+0zJZX2SVuJGgrOcdeDP8K24OVnMbgX+oPrbB/w8h3SHudCe+5brsH3gc8fDI5r\n5bhuDzkfDoDtwfcaNsDb8I7DRmm8aYYl0o0Lf7jG5WVavq7Irxv+tJz5bZtj1XW5Byht4hrt\nPvgbWAuGQ0fJPSBV9CPanLdHmjf1R7nm4qw36oxnRBnjnU+OgwXAdOffGzAE3Ovd/+eHQoUF\n2mwBB1XczHVT2lx5J1eQtj3t07AK2+EkdEK2hPR55o9w+A1/Bm6iH2bpxu0KqeoJeKjoDPk1\nbUQbHjSOsi2xTVN5tEHgwvYx6Mo3WdgDvguf4d3Bg4dlXCi/hXvBDdX0LSDV+gSsa5Y0sgX+\nlcljuz3UVSIPG7axqb6bls8TYd0g8qXhfFyapj+fviNxIW1p+sIRkbhuNtrrJegJHiI8AGlb\n69Xee8J4qINK5CHL569eSeEaKOOF0l+BKpVlraM18l0eD64vN8C7EO/M95ai7QPjw9+cG3nD\n9cDv3HsejBsJHpTzeoeIuizSd+5zHAOVqI5C8fy0vWlc6o88aZz+PObLx+XDUVc9eZ0j9l/3\nTXgQfgmvgJcm16gr4WkwzyfwFfh+nD/lNJEE145K5FoV/Yi2pq79iXC+bxG2fePBeW7e3WAy\n2Ied4Ldg/GqQyjTX7vbSvlTkc70YhM7B05Z55V53MvwJ7O8YsF/2J/qvP8LhD9c84a/EjWek\n9aR+64xwuI6xm2CvLM32+g7GwRXgZUltCZb3zFKJPCNpDy9k64BjcBvwQ6HPtD1BU303T7n0\nUuUjLty8DSJeN9L02yb3pYi/Eb/aFsy3vYFEjuuzknDhTSzgSy/UtAUcVCp/Y2+Mra2/0Yfo\nU0e3vtRzog0+W78T2sXeSf0ZvADqAlgCzHMkzAed/esFj6xIHqZbq9RWqd96nKdedMZCLICG\n68Ffvzxk7AkeOrTjIeCvIv3Aw6EbyQmwAKi5wQ3RjVGbV6vydohwOoZse4TT9IgL1zRxQ/go\nKXMKftUTToN/wQTIqxsR1uW79TDrl+LfwBugDoPzoNKN2DoKta8FXDecMx6c1GbwAThHQjE+\nIqwb4ygfl8bHeDKPdaRpPQh7aD0c1IIQB7aGCP5YxjHlfO5Ipf2LdqZtTdNLtSPymi/NG/5w\nLWtfHgb775rlF/4N4T5YAjycGTcEnG9eMgxfDsrDbEcqbWv6nDS+nN93tTD8OSt4J65rq/Y5\nCb7K8AI/O6jecBRca6Cd5Jr+NHyR1OeaFu8piW6Vd2lyexnYBNxrfX+l6kztE+ml4ijeKllH\n1BP1phVEmq7pfkjYHHwfn8K3sB30BdfimOPv4m+rtMVjcD94mbgGBoPxoWifbYv2p26kmz/i\no2wpN82f+kvljfrMZ5uiXcbLcPgLfAn5dYioQuUsEIYsl17ENz1pa80+6UTq6Lb7rHRihz8m\nbbTFjUe/m6p5LgW/uDk23WwngQedXWAC1ILsUyUK24Stoo6wVR0RV4KHCrUibAP7w8rgxcgv\nRx7SXwc37m3BX97cQDwsPgf1MCPsDtWs1A7607Dt1i4Rpxv2C3tFHl3TPcBpAw8wfs3WVvPD\n8+A4WwR2gFKKtdIyd4CbzYlgvHVfCNrWcVxoylvAy9Cx8CvwXXvxnQ48qPtBxncmKvWXCjdk\nyvKFP3XT8Wa8l7BLwIPJZPgItoeVIOTlyTk4MiI6yc33Nf/Y1Cb5tOinecKvG35/qRkAzg3n\nmmHzxnqoLZ4F1QdOANcqD7ZHw4Zgmc5W2ofoS6k2ONfngQnggfk8MG5BcC3w4LwATATXlNfA\nA/qh0F5y/VoBHMMh7RvvLeJa6/anwN/A+ZLW3VS9kZbazLg0TPBHKpUWZUxL0yMcblRk+ENw\nvX0avJxah3ZQ3zY67fbX/cJx2hveAPeA7pCX7VK2ReXdxtj/xqfhyBtxpdzIoxuk+cJOkc92\nbg5Dwf3Jc4PngkIttICTu1DzFogB13zO6s/RWX2J54SbXzy0lHHfgxuqi5wb6B5wNbiRPgHH\nw6JgXK0oFuq0vdH/NK6UP+yVphnnpfE3sAusDS5+ai1wM1YeNLTngwbQJ+Ci+D6sBtvAZTAU\nVoS3oBaU2i5vH9MiPZ+W9s08bnL9wHxPgTb0MHsp7AZLw+tQSn6x1a7j4C6YCDvBGDDeQ7j2\nbqoNJBfqJAvsznO8mJwLs8MaoFr6fmJMNZZq+m9ap2PqO+gJHmRd1x6B28BDtWPlJTgWbOPb\n0NmKvoXr8/Wn/WiqTWk580U5+/klTAePZ+5iuO/Bk3AkOP88d+wH2uZFMO4eML4HTAlFH3SD\n6GekGd4avPj0Ag/i9td4+2xfXVfuhxGwBbhWuy60ly6nIi+fjqdBMBA8BLdVtt92Di5Rkf0P\nW4SbZkvtY3yE0zzhL5dmfKm0iHNOKeeXbXDdnQS/gHnBuJvBM8RREOVmwd9WTU8Fv4JVwDn9\nGaiwRTxLN/wNGZr4E2VLZYm0cvVFer5sPPvTLMF2Oqe8pG8Po+FhKFRYoM0WGEINTsaYkOHX\nrTWlbXdyRXhYhR2ZlnLWk8d683ERjmdG2EU+4sJ1w3wBNoLvYRBMCZ3MQ93gKpWH7uhna9yw\nXyk3bHQ6df8dtJ828hB4PXwDxu0Aqjs8ADcaaEetTF32aeYK6xxKuehfa2xTKm/YJJ8W9Yeb\npkcZbfU1HNSKfixF3nfATVjbe0ly8/Fi5ebpgelNqINK5EZsW1evpHANlDmVNt7ehnZa1jqa\n0h4kvg7p+pK+//CXGhuR1lo3xpSuB7eLwbUsnqE7EpybJ8JvwUtBKt+5z3UMVKI6CsXzWtv+\nNH/Ukbp5f2pb0wLr+Q6Ogdg/r8K/RBZ2fogfbPzg4FzRDh7sroBnoJyca64dlci1Ku1jS/zR\np3Luh9RpH1xDboK3QbtcAh5C7aeH946QNrsXom0T8Hs5qFQjKHg/vAWpbaw/DXekP56VutE/\nXddd11z9Mbd0vaAa55yfCTw7GOdYuhZ8T7Z7WqhEwyjkcx6B6L/vWb/PjbiOcNP69Uc43GhD\npOl6HhieuZHP9mq7KyEv83gxri+Ddl0cpkpVOmimSmMVnW7WAvEFIzI6gUP5NL9sODm9TMyV\nZXoV92W4BS6D+6ArK7WP/dRGxoWtIuwC1y2L90Dvxmzag6D9poNbYXPYE34C68PsMABqWWGP\nsFXYRDf8aZp9jXj9kebXtPiaaLoHuXPhTGipXiLjMuCmuTssCF5AD4Ot4RpYCwp1vgVcTzwU\n+X5UOgYMxzjSr0wP5dMiPnXzefLhyOthY9cs4Lx1LTsLToEjYXnw8NyRKte2eKbpKrWB4YiP\ntKhHN58W9vXDjPNiRbgHtoL+cDmMhlXhFVBPg3F9YDC4dh0Iq4NljKsGRb9tS77f0b7Z8dj3\n08D9yzV5XtgbvDSdCBfAnVkYp93kodX13QuB7+EE6Att0RMUngPmh7T/bamzNWVjPOXLfE+E\n59S5wXa9B1fBATARLNcHBoLv4C5YDupgPrgUDoK2qBuFveS/Bc7pXpAq7BVjxTa1h1pSj3ni\nuT6zJzindLXHx9APnJ/Ovb+BF+KQZ7DHQJuWkvZ/o1TC1BBXXJCaf8stGaTN11JdOfKTqqNa\nF88JG6YT2WdOA7HwvY9/DJh3F/g71KrS/oa/VF+aSjN/2MtFWVtF/hnxu7AtDLOChy43Y3/d\ncYM23oP72eCXt1pW9DlcbRJ++6XfuLBVmqbdYo3TTsp8r0J32A+egiuhpXKDPhl+DzvCJuC7\nGQZuMuOgUOdawHf8OHg5ivGRuuGPVuXD6ZiJPHk38kTZGHfmS/1eAlYAD/8eUB4EDyabwRuZ\newNuRyramn9Gqbbn8xg2n0rrSf2mB14GloSvYCB4IFO3gfPjE1gEvBROglBvPPvD4vAwbAce\n/KtBaV/1fwO+Sy9Fhl17XVumgzlhQ5gI/nKhPdSpMBxWgkegI2Sb2kt+MPo1eKFzPfP9pnYg\n2O6KZ+iG0mc+S6SXE8eXB/XpYR5w3NwMn8MOcASkY8txdCSoAXBQg6/yP9rDd6+NfOcq2q4/\nbbPh1iqtK182n5baSr9jURs5Hm2nckwq7bUvOH69BI0Gx2p6QSLY8AHjMj2FfmwBN5ZCzVsg\nHZTN567uHPkJ19GtTRcP/aktRxF2g/wQloUz4WHoKkr73lyf4r2EjdKy3Sl8FBwDHjRcpE+E\n40GtAyPhAdgHuorCJml/wi5pmnFuFKI/NgpdNwft5Qbienc51IHyAHMxaLd0gyXYrHzWZRnN\nZi4ydKgFrqJ2PxL47kOpP+La4sZ4S+tN/dbtWFsAvHQ79paGG0F9AOOgr4EppLS9qT+aE3H2\nNVWEXyXS9veAsIdfqr0UTIY1oD84l+ohZL/zeoMID+TVpuir7dIehl1/o88f4few+VMYBbuD\n6gOOw+lBe/gRSzkmakHb0sjfgH1uD8X4sK7Un9Ydzwo7R9g898MGcDwsBouDl5QFQduvAs6p\nrcDLUkfKi9Fg8PLoXhKKfoWbtj/y6EZ6Gpf6S5WLMpEWrvGpXGeM083L+eW/LAk5JmtlPEab\np6hbyqhTtEHFwzvUAuUmWYc+NKvcSewhNTQBj/+04lHwcuTXoi2hKyhdxFJ/U33z3Zg37OQX\nWfUJuKgdAH4Z85Bv3AkQGo3nWugq9ot+hZvaMPz5sexmuQh4gQz5C5oHlkXBtc6y6dezkwlb\nbmMoVHsWmIUm3w1bl2h6fpyUyPJDVOSNCMMRl/ebJ03zy7YyzsOTBzfXsxVhJ3CdUx7sPOS9\nYqDKFP1JmxXrkXGxbr+Fv3uW6Uvc+Ir/Jn7nmF+uH4J6qGaV6m+0137n1xbTvPQoP0StDX8G\n9y/r8gCtPTxE+8uZl6nTwYvhM1Dt6kYDfXfXgetn2Cd1w09yg5oLhw3NnPoNWzbKh9884ddd\nB1ybD4QdYCI8B/+AX8EA+Dl09OWIRzR8eHMee8FwrIeiX9F246NfkUc38qVx4U/7bFyE0zoj\nPsqkbtQd+96TJGo7tWqj0/B3R/6uAfHBJkkqvOUs4GGrUPMWyA/W5ktUZw4nX0yoUhO5I1vt\ncz3oz5A9ZGFcDxd+AToe3Gxi88XbZRT2LteheCfp+/DA54VH+YVWuYHNCpeBX9DS/AQb/onL\nzHq6kLRdvp/57v2HCDf4uWAUeDhRllsZvPxsAl6QVLqhmseDT1ccd/a1q8p37SGpDvT7HmOe\nhUvUDyoV90Ni5ok6dEPl4kyPfI6992AoePlZD5yHrml18Bl4kTsO4oCHt+oU/Ukbpt2Md46p\ndRqdhgvBbfhfhH7ghVDVyjwqNR7S/pseffdy6Dv2rGQe1+ar4TX4Aq4H12b3Ne3j+38HPLC6\n9sTlEm/VyrXRj2+bQ6yf0Vj7XMpe+bgIl8qfxukPRbxuxFuPF04/NhwCjjPn15SU55T7wLZp\nKxX9bQz9b9j46F/kybul0tN69UeeiA83X5dzz3mqvXyXjrvtYBVQi4G/ED5hoFDLLBAvu2W5\np85cDtCupvbqU7l6SsUbF5cj7elkvgJWgDvAjeVu6AqK/odbqk/5tHThc9N18408uheBi9wf\nYUHYHkKL4HHj7kr2i75rl9Q2qd/+xxr2Ff5Fs7zmcXwtDbfD3vAuGK+tQtvg6QP3REThVr0F\nfKfjwQuS8yAOdDFedMOPt0H5cMSH67gQFW5j6L9/rcMxpSK/h2D9K4FzbwJcCn+CdcD1zrXt\nMvDLrh82pvSBOW8fw9Ef3ZDxtlU8fJnmRUHpngHDYCQo59dLDb7a/mM/7bt6Hj6CB+EEMG0i\n7AArwz9hCxgBg8ELxiS4HxaHWjmMuoa6D9sPx3j0H2+DSoXzcZE3HUOl4kwvlcfnOkeUv8Z5\nKbkUpvTliCY0fERzbqv5G53/sVEWXbJvkZbaTH/eDpGeumke41OsN83r5Wh9cM9zLi4PF8CF\nsAx4dijUCgv4VaRQYYFKLZBO3rSOND4mcJpunHnmgGNgE7gGnNhdQf5SFn0s1x/7n9pGv5uE\nm5V48Is8l+PfC0JH4vFyuRO4gWu/x8BLVK2oKfuUGz8Rn9rN/nqIewPcvKYH7XcfvAC+ixtg\nOGwAHmo8tPaEjeBo8Mt/oeq3QDea6EH0a/DykY6H8BP9Q7z+GGfhlkrPx1lXjDHdB2AtuBYc\nU8fCouD+OR5mgrzMtx6Yx/EZ9eHtUPmc1BalHpamhz/aZzj1O5dUxHkp7A6PwscwBEwbBvaz\nmmU70/6G3zan/fafMM8G98KB8CqcnfkXwvUi0Rv8YDUKPIBat/mng7tA29SSfK9+ZPsM3HvC\nVqmN0jj9Ktw0X2PKf+uIcLhRxnD4deeED8Bzge1wP6wGzUIjZgTb48XN8R/9td0xdiKOqAbl\n4yNsYvijTNihseR//0Z85Ity5rAtri9vQi/YAszvP0N0Pk4G16FCFVogFr8KixfFatQCMdk6\nq/kuLC54SndbcDL7dciNxC9yO0NX0ad0JG/jWOjSPponFjzTnY/3gAuem9Tb4Ka1C6Q6hcAg\nGAdubAfAxvAd1Irsd0tkvkAbhR0dU/5qpLwkmic21YPxrwtrgBemv8BGGfviemmqB7+2/Q4K\n1YYFnB9fg+/UceABIcYD3h+UxsU4C9dMpdIjPtIiv+uTc/AhcE7+Hpxnq8GO4Bo2FsqpXBvL\n5W/P+OhLWmf0y7Q0PY13TbGPzjH9uidArDGmfQ7Ov/nhcLgNql3RR9uZ+tN2axP75Xs7MEvw\nUvQcTIZNwXX3VTCvvxI5HueCizL/dbi1pH/TWA/a9mUiGFYxRsJtjG38G/bTDX+anvdHHboq\nX64bcX1hNnCOvw/VondpiPP/afAC7CUu7QfBBkWcgfDnbZP2O58W5fLxhqM+3Uj3nfmunIPK\ntC/A84FjtVAbLaCBCzVtgXRwNp2zNlLTCdbeLS5XtxcGv8C4sXp4vR5ULWyqjS1t3d9vSmSP\nRc0k7aTSsXUJ4d3AjcKN6ma4HCIv3h/pAULSlVRu/KTx2swDjJvW3eAY+hn0g9fhTHgN7gcv\njsvB47ADmP4v0K6Fas8CHtQdC/EhYVDWBceESsdJGs7HR/6GQvwxbB7rvwU88PoLVR+4Czys\nHQoPwCgw3bG1NuwIHqarTWmfw5+6tjf6Hf7ogxfBd8BL0HywDdwKalF4BPyKfj9cAB4ea0HR\n/7StpeLss1/ePWRuCI4F+3k2uJfdCeoXcCH8FrTlRNgMqulwT3OalTbwUvIgrAB9IGS/VGqn\n1N+Y2pge/iijm+aNsPmMVx7w3fP8uPUh+Mu+9n4SqkVxbrE9jofDYD2IPtivtG8EfxTOp0W6\nrkrribBlQq5Lvh/PUOYVL2naygtblHcc9ocrYRGYUuvSOjx7Y/DiNhM4L+rhxsyPUxsqLkjN\nv6cYfKUGefOlqzNH9Km9Wmd92icmdVq//tnBBXAsXAFdXS5mKrWD4RhD4RqnngUP9rtl1ON2\ndcWYSW0UdkndsIOHFW3khnAC/BJiE/WSlJf/BnuvfGQRrmkLOC78tdCDQl+4HX4O6RiKcUX0\nD/NNf5rHsIpx5gHkWDgf/EUotCee08E162EYADeA+V3PNoRRUE2KPumq1B5pOOxhX7xwPgcH\ng2EvAX4t7wV+bFgRnGOW8WDo4Wt9uA9qUdH31EbRD/t/Dvh+D4I/w75QSh74RsAq4CHaD1u6\ntSYvKd/CILC/vvv9QNkf11yl3cJmDRFJnPH59AiHvbWt+XS7wX3gnNL/JswHX4IH/0ugGjWS\nRj0P7kfaLW8PohrinVN+KO0B0f+wEVElFflMTP1+qJg1K+Glx3pdB+cE0+rB/H8AbbgLeNF1\nPLZEfuzQ5qXk8/xVqiWyz1fDIHBevA2+z9lgMBwFjqu/Q02ouCC1/DWlA7blpaojp20vNZHb\n2rrUJqnfen2ek9cvCO/DVXAMOLm7ujxgNKWwle4LsDa4sDwD9TC1KOyQ9jc/Tt2E3FDVATBv\n5sblyPhCU4cFHBvjwYO7h3TdUnJcmbfU+Erzu/mbx39Cd0uakPn91WBVeBDGwtxgmUHghana\nFf0PN9prHzy4ePh1/TkFPNDkNYGIneES2Ae+Bm1+JNwHtajUFqnfNcYD3mPwS/gQPNCdBU1J\nO45uKkONpPkRYHo4BNyjJ8P8UO6MmNquOf/r1ON87A1ehrSzWgWifp/lIV1OhH9AtcrLSfQ5\n1hndVLb/fnBuxYUwyhD1Q3n9Tel2El17XKMWANeiNaAfWK+X11ngp6DcL1XYuDFU/q/59soo\nl2s5ErwUNqeNyODauBh8UiLzJsSdC38vkVaVUTE4q7JxVdqoz2jXqVXatnLNGkPC4uUSOyje\nTdgvvX6Z9KuLOqLRqfq/69BCF8FK5QaTLoZRTz7OBW52eDvLfz1utY8tLyhtlYu4G2VeefuY\n71rwwtkH3ITugN5QrXaag7a1VftTwVZtraQKyw+kTf7TrUrleFgLPNi7d3WHcoqxpDsW/Eiz\nGngg8FDr3JsebgPrlFJyHbgCPJy8Cta1RQZOu8kDYlsVfbae1J+v14ufNgitj0fK6VIS+oJz\n9m5wzers+edX6I6Ua4uX3sfg0exBC+L6Vb7atTYNnNTGRnroHg3+Qqoc70PgXZgT4qzoHGzu\n8F1PnpvBvFuC54CbYCH4CfihwbSZQXmY7gkT4R7wn9i11/jyHbZVc1FBvj1eoF3rbbNzzfWk\nT+b/GHd1+Ck8AMuC41e7Oc6U65Hr2HwQcXgbpG2ca7o/y/zWfy88A09BLxgAzkUvY7uBWh8+\nh23BS1Vz+poMx8OIMhm/J/6FMmn56N5EuJ76PkvJtcN37lrnBbzqlX8xVd/gTmzgkjzrTJgp\ne6aT4Fv4KgvXmuOXhh7gOxc3yN+CE64SXUIhJ4SLn3LyayPt8w04uQ1LLepOGn1ehQ3fnXK/\nBMeOhzgXN6XrGJKwT8zByENS1ctD485QSZuXptzJ4CbomNQ+bgaOHxdrF2RtI24gtSZtciT4\nYaC1cixcCh5IuqrcQM+vsHN7Um4zcKw4Zhw/MXa0u/aLNcex5BgyPZ1jkY/oisav5TpKH1Bx\nHVSyZvqV9yTw0qddPNCK/XUe6Tq3tEstyvYfDi9W0HjHy+WwCGgTx4P1xX6uXQzXsm6m8RdV\n2IF9KLdxibLaKeaPY0o7aiddx6hjyXRtqg1j3cb7I5muLGOdljd/qpi3aVx7+d+jol0qrGxF\nyh0PtjuvWH8i3j44piJvOqaMi3jdsKV+7aMdza8NdbVPWiati6QflI7nyG9Z29ISWe9v4JWW\nZG4mT2/SX4IN4ZFcXvf5I6AOzFeosEBhgcIChQUKCxQWKCxQWKCwQGGBwgJd3gJD6aEfet6C\nJ2E0+LHw48xdFbdm5I2zUGGBwgKFBQoLFBYoLFBYoLBAYYHCAoUF2mKBWSnsv8DqC/7zxHeg\nHh6HQoUFCgsUFigsUFigsEBhgcIChQUKCxQWKCxQWKCwQGGBwgKFBQoLFBYoLFBYoLBAYYHC\nAoUFCgsUFigsUFigsEBhgcIChQUKCxQWKCxQWKCwQGGBwgKFBQoLFBYoLFBYoLBAYYHCAoUF\nCgsUFigsUFigsEBhgcIChQUKCxQWKCxQWKCwQGGBwgKFBQoLFBYoLFBYoLBAYYHCAoUFCgsU\nFigsUFigsEBhgcIChQUKCxQWKCxQWKCwQGGB/8/Oe4BZVlT915/koOSchiBRkRxkkCRJMAG+\nOCphCL5gQkxgABUFQVEQBRFEsqCCCIjkHCVIjhJmBoacMwi+/2+tnvsbao63w9y+3dO35+zn\nWV1Vu8Kp2qdqV9W5A7UFagvUFqgtUFugtkBtgdoCtQVqC9QWqC1QW6C2QG2B2gK1BWoL1Bao\nLVBboLZAbYHaArUFagvUFqgtUFugtkBtgdoCtQVqC9QWqC1QW6C2QG2B2gK1BWoL1BaoLVBb\noLZAbYHaArUFagvUFqgtUFugtkBtgdoCtQVqC9QWqC1QW6C2QG2B2gK1BWoL1BaoLTDVW+Bd\nU70FujfAcmQdDjPC/4Np4G14BTpR5qLTs4LjcDwvwZfhVmhFjqPS/DAtTNcInU/a6P9A8Vnm\n/QfM87mG1kn4FnHLi/mWNW6+JE10UOVcnvabFp+4K/W2gekb9bXDLDADaB/H/Doo5ikZZ+yg\njYxrv7wz7REbEZ1Yx/hgyvM8bEewf5Mr76PCgeC6UjI+47Yn2kdbJU+d9snYtYM60ylnvmgr\n85TYK6G2t8xAis/eB25v4SH283iYu4W6zapov9jKULRtX0VbOg+V0vbqTEvKpP2Z0ZmvndWl\nHtEu3SmER5loQXanzkdbqNcpVZ6lo6NBm02ufIAKB4DrQftre0PFOSmmnRNZA64HcS36HuOL\nfb7l807TVvVdWiZi21l7qedzyjIp20poO9+Bu1qobL/+AMuC81NxrG/Aq6AN0vfM23b2neYH\nXM7kCce0+JQvUm+LPtbVTs6xUrRl5lSpz5xQZ9x5kflgO9axbk/z3T3U5+V9mLYd07aR/tiu\nbb3ZCAkmytPEdpqYmrzIKhT/EfjMdortxT6OqVxzWWeOKWNUZx1tIaYdr+KaNv5vSDlD61tH\nnOPqqmKZveDeakadnmDY2g7NLbAy6g3hYvBAuCIsD07CX0MnyZ501sVYldVRtHJBckGOBhec\nDskN9pFGOB9hKVnkpa4ad3GLl4gH4CxQfAcfBh3/yzBYsh4P+ji0ekH6GHU3A8f0FCwMvUnp\n2HRop8Fi4IVC5+W7ughmA+1yCbipnQhuAIMlXoq3hy9AKx8L3HC0jfPFS/vs8Dh4KXAzyKE+\n9kA1UZrpzPTQ5PxYC2xXuylnwBhYHLYB6/8FxsFAyf/S8KrQygXJdbQDeJjTJv0R5++7wXnk\nPHROebnQ5idAb+IcXgiuhpdA3+dc1IYPwxwwayNtv3uS/yPzQVgarN/qBcn+61+ugOEmCzIg\n3/1u4MF9csU5tzn4rrwEaHPbmRN89xHtX6ajN7SuF4b3gO/Wve56+CCcDH40XA2ugdIv+159\n9h8h83YZ4s6hdvmn3WlL39HKBcl9ZRQ49u5EX7EGaLd/wtZwKjwGQ102pIOuDffJVkRf4Ty5\nspfK85LvHPU8dBnor9eFecC96XaIfJaIfsG5ot9YHJx3J8HTsDGsAJ4fjobqu3E9/A9MD2/D\ntOC7MexNnLe/h9fAvXc0fB5sZ3LF+e4Yj5ncij2Un4u87eAJWAQcu31+ERyjY/fc4EVoNjC/\np3G7D1tWbMM99XzIWhlJfFU4CnxOKe7jnifuLZV1vLbAAphA531KN9yE3sl0MdwHLrhnwQnc\naWKfm7FriwOZjnouWhfxq5C21SXeXWiZ/4Dhc5Xy0aGeKDqRnSamBidyII/RwbQqZ1NRu8Th\nOS7RJgljn7fRaQ/D5D1DXLkFvge/AzeVn4KHH8tuArfBd2AwxQ3Dfr67xYduRz1/PdsabKcc\nd8afUBuNh6rdkp/wGMosAjfCW43ybo6lXE3iITi0VA5AfAxtjm6x3Zmo55i86PVXHL+XwlJW\nJGH7ixZKDzfOK+1zOXwJ1gTLbQ7KrKCvfBMybxNaLu+nWTx1XMPa3wNTq3IOFQ9utfIQr+c7\n137OgVZkNJU8KOVd9BSaF8p3pu77oF92HdneOPgzKB7AfJ9bgBehXUBx/Z3RFZv0z+0kvz2p\nquXUI9TcrsXa+irHWY61mtavbQr64hzsDyDeCaJPO7MfHXWvc8/rSbzcWM55oT2XAQ/W+g/9\n+U0Q0W84TxZrKJxDnp0ehnMbXEeYd+DhvZTpSVh2LKRMQueo8TI0XuI7/BEoI8HynllakV2p\ndH8rFYs62up3oO87Ff4OrrFyHF7KHcPbjTDjSbosa57p6Bxvyhv6jv4AkRmJZN3q+w8H/f3p\n8DSMglqaWKDVSdOkqY5TOalehu5s4KQy78OgLD0h6Pi/OjrFxdVf8UuFzixim2m/mS7PTDhn\no1DSJmcBnchVcCxMCy76ThPnj5cZ7ZHxxTYJHdM0/kGiM9QuHwDHnfF7ONkEFgLL2KZ51vdr\n/gvQSZL1ZP9jn4SOI/ZwvIp50Zk2/gZoZw9OHwPXszZRPGjuDkfDjuDzfB9uEL2Jbc8F2lQ/\n0Uliv3NQji3sv+s0F6b9iN8Bq8PW4Hgtq79bH/IePMy8BB6IyrbKd5GyCSnaZbOUH096CdgM\n/GBQliNZSxst4HtUYmPD6BKan3jKqVPUf78Rmud6cs1sBevAzWAZ55LrNn45fgrVJJI59R60\nttWTeNjeETxwXw+/Bw/e7ZTSHmk3tvglil+BZcS+Z3xEp2pZldGfAss2rPA8Yc5N+gffkz7C\nDylzw/LwEDwMnwT3M+eMdtUP3A2pT/T/2xs8wF8Hx4G+fBHI+7fev8E9UDEd8f2Z9iJhm6Zl\nRRgKsgqduBJuBz8oO/45wD578XJfUrRxxuE4HUO5rsoxk9VVNmM1rZhWnLv/A4/AMaAPdr3O\nB65h9efAcuDarKW2wGRb4DBqOEHFyZm4YadJ2fdyLLu2OBAdUdlOGc+z1IXoDKtlq+mU0SE+\nATrJhWAw5UAe5teyVuVMKmYcZVjGy3EnntByz8JPQBvcAOo81P6rEb+tEfq1yHqmPwQDLavx\nAJ/nhtiKeJlxU/X99mSP0hYpp66qN0+ugR+AbUfnBeoZKOt44dGu3cluZGhz67wIPwY3nL7K\nGAqO7mvhSrmZSPvctSr6viS3otCDYH3XjJvvrTAXzAhu0trceTUWtJFzR3vEXoZJ204uWsZT\nxniILmHK5R2Yfq1R9/eEPs9+tCpu6vUvSM2tNxq1h0zfRfX9JJ33kzJ5b4bODf1LdM6DF2Av\n8L09CI+DbZjngXQVUD4KltnQREO+RZi2rON79+DcTD6L0vauhpPhSXDu+gEu4qFO39GK6Ksy\ndsMynj7GBheT/ykwvQZ0ggzkL0j6Dw/2p8HREHv5vi4C540654qhts38OJW4+Q80wtS9grTz\nyXLqxsIfQF99D6TN7t5T3mHy067104cjiCsjwXKeWVqRXal0fysVG3UuJfwrnA0Zb/qYfjdL\nq8t4yvzqmGMLy1Tb15b6X9+dfv8v4Dos9zN/yap/QcIItUyeBQ6juJOuGZPX0pQv3WwM6lz8\nrYjOprpQ84zoy4WbPMMyv9Qnbr4bdQ5Z/bmo0ExLciC1+vPcM6mfcWZcZRjbJCzzyngOqOqy\nabgxjQV1fsn7KKwNx4HOcAUYSGnHBUmnbP8zfsOMu1m8WTnLvwHaw3jsYzwbS9mW+ofBy4/x\nHO6ITpTRxDxkfhtWBdeHff0Z9FXGUHB0XwtXyrV6QdqIdrSD/VwdPg3jwTXkZcnDq2N2bCc1\n4nc2wuSZ3x1VO1ou7yTxZnXLetm8L6Juq3IOFesLUnPrjUadd1m+m7yXUle+l+QbWj959xO/\nBPQp+pnoHyPuXHsQ7gK/di8G/wLbcI55oDb+AHhpWg/OA9fe3FDKbCScp/sUSss8BOW6a9cF\nyX5lLNXQvMzTHLBR9SojKbEzONZ39Vq6/QUG8oL0Bbr7OMwI3wVt1B1nkPd5+GdR5svE14Vy\nL3P+pA3jY0GZD2J/w7wfyxpPuhpPfhmOoLziu7G8Z5ZWxD3AtdBM5kK5LWwHCzcrgM596eeN\nsLsPGLFFxpf0q9RLvBxzdIbVOupiO89Rrl3TnhMehV2gFN/tqFJRx9+xQKuT5p0Wpo5YnJ6T\nsZOl3eMo20tc+xjXVobRJ42qS5rZ0i+H88KF4Bepr8H7oZMl4+9pDLGXZdwwtM30oHN9CEbA\nNKCDuwrWAUWHa91/NHgv4VdhNxjK8u4mnYudqvMkRavzxUOVNvKAZl3tMwauhs+AX89WAC9R\nbu7fh1+D9tSOm8ItUMp3SHgAP6ihvJnQA+Kx8CPYEbx82P/L4Cfgl7kpLXvTgT/CXo2O3ET4\nMFwLbpD/B9rqPfA5ULSNMi1k/iXsyqj8qeb5PqIzVKppyyjqxUOSc7aWgbGA71Ip7T5B887f\nvKtoynTOA/qgJcA545r4EswOR4Fr53R4BsaC82k/eAwOgNVgPbANP2zUGrcAAEAASURBVEK8\nDMr1cB/sCx4ml4ExoD+bGcqLr2vqd+DBLXOaaFsk4y3DzOW3Gk9w3ewIvwEvgd2Jl7u/wobg\n+BeEG+Fj8DQMB1mIQfjO9YFbFAOK/VRpPzkf9KnfAD9mzAq/Asu6n0f01fokQ1kMPKjf3ki/\nTuiepl2rUj7XvLw74+aZvgHGwUDKJ2n8xMYDnDfuCYfCEqBvfRGOAfePnSFjtX9KxpEw+gm5\nE+w1RyNhmTK/Wif50acN90Lt/m0YA/ZpASjFftXSjQVq43RjmELtLV4nH+dZZHVcNIusupBa\nHUjZXuJlW+qizyJOOuVMP9VIzEN4Juhgfww65hmg0yQHjdi5OmbHU+qM68wU67ourastPPg+\nD1uDG8k2YHnno5cEy3wRFDf293bFhvafHOR66qVjlNgwYerYhnZyo3Uz9iuZF2ztcwjMDm/C\nxeDhayew7L9gFvDyWZWlUFxTUZr2guV7OAhugL/AR0F7+xz7MgK8gAyG+EznQmzSrN8e3rTf\n1+ENsG9XgRu2dqhK2kpYza+mUy6h+Xlnzk3jiofqFcHD42+hloG3QPWd5Il5P6ZTJu/JA73x\n+xp5PyYcB4ZLwLPwXdgf7gUvSJYdBV6GNgQvP1vAyeDa3AAibxKxvS+D8/cksN5PwbKusch8\nRNwLXKMjwMNnO+Rd3TQSvT7Eubs7eKH7HiwCc0Iz0c/Yv2XBckuAvuUoGC7iHrMqLAVjikFp\nJy8yhpEjidwIl4J2ULSt56f4RueY+M7Ni+1952uDYv66jdB0M7FM6qdNQ8X3N5CyKI2fCkeA\nc2Nu+BXsBY5heVgHjgP98BxQHW/6T9ZESf8dl3WaSexV5qWeYeK+lwVgcVBcS665b8AHQXGN\n5T11Keo/k1rAw1inyXp0WCe8IPiF4hEYC2c04gRtFZ+RSZnJ19YHDGJjAzkO29Y+eYbDSrxq\nt+hTRueo6ES+2BWb8H/I0dFc3Eh3UjA9nc2YHWvG25NuZKOcZbSD4Q6NuPUvbOh0aAuDz/gJ\nuPF4yDge3FTugE4Ux1vayrg6UZLn4d6DjOPXTr+GPcANIY7fjcqNXfQV/wA3+OdBn2eb1q/K\nAyg+BOc1MhYn/HsjviXhWDgLrgI3RG39e9Du88Pb8DIMlLih/Q4+Do79YXDs6bcHlIgXOG3m\nF3B9paLvjJ27FMWf6GPvImviO+hOZ53Uy3vzPf0ADigr1fEBt4D2VxIa992Yzruppn1X+pUb\nwIOZhynfnWIdPxLOBv8ED35PwLzgxeB1uLwREnTJzfy1zdXgb12aCf9nRNeJ83YT8JK0M4yD\nr8Iv4DA4BtYCxXU+FlxXr0C7JOOvhjM1HnAPoePSV3wGLHcB2N/HQXEc5u0C94PyMHwTzgUv\nde3sM81NEdF/+i7XBOeCoj20TXyoae1hOeOGppWHYImu2Dvz0KTvdlqwfOqnPeeiOufhDKCY\nVuyD8fSl1Bn3/WwMt5oYINmadl0D34X0az3i7jeLgu8958ayvymbvnc3jpSjmf+S5NlG2rZQ\n4glfQPc0fBKsszr8DJYDP+w9BXPDm1BLNxbIJO4me0ip7euf4HRYCJ6EO8EJsSncAn7NGghx\ngmViDkT7g9XmQIwjdinDatx3VEr6YRinar7v2M1J3IzdGN2AOk106o45zsr+O9bokjaMpKz2\nMO6BP5uxzjg2Nd+N3PSB8By4GbsuVoZfwlCX2MExZFxln6OzXCQ6027OOnk3pV3BzeA62BHc\nVHX6M4PyMOwP1ndTNvTQ9hP4BETclC8CL1deQjzMXQ/LNMJHCC+H82ApeBluBzfLw2F52Aqy\nyRNtq2iLM+G9sBm8D/4Ef4GzYVs4BPyC+Tn4LDiHPgaxY2xoWMUy6lKW6MT5WurUR9KG+b4L\nD72fhJ1gSTgAahl8C+S9GCp5f0mrSxnzboAZwDl8FXiI8lL0V9AH7w6vwVxwNGwB58MYuBHe\nD6U4T/XlXiA2AdeF7arbE9aAZ+BiuBemBefrrbAs+Ez7dx+8ADtDO9ZVxkxzk8x1bWCefkNb\nGNfH2i/7vyHMA659dYr90Wc8ZaIQ05bRJ3eSzEFndwP96SJFx13X2sdL70uFPjbTVpFniZj2\nPbtPOWeWgJSxTkQbmRbLK9rcehHnZFXSlmGJ5Uw/DLOZGECxfedv+uJYnNMzg/uP7z55RLvG\nWKaNV9PaodRZL9JMX23D59qG9jPvdXDdOG+fA9ftjLAjfAC+CR+B8p2SrKVTLeDL1Pm4CTeT\nLVGObZbRos6vWR6oMuEMQ4tNTrFq6Xd1LDrDVmQ6KrkI024Wa9pvljYv9jTuJpjybsYe5soy\nY0ivC1NCDuShHgBalcuomLGVtoiuDI0Hyxp/oxG+QvggaKt/NXTPE2qrw8F849bzoLEODLSs\nxgN8XqsHgO2oWx1/bJTxJ9+0cybzxvRDsBYoHl60jTbJpvhL4jp9DzsnQzZt23RTGwVbwJlw\nNSheNtxYnYduJnm+oXPBg96L4AZ+E/wClKfB91LKeBKjS8VkxG3fMWZ8ZVXfrXlLlkriZ8Fp\n8F3w2ZZxHL+FseBcUudYSqIzbBYvbWC+dq7qnHt/aNRfjrA3OZgC5/RWqId869rGcBTfuXZ2\nDrQio6lUfT9Jd/d+XSeurZPA+XIr+PwPgXW/Ah60/NK8MjwEmQsXEV8AfO+W+TUsBvtCfNTj\nxLN2PSzLz2FOmAWcp8m3DeNHwx1wJHgJeQC+A7al72hF9FXNbKAuep+9N3wK9B2OX1zfa4Jj\n/TdsDpF/EDkVPJhGfkPEOoMph/Iw/VmrciEVHb8+UDvrM3aEFUAbZM2+v5FWp91c/7cXuugN\n9a0ngjYy3YzYPvVsryxX5vemt6w4jo0hMpKI+umimMxwV8rfX6mzPmn7ukahf4G4fXSOG2rL\n9Dl9a5ZOnmGzfHWOybmX/IS+J/uRugkfRWee+8JW4Jy0zl5QFd/3qKqyTneeBXany7/vods6\n02dgwR7KTE7WYRR2UmUCZ1IadpqUfS/H4+JvRXQ2aaenMPZz87Nc0mU8Op2AuCGqc5NykX8N\nBlqm4QG7wNlwLrhhnA+tygVUrNol46yOXb32MRQd3pONsKxzN7rXIO2WB1btZvpnMBCyNo2e\nABfDyWAfPHS0IttRqRxXxtMsjE0SaqfZi4euS9x6/yx0fnW8CfKMhHeiexG0VQ5A2tqD3wPg\nYc223m6EbkhuHoqXL9+Jl4Fj4XTYDWz7EChlDInRpWIy4jNR1j6s1aTOZ9Dp3yLTElke7JPj\nyRxwTNfC5uBGaXslsUepK+PmVzF/MTimked7uAecbz7rOuiL1Bek7q3kO9fOzoFWZDSVyvdW\nvtNmccu+DK6Ly2FB8FDnez0OrOOc+ioos4I+SL1+2fACeB9sBo+AuuR7cPbjhOvIZ+i70j/n\nz5/APNekc9h19ASMBdvaBZS/wFGgbjtoRfRV9svnp48Ju9Opd/w+1366nh6C3SHiO3sFroYD\n4GJwLW4Cgyn9vSBdSmfPKTr8LeL6EUPt5DvyGY4/dtQ+ZbxMR68vlTLPeNIpF130ZboaL+sk\nbhgs/wmIjCRinmeWVmRXKt3fpKL7oO/+SHDuun+krz4vFyZ16Vs1LPPKur2VMz91U68aum4i\nCxOxjmu7Ko+jGFVV1unOs8AIuuwkXKdJ1z0U7QfjmuS1qjqMipmEmZCZhK22OaXqpd/V8bj4\nWxGdTWxi2BPdPTt9KUM3pL/CPOAz7J+6j8BAyqk0rrNzIz4c3MDd7FqV86jYk03KPMdXOlc3\nFPO1SzYXy3hA94vveDBPneXGwiLgpuAh5H+hnbItjdmPc8ED8b/A53roaEW2o1Leeexgupku\ndjC0DwdBKdOTeArczBdrZHjheQ58h2nT8PlG2gPMl+F00KbPgO176DsOLgEPRKnv5qKsBR6W\nbMvnmX8XeNAr5VESo0vFZMRnoqx98VlVWQWFeSuB7/qxRlqdfTHtu7kC7GMVy1VJmVIfXRma\nn7S2SVy9l9NFoS9SX5C6t5LvXHs6B1qR0VTKezEs32k1nnznzQ3wW1DmA9f45eDl6WqYGRQP\nXK7BI2FNGANp927iN4HtXg7uw8adjx7AjLtmloQzwHrpw53EZ4edwXWr/kb4A3gp0999DZ4A\nfUcr8m4qpa/NwvTFsIr9Tn/1uR+GUpYjcTS47o4H/c9gy6E88Mx+PFSfd2Clvu/0OohtYoPu\n7FctZ1p7Ve1Z1k9eM101r0wb764/ztGnwY+eykiw7HQmWpBdqXN/k3q2b97f4SLYB1xPzcZS\n9jXjyBhSPvoynXrJq4bJTx3X7C2NPmiHZWAWcO26L9m/qrg+6wtS1SodmtZBPgseBtyYrwS/\nVHlbN1wD+iozUPDT8LluOB99dUImTVZHSfptmEVl3AXeiuhssijTZtot9ea9BYZxlvc20uqC\nizlxL0el/JHEaaWizfFNaM9D36pFux4CLi3Skxs9hwqxQ2kXx1jqk1eOP3bwIJ/yOZQa6uQ8\nVFj3NrgQIh5urk+iDeH0tOFms1/Rlocjn+2hoxVxDTsXYoeMN7ZImLEndOwjmjzwg+jM04Ze\nYAyfB+sZ98ByFvjMV0D9Q2Depo3QZ34GIocR8TJqWQ8K+okt4ALQ1+wI88JIcH4fBRvD7vAq\njIZWZCYq2Ze1uql8Nno3NPvuxcxNzz5ax/DL4GGzXGPmJb8sazykTMLoU94xar8n4WHQ3keA\nts9BhGivcjAlXButinVtYziK71z7OwdakdFUynurvsdqOuUMfZdLQ1VWQeFcc77fBZa9ARYF\n19ep8DXQH10Hacu14hr4JNj2xeB8Nd+19AnYA9S9AR7gFC9i94Hljgfz3eedc18H29wOWpFc\nkGy7tIVxddHHL0Vn+C/4baPMm4Q/h6Emh9KhM/vRqYupe2Clvpdc3218jD7A9xlbxUZVGzbT\nR5e65TtQp93LMilX1XWXLvtgH02vDoo+2rRnllbEM9L9fah4HGWajSN9Th/L0HiVannTqVPm\nZX+KznH7jpyj0T1F3PXrOjoK3Beq4hofVVXW6c61wGx03c3El+qB4H9gDZhcWZYKY2F8N3gb\nz0SrhmR1lFT7n7SLvxXR2ZQL2/bKRZx4QvPd8AzdcKI3FBe2hz/j80EpB5G4rFS0Ob4/7V1d\nadPNwk2jVfkbFTO2qm3KtGVMV9EhfwP8CJAyhtrQ0IuAznhfsEzki0QeTKIN4cq04fMWKNpa\nraHz0NGKbEel6kZSjtF4qNrlWvI+A++DUpYgcQ24OTiX/Iji12jXsHNVxkOe4+ayGbwL8j6O\nIB5ZiUj6cDJxD2e2eyEsD6VsTOIWsJ1nwAvlaGhFersgeYi8C+yLNhQPkLkYqn8RDKu2y3hi\ng2ZhdGVd59wh4CH6S/AFGAGtiJeb+oLU3HLuadq/3RekvFPDkDnvPHkDvNQ0k/eg3BlOBOtu\nDnuBPsY19UFQfxx4mDZ+AuQdX0Xcg7br5zrQ97tGfaYHN9dn6Uf2JZ0+eeCzjH11Tbmm9R2t\niM+wbyHz23Q1Xurst/n2175+HtTNAENJ+ntBupTBHFUMyLnouH8F34P4k9I2sWV0CWPPnsKy\nrD6sp7LVvLJu8kqd7ZnWTykjwbTztRXZlUr391JxDvLzXJ/1O2jWt+jKMH03TNz8xKv6Mq9s\nxz3AtP46NvWDxJ6QDxnO36o8jmJUVVmnJ1ig1UkzJe23aOPhfyJcENy0d4BLwQXt5OiL3Eeh\nxXsoeBh5XynyPUw5WTtdBmIcthkp46W9/NLsu3kvuJm6Ac4OLuqbYG1Q1ofTumITDgtbEf9r\nIz0QgRvfPE0aLsfRJLtHlevKsdtG2jGMjuh/6dWV4nyOk7+I+CawNfwddMh+FdLheRHw8GG4\nOFwP7RJto2ifJ7pi7flT2iUtxk6mq3Zyg1oKnCNrwrRwF3jReQX+DLvD9HAH3AvPwwfAjf9b\n8Ef4OigHwgWwLvhcDz3WXxqs+0lQ9BEeytJf5+oq8AdwHj8AvwB19sn5PQYGSlw3j8L5sAuc\nAM6RseDG6LzzUBux36Uto09ovtKsXHRnkr83vAW+h1o6xwLV92vPo3NeOGdfBH3sDbAfrABe\n9J3j48C1or9x7nvx0dd48HK+fRZcL5Z3broeN2qkvUQsCfODz9SHXAxzwlLgc9wDXK+2uwR8\nBJzPvwPr+Mysq0eIt0ts2/ErZVwfOje8ATODPnh1mBF+CdfDLDAXtNMf0twUFe28I2jr6WFb\n0C7uw75P9Up8SWyXtGVL0Q+mTqlPPPVTr3wHKRNdykSfukkb2v+UM1+ydxEdUHE+nAGebyK7\nJEJoXzKWqMu+qmuWX9Yzv6xjXlVmRfE4LAiZx8sQ9/LsutwHXFe1TIYF3FA7SU6ns5uBi8+D\nyXrgZNFxefjx0OKFqZ1STsx2tjsl26ouyHb1JbayvTwjOt9TnKabj2Shu6jdmNys/wSbgIex\n7WEm8F0PlDinfgz7wv5gn1aB9JvoZEt3Xxi7azP62MN5fDMkrT3Gg7Y5Ch6BZ2EReDfcAKvB\nfOAhpF3yIA3Z9q9hG9Dx2reBFu3h2GMXn5l45tAK6NwQ3IyPLvKfJv4AuGFZ1svOzuAmqhj6\nfn4GX4B7wLnnPFsSFgMPc5aLL7EvshGcB5eDh7qRcB1sAZfAYMidPOQTMDtsDPYz7yQ2QjVR\nmukmZhIp7Ry9dd6C1+BTUdZhR1igu/et3netpIxp574H4hyKiXb9E1QPU+bfDitCfJpz/m24\nG5YFL+vjwUvUmbAMrAxeMpRfguvmA+D6+he4vhTXnP5qcXDdbgBXgZK+ur7bJbaZsSdM2+Z5\n8fF59kvZckLQ9YuZdtoJnmrQyBoWge/zUnD8xneFH8EeoK/RVton74ToJHHTSmw63YRk19+y\nTvKb6VI/edUwddOX4hFdPtB+zwjTNDKuKQsMYNx9ZCnQV74C84JS7WfSGceEUu/8jT7jfidn\nQkx9yiSvTLv+Mvb3NAq4L/guHgY/RtQyjC3wfsZ2K8wGLmRf+gUQWZyIkyDOLfpWw8Oo6OFD\nnJyJG3aapO+OoxyLjrAVcdGlrTKMrcpnlPH0w1CHZuhG+jdYDzzQ3g9ulnfAEbAADLR8hgfo\n4LwAuAHatwuhVbmaihl3aZ9qvLRHyqurxs9Fp03+DleCh2Tt8xhcAXfBCfAV8GC7CLRLlqSh\ne+FNGAvpnxezVmQ7KqWN2KOaro6/mra8eJiRpLWDcf2A8+o2MN+NS71jOAu0nRvol8HN5GKw\n3KtguRcghyOiE0W7HzUxNSHyWwKfGxlDZHQSkxnquxzrWj3U81KX8VZD64Yyr9Qlbpgy0Zk+\nANYB35N2aKccTGPn9KNB69rGcBTfue+h1f1rNHV9f3mXzcLyfSeeOoYPgu8968A21B8C4+AZ\nKNfbQ6RdY5Z5EVxf+k99qbqX4Vl4HV4C/ZXl/ao9N5wEN0Bf5BEK2bdWRF/VzB7R2deM1XgV\nx+7z1VfXP6opLtrzzH704nzqHlipb5uxQzPbRJcwZcsweQnNS9ywjDerF13KOYcSL9t6G33m\npfknQsQLvTrPLK2IZyTPJN2JfdoBvgNlH3xm2deyv4mnTFmumc7yZZ1m8ZRx73P9egbpizxO\noVF9KTg1lml10kwJW63NQz0cOiEVHestXbEJf8YSjId5QWfWTnHSDgcZqHGk3Xc1MVLyyiwX\ns05sJ/Crj1+qxoDyM/g+rGhikORUnnMp+EvNtLAGvBdaldIO1fEnr6pP2vzEdXQePDys7wI/\nhznB/JvgCPBAG7GuG92a4FpohzxEIx8AbbMweAg6HtohjiP2sL1qupkutjFvGnAu6eQXhKXh\nYvgwnAELgRuGBzQP118CD2xV2RjFh2B5GAe24WZXyuwk3gefL5XEj4fdYA5o94WCJicR++Bh\n1Xcw4yQ5/50o55G5VduWdkyedtwHPKR7EbkIauk8C5TvNvOgus7KUVleX7MEnAApq945/RV4\nGJaEy2DVRnoEof7pGnB/dg0tC64dP0KsDK5PL0WyLtwOkeOIXAL+OuU6HQxxTJGMM2H0zxPR\nHjODF7lFYQycDZ+CPUGfMlzFccfPNfM1VXs1s0NZRpubNiztn3jCZu2oS34uuimnPnl53hPo\ndk6BAQ6no3375MV/JbAP6QfRiX0zXuqTV9WpVzKmCal3/qqvPsPcsrx9ssxfzKilfxbQmJ0i\nHnD2g7/DbOAXN53xb0CHthF4gHgUBkKcdOVEHIhnDHSbjkFp9zjS7oTWJ7QfXRZ1+VwvITuk\nMKGH2zGNtHHf52DLkzzw5MZDl+vnwz0UKLHBhFTvfy0feyX0UuIF5R5wfs8Cbt4eXLwAlDIH\nCTc389opHl5cd8pqE4K2/C3HW22wJ9uVecadM4r+zEOYunlgPeirXEVB6U48EHlYyLNSzrT2\n8av5QMjGNPp1GAGOyYuR799LjHNEKe0xQTPhb6kv42UZ4+bZluvy97ABeGj9LNTSeRbIu67O\nj+gdUfKMq9evGIp5CfUpyuLgR0lD86dp8D3CI8GD6fJwHES8FCkeIr006a/KC5LpV+AtGCxx\nXD2JY3PMc4H+wDXneeNY+DXoW/WBV8NwkwUY0L6wGTgf9Hmng35A31CKdqpK5kz0KRObJ1Qv\nZbqsm7wyTJuGZT3LOBeVN+Dj8LaJQRCfcyPsBlvDS+AerdivZpK+m5fxpVyZF51h9JZPu+oS\nt0xE/anwM3Bd3Q3O2VugWXnUtXRngUys7vKHkl4HfCAcDYeDXzh0Ut7ebwYPcHtADqdE2yJO\nuO4mY1seMIiNZIE4noGUavt5bvlMHa4L2DwP9YoH2q/DiSY6WKbvQ98zrywae8VOCXX4is73\nE/AAeDhWtNEu8DETiI75OBgHnbR5Z+x0e6IdjDcTyz7SyNBGsVNCs7w4WM7N3a+/yuJwCJwD\nHnKWgcmVf1Phj/BTWK5RedlGWr357ZbP0OAF8Bzo3+YDx+bhxTEbV8rxT9BM+rdZvnXL+pa5\nCGzbw+BKMA5q6SwLlO8677cvI7CsdeXNRkgwUcxfGrw4K64v5YgGMxJar5l4Cfor/AKWahR4\nP+H+cDKUfW5kD0jQl+d46HWsfmj1V7F5QX/u2Fwb5nU3TrK6fmX2o62+xkPqwtAJ4h78D3AP\nPg8cp+P+XCNO0CXqlYRVm6pPXhnvqtT4k/xSZzz6hMkv04n7XA/+zi1xPuqXvbAMlvhBwP3I\n/dmz9PNgv0qb2N/0megkUuqr8Wb1UqYaptE81191L4BfgT79n+DHCtdvLcPcAtMyvlzsDEfC\nbuBkbaccRmNetiSTPul2Pmcw2kq/M5akd23x4dMVNoltegrzXMvk2YZuRuLXxWfB/GOgfL8k\nB128iJ/fj6feQN2e7NEsr7RL7BWdjlcbeXksxcO6evPfgjHwAehJXD/9Eb+e2n+/Crci21Ep\n4yrH2cwm0VXLqy91iZf6xK+irBvGzeCG4SHAS+aHYHJlNiq44dj2043wYsLZITKGyOgkJjOc\nifK2vRb4nh6HH4LyVcg4fdcZXxkaD5ZNPGGpS9zQNdiqL6Bqn8V/tufBsVWxrm0MR/Gd+56c\nA63IaCr5LvNe886bhWW5xBOW5dNW8pK2jHHnza2NuJeGeaA7mYuMK8G6zzRCL/2zQl/kEQrp\nO1oRfVU5ru7iGZ/hU+CY9K+utxXgVHgIvDg0k01R+lHratDX3AGOtd1nE5qcRA4ldeYkmslL\nuNddB/fBzOD+7tifgNhKm1RJnqF5ZZi86Jul015ZL+Wrec3S1tO3+170x81kJErLOaZWRL94\nf5OKG6HzUnYtjIOyfxlrGWZcpa63eLM60eV51bRt+rEu+oWIj4CL4F6ozl33mFFQSxML5CDa\nJGvIqnRYvnzF8Bo4Cu6BgZJM5IFqfzDbdSztlLSXsNp29IaJp8yjRJyDD8CXwY1Eh7Q06LR1\n0h5mT4L8GkB0yEvmZ8bbbOwZRPLyVajUG1fvwfxB8HD4vxDZm4i2+gJsCcvB7dBMRqO0DQ81\nY8E6U1Kq47UvsVfZL3Upa5gy0TUra54bwoawcqPAiYQe5j4Of4YjYXLlJSr8EZy3HgYfA9ty\nk263+D4XgH3B9j8Hiv7Py1PsktA8pWof06G0mXH1zoc94BioZfhbwHeeeWA8UuoyX8wry6Rs\ndPrupcC608P34JONOMEk8hyp9WAdOARuhs3ANfRb8BIzpaQcb/rg+nZMjs31fjl8FGYBD6D3\nw/YQsZzj+D2sC66pVcCv915ghrosSAf/Ch769Qk/Bn+xbmabcq5QpEvUWTahysyTMp666hJP\nPXVKWc+05cqy6sbBQaD/3RYegMEU37V7ivPZOVzu+WX/jVfHh+q/xhhdWTe6MjRelTzD85J7\nxfWg7jV4CrTVZ+C94BqspY8W0MHV0rsFsjh7Lzn0S7R7LGnPsLq4tYb6skx0Lt6fgo7FTVan\nvCR8Gq4ED4Fbwc6wKlwIrX4FouqgiodYJeNOvGqfarqrUuNP6lrG+OfBf6JyOGwAkYeIeGjX\nPm7ca4CHlKUhsguRo+EPsDEcAx5S9oQpKY4rNsg4q/0py5hX2qVaNmntvxE41lnhPbAXHAgP\nghel98F8MDmyG4V/A9rPto8H38cR0M4D3qK057vSJvuAhy3XiOK6iJS2Szz2SRnDZrqUd1M9\noSxcxzvaAr5r321oNpi8+8yLhJat5lXrp91ryXDu6JOjG0X8FLgFFoZm8jTKb8M4+BIcB148\nzoQpJY4/ZPxlX64hcRm49vxlyLX/JzgWdgBlcVgCzI+4p+kvNoxiCIdejEYU/dufuHtL7FJk\ndb3vUq/NmtnNMpEyHl1C87prI2WqoX39Kri3/R/MD4Mli/CgpcF/rq3MBtNAxpjQvDJejrHU\nW07pSWdeaeOyrHFxfjof3dcsezM4B5VnwMvT5O551p1qRec2NYsHp/LAUdpihkainIhlfifH\nHVO52No1lp5slbw8e2Ye6uFS56a4sRrPhnsY8XNAuRIegI/DGTDUpWrbcuxl36NP+dgmesua\np5M7EpZvpC8jPBVGg5ciRcfnF8B14DXwS+dx8L/wA3DD+xEol4C/zO0DOnkvFFNKyrE264Pj\n76lMNc/yiuvaL9rmq3MD9SL5HPwEnGtvwOSIdtwPrL8NeMBzY/wC+IXOzakd8jkauR0eA9v8\nFPwL1gIlY85Yk56QO+nf5BmW5aN3DjgXOk389WHzJp0+F91FTfQ9qaYncyP4IJwP/wDFjw3r\nd8Um/NEf3Vukh2o077baP99/Nc+0a8F5rCSckHpn/SRtaJ2RkPYMvfgcAF4ctNPvYAuoytdR\n3Ae28VuIr1qI+KZwIUxJKe3juBTXn/3cCw4HRR+q3X4IJ4L5yhwTgol/TSdvorINEfu5DJT9\n7U+z+ptt4WI4Aez3TKDEDt09q6ov02U88yVtmlfml/GUKUPjlrEdbepZ4Ubwg9JiMFjyeuNB\nedcLk07fE6Yv5ZjVVfNTrhqmnmFVSl3scReFloWzwHkpf4eI/m1O8NJUSx8tUHWGfaw2LIqt\nyChegue7YfdhMcqhM4hyUdsrvz66WXoocR7KmuAh30OIG+0ioDwO98ByJjpA+uoEM5SyfBxe\n7GV6BpgRVgJ/Mv8JfBi89EROIuKl6L0wK2wAXih/CG4gbuilmPafLc5bKgcxnvH19sjYJuUN\nRX1slTZSxsuR4ibxBqTsZ4l/Edz47wDXvzIb9OYLZ6fMgqDdPJicAh6WPCjavunTIM8m2rIs\nTs3L4H9hPNwJXo58TlWa6aplyrTlY8MHiPshohPlETp9LfwD9mjETWuvyZV9qfBp8JeCH8Bo\nUHaBJeDfDZxPnSzdzZXMiXJszpHeypf581Hew7V+/buwObiuqqIPd42sBquDvkq/9jb8EIaK\nOP6IF2gPw1Ufehm6JWAGeBKugJ+DflUx7/vgXtZOcZ90jxT3xdHQX3mIBr4FR8Ar4D7ju1F8\nz6JNSruQ7Faq5UzbRqSMV/OqZVI2fTC0b+6JXgrcw9SlHNGuOdZs/pnXX3mWBpzrB8Px0N1z\nquMq+0e1pmKZsl7qGDbDsoq/EN3WFZuwl7nG3Ou+BH648OJ0FNwHtdQW6JMFVqCUzrkZf0Dv\nhihOwsQNO03Kvpdj2bXFgUxHPdtJW4n3NUx/yvpv0d7Z8FO4BR6Eb4AyO7wIHnAHQw7kIef3\n40H/pG7VFo45ujIeXTWMjf5DPeM6wMTdwCyv/lhYupFem7AUL6Bjwc3uq1DKziRehulLZR/i\nHmx89rv7ULZZke1Q2u9m4+1Ol/JlaLwkdVOmTEdXlr+c+jvAw2DZ5+FH4MbSTNyc3BjdcPaD\nW0HxEuPctJ4HFm09GloRL2725Vwo558Hycch/c/YEmZ8SVfD1Es5Q9fa5L57qvRLPFCc048W\nrGsbpWh3D9dVWQnFD2Bj8N0pO4Fr5CDYFiKHEckhZ33iFzQy/kG4aCOewMPwaNgafgIfhMh7\niHgo2QFmbCiXIdwUfggbwDSwPVh3A4h4Afa9OQdakdFUyvst3390CZOXtGE13p3OuimbeFk2\nbb9GOeMLQlWOQ+H7+lyRsVBD5x7Q3fgfIU/f0Yroq9K37sJyXCmTsRna5x0aD5+B8BfwOlj2\nQdgGRoA+wPF7cfFifQU4L9ol89PQc3AqvBeWgruhP+tKX3MgKPOBbb0BzeygrmqrpBOWZdRF\nn7BstywbfXQpX7aRPOeKJG0ZzyW+m5/DS2De+EZoXiuyK5Xub1JRv/AwpG9lX31uiL7sZ+K9\nlanmp60yNF7Fes6R/4B2GAf7Qvwg0YnivjJqYqqOTGIBnfXULDqW27rBA2nECTdcpN1jcdGl\nzYSxVdKGZdz86AzdSNyAtgSdznthVlgOPICcBb6Pv0IniE5aqY55gvYdR5X86JNOqF77ylwm\nEJ2hh/lsAOsTPx4UDxGlaMu5wc18f9DZe5naAdxEPBi6yUxJKcda7UccehmW5aO3XqlPO6VO\nu5XptUn/Ho4F49+GL4MX9GZi3UPAg+264Aa0I/wMDgU3o/HQDp/qF+eNwHbXhzPBg1HEvoiS\ncEKq97TlPgYfhyn97u3LQMguNHoU3ARbge9Z8f3uBxfC9rAnKF8F15PiYeFG8D2uAL4D9wnf\ns+vai89vYRO4HHzOmvBu8HnOC+NXgGIbp8AroL1di5vDxXAAOJfaLZkThuUaqT4n5ar6pKv1\nU95Qf510yo8hchp4yTF/L6iK9poWfC/vg/XhbPAQOh208zJBc/8l1T5bQF3slPzootd/OBe2\ng5NBX2rer+B0cM0uDx+Az4JzZEvYAPwQ1S7x+S+CPvwBeBCcz+k30X7JX6m9BbzRaCXtOlaJ\nXRrZXUFsZCLlq/nRGyZerRe9dZNX6sq469N55J6XsqsS9xcw1/Ye4NnhMhgI8bnOVyXPL/uX\nePJSznTyEppXFfNC8rqrq+8yTx+jfAOcI+pE+TY4H2upLdAWCxxGKzpFyURNui0PGMRG0u/q\nOHTyrYiOIW31NUwfquFvaMvFrP6fcBuMgv9A2r6C+JIwWOLXtPP78bAx1E3f+xpW7eJhqtS5\nyfrF8nn4PugMfY4HMJ+hDasHEje7i0AnaR3bsOxr4BjdYCZXVqOCbXgIbEXc4B2XbbRCbJK6\nSTcLvXhb7m2o5quvvuNPo3sTujukuSnvB74H62vH/UG98/NVeAxGQyviwdJ21wI3szGNdNl3\n84P6xHsKLed6Svm1iU8JOZiH+nW6VbGubZTiHPb9lnIdiU0bCvPHwSygf9kIlFUgvwJ2Kfjz\nY9DXzAyzwrcboe/lLNgWnBtvgO0pX4Nfwig4DT7cwHZWgk9COeZnSftPgpQFYMGu2IR37jv0\nWa3IaCrl/fY0F8q8annT0T3eiCedemWZMZSp6q2n77q7ER5E6PvQHh5afR/W019Z1/bOhSPB\nw3538ggZ+o5WRF+VfvYlLMecuOGN4Lu3DefcbbAKKMfAlV2xgf1zKM2fV3mEur9VdJOTPJ/C\nB8KW4Difhr7YqVomtqrqk+4uP/qEZXl10Sc0/y7wMnR7I985pw0ssxlERhKxfC4z0fc19Ix0\nP+jjXc/65hnhW5D+JEy/E0afMPqeQsuGsly1DdP69Ph10z+CO+Ev8Ao8Cn6wse8HwwswB5Ty\nOAl9Vy1NLKDhaunZAu9qZDtZO10yhoxpMMaTZ/osn5tnJ9weXQ4F6vwK92u4CBYBDxPrw0PQ\nKaID7U1Ku6RsbGLoQcJN2M3Kg/6soJP3gPVd8IDm5uBBRN2pcCCcCN+ES8BD4t7gs3Se88AS\nMBd8B3SuQ1ma2ahZf90cFMvHhqa1l7rSz40jbRn12mc9iFxFZAYYEUUl9Dk/gLnhJnDD8R39\nEK6Df4AXrHbI32lkWSjfUTk2n1FNq+tOPNhZ3jHc3F2hYaL3HT7UGIv2ex7yTj3sKB4eXAeR\nQ4isDJvD6/AqqDPUdmeA80Wx7mtdsXfaeT9pD+LrNriUcHpQnpwQdB2s3iL+TCP9BOHjjfhg\nB87/ZvMn822BRr5lLKsYOn8U44s1wui1uT7GC4/+y/U3GvTlN8KP4Y/wefASqv77oC3V7QlT\nQjK+8tnqojf0QrcqOC5lf/DdueY3gKtgaRhouYMHrAn6oMiMRJq9y+T3Nfxsox3bHgMZf+qb\nruqSl7Can7RhtY/J606fNpNvaB1xfo6AR0C5FZYDy/gu2imu43vBZ/i+n4KfQvpFdGK/jEeS\nnzB6w4yj1BlvVjZ665RiWfe21PkacX3f++B4cC/y7OCadb93HB+GWvpogfLg0McqU12xTMpM\nwk42QMaQMQ30WPIcQ59tKC5YQw8fygPgxrw4eIDwYPJxeBRymCDaMdKXdVXaQ1sosY1x80+C\nOUCnp83cpOeDi8GyHiw8RLuhHQtbggeUHeAJcCO9GSI6zLHgga8TRBsojjU002WTcHyWS0h0\nEnFu3QOWyaH1yKLEOsQt83ChaxbV7uvDUbAFbAa/Au3fTpmWxsq5ZL97k+7KeCA170Bw0xzO\n8lcG99HGABcjXAr+1Uhv0gg3J7yhEf8JoWvok+DlSFkI7oMZTSDW80CvLNnAuO1cD2eB7+pH\nsB8sCF7MSnFeWnaNhtIPGXs04oMZOA/KdeSzM2/yUUF/bH8j+h/FesYNS/TlHsyOhrVAu9nm\nh+D74FjXA21sfS+SL8O24DPXh7/BlBDHkfEnLPthvuvH0DlgmavBd38y/BLWgQdhoOUUHvA4\nXAGjYUf4H2jWb9STJfo+2xE/wFXF8ZeSstGZXy1TTadsGZZ9Tzyh5Yy790Vsc07YCD4CnhO0\nyf1g2ZHQTnFPvQNGwNbgh5CMq+wn6qbSU5nkJbSBatvmSak3Lu7zb4MyK+jr9EP6q8XgSlBc\nz/8GzxK19NECOqZaerdAOXl7Lz10SwzEONKmi7VcxLFC9GU5F7DO2EXrAd7N5WmYF3aAU6GT\nxfFFmtmkmU5b5EAcW+2ELnE3gP3hcHg/6BQ91HmouBRy2DufeCdJbJGw7Hupq86jlIvedJz/\njMksQsuJG8ff4Y9wEiwHfhn2n08cDL+Bl6A38ZK0X4Peyraa72HdvsxWNBCbGCqOKRJdd+lz\nyNgnmcM4PI6x/QIugRHwGXB9KZ+H0fAe2BL0Od8Cf4UdB8rdsCn8CmzDw/EY8BI0PbwAp4E+\n7BE4ClyPt8Dl4AXgVngQVoRSDiDxI9BHeGAZBe2Wch6U86P6nLJcmfcyCe3jenIstpF2Ek/d\nhLNS5lDQl88Hju1f4KE1chsR+SBoh21gsCX99bkZU6lLf8yLXhv4rvUrT8OJBdpI36FP/gQM\ntPhxawP4KfwM7OdTkPlNtGU5j5o7gG36DpXYILaKLumEXYUbf1LHZJmvvkybX5Y1XRXLW0Yf\naKhPdK05Pz2/ngnj4QuwHjwJJ4AX8vtgV2iH7Egj4mXYtWtfqmNBNXE86XfKVMsn3zpVSVlD\niZTx6OZvRHz/nh8sM6IRd85+H5TdwUvv5VBLbYF+W+AwWtAxipMuccNOk7Lv5VhadR46prRj\n2B2xXZmvzs3TA0nZhl9CdoahIAfSif5cNNywyrGV4y/jsU81TF03Ax2fm+INkHKvEreMG4WH\n/NlhsGQ1HuSz/YrWimxHpYyjtEVP8ZQ3LLGO9qnmR2/4Jmgn415qPJi5kWwN1hXzPBQeBM7t\n/sgYKo9usYGZqGdf1mrU34CwHG/GaZmS3vTm/xqmtBxMB7yktSrWtY2+iof2Uv5JYgSUF84y\nv1ncw5CHsYjxMeABp9Qn3wuUh+bexMNKKb5z36lzoBUZTaXu5kE5V6px65SYX6bLeJmXuB9u\nTgF9eto2fhNcDqW47sbDF0tlH+OPUE7f0Yroq9Lf9LEaZpxlOXXXwcbghwrTz8GioI83nfIP\nET8N7oXL4TMwWOLF1ItCq+Je557nXHd8GVfGZrqkme1StppXpntrt3xG4mlX//xH0L5+0BgH\n8etexLcAZUbww0b2yCeI20arfn1X6vru7wSfJ+lbNUxfyzGXccuX6ZSv6st0d89IGUPPCfrF\nlLXdV8Bzg+8zc3dP4lVx/Y6qKuv0BAu4IGrp2QL5AtBzqc7KbdeYemunzI9j8ECqs9LheGB1\nM/0GLAjHwnCScvzNxmW+dkm5hNokMpaIB67VYBuYC/x66NehzeCHoAMcbqJdIrGLYUhefNiL\nKNxE3Sys6+bgocHD8Ehw8/Dw6mXyVPgTuIn6IWRemBO+DW6AQ0V2LzpSHXeRNXH+lDrj1tEW\nf4evwNQmvt9mMjnrxXnjvKqKdm2md12W67daL2l935QQ+y2RnuaVZcxXtIOStLY9EuYBP0L8\nHO6Hh2EE+EX/Q+ChzIuRF79fguvvDJgSkr43e3byMk7L6AvWhovgbrCMfuIkGA/6Xy9urq/F\nYF34Dbi3nQB7Q6eIl/2fVTrrPHHMsU1Ci1XnkLoy33RVynzjoVm5Ms+4a03bvhecc15SP9qI\nL0N4LijOxT1gDpgXtoH+inPXNX0dvNBDY6VNUqzUOY4ybZlynKmjTrFs8hOqT9y56hyzf9uC\ncgQ47tvgNRgLzsenwTKevWqpLdBvC3hwcgKKE1WSJtpRkn5nLEnv2uIoXGSxSXdh9Vml/Yy7\n+aTuXcTXhKEiB9KR8/vRmSeom7FVw6pd8i4SPkvdlLGu8VfAA7+XSy8Apu+GtD2W+OYwGLIa\nD/G5fpVtRbajUjm+jKEvoQ7fcrFVQjdPL45ecLS9eg9q3wAPw6nj5lk+x01jWWinjKGx0S02\n6EZn/9aCT4PvO33vi81SphrahvPFdqek+JXznH50wLq20arMQ0UP6/0RDyceQNotvhvfk3Og\nFRlNpbx322mG+cH8ZvHo9DdpIzrT5Ro0rR93rV0LvpvSNu4vln8VXHvPwCbQingR0Xe0Ivqq\njKW3MGP1onsFrA4jGqF1XwdDfY6hc/JM8EBqXj7Y7ERcG3pQH2hpxy9IvqfbwfcZG/QWOn6x\nXBlG39cwz0l5+3AZOF88G+jDta3lfC/OpT2hLzKSQrbb6sXAOewz/cXwGvDZvteyz2XcZ5ku\nQ+PVdMokrwzTXsLUNe2e4L6VPMPke3aYGz4L2sxLZGQRIi9CdQ09jm5UCtXhpBbIYp5UW6ea\nWcBJWMt/WyB2SWgJ4x4kotPBJE60Kz6G8NfwGNwBF8CCMBwkY03YbEzaR5SElp+zkdbx6dD8\ncjUL/A5crzuBNtMZeqjy69nZ4Ca9InSadGejUp94eXiMzQxnBe2xC1wC6uYHv4ia54ar+AvS\nOHBzdVNw8/WAMyMMJfG9ngyT459jozJ0Q18J3ge3gmtsYZhaxQOXB4z+iPb1gDKUxT5mHqSf\nSbs2JGLcvFJn3gwNfVnvFXRZK/ol19AnGuUeJPwWlLY5hvRi4KFsK1gcLoIpJY4l40lY9kVd\n7OBFek3YEJaEE0Gf7F6l6JP/CfvAquC4tI0+RvEXatMfMDHExcuDH5b0O/oc/WXsQLQrnnQ1\nLG1mXuya0PqK6ZJSZzztWuYbsCGsDHeCF1zX7qnwORgBv4TBkrd4kL96LgS+X9dG+ku0SzJ2\n+5+8hBl3mU68UX2i3UxX81LG0Pczd0Nhu85JuQKca+6Da8C14EeFyHgi7gfm1dJHC7gwplZZ\nnIHr9Lqzgfm19N0C1UXt4o3oUBQPJy5wZR4w/Ri4gd4DO8FPoNMlh7CqTRyXutI26pJOedPG\n3wN+rXoZPgp+FTK9CHwQdIaK/6TAzeSL4D9t6STJmMs+xx7qEk+YcmXa+OugvT7TiHuZUufB\n7f3wKrjWPbC50T4FF4KbyMfgdBgq8gs6Yl8dV2mfarrsb8rFLs7BTcD5omwPd8NOsD/UMjwt\n0NMcccTJzzxR59xJOvFqaL5rKnovEKeA/npX8PLtwdZ1VYoH27+Wiikct/89SWkfLzgHgXuW\n62k8zAaPwu3gJfFyUL8F/APeBGXxrr+TXhgbqiEXOD4/oOgvbwY/qsQORLsk6WpoZjNdVW86\ntrd8M4l+bzL/BvPCCLgDvIT6DqaE+Fz96NfhNDDtRUlJnxNmjMkzXerUm25W3rxSb7ysW9az\nrO8t5UcSdz1uCa65EVCWN67uWqiljxbIYbWPxYdVMQ+XLsLuGNMYbTlBh5UB2jSYZvZRF8rH\nON/8GmPedPAlOAb8YqUT9PA6XCSOq9l4YrNmNkqe9d143bS01cJwLCwKD4Pzt5RbSHSS/fpi\nH8vEHrFVdNX0LJSdr2EQDzbKVeDBbR24GjzUWU9bKs/DWBhqdnuMPimONXbKeLsyevljWS9D\nuRxZ3E19uK0xx1XLpBbw3fdVLJv5ZZ1yvqWN5Fs254X/I+5FaAx8BzYF8/1wM5SltE0Zt8+O\ns9Q9RDprxv3pSXB8F4MfoTaEucE1pk9eDvzIoo9ZCo4DD6P3QCeIl1/lXijtoF1ESWg8ZQzL\nuHlKM31Zf0KpCX8ta17qLED8QfDC+Rp46PddTCnx49pX4M/g5cMzTHfiODLO2KVZ2Yy1zIsN\nSp3xtGe8bFO9a1HxjPBB0Md7ZhgBh8C7YVb4OSwJf4Ba+miBOLw+Fh9WxV5mNAfDgd1w07Aa\n7aSDKRfZpDntTZULOw5uBh6h3kXrIe4oeA+s3UgTdLw4vt5sbL7lShvpeE27OVwKi4H/5M7D\n/xj4NmgzN2CJ6Bw3BPM6VUo7OAbtU9ow+bFbxqk+5TzIKKafA79Autn6S8p9YFnnofZVFoel\nYajZbXb6lHFlbKi6FcuGbN6Oy19pI26UbqBDbazpXx0OrAWq86hMZ65VzwOWkafBMl4a3De9\nBNwAR4KX+T3BX1OyrogOSXEMfRHLHQH61atAG+hH/CfPm4EHz43gLngD/NByDPwMPJw+AMq2\nE4Ih/1ef6EekZcD9xktgOT9IdknmQ9IJm9m1qivbq8ZTNr7L/MthIdDO42FKymw8/AJwfRif\nGexz7FGGqCexXcamviplXtooy6hTkpfy/ksSdfeD89L3Z9r5avoAuAS2A+es5XeET8EYqKWP\nFtCgtfRsASdlJmrPJTsnNwttMHoc22Xz9dlvgmm/rrmJfBPcaI6D4SB9sW9ZJjZyPar38uPh\n/m3wMKJtRoJ28+J0NVwEPwY3Z79oupkcBp0ijtmxZuzVflftYzrlrfN/4BxKOx9r5G9POArc\n6OcCLwYbgZeO6eEZ+HAjvQ+hBz03v6EkfjBQurPNhNx3/sYGaq6CD4AfIpwrfgByHrnGPMQe\nC7VMnRYo50nWUixRrjd1SY8n7scs6y4MHricn86lT8CroN86GcwbDuLYtwL9rb7Vg+apoB1W\nhQvhk7A7XAP+87QvwX7g2nsSboHYkOiQFg/Y7iN+PPEC7CUg4ntXehpLykwoOeFvVddT/dRz\nTmlzfbY+63EYCvICndgCtM9bsCI4PseUcSZepsn+r3Lq+iJpL3Yr252l0cD1hMdDzlZ+yPDc\nYNkt4XfwJ1Dya9yEVP23TxbQsdXSuwUySXsvOfRLtHMsWcSOOu1mIaszHn1CHYyO5n3wUfBg\ney5sDTrn4SilnRxf0rFJwtjOTXc18HLkRrE2eLBXLPtx+Cn8HGaFy+BD4GGmkyTjzfj70nfL\nWq+cW8a9RLpxbQNentz03RTcMOYDy2jLf8Ip4JfeP8NeMDnPp/iASzk+40rZx+gm5Ez6d3WS\nY8DN07lxFLiBngd+QfRrYi3D1wJZH5kvmSvRO/LkxQqWqerMewIWBC8+5s8EM8KVsB7MD8+C\nsv+EoGP+lvZIp2MD7bEu6EOMu4aUx0CfoV/ZFOaGVWBXUB5t0JXosD9/pL8XwGawN8QWRCdK\ndJkvvYVWtEwpaSO6Mp2Dv3k3pcAQCP0IoHiB8wKspN8JS13GnLCrQuOP5aNPWLZRLZt0WcZz\nu+ntwL3Odky71+nf/QCov98enoZ9oJYWLKCha+ndAr1N5N5bGBolBnIcaduRuliTTvgKuveA\nG6w6D/1+eRuO4virNuguXep1dq+Dm7PyNqwPt5koxIvkFxsU6o6NZo5kANpEiT42Spi8lDO8\nGNwctJ9fQHeGr8FyoNwO7we/ervRDWV5is7ND44/Y7S/sYfxSJl/D8pFwY8Pbo53Qi1TlwUy\nRxJm9EkbOme6Cy3vRyw/zng5UuYAy3th8LK9PoyHb8AO4Dy7D4a6xAb2s4wnXdpFX6wNFH9d\n0RfPCeNgO7D+zLAFuO6Gg1zOILzsObbSFlVbkT1RyrIqy7JlfGKFbiJpx2yfrR8fKuKc92K0\nEpwHm0P6W44xNiO7qXSXX20r5Qx7E/umpI6/brrXebY/CdwD9wc/INYymRaIcSez2hQtvh5P\nPwhOgNPhUPgqeDAYCMkC6MtkHYjnt7PNjCFj6m/b3bUTfZ7nc7wcjYP1YVUYrpcjhtblPGMD\n00p3afXaya+Pil/9lUfAuX6diWEo5dxoNrzSXonHVl4QFQ9ypTjH/ga2PQZWhgVgbtgXPOB5\n8BnqUtrGMYdm/S5tswIFtMHnoL4cNbNWrYsFnGPl3FGfteG6ykeEu4ibPh5mgZ+AeYvAIeDl\n4dMwHCT28DLk5SjrzovR6uAl0IO79vgS+CFiSfCfMZ0MW0Ony8YM4E1w7OUcqY4rtlJfxlOu\nqjMdUqYMXySR+edzR5WZUzju+18R/CXJy4cSH20YyjE3i5e6rkaKP2Ve4gktVo0n7Z6meJa3\nf6YPB+UocM0uaKKWybdAJ12Q7KuOyEvRQvAkeAhwovhz9y0wEIuq2eTnUR0pWVRZ3O0eRNpN\naPuJ70F8CbhS5TAXN1jHnbE73DJuWkkZNwbntPIjcDPWVsP1csTQutZtxm+6KrFXGSbur5CK\nh5gLYFFYvxH6dfdS8KvZ7KCfcN7/ALw8+W6Gusxf6WDGrbqMl+mnSPwWvGifZkYtU60FqnNE\nQ6ir6qMz9ODvHuta8VCVNWb4ZdgJvBjtA350WA+WhY3AudfJUrWLFyAPmtFrg3vBX6A3g1+C\nh8+zGnFtNx34z9RyOCXaseJ4HbtzwTB2KMNmcYp2SVmn1CWesGzDj14+bxe4CRaHoSK+2+PA\nj5d7NzplXyOJZzzRG1ZtkTKlPvEyL3UNcwky7rMehzdMIK7ZrL+ZiH8Ktmngr16vgeVracEC\nvvhOER3ThrA0+LWhKluiOAJ0UgMhmbwD0fZgtdnuMfTUXpnnxuq7KXWDNeYp8Zw3Gw/VmVXH\nXE17YNfJKf4b9x9CtQyqYSuxURkmHjsYRudl0l8fFwEvEgeDlwKJfJ7IxTAGPNi8D8z3oNdJ\nknHb59gi8dgj6YeIjIavq6hlqrVA5klC50kp0UfnV2cPfh6u9NMzwEUwB6wBG0C5tkh2/Wp0\nlZEOk3LsWT+GiWc43ybyK/Cjq79C3wg/g33hGfCQ/DnYAFaD+0DZEPQ7f4DroJPE9+0HpLlB\nO2kTJfHYLuGE3Hf+VvVl/ZRKW7G3oejTF4Dd4O/gr5Qzw7vhFZjS4kc2P/DaryXAS4f9LSVj\n6osdUi91EqqPjcp2/BAY8bI0L6gpFfdAAABAAElEQVQ7D7aA6+Ej4Hn+H/AdWAEOAn/lfQNq\nacECOZi1UHXQq4zgiS7gZpcjO3MhuKAWNNFmcQIPF2n3WGyvpLRTnnUGSp3g1CKvM1DHHmcX\n+yRd2kGn5hdL5YtQOsYu5TD9U44z8yRhaaeUi86NYRXwf7xwNFwKVRmDwn8SsSfoF74A1umU\nL2mxQ0K63iWmS13S+vEl4VtwJNQydVsg86LZXFGXNaWVvBx5wFfv5Uj5EHg5OgyqlyNUHS2x\njYOIfUp7GN/ATMQv8IqXIuNehrwoKR8GD6i5HKm7DG4F8zpNtqPD/vPcz8NLjc5rC31LbJaw\nkT1xfzMdWzaLl3mxdXR5xoNU1G53g/tnIDokxHe9LtwFXo6a2QJ1U3GMGW9CC1b1abNqo5Q1\n9H24B3pR8lJk2Y+B5wjPWGvC5XAA/Bx+ALW0aAGN3SniBB0F6zTpsI59H3gV2n0IctJmwhId\nFlIu0nYNqDsbqZ/aFqnO3XGXdi7Tpd75+hA8AM7xqUW0QWkH7RNRn3TKRPc2ef5KvBV4oexO\n/Mp3IvwQToE3oVMkY0/o2GOHjMG85PuV0E17OPzznoyvDttngcwTWzSeuWTogXQ8eLi6GNTp\nj7aGr8HUJLHTugzaA6i+Rnt8Evxldke4HBR9vBeKqqgzr5PEA7cf6TaD42FfiC0Mq2gTqUr0\nqVvml+X/TYYoXozM8wznLx2/Bc+lJ4HvYCiJ50v/CZvh3xsdi21MZvyNrP8KYoPSPqlf6tKW\nuhdBW7k+FXV+tCif5RliO5gLzod7YR74MaQe0Vom1wLeOjtFxtHR3cBfkTzsOCmcqP40vBg8\nDE7evspsFPTLcnc2WKNoyMlYncBFdkdF2zmO2CWL1bbLuOnvwb86ykL976yOXTsopU0maCb9\nuyDJV+AT4IY8tUkz+6iLxI5JO5/yFTe64RzGPtUxxi7me0EqbVYtW6enHgs4LzIXEi/nSnT6\nKPe+vcCDlAc+D2IPwEow1A6ndKkt0tN6Ms9/orQ2jAF/SVkUtgR/GcqhnmjXf+d3KeG28GcV\niLZcHM6EThLnxCOQj0iO81nwn9tlvhCdKOX8ilKd+5dzyjqKh/N8hDdfvbobYCQ8AceCv3Ys\nAfOC/wrIM54X0qEonju3hj81OueYxPHFLo2s/+8FIp5Pk1+GlinLG3fNGeZM6jtZEjz3/hC0\nj214+ZkWUmcf4n4EVL4MY+D9cDvU0g8L5EX0o4lBrXoyTzsbloclwInyJIwF/53w5MhcFP4I\ndGcDD66Kk3A4SRZpO8cUG1Xb1hn6RWNqE8etxC6G2kYp49G5EW0DP4HUJTqspbRDOdDYzEtj\nvtBGdwy6qelylPkR+8QOZfpyEn5RrKW2QCxQ9cPqs94SenD1QHsOeDBeCvzlYwsYrpejrKes\no6QNczj9IHHXkwdbzwh+uPJAX5XLUXwfTgX99owwH+wKD0InifaYHzJvLiR+OGgTD+Lq3Zdi\nL6ITJbZUUT1Lpb3UzQVqdsqaNzP8GBR/KfkhXApD/WB/EX10L/omOCbHZzgLlOIcUkobJe34\nY5/EzXsAljaCjAXfwW9gO8iF9SXiztF5wMus/0w28nwjUuqSV4eTaYHqhJ7M6oNe3J9hPw4r\nwxngP7WJ6Mx+DZ+LopdwLPkb9FBmFHm5lfdQrOOyqou1nQOotv00jV8Gvq9x7XzQEG8rm23Z\nzdI2ZfwKCp0O+4NO7Tsw3MXxZ3PIWEubmOeXRDceD3LmfQb+DFODOP5IM1vFdndSaNMUrMPa\nAg0LlGtJVdKGmU9eijwE55/wPE78LHgZhqvEDlk/ZVqf/S24EbwkPQdnN0KCpqLP/gtsAh5U\nz4WHodPEsc8Jv4eDwYP+g7AMKJkzlvMAnoN67GeZqpR5b5CpzY+Er4O/bujbvShF7iWyD3SC\nj3csu4Jj8Ayd0DXlRVnRVuaVdjDuRUq9YnnPtClju7kcqVsDdgfb9wxlvuvTy6xyMWwE15po\nyFcIX4Bbo6jD1i2QF9V6C4Nb8588zsnyGHwV/PrwI1A8XH4W+npBsk5fxYmZSZywr3WHQrly\nUZZj6W/ftIXtRUrb+J5WhfPARevXlqlFdHxKaRvTpX1Mu3FsD4+AG/KxcAC8AlODlPbJvKzq\n3sIQp0InbJztemeZJ9oi9ijtY76HWT/iuLZrqS0QCzg3MmfUJa5en5wPDmsS94I9tUns4biz\nprSNHA365Ougr3IPBaXT5TQGsC7s1BiIF+aIB+45wF+TcjlKnmFpU+0YOY7IMeDF0Xn3ZdCf\nT99IW9Y5qS/7NNwOX4R9YCiLF0gvlPY9lyJt4BgNfwV/gmvgKfCfxinm58zthTpxL1PaNnbU\nLp4JFoUjQdHP+zzrqPNyuT54VvCHgvNgWdgYdoDXoZZ+WsAX1imyGh19FVYC/2ncKvB5GOiD\nt5PWCRsp49EN9TALL/007WJrp2gX2xWd4Eagk70a8iWK6FQhvc0RbfQ0OId1hMoVMCMsZmKY\nixuCNohor+p8NF8n7+b8PZjaJetLm/iL41aQi/jUbpt6/M0t4JwpfZGHMOVImBovR12Db/LH\nQ6y+10Po1CruQ+7TS8BC4CXgIXD+eKEZA/rk8Cjxqh9H1ZX/EqEX8F3gOlgZjoMHwHpPwmtw\nDuwMnwJtfw10wllhYfqpXa6EBeEAuAy89KjfAxzLK+AvPvrp8fAwuM9pw+nB9Wjc/OvhKPgB\n2MZBcCEouUAdT3xf8PnTwLawFPwZ3guPwkg4BWppgwWma0Mbg9WEh8kbi4fp4DcFD+AeNi+F\ndosT/nmYCZzsOo5OFJ1PFqObgV+DXGDtEBezi972jbvg14JbG3Ed5bUwNUnWVWyTTUUbqBsD\nfvXxnxVE1ibyFoyPYhiHzj3tEHH+qHO9zdBQjiO8BH4EU4NNGsOeGHiYcHPV7ynOocydnbs0\n9Z/aAs0t4HrS53sI06dkTTl/Doa9YWqV0u/EBr8jsiNos6ldxjYMMCvhBXAAeHBfDLSPe5tz\nakHwkuNB3n/No8wG/iuf++AmiOjL90yC8NNwDIwG/+WEov/3rHC+iSEuXviUD8E+cAUsABuA\nfno50FZ+iNgA1M0F2tTz5A/AcZ8M/4ANwL1POQSs6xreHJaHReEeeAQUy5RiH2oZAAs4KTtF\nzqOjfjVdouiwk+bjcBhsU+jbFf0PDb0BM8Fj8CK8AJ0mXu6Uk0Bndyg4tv6Ki12HpqN8vdGY\nG9DcsDqcACvA4TA1STbhixn0zfAmxN5+UfsxfBP8N+8rwvZwJPwW/Po2NYibrPPSjcB5pOQg\n5zx1ne8KD8PUKEsx6PnBr4OZT86hr4N2q6W2QNUCriXFi/WD8FdwTTl/zPs07A1Tq9zAwP3Y\noj08hBo+A/rin0It71hAn7wJnAkjYBe4HJQ/gP773fANOBEWh8fB/27mIuhJbPNROAc2AOvY\n5uLgPjjU5RE6+C64GzaF02Br0CaeEb0guv4+Cf6rp0PBObYBeDY6HE4BzwJrwW7gOeA7sAd4\nCb0UlHvgQvCZtdQW6NECOjEn3BaVUk5SJ6YOr10yioac8LfCCfA05IBCtKPkAXqrw8um4Dj8\nYuEBtBVxAWtrN10vkA+BbZp2czZu/h0wEjpNDqTDXvxalfOo+Dpoj2fhiUZcuywAyhfAOaWd\nnNM/h+lhqMtqdNA+uzm2IttRyQvjGNA+rrHMS9OXwIzQqeK4RrfYeT/EaFvtIGXcueMm2Qlz\nhG42lYPReihqVaxrG8NRPCj5vp0DrchoKulzXE/OHeO2J37AWhk6WZz7+o5WRF+VtaQ/1h5Z\nX68Q/xp0sngA99LRqrjXueeVok30Oc/BSXAjaDPPQ7+AC8DnOt/OAA/8xh+EaaA3WZQCtpH3\ncAtx10C7ZSQN+u49s7QinpHur1R0fHdBxuv5MHPKD1ilaK+9SkURn5W48zo28Cylzb8HgyWP\n86BRg/WwTntOq5NmSo1zbx7sBlldgN6wlwMPne0UF8BKDZy4J8I1MBALmWYHTMbRso7uOnA8\nbhLrQ3/FS5aH2SXADflpuBl+BTPAC6B0mr0WmtDtlv86V3SYHnbmAh2gzu9yGNFAO30c5gQv\n914SVoWhLq6z/ooblgeTd4E+SPtoM38tOQxWhk4V10N/5WEamBach6Wv+zHpTpgjdLOpLNhU\nO3lK2+g0f9KXEb6/L4V6KeMaegyWBH2P60r5NDgvO9lu7if9Fe2jP1b0ubPDbvAAdLJt2rGu\n9DWlDa4l7Xlne8jF9Dbi34KRsA78EsaDZ4n54N+gD18D+iLfp9BB4Ecf34dS9mGCpn9/39e/\n6l21XUvVfu2Nzg/2K4Drzbnlx+GbIGUXIW6+e390RCeRT5P6BKwJ2uAiKNsgOaDSjnU1oB2s\nGx+aFtiEbnmQG85s1aLpPbR5+RnOtvlDi7ax2rHD3DZuBK061i2GuW1cEx+DVsTLopvkcF5X\nfm1tVaw7nG3ju2/1o6VzbjjbxrF9BFoRfZUfZIazfX7fimEaddzrhrNtnmd8foxrRbam0nC2\njWPzrFtLEwu0OmmaNDUsVTpWLwPDUVwYb/ZjYH7hnr4f9Yd6VW2jjVoR11U7fklo5dmDUcdf\nu6RVqddV95bzgNzqIbn7VodOTr2uun8X/V1X+pzhuqf7a5i/ULQq9brq3nLDfb/yXwL5C0+r\nUq+rVi1X16stUFugtkBtgdoCtQVqC9QWqC1QW6C2QG2B2gK1BWoL1BaoLVBboLZAbYHaArUF\nagvUFqgtUFugtkBtgdoCtQVqC9QWqC1QW6C2QG2B2gK1BWoL1BaoLVBboLZAbYHaArUFagvU\nFqgtUFugtkBtgdoCtQVqC9QWqC1QW6C2QG2B2gK1BWoL1BaoLVBboLZAbYHaArUFagvUFqgt\nUFugtkBtgdoCtQVqC9QWqC1QW6C2QG2B2gK1BWoL1BaoLVBboLZAbYHaArUFagvUFqgtUFug\ntkBtgdoCtQVqC9QWqC1QW6C2QG2B2gK1BWoL1BaoLVBboLZAbYHaArUFagvUFqgtUFugtkBt\ngdoCtQVqC9QWqC1QWwALvKu2Qm2B2gK1BWoL1BaoLVBboLZAbYHaArUF+mmB9ai/BSwIs8Ij\nMBbOaMQJOkOm6Yxu1r2sLVBboLZAbYHaArUFagvUFqgtUFtgCFrA+8Sf4HRYCJ6EO8EfYjaF\nW2AU1FJboLZAbYHaArUFagvUFqgtUFugtkBtgWFvgY8wwqdg9m5GuiX6sd3kDUn1dEOyV0Oj\nU++hG1vBcP2V7f8xtrPheWhFPkqleVqp2CF1/NpxW4t9fT/1Vm+xbidUc86c1WJHZ6Pe/8/e\necBpVZx9+7NiV+wKUuy9dxRR7F1jFBV1VSxRE0s09thixdhjN4qKFVtsWLFjwa4I0gUFFQv2\nlrzfdS3nNuPJs8vu2cI+y/P//S6nz5m5z8w9c54l77sjtNZ99R/m5r76EopoOxrNV6RhmbR5\njXG+VXCsK9Nu9YJty6HZZwzy/oIDnYd220Nr3lf3Mr+vCtpnB9q1Ldi2HJoNYpD+Wl9Eq9Bo\ntSINy6TNRMb5QMGxumbcV631f47ieXUPfA0NVUc60H9NqqGjR8mfA/ynd+NrqNOislvrS28M\nI+9KJ7fCR/ALtAEPIR3091Duas8EDobrCkxkBtpokwnwQz3bu+YWgB8hDjv/nap4QbDfqS2d\n4gvgv6Mtortp1B0+L9K4RJu5yZsJvHRrn5nBtfgdfAPNKfdB/Ntin19f7UGDG8F/l1zumpUJ\nzAUeCO4D94X/tGA/cI71lba1n/Hg/mgqxX5z3D7HH8pcT64t11hTaV46fhq8cBSRh6//vr2x\n9lWRMdSljfacD9yb7hF9nuvEPexlzR+n8op9NQsFRd79PrS7FsblO24l6cWYx95wS4H5uN59\nF6X21fzk/xvcC14WY0+7D4q8B5o1u9xXT8DOBZ/8MO3Wgy9KtPcs9KNb++gfXKeeR7G2ibZo\nuZ8WBvek77m+2p8GV0J99pU/rvtc19DP4L7Xv7qe4s5DtEXIfeWZfEcjjMYPpMGwGXh/SuWd\n5USoAuuVhVw0FZW2gE5Bh9EH3GCvg4tpS1gVyl3DmIAHdxFFu11o/Hw9OziE+m6UbrAXeKF8\nK4s/RXgMTG2dzQBWa8AgXDv/hCMb0Ec0dc2NhsdBp3Md6KwPhb9CZ2hOrcHD/LXSORaR7byo\nNPe4i4zVNhuA69wDz3dwF8QF90Xiz8HREPqASFHbxL7aiT5eig6bIBxFn3fDT+Dh/Qjo6wbA\nMuA/k2gK9abT5RrQsfa5GlqCj6htGl6oloSroDv4g9q/QJufBDdDXuuQ4XqKNZAvn1LadvqF\nzlOqWKblYxl3Q/fVdvTxajL/TYn3B893P1xDvh9/6fbS2A2+htvhZWiJupBBNeS9u3augONz\nk/Ps0Z/pj1aHOKv9gVOf2JC9TPNmURee8hw4xyKy3WhYqo6NZ6TeJHDt/BsmwA2wFnh2u9Z+\nhpYiz+Ki+yo/hzFkHAT+kOXHoH1/C34cdgDXkuumbNRYhimbCddzoP7ytC3465+X0b1gIaio\nuAUWpKm/rLwBOl5tq2NeBtxEFf3XAv7S4qXJffoL9IB3YF0YAfNDUcdP04qmYIETKH8GVoJF\n4CboB+E3XcvDIZWHYktXOwZ4ACwLxr38/QlcS86pooZZQBsuDn3AC9Eq8AR4aaicHxihhSjO\novTjyKGNhI3gKtDHernVDx8G05LCF/Rl0ulZvT/pyjouvRLakz0bbA/ebbw/vg1+VM4Kc0Br\nlj8udAbXiz+I+aF4BmwGK8MrUDaKg75sBtzMA/0/nuevAf7F6HmYGzzkKipugddp6i9P94Eb\nZlfwwj8LrAn+lWQo3ACdYFqWvwyOgU/BX6a+B/Ug7AHa0jVaUc0WaEuRdnwXtJe/4Pvn/inJ\nNapj187dYQdYG7aEPUH5a/Qu1bH//sd13JLlL8GupQ/AQ9uL/J3ggf4tDIOKGmaB/9DcHze6\nwo6wCRwPXjj3hffhHvBdVDT1LDAPj54PxsLdsBq4N3xHXmZN7wy+x4PhAugA04pcp67lQRBn\n9bLE/QCIs4hojZqdkrPgrQzj5rVmHcvkfgI/Kr3buIauhjNBn3sReL/xnnMAtEZ5X94JtoJu\nsH7GYoRlJZ1BRTVbwIvU3OBFaDPQMUhFxS0wiqbTgZdOnckP8Ics7EzoQeWBtTu8DGvBGJgW\n5WV8L/BS7/pzHb4Em0NP8Nepimq2gIfxs+A+9pBy7/4J1oNtoDZtQeEIuC2p5C+BXmx1/DfB\nKfAiPA79YEnQX7Rkuaa+Ay/wXnIGg+toBvAi8yNU1DAL6N/82LweroG54C+gJsGt4PrykrQx\nDISKmtcCB/G4S+A98NxZEfStXl794eB2GA4h/cfp0B18r9OCtMv04AX3YngXtgP96C9Qm7xb\nPgZeiv+RVTyUsBv4wTml9lQpS+lfXR+HQFvw/PGvyHOAWhq0hx/a2tT0MTC15Bj/DJ4BpeR7\nOg4mlCrM5blW9G36tP5gG88af4jYHE6Gw+A2KAtVPpBqf03fUuwLXgeegVVgIShXtWfgq8On\nzTQBf3XSyXroDMmeGY7xDtI9YSbworA3fA7hLHQiL8KJcCC0Zq3G5HSYHtbvJxP9N3Hf1wqg\nY9kVVgT1BSwLD5moqKQF/IXOX4iXB+2lXHdvghfURyA0HZG1wMPMDwXXqWszL/PiI2Iw8XXh\nNPgLfAJfQUuWH3Gzwu5wBGwA7k/XoOutooZbwPXxOnh+aONvwLN2EtwMV8Bl4GXiXPDCWFHz\nWaANjzoP+oDnzIbg+eN7mx+ehp8glf7Bd9ha98jMzG3LbH7PE34HcVYfRXw38ONI39kb9oHa\n1INCzy1974dZRX9U8oyzr75ZXmsLXB/edTxfjgPvL3EmfEBcfxtryHV2L1wKlk0NeZ7NAt/X\n8HDXQIy3hiq/ZjvnjWEp0NfltQ0Z7rfb8gWVdPlZwA3uS54TFgUvsJ/C11CO8iB2sbsR/g+c\nWy8oIg8K++hSQ+O5ye+f1dHRWteLqRvRg8YLmb/Q6ZTVfuAmvBbaQkgH40WjuXU2D3T8RaXT\nu7AOjeelzpOgfcJOHiI6LWV8PLxpAnmxfRAGwQ1wK+SljdvBDPmCRkqvQT+Od46C/fWk3diC\nbevbrC8NbizR6BXyTkry2xM3L97Df4jfAD+Df3EKdSXixWnnyCD0A8z3GBpFpCoS9Qx9d45h\nnXq2cz/6zmM/1dbcw9j5uf9/AS+FXuTNewyaUr3p/IEGPMC29tGcmoeHLVCPB65C3QmgPbWt\neBn3vbp2OkJoRyJxMfGdW8c1UERVNBpVpGGZtNFn6DuKSF+lbfVd7pH7s3T43CdJu4fd1+6F\nA8GytSCkvzBv4choQaFnjWdOUT1Kwx/A9alP+BS87JY6qxclfzj4gV+bLqbwoayCtvXDUz0M\nF1XHmuc/XXiM714fWUTekYbVo+H51B0Di8EfwDWjTcPnpr5d+7redoKpJcfmu2oMHUwn19XS\nkfeaibBILXVaVNH0LWo0LW8wXki9SHwIo0F7GZab3ORe9H4Hs0N7cMM2la6g48XBvyDNBuuC\njuoc0FntCd3BA/1p+AfoLPYH/4r0DGwCW8EMsAC0RulMFoTlQDttCJvDaaCOgn/DiqCdtNdq\nsA90Bg+ykAe/B88XMA68pOmgQ9pXm5vn4addW7u0j+swlU7a9f9Jknk7ce2sTd0fW4OXpbvh\nAngHXgQvUr6zr+AMeA90+J/B87AsNLeO4YHO03fu3rkaDobdYC7IS1/mHvSHn8HwJswC6qPJ\nQeW/WMC18AS4n1wrH8DxoN1qknb8FwyEm8A9NhaOBm3uRXYMhFyb6R6O/ErYdBY4ja7jkqof\nXB4WgmthGdAPeB7NCi/B+zAE/gr7wwRobZqRCb0Crm19xq1wF/gxlD+rh5KnnzkRapIfQ16C\n/SC138/Adf4yaOPWvOZPZX76Yu3kOvoJ4q6lbT0nLgDXnR/bs0FrscfDzKUHrA95eT85Cb6F\n8fnCSrr8LOCL1ln+Al+Di1yugXLTCwzYXzZSjSTRK82oR1yH6oHfpUSbOcj7GbbJle1L2o/N\n0HxE/ggeTF44LdOB7gTDIOyt7b/J8gmaRWfzlP4NeJK/5nkZqk3O3zlunKt0COn0EPbw1gZv\nwZFg+mRwXa4HoSuI2G53WAG8OOuc94K2oGP2vYwA8weBH2f11Ro08N37nouoJ428NDaHVuUh\nzvmv4EGkHW4AD3jtrzywnY82S3UqCW2+LBwPXqy2BteofWp//cO7sCU8An5gjIYqKKJZaORY\n1qlj48Op54FzGDj+x8A19SW4pz6FLpDqOBKO+244A/4GfcA8w6ZUbzp/oAEPsK19NLW8HLtP\nnoF7QJvqgwy16bpQStuS+SN40VRdwXXzOtjOD9KVYHrYHFyHJ4PynfvuXQNFVEWjUUUalkkb\nfYa+o4j0VdpW3/Ux/AEeBd/HitAdfLf6RffBd+Alzjy5HpaAlirPGs+conqChp55IdfnSDgq\ny9BXHgpnwm7g+Z+qPYl5soztCL8GfVDY75/Eu8HwLM/30FzS//nu82Ou6/N7UXFYXStn9WYg\nfDJrN4HwFXANhT0iHEPeO9AOtPHUkOfYxY34YPfoZ+BZ+CroQz1HXQ+Ga0FFrcACfiC5eNxc\n4qI2/QGUm4Yy4D/lBu2md/MXkc5Gm+h88nKzW+bBk2oTEubPnGX+hdBNY56H0g3gBjIdDsRL\n3PRwFnho2XdzyMOiqT+QluQZzjV/8HrJ+hlSrU9iLGgXbSW29TJ2NSwOrs3tIdU5JHTAN8EQ\n6ARqUXgD7jVRT3m4+WwvHUWkA3UuzSX3setM+2i/cZCuW23rfOaEVPuR0MmHXHum7cP6P8Ge\n4JrtB16qLfcCVgVFVN8PpA95yLHZg/Yh/AHOBT+anM/14AE9O4ROIeJHnW1jn8WcvNjsCE2l\n3nTsR05R2dY+mlp78YAv4I+g3+kGM4B2exu0ne8qFPb1HWjvVH8m8T38H7gGDd3f2vxKsF9V\n+UCabIea/qvP0HcUkb5Ku+u7fAfuUdOx7n0fpsU1NjOozcH6+s6WrIZ+ID3O5NIPJOf6DJxp\npBZtRdlI0G6eSf5I9A2cB38AfwCYBNrZ8k9AH3k8NJe68CDH552liHrRaFiBhvfT5mHQHh1h\nIvjjmraIdadNtIfjk6egMzSnXN+N+YHk2OcC/Zln72Hwe1gLyk7Tl92Im3fALmSdp/oWtJeX\ny3LTSwx4N4jD2PHP6n+aQG54D7M9c32b9pfUTUCH/DfwguDHm3beB9rBQHgFnocoO5H4Z7AD\ntBaNYiIeGHvkJmTa96VWhtPhd+Bl7RTQkRouBx5g+8AI8N1aLy5rRKv70eHqoLThaFC+Iz9Q\nt4W0PslWp9uYUXvoCVfD3bAEzATqbfASnL6H6Ujr3F8E5eHaHxYCL1Dfg+1vgsEQ69KPJd9D\nc2hmHrIoxN6+nHgbOBhmg3nhEPCvZhtDyPpLwlbwJoyBI0EbuMfugg1hWpZ7Zgj4sXgtPAVe\nZgaB73tB2AgOhHHgJci9vCK4RvRx6lI4B2zrutsLPgfXUCfwXVlWUfNYQH/qGT4RfFdbguvf\nd6BfVdY5CtxLj4LnUAdozdIm6TmwFGkvtPqKmrQ+BffDJOgNnj3LgX7Rdp7v+h71IWjLjvAC\nuL9au15kguvAKFgDZoVPQU0HP1bHJv9nNYIuYL53I+uWs1Zl8DvBVtANXCuyGFTUSizgBekX\n8OLgofYzeJEvxwNtccbtoeCmPRouB+fVC4poRhp5oLipS0lnqe1uAw8bHakO4RH4Cbxg6jS1\np/VMOyZtrH2fAm1eBSEvn8dGoonDs+nfC3FR3UtDf9WbkvakgvO9GbSTz9QW68HBYNkgeAx+\nAA+jweAF6x+gTR8E7ajtvKT9C0IXE/Gj1He1cWRm4ZpZ/gK5/Ckldfb2N8eUKtZQ3pP8sTWU\nNVV2dzr+BobCQ/AlvAJzgToCXIfvgvYdB1/B8qC2Be3vvA3vA209GrS7+V6izJsAVVBEs9DI\nvtapY+NR1LsVHLs2vQH6guvhElgMXE+ugStgRVCuH23gs/qB68x6rj/3px9Kc0Jjy4uUzy4q\n29pHU6sHD/D9vwqnZA+bmXBYlv6aUH/l/jsRPPxdQ+ZbxzVhe9+D60WM/xF2Bdvl94/v3Pfh\nGiiiKhq5HlqrXN/6jiLS1tr2cXgaXOsPw8ngu7DMPeA70scafwfmhbfBs6gly7Pm3gYM8Ana\nOm/tcTp4kX8EvLCXUjsyXd+ua8+fMaDvuxq0oYyHb+Ew0N4jwIv/B/BnaC514UG+X+8sRdSL\nRu7p+mpuGniOuJbuB320cf2uoT4ibKVfULaxfE8TzSTH5T2hMTQ9ndwOroUb4Tw4FS4C18lE\n0LdW1Aos4It0AXtp6gdfZGnzylGdGfQ/4S14Aty8bv4impFGOh2dT03qRoGOwYPmLjgBdJRr\ng22/A22ps/CQcqOarzMyfwTELyldiVtvHWgONdcHknPZDHQeHsR3wKrQEbyoeriEziWiXUbC\npeDh8zV0AO12E3hoGd8XzgFtuhO8CDqu9MC7jrRru75agwY+Y476Nszq9yT0stNcmokHfQRX\ngA5cLQza8QITaCPwsHePeznQkWvb1UD5HoaC78RLsweZB7176BvQzgPBNTsaqqCI6vuB5Ht2\nTfh++8Bn4HhcCx7Axi2/Fp4B57g5aBM/pKzjnAZBfCy69q13PjS2yuUDyY+ht2ECuHZ2BC+M\nH4NrQZu5hv8KqZ4lob3fz0LjtlkEDgTXSVdw/ywFqfRt5rsGiqiKRqOKNCyTNtpb31FEc9BI\n2w6GE0Afezf4Hn1HMjELPaP0A34U6R8tuwFasi5kcPc2YID9afs86NteAm3UBmpSPwo8a7wA\nK+v+CzyTwpa3ZXHXf+T7DH1mW2gueUfx3XtnKaJeNPJOUkQL0Egfoj/VLqPB9eVdRvsZevex\nbBdQL8OJ1bHm+Y9jeAFOroHjyI+zgWit2orST8DzsZS2IXN0qYJKXvlZoAdD9kDzEuEGS50p\nybKXm97NX0Q6G23SpR6Nb6buLbAgaEsPIfsYCadnaR2F9tbuHlCXwfWgg7kSmktn86D+DXiY\nh5WHVlEdQMMPk8baTEeqc/US7AH/BniZ96DXXjpjnZwOT7v6fncFtRZ44ffwOx+8yH0HG0F9\nVW4fSOsyQe0xH3hR2g9OAz8o3gc1GK6rjk3+z/QE2lU7qc3AdWk/2m0gXAPmuWbNfwgWg1FQ\nBUXk5di+vCzXVY7HNWE714EHr3vFtGPzshNyPzm+6WAVsI7MC6HHiAyCIZHRiGFL/kCamXnu\nDq4N10hncB9rQxkD+gT317Gg3TaC0IZEtL/594H+bhi4b3uCGgU3gRfG/IeQ79y2+Xyy6qQq\natl/a9VYJhZ2rO8c3ffa1j36eNb4FMJJ4IewZVtAP/Bdx3s0rk3TC+JspPcB14njaQNTW541\nrtWicl175tVF01HJc+hR0A+GLVzz2lGb6RdvAPs17Z6xzPpLQHOqCw/z2d5ZiqgXjdzHRTU/\nDZ23dgjb+NHk2tNOUeZ95xTQX5wEzSXfjXeNZ2vgSfI7Ql10MJWuq6XiTJRNhEVqqdOiirwI\nVFS7BXQILuQZaq9WKa2DBbzEeyl1o8yd1W9H6IW/DWhrnZG/QnhB7QzW88Li5ptWdR4T12au\nw7bwGmgX7bUDvAebwz3gnl4XloI7QL0Cq2XhyoTvwprwNEwrWpKJDgZt2R12hQ6wPCwH/wCl\nXY8EL6pdwDXopcqPSw+Th8EP0+2ztB8dn8O2MBaaWx4488BQ8LI3O+wEXgr+DmdB6FIinTLe\nJHwG1O6wGXip3wAGgPJSsTdcDX7cuIZaoxZkUv56fiW4NlwjT8Ex4If16eAe+wK2gXPhQ1gP\nQhsT+QC+hR+yTC862vBo2BS8LGnrN2AlqKh5LdCHx7mn+8J+8Au4/5Xvdxf4BvSzXmK/Bv2l\nPzqoTuAeuxBcJ5eB73JRmNb0LBNeG/QNvwP3hdJ++o85QX/5CXhp1h9p3xEwJS1AhePBdoam\ny1X6Z+fg/MfBdDAeXDt+MHUCy9qC/kKbnQrO3bpNLZ/dDzasgU3IHwN1kWdjD1i/RGV/gHJ+\n+kfnX1GZW8AX7QJ2wbqIDE3/CK1Bw5hEr4ITmZF22sTDpq7qSUXtdy9oQw8ZLxL28z28C5bL\ni2CZB1lzOAkeU/2rvZdJLz8+tz8UlXN0fkXVkYY/waGwOmgT15+Hz0XgRUy7me9hPgC+A8sf\ng8bWwnR4DDinU8FnzwFF5Dpozg+JmXjeR+CF51Fw3M5nNHwKt4G2vQCuAz92PoTnwfwvYV2Y\nG16BeBfGzwQvUcdBaBSRqkjUM5yF+tp2nTq2W5J6v2ScQLgKnA2O0fVzABwIrpkjYQuwfz8I\n1FzgmvkBbOO+2xacg+96AEyCuyDssT/xoupNwweKNs7a2kdj61Y6fBPiIuYaeRyeg5p0GAXu\nucPBS/Tt4LvwkiD6uK7ghfoL0O7aeCg8k8XtI+Q7t45roIiqaOR7a63SZ+g7isj3qW3XgG7g\nB4/vwv3tOzPu+/eib577YQJcA6lcE767ubNM//KqH7gnS0+t4EIe7JlTVP1pqN+oq/pRUb/o\nmT0awpba7mXQpqfCaqA/df3fCHXRClT6GEaAe2pklo4PWZL1kncU3/2M9Wr138q9iA77b7JQ\nzDvMC+C8tM2lcBXoI34G7ecYXXffwyFZ2JOwqeV4Lm7Ehzjmz8Az91Vwv7wFrhfDtaCiVmCB\nHszBhRuLN+Iu4tYgN72bv4h0Nm5onU9d1ZWK2tCL23jwcmF6NOhY7U+HsQcoDzNtvYuJJtbJ\n9O9YdGJPZ/HHCIvKw8pDqyE6mMba5UOYBGErL1DtwTKdm7/QaTvtqr38kGlMrUdnOreR4MXP\nsfg8Lx1FpANtzg8kx+gacsyj4SFwPoOgCr4FPxK0nweYNpwIzvcm6AuDQXnQHQ8e+PZnPydA\n+hE/inQVFJHv1n69LNdFR1DJfbw/uKds63yGg/nOycPKOY/L0i8RptqMhG2GQNjGS85J8Cl0\nhJDP8wBfKDLqGfpx09I+kHx338Hvc3PxHWjPBXP5afIoEtrXeq4h9+hXoB3t07R4WTA8DUIH\nEfH9LJZlxPNcA0VURaNRRRqWSZuxjFPfUUT6Kt+RZ4r7dQK4lt3re4F7w3LxPflefoF3YF5Q\n/phgWTdItS2Jn2GmNLOZ4839gbQs89MWnkGuczFunnbbG8Km5l0PdV3XXqjdPzODagMPg/lF\n1IVGvlfvLEXUi0b60oZqPjq4G7SH49FfhM8w73twnt6BjN8Md0FTy/fVmB9Ijte9sg70gMNA\n37oWlJ2mL7sRN++A3fQuZkNlODUdYfUgyvQ/2i2cpVPQYWlbDy8vKR5WHeAWUP768CBsZaIJ\ntTp9e3HZFdaHjeA2mAGaW2vywHtBh+x4PMRHwdfwF5gNvMRrG23mpXahjLkJr4WNobHkM26C\n+2Fp8F3sDOUiD2Xf7enZgL3MjoHDwXfth451hsNQWAD8xbNtFv8T4ZmwHHQE1+vZYL2FYX44\nC8yfGnJPeaBeB+3AMTn2QWCZe8rDalmwzDW9IhwAoceIOL8bwXXnnLvAJtAHtFfIg9TLY7fI\naAXhdMxBX6StUkXaspp0AQULgrb1o3IweLHTdtpffZtxJ+EpZmS6itD1t2lkVMJmsYA+7J9w\nEVwDrnH3kHvY8/0euBJehKVAX6tfdh24VmJdEK2WaffV9JOT08R/P2aW2kK/qS3lWfgPaIfz\nwA8b177n2L6QtxtZ/yPvAhvCuaCfUb6bc2ADmB3KVZ49np2dwB+ePMtFufZWAtdmN/BM8mM+\nfAjRstJXjPYluA0uA33fK1B2qs35l91kmmDALtyJ4KH3M3ghMq+i+lvgDZroQPeHARn+itoe\nhoDS8XbL+IZwbtD+Talt6fw16Jc8ZAxxLz7NKS/sT8Kj0Ad2Ay+k78Ei4EG9DXTL0JkeA67H\nT0DpUH+pjjXOf5ajmyXAS1z0+2XjdN3kvUzHE56ClUH7fA/LgpeZo5JQ+50B98EkeARehsth\nVnDvKy9PIW3hWp3acq2cC38E145rZQXYHryo7AWO/yp4H6xzKDi3HcAD+yf4AM6CVM4xf0Db\np/ZLbZG2yce9ALiOF4fhYNuWJn3SY/DnLPQi5wXlHNBmH0Ft0hb6qm5wJPQG98ho8IK4Edin\nayuV61P7dgXtY92Kmt4Cvq/Y08cS1zfsCL4Pz6WR4Hu8FzwT3CPPwybwCvwFdgX3h/3og58C\nL/KtXZszQe0QfmEscffOXRnjCReFBcCL8ZmgfZV7X5+zGljvdvgMUrkXJfqPMu2sn7as3LQW\nAw5//DBxbeJd8lrYB5yb0k/oI8NPLEX8eiilOcjUr3aCoXAntIT114FxrAgPgdL/Hwdd4W24\nA56FilqBBXowBzekG1OMi4u7NWgYk+hVcCJ+WGuTLnVob93VYQSEDT1cUtt+TtqD6wXQvi/C\nOLCOF5Wm1Cl0Pij3gLNJP57Lq0/Sw/XC+jSgro6jL2wL2sC56/TCZqm9jGvDv0LIX5y8ZO0f\nGY0QrkAfvudOSV8+xzyddBH1pNHYIg3r0cYPm2cgb7tIe9EZBR+Cl1cvQeomeAs2BufoxfUB\n8OO0rrLfqrpWztXzYu5z18nl15RcjwIvGbYRL+rOpx+4FnaB62EgWNfD13rvgLYYAsfBibA+\npDqUhPX9wFReID3cv4J5YUrqRIWR4Ph8F+5x0Z5FZdveRRvX0m4Jyj6CUfAsuP+0k+iLVoL2\noA1Kyb2gPbX99/AI+AE9Acw3T66Ag2B+8CPVMuv4zO/A57kGiqiKRo6/tWosE9N3FJHvR9vq\nu46AL2BzcH26T3wPloffNS6fZtxM+Dx4uXc9u2/MGw6+5+VgasqzxjOnqPrT0DOvJrnuna8/\npjwF74H28XzSZsNgPHiGh+0sWwGU9td+2tq1rt/VjmtDXo7lOZgrKzA0/XCWrm/QhQaOacb6\nNszq9yJ0fvXVgjTQpq4tfYjzN669zodDwLk6Nve+ZU/C11ncfO15HaQ+YUnSY8C1qV/9EgbD\nwlBEv9Do4iINS7TZibyXknzfmeviIrgBHOuxUFErsEAP5uCiFRdrxF20rUFuejd/EelstInO\npzYdTqGXotR+40iHLXUMHnxuUp2v+e+Dm0w761SsU3Tz03SKWpMaPjcuyTboC08aKSgPq/p+\nIP1Amz3Bg8XxhM0iNO81uAe0ofYRHZB20n63wPTQWLKvEdAHZsg63YTQMXnoFZGXHN95U6kT\nHX8A2ivQNqkdvyF9HGwE2tI1NgC0/ztgfQ8qL69enOOgJzpFjaJG1RRrla7gQeg41yld/Jvc\nRUh54NwEB4M2jXXjGvLjZjS8C0eDlzkP1jfB9+ocXT/Wc10ZvwpCMxC5C+zrOdBfuEbTfUKy\nRj1GyTPgBUe1hQ+h6EXHPh6A3kaaQPPR55WgDR2n617bpRcW3+02UEpe+GzbKytcgFDfJ75T\nfZw21p7GrTsQZga1LVgvvQyZX1dVUdHxtVa5vvUdRaSv0rbrwWngvtH+Yn7E0/Rb5H8Bvq+q\nLCSo/gvJKYT6xJNgQZja8qzxzCmq/jQ8u5bG2l0fuSZ0BH2BaznsFTbUPzwIvwPzvgL9qR+R\n2nIpUK55zyr3mL4oVScS5k+EAVlo2ucWURcaOZYZizSmjfvZ+dZVu1Ex9rzPHQfLg88PHz0k\ny9c+P4O29IPHtaZNzdcXbQn6osshpE99AuL81W+9CndCEemLfGe/r4GdyJ8J6iLrxgeS79q5\nLJ40XIP4t+DZUlGZW6AH4/cFu4BcxMYDomUvN72bv4jc7G7+LrU0tm8d5nOgAwjbDSY+AG4H\n+9ABvAvWEZ3BqbA+TAc6yr2hKXUqnTu+Z+FJcByPQVHV5wOpAw+5GnSO34Dj8FKu7bygmvZw\nMm0dD5tXYAIMAvN0SptCU8h37CXa9XI/eND53sJBE62XPGw9KJpKj9OxHwI6Yt+jHwIePk/B\nJ6A95e/wPTwBlmtj811vHlDXgh8ec0N9NIrKVfVpkNT1cqxt6/KBdAz1RoCXDfePh/LP4Jxd\nGxHXf7nH7Nc6q2WY9rC1TG0IrrHdTSTagvjf4GjoBHWRa0Nbbpyr3I/0I7m8+iQfoHLv+jSo\nR10P7ddB+7l2ngRtY1oOggtAu64FqWYn4Xy1tZdv94ltXVfma+sNwD16JnhpNG8JCPnOzXMN\nFFEVjUYVaVgmbfQZPQuO1fWobV8E98ad4HvxvRrqI8S46OMMx4N+z3U3DlqqLmRgTfmB5D+N\n6pNN/lHC5+AqCHvFHtF/eBbtAZF3G3F/PHBfPA3uM9UefCermshpNtL7wVlZaLqoutDQ58xY\nsINetHMN1EVbUynWzRDisaa0i35Lv+KZ4/vSDleAa01bWWZ9w9dgblC/B9vPCn4MOZf1IdWO\nJLwHTJ9m1jHueH3mJzXgXWRZqIvSDyR9m3e9vNxHC+YzW2q6iEFb6lyaYlwuHl+ym15nWVHd\nLXA8Vb1M6Ny04zeg3GzacisTaGGwrpvUC9xycCq8ADoD+yjq3GhaJ51KLS8wPlPndDvotJpa\nHXnAIPDS+jzEQTAX8YdBW+hAdabhAHWWOkjr+8vRdrAWjIamkM9xHNfBaLgMWqo8VDaBZ8CD\naDpw3Z0MXUG7KvOPgDHQHTrD0eD79x24Rj0YrwQ/Dlui2jGoobAf+H6crxdyDzQPoBHwOOjj\n3WNqM3A93Qq/wE2gLdSz4Lrf2USiR4ifBOfDaKiLXK/265pN1Rx7Kn1efeJ9qLwyOOZzYSlY\nBKpAG2rTo+BRcO2kChveSGYb0G95IToFlBes58D3cSIcBmqFyUHlv81kAS/jXUC7+87Gge/K\n9eoZE+9RH/AJjMnC7oTXwLQq1797d07YFN6GXmDe56DdZFdYGy6Hn2EwvA6e7efBGhD+JXyD\nds/rOzL+CSdkoelykGejc70KlgRt8wjMDEdCP3C+m8Ac8FfwTNKOrq+Z4FJYF+LceYe4PmV+\ncJ2qsN3k1OQPK8ti/UZ+XULvZtfCgjWwKPlDoK7yTuNZ2gHse2kI/Z6I55N7q6Iyt0APxu8l\nQgfqi04hWfYaxgx0ckXkJtcuXWpo7GZ2038JXgY8aH6Cj8F2gTZ9A7zgaWsdoQ4mtD8RHW3H\nyGim8Gye078Bz7qXthfWof111BkE68AFoF1inRl/Brx0mac9tYV9zwPa8nTw0PHS63ptDvk8\nx6aDL6KeNBpbpGGujYeJH4eHwsZZmevOsR0I2ivsFjaNdNjS9BIQak/E9g25uI6ifRUU0Sw0\n8vmuh1JqS+ba4KG1H3wJ4+EHeBe8jPih9Bp4iA6Hb8B1FDaw/w/Adra5FkJXErkvEg0MB2Z9\n+Z6Ul4SR0JB99QDte0NDpf9aDZYHLxXrgmvCPTUBZgD3o3lDQJudBXvBkzAUZoNYf92IPwWv\ngu9AW/8CtjM8GVJ5KbLOPRCXGtew9V0DRVRFo4lwYUIH4qn2IbFKmkH8IFgml1db8mgK566t\nQhOV6TN6FuxbX6VtX8/auzf8K7Hv0vfge3aPWOezLG3cMvkCboB20FK0IQPxo0PuAM+FonJP\nnl1L430p04/4waJdPIc+B+3mj0kjIexl+AO4R7TzVnA1vAMDwPG65i+G8RD+gWiTqAu9Oib3\nfBF5RxpWx4bu9cGgfZ4A14628/mW6a8jtEz7GZ4O6j24BHaFP8DqcAx8CvokpW+/E5yPdrSu\n/nw4rAz1lePxXTSGFqOTk6AfOB7n9k9QfwX3Vnwgm1dRGVugB2P3Bbu4xXhAtOzlpnfzF5Gb\nU5vofPLywHXThd3ytgsbpuU6lFfAy4hOww02AKx7ODS3PCw8NIrKw+rCOjT2QuaHY2qjsEvY\nKZyoH47maScPHy/Cad1TSTeHWsIHUgcm6uXeg3gMuN68/KwK74MHhrZK7RP2TPO1rRe+0IZE\nbLNQZBQIR9GmqkA7m9T0geRBeDm4T2JObxJP5xTzitB61o86nxDXTs7ZA9f8cTA/qMXBS8+h\nJhpBHtZe2H0ft8AI8JL1ABSVbXsXbUy7heEE0BZhRy80Xtq8nNi/a8qPJO0UdQy113cwCbSr\n9WQYaFf3snXcl9rR+NdwA2iDthA6jYhl9vcG3Aq+E5/TkA8kx/37hHmJp7qTxC5pBvFHYPNc\nXm1Jx9u+tgpNVOZa7Vmw7/hA8kLu2eW78YPLMN5xxNPQuHwDrgff8/YwtXUOA3BcT8NTWfxf\nhEXVn4aeeTXJdRRrOuwTe+I+yrz4hq0i37T7YylYAIaA+8b1o692n2wJTa0uPMAx+d6LqBeN\n3ONT0rpUSH2GH4emwy4Rxnr7grK7wbUVvuGYrP5PhOFP7ONgCHn++i60p2vYcu38VhZ3vPWR\na/ri+jSoR925qNsuq78CofuwrDR9WY126g7WS0prkM5u5iaaSAf69SKnw9QRKENtF5inwlHo\nCLykrAgLw13g5cELy/rQVJuXrqeqDuHp80HYwcGUWmPmjYZZwUNFB7kYvAgbwlPwJZwIa8K0\noBuYpL88fguuOX9dWwU8eJeEuMB5KOXlpdRDwQNM23phnh1cf1fA/eCabClqw0AGwR8g/PVr\nxFeCV8DDNBR7LtJR30uMa20LuATmBPfcotAXbgVt9ypcDY0hD2xtehNo6+vgBpga8j37ETQO\n/gZe2F6AtWEoHAALge9f37gg2Cb2ppcQNQtouxnBeq6TleEwsE/XzknQD24H19W14DvS3trC\n554A+4FtHwQvOJY1VNr5zoTP69Gh89kHvLT2hp0gpM85E3aLjCzUFvqxvcF1qjaFjcH6i4MX\npGNhV1gHVgfr7gW9YH9Qv4fz4WSISxXR6v/T0OcQavOGyvH+A76H9BnRb+yfCM2fBCuBa+Iz\ncK/EviLa7OrCE/8C28FG0A3uhaYc07n0PxOkChs5Du8Uyj2jokz/qz9xfQ8A95H77WFw7feH\nIvI5+rPGWBNFnp9v473FOf0MMXftlX8n2sNymQfcY66pGcD990d4BvTFpoeBvsPy0KtE9KuW\nLQQXQzvQnseB69v01JLj7gnuZcf5Iah3wbK+JspF+RdYLuOeGuOMhT81nt0Yz9yRTkaAG1Kn\n7wZtbB1Ph66p6Du1WRrXwfnLiXlu8uXBQ3MkmLcneCG8BjaC1qaVmJAXNm2lI00PFucvkWdo\nHd+fFy4vUl7UNoBnoSu0hZ/hbGjt2pcJbgxLwnfwBQwBpd1CYcM0zzIPaQ9W19sv4Fr9Et4G\nL7z235LkOvHwuwvuhTFZ2j3sB7GHTl4x5+myAtsOhnXBuaoVwPis4CF8OGwFrqPaZJ/bwImw\nP8wDNWkCBWeANj0LvoepocN4qBf5J+FT0A+uAn1gD/Di4h5zjKnCfjMkmdZV2nQxuAPWBy81\nG8JmoF16gPPdBdYBL/nzg+uvNwyE4aAdtc/t0FC5pn+X4TPrI9t6udoengDXXRdwndwEr8F6\n4KVHzQGD4PMs/jSh2hYuBO2s/R4Cff1c8C9wDbrmLoeV4Ws4ErSX63t26AuqCizz0mibhurP\ndLA95PvK75eJ2YMct+PxXTvPA2E20PfWpDUp6AMDwDkuDo0p7fs8PJh0OoZ4zCHJbrToLvSk\nHVz72kC/6fN8vyqe7drWf/xgJvKc2gj0MzuDtt8NToBhUER702gs+I7s93xw705N7cXDXSvu\nIecf9iD6G3neK+0UfmQx4v3BvdYOdgT3rmf6MnAZ7A6pPsoS1xEeBfPA43AuzAxPwHIwNfQq\nDz0GVoCn4a8Qcg3pb8tG8cLKZsCVgRaywMa06gfj4VkYCDr6xpYbWucQDksHGk40nhXOY46s\n7HtC16FjWwRWAg95D9KXQeexIrQGLcskLoJXQPuntglbpXlUqdac/Pd6eBI8gD0Y7OMT6Alr\ngRfg7rAptFadxsSuziY3kdADxcNhKcjbL9YZRb85sFx3UTaOuIf5P8HLmvb7DFqKZmAg+2WD\n2Y7Qi52XT+c+N6T+O9ZNhBT/ur5cO3PBFuCF8zl4Cc6GtcEL1w3gxac2uWY9fO+CHcH278Ma\n0JLlpe4q2AC06RVwN3iJ8KNgFPQFD/VUH5P4Islw3YSNvPBp621hT9B3uRbdq9p5Q/g39ALz\nVoTNwfVn/WHgZdHL559gNWioZqIDnyvOLS/Hn64Py02br2x/LOhzH4BlwPH5vsUPjG9BOe+3\n4FMYCj/CKqBuhougM1iuja8F/Vcq530H3AIHw3fwEXQEtQ+cAQ+BZQ3VIDo4PekkbGEYcYsn\nZnVmJ9QmvpstIcbgO3TvrQc7weKgtoOBsHAWui9eh7AL0UZROtZG6bBEJ23I2w8uBufrM907\ni2VhjMEw4pbPCLNCutaeJn0YPAoNkfcCffU14Dl4KOwNl8DUVDsePiYbwMxZ+J9kQGEfs7SL\ndnL9hFwn+4L+ItZSlH1OxHWYV9hX3+K+ss/u8CX8BObNB80p56F/cL1vBe6bA+BoKEu5mCua\nsgVcjOWskxm8HyI6tzfAjZNuUJINlod/1xK9uOnTZ+k4UofhZvaXJi8Y2tlDZzSol0CHcSTs\nD+Ws3Rl8H/gGSu27WGPh+NK0TlCbbQTay8NLO+0Ft2ZpD7F3wAvO49CatAuT0X5eRjwce4GX\nUW2inTwcwm5Eq/PTNZeuN+NfgW32Aw+SofA2tCT5jr0A+F5/holwIZwLC0LMnWi10vWSlhl3\nru799tAb/gB9oR+4906Aq2FK+isVloYVYATY9ka4DZYB93ZLlPZaESaBHziOdS1QVdX/nXyY\na6tUtrN+2NbyL2Be8OKsT50VHoJtwPkbeknpCb67D8APhK2hKzwP9nMF3AL2MQ6WhIZK33JE\nLZ18RJlzStWWxIQsw/Kvs/iPhK6b+SH2hr58JCjt6fw2MIGeBG2iPp4cVF/som+znGfIH3dC\nFUFZ3wAAQABJREFUWxL5CzwF+rDYuz57LCif3VD5gR+Xad+B79V3Fs8jWq1ls9A6lhveA5+C\n68G1PwhWAy+E9uv79APpYjgalP3eCxdAd2gM3U8nx4LPMq46gWNsLM1HRwPAi/+LoA20lXM/\nClLF3jAvjTueSGsj1/qa4NiLyD17NtwMp2UdvEroB4Tv5iT4DKaGhvHQfSHm69x995GOkKxf\n31OaZ3xncL+5robDu/A07AMPQ14PkPH3LHMuwoNge9Af7QBPgWM6H6Yk3/fKNVTy7HmvhrJ8\ntvvhlSTzHeKbw3Pg3tFHVNRKLNCDeegYwjlE3LDc5IH9FbjYxQ2p0+oFRTQjjeyjS9a4DaHP\nSG2U2s26kpZH+lLyPUQt8xDUuaQ6k8RTaUYzxHXE/opaVB6KFyaN5yf+DdwBqQ3CRql9wi75\nvEm0vQ+eAT+SbDsEquAF+AiOhpHQlFqDzh2bl6Mi6kmjuPTUpf21VPKy9jb8Aq6RCMNWqR0j\nbpiPR559XAcfwndwIDSWRtFRVcHOZqGdc+oKXkwmgvvK8aZjt04Q+YZpnvHIizppnn2aHpOF\nHs5T0jAq5C9I7cmzn/Vga9gRXO+l1JvMB0oV1DHPtvZRXz1IAy9St0PYJLVp2CXKXG9hs8hL\n66Rl+biXmrhUeunvC9rY9ZbqTRLu43Pg93AE+AzXQBFV0cjn5KWvnj3LrCJ8HMxTa4EXFy9V\nc8IoCDmuA2BvuDvL9ONKu/nObfsITAfqSlgCLoK9QPnckdA2i79LeAjMAyMg9BKRdbLENoTj\nsvg/CQ/P4h8T9szi9Q30VdrWMfq+0neZxtOyyHe+5kd4EvGBoM9dDNTm8DXYZmlItR0J33Nj\n6iw6c0zPgueB8X9BUXnWeeaFriLipXhRuAlSu6Rx5xuYXwr30g9ZPctdH673DcCPiCnJd+cH\nULwPw1sg9sm8WZnnUil5R7FNrPlSdWrL60Whfq+U7Pt1iLH9QjxsYF5gXtQxntZLy75P2k8g\n7pozL9YZ0V+1EDH3btqv9ffNarhnr8jitQXx/BhrqXCl2jpIytoRd+92TvKMaqcv4Qiw/7JR\nXRZo2UymiQYaB0ATdd8s3foB42H1GnjQDIbGnNea9DcX5OVmSJ+Txt2Y6jDwALXM9eglK5WO\ndHiaUYbxboxZW2wBOsdQ6ozM0wapA4lyyzwovDxoa529dT2MvciMgfVgVSh3WzGFX7UJsX3g\nVFgOnLOHgOsktZVxFbYzzOdZHnke2BuDH5wzQ00HIEVTRbvx1I7gwbQXOO6fQRl3fnGwmaci\nP+IRRt2obz0/CvUFd4KHmnXWh5rkJeQf0AmOhfPB9ai+nxxU/8p5L3EvLx/Afll+SwhOYhD6\nJy9mXlbHgHYIxZ6McCYKIm497SPKdFCdwX+GwudZwj35JKwFo2AnWAQ2h41BuZZXBvvxI+pa\nSH9QIdlo8rmPZL31IRwOI2Ak3Ax7QrxDov8j67heXgEv0rZTpr0cPgUDwD7sN9W3JM6Dl8Fn\nxw8SRH+jq0hdCnfBDlnJbISutZ7gh0BciIkWVvRtB9o+VZo27vvW1xg31GeoLWFdGA9zgnoU\nrqiOTf4/1pFFq4MF+a8fT42pE+hsQ3gOXgD3sfu7sbQtHV0AfjTtCl5u7T+1Eclf94S2siwt\nN/4juJcugUPBeofDbfAMvAodoDbZ1nPNMX0GrsVd4Emwb+3g+xkFzalleJjv/W1YH7SX51LI\nuQbawngorWdelLUhHn7HdWO+ee6z/AfgjeS5n24B994doG3mB32P63R30MYHQk3yvbr/9PGl\nmJt851gXOZ6+8A5snTR4nrjr6LQkrxItcwv0YPwunlKU29TcQM5jFJwJ94AXrl5QRDPSyM3b\nJWvsJcC0DjG1l3lSU96krHwCoeOx7hdgf/bdB9z0y0NzyoPBy0BReVG8MGmsQ493kNoi4mGn\nvK3ScuPad1b4CTwszPPg8cD+O+hcN4amlI7accYFub7P8sIzto6NfA9ejvyoPw9izqldwmYR\nWmY80h6ettM2UfY34jvCYNB5e4A1lkbRUVXBzmahneP28nl+0scNxGPs7hkPR9dA5BkG6dwj\nz1A7GFruAbYOHA/uO/uq6RB0vVk2BLyQfQhj4EWYAS4D+/0HOH7zjgKftyak6k3igTSjnnHb\n2kcRvUEjx+lcP4JYS9pD/+P6cF6mrRfUZM8ot93acG3WxrSXunOytP7rLvgBLNsKYg/Zh3tX\nHQw+SxsWURWNRtWxoRe0eepYN6rNSaTUPpmJ/JmjUi60zZ5JnnbYIEmnUfuYPc1I4nMRHws9\nk7z6RPVV8R4N490Z1pZv+fVZnZFZu6FZ2rWiT4/3t1+WfplwEVDLgfVcD00pzxrPnKLqT0N9\nbcg9fgyEffQR+0NquzRuvSCf75p/JikfQvwD+BzGw0CoSe4Fz7wqGAfvg37lXfB5g+BT0AfV\nJO8Rjsk7SxH1otGwEg31d47dj4rdwY8Q7y412SHyawp/oG34aEPXlv3p70eD89cXq8XAOel3\nXNujQRtfB+NBm9v+j3B2Fj+dsJSse3GpggbkzU/bBUu0d1/UNI4S1StZLdkCPRici9mFGMTi\nbsnjLjW22HxfZ3NxU+h43PxFpLPRJjof5WXLdNinJruFHSPUEUfcNl5eHKNjM/912ACaWzqV\n/g14qIeVh1ZoPiLaPJ1r3kaWhf0intb3kDL9Z/DSNQq0k+/WfJ34DtDUWoMH+DwdcxH1pJGX\nnbroFCq9Bz5PmzrvsFEaWl6K1MZRP+ppu77QFhpTo+isqmCHXggc33NwZdaH43sJYvwxp0jH\nfNIwrWO+6Vg/pr8CQz8ULoKo78GW1x/I+AS8CPhDhW2jvu/Dfr2kzACpniKRP3j9uPEjp6hs\nax/11Y40cP857iDs5WUkiLJ0r0a9KMuH+ivXs23ehkkQdUYSXwHawFPgXv0Wwr/p77yI+uGx\nAfis5vhA4jHNprt50u1wX4YfQkWkjXsWaUib+EDyvWjjeD/xbtMwyqKul3DjvjvxnbleRoP5\nvk/3iHvU/WQd8ydm4cOEs0FTyrNG/1hU/WnomRe6ioh7PuwS+yP2ftgmwqhnaF5gWv/g5d79\nYb5nfrSLcDR5N8ESkGohEvZxLQwB99EeMB7iWTcS9z5Sk7pQYN3a6tTU1vxeMKxEhUfI84Pf\n/S7u6XTeMb4IY64R5vNdV5YZuobuhM+y9IAsbztCtTrYPvx1Z+K+Q9+TfXwKq4Lv9B34ALR/\nR8jL/IvzmZX0ZAtMXzHEFC3gQgymWLmFVtBJeQjPDl+AG2kGaCydW6KjsJmhirRxN7FaBNJ8\n447LA81fDVeD56Dcpc21f9gi5hPp1AaWlcrXLub3Bi8ZY+EtOAfmhqXgPmgt6sBEvHwuk01o\ne8JZs3gaaFeVt1mkXWsRt542c23NCXuC76alaQAD2hvWh8tgaXAeztUD1MNYxZpyfjFHw7CJ\ndSI/rTuQfA/XduBeGw7278Gcl3vwGZgEN4GHbR/4HL4H23kx1KekGkdi3jRjKsWd4y3ghS8u\nEG8SD5t5BmqbsI+heWG3CMmqlvMNWVef6jNug84wFO4Gy7aGd8E+zgA/9r0svw/K53iJ0cf5\nsd4atTOTOgIOhh3A9Ts1FfvIMcQaiHh+XJavDr7LNuD7OgV8Zx3AueiTLoW1QF9yNPixok++\nCrYCf0goJ13BYOeDsI/zF31FXlEnQstjj0Se57y2028Z9yPpDrBP9Th0hpdgcVgJlgP37Aew\nMTwMtncv3wV+MI2EF8FLfnPL89f1/CrMDDOB81UR1hQPu1RXzv4zYxLqp7SFdjTfZ30J4U+d\n+zewG6hRsCU8Cq5J16fv0PNNn30laP+HwHFWVEcLaLSKareAmziovWbLLdWxhNoScUM7p4bq\nQDoYAV0hnELYKu3fuGst8tLQdm7+e+B9CEfh5bictQCDvx908F4mnbM434gTLal8eaR1mDeD\nh+6hsAo8D19BuUlHfSK8A6PhemgPzvXvMArOydJhM5K/2s56qSKdhsZdd9H+e+LbgGvLg6Sl\n6gEGdis8Cz3ADzrfvfNw77aBdJ4kqxXzjHQaWiZqM3CveTHZG5TP9NDNawIZS4NrbgXYHA4A\n654Brm/zV4bQQkS2gBciYyqFfoycB16gtNsMMB5WhFDYJL9WTKf2NC32oYwrQ/f3HqCt1oA+\n8DMsA2vDcHgU3K/2eS24Bi+CgeDl+klordLmMrXlu9IfhExLvOcIozxC8yXUncjr4HtVsSaW\nJ65/qYL9YV/wvC03bcqAna8XdfeOivmHzcyLuGHIeNjYuH4+yttklfRnu2RxnyFd4WPwx4u3\nYDC8B5dBZ/g9HAp3wEFwAvix5Z6bGtIfO89uEPNyngHR38RNh8IeUTdsG+WzEvHsmw/8uP4M\nFoQXQZnn/C8GP37+BGNgC3As54Mf9hvCuXA/+KwO4HlSUR0tEAu5jtUr1crUAl4OlBtRhyex\nSYkW1ta0/BDSvnxGbPhS+VHmQyM+D/HloDPoUHUG5a7dmIDz6wMeCKli3ql9Ih6hh0bI+Efg\nQbwdbAXPwgPwGJSjbmHQR8KtoBNfCQbCMfAHGAA/wCRQ2izsFumwVaQNVZpv2nZPwzIwDspB\nXrC6gz7a+XjhLqXUJtZL01HfA9W10xeir7bEu4HyY+fA6tj//qcPWUvCX2A0eDG4FuYG390j\n8DG8AG9nDCYcDdfD1NImPNiLhR8uc4KXDT+QDWeEvFK7Wc95hqLMMB83Hb/sLk7cy4kXkpvh\nUugPA2Fv0PYvwYVwNbj+24E+T19aUdNaIH1/sVfS9xlPt0yUPijkuvEyui78AxYDz1J/gPRd\nG3evXA53QhvQr5Wb3CP6C20Qe0U/FAo7prYLe0WedfU7kU7LZybftGUDoDN0BG33E3iRN+6H\nkn6nHywK7q0lYHfoBZ/Cw9DcWogH7pM91HmkOKc8WdVfA8tt41wjbmH0E3HX02zgmtOPDIWQ\n6203WAZOAcd0BPwR9F2+P+8GflBqv6fgGVgTKqqjBdJFX8cmlWplaIHZszG7AXV44sZsqPxF\nx0OiJsUzwgn4fBWXj3AIfgB4ATwbvoZPoJylcxoN28P8EHYgWu0EDUNhm6gTYRxQprXXg+BB\n7GVvCzgNdoVylOvvd7AZnAlXwAbggeqB6IXRteHF3fmqWCthH9Mh8yJtPLD8UfBC2hPGQTnJ\nj0Pn4p6YNRt4fp5m522TVa0Ovs/K7WubrMBfY3cE9517bi3wI0f54eNBeyUcB76DnWBFWAbG\nw8ZgX+5TL4u2nQU8pL3I+IOA695nuI6bW64f98sP4DvXhs5fG3o5M63ClsbDJ1kWF7ivLMhU\nqo1Fqe0/Jb18Vv8wQp/dFtynN4LrezCMAt+BfbbPwljnJCtqJgvEu0tD34l4eVWuay+jA0wg\n17i6DmYDL7Gu/4XBfo6G3SDWgXuk3OS+UbEn/FDRJlOS8w85b/db2Db68s7ZJss/kFAbjoB9\nQV/zOowF8/aBOWA7eB70JavDndARtgb9W3NrDx6ojwl5LmufsJFrJ+JRxzCfF32Ybxv9gz5Z\nm2knQ9eX8a3gPVgSQncR6Q4zwqFwCdwM2sQ2S4F+xvBf0Bn0UXlZV59XCvueZqVhKqqbBfKL\nu26tWkYtN5ryMnQ7nA/hBIkW1oe0XARS2/iseF7asXXEzauzTNu4DheCv8DfoaZfyykqCzn/\n4dlI1yVM52rc8jQvq/qr3SyTMWBdndSu8A8wz9BLv86zHOV8RoGHYcj1+CB4ofSfEmwDrlXn\nr1J7hX0ir1Qd23wOPmdL8JBfGcpJuzFYLwq1XZ7zc490zNNLivjhMy98DF9Bf/CwHAMeyqoT\naCcveQvCAfAueNlZFIbBEDgIXHt9YXlYFbaCg8ELzUhoD9eDv2J6yWxOOX6feQk4Dj+OHJeK\nM087xTqKfNPvZ3Us90NPGZdUaV70o529tGlrLzu3wBjoCu3A9b4vuMYXA8fipc93MhNU1LQW\nyL+zeJrvLy/Xt2eVOguOBNsrzyfRj70D98Eu8CZ8AOZfB8+B+6Xc5FmjTZyHl/9lIGR+2MG8\n1HZpXP8R8p4QZfan//EOcAasDpeDe2QeuAZCvyfivtCOF4F7yPdgX1UwGKaGtuehsZYcix8W\nkXY8jjnSYSvD8D3WsV2UmbYPfZb+wLLvQF0NS8Kd4PwfgdSfLktaPxW+5Hjin4N2Vt3AvHOh\nE9wMqWx3GFi/JlZMG0xLcTdARXWzgIvZhVuucuxulNiUjTEXHYHUpHiW5fG82bJ4WuYm1aF6\nodBplruca9tsEl7MnF8o1lE6f8vStO1Nd4SIf0D8NvCAeA3KWR6OC4MXf/86ElqBiLYy/DaL\nE/xqA+Mqb6s0L8q8wHg59pLjoXMPXAYexOUiDz7XgIp5xXqItGWRZ1yZDhkX7WroJeQJ8KPH\nd/AShPygGAtbgPZ3b98OXva8yGi7q+AB0KbaOPa/B7n2tt87YHnweRvCUeAls6nlevICsD34\n7JOz0Dmb1maGKtLGI9/QC4dlAdFqWSau3VK6gMye4Bhmh0nwInSAn2A1WAe0za5gX6GhRB6D\nvSKjEjapBWIN+JB0HcRDzZsNvIC7jjvB3jAOXOOjYXH4N7gv1gTfp+94ECgvuL7nclRHBv0D\nzAJtsgnEetU2okrlTS6Z/F/Lx8BXsADog/TH/oBgmaHP8IcD+9Tn9Ic9YSvwXxnoZ7rDpuDe\nuwTeAfPC1kSbVW15WtjABzuX2tLWCVlXRf1oazrKDF1bno3zQj/w42VWWBD0b/qRc+HPoF30\nv4eD/VwDS8MeMABCfyMyOhJZaNu7wA/QUvqFzHdLFVTypm0L9GD6Lh5x0UXcsNzkAR3jT+fS\nq+BEZqSd/byQ9Ws8KPWc9JlRrgOI+OfEH4QroCXobAahoy6q+2iozQ8DHUxqm7wtIh1h2ESH\nGPEPiQ+EiaCznJpag4c71jkKDsJL5FgYA160O4CXymMhXRNhD8NAe+Tzw0aGsc6t0wdSeaBa\nJw78tKwx46PorKpgh14WHLsXafUkxHxjnqZTIt8wX9c8LzqR75o6AS4FP26+AS+CysuL9vPw\nTeUF0PYLJ5kbELf9OXA6eBl0nfu8i8GD3fQEeAj0E6o3+M6Lyrb2UZNuomAE7AVhD+ckjqcm\nu0XdKDddG2HPtJ32cL76slSuQy+Ir4IfQo7FdW4fL0LYLd7TLOQVURWNRhVpWCZt9Bk9C45V\nX5W+s/S9RTx93/m6rmffj5fzSeAl/0zw3fku34EzQJ9mPydCc+pCHnZvAx7Yn7aeeaGYR9gh\nH4atIj/SpcJhdKqNLIt1b/wqmAH0L5tBR3gfvgRtrc2jPy/oQ0B7u38sd6+5fw6D6aAmdaHA\ncXpnKSLvSM4htD+RdB4xrxhrbeGU7FWq3HdxArwJ9v0JXA6elz/DOAgbu0e0zSugrRxrV9gi\nS29KmJf19NkVlbCAh2JFtVsgNl+EtddumaU6olSNNZc16DTfl+nIS+Pp841HHeNe0tqCDqA1\nSEfnr2IeqKntY85hlzSdn7e/zGsPL5cLQUfQke0OrUFbM4nFYQx4gfQQuA/CNkR/s0a0aSl7\nRZ71PQStJ09AqrlIeKB4IJSD5maQG2UDjTkaOrdU5gXmRzzCmbPKfgy5no6AVeFocG16OVH2\na3m6Xs2PtGWLQTfwl0rtexx4qfFS/wiovUE7e7b4bPvvBE0tP7J7wEtwBTh/5YXBdRFnnfMM\nG4aNyKrOi3zT0T6tE3lRbto2Xlq0k7/u3gip9iVxEiwM2s/6ttNGa8O/4UeI8RGtqAktoO0l\nFPHIT9PWcf34F0HfzyHgOrse/KFlEKwL7oGd4G34DPIfyWSVjZZhpO2S0WqPWLNmh52MR36a\nF/EIl6Cea9262jDa7Ev8fHgNHoMxcAFoaz9ADUPLETkORoF7Wb9in4uAfVwNTSmfdz04Vp+V\nziPmSXa1Il0qdO4qyvLxSBuGfPbvYFmw/fxwMPhB69r0r0pLgn3OA67L1cBxPgMDYVf4FJ6D\niuphAV90Ra3fAm6eppCXAjdtbPwISz0rnEI6lmjrOvSg+VephmWa92Y2bi8/dZG2SG1j3A8s\nHeAoWArOAA+G1iB/FVwRdOYbggfADqDSdRTx1DZpnbCbF/iIe2E9FDxMlAfpaXAPeCEtB13D\nIOMgjvGGLSKdhlGWhhG3nhc7+5sXhsNb4EVuPlDWfRS8zHvQKtfe6fAyXAsfwADYBdyv90NP\nGAObgvLDzvYe3t+BPmJhWAWaUs7Ly9M28E9wn7j35oApybUVpDYzT0VehJFn2joLmJFpI8KT\noX0WPkm4NWhbPyS98NjGsSp/CDEv0uZV1DQWiPdZqvf03Ua59X1n8b5eIL4G+KHkx/AIeAV2\nBn3ZtjAcLCtX3cHA9RPhT52H8w/7GEY87Blp64ainvvQ9W2fyjb6na/gMNDHWH4cnAbmuxes\nJw+DugsWh8h3f7UD6/aCt8APiaaQ+1s6gOeHc3OcKubuuFLF/NO8fJ0oiz5MR7uoq+9cHfQT\nMfeoPzt52vU9eAdM+96s50fU+/AN7Ax+JOmTK6qHBWLR1qPJNFs1FuU0a4ASE/fyE9I+sakj\nL8LY9JF2EyvzXYNxOXjEzFaittk8dP6q1PrJ50U67KjjHwpd4VtobXIdvAFepP2ly7WgDWL+\nRH8TN11KtrGtF+K+YHsvLKPBD1UvMr/AH6EcNC+D9CMk1kOE+bGn+WEzQ/MNI8+0eMi6Z7eD\nJ2BR2Az2gM/AfD9YvcB8AhPBtbccWGYfXgwM54KlYV3wouL7C9mXz7J/5TgGgX01lT6lY8f1\nJHwNPt+xprK8JlkmYbN8vciP0HLj+TYrkOflxDXnRdoLVTeoAhVjiH4MXbsVTV0LxPuIUaTr\nwUum5X+F17MKrufuEH7e7CXB/WNZOWo2Br0iOPf82R7zSe0UazktC7s9l2W6D23jPghpM32c\n5/4loC86FvzLkXUdh9KfDwDPPvMl+jd034jxleBO6AeNrUl0uC04rolZ5/o/n6tiXMZjfOaF\nol6kI0zrmBf18n1EftRJ2/mDlP7Z96YsuwkOgIvB8eqbn4WK6mmBimOup8HKvHq6sRpjKm7c\nuvaZ1tPxmQ7n5i8d/4HWJC9nzlFSB5fOMWwSdkzTXuh1wl5ex6eNWln8XOYzCDpk8wobpNOs\nyX5pnWtI+CvfXuAlxV/Lbs7YnXBt8BJdDlqEQWqH1BaRjrxYM4ZBXeZm3fmyvo2vBdrJS4sf\nNq+Bmh+81PgL+hzwAeyWxT8htGwpOBW8THUF16z1bOPlR3m58Tnub399b6ozx/WjbXaAE8Dn\nOYewG9FqRTrsaKbjCxm3LM2LuhFGHdvk6zpv35+hl5du4P5N+0vjFP2mzHRFTWOBvN19Sppn\nvFQ6LuxjkmFdS9zL50twFLjmngMvog9BOWoZBu3+jDWdhs4ntY9loiJMbdcly488fUTEbRPy\nfLOuZ92sEH991r/4ceX5MDuoUs+ZXPLf/+5M9NT/Jhsl5geyGg6OybM9lfOKsZkf8XyYlhnP\n2yPqh4+0fAJEvm3SuGllvejL8q3B9anf7gFbgT6ponpaIF5EPZtNk9VLLcxyM0Rsoggba/za\npjb7WJZuYh2hafN/Ai9an0NrU8x5SvZx3uk7sf7Q1maMEvPRkf85y3fONam2Mv/6pK0OAi/j\n6iN4GDwgesN94OW9XOTFK9ZOfsyxTsImhkHUjbKoG/mG+bIlskI/KIbA6uDlRGk/823jBWZO\n8K8zXmK0sflnQdT3o8APlWjn3o7Ljb9m+n5mhsaWz7gZnK/jM8zPk6zf5FknsG5gvWgf5RFa\npvJ9RzrKoi8/FI13zMK0nn2Gon6kK2HTWCC1fzyhVJ5lvp/4WLCOe3IUhPQ7XUE/cyB4Eb0K\ntoP03ZIsC7VhlLdDjD21i3mmU8yLukSrlZYbj3YWRt0II889oqw/H+gz4n4Q7S1T0TbSk3Mn\nt7XsC7DsZPDHkcZS3JPPpMN5QV/4M6TjiLGR/atK5UWhZbaPOmlfUcdnLJwlLE/rmx1twkeb\nZ38/gGerP2htCGqhyUHlv/WxQLz4+rSp1C1fC8SGirChMynaT2xoN7MXJtdh34YOpoW196JZ\nm8IxWifsmOZdUlvjVlK2F/OIS0g69ylNL+p+ScVjwQt53pd5IEyCctSmDNo1ETiHmLPx+ijt\no6Z21vEX3vbgx47PCtt9nKX9KPJXSS8HXqYWA+t5mQl5uVF+jPo+rGfc/v1I7Q/590RWg7Ql\nrf3L1xpZL44v5HNV2C7CyDeUyDeMssiLdISRHyFNfiPz0zLb5dtGXj7/Nx1VElPFAr4T31/6\nbky7L/L6nIzDYVlYGU4BL6flKP/C7g8cP2aDz69hs82L/FjDWfVfgyiPjLBjqXT0EaG+IX5A\n0R/5l5tPIPpM+4o2hpbrr/yLrXHz/giNJX2fP8L4Q9yLWaeOM8ZlVjq2rErJvFJladuIG/rX\nKhXPidC8tJ62Mh20I346XAa9QDu+D6WkzatgVA3YbmmYJuWGqKhigaIWcMPGRq1vH7b18qQT\n8IPpCWhNWo7JTMk2qf2sa1oZ3l0da73/WYCp/Q7CRhGmM07tE/mRZ3gi3Avngn8pOg781e1g\n6A6nQDnqsNyg07WRK/qfZNjnfwrISPvJ29t2HcCLoOeClwLzFoVSdcn+fx+ClxI/UJWH7Vfg\nR4ptlf35a7t9t8/iBI2iNenlQYh56Ue8LKh0zBGPMeXDyS3+2yb6y+fX1m/6jIhH+3zo8/PP\ncN3GhShfv5JuHgvEe4sw1onr1/fTmrUEk3Mfz5JNMuYetjA7XbOxhrPqv+5309E2LYt+8u0i\nP+rGMwz1LfHRk5Ybz/eT1rPtlH6gjP7qEmoT/Zr+TflsPz4ONZEoxp4fW6QNQ9ZVEUadybn/\nO798XdPRXzw36ph2/v5A1Qn+DK7hkD6yHfjDkj7zJbgFSsk72phSBdNCXuUDaVp4y003Rzdi\nEYWj8dcqHc2RUNMvHEX6bwlt4pewmsaSt104SMNPYWJNDVtJ/nvMoyb/E7bI2yimbvl5cHmW\nsRthX/DD6CeYDf4EL0BrU94mYauYp+XmqbRumm9Z1DGuom68k+g36kUYdU17yEY707ZNLyok\nqw9h6/lPPtaFx6ExND+dPAU+P+YWfoWsXxXjM6NUPJ2X8VJ1fu0sF4n60aa2vmxqvWiTpo3H\nh53xiqaOBdL3F+/UD/wx8PLUGVKzPXVBnvQ1eCF2LebXKlnVqinfwrDZ5JqT13q63kvViboR\npu8gjVue9pV/VqQNvfQPt0Ejyee+Ag/A23ArHALxzHSckUfxrzIvHfuvBTVESvVh1egjyiNM\nu4mxWLY0+MPzhUmF/YmfDf5A6Ue/9TyLb4CKchaIwzCXXUlWLNDoFnAjxub9kvg58BGcCXdB\na/pAmpn5lHJeZNeotP7eNdZqHQV+wLStZSqpLaJaHA6GZ8CpUUDoXxE6QXfQ9k+Da6u1KOZe\naj6lbFUqr7Y+7DctN64iNB59mhf5kZcvH0jGeNgZ/AuUF5a1obHeib/ovgmuIxXjmZz671ij\nLB1n1Ikwyuwj4lFWW2jd2p5r27Q86qfPiPI0r7ZnVsqaxgLx7uMd+RTz/LHFH/H8Z6QnQGuV\nH0T+hcS//IZibYZtIt8wXa9RnuZF3TQv+itVViov6sc7iTDqGpZ6drSLH8/S+g2J70DjncCP\nDf1PXvFc89N5R73IizFHfoRRHulSYVonnhd5EfqB6w9FkfZD6BG4Cb6Hq+Ak8F9eLAvevSqq\nwQKVD6QaDFPJblQLpE7BX+T8067/LMp/r30j+Bek1qR56zmZcHY284NRh9aa5T/fUuHEJ6cm\n/zddK5Ef9jH0n9H5z+ny8qO7tTr7UnbKz7+2dNgvrZO3c/oM4/k2kY6yCKMfQ3+R9APVvxTF\nX3O8ZJq3NPiOPMAboplo/BwsAjHmdGzRd4wr6kS+YT4v6tZWJy2LeL6fyDcsVZbmlRpz2r4S\nbz4LpO/FuGvUjwbX2ofgeeU/U/LMao1/2XfO7lMV+9Z4rFHjNSm1XU11zK9rPeuW2o+19RH1\n4xmmu8Am4I8zDZV9vA6e6/oyFc/Kx6sLa/lP2q6WatVF6byMq2hvGHnVBdl/XLfKcse6Cnjn\n6g4fw5Xgj9NqCJTqo7qw8p/fboaKPSoWaCoLxGZ2M+4OS4HOxl+sDoLvoDWpYz0mEw7qcdpo\npz71aFuuVZ2nlFI+P+zzLZU9qG4p1aiSV6sF8ja1snlh23zjfL5p63vQ5svMFy9WXiaV8UnV\nscn/DxyvIf4GxF98sqJ6Bz5Hf7F61tL1EOOxTJmO8VZn1OE/0bamqtFnWl5TXr5OmjZuu4pa\ntgX84diPJN+Vfvlh2A5eAv9pZ2uT69+/NPQE/WysUfMl0hGS1SjK9xfp2I+mJdKlHpqWp/X9\nS4k/phk2VLPSwQfgB4d+TMWzIpycO+X/Wr+uSudtPE3bR5quqd+vqOc/nbTcH5VGQkV1tIAH\nWUV1s0BNC7BurafdWtrNi4y/XKwEd4L6AvzFuTWq1J/ga5unNjolq+DBPK2ppr0Va2drDNIW\nfoS1pjXjZPOtyUZ1NUd6mE6pTdQ1jLjPj18nbR/jcW8r0/EXoqHEvVT4v6XzfR0IftSMgLQP\nkvWSF1c/0hyT/3uAUorxWuaYglJ1a8qLuUV52mdNefk2US8N0zrRZ4xvWtz3qW1aStz3oZ9x\nrbnG/CA/BVy/vqO/QGuUf0E6GNpArMVYr7FWI2ys+ef7K5XO59Xl2bbxn0R2hn3r0qAOdfzn\naNpj7qSuzwmS7Fqj1m9sxXtK+zXPv7TPCd673gfVc3LQpP/tSu/+laoP9IML4XBYDMpKlQ+k\nsnpdLXKwpTZnDDTK9iDjEBgcBZXw14ubv3K5D88Af50aDdOSXCOlDg3zZXboD/OCl+7PYVpU\nKRs11A5pn2Fv+0zfScR/IN/60ebdJB0/dKxGnmt5afDXVj+MQvbzJkT7yK9PaB9eXA27QZxf\naZ8xXop/HW9abr51apP183Xyfdg+n5dPWyffT6k82/m/D6ioZVjAf1qnLpgcVP/Xf+VwB6yf\n5LWWqOvvSfCvvv6AEes4QrJajNL95PjyYzRtnVezEQ/PwoYE+rcBoL/pBPaffy5ZJfe6+Y2t\n1Ab27Vhi3hE39J+DGuoz/UhRq8Cl0B28k4UPJdpg2dft4EfRovAxvAOOYXN4HXpA2UjDVVS7\nBWIz+JLzC7P2lq2/NGxTaqZhqwkUummmRdVmH+3xExwK/iq+POhEpiXFGsnPOfJPokAbLQB9\nYBi8AK1d+prmVt6/5dfuLAzIy8YS2cBcr1EnLpT+Uw7/ouRfjjqDv8Snso+GyOf5IeGv3P7T\nkTkgxkC0WjGP2mxYW1n0U9+wpufGsxxnKPKijWWVszisM3XC/PtxHXuhS+Wlz7+StjY5d+e2\nKjwK7SD2N9HqC65hY8vnxh6w79gXxqMs4oaWp3XMSxVlX5A5MC1oYPwX2vuB7A+Yy0D4sXSM\nZNc6NsunpHx/U6pvuW1UzN1164eK+duAPllf+UdQJ8KecBj4AWW97WFpKCXn7ofU2FKFubwt\nSG8M/k8o/NjOy/H8A27LF7TUdGN+PbbUOTZ0XLHwop9SLz7KKuFkC8SmNdx5GjSK85b82glT\nWHYKvAL+2fl6WA78tWVaUdgnbyPzlf+85QzQwftL1OKwA+iwW7vCBs7TeJouOvfoJ+0rzTMe\n78JQzPsZlGk/jj4DP3yijh8s78Fo+AiugdXhPjgH2oHqCBuCB3hReV69Dz+BFzr7inE61ikp\n6kRYW337LaW0bT5eaizWkbCXfUZetLfMdV5Ry7DAAQxjPFwHc2ZD8hzbG27M0q0p0KeuBDfD\nY9AB0rVJsqSiTj6MyjXlR3nssfzesPz/s3cecHYVZR8WQu8C0iEJHQFBQBCCFJFelKIiBFgg\nEhVFKQqCdBQFFBAs9CJKkaYECDV0kN5bQhIgECAgLRQp+j1P9rw4nu/e3btnS/buzvv7PZk+\nZ+Z/pp4bQqSl/rS+8JuuP+UywvFxpis+PHjh2gL8IONFKW1bPJfoTltab1pZPEM3LOLSsH7r\niHx+uJoBXoEVwL998SvwXZvmh0f/ZsBT8FAbTCatERtIpiug3hnZy7caLghNYV0xeJqioxUa\n6eYbAy2Ku5A4WBq5TUeZ3uDabt91uT/2sYql9aT+qMtfRDzEuOn/NSKbyJ2Ttt7WifaOpuwX\noJY2HxLvoXJ/UCcXr00KcHq9ueBqVcdOWq6WPsapyefBi5Hj1nE0C7h593Zz8U/72JH2hh7h\npmVrxaXpHfHXqyuN1+/49FLyKvgefAdzgf1zs3Uca3GINI9/hULcqJ1HY8B6BoB1Of6rmuuY\n48I6rEtSK7c/TQt/5Ak34jvipmUb8Vt3ms+wGorayKdBqzp2LLcoNNveZJ8bsc7Mq9C0/A7K\nzzWfY/0wcLz6xdu1yHKOZ7/E/7oAp9eYc7Iza6Pjz7nsLwlbgzq45nqYbc9C07Ib5erFR3ot\nN8q0lWabbWdcKgzHQX5H/F8H49Jfewh22HyGH2McB3ODa44XJtuo7vH8ttpMti6zRp5jv22X\neR3Hmmvnv+A5A4mpz5lwURJX1Xs1BZ0fZ8AdpUo8NxwE74AfH5rC3NCy1VbgKqJ3gvImXDt3\n88U6ea6s2Gwn4KYwb8XyzVDsoU40clfK+hW9r5obhF/SqphfmIZCX51XbqgjqghDGTewzWCe\niuWbodgDnWjkTyjrBamv2mt0zA9LVexyCnkI6svzyrWjirlWbQFxCa1SR28vc38nGujHupU6\nUb63F/XS65mlil1KIdfluAhVqaM3l3G/8qzbFfYslQwH56maeRHyQuRFcjHwcrYdNI311Zfe\nNC8gNzQrkBXICmQFsgJZgaxAViAr0AcUmIM+LAeDwY/o/k2Q8eB/UpAtK5AVyApkBbICWYGs\nQFYgK5AVyApkBbICWYGsQFYgK5AVyApkBbICWYGsQFYgK5AVyApkBbICWYGsQFYgK5AVyApk\nBbICWYGsQFYgK5AVyApkBbICWYGsQFYgK5AVyApkBbICWYGsQFYgK5AVyApkBbICWYGsQFYg\nK5AVyApkBbICWYGsQFYgK5AVyApkBbICWYGsQFYgK5AVyApkBbICWYGsQFYgK5AVyApkBbIC\nWYGsQFYgK5AVyApkBbICWYGsQFYgK5AVyApkBbICWYGsQFYgK5AVyApkBbICWYGsQFYgK5AV\nyApkBbICWYGsQFYgK5AVyApkBbICWYGsQFYgK5AVyApkBbICWYGsQFYgK5AVyApkBbICWYGs\nQFYgK5AVyAr0ewWm6fcKtC3ALCRP23aWpk39Dy1/pxOtn4Gy0lftXTr274qdc8w4dvqqfUDH\npKr15XnlmHHsVLU8r+orl+dVfW1MmRX66p6e51Xb7z7vV/X16ex+ledVfW1zSj9VYGP67SWi\nL7NtxXfrQeXNPq7N+RW1sdhZfVybyfSv6uV48z6ujevFV6GKTUeht6Evrzl/qiJMUcayfVkb\n371joIo55vqyNvbNtaOKuVa5ZvVlfc6qIkxRxr2uL2vjWaXqh27PSH1ZG/vmWTdbDQWqLsY1\nquqxqHV40mawIHizfx7Gw6WFH6dL7NPU4sTaIKntl/hng+8ncc3qvYyG28cq5mIzBwyDB9up\nwM3pevgtXJzkPRD/srBzEtdbvL5fx1dVU1c3nV83UIG/plwHR8OIJP8R+BeAPZK43uBdjkZ4\nUPW9VvkVSW1eAedwT9jfeMg18PvkYY7b7WCTJK6rvFdQUdV55Xrs+tICj0IjtgKZPBx9C8YU\nBQbgngd3w/FFXG9wfkgj5u5EQ9TVsXdiJ+por+gOZNgJPBjFL4Gfwe/+cji4lnWH+R7PBsfA\nR9BRU5uJsGVHC3Yw/9bk3xO2gbeKsnPhup+43qVrWJHcJc5V1GIfq5hrlWcF3+sTVSro5WX2\npX1VtbFrlj0bToaqdiUF/wanJhUMx+943CKJ62nvyjzwdPDM4q+QHTW1eR627mhB8nu+cR0e\nCk+CZjvOgUfgGJja5t5oH7PVUMDFuFnMgeWhc30YCS+BG5iL80ZwMHwfLoCusveo6L6kMgf7\nL0txSXJTef/VBa110qf61KrSA/Us4AHVhSbsbDwXQ3vlI39Puo6tBTv5wJcp30jfViXfjODm\n9BqEnYvnj9BIHVGmWVwvVj3Rr9l4zsLgBpk+z43yO/AcTIKutJ6aV9Fmx4/9uDAiCvdy3FUg\n7XcpS48HnROduSDZ4EbnVdXOuYfcALeWKlBHx1N36dkVe7Fjr7vaF3LsikdtRkVE4d6BOyd0\n1/OrfIwpNXHK5ai72ld+Vk+GnRODO/lA97yq2jin54fTSnW47n4bnoE3YGrYTF3w0KrzakWe\n7UeLP5fa4McWP/RX1btUXaeCH3aqdB8v3BWLck9JtDEP8nK0FLxZ46GbE/c7uKBGWtWoAaWC\nKxB+oRSXg20r4OLtgXR5SC9IWctW3V5sdT6lHjcXfp2sTyJGRa8fUFwr1PLOpA7HomlTa9NO\nmtJpr+PHy7yHlH8mteXxk4jRAa/r+5YwDfjXTzQ/YCwJ5YOOaf3N1McPku6NHxed9xyxDPhL\neLb+p8BbdHkyuObcm3TfdfbtgiS633idK/MVvJL0Wl1i30+is7e3KeCvMs1iA2noFVDrcmQf\nroXZwMNCV9msVLQ2zAvDYC84CbI1roCHNg8W/hqyAcwDO8CBkLVs/cJ0CVr4tW1dUJ8W2Bey\nPojQCfNi7keTo+FroLZbwK/hFOgLX89c98aDY8gDygJwOHiI/QNk65gCZ5Ldy5DaLQpLgOuX\nF4ILob+bv2z7a8EZ4J48GM6GueA8yNb/FPiILjtf/CtjW4HrrK5h4+Mijbdf2Sh669+ycW3+\nHDhvfgZq476UrZcr4JefZrGraagHGxfmO0qNnoHwQfAOTCyldSboxL61qMAvzgfDOUU4O40r\n8F2yngp+YfTL7AdwLJwA2T71qd0QwYPZTYUY7+P+AjzEZ+ucAodSfHa4GDzkemk6DQ6AvmDO\npU3hfHik6NCruDvAXUU4O40rMJasHmDOguFFMQ85G8PrRbg/O34V3xy8KI0HbQw4Bl82kK1f\nKuD5yw/Kl4LrrGcn9y8vBP3VvDg6V1ybHypE+CfuzhDnyiI6O71RgWa6ID2LgG5YV8C/YCJ4\nIfLL1WLwHGwHjdpCZPwN1NNgSdJmhIVhAXga/Bk5W8cV8D3tCPvAIjAa/Fk+W6sCauHYXbBA\nfd6GbJ1XwE1qLzgM/No9Hl6DvmQe6teAJcDL4GPwIWSrpsANFBsEnwXHz1PwH8jWqsBtOO6P\ny4G6PFG4ONn6qQKuN3vCITAIxkNfW2fpUofNc+tasDjMAY/DB5CtCRSYrgnamDbxPAJ/Bxdm\nDzv+1Te/Wo2He6Aj5iCdCPU0cAMw7cUCnGydVMB3JdlqK+B4lGxdr4Bf7qQv2zN9uXM93Ld/\n87xHe/iZzfQ49fEini0rkCrgpShfjFJFWv1+xMrWZArUuxz05m74tf0fBZ1pp38NZe82KjiR\nNP9Of7asQFYgK5AVyApkBbICWYGsQFagnyjQjBekdXg3m4F/Hcm/8/o8jIdLCz9OtqxAViAr\nkBXICmQFsgJZgaxAViAr0HEFpu14kalWwrZeCP7H1guBf1XLvwIxDWwED8D2kC0rkBXICmQF\nsgJZgaxAViArkBXIClRSoJl+QdqYHq4PS0Gtf+rbfy3kd9CV/x8kqsuWFcgKZAWyAlmBrEBW\nICuQFcgK9BcFmukXpIG8FP8Fu1qXI9/XtTAb+FfvsmUFsgJZgaxAViArkBXICmQFsgJZgQ4r\n0EwXJP8/SP4VurVq9HIG4n4G/nPS+V8BqyFQjsoKZAWyAlmBrEBWICuQFcgKZAXaV6CZ/oqd\n/578cOiq/w9S++rkHFmBrEBWICuQFcgKZAWyAlmBrEC/UqCZLki+mPOgq/4/SP3qRefOZgWy\nAlmBrEBWICuQFcgKZAWyAu0r0GwXJHu0MpT/mW//VbuXwH/yO1tWICuQFcgKZAWyAlmBrEBW\nICuQFaikQDP9N0j5n/mu9IpzoaxAViArkBXICmQFsgJZgaxAVqBRBZrpF6Su/me+l0Wk66Ge\nBrOT1kwXyEbfec6XFcgKZAWyAlmBrEBWICuQFcgK1FGg3uWgTvapGt2Rf+a7kX/Jbiy9+SHU\n02AX0vwf0GbLCmQFsgJZgaxAViArkBXICmQF+okC9S4HvbH7/jPfv4Yz4I5SA/1nvg+Cjvwz\n3x+Q/5JSPWnQf048X5BSRbI/K5AVyApkBbICWYGsQFYgK9DHFWimC1L+Z777+GDM3csKZAWy\nAlmBrEBWICuQFcgKTG0FmumCpFbnQf5nvqf2qMnPzwpkBbICWYGsQFYgK5AVyAr0UQWa6R8h\nWIx34D/v/Rb8A7wozQd7ws7wJciWFcgKZAWyAlmBrEBWoKzAPkT8HLaBacqJhI+EWUvxxxIe\nUIqrF5yZBP+q/9SwWv2ZGu3Iz8wK9BkFmumCtCqqH5oo738/9G14EPwX566A/aGrbX0q/BYs\n19UV94P6li60+zJus/1a2ROvZ24esnWB/mztKzATWTaBb4IfTbL9rwL+YzZq47/6qVbZuk6B\nNalqB3Av6o82C532I+U3YJEmFOBh2vwUHAgH1Gj/d4jzkpPaXgQavSDNSN5d08I96O/pC9Iy\n9M1zUd7b23/JvptYO1ZpP3vO0VsUaNZD61II6AFgSfBfo9PctG6B4+Bj6ApzYPtPgb8BHmDP\nhD2gq+qnqj5p6vZ7GA5qNyeMhi0LF6ffm4fY0yE+Uvwb/zC4ELLVVmA1oi+DBcB/kGU2OAoO\ng2ytX8B/ihCTwS/hE+FrcD9kq66Aa7/jbh14DeaBq8CLguOwP5gHvEvBvr8HXpYOgaOhWcy9\n/D54BfylpyNt34D8b8LG4D8K5f72MmhfBfW5CVL7AoFN4a/wRJGwO+44WBv8dWo5sPyVsCjc\nDCuDZ4yvwBngPLbcEjAWToP3YWHYGTx027aeMPer2Ntfxz8nPAXu7c9Atv9VwPlyOfi+Y+0Y\ngd/9/13I1osViMNZL25izab9m9gnwcUizIXPCeuA7EpbiMqscx3YFvaDZrQZabS/uJ0K/jWD\n6aC77AdUPBRc4D1czA8T4O9wFNgGv9b11y/cy9D3P4GX+TnATUa/cf7qpqmZXzrdDH8M6tif\nbWY670ZzB6jFXLA9eNAZDoeBWvnF14tTX7Xp6diu4Bw6GlYAzQ13f/DQrjauWf8ANeuv84yu\n17XZSfkhOGb8mwkeTuvZH0mYF/wwp7siLA/O2b5oy9KpX4BjbBg4lhxH18GnwfHVAq7lm0Mz\n2QI01rlyYwcb7S9n58DT4LnpPNBaYG+4BVx7wn6Gx33wLvgNfB004/aEN2AJsJ6HwbOF/vlg\nCzgeJsG/4AJw3F0GG8MB4Hp4FbwFH0JPneWcMzvAl8F1WD0nwiXgh9GO2GfJ7BrmONsNZoC+\nZvbNObMk+A5Xgs/BMdDdthEPOKnAcZOtDyuwNX17CfaD9eFRWBrCXIDujkAXuCdSx0elelz0\nHivFNUNwDhp5H7wGLmT3wzswDKrYdBT6DwypU/he4o8qpXmos4xfmy4GF/+HwMWjt5mL9shO\nNMrDhBtcPfNAZt/L5kZpmovoqzAGLoJn4QVwkZ3atioN8D3OVrEhQyn3fIWyW1DGw8KspbIe\nEjwgOC//Cm7Wo8GNe2rYOB7aUvHBM1FObdeoU34W4u8AD1eXguudff8WXAmnQ2qzE/gANk0j\np6L/WJ49ohPPt6x1dNYWogK/dr8IjpknwINmrfXMcf4RbAKp7UhgMnT0UJjWkfp95757x0AV\na6GQY6+ztg0VOM/cL9wrXgO1sq/ltl1A3IXQE+aa4dpRxXyHavsyjIG/wGegbK8QUY5XCz9K\n/BrcF7Q54bkpvk99ahTuBoX/C7jWrz0GXwPTdofLQHsQVpvia90jf1b4HUeOx8/CCbAfhLnu\nu0/6kdYD91mwLtwKmnvNFVN81f5wr4u+tVfDA2Q4opRpccLqu1Ipvq2gH3Jcm+4Bx9nrcBfM\nCl1pzmnb5pmlig2j0OgqBSnjuetj2KhUfmfCrjfdab+l8o/Ad3t14T8Zt2zul9uXI3O4VYGq\ng2Zq6HcvD/UFfxG+A07KA2A3OAR+CN+GrradqHBBcGFwMM0FzWYH0+C5YTlwE9DcLLrSFqGy\nLWFmmB/UKmxGPL8CF6rvgl/v5oU74TDw3fV1W4EObghuCotCqg/BKWac4+s0uA2+Dh+Cml4J\nv4ONoT+YBwsvYy/D5eABwU3lHQibFs+a8CqsCP8GN6Wb4RhwI+pL9mM6MwiWBy/MmgcsD02P\nwX2Q2tsEJkOsWavjXwfU8W+gtv3RjqPTHshWBjVyHJ0JZ8PS4DoVNjueAVCer4Y9zE0Pzum2\nbCEStwLzj4L7oTea7TsHPHj/GZx3M4Bjy4Pe+5CaB3rHYrPYZjS0PEfSttuf+WBSEakezh/X\nYO3JVmfKBdIxobmPPT/F1/rrkl7Xa9d4x1eMpdvxh8W8s/7xRaT5Xij8OpFH/z7gWngjOF59\nZvpcgp88R393mmvJm+C5ax74B9wDtt81uhFzjXaP+wUcBppnrLvBM53nlWawQTRyc3COXAvO\nk9Tsp2uL4yo1147ZwPO3l5iutvWocE/YEBwz2vpwHVwKEYc3W19VwMG3cNG55XEdcB21QRRY\nsg5nE++m4OLoxqD/DbgYms0epcE/KTV6DOFhpbhGg05sF8QhRYFv4vql7d3C/Tfua2A+zXzG\nme4CG/YjPE9HoBe5R9OWkZ1oz+WUPT4pfyR++z8ZPEw5lnSXgDDH4TvQAmrrF+XUNiHgYjp9\nGjkV/G7Utq/KfLO5QyEOFIbL5mYzAtTnJXD+yWWgbltAWLTl9xFRuDvjTirF9VRwHA9qqfiw\nmShXfveuc8eCm6/j41aYBcIcD65Pl8BTkKZ9lbCaDYZTCr9rgRu0By0PjD1p9sN3W9Usax1t\n2aYkXg+ub+ZfE8rm5WiHUqTzT+2XLsUbfAbS+WzcuXCPnnZsa9Jd9zz8Pg6uAydC2ZzvPt8x\nUMVaKOTY64gtR+YLYTTcDk+C7XsEJsGroH723fgNIMxxOR4OiYhudl0zXDuqmGuV2rpelG1W\nIgYUkWfjHlb4jdsTrivCv8bdpfD7jnyf2pnwwym+1r8m57jTroS1pvha//uTQwv/g7iLFv4v\n4zpGncNLgHP1s3AC7ASa7fODRrTxWPznwSDw4O166fu5Aqqae517XiN2DZlcj11zxHExFlyb\n5oRGzDnq+j5jKbNj6d5SXGeDQ6jAdz9dxYqGUc75UbYWIuzDK2Df1cH5vTKETYNnPBwXEYX7\nZ9y7SnFdGfwVld1Uo8IbiXP8pDaRwPZpRPb/V4Gqg+a/NUw9n4uGaI+1Oh3683PkfqidEk4s\nD/qTYQFwU3ARazazzd31rhem7nPAxeAp8F2sWODkOwm+CKYfBW9AmG1qRj2j/Y24G5LpQHAs\nXQVuKuvCouBmeSU4vr4Gt8PfQSu/LzdRF2Hr6cv2Uzq3OjwAanQE7AhbgPPdi8BZ8DLsBNp1\nsAE4/iaAWvWFceUBwk1tHvg9eGBbCUaC48oD1iDw8PRX8AD4JHjocvy0wDHwJdgZ1oNbwfxu\nlH+BwfA69AXzAH1OgeNkA7gFNoEbIMyx4RhxPd8YZgcPm5ppxq8Cjjfn6F5wOSwFHmzWgyHg\nO2jL/CX9PDgefgbO3a+A64Dv4WKYWuZB3L7cAyfA9rA0aNvA2rAb2MbT4DWw3ZfB0+CcfA9q\nXfaIbhobRUtdn6+HfcBxMwZmhXHwTWjL9idRXbYD1/Gww/EcCs5D6/oelO1mItTdMXY7jId3\nITUP387Ta0G/e+pAGA8ehD3DzA13Q1fbtFS4HiwBo8Hx4uOUMhIAAEAASURBVBrj+mE7H4HF\nYRA8Cm9CI+YcmwasJzW1Mq23m3o4J1xnt4TTYTFwnfE9DAHn1X/gB3ApOLfuha1gBXDd6S6L\n9a1cv2teM+hbbncOTyUF3MAWroODPg6k4b5P3NvQbHYEDfYAMLhouAvTJBhWhDvquJA5+V0I\nhsO/4ANQm4/ANDUTD61XgM87AyyrLQbPwy8N9DI7mvaM7ESbPEx5KNJOBcfN9eDiNBHUKfTR\nVa+nYUHQ3DhvADdWbS74B1jv1LZVaYDtna1iQ4ZSzvdezx4h4TzwMOB4PQV8XowpDyEeJu4E\nNVbLSFPLc+FJsNzUsHE8tKXig2einH1Zoyi/O+4/wXVK+wkY9nCihs45DyX223n2r8JvHa/D\nnqD9HdzQU3MevgXfSCO72X8s9XuoqGqWtY5aNi2Rzq1DSonOv/tLca5D48FDv+PJtVENX4Hh\nYJxhdXwMloPV4QJwHjrGVoT2rIUMk8C2peb4vjCNwO8793mOgSrWQqFxHSh4CXmvS/Lfg/9v\nYL9dw18Fx5Bh168PC79tdM79Dj4NPWWOd9eOKuZaZbtduxqxGck0ayMZkzxzJP7U21Y9jiH3\nUM1njocBUMvsQ+ydabrlfgud2Rvc645OK8U/L9wFjoXx4N71MDgeHgTXoJgjrjvma3RPUJNJ\ncCLE3FiqiDsQtytNfX33tbRr5DnDyDS6lHHfIs55cDC4RrgWhyauI+k8/iLh68F5ZFvUzfn1\nNegO83k+Y9uk8m2KuDWTOL0TYftSXA4WCsTg7K+CvEzHX6iDBzTtAPgxnAwzwCzQbObi5wHq\nUbgJxkBX9cPDm18mbgQn/5nwI9D8SjQQDDtZt4OxYDueBhfJI6Ev27x0bkZYD74JC8KhEGZ4\nZfgXqJ3mouyGMQ7U9RmwnlHQAotAXzU3ls/AvbAp7AibwH/gNnDzWQi2Aseeh7g3wIXeDdz8\nHlact2Vzk7Su4bBOObEXhlejTbeA65R2AtwHodEE/M69i8Dx8gQsV+B83wm0mcHNPDUPNO+D\naX3BFqUTC4BapPZXAs6v9OCpjguDBzrHmfYWzA1/gHPBMTQQnoMR8BBsD2vAzvAItGe+pzg0\npXknEzBtappjS23CbM+zReBjXPV4vAi77x0KjpWlQS3WBOddezaIDLvBUHBeN4O5Fsf+32h7\n1auWtVXP8xQ4Cc4CP4qdCmpfyxwzztmy2dZ6Zcp5OxJ2HswKi8MgWBLiQrw8fttteDtwTXZ+\nDQHHyOzQlqnJTjAMRoN9fxjuh19Dbzfniu/C9WML+Ce4J10J9mEeOALCxuBZBS6E+WAuOK0I\nfxZXU0vXFzVxjnXG7qLwYeD8dn27By4G23QnZOuDCvyAPjkR26Orun4iFbnw/Bs8nOlGGG/T\n2bS0eBv4BewNz4CTsYpNRyE1cUH8OaiNE3E8nA8fgOkyCX4D2pfBA63pvkfTzwbb1pvsaBoz\nshMNupyyxxflv4OrPncX4S/hvl/E2f8XYVPw4GV4UdDcZPYA2+Ji+h68Curmpmja1LBVeajt\nnK3iwz0oeTCoZ27MauJh7TY4Fg4Bx80DcBWop23QdeGfH74PanUWvAxlW5iIh8CxNxacyzdA\n1X5QtKaNI7alZkr7kW689suxoLmh2WZtd3gBTJcJ8GNwDrtZfwj2Sf/+4IXJfCsV4ZdwF4Sw\nnfFYZmBE9IDruxzRiedY1jpqmfPFvm9eShxO+NUibgPcx0BdHDu3gmvTPnALGKcmjpEHQb08\nzDjfnM9fhVmgUVuGjL4TD5Fhi+F5DdzPUvOd2y7HQBVrodC4DhS8h7y/SvLbvzfANuwKYwt/\naHIK4TD7YL7VI6KOuy/x6jkRPEROBvegKvY8hVw7qphz3Pa6dvVGc646fqua7849p6q517l2\nhs2Mx/e2WUQU7s64joc34VswFswn6vsuON713w4rQlu2CImOkV/AVjANdLUNoULb45mlirm+\nji4VdK5GP6378/ANcP0xrEZqMT9o3wPX7ukNYHPAtvAMnAobwuugrq7r1n0kdNYc74cWrFan\nMuemF7NsTa6AG8efwAHkQXudOhDdJXYitTjQY7DHwDfcF8xJ7+SvYtNRSD1cfA6At0BdPgQ3\n2bgAhH4uHHvCGLgM4lD6RfwuCntDbzI3i5GdaJCblZuWNgDeA7Xw4J+OI3W5E9RtoyKtvJAt\nW6T/BDc2EA9XLqIrQ0+bi659iHfY0ecPpYCHnXo2Hwljwf6p2zhQp7+BB9cYU44z26F2Z0LY\nxngsW750X0vcPyA2raXw+5w/QFea7W2pWKFrnH1aoyi/JK5zyS+T9v0osB/msf9/BDdiD/DG\n2W+1UiMPMPodVx54HGdeFM6CEWAeL1g9aV5ufHZVs6x11LPzSBgDziHnnfuEHxScz6uAOqnZ\nz+E1eBquh1PgGXB+OiYWAC8QV0PsA+r9HrwA1t+oHUJG34vj92zwonATzACp+c59hz11QdqD\nZzl2tgPX8y+Ac8kxYz89sDlGbLuuxIXKueW43BLq2ZdIsMwuRQbLOH6te9EiriOOa8bQjhRI\n8vb2C1LS1Epe95rLK5VsLTQSxzkSNjcex+LqEVG46xTxMR4cG+ZzzOh3jboOfPd/B9cb59LU\ntCE83DY6xqvYMAqNrlHQdSH6fwt+NbG/k+FGUJMHweceBneAth6Y7x1wLlhO92SYHrSvgeW/\naqCbbSL1b9/Nz8jV95ACbnpuXAf0wPNiY3RyOYidDLrSF8xJ7+SvYk56dXHxWQvUZhyETqYZ\ndwi4aI4pwsZ7AE7Nw8rdaUQv8LtZuGlUNTeruCBZx8Hggmf/RZ0mFe7DuOa/H1w0Z4XULGue\nst1FxC/KkT0Q7u4Lkl2YE06FDyHGlAfaN0CNPOh6cXSjMd4884B2Gtw7xfffP+bFq+5r/zdq\nim8X/rTOrrRxVNZSscLyBclqtoDQwX66oXnIvrqIfxPXDdZ+eCj5DKjJ62C5+UGbEfaEC+F0\nWB962o7lgSM68VDLWkc9m50ENfBdO9/U60zw4HEBeJCZBZYG074D5p0Mw+EteAlmgHXAPO+D\neVYCy1qPh3X1bNQ2IuMZYFmfY/1lW4MInzNTOaHBcAv5xjWYN7L9Ao9jJNam0YXfOebl6QpQ\nc9dyx5h5vw5bgXGLQD37PQnXlBL9wDMeflCKbySYL0j1VXKvcQ+pau51R5cKP0rYMRvmuzsP\nXHtjbjk/HLMRth3OF89pzrmn4FCYmjaEh9tGzyxVzDOS86KW7UxkzB21cE78Fq6Da8E541zZ\npfC7hrg2u7e5LrvWjALLbg2pnU/A9aK7bSIP2L67H9Ks9VcdNFOrvw7AFtimBxvg5Iov9z34\n2KZ51B209CxwsUi1UrMfg4e5F8ENd3nwQJeaC4YHm75sv6ZzB4GLqYcjtZkX3ExWBDedlWE/\n8HCS2mwE1Khsxs1ejuwjYcfIHnAEeHl2A/kr/BA09XscHgL1M7w/DAI3mk0gtVmLQFlHL1im\nWd6x2xvNA6r9Pxhuh0XhZIg+OgYmgeNJtoXXYQn4HbwMmmPMsPRVe5uOeSBZBgaCB7Tn4HDY\nDjy4OQZOgmMKV138he0oeB7mhtvgGnBcyDngWNMcl65p64AHoUbMw5L0NjuQBp0IHtymBefQ\nkuBFMNby9fC7bqmT48wPWgvDb2AC1LNa65Z1qp1jNlvvVmBPmufFyfFwJ6wNq4D7lwd/54zm\nWuO71v4OP4LI49rtOtRX7Vw65rnmIngFLoYvwWIwBPzA4Frtmq3dBx/Dk3ALuBZdCl+Ab8Fl\nEGbaoAhkd+oo4KLYbPYYDT6yBxvtgPaA8kHxzN56kGpEEg8Ii8OcjWRuMI+T38P/38DDhDqp\nmQczN1a/JLlgzgPaJTBID+YiuwvcBH3RPLAOBDcUF9LpQI2eAQ9XHjq0peAeOAP+AP8AdVoW\nboa1wENMmPHrg2nNbPPReDeTeuYBbEU4BzyQTgNuyHvADrAghIZD8c8O68ENoK0L+4Jln4Xv\nQphr33C4FXr7nB5DGx1Li8KfwDHiYSTa7Xy2n+p1IDjmtNNanSm/Ku2Gfx9wM+7r9hQdvBbU\n4xjw0OZhzXe9e4FruprNCM7ND+BY2BAehx+AeUaBZcLexuN8HgyHgXPWenwHy8Fe4DhbDKaW\nzc2DB4HzpT17mQw3wQngfLwN1MO+ewlXky/BzDAPzA/7wUQwr3PNjxJlu5mIzSDGoulrgeuY\nadl6twK+oxZwDG0KT8D3wTXnQXgTJoM2AMznBcH5sSO4768Brl192ezz+WB/l4Nb4POgTkvA\nS7AKbAmTwHx7guuT88r5MwssDtoK8FvYFeaA78IQqGfWvTcMA+dmtqxAjyhwIk9xkwgc8Ppd\nAJrRdqbRL4P9+BheAydVFZuOQtbzbOHqfwdCK12fMRbSNC9MkeaB5S14D86EgdBb7Gga4tez\nqnY5BceDfZdx4EJpX6P/H+IXw+qyHcTBxEuAcWroYeSZIjwa9xJwc7oCPOT3tK3KA+3TbBUf\nPJRyL4AbSejjgXYdqGduKm4u5g+91EY9jdPvWBwImvkvAzV8FPxqraYegm+EY+BeeAM8sNUz\nN30Px1fDKDgIZoW2bByJLW1laCNtJtLszxpJHt+xXxntt2mOmXSuGSemTwD7Og5iM94Qv+PF\nue/BX61Og+/ANaAe+4PP7m47lgeM6MRDLGsdjdguZHoF1MY++w69TJ8CR4Fzzfk0FkwXx4tj\nxLVRv2uAYzN95zsS9h24dqnnBfA8OL6swzoN+ywPTzeBz/bA43iqZ75z21r1PbRQ1jmgRjFW\nnsO/FbRnjgXbbpsdJ5YXy/8N7oIXwT7fB/bP9MnwXuG/CDc15+AoeBVOgjPAvKdDPXNf+T54\neLwB9oUZQPOZQ6f4Ov7HbBRRW9euvmjH0yn3nKrmOHfPC1Pzv0O8Y+fC2zCuiPsl7rrg+7wV\nHDvmVWNdiTX3CPx7wiIwNWwID7Vdjq0qNoxCzum2bDCJzo0LYW3YGdRLXVw/XK9tQ+hzI/4D\n4NuwBFhWjW8ByzgPDavj+4V7Ne4skNpJBMzzBLwEzsfNoSM2kczbd6RAzpsVUIH0ghQD28Ho\nwG0224wGO/EOBTfMHcFJ6eSvYi42anIlfAlcnNUmJdXM+MfAcldATP4X8J8J94KHkmWgN5ib\nhZtGVbOPLjxrgwuWB6nQJvpuODRSP/O4MG4H34Avg3WY73awTg98hs8AtZwatioPtd0eOqrY\nUAq5kN8Ea8DycA642dr3ueCHcDocBkuBm4z9dtPVldBOv7o9ApeCdhC8CivC0rAvqOGLoHbX\nwW/Bja0tM++78Hv4FThe74aZoJ6NI6GlXmI78dZrv9Ql7Gd4vODYFg/vab8dHx+DGqSuY8xN\nbw5Qs5PBjfjrsBd8COp9EhwLHoo96EwP3Wk+a0QnHmBZ62jPtiCDehwK6rUPjIGxoB7Gyf2g\ndur7ROEPLUcTVm/HkReFY+A8UFvn4Z9gAGibguXuNICtDJYz7hT4AziOToV65ju3TW2NrXpl\njW8B1/QHYF1YBtTKd23d2qywHhheDA6B00FNPMTZP3UbB7bd9uiqj+7boBb6o694p5QzbiNw\nXVofHGu24UdwFVwGO8E0UMuMdx30WSfCr0ENrwd1fh6GQhWbjUL2ZdUqhZugTFdfkE6gz45z\n14UYC75fx4hrrX73xzPg/SJsvHPG8RPjxnxPg+vue+CY6GkbwgNtj+Oyig2jkP1qz75ABveG\n6Lv9FTUQ69BVH93JoHaGx8C3wfXGfOouZ4IXnz+A8873EvYtPGr+5SJiWtzjwDVgniKuEWci\nmdwrsmUFOqSAi7QDOQZ8uMY1m7nJuHE6Ae2HOEGd/FXMxcY69oSoU13ESbsS/KQIG+ci4MR1\no5wAoWW0ZRxxfpm8CVYH69cWgo5M9imFuuCPo6nDDaCqeZA7BTyY2f/ob2jhYuehxE3IOLVR\nozfAvB8W7ruF+zXccyCtyzbWOmwsSfx6MD+UbQYiBkLVQ5j1eciwjR46qthQCtmvuYrC38R9\nHaJvjqdJcDE8BbGJOF7doD2c+nzHma7cAKar2yjwsv13+AdEnqj/COIasS+SyXeyVpJZTX3+\n3jAQ1MB8a0BcLsbhb4EqVr4g+X7ti/PM+u2b/bEvgeEg4tRiTtgO1NPN1jQ1s0/6vRyELYLH\nd7B7RHSTeyz1juhE3Za1jvZMnU6DOcCD9a9gHKiTa5CHAjVwHD4LM8Lv4Bl4FZyX5jWPrhhn\n+neK8Hdxb4QxMBYcq47Pc8H86qzrXHcdWxuM8yBVyxxD5q86N1soa38WhdTU7C+wA7i+RLui\n/zFHDDvX1gRtXzCvRJrti74ZfwF8DjTH2fWgDqZ50dH9DdSz1UjYHAYWrs9fHsIWx/M22PZ8\nQQpV/r97PFGX///ohmNGktP9JMz9yDkijvuHwffgu3cNMex6YZpjQ0yLPI4Bw6brSoyjk/BX\nHeMU7bANoYTPjzNFRysYRoHRHSjkvuVF6TxQF/37wHugdqFV6GLYfct56hx6CExzLXEOmT4O\nvEC594RdiufsCBTuAFznuPOlUfMdb99o5pyv/yjgJB0KLXW4lvh0MOsP8DaVObFs+9NwALhh\nOimd/FXMxcZJPBmcxJMgtNJ1MTQt9DLs5mfY51rWxSIWDA9w5jFeXoKxSXgU/sHQneZ4WA++\nAseBm0ZVc7E7BeyT/Sjrow4uTC6I+u2zrripeNCRSLsRv5uPm9I/wfzq+xMI88JxJZgm1uPh\nZFrwoH0wxAbm4vsLcEFt1FYi42bggcb6vRxUMeec7dA+D46HQ+ESsE+2W910fU7o8hT+VC/T\n5FFI8zqmog7LPgZuOm5QUdfK+MvmYcz+xQFtP/zWnZo63g8xhtMxO4H49WActEAVcwzaJw/L\n2hAwPBacP/qjD6nfOMMRp2vbHC+hpRu3Wnjhsi7HQPr+LyB8NnSnHUvlIzrxAMtaR1u2NImu\nSRK66E4GtTgH7P8DoE5ngzYa9oaYd6nOqbbWa9gx9hy8CFG3Y8/5+RBcBB4kn4dRoD0BPqOW\n+c6t1zFQxVooZDvKdjgRD4Ltrben+VzHtFwJp8OjoF7qoPsCPFOEQxu1sN4dwbL6dd1n9oKf\nglp/D1JzDXkLfG7g/L4FyvY3In4P6ji0nNhg2LXK56zaYP5my3Y8Db68E40eSdmjk/K+b/Ue\nA+pmON6T71gcA471GAtv4PfdOweMi/xlv3X5nl1Le8KG8BDb4pmlig2j0OgGCtqfYyD6616l\nTmrkmlvWI3QL13kSfvMangTqJTuDe1jY1Xh+G4HEdT3aPQm3580XpPYU6qfpbqQu5OPq4OLv\ngI2BrRsDGG9TmZPNjd+J80c4Apy0Tv4q5mITuqQ6hT6pG/k8HER8aHkUcfcW8S6uLiargYuL\nC+36sBbcDC7WVQ8PFG3TvkLqS+BC5KLmQnQNVLURFHwI7Kd1Rr91o+9pXMSbpp6+Jw9Xlo38\nHlB2gyOLOBfPCRB2GZ4nQf1mhK+Cdf0YvEh5Kfk2OO53gdfButqz+cjghmY7fC/R1s5ckByL\nC4MLvHXbvrIehtPNtla67yo0sn328fPgeA/dLGc+v5TrGr4DwqbHcw5E/3RHggc8x8QACDsQ\nj+PUuuzD9aDGv4JTwUPfs9ACVczx7fPXgG3AZ4ntfgV857V0KMdZhxivGxrdjj99hx6GPwcr\nwH3gIWsh6C47loqdG1XNstZRz9YlwYufejl27Ld+3dDIjzH20/elNq+CY/xxiHEeeUO/NBxx\nlvVZp8OjEHlSvY3z+cZdDK5ve0Mt852br+oa10JZ1y3fZdg0eG4Dx3HMpWi/4yraHO3UjfGh\nZs6jyK/r2E7LmW7/TIt8P8V/QREO3a1zY5gFXIMso3bDYEN4CqxXfcrmXPPw/jwMLSc2GJ6N\nfGqbL0i1BXO9U+Mw343v0/enbg+Ccfol3ne883DTtNRvPdYR5QxvDT1hQ3iIbZmu4sMco6Pb\nKGv9B8FDYP/sm/NQN/rr81M9Il+k65bTnVuPJHWon+8pbF88rmXpev1Nws6tJaBRm0jG7RvN\nnPNlBUKBE/HEwC0P3sjTLO6HRV/SCekEdvJXMRebsiZp3alu5XyGI86NU2IxeRr/KPDwaZvd\nHBeDueBN2AG62haiQg/Wv4fZwU3cg+SNUNWuoKALXPQ1+lfWqKxT6GJ8HDyiDuM8JPuF6Abw\nMGG994CHB9N3htQOIPAMWO5HaQL+3cF+T1+KLwevJeIBWBamhe+DbfLQUcU85PjcJ8ADV3pw\nsw9l0v6bVg4bF+PbcVNLt9DfslG/m4v6/BL0rwseKFcCD2yXgxceL3FqZJrttvwZ8BgYNxze\ngGVgLKh1C1SxmShkG4eA9fwCbIPtvwscU9F+3dAi7VetOPNG29PyapXmV0fj1KRs9tXL9ZLl\nhA6Eu/uC9CRtcbx+APZTDb34GLZf6qjrnHEe2fdYa4wPTcMNXVM39LLOyWCdaqtrOeuNA6bh\nqCtcy3vRmwecg/fDS3AnmOYYqGItFPKjx3PwAxgJMV5sm4e2tB/RntTVb95yPuOjrshvnshn\nXBpvHV421fYQ8GOc5W1f5HU93xi0hSD0Pwr/AHC8/aSIXwv3eRgKVSxfkNpWzbFydJHFNT4O\n++X3m77j1N9WPsfCqxDvPdwJxHV0D3FcbAfXwbPgnNkB2jLXUtvnmaWKDaPQ6BoFHZ+ng+PW\nvcB+6Xec+7zAeDWIfutGmm4aX89vPuteAcJmxnMHqO058DRYfhKcAPPDioWLU9cmkrJ93dSc\nkBWoo0BckNIBHQO4TpFeG+2kjbbH5DTs5K9iLjaNTO7IE25oGW60JdI9oH0A94GH1BfAA8eC\ncC8cCF1te1PhOHBjCHOzuCECFVwP1+lhILQPN/qb6pCmlXUp5/dSEYewsfjj8GO8i2LYtng8\nxFnejSK1zxEwfoE0suRftMizehK/ahHX0c0tqhiKZwJ4QYo+u4F4yKzV7+h7pDlGolzqRnoa\nV89vXutRQ7X7LqS2EQHb5K84XkQ96Pk+Lefh1k3I8g/AXyF9tnW2QBXzcGxduxTuJoXrJSmd\nw/YrfWb0M+LCjXjdVDfTIy38zjPz7Av2dziErY1nDES9j+L/fCR2wD2WvOpX1SxrHbVsYSJt\n320QfXNMhT/6P5k4D1a+Q9+x6b7bVN/QxLTIo994w5HumuSci7rjWZEeZdLwweRXP/X0mb+E\nneEGMF9nLkjjKH8yRHu8VOiPtSLaE+1M3WjjR+S3XNrPSEvzhz+eZR7LiGk+0zj7ehEY9zjE\nPI9L02LEaY4/8/t+zOMYtIxxtsmPEEOhirlWWc+qVQo3QZnjaaN7TlUbSUH3PO1I8B2E9vE+\nI6yO+oNyOOIjfxq2rjeLso79n0Oj9lUyOmd9njh/zgTPC/tAPRtCgvk9s1SxYRQaXaOgY9G9\nw/p/BT7DcRr9NZxqEOFIDzfiLRv+SNONvV2/Z5XUZiSwF7wKzplT4Efgh6G0vksJzwW1bCKR\n29dKyHH/eyjMetRWwC8FzW7lxcGJ2BWmNoH1hb8tzeLZuimWt50DYGkYCIeAB9RDYTl4Erra\nPkOFfnV1AUrNtnXGZi8Khxa1tIk0n5U+33BgNWlbPJD5i4ZfkCwzBlzE3XC85F0BYR7w74cJ\n8OWILFzDauumU8/URhvX6nTZn/bbd+xBLHSZtag9+p1qY1JokI7lyBPpHnRrWZovNnw3EN+7\nB1J1WwFOg+thZzDuARgMQ2FPcHP30qKm6u3msm3hXxvXzSx9FsFKZt3a7+BD8F3PAFG3buiE\n95N4/eV480roFmXNG+bmajk31mXht+CY0haFq+A2WBKch0/BNTA3tGVquCF8BzZoK2MXpIVm\na1GX88L3vB/4sUWL/jvO1oB5IbSZE7/6xhgLl6hPtA3ddMNWxWM5nxfx+tPyBKfMs2f1YHvA\nn2AJOAruAN/vn6ErzP4PKCpaGNd+W78WfWgNtf5pXLTdGMtazncXlvYnzXs7GdK+Oz9Mdzw5\nryznGjIBHMeOLfM7954HtfsFLAULgPP3u/AX8PB3BCwJW4L9yNa9CjhOvGwcA/GedQO8n1ik\nfxJReOrFm+ycjH3Rd/9tGAjt2Spk+Ct4cbsSPg+OqSHghcBxEvsH3h6xrXnKBTAI3AMc686Z\nslYxd8Ilyyfa6tdCszRPa0rrPIj4Y4lcF5yjG8Ou4DrmXFkOhsNE+DS4Hrr+rQ+fha5aX6gq\nW1bgv//Mt4NTXNiDZtMn2q2b9mdYxY64WYUmUV8aTp8T8WlctCfKpuHw63oZuA1cGD2U+tyu\ntq9RoV8rF08qPhH/jUm4o97LKRB9CzftV8SlrulpWL9xcaBPy6d+8z0NJxV5Df8MLgH1cxPZ\nHfzSdjh8GQ4ED/NuLm2ZG+Zb8IMkk4dCn+FX2SrmZeMliD5YV2Cc/tRN84U/1STKpm7ki3oi\nLeIjrAZuJI+C/pvBw4GHN5+xOqTmhdLDnRuymqup+d6B8XAXWLYFqthMFLJtO4EHSv3Rh3Cj\n7dGXcMvxadmy3/babonyvynC1+G60Y4H7RB4Atz8wxbEMwnUoZ55ML4b7MdYULcJMAKqmmU9\nJNSzcSQ4Xn1P5T5H2P7qD6L/EZ+6kRZ50zpq5Uv1jLK6d4LzJso41qzLdcfxNw4izTFQxVoo\n9CZEPWlby/4I65axfFpHmjeNL/sN23/7oz/Ce+N/vAiPwT278Jse/X87iXOtN+0+SG0iAdeO\nKpZ/QWpbtZEkHw1LgO/bPdd3WX73vpeIC3+EdcuYJ4i0COu6Nvi+fa97gZezLcB196ewL3h5\nPh2uBy/Q3wLNeMfar8C6vUTVsiFEml717DCMsqNLFfts13mfr072w/74nLR/aVh/Spov9ZfL\nRL1p/KvU5d4zFny+897+bwrPwE3gXvZ70FYDyy9poGTOq+1LcTmYFWhXAQ/J6eBMB2i7hXtZ\nhvIEjL44+auYi03UodsooWe0J8p5kI80J74LjgtQ5HsW/7zQHebB7wbw0H4wHABvgHFV7SoK\nRn+ij/XcNF/4o9/hWjbS0nqMc0EcD+p2Cxjn4dU2rAFhu+IZC5Z/Dr4HjdieZPoITgU3sTvB\nOjpzQfJ9p/3QX6t/5TwRjrxtuWla2W9YPEyH3zF2ATxWxLkZu3msANqnwecfBeMK/8e4bvDG\nnwx+HTWtBapYXJDUx7qtN9qnv6NEWd9fWlfER5zpkedM/DfCP8A1cDyow59gYzgSHGvRFvN6\nGSqbF/SHYJEiYSCuG/vVRbiKM4JC6QVpCcI7gYcmf3WIPkT/arnR7nDNU8sfce25afnIm7bD\nOC9sb0I5r+E/g7YjmLczFyTrS4n2tOWmbSr707rCb13hDzeNS/2mO490jd8AtA0hPVSq1wRY\nHqYB1y/H2G4Q9jyeoRHooOta5fO9pPZFO55O+VGuqo2k4JlwCPguxHcW7y3ceLepm/rTfMYH\nEa8b/ihXK2yce3CcC5w/7xZlTas1lw4mvpYNIdJneWapYsMoNDopuDR+x7Trfrnt0afod6Nu\nrXqirkjTDX+alsZFvHPH+IdhAMxYhNfDLZtre74glVUpwlUHTZ3qcnQvV8DNpyfMiVp+lnFa\npEXYuOn9ozAXxffBw6YL4ZxwLni46g5zIdkc9oetwQXlCXADr2r+8lLufyN1RRndVJ/w66pN\neoiaj7CHQw8Ta4Nlt4I7IbWzCIhz3g2wUfsdGV+E78M64EGls+b7ti/RX+tL/YZTaytvpOlq\n4ab+WnWbLy4k0+JfELYF/aap0fxwL3wVrgc36Q3gIfgteGGYB5aBH4KXmhmgs5bWUavt7dVv\n+y0XZaNPlos4/aGV6ZrhLeHT8B4sB7OCZQaCl27zOAZ9h86dleEiOAicP47920DNrGsCaM/C\nrTCLgS6wo6njJ/Aa+A7SfqV+kj7pp/7U7It5ww1/mifqMk9qEW9clI88qd6mq6cW6a2h1j89\nnJi/q3Sx1rRthrVoY2vov3+2lTdtr/kinPqtKeJPwP9dsD+uo7peTjywOaYdP+ZZC7QoZ17r\nvAMcNw/AYtACZ4KWzonWmPxnVymg/i3guua6F1rH2Ejfd8SRbYr5DiMuXBNqxafp5jEcYyBc\n47U5wLOA5vwxfTwMAs8GmnGuubb5cHDc+BGlq8098+fgh6AtYE6Itke7DYcZF+mpa3qt/GnZ\n8Ee+qDPqifg0X8SZN84Hxg2Gc+AZcK32XJMtK9AlCpxILQ4qB1pgWJrNot3RD13jhlXsiAtG\nWlcVv89Py0UbIz7CLn57VGxn1WIevkZWLUy5uyHtWz1/9LWcHvGhQYTNl8ZFvK466T4HsXji\n7XLzK6zt8OBTxYZSKPpQ7ndnwqkW5XrS56V+N9f42ubl53G4BhaH+Ip9Ev7xcBSY3w3IPK/C\neLA+Dxabwg/gHWiBKhYXtuhL9CNtc8RVcdN6o856rvWbdiWojTr50cA4/WMhLkCR1zEYft1X\nwMt62Pl41K6qxS9IXipsg+8mfgWM56b9iTjdlMiTxlXxW4/lym5aV6RFvnI48kZ8+vGDqhu2\nFnJGHVFnI26tMhGnGzRal2PAOWB+39HfwXFwIViXc8jx5Dwy7Jgyn4fyU2EibADW4y8Hm8Be\nYBnXjirmWmV7XLv6oh1Ppy7vRMdupOzf4FGo9b5rxTUyHhrNE/XrWiYN1/JHHl3H2tNFuVtx\nyzaECPN5ZqlinpF8huPScZq20XpTIi2N6wp/1BtuWqdx5fiIS923ybcKlM1+uZ5mq6FA1UFT\no6oclRXokAIe4p3ocZiPsF87vg5+NXJz9Qv2LdBM5i8PjVj0Pc1b1sS0WBDbyj+AfB4W1c/8\nfd2ijzFu0v6GhuU8hiPtevwexNTNOtRuWXgQNPP5K4qH8O/DgbAtrAffA9fOueER8Eunh3cv\nVR7kutpqvfdGnxH9NX9aT+qPusyrRZquFz9Nf6Tb90HgoSq1aQlEHt15wYOb+rwJWujbGur4\nn5+jyG7ge9szKe7zot1JdMNxaZlG/fG81E3bEf5wzadfC7fsn5LYg39E29N2pHHR5rS9xnnR\n8R1E3yzvYWshmMUA5ng4FdaDl8BxMCPMDJZ7HDyUfwOcW/vB7mDaaHD8XAlesJyL2bpHAQ/S\nm4PvS4t3Hv50PEzJ0MV/1Ko/2lArLdql61hbUg/mZegucCztCAvCZOis2Qb39JgD6ZhP667X\n1jRPFX/UG25ah3G2p9ymiI+8zrmRsCq4f60MzknncLY6CjTjBWkd+rIZOPg9PD8P4+HSwo/T\n5VYefF3+gH5SoTpq5Ymexi9B+smwHPh+H4UnoZlsjk40Nha2cNOqQifjTH8b7oSNwIP5tdAs\nC155DND0DlmUj7mpW/bXqtBDgAeCVYrEp3G9GLlZzAd+TfPANhZmAi/q2gS4rOBQ3EHgxcky\nW4Ht8fnjoKvNerXoc2uosT+jXeXyUWetWtpKq5U/4tJnRZyuh2J10qr0obVk69hej0D6V3Ij\nTTdtdzwn4iIc+cph49uLM0+Y9TaSP55vudRvWcNpnHmmltmOWv2J9kR7I0/5MP0hGT2E+bVd\n13znwgj4JlwAjgMvSf5a5C+w54FrlunnFNiOP8Bc4GHO/d043Wzdo4DzyffpGrcIlMcCUT1i\nPreWRXyMvQineSNudSKfg3HgJXtt6Kypj2v/1uCHgVrnZp8f7cPbLVZ+RvQ5HlZOj3j3O9/v\nvOAHqklwNbjvxV9XxJutrICiNYvZ1gvhYlgIXgYPzw5KD4gPQHf9VNjdA5+m94jFhAq3Rx6a\nPEQdUy3112rLisS74WoeQvuDhQ669XQJHf6BR31mg68UkS54XwXnSH+1dGylGoS2EWc+Lz5P\nwbrgWnIj+KuSaUfABzAKfg1e0P1SGZfPN/C70Rj3LmjlZ7TGds2ftqle3xp9Qrl8WmekhVuu\n0/joX5on/JEWbpQ33QOF7l0Qh2O8lcw9wIO15vt5f4qvtX6fEe0poqc4teLL+WrlsXCar1bf\nys9Jw5E/rSNN723+aKftljRsW6M/kW6cFvH6/TA0M/jONfdnzbXp0Cm+1gvT0vjPgT1gMbCO\n4bA+aLfDavAcpPUTzNYNCngBcD/x4Fy2VP/UX87XFWHHXFCuz/i2LE3XfxJsCt9qq1AH0rzM\nW6861dIhfX4Hqq2ZNeoPNzKVnxHh1LWM4Sir330rwq7BK8HeoD6xhuLNVlag1k24nKe3hDem\nIevDUvBmjUZtTtzvwC9VjZhfNI+Eehqs0UglTZanPJF6uvkxeeO5MWnTsG30rzstCD+FW6A/\nm3qkOn1EeDfYFfaDOIBug/8EuBD6i4Uu6biKODVQO7+ehYZq5WZxCrheqNUrsDtcAhPA8oeB\nG+Hi8CzsAI7DX8H+YD3+iu1fBf0GNLOpjZa6oWHERbrxbaWZ33Q1nb/wh+avE74TpoWq5ruc\npyjsLxX+FcdoU7Q13CJbZaez9YQWNiDqCrfcqHrx5Xw9EU7bkvrj2fH+DTtHPFw7dxYGf9Ee\nAWvCCnA0uEb53hwP98Hy4OX25+AcuggmgpelgbAj9Kc1jO5OdfP9+B6Xq9GSdAyk/hpZuzTK\ncRbPCzceUA7Xih9G5IngutNZc81aBv4FMxWVpe0rorrMif6F21bFkaee6wXINkf6zfjtR1jq\nj7jsFgrUuxz0RoFcPK+AWpcj23st+EV9QXDBbc8c9C4K9TSIL8Pt1ZPTO65AHFqjpJPXBUcz\n7Vi4CsZAfzX1cKzPCS5yz4FfXh2vj4HmAcVx/CJsCo9AX7X2NqTymHI92BhiXOmq1U7wF/gO\n/AbUbiT8CI4Bx5y/JI0t/I5DD3TfgvNhF/ACPxiOg8ugO629fjfy7Ngcy3lDm5h/5Xxpelo2\n8pnuBSjW0Mg/X5J5hsLvmB0Cjtmq5nMtb51+DDgctGiP/mhDxJXD5tGMjzxTIhr4o1ymHK5V\nRZpHv9bR57aW6vo/o23hpk9I2xr+SDd8C2wNjv9lYU94FnaAb4AfIHznzkHn3XXgenY1OMee\ngcEwCW6D52EP6MtrGN3rlRa/IvheJcZnPX9PdCLa0N6z6rXx3fYKdjD9KPL7cc31x/Uu2pc+\nn+ipYvXaYHy017Zr7mupRT/SuOwvFIiNrRkEcWH1r7ucAXeUGuyGeRD4VbGRy5HFX4Ld9NSx\n7Yn/S5204+vE97foehMz1cE8qbVVxoX6WRgMbrhTy9bmwa914uEfUbatfkbVkSc0Ctfy4+DT\nRcZLcf2rRR4ePg+DwLnruFeva6CtsUxyl5lfgrvCou+N1BW6hBtlvBR5+JomIgrXdWBFeBnU\ncV6YDOr3hQKcKV+0T8b1Q4l1PQ6jwEP/wgXr4ob9GY9j0/y3F255LfBXja4y+1vuW0frtg6t\nVj3GRbp5Ur/hsHJ8GnbjTcPlOqOORfF8EW6OiAqudTs3tMPBzd93EZa2I+LqudFOXc2y4Z8S\nUfqjVlpaR7l82pbUb7WRN+qMcOmRlYIdqSvaH22q9UD1Np9fmp1PE+BhUPtD4Unw3Y4C870H\n14EXIwmLXyfcu1+EuWA0jAPb7Dhqaw0zf2dtXyqwD33N1qVDz3WiU75j3+fM4LvQdNPxMSUy\n+SPSjQp/uEm2hr3lsoa1Wm0wTos84aZxXrxdmwcb2UnzsjUr+Jw4M6fPjOqNi7ZFXNltJE9a\nJvKnz4tnRJr5w5/mM94fDSLOfdEPgYuB5wnPD3HGwJutrEC87HJ8bww/S6OGwxXgYu1FyBfu\nwukLd4HYDrrKHqCiu2BJ8BDmV+Tx4F8f6YpJRzU9Zn/nSR5OZkye6EZ2TxLuiNcF9VzYAtSm\nbE5I9XJh0fXwqd9nevj0UGMd5jNsHt0IT219X6AtV0NV25+Cx0ItbaJOL4Me2h3L9tuxbJxa\nSJi6zF5g3GMF+sPmD08PuWfzHN9nFbufQh6SPDC1pY8a+IwYHzGW1MrN3LEUG4V5PGAZdqyl\nY4ngJ4ci/xsJCfMSfFUECte1pC3zuVKuK8rcgOfeCHTQdSycBbbB+n3vM4Hz1sNLmBpE3yOu\n7KqD+ppXS13LqpF59Kt1vAvjxbHoL2X6LWu6eZ27uuIcNt7yvpN4hnGWM49x9mseuBEuhKp2\nMQV9ju86LkbRLp+lRmoW5gHAPc4086tj6IL3k/aarkV7dSPO9ke8ebQ0HH3Wtc+az7CNmu3T\n1MByaqZFu2MdcEw9AearYo65B2FwG4XVLuaUz/HZ/qpjm2y7Gtl2+xLvMN5r9I2kT/7nv/q1\nRwumBIo/2mqHWXyuNmjKn+3/cR1Z7m8/W80c9vls8DDYXrvI0nT2HC12j69ql1HQsTAN+N5j\nTKuX69As4FyKMeGccqzEGLecaLqWT13jyxbPiHjzx5kg9r94pnlMi3ifK7ZHc2w6f9xD34C3\nwfo9u1nvGRDzDm+HzDOSY89nSfRZv9rYRnHt8RIVbdP12R0x2+z8s62xhvic0FO/FnPUd6bf\n/ut3TltWVz0iDe+UOkyzXb5Xz822z/3Ps262Ggp09AXWqKLHoxyUy8FgmBdehvFQ9bBP0WxZ\ngaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXI\nCmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxA\nViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQF\nsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViAr\nkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZ\ngaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXICmQFsgJZgaxAViArkBXI\nCmQFsgJZgaxAViAr0K0KTNOttTd35Z+l+cfBtM3djU9aPz0+3/e/E3d//PdDFTuPQgvBfwrU\nybo/gr5gV9KJkyp2ZDjlvgmhTcyzDyvW19uKvU6DdgTfd0dtRQocCzNAlHfsfFyA09Rmn34K\nD1XohePEeTVPB8s6tzXHm3WIY81wb7O/06DfV2zU9yi3VcWyjRabjoyxloWWrmkxVhutp0q+\n1yg0FKq8t5Uo57yy/ba1p9vOI7vV7JP71SMVnuL7PB/mhWaYIxW6+KnLKHRKlYKU+QFsXrFs\nMxSbRCN3qtjQVSj3c3A+ddYGUIHEWhLrzNQ8M9mW/eBxyFZSwMU0W20FPkf0OlD1kFy71qkT\nuz6PXQbOgfeKJrgoOvmrXJAcNx6Q74BbQPNQtwtcDw9DM9t6NN4No+q734Kyn4dTwQXIRXE7\niI0ab9PaArS8Bb4Nk6Gj5kFuA/gLvFgUXhz363AuTCzimtX5Lg333Ve5IM1IuR1AHUIbvG2a\n43Q++DN8UOTcBHcQ/LEI9xbnyzRkM6h6QbLsp+FG6A5bjUrXAtfJN4oHrIrr+qmWVcZ7UU27\nzkLk2Bl2h/fbzf3/Mzjm1oMzINru+u5c+wN0Z9upvtttT57g2vFIhSfNQplvgHPk+aK8c2Qw\nqE2z21fowKZQ9YLkGjIn3AR9zRahQ3502BWqXEScQ2tAVW0pOsVco22DF9mnp8R86lPupbZt\nBDxZxPW04znQs+7jPf3g/LzmVmB7mt/sh7V4A4/i+UkECncM7rBSXKNBL0h+iRtSKuDmfHEp\nrhmDR9PokZ1ouAvehaXyHg69LM1cim+2oAdG3/1sFRvuhvBmjbJ3E3dYjfhmixpHg1sqNnom\nyqmtG3Kj9goZW0qZBxK2nuVL8VM7eCwNcG5UNctaR3fZNVR8Qo3K45edGkldFuU79505BqpY\nC4VerVHQuKpfz2tUN9WivNi4dlQx1yq1de0KWxSPcStGRBO7x9P2yzvRfvc697y+aJ5RfM+e\nWaqYZ6TRVQqWyuxPuNbl/mLizyzl7cmgZ1zPutlqKFB10NSoKkf1YgU+pm3Tw7LwBXgZusNm\noFKfNQ18CQbCE3Av9DebttRhv3x7QdoGrgMPttn+q4Dj07ETthSe1cHD6Sj4F2T7/wrE3E5T\n1FJL9WyNaZ2bHhh6yubmQeuD86G3fxyopaXtdp/8CBox175G9V2cvGuCv/i8DZ01n51atN1+\nDYB1YGHwg9mD0N9sEB3+LLwEz4LW6HttzZ3/zApUU6DW2uJ8Le97bdU+I4nrwzxwD8QvUXiz\nZQV6VoG+9AvSEUjnAdON20O6uDH4daSKeWCwrpNhA3CyugBE3R8Wfi9i5vPL7w5wLvil6yZw\nkx4FO0Jvs87+gnQFHZoAs8Ne8E8IbcK9iTgPLc1mq9Jg36lfZauYX4Hfg83AsePlOTRxDHkh\nijjHrGmOJ8eQf42ot9s4GthSsZFVfkH6I89yo1ygeKYfKf4KfphID8wbEn4YnPfvgGNSvT0o\nHgVuvlXNQ75fSH8AQ8A2PQK2y3cn78MHcBVUNcdAd/6CNJz634aVkwYehn8yzJvE1fIuQeQ1\noL6OWV3XReeL5sHcj1PqvCj4V1pi3Ou+Ds6rzvyC5Hv9MlwAah71OyafK8K+c5/je18emsWe\np6GuHVXMtco+S2iiDuqSzhGCTWn5F6T6r831yPfumaWKDaPQ6CoFS2WWJeyY+zYsCVeC66Hj\n8UaYB7T5YXPYA0aC64JriWup+6b5o9yp+A+Hi8ExsAx01CZSYPuOFsr5swIOGgdPXzA37tgY\n0o3CyV/FXGysJzbhOMj6jKhf9124AVwYTPNQEGVMuw+c7IdCb7KjaYyLU1XzEvgGlHVJ9dFv\nnoWgmcwDn+/WQ0cV85DjJcj+S4yNsjaR5uaQ5jmb8ADorTaOhrVUbFyVC9JcPMt59BaMghdg\nEsTBHO+U/5ZOPdXSdxd+dTUsXgJ2gDVgFWhL4zmKfF/D9XlRh/Vbt7ixh9+L2SPgXHctqmrd\nfUGaloZdBLbzNngKnMPfgLbMQ8/7oJ7md22LvuvGhyJ1ikNOaGZ6jG/jOnNBqvUhJn2Oz3L9\ntX/x3B3xN4N1xQXJPpf18J03u+ULUv03OIQk37lnlirmGWl0lYKlMl6A9gHnunPQv2au/yp4\nFB6Ag8G5ma7TriuxrpbHruP5FTgNxoP1Hgl+JGvU8gWpDaX6wuLQRvdyUqHAht2kxPiiXiek\nX+IkJrGum/26RbwTf5nC/0fc6WERmAAHgV9O+pI9RGfsY+hi31J9DHvQfAJ+C4fCCtAfzAPk\nY0VHXYNSjRw3qTluwt7GszP8KSKyO+WSPQQdzgLnoQf7L4KXJm0n+C6MAfO5qaq3uqfr/yyE\nz4O7wLL+GnE9rAmmrQOrwc/AA7/5LoMF4Rhwo03rm5OwNhwc19vAs5DmIdirTG28DB0C+keD\na+dFUM9+SYLrmdrbN+f8zBBjWnc+UE/rc000znHuZUmLcGuo+p/OFetNn12uzTZOB68X+c7B\nXQL6o6nTs+DY7M3jsj++m77S583oyNPwKhwHMf+cq7uB6V+BZeFQcD76kcXLk2uGc9UyjlXN\n+a0ZFi9eO8NAMO9B4Fq/CDRi1u0a7tmsFv11bWhEu36dZ3t676bfF8zNPnCCieFhUMWciFGH\n9YQ/6g43TYvn6zoRPWDdBm7UH8Em0FvsaBoyshONuZyycVgJLcINTdKwX34fBBfF4dCbbVUa\nZ9tnq9jIoZR7HuxrqkEtXUw3/rkib2hq3BegN9o4GtVSsWEenu3zGh0o7y9ID8D78Ar4S5B+\n166x8AZ4EH8JQvPQWjeIdxGaG++8tIx1pmWMkyjrxVX/WPBZ8b7Mczs4x11PL4DroaqNoOCx\nVQs3UM7Dgm10nN0Lzkv78AI8BQ/DefB9OB4ug9BAN9XEcGgZ2qZ5I+3Dog7LGucYqGItFErf\nU9Qfzw7XNsQvTRF3aZUH9nAZ1wzXjirmWlXWI30/jvM7oSNf3qu0o7vKOBbdc6qae517Xl+0\nIXTKd++ZpYoNo5AfNqrYmhRyfp8LXnr+Bq6Vrs2XgGvynKD5i9JYeLbANlsmHafhj3lrOOJc\ns6w7xrlnq0YsykedtdzPNVJRX8zjhpAtK9BZBZxUfs2IyWV9Eac/NeMfgNXBxcsD3gB4HVzE\nfgZPgIeS82EwNKP5Jdm+aqmrTqkZVoPF4So4GQZBI7YnmR6EF+EKWAmawWakkenaowYSOtkH\nw2GL4DEt3eS+E4kdcAeR9y8wARxjB4PvqVnN929fVgb1tE9q60FvXhgIcxRhf8VINQ6tU+2N\nEy85N4N1mu4mal2vQVgc6A3HZdmN37ns+9Is+0WYHV4Fx7lxvdWG0bDNYX9wLkV7F8S/FCwJ\nW4O/+G4HamJ/RN08aKdmXPQ39ZvHsKZeUceUiE780d4BP9oQ/Yo2bMUzt2zguVuQ5zbwPd8K\nm0Kzm9o/CGvAJHgGfg0xpvFmywpUUmA/Sl0JjivH2FfBDzALwDHg3N8FbgLX6cGwKMwCWuxN\nMU+N0x/EumF4OpgVwtbCczgsHBF1XNf208E1rhafId4PQ/3S0kNKvxQgd7pTCsQE1Q0Lv246\nsdP0+Ep6ApHxq8A++M+FvQv3EFwXi7ugvUlOll5p9bSIBS5ttIvbRuDB81swP7RlvyLRRXYE\nHAg+63ZYEXq7uZjXsnTM1NLIMupjWgs4PsI8hC8G9dY0F3/H0iA4DM6BH8J50Iy2L40+FjwU\nvwjHwdpg/71oq/Et4OasrprahX9KBH+Ezmm8f0VsXTC/prbPwNxgPomDveXD3JR9runvgmn6\nbdM3YENwQ+6t9jUadhH8Evyia1uvB+19GAuuXY+Ca5IXhei/fYy+h0ZETTEvTsZFXiMNh6Xx\nEVfFjedGffFMw1Lrmcbb9svgS1A2LwrOK9eky+Ex8AL5JPhRxotiM5v9XwV8R76/E2FbuBYc\n49myAlUVWIKCd4B7zxNFJT/Hdcy5f78EP4ZVwbXmNbgY5gHXm7Ys5rJ1hUWcYf0t8Dj4ITrM\n9Ws4/AEOLSJdq21LLV4t8mQnK/A/CmxPyA2wL5iTT5xMgeFhUMXcSKynVp1pfKTrBml6+MeQ\n/q+izi/ghvkFxa8Xx0dED7lH85yRnXiWB4noe/SxlluOSzUy7T5YuUY7vDx9CNuU0mzzJaW4\nrg66mNs2D05VbCiFXIhDn3quz6inj2PFw/vZ4Je3P4MHHPN7WfAwV7bjiPBg65gK82BkmdUi\nogvccdTRUrEeNy/bs0Y75Z1//4S9QB1Gwa7wNvjB4VCwngvBDS7GVap1Lb9lIl6Nw68bfvNE\nPuPiIhR5dG1T5A/XONs3AqqaZb0Udod5oLgHXIvsn2uAGp8PHlbU1Xj7cRt48LgGUi2ir8al\n8fXCaZ4o6xioYi0U8p3Fs1I36o7nRZrxYrnn4QoIc36fDa4z5nd+ua6l9ksCY9OIbvTbPteO\nKmZfavU94uxbaORzhsNk2A6awdwfy++mI+1233C890XzcuB7ds2sYsMoNLpKQcr8FZxTP4Hn\nwHHofm57XFt05cnCfQv3GfDjTLqGRr6Yr4ZjvIY/wq5V4TfNeqx3VpgbHgH3BD+I+LHDvH4U\nyFZDAb8cZcsKVFXAQ4WTUAu3NdT6Z6TrSmoxiW8icjHw4PoCeEgJc3O+Ej4fEU3uhgbhhma6\nEWcX34HtYR64G86FZSFsRTzO3fRAY9rfoBm0ctEOs9+hg3GpDhGO9EhzrDg2HDd/ga+AB1Yv\nlA/DebARpKYuV4Hlwu7H48bVDJpFm3W9IH8a5gQ1+RL4RdJNUG0OBO3r4KYYGod+pmmprqnf\nNOvR0vhXirBxUVf5QG98uq/4BdX8E8ADQ2+0OWjUjbAKDAbbuyvMAsvDDGCfot/OxfnAcWdc\nahEO17TUn+bVr17SFWY98axw69Wbpts/56T9sr/29RxYF3YD59MA2BIOgjAP5YPBcdgMluoc\nfl37q+vB8U/wO/Ci3GzwmA2YAABAAElEQVTrAk3O1osUOIa2bAzLwHTwLNwDzj3XnNgH9Wvu\n+4NhdnA8ihZzNcLG6Tc+0ozT71wOczw/C9Z3NRwFruu2Z2tYAdLyBLOlCrgwZOs/CnT1ZIj6\ndJ2w6QQuq1rOG2PPv8rgZcmveB46PNCl5mSemEY0gT/VIrQpNzv0ML6s26zEnQPjwUXTA7CH\n/zVBUw/1W8pAYs2ilYd7LTRI9Urjy37DjhPNjcCLwuYwL6wIq8IG8E/YD1JTM/VJbS4C1mFa\nM9kkGvsuHAZ3gfNHDXXVNC43eKeYcSnl8VZk+yRPhCNfuF7Yw2+e8Kfv0fg34AQ92KJgPr/I\nDy38OL3KjqM1tnN98BcEzb6qo4cILQ7R+h2/cfE0HBZ6RFg3jUv96ftI83fG7yHMZ1h3+qx6\ndcZ7M30RWBIehQmwDfwQjgbnlR8WPHAdCd8Bzfnke5VmsLS/tdrrL65+XPDr+tLQbOsCTc7W\nixTwMuT+tB4sCK4bA0BzfrqmOCZN03UvehveA3/V1dIxm/pbU/93nltnOu/nJTy4yOgZwjn9\nW3itiLO+WnUWydnxBWXrPwqkk6cre229tSZaGhfPjrz+lZWP4RfgYXc0jIeLwIO/XyV/DF+F\nP0IzWSx8af+j/RGnDqGJcREf+a7Asx6MgpHg11oXN+0xuBXOg5VhNtgVvgd/gN5uM7bTwFQX\nsxr28K95CAxbGI+63QyDwQPb9eDh9nOQ2ikEtoADYC7wMOhY8zB4HTSTOXfuBzV5GRxvboax\n+eL9f+OpvNarqZQtHYvOzzeLDMbrNy6195OAl1fzzQo/Atu3KDwDy4NzPG0jwV5hO9AKx5Xj\naCDYh9An1ch4LY1rjfnfP9PyaUrEG1euoxxOy3XEH21My5TrjjwRb9jx4bvdDbx0G7cLvASf\nB9cV12kvQ8fB1uCvlqdCeUwQ1estNIiGGvZS5JqyOHg59sKULSvQGQVGUdix9DrE+vgo/ph7\neP9nrfbXnllgplI8wU/WJMeqpHWYrhmv6W4C14JrtGH3vd64/tKs3mnlTbN3tjK3qqsUiMnT\nVfVZT0zScGvV7XPTZ+t30fBQYjm/moyAzcDD7dPwBvwMdoeboZnMeVVPj4gva1Lun4cQD5pr\nwFPgQWQ1mBm0r4MaPQDq93s4BM6DZrHQolZ70/FiupqmcfrVxzo+A+PBcfM18GDu+ErtVgK7\nghckNysP6/5i6ZiLr3V4m8buoaVvgR8Q3PRSbVJd9ZchaoqlZSIuHbv6469/mK7e8R4sK+ll\n13a8CjGvfe7N4AFbexiM603mGPBA8gJsC+pqG+1L2tbQyrg0nuCUsGNOtHK6cVE+dDOuO6zW\ns+M50YYI60Z+2+67PQH2Am0jOAecHz+Bf8Js4Di4BFyzfwrNbvHuNqQjE2BZuAkmQbasQFUF\nXPfGgh+J5oJYF/3bDqk5B2MeGl+ep+W0cv5adTmmz4AvgB8yLOOatjcsBFq0pzWU//x/Crgg\nZquvgAPITeBB+CM40JvZ0onWFf2I+sqbfsTHM9KweV+BXWFUkUGdT4avgJvS3eAXy8FwNjSb\npf3VX17wDKd5on8RZ/qmcA341eks8BLgl6APQHsZXABvAsfnSdAMvx7RzE/6HrqEa1oti/TQ\n52MyjQMvCKYtD3uA48dx5Lo2Ecp2LhELwpqwAqwMXqpSW5rAaXA7nA/m7Y12C436NNj/98AN\nUQuNWkOt6eYJjA+/edP84Tc9LPXPUERGPl3Hnqb/X+AYdf5a7jFYH7zAa3G5bw31jj93phm2\n+0P4E6wKmmMs7Xv0OeIiHK5jLvzmScsbH2l4P/FHnM+Oek3vjEU94darK55tuv13LrwDXogX\nBueFF8eNYQM4ARYD55nm+jQMYj0yLjXX9B/A9XAj7Pd/7J0HmF1V+Xf/0iHUhE5ICEWq0qWE\nEjoC0tEIAQcITZGOgnSkoyAookLoUhQQIUDovffeMwkJEHqHUL9vrcx5YXu4d3LnzJ1yJ+f3\nPGt232fv9+x6blBIL9MEO11pn9OHx7tzvLrfe5D0QliqtEBRC/gR4WqI/eV9/Pk5mY5H0wxH\nXOQ1HP5wiZqgNBz5Ik53ZvBc8CtwPXK/9APWs+C8fAHieXhL5S3gwlCqugUcYBvCkrATPAML\nQKn/tYCTLCZopMREzU/Af5PhOvgrDALznQInwIng5L0NNoerIA5leBtG+b6HbdJ4/XnbpB08\nlIAH39VhVjga/gUudOokOAtc5K6FreAe8IDTCEr7nreP7U/T0/4Y7+GrD6Rjw7FzPfjPCtSF\nLc53/mrTe8HDUF5LE/EQLAZuIL3gDnAsdidtSWP+AdrCNXyazMX5ZjPVHzJfYFyMQ90gjdev\nTLP+9LBvfMh4baYeBy/zHoQ9UJs2P3ioVvpXha8NdBP569shoP1Wy1z7q608JCttYDhVarOI\njzz2W1mPMm9eUT7SHM9v5jO1M2x74jmVqopnm2b/XTucF+on4NgfCV6EnAsrgWvMZuAafQNU\nk8++DH4PT8DDcABcA2FXvJ2u6HO4aQNss/N+DlgHHoFSpQWKWGBFCjnu54I1wI8IniUdY8rx\npz/GYbimqcgXeVI30irVEfXouhY7h/eH+8B5dymsDLuCc/LP0J3WY5pTqlEsMJiGjodVwAOq\nX87c/BxsjSYngThxAsN+ASwiN/S0nnzdadob5H0H0jxfEA6M3ycLL4MbmgeP5byYdraO5YEj\n2vHQ4ZTVBmmfK4Ujznyvw9hcGeO1n+PuNpgJ1KJg2noGMpk2Gg6NiA5yl6Ve2+0/tSmiIRRy\nXkXfdVvjvSzd8WI+v4BppzGgXURbRB36TXeMtlU3U+A/EJuQ5R0Lr0AceI1rTc0kNrWWoZU0\nD6r2Y4VW8vyINDc/L8zmjbmV2sB4w5VI01rzR5qu40o7X5y5Xi7T59meD+AjcL7eDx+DY9e0\nl8HyvjPnRlFZ9sSihXPlViNs226At+FDiD7l7Ra2SNONCyJ/Oh4jrpqbLxthx0ARNVEo2hd1\nhRvx4fqRQL/t3QhGZuFIj3JXE/9PMOycct42w2LQmqzTvGm+AYS18dZQRI6dIUUKUsa1KvoU\nbvQ1XOPbMzYLNq0uxU6mlivaUZN7netcT9RAOuW7LbIfaI+h8IKeGuU4dy10DXTfWAscu46z\n1rCN6ViMcJRxrhqXj4/0iA/XX4VNi32zGf/UkJdroB+oS1WwQK2bfoWik0SUA/1O0PWLrZvp\nUlCqxQJORg+Tksr4kF9ORBnvl9LI/wj+d8H0R8GvGiEXF39pWiUiGshN51XYImyVdiPSXMim\nA79eKhct4zygaJttYRC8D8pF/1XQPiHTLoVGsNeU0eicG/ZIox0v48C0UaBt54Z5IMbee/g9\nnHsAM79jqlJdRLcqbXc2pGWHEfZ580N30G404kY4CD4Hx0fMJ7wT2m77wzZpWqTrquhn5AnX\nL/2uecrDdD84HpYD88wKHgCUFzTfiQd7N+XjQPt7INkV1oEjYU24GLqL9qch/srhLyKOH+df\nXvZVUjuFP3XDbpHfeiJOvzLs+4p4y0cdHn6c8/VS1Bv1+cw07o1IwP0v2Pe0XWGXhYj3ULUU\nHAZbgR9nnobW5Dy6F9J8zYRvBtO6Uqkdoh0Rtx4RM0Rk6ZYWKGCBX1HmJfCyPRe4V28MqWKu\nGac/wroxFk1LFXny6bFuGO9HCXUYGBbTTwfnsutzqTZYoOitug2PaOisbg5+XewNLvZu/B4G\nGlVOmJho9epDpTrjGboxxrTfYuAGdBN4cFoS3HTng9lB23oxCM2J54kINJA7edZW+699VNik\nJfS/f83fK8vjIuY/HTP/gdAXloCoB++EA50HY8dnuuhpr7hE4e22qmaLSvELJL3on/g9wPtl\n2PGyOLwGysvMWHBjuh3aIm2nDVNFuCvs6qa2NnhAnR+cI44H58R5MCWEzcIl6hvFmIm0CH+T\noYLHvDNBzFtdN9m74GjwQrQjeKi/CryorQaDwTnuhWoN+CdcDuqWFmfCrxWZt0OdBandC5Dr\ni+3XXl4EboS1YRZYBE4DL9Z7wpWgtJE2SG0V4TQuzavfPCqfx7hIc15rN8esc954bescfg6W\nhY5StMH29QPdiJstC9uuq2FLUF4cbwYPfcOgVlkuPvakZZxLjpGuUtrn6Luu8eJY0RYfQqnS\nAkUs4F7tWr0XvAmHwyGgYqylfsddKMZkpXCM0XyaYzbkecB8m8MYcO9cB+6EUgUsMFmBMpNS\nEb+sHQtrwlOwMoyDRlV+Ara3H9aX1hmTPSZzhH2OlyPzHgEvgAepA8CDiV8s/SrtV2onvPnc\nlFcHD1qNJtsffdevItwS+t+waR+DBwv772Hc8EvwLMwFqa4j8An8HabNEn6K+zM4Pws3ghO2\nybdVewRpmou+eh3+DebxABeXI7wTflnz8pS3mWkTk7Y7FH6YZfQycgpobze7ztRxPOw5+DPs\nBGuBh3rXpNVgCMQ40w6pIl43bBx5Ihz5Iz7CX+Dxchnjakr8d8OZcC9oW8ea9vc9jIStwbXR\nfK6Tm8D20BVamoc+DKuC/kXhF+Cvq7bdS5t9WQC83PnBZm8IaR9tEnbK28f4lChnvsjr3M3X\nEWHd6+FrUM/DzvBrAx2saF+4o7Ln2R/fu+vPHVmcjmuPaV5s2qJ/kdlD4pEwOXjO2B+8AF4I\nXSX7EgobhGu8l+UxkaF0SwsUsMDClHHMLwAnZuUNqxhr4ebXkYgPt6XUd//GOI58hp2/Ud9S\n+OfLwq55rcm5uT28XAXXd/s0SSq9fU6SBqih08eTxy9KflV1U+vsgxKPrJucUE6ieiqdpFG3\nbhqv/yvw4DAePJR40LsR1Cvg4f4C+CU42afJ/PfhNppcdMIWtr01u0daryzfQ7jLw6ngwWkj\nuBKmBS+VyvG4GVwG74J2dXweCeZtFEXfw412h+2MDzl+5gX761doD1teEvuAl+vBMA84drTF\no9BWHUQBN7bH4HWYDTxsN0Fnam0etg/YhvfBNr0N9tMLi0rnmOGwYT7etFDYNcK6aX797glx\neB+Dvx942VBztDj/tw2u6+ADcC3sBv8AL1CdKe2yEmijm8DxcBLcAsbbpj3BzX9uUM6VqcF+\nOnYsG0rtk4691B95Iy7KhGu6v2yaHnmMU4Ynhw0MINdC/bZvBaiH4pm6aZusO8K+X9PnA/v/\nFngJmgrOAG3lfHIc2sYXoS0aSWbHyNngOPZ52ntHeAK6SpVskrbF9C/SiDb4fa+bwzIwDi4G\n52+pSccCM9LV/uAa8zjMA845x1VeERdz0vQ0b6RHfKRF/jRdv/vCRfADuBvcJ/eFs+FKuBoe\nhLycm/fABfmELPwl7qgqaWX0JGwBN4h3YDQ44O+H38Nr0GhyEogTKTA8FIrIzS7qqebGM8PV\nhh5ynbifZ9yB68UgNDMeNxltP2dEdoF7LM8c0Y7n3k7ZanaJ+PR9hI1cjD7LynpwcbPWbh6O\nnwcX3FTa7iewNfRPEzrQvyx12wcPgUU0hEJp38MeeTdsEnmHZeW8JMp54KFSO2kz5+pLYH4P\n77NAUdnHbWF1mKyNlTSTv6mNZSK7HwW0gx8Mwh7OGft0PTg+wi6Rrhs2quaP9HAjX9SlG89x\nzPkl3TifZ/hI2BjuAg/Tzt8BoPaCDyGdx8ZX0olEDq+UUGOcZa1DHQO22Xc9Hl6FH4HtPQhs\nuxfKmyD6Hf10LY+41I7hN60akSfctJ7wp27UEza1nOO3CZ6BYaAcy6Y5BoqoiULpc6N9lVzz\n2QbXFi+Vvs/rMvdmXNNcp7WvadqwSLt6U25L+CnMDu3RGAq7dhSRa1UlO0RcvCPD7kFtlfU7\nN3zHt4JnhvdgFegMncxDrmjHg9zr3PN6ogbSKd+rZ5Yi8oz0Qo0FHe8+y7XIeRPzMR1n4Q83\nHXvGRTjcyFcpLV+/66Bz+kZw7pruXH4g8x+Om5fr5Cn5yDLcYoG2bv6Tmt0cZP2hF7j5OgFG\nQamJW8AvHaJ0pwYn+Tg4DL4P88EhEHJTuRwuBvM1qvyaU6u0yaNZ5idxbwfjpoILYD5YADyw\nnAapXAyvggthdJrQIH77WUmV4p2LjiMPIb+D7eA+8MD+BnhJkqPBC+VxUFQPUfB8uA3cZDpb\nc/LA/2YPtb9uYgtDfr3WTqJdQuFPbWhcGk7LuJEr88jkMB0on+fz/wZXQn/4LfhlfD1QZ4EH\nxCUNdJJ+xnP2g81gNnBdvhWGg2NgGbCPf8r8jofov31cHpRxlTCPCpukbkvKt+XScPjNH88z\nzrB7SDxrGvx3gGN0U6infIbPm5hcjz00us7+A3yf4oHSMT8SdoBFYHHwvbdVfrS4FP4FztHu\nrHhnXhjbqsMoMC8sCoPA9fo/4Lpc9GBO0VINZgHH+1iYCa5O2h7zPsZYkvTNGhN5Ii2dw6Yp\n4yI+/Gk5zwzO6zmyfJ4NHgbXuy3hUFgJStVogXLytm4oN7UTwUPErLAjbAWl2m4BD16rwp1J\n0VPx/xpehWa4FjwMNrrsq3LxigVtQkTyx/hY+DyA+PXHQ2ZcBNbG71fJ0FF4LgPnbE+wkf2a\nmG3CRtppKHwBcaDDO+GSPX/m+pXPw52H41vAw/Mu0IgaTaM3zBo+Y+b2q9CR1H4xltK4sJ9u\npXirdFONfNbhr0GOxT5ZvOPtPFgb/ICxIFhmDbgNHK/KtM7StjzINl2ZPbAvru9+tiy8Oa59\n2RpehrBd3gYkfTMH9bcl3fzKMmH7CREV/phuvslAv5wL90BbPqaQfaKK9uhWUrRF12d7GT42\nyej79oC1CswP34e/ghe5I6AnKmz1NZ2LDwZt6ecmZP4TjMkKuT57ofRDwtLwAJSaNCzgPrQy\nrJ9113mWKsZaGqff+Gp582XScPijrBd8L2rPwjqwF6jLwfOEY9V1p1QNFnAxLFXdAm4g+0IM\nXgd/+mWgeskyJbWAm462fDKJnAW/m0hvOAm0cTN4iXoNGln2tRbFuDJ/LHQj8S8E+UuQX+m9\neI2FL+A/cBB4oJ0U5OHlI3B8fJx1OC6i2uGnMA18kLmubT+AJ6DR1J8GOx7sb6+k8TFeIirC\nupIqwuGmafqNd1ON9PDPQJzz1bAHep+/Jnjp0JbOWeUh4Cl4GR6BXcBLqZen6+EAeBU6QjNR\n6WNZxT7vRugLjpErYXmYB1S/Fuebfhq0b3mFHYyPdOMi3jiJsG6aL/xET1CldOd07LnaT2zz\nu/ASdLSi/dFWn+3l55Xswc4n024HL0a+v/5gnG0/EE6Ar6CnyT463l1Ljm5j57TbF7ky2kvF\nGtUSauy/7tm7gb+UuRb8F56DickxNLqVTBNLt2gteVp5RIcmTUvti4H/muFFcBwtC65N+h1b\nsW6kfqK/UcSH+01C5on4Sm6a13OCe6Ty0n4N+JHNfdEx2pPGI93pWPnySlW3QN4+HlzdUErV\nZoGYzDEp3XDPhtngNugNHnSGgF845gcX3jehGY6BqaHRFIvhxNqtfZT5PwEXsAHgweUu8IDs\nZfE8GJaFPaRol43gOgjb4u1RChvqymfgBn033AePw/2grbYBD22HwWhQr8Pt4OFPG54JjrtG\nkH1xY/MroAobOF7Cr6vCjbHUEvvt30rxEWfZ1B+lnJeORw952s58/no5GJRhL6Pavh+4KW8M\nx4Hjc3G4E7aDB8ELgO9qAaiH7qCSn4HPXRvmAdvkeu0vHV6gol94JygNm1dUuC2hlr9pepRL\n4yKvcaZLPj3i0rxxOdK25le69mOAgTop6s5XF/GpezCZHgAPVfeC73RWWBPmgvGgXeV3cDpU\n0txEngfOuzFwKnjZbgTFO7atR8ChMKeBGnUt+XaHPll+7Wsd2uLhLK7RHd+v48Qz0LnwIdjv\n5aA1ubf/qpUME0u3aC15WnlEhybtRu2+Z9e5UbAirAa9wHEQYytcoirKvCrcltC3fyM+dSvV\n6UerP2fFmnCdi66/t4Pt8p2VKi3Qbgt4GPga3oLR4KZm+HNoNNlucUIFhodCEbnRRz2pm3+G\nacZ54AvXg+77WfhNXA+9ygXYzdh8O4E/DXs4uxI6W8fywBHteKiXvNQurflTm+l3fOmKdouD\nquF0M5qX8MewGXSmluVh9sdDXRG52dmXSjaJfqdp+Tht8mVWx424YS9dL0NeKr1ojgPrORJ2\nhCfhaZgWOlLNVN5U8AFeOmxzzJewU7ipXVJ/Pj0fTvPqN70aafobWT5ta3zY3Q8d28FacBdo\n734Qcmy4btoPv2L+DP6Sha/GLarhFDwRvMA9Dy+C9UVfbNc7kNrPtLT/kTfi8uGIz7tRT941\nXxoX9eVd80W7wtVurnmGHcvmcQwUUROFoh1p2ycWZxt8vviezK/feP2uP67Dvvt4/wviT+WF\ndCQ8BE3godGwHzMmh3poDJUMKViR4zG1SWt++/wpeAHweXEgxVtVjkfXfPezS+ExsI4fQ2fo\nZB5yRTse5F7nnteaziZxv1yGQYSfy+LWwV0880+N6xjQ9cOKh/OVwHFzDBwFP4B8OlET/hOG\nP+AeAvNApTzLE38oLAoT00Ay+L49sxTRUAq9UKWgH4WcK3vArGC7PN84hnymbuqPON08ad58\nWqVwWm+U1X0PVsiea9jLkWuiftfH/Hh2Tp8CpSpYYLIKcWXUtxZw8PeCOSEGVtGJ9m2tPdcX\nNrKHTmplXIwz4wxrU91fgxNY/QY+BuPdlM8HF90NYWVoJE3VxsZql1iEY3yNJe4l8MD0PnwB\nXoYGgfbzwOBGvCSkWoaAC/f8aWSD+H33kiofZ9jxdB2sCrFBa7cZwQVfeWhR18PFcAA4j7eH\nesmD17rgOPWd1EtuZsq+xDyaEFEhbHxqs5hjlfLn64o8Pi/K6UY+N33924J6BS6H2cG5ehN4\ngPkAXoaQadOCh0Y/dFwCu4O/ItXjwOyG7yHgX7AQRP+dE46Bt0BFfPQnXNPCn89jWijyGI58\neTfS8nkjX6SHaz7T5N/gO3Y8nwgdobQd+fpti+/jWdB/Hpjfg1S8J9cl37NtfBjM5+E21c4E\npoTV4Rw4PfMvhbsxVJMHXNOXAJ9r/rXBcdcVsm+2w/XbuX0+jATX1Nb0Dok/gkPB/exK0EbX\nQk/RanTEfqW6lYDvajbwPcZe5NzfD74Cx497mQyH++AeGAGOmTR9b8KD4QpwPf0n5Os4mDjP\nDffCSbAVdJVc086BU8E1Z0Zw7MSc05UYV+ES9R1F3nyCZUL6g6jXNP0h2zAMzOclvxniQ9dc\n+FeCUjVawEWvVHULuEl4QHXQexAo1TYLxGS2lJNYez6a+U1zQVwFDoNfwSyg3JhehQ1gFPwQ\nGkke1ivJPucVi9uCWYJh6QtusG4s2sU6fwceVoz7PXwfXgHlJnUHPAQeSF+EM0GbN7q025cQ\nB3n7sy44Lz1khTzUuEFEn9/Hvxg4lv4L2vF4SDeJOQgPggWgLdqMzGPgavA9jYYNoR6y/fbZ\nw0HIsMR40V+LzB95o2yUi7DPC3/Y2TzGeaDZFd6GeaEZrG8+mAcWBg8600LIQ9N04FxP9RKB\neE4aX8TvQdT5cG5SeHn8n4LPV7az2vOqxU8oOJE/1iutKZ8eYffceLbr23hwHH0OnSWfb3t0\nxTliu5xPfpxyDkWaa+/P4T3w/ZvPd5vKPI+AF4mZswT79BiYlpdj5VJ4Gi4BL9K+T+u4DlzT\nDoLOVNjDZ9rHeF/98d8Crh2tyXF3OuwEh4Drb0+S7/WzCh2y3+49leRa8jy4XzkeDK8MXibm\ng48gTb+QsGuNY9A1W9vn63AsXg5fgWNoa+gqzc2Dn4IZwTkxCBw3sU/pl1qVz2/YeZjWYTgU\n/sgX8c5ntSw4JxcBL57mWw5K1WgBF4JSpQU6wgIxea3biRk4QV30xK9ud8DhMDmoc8CNxvxH\nQ19wsWwkpX1P252Pt495xeJqvF/K7L+yrGnO2ZngYOgDu8P8cB7MAB5YXazXBg/xv4Purkp2\nSNts3x0f9j1sGK7xljc8DsaAmgJGw9/ADcwD3hvwIgyHWeFk8DB2Cxh/FWjbiWkhMlwMjlNt\nbv3a/99gG9urZ6ngC5gG7Ff0Fe+EvuqmcYZD+fiwja6kyoffJ3FN8AATWhHPatAbnoR9QJuv\nBR6AjfNA4+FmAfDQcBhYt2mptHm95XtWvjvnx/QQNtC1HeHinaAIR/8NS15pXOQ1T8Qbl8bn\ny0e6rgc6FXH6HTfa1Xls+ztK+TYatg/aK2TYeC8vtivaaR79zos5QZ0Jvn/lpckx8xO4DV6D\n/cGx63iotHb/gfgVMvylwPE+NVwOPn9HOAw6+/AbfX6GZ4e0i3P8UoixFmmTkns/nXU/SbUc\nAW3j+9N22kpN2eJ852+sLX8i5XGYI5djfcK3gu/f9S+/ljo2HG9LwSrQF+6CrtLLPPhQcN38\nEPzIq7RDEOHU1R+KMWc47BdxEU5d00LV/PHsXck4eZb5OVzjndularRAfgDWWKzMVlqgJgvE\nRI0J7tcW5QL6JXiwysuvH0fB2/A5uAjcB40kF/JapF3sX9jHMuF/JUvTTqGPM0+Ue4HwPPA8\nuLm4iY0E67wZjgE3m5CbyvYwCOI5eLtcE2tLaqM070e0PE3zADc7vJv1aBHcF2FVeAlmg3+A\nm+/fYQfYAqYBL+vfh2HQmjYn8W7wsGRZfzVyHO8LY6DWd0/WqrqMFPslIfsdRFzqpnnT+NRe\nqT/NEzZ087wDPLikz3+CsHNSe1qHdteGR8IgWA+8mGtrx60HqStgP9A+s8AmsBp8BfXUw1Rm\nnStBHNSsP/payQ1bRZr5Q5EW4dZcy1eqI8qEXc3jQSXq1nb6vwbTpoN6jBuqqah8Gw37/MnA\ntijboqKN+s0ntt285vES43y5ChwP/4HXYTz8DQ4C153bwPz/hpBf/x+B3cB3NhicN9azB2wE\nPucCcJ7uBJ2h6LN9VQu2OP/zi4lr57FZ/KTo/JlO7wheilQ/8F27jvqe3ZvmBeVaGnJ8OX68\nAJ8EJ4NztRmsK9Lx/t8vYQfwovEyWE5Fnk/x3wHXwxFwE/SCrtDcPHRl8IL4JThuXedUjKOW\nUOt/zZvmz4ejtGNU8ulpWfOml/s9CTuXfgFXg3POi2mp0gLttoCLtxM/BqauYWk0RbvzfRla\nsCNTUC7skdYZ/rzdIj7KRHsuoZ7PYRw4ed+FtKxxLj5+/feg1VlyIxzRjod5YEj7XM0fdsjb\nJZ/ffG4MV4Kbw4/hSTD+BtBOlnkHzobQlng+hBnhZjD/WDC/h/w+0FYtSwGf5Zf6IhpCIduR\n72OE82mGIy71R35d+3Mm/BD6gpdr4920I18z/svhTngAtNVvINUGBHxG/zQy8e+cpZvns8S/\na5bHd/EWNGXhtjrTUMD27g5euvRHn3UNt4e0jqjX+WdfrFc7egj5CEzXfSLzR1s+IBwHAbzf\nyI16UVgSPNhMBR6eYmw6jx+C4VBUlj0xV3hawmPAi5nPin7l+xp2S+MjLvpWLS3S0/wRlz4v\nLV8p3jjb6FweBvdC1Dk+8zsGiqiJQunzo95qbuQNN8az8+NFiHKR7vt7Glx79Nv2S8B8/WFd\ncG2Jco4dv/SHnDsedM8B81ivOP50dwTj/Yih9oanJvha/viOhyThtnhdq6Jd1dzoZ9q2GLum\nvQrOyaLvh6IdJi8dfpAoKve6Wi5/W5PP9cBx4Ps4HuKAvgT+ZrgZzgLzKNeD12Ev+C3cBTeC\nc9kPA2m6l6P7wQ9E/wDHUz7Pj4jzsH8dOFZd81vTQBJ9p1O0lqmVtKGkvVAh/Qji3gXXQ8dH\nJWIs6RbFeqOe1B/1GRfj1DXkbngejPfcpPs+eHEaB/kLpXP5FChVWqBNFhhM7hiQ6QA1rtFk\nm9O+RH+c/EXkYhMTtJobz4tnuzlGnJMy2hCuaQ+DafrdOJ+DM+EP4IY7F3SG2ntBeoNGVrNL\nxNtHFzbdwL6HnSJNO1jGDcWFLi1vOTcoD/va5zQwfWFQbjQ3wtngIr8gqP7gRnepgTaqoy9I\n0T9d+xeu/rCPNgmbhb1M0+6RZjnTPPhdA4/BKPgEzONmsimoKcFNImxt2tHgV8FU2vgt2Bd8\nFyuCz/wY5gPTX4MmKCIPX9Ff3fBHXyOuLW7ehlHWeG2TPuPNLOyYcfxpv5lgVvAAdDA8Cm2R\nZZeDPuDlZjgUlWXzFyTrWgo+grBTvs8RH33Pu5E/jc/HRTh19Qdhx3wdpnuYdNzdBI6x0XAU\n/BPuA+fUGmDZogfwJspG29I25P2RJ3Udy4ZfBOdRmqbfDw6Oew+6jgvr/DDD8F7gHPLwtRn8\nCZ6EkOtOzC3LWucD4LscCdbhnGsG5by7E841kKmjL0h5Oxm2zbZVXgLj7Mv6sAXMCV0hba3N\nnac3wW1wBRTVCAq659Uq14RK8r1VSpuCeFHmmXGC79s/afpURDuO8krzmFYpT76M4YHge4vn\nG9cWDSXzCxUKuHc6Lh4Fx0aME91KY6mtcWk9ad3hd86EP83rR6itkzSf69rj3F0Z8rIe5+qw\nKvyd+NmhLVqNzMeB81c7nQx7wrzQUMofABqq8Z3UWAeY+l6LU/5NLBC2iag0rL3S8ORZJiek\n4860sKmbsloKooyHTg9VR8Fv4D3YFHqS8vPPcNhJ22gXw9pkA4iNJQ4bRE24RM6C+0fYFTzU\nHgg3gBu5/sFwELwIajRoU+1Z60ZD1k5VjIP0odpCPCCEwl6GtYMboWXlXTCvdvgh9INpwDza\ncF9QHg5+DueDB7/dYHc4AEKz4tFWJ8Cp4KbiBfRBmA486D4A46G98qKr7EPMkXAnJLThT5QL\nN7WrtnE+RprzTa3V4kx4vofnt6AZ3Hhvg/lgE1gBoizeirKsNvKQ3VHynXmwCqVtCn+4kSd1\nIy21TcRFvmph4yUtm/otP1OWZw1cbe5Bwfm3JewDHmpWgc5WtNN1xT7MD66zyjQx3nnVG2bL\nwv7K6FwQ04+Bx8GPBZfDHuA8c15MDdeD/f4pXAdjYVnQHgPAdcn35yHuV3ArLAZHQmco7JB/\nluuEcq2wn46zO+AqOBdGw97QmbIdV8BhoM0fhR9Bug4S7FC5JlSSB/VKae5joszzwQTft3/S\ndG3t3p9Xmse0SnnyZToybD99FzOAbU5VbTyleSbmt24VdUU470a6rr8SPQZnw6lwMHwG28OC\ncDdUkucO52c14pmVyqZx1nMJXApzg/PZfdLy68Ij4FmkYRQLQMM0uAsa6st18NU6SLqgiV32\nyLxNIhyTNt8w051EqcybjkPzGHcNHAKjQHnAciNvBOX7WK3NYafUbtF/XTc9LzweHgx74Pew\npb0Me7hdANwsfgK7wd9hVfCw7gH2JfCw4uEllWHr9xDT1ZtN2i792iXskKa5uaZK84TNzTMG\npgcvNSrNZ/gd0KYDQfv0hVthO9gbzgY3PjeYY0DFJjgzft/JOuAFakdQljkc3KTaq7EFK0jH\nUyV/Wm3YxDFg3vNhG9COR8BasApcBqNhEzCf42UkeEjW/xBsCkXbTNF262xqiDlhZWnfDdvX\nWlQtX9RnHWke/fm0CIfrQeqfEOMk4m3vl7AVeKHwstSR8rnR9miDrodV15RQ78zzJu5sEHmN\njjqmTfzGu74sDLfCnLAQzAtejE+C2cGDmmPL8fYvWBv6gzZ4DjxQ+Tzn3/2gvZybnaW0n+kz\ntZmXvAHg2nIjbAuO/+3hH/AEGN8Zcq6tAUuDdlOzgDYu1XkW+AuP2gG0vecSx0nMD7wTFGPK\ntFT5fGla6q9WPvLk612EBOfi0fAeHAXHgpeWavIZN8Ce1TK0IX498jo2nf/vVyi3IXGnwcUV\n0rplVBwqumXjulGjYvB3oyZ166bExE3dsKFuxMcC8FXWm4j/hPD+4EFMrQRLwB0GGkDRj+hf\nvsnV4s0XabrW44HCA7k2ikXHeNNN86vm8jAvHAweShYEv9T49caN3LihkGonAm6wHoS6m6J/\ntivsoN/1KmxrWBlO48wzH/QBZZp1eLhRhj0QegH6DQwAL0seMIaAG596FDywueEoD5J+Edsb\nvEh4SNSubpBvgZel8VAP7VOhEvswMdk3UeHPlzPeuIh3TOm3T46nZnDjXxkOAfu0OFwAw+Bn\n8GOYHuYDx6YH3s6W72wt8AC+CuT7RVRFRb/zifn4fNj88Qz9potxQaUyjrXdwEO2+gxOhutg\nCrDtltsPOlK2MVW02Utu+E0Pv2M/r6gj+umccn2J8ED8HtKGg2NC/x/hFTgT7Pc4cAx5gNM2\nR8HfoRc4rhaEreEF6CxFnys9z76J66T5VoePwb47H66E7aCz5Hi5C1y7QzGHI1y6HW+BR3jE\n1eAYdt2MOYD3f/wxZ4wPVYozLa0j8kZ8pOl6PvKdK/ce12L3uwehHxwBrt1+3DsSOkv9edBV\nEG3LP/d6ImzrXPmE7hp2gS5VmwUc1DFIaytR5kotoO3ChukCoT/GoXkOho3hYfgnuHG6AZ0L\nd0NH6adUvAnYFp9ZD6X9TOszPrWHafmxFWVtj5uxB38PF1PCnBCLsgvO06DeAvuQr2sP4m6E\n2zNWwvUwsyHUoh+SaWeYBzwodLTS9ocdwk2fHfnyaRFvXv2ma69Q2PRaInaCvvA2DAZtczr4\nNWwkxKXHC9Tz4AHlAlDW/RVYrp7yWWkfbL/h6Estz0rLR/5K9WgX4x1flhkAHno3Bw9/qR4n\ncBJcl0WOxt0RngIPw89CR8t35zN/D3NA9DNc+5IqH2+6cfl8rYUjLeqK8hH2eeF3rmpTFXGW\nF9NehalgC/gQPNTsCitAZ8s2uZ5UU9r+yGOZNH4awsYp+/UR3Af2bQiYvhDYby89Xn4ca845\n7eF6dRCcCM6vrlT0w/6l/XyHsHgY7g1XwMxge70sGddZ8mLpuC/V9RbYiib4/mO82KLUH+PJ\n+IkpyoWb5rce9xnnjfKjRmhdPJ9kDMJ1f94ZLgTr6kxdy8P8IOKHg7tzD56KsPNce72WS+u2\nwTB4t21gN2pYZw+2juh6V/QhFolw8/3yAOqmatu+gONgLTgZloR5YXfwUNRROoOKzwPbaHvW\nAQ9iRWU/Jiaflb4Pw3kbRXrkXZY8fn1x3nq4cNF8F9ywrwEPrq9CXvcQsRy4oa8KL4MHsptg\nYvoJGTzEeUkaB+tDZyjsoQ3CDroRH7ZK0/Np0U7zfJnVE/kdc9plTtCea4KHNr9iPwG/hUNA\neeAdATPAruBG4IVK+28GtdiRbDXLNqroY/jT8IQME/lTLX8aH5ut4+mzrL4bcPOXI5P6gGMn\n1ZgsYFpHy3bvAs5X35vvQPkelOn6w37GqehvxEe4JfW7+SNeN8qEa9l8+TS/Y0lFfv3m/zSL\nG4DbDzxgG+96U0+lz61Ur8+UyJf6jQsin66KcEuoxc7GfR4RuJY9FH4Pf8rCUX4g4VUgyrhG\nNsMS4PrlfOsuijaH65gfAHGZnB+/B0DX463BdbGzdAkPWgQOAceaLA/RVrylOsACU1PnrEm9\nC+C/H8Lujv32KOoJN1+X71n5nPfAtfo1eBRCXpTegl7Q3vZEnW1xR5PZ9fkq8BzyENwOflh7\nA9wrt4RSPcACg+mDhwYHWmBYGk3R7uiHrnFDC3bEy0NaV63+tB36ox0R76Y5TcE2FS02iIIe\nnt3AQ2fguTkCBVwXh1ptkuYLO6R2Sf2muzBGviPwr5+FPRh6uK+nfM8uwn7dDa2ExzZNHxFt\ndIeQ3/an/a7kT/OEP/qd5o8041J/5Enjony4bib6b4ad4DnwwOfBO71obkBYu88FITeye+Ev\nEZG5zbhNubhag479aHe1/qTpqd9+VApHvG4lfzzHOeDG6zhyHh4K68HkELoMzw2QbuJuiH4V\nnAFCi+HxMDxjRGSu42h4Lq4twevI/AzYxnnhIog+RT9SG6Rxab5qefLxtZaPcvEM3ZSoxzht\na/sdY8b/CZzHO2ThoutfE+Xj+dGeSm6+XWmeSIu4CFeqN+LCjTKOBftnvAe20+HJLGycjAYP\nTLfCzvABxOUDb0WNIda1o4hcq6J9rbnRl2hnuK4Jab+eJmz7oy7zeQF2buwLz4J9fxA2gnrL\ns8lH8CFoO9v3XyiqERQ8tmjhbl5uIO3zPRX94OkZyV9lxmf1NOMeDo5x640xE2MhdWP8pHG1\n+KNcWnf4I83x5zzyMhRaFY/1+2G5Vrnun1Jr5hrzue6vAI7T3WErWB5K9SAL+HJjUMagjsHZ\naN2Mdqf90e/kLyIXm7BJrW60IfJHONxYcAYUaVA7yvyesnfnyrtZ3JiLa0vwZTJHP6u59rtS\nWtgjdc2Xhv0nLG6K4uJtugeResuF1rrnTir2q6lxHjqKyENO9MV6UoyPcD5PpEV8hCO/bqSl\n/kpxbgoRr/sTSLU4Aevol0W6yHt5yutkIq7JRTYTbsrF1RqMC5JtyvfBcFGiviifhvU7juJ5\n+o3zIK//EYiL4aL4vUTdAfvBmaAt9wTVH+6HeI6Hyj0gdCKe9lyQPMh5EPRQ6Jh8B+IwbpuD\neH64xutP09O4yBdumi/KhRvlqoUr1RH11VK2vRek9BnRlmpupbwRF27aT+OCiI+6fQ+OmTTd\nceIYODtLM++zcBDMBx7y9wbjfZ+taQyJrh1F5FoV7azFjT7kXcsa55i3v/IZGB9h0/8Cm8Jp\nYN6Nod6alQq3yvgb7hXteIDzqrwgVTagZyQvoluCe9/xkI6LGBO1jKvW8lhnmp4+Y3ySZvwx\n4Pt/EbysHwh/gI/gDGiLHJ/1viC15fndOm/8bNetG1k2rsdY4Hut9MQ0J/+rreTpiCS/9PnF\no57yoDAxhS3SRdEyEZ+W1y4eBkNz4HkCroLzwPRDod7SNqre9mmp9bt/7bv2CFWyhXERn9ou\nLZf6rSut18OE6deakCnfvwh/mqW7EQ2AvllYxzpXgRcM1FnRP92g1kfk+2456zC+Uprp4/yD\n7K95ok9n4ffgNwzUM7A8jITtoB94SHODdS+5EjwwLgL+orQfnAQbQz1k216D6cDL6evgl9RQ\nNVsZr8LN28FwMCFj7k+US+s3fz6cKzYhaL60jR5IjFNfg/b1n/Rq23oo2lpLXeZN+x19ivaF\na11pX9NnRPlTyfND8FKtjB8Ijh3XkY/hfZgDvOCOgntgAzA+tRHBLlf0Me23ffozTA43gmHX\neg+wzoGwxSD8Xlh+BX+F30O99RYV/jvDeVuq4yzgr72XwkPwH4ixgfcb+e7rqXiG42tqcI2+\nDAw7l3z/K8H18FNYAX4D/iLb1VqNBhwH54J2c632I9q80FAqL0i1v656T4Dan1y/nDHp6ldj\n22oKG4b7ZlbcTdU4x+P3s7jOclzwPNDtlTxwcfydNTd8J9XeS8TrepiKw4cH0yXhcdgW/gFh\nS7x10wvU9Bi4wHngVfVa5OxTjIMJFWd/0j5HvPkiPi0TcamrP7B8Pu0XxI2EsSaiV+BQ0Kaq\nN5wAt0HY1E3oEfBLq1+GV4eLYWHwYFhvpX2spe7IH25aJo1LbWG8GBfvdBr8/lMnD65+qPBi\nsy+sD7OAckz8AjwMrwvOH7Uy/AB+Bs+BXzNPh/NhV6iHnJNfwbGwJUwFvq+80j7n01IbVEsz\nPvLl8+TDYceIr/TsOZL6TLducQwZ9tK5D3SF0n6m/kptib7phj/y7YbnSvAwZz2R/jj+ATAj\nPAkzwVywIjiGVgPnmxfH7qRof/TVPt0CG2WNdKwbNx38C7yse3Fyfrh/xHy5NgvjlGpQC3gp\nCa2FxzHhu5e2KMZUpTJRV5pHvx+chkFfeBCMcw1U7k+eW5aGVcHLeFqeYKfK9fkS8FI0Nzgn\nnPP2zb3CPXQwNIz8p1KlarOAL7krB19trew+ubRVTPpoVT48e5bgoex9cFOZPovrLOdZHuQB\nzsXFQ4qL4QC4CYoqP05SW6T+qD/i0nIx3sLtQ+bUfm7GttdD6CHQUfo5FXsx8CIxGhaBeint\nT9igtbrDPpE33CgT6RHWjbiw47TELZTxNa4L91nwPHi4GQD2dT1Qa4C/krwIprkBeDC/H9ws\nx8EesBy4IdRjTbWtoWi/4TTecPQ/jU/9aVnzh6KcbvhNi7Lb4dcWzse3s/heuO9CNXkJ+Ahe\nzWXQrkvm4ooGbesQ8IL0NCwGn4Bzwc3Z9FDar9Qf6eFGnw2n+VJ/5E3jLGc4r4gP1/S0XLTT\n9M1B1zXvPegKpW1L/WlbbGMo7ZdxUcaL0YLgnHoZ+oNp/4CQc2QYbA8Hgum+SwltiGdjcI5Z\nl3uDc8x33NU6gQb8HgZAeun1kHoe2F4vf8r3rLwEup6UalwLOBZDMRdi3KeueSIc+dO4mDtR\nR5on9VuHMp9rww6wOswJtmU4dEetR6PWAPdXz3N5ObdPg4vzCd01XI/NvLv2rWzXdy1QafJ+\nN1d9YtLFICa8NVfym3dm8LDzGHS2zuSBN8AG4Ea8BMwHReVXHxX2tn+h1G9cag/DphsX8eHm\ny3lo8KuRB/eO1DNUvih4aJkHPgUXuXrIvkW/wk3rjfQ0TX/YxLyp33A+/Svi4rCST/PyZ/8G\nwvpgP0eD/3TRd3hYxvW4H4IH/etga/Ay0Bu8KHl5vQlWy/w47VL0O9x8ZRFvf1Q+3BL7rW1N\nD0XeNC7Swn0Dj5vcO7AbvARjoTU9SqKb+dpwY5ZRuztuHs7C7XW+pALfl/a37+PBA4NzNt+v\nvG3I8o1Mi/xGhi2iTGSMPNXSI1/ejfrT+KgjxqLhL2Aa8LK3DHSWol+VnpemRZvDNX/qN5za\n7HPCt8MTsCv4vm6G22BuGApNYBkv3tvCtRA6FY/jzbm0MjiemsG87g9dIdv6HswEJ4Nz3Png\nBwPTfIcXwhrwGthP12TH5XZwCBwKpRrXAq7zQ2AUrAityTGRVxqX+iNfzKlKaeZxL1ogy/xb\n3Cczf3dz+tMg985KlyPbej04p+cC50qpBrbAYNr+NTh4A8PSaIp2p/3R74ZVRFNQKGxSqxvP\nzrflK+oS4z38dAcdSyNGtKMhHgijv9XsUyk94lJXfxB2ep2428DFqLO1LA+0Ty50ReRGk+9f\n3kZpej4tHw7bRBnT83ERfo40F+97wXwu1NW0OAmW2yLJ4AXqQ/hFFueBzjpnycI6b0KTngLy\nsGy7fM/RD908aV/zaWk4+h35K7lpHp/rpeNjMN7w57Au1KK/kukDOBxcW24BL1nzgzoR2vP1\n07LWsSqMgrTtHlTte8SFHSKsG3H5fNXSomyUS/OFP81TzR/l0+dGXm3cDF4mTHcMFFEThaJN\n6fNSfzwzzZf3p2HLpmXSNNt9M+ycPNex4/t3jm0Eph8HIdeMdWAtmC4iM9d3ap1rguPIS6N+\nx591eUly7Sgin5vaoTV/9FE38N3Emu448+OIc8T2Rn7r/Ay0QbzLT/EfAdUOviTVRV7crmhH\nTe517nk9UQPplO/GM0sRuY65pufXlxgb6fv3ORHf1jEW9UR5XcfSJXA1XATW6Ue6esqxekqd\nKuxPPc6LlSvU5wcD58LoCmndNqrooOm2HSob1qoFYqF2onWkov788z7hoaNgMXDyTw3GPQsz\ngBOsJ8jFtFaltgp7WdZ4F8nHYWlw830AzoZhcDD8BSwTdeBtGNnmtL9pwyM+3EiLfkaf8+nm\n89AyWRTAtUyU81cRNwQPBNrUL8PV5EHuBbgsyeAF3oPIenBu5p6O+y6E3CDaq2iv9ejP9zMf\nzj+vUpnIE3VrJw+ys4B2ML43PAXabxFwHF8AfvmrRbuTSZs1gXXdAyvCSKiX5qSiW8CDc/RF\ne+iPMN4JSsOpzSI+yqVpUTafZpnW4qKcbtQfcf/GsxrMDs5jL0GvggdtvwzPDY/BMlAPRVvz\ndeX7GfnCNX/kyffhZdLmgcnNhMxn208zgMx/MVwLN4DpzrFzIWR/Task59S9cDOcAR769d8I\npnnZ6ChFX6PvPkd/xDsf3LNcO/wg8hJsCLeC7+2nMAecBYfDFzAPjIR6rAdUU6oLLeDh/mnw\nkr4aODYCvN9RjCPHT/i/k6lCRIy3SDK8FYwBL2o/A9fVest9cXCVSh3zV4Lr7cQ0mgy7gB9u\nXedeA8f/zNAPXEO2hIZReUFqmFdVl4bGhHXS5idjXR6QVRKLQjwv6r4Fjxudm41ph8JRoJ4A\nD209RWHjsEW+X5FufORJ34kL8gBws1U7wIUQhygPKqalZQg2lGx7vu8RznckzZumjSfggfMT\n8Kv03bAKpLLOm2BV8BeNJrgAWjt0aVvrzSueZXy1PPkybQ17IFNhi3jHEW5J/fZv3jZpPv3O\nq7RO8xv2cuSm7wEgyriBzQO3g7+WPQ616msyerCVjtIgKnbs+6uC79Svu33Avcz3MSXYl9Qm\n+kWZFn2NcJo3jdOfKurI5zdPGqcdbIt29YDgAboJzoKHYCVYHGYHD9gefPxV2AtCe5W2o1Jd\n0YfUDqk9LJPmibHTl/jj4UAzZLL9vgsPQ9rdX1g9TK0Nv4NX4WKoRelcSv3TUriWw1ktz6iW\nJ/of/Y58xhvnO+yVRTrmNoAz4JdZ3D64F4Jrs+9Ruc6U6hkWcG05Hf4KjoeYO+EPl6TvrC3G\npTJvqhhjxjnufVaMxzfwXwp7w7Vg+qNQT/ks98ulq1TqMz2bPVclPR99ARGuAa4FA2BWcE6M\nggegoRSbZkM1umxst7JAfsKnjYuJ7oHBye6E2Rws48HsD6B+AR4YbjDQA2R/7WP0f2JdMq8o\ny7gh+6Xcw/gS8AxsDx5IjgX/ucev4D/QyErtoz8NR79Su0ScrnlNc0FW07U4Ew5mbiaOr3Hw\nPphvbfDAOhc8CHtAa7qaRPPum2RaC/+mEHbX3RMWBOUhccYJvvr8yfc9wvnawxamB2ke1/lK\ntv2E+A3gU5g+c/fHHQEvgYfff0N3khuu7b4ZPID3Bttq/7S/Su0U/uh/2CfiW0p8a7eIN79E\n/gibP+Kd54HxaV7HmpoCNoT4QrsC/qfhN3A33ApXQb1k20LRngjrRj8iLdw0j30aBabFGcFy\n28AHEJoaj/EegFzXfR//hLPAPq4JXp5q0RVk8pDWBM4rD4W7weqgfRyf7ZX9aU1hu9Qm9ncM\nRJr9XAjOgFRnEvgRaJNSPcsCjofTsi7FODAY/nCzLBOcdAxFvHHm1VX5PK5faV2eAd4CPxA4\nD93P3oV6ynPZzuBeV4l+xD8HbdFSZN4MfgyDYOWMeXFL9RALuKHF5hcDOcKN1sVod/RD17ih\nBTviph91Vavb+HiOfg+SygXgGDDOrxMfZf6xuDNAd5CXEA+JRXUXBVP7hL+SG/bTdTEcD1uD\n6gOPgDYy/qvMNfwYeFjsbC3LA+1H0QPLEMqmfQ5/JdtUi7NMpKX+PxOvPJA6tjygKcecB3/t\ntx7Uqu3JaD3Pg1/+LX8qhLzA3gheMO4BD4gfQxMUkfXZL9+vbvQttVHEpf2PuHy+COu6sX6Z\n1enl0Tj747P0uwnb16h3FP4VoZ46kcqGt6NCyzpHbOOCsDHY9mh39M8489g/3QiHPw2nccbX\nQlrmFsq8mZRzDNwL72Rx0SbLyDNwP7hGeEmaCpQXJ9MdA0XURKG0X6nfetNw9DGNjzhdD02O\nB/3aNtL0a1O/YjvuLwHHiPtBPbQPlVi/l6sPwee+DK+B82oIFJFrVdpX/Xmij+FGfsMxH2M8\n+U7z68hg4myjB9nO1sk80AtmUY2g4LFFC3fzcgNpn++y6BgdSlnH/flZPek66dhIx1E6dtLx\nk/ojj2MpyuuOhk/AsRX53Veca6ZfCD673nJuOXbrIce+a4Lrx3lwAhwOf4KrwbW7Xs+iqo5X\n0UHT8S3rPk/wcKUctI0qD0ezQL37YH1hn7xt0ngPC3GwtMzv4HI4AGaGa8FJ5KLRE+RX07BN\naoewf8RFHvvswjgT/BMuAuVB1q+Sfo1ZEuaEcfA4aD8X7kZU2u+wRb4faR7TqoXdNKzDtexw\nUC7Gp8MNcB946FwKPIBdB9U0Pwna2APae3A23AGbgHX8Cu6F0Hg864AXMi+Obgy/5ses5AAA\nQABJREFUhfYqNkn7Ff3WDX/Ub1ilNowyzqXJwTxuXM4zD53aZAtYHI6DOcC440FbLgOOq0fA\ndnQ33U+DPJzeArvDUXAgRD/DFobDFnir2s40lZZriWn5G3V4eJkOPKxoT9+97uoQZV3nvg/a\n7QzYCh4ED86ucVfCSOhI2W8VbWoJtfzNp0U4zW/crBDvPvJYn+uah5zN4UYYAel8INhmzUiJ\nJcBL5klgnRuB89mLifvW63Aw1FvRt7TeeN+mRbrr8Cvgu/0AboIT4Rl4GYx3HLpuOz5K9TwL\nLEaXHA+OS6U/xkqluWaefHzkd269Cr+EC8E50BeugfUhxt1o/KPAc8HjMBC6s1yX14CF4P0K\nDXWfPA0urpBWRjWYBQbTXhc7B2tguBEXwBlod/rFwv7Yj6FQRC4SYZO8GzbSjTT9f4VYXPB2\nax1L69yoi8ov3Wn/Uzuk9gl/pLtwngwevLqrvAjY3ukLNnAI5TyoV7JP2EE30iu5xmkr8+mO\nAzeavFYh4vdwKPwwn5iE++D34hTP9yB4WJLeFm8zmZvaUiDJOw1+23AvRL+jTdXcyKcbONcP\nAb/mGRe2cgN2s10eXoSoU/u5eXW0PFQ6N4rKstZxJESf7IPvy37a74czf/Qt75rPuLBV3h/h\nu7M8XhatdywcDeoISMvbFi8OXoQ+zdLiuR4UdoCJaQUyWMYxUERNFPISF/2L56dupKVtz8fZ\nh0hP3TeJ3w8WhHPADwhzQXu0D4Vtc7TxdvxzV6lwDPFDqqRNLNq1ymdEX+N5qRt9NS7GU8S9\nQNwo8APCMTAr3AMxLsx3E3jQ7Qq5Z1zRjge717nn9UR5qfCdFj17DKWsc9oPMxMbPzGeIl+M\nn4h3vLwDH4FjSDnmXT/yZaJsM2nOE9eR30C99RoVetath3alkmGtVDQlaa6T7V03WnlEmdRZ\nFshfkGLA6jaa7IsbvZPxFfDLlxPOyV9ELjZO+tQm4Y/FwLCbrZPfxdeJcRQ0gmyvm0ZRXU3B\n1B6pP+wT9nOBWhV6wabgweN30F1VjwuShy0PRn6NDdvU6ob9zB/+S/H7EaCorqPgE2DfPEx5\nEHNTLDI/minXBEXk4dg+bZS5I3Gr2SX6HumG9WtT/fOC6g/rwaIGUG9wLl4MfcGN+iQYDwtD\nR8rLzfB2PMCy1qF832vCSnANnAerwflwI8TB20OJB1vXv7DVh1m6fTbd+NSeqd+xaj7r8L2E\n5sNzLpj3UJgW5oCx8CgsBV5G9wOf4ZfV1rQCidbVngtSzKd3qSf6mrquxWlYv/2LuOi37TX+\nVfCiqM29oET6KPyrQHu0FYV9JzuB7/IH4CH0Hvge5FWPC5Ltj76Gm8b5nm+Gy0AbSPTZ/GeD\ne5+yjYNge/AQ3pUqL0jVre+78R3Ge6ues3KKe4CXmsfh1+Accv2I8VPNdbw6fkyPMeT89Nz1\nGISWx2Me15eP4A3Il3OeOAcng3rL88fgOlXan3o8861cob6piDsCRldIK6Ma0AIOmnRwpxOh\n0bpzOw3+S67RzYSd/EXkYuOkD5uEP1zjnei6V4Dy68LbE3zd/8+xNHFEO5p5FWVd7LRHkNrK\nOL9Sutj+GFLtQ2BsGtHN/F4ibL8XiSIaQiE3jz+CNnHx183bKT2cmOaFxcuj8bp/g9WhL7RH\nC1DY+u1XquMIPJxG1OhvJl9TjXnz2Twc25YdMnf+zA37xBhKw+YPnsa/O7gR+7WuknYh0k3R\nDSvVgwSOTyM6wO8mP7wd9VrWOvLywLF/LtLLivMrbON8uzQLG+9BRTvp93BiPsdi5NfGMTY9\nBD8FJ0CqbQiMh15Z5Pq4lumThcPxwH1JBKq49bggeTg5HVx7bL99i7Fiv/J+w2L/94L+4IVz\nFshrciKWhqVAf3t1CxXY1lQLErCdy6SRmX8M7pAK8bVEuVZZb/7gGf0PV/uNBMNHwwywIWwJ\ns0N3VXlBqv5mBpLku/fMUkRDKfQS3AHW4xjRdYykbvgj3rBrwR6wPCwGjkM/3LgWzQmhX+Kx\nnPPQNclyv4a+4HzMrydE1U31vCDZKOfo2+DHlYfAs+fj4J6tqy0aRkUHTcN0sJ0NdYNxME8N\nDtze8Ck0mpyM/8o12r61V9rGjX9d8BmGHVNuoC4Qz8AWoJ4F7efBzIWgJ8u+u/BMBy5uLhja\nxE1Wu38PlgMXDO2SyrC27Onalw66+DuvtMkG4Bh9AQ4GbSjGnQBPgeNL2xlfL4WtK72H7er1\nkDbW41c258iK4GH3AHADPQJmBjefueFs2BHuBw+bjrVjwcudm2wlzUVkM+Tn4HPEhS0qlevO\ncU/QOD80pJenRQg75wbBh+Ba5LjZCIaAlyXX9VVhY9gevBhov63BX39eBA8qd4Dr/vmZex2u\nF4VjwMOphyal/d4E53uqZwmskkZ0kN8x4rrTD7zcPwK2+TLwcjAeXH9vgLXAtt8D18CXoBx7\nlWR566uXtNUVucpGEnZcmtYR8nDqZfZd8GOEffLQ6jzy/R8Jzrdb4GlQV7c45d9J2ALOK9eJ\nH4Fzy7VE/zC4HFwLZoWHYHHw49ST4J51KqR6mYBjbgQcCq5N64L7oGvPe3A9uEarsS1Ow/y9\ngJZeCYvCANAur8MoeAAaSuUFqfXXNTnJbigOeAe1clEfOMHXOH/G0NTtIN3gZqxD8yejDif3\nebAsuOl+DzyIOOH3hxVB7QZO+uUNdHP1bWf7XFAXgGvBr8qOoT6gtNnfoTe4OO4FXgJCu+Dx\nktBdx5gHz/Zqaiqwf24Sh8Cp4AFyE/Dgov3Gg3b4M0wLy0FHaAYq/QIcqzckD9gB/yiwnW2R\n7W+vHDsXwZnwEhwDbsoe4E+BIXA1OO/cUD3c6ffgp3srVGu3B/1lYAsYB2o6cB5fCNXKkdRu\nzdPuGlr+P5rybXSenQF3gIeL2cH1Tht9CY4f+6y83Dim+oCH4IXBC5F5VwDXd0nl88bAcbAz\nHAofgPPWctEe1725YCj4vtTksBU8CpEP73fkwaq9sq+/hc/ANeYoWANeBOW4cn3W3QueAGW/\nO1tjeaDv6MHkwSvj90wyFeRt5ZrRXnk50kbOeZ/j+/oYPgLf5z3wFTjP8s8nqttq7jq0rC91\nNFKfa+3yD2vN2Eo+1/SwzWv4ZwbXg09gM/g3PAvOc9ce1xfPVxuBaZ+DGgALwoGwPvjhwvXB\nebgnxDz1fdbjnVLNROVcq5f6UdEScA3cB/brANgy82vHO6BUD7DA2vTha3AR7alsWvA9TUa5\nt3uwXXzf5xe0jcXOgJ46ZuzX+1B0YXVj6Mm2sW9ujEXkoc1LTk+2z9lFDJOVsWxPto3v3gNT\nETnmerJt7JtrRxG5Vrlm9WT7uOcUlXtdT7aNZxU/DBSRZ6SebBvPuJ516yEvi16MQtfi8UL5\nJzgH3gM/4DSMig6ahulgOxvqZtVTbeSk92tZUWmXopt50Wd2Zjm/NLZHHnZ7qlxUpajKeVXd\ncn58kJ6qcl5Vf7Oux67LRVXOq+qWK+dVdduY0pP3q3JeVX/37T0HpjV7QfIXI3+RXgiegwVh\nJKhl4Xbw17X2nD0p3jnqyZOiHhZsiJdYj44WqMOJ1d7DToHHNkyR0jbVX1U5r6rbpr2Xz+o1\n94yUcl5Vf4/lvKpum3JeVbeNKeW8qm6fcl5Vt021FOeb/+wwLkfmewj8lbwPvAHdXj35S2W3\nN37ZwNICpQVKC5QWKC1QWqC0QGmB0gI9wAL96cN+0A+8JH0fQv43Wq9CQ1yOotGlW1qgtEBp\ngdICpQVKC5QWKC1QWqC0QGmBIhaYl0IHw6XwInhBOgvUoeB/C7a5gVKlBUoLlBYoLVBaoLRA\naYHSAqUFSguUFpjULOB/azRP1mn/Vzqnn9QMUPa3tEBpgdICpQVKC5QWKC1QWqC0QGmB0gKl\nBUoLlBYoLVBaoLRAaYHSAqUFSguUFigtUFqgtEBpgdICpQVKC5QWKC1QWqC0QGmB0gKlBUoL\nlBYoLVBaoLRAaYHSAqUFSguUFigtUFqgtEBpgdICpQVKC5QWKC1QWqC0QGmB0gKlBUoLlBYo\nLVBaoLRAaYHSAqUFSguUFigtUFqgtEBpgdICpQVKC5QWKC1QWqC0QGmB0gKlBUoLlBYoLVBa\noLRAaYHSAqUFSguUFigtUFqgtEBpgdICpQVKC5QWmHQt8L0G7PpqtHkDmAt6wRgYBZdnfpxS\npQVKC5QWKC1QWqC0QGmB0gKlBUoLlBZouwUa6YI0Gd27CNaAETAOPoGZYSFYAXaHi6Ee8v8F\neEvwuT1R/49O/QfeKdi5TSk3a8GyjVDsYRopRbQkhZYvUrBByrxLOy8r2Fbn6+bQk+fV5fRP\nGxWRtuldpGCDlHmQdj5asK1LU27ZgmUbodjbNNI1uYhmoZBjp5H29Lb082syO6/ea0uhJO8W\n+LVRT9UDdOyxgp1bhnLSU/UWHbuiYOf6UG5T6Mnz6lL690FB+/ToYlM0UO/Wo61ejrwMvV+h\n3RsSdxrU64L0Y+r6BzRDo2s6OjAzeGj7FCaHfqCGtTht+mt5N/KxMCO4eVn3V+Cz3IjeAZ/V\niHJRvA8cA0V0OIUGwWcwPWgL/c436/4CjGtETU2j5wX79XGBDjhP/w6jsrKz4br5aI8vYRro\nDc7xIvVTrEs1H0+3H+cWaIW29eLpvBpfoHxbi2hrx6Nz149Nzmvnru7rUG/5QeVO+EnBio+k\n3CrggacRNRONnhYc65/DlKD9XRtcK/uC78RwW7UxBf4Go6C15/iuG1Hz0Wjt8s8CjfdfmngI\nfBNcV/w44zh3Pe6IcU61nSrn1S2wecGnHk05PzB7Qe+ucp9Qzh3PGbXuE+ZzXvmuLddWeTk6\nHUa3tWCD5B9AOz+CfzVIe8tmVrHArsQPq5JmtJuNG+dcBuqgwdTxWh3q6Q5V3EUjTs41ZCTh\nobm4WoMuNv4CtVvm5m3+d+Kvh0bVsTTcXymLyq9V2nsM7JWrZBBhL5SN+uvbsrTdd+8FqYiG\nUEi7qIXBupYwkMgN+5Ek3EjeZhrbVLDBbubaw8NKZ+gaHpJfUz2IeJAYBPXWiVQ4vB2VWtY6\nGlF+BPArbVOu8ZsR9uC/GvjuHQNF1EQhx57P8RKwPaTahICXMj9gNaJcM1w7isi1Stu6doX8\nCPMlrBsRDey617jnFJV7nXted9WiNMz3t3iugccQfigXlw8OJMKynlmKyDPSC0UKNkgZz7ie\ndUtVsEDRQVOhqg6PupYn/BHc0O/OPW0qwgeBX5x94bXIC9VGUM0GTiy/9vUEeejxQpTKQ1B7\nNTMVaPNxuYp81o9ycZNisJLd4xDjBemtSdEoSZ+1j9ImqRw/kZbGl/76WkAb+/EklV/ZP4LS\n/qlV2u/34jMD5Ndhw+5fvaAesq4ZIf8c55h73kzgr4WTuvwl4j0ox3n3HwnxjvJj2nCkdf9e\nlC1sOAtUuxx0x46MplG7wFXgFzcvQh+Dh/R+8DJsCbVqATKeBtVs4IbVUy5ID9AXbfMX8GuK\nqkffnsvq2RB3uJWiyWELeNDAJC5t8DO4MrHDT/G7Ob+UxE2q3ifp+HjQJmcnRtgKv2O2VMda\nwPHpP8s5HvyartYHD/IT+zJr3lK1W+BTsj4Frge3J8Uc+/464ppQD7k3PgE+57akQp8zFvIf\ns5IsPd6b7vVr0Vt/RSr3qe7/2h3PjmvH8LlJcw2X7y8xSOmtrwXSBaO+NXdMbRdQrYfNRWEA\nzAqvwyho64HqWcrMDdV0Cgm/qpbYYPGH09774RXwK+IX4MWyvXLR8gv0f+BW8J/VeeDy3XjI\nzWthIppgDvAA5qH4E+ipsn9/g5VB23h5bIJdwXfQmuYicSjMD8/BGfA29CQtTmfc4Oyb/9To\nBvCfAq0AK0GtcrztAPOAm+mZ8CH0RPkLwXagfTxUuyY+BrPABpnrR5Av4BFobV08hnTtfydc\nCH3BNe9UGA09WTPSOefXEjAW/JcJ9tnL4Y+hD9wHD0NoTjzrwGRwE1iuNTnf01/q9yN8FcwG\nt8GKsDUMhnppCipyPT4I1gL/24L+sA38HBwbE5Pz0jHm/ur4OQfGQ6PrLDpwBywHPwTPEq6t\n9ZD/dNE1aBnwEnoOPA+lWva9dTGE67rzy7PIdTAvbAsx187F/xnk9S4RR8AZsCxoV/eL5WEl\nKFVaoLRAZoHVcI8DJ9OlcDLsCU62euoUKouvqvWstyvq6s1DPwc3x68TPCAUkZuwdWkf64t6\nPQxcAwMgr58Q4Sb7ONwLH8IoqJSX6C7VsTx9RDtacAVlX4DU1vq9DDZBqpkIuNh7SJoL3Gh3\ngffBjeAiaIbX4PvQ1XKD8n1PX7AhQyjnwfJlyNvH8aHtFoNaNYiMH4H28Qu9h5OXYG7oCvmu\nmgo+eBrKaVsPEpXUi0jnjhejf8E94Bw8FjxEOGac59r1vcy9BHdKqKb+JJwNz4F1nwWOXdsx\nBlxble/bQ85aMC3k5QeXzSHGcT7d8IkwvFJCjXGWtY72qi8VNIPj8CJ4ElyPdgbHj/6RoB2H\ngRcix+2n4EeKN8CD3C5QSasQ6eXK8r4Tx/TioEy7GrTx9bA/bAvbgDZ3DBRRE4V8X7bd56Y4\n17zYtaZYh04mk2PofnDsOK5ehEWgK2XffAdF5NjVtl9mbmqb24jzsrwibAhzQlvVhwKuPa/D\nxeCl2rXM+jpDvjPHWFGNoKBrSEdoDirVHto+7K7fNVv3XnAtc149AJX2FeeIc8536Lwzr2Nz\nUZiYBpLBcp5ZimgohZyrPVWv0bHBPbVzk1K/3KScFE6U8+AEOBz+BG44b0E9X/Qp1OcE7gly\ng3RxcqFIXSd/EbnYRF3n4F8TLgXrdoOeFlK56b8J94GXKInF8gv8RdtB0Q6Rm4WbRlH9l4L2\nz4PGnuDB0f4b54awKswNPwYPIF6c3gPzxwFHG3kQ3gy0341wPXS1lqUBvvtKG1ktbRtCJvtr\n/16HX4AHX8eBB9DLIa9FiFgFZsoluCZoI+0a41G/cRdAV6iZhzYVfLDv2X5UuyAdTtpY8CId\nOgKPfT4T/PjguN0CHEu/AdfFQ6AW+W58D0eDc/q38DGcD45T074E6/SyFPIg6Pg1r+542A3y\nOpEI33VRWdY62quLqOB+iDHsODoH7N+FMC2olcH5qI1NOxC+B2p3cAwvbSDRUvjtv894AGJc\n6lr392FVWAaeBO3pPDBdHANF1EQhD4+26Q7YEh6GeGfb4Q/1xrMKLJhF/Bg31iHHkm06GB6E\naL/xf4CuUr0uSPbD96OrrfR74Laf2s95cxi0RaeR+VmYJSn0R/y+16mTuI7ynkzFV7Sj8hGU\ndc/rCLkXvgSOqU2hPzwH2t59IGzmReplOApSXULAd+V70Q1cZwbBxDSQDL7bKSaWsUr6UOJf\nqJLWE6JfoxODe0JHJvU+uIh7OcofksIubtKjIlAH9xTqcFL3BMWi4iLjYiH2zclfRC421uGB\nbHb4AbixPwM+awNItQYB4+PZ+j10eUhxoRQXsu4iNws3jaLyIGcf94ZFYQDMD9F/XdN9H44z\nv/DPC27QYadV8R+TxXmoWg+0k3m7UvW4IHlos+8e4uzbQuBY0i6Oy16g5oG7IOzmhrovhLwI\nmDYKtJ+2uQy04UfQFWrmoU0FHzyxC9J91OthPdWOBOyvlyFt4ThT54K2OBCehlrkQeDoXEaf\nZ/2PZq7PMOz7c1zPDV6MPBBq/+/BL8E8K0IqLzfOjaKyrHW0Ra5Vi4HjI+ThausIZO42uPbN\ni0sqLwW+0yfTyMx/D+5xufiLCbt2XATPww/hR2Dd4zM3bOih34Oh2gGMdwwUUROFnDu+Fw+d\nrsmOBS8+xsd6djh+1xmfJbeBc8VDtmuMeb38+f6ck/OBY6gZfM+7QVdIWw0p+ODpKRf9dQ0N\nv30U1yPH8eQwGLThz6FWvURGbZbKd+BzVkojO8jfXS9IntW0t/PkwqTvR+HX7vl5eAhxDyX5\nVs7y3Z65B+C+DOn7O5JwaxpIovldB4poKIVcF3uqXqNjjvlSFSwwWYW47hrVn4ZdBe9XaeD1\nxLsQzlUlvYxu2QDCDi4a7ZWb+zhwI/0ADHtAOgf+BrOB+jUY70biorgJuBm74SrLbz/B1zP+\n2Fd1KHg4HQkesMLmr+N/BdyQPZC4Qbshu/jfCqo3/A68dHowmBrcbNxYeoI8TP8VnoPnwYuS\n0iZXwFh4FhxTS4Bzew/wQLoVqG1bnP9rwtXm08GW8Clor54mx8lUWad0td8/wL5rF7UnOJ82\nh1VhWpgBJiYPEAvCTbmMMaddV52z2nhd8Jnngs95G/YH2+cYt123wDbQlbJtjqOnwLl1J/SH\n1I4EJ8jDXOgkPK+C69POMBu8CyH3TetxLcvbdhHifM5WEO/ifvzO8/HwIfwAtN/M0ATKNtZD\nrhGvgWPgRXCe2V774AXbNemNzF0OdwFwzvnh4TOwXdpM9wkYBdbxDpwKO0Ij6wMaH2uofRT7\nvyRou4thGLSln77b/Hrj/FSOtUlRrsMvgGNvRVgd+oHyDKfdfRfOn3XA9WJ/WAi2BcfmmWC+\nBeEuWB9ca0Q5Xg+AJihVWqDuFnDwNoqupaGDYeUKDXYxOhg+BjeHUpUt4GKj/h+4KbRXbrpu\nwpdkFbnhW/cY+AncA31gIzB+AfAgsiOcDqvBR+CCaT61EvwZzgXzuTk3mmIDtq83wnCYJuuE\nm/BV4NzzfeyW+WfFfRMWB+Ul4UnQNvPAIWA9lg95cfgjnA8exnpBo8jxYJ9vgYvA92ycDICX\nwEvRvLAxOLfdMEWbKQ8l5r8aRoOHOG1kXV9CXsbvAI4tx1iltYTobitttQf8AezDNqC0wbOZ\n+2vcH4AXGQ8QB4GH5ZCHlKPgAjgelgGlvV6B5Q0k+j5+6/8d3A2Wd16PBA8+vcEDt2Peg8ym\nYB3jwPHfVfoRD3ZdOgtcd34LzqO7wDHiwWpOUM5N1yv7cA38Chwrj4Fj0P3FsXICmO44GwXr\nwZIQ/XT9s46dYHJYBL4H2mkKOAesb35Q1vXLCb76/XFO2IZ/wu3gOFCOCdv6CJwB+8CecDnY\n/wGwNKj/gO9cGy4G2sP16F3Qlo6dwyDsh7chZJ98R669+oMv8Lsm3wR/B23o2lSrtM1e0D8r\n4Ng5EUbDo1ncpOQ43i8GbTkSxsHscAvMCD8Hx2hf8H14tnNOOWfkPHgAXE/c73rBQFgdHLfT\ngvGub9pX2/tOS5UWmKQtMITevw2vwkPgBvA4vJe5+c2d6KqKjWsVclTiX8R/WbV0YyW4GAWx\nKRgeWrAbbvbWU6nOtH7TXcSM05aR/xP8LnBRh+/zQPg1mMeN6iJwQ74N3MA7U8fysBHteOCV\nlI2+6qY2CX/0XXcj2Aa0yefwN3gFxoPltdezMDeEtsBj3nvAA4ub0FPQGzpSy1K5bfagV0RD\nKBT9ChulttAfmP4GfApurGpveHqCr+WfBZnH+sznWhDj7Bb8qTz0GOda4eZ9I1jWzbWeaqay\npoIVOs7tu+Phx7AkhLbCox1i7oTtHDNvQoR1jfswi9M2zie1Injhfh7eAp8lI2F10C4eFj2c\naBfH5EdgHi8b1qXfZ+jKk6DN/5uFP85c6zkKjoN/wzFwOng5KSrLnlilsAcr+7ceOAfOgREw\nBzgu7McjYNudW0/AB+AeMi7jTlzTtbNtbYaxYFyK804bW5+29DnngHFhH/MbfhFGZvHX4Fo2\nbBd1au+/ZfGOgSJqolCMfetNn5H6bZP2WD/Ls3PmDsN1rT4NtJV1WJ/v8XpYDmy748cD7HPg\nGFoCOkNjeMiQgg+annLxXlJbhJ10tYv9vgoMa6Na1YuMjiPH/h3gmPHAvzJ0hk7mIVe040GO\nX/e8eukCKhoOPwfHlLaVsHPq6n8dxoPj61JozsJP4Zoeafol3mHqei7cBPIaSIT5psgn1Bge\nSr4XaszbiNleo9GDG7HhZZsrW8CD0grgS90dtoLloa1yYXfSppMs73cybgP7wprQqIqFJV1c\n9Dv5i8jFRlvl64uwm6r+FA9ssVCm6W4kz8Ii4ALphh2aF48H3/0iopNcN4sR7XiWm2zePhEO\nm9jXsJd28eBr2EPJdXAZaBvzufmlB6fpsrSjcEOz4PHQcmpEdJC7LPXaFw8dReQhx7EQ9tAN\nf942ETb9PvgLOFauBKWNPJSYz6+1EnN6M/yrw76wLRwAb0F/CO2IR/v2i4g6uM3U0VSwHt+x\nfbUPtku/B64fgOPjCPgenASm2e8b4OwsbFzwMH5t5UHPTXAHGAePwpvgGHPdvBfGgOPOZ3pI\nDBs6T/8IMV8fytLM57OjnfrlcjgerN/2Wu5JcPw+A148hkNRWfbECoVdy58H++4zfY59PwEu\nBS8ys4N6GV4E+z8YnEO7wMxwM7wE5nkKtP1O8BloF9ci00aANrNve4DPNY828LAX9jBe/3gI\nGxrWbjHfI2+873Sek61mNZHTd2h9MQaibt1I0+/zbec7cEkWNs736/tznJhmnPkPAi9GtnEx\nUIvAE6AtF4COlvYeUvAhrlVhk3BT28R70tUG0feB+DeG/WBzmBKqaTISXHN+D7vDbNBZ6g4X\npPno7C/h13Af/Bkc94eB8z+1sWNpW3AMGf82nA9j4Thw/hq/HqTzJupI3134HavimpbKd2g5\nzyxFNJRCLxQp2CBl3BtcB0v1EAusRj+cROeCm5+Lw54wL7RVLmqTV8GDphPuPXAjcKJeC9NA\noykWEV0Xi1honPxF5GITdaR1R/0RF8+KvBGOdDdcN+g+sC28BXn5fq/PR3Zw+Fjq9xBUVFdT\nMPocfQ03bwPjIy7KeNhy7AXv4t8aQqvjsZwbf6q9CTybRnSAf1nqtJ35Z9f6KA85bpzR17BL\n2EH31ly6eYPI/1fiHgTf1UiIeMfQB3A/eCj0EOuBx2deDHm9TkRTPrId4eZ21OfaYj99j65N\nC8PD8CrYfg8af4APIfqr6+Fd17L2OWzlOPIgbtzHWXxa7kXiTsrSjfcgcBDcCZZz/A2EtP54\njq51rgv6fdbzcCs4Z22z7bCOaJdr6QgoquEUzF+QtNkouBLmhKlgF7BN/lLk8z30/ge83Bgf\nDMKvXM/2Au2qrSxj2ZvBw5zt1x0HB8DTEDaOulzLwm8d4kXR8WV9cYGKPOFGPZbXb3+KqIlC\nUafPDr916o+4eJ5x+TQPph5uHQPTwc5gnjiw/v/2zgPMsqJquz+Sc85pkCBRUESULAIKqCgi\nIg4yhI9ojiBJBAVFRVBUQDIoAiJZgoyABBGQKCBpZmDIOUe/71+r+24ojufe7r59u6fvzN7P\ns7pynar3VDzdDB5k9wO1sr6HwXpeh91hKO0BKh/d5gNcq6KvunV++2BfjoHFIOadfb8FHOuu\nJQvDSDPnm2tDu+acPKjdwpTzHOH49QPVvaCOrrnOoR+D88bzWuhuuuPnnoZrvGuMcZdBvItm\n78ryUpfP5/sRKWxNPNbjHG/H7Nvd7RTskjLO4a26pK3D3kw34W4x2+ph+gxYCNx4XLCcDBvB\njTDQF+0kc/Oqw0mlLQrrwkqwCuwN3WrlwjEUfairPxY5nxea6prXy+ln4BTQPNwYNzvEQUHX\nhbCbrKqD4SA0qOaJQ4jpLuZuFi72jtGb4QTYFjQ3I8uHRsZp3aLVtLQ1dLDdpRb61zESi3jz\nBj0J/Nih4fFg5mF+G9gSJsKssAy8B1aHpcGL0yZQbpSuKY459RxJdjWN8b27xjkfFgTHg/6v\ng4fX0gyrlRrZJw9zY8ADv2PCuBkhzHz3gWubh13rtbwHyaNhbfgLeGjZDWaG8l0Q7DkA+dxY\ng6/Eb34Pk18B26wZtzl8GmyLz+qkbUBlPms0PAK+yyPhVjDedi8CmzXc53BfAePPh+XhIvCi\naD/VyjTLeiFQJ822u8fsActCzFe8PfkdV76zVxsuTs+HH9+b9TnOdDXd8FtGK8dlb0z7P6Pu\nqMFwne6OA800+/MYzAYHg3NqPjDPOWA7T4WvgVrtAtuB8Y6hw2FlcO45LrrFSg18VzvA/bAE\nqNs74d0wCtTkKEh7SwHnwm/gW7A4LAlfhzlgLvgSOB5cn0NrvD3zTG2db5p59DsGY6zG3LBc\ngPdNc874jsL8iDEKHKNpqcAUpcDG9NbJM3uTXm9K/Pgmae1EH0ah/4AbvJNzPJwEd0G3mQuN\nxCKja3hHaMdcmKKOqLP6jAjXuW5EansT6H8AjgQPdo+AdXopugSM2wGG0/yaduEgHvgXyoYu\nfbmhj/3V7wHLMk81wvpvAA8gE0DzgnE/nNDw4/RcAtRufwNDaKtSt23yMN2OjaZQ9Dm0MVz6\nq2HTPJx4YdDv2DGPYV0/mnwEtoMHwfQrwPFjujhvLRtjaSr8B4Lzex7olI2jojFtVjYD5Wyj\nl7rdwIO8bTdO7FeME8PRt/CXbvgjT5SLcLjWaV7TH4LLQNsCTPPCEXmdi1GPlwXjXZd17wDL\ne9DeDIyzrH2w/sfBeX4ptGvnUfCQSmHfuc8tbW4Criu2NXTQNS7Cts82jQX76bzbGsp0/RI6\nfLsIW74ZZ5GmVpHuc+NdRlz1OdFWx0A7NoZCUbdutf4I64bffpn3nw3XsGkeaj1k+v7uBO3P\ncDX8ESyzIlwL54B2G/h+LW8958Oi0CmzbteOdsy1KvpcamNciWNA2wXMpw6lfZiAfZu1jBwB\n/kNpg2OuXbuQgu557dieFPLdV+12ItSw1Lv0l+8j4uNd1JWLuFaue4T74n0QtiYe6/XM0o55\nRrq7nYJdUuZh2rlVl7R12Jvpjb1bbHEaei74laDOLibShXDBusRBxLlYvh9OATfQOaFbzYWi\n0xaLmgfOMOMiHG6kGXZBfQZc7KaGk+EzDb+HGyfteHBDctE7HrrJ7JMW2oTbG/v2n6GPG6+H\nJC8/mh8Cruvx9erkIrYYzAzmM/xxmAB/h1vhFmh3o6PosJu6hJUaqUkZ1u94cWxohh07s4F9\nXhgugJ+BlyUPp85ZtdwAPgRunJY7Eq4HN9FvwBfgCRhJZtt/AR7g7acHbNc9dXFs6Wrh2q+q\nRVzkKctV8xo2fXpYF5aDbcGyExqu49NDcuwZKzfij2/EL4Pr+/E9/Rwsa50/ANtvWd9TtAdv\nR8w54pr/SdgdPLD5jm2n68i5oBZinK6aarZ3LTB+OjgONNsb9gIe2+wB62CwfF99cF7OCGFR\nf4SrrnXeXY3sULhsa/hDA8Ni33Vtg2l+jPk2PA+HgbYTzAObGsBcc1yjdgX19/2/AuvAR2Eu\nuBRmgJFkoUG4ts0+a64Xj8ARBrB/9Tpv/nwOX1/v8s3MU4jHca4uVVuoiAh91Vx/qX34jQ8s\nWpc34sONshF2rB0Njse0VGCKUmBxeuvBZ42aXrvA7w8TatLajXJj8FAQ5q+APbC4gHabeSCQ\nWIAi7NeRdszDQtRV58az4jnmKf3XNMJPNur5Iq6HkqthEfgy7A1bwOuwIQynecm4cBAPvIKy\nZX9Do4jTrcZ5AI50074Pjmk1mhM8eMZhDW+PeWDZBfaFTaDcMAgOia1KrbZvljZrH0256GdV\nB+utizPeuViWc7x4APa3ys5ND+OaBxh1Mv/8ELYPHuM8PDu2vgKLQqdtHBWOabNSN3j76ju/\nE6K/rxV+0yXSQq8yXI0r89eVr5Z1rBn3ENwMHpTHg/pFXWU9+n0flnG+elDWb/5ou37zXArt\n2nkUPKSm8EXE+TznULTdcLTV50Z7HTOLwVgwT3AY/lch+uIY0m9/bHvkK92ov4yr80e9kRZt\nqZY37Bhox8ZQqK7+8lnxvIiL/E9T9lG4H3xfC4J2GRypp2G27SSw/KEwPWhHgXXF5cm4WLNG\nG+iAPUAd7dblWlXX96oOvmsP+8vC3+AsmBo019ZT4CYDI8x8F7a1XXOvO6jNwutSzvm1ZqP8\nEriXQIwtx1Od9pEebryLyGt8Oe+q6RGO8uG6Zt0AYbbLvJ5Z2jHPSHe3U7BLyrgebtUlbR32\nZrY7aIa9oTxwAuwM54Ibji/WC9McsBi4uG8BnTQXxcvAw8pGoBnX7WYfXDQGa9ZRp0e1/vJZ\n+ldvPNhN1PCPwcPN1TARDoewH+FZClx0u8Xsf1UD2x5a2edSE+NnNUNhe+I3/kvwMfAScB2U\n5Z4g/BvoRgstou2Gy76FX9e0an4vQh6WvwFngHq5Gev6Jdg14h/g5r8krAc3gpvugTCSzb46\n5kMTXdsdh7XQJtJDI7L0aGh8MyvzlnleJzAdmD47+Bufp8FDr3PTNdbD4QINcHrMg4nP831o\ntlGiDdPgt877wPcQ8Xg7YnNRywdgLMwHK0KYB5uFwLljGzT76JxZD6Itpn0Rog+6M4PxoTne\n/7Ko03rCb6YIG6e/WkfER5nIb9mhsnhmXf2+75dhHtgH3Fu1Q+GPcA+cDo5Jf7v5ELgXzwva\nVjAOzjfQMMfO7eA7HymmzmGl3zjDz4AaTATX3b/CjXAV2O9lYLg/1vHIEW2X07rjwPnnuBgF\n5Vhz7BvWynjD8Q6MjzzGh5keeYyL8sZF/kiPNNcn1yT3Uz/spKUCbSsQG0LbFQxzwZN53hLw\nKfBwdBocAC5a74brYCC2GJnf2QT/fMeJ5iI/HxwHHhrugrS3FIiFyhj9ZdjFKzBdK8MuqJpf\nJt2c1gTTwxbF4ztyg+4miz6EW9f2UgfTq3nVw/H3KzgKPPCfCpOTlWMl+hU6hD66kS/SIu9Z\neJz7zs+bwLn6fjgM/A3AceAhzvGzHpivG8bSNbTTg8VLYN/1SystSK61sowZIlxq6eVo2kbp\neOZHCH8OPDx7yfgbOE8XBMel7bKcVtZl2Iv7G3oaZrqHlTsh3mUjadDOBtTgPmZ7zwbnyb3w\nOHig90+A4pm2Y07YGDTjIy32wgj3ZGj8KPunvxquy6s2kc+6o96Ii7BlS7/hoTKfU/d8n6dO\nu8IPDTRMPXeBPWAcXAQ3w/LwP+CYtG/OQ993jCG8PX9iZ76RNt+aaW28Y/0RcO1wPfFM4Z7v\nofsyWBn+DmlvV8CxcBm4TvghR14BLfSOcWdc+OvSTK+a+cRyUSbyRJrhyDM3fsdtWiowKAWm\nGVTpSVPYX4Ff22AwLXDxc7FvZU44Nw43fPN/Cj4Bab0KxEIXepTh0u+BqgxfSNgvlrM1Ci7c\n8M+PexL8Glzk3KxvgEuhm8z+hsWiHWHd0CLSdEuzvF/A/CDgYW8jeCecCJOLVfuuJqGLfSzT\njTccOqmPBzI/kuwF74NFwAPaOFC7LeFDcAC4Ye8HrnfHwUg358cm8Cy4/oRF/0udTAt9Sn/k\nsUz4TQ+LugyrW9QxU2TA9bKhdjPD2qDuUc78lvsKfA/mAN+JGjtOt4M5wQuXdbqGrgcPQCdt\nOiqLdvqc6cGPWBuDbbwblmr4bbsHN/NYZgbQ7KN532GgYWU/w2+SfvNKGU+wxyLddpXpkT/i\nItwo1lNf+Afrls8o66o+M9J8r/b9A+A7PA28JGi/hRNgCfAdPgXaKQ30LwC3wZnwE1DX/eFR\n+COMFIt3Y3tKf7Qvxm6EHavfiUC6b1PAPfvz4Lt3jm0AznXXCtctL5tqPDVoMSbDNc7x2MxM\nM6+U+ar+sr6oy/ntWE5LBaYYBdygXWzd7DplTu5Fm3AM8W4ccSjQ/Re4AHSblf2IRce4Hdvs\niBuJ9YQ2ZZ3hL92655t+IfhV0gOKm9EH4QYw7TU4FbwoDbcdxANtW7t2JQXL/tf5Q5NSQ3WI\n+NJ/D/GdHPft9styq4L9mcVAGzaaMtHHOl2qcdW8ZVi/Ou1e0453EndxI918Y2EZGGobxwPG\ntPkQD5b2fz14ETysGrb9dbpU46phy9UR+erSyrgYg683nu9Xdct+uVGvc9QDy9ONcNTrIdrf\nKlhXlLU/l8Jg5tV5lD8ESluEgM94EuL5Pte2lWHjDIdb+o2rI8qHWy1blinzlPHN/JE/3Kg7\nLm00aUA2htxRR9TZzI02lenGPQheglyLl4WB2EpkjnXPcXsu+G46ZbZpdJuVuVaVfW3mVwPH\nkX+2WZoH7pFsh9I451u75px0z6szL/qaHx82AD88bApehl4B557rRGjaagy2SrN8pOsGZb11\n6dW4yH8sdWhrgnHTGGjDdqTM3W2U65YiD9PQrbqlscPdzvKL2XA/e6DPm48CTk4P0A7aTtgj\nVOLCW0d8QSu/WCxJ3v068eDJpI5SG7tUDbswlRaLl+5nYQlw0bXc1XANeACfDdzUnLhuWN1m\ncdBt1m77b59Dr9DFDUdzwzke1OAL4GHfPxVz/O0M28OCMCWZGmmhmQdgL0a6/jdre4HaqJF2\nH2wEaijrw13QDfYbGukYmrpobIyRiAodQhfjS3+ZL/Iap79aV8SXroflOHzE4eJ+M2AH9Do9\ndV2O36/FWtQ7I/5P9MT0/mmd8R8C85VtaWQZlON68Q7wt1W2V/MZtjkObsaV2kQ7zRfx+qNt\n4UZalI94w6XfsBb5y7Twh9ubs/dntCPKlWnt+uvqirhwrdv2GA7UzjVlblDLc0B7H3wRPgeu\ny83sVhLWgphvH8c/sVnmSRRf9r9ZE+y768Qa8GVwHrguj4cdYEqxT9LRO+BV8DdCj8GFcDac\nC9OD6+43oRxLpT/GVrh1c4DitfPGeK0sG+XD7c3R+zPiIv9hZWL6U4F2FHBj6SZzEfbrhb/2\nvh62Aw8SQ2lOuNh4/Zqy21A+bIjrti/DabFohVs++3cElgbHoF8cPw0uwB6ungcPvt1qbh6t\nrNQj/I4x+x62Dx6/0p0MV8JB8G/Yt+G/D9dDSzdbOR5Lf9mn0CfizOfB10PLSuCGbZ49wEuS\nGn0Lwl5ueJbHnSMiR7j7Ltr3DxgHoYt9LLUo40s/2d60Mv+bkRWPZSOfruHnwIOuOsce4Xx0\nvjpOTdP1EuKhOMrj7bEY/9al5qb/HZYF53onzXnySKPCq3Cvg3iGF0yfLdEPvD0WmpXhalyZ\nFn2MPLpRt/kiPspEmvHVtMgfdYYbZYfKbfUc59M/wbXmTPBdXwGOw6/Cb+AeWB2amevXYlCu\nY83yjrT4eJ+6c8Hf4GdwKfih5Vj4FewIk7ttQgfPgAtgX/B9TgtHwvoQ4+gk/CuDvx2OMf46\nfs08JT2RjR/mLSnTwh/PiHDUH+G6uiPOPE9HxnRTgXYVqG4a7dYznOVcwJ2UfsX4PjwILlz/\nAx+EobBSp5mG4gFdXGd14arrSuTxUKU/Dl6xCLrxfhRWBN9pt5sHs2YWWkS6YQ+kcagz3rhr\n4OsGsDlhHbDehcDF/0Q4HpaAbrV4/7a/9BtWg9DKtDL9aMIeXHaBLUH7PTh2/A3zj8CDs7Y3\nPA7/gifAsjPASDbnx0OgGxrY3tJf6lH6I0/VtXxpUcZ8ZV79M8PsEBcdvP/vl7AcmObX2fJQ\nZJnr4VUof+Nrnl3Br/Frw1EQz8LbEVuGWpwfPt85shl4SIv+RTvjucYHdXEk91jkiXCZ17io\nP+LLuLoydfkiTjf+YiHKDsaNeqMO22pcEOHog/lcg88D58ZBoPnefgHOHT88eIm6ENT8GLDM\njfBt2AOcZ7c33ONxR9peWfaX5r3NQhP3ev26rrej4QLYHNTHC8PkbvvQQS8/74PvgXqohXN5\nedB8z4eAvymM+WY+L1KhJd4ec9wZp4XfcBDxpoWV/ihbppkeGF/6XTdXMDItFRiMAi4C3Wgv\n0ej9YRRsC7PAbnApdNo81L/W6UonUX3VhaYTzWhVZ7lo+azYfFxsLbcXmOdZ+DX8BD4L3W7R\nv7p+hF72WzM8G0xnoGGmeThVj8vBxV6NVoRl4XpQJw/R/inE5GalNuHXdR46H3cG+612kb4D\nfg/uHuYehf3Ajyl7wpdhUfgUbAKHw0g2x4/veUmojhf7G+B900KHiIhyzcKRP8aqYcuIcVr5\nnKV7o3ri3o1/GpgAvg/N8fpFmA9ugTfAd3EkXANXgQeXTts4KnRd8fnaw3Bqj6/3R90hPfoe\nGkW4KPa2vocuzdIjvq6eSAs3nhmu8c9Bp/aYurb6jIiP5+qqVcT73nYC352XHdujrmPgY+A7\n99Ist8J74OdwNuwHB8LXYTH4BKwPrukj1arvyrBa6JZpEe/6oQ66M8LkbF6Al4AF4Qj4B/j+\n1ccLo5q4Pm0AL8NsoIV2oV+EQ1fzhD/SIi7cKGs4rC7OekQr0/3Q4Nr0oAkdMsf8ofAj8Jw5\nBwyHeQH1uT+Db4LvpdPmHE9rooADqZvNDdevOqINxcu2zqGot6fBU/iPfej/ifA1mAijYGbo\nduvPYSc2iljkyz77Fe4x8Mvc2uA4Hw8eSMz/Z1gNZoFu1auu33Snx0IbN77IpwbqUjXTvRDN\nD/fC9nA6eDDeGI6GY0BbCO6GHWE6+CHcBSPN/FK/HETf4wAQ4WbtjXxlepQptTS9jDfshcb9\noIzX/zR4kPZLsfptBx6WVoIvwyYwClYANfcAtQRo43qdIf35Y2p3DbE9N4OHmYUhtLAP0fcy\njui3WeQxvxbl9FfLRdg0rcxb+iOtJxM/LBdlzXctrA4eMOOiiXfIzGf7XM01aoEeX2+bwv8Z\n4qYH9zzzzAovgnMv2u84OR5+CdoXYAm4Hh5o8D+4F8AEWAus60z4LQxHX3nMgExdQh/XGvtv\n3IPggXgusD+uKcfBInAX/BT+BZOTPURnfGf2fQeYEcaC+hiv+RHFsDpUrdTStNC16i/LVctE\nXl3TtLKe3pjen6a/Aa+C+6EfHLzod8ocu+65rm+bw7bgvB1qc30dA86XReFS8Lm+n06Z7zGt\niQIuAt1iLr7f76OxA1143Qic/HWUA8cJGJO0jyZkco0CbjhhoaWLnRvt5+A0eBL8QncDvBdM\nGy5zA/w1uPA8BpvCYMy+DcRibLnAnwQu9vGbotBrZeKWg5fhuzAP+IXvXvCyNAMMle1KxR4C\nngEvHJPCYj6GHrZBnZ3zTxjAlocV4aPgoU77JHwH3NiuAseidawEjrVVwfx/B/vnIdv+fgA8\naE8Kc13SYhyVfe5NeSstwtU8lo3y5jG9tDLN+Lr59jrxXjjUVTsH9gDnyFxwGSwG8W6+h/9w\n8JDiGL4YhsrmpWIP4b6j3zce8m7cxcG+VPtrltCo7HvkC9d8potx4YafqDfr0V+1Mn9Zpszn\nPHfcetiJ55ZrZJm3k/54lnVOW1Rcxtt+26KG5tHvO/dy4D5p3sdhHQjzXRj3vkaEv43aHjxf\nuFb5jibCz+BEmFRm38KqfY73pmu7Tdc/E3hA1jbodXp+szsW/zvhOlizET85OGvQiaXAOb0o\n+M4136lW6qa/Wbgar5ahsfX0x6L+atmYK8a/AjFeXXecV+5VnTTnq2vZWbAjuBfPApr+/cCx\nUfa5Ln478rwHDoLPgmvoPmCdoTPet9kfCf0BfgLuV9ar+fxt4JsQ7wZvzzvbC9e5toUR2DKw\nEXwP1gOftTMcAI71tFTgvxTwgORkislX51bTDUu3WbS77KNxTsx2bBoKlXXV+eOZ4bqIhd/8\nZTgODMZFXV5WNoahNg8BLjx3gQeuMfAIXArt2i0UjH60cks9wq/7UqP887gRfz9+dVKjiY14\nN+6o/yn8n4dO275UaHv2hy3hPPCZsUHgHZCNJrd9inY3cyNP9D9c84df9/VKWH2ehkcbaerm\n4c2L5SGwE7wAM8AZ4J8LeZg/EuzftWC90a5T8bvxam40e8KB8GGos3FEjqlL6Eecbar2r2xL\ntKnqNstjfEm17qinzKNfDSOuHGPGefG8G4zfEP4EMX8dl8YbvhhcJ0pTf8dPu2ZZ61gfngOf\nU7bV9pV9rPrLcOQNDercMk/pj3qijGlBs7hW6TGGLesYaMfGUKjaxmhL6Zbt0O/YLzU0b9QT\nedXZg2iEde+CsH/gsQ+bgReKO+BZiHqs0zp2B5/nAfFg8JA2K/THHiCTa0c75lpValDnL9ta\n9jPidV1jLbs8hJ2I5/oITCL3UJ7r4b1du5CCvhPNd+f6aH8dF/a3qkeESx0jTjfKVNPLcOmv\nKxNxUVfUb9i1XDfGmO113fHMYNzRELYmHvNW16JI78vdkQzuIR8E13wvHuql7QB/h03hCDgW\ntGbxnjP+AOb/N/wVPgXGeXmqmnPGM4n1fQ8ugZlhRrgd9oDPgO9sKXDtmADuYx+Fu2E98CPh\nE/BNUI/j4dfgs13Pt4K0VOBtCkxF6L3w/iacSnxM0pic4ZLUVRbtdqEIjHPyt2PTUMh6rCPq\nqwuXcdGGKKPrZlnGG14B5oefgwvhu2Ao7XNU7mFrgeIhLoKXFuGBej10l7qUOkR8qUOkl1oY\n9zoY5yJmnSeDmkQ+058BD6p7gRuaC2CnzMOLz9u2qHBV/LbNQ0c75iEn+m49JdEv4yJP6epX\ni8hXTQu91MEN37Bj6o9gnefDS7AnaJuAdRxuAHPDcYM9BrxkeRAfBx6CtgXr+xdc2fAb7zpS\nmvnHlBED8LvB2c5qv8qw6c1ols/4SIuyEVfGV+PK8ETqiIOTY+IEcJNeDC4CtfGAcjMcB18G\nx0pphxA4r4wYoN+yrgtPgoeHs+ET4OHIftku/bGuGBd96KvfZXr4o3yErav0l+HIG89r5Ub7\nzKPf8erhyTocA+3YGApV2xNtrXOr7Svbr992lXHOG8vEHNO/OiwMfwfDR8GvIMbJU/gXhRXh\nlQa+I+fwWHgU7oeloS97gAyj+8rUJN21qk6DMs72l/01XMa5nph+I5S2LgHjPbROKuvUBcl3\nZV/iHfvO471X9TCfRHy4ERfpdW7oGmkRrtYR4Wq6Y9P5r+uareu4+gk49raCsDXx+BzPLO3Y\njhRyvTkdPCfsA1HXNfg3Am1q8HLiB4Jm8c7x1UBzz9mrx9f71w1HN/ylYx9/AAfAb+Cf8G74\nCFwNYV/DE+0ahX9h2BSugG3BC1Ksu9Pifx5sp+YcLfXqicwfvQq8YwoWwknjgPtHE1y8w6qH\noIhP9+0K1OkUcbrhV3vN8af/dQOYi8wcoPZfBQ+jO8BQmguOC9cjxUNcmKKNRXS/vS5CVYu+\nR3xfYfOph2ZbZoctYTpww9B+CefDr8EN/ALYBTply1CRB7ZYXDtVb7N6yjFS6hPv4j8UjDUr\n8kaadaqX7860b4Jj51OwFJhvbTBerbQFe503+/clwieCBz3H4XjYHbaGI8ENbQVYC9aELWA0\ndNrKPpU6lP54Zl3eMp/pZTjKGVeNj3A5/iOfc9GDsDY92O/lYAJsCLfATrAQqLlaXgfHQrwz\nvIO2RajBd+Pa/Ul4BuLA4lj1WdHmsu+hU6TphjXzm97ftKgr3ChX55Zt1O98XjIKDpNru8q2\nlVrZntcq7VBbzTnmYdT8HtImgmvTLvBecAz4PhxDXiYegNvgb+DzTDsA1od3wl3wW5jUFlo0\na4cHcfvsIby0+QmoR1WvMk+3+GPfirFxOQ334ud4sO8B3jct8pb66TdvnTWLN2/UFeUiHHWH\n6xi8HZ6E/cA55HjbFa6H06GT5hrzGfgw+IzFQJsO7uvx9X7keBr/4i3izfq4PzDHy4M9vt4L\nnn2os/2J9PLj/DoKvAyVzyXY8xFvRVwvPSeDe9VK4IUu6n0Uv+Zc9YLkxVfz3aY1USDEa5Kc\n0alASwViwWqVKRZE3fCbP/yOQRfmN4zEyjrvILxgT+zQ/XCRWgZcdEor21HGd9IfGlinfp8Z\ncV4GwjycqI+HC/Vyg9BehD1hSfDg3mm9HqJOzcV3UlhoEc+23x7OtTLNg5iXbA8qL4B2K9wP\n+8EoML/a6S4N9sk0NVwFToKF4ItwNai/G7Absc91U/kxhPlh5Q+wWUR00G019my/hLXKG3l0\nY2xF+XAjT1mnGke9Eb8hces3MsemGnWc2Mh/Ju6fYX5Q47VgS9gZOmW+C597ScNdGdf2RFuq\n7Y72k+VtukX+ZvFluchTjTM+rEyLNoTmzcJRxvZ7iRhqi+e1cm2L7Q2do03Or1ijZ8Rv+HhY\nDVx7PLy9DzycWb/z6kPgRdn5tS64xrqG7QXbglemnT4AADjQSURBVHn2g3VgThgpFmuI7bEv\n6rENXApHgJfz42ET+CH8Hsr1mmDXme/mT+DB3XXSd/0R0HxPamB8mLqUGG+esNIfcbrGS1k2\nwqZroXmZpzflrZ/O+/lg2kaU48pD/2qwQSOu0851VPgLOBnUQr0+BtpisCTcBc3iSerpm24z\nc+2Vqvk89ywva3+BD0B8tLANN8Ka4D5l+BCYB5zHpT1B4BVQP03d0pooUA74JlkyuqFAswmf\nArVWIHQLN3IbFhdBLSbqKPyj4T3wIbgJhtLc3NwcXPRc4FzoPgrV9hLVb4u+RN+aFax7RsSV\nc9O4UY1KYtMw6OVoPT2Yi+rG0Em9Hqa+M+AYWA9ccF18h8vsd+gR/jIc+jpW1Nzw3KAtD2PB\nr9qzgOVmAg84/4ZbG/wY9wBQu3vhIngKPAB+BzYDN95XoWoeIqobUDVPJ8LRZ+sq/WXdoUUZ\nF/kjzbJVqvkjHGUM6/drpGb5GJtutGqzJRwGvgPHS2h1NX4Pzp+FTtmDjYo+2XA/ghvtKftm\ncjVsnH0R08Ka+SO9zi3LmB5h3VK7KFt9buTR9UC+SmQcQjfa6CN8bhnWL6GlB89I13WNjHUt\nwtsTdzzMCwuBh0e/dFvWC49j4+fghSLmp3PGg91x8A1wnmnGOQe3gXfBpLRZGw+P/quV68R6\n4EXId7UVnAeuFV+Dbrf30YG5YC1wrpfrmnqohTqEGS6JeF3zlXlLf+Srli3rL/2Rv6wz/K41\njp9nYBT4Yca96vdwNJwFjtFOmhcP95Hd4DjwonIpuNd8DhwfzeJJ6tPci/Ypco3DPxF0F4cD\n4WX4IVwC14J7nuvvZTAb2O9z4QGwTNW+QITaXQXle67my3Aq0FQBB9z/wv8VGJZus2h3tS87\nttmR2OzK+pr5Q8NoQ1+uG+jzYD4XvyvBr5BDOZFXpf47IfrggutBuV0bR8Goq79uX7pYT+SJ\nTcHF2EOqYTdq2+1Bpc68KLhx3ACngwt7f8zN8TTw2bbB5+l66WjHRlMo6hqINmXeKB96mBb+\nqlumqZfpN4OH0q+Cm536SeS9G//x4Eb0GuwHpjtfbP8E8PAXmyHeN20cvjFvhgbm8ZAYbdCt\nYturca3C1fxluPRbR7NwxHvpKfP5Vfm7cE4jfg9c9dgZStuXgF9eNQ8XHirbNctax8Fgu+4D\n349+ifaV/nb0ifJl2bq4gaRH2+rKlHU7BtqxMRQq6ymfU+evyxtxuuGPdkdcnfsg+R0fpul6\nwPa9xHOjjHGPgfMv8j+J34PcOIh08/8SPCiHmce51465VkVbWrk+t0yPdod7F+m2aW3YB1wH\nbP/eMCdMKjuUB3sobtcupKD6O7c09fJD0j3gnFaT0CD8pU6d8lf1j3rj2brRnkhzHf81xG9E\ntmm09UbcX8FEMK9nlnbMNd/9oJXN3CSxWXyT7AOOdizWPWMO4su5U1ex6e7tD8NWdRky7q2v\nRalFcwWcXGntKxATtXTDX6014qcnwQ1UcwE8EE4xMER2A/Uu12BFXBfcwbz3+ApLNbVWV3f0\nPQpEWFcs4+ageVj3S5HxauXzPLB62N8VqrYeEdeAC+cZ4Nfgv8Gm0Jd5WfU3BAuBF8kNYVJY\naBZutQ2hV8RH2Pz61Szi3o3fg+h+sAS4ea4N9m9zeAj8zZF5doL94ZtwFJwI84MaWue28F3o\npMUhoKyzWb/LPFV/9Nf4avkyrVqumteDif3VTJOpYWdYDzTzWOeSBho2O+4XYGxEdMj1Mqbm\n88G04HOfBk1/tD/80WbTw69rulbm7415Ky7SI2+kR3y4zdKjbvOVeSL+DeIfgevMMIxWtsXH\nRnv0R9prBpqYeYKF8HtAd9zODceA6/eZ8AporiOuUx7KVoA4sLqOWd7n+5so36lrzHbg+Bou\nK/uvvwzbBvvq2Lb9zv99wTHnxWgH+CfYD825YbxlusVcy3x3mnvu7rA8OK+rNth+hbbhRv11\n9dblMc7xpfsUrA43wrfh52C8/t1gGxhqc++ts2bxdXnbibOfdc94hnjTWpnpzsm0VKAtBQ6j\nlIuDAykwXLdgED2iLdpd9ke/X0faMTe30GQgbtkON84IW0f4nbRuzG6Uh8NYeC+4gK8Lw2EH\n8ZALB/Gg8ZQdiC6RNzTQDU2qaeowATyMmO9yOB38answGG/cz2AR0G6C3/b43vrhRuIXwoHa\nqhSwTX5lbMdGUyj6F33ryw1dqvkivnTLPMY7zowr86ihGrnJejl+GPaG0g4lcEcZgd+6noBf\nw1bgZfRZUHPnkgfAcTAG2jEvZLb1DbC91b6U4f76y36XZaL+cE2LvE8WfuMWhg+CepX5Xybs\nYcqyE+EuMP0s+CXcD7eDh0XtEDivx9feD8taR5h6+y6l7Fv4oz9lmyNtIG5/ysezWtUbeaK+\nCDuuHEOWdQy0Y2MoFPW2akM1rVom2hT5Ily6pkW5aLeHMuNmB9/Lg7ALHA/GvwQ/Ad+fc8h1\n3nEeB13zeCAPM99VEcB9AFw72jHXquhPf1zbEti/8Ft2CbD9B4DtsR9+mPKCdBzsD2phXj+0\n+IGl0zY9Fe4JV8M1oE7OuXbtQgpa3nfx0UYlfhD5HZR9D+2MC79uGS79ZZ6+/FGudMMfzzBc\n8hhh38W24Pob+dXfd66tCZb3zNKOWe/d7RTskjLufe5laTUKtDtoaqrquih/Y/A3aKZBuxvV\nSBZiqknQOBcnn1u6NsMFOOLdKKcG87i5+k48oP4L1gI3n9vgg3A5jHSzL/01+6yphYQZH2kR\np+vh1S+Vod32+MeBh9NvgZuEG8SH4QuwPqwMX4bSTiDwFfAi6kYzUq2qQYRDrwjb/tCvjJuW\neMOhl67v511wAXgg+A18Dz4ET4GHPHXzt0lhC+PxYPIl+C2cDeuCFyzL/Rw2gk5YzIWyLtvd\nrlm21CT84VbrjQtNxN+Dx/GllmF+ufRgGHYdHsfbarAtLA7q6kXJy/tQ2FxUat9cM7Rqf6Lf\nVe0iXzW+t5b//tnffNWS1edEeyI+8j+Ix/FzeEQMk1tth+GyjfojHK5NK9dr1xvTnDN+LPgH\nXAEetpeBj4Hry/wwG7ieazF23AeiHTvjd03SHgXrnBRW9lV/hG3nt2FucO34PZwML8GR8GNQ\nj++A64LrgeNfLU6ATphj3WevBEeBbfoa/BUGY140rgHrfhi8YEwPmpfE2NPUomp1cdU8fYXL\nOuyTYd2wCHtZcVyZ5nuwbceBGr8Gtln9X4C0VGBQCjS7HAyq0i4p7ETbFpppsCNpm3ZJX0Zi\nM13AXNRiYdNtZrH43kEGL64vw2dgDTgHfEcLgIfXbrDyINmsvaFPpEdYN6xOs3lIjAPhjfjv\nhdBnAv7FwcPW3+BCOBDcwBeB0gy/DiN1IwkdyvETGpX9iHTjooz+Ou2MD1PHb8LS4KHGL8Fr\ng+Z4vAUuMdCwJ3Gtf1nYHDaAVWEMrAefh9PAg8ZgLfpZ51p3X30rn1/NW2oU+eI5pZamefjY\nGrx4Oy81L0aOp7tADT2sWO6HoIZjG+AMuXkojbkQfWjVPxsU+aqNq4sv40p/tazhOp1Dzyir\nWzXH3oLgXB4Oi7b4rGhzXbtMj/joh3FarNfhjzpnJmIULA7TgZcdD9w7gZfA7cH+Wp9rj4fa\nWSHK747/dLgORsNVsBgM97of/ebRPW2NsO7ORmJXw5/BNUSbC7xUbAsng3Y9eBHcC06ATtin\nqeQD4AXpvkaFjh/3x3bN9+m7cf+9HxaFx8B347tyf6kz9TC9tGq4TKvzh7ZlWllHNX1UkXEr\n/H6o2g6+DkuC6/Sm4DtwrVoc0lKBVKDDChxGfS7mTtDAsHSbRbvL/ujfsc2OuGCGJn258cyy\nDREXZb0Q+fXRA5lxprt5+puQxeHXYPq8MBx2EA/xctGueUiOvg3EDV1KrdQkwqU+PkONPgUr\ngM9xc7sH4oL2Wfzq9hsYDyuD5iH/33CKgQGalwKf5WGgHfPgE/1spU1/8lg+tCn9ZVxdvF8a\njffQ72Hfw5sHs/itsRvtRDgY1HIt2ADuBsueBx78Pg4e9MT6fD8vwBhox3y+9QShQbU/kV51\nI38ZH3FV1zwRF/kjrPsGbAJhX8Pj4cNx44HvRPgR3AnO3xhzeJvaIaSoXbtmWevQ3gEegDzI\n2dayD9GP6KPhMi7yhtssrYyPOsq4KF+6kR5upEVYVxxHtvsKMI9a68YYxDsgG0PueEY8s87t\nTx7LletOlNENzBN++6H/OTgNXJecK9axFmjOr0fhHrCsa5XlzO/l0PLGe8keD65bj4NxavU0\njIZ2zLXKeloRz48+Vd1xlLd//wTbfR/MBNqy8BhY/ygo7aME1KFT9lMqurhS2aGEz63EDSQ4\nlsx/Kgpcgr/sfyvdOpHms6Ke8MfzjdfvGqvreh3+D+AP2wKP6a4PD4Dj519gXuvwzNKO7Uih\nu9sp2CVlHqadW3VJW4e9mW4y3Wbr0OCD4QQ4A1wcvgKLQlprBcovM61zdibVhak0nx9tiDTd\n6WHWRpqbyb3ggcsNyMXJxW9zcMPsBos+DqStpR6lTmVdzlcvjW7Uc4KHVQ8eN4LmJrAZuClo\nc8ML8A24FW4Cy98BbiK7QTdYqY3+CNv2Up8Ih37VvKa7iTqmTPNw+hAsBK4pr4Dm+PsZbN3w\nm+9CWAC8DGwKHnzOganBNWh5mNAI4wzKPBDavrJvpb9Z5XV5Iq7qWodxoVE8T/cWWB28BIYZ\nNxtY5qswM6jD0nAmxJjDOyw2F09xfbBNvoPoB95a3aL/ppdmuf6Y5YNm+UND081brTvCpnnI\nfhCuAi8OT8FQW9m+umdF+0yzjaVFWmgQYfPEOWJG/JvDIfAu+AdsBJq/RfLAuiRY1v3ausw/\nDxwFxjuuFgP3A9/v7uD6Px0MpZX9Lf0+M/oce9QJxC0Mvj/nhbgGu36sBaUZdj3plDlOfHYn\nzTXxzqLCFQt/VYtIivcfbsQP1C3L6/d5ZZz1GfcfcM7od76PB9dl16i/wGng5cl9blnYGX4L\nfthJSwXaUiAWtrYKD3Mh2/oH8FLkgcZN5TZwwrgIu0BtBWkjS4FY8MKtW/xMC9sVz3HgYvgV\n2AxGwaXQLeaGo1X72hv79p/mkVKDiIuchj3UrwIe0D04OB9WAjcL58J9cA88Atry8F34Pfil\n/ePwHvCgshr4GxG/so1UK/Uo/bbXcGikW7VI8z1U09VNbTQPZov3+Hr/HMb1xa/NmmVdZ64A\n8xn/g4Z7BK71qvWx8G34GHjoexo6bdHfduot+1/1G7buUl/9K8LnKvHOv8tgRvBAMgd4OXkC\nhvMQMh/P2xs8AD0HD4C/sSit2s/oX8SHa5lIqytfplmmLFfm119Nq4bL/KadAWfDN8H+tMpP\nckfM/vT1HNP7k8cGlfro9wON88v54BhyrLwGmvNifXg/XAnG2/+NYV1YG/4DPtsPOM6rX8DP\nwMO773qozWeXffLCo3nhs02me+Z4Hq6GL8GJYB8+Aj8H2+zYfB+4/qqF60an7FQq8pJ5EEzX\n4IO4ZbsJDsq8CFbNvoeVOpXPLfNE3nDr0sq48IdruQ/DyeC4mLaB6/K5oH0e7oNbYS9wvPle\n3O/U6VC4EdJSgcleARehx2D2Jj3dlPjxTdLaiT6MQk5GJ6zoD/B2lUW7oy/Rnx3b7IUbYVlX\nnb+qXeSJeBe9N8DfgrwE0cYXGmEXv0llbj4XDuLhD1E2+tvMjf6aXvWXcXFosE0bgmEZA5b7\nB9wEbpoeJNzU7wPzXABuGp20VanM9s3SZqWjKWe7m+kS8ZEn3IivuqbL6406I3/Eq0PEOd4s\nb/iShutl53H4HdzXcO3b/eBldHoo7VICv4KdwXqeBcur+7YwDsZAOzYDhWyfG37ZbuNaEf2r\nyxNp4UYew+JzjKumq9VPoLSZCBinNk/AaTAK+mseNM/rb+aafI5n2/lPuLnhV3cPRWW/wh9u\n9E03/JEWbjW+VbiaZh3GlfERDrfM43h5Bjy8bQXa6mAex0A7NoZC5fOjXwNxy/J1/rq+RD5d\n2+DhVf8j4NjyI07V5iTiQTDfOHDuOqb87YgXoYmwA2iubQfAA+Da0Y45n1vpEH0wT9Vv2Pn4\nfCPNC5vrwtngxaS0qQnsD75b63If2Ak6bZ+kQp/hhwHHv9iedm0sBY9tFH4vbqwJrTQbSFqp\naWhsXBlf+n2+eBn1YvQsnA6OE8fTHHAn3Avui8eAF279VVuTCJ/pmaUd84x0dzsFu6TMw7Qz\n1qAuaXI2s06BXYh0IjQzJ5Kb9oLNMgww/jDyl5O2nNgDrGqSZ68uRtEXJ3875mJjHa0otWv2\n/LGNh3so8NDgAujGugBMSnOhvXAQDXCzb6VNmRbahF6lW6btTJ1/gnMadf8G905YCMy3LjgH\nPgbOlbVgKGxVKrX9HjraMQ850cdShzp/5Ct1iLjIX6aVcW6wHvLLdMN7gocw02V92Aw8bNwO\n5vfw5lpiuGq/JcLNWhsL18K24HvQLDtGTxvmPLAPHhS3BtsSfeqP2yy/8UHUE+HSNe3PcBXc\nAc7H2aBTdggVDeaCdBHlnQNh2+Cx/b5P267fd+phSX/0NdIi3Cot8pSu+YNqvOFIi3rLcMSV\n+W6gTNU6dUEqn1e2teqva2PERd6oK+LDLfsSeWOuOXYdN8bvUe1kEZ4T/zjwoH8xuGZa/2i4\nBE4BzfftWue+YFo75loVbY72lm6zfhnveIp0+6Xfy9I/wTTbVjUvSvav/O1KNc9gw87LTcH1\n3o88Z0G79hcK2rc/gAfmss+lTq00rOary6t2kS80DddnOoZM90PI7xthP5ia5xXYBsK8JB0I\nl4N74mehztYk0jo9s7RjnpHubqdgl5TxfW/VJW0d9ma+Y9if2P4D3bh9kWvUVDEdcXuDv1r1\nhQ+FOcnS+q9A3eYQGuqa7rtykXdBdBPzUOav990Mu9lc7Ptr6lDVyo2ijDP8U3gvLAQvwQ6w\nP/iV8mkw3k3OA6ib9pXQ7VZqoD8ox5F9jHzGx9gyLvyvmQlz0/0FuOG69jn+roCzwYufmlnu\nVNgWlga/WIZ5KPkoXNeI2BfXd/JBWA52BjfuwdrFVHAURB/sR18Wfa3LZz2imS/qC7dMu4X0\naeF74EHvMzBSzPbeUzTmJPweVA+FvzTifa/TNPzR1+in0aW/ka3WiXy6oU+4kWY40vVH2Pkf\necN9jjjN8CrgOjcUFs/rq27zBWVe54Z9ij6aFvmi7kiLvOaxz5fB7HAXaEf2OrU/XbNWhP3h\nCbgVPAQ7Bw8ED7zHwofB31x2Qq9oP9W9zaJ/EVnmc031gPxHcD6cC7bF+fko+Bsi1+Dy8K4W\n9i90wttxczydD673rw2ydvcX61J/17j4MBQ6lP2IOLK1tLKMGSOsK1HP8w2/89d9X+12BS+Y\nrstelI17Pzjfw57BszesC58AL3dpqUBHFYiNpKOVDlFlE6jXA4gLlF97Pdx4IfJAshjcD1tA\nf20pMv4JmmkwX6UiJ3RM8krSFBssF7pShKpOsRga76bqgj49uAlKbCbj8PvFaHK30K3UKTTS\ndSMu0xzr14MbgWPdjfnr8HtYE+aCm2Fys9Cp2q+6uVjGWU7cfF0fpgM3/y1hNGim/x08HGi3\ngYdtx58b78twHlwGvwTr2hFM/zVoV8Im4G9Gdoan4CUYrHlw9J27RsW46KvOMl9VtzIcOkX+\nCFu/a6tj7M/wMbDPi8JIMftRmuNeWxbWgbJPxmtl3w1HHv1hdXHVtMgTbQg38pVhD9NeLC0T\n8R6qnwTb7CVuAVDf4bRoS/TFZxtXttO2Gee88KKsVfMYZxnzhjnHXIu+Dd+Fx8B1vZW5fx/a\nyGBdY+FqOAJOhM+D9TrHnL9DbaFPuO5VPn968EOebfgkfBUOgl+B68n8cAK4BmwGvuduM9et\nD8GMsAL4fsNKf8TVuaGb+SXCuhH2slPub88Rdh6sB+p9L9wF5rkRPgVfhlsgLRUYVgWaXQ6G\ntREDeNjJ5D0HloMlYB7wsDge4qsu3n7Zg+Q6DJpp4Ab3oaKmmOxFVHprFCgXQ5NdGLXQz0XQ\ng5jxm8Mz4KLohupGuBF0u9nX0KHal7r4UqPwW85DygRww/DQfC2sDG4WHig8jHwHPEzcDt1m\ndVpEH0zTwi39aiRlmuPKODfg52AumBMizwz43YjdeF8G/1zLw8wJcCGoqwefuBzh7blQfQPX\ntcDylvk+WE/YJXhWAdcR39c4GKwtTwX2RYv26y/j6vzm0UyLcpGvJ6H4EelGRf518NuHJWHj\nhv823JFijvkFYS34Q8Nv21cFrexTb0zvT+Ojj6XbLI/x5qtaWY9pdXleJ97xYls1y/hBSHdu\neBq8eNwPw2ll2/VXLXQx3rbH5SjyNSvjXHJuWP4B+AFY1gv2QMz565jbE0K/Q/EfDO4R1j1U\nFtrE+4y+PsQDF4EZ4Tz4AKjNPnAA7AbaI71OT/oV+F0PHAfdYvZ7K3Bd8z3Yx9AAb+04Nz4s\n9DMcGpZp+iNPnLfUx2d5phsF74JlYRm4H9zP3Pe+BH+HtFQgFeiHAm7iLponwBngIvoVWBQ6\naV6enMBO7MCwdJtFu6Mfusbt2GZHXOSijrLO8Ft36Y/nH0e8i2/Y9nhuBr+4XQ7rwkgwvw56\naG7X/kXB6H8rN3QJ17z6J8BPYTT4BbO05QicDY/D3bA3xKaDd8jNw6jtnKXNJ9kn+xh9DX+d\nTmWa/ipvNOK8FO0CR4GH0cj3Cv5t4PpGnM+wzBGgruuB487x5zjcDgZr46hgTJuVzEA522h/\nog+lLsaV4ao/0sMt06v1GR4L+8JloG6vggf4W8Ex6EenTo6tQ6jPg2a79mcKxjuPA1Yc6uxP\nqZvhav/LcNVf5tdfUpfXdNtwI/hceajhmt90x1/UY14/Ahm+D6aH0lYnYDnHQDs2hkLWHW0t\n/RFXuqY3w3xRXjc0f7QRb1/Luvztg/3TdeysAZ02L0ij26zUtapsb19++/wiOCfs1zKwFKiD\nlyLL/xweBrWYCH8C4y27NwynHcrDzhrEA/9KWee+l1P7XH2/0S/dZpTjRX+VqON7pG0KjnPX\nGC9AYVPj8TLaSVuTynx2u+vYjpS9u5MNGmF1OYa9HKfVKFAeVmuSR1SUbf0DeClaCFys/bo5\nFWwEblT5ohGhhblQaOH2htr/qfb9MZ/nnx+tBi6cYcfiWRnmhnXhcpgczE0mLLQON+Krrhuy\n2vwbroJvwMlQ1kWw57/T2gx3XlgaDgQ37m6z0CPGUISjH4YjzTj9VWL90r0AdoIl4H7Q/Aq5\nB/hFVz0nwH6wO6jrZbAuOP4ch8fBSLBnaYR9VQNNVyIu4k3TIj38PZGVeOPcDB0r48GDyTpw\nIqwHS4IXb7VcAC6CDWEkjS0Pbk+DOtwJ48E/v3HeqIFtL63UJbQzPeJ1w8r0iAs38hsu/R66\nHDd/A7XyAhRtcA5/DMx/H6ija6DjcTbYGYbKfKb9Kc24sNJvnHmr+Y2PfPbJ+WLbfwjm9TLk\nh4fHwd/YrgozwUpwNYxEi/7YtvCHG3GGxYP6tLAN3AX3wN7wS/Bdbg3zgR9XnDuXg+//CSgP\n/QRHvPl+H4LlwTlWjoXQpxoXOpXp+st8BN800xxD/4Lz4RXwDDcnhPlsfyOZlgqMCAVc4LvF\nPkJDPwRLgweIqvlV4gg4tZrQoXAsBB2qbpJW4yLWif40WxBjkYxn/L3RWzfRKcE8PIQ2oUW4\n0f/QxsOdG4cbsIc/D+vtfkWmaFdZqUnpj06ERqaFnmWam6lz/lvg5qo9CGNhcbgc1NaD/x3g\nYacbbDoaWfY3+m/b63Qq080TuoXfr+Ae6hYAPzLtBs/AfrAujIcHYEsY6TYLDXR+3QzOHS8i\nHvDUwLD99GBb6hR6hE6RFvHhRjrFeyzyGTCPhzo/YLj/qOmHYSKcAP5Jp5p6SF4L/Oq8K6jr\nUlDaEgQse3gZ2SG/7SzbXVYb/SzjzFvGR9i5NVMj7QXcqcGL0CWwF9g392L775iy791koVH0\nN9ruGDoLboQDobzsHUz4GvgZvBss+x0YDQeA6d+EOcDLk2OhG8z3777ju9RiPNi/0Cniy7jI\npxvxEWf+u8B1eRmYpuGPDwirEH4PeOlOSwVGpAIO2m6xxWnoueDmVGcXE+nmuSA8XJdhkHEu\nAOXkH2R1k7T4UPfD+suF1c3Eg8y9k7TXw/dwD3AxXkodqrrYIg8eE8AD/IYwIxwJU4LFOKxq\nFfFqUKaV8aY9AlvDq/AghP0Fz1HwRVBXzQOpX/s92I10c42bFhwbUvZbfzmmCL4t3XCkOw7v\ngYXgKdgKbgLNtd+x5kG4m+xFGuthTo02hvvhwobfS4uXSy10Cu1Ck97Ut9INxxiLvBGnG3GO\ntVHwGmge7JaH8+EQmAEcd2tArHPqPzN4KPTgHTYbnuHSPXSIPkYbwo3+RXqEvRyF/RPPCmD/\njgMvCSdCN1voUrr2x/eyHfwc7gLHV2mXE1gd/E3STnAs+J5PgnXAMWidr0C3mG327PQBcF1w\nLMR4wNvjL139oZv+0iL+DSL1uzZ7HpsXXG+cHz5nB/gTjIW0VCAVGKQCi1PezdEJVjU3xf1h\nQjVhEOHDKOum5iQPDEu3mYtUtL3sy45tdsRFNOqpc+NZuqa7ybwGo6Eb7CAaeeEgGnoxZUOD\nOn2MC20in3+q4de2yyEOeXhHnK1Ki2y/G2o75hjw8BD9LvUpNSnjq/4oq6tmftEuzQPpOfA8\neHA5HTwEOKeH2sbxgDFtPsRDtn31kGbfnDOhSTMNIj7y6TrfyvcTmq9HvDY1eAB8BuaA4TIv\nEucN4mGWvQR8l/621fbfCb5n++1YUI/QIrQJt4zXH0SZMj3iXiDfWPBC5uX6vfB18B15AW9l\n85Fo+YPBMal9BHyvnzZQmIdun+kYaMfGUMj+l32KPugGkSfSos915SJOvc+GW0Hd3wPDbQ/w\nwHb3D+dC9L+ZG329nbzXg2eNdaGV/YVE17Ko8wb8N8GfYTjtUB521iAe6F6nvuVYiD6FG/qU\nrmllGceJ9j/gGI+yztM34Ay4Ai6F3cF1aKhtTR5gOzyztGOeke5up2CXlPHyulWXtHXYm9nu\noBn2hvJALz87w7kQXyVcxOaAxcBDwRYwVOYk61b7KQ3/DsQm3al+qMlURWWlRsZH2K/hu8HJ\nRd7J2Rv9Dg2aaRT66bq57As/bvhxJlvzsOkXxWa62HE1cVOtrlFuyI7j0PZ3+H8ApZnnU+CB\nygOpX3hdGzzkdYN5+J4e7HtoVI4V46L/eN+cZzGOnOsezMOcd2vAWPg3zAV+zd0SPLx0k91E\nY8VLihrMDvbbg6oHMH/zsTL4kWFBKDUk+KZW+sMsH+bYCc09zG0Axn0XfgjuN0/AHvBLaGWP\nkfh5cIxuC8/B0uCB9o/QafNd+m7Dol/hGn8MxAHWdVlzH1W3GFPRf8fhL8CxuCicD0eAh+lu\nNHWIvoU/XPuj/3HwgvQ56Otg/FnyXAQrwn2wLIwH9e02c43wbHUmeLHX1ENTs3JsRHxPIj8i\nvFcj4mhc6/sSLA8Pwe/BC3ZaKtA1Crh5dJM56c6B5WAJmAcehfFwHQzEFiOzE7mZBm5kYS4A\nsUBEXDe5+9HYd8PG8Dp4wPTwOVjzABCLaV1dHixOgTEQiyjeKcL8UvsUeGCJL2V1G80dpL8f\nygMtwcna/Eru4ctDuoe6I+ELsBCEqVU5N2P+xdj9Kuke1g6KAhVX/U9oUEka8UHn6T9gTpgI\nziMPsDGHquuRX2vtr5cC854GVduNiGNgbXgeXEc9DHajfYtG+9FnJXgEboPQxgvMn2E1eBFm\nAc10x07kM+4ecJ1XO3WbFmKcGeczYp08EL9jzXfivDZ/f8xL+ZLwcZgZ/go3w1BY9E1X7Etp\n6rEjmGZfnwb749gyr32+Cuyf4+NMeBYmNwud7Ff5vr0gbD6Azj5J3tVhE1gGxsF54HzsRrua\nRrsmx9psHxznzhvN8eGaHJoZF37H9I+NaJh1lOGITzcV6BoFHOzdZs/R4GsbDKbtLvxXghtF\nnTnBFwEXOxdUtYqFAm9XmZeij8E64MHBg9G+MFjzcuTXtvcVFcVGezBxvqezYC+YCFOKeajy\nUjQ9nAjrw+IQG/OD+B1PE+C98EG4BKYUUxv766HR3wB4gHSsfBKc3+rmmPkGOE+vgW1AXR+D\n+eFAOB5uh8nRHCseVI+GXeAlmAm8DCwFHmSca14Q1EP/n+Az4JrmYaZqNxAhk4PZb6naM0Ss\nCd+GH8ALMBY8wH0X1OXfsBLMA6+CejnuvGB6ofoRuE6uCx6awyz7RAQG4NpO3+NQm/uTa7sX\nsRngPrB/y8Gd4Jp/OlwCH4bX4X5YEFyPtobTYHI135/7uXMn5lP09XA834nAAFzrLMfIAIqO\nuKzqMhs4hpwLrtOuQ/9b8T9MeH8w73XgunwVrAI3QVoqMFko4KLYbbYODd4EXNTdCB6A8eDX\nLv39NQ9eB7TI7N9lbgAe1uJg62brBtqtdgUNF22fXmdQP/2zFg8SoU9U9jU8vwA3bDeQd8NE\nmFJMPTyYuIFsBx5e1Uo93HgMnwz7gYf/94CHlinFHBPOJQ+OzuMtQE00/RfBjTAf7ATng4fW\ng2Bt8PD3K/AQPLmbh7bdwXHjuPJg/zJ4KHH9VsvxsAZ8AdYCx9qUbB7oDgbHmOvQJ8DL930N\nXLOci85BD8qu9f8ENXQ+7gleJF+EbjLHghfEe+CD8E5wzHgRcv64zmhfgaVhD1gKnoQJMDlf\njuhez4HfjwyOD13nkJdj7WwwPCWb64pr8rGwA8wFrjFhzpH3wxVwdEQ23Idx84JUESWD3a2A\nm0S3mG39A5wBC8GjcBt4sNoIPFC50XXSpqay78LOcBx4OXoa0t5SYC+8Xog8jLjBXAseSjQ3\naDcgF88pydyAHTsevg6En4I6vAp3w+LwLdAWhSlNHzfiz4Hz18P8b2Ei+CV2e3gIrgY362VB\nuws+DduA+qqrB8LJ3dRHbRxDHn5PhzngVPDwOx8cD5+B74EH4bReBY7AeRYOBQ92S8OGsAs4\nhtaF8eAcnBfU9ZvgBcLDnlp3k7nezAPOnz+Ba/Kt8CBcCJuCc+Z+OAe8EDp+7oCbYUqwB+ik\n+/nn4XmINcS1Jq13/fgqQvwV3M+dQ46rI8E12PVoRihtbgLOn9SwVCX9Xa9AfLXtho5sTCNP\nADc5N72qufg7mUdVE9oMb0m53zfKljq5sTYzL3Gt0qNc1OcBpy8zb3/y9ffZ5vPPSbzs7QTH\nwkDNw//r4OZS9kW/m46LqHn8SqcZ1002K429AjZps9FnNspOV1PedxnvM7TT7c+46e87tr54\nRk0TeqLi2X3l85m+PzdJbVpwQ5wZIg5vv21rcp4EfmhwfFifbXEsqYHt8WBneIYGL+I63hxT\nPtc040aieVDYHk5so3GOFy/Rzh/98W7UR9Qn/Hj/y/oaQ/0dP1Y8kLy26bH/as1/RzivxoK/\n0WnHPNSvDwNZTzzMqaXjxQPfNOAYeg3so+NPV0xXc/vj2DbPcJlt9Iv99NDOc79AuWPBeWId\npUWfyvEUYyXGU4QtpxZluKyrE+k+U4v29Ibe+mm6/XCNCJsPzzbwu4gYgOs64/uPeWVRny2+\nc3HN6VabjYZfBJu32YELKLcOxLxy/DhvnCu+i5g3MS7CJanHWr3Pat4o08ptp4xtcM5W36Pz\nak5wnrtvDNS2p8BR8PhAC3ZJfueVHytP65L2DmszY2AP60PbfJhf/VaDHZqUdwI8DCs13CbZ\n+h3tJrop+Ey/KP4aWplafglOB9vRyj5Fonn+3ioTae+FpaCvwTsPebaG30Bfm+uO5DkOroAL\n4TloxzagkM+dXO0WOnZ7m517F+XeAwfDg3A9tDLHjV98J7bI5EK2FfwK3LCa2btJcA6c0ixD\nI34jXOsZ20e+L5Bu2y4u8nlwcUNux7yYbwJugpOjebD8M8RhY6B93JACfsFdEc7qR+GPk8f3\ncWU/8m5Hnmvgzj7yTk/6zuAYerKPvAuT/mlwk+2P3USmvp7frJ5lSVilWeJkEK/Wl7TZj1kp\n50fE/4El4VyosxWIXBVOrEskbiHYAg5vku7B2WecDE81ybMT8X+B+5qkf6aRdkOTdPcW58/P\ni3Tn1QVQPQAXWVp6P0KqB+XJ1W6kY/9us3PLU859o5V9icS5oNwHWuU3bWlYF35roJ82kLWn\nrPKzBC4H96qqPUGE47Ed8/L5UZic96vz6d+L7YiTZUaOAos3XuIaNU3yK8H+MKEmbbBRHub6\nM3j8uu0XqbX68cBLyfP9fuT7Nnmu7Uc+Dw0+e/Z+5H2UPFv2I19mGbwCV1PFnv2oxi9b6/eR\nbzXSfccz9ZHvi6Tf2kcekz3gHN2PfHeTZ8d+5MssnVPgQKrq70HZg/BP+vno+8nnV/i+zIOk\nY62vQ5P1rAfmTRsZCjgWHBPNzLnsnG5ma5Pg+3xHkwzzNdI9VDczL05+BGxm15CwR7NE4o+D\n41ukZ9LwK+Be4Z4xEPOc4XljIDaQtaes93oC3ygj0p8KDFaBaQZbwTCW9/LjV00X/1fhYfDi\nMgcsBm7+fvlKSwVSgVQgFUgFUoFUIBVIBVKBVKAtBbrpgmQH/YJxDiwHS4B/4uUXivFwHaSl\nAqlAKpAKpAKpQCqQCqQCqUAq0LYC3XZB8k/pPgH+SdmZcCqE+fexv4DPR0S6qUAqkAqkAqlA\nKpAKpAKpQCqQCgxEgWZ/ZzyQOoYzr/9R57fA/9D0ctgXwmbGs3UE0k0FUoFUIBVIBVKBVCAV\nSAVSgVRgoAp002+QVqVz/jdHH2h0ckVc/7Wol6C//5Fyo2g6qUAqkAqkAqlAKpAKpAKpQCqQ\nCvy3At10QXoPzS//O6PbCG8EV8LjMBaGwt6gUunL/Jd//KdI+5O3v3UOJJ/t819D68v6W2df\n9WR63wr0V+v+5DOPY6yvd9yfumx5p/NZZ1pnFOjvu/FpQ5E3xph192UDeX5fdWX64BXo632Y\n/nqLx5ju+3etqTPTtb7qiHy9ud/+07S+0qd6e5EMTWIF+npndc1rp8xA1p7yme08qyyf/lSg\nqxVYmNZPBP9xhtLWJPAMfBWaLepl/oH6/ee7W/2TpmV9/larPwu7/+pef/5J7lnIV+1v+bzS\nv1IZaOH3/yUybYv0TOqcAqOoatZ+VOefjPb1566Oq/68Y/8ZcP8/KH3ZAmSYt69MpPv/spih\nH/kyS+cUiH+Zsz81LkIm//vL/ti7yDR9fzKSpz9jzaoct47ftJGhgGPBMdHMnMvO6Wbm+3Qf\na2V9/fPv/iNKrT6+jiK91bo4P+mSNnIUcK9wzxiIec7wvDFQ6+/aU9b7TgKel9JSgSlWgR/R\nc//MbpOKAv4m6VkYigtS5VEZTAVSgVQgFUgFUoFUIBVIBVKBVGDkKOA/7e3/rK5qCxLx/Wpk\nhlOBVCAVSAVSgVQgFUgFUoFUIBVIBVKBVCAVSAVSgVQgFUgFUoFUIBVIBVKBVCAVSAVSgVQg\nFUgFUoFUIBVIBVKBVCAVSAVSgVQgFUgFUoFUIBVIBVKBVCAVSAVSgVQgFUgFUoFUIBVIBVKB\nVCAVSAVSgVQgFUgFUoFUIBVIBVKBVCAVSAVSgVQgFUgFUoFUIBVIBVKBVCAVSAVSgVQgFUgF\nUoFUIBVIBVKBVCAVSAVSgVQgFUgFUoFUIBVIBVKBVCAVSAVSgVQgFRhqBaYe6gd0Wf0z0N7d\n4No+2r046Z+DeWEc/B8M1laigvfCPX1U9GHSN4Xn4Yk+8mbypFNgKMZI2ZsZCXwclgPH4H8g\nbCo8a4Dpr8BjUFqrts1Cxk+CY/EheAnC+qo38qXbvgKt9G+/1tYllyF5C/B/wj0B/hfCJkV7\n4tnpDkyB4XpXrdaeD9Dk1cB1KbgLf+yRufYgxiS2d/B81/h4P7pzwkTQ+lrn232HvbXnz1Qg\nFeg6BbwsngTVw2S1I6OJeBGOaeT9QzVDG+GFKOPB5Ig+ytq+f8Gh8AD8CNJGngJDMUbKXq5D\n4Ak4tcEjuOtC2Nl47gXHixekrSCsVdsWINOTcAFcA47JxSCsVb2RJ932FehL//Zrbl7Si9Gj\n8Eu4Av4N04I2KdrT++T8OVAFhutd9bX23EzD74BrC6ZvdCbXnoYQk9jxg8jrUL6jnxZtarXO\nD+YdFo9IbyqQCnSLAivQ0OvALyitLkizke4B0q/zmuHHwU2jXduGgh52/Vrf6oLkAdj2+ZVX\nWwLGg21IGzkKDMUYqfbufCK+XUTujf+cRtgvg+MgDrmb4XfcTAN9te0U8nj51vyK6AXrFwaw\nVvX25sifg1Wglf6Drbuu/HRE+qHFMRL2VzyfagSGuz3RhnQHrsBwvatWa48Xoddg8Zrm59pT\nI8okivosz/VyVGet1vnBvMO6Z2VcKpAKdIECHjD3gPWh1QVpddK9yJR2IoGDy4gB+s8j/4bg\nQbTVBelo0uPwOid+D7BpI0+BoRgj1V5+jIi5i8jt8d/fCP8E97AibWr8L4B/MtdX26xjLQjz\nOf4mSmtVb2+O/DlYBVrpP9i668q77jzYSJgJd8ZKpuFuT+XxGRyAAsP1rlqtPa4xfjB0zdEf\nH/Pw5tqjCCPEDqIdvwIvPL6n+A0f3pbr/GD2D+tOSwW6SoF3dFVrh66xB1K1lxx/7dzK/K3N\nw5UM/nnTgpW4gQTdcC7pR4FFyfMfuBl8phe5T0DayFJgKMZItYdeqv1NpuZvAXaH0w1g1ec7\nZp4Ax2g1jaiesWTatLAwlOP7UcIxtqtly3rJljZIBfrSf5DV1xb3zyfvg+PA9eQ5OBymgknR\nHh6b1oYCw/muWq09q9B223IbnAl+TPwaaNX1w7jYO/tqf7Vsrj2q1775njaBa+ByuBveB1or\nratp5u/vOzRvWirQVQrkBentr2uqtwf/KzQPMS9WYv2P2GepxA1FcH4q3RW+AbODfzP8O/Bv\nz9NGjgLDOUZmoNt/gDdgn4YEdc93zDpG69Ji/PpbSdeDFyDMNJ/hn+fVlY16I3+67SvQl/7t\n19y85HwkrQkeclxf1oNtYDuYFO3hsWltKDAp3lXd2uNvj46GlcHD9A7wk0a4bv3ItQdxJoFd\nzzP9q5kVwA9gV8NJoNW9p1jn69L6+w57a8+fqUAXKZAXpIG9LL+oz1EpYvj+StxQBP2NwXnw\nF3gFvCD5997ln0QRTJvECgzXGHHcORZmhQ+DG5XW7PkPtEhz/Dq+/DJbjm/9/kbpDWhVL8lp\ng1SgL/0HWX1t8aeI9fDjb9B1r4I/wUdgUrSHx6a1ocBwv6tma8+5tP1b4L70f3Ay+FskL+HN\n1o9cexBnmM2Pab4b7QXwz/uXhXmh2Xsa7P5B1WmpQHcpkBekgb2v8WT3z1KmK4otjX98ER4q\n7zgqjkOwz3ADkmcNpI0YBcbTkqEeI/PxjMtgImwKbnJh4/EsFQFcf9tofsfPeGjWNi9HboKO\n5zD9ltPGQ7N6TU8bnAJ96T+42utL+27/F14ukmNNmRTtKZqR3gEoMJzvqtXasxVt3rxo97T4\n/c31rTAecu1BhElsU/P8A+CdRTvcIx4GL9rjodk6b1q775CiaalAKtDNCqxD4/1b/NKWIbBR\nEXEL/v3Bxd/D6ROwKAzW/IpzRKWSDxFevhH3ftxnYEWYCnYGvwDPCmkjS4GhGiPRy/PxXAyL\ng2NPFgHN8eI4WRf8Mxj/m5KLIKxV2/Yl0+WwECwB/4QdQeur3t5c+XMwCrTSfzD1NivrYeke\n+Hojg2ud69knG+Hhbk/jsem0ocBwvatWa89mtNs/1/TPvqeBb8GDEB9ic+1BjBFgp9CGk2E6\nmBfcH9wntL7W+XbfYW/t+TMVSAW6VoF1aPljldZ/h/BdRdxq+CeAB4nx4FezTljdBekGKv5B\nUfmu+P2N0UQYD/7pQtrIU2Coxog99YLsV/4q/llLmAde/wzT/ybgKhgFYa3a5mXbP+N8Hhzf\nR8JUENaq3siTbvsK9KV/+zU3L7kKSXeAa4oXaw/aYZOiPfHsdAemwHC8q77WHteKH8N48E+1\n7oMPQliuPaHEpHX97dEZ4Jx/Ec4F/zu2sFbr/GDeYdSfbiqQCkzmCiw4ifrnV99J9exJ1OWu\nfeykfE9+HZynhXKt2jYX5fztU531VW9dmYwbmAKt9B9YTf3P7T/SME2T7JOiPU2aktF9KDAS\n3pW/MXI8NbNce5opM7zxs/A4L9Z11tc63+47rHtWxqUCqUAqkAqkAqlAKpAKpAKpQCqQCqQC\nqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAK\npAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAq\nkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKp\nQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqk\nAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQ\nCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlA\nKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQC\nqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAK\npAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAq\nkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKp\nQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqk\nAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQ\nCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlA\nKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQC\nqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAK\npAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAq\nkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKpAKpAKpQCqQCqQCqUAqkAqkAqlAKtB9Cvx/\nz1LDs0lpc84AAAAASUVORK5CYII=", "text/plain": [ "plot without title" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pairs(college[,1:10])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**8 (c) iii.** Let us produce side-by-side boxplots of _Outstate_ versus _Private_." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0HvDRVfT9+ECkCgqCoiICCBQ0iRYOglCgSe0wMJmiCRIVoNDZMrEFR\njH8T1GhiFEPkQQXLz4KKARUFUUBFUbFRQpUiKFWKVP+fL+zEcbl3y/Pcu3fL+7xeH2Z25uzM\nOe+592HOndnZlVZSCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIE5hJYea6FlhEgQKCHwGZZt/Y862/N8puSK5LL56kzaYs3T4PX6jT60kwrk17WTQf+MNki\nuSA5IzkrqeM3aKn/fzwgeWRy/+TM5MfJxYkyOoEts6u7dHZ3XaZn99n1A7P+7p06dbx/0qf+\nQq+e69+P32YntyT1b0f1oX7Hatnylvr3qfbTlNOaGVMCBAgQIECAwGIIfDUbrZOXfjkndd6Q\nrJ5McjkpjW/6+tYF7siq2d4rkwct8HZ7be5Ps/LmpOlTM713rze11m2Q+Y8nVyfNe9vTy7J8\nn2Qxyx9k4y9f4B0sxjZHcXy/GYfG/5rMr9HDpQZSv2jVr9/lUZfjs8OmvfNNf5M6n0xqAL88\nZfe8qb3tVZZnIwv4nsX42VrA5tkUAQIECBAgsKICgw6QmhOUz2SHS32CsiJ9XqwB0pPSqJ8l\n5bTVijRwiPfeK3Xrr/TNsWmmFw24jTrxbJ9gN++fa/rl1N14wO0OWm29VHxvUgO8+rlaiLIY\n26x2jer4vij7avs/qwfKrl11/6ZH3cVadXxXG9pt756vq9DbLEdDxmWAtFg/W8tB4i0ECBAg\nQIDAYgq0B0h1K8ynkzpZ/WzyueT4pG6XaZ/s/HVeT2pZjAHSJsFo+4xqgPTYrv3undf3Sx6a\n9Ct1a9avk3a7z8/rTyT/knwhuSJprz8lr5vbvzK7wuVD2UKz/YUaIC3GNkd5fO8Zk/agt668\nzFfelxWN3w2ZX2e+iou4/Phsu2nDLzP/paQG08cl309uTZr1Nf1WMmzZKW84u5Wl+gPNYvxs\nDWuhPgECBAgQIDACga9mH80JTJ3czFXqZLp9svzhuSpNyLLFGCBtmr43hjV9xIgs/rq137od\na9DBy8qpe3zrvbdl/qBktaRd6va7LybtvtUVjoUqh2ZDzbZrYL4QZTG2uWka1rSzpot9fOsP\nE83+rs/8XJ8RrGN9Sater4FUqi1aOT5bbtr6P3PspT7T1lxZbeptNUe9SVh0aBrZ9GGhfl4n\nod/aSGDiBe468T3QAQIExlHg3DTq2GSPTuPW7dHIuoLxnKQ+bF5/0T49qQ9Vfz6pk72m1Oc5\nXpw0/27VbVb/mdyaNOUvM1Pbq1In8R9MahsPT+qWpyr1l+U6oWyWPaaz7GuZfiVZnlInn09M\nnpxsklyZVB++nvwgaZdqR13JaZe98qJOXqsN3fXb9drzw+zzvnljGW/f3kDmX9F5fXSmdVI6\nX/njrNiltfKIzL+69bqZrSsCz0xqW5t3Fv5zph9Pruq83jvT9Tvzx2d6ame+mdQgrgZaVb6R\n1FWo+vl5QfIHSVMenJlXJTck728WZnr35HlJXRXbOPlN8ovk+OSopK5uVhlmm3UF4unJrkn9\nfK2R1DH+UVIDjQuSpgxzfGu7f5Y8KqnPof1vUsf/yKT6NWg5PBWf0al8t0yrrR/rvG4mj8tM\n/Rw05aPNTGtadar99TN8j+Sy5Jyktl9XC0dRfpidvDs5uLWzOtb1+1TlRcmat8+ttNKHMq2f\nib9KbkmOTr6cbJQ8K2lKba/61F52WF5f3lRoTdvbb37+mtX181Q/n5sn907qGP0iOTb5QlKD\noSrD/GxV/YckT022SW5LyuC4pH4WFAIECBAgQGACBL6aNtaJQGW+K0h18v7zVr066ZirPDcL\n68Sm2V57emaWP67rTW/qqts+Sd+9a12dFDVlr8w02/585vdO5trvB7N8jaRdTsqL5r1vba/o\nzNeg7lutOk3dmt6aVDvqpLUpH85Mu057/u+bSn2mw+5z+x77rP3/VZ/9va/1/psz/8A+9eu4\ntvv1+Fb901vrXtla3szWyWHz3td2Fm7WWtasa6btk9ynpF69btZ1T2uwtWpSZdBt3it1223q\n3uYVWb9zbbBTBj2+m6b+N5Pu7dXrnySPSAYt9fN1TdJs63NzvPHfW+t/lfnGoarWfL2neX/3\ntH6O24OLvFzucnze2Wz/f+bZSg3Imzo1/dNWvRq0NetenPn6eWxeX5r5+gNK978Fq2TZWsnV\nSVP35ZnvLo/MgmZ9TdvHoPY1178ZTf3Ds361pMqgP1tV9yVJDbSa7TTTMn9LUm1XCBAgQIAA\ngTEXaA+Q6q+6e3bynEz/OtkvqRO85n/0Z2S+uSKQ2f8rz85c9wlHnRQ076tpvX580pQ6WTgx\naerU1aHNk3WTn7eW/zDzqydNaQ+Q6gS6/kpb27iyNd9s851Z1i69Bkh1K1N7fdPmZlvN9Gup\nt3Jno4OeQLfb0J5fnn2u6ADpO2lA05ez2o2ZZ/7+rfr1vjq5bMpiDZDq6shVSdPOizL/xeTU\npP1z9c95XWXQk9ijU7fZZk0vSGrw3vwM1bJrk2ZgPcjxrZ/Ns5P2dn+R193bvE+WDVoOTcVm\ne7/JfP1ONKV+9sqjWf/+ZkVn+o7Wuhsz/92k7Gog1byn5jdMVrQcnw0025xrgFQDnE+16lTd\n+yVNaQ+Q6ve/2VZNaxBYZfekvbwZZPxna/n3qmJXeVdeN+87ubVuh8y3j035/iipwXFTv6b/\nlFQZ9Gdrn9Rtv/+mvG6b17qDEoUAAQIECBAYc4Gvpn3t/6n3mq/Bw/pz9KdOONp/+T0mrx+S\nrJrslNQJaLPdOpFcM2lKXb1o/yW42nNY0tSvk6aHJ+2yV14062tag6nHdCrUFYLaf7O+ThDr\nBKcp1Ydm3VubhZ3pUa11v8783snaSQ0I3560T6pelNdVNk6elDTbrOmzkvpr9T2TfmV59lkn\n7w9KXp80+60TzVpWuXvSq5yblc37vtKrYmfdXTKtk73mPf/Wes/preWvbC1vZmtw27zvtZ2F\nq2VaPp9rrTu2s6w51s9pretu4x931l2YaV1BXCcZZJt1rJorM3UsaztN+ZPMNO2safPzNMjx\nbR+HX+a9z0jKbIvk60mz3bZbFvcsu2Vt876a7t2q/biudY9travZM1vr2+uqTd9IfpN8N9k7\nWdFyfDbQtPPHmd+3k5dl+pak9tOsr+m5SbvUz217/Sfzuo5FDSS2TarsnrTrrHL70ju+s6u9\nfMvO8prcNakrUM3659fCTnlPps3vcv17c7fO8vr36ttJ855jOssH+dmqAWy7L/Vv2EbJ6skL\nk2ab9e/ZQgxMsxmFAAECBAgQWCyBOkFo/ufdb1only9OVu5qzOGtbZyX+TopaJeH5UX76lKd\nRLXLX+XFfPv+u3bFznz3AKkGJO1Sg6Rrk2ab/9BaeVJr+Vtbyx/SWl7vawZArSorHdGqc3Fr\nxaat5fXeOvkfpKzIPmv7L0iaPrbb02/fl7feV30apFyaSs2+6iS2Kadnplk+6ACpee+hrfd+\nulnYmdYJbbPdGqzun2yVND977SsqWfx/pdc2q1K9f/Nkp3rRKvUze13S7PMprXWbtpbX+u7j\n+/PW+rqq0S5PzYtmmzdkfs32yh7zNZipY9q8t658NaVO8Jvl52S+MWnWX9Baf1zm/yy5R2dl\n3ZpWg4eFKsdnQ01b+k2r/zt27fiy1vvPz3wN/rvL7lnQ3vYqrQont9b9S2v501vLr8589btd\n7p4X1Zb7tRdm/o1Js6/vdK07tLWu++e1/bt4a+rdt+u9p7Te+5audV4SILDIAvUPqkKAAIHl\nFaiTrbd2cmCm/5p8IKm/qlapk4o6Aay/6Lf/vfmjvG7KhzNTV23a5Wd5cWJrwSNb8zX70eRj\nXcvq5ReS7hPO7mp1MlP12uVXedHe34PaK+eZ37W1vE5wPtR63cz+VzOTaf0VuK4srUjZtfXm\nUe2zdlknok3ZuJnpMa3BQ7uv7ff3eNvtq1buV2Ge9V/P8hpUV1k7OSD5YVIn1DWoe2pSV46G\nLfXzcnbyreQxSQ3qPp5clKyZNKX6PEip99SVgqbUz95TWqnByM2dlXXyf//OfL/JbanQ/p3Y\nLa/vmZTns5KmlEX1qV2+2nqxa+brZP7ypE7S648Fj0hGXc7IDv88OanHjuv3+Dc91s+16uDW\nwudmvhk8Pa+1vP6AU4Pfdvl1XjRt2SPzByX171x78DLoz0DedvsV85pWOS+pq1/tn4O6qteU\nQf49auqaEiCwAAL1D7FCgACB5RX437xx/3neXH9ZrcFTlSckdVLxiaROSNp/LT03r+cqNfja\nubPi4XNUqFty6gRq1da6N7fm55utE9Kb5lh5YWvZA1vz8822T1zrZHmubVYf2qX6USfyy1uW\nYp/V1tOTbTqNHsRm09StE/Om1MnuXKU9aG7Wt49nexvN+vmmNYh5YfLfSXPSW3Xr6uCendSx\nf03yoWTQsnYq1q1uf5HU/HzltvlWdC2vk912v/6pa333yxpMtU+Wu9e3X380L17VWXDXTGtg\n9OOkPSCrk//u8vIsqKttdZLelDo2j+rkTZl+Mdk3uThZqFLHrAabVW5JbkyuSOrn5evJb5Ne\n5fxeK+dZ98ksf3dSV8jul+yW1EDw6UlT/quZaU2flvkDk+4/1rSq3H4bXvt1r/kHt1Zulvny\nna+0j998dSwnQGABBeofUIUAAQKLIfDebPTNSXOyumPma4B0a3JtcvekSjO949Xv/rvu72Zv\n/+By6+XtszVAap9M18J3JjUY63Wyul7W18lfd532ye+VWd+vXNWqMEgfqvqvWu9Zntml2Ge1\nsz3AqZO1XZI6gZ2v1ICkXdrvby/vPn61rv1X+H4nyO1t1fxhyfHJi5JnJlsk7VKDpUOSc5Pj\n2ivmmV+nU68ZONTP7Zc7y47P9GvJBkmV7p+nO5be+b83dS06Oa9ru/OVYQy+n43U1deHdTb2\nl5nWVbSmnJqZWt9drsmCP0z+JHl+skvS/n3Iy9uvwB2R6a71YoHKmdnOG1dgW9cvx3vrPR9J\n/r7z3hr4bpKs1nn93UzLsV2elxftgfeP8rp+Do5PtkzenlQZ9Geg6rZ/Di7L6/ZxqvXt8vP2\nC/MECCy+gAHS4hvbA4FZFdgwHW8GR2VwQwvivMw/ovP60a3lzWy9r7liUcvqhKRddsiL17cX\ndOZ3zfTVyb90Xs81qX/3/iDp3mb7L7r/O9cbu5ad13pdg67Nk/qLeLs8qvWiTojObL1uz9aA\nbZByXqvSiu6ztam+s19Ijf2Tpp3l+9ik/urfXerq4H6thRdkvk46m9I+MVyrWdiZrpzpfbqW\nzfeyaUv3+rqq8Ibkdcn9kj9K/iypk//6uap91Ou5Bkjd23xq6jWDo/r5rZ+b6k9T1m1mMq2B\n/3ylvd3zUqkGPdWOKh9OPnD73ML85/Bs5sDOpmqgUyfwTfloMzPHtNp/ZPKZpH5HasC0e1KD\ngwckVWp790wurxdjUG5czjYcnPc1A6RnZH7T1nY+2JpvZl+fmebfsvdl/qXNikybf8dq0aA/\nA1X3nPpPp9Tv0ZOSYQZYzXtNCRBYBIH2P9qLsHmbJEBgRgUekH6/u6vv32i9rpOwpuyZmR2a\nF53pKzJ9QGf+t5l+qTNfk7WTjyTNCcv3Mn9M0pS3Zmbr5sU80zrZb05Qq8quSXtA1v0X5KrT\nXapN17UWvjPz7SsidWWh/dfxY/P65k797oFF89frzup5Jyuyz3k3OsCKuvLQPomvk+fjk02S\ndqlBU30u4+6thXUs24PjM1vr2ua1+NnJmq317WNUi9tu3WZ13E9MfpV8NqlycVIDhmclX02a\n0j5OvbZZ/WnKaZm5oHmR6WOSdhtqUNGU9jZrWbveb/K6fmabsmcz05mWwdnJ55O6MlE/78OU\nI1K5fmeq1P/j6+ewSp28N7ez3b6g859HZvq55PTk+mS7pNp/UvLm5DlJu7T7smNW1CCy8pB2\npRHNdzsPutufpGL9rFSpAd/jb5+740rexzrzzeRemWn37ahmRWe6c+t1+2egFrfb13ardc3+\na/5+SQ0+m1L/tp2UfCv57+QpiUKAAAECBAiMsUCdaNYJWKVO9i5q5ZLMX5HUX0KbOjU9K2mf\n6NVVgjNadWo7H0j+IamT2/Z735fX7fJfedGsvzHzj0g2Tq5uLa8ToDWSpuyVmeY9zfTLWbZv\n8pbk1631P8h8nVg2pU5UmvfUSXi7vDIvmnU1rRPfNyZ1Ynth0qy7NvMPSJqyTmaadTU9Njko\n+fOkX1nefdZ2X5A0+72434661t8jr3/Ren9tp45zHccvJe3+Nvv4nyzvLmXYrK/pu5OnJWVW\nTu11r8vrdnlXXjTrr8v825IPdyr8Y2td1XlnUievf5jUz1X9rDTv3TPzTem1zdp/856a1mDv\ngckLk/OS9rr2QKLf8a0BW/u9B+f1rsk+Sf0+Neu+lvnlKd/Mm5ptNNP6eZ+r1ID0V0lT78eZ\n/5ukbtPbI/lK0qw7I/Pt0ut3o12vPX98XjTbm+vno113rvnLWu9/3lwVsmz3Vp3aVw04ustf\nZ0HTjmb6we5KeV3vvb5V9+TMP6aTGrw0763pmUm79PrZqsF/Dbqb95+f+WrTE5L6mW6W17R+\njhUCBAgQIEBgjAW+mra1/+fdb/7K1N9ijv7UIOlHfbZVJ4h3b733T7rq/1Nr3d92rXtPa91e\nrXV1Yv2/rdft9tcJevfJSL+TwJfmPbfNs73adm3zL5LuUgOx9r5rvk6oBinLu88XZOPNPocd\nIFW7anAwyPEvj/cmayXdpU68r0iadrSnNZA+urWuBijt8sy8aNdv5mtAUgPiY+ZZ39Sr6ZFJ\nnZw2pdc2N0mlq5L2+5v5W7O8PZipwVq7/CAvmrrNtDm+tf/6+WyWzzW9JOsfmixPeVHe1L3N\nvXps6ElZV3+k6H5P+/WNWV8Dg3bp97vRrtvMH5+ZZrtLOUCqn5fLW22pNj0qmavUcWva3D29\noLWuDNdubaDXz1ZV2zppv7972/W6/oCgECBAgAABAmMuMN8Jcp0U35TUX1vrL9KnJPWX+/sn\n85W6veU/k58k9f7mBKGuRvx90j6RrQFV+6/Hp+b1XZOmVN2vJc02ant/3Fm5V2v5LzN/j+Rz\nSZ3kNvW/n/k/SLrLICeBz86b6mTvqqTZXp0sHZNslsxVHpeFNUhp6t+c+X+bq+I8y5Znnys6\nQKqmlHMNRr+bXJ807a9pnXAel+yS9Cp1ov2zpHlvDVrreGyQvK+1/LWZb5dV8+JDSfO+mtbx\nfEBSZfWk3lM/P+06NV8/O69K6sS4Xfpt87Gp/NOkvb26yrJj8jet5TXobpdBju/z8oa6KtP+\nObwlrz+ZPChZ3lK/V/W72LS5fNt/aJhru4/Owu7fieb9R2Vdncx3l0F+N7rfc3wWNNut35lh\nS/vfgPKbq+yehc0+alpXgeYq7YFP/XsyX6mfq6pbv6PNdutnvwYvd0vOS5rlf5X5pvT72ap6\n9TP/2aT9b0dt67zk7xKFAAECBAgQmGGB9dP3Oum81yIYdA+Qml2sk5kdFnCfd8m2HpnUQKs9\neMvLOUvVqbrbJd0n7nO+YY6Fw+5zjk0s96La9+bJLsn9lmMrNeitE/M6kRym1ACgBi73n+dN\n1a6NkhqIVe6b1MCuV+m1zdreA5Ma9Azz8zno8V0r2612bpOsmyxlqSsgD092TbZIagCg3CFQ\n/148KnlEMsjv9x3vuuNzTr1+Xpt69TO2U1LT+QZ1TV1TAgQIECBAgMAKCcw3QFqhjXozAQIE\nCBAgMH0C9VcxhQABAgQIECBAgAABAgQiYIDkx4AAAQIECBAgQIAAAQIdgWHuoYVGgACBSRW4\nJA0/ttP4aya1E9pNgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYGEFVl7YzdnaCgg8Ku9ddQXe760ECBAg\nQIAAAQIElkrgpuz4e0u184XcrwHSQmou/7ZqcHTK8r/dOwkQIECAAAECBAgsuUCd0078IOmu\nS86oASXQXDm6e+Zr9K0QIECAAAECBAgQmBSB1dLQXyc1nfhigDReh7AGRwZI43VMtIYAAQIE\nCBAgQGCGBO4yQ33VVQIECBAgQIAAAQIECPQUMEDqyWMlAQIECBAgQIAAAQKzJGCANEtHW18J\nECBAgAABAgQIEOgpYIDUk8dKAgQIECBAgAABAgRmScAAaZaOtr4SIECAAAECBAgQINBTwACp\nJ4+VBAgQIECAAAECBAjMkoAB0iwdbX0lQIAAAQIECBAgQKCngAFSTx4rCRAgQIAAAQIECBCY\nJQEDpFk62vpKgAABAgQIECBAgEBPAQOknjxWEiBAgAABAgQIECAwSwIGSLN0tPWVAAECBAgQ\nIECAAIGeAgZIPXmsJECAAAECBAgQIEBglgQMkGbpaOsrAQIECBAgQIAAAQI9BQyQevJYSYAA\nAQIECBAgQIDALAkYIM3S0dZXAgQIECBAgAABAgR6Cty151orCRAgQIAAAQIElldg87zxb5Pt\nOhv4XqYHJ2d3XpsQIDCGAq4gjeFB0SQCBAgQIEBg4gX2Tg9+muySnNRJzdeyvROFAAECBHoI\n7JB1v01W61HHKgIECBAgQGAyBGogdEvy4jmaW8tqXdVRCEyLQJ3D1rlsndMqBBZEwABpQRht\nhAABAgQIjIXACWnFf/doSa2rOgqBaREwQJqWIzlG/TBAGqODoSkECBAgQGAFBNbMe29Nduqx\njVpXdaquQmAaBKZqgOQzSNPwI6kPBAgQIECAwLgIrJOG1PnVZT0aVOuqTtVVCBAYMwEDpDE7\nIJpDgAABAgQITLTAL9P6a5Mte/TiEZ06VVchQGDMBAyQxuyAaA4BAgQIECAw0QJ169wnk9cl\ncz18qZa9tlOn6ioECBAgMIeAzyDNgWIRAQIECBCYUIEN0+6LkmOSByRNeUBmalmtqzoKgWkR\n8BmkaTmS+kGAAAECBAgQWASBS7LNehBDfcbonOT0Tmq+ltW6qqMQIDCGAncdwzZpEgECBAgQ\nIEBg0gVqMLRj8uhku05nvpfpKZ15EwIExlTAAGlMD4xmESBAgAABAlMhUAMig6KpOJQ6MSsC\nHtIwK0daPwkQIECAAAECBAgQ6CtggNSXSAUCBAgQIECAAAECBGZFwABpVo60fhIgQIAAAQIE\nCBAg0FfAAKkvkQoECBAgQIAAAQIECMyKgAHSrBxp/SRAgAABAgQIECBAoK+AAVJfIhUIECBA\ngAABAgQIEJgVAQOkWTnS+kmAAAECBAgQIECAQF8BA6S+RCoQIECAAAECBAgQIDArAgZIs3Kk\n9ZMAAQIECBAgQIAAgb4CBkh9iVQgQIAAAQIECBAgQGBWBAyQZuVI6ycBAgQIECBAgAABAn0F\nDJD6EqlAgAABAgQIECBAgMCsCBggzcqR1k8CBAgQIECAAAECBPoKGCD1JVKBAAECBAgQIECA\nAIFZETBAmpUjrZ8ECBAgQIAAAQIECPQVMEDqS6QCAQIECBAgQIAAAQKzInDXWeloq5/rZX7d\nZPXk2uSq5LpEIUCAAAECBAgQIEBgxgVm5QrSNjnOhySXJVck5yanJxcmNUg6Ozk42SBRCBAg\nQIAAAQIECBAgMLUC+6dnv+3k/ExPSo5KPp4cnXw7uSSpOr9KnpOMuuyQHdb+Vxv1ju2PAAEC\nBAgQIECAwAoK1DlsncvWOa0y5gJ7pH11sGogtG2Ptq6cdTsnpyRVf8dklMUAaZTa9kWAAAEC\nBAgQILCQAgZIC6m5yNs6PNuv2+fq80aDlPp80jXJBwapvIB1DJAWENOmCBAgQIAAAQIERiow\nVQOkaf8M0lb50Tg5uXHAH5ErU++0ZKMB66tGgAABAgQIECBAgMAUCUz7AKk+W7RdsuqAx6yu\nINWgqh7goBAgQIAAAQIECBAgMGMC0z5AOizHc4vk08n2PY5tfQZpp+SYZM3kyEQhQIAAAQIE\nCBAgQGDGBKb9e5COyPG8d3Jg8vTkoqQe7X15Up81WidZP9k02TC5JdkvOTFRCBAgQIAAAQIE\nCBAgMJUCm6VXH0tqgFRPqWunviT2rOSgZONkKYqHNCyFun0SIECAAAECBAgshMBUPaRh2q8g\nNQf8nMzs2XlRV43WTdZI6otjr04UAgQIECBAgAABAgQIrDQrA6T2oa5b6yoKAQIECBAgQIAA\nAQIEfk9gFgdI9aS6uoJU3410bXJVUrfZKQQIECBAgAABAgQIzLjAtD/Frjm822TmkKRuqbsi\nOTepR3nXAxtqkFRfJntwskGiECBAgAABAgQIECBAYGoF9k/PmocynJ/5k5Kjko8nRyffTur7\nkqrOr5LnJKMuHtIwanH7I0CAAAECBAgQWCiBqXpIw0KhjOt29kjDauBTA6FtezSyvgdp5+SU\npOrvmIyyGCCNUtu+CBAgQIAAAQIEFlLAAGkhNRd5W4dn+3X7XH3eaJBSn0+qBzh8YJDKC1jH\nAGkBMW2KAAECBAgQIEBgpAJTNUCa9s8gbZUfjZOTGwf8Ebky9U5LNhqwvmoECBAgQIAAAQIE\nCEyRwLQPkOqzRdslqw54zOoKUg2q6gEOCgECBAgQIECAAAECMyYw7QOkw3I8t0g+nWzf49jW\nZ5B2So5J1kyOTBQCBAgQIECAAAECBGZMYNq/B+mIHM97JwcmT08uSurR3pcn9VmjdZL1k02T\nDZNbkv2SExOFAAECBAgQIECAAAECUymwWXr1saQGSPWUunbqS2LPSg5KNk6WonhIw1Ko2ycB\nAgQIECBAgMBCCEzVQxqm/QpSc8DPycyenRd11WjdZI2kvjj26kQhQIAAAQIECBAgQIDAStP+\nGaS5DvEqWVipvq+drJUoBAgQIECAAAECBAgQWGlWriBtk2P9kuQZyQZzHPe6wnRs8sbkl3Os\nt4gAAQIECBBYfoHX5K2vXP63T/w764+xdXv/9RPfk+XvwLvz1ncs/9u9k8DoBGZhgLR/OA/o\nkF6QaX0v0hXJtUndalcPadgk2Td5VvKypB7uoBAgQIAAAQILI/DJbOa8hdnURG7lxZ1Wv38i\nW78wjf7OwmzGVggQWFGBPbKB+ovN0cm2PTZWj/neOTklqfo7JqMsHtIwSm37IkCAAAECoxVY\nlt1VFALTKuAhDRN0ZJ+ZttbtczW9sUe7a1B0QrJ7cn6yV3JSsrzlgXljDbbqh2WQUp+JqlID\nNYUAAQIECBAgQIAAgSUSmPZb7LaKa91S12tw1Ka/Mi9OSzZqL1yO+RpkPTcZdIBUA7OXJnU8\nBm1rqioECBAgQIAAAQIECCykwLQPkC4J1nbJqsnNA8Ctlzo1qDp4gLq9qtyWlV/qVaFr3X27\nXntJgAABAgQIECBAgMASCEz7Y74Pi+kWyaeT7Xv41q1tOyXHJGsmRyYKAQIECBAgQIAAAQIz\nJjDtV5COyPG8d3Jg8vTkouTC5PLkmmSdpJ5it2myYXJLsl9yYqIQIECAAAECBBZC4NKF2Iht\nECBAYCEFNsvGPpbUAKkeyNDOdXl9VnJQsnGyFGWf7LTaVN+ToBAgQIAAAQIECBCYJIH63H2d\ny+4wSY2er63TfgWp6Xc9yW7Pzou6alTff7RGcllydaIQIECAAAECBAgQIEBgpWn/DNJch7ge\nqV2pvq+duGoTBIUAAQIECBAgQIAAgTsGCbPgsE06eUhSV4yuSM5NTk/q80jXJmcnBycbJAoB\nAgQIECBAgAABAjMqMAu32O2fY3tA5/hekGl9L1INkmpgVLfa1UMaNkn2TZ6VvCyphzsoBAgQ\nIECAAAECBAgQmCqBPdKb+sDY0cm2PXpWj/neOTklqfo7JqMsHtIwSm37IkCAAAECoxXYLbur\nKASmVWCqHtIwrQep6dfhmanb51ZvFvSZ1hfF1uO/P9Cn3kKvNkBaaFHbI0CAAAEC4yNwaJpS\nUQhMq8BUDZCm/Ra7rfJTWLfU3TjgT+OVqXdastGA9VUjQIAAAQIECPQTqDtVFAIEJkRg2p9i\nd0mOw3bJqgMej7qCVIOqeoCDQoAAAQIECBAgQIDAjAlM+wDpsBzPLZJPJ9v3OLb1l52dkmOS\nNZMjE4UAAQIECBAgQIAAgRkTmPZb7OppdPdODkyenlyUXJhcntRnjdZJ1k82TTZMbkn2S05M\nFAIECBAgQIAAAQIECEylwGbp1ceSGiDVU+rauS6vz0oOSjZOlqLsk51Wm3xp7VLo2ycBAgQI\nEFhcgWXZfEUhMK0CHtIwgUf2nLR5z06766pRff/RGkl9cezViUKAAAECBAgQWCyBWxdrw7ZL\ngMDCC0z7LXbdYvWZq7q1rjJXWSULawB1Q/KbuSpYRoAAAQIECBAYUqBu9VcIEJgQgWl/SEMd\nhvskn0iuSGpgdFzy2GSu8ogsrHqvmWulZQQIECBAgACB5RA4N++pKAQITIDAtA+Q1s4xOCV5\ndlJXh+oBDbskJyRvSxQCBAgQIECAAAECBAj8n8C0D5D+IT2tBy8ckNw/qUd+Pzr5cfL65F2J\nQoAAAQIECBAgQIAAgdsFpn2AtGN6WQ9iqHt/f317j1da6XuZ7px8I3llUoMohQABAgQIECBA\ngAABAitN+wBpoxzjGgjV9xu1Sz257mnJack7kroFTyFAgAABAgQILIbAvbLRikKAwAQITPtT\n7M7PMdgtqUd6dz+Vrh7Y8JTk5OSwpL4jqb4TSSFAgAABAgQILKTA2zsbq+89VAgQGHOBab+C\n9NX413ce/XNyvzmORQ2KnpjU7Xf/kzw1UQgQIECAAAECCymwajZWUQgQmACBaR8g/UeOwU+T\n+qzRz5O/TLrLGVmwe3JbUp9VqrLyHRP/JUCAAAECBAgQIEBglgSmfYBUt9Vtn7w3uSC5KZmr\n/CALH5UcM9dKywgQIECAAAECBAgQmA2Baf8MUh3Fa5OXd9JrQHh26jw5qceAd39eKYsUAgQI\nECBAgAABAgSmXWAWBkjtY1i30fUr9cWyCgECBAgQIECAAAECMyjQ64rKDHLoMgECBAgQIECA\nAAECsywwa1eQZvlY6zsBAgQIECCwNAJHLc1u7ZUAgeURMEBaHjXvIUCAAAECBAgMLvCpwauq\nSYDAUgu4xW6pj4D9EyBAgAABAgQIECAwNgIGSGNzKDSEAAECBAgQIECAAIGlFjBAWuojYP8E\nCBAgQIAAAQIECIyNgAHS2BwKDSFAgAABAgQIECBAYKkFDJCW+gjYPwECBAgQIDDtAq9PB183\n7Z3UPwLTIuApdtNyJPWDAAECBAgQGFeBh4xrw7SLAIE7C7iCdGcTSwgQIECAAAECBAgQmFEB\nA6QZPfC6TYAAAQIECBAgQIDAnQUMkO5sYgkBAgQIECBAgAABAjMqYIA0owdetwkQIECAAAEC\nBAgQuLOAAdKdTSwhQIAAAQIECBAgQGBGBTzFbkYPvG4TIECAAAECIxO4dGR7siMCBFZYwABp\nhQltgAABAgQIECDQU+A1PddaSYDAWAm4xW6sDofGECBAgAABAgQIECCwlAIGSEupb98ECBAg\nQIAAAQIECIyVgAHSWB0OjSFAgAABAgQIECBAYCkFDJCWUt++CRAgQIAAAQIECBAYKwEDpLE6\nHBpDgAABAgQITKHAbulTRSFAYAIEPMVuAg6SJhIgQIAAAQITLfDcTuuPneheaDyBGREwQJqR\nA62bBAgQIECAwJIJrLxke7ZjAgSGFnCL3dBk3kCAAAECBAgQIECAwLQKGCBN65HVLwIECBAg\nQIAAAQIEhhYwQBqazBsIECBAgAABAgQIEJhWAQOkaT2y+kWAAAECBAgQIECAwNACHtIwNJk3\nECBAgAABAgSGErh1qNoqEyCwpAIGSEvKb+cECBAgQIDADAgcOAN91EUCUyNggDQ1h1JHCBAg\nQIAAgTEVOHdM26VZBAjMIeAzSHOgWESAAAECBAgQIECAwGwKGCDN5nHXawIECBAgQIAAAQIE\n5hAwQJoDxSICBAgQIECAAAECBGZTwABpNo+7XhMgQIAAAQKjE7hXdlVRCBCYAAEPaZiAg6SJ\nBAgQIECAwEQLvL3T+n0muhcaT2BGBAyQZuRA6yYBAgQIECCwZAKrLtme7ZgAgaEF3GI3NJk3\nECBAgAABAgQIECAwrQIGSNN6ZPWLAAECBAgQIECAAIGhBQyQhibzBgIECBAgQIAAAQIEplXA\nAGlaj6x+ESBAgAABAgQIECAwtIAB0tBk3kCAAAECBAgQIECAwLQKeIrdtB5Z/SJAgAABAgTG\nReCocWmIdhAg0F/AAKm/kRoECBAgQIAAgRUR+NSKvNl7CRAYrYBb7EbrbW8ECBAgQIAAAQIE\nCIyxgAHSGB8cTSNAgAABAgQIECBAYLQCBkij9bY3AgQIECBAgAABAgTGWMAAaYwPjqYRIECA\nAAECBAgQIDBaAQOk0XrbGwECBAgQIDB7Aq9Pl183e93WYwKTKeApdpN53LSaAAECBAgQmByB\nh0xOU7WUAAFXkPwMECBAgAABAgQIECBAoCNggORHgQABAgQIECBAgAABAh0BAyQ/CgQIECBA\ngAABAgQIEOgIGCD5USBAgAABAgQIECBAgEBHwADJjwIBAgQIECBAgAABAgQ6Ap5i50eBAAEC\nBAgQILC4Apcu7uZtnQCBhRQwQFpITdsiQIAAAQIECNxZ4DV3XmQJAQLjKuAWu3E9MtpFgAAB\nAgQIECBAgMDIBQyQRk5uhwQIECBAgAABAgQIjKuAAdK4HhntIkCAAAECBAgQIEBg5AIGSCMn\nt0MCBAgQIECAAAECBMZVwABpXI+MdhEgQIAAAQLTIrBbOlJRCBCYAAFPsZuAg6SJBAgQIECA\nwEQLPLfT+mMnuhcaT2BGBAyQZuRA6yYBAgQIECCwZAIrL9me7ZgAgaEF3GI3NJk3ECBAgAAB\nAgQIECAwrQIGSNN6ZPWLAAECBAgQIECAAIGhBQyQhibzBgIECBAgQIAAAQIEplXAAGlaj6x+\nESBAgAABAgQIECAwtICHNAxN5g0ECBAgQIAAgaEEbh2qtsoECCypgAHSkvLbOQECBAgQIDAD\nAgfOQB91kcDUCBggTc2h1BECBAgQIEBgTAXOHdN2aRYBAnMI+AzSHCgWESBAgAABAgQIECAw\nmwIGSLN53PWaAAECBAgQIECAAIE5BAyQ5kCxiAABAgQIECBAgACB2RQwQJrN467XBAgQIECA\nwOgE7pVdVRQCBCZAwEMaJuAgaSIBAgQIECAw0QJv77R+n4nuhcYTmBEBA6QZOdC6SYAAAQIE\nCCyZwKpLtmc7JkBgaAG32A1N5g0ECBAgQIAAAQIECEyrgAHStB5Z/SJAgAABAgQIECBAYGgB\nA6ShybyBAAECBAgQIECAAIFpFTBAmtYjq18ECBAgQIAAAQIECAwtYIA0NJk3ECBAgAABAgQI\nECAwrQKeYjetR1a/CBAgQIAAgXEROGpcGqIdBAj0FzBA6m+kBgECBAgQIEBgRQQ+tSJv9l4C\nBEYr4Ba70XrbGwECBAgQIECAAAECYyxggDTGB0fTCBAgQIAAAQIECBAYrYAB0mi97Y0AAQIE\nCBAgQIAAgTEWMEAa44OjaQQIECBAgAABAgQIjFbAAGm03vZGgAABAgQIzJ7A69Pl181et/WY\nwGQKeIrdZB43rSZAgAABAgQmR+Ahk9NULSVAwBUkPwMECBAgQIAAAQIECBDoCBgg+VEgQIAA\nAQIECBAgQIBAR8AAyY8CAQKjElglO6ooBAgQIECAAIGxFZjFAdJ6ORoPSB6abJSslSgECCye\nwPOy6e8lN3VS87VMIUCAAAECBAiMncCsDJC2ifwhyWXJFcm5yenJhcm1ydnJwckGiUKAwMIJ\nLMum3pd8KXlCJzVfyw5NFAIECBAgQIAAgREL7J/9/baT8zM9KTkq+XhydPLt5JKk6vwqeU4y\n6rJPdlj7dzVr1PL2t5gCf5uN/zqpP1B0l1pW66qOQoAAgWkXeEc6WFEITKvAaulYncvuMK0d\nnKZ+7dE5WDUQ2rZHx1bOup2TU5I6uDsmoywGSKPUtq9RCZyZHb2xx85qXdVRCBAgQIAAgckW\nMECaoON3eNpat8+tPmCb6/NJ1yQfGLD+QlUzQFooSdsZF4H6Xao/Nmzdo0F1FanqVF2FAAEC\nBAgQmFyBqRogTftnkLbKz9nJyY0D/rxdmXqnJfXwBoUAgeUXaJ5Wd3OPTdzUWdfU7VHVKgIE\nCBAgQIDAaATuOprdLNleLsmet0tWTXqdqDUNrL9k16Dq4GaBKQECyyVQn+e7KPmj5OfJc5L6\nXaxST7E7Iql1VafqKgQIECBAgAABAiMQeG72UbfwfD7Zvsf+6jNIOyX1wIZbkscmoyxusRul\ntn2NSqA+Y3R5JzUQqkFR5eLOsnqiZK/PKGW1QoAAAQIECEyAwGppY51ze0jDBBysGvi8Mrku\nqYNWj/X+VvLF5GOdad2CVydstb6uMr08GXUxQBq1uP2NQqAejFJ/cKin1dXP+Ead1Hwtq3VV\nRyFAgMC0C+yWDlYUAtMqYIA0gUd2s7S5BkT1V+waCLVTg6ezkoOSjZOlKAZIS6Fun4stUI/T\nr6u3ByZ1taj5vav5Wlbrqo5CgACBaRc4NB2sKASmVcAAacKP7Dppfw2EHpysOyZ9MUAakwOh\nGQsmsHq2VA9heGJni3fNtH7nKjVfpdZVnaqrECBAYJoFlqVzFYXAtApM1QCpOVGZ1oM1V7/q\niVmVeoLf2knd5lNXkRQCBBZOYP1satXk/M4m6/esrtS2S62rOlX3kvYK8wQIECBAgACBpRKY\n9sd8N671fSuHJJcldXvPucnpyYXJtUl9V1I9uW6DRCFAYMUF6uEM9Xj9zXtsqtZVnaqrECBA\ngAABAgTGQmAWBkj7R/rU5AXJDcnJST2k4RPJMcl3kjWTfZOfJfU4YoUAgRUTqFvn6vesHpJS\nD0vpLs0DVKpO1VUIECBAgAABAgRGILBH9lEfDD862bbH/upkbefklKTq75iMsuyTndV+1xrl\nTu2LwCILPCTbvyb5r6RuZ21KzdeyWld1FAIECEy7wLJ0sKIQmFYBn0GaoCP7zLT1nKSmdSvP\nfKUGJyckuyf1uYi9kpMShQCB5Rc4M2+t36m6Wlu3sza/U/UHiKuTWld1FAIECEy7wK3T3kH9\nIzBNAtP+kIatcrDqlrpeg6P28bwyL05LNmovNE+AwHIL1PeOPTSpP1Js19nKhzM9MvlN57UJ\nAQIEpl3gwGnvoP4RIDA5Al9OU+tzRfWkrEHKeqlUt/386yCVF7COW+wWENOmCBAgQIAAAQIE\nRiqwWvZWd2TtMNK9LtLOhn1Iwz3Sjqcm/5gclnw3qcfz1lWXLyUHJPVX4vpMzziUauMWyaeT\n7Xs0qNq7U1IPbagHNtRftxUCBAgQIECAAAECBAjMKfCALH1PUo/ErtFhk+szf2nrdbP8jCx7\nRrLUpQY+9RSt65JqW30Oom75qSdnfawzrVvwLk5q/c3Jy5NRF1eQRi1ufwQIECBAgAABAgsl\nMFVXkPqh1K1pb0zqswI1GKorMX+VbJPcK2nK3TPz6KTW1X22P0xqwPGVZMtkqctmaUANiC5K\nmkFcM63B01nJQcnGyVIUA6SlULdPAgQIECBAgACBhRCYmQHS6tH6QXJ+sm8y7COon5L3fD25\nJXl9Mi5lnTSkBkIPTtYdk0YZII3JgdAMAgQIECCwCAL1R+X2H5YXYRc2SWBJBaZqgNTrM0j1\nhLt6PO9Dkw8mdaVlmPI/qbxLUp/tuWGYNy5y3VWy/Ur1vb6PZdiBX96iECBAgAABAgQGFnh7\nalYUAgQIjI1A3RJ4SHJZ0txa156eneUHJxskS1FcQVoKdfskQIAAAQKjEViW3VQUAtMqMFVX\nkOoq0YqWNbKB+yd1K1495GDcyv5p0AGdRl2Q6cnJFUk9cKJusVs/2SSp2wiflbwsOSJRCBAg\nQIAAAQIECBAgcCeBrbPkv5LHda2pe2k/ltRnjOpqzE3JR5KlugqTXd+p7JEl1bajk23vtPZ3\nC1bO7M7JKUnV3zEZZXEFaZTa9kWAAAECBEYrsCy7qygEplVgqq4g9TtIf5wK9fmhGjTUlZWm\n1IDia0ktvzw5KqmrMvW6HuxQSONQDk8j6va51QdszHqpV18U+4EB689XbdOsODM5b8D8MvXK\nzuehgqAQIECAAIEpE1iW/lQUAtMqMFUDpH632L02R7EGSH+f1NWipjw9M3+UfD75s+TWpGDq\nVrZ6z4uS9yZLXbZKA05ObhywIVem3mnJRgPWn6/axVnx5mTV+Sp0La+rV8/vWuYlAQIECBAg\nQIAAAQJjJLBZ2nJb8o9JDaTa+e+8risej+xaXt+HdEny6c7yelLcUpYvZ+c/SwYdqDRXkP51\nxI3eJ/tzBWnE6HZHgAABAgRGJLAs+6koBKZVYKquIM13kGpwVCfsK5p3z7eDES1/bqcPdaVr\n+x77rFsGd0q+ndRnqh6bjLIYII1S274IECBAgMBoBf48u6soBKZVYCYGSHXwHpXUAKk+e9S+\nevT4zvK6ytJe3syfnuWf6qxb6itINfB5ZVLf4VR9uTD5VvLFpG4ZrGndgle3xNX6m5OXJ6Mu\nBkijFrc/AgQIECBAgACBhRKYmQFSDXguT2pQsWVH776Zfi+pwcTDOsuaSdV/Y1Lr6oR/nEpd\nEasB0UVJta+dGjydlRyUbJwsRTFAWgp1+yRAgAABAgQIEFgIgZkZIBXWC5L6HFINKM5Obu3M\n15eqtsvr86L5EtYfZn7d9soxm18n7amB0IOTcWmnAdKY/ZBoDgECBAgQIECAwMACMzVAKpUn\nJcclv0q+k9RVorp1rV0OzYu6EvOZ5N7tFWM+v2nat3tS3/V0tyVsqwHSEuLbNQECBAgQIECA\nwAoJzNwAaRCt+6fSGoNUHHGdv83+jki6Bz+PyLJTkroy1uSqzL8mWSUZdTFAGrW4/REgQIAA\nAQIECCyUgAHSQkmOYDsfyj5qANS+la5ur6vBUC2vQdIHkhpE1Wetatm7klEXA6RRi9sfAQIE\nCBAYnUB9FOF1o9udPREYucDMDJDqszqHJvdbAeJV897nJfUAhKUocw2QDk9DaiD00q4GrZnX\nzbrdutYt9ksDpMUWtn0CBAgQILB0Asuy64pCYFoFpmqA1Osx3DfkCN4jaZ7w9tAhjuhaqfuK\npB7s8G/Jj5JxKTumIfVZqv/oatD1ef3CpJ7cV48yVwgQIECAAAECBAgQmDGBejT3fKW+E+hP\nk2cn7032S2qgUw9i+FlyQfLz5NfJg5IaQG3RyRMyrdvaPpjsn9QDHsal1JWxr87TmBoU1vc4\nbTnPeosJECBAgAABAgQIEJhigV4DpKbbn8zMUcnfJPWlq29KepVbs/JLST3w4Me9Ki7Ruvoe\np3pIw1zlnln46GTZXCstI0CAAAECBAgQIEBgugUGGSCVQN1+9r7k/cnmyR+0slHmf5lcknwr\nOTq5IhmnUrfUfTepwdFJyT8lz0g+nzRlk8y8I6l7KL/eLDQlQIAAAQIECBAgQIDAtAj8eTpS\ntwSek9SDGdqpWwSb8tTM1C2Ftf7EpPt7nrJoUYuHNCwqr42PgUB9DcDWnYzjVwKMAZEmECAw\nxQLL0reKQmBaBabqIQ2DXkGa1IP5qTS8UqU+E9WcoNW0PQiq7z6qzx99LKnbCGugpBAgsOIC\n9R1k/5zUHwHq4S1V6kul6/OJb0jq904hQIDAtAtcOu0d1D8Csy5QT3g7NPli8rXkuDnyvCyb\npFIncasuYYNdQVpCfLteNIG6UlS3tJ6b/EWyXic1X8tOTFxNCoJCgAABAgQmXGCqriANeyzq\niXa/HSBvHnbDM17fAGnGfwCmtPtvSb8uTO4zR/9qWa2rOgoBAgQIECAw2QIzPUA6I8fu2uQ5\nyYZJ3Zo2V9q3r6WK0kfAAKkPkNUTJ1D/BtSDW17Uo+W1rur496IHklUECBAgQGACBGZ2gFSf\nH7gtef8EHKRJa6IB0qQdMe3tJ7BBKtTV5of3qFjrqk7VVQgQIECAAIHJFZiqAdIwD2m4Icfs\nmqQ+YD0ppQYe9cWww5aT8oaTh32T+gQI/J9APRWySq/PGDXrbrqjqv8SIECAAAECBCZP4HNp\n8kXJXSak6d9POwf5zFR3nTeNuH+uII0Y3O5GIvDT7OWAHnuqdVVHIUCAwLQL7JYOVhQC0yow\ns1eQ6oDWifyJST06+9+S85K5rijVF8vWFaelLk9OA+p7kHZIanD3oWSQUp+1UggQWDGBf8nb\n35ccnXyra1OPyetXJy/pWu4lAQIEplHguZ1OHTuNndMnArMuUCc5VyfdV1y6X795jKBWT1uq\n3Tcm24xRu9pNcQWprWF+mgT+M535TfKepL6QuVLztawGTwoBAgRmQWBZOllRCEyrwExfQapb\n1i4e4Mj+bIA6o6pSA6MXJKcm/548LlEIEBiNwN9lN8clL0vqDwFVvpf8dfL/6oVCgAABAgQI\nECCwNAL7ZbenJY9Ymt333KsrSD15rCRAgAABAhMtsCytrygEplVgpq8gtQ/qpnmxRbJ+8suk\nrtBckYxreWcaVlEIECBAgAABAgQIECAwp8Awj/luNlAygrH2AABAAElEQVTfXfL+ZOdmQWda\nj/Wt5a9I6jNJCgECBAgQIECAAAECBCZKYNgB0sbpXX0/0DrJMUl9JumqpJY/JanPGayd1C1j\n9aWyCgECBAgQIEBg1gVunXUA/ScwSQLDDpDq6VNrJPUs/692dfRVef3u5CXJock3E4UAAQIE\nCBBYaaUHB2FHEDMr0Hzn2/NmVkDHTwrBWRgmQ2DYAdIu6dbBSffgqHpbt9jV7XXPTnZNDJCC\noBAgQIAAgQi8Lqn/P/6KBgECMydwr/T4k8nzZ67nE9rhYQZI66aP9UCGH/fo6y1Zd0aybY86\nVhEgQIAAgVkTuEs6XF+yvvesdVx/CRC4/QmG9W+AMiECwxysq9OnytY9+laP+HtYcm6POlYR\nIECAAAECBAgQIEBgLAWGGSBVB+rBDPUAhqfVi65Sn02qp9jdMzmua52XBAgQIECAAAECBAgQ\nGHuBYW6xq868Jvnj5AtJfcaonmJ3ZVJPsXticv+kbiE4KlEIECBAgAABAgQIECAwUQLDDpDO\nT++2TA5JnpQ8LmnK9ZnZP/nXZoEpAQIECBAgQIAAAQIEJklg2AFS9e2i5MnJ2skWyX2S+szR\n2cmNiUKAAAECBAgQIECAAIGJFOg3QFovvVo1uSKpJ9TV54tWSZpyQWYqVeopd025LjMVhQAB\nAgQIECBAgAABAhMj0O8hDfWwhUuT5sl1p3Re17JeeXXWKwQIECBAgAABAgQIEJgogX5XkI5N\nb+pbf+tBDFWOTu59+1zv//y092prCRAgQIAAAQIECBAgMH4C/QZI3VeCXjJ+XdAiAgQIECBA\ngAABAgQILIxAv1vsuveyWRbU55DmK7W9XZLmlrz56llOgAABAgQIECBAgACBsRMYdoBUt9y9\ntEcvVs+645N9e9SxigABAgQIECBAgAABAmMp0O8Wuwen1Tu3Wn73zG+bvKC1rJmtwVZz5aie\neqcQIECAAAECBAgQIEBgogT6DZDqSXVvTTZs9eoZma/MV+rx3p+db6XlBAgQIECAAAECBAgQ\nGFeBfgOka9LwpyUP73TgXZl+I5lrAHRbll+fnJpckCgECBAgQIAAAQIECBCYKIF+A6TqTA14\nKlUelZyQfKZeKAQIECBAgAABAgQIEJgmgX4DpPXS2VWTK5JbkrrdbpWk33ch1W12FYUAAQIE\nCBAgQIAAAQITI9DvKXbHpSf1OaTm4QundF7Xsl7p/v6kVFcIECBAgAABAgQIECAw3gL9riDV\nY73PSq7sdOPoTPtdPaqqP+3UNyFAgAABAgQIECBAgMDECPQbIHVfCXrJxPRMQwkQIECAAAEC\nBAgQIDCkQL9b7IbcnOoECBAgQIAAAQIECBCYXIF+V5C6e3ZwFtyne+Ecrz+eZRWFAAECBAgQ\nIECAAAECEyMw7ADpienZA/v07sKs/3qfOlYTIECAAAECBAgQIEBg7ASGHSBtkx5035ZXr++f\nbJm8O6krRzVVCBAgQIAAAQIECBAgMFECww6Qrp6nd5dn+Q+TnyTfT76RfD5RCBAgQIAAAQIE\nCBAgMDEC3VeDVrThP8gGzk/qVjyFAAECBAgQIECAAAECEyWw0AOk1dP7eyaDfFfSREFpLAEC\nBAgQIECAAAEC0y8w7C12a4Rk5TlYajsbJAcmayffTRQCBAgQIECAAAECBAhMlMCwA6Sfpnf9\nnmJ3Tup8cKIUNJYAAQIECBAgQIAAAQIRGHaAdELec+Yccrdl2TXJackhyXwPc8gqhQABAgQI\nECBAgAABAuMpMOwAae/x7IZWESBAgAABAgQIECBAYMUFFvohDSveIlsgQIAAAQIECBAgQIDA\nEgn0GyB9Mu36nyVqm90SIECAAAECBAgQIEBgpAL9brF7SFqz7khbZGcECBAgQIAAAQIECBBY\nIoF+V5CWqFl2S4AAAQIECBAgQIAAgdELGCCN3tweCRAgQIAAAQIECBAYU4F+t9hVs1dJ7jVk\n+69P/YpCgAABAgQIECBAgACBiREYZIC0cXrzyyF79ObUP2DI96hOgAABAgQIECBAgACBJRUY\nZIB0U1r4syFbeemQ9VUnQIAAAQIECBAgQIDAkgsMMkC6OK3ceslbqgEECBAgQIAAAQIECBBY\nZAEPaVhkYJsnQIAAAQIECBAgQGByBAyQJudYaSkBAgQIECBAgAABAossYIC0yMA2T4AAAQIE\nCBAgQIDA5Aj0+wzSh9KVNSanO1pKgAABAgQIECBAgACB5RfoN0B67/Jv2jsJECBAgAABAgQI\nECAwWQJusZus46W1BAgQIECAAAECBAgsokC/K0iLuGubJkBgRgQekn6+ONmu09/vZfr+5MzO\naxMCBAgQIECAwNgIuII0NodCQwhMpcAL06sfJ49Oju2k5mtZrVMIECBAgAABAmMl4ArSWB0O\njSEwVQKPT28+kLwoOaTVs7dkvgZHte6c5GuJQoAAAQIECBAYC4EVuYJ0t/TgEcn2nZ6sNRY9\n0ggCBMZFoAZC9STM9uCoaVstq3VVRyFAgAABAgQIjI3A8gyQNknrP5lcl5yWHJRU+WhyYLJ6\nvVAIEJhpgTXT+x2TD/dQqHVVp+oqBAgQIECAAIGxEBj2FrsN0+pTk3smP0vaJzYr5/Ubkmcm\nj0p+kygECMymwDrpdv2b8MtO9+uK8xad+dMzvSGpdVWn6l6fKAQIECBAgACBJRcY9gpSfS9S\nnejslDw8qcFSU56Vmbclf5A8r1loSoDATArU4OfXSf2x5N+SXyX170Wl5mtZras6zSAqswoB\nAgQIECBAYGkFhh0gPSHNfV/yzTmafWuWHZBcnTxmjvUWESAwOwL178GnkoOTZyR/k9yjk5qv\nZbWu6lRdhQABAgQIECAwFgLDDJDWSYvXS87o0fKbs+4nnXo9qllFgMAMCFyVPtZnEi9M6spR\n/fGkUvO1rNZdmSgECBAgQIAAgbERGGaAdE1a/YukvsNkvlKDqLrFrj5joBAgMLsC9dmiPZP9\nOwRnZXp2JzVf5U3Jc5KqqxAgQIAAAQIExkJg2Ic0HJ1WvzCpL3lclrRL3T6zLFk3+UqiECAw\nuwL3Stfvm3wueXuydbJdUuV7yQ+S+hxjfW6x6vocUhAUAgQIECBAYOkFhh0gvSpN3i3596RO\nbOpJVPX5gSOTnZL1k2XJVxOFAIHZFbip0/U1OtMaEFXapR74UqWpe8cr/yVAgAABAgQILKHA\nMLfYVTOvSrZN6sPVdeJzn+R+yZ8kVV6W1BUmhQCB2Raozxr9LGn+bZhL4xmdOlVXIUCAAAEC\nBAiMhcCwA6RqdD2i90VJfQfS5sljk42SeyZ1ZamuKCkECBD4lxD8Q7LDHBS1rNa9Y451FhEg\nQIAAAQIElkxg2FvsNktL66+9lyc1EDqnk0xuLzXgqlvtqk737TS3V/AfAgRmRmBZelrfdXRc\n8t9J8/CWLTL/guSQ5LBEIUCAAAECBAiMjcCwA6Rj0/I6oTlgnh7UY3uPT96f/F2iECAw2wL/\nmO5vmvxtskqHov64cnRS6xQCBAgQIECAwFgJ9BsgPTit3bnV4rtnvj6DVH/97S519WjrzsIr\nuld6TYDAzAnU5xTrjyobJi9JfpNUqeWvTWrd45NmeWYVAgQIECBAgMDSCvQbIF2a5r01qROc\nptQHqyvzleuy4rPzrbScAIGZEXh9evqApD63WFeVV06q/Daprwp4QFJ1mu9KyqxCgAABAgQI\nEFhagX4DpGvSvKcl9X0lVd6VfCOZawB0W5Zfn5yaXJAoBAjMrkANhvZN1k02SA5O/iupsk/y\nwuSWpOrUF8bWoEkhQIAAAQIECCy5QL8BUjWwBjyVKvWB6xOSz9QLhQABAvMI1Je/3iepzxv9\nYdL8G5LZlV6c1GDpO0nVqbq+KDYICgECBAgQILD0AvW5oWHKK1K53+CoPohdJz0KAQKzK1BX\nh6rU54zag6PbF3aW1boqN98x8V8CBAgQIECAwNILDHIFqbuVz8yCZyV168yqnZV1O01t627J\ng5L6vMGbE4UAgdkUuHen21f26H6zrv6gclWPelYRIECAAAECBEYmMOwA6W/Ssg/1ad1ZWf+D\nPnWsJkBgugWaJ9PVH1TqS2FP7upuLfvTzrKmblcVLwkQIECAAAECoxcY9ha7+t6SenDDXslG\nybXJ65KHJs9J6i/CddvMkYlCgMDsCpyfrt+U1JdKH5e8N3lqJzVfy+rpdjcmVVchQIAAAQIE\nCIyFwDADpPps0ebJMclHkouTbyc7JmcmH0uekNQXQj46UQgQmG2BI9L9+yXLkq2TT3ZS88uS\nWlf/bigECBAgQIAAgbERGGaAtHZaXZ85OqHV+tMz/8jW6+9nvgZLf9JaZpYAgdkUeGG6fUZS\nj/JeJ3lHJzVfy2pd1VEIECBAgAABAmMjMMwA6eq0um6J2aLV+hogbZK0n1p3QV4335vUqmqW\nAIEZE6hHfG+Z1ENbHpwc0EnN17JaV3UUAgQIECBAgMDYCAwzQKpG/yB5ZrJ9vUj50R2T25fV\n7N2TnZL6nJJCgACBGgC9JFkruW8nNV/LDI6CoBAgQIAAAQLjJTDsAOkf0vy6WnRy8tjkG8k5\nyXuSI5Ozk3rU99cShQABAm2BS/OiohAgQIAAAQIExlZg2AFSXUF6UvLl5JfJbckeyRVJfe5o\ng+Tw5KOJQoAAAQIECBAgQIAAgYkSGPZ7kKpzdXWofYXo1LzeOKmHNVyVnJMoBAgQIECAAAEC\nBAgQmDiBYa8gbZYe3nOOXtZnCWqgdF6yS7J1ohAgQIAAAQIECBAgQGCiBIYdINWXwL60Rw9X\nz7rjk3qEr0KAAAECBAgQIECAAIGJEuh3i109jnfnVo/qKXXbJi9oLWtma7DVXDmqzyQpBAgQ\nIECAwO8EHpPZesS9QoDAbAnU7/63ZqvLk93bfgOkeuLUW5MNW918RuYr85XrsuKz8620nAAB\nAgQIzKjAQ9PvikKAwOwJGCBN0DHvN0Cq7zN6WtJ88eu7Ml+P9p5rAHRbll+fnJpckCgECPy+\nwN55+bzfXzRTr+p7kKr84o7JTP53WXp92Ez2XKcJECBAgMCECPQbIFU3asBTqfKo5ITkM/VC\nIUBgKIEzUvvrQ71juirXVwFUmWWDM+8g8F8CBAgQIEBgXAUGGSC12/6K9ovO/FqZPiL5fnJj\nZ5kJAQJ3Fjg5iyqzWh7Q6fibZxVAv2deoO6+eP3MKwAgMHsC/zx7XZ7sHg8yQKo6z+zkPZme\n0ulyPZRhWfLsZPXk2uTjyYuSeuy3QoAAAQIECPxOoG5bP/13L80RIDAjAvW7r0yQQA1y+pV3\npcL/S56b3L9V+W2Z/+vkiuTQ5Pzkhck7E4UAAQIECBAgQIAAAQITJ9BvgPSc9Ojvk/qL117J\nF5IqD0tem9SIePvk+clWyfHJy5NaphAgQIAAAQIECBAgQGCiBPoNkP4ivalb5x6XfCS5Jany\n53dMVqpb7n7ema+n2L2hM79DZ2pCgAABAgQIECBAgACBiRHo9xmkuip0YnJ5V48e33l9VNfy\nH3deP6pruZcECBC4AQEBAgQIECBAYNwFeg2QVk3jN02+2dWJu+X1Y5K6ve57Xevq4Qx1JanX\ndrve4iUBAjMi8OoZ6aduEiBAgAABAhMs0Gsgc3P6dUFy767+7ZzXayRfSrqfVvfILKvb9n6U\njGtZLw1bN2mevHdV5q8b18ZqF4EpEvB7NkUHU1cIECBAgMC0CvT7DNIP0/H6/NG9WgD1NLsq\nX7xj8nv//cvOq+ZWu99buYQvtsm+D0kuS+qpe+cm9eCJC5Nrk7OTg5MNEoUAAQIECBAgQIAA\ngRkV6HUFqUg+kDw9+UHyL8nDk3qy3SXJJ5Km1Hael9QT7+qhDSck41L2T0MO6DSmrojVF3XW\nIKkGRnUlaf1kk2Tf5FnJy5IjEoUAAQIECBAgQIAAAQJ3Enhjlvy2lV9nfttWrRo0/aqzvm6h\n2bq1bqln9+i06+hM223ubtfKWVC3DtaX4FZfd0xGWfbJzmq/a41yp/ZFgAABAiMTWJY9VRQC\nBGZPYFm6XJnmslo6V+eyU/Ek63632NWBPDDZPHlF8vzkIcmpSVPq0d+V/052S+pq07iUZ6Yh\n5yQ1bbe5u311QOuq1+5JDQD3ShQCBBZWYMtsrqIQIECAAAECBMZWoN8tdk3Da5BR33k0V/nf\nLLxfcttcK5d42VbZf91Sd+OA7bgy9U5LNhqwvmoECAwu8KpO1fpDi0KAAAECBAgQGEuBQa4g\n9Wt4DYzGcXBU7a7PSm2X1CPLByn1hLsaVNUDHBQCBBZWoP69WYh/cxa2VbZGgAABAgQIEGgJ\nTPvJymHp6xbJp5PtW/3unq3PIO2UHJOsmRyZKAQIECBAgAABAgQIzJjAoLfYTSpLPY2uvsep\nPkdVT+O7KLkwuTy5JlknWT/ZNNkwqc9S7ZecmCgECBAgQIAAAQIECMyYwLQPkOrhC+9OPpe8\nLdk56b6SdH2WXZy8M6nPWdVjyhUCBAgQIECAAAECBGZQoN8AqW5POzcZ9CEH40p4Thq2Z6dx\nddWovv9ojeSy5OpEIUCAAAECBAgQIECAQN8PTJ8ao39vOb0y87u2Xk/i7CppdKU+f7V24ruH\ngqAQGIFAXdGtKAQIECBAgACBsRXo9ZCGevLbaskGrdb/feZ3ab2elNlt0tBDkrpidEVSV8Xq\nSXX1eaRrk7OTg5N2X/NSIUBgAQU+mG1VFAIECBAgQIDA2Ar0usXu5rS6vvT1Kcknkh8n90jq\nczxvTHqVE7KyMg5l/zTigE5DLsi0vhepBkk1MKpb7eohDZsk+ybPSl6W1MMdFAIEFlagfvcU\nAgQIECBAgMBECzwpra/P6DS3xgw6ffOY9HqPTtuPznTbHm2qx3zXwO+UpPq4YzLKsk92Vvt1\nu98o1e2LAAECoxNYll1VFAIEZk9gWbpcmeZSd53VuewO09DJXleQqn/1vUB1dWXzpK4eHZ58\nKflI0quc02vlCNc9M/uqttT0xh77rQNaV7x2T85P9kpOShQCBAgQIECAAAECBGZIoN8AqSjq\nClI9rKFKTes2ma/WiwkoW6WN1d5eg6N2N67Mi9OSjdoLzRMgQIAAAQIECBAgMBsCgwyQ2hJP\nbb3YNPP1GPD6DM8vkxo8XZGMU7kkjdkuWTWpz1T1K+ulQg2qDu5X0XoCBIYWqKdHVrn1jon/\nEiBAgAABAgTGT+Auy9Gkh+c9X0/OS+oWvHqgwVeSXyTvSerzPONSDktDahD36aT7C2Lbbaw2\n75RUf9ZMjkwUAgQWVqC+tPldC7tJWyNAgAABAgQILKzAsFeQNs7u65a1dZIaTHw/uSqp5fW0\nu5cl9d1C+yS3JUtdavB27+TA5OnJRcmFyeXJNUn1o66A1dWwDZNbkv2SExOFAIGFFajfN4UA\nAQIECBAgMFUCn0lv6vM8T5ijV3Ub238k9cCDx82xfikXbZadfyypAVK1r53r8vqs5KCkBnpL\nUfbJTqtNnmK3FPr2OSqBZdlRRSEwiwLL0umKQoDA7AksS5cr01xWS+fqXHaHaejksFeQdkmn\n6/M5X52j8/UZn1ckz052Tb6ZjEupJ9nt2WlM/RW7vv9ojeSypB5CoRAgQIAAAQIECBAgQGCl\nYT6DVIOKuh2tvjB2vlK3qJ2RbDtfhTFYXh8Ur1Tf63ZAV22CoBAgQIAAAQIECBAgcMcgYVCH\nutJS2brHG+ry2sOSc3vUWYpV22SnhyR1xeiKpNp3elKfR7o2OTupK2MbJAoBAgQIECBAgAAB\nAjMqMMwVpCKqBzPU52WeVi+6St2y9v7knslxXeuW8uX+2fmpyQuSG5J6yMQXk08k1Z/vJGsm\n+yY/S56TKAQIECBAgAABAgQIzKDAsJ9Bek2M/jj5QlKfMaqn2F2Z1MMNnpjcP/lUclQyDmWP\nNOKApAZCb0hqoDRXaR7z/c6sPDw5LzkpUQgQWDiB+X7/Fm4PtkSAAAECBAgQWEGBYQdI52d/\nWyZ1u9qTksclTbk+M3W15l+bBWMwfWbaUA9oqOmNPdrz26w7Idk9qT7ulazIAGmjvL++e2nV\nZJBSV90UAtMu8N5p76D+ESBAgAABApMvMOwAqXp8UfLkpB5wUF/Cep+kPtNTn+PpNQjJ6pGX\nrbLHuqVu0HbV1bDTkhrgrEip71n6aLLagBvZPvU2HbCuagQIECBAgAABAgQILJLA8gyQmqbU\nww2+27wY0+kladd2SV3JqceQ9yvrpUINquqBDStSfpM3/8cQG9gndevx6AoBAgQIECBAgAAB\nAksoMOxDGpawqcu168PyrrrKVbe71VWa+UrzGaT6rFI9sOHI+SpaToAAAQIECBAgQIDA9Aqs\nyBWkSVA5Io28d3Jg8vSkbg+8MKlb4K5J1knWT+r2tg2TW5L9khMThQABAgQIECBAgACBGROY\n9gFSPXzh3cnnkrclOyfdV5Lq4RIXJ+9M3pP8PFEIEFh4gb07m1y28Ju2RQIECBAgQIDAwghM\n+wCpUaon2e3ZeVFXjdZN6nub6otjr04UAgQWX2DXzi6WLf6u7IEAAQIECBAgsHwCw34GabPs\nptcjqWt7uyRbL19zRvKuVbKXSrW1nsS3VqIQIECAAAECBAgQIEDg9kHCMAzHpvJLe7xh9aw7\nPtm3R52lWLVNdlrf3VRXjK5Izk1OT+rzSPU0vnpEeT25boNEIUCAAAECBAgQIEBgRgX63WL3\n4LjU53aacvfMbJu8oFnQmtYVmebKUQ1CxqXsn4Yc0GnMBZnW9yJV+2pgVLfa1UMaNklqUPes\n5GXJEYlCgAABAgQIECBAgMCMCfQbIF0aj7cm9YS3pjwjM5X5ynVZ8dn5Vo54+R7ZXw2O6vHd\nb0hOTeYqzWO+60ENhyfnJSclCgECBAgQIECAAAECMyTQb4BUj8J+WvLwjsm7Mv1GMtcA6LYs\nryfC1SCkrtSMQ3lmGnFOUtMbezSonnZ3QrJ7cn6yV2KAFASFAAECBAgQIECAwCwJ9BsglUUN\neJorL4/KfA0kPpNMQtkqjaxb6noNjtr9uDIvTks2ai80T4DAggjcsCBbsRECBAgQIECAwCIK\nDDJAau/+Fe0XEzB/Sdq4XbJqcvMA7V0vdWpQVQ9sUAgQWFiBVy/s5myNAAECBAgQILDwAsMO\nkGrgcJ8BmvHx1KksdTksDfho8umkvij228lcpT6D9LjkoGTN5MhEIUBgYQXq84kKAQIECBAg\nQGCsBYYdID0xvXlgnx5dmPVf71NnVKvraXT3Tg5Mnp5clFT7Lk/q81XrJPUUu02TDZNbkv2S\nExOFAAECBAgQIECAAIEZExh2gFTfJ3SXLqN6ff9ky+TdSV05quk4lHr4QrXlc0ldQdo52T5p\nl3qwxMVJPcHuPcnPE4UAAQIECBAgQIAAgRkUGHaAdPU8RnVF5ofJT5LvJ/Wku88n41LqSXZ7\ndhpTV43WTdZI6otj5+tTVikECBAgQIAAAQIECMySQPfVoBXt+w+ygfOTuhVvXEvdWldXic5K\nDI7G9Shp1zQK1FXmikKAAAECBAgQGFuBYa8g9evI6qlwz6Q+96MQIECgLfCqzovntxeaJ0CA\nAAECBAiMk8CwA6S6La2e+NZdajsbJAcmayffTRQCBAi0BRb6inV72+YJECBAgAABAgsiMOwA\n6afZa7+n2NXnfT64IK1b8Y3sk03UZ46GLSflDfUFswoBAgQIECBAgAABAjMkMOwA6YTYnDmH\nz21ZVp/tOS05JBmXz/b8XdqydTJseXPeYIA0rJr6BAgQIECAAAECBCZcYNgB0t4T1t8np72f\nSXZIPpd8KBmknDFIJXUIECBAgAABAgQIEJgugWEHSJPW+1+kwX+UfD2pwdIBST2GXCFAgAAB\nAgQIECBAgMCdBIYdID0sW3hqsnFyj6QGIHXL3ZFJfRfSOJYb06gXJKcm/548LlEIEBi9QH1x\ns0KAAAECBAgQGGuBQQdINRj6dPL4eXrz/iw/NNkvuXaeOku5uL7A9vXJ85JHJD9KFAIERisw\nLg9vGW2v7Y3A7wTqoUEP+d1LczMkUF+DUqX+aKvMnkD97tdn9ZUJERhkgLRh+vKlpAYW9YS6\n7yR1Neb8ZJPkoclfJPsmOyc7JFcl41bemQZVFAIElkbAg0+Wxt1ex0Pg12lG/ZHuT8ejOVpB\ngMCIBf5jxPuzuxUQ6DdAqi98PTF5YPLe5FXJrUl3eWMW/Fvyl0ldSfI/gCAoBAgQIECgI1D/\n//xnGjMrcJ9Ozy+dWQEd/xWC6RF4U7ry26RuT+tXVkmF+v6gqr9lv8rW/55AfV9Tua31e0u9\nIECAAAECBAgQIDD+AquliXUuW3eSTXzp9832e6aHNyf1cIN+pa4s1V/IqtSVJIUAAQIECBAg\nQIAAAQITJdBrgFTr6ta6usWu7p0epNQjtG9JHjRIZXUIEJgpgbrKXFEIECBAgAABAmMr0Osz\nSLWuBkn1MIZBy42peF3iVrFBxdQjMDsC705X6/L7y2eny3pKgAABAgQITJpArwHSTenM6clW\nQ3Sqrjitm5w3xHtUJUBgNgTqMacKAQIEZlHgfp1OXzyLnddnApMm0OsWu+rLD5NHJtvXiwHK\nCzt1jh+grioECBAgQIAAgVkQeEs6WVEIEJgAgX4DpPreoHr4woeS+/bpz1Oy/rXJucmRfepa\nTYAAAQIECBCYFYG6Y6fXXTuz4qCfBCZCoN8A6fvpxQHJw5Mzk39Mtk6aW2Xqdrq6uvSR5ItJ\nfZHsbslc35WUxQoBAgQIECBAgAABAgTGV2CQv2b8f2n+b5I3Je/oJJM7PYzh1Cx7cnJZrVQI\nECBAgAABAgQIECAwaQL9riBVf+pqUN1q99DO9CuZ1pPt7pZcnnwzeVmyS2JwFASFAAECBAgQ\nIECAAIHJFBjkClLTs0sy8+rmRaY1uLqt9dosAQIEegnUVWaFAAECBAgQIDDWAsMMkLo7YnDU\nLeI1AQK9BN7ba6V1BAgQIECAAIFxEFiRAdI4tF8bCBAgQIAAAQLjLvCpcW+g9hEg8DsBA6Tf\nWZgjQIAAAQIECCyGwFGLsVHbJEBgcQQGeUjD4uzZVgkQIECAAAECBAgQIDBmAgZIY3ZANIcA\nAQIECBAgQIAAgaUTMEBaOnt7JjBrAnunwxWFAAECBAgQIDC2AgZIY3toNIzA1Ansmh5VFAIE\nCBAgQIDA2AoYII3todEwAgQIECBAYEoE3pJ+HDAlfdENAlMv4Cl2U3+IdZAAAQIECBBYYoFN\nlnj/dk+AwBACriANgaUqAQIECBAgQIAAAQLTLWCANN3HV+8IECBAgAABAgQIEBhCwABpCCxV\nCRAgQIAAAQIECBCYbgGfQZru46t3BMZJ4IZxaoy2ECBAgAABAgTmEjBAmkvFMgIEFkPg1Yux\nUdskQIAAAQIECCykgAHSQmraFgECvQSu67XSOgIECEyxwAXp22+nuH+6RmCqBAyQpupw6gwB\nAgQIECAwhgL7j2GbNIkAgXkEPKRhHhiLCRAgQIAAAQIECBCYPQEDpNk75npMgAABAgQIECBA\ngMA8AgZI88BYTIDAggtsmS1WFAIECBAgQIDA2Ar4DNLYHhoNIzB1Aq/q9Oj5U9czHSJAgAAB\nAgSmRsAAaWoOpY4QGHsBV6zH/hBpIAECiyTwtM52j1qk7dssAQILKGCAtICYNkWAAAECBAgQ\nmEPgzzvLDJDmwLGIwLgJ+IvuuB0R7SFAgAABAgQIECBAYMkEDJCWjN6OCRAgQIAAAQIECBAY\nNwG32I3bEZnu9hyQ7u033V3Uux4Cq3XWNbea9Khq1ZQKvDP9etOU9k23CBAgQGBKBAyQpuRA\nTkg3Nk07v5W8e0Laq5kLK7B+Z3NXLOxmbW1CBF6Zdta/AQoBAgQIEBhrAQOksT48U9m4C9Or\nL05lz3SKAIFeAnv0WmkdAQIECBAYFwEDpHE5EtpBgAABAgQITKvALdPaMf0iMI0CBkjTeFT1\niQCB/7+9OwG355zzBB6yiCAikZAgMYhdiMSWWNKxjqYxhDaaGG3poaV1Z/B000EeZtogzfNE\nd+vOEIzQLYkgiF1nhCZo22OLNSSxJUQWspD5/qRKV07uPXf5n3tunarP+zzfnDpVdare+rzX\nX/1u1alLgAABAn0SOKJPndEXAgSmCyiQpvtYSoAAAQIECBDYUoGzt3QDPk+AwPwEPOZ7ftb2\nRIAAAQIECBAgQIBAzwUUSD0fIN0jQIAAAQIECBAgQGB+Agqk+VnbEwECBAgQIECAAAECPRdQ\nIPV8gHSPAAECBAgQWHiBPXIEFY0AgQUQ8JCGBRgkXSRAgAABAgQWWuDIpvdPXeij0HkCIxFQ\nII1koB0mAQIECBAgsGkCzrc2jd6OCaxdwC12azfzCQIECBAgQIAAAQIEBiqgQBrowDosAgQI\nECBAgAABAgTWLqBAWruZTxAgQIAAAQIECBAgMFABBdJAB9ZhESBAgAABAgQIECCwdgEF0trN\nfIIAAQIECBAgQIAAgYEKeKrKQAfWYREgQIAAAQK9ETi+Nz3REQIEVhRQIK1IZAUCBAgQIECA\nwBYJnLxFn/ZhAgTmKuAWu7ly2xkBAgQIECBAgAABAn0WUCD1eXT0jQABAgQIECBAgACBuQoo\nkObKbWcECBAgQIAAAQIECPRZQIHU59HRNwIECBAgQIAAAQIE5iqgQJort50RIECAAAECIxQ4\nMsf8khEet0MmsJACnmK3kMOm0wQIECBAgMACCey5QH3VVQKjF3AFafQ/AgAIECBAgAABAgQI\nEGgFFEithFcCBAgQIECAAAECBEYvoEAa/Y8AAAIECBAgQIAAAQIEWgEFUivhlQABAgQIECBA\ngACB0QsokEb/IwCAAAECBAgQIECAAIFWwFPsWgmvBAgQIECAAIGNETgzm71iYzZtqwQIzFpA\ngTRrUdsjQIAAAQIECFxV4IirvvWOAIE+C7jFrs+jo28ECBAgQIAAAQIECMxVQIE0V247I0CA\nAAECBAgQIECgzwIKpD6Pjr4RIECAAAECBAgQIDBXAd9Bmiu3nUXgwOSNJAgQGJ3AATni00Z3\n1A6YAAECBBZOQIG0cEO28B2+VY6gohEgMD4BBdL4xtwRXynwsAbiZCAECPRfQIHU/zHSQwIE\nCBAgQGCxBR7TdF+BtNjjqPcjEfAdpJEMtMMkQIAAAQIECBAgQGBlAVeQVjayxmwFjs/mDp/t\nJm2NAIEFEHjVAvRRFwkQIECAwFYKJD8E8xa4KDs8c947tT8CBDZdoP63rxEgQIAAgd4LuMWu\n90OkgwQIECBAgAABAgQIzEtAgTQvafshQIAAAQIECBAgQKD3Am6x6/0Q6SABAgQIECCw4AKX\nL3j/dZ/AqAQUSKMabgdLgAABAgQIbILAEZuwT7skQGCdAgqkdcL5GAECBAgQIEBglQJnr3I9\nqxEg0AMB30HqwSDoAgECBAgQIECAAAEC/RBQIPVjHPSCAAECBAgQIECAAIEeCCiQejAIukCA\nAAECBAgQIECAQD8EFEj9GAe9IECAAAECBIYrsEcOraIRILAAAh7SsACDpIsECBAgQIDAQgsc\n2fT+qQt9FDpPYCQCCqSRDLTDJECAAAECBDZNwPnWptHbMYG1C7jFbu1mPkGAAAECBAgQIECA\nwEAFFEgDHViHRYAAAQIECBAgQIDA2gUUSGs38wkCBAgQIECAAAECBAYqoEAa6MA6LAIECBAg\nQIAAAQIE1i6gQFq7mU8QIECAAAECBAgQIDBQAU9VGejAOiwCBAgQIECgNwLH96YnOkKAwIoC\nCqQViaxAgAABAgQIENgigZO36NM+TIDAXAXcYjdXbjsjQIAAAQIECBAgQKDPAgqkPo+OvhEg\nQIAAAQIECBAgMFcBBdJcue2MAAECBAgQIECAAIE+CyiQ+jw6+kaAAAECBAgQIECAwFwFxviQ\nhhtE+PrJtZILk58nFyUaAQIECBAgQGAjBI7MRq9IXrQRG7dNAgRmKzCWK0j7hu2Y5MfJecl3\nkq8lP0iqSPpW8rpk10QjQIAAAQIECMxSYM9sbK9ZbtC2CBDYOIExXEE6InwvaQjPzOsnkyqS\nqjCqK0k7J/UP19OTRyeHJcclGgECBAgQIECAAAECIxMYeoF0SMaziqNTkhckn0uWatfIzPsk\nr0reknw3+USiESBAgAABAgQIECAwIoGh32L3yIzlt5N6Xa44quGu+4JPTR6UXJA8KdEIECBA\ngAABAgQIEBiZwNALpH0ynnVL3SWrHNefZb0vJjdZ5fpWI0CAAAECBAgQIEBgQAJDL5DOyVjt\nl2y7yjGrJ9xVUVUPcNAIECBAgAABAgQIEBiZwNALpDdmPG+bnJDcY8rYtt9Bqu8q7ZCcNGVd\niwgQIECAAAECaxE4Myt/by0fsC4BApsnMPSHNNTT6HZLXpo8PDkr+UFybvKLZMeknmJXj97c\nPbk8OTw5LdEIECBAgAABArMQqCfqagQILIjA0AukevjC3ybvTF6W3DeZvJJ0ceadndQT7F6T\nfD/RCBAgQIAAAQIECBAYocDQC6R2SOtJdo9v3tRVo/r7R9sn9Ydjz0+0+QnskV3V0wK18QnU\nd/yq1cNQtPEJ1P/265dRGgECBAgQ6LXAWAqk7iBsnTeV+v7VdZO6re6iRNt4gbq9sQrV+238\nruyhhwL1v7tqv77yxX9HKPCKER6zQyZAgAABAr0U2De9OiapK0Z1291kvpV5r0t2TTajPS07\nrT5dZzN2bp8E5iRwbPZT0QgQIECAAIFhCWyXw6lz2XsN4bDGcAWpvhj5kmaw6iky9XeRzksu\nTOpWu3pIw57J05NHJ4clxyUaAQKzFfjVbDdnawQIEFgYgYc1PT15YXqsowQIDFbgkBxZVbPv\nS+465SjrMd/1AIfTk1r/gGSezRWkeWrb12YJXC87rmgECBAYm8CxOeCKRmCoAoO6gjT0v4P0\nyPwU1gMa6vVzU34iqyg6NXlQckHypEQjQGC2AvW/rYpGgAABAgQIEOitwNALpH0iX7fUXbLK\nEaina30xuckq17caAQIECBAgQIAAAQIDEhh6gXROxmq/ZNtVjlk9hriKqq+tcn2rESBAgAAB\nAgQIECAwIIGhF0hvzFjdNjkhmfwDsd1hrO8g3Sc5JdkhOSnRCBAgQIAAAQIECBAYmcDQn2JX\nT6PbLXlp8vDkrKT+Fs+5yS+SHZN6it1eye5J/U2kw5PTEo0AgdkK3K7Z3Fdnu1lbI0CAAAEC\nBAgQWKvALfKBtyZVINUDGbqpPxJ7RvLK5GbJZrSnZafVJ38HaTP07XNeAq/PjioaAQIExiZQ\nf4uxohEYqsCgnmI39CtI7Q9hPcnu8c2bumpUf/9o+6T+cOz5yazbjbPB/5PUD8tq2h6rWck6\nBBZcYOi39C748Og+AQIbKHDEBm7bpgkQmLHAWAqkLlvdWlfZyFZ/hPZTyWoLpLrF7/bJZYlG\ngAABAgQIDEvg7GEdjqMhMGyBMRZI9aS6uoJ0raQKmZ8ndZvdLFtt98g1bPBeWfeP1rC+VQkQ\nIECAAAECBAgQ2ACBsdzysm/s6t7fuqXuvOQ7ST3Kux7YUMXMt5LXJbsmGgECBAgQIECAAAEC\nIxUYwxWkuu/3Jc34npnX+sOxVSRVYVRXkuopdnsmT08enRyWHJdoBAgQIECAAAECBAgQGJTA\nITmaejrc+5K7Tjmy+jtI901OT2r9A5J5trrFrva72u8szbNv9kVgVgJvyIYqGgECBMYmUA9j\n8kCmsY36uI63zmHrXLbOabWeC7wl/avb5+r7Rqtp9f2keoDDP6xm5Rmuo0CaIaZN9VbgwPSs\nohEgQGBsAh7zPbYRH9/xDqpAGvotdvvk57NuqbtklT+nP8t6X0xussr1rUaAwOoF/AHm1VtZ\nkwCBYQkM/XxrWKPlaEYvMPSHNJyTEd4v2XaVI11XkKqoqgc4aAQIECBAgAABAgQIjExg6AXS\nGzOet01OSO4xZWzrO0j3SU5JdkhOSjQCBAgQIECAAAECBEYmMPRLvvU0ut2SlyYPT85KfpCc\nm9R3jXZMdk72SnZPLk8OT9wKFASNAAECBAgQIECAAIFhCtwih/XWpAqkesJGN/VHYs9IXpnc\nLNmM5iENm6Fun/MWqCvWQ79qPW9T+yNAYDEEjk03KxqBoQp4SMMCjuy30+fHN/2uq0b194+2\nT+oPx56faAQIbLzAUc0unrPxu7IHAgQIECBAgMD6BIZ+i91SKnVrXaVa3VpX302qQunryS8T\njQCBjRHYaWM2a6sECBDovcDxve+hDhIg8DuBod/u8owcaX0P6dq/O+IrJ+6Ul/qjsN9N3p/8\ne1JPvHt+snWiESBAgAABAgRmJXByNlTRCBBYAIGhF0h1dahurav7IttW3zP6f8n+yWeS1yX1\n/aQLk79JXpFoBAgQIECAAAECBAiMUGCMt9hVEVTfQXp2cnRnzOvx3v+U/Hny3uRDiUaAAAEC\nBAgQIECAwIgEhn4FaamhPCAzP510i6Na7+LkqUk9AvzgRCNAgAABAgQIECBAYGQCYyyQ6il2\nX1pmnOshDV9L7rjMcrMJECBAgAABAgQIEBiwwBgLpM9mPOshDUu1XTLzbkk9sEEjQGC2Ap/P\n5ioaAQIExiZwZA74JWM7aMdLYFEFxvIdpLqlrh7IUMXRJ5K/Tv4geVfStj0z8fKkHujwr+1M\nrwQIzEzg1TPbkg0RIEBgsQTqHEMjQIBALwQek16cmNQfir1iImfmfdt+PxOXJbXOack1knm2\ne2Vnte/u0/bmuX/7IkCAAAECBDZO4NhsuqIRGKpAncPWuWyd0y58G/oVpPrDbJVq9eS6u3TS\nLYLqbx/V94/qcd/1FLsaYI0AAQIECBAgQIAAgZEJDL1A6g7n+XlTt84tdfvcBzO/vn9UV5E0\nAgQIECBAgAABAgRGKjCmAmnaENfVI40AAQIECBAgQIAAgZELjPEpdiMfcodPYNMEnpg9VzQC\nBAgQIECAQG8FXEHq7dDoGIHBCdy/OaI3D+7IHBABAgSmC9SDoXy/ebqRpQR6I6BA6s1Q6AgB\nAgQIECAwUIEjBnpcDovAIAXcYjfIYXVQBAgQIECAAAECBAisR0CBtB41nyFAgAABAgQIECBA\nYJACCqRBDquDIkCAAAECBAgQIEBgPQIKpPWo+QwBAgQIECBAgAABAoMU8JCGQQ6rgyLQS4Ff\n9bJXOkWAAIGNF3hYs4uTN35X9kCAwJYKKJC2VNDnCRBYrcBzV7ui9QgQIDAwgcc0x6NAGtjA\nOpxhCiiQhjmujopAHwUu6GOn9IkAAQIECBAg0BXwHaSuhmkCBAgQIECAAAECBEYtoEAa9fA7\neAIECBAgQIAAAQIEugIKpK6GaQIECBAgQIAAAQIERi2gQBr18Dt4AnMVuF32VtEIECBAgAAB\nAr0V8JCG3g6NjhEYnED7FLunDO7IHBABAgSmC1w+fbGlBAj0SUCB1KfR0BcCwxZwxXrY4+vo\nCBBYXuCI5RdZQoBA3wQUSH0bEf0hQIAAAQIEhiZw9tAOyPEQGLKA3+gOeXQdGwECBAgQIECA\nAAECaxJQIK2Jy8oECBAgQIAAAQIECAxZQIE05NF1bAQIECBAgAABAgQIrEnAd5DWxGVlAgS2\nQOCKLfisjxIgQGCRBfZoOu+7SIs8ivo+GgEF0miG2oES2HSBYza9BzpAgACBzRE4stntUzdn\n9/ZKgMBaBBRIa9GyLgECWyJw2pZ82GcJECCwwALOtxZ48HR9fAK+gzS+MXfEBAgQIECAAAEC\nBAgsI6BAWgbGbAIECBAgQIAAAQIExiegQBrfmDtiAgQIECBAgAABAgSWEVAgLQNjNgECMxeo\nf2/8mzNzVhskQIAAAQIEZingS4Oz1LQtAgSmCRzVLHzOtJUsI0CAAAECBAhspoACaTP17ZvA\nuAR2GtfhOloCBAj8TuD4302ZIECg9wIKpN4PkQ4SIECAAAECCy5w8oL3X/cJjErA9wFGNdwO\nlgABAgQIECBAgACBaQIKpGk6lhEgQIAAAQIECBAgMCoBBdKohtvBEiBAgAABAgQIECAwTUCB\nNE3HMgIECBAgQIAAAQIERiXgIQ2jGm4HS2BTBT6/qXu3cwIECGyewJHZ9RXJizavC/ZMgMBq\nBRRIq5WyHgECWyrw6i3dgM8TIEBgQQX2XNB+6zaBUQq4xW6Uw+6gCRAgQIAAAQIECBBYSkCB\ntJSKeQQIECBAgAABAgQIjFJAgTTKYXfQBAgQIECAAAECBAgsJaBAWkrFPAIECBAgQIAAAQIE\nRimgQBrlsDtoApsi8MTstaIRIECAAAECBHor4Cl2vR0aHSMwOIH7N0f05sEdmQMiQIDAdIEz\ns7ge860RILAAAgqkBRgkXSRAgAABAgQWWuCIhe69zhMYmYBb7EY24A6XAAECBAgQIECAAIHl\nBRRIy9tYQoAAAQIECBAgQIDAyAQUSCMbcIdLgAABAgQIECBAgMDyAr6DtLyNJQRmLVC/kNhx\n1htdoO1t2/R1pwXq86y7+ots8Dez3qjtESBAgAABAgSGJnCvHFA93Wa7oR2Y47mKwMvzrsZZ\nxmtQPwMaAQLjE3hYDrmiERiqQJ3D1vlNndMufHMFaeGH0AEskMBL09fjFqi/s+7qDs0GL571\nhhdoe99eoL7qKgECsxN4TLOpk2e3SVsiQGCjBBRIGyVruwSuLnBBZn3h6rPNIUCAAAECBAgQ\n6IuAhzT0ZST0gwABAgQIECBAgACBTRdQIG36EOgAAQIECBAgQIAAAQJ9EVAg9WUk9IMAAQIE\nCBAgQIAAgU0XUCBt+hDoAAECBAgQIECAAAECfRHwkIa+jIR+ECBAgACB4QockUN7/nAPb8Uj\na/+MxyErrjncFerPHBw53MNzZEMSUCANaTQdCwECBAgQ6KfAMenWZ/rZtbn0audmL+fNZW/9\n3Mnn+9ktvSJwdQEF0tVNzCFAgAABAgRmK3B2NlfRCBAg0HsB30Hq/RDpIAECBAgQIECAAAEC\n8xJQIM1L2n4IECBAgAABAgQIEOi9gAKp90OkgwQIECBAgAABAgQIzEtAgTQvafshQIAAAQIE\nCBAgQKD3Agqk3g+RDhIgQIAAAQIECBAgMC8BBdK8pO2HAAECBAgQIECAAIHeCyiQej9EOkiA\nAAECBAgQIECAwLwEFEjzkrYfAgQIECBAgAABAgR6L6BA6v0Q6SABAgQIECBAgAABAvMSUCDN\nS9p+CBAgQIAAAQIECBDovYACqfdDpIMECBAgQIAAAQIECMxLQIE0L2n7IUCAAAECBAgQIECg\n9wIKpN4PkQ4SIECAAAECBAgQIDAvAQXSvKTthwABAgQIECBAgACB3gsokHo/RDpIgAABAgQI\nECBAgMC8BBRI85K2HwIECBAgQIAAAQIEei+gQOr9EOkgAQIECBAgQIAAAQLzElAgzUvafggQ\nIECAAAECBAgQ6L2AAqn3Q6SDBAgQIECAAAECBAjMS2Cbee3IflYlsN2q1rISgcUV2HZxu67n\nBAgQ2CKBy7bo0z5MoN8CgzqHVSD144et/Ufzgn50Ry8IECBAgAABAgQIrFng0jV/oocfuEYP\n+zTWLu2fA/fb9bGO/jiO+8U5zOsmxyYaAQIExiTw5BzshcmLE43AUAWqOPrsEA7OFaT+jOJn\n+tMVPSGwIQLnNFv9pw3Zuo0SIECgvwIHNl37ZH+7qGcECLQCHtLQSnglQIAAAQIECBAgQGD0\nAgqk0f8IACBAgAABAgQIECBAoBVQILUSXgkQIECAAAECBAgQGL2AAmn0PwIACBAgQIAAAQIE\nCBBoBRRIrYRXAgQIECBAgAABAgRGL6BAGv2PAAACBAgQIECAAAECBFoBBVIr4ZUAAQIECBAg\nQIAAgdELKJBG/yMAgAABAgQIECBAgACBVkCB1Ep4JUCAAAECBAgQIEBg9ALbjF4AAAEC8xK4\ndF47sh8CBAj0TMC/fz0bEN0hQIAAAQJ9ENg5nahoBAgQGJuAf//GNuKOlwABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgRWI7D1alay\nDgECBJYRuHXm3zfZLvnRMutcI/MfleyefDfRCBAgsEgCN0lnH5DsnZyxQsfvmuX3TKb9m7jC\nJiwmQIAAAQIEFlngL9P5K5KfJjda5kDqFzG1zmeXWW42AQIE+iywQzpXhVH9O/a0KR29WZb9\nIrk4uc2U9SwiQIAAAQIEBizQFkh14nDiMsepQFoGxmwCBBZG4N7p6a+T85ObLtPrUzK//i38\n02WWm02AAAECBAiMQKAtkC7NsdaJweOXOGYF0hIoZhEgsHACR6XH9e/cyUv0/L81yz6Q17qt\nWCNAgAABAgRGKtAWSC/L8VeRdG5y4wmLaQVS3af/h0l9vvLYpG5n0QgQINA3gWunQ99Iqkh6\nQqdze2T6Z8l5SX1faam2d2Y+I6ki67Bkn2SptntmPjt5dfJXySOSbRKNAAECBAgQWBCBtkCq\nwuavkzpxOGmi78sVSPtmvfa+/rpvv25dqc/XvLsnGgECBPomcGA6VLfa/Ti5QdO54/Na/3Yt\ndQW9Vjk8uST5TfL95PKktlG/FOpebaoHQfwqqW3V9zrrMzV9erJc4ZVFGgECBAgQINAngW6B\nVL/lrAcx1P+hP6HTyaUKpPpN7NeSC5O6gnTNpE4U/ktSxdJZyY6JRoAAgb4JvCodqn/n/i55\naDP9trwu1R6embXuvyZ1pana9ZLjkpp/aNK2b2fiJ8ntmxnXzWsVUbXe3zTzvBAgQIAAAQI9\nF+gWSNXVOyX1W89zk92TaksVSH+e+fV/+nXVabL9RWbUshdNLvCeAAECPRCoX/B8PamrQGcn\n9Qud9mpSJq/S6hdB9e/ZfleZu9VW18n7i5P6fP1yaPuktvexpHtV6Vp5X//O/udEI0CAAAEC\nBBZAoP6Pu/7Pv26xa9sLM1Hz3tnMWKpAOrZZ5xbNOt2X3Zpl7+7ONE2AAIEeCRyQvlRBU//W\nPWiZfu3ULP9GXus7R5Opq0r1+fb2uVOb95/Ma/0S6XaJRoAAAQIECCyYwFIFUt1q95mk/o//\niclSBVKdANT9+NsmS7X6zepXl1pgHgECBHoiUN8Tqu8MLdfulgX17+BKuV+zgfrl0Ecm1q/b\n7l6cbJdoBAjMSaBOZDQCBAjMUqC+gPzk5LPJa5KPJZPtosyo20jqVpXLJhbWiUDdbjLtxGPi\nI94SIECgdwLtv2HvT89eMaV3X26W1YMfDk5undQtdQ9JDkpelNwreXCiESBAgAABAj0XWOoK\nUtvlF2SifnP63ua1Cqa2/X0matk92xmd17oNpZZNPg2vs4pJAgQIbLrASleQ6hdAdaW8rqgv\n1e6Rmfsn9Uuh+k7SvZPbJN22S978IKl/E9uHPHSXmyZAgAABAgR6JjCtQKor1Kcn9X/slW6B\nVL8JrXn1PaXuF5Lzdqu3JbXs0HqjESBAoKcCKxVI1e1Tkvr3rJ521213yJtLki8kdavxnZNa\nr/7NnGynZUZdmd95coH3BAgQIECAQP8EphVI1dv2JKD+j79bINWyE5OaX3+V/lFJ/UHEdt4/\nZnqycMosjQABAr0RWE2BVFeEftnkRXl9YPK85JtJFT11Balt7feP6ur5ocljkzcl9e/kCYlG\ngAABAgQILIDASgVSHUK7zmSBVL81PTK5MKkTgEqdNPzPRHEUBI0AgV4LrKZAqgO4bXJq0j71\nrv6tq9vmDk26rW6n8JnNKAAAELBJREFUOy6pwqn9N7H+LtzRSf17qREgQIAAAQIjEahi6JbJ\nzUZyvA6TAIFxCuyQw75LsldST/dcrl03C+rq+96JXxYtp2Q+AQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQLrFrjGuj/pgwQIECAwTeDhWbjNxAq/zvvzk58kX5lYtta3\n98wHdk9OTi5b4cMHZPmNkncl1YfrJQ9Ivp18IVlve1k++NHkQ8ksj3dW/Vvvcc3ic/tlI3sm\nH09qvGfVts2GHpaclXy62ejd83qT5D3Jpc08LwQIECBAgAABAgR6JXBhenPFlHwtyw7Zgh6f\n1Gx7p1Vs45Rm3Ws3696hef/aVXx2uVX2brZxcLPCLI93Fv1brt/d+VVsPDd5XHfmjKbflO3U\n+Lc+M9rsVjdotntCZ4Nvb+bt2pm3EZN3zEbfshEbtk0CBAj0SWDyt5t96pu+ECBAYNEFLs4B\nPLNzEHXV/lpJXdF5UlInmz9KTk3m2aqYeU/y5S3Y6UPy2YuSukLStlkd7yz61/Zp2utjs/B/\nJ0+dttICLPtc+ljF70ZfPXpH9rH9AnjoIgECBAgQIECAQA8F6iT/Z1P6VVcu6gpD90rAlNWv\ntmhLriBdbWPrmFEF1rs7n9vo4+3samaTT8iWagz+eGZb/I8NzfMK0n/sdWOnzsjmv7+xu7B1\nAgQIbL6AK0ibPwZ6QIDAOAX+bw67rl7co3P4D8h0fZekltV3hdq2XSYen5yZfLSd2Xmt27h+\nL/ll8vFkpStSdVveI5K6ze9TSbfdOG9qW3dL6upWFUFfSbqtroIdlDyvO3OF6aWOt/pdt4zV\nPp6S7JK8M/lB0u3fQXm/V1LLfp502w55c0hSJ+4f6Sw4MNN3SW6VnJd8I6nP/yqpdp8mNV1X\n9C5P6grJL5Jq2yS/n9Q26ng/n1Q/y3i97aB8cNekbom7a3JQcqOktn1ickky2W6dGQ9Ndkrq\n+L6UTLb7ZcbNk39O2uPL5G+PYf+81njW57+Y/EtyWdJtN8yb+ye3SWq9byYfT2r9ajsmj2pe\n67bEQ5PvJKcmbavbIh+Y1Di1y+q4uq3Gt74/dVpy3aTG7d+T9yUXJRoBAgQIECBAgMCABVa6\nolIn5VckdeLetlMyUfPqdqluu0He1Pw6gW/bSZmoeW9oXquYubSZfn1e66S+bZPbrZPZ+uxr\n2xWa16c183+T13Oa6SrUqnjptgfkTX2+io+2red4q+D4XnJ0UturfDCZ7N8zm2XPyutke0Jm\n1Of+rFlw/bxWEVDz6jh+0kzX+68neyTV3pLUvDa1bhUI1W6RfCqpZecnP22mq1DcJ1lNe1NW\nqs8f3Fm5iqCzk79Ian9VqLT7/1ymd066rcanlte4tsdxTDOve+Xx7c28XfPatip0qpiqz/8i\nuaCZrmPo3ib3iLxvt13HWgVWfabGvS2A98509bfta02/NWnbUZmoArPm1/HVa32+5leh2bb9\nMlHbeFny82a63h+YaAQIECBAgAABAgMXmFYwXCPHXieYdXJ4bNK2yUKmnT+tQDovK1XBUu06\nSbvdw38758r/TG73Dpld++4WSA/P+zrJ/XBy46Ta7ZOvJnUCXYVH216ZibrK0G3rOd53ZwO1\nz58lT03qKtl9k8n+1cl+Xbn5ZDLZ3p8ZVUDcsFnw4rzWsb06aefdLtNvb+bXyXnb2uKqe4td\njc3pSZ3g/1FS76s9MDk3qSKrruit1JYrkKp4+HHyJ0mNa1mfnFSf/zJpW3nUvDcnOzQz6ypP\n9aHmTyuQrpXlpya/StpjqKL7+Ul99gVJtR2TKp5qm/snWyfXSR6ZXJJcnHTH/Yy8/37SbU/J\nm9pm/YzdqFlQ7u9Kan7357AtkC7L/OOTh04sz1uNAAECBAgQIEBgqAIX5sDqBPXITl6a6X9M\nvpTUyWOdnN4saVudZNb8OpnttmkF0rO6K2a6TqbrBLxyzaTa5HbvkHm1n26BdFre1wnxjZNu\ne1jefCN5XGfmlzN9dOd9Ta7neKtAqn78aW2g05bqX1v43aqz3u6ZrgKrWyxUYfSBpBy6rT05\nrxPzti1VIP1hFlafqm+Trcaylj1jcsES79/UrHtwZ9mJzbzJz9++mV/L21aFyA+TyZ+FwzKv\n+tA95rc389orSFXM1Tp/m3RbFXtVAJfPtsk9k/rZ+ONksrVjc8fOgskCqbZXxW0VWN1Cqj5y\nneSc5IJmOi9btWPwg0xfq2ZoBAgQ6KPANn3slD4RIEBgIAJ1EvjXSxxLnTTWifpzk8nfyC+x\n+tRZb5tYWkVOnQDXyf9eyXeSlVoVUndOPpnUSXm3nZw3lbbdNBNVwHSvdrTL1nu8n2o3MOX1\nDVlWxUsd10ua9f5rXrdOalnbntNONK83zOttk7ZQmSycJlb/bdFQ8z6S7DOx8CvN+/3z+rqJ\nZWt5+4mJlb/bvN+xed0lr+X85qSunHXbP+fNa7ozlpjet5nXLbhq1hXJ/Ztl9fJvyUM676to\numVyl6S9GjTNa6+st1NS/Tw/6baL8uYdyX9Pyv+zSdu+kIm6QqURIECglwIKpF4Oi04RIDAQ\ngSqEDuwcS91eVd/RqN+6z6LVSWj99n6y1W/oq90i+c5vp6b/p06K6zf+35++2m+XPjj/vTT5\n6BLrrvd4V9PHD2V/1b9ugfTEvP9hUldB2lbFXs1/cnKnpIqNaq15e8vclXOv/t+9m1lHXX3R\n7+bc6ndT65uoPnfbr5o31fdq1e9qZ135cpX//jjvViouqtittprxrGM5PDkoqeltkvo5rbGs\nNs3rNleu8tvvkTWTV3n5XvOuttstkFYz3lfZkDcECBCYp0D9Q6gRIECAwMYI/Dqb/dI6Nj15\nUnq9Zbax3Hdhqtip9tMrX1b872XNGtOuFrQbqSsOpyUXtjM6r+s93iq4Vmp10v7G5IXJ3ZO6\nslKFwCuTy5O2HZ2Jumrx7eRfktOTumJRhek5yUqtLVaqEPvRMivXrZFb0upYprVzm4XtOHbX\nrZ+NtpDqzu9Or3Y868pOXc2qn6/3J29OPp+U2YuTZybTWhXo1ZbqZ81vf25b05pXbTXjfeWa\n/kuAAIFNEFAgbQK6XRIgQGAZgfZEcvssr1vl2nbLdmLitW6J2jM5c2L+7Zv335qYv9zb+nyd\ntC61n10z/61JnUDXVZUHJP8r2Yx2bHb6guSQpC0C3pDptu2WiSqO6la4ug2ue3vagXlfbesr\nX5b97zeaJVUEfXhirbqdrLY7eQVoYrUtflv9r75XATPZ9sqMGvdp7ZvNwhrP2la3PS9v7pn8\nj+Sw5AbJk5MqPrvt1s2baV5nNOu0P2/dz9d0O/97kwu8J0CAQJ8FVvotVJ/7rm8ECBAYmkB7\nxefgiQN7cvO+rh5MtjrJ7ba75c3vJe9JLuwumDJdVzTel9w1aQuJdvW6inD/pH6hVifWVSRU\nsbQZrQq+U5NHJVUkfTrpFgD/Ke+r1ZWfbnFUblU4VesWF22R1b0C8q6sc0XyV8lkcXB05n0w\nuVeyka2uxNVVuipGa0y6bXK8u8va6fdmoo7h2e2M5nXHvL4gqe2elbRe38l0t+2bN+0xTnp1\nrcr535IHJVU4dtsd8+YPktp2XcHTCBAgQIAAAQIERi5QxUn7vZfVUjw4K9aJbZ141onsk5OT\nkro1rK5o1HTbarpO8KsQ+LvkIcmzkvOSi5Pu1YdT8r62e+2k2h2Sev/aetO0vfNa26o+/1lS\n26vt1nFUYVJXGo5M6la1pdp6jvfd2VD1o07cu22p/rXLD81EfabyJ+3M5nWHvP44qWUvTeok\n/3HJO5KLkjq+7sn6QXlf69ZVo5cnN0uqvT6p+R9P6vOPSt6Y1Lx3Jqtpb8pKtX632D2xmbfL\nxAau2cz/SGd+9aXGvW63qyK1ipAarxrbuqXwhKRtb89E7WvXdkZej2nmVX+rUHlGcnoz77C8\nVntuUp/7bPL45IDk+clPktpvLatjb9vHMlHz3pA8Jam2X3Jp8vPk8KSK6fr5qc9X7py0rdat\nzx/VzvBKgAABAgQIECAwHoH1FAyl8+ykiqE6kawrO59LbpmcmdSJftuqQKqT0oOSKqhq/coX\nkn2SbltNgVTrV2HyqaTdVr1+IKn9V6srNsfWxBJtPcf77myn9rHjxPaqHzW/CoLJdp3MKJ8q\ndnaaXJj3907OSNpjqGKi9nPz5rWuzuyRVNsmeVtShWat/5ikWhUsVTyUb7udGovjkxsnq2lv\nykr12YM7K5/YzNulM68ma3+1brdAqvn7Jx9OqgCp5T9M7pdckJyQtO3tmajl3QJp67x/YVLj\nUssqP0vq56tttc7fJ2XUrlP7eFpS+655/5C07X6ZaH/WvtzOzOu+yWeSdhtVxH0ombz6tV+z\nzlF51QgQIECAAAECBAisWqBOmG+X3HDVn9hqq/rOyI3WsP60VatguUuy88RK9877m07M6+Pb\n8rt5sk+yfbJSu3ZW2G2ZlfbM/LoKUiab1a6fHdcVvvW0srhVcpukCsKlWjvebeG41DrdefVz\ntpRrbafMt+uubJoAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAgc0W+P/PozVOB9AHHQAAAABJRU5ErkJggg==", "text/plain": [ "Plot with title “Boxplot of Outstate Vs. Private”" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot(college$Private, college$Outstate, xlab=\"Public/Private Indicator\", ylab=\"Out of State Tuition($)\", main=\"Boxplot of Outstate Vs. Private\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**8 (c) iv.** Let us add a new categorical field called _Elite_ which takes 2 values depending on _Top10Perc_:\n", "- **Yes**: when the proportion of students of a given college coming from the top 10% _exceeds_ 50%. \n", "- **No**: when the proportion of students of a given college coming from the top 10% is _less than_ 50%. \n", "\n", "This is implemented by initializing this field for every college as _No_, then applying the condition." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "Elite = rep(\"No\", length(rownames(college))) #Initialize all entries of Elite to 'No'\n", "Elite[college$Top10perc > 50] = \"Yes\" #If Top10Perc > 50, assign field as 'Yes'\n", "Elite = as.factor(Elite)\n", "college = data.frame(college, Elite)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<table>\n", "<thead><tr><th></th><th scope=col>Private</th><th scope=col>Apps</th><th scope=col>Accept</th><th scope=col>Enroll</th><th scope=col>Top10perc</th><th scope=col>Top25perc</th><th scope=col>F.Undergrad</th><th scope=col>P.Undergrad</th><th scope=col>Outstate</th><th scope=col>Room.Board</th><th scope=col>Books</th><th scope=col>Personal</th><th scope=col>PhD</th><th scope=col>Terminal</th><th scope=col>S.F.Ratio</th><th scope=col>perc.alumni</th><th scope=col>Expend</th><th scope=col>Grad.Rate</th><th scope=col>Elite</th></tr></thead>\n", "<tbody>\n", "\t<tr><th scope=row>Abilene Christian University</th><td>Yes </td><td>1660 </td><td>1232 </td><td>721 </td><td>23 </td><td>52 </td><td>2885 </td><td> 537 </td><td> 7440</td><td>3300 </td><td>450 </td><td>2200 </td><td>70 </td><td>78 </td><td>18.1 </td><td>12 </td><td> 7041</td><td>60 </td><td>No </td></tr>\n", "\t<tr><th scope=row>Adelphi University</th><td>Yes </td><td>2186 </td><td>1924 </td><td>512 </td><td>16 </td><td>29 </td><td>2683 </td><td>1227 </td><td>12280</td><td>6450 </td><td>750 </td><td>1500 </td><td>29 </td><td>30 </td><td>12.2 </td><td>16 </td><td>10527</td><td>56 </td><td>No </td></tr>\n", "\t<tr><th scope=row>Adrian College</th><td>Yes </td><td>1428 </td><td>1097 </td><td>336 </td><td>22 </td><td>50 </td><td>1036 </td><td> 99 </td><td>11250</td><td>3750 </td><td>400 </td><td>1165 </td><td>53 </td><td>66 </td><td>12.9 </td><td>30 </td><td> 8735</td><td>54 </td><td>No </td></tr>\n", "\t<tr><th scope=row>Agnes Scott College</th><td>Yes </td><td> 417 </td><td> 349 </td><td>137 </td><td>60 </td><td>89 </td><td> 510 </td><td> 63 </td><td>12960</td><td>5450 </td><td>450 </td><td> 875 </td><td>92 </td><td>97 </td><td> 7.7 </td><td>37 </td><td>19016</td><td>59 </td><td>Yes </td></tr>\n", "\t<tr><th scope=row>Alaska Pacific University</th><td>Yes </td><td> 193 </td><td> 146 </td><td> 55 </td><td>16 </td><td>44 </td><td> 249 </td><td> 869 </td><td> 7560</td><td>4120 </td><td>800 </td><td>1500 </td><td>76 </td><td>72 </td><td>11.9 </td><td> 2 </td><td>10922</td><td>15 </td><td>No </td></tr>\n", "\t<tr><th scope=row>Albertson College</th><td>Yes </td><td> 587 </td><td> 479 </td><td>158 </td><td>38 </td><td>62 </td><td> 678 </td><td> 41 </td><td>13500</td><td>3335 </td><td>500 </td><td> 675 </td><td>67 </td><td>73 </td><td> 9.4 </td><td>11 </td><td> 9727</td><td>55 </td><td>No </td></tr>\n", "</tbody>\n", "</table>\n" ], "text/latex": [ "\\begin{tabular}{r|lllllllllllllllllll}\n", " & Private & Apps & Accept & Enroll & Top10perc & Top25perc & F.Undergrad & P.Undergrad & Outstate & Room.Board & Books & Personal & PhD & Terminal & S.F.Ratio & perc.alumni & Expend & Grad.Rate & Elite\\\\\n", "\\hline\n", "\tAbilene Christian University & Yes & 1660 & 1232 & 721 & 23 & 52 & 2885 & 537 & 7440 & 3300 & 450 & 2200 & 70 & 78 & 18.1 & 12 & 7041 & 60 & No \\\\\n", "\tAdelphi University & Yes & 2186 & 1924 & 512 & 16 & 29 & 2683 & 1227 & 12280 & 6450 & 750 & 1500 & 29 & 30 & 12.2 & 16 & 10527 & 56 & No \\\\\n", "\tAdrian College & Yes & 1428 & 1097 & 336 & 22 & 50 & 1036 & 99 & 11250 & 3750 & 400 & 1165 & 53 & 66 & 12.9 & 30 & 8735 & 54 & No \\\\\n", "\tAgnes Scott College & Yes & 417 & 349 & 137 & 60 & 89 & 510 & 63 & 12960 & 5450 & 450 & 875 & 92 & 97 & 7.7 & 37 & 19016 & 59 & Yes \\\\\n", "\tAlaska Pacific University & Yes & 193 & 146 & 55 & 16 & 44 & 249 & 869 & 7560 & 4120 & 800 & 1500 & 76 & 72 & 11.9 & 2 & 10922 & 15 & No \\\\\n", "\tAlbertson College & Yes & 587 & 479 & 158 & 38 & 62 & 678 & 41 & 13500 & 3335 & 500 & 675 & 67 & 73 & 9.4 & 11 & 9727 & 55 & No \\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "| <!--/--> | Private | Apps | Accept | Enroll | Top10perc | Top25perc | F.Undergrad | P.Undergrad | Outstate | Room.Board | Books | Personal | PhD | Terminal | S.F.Ratio | perc.alumni | Expend | Grad.Rate | Elite | \n", "|---|---|---|---|---|---|\n", "| Abilene Christian University | Yes | 1660 | 1232 | 721 | 23 | 52 | 2885 | 537 | 7440 | 3300 | 450 | 2200 | 70 | 78 | 18.1 | 12 | 7041 | 60 | No | \n", "| Adelphi University | Yes | 2186 | 1924 | 512 | 16 | 29 | 2683 | 1227 | 12280 | 6450 | 750 | 1500 | 29 | 30 | 12.2 | 16 | 10527 | 56 | No | \n", "| Adrian College | Yes | 1428 | 1097 | 336 | 22 | 50 | 1036 | 99 | 11250 | 3750 | 400 | 1165 | 53 | 66 | 12.9 | 30 | 8735 | 54 | No | \n", "| Agnes Scott College | Yes | 417 | 349 | 137 | 60 | 89 | 510 | 63 | 12960 | 5450 | 450 | 875 | 92 | 97 | 7.7 | 37 | 19016 | 59 | Yes | \n", "| Alaska Pacific University | Yes | 193 | 146 | 55 | 16 | 44 | 249 | 869 | 7560 | 4120 | 800 | 1500 | 76 | 72 | 11.9 | 2 | 10922 | 15 | No | \n", "| Albertson College | Yes | 587 | 479 | 158 | 38 | 62 | 678 | 41 | 13500 | 3335 | 500 | 675 | 67 | 73 | 9.4 | 11 | 9727 | 55 | No | \n", "\n", "\n" ], "text/plain": [ " Private Apps Accept Enroll Top10perc Top25perc\n", "Abilene Christian University Yes 1660 1232 721 23 52 \n", "Adelphi University Yes 2186 1924 512 16 29 \n", "Adrian College Yes 1428 1097 336 22 50 \n", "Agnes Scott College Yes 417 349 137 60 89 \n", "Alaska Pacific University Yes 193 146 55 16 44 \n", "Albertson College Yes 587 479 158 38 62 \n", " F.Undergrad P.Undergrad Outstate Room.Board Books\n", "Abilene Christian University 2885 537 7440 3300 450 \n", "Adelphi University 2683 1227 12280 6450 750 \n", "Adrian College 1036 99 11250 3750 400 \n", "Agnes Scott College 510 63 12960 5450 450 \n", "Alaska Pacific University 249 869 7560 4120 800 \n", "Albertson College 678 41 13500 3335 500 \n", " Personal PhD Terminal S.F.Ratio perc.alumni Expend\n", "Abilene Christian University 2200 70 78 18.1 12 7041 \n", "Adelphi University 1500 29 30 12.2 16 10527 \n", "Adrian College 1165 53 66 12.9 30 8735 \n", "Agnes Scott College 875 92 97 7.7 37 19016 \n", "Alaska Pacific University 1500 76 72 11.9 2 10922 \n", "Albertson College 675 67 73 9.4 11 9727 \n", " Grad.Rate Elite\n", "Abilene Christian University 60 No \n", "Adelphi University 56 No \n", "Adrian College 54 No \n", "Agnes Scott College 59 Yes \n", "Alaska Pacific University 15 No \n", "Albertson College 55 No " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "head(college)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**_NOTE 2_**: In case of multiple execution of the code above, we may end up with multiple instances of the field _Elite_. I once ended up with 4 before. They can be deleted using the command: \n", " `college[,-(ncol(college)-4:ncol(college))]`\n", " \n", "Now that the `Elite` field has been appended as the last column, let us see how many such _Elite_ universities exist." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<dl class=dl-horizontal>\n", "\t<dt>No</dt>\n", "\t\t<dd>699</dd>\n", "\t<dt>Yes</dt>\n", "\t\t<dd>78</dd>\n", "</dl>\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[No] 699\n", "\\item[Yes] 78\n", "\\end{description*}\n" ], "text/markdown": [ "No\n", ": 699Yes\n", ": 78\n", "\n" ], "text/plain": [ " No Yes \n", "699 78 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "summary(college$Elite)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So of our 777 colleges, 78 of them are _Elite_. The boxpolot below shows _Out of State tution_ for elite and non-elite universities." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0LvDVlXS9wCEFEBFFBEQFvKJqigB6SBC0LL6mHjmFieUmF6limkpGX\nw4nE0+WIptUxCvLlJGieUDQKLE1EgdREJcVbyEUuigJyVRTh/P6wxsbN3muv9e619541830+\nn9+7Zs3Mmnme72xx//dc1iabaAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAosJbLrYTPMIECBAYKYCd83WHjTlFr+e9a8YfWbrvD6w9flzW9O13dp+tW+M\nctubNfxnh+zrPq39fTXT17feL5zcKjMe3Jp5Waa/1Xq/HpP1/4f3Tx6V3C/5cvK5pPqmESBA\ngAABAgQIECAwQ4EnZlu3TpnXtvZ/wILPbtZadlZr2etb89uTP543v9WeMePpn8n22uNr932x\nXb10wfr7LbbSGs3bPvt5V3JN0h5DM11F6iHJarbVOD6bp8OvSNqF6ErHsBrbXGmffJ4AAQIE\nCBAgQGAOBZ6YPje/cE/62i4yNrZA2i77fWvy/eQ9yWq1H8uG60xLM7Z/X2ZHp7fWvSDT63U1\nQ7nWmbqm3+Ne/ynr7ZzMsq3W8XlKOvmFpMazx4w6vBrbnFHXbIYAAQKzFbjTbDdnawQIECAw\ngcDHs06dsRjXqnCYpFVhUpe0Vbv69pcf/nt0pn7lh+9Wb+KWbPqdyStHu3hEXh+enDd63365\nd960zxjV5+oX+bVuD8gOT0rq8sWmXZyJf00uSh6W/GRSRUy1n02qyNwnqfHOoq3G8dklHTt1\nFp1rbWM1ttnavEkCBAgQIECAAIGhCTwxA26fnfgvUwKMO4M0blNvb+23ioHVbHtl4+0x/v4S\nO/v1BetVIbXWrc5YnZ40/a2C543JFkm71eV3/5A069Xrr7VXWOH021vbntXx2bW1zervI1fY\nx/r4amxzBt2yCQIECKyOgDNIq+NqqwQIEFgrgedkR/cd7azOfpyVbJu8OKl7W5q2WybqDM93\nkrc1M0evD8nrzyV7JlUsfDb5cPKZZNJ2Tlb8QlJnXqr9YnLEbVM/+s9BrbefzvTCs0x3y7wX\nJA9N6pK27yZfT05PTkluTlbanpwNPKG1kRMz/dut983kNzNxYFLjqodhVPtfybuSb9ebtOpn\n2VW7Kfnz26b+85+6B+iZo7fV97rkcZrjM43HU7LtOuvVbs/Pm8uTf0nax7Nsn5fUuOohG99J\nyvmDyd8ntybVptnmZln/vyWPSWrc/5HUPk9OavsaAQIECBAgQIAAgdsEnph/6xfOJrM8g3RW\na7uvz3S1euJds6+Fr1fetsZ//vPSTNYvrwvX+0Hm1Vmg+qV30lb3TbW3UwVXu9Uv4lUkNOsc\n1l6Y6acl1b9m+cLXT2ZZPShgpa2KmGbbdX9WXW43rv1SFjbr1+tPt1auArVZdk1rfjP5863l\nVexVm/T4TOvxf7Ptpi8LX3/ztj3f/k+dxWsfh4XrnpDlW4zWn3Sbu2b9jyULt1XvP588MtEI\nECAwFwLOIM3FYdJJAgR6JlB/1f+pMWOqR14fN2b5rBYdkg39WWtjVSxcm9wz+bHkfyRbJYud\nXcnsO7T6xbqKtLqErdovJnWWqGlVLDQF1y2ZfmezIK/3SepMTp1dqXZZUmcfdkwelVR/6szE\nkclrkpW0x7Y+fGGmL2i9X2zyIwtm1lmjOiOzmm21PB6XTleB2ByjOuv1lWSnZLuk2nOTLyZN\nwV3zxrU7Z2F5PLC10jcyXQVx7acuozw7eVBS8zUCBAgQIECAAIGBCzwx41/sL+tLzTtvgdcB\nCz7fFBm12lmtZc0vtFtkXv3F/n2tZXXpVM2rX1arVSFyRdL04fhM1y/J9cvuS1rzb8x0FSmT\ntvZZhIWFR/Wh2d8/L9hg/VK+1LInj5Zdktf3J9skK2nVr6X2tdh2qzj7Xuszf9Ja6Tmt+de0\n5jeTVRQ2+/ruaOYkx2djPHbO9uuSuGZ/9fqspI57Fb3V3pJUcVrLPpTcJalWZ+Y+njSfPa1m\npk2yzddkveZzdVliXVJYZrsnVVw2y9puma0RIECAAAECBAgMVeCJGXjzS+IkrystkBrnt7f2\ne1Izc/T64tayH2T6PguW1+VsTV9/f8GycW9/rfW5+vw+o5Xvldf2ZV0vHM1vXl6UiWZ/12X6\niGSPpDnT0ZxZyqwVtyuzhWZfJ064tTrz0Xzm3a3PbEyB1Hz87a1tLjw+G+uxa2ub1d8qjha2\nu2XGvsl9Fyx4Xd43Y/xEa9ly2/xa63P/p/W5mvy51rK6lHOrmqkRIECgywIusevy0dE3AgT6\nKvCmDOzCMYO7esyyWS16SGtDF2Z6r9b7mvxyUpe0VXvw7S8T/fv/stZbkzojUa0KiDozUWdS\nmjNf9YvywoKgzjRUAVX/v1SP3j5ylLrcsM42nTJKXQK40nZRNnCP0UbqDMlyrc6qbd9aqT4/\nadt00hUXrPeRvF8tjypAz0qqQDooqSJ2v6R96WGNeZJWBU+deWxaHa+nNW/yWsfz+0n9PGyZ\n3C+pny2NAAECBAgQIEBgwAJPzNibv8zX63+Z0uKABZ9vCo3aTP2i22z79TWj1d6e6WbZwoLk\nPa1lzTpLvdYv69O092XlZluXZLqKhH9qzfvbTC/WXpCZVRQ0n134Wpdv1ZmVlbYTs4Fm29W/\n5dpDskKzfr2+pPWB9hmkKjwWtl/MjOazdb9Pu709b5plC49PrfeCZFqPXVvbrG0/MlnYnp4Z\ndX9Xs+/FXj/d+tC4bdZZvsU+v9S8n2pt1yQBAgQ6KVB/2dEIECBAYHgC32sN+YpMf7b1fuFk\nXUI1TauHNTxz9IE6u3Bg0v7F+B2jZQtfjs+M05O6TK8+U/ewtFtdpndsckHy4faCKae/1Fq/\n+veE5COteQsnD14wo/359qLmrFl7XvtMTBUN07TV8HhBOnBc0hTZ/57pKl5PTx6R/EFSre5T\nmqS1f45q/bOT68d8cFqDMZuyiAABAgQIECBAYF4FnpiO1y+GTdbjDNJ7F+D9r1Z/Ls30jy1Y\nvpK3dSnVNUkz3stb03UJ1mKFRGb/sDV9uW/m/FJSZ1faZ1L+9IdrbtxEXU5Y9101/atLAJf6\ng2Hdm1WX9TXrXpTpuyRN+2+ZaJZVUbFwO7/TWv7d5kOj17e3li08Pu1Vp/HYtbXN6tej2hvK\ndBV3TX//bMGyV7eWfaK1bNw261g3D32o7VZxqxEgQGCuBZr/6M71IHSeAAECBBYVqKKiaVs0\nE6PXM1vvqxB5Qut9nV04K/nXpM42tO8pydtlWxUCdQlf06rIaNq7M1H3pCxsdXlg9akKqKZY\nuCzTJyTPSj6UNK1dYNVZpXoQQJNNm5XGvJ6TZX/RWl4F6+nJLq15NfmTSRVPd6s3o/byvNY9\nVE37cjOR19r3o1vvq3hon31a2Ldxx2djPdrbrK60j3tZPaRmjtopzcTodf/W+3ahN26bdaw/\n1fpce7w1+9nJ+cn7kzo7tXWiESBAgAABAgQIDFzgiRl/81f7eq1L2i5dJv+U5U07IBPtzzeX\nR9Xys1rL6pfqdntT3jSfuyHTb0j+72iF+mX93KRZflGmn5c8Kal1mvn12v7FOW8narWd9jaa\n6X2X+HT7TEute3RS+63i5VXJTUmzjfYv4eNs8pEl292z5OtJs816vSX5UvKB5JKkvaym/zFZ\n2LbIjCogmnXPy/TzkxcmZyTN/HqtMbTbuOOzsR7bZAftfX4w79+Y/EKyWXJj0iyvy+F+YpQq\nhJv59dou/MZtM6veVsC2P3tM5j0xOSSpn/Nm2b9kWiNAgAABAgQIECBw2y+LzS+Jk75+uuU2\nrggYVyDVfTyL7a9+4a1WZzsuThZbp5n35lpxI9qP5TPtX45re3UmYalWZ1tOS5r9LvV6ctZp\nn4kZZ7PUvpr5D8jEh5Kl9tXMr8Lprcldk8VanY1q1l34WpcDNvMWFkjjjs/GelT/PtPaZ7Pv\nKsaq1Wszb+Fr+2ehzgy1z/aM22Ydj7eM2W7tpy6zfGiiESBAgAABAgQIEFi3Amnz2P910v5F\nuJ4Ed/+kadtnoi5p+3bSXu/CvP/vyUpanblob/P1y2zszln+u8liZ2/qrNsrkyoc2m0lBVJt\np365/9Xk35L22ZXq95XJh5MnJONaFYN11uS6pBnvf2T6hUn5NvOq6Gi35Y7PxnjU9h+fXJY0\n+61LGv8kqVbbrCKp5jXLa9xVCNe9VRcmzfxfznTTxm2zWecFmfhS8oOk2cbNma7LKh+caAQI\nEJgLgfo/Bo0AAQIE+i1wzwxv9+SipIqPpdoDsuB+Sa1TZxPqF931aFVw7JjsPNr5hXn9RlK/\ndK9mq/02Bl/JdBUZ07Q7ZeVHJV9P6uzZpG2547MxHtWXhyZVUH4+WVic1VnEhyR1VusLSRUy\ny7Xlttl8vs60PTKpbX81qQd2aAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIzJ3ApnPX4/52+DEZ2ub9\nHZ6RESBAgAABAgQI9Fjgexnbp/owPgVSN45iFUef7EZX9IIAAQIECBAgQIDARgnU77RzXyTd\naaOG7kOzFmjOHN0tG67qWyNAgAABAgQIECAwLwJbpKPXJfU6902B1K1DWMWRAqlbx0RvCBAg\nQIAAAQIEBiTwYwMaq6ESIECAAAECBAgQIEBgrIACaSyPhQQIECBAgAABAgQIDElAgTSko22s\nBAgQIECAAAECBAiMFVAgjeWxkAABAgQIECBAgACBIQkokIZ0tI2VAAECBAgQIECAAIGxAgqk\nsTwWEiBAgAABAgQIECAwJAEF0pCOtrESIECAAAECBAgQIDBWQIE0lsdCAgQIECBAgAABAgSG\nJKBAGtLRNlYCBAgQIECAAAECBMYKKJDG8lhIgAABAgQIECBAgMCQBBRIQzraxkqAAAECBAgQ\nIECAwFgBBdJYHgsJECBAgAABAgQIEBiSgAJpSEfbWAkQIECAAAECBAgQGCugQBrLYyEBAgQI\nECBAgAABAkMSUCAN6WgbKwECBAgQIECAAAECYwXuNHaphQQIEFi5wIOyiV9N9h5t6lN5PSY5\nf/TeCwECBAgQIECgMwLOIHXmUOgIgV4KvDCjOi95QnLWKDVd816YaAQIECBAgAABAgTuIPC4\nzLk12eIOS8wgML8CVQjdnPz6IkOoebWs1tEIECBAgACB+Rao32Hrd9n6nVYjMBMBBdJMGG2k\nYwJnpD/HjelTLat1NAIECBAgQGC+BRRI8338Otl7BVInD4tOrUBgq3z2B8l+Y7ZRy2qdWlcj\nQIAAAQIE5legVwWSe5Dm9wdRzwl0WWCbdK7++3LFmE7Wslqn1tUIECBAgAABAp0QUCB14jDo\nBIHeCXwzI7o+ecSYkT1ytE6tqxEgQIAAAQIEOiGgQOrEYdAJAr0TqEvn3p28Olns4SM173dH\n69S6GgECBAgQIECAAIEfCrgH6YcUJnoksGPGcmlyWnL/pGn3z0TNq2W1jkaAAAECBAjMt4B7\nkOb7+Ok9AQJrJHB59lMPYqh7jL6afHGUmq55tazW0QgQIECAAAECnRG4U2d6oiMECPRRoIqh\nfZPHJnuPBvipvH5yNO2FAAECBAgQINApAQVSpw6HzhDorUAVRIqi3h5eAyNAgAABAv0R8JCG\n/hxLIyFAgAABAgQIECBAYIUCCqQVAvo4AQIECBAgQIAAAQL9EVAg9edYGgkBAgQIECBAgAAB\nAisUUCCtENDHCRAgQIAAAQIECBDoj4ACqT/H0kgIECBAgAABAgQIEFihgAJphYA+ToAAAQIE\nCBAgQIBAfwQUSP05lkZCgAABAgQIECBAgMAKBRRIKwT0cQIECBAgQIAAAQIE+iOgQOrPsTQS\nAgQIECBAgAABAgRWKKBAWiGgjxMgQIAAAQIECBAg0B8BBVJ/jqWRECBAgAABAgQIECCwQgEF\n0goBfZwAAQIECBAgQIAAgf4IKJD6cyyNhAABAgQIECBAgACBFQookFYI6OMECBAgQIAAAQIE\nCPRHQIHUn2NpJAQIECBAgAABAgQIrFBAgbRCQB8nQIAAAQIECBAgQKA/Anfqz1AmHsl2WXPb\n5M7J9cm3kxsSjQABAgQIECBAgACBgQsM5QzSnjnOxyZXJFclFyRfTC5Jqkg6Pzkm2T7RCBAg\nQIAAAQIECBAg0FuBIzKyW0e5KK9nJack70pOTT6eXJ7UOt9KnpusdXtcdlj732Ktd2x/BAgQ\nIECAAAECBFYoUL/D1u+y9Tut1nGBg9K/OlhVCO01pq+bZtn+ySeTWn/fZC2bAmktte2LAAEC\nBAgQIEBglgIKpFlqrvK2Tsj26/K5ut9oklb3J12b/MUkK89wHQXSDDFtigABAgQIECBAYE0F\nelUg9f0epD3yo3F2ctOEPyJXZ71zk50mXN9qBAgQIECAAAECBAj0SKDvBVLdW7R3svmEx6zO\nIFVRVQ9w0AgQIECAAAECBAgQGJhA3wuk43M8d09OSvYZc2zrHqT9ktOSrZKTE40AAQIECBAg\nQIAAgYEJ9P17kE7M8dwhOSp5RnJpUo/2vjKpe422Se6R7JrsmNycHJacmWgECBAgQIAAAQIE\nCBDopcADM6p3JlUg1VPq2qkvif1K8sZk52Q9moc0rIe6fRIgQIAAAQIECMxCoFcPaej7GaTm\ngH81EweP3tRZo22TLZP64thrEo0AAQIECBAgQIAAAQKbDKVAah/qurSuohEgQIAAAQIECBAg\nQOBHBIZYINWT6uoMUn030vXJt5O6zE4jQIAAAQIECBAgQGDgAn1/il1zePfMxLFJXVJ3VXJB\nUo/yrgc2VJFUXyZ7TLJ9ohEgQIAAAQIECBAgQKC3AkdkZM1DGS7K9FnJKcm7klOTjyf1fUm1\nzreS5yZr3TykYa3F7Y8AAQIECBAgQGBWAr16SMOsULq6nYPSsSp8qhDaa0wn63uQ9k8+mdT6\n+yZr2RRIa6ltXwQIECBAgAABArMUUCDNUnOVt3VCtl+Xz9X9RpO0uj+pHuDwF5OsPMN1FEgz\nxLQpAgQIECBAgACBNRXoVYHU93uQ9siPxtnJTRP+iFyd9c5NdppwfasRIECAAAECBAgQINAj\ngb4XSHVv0d7J5hMeszqDVEVVPcBBI0CAAAECBAgQIEBgYAJ9L5COz/HcPTkp2WfMsa17kPZL\nTku2Sk5ONAIECBAgQIAAAQIEBibQ9+9BOjHHc4fkqOQZyaVJPdr7yqTuNdomuUeya7JjcnNy\nWHJmohEgQIAAAQIECBAgQKCXAg/MqN6ZVIFUT6lrp74k9ivJG5Odk/VoHtKwHur2SYAAAQIE\nCBAgMAuBXj2koe9nkJoD/tVMHDx6U2eNtk22TOqLY69JNAIECBAgQIAAAQIECGwylAKpfag3\ny5tK3X+1dVKX1dVZJI0AgdUT+PFsui5zrfb3yedvm/IPAQIECBAgQKBjAkMpkPaM+0uTZybb\nL3IM6gzTB5PXJd9cZLlZBAhsnMAD8rF/Se7f+vgfZPrC5KeTCxKNAIH+CxyeIb6i/8NccoR3\nzZK6vP/GJdfo/4I3Z4h/1P9hGmEfBIZQIB2RA3Xk6GBdnNezk6uS65O61K4e0rBLcmjyrORl\nST3cQSNAYGUC983Hzxtt4rfz2nwB869l+qjRsgfl9bJEI0Cg3wLvzvAu7PcQx47u10dL3zZ2\nrX4v/ES/h2d0BOZH4KB0tf5ic2qy15hu12O+908+mdT6+yZr2TykYS217WutBOp/T99LFnv4\nSc2rZbWORoAAgb4LbMgAKxqBvgr06iENfT1IzbhOyMT5yZ2bGcu81hfF1uO/m790L7P6kovr\nsqJvJbWtSVL3QFVhNmk/s6pGoNMCdY/fD5Jjx/SyltU6ta5GgACBPgtsyOAqGoG+CvSqQOr7\nJXZ75KewLqm7acKfxquz3rnJThOuv9RqF2XBLyX1wzJJOyAr/UZSx2PSvk6yXesQWC+Bh2XH\nVfjUlzQv1d6bBS9Oal0PbVhKyXwCBAgQIEBgTQX6XiBdHs29k82T708gW2eQqqg6ZoJ1x61y\nSxZ+YNwKC5bdZ8F7bwnMu0D9saHavW9/WfTf+hLnas26t7/zLwECBAgQIEBgHQX6fmnL8bHd\nPam/Yu8zxrnuQdovOS3ZKjk50QgQ2HiBy/LRelpTc2PyYluqZbVOrasRIECAAAECBDoh0Pcz\nSCdGuf5KfVRS38FyaXJJcmVS9wZtk9wj2TXZMbk5OSw5M9EIEFiZQD2t6ZVJPUny9xdsquY9\nJjl6wXxvCRAg0EeBb/RxUMZEgMB8Czww3X9nUgVSPQyhnXpAwleSNyY7J+vRDslOq0/1PQka\ngT4JfCSDqUtO6768eihDpaZrXi3TCBAgQIAAgfkX2CJDqN9lHzf/QxnmCOqsURVCuyXbdoRA\ngdSRA6EbqyLw8my1/jhRZ2grNV3zNAIECBAgQKAfAr0qkPp+id1iP3KbZWal7r/aOqlf2Oos\nkkaAwOoI/Ek2W9EIECBAgAABAp0XGEqBtGeOxEuTZybbL3JUvpp5H0xel3xzkeVmEZiFQBXl\ndQZzqG3T0cDrFPxQW937WJcXagQIECBAgACBdRM4Intu7jmqex/OSk5J3pWcmnw8qceB1zr1\n5a7PTda6ucRurcXXZ39/lN02P4teh2nxh+vzo2evBAgQIEBgVQVcYreqvLPd+EHZ3JFJPb77\ntck5yWKt/rJdj/muJ2qdkFyYVCGlEZilQD1N8cRZbnDOttU8ya7+aDHUVmerNQIEhifwM6Mh\n19UqGgECHRfo+yV2B8a/fiGp15vGHIv6a/4ZyQFJnWV6fqJACoI2U4HrsrXPznSL87Wx5gth\nh2wwX0dMbwkQmJXAL402pECalajtEFhFgb4XSHvE7uxkXHHU5q1f4M5NdmrPNE2AAAECBAgQ\nWIFAXamiESAwJwJ103ifW91btHey+YSD3C7rVVH1xQnXtxoBAgQIECBAgAABAj0S6HuBdHyO\n1e7JSck+Y45bcw9S3au0VXLymHUtIkCAAAECBAgQIECgpwJ9v8SubojfITkqeUZSX1B5SXJl\nUo/brUcu3yPZNdkxuTk5LDkz0QgQIECAAAECBAgQGJhA3wukevjCm5P3JW9I9k8Wnkm6MfMu\nS+oJdm9JvpZoBAjMXsDDGWZvaosECBAgQIDAjAX6XiA1XPUku4NHb+qs0bbJlskVyTWJRoDA\n6gvUHys0AgQIDFHgB0MctDETmFeBoRRIzfGpe67q0rrKYm2zzKwC6jvJdxdbwTwCBAgQIECA\nwJQCR025vtUJEFhHgb4/pKFo7538bXJVUoXRh5OfTBZrj8zMWu/wxRaaR4AAAQIECBDYCIEL\n8pmKRoDAHAj0vUDaOsfgk8mzkzo7dEnyhOSMpO5J0ggQIECAAAECBAgQIPBDgb4XSK/KSHdO\njkzul9Qjvx+bfC55TfKmRCNAgAABAgQIECBAgMBtAn0vkPbNKOtBDHXt73W3jXiTTT6V13qa\n3UeTVyRVRGkECKy+wPOyi4pGgAABAgQIEOisQN8LpJ0iX4VQfb9Ru9WT656enJv8UVKX4GkE\nCKyuwJOy+YpGgACBoQncKwOuaAQIzIFA359id1GOwc8k9UjvhU+lqwc2PC05Ozk+qS+RvSHR\nCBAgQIAAAQKzFPiD0cYOmeVGbYsAgdUR6PsZpA+Frb7z6H8l912EsIqin03q8rt/TH4u0QgQ\nIECAAAECsxTYPBuraAQIzIFA3wukP8sxOC+pe42+ljwnWdi+lBkHJLckda9StU1vf/EvAQIE\nCBAgQIAAAQJDEuh7gVSX1e2TvDW5OPleslj7TGY+JjltsYXmESBAgAABAgQIECAwDIG+34NU\nR/H65LdGGVcQnp91nprUY8AX3q+UWRoBAgQIECBAgAABAn0XGEKB1D6GdRndcq2+WFYjQGD2\nAv7wMHtTWyRAgAABAgRmLDC0AmnGfDZHgMAUAr5zbAosqxIgQIAAAQLrI6BAWh93eyUwRIHm\ny5qHOHZjJkBg2AKnDHv4Rk9gvgQUSPN1vPSWAAECBAgQmD+Bv5u/LusxgeEKjHtowXBVjJwA\nAQIECBAgQIAAgUEKKJAGedgNmgABAgQIECBAgACBxQQUSIupmEeAwGoIPCwbrWgECBAgQIAA\ngc4KuAeps4dGxwj0TqB5it2LejcyAyJAgAABAgR6I6BA6s2hNBACnRdwxrrzh0gHCRBYJYHX\nZLu3Jn+wStu3WQIEZiigQJohpk0RIECAAAECBBYReMgi88wiQKCjAv6i29EDo1sECBAgQIAA\nAQIECKy9gAJp7c3tkQABAgQIECBAgACBjgookDp6YHSLAAECBAgQIECAAIG1F3AP0tqb2yOB\noQrUDcoaAQIECBAgQKDTAgqkTh8enSPQK4HjejUagyFAgAABAgR6KaBA6uVhNSgCnRT4WCd7\npVMECBBYfYFvrP4u7IEAgVkJKJBmJWk7BAgQIECAAIHFBQ5ffLa5BAh0UUCB1MWjok8ECBAg\n0DeBfTOgp/ZtUMZDgMDEAqdmzbMmXtuK6yqgQFpXfjsnQIAAgYEIHJJxPjk5byDjNUwCBP5T\n4OGZvF+iQPpPk05PKZA6fXh0jkCvBJqvFbilV6MyGAKTCWya1f4peeFkq1uLAIEeCWzIWOq/\nAdqcCCiQ5uRA6SaBHgi8aTSGl/dgLIZAgAABAgQI9FRAgdTTA2tYBDoocPcO9kmXCBAgQIAA\nAQI/ItBc8vIjM70hQIAAAQIECBAgQIDAEAUUSEM86sZMgAABAgQIECBAgMCiAgqkRVnMJECA\nAAECBAgQIEBgiAIKpCEedWMmQIAAAQIECBAgQGBRAQXSoixmEiBAgAABAgQIECAwRAFPsRvi\nUTdmAusj8Nn12a29EiBAgAABAgQmF1AgTW5lTQIEVibw5pV93KcJECBAgAABAqsv4BK71Te2\nBwIECBAgQIAAAQIE5kRAgTQnB0o3CRAgQIAAAQIECBBYfQEF0uob2wMBAgQIECBAgAABAnMi\noECakwOlmwQIECBAgAABAgQIrL6AAmn1je2BAIHbBZ6Xl4pGgAABAgQIEOisgAKps4dGxwj0\nTuBJGVFFI0CAAAECBAh0VkCB1NlDo2MECBAgQIAAAQIECKy1gAJprcXtjwABAgQIECBAgACB\nzgookDp7aHSMAAECBAgQIECAAIG1FlAgrbW4/REgQIAAAQIECBAg0FkBBVJnD42OESBAgAAB\nAgQIECCw1gJ3Wusd2h8BAoMV+O5gR27gBAgQIECAwNwIKJDm5lDpKIG5F3jV3I/AAAgQIECA\nAIHeCyiQen+IDZBAZwSu60xPdIQAAQIECBAgsISAe5CWgDGbAAECBAgQIECAAIHhCSiQhnfM\njZgAAQIECBAgQIAAgSUEFEhLwJhNgAABAgQIECBAgMDwBBRIwzvmRkxgvQQelh1XNAIECBAg\nQIBAZwU8pKGzh0bHCPROoHmK3Yt6NzIDIkCAAAECBHojoEDqzaE0EAKdF3DGuvOHSAcJECBA\ngAABv7D4GSBAgAABAgQIECBAgMBIQIHkR4EAAQIECBAgQIAAAQIjAQWSHwUCBAgQIECAAAEC\nBAiMBBRIfhQIECBAgAABAgQIECAwEvCQBj8KBAislcCta7Uj+yFAgAABAgQIbKyAAmlj5XyO\nAIFpBY6b9gPWJ0CAAAECBAistYACaa3F7Y/AcAU+NtyhGzkBAgQIECAwLwLuQZqXI6WfBAgQ\nIECAAAECBAisuoACadWJ7YAAAQIECBAgQIAAgXkRUCDNy5HSTwIECBAgQIAAAQIEVl1AgbTq\nxHZAgMBIoP574785fhwIECBAgACBTgt4SEOnD4/OEeiVwJtGo3l5r0ZlMAQmF3hWVn3C5Ktb\nkwCBngjcK+M4qSdjGcQwFEiDOMwGSaATAnfvRC90gsD6CWydXVc0AgQIEOiwgMtdOnxwdI0A\nAQIECBAgQIAAgbUVcAZpbb3tjQABAgSGK3B9hn7lcIdv5AQGK3DPwY58TgeuQJrTA6fbBAgQ\nIDB3AnUPwgvnrtc6TIDASgU2rHQDPr+2Ai6xW1tveyNAgAABAgQIECBAoMMCCqQOHxxdI0CA\nAAECBAgQIEBgbQVcYre23vZGYMgCnx3y4I2dAAECBAgQmA8BBdJ8HCe9JNAHgTf3YRDGQIAA\nAQIECPRbwCV2/T6+RkeAAAECBAgQIECAwBQCCqQpsKxKgAABAgQIECBAgEC/BRRI/T6+RkeA\nAAECBAgQIECAwBQCCqQpsKxKgAABAgQIECBAgEC/BRRI/T6+RkegSwLPS2cqGgECBAgQIECg\nswIKpM4eGh0j0DuBJ2VEFY0AAQIECBAg0FkBBVJnD42OESBAgAABAgQIECCw1gIKpLUWtz8C\nBAgQIECAAAECBDoroEDq7KHRMQIECBAgQIAAAQIE1lpAgbTW4vZHgAABAgQIECBAgEBnBRRI\nnT00OkaAAAECBAgQIECAwFoL3Gmtd2h/BAgMVuC7gx25gRMgQIAAAQJzI6BAmptDpaME5l7g\nVXM/AgMgQIAAAQIEei+gQOr9ITZAAp0RuK4zPdERAgQIECBAgMASAu5BWgLGbAIECBAgQIAA\nAQIEhiegQBreMTdiAgQIECBAgAABAgSWEFAgLQFjNgECBAgQIECAAAECwxNQIA3vmBsxgfUS\neFh2XNEIECBAgAABAp0V8JCGzh4aHSPQO4HmKXYv6t3IDIgAAQIECBDojYACqTeH0kAIdF7A\nGevOHyIdJECAAAECBPzC4meAAAECBAgQIECAAAECIwEFkh8FAgQIECBAgAABAgQIjAQUSH4U\nCBAgQIAAAQIECBAgMBJQIPlRIECAAAECBAgQIECAwEhgiA9p2C5j3za5c3J98u3khkQjQGB1\nBW5d3c3bOgECBAgQIEBg5QJDKZD2DNVLk2cm2y/C9tXM+2DyuuSbiyw3iwCBlQsct/JN2AIB\nAgQIECBAYHUFhlAgHRHCI0eMF+f17OSqpM4e1ZmkeyS7JIcmz0pelpyYaAQIzFbgY7PdnK0R\nIECAAAECBGYv0PcC6aCQVXF0WvLa5JxksbZpZu6XHJ2ckFyYnJVoBAgQIECAAAECBAgMSKDv\nD2k4MMeyLp+r16WKozrcdW/EGckByXXJ8xONAAECBAgQIECAAIGBCfS9QNojx7MuqbtpwuN6\nddY7N9lpwvWtRoAAAQIECBAgQIBAjwT6XiBdnmO1d7L5hMesnnBXRdUXJ1zfagQITC5Q/73p\n+39zJtewJgECBAgQINBJgb7/snJ81HdPTkr2GXMEmnuQ6l6lrZKTx6xrEQECGyfwpnysohEg\nQIAAAQIEOivQ94c01NPodkiOSp6RXJpcklyZXJtsk9RT7HZNdkxuTg5Lzkw0AgRmK3D32W7O\n1ggQIECAAAECsxfoe4FUD194c/K+5A3J/snCM0k3Zt5lST3B7i3J1xKNAAECBAgQIECAAIEB\nCvS9QGoOaT3J7uDRmzprVN9/tGVyRXJNohEgQIAAAQIECBAgQGCQN0xvluNeqfuvtk7ummgE\nCBAgQIAAAQIECBAYTIG0Z471sUmdMboquSCpJ9XV/UjXJ+cnxyTbJxoBAgQIECBAgAABAgMV\nGMIldkfk2B45Or4X57W+F6mKpCqM6lK7ekjDLsmhybOSlyX1cAeNAAECBAgQIECAAIGBCfS9\nQDoox7OKo3p892uTc5LFWvOY73pQwwnJhclZiUaAwOwEPju7TdkSAQIECBAgQGB1BKYtkOox\nvT+Z/HgrO2X6m0l9Keu/Ju9PqhCpJ8itdzswHagHNNTrTWM6U309IzkguSh5fqJACoJGYIYC\n9URJjQABAgQIECDQaYFJC6T7ZxSvSF6ctB9q8J28vy555ChVYNQlbV9OXpVUsbSebY/svC6p\nG1cctft3dd6cm1TRpxEgQIAAAQIECBAgMDCBepLbuLZ5Fr4uqQcaHJJ8IHlesldSDzTYKrl3\nsk3yX5JaVt839N3kfck/J49I1qvVWa29kxrHJG27rFRFVY1XI0CAAAECBAgQIECAwA8F7pyp\nzyR1ydmhSfvMUd4u256WNT6S3Jy8Ztm1V2eFX8pm6/K5OpO18Ati23ts7kH6eGZWf3+yvXAN\npqv4rH5Oa7wGXbMLAgQIEJiBwIZso6IRIDA8gQ0ZcqXPbYsMrn6XfVwfBjnuErta9rdJ3TdQ\nZ4Smbf+YD1QK6iem/fCM1j8x29khOSp5RnJpcklyZXJtUme+7pHsmuyYVHF0WHJmohEgQIAA\nAQIECBAgQKCXAg/MqN6ZVIFU1W07N+T9V5I3Jjsn69EOyU6rT84grYe+fa6VQF2CW9EIDFFg\nQwZd0QgQGJ7Ahgy50uc2mDNIkx7ELbPi/ZK6FO/7k35ojderJ9kdPNpnnTWq7z+qftcXx16T\naAQIrL7Ak0a7+JvV35U9ECBAgAABAgQ2TmC5hzTUVh+d/FXy+HrTavfKdJ2VqS9crTMwdSam\nfvGphzd0uW2WzlVq7FsnztoEQSNAgAABAgQIECBA4PYiYZzDk7Pw7OQlST25rmn1UIN3J89J\n6gzMPyRVKP1y8s9JnWbrUtsznTk2qTNGVyUXJPWkurofqfp9fnJM0vXiLl3UCBAgQIAAAQIE\nCBBYLYHlziD9bnZc33VU98gc1+pEPfDgp5J6Olw9BOHpyX2SP0welfxa0pVW38t0TvLipMZS\nBV8VdPUAitOSTyRbJYcmX0iem2gECBAgQIAAAQIECBD4EYF6sMEtye8kd1qQKpbqoQJVDLWX\n3S3vL09OGs1frgDLaqvaDsrWq5+nJu0zYAt3WmfE9k8+mdT6+yZr2TykYS217Wu9BDZkxxWN\nwBAFNmTQFY0AgeEJbMiQK31ug3hIQxVHddlZtT8a5bY3C/6p70larP23zKwHNvxJ8orFVlij\neQdmP/WAhnq9acw+qyg6IzkgqYdNPD85K9nYtms+OM2lhu6D2lhpnyNAgAABAgQIECAwQ4E6\n+7NYq6LisUmdUfmt5P8kTaszLR9K6rHYr25mtl4/l+nKc5JbWvPXY3KP7LQuqRtXHLX7dXXe\nnJvs1J65EdOX5TO/l2w+4WfL9EUTrms1AvMq8N157bh+EyBAgAABAgRKoIqn+kLVS5JHJNXq\nPqNPJXXG5WFJu9X6r0tq2SHtBes4/U/Zd91XNGmhsl3WvTb538latvIqN2eS1lLdvtZaoC7B\nrWgEhiiwIYOuaAQIDE9gQ4Zc6XPr1SV24+4RujlHse4/um/y70ldcndpUvfy/GVShUfTXpOJ\nOmvy+qTOwNQT7rrQjk8ndk9OSvYZ06G6B2m/pB7aUA9sODnRCBCYrcB12VxFI0CAAAECBAh0\nVqDO+oxrx2VhFUWHJ49MPpW8P3lD0m675U2d/XhvUk+wq0d/d6GdmE7UU/aOSp6R1FjqjNiV\nSZ0pqi+NvUdS9wztmFRReFhyZqIRIECAAAECBAgQIEBgowTul09tuVGfXJsP1UMn3plUgVSX\nsrVzQ95/Jal7qnZO1qMdkp26xG495O2TAAECayOwIbupaAQIDE9gQ4Zc6XPr1SV2y51BmvRA\n1lmZLrd66MTBow7WWaNtkyrorki6crYrXdEIECBAgAABAgQIEFhPgXH3IFUh8fak7kHa2LZ5\nPviCpM7OdKXVpXVfS+qs0d2TA5JHJ3dJNAIEVk+gHuyy8OEuq7c3WyZAgAABAgQIbITAuALp\nO9leFRDN5WcPnWL7dT/Sy5N6sMOfJPWQh/Vov5qd1n1IC4ufup/qk8mFyQeSTyeXJ3Wv1WaJ\nRoDA7AVelU1WNAIECBAgQIBAZwXGXWL3/fT655NnJ29N6uEFVei8J/lCcnFSZ2KuSx6cVAFV\nT4yrPCmpy9jqaXdHJN9K1qPtk53WpXW/nlTBV63uM/poUv37t6QePFFny+q7iP4wuXfyykQj\nQGC2AuP+IDPbPdkaAQIECBAgQGAjBcYVSM0m65HdpyS/krwi+Z/JuPaDLKyzMocn9YWxXWtV\nBFVx9JvJn7U6V4/3/qukxviPyQcTjQABAgQIECBAgACBAQlMUiAVx43JnydvSx6U/HgrO2X6\nm0ldovavyanJVUlX277p2CeSdnFUfa0xviR5cvLTiQIpCBoBAgQIECBAgACBIQlMWiA1Jrdk\nou5JqpzczJyz17qc7kNL9Pk7mf/F5BFLLDebAAECBAgQIECAAIEeCwzxnoC656ge0rBYu2dm\nPjaps2EaAQIECBAgQIAAAQIDExhKgVSX1J2Q1MMXzkoekzwzabdd8qYuu6svuvpIe4FpAgRm\nIlBfhlzRCBAgQIAAAQKdFZj2ErvODmSJjtXDFupR5Y9OnjtKXm5rVQy9fzT9c3mtSwbLowqo\ndyYaAQKzFThutpuzNQIECBAgQIDA7AX6XiD9Xcgq1erJdVUoNdm0Zo7aZnmt+4+qMKqn2Pkr\ndxA0AjMW+NiMt2dzBAgQIECAAIGZC/S9QGqDXZM3dencYpfP/XPm1/1H3080AgQIECBAgAAB\nAgQGKjCkAmncIa6zRxoBAgQIECBAgAABAgMX2JgCqb4j6HnJDsldkvalanl7W9uQf4+/fdK/\nBAgQIECAAAECBAgQmA+BaQukZ2dYfzvB0Ba7jG2Cj1mFAIEeCzRPzazvU9MIECBAgAABAp0U\nmLZAen1GcUNyaPLh5IpksdaVX4AOSefqi2GnbfUku7On/ZD1CRAYK/Cm0dKXj13LQgIECBAg\nQIDAOgpMUyDdNf3cLTkmOXEd+zzNrv97Vq6n1k3bfi8fUCBNq2Z9AuMF7j5+saUECBAgQIAA\ngfUXmKZAqgcZXJvUGaR5aU9NR9+TPC55X/LXySTtS5OsZB0CBAgQIECAAAECBPolME2BVJfN\n1b1FBye/k3TlMrp0Zcn29Sz5qaT6XcXSkcmnE40AAQIECBAgQIAAAQJ3EGhumr7DgiVm1D09\nNyb15av7J7sk9f1BC1NPt+tKuykdefGoM3/alU7pBwECBAgQIECAAAEC3ROYtkB6f4ZQj/f+\n+aTOylyUfGuRHJ55XWqfT2dek9QDGx7ZpY7pCwECBAgQIECAAAEC3RGY5hK76nVdnnbZBN3/\nwgTrrPUqR2eHFY0AAQIECBAgQIAAAQKLCkxbIP36olsxkwABAssLfHb5VaxBgAABAgQIEFhf\ngWkLpPXtrb0TIDDPAm+e587rOwECBAgQIDAMgZUUSLuGaPfkHsk3k3OSqxKNAAECBAgQIECA\nAAECcymwMQXSwzPStyX1FLt2+37e1PyXJ7e2F5gmQIAAAQIECBAgQIDAPAhMWyDtnEGdndTT\n4E5L6qEN305q/tOSlyVbJ/U48Hn4nqR0UyNAgAABAgQIECBAgMDtAtMWSG/Jx7ZMfib50O2b\n+OG/r8xU3WPw0uTtyccSjQABAgQIECBAgAABAnMjMO33ID0hIzsmWVgc1YDrEru6vK7uR3pi\nohEgQKAt8Ly8qWgECBAgQIAAgc4KTFMgbZtR1AMZPjdmNDdn2ZeSvcasYxEBAsMUeFKGXdEI\nECBAgAABAp0VmKZAuiajqDx6zGi2yLKHJReMWcciAgQIECBAgAABAgQIdFJgmgKpBlAPZqgH\nMDy93ixodW9SPcXunsmHFyzzlgABAgQIECBAgAABAp0XmPYhDYdnRE9O/j6phzDUU+yuTnZO\nfja5X/J3ySmJRoAAAQIECBAgQIAAgbkSmLZAuiije0RybPKU5PFJ027MxBHJ/25meCVAgAAB\nAgQIECBAgMA8CUxbINXYLk2emtT3He2e3Dupe47OT25KNAIECBAgQIAAAQIECMylwHIF0nYZ\n1ebJVUk9oa7uL9osadrFmahUq6fcNe2GTFQ0AgQINALfbSa8EiBAgAABAgS6KrBcgVQPW3hU\n8tjk35JPJg9Ilmu/lxWOXG4lywkQGJTAqwY1WoMlQIAAAQIE5lJguQLpgxnVV5J6EEO1U5Md\nbpsa/8954xdbSoDAAAWuG+CYDZkAAQIECBCYM4HlCqTfXjCely547y0BAgQIECBAgAABAgR6\nIzDt9yA9MCOv+5CWarW9JyTjvkx2qc+aT4AAAQIECBAgQIAAgXUVmLZAqkvufmNMj++cZacn\nh45ZxyICBAgQIECAAAECBAh0UmC5S+x2S6/3b/X8bpneK3lxa14zWcVWc+aonnqnESBAoC3w\nsNGbL7RnmiZAgAABAgQIdElguQLpG+ns65MdW51+ZqYrS7V6vPd7l1poPgECgxVonmL3osEK\nGDgBAgQIECDQeYHlCqRrM4KnJw8fjeRNef1oslgBdEvm35ick1ycaAQIEGgLTHtJb/uzpgkQ\nIECAAAECayKwXIFUnaiCp1LtMckZyXvqjUaAAAECBAgQIECAAIE+CSxXIG2XwW6eXJXcnNTl\ndpsly30XUl1mV9EIECBAgAABAgQIECAwNwLLXfLy4Yyk7kNqHr7wydH7mjcuC78/KatrBAgQ\nIECAAAECBAgQ6LbAcmeQ6rHeX0muHg3j1Lwud/aoVj1vtL4XAgQIECBAgAABAgQIzI3AcgXS\nwjNBL52bkekoAQJdE7i1ax3SHwIECBAgQIDAQoHlCqSF63tPgACBjRU4bmM/6HMECBAgQIAA\ngbUSmLZAOiYdu/cEnXtX1qloBAgQaAQ+1kx4JUCAAAECBAh0VWDaAulnM5AHLDOYS7L8I8us\nYzEBAgQIECBAgAABAgQ6JzBtgbRnRrDwyXf1/n7JI5I3J3XmqF41AgQIECBAgAABAgQIzJXA\ntAXSNUuM7srM/2zy+eTTyUeT9ycaAQIECBAgQIAAAQIE5kZg4dmglXb8M9nARUldiqcRIECg\nLVD/vZn1f3Pa2zdNgAABAgQIEFixwLRnkJbb4Z2zwj2TSb4rabltWU6AQL8E3jQazsv7NSyj\nIUCAAAECBPokMG2BtGUGv+kiALWd7ZOjkq2Tf0s0AgQItAXu3n5jmgABAgQIECDQRYFpC6Tz\nMojlnmL31azzl10crD4RIECAAAECBAgQIEBgnMC0BdIZ2diXF9ngLZl3bXJucmyy1MMcskgj\nQIAAAQIECBAgQIBANwWmLZBe2M1h6BUBAgQIECBAgAABAgRWLrDcE6XenV3848p3YwsECBAg\nQIAAAQIECBDovsByZ5AekiFs2/1h6CEBAgQIECBAgAABAgRWLrBcgbTyPdgCAQIEbheoL5PW\nCBAgQIAAAQKdFlAgdfrw6ByBXgm8uVejMRgCBAgQIECglwKTFEibZeT3mnL0N2b9ikaAAAEC\nBAgQIECAAIG5EZikQNo5o/nmlCP6vax/5JSfsToBAgQIECBAgAABAgTWVWCSAul76eEXpuzl\nN6Zc3+oECBAgQIAAAQIECBBYd4FJCqTL0stHr3tPdYAAAQIECBAgQIAAAQKrLLDc9yCt8u5t\nngCBAQk8L2OtaAQIECBAgACBzgookDp7aHSMQO8EnpQRVTQCBAgQIECAQGcFFEidPTQ6RoAA\nAQIECBAgQIDAWgssdw/SX6dDW651p+yPAAECBAgQIECAAAEC6yGwXIH01vXolH0SIECAAAEC\nBAgQIEBgPQRcYrce6vZJgAABAgQIECBAgEAnBRRInTwsOkWAAAECBAgQIECAwHoILHeJ3Xr0\nyT4JEOinwHf7OSyjIkCAAAECBPokoEDq09E0FgLdFnhVt7undwRWXWDn7OG/rvpe7IAAga4J\n1P/2v9a1TunP0gIKpKVtLCFAYLYC1812c7ZGYK4ELkhvD0yOn6te6+ysBJonAjuTPivR+dvO\nR+avy8Pt8UoKpLuE7cHJVsnHk7smNyQagaUEnp4Fz1pqofkECPRe4KSM8JTej3LxAR6Z2RVt\nmAIbRsN+4TCHb9QE5ktgYwqkXTLENya/kGyafCzZL3lH8vnk9clNiUZgoUD9zDw+qZ8ZjQCB\nYQnU//arDbVAun30/iVAgACBzgtMWyDtmBGdk9wz+UJSZ4+aVsXSa5O6hOAxidPIQdDuIFDF\n0QvvMNcMAgT6LrAhA6z/n9AIECBAgECnBaZ9zHd9cWxdWldnjB6eVLHUtLp06g3JjycvaGZ6\nJUCAAAECBAgQIECAwLwITFsgPSkD+/NksUukfpD5dX31NclPJBoBAgQIECBAgAABAgTmSmCa\nAmmbjGy75EtjRvj9LKv7kGo9jQABAgQIECBAgAABAnMlME2BdG1G9vXksWNGWEVUXWL3xTHr\nWESAAAECBAgQGJLAeRls/QFZI0BgDgSmfUjDqRnTS5LPJRuSdrt73mxItk3+OdEIECBAgAAB\nAgQ22eSPIRAgMD8C05xBqlG9Mrks+dPk0mTf5IHJycn5SX1D+IbkQ4lGgAABAgQIECBAgACB\nuRKYtkD6dka3V3JMUt8Kfe/kvkkVRtVeltQZJo0AAQIECBAgQIAAAQJzJzDtJXY1wG8lv5a8\nNNk1uU9yYVJnljQCBAgQIECAAAECBAjMrcC0BVJdTleP8b4yqcd6f3WUvNzW6ozUfkmt85nb\n5viHAAECBAgQIECAAAECcyIw7SV2H8y4fmPM2O6cZad3kLxLAABAAElEQVQnh45ZxyICBAgQ\nIECAwJAEnpPBVjQCBOZAYLkzSLtlDPu3xnG3TNc9SC9uzWsmq9h69OjNVc1MrwQIECBAgACB\ngQs8ZTT+dw3cwfAJzIXAcgXSNzKK1yc7tkbzzExXlmo3ZMF7l1poPgECBAgQIECAAAECBLoq\nsFyBVF8O+/Tk4aMBvCmvH00WK4Buyfwbk3OSixONAAECBAgQIECAAAECcyWwXIFUg6mCp1Lt\nMckZyXvqjUaAAAECBAgQIECAAIE+CUxSILXH+/L2myWmN8v8eyV1eZ5GgAABAgQIECBAgACB\nuRGYtkCqgR2YPCvZNtk8qbZpUtu6S/Lg5G3J7yUaAQIECBAgQIAAAQIE5kZg2gLpVzKyv15m\ndF/Jct+BtAySxQQIECBAgMBgBL43mJEaKIEeCEz7PUi/kzHXgxuen+yUXJ+8Onlo8tzk6qS+\nK+nkRCNAgAABAgQIENhkk8ODUNEIEJgDgWkKpLq36EHJacnfJJclH0/2Tb6cvDN5UvKryWMT\njQABAgQIECBA4PY/INcfkTUCBOZAYJoCaeuMp+45qqfYNe2LmXhU8yavn06qWPqvrXkmCRAg\nQIAAAQIECBAgMBcC0xRI12RE30p2b42sCqRdknu35l2c6eZ7k1qzTRIgQIAAAQIECBAgQKDb\nAtMUSDWSevhCPcVun3qT9u+3v9w2rybvluyX1H1KGgECBAgQIECAAAECBOZKYNoC6VUZXZ0t\nOjv5yeSjyVeTtyT1YIbzk3rU978kGgECBAgQIECAwCab7BaE+hoUjQCBORCYtkCqM0hPSf4p\n+WZyS3JQclVS9x1tn5yQvCPRCBAgQIAAAQIEbn/i72tAECAwHwLTfg/SAzOszyZVJDXtnEzs\nnNTDGuo+pfsleyRVTGkECBAgQIAAgaELTPsH6aF7GT+BdRWY9n+w9R1Hv7FIj3+QeVUo1aO/\nT08OTTQCBAgQIECAAAECBAjMlcByZ5Dqmtn9WyOqhzDslby4Na+ZrGLr0aM3dcmdRoAAAQIE\nCBAgQIAAgbkSWK5A+kZG8/pkx9aonpnpylLthix471ILzSdAgAABAgQIECBAgEBXBZYrkOpx\n3U9Pmu81elOm68l1ixVA9cCGG5NzkosTjQABAgQIECBAgAABAnMlsFyBVIOpgqdS7THJGcl7\n6o1GgAABAgQIECCwrMCty65hBQIEOiMwSYHU7uzL229MEyBAgAABAgQILCtw/LJrWIEAgc4I\nTFsgLdbxu2bmI5NPJzcttoJ5BAgQIECAAIEBC5w+4LEbOoG5E5jkMd9VRP1C8o7ksa0R1mf/\nb3JlcnbyreSvks0SjQABAgQIECBAgAABAnMnMEmB9KaM6v8lv5TUl8A27Q2ZeF5yVfL25KLk\nJcnRiUaAAAECBAgQIECAAIHeCTw3I6obC7+QVDHUXJL3sNH8a/K6c1Ktiq0PJ7X+Pok2ucAh\nWbXc6nLFPrcNGVxFI0BgeAIbMuSKRoAAAQL9E9giQ6rfZR/Xh6E1Bc9SY/nFLLg+eXxSl9I1\nrS65q/aW5Gu3TW2yST3m+7XJmUnhfDzpYtsundo2uXNSY/t2Ut/dpBEgQIAAAQIECBAgMHCB\n5S6x2yM+VfC0i6Mi++n6J+2U219++O/nRlOP+eGcbkzsmW4cm1yR1CWBFyRfTC5Jqkg6Pzkm\n2T7RCBAgQIAAAQKzFKjbD9yCMEtR2yKwigLjziBtnv3umnxswf7vkvc/kdSXyH5qwbIf5H2d\nSRq33QUfWfW3R2QPR472cnFe64ESVSRVYVRnku6R7JIcmjwreVlyYqIRIECAAAECBGYhcM9Z\nbMQ2CBBYG4Fxhcz304UqKHZY0JX9837L5ANJFUTt9qi8qbNS/96euY7TB2XfVRydltTlf+ck\ni7VNM3O/pP66c0JyYXJWohEgQIAAAQIECBAgMCCBKmbGtc9mYd1/dK/WSvU0u2r/cPvLj/z7\nnNG7z/3I3PV7c2B2/dWkXpcqjqp3dVPZGckByXXJ8xONAAECBAgQIECAAIGBCSxXIP1FPOqS\nus8kdelZva8n212e/G3StDoT9eLkN5N6aEMVG11oe6QTdUndTRN25uqsd26y04TrW40AAQIE\nCBAgQIAAgR4JLFcgnZqxHpFUwVBPrPvV5DvJ05O6B6naw5OvJ/UQhBuTZyZVaHShVSG3d1L3\nU03S6gl3VVR9cZKVrUOAAAECBAgQIECAQL8EliuQarRHJQ9KXp68KHlIck7StJszUTku+Zmk\nzjZ1pR2fjuyenJSM+26m5h6k07LeVsnJiUaAAAECBAgQIECAwMAExj2koU1R9/HUGaTF2n9k\n5n2TWxZbuM7z6ml09ZCJKvKekVyaXJJcmdQZsG2SeopdPa1vx6QKvcOSMxONAAECBAgQIDAL\ngfOykbrfWSNAYA4EJi2Qxg2li4VR09/6j9Gbk/clb0j2TxaeSarLAi9Ljk6qCGy++DaTGgEC\nBAgQIEBgxQJ/vOIt2AABAmsmMIsCac06u4Id1Rmwg0efr7NG2yb1qPL64thrEo0AAQIECBAg\nQIAAAQK3fWfR0Bg2y4Ardf/V1sldE40AAQIECBAgQIAAAQKDKZD2zLE+NqkzRlclFyT1pLq6\nH+n65PzkmGT7RCNAgAABAgQIECBAYKACy11iV0+Aq2Ji0u8R6iLjEenUkaOOXZzX+l6kKpKq\nMKpL7eohDbskhybPSl6W1MMdNAIECBAgQIAAAQIECPyIQD3A4C9bc16R6Se23nd98qB0sB7U\nUN/ntNeYztZjvusBDp9Mav19k7Vsh2Rntd++X+63IWOsaAQIDE9gQ4Zc0QgMUeA5GXRFI9BX\ngS0ysPpd9nF9GGDdh7NU2zwLarDty85+M++fsNQHOjj/wPSpHtBQr+eM6V8d0DOSA5Lrkucn\nGgECBAgQIEBgFgJPyUYqGgECcyAw7hK776f/9aWvT0v+NvlccvekzrS8LhnXqtiorHfbIx2o\nS+omvUTw6qx7brJTohEgQIAAAQIECBAgMDCBcQVSUVQhVMXRs0fJyyY/PUpNL9Xqnp8uFEiX\npx97J3U2rAq+5dp2WaGKqnpgg0aAAAECBAgQIECAwMAEliuQTovHLsmDkjp7dELygeRvknGt\nLmvrQjs+nXhHclLyhuTjyWKt7kF6fPLGZKvk5EQjQIAAAQIECBAgQGBgAssVSMVRX6Ta3L9T\nr3XJ2oeSeWj1NLodkqOSZySXJpckVybXJtsk9RS7XZMdk5uTw5IzE40AAQIECBAgQIAAgYEJ\nTFIgtUl+rvWmiop6DHgVGN9Mqni6KulSq4cvvDl5X1JnkOr+qX2Sdqsn9V2WHJ28JflaohEg\nQIAAAQIECBAgMECBaQukInp48rakio12q3t8av7LkypMutTqkr+DRx2qs0b1/UdbJvXFsXWG\nTCNAgAABAgQIrJbA91Zrw7ZLgMDsBaYtkHZOF+oSuyoy6v6kTyffTmp+Pe3uZcnWySHJLUkX\n22bpVOXHkuprXVZ3Q6IRIECAAAECBFZD4PDV2KhtEiDQDYH3pBs3JU9apDubZ96fJXX2qB54\n0KW2ZzpzbFJnjKp/C3N+5h2TtL/zKW/XrFVBWX3yRbFrRm5HBAisscCG7K+iESBAgED/BOq7\nU+t32cf1YWh1FmWa9oSsXIXEYg9pqEvs6vK6uh/piUlX2hHpyDnJi5PvJHUG7B+Senx5nQX7\nRLJVcmjyheS5iUaAAAECBAgQIECAwAAFprnEru7bqQcy1BfGLtXqcrUvJXsttcIazz8o+6vv\nZKpC6LVJFUqLtXrM935JPajhhOTC5KxEI0CAAAECBAgQIEBgQALTFEj1MIPKo8f41Om1hyV1\nVqYL7cB0oh7QUK83jelQnRKsL7Y9ILkoeX6ykgJpp3z+pKQuO5yk3XOSlaxDgAABAgQIECBA\ngMDqCkxTIFVP6kxM3S/zj8kpSbvVU+H+PKlf9j/cXrCO03tk33VJ3bjiqN29q/Pm3KQKnJW0\n+p6ldyRVME7S9slKu06yonUIECBAgACBuRPYLT2uP8b+x9z1XIcJDFBg2gKpnsLy5OTvk48l\n9RS7KirqKXY/m9wv+btkYfGUWevSLs9e907qTE7dI7Vc2y4rVFFV91mtpH03H64HVkzaquh8\n9qQrW48AAQIECBCYK4FXj3r7ornqtc4SGKjAtA9pqMvPHpHUmaTHJ7+Z1EMQfiWp+5Nq+nlJ\nV9rx6Uh9mW1d7lZnaZZqm2ZB3YNU46oHNpycaAQIECBAgACBWQjU71vT/s41i/3aBgECGyEw\n7Rmk2sWlyVOT+g6hKj7unVyQnJ9MeilbVl2TdmL2skNyVPKMpPp+SVKXwF2bbJNUYVeXt+2Y\n1EMmDkvOTDQCBAgQIECAAAECBAYmsDEFUkN0fSb+rXnT0de63vfNyfuSNyT7JwvPJN2YeZcl\nRydvSb6WaAQIECBAgAABAgQIDFBgJQXSPHF9NZ09eNThOmu0bVIPlbgiqSfzaQQIECBAgAAB\nAgQIEBjk9bCb5bhX6lrgukzwrolGgAABAgQIECBAgACBwRRIe+ZYH5vUGaOrkrpn6otJ3Y9U\nlwrW/VPHJNsnGgECBAgQIEBglgJ1yX9FI0BgDgSGcIldPVnvyNGxuDiv9b1IVSRVYVSX2tVD\nGnZJDk2elbwsqYc7aAQIECBAgACBWQjUU3U1AgTmRGDaAumBGVfds1NPgVus1WVr9bjsWucz\ni62wxvMOyv6qOKrHd782OSdZrDWP+a4HNZyQXJiclWgECBAgQIAAgZUKnL7SDfg8AQJrJ1AF\nzTTtg1n5N8Z84M5ZdnpSZ2O60A5MJ+oBDfW6VHFU/azT3mckByTXJc9PNAIECBAgQIAAAQIE\nBiaw3Bmk3eKxf8vkbpneK3lxa14zWcXWo0dv6hK2LrQ90om6pG7S72e6Ouuem+yUaKsj8Oxs\n9smrs2lbJUCgwwJ1SfO7O9w/XSNAgAABArcJLFcgfSNrvT6pL1Ft2jMzUVmq3ZAF711q4RrP\nvzz72zvZPPn+BPveLutUUVUPbNBWR+Au2WxFI0CAAAECBAgQINA5geUKpGvT46cnDx/1/E15\n/WiyWAF0S+bXl66ek1ycdKHVTZHvSE5K6otiP54s1uoepMcnb0y2Sk5ONAIECBAgQIAAAQIE\nBiawXIFUHFXwVKo9Jql7dd5Tb+agnZg+7pAclTwjuTS5JLkyqeJvm+Qeya5JnSW7OTksOTPR\nVkegHuDx9dXZtK0SINBhgft0uG+6RmC1BY4e7aB+x9AIECDQCYEHphfvTKpAar6LoHmtSwK/\nktTZo52T9WiHZKfVn75/ae2GjLGiESAwPIENGXJFIzBEgQ0ZdEUj0FeBLTKw+l32cX0Y4CRn\nkNrjrHtz7t2escT0uzK/0pVWT7I7eNSZOmtUNwtvmdQXx9YZDY0AAQIECBAgQIAAAQKbTFsg\n/WzMHrCMW13C9pFl1lnPxXVpXUUjQIAAAQIECBAgQIDAjwhMWyDtmU/X47zbrd7fL3lE8uak\nzhzVq0aAAAECBAgQIECAAIG5Epi2QFrqcrR66MFnk88nn07qSXfvTzQCBAgQIECAAAECBAjM\njcC0BdJyA/tMVrgoqUvxulAgHZJ+1D1H07az8oH6glmNAAECBAgQIECAAIEBCcy6QLpz7O6Z\n1KO1u9D+ezrx6I3oyO/lMwqkjYDzEQIECBAgQOAOAudlTj3hSyNAYA4Epi2Q6slv9aWqC1tt\nZ/vkqGTr5N+SLrSnphP1nU31yMH3JX+dTNK+NMlK1iFAgAABAgQITCDwxxOsYxUCBDoiMG2B\nVH8BWe4pdvVI7b/syPi+nn78VPKRpIqlI5O6R0ojQIAAAQIECBAgQIDAHQSmLZDOyBa+fIet\nbLLJLZlXj84+Nzk2WephDlm05u2m7PHFyTnJnyaPTzQCBAgQIECAAAECBAjcQWDaAumFd9jC\nfMyop+u9JnlB8sjk3xONAAECBAgQIECAAAECPyKw8DuNfmRhz94cnfHskSiOenZgDYcAAQIE\nCBAgQIDArASmPYP0sOz455Kdk7sndY9PXXJ3clLfhaQRIECAAAECBAj8qMBzRm/f9aOzvSNA\noIsCkxZIVQydlPz0EoN4W+a/PTksuX6JdcwmQIAAAQIECAxR4CmjQSuQhnj0jXnuBCYpkHbM\nqD6Q1L079YS6TyT1wIOLkl2Shya/mBya7J88Lvl2ohEgQIAAAQIECBAgQGCuBJYrkOoLX89M\nHpC8NXll8oNkYXtdZvxJUqeQ60zSzycaAQIECBAgQIAAAQIE5kpguYc0/HpGU8XRa5PfShYr\njjJ7k28kv5ycnRyYPCLRCBAgQIAAAQIECBAgMFcCyxVIB2c030/q+4OWa1U81Rmmas3NiLe/\n8y8BAgQIECBAgAABAgTmQGBcgVTL6uxRXWJ33YRj+XTWuzl58ITrW40AAQIECBAgQIAAAQKd\nERh3D1ItqyKpHsYwabspK96Q3HXSD1iPAAECBAgQINBzge/1fHyGR6BXAuMKpPof8xeT+nLV\nSVudcdo2uXDSD1iPAAECBAgQINBzgcN7Pj7DI9ArgXGX2NVAP5s8Ktmn3kzQXjJa5/QJ1rUK\nAQIECBAgQGAIAldnkBWNAIE5EFiuQDo6Y6iHL/x1cp9lxvO0LP/d5ILk5GXWtZgAAQIECBAg\nQIAAAQKdE1iuQPp0enxk8vDky8nvJI9OtkmqbZvU2aW/Sf4hqS+S/ZlkqceBZ5FGgAABAgQI\nECBAgACBbgqMuwep6fEfZuK7yf9M/miUvNzhYQznZN5TkytqoUaAAAECBAgQIECAAIF5E1ju\nDFKNp84G1aV2Dx29/nNe68l2d0muTD6WvCx5QqI4CoJGgAABAgQIEGgJ7JbpB7femyRAoMMC\nk5xBarp/eSZ+u3mT1yqubmm9N0mAAAECBAgQIHBHgVePZr3ojovMIUCgawLTFEgL+644Wiji\nPQECBAgQIEDgjgKTXLFzx0+ZQ4DAugj4H+y6sNspAQIECBAgQIAAAQJdFFAgdfGo6BMBAgQI\nECBAgAABAusioEBaF3Y7JUCAAAECBAgQIECgiwIKpC4eFX0iQIAAAQIECBAgQGBdBFbykIZ1\n6bCdEiBAgAABAgTmTODWOeuv7hIYtIACadCH3+AJECBAgACBNRA4fg32YRcECMxIQIE0I0ib\nIUCAAAECBAgsIXD6EvPNJkCggwLuQergQdElAgQIECBAgAABAgTWR0CBtD7u9kqAAAECBAgQ\nIECAQAcFFEgdPCi6RIAAAQIECBAgQIDA+ggokNbH3V4JECBAgAABAgQIEOiggAKpgwdFlwgQ\nIECAAIFeCRyd0VQ0AgTmQMBT7ObgIOkiAQIECBAgMNcC95zr3us8gYEJOIM0sANuuAQIECBA\ngAABAgQILC2gQFraxhICBAgQIECAAAECBAYmoEAa2AE3XAIECBAgQIAAAQIElhZQIC1tYwkB\nAgQIECBAgAABAgMTUCAN7IAbLgECBAgQIECAAAECSwt4it3SNpYQIECAAAECBGYhcF42cuss\nNmQbBAisvoACafWN7YEAAQIECBAYtsAfD3v4Rk9gvgRcYjdfx0tvCRAgQIAAAQIECBBYRQEF\n0iri2jQBAgQIECBAgAABAvMloECar+OltwQIECBAgAABAgQIrKKAAmkVcW2aAAECBAgQIECA\nAIH5ElAgzdfx0lsCBAgQIEBg/gSeky5XNAIE5kBAgTQHB0kXCRAgQIAAgbkWeEp6X9EIEJgD\nAQXSHBwkXSRAgAABAgQIECBAYG0EFEhr42wvBAgQIECAAAECBAjMgYACaQ4Oki4SIECAAAEC\nBAgQILA2AgqktXG2FwIECBAgQIAAAQIE5kBAgTQHB0kXCRAgQIAAAQIECBBYG4E7rc1u7IUA\nAQIECBAgMFiB7w125AZOYA4FFEhzeNB0mQABAgQIEJgrgcPnqrc6S2DgAgqkgf8AGD4BAgQI\nECCw6gJXr/oe7IAAgZkJuAdpZpQ2RIAAAQIECBAgQIDAvAsokOb9COo/AQIECBAgQIAAAQIz\nE1AgzYzShggQIECAAAECBAgQmHcBBdK8H0H9J0CAAAECBLousFs6+OCud1L/CBC4XcBDGvwk\nECBAgAABAgRWV+DVo82/aHV3Y+sECMxCQIE0C0XbIECAAAECBAgsLeCKnaVtLCHQOQH/g+3c\nIdEhAgQIECBAgAABAgTWS0CBtF7y9kuAAAECBAgQIECAQOcEXGLXuUPS+w5tlhFu2ftRGiAB\nAgsF6n/7P1g403sCBAgQINA1AQVS145Iv/vzvQzvkOSX+z1MoyNAYAmBv1pivtkECBAgQKAz\nAgqkzhyKQXTk8IzyuEGM1CAXE/gfo5mvX2yheYMQ+PIgRmmQBO4ocOsdZ5lDgEBXBRRIXT0y\n/ezX1RnWx/s5NKOaQOBbo3X8DEyAZRUCBHolcHyvRmMwBHouoEDq+QE2PAIECBAgQGDdBU5f\n9x7oAAECEwt4it3EVFYkQIAAAQIECBAgQKDvAgqkvh9h4yNAgAABAgQIECBAYGIBBdLEVFYk\nQIAAAQIECBAgQKDvAu5B6vsRNj4C3RG4OF3xJKfuHA89IUCAAAECBBYRUCAtgmIWAQKrInDE\nqmzVRgkQINB9gaNHXTys+13VQwIEFEh+BggQIECAAAECqytwz9XdvK0TIDBLAfcgzVLTtggQ\nIECAAAECBAgQmGsBBdJcHz6dJ0CAAAECBAgQIEBglgIKpFlq2hYBAgQIECBAgAABAnMtoECa\n68On8wTmSuDp6W1FI0CAAAECBAh0VsBDGjp7aHSMQO8EfmE0olN6NzIDIkCAAAECBHojoEDq\nzaE0EAIECBAgQKCjAuelX74HrqMHR7cILBRQIC0U8Z4AAQIECBAgMFuBP57t5myNAIHVFHAP\n0mrq2jYBAgQIECBAgAABAnMloECaq8OlswQIECBAgAABAgQIrKaAAmk1dW2bAAECBAgQIECA\nAIG5EnAP0lwdLp0lMNcCN89173WeAAECBAgQGISAAmkQh9kgCXRC4IhO9EInCBAgsPYCzxnt\n8l1rv2t7JEBgWgEF0rRi1idAYGMFLtvYD/ocAQIE5lzgKaP+K5Dm/EDq/jAE3IM0jONslAQI\nECBAgAABAgQITCCgQJoAySoECBAgQIAAAQIECAxDQIE0jONslAQIECBAgAABAgQITCCgQJoA\nySoECMxE4L7ZSkUjQIAAAQIECHRWwEMaOntodIxA7wR+fzSil/RuZAZEgAABAgQI9EZAgdSb\nQ2kgBDov4L83nT9EOkiAwCoJfG+VtmuzBAisgoBfWFYB1SYJECBAgAABAi2Bw1vTJgkQ6LiA\nAqnjB0j3CBAgQIAAgbkXuHruR2AABAYk4CENAzrYhkqAAAECBAgQIECAwHgBBdJ4H0sJECBA\ngAABAgQIEBiQgAJpQAfbUAkQIECAAAECBAgQGC/gHqTxPpYSIDA7gb+b3aZsiQABAnMlsFt6\ne2vyH3PVa50lMFABBdJAD7xhE1gHgVPWYZ92SYAAgS4IvHrUiRd1oTP6QIDAeAEF0ngfSwkQ\nIECAAAECKxVwS8NKBX2ewBoK+B/sGmLbFQECBAgQIECAAAEC3RZQIHX7+OgdAQIECBAgQIAA\nAQJrKKBAWkNsuyJAgAABAgQIECBAoNsCQ7wHabsckm2TOyfXJ99Obkg0AgRWV+D3s/l6itP/\nXN3d2DoBAgQIECBAYOMFhnIGac8QHZtckVyVXJB8MbkkqSLp/OSYZPtEI0BgdQR2yWZ3XZ1N\n2yoBAgQ6LVB/HKpoBAjMgcAQziAdkeNw5OhYXJzXs5MqkqowqjNJ90jqF7dDk2clL0tOTDQC\nBAgQIECAwCwEjp/FRmyDAAECsxA4KBupv9icmuw1ZoObZtn+ySeTWn/fZC3bIdlZ7feua7lT\n+yKwxgIbsr+KRoAAAQIECPRLYIsMp36XfVwfhtX3S+wOzEH6alKv54w5YHVAz0gOSK5Lnp9o\nBAgQIECAAAECBAgMTKDvBdIeOZ51Sd1NEx7Xq7PeuclOE65vNQIECBAgQIAAAQIEeiTQ9wLp\n8hyrvZPNJzxm9YS7KqrqAQ4aAQIECBAgQIAAAQIDE+h7gVQ3Re6enJTsM+bY1j1I+yWnJVsl\nJycaAQKzFbg4m7totpu0NQIECBAgQIDAbAX6/hS7ehrdDslRyTOSS5N6tPeVybXJNkk9xW7X\nZMfk5uSw5MxEI0BgtgJHzHZztkaAAIG5ETh61NP6HUMjQIBAJwQemF68M6kCqR7I0E59SexX\nkjcmOyfr0Q7JTqtPnmK3Hvr2SYAAAQIEVldgQzZf0Qj0VaBXT7Hr+xmk5oewnmR38OhNnTWq\n7z/aMqkvjr0m0QgQIECAAAECBAgQILBJ3+9BWuwQb5aZlRr71omzNkHQCBAgQIAAAQIECBC4\nvUgYgsOeGeSxSZ0xuiq5IKkn1dX9SNcn5yfHJNsnGgECBAgQIECAAAECAxUYwiV2dWP4kaPj\nW0/Rqu9FqiKpCqO61K4e0rBLcmjyrORlST3cQSNAYLYCTx9t7pTZbtbWCBAgQIAAAQKzE+h7\ngXRQqKo4qsd3vzY5J1msNY/5rqfMnJBcmJyVaAQIzE7gF0abUiDNztSWCMyLwG7p6E/MS2dX\noZ/1sKhqz7v9ZZD/1h+o/2OQIzfouRPoe4F0YI5IPaChXm8ac3TqCXJnJAck9T0tz08USEHQ\nCBAgQIDADAT+a7ZRV2gMtd1tNPA3DBUg435rUk8M1gh0XqDvBdIeOQL1F4txxVH7IF2dN+cm\nO7VnmiZAgAABAgRWJFC/GPvleEWEPkyAwFoJ1JPc+twuz+D2TjafcJDbZb0qquoBDhoBAgQI\nECBAgAABAgMT6HuBdHyO5+7JSck+Y45tcw9S3au0VXLymHUtIkCAAAECBAgQIECgpwJ9v8Su\nnka3Q3JU8ozk0uSS5Mrk2mSbpJ5it2uyY3JzclhyZqIRIECAAAECBAgQIECglwL19Jh3JlUg\n1QMZ2rkh77+S1LXROyfr0Q7JTqtPvrR2PfTtc60E6rvIKhoBAgQIECDQL4EtMpz6XfZxfRhW\nXVo2tFZnjer7j7ZM6otjr0lm3e6TDR6X1A/LJO2+WenhydZJFWwagT4K1M95tctuf/EvAQIE\nCBAg0BOB+p23Hoq2b1IPSJvr1vdL7BY7OHVpXWU1W30J7ceTSQukXbNuFUjfTzQCfRVQGPX1\nyBoXAQIECBAgMNcC9aS6+ycPTepx3l24rK1OR9ZpyUkLqqyqESBAgAABAgQIEOiEQP0O25tL\n7Pr+FLvmJ2bPTNS9D3VJ3VXJBUk9yrse2FBne85Pjkm2TzQCBAgQIECAAAECBAj0VuCIjKwq\n2spFyVnJKcm7klOTuhSuvi+pln8reW6y1s0ZpLUWtz8CBAgQIECAAIFZCfTqDNKsULq6nYPS\nsSp8qhDaa0wn62EV+///9u4F6rp6zgN46X4RaiWJmokKKVF0Q0mJynVyaRpiNGNmTWMtLGMx\no3gNGdEwcjcpM5VLYghhUJEWlXGdVCZJci2iiy4031/2trazzvM857mddz/nfP5rfTtn3//7\ns0/n3b+z9zlPckFS89cXzMbZFEjj1Lat1SVQP9JQ0QgQIECAAIHJElAgraDjeUr6WrfPrTdi\nn+v7SfUDDm8fcf6lmk2BtFSS1tNnAT/z3eejo28ECBAgQGDhAhNVIE36r9jtnONcPzV484jH\n+xeZ7xtJ/XiDRoDA0gpM+vvN0mpZGwECBAgQILBaBCb9Rxrqu0W7JuuMqFtXkKqoqh9w0AgQ\nIECAAAECBAgQmDKBSS+QTs7xvF/yoWT3WY5tfQfpEclZyYbJRxKNAAECBAgQIECAAIEpE5j0\nW15OzfG8e/LPyeOTHyZXJdck9V2jTZJNk22SLZPbkhcl5yUaAQIECBAgQIAAAQIEJlJg2+zV\naUkVSPUrdd3ckOHLktcn905WR/MjDatD3TbHLXBSNljRCBAgQIAAgckS8CMNK/B4Xp4+H9b0\nu64a3SVZP6k/HHtdohEgQIAAAQIECBAgQGCNSb/FbtghrlvrKtXq1rr6blIVSpckNyUaAQLL\nI3D68qzWWgkQIECAAAECBEYVeF5mrO8hbTCwwE4Zbv8obHu73S8z7iXJWgPzjmPQLXbjULYN\nAgQIECBAgACB5RCYqFvslgOoT+s8MZ2pAqhuqWtbfc+oiqEaX0VS/VHYKqLqxxtq3PHJuJsC\nadzitkeAAAECBAgQILBUAgqkpZIcw3qGFUinZLtVCB01sP36ee922v4D05Z7UIG03MLWT4AA\nAQIECBAgsFwCE1UgTfrfQRr2ItgrI7+SnDAw8cYMH5nUT4DvNzDNIAECBAgQIECAAAECUyAw\njQVS/YrdN2c4tvUjDd9JHjjDdKMJECBAgAABAgQIEJhggWkskC7K8awfaRjWNsvIhyY/GjbR\nOAIEFiWwKku/clFrsDABAgQIECBAYJkFpqVAqlvq6vtFL0y+lOyWPCHptq0zULfd1T2U53Qn\neE6AwJII1P9j2yzJmqyEAAECBAgQIEBgQQKHZqkzksuT+mGGbq7McNsOzpNbk5p+XrJmMs7m\nRxrGqW1bq0vgpGy4ohEgQIAAAQKTJTBRP9Iw6X8otv4wZfvHKeunvnfppFsE1d8+qu8fnZa8\nIKlCSSNAgAABAgQIECBAYMoEJr1A6h7O6zJQt84Nu33uMxlf3z+qq0gaAQIECBAgQIAAAQJT\nKjBNBdJsh7iuHmkECBAgQIAAAQIECEy5wLT8SMOUH2a7T4AAAQIECBAgQIDAKAKuII2iZB4C\nBJZCoH4Yxff7lkLSOggQIECAAIFlE1AgLRutFRMgMCBw9MCwQQIECBAgQIBA7wTcYte7Q6JD\nBAgQIECAAAECBAisLgEF0uqSt10CBAgQIECAAAECBHonoEDq3SHRIQIECBAgQIAAAQIEVpeA\nAml1ydsuAQIECBAgQIAAAQK9E1Ag9e6Q6BCBiRU4JHtW0QgQIECAAAECvRXwK3a9PTQ6RmDi\nBA5t9ujMidszO0SAAAECBAhMjIArSBNzKO0IAQIECBAgQIAAAQKLFVAgLVbQ8gQIECBAgAAB\nAgQITIyAAmliDqUdIUCAAAECBAgQIEBgsQIKpMUKWp4AAQIECBAgQIAAgYkRUCBNzKG0IwQI\nECBAgAABAgQILFbAr9gtVtDyBAiMKnDbqDOajwABAgQIECCwugQUSKtL3nYJTJ/A0dO3y/aY\nAAECBAgQWGkCCqSVdsT0l8DKFbh65XZdzwkQIECAAIFpEfAdpGk50vaTAAECBAgQIECAAIE5\nBRRIcxKZgQABAgQIECBAgACBaRFQIE3LkbafBAgQIECAAAECBAjMKaBAmpPIDAQILJHAPbOe\nikaAAAECBAgQ6K2AH2no7aHRMQITJ7Cq2aMjJ27P7BABAgQIECAwMQIKpIk5lHaEQO8FvN/0\n/hDpIAECBAgQIOAWO68BAgQIECBAgAABAgQINAIKJC8FAgQIECBAgAABAgQINAIKJC8FAgQI\nECBAgAABAgQINAIKJC8FAgQIECBAgAABAgQINAIKJC8FAgQIECBAgAABAgQINAJ+VcpLgQCB\ncQmcPq4N2Q4BAgQIECBAYKECCqSFylmOAIH5Cpw53wXMT4AAAQIECBAYt4Bb7MYtbnsECBAg\nQIAAAQIECPRWQIHU20OjYwQIECBAgAABAgQIjFtAgTRucdsjQIAAAQIECBAgQKC3Agqk3h4a\nHSNAgAABAgQIECBAYNwCCqRxi9segekVWJVdf+X07r49J0CAAAECBFaCgF+xWwlHSR8JTIbA\n1pOxG/aCAAECBAgQmGQBV5Am+ejaNwIECBAgQIAAAQIE5iWgQJoXl5kJECBAgAABAgQIEJhk\nAQXSJB9d+0aAAAECBAgQIECAwLwEFEjz4jIzAQIECBAgQIAAAQKTLKBAmuSja98IECBAgAAB\nAgQIEJiXgF+xmxeXmQkQWITAlVn29kUsb1ECBAgQIECAwLILKJCWndgGCBBoBI4mQYAAAQIE\nCBDou4Bb7Pp+hPSPAAECBAgQIECAAIGxCSiQxkZtQwQIECBAgAABAgQI9F1AgdT3I6R/BAgQ\nIECAAAECBAiMTUCBNDZqGyJAgAABAgQIECBAoO8CCqS+HyH9IzA5AodkVyoaAQIECBAgQKC3\nAn7FrreHRscITJzAoc0enTlxe2aHCBAgQIAAgYkRcAVpYg6lHSFAgAABAgQIECBAYLECCqTF\nClqeAAECBAgQIECAAIGJEVAgTcyhtCMECBAgQIAAAQIECCxWQIG0WEHLEyBAgAABAgQIECAw\nMQIKpIk5lHaEAAECBAgQIECAAIHFCvgVu8UKWp7A6AJHZ9aXjD77xM25brNHT524PRt9h/4l\ns64afXZzEiBAgAABAuMWUCCNW9z2plng3dn5C6cYYNNm36+dYoOvTfG+23UCBAgQILAiBBRI\nK+Iw6eSECFyd/ahoBAgQIECAAAECPRXwHaSeHhjdIkCAAAECBAgQIEBg/AIKpPGb2yIBAgQI\nECBAgAABAj0VUCD19MDoFgECBAgQIECAAAEC4xdQII3f3BYJECBAgAABAgQIEOipgAKppwdG\ntwgQIECAAAECBAgQGL+AAmn85rZIgAABAgQIECBAgEBPBRRIPT0wukWAAAECBAgQIECAwPgF\nFEjjN7dFAgQIECBAgAABAgR6KqBA6umB0S0CBAgQIECAAAECBMYvoEAav7ktEiBAgAABAgQI\nECDQUwEFUk8PjG4RIECAAAECBAgQIDB+AQXS+M1tkQABAgQIECBAgACBngookHp6YHSLAAEC\nBAgQIECAAIHxCyiQxm9uiwQIECBAgAABAgQI9FRAgdTTA6NbBAgQIECAAAECBAiMX0CBNH5z\nWyRAgAABAgQIECBAoKcCCqSeHhjdIkCAAAECBAgQIEBg/AIKpPGb2yIBAgQIECBAgAABAj0V\nUCD19MDoFgECBAgQIECAAAEC4xdYe/ybtMVZBNadZZpJBCZBYJ1J2An7QIAAgQUI3LqAZSxC\nYKUITNQ5rAKpHy+79k3z1/3ojl4QIECAAAECBAgQmLfALfNeoocLrNnDPk1rl3bLjvt0fVqP\n/nTs9yuymxsnJyUaAQIEpkng2dnZ65NXJBqBSRWo4uiiSdg5V5D6cxQv7E9X9ITAsgj8qFnr\nu5Zl7VZKgACB/grs3XTt/P52Uc8IEGgF/EhDK+GRAAECBAgQIECAAIGpF1AgTf1LAAABAgQI\nECBAgAABAq2AAqmV8EiAAAECBAgQIECAwNQLKJCm/iUAgAABAgQIECBAgACBVkCB1Ep4JECA\nAAECBAgQIEBg6gUUSFP/EgBAgAABAgQIECBAgEAroEBqJTwSIECAAAECBAgQIDD1AgqkqX8J\nACBAgAABAgQIECBAoBVQILUSHgkQIECAAAECBAgQmHqBtadeAAABAuMSuGVcG7IdAgQI9EzA\n+1/PDojuECBAgACBPghsmk5UNAIECEybgPe/aTvi9pcAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIERhFYa5SZzEOAAIEZBLbP+Ecm\n6yY/mWGeNTP+ycmWyRWJRoAAgZUksFU6u3+yXXLZHB1/SKbvkcz2njjHKkwmQIAAAQIEVrLA\nS9P525OfJ1vMsCP1QUzNc9EM040mQIBAnwU2TOeqMKr3sb+apaP3zrRfJTcmO8wyn0kECBAg\nQIDABAu0BVKdOJwxw34qkGaAMZoAgRUj8PD09LfJdcm9Zuj1WRlf74VHzTDdaAIECBAgQGAK\nBNoC6Zbsa50YHDZknxVIQ1CMIkBgxQkcnx7X+9yZQ3r+nGbap/NYtxVrBAgQIECAwJQKtAXS\nq7P/VSRdk9xjwGK2Aqnu039GUstXnpbU7SwaAQIE+iawQTp0aVJF0uGdzt0zz3+RXJvU95WG\nte0y8nlJFVnPT3ZOhrUtM/LvkzcmL0uemKydaAQIECBAgMAKEWgLpCpsXp7UicNHBvo+U4H0\n4MzX3tdf9+3XrSu1fI17WKIRIECgbwJ7p0N1q91Pk7s1nTs9j/XeNewKes3youTm5HfJD5Lb\nklpHfSjUvdpUPwTxm6TWVd/rrGXq+QXJTIVXJmkECBAgQIBAnwS6BVJ9ylk/xFD/oB/e6eSw\nAqk+if1Ocn1SV5DulNSJwlOSKpZ+mGySaAQIEOibwBvSoXqfe2tyUPP8fXkc1h6fkTXvOUld\naap25+TUpMYfkbTt8jz5WfKAZsTGeawiquZ7bTPOAwECBAgQINBzgW6BVF3dKalPPa9Jtkyq\nDSuQXpDx9Y9+XXUabC/MiJp2zOAEwwQIEOiBQH3Ac0lSV4GuTuoDnfZqUp7+UasPgur9bNc/\nGrvGGhtl+Maklq8Ph9ZPan1nJ92rSutluN5nH5doBAgQIECAwAoQqH+46x//usWubf+UJzXu\nv5oRwwqkk5p5tm3m6T7cvZn2se5IzwkQINAjgb3Slypo6r3uMTP0667N9EvzWN85GkxdVarl\n29vnzm2Gz89jfYh0/0QjQIAAAQIEVpjAsAKpbrW7MKl/+J+ZDCuQ6gSg7sdfJxnW6pPVi4dN\nMI4AAQI9EajvCdV3hmZqD82Eeh+cK/s0K6gPhz43MH/ddveKZN1EI0BgTAJ1IqMRIEBgKQXq\nC8jPTi5K3pScnQy2GzKibiOpW1VuHZhYJwJ1u8lsJx4DixgkQIBA7wTa97BPpWfHzdK7bzXT\n6ocf9ku2T+qWuscm+ybHJHsmByYaAQIECBAg0HOBYVeQ2i7/Y57UJ6efaB6rYGrb2/Kkpu3R\njug81m0oNW3w1/A6s3hKgACB1S4w1xWk+gCorpTXFfVhbfeM3C2pD4XqO0kPT3ZIum2zDFyV\n1Hti+yMP3emeEyBAgAABAj0TmK1AqivUFyT1D3ulWyDVJ6E1rr6n1P1CcgbXeF9S046oAY0A\nAQI9FZirQKpun5XU+1n92l237ZiBm5OvJ3Wr8YOSmq/eMwfbeRlRV+Y3HZxgmAABAgQIEOif\nwGwFUvW2PQmof/i7BVJNOyOp8fVX6Z+c1B9EbMe9M88HC6eM0ggQINAbgVEKpLoidFOTY/J4\nQPIPyXeTKnrqClLb2u8f1dXzI5KnJe9N6n3yQ4lGgAABAgQIrACBuQqk2oV2nsECqT41XZVc\nn9QJQKVOGl6TKI6CoBEg0GuBUQqk2oH7Jecm7a/e1Xtd3TZ3RNJtdTvdqUkVTu17Yv1duBOS\ner/UCBAgQIAAgSkRqGLoPsm9p2R/7SYBAtMpsGF2e5dkm6R+3XOmtnEm1NX37RIfFs2kZDwB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgsWWHPBS1qQAAECBEYV2DAz\nHpj8PPnCqAstYL5Nssyjk/9LvrGA5ReyyMFZaK3ko7MsvFOm3Tf5cnL1LPPNNOlhmbBV8vHk\nlplm6sH4cfXzoOzreiPsb70G6rVQba9ki6SO02+TOyf7J5cnX0+Wsq2blR2S3D+p84xLkjp2\nNyYaAQIECBAgQIAAgTW2jcHtyblLaLFO1vXi5Omdde6c57WdN3fGLffTa7KBm+bYyL9mevXr\n0Dnmm2nyB5vlN59php6MH9bPB6Zvpyxx/36a9ZXnXHl+Z7tnNfNv0IzbsRl+S2eeYa+pzuSR\nnj4oc12aVN9uS6qgredXJvslGgECBHovsHbve6iDBAgQIDBM4GkZ+brkyGETJ2zcV7M/dWLf\n56tHRT6snx/O+PVr4hK3ugr03DnW+ZVZpl+faXVV51udeRb7mtoo6zo9qauFxyTvTqpIOqIZ\nrmlVxF+VaAQIEOitgAKpt4dGxwgQIECgETh2hUiMs59VIJ28CJfvZ9m6DW4p22OzsiqOvpis\n6qz4uDz/XfL6pK4ivjHRCBAg0FsBBVJvD42OESAwBQL1/Yw6qdwj2Tj5TnJOUrcozdYekYmV\nansl9Sl9Xanotlrfk5K65emK5PPJ/yaDrf4dODjZJanvtXwt+Vgy121zmWXB7W5Z8gnJ+cmP\nkwOThyY/ST6TDH5/ap+M+5Pk/UldjXliUif4ZyeDbc+M2D6pfbi2mTjKPm6WeatgOC8pu6cm\n/5N8Mrkh2TKpk/v7JHWL27eTjydl37ZuP+t7OE9ONknq1rW6ivK95Nak+lf7eXXSbfV6+Iuk\n1v+p7oRleH7XrLMc6zX35WSm19SvMq3aKIZ3ynxlckItMNAubIbvNTDeIAECBAgQIECAwBQK\nbJt9vj05t7PvddJcJ981vk6yqzio5zcnRyWztVMyseZtU5/O75DU7Us1rr5vcnHzvNZX42ob\ndYLfbdWvOjmu6dclP2+eVyFV6xqlLeQ7SG0/V2UDVWjU9tvvqlQB8ddJt30wAzXP5kn9IEQV\nFlVY1fPBdllGVIFRvtVG3cddM29t49XJL5vnNbx3sn/ym2ZcGbWmF+T5Vknbuv3cLiPruNQ6\nKvX8tOQZzfCxeRxs+2ZEzXvM4ISB4dq/6sN8Wr0mat0bNAvt2Ay/pRme6TVVk0c1bFY19OF1\nGVvbf8rQqUYSIECAAAECBAhMlUCdYNbJ4bmdvX5WM65OHOsXxao9IKmT/7p6U5/wz9YOz8Ra\nZ/d7KG3hUePPSGq7dcXlz5O6JevXSV2lqFaPdYJf4+uqRTv+gDyvoueSZN1krraYAqmKhg8k\neyZ1haKuaNSJ/7XJhknbuoVHjXttUvtYV566rdZT449vRs5nH9sC6dYse3pyUPKiZj2X5/Fn\nSR2fahsnVUjVtqovbRvsZ42/LPlBO0Me63j8Ivl+0prn6R3txPy3TP7094Mz/venmVL9fOQs\n2X1g6bkKpJp92GtqPoYDm/zD4F/mWVl9M2kLtD9M9IQAAQIECBAgQGD6BIYVSO0J9qMGOB6T\n4b9LthgYPzg47GS2LZCuzMx1It5tX8xAnaRu3Yxsr2R8rDtT83xVHmve5w2ZNjhqMQXSFVnZ\nYBH2gYyrbde+tG2w8NghE2qe/2hnaB7f2ozfqRmezz62BdJVWXa9Zvl6KMcqIs9OugVNzfPS\n5HFJ2wb7WeMHC6Qa97ak+r9PDTRtwzzW7Wyfb0fM8lgFUi0/W344sPxCC6T5GA5s8o7BKuDL\nr24bdXvdHST+Q4BA3wXqEzuNAAECBMYv8Nls8mXJR5M60f9k8rnk003ysOBWf9fmNwNLn53h\nvZMq1qqA2iOpVtvsFiM1rv2u0m55/o4asUztoqz3loF1X9EMbzIwvjt4SQbOT+o7PhslNyRV\naD09qXXWlYpqC9nHsrv5jqV//59yPC+pYuZLSRVwZyUXJ8cmC2nvyUJ/k9SVu3OaFTwpj3dO\nTm6G53qoouNFs8xUJkvRFmLYbvdhefKu5LvJvsnViUaAAIHeCyiQen+IdJAAgQkVqMLkyOQN\nyd82qRPz/05elXw5WWirAmiwtSf9azUTtmsejx+csTN8387zmZ7elAl1O2BdXakrGsPaXZqR\nVWx024+7A83zdp47DZnWHXViBurku27LOzU5KNk0OTpp20L28Xvtwp3H+u7W+5JHJVUwlFnN\n997kNclgkZdRs7avZGoVobXeo5I6Ns9Kqqip2/tGaVUgvWmUGRc5z0IM202+sHlShaziqFXx\nSIBA7wUUSL0/RDpIgMAEC/x79u2UZP/kwKRu1zo4OaAZPjuPC2m/G2GhthA5PPP+ZIb565av\nudq1mWGrpIqk+m7NsLZlM3Jw+ij9HLa+Gvf+pAqEugpTBdIzkyo0TkvatpB9HFbs1C1t+yXb\nJ3WMHpvsmxyT7JnUsZtve08WOC6p4/2lpF4D/5lcn/SpLcSw7f+OeVKF0bfbER4JECCwEgQU\nSCvhKOkjAQKTKHDf7FSdcH8iObNJHtZ4SfLa5LDk7GS52qXNiqsI+uzARqrY2S0ZdoVnYNY7\nroTslJF7J7Ufg229jNglqWKovXVvcJ6FDP86C9XVlnLaJqlC46NJFWxtW4p93Cgre3Dys+SS\npNZZhdlmydeTxyT3TKoQmE+r2yqPTf4s2TypK3snJX1rizF8R3amrjBqBAgQWFECc93CsKJ2\nRmcJECCwggSOS18/ntSJfbd9tRm4sTtyyPNbm3F1Ar+QVsXE7cnLkva2u3Y9J+TJZ5I92xGz\nPH6wmfbOPG49MF/ddlfrv0dS+zp4BSmjFtXqKsw6SZ2IVyFWw922FPtYhewXkrq6023XZOD7\nSd3q1l5l6U5vn9dxGnaM6qrdJ5M6/lUkXZGck6zONuw1tRjDeh3VVVKNAAECK0rAFaQVdbh0\nlgCBCRL4t+zLE5I6uT85qZPwulLx3OTm5NRktla3fVWr77BsldTJ6Hza+Zn5pOQ5SZ2Yvzm5\nJXlScnhSJ8YfSOZqH8oMr0pennwzOS+5KNksqQKrrh7VLVbPTJa6Vb8vTw5M6grOp5NuW4p9\nrKtEn08elXwk+XBSV0UOSfZKzki6V60y+EetjtP9kyre6hifmLStxj0+OSBZldyejNqqMKz+\nzNYuzsSXzjbDwLRhr6nFGLb7s+bAdgwSIECAAAECBAhMucC22f86WTx3wOHpGb4iqWmVug2t\niondk7lafcBVPxxQn/rXsocmOzfPq9gZbFXA1HyP7kyouwhenPwy6fahbl2rqz7zaXUiXsVR\nXflq96UKprcm2yTdNls/20LhkZ0F6ipVrXPzzrj2abtfx7YjBh5H3cdds1xt4/iB5Wuwir0q\nWG9Lap7Kr5IqSqtQaduwfu6TiXW1qJb5Vjtj81jLVlFSx33bZtwoD7VM24/ZHqsga9tZeVLz\nbtCM2LEZfkszXA/DXlM1flTDmrfb2r51x3lOgAABAgQIECBAYFaBOvm8V/KQZJNZ5xw+sU54\n7z580rzGbp25H5QspA/dDdVJ9k7J3boje/J8sfu4cfajCovtkvleFdkiy6yfdFtZ/Sg5uzuy\nB89ne00t1rAHu6cLBAgQIECAAAECBAj0UeCwdKqustQtjRoBAgQIECBAgAABAgSmUqBuB3x7\ncn1S3xPq3qaXQY0AAQIECBAgQIAAAQLTI1A//FBXjq5I6nY9jQABAgQIECBAgAABAlMrUN9l\nus/U7r0dJ0CAAAECACDHpAAAAYRJREFUBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBJZB4P8BhmDIHwO0y8MAAAAASUVORK5CYII=", "text/plain": [ "Plot with title “Elite Vs. Outstate”" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot(college$Elite, college$Outstate, ylab=\"Out of State Tuition ($)\", xlab=\"Is the University Elite?\",main=\"Elite Vs. Outstate\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**8 (c) v.** We will create histograms of quantitative variables. Each histogram will be have 5, 10, 15 & 20 bins specified by the `breaks` argument. To plot a number of these histograms, we use `par()`. Let us start with _Out of State Tuition_." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0JvHXnfC/whMhgSCKNDJrIIDGUiHkqLTU2UmIspcmrhjZquHopbbUU\nVUNviRhCFbc0CEVDkMY8J6QuUbcS3JDIQCZCQsb7+7/vXuxs+5yz9nn33metfb7P5/N719pr\nPXutZ33XOWe9z17D3mILhQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgTWhcCW62IrbSSBawpcKy/vdc1JG19dnX+vSH6cnJZckoyW/TNhz8HEL2Y4\nrs7oe/r++hbZgFsmFycf7fvGaD8BAgQ6JOB41G5nXCfVbpbskXw/qWP0zxOFAAECBKYkcN0s\npzpDy6U6Sa9Mrp0MlyPyonlfdRoWveyaDTw7qW3+xqJvrO0jQIDAnAUcj1YGPyxVzkyaY28N\nz0uemCgECBAgMCWBNgek5g/xa0bWuZ46SPXJ5seSxkIHaeSHwUsCBAhspoDj0fKAD83s5hhU\nw6tGXv/B8m83lwABAgTaCgwfkOo0fV0yV9kr2S95SnJpUn+Mf5psnTTl5hm53yDXayYu4PCe\n2aYvJ8MHJh2kBdzRNokAgTUVcDxanv+rmd10jH4/49dPHj2YVtO/mSgEpi6w1dSXaIEE+iVw\neZp7xkiTv5XXByUPSurgtXvy3aTKdskOG8e22KLOsFTZJvm9jWNbbFF/zL+T3CO5e1L3KH0y\nqemj5XaZUHXqmurqiJ2eHJvU5X3LlV/LzMOWqzCYd06GR7eoN1qlPpH718HEn2RY137XNioE\nCBAgMDsBx6Nr2u6Yl/sPJn0hw3cNxt+Z4f9M7pjU/Do+uR8pCAoBAgQ2R2D4E7txZ0Xqj211\niOrTqTrDNFyOyIuaXmnuQdplaNrzM/7BoddV78rkz5Km1MNR/nfSLGd4+KNMbw4ITf3R4a2X\neO/wcmr8S6NvbPn6qYPlvz3DGydnDl6Ps8oshQABAgRWKeB4tDLcTqlyo6FqdQxtjtE/GJpu\nlMDUBJxBmhqlBfVUYLe0+3WDttcZoW2TByb1cIJLkuGOTV6uWP4qNeryvPqEq840/W5Sy/27\n5F+S85LDkkOTKv+WnJTsldT07ZO3JXUG6opkLcqpWWmt/3NrsXLrJECAwDoVcDwav+MvGJlc\nx+ibDKZ9emSelwQIECCwSoHhT+zqTMtS+ccxy1/pDNJlec+dh973vqHlV6ejylFJrbMuCbhp\n0pRHZuT5yUOSauNSpTpcdenBSqlrtadRnEGahqJlECBA4FcFHI9+1WS5KQdmZnWYmmNoPfpb\nITB1AWeQpk5qgT0T+Fna+9VBm+uR3nWP0V5JdS6emRyQ1D05P0zalC+mUp0RakqdhTlk8KLu\nHapSZ2iq1MMfavzLyceTDyfvTeqSvOVK/d42y1quXnXA6h4ihQABAgS6L+B4tPw+qnuOjk9u\nOKj27Ayb4+lgkgEBAgQIrFZg+BO7cffVVMflLUl9QlWpP8JNWekM0nuaioPhUzJslvPwwbR6\n+l3dcNpMHx6enel/NKi31ODWS7x3eDk1vtp7kEbX6wzSqIjXBAgQmI6A41E7x+ocXZg0x7nn\ntHubWgRWJ1CX6igECFxT4LK8fPnQpIcNja80OvoknavGvOGnmVaX2z0iqUvw6o9+U+oa9H9O\nHtBMMCRAgACBdSvgeLTFFrfP3j8hqcvKqzwrednGMf8QmJGAS+xmBGuxvReoszRNGe30NNPH\nDevTrZVKXcZXT6qrjlF1vuqDitslT0sOS6pUB6kuJRhX6ozOSmeZ6n3njXuzaQQIECDQK4H1\nfDy6UfbUvydN5+ipGX9tr/aexvZSQAepl7tNo6coUNcy//HQ8up3Yt+RaXV/0DTLiVlY3dtU\nnan7JrX8k5O6B6npIH0/40uVizLjLUvNNJ0AAQIEeingePSru+0fMmmPweS6F/gmyejZo7/N\ntHrqrEKAAAECmyEwfM13dVKWy0mZX2d8mnJERpr6txxM3GVo2tubioPhnwzNa+5BOijT6gsB\nm+XUdy19b+h1dY7qUruulDPTkGrruPu1utJG7SBAgEAfBRyPlt5rdey9OGmOlUsN2zy0aOm1\nmENgjEBd2qMQILBJoO4Xquu9f5x8NanvNKrOTH2v0TTLh7KwWu5Jg4Xul+Geg/EPZHif5JzB\nawMCBAgQWH8CjkdbbHFwdvv119+ut8VdEKhvI1YIEFg7gZ2y6uocVcfs9GTanbEsUiFAgAAB\nAisKOB6tSKQCAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJrJrDlmq15\neiveNos6MNk92TW5Orkw+Vpy6uB1BgoBAgQIECBAgAABAgQWV2CrbNrfJ+cn1Skal5My/YBE\nIUCAAAECBAgQIECAwEILvDlb96PkZclvJTdPbpTskdwmeWRyXHJZcpdEIUCAAAECBAgQIECA\nwEIK7JCtujJ5QIutOyZ1XtWinioECBAgQIAAAQIECKxzgbpMrY9lnzS6Lqn7WIvGn5A6h7eo\npwoBAgQIENgcAffEbo6e9xIgQIDAZglcK+8+J3nECkupDmB1kN6xQj2zCRAgQIDAagXcE7ta\nOe8jQIBABwX6egbpqli+Ljk6eWxybFIdpnpgw9bJTkndk/S4ZL/kbolCgAABAgRmIfDGLPTh\nyVFJ3ft6bnJBsk3SHI82ZPzk5J7JiYlCgAABAgRmIvDALPW0ZNwT7C7P9OpA1SPAFQIECBAg\nMAsB98TOQtUyCRAgQGCzBfbMEu6RHJTUp3M3TbZLFAIECBAgMEuB22bhVyRtrsh4Uur95ywb\nY9kECBAgsPkCdS9P30vdFHvjZOekOkq3TG6f3CRZhC/CzWYoBAgQINBRga+lXeclh6zQvupA\nPSr55gr1zCZAgAABAqsWqIPN3ye+KHbVhN5IgAABAlMQ+Jsso75z733J45PfTe6c1JUND06e\nnXw1+WlS39OnECBAgACBmQi8OUv1RbEzobVQAgQIEJhQwD2xE4KpToAAga4K9PUStLoptp4Q\nVPccHb8Cbn1R7FnJ/1ih3rjZdbnebuNmjEz79bx+V1IPhlAIECBAYP0K1KXeeyXbJxcndfyp\nXJooBAgQINADgTY3lXZxM+b1RbFvy8bX/UxtSnXaXtumojoECBAgsJACw/fE7potrCes1ods\ndaw9dfA6A4UAAQIECExfoGtfFFufEh48/c20RAIECBDogYB7YnuwkzSRAAECbQX6egbJF8W2\n3cPqESBAgMCsBXxR7KyFLZ8AAQJzFOjrPUgNUd0Ue2SyXzNhaFjfS/Hu5GVJPT1olqXOID0m\n+eAsV2LZBAgQINA5gXndE/uEbPm+Lba+npL3zORbLeqqQoAAAQJjBPp6BqnZlI9kZP/ETbGN\niCEBAgQIzFNgXvfEHpiNukWLDbt36rw/0UFqgaUKAQIECMxOwD1Is7O1ZAIECHRZwD2xXd47\n2kaAAIFVCPT9DNK4Td46E387uVVycvKZpEulznbt1KUGaUsnBeqJVx4L3Mldo1EEriHQ53ti\nHY+usStn/qIe9/7Dma/FCggQWNcC1cn416S+LLbuMXpQcoPk20k9WrXJ2zM+63utJjmDVO1t\n2mbIYqmfgRfn50QhQKA/Al35oljHo+4eVz7dnx9nLSWwvgX6fAapvqOorrWuBzHUNeDVEfpk\ncmHykKTOHv1h8sKk/ijVU4a6ULZJIx6RfKwLjdGGTgrUlw7Xz4lCgEB/BPp4T6zj0fx+vp6e\nVfk6kPl5WxOBzRLoawepLgs4KHlw8oGBwPsyPCS5e/KFwbSXZnin5GFJVzpI1bSfJBfViEJg\njMDlY6aZRIBAPwTOSDMrTblrRu6SHN1M6NjQ8Wg+O8Ql0/NxthYCUxGom0v7WPZIo+u6748P\nNf6TGa9LC04cmlajJyS/PjLNSwIECBAgMA+Buvz7ufNYkXUQIECAwHQE+noG6TvZ/OrcPTr5\n5+Q6ySOTugfpvsl/JE25V0a+3bwwJECAAAECUxQ4IMta7uzQrplfx6ZTBus8PsNnDcYNCBAg\nQKCDAn3tIJ0by39J3pQ8IdkvqbNH/yv5p+R1yUnJo5LfT1z3GwSFAAECBKYuUE8lqw/sfiOp\ny7tHv3/otplWH+J9Jaly+sZ//UOAAAECnRXoawepQJ+U/L/kAUmdMXpF8n+TOyZ171GVupfj\nOclx9UIhQIAAAQJTFjgny6vjzsuTxyf1AKHXJ015UUbqwUGHNhMMCRAgQKDbAn3uIF0W2hcM\nMqx8r7yoe5RuntTjv89LFAIECBAgMCuBS7PgpyX1Ydxbkt9L6uqGsxOFQAnUmcTbJ3W1izJ7\ngSuzivsmX579qqxhEQX63EFabn+cmZkVhQABAgQIzEugHvV9QFKXetc9R3+SKARKYIekrmp5\nTL1QZi5wTNaw28zXYgULK7CoHaSF3WE2jAABAgQ6LVBXLTw0eWLy1qQeo/2DRCFwRQg+iGEu\nAnUGSSGwaoG+PuZ71RvsjQQIECBAYA4C9RChuqyqLvH5+hzWZxUECBAgMCUBZ5CmBGkxBAgQ\nIEBgRKCeaHfwyDQvCRAgQKDjAs4gdXwHaR4BAgQIECBAgAABAvMT0EGan7U1ESBAgAABAgQI\nECDQcQEdpI7vIM0jQIAAAQIECBAgQGB+AjpI87O2JgIECBAgQIAAAQIEOi6gg9TxHaR5BAgQ\nIECAAAECBAjMT0AHaX7W1kSAAAECBAgQIECAQMcFdJA6voM0jwABAgQIECBAgACB+QnoIM3P\n2poIECBAgAABAgQIEOi4gA5Sx3eQ5hEgQIAAAQIECBAgMD8BHaT5WVsTAQIECBAgQIAAAQId\nF9BB6vgO0jwCBAgQIECAAAECBOYnoIM0P2trIkCAAAECBAgQIECg4wI6SB3fQZpHgAABAgQI\nECBAgMD8BHSQ5mdtTQQIECBAgAABAgQIdFxAB6njO0jzCBAgQIAAAQIECBCYn4AO0vysrYkA\nAQIECBAgQIAAgY4L6CB1fAdpHgECBAgQIECAAAEC8xPQQZqftTURIECAAAECBAgQINBxAR2k\nju8gzSNAgAABAgQIECBAYH4COkjzs7YmAgQIECBAgAABAgQ6LqCD1PEdpHkECBAgQIAAAQIE\nCMxPQAdpftbWRIAAAQIECBAgQIBAxwV0kDq+gzSPAAECBAgQIECAAIH5Ceggzc/amggQIECA\nAAECBAgQ6LiADlLHd5DmESBAgAABAgQIECAwP4Gt5reqma1p2yz5wGT3ZNfk6uTC5GvJqYPX\nGSgECBAgQIAAAQIECBBYXqDPHaRq+4uSJyc7LbGZX8r0JySnLDHfZAIECBAgQIAAAQIECPxC\noM+X2L0xW/GU5E3Jbye3SHZJ9kzqjNKjkh8mJyd3SRQCBAgQIECAAAECBAgsK9DXM0g7ZKsO\nSw5Kjh+zhWdmWl1i9+7kmOQxyYmJQoAAAQIEZiXgku9ZyVouAQIE5ijQ1w7SPjGqe40+1sLq\nhNQ5vEU9VQgQIECAwGoEXPK9GjXvIUCAQEcF+nqJXZ0dOi85ZAXXOmjVpXbfXKGe2QQIECBA\nYLUCLvlerZz3ESBAoIMCfT2DdFUsX5ccnTw2OTY5Jzk/2TqphzbcPHlcsl9yt0QhQIAAAQLT\nFnDJ97RFLY8AAQJrLNDXDlKxvTA5KTkyGXcm6YpMr3uQDk3qjJNCgAABAgSmLeCS72mLWh4B\nAgTWWKDPHaSi+0iyf1JPrtsr2T65ODlrkEszVAgQIECAwKwEhi/5fs8yK6njrUu+lwEyiwAB\nAl0R6HsHqRzrqUE3TnZOmi+K3S3jtW2+KDYICgECBAjMTMAl3zOjtWACBAisjUCfO0jVdl8U\nuzY/N9ZKgAABAr8UcMn3Ly2MESBAoPcCfe4g1VODHp4clRyXnJtckGyTNA9p2JDx+qLYeya+\nBykICgECBAjMRMAl3zNhtVACBAjMX6CvHaR5PTXoZdkl9TS8lUpd5nejlSqZT4AAAQILLeCS\n74XevTaOAIH1ItDXDtK8nhp0Rn4Q6rHhK5W6Bv2ylSqZT4AAAQILKeCS74XcrTaKAIH1KtDX\nDtK8nhr0mpY/GE9MvR+1rKsaAQIECCyWgEu+F2t/2hoCBNa5QF87SJ4atM5/cG0+AQIEOiIw\nr0u+P5TtPaDFNl83deprLxQCBAgQWKVAXztItbmeGrTKne5tBAgQIDA1gXld8v3StPgmLVr9\nT6lzdot6qhAgQIDAEgJ97iDVJnlq0BI71mQCBAgQmIvAvC75/nTLrXl96rkntiWWagQIEBgn\n0PcOUm1TPdK7HqZQqXKP5P7JWcnnkvMShQABAgQIzELAJd+zULVMAgQIrKFAnztIN4vb3yU7\nJ/dOtk/em9wnacrVGXlmckQzwZAAAQIECExZwCXfUwa1OAIECKylQJ87SK8KXF2P/dwB4Csz\nvHvy/OSYpG6cfVRS03+YHJ0oBAgQIEBgFgIu+Z6FqmUSIEBgDQT62kH6tVjdL6kzR58duD00\nw7cn9UleU07MyH5JzdNBalQMCRAgQGBWAsOXfG+dldRx6r7J55NTEoUAAQIEOi5wrY63b6nm\n/XpmVNvr5tgqWyZ1Hfhn6sVI+Whe7zsyzUsCBAgQIDAtgToePS/5UnJscuekLv/+XlJnlo5K\nvprUk+gUAgQIEOi4QP1R72P5Rhp9afLspDpHda/Rh5MNyXDZLi8ek/yf4YnGCRAgQIDAFAXq\nUu4XJhcnd00+kLwpOSd5dFIdpnr89nOShycKAQIECHRYYKsOt225pl2RmU9N3pLcPnlDUvck\nvSM5KalL7erShscm+yR/mCgECBAgQGDaAvVB3OHJ45K6lLu+qPX9yUOS30zq0roqdXbpZsmG\n5N8ShQABAgQ6KtDXDlJxvjU5N/mL5N+T4XKnwYv/yPBJybeHZxonQIAAAQJTEjggy7l2Up2i\nKpck1VGq41DTOcroxlJPWv2TwbgBAQIECHRUoM8dpCKty+oquyV7JHVv0tbJmcl3k7MShQAB\nAgQIzEqgLqOry9XvnRw3WEl1lurLWptLwAeTNz5cqO5LUggQIECgwwJ97yA1tHWAqny5mWBI\ngAABAgTmIFAdnuoYvTP55+RZyUVJnUVqSp1N+tvkd5OHNRMNCRAgQKCbAvWpl0KAAAECBAis\nXuAReWt1gB6U1D2yo+XQTLhv8ufJ+0Znek2AAAEC3RLQQerW/tAaAgQIEOifwM/S5H9IbrVE\n01+R6fXY7xoqBAgQINBxgUW5xK7jzJpHgAABAutAoO47GlfcdzROxTQCBAh0VMAZpI7uGM0i\nQIAAAQIECBAgQGD+AjpI8ze3RgIECBAgQIAAAQIEOiqgg9TRHaNZBAgQIECAAAECBAjMX0AH\naf7m1kiAAAECBAgQIECAQEcFdJA6umM0iwABAgQIECBAgACB+QvoIM3f3BoJECBAgAABAgQI\nEOiogA5SR3eMZhEgQIAAAQIECBAgMH8BHaT5m1sjAQIECBAgQIAAAQIdFdBB6uiO0SwCBAgQ\nIECAAAECBOYvoIM0f3NrJECAAAECBAgQIECgowI6SB3dMZpFgAABAgQIECBAgMD8BXSQ5m9u\njQQIECBAgAABAgQIdFRAB6mjO0azCBAgQIAAAQIECBCYv4AO0vzNrZEAAQIECBAgQIAAgY4K\n6CB1dMdoFgECBAgQIECAAAEC8xfQQZq/uTUSIECAAAECBAgQINBRAR2kju4YzSJAgAABAgQI\nECBAYP4COkjzN7dGAgQIECBAgAABAgQ6KqCD1NEdo1kECBAgQIAAAQIECMxfQAdp/ubWSIAA\nAQIECBAgQIBARwV0kDq6YzSLAAECBAgQIECAAIH5C+ggzd/cGgkQIECAAAECBAgQ6KiADlJH\nd4xmESBAgAABAgQIECAwfwEdpPmbWyMBAgQIECBAgAABAh0V0EHq6I7RLAIECBAgQIAAAQIE\n5i+w1fxXOfU1bpslHpjsnuyaXJ1cmHwtOXXwOgOFAAECBAgQIECAAAECywu07SBtl8Vsufyi\nrjH3kmu8ms2LavuLkicnOy2xii9l+hOSU5aYbzIBAgQI9Eugi8ejfglqLQECBAgsK9C2g3R2\nlrLDskv65cyfZbQOYLMub8wKHp4clRyXnJtckGyTVIfp5smG5OTknsmJiUKAAAEC/Rbo4vGo\nEXVFQyNhSIAAgR4LtO0gPSPb+IakOiKVHyZ1Sdvjkjsmf51Ux6jKFZsGM/23OmuHJQclx49Z\n05mZVpfYvTs5JnlMooMUBIUAAQI9F+ja8ag4XdHQ8x8qzSdAgMBqBKpz8edj3lgPefjv5GVj\n5s1y0m2z8OqItengPSn1/nOWjcmyL04ObrmO6kg+oGVd1danwAez2a9Yn5tuqwmsKNC141E1\n+M3Jj5I6Fv5WUlcw3CjZI7lN8sikPly8LLlLMsvieDRL3dUvu/6u175R5iMwye/BfFpkLQsn\nUGdrrkp2XmLL6tO8utdnnqU6Zuckj1hhpdWBOiF5xwr1Nnf2JL+IOkibq73479dBWvx9bAtX\nJ9DF41G16cqkzQdfdUXDq1a36a3f5XjUmmquFXWQ5so90QfX822ZtfVCoM0ZmPpjW/f23CEZ\ndznbnTL9jGSepTpsr0uOTh6bHJtUh+n8ZOukuQepLgHcL7lbohAgQIBAvwW6eDzaJ6T19NSP\ntaCtD+wOb1FPFQIECBDogcAb0sa67+ipyQHJnslvJm9J6pOz30nWojwwKz0tqYPTaC7PtOpA\nHZjMuvjEbtbC62v5ziCtr/1taycT6NrxyBUNk+2/9VrbGaT57vlJ/l8235ZZWy8E2pxBqg35\n06Tu+TmyXgyVczNeZ2k+PjRtnqMfycr2T6rDtleyfVK/FGcNcmmGCgECBAgsjkDXjkeuaFic\nny1bQoAAgVUJ1KVr90kOS+6ZXC9RPKTBz8B0BZxBmq6npS2mQNeOR65oWMyfs2ltlTNI05Js\ntxxnkNo5qbWEQNszSM3bb5mRWyT1oIHPJHdMvpysZdk2K6/L6HZPdk3qUrsLk68lpw5eZ6AQ\nIECAwAIJdO145IqGBfrhsikECKxvgbYdpBuEqZ6+U5+QVflY8s7kxOT1ybOS6jTNs1TbX5Q8\nOalPEseVL2XiE5JTxs00jQABAgR6J9DF41GDWB/Y3TjZOWk+sNst43W88oFdEBQCBAj0QaBt\nB+mIbEx9WveY5DeSuyeXJE9LXpF8MnlPMs/yxqzs4clRSX2/xLlJPW1vm6Q6TPU9FBuSk5O6\nHLA6c5OWenxrZaWy5UoVzCdAgACBqQh08XjkA7up7FoLIUCAQH8E6gk91RlqvuOhvjD2o0PN\nf03G3zr0eh6j1Wm5MmnatNw6N+d7J76eBY8+HW+p189crhFD8+pMW5t2D73F6DoT+GC2tz54\nUAgQuKZAF49H1cI3J74o9pr7yqtrCtTf9bovRpmPgHuQ5uO8sGtpcwZp52z9dsl3l1Co6XVm\naZ5lXt87UWeedmyxYXUJXz1uXCFAgACB2Ql08XhUH9jVg4sOSo4fs+lnZlrdE/vupD6wq+Pl\naq5ouEXet3uyUqlOZEUhQIAAgVUKtOkg/SDLPj+px3k/b2Q9dWlZ3ePzlZHps35ZB5vzkkOS\n5S7tq+17VPLNZDXlwrypslKps0oKAQIECMxWoIvHo3l9YPf20N6+JW+1SSFAgACBVQq06SDV\nov8xeX5yk6Q6A9dLnpRsSOp7iKqTNM/ieyfmqW1dBAgQ6I5A145H8/rA7o4td0FdWvTtlnVV\nI0CAAIExAm07SC/Ne6+f/FmyzWA5d82wziz9UfK5wbR5Dl6YlZ2UHJnUmaTRckUm1CUNhyZ1\nAFMIECBAoP8CXTse+cCu/z9TtoAAAQLXEGjbQXpB3vUfySuTWyd1HfR3k+p41KdVa1U+khXX\nGaw9k72S7ZNqz1mDXJqhQoAAAQKLI/CCbErXjkc+sFucny9bQoAAgY3fzbASww1S4S+T6mx8\nMvlE0rVyRhpUaUqd3bpLcnQzwZAAAQIEei/Q5eORD+x6/+NlAwgQILBJoM0ZpJ+k6reS2yT1\nUIa6B6nr5UFp4EMSHaSu7yntI0CAQHuBPhyPRj+wa791ahIgQIBAJwTadJCqQ3RU8qLkq8lX\nknOS4VKX2v3r8IQZjx+Q5S/X+alvMK9PGk8ZtOP4DJ81GDcgQIAAgX4KdPF41EjW12HcIalH\nbJ+c/DQZLffJhJ8nnx2d4TUBAgQIdEegTQepWvv05GdJ3XtUGS3HZsI8O0g/zPrqIPQbyReS\nOsM1XG6bF9dJqjNX5fSN//qHAAECBPou0LXjUXnWh3bvT/atFyn1NRR/mhxTL4bKX2T8gkQH\naQjFKAECBLom0LaD1PzR70r76wxWPfL05cnjk7clr0+aUme76hK7eoKdQoAAAQKLI9C141Fd\nel7HoMuTDYPhkzN8V7JP8rJEIUCAAIEeCbTtIHVxk+qhEU9Ljkvekvxe8oTk7EQhQIAAAQLz\nENg7KzkwuX9yQlKlLgF/cVKPJD8/eVOiECBAgEBPBOoytXFl50zckOw0bmbHptWTg+ryhrqu\nu+45ekSiECBAgMBiCHT9eLRbmOu7kOpy7+HyvLx4dVJXNzxgeIZxAgQIEOi2wFIdpJum2XVW\npr5fqCk3zMgLk5rXtVLXez80eW7y1uRJiUKAAAEC/Rfo+vHo9BDXsbQu6x4tz8yEujep7kWq\nBzgoBAgQINADgaU6SOOaXh2kv07qmuqulrqMoR7Q8OXk611tpHYRIECAwGYJdOl4VJd1fzA5\nMnlN8utJU+rM0mOTOrv0qeRWiUKAAAECHReYpIPU8U35RfPqiXYHJ3/wiylGCBAgQIDA7AQe\nn0V/Ojk82W9kNZfl9cOSdyd1OZ5CgAABAh0X6PNDGjpOq3kECBAgsE4E6jLvQ5Idk7ofdrRc\nkgnViar7kW40OtNrAgQIEOiWgA5St/aH1hAgQIBAfwUuWqHpJ60w32wCBAgQ6IDAIl5i1wFW\nTSBAgAABAgQIECBAoI8CK51B+kw26srBhjWdqffl9RUjG/v+vK7LBxQCBAgQIDALAcejWaha\nJgECBAj8isBSHaS6nvrtv1J76QknLz3LHAIECBAgsGoBx6NV03kjAQIECKxGYKkO0rezsD9c\nzQK9hwABAgQITFHA8WiKmBZFgAABAisLNJfNrVxTDQIECBAgQIAAAQIECCy4gA7Sgu9gm0eA\nAAECBAgQIECAQHsBHaT2VmoSIECAAAECBAgQILDgAjpIC76DbR4BAgQIECBAgAABAu0FdJDa\nW6lJgAABAgQIECBAgMCCC+ggLfgOtnkECBAgQIAAAQIECLQX0EFqb6UmAQIECBAgQIAAAQIL\nLqCDtOA72OYRIECAAAECBAgQINBeQAepvZWaBAgQIECAAAECBAgsuIAO0oLvYJtHgAABAgQI\nECBAgEB7AR2k9lZqEiBAgAABAgQIECCw4AI6SAu+g20eAQIECBAgQIAAAQLtBXSQ2lupSYAA\nAQIECBAgQIDAggvoIC34DrZ5BAgQIECAAAECBAi0F9BBam+lJgECBAgQIECAAAECCy6gg7Tg\nO9jmESBAgAABAgQIECDQXkAHqb2VmgQIECBAgAABAgQILLiADtKC72CbR4AAAQIECBAgQIBA\newEdpPZWahIgQIAAAQIECBAgsOACOkgLvoNtHgECBAgQIECAAAEC7QV0kNpbqUmAAAECBAgQ\nIECAwIIL6CAt+A62eQQIECBAgAABAgQItBfYqn3VztbcNi07MNk92TW5Orkw+Vpy6uB1BgoB\nAgQIECBAgAABAgSWF+hzB6na/qLkyclOS2zmlzL9CckpS8w3mQABAgQITEvAB3bTkrQcAgQI\nrKFAnztIb4zbw5OjkuOSc5MLkm2S6jDdPNmQnJzcMzkxUQgQIECAwLQFfGA3bVHLI0CAwBoK\n9LWDtEPMDksOSo4f43dmptUldu9Ojkkek+ggBUEhQIAAgakL+MBu6qQWSIAAgbUT6GsHaZ+Q\n1b1GH2tBd0LqHN6inioECBAgQGBSAR/YTSqmPgECBDou0Nen2NXZofOSQ1bwrQ7go5JvrlDP\nbAIECBAgsBqBST+w+63VrMR7CBAgQGB+An09g3RViF6XHJ08Njk2OSc5P9k6ae5BelzG90vu\nligECBAgQGDaAsMf2L1nmYX7wG4ZHLMIECDQJYG+dpDK8IXJScmRybgzSVdket2DdGhSBzCF\nAAECBAhMW8AHdtMWtTwCBAissUCfO0hF95Fk/2TPZK9k++Ti5KxBLs1QIUCAAAECsxTwgd0s\ndS2bAAECcxboewepuOp7J26c7Jw0XxS7W8Zr23xRbBAUAgQIEJi5gA/sZk5sBQQIEJiPQJ87\nSNV2XxQ7n58TayFAgACBlQV8YLeykRoECBDovECfO0i+d6LzP14aSIAAgXUh4AO7dbGbbSQB\nAutFoK8dpHl970R9f9J+LX4Y6sl5df+TQoAAAQLrT8AHdutvn9tiAgQWWKCvHaRJv3ditV8U\nu2/2fT0EYqVS3ydVl1YoBAgQILC+BOb1gd1fhLXN8Wib1KuvulAIECBAYJUCfe0gzet7J57d\n0rWenPeDlnVVI0CAAIHFEZjXB3bXDllFIUCAAIEZC/S1g+R7J2b8g2HxBAgQINBKYF4f2L24\nVWu22OJhqXdBy7qqESBAgMAYgb52kGpTfO/EmB1qEgECBAjMVcAHdnPltjICBAjMXqDPHaTS\n8b0Ts/8ZsQYCBAgQWF7AB3bL+5hLgACBXgn0vYO0XbTvkNRDEk5OfpqMlvtkws+Tz47O8JoA\nAQIECExJwAd2U4K0GAIECKy1QJ87SAcE7/3JvgPE8zL80+SYwetmUE/+qeuxdZAaEUMCBAgQ\nmJXAGVlwRSFAgACBngrUmZc+li3T6Lcllycbkscm/5W8K3lOohAgQIAAAQIECBAgQGBigb6e\nQdo7W3pgcv/khKTK0cmLk5cm5ydvShQCBAgQIDBLgetn4TedYAUXpe53J6ivKgECBAjMWaCv\nHaTd4lRPDvrCiNfz8voGyeuTusTh+EQhQIAAAQKzErhNFvy5CRb+7tR91AT1VSVAgACBOQv0\ntYN0epzq8sCHJP+aDJdn5sWNk7oX6XeGZxgnQIAAAQJTFvh8lvdHyVHJp5NXJMuVc5abaR4B\nAgQIrL1AXztIZ4fug8mRyd2Sv0++n1SpM0t1T9KxyaeSi5PPJAoBAgQIEJiFwFuy0Lo3ti7t\nfknyiUQhQIAAgZ4K1FmYvpbHp+H1ad3hyX4jG3FZXte3idelDHU5nkKAAAECBGYp8OYs/KNJ\n3QerECBAgECPBfp6BqnI67HehyQ7JvU9R6PlkkyoTlTdj3Sj0ZleEyBAgACBKQvUvUX7JHVs\nvWLKy7Y4AgQIEJiTQJ87SA1RPRFouXLScjPNI0CAAAECUxKo49FXprQsiyFAgACBNRLo8yV2\na0RmtQQIECBAgAABAgQILKqADtKi7lnbRYAAAQIECBAgQIDAxAI6SBOTeQMBAgQIECBAgAAB\nAosqoIO0qHvWdhEgQIAAAQIECBAgMLGADtLEZN5AgAABAgQIECBAgMCiCuggLeqetV0ECBAg\nQIAAAQIECEwsoIM0MZk3ECBAgAABAgQIECCwqAI6SIu6Z20XAQIECBAgQIAAAQITC+ggTUzm\nDQQIECBAgAABAgQILKqADtKi7lnbRYAAAQIECBAgQIDAxAI6SBOTeQMBAgQIECBAgAABAosq\noIO0qHvWdhEgQIAAAQIECBAgMLGADtLEZN5AgAABAgQIECBAgMCiCuggLeqetV0ECBAgQIAA\nAQIECEwsoIM0MZk3ECBAgAABAgQIECCwqAI6SIu6Z20XAQIECBAgQIAAAQITC+ggTUzmDQQI\nECBAgAABAgQILKqADtKi7lnbRYAAAQIECBAgQIDAxAI6SBOTeQMBAgQIECBAgAABAosqoIO0\nqHvWdhEgQIAAAQIECBAgMLGADtLEZN5AgAABAgQIECBAgMCiCuggLeqetV0ECBAgQIAAAQIE\nCEwsoIM0MZk3ECBAgAABAgQIECCwqAI6SIu6Z20XAQIECBAgQIAAAQITC+ggTUzmDQQIECBA\ngAABAgQILKqADtKi7lnbRYAAAQIECBAgQIDAxAI6SBOTeQMBAgQIECBAgAABAosqoIO0qHvW\ndhEgQIAAAQIECBAgMLGADtLEZN5AgAABAgQIECBAgMCiCuggLeqetV0ECBAgQIAAAQIECEws\noIM0MZk3ECBAgAABAgQIECCwqAI6SIu6Z20XAQIECBAgQIAAAQITC+ggTUzmDQQIECBAgAAB\nAgQILKqADtKi7lnbRYAAAQIECBAgQIDAxAI6SBOTeQMBAgQIECBAgAABAosqoIO0qHvWdhEg\nQIAAAQIECBAgMLGADtLEZN5AgAABAgQIECBAgMCiCuggLeqetV0ECBAgQIAAAQIECEwssNXE\n7+jeG7ZNkw5Mdk92Ta5OLky+lpw6eJ2BQoAAAQIEZirgeDRTXgsnQIDAfAT63EGqtr8oeXKy\n0xJcX8r0JySnLDHfZAIECBAgsLkCjkebK+j9BKYvcMMssj48V2YvcFFWcensVzO/NfS5g/TG\nMD08OSo5Ljk3uSDZJqkO082TDcnJyT2TExOFQB8Edkkj62zo/+pDY7VxzQT+M2v+1zVbuxUP\nCzgeDWsYJ7D2AtdNE/5l7ZuxblrwmWzpby3S1m7Z043ZIe2uztBByfErbMMxmX9W8j9WqDdu\n9kmZePtxM0am1b1cT0teOzJ93MufZOJ2SV0KqBAYJ1A/T3393Ry3PabNRuDLWeydZrNoS51A\nwPFoAqx1XLX5u37lOjaY56Zfe54rs64tFu541NczSPvkh7E6GB9r8UN5Quoc3qLeuCobMrHN\n6dk9Uu+d4xYwZtrdM+1GY6abRKAR2DkjP0uqM60QWErg9KVmmD5XAcejuXL3dmV1f1pd8nV2\nb7egXw2/SZp7ZnJVv5rd29ae3tuWL1jD65OYc5JHrLBd1QGsDtI7VqhnNgECBAgQWI2A49Fq\n1LyHAAECHRbo6ynIOntU15cekdQlcDVeZ3rq3qP6NO+2yYOTuuStnnC3Ial7lBQCBAgQIDBN\nAcejaWpaFgECBAhstsADs4TTkjpAjebyTDs6qQ6SQoAAAQIEZingeDRLXcsmQIDAHAUW5Ubw\nPWO2V7J9cnFSD2WoLNQjB7M9CgECBAh0W8DxqNv7R+sIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgMCEAotyid2Em72m1X87a69HOCubBOoJUPXYcw/R+OVPxI4Z/XniEtFfmtw4\no3XZrLJJ4DoZXJLUl8UqBFYr0NfjUT2UqW+Py946bb5Bcv5qd9Yava+vx6P6GamnHdf96X0q\nfTzWLeTxSAdp/r829SVx1SlQCBAgsDkCF+XN9b0qCoHVCjgerVbO+wgQGBZYuONRX78odnin\n9G28nq5X39/00b41fEbtfXiW+49JPWRD2STw3gz+O/lLIBsFqhNQZ4/umPzXxin+eWoIHouB\nwGYK9PF4dKds86eT5szGZhLM7e3PzJoeltxzbmuczor6ejz6YTb/0OTD02GYy1LqqctfTHZJ\n6oFjfSkLeTzSQVqbH786KLnMbpN9WVThscmh/q1v/q5PdpmUxqbLDWt4WcKkJLbY4opNA/8S\n2GyBvh2P6u9AlboMuU9/D+p3ti736lOb09xeH4/8bNcenH1ZyOORS71m/4NjDQQIECBAgAAB\nAgQI9ERAB6knO0ozCRAgQIAAAQIECBCYvYAO0uyNrYEAAQIECBAgQIAAgZ4I6CD1ZEdpJgEC\nBAgQIECAAAECsxfQQZq9sTUQIECAAAECBAgQINATAR2knuwozSRAgAABAgQIECBAYPYCOkiz\nN7YGAgQIECBAgAABAgR6IqCDNP8ddUZWed78V9vZNf4gLft+Z1u3Ng07O6s9Z21W3cm1Xjrw\nqG/qVjYJ1M9HfXmuQmBzBPp4PLogG1w/+8136G3O9s/zvecO2j3PdU5jXX09HvXxZ/vC7LDy\nru/46lNxPOrT3tJWAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCw\nLgXunK1+XXJa8uHk4KTP5ZZp/PeTW43ZiF0y7S+TLycnJS9Irp0Mly3z4g+Tf09OTd6W7JkM\nlzZ1qv5a2u6Y9b8i+T/J95KPJQclo6VNG9vUmZbtaPum+frALKz263eTTyXPSmpfDpc2+7ZN\nnVrmtNyG2zfL8Tdk4f8xZgVt9m2bOtN0G9NMkxZAoM3vzKw28y5Z8EfG5HkjK2zTxja/D23q\njKx6IV4+I1tRx99xpf4+j9sHw3+np+Xf9u/RuHZ2fdpt08B/S76VfDOp/8fsnQyXZ+fFOOvf\nGqrU1qjNPmlTZ2jVRgmsrcBNsvofJ+9MHpW8KbkiOSTpY9kjja6O3tVJ/Wd4tJyQCf+dHJr8\nWVLb/i/JcHlyXvwsqY7U45LqTH032SVpSps6a2m7VRr6xeT85FXJE5KPJuXymKQpbdrYpk4t\nb1q2TdumPbxuFnhWUgfmJyYvS2r/V6dguLTZt23qTNNtuH2zGv/9LLh+Pk4Zs4I2+7ZNnWm6\njWmmST0XaPs7M6vN/PMs+NLkPSOpD1Ka0raNbX4f2tRp1rsow/q/Rf0fo/7TPlr2yYT6G/SJ\nZHQf1H/Uq0zTv83fo01r7de/9eHwJUn9LX9m8lfJd5IfJrslTan/25yWjFrfvamQYRujNvuk\nTZ2h1RolsPYCH0gTvjLSjPrU4Wsj07r+sv541i/yj5KLkvojO9pBOnQwff8Mm9L8p/AWgwn1\nx6OWUZ2jpuyQkYuTvx5MaFOnqq6l7YOz/jKobW5KGf3f5BvNhAzbtLFNnWnZDjVt6qO1T+ug\ncaOhJb8k45cntY+rtNm3berUsqblVsuadakPFi5IzkpOGVlZm33bps403Uaa6OWCCLT5nZnl\npr4jC//sCito08Y2vw9t6qzQlF7N3jGt/eekjkt1jB7XQXroYP7uGS5VpuXf9u/RUu3o8vQ6\nW/SzpMybcpuMlP3fDibUh6hV5xmD1+MGbY3a7JM2dca1wTQCayJwg6z1ymT407FqyCFJ/SKN\nu0St5nex3DaNqk+lXpM8JKn2H5gMl+Py4sThCRnfJrk4eUFSZUNS790rGS5H58V/DSZsyHCl\nOmtte5+08U3J9ZPh8sa8qO2t0qaNberUsqZlW8uaVTkgC/6dkYU/J69rX95kMH3D4PW89n8b\nt0HTZjaojnNdfvn2pM6mnpIMlzZtbFNnQxba9d+b4e02Pl+Btn9rZtmq+gDpiGVW0LaNbX4f\n2tRZpim9m1UfRv0g+YPkn5JxHaQXZnp9SLNUmab/hqxkpb9HS7Wj69OfnQbW2dDhcq28OD95\n82DirTOs7f/Nwetxgw2ZuJJRm33Sps649Zu2hEDtTGW2AnWvTjl/a2Q13x683nNkepdfnpnG\n3Tx5anLpEg2tPwij2/rzTKv3NttancI6o/DdZLjU+yaps9a2H0t7n5j8ZGgjts54fUL3lcG0\nNm1sU6cWNy3bQdNmMqj/+H98sORrZ3iPpC6z/ETyvaTKvPd/G7dNLZvdv2VQZ1Xrd2dcadPG\nNnXa2Lb9eRvXTtP6LbDW+74uwb1Zclny0qT+Th6b3DtpSts2tvl9aFOnWe8iDI/ORuyd1HCp\nUh90np48Nflk8umkPsCtv9dVpunf5u/RprX2799XpMkvH2n2/fJ6p6Q5/t9uMH/vDOvDsZpe\nH6AOn71rY9Rmn7Spk1UrbQV0kNpKrb5ec/r1vJFF1KU2Ver0al9KbcO3V2hsbW99gjJaLsyE\nZluXqlMm9SnI9ZK2dVJ1iy7ZviTtqT+Qf1kNS2mz/9vUaZY1DduNDZvxP/W3pT7J/ExSlxhU\np7EpbfftuG0d/RmpZa60/5da3/DPZNO2WQwPzEJfnGxILkrGlTZt3Jw6q3Eb107T+i1QP0NV\nVvqd2VRr+v8ekEXW34bHJ9VZqg9O7prUh02PSaq0bePm/D7M63d/0xbN79+vZ1V1ifNy5baZ\nebfkXkl9mFXH3PrP/jFJlXn4D/892rTW/v+7QzahHOuD3n8ebE5ZV6kOaE3/TrIh+Woy6f+H\n8pZlf2/b7rdajtJCYKsWdVTZPIE6dVqlzpgMl+Z1HSQWqdT21qeDo6W2d3hbl6pT72vqrVSn\nS7Zbpt3VOfqfSV1S9tmkSps2tqnTLGspk8as6i1Vp+ZVvZ/WyIxL/W15bHKz5PDkpORBSR0k\nqqzUxjZ1pu22sWFT/mfbLO9fk6OS5szauFXUtixl0uzbNnVq2Ustp+bVstq6VX1lsQTWet/X\nhx4vSI5J6lK7Ks9NTk1endT0tm1s8/vQpk5WuW5KHafK+YzkXYOtfmGGRyRPT+6bTNM/i1vx\n79E8jkfVjlmWG2XhH0j2TH4naTqp9Te/fub/V1JX0lSpqyrqg8O/Tf44qTKNv9lt99umNfp3\nRYH6JEeZrcDZg8XfcGQ1dZahyo83DRbm37OyJc22DW9UTWu2dbk69Z6q16ZOV2yvk/a+Lanr\nkesg8/KkKW3a2KZOLW85k0lsm7bNclh/8D+SvDp5cHKz5NCkynLbUfOnvf+XW1/jVuudRfm7\nLHTn5J3JbQapvwXVcarXNa9KmzZubp1aT21v25+3qq8slsBa7/v6gKT+Y9h0jkq3/la8I6nf\nhZsmbdu4ub8Ps/7dz6Z0rtR/ov8haTpHTQPfOhi5a4bz8q9VLsI+qJ/ZzyfVObpX8pWkKcdl\n5CVJ0zmq6fXh6beTsq6y3M9xzW/7N7vtfqtlKi0EdJBaIG1mlfrhr7L7psEv/t1tMFanXBep\n1PY22za8XbvmRbOtVef6gwzXKaOaV39M2tap96+lbf1H933JQ5NHJEcmw6W2o8pybWxTp5ZR\n9aZhW8uaVbldFnzrkYWfltf1H6J7Dqa33bdtfkZqkcvZ1vw2blVvFqW2uX72v5h8dZCDM9xv\nMP6YDKu0aWPbOtNy29Qy/y6SQP0MVVnpd2ZTren/u0sWWX8jRkt9yt6Utm1s+/uw0t/MZr3r\nYbhdNrI+mGkux2q2+YJmJMNp+6/092ho1b0bvVVaXGeDfpbcLam/8cPlZnmx7/CEwfjoz/tK\nRm32SZs6Y5piEoG1FfhyVl//iR4ur8yL+iWp/2D3sdw/ja5Pow4cafxz8rpOL99gaPrdM151\n6xKrKvWfwyuTP6gXg1Kn/s9I3jp43aZOVV1r2w+nDXVwuXM1ZonSpo1t6kzLdolmTmXyl7KU\n6ghvNbS0OkBclbxpMK3Nvm1TpxY3LbdB06Y+2CtLvPlI3p/Xpw6m3TDDKm32bZs603Tb1DL/\nLppAm9+ZWW3zX2bBdSyoy4yGS7XpvKT5u9GmjW1+H9rUGW7HIo3/UzbmmyMbtH9el/8RI9PL\nqabXcb3KtPzb/j3atNZ+/bt3mls/s59Ktk/Gla9k4neTusqkKXU8LOvaP1XaGrXZJ23qbFqr\nfwl0RKA+Jb4ieUpSn9w8MqlOxGFJX8tSHaTavouT9yQ3Tn4jqU9VPpgMl/fmxfeSuyZ1aUWd\nebkwGf5ks02dtbT9w7S3/tC9M/njMblWplVp08Y2daZpu6ll0//30CyyTF6d7J08IPl0Uj/v\nt0ya0mbftqkzTbembbMe/ktWcMrIStrs2zZ1arHTchtpopcLItDmd2ZWm7p3FnxRUh+k3Cup\nDw9en9TfjDo+NqVNG9v8PrSp06xz0YbjOki1jSckdd/PhmT35H8k5yafSJoyLf9aXpu/R816\n+zQ8No2t/9c9Nxk9/tdxr8qTk/rZfm2yb3JQ8vmk/o+0T9KUNkZt9kmbOs06DQl0RuAv0pI6\nDVu/LGcmL0n6XJbqINU2/WZSn5rUttZ/jOuXf49kuOyUFx9K6sxC1Tsp+b1kuLSpU/XXyvYT\nWXe1falsXY0blDZtbFNnWrZNu2YxfEYW+uOkcflGxkc/MW6zb9vUqfZPy62WNY8yroNU622z\nb9vUmabbPDysY/4CbX5nZtWq+ltQfxOavw91JcWTxqysTRvb/D60qTNm9b2f9E/Zgm+O2Yr6\nQPKYpPH/ecbfllwvGS7T8m/792h43V0fL8PGb9zw/UMb8OyMV4eoqVcfGN96aH6NtjVqs0/a\n1BlZvZcE1l6gTrPeNNly7ZsylxbcJGsZ/aM7uuIdMqHONC1X2tTpg22bNrapU1bTsl3OfXPm\n1aUy9enwrisspM2+bVNnmm4rNHnms9vs2zZ1puk28422grkLtP2dmVXDds+Chz9FH7eetm1s\n8/vQps64NizqtOtnw26RDH+QN7qt0/Rv8/dodP2L8rqOh/sn1RFarrQxarNP2tRZrh3mESBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIDJpDAABAAElEQVQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgACBdSBw3Tls47Wzjq3nsB6rIECAAIH+Cjge9XffaTkBAgR6L3DHbMGH\nk3OTq5NTklcmd05WU6oDdPCYNz4+076cXJpclnw1eXGyVTJcdsmLuw1PaDm+2ve1XLxqBAgQ\nIDBjAcejGQNbPAECBAisLPCMVLk8qc7KM5OHJi9P/ju5JLlHMml5Td7wf0be9Py8rs7Xccmz\nksOT9yU/S05Itkya8oOM/GXzYoLhat83wSpUJUCAAIEZCTgezQjWYgkQIECgvcCtU7U6R/87\nuc7I27bL65OSC5MDRuat9PJtqfCVoUrXynh1XqpDNFpelAnVcRo+W1WdptV0kFb7vtE2eU2A\nAAEC8xVwPJqvt7URIECAwBICdVndD5Mdl5i/W6ZfnPzT0PxXZ7zOMg2Xe+dF1an7ip6enJac\nn9S0WyU3SC5PjkhGy69lwsuTuyT1/nrPlcmXkiOTpuyTkX9MPpR8LHl9coukynLvu37mvyCp\nbf1A8uxktDOYSQoBAgQIrKGA49Ea4lv1+hSoT68VAgR+VaDu8zkhuehXZ22cck7+rTNB1Xlp\nyqEZqWvEh8tv5MUTk7qX6EfJz5Mrkup81b1G1cn6aPLkpDpDdbao+b2sjtSfJycmdSap3lPD\nnybnJVXulJyS3DX5YnJaUp20k5MbJUu9b6fMq0v9npn8v+Q/k/+ZfDoZve8pkxQCBAgQWCMB\nx6M1grdaAgQIEPilwK4ZrY7F3/1y0tixV2VqndGps0BVqjM1+p4/zbRa1nWTKqOX2NW0OpPz\n3qTqVerSvfcnhyVNZymjG8vopXJ1T9PpSV3215QHZqSW8+hmQoaj7zsy06qjttdQnZtnvN73\ntKFpRgkQIEBg7QQcj9bO3prXscDof77WMYVNJ/ALgW0HY3V2Z7nyk8ysByhs7mVptZyHJfsl\nT00+kfx28tbkI0md7VmqVP26xO7SpJ6Qd9Nkz6RKdbyWKr+XGZ9N6m9Avb9SZ7S+kTwgUQgQ\nIEBg7QUcj9Z+H2jBOhRwKc063Ok2eUWB76bG2cn+K9SsDs2pyQUr1Gs7+9up+NpB6nfz6Uld\ndvecQTL4lVJnjmp+dbDqDFCVr28aXOPpd4NJGwfVoatOVJ09+s7GKdf8xwcn1/TwigABAmsl\n4Hi0VvLWu64F/EdoXe9+G7+MwOcz737J8KVrw9W3z4vfSapeU+rytOp8DJflzv5UvScm309u\nWC+GSl3+9o/JZ5N7D00fHX1zJjw7eXdy32SH5OFJlS03DX7l33ooxE+To5Nq32jummkKAQIE\nCHRDwPGoG/tBK9aRgA7SOtrZNnUigVen9i7JS5LRjka9rjM71Rl5a9KUulSuHowwXG4z/CLj\nVyV1KVxTvpSRGyfj7vvZOtP3Sb6WNKU6Yc3vbS2nHsjwluRFyWeSutfoDkmV4fUMv6/mnZIc\nnFT9uuepcknyhuSxiUKAAAEC3RBwPOrGftAKAgQIEIjAI5J6CEPdB1Tjt01+P/lYUmdhDkmG\ny7/lRXU4HpbslzwvqTM11TlpHtLwmoz/OHlwUh2wKsckVec9yR8l90rqzNJXkqp7l6Qp52ak\nnnpXZ7eq1Hhd5vcbSa3joOS8pJb3rKQpo++rs01Vpx4GcY+k2vuWpNp/i0QhQIAAge4IOB51\nZ19oCQECBNa9QB2U6mxLdSYqdaalOhUPSkbLvplQZ4Saup/LeJ2NqdfVealyp+SHSU37k6RK\nnZH66+S0pDpkNa86KnVZxQHJcKlOVz0qvOr8WnLX5FNJva/yzaQesnBy8t6kKaPvq+mPTM5K\nallXJHUGqjqACgECBAh0T8DxqHv7RIsIECCwrgWqM1IPQWgub1sOY9fM3Hm5CplXy6uO0Wip\njlSt5zqjM4Ze16V3Owy9rtG6tK+yXBn3vqq/e7LTcm80jwABAgQ6I+B41JldoSEECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAgTkIbDmHdVgFga4JXCsNuteYRl2daVckP05OSy5JRsv+mbDn\nYOIXMxxXZ/Q9fX590zR+n+SbyRl93hBtJ0CAQAcFHI8m3ym3zlvqWPyT5ITJ3+4dBAgQIDBO\n4LqZWJ2h5VKdpFcm106GyxF50bzvlsMzFmz8oGzPuUPbWtv86WTfRCFAgACB6Qg4Hk3muEuq\n/yCpY1J9cKcQIECAwJQE2hyQmk7Qa0bWuR46SPfPNl+ZNAZ1Vq0Z/27Gt08UAgQIENh8Acej\nyQzfl+rN8UgHaTI7tQkQILCswPABqS6lq0vmKnsl+yVPSS5N6o/wT5Otk6bcPCP3G+R6zcQF\nGx6b7altr8sHfzupDtFbk5pWOTxRCBAgQGDzBRyP2hsemqrNcaiGOkjt7dScUGCrCeurTmDR\nBC7PBo3eW/OtTDsoeVBSB6/dkzpzUmW7ZIeNY1tsUdeOV9km+b2NY1ts8dUMv5PcI7l7Up2M\nTyY1fbTcLhOqzh5JdcROT6pzUpf3LVd+LTMPW67CYN45GR7dot5olZMy4edJdR4/NZj5tgyb\nde46mGZAgAABAtMTcDxa2rI+xHz1YHZ1jrZcuqo5BAgQILAageFP7L4xZgHV4akOUf0Rrk7C\ncBl3iV1dE111K89PPjj0uqbV5Wp/ljSl/rD/76R5z/DwR5leN58uV+oG1eH3LDX+peUWMsG8\nau+bhtZZnTqFAAECBDZfwPFoZcM6Bp2Q1LHuM8nJg3FnkAKhECBAYFoCwwekC7LQ1w1yVIZv\nTerMS/0hrrM6zZmhjG4sK3WQLkut6uS8I/lQ0nRe6pK9nZMqG5Jm+nsy/ufJa5N6Ik9Nr6fj\nLXd2d54dpEenLT8YtKva9sKkDlYKAQIECGy+gOPRyoZ/mip1/Kljcl0GXx/+1WsdpCAoBAgQ\nmJbA8AGp/sgulX8cs8I2HaQ7D71v+IbSuuyuSnXEap11GdtNk6Y8MiPPTx6SVBuXKnVp344t\ncv2lFjDB9Kat1d7/m+w1wXtVJUCAAIHlBRyPlvepDlF1jOoY9LRBVR2kAYTB7ASW+5R6dmu1\nZALdEfhZmvLVQXOunWHdY1SdgOpcPDM5IPmD5IdJm1Jnf04aqvi5jB8yeF33DlU5ddNg48Mf\navzLyceTDyfvTeqSvOVK/d42y1quXnXA6qzU5pS6nOG/k7o59nbJN5InJnWGTCFAgACB6Qk4\nHl3Tsj4MrMvRqxP5yeQ1iUKAAAECMxIY/sSu/sM/WuqpdW9J6hOryrOTpqx0Buk9TcXB8CkZ\nNst5+GDa9TL8wtD0Zn4Nz07+KFmu3Dozh9+z1Hh9yjatcp0sqC5HrHU1HcppLdtyCBAgsF4F\nHI+W3vP1IWVzfHtyxu83SF1aV9PPHLy+VYYKgakKVO9cIUDgmgJ1H9HLhyY9bGh8pdE6azNc\nrhp+MRivywXqcrtHJHUJ3oVJU3bLyD8nD2gmrNGwzqZtO7TuerrSRwevb5PhPkPzjBIgQIDA\nbATW8/HotkOkb8j4fwxys8H0Xx+8ftbgtQGBqQm4xG5qlBa0YAJ1lqYpo52eZvq4YX2qtVKp\ny/j2T6pjVJ2v+qCiLl+r66sPS6pUB+n4jWO/+k99arbSWaZ613m/+tYVp+yRGnVZXQ3rcr/f\nT5oyfG/Vj5qJhgQIECAwU4H1ejyaKaqFE1hOQAdpOR3z1oPADbORfzy0ofU7se/ItLo/aJrl\nxCys7m2qztR9k1r+yUndg9R0kL6f8aXKRZnxlqVmbub06nxVKYfqvD0xqfb9SbJXUqXaWpfb\nKQQIECAwPQHHo2ta1pmhF1xz0sZX/55/6xj6/5L7JBcnCgECBAhspsDwNd9XZ1nL5aTMrzM+\nTTkiI039Ww4m7jI07e1NxcGwOhZN/eYepIMyrS5Za6aflvHvDb2uzlFdardW5f5ZcT0oomnf\n8PDSTK8Dk0KAAAECmy/geDS5Yd1fW8elb07+Vu8g0E6gLu1RCBDYJFD3C9X13j9Ovpr8VVKd\nmeoUTLN8KAur5Z40WOh+Ge45GP9AhvWJ2DmD12sxqOu8q3319Lrh8rm8uGNyyvBE4wQIECAw\ndQHHo6mTWiCB9gK+8LG9lZoEZiGwUxZanaPqmJ2eTLszlkVuVqkzWXUj7LeSH23WkryZAAEC\nBLos0PXjUZfttI0AAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgMCeBLee0nlmuZtss/MBk92TX5OrkwuRryamD1xkoBAgQIEBgpgKORzPltXAC\nBAgQWElgq1T4++T8pDpF43JSph+QKAQIECBAYFYCjkezkrVcAgQIEJhI4M2p/aPkZclvJTdP\nbpTskdwmeWRyXHJZcpdEIUCAAAECsxBwPJqFqmUSIECAwEQCO6T2lckDWrzrmNR5VYt6qhAg\nQIAAgUkFHI8mFVOfAAECBGYicNss9YqkLmtYqTwpFf5zpUrmEyBAgACBVQg4Hq0CzVsIECBA\nYPoC18oiz0kescKiqwN1QvKOFeqZTYAAAQIEViPgeLQaNe8hQIBAhwWu3eG2Lde0eiDDdZMj\nktsPxuspdjsl+yT1id6Dk9cm9YS7Dcm5iUKAAAECBKYp4Hg0TU3LIkCAAIHNFnhglnBaMu4J\ndpdn+tFJdZAUAgQIECAwSwHHo1nqWjYBAgTmKLAI34NUXHsmeyXbJxcnZw1yaYYKAQIECBCY\nl4Dj0bykrYcAAQIzEuhzB6mu+75qxKUuu6v7kuqR33VJ3UeS+rJYhQABAgQIzErA8WhWspZL\ngAABAq0FbpCadVnd7w+9ozpF3xlMby65q8vs/mKojlECBAgQIDBNAcejaWpaFgECBAisWmDc\nAenELK2ebPf0ZLfkN5OjkuosPSRRCBAgQIDAtAUcj6YtankECBBYY4E23yO0xk1stfrqEN05\n+avk1YN3VGfpc8kByWOTf08mLc/LG/Zv8aZaR33f0skt6qpCgAABAosr4Hi0uPvWlhEgsE4E\n6rrpRSh1lqjuR3rvmI15V6bdcsz0NpOuTKU2uXXq3arNAtUhQIAAgYUWcDxa6N1r4wgQINBd\ngeaShuemidcbNPNTGT5qTJOPy7QPjZk+zUn15LyDp7lAyyJAgACBXgg4HvViN2kkAQIEFl/g\n+tnEy5L6pK7O8PxXUk+rqyfX7ZpUuUNyfFJ1HpnMsuggzVLXsgkQINBdAcej7u4bLSNAgMCq\nBPp6D9JPsrV1UKrL2m6b3G4wrM7RtkmVQ5L7JH+TvDtRCBAgQIDAtAUcj6YtankECBAgMFWB\n4e91qi/ru+FUl770wpxBWtrGHAIECKxHAcej9bjXbTMBAgsh0NczSEvh1+V0Wyf3TvZOPp9c\nmCjzEdg3q6nr8Rex1KfE317EDbNNBAjMRMDxaCasrRfqeNSaSkUCBBZJoJ7AV4/h/lJybFKP\n+d45qcd714GpUk+2e2ky6+IM0qaHZdT9YI39og3rZ2leZyRn/fNq+QQITFfA8Wi6npu7tHp4\nk+PR5ip6P4F1LNDnM0ivzH57WvLJ5K7JB5IvJNVBekbyneSJyXOS6kT9W6LMTuA6WXT9J+Ge\nyddnt5o1WfLNstb6IuI6O6kQIEBgVMDxaFRkbV87Hq2tv7UTILBGAttlvfUUuz8YrP+6Gf5H\nUmct7j6Y1gw+kZHqPM2yOIO0xRY7Brj8D5wl9Bot+xaDbWuekLhGzbBaAgQ6KOB41L2d4njU\nvX2iRQR6JVCf+PexHJBGXzt5/6Dxl2R4dHJR8vnBtGZQXx67b/PCkAABAgQITFHA8WiKmBZF\ngACBLgj09RK7uoyuOnf1MIb6Itgq1Vmqs0r15KA6k9GU+2Xke80LQwIECBAgMEUBx6MpYloU\nAQIECGyewAfz9rq07VXJuI7enTL9Q0l1lh6azLK4xM4ldrP8+bJsAgS6LeB41K39s2Oa45Lv\nbu0TrSFAYE4C22Y9z0pOW2J9R2Z6nVF69hLzpzlZB0kHaZo/T5ZFgEC/BByPurW/dJC6tT+0\nhgCBNRBY6sliN0lbtp9Te3SQdJDm9KNmNQQIdFjA8agbO0cHqRv7QSsI9FZg3KVpfduYOks0\nrrjvaJyKaQQIECAwKwHHo1nJWi4BAgTmKFAPOlAIECBAgAABAgQIECBAIAI6SH4MCBAgQIAA\nAQIECBAgMBDQQfKjQIAAAQIECBAgQIAAgYGADpIfBQIECBAgQIAAAQIECAwEdJD8KBAgQIAA\nAQIECBAgQGAgoIPkR4EAAQIECBAgQIAAAQIDAR0kPwoECBAgQIAAAQIECBAYCOgg+VEgQIAA\nAQIECBAgQIDAQEAHyY8CAQIECBAgQIAAAQIEBgI6SH4UCBAgQIAAAQIECBAgMBDQQfKjQIAA\nAQIECBAgQIAAgYGADpIfBQIECBAgQIAAAQIECAwEdJD8KBAgQIAAAQIECBAgQGAgoIPkR4EA\nAQIECBAgQIAAAQIDAR0kPwoECBAgQIAAAQIECBAYCOgg+VEgQIAAAQIECBAgQIDAQGArEssK\n3D9z91q2xqaZ5bhNi3qqECBAgACB1Qg4Hq1GzXsIECCwCgEdpOXR/iSzb718lY1zt86/u7ao\npwoBAgQIEFiNgOPRatS8hwABAqsQ0EFaHu1hy8/+xdyLM/a9X7wyQoAAAQIEpivgeDRdT0sj\nQIDAkgLuQVqSxgwCBAgQIECAAAECBNabgA7SetvjtpcAAQIECBAgQIAAgSUFdJCWpDGDAAEC\nBAgQIECAAIH1JqCDtN72uO0lQIAAAQIECBAgQGBJAR2kJWnMIECAAAECBAgQIEBgvQnoIK23\nPW57CRAgQIAAAQIECBBYUkAHaUkaMwgQIECAAAECBAgQWG8COkjrbY/bXgIECBAgQIAAAQIE\nlhTQQVqSxgwCBAgQIECAAAECBNabgA7SetvjtpcAAQIECBAgQIAAgSUFdJCWpDGDAAECBAgQ\nIECAAIH1JqCDtN72uO0lQIAAAQIECBAgQGBJAR2kJWnMIECAAAECBAgQIEBgvQnoIK23PW57\nCRAgQIAAAQIECBBYUkAHaUkaMwgQIECAAAECBAgQWG8COkjrbY/bXgIECBAgQIAAAQIElhTQ\nQVqSxgwCBAgQIECAAAECBNabwFYLsMHbZhsOTHZPdk2uTi5MvpacOnidgUKAAAECBGYq4Hg0\nU14LJ0CAwHwE+txBqra/KHlystMSXF/K9Cckpywx32QCkwjskcr1H6BFKxdngy5YtI2yPQTm\nKOB4NEdsq9oo4HjkB4HADAX63EF6Y1wenhyVHJecm9R/8rZJqsN082RDcnJyz+TERCGwGoE6\nO1nly5sGC/fvT7NF11+4rbJBBOYn4Hg0P+v1vibHo/X+E2D75yLQ1w7SDtE5LDkoOX6M1JmZ\nVpfYvTs5JnlMooMUBGVVAs1Zowfm3d9c1RK6+6a7pWlHd7d5Wkag8wKOR53fRQvVQMejhdqd\nNqarAn3tIO0T0LrX6GMtYE9IncNb1FOFwEoC1fE+faVKPZu/d8/aq7kEuibgeNS1PbI+2uN4\ntD72s61cI4G+PsWuzg6dlxyyglt1AB+VLNqn/itsttkECBAgMCcBx6M5QVsNAQIE5iXQ1zNI\nVwXodUldGvTY5NjknOT8ZOtkp6TuQXpcsl9SlxEpBAgQIEBg2gKOR9MWtTwCBAgQ2CyBuifk\ntKQutxvN5ZlWHah6BPisSz0F7OBZr6Tjy98x7at9MA/veVP87mDbbjXvFc9hffcabNscVmUV\nBBZawPGoO7vX8ag7+2KSltwrlev/EQqBNRfo6xmkBu4jGdk/2TPZK9k+qc7KWYNcmqFCgAAB\nAgRmLeB4NGthyydAgMCcBPreQWqYzshIRSFAgAABAmsp4Hi0lvrWTYAAgSkI9LmDVA+YqGu/\nh8t18+IRSd1/dG5Sn+idmigECBAgQGBWAo5Hs5K1XAIECKyBQF87SDeI1Y+TRyfvGrhVp+jD\nST1ytSlXZORvkr9vJhgSIECAAIEpCjgeTRHToggQINAFgb52kMbZ/Usm1hmkZyT15bA3Tf4w\neUnyjeTfk0nLLnnDr7V405Yt6qhCgAABAutDwPFofexnW0mAwIIKLEoHabfsnzsnf5W8erCv\n6rHfn0sOSOpR4KvpINUX0d46aVPqYREKAQIECKxvAcej9b3/bT0BAgsgsCgdpHosZN2P9N4x\n+6QuwXvSmOltJt0lla7fouK3U6ceN64QIECAwPoWcDxa3/vf1hMgsAACfe8g1f1G10vqgQyf\nTW6T/HcyXB6QF6t9wt0leW9FIUCAAAECywk4Hi2nYx4BAgR6JFBP3uljqU/o6otg6+EL9bCG\n/0p2T45Mdk2q3CE5PjkoeUuiECBAgACBaQs4Hk1b1PIIECCwxgJ9PYP0k7jVpW+3Sm6b3G4w\nrM7RtkmVQ5L7JPUUu3cnCgECBAgQmLaA49G0RS2PAAECBKYqMPw0uT2z5BtOdelLL+zizDp4\n6dnrYs6O2cr6JPXABdza3x1sW3XIF63cKxtU+00hQGC6Ao5H0/WcZGmOR5NodafuvdIUx6Pu\n7I913ZK+nkFqdtp2GalL6epSwZOTnyZNae47qrNIP0/qHiWFAAECBAjMQsDxaBaqlkmAAIE1\nEOjrPUhFVY/v/nrymeRTyenJo5LR8heZ8PTRiV4TIECAAIEpCTgeTQnSYggQINAFgb52kOrS\nhbcl9aCGDUl9z1E9qOFdyXMShQABAgQIzEPA8WgeytZBgACBOQr09RK7vWNU97rcPzkhqXJ0\n8uLkpcn5yZsShQABAgQIzFJg7yzc8WiWwpZNgACBOQv0tYNU31ReXwz7hRGv5+X1DZLXJ2ck\n9ZhvhQABAgQIzErA8WhWspZLgACBNRLo6yV2p8er2v6QMW7PzLT3J8ck9QAHhQABAgQIzErg\n9CzY8WhWupZLgACBNRDoawfp7Fh9MDkyeU3y60lT6sxS3ZNUZ5fq4Q2L+GjmbJZCgAABAh0Q\ncDzqwE7QBAIECExToK8dpDJ4fPLp5PBkv2S4XJYXD0vqC2Lr8geFAAECBAjMSsDxaFaylkuA\nAIE1EOjrPUhFdV5ySFJfCFffczRaLsmEOmjV/Ug3Gp3pNQECBAgQmJKA49GUIC2GAAECXRDo\ncwep8buoGVlieNIS000mQIAAAQLTFHA8mqamZREgQGCNBPp8id0akVktAQIECBAgQIAAAQKL\nKqCDtKh71nYRIECAAAECBAgQIDCxgA7SxGTeQIAAAQIECBAgQIDAogroIC3qnrVdBAgQIECA\nAAECBAhMLKCDNDGZNxAgQIAAAQIECBAgsKgCOkiLumdtFwECBAgQIECAAAECEwvoIE1M5g0E\nCBAgQIAAAQIECCyqgA7Sou5Z20WAAAECBAgQIECAwMQCOkgTk3kDAQIECBAgQIAAAQKLKqCD\ntKh71nYRIECAAAECBAgQIDCxgA7SxGTeQIAAAQIECBAgQIDAogroIC3qnrVdBAgQIECAAAEC\nBAhMLKCDNDGZNxAgQIAAAQIECBAgsKgCOkiLumdtFwECBAgQIECAAAECEwvoIE1M5g0ECBAg\nQIAAAQIECCyqgA7Sou5Z20WAAAECBAgQIECAwMQCW038jvX1ho9ncw9sscnXTZ29W9RThQAB\nAgQIrEbA8Wg1at5DgACBVQjoIC2P9tzM3mP5Khvnvj3/ntminioECBAgQGA1Ao5Hq1HzHgIE\nCKxCQAdpebSTMruyUrkyFa5YqZL5BAgQIEBglQKOR6uE8zYCBAhMKuAepEnF1CdAgAABAgQI\nECBAYGEF2p5B2i4CW06gcMkEdVUlQIAAAQJtBRyP2kqpR4AAAQKrEmjbQTo7S9+h5Rp+lnp1\nAFMIECBAgMC0BRyPpi1qeQQIECBwDYG2HaRn5F1vSI4b5IcZ7p48Lrlj8tdJdYyquBdnk4N/\nCRAgQGD6Ao5H0ze1RAIECBAYEmjbQXpK3vM3ycuH3lujb0q+keySPCdRCBAgQIDALAUcj2ap\na9kECBAgsEWbhzTUpXV3St48xuuqTHt98jtj5plEgAABAgSmKeB4NE1NyyJAgACBsQJtOkgX\n550XJHcYu4RNnaczlphnMgECBAgQmJaA49G0JC2HAAECBJYUaHOJXZ0l+rfk7cnfJp9KLkpu\nkjwxeUxyv0QhQIAAAQKzFHA8mqWuZRMgQIDARoE2HaSq+KdJPXzhyHoxVM7NeD2o4eND04wS\nIECAAIFZCTgezUrWcgkQIEBgo0DbDlJ1juqgVE+ru12yR/Kd5D+TnyYKAQIECBCYh4Dj0TyU\nrYMAAQLrWKDNPUjDPLfMi1sk1bH6TFKvFQIECBAgMG8Bx6N5i1sfAQIE1olA2w7SDeLx4eSz\nyWuSuu/oesmJg9fbZqgQIECAAIFZCzgezVrY8gkQILDOBdp2kI6IU31aVx2jFw3MLsnwacnj\nk4MH0wwIECBAgMAsBRyPZqlr2QQIECDQ6nuQqhP16OSPk3cmP0mqXJ28LnnL/2/vXqClK+v7\nAIMCAiIIERCXSBEU4gUwRkSDiomNSoySeAkWK1QNqanRJNW6ijGx0pIs02rFSy2aYNVSRUSN\nNUKQYhVdBSREqF0KaiAggoKoIIhc7O//fTMnw3Bmzj7nm9ue/bxr/c7Mvsze+33eOec979l7\n9kkMkIKgECBAgMBUBfRHU+W1cQIECBAogSZnkB6U9XZIrqoXrFJq/kGrzDeLAAECBAhMUkB/\nNElN2yJAgACBVQWaDJC+m1femNTtvIfL1pnx8uTrwwtMEyBAgACBCQvojyYManMECBAgcG+B\nprf5fmte+idJ/XPYurSubtDw28lxySOSGiQpBAgQIEBg2gL6o2kL2z4BAgQ6LtB0gPRncdop\n+cPkfj2zw/JYZ5ZelnyxN28eD3UHvYOTvZI9kxrA3ZRcmlzem86DQoAAAQJLIKA/WoJGVAUC\nBAgsskDTAdKbUom/Sd6WPCapwUh99qgGITcn8yh17HVHveOT3UYcwEWZX2e3Lhux3GwCBAgQ\naJfAm3K4+qN2tZmjJUCAQKsEmgyQ6n9OnJDclnwuOS9ZhHJKDuL5yXuSTyfXJ99P6gxXDZgO\nSI5LLk6ektT/bFIIECBAoL0C+qP2tp0jJ0CAQGsEmgyQ6rbe30jqTnV1U4a6hG3eZZccwLHJ\nkcnZqxzMNZlXZ7c+mpyevDgxQAqCQoAAgRYL6I9a3HgOnQABAm0RaDJAqgFRnaWpy9m+klyS\nXJcMlhqM/PfBGVN+vm+2X8d1boP9nJN1XtlgPasQIECAwGIL6I8Wu30cHQECBJZCoMkAqSr6\n6uQnSX32qDJc/iozZjlAqgHZDclRyRnJqFL1e1Hy9VErmE+AAAECrRLQH7WquRwsAQIE2ifQ\ndID08AWr2t05nncnpyXHJDVAq7NadVe97ZLdkvoMUv3vpv2TJyUKAQIECLRfQH/U/jZUAwIE\nCBCYosCzsu0rkrrsYjh3ZF4NoA5Opl3qTn7PmfZOFnz7D8zxVRvMwnvWFM/u1e3Rs97xDPZ3\nRK9uM9iVXRBYagH90eI0r/5ocdpiPUdyRFau3yMUAnMXGHUG6UE5svqFv87M1J3hFrWclQOr\nf1S7d7JPsnNSg5Vre6k77ykECBAg0F4B/VF7286REyBAoJUC9xlx1Ptl/qlJDTz6Zdc8eXNS\nyxahDB771Tmg85PPJXUDh5clv508MlEIECBAoL0C+qP2tp0jJ0CAQCsFRp1BWq0yNUB6Y/L5\n5JurrTDDefW/MH6UHJ18pLff+szRZ5IaIPXLnXnyx8mf9md4JECAAIHWC+iPWt+EKkCAAIHF\nFRg8C7O4R9nsyD6Q1XZMXpPUnfYOT/4iOSl5XqIQIECAAIFZCOiPZqFsHwQIEJiSwHrOIE3p\nECay2QdnK4cmb0hO7m2x7mr3xeSxSd3p7pPJestb8oIml+ltn/X2WO/GrU+AAAECSyegP1q6\nJlUhAgS6JrAsA6S660nd+vvMVRqwLsGrzyNtpFyVF23b4IW179sbrGcVAgQIEFhuAf3Rcrev\n2hEg0AGBtg+Q6vNG90+uT85PDkq+lgyWZ2aibuKwkfKuhi96Rdb7YcN1rUaAAAECyyegP1q+\nNlUjAgQI3EPgiZmqv4LVjRBu6qUGADWvbqPdn9d/PDXzZll2ys5+mtTx3JV8Nbk8qYHSnkmV\nxydnJ7XOC5NpFv8Haaut/N+Jab7DprftI7Lp+h5RCCyqgP5ofS2jP9Ifre8dszhrH5FD0R8t\nTnt0+khGnUG6ISofWofMxetYdxKr3pKN1CCp/nHnIcnjeo81OKrPA1U5KvmVpO5i99FEIUCA\nAIH2CeiP2tdmjpgAAQIEFkhg64Fj2TvPdx2YnuZTf7HzF7tpvr+mue0jsnF/sZumsG13VUB/\nNL+Wd0XD/Oy3ZM9H5MX6oy0R9NqJCYw6gzSxHcx4Q4PfWBv93NGMD9nuCBAgQGAJBfRHS9io\nqkSAQDcElun/IHWjxdSSAAECBAgQIECAAIGpCbT1DFJ9/mi/daj8IOtetY71rUqAAAECBJoI\n6I+aKFmHAAECLRJo6wCpbudd/wS2aambNLyo6crWI0CAAAECDQX0Rw2hrEaAAIG2CLR1gPSl\nAL8seU/y+eTPk3HlunELLSNAgAABAhsU0B9tEM7LCBAgsKgCbR0gleepSd0l6H3JScl5iUKA\nAAECBGYtoD+atbj9ESBAYIoCbb9Jw1/G5rPJn03RyKYJECBAgMBaAvqjtYQsJ0CAQEsE2nwG\nqU9cny3aN6m63Nmf6ZEAAQIECMxYQH80Y3C7I0CAwDQElmGAVHeou2QaOLZJgAABAgTWIaA/\nWgeWVQkQILCoAm2/xG5RXR0XAQIECBAgQIAAAQItFDBAamGjOWQCBAgQIECAAAECBKYjYIA0\nHVdbJUCAAAECBAgQIECghQIGSC1sNIdMgAABAgQIECBAgMB0BAyQpuNqqwQIECBAgAABAgQI\ntFDAAKmFjeaQCRAgQIAAAQIECBCYjoAB0nRcbZUAAQIECBAgQIAAgRYKGCC1sNEcMgECBAgQ\nIECAAAEC0xFYhn8UOx0ZWyXQDYHte9V8w5JW95up14eXtG6qRYAAgWUS0B8tU2u2vC4GSC1v\nQIdPYAsFDui9/tlbuJ1FfPnuOaidEwOkRWwdx0SAAIF7CuiP7ulhao4CBkhzxLdrAgskcPgC\nHcukDuXobOhtk9qY7RAgQIDATAT0RzNhtpNxAj6DNE7HMgIECBAgQIAAAQIEOiVggNSp5lZZ\nAgQIECBAgAABAgTGCRggjdOxjAABAgQIECBAgACBTgkYIHWquVWWAAECBAgQIECAAIFxAgZI\n43QsI0CAAAECBAgQIECgUwIGSJ1qbpUlQIAAAQIECBAgQGCcgNt8j9PZaqvnZ/G+41fZtHTb\nfN2xwXpWIUCAAAECGxHQH21EzWsIECCwAQEDpPFoz83iR41fZdPScty1wXpWIUCAAAECGxHQ\nH21EzWsIECCwAQEDpPFox45fvLL05jz79sqUJwQIECBAYLIC+qPJetoaAQIERgr4DNJIGgsI\nECBAgAABAgQIEOiagAFS11pcfQkQIECAAAECBAgQGClggDSSxgICBAgQIECAAAECBLomYIDU\ntRZXXwIECBAgQIAAAQIERgoYII2ksYAAAQIECBAgQIAAga4JGCB1rcXVlwABAgQIECBAgACB\nkQIGSCNpLCBAgAABAgQIECBAoGsCBkhda3H1JUCAAAECBAgQIEBgpIAB0kgaCwgQIECAAAEC\nBAgQ6JqAAVLXWlx9CRAgQIAAAQIECBAYKWCANJLGAgIECBAgQIAAAQIEuiZggNS1FldfAgQI\nECBAgAABAgRGChggjaSxgAABAgQIECBAgACBrgkYIHWtxdWXAAECBAgQIECAAIGRAgZII2ks\nIECAAAECBAgQIECgawIGSF1rcfUlQIAAAQIECBAgQGCkgAHSSBoLCBAgQIAAAQIECBDomoAB\nUtdaXH0JECBAgAABAgQIEBgpYIA0ksYCAgQIECBAgAABAgS6JmCA1LUWV18CBAgQIECAAAEC\nBEYKGCCNpLGAAAECBAgQIECAAIGuCRggda3F1ZcAAQIECBAgQIAAgZEC24xc0p4F2+dQD072\nSvZMfpbclFyaXN6bzoNCgAABAgSmKqA/miqvjRMgQGA2Am0eINWxn5gcn+w2guuizH95ctmI\n5WYTIECAAIEtFdAfbamg1xMgQGCBBNp8id0pcfzd5H3J05IDkz2SvZM6o/Si5HvJxckTE4UA\nAQIECExDQH80DVXbJECAwJwE2noGaZd4HZscmZy9it01mVeX2H00OT15cXJBohAgQIAAgUkK\n6I8mqWlbBAgQWACBtp5B2jd29VmjcxsYnpN1ntpgPasQIECAAIH1CuiP1itmfQIECCy4QFvP\nINXZoRuSo5IzxhhX/epSu6+PWWfWiz6eHdZlgMtW7tur0K7LVjH1IUCAwBgB/dEYnDkt0h/N\nCd5uCSyLQFsHSHenAd6dnJYck/xVcl1yY7JdsltyQPKSZP/kScmilGfnQD6QLNKgbRI2NTA6\nJNl9EhuzDQIECLREQH+0eA2lP1q8NnFEBFol0NYBUiG/ObkweUdSZ5KGy52ZUZ9BemlSf+Hb\nSKlLJ+rW4WuVulRx67VWGlj+sTw/e2B6GZ4+LJV4wzJURB0IECCwTgH90TrBpry6/mjKwDZP\nYNkF2jxAqrY5K3lEUpes7ZPsnNycXNvLbXncklKXwx3cYAP1eaj9GqxnFQIECBBYTgH90XK2\nq1oRINBBgTYPkOqsTV3aUOXqXnbM4wuSZyXXJ9Vh1T+L3Wj5hbxw2wYvrs9DfaPBelYhQIAA\ngeUT0B8tX5uqEQECHRZo6wDpAWmzHyVHJx/ptV995ugzSV0W1y91md0fJ3/an7HOxxqA3b7O\n11idAAECBLojoD/qTlurKQECHRGov3otS/lAKlJnkF6T7JUcnvxFclLyvEQhQIAAAQKzENAf\nzULZPggQIDAlgbaeQRrmeHBmHJrUTQJO7i2su9p9MXlsUne6+2SiECBAgACBaQroj6apa9sE\nCBCYgcCynEGqmyTU5XBnrmJWl+D9/CrzzSJAgAABApMW0B9NWtT2CBAgMGOBtg+Q6vNG90/q\nhgznJwclw+WZmVE3cVAIECBAgMC0BPRH05K1XQIECMxYoK0DpPoL3R1J3Xyhbtbw1aQ+d1T/\nE6n/f4sen+f1v4aOTE5NFAIECBAgMGkB/dGkRW2PAAECcxZo62eQbonbTsmjk0OSx/Uea3C0\nfVKl/nnsryR1F7v6h7EKAQIECBCYtID+aNKitkeAAIE5C7R1gFRsP00u6aV/hmjrTNdf86qc\nkrw1uakmFAIECBAgMCUB/dGUYG2WAAEC8xBo8wBpNa/+4KiW+dzRakLmESBAgMAsBPRHs1C2\nDwIECExBoK2fQZoChU0SIECAAAECBAgQINB1AQOkrr8D1J8AAQIECBAgQIAAgRUBA6QVCk8I\nECBAgAABAgQIEOi6gAFS198B6k+AAAECBAgQIECAwIqAAdIKhScECBAgQIAAAQIECHRdwACp\n6+8A9SdAgAABAgQIECBAYEXAAGmFwhMCBAgQIECAAAECBLouYIDU9XeA+hMgQIAAAQIECBAg\nsCJggLRC4QkBAgQIECBAgAABAl0XMEDq+jtA/QkQIECAAAECBAgQWBEwQFqh8IQAAQIECBAg\nQIAAga4LGCB1/R2g/gQIECBAgAABAgQIrAgYIK1QeEKAAAECBAgQIECAQNcFDJC6/g5QfwIE\nCBAgQIAAAQIEVgQMkFYoPCFAgAABAgQIECBAoOsCBkhdfweoPwECBAgQIECAAAECKwIGSCsU\nnhAgQIAAAQIECBAg0HUBA6SuvwPUnwABAgQIECBAgACBFYFtVp6198n2OfSDk72SPZOfJTcl\nlyaX96bzoBAgQIAAgakK6I+mymvjBAgQmI1AmwdIdewnJscnu43guijzX55cNmK52QQILK/A\nfVO17ZJfXdIq/n3qdcWS1q1t1dIfta3FHC+B2Qroj2brvcV7a/MA6ZTU/vnJe5JPJ9cn30/u\nl9SA6YDkuOTi5CnJBYlCgEB3BH4xVa2fBZ9awipXZ3tJ8oQlrFsbq6Q/amOrOWYCsxPQH83O\neiJ72noiW5n9RnbJLmswdGRy9hq7Pz3Lr01+f431Vlt8YWb+wmoLhubVZ7l+L3nX0PzVJm/J\nzB2SuhRw2Ur90nbXslWqV59lrVv9DKj37zK227LX7W/TbgZIvW/QOT7oj+aIP2bXy/ozu6q8\nrHVb9p/Zy9zXLl1/1NYzSPvmB0QNMM6tnxRrlHOy/JVrrDNq8XFZUJ9tWqs8NCt8eK2Vesuf\nnMfdG67bttWqXeqyn2Usy1q36pD2Sa5cwkarn2/1/Xv1EtatqnTlktarbdXSHy1miy3rz+zS\nXta66Y8W83upyVFd2WQl60xfoEbh1yUvWGNX9QtSDZD+xxrrWUyAAAECBDYioD/aiJrXECBA\nYIEF6jRtG0udPdoxeXtSl8DV8/pLcX3eoP6yckjy3KQueTs4OS6pzygpBAgQIEBgkgL6o0lq\n2hYBAgQIbLHAs7KFuotTdVDDuSPzTktqgKQQIECAAIFpCuiPpqlr2wQIEJihQF3vuQxl71Ri\nn2Tn5OakbspQuS1RCBAgQIDArAT0R7OSth8CBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIDATgWW5xG4mWBPaydOynZ9MaFuLtpmH5IDq0sZlLMtct7rByXeWsNHq7mJ1S/1lvEHL\ntqnXrUn97wmFwEYF9EcblZvv6/RH8/XfyN71RxtRm+NrDJBmj1//kLO+URQCBAhsicAP8uJd\nt2QDXtt5Af1R598CAAhMRGDp+qO2/qPYibTmnDZSd9er/9/02Tntf1q7rf8mX/+b6tDksmnt\nZE7bfWT2+5WkbgTy3Tkdw7R2+5Rs+G+SHaa1gzlu94XZ91uSuvX/spVXpULHLFul1GfmAvqj\nmZNv8Q71R1tMOJcN6I/mwr7xnRogbdxuS15ZndKyXWa3fQ/kp0tYt6pTlduTZWu3ei9WWbZ6\nVZ2WuW53VgUVAhMQ0B9NAHGGm9AfzRB7grvSH00QcxabcqnXLJTtgwABAgQIECBAgACBVggY\nILWimRwkAQIECBAgQIAAAQKzEDBAmoWyfRAgQIAAAQIECBAg0AoBA6RWNJODJECAAAECBAgQ\nIEBgFgIGSLNQtg8CBAgQIECAAAECBFohYIDUimZykAQIECBAgAABAgQIzELAAGkWyvZBgAAB\nAgQIECBAgEArBAyQZt9MV2eXN8x+t1PfY/0fnfpHsTdNfU+z38EPs8vrk1tnv+up7/HG7OEf\npr6X+eyg/qnvt+ez66nvtb7Xrp36Xuxg2QX0R+1rYf1R+9qsjlh/1M52c9QECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIDAUggcmlq8O7ki+UzynGTRyidzQGet\nkq0HDrRJPfbI+ickX04uTN6U3DcZLLXNf57UPi9PPpjsnSjNBH4+q307efQqq78u81Zrx6cO\nrNvEv8k6tckm74mBXXfuad/xC6n5NUl9X/xRcr9ksDRpt0l+b2m3Qf1uPW9D2+uP2vOe1B+1\np630R+1pq04c6cNSyx8lH05elLwvuTM5KlmUsm8O5GfJeckZQ6lvqCpN63FO1v1a8tLkD5Oq\n+weSwXJ8Jn6S1EDqJUn90nhVUr8AKuMFHprFNdCu9jp4lVXLspYPt+OTB9Zt4t9knabviYFd\nd+7p61Pju5JPJMcm701+nJyZDJYm7Tap7y3tNijfredtaHv9UXvek/qj9rRVHan+qF3ttfRH\n+6nU8JKhWn4s05cOzZvn5G9k5/UL915jDqJJPWpQVNt5xMB2fqs378DevAfn8YdJDY76ZZc8\nuTl5Y3+Gx3sJ1EC1Bi1l94NktQHSNplfA8/XJKNKE/8m69T2m7wnRh1HF+ZXe9zScxqs74mZ\nqPbrnwFs0m6T/N7SboOt0a3nbWh7/dHivyf1R4vfRsNHqD8aFjE9V4EHZO/11+PXDh1FnT0a\n/AVpaPHMJ9+cPV47Zq9N6/HpbOOCoe3UpUQ1+HlTb/5xeay679Ob7j+clidf7U94vJfAIZlT\nZx7fmTwvKcODk8HymEzU/F8anDn0/LhMr+XfZJ2m74mh3XdqcvfUttrrl4dq/YxMVxs8uze/\nSbtN6ntLuw01Rocm29L2+qPFf1Pqjxa/jYaPUH80LDJm+j5jllk0GYG6NrecvzG0uW/2pvce\nmj+vyfphd2XyquRzyeeTGtT1PzvUtB71i95wXW/PvGuSfl3rr+Z3JHVJ3WCp1/XXGZzv+WaB\nMjwgqTa6bfOse319XG/OP8njh5JLklOSwTODTfybrNP0PZHdd7Z8LzWv9vpfQwJHZ/ru5O96\n85u026S+t7TbUGN0aLItba8/Wvw3pf5o8dto+Aj1R8MiY6YNkMbgTGjRA3vbuWFoe9/vTdel\nTItQqkN6UnJEUr/M1V8a/zw5PanStB613o2bXnHPLzdlsl/XUeuUSe33/vd8qameQL2H+gPr\nUSjVjlVqcFsDzm8lxyVfSdbj36SNap0qi/7e3nyUi/P1qTmUlyQnJ9/pHdaWtNt6v7e0Ww+9\ngw9tafv6ftAfLfYbVH+02O3T9Oj0RyOkthkx3+zJCdRlNFXqjMlg6U/vODhzTs/rWuL6Ze3q\n5CO9Y3hzHt+evDp5RtK0HrXeT5PhUvUdrOuodep1td6P64myboEa3NYA9T8ldeauyuHJF5J/\nl/xOUmUt/ybrNH1PbNqhL5sEnp6vn0guSE7YNGfzlybtNqnvLe02AN+xp21oe/3R8rwpm/xc\nq9rqj+bT5vqjMe7OII3BmdCi/l+Idx3a3m696R8NzZ/HZHWa/zHpD476x/D+3pPD8ti0HvU5\npn7dei/f9FDz+nUdt06t3F9v0wt9WZdAfU7lpKQ/OKoXn5/UmadqxypN/Jus0/Q9sXmvvv6z\nEJyVVHscmQxeJrml7db/ntFugVVGCrThe1Z/NLL5WrdgS3+uVYXrZ5ufa5Nvev3RGqYGSGsA\nTWBxfWNX2Wvzw8rX/uVO31qZM78nO2TXByX9yy/6R9K/DLCmm9aj1uvXrb+detwz6de11tmp\nlzyslDKqZYO/3K8s9KSRwCOz1sNXWXPwsscm/k3XqV0t8nt7FYq5zHpl9vqh5NTkucnwGdKm\n7TaJ761q2yrabbNDl762oe31R8vzjmz6c22t3wfqfdtknZLzc23t94/+aG0ja8xI4MvZz8eH\n9vW2TNcvrdsPzZ/HZN2Su/5qV5fUDZbXZ6Lm/2pvZpN61GtuTR7Qe009PDmp7fxaTaTsn9yV\n1F8w+qUuq6hL/N7fn+FxrEC1SZkePLTWJZm+Ktl2YH4NmGrd9/bmNfFvsk5trsl7orfbzj68\nPDUv/xPGCDRpt0l+b2m3MY2x5IsWve31R+17A+qP2tNm+qP2tFUnjvTFqeWdye8mdZbmhUkN\nIo5NFqWckwOpv2ofl9RfYH4/uT45L+mXJvWo+tUtvc9IHpI8KqkbBPzPZLCcmYl/SA5LHpS8\nI7kpGf7rT2YpqwiM6pCOz7r1y/i7khoY1aVcX0qqTfZN+qWJf5N1mrwn+vvs4mOdOf1BckXy\nO6ukBqJVmrTbJL+3tNtm9y5+bUPb64/a9c7UH7WjvfRH7Winzh3lv02Nf5LUL6/XJCcli1Rq\nkHJ6UsdXuT35YDJ8R7km9filvK7OYtR2aiBYv2g/NBksu2Xir5O7k1rvwuTXE6WZwKgOqV79\nuqQGRP22rAHqY5LB0sS/yTq1zSbvicF9d+l5XcrQb4fVHo8ZwGjSbpP83tJuA/gde7roba8/\natcbUn/UjvbSH7WjnTp5lHXZ035JXU62qGWnHNiByXZjDrBpPR6WbQwPsIY3u0tm1JkmZbIC\n22RzdalKDXLGlSb+TdZp+p4YdyyWbbVV03ab1PeWduvuu64Nba8/Wo73Z9Ofa036mibrtOG9\n3YaWbdpu+qM2tKZjJECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQa24pmAAACBpJREFUIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEhgR2Hpqcxed9sdLtpbNg2CRAgQGBpBPRH\nS9OUKkKAAIH2CfxiDvkzyfXJz5LLkrclhyYbKTUAes4qL/wXmffl5Lbkp8lXkn+fbJMMlj0y\n8aTBGQ2fb/R1DTdvNQIECBCYsoD+aMrANk+AAAECawu8JqvckdRg5Q+S30jeknwtuTU5PFlv\neWde8HdDL/qTTNfg69PJa5NXJh9PfpKck2yd9Mt38+SE/sQ6Hjf6unXswqoECBAgMCUB/dGU\nYG2WAAECBJoLPCar1uDovyXbDr1sh0xfmNyUPHZo2VqTH8wKlwysdJ88r8FLDYiGy4mZUQOn\nwbNVNWjayABpo68bPibTBAgQIDBbAf3RbL3tjQABAgRGCNRldd9LHjhi+YMz/+bkvQPLT87z\nOss0WJ6eiVqnPlf06uSK5Mak5j06eUByR/L2ZLj8XGa8JXliUq+v19yVXJS8I+mXffPkrclf\nJ+cm/yU5MKky7nU7Zfmbkqrrp5LXJcODwcxSCBAgQGCOAvqjOeLbdTcF6q/XCgEC9xaoz/mc\nk/zg3os2zbkuX+tMUA1e+uWleVLXiA+WR2XiFUl9luiHye3JnUkNvuqzRjXI+mxyfFKDoTpb\n1P++rIHUv0kuSOpMUr2mHn+c3JBUeUJyWXJY8n+SK5IapF2c7J6Met1uWVaX+v1B8vfJ3yb/\nOvl8Mvy5p8xSCBAgQGBOAvqjOcHbLQECBAj8o8CeeVoDi//wj7NWffafM7fO6NRZoCo1mBp+\nzb/KvNrWjkmV4Uvsal6dyTkzqfUqdeneJ5Jjk/5gKU83leFL5eozTVcmddlfvzwrT2o7R/dn\n5HH4de/IvBqo7TOwzgF5Xq/7vYF5nhIgQIDA/AT0R/Ozt+cOCwz/8tVhClUnsCKwfe9Znd0Z\nV27JwrqBwpZellbb+c1k/+RVyXnJ05L3J2cldbZnVKn16xK725K6Q95+yd5JlRp4jSq/ngXn\nJ/UzoF5fqTNa/y95ZqIQIECAwPwF9EfzbwNH0EEBl9J0sNFVeU2Bq7LGd5JHrLFmDWguT76/\nxnpNF38zK76rl/refHVSl929vpc83KvUmaNaXgOsOgNU5f9ufrjH3e96szY91ICuBlF19uhb\nm+bc84s/nNzTwxQBAgTmJaA/mpe8/XZawC9CnW5+lR8j8KUs+6fJ4KVrg6vvnIlfTmq9fqnL\n02rwMVjGnf2p9V6RfDvZtSYGSl3+9tbk/OTpA/OHn/5lZrwu+WjyjGSX5PlJla03P9zra90U\n4sfJaUkd33AOyzyFAAECBBZDQH+0GO3gKDokYIDUocZW1XUJnJy190hOSoYHGjVdZ3ZqMPL+\npF/qUrm6McJgOWhwIs/vTupSuH65KE8ekqz2uZ/tMn/f5NKkX2oQ1v++re3UDRlOTU5MvpDU\nZ40en1QZ3M/g62rZZclzklq/PvNUuTX5r8kxiUKAAAECiyGgP1qMdnAUBAgQIBCBFyR1E4b6\nHFA9PyT5reTcpM7CHJUMlo9logYcv5nsn/xRUmdqanDSv0nDO/P8R8lzkxqAVTk9qXXOSF6W\nHJHUmaVLklr3iUm/XJ8ndde7OrtVpZ7XZX6PSmofRyY3JLW91yb9Mvy6OttU69TNIA5P6nhP\nTer4D0wUAgQIEFgcAf3R4rSFIyFAgEDnBapTqrMtNZio1JmWGlT8WjJcHp4ZdUaov+4X87zO\nxtR0DV6qPCH5XlLz/mVSpc5IvTG5IqkBWS2rgUpdVvHYZLDUoKtuFV7r/FxyWPK/k3pd5etJ\n3WTh4uTMpF+GX1fzX5hcm9S27kzqDFQNABUCBAgQWDwB/dHitYkjIkCAQKcFajBSN0HoX942\nDmPPLHzQuBWyrLZXA6PhUgOp2s+2wwsGpuvSu10GputpXdpXGVdWe12tv1ey27gXWkaAAAEC\nCyOgP1qYpnAgBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBOYr8P8BLaANy1A0HMgAAAAA\nSUVORK5CYII=", "text/plain": [ "Plot with title “Bins = 4”" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0L3Gx1XS/+jSByFSEFKRFRDEwBycRLppR5I1NKJU0L8pqeo1b/zNK8\nJB312D8Nb3k8JmUeUryk5o3IS94KFElN/wrqATGFBEFBUET4f757z+yG4Zl51vM8a+aZNev9\ne70+e61Zl99a671m79/+zVqzZssWhQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgR6IbBDL47SQRK4vsCN8vLo60/a+uq6/HlN8t3k3OTKZLzcPhMO\nGEz81wxXWmZ8nS6+3jk7vduEHf9Rpl8+YZ7JBAgQINBcQHvU3KrapcOSPZLPJxcnCgECBAi0\nJFD/8a/O0LRUJ+llyY7JaDkpL4br3WF0xpKNP2fkOIfHOxz+f0t2rA6HAAECmyWgPVpdvtrh\nFybfT4bt0A8G0zJQCBAgQKANgSYN0vAf4VeObbAvHaS35biHBuNDHaSxN4WXBAgQWKeA9mh1\nuNH2qO5gGG2Tfmf11S1BYO0CbrFbu5k1ui9QDdL3Bofx5Qx/YTBetzrcOLl/8ufJLkndQrd3\ncnVS5ZDk1lvHtmz5RIbDegaTlmbw1RzJQclnk2qcRkvd1vDq0QnGCRAgQGBdAtqj6Wz3yOxq\na6ucnjx169iWLf+SYbXN5yXVVikEWhXYqdXaVEagewI/zC5fMLbb1Wk6JvmlpBqv/ZPzkyq7\nJnttHduypTpUVW6S/PLWsS1bPpNhdS7uldwzqQ7Wh5OaPl6OzIRa5lZJdbTOS96V1O1908qP\nZebx0xYYzLsww1MaLDe+SB3fsMF5Z8ZfML6A1wQIECDQuoD26IakzxhMujbDxydfG7x+Qoa3\nSL6e1P9lr0kUAgQIENiAQHV6hpfov7BCPdXhqQ5RLVMPaxgtJ+XFcN3hd5D2HZn2vIy/e+R1\nLVu3BPxeMiw7ZORvkmE9o8PvZHo9CGJauVNmjq4zafyT0yqZMu/eI/X/QcYfl9Twvkntu0KA\nAAEC7Qhoj6Y7npfZ1cZ9ZbDYj2dYHy7uPHhtQIAAAQItCYw2SN9Ona8e5DUZ/nVSV17qH+S6\nqjO8MpTRrWW1DlLdilednL9L3psMOy9XZfzmSZUTkuH0t2a8Oh+vSq4YTK+n4027ujvrDtLT\nB/sx3MfR4fsyr65gKQQIECCwcQHt0WTD+kCu2tRqg+oDv3cOxuv1lcnwdruMKgQIECCwUYHR\nBmn0P//j4y9dYUNNOkhHjaz39xkf1lu33VWpjlhNq6fw3C4Zlkdk5HnJQ5Pax0mlbu27WYPs\nMamCVaafnPnDff6PjFenqDp4w2lvyrhCgAABAhsX0B5NNtwvs4btznBYt9QNO001TSdpsp85\nGxCY9in1Bqq1KoHOCNRjQz8z2NsdM6zvGB2YVOfid5PDkl9PvpU0KXX158yRBT+e8WMHr4dX\nXs4ZvK5bBGr8U8kHk+qIvD2pW/Kmlfp7O6xr2nLVAaurUmst78gKdbzV+DwvKaO6+lXHdVDy\na8mfJv+eKAQIECDQjoD26PqO4/9HfXFm/3Hy40m1mQcn1RadnKynrctqCgECBAgMBUY/sfvC\ncOLIsDou9Q9udRAqz0iGZbUrSG8dLjgYPiXDYT0PG0zbPcN/GZk+nF/DbyaPTaaVO2Xm6DqT\nxuuWhDbLX6Sy4bYe3WbF6iJAgEBPBbRHk098fWhZD18Ytju3Hlm07vAYTr/7yHSjBFoRqFt1\nFAIEri9wdV6+ZGTSr46MrzZaV21Gy7WjLwbj9d2mut3u4UndgndpMiy3zMhfJQ8YTlig4ZdH\n9mXvkXGjBAgQIDAbgT63R3U3xUUD1nIYvZNjeOdHzf6JwTIGBFoTGL982VrFKiLQcYG6SjMs\n452e4fSVhvWJ1mqlbuOrJ9VVx6g6X/VBxZFJ3Ut9fFKlOkinbR274R9fz6TVrjLVWhffcNVV\np9w4S7wrqU/qav+qIzcs9x2OZHjOyLhRAgQIEJidQF/boxKtjtCPJ3VnR7VB706qjH7Xd/iE\nu21z/EmgBQEdpBYQVdFpgboS8qSRI6i/E7cdm1b3OrdZzkhl9d2m6kz9YlL1n5XUd5CGHaR6\nOMKkcllmnDxp5gan1+9w1C0fPzWo548y/Mvkl5P7Daadl+GHB+MGBAgQINCOgPboho5/nkkP\nGkw+McPvJnsmvzKYVleYvjgYNyBAgACBDQiM3vNdnZRpOTPz64rPsJyUkeHydxhM3Hdk2huH\nCw6Gvz0yb/gdpGMyrToiw3rOzfjXRl5X56hutdus8jPZ8FXJcP/qNsHh+JUZf2CiECBAgMDG\nBbRHqxu+P4sM26Dx4SNXX90SBNYuULf2KAQIbBOojkDd51yfUH0meXZSnZnqLLRZ3pvKqt4z\nB5UenOEBg/F/yLBuI7hw8HozBp/KRutq0acHG6/foiibzyX3SaqxUggQIEBgdgLao/+yfXBG\n6yFB9f3dYflGRuoW9TcNJxgSaFOg/uOjECCweQL7ZNPVOaqO2XlJ252xVLmhcvOsfeukHtBQ\nHUeFAAECBJZTYNHbox3DXndufCe5YDlPgaMiQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECKwmsMNqC3Rg/i7ZxyOS/ZP9kuuSS5PPJucMXmeg\nECBAgACBmQpoj2bKq3ICBAgQWE1gpyzwouSSpDpFK+XMTD8sUQgQIECAwKwEtEezklUvAQIE\nCKxJ4PVZ+jvJ/0zunRyS3CK5VXJ48ojkPcnVyd0ShQABAgQIzEJAezQLVXUSIECAwJoE9srS\nP0oe0GCtU7PMXzRYziIECBAgQGCtAtqjtYpZngABAgRmInDn1HpNUrc1rFaekAU+vdpC5hMg\nQIAAgXUIaI/WgWYVAgQIEGhf4Eap8sLk4atUXR2o05O/W2U5swkQIECAwHoEtEfrUbMOAQIE\nFlhgxwXet2m7Vg9k2C05KfnpwXg9xW6f5KCkPtF7SPKqpJ5wd0JyUaIQIECAAIE2BbRHbWqq\niwABAgQ2LPDA1HBustIT7H6Y6ack1UFSCBAgQIDALAW0R7PUVTcBAgTmKLAMv4NUXAckByY3\nTS5PvjHIVRkqBAgQIEBgXgLao3lJ2w4BAgRmJNDlDlLd933tmEvddlffS6pHftctde9P6sdi\nFQIECBAgMCsB7dGsZNVLgAABAo0F9sySdVvdr42sUZ2irw6mD2+5q9vs/mhkGaMECBAgQKBN\nAe1Rm5rqIkCAAIF1C6zUIJ2R2urJdk9Lbpn8bPKapDpLD00UAgQIECDQtoD2qG1R9REgQGCT\nBZr8jtAm72KjzVeH6Kjk2cnLB2tUZ+njyWHJo5N3Jmstf5wVbt9gpdpG/d7SWQ2WtQgBAgQI\nLK+A9mh5z60jI0CgJwJ13/QylLpKVN9HevsKB/PmTLvDCtObTPpRFmqSO2W5Ozap0DIECBAg\nsNQC2qOlPr0OjgABAosrMLyl4Q+zi7sPdvOfMzxuhV1+T6a9d4XpbU6qJ+c9uM0K1UWAAAEC\nnRDQHnXiNNlJAgQILL/AHjnEq5P6pK6u8Hw+qafV1ZPr9kuq3CU5LallHpHMsuggzVJX3QQI\nEFhcAe3R4p4be0aAAIF1CXT1O0hX5GirUarb2u6cHDkYVudol6TKscl9k+cmb0kUAgQIECDQ\ntoD2qG1R9REgQIBAqwKjv+tUP9a3d6u1T67MFaTJNuYQIECgjwLaoz6edcdMgMBSCHT1CtIk\n/Lqdbufk55PbJJ9ILk2U+QjcNpup+/GXsdSnxF9ZxgNzTAQIzERAezQT1saVao8aU1mQAIFl\nEqgn8NVjuD+ZvCupx3zfPKnHe1fDVKkn2704mXVxBWnbwzLq+2BD+2Ub1ntpXlckZ/1+VT8B\nAu0KaI/a9dxobfXwJu3RRhWtT6DHAl2+gvSynLenJh9O7p78Q/IvSXWQnp58NXl88sykOlFv\nS5TZCdw4Vdd/En4u+ffZbWZTav7JbLV+iLiuTioECBAYF9AejYts7mvt0eb62zoBApsksGu2\nW0+x+/XB9nfL8B+Tumpxz8G04eBDGanO0yyLK0hbttwswOV/xCyhN6nuQwfHNnxC4ibths0S\nILCAAtqjxTsp2qPFOyf2iECnBOoT/y6Ww7LTOybvGOz8lRmeklyWfGIwbTioH4+97fCFIQEC\nBAgQaFFAe9QipqoIECCwCAJdvcWubqOrzl09jKF+CLZKdZbqqlI9OaiuZAzL/TLyteELQwIE\nCBAg0KKA9qhFTFURIECAwMYE3p3V69a2v0hW6ujdNdPfm1Rn6VeSWRa32LnFbpbvL3UTILDY\nAtqjxTo/N8vuuOV7sc6JvSFAYE4Cu2Q7v5+cO2F7r8j0uqL0jAnz25ysg6SD1Ob7SV0ECHRL\nQHu0WOdLB2mxzoe9IUBgEwQmPVns1tmXm85pf3SQdJDm9FazGQIEFlhAe7QYJ0cHaTHOg70g\n0FmBlW5N69rB1FWilYrvHa2kYhoBAgQIzEpAezQrWfUSIEBgjgL1oAOFAAECBAgQIECAAAEC\nBCKgg+RtQIAAAQIECBAgQIAAgYGADpK3AgECBAgQIECAAAECBAYCOkjeCgQIECBAgAABAgQI\nEBgI6CB5KxAgQIAAAQIECBAgQGAgoIPkrUCAAAECBAgQIECAAIGBgA6StwIBAgQIECBAgAAB\nAgQGAjpI3goECBAgQIAAAQIECBAYCOggeSsQIECAAAECBAgQIEBgIKCD5K1AgAABAgQIECBA\ngACBgYAOkrcCAQIECBAgQIAAAQIEBgI6SN4KBAgQIECAAAECBAgQGAjoIHkrECBAgAABAgQI\nECBAYCCgg+StQIAAAQIECBAgQIAAgYGADpK3AgECBAgQIECAAAECBAYCOkjeCgQIECBAgAAB\nAgQIEBgI7ERiqsD9M/fAqUtsm1mON2mwnEUIECBAgMB6BLRH61GzDgECBNYhoIM0He23M/tO\n0xfZOnfn/Llfg+UsQoAAAQIE1iOgPVqPmnUIECCwDgEdpOlovzp99va5l2fsa9tfGSFAgAAB\nAu0KaI/a9VQbAQIEJgr4DtJEGjMIECBAgAABAgQIEOibgA5S38644yVAgAABAgQIECBAYKKA\nDtJEGjMIECBAgAABAgQIEOibgA5S38644yVAgAABAgQIECBAYKKADtJEGjMIECBAgAABAgQI\nEOibgA5S38644yVAgAABAgQIECBAYKKADtJEGjMIECBAgAABAgQIEOibgA5S38644yVAgAAB\nAgQIECBAYKKADtJEGjMIECBAgAABAgQIEOibgA5S38644yVAgAABAgQIECBAYKKADtJEGjMI\nECBAgAABAgQIEOibgA5S38644yVAgAABAgQIECBAYKKADtJEGjMIECBAgAABAgQIEOibgA5S\n38644yVAgAABAgQIECBAYKKADtJEGjMIECBAgAABAgQIEOibgA5S38644yVAgAABAgQIECBA\nYKKADtJEGjMIECBAgAABAgQIEOibwE5LcMC75BiOSPZP9kuuSy5NPpucM3idgUKAAAECBGYq\noD2aKa/KCRAgMB+BLneQat9PTJ6Y7DOB65OZ/rjkcxPmm0xgLQK3ysL1H6BlK5fngL69bAfl\neAjMUUB7NEdsm9oqoD3yRiAwQ4Eud5BeG5eHJa9J3pNclNR/8m6SVIfpkOSE5Kzk55IzEoXA\negTq6mSVT20bLN2f38sR7bF0R+WACMxPQHs0P+u+b0l71Pd3gOOfi0BXO0h7Ref45JjktBWk\nvp5pdYvdW5JTk0clOkhBUNYlMLxq9MCs/aV11bC4K90ju3bK4u6ePSOw8ALao4U/RUu1g9qj\npTqdDmZRBbraQToooPVdow80gD09yzy5wXIWIbCaQHW8z1ttoY7Nv03H9tfuElg0Ae3Rop2R\nfuyP9qgf59lRbpJAV59iV1eHLk6OXcWtOoDHJcv2qf8qh202AQIECMxJQHs0J2ibIUCAwLwE\nunoF6doAvTqpW4MenbwruTC5JNk52Sep7yA9Jjk4qduIFAIECBAg0LaA9qhtUfURIECAwIYE\n6jsh5yZ1u914fphp1YGqR4DPutRTwB48640seP03y/7VOZiH97wpHjQ4tjvOe8Nz2N7Rg2Ob\nw6ZsgsBSC2iPFuf0ao8W51ysZU+OzsL1/wiFwKYLdPUK0hDu/Rm5fXJAcmBy06Q6K98Y5KoM\nFQIECBAgMGsB7dGshdVPgACBOQl0vYM0ZLogIxWFAAECBAhspoD2aDP1bZsAAQItCHS5g1QP\nmKh7v0fLbnnx8KS+f3RRUp/onZMoBAgQIEBgVgLao1nJqpcAAQKbINDVDtKesfpu8sjkzQO3\n6hS9L6lHrg7LNRl5bvKi4QRDAgQIECDQooD2qEVMVREgQGARBLraQVrJ7g2ZWFeQnp7Uj8Pe\nLvmN5IXJF5J3Jmst+2aFH2uw0g4NlrEIAQIECPRDQHvUj/PsKAkQWFKBZekg3TLn56jk2cnL\nB+eqHvv98eSwpB4Fvp4OUv0Q7Z2SJqUeFqEQIECAQL8FtEf9Pv+OngCBJRBYlg5SPRayvo/0\n9hXOSd2C94QVpjeZdLcstEeDBb+SZepx4woBAgQI9FtAe9Tv8+/oCRBYAoGud5Dq+0a7J/VA\nho8lhydfTEbLA/JivU+4uzLrVhQCBAgQIDBNQHs0Tcc8AgQIdEignrzTxVKf0NUPwdbDF+ph\nDZ9P9k9ekeyXVLlLclpyTHJyohAgQIAAgbYFtEdti6qPAAECmyzQ1StIV8Stbn27Y3Ln5MjB\nsDpHuyRVjk3um9RT7N6SKAQIECBAoG0B7VHbouojQIAAgVYFRp8md0Bq3rvV2idXdnlmPXjy\n7F7MuVmOsj5JPWIJj/ZBg2OrDvmylaNzQHXeFAIE2hXQHrXruZbatEdr0VqcZY/OrmiPFud8\n9HpPunoFaXjSds1I3UpXtwqelXwvGZbh947qKtIPkvqOkkKAAAECBGYhoD2ahao6CRAgsAkC\nXf0OUlHV47v/Pflo8s/JeclxyXj5o0x42vhErwkQIECAQEsC2qOWIFVDgACBRRDoagepbl34\n26Qe1HBCUr9zVA9qeHPyzEQhQIAAAQLzENAezUPZNggQIDBHga7eYnebGNV3Xe6fnJ5UOSX5\n0+TFySXJ6xKFAAECBAjMUuA2qVx7NEthdRMgQGDOAl3tINUvldcPw/7LmNcf5/WeyV8mFyT1\nmG+FAAECBAjMSkB7NCtZ9RIgQGCTBLp6i9158ap9f+gKbr+bae9ITk3qAQ4KAQIECBCYlcB5\nqVh7NCtd9RIgQGATBLraQfpmrN6dvCJ5ZfITybDUlaX6TlJdXaqHNyzjo5lzWAoBAgQILICA\n9mgBToJdIECAQJsCXe0glcFvJR9JnpwcnIyWq/PiV5P6gdi6/UEhQIAAAQKzEtAezUpWvQQI\nENgEga5+B6moLk6OTeoH4ep3jsbLlZlQjVZ9H+kW4zO9JkCAAAECLQloj1qCVA0BAgQWQaDL\nHaSh32XDkQnDMydMN5kAAQIECLQpoD1qU1NdBAgQ2CSBLt9it0lkNkuAAAECBAgQIECAwLIK\n6CAt65l1XAQIECBAgAABAgQIrFlAB2nNZFYgQIAAAQIECBAgQGBZBXSQlvXMOi4CBAgQIECA\nAAECBNYsoIO0ZjIrECBAgAABAgQIECCwrAI6SMt6Zh0XAQIECBAgQIAAAQJrFtBBWjOZFQgQ\nIECAAAECBAgQWFYBHaRlPbOOiwABAgQIECBAgACBNQvoIK2ZzAoECBAgQIAAAQIECCyrgA7S\nsp5Zx0WAAAECBAgQIECAwJoFdJDWTGYFAgQIECBAgAABAgSWVUAHaVnPrOMiQIAAAQIECBAg\nQGDNAjpIayazAgECBAgQIECAAAECyyqgg7SsZ9ZxESBAgAABAgQIECCwZgEdpDWTWYEAAQIE\nCBAgQIAAgWUV0EFa1jPruAgQIECAAAECBAgQWLPATmteo18rfDCHe0SDQ94ty9ymwXIWIUCA\nAAEC6xHQHq1HzToECBBYh4AO0nS0P8zsW01fZOvcN+bPrzdYziIECBAgQGA9Atqj9ahZhwAB\nAusQ0EGajnZmZldWKz/KAtestpD5BAgQIEBgnQLao3XCWY0AAQJrFfAdpLWKWZ4AAQIECBAg\nQIAAgaUVaHoFadcI7LAGhSvXsKxFCRAgQIBAUwHtUVMpyxEgQIDAugSadpC+mdr3ariF72e5\nasAUAgQIECDQtoD2qG1R9REgQIDA9QSadpCenrX+V/KeQb6V4f7JY5KfSZ6TVMeoiu/ibHPw\nJwECBAi0L6A9at9UjQQIECAwItC0g/SUrPPc5CUj69bo65IvJPsmz0wUAgQIECAwSwHt0Sx1\n1U2AAAECW5o8pKFurbtr8voVvK7NtL9MfmGFeSYRIECAAIE2BbRHbWqqiwABAgRWFGjSQbo8\na347ucuKNWzrPF0wYZ7JBAgQIECgLQHtUVuS6iFAgACBiQJNbrGrq0RvS96Y/Enyz8llya2T\nxyePSu6XKAQIECBAYJYC2qNZ6qqbAAECBLYKNOkg1YL/LamHL7yiXoyUizJeD2r44Mg0owQI\nECBAYFYC2qNZyaqXAAECBLYKNO0gVeeoGqV6Wt2Rya2SryafTr6XKAQIECBAYB4C2qN5KNsG\nAQIEeizQ5DtIozx3yItDk+pYfTSp1woBAgQIEJi3gPZo3uK2R4AAgZ4INO0g7RmP9yUfS16Z\n1PeOdk/OGLzeJUOFAAECBAjMWkB7NGth9RMgQKDnAk07SCfFqT6tq47RiQOzKzN8avJbyYMH\n0wwIECBAgMAsBbRHs9RVNwECBAg0+h2k6kQ9MnlS8qbkiqTKdcmrk5MTHaQgKAQIECAwUwHt\n0Ux5VU6AAAECJdDkCtLNs9yuyfm1wgqlph++wnSTCBAgQIBAmwLaozY11UWAAAECKwo06SD9\nZ9a8JKnHeY+XHTLhccmXxmd4TYAAAQIEWhbQHrUMqjoCBAgQuKFA08d8vzSrPi+pH4etW+vq\nAQ1PSE5Ibp9UJ0khQIAAAQKzFtAezVpY/QQIEOi5QNMO0ovjtEfye8lNBmZ3z7CuLD02+fhg\n2mYM6gl6RyT7J/sl1YG7NPlscs7gdQYKAQIECCyBgPZoCU6iQyBAgMAiCzTtID0/B/GPycuS\nOyXVGanvHlUn5PJkM0rtez1R74nJPhN24JOZXle3PjdhvskECBAg0C2B52d3tUfdOmf2lgAB\nAp0SaNJBqt+ceFZyVfLh5EPJIpTXZicelrwmeU9yUfLtpK5wVYfpkOSE5Kzk55L6zSaFAAEC\nBLoroD3q7rmz5wQIEOiMQJMOUj3W+8tJPamuHspQt7BtdtkrO3B8ckxy2go78/VMq6tbb0lO\nTR6V6CAFQSFAgECHBbRHHT55dp0AAQJdEWjSQaoOUV2lqdvZPpOcnVyYjJbqjPyf0QkzHj8o\n9dd+faDBdk7PMk9usJxFCBAgQGCxBbRHi31+7B0BAgSWQqBJB6kO9GnJ95P67lFlvLwrE+bZ\nQaoO2cXJsclbk0mlju+45EuTFjCdAAECBDoloD3q1OmyswQIEOieQNMO0m0X7NCuzf68Ojkl\neXRSHbS6qlVP1ds52Sep7yDVbzcdnNwjUQgQIECg+wLao+6fQ0dAgAABAjMUeGDqPjep2y7G\n88NMqw7UEcmsSz3J78Gz3siC13+z7F+dg3l4z5viQYNju+O8NzyH7R09OLY5bMomCCy1gPZo\ncU6v9mhxzsVa9uToLFz/j1AIbLrApCtIN8+e1X/468pMPRluUcv7s2P1Q7UHJAcmN02qs/KN\nQerJewoBAgQIdFdAe9Tdc2fPCRAg0EmBG03Y69tl+slJdTyGZe+MvCCpeYtQRvf9guzQx5IP\nJ/UAh8cmT0h+MlEIECBAoLsC2qPunjt7ToAAgU4KTLqCtNLBVAfpOclHkq+stMAcp9VvYXw3\neWTy5sF26ztH70uqgzQs12TkucmLhhMMCRAgQKDzAtqjzp9CB0CAAIHFFRi9CrO4e9lsz96Q\nxXZLnp7Uk/bulfxV8sLkoYlCgAABAgTmIaA9moeybRAgQGBGAmu5gjSjXWil2lumlqOSZycv\nH9RYT7X7eHJYUk+6e2ey1vKSrNDkNr1dsty+a63c8gQIECCwdALao6U7pQ6IAIG+CSxLB6me\nelKP/n77CiewbsGr7yOtp5yflW7cYMXa9g8aLGcRAgQIEFhuAe3Rcp9fR0eAQA8Eut5Bqu8b\n7Z5clHwsOTz5YjJaHpAX9RCH9ZRXNVzp8VnuOw2XtRgBAgQILJ+A9mj5zqkjIkCAwPUE7pZX\n9SlYPQjh0kGqA1DT6jHaw2nD4cmZNs+yRzZ2dVL786Pk88k5SXWU9kuq3CU5LallHpHMsvgd\npC1b/O7ELN9hs6v76FRdf0cUAosqoD1a25nRHmmP1vaOWZylj86uaI8W53z0ek8mXUG6OCpv\nXIPMWWtYto1Fr0gl1UmqH+68c3LkYFido/o+UJVjk/sm9RS7tyQKAQIECHRPQHvUvXNmjwkQ\nIEBggQR2GNmXAzK+98jrWY76xM4ndrN8f82y7qNTuU/sZims7r4KaI8278y7o2Hz7Dey5aOz\nsvZoI4LWbU1g0hWk1jYw54pG/2Kt93tHc95lmyNAgACBJRTQHi3hSXVIBAj0Q2CZfgepH2fM\nURIgQIAAAQIECBAgMDOBrl5Bqu8f3W4NKpdl2fPXsLxFCRAgQIBAEwHtURMlyxAgQKBDAl3t\nINXjvOtHYJuWekjDcU0XthwBAgQIEGgooD1qCGUxAgQIdEWgqx2kTwT4sclrko8kf5ZMKxdO\nm2keAQIECBBYp4D2aJ1wViNAgMCiCnS1g1SeJyf1lKDXJS9MPpQoBAgQIEBg3gLao3mL2x4B\nAgRmKND1hzS8Pjb/lLx4hkaqJkCAAAECqwloj1YTMp8AAQIdEejyFaQhcX236KCkjuWa4URD\nAgQIECAwZwHt0ZzBbY4AAQKzEFiGDlI9oe7sWeCokwABAgQIrEFAe7QGLIsSIEBgUQW6fovd\norraLwIECBAgQIAAAQIEOiigg9TBk2aXCRAgQIAAAQIECBCYjYAO0mxc1UqAAAECBAgQIECA\nQAcFdJA6eNLsMgECBAgQIECAAAECsxHQQZqNq1oJECBAgAABAgQIEOiggA5SB0+aXSZAgAAB\nAgQIECBAYDYCOkizcVUrAQIECBAgQIAAAQIdFNBB6uBJs8sECBAgQIAAAQIECMxGYBl+KHY2\nMmol0A+BXQaH+ewlPdyv5LjetKTH5rAIECCwTALao2U6mx0/Fh2kjp9Au09ggwKHDNZ/0Abr\nWcTVb5Gdummig7SIZ8c+ESBA4PoC2qPre3i1iQI6SJuIb9MEFkjgXgu0L23tyiNT0cvaqkw9\nBAgQIDAXAe3RXJhtZJqA7yBN0zGPAAECBAgQIECAAIFeCegg9ep0O1gCBAgQIECAAAECBKYJ\n6CBN0zGPAAECBAgQIECAAIFeCegg9ep0O1gCBAgQIECAAAECBKYJ6CBN0zGPAAECBAgQIECA\nAIFeCegg9ep0O1gCBAgQIECAAAECBKYJeMz3NJ0tWx6W2QdNX2Tr3Bvnz90aLGcRAgQIECCw\nHgHt0XrUrEOAAIF1COggTUd7SGb/1PRFts4tx70bLGcRAgQIECCwHgHt0XrUrEOAAIF1COgg\nTUc7fvrs7XMvz9h/bH9lhAABAgQItCugPWrXU20ECBCYKOA7SBNpzCBAgAABAgQIECBAoG8C\nOkh9O+OOlwABAgQIECBAgACBiQI6SBNpzCBAgAABAgQIECBAoG8COkh9O+OOlwABAgQIECBA\ngACBiQI6SBNpzCBAgAABAgQIECBAoG8COkh9O+OOlwABAgQIECBAgACBiQI6SBNpzCBAgAAB\nAgQIECBAoG8COkh9O+OOlwABAgQIECBAgACBiQI6SBNpzCBAgAABAgQIECBAoG8COkh9O+OO\nlwABAgQIECBAgACBiQI6SBNpzCBAgAABAgQIECBAoG8COkh9O+OOlwABAgQIECBAgACBiQI6\nSBNpzCBAgAABAgQIECBAoG8COkh9O+OOlwABAgQIECBAgACBiQI6SBNpzCBAgAABAgQIECBA\noG8COkh9O+OOlwABAgQIECBAgACBiQI6SBNpzCBAgAABAgQIECBAoG8COkh9O+OOlwABAgQI\nECBAgACBiQI6SBNpzCBAgAABAgQIECBAoG8COkh9O+OOlwABAgQIECBAgACBiQI6SBNpzCBA\ngAABAgQIECBAoG8COkh9O+OOlwABAgQIECBAgACBiQI7TZzTnRm7ZFePSPZP9kuuSy5NPpuc\nM3idgUKAAAECBGYqoD2aKa/KCRAgMB+BLneQat9PTJ6Y7DOB65OZ/rjkcxPmm0yAAAECBDYq\noD3aqKD1CRAgsEACXb7F7rVxfEryuuQ+yaHJvskBSV1ROi75VnJWcrdEIUCAAAECsxDQHs1C\nVZ0ECBDYJIGuXkHaK17HJ8ckp61g9/VMq1vs3pKcmjwqOSNRCBAgQIBAmwLaozY11UWAAIEF\nEOjqFaSDYlffNfpAA8PTs8y9GyxnEQIECBAgsFYB7dFaxSxPgACBBRfo6hWkujp0cXJs8tYp\nxnV8davdl6YsM+9Zf58N1m2Ay1Z2HBzQ3st2YI6HAAECUwS0R1NwNmmW9miT4G2WwLIIdLWD\ndG1OwKuTU5JHJ+9KLkwuSXZO9kkOSR6THJzcI1mU8qDsyBuSReq0tWFTHaM7J7doozJ1ECBA\noCMC2qPFO1Hao8U7J/aIQKcEutpBKuQXJGcmr0jqStJ4uSYT6jtIv5nUJ3zrKXXrRD06fLVS\ntyrusNpCI/PflvHTRl4vw+itcxDPXoYDcQwECBBYo4D2aI1gM15cezRjYNUTWHaBLneQ6ty8\nP7l9UresHZjcNLk8+cYgV2W4kVK3wx3RoIL6PtTtGixnEQIECBBYTgHt0XKeV0dFgEAPBbrc\nQaqrNnVrQ5ULBtktw4cnD0wuSqrBqh+LXW/56ax44wYr1/ehvtxgOYsQIECAwPIJaI+W75w6\nIgIEeizQ1Q7Snjln300embx5cP7qO0fvS+q2uGGp2+yem7xoOGGNw+qA/WCN61icAAECBPoj\noD3qz7l2pAQI9ESgPvValvKGHEhdQXp6sn9yr+SvkhcmD00UAgQIECAwDwHt0TyUbYMAAQIz\nEujqFaRxjltmwlFJPSTg5YOZ9VS7jyeHJfWku3cmCgECBAgQmKWA9miWuuomQIDAHASW5QpS\nPSShbod7+wpmdQveHVaYbhIBAgQIEGhbQHvUtqj6CBAgMGeBrneQ6vtGuyf1QIaPJYcn4+UB\nmVAPcVAIECBAgMCsBLRHs5JVLwECBOYs0NUOUn1C98OkHr5QD2v4fFLfO6rfRBr+btFdMl6/\nNXRMcnKiECBAgACBtgW0R22Lqo8AAQKbLNDV7yBdEbc9kjsmd06OHAyrc7RLUqV+PPa+ST3F\nrn4wViFAgAABAm0LaI/aFlUfAQIENlmgqx2kYrs6OXuQ4RWiHfK6Ps2r8trkpcml9UIhQIAA\nAQIzEtAezQhWtQQIENgMgS53kFbyGnaOap7vHa0kZBoBAgQIzENAezQPZdsgQIDADAS6+h2k\nGVCokgABAgQIECBAgACBvgvoIPX9HeD4CRAgQIAAAQIECBDYLqCDtJ3CCAECBAgQIECAAAEC\nfRfQQer7O8DxEyBAgAABAgQIECCwXUAHaTuFEQIECBAgQIAAAQIE+i6gg9T3d4DjJ0CAAAEC\nBAgQIEBgu4AO0nYKIwQIECBAgAABAgQI9F1AB6nv7wDHT4AAAQIECBAgQIDAdgEdpO0URggQ\nIECAAAECBAgQ6LuADlLf3wGOnwABAgQIECBAgACB7QI6SNspjBAgQIAAAQIECBAg0HcBHaS+\nvwMcPwECBAgQIECAAAEC2wV0kLZTGCFAgAABAgQIECBAoO8COkh9fwc4fgIECBAgQIAAAQIE\ntgvoIG2nMEKAAAECBAgQIECAQN8FdJD6/g5w/AQIECBAgAABAgQIbBfQQdpOYYQAAQIECBAg\nQIAAgb4L6CD1/R3g+AkQIECAAAECBAgQ2C6w0/ax7o7skl0/Itk/2S+5Lrk0+WxyzuB1BgoB\nAgQIEJipgPZoprwqJ0CAwHwEutxBqn0/MXliss8Erk9m+uOSz02YbzIBAssrsGMObefk/kt6\niP83x3Xukh5b1w5Le9S1M2Z/CcxXQHs0X+8Nb63LHaTX5ugflrwmeU9yUfLt5CZJdZgOSU5I\nzkp+LjkjUQgQ6I/Az+RQ69+Cf1jCQ67G9uzkrkt4bF08JO1RF8+afSYwPwHt0fysW9nSDq3U\nMv9K9somqzN0THLaKps/NfO/kfzOKsutNPvMTPzplWaMTavvcj01edXY9JVeXpGJuyZ1K+Cy\nlfpP24+W7aAGx7Osx1b/BtT7dxnP27If26dz3nSQBn9BN3GgPdpE/CmbXtZ/s+uQl/XYlv3f\n7GVua5euPerqFaSD8g9EdTA+UP9SrFJOz/wnr7LMpNknZEZ9t2m1cqss8KbVFhrMv2eGt2i4\nbNcWq/NSt/0sY1nWY6sG6cDkvCU8afXvW/39vWAJj60O6bwlPa6uHZb2aDHP2LL+m13ay3ps\n2qPF/LvUZK/Oa7KQZWYvUL3wC5OHr7Kp+g9SdZD+bpXlzCZAgAABAusR0B6tR806BAgQWGCB\nukzbxVJXj3ZLTkrqFrgar0+K6/sG9cnKnZOHJHXL2xHJCUl9R0khQIAAAQJtCmiP2tRUFwEC\nBAhsWOCBqaGe4lQN1Hh+mGmnJNVBUggQIECAwCwFtEez1FU3AQIE5ihQ93suQzkgB3FgctPk\n8qQeylC5KlEIECBAgMC8BLRH85K2HQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nMBeBZbnFbi5YLW3kPqnn+y3VtWjV/Hh2qG5tXMayzMdWDzj55hKetHq6WD1Sfxkf0HLjHNeV\nSf32hEJgvQLao/XKbe562qPN9V/P1rVH61HbxHV0kOaPXz/IWX9RFAIECGxE4LKsvPdGKrBu\n7wW0R71/CwAg0IrA0rVHXf2h2FbO5iZVUk/Xq99v+qdN2v6sNlu/Jl+/TXVU8rlZbWST6v3J\nbPczST0I5D83aR9mtdmfS8X/mOw6qw1sYr2PyLZfktSj/5et/Pcc0KOX7aAcz9wFtEdzJ9/w\nBrVHGybclAq0R5vCvv6N6iCt324ja1ajtGy32e0yALl6CY+tjqnKD5JlO2/1XqyybMdVx7TM\nx3ZNHaBCoAUB7VELiHOsQns0R+wWN6U9ahFzHlW51WseyrZBgAABAgQIECBAgEAnBHSQOnGa\n7CQBAgQIECBAgAABAvMQ0EGah7JtECBAgAABAgQIECDQCQEdpE6cJjtJgAABAgQIECBAgMA8\nBHSQ5qFsGwQIECBAgAABAgQIdEJAB6kTp8lOEiBAgAABAgQIECAwDwEdpHko2wYBAgQIECBA\ngAABAp0Q0EGa/2m6IJu8eP6bnfkW63d06odiL535lua/ge9kkxclV85/0zPf4iXZwtdmvpXN\n2UD9qO9/bM6mZ77V+rv2jZlvxQaWXUB71L0zrD3q3jmrPdYedfO82WsCBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgKQSOylG8Ojk3eV/y4GTRyjuzQ+9fITuM\n7GiT49g3yz8r+VRyZvL8ZMdktFSdv5HUNs9J/jY5IFGaCdwhi/1HcscVFn9Gpq10Hu89smwT\n/ybLVJVN3hMjm+7d6NDxoznyryf19+KPk5sko6XJeWvz75bzNqrfr/EunHvtUXfek9qj7pwr\n7VF3zlUv9vTWOcrvJm9Kjktel1yTHJssSjkoO3Jd8qHkrWOpv1BVmh7H6Vn2i8lvJr+X1LG/\nIRktT8yL7yfVkXpMUv9pPD+p/wAq0wVuldnV0a7zdcQKi5ZlzR8/j/ccWbaJf5Nlmr4nRjbd\nu9Fn5oh/lLwjOT7538n3krcno6XJeWvr75bzNirfr/EunHvtUXfek9qj7pyr2lPtUbfO19Lv\n7T/kCM8eO8q35fVnx6Zt5stfycbrP9z7T9mJJsdRnaKq5/Yj9fzaYNqhg2m3zPA7SXWOhmWv\njFyePGc4wfAGAtVRrU5L2V2WrNRB2inTq+P59GRSaeLfZJmqv8l7YtJ+9GF6nY8rBk6jx3ti\nXtT5G14BbHLe2vy75byNno1+jXfh3GuPFv89qT1a/HM0vofao3ERrzdVYM9svT49/v2xvair\nR6P/QRqbPfeXL8gWvzFlq02P4z2p44yxeupWour8PH8w/YQM69gPHLweDk7JyOeHLwxvIHDn\nTKkrj69MHpqU4RHJaLlTXtT0nx2dODZ+Ql6v5t9kmabvibHN9+rlLXK0db5+YeyofzGv6xw8\naDC9yXlr6++W8zZ2Mnr0sivnXnu0+G9K7dHin6PxPdQejYtMeX2jKfPMakeg7s0t5y+PVfeV\nwesDxqZv1sv6x+685L8nH04+klSnbvjdoabHUf/RGz/WH2Ta15Phsdan5j9M6pa60VLrDZcZ\nnW58m0AZHpLUObpq26Qb/HnkYMptMnxjcnby2mT0ymAT/ybLNH1PZPO9Ld/Kkdf5+uCYwCPz\n+trk3wbTm5y3tv5uOW9jJ6NHL7ty7rVHi/+m1B4t/jka30Pt0bjIlNc6SFNwWpp1s0E9F4/V\n9+3B67qVaRFKNUj3SI5O6j9z9UnjnyWnJlWaHkctd8nWNa7/x6V5OTzWScuUSW139+uv6tVA\noN5Dw471JJQ6j1Wqc1sdzq8mJySfSdbi3+Qc1TJVFv29vW0vF+fPe2dXHpO8PPnmYLc2ct7W\n+nfLeRug93DQlXNffx+0R4v9BtUeLfb5abp32qMJUjtNmG5yewJ1G02VumIyWoavdxuduEnj\ndS9x/WftguTNg314QYYnJU9LfjFpehy13NXJeKnjHT3WScvUerXc92pEWbNAdW6rg/rnSV25\nq3Kv5KPJnyRPSqqs5t9kmabvia0b9MdWgZ/Pn+9IzkietXXKtj+anLe2/m45byPwPRvtwrnX\nHi3Pm7LJv2t1tNqjzTnn2qMp7q4gTcFpadbwE+K9x+rbZ/D6u2PTN+NlNZr/bzLsHA334a8H\nI3fPsOlx1PeYhsc2WH3roKYNj3XaMrXwcLmtK/pjTQL1PZUXJsPOUa38saSuPNV5rNLEv8ky\nTd8T27bqz18PwfuTOh/HJKO3SW70vA3/zjhvgVUmCnTh76z2aOLp69yMjf67Vgdc/7b5d639\nU689WsVUB2kVoBZm11/sKvtvG2z/c3i701e3T9m8kV2z6cOT4e0Xwz0Z3gZYr5seRy03PLZh\nPTXcLxkeay2zxyAZbC9lVPNG/3O/faaRRgI/maVuu8KSo7c9NvFvukxtapHf2ytQbMqkJ2er\nb0xOTh6SjF8hbXre2vi7Vee2ivO2zaFPf3bh3GuPlucd2fTftdX+P1Dv2ybLlJx/11Z//2iP\nVjeyxJwEPpXt/P3Ytl6W1/Wf1l3Gpm/Gy3okd31qV7fUjZZn5kVNv/9gYpPjqHWuTPYcrFOD\neyZVzy/Vi5SDkx8l9QnGsNRtFXWL318PJxhOFahzUqZHjC11dl6fn9x4ZHp1mGrZ/z2Y1sS/\nyTJVXZP3xGCzvR08Lkde/s+aItDkvLX5d8t5m3IylnzWop977VH33oDao+6cM+1Rd85VL/b0\nUTnKa5KnJHWV5hFJdSKOTxalnJ4dqU+1T0jqE5jfSS5KPpQMS5PjqOOrR3q/Nfnx5KeSekDA\nu5PR8va8+Fpy9+TmySuSS5PxT38ySVlBYFKD9MQsW/8Zf1VSHaO6lesTSZ2Tg5JhaeLfZJkm\n74nhNvs4rCunlyXnJk9aIdURrdLkvLX5d8t52+bexz+7cO61R916Z2qPunG+tEfdOE+928s/\nyhF/P6n/vH49eWGySKU6KacmtX+VHyR/m4w/Ua7Jcfxs1qurGFVPdQTrP9q3SkbLPnnx3uTa\npJY7M/nlRGkmMKlBqrWfkVSHaHguq4N6p2S0NPFvskzV2eQ9MbrtPo3XrQzD87DS8NEjGE3O\nW5t/t5y3EfyejS76udcedesNqT3qxvnSHnXjPPVyL+u2p9sldTvZopY9smOHJjtP2cGmx3Hr\n1DHewRqvdq9MqCtNSrsCO6W6ulWlOjnTShP/Jss0fU9M2xfztmxpet7a+rvlvPX3XdeFc689\nWo73Z9N/15q0NU2W6cJ7uwtntul50x514WzaRwIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAYE9ht7PUsXu6YSneeRcXqJECAAIGl\nEdAeLc2pdCAECBDonsDPZJffl1yUXJd8LnlZclSynlIdoAevsOJvZdqnkquSq5PPJH+a7JSM\nln3z4h6jExqOr3e9htVbjAABAgRmLKA9mjGw6gkQIEBgdYGnZ5EfJtVZ+d3kV5KXJF9Mrkzu\nlay1vDIr/NvYSs/L6+p8vSf5/eTJyd8n309OT3ZIhuU/M/Ks4Ys1DNe73ho2YVECBAgQmJGA\n9mhGsKolQIAAgeYCd8qi1Tn6m+TGY6vtmtdnJpcmh43NW+3l32aBs0cWulHGq/NSHaLxcmIm\nVMdp9GpVdZrW00Fa73rj++Q1AQIECMxXQHs0X29bI0CAAIEJAnVb3beSm02Yf8tMvzz53yPz\nX57xuso0Wn4+L2qZ+l7R05Jzk0uSmnbHZM/kh8lJyXj5sUx4SXK3pNavdX6UfDJ5RTIsB2Xk\npcl7kw8kf5kcmlSZtt4emf/8pI71H5JnJOOdwUxSCBAgQGATBbRHm4hv0/0UqE+vFQIEbihQ\n3/M5PbnshrO2Trkwf9aVoOq8DMtvZqTuER8tP5UXj0/qu0TfSX6QXJNU56u+a1SdrH9KnphU\nZ6iuFg3/XlZH6g+SM5K6klTr1PB7ycVJlbsmn0vunvxrcm5SnbSzklskk9bbJ/PqVr/fTf5v\n8unk/0k+kox/7ymTFAIECBDYJAHt0SbB2ywBAgQI/JfAfhmtjsX/+K9JK479RabWFZ26ClSl\nOlPj6/y3TKu6dkuqjN9iV9PqSs7bk1quUrfuvSM5Phl2ljK6tYzfKlffaTovqdv+huWBGal6\nHjmckOH4eq/ItOqoHTiyzCEZr/WeOjLNKAECBAhsnoD2aPPsbbnHAuP/+eoxhUMnsF1gl8FY\nXd2ZVq7IzHqAwkZvS6t6fjU5OPnvyYeS+yR/nbw/qas9k0otX7fYXZXUE/JulxyQVKmO16Ty\ny5nxsaT+Daj1K3VF6wvJAxKFAAECBDZfQHu0+efAHvRQwK00PTzpDnlVgfOzxDeT26+yZHVo\nzkm+vcpyTWd/JQu+apD6u/m0pG67e+YgGdyg1JWjml8drLoCVOXftw2u9/S7waStg+rQVSeq\nrh59deuU6//hg5Pre3hFgACBzRLQHm2WvO32WsB/hHp9+h38FIFPZN79ktFb10YXv2le/EJS\nyw1L3Z5WnY/RMu3qTy33+OQ/kr3rxUip299emnws+fmR6eOjr8+EZyRvSX4x2St5WFJlh22D\nG/xZD4X4XnJKUvs3nrtnmkKAAAECiyGgPVqM82AveiSgg9Sjk+1Q1yTw8iy9b/LCZLyjUa/r\nyk51Rv46GZa6Va4ejDBaDh99kfFrk7oVblg+mZEfT1b63s/OmX5Q8tlkWKoTNvx7W/XUAxlO\nTk5MPprUd43uklQZ3c7oejXvc8mDk1q+vvNUuTL5X8mjE4UAAQIEFkNAe7QY58FeECBAgEAE\nHp7UQxjqe0A1fufk15IPJHUV5thktLwtL6rD8avJwckfJ3Wlpjonw4c0vDLj300eklQHrMqp\nSS3z1uSxydFJXVk6O6ll75YMy0UZqafe1dWtKjVet/n9VFLbOCa5OKn6fj8ZlvH16mpTLVMP\ng7hXUvt7clL7f2iiECBAgMDiCGiPFudc2BMCBAj0XqAapbraUp2JSl1pqU7FLyXj5baZUFeE\nhst+PON1NaZeV+elyl2TbyU17beTKnVF6jnJuUl1yGpedVTqtorDktFSna56VHgt82PJ3ZN/\nTmq9ypeSesjCWcnbk2EZX6+mPyL5RlJ1XZPUFajqACoECBAgsHgC2qPFOyf2iAABAr0WqM5I\nPQRheHvbNIz9MvPm0xbIvKqvOkbjpTpStZ0bj88YeV233u018rpG69a+yrSy0nq1/P7JPtNW\nNI8AAQIEFkZAe7Qwp8KOECBAgAABAgQIECBAgAABAgSstgIoAAA/DklEQVQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTm\nILDDHLZhEwQWTeBG2aGjV9ip6zLtmuS7ybnJlcl4uX0mHDCY+K8ZrrTM+Dpdel02N22ww5dn\nmR81WM4iBAgQIDBZQHs02WZ0zi558ZPJ/skFSbXRP0wUAgQIEGhJYLfUU52haalO0suSHZPR\nclJeDNe7w+iMJRk/ZOT4hse50vDIJTleh0GAAIHNFNAera5/Qhb5VjLaFp2X1w9OFAIECBBo\nSaBJgzT8h/iVY9vUQdrWSN15zMVLAgQIEFi7gPZoutn9MvvaZNgmXzYy/v2MH54oBFoXcItd\n66Qq7IBANUjfG+znlzP8hcF43epw4+T+yZ8ndUm/bqHbO7k6qVJXWG69dWzLlk9kOKxnMKnz\ng31yBE9a4Sj2yLRnDaa/K8NfSarRUggQIEBg/QLao+l2b8nshw8Wqbb5n5LjkjcNpv1Fhr87\nGDcg0JrATq3VpCIC3RSoe5jrfubRUp2mY5JfSqrxqnuez0+q7JrstXVsy5bqUFW5SfLLW8e2\nbPlMhl9N7pXcM6kO1oeTmj5ejsyEWuZWSXW0zkuq81G3900rP5aZx09bYDDvwgxPabDc6CLf\nzosXjU4YjJ84GNaxPTrRORqAGBAgQKAlAe3RDSFvOZh0ToanD8bfnOFfJnsnw/mDWQYECBAg\nsF6B6vQML9d/YYVKqsNTHaJa5tyx+ScNpte84XeQ9h2Z9ryMv3vkdS1XDzP4vWRY6srt3yQ1\nbzzfybR6EMS0cqfMHF9vpdefnFbJGuZVB646erWN+gRPIUCAAIF2BLRH0x3rw7lqe6odPXiw\naH2wOGzzHj+YZkCAAAECGxQYbZDqismrB3lNhn+d1JWX+se3ruoMrwxldGtZrYN0dZaqTs7f\nJe9Nhv+IX5XxmydVTkiG09+a8T9IXpVcMZj+rxlOu7o77w7SGwb79b4MFQIECBBoT0B7NN2y\n7pj4QFJtZl1hOzupzlK9rjsudk8UAgQIEGhBYLRBGnZUVhq+dIVtNekgHTWy3t9nfFh33XZX\npTpiNe0Hye2SYXlERp6XPDSpfZxU6ta+mzVIfW9oo+UuqaBup6v9rf1SCBAgQKA9Ae3R6pb1\nUKDvJ8O2tIb1geJhiUJgJgLTPqWeyQZVSmDBBOof3c8M9mnHDOs7Rgcm1bn43aT+Af715FtJ\nk1JXf84cWfDjGT928Lo+CatS91JX2Tmp8U8lH0zqCs3bk/p0bFqpv7fDuqYtVx2wakQ2Uv48\nK9ctgf+RvHsjFVmXAAECBKYKaI9uyPOgTDo1qVvfv5nUh44PSerW739Jqn2uK0kKAQIECGxQ\nYPQTuy+sUFd1XE5Ohp9WPWNkmdWuIL11ZNkafUoyrOdhg3l1S0D9wz6cPjqsBuCxg+UmDe40\nYd3Remp8o99BuuPIdv5k0s6YToAAAQLrFtAeTaf7dGZXe3Z+cpPBotVG14eWNf2swTQDAq0K\nDJ/C1WqlKiPQcYGrs/8vGTmGXx0ZX220rtqMlpWe9lbfbarb7R6e1KdhlybDcsuM/FXygOGE\nTRweM7Lt142MGyVAgACB+Qj0uT26RYjr9roq9Z3eYftaJv9QE1OOTPbdOuYPAi0KuMWuRUxV\nLZVAXaUZluE/ysPX04b1idZqpW7jqyfVVceoOl/1QUX9I//U5PikSnWQTts6dsM/vp5Jq11l\nqrUuvuGqa5oy7CDVQysuWNOaFiZAgACBtgT62h7VB4x1i3eVI7YNtv956GCs5leHSSHQqoAO\nUqucKuugwN7Z5yeN7Hf9nbjt2LT6flCb5YxUVt9tqs7ULyZVf90mUN9BGnaQ6js/k8plmXHy\npJktTr/roK7xR523uAlVESBAgMBAQHt0/bfCJXn5laQeZnT3pNrqNyW/MnidwZYvJdUmKgQI\nECCwQYHRe76rkzItZ2Z+XfEZlpMyMlz+DoOJdXl/OO2NwwUHw98emTf8DlJdmanHlQ7XqQ7I\n10ZeV+eobrXbzFIN9XD/6pY/hQABAgTaF9AeTTe9b2Zfkwzbo7qqNByv4f0ShUDrAnVrj0KA\nwDaB+oe3LtV/N/lM8uykOjP1G0ZtlrqXuuo9c1DpwRkeMBiv+6qrQajb2jazDPen9sEVpM08\nE7ZNgEAfBbRH2876BzKop9Z9YfAmGN5y99W8rnb09MF0AwKtCgzfaK1WqjICBBoL7JMlqzNS\nHbPzkrY7Y6lSIUCAAAECqwosenu0f46g2sv6Tuw3Vz0aCxAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECIwI7DAy3tXRXbLj\nRyT7J/sl1yWXJp9Nzhm8zkAhQIAAAQIzFdAezZRX5QQIECCwmsBOWeBFySVJdYpWypmZflii\nECBAgACBWQloj2Ylq14CBAgQWJPA67P0d5L/mdw7OSS5RXKr5PDkEcl7kquTuyUKAQIECBCY\nhYD2aBaq6iRAgACBNQnslaV/lDygwVqnZpm/aLCcRQgQIECAwFoFtEdrFbM8AQIECMxE4M6p\n9ZqkbmtYrTwhC3x6tYXMJ0CAAAEC6xDQHq0DzSoECBAg0L7AjVLlhcnDV6m6OlCnJ3+3ynJm\nEyBAgACB9Qhoj9ajZh0CBAgssMCOC7xv03atHsiwW3JS8tOD8XqK3T7JQUl9oveQ5FVJPeHu\nhOSiRCFAgAABAm0KaI/a1FQXAQIECGxY4IGp4dxkpSfY/TDTT0mqg6QQIECAAIFZCmiPZqmr\nbgIECMxRYBl+B6m4DkgOTG6aXJ58Y5CrMlQIECBAgMC8BLRH85K2HQIECMxIoMsdpLrv+9ox\nl7rtrr6XVI/8rlvq3p/Uj8UqBAgQIEBgVgLao1nJqpcAAQKbINDVDtKesfpu8sjkzQO36hS9\nL6nvIA1LPenuucmLhhMMl0ZgjxzJ7eZ4NFdkW1+Z4/ZsigCBbghoj7pxnma5l9qjWeqqmwCB\nxgLVINX3jn5tZI0zMl5PtntacsvkZ5PXJLXcQxNluQTqARwrffdsVtPqauXey0XoaAgQaEFA\ne9QCYser0B51/ATafQLjAk1+R2h8nUV8XR2io5JnJy8f7GB1lj6eHJY8OnlnstbyiqxwaIOV\n6urV8cmHGixrkXYEbpJq6keAn9ROdVNr+cnMrQ74zlOXMpMAAQLbPqDTHvXrnaA96tf5drQ9\nEFiWDlJdNahP+N++wjmrW/Dqx2LXUz6dlb7TYMV7Z5nqpCnzFbg6m7tsDpus2zkVAgQINBHQ\nHjVRWr5ltEfLd04dUY8Fut5Bqu8b7Z5clHwsOTz5YjJaHpAXF4xOWMP4yQ2XfXqWq6fnKQQI\nECDQTwHtUT/Pu6MmQGAJBerJO10s9Qld/c7Ri5L6dP/zSf1QbN0St19S5S7JackxSdOOThZV\nCBAgQIBAYwHtUWMqCxIgQKAbAl29glRPFKunxtwxuXNy5GBYnaNdkirHJvdN6il2b0kUAgQI\nECDQtoD2qG1R9REgQIBAqwKjjy2vH+ub11PH6va6B7d6JCpbTeB1WeBvV1uopfn1oI76lHh4\ndbKlalVDgMASC2iPlvjkjh2a9mgMxEsCXRfo6hWkSe71n9hhWe/3jobrGxIgQIAAgfUKaI/W\nK2c9AgQIbLJAV7+DtMlsNk+AAAECBAgQIECAwDIKdPUK0lp/tboeBX3+Mp5Ax0SAAAECmyqg\nPdpUfhsnQIBA+wJd7SDV47zrR2CblnpIw3FNF7YcAQIECBBoKKA9aghlMQIECHRFoKsdpE8E\n+LHJa5KPJH+WTCsXTptpXisC9YXkP0lu1kptq1dy9ywyr/O682B3/jTDq1bftVaWOCW1/Gsr\nNamEAIFZCmiPZqm7vrq1R+tzm7SW9miSjOlLK9DVDlKdkJOT+kewnh7zwuRDibJ5Antl089J\nPpB8Zw67cetsY9c5bKc28ROD7dwmw/rdrVmXe2YDP0h0kGYtrX4C7Qhoj9pxbKsW7VFbklu2\naI/as1QTgbkK/GO2dsZct3jDjXnM97YrR/XUpiNuyDOTKV9MrV+ZSc03rPRBmVTHVr+7NY/y\n7mxktaui89gP2yBAYG0C2qO1ec1q6bqTQXvUjq72qB1HtXRMoMtXkIbU9d2ig5I6lmuGEw0J\nECBAgMCcBbRHcwa3OQIECMxCYBk6SPWEurNngaNOAgQIECCwBgHt0RqwLEqAAIFFFfA7SIt6\nZuwXAQIECBAgQIAAAQJzF9BBmju5DRIgQIAAAQIECBAgsKgCOkiLembsFwECBAgQIECAAAEC\ncxfQQZo7uQ0SIECAAAECBAgQILCoAjpIi3pm7BcBAgQIECBAgAABAnMX0EGaO7kNEiBAgAAB\nAgQIECCwqAI6SIt6ZuwXAQIECBAgQIAAAQJzF9BBmju5DRIgQIAAAQIECBAgsKgCOkiLembs\nFwECBAgQIECAAAECcxfQQZo7uQ0SIECAAAECBAgQILCoAjpIi3pm7BcBAgQIECBAgAABAnMX\n0EGaO7kNEiBAgAABAgQIECCwqAI6SIt6ZuwXAQIECBAgQIAAAQJzF9BBmju5DRIgQIAAAQIE\nCBAgsKgCOkiLembsFwECBAgQIECAAAECcxfQQZo7uQ0SIECAAAECBAgQILCoAjpIi3pm7BcB\nAgQIECBAgAABAnMX0EGaO7kNEiBAgAABAgQIECCwqAI6SIt6ZuwXAQIECBAgQIAAAQJzF9BB\nmju5DRIgQIAAAQIECBAgsKgCOkiLembsFwECBAgQIECAAAECcxfQQZo7uQ0SIECAAAECBAgQ\nILCoAjpIi3pm7BcBAgQIECBAgAABAnMX0EGaO7kNEiBAgAABAgQIECCwqAI6SIt6ZuwXAQIE\nCBAgQIAAAQJzF9BBmju5DRIgQIAAAQIECBAgsKgCOkiLembsFwECBAgQIECAAAECcxfQQZo7\nuQ0SIECAAAECBAgQILCoAjpIi3pm7BcBAgQIECBAgAABAnMX0EGaO7kNEiBAgAABAgQIECCw\nqAI6SIt6ZuwXAQIECBAgQIAAAQJzF9BBmju5DRIgQIAAAQIECBAgsKgCOkiLembsFwECBAgQ\nIECAAAECcxfQQZo7uQ0SIECAAAECBAgQILCoAjpIi3pm7BcBAgQIECBAgAABAnMX0EGaO7kN\nEiBAgAABAgQIECCwqAI6SIt6ZuwXAQIECBAgQIAAAQJzF9BBmju5DRIgQIAAAQIECBAgsKgC\nOkiLembsFwECBAgQIECAAAECcxfQQZo7uQ0SIECAAAECBAgQILCoAjpIi3pm7BcBAgQIECBA\ngAABAnMX0EGaO7kNEiBAgAABAgQIECCwqAI6SIt6ZuwXAQIECBAgQIAAAQJzF9BBmju5DRIg\nQIAAAQIECBAgsKgCOkiLembsFwECBAgQIECAAAECcxfYae5bbH+Du6TKI5L9k/2S65JLk88m\n5wxeZ6AQIECAAIGZCmiPZsqrcgIECMxHoMsdpNr3E5MnJvtM4Ppkpj8u+dyE+SYTIECAAIGN\nCmiPNipofQIECCyQQJdvsXttHJ+SvC65T3Josm9yQFJXlI5LvpWcldwtUQgQIECAwCwEtEez\nUFUnAQIENkmgq1eQ9orX8ckxyWkr2H090+oWu7ckpyaPSs5IFAIECBAg0KaA9qhNTXURIEBg\nAQS6egXpoNjVd40+0MDw9Cxz7wbLWYQAAQIECKxVQHu0VjHLEyBAYMEFutpBqqtDFyfHruJb\nV8jqVrsvrbKc2QQIECBAYD0C2qP1qFmHAAECCyzQ1Vvsro3pq5NTkkcn70ouTC5Jdk72SQ5J\nHpMcnNwjUQgQIECAQNsC2qO2RdVHgACBTRboagep2F6QnJm8IlnpStI1mV7fQfrNpD7hUwgQ\nIECAwCwEtEezUFUnAQIENkmgyx2kInt/cvuknlx3YHLT5PLkG4NclaFCgAABAgRmLaA9mrWw\n+gkQIDAnga53kIZMF2SkohAgQIAAgc0U0B5tpr5tEyBAoAWBZegg+eXyFt4IqiBAgACBDQto\njzZMqAICBAhsvkCXO0i17ycmT0zqoQwrlU9m4uOSz6000zQCBAgQINCCgPaoBURVECBAYFEE\nutxBql8uf1jymuQ9yUXJt5ObJMOn2J2Q8bOSn0vW80OxN896kzpfmbW97LB9zAgBAgQI9E1A\ne9S3M+54CRBYaoGudpDm9cvlH87Zv2PDd0A9LEIhQIAAgX4JaI/6db4dLQECPRDoagdprb9c\n/uR1nsu7Z709G6x7bpapKAQIECDQLwHtUb/Ot6MlQKAHAl3tINXvGl2c1O8fvXXKearjOy75\n0pRlps26IjMrq5XrVlvAfAIECBBYSgHt0VKeVgdFgECfBbraQfLL5X1+1zp2AgQILI6A9mhx\nzoU9IUCAQCsCXe0g1cH75fJW3gIqIUCAAIENCmiPNghodQIECCySQJc7SOXol8sX6d1kX9oS\n2D0VHZo8sq0KV6nnPzP/g6ssYzYBAtMFtEfTfcztpoD2qJvnzV5vUKDrHaTh4fvl8qGE4TII\n3CEHUY+X/5k5HEw9Fr+ewrXjHLZlEwT6IKA96sNZ7s8xao/6c64d6YjAsnSQRg7JKIGlEPi3\nHMVRcziSo7OND81hOzZBgAABAt0U0B5187zZ6w0IdLWDtEeO+XZrOO7Lsuz5a1jeogQIECBA\noImA9qiJkmUIECDQIYGudpAOj/HH1+D8lixbj/tWCBAgQIBAmwLaozY11UWAAIEFEOhqB+kT\nsXts8prkI8mfJdPKhdNmmkeAAAECBNYpoD1aJ5zVCBAgsKgCXe0glefJyQ7J65IXJr5HEQSF\nAAECBOYuoD2aO7kNEiBAYHYCN5pd1XOp+fXZyj8lL57L1myEAAECBAisLKA9WtnFVAIECHRO\noMtXkIbY9d2ig5I6lmuGEw0JECBAgMCcBbRHcwa3OQIECMxCYBk6SPWEurNngaNOAgQIECCw\nBgHt0RqwLEqAAIFFFej6LXaL6mq/CBAgQIAAAQIECBDooIAOUgdPml0mQIAAAQIECBAgQGA2\nAjpIs3FVKwECBAgQIECAAAECHRRYhu8gdZB9bru8d7Z01Jy2tvuctmMzBAgQINA9Ae1R986Z\nPSbQWwEdpOU+9b+Tw3tOcvUcDrN+k6rK7ZLPbB3zBwECBAgQ2CagPfJOIECgMwJNO0i75oiG\n/wFucnBXNlnIMjMX2DFb+EByv5lvacuWW2cb5ye1TYUAAQKzEtAezUp2tvVqj2brq3YCBFoU\naNpB+ma2uVfD7X4/y1UDphAgQIAAgbYFtEdti6qPAAECBK4n0LSD9PSs9b+S9wzyrQz3Tx6T\n/ExSt3FVx6iKH2vd5uBPAgQIEGhfQHvUvqkaCRAgQGBEoGkH6SlZ57nJS0bWrdHXJV9I9k2e\nmSgECBAgQGCWAtqjWeqqmwABAgS2NHnMd91ad9fk9St4XZtpf5n8wgrzTCJAgAABAm0KaI/a\n1FQXAQIECKwo0KSDdHnW/HZylxVr2NZ5umDCPJMJECBAgEBbAtqjtiTVQ4AAAQITBZrcYldX\nid6WvDH5k+Sfk8uSWyePTx6VzOMpadmMQoAAAQI9FtAe9fjkO3QCBAjMS6BJB6n25b8l9fCF\nV9SLkXJRxutBDR8cmWaUAAECBAjMSkB7NCtZ9RIgQIDAVoGmHaTqHFWjVE+rOzK5VfLV5NPJ\n9xKFAAECBAjMQ0B7NA9l2yBAgECPBZp8B2mU5w55cWhSHauPJvVaIUCAAAEC8xbQHs1b3PYI\nECDQE4GmHaQ94/G+5GPJK5P63tHuyRmD17tkqBAgQIAAgVkLaI9mLax+AgQI9FygaQfppDjV\np3XVMTpxYHZlhk9Nfit58GCaAQECBAgQmKWA9miWuuomQIAAgUa/g1SdqEcmT0relFyRVLku\neXVycqKDFASFAAECBGYqoD2aKa/KCRAgQKAEmlxBunmW2zU5v1ZYodT0w1eYbhIBAgQIEGhT\nQHvUpqa6CBAgQGBFgSYdpP/Mmpck9Tjv8bJDJjwu+dL4DK8JECBAgEDLAtqjlkFVR4AAAQI3\nFGj6mO+XZtXnJfXjsHVrXT2g4QnJCcntk+okKQQIECBAYNYC2qNZC6ufAAECPRdo2kF6cZz2\nSH4vucnA7O4Z1pWlxyYfH0wzIECAAAECsxTQHs1SV90ECBAgsPX3jJowPD8L/WPysuROyf5J\nfffos8nliUKAAAECBOYh8PxsRHs0D2nbIECAQE8FmlxBqt+ceFZyVfLh5EOJQoAAAQIE5i2g\nPZq3uO0RIECghwJNHtJQj/X+clJPqquHMigECBAgQGAzBLRHm6FumwQIEOiZQJMrSPVQhtck\n9QOxn0nOTi5MRkvdavd/RicYJ0CAAAECLQtoj1oGVR0BAgQI3FCgSQep1npa8v2kvntUGS/v\nygQdpHEVrwkQIECgbQHtUdui6iNAgACB6wk07SDd9npreUGAAAECBDZHQHu0Oe62SoAAgd4I\nNPkOUm8wHCgBAgQIECBAgAABAv0WmNRBunlYTkj26TePoydAgACBTRbQHm3yCbB5AgQI9E1g\nUgfpdoE4OTlgBGTvjL8gqXkKAQIECBCYh4D2aB7KtkGAAAEC2wUmdZC2LzAyUh2k5yQHjUwz\nSoAAAQIE5i2gPZq3uO0RIECgRwJr6SD1iMWhEiBAgAABAgQIECDQRwEdpD6edcdMgAABAgQI\nECBAgMCKAjpIK7KYSIAAAQIECBAgQIBAHwV0kPp41h0zAQIECBAgQIAAAQIrCqz2Q7EfzVo/\nGqw57Ez9fV5fM1bbO/L6t8ameUmAAAECBNoS0B61JakeAgQIEJgqMKmDdHHWeuPUNa8/86zr\nv/SKAAECBAi0IqA9aoVRJQQIECDQVGBSB+krqeA3mlZiOQIECBAgMCMB7dGMYFVLgAABAisL\nDG+bW3muqQQIECBAgAABAgQIEOiRgA5Sj062QyVAgAABAgQIECBAYLqADtJ0H3MJECBAgAAB\nAgQIEOiRgA5Sj062QyVAgAABAgQIECBAYLqADtJ0H3MJECBAgAABAgQIEOiRgA5Sj062QyVA\ngAABAgQIECBAYLqADtJ0H3MJECBAgAABAgQIEOiRgA5Sj062QyVAgAABAgQIECBAYLqADtJ0\nH3MJECBAgAABAgQIEOiRgA5Sj062QyVAgAABAgQIECBAYLqADtJ0H3MJECBAgAABAgQIEOiR\nwE5LcKy75BiOSPZP9kuuSy5NPpucM3idgUKAAAECBGYqoD2aKa/KCRAgMB+BLneQat9PTJ6Y\n7DOB65OZ/rjkcxPmm0yAAAECBDYqoD3aqKD1CRAgsEACXb7F7rVxfEryuuQ+yaHJvskBSV1R\nOi75VnJWcrdEIUCAAAECsxDQHs1CVZ0ECBDYJIGuXkHaK17HJ8ckp61g9/VMq1vs3pKcmjwq\nOSNRCBAgQIBAmwLaozY11UWAAIEFEOhqB+mg2NV3jT7QwPD0LPPkBstZhEAfBeo7E1X+cNtg\n5n/W39s3J+fNfEs2QGA+Atqj+TjbyvILaI+W/xx35gi72kGqq0MXJ8cmb52iXcdXt9p9acoy\nZhHos8Ahg4N/6JwQDst2rkn+fE7bsxkCsxbQHs1aWP19EdAe9eVMd+A4u9pBuja2r05OSR6d\nvCu5MLkk2TnZJ6m/aI9JDk7ukSgECEwWmNffkU9N3gVzCHRSQHvUydNmpxdYQHu0wCenL7vW\n1Q5SnZ8XJGcmr0jqStJ4qU+p6ztIv5nUJ3zrKU/NStXBWq1Up+xmqy1kPgECBAgspYD2aClP\nq4MiQKCvAl3uINU5e39y+6SeXHdgctPk8uQbg1yV4UbKT2Tlqnu1Uk8DvPFqC5lPgAABAksr\noD1a2lPrwAgQ6JtAlztI1SmpWxuqXDDIbhk+PHlgclFSDVb9WOx6S9MvrlenrB4prhAgQIBA\n/wS0R/07546YAIElFuhqB2nPnJPvJo9M6olYVeo7R+9L6olCw1K32T03edFwgiEBAgQIEGhR\nQHvUIqaqCBAgsAgC9anXspQ35EDqCtLTk/2TeyV/lbwwmdcTurIphQABAgR6LqA96vkbwOET\nINBtga5eQRpXv2UmHJU8O3n5YGY91e7jyWFJPenunYlCgAABAgRmKaA9mqWuugkQIDAHgWXp\nINWPT9b3kd6+glndgveEFaabRIDAcgvUhyP1lMt5XSmvf4fqCva/JUp/BbRH/T33jpzAJAHt\n0SSZBZ3e9Q5Sfd9o96QeyPCx5PDki8loeUBe1EMcFAIE+iVwxxzuXZKXzOmwfz/bqW3qIM0J\nfME2oz1asBNidwgskID2aIFORpNd6WoHqT6h+2FSD1/4H0l1iuox2/Vp8T8n1WGq/xjV94/u\nnxyXKAQI9E/gihzyiXM67CfNaTs2s1gC2qPFOh/2hsCiCmiPFvXMrLBf/397dwJt3TnfATiR\niIhEIoaIRYgxNSShRQxtQynLVGNpq/K1tZTW2ApKLYpaXaoUUa0xLUs1xlZNjVBDtWIIUl1I\nELMQEmPm6O+f72x333PPPXd/ueecvc+9z7vW79vj2cPz7nve+969z/mWtYNUF9m+SfXIj0xu\nORoelOHeSZX7Jr+W1LfYvTFRCBDoX+CQHMJTkkcu4FDqPeKABezHLra3gPZoe9e/s19eAe3R\n8tbd3I98WTtIBXNBcsoor6kZKbsn9de8Ki9PXpCcXRMKAQKDEKhvmjw9OW4BR/OQ7OPoBezH\nLghoj1wDBJZPQHu0fHW2sCNe5g7SJKSmc1TLfO5okpB5BPoX+GoO4ZULOIz6UOzRC9iPXRCY\nJKA9mqRiHoFhCWiPhlUfgzmayw3mSBwIAQIECBAgQIAAAQIEehbQQeq5AuyeAAECBAgQIECA\nAIHhCOggDacuHAkBAgQIECBAgAABAj0L6CD1XAF2T4AAAQIECBAgQIDAcAR0kIZTF46EAAEC\nBAgQIECAAIGeBXSQeq4AuydAgAABAgQIECBAYDgCOkjDqQtHQoAAAQIECBAgQIBAzwI6SD1X\ngN0TIECAAAECBAgQIDAcAR2k4dSFIyFAgAABAgQIECBAoGcBHaSeK8DuCRAgQIAAAQIECBAY\njoAO0nDqwpEQIECAAAECBAgQINCzgA5SzxVg9wQIECBAgAABAgQIDEdAB2k4deFICBAgQIAA\nAQIECBDoWUAHqecKsHsCBAgQIECAAAECBIYjoIM0nLpwJAQIECBAgAABAgQI9Cygg9RzBdg9\nAQIECBAgQIAAAQLDEdBBGk5dOBICBAgQIECAAAECBHoW0EHquQLsngABAgQIECBAgACB4Qjo\nIA2nLhwJAQIECBAgQIAAAQI9C+gg9VwBdk+AAAECBAgQIECAwHAEdJCGUxeOhAABAgQIECBA\ngACBngV0kHquALsnQIAAAQIECBAgQGA4AjpIw6kLR0KAAAECBAgQIECAQM8COkg9V4DdEyBA\ngAABAgQIECAwHAEdpOHUhSMhQIAAAQIECBAgQKBnAR2knivA7gkQIECAAAECBAgQGI6ADtJw\n6sKRECBAgAABAgQIECDQs4AOUs8VYPcECBAgQIAAAQIECAxHQAdpOHXhSAgQIECAAAECBAgQ\n6FlAB6nnCrB7AgQIECBAgAABAgSGI6CDNJy6cCQECBAgQIAAAQIECPQsoIPUcwXYPQECBAgQ\nIECAAAECwxHQQRpOXTgSAgQIECBAgAABAgR6FtBB6rkC7J4AAQIECBAgQIAAgeEI6CANpy4c\nCQECBAgQIECAAAECPQvoIPVcAXZPgAABAgQIECBAgMBwBHSQhlMXjoQAAQIECBAgQIAAgZ4F\ndJB6rgC7J0CAAAECBAgQIEBgOAI6SMOpC0dCgAABAgQIECBAgEDPAjpIPVeA3RMgQIAAAQIE\nCBAgMBwBHaTh1IUjIUCAAAECBAgQIECgZwEdpJ4rwO4JECBAgAABAgQIEBiOwJ7DOZRtcyQn\n5UwPWdDZHpj9/HBB+7IbAgQIEFguAe3RctWXoyVAYEECOkgLgm7t5g4Zf1ny2da8eY0+ORu+\nyrw2brsECBAgsNQC2qOlrj4HT4DAvAR0kOYlO327787i90xfZSZLj8lWdJBmQmkjBAgQ2JIC\n2qMtWa1OigCBzQj4DNJm9LyWAAECBAgQIECAAIEtJaCDtKWq08kQIECAAAECBAgQILAZAR2k\nzeh5LQECBAgQIECAAAECW0pAB2lLVaeTIUCAAAECBAgQIEBgMwI6SJvR81oCBAgQIECAAAEC\nBLaUgA7SlqpOJ0OAAAECBAgQIECAwGYEdJA2o+e1BAgQIECAAAECBAhsKQEdpC1VnU6GAAEC\nBAgQIECAAIHNCOggbUbPawkQIECAAAECBAgQ2FICOkhbqjqdDAECBAgQIECAAAECmxHQQdqM\nntcSIECAAAECBAgQILClBHSQtlR1OhkCBAgQIECAAAECBDYjoIO0GT2vJUCAAAECBAgQIEBg\nSwnsuQXOZu+cwxHJwclByc+Ss5PPJF8YTWegECBAYK4CB2brL0r+aq57Wdn4+zJ6zMqksQEI\naI8GUAkOgQCB3bRHm7wIlrmDVMf+7OQRSV0Ik8rHMvMPklMnLTSPAAECMxTYK9v6SHL8DLe5\n3qbungWHr7fQ/IULaI8WTm6HBAhMEdAeTcHpsmiZO0gvzwk+IPn75B3Jmcn3kysk1WG6SbIj\n+UTyy8lHE4UAAQLzFPh8Nv66ee5gtO2rZXizBezHLroJaI+6OVmLAIHFCWiPNmG9+yZe2+dL\n98/OqzN0j+Q9GxzICVn+zeTxG6w3afHJmXmrSQvG5tVnuR6TvHRs/qTJH2fmFZN6FHDepfmM\n2SXz3tFo+3tkePGC9uXcZgNd7wFluah6q2ukrsdFXP9b/dw+GcdbJ0q/Atqjbv7es7s5dVlr\nq7a1W/09eyu3tVuuPVrWO0iH5h2kfsE6qcM7yYlZ51Ed1pu0yo7MrM82bVSunRXesNFKo+W3\nz/DqHdfd7GpXygYq39nshjq+vurlyx3X3exqB2QD9WZanzdbRFnkudXdgfOS6kzPu5ThdZMz\n5r2j0fbr56nqrM5v3qXe32p/X5v3jkbbr/eBbycXLWh/ZyxoP3YzXaDeG7RH041qqfZoY6Ou\na2iPukpNX097NN1nV5aesSsrW3d+AtULr19EHrjBLuoXpOog/fMG61lMgAABAgQui4D26LKo\neQ0BAgQGLFC3aZex1F/r9knqG6PqEbgar78E1GeP6i8rRyb3SeqRtyOSHUl9RkkhQIAAAQKz\nFNAezVLTtggQIEBg0wL1TU6nJdVAjefCzHt9Uh0khQABAgQIzFNAezRPXdsmQIDAAgXq8wdb\noVwnJ3Hd5MrJj5L6UobKuYlCgAABAgQWJaA9WpS0/RAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAgYUIbJVH7BaCtY12Ul9ysV9ywTY6541O9VpZoR7bVHYK7J1B/X9ei/qa9WVw\nr6/vr2/NPH8ZDtYxElgSAe3R2orSHq020R6t9qgp7dFak12ao4O0S1zbZuXv5UzrGwEVAgR2\nTeBZWf0Zu/YSaxMgMEVAezQFxyICUwS0R1NwNlq0rP9R7EbnZfnmBL6Ylz8/eeHmNrNlXn3j\nnMmnk/oikEX9p7tDx/uLHGB9xf69h36gCzy+07OvLyxwf3ZFYDsIaI9W17L2aLVHTWmP1ppo\nj9aa7NIcHaRd4tpWK1+Usz1vW53x+ifbPGpYj04x2el0cQaX8NiJ4V8CBOYqoD1a4dUerVg0\nY9qjRsJwZgL1P4ArBAgQIECAAAECBAgQIBABHSSXAQECBAgQIECAAAECBEYCOkguBQIECBAg\nQIAAAQIECIwEdJBcCgQIECBAgAABAgQIEBgJ6CC5FAgQIECAAAECBAgQIDAS0EFyKRAgQIAA\nAQIECBAgQGAkoIPkUiBAgAABAgQIECBAgMBIQAfJpTBJ4FuZ+e1JC7bpvB/kvM9MfrpNz3/S\nadf1UdeJsiLwjYz6j4RXPIwRmIWA9mi1ovZotUdNaY/WmmiP1pqYQ4AAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBYgMCx2ce7J+RXWvu+Rsafmnw8OTl5ZrJH\n0i67Z+J3k39NvpC8NrlOMl5ukxl/l5yWvCu5VzKEcvkcxH8kT5twMIs+/6EY/UIsvpHcbIJJ\n1fOk66aug6bMyq3rtdXsd9bDI7PBNyenJ59P6tq+XtIuXY+xS912ceuyTvv4jBNYBgHt0c5a\n0h6tvVq1RztNtEdrrw1zCMxFoDo91Vl501hu39rbiRn/XPKw5E+SHyb/lLTLIzJxXlIdqYcm\ntd2vJPWLXFMOyUi99g3JbyavTC5K7pv0WaoxelXys+Q5Ew5kkec/FKNrx6GuizI5Yszk0NH8\n92c4ft1UR6Eps3Lrcm01+5z1sDqHP01OTZ6QPC35UvLd5JpJU7ocY9e67eLWZZ3m2AwJLIuA\n9mi33bRHa69W7dFOE+3R2mvDHAJzEdgzW61OzeOmbP1hWVa/JN+otc6DR/MOG82rXxR/kFTn\nqCn7Z+RHydObGRm+PTmlNV2j9Zf5z4zNW+TkrbKzTyU/Ti5MxjtIiz7/vo2qg1O/7Fd9npNM\n6iDdbzT/4AzXK7Ny63ptrXccm51fd4vqZ+SA1oYOz3i5/MVoXtdj7FK3Xdy6rNM6XKMElkJA\ne7Tbbtqj1Zeq9mi1h/ZotYcpAnMTuHm2XL/o3WHKHt6RZR8dW36FTFfn55mj+TsyrO1cdzTd\nDF6fkc+OJvbL8OLkiaPpZlB3j+q1kx7jataZ5/C0bPy/k5sk1SEY7yAt8vyHYHRkDOqu3nHJ\nbyRVN0ck7fKsTHyzPWPC+KzcdmTbG11bE3Y/s1nHZktPGtva5TL9veTVo/k7MtzoGLvWbRe3\nLuuMDs2AwNIIaI923rXXHq1cstqjFYsa0x6t9hjMVP1SoGwtgVuOTud6Gb4uqbs7L0/adwaq\n0To9aZfzM/H1pPmMUXVu6u7LV5J2qdc169Tzw3UNjW/ri6MXNOuNJhc2eGj2dLvk8+vscZHn\nPwSjqtfqLD46OXcdk2q0zkhqnf9MPphUx3ePpCmzcutybTX7nMfwr7PR541t+K6ZPjBp7oZ2\nOcauddvFrcs6Y4dsksDgBbRHOx9P1x6tXKraoxWLGtMerfYYzJQO0mCqYmYHUr/oVqlfbqvj\n8qVkR/LppB4bqnJAUn8tHy9nZ8ZG63w/69Rfzq+U1HaqnLVz8PN/a50qzbZ2Ti3u3/G7Y+N7\nXuT5D8Go6qfptI5bNNNHZqQa8aOT9yVVx/XGfULSlFm6Tbr+2tdWs89FDPfPTupc6+flVaMd\nrneu7WPsWrfrbavLz1t7ndGhGRBYGoEjR0eqPVq/yjbz/rCr70dd37PWP9rNL9EeTTfUHk33\nWdjSPRe2JztalED9clu/fP5Ncv5op3fM8ENJfb7iD5N6dOiCZLzUHaN9WjPXW6dWqfVqO1Xq\nde3STLe31V7e9/giz38ZjOqZ8BcnX0v+ZVQ5z8rwRcljk7sk701m5ZZNrXv91bK6bn5SIwso\nV88+6nNEdbfzzkl9eUNTZnX9d3Hrsk5zXIYElkVAe7RxTXX92Z/F+1Htq0rTRu+cWpkeQput\nPdIeNddlr0N3kHrln8vO67MMz02azlHt5MNJ3UE4qiZS6rMm9TjReKl5PxzNnLZOrVLrfWu0\n7lVGw2bQbLvZVjN/KMNp59Yc87R16jy6nv8yGFWj+fyk6RzV+VU5/tJ/Z3/ddLEd7Xqugxtk\n6x9JqnN0dHJK0pQux9i1bqdtq8v11qzTHJshgWUR0B5tXFObfX+oPWiPVpwPHHnUnGm2tbzc\nuqxT6867aI/mLbyL29dB2kWwJVj9xjnG6084zvYjTfWGMOnxt4Myvx7Jq1Lr7DtKTTfl4IzU\nsuqA1bBKzWuXZtvNttrLhjC+yPNfBqMrplIOT5rHL5o6qsc32mWWbhtdW+39zmP8Ztlo3VU9\nL7ldUo+gtkud60bH2LVuu7o1Pzft42j/TLbnGyewDAI3zkFqj6bXVNf3h1m8H3V9z5p+xPNd\nqj3SHs33CrP1bStQfwWvL1ao/3ehKdVA1V2CV4xmPDnDepRov9F0DW6f1Dr3rImUGyYXJ79d\nE6NSt77rMazjR9M1+Hjy1tZ0jb4wqQ7Z3jXRczkn+3/O2DEs+vyHZPTrsah6PqJlcqPRvHqk\nrl3Kqdat11SZlVvXa2vnXmf/7/WyybOSDyRXTiaVrsfYpW67uHVZZ9JxmkdgyALao9W1oz1a\n7aE92vkflGuPVl8XpgjMReAR2Wr9UvvSpDpG90g+ktRXeB+aVKk7BTX9puRayU2T+gv6vyft\n8pZMfDU5Krla8pLk7KR9x+i3Mn1R8kdJbfdBSXW+jkmGUCY1SIs+/yEZTWqQqp5OTH6S7Eiq\nfh+fnJm8P2nKLN26XFvNfmc9/LdssK7ZpyT1mbx27pbppnQ5xi5128WtyzrNcRkSWBYB7dHq\nmjonk+N/sOv6sz+r96Mu71mrj3p+U9qj3XbTHs3v+rJlAmsEjs2c6gBVR6lSnZ+bJ+1yh0zU\nnaZaXh2aevO9dtIu9SzvO5NLklrv5OTeyXj5s8yoR5Vqna8nz02GUiY1SHVsiz7/oRit1yBV\nB/iEpOqwcn7y2uRKSbvMyq3rtdXe9yzG6zybc5w0fFtrJ12PsUvddnHrsk7r8IwSWAoB7dFK\nNWmPVixqTHukPVp9RZgisACBPbOPenSqfsmbVg7JwvFfgsfX3z8z6k7TtFKP9N0gqcfwlqks\n8vyXwWjfVN5hyV4bVOKs3LpcWxscytwXdznGrnXbxa3LOnM/aTsgMEMB7VE3zC4/+7N6P+r6\nntXtyOezlvZoreus6r+23OV667LO2qM0hwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIDF5gnwUc4R7Zx14L2I9dECBAgMDyCmiP\nlrfuHDkBAgSWXuCXcgbvSs5MfpacmrwwuU1yWUp1gO414YW/l3kfT85NLkg+nTwn2TNpl2tk\n4nbtGR3HL+vrOm7eagQIECAwZwHt0ZyBbZ4AAQIENhZ4XFa5MKnOyhOS+yXPSz6X/DS5Y7Kr\n5bi84FNjL3pGpqvz9Y7kicmjkrcm5yUnJrsnTflORp7aTOzC8LK+bhd2YVUCBAgQmJOA9mhO\nsDZLgAABAt0Fbp5Vq3P0j8nlx152xUyfnJyd3GJs2UaTr80Kp7RWulzGq/NSHaLx8uzMqI5T\n+25VdZouSwfpsr5u/JhMEyBAgMBiBbRHi/W2NwIECBBYR6Aeq/tucsA6y6+Z+T9KXtFa/uKM\n112mdrlTJmqd+lzRY5PTku8lNe9myX7JhcmLkvFy1cx4XnLbpF5fr7k4+VjykqQph2bkBck7\nk5OSlyWHJVWmvW7fLH9mUuf69uTYZLwzmFkKAQIECPQooD3qEd+ut6dA/fVaIUBgrUB9zufE\n5Jy1iy6d8+38W3eCqvPSlIdlpJ4Rb5ebZuLhSX2W6AfJ+clFSXW+6rNG1cl6b/KIpDpDdbeo\n+bmsjtSTko8mdSepXlPDnyRnJVVunZyaHJX8T3JaUp20TyRXT9Z73YFZVo/6PSH5cvLJ5E+T\nDybjn3vKLIUAAQIEehLQHvUEb7cECBAgsCJwUEarY/GXK7Mmjv1t5tYdnboLVKU6U+Ov+ePM\nq23tk1QZf8Su5tWdnLcktV6lHt17W3JM0nSWMnppGX9Urj7TdEZSj/015e4Zqe08pJmR4fjr\nXpJ51VG7bmudm2S8XveY1jyjBAgQINCfgPaoP3t73sYC4798bWMKp07g5wJ7j8bq7s608uMs\nrC9Q2OxjabWd+yc3TB6dvD/51eT45N1J3e1Zr9T69YjduUl9Q94NkuskVarjtV65dxZ8OKn3\ngHp9pe5o/V9yt0QhQIAAgf4FtEf914Ej2IYCHqXZhpXulDcU+ErW+FZyow3WrA7NF5Lvb7Be\n18VfzIovHaV+Nh+b1GN3Tx4lgzWl7hzV8upg1R2gKv+7c7Dq2+9Gsy4dVIeuOlF19+hLl85Z\n/Y8/nKz2MEWAAIG+BLRHfcnb77YW8IvQtq5+Jz9F4CNZdtek/ehae/UrZ+LOSa3XlHo8rTof\n7TLt7k+t9/DkG8lVaqJV6vG3FyQfTu7Umj8++urMODZ5Y3KXZP/kAUmV3XcO1vxbXwrxk+T1\nSR3feI7KPIUAAQIEhiGgPRpGPTiKbSSgg7SNKtup7pLAi7P2NZLnJuMdjZquOzvVGTk+aUo9\nKldfjNAuh7cnMn5JUo/CNeVjGblWMulzP3tl/qHJZ5KmVCes+bmt7dQXMrwmeXbyoaQ+a/SL\nSZX2ftqvq2WnJvdKav36zFPlp8k/JL+TKAQIECAwDAHt0TDqwVEQIECAQAQemNSXMNTngGr8\nyOTByUlJ3YW5b9Iub85EdTjun9ww+fOk7tRU56T5kobjMv7D5D5JdcCqnJDUOm9Kfj85Oqk7\nS6ckte5tk6acmZH61ru6u1Wlxusxv5smtY97JGcltb0nJk0Zf13dbap16ssg7pjU8b4mqeM/\nLFEIECBAYDgC2qPh1IUjIUCAwLYXqEap7rZUZ6JSd1qqU3HPZLxcPzPqjlCz7n9lvO7G1HR1\nXqrcOvluUvMemVSpO1JPT05LqkNWy6qjUo9V3CJpl+p01VeF1zpXTY5KPpDU6yqfT+pLFj6R\nvCVpyvjrav6Dkm8mta2LkroDVR1AhQABAgSGJ6A9Gl6dOCICBAhsa4HqjNSXIDSPt03DOCgL\nrzZthSyr7VXHaLxUR6r2c/nxBa3pevRu/9Z0jdajfZVpZdLrav2DkwOnvdAyAgQIEBiMgPZo\nMFXhQAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAj0K/D/CQyi2OLHcF8AAAAASUVORK5C\nYII=", "text/plain": [ "Plot with title “Bins = 8”" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0L3HRlXS98EETkIEIGYgoioCgCmoZoZm47aGZpaaRbt+AJk73Vauuu\nna9mYtq2dqaomdukg5tSPJTlVjSlPO1AUYG3XsVDkidQEBQERIT39+eZJfPMM/fc677vmTVr\nZr7X5/NjrVmna63vGu7ruWatWbPTTgoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIrITAzitxlA6SwPYCt8jLB28/6aZXN+a/1yffSj6TXJ2MlsMz\n4U6Dif+c4bhlRtdZ1Ne7Zcfvkdwm+URyZaIQIECAwOYEDs1qB49Z9YZMuzb5anLRmPm7ZtqD\nBtMvyfBfxiyzbJOqnX5EsktyTvLlZFzZIxOPSartPj/5TqIQIECAwCYE6g9qdYYmpTpJL0/q\nj/NweUVeNOvdfXjGko0/OcfzzaFj/V7G/yK5daIQIECAwMYFXpZVmvZjreFHs8z9Rza979B6\nbxqZt6wvXzB0zMevcZDPzfTvDi1XncyT1ljWZAIECBBYR6BNB6lpvF41sq1V6CA9JcfcHH8N\n69PN5vWHM+7KcxAUAgQIbFCgTQep/tZenhw2tO1V6yA9JMdeH8o17c64DtLJQ/OH26ha57GJ\nQoAAAQIbFBjuINWtdHXLXOXgpBql+sN7TVJ/aL+d1K1mTblbRn5qkD2biUs0rCtElyV17P+e\n1CeZRyUfSmpapW57UAgQIEBgYwLDHaRnZNVqdw5K7pw8IHlv0vyd/X8y3pS6xa5pd+rv8bKW\nvXJgv5s07W9jMdpBukWW+VxS8y9O7pzcPanbwGvauYlCYEsC9T+dQmCVBery/BdHAD6b1w9P\nfjapztSBSXNfeHUg9kmq1B/pKrdKfu6msZ12Oi/DzycPTKrBq+8o/WNS00fLvTOhlrljUh2x\nLyTvSOr2vknlBzLzhEkLDOZVw3F6i+WGF7lHXuw3mPA3Gf7fwfiLMjxzMP6rGf79YNyAAAEC\nBDYucFlWGW57vpDX/z35yaTKodsGN/23rto37c5w+1BtSC13fVJ/r38oeUhyWFLfU6q/09UG\nDZdq0x6Z3CWpDsklSd0ZULf2rVfqw7G7rrdQ5r89+bcWy40uUh2bZvvlU23duFJGtf9VXpN8\noUZS3pA8K/nh5EeSNseUxRQCBAgQKIFqIOpTpsq/JqOlOjzVIar5dYVpuLwiL5p16xOrKvsn\nzbTfzng1Ss3rGn4v+fWkKdXY/XkyvEwz/s1MP7xZcI3hPddYt9lGM9xM4/DooW0/aaj+3TL+\nncG8rw5NN0qAAAEC7QRelsWav8/Hj1nlV4bmP35o/r5D0980NL06B7W96jRV5+Wqweumjuok\n3SFpSn0gVx+cNfOHh7Wt9cpbssDwOmuN14eLmymXZqXqND4ueVrSbH/U6uSheY/KeFNOzEiz\nTm1DIbBpAVeQNk1nxSURuH2Oo2kYbpHx3ZOHJQckVyfDHZu8XLc8L0vU7QF/ndQnfj+T1Hbr\ntoG/SKoBOCF5YlLlrck5ycFJTa8nxv1lUleg6lPBrsu/D1V434yfNnhdt4JUJ6nK/kn97ZjH\n/lX9CgECBBZd4Kk5gAcn9YHZLsldkockVc5M6opQ27JnFqzlz08+llQHpTpG90iqDXtOUuX0\npNq2i5IzksuTn0uOS56RvCv5u2RepTqQr06+nZTPWmW40/eNoYWGx4eXGVrEKAECBAisJbBH\nZtzYIn84ZgPrXUG6LuscO7Re3WrQ1FWdniqvTWpaXZGp2yOa8ksZ+e3kkUnt41rlFplx2xbZ\na60NTJhe9VYnrvavGtEjk1snpybNcdTwjolCgAABAu0FqgMw/Hd03Hj9I/+QkU2udwWptlNt\nTVOOyUiz7X8YTKwPA5tpf5Lx6pRVqc7Vy5OnJ/dMJpVqH9q0PdP48L06SM3+Hj+yU3UrXTNv\nuL396aHpfzCyjpcENiQwjTfxhiq0MIGeCVyb/TlvsE/VYFRn4OCkOhe/lhyV/Mfk60mb8s9Z\n6JyhBeve7kcNXjf3U184eF1XZGr8Y8n7k/r07m1J3ZI3qdT/t822Ji1XHbC65WIj5eos/Nyk\nGqCDkguSbybVKA6X6ggqBAgQILA5gc9mtfqeTV1BqragOkH1N7eG5yXPTP48aVvqQ6ym1Pp1\nFaY6P01b8bWMX5HU3/KTkl9Iqt2pDlR13NrcOr13lqu2cb1S7cP16y20hfk3rLFuWTZlrWWa\n+YYECBAgMCJQn4I1nz7968i8elmN1WlJs0x1GJryiow00+8+mLj/0LS3NAsOhicPzXv0YFo1\nWv93aHqzvRpWI/XkZFK5Z2YOr7PW+EcnbWSdeXX/+yWDeqqh+7PkI4PX1fEabojyUiFAgACB\ndQSqI9L8vT5+zLLHZtrlg2VqeMvBMvsOptW6bxpMq8FrkmZ71S4Ml6/lRc2rD7maUncp1N/z\nZp1mWJ2Jtyd3TCaVat+adSYNf3bSRlrOm3QFqW5Zb+r/saHt1YeRzfRfG5pulMCGBepWHYUA\nge0F6tOvasia8ovNSIthdR6Gy7hPseqTvQcmj0mqUaqGsCl1G8SfJg9tJsxp+L9Tb92rfnBy\nm+TEpPatyleSaoQUAgQIEJiewDnZ1HsGm6srPc13ktrU0KbtOSMbOix5afLJpPk7Xh94Veei\n5i9CuXhoJ2+3xni1UwqBTQu4xW7TdFZccoHhT+NGG55Jh940OJOWqdv4Dk+qY1Sdr/qg4t5J\n3VJxQlKlOkhn3jS243++lEnrXWWqtS7dcdV1p9Rtho9L6qEM1QidllQ5NLlzjaScvW3gvwQI\nECAwZYEjh7Y37bbnDtn2IUldefqtpG6/+5mkPhA8MDkuqQ/EvpWMK6/OxHeOmzEy7byR19N+\neeHQBu+b8fqgsUq1o035VDNiSGAzAjpIm1GzzjIJ7JuDefrQAdX/E3cZmfb+ofnTGK0OxlFJ\ndaZ+Mqntn5vUd5CaDtKXM75WuSIzmo7LWstsdnp9/+n5yV2T+v5SPea8GulXJM1tdcNX1zJZ\nIUCAAIENCtTf/mp/qtSHZPXBWd2G3XSQrs74ND+Mqg/j3ppUOTOpK0aXJXXb3H9NqoNUHaP6\nu79WOWutGR1Pf2/q+7ekOnsnJ3UMeyRPSqrU7eDn3TTmPwQIECDQWqD+kN7YMudkuWq4mlId\nhWbduw8m7j807Y3NgoPhrwzNq8avysOT7ybNdqoT8u9Dr6tz1NzOltHOy8mpsdm30eFpne+N\nCgkQILAcAi/LYYz+TR33um7NfszQIVdHqlnuTUPTh7+DdNjQ9BqtOwBqnQvqRUrdHfCBpNlO\ndcA+nlw7NK0+HOtLeWp2pNnX48fs1ElD85vlmuHPj1neJAIbEqhPLRQCBLYJVKN0XVKfotWn\nT89LqjNzTTLN8n+ysdruOYONVsNWt7RV+bvkJ5Lhe6xrepelGt0XJsPH/Y28/m9J8wldRhUC\nBAgQmIJAPTih/t5+Lfmr5GFJXRWZZqm7A34mqQ/5rkzqg797J7dKLkmenbw4WZTyuuzoCUld\nBWtKjVdn6h3NBEMCmxVobpnZ7PrWI0BgawL7ZfXqHFXH7AvJcKckL+da9kjtdatddRg/P9c9\nUTkBAgQITEvgltlQPbGu2p+vJM3VpowuZKkPGevqUbVTNVQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgR2ENh5hymLN2H3\n7PIxyYHJAcmNyeXJ+cmFg9cZKAQIECBAYKYC2qOZ8to4AQIECKwnsGsWeGlyWVKdonE5J9OP\nShQCBAgQIDArAe3RrGRtlwABAgQ2JPCGLP3N5H8kD0rulvxgcsfk6OSXkncm1yX3SxQCBAgQ\nIDALAe3RLFRtkwABAgQ2JLBPlv5e8tAWa705y/xRi+UsQoAAAQIENiqgPdqomOUJECBAYCYC\n98pWr0/qtob1ytOywMfXW8h8AgQIECCwCQHt0SbQrEKAAAEC0xe4RTZ5cfKYdTZdHaj3Jn+1\nznJmEyBAgACBzQhojzajZh0CBAj0WGCXHu/bpF2rBzLskbwi+eHBeD3Fbr/kkKQ+0fv55NVJ\nPeHuxOSSRCFAgAABAtMU0B5NU9O2CBAgQGDLAg/LFj6TjHuC3Xcz/fSkOkgKAQIECBCYpYD2\naJa6tk2AAIEOBZbhd5CK607JwcltkiuTrwxyTYYKAQIECBDoSkB71JW0eggQIDAjgUXuINV9\n3zeMuNRtd/W9pHrkd91S9+6kfixWIUCAAAECsxLQHs1K1nYJECAwB4FF7SDtHatvJY9N3jRw\nq07Ru5L6DlJT6kl3L0he2kwwXBqBvXIkh3Z4NFelrs91WJ+qCBBYDAHt0WKcp1nupfZolrq2\nTYBAa4FqkOp7R788tMbZGa8n2z0ruX3yo8lrk1rukYmyXAL1AI5x3z2b1bS6WrnvchE6GgIE\npiCgPZoC4oJvQnu04CfQ7hMYFWjzO0Kj6/TxdXWIjk2el7xysIPVWfpwclTy+ORvk42WU7PC\nES1WqqtXJyRntVjWItMRuFU2Uz8C/PTpbG7iVu6audUB323iUmYSIEBg2wd02qPVeidoj1br\nfDvaFRBYlg5SXTWoT/jfNuac1S149WOxmykfz0rfbLHig7JMddKUbgWuS3VXdFBl3c6pECBA\noI2A9qiN0vItoz1avnPqiFZYYNE7SPV9oz2TS5IPJUcnn0qGy0Pz4ovDEzYwflrLZZ+d5erp\neQoBAgQIrKaA9mg1z7ujJkBgCQXqyTuLWOoTuvqdo5cm9en+vyT1Q7F1S9wBSZX7JGcmD0/a\ndnSyqEKAAAECBFoLaI9aU1mQAAECiyGwqFeQ6oli9dSYI5N7JfceDKtztHtS5VHJTyT1FLsz\nEoUAAQIECExbQHs0bVHbI0CAAIGpCgw/trx+rK+rp47V7XWPmOqR2Nh6Aq/PAn+53kJTml8P\n6qhPiZurk1ParM0QILDEAtqjJT65I4emPRoB8ZLAogss6hWktdzrH7FN2ez3jpr1DQkQIECA\nwGYFtEeblbMeAQIE5iywqN9BmjOb6gkQIECAAAECBAgQWEaBRb2CtNFfra5HQV+0jCfQMREg\nQIDAXAW0R3PlVzkBAgSmL7CoHaR6nHf9CGzbUg9pOL7twpYjQIAAAQItBbRHLaEsRoAAgUUR\nWNQO0kcC/OTktckHkt9PJpWLJ800byoC9YXk30luO5Wtrb+R47JIV+d1t8HuvDjDa9bftaks\ncXq28s9T2ZKNECAwSwHt0Sx1N7dt7dHm3NZaS3u0lozpSyuwqB2kOiGnJfVHsJ4e85LkrESZ\nn8A+qfr5yfuSb3awGweljlt3UE9V8UODeu6cYf3u1qzLA1LBdxIdpFlL2z6B6Qhoj6bjOK2t\naI+mJbnTTtqj6VnaEoFOBd6T2s7utMYdK/OY721XjuqpTcfsyDOTKZ/KVj83ky3vuNGfyaQ6\ntvrdrS7K36eS9a6KdrEf6iBAYGMC2qONec1q6bqTQXs0HV3t0XQcbWXBBBb5ClJDXd8tOiSp\nY7m+mWhIgAABAgQ6FtAedQyuOgIECMxCYBk6SPWEuk/MAsc2CRAgQIDABgS0RxvAsigBAgT6\nKuB3kPp6ZuwXAQIECBAgQIAAAQKdC+ggdU6uQgIECBAgQIAAAQIE+iqgg9TXM2O/CBAgQIAA\nAQIECBDoXEAHqXNyFRIgQIAAAQIECBAg0FcBHaS+nhn7RYAAAQIECBAgQIBA5wI6SJ2Tq5AA\nAQIECBAgQIAAgb4K6CD19czYLwIECBAgQIAAAQIEOhfQQeqcXIUECBAgQIAAAQIECPRVQAep\nr2fGfhEgQIAAAQIECBAg0LmADlLn5CokQIAAAQIECBAgQKCvAjpIfT0z9osAAQIECBAgQIAA\ngc4FdJA6J1chAQIECBAgQIAAAQJ9FdBB6uuZsV8ECBAgQIAAAQIECHQuoIPUObkKCRAgQIAA\nAQIECBDoq4AOUl/PjP0iQIAAAQIECBAgQKBzAR2kzslVSIAAAQIECBAgQIBAXwV0kPp6ZuwX\nAQIECBAgQIAAAQKdC+ggdU6uQgIECBAgQIAAAQIE+iqgg9TXM2O/CBAgQIAAAQIECBDoXEAH\nqXNyFRIgQIAAAQIECBAg0FcBHaS+nhn7RYAAAQIECBAgQIBA5wI6SJ2Tq5AAAQIECBAgQIAA\ngb4K6CD19czYLwIECBAgQIAAAQIEOhfQQeqcXIUECBAgQIAAAQIECPRVQAepr2fGfhEgQIAA\nAQIECBAg0LmADlLn5CokQIAAAQIECBAgQKCvAjpIfT0z9osAAQIECBAgQIAAgc4FdJA6J1ch\nAQIECBAgQIAAAQJ9FdBB6uuZsV8ECBAgQIAAAQIECHQuoIPUObkKCRAgQIAAAQIECBDoq4AO\nUl/PjP0iQIAAAQIECBAgQKBzAR2kzslVSIAAAQIECBAgQIBAXwV0kPp6ZuwXAQIECBAgQIAA\nAQKdC+ggdU6uQgIECBAgQIAAAQIE+iqgg9TXM2O/CBAgQIAAAQIECBDoXEAHqXNyFRIgQIAA\nAQIECBAg0FcBHaS+nhn7RYAAAQIECBAgQIBA5wI6SJ2Tq5AAAQIECBAgQIAAgb4K6CD19czY\nLwIECBAgQIAAAQIEOhfQQeqcXIUECBAgQIAAAQIECPRVQAepr2fGfhEgQIAAAQIECBAg0LmA\nDlLn5CokQIAAAQIECBAgQKCvAjpIfT0z9osAAQIECBAgQIAAgc4FdJA6J1chAQIECBAgQIAA\nAQJ9FdBB6uuZsV8ECBAgQIAAAQIECHQusGvnNU6/wt2zyWOSA5MDkhuTy5PzkwsHrzNQCBAg\nQIDATAW0RzPltXECBAh0I7DIHaTa91OSk5L91uD6aKY/JblgjfkmEyBAgACBrQpoj7YqaH0C\nBAj0SGCRb7F7XRxPTl6f/HhyRLJ/cqekrigdn3w9OTe5X6IQIECAAIFZCGiPZqFqmwQIEJiT\nwKJeQdonXickD0/OHGP3pUyrW+zOSN6cPC45O1EIECBAgMA0BbRH09S0LQIECPRAYFGvIB0S\nu/qu0ftaGL43yzyoxXIWIUCAAAECGxXQHm1UzPIECBDoucCidpDq6tClyaPW8a0rZHWr3afX\nWc5sAgQIECCwGQHt0WbUrEOAAIEeCyzqLXY3xPQ1yenJ45N3JBcnlyW7Jfsld0uekByW3D9R\nCBAgQIDAtAW0R9MWtT0CBAjMWWBRO0jF9qLknOTUZNyVpOszvb6D9MSkPuFTCBAgQIDALAS0\nR7NQtU0CBAjMSWCRO0hF9u7k8KSeXHdwcpvkyuQrg1yToUKAAAECBGYtoD2atbDtEyBAoCOB\nRe8gNUxfzEhFIUCAAAEC8xTQHs1TX90ECBCYgsAydJD8cvkU3gg2QYAAAQJbFtAebZnQBggQ\nIDB/gUXuINW+n5KclNRDGcaVj2biU5ILxs00jQABAgQITEFAezQFRJsgQIBAXwQWuYNUv1z+\n6OS1yTuTS5JvJLdKmqfYnZjxc5MfSzbzQ7G3y3prdb4y6/tl5++PGSFAgACBVRPQHq3aGXe8\nBAgstcCidpC6+uXyf8zZP7LlO6AeFqEQIECAwGoJaI9W63w7WgIEVkBgUTtIG/3l8mds8lwe\nl/X2brHuZ7JMRSFAgACB1RLQHq3W+Xa0BAisgMCidpDqd40uTer3j94y4TzV8R2ffHrCMpNm\nXZWZlfXKjestYD4BAgQILKWA9mgpT6uDIkBglQUWtYPkl8tX+V3r2AkQINAfAe1Rf86FPSFA\ngMBUBBa1g1QH75fLp/IWsBECBAgQ2KKA9miLgFYnQIBAnwQWuYNUjn65vE/vJvsyLYE9s6Ej\nksdOa4PrbOdrmf/+dZYxmwCByQLao8k+5i6mgPZoMc+bvd6iwKJ3kJrD98vljYThMgjcPQdR\nj5e/bwcHU4/Fr6dw7dJBXaogsAoC2qNVOMurc4zao9U51450SGBZOkhDh2SUwFIIfDJHcWwH\nR/Lg1HFWB/WoggABAgQWU0B7tJjnzV5vQWBRO0h75ZgP3cBxX5FlL9rA8hYlQIAAAQJtBLRH\nbZQsQ4AAgQUSWNQO0tEx/vAGnM/IsvW4b4UAAQIECExTQHs0TU3bIkCAQA8EFrWD9JHYPTl5\nbfKB5PeTSeXiSTPNI0CAAAECmxTQHm0SzmoECBDoq8CidpDK87Rk5+T1yUsS36MIgkKAAAEC\nnQtojzonVyEBAgRmJ3CL2W26ky2/IbX8Q/J7ndSmEgIECBAgMF5AezTexVQCBAgsnMAiX0Fq\nsOu7RYckdSzXNxMNCRAgQIBAxwLao47BVUeAAIFZCCxDB6meUPeJWeDYJgECBAgQ2ICA9mgD\nWBYlQIBAXwUW/Ra7vrraLwIECBAgQIAAAQIEFlBAB2kBT5pdJkCAAAECBAgQIEBgNgI6SLNx\ntVUCBAgQIECAAAECBBZQYBm+g7SA7J3t8r6p6diOatuzo3pUQ4AAAQKLJ6A9WrxzZo8JrKyA\nDtJyn/pfzeE9P7mug8Os36Sqcmhy3k1j/kOAAAECBLYJaI+8EwgQWBiBth2kW+eImn8Atzm4\nq9ssZJmZC+ySGt6X/NTMa9ppp4NSx0VJ1akQIEBgVgLao1nJzna72qPZ+to6AQJTFGjbQfpq\n6tynZb3XZrlqwBQCBAgQIDBtAe3RtEVtjwABAgS2E2jbQXp21vqT5J2DfD3DA5MnJPdN6jau\n6hhV8WOt2xz8lwABAgSmL6A9mr6pLRIgQIDAkEDbDtLJWecFycuG1q3R1yf/muyf/EaiECBA\ngACBWQpoj2apa9sECBAgsFObx3zXrXU/krxhjNcNmfbHyUPGzDOJAAECBAhMU0B7NE1N2yJA\ngACBsQJtOkhXZs1vJPcZu4VtnacvrjHPZAIECBAgMC0B7dG0JG2HAAECBNYUaHOLXV0lemvy\nxuR3kn9KrkgOSp6aPC7p4ilpqUYhQIAAgRUW0B6t8Ml36AQIEOhKoE0HqfblPyf18IVT68VQ\nuSTj9aCG9w9NM0qAAAECBGYloD2alaztEiBAgMBNAm07SNU5qkapnlZ37+SOyeeTjyffThQC\nBAgQINCFgPaoC2V1ECBAYIUF2nwHaZjn7nlxRFIdqw8m9VohQIAAAQJdC2iPuhZXHwECBFZE\noG0Hae94vCv5UPKqpL53tGdy9uD17hkqBAgQIEBg1gLao1kL2z4BAgRWXKBtB+kVcapP66pj\ndMrA7OoMn5k8KXnEYJoBAQIECBCYpYD2aJa6tk2AAAECrX4HqTpRj02envx1clVS5cbkNclp\niQ5SEBQCBAgQmKmA9mimvDZOgAABAiXQ5grS7bLcrZOLaoUxpaYfPWa6SQQIECBAYJoC2qNp\natoWAQIECIwVaNNB+lrWvCypx3mPlp0z4SnJp0dneE2AAAECBKYsoD2aMqjNESBAgMCOAm0f\n8/2HWfW3k/px2Lq1rh7Q8LTkxOTwpDpJCgECBAgQmLWA9mjWwrZPgACBFRdo20H6vTjtlfx6\ncquB2XEZ1pWlJycfHkwzIECAAAECsxTQHs1S17YJECBA4KbfM2rD8MIs9J7k5ck9kwOT+u7R\n+cmViUKAAAECBLoQeGEq0R51Ia0OAgQIrKhAmytI9ZsTv5Vck/xjclaiECBAgACBrgW0R12L\nq48AAQIrKNDmIQ31WO/PJvWkunoog0KAAAECBOYhoD2ah7o6CRAgsGICba4g1UMZXpvUD8Se\nl3wiuTgZLnWr3f8enmCcAAECBAhMWUB7NGVQmyNAgACBHQXadJBqrWcl1yb13aPKaHlHJugg\njap4TYAAAQLTFtAeTVvU9ggQIEBgO4G2HaS7bLeWFwQIECBAYD4C2qP5uKuVAAECKyPQ5jtI\nK4PhQAkQIECAAAECBAgQWG2BtTpItwvLicl+q83j6AkQIEBgzgLaozmfANUTIEBg1QTW6iAd\nGojTkjsNgeyb8RclNU8hQIAAAQJdCGiPulBWBwECBAh8X2CtDtL3FxgaqQ7S85NDhqYZJUCA\nAAECXQtoj7oWVx8BAgRWSGAjHaQVYnGoBAgQIECAAAECBAisooAO0iqedcdMgAABAgQIECBA\ngMBYAR2ksSwmEiBAgAABAgQIECCwigI6SKt41h0zAQIECBAgQIAAAQJjBdb7odgPZq3vDdZs\nOlNvz+vrR7b2N3n9pJFpXhIgQIAAgWkJaI+mJWk7BAgQIDBRYK0O0qVZ640T19x+5rnbv/SK\nAAECBAhMRUB7NBVGGyFAgACBtgJrdZA+lw38p7YbsRwBAgQIEJiRgPZoRrA2S4AAAQLjBZrb\n5sbPNZUAAQIECBAgQIAAAQIrJKCDtEIn26ESIECAAAECBAgQIDBZQAdpso+5BAgQIECAAAEC\nBAiskIAO0gqdbIdKgAABAgQIECBAgMBkAR2kyT7mEiBAgAABAgQIECCwQgI6SCt0sh0qAQIE\nCBAgQIAAAQKTBXSQJvuYS4AAAQIECBAgQIDACgnoIK3QyXaoBAgQIECAAAECBAhMFtBBmuxj\nLgECBAgQIECAAAECKySgg7RCJ9uhEiBAgAABAgQIECAwWUAHabKPuQQIECBAgAABAgQIrJDA\nrktwrLvnGI5JDkwOSG5MLk/OTy4cvM5AIUCAAAECMxXQHs2U18YJECDQjcAid5Bq309JTkr2\nW4Pro5n+lOSCNeabTIAAAQIEtiqgPdqqoPUJECDQI4FFvsXudXE8OXl98uPJEcn+yZ2SuqJ0\nfPL15NzkfolCgAABAgRmIaA9moWqbRIgQGBOAot6BWmfeJ2QPDw5c4zdlzKtbrE7I3lz8rjk\n7EQhQIAAAQLTFNAeTVPTtggQINADgUXtIB0Su/qu0ftaGL43yzyjxXIWIbCKAvWdiSq/uW0w\n8//W/7dvSr4w85pUQKAbAe1RN85qWX4B7dHyn+OFOcJF7SDV1aFLk0clb5mgXcdXt9p9esIy\nZhFYZYG7DQ7+kR0hHJV6rk/+Z0f1qYbArAW0R7MWtv1VEdAercqZXoDjXNQO0g2xfU1yevL4\n5B3JxcllyW7Jfkn9j/aE5LDk/olCgMDaAl39P/KxtXfBHAILKaA9WsjTZqd7LKA96vHJWZVd\nW9QOUp2fFyXnJKcmdSVptNSn1PUdpCcm9QnfZsozs1J1sNYr1Sm77XoLmU+AAAECSymgPVrK\n0+qgCBBYVYFF7iDVOXt3cnhST647OLlNcmXylUGuyXAr5Yeycm17vVJPA7zleguZT4AAAQJL\nK6A9WtpT68AIEFg1gUXuIFWnpG5tqPLFQfbI8DHJw5JLkmqw6sdiN1vafnG9OmX1SHGFAAEC\nBFZPQHu0eufcERMgsMQCi9pB2jvn5FvJY5N6IlaV+s7Ru5J6olBT6ja7FyQvbSYYEiBAgACB\nKQpoj6aIaVMECBDog0B96rUs5S9yIHUF6dnJgckDkz9NXpJ09YSuVKUQIECAwIoLaI9W/A3g\n8AkQWGyBRb2CNKp++0w4Nnle8srBzHqq3YeTo5J60t3fJgoBAgQIEJilgPZolrq2TYAAgQ4E\nlqWDVD8+Wd9HetsYs7oF72ljpptEgMByC9SHI/WUy66ulNffobqC/clEWV0B7dHqnntHTmAt\nAe3RWjI9nb7oHaT6vtGeST2Q4UPJ0cmnkuHy0LyohzgoBAislsCROdz7JC/r6LCfk3qqTh2k\njsB7Vo32qGcnxO4Q6JGA9qhHJ6PNrixqB6k+oftuUg9f+N2kOkX1mO36tPifkuow1T+M6vtH\nP50cnygECKyewFU55FM6Ouynd1SPavoloD3q1/mwNwT6KqA96uuZGbNfi9pBqjfZXkn1yO+V\n3HswPCDD3ZMqj0p+Iqmn2J2RKAQIzF/goOzCbya/0sGu1N+I23ZQjypWW0B7tNrn39EvroD2\naHHP3cz3fFE7SAVzXfKJQU6rCSk7J/VpXpXXJX+YXF4vFAIEeiFQT5r8bPKqDvbmsanjwR3U\nowoC2iPvAQKLJ6A9Wrxz1tkeL3IHaRxS0zmqeb53NE7INALzF/j37MLrO9iN+lLsgzuoRxUE\nxgloj8apmEagXwLao36dj97szS16syd2hAABAgQIECBAgAABAnMW0EGa8wlQPQECBAgQIECA\nAAEC/RHQQerPubAnBAgQIECAAAECBAjMWUAHac4nQPUECBAgQIAAAQIECPRHQAepP+fCnhAg\nQIAAAQIECBAgMGcBHaQ5nwDVEyBAgAABAgQIECDQHwEdpP6cC3tCgAABAgQIECBAgMCcBXSQ\n5nwCVE+AAAECBAgQIECAQH8EdJD6cy7sCQECBAgQIECAAAECcxbQQZrzCVA9AQIECBAgQIAA\nAQL9EdBB6s+5sCcECBAgQIAAAQIECMxZQAdpzidA9QQIECBAgAABAgQI9EdAB6k/58KeECBA\ngAABAgQIECAwZwEdpDmfANUTIECAAAECBAgQINAfAR2k/pwLe0KAAAECBAgQIECAwJwFdJDm\nfAJUT4AAAQIECBAgQIBAfwR0kPpzLuwJAQIECBAgQIAAAQJzFtBBmvMJUD0BAgQIECBAgAAB\nAv0R0EHqz7mwJwQIECBAgAABAgQIzFlAB2nOJ0D1BAgQIECAAAECBAj0R0AHqT/nwp4QIECA\nAAECBAgQIDBnAR2kOZ8A1RMgQIAAAQIECBAg0B8BHaT+nAt7QoAAAQIECBAgQIDAnAV0kOZ8\nAlRPgAABAgQIECBAgEB/BHSQ+nMu7AkBAgQIECBAgAABAnMW0EGa8wlQPQECBAgQIECAAAEC\n/RHQQerPubAnBAgQIECAAAECBAjMWUAHac4nQPUECBAgQIAAAQIECPRHQAepP+fCnhAgQIAA\nAQIECBAgMGcBHaQ5nwDVEyBAgAABAgQIECDQHwEdpP6cC3tCgAABAgQIECBAgMCcBXSQ5nwC\nVE+AAAECBAgQIECAQH8EdJD6cy7sCQECBAgQIECAAAECcxbQQZrzCVA9AQIECBAgQIAAAQL9\nEdBB6s+5sCcECBAgQIAAAQIECMxZQAdpzidA9QQIECBAgAABAgQI9EdAB6k/58KeECBAgAAB\nAgQIECAwZwEdpDmfANUTIECAAAECBAgQINAfAR2k/pwLe0KAAAECBAgQIECAwJwFdJDmfAJU\nT4AAAQIECBAgQIBAfwR0kPpzLuwJAQIECBAgQIAAAQJzFtBBmvMJUD0BAgQIECBAgAABAv0R\n2LU/u7Iye/K+HOlBHR3tfqnnWx3VpRoCBAgQWCwB7dFinS97S4BARwI6SB1BD1Xzoxn/4+Rf\nhqbNavQ3suF9Z7Vx2yVAgACBhRbQHi306bPzBAjMSkAHaVayk7f77sw+c/IiU5l7QraigzQV\nShshQIDAUgpoj5bytDooAgS2IuA7SFvRsy4BAgQIECBAgAABAksloIO0VKfTwRAgQIAAAQIE\nCBAgsBUBHaSt6FmXAAECBAgQIECAAIGlEtBBWqrT6WAIECBAgAABAgQIENiKgA7SVvSsS4AA\nAQIECBAgQIDAUgnoIC3V6XQwBAgQIECAAAECBAhsRUAHaSt61iVAgAABAgQIECBAYKkEdJCW\n6nQ6GAIECBAgQIAAAQIEtiKgg7QVPesSIECAAAECBAgQILBUAjpIS3U6HQwBAgQIECBAgAAB\nAlsR0EHaip51CRAgQIAAAQIECBBYKgEdpKU6nQ6GAAECBAgQIECAAIGtCOggbUXPugQIECBA\ngAABAgQILJXArktwNLvnGI5JDkwOSG5MLk/OTy4cvM5AIUCAwEwF9svWX5H83kxruXnj78/o\nCTe/NNYDAe1RD06CXSBAYCft0RbfBIvcQap9PyU5Kak3wrjy0Ux8SnLBuJmmESBAYIoCu2Vb\nH0n+bIrbXGtTD8uMo9eaaXrnAtqjzslVSIDABAHt0QScNrMWuYP0uhzgo5PXJu9MLkm+kdwq\nqQ7T3ZITk3OTH0vOThQCBAjMUuDT2fgbZ1nBYNu3y/DIDupRRTsB7VE7J0sRINCdgPZoC9Y7\nb2Hdea66TyqvztDDkzPX2ZE3Z/5Xkl9dZ7lxs8/JxB8eN2NkWn2X65nJq0emj3t5VSbeOqlb\nAWddmu+Y3TDrigbb3yXD73VUl2ObDnT9DSjLrs5bvUfq/djF+3/Zj+3jcfyRRJmvgPaonb+/\n2e2c2iy1rG3tsv/NXua2dunao0W9gnRI/oLUP7De1+IvyXuzzDNaLDdukRMzsb7btF65Yxb4\n6/UWGsx/QIY/2HLZrS62ZzZQ+dpWN9Ry/Tov/9Zy2a0udttsoP6Y1vfNuihdHltdHbg2qc70\nrEsZHpx8YdYVDbZf/z/VOavjm3Wpv29V3xdnXdFg+/V34OLk+o7q+0JH9ahmskD9bdAeTTaq\nudqj9Y3aLqE9ais1eTnt0WSfjcz9wkYWtuzsBKoXXv8Qecw6VdQ/kKqD9FfrLGc2AQIECBDY\njID2aDNq1iFAgECPBeoy7SKW+rRuj6SeGFW3wNV4fRJQ3z2qT1bulfx8Ure8HZOcmNR3lBQC\nBAgQIDBNAe3RNDVtiwABAgS2LFBPcvpMUg3UaL6baacn1UFSCBAgQIDALAW0R7PUtW0CBAh0\nKFDfP1iGcqccxMHJbZIrk3ooQ+WaRCFAgAABAl0JaI+6klYPAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBDoRGBZbrHrBGuFKqmHXOydXLdCx7zeod4hC9Rtm8o2gd0zqN/z6uox\n64vgXo/vr6dmfmcRdtY+ElgQAe3RjidKe7S9ifZoe496pT3a0WRDU3SQNsS1MgtfliOtJwIq\nBAhsTOBFWfy3N7aKpQkQmCCgPZqAYxaBCQLaowk4681a1B+KXe+4zN+awOey+h8kL9/aZpZm\n7bvmSM5L6kEgXf3obt/xfic7WI/Y/7m+72iH+/fZ1HVhh/WpisAqCGiPtj/L2qPtPeqV9mhH\nE+3RjiYbmqKDtCGulVr4+hzttSt1xGsfbHOrYd06xWSb0/cyuIHHNgz/JUBgpgLao5t5tUc3\nWzRj2qNGwnBqAvUL4AoBAgQIECBAgAABAgQIREAHyduAAAECBAgQIECAAAECAwEdJG8FAgQI\nECBAgAABAgQIDAR0kLwVCBAgQIAAAQIECBAgMBDQQfJWIECAAAECBAgQIECAwEBAB8lbgQAB\nAgQIECBAgAABAgMBHSRvBQIECBAgQIAAAQIECAwEdJC8FcYJfDUTLx43Y0WnfTPHfUly9Yoe\n/7jDrvdHvU+UmwW+nFE/JHyzhzEC0xDQHm2vqD3a3qNeaY92NNEe7WhiCgECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgA4Hnpo53j8mDhureP+O/lXwsOSd5\nYbJLMlx2zov/lPxtcmHyl8mdktFybCa8JvlM8q7kEUkfyi2zE+9JnjdmZ7o+/r4Y3T0WX06O\nHGNS53nc+6beB02Zllvb91ZT77SH98oG35p8Nvl0Uu/tOyfDpe0+tjm3bdzaLDO8f8YJLIKA\n9mjbWdIe7fhu1R5tM9Ee7fjeMIXATASq01OdlbeM5AFDtb03459Knpj8evKt5C+S4XJSXlyb\nVEfqCUlt96Kk/iHXlIMyUuv+dXJ88vrk+uRRyTxLNUZ/mtyYvHjMjnR5/H0xumMc6n1RJseM\nmBwymH5WhqPvm+ooNGVabm3eW02d0x5W5/Dq5ILk15LnJZ9Pvp7cPmlKm31se27buLVZptk3\nQwKLIqA92mkn7dGO71bt0TYT7dGO7w1TCMxEYNdstTo1z56w9SdmXv0j+fChZX55MO2IwbT6\nh+I3k+ocNWWfjFyZPL+ZkOHfJZ8Yel2j9cn8+SPTunz5w6nsk8lVyXeT0Q5S18c/b6Pq4NQ/\n9ut8XpGM6yD9wmD6gRmuVabl1va9tdZ+bHV6XS2q/0duO7ShozNeLr8zmNZ2H9uc2zZubZYZ\n2l2jBBZCQHu0007ao+3fqtqj7T20R9t7eEVgZgL3zJbrH3o/OqGGd2be2SPzb5XX1fl54WD6\niRnWdg4evG4Gp2fkXwYv9s7we8lzBq+bQV09qnXH3cbVLDPL4Wey8f+b3C2pDsFoB6nL4++D\n0b1iUFf1XpU8Mqlzc0wyXF6UF18ZnjBmfFpuJ2bb6723xlQ/tUnPzZb+28jWbpHXlyVvGEw/\nMcP19rHtuW3j1maZwa4ZEFgYAe3Rtqv22qOb37Lao5stakx7tL1Hb17VPwqU5RK49+Bw7pzh\nG5O6uvO6ZPjKQDVan02Gy3fy4ktJ8x2j6tzU1ZeLkuFS6zXL1P3D9R4a3dbnBis0yw1edjZ4\nQmq6f/LpNWrs8vj7YFTntTqL/yW5Zg2TarS+kNQy/5h8IKmO7y5JU6bl1ua91dQ5i+HvZ6Mv\nG9nwT+X1fklzNbTNPrY9t23c2iwzssteEui9gPZo2+3p2qOb36rao5stakx7tL1Hb17pIPXm\nVExtR+ofulXqH7fVcfl8cmJyXlK3DVW5bVKflo+WyzNhvWW+kWXqk/M9k9pOlUu3Db7/31qm\nSrOtba+6++/o1bHRmrs8/j4Y1flpOq2jFs3re2WkGvEHJ+9P6hzXH+43J02Zptu499/we6up\ns4vhPqmkjrX+f/nTQYVrHevwPrY9t2ttq83/b8PLDHbNgMDCCNxrsKfao7VP2Vb+Pmz071Hb\nv1lr7+3W52iPJhtqjyb7dDZ3185qUlFXAvWP2/rH5/9MvjOo9IEZfjCp71c8Palbh65LRktd\nMdpjaOJay9QitVxtp0qtN1ya18PbGp4/7/Euj38RjOqe8FcmX0zeNDg5L8rwFcmzkp9M/iGZ\nlls2teb7r+bV++bbNdJB+cHUUd8jqqudD0nq4Q1Nmdb7v41bm2Wa/TIksCgC2qP1z1Tb//en\n8feo6qrStNHbXt38ug9ttvZIe9S8L+c6dAVprvwzqby+y/CSpOkcVSUfSuoKwnH1IqW+a1K3\nE42WmvatwcRJy9QitdxXB8vuOxg2g2bbzbaa6X0ZTjq2Zp8nLVPH0fb4F8GoGs0/SJrOUR1f\nlT+76b/Tf9+0sR1UPdPBodn6R5LqHD04+UTSlDb72PbcTtpWm/dbs0yzb4YEFkVAe7T+mdrq\n34eqQXt0s/N+A4+aMsm25pdbm2Vq2VkX7dGshTe4fR2kDYItwOJ3zT7eZcx+Dt/SVH8Qxt3+\ndkCm1y15VWqZvQap1005MCM1rzpgNaxS04ZLs+1mW8Pz+jDe5fEvgtGtc1KOTprbL5pzVLdv\nDJdpuq333hqudxbjR2ajdVX12uT+Sd2COlzqWNfbx7bntq1b8//N8H4M/z85PN04gUUQuGt2\nUns0+Uy1/fswjb9Hbf9mTd7j2c7VHmmPZvsOs/WVFahPwevBCvW7C02pBqquEvyvwYTfyLBu\nJdp78LoGD0hqmZ+tFymHJd9L/mO9GJS69F23Yf3Z4HUNPpa8feh1jb48qQ7Z7vVizuWK1P/i\nkX3o+vj7ZPTTsajzfMyQyeGDaXVL3XApp1q21qkyLbe2761ttU7/v3fOJi9N/im5TTKutN3H\nNue2jVubZcbtp2kE+iygPdr+7GiPtvfQHm37gXLt0fbvC68IzETgpGy1/lH76qQ6Rg9PPpLU\nI7wPSarUlYJ6/ZbkDsk9kvoE/e+T4fK2vPj35LjkdsmpyeXJ8BWjx+X19cnJSW33l5LqfJ2Q\n9KGMa5C6Pv4+GY1rkOo8vTf5dnJiUuf3V5NLkrOSpkzTrc17q6l32sN3ZIP1nv3NpL6TN5yH\n5nVT2uxjm3Pbxq3NMs1+GRJYFAHt0fZn6oq8HP3Aru3/+9P6e9Tmb9b2ez27V9qjnXbSHs3u\n/WXLBHYQeG6mVAeoOkqV6vzcMxkuP5oXdaWp5leHpv743jEZLnUv7/9JbkhquXOSn0tGy3/P\nhLpVqZb5UvKSpC9lXINU+9b18ffFaK0GqTrAb07qHFa+k/xlsmcyXKbl1va9NVz3NMbrOJtj\nHDf8m6FK2u5jm3Pbxq3NMkO7Z5TAQghoj24+Tdqjmy1qTHukPdr+HeEVgQ4Edk0ddetU/SNv\nUjkoM0f/ETy6/D6ZUFeaJpW6pe/QpG7DW6TS5fEvgtFeOXlHJLutcxKn5dbmvbXOrsx8dpt9\nbHtu27i1WWbmB60CAlMU0B61w2zz//60/h61/ZvVbs9ns5T2aEfXaZ3/2nKb91ubZXbcS1MI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgEDvBfboYA93SR27dVCPKggQIEBgcQW0R4t77uw5AQIEFl7gvjmCdyWXJDcmFyQvT45N\nNlOqA/SIMSs+KdM+llyTXJecl7w42TUZLvvnxf2HJ7Qc3+x6LTdvMQIECBCYsYD2aMbANk+A\nAAEC6ws8O4t8N6nOyq8lv5C8LPlUcnXywGSj5VVZ4ZMjK/12Xlfn653Jc5JnJG9Prk3em+yc\nNOVrGfmt5sUGhptdbwNVWJQAAQIEZiSgPZoRrM0SIECAQHuBe2bR6hz9eXLLkdVundfnJJcn\nR43MW+/lX2aBTwwtdIuMV+elOkSj5ZRMqI7T8NWq6jRtpoO02fVG98lrAgQIEOhWQHvUrbfa\nCBAgQGANgbqt7uvJbdeYf/tMvzL5X0PzX5nxuso0XP5DXtQy9b2iZyWfSS5LatqRyd7Jd5NX\nJKPlBzLhZcn9klq/1vle8tHk1KQph2TkD5P/k7wv+ePkiKTKpPX2yvwXJnWsf5c8NxntDGaS\nQoAAAQJzFNAezRFf1aspUJ9eKwQI7ChQ3/N5b3LFjrNumnJx/ltXgqrz0pQnZqTuER8u98iL\npyb1XaJvJt9Jrk+q81XfNapO1j8kJyXVGaqrRc3/l9WR+m/J2UldSap1avjt5NKkyo8kFyTH\nJf+cfCapTtq5yQ8ma623X+bVrX6/lvxb8vHkvyYfSEa/95RJCgECBAjMSUB7NCd41RIgQIDA\nzQIHZLQ6Fr9786SxY3+UqXVFp64CVanO1Og6/znTalt7JFVGb7GraXUl521JLVepW/f+Jjkh\naTpLGb2pjN4qV99p+kJSt/015WEZqe08tpmQ4eh6p2ZaddQOHlrmbhmv9Z45NM0oAQIECMxP\nQHs0P3s1r7DA6D++VpjCoRP4vsDug7G6ujOpXJWZ9QCFrd6WVtv5xeSw5L8kZyU/nvxZ8u6k\nrvasVWr5usXumqSekHdocqekSnW81io/lxkfSupvQK1fqSta/5o8NFEIECBAYP4C2qP5nwN7\nsIICbqVZwZPukNcVuChLfDU5fJ0lq0NzYfKNdZZrO/tzWfDVg9T/m89K6ra73xgkgx1KXTmq\n+dXBqitAVf7fbYPtnn43mHTToDp01Ymqq0efv2nK9v/xwcn2Hl4RIEBgXgLao3nJq3elBfxD\naKVPv4OfIPCRzPupZPjWteHFb5MXD0lquabU7WnV+Rguk67+1HJPTb6c7Fsvhkrd/vaHyYeS\n/zA0fXT0DZnw3OSM5CeTfZJHJ1V23jbY4b/1UIhvJ6cntX+jOS7TFAIECBDoh4D2qB/nwV6s\nkIAO0gqdbIe6IYFXZun9k5ckox2Nel1Xdqoz8mdJU+pWuXowwnA5evhFxm9I6la4pnw0I3dI\nxn3vZ7dMPyQ5P2lKdcKa/29rO/VAhtOSU5IPJvVdo/skVYbrGV6v5l2QPCKp5es7T5Wrkz9J\nHp8oBAgQINAPAe1RP86DvSBAgACBCDwmqYcw1PeAavxeyS8n70vqKsyjkuHy1ryoDscvJocl\n/09SV2qqc9I8pOFVGf9W8vNJdcCqvDmpZd6SPDl5cFJXlj6R1LL3S5pySUbqqXd1datKjddt\nfvdIqo6HJ5cmtb3nJE0ZXa+uNtUy9TCIBya1v6cltf9HJAoBAgQI9EdAe9Sfc2FPCBAgsPIC\n1SjV1ZbqTFTqSkt1Kn42GS13yYS6ItQs++GM19WYel2dlyo/knw9qWm/klSpK1LPTz6TVIes\n5lVHpW6rOCoZLtXpqkeF1zI/kByX/FNS61U+ndRDFs5N3pY0ZXS9mv5LyVeS2tb1SV2Bqg6g\nQoAAAQL9E9Ae9e+c2CMCBAistEB1RuohCM3tbZMwDsjM201aIPNqe9UxGi3Vkap6bjk6Y+h1\n3Xq3z9DrGq1b+yqTyrj1avkDk/0mrWgeAQIECPRGQHuz9raVAAA+wklEQVTUm1NhRwgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECHQjs3EEdqiAwT4FDU/nBY3bghky7NvlqctGY+btm2oMG\n0y/J8F/GLLNsk26RA3pEsktyTvLlZK2ykWXX2obpBAgQWCUB7VH7s922jTkgm7xrUstfmFSb\nrhAgQIDAOgIvy/wb18lHM//+I9vZd2idN43MW9aXLxg65uPXOciNLLvOpswmQIDASghoj9qf\n5vXamDtkU2ckNyTDbfw78vqgRCFAgACBCQJtGqT643p5ctjQdlatg/SQHPv3kqahmdRB2siy\nQ6RGCRAgsNIC2qN2p3+9Nma3bObspGmvRjtJ52ferdpVZSkC4wXqkqRCYFUETs6B1idLByeH\nJD+a/ENS5bbJY28a2/afKzP46UFePDR92Ub3ygH9bvLOZL2/BxtZdtmcHA8BAgSmKaA92lGz\nbRvzs1n12MHq78nw8KQ+4Gza86My/ouJQmDTAvU9C4XAqghclgP94tDBfiHj/z35ycG0uj+8\nKfX9vH0GL77VTMzw3kktd33yN8kPJfVpV/1xru8p/X1ydTJc9siLRyZ3SaoBqO80fTipW/vW\nK4/IAnV/9Xrl7Vng39ZbaMz8czOt2X75/MCYZZpJG1m2WceQAAECBHYU0B7taNK2jbnf0Kp/\nkPHPDV7/UYZNe35Uxv9qMN2AAAECBEYEhm9pGHfb2K9k+eYy/eOH1l3rFrvXDJavTlN1Xq4a\nvG62UZ2kuje6KQ/IyMVJM394WNtar7wlCwyvs9Z4faK2mXJpVqpO4+OSpyXN9sdZbWTZbEoh\nQIAAgSEB7dEQxpjRjbQxdZvdwckuQ9t5SsabNqyu0CkENi3gCtKm6ay4gAJPzT4/OKmrQ/VH\nta7o1NWfKmcmdUWobdkzC9byda/zx5LqoFTH6B7JryfPSaqcntRTdupJeWck9V2nn0uOS56R\nvCv5u2RepRrsVyffTspnUtnIspO2Yx4BAgRWXUB7tOM7YCNtzHVZvdrVplSb/uTBi+okfbCZ\nYUiAAAECOwrUH9zmE6W1ht/IMoeMrLreFaTaVt3W1pRjMtJsv7kP+vZD0/4k4/UHvEp1rl6e\nPD25ZzKp7JGZt22RaXzYUQ12cwzjriAN7+dGlh1ezzgBAgRWVUB71P7Mb6SNqQ89/1fStF+n\nta/GkgTGC0zjH1Xjt2wqgf4JfDa7VPd91x/TujxfnaB6aEMNz0uemfx50racOrRgrV9XYarz\n03yP52sZvyKpDs5JyS8k70+qA1UNZZvfa9g7y+2VrFfq07T6XpRCgAABAv0X0B5N5xzdIpv5\n0+TEweYuzPC5g3EDAgQIEFhDYPgTu3FXRY7NenXbW33yVMNbJlWq09R8GjX8O0ivGZo+evWn\nOkS1zgVJU34pI9VxabbVDOuxpG9P7phMKm/JzGadScO6xW+rZSOf2G1k2a3ul/UJECCwDALa\no/ZnsU0bU52j+lCzaRs/k/F6cJJCYMsC9eZSCKyywDk5+PcMAOpKz0M2gPGdkWWr0zNa6ntH\nhyUvTT6Z1B/yKnUV61FJzVcIECBAgID2qP17oNrQ05InDlb5/zJ8cPLlwWsDAlsS2HVLa1uZ\nwHIIHDl0GKOdnqFZO4w2nZ0dZgxNuEPGD0nqytNvJXX73c8k9UnigUk9rOE2yfCjxPPy++XV\nGXvn91+tPVK3+CkECBAgsNgC2qN25+83s9hw5+jH8/rr7Va1FIH1BXSQ1jeyxPII/GQOpW6d\nq1JXT2+dPDppGqSrM352Mq3yi9nQWwcbOzPDumJU34Gq2+b+a1IdpOoY1aPC1ypnrTXDdAIE\nCBBYWAHt0eZP3eFZ9ZSh1T+d8ebJsc3kj2Tkb5sXhgQ2KqCDtFExyy+yQP3OT2VcqatBJyTX\njJu5yWn1x7keNfpjyUOTelrep5J7JLdKqvxBMu7WvJtm+g8BAgQILKWA9mjzp/WxWbV5Kmxt\npT58HC2vygQdpFEVr1sL+A5SayoLLplAPTihOkNfS/4qeVhSV3amWb6XjdXtdK9IrkzqitW9\nk+ocXZI8O3lxohAgQIDA6gpojzZ27quDpBCYqUB9yU0hQGD2ArdMFfXEuv2SryQXJ3XVSiFA\ngAABAl0KaI+61FYXAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQKAXAjv3Yi+2thO7Z/VjkgOTA5Ibk8uT85MLB68zUAgQIECA\nwEwFtEcz5bVxAgQIEFhPYNcs8NLksqQ6ReNyTqYflSgECBAgQGBWAtqjWcnaLgECBAhsSOAN\nWfqbyf9IHpTcLfnB5I7J0ckvJe9MrkvulygECBAgQGAWAtqjWajaJgECBAhsSGCfLP295KEt\n1npzlvmjFstZhAABAgQIbFRAe7RRMcsTIECAwEwE7pWtXp/UbQ3rladlgY+vt5D5BAgQIEBg\nEwLao02gWYUAAQIEpi9wi2zy4uQx62y6OlDvTf5qneXMJkCAAAECmxHQHm1GzToECBDoscAu\nPd63SbtWD2TYI3lF8sOD8XqK3X7JIUl9ovfzyauTesLdickliUKAAAECBKYpoD2apqZtESBA\ngMCWBR6WLXwmGfcEu+9m+ulJdZAUAgQIECAwSwHt0Sx1bZsAAQIdCizD7yAV152Sg5PbJFcm\nXxnkmgwVAgQIECDQlYD2qCtp9RAgQGBGAovcQar7vm8Ycanb7up7SfXI77ql7t1J/VisQoAA\nAQIEZiWgPZqVrO0SIEBgDgKL2kHaO1bfSh6bvGngVp2idyX1HaSm1JPuXpC8tJlguDQCe+VI\nDu3waK5KXZ/rsD5VESCwGALao8U4T7PcS+3RLHVtmwCB1gLVINX3jn55aI2zM15PtntWcvvk\nR5PXJrXcIxNluQTqARzjvns2q2l1tXLf5SJ0NAQITEFAezQFxAXfhPZowU+g3ScwKtDmd4RG\n1+nj6+oQHZs8L3nlYAers/Th5Kjk8cnfJhstp2aFI1qsVFevTkjOarGsRaYjcKtspn4E+OnT\n2dzErdw1c6sDvtvEpcwkQIDAtg/otEer9U7QHq3W+Xa0KyCwLB2kumpQn/C/bcw5q1vw6sdi\nN1M+npW+2WLFB2WZ6qQp3Qpcl+qu6KDKup1TIUCAQBsB7VEbpeVbRnu0fOfUEa2wwKJ3kOr7\nRnsmlyQfSo5OPpUMl4fmxReHJ2xg/LSWyz47y9XT8xQCBAgQWE0B7dFqnndHTYDAEgrUk3cW\nsdQndPU7Ry9N6tP9f0nqh2LrlrgDkir3Sc5MHp607ehkUYUAAQIECLQW0B61prIgAQIEFkNg\nUa8g1RPF6qkxRyb3Su49GFbnaPekyqOSn0jqKXZnJAoBAgQIEJi2gPZo2qK2R4AAAQJTFRh+\nbHn9WF9XTx2r2+seMdUjsbH1BF6fBf5yvYWmNL8e1FGfEjdXJ6e0WZshQGCJBbRHS3xyRw5N\nezQC4iWBRRdY1CtIa7nXP2KbstnvHTXrGxIgQIAAgc0KaI82K2c9AgQIzFlgUb+DNGc21RMg\nQIAAAQIECBAgsIwCi3oFaaO/Wl2Pgr5oGU+gYyJAgACBuQpoj+bKr3ICBAhMX2BRO0j1OO/6\nEdi2pR7ScHzbhS1HgAABAgRaCmiPWkJZjAABAosisKgdpI8E+MnJa5MPJL+fTCoXT5pp3lQE\n6gvJv5PcdipbW38jx2WRrs7rboPdeXGG16y/a1NZ4vRs5Z+nsiUbIUBglgLao1nqbm7b2qPN\nua21lvZoLRnTl1ZgUTtIdUJOS+qPYD095iXJWYkyP4F9UvXzk/cl3+xgNw5KHbfuoJ6q4ocG\n9dw5w/rdrVmXB6SC7yQ6SLOWtn0C0xHQHk3HcVpb0R5NS3KnnbRH07O0JQKdCrwntZ3daY07\nVuYx39uuHNVTm47ZkWcmUz6VrX5uJlvecaM/k0l1bPW7W12Uv08l610V7WI/1EGAwMYEtEcb\n85rV0nUng/ZoOrrao+k42sqCCSzyFaSGur5bdEhSx3J9M9GQAAECBAh0LKA96hhcdQQIEJiF\nwDJ0kOoJdZ+YBY5tEiBAgACBDQhojzaAZVECBAj0VcDvIPX1zNgvAgQIECBAgAABAgQ6F9BB\n6pxchQQIECBAgAABAgQI9FVAB6mvZ8Z+ESBAgAABAgQIECDQuYAOUufkKiRAgAABAgQIECBA\noK8COkh9PTP2iwABAgQIECBAgACBzgV0kDonVyEBAgQIECBAgAABAn0V0EHq65mxXwQIECBA\ngAABAgQIdC6gg9Q5uQoJECBAgAABAgQIEOirgA5SX8+M/SJAgAABAgQIECBAoHMBHaTOyVVI\ngAABAgQIECBAgEBfBXSQ+npm7BcBAgQIECBAgAABAp0L6CB1Tq5CAgQIECBAgAABAgT6KqCD\n1NczY78IECBAgAABAgQIEOhcQAepc3IVEiBAgAABAgQIECDQVwEdpL6eGftFgAABAgQIECBA\ngEDnAjpInZOrkAABAgQIECBAgACBvgroIPX1zNgvAgQIECBAgAABAgQ6F9BB6pxchQQIECBA\ngAABAgQI9FVAB6mvZ8Z+ESBAgAABAgQIECDQuYAOUufkKiRAgAABAgQIECBAoK8COkh9PTP2\niwABAgQIECBAgACBzgV0kDonVyEBAgQIECBAgAABAn0V0EHq65mxXwQIECBAgAABAgQIdC6g\ng9Q5uQoJECBAgAABAgQIEOirgA5SX8+M/SJAgAABAgQIECBAoHMBHaTOyVVIgAABAgQIECBA\ngEBfBXSQ+npm7BcBAgQIECBAgAABAp0L6CB1Tq5CAgQIECBAgAABAgT6KqCD1NczY78IECBA\ngAABAgQIEOhcQAepc3IVEiBAgAABAgQIECDQVwEdpL6eGftFgAABAgQIECBAgEDnAjpInZOr\nkAABAgQIECBAgACBvgroIPX1zNgvAgQIECBAgAABAgQ6F9BB6pxchQQIECBAgAABAgQI9FVA\nB6mvZ8Z+ESBAgAABAgQIECDQuYAOUufkKiRAgAABAgQIECBAoK8COkh9PTP2iwABAgQIECBA\ngACBzgV0kDonVyEBAgQIECBAgAABAn0V0EHq65mxXwQIECBAgAABAgQIdC6gg9Q5uQoJECBA\ngAABAgQIEOirgA5SX8+M/SJAgAABAgQIECBAoHMBHaTOyVVIgAABAgQIECBAgEBfBXSQ+npm\n7BcBAgQIECBAgAABAp0L6CB1Tq5CAgQIECBAgAABAgT6KqCD1NczY78IECBAgAABAgQIEOhc\nYNfOa5x+hbtnk8ckByYHJDcmlyfnJxcOXmegECBAgACBmQpoj2bKa+MECBDoRmCRO0i176ck\nJyX7rcH10Ux/SnLBGvNNJkCAAAECWxXQHm1V0PoECBDokcAi32L3ujienLw++fHkiGT/5E5J\nXVE6Pvl6cm5yv0QhQIAAAQKzENAezULVNgkQIDAngUW9grRPvE5IHp6cOcbuS5lWt9idkbw5\neVxydqIQIECAAIFpCmiPpqlpWwQIEOiBwKJeQTokdvVdo/e1MHxvlnlQi+UsQoAAAQIENiqg\nPdqomOUJECDQc4FF7SDV1aFLk0et41tXyOpWu0+vs5zZBAgQIEBgMwLao82oWYcAAQI9FljU\nW+xuiOlrktOTxyfvSC5OLkt2S/ZL7pY8ITksuX+iECBAgACBaQtoj6YtansECBCYs8CidpCK\n7UXJOcmpybgrSddnen0H6YlJfcKnECBAgACBWQhoj2ahapsECBCYk8Aid5CK7N3J4Uk9ue7g\n5DbJlclXBrkmQ4UAAQIECMxaQHs0a2HbJ0CAQEcCi95Bapi+mJGKQoAAAQIE5imgPZqnvroJ\nECAwBYFl6CD55fIpvBFsggABAgS2LKA92jKhDRAgQGD+AovcQap9PyU5KamHMowrH83EpyQX\njJtpGgECBAgQmIKA9mgKiDZBgACBvggscgepfrn80clrk3cmlyTfSG6VNE+xOzHj5yY/lmzm\nh2Jvl/XW6nxl1vfLzt8fM0KAAAECqyagPVq1M+54CRBYaoFF7SB19cvl/5izf2TLd0A9LEIh\nQIAAgdUS0B6t1vl2tAQIrIDAonaQNvrL5c/Y5Lk8Luvt3WLdz2SZikKAAAECqyWgPVqt8+1o\nCRBYAYFF7SDV7xpdmtTvH71lwnmq4zs++fSEZSbNuiozK+uVG9dbwHwCBAgQWEoB7dFSnlYH\nRYDAKgssagfJL5ev8rvWsRMgQKA/Atqj/pwLe0KAAIGpCCxqB6kO3i+XT+UtYCMECBAgsEUB\n7dEWAa1OgACBPgkscgepHP1yeZ/eTfZlWgJ7ZkNHJI+d1gbX2c7XMv/96yxjNgECkwW0R5N9\nzF1MAe3RYp43e71FgUXvIDWH75fLGwnDZRC4ew6iHi9/3w4Oph6LX0/h2qWDulRBYBUEtEer\ncJZX5xi1R6tzrh3pkMCydJCGDskogaUQ+GSO4tgOjuTBqeOsDupRBQECBAgspoD2aDHPm73e\ngsCidpD2yjEfuoHjviLLXrSB5S1KgAABAgTaCGiP2ihZhgABAgsksKgdpKNj/OENOJ+RZetx\n3woBAgQIEJimgPZompq2RYAAgR4ILGoH6SOxe3Ly2uQDye8nk8rFk2aaR4AAAQIENimgPdok\nnNUIECDQV4FF7SCV52nJzsnrk5ckvkcRBIUAAQIEOhfQHnVOrkICBAjMTuAWs9t0J1t+Q2r5\nh+T3OqlNJQQIECBAYLyA9mi8i6kECBBYOIFFvoLUYNd3iw5J6liubyYaEiBAgACBjgW0Rx2D\nq44AAQKzEFiGDlI9oe4Ts8CxTQIECBAgsAEB7dEGsCxKgACBvgos+i12fXW1XwQIECBAgAAB\nAgQILKCADtICnjS7TIAAAQIECBAgQIDAbAR0kGbjaqsECBAgQIAAAQIECCygwDJ8B2kB2Tvb\n5X1T07Ed1bZnR/WohgABAgQWT0B7tHjnzB4TWFkBHaTlPvW/msN7fnJdB4dZv0lV5dDkvJvG\n/IcAAQIECGwT0B55JxAgsDACbTtIt84RNf8AbnNwV7dZyDIzF9glNbwv+amZ17TTTgeljouS\nqlMhQIDArAS0R7OSne12tUez9bV1AgSmKNC2g/TV1LlPy3qvzXLVgCkECBAgQGDaAtqjaYva\nHgECBAhsJ9C2g/TsrPUnyTsH+XqGByZPSO6b1G1c1TGq4sdatzn4LwECBAhMX0B7NH1TWyRA\ngACBIYG2HaSTs84LkpcNrVujr0/+Ndk/+Y1EIUCAAAECsxTQHs1S17YJECBAYKc2j/muW+t+\nJHnDGK8bMu2Pk4eMmWcSAQIECBCYpoD2aJqatkWAAAECYwXadJCuzJrfSO4zdgvbOk9fXGOe\nyQQIECBAYFoC2qNpSdoOAQIECKwp0OYWu7pK9NbkjcnvJP+UXJEclDw1eVzSxVPSUo1CgAAB\nAissoD1a4ZPv0AkQINCVQJsOUu3Lf07q4Qun1ouhcknG60EN7x+aZpQAAQIECMxKQHs0K1nb\nJUCAAIGbBNp2kKpzVI1SPa3u3skdk88nH0++nSgECBAgQKALAe1RF8rqIECAwAoLtPkO0jDP\n3fPiiKQ6Vh9M6rVCgAABAgS6FtAedS2uPgIECKyIQNsO0t7xeFfyoeRVSX3vaM/k7MHr3TNU\nCBAgQIDArAW0R7MWtn0CBAisuEDbDtIr4lSf1lXH6JSB2dUZPjN5UvKIwTQDAgQIECAwSwHt\n0Sx1bZsAAQIEWv0OUnWiHps8Pfnr5Kqkyo3Ja5LTEh2kICgECBAgMFMB7dFMeW2cAAECBEqg\nzRWk22W5WycX1QpjSk0/esx0kwgQIECAwDQFtEfT1LQtAgQIEBgr0KaD9LWseVlSj/MeLTtn\nwlOST4/O8JoAAQIECExZQHs0ZVCbI0CAAIEdBdo+5vsPs+pvJ/XjsHVrXT2g4WnJicnhSXWS\nFAIECBAgMGsB7dGshW2fAAECKy7QtoP0e3HaK/n15FYDs+MyrCtLT04+PJhmQIAAAQIEZimg\nPZqlrm0TIECAwE2/Z9SG4YVZ6D3Jy5N7Jgcm9d2j85MrE4UAAQIECHQh8MJUoj3qQlodBAgQ\nWFGBNleQ6jcnfiu5JvnH5KxEIUCAAAECXQtoj7oWVx8BAgRWUKDNQxrqsd6fTepJdfVQBoUA\nAQIECMxDQHs0D3V1EiBAYMUE2lxBqocyvDapH4g9L/lEcnEyXOpWu/89PME4AQIECBCYsoD2\naMqgNkeAAAECOwq06SDVWs9Krk3qu0eV0fKOTNBBGlXxmgABAgSmLaA9mrao7REgQIDAdgJt\nO0h32W4tLwgQIECAwHwEtEfzcVcrAQIEVkagzXeQVgbDgRIgQIAAAQIECBAgsNoCa3WQbheW\nE5P9VpvH0RMgQIDAnAW0R3M+AaonQIDAqgms1UE6NBCnJXcaAtk34y9Kap5CgAABAgS6ENAe\ndaGsDgIECBD4vsBaHaTvLzA0Uh2k5yeHDE0zSoAAAQIEuhbQHnUtrj4CBAiskMBGOkgrxOJQ\nCRAgQIAAAQIECBBYRQEdpFU8646ZAAECBAgQIECAAIGxAjpIY1lMJECAAAECBAgQIEBgFQV0\nkFbxrDtmAgQIECBAgAABAgTGCqz3Q7EfzFrfG6zZdKbentfXj2ztb/L6SSPTvCRAgAABAtMS\n0B5NS9J2CBAgQGCiwFodpEuz1hsnrrn9zHO3f+kVAQIECBCYioD2aCqMNkKAAAECbQXW6iB9\nLhv4T203YjkCBAgQIDAjAe3RjGBtlgABAgTGCzS3zY2fayoBAgQIECBAgAABAgRWSEAHaYVO\ntkMlQIAAAQIECBAgQGCygA7SZB9zCRAgQIAAAQIECBBYIQEdpBU62Q6VAAECBAgQIECAAIHJ\nAjpIk33MJUCAAAECBAgQIEBghQR0kFboZDtUAgQIECBAgAABAgQmC+ggTfYxlwABAgQIECBA\ngACBFRLQQVqhk+1QCRAgQIAAAQIECBCYLKCDNNnHXAIECBAgQIAAAQIEVkhAB2mFTrZDJUCA\nAAECBAgQIEBgsoAO0mQfcwkQIECAAAECBAgQWCGBXZfgWHfPMRyTHJgckNyYXJ6cn1w4eJ2B\nQoAAAQIEZiqgPZopr40TIECgG4FF7iDVvp+SnJTstwbXRzP9KckFa8w3mQABAgQIbFVAe7RV\nQesTIECgRwKLfIvd6+J4cvL65MeTI5L9kzsldUXp+OTrybnJ/RKFAAECBAjMQkB7NAtV2yRA\ngMCcBBb1CtI+8ToheXhy5hi7L2Va3WJ3RvLm5HHJ2YlCgAABAgSmKaA9mqambREgQKAHAova\nQTokdvVdo/e1MHxvlnlGi+UsQmAVBeo7E1V+c9tg5v+t/2/flHxh5jWpgEA3AtqjbpzVsvwC\n2qPlP8cLc4SL2kGqq0OXJo9K3jJBu46vbrX79IRlzCKwygJ3Gxz8IztCOCr1XJ/8z47qUw2B\nWQtoj2YtbPurIqA9WpUzvQDHuagdpBti+5rk9OTxyTuSi5PLkt2S/ZL6H+0JyWHJ/ROFAIG1\nBbr6f+Rja++COQQWUkB7tJCnzU73WEB71OOTsyq7tqgdpDo/L0rOSU5N6krSaKlPqes7SE9M\n6hO+zZRnZqXqYK1XqlN22/UWMp8AAQIEllJAe7SUp9VBESCwqgKL3EGqc/bu5PCknlx3cHKb\n5MrkK4Nck+FWyg9l5dr2eqWeBnjL9RYynwABAgSWVkB7tLSn1oERILBqAovcQapOSd3aUOWL\ng+yR4WOShyWXJNVg1Y/Fbra0/eJ6dcrqkeIKAQIECKyegPZo9c65IyZAYIkFFrWDtHfOybeS\nxyb1RKwq9Z2jdyX1RKGm1G12L0he2kwwJECAAAECUxTQHk0R06YIECDQB4H61GtZyl/kQOoK\n0rOTA5MHJn+avCTp6gldqUohQIAAgRUX0B6t+BvA4RMgsNgCi3oFaVT99plwbPK85JWDmfVU\nuw8nRyX1pLu/TRQCBAgQIDBLAe3RLHVtmwABAh0ILEsHqX58sr6P9LYxZnUL3tPGTDeJAIHl\nFqgPR+opl11dKa+/Q3UF+5OJsroC2qPVPfeOnMBaAtqjtWR6On3RO0j1faM9k3ogw4eSo5NP\nJcPloXlRD3FQCBBYLYEjc7j3SV7W0WE/J/VUnTpIHYH3rBrtUc9OiN0h0CMB7VGPTkabXVnU\nDlJ9QvfdpB6+8LtJdYrqMdv1afE/JdVhqn8Y1fePfjo5PlEIEFg9gatyyP9/e3cCbV1Z1wEY\nBBVxAHFAXYriSKKAlopDhabpcsoxrUyoXA7lWKKmuRwwV8tMUzHLkdJlhmOZU4jmEOWISrZk\nUHEWRUEUBATs9+c727vvueeeuz/uOWfvc+/zrvX79nj28Lz7nve+d+9zvqMWdNqPWdB+7GZY\nAtqjYdWHoyEwVAHt0VBrZsJxLWsHqS6yqyTVIz8kuc1ouG+GeyRVHpD8RlLfYvfWRCFAoH+B\n/XIIz0geu4BDqfeIvRewH7vY3gLao+1d/85+eQW0R8tbd3M/8mXtIBXMhcmJo7yhZqTsmtRf\n86q8OnlJclZNKAQIDEKgvmnytOToBRzNw7OPwxawH7sgoD1yDRBYPgHt0fLV2cKOeJk7SJOQ\nms5RLfO5o0lC5hHoX+DrOYTXLuAw6kOxhy1gP3ZBYJKA9miSinkEhiWgPRpWfQzmaC43mCNx\nIAQIECBAgAABAgQIEOhZQAep5wqwewIECBAgQIAAAQIEhiOggzScunAkBAgQIECAAAECBAj0\nLKCD1HMF2D0BAgQIECBAgAABAsMR0EEaTl04EgIECBAgQIAAAQIEehbQQeq5AuyeAAECBAgQ\nIECAAIHhCOggDacuHAkBAgQIECBAgAABAj0L6CD1XAF2T4AAAQIECBAgQIDAcAR0kIZTF46E\nAAECBAgQIECAAIGeBXSQeq4AuydAgAABAgQIECBAYDgCOkjDqQtHQoAAAQIECBAgQIBAzwI6\nSD1XgN0TIECAAAECBAgQIDAcAR2k4dSFIyFAgAABAgQIECBAoGcBHaSeK8DuCRAgQIAAAQIE\nCBAYjoAO0nDqwpEQIECAAAECBAgQINCzgA5SzxVg9wQIECBAgAABAgQIDEdAB2k4deFICBAg\nQIAAAQIECBDoWUAHqecKsHsCBAgQIECAAAECBIYjoIM0nLpwJAQIECBAgAABAgQI9Cygg9Rz\nBdg9AQIECBAgQIAAAQLDEdBBGk5dOBICBAgQIECAAAECBHoW0EHquQLsngABAgQIECBAgACB\n4QjoIA2nLhwJAQIECBAgQIAAAQI9C+gg9VwBdk+AAAECBAgQIECAwHAEdJCGUxeOhAABAgQI\nECBAgACBngV0kHquALsnQIAAAQIECBAgQGA4AjpIw6kLR0KAAAECBAgQIECAQM8COkg9V4Dd\nEyBAgAABAgQIECAwHAEdpOHUhSMhQIAAAQIECBAgQKBnAR2knivA7gkQIECAAAECBAgQGI6A\nDtJw6sKRECBAgAABAgQIECDQs4AOUs8VYPcECBAgQIAAAQIECAxHQAdpOHXhSAgQIECAAAEC\nBAgQ6FlAB6nnCrB7AgQIECBAgAABAgSGI6CDNJy6cCQECBAgQIAAAQIECPQsoIPUcwXYPQEC\nBAgQIECAAAECwxHQQRpOXTgSAgQIECBAgAABAgR6FtBB6rkC7J4AAQIECBAgQIAAgeEI6CAN\npy4cCQECBAgQIECAAAECPQvoIPVcAXZPgAABAgQIECBAgMBwBHSQhlMXjoQAAQIECBAgQIAA\ngZ4FdJB6rgC7J0CAAAECBAgQIEBgOAK7D+dQts2RHJ8z3W9BZ7tP9nPOgvZlNwQIECCwXALa\no+WqL0dLgMCCBHSQFgTd2s2dM/6q5IutefMafXo2fPV5bdx2CRAgQGCpBbRHS119Dp4AgXkJ\n6CDNS3b6dt+fxR+YvspMlh6ereggzYTSRggQILAlBbRHW7JanRQBApsR8Bmkzeh5LQECBAgQ\nIECAAAECW0pAB2lLVaeTIUCAAAECBAgQIEBgMwI6SJvR81oCBAgQIECAAAECBLaUgA7SlqpO\nJ0OAAAECBAgQIECAwGYEdJA2o+e1BAgQIECAAAECBAhsKQEdpC1VnU6GAAECBAgQIECAAIHN\nCOggbUbPawkQIECAAAECBAgQ2FICOkhbqjqdDAECBAgQIECAAAECmxHQQdqMntcSIECAAAEC\nBAgQILClBHSQtlR1OhkCBAgQIECAAAECBDYjoIO0GT2vJUCAAAECBAgQIEBgSwnoIG2p6nQy\nBAgQIECAAAECBAhsRkAHaTN6XkuAAAECBAgQIECAwJYS2H0LnM0eOYeDk+sm+yY/T85KvpCc\nMprOQCFAgMBcBfbJ1l+W/NVc97Ky8Q9l9PCVSWMDENAeDaASHAIBArtojzZ5ESxzB6mO/ajk\n0UldCJPKpzLzj5KTJi00jwABAjMUuEK2dUJyzAy3ud6m7pUFB6230PyFC2iPFk5uhwQITBHQ\nHk3B6bJomTtIr84JPjj5++Q9yRnJD5MrJtVhukVyRPKZ5FeTTyQKAQIE5ilwcjb+pnnuYLTt\na2Z44AL2YxfdBLRH3ZysRYDA4gS0R5uw3nUTr+3zpXtl59UZunfygQ0O5Ngs/3by5A3Wm7T4\nk5l520kLxubVZ7mekLxybP6kyZ9k5pWSehRw3qX5jNkl897RaPu7ZXjxgvbl3GYDXe8BZbmo\neqtrpK7HRVz/W/3cPhvH2yVKvwLao27+3rO7OXVZa6u2tVv9PXsrt7Vbrj1a1jtI++cdpH7B\nOr7DO8lxWedxHdabtMoRmVmfbdqoXD8rvGWjlUbL75ThtTquu9nVrpwNVL632Q11fH3Vy1c7\nrrvZ1fbOBurNtD5vtoiyyHOruwPnJ9WZnncpwxsmp897R6Pt189T1Vmd37xLvb/V/r4x7x2N\ntl/vA99NLlrQ/k5f0H7sZrpAvTdoj6Yb1VLt0cZGXdfQHnWVmr6e9mi6z84sPX1nVrbu/ASq\nF16/iDxkg13UL0jVQfrnDdazmAABAgQIXBYB7dFlUfMaAgQIDFigbtMuY6m/1u2Z1DdG1SNw\nNV5/CajPHtVfVg5J7p/UI28HJ0ck9RklhQABAgQIzFJAezRLTdsiQIAAgU0L1Dc5nZpUAzWe\nn2Xem5PqICkECBAgQGCeAtqjeeraNgECBBYoUJ8/2ArlBjmJGyZXS36c1JcyVH6aKAQIECBA\nYFEC2qNFSdsPAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBYiMBWecRuIVjbaCf1\nJRdXTS7cRue80aleLyvUY5vKDoE9Mqj/z2tRX7O+DO719f31rZkXLMPBOkYCSyKgPVpbUdqj\n1Sbao9UeNaU9WmuyU3N0kHaKa9us/IOcaX0joEKAwM4JPD+rP2fnXmJtAgSmCGiPpuBYRGCK\ngPZoCs5Gi5b1P4rd6Lws35zAl/PyFycv3dxmtsyrb54z+XxSXwSyqP90d+h4z8sB1lfs32/o\nB7rA4zst+zplgfuzKwLbQUB7tLqWtUerPWpKe7TWRHu01mSn5ugg7RTXtlr5opzt+dvqjNc/\n2eZRw3p0iskOp4szuITHDgz/EiAwVwHt0Qqv9mjFohnTHjUShjMTqP8BXCFAgAABAgQIECBA\ngACBCOgguQwIECBAgAABAgQIECAwEtBBcikQIECAAAECBAgQIEBgJKCD5FIgQIAAAQIECBAg\nQIDASEAHyaVAgAABAgQIECBAgACBkYAOkkuBAAECBAgQIECAAAECIwEdJJcCAQIECBAgQIAA\nAQIERgI6SC6FSQLfyczvTlqwTef9KOd9RnLeNj3/Sadd10ddJ8qKwLcy6j8SXvEwRmAWAtqj\n1Yrao9UeNaU9WmuiPVprYg4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAYAECR2Yf75+QX2vt+9oZf2by6eSTyXOT3ZJ22TUTv5/8a3JK8sbkBsl4uX1m/F1y\navK+5L7JEMrlcxD/kTxrwsEs+vyHYvRLsfhWcuAEk6rnSddNXQdNmZVb12ur2e+sh4dkg29P\nTktOTuravlHSLl2PsUvddnHrsk77+IwTWAYB7dGOWtIerb1atUc7TLRHa68NcwjMRaA6PdVZ\nedtY7tTa23EZ/1LyyORPk3OSf0ra5dGZOD+pjtQjktru15L6Ra4p+2WkXvuW5LeT1yYXJQ9I\n+izVGL0u+XnyggkHssjzH4rR9eNQ10WZHDxmsv9o/oczHL9uqqPQlFm5dbm2mn3Oelidw/OS\nk5KnJM9KvpJ8P7lO0pQux9i1bru4dVmnOTZDAssioD3aZRft0dqrVXu0w0R7tPbaMIfAXAR2\nz1arU/OkKVt/ZJbVL8k3a63zsNG8A0bz6hfFHyXVOWrKXhn5cfLsZkaG705ObE3XaP1l/gtj\n8xY5edvs7HPJT5KfJeMdpEWff99G1cGpX/arPs9OJnWQHjiaf90M1yuzcut6ba13HJudX3eL\n6mdk79aGDsp4uTxvNK/rMXap2y5uXdZpHa5RAkshoD3aZRft0epLVXu02kN7tNrDFIG5Cdwq\nW65f9O48ZQ/vybJPjC2/Yqar8/Pc0fwjMqzt3HA03QzenJEvjiaumuHFyVNH082g7h7Vayc9\nxtWsM8/hqdn4fye3SKpDMN5BWuT5D8HokBjUXb2jk99Kqm4OTtrl+Zn4dnvGhPFZuR2RbW90\nbU3Y/cxmHZktPW1sa5fL9A+S14/mH5HhRsfYtW67uHVZZ3RoBgSWRkB7tOOuvfZo5ZLVHq1Y\n1Jj2aLXHYKbqlwJlawncZnQ6N8rwTUnd3Xl10r4zUI3WaUm7XJCJbybNZ4yqc1N3X76WtEu9\nrlmnnh+ua2h8W18evaBZbzS5sMEjsqc7Jievs8dFnv8QjKpeq7P4+OSn65hUo3V6Uuv8Z/LR\npDq+uyVNmZVbl2ur2ec8hn+djb5obMP3yPQ+SXM3tMsxdq3bLm5d1hk7ZJMEBi+gPdrxeLr2\naOVS1R6tWNSY9mi1x2CmdJAGUxUzO5D6RbdK/XJbHZevJEckn0/qsaEqeyf11/LxclZmbLTO\nD7NO/eX8ykltp8qZOwa/+LfWqdJsa8fU4v4dvzs2vudFnv8QjKp+mk7ruEUzfUhGqhE/LPlQ\nUnVcb9zHJk2Zpduk6699bTX7XMRwr+ykzrV+Xl432uF659o+xq51u962uvy8tdcZHZoBgaUR\nOGR0pNqj9atsM+8PO/t+1PU9a/2j3fwS7dF0Q+3RdJ+FLd19YXuyo0UJ1C+39cvn3yQXjHZ6\nlww/ltTnKx6T1KNDFybjpe4Y7dmaud46tUqtV9upUq9rl2a6va328r7HF3n+y2BUz4S/PPlG\n8i+jynl+hi9LnpjcPflgMiu3bGrd66+W1XVzbo0soFwr+6jPEdXdzrsl9eUNTZnV9d/Frcs6\nzXEZElgWAe3RxjXV9Wd/Fu9Hta8qTRu9Y2pleghttvZIe9Rcl70O3UHqlX8uO6/PMrwwaTpH\ntZOPJ3UH4dCaSKnPmtTjROOl5p0zmjltnVql1vvOaN2rj4bNoNl2s61m/lCG086tOeZp69R5\ndD3/ZTCqRvPFSdM5qvOrcsyl/87+uuliO9r1XAc3ydZPSKpzdFhyYtKULsfYtW6nbavL9das\n0xybIYFlEdAebVxTm31/qD1oj1ac9xl51JxptrW83LqsU+vOu2iP5i28k9vXQdpJsCVY/eY5\nxhtPOM72I031hjDp8bd9M78eyatS61xllJpuynUzUsuqA1bDKjWvXZptN9tqLxvC+CLPfxmM\nrpRKOShpHr9o6qge32iXWbptdG219zuP8QOz0bqren5yx6QeQW2XOteNjrFr3XZ1a35u2sfR\n/plszzdOYBkEbp6D1B5Nr6mu7w+zeD/q+p41/Yjnu1R7pD2a7xVm69tWoP4KXl+sUP/vQlOq\ngaq7BK8ZzXh6hvUo0VVH0zW4U1Lr3KcmUm6aXJz8bk2MSt36rsewjhlN1+DTyTtb0zX60qQ6\nZHvURM/l7Oz/BWPHsOjzH5LRb8ai6vnglsnNRvPqkbp2Kadat15TZVZuXa+tHXud/b83yibP\nTD6SXC2ZVLoeY5e67eLWZZ1Jx2kegSELaI9W1472aLWH9mjHf1CuPVp9XZgiMBeBR2er9Uvt\nK5PqGN07OSGpr/DeP6lSdwpq+m3J9ZJbJvUX9H9P2uUdmfh6cmhyzeQVyVlJ+47R72T6ouSP\nk9ruQ5PqfB2eDKFMapAWff5DMprUIFU9HZecmxyRVP0+OTkj+XDSlFm6dbm2mv3Oevhv2WBd\ns89I6jN57dwz003pcoxd6raLW5d1muMyJLAsAtqj1TV1dibH/2DX9Wd/Vu9HXd6zVh/1/Ka0\nR7vsoj2a3/VlywTWCByZOdUBqo5SpTo/t0ra5c6ZqDtNtbw6NPXme/2kXepZ3vcmlyS13ieT\n+yXj5c8zox5VqnW+mbwwGUqZ1CDVsS36/IditF6DVB3gY5Oqw8oFyRuTKyftMiu3rtdWe9+z\nGK/zbM5x0vBdrZ10PcYuddvFrcs6rcMzSmApBLRHK9WkPVqxqDHtkfZo9RVhisACBHbPPurR\nqfolb1rZLwvHfwkeX3+vzKg7TdNKPdJ3k6Qew1umssjzXwajq6TyDkiusEElzsqty7W1waHM\nfXGXY+xat13cuqwz95O2AwIzFNAedcPs8rM/q/ejru9Z3Y58Pmtpj9a6zqr+a8tdrrcu66w9\nSnMIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgMDgBfZcwBHuln1cYQH7sQsCBAgQWF4B7dHy1p0jJ0CAwNIL/ErO4H3JGcnPk5OS\nlya3Ty5LqQ7QfSe88A8y79PJT5MLk88nL0h2T9rl2pm4Y3tGx/HL+rqOm7caAQIECMxZQHs0\nZ2CbJ0CAAIGNBZ6UVX6WVGflKckDkxclX0rOS+6S7Gw5Oi/43NiLnpPp6ny9J3lq8rjkncn5\nyXHJrklTvpeRZzYTOzG8rK/biV1YlQABAgTmJKA9mhOszRIgQIBAd4FbZdXqHP1jcvmxl10p\n059MzkpuPbZso8k3ZoUTWytdLuPVeakO0Xg5KjOq49S+W1WdpsvSQbqsrxs/JtMECBAgsFgB\n7dFive2NAAECBNYRqMfqvp/svc7y62T+j5PXtJa/PON1l6ld7pqJWqc+V/TE5NTkB0nNOzC5\navKz5GXJeLlGZrwouUNSr6/XXJx8KnlF0pT9M/KS5L3J8cmrkgOSKtNed5Usf25S5/ru5Mhk\nvDOYWQoBAgQI9CigPeoR3663p0D99VohQGCtQH3O57jk7LWLLp3z3fxbd4Kq89KUR2aknhFv\nl1tm4lFJfZboR8kFyUVJdb7qs0bVyfpg8uikOkN1t6j5uayO1NOSTyR1J6leU8NzkzOTKrdL\nTkoOTf4nOTWpTtpnkmsl671unyyrR/2eknw1+WzyZ8lHk/HPPWWWQoAAAQI9CWiPeoK3WwIE\nCBBYEdg3o9Wx+MuVWRPH/jZz645O3QWqUp2p8df8SebVtvZMqow/Ylfz6k7OO5Jar1KP7r0r\nOTxpOksZvbSMPypXn2k6PanH/ppyr4zUdh7ezMhw/HWvyLzqqN2wtc4tMl6ve0JrnlECBAgQ\n6E9Ae9SfvT1vY4HxX762MYVTJ/ALgT1GY3V3Z1r5SRbWFyhs9rG02s6Dkpsmj08+nPx6ckzy\n/qTu9qxXav16xO6nSX1D3k2SGyRVquO1XrlfFnw8qfeAen2l7mj9X3LPRCFAgACB/gW0R/3X\ngSPYhgIepdmGle6UNxT4Wtb4TnKzDdasDs0pyQ83WK/r4i9nxVeOUj+bT0zqsbunj5LBmlJ3\njmp5dbDqDlCV/90xWPXtd6NZlw6qQ1edqLp79JVL56z+xx9OVnuYIkCAQF8C2qO+5O13Wwv4\nRWhbV7+TnyJwQpbdI2k/utZe/WqZuFtS6zWlHk+rzke7TLv7U+s9KvlWcvWaaJV6/O0lyceT\nu7bmj4++PjOOTN6a3D3ZK3lwUmXXHYM1/9aXQpybvDmp4xvPoZmnECBAgMAwBLRHw6gHR7GN\nBHSQtlFlO9WdEnh51r528sJkvKNR03VnpzojxyRNqUfl6osR2uWg9kTGL0nqUbimfCoj10sm\nfe7nCpm/f/KFpCnVCWt+bms79YUMb0iOSj6W1GeNfjmp0t5P+3W17KTkvkmtX595qpyX/EPy\ne4lCgAABAsMQ0B4Nox4cBQECBAhE4CFJfQlDfQ6oxg9JHpYcn9RdmAck7fL2TFSH40HJTZO/\nSOpOTXVOmi9pODrj5yT3T6oDVuXYpNZ5W/KHyWFJ3Vk6Mal175A05YyM1Lfe1d2tKjVej/nd\nMql93Ds5M6ntPTVpyvjr6m5TrVNfBnGXpI73DUkd/wGJQoAAAQLDEdAeDacuHAkBAgS2vUA1\nSnW3pToTlbrTUp2K+yTj5caZUXeEmnX/K+N1N6amq/NS5XbJ95Oa99ikSt2RenZyalIdslpW\nHZV6rOLWSbtUp6u+KrzWuUZyaPKRpF5XOTmpL1n4TPKOpCnjr6v5D02+ndS2LkrqDlR1ABUC\nBAgQGJ6A9mh4deKICBAgsK0FqjNSX4LQPN42DWPfLLzmtBWyrLZXHaPxUh2p2s/lxxe0puvR\nu71a0zVaj/ZVppVJr6v1r5vsM+2FlhEgQIDAYAS0R4OpCgdCgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAoF+B/wfncGWTtCov/gAAAABJRU5ErkJggg==", "text/plain": [ "Plot with title “Bins = 12”" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0JvHz3fD/+7ILsSIQsQiJKIqG2WKMUtVRUKX9B1FYUpdTSUkJV00XT\nEEujtIhKUhQhEUGJ9pcQW2yJLZGIhGwE2ZP/653vjMx3vnPnnpnvzNw5c5+fx+P1PWfO+Zzt\nee73fu5nzpkzG2ygECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgMCqENhwVRylg1zNArfLwe86AODaTLs8+Uly1oD5m2Ta/TvTz8/wmwPqLNqkjXJA\nj0w2Tk5JfpwMKltk4l2SXyffSi5LFAIECBAYLqA9Gu7TO7dpe9Rdptrsar/q79ovJuckCgEC\nBAgsIXBIpl+3TOqX6X59y2/bs8wH+uYt6stX9xzz4wccZHWMjkqu6an3q4w/P/FmSxAUAgQI\nDBHQHg3B6Zu1XHvUV32D12RCt61/Yv9MrwkQIEBgbYEmDVL9Ur042b1n0dXWQfqdHHtvx2dQ\nB+mk1Ok2QFf3jNe0FyYKAQIECCwtoD1a2qZ3TpP2qLf+3fLiqqTbPukg9eoYH0ugLmEqBFaL\nwHNzoLskuya7JfdJPpVU2SZ5wvVja/65NIOHdPL6numLNlpXhf4mOTYZ9vvgrplfXlXel2yf\n3DO5IqnyyjUD/xIgQIBAAwHt0bpITduj3iU3z4v/SDbpnWicwPoK+IFaX0HLt0ngwuzs2T07\nfGbGX5E8uDOt7g/vlrplbOvOi190J2ZYn72penUF5cPJrZN6t2v3pD6n9LHk10lvuUlePDq5\nbVINQH2m6QtJ3dq3XHlkKtx+uUqZ/6Hkhw3q9Vc5NRO66y+fm/VX6LzeNMPDk72Sv0ouSk5J\n6hjum1QHc7PkykQhQIAAgeEC2qN1fZq2R71L1ht8v5XU1SO3evfKGCdAgMAQgUMyr3vZfdBt\nY3/SM/9JPetZ6ha76iTU+qrTVJ2XX3Zed7dRnaRbJd1y74ycl3Tn9w5rXcuVY1Khd5mlxh+x\n3IqWmH9BplensW5JeGbSXf8gq8xeq1RH8aqklvnkWnO8IECAAIF+Ae1Rv8jar0dtj+pBSt1b\nww/NeLf9covd2q5ejSHgCtIYaBZprcAzsuf7J/Uu08ZJXdGpqz9Vjk/qilDTctNUrPpfT76U\nVAelOkZ3TF6cvCSpcmSyQ3JWcnRycfKo5F7Jc5JPJB9NVqpUg/2W5FdJ+TQtJ6XifslGyfeS\n5ycKAQIECDQT0B6t6zRKe7RFFn93Um3QO5J6k+4FiUKAAAECDQR637HrvrvUP6zbxXbrW9dy\nV5BqHXVbW7fsk5Huej/VmXjLnmlvz3h1yqpU5+pNybOTvZJh5SaZWbevLZdNhq2k4bxqsLvH\nMOwKUu9xVf3qDLq1oSGyagQIrFoB7VHzU79ce1Sdomp/zky2TOpNym775QpSMJT1E5jEH1Xr\ntweWJjA7gbrScWFSf8zX52WqE1QPbajh15K6CvLvSdNyWE/FWr6uwlTnp/s5np9m/JKkOjfP\nSh6TfDqpDlQ1lPUdTMuV+sVf75QtV65MhauXqzSh+fV7ozpFdQXuoOTvkz9I6mrc5YlCgAAB\nAsMFtEfDfYbN/b3M7N4S/scZv3RYZfMIECBAYF2B3nfsBl0VuUcWqdve6p2nGm6aVKlOU/fd\nqA9cP2XNP4f3TO+/+lMdolrmtDVVr//3cfm3Oi7ddXWH12bah5KdkmHlmMzsLjNsWO+erW9Z\n7h27QeuvjlJ3v6oDqBAgQIDAYAHt0WCXQVOXao/qTcgfJ9XufC753U7+qjOtpr+hM62ecKcQ\nGEtgo7GWshCBxRE4JYdS9y5XqSs9dRWkabmir2J1evrL0Zmwe/K3yVeT+uVdpa5iHZDU/DaV\n/qtZH+/Z+Uf3jBslQIAAgdEEtEfLe22fKrfqVLtfhtV+V17XmVaDVyQ1rT7/qxAYS6BulVEI\nrHaBO/UA9Hd6ematM9rt7Kwzo2dC/SLfLakrT69M6va7uj2g3kncMamHNWyV1FPxBpV6gMKx\ng2b0Tatb/KZZ3piV12emtk7qytm3kir3WDO4/t+f94wbJUCAAIHRBbRHo5tZgsDEBXSQJk5q\nhXMs8ODsW906V6Wunt44eWzSbZB+nfGTk0mV+lzOf3VWdnyGdcWoPgNVt839eVIdpOoY/TJZ\nqnxmqRkznv7tbK+usFU5NPmLpB7W8LKkW07ojhgSIECAwFAB7dFQniVnnp05tx0w94GZ9s7O\n9D/L8CNJ3YqnEBhLQAdpLDYLtVTgmdnvyqBSV4Oemlw2aOaY0/47y30+qdsAHprU0/K+k9wx\nuVFS5R+SQbfmXT9zjv55X/blackDkmrYv5z0lpr/sd4JxgkQIEBgSQHt0ZI0Q2fUZ3p/OKBG\ntavd8tOMDKrTnW9IYFkBn0FalkiFBRWoX7LVGapfpO9PHpbUlZ1JlvoCu7qdrq64XJrUFau7\nJNU5Oj95YfL6pA2lvOoK2JuTGu+Wuvr1iuSg7gRDAgQIEBhJQHs0EpfKBKYvUB8UVwgQmL7A\nptnETsl2ybnJecl1SRtLdfD2SOqR3j9I2nAFLLupECBAgEAEFqk9ckIJECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQaCWzY\nqNZ8V9o8u7dPsmOyQ3JdcnHy9eSMzusMFAIECBAgQIAAAQIECCyuwCY5tL9NLkyqUzQop2T6\n3olCgAABAgQIECBAgACBhRb4txzdz5O/S+6f7JncItkpuXPyuOTY5MrknolCgAABAgQIECBA\ngACBhRTYOkd1TfLQBkd3VOr8c4N6qhAgQIAAAQIECBAgQKCVAvtmr69O6ja75cozU+HLy1Uy\nnwABAgQIECBAgAABAm0V2Cg7fl7yh8scQHWgTkjev0w9swkQIECAAAECBAgQILDBxi01qAcy\n3CQ5NLlrZ7yeYrddsltSV5h+P3lLUk+4Oyg5P1EIECBAgAABAgQIECCwsAIPy5F9Nxn0BLur\nMv3IpDpICgECBAgQIECAAAECBJYVWITvQaqD3DnZNdkquTQ5t5PLMlQIECBAgMAsBHwv3yyU\nbYMAAQIElhSozyH1l7rt7inJ3yQvSG6fKAQIECBAYJoCvpdvmrrWTYAAgRkLNHkK3Ix3qdHm\ntkytXyRPSD7QWaK+B+kTSX0GqVvqSXevTv62O8FwYQS2yJHcboZH88ts6/sz3J5NESDQHoF3\nZFcfm7wtqe/fq8+8XpTcKKnPxlb7dFByanK/5OREWRyBcduja0PwzaSGCgECBNZboDpI9bmj\nP+pZUzU49WS7unJ0y+Q+STVWVe/RibJYAvUAjkGfPZvWtGrAtl0sQkdDgMAEBHwv3wQQW76K\n9WmPHt/yY7f7BBZSoK1XkPpPRnWI7pH8ZfIvnZnVWfpCsnfypOS/k1HLYVngDg0WqncHn5p8\npkFdVSYjUO/M1pcAP3syqxu6lrpVszrgmw2tZSYBAqtRoO5aqDdmTmxw8CekznMa1FOlXQLj\ntkffyGHWsgoBAnMmsCgdpGqc6h3+Dw7w/UCm1ZfFjlO+nIV+3mDB+6dOddKU2Qpcmc1dMoNN\n1u2cCgECBAYJfD0TL0gOSI4ZVKEzrdrbulpw+pA6ZrVXYJz2yK117T3f9nzBBdreQap37m6a\nnJ+clNw5+U7SWx6aF2f3Thhh/F0N674w9erpeQoBAgQIrC6B+iP38OTIpO5W+EhSdzBcmNRV\n5+2SPZMDk92T/RKFAAECBAhMXKA+EFnv1tSVo2uS+pDjGUl1lHZIqvx2cnxSdR6XTLNU5+iR\n09yAda8jcESmvGedqdOZULdZ1s9R92drOluxVgIE2izwsOz8d5P6XdGfqzKtOlC+ly8IC1jG\nbY9+FIsnL6CHQyLQeoG2XkGqJ4pVJ+lOyb7JXTrD+gN286RK3e7woOTVydGJQoAAAQIEpiVw\nXFa8R7JzsmuyVVJvnp3byWUZrk+pdqzavOXKrVOhrlZ9dLmK5hMgQIDAYIG2dpDqaOoK0lc6\neVdNSKkvvq137qq8I/mn5OJ6oRAgQIAAgRkI1C3d497WPWz3qp2rjtdypdo9H/xfTsl8AgQI\nDBFocwdp0GF1O0c1bxoN1KBtmkaAAAECBAYJ1GeQHpDUlZ/6DqTPJ+OWjzdc8JDUu7xhXdUI\nECBAYIDARgOmmUSAAAECBAg0F6gHMbwvqaeefi15RFLf1/ft5JPJm5LPJe9N6k4HhQABAgTm\nWKCtV5Dq80e3G8G1HgV91gj1VSVAgAABAk0F3pOKD0zqc0K7JdUR+mxSt3g/OqmrR/Vh/IOT\n6ijVLeAKAQIECMypQFs7SPU47/oS2KalGq36/gmFAAECBAhMUqAeyvDw5PeT7oMRPpTxelDQ\nvZP/S6q8Mbl78geJDlIQFAIECMyrQFs7SP8b0D9O3pbUu3F/nwwr5w2bad5EBOq2kdcm20xk\nbcuv5F6pMqvzWp8jqPL6ZH2fRHX9ihr8c2Tq/L8G9VQhQGBlBXbK5uu7kD7dsxufzfiDkpN7\nptXoCcnz+qZ5SYAAAQJzJtDWDlIx1hN96o/y+v6BNySfSZSVE9g6m35VcmJS9+FPu+ySDdx4\n2hvprL8em1vlNskvamTKpd51viLRQZoytNUTmIDAD7KOjZInJO9MNk3qu/fqM0gPTj6ZdMv+\nGfl+94UhAQIECMynQJs7SCX6b0k1Sm9M7pkoKy/w59mF+pDytMt3soH6Q2SW5c+ysfpS4mmX\nj017A9ZPgMDEBOoLyv8jqTfrnp7sntT3H/1j8q/J4ckpSd3m/UeJLxUPgkKAAIF5Fmh7B6ls\nq9HZLaljuTpRCBAgQIDALAWemY39MHloUleM6rbveoLd3ZJ6A6/KVcnLkmPrhUKAAAEC8yuw\nCB2kekLdV+aX2J4RIECAwIILXJnje00nvYe6f17UZ5T2TOrK+gWJMhuBHbOZeuLtqOXiLOA8\njaqmPoEFE1iEDtKCnRKHQ4AAAQILJHBOjqWizE7gptnU2cnGY2zyzCxTd6UoBAisYgEdpFV8\n8h06AQIECBBYQIH6fGp1jh6SjPK50XpU+2sThQCBVS6gg7TKfwAcPgECBAgQWFCBn+a4zh3h\n2C4aoa6qBAgssEA9mlQhQIAAAQIECBAgQIAAgQjoIPkxIECAAAECBAgQIECAQEfALXZ+FAgQ\nIECAAAEC7RDYNrv50WTzMXb3pCxT3+enECCwjIAO0jJAZhMgQIAAAQIE5kRgh+zHfZJ6mER9\nIXHTcr9UfGDTyuoRWO0COkir/SfA8RMgQIAAAQJtE3hrdvj8EXa6vqj46SPUV5XAqhbwGaRV\nffodPAECBAgQIECAAAECvQI6SL0axgkQIECAAAECBAgQWNUCOkir+vQ7eAIECBAgQIAAAQIE\negV0kHo1jBMgQIAAAQIECBAgsKoFdJBW9el38AQIECBAgAABAgQI9AroIPVqGCdAgAABAgQI\nECBAYFUL6CCt6tPv4AkQIECAAAECBAgQ6BXQQerVME6AAAECBAgQIECAwKoW0EFa1affwRMg\nQIAAAQIECBAg0Cugg9SrYZwAAQIECBAgQIAAgVUtsMmqPnoHT4AAAQIECBBYGYHNs9mHJNuN\nsPntR6jbW3WrvLhZ8sLeiQ3Gr0ud45IzGtRVhcDCCOggLcypdCAECBAgQIBAiwS2zb7+XrL3\nCPtcHZ0qN0/Ov36s2T/7pNqOydOaVf9NrdtmbKfkL34zxQiBVSCgg7QKTrJDJECAAAECBOZS\n4Jjs1Z+MsGfVofr4CPW7VTfMyBXJvt0JDYcfS71aViGwqgR8BmlVnW4HS4AAAQIECBAgQIDA\nMAEdpGE65hEgQIAAAQIECBAgsKoE3GK3qk63gyVAgAABAgSGCNTtZKM+CKEetqAQILBAAjpI\nC3QyHQoBAgQIECAwtkB9PucWySgPP+hu7PTuiCEBAu0X0EFq/zl0BAQIECBAgMD6C9SVoGuT\nvUZc1bGpv+mIy6hOgMAcC+ggzfHJsWsECBAgQIDAzAW+PeIWr0x9HaQR0VQnMM8CHtIwz2fH\nvhEgQIAAAQIECBAgMFMBHaSZctsYAQIECBAgQIAAAQLzLKCDNM9nx74RIECAAAECBAgQIDBT\nAR2kmXLbGAECBAgQIECAAAEC8yyggzTPZ8e+ESBAgAABAgQIECAwUwEdpJly2xgBAgQIECBA\ngAABAvMsoIM0z2fHvhEgQIAAAQIECBAgMFMBHaSZctsYAQIECBAgQIAAAQLzLOCLYuf57Ng3\nAgQIEGiTwObZ2X2SHZMdkuuSi5OvJ2d0XmegECBAgMA8C+ggzfPZsW8ECBAg0AaBaktflzwr\n2W6JHf5ipj89OW2J+SYTIECAwJwIuMVuTk6E3SBAgACB1gq8I3v+3OSI5AHJHZLtk52TuqL0\n+ORnyanJPROFAAECBOZYwBWkOT45do0AAQIE5l5g6+zhU5OHJ8cP2NtzMq1usTs6OSp5YnJy\nohAgQIDAnAq4gjSnJ8ZuESBAgEArBHbLXtZnjU5ssLcnpM79G9RThQABAgRWUEAHaQXxbZoA\nAQIEWi9QV4cuSA5Y5kjqjo261e70ZeqZTYAAAQIrLOAWuxU+ATZPgAABAq0WuDZ7f3hyZPKk\n5CPJecmFyWZJPbRhz+TAZPdkv0QhQIAAgTkW0EGa45Nj1wgQIECgFQIHZy9PSQ5LBl1JujrT\n6zNIT0nqitM45YFZaNcGC1a7Xh0zhQABAgTGFNBBGhPOYgQIECBAoEfguIzvkdST66ojs1Vy\naXJuJ5dluD7lxVl4rwYrqM7RLRvUU4UAAQIElhDQQVoCxmQCBAgQIDCiQN1Od3Ynteh9k4ck\n1Un6QlKfVRq3PKrhgtUp+1HDuqoRIECAwACBRegg+ebyASfWJAIECBCYmcDts6W/SW6e1K1w\ndfXog8mDkm6pJ929KDm0O8GQAAECBOZToM0dpNp331w+nz9X9ooAAQKrSeCfc7C7JC/vHPSb\nMrx38tdJffdRfVdSPcGuptcXxh6ZKAQIECAwpwJt7iDVN5c/NnlbcmxyfnJRcqOk+9SggzJe\n31x+v8QX8wVBIUCAAIGJCtwsa/vdpK4cndRZ82MyfG9SD2/olmqDdk9qng5SV8WQAAECcyjQ\n1g6Sby6fwx8mu0SAAIFVKHDrHHN9p2D36XQbZrwe/f35pL98KhMO6p/oNQECBAjMl0D9Um9j\n2S07Xfdz++byNp49+0yAAIHFEfhWDqWeUPfSpDpH1TZ9Ijko6S03zosnJl/tnWicAAECBOZP\noK1XkOqduu43lx8zhLWOzzeXDwEyiwABAgTWS6C+4+hPk3cld03entRnkt6f1HcjvTfZLKkv\nka03956cKAQIECAwxwJt7SD55vI5/qGyawQIEFhlAu/O8dbnYF+R/HfSW+7eefHJDJ+ZfL93\npnECBAgQmD+BtnaQSrI+/Drtby6fvzNmjwgQIEBgHgXqtrpKfUnrTkl9NqmuHJ2TnJWcmygE\nCBAg0AKBNneQive4ZI9k52TXZNLfXJ5VKgQIECBAoLHAealZ+VLjJVQkQIAAgbkSaHsHqYt5\ndkYqCgECBAgQIECAAAECBMYWWIQO0uY5+n2SHZMdknqC0MVJPcjhjM7rDBQCBAgQIECAAAEC\nBAgMF2hzB6n2/XXJs5LtljjML2b605PTlphvMgECBAgQIECAAAECBH4j0OYO0jtyFI9N3pYc\nm9QThC5KbpRUh2nP5KDk1OR+SX2L+ajl5llgqc5X77rquy8UAgQIECBAgAABAgRaLtDWDtLW\ncX9q8vDk+AHn4JxMq1vsjk6OSp6YjNNB+myWu1PSpNTDIhQCBAgQIECAAAECBFos0NYOUn3Z\nXn3W6MQG9iekznMa1BtU5V6ZuOWgGX3TvpvXFYUAAQIECBAgQIAAgRYLtLWDVFeHLkgOSI4Z\n4l/H9/jk9CF1hs36ZWZWlivVWVMIECBAgAABAgQIEGi5QFs7SNfG/fDkyORJyUeS+t6JC5P6\nYr763FB9BunAZPdkv0QhQIAAAQIECBAgQIDAUIG2dpDqoA5OTkkOS+pKUn+5OhPqM0hPSeqK\nk0KAAAECBAgQIECAAIGhAm3uINWBHZfUwxF2TnZNtkouTc7t5LIMFQJtE7hpdvgOyRNmtOM/\nzXY+PaNt2QwBAgQIECBAYK4F2t5B6uKenZGKQmARBH4rB1G3id5tBgdTj8Wvp0JuPINt2QQB\nAgQItEtg7+xuPTH4xSPudt3FUw+6+sqIy6lOYC4EFqWDNBeYdoLABAW+mnXdY4LrW2pV+2fG\nZ5aaaToBAgQIrGqBehOtHnT1vBEVjk/9+i5JhUArBdraQdoi2rcbQfyS1D1rhPqqEiBAgAAB\nAgQIrPnowqi3YXu6r5+cVgu0tYN056h/YQT5elhDPe5bIUCAAAECBAgQIECAwJICbe0g/W+O\n6I+TtyWfS/4+GVbqEeAKAQIECBAgQIAAAQIEhgq0tYNUB/WuZMPkiOQNic9RBEEhQIAAAQIE\nCBAgQGB8gY3GX3Qulvy37MWnkjfOxd7YCQIECBAgQIAAAQIEWi3Q5itIXfj6bNFuSR1LPVZS\nIUCAAAECBAgQIECAwFgCi9BBqifUec7+WKffQgQIECBAgAABAgQI9Aq0/Ra73mMxToAAAQIE\nCBAgQIAAgfUS0EFaLz4LEyBAgAABAgQIECCwSAI6SIt0Nh0LAQIECBAgQIAAAQLrJbAIn0Fa\nL4AFX3jbHN89ZnSMN53RdmyGAAECBAgQIECAwNQEdJCmRjsXK/6z7MWrkitnsDf1nVRVbpd8\n7fox/xAgQIAAAQIECBBomUDTDtKNc1zdP4CbHOKvm1RSZ+oCG2cLJya/O/UtbbDBLtnGWUlt\nUyFAgMC0BLRH05K1XgIECBC4XqBpB+knqb11Q7PLU68aMIUAAQIECExaQHs0aVHrI0CAAIG1\nBJp2kF6Ypd6eHNvJzzLcMTkwuVtSt3FVx6iKL2td4+BfAgQIEJi8gPZo8qbzvMYPZOcePuYO\nbj/mchYjQGCVCzTtID03Tq9ODunzOiKvv5XUL6GX9c3zkgABAgQITFpAezRp0fle327ZvaOT\nD46wm/U3yTuTbUZYRlUCBAj8RqBJB6lurbt78ojfLHXDyLUZfWtSV5IUAgQIECAwTQHt0TR1\n53fd386ufWyE3avPxCoECBAYW6DJ9yBdmrVflPz2ElupztPZS8wzmQABAgQITEpAezQpSesh\nQIAAgSUFmlxBqqtE/5W8N3lt8j/JJUm9Q/OM5InJLJ6Sls0oBAgQILCKBbRHq/jkO3QCBAjM\nSqBJB6n25XlJPXzhsHrRU87PeN1e9+meaUYJECBAgMC0BLRH05K1XgKTE6g7lOq7GB834irr\n78p68JdCYEUFmnaQqnNUjVL90N4l2Sn5QfLl5FeJQoAAAQIEZiGgPZqFsm0QWD+B6iDV047r\njqOmZYdUfGaig9RUTL2pCTTtIHV34LcycoekHun9+aQe8f2lRCFAgAABArMU0B7NUtu2CIwu\n8IEs8ncjLLZ/6j5ohPqqEpiaQNMO0pbZg6OSh3X25MQM/zM5Oamn2L0k6X4PUkYVAgQIECAw\nFYF5bo82zxHvk9Q75/Vu+HXJxcnXkzM6rzNQCBAgQGCeBZp2kA7NQdS7dfVAhjsm905+nTw/\n+fvks8kxiUKAAAECBKYpMI/tUbWlr0uelWy3xMF/MdOfnpy2xHyTCRAgQGBOBJo85rvqPCF5\ndlJXjX6ZVKl3xg5P3pU8MlEIECBAgMA0Bea1PXpHDrq+wPaI5AHJHZL6stKdk7qi9PjkZ8mp\nyT0ThQABAgTmWKDJFaSbZ/9vnJy1xHHU9LqypBAgQIAAgWkKzGN7VF9e+9Tk4cnxAw7+nEyr\nW+yOTupW9Wov6/Z0hQABAgTmVKDJFaSfZt8vTA4ccAwbZlrdMnD6gHkmESBAgACBSQrMY3u0\nWw6w7qioz+YuV05IhfsvV8l8AgQIEFhZgSZXkGoP/yn562SXpBqCmyb1KMaDkj2S6iQpBAgQ\nIEBg2gLz1h7V1aELkgOSYZ/Frfa2brVbrW8o3iPHXlfaRi31d8ctR11IfQIECKyPQNMO0huz\nkS2SFyc36mzwXhnWlaU/Tr7QmWZAgAABAgSmKTBv7dG1OdjDkyOTJyUfSc5Lqn3cLNku2TOp\nuzB2T/ZLVmP5/Rz0Y5PPjXjwN0v98lMIECAwM4GmHaTXZI8+mbwp2SvZManPHtU7Z5cmCgEC\nBAgQmIXAa7KReWuPDs4+nZIcltSVpP5SX25bn0F6SlLt5motp+XA6yraKMXfGKNoqUuAwEQE\nmnSQtsyWXplclnw2+UyiECBAgACBWQvMc3t0XDDqlvN6ct2uyVZJ/XF/bifVhq5Pqc8v3bnB\nCm6SOrdpUE8VAgQIEFhCoEkHqR7r/b2kfjHXQxnqM0gKAQIECBCYtUAb2qOzg1LplrodvR7t\nXbfgrU95dRauztdy5d2pcM5ylcwnQIAAgaUFmnSQqkP0tuR1ydeSryR1f3VvqVsG3tc7wTgB\nAgQIEJiwQBvbo0fE4NHJ+naQ/i/rqCxX3pkKdUufQoAAAQJjCjTpINWqX5BcntRnjyr95SOZ\noIPUr+I1AQIECExaYN7ao71zgMM6Pztkft0aWJ+/qXJ88pLrx/xDgAABAnMp0LSDdNu53Hs7\nRYAAAQKrTWDe2qOf5QRslNwxqSs8dUt6b9k3LzZN6u6LKmde/69/CBAgQGBuBZp2kOb2AOwY\nAQIECBBYQYG65fxuySHJ05L3JG9NuqVuT69b7OoJdgoBAgQItECg3vUaVG6eiQcl2w2aaRoB\nAgQIEJiRQBvao3pC3fOTP0zqYQofTwbdjp7JCgECBAjMu8BSHaTbZcfflfQ+MWfbvD44qXkK\nAQIECBCYhUCb2qN61Hd9JumKpD5zVB0mhQABAgRaJrBUB2nQYVQH6VXJboNmmkaAAAECBGYk\nMM/t0QUxeEzy8uTdyTMThQABAgRaJDBKB6lFh2VXCRAgQIDAigocka3XAxq+lHxjRffExgkQ\nIEBgJAEPaRiJS2UCBAgQINBYoJ5o98jGtVUkQIAAgbkQcAVpLk6DnSBAgAABAgQIECBAYB4E\ndJDm4SzYBwIECBAgQIAAAQIE5kJguVvsPp+9vKazp93O1Ify+uq+vf9wXtf3PygECBAgQGAa\nAtqjaahaJwECBAisI7BUB6mewvPedWovPeHUpWeZQ4AAAQIExhbQHo1NZ0ECBAgQGEdgqQ7S\n97OyJ4+zQssQIECAAIEJCmiPJohpVQQIECCwvED3trnla6pBgAABAgQIECBAgACBBRfQQVrw\nE+zwCBAgQIAAAQIECBBoLqCD1NxKTQIECBAgQIAAAQIEFlxAB2nBT7DDI0CAAAECBAgQIECg\nuYAOUnMrNQkQIECAAAECBAgQWHABHaQFP8EOjwABAgQIECBAgACB5gI6SM2t1CRAgAABAgQI\nECBAYMEFdJAW/AQ7PAIECBAgQIAAAQIEmgvoIDW3UpMAAQIECBAgQIAAgQUX0EFa8BPs8AgQ\nIECAAAECBAgQaC6gg9TcSk0CBAgQIECAAAECBBZcYJMFOL7Ncwz7JDsmOyTXJRcnX0/O6LzO\nQCFAgAABAgQIECBAgMBwgTZ3kGrfX5c8K9luicP8YqY/PTltifkmEyBAgAABAgQIECBA4DcC\nbb7F7h05iucmRyQPSO6QbJ/snNQVpccnP0tOTe6ZKAQIECBAgAABAgQIEBgq0NYrSFvnqJ6a\nPDw5fsARnpNpdYvd0clRyROTkxOFAAECBAgQIECAAAECSwq0tYO0W46oPmt04pJHdsOMEzL6\nnBteGiNAoEegPsNX5eVrBlP/t/7ffiA5c+pbsgECBAgQIECAwBgCbe0g1dWhC5IDkmOGHHcd\nX91qd/qQOmYRWM0Ce3YO/tEzQtg727k6+ccZbc9mCBAgQKAdArfq7OY3x9jdD2aZV42xnEUI\nDBRoawfp2hzN4cmRyZOSjyTnJRcmmyX10Ib6w+/AZPdkv0QhQGBpgVn9H/nS0rtgDgECBAis\nYoFbdI79LSMa1Bt89xhxGdUJDBVoawepDurg5JTksKSuJPWXepe6PoP0lKSuOI1Tnp+FqoO1\nXKlO2TbLVTKfAAECBAgQIEBgqEC9AT5K2SmVf3uUBdQlsJxAmztIdWzHJXsk9eS6XZOtkkuT\nczu5LMP1KbfOwrXu5Uo9DXDT5SqZT4AAAQIECBAgQIDAfAu0uYNUnZK61a7K2Z3cJMM/TB6W\nnJ9UB6q+LHbc0vSD69Upq0eKKwQIECBAgAABAgQItFigrR2kLWP+i+QJST0Rq0p95ugTST3h\nrlvqNrtXJ3/bnWBIgAABAgQIECBAgACBpQTa/EWx/cf0H5lQV5BemOyY3Dd5Z/KGZFZP6Mqm\nFAIECBAgQIAAAQIE2irQ1itI/d63zIR6gslfJv/SmVlPtftCsndST7r770QhQIAAAQIECBAg\nQIDAkgKL0kGqL5+szyPVc/D7S92C98z+iV4TILDwAvXmSD3lclZXyuv3UF3B/mqiECBAgACB\nrsBdM3JEMk57VMu9ubsiw9kItL2DVJ83umlSD2Q4Kblz8p2ktzw0L+ohDgoBAqtL4E453Hr0\n6yEzOuyXZDu1TR2kGYHbDAECBFoicPvs5+7JqF9m+8Qsc/eWHONC7WZbO0j1Tu1VST184W+S\n6hTVY7br3eL/SarDVH8Y1eePHpI8PlEIEFh9Ar/MIb9uRof97Bltx2YIECBA4AaBuipz46Q6\nIKOUeoO9vg6m+0TkpstenornNK3cU+9XGT+053WT0X1SaeMmFdWZrEBbO0j1R88WSb1bu29y\nl85whww3T6ockDwoqafYHZ0oBAisvMAu2YWXJ38yg12p3xHbzGA7NkGAAAECKydwr2z6fsl3\nZ7gLe2Rb35vh9mxqxgJt7SAV05XJVzp5V01I2TCpq0tV3pH8U3JxvVAIEJgLgXrSZDUqs7if\n+gnZzv6JQoAAAQKLK1B3EF2U1McsRinVoTopedoIC22buqcldcVKWWCBNneQBp2Wbueo5vnc\n0SAh0wisvMCPsgv1odNpl3pIw/7T3oj1EyBAgMCKC9Rtcj8ecS9qmbpdbpTl6pY8ZRUILFoH\naRWcModIgAABAnMqULd412cG6rv46pbvetOu7mL4enJG53UGCgECBAjMs4AO0jyfHftGgAAB\nAm0QqLa0HgbyrGS7JXb4i5n+9KRuz1EIECBAYI4F6skfCgECBAgQIDC+QH3m9blJ3Tr6gOQO\nyfbJzkldUaonqf4sOTW5Z6IQIECAwBwLuII0xyfHrhEgQIDA3AtsnT18avLw5PgBe3tOptUt\ndvU01aOS+l6TkxOFAAECBOZUQAdpTk+M3SJAgACBVgjUF5bXZ41ObLC3J6TOcxrUU4UAAQIl\nUHd63TTZtV6MUOoBFB5WNgJYf1UdpH4RrwkQIECAQHOBujp0QVLfvXfMkMWqva1b7U4fUscs\nAgQI9ArcPS/umDy2d2LD8cek3ocb1lWtT0AHqQ/ESwIECBAgMIJAvVN7eHJk8qTkI8l5yYXJ\nZkk9tGHP5MBk92S/RCFAgEATgfqOp7OS/ZtU7qnzfxmvK0/KmAI6SGPCWYwAAQIECHQEDs7w\nlOSwpK4k9ZerM6E+g/SUpK44jVP+IAvdpsGC9QeVL7FsAKUKgfUQeHKWrTdCmpZ9U/FGTSv3\n1avfH2f2TVvu5TXLVTB/uIAO0nAfcwkQIECAQBOB41Jpj6SeXFefF9gquTQ5t5P1/YLJul2m\nbrVZrlS7XletFAIEJi9QD2WpUre8XXL9WLN/dkq1+p2gtERAB6klJ8puEiBAgMBcC9RVm99O\n6kPV9TjvXyX95UGZcEVyUv+MBq/rHesmpTplP25SUR0CBEYW2LCzxEsz/OAISx+aus8bob6q\nKyxQv8gVAgQIECBAYHyBvbPoN5LPJ/+TnJnUAxn6yysy4QX9E70mQIAAgfkS0EGar/NhbwgQ\nIECgXQL1jvJ7kquSg5J6UMM3kw8kL0sUAgQIEGiZgFvsWnbC7C4BAgQIzJXAbbI3+yQPSep7\njqrUE+1en7wxqafZHZEoBAgQINASAR2klpwou0mAAAECcylwy+xVPeq7HqvbW/4qL7ZM3pqc\nnRyfKAQIECDQAgG32LXgJNlFAgQIEJhbgTOzZ9WWPnrAHr4o0+qLGo9K6gEOCgECBAi0QEAH\nqQUnyS4SIECAwNwK/CR79rHksOTNya2TbqkrS/WZpLq6VA9vuFOiECBAgMCcC+ggzfkJsnsE\nCBAgMPcCT8sefi55TrJ7395emdf1Ja/1RbF1O55CgAABAnMu4DNIc36C7B4BAgQIzL3ABdnD\nA5Jtkvqeo/7y60yoTlR9HukW/TO9JkCAAIH5EtBBmq/zYW8IECBAoL0Clyyz66csM99sAgQI\nEJgDAbfYzcFJsAsECBAgQIAAAQIECMyHgA7SfJwHe0GAAAECBAgQIECAwBwI6CDNwUmwCwQI\nECBAgAABAgQIzIeADtJ8nAd7QYAAAQIECBAgQIDAHAjoIM3BSbALBAgQIECAAAECBAjMh4AO\n0nycB3tBgAABAgQIECBAgMAcCOggzcFJsAsECBAgQIAAAQIECMyHgA7SfJwHe0GAAAECBAgQ\nIECAwBwI6CDNwUmwCwQIECBAgAABAgQIzIeADtJ8nAd7QYAAAQIECBAgQIDAHAjoIM3BSbAL\nBAgQIECAAAECBAjMh4AO0nycB3tBgAABAgQIECBAgMAcCOggzcFJsAsECBAgQIAAAQIECMyH\ngA7SfJwHe0GAAAECBAgQIECAwBwI6CDNwUmwCwQIECBAgAABAgQIzIfAJvOxG/aCAAECBAgQ\naIHArbKPb0s2HXFf90j9q0dcRnUCBAisiIAO0oqw2ygBAgQIEGilwO7Z60clhyTXjXAEe6Xu\nNiPUV5UAAQIrJqCDtGL0NkyAAAECBFor8PLs+SgdpPuk/m+19mjtOAECq0rAZ5BW1el2sAQI\nECBAgAABAgQIDBPQQRqmYx4BAgQIECBAgAABAqtKQAdpVZ1uB0uAAAECBAgQIECAwDABHaRh\nOuYRIECAAAECBAgQILCqBHSQVtXpdrAECBAgQIAAAQIECAwT8BS7YTrTmXdiVrvLdFa9zlq3\ny5RfrDPVBAIECBAgQIAAAQIEBgroIA1kmerEetTpW5NvTnUra1b+sgy2ncF2bIIAAQIECBAg\nQIDAQgjoIK3MaTwumz1+Bpt+arahgzQDaJsgQIAAAQIECBBYDAGfQVqM8+goCBAgQIAAAQIE\nCBCYgIAO0gQQrYIAAQIECBAgQIAAgcUQ0EFajPPoKAgQIECAAAECBAgQmICADtIEEK2CAAEC\nBAgQIECAAIHFENBBWozz6CgIECBAgAABAgQIEJiAgA7SBBCtggABAgQIECBAgACBxRDQQVqM\n8+goCBAgQIAAAQIECBCYgIDvQZoAolUQIECAAIGWCmzY0v222wQIEJiagA7S1GitmAABAgQI\nzLXAj7J3O8/1Hto5AgQIrICADtIKoNskAQIECBCYA4Htsw8vTU4ZYV8em7ovGKG+qgQIEGid\ngA5S606ZHSZAgAABAhMTOC1r+twIa7vzCHVVJUCAQCsFPKShlafNThMgQIAAAQIECBAgMA0B\nHaRpqFonAQIECBAgQIAAAQKtFFiEW+w2j/w+yY7JDsl1ycXJ15MzOq8zUAgQIDBVge2y9kOT\nN051Kzes/NMZfeoNL43NgYD2aA5Ogl0gQGCDLWPwp8mjRrCoPsHeyVeT+lt6lHJyKr9plAXm\nvW6bO0i1769LnpXUHyaDyhcz8elJ3WOtECBAYJoCm2Xl/5u8e5ob6az7YRn6LMgMoBtuQnvU\nEEo1AgRmInDTbGWLpC4YNC27puLtky8nlzRdKPWqLdoz0UEaAW2aVd+RldfTdN6WHJucn1yU\n3CipDlOdrIOSU5P7JdW7VQgQIDBNgdOz8vdOcwOddd88wzvNYDs20UxAe9TMSS0CBGYnUA9f\ned4Im6urTb+XvDb5zgjL/VnqLtzdDG39gritczKqM/Tw5PhkWDkqM89N6gSOWurRp3dtsFB9\nluv5yVsa1P1l6tw4GfXyZYNVr1Ol+xmza9eZM50JG2e110xn1eus1bGtQzLWhPodUJazOm/1\nM1I/j7P4+V/0Y6t3+e6eKCsrsNrao3H/X437O3vc3xnjtEeObd3/S7M8b/xX1r+2Pu7/m4Vr\nj9p6i91uOYn1B9aJdTaXKSdk/nOWqbPU7IMyoz7btFzZKRX+c7lKnfn3zvAWDeuub7W6xFr5\n6fquqOHydV5+2LDu+lbbJiuoX6ajXD5en23O8tjq6sDlSXWmp13KcNfkzGlvqLP++v9U56yO\nb9qlfr/V9s6e9oY666/fA+clV89oe2fOaDs2M1ygfjespvaofmfskpw1nGWdueO2R+P+zqjz\nMmp7VH8c3ioZ9XfGuO1R/c44P7kqGaWMc2z1+bhtk5+MsqHUHbc9qnalHEd5g7Z+tsZpj+pn\n6ybJz5JRyix/tsZtj+pnq8olawaN/x23PRrnZ6t26szGe6biVAXqHY36Q+QPl9lK/UBWB+n9\ny9QzmwABAgQIjCOgPRpHzTIECBCYY4F6t6SNpd6tq3cL6olRdQtcjdc7AfXZo+r97pv8flK3\nvO2THJTUuzQKAQIECBCYpID2aJKa1kWAAAEC6y3wsKzhu0k1UP2pS9ZHJtVBUggQIECAwDQF\ntEfT1LVuAgQIzFCg7vdchLJzDmLXZKvk0qQeylC5LFEIECBAgMCsBLRHs5K2HQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgMBOBRbnFbiZYq2gj9ZCLLZMrV9ExL3eo9ejXum1T\nWSNQj4yt7/Oa1WPW2+Bej++vp2Ze0YadtY8EWiKgPVr3RGmP1jbRHq3tUa+0R+uajDRFB2kk\nrlVT+cIcaT0RUCFAYDSBg1P9r0dbRG0CBIYIaI+G4JhFYIiA9mgIznKz2vpFscsdl/nrJ/D9\nLP4PyZvWbzULs/TtcyRfS+pBILP60t15x3ttdrAesf+oed/RGe7f97KtM2a4PZsisBoEtEdr\nn2Xt0doe9Up7tK6J9mhdk5Gm6CCNxLWqKl+do718VR3x0gfbvdWwbp1issbpmgzqG9J5rPHw\nLwEC0xPQHt1gqz26waI7pj3qShhOTKC+AVwhQIAAAQIECBAgQIAAgQjoIPkxIECAAAECBAgQ\nIECAQEdAB8mPAgECBAgQIECAAAECBDoCOkh+FAgQIECAAAECBAgQINAR0EHyo0CAAAECBAgQ\nIECAAIGOgA6SHwUCBAgQIECAAAECBAh0BHSQ/CgQIECAAAECBAgQIECgI6CD5EdhkMBPMvG8\nQTNW6bSf57jPT369So9/0GHXz0f9nCg3CPw4o75I+AYPYwQmIaA9WltRe7S2R73SHq1roj1a\n18QUAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMAMBF6abRw3\nIPfv2fb2GX9l8qXklOQ1ycZJb9kwL56c/HdyRvKeZOekv9wjEw5Pvpt8InlkMg9l0+zEJ5O/\nHLAzsz7+eTH6rVj8OLnTAJM6z4N+burnoFsm5db0Z6u73UkP980K/yv5XnJ6Uj/bt0l6S9N9\nbHJum7g1qdO7f8YJtEFAe7TmLGmP1v1p1R6tMdEerfuzYQqBqQhUp6c6K8f05d49Wzsh499J\nnpK8OPlF8h9Jb3lWXlyeVEfqwKTWe1ZSf8h1yy4ZqWX/M3l8ckRydXJAspKlGqN3Jtclrx+w\nI7M8/nkx2ikO9XNRJvv0mezWmf6ZDPt/bqqj0C2Tcmvys9Xd5qSH1Tn8dXJa8qLkL5MfJD9L\nbpl0S5N9bHpum7g1qdPdN0MCbRHQHm2wgfZo3Z9W7dEaE+3Ruj8bphCYisAmWWt1al44ZO1P\nybz6I3mPnjp/1Jl2h860+kPx50l1jrpl64xcmryqOyHDjyZf6Xldo/XO/Nf7ps3y5V2zsa8m\nv0yuSvo7SLM+/pU2qg5O/bFf5/OSZFAH6TGd6TtmuFSZlFvTn62l9mN9p9fVovo/sk3Piu6c\n8XJ5bWda031scm6buDWp07O7Rgm0QkB7tMEG2qO1f1S1R2t7aI/W9vCKwNQE9sqa6w+9+wzZ\nwrGZd3Lf/BvldXV+XtOZflCGtZ5dO6+7gyMz8s3Oiy0zvCZ5Sed1d1BXj2rZQbdxdetMc/jd\nrPz/kj2T6hD0d5BmefzzYLRvDOqq3puTRyd1bvZJesvBeXFu74QB45NyOyjrXu5na8DmJzbp\npVnTX/StbaO8vjD5t870gzJcbh+bntsmbk3qdHbNgEBrBLRHa67aa49u+JHVHt1gUWPao7U9\n5uZV/VGgLJbAXTqHc5sM35vU1Z13JL1XBqrR+l7SW67Ii3OS7meMqnNTV1/OSnpLLdetU/cP\n189Q/7q+31mgW6/zcmaDA7Ol/ZLTl9jiLI9/HozqvFZn8U+Ty5YwqUbrzKTqfDb5XFId342T\nbpmUW5Ofre42pzH8+6z0kL4V/25eb5d0r4Y22cem57aJW5M6fbvsJYG5F9Aerbk9XXt0w4+q\n9ugGixrTHq3tMTevdJDm5lRMbEfqD90q9cdtdVx+kByUfC2p24aqbJPUu+X95eJMWK7ORalT\n75zfNKn1VLlgzeA3/1adKt11rXk1u3/7r471b3mWxz8PRnV+up3Wfovu630zUo34/smnkzrH\n9Yv7qKRbJuk26Oev92eru81ZDLfORupY6//LOzsbXOpYe/ex6bldal1N/r/11unsmgGB1gjs\n29lT7dHSp2x9fj+M+vuo6e+spfd2/edoj4Ybao+G+8xs7iYz25INzUqg/ritPz7/Mbmis9H7\nZvj5pD5f8eykbh26MukvdcXoJj0Tl6pTVaperadKLddbuq9719U7f6XHZ3n8bTCqe8L/JTk7\n+UDn5Byc4aHJC5IHJ59KJuWWVS3581fz6ufmVzUyg3KLbKM+R1RXO38nqYc3dMukfv6buDWp\n090vQwJtEdAeLX+mmv7fn8Tvo9pWlW4bvebVDa/noc3WHmmPuj+XKzp0BWlF+aey8foswxuS\nbueoNnJSUlcQ7lUvUuqzJnU7UX+pab/oTBxWp6pUvZ906m7bGXYH3XV319WdPi/DYcfW3edh\ndeo4mh5/G4yq0fyHpNs5quOr8u7r/538z00T286mpzq4Xdb+v0l1jvZPvpJ0S5N9bHpuh62r\nyc9bt0533wwJtEVAe7T8mVrf3w+1Be3RDc7bdTxqyjDbml9uTepU3WkX7dG0hUdcvw7SiGAt\nqH777ONtB+xn7y1N9Qth0O1vO2R63ZJXpeps0Um97pYdM1LzqgNWwyo1rbd0191dV++8eRif\n5fG3wejGOSl3Trq3X3TPUd2+0Vsm6bbcz1bvdqcxfqestK6qXp7sl9QtqL2ljnW5fWx6bpu6\ndf/f9O5H7//J3unGCbRB4PbZSe3R8DPV9PfDJH4fNf2dNXyPpztXe6Q9mu5PmLWvWoF6F7we\nrFDfu9At1UDVVYJ/7Ux4WYZ1K9GWndc1uHdSdR5RL1J2T65J/r960Sl16btuw3p353UNvpR8\nqOd1jb4pqQ7Z5vVihcsl2f7r+/Zh1sc/T0YPiUWd5316TPboTKtb6npLOVXdWqbKpNya/myt\n2erk/71NVnlB8j/JVsmg0nQfm5zbJm5N6gzaT9MIzLOA9mjts6M9WttDe7TmC8q1R2v/XHhF\nYCoCz8pa64/atyTVMXp48r9JPcJ7t6RKXSmo18ckt0rumNQ76B9LessH8+JHyb2SmyeHJRcn\nvVeMnpjXVyfPTWq9j0uq8/XUZB7KoAZp1sc/T0aDGqQ6Tyckv0oOSur8/llyfvKZpFsm6dbk\nZ6u73UkPP5IV1s/sy5P6TF5vHprX3dJkH5uc2yZuTep098uQQFsEtEdrn6lL8rL/Dbum//cn\n9fuoye+stfd6eq+0RxtsoD2a3s+XNRNYR+ClmVIdoOooVarzs1fSW+6TF3WlqeZXh6Z++e6U\n9Ja6l/fjybVJ1TsleVTSX16RCXWrUtU5J3lDMi9lUINU+zbr458Xo6UapOoAH5XUOaxckbwn\nuWnSWybl1vRnq3fbkxiv4+we46Dhh3s20nQfm5zbJm5N6vTsnlECrRDQHt1wmrRHN1jUmPZI\ne7T2T4RXBGYgsEm2UbdO1R95w8oumdn/R3B//a0zoa40DSt1S9/tkroNr01llsffBqMtcvLu\nkGy2zEmclFuTn61ldmXqs5vsY9Nz28StSZ2pH7QNEJiggPaoGWaT//uT+n3U9HdWsz2fTi3t\n0bqukzr/teYmP29N6qy7l6YQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAGap4CkAABAAElEQVQCBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIG5F7jJDPZw42xjsxlsxyYIECBA\noL0C2qP2njt7ToAAgdYL3C1H8Ink/OS65LTkTck9knFKdYAeOWDBp2Xal5LLkiuTryWvTzZJ\nesv2ebFf74SG4+Mu13D1qhEgQIDAlAW0R1MGtnoCBAgQWF7ghalyVVKdlRclj0kOSb6T/Dq5\nbzJqeXMW+GrfQn+d19X5OjZ5SfKc5EPJ5ckJyYZJt/w0I6/svhhhOO5yI2xCVQIECBCYkoD2\naEqwVkuAAAECzQX2StXqHP17smnfYjfO61OSi5O9++Yt9/I9qfCVnkobZbw6L9Uh6i+vy4Tq\nOPVerapO0zgdpHGX698nrwkQIEBgtgLao9l62xoBAgQILCFQt9X9LNlmifm3zPRLk3/tmf8v\nGa+rTL3lgXlRdepzRS9IvptcmNS0OyVbJlclhyb95WaZcEhyz6SWr2WuSb6YHJZ0y24Z+afk\n48mJyVuTOyRVhi23Rea/Jqlj/Wjy0qS/M5hJCgECBAisoID2aAXxbXp1CtS71woBAusK1Od8\nTkguWXfW9VPOy791Jag6L93ylIzUPeK95Y558YykPkv08+SK5OqkOl/1WaPqZH0qeVZSnaG6\nWtT9f1kdqb9ITk7qSlItU8NfJRckVe6enJbcK/l/yXeT6qSdmtwiWWq57TKvbvV7UfLD5MvJ\nnyefS/o/95RJCgECBAiskID2aIXgbZYAAQIEbhDYIaPVsfibGyYNHPvnTK0rOnUVqEp1pvqX\neV6m1bpuklTpv8WuptWVnA8mVa9St+59OHlq0u0sZfT60n+rXH2m6cykbvvrlodlpNbzhO6E\nDPuXOyzTqqO2a0+dPTNeyz2/Z5pRAgQIEFg5Ae3Rytnb8ioW6P/jaxVTOHQCvxHYvDNWV3eG\nlV9mZj1AYX1vS6v1/EGye/KnyWeSByTvTo5L6mrPUqXq1y12lyX1hLzbJTsnVarjtVR5VGac\nlNTvgFq+Ule0vpU8NFEIECBAYOUFtEcrfw7swSoUcCvNKjzpDnlZgbNS4yfJHsvUrA7NGclF\ny9RrOvv7qfiWTur/5guSuu3uZZ1ksE6pK0c1vzpYdQWoyjfWDNZ6+l1n0vWD6tBVJ6quHv3g\n+ilr/+ONk7U9vCJAgMBKCWiPVkredle1gD+EVvXpd/BDBP4383436b11rbf6VnnxO0nV65a6\nPa06H71l2NWfqveM5MfJtvWip9Ttb/+UnJQ8sGd6/+i/ZcJLk6OTBydbJ49Nqmy4ZrDOv/VQ\niF8lRya1f/25V6YpBAgQIDAfAtqj+TgP9mIVCeggraKT7VBHEviX1N4+eUPS39Go13Vlpzoj\n7066pW6Vqwcj9JY7977I+LVJ3QrXLV/MyK2SQZ/72SzTd0u+nnRLdcK6/29rPfVAhnclr0s+\nn9RnjX47qdK7nd7lat5pySOTql+fear8Onl78qREIUCAAIH5ENAezcd5sBcECBAgEIE/TOoh\nDPU5oBrfN/mj5MSkrsIckPSW/8qL6nD8QbJ78ldJXampzkn3IQ1vzvgvkt9PqgNW5aik6hyT\n/HGyf1JXlr6SVN17Jt1yfkbqqXd1datKjddtfndMahsPTy5Ian0vSbqlf7m62lR16mEQ901q\nf9+V1P7fIVEIECBAYH4EtEfzcy7sCQECBFa9QDVKdbWlOhOVutJSnYpHJP3ltplQV4S6db+Q\n8boaU6+r81Ll7snPkpr2J0mVuiL1quS7SXXIal51VOq2ir2T3lKdrnpUeNW5WXKv5H+SWq5y\nelIPWTg1+WDSLf3L1fTHJecmta6rk7oCVR1AhQABAgTmT0B7NH/nxB4RIEBgVQtUZ6QegtC9\nvW0Yxg6ZefNhFTKv1lcdo/5SHanazqb9M3pe1613W/e8rtG6ta8yrAxarurvmGw3bEHzCBAg\nQGBuBLRHc3Mq7AgBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYAYCG85gGzZBYCUFbpeN7zpg\nB67NtMuTnyRnDZi/SabdvzP9/Ay/OaDOok3aKAf0yGTj5JTkx0l/2SoTqt6g8qtMvGrQDNMI\nECBAYAPtUfMfgibtUXdtO2Zkr6Ta828l1b4rBAgQIDBE4JDMu26ZfDHz9+tbx7Y9y3ygb96i\nvnx1zzE/fsBBVqexOpVLef7RgGVMIkCAAIE1Atqj5j8Jy7VHtaa9k28kvW3S1/J6n0QhsF4C\nS70TvF4rtTCBlgncLfv78WT3lu33JHf3d7Kyv15mhb+V+Tdapo7ZBAgQIDC+gPZogw2atEf3\nDPH/S+7Uoe5eNbpzXn8k2boz3YDAWAL1jrBCYLUIPDcH+rGkbi2tNwdulbw2eXCyTfKE5PVJ\nlUuTh1w/tsEG53WGizjYIgf1iuTFyXJvmNylB+DQjF/U87pG6508hQABAgSWF9AerWs0Snt0\ncBa/SfLrpNqv9yU17UXJLskByb8nCoGxBHSQxmKzUEsFLsx+n92z72dmvDoH1UGqUveHd0t1\norrvQP2iOzHD6iRUvauTDye3Tn4n2T2pzylVB6x+YfeW+iX+6OS2STUA9ZmmLyR1a99y5ZGp\ncPvlKmX+h5IfNqjXX+XUTOiuv3xu1l+h5/W+nfE69pclV/TMM0qAAAECzQW0R+taNW2P9smi\n3Tcwj8z42zurekOG1b5WO1/rUggQIEBgCYFDMr17f/Kgz9X8Sc/8J/WsY9ue6b2fQTq8M706\nTdV5+WVPvdpOdZLqylS33DsjdQWquw+9w1rXcuWYVOhdZqnxRyy3oiXmX5Dp1Zg8MXlm0l3/\nIKtPd+Z/L8PqVL4yeUpSnUSFAAECBIYLaI+G+zRtjw7Karpt1ZMzvlly12THRCEwEQFXkCbC\naCUtEXhG9nP/pK4ObZzUFZ26+lPl+KSuCDUtN03Fqv/15EtJdVCqY3TH5MXJS5Iq9e7WDslZ\nydHJxcmjknslz0k+kXw0WalSDfZbknoCXfkMK90rSHUF7YSeitVZrI7m+3umGSVAgACBpQW0\nR+vaNG2PdupZtK4mvTmpJ6xWqbszDkzOTBQCBAgQWEKg9x277jtO/cP6LM1ufcsvdwWp1lG3\ntXVL/ZLurvdTnYm37JlWtwBUp6xKda7elDw72SsZVm6Smds0yCTe7KgGu3sM/VeQdu2Zd3XG\nP598o2faVRnfO1EIECBAYLCA9miwy6Cpw9qjt2aBbltVw2qTftQzrd6QrHZWITC2wCT+qBp7\n4xYkMGOB72V7FyZ1BakuyVcnqD7MWcOvJc9P/j1pWg7rqVjL11WY+qXc/RzPTzN+SVIdnGcl\nj0nqNrXqQFVD+ZNkubJlKmyxXKXMvzKpRmJa5Yqs+BXJ7sl7kv9JqtTVsn9M6nfJq5PHJQoB\nAgQIDBfQHg33GTa392/XamfrjozqFNWdG3+XVLv+58nBiUKAAAECAwR637HrvypS1e+RXJzU\nu1A13DSpUp2m7jtUgz6DVPP6r/7UL+qaflrSLdVhqI5Ld13d4bWZ9qFkp2RYOSYzu8sMGz5i\n2EoazntGz7YGWQ1aTXUGu8f33UEVTCNAgACB6wW0R81/EIa1R6/Jarrt4b/1rLLa7Ws6847r\nmW6UwMgCG428hAUILJbAKTmcT3YOqa70dD+T1OQo66pKb6lOT385OhN2T/42+WpSv9Sr1FWs\nA5Ka3+ZSV+SqY1mlGieFAAECBMYT0B41c/txT7Xe8WqL6la7Kh4etMbBv2MK9F6mHHMVFiPQ\neoE79RxBf6enZ9Y6o93OzjozeibUgxt2Sw5PXpnUFZffS+qdxB2TujWgPlxaDzoYVN6SiccO\nmtE37Wt9ryf98sCs8E+TOp4XJB9OquyT3Pz6sQ02OKMzNCBAgACB8QS0R8u79bZ31Z6+qrPI\n9hnu2hn/fmdoQGAsAR2ksdgs1FKBB2e/u1c56urpjZPHJt0G6dcZPzmZVPmDrOi/Ois7PsO6\nYlRXXOq2uT9PqoNUHaNfJkuVzyw1Y8bT6126e3a2+boMz04uSWq8W97VHTEkQIAAgaEC2qOh\nPENn1pW2k5L7JndNXpO8L/mLpO7OqPLZ6//1DwECBAgMFKgrNXWlZ7nU7XF/2LOG6kh1l/lA\nz/S6EtSdvnvP9Brtft/RaZ3pG2f4uaRbvzpgX04u75nWfecrk1a8PCN70N3Xxw/Ym7odsDu/\nhmXWfV0dwE0ShQABAgQGC2iPBrsMmrpce7R/Fros6bZBvcNqgzdNFAJjC9S76AqB1ShQDxao\nX64/Td6fPCypKzuTLPVh0br8f2hyaVJXrO6S3Cg5P3lh8vqkLeWp2dG/S6qDV6XeqaurSP+S\nPCIpU4UAAQIERhPQHo3mVbU/m9wv+VbSLdXmVnv+gKS+ekIhMLZA91Lk2CuwIAECjQTq3ayd\nku2Sc5Pu1aaMtq7Usdy2s9f1uaN6504hQIAAgXYILFJ7VOI3S3ZOTk/qjU+FAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIEBgYgIbTmxNK7eizbPpfZIdkx2S65KLk68nZ3ReZ6AQIECAAIGpCmiPpspr5QQI\nECCwnMAmqfC3yYVJdYoG5ZRM3ztRCBAgQIDAtAS0R9OStV4CBAisgED9Um9reUd2/LHJ25Jj\nk/OTi5IbJdsleyYHJacm90tOTpTFEdgih3K7MQ7n2izzzaSGCgECBCYhoD2ahGJ716E9au+5\ns+cEFkpg6xzNNclDGxzVUanzzw3qqdIugbdkdwddNWwy7fHtOlR7S4DAHAtoj+b45Mxo17RH\nM4K2GQKzEmjrFaTdAlR/CJ/YAOqE1HlOg3qqtEugrhRW5/fZI+72N1K/llUIECAwCQHt0SQU\n270O7VG7z5+9J7COQFs7SPUAhguSA5Jj1jmqGybU8dXVgtNvmGRsgQSuzLFcMuLxuLVuRDDV\nCRAYKqA9GsqzamZqj1bNqXagq0GgrR2k+iP38OTI5EnJR5Lzknpgw2ZJ9zNIB2Z892S/RCFA\ngAABApMW0B5NWtT6CBAgQGC9BB6Wpb+bDPrcyVWZXh2oegS4sngCR+SQ3jPGYf0oyzx5jOUs\nQoAAgWEC2qNhOos9T3u02OfX0a1CgbZeQeqequMyskeyc7JrslVyaXJuJ5dluD7l6Cx8pwYr\nuHXq1NWqjzaoqwoBAgQILJ6A9mjxzqkjIkBglQq0vYPUPW1nZ6Qy6fKurLA6XsuVf0oFH/xf\nTsl8AgQILL6A9mjxz7EjJEBgwQUWpYPUe5rqM0gPSOrKT30H0ueTccvHGy54SOpd3rCuagQI\nECCwOgS0R6vjPDtKAgQWTGCjFh9PPYjhfcnPk68lj0i2TL6dfDJ5U/K55L3JholCgAABAgSm\nIaA9moaqdRIgQGCFBNrcQXpPzB6TfDipTlJ1hP4juTh5dLJT8oqkHvP9zEQhQIAAAQLTENAe\nTUPVOgkQIEBgJIF6KMN1yaN6lvpQZ1r/I73/K9Prw7PTLPVgiEdOcwPWvY6ApwatQ2ICAQIr\nIKA9WgH0Oduk9mjOTojdIbC+Am29glRXh+q7Jz7dA/DZjFdH5eSeaTV6QlJPmVMIECBAgMCk\nBbRHkxa1PgIECKywQFs7SD+IW+37Ezp+m2b4uKQ+g/TgzrTuYP+MfL/7wpAAAQIECExQQHs0\nQUyrIkCAwDwItPUpducHrz5vVJe1n57sntTVo39M/jU5PDklqc8f/VHi9rcgKAQIECAwcQHt\n0cRJrZAAAQIrK9DWDlKp1YMXfpg8NKmn1v19Uk+wu1vyxqTKVcnLkmPrhUKAAAECBKYgoD2a\nAqpVEiBAYKUE2txBujJor+mk12//vKh7wvdM6vHfFyTKbAR2zGa2GGNT9eRB52kMOIsQIDAX\nAtqjuTgNa+2E9mgtDi8IEBhFoM0dpGHHeU5mVpTZCdw0mzo72XiMTZ6ZZXYbYzmLECBAYN4F\ntEezP0Pao9mb2yKBhRJY1A7SQp2klhxMPSijOkcPSb45wj7/fuq+doT6qhIgQIAAgWEC2qNh\nOuYRILCsgA7SskQqjCjw09Q/d4RlLhqhrqoECBAgQKCpgPaoqZR6BAisJdDWx3yvdRBeECBA\ngAABAgQIECBAYBICOkiTULQOAgQIECBAgAABAgQWQsAtdgtxGh3ElAW2zfo/mmw+xnZOyjJ/\nNsZyFiFAgAABAv0C2qN+Ea8JTEFAB2kKqFa5cAI75Ijuk9TDJOoLiZuW+6XiA5tWVo8AAQIE\nCCwjoD1aBshsApMQ0EGahKJ1rBaBt+ZAzx/hYOuLip8+Qn1VCRAgQIBAEwHtURMldQiMKeAz\nSGPCWYwAAQIECBAgQIAAgcUT0EFavHPqiAgQIECAAAECBAgQGFNAB2lMOIsRIECAAAECBAgQ\nILB4AjpIi3dOHREBAgQIECBAgAABAmMK6CCNCWcxAgQIECBAgAABAgQWT0AHafHOqSMiQIAA\nAQIECBAgQGBMAR2kMeEsRoAAAQIECBAgQIDA4gnoIC3eOXVEBAgQIECAAAECBAiMKaCDNCac\nxQgQIECAAAECBAgQWDwBHaTFO6eOiAABAgQIECBAgACBMQU2GXM5ixFoq8Dm2fGHJNuNcADb\nj1C3t+pWeXGz5IW9ExuMX5c6xyVnNKirCgECBAi0U0B71M7zZq9XgYAO0io4yQ5xLYFt8+r3\nkr3Xmjr8RXV0qtw8Of/6sWb/7JNqOyZPa1b9N7Vum7Gdkr/4zRQjBAgQILBoAtqjRTujjmdh\nBHSQFuZUOpARBI5J3T8ZoX51qD4+Qv1u1Q0zckWyb3dCw+HHUq+WVQgQIEBgsQW0R4t9fh1d\nSwV8BqmlJ85uEyBAgAABAgQIECAweQEdpMmbWiMBAgQIECBAgAABAi0VcItdS0/cgu123U42\n6oMQ6sOtCgECBAgQmKSA9miSmtZFoKUCOkgtPXELtNv1+ZxbJKM8/KB7+Kd3RwwJECBAgMB6\nCmiP1hPQ4gQWRUAHaVHOZHuPo64EXZvsNeIhHJv6m464jOoECBAgQGApAe3RUjKmE1hlAjpI\nq+yEz/HhfnvEfbsy9XWQRkRTnQABAgSWFdAeLUukAoHFFvCQhsU+v46OAAECBAgQIECAAIER\nBHSQRsBSlQABAgQIECBAgACBxRbQQVrs8+voCBAgQIAAAQIECBAYQUAHaQQsVQkQIECAAAEC\nBAgQWGwBHaTFPr+OjgABAgQIECBAgACBEQR0kEbAUpUAAQIECBAgQIAAgcUW0EFa7PPr6AgQ\nIECAAAECBAgQGEFAB2kELFUJECBAgAABAgQIEFhsgUX4otj65ut9kh2THZLrkouTrydndF5n\noBAgQIAAgakKaI+mymvlBAgQmI1AmztIte+vS56VbLcE1xcz/enJaUvMN5kAAQIECKyvgPZo\nfQUtT4AAgTkSaPMtdu+I43OTI5IHJHdItk92TuqK0uOTnyWnJvdMFAIECBAgMA0B7dE0VK2T\nAAECKyTQ1itIW8frqcnDk+MH2J2TaXWL3dHJUckTk5MThQABAgQITFJAezRJTesiQIDAHAi0\n9QrSbrGrzxqd2MDwhNS5f4N6qhAgQIAAgVEFtEejiqlPgACBORdoaweprg5dkBywjG9dIatb\n7U5fpp7ZBAgQIEBgHAHt0ThqliFAgMAcC7T1FrtrY3p4cmTypOQjyXnJhclmyXbJnsmBye7J\nfolCgAABAgQmLaA9mrSo9REgQGCFBdraQSq2g5NTksOSQVeSrs70+gzSU5J6h2+c8sAstGuD\nBcuxOmYKAQIECKw+Ae3R6jvnjpgAgQUWaHMHqU7LcckeST25rjoyWyWXJud2clmG61NenIX3\narCC6hzdskE9VQgQIEBgMQW0R4t5Xh0VAQKrUKDtHaQ6ZXU73dmd1Ov7Jg9JqpP0haQ+qzRu\neVTDBatT9qOGdVUjQIAAgcUU0B4t5nl1VAQIrDKBNneQbp9z9TfJzZO6Fa6uHn0weVDSLfWk\nuxclh3YnGBIgQIAAgQkLaI8mDGp1BAgQWEmBNneQ/jlwuyQv7wC+KcN7J3+d1Hcf1XdT1BPs\nanp9YeyRiUKAAAECBCYtoD2atKj1ESBAYAUF2tpBulnMfjepK0cndfwek+F7k/qwbLfUl8Pu\nntQ8HaSuiiEBAgQITEpAezQpSeshQIDAnAhsNCf7Mepu3DoL1L53n063YcbrUaufT/rLpzLh\ntv0TvSZAgAABAhMQ0B5NANEqCBAgME8Cbe0gfSuI9YS6lybVOarPGn0iOSjpLTfOiycmX+2d\naJwAAQIECExIQHs0IUirIUCAwLwItPUWu/qOoz9N3pXcNXl7UveAvz+p70aqW+02S+pLZHdL\nnpwoBAgQIEBg0gLao0mLWh8BAgRWWKCtHaRie3dyfvKK5L+T3nL3zotPZvjM5Pu9M40TIECA\nAIEJCrw769IeTRDUqggQILCSAm3uIJVb3VZXqS9p3Smpe8HrytE5yVnJuYlCgAABAgSmLaA9\nmraw9RMgQGBGAm3vIHWZzstI5UvdCYYECBAgQGAFBLRHK4BukwQIEJikQFsf0jBJA+siQIAA\nAQIECBAgQIDA9QI6SH4QCBAgQIAAAQIECBAg0BHQQfKjQIAAAQIECBAgQIAAgY6ADpIfBQIE\nCBAgQIAAAQIECHQEdJD8KBAgQIAAAQIECBAgQKAjoIPkR4EAAQIECBAgQIAAAQIdAR0kPwoE\nCBAgQIAAAQIECBDoCOgg+VEgQIAAAQIECBAgQIBAR0AHyY8CAQIECBAgQIAAAQIEOgI6SH4U\nCBAgQIAAAQIECBAg0BHQQfKjQGD+BPbOLv15cs2IuSL175IoBAgQIEBgEgLao0koWkfrBDZp\n3R7bYQKLL3CjHOLpyfNGPNTjU//mIy6jOgECBAgQWEpAe7SUjOkLLaCDtNCn18G1WODS7Pun\nR9z/60asrzoBAgQIEFhOQHu0nJD5CyfgFruFO6UOiAABAgQIECBAgACBcQV0kMaVsxwBAgQI\nECBAgAABAgsnoIO0cKfUAREgQIAAAQIECBAgMK6ADtK4cpYjQIAAAQIECBAgQGDhBHSQFu6U\nOiACBAgQIECAAAECBMYV0EEaV85yBAgQIECAAAECBAgsnIAO0sKdUgdEgAABAgQIECBAgMC4\nAjpI48pZjgABAgQIECBAgACBhRPQQVq4U+qACBAgQIAAAQIECBAYV0AHaVw5yxEgQIAAAQIE\nCBAgsHACOkgLd0odEAECBAgQIECAAAEC4wps0nDBG6fehg3rVrVfj1BXVQIECBAg0FRAe9RU\nSj0CBAgQGEugaQfpJ1n71g23cHnqVQOmECBAgACBSQtojyYtan0ECBAgsJZA0w7SC7PU25Nj\nO/lZhjsmByZ3S16VVMeoytVrBv5tscAHsu8PH3P/tx9zOYsRIECgiYD2qInS4tTRHi3OuXQk\nBFoj0LSD9Nwc0auTQ/qO7Ii8/lZSfxS/rG+el+0V2C27fnTywREOoX4G3plsM8IyqhIgQGBU\nAe3RqGLtrq89avf5s/cEWinQpINUt9bdPXnEgCO8NtPemtSVJGWxBL6dw/nYCIe0ywh1VSVA\ngMA4AtqjcdTav4z2qP3n0BEQaJVAk6fYXZojuij57SWOrDpPZy8xz2QC/397dwImT1nfCVwi\nKB4I4oG4IKCgiApEo+KRaA4T1/tOXC+MLlmjEs1KTExcFV2frMnqIl5rNLKr6xo810SjIUZF\noyuKF7qPghqIeCAoeHApx35//Lv89/QcXTXTV/V83uf5TldVv3W8n+qZd96p6h4CBAgQmJSA\n/mhSkrZDgAABAusKtLmCVFeJ3pm8JXlR8tHkoqSuGDw1eWxyv0QhQIAAAQLTFNAfTVPXtgkQ\nIEDgGoE2A6Sq+PSkPnzhxJoZKudlum6v+6ehZSYJEJiPQF0Rflby6I67r+/j+qAVhUAfBPRH\nfThLjnG7C+iPtvsroOftbztAqsFRdUr1S9QvJvsl30g+m1ycKAQIzF+gOqT6dMm6wtu27JOK\n/z4xQGorpt68BfRH8z4D9k9gvID+aLyRGgss0HaA1DTh9pk4NKmP9P5YUh/x/ZlEIUBgMQTq\nI3H/S4dDuW/q/nqH+qoSWBQB/dGinAnHQWBtAf3R2i6W9kCg7QBpj7Tl5OT+gzZ9KI9vSz6V\n1KfYPSdp/g9SJmdads/ejkjqL+f11/CrkwuTLyZnDubzoBAgQIDAEgjoj5bgJGoCAQIEFlmg\n7QDphDSi/lpXH8hwWHLP5JLkmclfJB9J3pHMstSxvzg5Jtl7nR1/OsufkpyxzvMWEyBAgEC/\nBPRH/TpfjpYAAQK9E6h7RMeVqvM7ye8lddXoJ0mVulLzmuRNyYOSWZfXZ4f1DwPfkNwnOTSp\nf1a6f1JXlB6TnJ+cntw9UQgQIECg3wL6o36fP0dPgACBXgi0uYJ007Tkesk567SolteVpVmW\n+meBT0oekHxwjR2fm2V1i93bk7o1sI6vbgdUCBAgQKC/Avqj/p47R06AAIHeCLS5gvS9tOb7\nyePXaNUuWVa3sH11jeemueigbLyuYNV7ocaVU1LhV8ZV8jwBAgQILLyA/mjhT5EDJECAQP8F\n2lxBqla+PHlBcqukBiY3SOqjgY9ODklqkDTLUleHLkgelmz03qdqX91qN+sBXHa5EOVuOYq6\n0ta11Hm+RdeV1CdAgMAMBPRHM0Cewi70R1NAtUkCBKYj0HaA9OfZ/Q2TP0yuOziUo/JYV5Z+\nN/nnwbJZPVyVHb0meWvyuOS9yXeTOp7rJHsnt0vqqtfByT2S7VgekkY/Mjm1Y+NvkvrlpxAg\nQGDRBPRHi3ZG2h2P/qidk1oECCyAQNsB0gtzrP+QvCK5Y7JvUu89qis5P07mUY7PTk9LTkzq\nStJoqX8mWO9BemJSx7ldyxlpeF1F61LmdU67HKO6BAhsT4EXptn6o36ee/1RP8+boyaw7QTa\nDJD2iMrzkkuTjyQfThalfCAHUrf41SfXHZDcKKlf7r89SB3zVkq9f+nwFhu4fuoc2KKeKgQI\nECCweQH90Xg7/dF4IzUIECCwoUCbAVJ9rPfXkhoo1Icy1HuQFq18MwdUaUrd/lcf7V234G2l\n/KesXIOvceWkVDh3XCXPEyBAgMCWBPRH4/lOShX90XgnNQgQILCuQJsBUg2IXpe8OPlC8rmk\n3u8zXOoWtv81vGDO0w/M/h+abHWA9MlsozKuvDEV6pY+hQABAgSmJ6A/Gm+rPxpvpAYBAgQ2\nFGgzQKoNHJtcltR7jyqj5b1ZMMsB0p2yv40GP/vk+boVo+53rvLB5DnXTPlCgAABAn0W0B/1\n+ew5dgIECPRAoO0A6dYL1pbzczy/kByW1BWeugVwuByZmd2SutpV5exrvvpCgAABAn0X0B/1\n/Qw6fgIECCy4QNsB0qI1o27x+6XkZcmTkzcnr02aUrcD1i129Ql2CgECBAgQmJaA/mhasrZL\ngACBOQnUVZi1yk2z8Ohk77WeXJBl9Ql1z0weldSHKbw/Wev2vyxWCBAgQKCnAvqjnp44h02A\nAIG+Cqw3QLpNGvSmZPgT3G6c+eOTem6RSn3Ud70n6fKk3nNUAyaFAAECBJZDQH+0HOdRKwgQ\nINAbgS632NUA6fnJqcnXF6yFF+R4Hp48NTkp+UnyvUQhQIAAgeUT0B8t3znVIgIECCyMwHpX\nkBbmADseyBtSvz6g4TPJlzquqzoBAgQIEJiUgP5oUpK2Q4AAgRkLdLmCNOND2/Tu6hPtHrTp\nta1IgAABAgQmI6A/moyjrRAgQGCmAst2BWmmeHZGgAABAgQIECBAgMByCRggLdf51BoCBAgQ\nIECAAAECBLYgMO4Wu49l21cOtt8Mpt6d+StG9vmezNf/I1IIECBAgMA0BPRH01C1TQIECBBY\nJbDeAKk+Fe4tq2qvv+D09Z/yDAECBAgQ2LSA/mjTdFYkQIAAgc0IrDdAqo/xfsJmNmgdAgQI\nECAwQQH90QQxbYoAAQIExgs0t82Nr6kGAQIECBAgQIAAAQIEllzAAGnJT7DmESBAgAABAgQI\nECDQXsAAqb2VmgQIECBAgAABAgQILLmAAdKSn2DNI0CAAAECBAgQIECgvYABUnsrNQkQIECA\nAAECBAgQWHIBA6QlP8GaR4AAAQIECBAgQIBAewEDpPZWahIgQIAAAQIECBAgsOQCBkhLfoI1\njwABAgQIECBAgACB9gIGSO2t1CRAgAABAgQIECBAYMkFDJCW/ARrHgECBAgQIECAAAEC7QUM\nkNpbqUmAAAECBAgQIECAwJILGCAt+QnWPAIECBAgQIAAAQIE2gsYILW3UpMAAQIECBAgQIAA\ngSUXMEBa8hOseQQIECBAgAABAgQItBcwQGpvpSYBAgQIECBAgAABAksuYIC05CdY8wgQIECA\nAAECBAgQaC+wa/uqahIgsIQCtxy06cubaNu7ss7zN7GeVQgQIECAwKiA/mhUxPzcBAyQ5kZv\nxwQWQuBmg6N4dcejeWjq363jOqoTIECAAIH1BPRH68lYPnMBA6SZk9shgYUUeE3Ho9ov9e/S\ncR3VCRAgQIDAOAH90Tghz09dwHuQpk5sBwQIECBAgAABAgQI9EXAAKkvZ8pxEiBAgAABAgQI\nECAwdQEDpKkT2wEBAgQIECBAgAABAn0RMEDqy5lynAQIECBAgAABAgQITF3AAGnqxHZAgAAB\nAgQIECBAgEBfBHyKXV/OlOMkQKCrwJ2zwhuSzfwhqNZ7Vdcdqk+AAAECBNYQ0B+tgbLIiwyQ\nFvnsODYCBLYicNusfHDS9Z/ZPjbr3HUrO7YuAQIECBAYEtAfDWH0YdIAqQ9nyTESWDyBuipz\nvaQGIF3KDVL50uSqLiul7mXJuR3XqeoXJyd0XO+I1L92x3VUJ0CAAIH5COiP5uO+1Hs1QFrq\n06txBKYmcFS2/MvJWVPbw+oNH5JFX1u92BICBAgQ2MYC+qNtfPKn1XQDpGnJ2i6B5RbYLc37\nQXJ4x2bWgOrjyZM7rHfj1D0jqStWCgECBAgQGBbQHw1rmJ6IgAHSRBhthMC2FKjb5L7VseW1\nTt0u12W9uiVPIUCAAAEC6wnoj9aTsXxTAsswQNo9La/3DOyb7JNcnVyYfDE5czCfB4UAAQIE\nCExVQH80VV4bJ0CAwGwE+jxAqmN/cXJMsvc6XJ/O8qckdXuOQoAAAQIEpiGgP5qGqm0SIEBg\nTgKb+f8gczrUVbt9fZb8flL/r+Q+yaHJzZP9k7qi9Jjk/OT05O6JQoAAAQIEpiGgP5qGqm0S\nIEBgTgJ9vYK0Z7yelDwg+eAadudmWd1i9/bk5KT+r8mnEoUAAQIECExSQH80SU3bIkCAwAII\n9HWAdFDs6r1GH2pheErqPK1FPVUIECBQAnVlvf5f0wE106HUm4S/2aG+qsshoD9ajvOoFQQW\nUUB/NKez0tcBUl0duiB5WPKODeyqfXWr3Vc3qOMpAgQIDAvcNTOHJY8cXthy+uGp956WdVVb\nDgH90XKcR60gsIgC+qM5nZW+DpDqL7WvSd6aPC55b/Ld5PvJdZK9k9slj08OTu6RKAQIEGgj\nUP9T45zkvm0qD9X5ZKbrypOyvQT0R9vrfGstgVkK6I9mqT20r74OkKoJxyenJScmdSVptFyR\nBfUepCcm9Re+zZRHZKUDW6xYL2D/xLIFlCoEtiDwhKxbfwhpW45Mxeu2rTxSr35+nD2ybNzs\nleMqeH5pBfRHS3tqNYzAmgL6ozVZlmdhnwdIdRY+kByS7J/U+wVulPw4+fYgW/0Hk3W7TN1q\nM66UY121UggQmLxAvQm+St3ydtE1U+2+7Jdq9TNBITALAf3RLJTtg8B8BfRH8/Wf2d77PkCq\nqzZ3SepNbPVx3hcno+XXs+Dy5OOjT7SYr78QtCk1KPtWm4rqECDQWWCXwRrH5fFdHdY+IXWf\n3qG+qgS2IqA/2oqedQn0Q0B/1I/ztOWjrIFFX8udcuBfSj6WfDQ5O6kPZBgtf5IFx44uNE+A\nAAECBCYkoD+aEKTNECBAYBEE+jpAqhH8m5OfJUcn9UENX07+JnluohAgQIAAgVkI6I9moWwf\nBAgQmKFAX2+xOzBGRyS/mdT/OapSn2j3kuTPk/o0uzckCgECBAgQmKbAgdm4/miawrZNgACB\nGQv0dYB0izjVR6vWx+oOlz/LzB7Ja5NvJh9MFAIECBAgMC0B/dG0ZG2XAAECcxLo6y12Z8er\njv2ha7g9O8vqHzWenNQHOCgECBAgQGBaAmdnw/qjaenaLgECBOYg0NcB0ndi9XfJicmrkn+T\nNKWuLNV7kurqUn14wx0ShQABAgQITENAfzQNVdskQIDAHAX6OkAqsicnpyZPSw5OhstPM1P/\n5LX+UWzd/qAQIECAAIFpCeiPpiVruwQIEJiDQF/fg1RUFyQPS/ZK6v8cjZZLsqA6rXo/0s1G\nnzRPgAABAgQmJKA/mhCkzRAgQGARBPo8QGr8Lmom1nk8bZ3lFhMgQIAAgUkK6I8mqWlbBAgQ\nmJNAn2+xmxOZ3RIgQIAAAQIECBAgsKwCBkjLema1iwABAgQIECBAgACBzgIGSJ3JrECAAAEC\nBAgQIECAwLIKGCAt65nVLgIECBAgQIAAAQIEOgsYIHUmswIBAgQIECBAgAABAssqYIC0rGdW\nuwgQIECAAAECBAgQ6CxggNSZzAoECBAgQIAAAQIECCyrgAHSsp5Z7SJAgAABAgQIECBAoLOA\nAVJnMisQIECAAAECBAgQILCsAgZIy3pmtYsAAQIECBAgQIAAgc4CBkidyaxAgAABAgQIECBA\ngMCyChggLeuZ1S4CBAgQIECAAAECBDoLGCB1JrMCAQIECBAgQIAAAQLLKmCAtKxnVrsIECBA\ngAABAgQIEOgsYIDUmcwKBAgQIECAAAECBAgsq8Cuy9qwJWvXLdOe1yW7dWzXIal/Rcd1VCdA\ngAABAusJ6I/Wk7GcAIGlETBA6sepPDiH+eDkZcnVHQ75jqm7V4f6qhIgQIAAgY0E9Ecb6XiO\nAIGlEDBA6tdp/OMcbpcB0r1S//b9aqKjJUCAAIEeCOiPenCSHCIBApsT8B6kzblZiwABAgQI\nECBAgACBJRQwQFrCk6pJBAgQIECAAAECBAhsTsAAaXNu1iJAgAABAgQIECBAYAkFDJCW8KRq\nEgECBAgQIECAAAECmxMwQNqcm7UIECBAgAABAgQIEFhCAQOkJTypmkSAAAECBAgQIECAwOYE\nDJA252YtAgQIECBAgAABAgSWUMAAaQlPqiYRIECAAAECBAgQILA5AQOkzblZiwABAgQIECBA\ngACBJRQwQFrCk6pJBAgQIECAAAECBAhsTsAAaXNu1iJAgAABAgQIECBAYAkFDJCW8KRqEgEC\nBAgQIECAAAECmxMwQNqcm7UIECBAgAABAgQIEFhCAQOkJTypmkSAAAECBAgQIECAwOYEDJA2\n52YtAgQIECBAgAABAgSWUGDXJWxTH5q0Sx8O0jESIECAwNIL6I+W/hRrIAECXQUMkLqKbb3+\nv2YT+299M7ZAgAABAgS2JKA/2hKflQkQWFYBA6TZn9mbZ5fHJad12PUjU/fYDvVVJUCAAAEC\n4wT0R+OEPE+AwLYUMECaz2k/I7s9tcOuD+9QV1UCBAgQINBWQH/UVko9AgS2jYAPadg2p1pD\nCRAgQIAAAQIECBAYJ2CANE7I8wQIECBAgAABAgQIbBuBZbjFbvecrSOSfZN9kquTC5MvJmcO\n5vOgECBAYKoCe2Trz0ge3GEv9TP4Tsnnk/rZ1aV8KpVf0WUFdacuoD+aOrEdECDQQkB/1AJp\noyp9HiDVsb84OSbZe51GfjrLn5LUPdYKAQIEpilwg2z8hkn9gaZtOSAVb5t8Nrmo7UqpV+9L\nvF1igNQBbYpV9UdTxLVpAgQ6C+iPOpOtXKHPA6TXpyn16W6vS96XnJf8ILluUgOm+uXh6OT0\n5JeT+murQoAAgWkK1IevPL3DDupq079NXpR8pcN6z0rdJ3Wor+p0BfRH0/W1dQIEugvoj7qb\n/XyNvv6DuD3TghoMPSD54M9bs/bEyVn87aR+oeha6qO479xipXov1zOTV7eo+5PUuV7S5Xaa\nOk+1jyuTLqXWqXLVjofWX689WKfLMdbGa72ux6htJbeyzPK88V9pX3Oz9K/9bfb7pq463bU2\noMxVQH/Ujr8v31d1nF37MW1b/RrYzO8R+qPVjn15bS1df9TXK0gH5TVUv7x/aPVradWSU7Lk\naauWtltwdKrVe5vGlf1S4W3jKg2ev2ceb9ayblOtfmjcKjmnWdDysS6xVr7Xsn5Trdpctwld\n1ixo+Vjn5V9a1m2q1Q/RWybfbBa0fNwr9cqljrNLqXN1XvKzLiul7mbaVu9HuHHynY77umnq\nl30NpruUA1K5HLsMiMuw1js76VLqdXX95PwuK6XuLF9b9fOt9reZ11Y1q8stb1W/XlvfTa6o\nmQ5lM6+t2vzZHfah6vQE6vzpj8b76o9WG+mPVproj1Z61Fz9rlNFf7TDwdcxAjWirl9EHjWm\nXv2CVAOk/z2mnqcJECBAgMBmBPRHm1GzDgECBBZYoP5638dSf62rv16fkNQtcDVdfymu9x7V\nX/OOTB6S1C1vRyRHJ3XVQCFAgAABApMU0B9NUtO2CBAgQGDLAvfPFs5KqoMaTd1C9dakBkgK\nAQIECBCYpoD+aJq6tk2AAIEZCtT9nstQ9k8jDkhulPw4qQ9lqFyaKAQIECBAYFYC+qNZSdsP\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBCYicCy3GI3E6xttJP6kIs9kp9uozaP\na2p9FHndtqnsENg9D/X/vLp+zPoy+9XH99enZl6+zI3UNgIzFtAfrQbXH6000R+t9Kg5/dFq\nk05LDJA6cW2byt9PS+sTARUCBLoJHJ/qL+i2itoECGwgoD/aAMdTBDYQ0B9tgDPuqb7+o9hx\n7fL81gS+ntX/MnnF1jazNGvfNi35QlIfBNL1n+4uDcJIQ16U+fqI/QePLN/Os19L48/czgDa\nTmAKAvqjlaj6o5UeNac/Wm2iP1pt0mmJAVInrm1V+Yq09rJt1eL1G9vcali3TjHZ4XRlHq7i\nsQPDVwIEpiqgP9rJqz/aadFM6Y8aCY8TE6j/AK4QIECAAAECBAgQIECAQAQMkLwMCBAgQIAA\nAQIECBAgMBAwQPJSIECAAAECBAgQIECAwEDAAMlLgQABAgQIECBAgAABAgMBAyQvBQIECBAg\nQIAAAQIECAwEDJC8FAgQIECAAAECBAgQIDAQMEDyUiBAgAABAgQIECBAgMBAwADJS2Etge9k\n4XfXemKbLvth2n1ecsk2bf9aza7XR71OlJ0C38qkfyS808MUgUkI6I9WKuqPVnrUnP5otYn+\naLWJJQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBGQgcl318\nYI38ytC+b57p5yWfSU5LXphcOxkuu2TmCcn/Sc5M3pzsn4yWu2XBa5Kzkr9PHpQsQtktB/EP\nyZ+ucTCzbv+iGN0+Ft9K7rCGSZ3ntV439TpoyqTc2r62mv1O+vHIbPCdydeSryb12j4wGS5t\nj7HNuW3j1qbO8PGZJtAHAf3RjrOkP1r9atUf7TDRH61+bVhCYCoCNeipwco7RnLPob2dkumv\nJE9M/jD5UfI/k+FyTGYuS2og9fiktntOUr/INeVWmah135Y8JnlDckXysGSepTqjNyZXJy9Z\n40Bm2f5FMdovDvW6KJMjRkwOGiz/cB5HXzc1UGjKpNzavLaafU76sQaHlyRnJM9O/jT5RnJ+\ncoukKW2Ose25bePWpk5zbB4J9EVAf3Sta+mPVr9a9Uc7TPRHq18blhCYisCu2WoNav5gg60/\nMc/VL8mHDNX57cGyQwfL6hfFHyY1OGrKnpn4cfL8ZkEe/zb53NB8TdZf5r84smyWs3fOzj6f\n/CT5WTI6QJp1++dtVAOc+mW/zudFyVoDpIcPlu+bx/XKpNzavrbWO46tLq+rRfU9stfQhg7P\ndLm8aLCs7TG2Obdt3NrUGTpckwR6IaA/uta19EcrX6r6o5Ue+qOVHuYITE3gjtly/aJ3rw32\n8L4896mR56+b+Rr8vHCw/Og81nYOGMw3D2/NxJcHM3vk8crkOYP55qGuHtW6a93G1dSZ5uNZ\n2fgnk9slNSAYHSDNsv2LYHRkDOqq3quShyZ1bo5Ihsvxmfn28II1pifldnS2Pe61tcbuJ7bo\nuGzpj0a29guZ/37y14PlR+dx3DG2Pbdt3NrUGRyaBwK9EdAf7bhqrz/a+ZLVH+20qCn90UqP\nhZmrXwqU5RL4xUFzDszjW5K6uvP6ZPjKQHVaX0uGy+WZOTdp3mNUg5u6+nJOMlxqvaZO3T9c\nr6HRbX19sEJTbzA7s4fHZ0/3SL66zh5n2f5FMKrzWoPFZySXrmNSndbZSdX5SHJqUgPfaydN\nmZRbm9dWs89pPP5FNvqykQ3fL/N7J83V0DbH2PbctnFrU2fkkM0SWHgB/dGO29P1Rztfqvqj\nnRY1pT9a6bEwcwZIC3MqJnYg9YtulfrltgYu30iOTr6Q1G1DVfZK6q/lo+XCLBhX5wepU385\nv0FS26lywY6Hn3+tOlWabe2Ym93X0atjo3ueZfsXwajOTzNoHbVo5o/MRHXi903+KalzXD+4\nT06aMkm3tV5/w6+tZp+zeNwzO6m21vfLGwc7XK+tw8fY9tyut60232/DdQaH5oFAbwSOHByp\n/mj9U7aVnw9dfx61/Zm1/tFu/Rn90caG+qONfWb27K4z25MdzUqgfrmtXz7/a3L5YKf3zuPH\nknp/xe8ldevQT5PRUleMrj+0cL06VaXq1Xaq1HrDpZkf3tbw8/OenmX7+2BU94S/Mvlm8jeD\nk3N8Hk9Ijk1+I/nHZFJu2dS6r796rl43F9fEDMrNso96H1Fd7fy1pD68oSmTev23cWtTpzku\njwT6IqA/Gn+m2n7vT+LnUe2rStNH75jbOb8Ifbb+SH/UvC7n+ugK0lz5p7Lzei/DS5NmcFQ7\n+XhSVxCOqpmUeq9J3U40WmrZjwYLN6pTVaredwZ1bzx4bB6abTfbapYvyuNGbWuOeaM61Y62\n7e+DUXWaf5k0g6NqX5WTrvk6+ddNG9vBrqf6cJts/RNJDY7um3wuaUqbY2x7bjfaVpvXW1On\nOTaPBPoioD8af6a2+vOh9qA/2um898CjlmxkW8+XW5s6VXfaRX80beGO2zdA6gjWg+q3zTHe\neo3jHL6lqX4grHX72z5ZXrfkVak6Nxyk5puybybquRqA1WOVWjZcmm032xp+bhGmZ9n+Phhd\nLyfl8KS5/aI5R3X7xnCZpNu419bwfqcxfYdstK6qXpbcI6lbUIdLtXXcMbY9t23dmu+b4eMY\n/p4cXm6aQB8EbpuD1B9tfKba/nyYxM+jtj+zNj7i6T6rP9IfTfcVZuvbVqD+Cl4frFD/d6Ep\n1UHVVYK/Gix4bh7rVqI9BvP1cM+k6jywZlIOTq5M/l3NDEpd+q7bsE4azNfDZ5J3D83X5CuS\nGpDtXjNzLhdl/y8ZOYZZt3+RjH4zFnWejxgyOWSwrG6pGy7lVHVrnSqTcmv72tqx18l/PTCb\nvCD5aHKjZK3S9hjbnNs2bm3qrHWclhFYZAH90cqzoz9a6aE/2vEPyvVHK18X5ghMReCYbLV+\nqX11UgOjBySfSOoj67NFigAACi1JREFUvA9KqtSVgpp/R3LL5LCk/oL+d8lweVdm/jU5Krlp\ncmJyYTJ8xeixmb8i+f2ktvvopAZfT0oWoazVIc26/YtktFaHVOfplOTi5Oikzu+zkvOSDydN\nmaRbm9dWs99JP743G6zX7B8n9Z684fxW5pvS5hjbnNs2bm3qNMflkUBfBPRHK8/URZkd/YNd\n2+/9Sf08avMza+VRT29Of3Sta+mPpvf6smUCqwSOy5IaANVAqVKDnzsmw+VemakrTfV8DWjq\nh+9+yXCpe3nfn1yVVL3Tkgcno+VPsqBuVao65yYvTRalrNUh1bHNuv2LYrReh1QD4JOTOoeV\ny5M3JzdIhsuk3Nq+tob3PYnpamfTxrUe3zO0k7bH2ObctnFrU2fo8EwS6IWA/mjnadIf7bSo\nKf2R/mjlK8IcgRkI7Jp91K1T9UveRuVWeXL0l+DR+ntmQV1p2qjULX23Seo2vD6VWba/D0Y3\nzMk7NLnOmJM4Kbc2r60xhzL1p9scY9tz28atTZ2pN9oOCExQQH/UDrPN9/6kfh61/ZnV7sin\nU0t/tNp1Uue/ttzm9damzuqjtIQAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCy8wPVncITXzj6uM4P92AUBAgQI9FdAf9Tfc+fI\nCRAg0HuBX0oL/j45L7k6OSN5RXK3ZDOlBkAPWmPFJ2fZZ5JLk58mX0hekuyaDJebZ+Yewwta\nTm92vZabV40AAQIEpiygP5oysM0TIECAwHiBP0iVnyU1WHl28vDkZclXkkuSeyddy6uywudH\nVnpB5mvw9b7kOcnTkncnlyWnJLskTfleJp7XzHR43Ox6HXahKgECBAhMSUB/NCVYmyVAgACB\n9gJ3TNUaHP2PZLeR1a6X+dOSC5M7jTw3bvbNqfC5oUq/kOkavNSAaLS8OAtq4DR8taoGTZsZ\nIG12vdFjMk+AAAECsxXQH83W294IECBAYB2Buq3u/GSvdZ6/RZb/OPmroedfmem6yjRcfjUz\nVafeV3Rsclby/aSW3SHZI/lZckIyWm6SBS9L7p7U+rXOlcmnkxOTphyUiZcn708+lLw2OTSp\nstF6N8zzL0yqrX+bHJeMDgazSCFAgACBOQroj+aIb9fbU6D+eq0QILBaoN7nc0py0eqnrlny\n3XytK0E1eGnKEzNR94gPl8My89Sk3kv0w+Ty5IqkBl/1XqMaZP1jckxSg6G6WtR8X9ZA6o+S\nTyV1JanWqceLkwuSKndNzkiOSv5vclZSg7TTk5sl6623d56rW/2enfxL8tnkPyanJqPve8oi\nhQABAgTmJKA/mhO83RIgQIDAToF9MlkDi/+8c9GaU/8tS+uKTl0FqlKDqdF1np5lta3rJ1VG\nb7GrZXUl511J1avUrXvvSZ6UNIOlTF5TRm+Vq/c0nZ3UbX9NuX8maju/0yzI4+h6J2ZZDdQO\nGKpzu0zXes8cWmaSAAECBOYnoD+an709b2OB0V++tjGFphP4ucDug6m6urNR+UmerA9Q2Opt\nabWdRyQHJ89IPpzcJzkp+UBSV3vWK1W/brG7NKlPyLtNsn9SpQZe65UH54mPJ/UzoNav1BWt\n/5f8VqIQIECAwPwF9EfzPweOYBsKuJVmG550TR4rcE5qfCc5ZEzNGtCcmfxgTL22T389FV89\nSH1vHpvUbXfPHSQPq0pdOarna4BVV4CqfGnHw4pPvxssuuahBnQ1iKqrR9+4ZsnKL/5wstLD\nHAECBOYloD+al7z9bmsBvwht69Ov8RsIfCLP3S8ZvnVtuPqNMvNrSdVrSt2eVoOP4bLR1Z+q\n99TkW8mNa2ao1O1vL08+nvzq0PLRyb/OguOStye/keyZPDKpssuOh1Vf60MhLk7emtTxjeao\nLFMIECBAYDEE9EeLcR4cxTYSMEDaRidbUzsJvDK1b568NBkdaNR8XdmpwchJSVPqVrn6YITh\ncvjwTKavSupWuKZ8OhO3TNZ63891svyg5ItJU2oQ1nzf1nbqAxnelLw4+VhS7zW6S1JleD/D\n69VzZyQPSqp+veepckny35PHJQoBAgQILIaA/mgxzoOjIECAAIEIPCqpD2Go9wHV9JHJbycf\nSuoqzMOS4fLOzNSA4xHJwcmfJXWlpgYnzYc0vCrTP0oektQArMrJSdV5R/K7yX2TurL0uaTq\n3j1pynmZqE+9q6tbVWq6bvM7LKl9PCC5IKntPSdpyuh6dbWp6tSHQdw7qeN9U1LHf2iiECBA\ngMDiCOiPFudcOBICBAhse4HqlOpqSw0mKnWlpQYVD0xGy62zoK4INXX/OdN1Nabma/BS5a7J\n+Ukt+w9Jlboi9fzkrKQGZPVcDVTqtoo7JcOlBl31UeFV5ybJUclHk1qv8tWkPmTh9ORdSVNG\n16vlj06+ndS2rkjqClQNABUCBAgQWDwB/dHinRNHRIAAgW0tUIOR+hCE5va2jTD2yZM33ahC\nnqvt1cBotNRAqvaz2+gTQ/N1692eQ/M1Wbf2VTYqa61X9fdN9t5oRc8RIECAwMII6I8W5lQ4\nEAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLzFfj/P34bPiosUK0AAAAASUVORK5CYII=", "text/plain": [ "Plot with title “Bins = 16”" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0JuCxVfS9sUEBUEEEUURBRUKMiGmfjPMfZGI1eJ4xT1KjROETvNY4Z\nriYxhohD8Mq9GoyC8xCROMQh+UCNAzEGnFAQQVBMUBlE+H5/6JI+ffbeXdWne++u2u96nt+p\n6upV1bXe6rPXXl3VtbfbTiFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgACBTSGw/aZopUZuZoHrp/H7rQBwUZadl/wg+e4Kz++QZXceLT8j06+tUGdo\niy6XBj0guXxyfPL9pClXysxOzYNVpr/I8p+t8pzFBAgQ2OwC+qP274C1+qPxrVw7Dw5MLkxO\nSn6YKAQIECAwReDVef7iKfl8nr/9xHZ2H1vnnRPPDfXhH4+1+RETjXzH2HOreb5/Yh0PCRAg\nQOAyAf3RZRbT5tbqj2rdvZPqc8b7o/rg84hkt0QhsE0CNUJXCGx2gVsF4CPJAZsY4u5p+0u3\nsf3VUSkECBAgMLuA/mi77ab1R/W7a31w+aARc10NckFSV0U9PnljohDYJoG6jEghsFkEnp6G\nfiipH6L1A/ZaycuTeyZXTR6ZvCqpck5y70vmttvu9NF0iJNd0qgXJc9NymS18g954qsrPPng\nLLttcn7ymhWet4gAAQIEthbQH21t0rY/+rWseqfR6vXh5v9I6vfZOqP0G0n15U9LfpIoBGYS\nMECaic1KPRX4Ufb7lLF9PznzNTioAVKVuj68KTWIak7T/3ezMNNbJFWvrnd+X1LXP9enXQck\n9T2lGoD9PBkvV8qDGkhcL6kO4Izkc0ld2jet1HeCbjCtUp5/b/KdFvUmq3wxC5rtl8/VJiuM\nHlfHUxkvVfcFowXPybTapBAgQIDAdAH90dZGbfuja46t+vbM/9fo8VGZ1gCpyl6JAdIlFP4h\nQIDA1gLj13w/Yuunt/u9LKtLwyqPHnt+97HldSq/KYdlpurWoKkGLz8dPW62UYOkOjPVlDtk\nps5ANc+PT2tb08rRqTC+zmrz95+2oVWePyvLa9D4qOTJSbP9lazy9Bblb/Ko6n82qQGlQoAA\nAQKrC+iPVrepZ9r2R/Wh43lJ9T9HJNX/XD75SFLLqk9TCBAgQGANgfEO6WOpV4OSNyRvTv4p\nqS911g/UjyZXTpoybYD0y1Sss0j/ltS2vp/Udip/kTTl5MzUspq+Jnlx8q9JU/eBmV+rLHqA\n9IK8eNPuJ2W+2a9pA6Qbpu4vRvXrEjuFAAECBNYW0B+t7dOlP/of2dTPk6Z//cFovj68nPUD\nw6yqECBAYHMIjHdIzS//k9Mfh2L/CY5pA6TaRl3W1pSDM9NstwZeVeoygGbZmzJfn3BVqQHJ\na5OnJjdN1ir1SVl9P2padlhrIy2f6zJAen+2WW37Usttq0aAAIHNLqA/av8OmNYf1Xdmj0ya\nPraZvjXL1vo+bfs9UHNTC8zjl6pNDajxvRL4Zva2rvuu0/E7JTUIus5o+pVMn5n836RtOXSs\nYq1ffwOoBj/N93h+mPm6BroGN09JHpp8IqkBVHWU9YnXtLJrKuwyrVKevyCpM1rrUe6WF2nu\nHlQDP4UAAQIEugnoj7p5jdfeOQ+OSh6Q1MCovvtb03p8SFLfDa4+qi7DUwgQIEBgBYHxT+xW\numzsNlnn7KR+uNZ0x6RKDZ5qWWWl7yDV8smzPzUgquUnJE15eGZq4NJsq5nWpX3vTfZJ1ipH\n58lmnbWm87ikYNonds1+VsdU+3JOUgM4hQABAgSmC+iPphs1Ndbqj2rw0/SH9T3ipjwnM83y\nBzYLTQnMIuA05Cxq1hmSwPFpzMdGDaozPXfv0LjzJ+rWoGey1GDigOTPki8n9cO7Sp3FekhS\nz/ep1Fnne492uAaONUhSCBAgQGDbBfRH7QzvNVatPmhsyrubmUzvOzZvlkBngfplRyGw2QVu\nMgYwOegZe2qr2Waws9UTYwuulfn9k8OSFyd1+d1vJvVJ4t7J7ZKrJOO3Es/DX5XXZ+7Dv3q0\n+kxd4rcepW6hWvtb5fOXTvxLgAABAnMS0B91gzw41ZsPOW80tuoFY/NmCXQWMEDqTGaFHgvc\nM/tel85VqbOnV0weljQdUt0R57hkXuW3sqHmE61jMl9njH6U1GVzf5jUAKkGRnWr8NXKJ1d7\nYoOW33rsdb8xNm+WAAECBNoL6I/aW03WrH7690cL/2em9X3eXyQvHC2ryTz78rHNmt0sAgZI\nm+VIa2cJPHmUlTTqbNDjk3NXenLGZe/Pep9J6i9+3yf5cfKfyY2TKyRV/iJZ6dK8S55cwn/2\nHdsnA6QxDLMECBDoIKA/6oA1UfUdeXxIco/kzslXk+rD69L1KtXvvuuSOf8QmFHAd5BmhLNa\n7wXqxgk1GPphUj9s63rlOrMzz1J/K+k3k9cl9V2dKya3SGpwdEby7ORVSZ9KM0Aqu1P7tOP2\nlQABAksqoD/qdmCqb60bINUl6HXmqEoNjmr5m5O6iUOfPnjM7irLJtCMtpdtv+wPgaEJ1N3x\n6o51eySnJacn9YmXQoAAAQIE1lNgSP3RzoG7fnL55KTErb2DoBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\n5iew/fw2tWFb2jmvfHCyd7JXcnFydvLV5KTR40wUAgQIECCwUAH90UJ5bZwAAQIEpgnskAp/\nlvwoqUHRSjk+yw9KFAIECBAgsCgB/dGiZG2XAAECGyBQP9T7Wt6cHX9Y8sbkw8kZyY+TKyR7\nJDdMDkm+mNwpOS5RhiOwS5py/Rmac1HW+VpSU4UAAQLzENAfzUOxv9vQH/X32NlzAoMS2C2t\n+WVynxatelfq/HWLeqr0S+D12d2Vzhq2WfaIfjXV3hIgsMQC+qMlPjjrtGv6o3WC9jIE1kug\nr2eQ9g9Q/SL88RZQx6bO01rUU6VfAnWmsAa/T+242/+e+rWuQoAAgXkI6I/modjvbeiP+n38\n7D2BrQT6OkCqGzCclTwkOXqrVl22oNpXZwtOvGyRuQEJXJC2/KRje1xa1xFMdQIE1hTQH63J\ns2me1B9tmkOtoZtBoK8DpPol97DkyOTRyQeS05O6YcNOSfMdpMdk/oDk9olCgAABAgTmLaA/\nmreo7REgQIDANgncN2t/I1npeye/yPIaQNUtwJXhCRyeJr1thmZ9L+s8dob1rEKAAIG1BPRH\na+kM+zn90bCPr9ZtQoG+nkFqDtVHM3Ngsm+yX3KV5JzktFHOzXRbylFZ+SYtNnDt1KmzVR9s\nUVcVAgQIEBiegP5oeMdUiwgQ2KQCfR8gNYftlMxU5l3emg3WwGta+atU8MX/aUqeJ0CAwPAF\n9EfDP8ZaSIDAwAWGMkAaP0z1HaS7JHXmp/4G0meSWctHWq746tQ7r2Vd1QgQIEBgcwjojzbH\ncdZKAgQGJnC5HrenbsTw98l/JV9J7p/smnw9+Vjy2uTTyduT7ROFAAECBAgsQkB/tAhV2yRA\ngMAGCfR5gPS2mD00eV9Sg6QaCP2/5Ozkwck+yYuSus33kxOFAAECBAgsQkB/tAhV2yRAgACB\nTgJ1U4aLkweOrfXe0bLJW3q/O8vry7OLLHVjiAcs8gVseysBdw3aisQCAgQ2QEB/tAHoS/aS\n+qMlOyB2h8C2CvT1DFKdHaq/PfGJMYBPZb4GKseNLavZY5O6y5xCgAABAgTmLaA/mreo7REg\nQGCDBfo6QPp23GrfHzny2zHThyf1HaR7jpY1k7tm5lvNA1MCBAgQIDBHAf3RHDFtigABAssg\n0Ne72J0RvPq+UZ3WfmJyQFJnj/4y+bvksOT4pL5/9DuJy9+CoBAgQIDA3AX0R3MntUECBAhs\nrEBfB0ilVjde+E5yn6TuWveapO5gd6vkz5Mqv0hemHy4HigECBAgQGABAvqjBaDaJAECBDZK\noM8DpAuC9rJRxv3umgd1TfgNk7r991mJsj4Ce+dldpnhperOg47TDHBWIUBgKQT0R0txGLbY\nCf3RFhweECDQRaDPA6S12nlqnqwo6ydw5bzUKcnlZ3jJk7PO/jOsZxUCBAgsu4D+aP2PkP5o\n/c29IoFBCQx1gDSog9STxtSNMmpwdO/kax32+UGp+/IO9VUlQIAAAQJrCeiP1tLxHAECUwUM\nkKYSqdBR4Iepf1qHdX7coa6qBAgQIECgrYD+qK2UegQIbCHQ19t8b9EIDwgQIECAAAECBAgQ\nIDAPAQOkeSjaBgECBAgQIECAAAECgxBwid0gDqNGLFhg92z/g8nOM7zOZ7POH8ywnlUIECBA\ngMCkgP5oUsRjAgsQMEBaAKpNDk5gr7ToN5K6mUT9QeK25U6peLe2ldUjQIAAAQJTBPRHU4A8\nTWAeAgZI81C0jc0i8IY09IwOja0/VPzEDvVVJUCAAAECbQT0R22U1CEwo4DvIM0IZzUCBAgQ\nIECAAAECBIYnYIA0vGOqRQQIECBAgAABAgQIzChggDQjnNUIECBAgAABAgQIEBiegAHS8I6p\nFhEgQIAAAQIECBAgMKOAAdKMcFYjQIAAAQIECBAgQGB4AgZIwzumWkSAAAECBAgQIECAwIwC\nBkgzwlmNAAECBAgQIECAAIHhCRggDe+YahEBAgQIECBAgAABAjMKGCDNCGc1AgQIECBAgAAB\nAgSGJ2CANLxjqkUECBAgQIAAAQIECMwosMOM61mNQF8Fds6O3zvZo0MDrtGh7njVq+TB1ZJn\njy9sMX9x6nw0OalFXVUIECBAoJ8C+qN+Hjd7vQkEDJA2wUHWxC0Eds+j30wO2mLp2g9qoFNl\nz+SMS+ba/XNwqu2dPKFd9V/Vul7m9kle8KslZggQIEBgaAL6o6EdUe0ZjIAB0mAOpYZ0EDg6\ndX+vQ/0aUH2kQ/2m6vaZOT+5ebOg5fRDqVfrKgQIECAwbAH90bCPr9b1VMB3kHp64Ow2AQIE\nCBAgQIAAAQLzFzBAmr+pLRIgQIAAAQIECBAg0FMBl9j19MANbLfrcrKuN0KoL7cqBAgQIEBg\nngL6o3lq2haBngoYIPX0wA1ot+v7OVdPutz8oGn+ic2MKQECBAgQ2EYB/dE2AlqdwFAEDJCG\nciT72446E3RRctOOTfhw6u/YcR3VCRAgQIDAagL6o9VkLCewyQQMkDbZAV/i5n69475dkPoG\nSB3RVCdAgACBqQL6o6lEKhAYtoCbNAz7+GodAQIECBAgQIAAAQIdBAyQOmCpSoAAAQIECBAg\nQIDAsAUMkIZ9fLWOAAECBAgQIECAAIEOAgZIHbBUJUCAAAECBAgQIEBg2AIGSMM+vlpHgAAB\nAgQIECBAgEAHAQOkDliqEiBAgAABAgQIECAwbAEDpGEfX60jQIAAAQIECBAgQKCDgAFSByxV\nCRAgQIAAAQIECBAYtsAQ/lBs/eXrg5O9k72Si5Ozk68mJ40eZ6IQIECAAIGFCuiPFspr4wQI\nEFgfgT4PkGrfX5k8JdljFa7PZ/kTkxNWed5iAgQIECCwrQL6o20VtD4BAgSWSKDPl9i9OY5P\nTw5P7pLcKLlGsm9SZ5QekZyZfDG5baIQIECAAIFFCOiPFqFqmwQIENgggb6eQdotXo9P7pcc\ns4LdqVlWl9gdlbwreVRyXKIQIECAAIF5CuiP5qlpWwQIEFgCgb6eQdo/dvVdo4+3MDw2de7c\nop4qBAgQIECgq4D+qKuY+gQIEFhygb4OkOrs0FnJQ6b41hmyutTuxCn1PE2AAAECBGYR0B/N\nomYdAgQILLFAXy+xuyimhyVHJo9OPpCcnvwo2SnZI7lh8pjkgOT2iUKAAAECBOYtoD+at6jt\nESBAYIMF+jpAKrZXJMcnhyYrnUm6MMvrO0iPS+oTvlnK3bLSfi1WLMcamCkECBAgsPkE9Eeb\n75hrMQECAxbo8wCpDstHkwOTunNdDWSukpyTnDbKuZluS3luVr5piw3U4OiaLeqpQoAAAQLD\nFNAfDfO4ahUBAptQoO8DpDpkdTndKaPU4zsm905qkPS5pL6rNGt5YMsVa1D2vZZ1VSNAgACB\nYQroj4Z5XLWKAIFNJtDnAdINcqz+JNkzqUvh6uzRe5J7JE2pO909J3lds8CUAAECBAjMWUB/\nNGdQmyNAgMBGCvR5gPTXgbtO8kcjwNdmeofkpUn97aP62xR1B7taXn8w9shEIUCAAAEC8xbQ\nH81b1PYIECCwgQJ9HSBdLWb3SurM0WdHfg/N9O1JfVm2KfXHYQ9I6jkDpEbFlAABAgTmJaA/\nmpek7RAgQGBJBC63JPvRdTeunRVq35u7022f+brV6meSyfJPWXC9yYUeEyBAgACBOQjoj+aA\naBMECBBYJoG+DpD+I4h1h7rnJzU4qu8a/WNySDJerpgHj0q+PL7QPAECBAgQmJOA/mhOkDZD\ngACBZRHo6yV29TeOfj95a/LryZuSugb8HUn9baS61G6npP6I7P7JYxOFAAECBAjMW0B/NG9R\n2yNAgMAGC/R1gFRsRyRnJC9K3p+Ml1uPHnws0ycn3xp/0jwBAgQIEJijwBHZlv5ojqA2RYAA\ngY0U6PMAqdzqsrpK/ZHWfZK6FrzOHJ2afDc5LVEIECBAgMCiBfRHixa2fQIECKyTQN8HSA3T\n6ZmpfKFZYEqAAAECBDZAQH+0AehekgABAvMU6OtNGuZpYFsECBAgQIAAAQIECBC4RMAAyRuB\nAAECBAgQIECAAAECIwEDJG8FAgQIECBAgAABAgQIjAQMkLwVCBAgQIAAAQIECBAgMBIwQPJW\nIECAAAECBAgQIECAwEjAAMlbgQABAgQIECBAgAABAiMBAyRvBQIECBAgQIAAAQIECIwEDJC8\nFQgQIECAAAECBAgQIDASMEDyViBAgAABAgQIECBAgMBIwADJW4EAAQIECBAgQIAAAQIjAQMk\nbwUCyydwUHbpD5Nfdsz5qX+LRCFAgAABAvMQ0B/NQ9E2eiewQ+/22A4TGL7AFdLEE5NndGzq\nMam/Z8d1VCdAgAABAqsJ6I9Wk7F80AIGSIM+vBrXY4Fzsu+f6Lj/F3esrzoBAgQIEJgmoD+a\nJuT5wQm4xG5wh1SDCBAgQIAAAQIECBCYVcAAaVY56xEgQIAAAQIECBAgMDgBA6TBHVINIkCA\nAAECBAgQIEBgVgEDpFnlrEeAAAECBAgQIECAwOAEDJAGd0g1iAABAgQIECBAgACBWQUMkGaV\nsx4BAgQIECBAgAABAoMTMEAa3CHVIAIECBAgQIAAAQIEZhUwQJpVznoECBAgQIAAAQIECAxO\nwABpcIdUgwgQIECAAAECBAgQmFXAAGlWOesRIECAAAECBAgQIDA4AQOkwR1SDSJAgAABAgQI\nECBAYFaBHVqueMXU275l3ar28w51VSVAgAABAm0F9EdtpdQjQIAAgZkE2g6QfpCt79byFc5L\nverAFAIECBAgMG8B/dG8RW2PAAECBLYQaDtAenbWelPy4VHOzHTv5DHJrZKXJDUwqnLhpRP/\n9ljgndn3+824/9eYcT2rESBAoI2A/qiN0nDq6I+Gcyy1hEBvBNoOkJ6eFv1x8uqJlh2ex/+R\n1C/FL5x4zsP+CuyfXT8qeU+HJtR74C3JVTusoyoBAgS6CuiPuor1u77+qN/Hz94T6KVAmwFS\nXVp36+T+K7Twoix7Q1JnkpRhCXw9zflQhyZdp0NdVQkQIDCLgP5oFrX+r6M/6v8x1AICvRJo\ncxe7c9KiHye3XKVlNXg6ZZXnLCZAgAABAvMS0B/NS9J2CBAgQGBVgTZnkOos0buTtycvT/45\n+UlSZwyelDwquVeiECBAgACBRQrojxapa9sECBAgcIlAmwFSVXxGUjdfOLQejJUzMl+X131i\nbJlZAgQ2RqDOCP9B8vCOL1//j+tGKwqBPgjoj/pwlOzjZhfQH232d0DP2992gFSDo+qU6peo\nWyT7JN9O/i35WaIQILDxAtUh1d0l6wxv27JXKj45MUBqK6beRgvojzb6CHh9AtMF9EfTjdRY\nYoG2A6SmCb+WmRsldUvvzyR1i+8vJAoBAsshULfE/d8dduWuqXuPDvVVJbAsAvqjZTkS9oPA\nygL6o5VdLO2BQNsB0q5py7uS+47a9PFM/yE5Lqm72D0vaf4OUmbXteycVzs4qU/O69Pwi5Oz\nk68mJ40eZ6IQIECAwAAE9EcDOIiaQIAAgWUWaDtAel0aUZ/W1Q0ZbpzcIfl58szkNcmnkqOT\n9Sy1769MnpLsscoLfz7Ln5icsMrzFhMgQIBAvwT0R/06XvaWAAECvROoa0SnlarzyOSpSZ01\n+mlSpc7UHJa8NXlAst7lzXnB+oOBhyd3SW6U1B8r3TepM0qPSM5MvpjcNlEIECBAoN8C+qN+\nHz97T4AAgV4ItDmDtGdacsXku6u0qJbXmaX1LPXHAh+f3C85ZoUXPjXL6hK7o5K6NLD2ry4H\nVAgQIECgvwL6o/4eO3tOgACB3gi0OYP0w7TmR8ljVmjV9llWl7CduMJzi1y0fzZeZ7Dqu1DT\nyrGpcOdplTxPgAABAksvoD9a+kNkBwkQINB/gTZnkKqVf5W8NLlOUgOTKyd1a+BDkgOTGiSt\nZ6mzQ2clD0nW+u5Tta8utVvvAVxecinKbbIXdaata6njfM2uK6lPgACBdRDQH60D8gJeQn+0\nAFSbJEBgMQJtB0h/npffJXlucoXRrtwu0zqz9LvJ50bL1mtyUV7osOTI5NHJB5LTk9qfnZI9\nkhsmddbrgOT2yWYsD0qjH5Z8umPjr5b65acQIEBg2QT0R8t2RNrtj/6onZNaBAgsgUDbAdLL\nsq8fS16b3DTZO6nvHtWZnHOSjSivyIsenxya1JmkyVJ/TLC+g/S4pPZzs5YT0vA6i9albNQx\n7bKP6hIgsDkFXpZm64/6eez1R/08bvaawKYTaDNA2jUqL07OTT6VfDJZlvLR7Ehd4ld3rtsv\nuUpSv9yfNkrt87aU+v7SzVps4Eqpc90W9VQhQIAAgdkF9EfT7fRH043UIECAwJoCbQZIdVvv\nbyY1UKibMtR3kJatnJIdqjSlLv+rW3vXJXjbUv44K9fga1o5IhVOnVbJ8wQIECCwTQL6o+l8\nR6SK/mi6kxoECBBYVaDNAKkGRG9MXpl8JflSUt/3GS91Cdvfjy/Y4Pn75/UfnGzrAOlfs43K\ntPKWVKhL+hQCBAgQWJyA/mi6rf5oupEaBAgQWFOgzQCpNvCs5LykvntUmSwfyIL1HCAdlNdb\na/CzV56vSzHqeucqxyTPu2TOPwQIECDQZwH9UZ+Pnn0nQIBADwTaDpCut2RtOTP7c7nkxkmd\n4alLAMfLzfNgx6TOdlU5+ZJ//UOAAAECfRfQH/X9CNp/AgQILLlA2wHSsjWjLvG7VfLq5AnJ\n25I3JE2pywHrEru6g51CgAABAgQWJaA/WpSs7RIgQGCDBOoszEplzyw8JNljpSeXZFndoe6Z\nyW8ndTOFjyQrXf6XxQoBAgQI9FRAf9TTA2e3CRAg0FeB1QZI10+D3pqM38Ft9zx+RVLPLVOp\nW33Xd5LOT+o7RzVgUggQIEBgGAL6o2EcR60gQIBAbwS6XGJXA6SXJJ9OvrVkLTwr+/PQ5EnJ\nEclPkx8mCgECBAgMT0B/NLxjqkUECBBYGoHVziAtzQ523JHDU79u0PCF5N87rqs6AQIECBCY\nl4D+aF6StkOAAIF1FuhyBmmdd23ml6s72j1g5rWtSIAAAQIE5iOgP5qPo60QIEBgXQWGdgZp\nXfG8GAECBAgQIECAAAECwxIwQBrW8dQaAgQIECBAgAABAgS2QWDaJXafybZ/Odp+M5h6bx5f\nOPGa78vj+ntECgECBAgQWISA/mgRqrZJgAABAlsJrDZAqrvCvX2r2qsv+OLqT3mGAAECBAjM\nLKA/mpnOigQIECAwi8BqA6S6jfdjZ9mgdQgQIECAwBwF9EdzxLQpAgQIEJgu0Fw2N72mGgQI\nECBAgAABAgQIEBi4gAHSwA+w5hEgQIAAAQIECBAg0F7AAKm9lZoECBAgQIAAAQIECAxcwABp\n4AdY8wgQIECAAAECBAgQaC9ggNTeSk0CBAgQIECAAAECBAYuYIA08AOseQQIECBAgAABAgQI\ntBcwQGpvpSYBAgQIECBAgAABAgMXMEAa+AHWPAIECBAgQIAAAQIE2gsYILW3UpMAAQIECBAg\nQIAAgYELGCAN/ABrHgECBAgQIECAAAEC7QUMkNpbqUmAAAECBAgQIECAwMAFDJAGfoA1jwAB\nAgQIECBAgACB9gIGSO2t1CRAgAABAgQIECBAYOACBkgDP8CaR4AAAQIECBAgQIBAewEDpPZW\nahIgQIAAAQIECBAgMHABA6SBH2DNI0CAAAECBAgQIECgvcAO7auqSYDAAAWuNWrT12Zo23uy\nzktmWM8qBAgQIEBgUkB/NCni8YYJGCBtGL0XJrAUAlcf7cXrO+7Ng1P/Nh3XUZ0AAQIECKwm\noD9aTcbydRcwQFp3ci9IYCkFDuu4V/uk/i07rqM6AQIECBCYJqA/mibk+YUL+A7Swom9AAEC\nBAgQIECAAAECfREwQOrLkbKfBAgQIECAAAECBAgsXMAAaeHEXoAAAQIECBAgQIAAgb4IGCD1\n5UjZTwIECBAgQIAAAQIEFi5ggLRwYi9AgAABAgQIECBAgEBfBNzFri9Hyn4SINBV4NezwuHJ\nLB8E1Xp/2/UF1SdAgAABAisI6I9WQFnmRQZIy3x07BsBAtsicIOsfEDS9Y/ZPirr3HpbXti6\nBAgQIEBgTEB/NIbRh1kDpD4cJftIYPkE6qzMFZMagHQpV07lc5OLuqyUuuclp3Zcp6r/LHld\nx/UOTv3Ld1xHdQIECBDYGAH90ca4D/pVDZAGfXg1jsDCBG6XLd8p+cbCXmHrDR+YRd/cerEl\nBAgQILCJBfRHm/jgL6rpBkiLkrVdAsMW2DHN+3Fys47NrAHVZ5MndFhv99Q9IakzVgoBAgQI\nEBgX0B+Na5ifi4AB0lwYbYTAphSoy+S+37HltU5dLtdlvbokTyFAgAABAqsJ6I9Wk7F8JoEh\nDJB2TsvrOwN7J3slFydnJ19NTho9zkQhQIAAAQILFdAfLZTXxgkQILA+An0eINW+vzJ5SrLH\nKlyfz/InJnV5jkKAAAECBBYhoD9ahKptEiBAYIMEZvn7IBu0q1u97Juz5OlJ/b2SuyQ3Sq6R\n7JvUGaVHJGcmX0xumygECBAgQGARAvqjRajaJgECBDZIoK9nkHaL1+OT+yXHrGB3apbVJXZH\nJe9K6u+aHJcoBAgQIEBgngL6o3lq2hYBAgSWQKCvA6T9Y1ffNfp4C8NjU+dpLeqpQoAAgRKo\nM+v195r2qwcdSn1J+JQO9VUdhoD+aBjHUSsILKOA/miDjkpfB0h1duis5CHJ0WvYVfvqUrsT\n16jjKQIECIwL3DoPbpw8bHxhy/mHpt77WtZVbRgC+qNhHEetILCMAvqjDToqfR0g1Se1hyVH\nJo9OPpCcnvwo2SnZI7lh8pjkgOT2iUKAAIE2AvU3Nb6b3LVN5bE6/5r5OvOkbC4B/dHmOt5a\nS2A9BfRH66k99lp9HSBVE16RHJ8cmtSZpMlyYRbUd5Ael9QnfLOU38pK122xYr2B/RHLFlCq\nENgGgcdm3fogpG25eSpeoW3liXr18+PkiWXTHv5yWgXPD1ZAfzTYQ6thBFYU0B+tyDKchX0e\nINVR+GhyYLJvUt8XuEpyTnLaKNv6Bybrcpm61GZaKcc6a6UQIDB/gfoSfJW65O0nl8y1+2ef\nVKufCQqB9RDQH62HstcgsLEC+qON9V+3V+/7AKnO2twyqS+x1e28f5ZMlntkwfnJZyefaPG4\nPiFoU2pQ9v02FdUhQKCzwPajNZ6f6Xs6rP261H1Gh/qqEtgWAf3RtuhZl0A/BPRH/ThO27yX\nNbDoazkoO/7vyWeSf05OTuqGDJPlRVnwrMmFHhMgQIAAgTkJ6I/mBGkzBAgQWAaBvg6QagT/\ntuQXySFJ3ajha8k7kxcmCgECBAgQWA8B/dF6KHsNAgQIrKNAXy+xu26MDk7undTfOapSd7R7\nVfLnSd3N7vBEIUCAAAECixS4bjauP1qksG0TIEBgnQX6OkC6Zpzq1qp1W93x8r/yYNfkDckp\nyTGJQoAAAQIEFiWgP1qUrO0SIEBggwT6eondyfGqfX/wCm7PybL6Q43vSuoGDgoBAgQIEFiU\nwMnZsP5oUbq2S4AAgQ0Q6OsA6Qex+lByaPK3ybWTptSZpfpOUp1dqps33CRRCBAgQIDAIgT0\nR4tQtU0CBAhsoEBfB0hF9oTk08nTkgOS8XJBHtQfea0/FFuXPygECBAgQGBRAvqjRcnaLgEC\nBDZAoK/fQSqqs5KHJFdN6u8cTZafZ0F1WvV9pKtPPukxAQIECBCYk4D+aE6QNkOAAIFlEOjz\nAKnx+0kzs8r0+FWWW0yAAAECBOYpoD+ap6ZtESBAYIME+nyJ3QaReVkCBAgQIECAAAECBIYq\nYIA01COrXQQIECBAgAABAgQIdBYwQOpMZgUCBAgQIECAAAECBIYqYIA01COrXQQIECBAgAAB\nAgQIdBYwQOpMZgUCBAgQIECAAAECBIYqYIA01COrXQQIECBAgAABAgQIdBYwQOpMZgUCBAgQ\nIECAAAECBIYqYIA01COrXQQIECBAgAABAgQIdBYwQOpMZgUCBAgQIECAAAECBIYqYIA01COr\nXQQIECBAgAABAgQIdBYwQOpMZgUCBAgQIECAAAECBIYqYIA01COrXQQIECBAgAABAgQIdBYw\nQOpMZgUCBAgQIECAAAECBIYqYIA01COrXQQIECBAgAABAgQIdBYwQOpMZgUCBAgQIECAAAEC\nBIYqsMNQGzawdl0r7XljsmPHdh2Y+hd2XEd1AgQIECCwmoD+aDUZywkQGIyAAVI/DuUB2c0H\nJq9OLu6wyzdN3at2qK8qAQIECBBYS0B/tJaO5wgQGISAAVK/DuMfZXe7DJB+I/V/rV9NtLcE\nCBAg0AMB/VEPDpJdJEBgNgHfQZrNzVoECBAgQIAAAQIECAxQwABpgAdVkwgQIECAAAECBAgQ\nmE3AAGk2N2sRIECAAAECBAgQIDBAAQOkAR5UTSJAgAABAgQIECBAYDYBA6TZ3KxFgAABAgQI\nECBAgMAABQyQBnhQNYkAAQIECBAgQIAAgdkEDJBmc7MWAQIECBAgQIAAAQIDFDBAGuBB1SQC\nBAgQIECAAAECBGYTMECazc1aBAgQIECAAAECBAgMUMAAaYAHVZMIECBAgAABAgQIEJhNwABp\nNjdrESBAgAABAgQIECAwQAEDpAEeVE0iQIAAAQIECBAgQGA2AQOk2dysRYAAAQIECBAgQIDA\nAAUMkAZ4UDWJAAECBAgQIECAAIHZBAyQZnOzFgECBAgQIECAAAECAxTYYYBt6kOTtu/DTtpH\nAgQIEBi8gP5o8IdYAwkQ6CpggNRVbNvrfy+b2HfbN2MLBAgQIEBgmwT0R9vEZ2UCBIYqYIC0\n/kf2GnnJ5yfHd3jph6XuszrUV5UAAQIECEwT0B9NE/I8AQKbUsAAaWMO+wl52U93eOmbdair\nKgECBAgQaCugP2orpR4BAptGwE0aNs2h1lACBAgQIECAAAECBKYJGCBNE/I8AQIECBAgQIAA\nAQKbRmAIl9jtnKN1cLJ3sldycXJ28tXkpNHjTBQCBAgsVGDXbP33kwd2eJX6GXxQ8uWkfnZ1\nKcel8mu7rKDuwgX0Rwsn9gIECLQQ0B+1QFqrSp8HSLXvr0yekuyxSiM/n+VPTOoaa4UAAQKL\nFLhyNr5LUh/QtC37peINkn9LftJ2pdSr7yXeMDFA6oC2wKr6owXi2jQBAp0F9EedybZcoc8D\npDenKXV3tzcmH07OSH6cXCGpAVP98nBI8sXkTkl92qoQIEBgkQJ185VndHiBOtv0m8nLk//s\nsN4fpO7jO9RXdbEC+qPF+to6AQLdBfRH3c1+tUZf/0DcbmlBDYbulxzzq9asPPOuLD4tqV8o\nupa6Ffevt1ipvsv1zOT1Ler+NHWumHS5nKaOU73GL5MupdapctGlk9b/Xn60Tpd9rI3Xel33\nUdtKbsuynseN/5b29Wg9/ev1Zv1/U2edbl0bUDZUQH/Ujr8v/69qP7v2Y9q29Xtglt8j9Edb\nO/blvTW4/qivZ5D2z3uofnn/+Nbvpa2WHJslT9tqabsFh6RafbdpWtknFf5hWqXR83fI9Oot\n6zbV6ofGdZLvNgtaTusUa+WHLes31arNdZnQec2CltM6Lt9pWbepVj9Er5Wc0ixoOb1q6pVL\n7WeXUsfqjOQXXVZK3VnaVt9H2D35QcfX2jP1y74G013Kfqlcjl0GxGVY652cdCn1vrpScmaX\nlVJ3Pd9b9fOtXm+W91Y1q8slb1W/3lunJxfWgw5llvdWbf7kDq+h6uIE6vjpj6b76o+2NtIf\nbWmiP9rSox7V7zpV9EeXOvh3ikCNqOsXkd+eUq9+QaoB0jum1PM0AQIECBCYRUB/NIuadQgQ\nILDEAvXpfR9LfVpXn16/LqlL4Gq+Pimu7x7Vp3k3Tx6U1CVvByeHJHXWQCFAgAABAvMU0B/N\nU9O2CBAgQGCbBe6bLXwjqQ5qMnUJ1ZFJDZAUAgQIECCwSAH90SJ1bZsAAQLrKFDXew6h7JtG\n7JdcJTknqZsyVM5NFAIECBAgsF4C+qP1kvY6BAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIEBgXQSGcondumBtohepm1zsmlywido8ral1K/K6bFO5VGDnTOrveXW9zfqQ/er2/XXX\nzPOH3EhtI7DOAvqjrcH1R1ua6I+29KhH+qOtTTotMUDqxLVpKv8oLa07AioECHQTeEWqv7Tb\nKmoTILCGgP5oDRxPEVhDQH+0Bs60p/r6h2Kntcvz2ybwraz+F8lrt20zg1n7BmnJV5K6EUjX\nP7o7GISJhrw8j+sW+w+cWL6ZH34zjT9pMwNoO4EFCOiPtkTVH23pUY/0R1ub6I+2Num0xACp\nE9emqnxhWnvepmrx6o1tLjWsS6eYXOr0y0wu4nEphn8JEFiogP7oMl790WUWzZz+qJEwnZtA\n/QVwhQABAgQIECBAgAABAgQiYIDkbUCAAAECBAgQIECAAIGRgAGStwIBAgQIECBAgAABAgRG\nAgZI3goECBAgQIAAAQIECBAYCRggeSsQIECAAAECBAgQIEBgJGCA5K1AgAABAgQIECBAgACB\nkYABkrcCAQIECBAgQIAAAQIERgIGSN4KKwn8IAtPX+mJTbrsv9LuM5Kfb9L2r9Tsen/U+0S5\nTOD7mfWHhC/zMEdgHgL6oy0V9UdbetQj/dHWJvqjrU0sIUCAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAisg8Dz8xofXSF3Hnvta2T+xckXkuOTlyWXT8bL9nnw\n2OT9yUnJ25J9k8lymyw4LPlG8o/JA5JlKDtmJz6W/M8Vdma9278sRr8Wi+8nN1nBpI7zSu+b\neh80ZV5ubd9bzevOe3rzbPDdyTeTE5N6b183GS9t97HNsW3j1qbO+P6ZJ9AHAf3RpUdJf7T1\nu1V/dKmJ/mjr94YlBBYiUIOeGqwcPZE7jL3asZn/z+RxyXOT/07+XzJenpIH5yU1kHpMUtv9\nblK/yDXlOpmpdf8heURyeHJh8pBkI0t1Rm9JLk5etcKOrGf7l8VonzjU+6JMDp4w2X+0/JOZ\nTr5vaqDQlHm5tXlvNa8572kNDn+enJA8J/mfybeTM5NrJk1ps49tj20btzZ1mn0zJdAXAf3R\ndtvpj7Z+t+qPLjXRH2393rCEwEIEdshWa1Dz7DW2/rg8V78kHzhW53dGy240Wla/KP5XUoOj\npuyWmXOSlzQLMv1g8qWxxzVbn8x/dWLZej789bzYl5OfJr9IJgdI693+jTaqAU79sl/H8yfJ\nSgOkh46W753pamVebm3fW6vtx7Yur7NF9X/kqmMbulnmy+Xlo2Vt97HNsW3j1qbO2O6aJdAL\nAf3Rdtvpj7Z8q+qPtvTQH23p4RGBhQncNFuuX/R+Y41X+HCeO27i+SvkcQ1+XjZafkimtZ39\nRo+byZGZ+drowa6Z/jJ53uhxM6mzR7XuSpdxNXUWOf1GNv6vyQ2TGhBMDpDWs/3LYHTzGNRZ\nvb9NHpzUsTk4GS+vyIPTxhesMD8vt0Oy7WnvrRVefm6Lnp8tvWBia5fL4x8l/2e0/JBMp+1j\n22Pbxq1NndGumRDojYD+6NKz9vqjy96y+qPLLGpOf7Slx9I8ql8KlGEJ3GLUnOtm+vakzu68\nORk/M1Cd1jeT8XJ+HpyaNN8xqsFNnX35bjJear2mTl0/XO+hyW19a7RCU2/0cN0mj8kr3T45\ncZVXXM/2L4NRHdcaLP5+cu4qJtVpnZxUnU8ln05q4Hv5pCnzcmvz3mpecxHT12Sjr57Y8L3y\neI+kORvaZh/bHts2bm3qTOyyhwSWXkB/dOnl6fqjy96q+qPLLGpOf7Slx9I8MkBamkMxtx2p\nX3Sr1C+3NXD5dnJI8pWkLhuqctWkPi2fLGdnwbQ6P06d+uT8ykltp8pZl05+9W/VqdJs69JH\n6/fv5NmxyVdez/Yvg1Edn2bQOmnRPL55ZqoTv2vyiaSOcf3gflfSlHm6rfT+G39vNa+5HtPd\n8iLV1vr/8pbRC67W1vF9bHtsV9tWm/9v43VGu2ZCoDcCNx/tqf5o9UO2LT8fuv48avsza/W9\n3fZn9EdrG+qP1vZZt2d3WLdX8kLrJVC/3NYvn3+ZnD960Ttm+pmkvl/x1KQuHbogmSx1xuhK\nYwtXq1NVql5tp0qtN16ax+PbGn9+o+fXs/19MKprwv8mOSV55+jgvCLT1yXPSu6Z/FMyL7ds\natX3Xz1X75uf1cw6lKvnNep7RHW28+5J3byhKfN6/7dxa1On2S9TAn0R0B9NP1Jt/+/P4+dR\nvVaVpo++9NFlj5ehz9Yf6Y+a9+WGTp1B2lD+hbx4fZfhT5NmcFQv8tmkziDcrh6k1HdN6nKi\nyVLL/nu0cK06VaXq/WBUd/fRtJk022621SxflulabWv2ea061Y627e+DUXWaf5E0g6NqX5Uj\nLvl3/u+bNrajl17o5PrZ+r8kNTi6a/KlpClt9rHtsV1rW23eb02dZt9MCfRFQH80/Uht68+H\negX90WXOe4w8aslatvV8ubWpU3UXXfRHixbuuH0DpI5gPah+g+zj9VbYz/FLmuoHwkqXv+2V\n5XVJXpWqs8so9bgpe2emnqsBWE2r1LLx0my72db4c8swv57t74PRFXNQbpY0l180x6gu3xgv\n83Sb9t4af91FzN8kG62zquclt0/qEtTxUm2dto9tj21bt+b/zfh+jP+fHF9unkAfBG6QndQf\nrX2k2v58mMfPo7Y/s9be48U+qz/SHy32HWbrm1agPgWvGyvU311oSnVQdZbg70YLXphpXUq0\n6+hxTe6QVJ3714OUA5JfJv+jHoxKnfquy7COGD2uyReS9449rtnXJjUg27kebHD5SV7/VRP7\nsN7tXyaje8eijvPBYyYHjpbVJXXjpZyqbq1TZV5ubd9bl77q/P+9bjZ5VvLPyVWSlUrbfWxz\nbNu4tamz0n5aRmCZBfRHWx4d/dGWHvqjS/9Auf5oy/eFRwQWIvCUbLV+qX19UgOj+yX/ktQt\nvPdPqtSZgnp8dHKt5MZJfYL+oWS8vCcPvpfcLtkzOTQ5Oxk/Y/SoPL4weXpS2314UoOvxyfL\nUFbqkNa7/ctktFKHVMfp2ORnySFJHd8/SM5IPpk0ZZ5ubd5bzevOe/qBbLDes3+U1HfyxnOf\nPG5Km31sc2zbuLWp0+yXKYG+COiPtjxSP8nDyQ/s2v7fn9fPozY/s7bc68U90h9tt53+aHHv\nL1smsJXA87OkBkA1UKrU4OemyXj5jTyoM031fA1o6ofvPsl4qWt5P5JclFS945MHJpPlRVlQ\nlypVnVOTP02WpazUIdW+rXf7l8VotQ6pBsDvSuoYVs5P3pZcORkv83Jr+94af+15zFc7mzau\nNH3f2Iu03cc2x7aNW5s6Y7tnlkAvBPRHlx0m/dFlFjWnP9IfbfmO8IjAOgjskNeoS6fql7y1\nynXy5OQvwZP1d8uCOtO0VqlL+q6f1GV4fSrr2f4+GO2Sg3ejZKcpB3Febm3eW1N2ZeFPt9nH\ntse2jVubOgtvtBcgMEcB/VE7zDb/9+f186jtz6x2e76YWvqjrV3ndfxry23eb23qbL2XlhAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAgaUXuNI67OHl8xo7rcPreAkCBAgQ6K+A/qi/x86eEyBAoPcCt0oL/jE5I7k4OSF5bXKb\nZJZSA6AHrLDiE7LsC8m5yQXJV5JXJTsk4+UaeXD78QUt52ddr+XmVSNAgACBBQvojxYMbPME\nCBAgMF3g2anyi6QGK89JHpq8OvnP5OfJHZOu5W+zwpcnVnppHtfg68PJ85KnJe9NzkuOTbZP\nmvLDzLy4edBhOut6HV5CVQIECBBYkID+aEGwNkuAAAEC7QVumqo1OPq/yY4Tq10xj49Pzk4O\nmnhu2sO3pcKXxipdLvM1eKkB0WR5ZRbUwGn8bFUNmmYZIM263uQ+eUyAAAEC6yugP1pfb69G\ngAABAqsI1GV1ZyZXXeX5a2b5OcnfjT3/N5mvs0zj5W55UHXqe0XPSr6R/CipZTdJdk1+kbwu\nmSxXy4JXJ7dNav1a55fJ55NDk6bsn5m/Sj6SfDx5Q3KjpMpa6+2S51+WVFs/mDw/mRwMZpFC\ngAABAhsooD/aQHwvvTkF6tNrhQCBrQXqez7HJj/Z+qlLlpyef+tMUA1emvK4zNQ14uPlxnnw\npKS+S/RfyfnJhUkNvuq7RjXI+qfkKUkNhupsUfP/sgZSL0iOS+pMUq1T058lZyVVbp2ckNwu\n+f+SbyQ1SPticvVktfX2yHN1qd9zku8k/5b8YfLpZPJ7T1mkECBAgMAGCeiPNgjeyxIgQIDA\nZQJ7ZbYGFn9y2aIV5/46S+uMTp0FqlKDqcl1npFlta0rJVUmL7GrZXUm5z1J1avUpXvvSx6f\nNIOlzF5SJi+Vq+80nZzUZX9NuW9majuPbBZkOrneoVlWA7X9xurcMPO13jPHlpklQIAAgY0T\n0B9tnL1X3sQCk798bWIKTSfwK4GdR3N1dmet8tM8WTdQ2NbL0mo7v5UckPx+8snkLskRyUeT\nOtuzWqn6dYnduUndIe/6yb5JlRp4rVYemCc+m9TPgFq/Ume0/iO5T6IQIECAwMYL6I82/hjY\ng00o4FKaTXjQNXmqwHdT4wfJgVNq1oDmpOTHU+q1ffpbqfj6Uer/5rOSuuzuhaNkslWpM0f1\nfA2w6gxQlX+/dLLF3e9Giy6Z1ICuBlF19ujblyzZ8h8fnGzp4REBAgQ2SkB/tFHyXndTC/hF\naFMffo1fQ+Bf8ty9kvFL18arXyUP7p5UvabU5Wk1+Bgva539qXpPSr6f7F4Pxkpd/vZXyWeT\nu40tn5z9P1nw/OSo5J7JbsnDkirbXzrZ6t+6KcTPkiOT2r/J3C7LFAIECBBYDgH90XIcB3ux\niQQMkDbRwdbUTgJ/k9rXSP40mRxo1OM6s1ODkSOSptSlcnVjhPFys/EHmb8oqUvhmvL5zFwr\nWel7Pztl+f7JV5Om1CCs+X9b26kbMrw1eWXymaS+a3TLpMr464yvV8+dkDwgqfr1nafKz5M3\nJY9OFAIECBBYDgH90XIcB3tBgAABAhH47aRuwlDfA6r5mye/k3w8qbMwD0nGy7vzoAYcv5Uc\nkPyvpM7U1OCkuUnD32b+v5MHJTUAq/KupOocnfxuctekzix9Kam6t02ackZm6q53dXarSs3X\nZX43Tuo17pecldT2npc0ZXK9OttUdepmEHdMan/fmtT+3yhRCBAgQGB5BPRHy3Ms7AkBAgQ2\nvUB1SnW2pQYTlTrTUoOK+yeT5XpZUGeEmrqfy3ydjalMSBiuAABAAElEQVTHNXipcuvkzKSW\n/V5Spc5IvST5RlIDsnquBip1WcVByXipQVfdKrzqXC25XfLPSa1XOTGpmyx8MXlP0pTJ9Wr5\nw5PTktrWhUmdgaoBoEKAAAECyyegP1q+Y2KPCBAgsKkFajBSN0FoLm9bC2OvPLnnWhXyXG2v\nBkaTpQZS9To7Tj4x9rguvdtt7HHN1qV9lbXKSutV/b2TPdZa0XMECBAgsDQC+qOlORR2hAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECCwDgLbr8NreAkCGylw/bz4fivswEVZdl7yg+S7Kzy/\nQ5bdebT8jEy/tkKdoS26XBr0gOTyyfHJ95OVyjWz8CbJ95JvJhcnCgECBAisLaA/WtuneXav\nzNwgqT7ppKT66dXKlfLEwcmFyVeT8xOFAAECBKYIvDrP1y/wa+Xzef72E9vZfWydd048N9SH\nfzzW5kes0MhrZ9lHx+qU6WnJ3ROFAAECBNYW0B+t7XOtPH1UUh9gjvfZH8jj6yST5flZ8Iuk\nqVsfej5lspLHBAgQILC1QJsOqX64np0cMLb6Zhsg1SDnl0nT0UwOkHbOc/VJXvP8eAdWn9zd\nL1EIECBAYHUB/dHqNjvlqeOSlfqYWlZnh66QNOXpmVmt7iObSqYECBAgsLLAeIf0tFTZN6lP\noq6b3CE5Nml+yP6vzDelLrG71ygHNQsHON0lbfqT5Nykcajp5ADphWPP/2Xm90yemTSDqi9k\nXiFAgACB1QX0R6vbPDRPNX3QMZmvyxEr4330o/K4Sl16962k6p+eXDf5teScpJZ9MVEIbJNA\n/RKoENgsAj9KQ08Za+zJmX9Rcs/Rsvph3JT6ft5uowf/3SzM9BZJ1auzJu9L6rKzOvtSZ5/q\ne0ofSn6ejJcr5cGDk+slNSA5I/lcUpf2TSv1naC6FntaeW8qfGdapRWer46k2X75XG2FOrXo\njqPl1fn8WXJWcmhSHdbtk1smVeeziUKAAAECawvoj7b0ue3Yw7/IfA2Aqvx10vTRB2X+HaPH\n1Z9WOSw5uWZS/k/yrOTXk1snbfrYVFMIECCw+QTGP7GbPCtSGr+X1C/9lUcnTVntErv6YVx1\na9BUg5efjh4326hBUl1H3ZQ6S1WfcDXPj09rW9PK0akwvs5q8/eftqFVnq+BTg0aa6Dz5KTZ\n/qTVCaPnJm9o8dKxdZ6aeYUAAQIEVhbQH63s0iyty+z2Sy7fLMj0iUnTLz19tLymzbKHjJbV\n5JCkWV59mkJgZoEdZl7TigT6J/Ck7PJdkzo7VD+A6xOouydVjknqjFDbcuVUrPp1XfQXkhqg\n1MDoxslzk+clVY5M6o48NbA4KqnvOj0wuV1Sl/z9Y/LBZKNKddivT36WlM9q5Xt54qZJXaJ4\njeSHSZUDLp1c8m+dTVMIECBAYLqA/mhrowuyaPxDuOqnf3dUrQY+nxnNj38I+ePRspqMz4/X\nGatilgABAgRKoAYAzSdKq03rh+r+VXmsTDuDVNuqy9qacnBmmu3/02jhNceWvSnz9cO+Sg2u\nXpvUGZcadKxVrpQnr9oiO6y1kZbPVYfdtGHyDNILxp6r7yxdIak21xmoZp3DM68QIECAwMoC\n+qOVXVZaWh9k/l3S9C9vHatUl9I1y28ztvzeY8v/Ymy5WQKdBebxS1XnF7UCgQ0S+GZet677\nrh+8dSq/BkF1w4aafiV5ZvJ/k7alvoPTlFq/zsLU4Odqo4V1luUnSQ1wnpI8NPlEUgOo6ih/\nkEwru6bCLtMq5fn65O3CFvVmrfK6rPjE5AbJi5M6+7V7Ml5qHxQCBAgQmC6gP1rd6HJ56i3J\nIaMqJ2X6/NF8TS4amx+frb69KavVaZ43JUCAwKYWGP/EbvKsSMHUp09nJ/VpVE13TKrUL//N\nJ1TvvGTJpf8cNrZ88uxPDYhqnfq+TlMenpkauDTbaqb1w/u9yT7JWuXoPNmss9a0LvHb1rLW\nGaTa9jWSDyRNe07N/B8nzX7VwEkhQIAAgZUF9Ecru4wvrcFRfVDZ9CvfyPzk5dt1FUPz/J0y\n35SHZKZZ/pxmoSmBWQTqjagQ2MwCx6fxHxsB1Jmeu3fAOH+i7kqfWNX3jg5I/iz5clI/vKvU\nJ131w7ye70upAeCDkqsk+yU1uDs5acr3mxlTAgQIEOgssNn7o+oX35o8biT39Uzvmkz2LXXj\no6bUn5xoyvj8ac1CUwKzCLjEbhY16wxN4CZjDZoc9Iw9tdVsM9jZ6omxBdfK/P5JnXmqMyx1\n+d1vJvVJ4t5J3ayhBhx1V7yVyuuz8MMrPTGx7CsTj+f98GbZ4B2TuklDXVr4vaTKPS6dXDLw\n+/xo3oQAAQIEZhPYzP3RH4VsfHB0lzw+cwXGk8aW3SrzdTVGlVtcOrnk3/8cmzdLoLOAAVJn\nMiv0WOCe2fe6dK5KnT29YvKwpOmQfp7545J5ld/Kht492tgxmdYZo/oOVF0294dJDZBqYPTT\nZLXyydWeWOflZVSDtSp1qd1Lk8ckv5NU+WDyH5fM+YcAAQIEpgnoj7YUOjAPXzm26MTMP2/s\ncc3+S/L+5NjkO0l9+Pj0pPrUKyVPSKpUvUV/aHjJC/mHAAECfRWoMzUXt0hdHvfbY42sgVSz\n3mrfQTpgrH7NNn/v6ITR8stn+umk2U4NwP4tOW9s2UsyvyzlSdmRZl8fMbFTu+Txt8aeb+rV\ntL67dfNEIUCAAIHVBfRHq9tUXzjer6w0f+jY6k9Zo/6DxuqZJTCTQH2KrhDYjAJ1o4Fzkx8m\n70jum9SnUPMsv8zG6nK61yXnJHXG6hbJFZIzkmcnr0r6UOosV3U6nx/b2Wrf55JbJvX9KoUA\nAQIEugvoj7bb7pEd2d6c+o9P6qqMptR8fbhXNxNSCGyTQH0hTiFAYPECO+Yl9kn2SOrLo83Z\npsz2ruybPd4rqS/Q/qx3e2+HCRAgsLkFhtQf1ZGsqznqjNO3R9NMFAIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAgfkIbD+fzWzoVnbOqx+c7J3slVycnJ18NTlp9DgThQABAgQILFRAf7RQXhsnQIAAgWkC\nO6TCnyU/SmpQtFKOz/KDEoUAAQIECCxKQH+0KFnbJUCAwAYI1A/1vpY3Z8cflrwx+XByRvLj\n5ArJHskNk0OSLyZ3So5LlOEI7JKmXH+G5lyUdb6W1FQhQIDAPAT0R/NQ7O829Ef9PXb2nMCg\nBHZLa36Z3KdFq96VOn/dop4q/RJ4fXZ3pbOGbZY9ol9NtbcECCyxgP5oiQ/OOu2a/midoL0M\ngfUS6OsZpP0DVL8If7wF1LGp87QW9VTpl0CdKazB71M77va/p36tqxAgQGAeAvqjeSj2exv6\no34fP3tPYCuBvg6Q6gYMZyUPSY7eqlWXLaj21dmCEy9bZG5AAhekLT/p2B6X1nUEU50AgTUF\n9Edr8myaJ/VHm+ZQa+hmEOjrAKl+yT0sOTJ5dPKB5PSkbtiwU9J8B+kxmT8guX2iECBAgACB\neQvoj+YtansECBAgsE0C983a30hW+t7JL7K8BlB1C3BleAKHp0lvm6FZ38s6j51hPasQIEBg\nLQH90Vo6w35OfzTs46t1m1Cgr2eQmkP10cwcmOyb7JdcJTknOW2UczPdlnJUVr5Jiw1cO3Xq\nbNUHW9RVhQABAgSGJ6A/Gt4x1SICBDapQN8HSM1hOyUzlXmXt2aDNfCaVv4qFXzxf5qS5wkQ\nIDB8Af3R8I+xFhIgMHCBoQyQxg9TfQfpLkmd+am/gfSZZNbykZYrvjr1zmtZVzUCBAgQ2BwC\n+qPNcZy1kgCBgQlcrsftqRsx/H3yX8lXkvsnuyZfTz6WvDb5dPL2ZPtEIUCAAAECixDQHy1C\n1TYJECCwQQJ9HiC9LWYPTd6X1CCpBkL/Lzk7eXCyT/KipG7z/eREIUCAAAECixDQHy1C1TYJ\nECBAoJNA3ZTh4uSBY2u9d7Rs8pbe787y+vLsIkvdGOIBi3wB295KwF2DtiKxgACBDRDQH20A\n+pK9pP5oyQ6I3SGwrQJ9PYNUZ4fqb098YgzgU5mvgcpxY8tq9tik7jKnECBAgACBeQvoj+Yt\nansECBDYYIG+DpC+Hbfa90eO/HbM9OFJfQfpnqNlzeSumflW88CUAAECBAjMUUB/NEdMmyJA\ngMAyCPT1LnZnBK++b1SntZ+YHJDU2aO/TP4uOSw5PqnvH/1O4vK3ICgECBAgMHcB/dHcSW2Q\nAAECGyvQ1wFSqdWNF76T3Cepu9a9Jqk72N0q+fOkyi+SFyYfrgcKAQIECBBYgID+aAGoNkmA\nAIGNEujzAOmCoL1slHG/u+ZBXRN+w6Ru/31WoqyPwN55mV1meKm686DjNAOcVQgQWAoB/dFS\nHIYtdkJ/tAWHBwQIdBHo8wBprXaemicryvoJXDkvdUpy+Rle8uSss/8M61mFAAECyy6gP1r/\nI6Q/Wn9zr0hgUAJDHSAN6iD1pDF1o4waHN07+VqHfX5Q6r68Q31VCRAgQIDAWgL6o7V0PEeA\nwFQBA6SpRCp0FPhh6p/WYZ0fd6irKgECBAgQaCugP2orpR4BAlsI9PU231s0wgMCBAgQIECA\nAAECBAjMQ8AAaR6KtkGAAAECBAgQIECAwCAEXGI3iMOoEQsW2D3b/2Cy8wyv89ms8wczrGcV\nAgQIECAwKaA/mhTxmMACBAyQFoBqk4MT2Cst+o2kbiZRf5C4bblTKt6tbWX1CBAgQIDAFAH9\n0RQgTxOYh4AB0jwUbWOzCLwhDT2jQ2PrDxU/sUN9VQkQIECAQBsB/VEbJXUIzCjgO0gzwlmN\nAAECBAgQIECAAIHhCRggDe+YahEBAgQIECBAgAABAjMKGCDNCGc1AgQIECBAgAABAgSGJ2CA\nNLxjqkUECBAgQIAAAQIECMwoYIA0I5zVCBAgQIAAAQIECBAYnoAB0vCOqRYRIECAAAECBAgQ\nIDCjgAHSjHBWI0CAAAECBAgQIEBgeAIGSMM7plpEgAABAgQIECBAgMCMAgZIM8JZjQABAgQI\nECBAgACB4QkYIA3vmGoRAQIECBAgQIAAAQIzCuww43pWI9BXgZ2z4/dO9ujQgGt0qDte9Sp5\ncLXk2eMLW8xfnDofTU5qUVcVAgQIEOingP6on8fNXm8CAQOkTXCQNXELgd3z6DeTg7ZYuvaD\nGuhU2TM545K5dv8cnGp7J09oV/1Xta6XuX2SF/xqiRkCBAgQGJqA/mhoR1R7BiNggDSYQ6kh\nHQSOTt3f61C/BlQf6VC/qbp9Zs5Pbt4saDn9UOrVugoBAgQIDFtAfzTs46t1PRXwHaSeHji7\nTYAAAQIECBAgQIDA/AUMkOZvaosECBAgQIAAAQIECPRUwCV2PT1wA9vtupys640Q6sutCgEC\nBAgQmKeA/miemrZFoKcCBkg9PXAD2u36fs7Vky43P2iaf2IzY0qAAAECBLZRQH+0jYBWJzAU\nAQOkoRzJ/rajzgRdlNy0YxM+nPo7dlxHdQIECBAgsJqA/mg1GcsJbDIBA6RNdsCXuLlf77hv\nF6S+AVJHNNUJECBAYKqA/mgqkQoEhi3gJg3DPr5aR4AAAQIECBAgQIBABwEDpA5YqhIgQIAA\nAQIECBAgMGwBA6RhH1+tI0CAAAECBAgQIECgg4ABUgcsVQkQIECAAAECBAgQGLaAAdKwj6/W\nESBAgAABAgQIECDQQcAAqQOWqgQIECBAgAABAgQIDFvAAGnYx1frCBAgQIAAAQIECBDoIGCA\n1AFLVQIECBAgQIAAAQIEhi0whD8UW3/5+uBk72Sv5OLk7OSryUmjx5koBAgQIEBgoQL6o4Xy\n2jgBAgTWR6DPA6Ta91cmT0n2WIXr81n+xOSEVZ63mAABAgQIbKuA/mhbBa1PgACBJRLo8yV2\nb47j05PDk7skN0qukeyb1BmlRyRnJl9MbpsoBAgQIEBgEQL6o0Wo2iYBAgQ2SKCvZ5B2i9fj\nk/slx6xgd2qW1SV2RyXvSh6VHJcoBAgQIEBgngL6o3lq2hYBAgSWQKCvZ5D2j1191+jjLQyP\nTZ07t6inCgECBAgQ6CqgP+oqpj4BAgSWXKCvA6Q6O3RW8pApvnWGrC61O3FKPU8TIECAAIFZ\nBPRHs6hZhwABAkss0NdL7C6K6WHJkcmjkw8kpyc/SnZK9khumDwmOSC5faIQIECAAIF5C+iP\n5i1qewQIENhggb4OkIrtFcnxyaHJSmeSLszy+g7S45L6hG+WcrestF+LFcuxBmYKAQIECGw+\nAf3R5jvmWkyAwIAF+jxAqsPy0eTApO5cVwOZqyTnJKeNcm6m21Kem5Vv2mIDNTi6Zot6qhAg\nQIDAMAX0R8M8rlpFgMAmFOj7AKkOWV1Od8oo9fiOyb2TGiR9LqnvKs1aHthyxRqUfa9lXdUI\nECBAYJgC+qNhHletIkBgkwn0eYB0gxyrP0n2TOpSuDp79J7kHklT6k53z0le1ywwJUCAAAEC\ncxbQH80Z1OYIECCwkQJ9HiD9deCuk/zRCPC1md4heWlSf/uo/jZF3cGultcfjD0yUQgQIECA\nwLwF9EfzFrU9AgQIbKBAXwdIV4vZvZI6c/TZkd9DM317Ul+WbUr9cdgDknrOAKlRMSVAgACB\neQnoj+YlaTsECBBYEoHLLcl+dN2Na2eF2vfm7nTbZ75utfqZZLL8UxZcb3KhxwQIECBAYA4C\n+qM5INoEAQIElkmgrwOk/whi3aHu+UkNjuq7Rv+YHJKMlyvmwaOSL48vNE+AAAECBOYkoD+a\nE6TNECBAYFkE+nqJXf2No99P3pr8evKmpK4Bf0dSfxupLrXbKak/Irt/8thEIUCAAAEC8xbQ\nH81b1PYIECCwwQJ9HSAV2xHJGcmLkvcn4+XWowcfy/TJybfGnzRPgAABAgTmKHBEtqU/miOo\nTREgQGAjBfo8QCq3uqyuUn+kdZ+krgWvM0enJt9NTksUAgQIECCwaAH90aKFbZ8AAQLrJND3\nAVLDdHpmKl9oFpgSIECAAIENENAfbQC6lyRAgMA8Bfp6k4Z5GtgWAQIECBAgQIAAAQIELhEw\nQPJGIECAAAECBAgQIECAwEjAAMlbgQABAgQIECBAgAABAiMBAyRvBQIECBAgQIAAAQIECIwE\nDJC8FQgQIECAAAECBAgQIDASMEDyViBAgAABAgQIECBAgMBIwADJW4EAAQIECBAgQIAAAQIj\nAQMkbwUCBAgQIECAAAECBAiMBAyQvBUIECBAgAABAgQIECAwEjBA8lYgQIAAAQIECBAgQIDA\nSMAAyVuBwPIJHJRd+sPklx1zfurfIlEIECBAgMA8BPRH81C0jd4J7NC7PbbDBIYvcIU08cTk\nGR2bekzq79lxHdUJECBAgMBqAvqj1WQsH7SAAdKgD6/G9VjgnOz7Jzru/8Ud66tOgAABAgSm\nCeiPpgl5fnACLrEb3CHVIAIECBAgQIAAAQIEZhUwQJpVznoECBAgQIAAAQIECAxOwABpcIdU\ngwgQIECAAAECBAgQmFXAAGlWOesRIECAAAECBAgQIDA4AQOkwR1SDSJAgAABAgQIECBAYFYB\nA6RZ5axHgAABAgQIECBAgMDgBAyQBndINYgAAQIECBAgQIAAgVkFDJBmlbMeAQIECBAgQIAA\nAQKDEzBAGtwh1SACBAgQIECAAAECBGYVMECaVc56BAgQIECAAAECBAgMTsAAaXCHVIMIECBA\ngAABAgQIEJhVYIeWK14x9bZvWbeq/bxDXVUJECBAgEBbAf1RWyn1CBAgQGAmgbYDpB9k67u1\nfIXzUq86MIUAAQIECMxbQH80b1HbI0CAAIEtBNoOkJ6dtd6UfHiUMzPdO3lMcqvkJUkNjKpc\neOnEvz0WeGf2/X4z7v81ZlzPagQIEGgjoD9qozScOvqj4RxLLSHQG4G2A6Snp0V/nLx6omWH\n5/F/JPVL8QsnnvOwvwL7Z9ePSt7ToQn1HnhLctUO66hKgACBrgL6o65i/a6vP+r38bP3BHop\n0GaAVJfW3Tq5/wotvCjL3pDUmSRlWAJfT3M+1KFJ1+lQV1UCBAjMIqA/mkWt/+voj/p/DLWA\nQK8E2tzF7py06MfJLVdpWQ2eTlnlOYsJECBAgMC8BPRH85K0HQIECBBYVaDNGaQ6S/Tu5O3J\ny5N/Tn6S1BmDJyWPSu6VKAQIECBAYJEC+qNF6to2AQIECFwi0GaAVBWfkdTNFw6tB2PljMzX\n5XWfGFtmlgCBjRGoM8J/kDy848vX/+O60YpCoA8C+qM+HCX7uNkF9Eeb/R3Q8/a3HSDV4Kg6\npfol6hbJPsm3k39LfpYoBAhsvEB1SHV3yTrD27bslYpPTgyQ2oqpt9EC+qONPgJen8B0Af3R\ndCM1llig7QCpacKvZeZGSd3S+zNJ3eL7C4lCgMByCNQtcf93h125a+reo0N9VQksi4D+aFmO\nhP0gsLKA/mhlF0t7INB2gLRr2vKu5L6jNn08039IjkvqLnbPS5q/g5TZdS0759UOTuqT8/o0\n/OLk7OSryUmjx5koBAgQIDAAAf3RAA6iJhAgQGCZBdoOkF6XRtSndXVDhhsnd0h+njwzeU3y\nqeToZD1L7fsrk6cke6zywp/P8icmJ6zyvMUECBAg0C8B/VG/jpe9JUCAQO8E6hrRaaXqPDJ5\nalJnjX6aVKkzNYclb00ekKx3eXNesP5g4OHJXZIbJfXHSvdN6ozSI5Izky8mt00UAgQIEOi3\ngP6o38fP3hMgQKAXAm3OIO2Zllwx+e4qLarldWZpPUv9scDHJ/dLjlnhhU/NsrrE7qikLg2s\n/avLARUCBAgQ6K+A/qi/x86eEyBAoDcCbc4g/TCt+VHymBVatX2W1SVsJ67w3CIX7Z+N1xms\n+i7UtHJsKtx5WiXPEyBAgMDSC+iPlv4Q2UECBAj0X6DNGaRq5V8lL02uk9TA5MpJ3Rr4kOTA\npAZJ61nq7NBZyUOStb77VO2rS+3WewCXl1yKcpvsRZ1p61rqOF+z60rqEyBAYB0E9EfrgLyA\nl9AfLQDVJgkQWIxA2wHSn+fld0mem1xhtCu3y7TOLP1u8rnRsvWaXJQXOiw5Mnl08oHk9KT2\nZ6dkj+SGSZ31OiC5fbIZy4PS6Icln+7Y+KulfvkpBAgQWDYB/dGyHZF2+6M/auekFgECSyDQ\ndoD0suzrx5LXJjdN9k7qu0d1JuecZCPKK/KixyeHJnUmabLUHxOs7yA9Lqn93KzlhDS8zqJ1\nKRt1TLvso7oECGxOgZel2fqjfh57/VE/j5u9JrDpBNoMkHaNyouTc5NPJZ9MlqV8NDtSl/jV\nnev2S66S1C/3p41S+7wtpb6/dLMWG7hS6ly3RT1VCBAgQGB2Af3RdDv90XQjNQgQILCmQJsB\nUt3W+5tJDRTqpgz1HaRlK6dkhypNqcv/6tbedQnetpQ/zso1+JpWjkiFU6dV8jwBAgQIbJOA\n/mg63xGpoj+a7qQGAQIEVhVoM0CqAdEbk1cmX0m+lNT3fcZLXcL29+MLNnj+/nn9ByfbOkD6\n12yjMq28JRXqkj6FAAECBBYnoD+abqs/mm6kBgECBNYUaDNAqg08Kzkvqe8eVSbLB7JgPQdI\nB+X11hr87JXn61KMut65yjHJ8y6Z8w8BAgQI9FlAf9Tno2ffCRAg0AOBtgOk6y1ZW87M/lwu\nuXFSZ3jqEsDxcvM82DGps11VTr7kX/8QIECAQN8F9Ed9P4L2nwABAksu0HaAtGzNqEv8bpW8\nOnlC8rbkDUlT6nLAusSu7mCnECBAgACBRQnojxYla7sECBDYIIE6C7NS2TMLD0n2WOnJJVlW\nd6h7ZvLbSd1M4SPJSpf/ZbFCgAABAj0V0B/19MDZbQIECPRVYLUB0vXToLcm43dw2z2PX5HU\nc8tU6lbf9Z2k85P6zlENmBQCBAgQGIaA/mgYx1ErCBAg0BuBLpfY1QDpJcmnk28tWQvPyv48\nNHlSckTy0+SHiUKAAAECwxPQHw3vmGoRAQIElkZgtTNIS7ODHXfk8P+/vTuBtq6s7wMMARQH\nBImAUBCIgMQBqBbFIY1JM9VInDI0jcNnk0VrNCS2EjO54lRXl01iEDSpMYmtWTYhBm0SEy2x\nVqWmosQB7VJQA1FEAgoOTPIB/f35zvbb99xp73PPOfecfZ93rd/dw3n39Ox973vfu/c5N/Xr\nAxo+nHyi57KqEyBAgACBaQloj6YlaT0ECBCYs0CfO0hz3rWJN1efaPfkiZe2IAECBAgQmI6A\n9mg6jtZCgACBuQoM7Q7SXPFsjAABAgQIECBAgACBYQnoIA3rfDoaAgQIECBAgAABAgS2ILDZ\nI3bvz7rvGK2/6Uy9LdO7x7b59kzX/yNSCBAgQIDALAS0R7NQtU4CBAgQWCWwXgepPhXuj1bV\nXn/Gpeu/5BUCBAgQIDCxgPZoYjoLEiBAgMAkAut1kOpjvJ81yQotQ4AAAQIEpiigPZoiplUR\nIECAwOYCzWNzm9dUgwABAgQIECBAgAABAgMX0EEa+Al2eAQIECBAgAABAgQIdBfQQepupSYB\nAgQIECBAgAABAgMX0EEa+Al2eAQIECBAgAABAgQIdBfQQepupSYBAgQIECBAgAABAgMX0EEa\n+Al2eAQIECBAgAABAgQIdBfQQepupSYBAgQIECBAgAABAgMX0EEa+Al2eAQIECBAgAABAgQI\ndBfQQepupSYBAgQIECBAgAABAgMX0EEa+Al2eAQIECBAgAABAgQIdBfQQepupSYBAgQIECBA\ngAABAgMX0EEa+Al2eAQIECBAgAABAgQIdBfQQepupSYBAgQIECBAgAABAgMX0EEa+Al2eAQI\nECBAgAABAgQIdBfQQepupSYBAgQIECBAgAABAgMX0EEa+Al2eAQIECBAgAABAgQIdBfYv3tV\nNQkQGKDAUaNj+uQEx3ZhlnnJBMtZhAABAgQIjAtoj8ZFTG+bgA7SttHbMIGFEDhstBev67k3\nT0n9R/dcRnUCBAgQILCegPZoPRnz5y6ggzR3chsksJACr++5V0en/qN6LqM6AQIECBDYTEB7\ntJmQ12cu4D1IMye2AQIECBAgQIAAAQIElkVAB2lZzpT9JECAAAECBAgQIEBg5gI6SDMntgEC\nBAgQIECAAAECBJZFQAdpWc6U/SRAgAABAgQIECBAYOYCOkgzJ7YBAgQIECBAgAABAgSWRcCn\n2C3LmbKfBAj0FXhkFnhjMskfgmq58/tuUH0CBAgQILCGgPZoDZRFnqWDtMhnx74RILAVgZOy\n8AlJ339m+5NZ5vStbNiyBAgQIECgJaA9amEsw6gO0jKcJftIYPEE6q7MvZLqgPQp90nlW5I7\n+yyUurcmX+i5TFW/KTm353Knpv5+PZdRnQABAgS2R0B7tD3ug96qDtKgT6+DIzAzgTOy5u9K\nrpjZFlav+MTM+szq2eYQIECAwA4W0B7t4JM/q0PXQZqVrPUSGLbAATm8rySn9DzM6lBdnDy3\nx3L3T93LkrpjpRAgQIAAgbaA9qitYXwqAjpIU2G0EgI7UqAek7u655HXMvW4XJ/l6pE8hQAB\nAgQIrCegPVpPxvyJBIbQQTowR17vGTgyOSK5K7kh+Xhy+Wg6A4UAAQIECMxUQHs0U14rJ0CA\nwHwElrmDVPv+iuSs5NB1uD6U+T+d1OM5CgECBAgQmIWA9mgWqtZJgACBbRKY5P+DbNOurtrs\nGzLnZ5P6fyXfnZycHJ4ck9QdpR9PrksuTR6TKAQIECBAYBYC2qNZqFonAQIEtklgWe8gHRyv\n5yRPSt61ht0XMq8esfvT5IKk/q/JBxOFAAECBAhMU0B7NE1N6yJAgMACCCxrB+n42NV7jd7d\nwfCi1Hleh3qqECBAoATqznr9v6Zja6JHqTcJf75HfVWHIaA9GsZ5dBQEFlFAe7RNZ2VZO0h1\nd+j65KnJWzewq+OrR+0+vUEdLxEgQKAtcHomHpo8oz2z4/jTUu/tHeuqNgwB7dEwzqOjILCI\nAtqjbTory9pBqr/Uvj55S/JTyZ8nX0q+nNwjOTR5SPLM5ITksYlCgACBLgL1PzWuSp7YpXKr\nzt9mvO48KTtLQHu0s863oyUwTwHt0Ty1W9ta1g5SHcLLk0uS85K6kzRedmdGvQfp2Un9hW+S\n8vQsdFyHBesC9k8sO0CpQmALAs/KsvWHkK7ltFS8Z9fKY/Xq58eVY/M2m7xjswpeH6yA9miw\np9aBEVhTQHu0JstwZi5zB6nOwjuTE5Njknq/wP2SrydfHGWr/2CyHpepR202K+VYd60UAgSm\nL1Bvgq9Sj7zdePdYty9Hp1r9TFAIzENAezQPZdsgsL0C2qPt9Z/b1pe9g1R3bR6V1JvY6uO8\nb0rGy7/IjNuSi8df6DBdfyHoUqpTdnWXiuoQINBbYN/REudkeGGPpc9N3ef3qK8qga0IaI+2\nomdZAsshoD1ajvO05b2sjsWylkdkxz+RvD95b3JlUh/IMF5+OTPOHp9pmgABAgQITElAezQl\nSKshQIDAIggsawepevBvTm5PdiX1QQ2fTP4keXGiECBAgACBeQhoj+ahbBsECBCYo8CyPmJ3\nXIxOTX4gqf9zVKU+0e6VyX9K6tPs3pgoBAgQIEBglgLHZeXao1kKWzcBAgTmLLCsHaQHxqk+\nWrU+Vrddfi0TByW/k3w+eVeiECBAgACBWQloj2Yla70ECBDYJoFlfcTuynjVvj9lDbcXZl79\no8YLkvoAB4UAAQIECMxK4MqsWHs0K13rJUCAwDYILGsH6ZpY/WVyXnJ+8k+SptSdpXpPUt1d\nqg9veFiiECBAgACBWQhoj2ahap0ECBDYRoFl7SAV2XOT9yXPS05I2uWbmah/8lr/KLYef1AI\nECBAgMCsBLRHs5K1XgIECGyDwLK+B6mork+emhyS1P85Gi83Z0Y1WvV+pMPGXzRNgAABAgSm\nJKA9mhKk1RAgQGARBJa5g9T43diMrDO8ZJ35ZhMgQIAAgWkKaI+mqWldBAgQ2CaBZX7EbpvI\nbJYAAQIECBAgQIAAgaEK6CAN9cw6LgIECBAgQIAAAQIEegvoIPUmswABAgQIECBAgAABAkMV\n0EEa6pl1XAQIECBAgAABAgQI9BbQQepNZgECBAgQIECAAAECBIYqoIM01DPruAgQIECAAAEC\nBAgQ6C2gg9SbzAIECBAgQIAAAQIECAxVQAdpqGfWcREgQIAAAQIECBAg0FtAB6k3mQUIECBA\ngAABAgQIEBiqgA7SUM+s4yJAgAABAgQIECBAoLeADlJvMgsQIECAAAECBAgQIDBUAR2koZ5Z\nx0WAAAECBAgQIECAQG8BHaTeZBYgQIAAAQIECBAgQGCoAjpIQz2zjosAAQIECBAgQIAAgd4C\nOki9ySxAgAABAgQIECBAgMBQBfYf6oEN7LiOyvH8bnJAz+M6MfV391xGdQIECBAgsJ6A9mg9\nGfMJEBiMgA7ScpzKE7KbZyavTu7qscsPT91DetRXlQABAgQIbCSgPdpIx2sECAxCQAdpuU7j\nL2V3+3SQHp/637lch2hvCRAgQGAJBLRHS3CS7CIBApMJeA/SZG6WIkCAAAECBAgQIEBggAI6\nSAM8qQ6JAAECBAgQIECAAIHJBHSQJnOzFAECBAgQIECAAAECAxTQQRrgSXVIBAgQIECAAAEC\nBAhMJqCDNJmbpQgQIECAAAECBAgQGKCADtIAT6pDIkCAAAECBAgQIEBgMgEdpMncLEWAAAEC\nBAgQIECAwAAFdJAGeFIdEgECBAgQIECAAAECkwnoIE3mZikCBAgQIECAAAECBAYooIM0wJPq\nkAgQIECAAAECBAgQmExAB2kyN0sRIECAAAECBAgQIDBAAR2kAZ5Uh0SAAAECBAgQIECAwGQC\nOkiTuVmKAAECBAgQIECAAIEBCuggDfCkOiQCBAgQIECAAAECBCYT0EGazM1SBAgQIECAAAEC\nBAgMUGD/AR7TMhzSvsuwk/aRAAECBAYvoD0a/Cl2gAQI9BXQQeortvX6/5BVHLP11VgDAQIE\nCBDYkoD2aEt8FiZAYKgCOkjzP7OHZ5PnJJf02PQzUvfsHvVVJUCAAAECmwlojzYT8joBAjtS\nQAdpe077Zdns+3ps+pQedVUlQIAAAQJdBbRHXaXUI0Bgxwj4kIYdc6odKAECBAgQIECAAAEC\nmwnoIG0m5HUCBAgQIECAAAECBHaMwBAesTswZ+vU5MjkiOSu5Ibk48nlo+kMFAIECMxU4KCs\n/QXJmT22Uj+DH5F8NKmfXX3KB1P5NX0WUHfmAtqjmRPbAAECHQS0Rx2QNqqyzB2k2vdXJGcl\nh65zkB/K/J9O6hlrhQABArMUuE9Wft+k/kDTtRybiiclf5fc2HWh1Kv3JT4k0UHqgTbDqtqj\nGeJaNQECvQW0R73JVi6wzB2kN+RQ6tPdfjd5R3Jt8pXknkl1mOqXh13Jpcl3JfXXVoUAAQKz\nFKgPX3l+jw3U3aZ/mbws+VSP5X4hdZ/To76qsxXQHs3W19oJEOgvoD3qb/atJZb1H8QdnCOo\nztCTknd962jWHrkgs7+Y1C8UfUt9FPcjOyxU7+X6ueR1Hep+I3XulfR5nKbOU23jjqRPqWWq\n3Lln0PnrfqNl+uxjrbyW67uPjq3kVpZ5njf+K+1rap7+tb1Jv2/qrtPptQJlWwW0R934l+X7\nqvazbzvm2FZfA5P8HqE9Wu24LNfW4NqjZb2DdHyuofrl/d2rr6VVcy7KnOetmtttxq5Uq/c2\nbVaOToU/3qzS6PXHZXhYx7pNtfqh8aDkqmZGx2HdYq38Y8f6TbU65npM6NZmRsdhnZe/71i3\nqVY/RI9KPt/M6Dg8JPXKpfazT6lzdW1ye5+FUneSY6v3I9w/uabnth6Q+mVfnek+5dhULsc+\nHeIyrOWuTPqUuq7unVzXZ6HUnee1VT/fanuTXFt1WH0eeav6dW19KdldEz3KJNdWrf7KHttQ\ndXYCdf60R5v7ao9WG2mPVppoj1Z61FT9rlNFe7THwddNBKpHXb+I/Ogm9eoXpOog/fdN6nmZ\nAAECBAhMIqA9mkTNMgQIEFhggfrr/TKW+mtd/fX63KQegavx+ktxvfeo/pp3WvIjST3ydmqy\nK6m7BgoBAgQIEJimgPZomprWRYAAAQJbFvihrOGKpBqo8dQjVG9JqoOkECBAgACBWQpoj2ap\na90ECBCYo0A97zmEckwO4tjkfsnXk/pQhsotiUKAAAECBOYloD2al7TtECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgACBuQgM5RG7uWDtoI3Uh1wclHxzBx3zZodaH0Vej20qewQO\nzKD+n1ffj1kfsl99fH99auZtQz5Ix0ZgzgLao9Xg2qOVJtqjlR41pT1abdJrjg5SL64dU/nL\nOdL6RECFAIF+Ai9P9V/vt4jaBAhsIKA92gDHSwQ2ENAebYCz2UvL+o9iNzsur29N4LNZ/DeS\n12xtNYNZ+qQcyceS+iCQvv90dzAIYwfyskzXR+yfOTZ/J09+Jgd/+U4GcOwEZiCgPVqJqj1a\n6VFT2qPVJtqj1Sa95ugg9eLaUZV352hv3VFHvP7BNo8a1qNTTPY43ZHBnTz2YPhKgMBMBbRH\ne3m1R3stmjHtUSNhODWB+g/gCgECBAgQIECAAAECBAhEQAfJZUCAAAECBAgQIECAAIGRgA6S\nS4EAAQIECBAgQIAAAQIjAR0klwIBAgQIECBAgAABAgRGAjpILgUCBAgQIECAAAECBAiMBHSQ\nXAoECBAgQIAAAQIECBAYCegguRQIECBAgAABAgQIECAwEtBBcimsJXBNZn5prRd26Lyv5riv\nTW7eoce/1mHX9VHXibJX4OqM+kfCez2MEZiGgPZopaL2aKVHTWmPVptoj1abmEOAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQmIPAOdnGO9fIP29t+/CM/0ry\n4eSS5KXJfkm77JuJZyX/I7k8eXNyTDJeHp0Zr0+uSP46eXKyCOWA7MT/TH51jZ2Z9/EvitF3\nxuLq5GFrmNR5Xuu6qeugKdNy63ptNdud9vC0rPDPks8kn07q2j4uaZeu+9jl3HZx61KnvX/G\nCSyDgPZoz1nSHq2+WrVHe0y0R6uvDXMIzESgOj3VWXnrWB7X2tpFGf9U8uzk3ydfS/5b0i5n\nZeLWpDpSz0xqvVcl9YtcUx6UkVr2j5MfT96Y7E6emmxnqcbo95O7kleusSPzPP5FMTo6DnVd\nlMmpYybHj+a/J8Px66Y6Ck2ZlluXa6vZ5rSH1Tm8ObkseWHyq8nnkuuSByZN6bKPXc9tF7cu\ndZp9MySwLALao3320R6tvlq1R3tMtEerrw1zCMxEYP+stTo1P7/B2p+d1+qX5BNbdX5iNO/k\n0bz6RfGrSXWOmnJwRr6evKSZkeFfJB9pTddo/WX+42Pz5jn5yGzso8k3ktuT8Q7SvI9/u42q\ng1O/7Nf5vDFZq4P0tNH8IzNcr0zLreu1td5+bHV+3S2q75FDWis6JePl8rLRvK772OXcdnHr\nUqe1u0YJLIWA9miffbRHKy9V7dFKD+3RSg9TBGYm8PCsuX7Re/wGW3hHXvvg2Ov3zHR1fl46\nmr8rw1rPsaPpZvCWjHxyNHFQhnckLxpNN4O6e1TLrvUYV1NnlsMrsvK/TR6SVIdgvIM0z+Nf\nBKPTYlB39c5PnpLUuTk1aZeXZ+KL7RlrjE/LbVfWvdm1tcbmpzbrnKzpF8fW9m2Z/nLyB6P5\nuzLcbB+7ntsubl3qjHbNgMDSCGiP9ty11x7tvWS1R3stakx7tNJjYabqlwJlWAL/dHQ4x2X4\nR0nd3XlD0r4zUI3WZ5J2uS0TX0ia9xhV56buvlyVtEst19Sp54frGhpf12dHCzT1RpNzGzwz\nW3ps8ul1tjjP418Eozqv1Vl8QXLLOibVaF2ZVJ3/nbwvqY7vfklTpuXW5dpqtjmL4X/OSl89\ntuLvz/ShSXM3tMs+dj23Xdy61BnbZZMEFl5Ae7Tn8XTt0d5LVXu016LGtEcrPRZmSgdpYU7F\n1HakftGtUr/cVsflc8mu5GNJPTZU5ZCk/lo+Xm7IjM3qfCV16i/n90lqPVWu3zP41teqU6VZ\n156p+X0dvzs2vuV5Hv8iGNX5aTqt4xbN9GkZqUb8icn/Suoc1w/uC5KmTNNtreuvfW0125zH\n8OBspI61vl9+f7TB9Y61vY9dz+166+ry/dauM9o1AwJLI3DaaE+1R+ufsq38fOj786jrz6z1\n93brr2iPNjbUHm3sM7dX95/blmxoXgL1y2398vmbyW2jjT4hw/cn9f6Kf5vUo0PfTMZL3TG6\nd2vmenWqStWr9VSp5dqlmW6vq/36do/P8/iXwaieCX9t8vnkT0Yn5+UZnpucnXxf8jfJtNyy\nqnWvv3qtrpubamQO5bBso95HVHc7vzepD29oyrSu/y5uXeo0+2VIYFkEtEebn6mu3/vT+HlU\n26rStNF7pvZOL0KbrT3SHjXX5bYO3UHaVv6ZbLzey/CqpOkc1UYuTuoOwhk1kVLvNanHicZL\nzfvaaOZGdapK1btmVPf+o2EzaNbdrKuZvyjDjY6t2eeN6tRxdD3+ZTCqRvM3kqZzVMdX5U13\nf53+ddPFdrTpmQ4enLV/IKnO0ROTjyRN6bKPXc/tRuvqcr01dZp9MySwLALao83P1FZ/PtQW\ntEd7nQ8dedScjWzr9XLrUqfqzrpoj2Yt3HP9Okg9wZag+knZx+9YYz/bjzTVD4S1Hn87IvPr\nkbwqVee+o9R0U47MSL1WHbAaVql57dKsu1lX+7VFGJ/n8S+D0b1yUk5JmscvmnNUj2+0yzTd\nNru22tudxfjDstK6q3pr8tikHkFtlzrWzfax67nt6tZ837T3o/092Z5vnMAyCJyUndQebXym\nuv58mMbPo64/szbe49m+qj3SHs32CrP2HStQfwWvD1ao/7vQlGqg6i7B741mvDjDepTooNF0\nDR6XVJ0fromUE5I7kn9dE6NSt77rMaw3jaZr8OHkba3pGn1NUh2yA2tim8uN2f4rx/Zh3se/\nSEY/EIs6z6e2TE4czatH6tqlnKpuLVNlWm5dr609W53+1+OyyuuT9yb3S9YqXfexy7nt4tal\nzlr7aR6BRRbQHq08O9qjlR7aoz3/oFx7tPK6MEVgJgJnZa31S+3rkuoYPSn5QFIf4X18UqXu\nFNT0W5Ojkocm9Rf0v0za5cJM/ENyRvKA5LzkhqR9x+gnM707+dmk1vtjSXW+npMsQlmrQZr3\n8S+S0VoNUp2ni5Kbkl1Jnd9fSK5N3pM0ZZpuXa6tZrvTHv55VljX7C8l9Z68dn4w003pso9d\nzm0Xty51mv0yJLAsAtqjlWfqxkyO/8Gu6/f+tH4edfmZtXKvZzelPdpnH+3R7K4vayawSuCc\nzKkOUHWUKtX5eXjSLo/PRN1pqterQ1M/fI9O2qWe5f2r5M6k6l2SnJmMl1/OjHpUqep8IXlV\nsihlrQap9m3ex78oRus1SNUBviCpc1i5LXlzcp+kXabl1vXaam97GuN1nM0xrjV8e2sjXfex\ny7nt4talTmv3jBJYCgHt0d7TpD3aa1Fj2iPt0corwhSBOQjsn23Uo1P1S95G5UF5cfyX4PH6\nB2dG3WnaqNQjfQ9O6jG8ZSrzPP5lMLpvTt7JyT02OYnTcutybW2yKzN/ucs+dj23Xdy61Jn5\nQdsAgSkKaI+6YXb53p/Wz6OuP7O67flsammPVrtO6/zXmrtcb13qrN5LcwgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwMIL3HsO\ne7hftnGPOWzHJggQIEBgeQW0R8t77uw5AQIEll7gn+UI/jq5NrkruSx5TfLoZJJSHaAnr7Hg\nczPvw8ktyTeTjyWvTPZP2uXwTDy2PaPj+KTLdVy9agQIECAwYwHt0YyBrZ4AAQIENhf4+VS5\nPanOyguTpyWvTj6V3Jw8Ielbzs8CHx1b6NczXZ2vdyQvSp6XvC25Nbko2Tdpyj9m5FeaiR7D\nSZfrsQlVCRAgQGBGAtqjGcFaLQECBAh0F3h4qlbn6L8mB4wtdq9MX5LckDxi7LXNJt+cCh9p\nVfq2jFfnpTpE4+UVmVEdp/bdquo0TdJBmnS58X0yTYAAAQLzFdAezdfb1ggQIEBgHYF6rO66\n5JB1Xn9g5n89+b3W66/NeN1lapfvyUTVqfcVnZ1ckXw5qXkPSw5Kbk/OTcbLt2fGq5PHJLV8\nLXNH8qHkvKQpx2fkt5K/St6d/E5yclJlo+Xum9dfmtSx/kVyTjLeGcwshQABAgS2UUB7tI34\nNr0zBeqv1woBAqsF6n0+FyU3rn7p7jlfyte6E1Sdl6Y8OyP1jHi7PDQTP5PUe4m+mtyW7E6q\n81XvNapO1t8kZyXVGaq7Rc33ZXWkfjH5YFJ3kmqZGt6UXJ9UOT25LDkj+b/JFUl10i5NDkvW\nW+7QvFaP+r0w+fvkmYw6TAAABQxJREFU75L/kLwvGX/fU2YpBAgQILBNAtqjbYK3WQIECBDY\nK3BERqtj8R/3zlpz7Lczt+7o1F2gKtWZGl/m+ZlX67p3UmX8EbuaV3dyLkyqXqUe3Xt78pyk\n6Sxl9O4y/qhcvafpyqQe+2vKD2Wk1vOvmhkZji93XuZVR+3YVp2HZLyW+7nWPKMECBAgsH0C\n2qPts7flHSww/svXDqZw6AS+JXDgaKzu7mxUvpEX6wMUtvpYWq3n6ckJyQuS9yTfnbwpeWdS\nd3vWK1W/HrG7JalPyHtwckxSpTpe65Uz88LFSf0MqOUrdUfr/yU/mCgECBAgsP0C2qPtPwf2\nYAcKeJRmB550h7ypwFWpcU1y4iY1q0NzefKVTep1ffmzqfi6Uep78+ykHrt78SgZrCp156he\nrw5W3QGq8ok9gxWffjeadfegOnTViaq7R5+7e87KL/5wstLDFAECBLZLQHu0XfK2u6MF/CK0\no0+/g99A4AN57fuT9qNr7er3y8T3JlWvKfV4WnU+2mWjuz9V72eSq5P710Sr1ONvv5VcnHxP\na/746B9kxjnJnybflxycPCOpsu+ewaqv9aEQNyVvSWr/xnNG5ikECBAgsBgC2qPFOA/2YgcJ\n6CDtoJPtUHsJvDa1D09elYx3NGq67uxUZ+RNSVPqUbn6YIR2OaU9kfE7k3oUrikfyshRyVrv\n+7lH5h+ffDxpSnXCmu/bWk99IMMfJq9I3p/Ue40elVRpb6e9XL12WfLkpOrXe54qNyf/Jfmp\nRCFAgACBxRDQHi3GebAXBAgQIBCBH03qQxjqfUA1flryE8m7k7oL89SkXf4sE9XheHpyQvJr\nSd2pqc5J8yEN52f8a8mPJNUBq3JBUnXemvyb5IlJ3Vn6SFJ1H5M05dqM1Kfe1d2tKjVej/k9\nNKltPCm5Pqn1vShpyvhydbep6tSHQTwhqf39w6T2/+REIUCAAIHFEdAeLc65sCcECBDY8QLV\nKNXdlupMVOpOS3UqfjgZL9+RGXVHqKn7fzJed2NqujovVU5Prktq3r9LqtQdqZckVyTVIavX\nqqNSj1U8ImmX6nTVR4VXnW9Pzkjem9RylU8n9SELlyYXJk0ZX67m/1jyxaTWtTupO1DVAVQI\nECBAYPEEtEeLd07sEQECBHa0QHVG6kMQmsfbNsI4Ii8+YKMKea3WVx2j8VIdqdrOAeMvtKbr\n0buDW9M1Wo/2VTYqay1X9Y9MDt1oQa8RIECAwMIIaI8W5lTYEQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQLbK/D/AaydI8sCcW2BAAAAAElFTkSuQmCC", "text/plain": [ "Plot with title “Bins = 20”" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "par(mfrow=c(2,2))\n", "for (numBins in 1:20){\n", " hist(college$Outstate, breaks=numBins, xlab=\"OutState\", ylab=\"Freq\", main=paste(\"Bins = \",numBins))\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**_Interesting Observation_**: Even after iterating the number of break points from 1 to 20 for the field `OutState`, we observe the number of bins _numBins_ between 7 and 13 to be the same. They are broken down into **10 bins**, generating the same histogram. Similarly, the histograms generated for _numBins_ from 14 to 20 are also the same. Each generating the same **20 bin** histogram. Also, the number of breaks from 3 to 6 generate a **5 bin** histogram.\n", "\n", "Let us check the same for another quantitative field: Book Cost." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0JuCRlfS/gQRDEBZQgiwqIgrghatyvW+Ia3BVNUIRJUBONGr1RE425\nrjFRE5UY0RgSuVHR4JagqIgoLomCkgRJvAouGAiLrIqCKML9/We6TNOcPqfOTHefqu73e57f\nVHV1dVV9b/XMN19VddW6dQoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQILITAFgtRS5UkcG2B6+Xlg689acOra/LnVckPkzOSy5PRsncm7DaY+OUM\nl5pn9DN9f337VOAOyWXJp/teGdtPgACBDgloj9rtjOtnttslt0r+O6k2+spEIUCAAIEJCdww\ny6nO0HKpTtKbky2T4XJYXjSfq07DvJedU8Fzk6rz1+e9supHgACBGQtoj1YGPySznJ00bW8N\nL0yekSgECBAgMCGBNg1S8w/xX42sc5E6SHVk84SksdBBGvkyeEmAAIHNFNAeLQ/4hLzdtEE1\nvHrk9VOX/7h3CRAgQKCtwHCDVKfp65K5yh7JXslzkiuS+sf4x8nWSVP2ycjDBrlRM3EOhw9I\nnb6aDDdMOkhzuKNViQCBNRXQHi3Pf2rebjpGv57xGye/MZhW07+ZKAQmLrDVxJdogQT6JfCz\nbO5ZI5v8rbzeP3lUUo3Xrsn3kirbJttvGFu3rs6wVNkmecyGsXXr6h/z7yT3T+6X1G+UTkxq\n+mi5WybUPHVNdXXEzkyOSeryvuXKL+XNQ5abYfDeeRke1WK+0VnqiNx7BxN/lGFd+111VAgQ\nIEBgegLao2vb3jQv9x5M+lKG/zAYf3+Gv5/cI6n3q33ye6QgKAQIENgcgeEjdkudFal/bKtD\nVEen6gzTcDksL2p6pfkN0k5D016R8Y8Nva75fp7876QpdXOU/5s0yxke/iDTmwahmX90eOcx\nnx1eTo1/ZfSDLV8/d7D892R4i+TsweulrPKWQoAAAQKbKKA9Whluh8xy86HZqg1t2ujvD003\nSmBiAs4gTYzSgnoqsEu2+/DBttcZoRskj0zq5gSXJ8Mdm7xcsfxR5qjL8+oIV51p+rWklvsn\nyd8nFyaHJAcnVT6UnJzskdT07ZJ3J3UG6qpkLcrpWWmt/5/XYuXWSYAAgQUV0B4tveMvHplc\nbfTug2mfH3nPSwIECBDYRIHhI3Z1pmVc3rTE8lc6g/TTfOZeQ5/7yNDyq9NR5R1JrbMuCbht\n0pQnZ+QVyeOS2sZxpTpcdenBSqlrtSdRnEGahKJlECBA4LoC2qPrmiw3Zb+8WR2mpg2tW38r\nBCYu4AzSxEktsGcCP8n2njrY5rqld/3GaI+kOhcvTPZN6jc5FyRtypczU50RakqdhXn84EX9\ndqhKnaGpUjd/qPGvJp9JPpF8OKlL8pYr9fe2WdZy81UHrH5DpBAgQIBA9wW0R8vvo/rN0XHJ\nzQazvTjDpj0dTDIgQIAAgU0VGD5it9Tvaqrj8q6kjlBV6h/hpqx0BumDzYyD4XMybJbzpMG0\nuvtd/eC0mT48PDfTf2sw37jBncd8dng5Nb6pv0EaXa8zSKMiXhMgQGAyAtqjdo7VObokadq5\nP2j3MXMR2DSBulRHIUDg2gI/zcs3DE164tD4SqOjd9K5eokP/DjT6nK7A5K6BK/+0W9KXYP+\nt8kjmgmGBAgQILCwAtqjdevunr1/fFKXlVd5UfL6DWP+IDAlAZfYTQnWYnsvUGdpmjLa6Wmm\nLzWso1srlbqMr+5UVx2j6nzVgYq7Jc9LDkmqVAepLiVYqtQZnZXOMtXnLlzqw6YRIECAQK8E\nFrk9unn21D8lTefouRl/W6/2no3tpYAOUi93m42eoEBdy/zbQ8urvxO3GZlWvw+aZDkpC6vf\nNlVn6qFJLf+UpH6D1HSQ/jvj48qleeNd4940nQABAgR6KaA9uu5u+/NMutVgcv0WePdk9OzR\nqzKt7jqrECBAgMBmCAxf812dlOVyct6vMz5NOSwjzfx3GEzcaWjae5oZB8PfGXqv+Q3S/plW\nDwRsllPPWvqvodfVOapL7bpSzs6G1LYu9Xutrmyj7SBAgEAfBbRH4/datb2XJU1bOW7Y5qZF\n49fiHQJLCNSlPQoBAhsF6vdCdb33D5NTk3qmUXVm6rlGkywfz8JquScPFrpXhrsNxj+a4UOS\n8wavDQgQIEBg8QS0R+vWPTq7/caLt+vVuAsC9TRihQCBtRPYIauuzlF1zM5MJt0ZyyIVAgQI\nECCwooD2aEUiMxAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIE1lpgi7XegAms/wZZxn7JrsnOyTXJJcnXktMHrzNQCBAgQIAAAQIECBAgML8C\nW6Vqf5pclFSnaKmcnOn7JgoBAgQIECBAgAABAgTmWuDvUrsfJK9PHpjsk9w8uVVyl+TJybHJ\nT5N7JwoBAgQIECBAgAABAgTmUmD71OrnySNa1O7ozPOWFvOZhQABAgQIECBAgAABAr0UuGu2\n+qqkLrNbqTwzM/zrSjN5nwABAgQIECBAgAABAn0VuF42/LzkgBUqUB2o45P3rTCftwkQIECA\nAAECBAgQILBuy54a1A0Zbpgcltx9MF53sdsh2TOpM0yPTd6W1B3u1ifnJwoBAgQIECBAgAAB\nAgTmVuCRqdkZyVJ3sPtZph+VVAdJIUCAAAECBAgQIECAwIoC8/AcpKrkbskeyXbJZck5g1yR\noUKAAAECBAgQIECAAIFWAm1uctBqQWs4Uz0o9hbJjknzoNhdMl5186DYICgECBAgQIAAAQIE\nCMy/QHWAPCh2/vezGhIgQIAAAQIECBAg0ELAg2JbIJmFAAECBAgQIECAAIH5F5jVg2L/JZSX\nt0g9k+lp88+uhgQIECBAgAABAgTmW6Cvv0GqW3nXnetOaLF76jlIz24x31Kz/E4m3nKpN0am\nfSivfzQyzUsCBAgQIECAAAECBAjMRKBrD4qtO+c9eiY1txICBAgQIECAAAECBKYm0NczSFdH\n5PCknnNUl7Ydk5yXXJRsndQDY/dJDkr2Su6bKAQIECBAgAABAgQIEJhrga48KNYZpLn+mqkc\nAQIECBAgQIDAogj09QxSs38+mZG9Ew+KbUQMCRAgQIAAAQIECBDYZIG+d5Caip+VkUqVusTu\nQcljklOSLyRdKtWZq0sAFQLLCdRDjq9YbgbvESBAYDMFtEebCbjKj5+T+S9Y5WfMToAAgVUJ\nVCfjvckPklOTRyU3Sb6d1B3umrwn41sk0yyrucSutrfZNkMW474Dr53mF9ayCRAgEAHt0Wzb\noM/71hEg0A+BPp9BeneIfyX5QFK3/a6O0InJJcnjkjp79PTk1Un9o/TOpAtlm2zEAckJXdgY\n29BJgX/IVtX3RCFAgMA0BbRH09S99rKfn5fudnttE68IdFagrx2kuixg/+SxyUcHuh/J8PHJ\n/ZIvDab9WYb3TJ6YdKWDVJtWz0y6tEYUAksI/GyJaSYRIEBgGgLao2moXneZLpm+rokpBDor\nUM8T6mO5VTa6bvX9maGNPzHjdanbSUPTarQeFNvmYa8jH/OSAAECBAgQIECAAIFFE+hrB+k7\n2VG17b8x2GHXz/DJSf0G6aGDac3gwRmp3yUpBAgQIECAAAECBAgQWFagr5fYnZ9a/X1yRHJo\nsldSZ4/+IvmbpB4ie3LylOTXE9f9BkEhQIAAAQIECBAgQGB5gb52kKpWz0y+mzwi+VTyxuT/\nJfdI6rdHVeq3HH+QHFsvFAIECBAgQIAAAQIECCwn0OcO0k9TsVcOMlzHB+dF/UZpn6Ru/31h\nohAgQIAAAQIECBAgQGBFgT53kJar3Nl5s6IQIECAAAECBAgQIECgtUBfb9LQuoJmJECAAAEC\nBAgQIECAQFsBHaS2UuYjQIAAAQIECBAgQGDuBXSQ5n4XqyABAgQIECBAgAABAm0FdJDaSpmP\nAAECBAgQIECAAIG5F9BBmvtdrIIECBAgQIAAAQIECLQV0EFqK2U+AgQIECBAgAABAgTmXkAH\nae53sQoSIECAAAECBAgQINBWQAeprZT5CBAgQIAAAQIECBCYewEdpLnfxSpIgAABAgQIECBA\ngEBbAR2ktlLmI0CAAAECBAgQIEBg7gV0kOZ+F6sgAQIECBAgQIAAAQJtBXSQ2kqZjwABAgQI\nECBAgACBuRfQQZr7XayCBAgQIECAAAECBAi0FdBBaitlPgIECBAgQIAAAQIE5l5AB2nud7EK\nEiBAgAABAgQIECDQVkAHqa2U+QgQIECAAAECBAgQmHsBHaS538UqSIAAAQIECBAgQIBAWwEd\npLZS5iNAgAABAgQIECBAYO4FdJDmfherIAECBAgQIECAAAECbQV0kNpKmY8AAQIECBAgQIAA\ngbkX0EGa+12sggQIECBAgAABAgQItBXQQWorZT4CBAgQIECAAAECBOZeQAdp7nexChIgQIAA\nAQIECBAg0FZAB6mtlPkIECBAgAABAgQIEJh7AR2kud/FKkiAAAECBAgQIECAQFsBHaS2UuYj\nQIAAAQIECBAgQGDuBbaa+xqqIAECBAgQmI3ADbKa/ZJdk52Ta5JLkq8lpw9eZ6AQIECAQJcF\ndJC6vHdsGwECBAj0QaDa0tckz0p2GLPBX8n0Q5PTxrxvMgECBAh0RGAeOkiO2HXky2QzCBAg\nsKAC70y9n5S8Izk2OT+5ONkmqQ7TPsn65JTkAclJiUKAAAECHRXocwfJEbuOfqlsFgECBBZI\nYPvU9ZBk/+S4Jep9dqbVJXYfSI5ODkx0kIKgECBAoKsCfb5JQx2xe05yRPKg5PbJTsluSV0D\n/pTkgqSO2N07UQgQIECAwKQF9swC67dGJ7RY8PGZ54Et5jMLAQIECKyhQF/PIDlit4ZfGqsm\nQIAAgV8I1NmhC5PHJx/8xdTrjlR7Wwfuvnndt0whQIAAgS4J9LWDtNojds/uErptIUCAAIG5\nEbg6NTk8OSp5WnJMcl5yUbJ10vwG6aCM75XcN1EIECBAoMMCfe0gOWLX4S+VTSNAgMCCCbw6\n9T05eWtSZ5JGy1WZUL9BOjip9kshQIAAgQ4L9LWD5Ihdh79UNo0AAQILKPDJ1HnvpH4Hu0ey\nXXJZcs4gV2SoECBAgEAPBPraQSpaR+x68AWziQQIEFgggXrsxC2SHZPmQbG7ZLzaWg+KDYJC\ngACBPgj0uYNUvo7Y9eFbZhsJECAw3wLVlnpQ7HzvY7UjQGCBBPreQapd5YjdAn1hVZUAAQId\nFPCg2A7uFJtEgACBTRXocwfJEbtN3es+R4AAAQKTEpjVYycOyAbXHVxXKnfODC9PzlppRu8T\nIECAwNICfe4gOWK39D41lQABAgRmJzCrx048JlW6Q4tq3T3z/HNSbaRCgAABApsg0NcO0qyO\n2P16TNscsbt+5rvRJvj7CAECBAj0W2BWj504pCVTc+e8lrObjQABAgRGBfraQZrVEbtHBKzN\nEbtyrE6bQoAAAQKLJeCxE4u1v9WWAIEFEOhrB2lWR+x+q+V3wBG7llBmI0CAwBwKeOzEHO5U\nVSJAYHEF+tpBcsRucb+zak6AAIEuCnjsRBf3im0iQIDAJgj0tYNUVXXEbhN2uI8QIECAwFQF\n6u5x7iA3VWILJ0CAwHQF+txBKhlH7Kb7/bB0AgQIEGgvsENmvXho9vtnfN/knKTuLHdhohAg\nQIBAxwX63kFqeB2xayQMCRAgQGDWArfLCv8k2TH5lWS75MPJQ5KmXJORFyaHNRMMCRAgQKCb\nAvPQQXLErpvfLVtFgACBRRF4Syq6e/KHgwq/OcP7Ja9Ijk7qLqdPSWr6BclRiUKAAAECHRXo\ncwfJEbuOfqlsFgECBBZI4JdS14cldeboi4N6PyHD9yT1W9mmnJSRvZJ6TwepUTEkQIBABwWu\n18FtartJdcSunlH0F4MPDB+xq+n3SWpa5amJQoAAAQIEJi1wyyyw2tJ6/ESVLZK60+oX6sVI\n+XRe32ZkmpcECBAg0DGBvnaQmiN2vxPPjw1Mh4/YfSPT6mjd7ycfTeo9hQABAgQITFrg61ng\nFcmLk+oc1W+NPpGsT4bLtnlxYPLvwxONEyBAgED3BPp6id1qj9it7x69LSJAgACBORC4KnV4\nbvKu5O7JXyd1hcP7kpOTutRu6+RpyZ7J0xOFAAECBDos0NczSI7YdfhLZdMIECCwYAJHpr77\nJzdJ/in5arJ3cs/ksOSNyfeThybfThQCBAgQ6LBAX88gOWLX4S+VTSNAgMACCtRldZVdklsl\ndaVDnTk6O/leck6iECBAgEAPBPraQSraI5Pzk5cmdcRuuNRRuyqfSp6ZOGJXGgoBAgQITFvg\nvKygUmeRFAIECBDooUCfO0jF7YhdD790NpkAAQIECBAgQIBAVwX63kFqXB2xayQMCRAgQIAA\nAQIECBDYZIG+3qRhkyvsgwQIECBAgAABAgQIEBgnoIM0TsZ0AgQIECBAgAABAgQWTkAHaeF2\nuQoTIECAAAECBAgQIDBOQAdpnIzpBAgQIECAAAECBAgsnIAO0sLtchUmQIAAAQIECBAgQGCc\ngA7SOBnTCRAgQIAAAQIECBBYOAEdpIXb5SpMgAABAgQIECBAgMA4AR2kcTKmEyBAgAABAgQI\nECCwcAI6SAu3y1WYAAECBAgQIECAAIFxAjpI42RMJ0CAAAECBAgQIEBg4QR0kBZul6swAQIE\nCBAgQIAAAQLjBHSQxsmYToAAAQIECBAgQIDAwgnoIC3cLldhAgQIECBAgAABAgTGCeggjZMx\nnQABAgQIECBAgACBhRPQQVq4Xa7CBAgQIECAAAECBAiME9BBGidjOgECBAgQIECAAAECCyeg\ng7Rwu1yFCRAgQIAAAQIECBAYJ6CDNE7GdAIECBAgQIAAAQIEFk5AB2nhdrkKEyBAgAABAgQI\nECAwTkAHaZyM6QQIECBAgAABAgQILJyADtLC7XIVJkCAAAECBAgQIEBgnIAO0jgZ0wkQIECA\nAAECBAgQWDgBHaSF2+UqTIAAAQIECBAgQIDAOAEdpHEyphMgQIAAAQIECBAgsHACOkgLt8tV\nmAABAgQIECBAgACBcQI6SONkTCdAgAABAgQIECBAYOEEtlq4GqswAQIECBCYjsANstj9kl2T\nnZNrkkuSryWnD15noBAgQIBAlwV0kLq8d2wbAQIECPRBoNrS1yTPSnYYs8FfyfRDk9PGvG8y\nAQIECHREoG0Hadts7xar2ObLVzHv5s7qiN3mCvo8AQIE+iPQxfboneF7UvKO5Njk/OTiZJuk\nOkz7JOuTU5IHJCclCgECBAh0VKBtB+ncbP/2Levwk8xXDdi0iyN20xa2fAIECHRPoGvtUbWN\nhyT7J8ctwXV2ptUldh9Ijk4OTHSQgqAQIECgqwJtO0i/lwr8dVJHxioXJHWN9UHJPZI/Tqpj\nVOWqjYOp/+mI3dSJrYAAAQKdE+hae7RnhOq3Rie0kDo+8zy7xXxmIUCAAIEeCNTRrpcssZ11\nF7xvJK9f4r1pTqojdj9PHtFiJXXE7i0t5tucWS7Lhx/dcgHVkWyz3S0XZ7Y5FPhY6vTGOayX\nKhGYhEDX2qNqB89LDlihcnVAsjpI71thvs19W3u0uYLT+fyLs9iTp7NoSyVAYNICbc4gVWfk\nnsmjllj51Zn29qTOJM2yOGI3S23rIkCAQDcEutgeVTt4eHJU8rTkmKQ6TBclWyfNb5Cqndwr\nuW+iECBAgECHBdp0kOpoVP3Y9JeT45aoS3Wezlpi+jQn1fXcFyaPTz64zIqqfk9JvrnMPN4i\nQIAAgX4IdLE9KrlXJ3V24K1JtUujpS49r98gHZxU+6UQIECAQIcF2nSQ6ujYh5L3JK9KPpdc\nmuyePCM5MHlYMsviiN0sta2LAAEC3RDoYnvUyHwyI3snuyV7JNsl1aE7Z5ArMlQIECBAoAcC\nbTpIVY3fTeoIWB0dGy7n50VdNvCZ4YkzGnfEbkbQVkOAAIEOCXSxPWp46rETt0h2TJoHxe6S\n8WprPSg2CAoBAgT6INC2g1Sdo2qU6m51d0tulXwn+dfkx8laFUfs1kreegkQILA2Al1sj6ot\n9aDYtfk+WCsBAgQmLlB331lNuUNmvn1SjcEXknq91mX4iF1d2lDbdPdk92SLRCFAgACB+RPo\nUntUj514TnJE8qCk2smdkmqT9kvqt7AXJPWg2HsnCgECBAh0WKDtGaSbpA51u+xHDupyQobv\nT05K6i52L0rq9tWzLI7YzVLbuggQINANga61R3VnvVk8KLau3rhli12wZeapKAQIECCwiQJt\nO0iHZfl1tK5uyHDH5H7J5cnzkjcmJybL3U0ub0+81BG7JyXvSI5Nzk/qbnvbJM1tVddnvI7Y\nPSCpzpxCgAABAv0W6Fp7NKvHTvxldttdW+y6uqqirqBQCBAgQGCKAnUZXnWGmoebviTjnx5a\n319l/Mih17MYrSN2P0+abVpunXXm6y3LzbDMe1/Oe1e2yNWZ5/eWWc7wW3Wmrc12D3/G+GIJ\nfCzVrQMPCgEC1xboYntU23RecsC1N/U6r+qApAfFXodlYSa8ODU9eWFqq6IEei7Q5gzSjqnj\ntsn3xtS1pteZpVmWWR2xe0YqdYsWFfvHzPPdFvOZhQABAgQ2XaCL7VEdIDs88aDYTd+vPkmA\nAIFOCbTpIH0/W3xRclDy8pGt3yKvD03+bWT6tF/Wg/Zm8aDY/8h6KiuVOptVjaRCgAABAtMT\n6GJ7VLV9dVJnBzwotjQUAgQI9FygTQepqvim5BVJXdd8TXKj5JnJ+qQejFedpFkWR+xmqW1d\nBAgQ6I5A19qjRsZjJxoJQwIECCyIQF1j/bqkfj9THaQmdRbnkGStyiOz4jOSZnuGhz/L9Lrk\nYb9k2qWelv7olivxG6SWUAs828dSd79BWuAvgKovK9DV9mjZjZ7hm9qjGWKvYlV+g7QKLLMS\nWGuBtmeQXpkN/VTy5uTOya5J/faoLnWrf4zXqjhit1by1kuAAIG1EXhlVtvF9micxn3yxm2S\nOmCnECBAgEAPBNp0kOqZEy9LrkhOTD6bdK2clQ2qNKUapHoYnwapETEkQIBA/wX60B6NKj8q\nEx6XaI9GZbwmQIBARwXadJB+lG3/VnKXpG7KUJexdb1okLq+h2wfAQIEVi/QxfZo31Rjuc7P\nznm/OnanDap7XIYvGowbECBAgEAHBdp0kKpD9I7kNcmpSd2xrp75MFzqUrv3Dk+Y8rgGacrA\nFk+AAIEOCnSxPbogTvW7qDsmX0rqgOJwqYe7Xj+ptrPKmRv+9AcBAgQIdFagTQepNv75yU+S\n+u1RZbQckwmz7CBpkEb3gNcECBBYDIGutUd1wPAeyRuS30zenbw9aUodXKxL7A5uJhgSIECA\nQLcF2naQ6gemXSoapC7tDdtCgACB2Ql0rT2qmtdvdJ+XHJu8K3lMcmhybqIQIECAQM8E6rKA\nvpamQTogFfg/yceTpc5u9bV+tpsAAQIE+iXwyWxuXQJ+ZVK/Oar2SSFAgACBngmM6yDtmHqs\nT3boQX00SD3YSTaRAAECmyjQp/aoqljPB3xC8ofJkckzE4UAAQIEeiQwroN029ShLhPYbagu\nN8v4q5N6r2tFg9S1PWJ7CBAgMBmBvrVHTa2PyEjdoOGryX80Ew0JECBAoPsC4zpIS215dZD+\nONlzqTc7Mk2D1JEdYTMIECAwRYE+tEdV/bqj3aOTp9YLhQABAgT6IdD2Jg39qM3GrWwapD5t\ns20lQIAAAQIECBAgQKADAqs5g9SBzbUJBAgQIECAAAECBAgQmJ6ADtL0bC2ZAAECBAgQIECA\nAIGeCegg9WyH2VwCBAgQIECAAAECBKYnsNJvkL6QVf98sPqmM/WRvL5qZJP+Ma/rCeIKAQIE\nCBCYhoD2aBqqlkmAAAEC1xEY10Gq22a/5zpzj59wyvi3vEOAAAECBDZZQHu0yXQ+SIAAAQKb\nIjCug/TtLOzpm7JAnyFAgAABAhMU0B5NENOiCBAgQGBlgeayuZXnNAcBAgQIECBAgAABAgTm\nXEAHac53sOoRIECAAAECBAgQINBeQAepvZU5CRAgQIAAAQIECBCYcwEdpDnfwapHgAABAgQI\nECBAgEB7AR2k9lbmJECAAAECBAgQIEBgzgV0kOZ8B6seAQIECBAgQIAAAQLtBXSQ2luZkwAB\nAgQIECBAgACBORfQQZrzHax6BAgQIECAAAECBAi0F9BBam9lTgIECBAgQIAAAQIE5lxAB2nO\nd7DqESBAgAABAgQIECDQXkAHqb2VOQkQIECAAAECBAgQmHMBHaQ538GqR4AAAQIECBAgQIBA\newEdpPZW5iRAgAABAgQIECBAYM4FdJDmfAerHgECBAgQIECAAAEC7QV0kNpbmZMAAQIECBAg\nQIAAgTkX0EGa8x2segQIECBAgAABAgQItBfQQWpvZU4CBAgQIECAAAECBOZcQAdpznew6hEg\nQIAAAQIECBAg0F5AB6m9lTkJECBAgAABAgQIEJhzAR2kOd/BqkeAAAECBAgQIECAQHsBHaT2\nVuYkQIAAAQIECBAgQGDOBbaa8/qpHgECBAgQmJXADbKi/ZJdk52Ta5JLkq8lpw9eZ6AQIECA\nQJcF5qGDpEHq8jfMthEgQGD+BaotfU3yrGSHMdX9SqYfmpw25n2TCRAgQKAjAn3uIGmQOvIl\nshkECBBYcIF3pv5PSt6RHJucn1ycbJNUh2mfZH1ySvKA5KREIUCAAIGOCvS5g6RB6uiXymYR\nIEBggQS2T10PSfZPjlui3mdnWl1i94Hk6OTARAcpCAoBAgS6KtDXDpIGqavfKNtFgACBxRLY\nM9Wt3xqd0KLax2eeZ7eYzywECBAgsIYCfb2L3WobpAeuobFVEyBAgMD8CtTZoQuTx69QxTog\n+ZTkmyvM520CBAgQWGOBvp5BGm6QPriMoQZpGRxvESBAgMBmC1ydJRyeHJU8LTkmOS+5KNk6\n2SGp3yAdlOyV3DdRCBAgQKDDAn3tIGmQOvylsmkECBBYMIFXp74nJ29NljqTdFWm12+QDk7q\nAJ9CgAABAh0W6GsHqUg1SB3+Ytk0AgQILJjAJ1PfvZPdkj2S7ZLLknMGuSJDhQABAgR6INDn\nDlLxapB68CWziQQIEFgggbNS14pCgAABAj0V6HsHqdjrQbG3SHZMmieX75LxqpsnlwdBIUCA\nAIGZCHhw+UyYrYQAAQLTFehzB6m2/TWJJ5dP9zti6QQIECCwvID2aHkf7xIgQKBXAn3uIHlQ\nbK++ajaWAAECcyswi/bol6J3sxaCW7SYxywECBAgsIxAXztIs3pQbD3xvJ65tFK5fma40Uoz\neZ8AAQIE5k5gVu3R5yJ3p5Z6dbMIhQABAgQ2UaCvHaTVPih2U59c/pC43qGFbTnWHYsUAgQI\nEFgsgVm1R/X8pDbtTD2I9ozF2gVqS4AAgckK9LWDNKsHxT6jJXfdyvXclvOajQABAgTmR2BW\n7VG1M5WVyjUrzeB9AgQIEFheoK8dJA+KXX6/epcAAQIEZiOgPZqNs7UQIEBgZgJ97SAVkAfF\nzuxrYkUECBAgsIyA9mgZHG8RIECgbwJ97iCVtQfF9u0bZ3sJECAwnwLao/ncr2pFgMACCvS9\ng7Rt9tkvJ9dLTkl+nIyWutHClckXR9/wmgABAgQITEhAezQhSIshQIDAWgtUx6KvZd9s+H8k\nX0jq9qdnJk9JRstLM+H5oxO9JkCAAAECExLQHk0I0mIIECDQBYG+dpC2CN67k58l65OnJf+Z\n/EPyB4lCgAABAgRmIaA9moWydRAgQGCGAn29xO7WMdoveXhyfFLlqOS1yZ8lFyVHJAoBAgQI\nEJimwK2zcO3RNIUtmwABAjMW6GsHaZc41a1VvzTi9fK8vkny9uSs5LhEIUCAAAEC0xLQHk1L\n1nIJECCwRgJ9vcTuzHjVtj9uCbcXZto/JkcndQMHhQABAgQITEvgzCxYezQtXcslQIDAGgj0\ntYN0bqw+lrw1+avklklT6sxS/Sapzi7VzRvulCgECBAgQGAaAtqjaahaJgECBNZQoK8dpCL7\nzeTzybOTvZLh8tO8eGLygaQuf1AIECBAgMC0BLRH05K1XAIECKyBQF9/g1RUFyaPT26a1HOO\nRsvlmVCNVv0e6eajb3pNgAABAgQmJKA9mhCkxRAgQKALAn3uIDV+lzYjY4Ynj5luMgECBAgQ\nmKSA9miSmpZFgACBNRLo8yV2a0RmtQQIECBAgAABAgQIzKuADtK87ln1IkCAAAECBAgQIEBg\n1QI6SKsm8wECBAgQIECAAAECBOZVQAdpXvesehEgQIAAAQIECBAgsGoBHaRVk/kAAQIECBAg\nQIAAAQLzKqCDNK97Vr0IECBAgAABAgQIEFi1gA7Sqsl8gAABAgQIECBAgACBeRXQQZrXPate\nBAgQIECAAAECBAisWkAHadVkPkCAAAECBAgQIECAwLwK6CDN655VLwIECBAgQIAAAQIEVi2g\ng7RqMh8gQIAAAQIECBAgQGBeBXSQ5nXPqhcBAgQIECBAgAABAqsW0EFaNZkPECBAgAABAgQI\nECAwrwI6SPO6Z9WLAAECBAgQIECAAIFVC+ggrZrMBwgQIECAAAECBAgQmFcBHaR53bPqRYAA\nAQIECBAgQIDAqgV0kFZN5gMECBAgQIAAAQIECMyrgA7SvO5Z9SJAgAABAgQIECBAYNUCOkir\nJvMBAgQIECBAgAABAgTmVUAHaV73rHoRIECAAAECBAgQILBqAR2kVZP5AAECBAgQIECAAAEC\n8yqggzSve1a9CBAgQIAAAQIECBBYtYAO0qrJfIAAAQIECBAgQIAAgXkV0EGa1z2rXgQIECBA\ngAABAgQIrFpAB2nVZD5AgAABAgQIECBAgMC8CuggzeueVS8CBAgQIECAAAECBFYtoIO0ajIf\nIECAAAECBAgQIEBgXgV0kOZ1z6oXAQIECBAgQIAAAQKrFtBBWjWZDxAgQIAAAQIECBAgMK8C\nOkjzumfViwABAgQIECBAgACBVQvoIK2azAcIECBAgAABAgQIEJhXAR2ked2z6kWAAAECBAgQ\nIECAwKoFdJBWTeYDBAgQIECAAAECBAjMq4AO0rzuWfUiQIAAAQIECBAgQGDVAjpIqybzAQIE\nCBAgQIAAAQIE5lVAB2le96x6ESBAgAABAgQIECCwagEdpFWT+QABAgQIECBAgAABAvMqoIM0\nr3tWvQgQIECAAAECBAgQWLXAVqv+RPc+cINs0n7JrsnOyTXJJcnXktMHrzNQCBAgQIDAVAW0\nR1Pl7fXC6/8nuyVv6nUt+rPxP8+mvjH5fn822ZZ2SaDPHaTa9tckz0p2GIP6lUw/NDltzPsm\nEyBAgACBzRXQHm2u4Px//vap4o7Jbee/qp2o4aOyFZ9LPtaJrbERvRPocwfpndF+UvKO5Njk\n/OTiZJukOkz7JOuTU5IHJCclCoE+CNRR6N2Th/ZhY23jmgmcmTV/a83WbsXDAtqjYQ3j4wR+\nkjceN+5N0ycq8OMs7a7JlRNdqoWNE/hu3pir9miLcTXt+PTts33VGdo/OW6FbT0675+TvGCF\n+ZZ6++RMvPtSb4xMq99yPS9528j0pV7+KBO3TepSQIXAUgL1ferr382l6mPadAS+nMXedzqL\nttRVCGiPVoG1wLM2/67XpV/K9AW2nP4qrGFIYO7ao76eQdozO6U6GCcM7Zxxo8fnjWePe3OF\n6evzfv22aaVyq8zw/pVmGrx/vwxv3nJesy2mQF2GUUcaqzOtEBgncOa4N0yfqYD2aKbcvV1Z\nXRlws+Tc3tagXxteV2GcnVzdr83u7dae2dstn7MNryMx5yUHrFCv6gBWB+l9K8znbQIECBAg\nsCkC2qNNUfMZAgQIdFigr6cg6+zRDZPDkroErsbrTE/99qiO5tV1p49N6pK3/ZL1Sf1GSSFA\ngAABApMU0B5NUtOyCBAgQGCzBR6ZJZyRVAM1mp9l2lFJdZAUAgQIECAwTQHt0TR1LZsAAQIz\nFJiXH4LvFrM9ku2Sy5K6KUPlikQhQIAAAQKzEtAezUraeggQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAwEwE5uUSu5lgTWglD8py6hbOykaBugNU3fbcTTT+5xtx04xembhE9H9M\nbpHRumxW2Shw/QwuT/4VCIHNEOhre1Q3Zerb7bK3zjbfJLloM/bXWny0r+1RfUfqbsf1+/Q+\nlT62dXPZHukgzf6vTT0krjoFCgECBDZH4NJ8uJ6rohDYVAHt0abK+RwBAsMCc9ce9fVBscM7\npW/jdXe9en7Tp/u24VPa3idluW9K6iYbykaBD2fwjeRlQDYIVCegzh7dI/nPDVP88dwQPA0D\ngc0U6GN7dM/U+fNJc2ZjMwlm9vEXZk1PTB4wszVOZkV9bY8uSPUPTj4xGYaZLKXuuvzlZKek\nbjjWlzKX7ZEO0tp8/apRcpndRvuyqMJjo0P9WU/+riO7TEpj4+WGNfxpwqQk1q27auPAnwQ2\nW6Bv7VH9O1ClLkPu078H9Xe2Lvfq0zZnc3vdHvlu1x6cfpnL9silXtP/4lgDAQIECBAgQIAA\nAQI9EdBB6smOspkECBAgQIAAAQIECExfQAdp+sbWQIAAAQIECBAgQIBATwR0kHqyo2wmAQIE\nCBAgQIAAAQLTF9BBmr6xNRAgQIAAAQIECBAg0BMBHaSe7CibSYAAAQIECBAgQIDA9AV0kKZv\nbA0ECBAgQIAAAQIECPREQAdp9jvqrKzywtmvtrNr/H627L87u3Vrs2HnZrXnrc2qO7nWKwYe\n9aRuZaNAfT/q4bkKgc0R6GN7dHEqXN/95hl6m1P/WX72/MF2z3Kdk1hXX9ujPn63L8kOK+96\nxlefivaoT3vLthIgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYUU\nuFdqfXhyRvKJ5NHJvJXfS4VOHlOpNvVvM89OWf7Lkq8O1vXKDLdMulTumo35UPKt5JvJu5Nb\nJ8Nli7x4evJPyelJzbNbMlzazFPzt3EbXu5ajB+SlZ6UnJmUza8ko6VNPdrs/7Zuo+tfq9c7\nZMWnJvX3Z7i0rcek3IbXbXy+Bdp8Z2Yp8OKs7JNL5IFDGzHJvw9Di12Y0eunpp9K/miJGt87\n05byf/nQvPyHMMaM3jTT35j8e/JfyQnJ/sloqXZ/Ke8ybkqbtq7NPM3yDAl0UmD3bNUPk/cn\nT0mOSK5KHp/MS6m6VJ2qQzBa2tS/zTy13OOTbyQHJ/87Kde/T7pS7pQNuTw5LXlhUo3Rd5IL\nkl2SpjwrIz9JqrN3UFIdvu8l9Q9eU9rM09atWeZaDB+elV6THJlUp/DDyU+T4YajbT3a7P82\nbll9Z8oHsyXl88cjW9SmHpN0G1m9l3Mq0PY7M8vq179/ZyT1d2E49xvaiEn+fRha7EKMVufo\nb5P6d+a1S9T4JZl2RTJsX+MvGpqX/xDGEqNbZdqXk4uStySHJp9OyvzApCl7ZqSmfTYZ9R7u\nILVp69rM06zXkEAnBT6arfq3kS2ro+hfG5nWx5c3zUY3//BemvGlOkht6t9mnoOz/PqHZe+k\nKb+ekZp2+2bCGg/rTFB1fMqlKXfJSG3jqwYTqqP0g6Q6R03ZPiOXJc1/ktvMU59t41bzrVWp\nf/BPST4+tAE17fTk2KFpberRZv+3dRta9ZqOrs/av5/8LGn2fUY3dKZX+o7UfJNyq2UpiyHQ\n5jszS4n6j2X9mzl6BnV4G9r+ve5a3YbrsFbjd8+K/z35UVL/zizVQXpfpn8xGVf4j5P5n+mP\nzWi189VONaXauv+XfL2ZkOETkppv16Fpo6Nt2ro284wu12sCnRK4Sbbm58nwkZjawMcn9Zek\nzjj0ubwuG1//wXtq8jfJaAepTf3bzJNFb/gPdV2mNVy2yYvLklcOT1zD8bpUpI7GDZfr5cVF\nyd8NJq7PsPb9HoPXzeCojPzn4MX6DFeap63bYJFrMqj//Dwk2Wdk7V/N62Zftq1HdaiazzSL\nG93/6/PGSm7NZ9d6eJtsQJ0BfVxSR2+HO0jr83qlekzSLatTFkCg7XdmlhR3zsrqu/6/llnp\n+sE8e4zMM/xvZhfrNrK5a/LyjKz1S0n9G1wHMZfqINV/4g9LxpX1eWNS/x6NW0ffp1c7d0Ry\n45GKvDOv6/8oTXl1Rs5pXowZtmnr2swzZvEmtxGo/7gp0xW4QxZfzt8aWc23B693G5net5fV\nQN06qeFSpU3928xTy66GdNTxykw7O+mKY11//IZkuDwsL3ZImrOI1SmuI3nfS4ZL1a2pR5t5\n2roNr2PW41dlhSckTce5zpTVkeJfTo5MqrStR5v938Zt41rX9s8ts/o62/iB5J+W2JQ29Zik\n2xKbYNIcCrT9zsyy6ncbrOzWGb4nqX8n6z+Vw0fYJ/n3IYteqHJQanvfpPk3eLTyN8yE2yU/\nTf4sKf9jkl9JmsK/kRg/rHbuGUmdqWvK1hmpM0Zl2pS7ZuTM5LnJicnnkzqAXm1CU9q0dW3m\naZZnuAkCOkibgLbKj9x0MP+FI5+7ePC6Tl33ufxHNv7yZSrQpv5t5qlV1HwXLbGuSzKtq47b\nZ9vemFTn52+TKuPqUd+JOgp6o1XMk1nX9eW79WuDbX1LhnW28e1JlUnu/za2G9e6tn++LKuv\n/wC+YMxmtKnHJN3GbIbJcybQ9jszy2rfdbCy+k9i/Tv5nWR9cmrS/Ls+yb8PWexClZNWqO2+\neb/+L/ibSXWWPpvcJ6n/8B+YVOG/0WG1f74uH6iDo/XvfVPq+14d1gcnn0mqza//IxydNGWc\n9/D/ddrM0yzPcBMEttqEz/jI6gTqtHSVOmMwXJrX9Q/SPJc29W8zTxnVfHWUa7SUZRcdb57t\nqmvid0t+NRnuSI6rR2b7RV1WmqetWy2zC6WOYO6fPCqpxrgahmqA29aj7f5fye3HWedalntl\n5X+UPDQZvvRidJtWqsek3UbX7/X8CbT9zsyy5vWfxIuSv0iuHKz4/hl+IXlV8tuDaZP6+zBY\nnMFAoOxfmdR/0OtSuyp/mJye/GVS06vw3+jQ5s8tMlN1jn4/+YPki0mVml6mZyX/kFR5dXJY\n8vyk2oRPJ23aujbzZFHKpgrUUQNlugLnDhZ/s5HV1FGFKj/cOJjbP9vUv808BXRO0rgNg9W0\nrjneNtv0L0l1jh6cDJ9iX64emXVDXdrM09atltmFUkeGj09ekNSlHL+R7Ju0rcdyJs3+X26e\nrGrNvyc3yDa8J6mOc23zXQapf4vraHm93ippU49JumWVygIItP3OzJKifkvxuqTpHNW66z+U\n307qTEaVSf592LhEfzYCddauOqJN56imV2fofcmOSbVl/IPQstQdA9+d1G+Rq9PzhqQp1an5\n86TpHDXTjxyMtPm+t2nrmnma5RtugoAO0iagrfIj9Q9LlV03Dn7xZ/1nqEr9p3GeS5v6t5mn\njGq+xm3YbOe86JLjnbI9X0h+ktw3qUtFhkvV48aDDE+v70i9V/9RaDtPfb7L3626XPCByS/V\nhg6VYwbjD8iw6lplpXrUfCvt/zZuG1a2Rn/Ud7XuwnhAUt+LJltn/DmD1/Wfkjb1qHmqTMJt\n45L8Oe8Cbb8zs3S4XVZ2myVWWGc2mjLJvw/NMg03CuyUwd2WwOC/BMoKk+oA2EeSJyT1b/xb\nk+GybV7UQbC6PG64XDz8IuP1fW/T1q00z8hivSTQPYGvZpPqL81weXNe1D9A9RdqXsrfpCLf\nXKIyberfZp46VV2Xqd1kaB33y3gdlanLtrpQbp2NuDD5XLJdslTZKxN/njx16M069X5WcuRg\nWpt5atY2boNFrslgz6y19s9fjKy9jq7V9EcMprepR5v939ZtZHNm9nKrrGmfJVKd6cMG07fM\nsG09JuWWVSoLItDmOzNLijq7/r2kjrw3pTpM9e9DtSlVJvn3YeMSF/PPS1Pt145U/WV5XdZ1\nWeNwqe/JhUn9m8V/WGb8+CfyVnV27jVmljo4Vtb1b/1wqbatpj98MLFNW9dmnuF1GCfQSYED\ns1VXJXWEuI4cPDmp/+gfksxTGddBalP/NvOU3WXJB5NbJHdMTk0+lnSl1JmR2td/mPz2SJrO\nQCZveFjqf2V4n6TOGNSRpkuSXZOmfDgjK83Txq1Z3loNa//8KDkoqSNe9ffgvORfkuoMVGlT\nj7b7v43bxrV2588rsil/PLI5beoxSbeR1Xs5pwJtvjOzrPqzsrL6z+HbkuoY7Z/Uvw31b30d\nYGnKpP4+NMtbxOFSHaRbB6KmfyV5cFIHcN6e1D6pf6ubwr+RWHr49Ewus/cno21/vb5eUqUu\nM6/fwa5Pdk1ekJyffDZpSpu2rs08zfIMCXRa4KXZujpKXH+Bzk5el8xbGddBqnq2qX+bef5X\nllVHG8uxOpn1j/atki6U6ujUdo3LPw5t5A4Z/3hy9WD+kzN8TDJc2sxT87dxG17urMdvlhW+\nL2lcqs51DfZOyXBpU482+7+t2/C613p8qQ5S23pMym2tDax/dgJtvjOz25p1616clVWHqPk3\nog583XlkAyb592Fk0Qvz8tLUdPQMUlX+/snXk8a/rm55ZjJc+A9rXHf8s5nU+C013Hrwkfp/\nwtFD816Z8XcndTn6cGnT1rWZZ3iZxgl0VqAuIbhtskVnt3C6G9am/m3mqa3cPRn9B2W6Wz+d\npW+fxdbZsOVKm3naui23nmm/V5dG3im54TIraluPNvu/jdsym9KZt9rUY5Junam4DZmqQNvv\nzFQ3YmjhdSnX3kn9R3y5Msm/D8utZxHf2zWVHj5rt5QB/6VUVj/txvnI7ZOm4zRuCW3aujbz\njFu+6QQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgEBnBG7YmS2xIQQIECCwyALao0Xe++pOgMBcCTwztfneSE7J679PfjWZVjk5\nC/4/m7jwB+dz70xOT65JLk3em9wmmUa5XxZ682ks2DIJECBA4BcC2qNfUIwd0R6NpfHGJAW2\nmuTCLItADwW2yzbvnvxV8oNky6Q6A/dNDkx+PflwMulyyyzwZpuw0MfkMx9K/jM5Ovla8uDk\ngOQeyV2TK5JJlQdnQZ9J9kkuSBQCBAgQmI6A9mh51wfnbe3R8kbeJUCAwEQEfj9LqbMwe4ws\nbZu8/mZy4sj0Sb387yzozatc2AMz/0+SjyzxuXtn2s+TP1/ivc2Z9Nh8uHz23pyF+CwBAgQI\nrCigPVqeSHu0vI93JyhwvQkuy6IIzJPAlalMnaXZeaRS9XfmGUmdVfps8pfJnslwaTPP8Pw1\nfufkb5Kn1Ysx5dBMr7Ncv7XE+ydl2kuTOntUZ8Gacq+MvCv5fPLu5NHJcNkpL16f1FG5Y5M/\nSW6aVKlLGZ67YWzj9EMG4wYECBAgMDsB7ZH2aHbfNmvaIFD/kVMIELiuwAMy6VeT94689YG8\nfltSZ4COS6oTUZe5/a+kKW3maeat4R2TE5Ldk+p4jSv3zRv/klwyZoY3ZPofJ3UmqcqByZeT\nXZOPJlsMhq/NsEp1pD6dPD6p5VY9Dk6+mtR7dbaqOmRVLk4u2zDmDwIECBCYpYD2SHs0y++b\ndREgQGBdc0nDubE4Kzk7uTypy8qOTIbLk/OipleHoinXz8i3k/9IqgPSZp7MtqGDVZfY3T45\nL6kOTF3WN67skDdq3X8yboaR6fX7purUvHdk+l/k9VXJXZI6a1XLfETSlAdl5FPJXoMJj82w\n5tl78NqAAAECBKYjoD3SHk3nm2WpBAgQWKVA0yDVpXKvGaTOENUlZz9L/jRpytszcmbzYmhY\nHZ3qRNQZoDbz1Ef/O/lYck5SZ26unyxXmg5SXQ7XptTZr9qmusRuuNQZr5pe9b5RUp3BryfP\nSUYvFcykdTpIpaAQIEBg+gLaI+3R9L9l1kCAAIEWAk2DtMcS874q06ozUWdbqtTlaCfWyEj5\ntbyu+eoyiDbz1Merg1SfqbNPP0+GL9HLyyXLdzO1OlXjyg3zRtPR+u2M1/J3Gpm5Lquty+aq\nQ1jl/kmd/ap5K9VZembSFB2kRsKQAAEC0xXQHmmPpvsNs/TWAn6D1JrKjAsoUL8lqvKwjYMN\nl6zVpWujZdvBhO9keHGy0jzN5+tStjsldQbpXUmznIwuWer5THUb762XfHfdusMy/dLkdklt\nR5Wbbhxc689aT21rlS8mdaldfeb5Sf2+6Z3J0xOFAAECBLohoD3qxn6wFQsioIO0IDtaNTdJ\noG6KUOWMjYN1p2VYvxnabfC6GTw8IxckdVaozTzN5+pG+JUWAABAAElEQVRsTd0I4dDkNsnr\nkuXKX+fNuuFCXcY3WupGD7+Z1LaentR2VKltGy4Pzos6y/RvyT2T45JbJ/W5tyYPSX6U3Cep\ncvXGwTr/VgwgDAgQILAGAtoj7dEafO2skgCBRRX4/VS8Li17aVKXpVXq1taHJ3XL7FOT5sxO\nnY2pjtC/JPsmdabod5OfJS9JqrSZp+arzlT9dqkpf5aRutTuAc2EMcMXZ3ptbx1NfFpS878p\nOSe5LLl70pSjMlJnkp6YbJc8MPl28oXkBsk2yfeSY5PqLN0ieVFSyz8gqfKgpF6/Iqk6KwQI\nECAwHQHtkfZoOt8sSyVAgMAqBZoGqToBTeoMSp2Fqd/p1Bmb4VKXo52UNPOemfHqVAyXNvOM\ndpCqw1LrrDM59Vui5UpdCldnfmo7m+34TMaHO0d5ue7GyV8nP01qvh8mRyc3SZry0Iwcn9SZ\nrJqnLrF7QdKU6hx+Pqn3ah0KAQIECExHQHukPZrON8tSCRAgMCOBOlO0+wrrajPPCotY9u26\nVG6f5EbLzrXxkrq6bfdWy8xXHaFbL/N+nYGqM04KAQIECHRLoE1b02aezamV9mhz9HyWAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQILCcwBbLvek9AnMqcL3U68FL1O2aTLsq+WFyRnJ5Mlr2\nzoTdBhO/nOFS84x+ps+vb5uN3zP5ZnJWnyti2wkQINBBAe3R6nfKnfORaot/lBy/+o/7BAEC\nBAgsJXDDTKzO0HKpTtKbky2T4XJYXjSfu8PwG3M2vn/qc/5QXavOn09ukygECBAgMBkB7dHq\nHHfK7N9Pqk2qA3cKAQIECExIoE2D1HSC/mpknYvQQXp46vzzpDGos2rN+Pcyvl2iECBAgMDm\nC2iPVmf4kczetEc6SKuzMzcBAgSWFRhukOpSurpkrrJHslfynOSKpP4R/nGyddKUfTLysEFu\n1Eycs+ExqU/VvS4ffFBSHaIjk5pWeXaiECBAgMDmC2iP2hsenFmbdqiGOkjt7cy5SoGtVjm/\n2QnMm8DPUqHR39Z8K9P2Tx6VVOO1a1JnTqpsm2y/YWzdurp2vMo2yWM2jK1bd2qG30nun9wv\nqU7GiUlNHy13y4Sa51ZJdcTOTKpzUpf3LVd+KW8estwMg/fOy/CoFvONznJyJlyZVOfxc4M3\n351hs86dB9MMCBAgQGByAtqj8ZZ1EPMvB29X52iL8bN6hwABAgQ2RWD4iN3Xl1hAdXiqQ1T/\nCFcnYbgsdYldXRNd81ZekXxs6HVNq8vV/nfSlPqH/f8mzWeGhz/I9Prx6XKlfqA6/Jlx419Z\nbiGreK+294ihdVanTiFAgACBzRfQHq1sWG3Q8Um1dV9IThmMO4MUCIUAAQKTEhhukC7OQg8f\n5B0ZHpnUmZf6h7jO6jRnhjK6oazUQfpp5qpOzvuSjydN56Uu2dsxqbI+aaZ/MOMvSd6W1B15\nanrdHW+5s7uz7CD9Rrbl+4Ptqm17dVKNlUKAAAECmy+gPVrZ8HczS7U/1SbXZfB18K9e6yAF\nQSFAgMCkBIYbpPpHdlzetMQK23SQ7jX0ueEflNZld1WqI1brrMvYbps05ckZeUXyuKS2cVyp\nS/tu2iI3HreAVUxvtrW29/8le6zis2YlQIAAgeUFtEfL+1SHqDpG1QY9bzCrDtIAwmB6Assd\npZ7eWi2ZQHcEfpJNOXWwOVtmWL8xqk5AdS5emOybPDW5IGlT6uzPyUMz/nPGHz94Xb8dqnL6\nxsGGmz/U+FeTzySfSD6c1CV5y5X6e9ssa7n5qgNWZ6U2p9TlDN9I6sexd0u+njwjqTNkCgEC\nBAhMTkB7dG3LOhhYl6NXJ/LE5K8ShQABAgSmJDB8xK7+wz9a6q5170rqiFXlxUlTVjqD9MFm\nxsHwORk2y3nSYNqNMvzS0PTm/Rqem/xWsly5c94c/sy48TrKNqly/SyoLkesdTUdykkt23II\nECCwqALao/F7vg5SNu3bszL+sEHq0rqafvbg9Z0yVAhMVKB65woBAtcWqN8RvWFo0hOHxlca\nrbM2w+Xq4ReD8bpcoC63OyCpS/AuSZqyS0b+NnlEM2GNhnU27QZD6667K3168PouGe459J5R\nAgQIEJiOwCK3R3cdIv3rjH9qkNsNpt9y8PpFg9cGBCYm4BK7iVFa0JwJ1Fmapox2eprpSw3r\nqNZKpS7j2zupjlF1vupARV2+VtdXH5JUqQ7ScRvGrvtHHTVb6SxTferC6350xSm3yhx1WV0N\n63K/X0+aMvzbqh80Ew0JECBAYKoCi9oeTRXVwgksJ6CDtJyO9xZB4Gap5G8PVbT+TtxmZFr9\nPmiS5aQsrH7bVJ2phya1/FOS+g1S00H674yPK5fmjXeNe3Mzp1fnq0o5VOftGUlt3+8keyRV\nalvrcjuFAAECBCYnoD26tmWdGXrltSdtePVP+bPa0O8mD0kuSxQCBAgQ2EyB4Wu+r8mylsvJ\neb/O+DTlsIw0899hMHGnoWnvaWYcDKtj0czf/AZp/0yrS9aa6Wdk/L+GXlfnqC61W6vy8Ky4\nbhTRbN/w8IpMr4ZJIUCAAIHNF9Aerd6wfl9b7dI3V/9RnyDQTqAu7VEIENgoUL8Xquu9f5ic\nmvxRUp2Z6hRMsnw8C6vlnjxY6F4Z7jYY/2iGdUTsvMHrtRjUdd61fXX3uuHyz3lxj+S04YnG\nCRAgQGDiAtqjiZNaIIH2Ah742N7KnASmIbBDFlqdo+qYnZlMujOWRW5WqTNZ9UPYbyU/2Kwl\n+TABAgQIdFmg6+1Rl+1sGwECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjMVmCL2a7O2ggQIECAwNwK3CA12y/ZNdk5\nuSa5JPlacvrgdQYKAQIECBAgQIAAAQIE5ldgq1TtT5OLkuoULZWTM33fRCFAgAABAgQIECBA\ngMBcC/xdaveD5PXJA5N9kpsnt0rukjw5OTb5aXLvRCFAgAABAgQIECBAgMBcCmyfWv08eUSL\n2h2ded7SYj6zECBAgAABAgQIECBAoJcCd81WX5XUZXYrlWdmhn9daSbvEyBAgAABAgQIECBA\noK8C18uGn5ccsEIFqgN1fPK+FebzNgECBAisscCWa7x+qydAgAABAn0WqBsy3DA5LLn7YLzu\nYrdDsmdSZ5gem7wtqTvcrU/OTxQCBAgQIECAAAECBAjMrcAjU7MzkqXuYPezTD8qqQ6SQoAA\nAQIdF/AcpI7vIJtHgAABAr0S2C1bu0eyXXJZcs4gV2SoECBAgEAPBNr8qLQH1bCJBAgQIEBg\nzQXqQbG3SHZMmgfF7pLxams9KDYICgECBAgQIECAAAEC8y9QHSAPip3//ayGBAgQIECAAAEC\nBAi0EPCg2BZIZiFAgEBfBPwGqS97ynYSIECAQBcF6kGxFyf7J8etsIH1oNj6TdILVphvqbff\nk4l3XOqNkWn1+6enJx8fme4lAQIECLQU8BukllBmI0CAAAECSwjUrbzrznUnLPHe6KR6DtKz\nRye2fP2hzHdKi3nrUr8btZjPLAQIECBAgAABAgQIEJi4QNceFFt3znv0xGtpgQQIEFggAWeQ\nFmhnqyoBAgQITFzg6izx8KSec/S05JjkvOSiZOukHhi7T3JQsldy30QhQIAAAQIECBAgQIDA\nXAt05UGxziDN9ddM5QgQmIWAM0izUL72OuohgnVEUZmNQP0g+oLZrMpaCBBYYIFPpu57J316\nUOw8t0dXZl98Y4G/j6pOgACBXgn8IFtbP+iV2Rh8vlffDhtLgMC8CdwnFXrqDCu1mjNI894e\n3X6G7lZFgMAcCTiDNPuduU1WeUDS5o5Hs9+6+Vrj81MdP1aer32qNgT6JvCobPDjkvqNUtfK\nvLZHNw30d5Oqn0KAAIFVC+ggrZpsIh/4UZZy6USWZCHLCVyx3JveI0CAwAQE9s0yluv87Jz3\nb5KcNlhXPSvpRYPxLgy0R13YC7aBAIFOCeggdWp32BgCBAgQ6JlA/caxbvVdD3H9UvKtZLjc\nNS+un/zbYOKZg6EBAQIECHRUQAepozvGZhEgQIBALwTqlt73SN6Q/Gby7uTtSVNek5G6xO7g\nZoIhAQIECHRboI56KQQIECBAgMCmC9TlvM9LDkj+T/LxZNdEIUCAAIEeCugg9XCn2WQCBAgQ\n6KRA3eq7fpNUt5iu3xxVh0khQIAAgZ4JuMSuZzvM5hIgQIBApwUuzNY9IXlGcmRSN0H4fqLM\nTqB+81WlzuT9bMPYfP1Rt3K/d3L5fFVLbQh0R0AHqTv7wpYQIECAwPwIHJGqnJi8JflhosxO\nYNvBqj6S4Vdmt9qZrKku3fzTpO6MqIM0E3IrWUQBHaRF3OvqTIAAAQKzEKg72nkW2yykl17H\n5zL5A0u/1dup9fDb6iApBAhMUcBvkKaIa9EECBAgQIAAAQIECPRLQAepX/vL1hIgQIAAAQIE\nCBAgMEUBHaQp4lo0AQIECBAgQIAAAQL9EtBB6tf+srUECBAgQIAAAQIECExRQAdpirgWTYAA\nAQIECBAgQIBAvwR0kPq1v2wtAQIECBAgQIAAAQJTFNBBmiKuRRMgQIAAAQIECBAg0C8BHaR+\n7S9bS4AAAQIECBAgQIDAFAV0kKaIa9EECBAgQIAAAQIECPRLQAepX/vL1hIgQIAAAQIECBAg\nMEUBHaQp4lo0AQIECBAgQIAAAQL9EtBB6tf+srUECBAgQIAAAQIECExRQAdpirgWTYAAAQIE\nCBAgQIBAvwR0kPq1v2wtAQIECBAgQIAAAQJTFNBBmiKuRRMgQIAAAQIECBAg0C8BHaR+7S9b\nS4AAAQIECBAgQIDAFAV0kKaIa9EECBAgQIAAAQIECPRLQAepX/vL1hIgQIAAAQIECBAgMEUB\nHaQp4lo0AQIECBAgQIAAAQL9EtBB6tf+srUECBAgQIAAAQIECExRQAdpirgWTYAAAQIECBAg\nQIBAvwR0kPq1v2wtAQIECBAgQIAAAQJTFNBBmiKuRRMgQIAAAQIECBAg0C8BHaR+7S9bS4AA\nAQIECBAgQIDAFAV0kKaIa9EECBAgQIAAAQIECPRLYKt+be6SW3uDTN0v2TXZObkmuST5WnL6\n4HUGCgECBAgQIECAAAECBJYX6HMHqbb9Ncmzkh3GVPMrmX5octqY900mQIAAAQIECBAgQIDA\nLwT6fIndO1OL5yRHJA9Kbp/slOyW1BmlpyQXJKck904UAgQIECBAgAABAgQILCvQ1zNI26dW\nhyT7J8ctUcOzM60usftAcnRyYHJSohAgQIAAgWkJuOR7WrKWS4AAgRkK9LWDtGeM6rdGJ7Sw\nOj7zPLvFfGYhQIAAAQKbIuCS701R8xkCBAh0VKCvl9jV2aELk8ev4FqNVl1q980V5vM2AQIE\nCBDYVAGXfG+qnM8RIECggwJ9PYN0dSwPT45KnpYck5yXXJRsndRNG/ZJDkr2Su6bKAQIECBA\nYNICLvmetKjlESBAYI0F+tpBKrZXJycnb02WOpN0VabXb5AOTuqMk0KAAAECBCYt4JLvSYta\nHgECBNZYoM8dpKL7ZLJ3Uneu2yPZLrksOWeQKzJUCBAgQIDAtASGL/n+4DIrqfbWJd/LAHmL\nAAECXRHoewepHOuuQbdIdkyaB8XukvGqmwfFBkEhQIAAgakJuOR7arQWTIAAgbUR6HMHqbbd\ng2LX5ntjrQQIECDwPwIu+f4fC2MECBDovUCfO0h116AnJe9Ijk3OTy5OtkmamzSsz3g9KPYB\niecgBUEhQIAAgakIuOR7KqwWSoAAgdkL9LWDNKu7Bh2QXVI/wF2p3DkzvDw5a6UZvU+AAAEC\ncyvgku+53bUqRoDAIgn0tYM0q7sGPSZfhju0+ELcPfP8c1JntRQCBAgQWCwBl3wv1v5WWwIE\n5lygrx2kWd016JCW+7+5c17L2c1GgAABAnMk4JLvOdqZqkKAAIG+dpDcNch3lwABAgS6IDCr\nS75flMrWYy1WKvU73JutNJP3CRAgQGC8QF87SFUjdw0av1+9Q4AAAQKzEZjVJd83TnVu0rJK\nW7acz2wECBAgsIRAnztIVR13DVpip5pEgAABAjMTmNUl369sWaP67eyFLec1GwECBAgsIdD3\nDlJTpbp7nDvINRqGBAgQIDArAZd8z0raeggQIDAjgXnoINUzj+r5R025f0b2Tc5J6s5yjqQF\nQSFAgACBqQm45HtqtBZMgACB2Qv0uYN0u3D9SbJj8ivJdsmHk4ckTbkmIy9MDmsmGBIgQIAA\ngSkIuOR7CqgWSYAAgbUQ6HMH6S0B2z35wwHcmzO8X/KK5Oik7iz0lKSmX5AclSgECBAgQGCa\nAsOXfG+dFdUBvIcm/5KcligECBAg0HGBvnaQfimuD0uq4fniwPgJGb4nqUsdmnJSRvZK6j0d\npEbFkAABAgQmKXC9LOxlyeOSc5PXJt9J/iPZOalSVzS8IWkO6tU0hQABAgQ6KFD/qPex3DIb\nXdtedw+qskVSP5T9Qr0YKZ/O69uMTPOSAAECBAhMSqCuVHh1Ug8Nv0/y0eSI5LzkN5J7JX+T\n/EHypEQhQIAAgQ4L9LWD9PWYXpG8OKnOUR2Z+0SyPhku2+bFgcm/D080ToAAAQIEJiRQ7cyz\nk4OSX01unZya1Nmk5yT/kHwl+e3kxGR9ohAgQIBAhwX62kG6KqbPTV6efCx5bFK/SdotOTl5\nflJPHa9rvu+YvC5RCBAgQIDApAXqrqlbJv84WPDlGdYl3Zcm1QYNl7qR0G2GJxgnQIAAge4J\nbNW9TWq9RUdmzvOTlyb/lAyXew5efCrDZybfHn7TOAECBAgQmJBAXUZXBxvrN7HHDpZZnaWf\nJs0VDoPJG347+1/NC0MCBAgQ6KZAnztIJVqX1VV2SW6V1G+Ttk7OTr6XnJMoBAgQIEBgWgLV\n4amO0fuTv03q6oU6e1RnkZpSB+1elfxa8sRmoiEBAgQIdFOg7x2kRrWO4FW+2kwwJECAAAEC\nMxI4IOupy77rd0YvWGKdB2faQ5OXJB9Z4n2TCBAgQKBDAnVZgEKAAAECBAhsusBP8tE/T+40\nZhFvzPQdkxoqBAgQINBxgXk5g9RxZptHgAABAgsgUL87Wqr43dFSKqYRIECgowLOIHV0x9gs\nAgQIECBAgAABAgRmL6CDNHtzayRAgAABAgQIECBAoKMCOkgd3TE2iwABAgQIECBAgACB2Qvo\nIM3e3BoJECBAgAABAgQIEOiogA5SR3eMzSJAgAABAgQIECBAYPYCOkizN7dGAgQIECBAgAAB\nAgQ6KqCD1NEdY7MIECBAgAABAgQIEJi9gA7S7M2tkQABAgQIECBAgACBjgroIHV0x9gsAgQI\nECBAgAABAgRmL6CDNHtzayRAgAABAgQIECBAoKMCOkgd3TE2iwABAgQIECBAgACB2QvoIM3e\n3BoJECBAgAABAgQIEOiogA5SR3eMzSJAgAABAgQIECBAYPYCOkizN7dGAgQIECBAgAABAgQ6\nKqCD1NEdY7MIECBAgAABAgQIEJi9gA7S7M2tkQABAgQIECBAgACBjgroIHV0x9gsAgQIECBA\ngAABAgRmL6CDNHtzayRAgAABAgQIECBAoKMCOkgd3TE2iwABAgQIECBAgACB2QvoIM3e3BoJ\nECBAgAABAgQIEOiogA5SR3eMzSJAgAABAgQIECBAYPYCOkizN7dGAgQIECBAgAABAgQ6KqCD\n1NEdY7MIECBAgAABAgQIEJi9gA7S7M2tkQABAgQIECBAgACBjgroIHV0x9gsAgQIECBAgAAB\nAgRmL6CDNHtzayRAgAABAgQIECBAoKMCW3V0u1azWTfIzPsluyY7J9cklyRfS04fvM5AIUCA\nAAECBAgQIECAwPICfe4g1ba/JnlWssOYan4l0w9NThvzvskECBAgQIAAAQIECBD4hUDbDtK2\n+cQWv/jUyiOXrzzLZs/xzizhSck7kmOT85OLk22S6jDtk6xPTkkekJyUKAQIECDQb4EutkeN\nqCsaGglDAgQI9FigbQfp3NRx+5b1/EnmqwZsmqW25ZBk/+S4JVZ0dqbVJXYfSI5ODkx0kIKg\nECBAoOcCXWuPitMVDT3/Utl8AgQIDAu07SD9Xj7010mdqalckNRvfg5K7pH8cVIdoypXbRxM\n9c89s/T6rdEJLdZyfOZ5dov5zEKAAAEC3RfoWntUYq5o6P73xhYSIEBg4gJ19uUlSyy17oL3\njeT1S7w3zUm13vOSA1ZYSXUAq4P0vhXm29y3L8sCHt1yIdWRfETLec22eQIvzsdP3rxF+DQB\nAh0T6Fp7VFc0/Dxp8+96XdHwlil7ao/Wrds9xnUQ9clTtl6Lxd9+ULe6KZVCgMCUBNqcQap/\n/O+ZPGqJbbg6096e1JmkWZZa7+HJUcnTkmOS6jBdlGydNL9Bqu3aK7lvohAgQIBAvwW62B65\noqHf3ylbT4AAgesItOkg1dGouvnBLyfHXWcJGztPZy0xfdqTXp0V1NmBtyaPX2Jldalf/Qbp\n4KR+j6QQIECAQL8FutgeVftyYVLt0AeX4a329inJN5eZx1sECBAg0AGBNh2kOlvzoeQ9yauS\nzyWXJrsnz0gOTB6WrEX5ZFa6d7JbskeyXVIN6DmDXJGhQoAAAQLzIdDF9qi2yRUN8/H9UgsC\nBAhsEGjTQaoZfzepMzJ1tma4nJ8XdRnbZ4Ynzni8bqt6i2THpHlQ7C4Zr7p5UGwQFAIECMyR\nQBfbI1c0zNEXTFUIECDQtoNUnaNqlOpudXdLbpV8J/nX5MfJWpTadg+KXQt56yRAgMDaCXSx\nPSoNVzSs3XfCmgkQIDBRgbob3GrKHTJz3UGlOidfSOr1WpW6repzkiOSByW1XTsldbndfkld\n631BUg+KvXeiECBAgMD8CHSpPWpUh69oqLaotvHuye7JFolCgAABAj0QaHsG6SapS92e9JGD\nOp2Q4fuTk5K6i92Lkrp99axK3cnokGT/ZKkbR5yd6fXD2Q8ktd31O6na1tWWOlt2yxYf2jLz\nVBQCBAgQmK5A19qjqq0rGqa7zy2dAAECMxVo20E6LFtVR8Kqo3HH5H7J5cnzkjcmJybL3b0n\nb0+0zOq2qn+Zrb5riy2vo4Z1hFAhQIAAgekKdK09qtrWFQ1PSt6RHJucn9TdX7dJdkj2SdYn\ndUXDA5JNOWCXjykECBAgMAuBNh2kugzvN5InJHW25iVJlXoI2+FJdZjqIamz7CDV2aELk2nf\nVrUasjal7pz33TYzmocAAQIENlmgi+3RrK5oeHjU9mghV+16dcwUAgQIENhEgTYdpLo73LbJ\n98aso6bXmaVZlquzsuqcHZV4UOws5a2LAAECayfQxfZoVlc0PDvsd2pBv3XmqTu6KgQIECCw\niQJtOkjfz7IvSg5KXj6yni3y+tDk30amz+Kl26rOQtk6CBAg0B2BLrZHs7qioa7iaFPqiob/\najOjeQgQIEBgaYE2HaT65JuSVyT1O5u6tO5GyTOT9Uk9qLU6SWtR3FZ1LdStkwABAmsn0LX2\nyBUNa/ddsGYCBAisqUBd9/26pO5UVx2kJvU7oEOSRS91xK5+h9WmlOEj2sxons0WeHGWcPJm\nL8UCCBDokkBX26O6y+sZSdM+Dg9/lul1SXg9gmLaRXv0Pwdznzxt7DVY/u2zzvpuuYxyDfCt\ncnEE2p5BemVIPpW8OblzsmtSvz2qSwvqH+Oulftkg26TVIOkECBAgMD8CLwyVelie+SKhvn5\njqkJAQILLtCmg1TPnHhZckVyYvLZpOvlUdnAxyU6SF3fU7aPAAEC7QX60B6dlepUFAIECBDo\nqUCbDtKPUrdvJXdJ6qYMdWp3rcu+2YDlOj916rka0tMGG1q3J6+H2SoECBAg0F+BLrZHjWbd\n7fWXk7oE8JTkx8loeUgmXJl8cfQNrwkQIECgOwJtOkjVIXpH8prk1KTuWHdeMlzqUrv3Dk+Y\n8vgFWX41QvUMpi8l1YEbLvVw1+snta1Vztzwpz8IECBAoM8CXWyPyrMO2v1jUpd2V6nf5/5u\ncnS9GCovzXg9QFYHaQjFKAECBLom0KaDVNv8/KRuLlC/PaqMlmMyYZYdpOqg3SN5Q/KbybuT\ntydNqc5cXWJ3cDPBkAABAgTmQqBr7VFdWVFtUN2IYf1g+KwM/yHZM3l9ohAgQIBAjwTadpCa\no2Jdqlr9Jup5ybHJu5LHJIcm5yYKAQIECMynQNfao1uHeb/k4cnxSZW6BPy1yZ8lFyVHJAoB\nAgQI9ESgLlPre6k7B9XlDXVdd/3m6IBEIUCAAAECsxDYJSupZyHV5d7DpR6s/pdJXd3w/9u7\nE2hpyvpOwKAgoCjIuAQjm4g4ccE4iQkqymhiMsYoMZocJOqnBjwkTqJjTKITZ1wIcVyS427Q\niZ4Y0GCijtEYFEXRMYI4xnVGDAnK5sJmUBRZnN8fujxt2/fet+/X3bervuc953e7q/qt5X2q\nu6rfruq+vzD+gPsECBAgsNoCa3WQbpfV3pbss9qr/4O1q+u967+M/2HypuTYRCFAgACB/gus\n+vHo/BDXsbQu654sz8iI+m5SfRepfsBBIUCAAIEeCKzVQTo4616Xre031obb5v4LknpsVUtd\nxlA/0HBO8rlVXUnrRYAAAQLNAqt+PKrLut+dvDJ5VfLjSVfqzNIxSZ1d+nByj0QhQIAAgRUX\nWKuDNG21q4P03KS+dLrKpX7R7hHJ41Z5Ja0bAQIECGxaYNWOR09KS85Mjk/uOtGq72X40cnb\nkrocTyFAgACBFRdo/ZGGFW+G1SNAgAABAlsmUJd5H5XsndT3YSfL1RlRnaj6PtLtJx80TIAA\nAQKrJaCDtFrbw9oQIECAQH8Frtxg1c/e4HEPEyBAgMAKCMxyid0KrK5VIECAAAECBAgQIECA\nwOIEdJAWZ2vOBAgQIECAAAECBAj0TGCjS+w+kvZcP2pT15l6R4avm2jnOzNc11crBAgQIEBg\nEQKOR4tQNU8CBAgQ+BGBtTpI9YXTv/qR2muP+OTaD3mEAAECBAhsWsDxaNN0JiRAgACBzQis\n1UE6LzN7/GZmaBoCBAgQIDBHAcejOWKaFQECBAhsLNBdNrdxTTUIECBAgAABAgQIECAwcAEd\npIFvYM0jQIAAAQIECBAgQKBdQAep3UpNAgQIECBAgAABAgQGLqCDNPANrHkECBAgQIAAAQIE\nCLQL6CC1W6lJgAABAgQIECBAgMDABXSQBr6BNY8AAQIECBAgQIAAgXYBHaR2KzUJECBAgAAB\nAgQIEBi4gA7SwDew5hEgQIAAAQIECBAg0C6gg9RupSYBAgQIECBAgAABAgMX0EEa+AbWPAIE\nCBAgQIAAAQIE2gV0kNqt1CRAgAABAgQIECBAYOACOkgD38CaR4AAAQIECBAgQIBAu4AOUruV\nmgQIECBAgAABAgQIDFxAB2ngG1jzCBAgQIAAAQIECBBoF9BBardSkwABAgQIECBAgACBgQvo\nIA18A2seAQIECBAgQIAAAQLtAjpI7VZqEiBAgAABAgQIECAwcAEdpIFvYM0jQIAAAQIECBAg\nQKBdQAep3UpNAgQIECBAgAABAgQGLqCDNPANrHkECBAgQIAAAQIECLQL6CC1W6lJgAABAgQI\nECBAgMDABXYZQPt2TxsOS/ZN7ph8P7ki+Uxy7mg4NwoBAgQIECBAgAABAgTWF+hzB6nW/YXJ\ncck+azTzExn/lOSzazxuNAECBAgQmJeAD+zmJWk+BAgQ2EKBPneQTorbryavS96TfC25PNkt\nqQ7Tocm25JPJEclZiUKAAAECBOYt4AO7eYuaHwECBLZQoK8dpL1i9sTk4clpU/wuzLi6xO5t\nyanJ0YkOUhAUAgQIEJi7gA/s5k5qhgQIENg6gb52kA4KWX3X6AMNdO9PneMb6qlCgAABAgRm\nFfCB3axi6hMgQGDFBfr6K3Z1dujS5KgNfKsD+GvJFzeo52ECBAgQILAZgVk/sHvQZhZiGgIE\nCBBYnkBfzyDdEKLXJKckxyTvSr6aXJbcIum+g/QbuX/X5PBEIUCAAAEC8xYY/8Dub9aZuQ/s\n1sHxEAECBFZJoK8dpDJ8QXJ28spk2pmk6zK+voP0hKQOYAoBAgQIEJi3gA/s5i1qfgQIENhi\ngT53kIruH5JDkv2SA5LbJFclF4/yndwqBAgQIEBgkQI+sFukrnkTIEBgyQJ97yB1XBfkTkUh\nQIAAAQJbIeADu61Qt0wCBAgsQGAIHST/mG8BTwyzJECAAIFNCfjAblNsJiJAgMDqCPS5g1Tr\n/sLkuKR+lGFa+URGPiX57LQHjSNAgAABAnMU8IHdHDHNigABAlsl0OcO0jL+Md+/y4a5bcPG\n2bmhjioECBAgMEwBH9gNc7tqFQECO6hAXztIy/rHfB/O8+Iejc+N+rEIhQABAgR2PIFlfGB3\n57DeroG2r//fsKFpqhAgQGA5An3tIM36j/mO3yRn/f+k+mW8jUr9I9ovbVTJ4wQIECAwOIFl\nfWD395G7V6OeD+waoVQjQIDANIG+dpCW9Y/56ifDKxuV729UweMECBAgMEiBZX1g91PR26NB\n8MLU8YFdA5QqBAgQWEugrx0k/5hvrS1qPAECBAgsU2BZH9h9L42qKAQIECCwYIG+dpCKxT/m\nW/CTw+wJECBAYEMBH9htSKQCAQIE+iXQ5w5SSfvHfP16vllbAgQIDFHAB3ZD3KraRIDADivQ\n9w5SXY/9H5L61Z5PJt9OJstDM+Ka5KOTDxgmQIAAAQJzEvCB3ZwgzYYAAQJbLdDnDlL9ms87\nk7uMEC/N7W8np46Gu5tn587liQ5SJ+KWAAECBBYlcEFmXFEIECBAoKcCdealj6X+Meubk2uT\nbckxyeeTv07+IFEIECBAgAABAgQIECAws0BfzyAdmJYeljwseX9S5ZTkhORFyWXJGxKFAAEC\nBAgsUmDPzPzgGRZwZep+eYb6qhIgQIDAkgX62kH6sTjVLwf944TXH2X41slrk7rE4bREIUCA\nAAECixK4d2b8v2eY+dtS99dmqK8qAQIECCxZoK8dpPPjVJcHPio5ORkvz8jAnZL6LtJDxh9w\nnwABAgQIzFngY5nfk5PXJWcmL0nWK19d70GPESBAgMDWC/S1g3RJ6N6dvDI5PPmT5KKkSp1Z\nqu8kvSv5cHJV8pFEIUCAAAECixB4Y2Za342tS7tPTM5IFAIECBDoqUCdhelreVJWvD6tOz65\n60Qj6r+NPzqpSxnqcjyFAAECBAgsUuAvMvPTk/oerEKAAAECPRbo6xmkIq+f9T4q2Tup/3M0\nWa7OiOpE1feRbj/5oGECBAgQIDBngfpu0UFJHVuvm/O8zY4AAQIEliTQ5w5SR1S/CLReOXu9\nBz1GgAABAgTmJFDHo0/NaV5mQ4AAAQJbJNDnS+y2iMxiCRAgQIAAAQIECBAYqoAO0lC3rHYR\nIECAAAECBAgQIDCzgA7SzGQmIECAAAECBAgQIEBgqAI6SEPdstpFgAABAgQIECBAgMDMAjpI\nM5OZgAABAgQIECBAgACBoQroIA11y2oXAQIECBAgQIAAAQIzC+ggzUxmAgIECBAgQIAAAQIE\nhiqggzTULatdBAgQIECAAAECBAjMLKCDNDOZCQgQIECAAAECBAgQGKqADtJQt6x2ESBAgAAB\nAgQIECAws4AO0sxkJiBAgAABAgQIECBAYKgCOkhD3bLaRYAAAQIECBAgQIDAzAI6SDOTmYAA\nAQIECBAgQIAAgaEK6CANdctqFwECBAgQIECAAAECMwvoIM1MZgICBAgQIECAAAECBIYqoIM0\n1C2rXQQIECBAgAABAgQIzCyggzQzmQkIECBAgAABAgQIEBiqgA7SULesdhEgQIAAAQIECBAg\nMLOADtLMZCYgQIAAAQIECBAgQGCoAjpIQ92y2kWAAAECBAgQIECAwMwCOkgzk5mAAAECBAgQ\nIECAAIGhCuggDXXLahcBAgQIECBAgAABAjML6CDNTGYCAgQIECBAgAABAgSGKqCDNNQtq10E\nCBAgQIAAAQIECMwsoIM0M5kJCBAgQIAAAQIECBAYqoAO0lC3rHYRIECAAAECBAgQIDCzgA7S\nzGQmIECAAAECBAgQIEBgqAI6SEPdstpFgAABAgQIECBAgMDMAjpIM5OZgAABAgQIECBAgACB\noQroIA11y2oXAQIECBAgQIAAAQIzC+ggzUxmAgIECBAgQIAAAQIEhiqggzTULatdBAgQIECA\nAAECBAjMLKCDNDOZCQgQIECAAAECBAgQGKqADtJQt6x2ESBAgAABAgQIECAws4AO0sxkJiBA\ngAABAgQIECBAYKgCOkhD3bLaRYAAAQIECBAgQIDAzAK7zDyFCQgQIECAAAECBLZCoHvf9rtZ\n+Le3YgUWvMyvZf5vWPAyzJ7AhgLdC23DiioQIECAAAECBAhsqcB+o6X/Ym6v3tI1mf/C98os\n75noIM3f1hxnFBhCB2n3tPmwZN/kjsn3kyuSzyTnjoZzo+yAAvV8qIPJn+6Abd+KJl+fhb4k\n+fpWLNwyCayAgOPRCmyEHWQVHp92fn5gbT0y7TljYG3SnJ4K9LmDVOv+wuS4ZJ81/D+R8U9J\nPrvG40YPW+Duad7tkoOH3cyVad0vZU0+nLx7ZdbIihBYjoDj0XKcLYUAAQJLEehzB+mkCP1q\n8rrkPUldt3p5sltSHaZDk23JJ5MjkrMSZccT+G6a/Kgdr9lb0uK6Hv4+yTVbsvQdb6H/mib/\n847X7JVssePRSm4WK9UzgVuN1velPVvvltXdM5UOSob6gf3/SdtOaYHoS52d+7KiE+tZ16lW\nZ+jhyWkTj00OnpoRFydPn3ygYfjs1LlvQ736NcD/nLy6oe63UmePpC4FVBYrUNulnuN16Zey\neIGbL34RljAm8PHcP3xs2N2tEXA82hr3jZZa+6Oh7vuH2rY6Xvt15Y2e2av5+DlZrZ9ezVXb\n3Fr19QxS9cKrg/GBhma/P3WOb6g3rcq2jKzvNm1U7pwKb92o0ujx++f29o11Vds+gfo+wG2T\nS7ZvNqZuFNg/9S5Mbmisr9r2CZy/fZObek4CjkdzgpzzbGq71FnWIZahtm3nbKwDkvMHuNHq\n/Xa9n7xggG2rJp0/0Hb1rln1CcNXk8dssOb1hKwO0ls2qOdhAgQIECCwGQHHo82omYYAAQIr\nLNDXS2Lq7NEtk5cndQlc3a+eeX33qD5Zqe9BPDKpS94OS7Yl9R0lhQABAgQIzFPA8WiemuZF\ngAABAtst8IuZw5eSOkBN5tqMqy+MVQdJIUCAAAECixRwPFqkrnkTIEBgiQJ1vecQyn5pxAHJ\nbZKrkvpRhsp3EoUAAQIECCxLwPFoWdKWQ4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIEliIwlEvsloI1p4U8OPOpf17at1I/gtG3n8u+Rdb51sllPcPeO+t7TdK3S0TrOVK/Llnf\nB+xTuVNWti7J7VPZNSt7dVL/nE8hsFmBvh6PWtrbx9d1S7uqzpDb1sf3Gi3brX7tsv7FyxB/\nMGyQxyMdpJan9Xzr1D+u84/Q5mtqbgR2RIEr0+j6P18Kgc0KOB5tVs50BAiMCwzueNTXfxQ7\nvlH6dr9+Xa/+f9PpPVrx+u/IZybdmY2+rPozsqKPTo7oywqP1vPtuf1/yXN6tt7fyPo+IXlv\nj9a7fuXy48kdkvqBl76Up2VFj+nLylrPlRXo4/GoBXOvVKqz2fdLPtsyQY/q3C3r+umkfpjq\n6z1a75ZVrWP1+5I9Wir3rM5js74vTupf0QytDPJ4pIO0NU/TOij16TK7742Y6rKvPq33dVnf\nutyrT+tc1Dck9clu39a71t1zuxQWX+q5rRCYh0DfXrMtbd59VKmOXX3cj67Xxr4ej9drU/dY\nPRerDG2bVZuG3LZBHo9c6lVPW4UAAQIECBAgQIAAAQIR0EHyNCBAgAABAgQIECBAgMBIQAfJ\nU4EAAQIECBAgQIAAAQIjAR0kTwUCBAgQIECAAAECBAiMBHSQPBUIECBAgAABAgQIECAwEtBB\n8lQgQIAAAQIECBAgQIDASEAHyVOBAAECBAgQIECAAAECIwEdpOU/FS7IIi9d/mK3a4mXZ+qL\nk+53/LdrZkuc+Guj9V7iIueyqEsyl/onh30rfXxuXxHk8q7/8dWnUs+Pek0qBLZHoI+v2Zb2\n1v/RqddIvb6HVr6ZBtWx7eqhNSztuSz5ygDbVU2qf+p70UDb5ng00A2rWQQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYDgC90tTXpN8KXlv8ohkK8uzsvB/mJIH\nja3Uzrn/+OR/Jecmb072SybLqrVtcv22anjXLPh9yX+dsgI/k3HT/P9orC7/MYw17u6d8S9J\n/in5SvKB5OHJZKnn8DTvMu7KHXLnOck5ydnJ85KbJ+Olpc54ffcJrKJAH/fZQ9xn/vs8OS5K\n7jHlSdKyjVr2R63HkSmrsF2jfjdT1350Wunj/rj1WNOy3VrqtGzbababGdfStpbXXy171dq2\nGY8bp7nZpqc04SwC+6fy6ck+Sb1Zrh3iO5Ojkq0qv54FH5x8ayLXja3Qsbn/+uSs5AVJ7cw/\nmtQLtyur2LZu3bbytjpHr0t+Ptljyoo8OOMqk/7fHavLfwxjyt1dMq46PU9OPpQ8P/l+8p7k\n6KQrB+XOI5Pdkknvrk7dnpw8IXlF8tbkvyRvTMZLS53x+u4TWDWBvu6zh7bPvHOeGO9K7pTU\nvmy8tG6jlv1Ry3FkfNnzuF/vbV6W7DVlZn3cH7cea1q2W0udYmvZtlN4Zx7V2raW19+qtW1m\nDBMsX+DvsshPTSz2bzP8mYlxyxqsF0S9Ea9PeNYqP5YHvpnUJ+pdqZ3dVclzuxG5XbW2ja3a\nlt29b5b8T0m9Gb82OSGZLG/JiI9Ojhwb5j+Gscbd6vRUh+gJY4/Xp6X/N/nC2Lhfyf2qt+/Y\nuMm7NY+qc8jYA/UhQo27+2hcS52xyd0lsJICfd1nD2WfWfuo45I6vl6Z1D7msGS8tGyjlv1R\n63FkfNnbc3/vTPw/k2pTte2LyWTp4/649VjTst1a6rRs20nXzQ63tm2j118tf9XatlkT0y1J\n4NZZzvXJ700s76gM105k2qn1iapzH7znaNkPWGfO20Z1Dpioc0qGPz8at4ptm1jdLRn8Upb6\nj8mhSR0kpnWQ6k38y5O1yrY8UM8P/msJ7bTTQ/PQG5I9J6qclOGrxsbV2c+Lx4an3a2zTnWm\ndLzsloGaz/NGI1vqjKq6IbCSAn3eZw9ln3mfPDPqSo1XJY9Kaj8/3kFq3UYt+6Nto/mvdxxJ\nlbmVEzOnryePS+rqk2kdpD7uj1uONS3braVO2G68CmKj41HVm0dpaVstZ6PX3yq2bbt8brZd\nU5u4RaAuSyvnf56ofN5oeL+J8csY/MnRQg7M7V8ln0rqTeX4J+zVcauzH19Oxku1o1vnVWzb\n+Lpu1f3fyIIPT6YdHGqdbpncLfle8qKk/OtSi/+YdIV/J7H27Qfy0G8mdaauK7fInfqEsky7\nUm9Izk+elnwoOTOpDyxunnSlPjSYfI1ek3EXJt3zvaVONz+3BFZRoK/77CHtM2ufUh+e1f7o\nO1OeJK3bqGV/1HIcmbIKmx51SqY8MKnbtUof98ctx5qW7dZSp9xatu1avrOOb2lby+tvFds2\nq8UP1ddB+iGOhQzsPZrrpRNzv3w0XKfAl11qB1Wl3iTWm8J/SbYln0669an1viyZLLXe9UnB\nrZJVbNvk+m7F8FkbLPReebxee09KasdzRvKzSe2ojk6q8L/JYda/J2aCfZLnjE1Yz/fqsB6Z\nfDCp5+9LklOTrqzlfUUqbPSaGK/Tzc8tgVUU6Os+e0j7zHovcN46T47WbbQ9+6zx4/g6qzLz\nQ5/LFFdvMNV98vgQ9seTx5qW7dZSp/hatu0GzNv18GTbWl9/tdCN3utudduaYXZprqniZgXq\n9HmVOhszXrrheoO87FJvEi9LXpbUp+RVHph8JHl+8tSkSp3hmCzj672KbZtc31UcLvvnJfUG\nvU5bV/nD5NzkFUn3xp1/MBrLzqlXO/VnJn+QfDSpUuPL9ILkr5MqL0jq8sbfSX4uOT2p5/Ja\n3t1rtKVOZqMQWFmBvu6zd6R9Zus2at0frbVfqydp7du+vcRn6xD2x2sda1q2W0ud2hyt23be\nm26ttrW8/la9bTNbOYM0M9nME1wymuK2E1PWp9xV/u2mm6X+rWuX681k1zmqhdcbyvpUq85k\nVLk46dbxxhGjP924Wu9VbNv4uq7q/Tpr9/yk6xzVetZB7C3J7ZKDE/5BaCy7pt6bk99PqtPz\n4qQrtdN+adJ1jrrxbxrdaXm+d6/R9bZJV6ebv1sCqyjQ1332jrTPbN1GLfuj9erU83PZ+62+\n74/XO9a0bLeWOrVd1ttui9pm67Wt5fW3ym0r05mLDtLMZDNPUE/0KvvedPODv91lO3V527LL\n3bLAu0xZaH1K0JVa7z1H6cbVbbWjHqvO1Sq2Lau18qV+Jv0np6wl/ykoG4zaPY+/I/mV5DHJ\nK5PxskcG7p10lzZ0j9UlJuOlnsvda3J8/B0z0L1GW+qMT+s+gVUT6Os+e0faZ7Zuo5b9UdXZ\n6Di+zOdon/fHGx1rWrZbS53aHi3bdp7bbaO2tb7+ap02eq+77LbN08m8FiBwTuZZb+LGy59l\noN4Q1xNz2eVTWeCXk/rEoCvVYapPd14/GnHX3F6fPG40XDd1+rUuVXpT0pVVa1u3Xqtye2VW\n5ISJlXlOhsv6gRPjy/LSZJeE/wTOGoPvzfjq7NxvjccPyfiyrkvqxktdhlfjHzYaWcNXJ7ce\nDdfN/ZOq80s1kNJS56aa/hJYXYE+7rOHus+s/U/tYw6beLq0bKOW/VHrcWRi8XMZrPcSX5yY\nU5/3x+9NW9Y71lRTW7ZbS52WbTtBu12DG7Wt5fXX2v5lt227YEy8eIGjs4jrkt9K6pPsxyb1\nZuyJyVaU47LQ2im/OqmO0cOTjyX1k8YHJV15e+58JanLkOrSr/p0/opk/BOCVWtbVm+lyrQO\n0oFZwxr/ieTI5NDktUltk3qOdIV/JzH99vEZXWZvTZ46JTfLuCrvT+o6+21JPXefnnwtOSPp\nSr0u6/n/N8mdkp9IPp28O+lKS52urlsCqyrQx332gcEc4j5zrQ5SyzZq3R+1HEcW8Vyd1kGq\n5fRxf9x6rGnZbi11WrftPLZbS9sOzIJaXn+r1rZ5+JjHEgSenWV8N6k3dBcmJyZbWZ6Vhdcb\nwlqfSr0ZvGcyXvbJwN8nNyRV5+zkl5PJsmptm1y/rRyuncoJU1agzh59Ien862zisRP1+E+A\nTAyekeHOb9rtLUb1q3N/6ljda3K/vrNUv8Q4Xh6QgTqzWvOqDzDqjcWdk/HSUme8vvsEVlGg\nj/vsIe4z1+og1XOmZRu17I9ajyPzfp6+PjP84pSZ9nF/3Hqsqea2bLeWOi3bdgrvzKNa29by\n+mtt/7LaNjOGCbZOYNcs+uCkLlVbhbJLVqJOedcOdL2yVx6sT9XXK6vWtvXWdZUe2zcrM37W\nbtq68Z+mMvu4PTPJ3ZOu47TWHPbPA5Odp8m6LXUmpzFMYJUE+rrP3pH2ma3bqGV/1HIcWebz\nc8j745bt1lKntkfLtl3mdmt5/fW1bct0tCwCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIDBF4JZTxhlFgAABAgSWLeB4tGxxyyNA\ngMCCBI7NfL88kU9mKOZVGAAABxZJREFU+C+ThySLKmdnxv9tkzM/MtOdlJybfD+5Mjk5uUuy\niHL/zPT2i5ixeRIgQIDADwQcj35AseYdx6M1aTwwT4Fd5jkz8yLQQ4HbZJ33T16VfDO5eVKd\ngcOTo5NfT96ezLv8eGZ4203M9Jczzd8mn09OTT6THJk8Jvmp5D7Jd5J5lSMzow8mhybfSBQC\nBAgQWIyA49H6rkfmYcej9Y08SoAAgbkIPDNzqbMwB0zMbbcMfzH50MT4eQ1elBn92Ywze1Dq\nfzd5x5Tpfibjrk9eOuWx7Rn1yExcPodsz0xMS4AAAQIbCjgerU/keLS+j0fnKHCzOc7LrAgM\nSeCaNKbO0txxolH1mvnNpM4qnZG8IjkoGS8tdcbr1/17Jq9PjqmBNcpTMr7Ocj15yuNnZdyz\nkzp7VGfBunK/3Hljcmby5uQRyXi5Qwb+R1Kfyr0n+eNk76RKXcrwtBvv3TT+iaP7bggQIEBg\neQKOR45Hy3u2WdKNAvVGTiFA4EcFjsiohyQnTzz0tgy/OqkzQKcl1Ymoy9wekHSlpU5Xt25/\nIvlAsn9SHa+1yuF54GPJFWtUeHHGPzepM0lVjk4+nuyb/F2y8+j2hNxWqY7U6clRSc232vGE\n5JykHquzVdUhq3J5ctWN9/whQIAAgWUKOB45Hi3z+WZZBAgQ2Km7pOGSWFyQXJhcndRlZW9K\nxstjM1Djq0PRlV1z57zkc0l1QFrqpNqNHay6xO7uyVeT6sDUZX1rlX3yQC37j9eqMDG+vt9U\nnZqTJ8a/LMPXJfdO6qxVzfMXkq48OHfel9x1NOKRua06h4yG3RAgQIDAYgQcjxyPFvPMMlcC\nBAjMKNAdkOpSuReOUmeI6pKza5M/Sbry2tw5vxsYu62OTnUi6gxQS52a9KLk3cnFSZ252TVZ\nr3QdpLocrqXU2a9ap7rEbrzUGa8aX+2+VVKdwS8kv5VMXiqYUTvpIJWCQoAAgcULOB45Hi3+\nWWYJBAgQaBDoDkgHTKn7/IyrzkSdbalSl6N9qO5MlP+U4apXl0G01KnJq4NU09TZp+uT8Uv0\nMji1/GvGVqdqrXLLPNB1tJ6a+zX/O0xUrstq67K56hBWeWBSZ7+qbqU6S8cmXdFB6iTcEiBA\nYLECjkeOR4t9hpl7s4DvIDVTqbgDCtR3iar8/E03N16yVpeuTZY9RiP+JbeXJxvV6aavS9nu\nkdQZpDcm3Xxyd2qp/89UP+N9i6mP7rTTyzP+yuRuSa1Hlb1vuvmhv7WcWtcqH03qUrua5neS\n+n7TScnjE4UAAQIEVkPA8Wg1toO12EEEdJB2kA2tmZsSqB9FqPKlm252+mxu6ztD+42Gu5uH\n5c43kjor1FKnm67O1tQPITwluUtyYrJe+fM8WD+4UJfxTZb6oYcnJbWu5ya1HlVq3cbLkRmo\ns0yfSn46OS05MKnpXpk8NPlW8rNJlRtuutnJvmIE4YYAAQJbIOB45Hi0BU87iyRAYEcVeGYa\nXpeWPTupy9Iq9dPWr0nqJ7M/nXRndupsTHWEPpbcK6kzRb+dXJv8flKlpU7Vq85UfXepKy/K\nnbrU7ohuxBq3z8r4Wt/6NPGYpOr/aXJxclVy36Qrp+ROnUl6dHKb5EHJeclHkt2T3ZIvJ+9J\nqrN0p+T3kpr/Y5IqD05q+L8n1WaFAAECBBYj4HjkeLSYZ5a5EiBAYEaB7oBUnYAudQalzsLU\n93TqjM14qcvRzkq6uufnfnUqxktLnckOUnVYapl1Jqe+S7ReqUvh6sxPrWe3Hh/M/fHOUQZ3\n2jP58+R7SdX7t+TU5NZJV34ud96f1JmsqlOX2D096Up1Ds9M6rFahkKAAAECixFwPHI8Wswz\ny1wJECCwJIE6U7T/BstqqbPBLNZ9uC6VOzS51bq1brqkrn62e5d16lVH6MB1Hq8zUHXGSSFA\ngACB1RJoOda01NmeVjkebY+eaQkQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhsUuD/A/ST\nqT/q45OkAAAAAElFTkSuQmCC", "text/plain": [ "Plot with title “Bins = 4”" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0JvDRVfSful4gs7jIKYgREMeCCaBLXiUvigqO4RXGiuJCgZjRjtkmc\n0YnjQkajM4kwKhrDRGdi0KBGx6iRINEsoxFF/0LiRFyCYhAjCIoCssj/++Ptkqbp21333q6+\nVX2f8/l836quqq4656m+97znVnX3jh0KAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECGwLgV22RSs1ksD1BX4kDx96/UXXProm/16VfCf5QnJpMlnu\nkgX7jRb+XabTtpl8zhAf75ZK32SNil+d5Zessc5iAgQIEGgvoD9qb1X90qHJzZJ/SC5IFAIE\nCBBYkED9x78GQ7NSg6TXJjdKxsvxedA8767jK1Zs/iVj7Wza20z/34q1VXMIECCwVQL6o/ny\n1Q+/Mrk8afqh74+WZaIQIECAwCIE2nRIzS/h108ccLsMkN6ddjcGk1MDpIkXhYcECBDYoID+\naD7ceH9UdzCM90m/Ov/ptiCwfgG32K3fzDOGL1Ad0vdGzfhipj8zmq9bHW6cPDL53WSPpG6h\nu3VyRVLl4GT/a+d27PhYps1+RotWZvLltOTA5MykOqfxUrc1nDC+wDwBAgQIbEhAfzSb7QFZ\nXX1tlVOTF1w7t2PHxzOtvvmcpPoqhcBCBXZd6N7sjMDwBK5Mlc+dqHYNmh6dPCapzmvf5CtJ\nlT2TW147t2NHDaiq7J489tq5HTs+m2kNLn4qeWBSA6yPJrV8stw7C2qbOyQ10DoneV9St/fN\nKv8qK581a4PRuvMzPanFdpObVPuaDuf/ZP4Vkxt4TIAAAQILF9Af3ZD0N0eLfpDps5Ovjh4/\nJ9PbJl9L6v+yVyUKAQIECGxCoAY9zSX6z03ZTw14akBU29SHNYyX4/OgeW7zHqS9x5a9NPPv\nH3tc29YtAb+eNGWXzPyvpNnP+PTbWV4fBDGr3CMrx5+z1vwnZ+1kxroHj+3/hZk/Jqnpw5Kq\nu0KAAAECixHQH812PCerq4/70miz22daf1zcbfTYhAABAgQWJDDeIX0r+zxhlDdl+takrrzU\nL+S6qtNcGcrstWXeAKluxatBztuTDybN4OWyzN8mqXJ00ix/V+Zr8PGG5Luj5fXpeLOu7nY9\nQPqVUT2aOo5P/zzr6gqWQoAAAQKbF9AfrW1Yf5CrPrX6oPqD3/8ZzdfjS5PmdrvMKgQIECCw\nWYHxDmn8P/+T87835UBtBkj3HXveezLf7Lduu6tSA7FaVp/Cc+ekKUdm5qXJ45Oq41qlbu27\nVYvcbK0dzFn+lqxv6vzPma9BUQ3wmmXvyLxCgAABApsX0B+tbbhPVjX9TjOtW+qaQVMtM0ha\n28+aTQjM+iv1JnbrqQQGI1AfG/rZUW1vlGm9x+iApAYXv5Ycmjwt+WbSptTVn9PHNvy/mX/C\n6HFz5eXs0eO6RaDmP5X8ZVIDkT9N6pa8WaV+bpt9zdquBmB1VWq95b15QrW3Op+XJmVUV7+q\nXQcm/zb57eTvE4UAAQIEFiOgP7q+4+T/UX8nq38ruX1SfeZBSfVFb0k20tflaQoBAgQINALj\nf7H7XLNwbFoDl/qFWwOEym8mTZl3BeldzYaj6fMzbfbzpNGym2b68bHlzfqafj35hWRWuUdW\njj9nrfm6JWGR5bjsrDnWUYvcsX0RIEBgmwroj9Y+8fVHy/rwhabf2X9s07rDo1l+/7HlZgks\nRKBu1VEIELi+wBV5+JqxRT87Nj9vtq7ajJcfjD8Yzdd7m+p2uycndQveRUlTbpeZ/5kc3izo\n0fSLY3W59di8WQIECBDoRmA790d1N8U3RqzlMH4nR3PnR63+0dE2JgQWJjB5+XJhO7YjAgMX\nqKs0TZkc9DTLp03rL1rzSt3GV59UVwOjGnzVHyrundS91M9KqtQA6ZRr5274z9eyaN5VpnrW\nBTd86twlN84W70vqL3VVvxrINeVhzUymZ4/NmyVAgACB7gS2a39UojUQun1Sd3ZUH/T+pMr4\ne32bT7jbuca/BBYgYIC0AES7GLRAXQn5xbEW1M/EnSaW1b3OiyyfyM7qvU01mHp4Uvs/I6n3\nIDUDpPpwhLXKxVnxlrVWbnJ5fQ9H3fJxt9F+XpTpG5PHJo8YLTsn04+O5k0IECBAYDEC+qMb\nOv5uFv2b0eJjM/1OcvPkiaNldYXpH0fzJgQIECCwCYHxe75rkDIrp2d9XfFpyvGZaba/62jh\n3mPL3tZsOJr+u7F1zXuQHp1lNRBp9vOFzH917HENjupWu60qP5kDX5Y09avbBJv5SzP/qEQh\nQIAAgc0L6I/mG34omzR90OT05+Y/3RYE1i9Qt/YoBAjsFKiBQN3nXH+h+mzyn5MazNRgYZHl\ng9lZ7ff00U4PynS/0fyfZVq3EZw/erwVk0/loHW16NOjg9d3UZTNWclDkuqsFAIECBDoTkB/\ndJ3tEZmtDwmq9+825bzM1C3q72gWmBJYpED9x0chQGDrBPbKoWtwVAOzc5JFD8ayy02V2+TZ\n+yf1AQ01cFQIECBAYDUF+t4f3SjsdefGt5NzV/MUaBUBAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQItBTYpeV2fd5s\nj1TusGTfZJ/kmuSi5Mzk7NHjTBQCBAgQINCpgP6oU147J0CAAIF5Artmg1clFyY1KJqW07P8\n0EQhQIAAAQJdCeiPupK1XwIECBBYl8AfZutvJ69OHpwcnNw2uUNyz+TI5APJFcn9EoUAAQIE\nCHQhoD/qQtU+CRAgQGBdArfM1lcnh7d41snZ5rgW29mEAAECBAisV0B/tF4x2xMgQIBAJwL3\nyl6vSuq2hnnlOdng0/M2sp4AAQIECGxAQH+0ATRPIUCAAIHFC/xIdnl+8uQ5u64B1KnJ2+ds\nZzUBAgQIENiIgP5oI2qeQ4AAgR4L3KjHdZtVtfpAhpskxyc/PpqvT7HbKzkwqb/oPS55Q1Kf\ncHd08o1EIUCAAAECixTQHy1S074IECBAYNMCj8oevpBM+wS7K7P8pKQGSAoBAgQIEOhSQH/U\npa59EyBAYIkCq/A9SMW1X3JAcovkkuS8US7LVCFAgAABAssS0B8tS9pxCBAg0JFAmw856OjQ\nC9ttfTHf7ZPbJM0Xxd4u89U2XxQbBIUAAQIEliKgP1oKs4MQIECAwFoCNQDyRbFr6VhOgAAB\nAssS0B8tS9pxCBAgQGCmgC/mm8ljJQECBAgsSUB/tCRohyFAgMAyBIb6HqT6Yr5vJY9OTpkD\nVV8UW+9J+tU5201b/bYsvNu0FRPL6v1Pz0g+OLHcQwIECBBYbQH90WqfX60jQGAbCtRtAUMs\n9VHe9cl1p7WofH0P0vNabDdtk3dn4RnTVkwsq1v9bjqxzEMCBAgQWH0B/dHqn2MtJECAwCAE\n+vbFfPXJeUcMQk4lCRAgQGCRAvqjRWraFwECBHogMNQrSD+I3QlJfc/RUcn7kvOTC5PdkvrC\n2IOTpycHJQ9IFAIECBAgsGgB/dGiRe2PAAECBDYl0Jcv5nMFaVOn0ZMJECAweAH90eBPoQYQ\nIEBgp8BQryA15+9DmblLMqQv5qu61hWuVSzfT6P+cRUbpk0ECBCYI6A/mgO05NX6oyWDOxwB\nAv0XuH+q+LQlVnM9V5C+nXrVB0ysag5ZortDESBAoO8C+qOt6+/0R33/6VA/Aj0VGPoVpLVY\nH5MVj0/qPUp9K7unQk9O2nwCX9/qPqs+t8rKf0qqfQoBAgQI7BTQHy3/laA/Wr65IxJYKYGh\nDpAOzVmYNfjZJ+tvnpw1Olv1XUm/MZrvw+S7qcTFfaiIOhAgQIDApgT0R5vi82QCBAj0T2Co\nA6RvhrI+WrW+xPXjyReT8XKvPLhx8pnRwnNGUxMCBAgQILBIAf3RIjXtiwABAgQ2JbBnnv26\npK7GTH4R7LFZdmayrLKe9yBdnkodvqyKLfE4dUtDva/qsCUe06EIECDQBwH9UR/OwnV10B9d\nZ2GOAIENCNRVmKGWy1LxFyT1fp7/knww2TdRCBAgQIDAMgX0R8vUdiwCBAh0LDDkAVJDUx+t\nWveA10d61nuOasCkECBAgACBZQvoj5Yt7ngECBDoQGCo70GapLggC56YPDt5a1K33f1LoixP\noN7zVaWu5F157dxq/VO3Ud4vuXS1mqU1BAgsWEB/tGDQDexOf7QBNE8hQOA6gVUZIDUtOjEz\nH02OS76TKMsTqHvwq7wn+eS1c6vzT926+aqkPhnRAGl1zquWEOhSQH/Upe7sfeuPZvtYS4AA\ngaUI+JCGHTv2j3R9SMORSxFf7kHqywarbfXx8QoBAgT6LKA/0h/1+fWpbgQGIbAK70EaBLRK\nEiBAgAABAgQIECDQfwEDpP6fIzUkQIAAAQIECBAgQGBJAgZIS4J2GAIECBAgQIAAAQIE+i9g\ngNT/c6SGBAgQIECAAAECBAgsScAAaUnQDkOAAAECBAgQIECAQP8FDJD6f47UkAABAgQIECBA\ngACBJQkYIC0J2mEIECBAgAABAgQIEOi/gAFS/8+RGhIgQIAAAQIECBAgsCQBA6QlQTsMAQIE\nCBAgQIAAAQL9FzBA6v85UkMCBAgQIECAAAECBJYkYIC0JGiHIUCAAAECBAgQIECg/wIGSP0/\nR2pIgAABAgQIECBAgMCSBAyQlgTtMAQIECBAgAABAgQI9F/AAKn/50gNCRAgQIAAAQIECBBY\nkoAB0pKgHYYAAQIECBAgQIAAgf4LGCD1/xypIQECBAgQIECAAAECSxIwQFoStMMQIECAAAEC\nBAgQINB/AQOk/p8jNSRAgAABAgQIECBAYEkCBkhLgnYYAgQIECBAgAABAgT6L2CA1P9zpIYE\nCBAgQIAAAQIECCxJwABpSdAOQ4AAAQIECBAgQIBA/wUMkPp/jtSQAAECBAgQIECAAIElCRgg\nLQnaYQgQIECAAAECBAgQ6L+AAVL/z5EaEiBAgAABAgQIECCwJAEDpCVBOwwBAgQIECBAgAAB\nAv0XMEDq/zlSQwIECBAgQIAAAQIEliRggLQkaIchQIAAAQIECBAgQKD/AgZI/T9HakiAAAEC\nBAgQIECAwJIEdl3Scbo8zB7Z+WHJvsk+yTXJRcmZydmjx5koBAgQIECgUwH9Uae8dk6AAIHl\nCAx5gFR1PzZ5brLXGlyfzPJjkrPWWG8xAQIECBDYrID+aLOCnk+AAIEeCQz5Frs3x/H5yYnJ\nQ5JDkr2T/ZK6ovSU5JvJGcn9EoUAAQIECHQhoD/qQtU+CRAgQGBdArfM1lcnh7d41snZ5rgW\n221mk0vy5CNa7uDybNem3i1315vN9k9N6vbGI3tTo8VVpAbf1ba6hVMhQIDAuID+aFyjH/P6\no36cB7UgMFiBoV5BOjDi9R/W01rIn5ptHtxiO5sQIECAAIH1CuiP1itmewIECPRcYKgDpPoA\nhguSJ8zxrfvC61a7z8/ZzmoCBAgQILARAf3RRtQ8hwABAj0WGOqHNPwgpickJyVHJe9Lzk8u\nTHZL6kMbDk6enhyUPCBRCBAgQIDAogX0R4sWtT8CBAhsscBQB0jF9ork9OR1ybQrSVdl+TuT\nZyb1Fz6FAAECBAh0IaA/6kLVPgkQILBFAkMeIBXZh5K7JPXJdQckt0jqAxPOG+WyTBUCBAgQ\nINC1gP6oa2H7J0CAwJIEhj5AKqb6Yr7bJ7dJmi+KvV3mq22+KDYICgECBAgsRUB/tBRmByFA\ngEC3AkMeIFXdfVFst68PeydAgACB+QL6o/lGtiBAgMBgBIb6KXYF7Iv5BvMyU1ECBAistID+\naKVPr8YRILDdBIZ6Bam+mO9ZyaOTU6actK9lWX0wQ31IQ31R7FOTTyTrLb+RJ9R7nOaV3bPB\nredtZD0BAgQIrJyA/mjlTqkGESCw3QWGOkBa7xfzPW+DJ/pmed7NWz73Ri23sxkBAgQIrI6A\n/mh1zqWWECBA4FqBoQ6Q6upQ80Wx75pxLqt9m/mi2JfN2Pf4qsfmQdVHIUCAAIHtJaA/2l7n\nW2sJENgGAkMdIPlivm3w4tREAgQIDEBAfzSAk6SKBAgQWI/AUAdI1UZfzLeeM21bAgQIEOhK\nQH/Ulaz9EiBAYAsEhjxAKi5fzLcFLxqHJECAAIEbCOiPbkBiAQECBIYpMPQBUqN+bmYqVXZL\nfjp5ePKx5KxEIUCAAAECyxDQHy1D2TEIECDQocCQB0j1HU4vTh6ffD357eTLyd8n+yRVrkle\nk/yneqAQIECAAIEOBPRHHaDaJQECBLZKoH6pD7W8NhWv+74vSe6f/FlyYnJ+8nPJfZM/SP5j\n8qREIUCAAAECXQjoj7pQtU8CBAgQWJfAntn6iuRpo2fdJNO/SOqK0QNHy5rJRzJTg6cuSw3S\njmh5gMuz3eEttx3SZvunsuV/5JAq3bKuh4za1lyZbPk0mxEgsA0E9Ef9O8n6o/6dEzUiMCiB\noV5BOjTK9cWs7x1pX5rpScnFSb3vaLz8aR7caXyBeQIECBAgsCAB/dGCIO2GAAECfREY6nuQ\n6ja6GtzVhzF8YIRZg6W6qrRLUlcymvKIzHy1eWBKgAABAgQWKKA/WiCmXREgQKAPAkO9glQD\nnhoYvSM5LqmBXl09qqtIzeDoPpn/YPLY5M2JQoAAAQIEFi2gP1q0qP0RIEBgiwWGOkAqticn\nL08ek1yVTJZnZsHDkxcm75lc6TEBAgQIEFiQgP5oQZB2Q4AAAQKLEdhtjd3UmzRvsca6RS/2\nIQ07dnhT7KJfVfZHgMDQBPRH/Thj+qN+nAe1IDBYgaG+B2kcvN53NK3UbQ8KAQIECBBYloD+\naFnSjkOAAIEOBYZ8i12HLHZNgAABAgQIECBAgMB2FDBA2o5nXZsJECBAgAABAgQIEJgqYIA0\nlcVCAgQIECBAgAABAgS2o4AB0nY869pMgAABAgQIECBAgMBUAQOkqSwWEiBAgAABAgQIECCw\nHQUMkLbjWddmAgQIECBAgAABAgSmChggTWWxkAABAgQIECBAgACB7ShggLQdz7o2EyBAgAAB\nAgQIECAwVcAAaSqLhQQIECBAgAABAgQIbEcBA6TteNa1mQABAgQIECBAgACBqQIGSFNZLCRA\ngAABAgQIECBAYDsKGCBtx7OuzQQIECBAgAABAgQITBUwQJrKYiEBAgQIECBAgAABAttRwABp\nO551bSZAgAABAgQIECBAYKqAAdJUFgsJECBAgAABAgQIENiOAgZI2/GsazMBAgQIECBAgAAB\nAlMFDJCmslhIgAABAgQIECBAgMB2FDBA2o5nXZsJECBAgAABAgQIEJgqYIA0lcVCAgQIECBA\ngAABAgS2o4AB0nY869pMgAABAgQIECBAgMBUAQOkqSwWEiBAgAABAgQIECCwHQUMkLbjWddm\nAgQIECBAgAABAgSmChggTWWxkAABAgQIECBAgACB7ShggLQdz7o2EyBAgAABAgQIECAwVcAA\naSqLhQQIECBAgAABAgQIbEcBA6TteNa1mQABAgQIECBAgACBqQIGSFNZLCRAgAABAgQIECBA\nYDsKGCBtx7OuzQQIECBAgAABAgQITBXYderSGy7cM4t2ueHiNZdcuuaaxa/YI7s8LNk32Se5\nJrkoOTM5e/Q4E4UAAQIEVkBAf7QCJ1ETCBAg0GeBtgOkr6cRt2zZkMuzXXVgXZeq+7HJc5O9\n1jjYJ7P8mOSsNdZbTIAAAQLDEtAfDet8qS0BAgQGJ9B2gPQradnvJx8Y5ZuZ1hWbpyc/mbwk\nqYFRlat2Tjr/9805wpOSNyVVr28k30p2T2rAdHBydHJG8qDkE4lCgAABAsMW0B8N+/ypPQEC\nBFZGoAYXL5zSmnoP0z8mr56yrstFdTXr6uTwFgc5Odsc12K7zWxySZ58RMsd1ECyTb1b7q43\nm+2fmtTtjUf2pkaLq8gho7bVLZwKAQJbK6A/mu2vP9qxQ380+zViLQECcwTafEhDDUbuk/zh\nlH39IMvemPzMlHVdLjowO6//jJ/W4iCnZpsHt9jOJgQIECDQbwH9Ub/Pj9oRIEBgJQTaDJDq\nr1F169pPrNHiGjydu8a6rhbXBzBckDxhzgHqFsKnJJ+fs53VBAgQINB/Af1R/8+RGhIgQGDw\nAm3eg1RXid6dvC15efJXycXJ/smzk6cmj0iWWapOJyQnJUcl70vOTy5Mdkua9yDVe6QOSh6Q\nKAQIECAwbAH90bDPn9oTIEBgpQRqIPWGpG5rG08NSmqAtFXlUTnwF5LxOjXzV2Z5DaAOS7ou\n7vl2z3fXrzH7J0Bgp4D+aPYrQX+kP5r9CrGWAIG5AtXRtCn1yXS/lNSn1d07uUPy5eTTyfeS\nrSofyoHvkuyXHJDcIqnO4bxRLstUIUCAAIHVEdAfrc651BICBAj0UqDNe5DGK37XPKhP9KqB\n1d8k9Xiryx6pwO2T2yQ1UKo6/XhStwCu58tts7lCgAABAgMR0B8N5ESpJgECBFZV4OZp2J8n\nze1rH878TZOrk9cnNUhZdqlB2quSet9RU6/J6elZd2jSdXFLg1saun6N2T8BAjsF9EezXwn6\nI/3R7FeItQQIzBVoewXp+Oyp/lpX7zc6drTXSzN9QfLzSdvvABo9dSGT+qLY5ycnJg9J6srW\n3kldRar3HdWn19UX2p6R3C9RCBAgQGD4Avqj4Z9DLSBAgECvBdq8B6kGUT+XPDE5JXlhUqWu\n1pyQ3C2pAdK7kmWV+i6MZyWPTqpOk+VrWVAfBf7O5OSkBnafSNZbHpknHNDiSeW4e4vtbEKA\nAAECGxfQH8230x/NN7IFAQIEZgq0GSDVe3v2TL6yxp5qeQ1AllkOzMFqgHZai4PWF8U+r8V2\n0zap59192oqJZfXR4vtMLPOQAAECBBYroD+a76k/mm9kCwIECMwUaDNA+pfs4cLk6clvText\nlzw+JvnMxPKuH9bVoeaLYmdduar21a12n99gheqqWZtS93x/tc2GtiFAgACBDQvoj+bT6Y/m\nG9mCAAECMwXaDJBqB7+XvDSpT4arKzf1AQ3PSY5O6mO2a5C0zFJfFli3952U+KLYZco7FgEC\nBLZWQH+0tf6OToAAAQIjgbrv+5XJ5UkNkJrUVZxnJVtVHpUD+6LYrdK//nGbwfOR11+8Eo/q\nA0DqNe82ypU4nRoxcAH90ewT6FPsrvtjrv5o9mvFWgIE1hBoewXpZXn+XySvTe6R7JvUe4/q\nVrf6ZbxVxRfFbpW84xIgQGBrBF6Ww+qPtsbeUQkQILAtBNoMkOo7J16cXJZ8NPlI0rdybipU\nUQgQIEBgdQX0R6t7brWMAAECvRFoM0D6bmr7xeSeSX0oQ91q1JdSn673E0ndclHfd/S9ZLI8\nLAu+n/zt5AqPCRAgQGBQAvqjQZ0ulSVAgMAwBdoMkGpA9Kbk2OSzSX1i3fnJeKlb7f54fMES\n5g/NMd6b3Gl0rHo/1C8l9b1H4+VFefCtxABpXMU8AQIEhiegPxreOVNjAgQIDE6gzQCpGvXL\nSX1AQ733qDJZ3pcFyxwg1ZWsP0quTI4eTZ+b6Z8kByavThQCBAgQWD0B/dHqnVMtIkCAQK8E\n2g6Qmqs0fan8HVORw5JHJvVFsFVOSn47+Z3kwuTERCFAgACB1RLQH63W+dQaAgQI9E6g7QCp\nbxW/XSpU34X08YmK1RfZ1pt435icm5ySKAQIECBAoCsB/VFXsvZLgACBLRKoDzeYVm6ThUcn\ne01b2YNl56QOVffHT6nLr2VZvTep3otUH+CgECBAgMBwBfRHwz13ak6AAIFBCqw1QLpzWvOW\nZL+xVt06869Iat1Wl6+nAu9PXpe8PvnRpCl1ZemopK4u/VVy90QhQIAAgWEK6I+Ged7UmgAB\nAoMVWGuANK1BNUB6SVIfgtCH8vOpxF8nz0sOmqjQFXn8s8k7k7r9QSFAgACB1RHQH63OudQS\nAgQI9E5gqO9BKsj6WO8nJLdKvp9MlkuzoAZR9X6k206u9JgAAQIECCxIQH+0IEi7IUCAQB8E\nhjxAavwubmbWmJ6+xnKLCRAgQIDAIgX0R4vUtC8CBAhskcB6brHboio6LAECBAgQIECAAAEC\nBJYjYIC0HGdHIUCAAAECBAgQIEBgAALzbrH7m7Th6lE7msHUe/L4qom2vTeP6/0+CgECBAgQ\n6EJAf9SFqn0SIECAwA0E1hog1RtO33aDrddecMbaq6whQIAAAQIbFtAfbZjOEwkQIEBgIwJr\nDZC+lJ09YyM79BwCBAgQILBAAf3RAjHtigABAgTmCzS3zc3f0hYECBAgQIAAAQIECBBYcQED\npBU/wZpHgAABAgQIECBAgEB7AQOk9la2JECAAAECBAgQIEBgxQUMkFb8BGseAQIECBAgQIAA\nAQLtBQyQ2lvZkgABAgQIECBAgACBFRcwQFrxE6x5BAgQIECAAAECBAi0FzBAam9lSwIECBAg\nQIAAAQIEVlzAAGnFT7DmESBAgAABAgQIECDQXsAAqb2VLQkQIECAAAECBAgQWHEBA6QVP8Ga\nR4AAAQIECBAgQIBAewEDpPZWtiRAgAABAgQIECBAYMUFDJBW/ARrHgECBAgQIECAAAEC7QUM\nkNpb2ZIAAQIECBAgQIAAgRUXMEBa8ROseQQIECBAgAABAgQItBcwQGpvZUsCBAgQIECAAAEC\nBFZcwABpxU+w5hEgQIAAAQIECBAg0F7AAKm9lS0JECBAgAABAgQIEFhxAQOkFT/BmkeAAAEC\nBAgQIECAQHsBA6T2VrYkQIAAAQIECBAgQGDFBQyQVvwEax4BAgQIECBAgAABAu0FDJDaW9mS\nAAECBAgQIECAAIEVFzBAWvETrHkECBAgQIAAAQIECLQX2LX9pr3dco/U7LBk32Sf5JrkouTM\n5OzR40wUAgQIECDQqYD+qFNeOydAgMByBIY8QKq6H5s8N9lrDa5PZvkxyVlrrLeYAAECBAhs\nVkB/tFlBzydAgECPBIZ8i92b4/j85MTkIckhyd7JfkldUXpK8s3kjOR+iUKAAAECBLoQ0B91\noWqfBAgQILAugVtm66uTw1s86+Rsc1yL7TazySV58hEtd3B5tmtT75a7681m+6cmdXvjkb2p\n0eIqUoPvalvdwqkQIEBgXEB/NK7Rj3n9UT/Og1oQGKzAUK8gHRjx+g/raS3kT802D26xnU0I\nECBAgMB6BfRH6xWzPQECBHouMNQBUn0AwwXJE+b41n3hdavd5+dsZzUBAgQIENiIgP5oI2qe\nQ4AAgR4LDPVDGn4Q0xOSk5Kjkvcl5ycXJrsl9aENBydPTw5KHpAoBAgQIEBg0QL6o0WL2h8B\nAgS2WGCoA6Rie0VyevK6ZNqVpKuy/J3JM5P6C59CgAABAgS6ENAfdaFqnwQIENgigSEPkIrs\nQ8ldkvrkugOSWyT1gQnnjXJZpgoBAgQIEOhaQH/UtbD9EyBAYEkCQx8gNUznZqaiECBAgACB\nrRTQH22lvmMTIEBgAQKrMEDyzeULeCHYBQECBAhsWkB/tGlCOyBAgMDWCwx5gFR1PzZ5blIf\nyjCtfDILj0nOmrbSMgIECBAgsAAB/dECEO2CAAECfREY8gCpvrn8Scmbkg8k30i+leyeNJ9i\nd3Tmz0gelHwiWW+5Q55wmxZPGurHpbdomk0IECBAYI6A/mgOkNUECBAg0L3Asr65vD79rr6Q\ntk1+rWWzL892h7fcdkib7Z/KltORQ6p0y7oeMmrbPi23txkBAttHQH/Uv3OtP+rfOVEjAoMS\nGOoVpPV+c/nzNnhWfjLP27PFc7+Wbb7QYjubECBAgMBqCeiPVut8ag0BAgR2DHWAVFd2Lkjq\n+4/eNeM8Vvueknx+xjazVl2RlRWFAAECBAhME9AfTVOxjAABAgMWGOoAyTeXD/hFp+oECBBY\nIQH90QqdTE0hQIBACQx1gFR1983lpaAQIECAwFYL6I+2+gw4PgECBBYoMOQBUjH45vIFvhjs\nigABAgQ2LKA/2jCdJxIgQKBfAkMfIDWavrm8kTAlQIAAga0U0B9tpb5jEyBAYAECvr9nAYh2\nQYAAAQIECBAgQIDAaggM9QrSzcJ/53Wcgouz7VfWsb1NCRAgQIBAGwH9URsl2xAgQGBAAkMd\nIN0zxv93Hc7vzLb1cd8KAQIECBBYpID+aJGa9kWAAIEeCAx1gPSx2P1C8qbkr5P/lswq589a\naR0BAgQIENiggP5og3CeRoAAgb4KDHWAVJ5vSXZJTkxemXwkUQgQIECAwLIF9EfLFnc8AgQI\ndCgw9A9p+MPYfDj5nQ6N7JoAAQIECMwT0B/NE7KeAAECAxEY8hWkhrjeW3RgUm25qlloSoAA\nAQIEliygP1oyuMMRIECgC4FVGCDVJ9R9pgsc+yRAgAABAusQ0B+tA8umBAgQ6KvA0G+x66ur\nehEgQIAAAQIECBAgMEABA6QBnjRVJkCAAAECBAgQIECgGwEDpG5c7ZUAAQIECBAgQIAAgQEK\nGCAN8KSpMgECBAgQIECAAAEC3QgYIHXjaq8ECBAgQIAAAQIECAxQwABpgCdNlQkQIECAAAEC\nBAgQ6EbAAKkbV3slQIAAAQIECBAgQGCAAgZIAzxpqkyAAAECBAgQIECAQDcCBkjduNorAQIE\nCBAgQIAAAQIDFDBAGuBJU2UCBAgQIECAAAECBLoRMEDqxtVeCRAgQIAAAQIECBAYoIAB0gBP\nmioTIECAAAECBAgQINCNgAFSN672SoAAAQIECBAgQIDAAAUMkAZ40lSZAAECBAgQIECAAIFu\nBAyQunG1VwIECBAgQIAAAQIEBihggDTAk6bKBAgQIECAAAECBAh0I2CA1I2rvRIgQIAAAQIE\nCBAgMEABA6QBnjRVJkCAAAECBAgQIECgGwEDpG5c7ZUAAQIECBAgQIAAgQEKGCAN8KSpMgEC\nBAgQIECAAAEC3QgYIHXjaq8ECBAgQIAAAQIECAxQwABpgCdNlQkQIECAAAECBAgQ6EbAAKkb\nV3slQIAAAQIECBAgQGCAAgZIAzxpqkyAAAECBAgQIECAQDcCBkjduNorAQIECBAgQIAAAQID\nFDBAGuBJU2UCBAgQIECAAAECBLoRMEDqxtVeCRAgQIAAAQIECBAYoIAB0gBPmioTIECAAAEC\nBAgQINCNgAFSN672SoAAAQIECBAgQIDAAAUMkAZ40lSZAAECBAgQIECAAIFuBAyQunG1VwIE\nCBAgQIAAAQIEBihggDTAk6bKBAgQIECAAAECBAh0I2CA1I2rvRIgQIAAAQIECBAgMEABA6QB\nnjRVJkCAAAECBAgQIECgGwEDpG5c7ZUAAQIECBAgQIAAgQEKGCAN8KSpMgECBAgQIECAAAEC\n3Qjs2s1u7ZXASgk0Pye/klZ9b6VatrMx38jkxBVslyYRIEBg1QT0R6t2RrWnlwLND1ovK6dS\nBHoisN+oHo/K9NKe1GlR1bhldnSPxABpUaL2Q4AAge4E9Efd2dozgR8KrMIAaY+05rBk32Sf\n5JrkouTM5OzR40wUApsWeEb28A+b3ku/dvDQVOcj/aqS2hAYrID+aLCnbnAV1x8N7pSp8JAE\nhjxAqrofmzw32WsN9E9m+THJWWust5gAAQIECGxWQH+0WUHPJ0CAQI8EhjxAenMcn5S8KflA\nUu+j+Faye1IDpoOTo5Mzkgcln0gUAgSuL3DT0cP/fv3FK/HoZmnFgcmq/oHk02nbSStxpobf\nCP3R8M+hFmy9gP5o68/BRmuwcv3RLhuV2OLn1fsmajD06OSUOXU5OevPS351znbTVp+ehT8+\nbcXEsvo0wBckb5hYPu3hd7Nwz6RuBVy1cqM06OpVa9SoPavatvod4NMsh/mi/VSqfZ9hVn2l\naq0/6ufpXNXf2aW9qm3TH/XzZ6lNrVauPxrqFaT6q3ANME5rcdZOzTbPa7HdtE2OzsJ6b9O8\ncods8I55G43WPzDT27bcdmib1Xn5p6FVumV9V7Vt1SEdkJzT0mFIm9Xvt/r5PXdIlV5HXc9Z\nx7Y27U5Af9Sd7Wb2vKq/s8tkVdumP9rMK35rn3vO1h7e0RuB+ov3+cmTmwVrTOs/SDVAevsa\n6y0mQIAAAQKbEdAfbUbPcwkQINBDgbpMO8RSV49ukhyf1C1wNV9/Ka73HtVfVu6VPC6pW97q\nE+6OTuo9SgoBAgQIEFikgP5okZr2RYAAAQKbFnhU9vCFpDqoyVyZZfUG5hogKQQIECBAoEsB\n/VGXuvZNgACBJQrU/Z6rUPZLIw5IbpFcktSHMlQuSxQCBAgQILAsAf3RsqQdhwABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQILEVgVW6xWwrWgg7ykOzn8gXtq2+7uX0qVLc2rmJZ\n5bbVB5x8fQVPWn26WH2k/ip+QMuN065Lk/pyPoXARgX0RxuV29rn6Y+21n8jR9cfbURtC59j\ngLR8/Poi1fpBUQgQILAZgYvz5FtvZgeeu+0F9Efb/iUAgMBCBFauPxrqF8Uu5Gxu0U7q0/Xq\n+5s+vEXH7+qw9W3y9d1U903O6uogW7TfH8txP5vUB4H8yxbVoavDPig7/otkz64OsIX7PTLH\nfk1SH/2/auXfp0FHrVqjtGfpAvqjpZNv+oD6o00TbskO9Edbwr7xgxogbdxuM8+sTmnVbrPb\nYwRyxQq2rdpU5fvJqp23ei1WWbV2VZtWuW1XVQMVAgsQ0B8tAHGJu9AfLRF7gYfSHy0Qcxm7\ncqvXMpQdgwABAgQIECBAgACBQQgYIA3iNKkkAQIECBAgQIAAAQLLEDBAWoayYxAgQIAAAQIE\nCBAgMAgBA6RBnCaVJECAAAECBAgQIEBgGQIGSMtQdgwCBAgQIECAAAECBAYhYIA0iNOkkgQI\nECBAgAABAgQILEPAAGkZyo5BgAABAgQIECBAgMAgBAyQln+azs0hL1j+YTs/Yn2PTn1R7EWd\nH2n5B/h2DvmN5NLlH7rzI16YI3y186NszQHqS33/eWsO3flR62ftvM6P4gCrLqA/Gt4Z1h8N\n75xVjfVHwzxvak2AAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAis\nhMB904oTki8kf54ckfS93C8V/NCU/NZYxXfJ/DOS/5OcnfxRsl8yWfrS/rumYv+c3H2ygnnc\npo57Z7sXJ59KTk9eltwoGS9tTcafs4j5X8lOqk7TSp2faeey6tqUNm1rs02zv81Ob5Ud/Lfk\n/0u+mpyWPDqZLG3OW5tt+ta2Nj9/ZdG3tk2eH4/7J9DmNdO3Wrf5eWj7u7cv7dcfXb9f0h9d\n91OnP7rOwtwKC+yftn0neUfylOTE5KrkCUmfywtTucuSd03kN8Yq/dzMX57UoOHpSQ0cvpLU\nD3dT+tL+O6RCNUC9Jjmsqdxo2raOp2b7f0yemfx6Uuf1fyfjpY3J+PaLmK/XUr2mPj9lZwdm\nWbX5I8nkuRzvkNq0rc02U6qw7kW75hl/l1yYHJcck3w4qXY8NWlKm/PWZpvaX9/a1ubnr29t\na86LaX8F2r5m+taCNj8PbX739qX9+iP90VPyQ3ZiUn335P8H9Ud9+w2kPp0I/Fn2+pmJPb87\nj8+cWNa3h29Phf52RqVul3XfTmpw1JRbZuaS5CXNgky3uv01CKiOs+p6cTJtgNSmjs8cPfcu\nmTbl32am9nfIaEFbk+b5m53eKjv4n0nVodo2bYD0xNH6fTNdq7RpW5tt1tr/epc/Lk+oNtUx\nm1Ln8f8ln2sWZNrmvLXZpo9tm/fzVwx9a9vYqTHbU4E2r5k+Vn3ez0Pb371b3X790c7f7fqj\n637KJv8/qD+6zsbcCgvcPG27Ohm/6lLNrb8W1H8Ap93qVev7UOo/o8fPqMjRWVdtOGBim5Py\n+B9Gy/rQ/nulLvUXmtcnj0+qzuNXkNrW8QN53ieS8bJ7HlySvGy08OhM55mMNl3I5JXZy78k\nT0v+IJk2QHpFlp+XzCpt2tZmm1nHWM+6h2Xj+svazSae9OY8Lu8qbc5bm21qX31rW9Vp3s9f\nH9tW9Vb6K9D2NdPHFsz7eTg6lZ73u7cP7dcf6Y/m/X9Qf9SD30A/0oM6rHoV6h7jcv7iREO/\nNHq838Tyvjy8SSryY8kVye8kdQXsfclPJ02pwd2VyVeaBaNptbVpVx/a/7XU5+Dk3yeXJZOl\nbR3vkSdOnsfvZ1ntv2lvG5PJ42/mcQ1G75jUdK1SHfI5SbX/o8lfJ/ULevy9U23a1mab7HYh\n5bTs5dnJd8f2tlvm62pYvRartDlvbbapffWtbW1+/vrYtrJU+ivQ9jXTtxa0+Xlo87u3D+3X\nH+mPJv8f8aXRD1zz/wj9UQ9+AxkgdX8SbjU6xAUTh/rW6HHdFtDHcmgqVa+Pn0+qc/pIcv+k\n/uP61KRKte3Ca+eu/0+1rf5Sd9OkD+0v++YXUGZvUNrWca32XpQ9NudxrW3GTW5QgU0s+Ps8\n99I5z79X1j8geWjyl0mdm/+WnJw0Za16t2nb+DbN/rqYvjI73StpbumsOleZ9bPVZpvaR5v2\n13Zdlcm2tf35q/rMan+t3+q2VR2Ufgi0/XnoR22vq0Xbn4cLr3vKD+fGf/f2of36I/1R339n\n64/y68MA6Ye/QzubqUv+VepKy3hpHtfgo4+lOpqXJQ9Kfjn59eQOyVeT/5E0Vx/qCtNkGW/b\nENrfto613VrtHT+Pa21TTuPbTbp18XiX7LTO188lT05ekdw7qWU/mzw8qdKmbW222bm3xf5b\nbXhV8h+SFyV/m1Rpc97abNPsa63z1uU5W6ttbX7++t62a0+Sf3ol0PY106tKpzJtfh6qzmv9\nDNe6+jkeQvvb1rG2W6u947+z1tqmManpsor+aKd083+kxr153Jy3tue2ef6ipvqjMUkDpDGM\njma/PtrvrSf2v9fo8XcmlvflYV0CfnlS9303pX7Rvj25TXLn5LykaUdmf1iaZdW2IbS/bR1n\ntbc5j7O2KaBmux9idTxTv2j/e/InE8d56+hxXRWsMqveTZ3bbLNzb4v798bZ1R8l9QlWNVB/\nTdKUNuetzTa1v761rc3PX5/b1pwj034JtH3N9KvWO29t1h/tPCvr+X086/da7a3Z17LOt/5o\np/S8/w/OOm9dnbNZfe227I8MkLr/tVAv9Cr77pz88N/mlqwv/3BJv2b2TnXqSsNkGb+Fodp2\ns1HGt6u21rrvj6a1rs/tb3uOarvmvFWbmrJPZprz2Maked4ypnvmIPdMmltLmmPWbSfjpW3b\n5rV/fJ+bnd8jO3hP8sSkrn69Lhkvbc5bm21qn23aP37szc7Pa1vbn7+qx7yfrWW3bbM2nt+d\nQNufh+5qsLE9t/150B/t2KE/uq4/3tirbfqz5v3ObvOz1WabOvqyf2fPa1vbn7+qu/6oFJTW\nAp/KlvUfvfHy2jyowUa9MPtYXpxK1V97fmqictWWC5Jdk4OSq5OnJU2pS7TnJm9tFmTap/Y/\nMvWpdh02Vr+abVPH/5jtLk1uXk8YlQdmWvt7zOhxW5PR5gud/EH29vmJPdZHklf9jp9YXm2p\n5eVRpU3b2myzc2+L+ffPs5sayN13xu7anLc22/StbW1+/oqlj22bcbqs6oFAm9dMD6p5vSq0\n+Xlo+7u3T+3XH+08zfX7V3903f8H9UfX+/H3YJUFnprGXZU8P6m/5B+Z1H+0n5X0tdwxFbs4\n+WTy0OTg5I1J/RKrdjTlTzPz1aRu1apb7+qv/Bcl439F6FP71+qQ2tSxzl19xPS7ktsnd0s+\nm7w/GS9tTMa3X9T8tAFS7fvU5HvJ0Umdl19NvpF8JGlKm7a12abZ32anz8gO6rX2juQXp6S5\n+t3mvLXZpm9tu2PafHEy7+evb21LlZWeC7R5zfStCXdMhdr8PLT53dun9uuP9EfT/j+oP+rb\nbyD16VTgRdn75Un9p+9rySuTvpe6evS5pOpcqStez0nGy1558MHkB0ltc3ry2GSy9KX9a3VI\nVd82dfzX2e4rSbW1BrnVId8hGS9tTcafs4j5tQZINXA9OWnO4/czX+/ruWkyXtq0rc024/vc\n6PxH8sSmvtOmu43tuM15a7NN39rW5uevGPrUtrHTYrbHAm1eM32rfpufh7a/e/vSfv3Rzlvx\n9Uc3/GnTH93QxJIVFqg3wd05qdvQhlT2TWUPnFPhW2Z9XVWZVYbQ/rZ13D8NnRxgTLa9jcnk\nc7p8fLPs/JBkfHAx7Xht2tZmm2n77mpZm/PWZpuqX9/a1ubnb6ht6+r1YL/zBdq+Zubvablb\ntPl5aPO7dwjtb1vHNr+z2pgs80zqj9r9f7DNuV3meWvz87fI1+0y2+ZYBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBgiwVussXH\nd3gCBAgQIFAC+iOvAwIECKyIwHPSjq9M5Iw8/t/JzyRdldOz4/+ywZ0/NM97c3J2ck1ycfLH\nyZ2SLsoDs9PbdrFj+yRAgACBHwroj35IseaM/mhNGisWKbDrIndmXwQGKHCL1Hn/5PXJt5Mb\nJTUYeEDy1OTfJn+aLLr8aHZ46w3s9LF5zruTf0hOTs5MHpo8OfnJ5F7JZcmiykOzo79MDk6+\nmSgECBAg0I2A/mi260OzWn8028haAgQILETgP2QvdRXmgIm97Z7Hn08+OrF8UQ//OTt67Tp3\n9uBsf3nyninPu1+WXZ389ynrNrPocXly+dxlMzvxXAIECBCYK6A/mk2kP5rtY+0CBX5kgfuy\nKwKrJPD9NKau0uwz0aj6mXl2UleVPpL8j+TAZLy02WZ8+5q/R/IHyVH1YI1yTJbXVa5fmLL+\nE1n2oqSuHtVVsKbcNzNvSf46+aPkiGS87J0Hr07qr3IfSP5rcqukSt3K8O+vndu5/FmjeRMC\nBAgQWJ6A/kh/tLxXmyNdK1D/kVMIELihwIOy6GeSP55Y9c48fkNSV4BOSWoQUbe5/eukKW22\nabat6d2S05L9kxp4rVUekBUfSy5aY4PXZPlLkrqSVOWpyd8l+yZ/luwymv52plVqIPXh5AlJ\n7bfa8czkU0mtq6tVNSCr8q3kkmvn/EOAAAECyxTQH+mPlvl6cywCBAjsaG5p+Hoszk2+llya\n1G1lb03Gy5F5UMtrQNGUG2fmS8nfJzUAabNNNrt2gFW32B2SnJ/UAKZu61ur7JUVdez/utYG\nE8vr/U01qPnjieW/m8dXJfdM6qpV7fPwpCkPycxfJAeNFjwu09rmLqPHJgQIECDQjYD+SH/U\nzSvLXgkQILBOgaZDqlvljh2lrhDVLWdXJq9KmvLGzJzTPBib1kCnBhF1BajNNvXUf07en5yX\n1JWbGyezSjNAqtvh2pS6+lV1qlvsxktd8arl1e6bJjUY/Fzy/GTyVsEs2mGAVAoKAQIEuhfQ\nH+mPun+VOQIBAgRaCDQd0gFTtn15ltVgoq62VKnb0T5aMxPl3+RxbVe3QbTZpp5eA6R6Tl19\nujoZv0UvD6eWf8rSGlStVW6SFc1A6xczX/vfe2Ljuq22bpurAWGVn0rq6ldtW6nB0nOSphgg\nNRKmBAgQ6FZAf6Q/6vYVZu+tBbwHqTWVDbehQL2XqMojdk6uvWWtbl2bLHuOFnw5028l87Zp\nnl+3st09qStIb0ma/WR2aqnvZ6qP8d5t6todO47P8ouTH0uqHlVutXNyvX/rOFXXKn+b1K12\n9ZxfTur9TW9OnpEoBAgQINAPAf1RP86DWmwTAQOkbXKiNXNDAvWhCFW+sHOy46xM6z1D+40e\nN5NHZuabSV0VarNN87y6WlMfhHBMcqfklcms8vtZWR+4ULfxTZb6oIefT6quZydVjypVt/Hy\n0Dyoq0yfSe6TnJLcMannvS55WPLd5P5JlR/snOzwu2IEYUKAAIEtENAf6Y+24GXnkAQIbFeB\n/5CG161lL0rqtrRKfbT1CUl9ZPZnk+bKTl2NqYHQx5JDk7pS9EvJlckLkypttqntajBV711q\nyu9kpm61e1CzYI3pb2Z51bf+mnhUUtv/XnJeckny40lTTspMXUn62eQWyYOTLyV/k+yR7J58\nJflAUoOl2ye/kdT+n5xUeUhSj1+aVJsVAgQIEOhGQH+kP+rmlWWvBAgQWKdA0yHVIKBJXUGp\nqzD1Pp26YjNe6na0TyTNtudkvgYV46XNNpMDpBqw1DHrSk69l2hWqVvh6spP1bOpx19mfnxw\nlIc7bpb8fnJFUtt9Jzk5uXnSlIdn5tSkrmTVNnWL3a8mTanB4V8nta6OoRAgQIBANwL6I/1R\nN68seyVAgMCSBOpK0f5zjtVmmzm7mLm6bpU7OLnpzK1PvKmBAABAAElEQVR23lJXH9u964zt\naiB0xxnr6wpUXXFSCBAgQKBfAm36mjbbbKZV+qPN6HkuAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQGCWwC6zVlpHYEUFfiTteuiUtl2TZVcl30m+kFyaTJa7ZMF+o4V/l+m0bSafM6THZXOL\nFhW+JNtc3WI7mxAgQIDA2gL6o7VtxtfskQc/luybnJtUH31lohAgQIDAggRukv3UYGhWapD0\n2uRGyXg5Pg+a5911fMWKzB881r6mndOm916R9moGAQIEtlJAfzRf/+hs8s1kvC86J4+PSBQC\nBAgQWJBAmw6p+UX8+oljGiDt7KTuNeHiIQECBAisX0B/NNvsEVn9g6Tpky8em7888/dMFAIL\nF3CL3cJJ7XAAAtUhfW9Uzy9m+jOj+brV4cbJI5PfTeqSft1Cd+vkiqRKXWHZ/9q5HTs+lmmz\nn9GiwU/2Sgt+cUorbpZlLx4tf1+mT0yq01IIECBAYOMC+qPZdu/M6iePNqm++cPJU5J3jJYd\nl+mvjeZNCCxMYNeF7cmOCAxToO5hrvuZx0sNmh6dPCapzqvuef5KUmXP5JbXzu3YUQOqKrsn\nj712bseOz2b65eSnkgcmNcD6aFLLJ8u9s6C2uUNSA61zkhp81O19s8q/yspnzdpgtO78TE9q\nsd34Jt/Kg1eNLxjNHzuaVtuOSgyORiAmBAgQWJCA/uiGkLcbLTo701NH83+S6RuTWyfN+tEq\nEwIECBDYqEANeprL9Z+bspMa8NSAqLb5wsT640fLa13zHqS9x5a9NPPvH3tc29WHGfx60pS6\ncvu/klo3mW9nWX0QxKxyj6ycfN60x5+ctZN1rKsBXA306hj1FzyFAAECBBYjoD+a7Vh/nKu+\np/rRg0ab1h8Wmz7v2aNlJgQIECCwSYHxDqmumJwwypsyfWtSV17ql29d1WmuDGX22jJvgHRF\ntqpBztuTDybNL/HLMn+bpMrRSbP8XZl/YfKG5Luj5X+X6ayru8seIP3vUb3+PFOFAAECBBYn\noD+abVl3TJyWVJ9ZV9g+k9RgqR7XHRc3TRQCBAgQWIDAeIfUDFSmTX9vyrHaDJDuO/a892S+\n2XfddlelBmK17PvJnZOmHJmZlyaPT6qOa5W6te9WLVLvG9ps+YnsoG6nq/pWvRQCBAgQWJyA\n/mi+ZX0o0OVJ05fWtP6geGiiEOhEYNZfqTs5oJ0S6JlA/dL97KhON8q03mN0QFKDi19L6hfw\n05JvJm1KXf05fWzD/5v5J4we11/CqtS91FV2S2r+U8lfJnWF5k+T+uvYrFI/t82+Zm1XA7Dq\nRDZTfjdPrlsC/zl5/2Z25LkECBAgMFNAf3RDnn+TRScndev715P6o+Pjkrr1++NJ9c91JUkh\nQIAAgU0KjP/F7nNT9lUDl7ckzV+rfnNsm3lXkN41tm3NPj9p9vOk0bq6JaB+sTfLx6fVAfzC\naLu1JvdY47nj+6n5zb4H6e5jx3n5WpWxnAABAgQ2LKA/mk336ayu/uwrye6jTauPrj9a1vIz\nRstMCCxUoPkUroXu1M4IDFzgitT/NWNt+Nmx+XmzddVmvEz7tLd6b1PdbvfkpP4adlHSlNtl\n5n8mhzcLtnD66LFjnzg2b5YAAQIEliOwnfuj24a4bq+rUu/pbfrXMvmzWphy72Tva+f8Q2CB\nAm6xWyCmXa2UQF2laUrzS7l5PGtaf9GaV+o2vvqkuhoY1eCr/lBRv+RfkDwrqVIDpFOunbvh\nP1/LonlXmepZF9zwqeta0gyQ6kMrzl3XM21MgAABAosS2K79Uf2BsW7xrnLYzskP/z1kNFfr\na8CkEFiogAHSQjntbIACt06df3Gs3vUzcaeJZfX+oEWWT2Rn9d6mGkw9PKn9120C9R6kZoBU\n7/lZq1ycFW9Za+UCl99ntK/Jjzpf4CHsigABAgRGAvqj678ULszDLyX1YUb3T6qvfkfyxNHj\nTHZ8Pqk+USFAgACBTQqM3/Ndg5RZOT3r64pPU47PTLP9XUcL6/J+s+xtzYaj6b8bW9e8B6mu\nzNTHlTbPqQHIV8ce1+CobrXbylIddVO/uuVPIUCAAIHFC+iPZps+LKuvSpr+qK4qNfM1fUSi\nEFi4QN3aoxAgsFOgfvHWpfrvJJ9N/nNSg5n6DqNFlrqXuvZ7+minB2W632i+7quuDqFua9vK\n0tSn6uAK0laeCccmQGA7CuiPdp710zKpT6373OhF0Nxy9+U8rn701NFyEwILFWheaAvdqZ0R\nINBaYK9sWYORGpidkyx6MJZdKgQIECBAYK5A3/ujfdOC6i/rPbFfn9saGxAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIDAKgvssgKN2yNtOCzZN9knuSa5KDkzOXv0OBOFAAECBAh0KqA/6pTXzgkQIEBgnsCu2eBV\nyYVJDYqm5fQsPzRRCBAgQIBAVwL6o65k7ZcAAQIE1iXwh9n628mrkwcnBye3Te6Q3DM5MvlA\nckVyv0QhQIAAAQJdCOiPulC1TwIECBBYl8Ats/XVyeEtnnVytjmuxXY2IUCAAAEC6xXQH61X\nzPYECBAg0InAvbLXq5K6rWFeeU42+PS8jawnQIAAAQIbENAfbQDNUwgQIEBg8QI/kl2enzx5\nzq5rAHVq8vY521lNgAABAgQ2IqA/2oia5xAgQKDHAjfqcd1mVa0+kOEmyfHJj4/m61Ps9koO\nTOoveo9L3pDUJ9wdnXwjUQgQIECAwCIF9EeL1LQvAgQIENi0wKOyhy8k0z7B7sosPympAZJC\ngAABAgS6FNAfdalr3wQIEFiiwCp8D1Jx7ZcckNwiuSQ5b5TLMlUIECBAgMCyBPRHy5J2HAIE\nCHQk0OZDDjo69MJ2W1/Md/vkNknzRbG3y3y1zRfFBkEhQIAAgaUI6I+WwuwgBAgQILCWQA2A\nfFHsWjqWEyBAgMCyBPRHy5J2HAIECBCYKeCL+WbyWEmAAAECSxLQHy0J2mEIECCwDIGhvgep\nvpjvW8mjk1PmQNUXxdZ7kn51znbTVr8tC+82bcXEsnr/0zOSD04s95AAAQIEVltAf7Ta51fr\nCBDYhgJ1W8AQS32Ud31y3WktKl/fg/S8FttN2+TdWXjGtBUTy+pWv5tOLPOQAAECBFZfQH+0\n+udYCwkQIDAIgb59MV99ct4Rg5BTSQIECBBYpID+aJGa9kWAAIEeCAz1CtIPYndCUt9zdFTy\nvuT85MJkt6S+MPbg5OnJQckDEoUAAQIECCxaQH+0aFH7I0CAAIFNCfTli/lcQdrUafRkAgQI\nDF5AfzT4U6gBBAgQ2Ckw1CtIzfn7UGbukgzpi/mqrnWFaxXL99Oof1zFhmkTAQIE5gjoj+YA\nLXm1/mjJ4A5HgED/Be6fKj5tidVczxWkb6de9QETq5pDlujuUAQIEOi7gP5o6/o7/VHffzrU\nj0BPBYZ+BWkt1sdkxeOTeo9S38ruqdCTkzafwNe3us+qz62y8p+Sap9CgAABAjsF9EfLfyXo\nj5Zv7ogEVkpgqAOkQ3MWZg1+9sn6mydnjc5WfVfSb4zm+zD5bipxcR8qog4ECBAgsCkB/dGm\n+DyZAAEC/RMY6gDpm6Gsj1atL3H9ePLFZLzcKw9unHxmtPCc0dSEAAECBAgsUkB/tEhN+yJA\ngACBTQnsmWe/LqmrMZNfBHtslp2ZLKus5z1Il6dShy+rYks8Tt3SUO+rOmyJx3QoAgQI9EFA\nf9SHs3BdHfRH11mYI0BgAwJ1FWao5bJU/AVJvZ/nvyQfTPZNFAIECBAgsEwB/dEytR2LAAEC\nHQsMeYDU0NRHq9Y94PWRnvWeoxowKQQIECBAYNkC+qNlizseAQIEOhAY6nuQJikuyIInJs9O\n3prUbXf/kijLE6j3fFWpK3lXXju3Wv/UbZT3Sy5drWZpDQECCxbQHy0YdAO70x9tAM1TCBC4\nTmBVBkhNi07MzEeT45LvJMryBOoe/CrvST557dzq/FO3br4qqU9GNEBanfOqJQS6FNAfdak7\ne9/6o9k+1hIgQGApAj6kYceO/SNdH9Jw5FLEl3uQ+rLBalt9fLxCgACBPgvoj/RHfX59qhuB\nQQiswnuQBgGtkgQIECBAgAABAgQI9F/AAKn/50gNCRAgQIAAAQIECBBYkoAB0pKgHYYAAQIE\nCBAgQIAAgf4LGCD1/xypIQECBAgQIECAAAECSxIwQFoStMMQIECAAAECBAgQINB/AQOk/p8j\nNSRAgAABAgQIECBAYEkCBkhLgnYYAgQIECBAgAABAgT6L2CA1P9zpIYECBAgQIAAAQIECCxJ\nwABpSdAOQ4AAAQIECBAgQIBA/wUMkPp/jtSQAAECBAgQIECAAIElCRggLQnaYQgQIECAAAEC\nBAgQ6L+AAVL/z5EaEiBAgAABAgQIECCwJAEDpCVBOwwBAgQIECBAgAABAv0XMEDq/zlSQwIE\nCBAgQIAAAQIEliRggLQkaIchQIAAAQIECBAgQKD/AgZI/T9HakiAAAECBAgQIECAwJIEDJCW\nBO0wBAgQIECAAAECBAj0X8AAqf/nSA0JECBAgAABAgQIEFiSgAHSkqAdhgABAgQIECBAgACB\n/gsYIPX/HKkhAQIECBAgQIAAAQJLEjBAWhK0wxAgQIAAAQIECBAg0H8BA6T+nyM1JECAAAEC\nBAgQIEBgSQIGSEuCdhgCBAgQIECAAAECBPovYIDU/3OkhgQIECBAgAABAgQILEnAAGlJ0A5D\ngAABAgQIECBAgED/BQyQ+n+O1JAAAQIECBAgQIAAgSUJGCAtCdphCBAgQIAAAQIECBDov4AB\nUv/PkRoSIECAAAECBAgQILAkgV2XdJwuD7NHdn5Ysm+yT3JNclFyZnL26HEmCgECBAgQ6FRA\nf9Qpr50TIEBgOQJDHiBV3Y9NnpvstQbXJ7P8mOSsNdZbTIAAAQIENiugP9qsoOcTIECgRwJD\nvsXuzXF8fnJi8pDkkGTvZL+krig9JflmckZyv0QhQIAAAQJdCOiPulC1TwIECBBYl8Ats/XV\nyeEtnnVytjmuxXab2eSSPPmIlju4PNu1qXfL3fVms/1Tk7q98cje1GhxFanBd7WtbuFUCBAg\nMC6gPxrX6Me8/qgf50EtCAxWYKhXkA6MeP2H9bQW8qdmmwe32M4mBAgQIEBgvQL6o/WK2Z4A\nAQI9FxjqAKk+gOGC5AlzfOu+8LrV7vNztrOaAAECBAhsREB/tBE1zyFAgECPBYb6IQ0/iOkJ\nyUnJUcn7kvOTC5PdkvrQhoOTpycHJQ9IFAIECBAgsGgB/dGiRe2PAAECWyww1AFSsb0iOT15\nXTLtStJVWf7O5JlJ/YVPIUCAAAECXQjoj7pQtU8CBAhskcCQB0hF9qHkLkl9ct0ByS2S+sCE\n80a5LFOFAAECBAh0LaA/6lrY/gkQILAkgaEPkIqpvpjv9sltkuaLYm+X+WqbL4oNgkKAAAEC\nSxHQHy2F2UEIECDQrcCQB0hVd18U2+3rw94JECBAYL6A/mi+kS0IECAwGIGhfopdAftivsG8\nzFSUAAECKy2gP1rp06txBAhsN4GhXkGqL+Z7VvLo5JQpJ+1rWVYfzFAf0lBfFPvU5BPJestv\n5An1Hqd5ZfdscOt5G1lPgAABAisnoD9auVOqQQQIbHeBoQ6Q1vvFfM/b4Im+WZ5385bPvVHL\n7WxGgAABAqsjoD9anXOpJQQIELhWYKgDpLo61HxR7LtmnMtq32a+KPZlM/Y9vuqxeVD1UQgQ\nIEBgewnoj7bX+dZaAgS2gcBQB0i+mG8bvDg1kQABAgMQ0B8N4CSpIgECBNYjMNQBUrXRF/Ot\n50zblgABAgS6EtAfdSVrvwQIENgCgSEPkIrLF/NtwYvGIQkQIEDgBgL6oxuQWECAAIFhCgx9\ngNSon5uZSpXdkp9OHp58LDkrUQgQIECAwDIE9EfLUHYMAgQIdCgw5AFSfYfTi5PHJ19Pfjv5\ncvL3yT5JlWuS1yT/qR4oBAgQIECgAwH9UQeodkmAAIGtEqhf6kMtr03F677vS5L7J3+WnJic\nn/xcct/kD5L/mDwpUQgQIECAQBcC+qMuVO2TAAECBNYlsGe2viJ52uhZN8n0L5K6YvTA0bJm\n8pHM1OCpy1KDtCNaHuDybHd4y22HtNn+qWz5HzmkSres6yGjtjVXJls+zWYECGwDAf1R/06y\n/qh/50SNCAxKYKhXkA6Ncn0x63tH2pdmelJycVLvOxovf5oHdxpfYJ4AAQIECCxIQH+0IEi7\nIUCAQF8EhvoepLqNrgZ39WEMHxhh1mCprirtktSVjKY8IjNfbR6YEiBAgACBBQrojxaIaVcE\nCBDog8BQryDVgKcGRu9IjktqoFdXj+oqUjM4uk/mP5g8NnlzohAgQIAAgUUL6I8WLWp/BAgQ\n2GKBoQ6Qiu3JycuTxyRXJZPlmVnw8OSFyXsmV3pMgAABAgQWJKA/WhCk3RAgQIDAYgR2W2M3\n9SbNW6yxbtGLfUjDjh3eFLvoV5X9ESAwNAH9UT/OmP6oH+dBLQgMVmCo70EaB6/3HU0rdduD\nQoAAAQIEliWgP1qWtOMQIECgQ4Eh32LXIYtdEyBAgAABAgQIECCwHQUMkLbjWddmAgQIECBA\ngAABAgSmChggTWWxkAABAgQIECBAgACB7ShggLQdz7o2EyBAgAABAgQIECAwVcAAaSqLhQQI\nECBAgAABAgQIbEcBA6TteNa1mQABAgQIECBAgACBqQIGSFNZLCRAgAABAgQIECBAYDsKGCBt\nx7OuzQQIECBAgAABAgQITBUwQJrKYiEBAgQIECBAgAABAttRwABpO551bSZAgAABAgQIECBA\nYKqAAdJUFgsJECBAgAABAgQIENiOAgZI2/GsazMBAgQIECBAgAABAlMFDJCmslhIgAABAgQI\nECBAgMB2FDBA2o5nXZsJECBAgAABAgQIEJgqYIA0lcVCAgQIECBAgAABAgS2o4AB0nY869pM\ngAABAgQIECBAgMBUAQOkqSwWEiBAgAABAgQIECCwHQUMkLbjWddmAgQIECBAgAABAgSmChgg\nTWWxkAABAgQIECBAgACB7ShggLQdz7o2EyBAgAABAgQIECAwVcAAaSqLhQQIECBAgAABAgQI\nbEcBA6TteNa1mQABAgQIECBAgACBqQIGSFNZLCRAgAABAgQIECBAYDsKGCBtx7OuzQQIECBA\ngAABAgQITBUwQJrKYiEBAgQIECBAgAABAttRwABpO551bSZAgAABAgQIECBAYKqAAdJUFgsJ\nECBAgAABAgQIENiOAgZI2/GsazMBAgQIECBAgAABAlMFdp269IYL98yiXW64eM0ll665ZvEr\n9sguD0v2TfZJrkkuSs5Mzh49zkQhQIAAgRUQ0B+twEnUBAIECPRZoO0A6etpxC1bNuTybFcd\nWNel6n5s8txkrzUO9sksPyY5a431FhMgQIDAsAT0R8M6X2pLgACBwQm0HSD9Slr2+8kHRvlm\npnXF5unJTyYvSWpgVOWqnZPO/31zjvCk5E1J1esbybeS3ZMaMB2cHJ2ckTwo+USiECBAgMCw\nBfRHwz5/ak+AAIGVEajBxQuntKbew/SPyaunrOtyUV3Nujo5vMVBTs42x7XYbjObXJInH9Fy\nBzWQbFPvlrvrzWb7pyZ1e+ORvanR4ipyyKhtdQunQoDA1groj2b764927NAfzX6NWEuAwByB\nNh/SUIOR+yR/OGVfP8iyNyY/M2Vdl4sOzM7rP+OntTjIqdnmwS22swkBAgQI9FtAf9Tv86N2\nBAgQWAmBNgOk+mtU3br2E2u0uAZP566xrqvF9QEMFyRPmHOAuoXwKcnn52xnNQECBAj0X0B/\n1P9zpIYECBAYvECb9yDVVaJ3J29LXp78VXJxsn/y7OSpySOSZZaq0wnJSclRyfuS85MLk92S\n5j1I9R6pg5IHJAoBAgQIDFtAfzTs86f2BAgQWCmBGki9Ianb2sZTg5IaIG1VeVQO/IVkvE7N\n/JVZXgOow5Kui3u+3fPd9WvM/gkQ2CmgP5r9StAf6Y9mv0KsJUBgrkB1NG1KfTLdLyX1aXX3\nTu6QfDn5dPK9ZKvKh3LguyT7JQckt0iqczhvlMsyVQgQIEBgdQT0R6tzLrWEAAECvRRo8x6k\n8YrfNQ/qE71qYPU3ST3e6rJHKnD75DZJDZSqTj+e1C2A6/ly22yuECBAgMBABPRHAzlRqkmA\nAIFVFbh5GvbnSXP72oczf9Pk6uT1SQ1Sll1qkPaqpN531NRrcnp61h2adF3c0uCWhq5fY/ZP\ngMBOAf3R7FeC/kh/NPsVYi0BAnMF2l5BOj57qr/W1fuNjh3t9dJMX5D8fNL2O4BGT13IpL4o\n9vnJiclDkrqytXdSV5HqfUf16XX1hbZnJPdLFAIECBAYvoD+aPjnUAsIECDQa4E270GqQdTP\nJU9MTklemFSpqzUnJHdLaoD0rmRZpb4L41nJo5Oq02T5WhbUR4G/Mzk5qYHdJ5L1lkfmCQe0\neFI57t5iO5sQIECAwMYF9Efz7fRH841sQYAAgZkCbQZI9d6ePZOvrLGnWl4DkGWWA3OwGqCd\n1uKg9UWxz2ux3bRN6nl3n7ZiYll9tPg+E8s8JECAAIHFCuiP5nvqj+Yb2YIAAQIzBdoMkP4l\ne7gweXryWxN72yWPj0k+M7G864d1daj5othZV66qfXWr3ec3WKG6atam1D3fX22zoW0IECBA\nYMMC+qP5dPqj+Ua2IECAwEyBNgOk2sHvJS9N6pPh6spNfUDDc5Kjk/qY7RokLbPUlwXW7X0n\nJb4odpnyjkWAAIGtFdAfba2/oxMgQIDASKDu+35lcnlSA6QmdRXnWclWlUflwL4odqv0r3/c\nZvB85PUXr8Sj+gCQes27jXIlTqdGDFxAfzT7BPoUu+v+mKs/mv1asZYAgTUE2l5Belme/xfJ\na5N7JPsm9d6jutWtfhlvVfFFsVsl77gECBDYGoGX5bD6o62xd1QCBAhsC4E2A6T6zokXJ5cl\nH00+kvStnJsKVRQCBAgQWF0B/dHqnlstI0CAQG8E2gyQvpvafjG5Z1IfylC3GvWl1Kfr/URS\nt1zU9x19L5ksD8uC7yd/O7nCYwIECBAYlID+aFCnS2UJECAwTIE2A6QaEL0pOTb5bFKfWHd+\nMl7qVrs/Hl+whPlDc4z3JncaHaveD/VLSX3v0Xh5UR58KzFAGlcxT4AAgeEJ6I+Gd87UmAAB\nAoMTaDNAqkb9clIf0FDvPapMlvdlwTIHSHUl64+SK5OjR9PnZvonyYHJqxOFAAECBFZPQH+0\neudUiwgQINArgbYDpOYqTV8qf8dU5LDkkUl9EWyVk5LfTn4nuTA5MVEIECBAYLUE9EerdT61\nhgABAr0TaDtA6lvFb5cK1XchfXyiYvVFtvUm3jcm5yanJAoBAgQIEOhKQH/Ulaz9EiBAYIsE\n6sMNppXbZOHRyV7TVvZg2TmpQ9X98VPq8mtZVu9Nqvci1Qc4KAQIECAwXAH90XDPnZoTIEBg\nkAJrDZDunNa8JdlvrFW3zvwrklq31eXrqcD7k9clr09+NGlKXVk6KqmrS3+V3D1RCBAgQGCY\nAvqjYZ43tSZAgMBgBdYaIE1rUA2QXpLUhyD0ofx8KvHXyfOSgyYqdEUe/2zyzqRuf1AIECBA\nYHUE9Eercy61hAABAr0TGOp7kAqyPtb7Ccmtku8nk+XSLKhBVL0f6baTKz0mQIAAAQILEtAf\nLQjSbggQINAHgSEPkBq/i5uZNaanr7HcYgIECBAgsEgB/dEiNe2LAAECWySwnlvstqiKDkuA\nAAECBAgQIECAAIHlCBggLcfZUQgQIECAAAECBAgQGIDAvFvs/iZtuHrUjmYw9Z48vmqibe/N\n43q/j0KAAAECBLoQ0B91oWqfBAgQIHADgbUGSPWG07fdYOu1F5yx9iprCBAgQIDAhgX0Rxum\n80QCBAgQ2IjAWgOkL2Vnz9jIDj2HAAECBAgsUEB/tEBMuyJAgACB+QLNbXPzt7QFAQIECBAg\nQIAAAQIEVlzAAGnFT7DmESBAgAABAgQIECDQXsAAqb2VLQkQIECAAAECBAgQWHEBA6QVP8Ga\nR4AAAQIECBAgQIBAewEDpPZWtiRAgAABAgQIECBAYMUFDJBW/ARrHgECBAgQIECAAAEC7QUM\nkNpb2ZIAAQIECBAgQIAAgRUXMEBa8ROseQQIECBAgAABAgQItBcwQGpvZUsCBAgQIECAAAEC\nBFZcwABpxU+w5hEgQIAAAQIECBAg0F7AAKm9lS0JECBAgAABAgQIEFhxAQOkFT/BmkeAAAEC\nBAgQIECAQHsBA6T2VrYkQIAAAQIECBAgQGDFBQyQVvwEax4BAgQIECBAgAABAu0FDJDaW9mS\nAAECBAgQIECAAIEVFzBAWvETrHkECBAgQIAAAQIECLQXMEBqb2VLAgQIECBAgAABAgRWXMAA\nacVPsOYRIECAAAECBAgQINBewACpvZUtCRAgQIAAAQIECBBYcQEDpBU/wZpHgAABAgQIECBA\ngEB7AQOk9la2JECAAAECBAgQIEBgxQUMkFb8BGseAQIECBAgQIAAAQLtBXZtv2lvt9wjNTss\n2TfZJ7kmuSg5Mzl79DgThQABAgQIdCqgP+qU184JECCwHIEhD5Cq7scmz032WoPrk1l+THLW\nGustJkCAAAECmxXQH21W0PMJECDQI4Eh32L35jg+PzkxeUjy/7d3J0CyXXUdgF8kEEIChJQE\ng1nZEgUBKVklEFdcEFEJGBGMRrBAFASXgnJBkIiACqKIgEJJsRhQyyUihhAKkTIBRFYNCCYE\nwpYNglkgAX//TN+XTmeWMzN9u+/tfKfq97r79ulzz/lud5857/b0HJsckhye1BmlRyafT96T\n3DdRCBAgQIBAHwLmoz5UtUmAAAEC2xK4dWpfkzyk4VGnps4LG+rtpsplefBDGxu4MvVa+t3Y\n3GCqHZGe1McbTxhMj+bXkVp819jqI5wKAQIEpgXMR9Maw7huPhrGcdALAqMVGOsZpKMjXj+w\nntEgf3rqPKihnioECBAgQGC7Auaj7YqpT4AAgYELjHWBVF/AcGHy8C1863Ph9VG7c7ao524C\nBAgQILATAfPRTtQ8hgABAgMWGOuXNHw1pi9JXps8Ovn75DPJRcnNkvrShmOSn0zulNw/UQgQ\nIECAwLwFzEfzFtUeAQIEliww1gVSsT0rOTt5cbLemaSrs/0NyWOT+h8+hQABAgQI9CFgPupD\nVZsECBBYksCYF0hF9s/JnZP65rojk1sl9YUJF0xyRS4VAgQIECDQt4D5qG9h7RMgQGBBAmNf\nIHVM5+dKRSFAgAABAssUMB8tU9++CRAgMAeBVVgg+cvlc3giaIIAAQIEdi1gPto1oQYIECCw\nfIExL5Cq789OHp/UlzKsV96VjScnH1jvTtsIECBAgMAcBMxHc0DUBAECBIYiMOYFUv3l8h9L\nXpqclnw2uTjZL+m+xe6kXH9PclxyVrLdclge8PUNDxrr16U3DE0VAgQIENhCwHy0BZC7CRAg\nQKB/gUX95fL69rv6g7Qt+aXGYV+Zeg9prDumakeks+V0wpg63djXYydju11jfdUIELjxCJiP\nhneszUfDOyZ6RGBUAmM9g7Tdv1z+hB0elW/L4/ZveOwnU+ejDfVUIUCAAIHVEjAfrdbxNBoC\nBAjsGesCqc7sXJjU3z964ybHscb3yOScTepsdteXc2dFIUCAAAEC6wmYj9ZTsY0AAQIjFhjr\nAslfLh/xk07XCRAgsEIC5qMVOpiGQoAAgRIY6wKp+u4vl5eCQoAAAQLLFjAfLfsI2D8BAgTm\nKDDmBVIx+Mvlc3wyaIoAAQIEdixgPtoxnQcSIEBgWAJjXyB1mv5yeSfhkgABAgSWKWA+Wqa+\nfRMgQGAOAv5+zxwQNUGAAAECBAgQIECAwGoIjPUM0oHhv+M2DsGlqXveNuqrSoAAAQIEWgTM\nRy1K6hAgQGBEAmNdIN09xv+2Dec3pG593bdCgAABAgTmKWA+mqemtggQIDAAgbEukN4Zu59J\nXpq8PXl+sln5zGZ3uo8AAQIECOxQwHy0QzgPI0CAwFAFxrpAKs9XJvskr0hOSc5MFAIECBAg\nsGgB89Gixe2PAAECPQqM/Usa/iI2b0me26ORpgkQIECAwFYC5qOthNxPgACBkQiM+QxSR1y/\nW3R0UmO5utvokgABAgQILFjAfLRgcLsjQIBAHwKrsECqb6h7bx842iRAgAABAtsQMB9tA0tV\nAgQIDFVg7B+xG6qrfhEgQIAAAQIECBAgMEIBC6QRHjRdJkCAAAECBAgQIECgHwELpH5ctUqA\nAAECBAgQIECAwAgFLJBGeNB0mQABAgQIECBAgACBfgQskPpx1SoBAgQIECBAgAABAiMUsEAa\n4UHTZQIECBAgQIAAAQIE+hGwQOrHVasECBAgQIAAAQIECIxQwAJphAdNlwkQIECAAAECBAgQ\n6EfAAqkfV60SIECAAAECBAgQIDBCAQukER40XSZAgAABAgQIECBAoB8BC6R+XLVKgAABAgQI\nECBAgMAIBSyQRnjQdJkAAQIECBAgQIAAgX4ELJD6cdUqAQIECBAgQIAAAQIjFLBAGuFB02UC\nBAgQIECAAAECBPoRsEDqx1WrBAgQIECAAAECBAiMUMACaYQHTZcJECBAgAABAgQIEOhHwAKp\nH1etEiBAgAABAgQIECAwQgELpBEeNF0mQIAAAQIECBAgQKAfAQukfly1SoAAAQIECBAgQIDA\nCAUskEZ40HSZAAECBAgQIECAAIF+BCyQ+nHVKgECBAgQIECAAAECIxSwQBrhQdNlAgQIECBA\ngAABAgT6EbBA6sdVqwQIECBAgAABAgQIjFDAAmmEB02XCRAgQIAAAQIECBDoR8ACqR9XrRIg\nQIAAAQIECBAgMEIBC6QRHjRdJkCAAAECBAgQIECgHwELpH5ctUqAAAECBAgQIECAwAgFLJBG\neNB0mQABAgQIECBAgACBfgQskPpx1SoBAgQIECBAgAABAiMUsEAa4UHTZQIECBAgQIAAAQIE\n+hGwQOrHVasECBAgQIAAAQIECIxQwAJphAdNlwkQIECAAAECBAgQ6EfAAqkfV60SIECAAAEC\nBAgQIDBCAQukER40XSZAgAABAgQIECBAoB8BC6R+XLVKgAABAgQIECBAgMAIBSyQRnjQdJkA\nAQIECBAgQIAAgX4E9u2nWa0SWCmB7nXy5Izq/1ZqZGuD+WwuXrGC4zIkAgQIrJqA+WjVjqjx\nDFKge6ENsnM6RWAgAodP+vF9ubx8IH2aVzdunYbullggzUtUOwQIEOhPwHzUn62WCewVWIUF\n0s0zmnskhya3S76WXJK8P/nI5HYuFAK7FnhMWvjQrlsZVgPHpztnDqtLekNgtALmo9EeutF1\n3Hw0ukOmw2MSGPMCqfr+7OTxycEboL8r209OPrDB/TYTIECAAIHdCpiPdivo8QQIEBiQwJgX\nSC+L448lL01OS+r3KC5O9ktqwXRMclLynuS45KxEIUDg+gIHTG6+4PqbV+LWgRnF0cmq/gfJ\nf2Rsr12JIzX+QZiPxn8MjWD5Auaj5R+DnfZg5eajfXYqseTH1e9N1GLoB5I3b9GXU3P/BclT\ntqi33t1nZ+O91rtjZlt9G+AvJH8ys329m1/Kxv2T+ijgqpWbZEDXrNqgJuNZ1bHVe4Bvsxzn\nk/bd6fa9x9n1leq1+WiYh3NV37NLe1XHZj4a5muppVcrNx+N9QxS/a9wLTDOaDhqp6fOExrq\nrVflpGys323aqhyWCq/fqtLk/gfk8raNdcdWrY7L/46t0439XdWx1YR0ZHJuo8OYqtX7W71+\nzx9Tp7fR13O3UVfV/gTMR/3Z7qblVX3PLpNVHZv5aDfP+OU+9tzl7t7eO4H6H+/PJI/oNmxw\nWT8g1QLpdRvcbzMBAgQIENiNgPloN3oeS4AAgQEK1GnaMZY6e3SL5EVJfQSurtf/FNfvHtX/\nrNwzeVhSH3mrb7g7KanfUVIIECBAgMA8BcxH89TUFgECBAjsWuD70sJHk5qgZvOVbKtfYK4F\nkkKAAAECBPoUMB/1qattAgQILFCgPu+5CuXwDOLI5FbJZUl9KUPlikQhQIAAAQKLEjAfLUra\nfggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwEIEVuUjdgvBmtNOHpx2rpxTW0Nr\n5vbpUH20cRXLKo+tvuDk0yt40Orbxeor9VfxC1pumnFdntQf51MI7FTAfLRTueU+zny0XP+d\n7N18tBO1JT7GAmnx+PWHVOuFohAgQGA3ApfmwbfZTQMee6MXMB/d6J8CAAjMRWDl5qOx/qHY\nuRzNJTVS365Xf7/pLUvaf1+7rb8mX3+b6j7JB/rayZLavUv2+76kvgjkc0vqQ1+7PS4N/0uy\nf187WGK7J2Tfz0vqq/9XrTwpA3r0qg3KeBYuYD5aOPmud2g+2jXhUhowHy2Ffec7tUDaud1u\nHlmT0qp9zO7mE5Avr+DYakxVrkpW7bjVc7HKqo2rxrTKY7u6BqgQmIOA+WgOiAtswny0QOw5\n7sp8NEfMRTTlo16LULYPAgQIECBAgAABAgRGIWCBNIrDpJMECBAgQIAAAQIECCxCwAJpEcr2\nQYAAAQIECBAgQIDAKAQskEZxmHSSAAECBAgQIECAAIFFCFggLULZPggQIECAAAECBAgQGIWA\nBdIoDpNOEiBAgAABAgQIECCwCAELpEUo2wcBAgQIECBAgAABAqMQsEBa/GE6P7u8cPG77X2P\n9Xd06g/FXtL7nha/gy9kl59NLl/8rnvf40XZwyd638tydlB/1PdTy9l173ut19oFve/FDlZd\nwHw0viNsPhrfMasem4/Gedz0mgABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIEFgJgftkFC9JPpq8KXloMvRy33Twn9fJr091fJ9cf0zyd8lHklcnhyezZSjj/6Z0\n7FPJXWc7mNstfTwk9Z6RvDs5O3lmcpNkurSaTD9mHtefnEaqT+uVOj7rHcvqa1daxtZSp2tv\nt5cHpYHnJ/+ZfCI5I/mBZLa0HLeWOkMbW8vrryyGNrbZ4+P28ARanjND63XL66H1vXco4zcf\nXX9eMh9d96ozH11n4doKCxyRsX0xeX3yyOQVydXJw5Mhl19N565I3jiTX57q9ONz/cqkFg0/\nmdTC4bykXtxdGcr4D0uHaoH6teQeXecml619PD31/zt5bPLUpI7rXybTpcVkuv48rtdzqZ5T\n56zT2NHZVmM+M5k9ltMTUsvYWuqs04Vtb9o3j/j35KLkhcnJyVuSGseJSVdajltLnWpvaGNr\nef0NbWzdcXE5XIHW58zQRtDyemh57x3K+M1H5qNH5kX2iqTm7tmfB81HQ3sH0p9eBP4hrb53\npuW/zu33z2wb2s3XpUPv2KRT35D7vpDU4qgrt86Vy5Lf6Dbkctnjr0VATZzV10uT9RZILX18\n7OSxd85lVx6VK9XesZMNrSbd43d7eVAa+POk+lBjW2+B9COT+w/N5UalZWwtdTZqf7vbH5YH\n1Jhqn12p4/hfyYe7DblsOW4tdYY4tq1ef8UwtLFNHRpXByrQ8pwZYte3ej20vvcue/zmo7X3\ndvPRda+y2Z8HzUfX2bi2wgK3zNiuSabPutRw638L6gfA9T7qVfcPodQPoy/apCMn5b4aw5Ez\ndV6b2x+abBvC+O+ZvtT/0Pxx8sNJ9Xn6DFJrH0/L485Kpst+uXFZ8szJxpNyuZXJpOpcLk5J\nK59LfiJ5ebLeAulZ2X5BsllpGVtLnc32sZ37viuV63/WDpx50Mtyu7yrtBy3ljrV1tDGVn3a\n6vU3xLFVv5XhCrQ+Z4Y4gq1eDyel01u99w5h/OYj89FWPw+ajwbwDvR1A+jDqnehPmNczv8z\nM9CPTW4fPrN9KDdvkY7cJfly8tykzoD9ffIdSVdqcfeV5Lxuw+SyxtqNawjj/2T6c0zypOSK\nZLa09vFueeDscbwq26r9brwtJrP7383tWoweldTlRqUm5HOTGv/bkrcn9QY9/btTLWNrqZNm\n51LOSCs/m3xpqrWb5XqdDavnYpWW49ZSp9oa2thaXn9DHFtZKsMVaH3ODG0ELa+HlvfeIYzf\nfGQ+mv054mOTF1z3c4T5aADvQBZI/R+Egya7uHBmVxdPbtfHAoZYviWdqufHTyc1OZ2Z3C+p\nH1xPTKrU2C669tr1/6mx1f/UHZAMYfxl370B5eoNSmsfNxrvJWmxO44b1Zk2uUEHdrHhg3ns\n5Vs8/p65//7J8clbkzo2z09OTbqyUb9bxjZdp2uvj8tT0ujBSfeRzupzlc1eWy11qo2W8Ve9\nvsrs2Fpff9WfzcZf9y97bNUHZRgCra+HYfT2ul60vh4uuu4he69Nv/cOYfzmI/PR0N+zzUd5\n+7BA2vse2tuVOuVfpc60TJfudi0+hlhqonlmclzyi8lTk8OSTyR/lHRnH+oM02yZHtsYxt/a\nx6q30Xinj+NGdcpput6sWx+390mjdbx+PHlE8qzkW5Pa9qPJdydVWsbWUmettfn+W2P43eRp\nydOTdyRVWo5bS52urY2OW5/HbKOxtbz+hj62aw+SfwYl0PqcGVSn05mW10P1eaPXcN1Xr+Mx\njL+1j1Vvo/FOv2dtVKczqctFFfPRmnT3M1Ln3t3ujlvrse0eP69L89GUpAXSFEZPVz89afc2\nM+0fPLn9xZntQ7lZp4B/O6nPfXel3mhfl3x9csfkgqQbR67uLd22GtsYxt/ax83G2x3HzeoU\nUFdvL1bPV+qN9gXJX83s51WT23VWsMpm/e763FJnrbX5/XvTNPXqpL7Bqhbqz0u60nLcWupU\ne0MbW8vrb8hj646Ry2EJtD5nhtXrtY82m4/Wjsp23o83e1+r1rq2FnW8zUdr0lv9PLjZcevr\nmG02194o5yMLpP7fFuqJXuXQtYu9/3Yfyfr43i3DunJIulNnGmbL9EcYamwHTjJdr8Za9101\nuaz7hjz+1mNU9brjVmPqyu1ypTuOLSbd4xZxuX92cvek+2hJt8/62Ml0aR3bVuOfbnO312+e\nBv42+ZGkzn69OJkuLcetpU612TL+6X3v9vpWY2t9/VU/tnptLXpsu7Xx+P4EWl8P/fVgZy23\nvh7MR3v2mI+um4939mxb/1FbvWe3vLZa6tTeF/2evdXYWl9/1XfzUSkozQLvTs36QW+6/GFu\n1GKjnphDLM9Ip+p/ex4407kay4XJvsmdkmuSn0i6Uqdoz09e1W3I5ZDG/73pT43rHlP9q6st\nffy11Ls8uWU9YFIekMtq7wcnt1tNJtXnevHytHbOTIv1leTVvxfNbK+x1PbyqNIytpY6a63N\n5983pZlayN1nk+ZajltLnaGNreX1VyxDHNsmh8tdAxBoec4MoJvX60LL66H1vXdI4zcfrR3m\nev81H13386D56HovfzdWWeDEDO7q5IlJ/U/+CUn9oP1TyVDLUenYpcm7kuOTY5I/TepNrMbR\nlb/JlU8k9VGt+uhd/S//Jcn0/yIMafwbTUgtfaxjV18x/cbk9sk3J+9L/jGZLi0m0/XndX29\nBVK1fXryf8lJSR2XpySfTc5MutIytpY6XXu7vXxMGqjn2uuTn1sn3dnvluPWUmdoYzsqY740\n2er1N7SxpcvKwAVanjNDG8JR6VDL66HlvXdI4zcfmY/W+3nQfDS0dyD96VXg6Wn9yqR+6Ptk\nckoy9FJnjz6cVJ8rdcbrccl0OTg3/in5alJ1zk5+KJktQxn/RhNS9belj9+eeuclNdZa5NaE\nfFgyXVpNph8zj+sbLZBq4Xpq0h3Hq3K9fq/ngGS6tIytpc50mzu9fmYe2PV3vcubTTXcctxa\n6gxtbC2vv2IY0timDourAxZoec4Mrfstr4fW996hjN98tPZRfPPRDV9t5qMbmtiywgL1S3B3\nTOpjaGMqh6azR2/R4Vvn/jqrslkZw/hb+3hEBjq7wJgde4vJ7GP6vH1gGj82mV5crLe/lrG1\n1Fmv7b62tRy3ljrVv6GNreX1N9ax9fV80O7WAq3Pma1bWmyNltdDy3vvGMbf2seW96wWk0Ue\nSfNR28+DLcd2kcet5fU3z+ftIsdmXwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYMkCt1jy/u2eAAECBAiUgPnI84AAAQIrIvC4\njOO8mbwnt/8y+c6kr3J2Gv7NHTZ+fB73suQjydeSS5PXJHdI+igPSKO37aNhbRIgQIDAXgHz\n0V6KDa+Yjzakccc8BfadZ2PaIjBCgVulz0ckf5x8IblJUouB+ycnJo9K/iaZd/nGNHibHTT6\nQ3nMXycfSk5N3p8cnzwi+bbknskVybzK8WnorckxyecThQABAgT6ETAfbe56fO42H21u5F4C\nBAjMReBpaaXOwhw509p+uX1O8raZ7fO6+ak09IfbbOxBqX9l8rfrPO6+2XZN8oJ17tvNpofl\nweVz59004rEECBAgsKWA+WhzIvPR5j7unaPA182xLU0RWCWBqzKYOktzu5lB1WvmZ5M6q3Rm\n8kfJ0cl0aakzXb+u3y15efLourFBOTnb6yzXz6xz/1nZ9vSkzh7VWbCu3CdXXpm8PXl18tBk\nuhySG7+X1P/KnZY8JzkoqVIfZXjStdfWtv/U5LoLAgQIEFicgPnIfLS4Z5s9XStQP8gpBAjc\nUOC4bPrO5DUzd70ht/8kqTNAb05qEVEfc/v2pCstdbq6dfnNyRnJEUktvDYq988d70wu2aDC\n87L9N5I6k1TlxOTfk0OTf0j2mVz+Ti6r1ELqLcnDk2q3xvHY5N1J3Vdnq2pBVuXi5LJrr/mH\nAAECBBYpYD4yHy3y+WZfBAgQ2NN9pOHTsTg/+WRyeVIfK3tVMl1OyI3aXguKrtw0Vz6WfDCp\nBUhLnVS7doFVH7E7NvlMUguY+ljfRuXg3FH7fs5GFWa21+831aLmNTPbfz+3r07untRZq2rz\nIUlXHpwr/5LcabLhYbmsOnee3HZBgAABAv0ImI/MR/08s7RKgACBbQp0E1J9VO7Zk9QZovrI\n2VeS30268qe5cm53Y+qyFjq1iKgzQC116qGfSv4xuSCpMzc3TTYr3QKpPg7XUursV/WpPmI3\nXeqMV22vcR+Q1GLww8kTk9mPCmbTHgukUlAIECDQv4D5yHzU/7PMHggQINAg0E1IR65T97ez\nrRYTdbalSn0c7W11ZaZ8f25XvfoYREudengtkOoxdfbpmmT6I3q5uW7532ytRdVG5Ra5o1to\n/VyuV/uHzFSuj9XWx+ZqQVjlgUmd/aq6lVosPS7pigVSJ+GSAAEC/QqYj8xH/T7DtN4s4HeQ\nmqlUvBEK1O8SVfmetYtrP7JWH12bLftPNnw8lxcnW9XpHl8fZbtrUmeQXpl07eTquqX+PlN9\njffN1r13z54XZfulyV2S6keVg9Yurvdv7af6WuUdSX3Urh7zi0n9ftPLksckCgECBAgMQ8B8\nNIzjoBc3EgELpBvJgTbMHQnUlyJU+ejaxZ4P5LJ+Z+jwye3u4ntz5fNJnRVqqdM9rs7W1Bch\nnJzcITkl2az8We6sL1yoj/HNlvqih59Oqq8fSaofVapv0+X43KizTO9N7p28OTkqqce9OPmu\n5EvJ/ZIqX1272OO9YgLhggABAksQMB+Zj5bwtLNLAgRurAJPy8Dro2VPT+pjaZX6auuXJPWV\n2e9LujM7dTamFkLvrr/U6wAAAqNJREFUTL4lqTNFP598JfnVpEpLnapXi6n63aWuPDdX6qN2\nx3UbNrj8lWyv/tb/Jj46qfp/kFyQXJbcK+nKa3OlziT9aHKr5EHJx5J/TW6e7Jecl5yW1GLp\n9skvJ9X+I5IqD07q9m8lNWaFAAECBPoRMB+Zj/p5ZmmVAAEC2xToJqRaBHSpMyh1FqZ+T6fO\n2EyX+jjaWUlX99xcr0XFdGmpM7tAqgVL7bPO5NTvEm1W6qNwdean+tn14625Pr04ys09ByZ/\nlnw5qXpfTE5Nbpl05btz5fSkzmRVnfqI3VOSrtTi8O1J3Vf7UAgQIECgHwHzkfmon2eWVgkQ\nILAggTpTdMQW+2qps0UTm95dH5U7Jjlg01prH6mrr+3ed5N6tRA6apP76wxUnXFSCBAgQGBY\nAi1zTUud3YzKfLQbPY8lQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsEOB/wdukGhJtLmB\n8wAAAABJRU5ErkJggg==", "text/plain": [ "Plot with title “Bins = 8”" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0LvD1lXS9+EERABCXipggohDdEu3ir1GOeNCXFQookMfGSnMxOlqUd\nzdLUPJ3UTE6ZpadOqOCl8JKIt395AzUTtKNohqIIAqKicof/58tvDa69WHvvWXuvWXvNWu/n\n9fows2bNPDPznsV+fs+aWTPbbacQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAwFIIbL8Ue2knCawUuEVePnjlpBtf3ZD/Xpt8O/l88r1ktByaCQcM\nJn40w3HzjC7T19c7ZcPvluyefDK5PFEIECBAYGMCd85iB45Z9PpMuzL5WvKlMe/vmGkPHEy/\nKMPPjJln0SZVO31kskNyVvLVZFzZNROPSKrtPju5KlEIECBAYAMC9Qe1OkNrpTpJL0vqj/Nw\neUVeNMvddfiNBRt/YvbnW0P7el3G/zbZJVEIECBAYHKBl2aRpv1YbfixzHP/kapvN7TcG0fe\nW9SXzxva52NW2cnfzvRrhuarTuZTVpnXZAIECBBYR6BNB6lpvP58pK5l6CCdkH1u9r+G9e1m\n8/pDGXfmOQgKAQIEJhRo00Gqv7WXJYcM1b1sHaSHZN/rS7mm3RnXQTpx6P3hNqqW+cVEIUCA\nAIEJBYY7SHUpXV0yVzkwqUap/vBekdQf2u8mdalZUw7LyH8d5NbNxAUa1hmiS5Pa9y8n9U3m\n4ckHk5pWqcseFAIECBCYTGC4g/S0LFrtzh2Tg5IHJGckzd/Z/5HxptQldk27U3+PF7Xslh37\no6RpfxuL0Q7SLTLPfyT1/oXJQcldk7oMvKZ9IlEIbEqg/qdTCCyzQJ2eP38E4At5/YjkkUl1\npvZLmuvCqwOxR1Kl/khXuVXyszeObbfdpzL8YvITSTV49RulDyQ1fbTcOxNqnjsk1RE7Lzkt\nqcv71io/kDePX2uGwXvVcJzcYr7hWe6WF3sOJvxDhh8ZjP9hhqcPxn8jw7cPxg0IECBAYHKB\nS7PIcNtzXl4/O3loUuXO2wY3/rfO2jftznD7UG1IzXdtUn+vb588JDkkqd8p1d/paoOGS7Vp\nj07ulFSH5KKkrgyoS/vWK/Xl2A+tN1Pef2vyny3mG52lOjZN/eVTbd24Uka1/VVOSs6rkZS/\nSX49+eHkx5I2+5TZFAIECBAogWog6lumyr8no6U6PNUhqvfrDNNweUVeNMvWN1ZV9k6aab+f\n8WqUmtc1vC75zaQp1dj9n2R4nmb8W5l+aDPjKsN7rLJsU0cz3Ejj8PNDdf/K0Pp3yvhVg/e+\nNjTdKAECBAi0E3hpZmv+Ph8zZpFfHXr/cUPv325o+huHplfnoOqrTlN1Xr4zeN2sozpJ+ydN\nqS/k6ouz5v3hYdW1XnlTZhheZrXx+nJxI+WSLFSdxmOTJydN/aNWJw69d1TGm/KEjDTLVB0K\ngQ0LOIO0YToLLojAvtmPpmG4RcZ3Th6e7JN8Lxnu2OTluuX3MkddHvCGpL7x+5mk6q3LBv42\nqQbg+OTxSZU3J2clByY1ve4Y93dJnYGqbwVnXb48tMIfzfhrB6/rUpDqJFXZO6m/HVuxfbV+\nhQABAn0XeFJ24MFJfWG2Q3Kn5CFJldOTOiPUttw6M9b8ZycfT6qDUh2juyXVhv1WUuXkpNq2\nLyWnJpclP5vcL3la8k/J25KtKtWBfFXy3aR8VivDnb5vDM00PD48z9AsRgkQIEBgNYFd88YN\nLfKnYypY7wzS1VnmPkPL1aUGzbqq01PlL5KaVmdk6vKIpjw2I7+fPDqpbVyt3CJv3LZFdlut\ngjWm13qrE1fbV43o3ZNdklcmzX7U8A6JQoAAAQLtBaoDMPx3dNx4/SP/4JEq1zuDVPVUW9OU\nIzLS1P2ewcT6MrCZ9pcZr05ZlepcvSx5anKPZK1S7UObtmcaX75XB6nZ3mNGNqoupWveG25v\nf3po+p+MLOMlgYkEpvEhnmiFZiYwZwJXZns+NdimajCqM3BgUp2L/54cnvxScnHSpnw0M501\nNGNd233U4HVzPfW5g9d1RqbGP568L6lv796S1CV5a5X6/7apa635qgNWl1xMUr6XmX87qQbo\njsk5ybeSahSHS3UEFQIECBDYmMAXslj9zqbOIFVbUJ2g+ptbw08lT0/+T9K21JdYTanl6yxM\ndX6atuLrGf9mUn/Ln5I8Jql2pzpQ1XFrc+n0bTJftY3rlWofrl1vpk28f/0qy5ZlU1abp3nf\nkAABAgRGBOpbsObbp38fea9eVmP12qSZpzoMTXlFRprpdx1M3Hto2puaGQfDE4fe+/nBtGq0\nPjI0vamvhtVIPTFZq9wjbw4vs9r4x9aqZJ336vr3iwbrqYbudcmHB6+r4zXcEOWlQoAAAQLr\nCFRHpPl7fcyYee+TaZcN5qnhLQfz3G4wrZZ942BaDU5KmvqqXRguX8+Leq++5GpKXaVQf8+b\nZZphdSbemtwhWatU+9Yss9bwkWtV0vK9tc4g1SXrzfp/cqi++jKymf7fh6YbJTCxQF2qoxAg\nsFKgvv2qhqwpP9eMtBhW52G4jPsWq77Z+4nk6KQapWoIm1KXQfx18rBmwhYN/z7rrWvVD0x2\nT56Q1LZVuSCpRkghQIAAgekJnJWq3j2ors70NL9JarOGNm3PqanokOTFyb8lzd/x+sKrOhf1\nfh/KhUMbudcq49VOKQQ2LOASuw3TWXDBBYa/jRtteNba9abBWWueuozv0KQ6RtX5qi8q7p3U\nJRXHJ1Wqg3T6jWM3/89XMmm9s0y11CU3X3TdKXWZ4bFJ3ZShGqHXJlXunBxUIylnbhv4LwEC\nBAhMWeDuQ/VNu+3ZP3UfnNSZp+ckdfndzyT1heB+yf2S+kLs28m48qpMfMe4N0amfWrk9bRf\nnjtU4Y9mvL5orFLtaFM+24wYEtiIgA7SRtQss0gCt8vOPHVoh+r/iTuNTHvf0PvTGK0OxuFJ\ndaYemlT9n0jqN0hNB+mrGV+tfDNvNB2X1ebZ6PT6/dNzkx9K6vdLdZvzaqRfkTSX1Q2fXctk\nhQABAgQmFKi//dX+VKkvyeqLs7oMu+kgfS/j0/wyqr6Me3NS5fSkzhhdmtRlc89MqoNUHaP6\nu79aef9qb8x4+hlZ338m1dk7Mal92DX5laRKXQ7+qRvH/IcAAQIEWgvUH9IbWuaszFcNV1Oq\no9Ase9fBxL2Hpv3fZsbB8FeH3qvGr8ojkmuSpp7qhHx56HV1jprL2TI683Ji1ths2+jwtTPf\nGiskQIDAYgi8NLsx+jd13Ou6NPvooV2ujlQz3xuHpg//BumQoek1WlcA1DLn1IuUujrgn5Om\nnuqA/Wty5dC0+nJsXsqTsiHNth4zZqOeMvR+M18zfNSY+U0iMJFAfWuhECCwTaAapauT+hat\nvn36vaQ6M1ck0yzvTGVV71mDSqthq0vaqrwt+alk+Brrmj7LUo3u85Ph/f5GXj8rab6hy6hC\ngAABAlMQqBsn1N/bryevTx6e1FmRaZa6OuBnkvqS7/Kkvvi7d3Kr5KLkGckLk76UV2dDj0/q\nLFhTarw6U6c1EwwJbFSguWRmo8tbjgCBzQnsmcWrc1Qds/OS4U5JXm5p2TVrr0vtqsP4xS3d\nEisnQIAAgWkJ3DIV1R3rqv25IGnONmW0l6W+ZKyzR9VO1VAhQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIElk1g+wXY4Z2zD0ck+yX7JDcklyVnJ+cOXmegECBA\ngACBTgW0R53yqpwAAQIE1hPYMTO8OLk0qU7RuJyV6YcnCgECBAgQ6EpAe9SVrHoJECBAYCKB\nv8nc30r+OHlgcljyg8kdknsmj03ekVyd3DdRCBAgQIBAFwLaoy5U1UmAAAECEwnskbmvSx7W\nYqlTMs/LW8xnFgIECBAgMKmA9mhSMfMTIECAQCcC90qt1yZ1WcN65cmZ4V/Xm8n7BAgQIEBg\nAwLaow2gWYQAAQIEpi9wi1R5YXL0OlVXB+qM5PXrzOdtAgQIECCwEQHt0UbULEOAAIE5Fthh\njrdtrU2rGzLsmrwi+eHBeN3Fbs/k4KS+0XtU8qqk7nD3hOSiRCFAgAABAtMU0B5NU1NdBAgQ\nILBpgYenhs8n4+5gd02mn5xUB0khQIAAAQJdCmiPutRVNwECBGYosAjPQSquA5IDk92Ty5ML\nBrkiQ4UAAQIECMxKQHs0K2nrIUCAQEcCbW5y0NGqp1ZtPZhv/2SvpHlQ7L4Zr33zoNggKAQI\nECAwEwHt0UyYrYQAAQIEVhOoDpAHxa6mYzoBAgQIzEpAezQraeshQIAAgTUFPJhvTR5vEiBA\ngMCMBLRHM4K2GgIECMxCoK+/QaoH830jeURy+jpQ9aDY+k3Sb6wz37i3752Jtx/3xsi0+v1T\nNZB+8zQC4yUBAgQWXEB7tOAH2O4RIECgLwKzejDfBwNSN31YL9dnnhP7gmc7CRAgQGBqAtqj\nqVGqiAABAgQ2IzBvD+arDtSRm9khyxIgQIBALwW0R708bDaaAAECqwvUD0v7WOqMzUlJPefo\ncclpyYXJpclOST0w9rDkuOSQ5P6JsjmBu2bxsu2iXJJKv9pFxeokQIBAxwLao46Bx1SvPRqD\nYhIBAgQagXl5MN+in0GqS0jGPYx3WtO+3BxQQwIECPRUQHs0mwOnPZqNs7UQWGqBvp5Bag7a\nuzJyaOLBfI1IN8NbDardL8Mrp7yKx6S+l0y5TtURIEBg1gLao9mIa49m42wtBJZaoO8dpObg\nnZ+RitKtwDdT/bQ7SN/tdpPVToAAgZkKaI9mw609mo2ztRBYSoE+d5Dqh7F17fdw2TUvjk7q\n90cXJfWN3rmJQoAAAQIEuhLQHnUlq14CBAgQaC1wm8xZv3/5haElqlP0xcH05rcx1+T1s4fm\n6Wp00X+DdN+B684dAB6TOqszqxAgQKCPAtqj2R417dFsva2NwFIK1Ldei1L+NjtSZ5CekdRv\nZX4i+evkRcmjE4UAAQIECMxCQHs0C2XrIECAQEcCfb7Ebphk37y4T/J7yZ8N3rgwww8lhyd1\nK/B/TBQCBAgQINClgPaoS111EyBAYAYCi3IGqS6pq98jvWWM2RszrZ6ZoBAgQIAAga4FtEdd\nC6ufAAECHQv0vYN0cHxundRvWD6Y3DMZLQ/LBHe4G1XxmgABAgSmKaA9mqamuggQIEBgYoHd\nssTVSX1Td13ymaTuVlcdpX2SKj+SnJ7UPI9Nuixu0rBxXTdp2LidJQkQ2HoB7dFsj4GbNMzW\n29oILKVAX3+D9J0crWqU7p7UU7XvPRhW56i509pRGf+p5HnJqYlCgAABAgSmLaA9mrao+ggQ\nIEBgqgLbD9V2QMZvN/S6y1FnkDau6wzSxu0sSYDA/Apoj7o5Ns4gdeOqVgIEhgT6egZpaBdW\njNbldE3xu6NGwpAAAQIEZi2gPZq1uPURIEBgSgJ9v0nDlBhUQ4AAAQIECBAgQIAAge2200Hy\nKSBAgAABAgQIECBAgMBAQAfJR4EAAQIECBAgQIAAAQIDAR0kHwUCBAgQIECAAAECBAgMBHSQ\nfBQIECBAgAABAgQIECAwENBB8lEgQIAAAQIECBAgQIDAQEAHyUeBAAECBAgQIECAAAECAwEd\nJB8FAgQIECBAgAABAgQIDAR0kHwUCBAgQIAAAQIECBAgMBDQQfJRIECAAAECBAgQIECAwEBA\nB8lHgQABAgQIECBAgAABAgMBHSQfBQIECBAgQIAAAQIECAwEdJB8FAgQIECAAAECBAgQIDAQ\n0EHyUSBAgAABAgQIECBAgMBAQAfJR4EAAQIECBAgQIAAAQIDAR0kHwUCBAgQIECAAAECBAgM\nBHZcAImdsw9HJPsl+yQ3JJclZyfnDl5noBAgQIAAgU4FtEed8qqcAAECsxHocweptv0FyVOS\nPVfh+limn5Ccs8r7JhMgQIAAgc0KaI82K2h5AgQIzJFAny+xe3UcT0xekzwouUuyd3JAUmeU\njkkuTj6R3DdRCBAgQIBAFwLaoy5U1UmAAAECEwnskbmvSx7WYqlTMs/LW8y3mVkuz8JHbqaC\nOV+2Oph16WJdPjLtUh3Zi6ZdqfoIECAwIwHt0YygB6vRHs3W29oILKVAX88gHZyjVf9gf2+L\no3ZG5nlgi/nMQoAAAQIEJhXQHk0qZn4CBAjMuUBfO0h1A4ZLkqPW8a3rwusMxefWmc/bBAgQ\nIEBgIwLao42oWYYAAQJzLNDXmzRcH9OTkpOTxyWnJRcmlyY7JXXThsOS45JDkvsnCgECBAgQ\nmLaA9mjaouojQIAAgU0JPDxLfz6py+1Gc02mVQeqbtjQdfEbpI0L+w3Sxu0sSYDA/Ahoj2Zz\nLPwGaTbO1kJgqQX6egapOWjvysihSd257sBk96Q6KxcMckWGCgECBAgQ6FpAe9S1sPoJECAw\nI4G+d5CKqe6stn+yV7JPUmeS9k1q3zwoNggKAQIECMxEQHs0E2YrIUCAQLcCfe4g1bZ7UGy3\nnw+1EyBAgMD6Atqj9Y3MQYAAgd4I9PUudgXswXy9+ZjZUAIECCy0gPZooQ+vnSNAYNkE+noG\nqR7Md3zyiOT0MQftK5lWt149NakHxR6bnJlMWmrZu7dYaJfMU7+DUggQIEBguQS0R8t1vO0t\nAQJLINDXDtKkD+Z72gaP5euy3EEtlv1fmefiFvOZhQABAgQWS0B7tFjH094QIECgtwJ1aeCF\nydHr7EF1AM9IXr/OfJt9222+Ny7oNt8bt7MkAQJbL6A9mu0xcJvv2XpbG4GlFOjrGSQP5lvK\nj6udJkCAwNwJaI/m7pDYIAIECCy3gAfzzeb4+8ZuNs7WQoBAfwW0R7M5dtqj2ThbC4GlFujr\nGaTmoHkwXyNhSIAAAQJbKaA92kp96yZAgMAUBfreQWoozs9IpSn3y0h9y3RyM8GQAAECBAjM\nQEB7NANkqyBAgECXAn1+DtJaLo/Mm7+71gzeI0CAAAECMxDQHs0A2SoIECAwTYG+nkE6PAhr\nnR3aJ+/fJjlngFXPSvqtwbgBAQIECBCYloD2aFqS6iFAgMCcCPS1g1TPHKqzX3dLPpJ8IRku\n98qLWyafHEw8bzA0IECAAAEC0xTQHk1TU10ECBAgsCmBXbL0K5PvJKMPgn1Bpp2dzKp4DtLG\npT0HaeN2liRAYD4EtEezOw7uYjc7a2sisLQCff4N0hU5ak9P6mGxz0vemeyXKAQIECBAYJYC\n2qNZalsXAQIEOhbocwepoalbq9Y14Fcl9Zuj6jApBAgQIEBg1gLao1mLWx8BAgQ6EOjrb5BG\nKS7JhMckT0pel9Rld19PFAIECBAgMEsB7dEsta2LAAECHQgswhmkYZbX5EXdoOHjyaeH3zBO\ngAABAgRmKKA9miG2VREgQGCaAotyBmnYpO5od+TwBOMECBAgQGALBLRHW4BulQQIENiswKKd\nQdqsh+UJECBAgAABAgQIEFhiAR2kJT74dp0AAQIECBAgQIAAgZUCOkgrPbwiQIAAAQIECBAg\nQGCJBXSQlvjg23UCBAgQIECAAAECBFYK6CCt9PCKAAECBAgQIECAAIElFtBBWuKDb9cJECBA\ngAABAgQIEFgpoIO00sMrAgQIECBAgAABAgSWWEAHaYkPvl0nQIAAAQIECBAgQGClgA7SSg+v\nCBAgQIAAAQIECBBYYgEdpCU++HadAAECBAgQIECAAIGVAjpIKz28IkCAAAECBAgQIEBgiQV0\nkJb44Nt1AgQIECBAgAABAgRWCuggrfTwigABAgQIECBAgACBJRbQQVrig2/XCRAgQIAAAQIE\nCBBYKaCDtNLDKwIECBAgQIAAAQIEllhAB2mJD75dJ0CAAAECBAgQIEBgpcCOK1/28tXO2eoj\nkv2SfZIbksuSs5NzB68zUAgQIECAQKcC2qNOeVVOgACB2Qj0uYNU2/6C5CnJnqtwfSzTT0jO\nWeV9kwkQIECAwGYFtEebFbQ8AQIE5kigz5fYvTqOJyavSR6U3CXZOzkgqTNKxyQXJ59I7pso\nBAgQIECgCwHtUReq6iRAgACBiQT2yNzXJQ9rsdQpmeflLebbzCyXZ+EjN1PBnC9bHcy6dLEu\nH5l2qY7sRdOuVH0ECBCYkYD2aEbQg9Voj2brbW0EllKgr2eQDs7Rqn+wv7fFUTsj8zywxXxm\nIUCAAAECkwpojyYVMz8BAgTmXKCvHaS6AcMlyVHr+NZ14XWG4nPrzOdtAgQIECCwEQHt0UbU\nLEOAAIE5FujrTRquj+lJycnJ45LTkguTS5Odkrppw2HJcckhyf0ThQABAgQITFtAezRtUfUR\nIECAwKYEHp6lP5/U5XajuSbTqgNVN2zouvgN0saF/QZp43aWJEBgfgS0R7M5Fn6DNBtnayGw\n1AJ9PYPUHLR3ZeTQpO5cd2Cye1KdlQsGuSJDhQABAgQIdC2gPepaWP0ECBCYkUDfO0jFVHdW\n2z/ZK9knqTNJ+ya1bx4UGwSFAAECBGYioD2aCbOVECBAoFuBPneQats9KLbbz4faCRAgQGB9\nAe3R+kbmIECAQG8E+noXuwL2YL7efMxsKAECBBZaQHu00IfXzhEgsGwCfT2DVA/mOz55RHL6\nmIP2lUyrW6+emtSDYo9NzkwmLf8lC9yxxULlWHfPUwgQIEBguQS0R8t1vO0tAQJLINDXDtKk\nD+Z72gaP5TOz3D1aLFudo/rdk0KAAAECyyWgPVqu421vCRBYAoG+dpCGH8z3pjWOU+3fZh4U\ne+QadQ+/VXfO+/LwBOMECBAgsBQC2qOlOMx2kgCBZRLoawfJg/mW6VNqXwkQIDC/Atqj+T02\ntowAAQJLKeDBfLM57B7MNxtnayFAoL8C2qPZHDvt0WycrYXAUgv09QxSc9A8mK+RMCRAgACB\nrRTQHm2lvnUTIEBgigJ97yA1FOdnpKIQIECAAIGtFNAebaW+dRMgQGAKAovSQRqmqDvK1e25\nD0o+nJyTKAQIECBAYNYC2qNZi1sfAQIEpiDQ5w5SPeT2Ocmjk68lL0y+mHw62SepckPy0uR3\n64VCgAABAgQ6ENAedYCqSgIECGyVQNsO0i7ZwO0n2MjvTTDvRmd9WRZ8evKB5H7J25KPJBcm\nz0iqs/Sk5HeSjyVvThQCBAgQ6LeA9qjfx8/WEyBAYGEEvpk9qbMxbXLFDPa6Gsirk18arGvX\nDN+d1PY9YDCtGbw/I9V56rLUc5DaPjOpy+3oqm53DepKVr0ECEwqoD1aW0x7tLbPWu/WcxMv\nWmsG7xEgsBwCbc8g1RmZv0zeMcjFGe6XHJf8aPLc5MqkyrXbBp3+9/DUvkPyD4O11Bmrk5Mf\nS+p3R8PlLXnxq8MTjBMgQIBAbwW0R709dDacAAECiyVwZnbnWWN2qa67/mzyx2Pe63LSHVN5\nnS165NBKbpvxOqM0eingaZn2T0PzdTHqG7uNq/rGbuN2liSwjALao7WPuvZobZ+13tUeraXj\nPQIEVgjskVf1pPC9Vkz9/ov6Nq9+4zPr8vassBqClyfjzoTV2aR3JtWRekzSZdEgbVxXg7Rx\nO0sSWDYB7dH6R1x7tL7RanNoj1aTMZ3AkgnUGaD1Sv2x/UbyI6vMWB2RrXgG0dFZ7x8kdRZp\n3GV9j8/0hybPSt6aKAQIECDQbwHtUb+Pn60nQIDAQgnU74/qd0e/ltTvfw5Ifjx5bXJd8pBk\nq0o9Z2Jcqcvwdh/3RgfTfGO3cVTf2G3czpIEllFAe7T2Udcere2z1rvao7V0vEdgiQTGXZo2\nbvf/WybWWZpXjrxZd3upGzW8b2T6LF9evcrKvrzKdJMJECBAoL8C2qP+HjtbToAAgV4ItO0g\nVeeoGqW6W929kzskX0z+NfluohAgQIAAgVkIaI9moWwdBAgQWGKBNr9BGua5a17cJamO1b8k\n9VohQIAAAQKzFtAezVrc+ggQILAkAm07SLeJR90q+4PJnyfHJrdOzhy83jlDhQABAgQIdC2g\nPepaWP0ECBBYcoG2HaRXxKm+rauO0QsGZt/L8OnJryRHDqYZECBAgACBLgW0R13qqpsAAQIE\ntmvTQap5fjF5avKG5DtJlXq+0ElJ3clOBykICgECBAh0KqA96pRX5QQIECBQAm06SHtlvl2S\nL9UCY0pNv+eY6SYRIECAAIFpCmiPpqmpLgIECBAYK9Cmg/T1LHlpUrfzHi3bZ8IJyedG3/Ca\nAAECBAhMWUB7NGVQ1REgQIDAzQXa3ub7T7Po7yf18NW6tK5u0PDk5AnJoUl1khQCBAgQINC1\ngPaoa2H1EyBAYMkF2naQXhKn3ZLfTG41MLtfhnVm6YnJhwbTDAgQIECAQJcC2qMuddVNgAAB\nAjc+z6gNw/Mz07uTlyX3SPZL6rdHZyeXJwoBAgQIEJiFwPOzEu3RLKStgwABAksq0OYMUj1z\n4jnJFckHkvcnCgECBAgQmLWA9mjW4tZHgACBJRRoc5OGuq33F5K6U13dlEEhQIAAAQJbIaA9\n2gp16yRAgMCSCbQ5g1Q3ZfiLpB4Q+6nkk8mFyXCpS+3+fniCcQIECBAgMGUB7dGUQVVHgAAB\nAjcXaNNBqqV+Pbkyqd8eVUbLaZmggzSq4jUBAgQITFtAezRtUfURIECAwAqBth2kO61YygsC\nBAgQILA1AtqjrXG3VgIECCyNQJvfIC0Nhh0lQIAAAQIECBAgQGC5BVY7g7RXWI5M6tK5b8w5\n0c7ZviOSuvRvn6SuUb8sqd9FnTt4nYFCgAABAj0U0B718KDZZAIECCyiwH2zU9XRqI5HU26X\nkT9M7txM2OJhde5enNTDamtbx+WsTD886brUs6CqQ7mopfk8VGd02uWYVHjRtCtVHwECCyPQ\n/P3RHrU7pNqjdk7j5tIejVMxjcASCkxyiV11kJ6bHDwnTq/OdpyYvCZ5UHKXZO/kgKQa0vpD\nd3HyiaQaWIUAAQIEFkNAe7QYx9FeECBAYC4FVrvEbi43dmij9sj48ckjktOHpjejX8lIXWJ3\nanJKcmxyZqIQIECAAIFpCmiPpqmpLgIECMyBwCRnkOZgc2/ahDqLVZfUvfemKauPnJG3Hrj6\n294hQIAAAQIbFtAebZjOggQIEJhPgb52kOrs0CXJUeuw1hmyutTuc+vM520CBAgQILARAe3R\nRtQsQ4AAgTkW6OsldtfH9KTk5ORxyWnJhUndsGGnZM/ksOS45JDk/olCgAABAgSmLaA9mrao\n+ggQIDCnAs1dg76d7btskG9lWJe11R1ymmnN8LWZthXl4Vnp55PartFck2nVgToi6bq4a9DG\nhesMn7vYbdzPkgQWXUB7NNkR1h5N5jU8t/ZoWMM4gSUWWO0MUl2+9n8ncKk7xW1FeVdWemhS\nd647MNk9qcbhgkGuyFAhQIAAgf4KaI/6e+xsOQECBHopsFoH6T+yN7/ckz2qZ/Psn9TDBPdJ\n6kzSvkntmwfFBkEhQIBAjwW0Rz0+eDadAAECfRRYrYPUh32pbX9B8pSkfnM0rnwsE09Izhn3\npmkECBAgQGAKAtqjKSCqggABAvMi0Ne72JWfB8XOy6fIdhAgQGC5BbRHy3387T0BAgsm0Ncz\nSHvkOByfdP2g2HqG0uEtjvmumeegFvOZhQABAgQWS0B7tFjH094QIEDgxt/p9JFh0gfzPW2D\nO/n7Wa5uALFeeW1m+Mp6M3mfAAECBBZOQHu0cIfUDhEgsOwCfT2DdHYOXPOg2DetcRBr/zbz\noNgPr1H38FuvyYtrhycYJ0CAAIGlENAeLcVhtpMECCyTQF87SB7Mt0yfUvtKgACB+RXQHs3v\nsbFlBAgQWEoBD4qdzWFvHtRYt1SfdvFgvmmLqo8Aga0Q0B7NRl17NBtnayGw1AJ9PYPUHDQP\nim0kDAkQIEBgKwW0R1upb90ECBCYokDfO0i7xOJHkrpd+SeS7yaj5acy4arkg6NveE2AAAEC\nBKYkoD2aEqRqCBAgsNUCfX4OUt1++9PJvyT/X3JeUpdrjZZnZ8Kvj070mgABAgQITElAezQl\nSNUQIEBgHgT62kHaPnh/l1yTPCF5XPKZ5I3J7yQKAQIECBCYhYD2aBbK1kGAAIEZCvT1EruD\nYnRE8tNJPcy1ysnJC5OXJJcmdetthQABAgQIdClwUCrXHnUprG4CBAjMWKCvHaR941S3Vv3I\niNf/yOvbJP87OT85PVEIECBAgEBXAtqjrmTVS4AAgS0S6OsldufFq7b90WPc/num/UNySlI3\ncFAIECBAgEBXAuelYu1RV7rqJUCAwBYI9LWD9LVYvT15ZfLnye2TptSZpfpNUp1dqps33D1R\nCBAgQIBAFwLaoy5U1UmAAIEtFOhrB6nIfiX55+RpySHJcLk6L34uOTWpyx8UAgQIECDQlYD2\nqCtZ9RIgQGALBPr6G6SiuiQ5KrltUs85Gi3fy4RqtOr3SD84+qbXBAgQIEBgSgLaoylBqoYA\nAQLzINDnDlLj981mZJXhWatMN5kAAQIECExTQHs0TU11ESBAYIsE+nyJ3RaRWS0BAgQIECBA\ngAABAosqoIO0qEfWfhEgQIAAAQIECBAgMLGADtLEZBYgQIAAAQIECBAgQGBRBXSQFvXI2i8C\nBAgQIECAAAECBCYW0EGamMwCBAgQIECAAAECBAgsqoAO0qIeWftFgAABAgQIECBAgMDEAjpI\nE5NZgAABAgQIECBAgACBRRXQQVrUI2u/CBAgQIAAAQIECBCYWEAHaWIyCxAgQIAAAQIECBAg\nsKgCOkiLemTtFwECBAgQIECAAAECEwvoIE1MZgECBAgQIECAAAECBBZVQAdpUY+s/SJAgAAB\nAgQIECBAYGKBHSdewgIEpitwaKr7geSC6VZ7U23vytgTb3plhAABAgQIjBfQHo13MZXA0gno\nIC3dIZ+7Ha7O0fbJMzvYsp9NnffooF5VEiBAgMDiCWiPFu+Y2iMCGxLQQdoQm4U6EHh9B3Xe\nIXUe0kG9qiRAgACBxRXQHi3usbVnBFoJ+A1SKyYzESBAgAABAgQIECCwDAKLcAZp5xyoI5L9\nkn2SG5LLkrOTcwevM1AIECBAgECnAtqjTnlVToAAgdkI9LmDVNv+guQpyZ6rcH0s009Izlnl\nfZMJECBAgMBmBbRHmxW0PAECBOZIoM+X2L06jicmr0kelNwl2Ts5IKkzSsckFyefSO6bKAQI\nECBAoAsB7VEXquokQIDAFgn09QzSHvE6PnlEcvoYu69kWl1id2pySnJscmaiECBAgACBaQpo\nj6apqS4CBAjMgUBfzyAdHLv6rdF7WxiekXke2GK+RZmlbpk97SyKjf0gQIDAtAW0R6uLTrst\nqvoUAgQIdC7Q1w5SnR26JDlqHaE6Q1aX2n1unfkW4e3bZCcuT67vIB8dAO0wGBoQIECAwDYB\n7dHNPwnao5ubmEKAQI8E+nqJXXUCTkpOTh6XnJZcmFya7JTsmRyWHJccktw/WfRy6+zgbskv\nJ1+e8s7WpYy/k/T18zJlDtURIEDgJgHt0U0UN41oj26iMEKAQB8F+vwP3j8M+FnJK5NxZ5Ku\nzfT6DdLjk/qGb1nKx7Kj0z5jVp1MhQABAgTGC2iPxrt8PJM/O/6tDU/VHm2YzoIECLQV6HMH\nqfbxXcmhSd257sBk96QuM7tgkCsyVAgQIECAQNcC2qOuhdVPgACBGQn0vYNUTPVgvv2TvZLm\nQbH7Zrz2zYNig6AQIECAwEwEtEczYbYSAgQIdCvQ5w5SbbsHxXb7+VA7AQIECKwvoD1a38gc\nBAgQ6I1AX+9iV8AezNebj5kNJUCAwEILaI8W+vDaOQIElk2gr2eQZvVgvp/LB+KgFh+KW2ae\nXVrMZxYCBAgQWCwB7dFiHU97Q4AAgd7etnnSB/M9bYPH+jFZ7m4tlq2OZt1aXCFAgACB5RLQ\nHi3X8ba3BAgsgUBfzyDVbbubB8W+aY3jVPu3mQfF1jOF2pS6c95X28xoHgIECBBYKAHt0UId\nTjtDgACB/j7404P5fHoJECBAYB4EtEfzcBRsAwECBKYo0NczSEXgwXxT/CCoigABAgQ2LKA9\n2jCdBQkQIDB/An3uIJWmB/PN32fKFhEgQGAZBbRHy3jU7TMBAgsp0PcOUnNQzs9IRSFAgAAB\nAlspoD3aSn3rJkCAwBQE+vwcpCnsvioIECBAgAABAgQIECDwfQEdpO9bGCNAgAABAgQIECBA\nYMkF+nqJ3W45bnee4Nh9M/N+aYL5zUqAAAECBNoIaI/aKJmHAAECPRLoawfpnjH+0ATOp2be\neh6SQoAAAQIEpimgPZqmproIECAwBwJ97SB9OHZPTP4i+efkfyZrlQvXetN7BAgQIEBggwLa\now3CWYwAAQLzKtDXDlJ5vjbZPnlN8qLk/YlCgAABAgRmLaA9mrW49REgQKBDgb7fpOFvYvOe\n5CUdGqmaAAECBAisJ6A9Wk/I+wQIEOiJQJ/PIDXE9duig5Pal2ubiYYECBAgQGDGAtqjGYNb\nHQECBLoQWIQOUt2h7pNd4KiTAAECBAhMIKA9mgDLrAQIEJhXgb5fYjevrraLAAECBAgQIECA\nAIEeCugg9fCg2WQCBAgQIECAAAECBLoR0EHqxlWtBAgQIECAAAECBAj0UEAHqYcHzSYTIECA\nAAECBAgQINCNgA5SN65qJUCAAAECBAgQIECghwI6SD08aDaZAAECBAgQIECAAIFuBHSQunFV\nKwECBAgQIECAAAECPRTQQerhQbPJBAgQIECAAAECBAh0I6CD1I2rWgkQIECAAAECBAgQ6KGA\nDlIPD5pNJkCAAAECBAgQIECgGwEdpG5c1UqAAAECBAgQIECAQA8FdJB6eNBsMgECBAgQIECA\nAAEC3QjoIHXjqlYCBAgQIECAAAECBHoooIPUw4NmkwkQIECAAAECBAgQ6EZAB6kbV7USIECA\nAAECBAgQINBDAR2kHh40m0yAAAECBAgQIECAQDcCOkjduKqVAAECBAgQIECAAIEeCugg9fCg\n2WQCBAgQIECAAAECBLoR0EHqxlWtBAgQIECAAAECBAj0UEAHqYcHzSYTIECAAAECBAgQINCN\ngA5SN65qJUCAAAECBAgQIECghwI6SD08aDaZAAECBAgQIECAAIFuBHbsplq1EpgLgQOyFXdK\nXt/R1vxj6n1DR3WrlgABAgQWR0B7tDjH0p4sgYAO0hIc5CXexeoc7Z58qwODn0idOyQ6SB3g\nqpIAAQILJqA9WrADancWW0AHabGPr73bbrurgvCrHUC8KnX+YAf1qpIAAQIEFlNAe7SYx9Ve\nLaCA3yAt4EG1SwQIECBAgAABAgQIbExgEc4g7ZxdPyLZL9knuSG5LDk7OXfwOoO5KXWa/Qc6\n2Jou6uxgM1VJgACBhRXQHm07tNqjhf2I2zECyyHQ5w5SbfsLkqcke65yuD6W6Sck56zy/lZM\n/res9DYdrvj2qftzHdav6m0Ch2Zw7+RfOgCpf2S9L/loB3XXFwhV97c7qFuVBJZVQHs0/shX\ne/TZ8W+ZOkUB7dEUMVVFoAT63EF6dbb/55O/SN6RXJR8I7lVUh2mw5InJJ9IfjI5M5mHslM2\n4tHJe6a8MXdPfWclVb/SvcC+WcUtk9M7WNXvpM57JZd3UPceqfNNyYc6qPva1Pl3SRfbfXzq\nrW3votQZ59ruaZfa3uOSHaZd8aC+T2dYnV1l6wW0RyuPgfZopUfXr7RHNxfWHq000R6t9Fj3\n1fbrzjGfM9SBrs7QI5L1/oF6Sua5IPmNZNJSHY4fbrFQ/Zbr6Un9cH+98p3MsEtS3+RPu9Q/\nxK6bdqWprz4ntY99q7u2uba9i+2uuqtcv20w1f92WXdX/1hvALqwrrptdyP8/WGdIb/P918a\n2yIB7dF4eO3RShft0UqPeuXv+s1Nakof29GFa4/6egbp4HyAqoPx3vokrVPOyPtPW2ee1d5+\nQt6o3zatV+6QGd6w3kyD9x+QYVd3PyuX/2y5HZPOdlAWOG/ShVrMX38g90/ObzHvpLPUpWq3\nS7426YIt5q/bh9f/P9VRn3bZKxVemVRnetqlPs+1zVdNu+LUd2BSx7GLTmOXn+2u6q5/ENXf\nhi8nXZTzuqhUnRMLaI/Gk3X1/1Wt7aDkvGTaRXt0c1Ht0c1Nuvxsd1W39ujmx3Ehp9SBvjA5\nep29q3/AVgfp9evM520CBAgQILARAe3RRtQsQ4AAgTkWqG9L+ljq7NGuySuSugSuxuub8frt\nUfW+6/cbj0rqkrcjkick9RslhQABAgQITFNAezRNTXURIECAwKYFHp4aPp9UAzWaazLt5KQ6\nSAoBAgQIEOhSQHvUpa66CRAgMEOB7We4ri5XdUAqPzCp34XUHbTqpgyVKxKFAAECBAjMSkB7\nNCtp6yFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAjMRWJRL7GaCNaWVPCj11C2c\nF7n8QHaublHdxa2k58WtbgxSd0n89rxsUAfbUTdxqRufXNxB3fNUZV2aW3e7VAgsm4D2aDGO\nuPZoMY5j7YX2aE6OpQ7S7A9EPQCsbgurECAwHwJ1g5dqlLp47tR87KGtIDBeQHs03sVUAlsl\noD3aKvmR9fb1QbEju9Grl3V3vXp+03t6tdWTbez7M/s7k/852WK9mvvl2dq9kuN6tdWTbezx\nmf1Zyd0nW6xXc9ddLj+a+NKiV4fNxk5JQHs0JcgtrkZ7tMUHYEqr1x5NCXIa1eggTUNx8jqq\nUVrky+zqG5BrF3wf65vX6xd8H+sY1rFc5M/q1dk/hcAyC2iP+n/0tUf9P4a1B9qjOTqOvjWd\no4NhUwgQIECAAAECBAgQ2FoBHaSt9bd2AgQIECBAgAABAgTmSEAHaY4Ohk0hQIAAAQIECBAg\nQGBrBXSQttbf2gkQIECAAAECBAgQmCMBHaQ5Ohg2hQABAgQIECBAgACBrRXQQdpaf2snQIAA\nAQIECBAgQGCOBHSQ5uhg2BQCBAgQIECAAAECBLZWwHOQZu9/flZ5yexXO9M1fi1ru3Cma5z9\nymof69kTi1wuys5dsMg7mH27LKljedWC76fdIzBOQHs0TqV/07RH/Ttm47ZYezROxTQCBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwKYF7pMaTko+n/xTcmTS\np/KP2dh3jcn2QzvRZh/3zvzPST6enJU8P9kh2apyy6z43cnvjdmA2rdfTmrfz03+LjkgGS1t\n9rvNPKP1TvP1M1JZeY8rfT62t80O/c/k35IvJ+9NHpGMljb+bT6bbeYZXbfXBOZNoM3/D/O2\nzcPb0+e/WcP7MTquPdrW3vb13xrao9FPtNcE1hG4Y97/dvKG5JjkNcm1yVFJH8rB2cgbkvcn\nbxpJ00Fqu49nZPnPJo9PfjMpl79NtqJUY/TXSe3bC8dswFMy7cqkOnTHJdWp+1JS/0huSpv9\nbjNPU18Xw/qc1eftc2Mq7/Ox3TH789Hk0uTlyQnJe5I6nscmTWnr3+az2WaeZr2GBOZRoO3/\nD/O47bVNff6btZap9qjfx1Z7tNan23sEVhF4W6Z/cuS9N+f12SPT5vXlY7Jh9Y/O/dbYwDb7\n+PhBPYcO1fMLg2l3GZo2i9Efzkr+LflOck0y2kHaN9O+lVTnqCl7ZOTy5LnNhAzb7HebeYaq\nnNrobVNT0wH8ZsbHdZD6fGwflX2qz2V9rppSHfb/l/x7MyHDNv5tPptt5hlarVECcynQ5v+H\nudzwwUb1+W/Waq7ao20yfT622qPVPt2mE1hF4DaZfl3yWyPvH5XX9Y+7u49Mn8eXf5iNumCN\nDWu7j+9IHWeO1HOrvL48ef7I9K5ffj4r+EhyWFKdh9EO0hMyrY7PgclwOTkvPjOY0Ga/28wz\nXP80x1+Uyr6e/FLyV8m4DlKfj+1PZZ9ek+yWDJdX50V9pqq09W/z2Wwzz7a1+i+B+RRo+//D\nfG79tq3q89+s1Vy1R/0/ttqj1T7dPZ1+i55ud582+67Z2HL+wshG/8fg9QEj0+fx5b2yUecl\nv5Z8IPnnpDp8OyRV2u7jPTLvqMNVmfaVZNYOx2Wd90/GdRoy+caOa51Zqkvqhkttf7Otbfa7\nzTzD9U9zvDpzByU1XK30+di+Nzv1pKTOAjZlp4zUt5DNGdu2/m0+m23mabbDkMA8CrT9/2Ee\nt73Zpj7/zWr2YXSoPdom0udjqz0a/VT3/LUOUvcH8LaDVVwysqpvDF7XpVzzXuqPVnUmHpy8\nL6lvIeuH8ackVdruY8136Y1LrPzPZXk5a4czV27CzV6ttq113Gr/b5202e8289xs5VOa8OnU\n87116rpX3l+kY/ui7M+eSXNpZFv/mm+9z2abeVKNQmBuBdr+/zC3O5ANu1eySH+zylp7VAqL\nd2y1R9uOay//u2Mvt7pfG12XaVWpsxHDpXm96/DEORyv33T8WXJ+8sbB9v1hhq9Ifj15aNJ2\nH2u+q5PRUhbz6LDattb21/a22e8281R9W1EW6djWvlRj9Mzkd5IPJlXa+rf5bLaZZ9ta/ZfA\nfAq0/f9hPrd+u+0W6W/WpMbao+n+PZ/Uf5L5tUeTaM3pvM4gdX9gvjZYxe1GVlXfclf59rbB\n3P63GtQ/SZrOUbOhrxuM3C/Dtvt4QeZt9nuw+I2DmjZvDmtta210bW+b/W4zT9W3FWVRjm3d\n/envkmcl1Wl/adKUtv5rHe/ms9lmnma9hgTmUaDt/w/zuO21TYvyN2tS37X+9lRd2qNtovPw\nt1p7NOmne07n10Hq/sDUH7Yq+20b3PTf5pKyL940ZT5Hdslm3TNpLs1otrIuNWtK232s+Zr9\nbpat4T7JvDnUtu42SAY3lTqO9d5Vg2G9sdaxbWtT9cy6LMKx3Tlob03qd0dHJ69Mhktb/5pv\nvc9mm3mG122cwLwJtP3/Yd62u9meRfib1ezLJMM6btqj798saq02t1y36m+19miST7V5CUTg\n40n9I264vCwv6jcP9T/UPJe6JXd9a1eX1A2Xuoyppv/0YGKbfaxl6jcx9RuepjwgI1XPI5sJ\nWzD8Ztb5wpH1HpLX1yW/NDS9TpvXpYavG5rWZr/bzDNUZSejf5VaPzdS8yIc23/KPlVn/T4j\n+zb8so1/m89mm3mG12ucwDwKtPn/YR63u7ZpEf5mrWerPVopVH93+/JvDe3RymPnFYF1BY7N\nHNcmJyZ1JuaxSXUUjk/6UM7IRn43eUJS39z8RnJR8v6kKW32sfa9br/8pmT/5G7Jp5K3J1tZ\nxjVItT1vSb6c1GWEeyV1dqJuKFEGTWmz323maerrajiug1Tr6vOx/eVsfzWcb0ieOibNGfI2\n/m0+m23myWYoBOZaoM3/D/O8A33+m9XGVXvUz39raI/afLrNQ2CMwLMz7cqk/kH3leRFSV9K\ndQ5OSWrbK1cl9ZuPupPbcGmzjz+eBb6UVD3VSaxOyB2SrSyrNUh7ZqPemVyf1PaelfxsMlra\n7HebeUbrnebr1TpIfT627w9QHZfVstMQYBv/Np/NNvMMrdYogbkUaPP/w1xueDaqz3+z2phq\nj77/N/2qgPXl3xraozafbvMQWEXglpl+56Qu1epj2S0bfZdk+B+eo/vRdh/vmAVHO1ijdc3L\n6z2yIXXGa63SZr/bzLPWOrp8bxmObVv/Np/NNvN0ebzUTWCzAm3/f9jserpafhn+Zo2z0x5t\nU2n7+Z3Xv9XT3P553cdxn1/TCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgVUFdl31HW8QIECAAIHZCWiPZmdtTQQIEOhU4Mmp\n/Usj+URe/23ykKSrclYqft4GK39wlnt1cm5yQ/LN5O+TOyVdlAek0h/somJ1EiBAgMBNAtqj\nmyhWHdEerUrjjWkK7DjNytRFoIcCu2eb75j8efKtZIekOgP3T45NfiF5SzLtcvtUeLsNVPqz\nWebNyWeSU5KzkwcnRyc/mtwruSKZVnlwKnpfclhycaIQIECAQDcC2qO1XR+ct7VHaxt5lwAB\nAlMReGZqqbMwB47Udqu8/lzygZHp03r51VT0sgkre2DmvzJ565jl7ptp1yV/Mua9zUx6VBYu\nn0M3U4llCRAgQGBdAe3R2kTao7V9vDtFgVtMsS5VEVgkgauyM3WWZp+Rnar/Z56U1Fml9yd/\nlhycDJc28wzPX+P3SP4qeVy9WKWckOl1luuJY94/M9OendTZozoL1pT7ZOS1yT8nf5ccmQyX\nvfPij5P6Vu4dyR8lt02q1KUMv3bj2Lbpxw/GDQgQIEBBkzk0AABAAElEQVRgdgLaI+3R7D5t\n1nSjQP1DTiFA4OYCP5lJD0n+fuStU/P6VUmdATo9qU5EXeb240lT2szTzFvDuyXvTe6YVMdr\ntXL/vPHh5LJVZnhppj83qTNJVY5NPprsl7wt2X4wfGGGVaoj9Z7kqKTqrf14fPLxpN6rs1XV\nIavyjeTyG8f8hwABAgRmKaA90h7N8vNmXQQIENiuuaTha7E4P/lK8r2kLit7XTJcHpsXNb06\nFE25ZUb+I/l0Uh2QNvNkths7WHWJ3V2SC5PqwNRlfauVPfNGrfuPVpthZHr9vqk6NX8/Mv1/\n5fW1yT2TOmtVdT4sacqDMvLu5JDBhEdlWPMcOnhtQIAAAQLdCGiPtEfdfLLUSoAAgQkFmgap\nLpV7wSB1hqguObsmeXHSlP+dkfOaF0PD6uhUJ6LOALWZpxb9avL25IKkztzcMlmrNB2kuhyu\nTamzX7VNdYndcKkzXjW99vvWSXUG/z05MRm9VDCTttNBKgWFAAEC3Qtoj7RH3X/KrIEAAQIt\nBJoG6cAx8/5BplVnos62VKnL0T5QIyPlZ/K65qvLINrMU4tXB6mWqbNP1yXDl+jl5djyn5la\nnarVyq55o+loPTXjVf/eIzPXZbV12Vx1CKv8RFJnv2reSnWWnpw0RQepkTAkQIBAtwLaI+1R\nt58wtbcW8Buk1lRmXEKB+i1Rlf+6bXDjJWt16dpo2WUw4YsZfiNZb55m+bqU7e5JnUF6bdLU\nk9GxpZ7PVLfx3mnsu9tt94pM/2byQ0ltR5Xbbhus+G+tp7a1ygeTutSulvn1pH7f9OrklxOF\nAAECBOZDQHs0H8fBViyJgA7Skhxou7khgbopQpXPbxtsd06G9ZuhAwavm8FPZ+TipM4KtZmn\nWa7O1tSNEE5I7pS8KFmr/GXerBsu1GV8o6Vu9PArSW3ruUltR5XatuHy4Lyos0yfTH4sOT05\nKKnlXpn8VPKd5H5Jleu3Dbbzt2IAYUCAAIEtENAeaY+24GNnlQQILKvAM7PjdWnZs5O6LK1S\nt7Y+KalbZn8qac7s1NmY6gh9ODk8qTNF/y25JnlWUqXNPDVfdabqt0tNeUlG6lK7n2wmrDL8\n7Uyv7a1vEx+X1Px/mlyQXJ78cNKUkzNSZ5J+Ltk9eWDyH8m/JDsnt0q+lLwjqc7S/slvJVX/\n0UmVByX1+veT2meFAAECBLoR0B5pj7r5ZKmVAAECEwo0DVJ1AprUGZQ6C1O/06kzNsOlLkc7\nM2nmPS/j1akYLm3mGe0gVYel1llncuq3RGuVuhSuzvzUdjbb8b6MD3eO8nK73ZK/TK5Oar5v\nJ6ckt0ma8tCMnJHUmayapy6x+42kKdU5/Oek3qt1KAQIECDQjYD2SHvUzSdLrQQIEJiRQJ0p\nuuM662ozzzpVrPl2XSp3WHLrNefadkld3bZ7xzXmq47QQWu8X2eg6oyTQoAAAQLzJdCmrWkz\nz2b2Snu0GT3LEiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgTWEth+rTe9R2ABBO6cfThwzH5c\nn2lXJl9LvjTm/R0z7YGD6Rdl+Jkx8yzapFtkh45MdkjOSr6arFYmmXe1OkwnQIDAMgloj9of\n7bZtzD6p8oeSmv/cpNp0hQABAgTWEXhp3r9hnXws799/pJ7bDS3zxpH3FvXl84b2+Zh1dnKS\nedepytsECBBYCgHtUfvDvF4bs3+qOjW5Phlu40/L6zsmCgECBAisIdCmQao/rpclhwzVs2wd\npIdk369LmoZmrQ7SJPMOkRolQIDAUgtoj9od/vXamJ1SzZlJ016NdpLOznu3arcqcxEYL1Cn\nJBUCyyJwYna0vlk6MDk4+fHkPUmV2ya/eOPYtv9cnsFPD/LCoemLNrpbduiPknck6/09mGTe\nRXOyPwQIEJimgPbo5ppt25hHZtH7DBZ/d4aHJvUFZ9OeH57xn0sUAhsWqN9ZKASWReDS7Oj5\nQzt7XsafnTx0MK2uD29K/T5vj8GLbzcTM7x3UvNdm/xDcvukvu2qP871O6W3J99LhsuuefHo\n5E5JNQD1m6YPJXVp33rlyMxQ11evV96aGf5zvZnGvP+JTGvqL58fGDNPM2mSeZtlDAkQIEDg\n5gLao5ubtG1j7ju06J9k/D8Gr1+eYdOeH57x1w+mGxAgQIDAiMDwJQ3jLhv71czfnKZ/3NCy\nq11id9Jg/uo0VeflO4PXTR3VSapro5vygIxcmDTvDw+rrvXKmzLD8DKrjdc3ahspl2Sh6jQe\nmzw5aeofZzXJvKlKIUCAAIEhAe3REMaY0UnamLrM7sBkh6F6Tsh404bVGTqFwIYFnEHaMJ0F\neyjwpGzzg5M6O1R/VOuMTp39qXJ6UmeE2pZbZ8aav651/nhSHZTqGN0t+c3kt5IqJyd1l526\nU96pSf3W6WeT+yVPS/4peVuyVaUa7Fcl303KZ60yybxr1eM9AgQILLuA9ujmn4BJ2pirs3i1\nq02pNv2JgxfVSfqX5g1DAgQIELi5QP3Bbb5RWm34jcxz8Mii651BqrrqsramHJGRpv7mOuh9\nh6b9ZcbrD3iV6ly9LHlqco9krbJr3rxti0zjy45qsJt9GHcGaXg7J5l3eDnjBAgQWFYB7VH7\nIz9JG1Nfev5V0rRfr22/GnMSGC8wjX9Uja/ZVALzJ/CFbFJd911/TOv0fHWC6qYNNfxU8vTk\n/yRtyyuHZqzl6yxMdX6a3/F8PePfTKqD85TkMcn7kupAVUPZ5nkNt8l8uyXrlfo2rX4XpRAg\nQIDA/Atoj6ZzjG6Rav46ecKgunMz/O3BuAEBAgQIrCIw/I3duLMi98lyddlbffNUw1smVarT\n1HwbNfwcpJOGpo+e/akOUS1zTtKUx2akOi5NXc2wbkv61uQOyVrlTXmzWWatYV3it9kyyTd2\nk8y72e2yPAECBBZBQHvU/ii2aWOqc1RfajZt4+czXjdOUghsWqA+XAqBZRY4Kzv/7gFAnel5\nyAQYV43MW52e0VK/OzokeXHyb0n9Ia9SZ7GOSup9hQABAgQIaI/afwaqDX1t8vjBIv8vwwcn\nXx28NiCwKYEdN7W0hQkshsDdh3ZjtNMz9NbNRpvOzs3eGJqwf8YPTurM03OSuvzuZ5L6JnG/\npG7WsHsyfCvxvLypvCpj77jp1eojdYmfQoAAAQL9FtAetTt+v5vZhjtHD8rri9stai4C6wvo\nIK1vZI7FEXhodqUunatSZ093SX4+aRqk72X8zGRa5edS0ZsHlZ2eYZ0xqt9A1WVzz0yqg1Qd\no7pV+Grl/au9YToBAgQI9FZAe7TxQ3doFn3B0OKfy3hz59hm8ocz8o/NC0MCkwroIE0qZv4+\nC9RzfirjSp0NOj65YtybG5xWf5zrVqM/mTwsqbvlfTa5W3KrpMqfJOMuzbvxTf8hQIAAgYUU\n0B5t/LD+YhZt7gpbtdSXj6PlzzNBB2lUxevWAn6D1JrKjAsmUDdOqM7Q15PXJw9P6szONMt1\nqawup3tFcnlSZ6zunVTn6KLkGckLE4UAAQIElldAezTZsa8OkkKgU4H6kZtCgED3ArfMKuqO\ndXsmFyQXJnXWSiFAgAABArMU0B7NUtu6CBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAge4Ftu9+FZ2vYees4Yhkv2Sf5IbksuTs5NzB6wwUAgQIECDQqYD2qFNe\nlRMgQIDAegI7ZoYXJ5cm1Skal7My/fBEIUCAAAECXQloj7qSVS8BAgQITCTwN5n7W8kfJw9M\nDkt+MLlDcs/ksck7kquT+yYKAQIECBDoQkB71IWqOgkQIEBgIoE9Mvd1ycNaLHVK5nl5i/nM\nQoAAAQIEJhXQHk0qZn4CBAgQ6ETgXqn12qQua1ivPDkz/Ot6M3mfAAECBAhsQEB7tAE0ixAg\nQIDA9AVukSovTI5ep+rqQJ2RvH6d+bxNgAABAgQ2IqA92oiaZQgQIDDHAjvM8battWl1Q4Zd\nk1ckPzwYr7vY7ZkcnNQ3eo9KXpXUHe6ekFyUKAQIECBAYJoC2qNpaqqLAAECBDYt8PDU8Plk\n3B3srsn0k5PqICkECBAgQKBLAe1Rl7rqJkCAwAwFFuE5SMV1QHJgsntyeXLBIFdkqBAgQIAA\ngVkJaI9mJW09BAgQ6EigzU0OOlr11KqtB/Ptn+yVNA+K3TfjtW8eFBsEhQABAgRmIqA9mgmz\nlRAgQIDAagLVAfKg2NV0TCdAgACBWQloj2YlbT0ECBAgsKaAB/OtyeNNAgQIEJiRgPZoRtBW\nQ4AAgVkI9PU3SPVgvm8kj0hOXweqHhRbv0n6jXXmG/f2vTPx9uPeGJlWv3+qBtJvnkZgvCRA\ngMCCC2iPFvwA2z0CBAj0RWBWD+b7YEDqpg/r5frMc2Jf8GwnAQIECExNQHs0NUoVESBAgMBm\nBObtwXzVgTpyMztkWQIECBDopYD2qJeHzUYTIEBgdYH6YWkfS52xOSmp5xw9LjktuTC5NNkp\nqQfGHpYclxyS3D9RNidw1yxetl2US1LpV7uoWJ0ECBDoWEB71DHwmOq1R2NQTCJAgEAjMC8P\n5lv0M0h1Ccm4h/FOa9qXmwNqSIAAgZ4KaI9mc+C0R7NxthYCSy3Q1zNIzUF7V0YOTTyYrxHp\nZnirQbX7ZXjllFfxmNT3kinXqToCBAjMWkB7NBtx7dFsnK2FwFIL9L2D1By88zNSUboV+Gaq\nn3YH6bvdbrLaCRAgMFMB7dFsuLVHs3G2FgJLKdDnDlL9MLau/R4uu+bF0Un9/uiipL7ROzdR\nCBAgQIBAVwLao65k1UuAAAECrQVukznr9y+/MLREdYq+OJje/Dbmmrx+9tA8XY0u+m+Q7jtw\n3bkDwGNSZ3VmFQIECPRRQHs026OmPZqtt7URWEqB+tZrUcrfZkfqDNIzkvqtzE8kf528KHl0\nohAgQIAAgVkIaI9moWwdBAgQ6Eigz5fYDZPsmxf3SX4v+bPBGxdm+KHk8KRuBf6PiUKAAAEC\nBLoU0B51qatuAgQIzEBgUc4g1SV19Xukt4wxe2Om1TMTFAIECBAg0LWA9qhrYfUTIECgY4G+\nd5AOjs+tk/oNyweTeyaj5WGZ4A53oypeEyBAgMA0BbRH09RUFwECBAhMLLBblrg6qW/qrks+\nk9Td6qqjtE9S5UeS05Oa57FJl8VNGjau6yYNG7ezJAECWy+gPZrtMXCThtl6WxuBpRTo62+Q\nvpOjVY3S3ZN6qva9B8PqHDV3Wjsq4z+VPC85NVEIECBAgMC0BbRH0xZVHwECBAhMVWD7odoO\nyPjthl53OeoM0sZ1nUHauJ0lCRCYXwHtUTfHxhmkblzVSoDAkEBfzyAN7cKK0bqcril+d9RI\nGBIgQIDArAW0R7MWtz4CBAhMSaDvN2mYEoNqCBAgQIAAAQIECBAgsN12Okg+BQQIECBAgAAB\nAgQIEBgI6CD5KBAgQIAAAQIECBAgQGAgoIPko0CAAAECBAgQIECAAIGBgA6SjwIBAgQIECBA\ngAABAgQGAjpIPgoECBAgQIAAAQIECBAYCOgg+SgQIECAAAECBAgQIEBgIKCD5KNAgAABAgQI\nECBAgACBgYAOko8CAQIECBAgQIAAAQIEBgI6SD4KBAgQIECAAAECBAgQGAjoIPkoECBAgAAB\nAgQIECBAYCCgg+SjQIAAAQIECBAgQIAAgYGADpKPAgECBAgQIECAAAECBAYCOkg+CgQIECBA\ngAABAgQIEBgI6CD5KBAgQIAAAQIECBAgQGAgoIPko0CAAAECBAgQIECAAIGBwI4LILFz9uGI\nZL9kn+SG5LLk7OTcwesMFAIECBAg0KmA9qhTXpUTIEBgNgJ97iDVtr8geUqy5ypcH8v0E5Jz\nVnnfZAIECBAgsFkB7dFmBS1PgACBORLo8yV2r47jiclrkgcld0n2Tg5I6ozSMcnFySeS+yYK\nAQIECBDoQkB71IWqOgkQIEBgIoE9Mvd1ycNaLHVK5nl5i/k2M8vlWfjIzVQw58tWB7MuXazL\nR6ZdqiN70bQrVR8BAgRmJKA9mhH0YDXao9l6WxuBpRTo6xmkg3O06h/s721x1M7IPA9sMZ9Z\nCBAgQIDApALao0nFzE+AAIE5F+hrB6luwHBJctQ6vnVdeJ2h+Nw683mbAAECBAhsREB7tBE1\nyxAgQGCOBfp6k4brY3pScnLyuOS05MLk0mSnpG7acFhyXHJIcv9EIUCAAAEC0xbQHk1bVH0E\nCBAgsCmBh2fpzyd1ud1orsm06kDVDRu6Ln6DtHFhv0HauJ0lCRCYHwHt0WyOhd8gzcbZWggs\ntUBfzyA1B+1dGTk0qTvXHZjsnlRn5YJBrshQIUCAAAECXQtoj7oWVj8BAgRmJND3DlIx1Z3V\n9k/2SvZJ6kzSvkntmwfFBkEhQIAAgZkIaI9mwmwlBAgQ6Fagzx2k2nYPiu3286F2AgQIEFhf\nQHu0vpE5CBAg0BuBvt7FroA9mK83HzMbSoAAgYUW0B4t9OG1cwQILJtAX88g1YP5jk8ekZw+\n5qB9JdPq1qunJvWg2GOTM5NJSy179xYL7ZJ56ndQCgECBAgsl4D2aLmOt70lQGAJBPraQZr0\nwXxP2+CxfF2WO6jFsv8r81zcYj6zECBAgMBiCWiPFut42hsCBAj0VqAuDbwwOXqdPagO4BnJ\n69eZb7Nvu833xgXd5nvjdpYkQGDrBbRHsz0GbvM9W29rI7CUAn09g+TBfEv5cbXTBAgQmDsB\n7dHcHRIbRIAAgeUW8GC+2Rx/39jNxtlaCBDor4D2aDbHTns0G2drIbDUAn09g9QcNA/mayQM\nCRAgQGArBbRHW6lv3QQIEJiiQN87SA3F+RmpNOV+GalvmU5uJhgSIECAAIEZCGiPZoBsFQQI\nEOhSoM/PQVrL5ZF583fXmsF7BAgQIEBgBgLaoxkgWwUBAgSmKdDXM0iHB2Gts0P75P3bJOcM\nsOpZSb81GDcgQIAAAQLTEtAeTUtSPQQIEJgTgb52kOqZQ3X2627JR5IvJMPlXnlxy+STg4nn\nDYYGBAgQIEBgmgLao2lqqosAAQIENiWwS5Z+ZfKdZPRBsC/ItLOTWRXPQdq4tOcgbdzOkgQI\nzIeA9mh2x8Fd7GZnbU0Ellagz79BuiJH7elJPSz2eck7k/0ShQABAgQIzFJAezRLbesiQIBA\nxwJ97iA1NHVr1boG/KqkfnNUHSaFAAECBAjMWkB7NGtx6yNAgEAHAn39DdIoxSWZ8JjkScnr\nkrrs7uuJQoAAAQIEZimgPZqltnURIECgA4FFOIM0zPKavKgbNHw8+fTwG8YJECBAgMAMBbRH\nM8S2KgIECExTYFHOIA2b1B3tjhyeYJwAAQIECGyBgPZoC9CtkgABApsVWLQzSJv1sDwBAgQI\nECBAgAABAkssoIO0xAffrhMgQIAAAQIECBAgsFJAB2mlh1cECBAgQIAAAQIECCyxgA7SEh98\nu06AAAECBAgQIECAwEoBHaSVHl4RIECAAAECBAgQILDEAjpIS3zw7ToBAgQIECBAgAABAisF\ndJBWenhFgAABAgQIECBAgMASC+ggLfHBt+sECBAgQIAAAQIECKwU0EFa6eEVAQIECBAgQIAA\nAQJLLKCDtMQH364TIECAAAECBAgQILBSQAdppYdXBAgQIECAAAECBAgssYAO0hIffLtOgAAB\nAgQIECBAgMBKAR2klR5eESBAgAABAgQIECCwxAI6SEt88O06AQIECBAgQIAAAQIrBXSQVnp4\nRYAAAQIECBAgQIDAEgvoIC3xwbfrBAgQIECAAAECBAisFNhx5ctevto5W31Esl+yT3JDclly\ndnLu4HUGCgECBAgQ6FRAe9Qpr8oJECAwG4E+d5Bq21+QPCXZcxWuj2X6Cck5q7xvMgECBAgQ\n2KyA9mizgpYnQIDAHAn0+RK7V8fxxOQ1yYOSuyR7JwckdUbpmOTi5BPJfROFAAECBAh0IaA9\n6kJVnQQIECAwkcAemfu65GEtljol87y8xXybmeXyLHzkZiqY82Wrg1mXLtblI9Mu1ZG9aNqV\nqo8AAQIzEtAezQh6sBrt0Wy9rY3AUgr09QzSwTla9Q/297Y4amdknge2mM8sBAgQIEBgUgHt\n0aRi5idAgMCcC/S1g1Q3YLgkOWod37ouvM5QfG6d+bxNgAABAgQ2IqA92oiaZQgQIDDHAn29\nScP1MT0pOTl5XHJacmFyabJTUjdtOCw5LjkkuX+iECBAgACBaQtoj6Ytqj4CBAgQ2JTAw7P0\n55O63G4012RadaDqhg1dF79B2riw3yBt3M6SBAjMj4D2aDbHwm+QZuNsLQSWWqCvZ5Cag/au\njBya1J3rDkx2T6qzcsEgV2SoECBAgACBrgW0R10Lq58AAQIzEuh7B6mY6s5q+yd7JfskdSZp\n36T2zYNig6AQIECAwEwEtEczYbYSAgQIdCvQ5w5SbbsHxXb7+VA7AQIECKwvoD1a38gcBAgQ\n6I1AX+9iV8AezNebj5kNJUCAwEILaI8W+vDaOQIElk2gr2eQ6sF8xyePSE4fc9C+kml169VT\nk3pQ7LHJmcmk5b9kgTu2WKgc6+55CgECBAgsl4D2aLmOt70lQGAJBPraQZr0wXxP2+CxfGaW\nu0eLZatzVL97UggQIEBguQS0R8t1vO0tAQJLINDXDtLwg/netMZxqv3bzINij1yj7uG36s55\nXx6eYJwAAQIElkJAe7QUh9lOEiCwTAJ97SB5MN8yfUrtKwECBOZXQHs0v8fGlhEgQGApBTyY\nbzaH3YP5ZuNsLQQI9FdAezSbY6c9mo2ztRBYaoG+nkFqDpoH8zUShgQIECCwlQLao63Ut24C\nBAhMUaDvHaSG4vyMVBQCBAgQILCVAtqjrdS3bgIECExBYFE6SMMUdUe5uj33QcmHk3MShQAB\nAgQIzFpAezRrcesjQIDAFAT63EGqh9w+J3l08rXkhckXk08n+yRVbkhemvxuvVAIECBAgEAH\nAtqjDlBVSYAAga0SaNtB2iUbuP0EG/m9Cebd6Kwvy4JPTz6Q3C95W/KR5MLkGUl1lp6U/E7y\nseTNiUKAAAEC/RbQHvX7+Nl6AgQILIzAN7MndTamTa6YwV5XA3l18kuDde2a4buT2r4HDKY1\ng/dnpDpPXZZ6DlLbZyZ1uR1d1e2uQV3JqpcAgUkFtEdri2mP1vZZ6916buJFa83gPQIElkOg\n7RmkOiPzl8k7Brk4w/2S45IfTZ6bXJlUuXbboNP/Hp7ad0j+YbCWOmN1cvJjSf3uaLi8JS9+\ndXiCcQIECBDorYD2qLeHzoYTIEBgsQTOzO48a8wu1XXXn03+eMx7XU66Yyqvs0WPHFrJbTNe\nZ5RGLwU8LdP+aWi+LkZ9Y7dxVd/YbdzOkgSWUUB7tPZR1x6t7bPWu9qjtXS8R4DACoE98qqe\nFL7Xiqnff1Hf5tVvfGZd3p4VVkPw8mTcmbA6m/TOpDpSj0m6LBqkjetqkDZuZ0kCyyagPVr/\niGuP1jdabQ7t0WoyphNYMoE6A7ReqT+230h+ZJUZqyOyFc8gOjrr/YOkziKNu6zv8Zn+0ORZ\nyVsThQABAgT6LaA96vfxs/UECBBYKIH6/VH97ujXkvr9zwHJjyevTa5LHpJsVannTIwrdRne\n7uPe6GCab+w2juobu43bWZLAMgpoj9Y+6tqjtX3Weld7tJaO9wgskcC4S9PG7f5/y8Q6S/PK\nkTfrbi91o4b3jUyf5curV1nZl1eZbjIBAgQI9FdAe9TfY2fLCRAg0AuBth2k6hxVo1R3q7t3\ncofki8m/Jt9NFAIECBAgMAsB7dEslK2DAAECSyzQ5jdIwzx3zYu7JNWx+pekXisECBAgQGDW\nAtqjWYtbHwECBJZEoG0H6TbxqFtlfzD58+TY5NbJmYPXO2eoECBAgACBrgW0R10Lq58AAQJL\nLtC2g/SKONW3ddUxesHA7HsZPj35leTIwTQDAgQIECDQpYD2qEtddRMgQIDAdm06SDXPLyZP\nTd6QfCepUs8XOimpO9npIAVBIUCAAIFOBbRHnfKqnAABAgRKoE0Haa/Mt0vypVpgTKnp9xwz\n3SQCBAgQIDBNAe3RNDXVRYAAAQJjBdp0kL6eJS9N6nbeo2X7TDgh+dzoG14TIECAAIEpC2iP\npgyqOgIECBC4uUDb23z/aRb9/aQevlqX1tUNGp6cPCE5NKlOkkKAAAECBLoW0B51Lax+AgQI\nLLlA2w7SS+K0W/Kbya0GZvfLsM4sPTH50GCaAQECBAgQ6FJAe9SlrroJECBA4MbnGbVheH5m\nenfysuQeyX5J/fbo7OTyRCFAgAABArMQeH5Woj2ahbR1ECBAYEkF2pxBqmdOPCe5IvlA8v5E\nIUCAAAECsxbQHs1a3PoIECCwhAJtbtJQt/X+QlJ3qqubMigECBAgQGArBLRHW6FunQQIEFgy\ngTZnkOqmDH+R1ANiP5V8MrkwGS51qd3fD08wToAAAQIEpiygPZoyqOoIECBA4OYCbTpItdSv\nJ1cm9dujymg5LRN0kEZVvCZAgACBaQtoj6Ytqj4CBAgQWCHQtoN0pxVLeUGAAAECBLZGQHu0\nNe7WSoAAgaURaPMbpKXBsKMECBAgQIAAAQIECCy3wGpnkPYKy5FJXTr3jTkn2jnbd0RSl/7t\nk9Q16pcl9buocwevM1AIECBAoIcC2qMeHjSbTIAAgUUUuG92qjoa1fFoyu0y8ofJnZsJWzys\nzt2Lk3pYbW3ruJyV6YcnXZd6FlR1KBe1NJ+H6oxOuxyTCi+adqXqI0BgYQSavz/ao3aHVHvU\nzmncXNqjcSqmEVhCgUkusasO0nOTg+fE6dXZjhOT1yQPSu6S7J0ckFRD+v+3dz/QslX1fcAf\n4Y+C/BP/8Ef5Z6BYMUJta4KJyoqpSWy0xJpkEUCIJKba1Nqa6rJtmlQNsTFtYkxMgrS4QkUD\nJGkSTSSIWDQGUJcGNRWoCQgCFhQEoyJ/7PfHvecxb5h775n75sycM/ez1/q+mTlzZp+9P+fc\nu+9+58xM/aK7Lfl4UgOsQoAAAQLLIWA8Wo79qBcECBDopcBal9j1srEjjdov909Pnp9cPLK8\nuXtT7tQldhcmFyQnJ1cmCgECBAgQmKWA8WiWmuoiQIBADwSmOYPUg+Zub0KdxapL6i7dvmTt\nO5fkqWev/bRnCBAgQIDApgWMR5um80ICBAj0U2CoE6Q6O3R7ctIGrHWGrC61u2aD9TxNgAAB\nAgQ2I2A82oya1xAgQKDHAkO9xO6BmL4tOT85Jfnj5NakPrBhj+SA5Jjk1OSo5IREIUCAAAEC\nsxYwHs1aVH0ECBDoqUDzqUF3pX13rOYrua3L2uoTcpplze25WbaI8gPZ6HVJtWs892ZZTaCO\nS7ouPjVo88J1hs+n2G3ezysJLLuA8Wi6PWw8ms5rdG3j0aiG+wS2sMBaZ5Dq8rX/OYVLfVLc\nIsr7stGjk/rkusOTfZMaHG5ezddzqxAgQIDAcAWMR8Pdd1pOgACBQQqsNUH6XHpz2kB6VN/N\nc0hSXyZ4YFJnkg5Kqm++KDYICgECBAYsYDwa8M7TdAIECAxRYK0J0hD6Um1/Q/KypN5zNKl8\nNAvPTD416UnLCBAgQIDADASMRzNAVAUBAgT6IjDUT7ErP18U25ejSDsIECCwtQWMR1t7/+s9\nAQJLJjDUM0j7ZT+cnnT9RbH1HUrf0WKf75V1jmixnlUIECBAYLkEjEfLtT/1hgABAg++T2eI\nDNN+Md/LN9nJn8/r6gMgNirnZoWbNlrJ8wQIECCwdALGo6XbpTpEgMBWFxjqGaSrs+OaL4q9\naJ2dWP3bmS+K/cg6dY8+dU4e3De6wH0CBAgQ2BICxqMtsZt1kgCBrSQw1AmSL+bbSkepvhIg\nQKC/Asaj/u4bLSNAgMCWFPBFsfPZ7c0XNdZHqs+6+GK+WYuqjwCBRQgYj+ajbjyaj7OtENjS\nAkM9g9TsNF8U20i4JUCAAIFFChiPFqlv2wQIEJihwNAnSHvG4h8m9XHlH0/+Lhkvz82Ce5IP\njz/hMQECBAgQmJGA8WhGkKohQIDAogWG/D1I9fHbn04+lPzv5PqkLtcaL6/LgleOL/SYAAEC\nBAjMSMB4NCNI1RAgQKAPAkOdIO0SvPOSe5MzklOSzyS/l7w2UQgQIECAwDwEjEfzULYNAgQI\nzFFgqJfYHRGj45LnJfVlrlXOT96YvCn5UlIfva0QIECAAIEuBY5I5cajLoXVTYAAgTkLDHWC\ndFCc6qNV/3LM6z/m8T7JbyU3JhcnCgECBAgQ6ErAeNSVrHoJECCwIIGhXmJ3fbyq7f9sgtu/\nybL/lVyQ1Ac4KAQIECBAoCuB61Ox8agrXfUSIEBgAQJDnSDdEqv3JG9NfiN5QtKUOrNU70mq\ns0v14Q3HJgoBAgQIEOhCwHjUhao6CRAgsECBoU6QiuwnksuTlydHJaPlm3nwouTCpC5/UAgQ\nIECAQFcCxqOuZNVLgACBBQgM9T1IRXV7clKyf1LfczRevpYFNWjV+5EeN/6kxwQIECBAYEYC\nxqMZQaqGAAECfRAY8gSp8buzubPG7VVrLLeYAAECBAjMUsB4NEtNdREgQGBBAkO+xG5BZDZL\ngAABAgQIECBAgMCyCpggLeue1S8CBAgQIECAAAECBKYWMEGamswLCBAgQIAAAQIECBBYVgET\npGXds/pFgAABAgQIECBAgMDUAiZIU5N5AQECBAgQIECAAAECyypggrSse1a/CBAgQIAAAQIE\nCBCYWsAEaWoyLyBAgAABAgQIECBAYFkFTJCWdc/qFwECBAgQIECAAAECUwuYIE1N5gUECBAg\nQIAAAQIECCyrgAnSsu5Z/SJAgAABAgQIECBAYGoBE6SpybyAAAECBAgQIECAAIFlFTBBWtY9\nq18ECBAgQIAAAQIECEwtsNvUr/ACArMVODrVPSa5ebbVbq/tfbn30u2P3CFAgAABApMFjEeT\nXSwlsOUETJC23C7vXYdrcrRL8uoOWvaC1PnUDupVJQECBAgsn4DxaPn2qR4R2JSACdKm2Lyo\nA4F3dVDnE1PnUR3Uq0oCBAgQWF4B49Hy7ls9I9BKwHuQWjFZiQABAgQIECBAgACBrSCwDGeQ\nHpkddVxycHJg8q3kjuTq5NrVx7lRCBAgQIBApwLGo055VU6AAIH5CAx5glRtf0PysuSANbg+\nmuVnJp9a43mLCRAgQIDAzgoYj3ZW0OsJECDQI4EhX2J3dhxfkZyTPCd5cvL45NCkzij9aHJb\n8vHkOxOFAAECBAh0IWA86kJVnQQIEFiQwFDPIO0Xr9OT5ycXT7C7KcvqErsLkwuSk5MrE4UA\nAQIECMxSwHg0S011ESBAoAcCQz2DdGTs6r1Gl7YwvCTrPLvFesuySn1k9qyzLDb6QYAAgVkL\nGI/WFp31WFT1KQQIEOhcYKgTpDo7dHty0gZCdYasLrW7ZoP1luHpfdKJu5MHOsgVq0C7rt66\nIUCAAIEVAePRw48E49HDTSwhQGBAAkO9xK4mAW9Lzk9OSf44uTX5UrJHckByTHJqclRyQrLs\n5VHp4N7JacnnZ9zZupTxtclQj5cZc6iOAAEC2wWMR9sptt8xHm2ncIcAgSEKDPkP3tcH/Krk\nrcmkM0n3ZXm9B+klSf0P31YpH01HZ33GrCaZCgECBAhMFjAeTXb5WBZ/dvJTm15qPNo0nRcS\nINBWYMgTpOrj+5Kjk/rkusOTfZO6zOzm1Xw9twoBAgQIEOhawHjUtbD6CRAgMCeBoU+Qiqm+\nmO+Q5LFJ80WxB+V+9c0XxQZBIUCAAIG5CBiP5sJsIwQIEOhWYMgTpGq7L4rt9vhQOwECBAhs\nLGA82tjIGgQIEBiMwFA/xa6AfTHfYA4zDSVAgMBSCxiPlnr36hwBAltNYKhnkOb1xXwvygFx\nRIuDYvess2eL9axCgAABAsslYDxarv2pNwQIEBjsxzZP+8V8L9/kvv7hvO4pLV5bE836aHGF\nAAECBLaWgPFoa+1vvSVAYAsIDPUMUn1sd/NFsRets5+qfzvzRbH1nUJtSn1y3hfarGgdAgQI\nEFgqAePRUu1OnSFAgMBwv/jTF/M5egkQIECgDwLGoz7sBW0gQIDADAWGegapCHwx3wwPBFUR\nIECAwKYFjEebpvNCAgQI9E9gyBOk0vTFfP07prSIAAECW1HAeLQV97o+EyCwlAJDnyA1O+XG\n3KkoBAgQIEBgkQLGo0Xq2zYBAgRmIDDk70GaQfdVQYAAAQIECBAgQIAAgYcETJAesnCPAAEC\nBAgQIECAAIEtLjDUS+z2zn779in23Z1Z94Yp1rcqAQIECBBoI2A8aqNkHQIECAxIYKgTpKfF\n+C+mcL4w69b3ISkECBAgQGCWAsajWWqqiwABAj0QGOoE6SOxe2ny28nlyZuT9cqt6z3pOQIE\nCBAgsEkB49Em4byMAAECfRUY6gSpPM9NdknOSc5KLksUAgQIECAwbwHj0bzFbY8AAQIdCgz9\nQxr+R2zen7ypQyNVEyBAgACBjQSMRxsJeZ4AAQIDERjyGaSGuN5bdGRSfbmvWeiWAAECBAjM\nWcB4NGdwmyNAgEAXAsswQapPqPtEFzjqJECAAAECUwgYj6bAsioBAgT6KjD0S+z66qpdBAgQ\nIECAAAECBAgMUMAEaYA7TZMJECBAgAABAgQIEOhGwASpG1e1EiBAgAABAgQIECAwQAETpAHu\nNE0mQIAAAQIECBAgQKAbAROkblzVSoAAAQIECBAgQIDAAAVMkAa40zSZAAECBAgQIECAAIFu\nBEyQunFVKwECBAgQIECAAAECAxQwQRrgTtNkAgQIECBAgAABAgS6ETBB6sZVrQQIECBAgAAB\nAgQIDFDABGmAO02TCRAgQIAAAQIECBDoRsAEqRtXtRIgQIAAAQIECBAgMEABE6QB7jRNJkCA\nAAECBAgQIECgGwETpG5c1UqAAAECBAgQIECAwAAFTJAGuNM0mQABAgQIECBAgACBbgRMkLpx\nVSsBAgQIECBAgAABAgMUMEEa4E7TZAIECBAgQIAAAQIEuhEwQerGVa0ECBAgQIAAAQIECAxQ\nwARpgDtNkwkQIECAAAECBAgQ6EbABKkbV7USIECAAAECBAgQIDBAAROkAe40TSZAgAABAgQI\nECBAoBsBE6RuXNVKgAABAgQIECBAgMAABUyQBrjTNJkAAQIECBAgQIAAgW4EduumWrUS6IXA\noWnFk5J3ddSaP0q97+6obtUSIECAwPIIGI+WZ1/qyRYQMEHaAjt5C3exJkf7Jl/pwOB7Uueu\niQlSB7iqJECAwJIJGI+WbIfqznILmCAt9/7Vu23b7gnCv+gA4jdT5+M6qFeVBAgQILCcAsaj\n5dyverWEAt6DtIQ7VZcIECBAgAABAgQIENicwDKcQXpkun5ccnByYPKt5I7k6uTa1ce56U2p\n0+yP6aA1XdTZQTNVSYAAgaUVMB6t7Frj0dIe4jpGYGsIDHmCVG1/Q/Ky5IA1dtdHs/zM5FNr\nPL+IxZ/MRvfpcMNPSN3XdFi/qlcEjs7NP0g+1AFI/ZH1geSKDuqu/0Couu/qoG5VEtiqAsaj\nyXu+xqPPTn7K0hkKGI9miKkqAiUw5AnS2Wn/P09+O3lv8sXky8kjkpowHZOckXw8eVZyZdKH\nskcacVJyyYwbc2zquyqp+pXuBQ7KJnZPLu5gU69Nnccnd3dQ936p86LkLzqo+77UeV7SRbtP\nT73V9i5KnXGuds+6VHtPTXaddcWr9X06tzXZVRYvYDzacR8Yj3b06PqR8ejhwsajHU2MRzt6\nbPholw3X6OcKtaNrMvT8ZKM/UC/IOjcnr0qmLTXheHqLF9V7uf5VUm/c36h8NSvsmdT/5M+6\n1B9i98+60tRXx0n1cWh1V5ur7V20u+qu8sDKzUz/7bLurv5YbwC6sK66tbsRfui2zpA/46GH\n7i1IwHg0Gd54tKOL8WhHj3rk9/rDTWrJEMfRpRuPhnoG6cgcQDXBuLSOpA1Knal5+QbrrPX0\nGXmi3tu0UXliVnj3RiutPv/M3Hb16Wfl8rct2zHtakfkBddP+6IW69cvyEOSG1usO+0qdana\no5Nbpn1hi/Xr48Pr56cm6rMuj02F30hqMj3rUsdztfmeWVec+g5Paj92MWns8tjuqu76g6h+\nN3w+6aJc30Wl6pxawHg0mayrn6va2hHJ9cmsi/Ho4aLGo4ebdHlsd1W38ejh+3Epl9SOvjV5\n8Qa9qz9ga4L0rg3W8zQBAgQIENiMgPFoM2peQ4AAgR4L1P+WDLHU2aO9krckdQlc3a//Ga/3\nHtXsu96/8cKkLnk7LjkjqfcoKQQIECBAYJYCxqNZaqqLAAECBHZa4AdSw3VJDVDjuTfLzk9q\ngqQQIECAAIEuBYxHXeqqmwABAnMU2GWO2+pyU4em8sOTel9IfYJWfShD5euJQoAAAQIE5iVg\nPJqXtO0QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIG5CCzLJXZzwZrRRp6Teuoj\nnJe5PCadq4+o7uKjpPviVh8MUp+SeFdfGtRBO+pDXOqDT27roO4+VVmX5tanXSoEtpqA8Wg5\n9rjxaDn2Y/XCeNSTfWmCNP8dUV8AVh8LqxAg0A+B+oCXGpS6+N6pfvRQKwhMFjAeTXaxlMCi\nBIxHi5If2+5Qvyh2rBuDelifrlff3/T+QbV6usZeltX/NHnzdC8b1Nq/ltY+Njl1UK2errGn\nZ/XXJMdO97JBrV2fcnlF4j8tBrXbNHZGAsajGUEuuBrj0YJ3wIw2bzyaEeQsqjFBmoXi9HXU\noLTMl9nV/4Dct+R9rP95fWDJ+1j7sPblMh+r30z/FAJbWcB4NPy9bzwa/j6sHhiPerQf/a9p\nj3aGphAgQIAAAQIECBAgsFgBE6TF+ts6AQIECBAgQIAAAQI9EjBB6tHO0BQCBAgQIECAAAEC\nBBYrYIK0WH9bJ0CAAAECBAgQIECgRwImSD3aGZpCgAABAgQIECBAgMBiBUyQFutv6wQIECBA\ngAABAgQI9EjABKlHO0NTCBAgQIAAAQIECBBYrIDvQZq//43Z5O3z3+xct3hLtnbrXLc4/41V\nH+u7J5a5fDGdu3mZO5i+3ZHUvrxnyfupewQmCRiPJqkMb5nxaHj7bFKLjUeTVCwjQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECOy0wDNSw9uS65I/S34oGVL5\nozT2fROyy0gn2vTx8Vn/3ycfS65KfiHZNVlU2T0b/vPkP0xoQPXttKT6fm1yXnJoMl7a9LvN\nOuP1zvLxv05l5T2pDHnf7p8OvTn5ZPL55NLk+cl4aePf5thss874tj0m0DeBNj8PfWvzaHuG\n/DtrtB/j941HK+PtUP/WMB6NH9EeE9hA4LA8f1fy7uRHk3OS+5KTkiGUI9PIbyWXJReNpZkg\nte3jJXn9Z5OXJP82KZffTRZRajD670n17Y0TGvCyLPtGUhO6U5Oa1N2Q1B/JTWnT7zbrNPV1\ncVvHWR1v10yofMj7drf054rkS8mvJWcm709qf56cNKWtf5tjs806zXbdEuijQNufhz62vdo0\n5N9Z65kaj4a9b41H6x3dniOwhsCfZPknxp77/Ty+emxZXx/+cBpWf3QevE4D2/TxJav1HD1S\nz4+tLnvyyLJ53H16NvLJ5KvJvcn4BOmgLPtKUpOjpuyXO3cnP9csyG2bfrdZZ6TKmd3dPzU1\nE8A7c3/SBGnI+/aF6VMdl3VcNaUm7P8n+etmQW7b+Lc5NtusM7JZdwn0UqDNz0MvG77aqCH/\nzlrL1Xi0IjPkfWs8WuvotpzAGgL7ZPn9yc+OPX9SHtcfd8eOLe/jw9enUTev07C2fXxv6rhy\nrJ5H5PHdyS+MLe/64XXZwF8mxyQ1eRifIJ2RZbV/Dk9Gy/l58JnVBW363Wad0fpnef+sVPb/\nkh9P3p5MmiANed8+N306J9k7GS1n50EdU1Xa+rc5Ntuss7JV/xLop0Dbn4d+tn6lVUP+nbWW\nq/Fo+PvWeLTW0T3Q5d820HYPqdl/P40t5/871ujPrT4+dGx5Hx8en0Zdn/xM8sHk8qQmfLsm\nVdr28alZd9zhniy7KZm3w6nZ5gnJpElDFj84ca0zS3VJ3Wip9jdtbdPvNuuM1j/L+zWZOyKp\n27XKkPftpenUTyZ1FrApe+RO/S9kc8a2rX+bY7PNOk073BLoo0Dbn4c+tr1p05B/ZzV9GL81\nHq2IDHnfGo/Gj+qBPzZB6n4H7r+6idvHNvXl1cd1KVffS/3SqsnEickHkvpfyHpj/AVJlbZ9\nrPW+9OArdvznjjyct8OVOzbhYY/Wamvtt+r/o5I2/W6zzsM2PqMFn049X9ugruPz/DLt27PS\nnwOS5tLItv613kbHZpt1Uo1CoLcCbX8eetuBNOz4ZJl+Z5W18agUlm/fGo9W9usg/91tkK0e\nVqPrMq0qdTZitDSP9xpd2MP79Z6OX09uTH5vtX2vz+1bklcm35e07WOt981kvJRFHx3Wamu1\nv9rbpt9t1qn6FlGWad9WX2owenXy2uTDSZW2/m2OzTbrrGzVvwT6KdD256Gfrd+2bZl+Z01r\nbDya7e/zaf2nWd94NI1WT9d1Bqn7HXPL6iYePbap+l/uKnet3PT23xpQfyVpJkdNQ9+xeue7\nctu2jzdn3abfqy9/8KaW9c1hvbZWo6u9bfrdZp2qbxFlWfZtffrTeclrkpq0/3LSlLb+6+3v\n5thss06zXbcE+ijQ9uehj22vNi3L76xpfdf73VN1GY9WRPvwu9p4NO3R3dP1TZC63zH1i63K\nwSs32/9tLin7m+1L+nlnzzTraUlzaUbTyrrUrClt+1jrNf1uXlu3ByZ9c6i27r2a3GwvtR/r\nuXtWb+uJ9fZtW5uqZ95lGfbtI4P2h0m97+jFyVuT0dLWv9bb6Nhss87ott0n0DeBtj8PfWt3\n055l+J3V9GWa29pvxqOHPixqvTG3XBf1u9p4NM1RbV0CEfhYUn/EjZZfzYN6z0P9QPW51Edy\n1//a1SV1o6UuY6rlz1td2KaP9Zp6T0y9h6cpz8ydquefNgsWcHtntvnGse0elcf3Jz8+srxO\nm9elhu8YWdam323WGamyk7tvT63XjNW8DPv2z9Knmqw/Y6xvow/b+Lc5NtusM7pd9wn0UaDN\nz0Mf211tWobfWRvZGo92FKrfu0P5W8N4tOO+84jAhgInZ437klckdSbmR5KaKJyeDKFckkb+\nXXJGUv9z86rki8llSVPa9LH6Xh+/fFFySPKU5K+S9ySLLJMGpGrPHySfT+oywscmdXaiPlCi\nDJrSpt9t1mnq6+p20gSptjXkfXta2l8D57uTn56Q5gx5G/82x2abddIMhUCvBdr8PPS5A0P+\nndXG1Xg0zL81jEdtjm7rEJgg8Los+0ZSf9DdlJyVDKXU5OCCpNpeuSep93zUJ7mNljZ9/O68\n4Iak6qlJYk1Cnpgssqw1IB2QRv1p8kBS7b0qeUEyXtr0u8064/XO8vFaE6Qh79vLAlT7Za3s\nMQLYxr/NsdlmnZHNukuglwJtfh562fA0asi/s9qYGo8e+p1+T8CG8reG8ajN0W0dAmsI7J7l\n357UpVpDLHun0U9ORv/wHO9H2z4elheOT7DG6+rL4/3SkDrjtV5p0+8266y3jS6f2wr7tq1/\nm2OzzTpd7i91E9hZgbY/Dzu7na5evxV+Z02yMx6tqLQ9fvv6u3qW7e9rHycdv5YRIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQjyL5ugAAB2FJREFUIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECawrsteYzniBAgAABAvMTMB7Nz9qWCBAg0KnAT6X2G8by8Tz+3eR7k67K\nVan4P22y8hPzurOTa5NvJXcm70yelHRRnplKH9dFxeokQIAAge0CxqPtFGveMR6tSeOJWQrs\nNsvK1EVggAL7ps2HJb+RfCXZNanJwAnJycmPJX+QzLo8IRU+ehOVviCv+f3kM8kFydXJicmL\nk3+UHJ98PZlVOTEVfSA5JrktUQgQIECgGwHj0fquJ+Zp49H6Rp4lQIDATARenVrqLMzhY7U9\nIo+vST44tnxWD7+Qin51ysqenfW/kfzhhNd9Z5bdn/zKhOd2ZtEL8+LyOXpnKvFaAgQIENhQ\nwHi0PpHxaH0fz85Q4NtmWJeqCCyTwD3pTJ2lOXCsU/Uz85NJnVW6LPn15MhktLRZZ3T9uv/U\n5O3JKfVgjXJmltdZrpdOeP7KLHtdUmeP6ixYU56RO+cmlyfnJT+UjJbH58F/Sep/5d6b/GKy\nf1KlLmX4mQfvrSw/ffW+GwIECBCYn4DxyHg0v6PNlh4UqD/kFAIEHi7wrCz63uSdY09dmMe/\nmdQZoIuTmkTUZW7fnTSlzTrNunX7lOTS5LCkJl5rlRPyxEeSO9ZY4Zez/OeSOpNU5eTkiuTg\n5E+SXVZv35jbKjWRen9yUlL1Vj9eknwsqefqbFVNyKp8Obn7wXv+IUCAAIF5ChiPjEfzPN5s\niwABAtuaSxpuicWNyU3J15K6rOwdyWj5kTyo5TWhaMruufO55NNJTUDarJPVHpxg1SV2T05u\nTWoCU5f1rVUOyBO17V9ca4Wx5fX+pprUvHNs+X/N4/uSpyV11qrq/P6kKc/JnT9Pjlpd8MLc\n1jpHrz52Q4AAAQLdCBiPjEfdHFlqJUCAwJQCzYBUl8q9YTV1hqguObs3+aWkKb+VO9c3D0Zu\na6JTk4g6A9RmnXrpF5L3JDcndeZm92S90kyQ6nK4NqXOflWb6hK70VJnvGp59ftRSU0G/zp5\nRTJ+qWAWbTNBKgWFAAEC3QsYj4xH3R9ltkCAAIEWAs2AdPiEdf9zltVkos62VKnL0T5Yd8bK\nD+ZxrVeXQbRZp15eE6R6TZ19uj8ZvUQvDyeWv83SmlStVfbKE81E66dzv+p//NjKdVltXTZX\nE8Iq35PU2a9at1KTpZ9KmmKC1Ei4JUCAQLcCxiPjUbdHmNpbC3gPUmsqK25BgXovUZV/snLz\n4CVrdenaeNlzdcHf5PbLyUbrNK+vS9mOTeoM0rlJU0/uTiz1/Uz1Md57THx227a3ZPmdyd9L\nqh1V9l+52eHf2k61tcqHk7rUrl7zyqTe33R2clqiECBAgEA/BIxH/dgPWrFFBEyQtsiO1s1N\nCdSHIlS5buVm26dyW+8ZOnT1cXPzvNy5LamzQm3WaV5XZ2vqgxDOTJ6UnJWsV34nT9YHLtRl\nfOOlPujhJ5Jq67VJtaNKtW20nJgHdZbpE8k/Ti5OjkjqdW9Nnpt8NfmupMoDKzfb/K5YhXBD\ngACBBQgYj4xHCzjsbJIAga0q8Op0vC4te11Sl6VV6qOt35bUR2b/VdKc2amzMTUR+kjyHUmd\nKfqXyb3Ja5Iqbdap9WoyVe9dasqbcqcutXtWs2CN23+X5dXe+t/EU5Ja/78lNyd3J09PmnJ+\n7tSZpBcl+ybPTj6XfCh5ZPKI5IbkvUlNlg5Jfjap+l+cVHlOUo9/Pqk+KwQIECDQjYDxyHjU\nzZGlVgIECEwp0AxINQloUmdQ6ixMvU+nztiMlroc7cqkWff63K9JxWhps874BKkmLLXNOpNT\n7yVar9SlcHXmp9rZtOMDuT86OcrDbXsnv5N8M6n17kouSPZJmvJ9uXNJUmeyap26xO5VSVNq\ncnh5Us/VNhQCBAgQ6EbAeGQ86ubIUisBAgTmJFBnig7bYFtt1tmginWfrkvljkkete5aK5fU\n1cd277bOejUROmKd5+sMVJ1xUggQIECgXwJtxpo26+xMr4xHO6PntQQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQ2KfD/AcrJRXrv00vhAAAAAElFTkSuQmCC", "text/plain": [ "Plot with title “Bins = 12”" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0LvH1lXSf+H4IIiKBE3BQRg8EbotaIWKljTppSYqMUgWJ5KZ3UJvtr\nOqOZON6aRs2kciydGjHBskhNxNt4qUDNBG0CzVAUQUBUVO7w/3z57YX7bPY5Z5199tpnr73f\nz+v1Ye29Ls9a67025/k9e6291rZtCgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgshcAOS7GXdnKZBX4oO3/QGIAbM+7q5GvJl8ZM3ynjHjIYf0mG\nnxszz6KNuk126Ohkx+Ts5KvJuLJ7Rt4/+V7yz8lViUKAAAECawtoj9b2GZ7atj1qlqk2u9qv\n+nftJ5KvJAoBAgQIrCLw6oy/aZ3UH9OjRpa/09Aybx+ZtqhvXzy0z8eO2cnqGJ2a3DA033fz\n+lmJL1uCoBAgQGANAe3RGjgjk9Zrj0Zm3/aSjGja+uNGJ3pPgAABAisF2jRI9Uf1iuSQoUWX\nrYP08Oz7cMdnXAfpY5mnaYCuH3pd456TKAQIECCwuoD2aHWb4Slt2qPh+X8kb65LmvZJB2lY\nx+uJBOoUpkJgWQSemR29a3JQcnDyo8n7kyp3TH7+5lfb/3NlBj85yMuGxi/ayzor9N+Tdydr\n/T14QKaXV5W3JvskRybXJFVeuH3gvwQIECDQQkB7dGuktu3R8JK75M2fJjsNj/SawGYFfKA2\nK2j5Pglcno29cGiDL8jrFySPGIyr68ObUpeM7Tl48+1mZIb125uar86g/FVy56S+7Tokqd8p\nvSv5XjJcdsubxyZ3T6oBqN80fTypS/vWK0dnhn+33kyZ/s7k31rMNzrLpzKiqb98fmB0hsH7\n22Z4cnKf5L8l30jOTmoffiypDubOybWJQoAAAQJrC2iPbu3Ttj0aXrK+4LtnUmePXOo9LOM1\nAQIE1hB4daY1p93HXTb2K0PTjx+qZ7VL7KqTUPVVp6k6L98ZvG/WUZ2kA5KmPDgvLk6a6cPD\nqmu98o7MMLzMaq8fs15Fq0y/LOOr01iXJDwtaeofZ5XJK0p1FK9Lapn3rZjiDQECBAiMCmiP\nRkVWvt9oe1Q3UmouDX9dXjftl0vsVrp6N4GAM0gToFmktwJPzZY/LKlvmXZM6oxOnf2pckZS\nZ4Talttnxpr/nOSTSXVQqmN0r+TXk99IqpyS7Jt8KTktuSL56eRByTOSv03+JtmqUg32G5Lv\nJuXTtnwsMx6V3Cb5QvKsRCFAgACBdgLao1s7baQ92j2LvyWpNuiNSX1J9+xEIUCAAIEWAsPf\n2DXfLo0O63Kxg0fqWu8MUtVRl7U15Yi8aOp9/2DkfkPj/iivq1NWpTpXr0l+OblPslbZLRPr\n8rX1stNalbScVg12sw9rnUEa3q+avzqDLm1oiWw2AgSWVkB71P7Qr9ceVaeo2p8Lkjsk9SVl\n0345gxQMZXMC0/hH1ea2wNIEZidQZzouT+of8/V7meoE1U0baviZpM6C/O+kbXn90Iy1fJ2F\nqc5P8zuer+f1N5Pq3Dw9eVzywaQ6UNVQ1jOY1iv1h7++KVuvXJsZrl9vpilNr78b1SmqM3BP\nTn4n+dmkzsZdnSgECBAgsLaA9mhtn7Wm/lQmNpeE/1JeX7nWzKYRIECAwK0Fhr+xG3dW5IFZ\npC57q2+eanjbpEp1mppvo95+85jt/zl5aPzo2Z/qENUy526f9eb/PiH/rY5LU1czvDHj3pnc\nJVmrvCMTm2XWGta3Z5st631jN67+6ig121UdQIUAAQIExgtoj8a7jBu7WntUX0J+Nal25yPJ\nfxzkvw3G1fiXD8bVHe4UAhMJ3GaipSxEYHEEzs6u1LXLVepMT50FaVuuGZmxOj2j5bSMOCR5\nRfJPSf3xrlJnsY5JanqfyujZrPcMbfxjh157SYAAAQIbE9Aere+1T2Y5YDDbj2dY7XflpMG4\nGrwgqXH1+1+FwEQCdamMQmDZBe49BDDa6RmadKuXTWfnVhOGRtQf8oOTOvP0wqQuv6vLA+qb\nxP2TulnDHkndFW9cqRsovHvchJFxdYlfl+WVqbx+M7VnUmfO/jmp8sDtg5v/+62h114SIECA\nwMYFtEcbN7MEgakL6CBNnVSFcyzwiGxbXTpXpc6e7pr8p6RpkL6X12cl0yr1u5y/GFR2RoZ1\nxqh+A1WXzT03qQ5SdYy+k6xWPrTahBmP/39ZX51hq/K65HlJ3azh+UlTzmxeGBIgQIDAmgLa\nozV5Vp14YabcfczU/5BxfzwY/2sZnp7UpXgKgYkEdJAmYrNQTwWelu2ujCt1NujE5KpxEycc\n99dZ7qNJXQbwyKTulvcvyb2S2yVV/kcy7tK8myfO0X/emm35xeShSTXs/5gMl5r+ruERXhMg\nQIDAqgLao1Vp1pxQv+n9tzFzVLvalK/nxbh5mumGBNYV8BukdYnMsKAC9Ue2OkP1h/RtyaOS\nOrMzzVIPsKvL6eqMy5VJnbG6f1Kdo0uS5yQvS/pQyqvOgP1+Uq+bUme/XpA8uRlhSIAAAQIb\nEtAebYjLzAS6F6gfiisECHQvcNus4i7JXslFycXJTUkfS3XwDk3qlt5fTPpwBiybqRAgQIBA\nBBapPXJACRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLbtu2w\nAAi7ZB+OSPZP9k1uSq5IzknOH7zPQCFAgAABAp0KaI865VU5AQIECKwnsFNmeEVyeVKdonE5\nO+MPTxQCBAgQINCVgPaoK1n1EiBAgMCGBP4kc38reVXykOSw5AeTuyT3TZ6QvDu5NjkyUQgQ\nIECAQBcC2qMuVNVJgAABAhsS2DNz35A8ssVSp2ae17aYzywECBAgQGCjAtqjjYqZnwABAgQ6\nEbhfar0+qcsa1itPywz/uN5MphMgQIAAgQkEtEcToFmEAAECBKYvcJtUeXHy+HWqrg7Umcnb\n1pnPZAIECBAgMImA9mgSNcsQIEBgjgV2nONtW2vT6oYMuyWvSx4weF13sdsrOTipb/R+JnlD\nUne4e3JySaIQIECAAIFpCmiPpqmpLgIECBDYtMCjUsPnk3F3sLsu409JqoOkECBAgACBLgW0\nR13qqpsAAQIzFFiE5yAV14HJQckeyZXJRYNclaFCgAABAgRmJaA9mpW09RAgQKAjgTY3Oeho\n1VOrth7Md0Cyd9I8KHa/vK5986DYICgECBAgMBMB7dFMmK2EAAECBFYTqA6QB8WupmM8AQIE\nCMxKQHs0K2nrIUCAAIE1BTyYb00eEwkQIEBgRgLaoxlBWw0BAgRmIdDX3yDVg/m+kTw6OWMd\nqHpQbP0m6dfWmW/c5Ptn5J3HTRgZV79/qgbSb55GYLwlQIDAggtojxb8ANs9AgQI9EVgVg/m\n+1hA6qYP6+XGzPPMvuDZTgIECBCYmoD2aGqUKiJAgACBzQjM24P5qgN19GZ2yLIECBAg0EsB\n7VEvD5uNJkCAwOoC9cPSPpY6Y3NyUs85Oj45Pbk4uTzZOakHxh6WnJAckhyVKJsTuGcWL9su\nymWp9KtdVKxOAgQIdCygPeoYeEz12qMxKEYRIECgEZiXB/Mt+hmkuoRk3MN4pzXuy80BNSRA\ngEBPBbRHszlw2qPZOFsLgaUW6OsZpOagvTcvDk08mK8R6WZ4u0G1+2d49ZRX8bjU98op16k6\nAgQIzFpAezQbce3RbJythcBSC/S9g9QcvAvzoqJ0K/DNVD/tDtJ3u91ktRMgQGCmAtqj2XBr\nj2bjbC0EllKgzx2k+mFsXfs9XHbLm8cn9fujS5L6Ru/8RCFAgAABAl0JaI+6klUvAQIECLQW\nuEPmrN+//NzQEtUp+uJgfPPbmOvy/gVD83T1ctF/g3TkwHWXDgCPTZ3VmVUIECDQRwHt0WyP\nmvZott7WRmApBepbr0Upf5odqTNIz0nqtzI/lvxx8vLksYlCgAABAgRmIaA9moWydRAgQKAj\ngT5fYjdMsl/ePDD5r8nvDSZcnOHHk8OTuhX4XycKAQIECBDoUkB71KWuugkQIDADgUU5g1SX\n1NXvkf5yjNnbM66emaAQIECAAIGuBbRHXQurnwABAh0L9L2DdHB8bp/Ub1g+ltw3GS2PzAh3\nuBtV8Z4AAQIEpimgPZqmproIECBAYMMCu2eJa5P6pu6G5HNJ3a2uOkr7JlV+ODkjqXmekHRZ\n3KRhcl03aZjczpIECGy9gPZotsfATRpm621tBJZSoK+/QfpOjlY1SvdO6qna9x8Mq3PU3Gnt\nmLz+ieTFyWmJQoAAAQIEpi2gPZq2qPoIECBAYKoCOwzVdmBe32nofZcvnUGaXNcZpMntLEmA\nwPwKaI+6OTbOIHXjqlYCBIYE+noGaWgXVrysy+ma4ndHjYQhAQIECMxaQHs0a3HrI0CAwJQE\n+n6ThikxqIYAAQIECBAgQIAAAQLbtukg+RQQIECAAAECBAgQIEBgIKCD5KNAgAABAgQIECBA\ngACBgYAOko8CAQIECBAgQIAAAQIEBgI6SD4KBAgQIECAAAECBAgQGAjoIPkoECBAgAABAgQI\nECBAYCCgg+SjQIAAAQIECBAgQIAAgYGADpKPAgECBAgQIECAAAECBAYCOkg+CgQIECBAgAAB\nAgQIEBgI6CD5KBAgQIAAAQIECBAgQGAgoIPko0CAAAECBAgQIECAAIGBgA6SjwIBAgQIECBA\ngAABAgQGAjpIPgoECBAgQIAAAQIECBAYCOgg+SgQIECAAAECBAgQIEBgIKCD5KNAgAABAgQI\nECBAgACBgYAOko8CAQIECBAgQIAAAQIEBgI7LYDELtmHI5L9k32Tm5IrknOS8wfvM1AIECBA\ngECnAtqjTnlVToAAgdkI9LmDVNt+UvL0ZK9VuD6R8U9Jzl1lutEECBAgQGCzAtqjzQpangAB\nAnMk0OdL7N4Yx2cmb0oemtwj2Sc5MKkzSscmlyafSo5MFAIECBAg0IWA9qgLVXUSIECAwIYE\n9szcNySPbLHUqZnntS3m28wsV2bhozdTwZwvWx3MunSxLh+ZdqmO7CXTrlR9BAgQmJGA9mhG\n0IPVaI9m621tBJZSoK9nkA7O0ap/sH+gxVE7M/M8pMV8ZiFAgAABAhsV0B5tVMz8BAgQmHOB\nvnaQ6gYMlyXHrONb14XXGYrz1pnPZAIECBAgMImA9mgSNcsQIEBgjgX6epOGG2N6cnJKcnxy\nenJxcnmyc1I3bTgsOSE5JDkqUQgQIECAwLQFtEfTFlUfAQIECGxK4FFZ+vNJXW43musyrjpQ\ndcOGrovfIE0u7DdIk9tZkgCB+RHQHs3mWPgN0mycrYXAUgv09QxSc9DemxeHJnXnuoOSPZLq\nrFw0yFUZKgQIECBAoGsB7VHXwuonQIDAjAT63kEqprqz2gHJ3sm+SZ1J2i+pffOg2CAoBAgQ\nIDATAe3RTJithAABAt0K9LmDVNvuQbHdfj7UToAAAQLrC2iP1jcyBwECBHoj0Ne72BWwB/P1\n5mNmQwkQILDQAtqjhT68do4AgWUT6OsZpHow34nJo5Mzxhy0r2Rc3Xr1tKQeFHtcclay0VLL\n3rvFQrtmnvodlEKAAAECyyWgPVqu421vCRBYAoG+dpA2+mC+Z0x4LN+S5e7WYtnfzTyXtpjP\nLAQIECCwWALao8U6nvaGAAECvRWoSwMvTh6/zh5UB/DM5G3rzLfZyW7zPbmg23xPbmdJAgS2\nXkB7NNtj4Dbfs/W2NgJLKdDXM0gezLeUH1c7TYAAgbkT0B7N3SGxQQQIEFhuAQ/mm83x943d\nbJythQCB/gpoj2Zz7LRHs3G2FgJLLdDXM0jNQfNgvkbCkAABAgS2UkB7tJX61k2AAIEpCvS9\ng9RQXJgXlaY8KC/qW6ZTmhGGBAgQIEBgBgLaoxkgWwUBAgS6FOjzc5DWcnlMJv7mWjOYRoAA\nAQIEZiCgPZoBslUQIEBgmgJ9PYN0eBDWOju0b6bfITl3gFXPSvqNwWsDAgQIECAwLQHt0bQk\n1UOAAIE5EehrB6meOVRnv+6V/H3yhWS43C9vbpt8ejDygsHQgAABAgQITFNAezRNTXURIECA\nwKYEds3Sr0++k4w+CPakjDsnmVXxHKTJpT0HaXI7SxIgMB8C2qPZHQd3sZudtTURWFqBPv8G\n6aoctWcl9bDYFyfvSfZPFAIECBAgMEsB7dEsta2LAAECHQv0uYPU0NStVesa8GuS+s1RdZgU\nAgQIECAwawHt0azFrY8AAQIdCPT1N0ijFJdlxOOSpyZvSeqyu68nCgECBAgQmKWA9miW2tZF\ngACBDgQW4QzSMMub8qZu0PDJ5LPDE7wmQIAAAQIzFNAezRDbqggQIDBNgUU5gzRsUne0O3p4\nhNcECBAgQGALBLRHW4BulQQIENiswKKdQdqsh+UJECBAgAABAgQIEFhiAR2kJT74dp0AAQIE\nCBAgQIAAgZUCOkgrPbwjQIAAAQIECBAgQGCJBXSQlvjg23UCBAgQIECAAAECBFYK6CCt9PCO\nAAECBAgQIECAAIElFtBBWuKDb9cJECBAgAABAgQIEFgpoIO00sM7AgQIECBAgAABAgSWWEAH\naYkPvl0nQIAAAQIECBAgQGClgA7SSg/vCBAgQIAAAQIECBBYYgEdpCU++HadAAECBAgQIECA\nAIGVAjpIKz28I0CAAAECBAgQIEBgiQV0kJb44Nt1AgQIECBAgAABAgRWCuggrfTwjgABAgQI\nECBAgACBJRbQQVrig2/XCRAgQIAAAQIECBBYKaCDtNLDOwIECBAgQIAAAQIEllhAB2mJD75d\nJ0CAAAECBAgQIEBgpcBOK9/28t0u2eojkv2TfZObkiuSc5LzB+8zUAgQIECAQKcC2qNOeVVO\ngACB2Qj0uYNU235S8vRkr1W4PpHxT0nOXWW60QQIECBAYLMC2qPNClqeAAECcyTQ50vs3hjH\nZyZvSh6a3CPZJzkwqTNKxyaXJp9KjkwUAgQIECDQhYD2qAtVdRIgQIDAhgT2zNw3JI9ssdSp\nmee1LebbzCxXZuGjN1PBnC9bHcy6dLEuH5l2qY7sJdOuVH0ECBCYkYD2aEbQg9Voj2brbW0E\nllKgr2eQDs7Rqn+wf6DFUTsz8zykxXxmIUCAAAECGxXQHm1UzPwECBCYc4G+dpDqBgyXJces\n41vXhdcZivPWmc9kAgQIECAwiYD2aBI1yxAgQGCOBfp6k4YbY3pyckpyfHJ6cnFyebJzUjdt\nOCw5ITkkOSpRCBAgQIDAtAW0R9MWVR8BAgQIbErgUVn680ldbjea6zKuOlB1w4aui98gTS7s\nN0iT21mSAIH5EdAezeZY+A3SbJythcBSC/T1DFJz0N6bF4cmdee6g5I9kuqsXDTIVRkqBAgQ\nIECgawHtUdfC6idAgMCMBPreQSqmurPaAcneyb5JnUnaL6l986DYICgECBAgMBMB7dFMmK2E\nAAEC3Qr0uYNU2+5Bsd1+PtROgAABAusLaI/WNzIHAQIEeiPQ17vYFbAH8/XmY2ZDCRAgsNAC\n2qOFPrx2jgCBZRPo6xmkejDficmjkzPGHLSvZFzdevW0pB4Ue1xyVrLR8h+ywF1bLFSOdfc8\nhQABAgSWS0B7tFzH294SILAEAn3tIG30wXzPmPBYPjfL3afFstU5qt89KQQIECCwXALao+U6\n3vaWAIElEOhrB2n4wXzvWOM41f5t5kGxR69R9/CkunPel4dHeE2AAAECSyGgPVqKw2wnCRBY\nJoG+dpA8mG+ZPqX2lQABAvMroD2a32NjywgQILCUAh7MN5vD7sF8s3G2FgIE+iugPZrNsdMe\nzcbZWggstUBfzyA1B82D+RoJQwIECBDYSgHt0VbqWzcBAgSmKND3DlJDcWFeVBQCBAgQILCV\nAtqjrdS3bgIECExBYFE6SMMUdUe5uj333ZK/S85NFAIECBAgMGsB7dGsxa2PAAECUxDocwep\nHnL7wuSxydeSlyVfTD6b7JtUuSl5dfKb9UYhQIAAAQIdCGiPOkBVJQECBLZKoG0Hadds4A4b\n2MjvbWDeSWd9TRZ8VvLh5EHJ3yR/n1ycPCepztJTk+cnn0j+IlEIECBAoN8C2qN+Hz9bT4AA\ngYUR+Gb2pM7GtMlVM9jraiCvTX5hsK7dMnxfUtv34MG4ZvChvKjOU5elnoPU9plJXW5HV3W7\na1BXsuolQGCjAtqjtcW0R2v7rDW1npt4yVozmEaAwHIItD2DVGdk/ih59yCXZrh/ckLyI8mL\nkquTKtdvH3T638NT+47JXw3WUmesTkn+fVK/Oxouf5k3vzI8wmsCBAgQ6K2A9qi3h86GEyBA\nYLEEzsruPG/MLtV11/+SvGrMtC5H3TWV19mixwyt5I55XWeURi8FPD3j/nZovi5e+sZuclXf\n2E1uZ0kCyyigPVr7qGuP1vZZa6r2aC0d0wgQWCGwZ97Vk8L3XjH2+2/q27z6jc+sy7uywmoI\nXpuMOxNWZ5Pek1RH6nFJl0WDNLmuBmlyO0sSWDYB7dH6R1x7tL7RanNoj1aTMZ7AkgnUGaD1\nSv2x/Ubyw6vMWB2RrXgG0eOz3t9O6izSuMv6npTxj0iel7wzUQgQIECg3wLao34fP1tPgACB\nhRKo3x/V745+Nanf/xyY/Gjy5uSG5OHJVpV6zsS4Upfh7TFuQgfjfGM3Oapv7Ca3sySBZRTQ\nHq191LVHa/usNVV7tJaOaQSWSGDcpWnjdv8/Z2SdpXn9yMS620vdqOGDI+Nn+fbaVVb25VXG\nG02AAAEC/RXQHvX32NlyAgQI9EKgbQepOkfVKNXd6u6f3CX5YvKPyXcThQABAgQIzEJAezQL\nZesgQIDAEgu0+Q3SMM898+YeSXWsPprUe4UAAQIECMxaQHs0a3HrI0CAwJIItO0g3SEedavs\njyW/nxyX3D45a/B+lwwVAgQIECDQtYD2qGth9RMgQGDJBdp2kF4Xp/q2rjpGJw3Mvpfhs5Jf\nTI4ejDMgQIAAAQJdCmiPutRVNwECBAhsa9NBqnl+Pvnl5M+T7yRV6vlCJyd1JzsdpCAoBAgQ\nINCpgPaoU16VEyBAgEAJtOkg7Z35dk2+VAuMKTX+vmPGG0WAAAECBKYpoD2apqa6CBAgQGCs\nQJsO0tez5OVJ3c57tOyQEU9Jzhud4D0BAgQIEJiygPZoyqCqI0CAAIFbC7S9zff/zKK/ldTD\nV+vSurpBw9OSJyeHJtVJUggQIECAQNcC2qOuhdVPgACBJRdo20F6ZZx2T349ud3A7EEZ1pml\nX0o+PhhnQIAAAQIEuhTQHnWpq24CBAgQuPl5Rm0YXpKZ3pe8JrlPsn9Svz06J7kyUQgQIECA\nwCwEXpKVaI9mIW0dBAgQWFKBNmeQ6pkTL0yuSj6cfChRCBAgQIDArAW0R7MWtz4CBAgsoUCb\nmzTUbb2/kNSd6uqmDAoBAgQIENgKAe3RVqhbJwECBJZMoM0ZpLopwx8m9YDYzySfTi5Ohktd\navfW4RFeEyBAgACBKQtoj6YMqjoCBAgQuLVAmw5SLfXs5OqkfntUGS2nZ4QO0qiK9wQIECAw\nbQHt0bRF1UeAAAECKwTadpDuvmIpbwgQIECAwNYIaI+2xt1aCRAgsDQCbX6DtDQYdpQAAQIE\nCBAgQIAAgeUWWO0M0t5hOTqpS+e+MedEu2T7jkjq0r99k7pG/Yqkfhd1/uB9BgoBAgQI9FBA\ne9TDg2aTCRAgsIgCR2anqqNRHY+m3CkvXpr8UDNii4fVuXtFUg+rrW0dl7Mz/vCk61LPgqoO\n5aKW5vNQndFpl2NT4SXTrlR9BAgsjEDz90d71O6Qao/aOY2bS3s0TsU4AksosJFL7KqD9KLk\n4DlxemO245nJm5KHJvdI9kkOTKohrT90lyafSqqBVQgQIEBgMQS0R4txHO0FAQIE5lJgtUvs\n5nJjhzZqz7w+MXl0csbQ+OblV/KiLrE7LTk1OS45K1EIECBAgMA0BbRH09RUFwECBOZAYCNn\nkOZgc2/ZhDqLVZfUfeCWMau/ODOTHrL6ZFMIECBAgMDEAtqjieksSIAAgfkU6GsHqc4OXZYc\nsw5rnSGrS+3OW2c+kwkQIECAwCQC2qNJ1CxDgACBORbo6yV2N8b05OSU5Pjk9OTipG7YsHOy\nV3JYckJySHJUohAgQIAAgWkLaI+mLao+AgQIzKlAc9egb2f7rhjkWxnWZW11h5xmXDN8c8Zt\nRXlUVvr5pLZrNNdlXHWgjki6Lu4aNLlwneFzF7vJ/SxJYNEFtEcbO8Lao415Dc+tPRrW8JrA\nEgusdgapLl/7PxtwqTvFbUV5b1Z6aFJ3rjso2SOpxuGiQa7KUCFAgACB/gpoj/p77Gw5AQIE\neimwWgfpX7M3T+zJHtWzeQ5I6mGC+yZ1Jmm/pPbNg2KDoBAgQKDHAtqjHh88m06AAIE+CqzW\nQerDvtS2n5Q8PanfHI0rn8jIpyTnjptoHAECBAgQmIKA9mgKiKogQIDAvAj09S525edBsfPy\nKbIdBAgQWG4B7dFyH397T4DAggn09QzSnjkOJyZdPyi2nqF0eItjvlvmuVuL+cxCgAABAosl\noD1arONpbwgQIHDz73T6yLDRB/M9Y8Kd/K0sVzeAWK+8OTN8Zb2ZTCdAgACBhRPQHi3cIbVD\nBAgsu0BfzyCdkwPXPCj2HWscxNq/zTwo9u/WqHt40pvy5vrhEV4TIECAwFIIaI+W4jDbSQIE\nlkmgrx0kD+Zbpk+pfSVAgMD8CmiP5vfY2DICBAgspYAHxc7msDcPaqxbqk+7eDDftEXVR4DA\nVghoj2ajrj2ajbO1EFhqgb6eQWoOmgfFNhKGBAgQILCVAtqjrdS3bgIECExRoO8dpF1j8cNJ\n3a78U8l3k9HyExlxTfKx0QneEyBAgACBKQloj6YEqRoCBAhstUCfn4NUt9/+bPLR5P8mFyR1\nudZoeUFGPHt0pPcECBAgQGBKAtqjKUGqhgABAvMg0NcO0g7B+7PkuuTJyfHJ55K3J89PFAIE\nCBAgMAsB7dEslK2DAAECMxTo6yV2d4vREclPJvUw1yqnJC9LXplcntSttxUCBAgQINClwN1S\nufaoS2F1EyBAYMYCfe0g7RenurXq3494/be8v0PyB8mFyRmJQoAAAQIEuhLQHnUlq14CBAhs\nkUBfL7G7IF617Y8d4/ZfMu6vklOTuoGDQoAAAQIEuhK4IBVrj7rSVS8BAgS2QKCvHaSvxepd\nyeuT30/unDSlzizVb5Lq7FLdvOHeiUKAAAECBLoQ0B51oapOAgQIbKFAXztIRfaLyUeSZySH\nJMPl2rz52eS0pC5/UAgQIECAQFcC2qOuZNVLgACBLRDo62+Qiuqy5Jjkjkk952i0fC8jqtGq\n3yP94OhE7wkQIECAwJQEtEdTglQNAQIE5kGgzx2kxu+bzYtVhmevMt5oAgQIECAwTQHt0TQ1\n1UWAAIEtEujzJXZbRGa1BAgQIECAAAECBAgsqoAO0qIeWftFgAABAgQIECBAgMCGBXSQNkxm\nAQIECBAgQIAAAQIEFlVAB2lRj6z9IkCAAAECBAgQIEBgwwI6SBsmswABAgQIECBAgAABAosq\noIO0qEfWfhEgQIAAAQIECBAgsGEBHaQNk1mAAAECBAgQIECAAIFFFdBBWtQja78IECBAgAAB\nAgQIENiwgA7ShsksQIAAAQIECBAgQIDAogroIC3qkbVfBAgQIECAAAECBAhsWEAHacNkFiBA\ngAABAgQIECBAYFEFdJAW9cjaLwIECBAgQIAAAQIENiyw04aXsACB6Qocmup+ILloutXeUtt7\n8+qXbnnnBQECBAgQGC+gPRrvYiyBpRPQQVq6Qz53O1ydox2S53awZT+dOu/TQb2qJECAAIHF\nE9AeLd4xtUcEJhLQQZqIzUIdCLytgzrvkjoP6aBeVRIgQIDA4gpojxb32NozAq0E/AapFZOZ\nCBAgQIAAAQIECBBYBoFFOIO0Sw7UEcn+yb7JTckVyTnJ+YP3GSgECBAgQKBTAe1Rp7wqJ0CA\nwGwE+txBqm0/KXl6stcqXJ/I+Kck564y3WgCBAgQILBZAe3RZgUtT4AAgTkS6PMldm+M4zOT\nNyUPTe6R7JMcmNQZpWOTS5NPJUcmCgECBAgQ6EJAe9SFqjoJECCwRQJ9PYO0Z7xOTB6dnDHG\n7isZV5fYnZacmhyXnJUoBAgQIEBgmgLao2lqqosAAQJzINDXM0gHx65+a/SBFoZnZp6HtJhv\nUWapW2ZPO4tiYz8IECAwbQHt0eqi026Lqj6FAAECnQv0tYNUZ4cuS45ZR6jOkNWlduetM98i\nTL5DduLK5MYO8g8DoB0HQwMCBAgQ2C6gPbr1J0F7dGsTYwgQ6JFAXy+xq07AyckpyfHJ6cnF\nyeXJzsleyWHJCckhyVHJopfbZwd3T56YfHnKO1uXMj4/6evnZcocqiNAgMAtAtqjWyhueaE9\nuoXCCwIE+ijQ53/wvjTgZyevT8adSbo+4+s3SE9K6hu+ZSmfyI5O+4xZdTIVAgQIEBgvoD0a\n7/LJjP6X8ZMmHqs9mpjOggQItBXocwep9vG9yaFJ3bnuoGSPpC4zu2iQqzJUCBAgQIBA1wLa\no66F1U+AAIEZCfS9g1RM9WC+A5K9k+ZBsfvlde2bB8UGQSFAgACBmQhoj2bCbCUECBDoVqDP\nHaTadg+K7fbzoXYCBAgQWF9Ae7S+kTkIECDQG4G+3sWugD2YrzcfMxtKgACBhRbQHi304bVz\nBAgsm0BfzyDN6sF8P5sPxN1afChum3l2bTGfWQgQIEBgsQS0R4t1PO0NAQIEenvb5o0+mO8Z\nEx7rx2W5e7VYtjqadWtxhQABAgSWS0B7tFzH294SILAEAn09g1S37W4eFPuONY5T7d9mHhRb\nzxRqU+rOeV9tM6N5CBAgQGChBLRHC3U47QwBAgT6++BPD+bz6SVAgACBeRDQHs3DUbANBAgQ\nmKJAX88gFYEH803xg6AqAgQIEJhYQHs0MZ0FCRAgMH8Cfe4glaYH883fZ8oWESBAYBkFtEfL\neNTtMwECCynQ9w5Sc1AuzIuKQoAAAQIEtlJAe7SV+tZNgACBKQj0+TlIU9h9VRAgQIAAAQIE\nCBAgQOD7AjpI37fwigABAgQIECBAgACBJRfo6yV2u+e4/dAGjt03M++XNjC/WQkQIECAQBsB\n7VEbJfMQIECgRwJ97SDdN8Yf34DzaZm3noekECBAgACBaQpoj6apqS4CBAjMgUBfO0h/F7tf\nSv4w+UjyO8la5eK1JppGgAABAgQmFNAeTQhnMQIECMyrQF87SOX55mSH5E3Jy5MPJQoBAgQI\nEJi1gPZo1uLWR4AAgQ4F+n6Thj+JzfuTV3ZopGoCBAgQILCegPZoPSHTCRAg0BOBPp9Baojr\nt0UHJ7Uv1zcjDQkQIECAwIwFtEczBrc6AgQIdCGwCB2kukPdp7vAUScBAgQIENiAgPZoA1hm\nJUCAwLwK9P0Su3l1tV0ECBAgQIAAAQIECPRQQAephwfNJhMgQIAAAQIECBAg0I2ADlI3rmol\nQIAAAQIECBAgQKCHAjpIPTxoNpkAAQIECBAgQIAAgW4EdJC6cVUrAQIECBAgQIAAAQI9FNBB\n6uFBs8kECBAgQIAAAQIECHQjoIPUjataCRAgQIAAAQIECBDooYAOUg8Pmk0mQIAAAQIECBAg\nQKAbAR2kblzVSoAAAQIECBAgQIBADwV0kHp40GwyAQIECBAgQIAAAQLdCOggdeOqVgIECBAg\nQIAAAQIEeiigg9TDg2aTCRAgQIAAAQIECBDoRkAHqRtXtRIgQIAAAQIECBAg0EMBHaQeHjSb\nTIAAAQIECBAgQIBANwI6SN24qpUAAQIECBAgQIAAgR4K6CD18KDZZAIECBAgQIAAAQIEuhHQ\nQerGVa0ECBAgQIAAAQIECPRQQAephwfNJhMgQIAAAQIECBAg0I2ADlI3rmolQIAAAQIECBAg\nQKCHAjpIPTxoNpkAAQIECBAgQIAAgW4EdJC6cVUrAQIECBAgQIAAAQI9FNBB6uFBs8kECBAg\nQIAAAQIECHQjsFM31aqVwFwIHJituHvyto625q9T7593VLdqCRAgQGBxBLRHi3Ms7ckSCOgg\nLcFBXuJdrM7RHsm3OjD4sdS5Y6KD1AGuKgkQILBgAtqjBTugdmexBXSQFvv42rtt264Jwq90\nAPGG1PmDHdSrSgIECBBYTAHt0WIeV3u1gAJ+g7SAB9UuESBAgAABAgQIECAwmcAinEHaJbt+\nRLJ/sm9yU3JFck5y/uB9BnNT6jT7D3SwNV3U2cFmqpIAAQILK6A92n5otUcL+xG3YwSWQ6DP\nHaTa9pOSpyd7rXK4PpHxT0nOXWX6Voz+p6z0Dh2u+M6p+7wO61f1doFDM7h/8tEOQOofWR9M\n/qGDuusLhKr72x3UrUoCyyqgPRp/5Ks9+pfxk4ydooD2aIqYqiJQAn3uIL0x2/+fkj9M3p1c\nknwjuV1SHabDkicnn0p+PDkrmYeyczbiscn7p7wx9059ZydVv9K9wH5ZxW2TMzpY1fNT5/2S\nKzuoe8/U+Y7k4x3UfX3q/LOki+0+MfXWtndR6oxzbfe0S23vCcmO0654UN9nM6zOrrL1Atqj\nlcdAe7TSo+t32qNbC2uPVppoj1Z6rPtuh3XnmM8Z6kBXZ+jRyXr/QD0181yU/Fqy0VIdjge0\nWKh+y/WspH64v175TmbYNalv8qdd6h9iN0y70tRXn5Pax77VXdtc297FdlfdVW7cPpjqf7us\nu6t/rDcAXVhX3ba7Ef7+sM6QP/D7b73aIgHt0Xh47dFKF+3RSo965+/6rU1qTB/b0YVrj/p6\nBungfICqg/GB+iStU87M9GesM89qk5+cCfXbpvXKXTLDn68302D6gzPs6u5n5fJvLbdjo7Pd\nLQtcsNGFWsxffyAPSC5sMe9GZ6lL1e6UfG2jC7aYv24fXv//VEd92mXvVHh1Up3paZf6PNc2\nXzPtilPfQUkdxy46jV1+truqu/5BVH8bvpx0US7oolJ1blhAezSerKv/r2ptd0suSKZdtEe3\nFtUe3dqky892V3Vrj259HBdyTB3oi5PHr7N39Q/Y6iC9bZ35TCZAgAABApMIaI8mUbMMAQIE\n5ligvi3pY6mzR7slr0vqErh6Xd+M12+Pqvddv9/4maQueTsieXJSv1FSCBAgQIDANAW0R9PU\nVBcBAgQIbFrgUanh80k1UKO5LuNOSaqDpBAgQIAAgS4FtEdd6qqbAAECMxTYYYbr6nJVB6by\ng5L6XUjdQatuylC5KlEIECBAgMCsBLRHs5K2HgIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgMBOBRbnEbiZYU1rJQ1NP3cJ5kcsPZOfqFtVd3Ep6XtzqxiB1l8Rvz8sGdbAddROX\nuvHJpR3UPU9V1qW5dbdLhcCyCWiPFuOIa48W4zjWXmiP5uRY6iDN/kDUA8DqtrAKAQLzIVA3\neKlGqYvnTs3HHtoKAuMFtEfjXYwlsFUC2qOtkh9Zb18fFDuyG716W3fXq+c3vb9XW72xjf1Q\nZn9P8jsbW6xXc782W7t3ckKvtnpjG3tiZn9ecu+NLdaruesul/+Q+NKiV4fNxk5JQHs0Jcgt\nrkZ7tMUHYEqr1x5NCXIa1eggTUNx43VUo7TIl9nVNyDXL/g+1jevNy74PtYxrGO5yJ/Va7N/\nCoFlFtAe9f/oa4/6fwxrD7RHc3QcfWs6RwfDphAgQIAAAQIECBAgsLUCOkhb62/tBAgQIECA\nAAECBAjMkYAO0hwdDJtCgAABAgQIECBAgMDWCuggba2/tRMgQIAAAQIECBAgMEcCOkhzdDBs\nCgECBAgQIECAAAECWyugg7S1/tZOgAABAgQIECBAgMAcCeggzdHBsCkECBAgQIAAAQIECGyt\ngOcgzd7/wqzystmvdqZr/FrWdvFM1zj7ldU+1rMnFrlckp27aJF3MPt2RVLH8poF30+7R2Cc\ngPZonEr/xmmP+nfMxm2x9micinEECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAgU0LPDA1nJx8Pvnb5OikT+Wvs7HvHZMdhnaizT7uk/lfmHwyOTt5SbJjslXl\ntlnx+5L/OmYDat+emNS+n5/8WXJgMlra7HebeUbrneb756Sy8h5X+nxs75gd+p3kn5IvJx9I\nHp2Mljb+bT6bbeYZXbf3BOZNoM3/D/O2zcPb0+e/WcP7Mfpae7S9ve3rvzW0R6OfaO8JrCNw\n10z/dvLnybHJm5Lrk2OSPpSDs5E3JR9K3jGSpoPUdh/PzPL/kjwp+fWkXP402YpSjdEfJ7Vv\nLxuzAU/PuKuT6tCdkFSn7ktJ/SO5KW32u808TX1dDOtzVp+388ZU3udju1P25x+Sy5PXJk9J\n3p/U8TwuaUpb/zafzTbzNOs1JDCPAm3/f5jHba9t6vPfrLVMtUf9Prbao7U+3aYRWEXgbzL+\n0yPT/iLvzxkZN69vH5cNq3907r/GBrbZxycN6jl0qJ6fG4y7x9C4Wbx8QFbyT8l3kuuS0Q7S\nfhn3raQ6R03ZMy+uTF7UjMiwzX63mWeoyqm9vGNqajqA38zrcR2kPh/bn8k+1eeyPldNqQ77\n/0v+uRmRYRv/Np/NNvMMrdZLAnMp0Ob/h7nc8MFG9flv1mqu2qPtMn0+ttqj1T7dxhNYReAO\nGX9D8hsj04/J+/rH3b1Hxs/j25dmoy5aY8Pa7uO7U8dZI/XcLu+vTF4yMr7rt5/PCv4+OSyp\nzsNoB+nJGVfH56BkuJySN58bjGiz323mGa5/mq9fnsq+nvxC8r+ScR2kPh/bn8g+vSnZPRku\nb8yb+kxVaevf5rPZZp7ta/VfAvMp0Pb/h/nc+u1b1ee/Wau5ao/6f2y1R6t9uns6/jY93e4+\nbfY9s7Hl/IWRjf7XwfsDR8bP49v7ZaMuSH41+XDykaQ6fDsmVdru430y76jDNRn3lWTWDidk\nnUcl4zoNGX1zx7XOLNUldcOltr/Z1jb73Wae4fqn+bo6c3dLarha6fOx/UB26qlJnQVsys55\nUd9CNmds2/q3+Wy2mafZDkMC8yjQ9v+Hedz2Zpv6/Der2YfRofZou0ifj632aPRT3fP3Okjd\nH8A7DlZx2ciqvjF4X5dyzXupP1rVmXhY8sGkvoWsH8afmlRpu4813+U3L7HyP1fk7awdzlq5\nCbd6t9q21nGr/b990ma/28xzq5VPacRnU8/31qnrfpm+SMf25dmfvZLm0si2/jXfep/NNvOk\nGoXA3Aq0/f9hbncgG3a/ZJH+ZpW19qgUFu/Yao+2H9de/nenXm51vza6LtOqUmcjhkvzfrfh\nkXP4un7T8XvJhcnbB9v30gxflzw7eUTSdh9rvmuT0VIW8+iw2rbW9tf2ttnvNvNUfVtRFunY\n1r5UY/Tc5PnJx5Iqbf3bfDbbzLN9rf5LYD4F2v7/MJ9bv23bIv3N2qix9mi6f8836r+R+bVH\nG9Ga03mdQer+wHxtsIo7jayqvuWu8u3tg7n9bzWo/yNpOkfNhr5l8OJBGbbdx4syb7Pfg8Vv\nHtS4eXNYa1tro2t72+x3m3mqvq0oi3Js6+5Pf5Y8L6lO+6uTprT1X+t4N5/NNvM06zUkMI8C\nbf9/mMdtr21alL9ZG/Vd629P1aU92i46D3+rtUcb/XTP6fw6SN0fmPrDVmX/7YNb/ttcUvbF\nW8bM54tds1n3TZpLM5qtrEvNmtJ2H2u+Zr+bZWu4bzJvDrWtuw+SwS2ljmNNu2YwrAlrHdu2\nNlXPrMsiHNtdgvbOpH539Pjk9clwaetf86332Wwzz/C6vSYwbwJt/3+Yt+1utmcR/mY1+7KR\nYR037dH3bxa1Vptbrlv1t1p7tJFPtXkJROCTSf0jbri8Jm/qNw/1P9Q8l7old31rV5fUDZe6\njKnG/+RgZJt9rGXqNzH1G56mPDgvqp7HNCO2YPjNrPNlI+s9JO9vSH5haHydNq9LDd8yNK7N\nfreZZ6jKTl7+r9R63kjNi3Bs/zb7VJ31B47s2/DbNv5tPptt5hler9cE5lGgzf8P87jdtU2L\n8DdrPVvt0Uqh+rvbl39raI9WHjvvCKwrcFzmuD55ZlJnYp6QVEfhxKQP5cxs5HeTJyf1zc2v\nJZckH0qa0mYfa9/r9svvSA5I7pV8JnlXspVlXINU2/OXyZeTuoxw76TOTtQNJcqgKW32u808\nTX1dDcd1kGpdfT62T8z2V8P558kvj0lzhryNf5vPZpt5shkKgbkWaPP/wzzvQJ//ZrVx1R71\n898a2qM2n27zEBgj8IKMuzqpf9B9JXl50pdSnYNTk9r2yjVJ/eaj7uQ2XNrs449mgS8lVU91\nEqsTcpdkK8tqDdJe2aj3JDcmtb1nJz+djJY2+91mntF6p/l+tQ5Sn4/thwJUx2W17DwE2Ma/\nzWezzTxDq/WSwFwKtPn/YS43PBvV579ZbUy1R9//m35NwPrybw3tUZtPt3kIrCJw24z/oaQu\n1epj2T0bfY9k+B+eo/vRdh/vmgVHO1ijdc3L+z2zIXXGa63SZr/bzLPWOrqctgzHtq1/m89m\nm3m6PF7qJrBZgbb/P2x2PV0tvwx/s8bZaY+2q7T9/M7r3+ppbv+87uO4z69xBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAwKoC\nu606xQQCBAgQIDA7Ae3R7KytiQABAp0KPC21f2kkn8r7P00ennRVzk7FL56w8odluTcm5yc3\nJd9M3prcPemiPDiV/mAXFauTAAECBG4R0B7dQrHqC+3RqjQmTFNgp2lWpi4CPRTYI9t81+T3\nk28lOybVGTgqOS75ueQvk2mXO6fCO01Q6U9nmb9IPpecmpyTPCx5fPIjyf2Sq5JplYelog8m\nhyWXJgoBAgQIdCOgPVrb9WGZrD1a28hUAgQITEXguamlzsIcNFLb7fL+vOTDI+On9farqeg1\nG6zsIZn/6uSdY5Y7MuNuSP7HmGmbGfUzWbh8Dt1MJZYlQIAAgXUFtEdrE2mP1vYxdYoCt5li\nXaoisEgC12Rn6izNviM7Vf/PPDWps0ofSn4vOTgZLm3mGZ6/Xt8n+V/J8fVmlfKUjK+zXL80\nZvpZGfeCpM4e1VmwpjwwL96cfCT5s+ToZLjskzevSupbuXcn/z25Y1KlLmX41ZtfbR9/4uC1\nAQECBAjMTkB7pD2a3afNmm4WqH/IKQQI3FrgxzPq4clbRyadlvdvSOoM0BlJdSLqMrcfTZrS\nZp5m3hreK/lActekOl6rlaMy4e+SK1aZ4dUZ/6KkziRVOS75h2T/5G+SHQbDl2VYpTpS70+O\nSare2o8nJZ9MalqdraoOWZVvJFfe/Mp/CBAgQGCWAtoj7dEsP2/WRYAAgW3NJQ1fi8WFyVeS\n7yV1WdlbkuHyhLyp8dWhaMpt8+Jfk88m1QFpM09mu7mDVZfY3SO5OKkOTF3Wt1rZKxNq3f99\ntRlGxtfvm6pT89aR8b+b99cn903qrFXV+cikKQ/Ni/clhwxG/EyGNc+hg/cGBAgQINCNgPZI\ne9TNJ0utBAgQ2KBA0yDVpXInDVJniOqSs+uSVyRN+YO8uKB5MzSsjk51IuoMUJt5atGvJu9K\nLkrqzM1tk7VK00Gqy+HalDr7VdtUl9gNlzrjVeNrv2+fVGfwn5NnJqOXCmbUNh2kUlAIECDQ\nvYD2SHvU/afMGggQINBCoGmQDhoz729nXHUm6mxLlboc7cP1YqT8VN7XfHUZRJt5avHqINUy\ndfbphmT4Er28HVv+LWOrU7Va2S0Tmo7WL+d11b/PyMx1WW1dNlcdwio/ltTZr5q3Up2lpyVN\n0UFqJAwJECDQrYD2SHvU7SdM7a0F/AapNZUZl1CgfktU5T9uH9x8yVpdujZadh2M+GKG30jW\nm6dZvi5lu3dSZ5DenDT15OXYUs9nqtt47zx26rZtr8v4byb/LqntqHLH7YMV/6311LZW+VhS\nl9rVMs9O6vdNb0yemCgECBAgMB8C2qP5OA62YkkEdJCW5EDbzYkE6qYIVT6/fbDt3AzrN0MH\nDt43g5/Mi0uTOivUZp5muTpbUzdCeEpy9+TlyVrljzKxbrhQl/GNlrrRwy8mta3nJ7UdVWrb\nhsvD8qbOMn06+ffJGcndklru9clPJN9JHpRUuXH7YJu/FQMIAwIECGyBgPZIe7QFHzurJEBg\nWQWemx2vS8tekNRlaZW6tfXJSd0y+zNJc2anzsZUR+hXl6ZgAABAAElEQVTvksOTOlP0n5Pr\nkuclVdrMU/NVZ6p+u9SUV+ZFXWr3482IVYb/X8bX9ta3iccnNf//TC5KrkwekDTllLyoM0k/\nm+yRPCT51+SjyS7J7ZIvJe9OqrN0QPIbSdX/+KTKQ5N6/1tJ7bNCgAABAt0IaI+0R918stRK\ngACBDQo0DVJ1AprUGZQ6C1O/06kzNsOlLkc7K2nmvSCvq1MxXNrMM9pBqg5LrbPO5NRvidYq\ndSlcnfmp7Wy244N5Pdw5ytttuyd/lFyb1HzfTk5N7pA05RF5cWZSZ7JqnrrE7teSplTn8CNJ\nTat1KAQIECDQjYD2SHvUzSdLrQQIEJiRQJ0puus662ozzzpVrDm5LpU7LLn9mnNtv6Subtu9\n0xrzVUfobmtMrzNQdcZJIUCAAIH5EmjT1rSZZzN7pT3ajJ5lCRAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQJrCeyw1kTTCCyAwA9lHw4asx83ZtzVydeSL42ZvlPGPWQw/pIMPzdmnkUbdZvs\n0NHJjsnZyVeT0bJHRtR848p3M/K6cROMI0CAAIFt2qP2H4I27VFT2/55cZ+k2vN/Tqp9VwgQ\nIEBgDYFXZ9pN6+QTmX7USB13Glrm7SPTFvXti4f2+dgxO1mdxupUrub5c2OWMYoAAQIEtgto\nj9p/EtZrj6qmw5PPJsNt0mfy/ohEIbApgdW+Cd5UpRYm0DOBH8n2vic5pGfbPc3NfXgq+611\nKrxnpt9unXlMJkCAAIHJBbRH27a1aY+ODPE/JPceUDdnje6b96cnew7GGxCYSKC+EVYILIvA\nM7Oj70rq0tL6cuCA5LeTRyR3TH4+eVlS5crkJ29+tW3bxYPhIg52z069IPn1ZL0vTO4/BPC6\nvP7G0Pt6Wd/kKQQIECCwvoD26NZGG2mPXprFd0u+l1T79dakxv2X5K7JMcn/ThQCEwnoIE3E\nZqGeClye7b5waNsvyOvqHFQHqUpdH96U6kQ130B9uxmZYXUSar7rk79K7pw8PDkkqd8pVQes\n/mAPl/oj/tjk7kk1APWbpo8ndWnfeuXozPDv1psp09+Z/FuL+UZn+VRGNPWXzw+MzjD0/n6D\n17Xvz0+uGZrmJQECBAi0F9Ae3dqqbXt0RBZtvsA8Ja//aFDVyzOs9rXa+apLIUCAAIFVBF6d\n8c31yeN+V/MrQ9OPH6rjTkPjh3+DdPJgfHWaqvPynaH5aj3VSaozU015cF7UGahmG4aHVdd6\n5R2ZYXiZ1V4/Zr2KVpl+WcZXY3Jc8rSkqX+c1QcH07+QYXUqX5g8KalOokKAAAECawtoj9b2\nadsePTnVNG3VE/N65+QByf6JQmAqAs4gTYVRJT0ReGq282FJnR3aMakzOnX2p8oZSZ0Raltu\nnxlr/nOSTybVQamO0b2SX09+I6lS327tm3wpOS25Ivnp5EHJM5K/Tf4m2apSDfYbkroDXfms\nVZozSHUG7cyhGauzWB3Ntw2N85IAAQIEVhfQHt3apm17dJehRets0u8ndYfVKnV1xgnJBYlC\ngAABAqsIDH9j13zjNDqs39IcPLL8emeQqo66rK0p9Ue6qff9g5H7DY2rSwCqU1alOlevSX45\nuU+yVtktE+/YItP4sqMa7GYfRs8gHTQ07fq8/mjy2aFx1+X14YlCgAABAuMFtEfjXcaNXas9\n+oMs0LRVNaw26ctD4+oLyWpnFQITC0zjH1UTr9yCBGYs8IWs7/KkziDVKfnqBNWPOWv4meRZ\nyf9O2pbXD81Yy9dZmPqj3PyO5+t5/c2kOjhPTx6X1GVq1YGqhvJryXrlDplh9/VmyvRrk2ok\nuirXpOIXJIckf5b836RKnS373aT+lrw4eUKiECBAgMDaAtqjtX3Wmjr8b9dqZ+uKjOoU1ZUb\nr0qqXX9u8tJEIUCAAIExAsPf2I2eFanZH5hckdS3UDW8bVKlOk3NN1TjfoNU00bP/tQf6hp/\nbtKU6jBUx6WpqxnemHHvTO6SrFXekYnNMmsNH7NWJS2nPXVoXeOsxlVTncFm/z4/bgbjCBAg\nQOBmAe1R+w/CWu3RS1JN0x7+yVCV1W7fMJj23qHxXhLYsMBtNryEBQgslsDZ2Z33DXapzvQ0\nv0lqs5d1VmW4VKdntJyWEYckr0j+Kak/6lXqLNYxSU3vc6kzctWxrFKNk0KAAAECkwloj9q5\nfXVotuHX1RbVpXZV3Dxou4P/TigwfJpywiosRqD3Avce2oPRTs/QpFu9bDo7t5owNKJu3HBw\ncnLywqTOuPxUUt8k7p/UpQH149K60cG48oaMfPe4CSPjPjPyftpvT0iFv5rU/jw7+aukyhHJ\n3je/2rbt/MHQgAABAgQmE9Aere823N5Ve/qiwSL7ZHjQ4PW/DoYGBCYS0EGaiM1CPRV4RLa7\nOctRZ093Tf5T0jRI38vrs5JplZ9NRX8xqOyMDOuMUZ1xqcvmnptUB6k6Rt9JVisfWm3CjMfX\nt3RHDtZ5UoYXJt9M6nVT3ty8MCRAgACBNQW0R2vyrDmxzrR9LPmx5AHJS5K3Js9L6uqMKh++\n+b/+Q4AAAQJjBepMTZ3pWS91edzjh2qojlSzzNuHxteZoGb8IUPj62XzvKNzB+N3zPAjSTN/\ndcD+Mbl6aFzzzVdGbXl5arag2dZjx2xNXQ7YTK9hmTXvqwO4U6IQIECAwHgB7dF4l3Fj12uP\nHpaFrkqaNmh4WG3wbROFwMQC9S26QmAZBerGAvXH9evJ25JHJXVmZ5qlfixap/9fl1yZ1Bmr\n+ye3Sy5JnpO8LOlLOTEb+qqkOnhV6pu6Oov0e8ljkjJVCBAgQGBjAtqjjXnV3B9Ofjz556Qp\n1eZWe/7QpB49oRCYWKA5FTlxBRYkQKCVQH2bdZdkr+SipDnblJe9K7Uvdx9sdf3uqL65UwgQ\nIECgHwKL1B6V+A8kBybnJfXFp0KAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgsm8AOC7DDu2Qfjkj2T/ZNbkquSM5Jzh+8z0AhQIAAAQKdCmiPOuVVOQECBAis\nJ7BTZnhFcnlSnaJxOTvjD08UAgQIECDQlYD2qCtZ9RIgQIDAhgT+JHN/K3lV8pDksOQHk7sk\n902ekLw7uTY5MlEIECBAgEAXAtqjLlTVSYAAAQIbEtgzc9+QPLLFUqdmnte2mM8sBAgQIEBg\nowLao42KmZ8AAQIEOhG4X2q9PqnLGtYrT8sM/7jeTKYTIECAAIEJBLRHE6BZhAABAgSmL3Cb\nVHlx8vh1qq4O1JnJ29aZz2QCBAgQIDCJgPZoEjXLECBAYI4FdpzjbVtr0+qGDLslr0seMHhd\nd7HbKzk4qW/0fiZ5Q1J3uHtyckmiECBAgACBaQpoj6apqS4CBAgQ2LTAo1LD55Nxd7C7LuNP\nSaqDpBAgQIAAgS4FtEdd6qqbAAECMxRYhOcgFdeByUHJHsmVyUWDXJWhQoAAAQIEZiWgPZqV\ntPUQIECgI4E2NznoaNVTq7YezHdAsnfSPCh2v7yuffOg2CAoBAgQIDATAe3RTJithAABAgRW\nE6gOkAfFrqZjPAECBAjMSkB7NCtp6yFAgACBNQU8mG9NHhMJECBAYEYC2qMZQVsNAQIEZiHQ\n198g1YP5vpE8OjljHah6UGz9JunX1plv3OT7Z+Sdx00YGVe/f6oG0m+eRmC8JUCAwIILaI8W\n/ADbPQIECPRFYFYP5vtYQOqmD+vlxszzzL7g2U4CBAgQmJqA9mhqlCoiQIAAgc0IzNuD+aoD\ndfRmdsiyBAgQINBLAe1RLw+bjSZAgMDqAvXD0j6WOmNzclLPOTo+OT25OLk82TmpB8YelpyQ\nHJIclSibE7hnFi/bLsplqfSrXVSsTgIECHQsoD3qGHhM9dqjMShGESBAoBGYlwfzLfoZpLqE\nZNzDeKc17svNATUkQIBATwW0R7M5cNqj2ThbC4GlFujrGaTmoL03Lw5NPJivEelmeLtBtftn\nePWUV/G41PfKKdepOgIECMxaQHs0G3Ht0WycrYXAUgv0vYPUHLwL86KidCvwzVQ/7Q7Sd7vd\nZLUTIEBgpgLao9lwa49m42wtBJZSoM8dpPphbF37PVx2y5vHJ/X7o0uS+kbv/EQhQIAAAQJd\nCWiPupJVLwECBAi0FrhD5qzfv/zc0BLVKfriYHzz25jr8v4FQ/N09XLRf4N05MB1lw4Aj02d\n1ZlVCBAg0EcB7dFsj5r2aLbe1kZgKQXqW69FKX+aHakzSM9J6rcyP5b8cfLy5LGJQoAAAQIE\nZiGgPZqFsnUQIECgI4E+X2I3TLJf3jww+a/J7w0mXJzhx5PDk7oV+F8nCgECBAgQ6FJAe9Sl\nrroJECAwA4FFOYNUl9TV75H+cozZ2zOunpmgECBAgACBrgW0R10Lq58AAQIdC/S9g3RwfG6f\n1G9YPpbcNxktj8wId7gbVfGeAAECBKYpoD2apqa6CBAgQGDDArtniWuT+qbuhuRzSd2trjpK\n+yZVfjg5I6l5npB0WdykYXJdN2mY3M6SBAhsvYD2aLbHwE0aZuttbQSWUqCvv0H6To5WNUr3\nTuqp2vcfDKtz1Nxp7Zi8/onkxclpiUKAAAECBKYtoD2atqj6CBAgQGCqAjsM1XZgXt9p6H2X\nL51BmlzXGaTJ7SxJgMD8CmiPujk2ziB146pWAgSGBPp6BmloF1a8rMvpmuJ3R42EIQECBAjM\nWkB7NGtx6yNAgMCUBPp+k4YpMaiGAAECBAgQIECAAAEC27bpIPkUECBAgAABAgQIECBAYCCg\ng+SjQIAAAQIECBAgQIAAgYGADpKPAgECBAgQIECAAAECBAYCOkg+CgQIECBAgAABAgQIEBgI\n6CD5KBAgQIAAAQIECBAgQGAgoIPko0CAAAECBAgQIECAAIGBgA6SjwIBAgQIECBAgAABAgQG\nAjpIPgoECBAgQIAAAQIECBAYCOgg+SgQIECAAAECBAgQIEBgIKCD5KNAgAABAgQIECBAgACB\ngYAOko8CAQIECBAgQIAAAQIEBgI6SD4KBAgQIECAAAECBAgQGAjoIPkoECBAgAABAgQIECBA\nYCCgg+SjQIAAAQIECBAgQIAAgYGADpKPAgECBAgQIECAAAECBAYCOy2AxC7ZhyOS/ZN9k5uS\nK5JzkvMH7zNQCBAgQIBApwLao055VU6AAIHZCPS5g1TbflLy9GSvVbg+kfFPSc5dZbrRBAgQ\nIEBgswLao80KWp4AAQJzJNDnS+zeGMdnJm9KHprcI9knOTCpM0rHJpcmn0qOTBQCBAgQINCF\ngPaoC1V1EiBAgMCGBPbM3Dckj2yx1KmZ57Ut5tvMLFdm4aM3U8GcL1sdzLp0sS4fmXapjuwl\n065UfQQIEJiRgPZoRtCD1WiPZuttbQSWUqCvZ5AOztGqf7B/oMVROzPzPKTFfGYhQIAAAQIb\nFdAebVTM/AQIEJhzgb52kOoGDJclx6zjW9eF1xmK89aZz2QCBAgQIDCJgPZoEjXLECBAYI4F\n+nqThhtjenJySnJ8cnpycXJ5snNSN204LDkhOSQ5KlEIECBAgMC0BbRH0xZVHwECBAhsSuBR\nWfrzSV1uN5rrMq46UHXDhq6L3yBNLuw3SJPbWZIAgfkR0B7N5lj4DdJsnK2FwFIL9PUMUnPQ\n3psXhyZ157qDkj2S6qxcNMhVGSoECBAgQKBrAe1R18LqJ0CAwIwE+t5BKqa6s9oByd7Jvkmd\nSdovqX3zoNggKAQIECAwEwHt0UyYrYQAAQLdCvS5g1Tb7kGx3X4+1E6AAAEC6wtoj9Y3MgcB\nAgR6I9DXu9gVsAfz9eZjZkMJECCw0ALao4U+vHaOAIFlE+jrGaR6MN+JyaOTM8YctK9kXN16\n9bSkHhR7XHJWstFSy967xUK7Zp76HZRCgAABAssloD1aruNtbwkQWAKBvnaQNvpgvmdMeCzf\nkuXu1mLZ3808l7aYzywECBAgsFgC2qPFOp72hgABAr0VqEsDL04ev84eVAfwzORt68y32clu\n8z25oNt8T25nSQIEtl5AezTbY+A237P1tjYCSynQ1zNIHsy3lB9XO02AAIG5E9Aezd0hsUEE\nCBBYbgEP5pvN8feN3WycrYUAgf4KaI9mc+y0R7NxthYCSy3Q1zNIzUHzYL5GwpAAAQIEtlJA\ne7SV+tZNgACBKQr0vYPUUFyYF5WmPCgv6lumU5oRhgQIECBAYAYC2qMZIFsFAQIEuhTo83OQ\n1nJ5TCb+5lozmEaAAAECBGYgoD2aAbJVECBAYJoCfT2DdHgQ1jo7tG+m3yE5d4BVz0r6jcFr\nAwIECBAgMC0B7dG0JNVDgACBORHoawepnjlUZ7/ulfx98oVkuNwvb26bfHow8oLB0IAAAQIE\nCExTQHs0TU11ESBAgMCmBHbN0q9PvpOMPgj2pIw7J5lV8RykyaU9B2lyO0sSIDAfAtqj2R0H\nd7GbnbU1EVhagT7/BumqHLVnJfWw2Bcn70n2TxQCBAgQIDBLAe3RLLWtiwABAh0L9LmD1NDU\nrVXrGvBrkvrNUXWYFAIECBAgMGsB7dGsxa2PAAECHQj09TdIoxSXZcTjkqcmb0nqsruvJwoB\nAgQIEJilgPZoltrWRYAAgQ4EFuEM0jDLm/KmbtDwyeSzwxO8JkCAAAECMxTQHs0Q26oIECAw\nTYFFOYM0bFJ3tDt6eITXBAgQIEBgCwS0R1uAbpUECBDYrMCinUHarIflCRAgQIAAAQIECBBY\nYgEdpCU++HadAAECBAgQIECAAIGVAjpIKz28I0CAAAECBAgQIEBgiQV0kJb44Nt1AgQIECBA\ngAABAgRWCuggrfTwjgABAgQIECBAgACBJRbQQVrig2/XCRAgQIAAAQIECBBYKaCDtNLDOwIE\nCBAgQIAAAQIEllhAB2mJD75dJ0CAAAECBAgQIEBgpYAO0koP7wgQIECAAAECBAgQWGIBHaQl\nPvh2nQABAgQIECBAgACBlQI6SCs9vCNAgAABAgQIECBAYIkFdJCW+ODbdQIECBAgQIAAAQIE\nVgroIK308I4AAQIECBAgQIAAgSUW0EFa4oNv1wkQIECAAAECBAgQWCmgg7TSwzsCBAgQIECA\nAAECBJZYQAdpiQ++XSdAgAABAgQIECBAYKXATivf9vLdLtnqI5L9k32Tm5IrknOS8wfvM1AI\nECBAgECnAtqjTnlVToAAgdkI9LmDVNt+UvL0ZK9VuD6R8U9Jzl1lutEECBAgQGCzAtqjzQpa\nngABAnMk0OdL7N4Yx2cmb0oemtwj2Sc5MKkzSscmlyafSo5MFAIECBAg0IWA9qgLVXUSIECA\nwIYE9szcNySPbLHUqZnntS3m28wsV2bhozdTwZwvWx3MunSxLh+ZdqmO7CXTrlR9BAgQmJGA\n9mhG0IPVaI9m621tBJZSoK9nkA7O0ap/sH+gxVE7M/M8pMV8ZiFAgAABAhsV0B5tVMz8BAgQ\nmHOBvnaQ6gYMlyXHrONb14XXGYrz1pnPZAIECBAgMImA9mgSNcsQIEBgjgX6epOGG2N6cnJK\ncnxyenJxcnmyc1I3bTgsOSE5JDkqUQgQIECAwLQFtEfTFlUfAQIECGxK4FFZ+vNJXW43musy\nrjpQdcOGrovfIE0u7DdIk9tZkgCB+RHQHs3mWPgN0mycrYXAUgv09QxSc9DemxeHJnXnuoOS\nPZLqrFw0yFUZKgQIECBAoGsB7VHXwuonQIDAjAT63kEqprqz2gHJ3sm+SZ1J2i+pffOg2CAo\nBAgQIDATAe3RTJithAABAt0K9LmDVNvuQbHdfj7UToAAAQLrC2iP1jcyBwECBHoj0Ne72BWw\nB/P15mNmQwkQILDQAtqjhT68do4AgWUT6OsZpHow34nJo5Mzxhy0r2Rc3Xr1tKQeFHtcclay\n0fIfssBdWyxUjnX3PIUAAQIElktAe7Rcx9veEiCwBAJ97SBt9MF8z5jwWD43y92nxbLVOarf\nPSkECBAgsFwC2qPlOt72lgCBJRDoawdp+MF871jjONX+beZBsUevUffwpLpz3peHR3hNgAAB\nAkshoD1aisNsJwkQWCaBvnaQPJhvmT6l9pUAAQLzK6A9mt9jY8sIECCwlAIezDebw+7BfLNx\nthYCBPoroD2azbHTHs3G2VoILLVAX88gNQfNg/kaCUMCBAgQ2EoB7dFW6ls3AQIEpijQ9w5S\nQ3FhXlQUAgQIECCwlQLao63Ut24CBAhMQWBROkjDFHVHubo9992Sv0vOTRQCBAgQIDBrAe3R\nrMWtjwABAlMQ6HMHqR5y+8LkscnXkpclX0w+m+ybVLkpeXXym/VGIUCAAAECHQhojzpAVSUB\nAgS2SqBtB2nXbOAOG9jI721g3klnfU0WfFby4eRByd8kf59cnDwnqc7SU5PnJ59I/iJRCBAg\nQKDfAtqjfh8/W0+AAIGFEfhm9qTOxrTJVTPY62ogr01+YbCu3TJ8X1Lb9+DBuGbwobyozlOX\npZ6D1PaZSV1uR1d1u2tQV7LqJUBgowLao7XFtEdr+6w1tZ6beMlaM5hGgMByCLQ9g1RnZP4o\nefcgl2a4f3JC8iPJi5KrkyrXbx90+t/DU/uOyV8N1lJnrE5J/n1SvzsaLn+ZN78yPMJrAgQI\nEOitgPaot4fOhhMgQGCxBM7K7jxvzC7Vddf/krxqzLQuR901ldfZoscMreSOeV1nlEYvBTw9\n4/52aL4uXvrGbnJV39hNbmdJAssooD1a+6hrj9b2WWuq9mgtHdMIEFghsGfe1ZPC914x9vtv\n6tu8+o3PrMu7ssJqCF6bjDsTVmeT3pNUR+pxSZdFgzS5rgZpcjtLElg2Ae3R+kdce7S+0Wpz\naI9WkzGewJIJ1Bmg9Ur9sf1G8sOrzFgdka14BtHjs97fTuos0rjL+p6U8Y9Inpe8M1EIECBA\noN8C2qN+Hz9bT4AAgYUSqN8f1e+OfjWp3/8cmPxo8ubkhuThyVaVes7EuFKX4e0xbkIH43xj\nNzmqb+wmt7MkgWUU0B6tfdS1R2v7rDVVe7SWjmkElkhg3KVp43b/P2dknaV5/cjEuttL3ajh\ngyPjZ/n22lVW9uVVxhtNgAABAv0V0B7199jZcgIECPRCoG0HqTpH1SjV3erun9wl+WLyj8l3\nE4UAAQIECMxCQHs0C2XrIECAwBILtPkN0jDPPfPmHkl1rD6a1HuFAAECBAjMWkB7NGtx6yNA\ngMCSCLTtIN0hHnWr7I8lv58cl9w+OWvwfpcMFQIECBAg0LWA9qhrYfUTIEBgyQXadpBeF6f6\ntq46RicNzL6X4bOSX0yOHowzIECAAAECXQpoj7rUVTcBAgQIbGvTQap5fj755eTPk+8kVer5\nQicndSc7HaQgKAQIECDQqYD2qFNelRMgQIBACbTpIO2d+XZNvlQLjCk1/r5jxhtFgAABAgSm\nKaA9mqamuggQIEBgrECbDtLXs+TlSd3Oe7TskBFPSc4bneA9AQIECBCYsoD2aMqgqiNAgACB\nWwu0vc33/8yiv5XUw1fr0rq6QcPTkicnhybVSVIIECBAgEDXAtqjroXVT4AAgSUXaNtBemWc\ndk9+PbndwOxBGdaZpV9KPj4YZ0CAAAECBLoU0B51qatuAgQIELj5eUZtGF6Smd6XvCa5T7J/\nUr89Oie5MlEIECBAgMAsBF6SlWiPZiFtHQQIEFhSgTZnkOqZEy9Mrko+nHwoUQgQIECAwKwF\ntEezFrc+AgQILKFAm5s01G29v5DUnerqpgwKAQIECBDYCgHt0VaoWycBAgSWTKDNGaS6KcMf\nJvWA2M8kn04uToZLXWr31uERXhMgQIAAgSkLaI+mDKo6AgQIELi1QJsOUi317OTqpH57VBkt\np2eEDtKoivcECBAgMG0B7dG0RdVHgAABAisE2naQ7r5iKW8IECBAgMDWCGiPtsbdWgkQILA0\nAm1+g7Q0GHaUAAECBAgQIECAAIHlFljtDNLeYTk6qUvnvjHnRLtk+45I6tK/fZO6Rv2KpH4X\ndf7gfQYKAQIECPRQQHvUw4NmkwkQILCIAkdmp6qjUR2PptwpL16a/FAzYouH1bl7RVIPq61t\nHZezM/7wpOtSz4KqDuWilubzUJ3RaZdjU+El065UfQQILIxA8/dHe9TukGqP2jmNm0t7NE7F\nOAJLKLCRS+yqg/Si5OA5cXpjtuOZyZuShyb3SPZJDkyqIa0/dJcmn0qqgVUIECBAYDEEtEeL\ncRztBQECBOZSYLVL7OZyY4c2as+8PjF5dHLG0Pjm5Vfyoi6xOy05NTkuOStRCBAgQIDANAW0\nR9PUVBcBAgTmQGAjZ5DmYHNv2YQ6i1WX1H3gljGrvzgzkx6y+mRTCBAgQIDAxALao4npLEiA\nAIH5FOhrB6nODl2WHLMOa50hq0vtzltnPpMJECBAgMAkAtqjSdQsQ4AAgTkW6OsldjfG9OTk\nlOT45PTk4qRu2LBzsldyWHJCckhyVKIQIECAAIFpC2iPpi2qPgIECMypQHPXoG9n+64Y5FsZ\n1mVtdYecZlwzfHPGbUV5VFb6+aS2azTXZVx1oI5Iui7uGjS5cJ3hcxe7yf0sSWDRBbRHGzvC\n2qONeQ3PrT0a1vCawBILrHYGqS5f+z8bcKk7xW1FeW9WemhSd647KNkjqcbhokGuylAhQIAA\ngf4KaI/6e+xsOQECBHopsFoH6V+zN0/syR7Vs3kOSOphgvsmdSZpv6T2zYNig6AQIECgxwLa\nox4fPJtOgACBPgqs1kHqw77Utp+U/P/t3Q+0bFV9H/BH+KMgCOJfVP4ZKFaMUtuaaKKyYmpa\nGy2xJllEFCKJqTa1tqa6bJsmVUNtTJMYE5Mgra6wRIMkaRpNJIhYNAZQlwY1FawJCALWPyAY\nFfljvz/uPY958+bee+a9OTPnnPvZa33fzJw5s8/en3Pu3Xe/c2bmRUm952hW+XAWnpl8YtaT\nlhEgQIAAgQUIGI8WgKgKAgQI9EVgqJ9iV36+KLYvR5F2ECBAYHsLGI+29/7XewIERiYw1DNI\nh2Y/nJ50/UWx9R1K39Vinx+UdY5psZ5VCBAgQGBcAsajce1PvSFAgMA979MZIsO8X8z34j3s\n5M/ndfUBEFuVt2SF67dayfMECBAgMDoB49HodqkOESCw3QWGegbpyuy45otiL9hkJ1b/9uaL\nYj+0Sd2TT52TB3dOLnCfAAECBLaFgPFoW+xmnSRAYDsJDHWC5Iv5ttNRqq8ECBDor4DxqL/7\nRssIECCwLQV8UexydnvzRY31keqLLr6Yb9Gi6iNAYBUCxqPlqBuPluNsKwS2tcBQzyA1O80X\nxTYSbgkQIEBglQLGo1Xq2zYBAgQWKDD0CdKBsfj7SX1c+UeTv02my9Oz4Pbkg9NPeEyAAAEC\nBBYkYDxaEKRqCBAgsGqBIX8PUn389ieTDyT/O7kmqcu1psursuCl0ws9JkCAAAECCxIwHi0I\nUjUECBDog8BQJ0j7BO/c5I7kjOR5yaeS30temSgECBAgQGAZAsajZSjbBgECBJYoMNRL7I6J\n0eOTZyT1Za5Vzktem7wu+XJSH72tECBAgACBLgWOSeXGoy6F1U2AAIElCwx1gvSwONVHq/7F\nlNd/zONDkt9KrksuTBQCBAgQINCVgPGoK1n1EiBAYEUCQ73E7pp4Vdv/2Qy3f5Nl/zM5P6kP\ncFAIECBAgEBXAtekYuNRV7rqJUCAwAoEhjpBujFW70remPxG8oikKXVmqd6TVGeX6sMbTkwU\nAgQIECDQhYDxqAtVdRIgQGCFAkOdIBXZTySXJi9Ojksmy7fy4DnJO5O6/EEhQIAAAQJdCRiP\nupJVLwECBFYgMNT3IBXVl5JTksOS+p6j6fL1LKhBq96P9ODpJz0mQIAAAQILEjAeLQhSNQQI\nEOiDwJAnSI3fLc2dDW6v2GC5xQQIECBAYJECxqNFaqqLAAECKxIY8iV2KyKzWQIECBAgQIAA\nAQIExipggjTWPatfBAgQIECAAAECBAjMLWCCNDeZFxAgQIAAAQIECBAgMFYBE6Sx7ln9IkCA\nAAECBAgQIEBgbgETpLnJvIAAAQIECBAgQIAAgbEKmCCNdc/qFwECBAgQIECAAAECcwuYIM1N\n5gUECBAgQIAAAQIECIxVwARprHtWvwgQIECAAAECBAgQmFvABGluMi8gQIAAAQIECBAgQGCs\nAiZIY92z+kWAAAECBAgQIECAwNwCJkhzk3kBAQIECBAgQIAAAQJjFTBBGuue1S8CBAgQIECA\nAAECBOYW2G/uV3gBgcUKHJ/qHpjcsNhqd9b2ntx74c5H7hAgQIAAgdkCxqPZLpYS2HYCJkjb\nbpf3rsM1OdoneXkHLXtW6nxsB/WqkgABAgTGJ2A8Gt8+1SMCeyRggrRHbF7UgcDbO6jzkanz\nuA7qVSUBAgQIjFfAeDTefatnBFoJeA9SKyYrESBAgAABAgQIECCwHQTGcAbpvtlRj0+OSB6a\nfDu5ObkyuXr9cW4UAgQIECDQqYDxqFNelRMgQGA5AkOeIFXbX5O8KDl8A64PZ/mZySc2eN5i\nAgQIECCwtwLGo70V9HoCBAj0SGDIl9idHceXJOckT0senTwkOTKpM0o/mnwx+Wjy3YlCgAAB\nAgS6EDAedaGqTgIECKxIYKhnkA6N1+nJM5MLZ9hdn2V1id07k/OTU5PLE4UAAQIECCxSwHi0\nSE11ESBAoAcCQz2DdGzs6r1GF7cwvCjrPLXFemNZpT4ye9EZi41+ECBAYNECxqONRRc9FlV9\nCgECBDoXGOoEqc4OfSk5ZQuhOkNWl9pdtcV6Y3j6kHTituTuDnLZOtC+67duCBAgQGBNwHi0\n+5FgPNrdxBICBAYkMNRL7GoS8KbkvOR5yf9Kbkq+nByQHJ6ckJyWHJc8KRl7uV86eHDy/ORz\nC+5sXcr4ymSox8uCOVRHgACBnQLGo50UO+8Yj3ZSuEOAwBAFhvwH76sDfkXyxmTWmaQ7s7ze\ng/SCpP6Hb7uUD6ejiz5jVpNMhQABAgRmCxiPZrt8JIs/PfupPV5qPNpjOi8kQKCtwJAnSNXH\n9yTHJ/XJdUcn90/qMrMb1vON3CoECBAgQKBrAeNR18LqJ0CAwJIEhj5BKqb6Yr6HJw9Kmi+K\nfVjuV998UWwQFAIECBBYioDxaCnMNkKAAIFuBYY8Qaq2+6LYbo8PtRMgQIDA1gLGo62NrEGA\nAIHBCAz1U+wK2BfzDeYw01ACBAiMWsB4NOrdq3MECGw3gaGeQVrWF/M9JwfEMS0Oiv2zzoEt\n1rMKAQIECIxLwHg0rv2pNwQIEBjsxzbP+8V8L97Dff3Ded1jWry2Jpr10eIKAQIECGwvAePR\n9trfekuAwDYQGOoZpPrY7uaLYi/YZD9V//bmi2LrO4XalPrkvM+3WdE6BAgQIDAqAePRqHan\nzhAgQGC4X/zpi/kcvQQIECDQBwHjUR/2gjYQIEBggQJDPYNUBL6Yb4EHgqoIECBAYI8FjEd7\nTOeFBAgQ6J/AkCdIpemL+fp3TGkRAQIEtqOA8Wg77nV9JkBglAJDnyA1O+W63KkoBAgQIEBg\nlQLGo1Xq2zYBAgQWIDDk70FaQPdVQYAAAQIECBAgQIAAgXsFTJDutXCPAAECBAgQIECAAIFt\nLjDUS+wOzn77zjn23S1Z99o51rcqAQIECBBoI2A8aqNkHQIECAxIYKgTpMfF+M/ncH5n1q3v\nQ1IIECBAgMAiBYxHi9RUFwECBHogMNQJ0odi98Lkt5NLk9cnm5WbNnvScwQIECBAYA8FjEd7\nCOdlBAgQ6KvAUCdI5fmWZJ/knOSs5JJEIUCAAAECyxYwHi1b3PYIECDQocDQP6Thf8Tmvcnr\nOjRSNQECBAgQ2ErAeLSVkOcJECAwEIEhn0FqiOu9Rccm1Zc7m4VuCRAgQIDAkgWMR0sGtzkC\nBAh0ITCGCVJ9Qt3HusBRJwECBAgQmEPAeDQHllUJECDQV4GhX2LXV1ftIkCAAAECBAgQIEBg\ngAImSAPcaZpMgAABAgQIECBAgEA3AiZI3biqlQABAgQIECBAgACBAQqYIA1wp2kyAQIECBAg\nQIAAAQLdCJggdeOqVgIECBAgQIAAAQIEBihggjTAnabJBAgQIECAAAECBAh0I2CC1I2rWgkQ\nIECAAAECBAgQGKCACdIAd5omEyBAgAABAgQIECDQjYAJUjeuaiVAgAABAgQIECBAYIACJkgD\n3GmaTIAAAQIECBAgQIBANwImSN24qpUAAQIECBAgQIAAgQEKmCANcKdpMgECBAgQIECAAAEC\n3QiYIHXjqlYCBAgQIECAAAECBAYoYII0wJ2myQQIECBAgAABAgQIdCNggtSNq1oJECBAgAAB\nAgQIEBiggAnSAHeaJhMgQIAAAQIECBAg0I2ACVI3rmolQIAAAQIECBAgQGCAAiZIA9xpmkyA\nAAECBAgQIECAQDcCJkjduKqVAAECBAgQIECAAIEBCpggDXCnaTIBAgQIECBAgAABAt0ImCB1\n46pWAgQIECBAgAABAgQGKGCCNMCdpskECBAgQIAAAQIECHQjsF831aqVQC8EjkwrHpW8vaPW\n/FHqfUdHdauWAAECBMYjYDwaz77Uk20gYIK0DXbyNu5iTY7un3y1A4PvS537JiZIHeCqkgAB\nAiMTMB6NbIfqzrgFTJDGvX/1bseO24PwLzqA+M3U+eAO6lUlAQIECIxTwHg0zv2qVyMU8B6k\nEe5UXSJAgAABAgQIECBAYM8ExnAG6b7p+uOTI5KHJt9Obk6uTK5ef5yb3pQ6zf7ADlrTRZ0d\nNFOVBAgQGK2A8Wht1xqPRnuI6xiB7SEw5AlStf01yYuSwzfYXR/O8jOTT2zw/CoWfzwbPaTD\nDT8idV/VYf2qXhM4Pjd/L/lAByD1R9b7kss6qLv+A6HqvrWDulVJYLsKGI9m7/kajz49+ylL\nFyhgPFogpqoIlMCQJ0hnp/3/PPnt5N3JF5KvJPdJasJ0QnJG8tHkKcnlSR/KAWnEKclFC27M\nianviqTqV7oXeFg2sX9yYQebemXqPCm5rYO6D02dFyR/3kHdd6bOc5Mu2n166q22d1HqjHO1\ne9Gl2ntasu+iK16v75O5rcmusnoB49Gu+8B4tKtH14+MR7sLG492NTEe7eqx5aN9tlyjnyvU\njq7J0DOTrf5APT/r3JC8LJm31ITjCS1eVO/l+ldJvXF/q/K1rHBgUv+Tv+hSf4jdtehKU18d\nJ9XHodVdba62d9HuqrvK3Ws3C/23y7q7+mO9AejCuurW7kb43ts6Q/7Eex+6tyIB49FseOPR\nri7Go1096pHf67ub1JIhjqOjG4+Gegbp2BxANcG4uI6kLUqdqXnxFuts9PQZeaLe27RVeWRW\neMdWK60//+TcdvXpZ+XyNy3bMe9qx+QF18z7ohbr1y/IhyfXtVh33lXqUrUHJDfO+8IW69fH\nh9fPT03UF10elAq/mdRketGljudq8+2Lrjj1HZ3Ufuxi0tjlsd1V3fUHUf1u+FzSRbmmi0rV\nObeA8Wg2WVc/V7W1Y5JrkkUX49Huosaj3U26PLa7qtt4tPt+HOWS2tE3Jc/donf1B2xNkN6+\nxXqeJkCAAAECeyJgPNoTNa8hQIBAjwXqf0uGWOrs0UHJG5K6BK7u1/+M13uPavZd7994dlKX\nvD0+OSOp9ygpBAgQIEBgkQLGo0VqqosAAQIE9lrgH6eGzyQ1QE3njiw7L6kJkkKAAAECBLoU\nMB51qatuAgQILFFgnyVuq8tNHZnKj07qfSH1CVr1oQyVbyQKAQIECBBYloDxaFnStkOAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBJYiMJZL7JaCtaCNPC311Ec4j7k8MJ2rj6ju\n4qOk++JWHwxSn5J4a18a1EE76kNc6oNPvthB3X2qsi7NrU+7VAhsNwHj0Tj2uPFoHPuxemE8\n6sm+NEFa/o6oLwCrj4VVCBDoh0B9wEsNSl1871Q/eqgVBGYLGI9mu1hKYFUCxqNVyU9td6hf\nFDvVjUE9rE/Xq+9veu+gWj1fYy/J6n+SvH6+lw1q7V9Lax+UnDaoVs/X2NOz+iuSE+d72aDW\nrk+5vCzxnxaD2m0auyAB49GCIFdcjfFoxTtgQZs3Hi0IchHVmCAtQnH+OmpQGvNldvU/IHeO\nvI/1P693j7yPtQ9rX475WP1W+qcQ2M4CxqPh733j0fD3YfXAeNSj/eh/TXu0MzSFAAECBAgQ\nIECAAIHVCpggrdbf1gkQIECAAAECBAgQ6JGACVKPdoamECBAgAABAgQIECCwWgETpNX62zoB\nAgQIECBAgAABAj0SMEHq0c7QFAIECBAgQIAAAQIEVitggrRaf1snQIAAAQIECBAgQKBHAiZI\nPdoZmkKAAAECBAgQIECAwGoFfA/S8v2vyya/tPzNLnWLN2ZrNy11i8vfWPWxvntizOUL6dwN\nY+5g+nZzUvvy9pH3U/cIzBIwHs1SGd4y49Hw9tmsFhuPZqlYRoAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAg\nQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDYa4EnpoY3JZ9J/jT5oWRI5Y/S2PfMyD4TnWjT\nx4dk/X+ffCS5IvmFZN9kVWX/bPjPkv8wowHVt+cn1ferk3OTI5Pp0qbfbdaZrneRj/91Kivv\nWWXI+/awdOj1yceTzyUXJ89Mpksb/zbHZpt1prftMYG+CbT5eehbmyfbM+TfWZP9mL5vPFob\nb4f6t4bxaPqI9pjAFgJH5flbk3ckP5qck9yZnJIMoRybRn47uSS5YCrNBKltHy/K6z+dvCD5\nt0m5/G6yilKD0X9Pqm+vndGAF2XZN5Oa0J2W1KTu2qT+SG5Km363Waepr4vbOs7qeLtqRuVD\n3rf7pT+XJV9Ofi05M3lvUvvz1KQpbf3bHJtt1mm265ZAHwXa/jz0se3VpiH/ztrM1Hg07H1r\nPNrs6PYcgQ0E/jjLPzb13O/n8ZVTy/r68IfTsPqj84hNGtimjy9Yr+f4iXp+bH3ZoyeWLePu\nE7KRjydfS+5IpidID8uyryY1OWrKoblzW/JzzYLctul3m3UmqlzY3cNSUzMBvCX3Z02Qhrxv\nn50+1XFZx1VTasL+f5K/ahbkto1/m2OzzToTm3WXQC8F2vw89LLh640a8u+sjVyNR2syQ963\nxqONjm7LCWwgcEiW35X87NTzp+Rx/XF34tTyPj58dRp1wyYNa9vHd6eOy6fquU8e35b8wtTy\nrh9+Jhv4i+SEpCYP0xOkM7Ks9s/RyWQ5Lw8+tb6gTb/brDNZ/yLvn5XK/l/y48mbk1kTpCHv\n26enT+ckByeT5ew8qGOqSlv/Nsdmm3XWtupfAv0UaPvz0M/Wr7VqyL+zNnI1Hg1/3xqPNjq6\nB7r8Owba7iE1+++mseX8f6ca/dn1x0dOLe/jw5PSqGuSn0nen1ya1IRv36RK2z4+NutOO9ye\nZdcny3Y4Ldt8UjJr0pDF90xc68xSXVI3War9TVvb9LvNOpP1L/J+TeaOSep2ozLkfXtxOvWT\nSZ0FbMoBuVP/C9mcsW3r3+bYbLNO0w63BPoo0PbnoY9tb9o05N9ZTR+mb41HayJD3rfGo+mj\neuCPTZC634GHrW/iS1Ob+sr647qUq++lfmnVZOLk5H1J/S9kvTH+/KRK2z7Wel++5xW7/nNz\nHi7b4fJdm7Dbo43aWvut+n+/pE2/26yz28YXtOCTqefrW9R1Up4f0749K/05PGkujWzrX+tt\ndWy2WSfVKAR6K9D256G3HUjDTkrG9DurrI1HpTC+fWs8Wtuvg/x3v0G2eliNrsu0qtTZiMnS\nPD5ocmEP79d7On49uS75vfX2vTq3b0hemvxA0raPtd63kulSFn102Kit1f5qb5t+t1mn6ltF\nGdO+rb7UYPTy5JXJB5Mqbf3bHJtt1lnbqn8J9FOg7c9DP1u/Y8eYfmfNa2w8Wuzv83n951nf\neDSPVk/XdQap+x1z4/omHjC1qfpf7iq3rt309t8aUH85aSZHTUPfun7ne3Lbto83ZN2m3+sv\nv+emlvXNYbO2VqOrvW363Wadqm8VZSz7tj796dzkFUlN2n8paUpb/832d3Nstlmn2a5bAn0U\naPvz0Me2V5vG8jtrXt/NfvdUXcajNdE+/K42Hs17dPd0fROk7ndM/WKrcsTazc5/m0vK/nrn\nkn7eOTDNelzSXJrRtLIuNWtK2z7Wek2/m9fW7UOTvjlUWw9eT252ltqP9dzt67f1xGb7tq1N\n1bPsMoZ9e9+g/WFS7zt6bvLGZLK09a/1tjo226wzuW33CfRNoO3PQ9/a3bRnDL+zmr7Mc1v7\nzXh074dFbTbmluuqflcbj+Y5qq1LIAIfSeqPuMnyq3lQ73moH6g+l/pI7vpfu7qkbrLUZUy1\n/BnrC9v0sV5T74mp9/A05cm5U/X802bBCm5vyTZfO7Xd4/L4ruTHJ5bXafO61PCtE8va9LvN\nOhNVdnL3zan1qqmax7Bv/zR9qsn6E6f6NvmwjX+bY7PNOpPbdZ9AHwXa/Dz0sd3VpjH8ztrK\n1ni0q1D93h3K3xrGo133nUcEthQ4NWvcmbwkqTMxP5LUROH0ZAjlojTyb5Mzkvqfm5clX0gu\nSZrSpo/V9/r45QuShyePSf4yeVeyyjJrQKr2/EHyuaQuI3xQUmcn6gMlyqApbfrdZp2mvq5u\nZ02QaltD3rfPT/tr4HxH8tMz0pwhb+Pf5thss06aoRDotUCbn4c+d2DIv7PauBqPhvm3hvGo\nzdFtHQIzBF6VZd9M6g+665OzkqGUmhycn1TbK7cn9Z6P+iS3ydKmj9+bF1ybVD01SaxJyCOT\nVZaNBqTD06g/Se5Oqr1XJM9KpkubfrdZZ7reRT7eaII05H17SYBqv2yUAyYA2/i3OTbbrDOx\nWXcJ9FKgzc9DLxueRg35d1YbU+PRvb/Tbw/YUP7WMB61ObqtQ2ADgf2z/DuTulRriOXgNPrR\nyeQfntP9aNvHo/LC6QnWdF19eXxoGlJnvDYrbfrdZp3NttHlc9th37b1b3Nstlmny/2lbgJ7\nK9D252Fvt9PV67fD76xZdsajNZW2x29ff1cvsv197eOs49cyAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAYEOBgzZ8xhMECBAg\nQGB5Asaj5VnbEgECBDoV+KnUfu1UPprHv5t8f9JVuSIV/6c9rPzkvO7s5Ork28ktyduSRyVd\nlCen0gd3UbE6CRAgQGCngPFoJ8WGd4xHG9J4YpEC+y2yMnURGKDA/dPmo5LfSL6a7JvUZOBJ\nyanJjyV/kCy6PCIVPmAPKn1WXvP7yaeS85Mrk5OT5yb/IDkp+UayqHJyKnpfckLyxUQhQIAA\ngW4EjEebu56cp41Hmxt5lgABAgsReHlqqbMwR0/Vdp88vip5/9TyRT38fCr61Tkre2rW/2by\nhzNe991ZdlfyyzOe25tFz86Ly+f4vanEawkQIEBgSwHj0eZExqPNfTy7QIHvWGBdqiIwJoHb\n05k6S/PQqU7Vz8xPJnVW6ZLk15Njk8nSZp3J9ev+Y5M3J8+rBxuUM7O8znK9cMbzl2fZq5I6\ne1RnwZryxNx5S3Jpcm7yQ8lkeUge/Nek/lfu3ckvJoclVepShp+5597a8tPX77shQIAAgeUJ\nGI+MR8s72mzpHoH6Q04hQGB3gadk0fcnb5t66p15/JtJnQG6MKlJRF3m9r1JU9qs06xbt49J\nLk6OSmritVF5Up74Gob8ewAABXFJREFUUHLzBiv8Upb/XFJnkqqcmlyWHJH8cbLP+u1rc1ul\nJlLvTU5Jqt7qxwuSjyT1XJ2tqglZla8kt91zzz8ECBAgsEwB45HxaJnHm20RIEBgR3NJw42x\nuC65Pvl6UpeVvTWZLD+SB7W8JhRN2T93Ppt8MqkJSJt1sto9E6y6xO7RyU1JTWDqsr6NyuF5\norb9ixutMLW83t9Uk5q3TS3/b3l8Z/K4pM5aVZ0/mDTlabnzZ8lx6wuendta5/j1x24IECBA\noBsB45HxqJsjS60ECBCYU6AZkOpSudesp84Q1SVndyT/JWnKb+XONc2Didua6NQkos4AtVmn\nXvr55F3JDUmdudk/2aw0E6S6HK5NqbNf1aa6xG6y1BmvWl79vl9Sk8G/Sl6STF8qmEU7TJBK\nQSFAgED3AsYj41H3R5ktECBAoIVAMyAdPWPd/5xlNZmosy1V6nK099edqfJP8rjWq8sg2qxT\nL68JUr2mzj7dlUxeopeHM8vfZGlNqjYqB+WJZqL107lf9T9kauW6rLYum6sJYZXvS+rsV61b\nqcnSTyVNMUFqJNwSIECgWwHjkfGo2yNM7a0FvAepNZUVt6FAvZeoyj9au7nnkrW6dG26HLi+\n4K9z+5Vkq3Wa19elbCcmdQbpLUlTT+7OLPX9TPUx3gfMfHbHjjdk+S3J30mqHVUOW7vZ5d/a\nTrW1ygeTutSuXvPSpN7fdHby/EQhQIAAgX4IGI/6sR+0YpsImCBtkx2tm3skUB+KUOUzazc7\nPpHbes/QkeuPm5tn5M4Xkzor1Gad5nV1tqY+COHM5FHJWclm5XfyZH3gQl3GN13qgx5+Iqm2\nXp1UO6pU2ybLyXlQZ5k+lvzD5MLkmKRe98bk6cnXku9Jqty9drPD74p1CDcECBBYgYDxyHi0\ngsPOJgkQ2K4CL0/H69KyVyV1WVqlPtr6TUl9ZPZfJs2ZnTobUxOhDyXfldSZon+Z3JG8IqnS\nZp1aryZT9d6lprwud+pSu6c0Cza4/XdZXu2t/018XlLr/0pyQ3Jb8oSkKeflTp1Jek5y/+Sp\nyWeTDyT3Te6TXJu8O6nJ0sOTn02q/ucmVZ6W1OOfT6rPCgECBAh0I2A8Mh51c2SplQABAnMK\nNANSTQKa1BmUOgtT79OpMzaTpS5Huzxp1r0m92tSMVnarDM9QaoJS22zzuTUe4k2K3UpXJ35\nqXY27Xhf7k9OjvJwx8HJ7yTfSmq9W5Pzk0OSpvxA7lyU1JmsWqcusXtZ0pSaHF6a1HO1DYUA\nAQIEuhEwHhmPujmy1EqAAIElCdSZoqO22FabdbaoYtOn61K5E5L7bbrW2iV19bHd+22yXk2E\njtnk+ToDVWecFAIECBDol0CbsabNOnvTK+PR3uh5LQECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAIE9FPj/VCNFXfmsS3EAAAAASUVORK5CYII=", "text/plain": [ "Plot with title “Bins = 16”" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0LvHR1XS9+EOQmipKKoIAoeMkLmpXZyctfS8vIKMsTaYri5UhHO5ZH\nj5ZWauYpT2kkKdGxcypUtOMlLREv5aUOkJmYHUFNDOUiIgReQG7/z/d5ZtE8s2f2XrP3rNmz\nZt6/1+vzzJq1fus3a73XfvZv/2atWbPbbgoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIrITA7iuxl3ZylQXunp0/fAzAjZl3TXJx8sUxy/fMvIcN\n5l+ax0+PqbNss26RHTom2SM5O/ly0pT9MrFX82TC43WZ/40Jy8wmQIDAqgvoj9r/BKzXHw23\ncuc8OSq5Pjk/+UqiECBAgMAGAr+V5TdtkHOy/CEj7dxuaJ23jCxb1qcvHdrnJ4zs5JuGlk3y\nfOfIOp4SIECAwL8L6I/+3WKjqfX6o1r34KT6nOH+qN74/OPkgEQhsCWBGqErBFZd4LsD8JfJ\nkSsM8cjs+69ucf+ro1IIECBAYPMC+qPddtuoP6q/XeuNy8cNmOtqkG8ndVXUU5LXJwqBLQnU\nZUQKgVURODE7+u6kfonWL9hDkl9PfjC5bfIzySuSKlcnj94xtdtulwwel/Fh/+zUi5JfTMpk\nUnlzFpw7ZuGPZ96Dk2uT3x6z3CwCBAgQWCugP1pr0rY/undWfehg9Xpz82eT+nu2zij9h6T6\n8mcnVyYKgU0JGCBtis1KPRW4PNt94dC2X5DpGhzUAKlKXR/elBpENafpr2pm5vGBSdWr653f\nkdT1z/Vu15FJfU6pBmDfTIbLfnlSA4m7JdUBXJp8LKlL+zYq9Zmge2xUKcvfnnyhRb3RKh/P\njKb98vmO0QqD59XxVIZL1X3BYMbz8lj7pBAgQIDAxgL6o7VGbfujOw2t+qeZ/rfB87fmsQZI\nVQ5KDJB2UPiHAAECawWGr/l+wtrFu/2nzKtLwypPHFp+u6H5dSq/KSdnourWoKkGL18fPG/a\nqEFSnZlqyvdnos5ANcuHH6utjcrbUmF4nUnTP7pRQxOWfzXza9B4XPKMpGl/nFUW71J+L8+q\n/keTGlAqBAgQIDBZQH802aaWtO2P6k3Ha5Lqf/44qf5nj+Qvk5pXfZpCgAABAusIDHdI70u9\nGpT8QXJK8v6kPtRZv1Dfm9wqacpGA6QbUrHOIv1DUm19Oal2Kq9OmnJBJmpePf528uLk75Km\n7o9ler3S9QDpBXnxZr+fnulmuzYaIN0zda8b1K9L7BQCBAgQWF9Af7S+zzT90c+mqW8mTf96\n8WC63rzc7BuGWVUhQIDAaggMd0jNH/+jj18LxREjHBsNkKqNuqytKUdnomm3Bl5V6jKAZt4b\nMl3vcFWpAcnvJs9K7pusV+qdsvp81EbZc71GWi6bZoD0zrRZ+/aJlm2rRoAAgVUX0B+1/wnY\nqD+qz8yeljR9bPP4xsxb7/O07bdAzZUWmMUfVSsNaOd7JfC5bG1d912n4/dKahB02ODxk3l8\nTvK/krblpKGKtX59B1ANfprP8Xwl03UNdA1unpn8RPLBpAZQ1VHWO14blVunwv4bVcrybyd1\nRmse5f/LizR3D6qBn0KAAAEC0wnoj6bzGq69T568NTkmqYFRffa3Huv58Ul9Nrj6qLoMTyFA\ngACBMQLD79iNu2zse7POFUn9cq3HWyZVavBU8yrjPoNU80fP/tSAqOZ/KmnKT2eiBi5NW81j\nXdr39uQuyXrlbVnYrLPe4ywuKdjoHbtmO6tjqm25OqkBnEKAAAECGwvojzY2amqs1x/V4Kfp\nD+tzxE15Xiaa+T/WzPRIYDMCTkNuRs06yyRwdnbmfYMdqjM9j5xi564dqVuDntFSg4kjk99M\n/jGpX95V6izWsUkt71Ops86PHmxwDRxrkKQQIECAwNYF9EftDH9oqFq90diUP28m8vjDQ9Mm\nCUwtUH/sKARWXeA+QwCjg56hRWsmm8HOmgVDMw7J9BHJycmLk7r87keSeifx4OT7ktskw7cS\nz9Oby+sy9Z6bn02eqEv85lHqFqq1vVXO2fngXwIECBCYkYD+aDrIo1O9eZPzXkOrfnto2iSB\nqQUMkKYms0KPBX4w216XzlWps6f7Jo9Pmg6p7ohzVjKr8pNpqHlH64xM1xmjy5O6bO6Xkhog\n1cCobhU+qXxo0oJtmv89Q6/72aFpkwQIECDQXkB/1N5qtGb10/95MPOX81if570ueeFgXj3M\nsi8fatbkqggYIK3KkbafJfCMQcZp1NmgpyTfGrdwk/PemfU+ktQ3fj8m+VrymeQ7k72TKq9O\nxl2at2PhAv5z6NA2GSANYZgkQIDAFAL6oymwRqq+Kc+PTx6VPCw5N6k+vC5dr1L97uk7pvxD\nYJMCPoO0STir9V6gbpxQg6GvJPXLtq5XrjM7syz1XUk/krw2qc/q7Js8MKnB0aXJLySvSPpU\nmgFS2X2pTxtuWwkQILCgAvqj6Q5M9a11A6S6BL3OHFWpwVHNPyWpmzj06Y3HbK6yaALNaHvR\ntsv2EFg2gbo7Xt2x7sDkouSSpN7xUggQIECAwDwFlqk/2idwd0/2SM5P3No7CAoBAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBrgR276ph7S6dwL2zR3u1\n3KubUu8zybdb1leNAAECBAi0FdAftZVSjwABAgQ6E3hAWq5BzzR5Xmdbo2ECBAgQWFUB/dGq\nHnn7TWCOAnvO8bW8VH8F9h5s+sF5vKbFbrwvdfZpUU8VAgQIECAwjYD+aBotdQkQ2JSAAdKm\n2FZ2pSuz520GSNevrJAdJ0CAAIF5COiP5qHsNQisqMAtVnS/7TYBAgQIECBAgAABAgTWCBgg\nrSExgwABAgQIECBAgACBVRUwQFrVI2+/CRAgQIAAAQIECBBYI2CAtIbEDAIECBAgQIAAAQIE\nVlXAAGlVj7z9JkCAAAECBAgQIEBgjYAB0hoSMwgQIECAAAECBAgQWFUBA6RVPfL2mwABAgQI\nECBAgACBNQIGSGtIzCBAgAABAgQIECBAYFUFDJBW9cjbbwIECBAgQIAAAQIE1ggYIK0hMYMA\nAQIECBAgQIAAgVUVMEBa1SNvvwkQIECAAAECBAgQWCOw55o5ZgwL/HSeHDE8Y8L0fTP/l5ML\nJyw3mwABAgQIbEVAf7QVPesSIEBgCgEDpPWxfjSL771+lR1LH5R/P5L8YYu6qhAgQIAAgWkF\n9EfTiqlPgACBTQoYIK0Pd/z6i29eenWmLr75mQkCBAgQIDBbgeNbNqc/agmlGgECBCYJ+AzS\nJBnzCRAgQIAAAQIECBBYOQEDpJU75HaYAAECBAgQIECAAIFJAgZIk2TMJ0CAAAECBAgQIEBg\n5QQMkFbukNthAgQIECBAgAABAgQmCRggTZIxnwABAgQIECBAgACBlRMwQFq5Q26HCRAgQIAA\nAQIECBCYJGCANEnGfAIECBAgQIAAAQIEVk7AAGnlDrkdJkCAAAECBAgQIEBgkoAB0iQZ8wkQ\nIECAAAECBAgQWDkBA6SVO+R2mAABAgQIECBAgACBSQIGSJNkzCdAgAABAgQIECBAYOUEDJBW\n7pDbYQIECBAgQIAAAQIEJgkYIE2SMZ8AAQIECBAgQIAAgZUTMEBauUNuhwkQIECAAAECBAgQ\nmCRggDRJxnwCBAgQIECAAAECBFZOwABp5Q65HSZAgAABAgQIECBAYJKAAdIkGfMJECBAgAAB\nAgQIEFg5gT1Xbo/t8LwEds8L7dHyxW5MvZta1lWNAAECBAhMI6A/mkZLXQIECMxI4Oq0c8yM\n2lrEZh6cjaoBzD4tN+7yQf1ap03+qWW7qhEgQIDA+gL6o1199Ee7enhGgEALAWeQWiCpMrXA\nLbPGWcnzW6z5yNT5+Rb1VCFAgAABAtMK6I+mFVOfAIHdDJD8EHQlcGUa/miLxg9pUUcVAgQI\nECCwWQH90WblrEdgRQXcpGFFD7zdJkCAAAECBAgQIEBgrYAB0loTcwgQIECAAAECBAgQWFEB\nA6QVPfB2mwABAgQIECBAgACBtQIGSGtNzCFAgAABAgQIECBAYEUFDJBW9MDbbQIECBAgQIAA\nAQIE1gosw13s6rt5jk4OTg5K6nt3rkjOTc4fPM+DQoAAAQIEOhXQH3XKq3ECBAjMR6DPA6Ta\n9pcnz0wOnMB1TuafkHxqwnKzCRAgQIDAVgX0R1sVtD4BAgQWSKDPl9idEscTk1OThyf3Su6Y\nHJrUGaUnJJclH08enCgECBAgQKALAf1RF6raJECAAIGpBA5I7RuSx7RY6/TUeU2LelupcnVW\nPmYrDSz4ujXArEsX6/KRNuWqVHpvm4qpUwPZS1vWVY0AAQKLJqA/mu8R0R/N19urEVhJgb6e\nQToiR6v+YP9Ai6N2Zuo8rEU9VQgQIECAwLQC+qNpxdQnQIDAggv0dYBUN2D4anLsBr51XXid\noThvg3oWEyBAgACBzQjojzajZh0CBAgssEBfb9JwY0xPTk5Lnpi8K7kkuTzZKzkwuWfypOTI\n5CGJQoAAAQIEZi2gP5q1qPYIECCwzQJ9HSAV28uSs5OTknFnkq7P/LcmT07qHT6FAAECBAh0\nIaA/6kJVmwQIENgmgT4PkIqsbgRwVFJ3rjs8uU1SN0y4aJBv5VEhQIAAAQJdC+iPuhbWPgEC\nBOYk0PcBUjHVndUOSW6fHJTUzRvulNS++aLYICgECBAgMBcB/dFcmL0IAQIEuhXo8wCptt0X\nxXb786F1AgQIENhYQH+0sZEaBAgQ6I1AX+9iV8C+mK83P2Y2lAABAkstoD9a6sNr5wgQWDWB\nvp5Bqi/me0ry2OSMMQftS5lXN2aomzTUF8Uel5yVTFuekxWObLFS3TmvtkkhQIAAgdUS0B+t\n1vG2twQIrIBAXwdI034x37M3eSzvnPXqBhAblToTV4MkhQABAgRWS0B/tFrH294SILACAn0d\nINXZoeaLYt+2znGq/dvKF8X+t3XaHl5Ud867bHiGaQIECBBYCQH90UocZjtJgMAqCfR1gOSL\n+Vbpp9S+EiBAYHEF9EeLe2xsGQECBDYl0NcBUu2sL+bb1CG3EgECBAjMWEB/NGNQzREgQGA7\nBfo8QCo3X8y3nT89XpsAAQIEGgH9USPhkQABAj0X6PsAad/4PyipmyR8PPlGMloelRnXJh8d\nXeA5AQIECBCYkYD+aEaQmiFAgMB2C9TAoq/lftnwf0o+kvxNckFSN2QYLS/KjOeOzvScAAEC\nBAjMSEB/NCNIzRAgQGARBPo6QNo9eH+SXJccnzwx+XTyluSFiUKAAAECBOYhoD+ah7LXIECA\nwBwF+nqJ3V1jdHTy6OTMpMppySuSVyWXJ6cmCgECBAgQ6FLgrmlcf9SlsLYJECAwZ4G+DpDu\nFKe6terfjXj9Sp7fOvmD5MLkjEQhQIAAAQJdCeiPupLVLgECBLZJoK+X2F0Qr9r2Hx/j9rzM\ne0dyelI3cFAIECBAgEBXAhekYf1RV7raJUCAwDYI9HWAdHGs3p2clPx+cuekKXVmqT6TVGeX\n6uYN90kUAgQIECDQhYD+qAtVbRIgQGAbBfo6QCqypyYfTp6dHJkMl2/nyU8mb03q8geFAAEC\nBAh0JaA/6kpWuwQIENgGgb5+Bqmovpocm9w2qe85Gi3fzIzqtOrzSHcYXeg5AQIECBCYkYD+\naEaQmiFAgMAiCPR5gNT4XdlMTHg8e8J8swkQIECAwCwF9Eez1NQWAQIEtkmgz5fYbROZlyVA\ngAABAgQIECBAYFkFDJCW9cjaLwIECBAgQIAAAQIEphYwQJqazAoECBAgQIAAAQIECCyrgAHS\nsh5Z+0WAAAECBAgQIECAwNQCBkhTk1mBAAECBAgQIECAAIFlFTBAWtYja78IECBAgAABAgQI\nEJhawABpajIrECBAgAABAgQIECCwrAIGSMt6ZO0XAQIECBAgQIAAAQJTCxggTU1mBQIECBAg\nQIAAAQIEllXAAGlZj6z9IkCAAAECBAgQIEBgagEDpKnJrECAAAECBAgQIECAwLIKGCAt65G1\nXwQIECBAgAABAgQITC1ggDQ1mRUIECBAgAABAgQIEFhWAQOkZT2y9osAAQIECBAgQIAAgakF\nDJCmJrMCAQIECBAgQIAAAQLLKmCAtKxH1n4RIECAAAECBAgQIDC1gAHS1GRWIECAAAECBAgQ\nIEBgWQUMkJb1yNovAgQIECBAgAABAgSmFjBAmprMCgQIECBAgAABAgQILKuAAdKyHln7RYAA\nAQIECBAgQIDA1AIGSFOTWYEAAQIECBAgQIAAgWUVMEBa1iNrvwgQIECAAAECBAgQmFrAAGlq\nMisQIECAAAECBAgQILCsAnu23LF9U2/3lnWr2jenqKsqAQIECBBoK6A/aiulHgECBAhsSqDt\nAOnitH5Ay1e4JvWqA1MIECBAgMCsBfRHsxbVHgECBAjsItB2gPQLWesNyXsGuSyPBydPSr47\neUlSA6Mq1+98WIp/fyN7cY8We7J36tyhRT1VCBAgQGBrAvqj9f30R+v7WEqAAIENBdoOkE5M\nSy9NfmukxVPz/J+TOyYvHFm2DE+/kp1oc+bsptS7bhl22D4QIEBgwQX0R+sfIP3R+j6WEiBA\nYCYCNUC4Mbn9hNbq3bxzJixbldlXZ0ePWeKdfXD2rTrdfVru41Wp996WdZ+Qepe2rKsaAQKr\nLaA/2vj46492NdIf7erhGQECLQTa3MWuftl+LXnQhPa+J/MvnLDMbAIECBAgMCsB/dGsJLVD\ngAABAhMF2lxiV2eP/jz50+TXk79JrkwOS56eHJf8UKIQIECAAIEuBfRHXepqmwABAgR2CLQZ\nIFXFn0/q5gsn1ZOhUpdG1Y0aPjg0zyQBAgQIEOhKQH/Ulax2CRAgQGCHQNsBUg2OqlOqu9U9\nMLlL8i/JPyTfSBQCBAgQIDAPAf3RPJS9BgECBFZYoM1nkIZ57p0n90pqYPWRpJ4rBAgQIEBg\n3gL6o3mLez0CBAisiEDbAdKt4/FXyUeT30/qc0e3Ss4aPG97d7NUVwgQIECAwKYF9EebprMi\nAQIECLQRaDtAem0aq3framD08kHD38zjc5KnJst8i+vB7nogQIAAgQUQ0B8twEGwCQQIEFhm\ngTYDpKrzM8mzkjcnX0+q1PfinJy8MTFACoJCgAABAp0K6I865dU4AQIECJRAmwFSfUHsvskX\na4Uxpebff8x8swgQIECAwCwF9Eez1NQWAQIECIwVaDNA+krWvDyp23mPlt0z44TkvNEFnhMg\nQIAAgRkL6I9mDKo5AgQIEFgr0PY237+TVX81qS+HrUvr6gYNz0iOT45KapCkECBAgACBrgX0\nR10La58AAQIrLtB2gPSqOO2f/GKy98Ds+/JYZ5aelnxsMM8DAQIECBDoUkB/1KWutgkQIEBg\nx/cZtWH4tVR6X/K7yX2Tg5P67NG5ydWJQoAAAQIE5iHwa3kR/dE8pL0GAQIEVlSgzRmk+s6J\nFyffSv46+VCiECBAgACBeQvoj+Yt7vUIECCwggJtbtJQt/X+XFJ3qqubMigECBAgQGA7BPRH\n26HuNQkQILBiAm3OINVNGV6f1BfEfjL5RHJJMlzqUrs/G55hmgABAgQIzFhAfzRjUM0RIECA\nwFqBNgOkWuu5yTVJffaoMlrelRkGSKMqnhMgQIDArAX0R7MW1R4BAgQI7CLQdoB0t13W8oQA\nAQIECGyPgP5oe9y9KgECBFZGoM1nkFYGw44SIECAAAECBAgQILDaApMGSLcPy/HJgavNY+8J\nECBAYJsF9EfbfAC8PAECBFZNYNIA6e6BeGNy6BDI7TL9sqSWKQQIECBAYB4C+qN5KHsNAgQI\nELhZYNIA6eYKQxM1QHpJcsTQPJMECBAgQGDeAvqjeYt7PQIECKyQwDQDpBVisasECBAgQIAA\nAQIECKyigAHSKh51+0yAAAECBAgQIECAwFgBA6SxLGYSIECAAAECBAgQILCKAgZIq3jU7TMB\nAgQIECBAgAABAmMFNvqi2I9krRsGazaDqbfn+fUjrb0jz586Mm9eT/fJCx2dHJwclNyUXJGc\nm5w/eJ4HhQABAgR6LKA/6vHBs+kECBDok8CkAdJXsxN/OsWOfHyKurOqWtv+8uSZyaTvazon\ny05IPpUoBAgQINA/Af1R/46ZLSZAgECvBSYNkD6fvfq5Bd+zU7J9j09en7wnuTT5WrJ3UgOm\neybHJzV4e2hyVqIQIECAQL8E9Ef9Ol62lgABAgS2SeCAvO4NyWNavP7pqfOaFvW2UuXqrHzM\nVhpY8HUfnO2rSxfrcsY25apUem+biqnzhKQGtwoBAgT6KKA/mu9R0x/N19urEVhJgeZzRX3b\n+fqy2vqD/QMtNvzM1HlYi3qqECBAgACBaQX0R9OKqU+AAIEFF+jrAKluwFDXpR+7gW9dQlhn\nKM7boJ7FBAgQIEBgMwL6o82oWYcAAQILLDDpM0gLvMk7Nu3G/HtyclryxORdySXJ5cleyYFJ\nfQbpScmRyUMShQABAgQIzFpAfzRrUe0RIEBgmwX6OkAqtpclZycnJePOJNWtyN+aPDmpd/gU\nAgQIECDQhYD+qAtVbRIgQGCbBPo8QCqyuhHAUcmhyeHJbZK6YcJFg3wrjwoBAgQIEOhaQH/U\ntbD2CRAgMCeBvg+QiqnurHZIcvuk+aLYO2W69s0XxQZBIUCAAIG5COiP5sLsRQgQINCtQJ8H\nSLXtvii2258PrRMgQIDAxgL6o42N1CBAgEBvBPp6F7sCri+KPTE5NXl4cq/kjkldbnd0Unev\nuyypL4qt701QCBAgQIBAFwL6oy5UtUmAAIFtEujrGaT6Yr6nJI9Nzhhj96XMqxsz1E0a6oti\nj0vOSqYtf5QV7t1ipX1Tpy7zUwgQIEBgtQT0R6t1vO0tAQIrINDXAdK0X8z37E0ey/qS2c+1\nWPe7UuffWtRTZbxAncm8+/hFa+bWLXW/sGauGQQIENgeAf3R9rh39ar6o65ktUugRwJ9HSDV\n2aHmi2Lfto537d9Wvij2zeu0PbzoxXnyjeEZPZiuTv2BLbez7hTYVanBZd1go81AtNmGuq37\nO5snHgkQILCNAvqjrePrj7ZuqAUCBGYo0NcBki/m2/oPwSvSxOOTNgO7vQcvd8s8XjOYntVD\nfbFvHc+6TXubUp8p269NRXUIECAwBwH90daR9UdbN9QCAQIEbhb44Ux9NrlpTK7LvNOSumFD\n16W+e+mYrl9kxu2/Ke29vmWbT0u9Mq5r7duUq1KpvhOkTfmdVLqhTcVBnfqOq/pMmUKAAIFF\nEtAfbf5o6I82b2dNAgQ6EOjrGaSGov4I90WxjYZHAgQIENguAf3Rdsl7XQIECMxYoO8DpIbj\nwkxUFAIECBAgsJ0C+qPt1PfaBAgQmIFAn78HaQa7rwkCBAgQIECAAAECBAj8u0BfzyDtn11o\ne1vo2tsrky/WhEKAAAECBGYooD+aIaamCBAgsAgCfR0g3T94H5sCsL4wtm73rRAgQIAAgVkK\n6I9mqaktAgQILIBAXwdIfxu7urNa3YXtw8lvJ+uVS9ZbaBkBAgQIENikgP5ok3BWI0CAwKIK\n9HWAVJ5vTHZPTk1emXwoUQgQIECAwLwF9EfzFvd6BAgQ6FCg7zdp+J+xeX/yqg6NNE2AAAEC\nBDYS0B9tJGQ5AQIEeiLQ5zNIDXF9tuiIpPbl+mamRwIECBAgMGcB/dGcwb0cAQIEuhBYhgFS\n3aHuE13gaJMAAQIECEwhoD+aAktVAgQILKpA3y+xW1RX20WAAAECBAgQIECAQA8FDJB6eNBs\nMgECBAgQIECAAAEC3QgYIHXjqlUCBAgQIECAAAECBHooYIDUw4NmkwkQIECAAAECBAgQ6EbA\nAKkbV60SIECAAAECBAgQINBDAQOkHh40m0yAAAECBAgQIECAQDcCBkjduGqVAAECBAgQIECA\nAIEeChgg9fCg2WQCBAgQIECAAAECBLoRMEDqxlWrBAgQIECAAAECBAj0UMAAqYcHzSYTIECA\nAAECBAgQINCNgAFSN65aJUCAAAECBAgQIECghwIGSD08aDaZAAECBAgQIECAAIFuBAyQunHV\nKgECBAgQIECAAAECPRQwQOrhQbPJBAgQIECAAAECBAh0I2CA1I2rVgkQIECAAAECBAgQ6KGA\nAVIPD5pNJkCAAAECBAgQIECgGwEDpG5ctUqAAAECBAgQIECAQA8FDJB6eNBsMgECBAgQIECA\nAAEC3Qjs2U2zc211n7za0cnByUHJTckVybnJ+YPneVAIECBAgECnAvqjTnk1ToAAgfkI9HmA\nVNv+8uSZyYETuM7J/BOST01YbjYBAgQIENiqgP5oq4LWJ0CAwAIJ9PkSu1PieGJyavLw5F7J\nHZNDkzqj9ITksuTjyYMThQABAgQIdCGgP+pCVZsECBDYJoG+nkE6IF5PSR6bnDHG7kuZV5fY\nvTU5PTkuOStRCBAgQIDALAX0R7PU1BYBAgQWQKCvZ5COiF191ugDLQzPTJ2HtainCgECBAgQ\nmFZAfzStmPoECBBYcIG+DpDq7NBXk2M38K0zZHWp3Xkb1LOYAAECBAhsRkB/tBk16xAgQGCB\nBfp6id2NMT05OS15YvKu5JLk8mSv5MDknsmTkiOThyQKAQIECBCYtYD+aNai2iNAgMA2C/R1\ngFRsL0vOTk5Kxp1Juj7z6zNIT07qHT6FAAECBAh0IaA/6kJVmwQIENgmgT4PkIrsvclRSd25\n7vDkNsnVyUWDfCuPWynvzsr3a9HAfqlTr68QIECAwGoK6I9W87jbawIEllCgzwOk+vxUXdpQ\n5cJBaqDyU8kPJ5cm1WHVl8Vutrw6Kx7WYuU3pM7FLeqpQoAAAQLLJ6A/Wr5jao8IEFhhgb4O\nkG6dY3ZV8jPJWwbHrz5z9FdJ3VGoKXWZ3UuT32xmTPn41y3rvy71vt2yrmoECBAgsDwC+qPl\nOZb2hAABAjsE6l2vZSn/OztSZ5B+ITk4+YHkj5JXJj+eKAQIECBAYB4C+qN5KHsNAgQIdCTQ\n1zNIoxx3yozvTX45+b3Bwrqr3ceS+gxR3enunYlCgAABAgS6FNAfdamrbQIECMxBYFnOINWX\nxtbnkf7PGLO6BO/eY+abRYAAAQIEZi2gP5q1qPYIECAwZ4G+D5Dq80a3SuqGDB9N7p+Mlsdk\nRt3EQSFAgAABAl0J6I+6ktUuAQIE5izQ1wFSvUN3XVI3X6ibNXw6qc8d1XciHZRUeVByRvLY\n5I2JQoAAAQIEZi2gP5q1qPYIECCwzQJ9/QzS1+O2f3Kf5AHJAwePNTjaJ6lSXx77qKTuYldf\nGKsQIECAAIFZC+iPZi2qPQIECGyzQF8HSMVWt9X+xCDNGaLd87zezatySvI7yRX1RFkagdtl\nT+pM4X9vuUd1FvEZLeuqRoAAgc0I6I82o9b/dfRH/T+G9oDAWIE+D5DG7VAzOKplPnc0Tqj/\n826ZXfiH5E9a7MqPps7RLeqpQoAAgVkL6I9mLbp47emPFu+Y2CICMxFYtgHSTFA0svACn8kW\nthkg1e1277bwe2MDCRAgQKCvAvqjvh45201gHYG+3qRhnV2yiAABAgQIECBAgAABApsTMEDa\nnJu1CBAgQIAAAQIECBBYQgEDpCU8qHaJAAECBAgQIECAAIHNCRggbc7NWgQIECBAgAABAgQI\nLKGAAdISHlS7RIAAAQIECBAgQIDA5gQMkDbnZi0CBAgQIECAAAECBJZQwABpCQ+qXSJAgAAB\nAgQIECBAYHMCBkibc7MWAQIECBAgQIAAAQJLKGCAtIQH1S4RIECAAAECBAgQILA5AQOkzblZ\niwABAgQIECBAgACBJRQwQFrCg2qXCBAgQIAAAQIECBDYnIAB0ubcrEWAAAECBAgQIECAwBIK\n7LmE+7TKu/TY7PytWwIclnpfaFlXNQIECBAgMI2A/mgaLXUJEFgoAQOkhTocW9qYO2Tt9yRf\nTW5o0dLtU+eAFvVUIUCAAAEC0wjoj6bRUpcAgYUTMEBauEOy6Q3aY7DmD+TxvBatXJA6u7eo\npwoBAgQIEJhGoOmPHpqVPtNixQtSR3/UAkoVAgTmI+AzSPNx9ioECBAgQIAAAQIECPRAwACp\nBwfJJhIgQIAAAQIECBAgMB8BA6T5OHsVAgQIECBAgAABAgR6IGCA1IODZBMJECBAgAABAgQI\nEJiPgAHSfJy9CgECBAgQIECAAAECPRAwQOrBQbKJBAgQIECAAAECBAjMR8AAaT7OXoUAAQIE\nCBAgQIAAgR4I+B6kHhwkmzg3gV/KK9UX6LYt70/FD7StrB4BAgQIEGgpoD9qCaUagS4EDJC6\nUNXmoggckQ05KnlPiw2qLyn8keQfksta1P/O1Ll7YoDUAksVAgQIrLiA/mjFfwDsfr8EDJD6\ndbxs7XQCh6X6rZJPt1it/i/UAOkNySkt6r8ude7Qop4qBAgQIEBAf+RngECPBAyQFvtg3Tab\n98CWm3i7lvVWrdq12eEXtNjpfVPneS3qqUKAAIFVFNAfbf2o64+2bqgFAnMRWIYB0j6ROjo5\nODkouSm5Ijk3OX/wPA+9LM/PVv9yUvvUthyaiue1razeXAT2yKuckOw3xav9ZerWz69CgEB/\nBPRHux6r6o8+s+ssz7ZZQH+0zQfAy/dDoM8DpNr2lyfPTA6cwH1O5tcfpp+asHzRZ9c+vjep\nS782KvdLhRoU9vmYbrSPfV1e156/IalL/a5rsRP3SJ2nJX/fom5VuSj5lZZ1VSNAYPYC+qNd\nTfVHu3os0jP90SIdDduysAJ9/mO6Pify+OT1yXuSS5OvJXsnNWC6Z3J88vHkoclZySKUd2Qj\n6l21NuWQVLqqTUV15i5QP1/fldTP10alfiar/Hjy+R1T6/9zSRbXGdF6p2+jcrdUOD5pM4iu\ntu6SXJl8vZ60KDVIe1aLeotU5cRsTL0x0raUx2OS69uu0FG9P0q7D5ii7Q+nrstCpwDrsKr+\nqENcTW8ooD/akGjbKuiPto1+ay9cd+7qYzkgG12DoccmZ2ywA6dneb3D/l82qDdu8dmZWX8E\nb1Tq+6Sek9QH9zcq9Ydp3TigbanL625sWbn+oL6hZd3a5ipt2q6fk6rftu3ajmq3zaWBXbZd\n21ztd7HdTdtpvnVpux2bOTatN2LKitP8/JV1m2Nem1B1q7StXyZtflarzeZnqqbblrbHZtrt\nnsZk2p+pGrx+T9sdVK8zAf3ReFr90a4uzf/vtr9rpulHm7Z3fcX1n7Xdjmq7Spvfv5v53buz\n9Xb/6o92ddIf7eox02d9PYN0RBTqP8oHWmicmTrPblFvXJXjM7Peyd+o1Lvyb96o0mD59+fx\nDi3r7p96+yZtbjtdTZbLF2qiRamzbPUL8t9a1K0qd00uSNqUO6VStfutFpWrE6gzZRe2qFtV\nyrrOsLR5t78+D3C75OKkTblrKl3QpmLq3Cap/z81UG9Tpjk29V1M1yRtzvLsnnqHJV9M2pT6\nea5tvrZF5b1Sp35Wv9yiblU5PKnj2KYjrTcJKl9J2pS7pdK/tKmYOrcd1KszQ23KNMemPudY\nx+UbLRqun+07J//aom5VqZ/tS5M2l2FW/QvqH2XbBernR3+09jBM8/9Kf7TW766ZdcHa2WPn\n6I/WsuiPdjXRH+3qsbTP6h2N+iP5pzbYw/oDtgZIb9qgnsUECBAgQGAzAvqjzahZhwABAgss\nUCPKPpZ6t26/5LVJXQJX0/XOeL0LVe9a1XX8j0telxydHJ/UO7MKAQIECBCYpYD+aJaa2iJA\ngACBLQv8cFr4bFId1GjqMpXTkhogKQQIECBAoEsB/VGXutomQIDAHAV2n+NrdflSh6bxw5O6\nDvfqpG7KUGnzGZhUUwgQIECAwEwE9EczYdQIAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBBYFIFlucRuUTzbbMfDU6lu4bzM5Tuyc3Ur5Da3ku6rQ90YpO6SeFVfd6DFdtdNXOrG\nJ21vM9+iyYWsUpfm1t0uFQKrJqA/Wo4jrj9ajuNYe6E/WpBjaYA0/wNR3z1Ut4VVCBBYDIG6\nwUt1Sm2+d2oxtthWEJiNgP5oNo5aITArAf3RrCS32E5fvyh2i7u9ravX3fXq+5vev61b0e2L\nfyjN/2Xy292+zLa2/pq8+u2TJ23rVnT74k9J8y9I7tPty2xr63WXy/+beNNiWw+DF98mAf3R\nNsHP+GX1RzMG3abm9EfbBD/uZQ2Qxql0P686pWW+zK7eAbl+yfex3nm9ccn3sY5hHctl/ln9\ndvZPIbDKAvqj/h99/VH/j2Htgf5ogY6jd00X6GDYFAIECBAgQIAAAQIEtlfAAGl7/b06AQIE\nCBAgQIAAAQILJGCAtEAHw6YQIECAAAECBAgQILC9AgZI2+vv1QkQIECAAAECBAgQWCABA6QF\nOhg2hQABAgQIECBAgACB7RUwQNpef69OgAABAgQIECBAgMACCRggLdDBsCkECBAgQIAAAQIE\nCGyvgO9Bmr//hXnJr87/Zef6ihfn1S6Z6yvO/8VqH+u7J5a5XJqdu2iZdzD7dkVSx/LaJd9P\nu0dgnID+aJxK/+bpj/p3zMZtsf5onIp5BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAIEtC3xvWjg5+WzyV8kxSZ/KO7Ox7x2T3Yd2os0+3jH1X5z8fXJ28mvJ\nHsl2lVvmhd+X/PKYDah9+7mk9v385E+SQ5PR0ma/29QZbXeWz38hjZX3uNLnY3vb7NBvJ/+Y\n/GvygeSxyWhp49/mZ7NNndHX9pzAogm0+f+waNs8vD19/p01vB+j0/qjnf1tX//W0B+N/kR7\nTmADgcOy/KrkzckTklOT65Njkz6UI7KRNyUfSt42kmaA1HYfz8z6n0menPxiUi7/O9mOUp3R\nHyW1b68YswHPzLxrkhrQPSmpQd0Xk/ojuSlt9rtNnaa9Lh7r56x+3s4b03ifj+2e2Z//m1ye\nvCY5IXl/UsfzuKQpbf3b/Gy2qdO8rkcCiyjQ9v/DIm57bVOff2etZ6o/6vex1R+t99NtGYEJ\nAn+R+Z8YWfbneX7uyLxFffoT2bD6o/PgdTawzT4+edDOUUPt/MfBvHsNzZvH5HflRf4x+Xpy\nXTI6QLpT5v1bUoOjphyQiauTlzQz8thmv9vUGWpyZpO3TUvNAPDKTI8bIPX52D4u+1Q/l/Vz\n1ZQasP+/5J+bGXls49/mZ7NNnaGXNUlgIQXa/H9YyA0fbFSff2dNctUf7ZTp87HVH0366Taf\nwASBW2f+DcnzR5Yfm+f1x919RuYv4tOXZaMuWmfD2u7je9LGWSPt7J3nVye/NjK/66efzQv8\nXXLPpAYPowOk4zOvjs/hyXA5LU8+PZjRZr/b1Bluf5bTr0xjX0l+NvnDZNwAqc/H9lHZp1OT\n/ZPhckqe1M9Ulbb+bX4229TZ+ar+JbCYAm3/Pyzm1u/cqj7/zprkqj/q/7HVH0366e7p/Fv0\ndLv7tNn3zsaW8+dGNvrzg+eHjsxfxKcPyEZdkPzn5K+TDyc14NsjqdJ2H++buqMO12bel5J5\nOzwpr/mQZNygIbN3DFzrzFJdUjdcavubbW2z323qDLc/y+kazN01qcdJpc/H9gPZqacndRaw\nKXtlot6FbM7YtvVv87PZpk6zHR4JLKJA2/8Pi7jtzTb1+XdWsw+jj/qjnSJ9Prb6o9Gf6p4/\nN0Dq/gDedvASXx15qa8NntelXIte6pdWDSYekXwwqXch64PxpydV2u5j1bt8xxq7/nNFns7b\n4axdN2HNs0nbWset9v9WSZv9blNnzYvPaMY/pZ1vbtDWA7J8mY7tK7M/BybNpZFt/aveRj+b\nbeqkGYXAwgq0/f+wsDuQDXtAsky/s8paf1QKy3ds9Uc7j2sv/92zl1vdr42uy7Sq1NmI4dI8\n32945gJO12c6fi+5MHnLYPtelsfXJs9NfjBpu49V79vJaCmLRXSYtK21/bW9bfa7TZ1qbzvK\nMh3b2pfqjH4peWHy0aRKW/82P5tt6ux8Vf8SWEyBtv8fFnPrd9ttmX5nTWusP5rt7/Np/aep\nrz+aRmtB6zqD1P2BuXjwErcbeal6l7vKVTsfFvbf6lBfnTSDo2ZD/3gw8X15bLuPF6Vus9+D\n1Xc81LxFc1hvW2uja3vb7HebOtXedpRlObZ196c/SV6Q1KD9t5KmtPVf73g3P5tt6jSv65HA\nIgq0/f+wiNte27Qsv7Om9V3vd0+1pT/aKboIv6v1R9P+dC9ofQOk7g9M/WKrcvDOh5v/bS4p\n+5eb5yzmxL7ZrPsnzaUZzVbWpWZNabuPVa/Z72bdejwoWTSH2tb9B8nDzaWOYy27dvBYC9Y7\ntm1tqp15l2U4tvsE7e1Jfe7op5KTkuHS1r/qbfSz2abO8GubJrBoAm3/Pyzadjfbswy/s5p9\nmeaxjpv+6N9vFrVen1uu2/W7Wn80zU+1ugQi8PdJ/RE3XH43T+ozD/UfapFL3ZK73rWrS+qG\nS13GVPMfPZjZZh9rnfpMTH2Gpynfn4lq50ebGdvweGVe8xUjr3tknt+Q/OzQ/DptXpca/vHQ\nvDb73abOUJOdTP5hWj1vpOVlOLZ/lX2qwfr3juzb8NM2/m1+NtvUGX5d0wQWUaDN/4dF3O7a\npmX4nbWRrf5oV6H6vduXvzX0R7seO88IbChwXGpcn5yY1JmYn05qoPCUpA/lzGzkN5Ljk3rn\n5r8klyYfSprSZh9r3+v2y29LDkm+M/lk8u5kO8u4Dqm25/8k/5rUZYS3T+rsRN1Qogya0ma/\n29Rp2uvqcdwAqV6rz8f257L91XG+OXnWmDRnyNv4t/nZbFMnm6EQWGiBNv8fFnkH+vw7q42r\n/qiff2voj9r8dKtDYIzAizLvmqT+oPtS8sqkL6UGB6cnte2Va5P6zEfdyW24tNnH/5AVvphU\nOzVIrEHIXZLtLJM6pAOzUX+Z3JjU9p6d/FgyWtrsd5s6o+3O8vmkAVKfj+2HAlTHZVL2GgJs\n49/mZ7NNnaGXNUlgIQXa/H9YyA3PRvX5d1YbU/3Rv/9OvzZgfflbQ3/U5qdbHQITBG6Z+XdP\n6lKtPpb9s9H3Sob/8Bzdj7b7eFhWHB1gjba1KM8PyIbUGa/1Spv9blNnvdfoctkqHNu2/m1+\nNtvU6fJ4aZvAVgXa/n/Y6ut0tf4q/M4aZ6c/2qnS9ud3UX9Xz3L7F3Ufx/38mkeAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhM\nFNhv4hILCBAgQIDA/AT0R/Oz9koECBDoVOAZaf2LI/l4nv/v5JFJV+XsNPzSTTb+iKx3SnJ+\nclNyZfJnyd2SLsr3p9E7dNGwNgkQIEDgZgH90c0UEyf0RxNpLJilwJ6zbExbBHoocJts82HJ\n7yf/luyR1GDgIclxyX9M/k8y63LnNHi7TTT6Y1nnz5NPJ6cn5yaPSH4q+e7kAcm3klmVR6Sh\nDyb3TC5LFAIECBDoRkB/tL7rI7JYf7S+kaUECBCYicAvpZU6C3P4SGt75/l5yV+PzJ/V0y+n\nod+dsrGHpf41ydvHrPfgzLshefWYZVuZ9bisXD5HbaUR6xIgQIDAhgL6o/WJ9Efr+1g6Q4Fb\nzLAtTRFYJoFrszN1luagkZ2q/zNPT+qs0oeS30uOSIZLmzrD9Wv6vskfJk+sJxPKCZlfZ7me\nNmb5WZn3oqTOHtVZsKZ8bybemHw4+ZPkmGS43DFP/ntS78q9J/mN5LZJlbqU4T/vmNo5/ymD\naQ8ECBAgMD8B/ZH+aH4/bV5ph0D9IacQILBW4KGZ9cjkz0YWvTXPX5fUGaAzkhpE1GVu/yFp\nSps6Td16/M7kA8lhSQ28JpWHZMHfJldMqPBbmf+SpM4kVTku+b/JwclfJLsPHl+Rxyo1kHp/\ncmxS7dZ+PDn5+6SW1dmqGpBV+Vpy9Y4p/xAgQIDAPAX0R/qjef68eS0CBAjs1lzScHEsLky+\nlHwzqcvK/jgZLj+dJzW/BhRNuWUmPp/8U1IDkDZ1Um3HAKsusbtXcklSA5i6rG9SOTAL6rV/\nY1KFkfn1+aYa1PzZyPz/kefXJ/dP6qxVtfmYpCkPz8T7kiMHMx6Xx6pz1OC5BwIECBDoRkB/\npD/q5idLqwQIEJhSoOmQ6lK5lw9SZ4jqkrPrkt9MmvIHmbigeTL0WAOdGkTUGaA2dWrVLyfv\nTi5K6szNLZP1SjNAqsvh2pQ6+1XbVJfYDZc641Xza79vldRg8J+TE5PRSwUzazcDpFJQCBAg\n0L2A/kh/1P1PmVcgQIBAC4GmQzp8TN1fz7waTNTZlip1Odpf18RI+ZE8r3p1GUSbOrV6DZBq\nnTr7dEMyfIleno4tX8jcGlRNKvtlQTPQelamq/07jlSuy2rrsrkaEFb5gaTOflXdSg2WnpE0\nxQCpkfBIgACBbgX0R/qjbn/CtN5awGeQWlOpuIIC9VmiKj+082HHJWt16dpo2Xcw41/y+LVk\nozrN+nUp232SOoP0xqRpJ5NjS30/U93Ge6+xS3fb7bWZf2Vyj6S2o8ptdz7s8m+9Tm1rlY8m\ndaldrfPcpD7fdEryc4lCgAABAoshoD9ajONgK1ZEwABpRQ603dyUQN0Uocpndz7s9qk81meG\nDh08bx4enYnLkjor1KZOs16drakbIZyQ3C15ZbJeeUMW1g0X6jK+0VI3enhqUtt6flLbUaW2\nbbg8Ik/qLNMnku9JzkjumtR6JyWPSr6efF9S5cadD7v5XTGA8ECAAIFtENAf6Y+24cfOSxIg\nsKoCv5Qdr0vLXpTUZWmVurX1yUndMvuTSXNmp87G1EDob5P7JXWm6OeT65IXJFXa1Kl6NZiq\nzy415VWZqEvtHtrMmPD4XzO/trfeTXxiUvV/J7kouTr5rqQpp2WiziT9ZHKb5GHJ55OPJPsk\neydfTN6T1GDpkOT5SbX/U0mVhyf1/FeT2meFAAECBLoR0B/pj7r5ydIqAQIEphRoOqQaBDSp\nMyh1FqY+p1NnbIZLXY52VtLUvSDTNagYLm3qjA6QasBSr1lncuqzROuVuhSuzvzUdjbb8cFM\nDw+O8nS3/ZM3JN9Oqt5VyenJrZOm/GAmzkzqTFbVqUvs/kvSlBocfjipZfUaCgECBAh0I6A/\n0h9185OlVQIECMxJoM4UHbbBa7Wps0ET6y6uS+Xumdxq3Vo7L6mr23bvuU69GgjddZ3ldQaq\nzjgpBAgQILBYAm36mjZ1trJX+qOt6FmXAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEApF6S4AAA/t0lEQVSAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQILCewO7rLbSMwBII3D37cPiY/bgx865JLk6+OGb5npn3sMH8S/P46TF1lm3WLbJD\nxyR7JGcnX07GlTtl5n2Sf00+l9yUKAQIECCwvoD+aH2fZulBmbhHUn3S+Un105PKfllwdHJ9\ncm5ybaIQIECAwAYCv5Xl9Qf8ejknyx8y0s7thtZ5y8iyZX360qF9fsKYnbxz5r13qE6ZXpQ8\nMlEIECBAYH0B/dH6Podk8VuTegNzuM9+V54floyW/5oZ1yVN3XrT85mjlTwnQIAAgbUCbTqk\n+uV6RXLk0OqrNkCqQc4NSdPRjA6Q9smyeievWT7cgdU7d49NFAIECBCYLKA/mmyzVxadlYzr\nY2penR3aO2nKiZmYVPdnmkoeCRAgQGC8wHCH9OxUOTSpd6Lumnx/cmbS/JL9lUw3pS6x+6FB\n7tfMXMLH/bNPv5F8K2kc6nF0gPTCoeX/I9O3T56TNIOqv8+0QoAAAQKTBfRHk21+IouaPuiM\nTNfliJXhPvq4PK9Sl959Pqn6lyR3Te6dXJ3UvI8nCoEtCdQfgQqBVRG4PDt64dDOXpDpFyU/\nOJhXv4ybUp/PO2Dw5KpmZh4fmFS9OmvyjqQuO6uzL3X2qT6n9O7km8lw2S9Pfjy5W1IDkkuT\njyV1ad9GpT4TVNdib1Tengpf2KjSmOXVkTTtl893jKlTs35gML86n99MvpqclFSH9ZDkQUnV\n+WiiECBAgMD6AvqjXX0ePPT01ZmuAVCV1yRNH32/TL9p8Lz60yonJxfURMr/TJ6bfFfyPUmb\nPjbVFAIECKyewPA7dqNnRUrjPyX1R3/liUlTJl1iV7+Mq24Nmmrw8vXB86aNGiTVddRNqbNU\n9Q5Xs3z4sdraqLwtFYbXmTT9oxs1NGF5DXRq0FgDnWckTfujVp8aLBu9ocWvDq3zrEwrBAgQ\nIDBeQH803qWZW5fZHZ7s0czI4wlJ0y+dOJhfj828Ywfz6uH4pJlffZpCYNMCe256TSsS6J/A\n07PJj0jq7FD9Aq53oB6ZVDkjqTNCbcutUrHq13XRf5/UAKUGRt+Z/GLy/KTKaUndkacGFm9N\n6rNOP5Z8X1KX/P1V8hfJdpXqsF+XfCMpn0nlX7PgvkldonjH5CtJlSN3Puz4t86mKQQIECCw\nsYD+aK3RtzNr+E246qefNqhWA5+PDKaH34T82mBePQxPD9cZqmKSAAECBEqgBgDNO0qTHuuX\n6hFVeahsdAap2qrL2ppydCaa9t8/mHmnoXlvyHT9sq9Sg6vfTeqMSw061iv7ZeFtW2TP9Rpp\nuaw67GYfRs8gvWBoWX1mae+k9rnOQDXrnJpphQABAgTGC+iPxruMm1tvZP5h0vQvbxyqVJfS\nNfO/d2j+o4fmv3povkkCUwvM4o+qqV/UCgS2SeBzed267rt+8dap/BoE1Q0b6vGTyXOS/5W0\nLfUZnKbU+nUWpgY/3zGYWWdZrkxqgPPM5CeSDyY1gKqO8uJko3LrVNh/o0pZXu+8Xd+i3mar\nvDYrnpDcI3lxUme/bpcMl9oGhQABAgQ2FtAfTTa6RRb9UXL8oMr5efyvg+l6uHFoeniy+vam\nTKrTLPdIgACBlRYYfsdu9KxIwdS7T1ck9W5UPd4yqVJ//DfvUL1lx5yd/5w8NH/07E8NiGqd\n+rxOU346EzVwadpqHuuX99uTuyTrlbdlYbPOeo91id9Wy3pnkKrtOybvSpr9+VKmX5o021UD\nJ4UAAQIExgvoj8a7DM+twVG9Udn0K5/N9Ojl23UVQ7P8oZluyrGZaOY/r5npkcBmBOoHUSGw\nygJnZ+ffNwCoMz2PnALj2pG6496xqs8dHZn8ZvKPSf3yrlLvdNUv81rel1IDwMclt0kOT2pw\nd0HSlC83Ex4JECBAYGqBVe+Pql98Y/Lkgdz/y+MjktG+pW581JT6yommDE9f1Mz0SGAzAi6x\n24yadZZN4D5DOzQ66BlatGayGeysWTA045BMH5HUmac6w1KX3/1IUu8kHpzUzRpqwFF3xRtX\nXpeZ7xm3YGTeJ0eez/rp/dPgDyR1k4a6tPBfkyqP2vmwY+B3zmDaAwECBAhsTmCV+6P/FrLh\nwdHD8/yyMYznD8377kzX1RhVHrjzYce/nxmaNklgagEDpKnJrNBjgR/Mttelc1Xq7Om+yeOT\npkP6ZqbPSmZVfjIN/fmgsTPyWGeM6jNQddncLyU1QKqB0deTSeVDkxbMeX4Z1WCtSl1q96vJ\nk5L/mFT5i+Sfd0z5hwABAgQ2EtAf7Sp0VJ6+fGjWeZl+/tDzmvzb5J3JmckXknrz8cSk+tT9\nkqcmVape128a7ngh/xAgQKCvAnWm5qYWqcvjfmpoJ2sg1aw36TNIRw7Vr8nm+44+NZi/Rx4/\nnDTt1ADsH5Jrhua9JNOLUp6eDWm29QkjG7V/nn9+aHlTrx7rs1sPSBQCBAgQmCygP5psU33h\ncL8ybvqkodWfuU79xw3VM0lgUwL1LrpCYBUF6kYD30q+krwp+eGk3oWaZbkhjdXldK9Nrk7q\njNUDk72TS5NfSF6R9KHUWa7qdM4Z2tjav48lD0rq81UKAQIECEwvoD/abbefmZLtlNR/SlJX\nZTSlpuvNvbqZkEJgSwL1gTiFAIHuBW6Zl7hLcmBSHx5tzjZlsnfl0GzxQUl9gPYbvdt6G0yA\nAIHVFlim/qiOZF3NUWec/mXwmAeFAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAIEuBHbvolFtLqXAvbNXe7Xcs5tS7zPJt1vWV40AAQIECLQV0B+1lVKP\nAAECBDoTeEBarkHPNHleZ1ujYQIECBBYVQH90aoeeftNYI4Ce87xtbxUfwX2Hmz6wXm8psVu\nvC919mlRTxUCBAgQIDCNgP5oGi11CRDYlIAB0qbYVnalK7PnbQZI16+skB0nQIAAgXkI6I/m\noew1CKyowC1WdL/tNgECBAgQIECAAAECBNYIGCCtITGDAAECBAgQIECAAIFVFTBAWtUjb78J\nECBAgAABAgQIEFgjYIC0hsQMAgQIECBAgAABAgRWVcAAaVWPvP0mQIAAAQIECBAgQGCNgAHS\nGhIzCBAgQIAAAQIECBBYVQEDpFU98vabAAECBAgQIECAAIE1AgZIa0jMIECAAAECBAgQIEBg\nVQUMkFb1yNtvAgQIECBAgAABAgTWCBggrSExgwABAgQIECBAgACBVRUwQFrVI2+/CRAgQIAA\nAQIECBBYI7DnmjlmDAv8dJ4cMTxjwvR9M/+XkwsnLDebAAECBAhsRUB/tBU96xIgQGAKAQOk\n9bF+NIvvvX6VHUsflH8/kvxhi7qqECBAgACBaQX0R9OKqU+AAIFNChggrQ93/PqLb156daYu\nvvmZCQIECBAgMFuB41s2pz9qCaUaAQIEJgn4DNIkGfMJECBAgAABAgQIEFg5AQOklTvkdpgA\nAQIECBAgQIAAgUkCBkiTZMwnQIAAAQIECBAgQGDlBAyQVu6Q22ECBAgQIECAAAECBCYJGCBN\nkjGfAAECBAgQIECAAIGVEzBAWrlDbocJECBAgAABAgQIEJgkYIA0ScZ8AgQIECBAgAABAgRW\nTsAAaeUOuR0mQIAAAQIECBAgQGCSgAHSJBnzCRAgQIAAAQIECBBYOQEDpJU75HaYAAECBAgQ\nIECAAIFJAgZIk2TMJ0CAAAECBAgQIEBg5QQMkFbukNthAgQIECBAgAABAgQmCRggTZIxnwAB\nAgQIECBAgACBlRMwQFq5Q26HCRAgQIAAAQIECBCYJGCANEnGfAIECBAgQIAAAQIEVk7AAGnl\nDrkdJkCAAAECBAgQIEBgkoAB0iQZ8wkQIECAAAECBAgQWDmBPVduj+3wvAR2zwvt0fLFbky9\nm1rWVY0AAQIECEwjoD+aRktdAgQIzEjg6rRzzIzaWsRmHpyNqgHMPi037vJB/VqnTf6pZbuq\nESBAgMD6AvqjXX30R7t6eEaAQAsBZ5BaIKkytcAts8ZZyfNbrPnI1Pn5FvVUIUCAAAEC0wro\nj6YVU58Agd0MkPwQdCVwZRr+aIvGD2lRRxUCBAgQILBZAf3RZuWsR2BFBdykYUUPvN0mQIAA\nAQIECBAgQGCtgAHSWhNzCBAgQIAAAQIECBBYUQEDpBU98HabAAECBAgQIECAAIG1AgZIa03M\nIUCAAAECBAgQIEBgRQUMkFb0wNttAgQIECBAgAABAgTWCizDXezqu3mOTg5ODkrqe3euSM5N\nzh88z4NCgAABAgQ6FdAfdcqrcQIECMxHoM8DpNr2lyfPTA6cwHVO5p+QfGrCcrMJECBAgMBW\nBfRHWxW0PgECBBZIoM+X2J0SxxOTU5OHJ/dK7pgcmtQZpScklyUfTx6cKAQIECBAoAsB/VEX\nqtokQIAAgakEDkjtG5LHtFjr9NR5TYt6W6lydVY+ZisNLPi6NcCsSxfr8pE25apUem+biqlT\nA9lLW9ZVjQABAosmoD+a7xHRH83X26sRWEmBvp5BOiJHq/5g/0CLo3Zm6jysRT1VCBAgQIDA\ntAL6o2nF1CdAgMCCC/R1gFQ3YPhqcuwGvnVdeJ2hOG+DehYTIECAAIHNCOiPNqNmHQIECCyw\nQF9v0nBjTE9OTkuemLwruSS5PNkrOTC5Z/Kk5MjkIYlCgAABAgRmLaA/mrWo9ggQILDNAn0d\nIBXby5Kzk5OScWeSrs/8tyZPTuodPoUAAQIECHQhoD/qQlWbBAgQ2CaBPg+QiqxuBHBUUneu\nOzy5TVI3TLhokG/lUSFAgAABAl0L6I+6FtY+AQIE5iTQ9wFSMdWd1Q5Jbp8clNTNG+6U1L75\notggKAQIECAwFwH90VyYvQgBAgS6FejzAKm23RfFdvvzoXUCBAgQ2FhAf7SxkRoECBDojUBf\n72JXwL6Yrzc/ZjaUAAECSy2gP1rqw2vnCBBYNYG+nkGqL+Z7SvLY5IwxB+1LmVc3ZqibNNQX\nxR6XnJVMW56TFY5ssVLdOa+2SSFAgACB1RLQH63W8ba3BAisgEBfB0jTfjHfszd5LO+c9eoG\nEBuVOhNXgySFAAECBFZLQH+0Wsfb3hIgsAICfR0g1dmh5oti37bOcar928oXxf63ddoeXlR3\nzrtseIZpAgQIEFgJAf3RShxmO0mAwCoJ9HWA5Iv5Vumn1L4SIEBgcQX0R4t7bGwZAQIENiXQ\n1wFS7awv5tvUIbcSAQIECMxYQH80Y1DNESBAYDsF+jxAKjdfzLedPz1emwABAgQaAf1RI+GR\nAAECPRfo+wBp3/g/KKmbJHw8+UYyWh6VGdcmHx1d4DkBAgQIEJiRgP5oRpCaIUCAwHYL1MCi\nr+V+2fB/Sj6S/E1yQVI3ZBgtL8qM547O9JwAAQIECMxIQH80I0jNECBAYBEE+jpA2j14f5Jc\nlxyfPDH5dPKW5IWJQoAAAQIE5iGgP5qHstcgQIDAHAX6eondXWN0dPLo5MykymnJK5JXJZcn\npyYKAQIECBDoUuCuaVx/1KWwtgkQIDBngb4OkO4Up7q16t+NeP1Knt86+YPkwuSMRCFAgAAB\nAl0J6I+6ktUuAQIEtkmgr5fYXRCv2vYfH+P2vMx7R3J6UjdwUAgQIECAQFcCF6Rh/VFXutol\nQIDANgj0dYB0cazenZyU/H5y56QpdWapPpNUZ5fq5g33SRQCBAgQINCFgP6oC1VtEiBAYBsF\n+jpAKrKnJh9Onp0cmQyXb+fJTyZvTeryB4UAAQIECHQloD/qSla7BAgQ2AaBvn4Gqai+mhyb\n3Dap7zkaLd/MjOq06vNIdxhd6DkBAgQIEJiRgP5oRpCaIUCAwCII9HmA1Phd2UxMeDx7wnyz\nCRAgQIDALAX0R7PU1BYBAgS2SaDPl9htE5mXJUCAAAECBAgQIEBgWQUMkJb1yNovAgQIECBA\ngAABAgSmFjBAmprMCgQIECBAgAABAgQILKuAAdKyHln7RYAAAQIECBAgQIDA1AIGSFOTWYEA\nAQIECBAgQIAAgWUVMEBa1iNrvwgQIECAAAECBAgQmFrAAGlqMisQIECAAAECBAgQILCsAgZI\ny3pk7RcBAgQIECBAgAABAlMLGCBNTWYFAgQIECBAgAABAgSWVcAAaVmPrP0iQIAAAQIECBAg\nQGBqAQOkqcmsQIAAAQIECBAgQIDAsgoYIC3rkbVfBAgQIECAAAECBAhMLWCANDWZFQgQIECA\nAAECBAgQWFYBA6RlPbL2iwABAgQIECBAgACBqQUMkKYmswIBAgQIECBAgAABAssqYIC0rEfW\nfhEgQIAAAQIECBAgMLWAAdLUZFYgQIAAAQIECBAgQGBZBQyQlvXI2i8CBAgQIECAAAECBKYW\nMECamswKBAgQIECAAAECBAgsq4AB0rIeWftFgAABAgQIECBAgMDUAgZIU5NZgQABAgQIECBA\ngACBZRUwQFrWI2u/CBAgQIAAAQIECBCYWsAAaWoyKxAgQIAAAQIECBAgsKwCe7bcsX1Tb/eW\ndavaN6eoqyoBAgQIEGgroD9qK6UeAQIECGxKoO0A6eK0fkDLV7gm9aoDUwgQIECAwKwF9Eez\nFtUeAQIECOwi0HaA9AtZ6w3Jewa5LI8HJ09Kvjt5SVIDoyrX73xYin9/I3txjxZ7snfq3KFF\nPVUIECBAYGsC+qP1/fRH6/tYSoAAgQ0F2g6QTkxLL01+a6TFU/P8n5M7Ji8cWbYMT7+SnWhz\n5uym1LtuGXbYPhAgQGDBBfRH6x8g/dH6PpYSIEBgJgI1QLgxuf2E1urdvHMmLFuV2VdnR49Z\n4p19cPatOt19Wu7jVan33pZ1n5B6l7asqxoBAqstoD/a+Pjrj3Y10h/t6uEZAQItBNrcxa5+\n2X4tedCE9r4n8y+csMxsAgQIECAwKwH90awktUOAAAECEwXaXGJXZ4/+PPnT5NeTv0muTA5L\nnp4cl/xQohAgQIAAgS4F9Edd6mqbAAECBHYItBkgVcWfT+rmCyfVk6FSl0bVjRo+ODTPJAEC\nBAgQ6EpAf9SVrHYJECBAYIdA2wFSDY6qU6q71T0wuUvyL8k/JN9IFAIECBAgMA8B/dE8lL0G\nAQIEVligzWeQhnnunSf3Smpg9ZGknisECBAgQGDeAvqjeYt7PQIECKyIQNsB0q3j8VfJR5Pf\nT+pzR7dKzho8b3t3s1RXCBAgQIDApgX0R5umsyIBAgQItBFoO0B6bRqrd+tqYPTyQcPfzONz\nkqcmy3yL68HueiBAgACBBRDQHy3AQbAJBAgQWGaBNgOkqvMzybOSNydfT6rU9+KcnLwxMUAK\ngkKAAAECnQrojzrl1TgBAgQIlECbAVJ9Qey+yRdrhTGl5t9/zHyzCBAgQIDALAX0R7PU1BYB\nAgQIjBVoM0D6Sta8PKnbeY+W3TPjhOS80QWeEyBAgACBGQvoj2YMqjkCBAgQWCvQ9jbfv5NV\nfzWpL4etS+vqBg3PSI5PjkpqkKQQIECAAIGuBfRHXQtrnwABAisu0HaA9Ko47Z/8YrL3wOz7\n8lhnlp6WfGwwzwMBAgQIEOhSQH/Upa62CRAgQGDH9xm1Yfi1VHpf8rvJfZODk/rs0bnJ1YlC\ngAABAgTmIfBreRH90TykvQYBAgRWVKDNGaT6zokXJ99K/jr5UKIQIECAAIF5C+iP5i3u9QgQ\nILCCAm1u0lC39f5cUneqq5syKAQIECBAYDsE9Efboe41CRAgsGICbc4g1U0ZXp/UF8R+MvlE\nckkyXOpSuz8bnmGaAAECBAjMWEB/NGNQzREgQIDAWoE2A6Ra67nJNUl99qgyWt6VGQZIoyqe\nEyBAgMCsBfRHsxbVHgECBAjsItB2gHS3XdbyhAABAgQIbI+A/mh73L0qAQIEVkagzWeQVgbD\njhIgQIAAAQIECBAgsNoCkwZItw/L8cmBq81j7wkQIEBgmwX0R9t8ALw8AQIEVk1g0gDp7oF4\nY3LoEMjtMv2ypJYpBAgQIEBgHgL6o3koew0CBAgQuFlg0gDp5gpDEzVAeklyxNA8kwQIECBA\nYN4C+qN5i3s9AgQIrJDANAOkFWKxqwQIECBAgAABAgQIrKKAAdIqHnX7TIAAAQIECBAgQIDA\nWAEDpLEsZhIgQIAAAQIECBAgsIoCBkireNTtMwECBAgQIECAAAECYwU2+qLYj2StGwZrNoOp\nt+f59SOtvSPPnzoyb15P98kLHZ0cnByU3JRckZybnD94ngeFAAECBHosoD/q8cGz6QQIEOiT\nwKQB0lezE386xY58fIq6s6pa2/7y5JnJpO9rOifLTkg+lSgECBAg0D8B/VH/jpktJkCAQK8F\nJg2QPp+9+rkF37NTsn2PT16fvCe5NPlasndSA6Z7JscnNXh7aHJWohAgQIBAvwT0R/06XraW\nAAECBLZJ4IC87g3JY1q8/ump85oW9bZS5eqsfMxWGljwdR+c7atLF+tyxjblqlR6b5uKqfOE\npAa3CgECBPoooD+a71HTH83X26sRWEmB5nNFfdv5+rLa+oP9Ay02/MzUeViLeqoQIECAAIFp\nBfRH04qpT4AAgQUX6OsAqW7AUNelH7uBb11CWGcoztugnsUECBAgQGAzAvqjzahZhwABAgss\nMOkzSAu8yTs27cb8e3JyWvLE5F3JJcnlyV7JgUl9BulJyZHJQxKFAAECBAjMWkB/NGtR7REg\nQGCbBfo6QCq2lyVnJycl484k1a3I35o8Oal3+BQCBAgQINCFgP6oC1VtEiBAYJsE+jxAKrK6\nEcBRyaHJ4cltkrphwkWDfCuPCgECBAgQ6FpAf9S1sPYJECAwJ4G+D5CKqe6sdkhy+6T5otg7\nZbr2zRfFBkEhQIAAgbkI6I/mwuxFCBAg0K1AnwdIte2+KLbbnw+tEyBAgMDGAvqjjY3UIECA\nQG8E+noXuwKuL4o9MTk1eXhyr+SOSV1ud3RSd6+7LKkviq3vTVAIECBAgEAXAvqjLlS1SYAA\ngW0S6OsZpPpivqckj03OGGP3pcyrGzPUTRrqi2KPS85Kpi1/lBXu3WKlfVOnLvNTCBAgQGC1\nBPRHq3W87S0BAisg0NcB0rRfzPfsTR7L+pLZz7VY97tS599a1FNlvECdybz7+EVr5tYtdb+w\nZq4ZBAgQ2B4B/dH2uHf1qvqjrmS1S6BHAn0dINXZoeaLYt+2jnft31a+KPbN67Q9vOjFefKN\n4Rk9mK5O/YEtt7PuFNhVqcFl3WCjzUC02Ya6rfs7myceCRAgsI0C+qOt4+uPtm6oBQIEZijQ\n1wGSL+bb+g/BK9LE45M2A7u9By93yzxeM5ie1UN9sW8dz7pNe5tSnynbr01FdQgQIDAHAf3R\n1pH1R1s31AIBAgRuFvjhTH02uWlMrsu805K6YUPXpb576ZiuX2TG7b8p7b2+ZZtPS70yrmvt\n25SrUqm+E6RN+Z1UuqFNxUGd+o6r+kyZQoAAgUUS0B9t/mjojzZvZ00CBDoQ6OsZpIai/gj3\nRbGNhkcCBAgQ2C4B/dF2yXtdAgQIzFig7wOkhuPCTFQUAgQIECCwnQL6o+3U99oECBCYgUCf\nvwdpBruvCQIECBAgQIAAAQIECPy7QF/PIO2fXWh7W+ja2yuTL9aEQoAAAQIEZiigP5ohpqYI\nECCwCAJ9HSDdP3gfmwKwvjC2bvetECBAgACBWQroj2apqS0CBAgsgEBfB0h/G7u6s1rdhe3D\nyW8n65VL1ltoGQECBAgQ2KSA/miTcFYjQIDAogr0dYBUnm9Mdk9OTV6ZfChRCBAgQIDAvAX0\nR/MW93oECBDoUKDvN2n4n7F5f/KqDo00TYAAAQIENhLQH20kZDkBAgR6ItDnM0gNcX226Iik\n9uX6ZqZHAgQIECAwZwH90ZzBvRwBAgS6EFiGAVLdoe4TXeBokwABAgQITCGgP5oCS1UCBAgs\nqkDfL7FbVFfbRYAAAQIECBAgQIBADwUMkHp40GwyAQIECBAgQIAAAQLdCBggdeOqVQIECBAg\nQIAAAQIEeihggNTDg2aTCRAgQIAAAQIECBDoRsAAqRtXrRIgQIAAAQIECBAg0EMBA6QeHjSb\nTIAAAQIECBAgQIBANwIGSN24apUAAQIECBAgQIAAgR4KGCD18KDZZAIECBAgQIAAAQIEuhEw\nQOrGVasECBAgQIAAAQIECPRQwACphwfNJhMgQIAAAQIECBAg0I2AAVI3rlolQIAAAQIECBAg\nQKCHAgZIPTxoNpkAAQIECBAgQIAAgW4EDJC6cdUqAQIECBAgQIAAAQI9FDBA6uFBs8kECBAg\nQIAAAQIECHQjYIDUjatWCRAgQIAAAQIECBDooYABUg8Pmk0mQIAAAQIECBAgQKAbAQOkbly1\nSoAAAQIECBAgQIBADwUMkHp40GwyAQIECBAgQIAAAQLdCOzZTbNzbXWfvNrRycHJQclNyRXJ\nucn5g+d5UAgQIECAQKcC+qNOeTVOgACB+Qj0eYBU2/7y5JnJgRO4zsn8E5JPTVhuNgECBAgQ\n2KqA/mirgtYnQIDAAgn8/+3dCZBsV10H4BezAEkgi2xB8rJICDsRFQVZUqCikU2NYlijbCVu\nKIiFuCIGF1wAQROgoKBACIuiBAghhEJUEtkFJSDwQiAhsiQkCIQs+Pu/mRv6dXpmzszr5d5+\n36n6TXffPn3uud/t6TOn7+2eIZ9id1ocn5S8OLlvcrvk5snhSR1R+tnkC8n7kh9IFAIECBAg\nMAsB49EsVLVJgACBBQkM9QjSQfF6THJCcuYEu89mWZ1i99rk9OSk5NxEIUCAAAEC0xQwHk1T\nU1sECBDogcBQjyAdFbv6rNHZDYZnpc59GuqpQoAAAQIENitgPNqsmPoECBDoucBQJ0h1dOiL\nyUM38K0jZHWq3fkb1HM3AQIECBDYioDxaCtqHkOAAIEeCwz1FLtrY/rC5FXJI5J/Sj6ffCnZ\nLzk0OTZ5ZHKb5B6JQoAAAQIEpi1gPJq2qPYIECCwYIGhTpCK7ZnJecnzk0lHkq7O8voM0qOT\neodPIUCAAAECsxAwHs1CVZsECBBYkMCQJ0hF9tbkmKS+ue6I5CbJFclFq/l6LnenvCkPvnND\nA/unTq1fIUCAAIE9U8B4tGfud1tNgMASCgx5glSfn6pTG6pcuJqaqJyY/FhySVIDVv2z2K2W\n5+SB2xsefGrqXNxQTxUCBAgQWD4B49Hy7VNbRIDAHiww1AnSjbPPLk9+LnnN6v6rzxy9Jalv\nFOpKnWb3e8mzuwWbvHxnY/0XpN43G+uqRoAAAQLLI2A8Wp59aUsIECCwU6De9VqW8vJsSB1B\n+rXksOReyUuSU5KHJAoBAgQIEJiHgPFoHsrWQYAAgRkJDPUI0jjHLbPg7skzkuet3lnfavev\nSX2GqL7p7o2JQoAAAQIEZilgPJqlrrYJECAwB4FlOYJU/zS2Po/0hglmdQre7Scst4gAAQIE\nCExbwHg0bVHtESBAYM4CQ58g1eeNDkjqCxnendwlGS8PyIL6EgeFAAECBAjMSsB4NCtZ7RIg\nQGDOAkOdINU7dFcl9eUL9WUNH03qc0f1P5FukVT53uTM5ITkpYlCgAABAgSmLWA8mrao9ggQ\nILBggaF+BumrcTswuWNyXPI9q5c1ObphUqX+eez9k/oWu/qHsQoBAgQIEJi2gPFo2qLaI0CA\nwIIFhjpBKrb6Wu0PrKY7QrRXbte7eVVOS/4yubRuKEsjcEi2pI4U/mnjFtVRxMc31lWNAAEC\nWxEwHm1FbfiPMR4Nfx/aAgITBYY8QZq0Qd3kqO7zuaNJQsNftm824f3JKxo25SdS564N9VQh\nQIDAtAWMR9MW7V97xqP+7RM9IjAVgWWbIE0FRSO9F/hYetgyQaqv2z2691ujgwQIECAwVAHj\n0VD3nH4TWEdgqF/SsM4muYsAAQIECBAgQIAAAQJbEzBB2pqbRxEgQIAAAQIECBAgsIQCJkhL\nuFNtEgECBAgQIECAAAECWxMwQdqam0cRIECAAAECBAgQILCEAiZIS7hTbRIBAgQIECBAgAAB\nAlsTMEHamptHESBAgAABAgQIECCwhAImSEu4U20SAQIECBAgQIAAAQJbEzBB2pqbRxEgQIAA\nAQIECBAgsIQCJkhLuFNtEgECBAgQIECAAAECWxMwQdqam0cRIECAAAECBAgQILCEAiZIS7hT\nbRIBAgQIECBAgAABAlsTMEHamptHESBAgAABAgQIECCwhAL7LOE27cmbdEI2/saNANtT79ON\ndVUjQIAAAQKbETAebUZLXQIEeiVggtSr3bFbnblZHn1G8sXkmoaWbpo6BzXUU4UAAQIECGxG\nwHi0GS11CRDonYAJUu92yZY7tPfqI++Vy/MbWtmROns11FOFAAECBAhsRqAbj+6dB32s4YE7\nUsd41AClCgEC8xHwGaT5OFsLAQIECBAgQIAAAQIDEDBBGsBO0kUCBAgQIECAAAECBOYjYII0\nH2drIUCAAAECBAgQIEBgAAImSAPYSbpIgAABAgQIECBAgMB8BEyQ5uNsLQQIECBAgAABAgQI\nDEDABGkAO0kXCRAgQIAAAQIECBCYj4AJ0nycrYUAAQIECBAgQIAAgQEI+D9IA9hJujg3gadk\nTfUPdFvL21Px7NbK6hEgQIAAgUYB41EjlGoEZiFggjQLVW32ReCodOSY5IyGDtU/Kfzx5P3J\nFxrq3yF1vjsxQWrAUoUAAQJ7uIDxaA9/Atj8YQmYIA1rf+nt5gS2p/oByUcbHla/CzVBOjU5\nraH+C1LnZg31VCFAgAABAsYjzwECAxIwQer3zjo43fuexi4e0lhvT6t2ZTb4aQ0bfaPU+fWG\neqoQIEBgTxQwHu3+Xjce7b6hFgjMRWAZJkg3jNRdk8OSWyTfSi5NPpx8fPV2LgZZnppePyOp\nbWoth6fi+a2V1ZuLwN5Zy2OT/Textjenbj1/FQIEhiNgPNp1X9V49LFdF7m1YAHj0YJ3gNUP\nQ2DIE6Tq+x8lT0gOXYP7P7K8/jD9zzXu7/vi2sa3JnXq10blzqlQk8Ih79ONtnGo99e556cm\ndarfVQ0bcdvU+YXkvQ11q8pFye801lWNAIHpCxiPdjU1Hu3q0adbxqM+7Q196a3AkP+Yrs+J\n/HTyd8kZySXJl5MbJDVhOjY5OXlfcu/k3KQP5R/TiXpXraXcKpUub6moztwF6vl1t6SeXxuV\nek5WeUjyyZ3X1v/x+dxdR0Trnb6NytGpcHLSMomutm6dXJZ8tW40lJqkPbGhXp+qPCmdqTdG\nWkt5PCC5uvUBM6r3krR73CbaflfqOi10E2AzrGo8miGupjcUMB5tSLSwCsajhdHv3orrm7uG\nWA5Kp2sydEJy5gYbcHrur3fYn7xBvUl3n5eF9UfwRqX+n9SvJPXB/Y1K/WFaXxzQWur0umsb\nK9cf1Nc01q0+V2lpu54nVb+17epHtdtyauAs264+V/uz6HfXdppvLq392Mq+ae7EJitu5vlX\n1i37vLpQdau01i+Tludqtdk9p+p6a2ndN5vt92ZMNvucqsnr97duoHozEzAeTaY1Hu3q0v1+\nt77WbGYc7dredY3r32rtR7VdpeX1dyuvvSutt/00Hu3qZDza1WOqt4Z6BOmoKNQvytkNGmel\nzi821JtU5eQsrHfyNyr1rvyrN6q0ev89c3mzxroHpt6Nkpavna4my+XTdaWh1FG2eoH8SkPd\nqnJksiNpKbdMpWr36w2VaxCoI2UXNtStKmVdR1ha3u2vzwMcklyctJQjU2lHS8XUuUlSvz81\nUW8pm9k39b+YvpG0HOXZK/W2JxckLaWez9XnKxsq75c69Vz9XEPdqnJEUvuxZSCtNwkq/5u0\nlKNT6VMtFVPn4NV6dWSopWxm39TnHGu//F9Dw/Xc/q7kMw11q0o9ty9JWk7DrPo76oeycIF6\n/hiPrr8bNvN7ZTy6vt+RWbTj+osnLjEeXZ/FeLSrifFoV4+lvVXvaNQfySdusIX1B2xNkP5+\ng3ruJkCAAAECWxEwHm1FzWMIECDQY4GaUQ6x1Lt1+yfPTeoUuLpe74zXu1D1rlWdx//g5AXJ\nXZOTk3pnViFAgAABAtMUMB5NU1NbBAgQILDbAj+WFj6R1AA1njpN5VVJTZAUAgQIECAwSwHj\n0Sx1tU2AAIE5Cuw1x3XNclWHp/EjkjoP94qkvpSh0vIZmFRTCBAgQIDAVASMR1Nh1AgBAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEOiLwLKcYtcXz5Z+3DeV6iucl7l8Zzauvgq5\n5aukh+pQXwxS35J4+VA3oKHf9SUu9cUnrV8z39BkL6vUqbn1bZcKgT1NwHi0HHvceLQc+7G2\nwnjUk31pgjT/HVH/e6i+FlYhQKAfAvUFLzUotfzfqX70WC8ITEfAeDQdR60QmJaA8WhakrvZ\nzlD/UexubvZCH17frlf/v+ntC+3FbFd+Tpp/c/Lns13NQlv/66z9pskjF9qL2a78MWn+ackd\nZ7uahbZe33L5nsSbFgvdDVa+IAHj0YLgp7xa49GUQRfUnPFoQfCTVmuCNEll9stqUFrm0+zq\nHZCrl3wb653Xa5d8G2sf1r5c5ufqN7N9CoE9WcB4NPy9bzwa/j6sLTAe9Wg/ete0RztDVwgQ\nIECAAAECBAgQWKyACdJi/a2dAAECBAgQIECAAIEeCZgg9Whn6AoBAgQIECBAgAABAosVMEFa\nrL+1EyBAgAABAgQIECDQIwETpB7tDF0hQIAAAQIECBAgQGCxAiZIi/W3dgIECBAgQIAAAQIE\neiRggtSjnaErBAgQIECAAAECBAgsVsD/QZq//4VZ5Rfnv9q5rvHirO3zc13j/FdW21j/e2KZ\nyyXZuIuWeQOzbZcmtS+vXPLttHkEJgkYjyapDG+Z8Wh4+2xSj41Hk1QsI0CAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAjstsDd08ILk08kb0kemAypvDGdfeuE\n7DWyES3bePPU/+3kvcl5yR8keyeLKvtmxW9LnjGhA7Vtj0pq2z+evCI5PBkvLdvdUme83Wne\n/rU0Vt6TypD37cHZoD9PPph8Jjk7OSEZLy3+Lc/Nljrj63abQN8EWn4f+tbn0f4M+TVrdDvG\nrxuPVsbbof6tYTwaf0a7TWADge25//Lk1cnPJi9Ork4emgyhHJVOfis5J3ndWLoJUus2npXH\nfyx5dPIbSbm8PFlEqcHoJUlt27MmdOAJWfaNpCZ0j0xqUndBUn8kd6Vlu1vqdO3N4rKeZ/V8\nO39C40Pet/tke96TfCn56+SxyduT2p8nJV1p9W95brbU6dbrkkAfBVp/H/rY9+rTkF+z1jM1\nHg173xqP1nt2u4/AGgL/nOUfGLvv9bn94bFlfb35k+lY/dF52DodbNnGR6+2c8xIOw9bXXa7\nkWXzuHq3rOSDyVeTq5LxCdIts+wrSU2OunJQrlyR/G63IJct291SZ6TJqV09OC11E8DLcn3S\nBGnI+/bB2aZ6Xtbzqis1Yf/v5L+6Bbls8W95brbUGVmtqwR6KdDy+9DLjq92asivWWu5Go9W\nZIa8b41Haz27LSewhsCNs/ya5Klj9z80t+uPuzuOLe/jzWemUxet07HWbTwjbZw71s4NcvuK\n5A/Gls/65ieygn9Pjk1q8jA+QTo5y2r/HJGMllflxkdXF7Rsd0ud0fanef2UNPa/ycOTFyWT\nJkhD3rf3zza9ODkwGS2n5UY9p6q0+rc8N1vqrKzVTwL9FGj9fehn71d6NeTXrLVcjUfD37fG\no7We3QNd/h0D7feQun37dLac/2es059cvX342PI+3jwundqR/HLyzuRdSU349k6qtG7jnVJ3\n3OHKLPtsMm+HR2ad90gmTRqyeOfEtY4s1Sl1o6X63/W1Zbtb6oy2P83rNZk7MqnLtcqQ9+3Z\n2ajHJXUUsCv75Uq9C9kdsW31b3luttTp+uGSQB8FWn8f+tj3rk9Dfs3qtmH80ni0IjLkfWs8\nGn9WD/y2CdLsd+DBq6v44tiqvrx6u07l6nupF62aTByfvCOpdyHrg/GnJ1Vat7HqfWnnI3b9\ncWluztvh3F27cL1ba/W19ltt/wFJy3a31Lneyqe04CNp52sbtHVc7l+mfXtKtufQpDs1stW/\n6m303Gypk2YUAr0VaP196O0GpGPHJcv0mlXWxqNSWL59azxa2a+D/LnPIHs9rE7XaVpV6mjE\naOlu7z+6sIfX6zMdz0suTF6z2r9n5vK5ya8mP5y0bmPV+2YyXsqijw5r9bX6X/1t2e6WOtXe\nIsoy7dvalhqMnpL8VvLupEqrf8tzs6XOylr9JNBPgdbfh372ftu2ZXrN2qyx8Wi6r+eb9d9M\nfePRZrR6WtcRpNnvmItXV3HI2KrqXe4ql69c9PZnDajPSbrJUdfRl61e+cFctm7jRanbbffq\nw3de1LK+OazX1+p09bdlu1vqVHuLKMuyb+vbn16RPC2pSfufJV1p9V9vf3fPzZY63XpdEuij\nQOvvQx/7Xn1alteszfqu99pTbRmPVkT78FptPNrss7un9U2QZr9j6oWtymErF9f97E4p+9R1\nS/p55Ubp1l2S7tSMrpd1qllXWrex6nXb3T22Lm+R9M2h+nrganJxXan9WPdduXpZd6y3b1tt\nqp15l2XYtzcM2j8k9bmjE5PnJ6Ol1b/qbfTcbKkzum7XCfRNoPX3oW/97vqzDK9Z3bZs5rL2\nm/Ho218Wtd6YW66Leq02Hm3mWa0ugQi8N6k/4kbLX+VGfeahfqH6XOoruetduzqlbrTUaUy1\n/EdXF7ZsYz2mPhNTn+Hpyj1zpdr5iW7BAi4vyzqfNbbe2+T2NcnDR5bXYfM61fBlI8tatrul\nzkiTM7n6orR6/ljLy7Bv35Jtqsn63ce2bfRmi3/Lc7Olzuh6XSfQR4GW34c+9rv6tAyvWRvZ\nGo92FarX3aH8rWE82nXfuUVgQ4GTUuPq5ElJHYn5maQmCo9JhlDOSif/Lzk5qXdunpxckpyT\ndKVlG2vb6+uXX5fcKrlD8qHkTckiy6QBqfrzhuQzSZ1GeNOkjk7UF0qUQVdatrulTtferC4n\nTZBqXUPet49K/2vgfHXyxAnpjpC3+Lc8N1vqpBsKgV4LtPw+9HkDhvya1eJqPBrm3xrGo5Zn\ntzoEJgg8Pcu+kdQfdJ9NTkmGUmpycHpSfa9cmdRnPuqb3EZLyzb+UB5wQVLt1CSxJiG3ThZZ\n1hqQDk2n3pxcm1R/z0selIyXlu1uqTPe7jRvrzVBGvK+PSdAtV/Wyn4jgC3+Lc/Nljojq3WV\nQC8FWn4fetnxdGrIr1ktpsajb7+mXxmwofytYTxqeXarQ2ANgX2z/LuTOlVriOXAdPp2yegf\nnuPb0bqN2/PA8QnWeFt9uX1QOlJHvNYrLdvdUme9dczyvj1h37b6tzw3W+rMcn9pm8DuCrT+\nPuzuemb1+D3hNWuSnfFoRaX1+dvX1+pp9r+v2zjp+WsZAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgsKbA/mve4w4CBAgQIDA/\nAePR/KytiQABAjMVeHxav2As78vtlyf3S2ZVzkvDv7fFxo/P405LPp58K7kseWVydDKLcs80\nerNZNKxNAgQIELhOwHh0HcWaV4xHa9K4Y5oC+0yzMW0RGKDATdLn7cnfJF9J9k5qMnCP5KTk\nYckbkmmX70qDh2yh0QflMa9PPpqcnnw4OT45Mfm+5Ljk68m0yvFp6B3JsckXEoUAAQIEZiNg\nPFrf9fjcbTxa38i9BAgQmIrAU9JKHYU5Yqy1G+T2+ck7x5ZP6+bn0tBfbbKx+6T+N5J/mPC4\nH8iya5LnTLhvdxY9OA8un2N2pxGPJUCAAIENBYxH6xMZj9b3ce8UBb5jim1pisAyCVyZjamj\nNLcY26j6nXlcUkeVzkmelxyVjJaWOqP16/qdkhclj6gba5THZnkd5fqFCfefm2VPT+roUR0F\n68rdc+WlybuSVyQPTEbLzXPjT5N6V+6M5I+Tg5MqdSrDL++8trL8MavXXRAgQIDA/ASMR8aj\n+T3brGmnQP0hpxAgcH2Be2fR/ZJXjt312tx+QVJHgM5MahJRp7n9UNKVljpd3bq8Q3J2sj2p\nidda5R6549+SS9eo8GdZ/rtJHUmqclLynuSw5J+TvVYvn5XLKjWRenvy0KTare14dPLepO6r\no1U1Iavy5eSKndf8IECAAIF5ChiPjEfzfL5ZFwECBLZ1pzRcHIsLk88mX0vqtLKXJaPlZ3Kj\nlteEoiv75sonk48kNQFpqZNqOydYdYrd7ZLPJzWBqdP61iqH5o5a9x+vVWFseX2+qSY1rxxb\n/he5fXVyl6SOWlWbD0i6ct9ceVtym9UFD85l1Tlm9bYLAgQIEJiNgPHIeDSbZ5ZWCRAgsEmB\nbkCqU+X+aDV1hKhOObsqeXbSlb/NlR3djZHLmujUJKKOALXUqYd+LnlTclFSR272TdYr3QSp\nTodrKXX0q/pUp9iNljriVctruw9IajL4X8mTkvFTBbNomwlSKSgECBCYvYDxyHg0+2eZNRAg\nQKBBoBuQjphQ9w+zrCYTdbSlSp2O9s66MlZ+PLerXp0G0VKnHl4TpHpMHX26Jhk9RS83J5ZP\nZ2lNqtYq++eObqL1xFyv9m8+VrlOq63T5mpCWOVeSR39qrqVmiw9PumKCVIn4ZIAAQKzFTAe\nGY9m+wzTerOAzyA1U6m4BwrUZ4mq/MjKxc5T1urUtfFyo9UFn8rll5ON6nSPr1PZ7pjUEaSX\nJl07uTqx1P9nqq/x3m/ivdu2PTfLL0tum1Q/qhy8crHLz1pP9bXKu5M61a4e86tJfb7ptORR\niUKAAAEC/RAwHvVjP+jFHiJggrSH7GibuSWB+lKEKp9Yudj2n7mszwwdvnq7u/jRXPlCUkeF\nWup0j6ujNfVFCI9Njk5OSdYrp+bO+sKFOo1vvNQXPfx8Un39eFL9qFJ9Gy3H50YdZfpA8v3J\nmcmRST3u+cn9k68mP5hUuXblYpvXilUIFwQIEFiAgPHIeLSAp51VEiCwpwo8JRtep5Y9PanT\n0ir11dYvTOorsz+UdEd26mhMTYT+LblzUkeKfim5KnlaUqWlTtWryVR9dqkrf5IrdardvbsF\na1z+ZpZXf+vdxEckVf8vk4uSK5K7JV15Va7UkaSfSm6S3Cf5ZPIvyQ2TGyQXJGckNVm6VfLU\npNo/Maly36Ru/35S26wQIECAwGwEjEfGo9k8s7RKgACBTQp0A1JNArrUEZQ6ClOf06kjNqOl\nTkc7N+nq7sj1mlSMlpY64xOkmrDUOutITn2WaL1Sp8LVkZ/qZ9ePd+T66OQoN7cdmJyafDOp\nepcnpyc3Trryw7lyVlJHsqpOnWL35KQrNTl8V1L31ToUAgQIEJiNgPHIeDSbZ5ZWCRAgMCeB\nOlK0fYN1tdTZoIl1765T5Y5NDli31sopdfW13fusU68mQkeuc38dgaojTgoBAgQI9EugZaxp\nqbM7W2U82h09jyVAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwRYH/BwTg2xjbYuZzAAAA\nAElFTkSuQmCC", "text/plain": [ "Plot with title “Bins = 20”" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "par(mfrow=c(2,2))\n", "for (numBins in 1:20){\n", " hist(college$Books, breaks=numBins, xlab=\"Book Cost\", ylab=\"Freq\", main=paste(\"Bins = \",numBins))\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We observe similar histograms when the number of _bins_ was set from:\n", "- 4 throguh 8\n", "- 9 through 16\n", "- 17 through 20\n", "\n", "Let us plot the graphs in different ways, varying the _par_ arguments." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0H3DRlfTd6eq8WpDexEEFRMMcGYmx5DcZCVPJGsRtrosYSE3xjjMaY\nxGPUeIwlbwoau8eChZijIgpBURPNa0END4JKVZAiqMD5/X12wmbdnb2fu+w9s/u9Pp/fM3Vn\nrvnO7l577czez2abKQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgECPBTbvcd1VncBqCvxqNrbLyAavzvRlyeeT\n64eWHZ7xQ5PzkrOG5vdldKtU9LeS65J39KXS6kmAAIEFEViU9qg+gx6Z7J/8e/LtRCFAgACB\nDgl8NXW5cULOz/w7DtX1FYP13jo0r0+jTf2/16dKqysBAgQWRGAR2qPn51x+N2na3Rsy/tcL\ncn4dZg8E6ptkhQCBmwROy+jZSX2ztUPy8GTfpDpDTSfpPzL+3uRzSZ/Klqnss5IX9qnS6kqA\nAIEFFZjX9ug+OZ9/ntSdGX+XXJs8IXlGcmbytkQhsK4COkjrym/nHRT4UOr0qqF6vTPjn0wO\nS7ZPfpx8OvlmcllSZcfkDsk1SXWe6va7OyXnJF9Mhstumbh7skfyg+QzyQ+TSeWuWbDXpIWZ\n/9mkqUfLaj+vY90OWPWsW+u2bVvZMgIECBBYd4F5bY8ePJD9eIbVMapSbeNvJr+S6CAFQSFA\ngEAXBJpbGn5vpDLPzXTdAvClofnNLWp1VanKLye1zpeTNw3Ga7ryxqQpdV/55UmzrIbV4bp7\nMqm8NwuG1x8dP3bSA0fm3yLT1TGquj8sqe24xS4ICgECBDomMO/t0Rbxri8Jbznk/sGMV7tU\nV5YUAusu4ArSup8CFeiYwPNSn8cndYvdLkndXle/QToxmVYOzwp1y8Cjk6OT306eklSnZEPy\n2mTX5HeSuj3vocnvJy9P7pfUPdijpdarW+MmlUsnLRiZf1Wm6+rRt5L7jywzSYAAAQLdE5jX\n9qjauouHuI/K+AMH0x8Ymm+UAAECBNZZoPnGbvQKTU3XrXDNbQBVzerw1PzRK0g173ZJlfqG\nrK4O1bzqLFX5flLT709OSG6V7J7MulQHqerhCtKs5e2PAAEC0wUWqT26Szjqi75qk/5uOo01\nCBAgQGCWAk2D9IfZaV05qvuh90kem/wkqTfv+yZVJnWQ6urRcLkwE/W4BwxmPnswXfMq9S3a\nGUnbFZ2/yfLzWnK3LNvUooO0qWLWJ0CAwOwEFqU9qitH9Rvcag/r91bbJAqBTgjUt9wKAQI3\nCVyb0R8llyffTf4haX5/1PywNLPGlvqNz3AZ7TD9VRbWt2U1/PJgxfr90buTHQfTo4O6R3v/\nlmw3+gDTBAgQIDAXAvPcHh2RM1R/pGG35IPJbyT1ZaRCoBMCfoPUidOgEh0WuFPqVr8tqlJX\nhJZb6la6JyeHJC9MnpPsl3whqU7QryT1DdpoeWpmPHd05tD0Suo0tBmjBAgQINBxgXlpj6pT\n9P8mNfyX5ISkvlCsz6R1NWn0y8XMUgjMVkAHabbe9tZ9gZekii8YVHPrDJvfCF2W8bcP5i9n\n8MM86N7Jg5L6k+HVOFRnqTpHVydfTMaVS8bNNI8AAQIE5l7gJTnCeWyP6g8ZHZhUuV9yzc/H\nNv7zvgyOH5o2SmBdBHSQ1oXdTjsssFPqVqlvsX6WVMfm/0v+LKnfAq2kPDEP/ovkPsmfDzb0\njQyfmdTtfAoBAgQIEGgE5rU9qitGCgECBAgQ+AWBAzLn5r8w1wwCBAgQIDBbAe3RbL3tjQAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAAB\nAgQIECBAgAABAgRWLrD5lE08Ist3nbLOOVn+6SnrWEyAAAECBFYioD1aiZ7HEiBAgMCSBbaa\nsuaxWf705MrkzOTQZL/km8nFSZWPJF3uIN019fsfVdEJ5YDM/3jyjgnLzSZAgACB9Rc4NlXo\ne3u0/opqQIAAAQJTBaZ1kHbJFl6avCz56WBrx2f44uReg+muD26XCt63pZK/lGV7JUvtIL06\n6x7Xsj2LCGyqwI15wPOTD2zqA61PYIEE5qE9Wu3TpT1abdGVbe8Tefhvr2wTHk2AQBcEpt1i\nd0kqeUhyxVBl6zF19ejw5MKh+X0dfV8qfn7yu0s8gNOz3mXJKUtc32oEpgn8QVZ4Y/LKaSta\nTmCBBRahPdrU06s92lSxtVv//tn0bZK7rN0ubJkAgVkJTLuC9LVU5AnJa5IbkuocPTap0txi\nt3Fqsf49O4f7lsU6ZEe7hgJPWsNt2zSBeRHQHo0/k9qj8S6znrtzdlgdJIUAgTkQmNZBemGO\nsW77OSmpN+Ejkh2SRyXVYVIIECBAgMAsBLRHs1C2DwIECBDYbFoHqf4ww2HJscntk3cndWtZ\nn26t2zH1PTiZVOq+9mkOkx5rPgECBAjMRmAe2qNqi+7ZwrV3ltVtc2e0rGMRAQIECKyxwFI6\nBnUr3bvWuB5rufnfz8brClhb2b5toWUECBAg0AmBvrdHD47i77VI3jzLqiN4v5Z1LCJAgACB\nNRbYYgnbPzbrnJzU1aN6835yMu2PO2SVzpQ/Sk2q3pNSV8Tq9kGFAAECBLotcGyq1+f2qH7P\nu39LTs2y/5MoBAgQILCOAtM6SI9O3d6T1J/4PiqpK04vSl6X9KXUb6V+0JLmz5f35XjUkwAB\nAosoMA/t0SKeN8dMgACB3glM6yDVrWlPTV4wOLKLMjwyeVgy7bGDhxgQIECAAIEVC2iPVkxo\nAwQIECCwFIFpnZz6D1Q/ObKhH2W6riTtMTLfJAECBAgQWCsB7dFaydouAQIECPw3gWkdpPpt\nzvOSrQeP2jLDpyfXJ335S3bPTF2/3ZIHZNkdEoUAAQIEuiswD+1RXQWr9nNSHppl/qPR7j4H\n1YwAgQURmPZX7J4Vh48n9YcZdkjOT+rPYp+Q9KXUj16vaansM7KsjkshQIAAge4KzEN79Mbw\ntv0J75dk+Ve7ewrUjAABAoshMK2DdFgY7pPU744OSuo3SNXhuCDpS/lmKlqZVI7LgrptUCFA\ngACB7grMQ3t0SXg/0UL8zCy7rmW5RQQIECAwA4FpHaS/Th1OTN4+g7rYBQECBAgQmCSgPZok\nYz4BAgQIrKrAtN8gvTl7e3xy22TbpDpUTTKqECBAgACBmQhoj2bCbCcECBAgMO0K0tEhukfy\nyDFUffnPYusYHjKm/s2sum3jp82EIQECBAh0UmAe2qP6o0Dj2tMG/M4ZubGZMCRAgACB9RGY\n1kGq/5hvm/Wp2qrt9VbZ0u1atrZTlm3fstwiAgQIEFh/gXloj+ovwtbdGJNK3dXRly8fJx2D\n+QQIEOi9wLgO0lE5qr2TDybf6f0RbrbZe3IMlUnlfVngr9hN0jGfAAEC6ycwb+3Rh0NZmVS0\nR5NkzCdAgMAMBcb9BumY7L++qWtK/b8Mf9FMGBIgQIAAgRkJaI9mBG03BAgQIHCTwLgrSDct\n3Ti2Zwa/NDpzjafrlre6T7vux94r+VlybnJOUn9Rz2+GgqAQIEBgwQS0Rwt2wh0uAQIE1kNg\nKR2kWdfrgOzw9OSHyWeTbyZVbpY8N3le8rDk28lSyu5Zqa2DV9ut/99pU0rV8Z6b8gDrEmgR\nqOfgrZNfaVnHIgKbIlA/9P9ccvWmPMi6vyCgPfoFEjMmCNwp8+s3zy+asNzs2QrcIrv7aHLD\nbHdrb2ME5qY9qk7Iu4YO8KkZb7tnemjVVRn939nKyS1b+vss25Rb/v4o69fJaUv957dLLV/M\nim3bsoyP54DnQBeeA89f6ptah9fTHrWfHO2R95ouvNd0sQ7VMepivRa1Tr1rjyZdQdovT6xH\nDN6X75Jh3ebWTA9mb/buZmSVhwdke20doLrF7qRN2OcfZ92XT1m/buFbarllVrwkuWypD1jQ\n9XbIce+b1G2RSrtAPeevTH7QvtrCL90xAvUHZJqrygsP0gJQz6mDW5b3aZH2aPLZmof2aMsc\n3m2Suiukz7fP190quyYbkj6XeWiP6rPtIcm3kk35fNe181Z3l+ycnNe1im1ifeamPXpaDvzi\nJWQTfZa8et1Cd1pSH4RGyx6ZcWbyqtEFM5yu2/9OmuH++rqr+v8+rutr5Wdc73/N/l444332\ncXe/lkpf1ceKr0Od68rCc9Zhv6u9S+1Ru+g8tEfV1t+YVCepz6Veb/W663uZh/bowJyEek7V\nB/M+l/pcUOej76WX7dG4K0hvyJmorFepfR+YVI95Q3JpUk/06kkflHwgeXGiECBAgMB8C2iP\n5vv8OjoCBAh0UmBcB2m9K3p1KvDM5JVJfaNUnaK6BP+95CtJdZwUAgQIECCw1gLao7UWtn0C\nBAh0UKCLHaSG6fyMVBQCBAgQILCeAtqj9dS3bwIECMxYYNx/FDvjKtgdAQIECBAgQIAAAQIE\nuiGgg9SN86AWBAgQIECAAAECBAh0QEAHqQMnQRUIECBAgAABAgQIEOiGQP3xA2XTBPbJ6p9P\n6v9sUCYL1H/SVv9Hx/87eRVLBgL1/7zUn68/l8hUgZtnjfpLlkq7wP5Z/JnEH7Vpd+r70nlo\nj+r/qTk0eVvS5/8aYrvU//rkE0mfyzy0R/X/ad0+qedUn/9vre1T/58kn0r6XLRHfT576k6A\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILBCgS1X+PhFe/gBOeDfTG6ZnJvc\nmCxaOTwHfJfkWyMH3mazU9Z96OBx38vwmqHHbp7xeyQPTq5NLk76XvbJATwqqWP7/sjBrMSi\nzXhkN72Y3CW1fERyu6SeF3X+mzLtedFmMe2xzT76OKzXyY7JhUOV95wawlig0bbXQFcYtkhF\n6r3/0KHsnvELkirTXqtdOMZHpp5XJVdUhQdlJfVue70221/t4XbZ4NOTs4Y23Ldzc9fU/UFJ\ntRV1PoZL2/OkzXvaeRzex2qMb5+N1Ht4vR7OTa5PmnK3jNQxDr9Wzsn0jYMVlnuMg4ev6uCQ\nbO2EpGzPG9nySrzbjnFkNya7JPDoVObq5G+T+hD/zmTRyt454HoxvH7kwNts9sy6lyUfSc5M\n6vH7J035QEa+nZyc1AfketH1ubwyla/G/3XJvyZfSbZJqqzEos1449b79e//lerW8+ItyYeS\nbybVsWxK2/NimkXbY5vt93FYjedPk2cNVd5zaghjgUanvQa6QnHbVKSes2cN5VVDlWt7rXbh\nGI9PXW9Ijh2qc40ut97TXq8ju1mVyfoivNrX0S8f+3Juqv38alLtabWr30lekTSl7Xkyzbvt\nPDbbX63hMdnQpck7Brkww3snTfn3jHwtGX6tbDtYuJJjbLa/WsOXZ0P1me3VSdX3H5KmrMS7\n7Rib7Rt2UKC+6a4Pc3Wlo0pNX5LUE35RymNyoPXi/l4y3EGaZvO2rF8vpCqbJ/VGXW9yVeqb\nxXOTrWsi5SFJdS62qokellukztWJPmio7vWmVy/8Ksu1mGa8cev9+vcTqe4Lh6p8esb/YDDd\n9ryYZtH22KHd9W50h9S4PiR8NxnuIHlO9e5UrrjC014DK97BKm7gUdlWfeAbV9peq+t9jHWV\n9g1JtfM/To5NmrKSere9Xpvtr+bwDtnY55NqV0c7SH05N48bHEMGPy+3z791BWn3ZNrzpM27\n7Tz+fEer/M+Hs70XDG3zpIx/cDBdHaGfJHUFZbSs5BhHt7XS6X2zgfqMc8hgQzX9s+Q2g+nl\nek87xsHmZzuoS6zKdIFDs8p1yRmDVX+U4UeTBw2mF2FQb6Z1e+F7Rw52ms3RQ4+5MePvTBq3\ne2W83iDqG8YqpyS7JXesiR6Wej09IqlOX1OqQ3nEYGK5FtOMm331aVid4dcMKlxut0yqgajS\n9ryYZtH22I1b7+e//3eqXa+96iQNF8+pYY3FGJ/2GuiSQr33fSGpD0B1a3bzjXhGV/Q6r8ev\nZTksG6863zm5YmRHbe8x085N2+t1ZDerMvmwbKXeN04cs7W+nJt/S92fPFT/6uhtndw2WYl3\n23kc2t2qjb4hW/rboa0Nfzaojmw9z6ojW6+T+rK1KSs5xmYbqzWs+h2YfGuwwWq3q/1u2u62\n53eb97RjHOxutgMdpKV51xWB74+sWpdH9xqZN8+Tx+XgPj7mANts6k1sn2TY7qJMN26jj70+\ny+oqVbM8o70q9cb9kaEaVyN7v+R9yUosRp1qF31//l2ZY7g2eUJyZnJ+8qakyujxDj8vRpfV\n+sMWo8uHH1vr9rE8OJU+MnnpSOU9p0ZAFmRy9Dlehz38GugSQ30Iry/E6jV+WvLN5Kikyuhx\nDL9WR5fV+rM8xrOyv99K6gPhaBmt21LrPe31Orqf1Zh+WTbyZ8lPx2ysL+emOkiVpjwrI99J\nvpSMnotap3meTPMefezweaztrHapL4AvG2x0mwyfkbx7MF3nour7H0l9XqjO03OSKqP1rHlL\nPcZad7XLJdngtsnrkw8lL0zOS1bi3XaM2fT6FB2kpblXb/7qkVWvyfROI/MWcbLNZveA1HPs\nqiGYctsu2SoZ99hyngfX+kbkY8mfJGckK7EY5zQvz7/65qkaukOS+yVVxh1v87wYt2zYYtzy\n5rEbt96vf2+V6tYtqY9JRj/keE7161yuVm3HPceHXwOrtZ/V2M7Z2chJSX1DXl981Xth3WZd\nZdxxNK/Vccu6cozj6raUek97vW5UWZt/Nx+z2T6emyflOJ6TPDqptmPcuWieJ9O8xz22OY/Z\n9JqV+vzzzuRnyYsHe6lOx5uTOyXVWXhi8peD6XH1XOoxZhNrUrbPVutOmf+T/EZyYLIS77Zj\nzKbXp+ggLc39oqy228iqNV3fYix6abOpb0vqW5lhuxqvK0r15jDpsXU1oc/lnqn8Z5K/Sl46\nOJCVWExymofn31vj89SkOgGvHFhNOt56Xkxa1lhMWt7X59Trc8z/ntQHzOOTPZIjknsknlNB\nWMAy6TnevAa6RFIfAOs1XuWqpF7nt09umUw6jqW8zvPwdSvLrfe01+usD6hv5+YlAfrT5L7J\nWUmVSeeiXgvTvCc9di3bivr88y/JzkkdR3V0qnwoeX5Snb76KUK9ZuoqUn2WmFTPpRxjHr4m\n5fJstTpwD0xuSJ6SrMS77Riz6fUpW6zPbnu31w2p8f7JNkM1v03GNwxNL+poGUyyqc5RvdmU\nVVNqvPmNzoaMH9IsyHDXpD4ANsuHFvVm9AGp6YeT5yb1BtKUlVhsyEYmGTfb79Nwy1T21Ul9\nU9aUr2bkwKReYxuSSc+LWtZm0fbYPLR35YrUeMfkaYPsl+G9krptyXMqCAtYNuSY214DXSGp\n1/mfJAcPVaje4+sLsvowtSFZ7us8D123siF7Xk69p71eZ3lAfTs39WXjiUm9931hCGpDxie9\nFqZ512MnnccsWvVSn20+lVyQ/FpSXxg05YSMPLyZyLBuV9sp+UqyIVnuMeahq1oOy9ZeMbLF\nr2X6tslKvDfk8ZOOMYuUrgt8ORX846SeuPXkvjTZL1m0Ut8A1rfaw6XN5n9lxdOSvZP6QPzF\n5ElJlV9K6puIeyd12fm1yalJX0vdQlIfaJ+d1HOjyc0yXmUlFm3GG7fer3//PtX9x6ReT+VT\n5/0jSZVpz4s2i2mP3biH/v778VT9WUPV95wawlig0bbXQJcY3pbKvDWpLz7qqlG9zl+bVJn2\nWu3KMV6Yuh5bFR6UldS77fXabH8thsdkoxePbLgv5+ZxqfcPkl9Omja1htsnVdqeJ23e087j\nxq2v3r/1xek/JwckzXHsO9j8QzKs51n9meytkucn302aixjLPcZsYlXLDtlaPY8ePtjqHTP8\nUfL4wfRKvNuOcbB5g64K3DUVOy+pjtGGpHr8i1jGdZDabHYO0inJlUnZvTHZPGnKczNybXJJ\n8tnkwKSv5aWp+I1jUg1RlZVYtBlv3Hq//q1G4t3J+cmPk2o4qnFoStvzYppF22Ob7fd1ONpB\n8pzq65lcWb2nvQZWtvXVe/TB2dR7kvrW/OrkQ0n9VqEpba/VrhzjaAep6r7cek97vTYuqz0c\n10Hqy7mpKxTj2tXqVFRpe55M8247jxu3vjr/HpbNjDuGuqWuSn0m+vNkQ1K3m/1ncvekKSs5\nxmYbqzX89WzorKTa7uuS+tzTlJV4tx1js33Djgvs1fH6rWf12mxulorVVaJxpb5drB/pLUpZ\niUWbcR/9dkmld5tQ8WnPizaLaY+dsMvezvac6u2pW1HF214DK9rwKj94p2yvPjyNK9Neq109\nxpXUu+31Os5oLefNy7lpe560eU87j2tpP7rtLTKj/jDPpLLcY5y0vZXMry80y25cWYl32zGO\n25d5BAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECiySw+SIdrGMlsASBh2ad\ng4fW+27Gz06+PTRvuaNH5YH7Ju9f4ga2yHpHJvdOtk9OSb6UrEbZMRu5ejU2ZBsECBAgsCYC\n2qM1YbVRAgQIENhUgQ/lAd9I3pW8L/lMcm3yyGSl5XnZQHVyllK2zErvTS5K/iF5ffKd5F+S\nlX6x8fRs49WJQoAAAQLdFdAedffcqBkBAgQWSqAapL8cOeIXZPqrI/OWM7kpHaQ3ZQdfT+pK\nT1N2z8iFyTObGcscVmfrNct8rIcRIECAwGwEtEezcbYXAr8gULfwKAQItAvUVZyfDa1yp4z/\nTVLzqxPz+KQpu2XkRclXku8nb0h2TkbLzTPjE8nvji7IdF09+p9JdYSGb4P7YaaPS85ImnJC\nRj6S1LLa3uFJU16RkarjZclHk4OSE5Pa9mOSv0sUAgQIEOiPgPaoP+dKTQkQIDA3AvWN3enJ\nHyQnJa9L6ta2+yRV9kguSf50MP6bGV6R/HpS5T3Jp5I7JndJzkxOTqo0V5DqStAXk1fXzDHl\niMy7Mdl1zLLhWY/KxKXJ8cmtktpeXWGqTtoDk/OT/ZNdkn8aZJsM35xUB2+HRCFAgACBbgpo\nj7p5XtSKAAECCydQDVLdTvePSXVsTk0uTqrDVOWJyQ+SLWtiUN6eYT2uOiLVsanOSVMelpEb\nkuqMVAfp9OTs5C3JpPKALPhpsvWkFQbzq27D29k201cldXWo/rDDlcnTkr2TrZLmt0tusQuG\nQoAAgY4LaI86foJUb34F3GI3v+fWkS1foG5Zq1vRqqNRnZ2jk5cldWXn4OSM5PqkKdXp2Sep\nZdVBqj/s0JRaVh2T6qRUuVdSj71nsl0yrvxbZlaH5pAxC/fMvAMH8w/KsLbflOsy8vlk3+S0\n5PlJ/UGGC5Kq030ThQABAgT6I6A96s+5UtM5EtBBmqOT6VDWTOAb2fLlyWFJ3cJ252S4HJmJ\nc5JaVp2h6kg15aiMVMdlw2DGJzOszlHNe+lg3uigrlidmxw/uiDT9ZumugJUpe5FH67Llpmu\nfVd963dPpyT1m6TbJtXpqtv/quOlECBAgEA/BbRH/Txvak2AAIFeC9QtDW9K9hvkdhm+Irkm\nqd/z1FWia5PHJfUFQ3VIqmP0xKTKZ5O3J7slN0/en5yaVKlb7KrTUqU6VdVJultNjCl1i1zt\n58lJ/RapfmNUV4R+nNw6qfLs5LykOm7VOXpGcmVSV6uOS+rKUf3eqcpvJPXbqVrvz5KqY40r\nBAgQINBNAe1RN8+LWhEgQGDhBKpBqtvkmlye8bqlrn4X1JTjM1JXeZq/EPdHzYIMqwNV61dH\npR77sWS3pMpwB6mm/zz5erJdTYwpJ2Tep5Ork7otrzo8j0qaUleDXpf8JKn61FWsY5Km1JWm\n7yUbkqrrg5Iq90+qw/flmlAIECBAoJMC2qNOnhaVIkCAAIFJAnUrXV2pqatI40pdudlx3IJl\nzNs+j9mr5XHbZtkeE5ZXPfccs6w6V7VdhQABAgT6LaA96vf5U3sCBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAwBwKbD6Hx+SQCCxH4FfzoF1GHnh1pi9LPp9cP7Ts8IwfmpyXnDU0vw+je6SS\nd03qeD6X/CBRCBAgQKA7AovSHjXie2bkQcn5ycebmYYECBAgsP4CX00VbpyQetO+41AVXzFY\n761D8/ow+jup5M8Gda9jrc7R/0gUAgQIEOiOwCK0R8PaH8tEtUmnDM80TmA9BbZaz53bN4EO\nCpyWOp2d1NXVHZKHJ/sm1RlqOkn/kfH3JnUFpi+lrni9JrkueW1yYPKw5K+SpnHKqEKAAAEC\nHRGY1/ZomPepmXjg8AzjBLogoIPUhbOgDl0S+FAq86qhCr0z459MDku2T36cfDr5ZlK331XZ\nMblDck1SnafqjNwpOSf5YjJcdsvE3ZO61a2u4Hwm+WEyqdTtcHtNWpj5n02aerSsttnBWXh6\nUp2/5ybbJj9KbpsckXwpUQgQIECgOwLz2h41wrfOyF82E4YECBAg0D2B5paG3xupWnUm6tL/\ncAdi9Ba7Xx6s8+UM3zQYr8dU3pg0pe4rvzxpltWwOlzVYZpU6krV8Pqj48dOemDL/C2z7LeS\n2lZ1krZLFAIECBDohsAitEdbhLq+tKvfw/59Uu2RW+yCoHRDwBWkbpwHteiOwPNSlccndYvd\nLkndXnd+cmIyrRyeFerN/tHJ0clvJ09JqkO1IXltsmvyO0ndnvfQ5PeTlyf3S25IRkutVx2a\nSeXSSQta5p+aZfdN6srTccm1iUKAAAEC3RKY5/aovoy8V/KqpO62eGyiECBAgEDHBJpv7Eav\n0NR03Qr3hKH6TrqCVOvebrBefTtWV4dqXnWWqnw/qen3Jyckt0p2T2ZdPpIdfi+pztz/k+yc\nKAQIECDQDYF5b4/qlvT6Yu5rSd3BUF8kVtvoClIQFAIECHRJoGmQ/jCVqitHuyX7JI9NfpLU\nm3dddakyqYNUHY7hcmEm6nEPGMx89mC65lXqitEZyf2TSeVvsuC8ltxt0gOnzN8my89Kqh51\nRUshQIAAgW4IzHN7VF8efiGptuepyZ2TPxlMf3owvXWGCgECBAh0QKBpkEZ/g1RVazoSfzWo\n56QO0jUjx/HdTFcj0HSQanE1Bq9O/j2pDlItvzypP/Qwrrw3M2udSTl23IPGzKu/yHf7ZO+h\nZS/LeG33Y0PzjBIgQIDA+grMc3tUbdGk9qyZX7e2KwTWVcBvkNaV3857IHCn1PHwQT3ritBy\nS91K9+TkkOSFyXOS/ZL6Ju2Wya8k9ReLRkt9w1Z/KGJSWWqdXpUN1LY+nNTvjuo3VvdJqlRH\nTiFAgACBbgvMQ3tUd1qMfilXbWHddndJUm3itYlCgAABAh0QaL6xuzJ1uWiQ+u1R841W/TGE\nA5Iqy72CVJ2T2l7dVvf8pP7CXU1fldTtfGtZjszGr0tqf2cnde93jde8anQVAgQIEOiGwLy3\nR6PKT8mMao/8BmlUxjQBAgTWWaBpkOpNulK3v9Vvj6qT9O6kOhhNWW4Hac9s4OTkgqTZz9cz\nfr9kFuXB2Un9nqnZ97cyPqt9z+L47IMAAQLzILAI7dHwedJBGtYwToAAgQUWOCDHfvN1OP66\nta5uZxj+LdI6VMMuCRAgQKAjAuvVHnXk8FWDAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHoosPmUOj8iy3edss45\nWf7pKetYTIAAAQIEViKgPVqJnscSIECAwJIFtpqy5rFZ/vTkyuTM5NBkv+SbycVJlY8kOkg/\np/APAQIECKyRwLHZbt/bo9vkGI5u8dkny6o9Pa1lHYsIECBAYI0Fpl1BOjn7/8/kZclPB3U5\nPsMXJ0cMphdt8Ooc8HGLdtAdPt5PpG6/3eH6qRoBAqsjMA/t0TND8ZwWjj2y7F+T+7esM7xo\n0dqja3PwJyY/GUaY4/Hv5NjqC2qFAIEZC0zrIF2S+hySXDFUr3pMXT06PLlwaP6ijJ6eA70s\nOWVRDrjDx1kfIuob2bt0uI6qRoDA6ggsQnv0vlCdn/zuEskWqT06bBNclsjX+dXemho+pvO1\nVEECcygw7Ra7r+WYn5C8Jrkhqc7RY5MqzS12G6cW69+zc7hvWaxD7uTR7pxaVQdJIUBg/gW0\nR+PP8aK0Rw/J4VfH8W7Jt8dTzNXcV+ZodpmrI3IwBHokMK2D9MIcyweSk5J6E67b6nZIHpVU\nh0khQIAAAQKzENAezUK5u/u4cVC1H2Z4aXeruWo1+3G2pIO0apw2RGDTBKZ1kOoPMxyWHJvc\nPnl3UreW9enWuoNT33smk8reWVC3KZwxaQXzCRAgQGDdBeahPao29xYtkttm2bRb31sebhEB\nAgQIrIbAtA5S7aNupXvXauxsnbbx4Oz391r2ffMsq4b3fi3rWESAAAEC6y/Q9/boJSH8wymM\n1R4pBAgQILCOAkvpIB2b+j0x2S55avLwpH5/01zuzminS/1+qjKpND+KnbTcfAIECBDohsCx\nqUaf26OXp/4nt1C+Lsvq/xZUCBAgQGAdBbaYsu9HZ/l7kvoT30cl1aF6UVJv4goBAgQIEJiV\nwDy0R/W7km+05Kosu35WoPZDgAABAuMFpnWQ6o8z1FWjFwweflGGRyYPS6Y9dvAQAwIECBAg\nsGIB7dGKCW2AAAECBJYiMK2Ts1c28smRDf0o03Ulqf5DO4UAAQIECMxCQHs0C2X7IECAAIGf\nd3TaGOpPez8vee1gpS0zfHpStwD05S/Z1beOf5xMKvUXgz47aaH5BAgQINAJgXloj54UyWe0\naB6YZZ9rWW4RAQIECMxAYNofaXhW6vDx5MnJDsn5Sf1d/hOSvpQ3pqJtf8L7JVn+1b4cjHoS\nIEBgQQXmoT06K+dup5bz9/gsq1vZFQIECBBYR4FpHaTDUrf7JPW7o4OSeuM+Nbkg6Uu5JBX9\nREtln5ll17Ust4gAAQIE1l9gHtqjr4SxMqkckwX1H6EqBAgQILCOAtM6SH+dup2YvH0d62jX\nBAgQIEBAe+Q5QIAAAQIzEZj2RxrenFrUJf/bJvU/fFeHqklGFQIECBAgMBMB7dFMmO2EAAEC\nBKZdQTo6RPdIHjmGavMx87o46wET6t/U9c4Z6ct/etvU2ZAAAQKLJjAP7dHdc9KOazlxv5Rl\nbvluAbKIAAECsxCY1kGq/5hvm1lUZA33sXW2XVe/JpW6itaXzt6kYzCfAAEC8y4wD+3RATlJ\nd205Ubtn2c4tyy0iQIAAgRkIjOsgHZX97p18MPnODOqw1rv4cHZQmVTelwX11/kUAgQIEOiW\nwLy1R+8Ib2VS0R5NkjGfAAECMxQY9xuk+is69U1dUx6akb9oJgwJECBAgMCMBLRHM4K2GwIE\nCBC4SWDcFaSblm4c2zODui96lmX77Kx+91S/D9or+VlybnJOUn9R76eJQoAAAQKLJaA9Wqzz\n7WgJECCwLgJL6SDNumJ1j/bpSf1fEJ9NvplUuVny3OR5ycOSbydLKXVPd1sHr7a7qf8xX9Xx\nnkvZuXXWVOBO2fqtkhet6V5sfKkCt8iKH01uWOoDrLdmAjdmy59Lrl6zPSzGhrVH3TnPTTte\n/y/jLbtTrTWryRHZ8v5J2y2Za7bzddhw/fbubcki/D9g9bv4PZJF+XlHtUf1ef7KpNelOiHv\nGjqCp2a87Tc8Q6uuyuj/zlZObtnS32fZptzy90dZv05OW07N8qWWL2bFtm1ZxmdRnwPVMVrU\nY+/icT9/qW9qHV5Pe9R+chatPfIeM7/vsc7t/J7bah9f0P5W1r2lk64g7ZeqPmJQ3btkWLe5\nNdOD2Zu9uxlZ5eEB2V5bB6husTtpE/b5x1n35VPWr1v4llpumRUvSS5b6gM6uN6WqdNtkroK\n1+fbFevq4K7JhqTPpZ7z9c3KD3p8EPVeckjyrWRTXk9dO+S6olzfZJ7XtYptYn3qOXXwJj6m\nq6trjyafmXlojyYf3X9fUn9Rt57Tdat9fZie91J3R1Rb/b15P9DB8d0uw/rDYNcswPHW55Zq\na85dgGOtQ6z26KB5ONan5SAuXkLW6ljrFrrTkvpLeqOlLkmembxqdMEMp0/PvjalgzbDqi15\nV2V7Y1KdpD6X56Ty9Q1q38u/5gBe2PODODD1r+dUvRH2udR5qPPR91Kvi3p99L1oj9rP4Dy0\nR+1HeNPSO2S03mPqVt5FKH+dg1yrL6K76Hd9KvUrXazYGtTpydlmdfQXpfSyPRp3BekNOWOV\n9Sq17wOT+gZ3Q3JpUm+K1duuHugHkhcnCgECBAjMt4D2aL7Pr6MjQIBAJwXGdZDWu6JXpwLP\nTF6Z1BWO6hQ1l5m/kvHqOCkECBAgQGCtBbRHay1s+wQIEOigQBc7SA3T+RmpKAQIECBAYD0F\ntEfrqW/fBAgQmLHAFjPen90RIECAAAECBAgQIECgswI6SJ09NSpGgAABAgQIECBAgMCsBXSQ\nZi1ufwQIECBAgAABAgQIdFagy79B6ipa/aeyn+9q5ZZYr/qfqt+XXLTE9bu62pdSsZt3tXKb\nUK96Tp29Cet3cdX6v8HqOVV/dbLP5Qup/PZ9PoBB3T+aYf1pVWW+BeahPVrqGfp+Vnxv8qOl\nPqDn63029a//629RyjtyoPV/My5C+XIO8kOLcKCDY9QeLdDJdqgECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAA\nAQIECBAgQIAAAQIECBAgQIAAAQKjAluOzjDdKnBAlv5mcsvk3OTGpGtli1ToocmhQ9k94xck\nVTZP7pE8OLk2uTgZLl04xkemQlclVwxVbCX13inbKZO7JN9LrknWumyXHTw9OWtoR307N3dN\n3R+UlFmdj+HS9jxp8552Hof3sRrj22cj9Vyv10O9Zq9PmnK3jNQxDr9Wzsl087pe7jE221/N\n4SHZ2AlJ2Z43suGVeLcd48huTHZMYJ7OXd/eG1fyVJiH9m2px394Vqx291tDD9gv4/dNht93\nq01u2vuVvJ8N7Wamo23tzLQ2r+113GYx0wMc2dk+mX5UUsf2/aFli/Q6Hjpso48OwdXJ3ybV\nqXhn0sVy21Tqp8lZQ3nVUEU/kPFvJycn1UGqD11N6cIxHp/K3JAc21RqMFxuvffM4y9LPpKc\nmdSHy/2TtSz1xUP5jnY++3Jutkndv5r8a/K65DvJK5KmtD1Ppnm3ncdm+6s1PCYbujR5xyAX\nZnjvpCn/npGvJcOvlW0HC1dyjM32V2v48myoXrOvTqq+/5A0ZSXebcfYbN+wmwLzdu768t64\n0mfDPLRvSzXYOytWe/v6kQeclOmLkuH33foirspK3s82bmH2/05rZ9ravLbX8TSL2R/pxj2+\nMoP6wr0+G9RnhK8k9ZmhyqK8jjcerX9/LrBL/q0P2XXlpUpNX5LUC6NrpXr19cYzrtRVlHOT\nrQcLH5JhPdG3Stb7GHdMHd6QlOuPk2OTpqyk3m/LRuqDZZX6tqM6LvXCXqtyh2z480m5jnaQ\n+nJuHjc4hgx+Xm6ff+sK0u7JtOdJm3fbefz5jlb5nw9ney8Y2mY1zB8cTFdH6CdJfXs3WlZy\njKPbWun0vtlAfTFzyGBDNf2z5DaD6eV6TzvGweYNOigwj+euL++Ny306zEv7ttTjf0xWrC+n\nvpeMdpDek3nPS8aV5b6fjdvWrOa1tTNtbd6013GbxayObXQ/t8iMao8OGlpQXzQ+ejA9V6/j\nuhymTBc4NKtcl5wxWPVHGX40ab71GMzuxOCI1OILSb346tJ28414Rje7V1IfEOsKU5VTkt2S\nOybrfYyHpQ5V5zsnVyTDZSX1Pjobeu9gYzdm+M5kLc/bwwb7O3Gwz+FBX87Nv6XSTx6qeHX0\ntk7q26Fpz5M277bzOLS7VRt9Q7b0t0Nbq8a6zkGV6sjW86w6svU6qTf+pqzkGJttrNaw6ndg\n8q3BBm+ZYb1vV+euynK9px3jxq37t4sC83ju+vLeuNznw7y0b0s9/vqgXD9HaNre4cc15/rW\nmXmb4QUZX+772chmZjrZ1s60tXnTXsdtFjM9wKGdVdvziKS+aG/KcLvanNu+ff5sjuW/DXWQ\n/hvHxInqLX9/ZGndrrPXyLwuTNYTtDoAZyanJd9MjkqqjB7H9ZlX3/LUcYwuy6zNZnmMZ2V/\nv5XUB8LRMlq3pda7PtTvkwyfu4syvZbn7WXZ/p8lTSc0o/9V+nJu/i01rjTlWRn5TvKlZPRc\n1DrN82Sa9+hjh89jbWe1S30BcNlgo9tk+Izk3YPpOhdV3/9I3pfUm/xzkiqj9ax5Sz3GWne1\nyyXZYH3R8frkQ8kLk/OSlXi3HWM2rXRYYB7PXV/eG5f7tJiX9m2px39cVvz4mJXrg/PBSd3F\nUe9l30g+muyQrOT9LA9ft9LWzoy+VofbvNFldQDr2c4sBbC+LK2fKzSlOv73S6oNrTJXr2Md\npI0nddq/t8gKdVlxuFyTiZ2GZ3Rk/OzU46SkviGvjsAZSd1WVmXccdRx1XGMW9aVYxxXt6XU\ne/ccVz3Hr0qaUse0XbJVM2ONhpuP2W4fz82TchzVcXh0Ulctxp2L5nkyzXvcY5vzmE2vWanz\n/c7kZ8mLB3upTsebkzsl1VA9MfnLwfS4ei71GLOJNSnbZ6v1rd3/SX4jOTBZiXfbMWbTSocF\n5vHc9fG9cbWeIuPOZ/O+OG7Zer8XreS4d86D/z55ePJLySFJfaj+/WQl72d5+LqXce3MuPM3\nL+f20Ih/LPmTpD5nVpmr17EO0saTOu3fi7LCbiMr1fR3RuZ1YbI+AL51UJGrMqxvam6f3DKZ\ndBzntyzrwjEut9519aC+sRk+dzVeV5Tqw/KsS9/OzUsC9KfJfZOzkiqTzkU9T6Z5T3psPf/W\nqtT5/pekGuY6jvpwUaW+vXx+Up2+uvWyXjN1FemeyaR6LuUY8/A1KZdnq9WBe2ByQ/KUZCXe\nbceYTSsdFpjHc9e398bVfHpMOp/T2uVpr//VrONqbeu72dATknMGG/zPDN+Z1O+5px1Pm9Ng\nc+s2mNTOtNV50rL1bGeWCljt5GeSv0peOvSguXodbzF0YEYnC2zIov2TbYZWuU3GNwxNd2F0\ny1TiT5KDhyqza8arQ1BvPhuS+samKbVsj6S+md6QdPUYq27LqXd1jqqRqXPVlBofvn+2mb/W\nw76dm3rjOzG5V/KFIZwNGZ/0PJnmXY+ddB6zaNVLPbc/lVyQ/FpSXxg05YSM1LeYTdk6Izsl\nX0k2JMs9xjx0Vcth2dorRrb4tUzfNlmJ94Y8ftIxZpHSYYENqds8nbu+vTeu9lOjzuek98Va\nNulcT3v956GdK3Vny/8aqVV1Lup9d9rxbMg6k5yyaN1KWzuzIbWaVOda1sdz+4DU+8PJc5P6\n0q4pi/46bhwWcvjlHPUfJ/VBqj5sXZrsl3StvC0VemtSnbm6anRq8tqkSl3Svjy5d1KXg2t+\nLW9KV47xwlTo2KZSGa6k3vVmfFqyd1K3Un0xeVKy1uWY7KDu1x0ufTk3j0ulf5D8clLP8Sbb\nZ7xK2/OkzXvaedy49dX7t97E/zk5IGmOYd/B5h+SYT3P6k+pbpXU1aTvJs2XRss9xmxiVcsO\n2Vo9jx4+2OodM/xR8vjB9Eq8245xsHmDjgrM27nry3vjajwd5qF9W6pD3cHy+qGV60uo+rL2\nEYN5R2Z4RXL0YHol72eDTcx80NbOTGvz2l7HbRYzP8jBDutnG3W+np00bWoNb5ZUWaTX8cYj\n9u/PBe6af89LqmO0IalvoLtY6urRe5ILkquTDyV1b29TnpuRa5P6DcZnkwOTpnTlGEcbkKrf\ncuu9cx57SnJlUufujcnmyVqXY7KD+mA7XPpybuoKxY1jUp2KKm3Pk2nebedx49ZX59/Dsplx\nx1C31FWp58CfJxuSutXhP5O7J01ZyTE221it4a9nQ2cldTX0uuSlSVNW4t12jM32DbspMG/n\nri/vjavxbJiH9m2pDqMdpHrcw5PPJc1nlPqjM01ZyftZs41ZDqe1M1WXtjav7XU8zWKWx9ns\nq9qece1qdYyqLNLreOMR+/e/CVQPug9lp1SyXmDjSl1dqh8PTipdPcaV1PtmOdjtJh3wjOfP\ny7lpe560eU87j7M8HVtkZ7dq2eFyj7Flk8teVFe7ym5cWYl32zGO25d53RGYt3M3L++Ny3mG\nTHtfbDvXba//5dRlFo+pW9Pqtqxxpe14pjmN2956z5tW53k7t4v8Ol7v55r9EyBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgTmW2Dz+T48R0dgkwUemkccPPSo72b87OTbQ/OW\nO3pUHrhv8v4lbmCLrHdkcu9k++SU5EvJapQds5GrV2NDtkGAAAECayKgPVoTVhslQIAAgU0V\n+FAe8I3kXcn7ks8k1yaPTFZanpcNVCdnKWXLrPTe5KLkH5LXJ99J/iVZ6RcbT882Xp0oBAgQ\nINBdAe1Rd8+NmhEgQGChBKpB+suRI35Bpr86Mm85k5vSQXpTdvD1pK70NGX3jFyYPLOZscxh\ndbZes8zHehgBAgQIzEZAezQbZ3sh8AsCdQuPQoBAu0BdxfnZ0Cp3yvjfJDW/OjGPT5qyW0Ze\nlHwl+X7yhmTnZLTcPDM+kfzu6IJM19Wj/5lUR2j4NrgfZvq45IykKSdk5CNJLavtHZ405RUZ\nqTpelnw0OSg5MaltPyb5u0QhQIAAgf4IaI/6c67UlAABAnMjUN/YnZ78QXJS8rqkbm27T1Jl\nj+SS5E8H47+Z4RXJrydV3pN8KrljcpfkzOTkpEpzBamuBH0xeXXNHFOOyLwbk13HLBue9ahM\nXJocn9wqqe3VFabqpD0wOT/ZP9kl+adBtsnwzUl18HZIFAIECBDopoD2qJvnRa0IECCwcALV\nINXtdP+YVMfm1OTipDpMVZ6Y/CDZsiYG5e0Z1uOqI1J6OYIHAABAAElEQVQdm+qcNOVhGbkh\nqc5IdZBOT85O3pJMKg/Igp8mW09aYTC/6ja8nW0zfVVSV4fqDztcmTwt2TvZKml+u+QWu2Ao\nBAgQ6LiA9qjjJ0j15lfALXbze24d2fIF6pa1uhWtOhrV2Tk6eVlSV3YOTs5Irk+aUp2efZJa\nVh2k+sMOTall1TGpTkqVeyX12Hsm2yXjyr9lZnVoDhmzcM/MO3Aw/6AMa/tNuS4jn0/2TU5L\nnp/UH2S4IKk63TdRCBAgQKA/Atqj/pwrNZ0jAR2kOTqZDmXNBL6RLV+eHJbULWx3TobLkZk4\nJ6ll1RmqjlRTjspIdVw2DGZ8MsPqHNW8lw7mjQ7qitW5yfGjCzJdv2mqK0BV6l704bpsmena\nd9W3fvd0SlK/SbptUp2uuv2vOl4KAQIECPRTQHvUz/Om1gQIEOi1QN3S8KZkv0Ful+ErkmuS\n+j1PXSW6NnlcUl8wVIekOkZPTKp8Nnl7slty8+T9yalJlbrFrjotVapTVZ2ku9XEmFK3yNV+\nnpzUb5HqN0Z1RejHya2TKs9Ozkuq41ado2ckVyZ1teq4pK4c1e+dqvxGUr+dqvX+LKk61rhC\ngAABAt0U0B5187yoFQECBBZOoBqkuk2uyeUZr1vq6ndBTTk+I3WVp/kLcX/ULMiwOlC1fnVU\n6rEfS3ZLqgx3kGr6z5OvJ9vVxJhyQuZ9Ork6qdvyqsPzqKQpdTXodclPkqpPXcU6JmlKXWn6\nXrIhqbo+KKly/6Q6fF+uCYUAAQIEOimgPerkaVEpAgQIEJgkULfS1ZWauoo0rtSVmx3HLVjG\nvO3zmL1aHrdtlu0xYXnVc88xy6pzVdtVCBAgQKDfAtqjfp8/tSdAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIzKHA5nN4TA6JwHIEfjUP2mXkgVdn+rLk88n1Q8sOz/ihyXnJWUPzuz66Uyp4\n6zGVvDDzLhoz3ywCBAgQmL3AIrRHpbplcofk4ORTyeWJQoAAAQIdEvhq6nLjhJyf+Xccqusr\nBuu9dWheH0YfP6j36HH+rz5UXh0JECCwIAKL0B7tnXP52aRpj67L+BsW5Pw6zB4IbNWDOqoi\ngVkKnJadnZ3U1dUdkocn+ybVGWo6Sf+R8fcmn0v6VO48qGxdLbpiqOJ1lUwhQIAAgW4JzHN7\n9E+hvkfy9eTdydOSpyb/kPxrohBYVwEdpHXlt/MOCnwodXrVUL3emfFPJocl2yc/Tj6dfDNp\nOhY7ZrxuE7gmqc7TocmdknOSLybDZbdM3D3ZI/lB8pnkh8mkctcs2GvSwsyvb+CaerSs9vNF\nRwxWeGyGp05b2XICBAgQWFeBeW2P7hbVeydXJtXGXZVUR6nm754oBAgQINARgeaWht8bqc9z\nM123AHxpaP7oLXa/PFjnyxm+aTBej6m8MWlK3Vde91g3y2pYHa7qME0q782C4fVHx4+d9MCR\n+XVFrK4a1eOfldQxPCmpq2QKAQIECHRHYN7bo6Zd/XjI6wvAX08O7w6/mhDYbDNXkDwLCPx3\ngedl8vFJdSh2Ser2uvoN0onJtFJv8PXHHB6dHJ38dvKUpDojG5LXJrsmv5PU7XkPTX4/eXly\nv+SGZLTUevVD1knl0kkLRubXj2DreKpUPZpSHcJjkkuaGYYECBAg0AmBeW2P9hno7pdh3Y1R\nd2FUqdvuHpv8rCYUAgQIEFh/geYbu9ErNDX9g+QJQ1WsDk/Nf+tgXnMFqebdbjBviwzr6lDN\nq85Sle8nNf3+5ITkVsmsbieoq1RfS/49+R/JbyT/mVR93pIoBAgQINANgXlvj/4xzNX2VOo3\nR/Wl5Iakpp+TKAQIECDQEYGmQfrD1KeutOyW1Ldcj01+ktQb932TKpM6SHX1aLhcmIl63AMG\nM589mK55lbpidEZy/2RS+ZssOK8ldc/2csvz88CqR21fIUCAAIFuCMx7e/SqMFfbU79B2nZA\n3tx2V7+rVQisu0B9y60QIHCTwLUZ/VFyefLdpL7dan5/9OCMt5XrRhaOdpj+KsvvktTwy4N1\n68rOu5PmFoPB7P8a3DJj+7dku/9ac/pIrbvb0GrnDsaH5w0tNkqAAAEC6ygwr+1Rta1V6u6M\npt2sTmGVPTcO/EtgfQV0kNbX3967L3CnVLH58WhdEVpuqVvpXpA8LXlpUts9IKnf/tTvkn4l\nGVeempkHtuTMcQ8aM+9xmVe3/NW3c5snVR64cbDZvw2GBgQIECDQXYF5aY8+OSCuL//qS8Mq\n99w4+PlvkgajBgQIECCw3gLNLQ11yf+iQerbrboNoFJ/DKE6NFUm3WJ3zcbF//VvfUtWj21u\nsfvwYLpuq6vb2944mK4/cVq3861l2Tobb35z9MWM/3NSdasfw9YfiFAIECBAoBsC894elfJH\nk2qDqt38l6TuuKjpByUKAQIECHREoGmQ6g26Ur8Pqt8eVSepboE7MmnKcjtIdevAyckFSbOf\nr2d8Vh2UY7Kvc4b2XX+dT2MUBIUAAQIdEliE9miXeL8nqS/pqj28InlKohAgQIDAAgsckGO/\n+Tod/97Z71pfsVqnQ7NbAgQIENhEgfVsj+r3t7dO/ORjE0+a1QkQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQILDgAptP\nOf5HZPmuU9Y5J8s/PWUdiwkQIECAwEoEtEcr0fNYAgQIEFiywFZT1jw2y5+eXJmcmRya7Jd8\nM7k4qfKRpMsdpNukfkdXRSeUfTK/6n/ahOVmEyBAgMD6CxybKmiP1v88qAEBAgTmXmBaB2mX\nCLw0eVny04HG8Rm+OLnXYLrrgwemgs9pqeQeWXZMstQO0quz7nEt25u3RdfmgE5MfjJvBzbh\neL6T+fWFgEKAQLcEtEe/eD60R79oMk9ztEfzdDYdS68Ept1id0mO5pDkiqGjqsfU1aPDkwuH\n5vd19H2p+PnJ7y7xAE7Pepclpyxx/T6vdlgqv1SXPh/ncN3fmonHDM8wToBAJwS0R794GrRH\nv2gyT3O0R/N0Nh1LrwS2mlLbr2X5E5LXJDck1Tl6bFKlucVu49Ri/Xt2DvctC3DID8kxVgfp\nbsm3F+B4X5ljrG+pFQIEuiegPRp/TrRH4136Pld71PczqP69FpjWQXphju4DyUlJvQkfkeyQ\nPCqpDpMy3wI3Dg7vhxleOt+H+vOj+3H+1UFagBPtEHspoD3q5WlbtUprj1aN0oYIEJgmMK2D\nVH+Y4bDk2OT2ybuTurWsT7fW1THeIplUts2CabcaTnqs+QQIECAwGwHt0Wyc7YUAAQILLzCt\ng1RAdSvdu3os9ZLU/Q+n1L8aXoUAAQIEui2gPer2+VE7AgQIzIXAUjpIx+ZIn5hslzw1eXhS\nv79pLndntNPl5andyS01fF2W1f/lpBAgQIBAtwWOTfW0R90+R2pHgACB3gtM6yA9Okf4V8kH\nk3sltf6Lkjslz0z6UOp3Jd9oqehVWXZ9y3KLCBAgQGD9BbRH638O1IAAAQILIbDFlKM8Kcvr\nqtELButdlOGRycOSaY8dPMSAAAECBAisWEB7tGJCGyBAgACBpQhM6+TslY18cmRDP8p0XUmq\n/2BVIUCAAAECsxDQHs1C2T4IECBA4OcdnTaG+tPez0teO1hpywyfntQtaX35S3ZPSl2fkUwq\nB2bB5yYtNJ8AAQIEOiGgPerEaVAJAgQIzL/AtN8gPSsEH0+enOyQnJ/U/xNzQtKXclYqulNL\nZR+fZXXroEKAAAEC3RXQHnX33KgZAQIE5kpgWgfpsBztfZL63dFBSXUkTk0uSPpSvpKKViaV\nY7Kg/iNUhQABAgS6K6A96u65UTMCBAjMlcC0DtJf52hPTN4+V0ftYAgQIECgbwLao76dMfUl\nQIBATwWm/ZGGN+e46ha02ybbJtWhapJRhQABAgQIzERAezQTZjshQIAAgWlXkI4O0T2SR46h\n2nzMvC7OunsqdVxLxX4py65rWW4RAQIECKy/gPZo/c+BGhAgQGAhBKZ1kOo/5tum5xIHpP53\nbTmG3bNs55blFhEgQIDA+gtoj9b/HKgBAQIEFkJgXAfpqBz53skHk+/MgcI7cgyVSeV9WVB/\nnU8hQIAAgW4JaI+6dT7UhgABAgshMO43SPVX3eqbuqY8NCN/0UwYEiBAgACBGQloj2YEbTcE\nCBAgcJPAuCtINy3dOLZnBvU7nVmW7bOz+t3TnZP639N/lpybnJPUX9T7aaIQIECAwGIJaI8W\n63w7WgIECKyLwFI6SLOuWP1m6PSk/m+izybfTKrcLHlu8rzkYcm3k6WU+o1RWwevtrup/1Fs\n1fGeS9l5z9dp3Or/wbplz49lKdU/Iivtn7TdkrmU7fRlnfrt3duSRfh/wOqvcO6RLMrttDfm\nWOv988pEWb6A9mj5dqv9SO3Raot2a3vao26dj9Wszdy0R9UJedeQzFMz/uGh6bUe/d/Zwckt\nO/n7LNuUW/7+KOvXyWlL/ee3Sy1fzIpt25q3ZTcs2PHO2/lrOx7ndr5fyy9Y6ptah9fTHrWf\nHO3RfL+G296/522Z9mi+n8u9a48mXUHaL+/Jjxi8L98lw7rNrZkezN7s3c3IKg8PyPbaOkB1\ni91Jm7DPP866L5+yft3Ct9RSV1IuSS5b6gN6vF79BcODk7q1sd685r3cKge4ZfK9eT/QwfHd\nLsP6QyzXLMDx7ppjrKvF5y7AsdYh1vvoQXNyrNqjySdSezTZpu9LtEd9P4OT6689mmzT6SVP\nS+0uXkLW6iDqFrrTkvpLeqOlbpE5M3nV6IIZTtftf5vSQZth1VZ9V3fIFutbqlus+pa7ucG/\nTrXWquPfxSO+PpX6lS5WbA3q9JRsszr6i1LqysJz5uBgtUftJ1F71O7T56Xaoz6fvfa6PzmL\ntUftRuu+dNwVpDekVpX1KrXvA5Pzkg3JpUl9SK9vf+sb0Q8kL04UAgQIEJhvAe3RfJ9fR0eA\nAIFOCozrIK13Ra9OBZ6ZvDK5TVKdoua2p69kvDpOCgECBAgQWGsB7dFaC9s+AQIEOijQxQ5S\nw3R+RioKAQIECBBYTwHt0Xrq2zcBAgRmLDDuP4qdcRXsjgABAgQIECBAgAABAt0Q0EHqxnlQ\nCwIECBAgQIAAAQIEOiCgg9SBk6AKBAgQIECAAAECBAh0Q6D++IGyaQL7ZPXPJ9/etIf1cu36\nM9CHJP+U1Pi8l/q/CS5M6vwuQqn/B+k9yRULcLD1e8utk39egGOtQ9w/+Uzij9qUxvwW7dH8\nnlvt0fye22qLtEfze34dGQECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEh\ngS2Hxo1OFzggq/xmcsvk3OTGpK9li1T8ocmhQ9k94xckVTZP7pE8OLk2uTgZLn2yeGQqflVy\nxdABrOT4dsp2yu4uyfeSa5KulMNTkarXt4YqtF/G75sMn+uqc+PRdjzTnIZ2M9PR7bO3em7W\nMdVr8fqkKdPq3PbcbbNotr8ew32y00cldWzfH6rAIr2Ohw7baATansd9A1qk57H2SHs0/Pps\nex1rj4aljHdW4NGp2dXJ3ybVWXhn0udy21T+p8lZQ3nV0AF9IOPfTk5OqoN0QtKUPlkcn0rf\nkBzbVH4wXO7x7ZnHX5Z8JDkzOS/ZP+lC2TuVqPq8fqQyJ2X6omT4XD9osM6042lzGtnNzCaP\nyZ4uTd4xyIUZ3jtpSlud25670yya7c96+MrssL64eF3yr8lXkm2SKovyOt54tP5tBNqex806\nfRouyvNYe7TZZtqjm16Zba9j7dFNTsY6LLBL6lYfiuuKSpWaviSpD2p9LfVtdH1gHlfq6si5\nydaDhQ/JsD6gbZX0xWLH1PUNSZ2nHyfHJk1ZyfG9LRt59WBD9W1+dSDrg+t6l8ekAtVp+F4y\n2kF6T+Y9LxlX2o6nzWnctmY178PZ0QuGdlYN7gcH0211nvbcbbMY2t1MR2+RvdUXMwcN7fXf\nM14Na5V5fx1vPEr/DgtMex4Pr9uX8Xl/HmuPbnomao+W9llKe7TOn7HrsrYyXeDQrHJdcsZg\n1R9l+NGk+RZ+MLtXgyNS2y8k1djWLVnbJk25V0bqA2ddYapySrJbcsekLxaHpa51bHdOrkiG\ny0qO7+hs6L2Djd2Y4TuTLjwP6gNG3f7Z1C2j/1Wac33rzLnNf83dONJ2PG1OI5uZ6eQbsre/\nHdpjdQrrGKu01Xnac7fNYuPWZ/9vvUc/IqkvLJoyfLzNuZ3X13FzzIY3CUx7Ht+0Zn/G5v15\nrD266bnYnGvtUfvnSu3ROn+20kG66UXbNlbf3g7f91/r1m09e9VIT0u9SdUH+7pN7LTkm8lR\nSZXR470+8y5N6nhHl2VWJy3OSr1+K2l+U1X1bMroMSz1+LbOBvZJhp8LF2W6C8+D41KPjyej\npT44H5zUVa4PJd9IqnO/QzLteNqc8vB1K9Vhryu6VbZJnpG8uyZS2uo8uqzWb17H0yxq3fUo\nF2endTtnU+qD1v2S9w1mzPvruDluw5sE2p7HN63Vr7F5fx5rjzY+H7VHS/sspT26qW1et3cy\nHaSl0Te3uQyvfU0mdhqe0bPxs1Pfk5I7JPUBv66O1e1iVcYdb93mU8c7blnfLMYdw1KOb/cc\nf71mrkqaUse+XVK3H3ax7JxK/X3y8OSXkkOS+jDy+8m042lzysPXvZT7O5OfJS8e1KatzuOW\nNc/daRaDza/r4NDs/WPJnyT1eq2yyK/jjQKL92/b87ivGov8PB53PrVHG5/Jw+1rm1MXnvfa\nozlrj7r6oa4LT/bhOtRVgt2GZwymvzMyr0+TzQfKqvNVSV1h+Exyy2TS8Z6fZfUHD/pusdzj\nq6sWdbWpjr+2UaXG64pSfUjvYvluKvWEoYr9Z8bfmdTv5/44aTueNqc8dF1LuZ+SXJvcN6mG\ntEpbndueu10/t/fMsdVtr69I/jJpyiK/jhuDRRtOeo5rjzY+E+q9oU8Wk87ntPa26+9Z416X\n2qONnxn6fm4Xoj3aYtwz2LxfENiQOfsndTtPU26TkQ3NRM+GW6a+f5IcPFTvXTNeH/TrTXdD\nUlcamlLL9kjqdxAbkr5b1DEs5/iqM1FvbHXum1Ljw78PaeZ3ZVhXCP/XSGXqA8RXkmnHsyHr\nTHLKonUr9Vz8VHJB8mtJdfCbsiEjk+pcyyY9d6dZ5KHrVh6QPX84eW4y3Dla9Nfxup2Qdd7x\nhux/0vN4nau2rN0v+vO4zue8vWdNeiJoj5b2WUp7tPFzVr02lB4IfDl1rG/ct07qQ9mlyX5J\nX8vbUvG3JtXpq6tGpyavTarUrViXJ/dO6rJxza/lTembxYWp+LFN5TNcyfFVZ+O0pP6kdv0W\n4IvJk5KulLoS+PqhyuyU8er0PmIw78gM649WHD2YbjueaU6DTcx8UJ2Ff04OSOo1WNk3qTKt\nzm3P3TaLjVuf/b91+2udr2cnzbHW8GZJlUV6HW88Yv+WQNvzuI9Ci/Q81h5pj5rXaNvrWHvU\n78/YzTleiOFdc5TnJdUx2pCckPS51NWj9yQXJFcnH0rqdxhNeW5G6valS5LPJgcmTembxWiD\nVMex3OPbOY+tW7uuTOq58MZk86QrZbSDVPV6ePK5pDnXL6yZgzLteNqcmm3McnhYdnbjmPxk\nqBJtdW577k6zGNrFzEZfOuZY6/jrA2WVRXodbzxi/5ZA2/O4j0KL9DzWHmmPmtdo2+tYe9Qo\nGfZGoL7RnaeyUw6mXojjSl1dusW4BYN5fbdYyfHdLAbbtdh0cVHdmla3s4wrbcczzWnc9tZ7\n3rQ6tz132yzW+7gm7X+RX8eTTBZhftvzuI/Hv8jP40V7z9Ie3fQKbXsda49ucjJGgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCw6AKbLzqA4ycwIvDQTB88NO+7GT87+fbQ\nvOWOHpUH7pu8f4kb2CLrHZncO9k+OSX5UrIaZcds5OrV2JBtECBAgMCaCGiP1oTVRgkQIEBg\nUwU+lAd8I3lX8r7kM8m1ySOTlZbnZQPVyVlK2TIrvTe5KPmH5PXJd5J/SVb6xcbTs41XJwoB\nAgQIdFdAe9Tdc6NmBAgQWCiBapD+cuSIX5Dpr47MW87kpnSQ3pQdfD2pKz1N2T0jFybPbGYs\nc1idrdcs87EeRoAAAQKzEdAezcbZXgj8gkDdwqMQINAuUFdxfja0yp0y/jdJza9OzOOTpuyW\nkRclX0m+n7wh2TkZLTfPjE8kvzu6INN19eh/JtURGr4N7oeZPi45I2nKCRn5SFLLanuHJ015\nRUaqjpclH00OSk5MatuPSf4uUQgQIECgPwLao/6cKzUlQIDA3AjUN3anJ3+QnJS8Lqlb2+6T\nVNkjuST508H4b2Z4RfLrSZX3JJ9K7pjcJTkzOTmp0lxBqitBX0xeXTPHlCMy78Zk1zHLhmc9\nKhOXJscnt0pqe3WFqTppD0zOT/ZPdkn+aZBtMnxzUh28HRKFAAECBLopoD3q5nlRKwIECCyc\nQDVIdTvdPybVsTk1uTipDlOVJyY/SLasiUF5e4b1uOqIVMemOidNeVhGbkiqM1IdpNOTs5O3\nJJPKA7Lgp8nWk1YYzK+6DW9n20xfldTVofrDDlcmT0v2TrZKmt8uucUuGAoBAgQ6LqA96vgJ\nUr35FXCL3fyeW0e2fIG6Za1uRauORnV2jk5eltSVnYOTM5Lrk6ZUp2efpJZVB6n+sENTall1\nTKqTUuVeST32nsl2ybjyb5lZHZpDxizcM/MOHMw/KMPaflOuy8jnk32T05LnJ/UHGS5Iqk73\nTRQCBAgQ6I+A9qg/50pN50hAB2mOTqZDWTOBb2TLlyeHJXUL252T4XJkJs5Jall1hqoj1ZSj\nMlIdlw2DGZ/MsDpHNe+lg3mjg7pidW5y/OiCTNdvmuoKUJW6F324LltmuvZd9a3fPZ2S1G+S\nbptUp6tu/6uOl0KAAAEC/RTQHvXzvKk1AQIEei1QtzS8KdlvkNtl+IrkmqR+z1NXia5NHpfU\nFwzVIamO0ROTKp9N3p7sltw8eX9yalKlbrGrTkuV6lRVJ+luNTGm1C1ytZ8nJ/VbpPqNUV0R\n+nFy66TKs5Pzkuq4VefoGcmVSV2tOi6pK0f1e6cqv5HUb6dqvT9Lqo41rhAgQIBANwW0R908\nL2pFgACBhROoBqluk2tyecbrlrr6XVBTjs9IXeVp/kLcHzULMqwOVK1fHZV67MeS3ZIqwx2k\nmv7z5OvJdjUxppyQeZ9Ork7qtrzq8DwqaUpdDXpd8pOk6lNXsY5JmlJXmr6XbEiqrg9Kqtw/\nqQ7fl2tCIUCAAIFOCmiPOnlaVIoAAQIEJgnUrXR1paauIo0rdeVmx3ELljFv+zxmr5bHbZtl\ne0xYXvXcc8yy6lzVdhUCBAgQ6LeA9qjf50/tCRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQJz\nKLD5HB6TQyKwHIFfzYN2GXng1Zm+LPl8cv3QssMzfmhyXnLW0Pwujx6Qyv3/7d0JmCxVYfZx\nLvu+yL4vggYBZTOiCFxFMY+iIshiXKISjKJx4UPQBKMYDcHlQ0QfVDRRQRFBBFkU9Ysimwpi\nFKMsIsO+b7Lv3/9lunLLprt67tyZ7qrq/3me91Z1VXXVOb/q6TOnq3ruin0qmHb+sc86Fyug\ngAIKDFeg7f1RoZl+aavOg4uZXlOscKqAAgooUA+B31ONJ/rkWpY/u1TNwzrbHVdaVvfZEzp1\n7tXG8+peeeungAIKjJFA2/ujnMp/Io+Qok/K/MHEokAtBBatRS2shAL1ETibqlxEcnV1abI7\nWYdkMFQMkn7H/HfIL0lTynVUNJ1uuWzAg7TxT+WFziuggAIK1EKgrf3R5uh+jGRwdDjJHRoZ\nHOXDx9PJ/xCLAiMVyC+BFgUUmBw85La5A8mnSyBzmf8JyRv5MuQBsi5Zk+T2uytJlm9G7icZ\nPGU/zyGXk9w2UC65ze35ZDVyBzmX3En6leeyIsfqV3L1J/WY37I+T7iUpA6p623EooACCigw\neoF8mNXm/mgf2nc8OYfsSFLSz84lWXcCsSiggAIK1EAgHVIGQf+nqy4HdJb/urS8+xa7v+5s\n81umX+rMZ1/JF0lRcl/5XaRYl2kGXBkw9Su5UlXevnt+br8nDlj+TdbnU7udB2znagUUUECB\n4Qq0vT/aCM70Zflgbv1Obu0sy2OLAiMXWHTkNbACCtRLIFeQ3kJydXV5ktvr8h2kN5FBZQs2\nyKDjDWQH8g/kbSQDqgnyWbICeTfJ7Xm7kQ+Qj5OXkMdJd8l2i3QvLD2ezpWf5/H8fEqXWxn+\nX2lfziqggAIK1Eegrf1Rbut+LTmOXNXhfpTp68jVncdOFFBAAQVqIFB8YpdPtbqT29DeWqpj\nvytIed4zO9stzDRXh7Isg6WUG0ken0IyQFmdrESGXXJbX+rximEf2OMpoIACCgwUaHt/lP7x\ncJJ+KP3kPZ35Y5guSSwKKKCAAjURKDqkf6Y+uXKU7wqtTf6OPEzyRl7cjtZvgJSrR+VyEw/y\nvF06C9/beZxlSa4YnU9eSvqVL7Ain6j1y3b9nthn+Y4sz7Gzv3RSFgUUUECBegm0vT/KlaL0\nQ5eQ1Uj63NwtkWXvIhYFRi7gL0gjPwVWoGYCD1KfP5O7yPXka6T4/tErma8qD3Wt7B4wfYb1\nW5NM832llHz/6ESyTB70KKuybL2KzO+nbbt2jpF2ZYBmUUABBRSop0Bb+6MXd7jPYHoLSZ97\ncmdZbje3KDBygUVHXgMroEC9BfIX3vLdopRcEZpuya10+5GNycHkfWRd8iuSQVA6jNNId3k7\nCw7oXlh6PL91elnnucWgr7QrZxVQQAEFaizQlv7ozo7x9iXr/MXWlNzSblFg5AIOkEZ+CqxA\nzQQ+Qn0O6tRpMabFd4RuZ/74zvLpTNIh7EReTjYn3yUZLGVwdB+5mPQq+cs+M1k26ezsipnc\nqftSQAEFFJhxgY+wxzb2R9+iXe8mLyS5tS7fQcqHhLnF7qvEooACCihQE4Hinu+8QSe5/Szf\nPcqnWbkFbhtSlH7fQbq/2KAzvZ5p9lV8B2kN5o8l13WWZ92l5CVkGGUVDlK0balhHNBjKKCA\nAgrMt8A49EevQmWCpE9K8hdZ30gsCiiggAJjLLA+bV95jNtv0xVQQAEF6iEwqv5oDs3PreYb\nkYXrQWEtFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBA\nAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQ\nQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUU\nUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEF\nFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEAB\nBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBA\nAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQ\nQAEFGiIwZ0A992T9CgO2uZz1PxuwjasVUEABBRRYEAH7owXR87kKKKCAAlMWWHTAlnNZvz+5\nh1xANiXrkivILSTlTFLnAdIm1G+HVLRPWZvlqf/Zfda7WAEFFFBg9AJzqYL90ejPgzVQQAEF\nWi8waIC0PAIfJR8jj3Q09mD6IfLCzuO6T15GBd9XUcnVWLcjmeoA6Qi23bVif21b9SANehN5\nuG0N69Oea1ieDwQsCihQLwH7o6eeD/ujp5q0aYn9UZvOpm1plMCgW+xupTUbk7tLrcpzcvVo\nC3JTaXlTZ0+m4teS90yxAeew3e3k9Clu3+TNNqfyU3VpcjvLdT+OB28sL3BeAQVqIWB/9NTT\nYH/0VJM2LbE/atPZtC2NElh0QG3/wPq3kiPJ4ySDo78jKcUtdpOPxuvfi2jul8egya+mjRkg\nbUeuHIP2Hk4b8ym1RQEF6idgf9T7nNgf9XZp+lL7o6afQevfaIFBA6SDad2p5BCSN+EtydJk\nb5IBk6XdAk90mncn09va3dQnW/cA/zpAGoMTbRMbKWB/1MjTNmOVtj+aMUp3pIACgwQGDZDy\nhxk2J3PJX5ETSW4ta9KtdWnjKqRfWYIVg2417PdclyuggAIKDEfA/mg4zh5FAQUUGHuBQQOk\nAOVWum83WOoj1P2fB9Q/Ha9FAQUUUKDeAvZH9T4/1k4BBRRohcBUBkhzaem+ZEnydrI7yfdv\nisvdzNa6fJzaHVtRw6NYl//LyaKAAgooUG+BuVTP/qje58jaKaCAAo0XGDRAegMt/Az5Hnkh\nyfYfJM8h7yJNKPleyWUVFb2XdY9VrHeVAgoooMDoBeyPRn8OrIECCigwFgILD2jlIazPVaOD\nOtvdzHQb8hoy6LmdpzhRQAEFFFBggQXsjxaY0B0ooIACCkxFYNAgZ0128pOuHf2Zx7mSlP9g\n1aKAAgoooMAwBOyPhqHsMRRQQAEFnhzoVDHkT3sfSD7b2WgRpvuT3JLWlL9k9/fU9Z2kX9mA\nFb/st9LlCiiggAK1ELA/qsVpsBIKKKBA+wUGfQfpHyH4EdmPLE2uJfl/YvYhTSm/oKLLVlT2\nLazLrYMWBRRQQIH6Ctgf1ffcWDMFFFCgVQKDBkib09oXkXzvaEOSgcRZ5DrSlHIJFU36lR1Z\nkf8I1aKAAgooUF8B+6P6nhtrpoACCrRKYNAA6XO09k3k+Fa12sYooIACCjRNwP6oaWfM+iqg\ngAINFRj0RxqOoV25Be0ZZAmSAVURZi0KKKCAAgoMRcD+aCjMHkQBBRRQYNAVpB0gegHZqwfV\nnB7L6rjo+VRq14qKPYt1D1Wsd5UCCiigwOgF7I9Gfw6sgQIKKDAWAoMGSPmP+RZvuMT61P+5\nFW1YiXXLVax3lQIKKKDA6AXsj0Z/DqyBAgooMBYCvQZI29Lytcj3yDUtUPgWbUj6lZNZkb/O\nZ1FAAQUUqJeA/VG9zoe1UUABBcZCoNd3kPJX3fJJXVF2Y+aTxQOnCiiggAIKDEnA/mhI0B5G\nAQUUUGCeQK8rSPPWTs6twSTf0xlmWYqD5XtPW5H87+mPkqvI5SR/Ue8RYlFAAQUUGC8B+6Px\nOt+2VgEFFBiJwFQGSMOuWL4zdA7J/010HrmCpDyNHEAOJK8hV5KplHzHqGqAl/3O738Umzpu\nP5WDN3ybwi3/D9aqDW/LVKq/JRutR6puyZzKfpqyTb579w0yDv8PWP4K52pkXG6nfYK25v3z\nHmKZvoD90fTtZvqZ9kczLVqv/dkf1et8zGRtWtMfZRDy7ZLM25k/o/R4tmf/gwMcW3GQr7Ju\nfm75+zDb5+RUJf/57VTLxWxYta+2rXt8zNrbtvNX1R7Pbbt/lg+a6ptajbezP6o+OfZH7f4Z\nrnr/bts6+6N2v5Yb1x/1u4K0Lu/Je3bel7dmmtvcisedxQudWMzM8HR99lc1AMotdofMxzEP\nZduPD9g+t/BNteRKyq3k9qk+ocHb5S8YbkRya2PevNpeVqeBi5Ab2t7QTvueyTR/iOX+MWjv\nCrQxV4uvGoO2pol5H92wJW21P+p/Iu2P+ts0fY39UdPPYP/62x/1t6n1mndQu1umkNlqRG6h\nO5vkL+l1l9wicwH5dPeKIT7O7X/zM0AbYtVm/FCbscd8SrXKjO+5njv8HNWarYF/HVv8GJV6\ncR0rNgt1ehv7zEB/XEquLLyvBY21P6o+ifZH1T5NXmt/1OSzV133/Vhtf1RtNPK1va4gHU2t\nklGVHHsDcjWZILeR/JKeT3/zieip5EPEooACCijQbgH7o3afX1ungAIK1FKg1wBp1BW9jwq8\nixxONiEZFBW3PV3CfAZOFgUUUEABBWZbwP5otoXdvwIKKFBDgToOkAqma5lJLAoooIACCoxS\nwP5olPoeWwEFFBiyQK//KHbIVfBwCiiggAIKKKCAAgoooEA9BBwg1eM8WAsFFFBAAQUUUEAB\nBRSogYADpBqcBKuggAIKKKCAAgoooIAC9RDIHz+wzJ/A2mx+Ibly/p7WyK3zZ6A3Jt8kmW97\nyf9NcBPJ+R2Hkv8H6SRy9xg0Nt+3XIz8cAzamiauR84l/lGbaLS32B+199zaH7X33KYvsj9q\n7/m1ZQoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIAC\nCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCA\nAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiig\ngAIKlAQWKc07O1hgfTZ5HVmVXEWeIE0tC1Px3cimpazE/HUkZQ55AXkleZDcQsqlSRZ7UfF7\nyd2lBixI+5ZlP7HbmtxA7id1KVtQkdTrj6UKrcv8zqR8rlPnwqOqPYOcSocZ6uxSHC2vzbQp\nP4uPkaIMqnPVa7fKotj/KKZrc9C9Sdp2Y6kC4/RzXGq2swhUvY6bBjROr2P7I/uj8s9n1c+x\n/VFZyvnaCryBmt1HvkIyWDiBNLk8g8o/Qn5RyqdLDTqV+SvJsSQDpH1IUZpksQeVfpzMLSrf\nmU63fWvw/NvJmeQCcjVZj9ShrEUlUp/Pd1XmEB7fTMrn+uWdbQa1p8qp6zBDe7gjR7qNfKuT\nm5juRIpSVeeq1+4gi2L/w54ezgHzwcVR5OfkErI4SRmXn+PJ1vpvIVD1Oi62adJ0XF7H9kcL\nLWR/NO8ns+rn2P5onpNzNRZYnrrll+JcUUnJ41tJflFrasmn0fmFuVfJ1ZGryGKdla9mml/Q\nFiVNsViGuh5Ncp4eIHNJURakfd9gJ0d0dpRP8zOAzC+uoy5vpAIZNNxAugdIJ7HsQNKrVLWn\nyqnXvoa17AwOdFDpYOlwv9d5XFXnQa/dKovS4YY6uwpHywczG5aO+hvm07GmtP3neLKV/lsW\nGPQ6Lm/blPm2v47tj+a9Eu2Ppva7lP3RiH/HzmVty2CBTdnkIXJ+Z9M/M/0+KT6F7yxu1GRL\navsrks42t2QtQYryQmbyC2euMKWcTlYkzyZNsdicuqZtW5G7SbksSPt2YEff6ezsCaYnkDq8\nDvILRm7/LOrG7P+W4lw/nSWb/O/SyZmq9lQ5de1mqA+P5mhfKR0xg8K0MaWqzoNeu1UWk3sf\n/r95j96T5AOLopTbW5zbtv4cF212Ok9g0Ot43pbNmWv769j+aN5rsTjX9kfVv1faH434dysH\nSPN+aKvm8ult+b7/bJvbetbMTENL3qTyi31uEzubXEG2JSnd7X2MZbeRtLd7HYtqafEL6vV6\nUnynKvUsSncbptq+xdjB2qT8WriZx3V4HexKPX5Eukt+cd6I5CrXaeQyksH90mRQe6qcePrI\nSgbsuaKbsjh5JzkxDyhVde5el+2Ln+NBFtl2FOUWDprbOYuSX7ReQk7uLGj7z3HRbqfzBKpe\nx/O2atZc21/H9keTr0f7o6n9LmV/NK9vHtk7mQOkqdEXt7mUt76fB8uWFzRs/iLqewjZjOQX\n/Fwdy+1iKb3am9t80t5e65pm0asNU2nfSrQ/PzP3kqKk7UuS3H5Yx7Iclfoq2Z08i2xM8svI\nB8ig9lQ58fSRl7ifQB4lH+rUpqrOvdYVr91BFp3dj3SyKUf/AflXkp/XlHH+OZ4UGL9/q17H\nTdUY59dxr/NpfzT5Si73r1VOdXjd2x+1rD+q6y91dXixl+uQqwQrlhd0Hl/TtaxJD4tfKFPn\ne0muMJxLViX92nst6/IHD5puMd325apFrjal/dlHSuZzRSm/pNexXE+l3lqq2J+YP4Hk+3OH\nkqr2VDnx1JGWuJ9OHiQ7k3SkKVV1rnrt1v3cbk/bctvrYeRTpCjj/HNcGIzbtN9r3P5o8pWQ\n94YmWfQ7n4P627q/Z/X6ubQ/mvydoenndiz6o4V7vYJd9hSBCZasR3I7T1E2YWaieNCw6SLU\n91/JRqV6r8B8ftHPm+4EyZWGomTdaiTfg5ggTbdIG6bTvgwm8saWc1+UzJe/H1Isr8s0Vwj/\npasy+QXiEjKoPRNs08+JVSMreS3+lFxHXkEywC/KBDP96px1/V67gyx46sjKLhz5DHIAKQ+O\nxv3neGQnZMQHnuD4/V7HI67atA4/7q/jnM+2vWf1eyHYH03tdyn7o8nfs/KzYWmAwG+pYz5x\nX4zkl7LbyLqkqeUbVPw4kkFfrhqdRT5LUnIr1l1kJ5LLxlme9UVpmsVNVHxuUXmmC9K+DDbO\nJvmT2vkuwMXk70ldSq4Efr5UmWWZz6B3z86ybZjmj1bs0Hlc1Z5BTp1dDH2SwcIPyfokP4PJ\nOiRlUJ2rXrtVFpN7H/6/uf015+u9pGhrpk8jKeP0czzZYv+NQNXruIlC4/Q6tj+yPyp+Rqt+\nju2Pmv07dnGOx2L6XFp5NcnAaILsQ5pccvXoJHIduY+cRvI9jKIcwExuX7qVnEc2IEVpmkV3\nh5R2TLd9y/Hc3Np1D8lr4YtkDqlL6R4gpV67k1+S4lwfnIWdMqg9VU7FPoY53ZyDPdEjD5cq\nUVXnqtfuIIvSIYY2+9EebU378wtlyjj9HE+22H8jUPU6bqLQOL2O7Y/sj4qf0aqfY/ujQslp\nYwTyiW6byrI0Jj+IvUquLq3Sa0VnWdMtFqR9T8NgyQqbOq7KrWm5naVXqWrPIKde+xv1skF1\nrnrtVlmMul39jj/OP8f9TMZhedXruIntH+fX8bi9Z9kfzfsJrfo5tj+a5+ScAgoooIACCiig\ngAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoo\noIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIK\nKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIAC\nCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCA\nAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiig\ngAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoo\noIACCiigwLgLzBl3ANuvQJfAbjzeqLTseuYvIleWlk13dlueuA45ZYo7WJjttiE7kaXI6eTX\nZCbKMuzkvpnYkftQQAEFFJgVAfujWWF1pwoooIAC8ytwGk+4jHybnEzOJQ+SvciClgPZQQY5\nUymLsNF3yM3ka+Tz5BryY7KgH2zszz6OIBYFFFBAgfoK2B/V99xYMwUUUGCsBNIhfaqrxQfx\n+Pddy6bzcH4GSF/iAJeSXOkpykrM3ETeVSyY5jSDrSOn+VyfpoACCigwHAH7o+E4exQFniKQ\nW3gsCihQLZCrOI+WNnkO818gWZ5BzFtIUVZk5oPkEnIjOZosR7rLyiz4L/Ke7hU8ztWjvyUZ\nCJVvg7uTx7uS80lR9mHmTJJ12d8WpCiHMZM63k6+TzYkbyLZ9xvJfxKLAgoooEBzBOyPmnOu\nrKkCCijQGoF8YncO+SdyCDmK5Na2F5GU1cit5N86869jejd5FUk5ifyUPJtsTS4gx5KU4gpS\nrgRdTI7Iwh5lS5Y9QVbosa68aG8e3Eb2IKuT7C9XmDJIexm5lqxHliff7GRxpseQDPCWJhYF\nFFBAgXoK2B/V87xYKwUUUGDsBNIh5Xa6r5MMbM4it5AMmFL2JXeQRfKgU45nmudlIJKBTQYn\nRXkNM4+TDEYyQDqHXES+TPqVXVjxCFms3wad5albeT9L8PhekqtD+cMO95B3kLXIoqT47pK3\n2IFhUUABBWouYH9U8xNk9dor4C127T23tmz6ArllLbeiZaCRwc4O5GMkV3Y2IueTx0hRMuhZ\nm2RdBkj5ww5FyboMTDJISXkhyXO3J0uSXuW/WZgBzcY9Vq7Bsg06yzdkmv0X5SFmLiTrkLPJ\n+0n+IMN1JHXamVgUUEABBZojYH/UnHNlTVsk4ACpRSfTpsyawGXs+S6yOcktbFuRctmGB5eT\nrMtgKAOpomzLTAYuE50FP2GawVGWfbSzrHuSK1ZXkT26V/A432nKFaCU3IterssiPM6xU998\n7+l0ku8kPYNk0JXb/zLwsiiggAIKNFPA/qiZ581aK6CAAo0WyC0NXyLrdvJMpoeR+0m+z5Or\nRA+SN5N8wJABSQZG+5KU88jxZEWyMjmFnEVScotdBi0pGVRlkLRdHvQouUUux9mP5LtI+Y5R\nrgg9QJ5OUt5LriYZuGVw9E5yD8nVql1Jrhzl+04pryX57lS2+3eSOmbeooACCihQTwH7o3qe\nF2ulgAIKjJ1AOqTcJlfkLuZzS12+F1SUPZjJVZ7iL8R9uFjBNAOobJ+BSp77A7IiSSkPkPL4\nE+RSsmQe9Cj7sOxn5D6S2/Iy4NmbFCVXg44iD5PUJ1exdiRFyZWmG8gESV1fTlJeSjLg+20e\nWBRQQAEFailgf1TL02KlFFBAAQX6CeRWulypyVWkXiVXbpbptWIay5biOWtWPG8J1q3WZ33q\nuUaPdRlcZb8WBRRQQIFmC9gfNfv8WXsFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEF\nFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEAB\nBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBA\nAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQ\nQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUU\nUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEF\nFFBAAQUUUEABBRRQC+UBSAAAH8FJREFUQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQ\nQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUU\nUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEF\nFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEAB\nBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBA\nAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQ\nQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUU\nUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEF\nFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQoIUCc1rYJpukwHQE/oYnLd/1xPt4fDu5kDxW\nWrcF85uSq8kvSsubMLsBldya3EJ+RR4gFgUUUECB0QhsxmGTcnmIB38mvyF3lFcw/3KyLDmX\n3ECaVjakwi8i/0O6+89FWbYNWZek7VcQiwIKKKDACAV+z7Gf6JNrWf7sUt0O62x3XGlZE2Y/\nTiUz0CvaOcH8VsSigAIKKDAagUM5bPGe3D19kHXv6arWHzvbv7preRMeLkUlL+nU/8iuCq/C\n4/M66wqHT3Rt40MFFFBAgSELFAOkn3LcT5FPk6PJzSRv1r8lRXk9MyeRdxcLGjDdgzqmHflU\n8v+StCePJ0g+tbMooIACCgxfoBgg5WpQ0fd8hvlfkrxHP042JUX5HDPpf55bLGjIdHXqeQpJ\nm5LuAVLanuW/I/9K7u083oGpRYGhC/iL0dDJPWDNBU6jfhkcFeUEZn5CNif59Cu3pP2M5NL/\n7SRlGZJbJO4neXNPZ/Yccjm5mJTLijx4PlmN3EHOJXeSfiWd4Jr9VrI8n7gV9ajYbKHXdVZ+\niemBZDlyG1mf7EmOJxYFFFBAgdEIXMNh895clIWZyaApA4ttyR9IyjFkCVLcfpbb0dJH5E6H\n9Cl/TfKcC8j1pFw24cGzSfqybJ/+J3cV9Cuv6reC5Q+TH1SsL6/amQffJel3HiKpf7nk8X6d\nBW9nmnotTQ4g/0jOIRYFFFBAgREIFFeQ/k/XsfMGnU+1fl1aflhn2XGdZemQsk2uymQAkvki\nX2S+KPme012kWJdpBlzPJ/3Kd1hR3r57fm6/J3YtLz6NfFNp+fnMZ3/55M6igAIKKDB8geIK\n0s+7Dr0xj3OLXd6jM7ApSvctdp9kRbb5AskHdEUfcT/zryRFOYKZXI0q1meaPiuDpV4lA7Ty\ntt3zt/Z6Up9l72D51SQfxmWAl32VryClrcX+l2Q+JdtmWfpmiwJDF1h06Ef0gArUWyCf4L2F\nzCHLk3VIPmkrDyx42LNswdJ8GvcGktsC/oG8jWRANUE+S1Yg7yYZsOxGPkA+Tl5C0nl1l2y3\nSPfC0uNcBZpKuYqNcjXqeeTrJD/7udKVsvbkxH8VUEABBUYkkCs7GeCkLEae/uTcQgvtz7S4\nWtRZ1HOS/uZr5KPkYLI1+RDJXRFbkveSDFLeSe4lh5LtSZ73GdJdMjg5tXth6fHdpflBsz9k\ng6+SfCC4C+kua3UWZECYpNw1Oam8g6KziRMFZl7AAdLMm7rHZgusQfWTclmWBxlcXFJe2Gd+\nH5ZfRo4nf0fyadi6ZIIsR1J2Jvn0LZ3SJ8idpF85vN+K+Vz+Bbbfi7yVZPCXwdGKJCWDNosC\nCiigwOgEluLQm3UdPoOULUneowcNSH7DNm8heU5uYzuFrEdS0oelrEp2ImeR3cl9JNv2KtnP\nbr1WTGPZlQOes1Jn/SOl7Yr5tD1Xs3p9gFja3FkFZlYgLzqLAgrMEziE2bwh5w07V4/eTNK5\nfIVkYFNV8gaewVFK5osOLR1fSjHYeTXzGUDdSM4gLyX9SgY2+dSvX7br98Su5T/hca5mPUre\nQTYhPyUpqYdFAQUUUGB0Ahdx6PQ9+eBqNfICcinJ+3bRdzDbt2TbDGpS7pic/O/tc7/g8dlk\nafJ+8mNyDUm/ln6uV8nvh/36nSy/uNeTprnsts7zFi89v7jV7naWOTgqwTg7HAEHSMNx9ijN\nEXiQqv6Z3EWuJ18jvyYp5fu5J5f85b/dn8Q99pern7xilNsePkN+21n3fKYnkmU6j7sn+cRv\nvYoUnUj383o9PoaF6XzXJ+uSohNNOy0KKKCAAqMTSH+RvicfrOUOgwvIf5CUV01OKv8t9z/F\ngKIYMOVqTG7j3pN8k9xE0ue8nuQuhn6lqu9JHzJT5ebOjpZgWlztWqWz7IaZOoj7UWB+BLzF\nbn603HYcBZ5Do/PdopR0KtMtuSK1H9mY5P7w95F0ML8iGQS9mORe8e7ydhYc0L2w9HiqdUoH\n+17yG5Jjr0zSYaacOTnxXwUUUECBmgjkw6xXdOoylav8xWCoXP05nQfbMs2dC/kAMIOilDeQ\nY8luJNt1Pz+DrA1Iv5IB3UyVq9lRBkmrk13IySR9YkoGihYFhi7gAGno5B6w5gIfoX4Hdeq4\nGNMMbFJymf/4J+em98+dPG0n8nKyOfkuyWApg6P7yMWkV8kniTNRcovFdmRH8szO/PJMc6vF\nz4lFAQUUUGB0Arm7oLiSkrt7ViDpg1I+NzmZ9r/5IO1dJIOup5Pfk3xolnIu6R4cPbmCfzJw\nGUbJFa6jyUfIF8lbyd+Q1OszxKKAAgooMCKBdBh5My6ST88eJneQE8k2pCiHMZPtjuss+OvO\n4/s7j4tJbl3LdvlELGUNkk/sriPFcS5l/iVkGGVfDvIHkmOnQ8qtFssRiwIKKKDAaAQO5bBF\nf1BM8/6cvzSXD7YyWCiXP/Ig2+WKUMonSR5/lRRle2ay7O5iAdOXkR+Q7Lc4Tj6oS780zHIM\nB8vxj+w6aAaDnyfpd4u65yqXRQEFFFBgjATWp625zW0UZQMOuuQoDuwxFVBAAQVGKpCByMYk\nf7ChjiV9U65y5SqaRQEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEAB\nBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBA\nAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQ\nQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUU\nUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEF\nFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEAB\nBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBA\nAQUUUEABBRRQQIF+AnP6regs35PpCgO2uZz1PxuwjasVUEABBRRYEAH7owXR87kKKKCAAlMW\nWHTAlnNZvz+5h1xANiXrkivILSTlTFLnAdKS1G+9VLRPWYrlfyJpo0UBBRRQoJ4Cc6mW/VE9\nz421UkABBVolMOgK0rG0NoOHj5FHOi3fg+mHyJadx3WfpO7/PKCSGeDtNGCbNq1ehsacQ5ab\n5UZdy/5fPMvHcPcKKDAeAvZH7TzP9kftPK+2SoFGCwwaIN1K6zYmd5damefk6tEW5KbS8rrO\n5irZqhWV+zLrriTvrtimbavWokHXk0PIzbPUuM3Ybz7tXWKW9u9uFVBgvATsj9p5vu2P2nle\nbZUCrRbIlZX3kYU7rczg6M0kHVWxjNlGl5Op/ZGNbsH8Vz4d0hNkk/l/6pSfsQtbPjTlrd1Q\nAQUUqBawP6r2aepa+6OmnjnrrUCLBXJ1paoczMpTSa40XERyW93SZG/yOLEooIACCigwDAH7\no2EoewwFFFBAgYUGDZDyhxk2J3PJX5ETyemkCbfWUc0nywf59186870mi7HwvF4rXKaAAgoo\nUBsB+6PanAorooACCrRbYNAAKa3P942+3WCG/6Tuv66of66OXVax3lUKKKCAAvUQsD+qx3mw\nFgoooECrBaYyQJqLwL4kfy777WR3kj9skO+wNKHkatcPKir6NtY9ULHeVQoooIAC9RCYSzXs\nj+pxLqyFAgoo0FqBQX9o4Q20/CSSP/G9LcmAKresHUUsCiiggAIKDEvA/mhY0h5HAQUUGHOB\nQVeQcvtZrhr9lFxI8iehtyG/I/mz2E34Qw1vpp5pQ7+Sv+T2y34rXa6AAgooUAsB+6NanAYr\noYACCrRfYNAAaU0IfkLK/1/Sn3mc561Gcvta3ctvqOB3KyqZTyVvr1jvKgUUUECB0QvYH43+\nHFgDBRRQYCwEBg2Q8qe9DySf7WgswnR/8hhpwuAo1c4faKj6Iw3PY70DpEhZFFBAgfoK2B/V\n99xYMwUUUKBVAoMGSP9Ia39E9iNLk2vJ8mQfYlFAAQUUUGBYAvZHw5L2OAoooMCYCwwaIOX/\nQHoRyfeONiT5DtJZ5DrSlPJSKvraisrmP79twnepKprgKgUUUKD1AvZHrT/FNlABBRSoh8Cg\nAdLnqOabyPH1qO60arEEz1qu4pkxyK2DFgUUUECB+grYH9X33FgzBRRQoFUCgwZIx9Dat5A/\nkatJvntUlEeLmZpPT6d+Sb9yMity66BFAQUUUKC+AvZH9T031kwBBRRolcCgAdIOtPYFZK8e\nrZ7TY5mLZkZgJXazwszsqude8hcIZ7tsxAEWI/fP8oFyy+drZvkY7l4BBUYvYH80mnNgfzR1\nd/ujqVu5pQK1Fhg0QMqfwF681i0YXLlN2eRFFZttyLp7KtaPYtUlHHTtIRx4dY5xxSwdZ8XO\nfveYpf1ntxkYbTuL+3fXCihQHwH7o9GcC/ujqbnbH03Nya0UaIRArwFSfuFci3yPXNOIVlRX\nckdWv7Nik3VYd2vF+lGsyl8M/AeST6Nmo2zGTs8gS87Gzrv2+f2uxzP58K/YmQOkmRR1XwrU\nS8D+aPTnw/5oaufA/mhqTm6lQCMEeg2QMqDYjmSAlLIb2Z68Pw8aWL5InZN+pa7fQcqgLd/7\nmo3ytNnYqftUQAEFZljA/miGQae5O/ujacL5NAUUaKZArwFSd0vWYMGzuhfO8uOl2H++97QV\nWZPkD0JcRS4n+Yt6jxCLAgoooMB4Cdgfjdf5trUKKKDASASmMkAadsXW54DnkDvJeaT4jkyu\nehxADiS51/dKMpWyEhtVDfCy3/z/TlMtc9kwA7fZLPnT5DnGLbN0kGd09pv/V+SBWTpGzmNK\nrj7OVsl3y3Ju/zhbB2C/+UMTvyQ/msVjrMe+byJ3zeIxctvs/5DZ/HBhbfafDzFmq+TP8ec7\ngzfO1gHYb372cuvpDbN4jJXZd15X98ziMZ5g3xeQe2fxGOOwa/ujyZ8J+6PBr3b7o8FGxRb2\nR4VE9dT+qNpn6GszCPl26ahvZz7fVxlW+Q8OdGzFwb7Kuk9WrO9e9WEW5JeFqszPd31+NWBf\nVceZ6rrHPUbl+Zqqo9vNe937mppnMS6vi314H2l6sT+qPoP2R1P/uR7Ge+C4vLcsaDuHcS7a\ncowFta7L8xvXH/W7grQu78l7dt6Xt2aa29yKx53FC51YzMzwdH32VzUAOp71h8zHMQ9l248P\n2D638E215E9k537s26f6hJZsl6sDufowW1e16sqUW3rmkBvrWsFZqteq7DefXl03S/uv625z\nRfkxkk84LfUQsD/qfx7sj/rbtHGN/VEbz2r/Ntkf9bcZyZp3cNT8Ejwos1W53EJ3Nun1C0o6\ngwvIp8moSm7/m58B2qjqOdPHPYUdHjHTO23A/r5CHb/egHrOdBU/wQ6HeeV4pus/3f0dzBN/\nPt0n+7wZF7A/qia1P6r2adta+6O2ndHq9tgfVfvM6tpeV5CO5ojJqEqOvQG5mkyQ20guEWYk\nvSE5lXyIWBRQQAEF2i1gf9Tu82vrFFBAgVoK9Bogjbqi91GBd5HDySYkg6J8OTtfms5/WJeB\nk0UBBRRQQIHZFrA/mm1h96+AAgrUUKCOA6SC6VpmEosCCiiggAKjFLA/GqW+x1ZAAQWGLLDw\nkI/n4RRQQAEFFFBAAQUUUECB2go4QKrtqbFiCiiggAIKKKCAAgooMGwBB0jDFvd4CiiggAIK\nKKCAAgooUFuBOn8Hqa5o+U9lL6xr5WaxXv/Fvsft/wIK5zlkHH9O8qeubwrAmJX8x5tLjVmb\nbW5zBeyPmnvuplNz+6PpqDX3OfZHzT131lwBBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUU\nUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEF\nFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEAB\nBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAgY7AIkrMl8D6bP06siq5ijxB2lC2oxHPJZuWcjnz\nRfuq2r0s2+1GtiY3kPtJ3cuSVHB/8ouuis7h8QvIK8mD5BZSLm1w2IsG3UvuLjWszed/KdqZ\n85nX9lXkMVKUcTjfRVudtk+g6v2oya1t8/tRr/Nif2R/lNeF/VGvnw6XNULgDdTyPvIVkl+c\nTyBtKb+hIX8gGTAUWaLTuKp2r8E2t5MzyQXkarIeqXPJhwLHku7BT+p8KrmSZH0GSPuQorTB\nYQ8a8ziZWzSqM23r+d+R9t1GvtXJTUx3IkVp+/ku2um0fQJV70dNb21b3496nRf7I/uj4nVh\nf1RIOG2UwPLUNgOBXF1IyeNbSX4Ba3rJQOhhkk8ju8ugdn+DJxzReVI+/cjA4qjO4zpONqNS\nF5LrSPcAKVfBcoVhMZLyapLtFiVNd1iGNhxN8pp9gMwlRWnz+T+DRh5UNJTpIeR7ncdtPt+l\nJjvbQoFB70dNbnKb34+6z4v9kf2R/VH3T4WPGyfwPGqc28fK5es8+PfygobO59a4/OKcT7Iy\nvwopyqB2X8OGLyw2ZroryRWYupb8gvwB8mLSPUD6FMuOJEWJR25Fi0nTHVL/DGbXIbmKMpcU\npc3nP6/HlYuGMn0ryWs2pc3ne7KF/ttWgUHvR01ud5vfj7rPi/2R/ZH9UfdPRY0e59Nxy2CB\nDdnkxq7N8ovmml3LmvhwSyqdqya/I0uRtcjBJFeGqtqd56xNyi4387jOJh+jfik7TE7+4t+0\n9cLSkseYv42kPcuRcjt5+ORAI+ua4JDbJl+fSvcobT7/p5fauzjz7yQndpa1+XyXmu1sCwWq\n3peb3tw2vx91nxv7o26RhRZq8/m3P3rq+a71koVrXbv6VG4VqpLvH5VL/hjBsuUFDZ3P1aNj\nyHNIOt59ST5dz+Oqdq/E+rx+7iVFicmSpO4D7zlFhUvTXm3NOc857rWuOP9Ndkjzx+H85zV5\nAnmUfIik9Dqn43C+J1vvv00W6PXaLd6Pmtyu1H0c3o+6z5H90TyRcTj/9kfzznet5xwgTe30\n5MrIil2b5nFxebRrVaMenkZt30/yPaQnyHEktxNuT6rane9k5SpL2SXzudKSX0SbVvq19Voa\n0m9dzn/THdp+/vOa/DHJVcCdSX6RTOl3Ttt+vidb779NFuj32rU/sj+yP5r3k13H30fsj+ad\nn9rPOUCa2imaYLP8dbbcplOUTZiZKB40eJq/1LZ7qf65ZSxXTS4hE6RfuzM4yi+TcShK5vOH\nDppYJqj0xqWKr8D8aiTtmSBtdWjz+c/5+ym5jryC3EuKMsHMOJ7vov1OmyswQdX7vR81t1WT\nNW/z+9H8nJsJNh7H96c2n3/7o/n5CXDbRgn8ltoeSjKAyC9bt5F1SdPLq2lAvk+1BlmU5GrS\n9aQYPFe1+1/Y7myS7y1tSC4mf0/qXnakgt1/pOFZLLuL7ERyCfyz5CxSlLY45FzPLRrFtM3n\n/wza90OyPsnParIOSRmX8z3ZWv9tm0DV+1GT29rm96N+58X+aJ5Mm8+//dG88+xcywSeS3uu\nJhkYTZB80tGGModGfIJMkNy68SfyfFKUqnbntqXTyT0kLl8k2V/dS68OKXU+gDxIch/0eWQD\nUpS2OHQPkNp6/jfnxD3RI7mVtCjjcL6Ltjptl0DV+1GTW9rW96Oqc2J/NE+nreff/mjeOXau\nxQL5y2VtLLlitHpFw6ra/TSel6subSi5jTJfgu5X2uowrud/XM93v9e3y5slUPV+1KyW/GVt\nx/X96C8VJm/rtz/qVqn+a7lN/n3E/uip59olCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoo\noIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIK\nKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIAC\nCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCA\nAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiig\ngAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoo\noIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgoooIACCiiggAIKKKCAAgrME5gzb9Y5BRRA\nYDeyUUnieuYvIleWlk13dlueuA45ZYo7WJjttiE7kaXI6eTXZCbKMuzkvpnYkftQQAEFFJgV\nAfujWWF1pwoooIAC8ytwGk+4jHybnEzOJQ+SvciClgPZQQY5UymLsNF3yM3ka+Tz5BryY7Kg\nH2zszz6OIBYFFFBAgfoK2B/V99xYMwUUUGCsBNIhfaqrxQfx+Pddy6bzcH4GSF/iAJeSXOkp\nykrM3ETeVSyY5jSDrSOn+VyfpoACCigwHAH7o+E4exQFniKQW3gsCihQLZCrOI+WNnkO818g\nWZ5BzFtIUVZk5oPkEnIjOZosR7rLyiz4L/Ke7hU8ztWjvyUZCJVvg7uTx7uS80lR9mHmTJJ1\n2d8WpCiHMZM63k6+TzYkbyLZ9xvJfxKLAgoooEBzBOyPmnOurKkCCijQGoF8YncO+SdyCDmK\n5Na2F5GU1cit5N86869jejd5FUk5ifyUPJtsTS4gx5KU4gpSrgRdTI7Iwh5lS5Y9QVbosa68\naG8e3Eb2IKuT7C9XmDJIexm5lqxHliff7GRxpseQDPCWJhYFFFBAgXoK2B/V87xYKwUUUGDs\nBNIh5Xa6r5MMbM4it5AMmFL2JXeQRfKgU45nmudlIJKBTQYnRXkNM4+TDEYyQDqHXES+TPqV\nXVjxCFms3wad5albeT9L8PhekqtD+cMO95B3kLXIoqT47pK32IFhUUABBWouYH9U8xNk9dor\n4C127T23tmz6ArllLbeiZaCRwc4O5GMkV3Y2IueTx0hRMuhZm2RdBkj5ww5FyboMTDJISXkh\nyXO3J0uSXuW/WZgBzcY9Vq7Bsg06yzdkmv0X5SFmLiTrkLPJ+0n+IMN1JHXamVgUUEABBZoj\nYH/UnHNlTVsk4ACpRSfTpsyawGXs+S6yOcktbFuRctmGB5eTrMtgKAOpomzLTAYuE50FP2Ga\nwVGWfbSzrHuSK1ZXkT26V/A432nKFaCU3IterssiPM6xU9987+l0ku8kPYNk0JXb/zLwsiig\ngAIKNFPA/qiZ581aK6CAAo0WyC0NXyLrdvJMpoeR+0m+z5OrRA+SN5N8wJABSQZG+5KU88jx\nZEWyMjmFnEVScotdBi0pGVRlkLRdHvQouUUux9mP5LtI+Y5Rrgg9QJ5OUt5LriYZuGVw9E5y\nD8nVql1Jrhzl+04pryX57lS2+3eSOmbeooACCihQTwH7o3qeF2ulgAIKjJ1AOqTcJlfkLuZz\nS12+F1SUPZjJVZ7iL8R9uFjBNAOobJ+BSp77A7IiSSkPkPL4E+RSsmQe9Cj7sOxn5D6S2/Iy\n4NmbFCVXg44iD5PUJ1exdiRFyZWmG8gESV1fTlJeSjLg+20eWBRQQAEFailgf1TL02KlFFBA\nAQX6CeRWulypyVWkXiVXbpbptWIay5biOWtWPG8J1q3WZ33quUaPdRlcZb8WBRRQQIFmC9gf\nNfv8WXsFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBA\nAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQ\nQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUU\nUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEF\nFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEAB\nBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUEABBRRQQAEFFFBAAQUUUECB3gL/H+S+UMNx\nWNmbAAAAAElFTkSuQmCC", "text/plain": [ "Plot with title “Bins = 10”" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAANICAYAAAD958/bAAAEDWlDQ1BJQ0MgUHJvZmlsZQAA\nOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9\noU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvu\nuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd\n/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs\n4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTv\nYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7n\nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8\neUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m\n6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiY\nMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpk\nhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thK\nbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpX\nzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJ\nmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477h\nLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549\nHQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQ\nUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgY\nhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjz\nhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VVBg\n/m8AAEAASURBVHgB7N0JuGRlfS9qmkFARDAKggyCgtGAE2JinGg0mvvEAZSImJgcjRmcEmOO\nQwaN1zwmGjWXiybHGOLIOXqiicGIA9FrJKhEMRpnBZFmkllBQFCm+/vTtU6XZQ27u3fVXmvV\n+z3Pr2tNtdb3vWvv+vZXa1X1NtsoBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQIcF1nW47qpOYEsFDskTK8Pl\nh5n5fvLF5LvDKzL9S8kdkk8m30m6Vg5MhY9Mvpp8ZkLlH5XlByQfTC5NFAIECBCYv4D+6MeN\n98nsQ5MLks8mtyQKAQIECCxA4JU5xq0TckOWv2CkDt8abHvUyPIuzO6cSn55UP8TJlT4IVn+\no8E2D5uwjcUECBAgsPoC+qONpjUo+lxSA6Kmf675GjApBBYusP3Cj+iABNojcHGq8q5kXbJd\nUi/QD06OT/41+XpS5SPJXknXrh7dNXV+c3JoMqnUgOjdyQ6TNrCcAAECBOYusMz9Uf0t+o/J\n3smnk48nT08elPyPpItvTqbaSpcFDJC6fPbUfWsFzs8OXjS0k20zXYOgGlgcnjQDpBMzvWNy\ndlJlv6ReyOsWgLod72eTes4ZyUXJcDk4M/dL6kpObV+36d2cTCpPnLQiy+sqTw3WVlIenY3+\nOdk1qdsHq/6j5XVZUO2/Mal37ar9CgECBAgsXmCZ+6N6Y7L61OqLnpBUv/r55H3JkYlCgAAB\nAgsQaG5p+I+RYx2U+RuSurxfA5umjN5iVwOL2uZvk68Mpmv+B0m9uDelrkQN3y5Q23wpqcHS\nuFIDlNpmUi4f96QJy56T5eclT0lqgFf7HL3F7t+y7NTk3slVSW3zsEQhQIAAgcUI6I82Ot8x\nDwcMkdcVpOqTNgwtM0lgYQKuIC2M2oFaKHC/1KkGOFXqFrN73ja1zTbPzePZg+lpD7+Tle9I\n/ix5aXJY8vLkA8kDkt9PapDyvOTapDrCGoDU8/7fZLRUZ/D+0YVD81cPTc+arFsE355cnzw2\nGVd+Lwvr80kKAQIECKytwLL3R/UlSZUqt0/+4LapbbY5efDogcBCBQyQFsrtYC0TqCs5h4zU\nqQYpNbjZLZk1IPlitnlmUs+p29jqhXz/pModNj5ss0cej0jqSs2Tk+uS2nZcqf0cPW7FFiw7\nZwXPMThaAZJNCBAgsACBZe+PGuJdMlFvMj4wuSj5vxOFwMIFfOZg4eQO2CKB+oacGgjtnuyZ\n1Jc0fCP57eQvk1mltq1BTZXvbnz4P7fPfSbzpyX1TtiLk48ldY/5W5J9k3Glfh/ritOkfH7c\nkywjQIAAgc4L6I+22aYGRx9OjkwuSeqztFclCoGFC7iCtHByB2yRQH1ZQnNJv6p1efLW5HXJ\nE5NnJ9PK8JWg+qxRlWbAdGOmfyGpK0JPSh6V7JX8alIDoV9JxpXmCtS4dTXYUggQIECgfwLL\n3h/tlFNag6NHJPVlSTU4+maiEFgTAQOkNWF30JYK1JWkxw3qdvEK6tgMhoY3XTeYOTyPRyU3\nJDUoqlIfOj0pqUFTbTf6/BpkHZBMKtWBKgQIECDQf4Fl64/ekFNag6O6tb0GR99Kmr9Rb8q0\nQmChAs0P30IP6mAEWiJwWOpx6aAudVWnbrerL2uo8tcbH7b437o94PlJdXL3TL6W1FWpKp9M\nRgdHt63IP+c1Ex4JECBAYGkElrk/2jtn+VmDM1398NdHznr9reoNwhEUs/MVMECar6+9t1ug\nBkP12aMq9Q5V3TL3heTNyduSrSkX5snHJS9Mjk3q3uoqJyfPuW3KPwQIECBAYKPAMvdH1UfW\nm5QKAQIECCyRQHV8ByU+Q7REJ11TCRAg0EIB/VELT4oqESBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgMBmC6yb8Yyn\nZP1uM7Y5K+v/fcY2VhMgQIAAga0R0B9tjZ7nEiBAgMCKBbafseX6rH9uck1yRnKfZL/k7OSy\npMqHkjYPkHZK/favik4oO2f5t5Nqo0KAAAEC7RRYn2rpj9p5btSKAAECvRKYdQXppLS2Bg+v\nSm4ctPyYPL48ecBgvu0PVfc/mVHJGuAdMWObPq3eJY05Pdl1zo26IPt/1JyPYfcECCyHgP6o\nn+dZf9TP86pVBDotMGuAdHlad1By9VAr6zl19ei+ySVDy9s6WVfJ9phSub/PunOS35uyTd9W\n3S0Nuih5WXLpnBp3SPZb7/buOKf92y0BAssloD/q5/nWH/XzvGoVgV4L1JWVFybbDlpZg6Nn\nJNVRNcsy2enyvtT+hE63YPMrXx3SrcnBm//UFT/jsdnyhyve2oYECBCYLqA/mu7T1bX6o66e\nOfUm0GOBuroyrbw0K9+f1JWGzyV1W93tk6cmtyQKAQIECBBYhID+aBHKjkGAAAEC28waINUX\nMxyarE/unbw3OSXpwq11qeZt5Y/y758Opsc97JCFnxq3wjICBAgQaI2A/qg1p0JFCBAg0G+B\nWQOkan193ug9HWZ4W+r+hSn1r6tj35yy3ioCBAgQaIeA/qgd50EtCBAg0GuBlQyQ1kfgWUl9\nXfazkycn9cUG9RmWLpS62vWRKRX97ay7fsp6qwgQIECgHQLrUw39UTvOhVoQIECgtwKzvmjh\n6Wn5Pyb1Fd+HJzWgqlvW3pgoBAgQIEBgUQL6o0VJOw4BAgSWXGDWFaS6/ayuGn0iOTOpr4R+\nUPKVpL4Wuwtf1PCM1LPaMKnUN7l9dtJKywkQIECgFQL6o1acBpUgQIBA/wVmDZD2DsG/JcP/\nX9L3M1/P2zOp29faXr6YCv7zlErWu5JXTllvFQECBAisvYD+aO3PgRoQIEBgKQRmDZDqq71f\nlLxhoLFdHp+b3Jx0YXBU1a4vaJj2JQ0/l/UGSCWlECBAoL0C+qP2nhs1I0CAQK8EZg2Qfjet\n/WjyW8ntkwuSOybHJQoBAgQIEFiUgP5oUdKOQ4AAgSUXmDVAqv8D6cikPnd0YFKfQTo1uTDp\nSnlMKvrLUypb//ltFz5LNaUJVhEgQKD3Avqj3p9iDSRAgEA7BGYNkP461fz15N3tqO4W1WLH\nPGvXKc8sg7p1UCFAgACB9groj9p7btSMAAECvRKYNUA6Ma19ZvLt5LykPnvUlJuaiZY/npL6\nVSaV92VF3TqoECBAgEB7BfRH7T03akaAAIFeCcwaID0irX1ocuyYVq8bs8yi1RG4U3az2+rs\nauxe6hsI513ukQPskPxgzgeqWz6fNOdj2D0BAmsvoD9am3OgP1q5u/5o5Va2JNBqgVkDpPoK\n7Nu1ugWzK3efbHLklM0OzLprpqxfi1VfzkH3WcCB75pjnD2n4+w+2O8xc9p/7bYGRofPcf92\nTYBAewT0R2tzLvRHK3PXH63MyVYEOiEwboBUf3DeLfmX5PxOtGJ6JR+Z1c+bssm+WXf5lPVr\nsaq+MfB3kno3ah7lkOz0g8lO89j5yD4/PDK/mrP3zs4MkFZT1L4ItEtAf7T250N/tLJzoD9a\nmZOtCHRCYNwAqQYUD0lqgFTl6ORhyYtrpoPlzalzZVJp62eQatBWn/uaR/mpeezUPgkQILDK\nAvqjVQbdwt3pj7YQztMIEOimwLgB0mhL9sqCnxldOOf5nbP/+tzTA5O9k/pCiHOTs5L6Rr0b\nE4UAAQIElktAf7Rc51trCRAgsCYCKxkgLbpid88BT0++l3wqaT4jU1c9/iB5UVL3+p6TrKTc\nKRtNG+DVfuv/d1ppWZ8Na+A2z1JfTV7HuGxOB7nXYL/1/4pcP6dj1HmsUlcf51Xqs2V1br81\nrwNkv/VFE59NPjrHY+yffV+SXDXHY9Rts19N5vnmwj7Zf72JMa9SX8dfnxm8eF4HyH7rd69u\nPf3OHI9x5+y7fq6umeMxbs2+z0iuneMxlmHX+qONvxP6o9k/7fqj2UbNFvqjRmL6o/5ous/C\n19Yg5D1DR312puvzKosqb82BTppysLdn3eumrB9d9YosqD8WpmVzPuvznzP2Ne04K113i2NM\nPV8rdbTdpp97P1ObLJbl5+K4vI50veiPpp9B/dHKf68X8Rq4LK8tW9vORZyLvhxja63b8vzO\n9UeTriDtl9fkpwxelw/LY93m1swPFm/z3mZilR/vnv1NGwC9O+tfthnHfGW2/fMZ29ctfCst\n9RXZdT/2lSt9Qk+2q6sDdfVhXle12spUt/SsSy5uawXnVK89st969+rCOe2/rbutK8o3J/UO\np9IOAf3R5POgP5ps08c1+qM+ntXJbdIfTbZZkzXPyVHrj+BZmVfl6ha605Jxf6BUZ3BG8lfJ\nWpW6/W9zBmhrVc/VPu7J2eHxq73TDuzvLanjOztQz9Wu4muzw0VeOV7t+m/p/l6aJ/7Hlj7Z\n81ZdQH80nVR/NN2nb2v1R307o9Pboz+a7jPXteOuIL0pR6ysValjH5Ccl2xIrkjqEmGNpA9M\n3p+8PFEIECBAoN8C+qN+n1+tI0CAQCsFxg2Q1rqi16UCz0/+Mjk4qUFRfTi7PjRd/2FdDZwU\nAgQIECAwbwH90byF7Z8AAQItFGjjAKlhuiATFYUAAQIECKylgP5oLfUdmwABAgsW2HbBx3M4\nAgQIECBAgAABAgQItFbAAKm1p0bFCBAgQIAAAQIECBBYtIAB0qLFHY8AAQIECBAgQIAAgdYK\ntPkzSG1Fq/9U9sy2Vm6O9fp49r1s/xdQcZ6eLOPvSX3V9SUFsGSl/uPNnZeszZrbXQH9UXfP\n3ZbUXH+0JWrdfY7+qLvnTs0JECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nDAS2I7FZAnfP1k9L9kjOTW5N+lAekkY8OLnPUM7KdNO+ae2+Q7Y7Ojks+U7yg6TtZadU8LnJ\nZ0Yqui7zD02ekNyQXJYMlz44HJsGXZtcPdSwPp//ndPOOp/1s31ucnPSlGU4301bPfZPYNrr\nUZdb2+fXo3HnRX+kP6qfC/3RuN8Oyzoh8PTU8rrkLUn94fwPSV/KF9OQryc1YGiy46Bx09q9\nV7a5MvlQckZyXrJ/0uZSbwqclIwOfqrO70/OSWp9DZCOS5rSB4dj0phbkvVNowaPfT3/j0z7\nrkj+9yCX5PGIpCl9P99NOz32T2Da61HXW9vX16Nx50V/pD9qfi70R42Ex04J3DG1rYFAXV2o\nUvOXJ/UHWNdLDYR+lNS7kaNlVrv/V55w/OBJ9e5HDSzeOJhv48MhqdSZyYXJ6ACproLVFYYd\nkipHJbXd9knXHXZJG96U1M/s9cn6pCl9Pv8fTCNf0jQ0jy9L/mUw3+fzPdRkkz0UmPV61OUm\n9/n1aPS86I/0R/qj0d8K850T+LnUuG4fGy7vzMxrhhd0dLpujas/nOudrJq+S9KUWe0+Pxs+\nvNk4j49P6gpMW0v9gfyHyaOS0QHS67PshKQp5VG3opVJ1x2q/jWY3Tepqyjrk6b0+fzXz+Od\nm4bm8TeS+pmt0ufzvbGF/u2rwKzXoy63u8+vR6PnRX+kP9Ifjf5WtGi+3h1XZgscmE0uHtms\n/tDce2RZF2cfkErXVZOvJDsnd0temtSVoWntrufskwy7XJr5Npu8KvWr8oiNDz/2b7X1zKEl\nN2f6iqTas2sy3M7M3jbQqHVdcKjbJn+1Kj2m9Pn8nzLU3ttl+nnJewfL+ny+h5ptsocC016X\nu97cPr8ejZ4b/dGoyDbb9Pn8649+8ny3esm2ra5deyp3l1SlPn80XOrLCO4wvKCj03X16MTk\n/kl1vM9K6t31mp/W7jtlff38XJs0pUx2Sto+8F7XVHjocVxb65zXOR63rjn/XXao5i/D+a+f\nyX9IbkpenlQZd06X4XxvbL1/uyww7me3eT3qcruq7svwejR6jvRHm0SW4fzrjzad71ZPGSCt\n7PTUlZHdRzat+eby6MiqTs1+ILV9cVKfQ7o1+Z9J3U74sGRau+szWXWVZdilputKS/0h2rUy\nqa0XpCGT1tX577pD389//Ux+LKmrgI9O6g/JKpPOad/P98bW+7fLApN+dvVH+iP90abf7Db+\nPaI/2nR+Wj9lgLSyU7Qhm9W3s9VtOk05OBMbmpkOP9Y3tT15qP51y1hdNflysiGZ1O4aHNUf\nk+XQlJquLzroYtmQSh80VPHdMr1nUu3ZkPTVoc/nv87fJ5ILk8cl1yZN2ZCJZTzfTfs9dldg\nQ6o+6fWou63aWPM+vx5tzrnZkI2X8fWpz+dff7Q5vwG27ZTAl1LbVyY1gKg/tq5I9ku6Xo5K\nA+rzVHsl2yd1NemipBk8T2v3n2a705L63NKByeeT30zaXh6ZCo5+ScPPZNlVyRFJXQJ/Q3Jq\n0pS+ONS5Xt80Ko99Pv8fTPv+Nbl7Ur+rlX2TKstyvje21r99E5j2etTltvb59WjSedEfbZLp\n8/nXH206z6Z6JvDgtOe8pAZGG5J6p6MPZV0a8dpkQ1K3bnw7+fmkKdPaXbctnZJck5TLm5Pa\nX9vLuA6p6vwHyQ1J3Qf9qeSApCl9cRgdIPX1/B+aE3frmNStpE1ZhvPdtNVjvwSmvR51uaV9\nfT2adk70R5t0+nr+9UebzrGpHgvUN5f1sdQVo7tOadi0dv9UnldXXfpQ6jbK+hD0pNJXh2U9\n/8t6vif9fFveLYFpr0fdasmP13ZZX49+XGHjbf36o1GV6d+W2+W/R/RHP3muLSFAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCwSWDdpklTBAhE4OjkHkMSF2X6c8k5Q8u2\ndPLwPHHf5OQV7mDbbPeg5Ihk5+SU5AvJapRdspPrVmNH9kGAAAECcxHQH82F1U4JECBAYHMF\nPpAnfDN5T/K+5JPJDcmxydaWF2UHNchZSdkuG/1TcmnyjuRvkvOTjyVb+8bGc7OP4xOFAAEC\nBNoroD9q77lRMwIECCyVQHVIrx9p8Usy/7WRZVsyuzkDpL/LAb6R1JWeptwpE5ckz28WbOFj\nDbZO2MLnehoBAgQILEZAf7QYZ0ch8BMCdQuPQoDAdIG6inPT0Cb3z/TfJrW8BjHPTJqyeyb+\nKPlycnHypmTXZLTcOQs+nrxgdEXm6+rRryQ1EBq+De57mX988umkKcdl4kNJrav93Tdpyqsz\nUXW8MvlwcmDy60nt+9eStyUKAQIECHRHQH/UnXOlpgQIEOiNQL1jd3ryx8nLkjcmdWvbkUmV\nPZPLk78YTD8tj1cnT0yq/GPyieR+yWHJGclJSZXmClJdCfp8cnwtHFMekGW3JruNWTe86KmZ\nuSI5JrlrUvurK0w1SPvF5IJk/+SOybsGuV0eT0xqgHf7RCFAgACBdgroj9p5XtSKAAECSydQ\nHVLdTvfOpAY2pyaXJTVgqvKs5LvJdjUzKO/OYz2vBiI1sKnBSVOelIlbkhqM1ADp9ORzyd8n\nk8pjs+LGZIdJGwyWV92G97Nj5q9N6upQfbHDNclzkrsl2yfNZ5fcYhcMhQABAi0X0B+1/ASp\nXn8F3GLX33OrZVsuULes1a1oNdCowc4jklcldWXnHsmnk5uTptSgZ5+k1tUAqb7YoSm1rgYm\nNUip8vCknvuwZKdkXPmvLKwBzUFjVu6VZQcMlh+Yx9p/U36YiTOTfZPTkhcn9YUMFyZVp0cn\nCgECBAh0R0B/1J1zpaY9EjBA6tHJ1JS5CXwze74qOTSpW9gemAyXB2XmrKTW1WCoBlJNOTwT\nNXDZMFjwb3mswVEt+7PBstGHumJ1bnLM6IrM12ea6gpQlboXfbgu22W+jl31rc89nZLUZ5Lu\nldSgq27/q4GXQoAAAQLdFNAfdfO8qTUBAgQ6LVC3NPxdst8gP53HVyc/SOrzPHWV6IbkGUm9\nwVADkhoYPSup8qnk3cnuyZ2Tk5NTkyp1i10NWqrUoKoGSQ+pmTGlbpGr4/xWUp9Fqs8Y1RWh\n65N7JlV+PzkvqYFbDY6el1yT1NWqxyd15ag+71Tll5P67FRt95qk6ljTCgECBAi0U0B/1M7z\nolYECBBYOoHqkOo2uSZXZbpuqavPBTXlmEzUVZ7mG+Je0azIYw2gavsaqNRzP5LsnlQZHiDV\n/GuTbyQ71cyYclyW/XtyXVK35dWA56lJU+pq0BuTHyVVn7qK9cikKXWl6TvJhqTq+ktJlcck\nNeD7Us0oBAgQINBKAf1RK0+LShEgQIDAJIG6la6u1NRVpHGlrtzsMm7FFizbOc/Ze8rzdsy6\nPSesr3ruNWZdDa5qvwoBAgQIdFtAf9Tt86f2BAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIEe\nCqzrYZs0icAsgUOyQWW4/DAz30++mHx3eEWmfym5Q/LJ5DtJ18qBqfCRyVeTz4xUfqfMH5bc\nLam2n50oBAgQILAYAf3ReOdfyeLqn96R3Dx+E0sJECBAYDUFXpmd3TohN2T5C0YO9q3BtkeN\nLO/C7M6p5JcH9T9hpMIPzPwFg3XlcUvy/yQKAQIECCxGQH/0k86/mUVNH119mEJg4QLbL/yI\nDkigPQIXpyrvStYl2yUPTR6cHJ/8a/L1pMpHkr2Srl09umvq/Obk0GRcOSkL900+nHwp+d3k\nhUm9Y1dXkxQCBAgQWIzAsvdHjfIBmfBGXaPhcc0EDJDWjN6BWyBwfurwoqF6bJvpGgTVwOLw\npBkgnZjpHZPm9rP9Mr13Uldf6na8n03qOWckFyXD5eDM3C+pd8Fq+7pNb9rtAk/M+knlR1lR\ng7WVlEdno39Odk3q9sGq/3C5S2bOTWrd0Unt+57JLydPTQyQgqAQIEBgQQLL3B81xPVm5duT\n6rcUAgQIEFiwQHNLw3+MHPegzNctdnVpvwY2TRm9xe51WVHb/G3ylcF0zf8geULSlLoSVbet\n1bomdaVm0i0DNUBrthv3eHnWr7Q8JxuelzwlqQFe7e+EZFI5MCvqHczargZMCgECBAjMX0B/\ntMn49zNZfdBbB481Pam/zCqFAAECBFZToOmQakBTA5zKN5ObBqnBxXCZNECqF++3J8cm/5nU\n/GeTKg9Ian5D8rjkiOQTyY1JdQLjyrosPHlK3jHuSROW1dWgpmOZNUD67Wxbda38UaIQIECA\nwGIE9Ecbne+dh+uTbyR7J02f1PRjWaQQWJyAW+wWZ+1I7ROoF976BqHhUi/KNbjZLbl6eMWY\n6boN7ZlJPaduVavBzf5JlfrWuyp7JEckpyZPTq5LattxpfZz9LgVW7DsnM14TrW1vsjhvknd\n4vfBpK50KQQIECCwGIFl7o/qb9F3Jjskz0hqoKQQWFOBuqVHIbCsAp9Lw2twsHuyZ1Jf0lDv\nXtUVlb9MZpXatgY1VeqzSFWad7s+k+nTktsnL04+ltQ95m9J9k3Glfp9PG9KPj/uSauwrG4Z\nvF/yJ8lDkr9JFAIECBBYnMAy90cvCfODk/cn9QZi9UdNqTcs92hmPBJYlIAB0qKkHaeNAvVl\nCd9P6kpRfb6nvmSh7n2u8sSND1P/Hb4SVJ81qtIMmOpWul9InpK8K7kk2SX51eS1yaRSV6Am\nZb9JT9qC5dsNjjN8Be2UwX4elscaOCoECBAgsBiBZe6P6s3JKnWXRb0RWG8uNuXTmfi1ZsYj\ngUUJuMVuUdKO0wWBupL0uEFF6wsLZpVmMDS83brBzOF5PCq5IalBUZWnJycldRtdbTf6/Bpk\nHZBMKtWBrlZ5ZHb08aRuZaiB15XJo5Mq1yQ1cFQIECBAYG0Elqk/qs/w1pt2Talb7Zr+6KOZ\nPrdZ4ZHAogQMkBYl7ThtFDgslbp0ULG6mlpXTeqFucpfb3zY4n/ritHzk+rk7pl8LWmuSn0y\n06ODoyy6rZzXTMz5serQfO7oq5muL6p41OCYr8/jpPoNNvFAgAABAqsosMz90StGHKvf/N5g\nWb3R6DNJI0Bm5y9ggDR/Y0dor0ANhuqzR1VuSuqWuS8kb07elmxNuTBPPi55YXJsUrfXVTk5\nec5tU2v7z405/BOSE5PHJHdNqhN6dfIXiUKAAAECixNY5v5occqORIAAAQKtEaiO76CkvrCh\njaXerTs48YZJG8+OOhEgQGD1BNreH61eS+2JAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECA\nAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBPossG5G456S9bvN2Oas\nrP/3GdtYTYAAAQIEtkZAf7Q1ep5LgAABAisW2H7Gluuz/rnJNckZyX2S/ZKzk8uSKh9K2jxA\n2in1278qOqHsnOXfTqqNCgECBAi0U2B9qqU/aue5USsCBAj0SmDWFaST0toaPLwquXHQ8mPy\n+PLkAYP5tj9U3f9kRiVrgHfEjG36tHqXNOb0ZNc5N+qC7P9Rcz6G3RMgsBwC+qN+nmf9UT/P\nq1YR6LTArAHS5WndQcnVQ62s59TVo/smlwwtb+tkXSXbY0rl/j7rzkl+b8o2fVt1tzToouRl\nyaVzatwh2W+927vjnPZvtwQILJeA/qif51t/1M/zqlUEei1QV1ZemGw7aGUNjp6RVEfVLMtk\np8v7UvsTOt2Cza98dUi3Jgdv/lNX/IzHZssfrnhrGxIgQGC6gP5ouk9X1+qPunrm1JtAjwXq\n6sq08tKsfH9SVxo+l9RtdbdPnprckigECBAgQGARAvqjRSg7BgECBAhsM2uAVF/McGiyPrl3\n8t7klKQLt9almreVP8q/fzqYHvewQxZ+atwKywgQIECgNQL6o9acChUhQIBAvwVmDZCq9fV5\no/d0mOFtqfsXptS/ro59c8p6qwgQIECgHQL6o3acB7UgQIBArwVWMkBaH4FnJfV12c9OnpzU\nFxvUZ1i6UOpq10emVPS3s+76KeutIkCAAIF2CKxPNfRH7TgXakGAAIHeCsz6ooWnp+X/mNRX\nfB+e1ICqbll7Y6IQIECAAIFFCeiPFiXtOAQIEFhygVlXkOr2s7pq9InkzKS+EvpByVeS+lrs\nLnxRwzNSz2rDpFLf5PbZSSstJ0CAAIFWCOiPWnEaVIIAAQL9F5g1QNo7BP+WDP9/Sd/PfD1v\nz6RuX2t7+WIq+M9TKlnvSl45Zb1VBAgQILD2AvqjtT8HakCAAIGlEJg1QKqv9n5R8oaBxnZ5\nfG5yc9KFwVFVu76gYdqXNPxc1hsglZRCgACB9groj9p7btSMAAECvRKYNUD63bT2o8lvJbdP\nLkjumByXKAQIECBAYFEC+qNFSTsOAQIEllxg1gCp/g+kI5P63NGBSX0G6dTkwqQr5TGp6C9P\nqWz957dd+CzVlCZYRYAAgd4L6I96f4o1kAABAu0QmDVA+utU89eTd7ejultUix3zrF2nPLMM\n6tZBhQABAgTaK6A/au+5UTMCBAj0SmDWAOnEtPaZybeT85L67FFTbmomWv54SupXmVTelxV1\n66BCgAABAu0V0B+199yoGQECBHolMGuA9Ii09qHJsWNavW7MMotWR+BO2c1uq7OrsXupbyCc\nd7lHDrBD8oM5H6hu+XzSnI9h9wQIrL2A/mhtzoH+aOXu+qOVW9mSQKsFZg2Q6iuwb9fqFsyu\n3H2yyZFTNjsw666Zsn4tVn05B91nAQe+a45x9pyOs/tgv8fMaf+12xoYHT7H/ds1AQLtEdAf\nrc250B+tzF1/tDInWxHohMC4AVL9wXm35F+S8zvRiumVfGRWP2/KJvtm3eVT1q/FqvrGwN9J\n6t2oeZRDstMPJjvNY+cj+/zwyPxqzt47OzNAWk1R+yLQLgH90dqfD/3Rys6B/mhlTrYi0AmB\ncQOkGlA8JKkBUpWjk4clL66ZDpY3p86VSaWtn0GqQVt97mse5afmsVP7JECAwCoL6I9WGXQL\nd6c/2kI4TyNAoJsC4wZIoy3ZKwt+ZnThnOd3zv7rc08PTPZO6gshzk3OSuob9W5MFAIECBBY\nLgH90XKdb60lQIDAmgisZIC06IrdPQc8Pfle8qmk+YxMXfX4g+RFSd3re06yknKnbDRtgFf7\nrf/faaVlfTasgds8S301eR3jsjkd5F6D/db/K3L9nI5R57FKXX2cV6nPltW5/da8DpD91hdN\nfDb56ByPsX/2fUly1RyPUbfNfjWZ55sL+2T/9SbGvEp9HX99ZvDieR0g+63fvbr19DtzPMad\ns+/6ubpmjse4Nfs+I7l2jsdYhl3rjzb+TuiPZv+0649mGzVb6I8aiemP+qPpPgtfW4OQ9wwd\n9dmZrs+rLKq8NQc6acrB3p51r5uyfnTVK7Kg/liYls35rM9/ztjXtOOsdN0tjjH1fK3U0Xab\nfu79TG2yWJafi+PyOtL1oj+afgb1Ryv/vV7Ea+CyvLZsbTsXcS76coyttW7L8zvXH026grRf\nXpOfMnhdPiyPdZtbMz9YvM17m4lVfrx79jdtAPTurH/ZZhzzldn2z2dsX7fwrbTUV2TX/dhX\nrvQJPdmurg7U1Yd5XdVqK1Pd0rMuubitFZxTvfbIfuvdqwvntP+27rauKN+c1DucSjsE9EeT\nz4P+aLJNH9foj/p4Vie3SX802WZN1jwnR60/gmdlXpWrW+hOS8b9gVKdwRnJXyVrVer2v80Z\noK1VPVf7uCdnh8ev9k47sL+3pI7v7EA9V7uKr80OF3nleLXrv6X7e2me+B9b+mTPW3UB/dF0\nUv3RdJ++rdUf9e2MTm+P/mi6z1zXjruC9KYcsbJWpY59QHJesiG5IqlLhDWSPjB5f/LyRCFA\ngACBfgvoj/p9frWOAAECrRQYN0Ba64pelwo8P/nL5OCkBkX14ez60HT9h3U1cFIIECBAgMC8\nBfRH8xa2fwIECLRQoI0DpIbpgkxUFAIECBAgsJYC+qO11HdsAgQILFhg2wUfz+EIECBAgAAB\nAgQIECDQWgEDpNaeGhUjQIAAAQIECBAgQGDRAgZIixZ3PAIECBAgQIAAAQIEWivQ5s8gtRWt\n/lPZM9tauTnW6+PZ97L9X0DFeXqyjL8n9VXXlxTAkpX6jzd3XrI2a253BfRH3T13W1Jz/dGW\nqHX3Ofqj7p47NSdAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAwENiOxGYJ\n3D1bPy3ZIzk3uTXpQ3lIGvHg5D5DOSvTTfumtfsO2e7o5LDkO8kPkraXnVLB5yafGanousw/\nNHlCckNyWTJc+uBwbBp0bXL1UMP6fP53TjvrfNbP9rnJzUlTluF8N2312D+Baa9HXW5tn1+P\nxp0X/ZH+qH4u9Efjfjss64TA01PL65K3JPWH8z8kfSlfTEO+ntSAocmOg8ZNa/de2ebK5EPJ\nGcl5yf5Jm0u9KXBSMjr4qTq/PzknqfU1QDouaUofHI5JY25J1jeNGjz29fw/Mu27Ivnfg1yS\nxyOSpvT9fDft9Ng/gWmvR11vbV9fj8adF/2R/qj5udAfNRIeOyVwx9S2BgJ1daFKzV+e1B9g\nXS81EPpRUu9GjpZZ7f5fecLxgyfVux81sHjjYL6ND4ekUmcmFyajA6S6ClZXGHZIqhyV1Hbb\nJ1132CVteFNSP7PXJ+uTpvT5/H8wjXxJ09A8viz5l8F8n8/3UJNN9lBg1utRl5vc59ej0fOi\nP9If6Y9GfyvMd07g51Ljun1suLwzM68ZXtDR6bo1rv5wrneyavouSVNmtfv8bPjwZuM8Pj6p\nKzBtLfUH8h8mj0pGB0ivz7ITkqaUR92KViZdd6j612B236SuoqxPmtLn818/j3duGprH30jq\nZ7ZKn8/3xhb6t68Cs16PutzuPr8ejZ4X/ZH+SH80+lvRovl6d1yZLXBgNrl4ZLP6Q3PvkWVd\nnH1AKl1XTb6S7JzcLXlpUleGprW7nrNPMuxyaebbbPKq1K/KIzY+/Ni/1dYzh5bcnOkrkmrP\nrslwOzN720Cj1nXBoW6b/NWq9JjS5/N/ylB7b5fp5yXvHSzr8/kearbJHgpMe13uenP7/Ho0\nem70R6Mi22zT5/OvP/rJ893qJdu2unbtqdxdUpX6/NFwqS8juMPwgo5O19WjE5P7J9XxPiup\nd9drflq775T19fNzbdKUMtkpafvAe11T4aHHcW2tc17neNy65vx32aGavwznv34m/yG5KXl5\nUmXcOV2G872x9f7tssC4n93m9ajL7aq6L8Pr0eg50h9tElmG868/2nS+Wz1lgLSy01NXRnYf\n2bTmm8ujI6s6NfuB1PbFSX0O6dbkfyZ1O+HDkmntrs9k1VWWYZearist9Ydo18qktl6Qhkxa\nV+e/6w59P//1M/mxpK4CPjqpPySrTDqnfT/fG1vv3y4LTPrZ1R/pj/RHm36z2/j3iP5o0/lp\n/ZQB0spO0YZsVt/OVrfpNOXgTGxoZjr8WN/U9uSh+tctY3XV5MvJhmRSu2twVH9MlkNTarq+\n6KCLZUMqfdBQxXfL9J5JtWdD0leHPp//On+fSC5MHpdcmzRlQyaW8Xw37ffYXYENqfqk16Pu\ntmpjzfv8erQ552ZDNl7G16c+n3/90eb8Bti2UwJfSm1fmdQAov7YuiLZL+l6OSoNqM9T7ZVs\nn9TVpIuSZvA8rd1/mu1OS+pzSwcmn09+M2l7eWQqOPolDT+TZVclRyR1CfwNyalJU/riUOd6\nfdOoPPb5/H8w7fvX5O5J/a5W9k2qLMv53tha//ZNYNrrUZfb2ufXo0nnRX+0SabP519/tOk8\nm+qZwIPTnvOSGhhtSOqdjj6UdWnEa5MNSd268e3k55OmTGt33bZ0SnJNUi5vTmp/bS/jOqSq\n8x8kNyR1H/SnkgOSpvTFYXSA1Nfzf2hO3K1jUreSNmUZznfTVo/9Epj2etTllvb19WjaOdEf\nbdLp6/nXH206x6Z6LFDfXNbHUleM7jqlYdPa/VN5Xl116UOp2yjrQ9CTSl8dlvX8L+v5nvTz\nbXm3BKa9HnWrJT9e22V9PfpxhY239euPRlWmf1tul/8e0R/95Lm2hAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQI\nECBAgAABAgQIECBAgAABAgQIECBAgMAmgXWbJk0RIBCBo5N7DElclOnPJecMLdvSycPzxH2T\nk1e4g22z3YOSI5Kdk1OSLySrUXbJTq5bjR3ZBwECBAjMRUB/NBdWOyVAgACBzRX4QJ7wzeQ9\nyfuSTyY3JMcmW1telB3UIGclZbts9E/Jpck7kr9Jzk8+lmztGxvPzT6OTxQCBAgQaK+A/qi9\n50bNCBAgsFQC1SG9fqTFL8n810aWbcns5gyQ/i4H+EZSV3qacqdMXJI8v1mwhY812DphC5/r\naQQIECCwGAH90WKcHYXATwjULTwKAQLTBeoqzk1Dm9w/03+b1PIaxDwzacrumfij5MvJxcmb\nkl2T0XLnLPh48oLRFZmvq0e/ktRAaPg2uO9l/vHJp5OmHJeJDyW1rvZ336Qpr85E1fHK5MPJ\ngcmvJ7XvX0veligECBAg0B0B/VF3zpWaEiBAoDcC9Y7d6ckfJy9L3pjUrW1HJlX2TC5P/mIw\n/bQ8Xp08Manyj8knkvslhyVnJCclVZorSHUl6PPJ8bVwTHlAlt2a7DZm3fCip2bmiuSY5K5J\n7a+uMNUg7ReTC5L9kzsm7xrkdnk8MakB3u0ThQABAgTaKaA/aud5USsCBAgsnUB1SHU73TuT\nGticmlyW1ICpyrOS7ybb1cygvDuP9bwaiNTApgYnTXlSJm5JajBSA6TTk88lf59MKo/NihuT\nHSZtMFhedRvez46Zvzapq0P1xQ7XJM9J7pZsnzSfXXKLXTAUAgQItFxAf9TyE6R6/RVwi11/\nz62WbblA3bJWt6LVQKMGO49IXpXUlZ17JJ9Obk6aUoOefZJaVwOk+mKHptS6GpjUIKXKw5N6\n7sOSnZJx5b+ysAY0B41ZuVeWHTBYfmAea/9N+WEmzkz2TU5LXpzUFzJcmFSdHp0oBAgQINAd\nAf1Rd86VmvZIwACpRydTU+Ym8M3s+ark0KRuYXtgMlwelJmzklpXg6EaSDXl8EzUwGXDYMG/\n5bEGR7XszwbLRh/qitW5yTGjKzJfn2mqK0BV6l704bpsl/k6dtW3Pvd0SlKfSbpXUoOuuv2v\nBl4KAQIECHRTQH/UzfOm1gQIEOi0QN3S8HfJfoP8dB5fnfwgqc/z1FWiG5JnJPUGQw1IamD0\nrKTKp5J3J7snd05OTk5NqtQtdjVoqVKDqhokPaRmxpS6Ra6O81tJfRapPmNUV4SuT+6ZVPn9\n5LykBm41OHpeck1SV6sen9SVo/q8U5VfTuqzU7Xda5KqY00rBAgQINBOAf1RO8+LWhEgQGDp\nBKpDqtvkmlyV6bqlrj4X1JRjMlFXeZpviHtFsyKPNYCq7WugUs/9SLJ7UmV4gFTzr02+kexU\nM2PKcVn278l1Sd2WVwOepyZNqatBb0x+lFR96irWI5Om1JWm7yQbkqrrLyVVHpPUgO9LNaMQ\nIECAQCsF9EetPC0qRYAAAQKTBOpWurpSU1eRxpW6crPLuBVbsGznPGfvKc/bMev2nLC+6rnX\nmHU1uKr9KgQIECDQbQH9UbfPn9oTIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBHoosK6HbdIk\nArMEDskGleHyw8x8P/li8t3hFZn+peQOySeT7yRdKwemwkcmX00+M1L5QzO/3ciy6zN/1sgy\nswQIECCw+gL6ox833TezD0q+kXzzx1eZI0CAAIF5CrwyO791Qm7I8heMHPxbg22PGlnehdmd\nU8kvD+p/wkiFd838LYN1wx61vUKAAAEC8xfQH200rjfqXpMM90n/lfk9N672L4HFCmy/2MM5\nGoFWCVyc2rwrWZfUi/NDkwcnxyf/mnw9qfKRZK+ka1eP7po6vzmpq0Tjyv2zsNr+g+TCoQ3O\nG5o2SYAAAQLzF1j2/uh3QvzS5Jqk+q2HJw9Jatl/TxQCCxUwQFoot4O1TOD81OdFQ3XaNtM1\nCKqBxeHJ15MqJyY7JmfXTMp+yd7JBUndjvezST3njOSiZLgcnJn7JXUlp7av2/RuTiaVJ05a\nkeU/SmqwtpLy6Gz0z0ldJfphUvUfLQ8cLHh3Hn9zdKV5AgQIEFiYwDL3R9X3vmQg/cw8/lNy\nz+QPk0sThQABAgQWIPDKHKNuKfuPkWMdlPkbButqYNOU0VvsXpcV9fy/Tb4ymK75uhLzhKQp\ndSVq+HaB2uZLSQ2WxpXqJGqbSbl83JMmLHtOlteVoKckNcCrfY7eYveWwfK35fFPk+qghtud\nWYUAAQIE5iigP9r4pmPT79Wbj7+QHJHsNEd3uyZAgACBEYGmQ6oBTQ1wKt9MbhqkBhfDZdIA\nqV7Q354cm/xnUvOfTao8IKn5Dcnjknqx/0RyY/L7ybiyLgtPnpJ3jHvShGX17lszEJs0QGrq\nXPVscl2mHz9hnxYTIECAwOoK6I823kpXfVDdJVFflNT0R9/I9L0ShcDCBbZf+BEdkEB7BGoA\nUd8gNFzqhbkGN7slVw+vGDNdL+TPTOo5dRtbDW72T6rUt95V2SM5Ijk1eXJSA5Dadlyp/Rw9\nbsUWLDtnBc+5Pttckrw6+UJS93kflfx9co+kBpAKAQIECMxfYJn7o7sMeHfIY/WDv5Y8Lalv\nkH17Up8PVggsVMAAaaHcDtYygc+lPvVZnbpyc7ukbrGr285+O6kX6Wcn00q9u1XbVWm+Gry5\navOZLDstOSJ58SA1OKpB1B8mFyajpW6xO3d04dD8lZk+bGh+aycfPrKDCzJfA6T6PNV9k2qD\nQoAAAQLzF1jm/uiKId5XZPr9SfWf5yc/n+yTXJQoBBYmYIC0MGoHaqHAzalT/d9HTanP+Lw1\neV1SX5Ywa4A0fCWoPmtUpRkw1a10v5DUFaEnJY9K9kp+NamB0K8k40pzBWrcutuPW7gVy7bL\nc++cXDbYx3fyWG2qL3SoK2gKAQIECCxGYJn7o+HBz8UD7noTsb7Rbtek+s7hbTKrEJivgAHS\nfH3tvVsCu6e69XmhKs2L9Ma58f82g6HhtXU1qsrhSV0BDvdZAABAAElEQVSNuSGpQVGVpycn\nJTVoqu1Gn1+DrAOSSaU60NUqe2ZH305q0HX/5MvJEUkNjuo49bkshQABAgTWRmCZ+qMa/Jyd\nHJzUG4qfTeouhhocVanPASsEFipggLRQbgdrmUDdrnbpoE51VaeumuwwmP/rweOWPtRne56f\nVCd3z+RrSfMV3p/M9OjgKItuK+c1E3N+rKtGf5e8MPn/ko8nT0iq1PK6mqQQIECAwGIElrk/\nqjcHX528Nalb0B+WHJpUeUdy9W1T/iGwQAEDpAViO1TrBGowVFdSqtyU1O1lX0jenLwt2Zpy\nYZ58XFIDkGOTXZIqJyfPuW1q7f/581ShBm81cHtqUp+R+qvkJYlCgAABAosTWPb+qPrcumL0\nquQRSQ2a3pn8XqIQIECAQA8FquM7KKnb2dpYqlM6OKnPJCkECBAg0F+BtvdHdTdHvXHX1v6y\nvz8ZWkaAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAEC\nBAgQIECAAAECBAgQIECAAIFuCaybUd2nZP1uM7Y5K+v/fcY2VhMgQIAAga0R0B9tjZ7nEiBA\ngMCKBbafseX6rH9uck1yRnKfZL/k7OSypMqHkjYPkHZK/favik4oO2f5t5Nqo0KAAAEC7RRY\nn2rpj9p5btSKAAECvRKYdQXppLS2Bg+vSm4ctPyYPL48ecBgvu0PVfc/mVHJGuAdMWObPq3e\nJY05Pdl1zo26IPt/1JyPYfcECCyHgP6on+dZf9TP86pVBDotMGuAdHlad1By9VAr6zl19ei+\nySVDy9s6WVfJ9phSub/PunOS35uyTd9W3S0Nuih5WXLpnBp3SPZb7/buOKf92y0BAssloD/q\n5/nWH/XzvGoVgV4L1JWVFybbDlpZg6NnJNVRNcsy2enyvtT+hE63YPMrXx3SrcnBm//UFT/j\nsdnyhyve2oYECBCYLqA/mu7T1bX6o66eOfUm0GOBuroyrbw0K9+f1JWGzyV1W93tk6cmtyQK\nAQIECBBYhID+aBHKjkGAAAEC28waINUXMxyarE/unbw3OSXpwq11qeZt5Y/y758Opsc97JCF\nnxq3wjICBAgQaI2A/qg1p0JFCBAg0G+BWQOkan193ug9HWZ4W+r+hSn1r6tj35yy3ioCBAgQ\naIeA/qgd50EtCBAg0GuBlQyQ1kfgWUl9Xfazkycn9cUG9RmWLpS62vWRKRX97ay7fsp6qwgQ\nIECgHQLrUw39UTvOhVoQIECgtwKzvmjh6Wn5Pyb1Fd+HJzWgqlvW3pgoBAgQIEBgUQL6o0VJ\nOw4BAgSWXGDWFaS6/ayuGn0iOTOpr4R+UPKVpL4Wuwtf1PCM1LPaMKnUN7l9dtJKywkQIECg\nFQL6o1acBpUgQIBA/wVmDZD2DsG/JcP/X9L3M1/P2zOp29faXr6YCv7zlErWu5JXTllvFQEC\nBAisvYD+aO3PgRoQIEBgKQRmDZDqq71flLxhoLFdHp+b3Jx0YXBU1a4vaJj2JQ0/l/UGSCWl\nECBAoL0C+qP2nhs1I0CAQK8EZg2Qfjet/WjyW8ntkwuSOybHJQoBAgQIEFiUgP5oUdKOQ4AA\ngSUXmDVAqv8D6cikPnd0YFKfQTo1uTDpSnlMKvrLUypb//ltFz5LNaUJVhEgQKD3Avqj3p9i\nDSRAgEA7BGYNkP461fz15N3tqO4W1WLHPGvXKc8sg7p1UCFAgACB9groj9p7btSMAAECvRKY\nNUA6Ma19ZvLt5LykPnvUlJuaiZY/npL6VSaV92VF3TqoECBAgEB7BfRH7T03akaAAIFeCcwa\nID0irX1ocuyYVq8bs8yi1RG4U3az2+rsauxe6hsI513ukQPskPxgzgeqWz6fNOdj2D0BAmsv\noD9am3OgP1q5u/5o5Va2JNBqgVkDpPoK7Nu1ugWzK3efbHLklM0OzLprpqxfi1VfzkH3WcCB\n75pjnD2n4+w+2O8xc9p/7bYGRofPcf92TYBAewT0R2tzLvRHK3PXH63MyVYEOiEwboBUf3De\nLfmX5PxOtGJ6JR+Z1c+bssm+WXf5lPVrsaq+MfB3kno3ah7lkOz0g8lO89j5yD4/PDK/mrP3\nzs4MkFZT1L4ItEtAf7T250N/tLJzoD9amZOtCHRCYNwAqQYUD0lqgFTl6ORhyYtrpoPlzalz\nZVJp62eQatBWn/uaR/mpeezUPgkQILDKAvqjVQbdwt3pj7YQztMIEOimwLgB0mhL9sqCnxld\nOOf5nbP/+tzTA5O9k/pCiHOTs5L6Rr0bE4UAAQIElktAf7Rc51trCRAgsCYCKxkgLbpid88B\nT0++l3wqaT4jU1c9/iB5UVL3+p6TrKTcKRtNG+DVfuv/d1ppWZ8Na+A2z1JfTV7HuGxOB7nX\nYL/1/4pcP6dj1HmsUlcf51Xqs2V1br81rwNkv/VFE59NPjrHY+yffV+SXDXHY9Rts19N5vnm\nwj7Zf72JMa9SX8dfnxm8eF4HyH7rd69uPf3OHI9x5+y7fq6umeMxbs2+z0iuneMxlmHX+qON\nvxP6o9k/7fqj2UbNFvqjRmL6o/5ous/C19Yg5D1DR312puvzKosqb82BTppysLdn3eumrB9d\n9YosqD8WpmVzPuvznzP2Ne04K113i2NMPV8rdbTdpp97P1ObLJbl5+K4vI50veiPpp9B/dHK\nf68X8Rq4LK8tW9vORZyLvhxja63b8vzO9UeTriDtl9fkpwxelw/LY93m1swPFm/z3mZilR/v\nnv1NGwC9O+tfthnHfGW2/fMZ29ctfCst9RXZdT/2lSt9Qk+2q6sDdfVhXle12spUt/SsSy5u\nawXnVK89st969+rCOe2/rbutK8o3J/UOp9IOAf3R5POgP5ps08c1+qM+ntXJbdIfTbZZkzXP\nyVHrj+BZmVfl6ha605Jxf6BUZ3BG8lfJWpW6/W9zBmhrVc/VPu7J2eHxq73TDuzvLanjOztQ\nz9Wu4muzw0VeOV7t+m/p/l6aJ/7Hlj7Z81ZdQH80nVR/NN2nb2v1R307o9Pboz+a7jPXteOu\nIL0pR6ysValjH5Ccl2xIrkjqEmGNpA9M3p+8PFEIECBAoN8C+qN+n1+tI0CAQCsFxg2Q1rqi\n16UCz0/+Mjk4qUFRfTi7PjRd/2FdDZwUAgQIECAwbwH90byF7Z8AAQItFGjjAKlhuiATFYUA\nAQIECKylgP5oLfUdmwABAgsW2HbBx3M4AgQIECBAgAABAgQItFbAAKm1p0bFCBAgQIAAAQIE\nCBBYtIAB0qLFHY8AAQIECBAgQIAAgdYKtPkzSG1Fq/9U9sy2Vm6O9fp49r1s/xdQcZ6eLOPv\nSX3V9SUFsGSl/uPNnZeszZrbXQH9UXfP3ZbUXH+0JWrdfY7+qLvnTs0JECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIDAS2I7FZAnfP1k9L9kjOTW5N+lAekkY8OLnPUM7K\ndNO+ae2+Q7Y7Ojks+U7yg6TtZadU8LnJZ0Yqui7zD02ekNyQXJYMlz44HJsGXZtcPdSwPp//\nndPOOp/1s31ucnPSlGU4301bPfZPYNrrUZdb2+fXo3HnRX+kP6qfC/3RuN8Oyzoh8PTU8rrk\nLUn94fwPSV/KF9OQryc1YGiy46Bx09q9V7a5MvlQckZyXrJ/0uZSbwqclIwOfqrO70/OSWp9\nDZCOS5rSB4dj0phbkvVNowaPfT3/j0z7rkj+9yCX5PGIpCl9P99NOz32T2Da61HXW9vX16Nx\n50V/pD9qfi70R42Ex04J3DG1rYFAXV2oUvOXJ/UHWNdLDYR+lNS7kaNlVrv/V55w/OBJ9e5H\nDSzeOJhv48MhqdSZyYXJ6ACproLVFYYdkipHJbXd9knXHXZJG96U1M/s9cn6pCl9Pv8fTCNf\n0jQ0jy9L/mUw3+fzPdRkkz0UmPV61OUm9/n1aPS86I/0R/qj0d8K850T+LnUuG4fGy7vzMxr\nhhd0dLpujas/nOudrJq+S9KUWe0+Pxs+vNk4j49P6gpMW0v9gfyHyaOS0QHS67PshKQp5VG3\nopVJ1x2q/jWY3Tepqyjrk6b0+fzXz+Odm4bm8TeS+pmt0ufzvbGF/u2rwKzXoy63u8+vR6Pn\nRX+kP9Ifjf5WtGi+3h1XZgscmE0uHtms/tDce2RZF2cfkErXVZOvJDsnd0temtSVoWntrufs\nkwy7XJr5Npu8KvWr8oiNDz/2b7X1zKElN2f6iqTas2sy3M7M3jbQqHVdcKjbJn+1Kj2m9Pn8\nnzLU3ttl+nnJewfL+ny+h5ptsocC016Xu97cPr8ejZ4b/dGoyDbb9Pn8649+8ny3esm2ra5d\neyp3l1SlPn80XOrLCO4wvKCj03X16MTk/kl1vM9K6t31mp/W7jtlff38XJs0pUx2Sto+8F7X\nVHjocVxb65zXOR63rjn/XXao5i/D+a+fyX9IbkpenlQZd06X4XxvbL1/uyww7me3eT3qcruq\n7svwejR6jvRHm0SW4fzrjzad71ZPGSCt7PTUlZHdRzat+eby6MiqTs1+ILV9cVKfQ7o1+Z9J\n3U74sGRau+szWXWVZdilputKS/0h2rUyqa0XpCGT1tX577pD389//Ux+LKmrgI9O6g/JKpPO\nad/P98bW+7fLApN+dvVH+iP90abf7Db+PaI/2nR+Wj9lgLSyU7Qhm9W3s9VtOk05OBMbmpkO\nP9Y3tT15qP51y1hdNflysiGZ1O4aHNUfk+XQlJquLzroYtmQSh80VPHdMr1nUu3ZkPTVoc/n\nv87fJ5ILk8cl1yZN2ZCJZTzfTfs9dldgQ6o+6fWou63aWPM+vx5tzrnZkI2X8fWpz+dff7Q5\nvwG27ZTAl1LbVyY1gKg/tq5I9ku6Xo5KA+rzVHsl2yd1NemipBk8T2v3n2a705L63NKByeeT\n30zaXh6ZCo5+ScPPZNlVyRFJXQJ/Q3Jq0pS+ONS5Xt80Ko99Pv8fTPv+Nbl7Ur+rlX2TKsty\nvje21r99E5j2etTltvb59WjSedEfbZLp8/nXH206z6Z6JvDgtOe8pAZGG5J6p6MPZV0a8dpk\nQ1K3bnw7+fmkKdPaXbctnZJck5TLm5PaX9vLuA6p6vwHyQ1J3Qf9qeSApCl9cRgdIPX1/B+a\nE3frmNStpE1ZhvPdtNVjvwSmvR51uaV9fT2adk70R5t0+nr+9UebzrGpHgvUN5f1sdQVo7tO\nadi0dv9UnldXXfpQ6jbK+hD0pNJXh2U9/8t6vif9fFveLYFpr0fdasmP13ZZX49+XGHjbf36\no1GV6d+W2+W/R/RHP3muLSFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBA\ngAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCw\nSWDdpklTBAhE4OjkHkMSF2X6c8k5Q8u2dPLwPHHf5OQV7mDbbPeg5Ihk5+SU5AvJapRdspPr\nVmNH9kGAAAECcxHQH82F1U4JECBAYHMFPpAnfDN5T/K+5JPJDcmxydaWF2UHNchZSdkuG/1T\ncmnyjuRvkvOTjyVb+8bGc7OP4xOFAAECBNoroD9q77lRMwIECCyVQHVIrx9p8Usy/7WRZVsy\nuzkDpL/LAb6R1JWeptwpE5ckz28WbOFjDbZO2MLnehoBAgQILEZAf7QYZ0ch8BMCdQuPQoDA\ndIG6inPT0Cb3z/TfJrW8BjHPTJqyeyb+KPlycnHypmTXZLTcOQs+nrxgdEXm6+rRryQ1EBq+\nDe57mX988umkKcdl4kNJrav93TdpyqszUXW8MvlwcmDy60nt+9eStyUKAQIECHRHQH/UnXOl\npgQIEOiNQL1jd3ryx8nLkjcmdWvbkUmVPZPLk78YTD8tj1cnT0yq/GPyieR+yWHJGclJSZXm\nClJdCfp8cnwtHFMekGW3JruNWTe86KmZuSI5JrlrUvurK0w1SPvF5IJk/+SOybsGuV0eT0xq\ngHf7RCFAgACBdgroj9p5XtSKAAECSydQHVLdTvfOpAY2pyaXJTVgqvKs5LvJdjUzKO/OYz2v\nBiI1sKnBSVOelIlbkhqM1ADp9ORzyd8nk8pjs+LGZIdJGwyWV92G97Nj5q9N6upQfbHDNclz\nkrsl2yfNZ5fcYhcMhQABAi0X0B+1/ASpXn8F3GLX33OrZVsuULes1a1oNdCowc4jklcldWXn\nHsmnk5uTptSgZ5+k1tUAqb7YoSm1rgYmNUip8vCknvuwZKdkXPmvLKwBzUFjVu6VZQcMlh+Y\nx9p/U36YiTOTfZPTkhcn9YUMFyZVp0cnCgECBAh0R0B/1J1zpaY9EjBA6tHJ1JS5CXwze74q\nOTSpW9gemAyXB2XmrKTW1WCoBlJNOTwTNXDZMFjwb3mswVEt+7PBstGHumJ1bnLM6IrM12ea\n6gpQlboXfbgu22W+jl31rc89nZLUZ5LuldSgq27/q4GXQoAAAQLdFNAfdfO8qTUBAgQ6LVC3\nNPxdst8gP53HVyc/SOrzPHWV6IbkGUm9wVADkhoYPSup8qnk3cnuyZ2Tk5NTkyp1i10NWqrU\noKoGSQ+pmTGlbpGr4/xWUp9Fqs8Y1RWh65N7JlV+PzkvqYFbDY6el1yT1NWqxyd15ag+71Tl\nl5P67FRt95qk6ljTCgECBAi0U0B/1M7zolYECBBYOoHqkOo2uSZXZbpuqavPBTXlmEzUVZ7m\nG+Je0azIYw2gavsaqNRzP5LsnlQZHiDV/GuTbyQ71cyYclyW/XtyXVK35dWA56lJU+pq0BuT\nHyVVn7qK9cikKXWl6TvJhqTq+ktJlcckNeD7Us0oBAgQINBKAf1RK0+LShEgQIDAJIG6la6u\n1NRVpHGlrtzsMm7FFizbOc/Ze8rzdsy6PSesr3ruNWZdDa5qvwoBAgQIdFtAf9Tt86f2BAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQ\nIECAAAECBAgQIECAAAECBAgQIECAAIEeCqzrYZs0icAsgUOyQWW4/DAz30++mHx3eEWmfym5\nQ/LJ5DtJ18qBqfCRyVeTzwwqv1seDxhMj3uobW8at8IyAgQIEFg1Af3RJsrqZx+S3CX5VvK5\nRCFAgACBBQm8Mse5dUJuyPIXjNSjXqhr+6NGlndhdudU8stJ1f+EoQofM1g2yWGfoW1NEiBA\ngMB8BPRHG11/Pg8XJ8N90sczf/uNq/1LYLEC2y/2cI5GoFUC9WL8rmRdsl3y0OTByfHJvyZf\nT6p8JNkr6drVo7umzm9ODk1GS10t+9rIwp/KfLXzyuTqkXVmCRAgQGB+AsvcH5XqW5Lqf04d\n5HfzeGTy4qQGkQqBhQoYIC2U28FaJnB+6vOioTptm+kaBNXA4vCkGSCdmOkdk7OTKvsleycX\nJHU73s8m9ZwzkouS4XJwZu6X1JWc2r5u07s5mVSeOGlFlv8oqcHaSsqjs9E/J7smP0yq/sPl\no5kZvc3wtCyrDupZybWJQoAAAQKLEVjm/miHEP/0gPkZebwkuSH5H8l9E4UAAQIEFiBQ70bV\nZfz/GDnWQZmvF+VaVwObpozeYve6rKht/jb5ymC65n+QPCFpSl2JuiWpdU2+lOkaLI0rNUBr\nthv3ePm4J01Y9pwsPy95SlIDvNrf8C12mf2x8qTM1TbVISkECBAgsBgB/dFG5/q8UfVB/y3Z\nJXnPYP6/51EhQIAAgQUINB1SDWhqgFP5ZlJfSlCpwcVwmTRAqhfztyfHJv+Z1PxnkyoPSGp+\nQ/K45IjkE8mNye8n48q6LDx5St4x7kkTlt0zy5uB2KwBUr17d3ZSHrsnCgECBAgsRkB/tNH5\nwDw0bzhWP1z9Z/V5t0sUAgsXcIvdwskdsEUCNYA4ZKQ+9aJcg5vdklmfw/litnlmUs+p29hq\ncLN/UqW+jafKHkkNjk5Nnpxcl9S240rt5+hxK7Zg2Tmb8ZznZdu6elad0VWb8TybEiBAgMDq\nCCx7f1R3bewzoPxeHu+SHJYckJyVKAQWKlC39CgEllWgLunXQGj3ZM+kvqThG8lvJ3+ZzCq1\nbQ1qqjRfDd5ctflMlp2W1Dfw1IdMP5bUPeb1QdR9k3Glfh/Pm5LPj3vSVi5bl+e/dLCPN2/l\nvjydAAECBLZMYJn7o7ql7l+S6ovXJ/WZ3j9LDk3qDgiFwMIF6g8yhcCyCtSXJXw/qStFlyf1\nJQtvTapM+7KEjVv8+JWg+qxRlWbAdGOmfyGpzwC9K6kPnVYn8KvJa5NJpa5ATcp+k560FcsP\nz3P3SmqwV+1XCBAgQGDxAsvcHz0s3Dsm5yb1xmL1p+9MqtQbl/VGo0JgoQJusVsot4O1XKDe\nvXrcoI4Xr6CuzWBoeNO6IlOlBh5HJTckNSiq8vTkpOTopLYbfX51Cgckk0p1oKtdfnGww/9a\n7R3bHwECBAhsscAy9Ud1S12VA5J9kouSBydVrh/kthn/EFiUgAHSoqQdp40CdX/zpYOK1dXU\nut2uvrCgyl9vfNjif+uK0fOT6uTqCxO+ljRXpT6Z6dHBURbdVs5rJhb0eK/Bcc5e0PEchgAB\nAgR+UmCZ+6N6g64+03v/pL7w6LTk8UmVtyeT+starxCYi4AB0lxY7bQjAjUYqs8eValvzakv\nT/hCUp/FeVuyNeXCPPm45IXJsUndXlfl5OQ5t02145/mtj0DpHacD7UgQGA5BZa5P7oxp/yo\n5MTkMUn1mXVHRfXFf5goBAgQINBDger4DkrcR93Dk6tJBAgQ6JBA2/ujO8XyPsnOHTJVVQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIE\nCBAgQIAAAQIECBBYvMC6GYd8StbvNmObs7L+32dsYzUBAgQIENgaAf3R1uh5LgECBAismsDf\nZE+3Jt9PTk3OH8zXoOiTg/xxHhUCBAgQIDBPAf3RPHXtmwABAgT+j8CsK0gnZctvJ69Kbhw8\n65g8vjx5wGDeQ/cEdkmVT0923cyqvybbv2Uzn2NzAgQIrIaA/mg1FNu3D/1R+86JGhFYeoFZ\nA6TLI3RQcvWQVD3nsuS+ySVDy9s6+cBU7BenVO7uWffR5H1TtunbqrulQRclL0suXWHjnpft\nPpG8cIXb24wAAQKrKaA/Wk3N9uxLf9Sec6EmBAgMBLafIfH1rP+N5ITklqQGR/8tqVKDpC6U\n+6eSR02p6MFZd0CyTAOkhuM9mTi7mZnx+PgZ660mQIDAPAX0R/PUXft964/W/hyoAQECA4FZ\nV5B+Ptu9P9ku+VxSt9XdPnlq8qGkD6UGRhckL+hDY1bYhuYdu3tl+5UOkD6dbW+XfCJZaamr\nVMevdGPbESBAYIqA/mgKTodX6Y86fPJUnUBfBWZdQTojDT80WZ/cO3lvckrShVvrUk1lFQUO\nyL5qcHzxCve5R7ar2xsNkFYIZjMCBKYK6I+m8izVygPSWv3RUp1yjSWwWIFZA6SqzWXJexZb\nrVU92v+Vvf3/7d0JlFxVgf9xQoAkhD2QhDWJLC6AQIC/yBrkD85REBDZhNEBhr9sHhiGRT1h\nXIYBRDwB0YPKgEJmBAEdloBGOQKGRQziCKKAYjoQwhaUJYGwJf/fL/2u/XhUvXrV6a5+99b3\nnvNLVb13q+rez+2u27feq4qPeDUrk7XD39RHaS3wmKrs17rashr76N+bKtalGgIIIFBFgPmo\nilJ31GE+6o5xppcIDInAihWedYrq+NuDfPRojHKs0urUPFWpTXFby1KbhtIQBBBAAIFSgSna\ny3xUSsROBBBAAIHBFjhST7BAuVyZo4xT/LXf31RSKf4Mkr+EopuKz/n2UTN/QUXVMl8Vf1O1\nsur5CNJrbdSnKgIIIFAmwHxUphPvPuajeMeOliOQrECrI0j+GujjlDMyAX8l9PbKgUqr+2Z3\n4QIBBBBAAIHlFmA+Wm5CHgABBBBAoIpAq88gra8HuU3Jn1L3km77fmOVGL6s4dNq52eUZmUL\n7ZjdbCfbEUAAAQRqIcB8VIthoBEIIIBA+gKtFkj+au/TlG9kFP667xOUt5QYFkdu9oNK2ZcF\nHKH9z7siBQEEEECgtgLMR7UdGhqGAAIIpCXQaoH0WXX354q/mGFVxf9f0BrKYUos5X411GlW\ndtQOFkjNdNiOAAII1EOA+age40ArEEAAgeQFWi2Q/H8g7an4c0eTFH8GaaYyT6EggAACCCDQ\nKQHmo05J8zwIIIBAlwu0WiD52+o+pVwVsdPpavvnStq/mvb5PyCMueytxvvd1aplRFbRRwUH\nq4zXA/vn6+42nmCJ6v6rcm8b96EqAgh0hwDzURzjzHwUxzjRSgQQKBFotUC6VPc9SvFXe89V\n/NmjUN4MV2p+6cWd/0O5ZsXf0PfnZjsj2b6H2rmNcl3F9voLNlzW670YlH/91a3DlLLPfxWf\n2J9321phgVSU4TYCCDAfxfEzwHwUxzjRSgQQKBFotUDaTffdWTmkwWP4j98Yyjw10mlWjtSO\nRc12RrT9UbXVR1+qlO1Uyf3uRDm3jSc5uo26VEUAge4SYD6KZ7yZj+IZK1qKAAINBFotkPxH\n9CoN7hfTJn/z3tolDY69fyVdYxcCCCCQjADzUTJDSUcQQACBegs0WiDtoCb79Kgblcfr3fxK\nrfuSak1tUTP2zyC16F40u/3zuJmyaxst9s9oCj+nbXSZqgh0jQDzUdcMde06ynxUuyGhQQh0\nTqDRAml3Pf1OihdILgcouyj+soMYi0/xurqk4Rdq3yMl+9nVOQEvzM/MUvVZf62KH6hamXoI\nIBCVAPNRVMOVVGOZj5IaTjqDQHsCjRZIxUfwt5G9r7hxkG+P0uP7c0/+rIz/9/Q3lTmKz2v2\nly68oVQtr6jiQyWVX9a+/JdPlFTt2K4r9Ew+klK1bKKKi6tWrnE9f65tunJUxTaeonpHVKxL\nNQQQiF+A+ajzY8h8VM2c+aiaE7UQiEKgygKp0x2ZoCecpfxNuUv5k+KyjnKq4m86O1Ap+2Y6\n7f578eePyhZ4flz//05Vy3tU8d1VK6ueH9/vgj7Xxn28OPRi8MmK9xmtev4PfH2kr0rZIqvk\n/1fk1Sp3UB1/VstfiV71OTyOLlXru64XSOsqPoJZpfixN1f8c1K1bKmKC5Sqi2L/jtyu3KhU\nKa7vb3GqOnZ+zI0V/yfMbleV4rHwz3XZwr/4OJtqw1zFbzZUKf4KeNedX6VyVscL9XZOdxyj\n+l7YV/2SlBVV12+YtGPrNxoWKlX7PUJ1PYa2qlrC+FWtv6YqLlVeqngH/174d/WpivVdzY9/\nh/Kib1D6LeDXMeYj5qMqP0DMR1WUeuswH1WzYj6q5tSxWqfqma7JPdtxun5z7vZgX71cTzC9\n5Em+r31fK9lf3PVFbfAfC2Xxf35btdynimWP1Wjfkjbv0279Rs/Zalsqz9Gqn8X99Lv9n9+i\nYbPb2NbL9vCqL2o1rsd8VD44zEfVf+c68frU7LWx2fZOtKkTz9Gsf822d6JNqTxHM8Nm2+va\n7+jmI79T2qj4HdGDsx2Tdel3bcPtbPMK14YrA3w5QY9XtgC6SvuntvGcX1bd/2hRv+q7y36Y\nccpzyvO+0UVlQ/X1DeXZLuqzu+pTevwOfjvv3vt+sZf11AG/ezUv9o602f51VN9HF/35A0o9\nBJiPmo8D81FzmxT3MB+lOKrN+8R81NxmSPYcr2f1H8GtMliN8yl0PjWk0R8oY7X9HuXrylAV\nn27RzgJtqNo50M97vR5w2kA/aASPd5naeGUE7RzoJp6vB+zkkeOBbn9/H+9M3fFX/b0z9xtw\nAeajclLmo3Kf1PYyH6U2ouX9YT4q9xnUvY2OIF2iZ3SGqvi5JypzlR7Fn8vwoUSvpCcpNyhn\nKRQEEEAAgbQFmI/SHl96hwACCNRSoNECaagbukgNOEn5qrK54kXRcMUfFn9Q8cKJggACCCCA\nwGALMB8NtjCPjwACCNRQoI4LpMD0hK44FAQQQAABBIZSgPloKPV5bgQQQKDDAv7aXAoCCCCA\nAAIIIIAAAggggIAEWCDxY4AAAggggAACCCCAAAIIZAIskPhRQAABBBBAAAEEEEAAAQQygTp/\nBqmug+T/VHZ2XRs3iO36hR672/4vIHPOUrrx98Rfdf20Abqs/Eb9HdVlfaa78QowH8U7dv1p\nOfNRf9TivQ/zUbxjR8sRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEMgEhiPRlsAE1T5cWU+ZoyxVUig7qRM7Ku/N5VFdD/0r6/dqqneAMlmZ\nr7yi1L2MVANPUO4tNHSYbu+s7KcsVp5V8iUFh0PUoYXKi7mOpTz+o9RPj6d/tucobymhdMN4\nh75ymZ5A2etRzL1N+fWo0bgwHzEf+eeC+ajRbwfbohA4Uq1cpFym+A/nHyqplN+pI39UvGAI\nGZF1rqzf41XneeUW5R5lrrKJUufiNwWmK8XFj9t8g/KY4v1eIB2mhJKCw0HqzBJlSuhUdpnq\n+O+u/i1Qrs7ytC73UEJJfbxDP7lMT6Ds9Sj23qb6etRoXJiPmI/CzwXzUZDgMiqBNdRaLwR8\ndMHFt59T/AdY7MULodcVvxtZLK36/d+6w7TsTn73wwuLi7PbdbzYUo2arcxTigskHwXzEYaV\nFZf9FddbSYndYbT6cInin9lXlSlKKCmP/83q5Bmho7qcqtyY3U55vHNd5mqCAq1ej2Lucsqv\nR8VxYT5iPmI+Kv5WcDs6gQ+oxT59LF+u1I3z8hsive5T4/yHs9/J8vV1lVBa9ftxVdw1VNbl\nvoqPwNS1+A/kzykfUooLpAu07SIlFHv4VDSbxO7g9nsxu5HioyhTlFBSHn//PI4JHdXl0Yp/\nZl1SHu/eHvJvqgKtXo9i7nfKr0fFcWE+Yj5iPir+VtTott8dp7QWmKQqTxWq+Q/N9QvbYry5\nrRrtoya/V0YpGyhnKj4yVNZv32dDJe/yjG7X2eRstc9lt96Lt/3rvs7ObXlL1xco7s/qSr6f\nurlsoeF9MTj4tMkj3OgGJeXxn5Hr7yq6fqJybbYt5fHOdZurCQqUvS7H3t2UX4+KY8N8VBRZ\nYYWUx5/56J3jXestK9a6dfVp3Lpqij9/lC/+MoLV8hsive6jR5cq2yieeI9R/O66b5f1e23t\n98/PQiUUm4xU6r7wHhYanLts1FePuce40b4w/jE7uPvdMP7+mfyh8qZyluLSaEy7Ybx7e8+/\nMQs0+tkNr0cx98tt74bXo+IYMR/1iXTD+DMf9Y13ra+xQKo2PD4yslahqm+Hw6OFXVHdvEmt\nPV3x55CWKv+l+HTCXZSyfvszWT7KknfxdR9p8R+isZVmfX1CHWm2z+Mfu0Pq4++fyVsVHwXc\nS/Efki7NxjT18e7tPf/GLNDsZ5f5iPmI+ajvN7uOf48wH/WNT+2vsUCqNkQ9quZvZ/NpOqFs\nris94UbEl/6mto/n2u9TxnzU5EGlR2nWby+O/MekHULxdX/RQYylR43eLNfwNXV9rOL+9Cip\nOqQ8/h6/25V5ykeVhUooPbrSjeMd+s9lvAI9anqz16N4e9Xb8pRfj9oZmx5V7sbXp5THn/mo\nnd8A6kYl8IBa+2XFCwj/sbVA2ViJveyvDvjzVOOVlRQfTXpSCYvnsn7/m+rdofhzS5OU+5V/\nVupedlcDi1/S8D5te0HZQ/Eh8G8oM5VQUnHwWE8JndJlyuN/s/r3M2WC4t9VZyPFpVvGu7e3\n/JuaQNnrUcx9Tfn1qNm4MB/1yaQ8/sxHfePMtcQEdlR/5ipeGPUofqcjhTJMnThf6VF86sZf\nlA8qoZT126ctzVBeVuzyHcWPV/fSaEJym09VFis+D/ouZaISSioOxQVSquO/lQZuaYP4VNJQ\numG8Q1+5TEug7PUo5p6m+npUNibMR306qY4/81HfGHMtYQF/c1mKxUeMxpV0rKzf6+h+PuqS\nQvFplP4QdLOSqkO3jn+3jnezn2+2xyVQ9noUV0/e3tpufT16u0Lvaf3MR0WV8m/LjfnvEeaj\nd441WxBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQ6BMY1neVawggIIEDlHflJJ7U9fuUx3Lb+nt1B91xI+X6\nig+wouptr+yhjFJmKL9VBqKM1oMsGogH4jEQQAABBAZFgPloUFh5UAQQQACBdgVu0h0eUa5R\nfqzcqSxWDlGWt5ymB/Aip0oZrko/Up5RrlC+pTyu3Kos7xsbJ+gxpikUBBBAAIH6CjAf1Xds\naBkCCCDQVQKekC4o9PgM3f5DYVt/brazQPqunuBhxUd6QllbV55WTgob+nnpxdZF/bwvd0MA\nAQQQ6IwA81FnnHkWBN4h4FN4KAggUC7gozhv5qpso+vfVrzdi5ijlFDW0pXPKw8qTymXKKsr\nxTJGG36hnFzcods+evRJxQuh/Glwf9PtfZW7lVAO05VbFO/z422thHKurriNzys/USYpn1L8\n2P+ofE+hIIAAAgjEI8B8FM9Y0VIEEEAgGQG/YzdL+YIyVblY8alteyouY5XnlHOy64fr8kXl\nY4rLdcrtyvuVyco9ynTFJRxB8pGg+5Vp3tigbKttS5U1G+zLbzpUNxYoBynjFD+ejzB5kfZh\n5QllE2UN5QdZVtHlpYoXeKsqFAQQQACBegowH9VzXGgVAggg0HUCnpB8Ot2Vihc2M5VnFS+Y\nXI5R/qoM942sXKVL388LES9svDgJ5UBdWaJ4MeIF0izlPuU/lWZlH+14Q1m5WYVsu9uWf5wR\nur1Q8dEhf7HDy8rxygbKSkr47BKn2AmDggACCNRcgPmo5gNE89IV4BS7dMeWnvVfwKes+VQ0\nLzS82NlNOVvxkZ13KXcrbymheNGzoeJ9XiD5ix1C8T4vTLxIcdlV8X13UUYqjcr/aqMXNJs1\n2Dle2yZm2yfp0o8fymu6MlvZSLlDOV3xFzLMU9ymvRQKAggggEA8AsxH8YwVLU1IgAVSQoNJ\nVwZN4BE98gvKVopPYdtOyZftdeNRxfu8GPJCKpQddMULl55sw2269OLI276SbSte+IjVHOWg\n4g7d9meafATIxeei59syXLf93G6vP/c0Q/FnkrZQvOjy6X9eeFEQQAABBOIUYD6Kc9xoNQII\nIBC1gE9p+K6ycZZ36/Jc5RXFn+fxUaLFyj8pfoPBCxIvjI5RXO5SrlLWUsYo1yszFRefYudF\ni4sXVV4k7eQbDYpPkfPzHKv4s0j+jJGPCL2qbKq4nKLMVbxw8+LoROVlxUer9lV85Mifd3L5\nhOLPTrneeYrb6OsUBBBAAIF6CjAf1XNcaBUCCCDQdQKekHyaXMgLuu5T6vy5oFAO0hUf5Qnf\nEPfFsEOXXkC5vhcqvu9PlbUUl/wCybfPVx5WRvpGg3KYtv1SWaT4tDwveA5VQvHRoIuV1xW3\nx0exdldC8ZGm+UqP4rZ+RHHZW/GC7wHfoCCAAAII1FKA+aiWw0KjEEAAAQSaCfhUOh+p8VGk\nRsVHbkY32tGPbaN0n/VL7jdC+8Y22e92jm+wz4srPy4FAQQQQCBuAeajuMeP1iOAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCQoMS7BPdAmBVgJbqoKT\nL6/pxkvK75S/5nfo+keU1ZQ7lflKbGWSGryn8pByb6Hxa+j2/1FGKb9WnlEoCCCAAAKdEeim\n+WhVkXouel2Zrbyg5MtKurG9srHiufhPCgUBBBBAoEMCX9bzLG2Sxdp+cqEdf87q7l/YHsNN\nL3wezNp/UaHBe+m2F0TBwpPWSYU63EQAAQQQGDyBbpiP/Abjj5RXlDDf+I3I/Jy6rm7fldvv\neucrFAQQQACBDgmECclHgy5Qvq5cqPgIil+UlyjvVUL5pq5cp+wYNkRyOU7tvF4JE1J+gbSO\ntj+X7XPfrlbcb9fdWaEggAACCAy+QDfMR98So+cWz7nnKLdmt33WhhdGLp6LXef3yr8rC7Pb\nu+mSgkDHBXw4k4JAtwo8ro6fluv8irruF3AvLHZQ/qi4XKqMUMLhfh/+X195QvG7YD5Fzfe5\nR3lSyZfNdeP9io/kuL5P03tLaVY+1myHtvsIz09L9ud3+ejQ/yirKz590O3Pl711Y13FBp/I\ndvj0h/0Um3w828YFAggggMDgC6Q8H4V5baoYL1c8Hz6reH7yXHubcqzicpziedLz0anKZ5VZ\nCgUBBBBAYJAFwjt2vyo8z2a67VPs/C6WFzahFE+x+5p2uM63ld9n133bpw94gRHKNF0JR2W8\n33lA8eTQqHiBFuo1uvQRn6rleFWcqxyseIHnx8sfQfIiyNtmKKGcoive5vtREEAAAQQGX6Ab\n5qNVxDhBGZlxrqHLMNf6zAzPvZ57nFDHc5dv/0GhINBxgZU6/ow8IQL1EfCRHS9wXFZWNl12\nbYUVTtBlOFqUbWp48RltvUL5inKmMlk5S7lJ2VbxgsOLjROVhYonwl0U3+9CpVg8GdxQ3Ji7\n/WLuequrP1OF7yuvKvsoxTIn2+DJaZji57aHi4+OhW3LNvAPAggggMCgCqQ8H/nsB8+FoZyu\nKz6roUf5nbKT4uJFk+PyQu/Fsvkou8oFAp0TYIHUOWueqX4CPpKzZaFZXih4cbOm0mpB4hf2\noxTfx6exXa9soris1nuxwnq63EOZqfi0tUWK6zYqfpwDGu3ox7bHWtznJ9rvCWuC8nPFR8k+\nqbh4sejTG9xWCgIIIIDA4AukPB/l9Xz2gk+183x3kuLF09qKyxu9F2+77rnYZ1f4bAwKAh0T\n8A8dBYFuFbhPHfeL71rKWGVn5WHl/ylfVVoV1/WLvMtfey/+fvrcvbp9h+KFht8tu1V5XLlM\n2UhpVPz76EVLs9zf6E793ObTAT+mPKT480pHK17gufhoF4ujZRT8gwACCHREoBvmo89LMpyi\n7jMpbs5kF2SXPhUvlHCq3fPawOIoqHDZMQEWSB2j5olqKOAvS3hJ8ZEif77nHuVyxcWLh1Yl\nfyQovICHBZPfCfu/ysHKD5SnldHKEcr5SrOyiXY0y8bN7tTP7f481FbKhooXiv+juMzrveBf\nBBBAAIEOCaQ+H/nI0TmK50ovji5VQnkmuzJCl6tl19fNLudnl1wg0FEBTrHrKDdPVnMBH0n6\naNbGpyq0NSyG8lWHZTd20OX+is+n9qLI5UhluuLT6FyveH9PHBOVZsUT6ECV9fRA31fWUXwE\nye08VHG5pfeCfxFAAAEEhkggpfloHxmGNwZP1vXvKeHvT89rPmvCi6Rxiuv+WPmQ4uI3LikI\ndFwg/IB2/Il5QgRqIDBZbQjvXPloqo+i+PM3Lt/svej3vz5idJLiSc5f/uBv4glHpe7U9eLi\nSJuWFU8UnSg+Yubf/52Uu7Mn3EaXPvXu69ltLhBAAAEEOiOQ8nzkzxz5TUGXi7Msu6F/Dleu\nVi5RvqR8R/Ep3/+geJ68UKEg0HEBFkgdJ+cJayTgxdDYrD1v6tKnzP1W8Qu03+FanjJPdz5M\n+RflEMWn17lcrxy/7NrQ/3O6muCF4RTFrwUPKT7KxSkNQqAggAACHRRIdT7yKdy7VnA8R3U8\nHx+r+EyOl5QTlYcVCgIIIIBAggKe+DZT/IUNdSxj1CifckdBAAEEEEhboO7z0Ujx+6wLv3lH\nQQABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQKCZ\nwLBmO7LtB+tyzRZ1HtX+X7aow24EEEAAAQSWR4D5aHn0uC8CCCCAwIAJfEuPtFR5SZmpPJ7d\n9qLozixf0CUFAQQQQACBwRRgPhpMXR4bAQQQQODvAq2OIE1Xzb8oZytvZPc6SJdnKdtmt7mI\nT2C0mjxLWb3Npp+n+pe1eR+qI4AAAgMhwHw0EIr1ewzmo/qNCS1CoOsFWi2QnpPQZsqLOSnf\n51lla+Xp3Pa6Xt1OEsdG9AAAFU9JREFUDftwSeMmaN/PlR+X1Elt1wbq0JPKVOWZip07UfVu\nV/6lYn2qIYAAAgMpwHw0kJr1eSzmo/qMBS1BAIFMYKUWEn/U/qOVi5QlihdHn1ZcvEiKoWyj\nRu5f0tDNtW+i0k0LpMBxja78Kdxocblvi/3sRgABBAZTgPloMHWH/rGZj4Z+DGgBAghkAq2O\nIH1Q9W5Qhiv3KT6tblXlUOUWJYXihdETyskpdKZiH8I7dluoftUF0t2qu4pyu1K1+CjVtKqV\nqYcAAgiUCDAfleBEvIv5KOLBo+kIpCrQ6gjSPer4VsoU5T3KtcoMJYZT69RMygAKTNRjeXH8\nVMXHXE/1fHojC6SKYFRDAIFSAeajUp6u2jlRvWU+6qohp7MIdFag1QLJrXlWuaazzRrQZ/sH\nPZqPeDUrk7XD39RHaS3wmKrs17rashr76N+bKtalGgIIIFBFgPmoilJ31GE+6o5xppcIDInA\nihWedYrq+NuDfPRojHKs0urUPFWpTXFby1KbhtIQBBBAAIFSgSnay3xUSsROBBBAAIHBFjhS\nT7BAuVyZo4xT/LXf31RSKf4Mkr+EopuKz/n2UTN/QUXVMl8Vf1O1sur5CNJrbdSnKgIIIFAm\nwHxUphPvPuajeMeOliOQrECrI0j+GujjlDMyAX8l9PbKgUqr+2Z34QIBBBBAAIHlFmA+Wm5C\nHgABBBBAoIpAq88gra8HuU3Jn1L3km77fmOVGL6s4dNq52eUZmUL7ZjdbCfbEUAAAQRqIcB8\nVIthoBEIIIBA+gKtFkj+au/TlG9kFP667xOUt5QYFkdu9oNK2ZcFHKH9z7siBQEEEECgtgLM\nR7UdGhqGAAIIpCXQaoH0WXX354q/mGFVxf9f0BrKYUos5X411GlWdtQOFkjNdNiOAAII1EOA\n+age40ArEEAAgeQFWi2Q/H8g7an4c0eTFH8GaaYyT6EggAACCCDQKQHmo05J8zwIIIBAlwu0\nWiD52+o+pVwVsdPpavvnStq/mvb5PyCMueytxvvd1aplRFbRRwUHq4zXA/vn6+42nmCJ6v6r\ncm8b96EqAgh0hwDzURzjzHwUxzjRSgQQKBFotUC6VPc9SvFXe89V/NmjUN4MV2p+6cWd/0O5\nZsXf0PfnZjsj2b6H2rmNcl3F9voLNlzW670YlH/91a3DlLLPfxWf2J9321phgVSU4TYCCDAf\nxfEzwHwUxzjRSgQQKBFotUDaTffdWTmkwWP4j98Yyjw10mlWjtSORc12RrT9UbXVR1+qlO1U\nyf3uRDm3jSc5uo26VEUAge4SYD6KZ7yZj+IZK1qKAAINBFotkPxH9CoN7hfTJn/z3tolDY69\nfyVdYxcCCCCQjADzUTJDSUcQQACBegs0WiDtoCb79Kgblcfr3fxKrfuSak1tUTP2zyC16F40\nu/3zuJmyaxst9s9oCj+nbXSZqgh0jQDzUdcMde06ynxUuyGhQQh0TqDRAml3Pf1OihdILgco\nuyj+soMYi0/xurqk4Rdq3yMl+9nVOQEvzM/MUvVZf62KH6hamXoIIBCVAPNRVMOVVGOZj5Ia\nTjqDQHsCjRZIxUfwt5G9r7hxkG+P0uP7c0/+rIz/9/Q3lTmKz2v2ly68oVQtr6jiQyWVX9a+\n/JdPlFTt2K4r9Ew+klK1bKKKi6tWrnE9f65tunJUxTaeonpHVKxLNQQQiF+A+ajzY8h8VM2c\n+aiaE7UQiEKgygKp0x2ZoCecpfxNuUv5k+KyjnKq4m86O1Ap+2Y67f578eePyhZ4flz//05V\ny3tU8d1VK6ueH9/vgj7Xxn28OPRi8MmK9xmtev4PfH2kr0rZIqvk/1fk1Sp3UB1/VstfiV71\nOTyOLlXru64XSOsqPoJZpfixN1f8c1K1bKmKC5Sqi2L/jtyu3KhUKa7vb3GqOnZ+zI0V/yfM\nbleV4rHwz3XZwr/4OJtqw1zFbzZUKf4KeNedX6VyVscL9XZOdxyj+l7YV/2SlBVV12+YtGPr\nNxoWKlX7PUJ1PYa2qlrC+FWtv6YqLlVeqngH/174d/WpivVdzY9/h/Kib1D6LeDXMeYj5qMq\nP0DMR1WUeuswH1WzYj6q5tSxWqfqma7JPdtxun5z7vZgX71cTzC95Em+r31fK9lf3PVFbfAf\nC2Xxf35btdynimWP1Wjfkjbv0279Rs/Zalsqz9Gqn8X99Lv9n9+iYbPb2NbL9vCqL2o1rsd8\nVD44zEfVf+c68frU7LWx2fZOtKkTz9Gsf822d6JNqTxHM8Nm2+va7+jmI79T2qj4HdGDsx2T\ndel3bcPtbPMK14YrA3w5QY9XtgC6SvuntvGcX1bd/2hRv+q7y36YccpzyvO+0UVlQ/X1DeXZ\nLuqzu+pTevwOfjvv3vt+sZf11AG/ezUv9o602f51VN9HF/35A0o9BJiPmo8D81FzmxT3MB+l\nOKrN+8R81NxmSPYcr2f1H8GtMliN8yl0PjWk0R8oY7X9HuXrylAVn27RzgJtqNo50M97vR5w\n2kA/aASPd5naeGUE7RzoJp6vB+zkkeOBbn9/H+9M3fFX/b0z9xtwAeajclLmo3Kf1PYyH6U2\nouX9YT4q9xnUvY2OIF2iZ3SGqvi5JypzlR7Fn8vwoUSvpCcpNyhnKRQEEEAAgbQFmI/SHl96\nhwACCNRSoNECaagbukgNOEn5qrK54kXRcMUfFn9Q8cKJggACCCCAwGALMB8NtjCPjwACCNRQ\noI4LpMD0hK44FAQQQAABBIZSgPloKPV5bgQQQKDDAv7aXAoCCCCAAAIIIIAAAggggIAEWCDx\nY4AAAggggAACCCCAAAIIZAIskPhRQAABBBBAAAEEEEAAAQQygTp/Bqmug+T/VHZ2XRs3iO36\nhR672/4vIHPOUrrx98Rfdf20Abqs/Eb9HdVlfaa78QowH8U7dv1pOfNRf9TivQ/zUbxjR8sR\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEMgE\nhiPRlsAE1T5cWU+ZoyxVUig7qRM7Ku/N5VFdD/0r6/dqqneAMlmZr7yi1L2MVANPUO4tNHSY\nbu+s7KcsVp5V8iUFh0PUoYXKi7mOpTz+o9RPj6d/tucobymhdMN4h75ymZ5A2etRzL1N+fWo\n0bgwHzEf+eeC+ajRbwfbohA4Uq1cpFym+A/nHyqplN+pI39UvGAIGZF1rqzf41XneeUW5R5l\nrrKJUufiNwWmK8XFj9t8g/KY4v1eIB2mhJKCw0HqzBJlSuhUdpnq+O+u/i1Qrs7ytC73UEJJ\nfbxDP7lMT6Ds9Sj23qb6etRoXJiPmI/CzwXzUZDgMiqBNdRaLwR8dMHFt59T/AdY7MULodcV\nvxtZLK36/d+6w7TsTn73wwuLi7PbdbzYUo2arcxTigskHwXzEYaVFZf9FddbSYndYbT6cIni\nn9lXlSlKKCmP/83q5Bmho7qcqtyY3U55vHNd5mqCAq1ej2LucsqvR8VxYT5iPmI+Kv5WcDs6\ngQ+oxT59LF+u1I3z8hsive5T4/yHs9/J8vV1lVBa9ftxVdw1VNblvoqPwNS1+A/kzykfUooL\npAu07SIlFHv4VDSbxO7g9nsxu5HioyhTlFBSHn//PI4JHdXl0Yp/Zl1SHu/eHvJvqgKtXo9i\n7nfKr0fFcWE+Yj5iPir+VtTott8dp7QWmKQqTxWq+Q/N9QvbYry5rRrtoya/V0YpGyhnKj4y\nVNZv32dDJe/yjG7X2eRstc9lt96Lt/3rvs7ObXlL1xco7s/qSr6furlsoeF9MTj4tMkj3OgG\nJeXxn5Hr7yq6fqJybbYt5fHOdZurCQqUvS7H3t2UX4+KY8N8VBRZYYWUx5/56J3jXestK9a6\ndfVp3Lpqij9/lC/+MoLV8hsive6jR5cq2yieeI9R/O66b5f1e23t98/PQiUUm4xU6r7wHhYa\nnLts1FePuce40b4w/jE7uPvdMP7+mfyh8qZyluLSaEy7Ybx7e8+/MQs0+tkNr0cx98tt74bX\no+IYMR/1iXTD+DMf9Y13ra+xQKo2PD4yslahqm+Hw6OFXVHdvEmtPV3x55CWKv+l+HTCXZSy\nfvszWT7KknfxdR9p8R+isZVmfX1CHWm2z+Mfu0Pq4++fyVsVHwXcS/Efki7NxjT18e7tPf/G\nLNDsZ5f5iPmI+ajvN7uOf48wH/WNT+2vsUCqNkQ9quZvZ/NpOqFsris94UbEl/6mto/n2u9T\nxnzU5EGlR2nWby+O/MekHULxdX/RQYylR43eLNfwNXV9rOL+9CipOqQ8/h6/25V5ykeVhUoo\nPbrSjeMd+s9lvAI9anqz16N4e9Xb8pRfj9oZmx5V7sbXp5THn/mond8A6kYl8IBa+2XFCwj/\nsbVA2ViJveyvDvjzVOOVlRQfTXpSCYvnsn7/m+rdofhzS5OU+5V/VupedlcDi1/S8D5te0HZ\nQ/Eh8G8oM5VQUnHwWE8JndJlyuN/s/r3M2WC4t9VZyPFpVvGu7e3/JuaQNnrUcx9Tfn1qNm4\nMB/1yaQ8/sxHfePMtcQEdlR/5ipeGPUofqcjhTJMnThf6VF86sZflA8qoZT126ctzVBeVuzy\nHcWPV/fSaEJym09VFis+D/ouZaISSioOxQVSquO/lQZuaYP4VNJQumG8Q1+5TEug7PUo5p6m\n+npUNibMR306qY4/81HfGHMtYQF/c1mKxUeMxpV0rKzf6+h+PuqSQvFplP4QdLOSqkO3jn+3\njnezn2+2xyVQ9noUV0/e3tpufT16u0Lvaf3MR0WV8m/LjfnvEeajd441WxBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ\nQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE\nEEAAAQQQ6BMY1neVawggIIEDlHflJJ7U9fuUx3Lb+nt1B91xI+X6ig+wouptr+yhjFJmKL9V\nBqKM1oMsGogH4jEQQAABBAZFgPloUFh5UAQQQACBdgVu0h0eUa5RfqzcqSxWDlGWt5ymB/Ai\np0oZrko/Up5RrlC+pTyu3Kos7xsbJ+gxpikUBBBAAIH6CjAf1XdsaBkCCCDQVQKekC4o9PgM\n3f5DYVt/brazQPqunuBhxUd6QllbV55WTgob+nnpxdZF/bwvd0MAAQQQ6IwA81FnnHkWBN4h\n4FN4KAggUC7gozhv5qpso+vfVrzdi5ijlFDW0pXPKw8qTymXKKsrxTJGG36hnFzcods+evRJ\nxQuh/Glwf9PtfZW7lVAO05VbFO/z422thHKurriNzys/USYpn1L82P+ofE+hIIAAAgjEI8B8\nFM9Y0VIEEEAgGQG/YzdL+YIyVblY8alteyouY5XnlHOy64fr8kXlY4rLdcrtyvuVyco9ynTF\nJRxB8pGg+5Vp3tigbKttS5U1G+zLbzpUNxYoBynjFD+ejzB5kfZh5QllE2UN5QdZVtHlpYoX\neKsqFAQQQACBegowH9VzXGgVAggg0HUCnpB8Ot2Vihc2M5VnFS+YXI5R/qoM942sXKVL388L\nES9svDgJ5UBdWaJ4MeIF0izlPuU/lWZlH+14Q1m5WYVsu9uWf5wRur1Q8dEhf7HDy8rxygbK\nSkr47BKn2AmDggACCNRcgPmo5gNE89IV4BS7dMeWnvVfwKes+VQ0LzS82NlNOVvxkZ13KXcr\nbymheNGzoeJ9XiD5ix1C8T4vTLxIcdlV8X13UUYqjcr/aqMXNJs12Dle2yZm2yfp0o8fymu6\nMlvZSLlDOV3xFzLMU9ymvRQKAggggEA8AsxH8YwVLU1IgAVSQoNJVwZN4BE98gvKVopPYdtO\nyZftdeNRxfu8GPJCKpQddMULl55sw2269OLI276SbSte+IjVHOWg4g7d9meafATIxeei59sy\nXLf93G6vP/c0Q/FnkrZQvOjy6X9eeFEQQAABBOIUYD6Kc9xoNQIIIBC1gE9p+K6ycZZ36/Jc\n5RXFn+fxUaLFyj8pfoPBCxIvjI5RXO5SrlLWUsYo1yszFRefYudFi4sXVV4k7eQbDYpPkfPz\nHKv4s0j+jJGPCL2qbKq4nKLMVbxw8+LoROVlxUer9lV85Mifd3L5hOLPTrneeYrb6OsUBBBA\nAIF6CjAf1XNcaBUCCCDQdQKekHyaXMgLuu5T6vy5oFAO0hUf5QnfEPfFsEOXXkC5vhcqvu9P\nlbUUl/wCybfPVx5WRvpGg3KYtv1SWaT4tDwveA5VQvHRoIuV1xW3x0exdldC8ZGm+UqP4rZ+\nRHHZW/GC7wHfoCCAAAII1FKA+aiWw0KjEEAAAQSaCfhUOh+p8VGkRsVHbkY32tGPbaN0n/VL\n7jdC+8Y22e92jm+wz4srPy4FAQQQQCBuAeajuMeP1iOAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAgg0Fvj/lzsl2cSnsFIAAAAASUVORK5CYII=", "text/plain": [ "Plot with title “Bins = 20”" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "par(mfrow=c(5,2))\n", "for (numBins in 1:20){\n", " hist(college$Books, breaks=numBins, xlab=\"Book Cost\", ylab=\"Freq\", main=paste(\"Bins = \",numBins))\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "_**Observation**_: It seems to be plotting _5 rows and 2 columns_ of histograms in the same space as it was plotting 2 rows and 2 columns of histograms before." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**8 (c) vi. SEE OBSERVATIONS AND NOTES IN THE ANSWERS ABOVE** \n", "\n", "Additionally, From the scatter plot matrix in **8 (b) ii.**, we observe nearly linear relationships between different variables like _F. Undergrad_ Vs _Enroll_ and _Top10Prec_ Vs _Top25Prec_. While analyzing our data, we should only retain one covariate (feature) among others which are highly correlated." ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.4.1" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ChadFulton/statsmodels
examples/notebooks/generic_mle.ipynb
1
13574
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Maximum Likelihood Estimation (Generic models)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial explains how to quickly implement new maximum likelihood models in `statsmodels`. We give two examples: \n", "\n", "1. Probit model for binary dependent variables\n", "2. Negative binomial model for count data\n", "\n", "The `GenericLikelihoodModel` class eases the process by providing tools such as automatic numeric differentiation and a unified interface to ``scipy`` optimization functions. Using ``statsmodels``, users can fit new MLE models simply by \"plugging-in\" a log-likelihood function. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 1: Probit model" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from __future__ import print_function\n", "import numpy as np\n", "from scipy import stats\n", "import statsmodels.api as sm\n", "from statsmodels.base.model import GenericLikelihoodModel" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The ``Spector`` dataset is distributed with ``statsmodels``. You can access a vector of values for the dependent variable (``endog``) and a matrix of regressors (``exog``) like this:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "data = sm.datasets.spector.load_pandas()\n", "exog = data.exog\n", "endog = data.endog\n", "print(sm.datasets.spector.NOTE)\n", "print(data.exog.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Them, we add a constant to the matrix of regressors:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "exog = sm.add_constant(exog, prepend=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To create your own Likelihood Model, you simply need to overwrite the loglike method." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "class MyProbit(GenericLikelihoodModel):\n", " def loglike(self, params):\n", " exog = self.exog\n", " endog = self.endog\n", " q = 2 * endog - 1\n", " return stats.norm.logcdf(q*np.dot(exog, params)).sum()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Estimate the model and print a summary:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "sm_probit_manual = MyProbit(endog, exog).fit()\n", "print(sm_probit_manual.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compare your Probit implementation to ``statsmodels``' \"canned\" implementation:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "sm_probit_canned = sm.Probit(endog, exog).fit()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(sm_probit_canned.params)\n", "print(sm_probit_manual.params)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(sm_probit_canned.cov_params())\n", "print(sm_probit_manual.cov_params())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that the ``GenericMaximumLikelihood`` class provides automatic differentiation, so we didn't have to provide Hessian or Score functions in order to calculate the covariance estimates." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "\n", "## Example 2: Negative Binomial Regression for Count Data\n", "\n", "Consider a negative binomial regression model for count data with\n", "log-likelihood (type NB-2) function expressed as:\n", "\n", "$$\n", " \\mathcal{L}(\\beta_j; y, \\alpha) = \\sum_{i=1}^n y_i ln \n", " \\left ( \\frac{\\alpha exp(X_i'\\beta)}{1+\\alpha exp(X_i'\\beta)} \\right ) -\n", " \\frac{1}{\\alpha} ln(1+\\alpha exp(X_i'\\beta)) + ln \\Gamma (y_i + 1/\\alpha) - ln \\Gamma (y_i+1) - ln \\Gamma (1/\\alpha)\n", "$$\n", "\n", "with a matrix of regressors $X$, a vector of coefficients $\\beta$,\n", "and the negative binomial heterogeneity parameter $\\alpha$. \n", "\n", "Using the ``nbinom`` distribution from ``scipy``, we can write this likelihood\n", "simply as:\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import numpy as np\n", "from scipy.stats import nbinom" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def _ll_nb2(y, X, beta, alph):\n", " mu = np.exp(np.dot(X, beta))\n", " size = 1/alph\n", " prob = size/(size+mu)\n", " ll = nbinom.logpmf(y, size, prob)\n", " return ll" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### New Model Class\n", "\n", "We create a new model class which inherits from ``GenericLikelihoodModel``:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from statsmodels.base.model import GenericLikelihoodModel" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "class NBin(GenericLikelihoodModel):\n", " def __init__(self, endog, exog, **kwds):\n", " super(NBin, self).__init__(endog, exog, **kwds)\n", " \n", " def nloglikeobs(self, params):\n", " alph = params[-1]\n", " beta = params[:-1]\n", " ll = _ll_nb2(self.endog, self.exog, beta, alph)\n", " return -ll \n", " \n", " def fit(self, start_params=None, maxiter=10000, maxfun=5000, **kwds):\n", " # we have one additional parameter and we need to add it for summary\n", " self.exog_names.append('alpha')\n", " if start_params == None:\n", " # Reasonable starting values\n", " start_params = np.append(np.zeros(self.exog.shape[1]), .5)\n", " # intercept\n", " start_params[-2] = np.log(self.endog.mean())\n", " return super(NBin, self).fit(start_params=start_params, \n", " maxiter=maxiter, maxfun=maxfun, \n", " **kwds) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Two important things to notice: \n", "\n", "+ ``nloglikeobs``: This function should return one evaluation of the negative log-likelihood function per observation in your dataset (i.e. rows of the endog/X matrix). \n", "+ ``start_params``: A one-dimensional array of starting values needs to be provided. The size of this array determines the number of parameters that will be used in optimization.\n", " \n", "That's it! You're done!\n", "\n", "### Usage Example\n", "\n", "The [Medpar](https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/doc/COUNT/medpar.html)\n", "dataset is hosted in CSV format at the [Rdatasets repository](https://raw.githubusercontent.com/vincentarelbundock/Rdatasets). We use the ``read_csv``\n", "function from the [Pandas library](http://pandas.pydata.org) to load the data\n", "in memory. We then print the first few columns: \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import statsmodels.api as sm" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "medpar = sm.datasets.get_rdataset(\"medpar\", \"COUNT\", cache=True).data\n", "\n", "medpar.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The model we are interested in has a vector of non-negative integers as\n", "dependent variable (``los``), and 5 regressors: ``Intercept``, ``type2``,\n", "``type3``, ``hmo``, ``white``.\n", "\n", "For estimation, we need to create two variables to hold our regressors and the outcome variable. These can be ndarrays or pandas objects." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "y = medpar.los\n", "X = medpar[[\"type2\", \"type3\", \"hmo\", \"white\"]].copy()\n", "X[\"constant\"] = 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, we fit the model and extract some information: " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "mod = NBin(y, X)\n", "res = mod.fit()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Extract parameter estimates, standard errors, p-values, AIC, etc.:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print('Parameters: ', res.params)\n", "print('Standard errors: ', res.bse)\n", "print('P-values: ', res.pvalues)\n", "print('AIC: ', res.aic)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As usual, you can obtain a full list of available information by typing\n", "``dir(res)``.\n", "We can also look at the summary of the estimation results." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(res.summary())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Testing" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can check the results by using the statsmodels implementation of the Negative Binomial model, which uses the analytic score function and Hessian." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "res_nbin = sm.NegativeBinomial(y, X).fit(disp=0)\n", "print(res_nbin.summary())" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(res_nbin.params)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "print(res_nbin.bse)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Or we could compare them to results obtained using the MASS implementation for R:\n", "\n", " url = 'https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/csv/COUNT/medpar.csv'\n", " medpar = read.csv(url)\n", " f = los~factor(type)+hmo+white\n", " \n", " library(MASS)\n", " mod = glm.nb(f, medpar)\n", " coef(summary(mod))\n", " Estimate Std. Error z value Pr(>|z|)\n", " (Intercept) 2.31027893 0.06744676 34.253370 3.885556e-257\n", " factor(type)2 0.22124898 0.05045746 4.384861 1.160597e-05\n", " factor(type)3 0.70615882 0.07599849 9.291748 1.517751e-20\n", " hmo -0.06795522 0.05321375 -1.277024 2.015939e-01\n", " white -0.12906544 0.06836272 -1.887951 5.903257e-02\n", "\n", "### Numerical precision \n", "\n", "The ``statsmodels`` generic MLE and ``R`` parameter estimates agree up to the fourth decimal. The standard errors, however, agree only up to the second decimal. This discrepancy is the result of imprecision in our Hessian numerical estimates. In the current context, the difference between ``MASS`` and ``statsmodels`` standard error estimates is substantively irrelevant, but it highlights the fact that users who need very precise estimates may not always want to rely on default settings when using numerical derivatives. In such cases, it is better to use analytical derivatives with the ``LikelihoodModel`` class." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }
bsd-3-clause
enchantner/python-zero
lesson_9/Slides.ipynb
1
23939
{ "cells": [ { "cell_type": "code", "execution_count": 5, "metadata": { "slideshow": { "slide_type": "skip" } }, "outputs": [ { "data": { "text/html": [ "<style>\n", ".text_cell_render * {\n", " font-family: OfficinaSansCTT;\n", "}\n", ".reveal code {\n", " font-family: OfficinaSansCTT;\n", "}\n", ".text_cell_render h3 {\n", " font-family: OfficinaSansCTT;\n", "}\n", ".reveal section img {\n", " max-height: 500px;\n", " margin-left: auto;\n", " margin-right: auto;\n", "}\n", "</style>" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%html\n", "<style>\n", ".text_cell_render * {\n", " font-family: OfficinaSansCTT;\n", "}\n", ".reveal code {\n", " font-family: OfficinaSansCTT;\n", "}\n", ".text_cell_render h3 {\n", " font-family: OfficinaSansCTT;\n", "}\n", ".reveal section img {\n", " max-height: 500px;\n", " margin-left: auto;\n", " margin-right: auto;\n", "}\n", "</style>" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Вопросы\n", "\n", "* Что такое BLAS?\n", "* Как сделать в Numpy вот такую матрицу?\n", "```python\n", "array([[ 0, 4, 8, 12],\n", " [ 1, 5, 9, 13],\n", " [ 2, 6, 10, 14],\n", " [ 3, 7, 11, 15]])\n", "```\n", "* Какой параметр функции read_csv() в Pandas позволяет не читать весь файл сразу целиком в память? И как посмотреть, сколько места датафрейм занимает в памяти?\n", "* Какой метод колонки является аналогом ```df[column].groupby(column).count()```?\n", "* Опишите своими словами, как решается задача предсказания методом линейной регрессии с использованием ." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Что такое DevOps?\n", "\n", "- Это набор практик" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Создание полноценного проекта на Python\n", "\n", "- Шаг 1: Создаем virtualenv для работы (это мы уже умеем)\n", "- **Шаг 2: Создаем репозиторий на Github**" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Создание полноценного проекта на Python\n", "\n", "- Шаг 1: Создаем virtualenv для работы\n", "- Шаг 2: Создаем репозиторий на Github\n", "- **Шаг 3: Описываем аргументы командной строки и конфигурационные файлы (если нужно)**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Модуль argparse\n", "\n", "- Помните **sys.argv**?" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import argparse\n", "\n", "def build_parser():\n", " parser = argparse.ArgumentParser()\n", " parser.add_argument(\n", " '-c', '--config', dest='config', action='store', type=str,\n", " help='path to custom config',\n", " default=os.path.join(os.path.dirname(__file__), \"config.yaml\")\n", " )\n", " return parser\n", "\n", "def main():\n", " parser = build_parser()\n", " params, other_params = parser.parse_known_args()\n", " conf = load_config(params.config)\n", " ..." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Конфигурационные файлы\n", "\n", "- В конфигурационном файле должны быть все настройки программы, которые мы хотим менять без модификации ее кода\n", "- Формат конфига может быть любым, я бы предложил взять YAML, JSON или INI (про INI можно почитать вот тут - https://docs.python.org/3/library/configparser.html)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Создание полноценного проекта на Python\n", "\n", "- Шаг 1: Создаем virtualenv для работы\n", "- Шаг 2: Создаем репозиторий на Github\n", "- Шаг 3: Описываем аргументы командной строки и конфигурационные файлы (если нужно)\n", "- **Шаг 4: Сохраняем зависимости нашего проекта в отдельный файл, который затем включим в пакет**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "- ***pip freeze > requirements.txt***\n", "- Посмотрим глазами на содержимое. На некоторых системах эта команда создает ненужную запись о несуществующем пакете *\"pkg-resources==0.0.0\"* - удалим ее, если она присутствует." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Создание полноценного проекта на Python\n", "\n", "- Шаг 1: Создаем virtualenv для работы\n", "- Шаг 2: Создаем репозиторий на Github\n", "- Шаг 3: Описываем аргументы командной строки и конфигурационные файлы (если нужно)\n", "- Шаг 4: Сохраняем зависимости нашего проекта в отдельный файл, который затем включим в пакет\n", "- **Шаг 5: Структурируем программу, как пакет**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "```\n", "my_package <- это папка с нашим проектом\n", "├── MANIFEST.in <- до этого мы сейчас дойдем\n", "├── my_package <- это папка с именем нашего модуля, то, что будет в \"import my_package\"\n", "│   ├── cli.py <- это базовый файл с нашим кодом\n", "│   ├── config.yaml <- это файл конфигурации\n", "│   └── __init__.py <- это чаще всего пустой файл, который превращает папку в модуль питона\n", "├── requirements.txt <- это наш файл с зависимостями\n", "└── setup.py <- до этого мы сейчас дойдем\n", "```" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Пакеты Python\n", "\n", "- Помните эту команду? ***pip install -U pip wheel setuptools***\n", "- Пакеты бывают (в общем случае) двух типов: \n", " - архивы (чаще всего формата .tar.gz)\n", " - бинарные дистрибутивы (формата .whl)\n", "- Главный файл пакета - *setup.py*\n", "- Интерпретатор по умолчанию ищет пакеты в **/usr/lib/python3.6** , либо же в **venv/lib/python3.6/site-packages**\n", "- Можно передавать дополнительные пути для поиска с помощью переменной окружения **PYTHONPATH** или добавляя их в **sys.path**" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "slideshow": { "slide_type": "slide" } }, "outputs": [], "source": [ "# setup.py\n", "\n", "import os\n", "import os.path\n", "\n", "from setuptools import find_packages\n", "from setuptools import setup\n", "\n", "def find_requires():\n", " dir_path = os.path.dirname(os.path.realpath(__file__))\n", " requirements = []\n", " with open('{0}/requirements.txt'.format(dir_path), 'r') as reqs:\n", " requirements = reqs.readlines()\n", " return requirements\n", "\n", "\n", "if __name__ == \"__main__\":\n", " setup(\n", " name=\"my_package\",\n", " version=\"0.0.1\",\n", " description='my cool package',\n", " packages=find_packages(),\n", " install_requires=find_requires(),\n", " include_package_data=True,\n", " entry_points={\n", " 'console_scripts': [\n", " 'my_command = my_package.cli:main',\n", " ],\n", " },\n", " )\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### MANIFEST.in (включить не-питоновые файлы в проект)\n", "\n", "```\n", "include *requirements.txt\n", "recursive-include my_package *\n", "```" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Создание полноценного проекта на Python\n", "\n", "- Шаг 1: Создаем virtualenv для работы\n", "- Шаг 2: Создаем репозиторий на Github\n", "- Шаг 3: Описываем аргументы командной строки и конфигурационные файлы (если нужно)\n", "- Шаг 4: Сохраняем зависимости нашего проекта в отдельный файл, который затем включим в пакет\n", "- Шаг 5: Структурируем программу, как пакет\n", "- **Шаг 6 (опциональный): Используем \"pip install --editable .\" для отладочного режима**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Пути и import\n", "\n", "- Более старый, но стабильный вариант - ***python setup.py develop***\n", "- Гораздо меньше ошибок возникает, если всегда использовать путь от имени пакета\n", "- Любые изменения в файлах сразу же станут видны внутри пакета\n", "- Точнее, не сразу, а после перезапуска интерпретатора" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Создание полноценного проекта на Python\n", "\n", "- Шаг 1: Создаем virtualenv для работы\n", "- Шаг 2: Создаем репозиторий на Github\n", "- Шаг 3: Описываем аргументы командной строки и конфигурационные файлы (если нужно)\n", "- Шаг 4: Сохраняем зависимости нашего проекта в отдельный файл, который затем включим в пакет\n", "- Шаг 5: Структурируем программу, как пакет\n", "- Шаг 6 (опциональный): Используем \"python setup.py develop\" для отладочного режима\n", "- **Шаг 7: Проверяем, что пакет реально собирается**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Сборка в tar.gz\n", "\n", "- ***python setup.py sdist***\n", "- Создает папки **dist** и **%имя проекта%.egg-info**, вторую можно смело удалить (там метаданные)\n", "- Созданный в папке **dist** архив и будем собранным пакетом Python\n", "- https://packaging.python.org/tutorials/distributing-packages/" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "### Сборка в .whl\n", "\n", "- ***python setup.py bdist_wheel*** (есть еще опция --universal, когда проект совместим с Python 2)\n", "- Создает те же папки плюс **build**, где будет примерная структура пакета после инсталляции\n", "- В папке **dist** появится файл *.whl*, который будет бинарным пакетом Python\n", "- Во многих случаях собранный бинарный пакет будет устанавливаться только на ту же ОС, где собирался" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Создание полноценного проекта на Python\n", "\n", "- Шаг 1: Создаем virtualenv для работы\n", "- Шаг 2: Создаем репозиторий на Github\n", "- Шаг 3: Описываем аргументы командной строки и конфигурационные файлы (если нужно)\n", "- Шаг 4: Сохраняем зависимости нашего проекта в отдельный файл, который затем включим в пакет\n", "- Шаг 5: Структурируем программу, как пакет\n", "- Шаг 6 (опциональный): Используем \"python setup.py develop\" для отладочного режима\n", "- Шаг 7: Проверяем, что пакет реально собирается\n", "- **Шаг 8: Отмечаем файлы, которые мы не хотим загружать в систему контроля версий**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Файл .gitignore\n", "\n", "- Файл находится в корне проекта/репозитория. Если его там нет - создайте его\n", "- Просто пишем пути к файлам, которые не хотим отслеживать" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Создание полноценного проекта на Python\n", "\n", "- Шаг 1: Создаем virtualenv для работы\n", "- Шаг 2: Создаем репозиторий на Github и клонируем его к себе\n", "- Шаг 3: Описываем аргументы командной строки и конфигурационные файлы (если нужно)\n", "- Шаг 4: Сохраняем зависимости нашего проекта в отдельный файл, который затем включим в пакет\n", "- Шаг 5: Структурируем программу, как пакет\n", "- Шаг 6 (опциональный): Используем \"python setup.py develop\" для отладочного режима\n", "- Шаг 7: Проверяем, что пакет реально собирается\n", "- Шаг 8: Отмечаем файлы, которые мы не хотим загружать в систему контроля версий\n", "- **Шаг 9: Заливаем код в Git**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Вспоминаем работу с Git из консоли\n", "\n", "- Все команды набираем внутри нашей папки с проектом\n", "- ***git status*** # что вообще происходит\n", "- ***git add путь/к/файлу *** # добавляем файл в git\n", "- ***git add * *** # добавляем все файлы в текущей папке в git\n", "- ***git commit -m \"Initial commit\"*** # создаем коммит, то есть точку восстановления\n", "- ***git push origin master*** # заливаем код в репозиторий" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Создание полноценного проекта на Python\n", "\n", "- Шаг 1: Создаем virtualenv для работы\n", "- Шаг 2: Создаем репозиторий на Github и клонируем его к себе\n", "- Шаг 3: Описываем аргументы командной строки и конфигурационные файлы (если нужно)\n", "- Шаг 4: Сохраняем зависимости нашего проекта в отдельный файл, который затем включим в пакет\n", "- Шаг 5: Структурируем программу, как пакет\n", "- Шаг 6 (опциональный): Используем \"python setup.py develop\" для отладочного режима\n", "- Шаг 7: Проверяем, что пакет реально собирается\n", "- Шаг 8: Отмечаем файлы, которые мы не хотим загружать в систему контроля версий\n", "- Шаг 9: Заливаем код в Git\n", "- **Шаг 10: Документация**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Модуль Sphinx" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- создадим папку docs\n", "- ***pip install sphinx sphinx-argparse***\n", "- в папке docs: ***sphinx-quickstart***\n", "- лучше задать значения для: \"Project name\", \"Author name(s)\", \"Project version\", \"autodoc: automatically insert docstrings from modules\" (y), \"viewcode: include links to the source code of documented Python objects\" (y)\n", "- в файле **conf.py** в *extensions* добавим *'sphinxarg.ext'*, а еще наверху раскомментируем и поправим одну точку на две:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "sys.path.insert(0, os.path.abspath('..'))" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- добавим логотип для красоты:\n", " - ```html_logo = '../logo.png'```\n", "- добавим в **index.rst** после \":caption: Contents:\" строчки \"quickstart\" и \"develop\"\n", "- это значит, нам надо будет создать два файла - **quickstart.rst** и **develop.rst** в том же каталоге" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### quickstart.rst\n", "\n", "```rst\n", "Quickstart\n", "==========\n", "\n", ".. contents:: :local:\n", "\n", ".. argparse::\n", " :module: my_package.cli\n", " :func: build_parser\n", " :prog: my_command\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### develop.rst\n", "\n", "```rst\n", "Reference\n", "=========\n", "\n", ".. contents:: :local:\n", "\n", ".. automodule:: my_package.cli\n", " :inherited-members:\n", "```" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "- ***make html*** или ***make.bat html*** - в папке **_build/html** создастся куча файлов, главный - **index.html**" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Создание полноценного проекта на Python\n", "\n", "- Шаг 1: Создаем virtualenv для работы\n", "- Шаг 2: Создаем репозиторий на Github и клонируем его к себе\n", "- Шаг 3: Описываем аргументы командной строки и конфигурационные файлы (если нужно)\n", "- Шаг 4: Сохраняем зависимости нашего проекта в отдельный файл, который затем включим в пакет\n", "- Шаг 5: Структурируем программу, как пакет\n", "- Шаг 6 (опциональный): Используем \"python setup.py develop\" для отладочного режима\n", "- Шаг 7: Проверяем, что пакет реально собирается\n", "- Шаг 8: Отмечаем файлы, которые мы не хотим загружать в систему контроля версий\n", "- Шаг 9: Заливаем код в Git\n", "- Шаг 10: Документация\n", "- **Шаг 11: Тестирование (обсудим в другой раз)**" ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
aattaran/Machine-Learning-with-Python
titanic/titanic_survival_exploration[1].ipynb
2
97790
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Machine Learning Engineer Nanodegree\n", "## Introduction and Foundations\n", "## Project: Titanic Survival Exploration\n", "\n", "In 1912, the ship RMS Titanic struck an iceberg on its maiden voyage and sank, resulting in the deaths of most of its passengers and crew. In this introductory project, we will explore a subset of the RMS Titanic passenger manifest to determine which features best predict whether someone survived or did not survive. To complete this project, you will need to implement several conditional predictions and answer the questions below. Your project submission will be evaluated based on the completion of the code and your responses to the questions.\n", "> **Tip:** Quoted sections like this will provide helpful instructions on how to navigate and use an iPython notebook. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Getting Started\n", "To begin working with the RMS Titanic passenger data, we'll first need to `import` the functionality we need, and load our data into a `pandas` DataFrame. \n", "Run the code cell below to load our data and display the first few entries (passengers) for examination using the `.head()` function.\n", "> **Tip:** You can run a code cell by clicking on the cell and using the keyboard shortcut **Shift + Enter** or **Shift + Return**. Alternatively, a code cell can be executed using the **Play** button in the hotbar after selecting it. Markdown cells (text cells like this one) can be edited by double-clicking, and saved using these same shortcuts. [Markdown](http://daringfireball.net/projects/markdown/syntax) allows you to write easy-to-read plain text that can be converted to HTML." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PassengerId</th>\n", " <th>Survived</th>\n", " <th>Pclass</th>\n", " <th>Name</th>\n", " <th>Sex</th>\n", " <th>Age</th>\n", " <th>SibSp</th>\n", " <th>Parch</th>\n", " <th>Ticket</th>\n", " <th>Fare</th>\n", " <th>Cabin</th>\n", " <th>Embarked</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Braund, Mr. Owen Harris</td>\n", " <td>male</td>\n", " <td>22.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>A/5 21171</td>\n", " <td>7.2500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n", " <td>female</td>\n", " <td>38.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>PC 17599</td>\n", " <td>71.2833</td>\n", " <td>C85</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Heikkinen, Miss. Laina</td>\n", " <td>female</td>\n", " <td>26.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>STON/O2. 3101282</td>\n", " <td>7.9250</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n", " <td>female</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>113803</td>\n", " <td>53.1000</td>\n", " <td>C123</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>0</td>\n", " <td>3</td>\n", " <td>Allen, Mr. William Henry</td>\n", " <td>male</td>\n", " <td>35.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>373450</td>\n", " <td>8.0500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PassengerId Survived Pclass \\\n", "0 1 0 3 \n", "1 2 1 1 \n", "2 3 1 3 \n", "3 4 1 1 \n", "4 5 0 3 \n", "\n", " Name Sex Age SibSp \\\n", "0 Braund, Mr. Owen Harris male 22.0 1 \n", "1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 \n", "2 Heikkinen, Miss. Laina female 26.0 0 \n", "3 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0 1 \n", "4 Allen, Mr. William Henry male 35.0 0 \n", "\n", " Parch Ticket Fare Cabin Embarked \n", "0 0 A/5 21171 7.2500 NaN S \n", "1 0 PC 17599 71.2833 C85 C \n", "2 0 STON/O2. 3101282 7.9250 NaN S \n", "3 0 113803 53.1000 C123 S \n", "4 0 373450 8.0500 NaN S " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Import libraries necessary for this project\n", "import numpy as np\n", "import pandas as pd\n", "from IPython.display import display # Allows the use of display() for DataFrames\n", "\n", "# Import supplementary visualizations code visuals.py\n", "import visuals as vs\n", "\n", "# Pretty display for notebooks\n", "%matplotlib inline\n", "\n", "# Load the dataset\n", "in_file = 'titanic_data.csv'\n", "full_data = pd.read_csv(in_file)\n", "\n", "# Print the first few entries of the RMS Titanic data\n", "display(full_data.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From a sample of the RMS Titanic data, we can see the various features present for each passenger on the ship:\n", "- **Survived**: Outcome of survival (0 = No; 1 = Yes)\n", "- **Pclass**: Socio-economic class (1 = Upper class; 2 = Middle class; 3 = Lower class)\n", "- **Name**: Name of passenger\n", "- **Sex**: Sex of the passenger\n", "- **Age**: Age of the passenger (Some entries contain `NaN`)\n", "- **SibSp**: Number of siblings and spouses of the passenger aboard\n", "- **Parch**: Number of parents and children of the passenger aboard\n", "- **Ticket**: Ticket number of the passenger\n", "- **Fare**: Fare paid by the passenger\n", "- **Cabin** Cabin number of the passenger (Some entries contain `NaN`)\n", "- **Embarked**: Port of embarkation of the passenger (C = Cherbourg; Q = Queenstown; S = Southampton)\n", "\n", "Since we're interested in the outcome of survival for each passenger or crew member, we can remove the **Survived** feature from this dataset and store it as its own separate variable `outcomes`. We will use these outcomes as our prediction targets. \n", "Run the code cell below to remove **Survived** as a feature of the dataset and store it in `outcomes`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style>\n", " .dataframe thead tr:only-child th {\n", " text-align: right;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: left;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>PassengerId</th>\n", " <th>Pclass</th>\n", " <th>Name</th>\n", " <th>Sex</th>\n", " <th>Age</th>\n", " <th>SibSp</th>\n", " <th>Parch</th>\n", " <th>Ticket</th>\n", " <th>Fare</th>\n", " <th>Cabin</th>\n", " <th>Embarked</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>Braund, Mr. Owen Harris</td>\n", " <td>male</td>\n", " <td>22.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>A/5 21171</td>\n", " <td>7.2500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>1</td>\n", " <td>Cumings, Mrs. John Bradley (Florence Briggs Th...</td>\n", " <td>female</td>\n", " <td>38.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>PC 17599</td>\n", " <td>71.2833</td>\n", " <td>C85</td>\n", " <td>C</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>3</td>\n", " <td>Heikkinen, Miss. Laina</td>\n", " <td>female</td>\n", " <td>26.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>STON/O2. 3101282</td>\n", " <td>7.9250</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>1</td>\n", " <td>Futrelle, Mrs. Jacques Heath (Lily May Peel)</td>\n", " <td>female</td>\n", " <td>35.0</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>113803</td>\n", " <td>53.1000</td>\n", " <td>C123</td>\n", " <td>S</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>3</td>\n", " <td>Allen, Mr. William Henry</td>\n", " <td>male</td>\n", " <td>35.0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>373450</td>\n", " <td>8.0500</td>\n", " <td>NaN</td>\n", " <td>S</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " PassengerId Pclass Name \\\n", "0 1 3 Braund, Mr. Owen Harris \n", "1 2 1 Cumings, Mrs. John Bradley (Florence Briggs Th... \n", "2 3 3 Heikkinen, Miss. Laina \n", "3 4 1 Futrelle, Mrs. Jacques Heath (Lily May Peel) \n", "4 5 3 Allen, Mr. William Henry \n", "\n", " Sex Age SibSp Parch Ticket Fare Cabin Embarked \n", "0 male 22.0 1 0 A/5 21171 7.2500 NaN S \n", "1 female 38.0 1 0 PC 17599 71.2833 C85 C \n", "2 female 26.0 0 0 STON/O2. 3101282 7.9250 NaN S \n", "3 female 35.0 1 0 113803 53.1000 C123 S \n", "4 male 35.0 0 0 373450 8.0500 NaN S " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Store the 'Survived' feature in a new variable and remove it from the dataset\n", "outcomes = full_data['Survived']\n", "data = full_data.drop('Survived', axis = 1)\n", "\n", "# Show the new dataset with 'Survived' removed\n", "display(data.head())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The very same sample of the RMS Titanic data now shows the **Survived** feature removed from the DataFrame. Note that `data` (the passenger data) and `outcomes` (the outcomes of survival) are now *paired*. That means for any passenger `data.loc[i]`, they have the survival outcome `outcomes[i]`.\n", "\n", "To measure the performance of our predictions, we need a metric to score our predictions against the true outcomes of survival. Since we are interested in how *accurate* our predictions are, we will calculate the proportion of passengers where our prediction of their survival is correct. Run the code cell below to create our `accuracy_score` function and test a prediction on the first five passengers. \n", "\n", "**Think:** *Out of the first five passengers, if we predict that all of them survived, what would you expect the accuracy of our predictions to be?*" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Predictions have an accuracy of 60.00%.\n" ] } ], "source": [ "def accuracy_score(truth, pred):\n", " \"\"\" Returns accuracy score for input truth and predictions. \"\"\"\n", " \n", " # Ensure that the number of predictions matches number of outcomes\n", " if len(truth) == len(pred): \n", " \n", " # Calculate and return the accuracy as a percent\n", " return \"Predictions have an accuracy of {:.2f}%.\".format((truth == pred).mean()*100)\n", " \n", " else:\n", " return \"Number of predictions does not match number of outcomes!\"\n", " \n", "# Test the 'accuracy_score' function\n", "predictions = pd.Series(np.ones(5, dtype = int))\n", "print accuracy_score(outcomes[:5], predictions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> **Tip:** If you save an iPython Notebook, the output from running code blocks will also be saved. However, the state of your workspace will be reset once a new session is started. Make sure that you run all of the code blocks from your previous session to reestablish variables and functions before picking up where you last left off.\n", "\n", "# Making Predictions\n", "\n", "If we were asked to make a prediction about any passenger aboard the RMS Titanic whom we knew nothing about, then the best prediction we could make would be that they did not survive. This is because we can assume that a majority of the passengers (more than 50%) did not survive the ship sinking. \n", "The `predictions_0` function below will always predict that a passenger did not survive." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def predictions_0(data):\n", " \"\"\" Model with no features. Always predicts a passenger did not survive. \"\"\"\n", "\n", " predictions = []\n", " for _, passenger in data.iterrows():\n", " \n", " # Predict the survival of 'passenger'\n", " predictions.append(0)\n", " \n", " # Return our predictions\n", " return pd.Series(predictions)\n", "\n", "# Make the predictions\n", "predictions = predictions_0(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 1\n", "*Using the RMS Titanic data, how accurate would a prediction be that none of the passengers survived?* \n", "**Hint:** Run the code cell below to see the accuracy of this prediction." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Predictions have an accuracy of 61.62%.\n" ] } ], "source": [ "print accuracy_score(outcomes, predictions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer:** *Replace this text with the prediction accuracy you found above.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Predictions have an accuracy of 61.62%." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***\n", "Let's take a look at whether the feature **Sex** has any indication of survival rates among passengers using the `survival_stats` function. This function is defined in the `visuals.py` Python script included with this project. The first two parameters passed to the function are the RMS Titanic data and passenger survival outcomes, respectively. The third parameter indicates which feature we want to plot survival statistics across. \n", "Run the code cell below to plot the survival outcomes of passengers based on their sex." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAGDCAYAAADHzQJ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXVWZ7/HvSyUQhEgYgg0ECCLajAmQMAiENNAMEgIq\nkCAyKFdAROiLrYKKTA4oYjeoiNDYpAUNEFsI0wUbDYhMEkhQCHYYlEQiGSAhhDHw3j/2rnBSqeEk\nVaeqsvP9PE89dfa09jrj76y119k7MhNJklQtq/V0BSRJUtcz4CVJqiADXpKkCjLgJUmqIANekqQK\nMuAlSaogA17qRhFxdETc2QXlHB8R93ZFnVZw/5dHxNkrsN1mEfFKRDQ1ol5dsf+IyIj4QHfWS2oE\nA34VFhF/iYjXyg+8FyLiPyNi7Z6uV3eLiEER8cuImBsRCyLijxFxfCP2lZnXZub+jSi7VkScEBFP\nRsTC8rm9NSL6l8uujohvLEdZy3yZyMyTM/OCOrb9S0TsV7Pdc5m5dma+vTz3p53yfxIRl9VM942I\nRW3M263l/iNiUkT8n07s/9yIOLdm+isR8Wz5npoZEdetaNk1ZY6MiEltLBtcfiF5peZvahfs89yI\nuKaz5ahnGfA6JDPXBnYChgNf6+H6NFRE9Gll9s+AGcDmwPrAscALXVh+t4qIvYFvAUdlZn9ga+D6\nnq1Vw9wD7F0zPQx4DhjRYh7A5EZWJCKOA44B9ivfU8OAuxq5zxoDyi8ua2fmkG7aZ5t6w/tABrxK\nmfk34HZgO4CI+FRETCtbgM9ExEnN60bEBhFxS0TMj4gXI+J3EbFauezLEfG3crs/R8S+5fzVIuLM\niHg6IuZFxPURsV65rLkVclxEPFe2pL9as781I2JcRLxU1ulLETGzZvnGZQt8Ttl6Oq1m2bkRMSEi\nromIl4HjW7n7w4GrM3NRZi7OzEcz8/Zy+5G1+yrnLWmVtlL+V8pekfVq1t+xvE99a1vDZTf391qU\nfVNEnFHebn68FkbEExHx0TqfzuHA/Zn5KEBmvpiZ4zJzYUScCBwNfKls7d3c3r4iYmvgcmD3cv35\n5fwlvQBtvR4i4mfAZsDN5bZfqnmu+5TbrhdFz9Hz5fN7Y3tltnJf7wa2jogNyum9gPHAWi3m3Z+Z\nb9XuPyK+WS77YVm/H9aUu19ETC/r9KOIiDof9zsy8+nycf97Zl7RvDAi1omIqyJiVvke+UaUhwoi\n4scRMaFm3e9ExF117rdNEfHp8j3zUkTcERGb1yy7JCJmRMTLETE5IvYq5x8IfAUYEzU9AtGiNyZq\nWvk1j+sJEfEc8Jty/m4RcV/5PE6NiJGduT9aTpnp3yr6B/yForUBsCnwOHBBOX0wsCUQFC2kV4Gd\nymXfpvjQ71v+7VWu9yGKlvDG5XqDgS3L2/8CPAAMAtYAfgL8oma9BK4E1gSGAG8AW5fLL6T4IF+3\n3P4xYGa5bDWKltnXgdWB9wPPAAeUy88F3gIOK9dds5XH4X+A3wNjgc1aLBvZvK82Hrdlyqf4cPtM\nzfoXAZeXt48H7i1vjygfryin1wVeq3n8jgA2LssdAywCNmpZTiv3Z6+ynPOAPYA1Wiy/GvhGi3nL\nta/aMtp6PbR8rFo8133K6VuB68r73hfYu6MyW7m/zwIfLW/fAuwDXNti3tfb2P8k4P+0KC/LbQZQ\nfEGZAxxYx/vpk8CLwBcpWu9NLZbfSPG6XwvYEHgIOKlc9h7gf8vHei9gLjCojn0udX9aLDsMeIqi\nB6cPRe/cfS3qu3657AvA34F+Na/ra9p63bdcp6Ye/1XevzWBTYB5wEcoXlf/XE4P7OnPvlXlzxa8\nbixbZfdShOi3ADLz1sx8Ogt3A3dSfPBAEWgbAZtn5luZ+bss3uVvU4T3NhHRNzP/kmVrBjgJ+Gpm\nzszMNyg+HA6PpbvyzsvM1zJzKjCVIugBjgS+lZkvZeZM4NKabYZTfGCcn5lvZuYzFF8Uxtasc39m\n3piZ72Tma608BkcAvwPOBp6NiCkRMXw5HsOW5f8cOAqgbIGNLee19DuKD8Xmx/XwsqznATLzhsx8\nviz3OmA6sEtHlcnM3wEfozjsciswLyK+H+0MLFvRfZXaej20KyI2Ag4CTi6f27fK19rylnk3MKJs\n4e9C8UXydzXz9ijXWR4XZub8zHwO+C0wtKMNMvMa4PPAAeX+ZkfEmeV9fV95X/8li56i2cC/Ub5O\nM/NVisD9PnAN8PnytV6vuWUreX5E/Gs57yTg25k5LTMXU7y3hza34jPzmsycl0Wv1cUU790PLcc+\nW3Nuef9eK+/PbZl5W/m6+jXwMEXgqxsY8DosMwdk5uaZeUpzAEbEQRHxQNk9Op/iTdnc5XkRRcvg\nzii6788EyMynKFrq51J8uI2PiI3LbTYHftX8IQRMo/hC8L6auvy95varQPOAv40pWrrNam9vDmxc\n8+E2n6J78X1trL+MMlzOzMxty+2mUHzxqbd7tGX5Eyi6tDemaKUnReC03G9SdCcfVc76BEXLE4CI\nOLb8stF8v7bj3eegXZl5e2YeAqwHHErRMmxzMFln9kUbr4c6bAq8mJkvdbLMeyge5+2BZ8qwvLdm\n3prAg3XWqVlbr8V2ZTGIcj+K1v/JwPkRcQDF67QvMKvmMf4JRUu+eduHKHqfguUfM7FB+T4ekJnN\nh302By6p2d+LZdmbAETEF8ru+wXl8nWo/zlvS8v35hEt3pt7UnxxUzcw4LWMiFgD+CXwPeB9mTkA\nuI3iw4HMXJiZX8jM9wOHAGdEeaw9M3+emXtSvLkT+E5Z7AzgoJoPoQGZ2S+LY/8dmUXRNd9s05rb\nM4BnW5TbPzNrWwl1XzIxM+eW93tjinBcRNF9CkDZCh7YcrMWZcyn6PE4kiK0f9FO6/MXFD0ZmwO7\nUjzulNNXAqcC65fPwZ8on4PluD/vZOZdFIcNtmutvnXsq93Hr73XQwfbzgDWi4gBy1lmS/dQ9PYc\nzLtfpB6neJ0cDPwhM19vq/rt3bcVVfY63EBxOGk7ivv6BksH8XvLL5UARMTnKFrRzwNf6oJqzKA4\nBFD73lgzM+8rj7d/meI1um75nC+g/ed8qfcC8A+trFO73QzgZy32v1ZmXtjpe6a6GPBqzeoUHzRz\ngMURcRCw5KddETEqIj5QtnBfpmiJvx0RH4qIfcovCK9THAdu/jnU5cA3m7sHI2JgRBxaZ32uB86K\niHUjYhOKIGr2EPByFIP71oyIpojYbnm62MsBTdtFMfCqP/BZ4KnMnEdxXLRfRBwcEX0pjmOuUUex\nP6cYjf9xWu+eByCLgXBzgP+gGKA1v1y0FsWH5Zyyjp/i3YDu6P4cGhFjy8crImIXinEUD5SrvEAx\nVqFZR/t6ARgUEau3sb9WXw9t7Kv2vs+iGNh5WVnXvhExoo4yW5bzVLmf0ykDvvxC9WA5757Wtuuo\nfssrigGUB0dE/ygGGR4EbAs8WN7XO4GLI+K95fIto/jFAxHxQeAbFN3ax1AMguzwsEAHLqd432xb\n7mOdiDiiXNYfWEzxnPeJiK8D763Z9gVgcCw9sHEKMLZ8noZRHFJqzzXAIRFxQPm+7BfFoNVBHWyn\nLmLAaxmZuRA4jSJYX6JohU6sWWUrioFprwD3A5dl5iSK4LuQYoDQ3ym6H79SbnNJWcadEbGQImx2\nrbNK5wMzKQZT/Q9FF/gbZV3fpmjhDS2Xz6UIy3WW4y6/B/gVMJ+ii3RzYHRZ/gLglLLMv1G0Yuo5\nNjqR4nF6IYsxBe35BbAfNV8EMvMJ4GKKx/cFiq7m39d5f14CPkNxHP1lig/aizKzufv/KopxEvMj\n4sY69vUbihbx3yNibiv7a+v1AMVgua+1ODZc6xiK4+1PArMpDvF0VGZr7qHoWamt9+8oXoPtBfwl\nFD0oL0XEpe2sV4+XKV7vz1G8lr4LfDYzm88hcCzFl+cnKJ6jCcBGUYxDuQb4TmZOzczpZTk/K78s\nr5DM/BVFD9r4KH7h8SeKcQAAd1B8ufpf4K8UX8hru9dvKP/Pi4hHyttnUwy8fYliAGebX1zL/c+g\nODz0FYovEjMoBiCaO92keaSrtNKIiM8CYzNz7w5XlqRVlN+k1OtFxEYRsUfZrfkhip/0/Kqn6yVJ\nvZlnG9LKYHWKEcdbUHR9jgcua3cLSVrF2UUvSVIF2UUvSVIFGfCSJFXQSn0MfoMNNsjBgwf3dDUk\nSeoWkydPnpuZLU+21aqVOuAHDx7Mww8/3NPVkCSpW0TEX+td1y56SZIqyICXJKmCDHhJkipopT4G\nL0lq21tvvcXMmTN5/fW2Lqan3qpfv34MGjSIvn37rnAZBrwkVdTMmTPp378/gwcPprgwn1YGmcm8\nefOYOXMmW2yxxQqXYxe9JFXU66+/zvrrr2+4r2QigvXXX7/TPS8GvCRVmOG+cuqK582AlyQ1TFNT\nE0OHDmXbbbdlyJAhfP/73+edd94B4OGHH+a0005rdbvBgwczd+7cTu//xhtv5Iknnuh0OcvjIx/5\nCPPnz+/WfbbGY/CStKro6tZ8HRcrW3PNNZkyZQoAs2fP5hOf+AQLFizgvPPOY9iwYQwbNqxr69TC\njTfeyKhRo9hmm226tNy3336bpqamVpfddtttXbqvFWULXpLULTbccEOuuOIKfvjDH5KZTJo0iVGj\nRgEwb9489t9/f3bccUdOOukk2rrS6dprr81Xv/pVhgwZwm677cYLL7wAwF//+lf23XdfdthhB/bd\nd1+ee+457rvvPiZOnMgXv/hFhg4dytNPP71UWTfccAPbbbcdQ4YMYcSIEQBcffXVnHrqqUvWGTVq\nFJMmTVqy769//evsuuuufOtb3+LII49cst6kSZM45JBDgHd7H7785S9z2WXvXtn63HPP5eKLLwbg\noosuYvjw4eywww6cc845nXlY22TAS5K6zfvf/37eeecdZs+evdT88847jz333JNHH32U0aNH89xz\nz7W6/aJFi9htt92YOnUqI0aM4MorrwTg1FNP5dhjj+Wxxx7j6KOP5rTTTuPDH/4wo0eP5qKLLmLK\nlClsueWWS5V1/vnnc8cddzB16lQmTpzYYd0XLVrEdtttx4MPPshZZ53FAw88wKJFiwC47rrrGDNm\nzFLrjx07luuuu27J9PXXX88RRxzBnXfeyfTp03nooYeYMmUKkydP5p577un4wVtOBrwkqVu11jq/\n5557+OQnPwnAwQcfzLrrrtvqtquvvvqSVv/OO+/MX/7yFwDuv/9+PvGJTwBwzDHHcO+993ZYjz32\n2IPjjz+eK6+8krfffrvD9Zuamvj4xz8OQJ8+fTjwwAO5+eabWbx4MbfeeiuHHnroUuvvuOOOzJ49\nm+eff56pU6ey7rrrstlmm3HnnXdy5513suOOO7LTTjvx5JNPMn369A73v7w8Bi9J6jbPPPMMTU1N\nbLjhhkybNm2pZfWMHO/bt++S9Zqamli8eHGr69VT1uWXX86DDz7IrbfeytChQ5kyZQp9+vRZMggQ\nWOqnav369VvquPuYMWP40Y9+xHrrrcfw4cPp37//Mvs4/PDDmTBhAn//+98ZO3YsUHzBOeusszjp\npJM6rGNn2IKvFeFfd/1JWuXMmTOHk08+mVNPPXWZAB4xYgTXXnstALfffjsvvfTScpX94Q9/mPHj\nxwNw7bXXsueeewLQv39/Fi5c2Oo2Tz/9NLvuuivnn38+G2ywATNmzGDw4MFMmTKFd955hxkzZvDQ\nQw+1uc+RI0fyyCOPcOWVVy7TPd9s7NixjB8/ngkTJnD44YcDcMABB/DTn/6UV155BYC//e1vyxyy\n6Aq24CVJDfPaa68xdOhQ3nrrLfr06cMxxxzDGWecscx655xzDkcddRQ77bQTe++9N5ttttly7efS\nSy/l05/+NBdddBEDBw7kP//zP4EiYD/zmc9w6aWXMmHChKWOw3/xi19k+vTpZCb77rsvQ4YMAWCL\nLbZg++23Z7vttmOnnXZqc59NTU2MGjWKq6++mnHjxrW6zrbbbsvChQvZZJNN2GijjQDYf//9mTZt\nGrvvvjtQDN675ppr2HDDDZfrPnck2hqpuDIYNmxYdun14G1Zdp+V+HUnrSymTZvG1ltv3dPV0Apq\n7fmLiMmZWddvC+2ilySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlyQ11De/+U223XZb\ndthhB4YOHcqDDz7Y6TInTpzIhRde2AW1K36HXkWe6EaSVhFxXtee6yPP6fh8Fvfffz+33HILjzzy\nCGussQZz587lzTffrKv8xYsX06dP6zE1evRoRo8evVz1XdXYgpckNcysWbPYYIMNWGONNQDYYIMN\n2HjjjZdcUhXg4YcfZuTIkUBxSdUTTzyR/fffn2OPPZZdd92Vxx9/fEl5I0eOZPLkyUsu67pgwQIG\nDx685Pzxr776KptuuilvvfUWTz/9NAceeCA777wze+21F08++SQAzz77LLvvvjvDhw/n7LPP7sZH\no3sZ8JKkhtl///2ZMWMGH/zgBznllFO4++67O9xm8uTJ3HTTTfz85z9n7NixXH/99UDxZeH5559n\n5513XrLuOuusw5AhQ5aUe/PNN3PAAQfQt29fTjzxRH7wgx8wefJkvve973HKKacAcPrpp/PZz36W\nP/zhD/zDP/xDA+5172DAS5IaZu2112by5MlcccUVDBw4kDFjxnD11Ve3u83o0aNZc801ATjyyCO5\n4YYbgHevp97SmDFjllx3ffz48YwZM4ZXXnmF++67jyOOOIKhQ4dy0kknMWvWLAB+//vfc9RRRwHF\npWWrymPwkqSGampqYuTIkYwcOZLtt9+ecePGLXVZ1tpLsgKstdZaS25vsskmrL/++jz22GNcd911\n/OQnP1mm/NGjR3PWWWfx4osvMnnyZPbZZx8WLVrEgAEDmDJlSqt1qudysis7W/CSpIb585//zPTp\n05dMT5kyhc0335zBgwczefJkAH75y1+2W8bYsWP57ne/y4IFC9h+++2XWb722muzyy67cPrppzNq\n1Ciampp473vfyxZbbLGk9Z+ZTJ06FYA99thjqUvLVpUBL0lqmFdeeYXjjjuObbbZhh122IEnnniC\nc889l3POOYfTTz+dvfbai6ampnbLOPzwwxk/fjxHHnlkm+uMGTOGa665Zqnrsl977bVcddVVDBky\nhG233ZabbroJgEsuuYQf/ehHDB8+nAULFnTNHe2FvFxsrVWgy6bXWIlfd9LKwsvFrty8XKwkSVqG\nAS9JUgUZ8JIkVZABL0kVtjKPs1qVdcXzZsBLUkX169ePefPmGfIrmcxk3rx59OvXr1PleKIbSaqo\nQYMGMXPmTObMmdPTVdFy6tevH4MGDepUGQa8JFVU37592WKLLXq6GuohdtFLklRBBrwkSRVkwEuS\nVEEGvCRJFWTAS5JUQQa8JEkVZMBLklRBBrwkSRVkwEuSVEEGvCRJFWTAS5JUQQa8JEkVZMBLklRB\nBrwkSRVkwEuSVEEGvCRJFWTAS5JUQQ0P+IhoiohHI+KWcnqLiHgwIqZHxHURsXo5f41y+qly+eBG\n102SpKrqjhb86cC0munvAP+WmVsBLwEnlPNPAF7KzA8A/1auJ0mSVkBDAz4iBgEHA/9RTgewDzCh\nXGUccFh5+9BymnL5vuX6kiRpOTW6Bf/vwJeAd8rp9YH5mbm4nJ4JbFLe3gSYAVAuX1Cuv5SIODEi\nHo6Ih+fMmdPIukuStNJqWMBHxChgdmZOrp3dyqpZx7J3Z2RekZnDMnPYwIEDu6CmkiRVT58Glr0H\nMDoiPgL0A95L0aIfEBF9ylb6IOD5cv2ZwKbAzIjoA6wDvNjA+kmSVFkNa8Fn5lmZOSgzBwNjgd9k\n5tHAb4HDy9WOA24qb08spymX/yYzl2nBS5KkjvXE7+C/DJwREU9RHGO/qpx/FbB+Of8M4MweqJsk\nSZXQyC76JTJzEjCpvP0MsEsr67wOHNEd9ZEkqeo8k50kSRVkwEuSVEEGvCRJFWTAS5JUQQa8JEkV\nZMBLklRBBrwkSRVkwEuSVEEGvCRJFWTAS5JUQQa8JEkVZMBLklRBBrwkSRVkwEuSVEEGvCRJFWTA\nS5JUQQa8JEkVZMBLklRBBrwkSRVkwEuSVEEGvCRJFWTAS5JUQQa8JEkVZMBLklRBBrwkSRVkwEuS\nVEEGvCRJFWTAS5JUQQa8JEkVZMBLklRBBrwkSRVkwEuSVEEGvCRJFWTAS5JUQQa8JEkVZMBLklRB\nBrwkSRVkwEuSVEEGvCRJFWTAS5JUQQa8JEkVZMBLklRBHQZ8RKwVEauVtz8YEaMjom/jqyZJklZU\nPS34e4B+EbEJcBfwKeDqRlZKkiR1Tj0BH5n5KvAx4AeZ+VFgm8ZWS5IkdUZdAR8RuwNHA7eW8/o0\nrkqSJKmz6gn404GzgF9l5uMR8X7gt42tliRJ6ox2W+IR0QQckpmjm+dl5jPAaY2umCRJWnHttuAz\n821g526qiyRJ6iL1HEt/NCImAjcAi5pnZuZ/N6xWkiSpU+oJ+PWAecA+NfMSMOAlSeqlOgz4zPxU\nd1REkiR1nXrOZPfBiLgrIv5UTu8QEV9rfNUkSdKKqudncldS/EzuLYDMfAwY28hKSZKkzqkn4N+T\nmQ+1mLe4EZWRJEldo56AnxsRW1IMrCMiDgdmNbRWkiSpU+oZRf854ArgHyPib8CzwCcbWitJktQp\n9YyifwbYLyLWAlbLzIX1FBwR/SiuRLdGuZ8JmXlORGwBjKf4+d0jwDGZ+WZErAH8F8WJdeYBYzLz\nLytwnyRJWuV1GPARcUaLaYAFwOTMnNLOpm8A+2TmK+X14++NiNuBM4B/y8zxEXE5cALw4/L/S5n5\ngYgYC3wHGLMid0qSpFVdPcfghwEnA5uUfycCI4ErI+JLbW2UhVfKyb7lX1KcMGdCOX8ccFh5+9By\nmnL5vlF+m5AkScunnoBfH9gpM7+QmV+gCPyBwAjg+PY2jIimiJgCzAZ+DTwNzM/M5lH4Mym+NFD+\nnwFQLl9Q7luSJC2negJ+M+DNmum3gM0z8zWKbvg2ZebbmTkUGATsAmzd2mrl/9Za69lyRkScGBEP\nR8TDc+bMqaP6kiSteuoZRf9z4IGIuKmcPgT4RTno7ol6dpKZ8yNiErAbMCAi+pSt9EHA8+VqM4FN\ngZkR0QdYB3ixlbKuoBjVz7Bhw5b5AiBJkupowWfmBRTH3edTdJufnJnnZ+aizDy6re0iYmBEDChv\nrwnsB0wDfgscXq52HND8xWFiOU25/DeZaYBLkrQC6mnBAzxK0dLuAxARm2Xmcx1ssxEwLiKaKL5I\nXJ+Zt0TEE8D4iPhGWe5V5fpXAT+LiKcoWu6eDleSpBVUz8/kPg+cA7wAvE1xrDyBHdrbrjxn/Y6t\nzH+G4nh8y/mvA0fUVWtJktSuelrwpwMfysx5ja6MJEnqGvWMop9BcexdkiStJOppwT8DTIqIW6n5\nWVxmfr9htZIkSZ1ST8A/V/6tXv5JkqRerp6LzZwHEBFrZeaixldJkiR1VofH4CNi9/KnbdPK6SER\ncVnDayZJklZYPYPs/h04gOISrmTmVIrz0EuSpF6qnoAnM2e0mPV2A+oiSZK6SD2D7GZExIeBjIjV\ngdMou+slSVLvVE8L/mTgcxSXc50JDC2nJUlSL1XPKPq5QJsXlZEkSb1PPaPovxsR742IvhFxV0TM\njYhPdkflJEnSiqmni37/zHwZGEXRRf9B4IsNrZUkSeqUegK+b/n/I8AvMvPFBtZHkiR1gXpG0d8c\nEU8CrwGnRMRA4PXGVkuSJHVGhy34zDwT2B0YlplvAYuAQxtdMUmStOLqGWR3BLA4M9+OiK8B1wAb\nN7xmkiRphdVzDP7szFwYEXtSnLJ2HPDjxlZLkiR1Rj0B33xa2oOBH2fmTXjZWEmSerV6Av5vEfET\n4EjgtohYo87tJElSD6knqI8E7gAOzMz5wHr4O3hJknq1ekbRv5qZ/w0siIjNKH4X/2TDayZJklZY\nPaPoR0fEdOBZ4O7y/+2NrpgkSVpx9XTRXwDsBvxvZm4B7Af8vqG1kiRJnVJPwL+VmfOA1SJitcz8\nLcUlYyVJUi9Vz6lq50fE2sA9wLURMRtY3NhqSZKkzqinBX8o8Crwf4H/BzwNHNLISkmSpM5ptwUf\nEYcBHwD+mJl3UJzFTpIk9XJttuAj4jKKVvv6wAURcXa31UqSJHVKey34EcCQ8iIz7wF+RzGiXpIk\n9XLtHYN/MzPfhuJkN0B0T5UkSVJntdeC/8eIeKy8HcCW5XQAmZk7NLx2kiRphbQX8Ft3Wy0kSVKX\najPgM/Ov3VkRSZLUdbzsqyRJFWTAS5JUQe39Dv6u8v93uq86kiSpK7Q3yG6jiNgbGB0R42nxM7nM\nfKShNZMkSSusvYD/OnAmMAj4fotlCezTqEpJkqTOaW8U/QRgQkScnZmewU6SKiTO89xl3SHPyR7b\nd4eXi83MCyJiNMWpawEmZeYtja2WJEnqjA5H0UfEt4HTgSfKv9PLeZIkqZfqsAUPHAwMzcx3ACJi\nHPAocFYjKyZJklZcvb+DH1Bze51GVESSJHWdelrw3wYejYjfUvxUbgS23iVJ6tXqGWT3i4iYBAyn\nCPgvZ+bfG10xSZK04uppwZOZs4CJDa6LJEnqIp6LXpKkCjLgJUmqoHYDPiJWi4g/dVdlJElS12g3\n4Mvfvk+NiM26qT6SJKkL1DPIbiPg8Yh4CFjUPDMzRzesVpIkqVPqCfjzGl4LSZLUper5HfzdEbE5\nsFVm/k9EvAdoanzVJEnSiqrnYjOfASYAPylnbQLc2MhKSZKkzqnnZ3KfA/YAXgbIzOnAho2slCRJ\n6px6Av6NzHyzeSIi+gA9dwV7SZLUoXoC/u6I+AqwZkT8M3ADcHNjqyVJkjqjnoA/E5gD/BE4CbgN\n+FpHG0XEphHx24iYFhGPR8Tp5fz1IuLXETG9/L9uOT8i4tKIeCoiHouInVb8bkmStGqrZxT9OxEx\nDniQomv+z5lZTxf9YuALmflIRPQHJkfEr4Hjgbsy88KIOJPiC8SXgYOArcq/XYEfl/8lSdJyqmcU\n/cHA08Dj6Sf+AAALE0lEQVSlwA+BpyLioI62y8xZmflIeXshMI1iBP6hwLhytXHAYeXtQ4H/ysID\nwICI2Gg5748kSaK+E91cDPxTZj4FEBFbArcCt9e7k4gYDOxI0QvwvvLys2TmrIhoHpG/CTCjZrOZ\n5bxZLco6ETgRYLPNPIOuJEmtqecY/OzmcC89A8yudwcRsTbwS+BfMvPl9lZtZd4yhwIy84rMHJaZ\nwwYOHFhvNSRJWqW02YKPiI+VNx+PiNuA6ykC9wjgD/UUHhF9KcL92sz873L2CxGxUdl634h3vyzM\nBDat2XwQ8Hzd90SSJC3RXgv+kPKvH/ACsDcwkmJE/bodFRwRAVwFTMvM79csmggcV94+DripZv6x\n5Wj63YAFzV35kiRp+bTZgs/MT3Wy7D2AY4A/RsSUct5XgAuB6yPiBOA5ih4BKH5+9xHgKeBVoLP7\nlyRpldXhILuI2AL4PDC4dv2OLhebmffS+nF1gH1bWT8pTosrSZI6qZ5R9DdSdLXfDLzT2OpIkqSu\nUE/Av56Zlza8JpIkqcvUE/CXRMQ5wJ3AG80zm09iI0mSep96An57isFy+/BuF32W05IkqReqJ+A/\nCry/9pKxkiSpd6vnTHZTgQGNrogkSeo69bTg3wc8GRF/YOlj8O3+TE6SJPWcegL+nIbXQpIkdal6\nrgd/d3dURJIkdZ16zmS3kHev6rY60BdYlJnvbWTFJEnSiqunBd+/djoiDgN2aViNJElSp9Uzin4p\nmXkj/gZekqRerZ4u+o/VTK4GDOPdLntJktQL1TOK/pCa24uBvwCHNqQ2kiSpS9RzDN7rskuStJJp\nM+Aj4uvtbJeZeUED6iNJkrpAey34Ra3MWws4AVgfMOAlSeql2gz4zLy4+XZE9AdOBz4FjAcubms7\nSZLU89o9Bh8R6wFnAEcD44CdMvOl7qiYJElace0dg78I+BhwBbB9Zr7SbbWSJEmd0t6Jbr4AbAx8\nDXg+Il4u/xZGxMvdUz1JkrQi2jsGv9xnuZMkSb2DIS5JUgUZ8JIkVZABL0lSBRnwkiRVkAEvSVIF\nGfCSJFWQAS9JUgUZ8JIkVZABL0lSBRnwkiRVkAEvSVIFGfCSJFWQAS9JUgUZ8JIkVZABL0lSBRnw\nkiRVkAEvSVIFGfCSJFWQAS9JUgUZ8JIkVZABL0lSBRnwkiRVkAEvSVIFGfCSJFWQAS9JUgUZ8JIk\nVZABL0lSBRnwkiRVkAEvSVIFGfCSJFWQAS9JUgUZ8JIkVVCfnq6AVk1xXvR0FVYJeU72dBUk9RBb\n8JIkVZABL0lSBTUs4CPipxExOyL+VDNvvYj4dURML/+vW86PiLg0Ip6KiMciYqdG1UuSpFVBI1vw\nVwMHtph3JnBXZm4F3FVOAxwEbFX+nQj8uIH1kiSp8hoW8Jl5D/Bii9mHAuPK2+OAw2rm/1cWHgAG\nRMRGjaqbJElV193H4N+XmbMAyv8blvM3AWbUrDeznLeMiDgxIh6OiIfnzJnT0MpKkrSy6i2D7Fr7\nzVSrv+/JzCsyc1hmDhs4cGCDqyVJ0sqpuwP+heau9/L/7HL+TGDTmvUGAc93c90kSaqM7g74icBx\n5e3jgJtq5h9bjqbfDVjQ3JUvSZKWX8POZBcRvwBGAhtExEzgHOBC4PqIOAF4DjiiXP024CPAU8Cr\nwKcaVS9JklYFDQv4zDyqjUX7trJuAp9rVF0kSVrV9JZBdpIkqQsZ8JIkVZABL0lSBRnwkiRVkAEv\nSVIFGfCSJFWQAS9JUgU17HfwkrRCorVLU6jLndvTFVCj2YKXJKmCDHhJkirIgJckqYIMeEmSKsiA\nlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJck\nqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmC\nDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4\nSZIqyICXJKmCDHhJkirIgJckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmS\nKsiAlySpggx4SZIqyICXJKmCelXAR8SBEfHniHgqIs7s6fpIkrSy6jUBHxFNwI+Ag4BtgKMiYpue\nrZUkSSunXhPwwC7AU5n5TGa+CYwHDu3hOkmStFLqTQG/CTCjZnpmOU+SJC2nPj1dgRrRyrxcZqWI\nE4ETy8lXIuLPDa2VGuPcnq7ACtkAmNvTlVgecW5rbysJ34PdpAHvwc3rXbE3BfxMYNOa6UHA8y1X\nyswrgCu6q1JSs4h4ODOH9XQ9pFWV78Hl05u66P8AbBURW0TE6sBYYGIP10mSpJVSr2nBZ+biiDgV\nuANoAn6amY/3cLUkSVop9ZqAB8jM24DberoeUhs8NCT1LN+DyyEylxnHJkmSVnK96Ri8JEnqIga8\ntAIiYmRE3NLT9ZBWJhFxWkRMi4hrG1T+uRHxr40oe2XUq47BS5Iq7RTgoMx8tqcrsiqwBa9VVkQM\njognI+I/IuJPEXFtROwXEb+PiOkRsUv5d19EPFr+/1Ar5awVET+NiD+U63mKZamFiLgceD8wMSK+\n2tp7JiKOj4gbI+LmiHg2Ik6NiDPKdR6IiPXK9T5Tbjs1In4ZEe9pZX9bRsT/i4jJEfG7iPjH7r3H\nPc+A16ruA8AlwA7APwKfAPYE/hX4CvAkMCIzdwS+DnyrlTK+CvwmM4cD/wRcFBFrdUPdpZVGZp5M\ncfKyfwLWou33zHYU78NdgG8Cr5bvv/uBY8t1/jszh2fmEGAacEIru7wC+Hxm7kzxfr6sMfes97KL\nXqu6ZzPzjwAR8ThwV2ZmRPwRGAysA4yLiK0oTp3ct5Uy9gdG1xz76wdsRvHBI2lZbb1nAH6bmQuB\nhRGxALi5nP9Hii/iANtFxDeAAcDaFOdPWSIi1gY+DNwQseRUsWs04o70Zga8VnVv1Nx+p2b6HYr3\nxwUUHzgfjYjBwKRWygjg45npdRGk+rT6nomIXen4PQlwNXBYZk6NiOOBkS3KXw2Yn5lDu7baKxe7\n6KX2rQP8rbx9fBvr3AF8PsqmQkTs2A31klZmnX3P9AdmRURf4OiWCzPzZeDZiDiiLD8iYkgn67zS\nMeCl9n0X+HZE/J7iFMqtuYCi6/6xiPhTOS2pbZ19z5wNPAj8mmKcTGuOBk6IiKnA48AqN/jVM9lJ\nklRBtuAlSaogA16SpAoy4CVJqiADXpKkCjLgJUmqIANeUqvK84U/HhGPRcSU8iQkklYSnslO0jIi\nYndgFLBTZr4RERsAq/dwtSQtB1vwklqzETA3M98AyMy5mfl8ROwcEXeXV+i6IyI2iog+5ZW9RgJE\nxLcj4ps9WXlJnuhGUivKi3XcC7wH+B/gOuA+4G7g0MycExFjgAMy89MRsS0wATiN4ux/u2bmmz1T\ne0lgF72kVmTmKxGxM7AXxeU8rwO+QXEpz1+XpxBvAmaV6z8eET+juPLX7oa71PMMeEmtysy3Ka6e\nN6m8fO7ngMczc/c2NtkemA+8r3tqKKk9HoOXtIyI+FBEbFUzayjF9e0HlgPwiIi+Zdc8EfExYH1g\nBHBpRAzo7jpLWprH4CUto+ye/wEwAFgMPAWcCAwCLqW4jG4f4N+BX1Ecn983M2dExGnAzpl5XE/U\nXVLBgJckqYLsopckqYIMeEmSKsiAlySpggx4SZIqyICXJKmCDHhJkirIgJckqYIMeEmSKuj/A3Xi\nZuMVuuLtAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0xb011a58>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "vs.survival_stats(data, outcomes, 'Sex')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Examining the survival statistics, a large majority of males did not survive the ship sinking. However, a majority of females *did* survive the ship sinking. Let's build on our previous prediction: If a passenger was female, then we will predict that they survived. Otherwise, we will predict the passenger did not survive. \n", "Fill in the missing code below so that the function will make this prediction. \n", "**Hint:** You can access the values of each feature for a passenger like a dictionary. For example, `passenger['Sex']` is the sex of the passenger." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def predictions_1(data):\n", " \"\"\" Model with one feature: \n", " - Predict a passenger survived if they are female. \"\"\"\n", " \n", " predictions = []\n", " for _, passenger in data.iterrows():\n", " \n", " # Remove the 'pass' statement below \n", " # and write your prediction conditions here\n", " #pass\n", " if passenger['Sex']==\"female\":\n", " predictions.append(1)\n", " else:\n", " predictions.append(0)\n", " \n", " # Return our predictions\n", " return pd.Series(predictions)\n", "\n", "# Make the predictions\n", "predictions = predictions_1(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 2\n", "*How accurate would a prediction be that all female passengers survived and the remaining passengers did not survive?* \n", "**Hint:** Run the code cell below to see the accuracy of this prediction." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Predictions have an accuracy of 78.68%.\n" ] } ], "source": [ "print accuracy_score(outcomes, predictions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer**: *Replace this text with the prediction accuracy you found above.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Predictions have an accuracy of 78.68%." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "***\n", "Using just the **Sex** feature for each passenger, we are able to increase the accuracy of our predictions by a significant margin. Now, let's consider using an additional feature to see if we can further improve our predictions. For example, consider all of the male passengers aboard the RMS Titanic: Can we find a subset of those passengers that had a higher rate of survival? Let's start by looking at the **Age** of each male, by again using the `survival_stats` function. This time, we'll use a fourth parameter to filter out the data so that only passengers with the **Sex** 'male' will be included. \n", "Run the code cell below to plot the survival outcomes of male passengers based on their age." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfsAAAGDCAYAAAAs+rl+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VWW56PHfI6B4K7xgqahg28wrqHjLG0fbaopopYKZ\nmrmTLm5p16m0NLVO7cpq76xMNEvOjsRLpXhLO25vlWKQYCq68ZbgDURBRUvR5/wxxoLJYrHWhDXn\nugx+389nfdYc92fMOcZ85vuOd4w3MhNJklRda3R3AJIkqblM9pIkVZzJXpKkijPZS5JUcSZ7SZIq\nzmQvSVLFmeylLhQRx0fELQ1Yz8cj4g+NiGkVt39RRJy9CsttGRGvRkSfZsTViO1HREbEP3VlXFKz\nmexXYxHxZES8Xn75PR8Rv4iI9bo7rq4WEYMi4tcR8UJELIyIv0bEx5uxrcycmJkHN2PdtSLilIh4\nOCJeKT/bGyJi/XLaZRHxf1ZiXcv9sMjMT2XmN+pY9smI+EDNck9l5nqZ+dbK7E876x8fERfWDPeL\niEUrGLdX6+1HxO0R8S+d2P65EXFuq3FDIuLt2hgaISJW+FCUVudyy99mndzeiIiY05l1qOcw2euI\nzFwP2BXYHTirm+Npqojo28bo/wJmA1sBGwEnAs83cP1dKiIOAL4FHJeZ6wPbAVd2b1RNcydwQM3w\ncOApYP9W4wCmdVFMJwIvAWMiYq0u2iaU53LN3zNduO3l9IRzQUuZ7AVAZj4N3ATsCBARJ0fEzLJk\n+HhEjG2ZNyI2jojrI2JBRLwYEXdFxBrltC9HxNPlco9ExEHl+DUi4oyIeCwi5kfElRGxYTltcFl1\nelJEPFWWsL9as721I2JCRLxUxvSl2hJHRGxWlsznRcQTEXF6zbRzI+LqiPhlRLwMfLyN3d8duCwz\nF2Xm4sy8LzNvKpdfrnRTW1ptY/1fKUtYG9bMv0u5T/1qS8llVfj3Wq372oj4fPm65f16JSIeiogP\n1flx7g7cnZn3AWTmi5k5ITNfiYhTgeOBL5Wlv+va21ZEbAdcBOxdzr+gHL+kdmBFx0NE/BewJXBd\nueyXaj7rvuWyG0ZRo/RM+fle094629jXO4DtImLjcng/YBKwbqtxd2fmm7Xbj4hvltN+XMb345r1\nfiAiZpUx/SQios73HopkfxbwJnBE7YSIOLg8LxZGxIURcUfU1CxExCfKY/yliLg5IrZaie22KSL2\niog/le/ljIgYUTPt5GjjPI+IdSm+DzaLmpqCaFUr1Pr8KM+NL0fE/cCi8n1e4fmpLpSZ/q2mf8CT\nwAfK11sADwLfKIcPB94DBEXJ6TVg13Lav1MkgH7l337lfNtSlJA3K+cbDLynfP054B5gELAWMB64\nvGa+BC4B1gaGAv8Atiunf5viS32Dcvn7gTnltDUoSmxfA9YEtgYeBw4pp59L8aV7VDnv2m28D/8P\n+CMwBtiy1bQRLdtawfu23PqB/wY+WTP/+cBF5euPA38oX+9fvl9RDm8AvF7z/h0DbFaudzSwCNi0\n9Xra2J/9yvWcB+wDrNVq+mXA/2k1bqW2VbuOFR0Prd+rVp9133L4BuCKct/7AQd0tM429vcJ4EPl\n6+uBA4GJrcZ9bQXbvx34l1bry3KZARQ/VuYBh9Z5Tu1HcexuAPwImFwzbWPgZeDDQF9gXHns/Es5\n/SjgUYqamL4UPxj+tLLncqvxmwPzgcPKz/afy+GBdZznI1j+2F/m2Gk9TxnHdIrvk7Xp4Pz0r+v+\nLNnrmrK09geKhPotgMy8ITMfy8IdwC0UX2RQfEFtCmyVmW9m5l1ZnOlvUSTy7SOiX2Y+mZmPlcuM\nBb6amXMy8x8USfLoWLaq77zMfD0zZwAzKJI+wLHAtzLzpcycA1xQs8zuFF9cX8/MNzLzcYofDWNq\n5rk7M6/JzLcz8/U23oNjgLuAs4EnImJ6ROy+Eu9h6/X/CjgOoCwRjinHtXYXRWJpeV+PLtf1DEBm\nXpWZz5TrvQKYBezRUTCZeRdFQtmVIpnOj4gfRDuN0lZ1W6UVHQ/tiohNgQ8Cnyo/2zfLY21l13kH\nsH9Z8t+D4kflXTXj9innWRnfzswFmfkUcBswrM7lTgJuysyXKD7zD0bEJuW0w4AHM/M3mbmY4jh+\nrmbZscC/Z+bMcvq3gGErUbq/piy9L2ipIQE+BtyYmTeWn+3vgallLB2d56vqgsycXZ4L9Zyf6gIm\nex2VmQMyc6vM/ExLMoyID0bEPWUV6gKKL4eWatHzKUogt5RVf2cAZOajFCX4c4G5ETEpljYS2gr4\nbcuXETCT4sfBu2piqf3iew1oaSy4GUUJuEXt660oqhoX1Kz7K63WWzv/cspEc0Zm7lAuN53ii7Pe\nqtvW67+aotp7M4rSe1Ikn9bbTYoq5+PKUR+lKJECEBEnlj88WvZrR5Z+Bu3KzJsy8whgQ+BIitL5\nChuidWZbrOB4qMMWwItlYuzMOu+keJ93Ah7PzNcofry2jFsbmFJnTC1WdCyuUESsTfHDcSJAZt5N\n0X7go+UsyxzH5edfe4loK+CHNZ/BixQl7s3rjLnlXB6QmUfVrPOYVufHvhQ/pDo6z1fVyp6f6gIm\ney0nikZFvwa+B7wrMwcAN1J88ZCZr2TmFzJza4prkp+P8tp8Zv4qM/elOMkT+E652tnAB2u+jAZk\nZv8s2gp05FmK6vsWW9S8ng080Wq962fmYTXz1N21Y2a+UO73ZhSJchGwTsv0snQ8sPVirdaxgKKE\ndCzFF/3l7ZRKL6eo4dgK2JPifaccvgQ4Ddio/AweoPwMVmJ/3s7MWykuLezYVrx1bKvd96+946GD\nZWcDG0bEgJVcZ2t3UtQCHc7SH1UPUhwnhwN/zsy/ryj89vZtJX0IeAdwYUQ8FxHPUSTqE8vpyxzH\n5Y/J2uN6NjC21bG8dmb+qRMxzQb+q9U6183Mb3d0ntP2e7PM+QC8u415aper5/xUFzDZqy1rUlTH\nzwMWR8QHgSW3i0XEyIj4p/LL6mWKEvpbEbFtRBxYfon8neK6ccstVhcB32ypkoyIgRFxZJ3xXAmc\nGREbRMTmFEmpxb3Ay2WjoLUjok9E7Lgy1fAR8Z1ymb5R3J72aeDRzJwP/A/QPyIOj4h+FNdR62lh\n/SuKL/mP0HYVPgBZNKKbB/wMuLn8oQCwLsWX5rwyxpNZmqw72p8jI2JM+X5FROxBcT32nnKW5ymu\nnbboaFvPA4MiYs0VbK/N42EF26rd92cpGoFdWMbaLyL2r2OdrdfzaLmdcZTJvvxxNaUcd2dby3UU\n3yo4Cfg5RW3CsPJvH4qq+J0oLqnsFBFHlZevPsuyyfIiiuN8B4CIeGdEHNPJmH4JHBERh5TnRv8o\nGtUNooPznOK92Sgi3lkzbjpwWBQNK99NUZPXnk6fn2oMk72Wk5mvAKdTJNmXKEqnk2tm2YaiUdur\nwN3AhZl5O8UXx7eBFyiqQTehqLID+GG5jlsi4hWKxLNnnSF9naK684lyu1dTNIIii/ulj6D4Yn2i\n3PbPgHe2uaa2rQP8FlhA0XhoK2BUuf6FwGfKdT5NUbKp597jyRTv0/NZtEFoz+XAB6j5UZCZDwHf\np3h/n6dIIH+sc39eAj5Jcd39ZYov/PMzs+USwaUU7SoWRMQ1dWzrvylKys9FxAttbG9FxwMUDe3O\nKrf1v9tY9gSK6/MPA3NZmjzaW2db7qSocamN+y6KY7C9ZP9DipqVlyLignbma1f5I/Qg4D8z87ma\nv2nA74CTylqjY4DvUjSS257i+nnLsfxbipqwSVHc2fEARZuGVZaZsyku43yFIqnPBr4IrNHReZ6Z\nD1Mcm4+Xn99mFLepzqBoiHcLRePK9rbfiPNTDdDSYlbqNSLi08CYzDygw5mlHiqKxoNzgOMz87bu\njkfVZslePV5EbBoR+0Rx7/a2wBcoSuJSr1JWpw8oL3V9heL6+D0dLCZ1mk84Um+wJsV9+UMoqton\nAQ19FKnURfamuFyzJvAQRQv6tm4HlRrKanxJkirOanxJkirOZC9JUsX16mv2G2+8cQ4ePLi7w5Ak\nqctMmzbthcxs/XCvdvXqZD948GCmTp3a3WFIktRlIuJvK7uM1fiSJFWcyV6SpIoz2UuSVHG9+pq9\nJKl9b775JnPmzOHvf19Rx3/qqfr378+gQYPo169fp9dlspekCpszZw7rr78+gwcPpuhEUL1BZjJ/\n/nzmzJnDkCFDOr0+q/ElqcL+/ve/s9FGG5noe5mIYKONNmpYjYzJXpIqzkTfOzXyczPZS5Kaqk+f\nPgwbNowddtiBoUOH8oMf/IC3334bgKlTp3L66ae3udzgwYN54YUXOr39a665hoceeqjT61kZhx12\nGAsWLOjSbbbHa/aStDoZO7ax6xs/vsNZ1l57baZPnw7A3Llz+ehHP8rChQs577zzGD58OMOHD29s\nTK1cc801jBw5ku23376h633rrbfo06dPm9NuvPHGhm6rsyzZS5K6zCabbMLFF1/Mj3/8YzKT22+/\nnZEjRwIwf/58Dj74YHbZZRfGjh3LinplXW+99fjqV7/K0KFD2WuvvXj++ecB+Nvf/sZBBx3Ezjvv\nzEEHHcRTTz3Fn/70JyZPnswXv/hFhg0bxmOPPbbMuq666ip23HFHhg4dyv777w/AZZddxmmnnbZk\nnpEjR3L77bcv2fbXvvY19txzT771rW9x7LHHLpnv9ttv54gjjgCW1kp8+ctf5sILl/bIfe655/L9\n738fgPPPP5/dd9+dnXfemXPOOaczb2uHTPaSpC619dZb8/bbbzN37txlxp933nnsu+++3HfffYwa\nNYqnnnqqzeUXLVrEXnvtxYwZM9h///255JJLADjttNM48cQTuf/++zn++OM5/fTTef/738+oUaM4\n//zzmT59Ou95z3uWWdfXv/51br75ZmbMmMHkyZM7jH3RokXsuOOOTJkyhTPPPJN77rmHRYsWAXDF\nFVcwevToZeYfM2YMV1xxxZLhK6+8kmOOOYZbbrmFWbNmce+99zJ9+nSmTZvGnXfe2fGbt4pM9pKk\nLtdWqf3OO+/kYx/7GACHH344G2ywQZvLrrnmmktqA3bbbTeefPJJAO6++24++tGPAnDCCSfwhz/8\nocM49tlnHz7+8Y9zySWX8NZbb3U4f58+ffjIRz4CQN++fTn00EO57rrrWLx4MTfccANHHnnkMvPv\nsssuzJ07l2eeeYYZM2awwQYbsOWWW3LLLbdwyy23sMsuu7Drrrvy8MMPM2vWrA63v6q8Zi9J6lKP\nP/44ffr0YZNNNmHmzJnLTKunBXq/fv2WzNenTx8WL17c5nz1rOuiiy5iypQp3HDDDQwbNozp06fT\nt2/fJQ0IgWVuf+vfv/8y1+lHjx7NT37yEzbccEN233131l9//eW2cfTRR3P11Vfz3HPPMWbMGKD4\nsXPmmWcyttFtKFbAZK/u00UHebepo+GStLqZN28en/rUpzjttNOWS8b7778/EydO5KyzzuKmm27i\npZdeWql1v//972fSpEmccMIJTJw4kX333ReA9ddfn1deeaXNZR577DH23HNP9txzT6677jpmz57N\n4MGDufDCC3n77bd5+umnuffee1e4zREjRnDKKadwySWXLFeF32LMmDF88pOf5IUXXuCOO+4A4JBD\nDuHss8/m+OOPZ7311uPpp5+mX79+bLLJJiu1z/Uy2UuSmur1119n2LBhvPnmm/Tt25cTTjiBz3/+\n88vNd84553Dcccex6667csABB7Dllluu1HYuuOACPvGJT3D++eczcOBAfvGLXwBLk+0FF1zA1Vdf\nvcx1+y9+8YvMmjWLzOSggw5i6NChAAwZMoSddtqJHXfckV133XWF2+zTpw8jR47ksssuY8KECW3O\ns8MOO/DKK6+w+eabs+mmmwJw8MEHM3PmTPbee2+gaPj3y1/+smnJPlbU2rE3GD58eNqffS9myV5q\nupkzZ7Lddtt1dxhaRW19fhExLTNX6n5FG+hJklRxTUv2EfHziJgbEQ/UjDs/Ih6OiPsj4rcRMaBm\n2pkR8WhEPBIRhzQrLkmSVjfNLNlfBhzaatzvgR0zc2fgf4AzASJie2AMsEO5zIUR0fZjiSRJ0kpp\nWrLPzDuBF1uNuyUzW+6RuAcYVL4+EpiUmf/IzCeAR4E9mhWbJEmrk+68Zv8J4Kby9ebA7Jppc8px\nkiSpk7ol2UfEV4HFwMSWUW3M1uZtAhFxakRMjYip8+bNa1aIkiRVRpcn+4g4CRgJHJ9L7/ubA2xR\nM9sg4Jm2ls/MizNzeGYOHzhwYHODlSR12je/+U122GEHdt55Z4YNG8aUKVM6vc7Jkyfz7W9/uwHR\nFfe4V12XPlQnIg4FvgwckJmv1UyaDPwqIn4AbAZsA6z4kUWSpFUy9rrGPt9i/BHtP0/i7rvv5vrr\nr+cvf/kLa621Fi+88AJvvPFGXetevHgxffu2naZGjRrFqFGjVjre1VUzb727HLgb2DYi5kTEKcCP\ngfWB30fE9Ii4CCAzHwSuBB4Cfgd8NjM77pFAktSjPfvss2y88castdZaAGy88cZsttlmS7qABZg6\ndSojRowAii5gTz31VA4++GBOPPFE9txzTx588MEl6xsxYgTTpk1b0g3twoULGTx48JJn2b/22mts\nscUWvPnmmzz22GMceuih7Lbbbuy33348/PDDADzxxBPsvffe7L777px99tld+G50n2a2xj8uMzfN\nzH6ZOSgzL83Mf8rMLTJzWPn3qZr5v5mZ78nMbTPzpvbWLUnqHQ4++GBmz57Ne9/7Xj7zmc8seTZ8\ne6ZNm8a1117Lr371K8aMGcOVV14JFD8cnnnmGXbbbbcl877zne9k6NChS9Z73XXXccghh9CvXz9O\nPfVUfvSjHzFt2jS+973v8ZnPfAaAcePG8elPf5o///nPvPvd727CXvc8PkFPktQ06623HtOmTePi\niy9m4MCBjB49mssuu6zdZUaNGsXaa68NwLHHHstVV10FLO0LvrXRo0cv6TN+0qRJjB49mldffZU/\n/elPHHPMMQwbNoyxY8fy7LPPAvDHP/6R4447Dii6wl0d2BGOJKmp+vTpw4gRIxgxYgQ77bQTEyZM\nWKYb2douZAHWXXfdJa8333xzNtpoI+6//36uuOIKxrfR58SoUaM488wzefHFF5k2bRoHHnggixYt\nYsCAAUyfPr3NmOrp/rZKLNlLkprmkUceYdasWUuGp0+fzlZbbcXgwYOZNm0aAL/+9a/bXceYMWP4\n7ne/y8KFC9lpp52Wm77eeuuxxx57MG7cOEaOHEmfPn14xzvewZAhQ5bUCmQmM2bMAGCfffZh0qRJ\nAEycOHG59VWRyV6S1DSvvvoqJ510Ettvvz0777wzDz30EOeeey7nnHMO48aNY7/99qNPn/afjn70\n0UczadIkjj322BXOM3r0aH75y18u06f8xIkTufTSSxk6dCg77LAD1157LQA//OEP+clPfsLuu+/O\nwoULG7OjPZxd3Kr72MWt1HR2cdu72cWtJEmqi8lekqSKM9lLklRxJntJqrje3DZrddbIz81kL0kV\n1r9/f+bPn2/C72Uyk/nz59O/f/+GrM+H6khShQ0aNIg5c+Zgl+C9T//+/Rk0aFBD1mWyl6QK69ev\nH0OGDOnuMNTNrMaXJKniTPaSJFWcyV6SpIoz2UuSVHEme0mSKs5kL0lSxZnsJUmqOJO9JEkVZ7KX\nJKniTPaSJFWcyV6SpIoz2UuSVHEme0mSKs5kL0lSxZnsJUmqOJO9JEkVZ7KXJKniTPaSJFWcyV6S\npIoz2UuSVHEme0mSKs5kL0lSxZnsJUmqOJO9JEkVZ7KXJKniTPaSJFWcyV6SpIoz2UuSVHEme0mS\nKs5kL0lSxTUt2UfEzyNibkQ8UDNuw4j4fUTMKv9vUI6PiLggIh6NiPsjYtdmxSVJ0uqmmSX7y4BD\nW407A7g1M7cBbi2HAT4IbFP+nQr8tIlxSZK0Wmlass/MO4EXW40+EphQvp4AHFUz/v9m4R5gQERs\n2qzYJElanXT1Nft3ZeazAOX/TcrxmwOza+abU45bTkScGhFTI2LqvHnzmhqsJElV0FMa6EUb47Kt\nGTPz4swcnpnDBw4c2OSwJEnq/bo62T/fUj1f/p9bjp8DbFEz3yDgmS6OTZKkSurqZD8ZOKl8fRJw\nbc34E8tW+XsBC1uq+yVJUuf0bdaKI+JyYASwcUTMAc4Bvg1cGRGnAE8Bx5Sz3wgcBjwKvAac3Ky4\nJEla3TQt2WfmcSuYdFAb8ybw2WbFIknS6qynNNCTJElNYrKXJKniTPaSJFWcyV6SpIoz2UuSVHEm\ne0mSKs5kL0lSxZnsJUmqOJO9JEkVZ7KXJKniTPaSJFWcyV6SpIoz2UuSVHEme0mSKs5kL0lSxZns\nJUmqOJO9JEkVZ7KXJKniTPaSJFWcyV6SpIoz2UuSVHEme0mSKs5kL0lSxZnsJUmqOJO9JEkVZ7KX\nJKniTPaSJFWcyV6SpIoz2UuSVHEdJvuIWDci1ihfvzciRkVEv+aHJkmSGqGekv2dQP+I2By4FTgZ\nuKyZQUmSpMapJ9lHZr4GfBj4UWZ+CNi+uWFJkqRGqSvZR8TewPHADeW4vs0LSZIkNVI9yX4ccCbw\n28x8MCK2Bm5rbliSJKlR2i2hR0Qf4IjMHNUyLjMfB05vdmCSJKkx2k32mflWROzWVcFIlTJ2bHdH\n0Dzjx3d3BJJWQj3X3u+LiMnAVcCilpGZ+ZumRSVJkhqmnmS/ITAfOLBmXAIme0mSeoEOk31mntwV\ngUiSpOao5wl6742IWyPigXJ454g4q/mhSZKkRqjn1rtLKG69exMgM+8HxjQzKEmS1Dj1JPt1MvPe\nVuMWd2ajEfFvEfFgRDwQEZdHRP+IGBIRUyJiVkRcERFrdmYbkiSpUE+yfyEi3kPRKI+IOBp4dlU3\nWD5j/3RgeGbuCPShqCn4DvAfmbkN8BJwyqpuQ5IkLVVPsv8sMB54X0Q8DXwO+HQnt9sXWDsi+gLr\nUPx4OBC4upw+ATiqk9uQJEnU1xr/ceADEbEusEZmvtKZDWbm0xHxPeAp4HXgFmAasCAzWy4PzAE2\n78x2JElSocNkHxGfbzUMsBCYlpnTV3aDEbEBcCQwBFhA8bCeD7Yxa65g+VOBUwG23HLLld28JEmr\nnXqq8YcDn6IoaW9OkWhHAJdExJdWYZsfAJ7IzHmZ+SbFw3neDwwoq/UBBgHPtLVwZl6cmcMzc/jA\ngQNXYfOSJK1e6kn2GwG7ZuYXMvMLFMl/ILA/8PFV2OZTwF4RsU4U1QQHAQ9R9KR3dDnPScC1q7Bu\nSZLUSj3JfkvgjZrhN4GtMvN14B8ru8HMnELREO8vwF/LGC4Gvgx8PiIepfiBcenKrluSJC2vnmfj\n/wq4JyJaStpHAJeXDfYeWpWNZuY5wDmtRj8O7LEq65MkSStWT2v8b0TETcA+QACfysyp5eTjmxmc\nJEnqvHpK9gD3UTSY6wsQEVtm5lNNi0qSJDVMPbfe/StFlfvzwFsUpfsEdm5uaJIkqRHqKdmPA7bN\nzPnNDkaSJDVePa3xZ1M8REeSJPVC9ZTsHwduj4gbqLnVLjN/0LSoJElSw9ST7J8q/9Ys/yRJUi9S\nz6135wFExLqZuaj5IUmSpEbq8Jp9ROwdEQ8BM8vhoRFxYdMjkyRJDVFPA73/BA4B5gNk5gyK5+JL\nkqReoJ5kT2bObjXqrSbEIkmSmqCeBnqzI+L9QEbEmsDplFX6kiSp56unZP8p4LMUfdnPAYaVw5Ik\nqReopzX+C9jhjSRJvVY9rfG/GxHviIh+EXFrRLwQER/riuAkSVLn1VONf3BmvgyMpKjGfy/wxaZG\nJUmSGqaeZN+v/H8YcHlmvtjEeCRJUoPV0xr/uoh4GHgd+ExEDAT+3tywJElSo3RYss/MM4C9geGZ\n+SawCDiy2YFJkqTGqKeB3jHA4sx8KyLOAn4JbNb0yCRJUkPUc83+7Mx8JSL2pXhs7gTgp80NS5Ik\nNUo9yb7l0biHAz/NzGuxq1tJknqNepL90xExHjgWuDEi1qpzOUmS1APUk7SPBW4GDs3MBcCGeJ+9\nJEm9Rj2t8V/LzN8ACyNiS4r77h9uemSSJKkh6mmNPyoiZgFPAHeU/29qdmCSJKkx6qnG/wawF/A/\nmTkE+ADwx6ZGJUmSGqaeZP9mZs4H1oiINTLzNopubiVJUi9Qz+NyF0TEesCdwMSImAssbm5YkiSp\nUeop2R8JvAb8G/A74DHgiGYGJUmSGqfdkn1EHAX8E/DXzLyZ4ul5kiSpF1lhyT4iLqQozW8EfCMi\nzu6yqCRJUsO0V7LfHxhadoCzDnAXRct8SZLUi7R3zf6NzHwLigfrANE1IUmSpEZqr2T/voi4v3wd\nwHvK4QAyM3duenSSJKnT2kv223VZFJIkqWlWmOwz829dGYgkSWoOu6qVJKniTPaSJFVce/fZ31r+\n/07XhSNJkhqtvQZ6m0bEAcCoiJhEq1vvMvMvTY1MkiQ1RHvJ/mvAGcAg4AetpiVwYLOCkiRJjdNe\na/yrgasj4uzMbOiT8yJiAPAzYEeKHw6fAB4BrgAGA08Cx2bmS43criRJq6MOG+hl5jciYlREfK/8\nG9mA7f4Q+F1mvg8YCsykqEW4NTO3AW4thyVJUid1mOwj4t+BccBD5d+4ctwqiYh3UDx3/1KAzHwj\nMxdQdKXb0qveBOCoVd2GJElaqt0ubkuHA8My822AiJgA3AecuYrb3BqYB/wiIoYC0yh+TLwrM58F\nyMxnI2KTthaOiFOBUwG23HLLVQxBkqTVR7332Q+oef3OTm6zL7Ar8NPM3AVYxEpU2WfmxZk5PDOH\nDxw4sJOhSJJUffWU7P8duC8ibqO4/W5/Vr1UDzAHmJOZU8rhqymS/fMRsWlZqt8UmNuJbUiSpFI9\nDfQuB/YCflP+7Z2Zk1Z1g5n5HDA7IrYtRx1E0RZgMnBSOe4k4NpV3YYkSVqqnpI95bX0yQ3c7r8C\nEyNiTeBx4GSKHx5XRsQpwFPAMQ3cniRJq626kn2jZeZ0YHgbkw7q6lgkSao6O8KRJKni2k32EbFG\nRDzQVcFbK6R/AAAOSElEQVRIkqTGazfZl/fWz4gIb2iXJKmXquea/abAgxFxL8U98QBk5qimRSVJ\nkhqmnmR/XtOjkCRJTdNhss/MOyJiK2CbzPx/EbEO0Kf5oUmSpEaopyOcT1I85W58OWpz4JpmBiVJ\nkhqnnlvvPgvsA7wMkJmzgDY7qZEkST1PPcn+H5n5RstARPQFsnkhSZKkRqon2d8REV8B1o6Ifwau\nAq5rbliSJKlR6kn2Z1D0P/9XYCxwI3BWM4OSJEmNU09r/LcjYgIwhaL6/pHMtBpfkqReosNkHxGH\nAxcBj1H0Zz8kIsZm5k3NDk6SJHVePQ/V+T7wvzLzUYCIeA9wA2CylySpF6jnmv3clkRfehyY26R4\nJElSg62wZB8RHy5fPhgRNwJXUlyzPwb4cxfEJkmSGqC9avwjal4/DxxQvp4HbNC0iCRJUkOtMNln\n5sldGYgkSWqOelrjDwH+FRhcO79d3EqS1DvU0xr/GuBSiqfmvd3ccCRJUqPVk+z/npkXND0SLW/s\n2O6OQJJUAfUk+x9GxDnALcA/WkZm5l+aFpUkSWqYepL9TsAJwIEsrcbPcliSJPVw9ST7DwFb13Zz\nK0mSeo96nqA3AxjQ7EAkSVJz1FOyfxfwcET8mWWv2XvrnSRJvUA9yf6cpkchSZKapp7+7O/oikAk\nSVJz1PMEvVcoWt8DrAn0AxZl5juaGZgkSWqMekr269cOR8RRwB5Ni0iSJDVUPa3xl5GZ1+A99pIk\n9Rr1VON/uGZwDWA4S6v1JUlSD1dPa/zafu0XA08CRzYlGkm9Q9X7bRg/vrsjkBqqnmv29msvSVIv\ntsJkHxFfa2e5zMxvNCEeSZLUYO2V7Be1MW5d4BRgI8BkL0lSL7DCZJ+Z3295HRHrA+OAk4FJwPdX\ntJwkSepZ2r1mHxEbAp8HjgcmALtm5ktdEZgkSWqM9q7Znw98GLgY2CkzX+2yqCRJUsO091CdLwCb\nAWcBz0TEy+XfKxHxcteEJ0mSOqu9a/Yr/XQ9SZLU83RbQo+IPhFxX0RcXw4PiYgpETErIq6IiDW7\nKzZJkqqkO0vv44CZNcPfAf4jM7cBXqK4xU+SJHVStyT7iBgEHA78rBwOis51ri5nmQAc1R2xSZJU\nNd1Vsv9P4EvA2+XwRsCCzFxcDs8BNu+OwCRJqpouT/YRMRKYm5nTake3MWubPetFxKkRMTUips6b\nN68pMUqSVCXdUbLfBxgVEU9SPI3vQIqS/oCIaLk7YBDwTFsLZ+bFmTk8M4cPHDiwK+KVJKlX6/Jk\nn5lnZuagzBwMjAH+OzOPB24Dji5nOwm4tqtjkySpinrSvfRfBj4fEY9SXMO/tJvjkSSpEjrsz76Z\nMvN24Pby9ePAHt0ZjyRJVdSTSvaSJKkJTPaSJFWcyV6SpIoz2UuSVHEme0mSKs5kL0lSxZnsJUmq\nOJO9JEkVZ7KXJKniTPaSJFWcyV6SpIoz2UuSVHEme0mSKs5kL0lSxZnsJUmqOJO9JEkVZ7KXJKni\nTPaSJFWcyV6SpIoz2UuSVHEme0mSKs5kL0lSxZnsJUmqOJO9JEkVZ7KXJKniTPaSJFWcyV6SpIoz\n2UuSVHEme0mSKs5kL0lSxfXt7gAkqccZO7a7I2iu8eO7OwJ1MUv2kiRVnMlekqSKsxpf3WbsO+/s\n7hCaavzC/bs7BEkCLNlLklR5JntJkirOZC9JUsWZ7CVJqjgb6ElNUuUGiDY+lHoXS/aSJFWcyV6S\npIoz2UuSVHFdnuwjYouIuC0iZkbEgxExrhy/YUT8PiJmlf836OrYJEmqou4o2S8GvpCZ2wF7AZ+N\niO2BM4BbM3Mb4NZyWJIkdVKXJ/vMfDYz/1K+fgWYCWwOHAlMKGebABzV1bFJklRF3XrNPiIGA7sA\nU4B3ZeazUPwgADZZwTKnRsTUiJg6b968rgpVkqReq9uSfUSsB/wa+Fxmvlzvcpl5cWYOz8zhAwcO\nbF6AkiRVRLck+4joR5HoJ2bmb8rRz0fEpuX0TYG53RGbJElV0+VP0IuIAC4FZmbmD2omTQZOAr5d\n/r+2o3X9beHfGHvd2KbE2ROM7+4AJEmV0B2Py90HOAH4a0RML8d9hSLJXxkRpwBPAcd0Q2ySJFVO\nlyf7zPwDECuYfFBXxiJJ0urAJ+hJklRxJntJkirOZC9JUsWZ7CVJqjiTvSRJFWeylySp4kz2kiRV\nnMlekqSKM9lLklRxJntJkirOZC9JUsWZ7CVJqrju6PWucV55Fe66s7ujaKL9uzsASVU0trpdgwMw\n3g7CW7NkL0lSxfXukr2kbjH2nVWuUYPxC61VU7VYspckqeJM9pIkVZzJXpKkijPZS5JUcSZ7SZIq\nzmQvSVLFmewlSao4k70kSRVnspckqeJM9pIkVZzJXpKkijPZS5JUcXaE04NVvbMRSVLXsGQvSVLF\nmewlSao4q/ElSdUydmx3R9DjWLKXJKniTPaSJFWcyV6SpIoz2UuSVHE20JOkVqr+jIvxC/fv7hDU\nxSzZS5JUcSZ7SZIqzmQvSVLFmewlSao4G+hJ0mrGBoirnx5Xso+IQyPikYh4NCLO6O54JEnq7XpU\nyT4i+gA/Af4ZmAP8OSImZ+ZD3RuZJKm3qHrNxaroaSX7PYBHM/PxzHwDmAQc2c0xSZLUq/W0ZL85\nMLtmeE45TpIkraIeVY0PRBvjcpkZIk4FTi0H/3Hx+Q8/0PSous/GwAvdHUQTuX+9V5X3Ddy/3q7q\n+7ftyi7Q05L9HGCLmuFBwDO1M2TmxcDFABExNTOHd114Xcv9692qvH9V3jdw/3q71WH/VnaZnlaN\n/2dgm4gYEhFrAmOAyd0ckyRJvVqPKtln5uKIOA24GegD/DwzH+zmsCRJ6tV6VLIHyMwbgRvrnP3i\nZsbSA7h/vVuV96/K+wbuX2/n/rUSmdnxXJIkqdfqadfsJUlSg/XaZF+1x+pGxM8jYm5EPFAzbsOI\n+H1EzCr/b9CdMa6qiNgiIm6LiJkR8WBEjCvHV2X/+kfEvRExo9y/88rxQyJiSrl/V5SNTnutiOgT\nEfdFxPXlcGX2LyKejIi/RsT0lpbOFTo+B0TE1RHxcHkO7l2hfdu2/Mxa/l6OiM9VZf8AIuLfyu+V\nByLi8vL7ZqXPvV6Z7Gseq/tBYHvguIjYvnuj6rTLgENbjTsDuDUztwFuLYd7o8XAFzJzO2Av4LPl\n51WV/fsHcGBmDgWGAYdGxF7Ad4D/KPfvJeCUboyxEcYBM2uGq7Z//yszh9XcslWV4/OHwO8y833A\nUIrPsBL7lpmPlJ/ZMGA34DXgt1Rk/yJic+B0YHhm7kjRcH0Mq3LuZWav+wP2Bm6uGT4TOLO742rA\nfg0GHqgZfgTYtHy9KfBId8fYoP28lqL/g8rtH7AO8BdgT4qHevQtxy9zzPa2P4pnXtwKHAhcT/EA\nrCrt35PAxq3G9frjE3gH8ARl+6wq7Vsb+3ow8Mcq7R9Lnyq7IUWD+uuBQ1bl3OuVJXtWn8fqvisz\nnwUo/2/SzfF0WkQMBnYBplCh/SuruKcDc4HfA48BCzJzcTlLbz9G/xP4EvB2ObwR1dq/BG6JiGnl\nUzqhGsfn1sA84BflJZifRcS6VGPfWhsDXF6+rsT+ZebTwPeAp4BngYXANFbh3Outyb7Dx+qq54mI\n9YBfA5/LzJe7O55Gysy3sqhKHETRodN2bc3WtVE1RkSMBOZm5rTa0W3M2iv3r7RPZu5KcWnwsxFR\nlQ7R+wK7Aj/NzF2ARfTSKu32lNesRwFXdXcsjVS2NTgSGAJsBqxLcYy21uG511uTfYeP1a2I5yNi\nU4Dy/9xujmeVRUQ/ikQ/MTN/U46uzP61yMwFwO0UbRMGRETLsyx68zG6DzAqIp6k6InyQIqSflX2\nj8x8pvw/l+Ka7x5U4/icA8zJzCnl8NUUyb8K+1brg8BfMvP5crgq+/cB4InMnJeZbwK/Ad7PKpx7\nvTXZry6P1Z0MnFS+PoniWnevExEBXArMzMwf1Eyqyv4NjIgB5eu1KU7QmcBtwNHlbL12/zLzzMwc\nlJmDKc61/87M46nI/kXEuhGxfstrimu/D1CB4zMznwNmR0RLxykHAQ9RgX1r5TiWVuFDdfbvKWCv\niFin/B5t+fxW+tzrtQ/ViYjDKEoXLY/V/WY3h9QpEXE5MIKit6bngXOAa4ArgS0pPvRjMvPF7opx\nVUXEvsBdwF9Zes33KxTX7auwfzsDEyiOxTWAKzPz6xGxNUVJeEPgPuBjmfmP7ou08yJiBPC/M3Nk\nVfav3I/floN9gV9l5jcjYiOqcXwOA34GrAk8DpxMeZzSy/cNICLWoWjDtXVmLizHVeKzAyhv5R1N\ncVfTfcC/UFyjX6lzr9cme0mSVJ/eWo0vSZLqZLKXJKniTPaSJFWcyV6SpIoz2UuSVHEme0ltiogP\nRURGxPu6OxZJnWOyl7QixwF/oHiQjqRezGQvaTllPwb7UHSdOaYct0ZEXFj2rX19RNwYEUeX03aL\niDvKjmRubnlUqaSewWQvqS1HUfSB/j/AixGxK/Bhim6Yd6J4itfesKTfgx8BR2fmbsDPgV79REup\navp2PIuk1dBxFI+jhuKxnMcB/YCrMvNt4LmIuK2cvi2wI/D74vHd9KHojlNSD2Gyl7SM8rniBwI7\nRkRSJO9k6fPjl1sEeDAz9+6iECWtJKvxJbV2NPB/M3OrzBycmVsATwAvAB8pr92/i6LjJoBHgIER\nsaRaPyJ26I7AJbXNZC+pteNYvhT/a2Aziv7RHwDGU/RauDAz36D4gfCdiJgBTKfoc1tSD2Gvd5Lq\nFhHrZearZVX/vcA+ZZ/pknowr9lLWhnXR8QAir7Rv2Gil3oHS/aSJFWc1+wlSao4k70kSRVnspck\nqeJM9pIkVZzJXpKkijPZS5JUcf8fSyeBQLgy+XQAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0xae42eb8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "vs.survival_stats(data, outcomes, 'Age', [\"Sex == 'male'\"])" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Examining the survival statistics, the majority of males younger than 10 survived the ship sinking, whereas most males age 10 or older *did not survive* the ship sinking. Let's continue to build on our previous prediction: If a passenger was female, then we will predict they survive. If a passenger was male and younger than 10, then we will also predict they survive. Otherwise, we will predict they do not survive. \n", "Fill in the missing code below so that the function will make this prediction. \n", "**Hint:** You can start your implementation of this function using the prediction code you wrote earlier from `predictions_1`." ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def predictions_2(data):\n", " \"\"\" Model with two features: \n", " - Predict a passenger survived if they are female.\n", " - Predict a passenger survived if they are male and younger than 10. \"\"\"\n", " \n", " predictions = []\n", " for _, passenger in data.iterrows():\n", " \n", " # Remove the 'pass' statement below \n", " # and write your prediction conditions here\n", " #pass\n", " if passenger[\"Sex\"]==\"female\":\n", " predictions.append(1)\n", " #elif passenger[\"Sex\"]==\"male\":\n", " # predictions.append(0)\n", " \n", " elif passenger[\"Sex\"]==\"male\" and passenger[\"Age\"] < 10:\n", " predictions.append(1)\n", " #elif passenger[\"Sex\"]==\"male\" and passenger[\"Age\"] > 10:\n", " # predictions.append(0)\n", " else:\n", " predictions.append(0)\n", " \n", " \n", " # Return our predictions\n", " return pd.Series(predictions)\n", "\n", "# Make the predictions\n", "predictions = predictions_2(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 3\n", "*How accurate would a prediction be that all female passengers and all male passengers younger than 10 survived?* \n", "**Hint:** Run the code cell below to see the accuracy of this prediction." ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Predictions have an accuracy of 79.35%.\n" ] } ], "source": [ "print accuracy_score(outcomes, predictions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Predictions have an accuracy of 79.35%." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer**: *Replace this text with the prediction accuracy you found above.*" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "***\n", "Adding the feature **Age** as a condition in conjunction with **Sex** improves the accuracy by a small margin more than with simply using the feature **Sex** alone. Now it's your turn: Find a series of features and conditions to split the data on to obtain an outcome prediction accuracy of at least 80%. This may require multiple features and multiple levels of conditional statements to succeed. You can use the same feature multiple times with different conditions. \n", "**Pclass**, **Sex**, **Age**, **SibSp**, and **Parch** are some suggested features to try.\n", "\n", "Use the `survival_stats` function below to to examine various survival statistics. \n", "**Hint:** To use mulitple filter conditions, put each condition in the list passed as the last argument. Example: `[\"Sex == 'male'\", \"Age < 18\"]`" ] }, { "cell_type": "code", "execution_count": 98, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAGDCAYAAADHzQJ9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VWW56PHfI6CYklc0BBUya+cNVPCSN9KOl1TsooKZ\nl/KEZqb71K60G2hZllknKzM8tnWnhZd2imlby52aeQsULMQ23hIUBVER8ZLgc/4YY+FksdZistaa\n6zL4fT+f+ZlzvmOMdzxjzjnmM993vHOMyEwkSVK1rNXdAUiSpM5ngpckqYJM8JIkVZAJXpKkCjLB\nS5JUQSZ4SZIqyAQvdaGIODYibumEek6MiDs7I6Z2rv/iiPhaO5bbKiJejog+jYirM9YfERkR7+rK\nuKRGMMGvwSLiiYh4tfzCezYi/j0i1u/uuLpaRAyJiF9HxHMRsSgi/hoRJzZiXZl5ZWYe2Ii6a0XE\nSRHxcEQsLt/bGyNiQDntsoj45mrUtdKPicw8JTO/UceyT0TEB2qWezIz18/MZauzPW3U/7OIuKjm\neb+IWNJK2R7N1x8Rt0XE/+7A+idGxMSa51+OiMfLfWpuRFzV3rpr6hwdEbe1Mm1o+YPk5ZrbjE5Y\n58SIuKKj9ah7meB1eGauD+wCjAK+2s3xNFRE9G2h+BfAHGBrYBPgeODZTqy/S0XEfsC3gGMycwDw\nXuDq7o2qYe4A9qt5PhJ4Eti3WRnAtEYGEhEnAMcBHyj3qZHArY1cZ40Nyx8u62fm8C5aZ6t6wn4g\nE7xKmfkU8DtgB4CI+EREzCpbgI9FxMlN80bEphHx24h4MSKej4g/RcRa5bQvRcRT5XJ/j4gDyvK1\nIuLMiHg0IhZGxNURsXE5rakVckJEPFm2pL9Ss751I+LyiHihjOmLETG3ZvoWZQt8Qdl6Or1m2sSI\nuDYiroiIl4ATW9j8UcBlmbkkM5dm5gOZ+bty+dG16yrLlrdKW6j/y2WvyMY18+9cblO/2tZw2c39\nvWZ1Xx8RnysfN71eiyPioYj4cJ1v5yjg7sx8ACAzn8/MyzNzcUSMB44Fvli29m5oa10R8V7gYmDP\ncv4Xy/LlvQCtfR4i4hfAVsAN5bJfrHmv+5bLbhxFz9HT5ft7XVt1trCttwPvjYhNy+f7AJOB9ZqV\n3Z2Zb9SuPyLOLaf9uIzvxzX1fiAiZpcx/SQios7X/ebMfLR83Z/JzElNEyNig4i4NCLmlfvIN6M8\nVBARP42Ia2vm/U5E3FrnelsVEZ8s95kXIuLmiNi6ZtoPI2JORLwUEdMiYp+y/GDgy8DYqOkRiGa9\nMVHTyq95XU+KiCeB/y7L94iIu8r3cUZEjO7I9mg1Zaa3NfQGPEHR2gDYEpgJfKN8fiiwDRAULaRX\ngF3Kad+m+NLvV972Ked7D0VLeItyvqHANuXjfwXuAYYA6wA/A35VM18ClwDrAsOB14H3ltPPo/gi\n36hc/kFgbjltLYqW2deBtYF3Ao8BB5XTJwJvAB8q5123hdfhD8CfgXHAVs2mjW5aVyuv20r1U3y5\nfapm/vOBi8vHJwJ3lo/3LV+vKJ9vBLxa8/odBWxR1jsWWAIMal5PC9uzT1nP2cBewDrNpl8GfLNZ\n2Wqtq7aO1j4PzV+rZu913/L5jcBV5bb3A/ZbVZ0tbO/jwIfLx78F9geubFb29VbWfxvwv5vVl+Uy\nG1L8QFkAHFzH/vRx4HngCxSt9z7Npl9H8blfD9gMuA84uZz2NuB/ytd6H+A5YEgd61xhe5pN+xDw\nCEUPTl+K3rm7msW7STnt88AzQP+az/UVrX3um89TE8d/lNu3LjAYWAh8kOJz9b/K5wO7+7tvTbnZ\ngtd1ZavsTook+i2AzLwxMx/Nwu3ALRRfPFAktEHA1pn5Rmb+KYu9fBlF8t4uIvpl5hNZtmaAk4Gv\nZObczHyd4svhyFixK+/szHw1M2cAMygSPcDRwLcy84XMnAtcWLPMKIovjHMy85+Z+RjFD4VxNfPc\nnZnXZeabmflqC6/BUcCfgK8Bj0fE9IgYtRqvYfP6fwkcA1C2wMaVZc39ieJLsel1PbKs62mAzLwm\nM58u670KmA3stqpgMvNPwEcoDrvcCCyMiO9HGwPL2ruuUmufhzZFxCDgEOCU8r19o/ysrW6dtwP7\nli383Sh+SP6ppmyvcp7VcV5mvpiZTwJ/BEasaoHMvAL4LHBQub75EXFmua2bl9v6r1n0FM0HfkD5\nOc3MVygS7veBK4DPlp/1ej1XtpJfjIh/K8tOBr6dmbMycynFvj2iqRWfmVdk5sIseq0uoNh337Ma\n62zJxHL7Xi2356bMvKn8XP0emEqR8NUFTPD6UGZumJlbZ+apTQkwIg6JiHvK7tEXKXbKpi7P8yla\nBrdE0X1/JkBmPkLRUp9I8eU2OSK2KJfZGvhN05cQMIviB8HmNbE8U/P4FaBpwN8WFC3dJrWPtwa2\nqPlye5Gie3HzVuZfSZlczszM7cvlplP88Km3e7R5/ddSdGlvQdFKT4qE03y9SdGdfExZ9DGKlicA\nEXF8+WOjabt24K33oE2Z+bvMPBzYGDiComXY6mCyjqyLVj4PddgSeD4zX+hgnXdQvM47Ao+VyfLO\nmrJ1gXvrjKlJa5/FNmUxiPIDFK3/U4BzIuIgis9pP2BezWv8M4qWfNOy91H0PgWrP2Zi03I/3jAz\nmw77bA38sGZ9z5d1DwaIiM+X3feLyukbUP973prm++ZRzfbNvSl+uKkLmOC1kohYB/g18D1g88zc\nELiJ4suBzFycmZ/PzHcChwOfi/JYe2b+MjP3pti5E/hOWe0c4JCaL6ENM7N/Fsf+V2UeRdd8ky1r\nHs8BHm9W74DMrG0l1H3JxMx8rtzuLSiS4xKK7lMAylbwwOaLNavjRYoej6Mpkvav2mh9/oqiJ2Nr\nYHeK153y+SXAacAm5XvwN8r3YDW2583MvJXisMEOLcVbx7rafP3a+jysYtk5wMYRseFq1tncHRS9\nPYfy1g+pmRSfk0OBv2Tma62F39a2tVfZ63ANxeGkHSi29XVWTMRvL39UAhARn6FoRT8NfLETwphD\ncQigdt9YNzPvKo+3f4niM7pR+Z4vou33fIV9AXhHC/PULjcH+EWz9a+Xmed1eMtUFxO8WrI2xRfN\nAmBpRBwCLP9rV0QcFhHvKlu4L1G0xJdFxHsiYv/yB8JrFMeBm/4OdTFwblP3YEQMjIgj6oznauCs\niNgoIgZTJKIm9wEvRTG4b92I6BMRO6xOF3s5oGmHKAZeDQA+DTySmQspjov2j4hDI6IfxXHMdeqo\n9pcUo/E/Ssvd8wBkMRBuAfD/KAZovVhOWo/iy3JBGeMneCtBr2p7joiIceXrFRGxG8U4invKWZ6l\nGKvQZFXrehYYEhFrt7K+Fj8PrayrdtvnUQzsvKiMtV9E7FtHnc3reaRczxmUCb78QXVvWXZHS8ut\nKr7VFcUAykMjYkAUgwwPAbYH7i239Rbggoh4ezl9myj+8UBEvBv4JkW39nEUgyBXeVhgFS6m2G+2\nL9exQUQcVU4bACyleM/7RsTXgbfXLPssMDRWHNg4HRhXvk8jKQ4pteUK4PCIOKjcL/tHMWh1yCqW\nUycxwWslmbkYOJ0isb5A0QqdUjPLthQD014G7gYuyszbKBLfeRQDhJ6h6H78crnMD8s6bomIxRTJ\nZvc6QzoHmEsxmOoPFF3gr5exLqNo4Y0opz9HkSw3WI1NfhvwG+BFii7SrYExZf2LgFPLOp+iaMXU\nc2x0CsXr9GwWYwra8ivgA9T8EMjMh4ALKF7fZym6mv9c5/a8AHyK4jj6SxRftOdnZlP3/6UU4yRe\njIjr6ljXf1O0iJ+JiOdaWF9rnwcoBst9tdmx4VrHURxvfxiYT3GIZ1V1tuQOip6V2rj/RPEZbCvB\n/5CiB+WFiLiwjfnq8RLF5/1Jis/Sd4FPZ2bTOQSOp/jx/BDFe3QtMCiKcShXAN/JzBmZObus5xfl\nj+V2yczfUPSgTY7iHx5/oxgHAHAzxY+r/wH+QfGDvLZ7/ZryfmFE3F8+/hrFwNsXKAZwtvrDtVz/\nHIrDQ1+m+CExh2IAonmnizSNdJV6jYj4NDAuM/db5cyStIbyl5R6vIgYFBF7ld2a76H4S89vujsu\nSerJPNuQeoO1KUYcD6Po+pwMXNTmEpK0hrOLXpKkCrKLXpKkCjLBS5JUQb36GPymm26aQ4cO7e4w\nJEnqMtOmTXsuM5ufcGslvTrBDx06lKlTp3Z3GJIkdZmI+Ec989lFL0lSBZngJUmqIBO8JEkV1KuP\nwUuS2vbGG28wd+5cXnuttQvqqafq378/Q4YMoV+/fu1a3gQvSRU2d+5cBgwYwNChQykuzqfeIDNZ\nuHAhc+fOZdiwYe2qwy56Saqw1157jU022cTk3stEBJtsskmHel5M8JJUcSb33qmj75sJXpLUUH36\n9GHEiBFsv/32DB8+nO9///u8+eabAEydOpXTTz+9xeWGDh3Kc8891+H1X3fddTz00EMdrmd1fPCD\nH+TFF1/s0nU25zF4SVqTdHZrvo4Llq277rpMnz4dgPnz5/Oxj32MRYsWcfbZZzNy5EhGjhzZuTE1\nc91113HYYYex3XbbdWq9y5Yto0+fPi1Ou+mmmzp1Xe1hC16S1GU222wzJk2axI9//GMyk9tuu43D\nDjsMgIULF3LggQey8847c/LJJ9Pa1U7XX399vvKVrzB8+HD22GMPnn32WQD+8Y9/cMABB7DTTjtx\nwAEH8OSTT3LXXXcxZcoUvvCFLzBixAgeffTRFeq65ppr2GGHHRg+fDj77rsvAJdddhmnnXba8nkO\nO+wwbrvttuXr/vrXv87uu+/Ot771LY4++ujl8912220cfvjhwFu9D1/60pe46KK3rm49ceJELrjg\nAgDOP/98Ro0axU477cSECRM68rK2qGEJPiL6R8R9ETEjImZGxNll+bCIuDciZkfEVRGxdlm+Tvn8\nkXL60EbFJknqPu985zt58803mT9//grlZ599NnvvvTcPPPAAY8aM4cknn2xx+SVLlrDHHnswY8YM\n9t13Xy655BIATjvtNI4//ngefPBBjj32WE4//XTe9773MWbMGM4//3ymT5/ONttss0Jd55xzDjff\nfDMzZsxgypQpq4x9yZIl7LDDDtx7772cddZZ3HPPPSxZsgSAq666irFjx64w/7hx47jqqquWP7/6\n6qs56qijuOWWW5g9ezb33Xcf06dPZ9q0adxxxx2rfvFWQyNb8K8D+2fmcGAEcHBE7AF8B/hBZm4L\nvACcVM5/EvBCZr4L+EE5nySpglpqnd9xxx18/OMfB+DQQw9lo402anHZtddee3mrf9ddd+WJJ54A\n4O677+ZjH/sYAMcddxx33nnnKuPYa6+9OPHEE7nkkktYtmzZKufv06cPH/3oRwHo27cvBx98MDfc\ncANLly7lxhtv5Igjjlhh/p133pn58+fz9NNPM2PGDDbaaCO22morbrnlFm655RZ23nlndtllFx5+\n+GFmz569yvWvjoYdg8/i3Xu5fNqvvCWwP/CxsvxyYCLwU+CI8jHAtcCPIyKytT4aSVKv9Nhjj9Gn\nTx8222wzZs2atcK0ekaO9+vXb/l8ffr0YenSpS3OV09dF198Mffeey833ngjI0aMYPr06fTt23f5\nIEBghb+q9e/ff4Xj7mPHjuUnP/kJG2+8MaNGjWLAgAErrePII4/k2muv5ZlnnmHcuHFA8QPnrLPO\n4uSTT15ljO3V0GPwEdEnIqYD84HfA48CL2Zm07sxFxhcPh4MzAEopy8CNmmhzvERMTUipi5YsKCz\nA/bWVTdJa6QFCxZwyimncNppp62UgPfdd1+uvPJKAH73u9/xwgsvrFbd73vf+5g8eTIAV155JXvv\nvTcAAwYMYPHixS0u8+ijj7L77rtzzjnnsOmmmzJnzhyGDh3K9OnTefPNN5kzZw733Xdfq+scPXo0\n999/P5dccslK3fNNxo0bx+TJk7n22ms58sgjATjooIP4+c9/zssvF+3gp556aqVDFh3V0FH0mbkM\nGBERGwK/Ad7b0mzlfUvf+iu13jNzEjAJYOTIkbbuJamHe/XVVxkxYgRvvPEGffv25bjjjuNzn/vc\nSvNNmDCBY445hl122YX99tuPrbbaarXWc+GFF/LJT36S888/n4EDB/Lv//7vQJFgP/WpT3HhhRdy\n7bXXrnAc/gtf+AKzZ88mMznggAMYPnw4AMOGDWPHHXdkhx12YJdddml1nX369OGwww7jsssu4/LL\nL29xnu23357FixczePBgBg0aBMCBBx7IrFmz2HPPPYFi8N4VV1zBZptttlrb3Jboqh7wiJgAvAJ8\nCXhHZi6NiD2BiZl5UETcXD6+OyL6As8AA9vqoh85cmR26vXgbVl2HY+8SF1i1qxZvPe9LbWt1Bu0\n9P5FxLTMXOV/Cxs5in5g2XInItYFPgDMAv4IHFnOdgJwffl4Svmccvp/e/xdkqT2aWQX/SDg8ojo\nQ/FD4urM/G1EPARMjohvAg8Al5bzXwr8IiIeAZ4HxjUwNkmSKq2Ro+gfBHZuofwxYLcWyl8DjmpU\nPJIkrUk8k50kSRVkgpckqYJM8JIkVZAJXpLUUOeeey7bb789O+20EyNGjODee+/tcJ1TpkzhvPPO\n64Toiv+gV5GXi5WkNUic3bnn+8gJbf+b+e677+a3v/0t999/P+ussw7PPfcc//znP+uqe+nSpfTt\n23KaGjNmDGPGjFnteNcktuAlSQ0zb948Nt10U9ZZZx0ANt10U7bYYovll1MFmDp1KqNHjwaKy6mO\nHz+eAw88kOOPP57dd9+dmTNnLq9v9OjRTJs2bfklXRctWsTQoUOXnzv+lVdeYcstt+SNN97g0Ucf\n5eCDD2bXXXdln3324eGHHwbg8ccfZ88992TUqFF87Wtf68JXo2uZ4CVJDXPggQcyZ84c3v3ud3Pq\nqady++23r3KZadOmcf311/PLX/6ScePGcfXVVwPFj4Wnn36aXXfddfm8G2ywAcOHD19e7w033MBB\nBx1Ev379GD9+PD/60Y+YNm0a3/ve9zj11FMBOOOMM/j0pz/NX/7yF97xjnc0YKt7BhO8JKlh1l9/\nfaZNm8akSZMYOHAgY8eO5bLLLmtzmTFjxrDuuusCcPTRR3PNNdcAb11LvbmxY8cuv+b65MmTGTt2\nLC+//DJ33XUXRx11FCNGjODkk09m3rx5APz5z3/mmGOOAYrLylaVx+AlSQ3Vp08fRo8ezejRo9lx\nxx25/PLLV7gka+3lWAHWW2+95Y8HDx7MJptswoMPPshVV13Fz372s5XqHzNmDGeddRbPP/8806ZN\nY//992fJkiVsuOGGTJ8+vcWY6rmUbG9nC16S1DB///vfmT179vLn06dPZ+utt2bo0KFMmzYNgF//\n+tdt1jFu3Di++93vsmjRInbccceVpq+//vrstttunHHGGRx22GH06dOHt7/97QwbNmx56z8zmTFj\nBgB77bXXCpeVrSoTvCSpYV5++WVOOOEEtttuO3baaSceeughJk6cyIQJEzjjjDPYZ5996NOnT5t1\nHHnkkUyePJmjjz661XnGjh3LFVdcscI12a+88kouvfRShg8fzvbbb8/11xfXNvvhD3/IT37yE0aN\nGsWiRYs6Z0N7oC67XGwjeLnYXqwXf+6k3sTLxfZuPfJysZIkqfuY4CVJqiATvCRJFWSCl6SK681j\nrdZkHX3fTPCSVGH9+/dn4cKFJvleJjNZuHAh/fv3b3cdnuhGkipsyJAhzJ07lwULFnR3KFpN/fv3\nZ8iQIe1e3gQvSRXWr18/hg0b1t1hqBvYRS9JUgWZ4CVJqiATvCRJFWSClySpgkzwkiRVkAlekqQK\nMsFLklRBJnhJkirIBC9JUgWZ4CVJqiATvCRJFWSClySpgkzwkiRVkAlekqQKMsFLklRBJnhJkirI\nBC9JUgWZ4CVJqiATvCRJFWSClySpgkzwkiRVkAlekqQKMsFLklRBJnhJkiqoYQk+IraMiD9GxKyI\nmBkRZ5TlEyPiqYiYXt4+WLPMWRHxSET8PSIOalRskiRVXd8G1r0U+Hxm3h8RA4BpEfH7ctoPMvN7\ntTNHxHbAOGB7YAvgDxHx7sxc1sAYJUmqpIa14DNzXmbeXz5eDMwCBrexyBHA5Mx8PTMfBx4BdmtU\nfJIkVVmXHIOPiKHAzsC9ZdFpEfFgRPw8IjYqywYDc2oWm0sLPwgiYnxETI2IqQsWLGhg1JIk9V4N\nT/ARsT7wa+BfM/Ml4KfANsAIYB5wQdOsLSyeKxVkTsrMkZk5cuDAgQ2KWpKk3q2hCT4i+lEk9ysz\n8z8BMvPZzFyWmW8Cl/BWN/xcYMuaxYcATzcyPkmSqqqRo+gDuBSYlZnfrykfVDPbh4G/lY+nAOMi\nYp2IGAZsC9zXqPgkSaqyRo6i3ws4DvhrREwvy74MHBMRIyi6358ATgbIzJkRcTXwEMUI/M84gl6S\npPZpWILPzDtp+bj6TW0scy5wbqNikiRpTeGZ7CRJqiATvCRJFWSClySpgkzwkiRVkAlekqQKMsFL\nklRBJnhJkirIBC9JUgWZ4CVJqiATvCRJFWSClySpgkzwkiRVkAlekqQKMsFLklRBJnhJkirIBC9J\nUgWZ4CVJqiATvCRJFWSClySpgkzwkiRVkAlekqQKMsFLklRBJnhJkirIBC9JUgWZ4CVJqiATvCRJ\nFWSClySpgkzwkiRVkAlekqQKMsFLklRBJnhJkirIBC9JUgWZ4CVJqiATvCRJFWSClySpglaZ4CNi\nvYhYq3z87ogYExH9Gh+aJElqr3pa8HcA/SNiMHAr8AngskYGJUmSOqaeBB+Z+QrwEeBHmflhYLvG\nhiVJkjqirgQfEXsCxwI3lmV9GxeSJEnqqHoS/BnAWcBvMnNmRLwT+GNjw5IkSR3RZks8IvoAh2fm\nmKayzHwMOL3RgUmSpPZrswWfmcuAXbsoFkmS1Enq6aJ/ICKmRMRxEfGRptuqFoqILSPijxExKyJm\nRsQZZfnGEfH7iJhd3m9UlkdEXBgRj0TEgxGxSwe3TZKkNVY9CX5jYCGwP3B4eTusjuWWAp/PzPcC\newCfiYjtgDOBWzNzW4q/3Z1Zzn8IsG15Gw/8dDW2Q5Ik1VjlaPjM/ER7Ks7MecC88vHiiJgFDAaO\nAEaXs10O3AZ8qSz/j8xM4J6I2DAiBpX1SJKk1VDPmezeHRG3RsTfyuc7RcRXV2clETEU2Bm4F9i8\nKWmX95uVsw0G5tQsNrcskyRJq6meLvpLKP4m9wZAZj4IjKt3BRGxPvBr4F8z86W2Zm2hLFuob3xE\nTI2IqQsWLKg3DEmS1ij1JPi3ZeZ9zcqW1lN5ec76XwNXZuZ/lsXPRsSgcvogYH5ZPhfYsmbxIcDT\nzevMzEmZOTIzRw4cOLCeMCRJWuPUk+Cfi4htKFvTEXEk5bH1tkREAJcCszLz+zWTpgAnlI9PAK6v\nKT++HE2/B7DI4++SJLVPPaec/QwwCfiXiHgKeBz4eB3L7QUcB/w1IqaXZV8GzgOujoiTgCeBo8pp\nNwEfBB4BXqG4qI0kSWqHekbRPwZ8ICLWA9bKzMX1VJyZd9LycXWAA1qYPyl+TEiSpA5aZYKPiM81\new6wCJiWmdNbXEiSJHWreo7BjwROofjL2mCKk9CMBi6JiC82LjRJktRe9RyD3wTYJTNfBoiICcC1\nwL7ANOC7jQtPkiS1Rz0t+K2Af9Y8fwPYOjNfBV5vSFSSJKlD6mnB/5Li1LFNf2c7HPhVOejuoYZF\nJkmS2q2eUfTfiIjfUfztLYBTMnNqOfnYRgYnSZLap54WPMADFGeV6wsQEVtl5pMNi0qSJHVIPX+T\n+ywwAXgWWEbRik9gp8aGJkmS2queFvwZwHsyc2Gjg5EkSZ2jnlH0cyhObCNJknqJelrwjwG3RcSN\n1PwtrtkFZCRJUg9ST4J/srytXd4kSVIPV8/f5M4GiIj1MnNJ40OSJEkdtcpj8BGxZ0Q8BMwqnw+P\niIsaHpkkSWq3egbZ/V/gIGAhQGbOoDgPvSRJ6qHqSfBk5pxmRcsaEIskSeok9QyymxMR7wMyItYG\nTqfsrpckST1TPS34U4DPUFwLfi4wonwuSZJ6qHpG0T+HF5WRJKlXqWcU/Xcj4u0R0S8ibo2I5yLi\n410RnCRJap96uugPzMyXgMMouujfDXyhoVFJkqQOqSfB9yvvPwj8KjOfb2A8kiSpE9Qziv6GiHgY\neBU4NSIGAq81NixJktQRq2zBZ+aZwJ7AyMx8A1gCHNHowCRJUvvVM8juKGBpZi6LiK8CVwBbNDwy\nSZLUbvUcg/9aZi6OiL0pTll7OfDTxoYlSZI6op4E33Ra2kOBn2bm9XjZWEmSerR6EvxTEfEz4Gjg\npohYp87lJElSN6knUR8N3AwcnJkvAhvj/+AlSerR6hlF/0pm/iewKCK2ovhf/MMNj0ySJLVbPaPo\nx0TEbOBx4Pby/neNDkySJLVfPV303wD2AP4nM4cBHwD+3NCoJElSh9ST4N/IzIXAWhGxVmb+keKS\nsZIkqYeq51S1L0bE+sAdwJURMR9Y2tiwJElSR9TTgj8CeAX4P8B/AY8ChzcyKEmS1DFttuAj4kPA\nu4C/ZubNFGexkyRJPVyrLfiIuIii1b4J8I2I+FqXRSVJkjqkrRb8vsDw8iIzbwP+RDGiXpIk9XBt\nHYP/Z2Yug+JkN0B0TUiSJKmj2mrB/0tEPFg+DmCb8nkAmZk7NTw6SZLULm0l+Pd2WRSSJKlTtZrg\nM/MfXRmIJEnqPF72VZKkCmpYgo+In0fE/Ij4W03ZxIh4KiKml7cP1kw7KyIeiYi/R8RBjYpLkqQ1\nQVv/g7+1vP9OO+u+DDi4hfIfZOaI8nZTuY7tgHHA9uUyF0VEn3auV5KkNV5bg+wGRcR+wJiImEyz\nv8ll5v1tVZyZd0TE0DrjOAKYnJmvA49HxCPAbsDddS4vSZJqtJXgvw6cCQwBvt9sWgL7t3Odp0XE\n8cBU4POZ+QIwGLinZp65ZdlKImI8MB5gq622amcIkiRVW6td9Jl5bWYeAnw3M9/f7Nbe5P5TYBuK\ny83OAy7Dg+HWAAAND0lEQVQoy1s6iU62EtekzByZmSMHDhzYzjAkSaq2VV4uNjO/ERFjKE5dC3Bb\nZv62PSvLzGebHkfEJUBTPXOBLWtmHQI83Z51SJKkOkbRR8S3gTOAh8rbGWXZaouIQTVPPww0jbCf\nAoyLiHUiYhiwLXBfe9YhSZLqaMEDhwIjMvNNgIi4HHgAOKuthSLiV8BoYNOImAtMAEZHxAiK7vcn\ngJMBMnNmRFxN8QNiKfCZpvPgS5Kk1VdPggfYEHi+fLxBPQtk5jEtFF/axvznAufWGY8kSWpDPQn+\n28ADEfFHisFw+7KK1rskSepe9Qyy+1VE3AaMokjwX8rMZxodmCRJar+6uugzcx7FQDhJktQLeLEZ\nSZIqyAQvSVIFtZngI2Kt2qvBSZKk3qHNBF/+931GRHjSd0mSepF6BtkNAmZGxH3AkqbCzBzTsKgk\nSVKH1JPgz254FJIkqVPV8z/42yNia2DbzPxDRLwN6NP40CRJUnvVc7GZTwHXAj8riwYD1zUyKEmS\n1DH1/E3uM8BewEsAmTkb2KyRQUmSpI6pJ8G/npn/bHoSEX0prgYnSZJ6qHoS/O0R8WVg3Yj4X8A1\nwA2NDUuSJHVEPQn+TGAB8FeK67ffBHy1kUFJkqSOqWcU/ZsRcTlwL0XX/N8z0y56SZJ6sFUm+Ig4\nFLgYeJTicrHDIuLkzPxdo4OTJEntU8+Jbi4A3p+ZjwBExDbAjYAJXpKkHqqeY/Dzm5J76TFgfoPi\nkSRJnaDVFnxEfKR8ODMibgKupjgGfxTwly6ITZIktVNbXfSH1zx+FtivfLwA2KhhEUmSpA5rNcFn\n5ie6MhBJktR56hlFPwz4LDC0dn4vFytJUs9Vzyj664BLKc5e92Zjw5EkSZ2hngT/WmZe2PBIJElS\np6knwf8wIiYAtwCvNxVm5v0Ni0qSJHVIPQl+R+A4YH/e6qLP8rkkSeqB6knwHwbeWXvJWEmS1LPV\ncya7GcCGjQ5EkiR1nnpa8JsDD0fEX1jxGLx/k5MkqYeqJ8FPaHgUkiSpU9VzPfjbuyIQSZLUeeo5\nk91iilHzAGsD/YAlmfn2RgYmSZLar54W/IDa5xHxIWC3hkUkSZI6rJ5R9CvIzOvwP/CSJPVo9XTR\nf6Tm6VrASN7qspckST1QPaPoa68LvxR4AjiiIdFIkqROUc8xeK8LL0lSL9Nqgo+Ir7exXGbmNxoQ\njyRJ6gRtteCXtFC2HnASsAlggpckqYdqNcFn5gVNjyNiAHAG8AlgMnBBa8tJkqTu1+Yx+IjYGPgc\ncCxwObBLZr7QFYFJkqT2a+sY/PnAR4BJwI6Z+XKXRSVJkjqkrRPdfB7YAvgq8HREvFTeFkfES6uq\nOCJ+HhHzI+JvNWUbR8TvI2J2eb9RWR4RcWFEPBIRD0bELh3dMEmS1mStJvjMXCsz183MAZn59prb\ngDrPQ38ZcHCzsjOBWzNzW+DW8jnAIcC25W088NPV3RBJkvSW1T5Vbb0y8w7g+WbFR1Acy6e8/1BN\n+X9k4R5gw4gY1KjYJEmquoYl+FZsnpnzAMr7zcrywcCcmvnmlmUriYjxETE1IqYuWLCgocFKktRb\ndXWCb020UNbi+e4zc1JmjszMkQMHDmxwWJIk9U5dneCfbep6L+/nl+VzgS1r5hsCPN3FsUmSVBld\nneCnACeUj08Arq8pP74cTb8HsKipK1+SJK2+eq4m1y4R8StgNLBpRMwFJgDnAVdHxEnAk8BR5ew3\nAR8EHgFeoThjniRJaqeGJfjMPKaVSQe0MG8Cn2lULJIkrWl6yiA7SZLUiUzwkiRVkAlekqQKMsFL\nklRBJnhJkirIBC9JUgWZ4CVJqiATvCRJFWSClySpgkzwkiRVkAlekqQKMsFLklRBJnhJkirIBC9J\nUgWZ4CVJqiATvCRJFWSClySpgkzwkiRVkAlekqQKMsFLklRBJnhJkirIBC9JUgWZ4CVJqqC+3R2A\nJK0gorsjWCPExO6OYM2QE7Lb1m0LXpKkCjLBS5JUQSZ4SZIqyAQvSVIFmeAlSaogE7wkSRVkgpck\nqYJM8JIkVZAJXpKkCjLBS5JUQSZ4SZIqyAQvSVIFmeAlSaogE7wkSRVkgpckqYJM8JIkVZAJXpKk\nCjLBS5JUQSZ4SZIqqG93rDQingAWA8uApZk5MiI2Bq4ChgJPAEdn5gvdEZ8kSb1dd7bg35+ZIzJz\nZPn8TODWzNwWuLV8LkmS2qEnddEfAVxePr4c+FA3xiJJUq/WXQk+gVsiYlpEjC/LNs/MeQDl/WYt\nLRgR4yNiakRMXbBgQReFK0lS79Itx+CBvTLz6YjYDPh9RDxc74KZOQmYBDBy5MhsVICSJPVm3dKC\nz8yny/v5wG+A3YBnI2IQQHk/vztikySpCrq8BR8R6wFrZebi8vGBwDnAFOAE4Lzy/vqujk1dJ86O\n7g5hjZAT7OSS1lTd0UW/OfCbiGha/y8z878i4i/A1RFxEvAkcFQ3xCZJUiV0eYLPzMeA4S2ULwQO\n6Op4JEmqop70NzlJktRJTPCSJFWQCV6SpAoywUuSVEEmeEmSKsgEL0lSBZngJUmqIBO8JEkVZIKX\nJKmCTPCSJFWQCV6SpAoywUuSVEEmeEmSKsgEL0lSBZngJUmqIBO8JEkVZIKXJKmCTPCSJFWQCV6S\npAoywUuSVEEmeEmSKsgEL0lSBZngJUmqIBO8JEkVZIKXJKmCTPCSJFWQCV6SpAoywUuSVEEmeEmS\nKsgEL0lSBZngJUmqIBO8JEkVZIKXJKmCTPCSJFWQCV6SpAoywUuSVEEmeEmSKsgEL0lSBZngJUmq\nIBO8JEkVZIKXJKmCTPCSJFVQj0vwEXFwRPw9Ih6JiDO7Ox5JknqjHpXgI6IP8BPgEGA74JiI2K57\no5IkqffpUQke2A14JDMfy8x/ApOBI7o5JkmSep2eluAHA3Nqns8tyyRJ0mro290BNBMtlOUKM0SM\nB8aXT1+OiL83PCp1vondHUC7bAo8191BrI6Y2NIuJeE+2EUatA9uXc9MPS3BzwW2rHk+BHi6dobM\nnARM6sqgJICImJqZI7s7DmlN5T64enpaF/1fgG0jYlhErA2MA6Z0c0ySJPU6PaoFn5lLI+I04Gag\nD/DzzJzZzWFJktTr9KgED5CZNwE3dXccUgs8NCR1L/fB1RCZueq5JElSr9LTjsFLkqROYIKX2iEi\nRkfEb7s7Dqk3iYjTI2JWRFzZoPonRsS/NaLu3qjHHYOXJFXWqcAhmfl4dweyJrAFrzVWRAyNiIcj\n4v9FxN8i4sqI+EBE/DkiZkfEbuXtroh4oLx/Twv1rBcRP4+Iv5TzeXplqZmIuBh4JzAlIr7S0j4T\nESdGxHURcUNEPB4Rp0XE58p57omIjcv5PlUuOyMifh0Rb2thfdtExH9FxLSI+FNE/EvXbnH3M8Fr\nTfcu4IfATsC/AB8D9gb+Dfgy8DCwb2buDHwd+FYLdXwF+O/MHAW8Hzg/ItbrgtilXiMzT6E4cdn7\ngfVofZ/ZgWI/3A04F3il3P/uBo4v5/nPzByVmcOBWcBJLaxyEvDZzNyVYn++qDFb1nPZRa813eOZ\n+VeAiJgJ3JqZGRF/BYYCGwCXR8S2FKdN7tdCHQcCY2qO/fUHtqL44pG0stb2GYA/ZuZiYHFELAJu\nKMv/SvFDHGCHiPgmsCGwPsW5U5aLiPWB9wHXRCw/Vew6jdiQnswErzXd6zWP36x5/ibF/vENii+c\nD0fEUOC2FuoI4KOZ6XURpPq0uM9ExO6sep8EuAz4UGbOiIgTgdHN6l8LeDEzR3Ru2L2LXfRS2zYA\nniofn9jKPDcDn42yqRARO3dBXFJv1tF9ZgAwLyL6Acc2n5iZLwGPR8RRZf0REcM7GHOvY4KX2vZd\n4NsR8WeK0ye35BsUXfcPRsTfyueSWtfRfeZrwL3A7ynGybTkWOCkiJgBzATWuMGvnslOkqQKsgUv\nSVIFmeAlSaogE7wkSRVkgpckqYJM8JIkVZAJXlKLyvOFz4yIByNienkSEkm9hGeyk7SSiNgTOAzY\nJTNfj4hNgbW7OSxJq8EWvKSWDAKey8zXATLzucx8OiJ2jYjbyyt03RwRgyKib3llr9EAEfHtiDi3\nO4OX5IluJLWgvFjHncDbgD8AVwF3AbcDR2TmgogYCxyUmZ+MiO2Ba4HTKc7+t3tm/rN7opcEdtFL\nakFmvhwRuwL7UFzO8yrgmxSX8vx9eQrxPsC8cv6ZEfELiit/7Wlyl7qfCV5SizJzGcXV824rL5/7\nGWBmZu7ZyiI7Ai8Cm3dNhJLa4jF4SSuJiPdExLY1RSMorm8/sByAR0T0K7vmiYiPAJsA+wIXRsSG\nXR2zpBV5DF7SSsru+R8BGwJLgUeA8cAQ4EKKy+j2Bf4v8BuK4/MHZOaciDgd2DUzT+iO2CUVTPCS\nJFWQXfSSJFWQCV6SpAoywUuSVEEmeEmSKsgEL0lSBZngJUmqIBO8JEkVZIKXJKmC/j+RqD1vHDMm\nzgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0xdfc4e80>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "vs.survival_stats(data, outcomes, 'Sex', [ \"Pclass == 3\" ])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "vs.survival_stats(data, outcomes, 'Age', [\"Sex == 'male'\", \"Age < 18\"])" ] }, { "cell_type": "code", "execution_count": 284, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAGDCAYAAADd8eLzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYHXWd7/H3l04gSJA1KBAggVGGNQHCDiEXHEAIARVI\nEAFXosglc/W6oCCgo6Oi3gGVYRGFO0TCorIzhMuwqQgmkiAQnMgiCVsWIIQAQsj3/lHVodPp7lR3\n+nR3Ku/X8/TT59SpU/U9dU6dz/lV/aoqMhNJkrRqW6O3C5AkSSvPQJckqQYMdEmSasBAlySpBgx0\nSZJqwECXJKkGDHSpm0XE8RExuRum8/GI+G131NTF+V8YEWd24XlbRsSrEdHUiLq6Y/4RkRHxDz1Z\nl9RoBnrNRcRTEfF6+QX3QkT8IiIG9nZdPS0iBkfEryJiXkQsiIg/R8THGzGvzJyYmQc3YtotRcSn\nIuKxiFhYvrc3R8S65WOXRcS/dGJay/14yMzPZua3Kjz3qYj4QIvnPZ2ZAzPz7c68ng6mf1FEXNDi\nfv+IWNTOsL1azz8i7oqIT6/E/M+OiLNbDRsaEUta1tAdIqLdE4O0Wpeb/zZbyfmNiojZKzMN9R0G\n+urhiMwcCOwK7A6c0cv1NFRE9Gtj8H8As4CtgI2AE4EXunH6PSoiDgC+AxyXmesC2wFX925VDXMP\ncECL+yOAp4GRrYYBTO2hmk4EXgLGRcRaPTRPKNflFn/P9uC8l9MX1gW9w0BfjWTmM8CtwI4AEfGJ\niJhRtvCeiIjxzeNGxMYRcVNEvBwRL0bEvRGxRvnYVyLimfJ5f4mIg8rha0TEVyPi8YiYHxFXR8SG\n5WNDys2cJ0XE02VL+est5rd2RFweES+VNX25ZcshIjYrW9hzI+LJiDitxWNnR8S1EXFFRLwCfLyN\nl787cFlmLsrMxZn5YGbeWj5/uVZKy1ZnG9P/WtlS2rDF+LuUr6l/y9Zuudn6B62mfX1EfKG83by8\nFkbEoxHxoYpv5+7AfZn5IEBmvpiZl2fmwog4GTge+HLZiruxo3lFxHbAhcDe5fgvl8OXtvLb+zxE\nxH8AWwI3ls/9cov3ul/53A2j2DL0bPn+XtfRNNt4rXcD20XExuX9/YFJwDqtht2XmW+1nH9EfLt8\n7CdlfT9pMd0PRMTMsqafRkRUXPZQBPoZwFvAES0fiIiDy/ViQURcEBF3R4stBBHxyfIz/lJE3BYR\nW3Vivm2KiL0i4vflspweEaNaPPaJaGM9j4h1KL4PNosWLf5otXWn9fpRrhtfiYiHgEXlcm53/VQP\nykz/avwHPAV8oLy9BfAI8K3y/uHANkBQtIBeA3YtH/tXii/5/uXf/uV421K0dDcrxxsCbFPe/mfg\nD8BgYC3gIuDKFuMlcAmwNjAM+DuwXfn4dym+uDcon/8QMLt8bA2Kltc3gDWBrYEngEPKx8+m+GI9\nqhx37TaWw/8DfgeMA7Zs9dio5nm1s9yWmz7wX8BnWox/LnBhefvjwG/L2yPL5RXl/Q2A11ssv2OA\nzcrpjgUWAZu2nk4br2f/cjrnAPsCa7V6/DLgX1oN69S8Wk6jvc9D62XV6r3uV96/GbiqfO39gQNW\nNM02Xu+TwIfK2zcBBwITWw37Rjvzvwv4dKvpZfmc9Sl+kMwFDq24Tu1P8dndAPgxcEOLxzYGXgE+\nDPQDJpSfnU+Xjx8F/JVii0o/ih8Fv+/sutxq+ObAfOCw8r39p/L+oArr+SiW/+wv89lpPU5ZxzSK\n75O1WcH66V/P/dlCXz1cV7a6fksRmt8ByMybM/PxLNwNTKb4soLiS2hTYKvMfCsz781ibX6bIqy3\nj4j+mflUZj5ePmc88PXMnJ2Zf6cIwqNj2c1y52Tm65k5HZhOEewAxwLfycyXMnM2cH6L5+xO8eX0\nzcx8MzOfoPhhMK7FOPdl5nWZuSQzX29jGRwD3AucCTwZEdMiYvdOLMPW0/8lcBxA2bIbVw5r7V6K\n8GherkeX03oWIDOvycxny+leBcwE9lhRMZl5L0Vo7EoRmPMj4kfRQUewrs6r1N7noUMRsSnwQeCz\n5Xv7VvlZ6+w07wZGli34PSh+ON7bYti+5Tid8d3MfDkznwbuBIZXfN5JwK2Z+RLFe/7BiNikfOww\n4JHM/HVmLqb4HD/f4rnjgX/NzBnl498BhneilX5d2Qp/uXlLB/Ax4JbMvKV8b28HppS1rGg976rz\nM3NWuS5UWT/VAwz01cNRmbl+Zm6Vmac0B15EfDAi/lBu7nyZ4gugeRPmuRQticnlZrqvAmTmXyla\n4mcDcyJiUrzTMWcr4DfNXzjADIofAO9pUUvLL7fXgOYOeptRtGSbtby9FcVmwZdbTPtrrabbcvzl\nlGHy1czcoXzeNIovx6qbWVtP/1qKTdSbUbTCkyJgWs83KTYPH1cO+ihFyxKAiDix/HHR/Lp25J33\noEOZeWtmHgFsCBxJ0cput/PXysyLdj4PFWwBvFiG38pM8x6K5bwT8ERmvkbxA7V52NrA/RVratbe\nZ7FdEbE2xY/DiQCZeR/F/vyPlqMs8zku3/+Wu3O2As5r8R68SNFy3rxizc3r8vqZeVSLaR7Tav3Y\nj+LH0orW867q7PqpHmCgr6ai6MjzK+AHwHsyc33gFoovFzJzYWZ+MTO3pthH+IUo95Vn5i8zcz+K\nFTmB75WTnQV8sMUXzvqZOSCLffcr8hzFpvZmW7S4PQt4stV0183Mw1qMU/mygZk5r3zdm1GE4SLg\nXc2Pl63cQa2f1moaL1O0dI6l+DK/soPW5ZUUWyq2AvakWO6U9y8BTgU2Kt+Dhynfg068niWZeQfF\nboAd26q3wrw6XH4dfR5W8NxZwIYRsX4np9naPRRbcw7nnR9Oj1B8Tg4H/piZb7RXfkevrZM+BLwb\nuCAino+I5ynC+MTy8WU+x+UPxpaf61nA+Faf5bUz8/crUdMs4D9aTXOdzPzuitZz2l42y6wPwHvb\nGKfl86qsn+oBBvrqa02KTedzgcUR8UFg6aFWETE6Iv6h/EJ6haKl/XZEbBsRB5ZfFG9Q7MdtPjzp\nQuDbzZsPI2JQRBxZsZ6rgdMjYoOI2JwieJo9ALxSdsRZOyKaImLHzmwyj4jvlc/pF8WhXZ8D/pqZ\n84H/BgZExOER0Z9iv2aVnsu/pPgi/whtb24HIIuOa3OBnwG3lT8GANah+GKcW9b4Cd4J5BW9niMj\nYly5vCIi9qDYP/qHcpQXKPZlNlvRvF4ABkfEmu3Mr83PQzvzavnan6PoeHVBWWv/iBhZYZqtp/PX\ncj4TKAO9/AF1fznsnraet6L6uuAk4OcUWwWGl3/7Umw234li98dOEXFUuavp8ywbiBdSfM53AIiI\n9SLimJWs6QrgiIg4pFw3BkTRkW0wK1jPKZbNRhGxXoth04DDoujM+F6KLXIdWen1U93DQF9NZeZC\n4DSKIH2JopV5Q4tR3kfRkexV4D7ggsy8i+LL4bvAPIpNlptQbF4DOK+cxuSIWEgRLntWLOmbFJsm\nnyzney1FxyOyOJ74CIovzyfLef8MWK/NKbXtXcBvgJcpOuxsBYwpp78AOKWc5jMULZQqx+beQLGc\nXsiiT0BHrgQ+QIvgz8xHgR9SLN8XKELidxVfz0vAZyj2g79C8aV+bmY2b86/lKKfw8sRcV2Fef0X\nRYv3+YiY18b82vs8QNG57YxyXv+7jeeeQLG//DFgDu8EREfTbMs9FFtOWtZ9L8VnsKNAP49iC8lL\nEXF+B+N1qPyheRDwb5n5fIu/qcB/AieVW3+OAb5P0TFte4r92c2f5d9QbNGaFMUREw9T9DHossyc\nRbHL5WsUwT0L+BKwxorW88x8jOKz+UT5/m1GcYjndIrOb5MpOjR2NP/uWD/VDZp7qUp9SkR8DhiX\nmQescGSpj4qiw95s4PjMvLO361G92UJXnxARm0bEvlEc27wt8EWKFrW0Sik3fa9f7pb6GsX+6j+s\n4GnSSvMsP+or1qQ4bn0oxWbxSUC3nlZT6iF7U+xaWRN4lKJneluHUkrdyk3ukiTVgJvcJUmqAQNd\nkqQaWCX2oW+88cY5ZMiQ3i5DkqQeMXXq1HmZ2foEVx1aJQJ9yJAhTJkypbfLkCSpR0TE3zr7HDe5\nS5JUAwa6JEk1YKBLklQDq8Q+dElS+9566y1mz57NG2+0d8E59VUDBgxg8ODB9O/ff6WnZaBL0ipu\n9uzZrLvuugwZMoTi4nVaFWQm8+fPZ/bs2QwdOnSlp+cmd0laxb3xxhtstNFGhvkqJiLYaKONum3L\nioEuSTVgmK+auvN9M9AlSSutqamJ4cOHs8MOOzBs2DB+9KMfsWTJEgCmTJnCaaed1ubzhgwZwrx5\n81Z6/tdddx2PPvroSk+nMw477DBefvnlHp1nR9yHLkl1M358907vootWOMraa6/NtGnTAJgzZw4f\n/ehHWbBgAeeccw4jRoxgxIgR3VtTK9dddx2jR49m++2379bpvv322zQ1NbX52C233NKt81pZttAl\nSd1qk0024eKLL+YnP/kJmcldd93F6NGjAZg/fz4HH3wwu+yyC+PHj6e9K34OHDiQr3/96wwbNoy9\n9tqLF154AYC//e1vHHTQQey8884cdNBBPP300/z+97/nhhtu4Etf+hLDhw/n8ccfX2Za11xzDTvu\nuCPDhg1j5MiRAFx22WWceuqpS8cZPXo0d91119J5f+Mb32DPPffkO9/5Dscee+zS8e666y6OOOII\n4J2tC1/5yle44IJ3rvZ89tln88Mf/hCAc889l913352dd96Zs846a2UW6woZ6JKkbrf11luzZMkS\n5syZs8zwc845h/32248HH3yQMWPG8PTTT7f5/EWLFrHXXnsxffp0Ro4cySWXXALAqaeeyoknnshD\nDz3E8ccfz2mnncY+++zDmDFjOPfcc5k2bRrbbLPNMtP65je/yW233cb06dO54YYbVlj7okWL2HHH\nHbn//vs5/fTT+cMf/sCiRYsAuOqqqxg7duwy448bN46rrrpq6f2rr76aY445hsmTJzNz5kweeOAB\npk2bxtSpU7nnnntWvPC6yECXJDVEW63ve+65h4997GMAHH744WywwQZtPnfNNddc2qrfbbfdeOqp\npwC47777+OhHPwrACSecwG9/+9sV1rHvvvvy8Y9/nEsuuYS33357heM3NTXxkY98BIB+/fpx6KGH\ncuONN7J48WJuvvlmjjzyyGXG32WXXZgzZw7PPvss06dPZ4MNNmDLLbdk8uTJTJ48mV122YVdd92V\nxx57jJkzZ65w/l3lPnRJUrd74oknaGpqYpNNNmHGjBnLPFalZ3f//v2XjtfU1MTixYvbHK/KtC68\n8ELuv/9+br75ZoYPH860adPo16/f0k57wDKHjg0YMGCZ/eZjx47lpz/9KRtuuCG7774766677nLz\nOProo7n22mt5/vnnGTduHFD8oDn99NMZ3919GtphoGu1NP7GnlnBVnUXHbHizlBSa3PnzuWzn/0s\np5566nKBO3LkSCZOnMgZZ5zBrbfeyksvvdSpae+zzz5MmjSJE044gYkTJ7LffvsBsO6667Jw4cI2\nn/P444+z5557sueee3LjjTcya9YshgwZwgUXXMCSJUt45plneOCBB9qd56hRo/jUpz7FJZdcstzm\n9mbjxo3jM5/5DPPmzePuu+8G4JBDDuHMM8/k+OOPZ+DAgTzzzDP079+fTTbZpFOvuSoDXZK00l5/\n/XWGDx/OW2+9Rb9+/TjhhBP4whe+sNx4Z511Fscddxy77rorBxxwAFtuuWWn5nP++efzyU9+knPP\nPZdBgwbxi1/8AngnUM8//3yuvfbaZfajf+lLX2LmzJlkJgcddBDDhg0DYOjQoey0007suOOO7Lrr\nru3Os6mpidGjR3PZZZdx+eWXtznODjvswMKFC9l8883ZdNNNATj44IOZMWMGe++9N1B0trviiisa\nFujRXg/DvmTEiBHp9dDVnWyhV2MLfdUwY8YMtttuu94uQ13U1vsXEVMzs1PH+tkpTpKkGjDQJUmq\nAQNdkqQaMNAlSaoBA12SpBow0CVJqgEDXZLULb797W+zww47sPPOOzN8+HDuv//+lZ7mDTfcwHe/\n+91uqK44DrzOPLGMJNVMd59nocr5CO677z5uuukm/vSnP7HWWmsxb9483nzzzUrTX7x4Mf36tR1H\nY8aMYcyYMZ2qd3VlC12StNKee+45Nt54Y9Zaay0ANt54YzbbbLOllxgFmDJlCqNGjQKKS4yefPLJ\nHHzwwZx44onsueeePPLII0unN2rUKKZOnbr0MqcLFixgyJAhS8+//tprr7HFFlvw1ltv8fjjj3Po\noYey2267sf/++/PYY48B8OSTT7L33nuz++67c+aZZ/bg0ugdBrokaaUdfPDBzJo1i/e///2ccsop\nS89n3pGpU6dy/fXX88tf/pJx48Zx9dVXA8WPg2effZbddttt6bjrrbcew4YNWzrdG2+8kUMOOYT+\n/ftz8skn8+Mf/5ipU6fygx/8gFNOOQWACRMm8LnPfY4//vGPvPe9723Aq+5bDHRJ0kobOHAgU6dO\n5eKLL2bQoEGMHTuWyy67rMPnjBkzhrXXXhuAY489lmuuuQZ453rirY0dO3bpdccnTZrE2LFjefXV\nV/n973/PMcccw/Dhwxk/fjzPPfccAL/73e847rjjgOJSq3XnPnRJUrdoampi1KhRjBo1ip122onL\nL798mcuUtrxEKcA666yz9Pbmm2/ORhttxEMPPcRVV13FRRctv99+zJgxnH766bz44otMnTqVAw88\nkEWLFrH++uszbdq0NmuqcnnVurCFLklaaX/5y1+YOXPm0vvTpk1jq622YsiQIUydOhWAX/3qVx1O\nY9y4cXz/+99nwYIF7LTTTss9PnDgQPbYYw8mTJjA6NGjaWpq4t3vfjdDhw5d2rrPTKZPnw7Avvvu\ny6RJkwCYOHFit7zOvsxAlySttFdffZWTTjqJ7bffnp133plHH32Us88+m7POOosJEyaw//7709TU\n1OE0jj76aCZNmsSxxx7b7jhjx47liiuuWOa65BMnTuTSSy9l2LBh7LDDDlx//fUAnHfeefz0pz9l\n9913Z8GCBd3zQvswL5+q1ZKXT63Gy6euGrx86qrNy6dKkqSlDHRJkmrAQJckqQYaFugR8fOImBMR\nD7cYdm5EPBYRD0XEbyJi/UbNX5JWJ6tCfygtrzvft0a20C8DDm017HZgx8zcGfhv4PQGzl+SVgsD\nBgxg/vz5hvoqJjOZP38+AwYM6JbpNezEMpl5T0QMaTVscou7fwCObtT8JWl1MXjwYGbPns3cuXN7\nuxR10oABAxg8eHC3TKs3zxT3SeCq9h6MiJOBkwG23HLLnqpJklY5/fv3Z+jQob1dhnpZr3SKi4iv\nA4uBdk/dk5kXZ+aIzBwxaNCgnitOkqRVUI+30CPiJGA0cFC6w0eSpG7Ro4EeEYcCXwEOyMzXenLe\nkiTVWSMPW7sSuA/YNiJmR8SngJ8A6wK3R8S0iLiwUfOXJGl10she7se1MfjSRs1PkqTVmWeKkySp\nBgx0SZJqwECXJKkGDHRJkmrAQJckqQYMdEmSasBAlySpBgx0SZJqwECXJKkGDHRJkmrAQJckqQYM\ndEmSasBAlySpBgx0SZJqwECXJKkGDHRJkmrAQJckqQYMdEmSaqBfbxeg7jP+xvG9XYJqxs9UdRcd\ncVFvl6DVnC10SZJqwECXJKkGDHRJkmrAQJckqQYMdEmSasBAlySpBgx0SZJqwECXJKkGDHRJkmrA\nQJckqQYMdEmSasBAlySpBgx0SZJqwECXJKkGDHRJkmrAQJckqQYMdEmSasBAlySpBgx0SZJqoGGB\nHhE/j4g5EfFwi2EbRsTtETGz/L9Bo+YvSdLqpJEt9MuAQ1sN+ypwR2a+D7ijvC9JklZSwwI9M+8B\nXmw1+Ejg8vL25cBRjZq/JEmrk57eh/6ezHwOoPy/SQ/PX5KkWuqzneIi4uSImBIRU+bOndvb5UiS\n1Kf1dKC/EBGbApT/57Q3YmZenJkjMnPEoEGDeqxASZJWRT0d6DcAJ5W3TwKu7+H5S5JUS408bO1K\n4D5g24iYHRGfAr4L/FNEzAT+qbwvSZJWUr9GTTgzj2vnoYMaNU9JklZXfbZTnCRJqs5AlySpBgx0\nSZJqwECXJKkGDHRJkmrAQJckqQYMdEmSasBAlySpBgx0SZJqwECXJKkGDHRJkmrAQJckqQYMdEmS\nasBAlySpBgx0SZJqwECXJKkGVhjoEbFORKxR3n5/RIyJiP6NL02SJFVVpYV+DzAgIjYH7gA+AVzW\nyKIkSVLnVAn0yMzXgA8DP87MDwHbN7YsSZLUGZUCPSL2Bo4Hbi6H9WtcSZIkqbOqBPoE4HTgN5n5\nSERsDdzZ2LIkSVJndNjSjogm4IjMHNM8LDOfAE5rdGGSJKm6Dlvomfk2sFsP1SJJkrqoyr7wByPi\nBuAaYFHzwMz8dcOqkiRJnVIl0DcE5gMHthiWgIEuSVIfscJAz8xP9EQhkiSp66qcKe79EXFHRDxc\n3t85Is5ofGmSJKmqKoetXUJx2NpbAJn5EDCukUVJkqTOqRLo78rMB1oNW9yIYiRJUtdUCfR5EbEN\nRUc4IuJo4LmGViVJkjqlSi/3zwMXA/8YEc8ATwIfa2hVkiSpU6r0cn8C+EBErAOskZkLG1+WJEnq\njBUGekR8odV9gAXA1Myc1qC6JElSJ1TZhz4C+Cywefl3MjAKuCQivty40iRJUlVV9qFvBOyama8C\nRMRZwLXASGAq8P3GlSdJkqqo0kLfEnizxf23gK0y83Xg7w2pSpIkdUqVFvovgT9ExPXl/SOAK8tO\nco82rDJJklRZlV7u34qIW4F9gQA+m5lTyoePb2RxkiSpmiotdIAHgWebx4+ILTPz6YZVJUmSOqXK\nYWv/EzgLeAF4m6KVnsDOXZ1pRPwv4NPldP4MfCIz3+jq9CRJWt1VaaFPALbNzPndMcOI2Bw4Ddg+\nM1+PiKspLvZyWXdMX5Kk1VGVXu6zKE4k0536AWtHRD/gXRSb8yVJUhdVaaE/AdwVETfT4jC1zPxR\nV2aYmc9ExA+Ap4HXgcmZObkr05IkSYUqLfSngduBNYF1W/x1SURsABwJDAU2A9aJiOUu9hIRJ0fE\nlIiYMnfu3K7OTpKk1UKVw9bOAYiIdTJzUTfM8wPAk5k5t5zur4F9gCtazfdiiqu8MWLEiOyG+UqS\nVFsrbKFHxN4R8Sgwo7w/LCIuWIl5Pg3sFRHviuJKLwc1T1uSJHVNlU3u/wYcAswHyMzpFOdx75LM\nvJ/iXPB/ojhkbQ3KlrgkSeqaSieWycxZ5WVTm729MjPNzLMojm2XJEndoEqgz4qIfYCMiDUpjiF3\nE7kkSX1IlU3unwU+T3Et9NnA8PK+JEnqI6r0cp+HF2GRJKlPq9LL/fsR8e6I6B8Rd0TEvLaOG5ck\nSb2nyib3gzPzFWA0xSb39wNfamhVkiSpU6oEev/y/2HAlZn5YgPrkSRJXVCll/uNEfEYxXnXT4mI\nQYCXOpUkqQ9ZYQs9M78K7A2MyMy3gEUU52KXJEl9RJVOcccAizPz7Yg4g+Kc65s1vDJJklRZlX3o\nZ2bmwojYj+IUsJcD/97YsiRJUmdUCfTm07weDvx7Zl5PcSlVSZLUR1QJ9Gci4iLgWOCWiFir4vMk\nSVIPqRLMxwK3AYdm5svAhngcuiRJfUqVXu6vZeavgQURsSXFcemPNbwySZJUWZVe7mMiYibwJHB3\n+f/WRhcmSZKqq7LJ/VvAXsB/Z+ZQ4APA7xpalSRJ6pQqgf5WZs4H1oiINTLzTopLqEqSpD6iyqlf\nX46IgcA9wMSImAMsbmxZkiSpM6q00I8EXgP+F/CfwOPAEY0sSpIkdU6HLfSIOAr4B+DPmXkbxVni\nJEmtjL9xfG+XoNVcuy30iLiAolW+EfCtiDizx6qSJEmd0lELfSQwrLwoy7uAeyl6vEuSpD6mo33o\nb2bm21CcXAaInilJkiR1Vkct9H+MiIfK2wFsU94PIDNz54ZXJ0mSKuko0LfrsSokSdJKaTfQM/Nv\nPVmIJEnqOi+DKklSDRjokiTVQEfHod9R/v9ez5UjSZK6oqNOcZtGxAHAmIiYRKvD1jLzTw2tTJIk\nVdZRoH8D+CowGPhRq8cSOLBRRUmSpM7pqJf7tcC1EXFmZnqGOEmS+rAVXj41M78VEWMoTgULcFdm\n3tTYsiRJUmessJd7RPwrMAF4tPybUA6TJEl9xApb6MDhwPDMXAIQEZcDDwKnN7IwSZJUXdXj0Ndv\ncXu9RhQiSZK6rkoL/V+BByPiTopD10Zi61ySpD6lSqe4KyPiLmB3ikD/SmY+3+jCJElSdVVa6GTm\nc8ANDa5FkiR1Ua+cyz0i1o+IayPisYiYERF790YdkiTVRaUWegOcB/xnZh4dEWsC7+qlOiRJqoUO\nW+gRsUZEPNydM4yId1N0rLsUIDPfzMyXu3MekiStbjpsoWfmkoiYHhFbZubT3TTPrYG5wC8iYhgw\nFZiQmYtajhQRJwMnAwwcNJDxN47vptlLklQ/Vfahbwo8EhF3RMQNzX8rMc9+wK7Av2fmLsAiiovA\nLCMzL87MEZk5YsB6A1ZidpIk1V+VfejndPM8ZwOzM/P+8v61tBHokiSpuirHod8dEVsB78vM/xcR\n7wKaujrDzHw+ImZFxLaZ+RfgIIpzxEuSpC5aYaBHxGco9mVvCGwDbA5cSBHEXfU/gYllD/cngE+s\nxLQkSVrtVdnk/nlgD+B+gMycGRGbrMxMM3MaMGJlpiFJkt5RpVPc3zPzzeY7EdEPyMaVJEmSOqtK\noN8dEV8D1o6IfwKuAW5sbFmSJKkzqgT6VymOG/8zMB64BTijkUVJkqTOqdLLfUlEXE6xDz2Bv2Sm\nm9wlSepDqvRyP5yiV/vjFJdPHRoR4zPz1kYXJ0mSqqnSy/2HwP/IzL8CRMQ2wM2AgS5JUh9RZR/6\nnOYwLz0BzGlQPZIkqQvabaFHxIfLm49ExC3A1RT70I8B/tgDtUmSpIo62uR+RIvbLwAHlLfnAhs0\nrCJJktQitWo9AAALCElEQVRp7QZ6Zno6VkmSVhFVerkPpTj3+pCW42fmmMaVJUmSOqNKL/frgEsp\nzg63pLHlSJKkrqgS6G9k5vkNr0SSJHVZlUA/LyLOAiYDf28emJl/alhVkiSpU6oE+k7ACcCBvLPJ\nPcv7kiSpD6gS6B8Ctm55CVVJktS3VDlT3HRg/UYXIkmSuq5KC/09wGMR8UeW3YfuYWuSJPURVQL9\nrIZXIUmSVkqV66Hf3ROFSJKkrqtypriFFL3aAdYE+gOLMvPdjSxMkiRVV6WFvm7L+xFxFLBHwyqS\nJEmdVqWX+zIy8zo8Bl2SpD6lyib3D7e4uwYwgnc2wUuSpD6gSi/3ltdFXww8BRzZkGokSVKXVNmH\n7nXRJUnq49oN9Ij4RgfPy8z8VgPqkSRJXdBRC31RG8PWAT4FbAQY6JIk9RHtBnpm/rD5dkSsC0wA\nPgFMAn7Y3vMkSVLP63AfekRsCHwBOB64HNg1M1/qicIkSVJ1He1DPxf4MHAxsFNmvtpjVUmSpE7p\n6MQyXwQ2A84Ano2IV8q/hRHxSs+UJ0mSquhoH3qnzyInSZJ6h6EtSVINGOiSJNWAgS5JUg0Y6JIk\n1YCBLklSDRjokiTVQK8FekQ0RcSDEXFTb9UgSVJd9GYLfQIwoxfnL0lSbfRKoEfEYOBw4Ge9MX9J\nkuqmt1ro/wZ8GVjS3ggRcXJETImIKW8seKPnKpMkaRXU44EeEaOBOZk5taPxMvPizByRmSMGrDeg\nh6qTJGnV1Bst9H2BMRHxFMW11Q+MiCt6oQ5JkmqjxwM9M0/PzMGZOQQYB/xXZn6sp+uQJKlOPA5d\nkqQaaPfyqT0hM+8C7urNGiRJqgNb6JIk1YCBLklSDRjokiTVgIEuSVINGOiSJNWAgS5JUg0Y6JIk\n1YCBLklSDRjokiTVgIEuSVINGOiSJNWAgS5JUg0Y6JIk1YCBLklSDRjokiTVgIEuSVINGOiSJNWA\ngS5JUg306+0C1I3uvae3K1h17D+ytyuQpG5lC12SpBow0CVJqgEDXZKkGjDQJUmqAQNdkqQaMNAl\nSaoBA12SpBow0CVJqgEDXZKkGjDQJUmqAQNdkqQaMNAlSaoBA12SpBow0CVJqgEDXZKkGjDQJUmq\nAQNdkqQaMNAlSaoBA12SpBow0CVJqoEeD/SI2CIi7oyIGRHxSERM6OkaJEmqm369MM/FwBcz808R\nsS4wNSJuz8xHe6EWSZJqocdb6Jn5XGb+qby9EJgBbN7TdUiSVCe9ug89IoYAuwD3t/HYyRExJSKm\nvLHgjZ4uTZKkVUqvBXpEDAR+BfxzZr7S+vHMvDgzR2TmiAHrDej5AiVJWoX0SqBHRH+KMJ+Ymb/u\njRokSaqT3ujlHsClwIzM/FFPz1+SpDrqjRb6vsAJwIERMa38O6wX6pAkqTZ6/LC1zPwtED09X0mS\n6swzxUmSVAMGuiRJNWCgS5JUAwa6JEk1YKBLklQDBrokSTVgoEuSVAMGuiRJNWCgS5JUAwa6JEk1\nYKBLklQDBrokSTVgoEuSVAMGuiRJNWCgS5JUAwa6JEk1YKBLklQDBrokSTXQr7cLqGThq3DvPb1d\nhSS1z+8o9TJb6JIk1YCBLklSDRjokiTVgIEuSVINGOiSJNWAgS5JUg0Y6JIk1YCBLklSDRjokiTV\ngIEuSVINGOiSJNWAgS5JUg0Y6JIk1YCBLklSDRjokiTVgIEuSVINGOiSJNWAgS5JUg0Y6JIk1UCv\nBHpEHBoRf4mIv0bEV3ujBkmS6qTHAz0imoCfAh8EtgeOi4jte7oOSZLqpDda6HsAf83MJzLzTWAS\ncGQv1CFJUm30RqBvDsxqcX92OUySJHVRv16YZ7QxLJcbKeJk4OTy7t8vPvexhxtaVT1sDMzr7SJW\nCec+5rKqxuVUncuqGpdTNdt29gm9EeizgS1a3B8MPNt6pMy8GLgYICKmZOaInilv1eVyqs5lVY3L\nqTqXVTUup2oiYkpnn9Mbm9z/CLwvIoZGxJrAOOCGXqhDkqTa6PEWemYujohTgduAJuDnmflIT9ch\nSVKd9MYmdzLzFuCWTjzl4kbVUjMup+pcVtW4nKpzWVXjcqqm08spMpfrjyZJklYxnvpVkqQa6NOB\n7ili2xcRP4+IORHxcIthG0bE7RExs/y/QW/W2BdExBYRcWdEzIiIRyJiQjncZdVKRAyIiAciYnq5\nrM4phw+NiPvLZXVV2Zl1tRcRTRHxYETcVN53ObUSEU9FxJ8jYlpzr23XvbZFxPoRcW1EPFZ+X+3d\n2WXVZwPdU8Su0GXAoa2GfRW4IzPfB9xR3l/dLQa+mJnbAXsBny8/Ry6r5f0dODAzhwHDgUMjYi/g\ne8D/KZfVS8CnerHGvmQCMKPFfZdT2/5HZg5vcaia617bzgP+MzP/ERhG8dnq1LLqs4GOp4jtUGbe\nA7zYavCRwOXl7cuBo3q0qD4oM5/LzD+VtxdSrCSb47JaThZeLe/2L/8SOBC4thzusgIiYjBwOPCz\n8n7gcqrKda+ViHg3MBK4FCAz38zMl+nksurLge4pYjvvPZn5HBRBBmzSy/X0KRExBNgFuB+XVZvK\nzcjTgDnA7cDjwMuZubgcxfWw8G/Al4El5f2NcDm1JYHJETG1PPsnuO61ZWtgLvCLcjfOzyJiHTq5\nrPpyoFc6RaxURUQMBH4F/HNmvtLb9fRVmfl2Zg6nOIPjHsB2bY3Ws1X1LRExGpiTmVNbDm5j1NV6\nOZX2zcxdKXadfj4iRvZ2QX1UP2BX4N8zcxdgEV3YFdGXA73SKWK1jBciYlOA8v+cXq6nT4iI/hRh\nPjEzf10Odll1oNzcdxdFv4P1I6L5nBWuh7AvMCYinqLYFXggRYvd5dRKZj5b/p8D/IbiR6Lr3vJm\nA7Mz8/7y/rUUAd+pZdWXA91TxHbeDcBJ5e2TgOt7sZY+ody3eSkwIzN/1OIhl1UrETEoItYvb68N\nfICiz8GdwNHlaKv9ssrM0zNzcGYOofhe+q/MPB6X0zIiYp2IWLf5NnAw8DCue8vJzOeBWRHRfEGW\ng4BH6eSy6tMnlomIwyh++TafIvbbvVxSnxERVwKjKK5c9AJwFnAdcDWwJfA0cExmtu44t1qJiP2A\ne4E/887+zq9R7Ed3WbUQETtTdLxpovixf3VmfjMitqZoiW4IPAh8LDP/3nuV9h0RMQr435k52uW0\nrHJ5/Ka82w/4ZWZ+OyI2wnVvORExnKKT5ZrAE8AnKNdDKi6rPh3okiSpmr68yV2SJFVkoEuSVAMG\nuiRJNWCgS5JUAwa6JEk1YKBLq7mI+FBEZET8Y2/XIqnrDHRJxwG/pThJiqRVlIEurcbKc9zvS3Gp\nz3HlsDUi4oLymug3RcQtEXF0+dhuEXF3ebGN25pPSymp9xno0urtKIprMP838GJE7Ap8GBgC7AR8\nGtgblp4T/8fA0Zm5G/BzwLM3Sn1EvxWPIqnGjqM4vTIUpy09juI66Ndk5hLg+Yi4s3x8W2BH4Pbi\nFPk0Ac/1bLmS2mOgS6up8pzaBwI7RkRSBHTyzvm3l3sK8Ehm7t1DJUrqBDe5S6uvo4H/m5lbZeaQ\nzNwCeBKYB3yk3Jf+HoqLAAH8BRgUEUs3wUfEDr1RuKTlGejS6us4lm+N/wrYjOL6zA8DF1FcmW5B\nZr5J8SPgexExHZgG7NNz5UrqiFdbk7SciBiYma+Wm+UfAPYtr9ksqY9yH7qkttwUEetTXJv5W4a5\n1PfZQpckqQbchy5JUg0Y6JIk1YCBLklSDRjokiTVgIEuSVINGOiSJNXA/wcybvq1wD5RxwAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0xcea4e10>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "vs.survival_stats(data, outcomes, 'Age', [\"Sex == 'female'\" , \"Embarked == C\"])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After exploring the survival statistics visualization, fill in the missing code below so that the function will make your prediction. \n", "Make sure to keep track of the various features and conditions you tried before arriving at your final prediction model. \n", "**Hint:** You can start your implementation of this function using the prediction code you wrote earlier from `predictions_2`." ] }, { "cell_type": "code", "execution_count": 113, "metadata": {}, "outputs": [], "source": [ "def predictions_3(data):\n", " \"\"\" Model with multiple features. Makes a prediction with an accuracy of at least 80%. \"\"\"\n", " \n", " predictions = []\n", " for _, passenger in data.iterrows():\n", " \n", " # Remove the 'pass' statement below \n", " # and write your prediction conditions here\n", " #pass\n", " #if passenger[\"Sex\"] == \"female\" :\n", " if passenger[\"Sex\"] == \"female\":\n", " if passenger[\"Pclass\"] ==3 :\n", " predictions.append(0)\n", " else: \n", " predictions.append(1)\n", " \n", " else:\n", " if passenger['Age'] < 10 and passenger['Pclass'] in (1, 2):\n", " predictions.append(1)\n", " elif passenger['Age'] < 18 and passenger['Pclass'] == 1:\n", " predictions.append(1)\n", " else:\n", " predictions.append(0)\n", " \n", " \n", " \n", " # Return our predictions\n", " return pd.Series(predictions)\n", "\n", "# Make the predictions\n", "predictions = predictions_3(data)\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Question 4\n", "*Describe the steps you took to implement the final prediction model so that it got an accuracy of at least 80%. What features did you look at? Were certain features more informative than others? Which conditions did you use to split the survival outcomes in the data? How accurate are your predictions?* \n", "**Hint:** Run the code cell below to see the accuracy of your predictions." ] }, { "cell_type": "code", "execution_count": 114, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Predictions have an accuracy of 80.13%.\n" ] } ], "source": [ "print accuracy_score(outcomes, predictions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Answer**: *Replace this text with your answer to the question above.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "I used my intuition, that women and childerens would be saved. So I started narrowing down the women with lower class. Then I divided the data with age and saw with kids younger than 10 in first and second class, there is a higher precentage of survival. Then I saw with kids younger than 18; and I divided classes. I saw with kids in first class, the precentage of survival increased more than 80%." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Conclusion\n", "\n", "After several iterations of exploring and conditioning on the data, you have built a useful algorithm for predicting the survival of each passenger aboard the RMS Titanic. The technique applied in this project is a manual implementation of a simple machine learning model, the *decision tree*. A decision tree splits a set of data into smaller and smaller groups (called *nodes*), by one feature at a time. Each time a subset of the data is split, our predictions become more accurate if each of the resulting subgroups are more homogeneous (contain similar labels) than before. The advantage of having a computer do things for us is that it will be more exhaustive and more precise than our manual exploration above. [This link](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/) provides another introduction into machine learning using a decision tree.\n", "\n", "A decision tree is just one of many models that come from *supervised learning*. In supervised learning, we attempt to use features of the data to predict or model things with objective outcome labels. That is to say, each of our data points has a known outcome value, such as a categorical, discrete label like `'Survived'`, or a numerical, continuous value like predicting the price of a house.\n", "\n", "### Question 5\n", "*Think of a real-world scenario where supervised learning could be applied. What would be the outcome variable that you are trying to predict? Name two features about the data used in this scenario that might be helpful for making the predictions.* " ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "**Answer**: *Replace this text with your answer to the question above.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "One application is gesture or speech recognition. For a trained model, we can add a sign language to TVs, where the model by hearing the sounds of the TV contents, could recognize them and translate them in sign language and be displayed in the corner of the TV. Features could be the pitch of the sounds, so it recognized that this is a human voice and not a sound of wind or something else. Another feature could be if the sound is inside the dictionary alphabets or not. \n", "Another example is drug discovery. We could train the model to differeciate between the deseased and healthy cells and test it on new subjects (rats).\n", "One feature could be the behavior of the healthy cells to the test drug. another feature could be the duration it takes for the cells to react to the drug.\n", "another example is behavioral detection, we can train a model and install it in the car and when the driver is drunk or sleepy, it would warn the driver or turn off the ignition until he/she is sober or not sleepy.\n", "One feature could be that is the driver's heart beat usual or not, another could be is the driver's movement is usual or not. Is he/she rocking left to right like a drunk person or not." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "> **Note**: Once you have completed all of the code implementations and successfully answered each question above, you may finalize your work by exporting the iPython Notebook as an HTML document. You can do this by using the menu above and navigating to \n", "**File -> Download as -> HTML (.html)**. Include the finished document along with this notebook as your submission." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.13" } }, "nbformat": 4, "nbformat_minor": 1 }
bsd-3-clause
luwei0917/awsemmd_script
notebook/Optimization/read_gamma.ipynb
1
3433
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import os\n", "import sys\n", "import random\n", "import time\n", "from random import seed, randint\n", "import argparse\n", "import platform\n", "from datetime import datetime\n", "import imp\n", "import numpy as np\n", "import fileinput\n", "from itertools import product\n", "import pandas as pd\n", "from scipy.interpolate import griddata\n", "from scipy.interpolate import interp2d\n", "import seaborn as sns\n", "from os import listdir\n", "\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "from scipy.interpolate import griddata\n", "import matplotlib as mpl\n", "# sys.path.insert(0,'..')\n", "# from notebookFunctions import *\n", "# from .. import notebookFunctions\n", "from Bio.PDB.Polypeptide import one_to_three\n", "from Bio.PDB.Polypeptide import three_to_one\n", "from Bio.PDB.PDBParser import PDBParser\n", "from pyCodeLib import *\n", "from small_script.myFunctions import *\n", "from collections import defaultdict\n", "%matplotlib inline\n", "# plt.rcParams['figure.figsize'] = (10,6.180) #golden ratio\n", "# %matplotlib notebook\n", "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "plt.rcParams['figure.figsize'] = [16.18033, 10] #golden ratio\n", "plt.rcParams['figure.facecolor'] = 'w'\n", "plt.rcParams['figure.dpi'] = 100\n", "plt.rcParams.update({'font.size': 22})" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "gamma = np.loadtxt(\"/Users/weilu/openmmawsem/parameters/gamma.dat\")" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "res_type_map = {'A': 0, 'C': 4,'D': 3,'E': 6,'F': 13,'G': 7,'H': 8,'I': 9,'K': 11,'L': 10,'M': 12, 'N': 2,'P': 14,'Q': 5,'R': 1,'S': 15,'T': 16,'V': 19,'W': 17,'Y': 18}\n", "res_type_map_letters = ['A', 'R', 'N', 'D', 'C', 'Q', 'E', 'G',\n", " 'H', 'I', 'L', 'K', 'M', 'F', 'P', 'S', 'T', 'W', 'Y', 'V']\n", "\n", "import sys\n", "sys.stdout = open(\"/Users/weilu/Research/server/nov_2019/cys_1fs3/setups/1fs3/label_gamma\", \"w+\")\n", "inverse_res_type_map = dict(list(zip(list(range(20)), res_type_map_letters)))\n", "for i in range(20):\n", " for j in range(i, 20):\n", " print(inverse_res_type_map[i], inverse_res_type_map[j])\n", "print(\"\")\n", "for i in range(20):\n", " for j in range(i, 20):\n", " print(inverse_res_type_map[i], inverse_res_type_map[j])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
NathanYee/ThinkBayes2
code/report03.ipynb
1
192257
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Report03 - Nathan Yee\n", "\n", "This notebook contains report03 for computational baysian statistics fall 2016\n", "\n", "MIT License: https://opensource.org/licenses/MIT" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from __future__ import print_function, division\n", "\n", "% matplotlib inline\n", "import warnings\n", "warnings.filterwarnings('ignore')\n", "\n", "import math\n", "import numpy as np\n", "\n", "from thinkbayes2 import Pmf, Cdf, Suite, Joint\n", "import thinkplot" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The sock problem\n", "\n", "Created by Yuzhong Huang\n", "\n", "There are two drawers of socks. The first drawer has 40 white socks and 10 black socks; the second drawer has 20 white socks and 30 black socks. We randomly get 2 socks from a drawer, and it turns out to be a pair(same color) but we don't know the color of these socks. What is the chance that we picked the first drawer." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To make calculating our likelihood easier, we start by defining a multiply function. The function is written in a functional way primarily for fun." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from functools import reduce\n", "import operator\n", "\n", "def multiply(items):\n", " \"\"\"\n", " multiply takes a list of numbers, multiplies all of them, and returns the result\n", " \n", " Args:\n", " items (list): The list of numbers\n", " \n", " Return:\n", " the items multiplied together\n", " \"\"\"\n", " return reduce(operator.mul, items, 1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we define a drawer suite. This suite will allow us to take n socks up to the least number of socks in a drawer. To make our likelihood function simpler, we ignore the case where we take 11 black socks and that only drawer 2 is possible." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "class Drawers(Suite):\n", " def Likelihood(self, data, hypo):\n", " \"\"\"\n", " Likelihood returns the likelihood given a bayesian update \n", " consisting of a particular hypothesis and new data. In the\n", " case of our drawer problem, the probabilities change with the\n", " number of pairs we take (without replacement) so we we start\n", " by defining lists for each color sock in each drawer.\n", " \n", " Args:\n", " data (int): The number of socks we take\n", " hypo (str): The hypothesis we are updating\n", " \n", " Return:\n", " the likelihood for a hypothesis\n", " \"\"\"\n", " \n", " drawer1W = []\n", " drawer1B = []\n", " drawer2W = []\n", " drawer2B = []\n", " for i in range(data):\n", " drawer1W.append(40-i)\n", " drawer1B.append(10-i)\n", " drawer2W.append(20-i)\n", " drawer2B.append(30-i)\n", " \n", " if hypo == 'drawer1':\n", " return multiply(drawer1W)+multiply(drawer1B)\n", " if hypo == 'drawer2':\n", " return multiply(drawer2W)+multiply(drawer2B)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, define our hypotheses and create the drawer Suite." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "drawer1 0.5\n", "drawer2 0.5\n" ] } ], "source": [ "hypos = ['drawer1','drawer2']\n", "drawers = Drawers(hypos)\n", "drawers.Print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, update the drawers by taking two matching socks." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "drawer1 0.5689655172413792\n", "drawer2 0.43103448275862066\n" ] } ], "source": [ "drawers.Update(2)\n", "drawers.Print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It seems that the drawer with many of a single sock (40 white 10 black) is more likely after the update. To confirm this suspicion, let's restart the problem by taking 5 pairs of socks." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "drawer1 0.8064243448858833\n", "drawer2 0.19357565511411665\n" ] } ], "source": [ "hypos = ['drawer1','drawer2']\n", "drawers5 = Drawers(hypos)\n", "drawers5.Update(5)\n", "drawers5.Print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that after we take 5 pairs of socks, the probability of the socks coming from drawer 1 is 80.6%. We can now conclude that the drawer with a more extreme numbers of socks is more likely be chosen if we are updating with matching color socks." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Chess-playing twins\n", "\n", "Allen Downey\n", "\n", "Two identical twins are members of my chess club, but they never show up on the same day; in fact, they strictly alternate the days they show up. I can't tell them apart except that one is a better player than the other: Avery beats me 60% of the time and I beat Blake 70% of the time. If I play one twin on Monday and win, and the other twin on Tuesday and lose, which twin did I play on which day?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To solve this problem, we first need to create our hypothesis. In this case, we have: \n", "\n", "hypo1: Avery Monday, Blake Tuesday \n", "hypo2: Blake Monday, Avery Tuesday \n", "\n", "We will abreviate Avery to A and Blake to B." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "AB 0.5\n", "BA 0.5\n" ] } ], "source": [ "twins = Pmf()\n", "twins['AB'] = 1\n", "twins['BA'] = 1\n", "twins.Normalize()\n", "twins.Print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we update our hypotheses with us winning the first day. We have a 40% chance of winning against Avery and a 70% chance of winning against Blake." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "AB 0.36363636363636365\n", "BA 0.6363636363636364\n" ] } ], "source": [ "#win day 1\n", "twins['AB'] *= .4\n", "twins['BA'] *= .7\n", "twins.Normalize()\n", "twins.Print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At this point in time, there is only a 36% chance that we play Avery the first day while a 64% chance that we played Blake the first day.\n", "\n", "However, let's see what happens when we update with a loss." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "AB 0.5333333333333333\n", "BA 0.4666666666666667\n" ] } ], "source": [ "#lose day 2\n", "twins['AB'] *= .6\n", "twins['BA'] *= .3\n", "twins.Normalize()\n", "twins.Print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Interesting. Now there is a 53% chance that we played Avery then Blake and a 47% chance that we played Blake then Avery." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Who saw that movie?\n", "\n", "Nathan Yee\n", "\n", "Every year the MPAA (Motion Picture Association of America) publishes a [report](http://www.mpaa.org/wp-content/uploads/2016/04/MPAA-Theatrical-Market-Statistics-2015_Final.pdf) about theatrical market statistics. Included in the report, are both the gender and the ethnicity share of the top 5 most grossing films. If a randomly selected person in the United States went to Pixar's \"Inside Out\", what is the probability that they are both female and Asian?\n", "\n", "Data:\n", "\n", "| Gender | Male (%) | Female (%) |\n", "| :-------------------------- | :------- | :---------- |\n", "| Furious 7 | 56 | 44 |\n", "| Inside Out | 46 | 54 |\n", "| Avengers: Age of Ultron | 58 | 42 |\n", "| Star Wars: The Force Awakens| 58 | 42 |\n", "| Jurassic World | 55 | 45 |\n", "\n", "\n", "| Ethnicity | Caucasian (%) | African-American (%) | Hispanic (%) | Asian (%) | Other (%) |\n", "| :-------------------------- | :------------ | :------------------- | :----------- | :-------- | :-------- |\n", "| Furious 7 | 40 | 22 | 25 | 8 | 5 |\n", "| Inside Out | 54 | 15 | 16 | 9 | 5 |\n", "| Avengers: Age of Ultron | 50 | 16 | 20 | 10 | 5 |\n", "| Star Wars: The Force Awakens| 61 | 12 | 15 | 7 | 5 |\n", "| Jurassic World | 39 | 16 | 19 | 11 | 6 |" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Since we are picking a random person in the United States, we can use demographics of the United States as an informed prior.\n", "\n", "| Demographic | Caucasian (%) | African-American (%) | Hispanic (%) | Asian (%) | Other (%) |\n", "| :-------------------------- | :------------ | :------------------- | :----------- | :-------- | :-------- |\n", "| Population United States | 63.7 | 12.2 | 16.3 | 4.7 | 3.1 |\n", "\n", "Note:\n", "Demographic data was gathered from the US Census Bureau. There may be errors within 2% due to rounding. Also note that certian races were combined to fit our previous demographic groupings." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To make writing code easier, we will encoude data in a numerical structure. The first item in the tuple corresponds to gender, the second item in the tuple corresponds to ethnicity.\n", "\n", "| Gender | Male | Female |\n", "| :-------------------------- | :--- | :----- |\n", "| Encoding number | 0 | 1 |\n", "\n", "| Ethnicity | Caucasian | African-American | Hispanic | Asian | Other |\n", "| :-------------------------- | :-------- | :--------------- | :------- | :---- | :---- |\n", "| Encoding number | 0 | 1 | 2 | 3 | 4 |\n", "\n", "\n", "Such that a (female, asian) = (1, 3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first piece of code we write will be our Movie class. This version of Suite will have a special likelihood function that takes in a movie, and returns the probability of the gender and the ethnicity." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class Movie(Suite):\n", " def Likelihood(self, data, hypo):\n", " \"\"\"\n", " Likelihood returns the likelihood given a bayesian update consisting of a particular\n", " hypothesis and data. In this case, we need to calculate the probability of seeing a\n", " gender seeing a movie. Then we calculat the probability that an ethnicity saw a\n", " movie. Finally we multiply the two to calculate the a person of a gender and \n", " ethnicity saw a movie.\n", " \n", " Args:\n", " data (str): The title of the movie\n", " hypo (str): The hypothesis we are updating\n", " \n", " Return:\n", " the likelihood for a hypothesis\n", " \"\"\"\n", " \n", " movie = data \n", " gender = hypo[0]\n", " ethnicity = hypo[1]\n", " \n", " # first calculate update based on gender\n", " movies_gender = {'Furious 7' : {0:56, 1:44},\n", " 'Inside Out' : {0:46, 1:54},\n", " 'Avengers: Age of Ultron' : {0:58, 1:42},\n", " 'Star Wars: The Force Awakens' : {0:58, 1:42},\n", " 'Jurassic World' : {0:55, 1:45}\n", " }\n", " \n", " like_gender = movies_gender[movie][gender]\n", " \n", " # second calculate update based on ethnicity\n", " movies_ethnicity = {'Furious 7' : {0:40, 1:22, 2:25, 3:8 , 4:5},\n", " 'Inside Out' : {0:54, 1:15, 2:16, 3:9 , 4:4},\n", " 'Avengers: Age of Ultron' : {0:50, 1:16, 2:20, 3:10, 4:5},\n", " 'Star Wars: The Force Awakens' : {0:61, 1:12, 2:15, 3:7 , 4:5},\n", " 'Jurassic World' : {0:39, 1:16, 2:19, 3:11, 4:6}\n", " }\n", " \n", " like_ethnicity = movies_ethnicity[movie][ethnicity]\n", " \n", " # multiply the two together and return\n", " return like_gender * like_ethnicity\n", " \n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we make our hypotheses and input them as tuples into the Movie class." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [], "source": [ "genders = range(0,2)\n", "ethnicities = range(0,5)\n", "pairs = [(gender, ethnicity) for gender in genders for ethnicity in ethnicities]\n", "\n", "movie = Movie(pairs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We decided that we are picking a random person in the United states. So, we can use population demographics of the United States as an informed prior. We will assume that the United States is 50% male and 50% female. Population percent is defined in the order which we enumerate ethnicities." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(0, 0) 0.3185\n", "(0, 1) 0.061\n", "(0, 2) 0.0815\n", "(0, 3) 0.0235\n", "(0, 4) 0.015500000000000002\n", "(1, 0) 0.3185\n", "(1, 1) 0.061\n", "(1, 2) 0.0815\n", "(1, 3) 0.0235\n", "(1, 4) 0.015500000000000002\n" ] } ], "source": [ "population_percent = [63.7, 12.2, 16.3, 4.7, 3.1, 63.7, 12.2, 16.3, 4.7, 3.1]\n", "\n", "for i in range(len(population_percent)):\n", " movie[pairs[i]] = population_percent[i]\n", "\n", "movie.Normalize()\n", "movie.Print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next update with the two movies" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1969.1499999999999" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "movie.Update('Inside Out')" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(0, 0) 0.4017743696518802\n", "(0, 1) 0.021374704821877456\n", "(0, 2) 0.03046187441281771\n", "(0, 3) 0.004940710458827413\n", "(0, 4) 0.0014483406545971614\n", "(1, 0) 0.4716481730695985\n", "(1, 1) 0.02509204479089962\n", "(1, 2) 0.0357595917020034\n", "(1, 3) 0.005799964451666963\n", "(1, 4) 0.0017002259858314502\n" ] } ], "source": [ "movie.Normalize()\n", "movie.Print()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Given that a random person has seen Inside Out, the probability that the person is both female and Asian is .58%. Interestingly, when we update our hypotheses with our data, the the chance that the randomly selected person is caucasian goes up to 87%. It seems that our model just increases the chance that the randomly selected person is caucasian after seeing a movie." ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "Validation: \n", "To make ourselves convinced that model is working properly, what happens if we just look at gender data. We know that 54% of people who saw inside out were female. So, if we sum together the female audience, we should get 54%." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.5399999999999999\n" ] } ], "source": [ "total = 0\n", "for pair in pairs:\n", " if pair[0] == 1:\n", " total += movie[pair]\n", " \n", "print(total)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## Parking meter theft\n", "\n", "From DASL(http://lib.stat.cmu.edu/DASL/Datafiles/brinkdat.html)\n", "\n", ">The variable CON in the datafile Parking Meter Theft represents monthly parking meter collections by the principle contractor in New York City from May 1977 to March 1981. In addition to contractor collections, the city made collections from a number of \"control\" meters close to City Hall. These are recorded under the varia- ble CITY. From May 1978 to April 1980 the contractor was Brink's. In 1983 the city presented evidence in court that Brink's employees has been stealing parking meter moneys - delivering to the city less than the total collections. The court was satisfied that theft has taken place, but the actual amount of shortage was in question. Assume that there was no theft before or after Brink's tenure and estimate the monthly short- age and its 95% confidence limits.\n", "\n", "So we are asking three questions. What is the probability that that money has been stolen? What is the probability that the variance of the Brink collections is higher. And how much money was stolen?\n", "\n", "This problem is very similar to that of \"Improving Reading Ability\" by Allen Downey" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To do this, we want to calculate First we load our data from the csv file." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>TIME</th>\n", " <th>CON</th>\n", " <th>CITY</th>\n", " <th>BRINK</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>1</td>\n", " <td>2224277</td>\n", " <td>6729</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>2</td>\n", " <td>1892672</td>\n", " <td>5751</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>3</td>\n", " <td>1468074</td>\n", " <td>6711</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>4</td>\n", " <td>1618966</td>\n", " <td>7069</td>\n", " <td>0</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>5</td>\n", " <td>1509195</td>\n", " <td>7134</td>\n", " <td>0</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " TIME CON CITY BRINK\n", "0 1 2224277 6729 0\n", "1 2 1892672 5751 0\n", "2 3 1468074 6711 0\n", "3 4 1618966 7069 0\n", "4 5 1509195 7134 0" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "\n", "df = pd.read_csv('parking.csv', skiprows=17, delimiter='\\t')\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we need to normalize the CON (contractor) collections by the amount gathered by the CITY. This will give us a ratio of contractor collections to city collections. If we just use the raw contractor collections, fluctuations throughout the months could mislead us." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df['RATIO'] = df['CON'] / df['CITY']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, lets see what the means of the RATIO data compare between the general contractors and BRINK." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 244.681143201\n", "1 229.583858011\n" ] } ], "source": [ "grouped = df.groupby('BRINK')\n", "for name, group in grouped:\n", " print(name, group.RATIO.mean())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that for a dollar gathered by the city, general contractors report 244.7 dollars while BRINK only reports 230 dollars." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we will fit the data to a Normal class to compute the likelihood of a sameple from the normal distribution. This is a similar process to what we did in the improved reading ability problem." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from scipy.stats import norm\n", "\n", "class Normal(Suite, Joint):\n", " \n", " def Likelihood(self, data, hypo):\n", " \"\"\"\n", " \n", " data: sequence of test scores\n", " hypo: mu, sigma\n", " \"\"\"\n", " mu, sigma = hypo\n", " likes = norm.pdf(data, mu, sigma)\n", " return np.prod(likes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we need to calculate a marginal distribution for both brink and general contractors. To get the marginal distribution of the general contractors, start by generating a bunch of prior distributions for `mu` and `sigma`. These will be generated uniformly." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mus = np.linspace(210, 270, 301)\n", "sigmas = np.linspace(10, 65, 301)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, use itertools.product to enumerate all pairs of mu and sigma." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "3.1085419397107893e-52" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from itertools import product\n", "\n", "general = Normal(product(mus, sigmas))\n", "data = df[df.BRINK==0].RATIO\n", "general.Update(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next we will plot the probability of each mu-sigma pair on a contour plot." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEKCAYAAAAW8vJGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvVnMLV16HvS8q4Y9fNM5//mnHm3HQTERaku+SJAcuptc\nRCJI4QKIQCIKFpALuABFimJMsJuOE2GLKIKbEIgJiQCFRIASpCiJItLdRsqNsaOgkIQEd9s9/NOZ\nvmEPNaz1crGGWrVqVe3a+9v7G86/36Pv7KpVa6pVVe+z3uddAzEzjnKUoxzlKEexIu67Akc5ylGO\ncpSHJUdgOMpRjnKUo7TkCAxHOcpRjnKUlhyB4ShHOcpRjtKSIzAc5ShHOcpRWnIEhqMc5ShHOUpL\n0vuuwJAQ0XEs7VGOcpSj7CDMTLumfdDAAACr6s3Fhp//+tfwx372a/ddjVGy7XSXx3RvfcLov+k/\n8fWv4T955Pc3JOH9EXbWMQ9Sxryf9IhveZbdrvIPHhiOcvfyps55HFL0RxmWbdvuTQCS2HfwmMFi\nGzkCw1GcvEmAcASB+5VY+79JYPGmA8QRGO5RvvyVr953FQAcBhDu+t7uGgj+hQfy7A4lh7i/8Bnd\nJ1Dc9v1kfrPBgR7yWklExG+yj+G+5AE/8l45WgCfPnmMFsZDAYtZRm+28/ko+5PHBghHMPh0i//8\nHwtIvClU0xEYPiXyGEDhjQCCx3ALj1BpPSQaaow8dqrpCAxvsDxkMHjQIPCAq7YXuc39PRBl9xic\n2/7399hA4ggMb5g8VDB4cEDwwKrzaKSv3R6A4nvIVsVjA4kjMLxB8hBB4cEAwgOpxhsrsfa9ZwVo\n372HBBDA46CZjsDwyOUhgcG9gcADaoNdZNfqP3DdsvnG7ugGHqIl8dAtiCMwPGJ5CKBwL2DwAO47\nlPuo0m3LvHd9dE9WxkMb7fQQLYgjMDwyuW8wuFMgOGLOQeVBWip37MN4KNZE+F3fN1AcgeGRyH0D\nAnAHoPBmY84bI/fif/YLPWBBD8Uvcd9WxMH3YyCiCyL6K0T0D4noHxDR7ySip0T0t4joHxPR3ySi\ni0PX4zHLfYMCm38HLODgmpqDv6PsX+6sje+gkIO/82PqcI/FH3xJDCL67wF8k5n/PBGlAE4A/AyA\nF8z8i0T0RwE8ZeafjqT91C6JcV8vxWO1Cu6yue4bqA8pd9lLPWhRB8r8viyJbZ/LbZfEOCgwENE5\ngF9j5h8Nwv8RgK8w80dE9D6AbzDzj0XSfyqB4Y0DhT1nexfN8yYr/13l0KBxkOzfIIDYpv1vCwyH\nppJ+BMBzIvrzRPSrRPTfENEcwHvM/BEAMPOHAN49cD0ejdyHQjqY2bxHc/9Q7AFz/O8oXTl0Wx3k\nGR+IcroPquku381DO59TAD8B4D9g5l8hoj8N4KfRfVSf6k/xrhXRQ7YM9lmzQ7frfXPQ+5Tb9IDH\ntPO21sZQljvVNMxwTx3++xjVdBdzIA4NDN8D8F1m/hVz/r9AA8NHRPSeRyV93JfBz3/9a+74y1/5\n6oPZw2Bf8uhBYY8Wwa3zOFDP8NMgQ/e5D2W3z+GYNqtb1epAo5wYfKc0kx299K1vfgPf+uY39pbv\nXTifvwng32Pm/5eIfg7A3Fx6ycy/8Gl2Pj9qUHgg1sF+qYw3913bt+xT+e2j17uX2uxRn9+1DyJs\nwwftfAYAIvpxAH8OQAbg1wH8FIAEwF8G8AUAvwHg9zPz60jaNxIY7hIQHgoY3KYWt22vh2olPUh5\nQMrxtoBxq+QPqB1Gl+MV8+CB4TbyJgLDowSFRwYIe7nvN+u124/spWe/Wya3AYmHABB3DQ7HHdyO\n0pKHAAa7Jr8NaO583weet/dQZC9qKXZDWzuVm0y2UZa38VHcyiexF4fG3fke9tXxPALDHcmjGCFz\nx7p12za5a+X/kBT7beU29zKozjZlPJD4Ng7vXYDiVri2B2f1Q1mXaYwcgeEO5E0FhbsAhK3v7Z5o\nL5fHA0aTXemYvSnULRJuu2bRrnst8/gqtRNhl4RhNnc7gmkbOQLDAeUulMRjAYWDWgd3hx06/QNW\n/kOyz/kGO4PFlkCxLfW0yxj/nfX8TqgSZvEwweEIDAeSB20l3AG1Mvb+DwEAhwatbnmPFCnQVbbb\ntoWvfHdilfoSRSJvu8/ztnTTTmzRHibOPZQVXX05AsMB5E0DhXsFhAOAwS7P55DK/zbvy22HdN52\nYts2yncrxTsy8jZKdRu66T6siIdkPRyBYc/yYEHhgIBwEJ/BngHhoH6NHcrYl+xa5jjluF0PPazP\n3kFijwBxUJrpluCgy7tfgDgCwx7lUIrhLi2EfSvaUXXfEGVMUfu2VB6rH2Gs7EoZjWk/q9SGyhhD\nQXVU4wjHxlgwi9Vtb0C2U4Iw+f0CxBEY9iRHUAjzun9AeCwgcMhe/76kr46xOoxxGI+xLEbp1j1a\nE2Mtia0NgkdILx2B4QHLXYHCQwKETak31WFM+YcEgjud2f4AAGWTj2HM2P0xfoqNILEngBjrh9ia\nYnpk4HAEhlvKg1rRc89gsBcguMXl21gD+3gud+GXuA9xym8LZTOak99AH41xdm+ieQYHAu1AN+0K\nVmFx+3Kox5PeLbV0BIYHJo8FFA4FCPcJBvuwRnbJ95AyzJtvVtIu7khFOSSb6KMh5TeUdmPvfUOE\nMT3yMTTTVkbBLSyIu5AjMNxC7pubdvKIQGHfgLDzQnt7AoF972A2VsbqlF0ntW1y4m7rvB2q1xD9\nNAQSfQCh08UK7bswnma6b3C4K1rpCAw7yL4B4dBWwsHBoOfSLjRRXzlbz5w+sOWx9RPb+zszQrak\nfzZFZ/CwYhxYzHPQchlwbA8B1JAV0wsSgzzUeFAKy4sVsdXopW1AdYRz/7ZyBIZ7lkcNCnu0DA4N\nCLvmP6r4Wyj9ffgmepXDmKy3HDY6ZCkMcfc7LVXRaxnEe/d9PfpB3TtwcVPvfJMF8ZippSMwbCkP\ngj66I1DYp5VwSECIxd2Vfuq9NLrN7/4F2bZMGoMGOmI0Sqi/+pR+H1BsCxLbAMTOvogexbyJYrpv\ncDgUtXQEhi3kQWwjuYce7j7BYB9AMHpy2h7yjAYfmHbaUMTBpE9ddBR2f0STD8WCo4UwD+g2ir1A\n8djRnn+PtdJHN/UDlh8PIy4M0zebnerRLOOyI7W0b3A4AsNjkT3x3vcFCvsEhG2tjE7wlm2wF7rp\nVgm2kJHGgB910+S1weGdEWXap19jCrRP4Y6eTzBgTYzJr1cPD/TehxTxkAWxNUDcIzgcgWGk3Ku1\nsKeytwaFLSmX+wCEeJmxzMbVrS/P3ny3ijC+DtvIaGqonWgji7RtDz3GOfXRUDFFHQOJbQBiLNXU\n16u/C3DYkO2OETfXaVs5AsMIeeigsCnKvgBhVzAYNcpnx3zGWANj63Nby2JMGZtkTLIOxz/ynWop\nq5jS9xVoT4F9I5icEg7KiNJQQX5RVRbSThHKqQMEI4AspJj8fKKWTh+yIQ48YV1ubT3sAA77kCMw\n3KE8JFDYdqRRGDw23400zA5WwSYFvlMePYF7d2KPkM2zh7eXPgugnW88AoVKuacOYRmxPFuWxYBC\nDhVrnzWxrSUR61XHrY3xTupNAHFr62FLcNiHHIFhg+zLWrhrUNgHIIyxEHbi5AfyuC0I+OnHKP+d\nQSQSb2Nhm2JvYVltv4VlfwKi/rIJgVLWAUEco6j9RGjn6RQ+vLkQzvoILJUNlk3LmghAa5PTug+s\n4v6Pbv1bF0YCxBjr4aGBwxEYHqLcAhR2ci7vqAhvSxkNAUKnHj3p4vUaymjLcgfiDT2orYbbjo/a\nyX+srqDYiCCXV//IoE1tGaNqYhrV16UbrQEvckwH++lDZbxRCUetg66jepQF0aOs+7j+obo9NHA4\nAsMdyFbWwiMAhX3TRYO9/JFAchswGAcE21lGY5/4bS1SxjjrYWgYaR9ohIAxBij83nwMJGIA0c6f\nu2njWNNS4GNHIfnX/Ot3BQ5DcsdGwaAcgWFAbv/RbpnBAUBhrHM5DLqtU3kskPRZBWG6fYMHDxW8\nqbye/MPyIxcPItHnMKBhOgorogR1vM0V9ikqn5IaoqDIz7nHER1STi2l3Uc1BQA3NJfBL9PVPbBc\nhuilKLUU3s8O1FI0/60i7EeOwPBIZOgTvWtQ2MZC2BYUdgGRsQDSBwabLIjRADDOKLsbGbAQOHKR\nOaLAMGIkE/nt6EXuDlvyrkWsApMmZlFYpe3qF7EkhhzfY5zVm5zU3evjndN9smnOw31aD0dg6JE7\ntRY2Kdqha9vU8x5BYW8KfgsAGaKDxgNI5FmOx4RxfpdbQMfgWj42TixKBDh4w8zkDlD4hSAOErGe\ntmsTHyCCSGH8QV9GxBfRRzPdBzgcZNmKA1sOR2C4b9kzKOzqS9jVsTxmhNGAfnbxe3vtESDoU+oc\nJhqox5BVg435j0s7InhQNtEg0fI98ZVk9II7bSvmRBCUSaSVml9eT9og2z4ayubWpp08hW8op9ZI\nJ7IWjZ9PQzX5w2lH0UwDI5mGRjD59NKokUsRWsnmE5a381IaBzItjsAQyD6Gp47uAd6irH2CwqZ8\nDgEKG+MOgEc/qA2DTBQMBtpmLHjE6hTLI3p95EswlE/vDFx7vaeX7/P5IEAQcDbNMMkEwMDlqkZZ\nq7alECroPoXrxXdB1AT4FkX0uUfopjD70JIYsiI2Oar7/A99FsQo5/SBlPZdyBEYHrDsAaNGKbBt\nhpBuk6anAz+s6EcCQsxfsAk4YmCwMW60/vE07TjRwKgQaf1BRO44Jmz+YwDMbH57yor0ggd9CAzM\nJykEAR9fFpjlCea5QFFLl4dNnyQEqZq2dFnEQKKnB29pJ98vYUGil24KlP5GP0RwGIKD3yZD4GDz\nt+luCw5jJ9kNZLFlhO3lCAx7ln1ZC0OXN3LgPZn0K9bbAcI2/oAhMBiKN2QVhHE2WQPbxgvrFqbx\nrwgC0kRAkEAqCIkgCAEkRBCCIAjmVx/bchRYl8d++U3OZLSGBpA2iDAAxQylzK85loqhFEMqRu39\n+mJ1eWLqelPUkMyolYJi0aoPiDHPE5xMUggBLNYSN0Vt6qW1daPcONa0TiGSO+++bCHdRKb9w1FK\n7GcUPNMOJRWxYPwGiNFErToFABSm8dO9CeBwBIYHKNuAwthM9gkKuziJhyyJoTh9gBC7n1DRj4mz\nMV4YAUCaENJEIEsIqRDmnJAKgmKglqqljMu6UdCKAcn6XA209TZCgAMdC0CJPReESS5wIgRqqfD8\npjRpGg6fSN8TAygrpQPZABMBSmkldjpJkSaEFyaPs2mKlAi1YiQJMJ8kEERYFBK15GCIqmlKi0QD\nFkXHmogpdavQua34XVQOrAijOG0WvfG8sG2lbZHsDg7AbuXvUw4ODET0HQCXABSAipl/BxE9BfA/\nA/ghAN8B8PuZ+fLQddkkdzYSaU8KIVpmJO8hUBhdzpa9fz/uNqAQrysPWBD9gHDbOIkgZKlAnthf\nDQK1ZFRSoZKMopZYFPpcSoZCXAYB9xYvhO05K+nuqLlGYdxImbZXbpR4bW5AGHOmlux67LNc4PWy\nQiUVCIQ8Fbgx+V3MMxSVAhPjZJLgalU5xZ4KchZRgwsBQJi6tCkfrU0b5d3cxxjF3xfHb6VovFYd\n2jLkq+jERQcLInHGj1i6S6vhLiwGBeCrzPzKC/tpAH+bmX+RiP4ogP/YhH3qJaYiep2/twCFMQ7m\nPsuio8QHwGCbOPq8H3hafHqPdbHpul++/0METFKBPBWYpAkmmQCDUVYKZa1ws9aO2EqGde+3LGJB\n+xjcMFRCbN5BR1f4utg6gaGpKcXsKLCyVlBKWw2JIBAR1pUyWTMEAVWtcDZLUVQKl6sKBML7FxMI\nIlSKcT5LkScCWSqwLGvcrGSgv7h1NEw1ta2cDs3EbUvI8Wz6Rlv368oMrZEItRS2a4xWCtNELYfu\nrZjg8bTSHnX/oNwFMBAAEYT9KwC+Yo7/AoBv4NMCDHtXDOOKesigENJF9npUoXf1/qjrIRgQAZM8\nwTQVmOYJUkEoaoWilrheVXh+rRwfHwUBL6++dg7vOUx3CAmzJnRZ/EAFAQBKqTBlAUHA6TRFIgiX\niwoWqyeJ0EBhbnCWJRokiZAkAsuiNlqLUSkFZm0pzPIEH18WYADvnk+wIKnziFBJxBFLomVF+O9H\n7HrT1tZCGFL8LtwzJmLWA7zwVsv1KO9QdlXmO1Fae3q37gIYGMDfJP1U/ywz/zkA7zHzRwDAzB8S\n0bt3UI+Dym3ogCaPW5S3o+7ZBygM0ks9cUKlD3AAXn7cJtNuujggdEbrMJCnArM8wTQTyBKBdS2x\nLhWeXxUoatVJ36p3T91adfAlEr91+QDgEFv5tBVgdaEFRw80loXENBX47NMZ1qXEy+sSIiFAMaTS\nZr8/EmmWJygqCSIGc+M/maQC0vgXskRgVUpIZgjSFkiSEGTFsENkO1SSwwUPICI+Bq1OTA/du96h\neQYUv22DseCwSbbyUwRosVdKaQ9yF8Dwk8z8ARG9A+BvEdE/Rvf17f1Mfv7rX3PHX/7KV/Hlr3z1\nEHW8G+m5yyEdsW0PtNOwPcqrl57aQdn3+RD6rsccykMKuQ8k/PJiAELQCsz+1UphVUi8uCmxrtRG\np/WtwGEDUB8MGPzz8KSFEU2ABZTn1yWeX5cu/mmaIkkIZS2xWNc4m6aYpgKSGVlCeLGowErfi1Qa\nIDKhndHKgEFRK6e8pdL0k2StBB0NZNvEq5tPNfnhtr6aRmJvohw5f0lzu/p66KBuPQwaByB+Bpsm\nxMXAoVVkc2s7U0qhfOub38Avf+sbmyOOFOJDvKF9hRH9HIAbAP8utN/hIyJ6H8DfYeZ/NhKfV9Xd\n1O9OHM9bAsMo38IWCiimqGNx+6imMUq/73pXkbYdykNKOqSK/NrFwGKWJ5hPEsyyBEWtsChqLAvZ\nooZiwNNpg966D4NFGLcVPxZ5X9IBhiagFzRaHfZufPLinM8yXMwyEAEvrgusKwUC8LlnM3z/1Qpg\nwmefTnG1qlDWCk9OMlyZSXKTNMHZNMGikChrZfQ4dcsyB/61sK7WH2KDKHIzfjry8kNY1obrtKF9\nfBkbtwPYrdM4CvSBQx9mnEwEuG899RFyUIuBiOYABDPfENEJgN8D4D8D8NcA/NsAfgHAHwTwVw9Z\nj0PLPmikfZQ11lqIpo1cHhpN5F9vJe0BBQ4i9YLCCEsgRiPlqcDpNMUsT7SzuKjx/KqA4uEyxlBS\n4bXYdRcnjBC2T6ctujL0rAbphqB3GeuNh/k4BWjL9egmSzXZOFfLClerqlOPZSHx+acz54O4WUsQ\nAdMswfMrbYHkqR7K62ZSs1ee7dHDKGlGh0oi7yZYR/Arrg+pqa21Usgdbxi2in7LARhHLbUthH5a\nyW/TmNUQtu99yEEtBiL6EQD/G/TtpwD+R2b+z4noLQB/GcAXAPwG9HDV15H0j8JiuAtrIVrGSOWz\nraXQp/DDOCFY9ANCk1NIG/Up6hgYhGGCgJNJirNpCgZws65xva5R25FDEatgqEyXZqg+kfw611tt\n0ojqeQC3ecNj6kME3csx1sFQnPB6LO00F0gTgWUhTR2Ad84mWNfaQnjnbILn1yWKWjkrJGoxxKyF\nnjL7LIgmz279KcjLtxDIy6/bFn6+3br7sg/LIUzbV1ZP0ltbDHdKJW0rR2DYUMYIYNjkV+gDkG1B\nwV7vA4UYpRRSQ30+hDBulhDOZhnmeYJlWeN6WWNtnceRfDeWF7TjaOsiqCfQVf4hgHTSD4g/AU6M\n+MT7lFCY1ALHEEUTXo8pa7/cGHhMM4G3z3IwgOtVjZuijsY9M6OgbtZ1004Uz3eovLDu24BDn+IP\nMWIMMETzicQ9AsOO8mkFhts4nPsU0G2thej1gbQhKER72CN78jZ8kgmczzJkCeFqVeN6XUGpJm4s\nz01l9YFHXx28JgEAbxXSdpl+u4QznGPvyy7vX7S36qkJQfHwsHfdAoohi2Gghx4q597efxCXAGQp\n4WKWYT5JsShqXK9qPQIqlmckfax8G38IHFrt0ndtz1ZD9xp6To7A0CuPARjuxVrYAyhstBRGXB/2\nJbCLH6NqWsrc5RdX5tNM4Mk8AxHhclnh2utZRvMbUPhhPP9WY+GKuXXdbw/lnccsNB8QtrHcxspY\nhRRaG21l28Tpo5cE0TAwxHryPUDRFw8AUqFnUJ/NMqxKictlhVpxP8iMKMMGjQKITvwtLAsvLHbe\np+QPZTUcgWFP8lCBYRsKqS9dBzB6lH4rP+7m0QcK3d4yd8LH+AzCsDwVeHKSQRDh9aLETSEH6Z8x\noLOJvrJg0MkXw0CgIu0VHqsN4OC1Xu+1IaekrzRE0JsdAow+oPCvbQKJ3t78BtCIxREEXMwynM8z\nLAuJy1XlZmD35WXvsc+C8MEhblU04BAqf/+aV92twOGurYYjMOxJHgow7OpbuI21EAOFWB4cXAt9\nEZY+GuNgHgpLBeHJSYY8FXi1qDT3HMSJ5b91HFO4jWetgxAMmntt7tYHAtc+3K/8GYzEKNXEra6q\nF7ojT4l1FK3fvl7dmE19Tf2lmTugmKGgJ5uFCktEFJjPt8etBmqF27qF9NMmaqcPEIbiJARcnGQ4\nm2a4Xte4XpqZ2D35tO6rp15D4LCRVnIZ91sVY62GscAQpouVEUt2BIY9yV0DQ1+q29JIYymLMZbC\npmvs4rTLjCnoIYeuH3Y+y3A2S3G5rHC1rCAHFH8sj7FxxoBA69xrS4U2UFhASEivsJoJveR26n4J\nCREkm6WvmZ0il2zKMcedtjLiKzgiggBa4JIIQmKX+iYd15ZVK6UX/lMKldLnbUXfHMcsDR8c/POw\nXr41McaS6IsjqH09FYS3TnNMM4GXNxVWlRwEmlb9I/F8Wqm5x37LIWynGDi4dEFY9DwSr6PBewAl\nll8sjyMw7EkOAgw7XNqFRtqWQorF8fW7b0X0XfMVGDwFOQQKruxIvEkm8NZpjqJSeHlTolY8qPD9\ne+9sWtMDRj4gKG4rfhsvpIus0g+BwK60mgu96mqWCIAZpVHApVJmBVajjJnhf2uxVVi3+RYpoh2E\nd40AB1KZIORJgszUN0sEFDNKqfSfAQ7ple9oHatQIwBh47VBowsQuk5tJR0qf3MpquxtfpNc4O3T\nCWrJeLkoHb00hroKw5rm69JNMcsBA9e2BYcjMNxSPm3AMGgtdK5104V1GQKGjuI3B1FHs3et61No\nU1Hb+hOIgScnGWZ5gufXJZZls2NYDBSssu7Lr3Xdq5dvIeieedsy8NslBAMCMEkS5KnA1IBApfSS\n22ujXNe1bClW+12p4LxjhQXSN9fBl955Cvbc9fb1gQ8YNn4qCNM0wTQRyBO9mCCBUEiJQuoVZcvA\nsghBQtfFKu4BgDCFxgDBV9y9FkcAIE9PMpzPMrxalHrexID1MUhbubbq0k2+T8HGDy2KMNxdC8LC\n8xilNAQMfWmGkhyBYU/yWIFhV2thDE2EIO+YpRACxTZ8f5YQ3j6bYF1JPL8pzdDTtsJX3A8O7n7Y\n4/xNXMldS0D/diki6xdgL84kSTBNE8xSPXFrXUksa4lVLbGupeHytcL326A7fDUEiHa82DMaIzHl\n4Hh/q2hd3Haf01fYWtFraioVAvNU3/c8S5AnAkWt3D3Xilt+EF1GGywsjRX6JhoAQcsKQBAnVOit\n7U49xZynhHcvjPVwU+q28/LqpawiABH6HVqWw0hwQHgt8owObTUcgeEAcpfA0JdikEbaAAxjrIUQ\nFFw+QY95U7hvKfhAMQQKYZyTaYon8wwvrovoaKNQ0XcoI08B+4ARWgZ+/RnsAMO3CvSCb9BAkCWY\npQkKqbCsaizKGiupwMyt3r+99/ZwVu4FgPC8M7dhh/cvVA6W9+8ABLWdrQJtsLBK2oKEjZMQYZ4l\nOMlSnGQpiIClAchK6jsNKSfnUDfnibNSGuWcmAMX5ilUH2RidJKJ6IDnrdMc80mC51eFWQYcnfL8\n+H5620YhOHQAwKWBl6YbHl7bp9VwBAZPjsAQT+Cf9lkCsXw7it87iIFCzLqIgUIvdeQpTy8K3jrJ\nMMkSfHS5RllzN66Xl28xdI69eFbh+zRRCAwOFAxAgKEVX55imiZYVjVuyhrXZe18AqoFNkapm3u0\no4IAz2dhz722U16c2DPqgkT/OxX6FjpzFAJwsKOegLZj2fXgA/CwVoZ1bPuAMRUCZ5MMp3mKXAgs\nTHsVUrUsBXccAYbE0E7NcXNPMSshPPbjWcA4mSR4+2yClzcNFRkDl3F+h5gforEQOuAQ9Pg3WQ3Y\nEGcsOGyik47AsEfZpSn2AQxRZT4CGGJA0gcMu1BIYXgvKATA0ecbINLr5yhmfGIWuIspfptX7JoK\nyrQjeXyKyB77iliZcGbNr5/muhe8qiWuygo3Ze3oIaWaPC0g+PsRWFAIgSAEgQY07HPo7vPcNwlu\nk/hKwgcHN1ooBgxBWNPL94DBU76+ZdEMrdW0U5YInOcZzicpBAjXZY1FVbvnLIggQBCiqa/vj2iA\npAGPlmVAviUT+gC61kSeEN57MsXNusblsu71Zfh+DluvLhD0WA5ezz60GryfQavBDzsCw45yBIZ4\nghAYtvUttKJ4itvlHYTZ8NHA4FM+5joR8N7FFOtK4sV12VH8fjpgGBSsYrZl+kDg00XOYjDX5lmC\nszyFIMJlUeF1UaFWytE/PiA0PoRGydsy9cY1DRC0ACgCAv6ch+Z607Yxf0MIILG1kjpOaGrH9ekT\nq9SbY1/Zt0HC5m3j+L17HyAADR6zNMHFJMdZnmJtgFbPWKbGYiB4+TTDbH2KyFJMQ+BggqNWRSoI\n711MUdQSrxZVFAxaQIFu2FirIQYYTd28a0EeiFxvhwVyBIauHIGhm8CPOpZGiloLfYDRE38IFGLK\nvGUpAHj/yRSLosarRdW61jkOFH4MEHxF64OA8o4tQBCAM9OzLaTCq3WJq7Lu0EStvFRjddgwHwCk\ngpfeWilogYcPAC3rwW+r4Dn6EgID0E8bNdcbZd2hiKgdz4ZZpakn3bXTCavITVw7Ma9NETVxMiJc\nTHM8neZCK81JAAAgAElEQVRQzLgsKqxqTe0kRC0rwrcafLrJlhm1GMJefkTpJwJ4/2KKSiq8uKkG\nHdq2/pvAwbZ16FdohXnhYfxtrIaxwBDmE0Y/AsMe5dMADC6Kl7bPWmAvjyFQaNXDU5a+pbAoarw2\newjHFL4PEK6uzL2gIJ0CbhR8o8Q1MJzlGS4mGZZ1jRerUo8mQmMZ6PgM6Xr2zRaVPiDYMPut1KoL\nBiEwMGsQsOdWgaZCKy89IQ0QZkKaT+c0Sqf93G072ZnNyqurVHZCG/QOamaM/yaw8I9tPQCtPH3A\niAEEoGcnE1FjUZj7OctSvDXLIYjwcq3b3loLTV7NMeBbE/3gAKADCB0Lg4DPXExRStWyHDbNr/B9\nKhYYrLSAoAUgbcDw49pr2wCDX1774G6B4S629jzKljJEI22VT1/aKBDtVpYPPL71YI/fPZ9gVWrT\n3tXJAooFlwAgdDx2cWKg4PfMQ1CYZwmeTDOsaonvXi9RmFFFdpaxTxVJxc534AOCnWDXAgZrpagu\nGFggILCZ8KZBIE8ImdAb3lSS9WQ3qSfCScWoTfmSGUqhNWrKPhKnuGCUsGgUdGJmVqeCkCWEmfnN\nEr0xTiXZlKtQmXKJGqBoaCVACZ+G0ovaKW5fS4igmJEa34EiQM/t01t5QgFMrP02VY3TPMWzaQ6e\nZHi1LvXIIQAJyDnoE6POJBh6m2kCwC6OBiGG21oTugwGmQ1/4JS1bbsPLtf47JMpzmcprla1uwYC\nvP18Ou8yTFF6L+u4UrfPxXZ8NgmPjPeQ5GgxBLJtcxzCYtjFv9BnLdg4obXQRy/5cdlL0GcthA5j\n29NnAM9OcxCAj66K1iiijqXAnrM3sBh857IFhBatww2FlAjC27MckhkfL9ZYmiGVSnlp0YCB9RWY\naI21EFgNFiQcgNj6KCBPgEkqMDV/RMC6VlhXCutaYVUpFJVqbSvaopFaz2v8y+ePTvJ1jrM6SAPS\nNCNMMz2BbZYJTFJCJVnXq2as7Y5qrgff5KMBqKF7UuEDk7EYRGNpWKBya0IRQRikeTrJ8PZcz1l5\nuS5h/Qw+leRbEJZ68kcu+cNNRRjuWwQmPE0In3s6bZbRoDZlZOP5VkOMUgLQCotZDTpmEw4/bhDP\nP+/zGxwthqMcVMaMdNkaejvAYYI9wDmdpMhSwg9erp2VYMvqWArw/BMdiyG0CJpzoOn9P5nmOMkS\nfLIscFlUzjrw40ij3J2iZ9tjb8qsVRwQLKAkApilAjOjbCvFWJYKr1c1bkqJsuam/h4IMBpqzF73\n280Ps2lC57IVsj1oBMrEhFvncC2BoiZcrrRStEp6ngnM8wQnucBb8xwAsKokVhVr6wraOpDKKH6h\nO+uuQ806TNcVYGGVu7lXggMY61R5VVS4Liq8PZ/ic2czvFpp/4MAQQZvoLYU4PKzeSuj54S9QjpO\naDmY1kQtgY8uC7z/ZIoPXq81hUjt7TnZWiKEiNrdLDFroMcgiaYztR+IOCKzA8gRGG4pBBqlfB+M\n9FXV68V3LoXWQidd+zxN9OqoP3i1aoDAyytGJbXCTDV9C8Eqct9yAIBMCDyb5VjXEt+5XGhFz02P\nH2g7le11y8lbC8HGszSRuw79XZ5kAvNcL1K3KBVerSRuikIDieJBIHAT4jz6S4eZdjGaRTFjXUpN\nywhClginzH3xAcO/anvPEl5PmJpRRGTu81oybgoJYXwFk5RwPklwOknwdppiXSssS4VVraCURycZ\nQGDVOMcTYZQ2WUtKU1AQDVDomwMqAj5ernFdJnj/dIq5TPBqXYK9PZ9V623SKlOB9RwMsm3bUEuu\nFIILs6dMjKJWeHVT4p2zCT68XLcopbD9dHKT70bN7vBkQ7QNiv+BypFKCmSX5ugFhpHBh6CSQhrJ\npQ2Uu2OCPGBorAFuxfFpH/bjB2W9fzHB9arG1bpuOZp1Xm3ayOZplaX0lSe4DQaqDQ7neYon0wwf\nLQtceVaCZKv8jcI3VoFvIUgPIGovHjNQm7JOcoGzSYJMEC7XNV6vayxKpXue7DmvFbfuw95n4y+w\nIKD5eWVGPVn9pJXbuA6Gr2TCOQv6uE0nuXMvnpuPIBrQsBROmhDOJgmezlKc5AmWlcJNIbGqtbWU\nkqGLjMVgqaOGSoJb4dU62f14Nm5KhHdPpjjNUnyyLNwkOUsfCdGmk+yvvUfrfO5QSR5F44e/fzFB\nUSvtbwgonhbFFKWTTI4b6KTYqCUbvq0DuhU9QjuFeYTpjlTSnsU29F7w0j6WB4i929xfzFqwvX13\nbCKeTVMoRrPLWsQScOEWXOD/NnkOgcKzWY5JIvCbV9q5HAOFBhiGQaGxGDRN8WSa4DRPsCgVPr4p\ncbmW2k+hmnuwVoIdGeQDgW5fhpR6iWsLACGo+20nlaaAGNonAmjqh708gTYIhMAQKsUWMFATLxHa\nziWllTwRgwWBiMAMvKxrvFrWSBPCW/MMT2cpngngei2xqBorAvCoJAFDG5k7FdCeaf/lt9OqQZAE\nfLwssMol3juZ4sWqxLKujYUAEJOz1ppf0y7GerCWg08luU/OOqdNez+/LvG5t2ZYFtJtG+o9hNa3\nGtJNYyW0DnyaKUY57Vv2mf0RGD4l0ocDHLlorYU+8Ggptrblj4t5hg8CCskCQVNmAwY+lRTOFmb2\nfk0qBuP9kykkM757vXJAEAMF6zuoVBNmfQjSA4maGXlCeGuaYJIKvF7V+KcvVihqblkHzcxnHV7V\nCpVSYLZKmlBLBSKC8ibOWQC0Q0yFIJcvoM9rya53XdU6ZWqI+tqM5PF9C/pc//qzlUM/g9+7trSU\nUuR8Dop1b9zWiwW5spiBT24qvFzWmOcCz+YpPjfLcV1IXJfSPRv7nJSn+NvggKbewvSmlT6+LmtU\nconPns6QloSrsoq/dC5fnVcCagGu5evZ9r5Nu5vHgloxLpcVnpxkZoKlaVNYGqur1Mf6HQJG8I2Q\nIzDsQbb1MwT9qFvntw/pjFyKXId/3bcETOD5LMOyrFFK9pR9AwRAMIvYKf6uX0Axo2bVshQYjPdO\npljXEj9YrHU8b8RR5QGCZHZDI31AqKQdHtr00t+apZimAs8XFZ4v1g5E3LwGFYyEUgwpNSi4drD3\n4bgkQAigqnWYEECWCqwLiUkuUFYS0tRvOklRVRKSCElCWK9rAMAkTyBEcx46mid5AgCoWIFNHX3f\nQodOMukTYx242ceCXJgFJ2GO7bWqVrheS0xTgXdOM3z2LMfrlcRVUTvLIxOAFOxoo1SwA7eUCYkC\nskRbGIoYgjUQrZjxncsFvnA+hyDg1bpyw2Hjor+gBIACQYDNb49VYbT81bLC55/NkCbkwJZNdq1h\nr54F0Sh9PXy1QSIGMfX6GXwj5BByaBA6AkOPEKG3x3yIsoD9lxdzFO+UTycbboXbj+BsluIHr1Yu\nTgtEuHvMXrzm2ChfCyCepfDeyRSrWuKjxdo5bht6KeZL0HFioFArxpNpgrNJgueLCt99Xeg0srE6\nVAAQHACDBQSp9NwAadLrtmFMhEBVK0cr5amAlBJKEVgxamMZcM5QUkECSNPUhU8nCapKuvMQGLJU\nNE7qTIMKG6vEAZq1aIzit/X3gUB4loylpe1xwvqXBUGwVuLfu1T4ZCHw7mmGL1xM8HJVY1mZocH2\nORtroamztiDImlFCX1PGapLM+M2rBb54foInU+CyqEw2ZGghn2a0Phn7pnmUUvtFbVkTCoTLVYWL\nWYYXN6WXums1PBin8T1V4QgMR+mVGI70gdd8kqCoJGprLbg8PNooyDykkPxeue/YZgbemU9QSIWP\nl0VrKCoDDhSsxVErPYmstvMTAlDIBOH90wyLUuKffLJCaZS5tT5qqZxylcwtRWvzsxZCLTVwWMek\nU/bMmGQWCPQ5Zvp6neg4srZDQwl1rVBWCifzDGlCKEqJRBAWZT8wXN+UnbBEAGmaIE0Jaar3VBCC\nNOApfW8AeZRWYxUID7QT1j17Bly4MOcJAwUUvvu6wEme4LPnOU4nCV4uK0gmuKnkAhBuqzqtvMk6\nDbz7sQq4ZuB71yt88XwOqRjLSuqhrIpAotGRvs+hQyk1r1eLXrLh16saT57lDpQc5RRRwHfhF3io\ncgSGAdnGahikfzZxR8MZ7552Z4n4FwZoJGY9b+FyVXXC/V+goY5iFFJrfoLt+bPCk0kOBvDBzcop\n/maCG1BJBakaX0Jlev2WStLnmqt/a55glgl893WB60JqEDB51bJtITiA8MABaIa3JoKwLvS6S4kg\npKlAWdRgaJCZ5AJKAeu1WZvpNEddK1wWazx7OseCK5SlhJQKRSlRFBKffLLE+dkE52cTXF4VuL4u\n3LPwh646pUrUAQeiZt4CmRE+kzxFnieY5gmICGUlUdcSdnav8Ggje29C6H2rfUoptcfGdyDN0Nf3\nzjK8f5bjxaLGqlYGgDW1BOhNmTLWFk2WeFajgB4iCiCFQMES37te4ovnczdbW78Q8JzX7m4B6NnS\nvtVgX1LF5OY82M9IAViWNU4mKa7Xtbvo4piDwDMCfMpA4ggMnzLZ5LvYhc4SBOSpwKqQXjkBnRSp\nR0gh+UNrLYU0TRKcZAm+c7Vwq53aDxxo00fS6+Vrx7KJwwCB8dnzDOta4Z8+X6OS7EChbvkiGmvB\nWgM+rQTYUUMMQUJbDbUCEq0wbVxmxnJZI88E1mudbl3UqGuFopB4fbXG+dkEeZ7g1asVFmZxwapS\nuDY0RyjhsFQb5pzQZoSRDdNOZlMvWWFlfBVZJjCdpJjmKYQwICGDocesLQVAgVnTSJpmEibcikIK\ngY+uK9wUEl94MsGsJrxcSaPHrc8CjqQhnY2jlcj4IRTrvv1aKnx4s8b7p1P84GblnrfFBfb+rFb3\nlb8r1VPk1g4lEBaFxJN55oauOpuC22kek+y72kdguCe5C0NgX07szjBVtP0E8zzBupKOc++yRk0O\nIVhYCsn/hZfP2/McHxqHcDMk1PcfMBSsFWH8CcEw1ISAd09zvFhU+GRRN9aAAYUmLw0KvuVQS+Xx\n9R7lJBXSRECQpmmyVIAVo6r0xLG6VriuCpzMMzx7aw4hgFevC6xWehjv5WWBq6uioZnQ/LqGDSWw\nDOxvCBLO4SwosBzIlVNVCgtByDKB2TTFfJpqa6u28zQ0GAACLOCBgb7vuukDwILDolT49ZdrfP5i\ngvdOMzxfVnZOGmplwMyOiCIN5pqmMsAAvS4SM2NRS1yXNd6aTvByVTbvFhoqyepyq/TZ+6raFkTb\nX7AuJPLzybAFEAWJR4wcW8oRGDbIXdJJflmblPquzvGhfDdlF6OXACDPBFaV7Cj8Dp2EdpjbbQ3+\nWkZG+TLjYpphUUksKtmikCrljTgylFEt7aikZrG6SjKmKeHd0ww/uCrxelW7uQXWIrBgAKB1bsFB\nGjrJggEAd06kRw7lmUCWClxdl6hrhbPTHEVRoygkVqsaL16uUFcKdqJba9azA0JuAwPaQNG2Fqgd\n1gIG8yeaYx8gACBJyIFFVelRT0kiMJ+lmM0yKKmwLvQoKSm1LyJNCFIREiGc81o/Jz0bXApGmggw\nE779co3PXUzw7kmGj24qKAYy89yzpLk/56g29p8S2nOQCoFaKXyyLPAjFyfIEjIz1pu0wnNlENDy\nNdhmpZ5fJqCsFfKUUNbc8jPctdM5nNzWV3LfmkqHkiMwPDIJ8eV+hra2ZZIKLIvaXBuuTUgxhVaC\n49MJOM1SfOdy4W3JqZWBH89SRspYHG61UqVXAH33NMMPLktcFdL5C5ohqOxAQOfFHVAAAKUUpPSc\nz+b45qZCmUlMpykurwrcLEpIycanoNOxaoOBf+43StRq6JEWMFBoPZgwRyNpP4cQoulxG8ezHsVE\nYBZgVlgsNd00naQ4mWeoaoWylAAEald6m+wn5x8AJDUM/wdXJT5zlrn2r0kPA9X+JO2UFmauhAUI\nwc0ChQQ9S/z5qsRb0xwfLYrmvaJmmY7mnRrfl2cARaWQpwJl2/QJ4nVBYleH9E7KfGSaQ+DEERhG\nyKGGro6mk/bFOx2Av2LWE7Eq2c7YH41kf31praRq/ikPMi4mGa6KCrUbpWSd1l3LwlJMbv4B9DP7\n7FmOj64rXJfSm/RmlL933jiVVQsUspSQpQmubpSzHAC0rIhFJXF1XbpzpcyoJAMAysx10MNG2YGA\nDwT22C6z0KvlgvYCPDBAAAwOFBSEGU5kquZAghlIEoBZOf8BM7BYVlgXNU5PcpzMM6yLGkrBgQMR\ne1SSBgoy4YoAwdrX8uFNhc8JbbF9vNDbbWpAaAO585EYWsku2KcAXJcV3pplyFOBStoRX2YIq5kd\n3QBEe4JbTKyyr6QGBkBuhSpjFfymaA/dkX0EhpEyFhz2SSdtI2G6zvnmonfGjcRQDoPiWQWhgrNW\ng/0jACfGWrCzjPWsZt2r96kkOyzVWg6SNU3wmXPNcb9a1ailMkNYlaOLpHE+23CgmYeglMJsojn3\nF69WqGvlwgHd467rxu+gpNIznY2FoO9TWwcWECxQWKVtlXloRbAySp/bYNqszePRRP4CewwoVg3I\niMZisHGF2YDZHttfaz0kifLoJoFLWSDPE1yc5agloygllNJUUmoWS2LoXj8nZMCboBI9oQ0Q+P5V\niR9+OsHZROC6UOiKt/0oAEENUJDSs6lfryuc5SleLLVTXrnJZdyUCT10FR2QiM9z8Okw/xXdp77e\nl/K/axoJOALDg5bHsHKrGAFksescXPNHI51kCdZS+xUUQmuhTSXZoa6+BXAxTaAY+Pim2RzIX+HU\nn6PQshikVs4nswyrdY3FsvKsA+XAT8rG98CKIaVsQMA5qBtAABlFzQSpJGQtoWTbggDG0Ukd6wBw\n+SdJApEIBwDMDFlLDQAsXL72WJiJCr61kDqNoJV4WQIvX69xcTbBfJpiVeihsMpQSIr0Bjva6c0t\ny0EphiTgN18V+GfemWFdle4ZKrbP1Vt3CZZaJOdYVgCuiwrvzCcA9PsgzHVLJ7Gn0p2PboMCVcyO\nyrrv3vsm/8Jg2r3WpJE7AQYiEgB+BcD3mPn3EdEPA/hLAN4C8H8B+APMXPfn8LhkG4W+Sy/dsQ1j\nrZhtHOg7WCyhkod/PgAKViG4kU7QynuWpliUdRsQ0ACC8pWJBxR2tMrTWYr/78W6NSHNH8rqA4Q/\n2ogAzKYpbpYl1mbhPOt01mAQUEmysRJ8cHA3SfpPSaUnuknVTyU5gNzc+JYussdEBEhA1aplHSSp\nBgpdZ6mBwNSNDF/DzEiQQBpKqDZfYZpa/4EOv7wucHaaYz5NsCokJFkqywCB0mAhCUhYzyFQrJe9\nKCXj45sKz+YZPjbDcpX353cOdJihGe1Mbej9IqZZgmUlm3eLvN/YSzagNb3sm3YN2zkSsq0MObIH\nndy7avw9IcVdWQz/IYD/B8C5Of8FAH+Kmf8KEf0ZAP8OgD97R3XZWfbia9iSTnIgYx94JK2NE6vf\nblZHvJKx/GM9rj5AADwQCEBBofE5TFOB5yvZ9PJhlQab/Y49xYq2tfBkmuDVqsaqUq0JaT6FVNbK\n+RNqo/QFaVC4XpRYr2tnFUipHG3knNGWOgp+rXVguf26qptroePZNYAyyKbaYdHHYukb8zBINL8m\nzB+RJCpNIyVpgjRLtQUhpaOjkiQBCb08h/5NHD2llECSMNLU+iMIV9clzk5zTPPEzVlpVna2y6sK\n1B6gWMvj+aLCs3mKTBBqZpCye043s6OJNC1pQV4Di77fZS0xSRIsSmkmxNn3mjzLoa0Xh6wB2nB9\nrBD8Hn88sw4AbVFmH410aCNnNDAQ0T8H4LcDmNowZv6LI9J9HsDvBfAnAPxhE/y7Afyb5vgvAPga\nHgEwAIfxNQzo/FtJX101X+008wjfw+YhrvYDsR/bNgAa+kYEEUrZrE4KoEMj+RYDAEc5nU0S/JPn\nK9h9HwC4CWfMZrlseFt4ml7+/CTDcq2HmPqWhB2BJGWbJoqBgkgElFQo16ULa41MUqoNBPbmWY0D\nBqAFAhoYhKeZBJgIzHp2s97wR4ArDQhJogHCrv4qIY210P4FDI9v6CAiBSIBIsbNosTF2URP3Ctq\nCJGYtaI0NWMnBAoiCG6cwcwaHC6mKZ4v647l556z8zkZJ7TR9oVUOM3TVjxxC/WYmMmIY6VrXVBc\nO/cEb8rXpbmNxt8jWowCBiL6OQBfhQaGvw7gXwLwfwLYCAwA/jSAPwLgwuT1DMArZvf2fw/AZ7eq\n9adZDKhsSye5pDFjgDS10HJ2DuQbZiEVIzVjwnsjjRQ9hr1JaOmkUBwN5YCCcZIJLCvlVndt0TVo\nA4R/PMkT1LVyS1fo66oFEJYuAuAUvgUFQFsJVVFBmuE61hltRyRBSVNR2QCBu4EIWMSECJpYQdta\n8IABJABmBxBg7X8QEJCQkFIizVJtQZh78kFBuenIAJGAlJ7/wIDFzaLEk4spqspbrputJdc9ts/g\n9Vri/TO9lailBuPPsnvrlVJIhXVwwylB7tgJ4yQ18zHsvbomRqipuzKmx78pzrZzJe7aDzLWYvjX\nAPw4gF9j5p8iovcA/A+bEhHRvwzgI2b+e0T0Vf/S2Ar+/Ne/5o6//JWv4stf+Wpv3LsS+5A2KWR/\npcbIxY7i9IO2mezmx4nVzVoIG+trKuBbAbB1coDk1cX0jqpaIUu6Y8K3AS0bz86IjV33e5mOgnJK\nCJhlAldmDkF3B7fGx2BnM1tnc56leHW5dr6Eupbm14xG8n0EaPsMrJVQFEULKFgZC0FJ81cHwGC1\nommzEBz6pGMxUDdMJMb0SqFEAogEyoxCsnWTtUQ+zQGGc1B3HOGO8WooIcBYDssS81lmHPRNuG9d\n+COMBDFIMhaVwjQlFLKxDELrzz5XZoCJzH7byu3gNlaGomcpYV2paFzywvwswvON5SNcx6ovXn/6\nsfG/9a1v4Je/+Y0tajcsY4FhxcyKiGoiOgfwMYAvjEj3kwB+HxH9XgAzAGcA/ksAF0QkjNXweQDf\n78vgj/3s10ZW8e5lL7TSLvlvYTXs4hfpG/raB1xFrTDJBBZFZLLQlpYDoRs/VJXdGcL6d5oKfFgp\nT7m10zQjk5rzSS6wWldu4xz/19JMPi0EoEUdyVqiKqvOqKQOKNhjHxxsJf1NlF14BCDIjLu3QCAC\ni0EkDUUYaCEdqtNZq6Bcl8gnObQTtz3xzj/XVBogRHNelgqzqaZk/PYEqGHEvK69fRTLUmKSCqyt\nZeV3/xG3FsJn2WqSLVQ1mfgEYJImuF7V3QiDqSP5UdvKGFOb2FaeQ+WPwcOw0/wnf/7rI2rSL4Pb\nYXjyK0T0BMB/Cz2K6FcB/N1NiZj5Z5j5i8z8WwD8GwD+D2b+twD8HQD/uon2BwH81a1r/iZI5IEP\n9R42fQRjPhIy/9n8XC+ok3TIlm6frs2IEfvhjaljn0NOcfua2oBqfm8zFUBRez1eI45+MOHNftOM\nLEuwNOsXhcqQGa4X7ZzHBgCICEpqB3PLl6BUPyjE/qT5UzUgKxNW9cT1r9de2p54Qfm2bn59y6KE\nXUCuuYdgDkYLUJv2WK0r5FnSAuI2SDRhtu1LqXfL88WfsGfThGKHlg4J9ZyE76UgDWh2OYyYg9d/\nT0f7F4I8biPbWAv79C1YGWUxMPO/bw7/ayL6GwDOmfnv36Lcnwbwl4jojwP4NQC/dIu87lVubTVs\nQSnFIvVZDS0qiqCdCxvoJOeU5iZPwJZDZi/cxnogU3pZsV73n+DWuCfvLoi8W+TAPIdeEdRGkMxI\nvYlHYmQD+2vnWMrJKic3W9qF62uJIMi6mdEcOpyttaBk259gae2qrBytxIrBsm6ooZhyZ9aKnFWc\nQnIadHhUUtun4FFJItHHSdJYJiIxmys0fg0FgMzQ1QQJyqJEPs2hzLak5sE48NNDYu36UApCJFBK\nL/1xepKDi1q3l7UozPLaGpB9oNY7p9mtSAddKYFkiUDNyvXSfcdzs3JrlxJqKVij5OfTFOtK9sdt\n/7h8bdljJEYjxQEIrYMQEDaORDoAKADbjUr6EoAftmmI6Lcy8/86Nj0zfxPAN83xtwH8zq1q+oDl\n0JTSNnkM+jVcHI0TAPR4dg8MXJyBe+rUgfQ485NpiquVnn/QuCHayOfna4HEl9qMaPHf9zFm7Zjv\nI+yVJmav5aZH2/5tWQteL5gEaUvBhrGhjqwytpmEf9Yy8H0JrTSq3eg+QJAA2DqeLRi0h4S6U8vo\niaSdvwUQJY1z2tBjBAcAztKK3LvvaLaUEStutb1iwFsnL/IMthMyt5QL0Vl2JVS+bQzoAoKVk0mC\nxVpGr3UBJm7WW5DwrYdtgOOhy9hRSf8dgC8B+AdoKF8GMBoY3nS5FTh4PXM/qM9qaM1t6LEaQofz\nKKuBQqCw5rQ54qZAywwzdPTFusbFPMP1qnZWQDtOy/wAcWMtkNlQRS91AJRSYZalkGXlXjbfpLcb\n3gPNOjmSm+Mh8Skmuzx2i3ZqUScBKLgHoh227FkVzgqwSrhD63BD68TAwP1a0AiR2vwnEq9BIhYD\nqyZOKEEXlklbgdYBnU2yxkci2vfdpoSaY8UaKP2wIUlFQw/Gxv+75TGovQbULBUopXLKWA9rNscg\n05lociJtAjTxTTmpIEzSBC/K0oXZpnVpbPzQogh7/R4otJr5LqyFnnd929FOfTLWYvjnmfm376XE\nN1h2cfS2M0Bvl6p3JFQADqOK8SJzBwziZbokrjx9YEFqXSk8FYRJKrCqlGeacyQvMtYCm2O9hAKx\nBop1LXGSJVhUtS6D7Ho67BRH8wE0ACGV3imsluY8eu/btFQ7KrOuC4dmjr0xv4fvD0l1557ijw1X\n9Z3S5i5dJawZJhXcyCNrIpBXBiVentT8wds2zbufxhpQnWvj2qf9fEOh4IJeDM8DZ+96AwomrZfv\nLEvxfFn0lNFVsvqwrSaJgPN5ikVRO4s5Fte3FmIO4hhoNPUYUO4xRd/bbpG4G9LsU8Y6n/8uER2B\nYUbiB9cAACAASURBVE8yFtWHYg3Nsux9GSMvbqzQvqUAOj0dG2b+rlY1Lk6yJixW18hHH9Z7WUmc\nZqlXZy2h4tDHzcdb1ArzPP5K2x6lL5Yaaa071CNtZ7bHmzO69E9L6bNxbAThrfg+KPiNx4iYDXHK\nyQee6A1EQGoPIkQDlLYXHxPbxvNMoKjZxNWR7Qxo+w74z5SIMDH+q1rpSW02nu1gdBV6W/Ha91EQ\ncDbVO7fBTxN5V2ODI0Z/txHQ2ZhmD9p+X9YCMN5i+IvQ4PAhgAKm38jMX9pbTd4Q2bczOuzfhnRR\njFKy8cDdpTJ8SgnQCTpWg/3YPOrExhWkV7Ike4GbNSsX6xoXsymmxmoQxFCmlu7jZW0hSJjNVUjb\nHYp1LyUhMhv46BVWb8oKioCEGJIICQE16b0WAE0hJYKQMLCqFM4mCV4uaj3z1q4UqgiKuKOA9L7M\nDe2iwy1IaOvAAZn3tTfKY4cPsW8SG/vEW29ibS04ICA0jgW0LQcmQInmOe8oDZ3jdQy8NiQz6Uxb\ndbrt7B7RPvgTzB4beYLXq9JtHpQIuFVOBRESAwqJORYAnkwy3JS1AxJ3jTwaiciU0RTYUE3698lJ\nhlUpnaVq62UBxoKIveJ3SixtZO8pPLdx+jpiQ9ZCjGbqxO0N6OaxDxkLDL8E4A8A+L/RHVZ+lEDu\nEhx6I20qY0TdrFJhwyGR8U9YishSS37/9vWywltnOX7wau3YD/vx6bqz8zlY0LJgYekkALgqKjyd\nZlhUtQYWMv6IoEcpTB0FgGWl8Pl5jkSgtfVka2czT4HVUiFJBYRot2fX6moDQWu5a18z6IvmQHa/\n8uEGHwcOsRdrqJzYNX/uA4xSF21w6aze2gIIfW0y0TPGmy1Fw6KbPAQRzqcpCqmfv15iu63Q3NpJ\nXlmJIJzlGT68WbeByVO47hHEFLkJzxLC2TTDB6/X7WbxAS9Q4uGjdfcVAYVOnGi6vpN4mvsCBWA8\nlfQJM/81Zv42M/+G/dt7bd4g2aUzuVM5wUthvoNOHWLmre3hkEkYnrfy9D4We9D6gEyey0KCAJxN\n06YHZXti1MRrjr2enRdvWUlMEoFZKlxcQeQpjyZdanqfDGBRKjybZ7r3KUzv1S+/9UeoKoXZNPOA\nw7aXVSwe1eQ1rkhEcI08UABaQ0vdRDTRDm+l8eG1TwxoEDWzm1tl2sqbckRwHmhvX3EnadLyncSW\n925oN53NbJqirGQAvE0xredEwNsnKS5XtXedzJwC/eeDfmLyezbNsahqtzaS8N5bRyN575V9Ru13\nk/D2WY6rlZ7I2FgR3vfjvZ/wev72OxkCAv9bCsPRkyaMs1HuSJ9YGWsx/BoR/U8A/ndoKgkAsM1w\n1U+j2Bdi09yBXqsBcHoiVBu+1RBSSjY+2zoElFLrRQ0pJO/clWrPdWZ6BJGJJ0BuNzVb5oubEu9d\nTLEsJSoZxCGCMHcsBAF6OSGtIEDOKcgEvFpXeHc+xapeglmBhS435WaYa5Zo2yURhIyBq0Li/dMM\nL5YVVNUotEQRlCAo8ysN3VGWEvN5hqKUZqtLu5qo2fksMU5ns6cBoId2plmql8QwexvodYk8B7Q/\nOohZtyH5YeZG7VwDIugt1rgZsRQTkbZBxYIEAOeUFomey2CPbRxhPncT7jbqSfQfK25v5mP2dmg2\n8tFtJgQhzxM9D0TqFVgtCKdCIE0EUiGQmF8AeDLTK6uuasYkIWSJBnSdRrdFZs8NYEwTgYtJjg9v\n1oYa1NW3VFKLUnKdhkYZ2/CzaYI0EXh+Xbp4jWVkAaGhvkIrxL7bzlKh9nnXUuqCQiuKBzp+nE68\ngcBDWAm+jAWGGTQg/B4vjHEcrjpKfCUevW4e8hjKx9P9/eCgM2vH7QOgTYWhAQt2YOGBDPyXVPfG\nasm4WlV493yCH7xau3Bd54ZKspUktssmN7t5JaTnRpzlKZ5OMjxflyDJblXMxPoYlFYUqTC7u0nG\nTSnxmbMc332t+zCKDRiwUWysFZASepP5ulY4mWe4vilbvV4hCErBUS2uR23qmGYpKlW53jL7PXg7\nh4C4PXxU1UYT2HgwQGC6zayaPEJ+y/6GC+i1JrjZcO/PhZOLpxW+Xj8pm2RuNrcDBmsB2CW8vV8h\nCKfzDKuidsAhBHWsNOEVeTpJ8HxZO5+Cby24apH2IVmF/v7JFJdFBQVGamwF1wRo+xasErdvolX0\nWUJ4djbBx5frxpLwFbeN6+rqAUSgfLelkDqg0AKAOzYBtpSxM59/6tAVOUqP8va1eyRoE+j4cazf\noKNvBq0G+NMXAuBpZkObIFe3q1WNaZbgrdMML27K5oNl+1FrBzSxVgYMmHX1daHKKIjnqwKfOZnh\npjKza9mCg84vMYBA1DihX61qfP5igtNJjUWpnJIT5i+httWwLmqcneQo88SMVNJ7EdhjFuz2LAAA\nwXqNpCRNgmUjvCGhLYtB2S4s3CfnrAKhwcFZG8HwU/egBmY9+3MbRNq2FuxsaJEGcyC08s8nuXuW\nwltoz23/6YGBA4WT3G1vmqYNreMoO8ABhR0A8HxRI08FJomhijyAsIvjJaJR9M+mOQQRrsoKKWk/\nkI3XoiI9QHBUkr1FAt67mOByWaGS7PL2m9G3CFrN64FAK74nMWvBpe0GRuUhWgvA+Alu/1Uk+BLA\nrzDzp3Odoy1lDK0E3A4cWmldb79JsBM4AC0aqY9SAuAoI/v7/LrAZ55MUdQKN2s9RFDTR3q0UgIA\ngqEU6RdRQI+kAWB3b6kV8Gpd4nNnM/zG64WN1Ly5NfSsqdaYCIFPFhV+6OkU3361BsrhNgeAopQ4\nO81ba/RbH4Q9bpSOPlBSIcuNf6IkSJJQ5hqLpJncRhQsopfALEmK9lDTnpnPvX4EAwxJhEoK/5IM\nwsSzm/Tks9zdi90WNEkTd56kAmnwdzLPkOcJVuvaheWpQJYIZJHf3Jh2Og4hTQiTlJAn+jw3tBIA\npIZGOstTvD3L8cFijZRMOhKOJrLx3Mgm77gZAkt49zxHrRg369pRSKGj3M6yd+EmLLQMdqGQQkuh\nY4E8UFAAxlNJUwA/BuCvmPN/FcC3Afw4Ef2LzPwfHaJyb6KM6uH3gQPQO1qpZRUgTku1qKcIUFnQ\naIED4ICkdR2E9oxoXSqZWtlNWz65KvDuxRR1zShqzaHrnltDKTXWQ+MvtbRSQtoRnScCnz2b4zev\nl4YK0vESobf9TAQhUQAbC6KUjNerGl+8mODXX66hFOkN65mgEoLiNqXE0OBwcT7B69drYwGQ8Tvo\nPzdyhwFOzMQwqZCmKYQQKFbNBCy934BHIVlaR3nLWtgHYNdPQhKAQzCDuQUKwnNqWy1nrYM2IGh/\nQmMNpFnqltwGG0e651PQWfm+BX08m6aYz/SGRol5AGkikBi/ghANleT/6eekfQipML4Bw5ylfhwi\n5KnA585m+GRZghlIqXHsOsvCo5BaStxT1k9PMuSpwEeXBVoUkm9dhM0aOW45p72wOGVErfMhORQo\njCl7jIwFhi8B+ElmvViL2Y7zlwH8LughrEfZsww6pUe4CkKHtE1mrQObtwOUDYDVGBW+I1uXYt9X\nn0qylFElteXw/pMJPny9xtqtaNkGBWG+PFsFSytZSunlusS78wk+ezLF965XLl4i9BwIrWT0XVlK\n6aqQyFPCDz814FBR1BHNRslVtUJR1nj6ZIpXl2u3LIZSWjmGS2dYva2kXm9odjJDWZTNZj1IwS2+\nn5o/t6aEbM4tOAztLGbBwD48Cwb+uXU0m2NhtvBMkgRprjfpkbUeTWT3hU6SxDmiAW3ZpalwoHB6\nkuNkrkHBzlWw7Z8IwiQTeDLLUJhF8tJEGAAwYOSBQdICiIZKygThh87neL2uUEpl5kP48xaad5Fs\n7x8NONhRamezFGezFB/aoamwo5CMavUsBrIxHGj4XX0XoQUavsSsBi9Zr7XQKz3R7hIUgPHA8BTA\nKTR9BAAnAN5iZklE8XnqR+mVW9FK+kJ0tJL/YrSopR5w0OmC0UqsP5L2Qsj6tVTMYNJKnMGGvDHg\nYI4VGAnITLvSlFFRKbxaVHj/yRQfvF675Y4hdK8cyhBBAki9+xKsSyJSICXwYlninZMJPnc2ww9u\nViaegCCGIAVBAlQzCOYcAjeFwvk0wY8+m+E7L9dYV+QUmxAEUROEsHQRUEtGUUo8vZjiZlFiudLX\npVSOL9fHAlJKCClaG/dkk8xt3uO2/1SJGfFDmJ3MQIJQLpcobhYdGml6cYF0OgMrheXzj8GGcsrm\nJ8jPz0FEWL16BVlVAAmINMX04gIkBMrVGlVZAySchZB4oGDXQmLFSLO0AQQzKilJNDUEwNFESSJw\nca638rSWgqWKAE0Rfe7JBD/6zhzXa4k0IXy8qMBMjioCgEkqHG2Up4RMaOsgJUJmQOSHzudYVhLL\nSiITog0g1LYstO8Dzm9kaaLzWYqnJxk+uizcyDet1NtUkvA0d+Mb6QKEjdZnKfRZHv5BnyXR0eMP\nBBSA8cDwiwD+HhF9A7r6XwbwJ4noBMDf3m+VPj2yM62kL9zecgAQG8raVyfnZjCWg7UW7IbwZKgk\ntzw3rEeAsColBAGfMeBQ1I0vwh/Caukr65AW5M2QJuDjxRrvnkzxudMZPlysdbg/jNUML7WzqQHg\n9VriLBf4Lc+m+PbLNVSha5Yy0PIXJwCgUNWM5bp2fPrryzUA32JoJoPFlqlOLJdPBFIEoTSIzE5n\nWN2sIKsaJxenqGoFVZYOGLJJDkozLF68QDqdYvr0GVavX4OEwOTiCVavXwNEmD59hsWLFwAJzJ4+\nRbkuoKTE9PQEkjVg+qOOrCXAZhiZPY+Bgg8Mk0mKJ+cTKMVYrqW+bvwEqVH4WUp4Os/wDz9aQirg\nMxc53pplWBnfjPUfWEshS7SSt2CQCsJECHz+bIZlJXFZVsiECCyF5te2qx2a2hhhbVDQAxLa/gOf\nSoKnrPsshT4rAUF4lBZ6xKAAjB+V9EtE9NcB/A4T9DPM/ANz/Ef2X61Pj+wLHEKcaPkTesChL39n\nUYxdNsN7MZ1D2voZ0IDEopRgAJ95OsVHrwusKhmhk8yoJGjntF0yw/obGIQPb9Z452SCz5/N8d3r\nJVhpGsItTWSUkfKmEVyXCpVk/Na3Z/juqwIvl5XzObDbOEa4+DUUFqsaeSbwzttzXF2XWCxs+3Qn\n/5NslJZ9IKwYpMyeBno8rlZqaQJZSeTTKdZ282NWyE5OUa7WYJGiKmtMzy+AdIl0NkVd1ZBMro7J\ndKYB2cwlALSVkk9yV14IDC3/gQcMSSKQJOSAgQg4P5tgPsuwWteaqrOO40zgh5/NsSwVLtc1BAnM\n8wSnE4WbUuGmUHhrLnA6SbCulQOGrAUKeiRaSoR5muDzZ3NcFhWuy1pbCh4QNMtkNL31kEYiAp6c\nZDifpfjoskCt2Cl8Bwa2x4/m3H43Mcdy5/kG1kIsrA8UNsoDAwUAoKFVFInox5j5HxHRT8SuM/Ov\nHqZarnxeVSO6xW+IjFlGIwoQG4JcjxjcuchenGZxuHi6Zs04dsfw0vmb4DDg7ZQG19tWDExSPbb8\n+VWBm0K29m12m+aw2WBHMWpzvVaMmhVqs3/zW7McmSB8/2aFVS1RK0alGJVUKCW7VTyLWqctar3q\n69snGa6KGt+/LFHWClVtRkBJhUrq81qx/pV6V7PJRNNBi1WN9bo2+0Or9t7QZlMfAO64tTQ39PLW\nFkyFEHpbUNOYk9kE6+XatdXsZIblYol8koMVo670yK7JdAIpJUB6xrKsNN2UpEkDQBYQDChYOgmA\nObZWQnOcJISTeYbZLIOsFcpa02dZqumj82mGL33+DOtKIRWESjG+/7rAO2c5TvIEr1Y10oRwlieY\nZwLSDC0GEKWPLvIM759M8WpdYllJRx2lJFo+CEcX2QFr1DijifSs5lme4JOrwlmJljYSBhws3QS0\nqSQLCtY/EQJEzIcQWgEhILh8gThwtDKMBQ6DwhgwmGUEtqb8DrLJYvjDAP4QgD/lhfk653fvWvBR\nurKz9RCaAEGQo4kCy8GPZ62E6AxpDiwK27P3LQkAviMa7MXz6wKtqD++XOOd8wmytMbLRdmilQA0\n1BLpoaw1urTS63WFWSbwQ+dzfLgo8GpdQk9OFlDeHAC3/WeineEfXJd4Mk3x296Z4buvC7wO9/4F\nQAZUiLRTerWWEAI4O81xMktxs6iwWtfQO5qRAQeCtPVXAkpocCBFIKk3uKGMWhPl0izVvL+heRI9\nldud2xFPCnq2NWAUO2klL0iAMnLhbs5GElBJnmPZzmC2PoQ0JZzMc8xnKRQDy2XlwCNNNDCkQuDJ\nPEVRK/z6ixVmWYIvPp3g2Umm/UkEnE6EHpBAZuIaE7LUtxgMKAjC+/MpzvIUnywLByA+KPj0UbMU\nSqNs7WS69y4mICJ8dLkG4DmoPfqo2fipAYVwtJF/vA19FIt6G1C4q+Gom2QQGJj5D5nDPwPgbzDz\nFRH9pwB+AsAfP3TlPo1yKHDopG0pcF9xd/NuUUs9tJItz0OZDq0EwC2NUSnGh5cF3j7LMcmm+Ohy\nDZbUTHCDXlnTznOwtJKeENYo/VWlUMoC784nmGcJPrheAaKhkwB4b3kz3+HlqkaekFZu8wwfXJVY\nwvvgqQEGIkJF2kJYrWsIAs7Ocpyd5liuKiwWpVaGCaOuzX0qhpRaKSulIElC1lIrZ4azIIjIWQxE\nhDTVlbV7P6RZqpW0SNxDsv4Cfx0jf6VXazn4FJIdegrADUGdTFJtIUxT1LXCutAjpISxHn7b+6eY\nZQk+vimwqthZhLNMz6S+KRROJgnWNUMy43ySYFmxU9oCGhAAvTVnKgjzTFNHSjE+WKwgINySGD4Q\npB595DuNAa3oJ5nAZ55MsSwkLpdlCwia59aljwiNZWDf2Rh9NDQk9VCWwn1SR51yxmzIQUR/n5m/\nRES/CxoQ/gsAP8vMB92e89NGJYWyM7WkL8QOu6s9B/QSe3FCaskeM/qpJHjXlYlgFYpOb88buunJ\nPMMsT/DR6wJrQ4vYONKjmOyxpZQAOFpJssLFNPv/2zv3WOvS+q5/fuu29z6X97zvvHNjmMLQ0QLG\nyghRMVWYRK1TjUDUkLTRgP7RxBog1qilNkIJRmy8RKOtTVUCVYSW1lKpLaTCzKQmlNKZoVMYCcqU\ny2Tmhbmc9z2XfVmXxz+e51n7WWuvvc8+l/2ey/w+yclZ61nPujx7n/P7rt/v91zoxTHP7A65MSko\n3E0npc0vFG7KjDC0VFSGzSzmUt+GQq7tTJgUhokLFRWVsSEmVxdsyMkuCWpsIjaJyPOK0ch6EfXz\nllVjDemd63v01/oAjPZHZFnmVj+z1/KhojiO61BUnFhBKMvSehcYiklB2rMD6ybjCf1BHxFhPBqT\n9TLSLKmFoD1qOY6FtUFKv2fr5EVF6XpMJc5DEOA1d18iiYUbo5LbNjKu7UwoDdy+kbIzLindC8Ud\nmymTwvZQ2+q7wXHOkPcSqXsvpZFw21qPq/0e2+MJQxeOsiEjl/COAi+ho8eRDyVdXku5sp7x/O6E\nYV7WoaVwSdhm76Punkf2iCwMHzXq1XX8weax9jlBlY6dsPjkBWHVoSSPH7//l4GfM8b8moi8/6g3\nVZbjyN6DPdCZmJ57zbC+TENPtqB7idB2KMmuvzD1JgTswDAx9bhkw7SnEsb2YtreyxlNKl5ypc/2\nfs72Xl53dbV17dtxDJQY+4bZGiFNFbE9ykmjkpdsDNgqCp7eGVlxiF2X1nLqaUQlQERUGnbzimFR\nsZ5FvOr2NZ7ftwIxzG1IyRoNqc+3b8RWHIqyYpJbL2IwSNnc7FEUFZNJyXhcMp6UdiqPqsJs9tnb\nGQOGNEvoDVJG+2MkikjShDiJGQ/HFIUViKyX1eEfMzZ1edpLyXpZ7c1MxnbKkTiOGaylgRDYN/9e\nL6Hfi8mymEiEvCgZ5yXGUHc/TdwbfeIWxYki4Rsv2EQuItx9ucfXt8d2TEMvZlw6gQfWsohJaYU7\nja0x7yVRPaBtkMTctTGgMoand4eANEQhHLgWho1CbyESKy63XuqRRMIz2yNKY6Y9k2rPYGrAF4nC\nsgPX2t1Rz4MonATLegyfBJ4C/gI2jDQEPm+Mec1KH+5F7jF4TiopPc9z6PIauup0JaVrz8GdWDlP\nwHsOYULaX7tyJ3mvwP/2icRI4NvXx4yLapqENoaqanoRQCMh7RPUpam41EvZzBJeGOV8e29EbrzH\nULkEtWFSmHob7BgGg2E9i7nUi7k+Krh2Y8KNcVl7D7aeE4XKegReIKwAWC/Cx/CjSCjyikleWq9i\nXJDnVixExM21RPBj6gS8HzdhP/Npm+PY9+O3al65DznNYvo928U2y2LS1Br8orDPW1Z+/ieXcI5s\nTyM7ctnNbBpH9BLh3lvXeOr6pO6R9N1X++yOrZhs9qxnMCwq1lI7ZYXBdk3tOa8jEbtO853rAwZp\nzPP7E4ZlWecQQlHwoaRaFKJmcjkS2BwkXN3M2B0W9dTd4XQWs+EmaIsCEuQXOkJJB4mCr38eROG4\nHsOywrAGPAA8boz5qoi8BPheY8ynj3rjpR5OhWGGg76uwwpEeM15AuHrdPVaCu+3qNdSFZ4ThJG6\nBGK9F3N53c6f/8Ju7oRhKhBdvZcKF2oqnUgUlV2x7XI/JYsjnh1OeH40oaysQfeCUATCkJemUb6W\n2G6XRWV4fj/nub2csoKimhraUBxKJ05gxaM2xMHbr3+b9yLi6/hwkxeG6Wc3NUb1dcLQUORyAs6Y\nlpWhKqefJT7eH00HiNmRycLdV/pcXc/Ym5Rc25nUo5UBXnG1z6io2BnbLqcbWcTlQcKNcUkvFgap\nnZ7cG2Tf6yiJ7PxItw16bLmV126McyuU0XTOIz/fURgimgkdiR1Ad+tmRhJHPL9ne5HNE4QosNqL\nBMGLga099TD877l5gsb+bJ1WlVP1Em6KMJwWKgzdHMmDOKI4hJvHFQfo7tLaFgew/8iX11Ky1M6j\nv+f607c9htCTKJxAVGbqRYB987zUS0kj4bnhmOeGkxkPAqwwFIE4eKHIYmE9jVnPIvbzihf2C7b3\nc8bO+BelvWfp8hEwzYl4428M7nfgEUgY2nBhEPFGoWk+jPtwDcHnF3y+VZ2MttcJxSCcDhussFxd\nT3nF1QHf3B7x0q0++3nFzrigcLZkI4u4YyO1U2WLHXuw1YspXA+iaVJ5uqZCP464fa3HVs8urrMz\nyYnwU2zQ6HEUToIXTnwX1c8PV9YzttZSbgxzdkbTpT0XicK0V9JiUej0BjpEoR06Cr+Zw4rCzQwb\nqTC8SDkJcWgXHUccwvPmiYOvc5A4gNvG0EsirqzbWTKfvTFmlFcNAWl7EaUTDu9BgDXIhamIRVyC\nOuK54YTv7I8Zu7d/oPY0QlHInSeQOwO/ntoBXWupXdf6xqhge1hwY1TUIgA0RMFOF+7Hdbjt2uMJ\nQ3TmwO91asSChGtQVodimIqB9zK8N5DEEfdc7VMZ+M5uziCLuDJIiUW4PnZjIiK4dS1BgMIYEpc3\nQGySOBy4tpEm3LbWYzNL2ZnYgWpCcxqL9tQWbe8AqBPOm30bNpoUdiqVKsglgDWw80Sh4QmchCjM\nGP853kSz0uz3dpNzCSoML3JuikAEFRYJRPvceR7Dop5L7VyEcQZ1vZewtZYwHJc8tzupwz9hHe85\neCPshaHtRcQC62nCWpqwmxc8NxwzLEoqQx1m8mKQl/a6V/opSRzxnb2xzTlUpp4LqJ/YN+H9vGJ3\nbOf62Rvb1euqQAiM8ypqMSQQyEDoDqItBtO4ersXjxMGqD0I3PZWP2arn/DcfkEcCYNEWM8i8spQ\nVNOZULO4adx7iVulLbLTY9/Sz8jiiJ1JwX5eEBHVE+N57wCYho2EhqcwHXgGa72YqxsZANt7OZNy\nOoK53eNoKgKzyWVbp1sQZt7yDxCEpfMInQU3XxA8KgzKyru1tgXCtOos263V160TrS1xmG6Hx6b1\nwbDZT9kcJOyOCrb3cvKymu3a2spDeC/CexI+JwGGQRqzmaU8tTtkXJR1ncIZ8bw0vHxrbdqvHvjy\nd3a4MbHiUFZ+oSBDLBFZYoWiF9vV4YZFxSivGOYVo7xk5KYfN6b5mYVe0AGzEQDNvv1hWS+J6CcR\ngzSin8YM0ohvbI/rcBJYYeglwuV+zLiw314SQd9Nh1EZP2uqFQgRyCKbpN7MEq70My5lKaOyZHdS\nMC6qGTGwuQQaeQ2RZkLZ/17LYq5sZMSRsL2fM5qUM6Gi0IDXQlDnGprbcLAodOUY2mGjs5xcPggV\nBgVYvTg0zu8QB398oTjU507LwnBT8825JSIm7L0Em/2EzUHK/rjghb3c9mCqpnXCsJQXjIYwmIqq\ncmVuTIT3GMJktgjcu7XB/3l+h7285I/eeolv7Yz49t7YJZ+tEL3y6gZ3uJDX55+6zvOjnAghjXEJ\nWRuPT113UB+u8qGroqqsyATi5j/DMAfhja2P+yeuZ5Hf9mtR5KX9XVSGUWGXQk1kKgxxBGupffMv\nKps3yOJgojogiSGLIzZSKwZbPTvKeW9SMMzLurtoOH327Khl+32Gs6F6D2C9H3PLul2p7fp+zv6k\n7OxthMx6DP4zaS+qo91QLSoMSoNVCET7usv0XuoSiOk2MwLh98PeS+0QUxhe8gZzoxezOUgZ5yXb\n+wX746IhDvZas4Lh518qTdCTqJrul65uP4lYS2Ke2h1SGbvkJAJP742cx2C4a2NAEglffX6PO9Z7\nZHHE117YY1LCPZf73LUxIBL4wtPXeWFocxGxN5KRHYkSzuUTTW1b4/sIBbQtnGVl3NQU07i7X3tZ\nsGti+7d3kWnMH2w+IUsi8sK4LqfCRpZwuZexkblpMvKCUVFiFyyaLprT8A7mhIv8PX0bLw1SttZS\njDHsDIt6JtaGCEiYS2h9Lq0wUdeKa/aMZmipXdb4jDs8iJBlwkbh+Z3HVigEbVQYlLks+mqXbkDk\nJwAAFi9JREFUEYeuopn8Q4eYdOUfujyLGYHoEBDvRXR5EP6elTGsZTGbgwRBuLGfc2OY4+bGmxGG\nMGEdCkMoCt6zWEvtoLBnhxOMMWz1UiIRru3ZAVYCvOLyBk9u77KXlwjCa+7Y4neefoHNNOHeK+s8\n8vR1LvUS7toc8MjT16kwXB1kvPLqOoLwxLM7XNubtESxm2k+wf9u9t33xtQLgzfIccOYTxfYwfjx\nG7CWxnz35XXW0phhUTLMSyYuVBfLVBAa6zSLdIaHwt9gJ07cWsvYHCSM85Ibo6LR9dS2bdZDCL2D\nqZEPQkhzEsvzwkaNPEJdYXp85tzOL2HOd3NGRAFu3shn5RwiMt/I+D/iGYEQZsQhLPLXtO+5pnHQ\nb4rAdAIlU7/d1yxaX9r/c+LCKd6YYbBL8DiBcOWVses6DCcV++MxaRKx2U+4spGxP7a9hfbHdq1l\nY+zDixF7e+Mew4/cdsIQGUMsViCyKKI00HOd7bM4oqgMWRxRGUM/iYlcuwdpTObmMRokES/Z6PPt\n/TFJLIyrko0sZi2zI4Lvu+MSj167Ti+OeOXVDXYn207kFn+nEMwMGhh6/91Mk8/eiE8nnPOexEaa\nsJ4kDNKYtSQmjoT93M5OuzPJeXZ/XCeGbciqKQi+u6l/hrYQ+JxAHNkeRpcGKWks7I4Lnt4e1YP7\nYmfx291Q/XPCdHveoLRFISPCetAUhRmP4GiicNoho1WhwnDB8X+UBwkEBCLR/kM206La8APN2fNw\nptvVF1c3MObt+9YehlijbQKRMWLcMqLea/DbQTgKiIwEYSabcH5hL2d7f8JalnDbZo/oEuyOCnZG\ndiqI0PsIu4u2pwkvjRWA0hg2ssSuSRwLQ1OymaZUWAEwwKUsxQDrqR0Qd9ugRz+JGJbClUFCL4qY\nlBV3bfboJzF7RcEgtesSRBG8dKvP0C8JusBlCEMzUC8Z5MpcDySxI5CzOHIrp8X0oogssQPYJmXl\n5o+q2B7ldmyCM8hpFJFmUUME/DW7Rhh7Map/A+s9u7TmWhYzykt2RgUjP6cRtrusF4/QmM8Tg7Y3\nsEgM5oaSpoX1se5zWhzBO+i67nljpcIgIj3gYSBz9/q4MeYnReQe4KPALcDvAn/TGDM797FyYizy\nHuo6LDfvEjQFwtTHDl5K1FZseRFdM7UGZTiDYtzTGZFGKMmIUJlgSVEnNHtj2200iWCtl3Dn5R7G\nwN64YNfFtsPPRayC1XkNv751GkfWOLpErRCRxfZpEudJ9OKIythusEVV0UsiBPtm3Y9jOyMpMEhi\n+okViV4Sk0ZCUVVsZUmjTZ6BqwNTw1vPXioQR9NpJRKxXUlF/JgMt65EVdnV0ca5C39JLQSRCL3I\nC4A0wk1tgz9PGGIR1noxG/2E9V5CXlbsj0u29ye1NxZ6B6Fn4Lf9tbq8gai+2fTXPFHoMvg3WxTO\nsyB4Vp5jEJE1Y8y+iMTA/wbehV3n4ePGmF8UkZ8BHjPG/GzHuZpjWBGnkaQON7vyEOH23DxEsD+9\nTkeyOkiAh/tpJPSzmLVejAD7Eysew0k54zH4/IWPclXu+sI04QvYUJGbK2mQxgyLispU9JOYYV6S\nV4Y1N4XEuKjopzGjomRc2kF362nCqCwYFdXM97KZJXZgWfDZVEGupQqes36m4G08Cgxo2N0zFJmw\nbmg8u+L9viyN3UC/nhW9SVkxnPjPsXl/d8Hp8wSeQdvwdwkDYRnMFYNOI98Sg5lQExxQ0Dx/EWdJ\nEM5N8tnNt/Qw8CPAJ4E7jTGViLweeK8x5oGOc1QYVsyRBeKAopkkdauS6ahzaIHoKAuN+sw1THM7\njmCQxfTTmF4SMS6scdufFIwmVW1way8iePh637i5i5x7lJcVpTPYgzSuu3WuZwnDvCCvbFhqb1LY\n2UijiDSOGOZl3W12GUIjH5ZJYAibotAdy3c2epoEdueH+zasBIOeDQ8NMpuXGE5KOzYjd72VnGiE\nohIa5DBU1BaA6XM1RWFR7mC2zY0PqPE5hefM1F1QeF69gzOffBaRCBsuuhf498D/A7aNqf8LvgXc\nternULo5KAcB03+OhpH3f3KtIr/rQzQz57pK0riG/y+evuW3w0zTa0/DSnSUTUNNYR2XnxAbq6rw\neQ3YHdkYuGAHh/XSmNs2e6TxVChGecm+W4PA39QuQoQTJigrl2MRIRF7z6qyvaUwuBCU2IFiInZt\nYwODNCKv3NoExAcmn9tC0PismBUAb5xrEWiXtY+7Sr3EDZDLYvqZDWeNipJxXvH87oRJMAW5IEjU\nFBN/zSi46bxQUWjku8q6RKEzodzYOJ6XcN48hJNm5cLgBOCPi8gl4L8Dr1r1PZXDE/6RHydRLaZx\nQnDRpvValKgO72EFxouLv5SZlgUCVXsMwT5BmXHZbbvv8hJuG6CoIB8X7NpVIslim7C9sp5x55ZN\nQk+KinFe1b/zqmrd28w8DwJxDIMortu2nsX1cxLFJFG3Z9X8cNu73cLgN8LjodFvC0EvcUlqJ4xZ\nYntWjd26z9t7dgqS0Oj7BXjawtIOE80z+u1QUftaYVnY1kZ7Wp+JJpRPjpvWK8ktC/og8KeByyIS\nOdG4G7vWQyfvf9976+03vPF+3vDG+1f7oMpKE9XQ8iT8EpqG5kn2IP5gO1ldezre0Huj4suCizW8\nibrMvsGboK3eo/Blk9IaRm/g/UCwLI4YrKX1ojR5WdnRxoXt7WNXfPPTbgRi5T8M/5m4h4tNs+Fz\nczvMGq+D4ureiPq1m/3o6yyxIawkFjujrFulbmeU2zabjlBTsN8WnS5BOChMRFjWbktLEJbJH7Tr\nNerOLZi9xjzOsig8/NCDPPzQgyd2vZXmGETkViA3xlwXkQHwKeADwNuAXzbGfMwln79ojPkPHedr\njuEMcNCfyIkNlmtVMB312s/SmYtwJ88bbR2W+aR1u8znD9r7vrYvE6gN7HQVNGt8Rain5Z6u3UA9\nYrqemtvYvEjpJgFsezwNI+oM6XTpy+nMqX7pTj8Ndvjbz/tU1MuVuiVLq2kwbm64qWNfgooHiYG/\nfpcgdBnbhaGiYOdmCMJZFoNFnOnks4h8L/AhbEg2Aj5mjPmnIvIKbHfVK8CjwN8wxuQd56swnDFW\nnayeucYCofD1usQifIZQGMJzwrJ2+fSaXWVN4Wjcs/W8fu4gu7BOMOjMlwvTRHDd+2fWjoViESbX\n21OO+3UhTBVM/W2mxt0zk7TtCuPQ9ATCMqFpsQ8ShvY9CY51Gfi2V9CuF9ZtVVtYeN49g2U508Jw\nXFQYzibL/sks60kcVSDC+gf1bPL78zyK+rpzPJDQswiv1bjHAd7OzMPP7i712S77dnxQgrYtDs3r\nNj2ILqPfvPb8EFH7mQ8TJgrrdV6LFhc0VHRYznyvJOXisUxPJrD/jHPzEFBbxXD3oFwE0J3gDvIR\n9bmBAfL77d5MzfvbV2vbLmc0TVgujee0iWV/P2sVZwQhTJ4YGnVCTFBtWTrDMK2NRca3HQ7qOrYw\nNNS4T/PYvBBR1zN1hYka92C2rScpCF3Xf7GjwqAcma5/prZYdP1jLtWjCW/Ip9cxDRsbmvbQuE+t\nTcN7CA14cILvNWTPnZaFngUtgWt4GIGl764jM2XNu82ysOvwQgM25w29s2zWsC+q0ykYc55pqRDR\nzM4CD4MO1DNYKSoMyomybI8m6Ag1hf+wC7yJ0JOoq7d7N81cb/qWGoaQ2oaw27NoXqzhYdASL78t\njZNrr6Pen+Plt72mLuYdnn2r7rauywhFV7154wKWqdP2ZGaeb9E5cwvmX6uzjgrC0qgwKCfOYUJN\nMCcXESpCa7f9D75MyCn0PrpEor5Oy8DVXkRYr/WQoQi0BwHWA/Za15sxUkdJpc19aw62FxjiDi3o\nrL9ICNrX7fQMWgWLvI2Dzp09pKGiVaDCoKyMZUJNcLxwk79P+NZe3yd8Qw+COs23eQk3Z55xJgTV\n8UzNe82KXVebj6ID8ziSB9FxfN6xpWP9i0TooHOXOLCsCHTdSzkcKgzKTeXY3sScN+12FGr2jVyC\n482wzozYzAkvNc7326bbCDVHic+yaBDbUVnGGHeed0LhnWWE5zD5gq5rLkLF4ORQYVBOhcMKBCwX\ncppT1DQarfi+aSmDzJw8+0ztOZ26nm1m3qfWNW4myzzDgYb8CNdY2EoNEZ1ZVBiUU2XeP/ayISeY\n9QCm9esKnfdsh58a925FjtqGX2bUp3WN2aLm9VfEwvDQIQ8cxgM57LUX3WNuXRWBm4YKg3ImWdaj\ngEN4FbZCZ3F4aFFyu03b22hce86zz1y/u9qBHMpOHvHt/NBCcOBBFYPzgAqDcqZpD3g7sP5hRMJW\nOvDQIq9mkZGbJxoHPVL7uRZXXI7jzAl04G2XyWMc8uFVEE4XFQbl3LDIWBwm9FSfMycENT2/rrjU\n88zmsA9v3ZYZAX0SRnPpSyxZ8ShtVeN/dlFhUC4Eh/UsoNuYLeVlTCsvVW2JU6fXOJZXcAwOcfJx\nEucqBucDFQblwtGVI1j63Jkk8qL5KQ642DFOPVGOeTMVghcfKgzKheewIajGuUc0igeFqW42q+oe\nq4b/YqLCoLyoOUx32UNd9yypwgmhIvDiQYVBUTpYdjqPi4qKwIsbFQZFWZJVGMuTEBs14spJo8Kg\nKKeIGnXlLBKd9gMoiqIoZwsVBkVRFKWBCoOiKIrSQIVBURRFaaDCoCiKojRQYVAURVEaqDAoiqIo\nDVQYFEVRlAYqDIqiKEoDFQZFURSlgQqDoiiK0kCFQVEURWmgwqAoiqI0UGFQFEVRGqxUGETkbhH5\njIh8SUQeF5F3uvIrIvJpEfmKiHxKRLZW+RyKoijK8ohZ4bJUInIncKcx5jER2QB+F3gz8LeA54wx\nPyUi/wi4Yoz5sY7zzTB/ES2bpSiKcgIMUsEYc+TVPlbqMRhjnjHGPOa2d4EngLux4vAhV+1DwFtW\n+RyKoijK8ty0HIOI3APcB3wOuMMYcw2seAC336znUBRFURZzU5b2dGGkjwPvMsbsikg7PjQ3XvT+\n97233n7DG+/nDW+8fxWPqCiKcm55+KEHefihB0/seivNMQCISAJ8Evh1Y8y/cWVPAPcbY665PMRn\njTGv7jhXcwyKoiiH5EznGBz/GfiyFwXHrwJvd9tvAz5xE55DURRFWYJV90r6PuBh4HFsuMgAPw58\nHvgF4LuArwNvNcZsd5yvHoOiKMohOa7HsPJQ0nFQYVAURTk85yGUpCiKopwjVBgURVGUBioMiqIo\nSgMVBkVRFKWBCoOiKIrSQIVBURRFaaDCoCiKojRQYVAURVEaqDAoiqIoDVQYFEVRlAYqDIqiKEoD\nFQZFURSlgQqDoiiK0kCFQVEURWmgwqAoiqI0UGFQFEVRGqgwKIqiKA1UGBRFUZQGKgyKoihKAxUG\nRVEUpYEKg6IoitJAhUFRFEVpoMKgKIqiNFBhUBRFURqoMCiKoigNVBgURVGUBioMiqIoSgMVBkVR\nFKWBCoOiKIrSQIVBURRFaaDCoCiKojRYqTCIyH8SkWsi8ntB2RUR+bSIfEVEPiUiW6t8BkVRFOVw\nrNpj+CDwF1tlPwb8pjHmlcBngHev+BnOLA8/9OBpP8LKuMhtA23feeeit++4rFQYjDG/BbzQKn4z\n8CG3/SHgLat8hrPMRf7jvMhtA23feeeit++4nEaO4XZjzDUAY8wzwO2n8AyKoijKHM5C8tmc9gMo\niqIoU8SY1dplEXk58D+MMX/M7T8B3G+MuSYidwKfNca8es65KhqKoihHwBgjRz03OckHmYO4H8+v\nAm8H/jnwNuAT8048TsMURVGUo7FSj0FEPgLcD1wFrgHvAX4F+EXgu4CvA281xmyv7CEURVGUQ7Hy\nUJKiKIpyvji15LOI3C0inxGRL4nI4yLyTlf+10Xk90WkFJHXts55t4h8VUSeEJHvP50nX46O9r3D\nlf+Ue/7HROSXRORScM5FaN/7ROSLIvKoiPyGyyP5c/6ta99jInLf6T39wcz7+wyO/30RqUTklqDs\nXLRvwXf3HhH5log84n4eCM45z3+b7wyOvcO14XER+UBQfp7b57+/jwbf3ZMi8khwzuHaZ4w5lR/g\nTuA+t70BfAV4FfBK4A9jB7+9Nqj/auBRbF7kHuD/4jyes/izoH1/Hohc+QeAf+a2/8gFad9GUOcd\nwM+47b8E/Jrb/lPA5067DUdpn9u/G/gN4EngFlf2A+elfQu+u/cAP9pR/6L8790PfBpI3LFbL1L7\nWnX+BfATR23fqXkMxphnjDGPue1d4AngpcaYrxhjvkozYQ12YNxHjTGFMeYPgK8Cf/JmPvNhWNC+\n3zTGVK7a57BGBuBNXIz27QbV1gHf1jcBH3b1fxvYEpE7buIjH4p57XOH/zXwD1qnvJlz0r4D2tbV\n4eNC/O8Bfwf4gDGmcMeedadclPaFvBX4iNs+dPvOwjgGROQe4D7gtxdUeynwzWD/KWY/jDPJgvb9\nbeB/uu0L0z4Reb+IfAP4IeCfuGoXon0i8ibgm8aYx1vVzmX7Ov42/64Lhf3HYB6zc9k2mGnf9wBv\nEJHPichnReR1rtpFaZ8v+7PAM8aYr7miQ7fv1IVBRDaAjwPvar1tXgjmtU9E/jGQG2P+26k93AnQ\n1T5jzE8YY14G/FdsOOncErYPKIEfx4Zczj0d391PA/caY+4DngH+5Wk+33HpaF8CXDHGvB74h9je\nkeeWBbbzB4Fj2ZVTFQYRSbAN+3ljzNzxDI6nsF1cPXe7sjPLvPaJyNuxMfcfCqpfmPYFfAT4q277\nIrTvXmyM9osi8iS2DY+IyO2cs/Z1fXfGmO8YF5QGfo5puOFctQ3m/m1+E/hlAGPM7wCliFzFtuVl\nwenntX2ISIz9n/tYUP3w398pJ1E+DPyrOcc+C7wu2PfJ2Qx4BWc8QTSvfcADwJeAq63yi9K+PxRs\nvwP4BbcdJp9fzxlOzi5qX+v4k9g30HPXvjnf3Z3B9t8DPuK2L8rf5g8DP+m2vwf4+kVqnyt/ADub\nRFh26PadZsO+D+uaP+Ye+hHXqLdglX0IPA38enDOu12jngC+/7S/nCO07wewiZ+vu/1HgJ++QO17\nAPsW87gr/wTwkuCcf+fa90WCHmdn8Wde+1p1vobrlXSe2rfgu/sw8Huu/FeAOy7Y32YK/Lz7+/wC\n8MaL1D537IPAD3ecc6j26QA3RVEUpcGpJ58VRVGUs4UKg6IoitJAhUFRFEVpoMKgKIqiNFBhUBRF\nURqoMCiKoigNVBgURVGUBioMiqIoSgMVBkWZg4i83C1s8kER+YqI/BcR+XMi8ltu/0+4xW1+NDjn\ncRF52aLrKspZJzntB1CUM869wF8zxnxZRL4A/KAx5s+IyF/BzrT6aKu+TiWgnHvUY1CUxTxpjPmy\n2/4S8L/c9u9jZ1pt07XQjaKcK1QYFGUx42C7CvYrrMdd0Pw/6t+k51KUlaHCoCiLOcgD+APgdQAi\n8lrstMaKcq5RYVCUxZg5237/l4BbRORx4EewC7MryrlGp91WFEVRGqjHoCiKojRQYVAURVEaqDAo\niqIoDVQYFEVRlAYqDIqiKEoDFQZFURSlgQqDoiiK0kCFQVEURWnw/wF2XfpJflyMfQAAAABJRU5E\nrkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f735af83828>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "thinkplot.Contour(general, pcolor=True)\n", "thinkplot.Config(xlabel='mu', ylabel='sigma')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, extract the marginal distribution of `mu` from general." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd0VOeZ+PHvo4oEEpZMESAkigq9IzqIYooLOI7tgOPE\nSbzx2Tixk012k3ib7d3f/pLNSX4pmzjZON64rG3sYDvGphhTRDNFILoEEk2A6IgiQKjN+/tjLldX\nspAEmtGdGT2fc3S47517R88LSM/ct4oxBqWUUspXwtwOQCmlVGjRxKKUUsqnNLEopZTyKU0sSiml\nfEoTi1JKKZ/SxKKUUsqn/J5YRGS2iOwXkUIR+VEDr0eJyEIRKRKRTSKSYp1PFJHVIlImIr+pd88I\nEdltveev/F0HpZRSzefXxCIiYcBvgVnAQGCBiPSrd9mTQKkxJh34FfAz6/wN4J+BHzTw1r8HnjTG\nZAAZIjLLH/ErpZS6ff5+YskCiowxxcaYKmAhMK/eNfOA16zjRcB0AGPMdWPMZ0CF82IRSQLijDG5\n1qnXgQf9FL9SSqnb5O/E0gM47iifsM41eI0xpga4JCKJTbzniSbeUymllEsCsfNe3A5AKaXUnYvw\n8/uXACmOcrJ1zukE0BM4KSLhQLwxprSJ9+zZxHsCICK6EJpSSt0mY0yLPuD7+4klF0gTkVQRiQLm\nA4vrXfMR8IR1/AiwuoH3sStpjDkNXBaRLBER4KvAh7cKwBgTkl/PP/+86zFo/bR+Wr/Q+/IFvz6x\nGGNqROQ7wAq8SewVY0yBiLwI5BpjPgZeAd4QkSLgAt7kA4CIHAHigCgRmQfMNMbsB74NvAq0A5Ya\nY5b7sx5KKaWaz99NYVi/9DPrnXvecVwBPHqLe3vf4vx2YLAPw1RKKeUjgdh5r5ohOzvb7RD8SusX\n3LR+bZv4qk0tEImICeX6KaWUr4kIJsA775VSSrUxfu9jUUq1nuOnL7Kj4BhHTpyn9PI1jIH4DjGk\ndEtgaGYyGb264h1MqZT/aFOYUkHOGMOW3Uf4YOVODh472+i1SZ3ieSB7KDPG9SMiIryVIlTBxBdN\nYZpYlApiZ0vL+K//XU3+oVO3dV9Kt0S+89hU+qZ09lNkKlhpYmmCJhYVyjbvOszv3srh+o1K+1xE\nRDijBqQwOCOZpM7xhIlw/uJV8g+fYsuuI3WuDRPh0TmjeHjmCG0eUzZNLE3QxKJC1aIVeby9ZKtd\nDgsL495Jg/jCPcO4Ky62wXtuVFSxbP1e3lm2jarqGvv81DGZ/O2jk7VpTAGaWJqkiUWFGmMMby/J\n5b1P8+xznRPi+P7XZpDRq2uz3uPUucu89HZOneaz4f178sMnZxEVqeN52jpNLE3QxKJCzZsfbeH9\nlTvs8pCMZH7w9XvoEBt9W+9TXV3DH95dx5otB+xzY4f05gdfv4ewMJ2F0JbpPBal2pCVmwrqJJWR\nA1J57qnZt51UwNsX8+0F2Tw8c4R9bvPuI7y8aIPPFiJUbZcmFqWCwJ7CEv773fV2eeSAVH745MwW\nNV2JCPPvHc19U2qX3VuxMZ8la/e0KFalNLEoFeDOX7zKz/+8Ao/HA0CvHp34/tdm+KSzXUT4+hfG\nM3Fkmn3utQ83c+DI6Ra/t2q7NLEoFcA8Hg+/+d/VXL1eAUBCfCzPfXM27aIjffY9RITvLJhK356d\n7e/5i1c/5crVcp99D9W2aGJRKoB9sGon+w6eBLy73f3ga/fQKaGDz79PZGQ4f/+NmbSP8fbXXLh0\njd8vXKv9LeqOaGJRKkAdOnaOhUty7fLDs0fSv283v32/LolxPPuVaXZ5656jbMw75Lfvp0KXJhal\nAlBNjYeXFq7FYz0xZPZO4pGZI/3+fUcNTOWe8f3t8suL1nO5TJvE1O3RxKJUAFqybg9HS84DEBkR\nzjNfnkp4eOv8uH517jjuvqs9AFevV/Dyog2t8n1V6NDEolSAOVtaxtuOJrBHZo+kW+eOrfb9Y2Oi\n+Nb8bLu8aechdh840WrfXwU/TSxKBZjXPviMyqpqAHp2S2Te1KGtHsPw/j2ZNDLdLv/P+xupdqwv\nplRjNLEoFUD2HTzJ5t1H7LKbi0N+dd5YoqO8w5qPn77I8g37XIlDBR9NLEoFCGMMr/51k12eODKN\nfn2SXIsnsWN7HplVu+TLO8u2UXbthmvxqOChiUWpALE2t5DDx88B3g77x+8f43JE8ED2ELpb/TvX\nb1Ty/qc7mrhDKU0sSgWEqqoa3nLsrzJ36lA6J8a5GJFXREQ4jzkS3NL1ezlXWuZiRCoYaGJRKgB8\nuimfC5euARDfIYYvzBjmckS1xg7tTVpKF8C73P47y7e5HJEKdJpYlHJZRWUV762obWJ6aMZwYtpF\nuRhRXSLC4w/UPrXkbDnA8dMXXYxIBTpNLEq5bPmGfC6VXQe8HeazJg5wOaLPG5zRg2H9egJggEUr\ntrsbkApomliUctGNiired2wz/PDMEQG7PfD8e0fZxxu3H6Tk7CUXo1GBTBOLUi5auanAXhK/c0Ic\n08f2czmiW0tP7crw/rVPLe+tyGv8BtVmaWJRyiXV1TUsXrPLLj84fZhrkyGb65FZtQthrt9WxKlz\nl12MRgUqTSxKuWT99oN1RoJNG5vpckRNy+ydxOCMHgB4jOHD1TtdjkgFIk0sSrnAGMNfV9X+Ur4/\ne3DA9q3U9/DM2tn4OVsLdVl99TmaWJRyQe7eYk6c8Q7ZbRcdyeyJA12OqPkGpnW3tzGuqq5h2Ya9\nLkekAo0mFqVamTGmzkiw2RMH2lsCBwMRYa5jxeXl6/fZqzErBZpYlGp1+YdOUVR8FoDw8DDumzLY\n5Yhu37hhfeiU0AGAsms3yNla6HJEKpBoYlGqlS1Zu8c+npqVSWLH9i5Gc2fCw8O4f8oQu/zRml0Y\naxtlpfyeWERktojsF5FCEflRA69HichCESkSkU0ikuJ47TnrfIGIzHSc/zsR2Ssiu0XkTREJnPUv\nlGrE2dIytjr2W7k/e0gjVwe2GeP6EWstPXPy3GVy9xa7HJEKFH5NLCISBvwWmAUMBBaISP0ZYE8C\npcaYdOBXwM+sewcAjwL9gTnAS+LVHXgGGGGMGQJEAPP9WQ+lfGX5+r3c/Fw/JCOZnkkJrsbTEjHt\norhnfH+7vHj1rkauVm2Jv59YsoAiY0yxMaYKWAjMq3fNPOA163gRMM06ngssNMZUG2OOAkXW+wGE\nA+1FJAKIBU76rwpK+UZFZRUrN+23y/dlB1/fSn33Th5MWJj310jB4VMUn7zgckQqEPg7sfQAjjvK\nJ6xzDV5jjKkBLotIYgP3lgA9jDEngV8Ax6xzl4wxK/0TvlK+s25bEdfKvcu3JHWKZ+SAlCbuCHyd\nEjowZkhvu7xsvQ49Vt5mpEAjjb4ochfep5xU4DKwSEQeM8a81dD1L7zwgn2cnZ1Ndna2zwJVqrmM\nMSxZV/tLd/bEQYg0+l89aMyZNJBNOw8BsG7bQb4yd2xQDZ9u63JycsjJyfHpe/o7sZQAzo9lydY5\npxNAT+CkiIQD8caYUhEpsc7Xv3cGcNgYUwogIu8D44EmE4tSbtlbdJLjp0oBiI6KDIrlW5prQN9u\n9ExK4Pjpi1RUVpGztTAoh1C3VfU/cL/44ostfk9/N4XlAmkikmqN3JoPLK53zUfAE9bxI8Bq63gx\nMN8aNdYbSAO24m0CGysi7cT7kW86UODneijVIs4mouzRGSH1iV5EmD1xkF3+ZMM+HXrcxvk1sVh9\nJt8BVgD78HbGF4jIiyJyv3XZK0AnESkCvgf82Lo3H3gXyAeWAk8br614O/l3ALvwNp390Z/1UKol\nSi9fI3fPUbs8Z/KgW18cpKaMTqdddCQAJWcvsbdIx9O0ZRLKnyxExIRy/VRwWLQij7eXbAW8zUb/\n/mz9gZGh4eW/rGf5hn0AjB3Sm394cpbLEak7ISIYY1rUAagz75XyI2MMqzbVttQ6532EmtmTap/E\ntu45yvmLV12MRrlJE4tSfrS7sISzpWUAtI+JZuzQPi5H5D89kxIYlN4d8O7VsmbrAZcjUm7RxKKU\nH63YmG8fZ2dlBM2eK3fqnnED7ONVm/ZrJ34bpYlFKT+5VHadrY5O+xnjQrcZ7KasIb3sEW/nLpax\np7D+7ALVFmhiUcpP1mw5gMfjAbxb+qZ0S3Q5Iv+Lioxgyuh0u7xy8/5GrlahShOLUn5gjGGls9O+\nDTyt3OR8Mtu86zBl1264GI1ygyYWpfxgb9FJTp+/AkBsuyjGDw/dTvv6UrvfbW9dXFPjYd22Ipcj\nUq1NE4tSfvCp42ll8qh0oqMiXYym9TmfWlZuKtBO/DZGE4tSPnblajmbdx22y6E8d+VWJo5Is0fA\nHTtVyqFj51yOSLUmTSxK+diGvIPU1Hg77dNSutCrRyeXI2p9sTFRjB/e1y6v3KzL+bUlmliU8rG1\nubV9ClOzQmcV49s1Y2ztZrHrtx/kRkWVi9Go1qSJRSkfKjl7iYPHzgIQHh7GhBF9m7gjdPXrk0T3\nzh0BuFFRxaadh5u4Q4UKTSxK+dC63EL7eOSAFOLat3MxGneJCNMdnfirdE5Lm6GJRSkfMcbUaQab\nPCrDxWgCQ3ZWBmHWTpkFh09x5sIVlyNSrUETi1I+kn/oFOcu1i44OWpgqssRue+uuFiG96/dRHat\n44lOhS5NLEr5iPOX5oQRfYmMDHcxmsAxJav2yW1tbqHOaWkDNLEo5QOVVdV1OqenaDOYbfSgVGLb\nRQFw+vwVDhw543JEyt80sSjlA7l7i7l+oxKApE7xZPbu6nJEgSMqMqLOnJacXN2nJdRpYlHKB5yj\nwSaNSkekRTu7hhznfJ6NeYeorKp2MRrlb5pYlGqhy2Xl5BUct8vaDPZ5mb270vXueACu36gkd2+x\nyxEpf9LEolQLbcg7aO+7ktGrK92sSYGqlogwZbSjE3+rjg4LZZpYlGoh52iw7NH6tHIrzsSyo+AY\nl8vKXYxG+ZMmFqVaoOTsJQ4d967cGx4eVqeTWtWV1Cme/n26AeAxRvdpCWGaWJRqAWeTzqiBqW16\nCZfmyHbMacnRyZIhSxOLUnfI1PvUPXlUeiNXK4Bxw/oQEeGdOHq05DzFJy+4HJHyB00sSt2h+ku4\njBygS7g0pX1MNFmDe9llXeIlNGliUeoO6RIud8Y5p2XdtiJ7UzQVOjSxKHUHKquq+UyXcLkjQzOT\n6RgXA8DFK9fZXVjickTK1zSxKHUHcvcWU65LuNyR8PAwJo+s7Y/S5rDQo4lFqTvgHA02eVSGLuFy\nm5xzWrbsPqLbFocYTSxK3abLZeXs2F+7hIuOBrt9vXrcTc+kBMDbrLhl9xGXI1K+pIlFqdvkXMIl\ns3eSLuFyB0Skzg6bObrES0jRxKLUbXL2CUzRp5U7NnlUOjcbEPcUnqD08jVX41G+o4lFqdtw4sxF\nXcLFRzoldGBgencADLB++0F3A1I+o4lFqduwLrd2pv1oXcKlxZzDtHV0WOjwe2IRkdkisl9ECkXk\nRw28HiUiC0WkSEQ2iUiK47XnrPMFIjLTcb6jiPzFOr9PRMb4ux5KGWNYu80xGkxXMm6xsUP7EGkt\n8VJ88oIu8RIi/JpYRCQM+C0wCxgILBCRfvUuexIoNcakA78CfmbdOwB4FOgPzAFektoxnb8Glhpj\n+gNDgQJ/1kMp8C7hcv7iVQA6xEYzckBKE3eopsTGRJE1pLdd1qeW0ODvJ5YsoMgYU2yMqQIWAvPq\nXTMPeM06XgRMs47nAguNMdXGmKNAEZAlIvHAJGPMnwGs16/4uR5K1Rm5NGF4mr2YomoZ53DtdduK\n7BF3Knj5O7H0AI47yiescw1eY4ypAS6LSGID95ZY53oD50XkzyKSJyJ/FJEYf1VAKfDOtdi0y7GE\ny2gdDeYrwzKTie9Qu8TL3qKTLkekWioQO++bmsIcAYwAfmeMGQFcB37s96hUm1Z/CZeMXrqEi69E\nRIQzcUTt6Lq1ugFY0Ivw8/uXAM6G6GTrnNMJoCdwUkTCgXhjTKmIlFjn6997AjhujNlmnV8EfG5Q\nwE0vvPCCfZydnU12dvYdVUS1bbqEi39NGZXB0nV7Adi08zBPPTKR6KhIl6NqG3JycsjJyfHpe4ox\nxqdvWOfNvYniADAdOAVsBRYYYwoc1zwNDDLGPC0i84EHjTHzrc77N4ExeJvAPgXSjTFGRNYC3zTG\nFIrI80CsMaahEWfGn/VTbcPlsnL+5l9ex2P9X/rdvzxGUqd4l6MKLcYYnv2PhZw8dxmA731lOpN0\n8qkrRARjTIs+Ofm1KczqM/kOsALYh7czvkBEXhSR+63LXgE6iUgR8D2sZi1jTD7wLpAPLAWedmSJ\nZ4E3RWQn3lFh/9ef9VBt24a8g3ZSyeydpEnFD0SEKY59WpzDulXw8XdTGMaY5UBmvXPPO44r8A4r\nbujenwA/aeD8LmC0byNVqmHOIbDZOnfFbyaPSuftJVsB2FlwnEtl17krLtblqNSdCMTOe6UChi7h\n0nq6JMYxoG83wFriZZsu8RKsNLEo1Yj6S7h0iI12MZrQ55zTos1hwUsTi1K3oEu4tL7xw/vaE0+P\nnDjP8dMXXY5I3QlNLErdwr6DJ3UJl1bWPiaaUQNT7fI6XeIlKGliUeoW1jqawXQJl9bj3LZ43fYi\ndMpA8NHEolQD6i/hkp2lzWCtZUT/nnZf1vmLV9l3UJd4CTaaWJRqwNY9R+0lXLp17kh6aheXI2o7\nIiLCmTA8zS47nxxVcNDEolQDnKPBJo9K1yVcWpnzCXHTrsNUVlW7GI26XZpYlKrnclk5OwqO2eXJ\no7QZrLWlp3axVzgov1FJ7t5ilyNSt0MTi1L16BIu7hOROgnduQioCnyNJhYRecT6s3dj1ykVSnJ0\nCZeA4JwsuWP/cS6XlbsYjbodTT2xPGf9+Z6/A1EqEBw/fZHDuoRLQOjWuSOZvZMA8Hg8bMjTJV6C\nRVOJ5YKIrAB6i8ji+l+tEaBSrSln6wH7ePSgXrqEi8um1Nu2WAWHplY3vg/vbo1vAL/wfzhKucfj\n8dRZyXjqmMxGrlatYfzwvrzy/kZqajwcPHaWkrOX6NHlLrfDUk1o9InFGFNpjNkMjDfGrK3/1Uox\nKtUqdheWcPHKdQDiO8QwLDPZ5YhUXPt2dZbS0SVegkNzR4WlisgHIpInIrtvfvk1MqVa2RpHM9jk\nkem6hEuAqDM6LFeXeAkGzd3o603gH4A9gMd/4SjljuvllWzZdcQu6xIugWPUwFRi20Vx/UYl5y6W\nUXD4tL1viwpMzX1iOWeMWWyMOWKMKb755dfIlGpFm3Ydoqq6BoCUbon06nG3yxGpmyIjw5kwonZ0\n3jrdpyXgNTexPC8ifxKRBSLy0M0vv0amVCvKcUzAy87K1CVcAswUR3PYxrxDusRLgGtuU9jXgX5A\nJLVNYQZ43x9BKdWazly4Qv6hUwAIdSfmqcDQr08SXRLjOFtaxvUblWzfd4xxw/q4HZa6heYmltHG\nGB17qUKSc4jxsP49SYiPdTEa1RARYfLoDBZ9sh3w/ptpYglczW0K+0xEBvg1EqVcYIypk1iys/Tz\nU6ByPknmFRyj7NoNF6NRjWluYhkL7BSRA9ZQ4z063FiFgv2HT3P6/BUAYttFkTW4l7sBqVvq0eUu\n0lK8++LU1HjYmHfI5YjUrTS3KWy2X6NQyiXOBSfHD+9LVGRzfySUG6aMTufgsbMA5OQeYPakgS5H\npBrS1OrG7UTke3jnsMwGSnS4sQoVlVXVbNxR+6l3qjaDBbyJI9IID/f+2ioqPsvx0xddjkg1pKmm\nsNeAUXgnRs5B1wtTIWTr7trth5M6xZPZu6vLEammxHeIYfTAVLu8evN+F6NRt9JUYhlgjHncGPPf\nwMPApFaISalWscrxS2nK6AyduxIkpo3tZx/n5BZSbU1sVYGjqcRSdfPAGKMzklTIOFtaxp7CE4B3\n7oo2gwWPYf1qh4RfuVpOXsFxlyNS9TWVWIaKyBXrqwwYcvNYRK60RoBK+cPqLfu5uZThkMxkOifG\nuRqPar7w8LA6HwRWbSpwMRrVkKaWzQ83xsRbX3HGmAjHsW4EroKSx+Op0zY/fVx/F6NRd8K5V05e\n/jFKL19zMRpVX3PnsSgVMnYdKOHCJe8vog6x0WQN6uVuQOq2de9yl73CsafeJFflPk0sqs1xdtpn\nj84kMlL3XQlG08bUduKv3rxf92kJIJpYVJty5Wo5W/fU7rviHGGkgsu4YX2IjooE4OS5yxw4csbl\niNRNmlhUm7I2t4iaGu8C3empXUjtnuhyROpOtYuOZKJjn5ZVOqclYGhiUW2GMYZVm2tHEE3Xp5Wg\nN8Mx8GLjjkP2hFflLk0sqs1wLgESFRnBhOFpLkekWio9tQvJXRMAqKisqrNEj3KP3xOLiMwWkf0i\nUigiP2rg9SgRWSgiRSKySURSHK89Z50vEJGZ9e4LE5E8EVns7zqo0OBsKpkwoi+xMVEuRqN8QUTq\nPLV8sjHfxWjUTX5NLCISBvwWmAUMBBaISP32hyeBUmNMOvAr4GfWvQOAR4H+eNcpe0nqrrnxXUD/\nF6lmKb9RyfrtB+3yjLE6dyVUZGdlEBHhHdl3+Pg5DhafdTki5e8nliygyFoNuQpYCMyrd808vItd\nAiwCplnHc4GFxphqY8xRoMh6P0QkGbgX+JN/w1ehYt22IioqvSsUJXdN0AUnQ0hc+3aMd+wmqU8t\n7vN3YukBOBfyOWGda/AaY0wNcFlEEhu4t8Rx7y/xLuWvA9dVk4wxLN+wzy7PnDBAF5wMMbMm1O7L\nsiHvINfKK1yMRgVi532jP/Eich9w1hiz07pWf0OoRh04coZjp0oBb6d9dlaGyxEpX8vs3ZWUbt6h\n45VV1azbVuRyRG2bv7fLKwFSHOVk65zTCaAncFJEwoF4Y0ypiJRY5+vfOw94QETmADFAnIi8boz5\nakMBvPDCC/ZxdnY22dnZLaqQCj6fbKx9Wpk4Io32MdEuRqP8QUSYNWEgLy9aD3ibw2ZPHKhPps2Q\nk5NDTk6OT99T/LkMgpUoDgDTgVPAVmCBMabAcc3TwCBjzNMiMh940Bgz3+q8fxMYg7cJ7FMg3TgC\nFpEpwA+MMXNv8f2NLvPQtl0uK+ebz79hT4r82Q++SN+Uzi5Hpfzhenklf/Ovb9h9af/x3Qfp1yfJ\n5aiCj4hgjGlRRvZrU5jVZ/IdYAWwD29nfIGIvCgi91uXvQJ0EpEi4HvAj61784F38Y78Wgo8rVlC\n3a7VW/bbSaVvz86aVEJYbEwUk0bWzk1yPqmq1uXXJxa36RNL22aM4dv//jZnLni3Dvr2gmxdGyzE\nHTp2jh/+4j0AIiLCefnFx4nvEONyVMEl4J9YlHLTjoLjdlKJbRfFBMe6Uio09U3pTN+e3qfS6uoa\n1mzV5fTdoIlFhawVjvkM08b0s1fCVaFt1sQB9vEnG/bh8XhcjKZt0sSiQtK50jK27T1ql2c6ftmo\n0DZheBqx7bzL9Zy5cIW8guNN3KF8TROLCkkrNubbs2cHZ/SgR5e7XI1HtZ520ZF11g9bkrPHxWja\nJk0sKuRUVFax4rPaZjDnrGzVNsyZPMieOb278IS9qrVqHZpYVMhZt62Iq9e9S3p0TohjzJBe7gak\nWl2XxDiyhvS2y8vW7XUxmrZHE4sKKcYYPnY0fdw7ZRBhYfrfvC26d/Ig+3jN1gO6flgr0p84FVJ2\nF5Zw4oy32SM6KlJ3iWzDBqZ1r7N+mG5d3Ho0saiQ8nHObvt4+thMXResDRMR7psy2C4vW7dXhx63\nEk0sKmSUnL1EXv4xwLvk9ZxJgxq/QYW8SSPT6BDr/XBxtrSMLbuPuhtQG6GJRYWMpWtr+1ZGDkyl\nuw4xbvOioyLrjAr8cPVOdJkn/9PEokLClavlddrQnU0gqm2bM3kQ4eHeX3VFxWcpOHza5YhCnyYW\nFRKWrt9LVXUNAL16dGJwRv2NSlVblRAfS/bo2s3dPly108Vo2gZNLCro3aioqjNP4QvTh+kGT6qO\nudOG2sfb9hXrhEk/08Sigt6qzfvtCZFdEuMYN6yPyxGpQJPcNYHRg3rZ5cWrd7kXTBugiUUFterq\nGhavqf0lMXfaULs9XSkn51PL2m2FlF6+5mI0oU1/AlVQ+2znIc5fvApAXPt2TBuT6XJEKlD175NE\nemoXAGpqPHXmPCnf0sSigpYxhg9W1nbE3jt5kO65om5JRHhw+jC7vHxDPmXXbrgYUejSxKKC1rZ9\nxRw7VQp45yvohEjVlDFDetPTWualorJKn1r8RBOLCkrGGN5Zts0uzxzfn7j27VyMSAUDEeHhe0bY\n5SXr9urilH6giUUFpe35xzhy4jwAkRHhzHM0cSjVmPHD+9C9c0cAym9UslSX1Pc5TSwq6BhjeNfx\ntDJrwkAS4mNdjEgFk7CwMB5yPLV8nLObGxVVLkYUejSxqKCTl3+MQ8fPATefVoY2cYdSdU0amUaX\nxDgArl6vYPmGfS5HFFo0saigUr9v5Z7x/Uns2N7FiFQwiogI56F7htvlv67aSfmNShcjCi2aWFRQ\ncT6tRESE84UZw5u4Q6mGTc3KpHOC96ml7NoNPtIRYj6jiUUFDWMMby3Jtcsz9WlFtUBERDhfmjPK\nLi9es1vntfiIJhYVNDbmHeJoSe1IMH1aUS01ZXQ6yV0TAO8IsQ9W7nA5otCgiUUFherqGt5astUu\nP5A9RJ9WVIuFhYUx/97Rdnnpur26hpgPaGJRQeHTTQWcuXAFgPYx0Tw4Q+etKN8YO7Q3fXp2BqCq\nuoZFn+S5HFHw08SiAt6NiireXb7dLn9x5gjax0S7GJEKJSLCY/dl2eVPNxVQcvaSixEFP00sKuB9\nlLObK1fLAbj7rvbMmTSwiTuUuj3D+iUzoG83ADweD298uNnliIKbJhYV0EovX6uzgvGX5owiKjLC\nxYhUKBIRnpg3zi7n7j3KnsISFyMKbppYVEB78+OtVFR6l9vomZRA9mjdb0X5R1pqFyaPSrfLf/7g\nMzwej4sRBS9NLCpgFRWfIWfrAbv8jYcm6O6Qyq++fP8YIiPCASg+eYE1jv9/qvn0p1QFJGMMr7y3\n0S5nDe7bm0+iAAATWElEQVTFkMxkFyNSbUGnhA515ke99XGuLvVyBzSxqIC0blsRRcVnAQgPD+Or\njvZvpfxp3rSh9hypS2XX+csn25u4Q9Xn98QiIrNFZL+IFIrIjxp4PUpEFopIkYhsEpEUx2vPWecL\nRGSmdS5ZRFaLyD4R2SMiz/q7Dqp1ld+o5I3FtaNy5k0dSjdr/wyl/K1ddCSPPzDGLn+Us4fikxdc\njCj4+DWxiEgY8FtgFjAQWCAi/epd9iRQaoxJB34F/My6dwDwKNAfmAO8JCICVAPfN8YMBMYB327g\nPVUQe2vJVi5euQ5AQnxsnVVolWoNk0el1xl+/N/vrscY43JUwcPfTyxZQJExptgYUwUsBObVu2Ye\n8Jp1vAiYZh3PBRYaY6qNMUeBIiDLGHPaGLMTwBhzFSgAevi3Gqq1FBWfYZljR78n5o0jpl2UixGp\ntkhEeOrRyfZgkQNHTrN6y36Xowoe/k4sPYDjjvIJPp8E7GuMMTXAZRFJbODekvr3ikgvYBiwxZdB\nK3dUV9fw+4XruPm5cFi/nkwcmeZqTKrt6pmUwLyptZvIvf7hZi6XlbsYUfAIxJlm0qyLRDrgfcL5\nrvXk0qAXXnjBPs7OziY7O7uF4Sl/+Shnt92WHRkRzlOPTsLb+qmUOx6eNYL12w9y7mIZV69X8Opf\nP+O7X5nudlg+lZOTQ05Ojk/fU/zZbigiY4EXjDGzrfKPAWOM+U/HNcusa7aISDhwyhjTpf61IrIc\neN66LgL4GFhmjPl1I9/faLtocDh9/grf+8k7VFXXAPCVuWN5cLouNKnct21fMT/54zK7/NxTcxg1\nMNXFiPxLRDDGtOgTnb+bwnKBNBFJFZEoYD6wuN41HwFPWMePAKut48XAfGvUWG8gDbi5bvr/APmN\nJRUVPDweD797a42dVFK73839Uwa7HJVSXqMGpjJhRG2T7O/fXqsbgjXBr4nF6jP5DrAC2Ie3M75A\nRF4Ukfuty14BOolIEfA94MfWvfnAu0A+sBR42hhjRGQC8GVgmojsEJE8EZntz3oo//ooZw/5h04B\nECbC0/OnEGHNflYqEHzz4Yl0jIsBvHNb/vTeBpcjCmx+bQpzmzaFBb7ikxf4h5+/R02Nd02mh2eN\nZIFj4yWlAsXWPUf5zz8tt8t///WZjBvWx8WI/CMYmsKUuqWqqhp+/cZqO6n06dmZR2aOcDkqpRqW\nNbgXU0Zn2OU//mW9Pd9K1aWJRbnmnWW5dUaBPfv4NG0CUwHtGw9NICE+FoArV8v59RurdAXkBmhi\nUa7Iyz/GB6tq91l5/IEx9ExKcDEipZrWITaaZx6fZs+J2FNYwvuO/YKUlyYW1erOlZbx6zdW2eWh\nmcncp6PAVJAYmpnMQ/fUNtkuXLLVHnyivDSxqFZVXV3DL179lKvXKwBI7Nie735luk6EVEHlS3NG\n0a9PEgAG+OVrK+3ts5UmFtXKXl+82V4OP0yEH3ztHnsYp1LBIjw8jL/76gw6xEYD3i20f/Hqp1Rb\nc7HaOk0sqtXkbD3AkrV77PLjc8fan/qUCjadEjrwzOPT7PLeopO89uEmFyMKHJpYVKsoOHSKlxau\ntcujB/Vi7tQhLkakVMuNGpjKl+aMsstL1+1l5aYCFyMKDJpYlN+dPn+F/3zlE3u+Ss9uiTz7+DTt\nV1Eh4ZFZIxk7tHai5B//sp6CNt6Zr4lF+dW18gp+8sdl9tpK8R1i+Men5hAbo3usqNAgIjzz5amk\ndr8bgJoaDz/903KOn77ocmTu0cSi/KayqpqfvrycE2e8P2AREeH86MlZdEmMczkypXyrXXQkP/7m\nbOI7eAeiXL1ewb///mPOX7zljh4hTROL8ovq6hp+/j+f1hnf/+0FU7SzXoWsLolx/NNTc4iOigTg\nwqVr/Pvvl7TJlZA1sSif83g8/ObNNWzPL7bPfXXeOCaPymjkLqWCX1pqF370N7PsLY1PnLnIf/z3\nUspvVLocWevSxKJ8yhjDH95Zx8a8g/a5L94zgnnThjZyl1KhY2hmMs9+uXbZl6Lis/zb75dwrbzC\n1bhakyYW5TM1NR5+87+rWbV5v31u9sSBLLhPl8FXbcvEkWk8+fBEu1x49Az/9lLbSS6aWJRPVFfX\n8P9e/ZR124rsc9lZmfzNwxN1WLFqk+ZMGsSTX5xglw8eO8sLv/u4TfS56EZfqsVuVFTx8z+vYEfB\ncfvczAkDeOqRSZpUVJu3fP0+Xl603i5379yRf/7WfXS9O97FqG7NFxt9aWJRLXL+4lV+8vJyjpac\nt889kD2EJx4cp0lFKcunn+Xzh3fW2eWOcTH801P30jels4tRNUwTSxM0sfjXoWPn+MnLy+rsovfw\nrJHMnzNKk4pS9WzccYhfv7HKXoEiOiqSv3tiOqMH9XI3sHo0sTRBE4v/bMg7yO/eyqGyqhqAsLAw\n/vZLk5g+tr+7gSkVwPIPneKnLy+v04n/8KyRfGn2SMLCAqPLWxNLEzSx+F5VVQ1//uAzPtm4zz4X\n2y6KHz45i8EZPVyMTKngcPz0Rf7jD0s5d7HMPje8f0+++5XpxLVv52JkXppYmqCJxbdOn7/CL179\nlMPHz9nnkjrF89xTc0juqtsKK9Vcl8vK+eXrK9lTWGKf65TQgWcfn8bAtO4uRqaJpUmaWHzDGMMn\nG/J5ffFmKiqr7PNjh/bh6QVTaB8T7WJ0SgUnj8fD20tyeX/lDvucAA9MHcqC+0YTFRnhSlyaWJqg\niaXlzly4wktv57C36KR9Ljw8jCfmjePeyYO0k16pFtqy+wi/eyunTr9Lz26JPD1/Chm9urZ6PJpY\nmqCJ5c5VVlWzeM1u3luRZ3fQAyR3TeCZL08lLbWLi9EpFVouXLrK797KYdeBE/Y5AWaM78+X7x/T\nqn0vmliaoInl9hlj2LavmFc/+IzT56/Y5wV4cPowHp0zyrVHdKVC2c0m51f/+hlV1TX2+bj27Xjs\nviymj+1nL27pT5pYmqCJ5fbkHzrF20u21lnqHiClWyLfcumxXKm25syFK7yyaGOd1cHBO2N/wf1Z\njBvax69N0JpYmqCJpXkOHDnNu8u3s3P/8TrnY9tF8dj9WcwcP6BVPikppbyMMeTuLeaV9zZ8brOw\nPj0789CM4YwZ0ssvc180sTRBE8uteTwetuw+ykc5uzlw5HSd18LCwpgxrh8L7h1t74inlGp9FZVV\nLFm7lw9W7uB6vT1dunfuyLzpw5g8Kt2nzdOaWJqgieXzzl+8ypqtB1i9eT9nS8vqvCbA5NEZPDp7\nFEmdAnOBPKXaorJrN/hg5Q6Wrttbp/8FoH1MNFOzMpk5cQA9utzV4u+liaUJmli8Kquq2bavmNWb\n97Oz4Dj1/0bCw8OYNDKdB6cPo2eSTnRUKlBdKrvO0rV7WbZ+7+eeYAAyeycxaWQa44f1pWPcnbU2\naGJpQltOLNfLK8nLP8bm3UfIyz9WZ2LjTe1jopk1YQBzJg8isWN7F6JUSt2Ja+UVfPpZAZ9s2Pe5\nlgeAMBGGZCYzYXhfhg9IISE+ttnvrYmlCW0psXg8Ho6cuMDuwhPsKSxh78GT9iqq9Q3O6MGMsf3J\nGtJLhw4rFcSMMewoOM6Kjfls31eM5xa/73ond2LkgBSG908hLaUzERHht3xPTSxNCOXEUlFZxeHj\n5yksPkvhkdPsKTrZ6Lan3Tt3ZPyINKaNyQzYDYaUUnfuclk5n+08xPrtBz83IMcpKjKCzN5d6dcn\nif59upGR2oWYdlH265pYmhAqieVS2XWOnSzl2Cnv1+ET5yk+WYrH0/ATyU29enRi7NDejB3ah+Su\nd+nyK0q1EWdLy9i08zDb9xVTcPh0o78rBOjWuSO9kjvRJ7kTD90zIvATi4jMBn4FhAGvGGP+s97r\nUcDrwEjgPPAlY8wx67XngG8A1cB3jTErmvOejvcOisRijOHileucvVDG2dIrnLlQxtkLZZw+f5kT\nZy5x5Wp5s96nY1wMgzN6MDQjmcEZPeicGOfnyJVSge5aeQW7D5SQl3+MPYUldZbrb8j7v/lWYCcW\nEQkDCoHpwEkgF5hvjNnvuOZbwGBjzNMi8iXgC8aY+SIyAHgTGA0kAyuBdLwJttH3dLy3a4mlurqG\na+WVXCuv4Fp5BWXXKrh05ToXy657/7xSzmXr+NzFq58bQtiUcycKGTYii/ReXclI7UK/Pt1I6ZYQ\nMk8lOTk5ZGdnux2G32j9glsw1+/8xavsP3ya/EOnKDh8ihOnL9bpm/FFYvF3z20WUGSMKQYQkYXA\nPMCZBOYBz1vHi4D/so7nAguNMdXAUREpst5PmvGedRhj8HgMNR4P1dUe7581HmpqrD+t8x6Ph6rq\nGvt8RVU1FZXVVFZ6//SWq6isrOaG49yNG1Vcu1HhTSTXvX82NArrTkVHRZLSLYGeSYmkdEskpXsi\n77z+B/7vP8332fcINMH8g9scWr/gFsz165TQgYkj05g4Mg3wTkcoPnmBw8fPc6TkPO//puXfw9+J\npQfgXCfkBN7k0OA1xpgaEbksIonW+U2O60qsc9KM97Q9+v0/3nJ0VCBpHxNNl7vj6JoYR5e74+l6\ndzxd7o4jOSmBzgkdPvck8oGO5lJK+UBUZATpqV1JT/WuBfgtH3xeDcTfTj5ty3ErqQjQPjaaDrHR\nxMZE0yEmmrviY0iIj+Wu+FgS4rx/3hUfS2LHWN0sSykVMvzdxzIWeMEYM9sq/xgwzs52EVlmXbNF\nRMKBU8aYLvWvFZHleJvMpKn3dLx34PfcK6VUgAn0PpZcIE1EUoFTwHxgQb1rPgKeALYAjwCrrfOL\ngTdF5Jd4m8DSgK14R4I19Z5Ay/9ylFJK3T6/Jharz+Q7wApqhwYXiMiLQK4x5mPgFeANq3P+At5E\ngTEmX0TeBfKBKuBpa4hXg+/pz3oopZRqvpCeIKmUUqr1Be3uTSKSLCKrRWSfiOwRkWet8w+LyF4R\nqRGREfXueU5EikSkQERmuhN58zRQv2es8z+z4t8pIu+JSLzjnqCoXyN1+zcR2SUiO0RkuYgkOe75\njVW3nSIyzL3om3ar/5uO138gIh5r9OPNc8Fcv5v/fs+LyAkRybO+ZjvuCYr/m9D4v5+IPGPVYY+I\n/NRxPpjrd/Pfb6Hj3+6IiOQ57rm9+hljgvILSAKGWccdgANAPyAT70TK1cAIx/X9gR14m/96AQex\nntgC8auR+s0AwqzzPwV+Yh0PCJb6NVK3Do5rngF+bx3fCyyxjscAm92uw53UzyonA8uBI0CidW5O\nKNQP7+Ca7zdwfaj87GXjbYKPsF7rFEr1q3fNz4F/vtP6Be0TizHmtDFmp3V8FSgAehhjDhhjivj8\nsOV5WBMujTFHgZsTLgNSI/VbaYy5OYZ6M95fVOCYUBro9Wukbs49WNsDN+s5F++yPxhjtgAdRaRr\nK4Z8W25VP+vlXwL/UO+WeYRO/RoaMBMSP3vAt4CfGu+kbYwx561bQqV+To8Cb1nHt12/oE0sTiLS\nCxiGd2TZrdSfrHlzwmXAa6R+3wCWWsdBWb/6dROR/yMix4DHgH+1LgvKukHd+onIXOC4MWZPvctC\non7WqW9bzXl/EpGO1rlQqV8GMFlENovIGhEZaV0WKvW7eW4ScNoYc9g6ddv1C/rEIiId8C4F8916\nn3hDwq3qJyL/BFQZY952LbgWaqhuxph/Nsak4F0n7hk342spZ/2AGuAfqV2+KOg18O/3EtDXGDMM\nOA38ws34WqqB+kUACcaYscAPgb+4GV9LNfK7cwHQot8rQZ1YRCQC71/MG8aYD5u4vATo6SgnW+cC\n1q3qJyJfw9vv8Jjj8qCqXzP+7d4CHrKOg6pu0GD9+uJtn94lIkfw1iFPRLoQGvXDGHPOWI3ywMvU\nNpeERP3wfmp/H8AYk4t36sPdeOuS4rg9WOuHeCepPwS847j89v/93O5IamEn1OvA/7vFa2uAkY7y\nzc7tKKA3Ad7Bdqv6AbOBfcDd9c4HVf1uUbc0x/EzwLvWsbPzfiwB3rl9q/rVe/0I3k+/IVM/IMlx\n/HfAW9ZxUP3fbKR+TwEvWscZQHEo1c86PxtYU+/cbdfP9Qq24C9mAt7mhZ1WpfOsv5QH8X6yKMc7\nM3+Z457nrL+UAmCm23W4g/rNwdtxVmyV84CXgq1+jfzbLQL2WOc/BLo57vmtVbddOEb7BeLXrepX\n75rDWKPCQqV+1i+r3db5vwJdg+3/ZhP1iwTesP6PbgOmhFL9rNf+DDzVwD23VT+dIKmUUsqngrqP\nRSmlVODRxKKUUsqnNLEopZTyKU0sSimlfEoTi1JKKZ/SxKKUUsqnNLEopZTyKU0sSimlfEoTi1J+\nIiKp1sZIfxaRAyLyvyIyXUQ2WOXR1uZY33fcs0dEUhp7X6UCnV/3vFdK0Rf4ojEmX0S2AQuMMRNF\n5AG8qx3vqHe9LoWhgp4+sSjlX0eMMfnW8T5glXW8F+9qx/U1tFGWUkFFE4tS/lXhOPY4yh68LQbV\n1P05bNdKcSnlN5pYlPKvpp5AjgIjAURkBN5lyZUKappYlPIvc4vjm+X3gEQR2QM8DRxorcCU8hdd\nNl8ppZRP6ROLUkopn9LEopRSyqc0sSillPIpTSxKKaV8ShOLUkopn9LEopRSyqc0sSillPIpTSxK\nKaV86v8DwD0FjembYVwAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f735a9a1198>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pmf_mu0 = general.Marginal(0)\n", "thinkplot.Pdf(pmf_mu0)\n", "thinkplot.Config(xlabel='mu', ylabel='Pmf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And the marginal distribution of `sigma` from the general." ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEPCAYAAACHuClZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VvWd6PHPNztLAoQlrAlr2AVBkEUlBUWsC9a64J3e\nMrf23plaq12ny3SuMNNlattXreP0dnqLXqejpRWronVBxYgLsiNbIGFJIGENgRC2rN/7xzl58uQx\nhIQnJ+dZvu/XKy/OOc85J98feZLvc36rqCrGGGNMOBL8DsAYY0z0s2RijDEmbJZMjDHGhM2SiTHG\nmLBZMjHGGBM2SybGGGPC5nkyEZEFIrJbRApF5LstvJ4iIstFpEhE1opItns8U0RWi0iViDxxiXuv\nFJFtXpfBGGNM6zxNJiKSADwJ3AyMB+4XkTEhpz0AVKjqKOBx4DH3+EXgh8C3LnHvzwFnvIjbGGNM\n+3j9ZDIdKFLVElWtBZYDC0POWQg8426vAOYBqOp5Vf0IqA69qYh0A74B/MirwI0xxrSd18lkEHAo\naL/UPdbiOapaD5wWkczL3PdfgF8AFzooTmOMMWGIxAZ4afVFkUnACFVd6Z7b6vnGGGO8l+Tx/cuA\n7KD9we6xYKXAEOCwiCQCGapa0co9ZwJTRWQ/kAz0E5HVqjo39EQRsYnHjDHmCqhquz6oe/1ksgEY\nKSI5IpICLAJWhpzzCrDY3b4HWN3CfQKFUtXfqupgVR0OXAfsaSmRBJ0fs1+PPvqo7zFY2ax8Vr7Y\n+7oSnj6ZqGq9iDwErMJJXMtUtUBElgIbVPVVYBnwBxEpAk7iJBwAROQAkA6kiMhCYL6q7vYyZmOM\nMe3ndTUXqvoGMDrk2KNB29XAvZe4dthl7l0CXNUBYRpjjAlDJDbAmzbKy8vzOwTPxHLZwMoX7WK9\nfFdCrrR+LBqIiMZy+YwxxgsigkZYA7wxxpg4YMnEGGNM2CyZGGOMCZslE2OMMWGzZGKMMSZslkyM\nMcaEzZKJMcaYsFkyMcYYEzZLJsYYY8JmycQYY0zYLJkYY4wJmyUTY4wxYbNkYowxJmyWTIwxxoTN\nkokxxpiwWTIxxhgTNksmxhhjwmbJxBhjTNgsmRhjjAmbJRNjjDFhs2RijDEmbJ4nExFZICK7RaRQ\nRL7bwuspIrJcRIpEZK2IZLvHM0VktYhUicgTQed3EZFXRaRARLaLyE+8LoMxxpjWJXl5cxFJAJ4E\n5gGHgQ0i8rKq7g467QGgQlVHich9wGPAIuAi8ENggvsV7Oeq+p6IJAGrReRmVX3Ty7IY0xbVNbXs\nPXiC8lNnSU5OJGdgbwb27YGI+B2aMZ7yNJkA04EiVS0BEJHlwEIgOJksBB51t1fgJB9U9TzwkYiM\nCr6hql4A3nO360RkMzDYy0IYczmVVRd4/s1NrF63h+qa2mavDc7qxZ3zJjNn2igSEqxm2cQmr9/Z\ng4BDQful7rEWz1HVeuC0iGS25eYi0hO4HXgn/FCNuTJbCg7x8E+W8/r7Oz6VSABKj53iyefe5YdP\nrOR4RZUPERrjPa+fTK5Em+oDRCQReA54XFWLL3XekiVLAtt5eXnk5eWFF50xQfLX7+HJZ99Fg471\n75PBsMF9uVhdw659RwMJZs+Bo3z3l3/hH//XLYzM6edPwMa0ID8/n/z8/LDuIap6+bOu9OYiM4Al\nqrrA3f8eoKr6s6BzXnfPWecmiCOq2i/o9cXAVFV9OOTey4AzqvqNVr6/elk+E9/Wby/msd+/EUgk\nvTK68nf33cA143MCbSQXLtbw0jtb+ctbW2hw34td01L40SN3kjOwTQ/gxnQ6EUFV29XQ53U11wZg\npIjkiEgKTsP6ypBzXgEWu9v3AKtbuE+zQonIj4CM1hKJMV46eKSCXz3zdiCRZA/I5Bf/cDfTJgxt\n1tjeJS2F+2+dzj9/7Q66d00F4PzFGn70279ywqq8TAzx9MkEnK7BwK9xEtcyVf1XEVkKbFDVV0Uk\nFfgDcDVwEljUWG0lIgeAdCAFOA3MB6pw2lgKgBpAgSdV9akWvrc9mZgOV1Nbxz/88i8cOlIBQFbv\nDH76jc/RI71Lq9cdKC3nh0+8zMVqp9ore0AmP/vWXaQkR2Jts4lnV/Jk4nky8ZMlE+OF5a9v4Pk3\nNgGQnJTIY9/+PNkD2lZltb2wjH/57V+pr28A4JbrJ/Dlu6/zLFZjrkQkVnMZE1OOlp/hxbe3BvYX\n3zmzzYkEYGLuIL78+abk8fr7O9i4s6RDYzTGD5ZMjGmH//fiR9TV1QMwfEhfbp49rt33uGnWWKZP\nHBrY//fn8jl3obqDIjTGH5ZMjGmjbXtK2bCjOLD/P+++7ooGIYoID96fR6+MrgCcOXuB515d31Fh\nGuMLSybGtNHzb24KbOdNH03u0Kwrvld6tzS+9PnZgf03P9jJ/kMnworPGD9ZMjGmDXbvP8qufUcA\nSEhI4L5brgn7njMnDWfSaGcmIAV+9/z7WIcRE60smRjTBi+8tTmwfcM1o+iXmR72PUWEL999HYmJ\nzq9hUclx1n6yP+z7GuMHSybGXMaB0nI27zoIOKNn77rp6g6798B+PbltzsTA/h9fXR/oNmxMNLFk\nYsxlvLZmR2B7xuQRDOrXs0Pv/7kbr6ZrWgoAh09U8u76PR16f2M6gyUTY1px7kI1H2zeG9i/PW9i\nK2dfmfRuaSycNzmw/6fXN1JTW9fh38cYL1kyMaYV72/cG/jDnj0gM6weXK25bc7EwHQsFZXnyF9f\n6Mn3McYrlkyMuQRV5c0Pdwb2588e59mKiWmpySyc2/R08uLbW6ztxEQVSybGXEJRyXEOupM5Jicl\ncsM1oy5zRXhunj0uMLPw8YoqPtyy9zJXGBM5LJkYcwmr1zWtLn3d1JF065Lq6fdLS03m1qCeXS+s\n2mLjTkzUsGRiTAvq6upZu7VpzMfca8d0yvf97A0TSU1JBpzlfhu7JBsT6SyZGNOCT/aUcva8M/li\n757dGDu8f6d83+5dU5k/a2xg/6/vbe+U72tMuCyZGNOC4O7A100Z6VnDe0tuuWFCYGnRT/aUcujo\nqU773sZcKUsmxoSorqll3bbiwP71U71teA+V1TuDaUFT1L+2xp5OTOSzZGJMiI07D1Jd4yytO7Bv\nD4YO6t3pMQQ3xOevLwxUuRkTqSyZGBMiuOH9uqmjOrWKq9H4kQMDKzjW1Nbx9tqCTo/BmPawZGJM\nkNra+mY9qGZOHu5LHCLCbUFTt7z+/g4bxGgimiUTY4JsLyoLVHH175PBkP69fIvl+qmjSO+WBkD5\nqbNssm7CJoJZMjEmyPrtBwLb0yYM9aWKq1FKchI3zmga3/L2R1bVZSKXJRNjXKrKxh0lgf3gHlV+\nmTezaczJ5l0lnKio8jEaYy7N82QiIgtEZLeIFIrId1t4PUVElotIkYisFZFs93imiKwWkSoReSLk\nmikiss295+Nel8HEh70Hj3PqzHnAmRZ+zLDOGajYmgF9e3BVbtPSvu8ETfFiTCTxNJmISALwJHAz\nMB64X0RC56V4AKhQ1VHA48Bj7vGLwA+Bb7Vw6/8DPKCquUCuiNzsRfwmvmzY3vRUMnV8TmA5Xb/d\nGDQifvXHu60h3kQkr39bpgNFqlqiqrXAcmBhyDkLgWfc7RXAPABVPa+qHwHNOtiLSH8gXVU3uIf+\nE7jTo/hNHAlu4J42IcfHSJq7duJQMro7a52cPH2OLbsP+RyRMZ/mdTIZBAS/80vdYy2eo6r1wGkR\nybzMPUsvc09j2uXUmfMUl5UDkJCQEKhaigRJSYnMvXZ0YP+tD3f5GI0xLUvyO4AWdGj3mSVLlgS2\n8/LyyMvL68jbmxjxSdCn/THDsujaJcXHaD5t3owxvPTOVgA27Syh/NRZ+vTq7nNUJlbk5+eTn58f\n1j28TiZlQHbQ/mD3WLBSYAhwWEQSgQxVrbjMPYdc5p4BwcnEmEvZXNCUTCaPHdLKmf4Y2K8nE0YN\nZEfRYRR4b2Mhn79pit9hmRgR+kF76dKl7b6H19VcG4CRIpIjIinAImBlyDmvAIvd7XuA1S3cJ/C0\noqpHgUoRmS7OIIAvAi93eOQmbjQ0NDR7MpkyNruVs/0TvKZK/ro9tnCWiSieJhO3DeQhYBWwE1iu\nqgUislREbnNPWwb0EZEi4OvA9xqvF5EDwC+BxSJyMKgn2Ffd6wpxGvjf8LIcJrbtP1QemEixR3oX\nXyZ2bItrrxpGWqqzcNbhE5UUlRz3OSJjmnjeZuL+oR8dcuzRoO1q4N5LXDvsEsc3ARNbes2Y9tpc\n0NSLa/KYIb6Oem9NWmoysyaPCCwnvHrdbnKHZvkclTGOyOhIb4yPthc2NbldPSby2kuCfSaoV9eH\nm/dRU1vnYzTGNLFkYuJadU0te4qPBfYn5EZ2L/Oxw/uT1TsDgPMXa1i/vdjfgIxxWTIxcW33gWOB\nEeWDs3rRK6OrzxG1TkTIm54b2M9fv8fHaIxpYsnExLWdRYcD2xNGDfQxkrbLm95U1bW14BAVled8\njMYYhyUTE9e2FTZNpjBhVGRXcTXql5nO+JFO4lNgzcYifwMyBksmJo5duFjDvoMnAvvR8mQC8Jmg\np5N3bcyJiQCWTEzcKth/lAb3j3DOwN6BVQ2jwczJw0lNccaclB471SwpGuMHSyYmbgV3CZ4YJVVc\njdJSk5kxqWkY1nsbC32MxhhLJiaO7dgb1PieGz1VXI3mTGvq1fXB5n22zonxlSUTE5fOXajmwCGn\nakiAcSMG+BvQFZg4amCgK/OZsxf4ZE/pZa4wxjuWTExc2rn3CI1N1sOH9KVbl1Rf47kSCQkJXDdl\nZGD//U3Wq8v4x5KJiUs7ioLaSyJ81HtrbrhmVGB73bZiLlbX+hiNiWeWTExc2rn3SGC7ccxGNBo2\nuA+Ds3oBztQwG2x6FeMTSyYm7py/UEOJu0SvAGOG9fc3oDCICNcHPZ2ssaou4xNLJibuFJYcC7SX\n5AzqE3FL9LbX9VOb2k22FhyisuqCj9GYeGXJxMSdgv1HA9tjh0fvU0mjrN4ZjHafrhpU+XDLXp8j\nMvHIkomJO7v3N7WXjImBZAJww9Sgqi6bq8v4wJKJiSt1dfXsOdC0fkk0t5cEmz1lBAkJzq9zUclx\njpyo9DkiE28smZi4cqCsnNq6egD69kqnT6/uPkfUMdK7pTFlbNMqkTbmxHQ2SyYmrjRrLxkRG08l\njW4Iml7l/Y1FNpOw6VSWTExc2d2s8T36plBpzbQJOaSlOjMJHz5RaTMJm05lycTEDVVt9mQSK43v\njVKSk5gxaXhg38acmM5kycTEjSMnKjlz1hmD0a1LKkP69/I5oo4XPL3K+5v22kzCptN4nkxEZIGI\n7BaRQhH5bguvp4jIchEpEpG1IpId9Nr33eMFIjI/6Pg3RGSHiGwTkWdFJLpHnZlOEVzFNWZYf0TE\nx2i8ETqT8LagNVuM8ZKnyUREEoAngZuB8cD9IjIm5LQHgApVHQU8DjzmXjsOuBcYC9wC/EYcA4Gv\nAVNU9SogCVjkZTlMbIjlKq5GoTMJr7FFs0wn8frJZDpQpKolqloLLAcWhpyzEHjG3V4BzHW37wCW\nq2qdqhYDRe79ABKBbiKSBHQFmlY5MuYSggcrxsLI90uxmYSNH7xOJoOAQ0H7pe6xFs9R1XqgUkQy\nW7i2DBikqoeBXwIH3WOnVfVtb8I3saLq3EUOuwP5EhISGJHd1+eIvBM6k/DGHSU+R2TiQZLfAbSg\n1YpsEemJ8zSTA1QCK0Tkv6nqcy2dv2TJksB2Xl4eeXl5HRaoiR5FJccD28MG9SYlORLf+h2jcSbh\nP/51PeCsD39d0GSQxoTKz88nPz8/rHt4/RtVBmQH7Q92jwUrBYYAh0UkEchQ1QoRKXOPh157I7Bf\nVSsAROQvwCzgssnExK/gZJI7NMvHSDrHDUHJpHEm4R7pXXyOykSq0A/aS5cubfc9vK7m2gCMFJEc\nt8fVImBlyDmvAIvd7XuA1e72SmCR29trGDASWI9TvTVDRNLE6Y4zDyjwuBwmyhWVNM3HlTu0n4+R\ndI5+memBQZkNqnyw2WYSNt7yNJm4bSAPAauAnTgN6gUislREbnNPWwb0EZEi4OvA99xrdwF/BnYB\nrwEPqmM9TkP9FuATnGqx33lZDhPdVJXC4qYnk1E5sf9kAs0b4t/bYL26jLcklufvERGN5fKZtik7\nfpqHf7wccCZEfPrHi2NyjEmos+er+dIPnwkMXHziHxcxqF9Pn6My0UBEUNV2/ZLYCHgT8wqDppzP\nzcmKi0QC0L1rKtPG5wT219jTifGQJRMT8wqD20uGxUcVV6Prm1V12UzCxjuWTEzMC24vyc2J/cb3\nYFPH5dCtSyoAJ05VNZtSxpiO1GoyEZF73H+HdU44xnSsi9W1lJSVA05PjZHZ8ZVMkpMTmXV100zC\n79n0KsYjl3sy+b777wteB2KMF/YdOkFjxc7gAZl07RJ/c4LOuaZp0awPN++jtrbex2hMrLrcoMWT\nIrIKGCYioeNDUNU7vAnLmI6xp1nje3w9lTQaM7w/fXulc+JUFecv1rBpV0mzdU+M6QiXSya3AlOA\nP+DMh2VMVGk+WDG+Gt8biQhzpo1ixarNAKzZWGTJxHS4VpOJqtYAH4vILFW1NUBNVInXwYotuWFa\nbiCZbNxZQtW5i6R3S/M5KhNL2tqbK0dEXhSRze6CVNtEZJunkRkTpvJTZzlddR6AtNRkhvSP3wF7\ng/r1ZMQQZ6bk+voG1m7d73NEJta0NZk8CzwNfB64PejLmIhVWBL8VNKPhIT47gk/Z1pTQ7z16jId\nra2/XSdUdaWqHnAXuipRVVskwUS00JHv8e66KSNJcEf/795/lGMnz/gckYklbU0mj4rI70XkfhG5\nq/HL08iMCVM8j3xvSY/0Lkwe27Sqw5qNRT5GY2JNW5PJ/wAmAwtoquK6rdUrjPFRbW09+0vLA/uj\n4myw4qUEjzlZs6HQplcxHaati2NNU9XRnkZiTAcqPlxOXZ0zOK9/nwxbGMo1bWIOaanJXKyu5fCJ\nSvYdPMHIOB1/YzpWW59MPhKRcZ5GYkwHsi7BLUtNSW42xsQa4k1HaWsymQFsFZE9brfg7dY12ESy\nPcXxtbJie8wJmkl4zcaiwBOcMeFoazXXAk+jMKaDFRVbT65LmZg7iD69ulN+6ixnz1ezYUcJMyfb\niHgTnsvNGpwmIl8HvoOTUMqsa7CJdKerznO8ogqA5KREhg7q7XNEkUVEyJve1AS6et1uH6MxseJy\n1VzPANcA24FbsPm5TBQIbi8ZPqQvSUmJPkYTmT4TlEy27DpIReU5H6MxseByyWScqn5BVf8DuBu4\nvhNiMiYszau4rL2kJf37ZDB+5EAAFMhfbw3xJjyXSya1jRuqWudxLMZ0iODBiqPidKbgtph7bdPT\nybvrdtuYExOWyyWTSSJyxv2qAq5q3BYRm4vBRJyGhgaKSpomuB5tyeSSZkwaTlpqMgCHT1RSGPRE\nZ0x7tZpMVDVRVTPcr3RVTQrazuisII1pq0NHT1Fd4zxQ98roSu+e3XyOKHKlpSYza/KIwP7qdXt8\njMZEO8+nURWRBSKyW0QKReS7LbyeIiLLRaRIRNaKSHbQa993jxeIyPyg4z1E5Hn3+E4Rudbrcpjo\nEPzpevTQLMSd2NC0bN6MMYHtDzbv5WJ1bStnG3NpniYTEUkAngRuBsYD94vImJDTHgAqVHUU8Djw\nmHvtOOBeYCxOT7LfSNNfhl8Dr6nqWGASUOBlOUz0aDby3aq4Lmv0sCwG9u0BwMXqWtZtO+BzRCZa\nef1kMh0ocsel1ALLgYUh5yzE6YIMsAKY627fASxX1TpVLQaKgOkikgFcr6pPg9MxQFWt/cYAzZ9M\n4nWZ3vYQEfKCGuLf+djGnJgr43UyGQQcCtovdY+1eI6q1gOVIpLZwrVl7rFhQLmIPO2u/Pg7EbFZ\n/AznLlRTeuwUAAkijBjSx+eIokPetFwaH/l37j1M2fHTvsZjolNbp1PpTJer5E4CpgBfVdWNIvI4\n8D3g0ZZOXrJkSWA7Ly+PvLy8jonSRJy9B5t6ceUM6k1qSrKP0USP3j27c82EoWzYUQzA2x8VsPjO\nmf4GZTpVfn4++fn5Yd3D62RSBmQH7Q92jwUrBYYAh0UkEchQ1QoRKXOPh15bChxS1Y3u8RXApxr2\nGwUnExPb9hw4Gti2+bja56ZZYwPJ5N31e/hvt04nOdlmDogXoR+0ly5d2u57eF3NtQEYKSI5IpIC\nLAJWhpzzCrDY3b4HWO1urwQWub29hgEjgfWqegw4JCKNq/zMA3Z5WQgTHYqC1nwfbSsrtsvVY4fQ\np1d3AKrOXbSGeNNuniYTtw3kIWAVsBOnQb1ARJaKSONKjcuAPiJSBHwdp8oKVd0F/BknUbwGPKhN\nQ3QfBp4Vka04vbl+4mU5TORT1WaN77bgU/skJCQ06ya86iP7fGbax/M2E1V9AxgdcuzRoO1qnC7A\nLV37U+CnLRz/BJjWsZGaaHb4RCVnz1cD0L1raqC7q2m7eTPG8Pwbm2hQDTTED+rX0++wTJTwfNCi\nMZ2h8EDzLsE2WLH9evfsztTxOYH9tz+y4Vum7SyZmJiwpzio8d3Gl1yx+bObVudevW43NbU2v6tp\nG0smJiYEj3y3yR2v3OQxg+nbKx2As+erWb+t2N+ATNSwZGKi3oWLNRw8fBJwBimNssb3K5aQkMC8\nmU0N8W9+uNPHaEw0sWRiot7egydo7OY3ZEAmXdJSfI0n2s2bMYYEt81p174jlLiJ2pjWWDIxUW9P\n8EzBNr4kbJk9unHtpOGB/dfW7PAxGhMtLJmYqBfck2v00P4+RhI7bpszMbD93oZCqs5d9DEaEw0s\nmZiopqrNe3LZk0mHGD0si6GDnIkya+vqeXutdRM2rbNkYqKaDVb0hog0ezp544Od1Nc3+BiRiXSW\nTExUKyq2wYpemT1lBOnd0gAoP3U2MBGkMS2xZGKi2h5bDMszKclJzJ/VNIjRGuJNayyZmKi250Dz\nNd9Nx5o/e1ygm/DOvYetm7C5JEsmJmrZYEXv9enV3boJmzaxZGKilg1W7Byh3YQrqy74GI2JVJZM\nTNSywYqdY/SwLIYP6Qs43YRfe9+eTsynWTIxUcsGK3YOEWHh3EmB/Tfe38HF6lofIzKRyJKJiUo2\nWLFzzZw0nH6ZTbMJr1632+eITKSxZGKikg1W7FyJiQnc/pmrAvsrV2+zQYymGUsmJioV7DsS2B47\nfIANVuwEc68dQ/euqQCcOFXF2k/2+xyRiSSWTExU2hWUTMYMt/aSzpCWmsyC6ycE9l96Zyuq2soV\nJp5YMjFRKfjJZNyIAT5GEl8+e/0EkpMSAThQWs6WgkM+R2QihSUTE3VOnj7L8YoqAJKTEhk+uI/P\nEcWPHulduGnW2MD+829usqcTA1gyMVGoYH9QL66hWSS5n5RN51g4dzKJic6fjsLiY2wvLPM5IhMJ\nPE8mIrJARHaLSKGIfLeF11NEZLmIFInIWhHJDnrt++7xAhGZH3JdgohsFpGVXpfBRJZmje9WxdXp\n+vTqztxrRwf2n39zk4/RmEjhaTIRkQTgSeBmYDxwv4iMCTntAaBCVUcBjwOPudeOA+4FxgK3AL+R\n5l12HgF2eRm/iUzBTyZjrfHdF3fdNIWEBOfPx659R5p1iDDxyesnk+lAkaqWqGotsBxYGHLOQuAZ\nd3sFMNfdvgNYrqp1qloMFLn3Q0QGA58Ffu9t+CbSnLtQ3WxyR5sp2B/9MtPJm5Yb2H/+DXs6iXde\nJ5NBQHB3j1L3WIvnqGo9UCkimS1cWxZ07a+A7wDW8hdndu8/GvihDxvS1yZ39NFdN11NY1XBtsJS\nezqJc0l+B9CCVkeficitwHFV3SoieZc7f8mSJYHtvLw88vLywo/Q+Kb5YEWr4vLTgL49uGFaLu9t\nKATg2VfX8aOHF9oA0iiUn59Pfn5+WPfwOpmUAdlB+4PdY8FKgSHAYRFJBDJUtUJEytzjodcuBG4X\nkVuALkC6iPynqn6xpQCCk4mJfgUHgttLrPHdb/fdcg0fbN5LfX0Du/cfZUvBIaaMy778hSaihH7Q\nXrp0abvv4XU11wZgpIjkiEgKsAgI7X31CrDY3b4HWO1urwQWub29hgEjgfWq+gNVzVbV4e79Vl8q\nkZjYUlNbR1HJ8cD+2BH2ZOK3rN4Z3DijadzJs6+ut3EnccrTZOK2gTwErAJ24jSoF4jIUhG5zT1t\nGdBHRIqArwPfc6/dBfwZp8fWa8CDau/SuFZYfCwwueCAvj3omd7V54gMwN03TwmMii8uK+ejrTZn\nVzySWP77LCKWf2LIH1/bwAp3TMNNs8by9/fN8Tki0+i/Vn7Mi+9sBWBg3x48/v37AgMbTfQREVS1\nXY1f9tM2USN4pPXE3ME+RmJCLZw3OdCz7vCJSt76qMDniExns2RiosLF6tpm7SUTRg70MRoTKr1b\nGp+7cXJgf/nrGzh3odrHiExns2RiosKufUdoaHDaS7IHZNIjvYvPEZlQt+ddRZ9e3QGoOneRF1Zt\n9jki05ksmZiosKOoqYrrKqviikgpyUn899tnBPZffW87R8vP+BiR6UyWTExU2BbUXjIh16q4ItXs\nKSMYldMPgPr6Bv6w8mOfIzKdxZKJiXhV5y5SXFoOONMd2GJYkUtE+NJdswP7H3+yv9lTpYldlkxM\nxNu593BgPq4R2f3o1iXV13hM63KHZjF7ysjA/v99/gPq6up9jMh0BksmJuLtKDoc2L4qN3SeUBOJ\nFi+cQWpKMgClx06x8t1tPkdkvGbJxES87c3aSyyZRIPePbtz/2enBfaff3NTYKllE5ssmZiIdurM\neUqPnQIgMTGBMcNs/ZJo8dkbJpA9IBNw5lV76oUPfY7IeMmSiYlon+xuWtJm9NCsQNWJiXyJiQn8\n3b03BPY37Cjm409s3q5YZcnERLTNBU3J5OqxNrV5tBkzvD9zr21aqft3z79P1bmLPkZkvGLJxESs\nhoaGZk8mU8YNaeVsE6kW3zmTXhnODM+VVRdYZtVdMcmSiYlYRSXHOXvemd+pV0ZXcgb29jkicyW6\nd03l7+45PtCNAAASLElEQVRrqu56f1MR67cX+xeQ8YQlExOxgqu4Jo8dYsvBRrFpE4ZywzWjAvv/\n8ac1Vt0VYyyZmIi1ZdfBwLa1l0S/L901OzBB5+mq8/x2+Xu2KmMMsWRiIlJl1QX2HzoBQIIIk8fY\n5I7RLr1bWrMFzT7edoC319q6J7HCkomJSJt3HQxMoTJqaJZNoRIjpk8cys2zxwf2l73wIYeOnvIx\nItNRLJmYiLR++4HA9rQJOT5GYjra4jtnMDirFwC1dfX86pm3qamt8zkqEy5LJibiVNfUsiWo8X36\nVcN8jMZ0tNSUZL75tzeSlJQIQMnhkzz1F+suHO0smZiI88meMmrdWWYHZ/ViUL+ePkdkOlrOwN78\n7Z0zA/tvfVTAOx9b+0k0s2RiIk5wFdf0iUP9C8R4asF145tNVf+75z9gb8lxHyMy4bBkYiJKfX0D\nG4IGtE2zZBKzRIQHF80JTAZZV1fPY0+9SWXVBZ8jM1fC82QiIgtEZLeIFIrId1t4PUVElotIkYis\nFZHsoNe+7x4vEJH57rHBIrJaRHaKyHYRedjrMpjOs/vA0Waj3huXgDWxKS01mX944Ga6pqUAcPL0\nOf71929Yg3wU8jSZiEgC8CRwMzAeuF9ExoSc9gBQoaqjgMeBx9xrxwH3AmOBW4DfiDMEug74pqqO\nB2YCX23hniZKfbB5b2B7+sRhNuo9Dgzo24NHvjiPxp90YfExnvivd21AY5Tx+slkOlCkqiWqWgss\nBxaGnLMQeMbdXgHMdbfvAJarap2qFgNFwHRVPaqqWwFU9SxQANiKSTGgrq6etVubpiifPWWEj9GY\nznTN+BwW3zkrsL926z6efWWdjxGZ9vI6mQwCDgXtl/LpP/yBc1S1HqgUkcwWri0LvVZEhgKTAXvX\nxYBthWWB+Zoye3Rj3IgBPkdkOtNteRO55foJgf0X39nKa2u2+xiRaY8kvwNoQZvqNUSkO86TzCPu\nE0qLlixZEtjOy8sjLy8vzPCMVz7csi+wPfvqEVbFFWdEhC/dNYvjJ6vYtKsEcEbId0lN4TPXjvY5\nutiWn59Pfn5+WPfwOpmUAcEz9A12jwUrBYYAh0UkEchQ1QoRKXOPf+paEUnCSSR/UNWXWwsgOJmY\nyFVTW8e6bU1dgq8L6jJq4kdCQgLf/NsbWfLvr1DkdhP+9+feJTU1iVmTrdrTK6EftJcuXdrue3hd\nzbUBGCkiOSKSAiwCVoac8wqw2N2+B1jtbq8EFrm9vYYBI4H17mtPAbtU9deeRm86zcadJVy4WANA\n/z4ZjMju63NExi9pqcn88O9vDXQZVuDx/3yHDTuKfY3LtM7TZOK2gTwErAJ24jSoF4jIUhG5zT1t\nGdBHRIqArwPfc6/dBfwZ2AW8Bjyoqiois4G/AeaKyBYR2SwiC7wsh/He6o93B7avmzrKqrjiXPeu\nqTz61dsY2LcH4Iw/emzZqmZVoSaySCx3vxMRjeXyxYoTFVV8ZemzKE6D2W8e/Rv6Zab7HZaJAOWn\nzvJPT7zM8YoqwHl/PPQ3nyFvurWheElEUNV2faKzEfDGd6vX7QlMNz8xd7AlEhPQp1d3fvTIwsD8\nbAr827Pv8mr+Nn8DM59iycT4qqGhgdXrmqq4bpw11sdoTCTq3bM7//LwQnIG9g4ce/rFj3jqLx/S\n0NDgY2QmmCUT46utu0spP+X07O7eNZXpE4b6G5CJSD3Su/DPX7uD3KFZgWN/fW87jy1bxcXqWh8j\nM40smRhfvfJuU3VF3rTRJCcn+hiNiWTdu6ay9KHbmRG0vs2GHcX84PGXOFp+xsfIDFgyMT4qOXyS\nbYWlgNOwessNE1q/wMS9lOQkvv2l+SycOylwrOTwSb7z8xVs2lniY2TGkonxzStBjajXXjWM/n0y\nfIzGRAsR4YsLZ/KVRXNITHT+hJ2/WMNPf/c6z726njp3YTXTuSyZGF+cOnOeNRuLAvt3BH3SNKYt\nbpw5lh8/spDePbsBTk+vF97azA8ef4my46f9DS4OWTIxvnj5na3U1zs9cUbl9GP0sP4+R2Si0aic\nLH7+7bu5Kndw4Ni+Qyf49mMreP39HTaNfSeyZGI63cnTZ3n9g52B/c/deLWP0Zho1yO9C//7wVv5\n4sKZgWqvmto6fr/iA37w+EscPFLhc4TxwZKJ6XQrVm0O1GuPGNLX1nk3YRMRFs6dxM++eReDs3oF\njhcWH+PbP1/Bf638mPMXanyMMPbZdCqmUx0tP8PXfrw8MNjsn75yK5PHDLnMVca0XU1tHS+8tYUX\n394SqEoFyOjehfs/O415M8YEnmBMy65kOhVLJqZT/ev/fSMw++u4EQP456/dYZM6Gk8cPFLB/1n+\nHoXFx5odHzIgky/cfi1Tx2Xbe+8SLJmEsGQSWdZvL+Znv38jsP/Tb3yu2YhmYzqaqrJmYxHPvrqO\nk6fPNXtt6KA+3D1/CjMmDbOkEsKSSQhLJpHjYnUtD/9keeAX+qZZY/n7++b4HJWJF9U1tbySv52/\nvLWF6prm068M6d+Lz914NbMmj7AZGFyWTEJYMokcv/3Te7z1UQHg1F0/8YP7SO+W5nNUJt5UVJ7j\n5Xc+4c0Pd1IbMrgxo3sXbpwxhvmzx9E3zmeutmQSwpJJZPhg815+9czbgf2v2XoUxmenq87z6rvb\neO39nZ96UhFgyrgc5kzPZdqEHFKSvV7dPPJYMglhycR/h4+f5ju/eCEws+usq0fwzcU3Wh21iQhV\n5y7y5oe7WPXhzk+1qQB0SUth5qThXD91JONGDCApKT6qwSyZhLBk4q9TZ87zj4+/xLGTzoyuWb0z\n+MV37qZrlxSfIzOmufr6BjbuLOH193ewvbCsxXO6dUll6vhspk0cypSx2aSlJndylJ3HkkkISyb+\nOXehmn96YiUlh08CkJyUyI8eXsjInH4+R2ZM646cqGTNxiLWbCy85NT2iYkJjMrpx8TcQVyVO5jc\nnH4x9dRiySSEJRN/lJ86y4//47XANBYJIvzDl29mmi18ZaKIqlJUcpw1G4tYv/1Ai9VgjVJTkhkz\nLItRQ7PIzelH7tCsqO5gYskkhCWTzldYfIyfP7WKisqmX7yv3p/H3BljfIzKmPCoKgdKy1m3vZj1\n2w60ab6v/n0yGJHdj6EDe5M9MJPsAZn07dU9KtoLLZmEsGTSeWpr61mxahMvrNpM4/94QkICX71/\njvXcMjHndNV5dhQeZlthKdsLyzheUdWm69JSk8kekMmQ/r0Y0LcH/fv0oH+fDPr3yaBLWuS0JUZk\nMhGRBcDjOJNKLlPVn4W8ngL8JzAVKAfuU9WD7mvfB74E1AGPqOqqttwz6N6WTDxWV1fPexsL+dPr\nG5tVA3RJS+E7X5rPpNGDW7namNhw7OQZCg8co7DkGIXFxzlQVt5sXrC2yOjehaze6fTplU6fnt3o\n3bM7mT27NW336EpCQufMKRZxyUREEoBCYB5wGNgALFLV3UHnfAWYqKoPish9wOdUdZGIjAOeBaYB\ng4G3gVE43cBbvWfQvWM6meTn55OXl9fp37ehoYHC4uOs23aA/A2FnDl7odnr40YM4GtfmEu/MAZ+\n+VW2zmLli26XK19tbT0HysopLjtJyeGTHDxSwcEjFZw9X33F3/Pn3/48w4f0veLr2+NKkonXo3Gm\nA0WqWgIgIsuBhUDwH/6FwKPu9grg39ztO4DlqloHFItIkXs/acM944LXv7A1tXWcPH2OispzlJ86\nS3HZSQ6UlbPv4AnOX/z0dN4Z3btw74KpLLhufNj1wvH+xyjaxXv5kpMTyR2a1WzuOVXl1JnzHDp6\nikNHKjh28gxHy89w9EQlxyqqLvsk07tn944K3xNeJ5NBwKGg/VKchNDiOapaLyKVIpLpHl8bdF6Z\ne0zacM+An/zH6yhNTyctPakEH2p8/VIPNI33aut9Lvl6s5ha+D56+Zg/+KiA87944RJxtnSf1r9P\ngyoXL9ZyobqGC9W1bX5M792zG/Nnj+e2ORNjuu+9MeEQETJ7dCOzR7dPVf82NDRw8vQ5jldUcfL0\nWcpPOR/iTp4+S/npc1RWnSeje2T3DovEeQI6tKvDpl0lHXm7iFJReY59h0748r17ZXTl6rHZzJg0\njKvHDum0ulxjYlFCQgJ9M9Ojek4wr9tMZgBLVHWBu/89QIMbzEXkdfecdSKSCBxR1X6h54rIGzjV\nYXK5ewbdO3YbTIwxxkOR1mayARgpIjnAEWARcH/IOa8Ai4F1wD3Aavf4SuBZEfkVTvXWSGA9Tg+u\ny90TaP9/hjHGmCvjaTJx20AeAlbR1I23QESWAhtU9VVgGfAHt4H9JE5yQFV3icifgV1ALfCg2zWr\nxXt6WQ5jjDGti+lBi8YYYzpHzLSaisgyETkmItuCjvUSkVUiskdE3hSRHn7GeKVEZLCIrBaRnSKy\nXUQedo/HSvlSRWSdiGxxy/eoe3yoiHwsIoUi8kcRicQOI20iIgkisllEVrr7sVS2YhH5xP35rXeP\nxcR7E0BEeojI8yJS4P4OXhsr5RORXPfnttn9t1JEHr6S8sVMMgGeBm4OOfY94G1VHY3TFvP9To+q\nY9QB31TV8cBM4KsiMoYYKZ+qVgOfUdWrgcnALSJyLfAz4JeqmgucBh7wMcxwPYJTZdsolsrWAOSp\n6tWq2thNPybem65fA6+p6lhgEs6Ytpgon6oWuj+3KTizkJwDXuRKyqeqMfMF5ADbgvZ3A1nudn9g\nt98xdlA5XwJujMXyAV2BjThjh44DCe7xGcAbfsd3hWUaDLwF5AEr3WMnYqFsbvwHgN4hx2LivQlk\nAPtaOB4T5Qsp03zg/SstXyw9mbSkn6oeA1DVo0DUL6YhIkNxPr1/jPPDjonyudVAW4CjOH949wGn\nVbVx5GQpMNCv+ML0K+A7uGNJRaQ3cCpGygZOud4UkQ0i8mX3WKy8N4cB5SLytFsV9DsR6UrslC/Y\nfcBz7na7yxfrySRUVPc2EJHuOFPOPKKqZ/l0eaK2fKraoE4112Ccp5KYmLNeRG4FjqnqVpoPyI2l\nbuuzVfUa4LM4VbDXEzvvzSRgCvDv6lQFncOpAoqV8gEgIsk4U1g97x5qd/liPZkcE5EsABHpj1Nt\nEpXcBtoVwB9U9WX3cMyUr5GqngHycdqGerqThYKTZFpeTzWyzQbuEJH9wB+BuTh18D1ioGwAqOoR\n998TOFWw04md92YpcEhVN7r7L+Akl1gpX6NbgE2qWu7ut7t8sZZMhOaf+FYCf+tuLwZeDr0gijwF\n7FLVXwcdi4nyiUifxt4iItIFuAmnsfpdnIGsEKXlU9UfqGq2qg7HGUO1WlW/QAyUDUBEurpPzIhI\nN5x69+3EyHvTreo5JCK57qF5wE5ipHxB7sf5sNOo3eWLmXEmIvIcTgNnb+AYztQrL+E8tg0BSoB7\nVfW0XzFeKRGZDazB+SVV9+sHODMC/JnoL99E4BmcDzcJwJ9U9cciMgxYDvQCtgBfUNVa/yINj4jM\nAb6lqnfEStnccryI855MAp5V1X91J2uN+vcmgIhMAn4PJAP7gf8BJBI75euKU4bhqlrlHmv3zy9m\nkokxxhj/xFo1lzHGGB9YMjHGGBM2SybGGGPCZsnEGGNM2CyZGGOMCZslE2OMMWGzZGJMB3Pnb4qJ\n6WCMaSsbZ2KMMSZs9mRiTBjc6URedRcW2iYi94rIuyIyxX39AXeBoY/dJ5Yn3ONPi8hvRGStiOwV\nkTniLPC2S0SeCrr/b0RkffCiYcZEIksmxoRnAVCmzgJDVwFvNL4gIgOAH+JMfDibT8+E3FNVZwLf\nxJkL6ZeqOg64SkSucs/5gToLTk0C8kRkgrfFMebKWDIxJjzbgZtE5Kcicp0763Gj6UC+qlaqaj1N\n03s3eiXoHkdVtXElxp3AUHd7kYhswpm/a5z7ZUzEidp1p42JBKpa5FZpfRb4FxFZTfO1H1pbt6Ta\n/bchaLtxP8ldCO1bwFRVPSMiTwNpHRW7MR3JnkyMCYNblXVBVZ8DfoGz1kWjDcANItLDXY/m863d\nqoVjGcBZoMpdW+KWDgrbmA5nTybGhGci8HMRaQBqgK/gJBVU9bCI/ARnqYAKnHW1K93rWlvJTt3r\nt4nIVqAAOAR84FUhjAmXdQ02xkMi0k1Vz4lIIs66H8uCVso0JmZYNZcx3loiIltwGtn3WyIxscqe\nTIwxxoTNnkyMMcaEzZKJMcaYsFkyMcYYEzZLJsYYY8JmycQYY0zYLJkYY4wJ2/8He/RmF9mpF98A\nAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f735a6c81d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pmf_sigma0 = general.Marginal(1)\n", "thinkplot.Pdf(pmf_sigma0)\n", "thinkplot.Config(xlabel='sigma', ylabel='Pmf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we will run this again for BRINK and see what the difference is between the group. This will give us insight into whether or not Brink employee's are stealing parking money from the city." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First use the same range of `mus` and `sigmas` calcualte the marginal distributions of brink." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "5.1204633776438457e-49" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "brink = Normal(product(mus, sigmas))\n", "data = df[df.BRINK==1].RATIO\n", "brink.Update(data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plot the `mus` and `sigmas` on a contour plot to see what is going on." ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEKCAYAAAAW8vJGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXuQLdtd3/f5rX7sx8yc531JSHAxL0GBEKIsSEHuvSYp\nAnYFcOIosQsHsB2qkhRQweUYCLFkRXGAsuPYFZvYYFPCNuZtwDEGlYyubnCBjZAEsiTESwgJ6Z77\nOvecmdmv7l6//LFW9+7es/eePXNm5szM+X1u7bt7d6/uXmvvOb9v/36/9RBVxTAMwzBq3P2ugGEY\nhnG+MGEwDMMwOpgwGIZhGB1MGAzDMIwOJgyGYRhGBxMGwzAMo0N6vyuwDhGxvrSGYRjHQFXluOee\na2EAGBeXVxve+pY3891/7c33uxqnwmVuG1j7LjqXvX2D7NiaAFgoyTAMw1jAhMEwDMPoYMJwH3ni\nyafudxVOjcvcNrD2XXQue/vuFTnPcyWJiF7mHINhGMZpMMjknpLP5jEYhmEYHUwYDMMwjA4mDIZh\nGEYHEwbDMAyjgwmDYRiG0cGEwTAMw+hgwmAYhmF0MGEwDMMwOpgwGIZhGB1OXRhE5KqI/ISIfEhE\nPiAiXyIi10Xk7SLyYRH5RRG5etr1MAzDMDbjLDyGvwP8vKp+LvCFwG8B3wG8Q1U/B/gl4DvPoB6G\nYRjGBpzqXEkicgV4r6p+xsL+3wKeVNVbIvIY8LSqvmbJ+TZXkmEYxhE573MlfTrwgoj8kIi8R0T+\noYgMgUdV9RaAqj4LPHLK9TAMwzA25LSFIQVeD/w9VX09sE8IIy26AeYWGIZhnBNOe2nPjwMfU9V3\nx88/RRCGWyLyaCuU9NyqC7z1LW9utp948imbR90wDGOBZ971NM+86+kTu96pr8cgIu8C/jtV/W0R\neRMwjIdeUtXvFZG/ClxX1e9Ycq7lGAzDMI7IveYYzkIYvhD4QSADfh/4JiABfhx4NfBR4I2q+vKS\nc00YDMMwjsi5F4Z7wYTBMAzj6Jz3XkmGYRjGBcOEwTAMw+hgwmAYhmF0MGEwDMMwOpgwGIZhGB1M\nGAzDMIwOJgyGYRhGBxMGwzAMo4MJg2EYhtHBhMEwDMPoYMJgGIZhdDBhMAzDMDqYMBiGYRgdTBgM\nwzCMDiYMhmEYRgcTBsMwDKODCYNhGIbRwYTBMAzD6GDCYBiGYXQwYTAMwzA6mDAYhmEYHUwYDMMw\njA4mDIZhGEYHEwbDMAyjgwmDYRiG0cGEwTAMw+hgwmAYhmF0MGEwDMMwOpgwGIZhGB1MGAzDMIwO\nJgyGYRhGBxMGwzAMo0N62jcQkT8A7gAeKFT1DSJyHfgx4NOAPwDeqKp3TrsuhmEYxuGchcfggadU\n9YtU9Q1x33cA71DVzwF+CfjOM6iHYRiGsQFnIQyy5D5fC7wtbr8N+LozqIdhGIaxAWchDAr8ooj8\nmoj8pbjvUVW9BaCqzwKPnEE9DMMwjA049RwD8GWq+kkReRh4u4h8mCAWbRY/N7z1LW9utp948ime\nePKp06ijYRjGheWZdz3NM+96+sSuJ6orbfKJIyJvAvaAv0TIO9wSkceAd6rq5y4pr+Pi7OpnGIZx\nGRhkgqrKcc8/1VCSiAxFZDtubwFfCbwf+DngG2OxbwB+9jTrYRiGYWzOaYeSHgX+hYhovNc/U9W3\ni8i7gR8Xkb8AfBR44ynXwzAMw9iQMw0lHRULJRmGYRydcx1KMgzDMC4eJgyGYRhGBxMGwzAMo4MJ\ng2EYhtHBhMEwDMPoYMJgGIZhdDBhMAzDMDqYMBiGYRgdTBgMwzCMDiYMhmEYRgcTBsMwDKODCYNh\nGIbRwYTBMAzD6GDCYBiGYXQwYTAMwzA6mDAYhmEYHUwYDMMwjA4mDIZhGEYHEwbDMAyjgwmDYRiG\n0cGEwTAMw+hgwmAYhmF0MGEwDMMwOpgwGIZhGB1MGAzDMIwOJgyGYRhGBxMGwzAMo4MJg2EYhtHB\nhMEwDMPoYMJgGIZhdDBhMAzDMDqYMBiGYRgdzkQYRMSJyHtE5Ofi58dF5FdF5LdF5J+LSHoW9TAM\nwzAO56w8hm8DPtj6/L3A31LVzwZeBv7iGdXDMAzDOISNhUFEPl9E3igi/2392vC8VwF/EvjB1u6v\nAH4qbr8N+NOb1sMwDMM4XTYK4YjIm4CngM8Dfh74auCXgR/e4PS/DfwV4Gq81k3gtqr6ePzjwCuP\nVGvDMAzj1Ng0tv9ngC8E3quq3yQijwL/9LCTRORPAbdU9X0i8lT70KYVfOtb3txsP/HkUzzx5FMr\nyxqGYTyIPPOup3nmXU+f2PVEVQ8vJPLvVfUNIvLrwJ8AdoEPqeprDjnvbwBfD5TAANgBfgb4SuAx\nVfUi8qXAm1T1q5ecr+Pi8PoZhmEYcwaZoKobP4AvsmmO4d0icg34AeDXgfcAv3LYSar6Xar6qar6\nx4D/BvglVf164J3AfxWLfQPws0euuWEYhnEqbOQxdE4QeRy4oqq/ecTzngT+sqp+jYh8OvCjwHXg\nvcDXq2qx5BzzGAzDMI7IvXoMGwuDiLwWeJxWXkJVf/q4N97wniYMhmEYR+RehWHTXkn/GHgt8AGg\n7k2kwKkKg2EYhnH2bNor6UtV9fNOtSaGYRjGuWDT5POviIgJg2EYxgPAph7DDxPE4VlgShiHoKr6\n2lOrmXFfOWKfhHtCjh0JNQzjNNhUGP4R8OeB9zPPMRgXmLM0/IexSV1MPAzj7NhUGJ5X1Z871ZoY\np8Z5EoHjsqoNJhiGcfJsKgzvFZEfAf4lIZQEnH53VeNwLoPRvxfM2zCMk2dTYRgQBOErW/usu+p9\n4kEXg6PS/r5MJAzjcI488vkssQFugXP8E11oTCSMy8pZDXD7u0t23wHerao2z9EJYiJwdljewjCW\ns+k4hj7wOuB34uu1wKuAvygi/9cp1e2BQXX+Og/offrvvHCefgvDuB9sOu32rwJfpqpV/JwC/x/w\n5cD7T2tU9GUPJd1P43OeDPEmyOZLeJz8vc2DMC4YZxJKIsyCuk0IHwFsATdUtRKR6erTjDZnIQQX\nzeBvyqbtOg0BWfa7mVgYl5lNheH7gPeJyNOEUc9PAH9DRLaAd5xS3S4Npy0Il1UMjkP7uzhNL6P+\nTU0gjMvIUabdfgXwhvjx11T1E6dWq/k9L3Qo6TQF4UzE4Ky++jMyrqclFCYOxnnjVNdjEJHXqOpv\nicjrlx1X1fcc98abcBGF4aTF4MQE4GJ9jYdzQsb4pMXCRMI4D5y2MPxDVf1mEXlna3dzgqp+xXFv\nvFHlLpAwnDtBOMOvbdWtztRGnsDNTCSMy8KZrOAmIm8EfkFV74rI/wq8HvjfzGMInKQoHFsQLolj\ncWK29B4udJICYeJg3A/uVRg2Hcfw3VEUvhz4CuAHge8/7k0vC/fa3/3Yffl1yeuIxVe9Nq67Hu21\n8XVPqp730MCTHF9hYyKMi8imwlDF9z8F/ICq/isgP50qnW9OYjDakQ3OsYzb0Y09nLyhP63rHlvU\njvHFnJRAGMZFYVNh+CMR+QfAfw38vIj0jnDupeEk/nEfSxCOUHSTU07S4J8091K3Y4vExsXvTSDO\ny3dsGIexaY5hCHwVYZTz78Suq1+gqm8/1cqdkxzDvf5jPlKI6ISKbVrnizAGYtOY/ybx/I2DrhsW\nvNd8hOUgjNPgTJLP94vzIAzH/XqO7Bkc/3Aos9ET9cnV6cQ5wp/wJsb4MIO70e1OuE4rzzVxME6Y\ns5oS44Hk1EXhHgXhsPptVI97ypVsxkZ/nesutnCBxXYtM8qL382i8a0Pr63bRoXmdbqf8zkZxkli\nwrCCYyVYT8AQrzq8rj5r77vi0FGad++htNVs9LSs622zyvI7tA31KqFYduaBey0WWlGZ407HYdNr\nGOcNE4YF7ocgrDt7VX1W3vOYQnC0HkHHV4pFg7nuvm1D2S621nB3zlntWawzxoc6Crru4PzeR/Ug\nVE0cjPOBCUOLsxaFExOEI17/2N7HCXDY9e/5KX+NgtT3XnWPZeGmteKw5B6L9zNxMC4iJgyRExeF\nYxxarMOmXsGyUsvas+p656n/wYGn/LYHUD/lL8spcNCgLo0wyWpPYplIrPVU2gUOCS8dNbRk4mDc\nT0wYOLphPPSp+ghP8Bt7Boc4CpsKwZFCRmckGOuM4DKv4TDDvtaoLzHk6zyJI4WzTtB7MHEw7icP\nvDCcN1E4TBAWTznMy9h4PMMRPIwTZ0WvuqXx/0OEQpAVZerj9YUWd6wWiFV5iNMWB8O4XzzQwnCi\nCdcNQ/8bhYt06eaB89vnrs0bHEM8Dv1qjqoZh/QLXXZ4cV/bqDZewYq2LYagGq9i4diBcNOGQlNf\n60A9D4k9HSW0tC7/YRinyakKQ5w64xnCvEop8JOq+tdF5HHgR4EbwK8Df15Vy9Osy71wZqKwQhDW\nnbeJIBwmBAcucZTE96YsGtfF3klhZ3efLuxqW/EFL+NA4njBqLYNcjtMdMCOL1j7ZU/5i17ESkfh\nEA/CMM4rpz7yWUSGqjoSkQT4t8C3Ad9OEImfEJHvB96nqv9gybmnNvL5RKaMOIYg6Crrz2oxOEwI\nDhOAzt4NRWZlq0/i51hiLA94B+2nemRlwfrjsvKrnrLr/YsGX5bdZmldD3oua4ofcmDzxLR5Dcam\nnNW028dGVUdxs0fwGhT4E8BPxf1vA/70adejW6cNy61LGGwgCouTpq0ShcXLtQ29oisnkmv2LykX\n9sfrxg3V+VTSXsNLFXx8abvOunBe/eLgNQ57Hfivdb35PTq3DPWJr841Fgo2m7r++1j83trf7+L+\nzs+z5LdeJ9Qr/jROhPPUe8y43Jx6jkFEHCFc9BnA3wN+D3hZVX0s8nHgladdj9NmmSh0j68WhWXn\n1OU38RDWeQbLjNgqD+JQz+Tgro1Ydq36UaaTE2iHf5D5R1kIK7VCSqLz3EHrogfK1aGnxdzEYWGm\nTrJ6IVHd7g116BiINWElS0ob541TF4YoAF8kIleAfwG85rTvub4+G5bbNE60sHulh9AqeFQxWCxz\nwMDrwWOrjh+83sF7sKIei3U/LkvDRrp4ROchn5axDp8PZo+lc3ZLLJo94XrtRHT9eX7H+T2bHEb7\nrXvBlYIyv96KxPSKpPSmCWkLKRmnzZn1SoorwD0N/EfANRFxUTReBfzRqvPe+pY3N9tPPPkUTzz5\n1OnW84im7yREYWU4Y8XxdYKwaN9XeRW6cJHDxEIEnAhOFCeCCIgEU7YsZt+EciCGjVphIQ2hovq6\njVFt1X6+P+ydG/VFAx4Nc9urqMWiJSDa9khqpVFZmrSuvYja4B/wHuovaUmCelEg1jgKBzDPwTgu\nz7zraZ5519Mndr1TTT6LyENAoap3RGQA/CLwPcA3AD+tqj8Wk8+/oar/z5LzTyz5fCJ5hUN2rUoC\nHyYKh4WLDhjtVYJwiGehrUKL1xTAOSF1QrLwcjI36r5j3OcGv33f9hN5LSCu9e7iu1fwXqlUKb3i\nq/Be+vkFDyaXu8b8gDDJwf3LjjX1W5FIXhS7pYnp1od1iewD5yzdsfw6S8uYdhiHcK7XYxCRLyAk\nl118/Ziq/u8i8umE7qrXgfcCX6+qxZLzz1QYNhWFVYLQucaKczYRhPZT/iqD337gXycC7f1tLyFL\nHFkiZIkjTQTnhKpSCu8pK6WKRrpaMNRrcydLWGboasPmBFInpIkjSYIoZYkjdcFLKKpQl6L0zLyn\nnSdYJRhLjf6y/WsE5IBRXyEgrVuvbO9KQVmz08TBuFfOtTDcK+dRGJaVWOoprAnNHPAC1j3pa/e6\nbbFYFJBlHkG9P0uFXuLI02CEi9rglr4xwMvquel3sCnrnrbbxi51QpYGocjT8PJemZWeWeWZldqE\neboiMReIZR5DvX+VaNRl70UcVrXJhME4K0wYNuB+eQubhI42EYWOh7Bkf9s7aMLoAr10blTLSpkU\nFdMiGNZ2HTtCsNTDWN6+I7HGcKoqdQpgnrtY8A4E0kTopwm9bN6maVExLUO32K4YSMd4tz2Fdd5D\ne/+y0NJi3TtNW+E5nIY4mDAY6zBh2IBjC8OGorDsyXrRsC7tEbQiDHRAENZ4B4uf+1lCP3NkqWNS\neCaziklRzccFROOvC3VYum9Jmw604YihpGXGtP00vuhR1AZalnzuZY5+ljDIE7xXxkVoq+rBsNKi\nJ7HoQTR1XSIcy7yHuvxpiYN5Dca9YMKwAYc18ajewmFP0qtCMqtEYZ03sCyHEBK+2mwnDoZ5Qj9L\nmJWe0axiXFSg9cC1ueFvC0Hneqv2LTR+mRd0GCsTsQIOwblQTwHE0dR1nSjUF3GxZ1SeObYWvoOi\n0ljmcHHgkH3rQksHxKH14TRDSiYMxipMGDbgJIRhlUE8TBTqMvciCvXTfnO1eDxLhGEvIXWO/WnJ\n/rTEx2GDqwSh7kXUrvc6cVjXxsV2LmOdKAhC4kLoyEdlcFJftysCtQCwYKgXj4vAME/Z6icA7E9L\npoV2BaFVdlkiepU3cZg4rBOGxe/iwL9YEwbjBDFhOISTCCMdRxSWjjhuGdp1YaLwpK8t46xNv3/V\nIAjb/RQR2JuU7E+rg2GpBa9i2XanrksEIjy118aUTrfTjtFcY6GmRcWs1KVG0yH0ckdVhS6rToQs\nCWMHqigUgpAm0SgrLe+iZZDb3kTcdhJCTTv9lMQJe5OSSembY20PwrWN+Jpw09Kn/1X7W+1cm7Re\n8r3MP5owGMfjXoXhgZ52Gw6PkR/5erp8u32/dWGiVaJQh4y2BympE3YnJaNphRLKd8JG1AIwF4G6\nTHu7vmf9WRxh3IJzOAnbShxr4EM9ykqp1DcC0uSxW2ITjOJ8outWb9fOk7cTZSAJ47IKBrjVTTX0\nOBKyNFyjKBURIYnX8PFuAoiGgXdKEBtQPBJyLMWMXua4OsjY6sHdSUFZhb7TIoqqUM/N4kQRlflg\nuCWfQ5PmbdC63DIjHpV12cC1zndlGOeMB14YjsI676PjVSwRmwPho2XhpHpfc6+5KAxzx1YvZW9a\n8uKk7AhBWwQaz2LJ/sV99QC23DkSRzNmYVaG7qul91E4FgWsa+yXtbdtCJ0c3C8CmXN4VQqv4Qk/\nDXUoqhj6UeiLY1Z5vA+GO4iV4n0QriBCsQYqoXeShJmW6ttOC8/zxZRBnnBtmDMtK/bGVaxHEIfm\nN1wmDgeMurJu1PRJUX+vqzyHk76fYdSYMCyiaz/GfcvjTO0Q0tqcwqKRbp3jY4F62wlc28rwqjy3\nO6WqarHoGvv2aOTmnu1y8T1NIEsdaeKCES6V/VnJtPSNwW+u1QlxKdPS8/G7U3qp8MhWvjaEVFOX\naBd1TRJYyDPh6jCljIKwOw3jHJ1IEA4co1lFIuGcXpYynlWkSRCVqgqP5Vkq1GFRaU3bAaAxHLQ/\nrZjMKq4MM27u5NwZFRSV4qIn4IkeTS0qIvMfjPmEHbUY1eLQ9hq0VUjmpzZew6Ix19Z31P1gGPcP\nE4YTYFE8Nkl2tz2FTiipJQp5KlwZZOxOCvYn4QnXLzH2i+/hmvMQkhMhS8NI5yKOZxiPq0Y8Kp1P\nwV1p8Fkq7Ya4pmXFb97ap586yrHy8qTilTsZvdSh8Sm9CckstFek+8wrIjGUI3zi7oRhlpA6YVx4\ndvKUwnsK70kTYVb6EMYSpZ8GMatUyaQOa2n0SKQRxVSkeaonfgfhnkqFcGdUMC0817YyRrOS8cx3\nf8joLQg0nsMmT+aLISOz88ZFxYRhQw700AkfDhxfdU7bW2jeWqGjunxdbhBDRy/uTSnKrsE/TBwg\nCEjioJeF3jmTouLupApzEmkwqADeB8+g3ld7HZPKMy09gyxE7Z/bL0id8NkPDZiWnk/uFjy7V/D4\n9X5j+NuC0AmttdupIQNAFAcnwt2ZNtujskQEijgSe5glzLwnEaGXJYyLkNRQVcrKowjOKd4r6rXx\nYqoqhJ5CsjqIgmf+Pikqnr/rubGdkzrHnXGBmz/+z5/ydWEbujmHltewUjxMIYwLhgnDPdIxgO04\n/EKIqC0EXok5gjqf0A0lbfXC6N7n7kwo/UFPoC0EnQV3YoI4S4VB5ii9sjspGBe+8QoOCEPcrt8r\nr/zR3Rmf3C242g9P8p/z8JBe6igqjdfyJAJ3piUfuzMhS6SpP3S7eKaxO2riIBEhkThRnwQhCBPp\n+RC2UhjFBV4TEZJSuNpPeXg7D/cuK+5MCgZZQuKFUVXhEJIkCZ6EhyydexJJ7KbkvYZwkoC6IGAK\nqIcXdqfc2M65Nsx4eb9oPAsIHpCTuefRnrV1mSdRh5TChyU5iBXhpONi+QXjtDBhOEMWE7gw9xLC\nPhj2HL3M8cLulKr1pF2XXyYKPoqHSBAVr8rdccm0Cka8aglC8x5vWqlSVZ40caTO4b3nzqTitY8N\nqbzy2y+M+d0XRyQxPPPxOyHHMC3DtW6PSoZ5srLNThaSz1Ek6hlWe3EyvzxxZLE3VF3fEuUjL4/Y\nShPyxDGtgueQeSFJUmaVJ5WQL5kWVeyRJBSVD6EtUVz8bmuvIfRCUlzTs0l4cW/Gja2cq8OMO+Oi\nNt+oSpOQjm5DbEP3N10mAvPj5iwYF49LLwxNdOAYrDxt4cDhOYX5OY3n0OQY5qGkPHUM85Tn706j\nsacJ7cw9keWikGeu6a9fVEqpviMGpfrQ3dR7SlVUldHM84d3pswq5dHtlH7qmFQer8rzoxmJOIZ5\nwu6kIk9DoGh3WlGpa3oPqSOEd5gnviEYfpgbUSfz/YmbexPTUkkc0YsI+/LE0UsTMhfyBvtFxbis\ncCKkzjEtPd4rN4d5812MiophDJuVXkkEEhee/evPnvDHUItCEhPKAry0N+OhnZztXhrGhRB7LNVZ\ng5aFb4eY1v7uJ+QZGMZZc+mF4axYFkZqC0bzue0F6LxnUuLgSj/lhb1pY9Db4aHa6NZiEN5DhnTQ\nC9NAvLQ/o4grpjZTZqs2YlD50NsmdQ4PfOzOlETgWt/xibszUufopULhldujCpEgEpPCMynrcBPs\nF74T/oKqqVtNWxjavZeE9nTbEoRCwqC9JIoDVGRJSepgu5ewlaWIhHrNqpJZJYxerrg2yOL04B5H\nELGi8qGnUfzLLqvQbo2ei8ZKiAg4bcJKEMTh4Sv9MOtspU3OpAkpzZVhocNSN9cQGrrQzdVcB+MC\nYcJwBI49GE47bwfCR4pyZZCzOy0pyrmAtHMQ3W6o4bNzQj937I1LRmVFEb0EoBGFwnvKOE9GnjiK\nynNnUnBnWjGrlO3c4TXMWvrypIToDdTdYkWESsOgs3oG0/Zj8LQom7a0xzY0HoKbJ5kldiF1Tii9\nIlUwnYkTsgSy2HsKoNIgEqWv2J95+olju5fQSxyVKjPveW5/Shq9iFQ8e9OSm1s5eSb00pB3mBW+\nEQGBZkCbk3moqG5NpXB7FMJKL+xOm5ASdV6gbtyKQWuGcVkwYbgHDpOJZccXp8pQhX4aouP7k6oR\nivpptF41jcb4xvEITshTx51RybSqmpXPqmidSw3J2o+8NKb0cH2QMsiEcRmeqIvY6yiP/f/r8/YL\n33goVWuNBhEYzyrqKbJFhGlRddpYi5db8BDqqTQgiELIMwipCC4RvAqlFyYoSelJXVg7Ik2ESoXK\nSwhdqSd3wnYvJXcudGutVck5RkWFGxVs91ImxXwSvZS5IKBzgWi+a5l3a50VnklRsd1L2ZtWnfa3\nf9fF8JJhXCYeCGE4bp6h7pV4VNaFkWje5knlrX7G3VHZeAJ1CKlaDBvBfE6h1HF7NGNaBS8h9P3X\nxjsovOeP7swoFXZ6CX/w8oSdPOQhigoKr/EJOTzx16IiAqNpGUZEp2Fw2SBLuDMqGE9LSu9D+KbS\n0JvIz0dqt+fdataFjqOr08QF7yGGi1x7v4SwUpa64NXEMQ1OhDwJ9cgToZcKmRPGpTJIHVd6Yb6o\nSVmROE/mHNU05BtSFwbIAXgnZLjYuSh4D8FtiJ9rQYs9ke6OCh692mdvVs4T0fH/4YzuWtCLvZNO\ninUeieUujNPkgRCGdUjrH/xJll1F7SXUryw+SoeRx60yMM9H6FygBOjnwVMoWusll1EUiigMiXM8\nt1/wip0MRNnJE/YLTyqKh7gCWjwvehCV9/TjyGLvNS6Ik/Di7pQX7oyp4mAzqA1THVdXFkdBV+qb\nfe18hEQRSFNHr5eQJwlp4ii9hHokof69LCFLHFOg8hVVKqgm+BSIQ+nG5Yxr/TSMdagqSlVEFVGP\nqMPF+4qCazyFufcQUgPadEdVwmevYZ6lQZYwKXzTpqY7bvyfhZOMy8oDLwxnxSo56ecJo1l1MDm9\nIA51mGaQJ4ymVZg/qO1R1GMRvNJLE6aVp58Kd6cVwzhITVUZVyG2XlTB4NVeSlFWJIljMisZTUrG\n04LZrKLy2oR/kLB2Qu0dzF/LWyiinbwCBI/EK0xnFeNJiXNCniUM+yn9PMVrfMr3ShlXn9PEURXg\ntQLqrrGh/i9PSiqv7PTS4M3ERLRD43iEkO/wqrjEzb0b0Y5IhHJBJFRgNCu5MsgYz+aCve4p3UTC\nuEw8MMLQmQ1zbcH4voFjcGioSRc/NqMXmjBSnjr292YtAegmmMMAsPDKU2lWKqvUM618E0IqfFi7\nuZckzUAwEWFUeCoPkzKsk1x6ZVqUzMpgDiuvYcnMPKWqPB9/acTu/qwTfisKT1WFsFEVZz71XpvP\n3nvUz3tY1ULgkoQkkSaEBMzDSTG0BDCdlUymQST6vZQ0DZ5KvSxploaV2rw6ZpXST4VB7JraiyGw\nyivXBhmzqsKziAM8Qxe9kMIj7ZxD85sHUVANE++l280Q56U/7YnLwIYXtDCScdo8MMJwXkmdMKsO\nyksnlBT/y7OEu+MyDEqrcxF1otgreeKYlBX7RUXpw5Ny6K5ZUXmabrCzOGGeKoxnJZOiZDwumc6q\nxliXZTD6YTuIwnRSMJ3MmE1LqrKiKqsmjCSua61UwxQVCCRJQpomJFlKr5+R5SlZlpAkjiSR5l0E\nxlHQBv0UjX+e7RBbnjnGBTjxTVI7EWVUetJZyXaeUlSeUrQJJTlVEhX2pxUPbSfMmHsN7YFrtSjU\n+8sqiGb9Gj27AAAgAElEQVTlT0AEjngB8z6M+8kDJwzLEtHrcgfNM2Onj3p8v0fvIxFpYvZ1ue6s\nq/NcROpiz5wYQqoTzmX0FJQgEi+Ow+ykkyImiDXMO1SUoVzihNG0JEsd41nBnb2C6TTMT+S9Mp1W\nlGUVvQSlKitG+2OKSYHGcEydO0iypNO2TvLZOeLiCdQrtJXjKeO9MQBZntEb9uj1c7LMkabzFyj7\no4LJtGI4SOllKWXm4lTgjkGesj/zCODVRXEM981c6L5aet98/SKQeKEUz6QMk/OVVQwbzVMMc1GI\nnkPlwzTfVdMtbE0y+AiGvP3Ef1Tzb96CcRY8cMKwMSviRJskoDdNUq8KRS1Ol6EKSRpmGvVK4y0E\nMQjeQz9NeHE8Iz7kR+8gXk/DZHJ9l3BnNGNWenbHMybTkrL0YVxB6SkKT1EEUZhMZox2R1RFRZql\nZL2s8QLq0JH3vskzLG2fhEV/2h5FmofBauqVvTt7jHYdw+0hw+1e5zpBIDz7owLZmq8cl7jQTbYf\np+EoK6Vy4TsI03ZXPLSVNJPw1d9jmCgwnHuln1FUVed484O0fwet8wZL8ierftQ1rBUP2bCcYZwB\nD6QwHNVrOC2WPoOuqELqhGnhO1kK1dDDKAwE80zL1jgGHxbACWsueGZlFUYwzypmZcVoXKAaYv5B\nEIIoTKcluy/vM5vMyPKMfDvHVz6EjqoK9Tp/L0t0OoJiCmWJ+io0QBySZpD1kN6AJMsbYUiSBJc4\nXOLIezkA+3f3mYwnXL2+02lzliWoKnv7M9x2HgQs5ijqME9RKWmiZK2R3tM4FqLpDUXtgWkY0dya\nBlbXOAIigjYZi826jrYnEBQ52TyEeQvGWfFACsMqDohDfFhcGk6Kx5uZEjR8aLo0tsrWi7/M7xCu\nWI9eXqhEE1KqUUK5ytdjHGjyDN6HcQ2jOKCrzleELqjKLA5km0ZRmBQVo3FJFVdJKwplNguCMJ2W\n7L60CxKe7KuqohpXTT6hqir8dAJ3X4DxXSgmkGTh5RKQ+SQS6j1UJVpO8UkGw6uwdQ3627jEkaYp\nSZqQpAlpnqJeefG521y5vkOapWHktVeyLCFNYTfOfFrjBFRDj6WyUmaiJC60eVRUXB9kzZiO+XoT\n0iT44RBRIIimX5NfkNaz/VqjLXMvYC4cCzdrXXPpJUwUjDPkgRWGe5lcb76a8aoQCp0pFJaVEkKH\nS++DN1B6XTjeDWGssgtKGEw2q3xn6ox6biTvtRnZXMVeRGUZ5jZSharycZ9n9/ZuyCE4acQAoCor\nyskYfeHjQRD62zC8Bmn88/HVkga6aM0kHJ+N4dZHIOvhb3wK5XCnGzrKUlziuHt7l+2r27HnUkhM\nqwpV5ZkVFVmcEsMrzEpPFqcDz1OaZHzp52MWVrHWzsaDWSIU3sdZW1vGWRbzBGa1jcvFAysMR2Wl\n11AfX9jf8T6kdT50lGJWefqZY39atTyUg3Ftr6ufGkVo1leoCXF1mq6ltWhMZxUiodcREEYxl569\nu/shhp8mVGXVhI8Ayru30Vsfga2r8NCr40UrqMqwIo7WK6C1OoqKC68kCd7EYCcIymwMt34Pf/VR\nuPmKOM5BqNw8lzHaHZFmodtqVXmSOCBuOqvo99KmTfVXWedaOt9X6zdb9Vu5qF3LjHyWxKRznEV1\n6Xe/6OwteAaLp5i3YFwUHmhhWJVrADpGfclmU1ZFwwja+twYTuoYBm1KA4KLo48dIRk6yBP2ZxWi\n4e5hYNjcaLnYqyd1Mt+3YETqgWOdTk51uEnpeAy1pwDhfTYrmY6n9Af94B0UZfPS6T7c+n24/opg\n4IsplEUQhvrVCIN2KyQunOOSEG4CSDO49hjceQ4vjuLaIwc8h2JSMJvMmm6sVeVIEm3CS7XQAWH8\nRFwoyLcS4ctEQYQ4eyuNWNcvICa4wy816CVhvENMekvrb6PeFjggLAdoiUV97qaYIBj3i8XleR84\nVj6Fdx/lDpyzeF5jJDpGQLqf21YobkxLTxYXyWnEgINGq/RKlromqRmuF67uNaxW1k5XrOop1J6e\noh5IV8xKkiQJyVat50CKeYIXPg5XHoE0j15CFIOqaL3K8Kr3195E53Mx3xaBq4/Cy59Eq6q5Z23J\nkzQJoqTznE1d38Oo8xBto+2Y/1691IX8SueHm3/R9XnDPGVcVN0cQnxJp3zbQ5DOb9j5EzrgPiwc\nt3CUcY544IUB7u3JTOpHzzXXk0Uj0BGAMK5gZ5DObcWCMghhkFmehBXOagNUG7xKlV407O0V02rh\nWKzxIvVayd1pLhR8CdMRDLa73oGv5uGk+r05rivK+fCqQ09pGryIyV73nkoc99Ceo2i1Ioibt7Fe\nFS5PwgI/dZgqfA/hv14a1myYf7fz/+p9271QxvvuQ8D8J5mLwWFs4i0s/ZVMJ4z7iAlDZNk/xGVe\nQ8dmt58aZb6v8+TYGB8aw734PppV9OL0D85JNHBxFlIJ3TOVsD7yIEvCSmcSZkpNnUNVGWYJiQux\n8XqpTIAsCeWaVzKfu6iZAjsNS3q2DWmXdnzKH3xf+tIln9vdgZgH+uN3I1Etvfr5+IdWXRdfSRLX\nc5B6YFto4zBPwtTkEqf2lpDg76Uu5g7m60/XQhpGUIfzdwYZe5PywG/ViEQs3/UQ5t1Ta3Ffmm/Y\nwFMwUTDuNyYMh7AupASrQ0qLZdoeQvPePI2GJTmvDbNOCKQOW0g0REXpGeRJFIuQZ3AyD1dt50lj\n8IJo0JmryImQZckBA5v3smbAWkccXBq8hdFuqxFu/g40Seb61eyThWOt810CxSx4Er2tjihA6AWV\n9/NYvyCWqqHrat22xAn9OF9SmrimvXkSpttWdP5dRIG90kuZlr713Uq3vRLWxpgUYQqRpb9Z6y+i\n/WDQCR8teIdHwUTBOA+cqjCIyKtE5JdE5AMi8n4R+da4/7qIvF1EPiwivygiV0+zHpty1HyDLJZZ\neBLshiHmLkdjmOojEnINlSpXhxnC3GuoXyLSJJF3+uncQEaPYlZVXO1lzVNzEo2kSHhSrstnqQuD\nzDpP3o7+Vp9iVoSnYefCE7tzcPNVsPtCGLPgknkvo/olcnC7LQCLryQJ+Yc7z8GNV+KSJN4riEAx\nK0jTlDRLO6KmCr081Dt1EvIycS2HLJl7C9f6YfxCsvD9beVhbqai1NZ3SuflRJiWym70Furfpv2b\nNWJ9SDipkwta+rfTzT8ZxnnitHsllcC3q+r7RGQb+HUReTvwTcA7VPX7ROSvAt8JfMcp12Uj2v/Q\n13U/DQVaT4kQ59jR7qA3IOwIT/iK4pEwJbQTRBV8KLc7Lrm+nbFVJexPqo5s13UpSmWQO7azFCg7\nU2BX6nlsJ+fOpGzi8l4rVB3D/vqfWq8OSVwQhVlSBgPoBHoZxSs+E3329+L4hashN1AVUOWb9UpK\nM0jiQIPZGPZfhuuvwF17OHRRzTPSLA1J6Mqzc32Hfj+l10vp9YJXsDXMGPZSBnlKL0vIo7cwzB3D\nzDHIHDeHGYmAR8iTpAmnbWUpV/sZo1lFmkg3tBZfQOOJ1WK7LOxX/y0sCyEtho/afxoWPjIuEqcq\nDKr6LPBs3N4TkQ8BrwK+FngyFnsb8DTnRBjWcdjI6KZMWxygGRVdb7dHQYPEheZD3/uX90uub2X4\nOIK3eZqNIqEKk1nF9iCNK7YpXsOgr2kVpoK40kvjVNxKPw4A62cJZVztrfRhtDBAVTmqyjEcZgyH\nV/FxGu2XXthjUjdq5xpF+nnoix+HFz4WBCIfQNabJ5Rr1M9DSkkcDe0rGO+GV9aHxz4LN9wKYxWy\ntOmFBHD94WskSXtCPcjzhEEvI6un4M4TEqFZAjRPhKv9hGEWksa9NGlyDk7g5lbOpAh1FAlrWng/\nXyuiNspOWivPsRhC6hr9daLQ/vPobiwXBcM4b5zZOAYReRx4HfCrwKOqeguCeIjII2dVj6MgcrQ5\nlTrlW1pAa39tSBqngrndEMJ4hZdHM65v5+jeLCziI3PnQx1hfYWZ5/owQ0dhrEKqjlKVSVkxSFOu\n99M4diEs47k/82z3M9D5WgoA3idUVZhIbzot2R+V9HuOLE+YjEPX0WAVB+w89lquXhtQ7O9x6wMf\nZHb7uYUpMWJD6kRzVUI5C97C4Ao88sdgsB2mwYgjnZ1zFNOCrJdx5do2/UH4k+z1wloOWZawPczp\nZWFNhq1+ihNhkIXkdJ4K1wYp1/oZk7IKa0XH5HzuHDe2cqYxZ7AzSHn1jUHIMwAvjwq8zteobsYr\ntARjMeTU/jtY5yks/ftYIQrmLRjnjTMRhhhG+kng26LnsGhZV/ZHfOtb3txsP/HkUzzx5FOnUcWV\n1P9oF8NKEAfBdaNFnRCSxp0SjY/Gc1y8Qj06tz1Nm7gwLuHOqODGdk4yKtiL02LX9REJI5anhefG\nVk7iHLvToumFA+Fp+ko/aeLvvcRzd1qyPcjIs4TdcXwaTyucEBfKyUjTBO89O1eGTEYFs2lBmqVc\nu7FNf5Cxe2dMf7DFjc//Il549iWq0T6DXsq1R67hy5IXPvYJylmJpBmS95H+kCTvkSQh9FOLgWqY\n0huBaw9dYXunT54nZJlrBghuDXO2B1kQhEEWexU5rvQcW3F21Ud3craiNzTMUvpJWDd6K0vDwj1l\n6HaaJsKVQcoLuzPGRcWNrZwrgyyIRvztao+hDinVQtEWh/r3XxSFA6GjhQ8HvAkTA+MEeeZdT/PM\nu54+sevJuj7iJ3IDkRT4f4F/rap/J+77EPCUqt4SkceAd6rq5y45V8fF6dZvU1Z9TR3vQedvqgtl\ndL7fN/F/7fTinC/RSTM53rWt0HXyziiss9CMYI5hJEUZZAn7s5KXRgXTOG/RtPJMyopJ6RkVntHM\nsz+rGM3CCme9RHh+b8b+pOT27pRpUeGcYzot4sI8MB4XVGXF7t0xDz28zYvP3Y1rNwiv+rSbfOwP\nnkfE8cpXX2f3zpi8l1KVnhefvxvWkEgTtq8OwoJA+1Oq0uM1DGTLehnD7QGDYR4FISFNJZ7n2B5m\n9POUQZ5wZZiTxO6m23nCVu7Y6Tmu9TOcSBzH4ejHvMJOL+VqFJLxtKKswiSEr745YDSrGE0r8tQx\n7IVeTuMmzBSS+W1PoeMxtENJcMBTMFEwzguDTFDVY/+lnYXH8I+BD9aiEPk54BuB7wW+AfjZM6jH\nPbEsrASrQ0sHytehpTqUFL0I3zq7jmPXiWnvlRf3plwb5uSp4/b+rJkbSAnr4FQe9qdhfYLHrjie\n35s1s7Bq0q2Xogwzx41BxiBLqB5Wfuu5ffZGBd4rvV4aekhNw+yr/X4KpPT6KXmekg/6KDOqqsQl\njqr03Hxki/H+jJdv7yMIj3/WI7z04i4oPPop1yiLiixLGQxybr+0T9bL6PWDGKSpI8uClwBBSLYG\nGS6ORbgyzJt1F/pp8BIGmePhrYydXsq0DGsq5NFLyJ3joa2cYZ7y8E6OiLDTD9/B83en7E1Khr2U\nSRHWtSgrJctD76bKazMlxrLw0QGvYJUoLPxTNFEwLiKn6jGIyJcBzwDvZ27Pvgv498CPA68GPgq8\nUVVfXnL+ufEY2hzqPXTfmnMWPYf2am31+T72Mqq9hnrpzmGeMMgTbu/PGM98mDk1zpoalu/U0EU1\nc4xnFXcnJbPKM6kqZj54D9PKkzvHtFQ+sTvl5jDDK/ybDzwHAjevDri9O2E8KXnsah8P3Lo7ZTwt\nKcsqzrEUxjs4J0wmBVmaMJkUzKYhebx9pc9ob0aaOYZbOdNpRZI48jyhLH0nsZymYfyBADvDjF4W\nPIQ0caRJCOkM8+Al9FPh+jDlSh7mXKp7COWJo+cSrvRTrvSzsMRp6nh4p8cnX54gAq+41mc0DSIy\nzBNmVVidLnHCVi9hVnoqpdP7aJ53iGIdVLthk+6oi5goGGfFvXoMpx5KuhfOqzDULPvqFsWhvblO\nHNrHV4lDlgg7/ZRZ6bm9X1BUc3GoBUJV6edhQNndccHutGTqK2aVj1NBCHenJfuzimGWIAK/8Yd3\n+OgLI65u97i7P+WVV/t8/quvMswSPvrSmF/5vRcp4hTXqQh3R7NOnetENsw9JZFuErceRBbWehby\nmC/I0pBUHvRS8nS+bGgvkeghCDeHGVf7YcqQ8D0k9GI3re085fGbQ3qp46W9gmnpGeYJD+3kvLRf\nUHnlyiCllyZxXiqhlzn2JhWJg+34fVaxl9K6Ec1NPmmNKFiC2TgPXIRQ0qVlba+lussRrd5HMTF9\nYKxDOxev9eyr85BSmDI1TOXw0n7BME947Fqf3XHJnbjGc03lYVYG5+xKP2Wnn3JnUnBnUuBEKFUZ\nZGFd5Tw+lT/+8JBZ5Xn25Qmvvj7g8Ue2+be/d5teKnzJ49d5/KFtPvrCHq/71Gs8fnPIOz94i0Ev\n5eMvTxovIKwEF7yKJAlhMOccWRbmgQ3lpEkm9/KUXhbEIXyXQuZgEMXh+iDlxjBlO0/Dsp1eyZ3Q\nT1NyF8JKV/opr7w2IHWO3XHBY9f63B0VcW2KMGFevUjRMA9ThtSjx3f6YSDe/Lc5XBQOG6NgomBc\nFsxjOCHWeg/hQ/vtgPfQ3tfMfLrgPYQyYVuAYS8hdY6744K9SRlWdYsFwyI94Y5pHAF9a2/C/qwM\nI3zrabdjF9fChyUxr/UzPnF3ykv7BeOi4o+/+gq//ok9PvLJXSbTksIr17Z7PPHZN/nw8yM+8NGX\neM2rrvNZjwz55Q89x9Ygg8Tx3O0xD13tszXIGU8Kbu9NuXmlz9Yga4xwnoRxCIPc0U+E7V7KVu7o\nJaHrq/ch3JO5kD/IEuFKnjVJ42npeexqnzuj4D3t9FNu7uTcujvh+jCn8hrHLwjbvYQ0EUazikTC\nyGmXCGXlm7ARtHIMsNRDaO02QTDOLeYxnBNWeQ9Ax4NY6j005QmT5UWpqJ9nPUISy/h4Ra/Eid5C\nnPzKIOXuuGR3XMZV3ZRK4jiGMoy3diIM8pSb/Yzb44K9WRkm5MvCSmX9OHvrds+Rp3l0VIRHtjI+\n5wse5dbuhI/dnrA9CMnfQea4utXj+Zf2eeHOiMIrb/j0G/zu7QkfvbXL9iCjlzlu3y3pZwnXtjK2\nYg5hK3cMs9DDqB8HpNW9tCrvSZP5/u08eA6DLKFSpSyVEo3zI4WRy0pY9KjyynYvDetc9FKczKcb\nSZlPL1Kp4ivtiEJ7cJv1ODIeZEwYTpBlYx5gIbwES8c8AE2IqR7z4LU2XHPfo1lmkrg0qMKdcUki\nMOylXB1mjKYld8clszhhXCXgfRjjMC6q0CuHEF+/mqeMC8/erGRUVnjVZuR0XbPrw5D8vbmd089D\nrL9S5dGdnEe2b7A7KvjD22M+8xU77PQTHt1OefzhLZ57acSNnZy7+zPe8Jk3eMXVPtcGWRSB+VrM\nPoaKMlfPfwQ7ecpOL/Se2u4lDPKU8azipb1ZMyFg+M6F7X4aRNIJ+9MwGeFL+wWzwrPVT0I+I3VM\nZtW9dUO1HkfGA4KFkk6Ro4aX6nPWJaiBZqwDOh8L4ZsQkzLIE/pxeoj9acX+tKTy4Un8hdGMu9OC\nXuK4MciZVZ40EbbylL1pye1JwU6WMK08d6YhL4GGNaTn947hKtXGOFZxvqYkTng3Lio+8PG77E9L\nPuPRbR6/OQTmA8jas8D20+Ad5IkLE/7FNbC9V3ppyKe8sDvl+lZOUXnGs6pZI7ufOq5v5dwezWLI\nR7g6qLukapxyO0wZUgsCLPQ2qmnlFeLHhY36owmCcb6xXkkXgGP3Xoo7a4GA+eC4WgzCseW5iCxx\n9LKwzsOk8IymJaNp1RhdgL1ZmIgvD5lXnhtN45O7MKs8NwchVv/8aMpWloLC3VkRaqfztaadxNXf\nCHa09nQScSSOZv2IPHFxzYiwal2aSNOzqe5h5XU+kd3DOz2cg9v7RRjR3E9InLA3CYPSnIOrgwxV\nbaa6GMZQUm2xN00qw2oPwfIIxkXCcgwXgGUhpsXwEiwPMS1OyFfP0ArBeAZxaE2x0bpX6ZViUuJj\nD52tXsqN7Zyi9IxmFZOZJ3ESn/aDcb7ez9mblUyKiqt5jvr5JK954hhkCXdmBZ+yM6CfOT52Z8wj\nWz16acLerGB3VnKjn9FL0868UF5DMnw+2lspSs+saPUIEiFNamMePIui8lzJ05hAD72ueqkwyMPk\ngE5gUoSFjrbjPEpVNZ8gr75W/Tusm86i/uq7G8tFwQTBuMyYMJwhiwKxaHCauZWY2yUN1ms+bkA0\nJq3DZ6fS8iLmouFVDoSaRrMQVkpdGEew3U9JnFCUyqysmMb3a2UepvKOdfCq3FDl+dEMGcP1fk7q\nHLNCmVXB4M9Kz8vjgl6aICohv7EkTl+vSFcb5k7MH5pxDLVQJHE48tVBFoQgrvnTSx0SE/dhWgyQ\nyqMarpcmsvT+K8NFCx8sXGQ8yFgo6T5y3BxEU25NHqLd3ZWFrq9BKEI5IcwjlMaVz9K4OE5ZaZim\nu1KKerruSplVVRAmgodxZ1rw/GhKP3WA8Mqd/vwJfcEwixB6EsVw0nzBnfD+3N1pU/9mWU8J02Qn\nTpjMwlrNw9zhffCI8tRRViGAtRgqaq4V/3ecXkZ1ecO4SFiO4RKwqUC0N9cJROd4e2wEc2GYX6ct\nFPMxFElCZxnNpF7tLRrsejS2KuxPC0ZFxVae0s8SNPamkpY34IRGTMJ4i7jtldL7sJQmcyM8nwI7\nrPk8yJLQe6lS+plrRnsvyx3AXAzC21wQWrstqWxcWkwYLiGHCkXY0X7rCsXC8WVTb7Sv2wiFHvzc\nLtO+XjDE2hhwWk/h82vREqRwrP203nQVbXkUMrfmnX0uhofq9Z/L6uD1Fr2C1u6FDUsmG5cbSz5f\nQlYlq2tWjomA+bgICeXqfEU7V6EyN/RyYH/8HG5E660jDp17xZ2LetZ4AEuM9PzpfS4Mi/s7RlpC\n4rnOpzTdTA/zChY+WKjIMA7HhOEcs8xgqS4Yt5YAxI/tKwRj3RYaWTDgHWMvBz0PQlJ7WT2Owirj\nKysMe6vaK43/qnLzj+YVGMZxMGG4YKzzJha7vwKd+fnaBlZbnsYyYdFF8VmMZB1YhO+Qeq95Ut/k\n6X6pYBxyzqr7GYaxHhOGC8ph4SY4KBRtW96c3zqv9ijmRxbKd3bJklJL6rnhgXWJ33VCsOr8xWsY\nhrE5JgwXnLXGbzEE1EkJ6OKuBeO/1PoeKgSbsKlYdA+tt/ImAoZxcpgwXGLaxnLVzK9tloWiDlwz\nFLyHSm1azITAMO4XJgwPCIuGdFny+DBj3CSkT8AoH3avA+VNCAzjzDBheEA5jqHt5CLO8L6GYZwt\nJgzGkTHjbhiXG3d4EcMwDONBwoTBMAzD6GDCYBiGYXQwYTAMwzA6mDAYhmEYHUwYDMMwjA4mDIZh\nGEYHEwbDMAyjgwmDYRiG0cGEwTAMw+hgwmAYhmF0OFVhEJF/JCK3ROQ3W/uui8jbReTDIvKLInL1\nNOtgGIZhHI3T9hh+CPjPFvZ9B/AOVf0c4JeA7zzlOpxbnnnX0/e7CqfGZW4bWPsuOpe9fffKqQqD\nqv4ycHth99cCb4vbbwO+7jTrcJ65zH+cl7ltYO276Fz29t0r9yPH8Iiq3gJQ1WeBR+5DHQzDMIwV\nnIfk80ksI2wYhmGcEKL3shzXJjcQ+TTgX6rqa+PnDwFPqeotEXkMeKeqfu6Kc000DMMwjoGqHntJ\nrbNYwU3orhL8c8A3At8LfAPws6tOvJeGGYZhGMfjVD0GEfkR4CngJnALeBPwM8BPAK8GPgq8UVVf\nPrVKGIZhGEfi1ENJhmEYxsXiviWfReRVIvJLIvIBEXm/iHxr3P9nROQ/iEglIq9fOOc7ReR3RORD\nIvKV96fmm7Gkfd8S939frP/7ROSnRORK65zL0L63iMhviMh7ReQXYh6pPufvxva9T0Red/9qfzir\n/j5bx/+yiHgRudHadyHat+a3e5OIfFxE3hNfX9U65yL/bX5r69i3xDa8X0S+p7X/Irev/v1+tPXb\nfURE3tM652jtU9X78gIeA14Xt7eBDwOvAT4H+CzC4LfXt8p/LvBeQl7kceB3iR7PeXytad9/Cri4\n/3uA/yNuf94lad92q8y3AN8ft/8k8K/i9pcAv3q/23Cc9sXPrwJ+AfgIcCPu++qL0r41v92bgG9f\nUv6y/Nt7Cng7kMZjD12m9i2U+ZvAdx+3fffNY1DVZ1X1fXF7D/gQ8Cmq+mFV/R26CWsIA+N+VFVL\nVf0D4HeAN5xlnY/Cmva9Q1V9LParBCMD8DVcjvbttYptAXVbvwb44Vj+3wFXReTRM6zykVjVvnj4\nbwN/ZeGUr+WCtO+Qti3r8HEp/u0B/z3wPapaxmMvxFMuS/vavBH4kbh95Padh3EMiMjjwOuAf7em\n2KcAH2t9/iMOfhnnkjXt+wvAz8ftS9M+EXmriPwh8OeAvxaLXYr2icjXAB9T1fcvFLuQ7Vvyt/k/\nxlDYD7bmMbuQbYMD7fts4AkR+VUReaeIfHEsdlnaV+/7j4FnVfX3464jt+++C4OIbAM/CXzbwtPm\npWBV+0TkfwEKVf3n961yJ8Cy9qnqd6vqpwL/jBBOurC02wdUwHcRQi4XniW/3d8HPkNVXwc8C/yt\n+1m/e2VJ+1Lguqp+KfA/E3pHXljW2M4/C9yTXbmvwiAiKaFh/0RVV45niPwRoYtrzavivnPLqvaJ\nyDcSYu5/rlX80rSvxY8A/0Xcvgzt+wxCjPY3ROQjhDa8R0Qe4YK1b9lvp6rPawxKAz/APNxwodoG\nK/82Pwb8NICq/hpQichNQls+tXX6RW0fIpIQ/s39WKv40X+/+5xE+WHg/1xx7J3AF7c+18nZHPh0\nznmCaFX7gK8CPgDcXNh/Wdr3ma3tbwF+PG63k89fyjlOzq5r38LxjxCeQC9c+1b8do+1tv8n4Efi\n9mX52/xm4K/H7c8GPnqZ2hf3fxVhNon2viO373427MsIrvn7YqXfExv1dQRlHwOfBP5165zvjI36\nEOcZRc8AAAGdSURBVPCV9/vHOUb7vpqQ+Plo/Pwe4O9fovZ9FeEp5v1x/88Cr2id83/H9v0GrR5n\n5/G1qn0LZX6f2CvpIrVvzW/3w8Bvxv0/Azx6yf42M+CfxL/PdwNPXqb2xWM/BHzzknOO1D4b4GYY\nhmF0uO/JZ8MwDON8YcJgGIZhdDBhMAzDMDqYMBiGYRgdTBgMwzCMDiYMhmEYRgcTBsMwDKODCYNh\nGIbRwYTBMFYgIp8WFzb5IRH5sIj8UxH5T0Tkl+PnPx4Xt/n21jnvF5FPXXddwzjvpPe7AoZxzvkM\n4L9U1Q+KyLuBP6uqXy4i/zlhptX3LpS3qQSMC495DIaxno+o6gfj9geAfxO3/wNhptVFli10YxgX\nChMGw1jPtLXtW589weMu6f476p9RvQzj1DBhMIz1HOYB/AHwxQAi8nrCtMaGcaExYTCM9eiK7frz\nTwE3ROT9wP9AWJjdMC40Nu22YRiG0cE8BsMwDKODCYNhGIbRwYTBMAzD6GDCYBiGYXQwYTAMwzA6\nmDAYhmEYHUwYDMMwjA4mDIZhGEaH/x9GXy/qHKeCSQAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f735a985630>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "thinkplot.Contour(brink, pcolor=True)\n", "thinkplot.Config(xlabel='mu', ylabel='sigma')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Extract the marginal distributions of `mu` from brink." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEPCAYAAABhkeIdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8HdWV4PHf0eZVXuRdqxfJ+4YBswVQgGCTEJwNGmf6\nA53Qk54mJE2S7g7J5DNYPZlOh540TMJkpjM4aUJIu9N00jGEEIcY0SQ22GC8y5ZsyZIleZEtL7Ks\nXWf+eKWnes9Pi6VXqrec7+fjD7fqVdU7VxLvvLq37r2iqhhjjDHRkuJ3AMYYYxKLJRZjjDFRZYnF\nGGNMVFliMcYYE1WWWIwxxkSVJRZjjDFR5XliEZG1InJIRMpF5KsRXs8QkU0iUiEi20Uk39mfJSJb\nRaRJRL4bds56EdkrIrtF5FURyfK6HsYYYwbH08QiIinAs8AaYAmwXkQWhh32CNCoqkXAM8BTzv5W\n4BvAV8Kumeocd7uqrgT2AY95VgljjDFXxes7ltVAhapWq2oHsAlYF3bMOuB5p/wScCeAql5W1W1A\nW9jx4vw3U0QEmADUexG8McaYq+d1YskBjru2a519EY9R1S7gfH9NW6raCTxK4E6lFlgEbIxizMYY\nY4YhFjvvpd8XRdKAPwdWqGoOgQTz9ZEIzBhjzMDSPL5+HZDv2s519rnVAnlAvdN/MkFVG/u55kpA\nVfWYs/0z4IqHAgBExCZCM8aYIVDVfr/k98frO5adQKGIFIhIBvAgsDnsmJeBh53y/cDWCNdxV7AO\nWCwiU5ztDwFlfQWgqgn778knn/Q9Bqub1c/ql3j/hsvTOxZV7RKRx4AtBJLYRlUtE5ESYKeqvkKg\nf+QFEakAzhJIPgCISBWQCWSIyDrgblU95Jz/loi0A9XAn3hZD2OMMYPndVMYqvoasCBs35Ouchvw\nQB/nzulj/w+AH0QxTGOMMVESi533ZpCKi4v9DsEziVw3sPrFu0Sv33BJNNrTYpWIaCLXzxhjvCAi\naAx33htjjEkynvexGDOQ1rYOfvf2IY7UnEYVFs6ZSfHq+Ywele53aMaYIbCmMOOrfeV1PP3j17nQ\n1BKyf8qkcTz+0F0snjfLp8iMSV7DbQqzxGJ88+6Bap7a+Bu6urojvp6elsrXP3cPyxfkjnBkxiQ3\n62Mxcanu9Hn+4Z9eDyaVSZljeWjdTfyne28gc9xoADo6u/j7H27hdGOTn6EaY66S3bGYEdfd3c1f\nf+fnVNWeAWB6ViZ/84X7mJaVCcCJhgv8t+9tpvFCMwAL5szkf/zFOgKTWRtjvGZ3LCbuvPb7A8Gk\nkpaWyl8/siaYVABmTZvIX37mQ6Q4ieRw1UlKd5T7Eqsx5upZYjEjqrmljX/+1c7g9v1rrmVO7tQr\njlswZyYfu3NlcPsnL79Da1vHiMRojBkeSyxmRP3qzX1cbm0HYMaUCaz74Io+j/3k3avImjgOgPNN\nl/nttj7nGjXGxBBLLGbEtLZ18ErpvuD2A2uvJT09tc/jR49K55MfWhXc/uXW3bR3dHoaozFm+Cyx\nmBFTuqOc5pbAStMzp07g1muLBjznjhsXMHnCWADOXbzMtvePehqjMWb4LLGYEaGq/Pqt/cHtD9+2\njNTUgf/8MtLT+PBty4Lbr/3+gCfxGWOixxKLGREHj56g9tQ5AEZlpPPB1QsGOKPXnTcuDCahiurT\nVB5v8CRGY0x0WGIxI+KNHYeD5duvL2LsmIxBnzsxcww3r5wX8VrGmNjjeWIRkbUickhEykXkirXp\nRSRDRDaJSIWIbBeRfGd/lohsFZEmEflu2DnpIvKPInJYRA6KyMe9rocZuta2Dra9Xxncvpq7lR53\n3rgwWH7rvSN0dnZFJTZjTPR5mlhEJAV4FlgDLAHWi8jCsMMeARpVtQh4BnjK2d8KfAP4SoRL/1fg\nlKouUNXFwJtexG+i49391bS1B8ag5EyfRFHB9Ku+xtKibKZMCjx63NTcyq6y41GN0RgTPV7fsawG\nKlS1WlU7gE3AurBj1gHPO+WXgDsBVPWyqm4D2iJc97PAt3o2VLUx2oGb6Nm+p/du5dbrioY0NYuI\ncJvrKbLtu+3pMGNildeJJQdwf7WsdfZFPEZVu4DzIpLV1wVFZKJT/KaIvCci/yIi06IYs4mi9o5O\ndh2sCW7fuGLukK91k6uf5d391dYcZkyMisWFvgb6OpsG5AK/V9WviMiXgO8AD0U6eMOGDcFycXGx\nrVU9wnYfqg0OasyeNpHcGZOGfK25eVOZMmkcZ883c7m1nYNHT9iU+sZEQWlpKaWlpVG7nteJpQ7I\nd23nOvvcaoE8oF5EUoEJ/TVtqepZEWlW1V84u/6VQNNYRO7EYkbeO3urguUbV8wd1gzFIsINy+fw\n6n/sD17bEosxwxf+pbukpGRY1/O6KWwnUCgiBSKSATwIbA475mXgYad8P7A1wnXCP41eFpEPOuW7\ngINRitdEUWdnFzv3HQtu37B8zrCvuXpZ7zV27DuGLYtgTOzx9I5FVbtE5DFgC4EktlFVy0SkBNip\nqq8AG4EXRKQCOEsg+QAgIlVAJpAhIuuAu1X1EPCEc87TQAPwGS/rYYbm4NETwSlcpkwax7z84XeF\nLZ43i/FjR3HpchuNF5o5WtNA4RCeMjPGeMfzPhZVfQ1YELbvSVe5DXigj3MjfsVV1Rrg9iiGaTyw\nI+xuJRoLdaWmpnDd0tmUOoMkd+w7ZonFmBhjI++NZ/Yc6n0g8Lqls6N23dXLeq/1nuuJM2NMbLDE\nYjxxurGJ+oYLAKSnpbJo7syoXXv5/BxSUgJ/usfqznChqSVq1zbGDJ8lFuOJvYdrg+UlhdlkpEev\n1XXM6Azmz+5t/tpXHv6goTHGT5ZYjCd2H+pNLF48ErzCdc3dh216F2NiiSUWE3Xd3d3sK+9NLCsX\neptY9h6utceOjYkhllhM1FUeP8Oly4HHjCdljiV/Vp8z9AxZYf50xo4OTL1/9nxzsD/HGOM/Sywm\n6nYfdjeD5UTlMeNwqakpLC3KDm67n0AzxvjLEouJOveH/MqFeZ69z4oFvdfee9g68I2JFZZYTFS1\nd3RSXn06uL1sfvhk1tGzbEHvtfdV1NHV1e3ZexljBs8Si4mqIzUNwensZ02bSNbEcZ69V7br+q1t\nHVTXn/XsvYwxg2eJxUTVwaMnguVFc2d5+l4iwqJ5ve/hfm9jjH8ssZioKnN9uC8p9DaxACx2Ja8y\nSyzGxARLLCZqurq6Kas8GdxeXJjdz9HREXLHUnnSxrMYEwMssZioqao9Q1t7BxCYJn/a5PGev2f+\nrMmMHzsKgIuXWqg7fd7z9zTG9M8Si4mag5W9TVGL52V7Mn4lnIiE9OVYc5gx/rPEYqLm4BF3YvG+\nf6WHdeAbE1s8TywislZEDolIuYh8NcLrGSKySUQqRGS7iOQ7+7NEZKuINInId/u49mYR2et1HczA\nVJUy1x3LohFMLIvn9U7JX3b0ZD9HGmNGgqeJRURSgGeBNcASYL2ILAw77BGgUVWLgGeAp5z9rcA3\ngK/0ce2PAxe9iNtcvbrT54Pzg2WOG03ujEkj9t5zcqYGp+VvONdEQ2PTiL23MeZKXt+xrAYqVLVa\nVTuATcC6sGPWAc875ZeAOwFU9bKqbgPawi8qIuOALwHf9Cpwc3UqjvWOtl8we8aI9K/0SEtLDVmf\nxT3y3xgz8rxOLDmAe3bAWmdfxGNUtQs4LyIDTYf734H/CdjSgTHi8LHeJqii2TNG/P0XzO5tDiuv\nOjXi72+M6RW9Zf2ip9+vuiKyApinql8WkdkDHb9hw4Zgubi4mOLi4mEHaK5UHnbHMtKKQu5YLLEY\nczVKS0spLS2N2vW8Tix1QL5rO9fZ51YL5AH1IpIKTFDVxn6ueRNwrYhUAunAdBHZqqp3RDrYnViM\nN1rbOqhx5ukSoDB/2ojHML+gN5lV1p6hs7OLtLTUEY/DmHgU/qW7pKRkWNfzuilsJ1AoIgUikgE8\nCGwOO+Zl4GGnfD+wNcJ1gnclqvp/VTVXVecCHwAO95VUzMg4UnOanvHuebOyGOMswDWSJmaOYXpW\nJgCdnV0cq7MJKY3xi6eJxekzeQzYAhwANqlqmYiUiMi9zmEbgakiUgE8DjzRc76IVAHfAR4WkZoI\nT5SZGOBuBpvvQzNYD3ffzuFj1hxmjF8872NR1deABWH7nnSV24AH+jh3zgDXrgaWRyFMMwzlrg9x\n99NZI23B7Bn8YdcRACrsyTBjfGMj782wqGpIZ/l819NZI62ooDepVVgHvjG+scRihqXh3CUuNAWe\n+h4zOmNEB0aGm5MzldTUwJ/0yTMXg3EZY0aWJRYzLO4xI0X500d0YGS49PRU5uZODW5X1FhzmDF+\nsMRihiWkGWyOfx33wRhcHfgV1oFvjC8ssZhhCem4L/Cv4743ht7E4n5azRgzciyxmCHr6OiisvZM\ncNvPR42DMbjumipqTtuKksb4wBKLGbKqujN0dXUDMGvaRDLHjfY5Ipg2eTwTxo8BoKW1ndpTtqKk\nMSPNEosZMvdYkaIYaAaDwIqS7rnKyo/Z+izGjDRLLGbIjrieuirMj43EAlAYMp7F+lmMGWmWWMyQ\nVR7v7V+ZlzfyE0/2xX335I7RGDMyLLGYIWlt66Du1DkgMEPonNwp/gbk4h7Lcqz+LB0dXT5GY0zy\nscRihqSy9kxwRuPcWVmMykj3NR63zHGjmTFlAgBdXd3UnOhvFQZjTLRZYjFDcrSmIViOpWawHnNd\nMR093tDPkcaYaLPEYobE/WE9L29qP0f6w73Y2BGb2sWYEWWJxQxJpSuxxNITYT3mhdyxWAe+MSPJ\nEou5ai2t7dSfDgw8TBFhdk7sdNz3mOu6i6o50Uh7R6eP0RiTXDxPLCKyVkQOiUi5iHw1wusZIrJJ\nRCpEZLuI5Dv7s0Rkq4g0ich3XcePEZFXRKRMRPaJyN96XQcTKqTjfuZkMtI9Xy/uqo0bM4pZ0yYC\n0N3dTXW9LVVszEjxNLGISArwLLAGWAKsj7C88CNAo6oWAc8ATzn7W4FvAF+JcOm/V9VFwDXAB0Rk\njRfxm8hC+lfyY6/jvkdIB36NNYcZM1K8vmNZDVSoarWqdgCbgHVhx6wDnnfKLwF3AqjqZVXdBrS5\nD1bVFlV90yl3AruAXO+qYMK5E0thXuz1r/Rwd+Dbk2HGjByvE0sOcNy1Xevsi3iMqnYB50UkazAX\nF5FJwEeB3w0/VDNYla5HjefG4BNhPdwd+PZkmDEjJ/YaxwMDuQc+SCQV+CnwjKoe6+u4DRs2BMvF\nxcUUFxcPL7okd7mlnfqGCwCkpKTEZMd9j7m5UxFAgdqT52hr74ipgZzGxIrS0lJKS0ujdj2vE0sd\nkO/aznX2udUCeUC9kywmqOpghkr/ADisqt/r7yB3YjHDV1nbe7eSF6Md9z3GjM4ge/ok6k6fp1uV\nY3VnWTBnpt9hGRNzwr90l5SUDOt6XjeF7QQKRaRARDKAB4HNYce8DDzslO8Htka4TshdjIh8k0AC\n+lKU4zUDOBqjE0/2ZZ71sxgz4jxNLE6fyWPAFuAAsElVy0SkRETudQ7bCEwVkQrgceCJnvNFpAr4\nDvCwiNSIyEIRyQG+DiwWkfdFZJeIfNbLepheoSPu4yCx2EBJY0ac5+0YqvoasCBs35OuchvwQB/n\nzunjsjaw0ydHQ9Zgif3E4p4V4Kh14BszIuwD2gxac0sbJ89cBAId9/nZg3p4z1ezc6YE21FrT56j\nta3D13iMSQaWWMyguRfNyp+VFdMd9z1Gj0ond+ZkIPB0WFWtNYcZ4zVLLGbQYn1G477MczeHWQe+\nMZ6zxGIG7UhNbM9o3Bd3ErTEYoz3LLGYQatyjWFxL/8b60I78C2xGOM1SyxmUC5d7u24T01NoSA7\ndkfch5udM4UUCXTh158+T0tru88RGZPYLLGYQXEv7JU/K4v09FQfo7k6GelpIR34ldaBb4ynLLGY\nQQntX4n98SvhCq0D35gRY4nFDIr7W/7c3PhLLKEj8C2xGOMlSyxmUOJtxH24efm9DxtUWge+MZ6y\nxGIG1NTcyunGJiDQcZ8/K/ZH3IcryJ5CSkrgz72+4QKXW6wD3xivWGIxA3I3g83OnkJaWvx03PfI\nSE8LSYju6f+NMdFlicUMyL36YiyvcT8Q99gbm+nYGO9YYjEDcvdJxMNU+X0ptLVZjBkRlljMgOJt\nca++uGOvtMRijGc8TywislZEDolIuYh8NcLrGSKySUQqRGS7iOQ7+7NEZKuINInId8POWSUie51r\nPuN1HZLZxUstNJwLdNynpaWS5ww0jEcF2VNITQ38yZ9ouEBzS5vPERmTmDxNLCKSAjwLrAGWAOtF\nZGHYYY8AjapaBDwDPOXsbwW+AXwlwqX/D/CIqs4H5ovIGi/iN6F3KwWzsuKy475HenoqeTNdHfjW\nz2KMJ7y+Y1kNVKhqtap2AJuAdWHHrAOed8ovAXcCqOplVd0GhHytFJGZQKaq7nR2/Rj4mEfxJz13\nX0Q8zWjcF+tnMcZ7XieWHOC4a7vW2RfxGFXtAs6LSH8DJXKc6/R3TRMl7r4I9yDDeOXuZzliAyWN\n8UQsdt7LwIeYkXIkZMR9/N+xuBNLlY1lMcYTXq8tWwfku7ZznX1utUAeUC8iqcAEVW0c4Jp5A1wz\naMOGDcFycXExxcXFg4nbAOebLnP2fDMA6Wmp5M6I3477HvmzskhNTaGrq5uTZy5y6XIb48eO8jss\nY3xVWlpKaWlp1K7ndWLZCRSKSAFwAngQWB92zMvAw8A7wP3A1gjXCd7FqOpJEbkgIqud6z8EfDfC\nOUBoYjFXx70o1pzcqcEnquJZenoqBdlTgk18lccbWL4g1+eojPFX+JfukpKSYV3P008Kp8/kMWAL\ncADYpKplIlIiIvc6h20EpopIBfA48ETP+SJSBXwHeFhEalxPlH3eOa+cwMMBr3lZj2QV2nEfv+NX\nwrmXKrZ+FmOiz+s7FpwP/QVh+550lduAB/o4d04f+98DlkUxTBOB+3HceJwqvy/z8qbxW8oAW/TL\nGC/0e8ciIvc7/434AW8SW6LMERYuZG0WVx2NMdExUFPY15z//pvXgZjY0nihmXMXLwPO0r4zJvkc\nUfT0dOADnG5soqm51eeIjEksAzWFnRWRLcAcEdkc/qKq3udNWMZv7v6VuXlTg2uZJIK0tFRmZ08J\n1rGy9gwrrAPfmKgZKLF8BFgFvECgE90kCXdiieeJJ/syL39asI5HaxossRgTRf0mFlVtB94WkZtV\n1R6fSSKVNYkxo3FfrJ/FGO8M9qmwAhH5AVDgPkdVl3sSlfGVqnLkeGJ23PcISSw2GaUxUTXYxPIi\n8FfAPqDbu3BMLDh7vpkLTS0AjMpIJ2d64nTc98ibOZm0tFQ6O7toOBfowM8cN9rvsIxJCIPtkW1Q\n1c2qWuXMVFytqtWeRmZ8E9q/MhWRxJu+racDv4fNdGxM9Aw2sTwpIs+JyHoR+UTPP08jM76pTPCO\n+x4207Ex3hhsU9hngIVAOr1NYQr83IugjL8SbQ2WvszLnwp/CJRtqWJjomewieV6VV0w8GEm3qlq\nyLf3uXnxvwZLX0I78C2xGBMtg20K2yYiiz2NxMSEhnOXgiPRx47OYNa0iT5H5J3cGZNJd5ZaPnPu\nUvCBBWPM8Aw2sdwI7BaRwyKyV0T2icheLwMz/jgadreSiB33PdLSUpmdYx34xkTbYJvC1noahYkZ\n7sGCidxx32Ne3jQqqgN1Pnq8gVWL8wc4wxgzkH4Ti4iMBv4LUEhgDMtGVe0cicCMPypCZjRO3I77\nHqEj8O2OxZhoGKgp7HngOgJJ5R5svrCE1t3dHdJxP78gCRKLK3lWVJ9GVX2MxpjEMFBiWayqf6yq\n/wh8Crj1at9ARNaKyCERKReRr0Z4PUNENolIhYhsF5F812tfc/aXicjdrv1fEpH9Tn/PiyKScbVx\nmSvVnjpPa1sHAJMyxzJ18nifI/Je3sxJjB6VDsD5psucOXfJ54iMiX8DJZaOnsJQmsBEJAV4FlgD\nLAHWu5YX7vEI0KiqRcAzwFPOuYsJrCy5iMDd0vclIBv4ArDKmassDXjwamMzV6qoPhUsFxVMT+iO\n+x4pKSkhyy6XV9uElMYM10CJZYWIXHT+NQHLe8oicnEQ119NYE36alXtADYB68KOWUegyQ3gJeAO\np3wfsElVO1X1GFDhXA8gFRgnImnAWKB+ELGYAVS4PlSLZid+M1iP+QUzguUjlliMGbZ+E4uqpqrq\nBOdfpqqmucoTBnH9HOC4a7vW2RfxGFXtAi6ISFaEc+uAHFWtJ9DXU+PsO6+qrw8iFjOA8mO9H6ru\nD9tEVzS7t67lrrs2Y8zQxOKygP22v4jIJAJ3OQVANjBeRD49EoElsta2DmrqzwKBX0AyPGrco8j1\nkMLRmgY6O7t8jMaY+DfYcSxDVQe4BwbkOvvcaoE8oF5EUoEJqtooInXO/vBz7wIqVbURQER+DtwM\n/DRSABs2bAiWi4uLKS4uHkZ1EtfR4w30PA+VM2MyY8ckz/MQkycEHlQ4c+4SHZ1d1JxoZG4SJVZj\nSktLKS0tjdr1vE4sO4FCESkAThDoZF8fdszLwMPAO8D9wFZn/2bgRRF5mkCzWCGwg8Dklzc6Y2za\ngDud94nInVhM35K1f6VHUcGM4BNh5cdOW2IxSSX8S3dJScmwrudpU5jTZ/IYsAU4QKAzvkxESkTk\nXuewjcBUEakAHgeecM49CPwMOAi8CjyqATsIdPK/D+wh0HLzAy/rkQzciSWZ+ld6zHcl0wpbqtiY\nYfH6jgVVfQ1YELbvSVe5jcBjxZHO/RbwrQj7S4DhpVQTIvxR42TjTqYVx6wD35jhiMXOezPCGi80\nc/Z8MwAZ6Wnkz8ryOaKRNzdvKikpgf8d6k6fp7mlzeeIjIlfllhMSDPYvLxppKYm359FRnoaBdm9\nCdVWlDRm6JLvE8Rcwd30k4zNYD3czWHl1hxmzJBZYjEhndXJ+ERYD3dSrThmHfjGDJUlliTX1dVN\nRbV7RuPkeyKsx/w5oSPwbaZjY4bGEkuSq64/S1t7YK7RKZPGJcWMxn3JnjaRcWNGAdDU3MrJM4OZ\nDs8YE84SS5IrqzwZLC+cO8vHSPwnIixw3bUccv1sjDGDZ4klyYUkljnJ2wzWY+HcmcHywaMnfIzE\nmPhliSWJqSqHKns/PBcl+R0LhP4MDlfZHYsxQ2GJJYk1nLvEuYuXARg9Kj1kHEeyKszvHcdTd/o8\nF5pafI7ImPhjiSWJlbmaehbMnhEceZ7MMtLTQpYMOGzjWYy5avZJksQOVbk77mf2c2RyWeT6WZRZ\nP4sxV80SSxJzd9xb/0ov99Nxh6yfxZirZoklSV263EbtiUYAUkSSeiqXcO6n444eb6C9o9PHaIyJ\nP5ZYktThqpPBFSPn5E5l9Kh0X+OJJRPGjyFn+iSgZ2YCm97FmKthiSVJHa7q7ZS2/pUruX8mZTZQ\n0pir4nliEZG1InJIRMpF5KsRXs8QkU0iUiEi20Uk3/Xa15z9ZSJyt2v/RBH5V2f/ARG5wet6JJoy\n1/gVSyxXsvEsxgydp4lFRFKAZ4E1wBJgvYgsDDvsEaBRVYuAZ4CnnHMXE1hZchFwD/B9ERHnnP8F\nvKqqi4AVQJmX9Ug0nZ1dIc07C+dYYgnnTraHKk/ahJTGXAWv71hWAxWqWq2qHcAmYF3YMeuA553y\nS8AdTvk+YJOqdqrqMaACWC0iE4BbVfVHAM7rNlvgVTh6vIGOzi4ApmdlkjVxnM8RxZ6ZUycwMXMM\nAJdb26lxHnQwxgzM68SSAxx3bdc6+yIeo6pdwAURyYpwbp2zbw5wRkR+JCK7ROQHIjLGqwokov1H\n6oPlRfPsMeNIRIRFc2zeMGOGIs3vACKQAV5PA1YBn1fVd0XkGeAJ4MlIB2/YsCFYLi4upri4ODpR\nxrH95b2JZVlReJ43PRYXZvP23ioA9pfXcc+tS32OyBhvlJaWUlpaGrXreZ1Y6oB813aus8+tFsgD\n6kUkFZigqo0iUufsDz+3Fjiuqu86+18CrngooIc7sZhA/4p70N+Somwfo4ltS11Jd/+RelSV3m4+\nYxJH+JfukpKSYV3P66awnUChiBSISAbwILA57JiXgYed8v3AVqe8GXjQeWpsDlAI7FDVU8BxEZnv\nHHcncNDLSiSSIzW9A/6mZ2UyPSvT54hiV/6syUwYH2hlvXS5zfpZjBkkTxOL02fyGLAFOECgM75M\nREpE5F7nsI3AVBGpAB4n0KyFqh4EfkYgabwKPKq9j+Z8EXhRRHYTeCrsb72sRyLZV9F7w7jUmsH6\nJSIsKey9o9t7OPxm2xgTied9LKr6GrAgbN+TrnIbgceKI537LeBbEfbvAa6PbqTJYX9IYrFmsIEs\nK8pm++6jABw4Us9HP7jc54iMiX028j6JdHR0hYy4t8QysKXze+/qDhypp7u728dojIkPlliSSHn1\nqeD4lVnTJjJl0nifI4p92dMmMnnCWCAwnqWq9qzPERkT+yyxJJF91gx21UQkpC/K/TM0xkRmiSWJ\n7DlUGyxbx/3gLZvv7sCv7edIYwxYYkkazS1tVDjL7AqwYkGuvwHFkeXze39WB4+esPVZjBmAJZYk\nsfdwXXD9lbl508gcN9rXeOLJtKzM4PosHZ1dNr2LMQOwxJIk9hzunXbtmkV5/RxpIlnp+pntLjve\nz5HGGEssSUBV2V3W2zewYqEllqvlbjrcfcgSizH9scSSBE40XKDhXBMAozLSmW/r21+1JYXZpKYG\n/nc5fvIcZ89f8jkiY2KXJZYksMf1JNPy+TmkpaX6GE18Gj0qncWuJQbcT9gZY0JZYkkC7x/sbbpZ\nsdCeBhsqd3PY+9YcZkyfLLEkuPaOTvaW9367Xmn9K0Pmfuhhz6FaurpsehdjIrHEkuD2ltcFp3HJ\nnTGZWdMm+hxR/CrInhJcxrm5pS1kXRtjTC9LLAnu3f3HguVrl+T3faAZkIhw3dKC4Pa7+6t9jMaY\n2GWJJYGpasiH33VLZ/sXTIK43vUz3OlK2saYXpZYEljl8TOcu3gZgPFjR7Fg9gyfI4p/S4uyGZWR\nDgQe464KCZF/AAAUBElEQVQ7fd7niIyJPZ4nFhFZKyKHRKRcRK5Ym95ZeniTiFSIyHYRyXe99jVn\nf5mI3B12XoqI7BKR8KWOjePdA713K9csyg+OwzBDl5GexkrXk3U79x3zLxhjYpSnnzQikgI8C6wB\nlgDrRWRh2GGPAI2qWgQ8AzzlnLuYwMqSi4B7gO+LiLjO+wtsrft+uROLu2/ADM91S6yfxZj+eP0V\ndjVQoarVqtoBbALWhR2zDnjeKb8E3OGU7wM2qWqnqh4DKpzrISK5wIeB57wNP36dbmyi8ngDACkp\nKTY/WBRdu6SAnm84hypPcKGpxdd4jIk1XieWHMA9kqzW2RfxGFXtAi6ISFaEc+tc5z4N/BUEJ+w1\nYbbvrgyWVyzIYdyYUT5Gk1gmZo5h/pyZQOAP8J29Vf4GZEyMSfM7gAik3xdFPgKcVtXdIlI80PEb\nNmwIlouLiykuLh5+hHFg++6jwfJNK+f6GEliunnlXA4741i2767k7lsW+xyRMUNXWlpKaWlp1K7n\ndWKpA9yDJ3KdfW61QB5QLyKpwARVbRSROmd/+LnrgI+KyD3AGCBTRH6sqg9FCsCdWJJFQ2MTFdWn\ngUAz2Oplc3yOKPHctHIuP/rFNgD2V9RxoamFiZljfI7KmKEJ/9JdUlIyrOt53RS2EygUkQIRyQAe\nBMKf4noZeNgp3w9sdcqbgQedp8bmAIXADlX9uqrmq+pc53pb+0oqyertPb1NM8vn59iiXh6YMmk8\nC5zmsG5Vaw4zxsXTxOL0mTwGbAEOEOiMLxOREhG51zlsIzBVRCqAx4EnnHMPAj8j8OTXq8Cjqmp9\nKoOwzZrBRsTNrp+tu0/LmGQnifxZLSJJl4vOnLvEn234CQApImz85kNMGG9NNF44e/4Sn3uy92f9\n3H9/yJrDTEIQEVS13/7r/tiIuQTz5rvlwfKy+TmWVDwU3hxmdy3GBFhiSSCqyps7ehNL8er5PkaT\nHG67tihYfmPHYR8jMSZ2WGJJIEdrGoJzV43KSLenwUbALavmBafKOVJzmuMnz/kckTH+s8SSQEp3\n9t6t3LRyLqNHpfsYTXLIHDea611TvLxpdy3GWGJJFJ2dXbz1XkVwu/h6awYbKcU3LAiWS3eW091t\nK0ua5GaJJUG8d7CGS5fbAJgyaRxLi7J9jih5XLMwL/iQxLmLl9lbHj4G2JjkYoklQWz5Q+9Ez8XX\nLyB0ImjjpbS01JBO/N9uK/MxGmP8Z4klAZxouMDuQ4H5OgW46+ZF/gaUhO64sXc1iB17q2i80Oxj\nNMb4yxJLAnDfraxaXMD0rEwfo0lOBdlZLJ43CwiMadmyzZYKMsnLEkuca+/o5HdvHwpur/mAzbLr\nl7W3Lg2WX99WRmdnl4/RGOMfSyxx7g+7jtLcEui0n56VaQt6+eiGZbOZlDkWCHTiv2PLFpskZYkl\njqkqm9/YE9z+0M2LSUmxX6lf0tJSQ/q3fvXmPh+jMcY/9ikUx94vO07NiUYAMtLT+JB12vtuzS2L\ngyPxD1edpOzoCZ8jMmbkWWKJY794/f1g+UM3L7J1V2JA1sRx3H5d7+DUX7y+28dojPGHJZY4VX7s\nFAedb8MpKSl8tHi5zxGZHh+7a2Vwvez3DlZTXX/W13iMGWmWWOKU+27lA6vmMc0eMY4ZOdMnccPy\n3glAf+76XRmTDDxPLCKyVkQOiUi5iHw1wusZIrJJRCpEZLuI5Lte+5qzv0xE7nb25YrIVhE5ICL7\nROSLXtch1hypPs0O1xNHH7vzGv+CMRF9/K7e38kf3jtisx6bpOJpYhGRFOBZYA2wBFgvIgvDDnsE\naFTVIuAZ4Cnn3MXAA8Ai4B7g+xKYp6QT+LKqLgFuAj4f4ZoJ7SevvBMs37RyHgXZWT5GYyIpLJjO\nyoWBR78V+Knrd2ZMovP6jmU1UKGq1araAWwC1oUdsw543im/BNzhlO8DNqlqp6oeAyqA1ap6UlV3\nA6jqJaAMyPG2GrFjz+Fa9jmTHKaIsP4j1/sckenLH3/0hmB5x75jHK466WM0xowcrxNLDnDctV3L\nlUkgeIyqdgEXRCQrwrl14eeKyGxgJZAUXwdVlRdf7q3qHTcuJGf6JB8jMv2ZkzuVW1YVBrd/8vI7\nqKqPERkzMtL8DiCCQU3LKyLjCdzh/IVz5xLRhg0bguXi4mKKi4uHGZ5/tr5ziKPHG4DAYLz711zr\nc0RmIOs/fD3bd1fS3d3NwaMneHtPFTetnOt3WMaEKC0tpbS0NGrX8zqx1AH5ru1cZ59bLZAH1ItI\nKjBBVRtFpM7Zf8W5IpJGIKm8oKq/7C8Ad2KJZ03Nrbywufdu5b7i5UydPN7HiMxgzJo2kTW3LObX\nb+0H4Ic//wMrF+YyZnSGz5EZ0yv8S3dJScmwrud1U9hOoFBECkQkA3gQ2Bx2zMvAw075fmCrU94M\nPOg8NTYHKAR2OK/9EDioqv/L0+hjyIuvvENTcysAUyeP55N3r/I5IjNY6z9yfXAhsMYLzfzLr9/1\nOSJjvOVpYnH6TB4DtgAHCHTGl4lIiYjc6xy2EZgqIhXA48ATzrkHgZ8BB4FXgUdVVUXkFuA/AXeI\nyPsisktE1npZD78dqjzJ667Foz77iVtsPfs4Mm7MKP7kYzcFt3/15j6qas/4GJEx3pJE7kwUEY33\n+rW0tvOVp17i1NmLAKxanM/XP3ePrRAZZ1SVDf/7ZfZX1AOQN3MyT/3lJ8lIj8VuTpPsRARVHfKH\njI28j3E//Pm2YFIZOzqDz91/qyWVOCQifO6B24KJ5PjJc7yw+W2fozLGG5ZYYti23UfZ+k7vIl7/\n+f4P2NQtcSxn+iQ+8/Gbg9uv/sd+dh2s8TEiY7xhiSVGVdef5dkXS4PbN18zj1uvLfIvIBMVH7p5\nEdcvnR3cfubHv6P+9Hn/AjLGA5ZYYlBTcyvffu43tLV3ADBjygT+7IHbrAksAYgIf/7g7UyeEFhp\nsrmljW8/95vgKqDGJAJLLDGmrb2Dpzb+JtivMiojna/+6VrGjx3lc2QmWiZmjuGJP11LWloqALWn\nzvEP//Q6nZ1dPkdmTHRYYokhnZ1d/P0PtwTXWQH44h9/0CaZTECFBdP5/Prbg9u7Dx3n6edfp6ur\n28eojIkOSywxoqOji6eff533y3qnR3to3U3cuMKm/0hUt103n0+5puV5e28V33vxDUsuJu7ZOJYY\ncLmlnW9vfC04xgHgU2uuZf2HbebiRKeq/NMvtvPKm3uD+65dXMCX/+QuGwRrfDPccSyWWHx26uxF\nvv3cb0KWr/1o8XIe/thN1lmfJFSVf/zZf/Bb1+wKhfnT+etH7mbKJJsPzow8Syz9iPXE8u6Bar77\nwtaQJ4I+fe9qPnHXNZZUkoyq8s+/2sm//XZXcN+E8WN4/KE7WbEg18fITDKyxNKPWE0sl1vaeeHl\nt9nyh4PBfampKfzZA7dy542LfIzM+O21tw7w3Etv0fNXK8BHbl/O+o9cb01jZsRYYulHrCUWVeUP\n7x/lx7/cztnzzcH9UyaN4y8/czfzZ8/wMToTK/ZX1PH087/jfNPl4L5pkzP5zCduZvWy2XY3azxn\niaUfsZJYVJXdh2r551/tCC7U1eP6pbN5dP3twWnVjQE433SZ7/3kDXYfOh6yf8GcmXz6I9ezpDDb\nEozxjCWWfvidWFpa29m+u5JX3twX0jkPkDluNH/6qQ9wyzXz7APCRKSqvLmznB/9YhuXLoeOzJ+X\nN42P3L6MG1fMYVSGNZGZ6LLE0g8/Ekt7Ryf7K+p5670K3t5TRXtHZ8jraWmp3Hv7Mj5+1zU2mt4M\nysVLLby0ZRev/f7AFWNcRmWkc9PKudx2XRFL5s0KjuY3ZjhiPrE4i3A9Q2Aw5kZV/XbY6xnAj4Fr\ngTPAH6lqjfPa14DPAp0E1rbfMphruq7teWLp6Oiiuv4sZZUn2XP4OPsr6umIMDVHRnoad920kPs+\nuMJmKDZDcvLMRf79d+/zxo7yiNO/jMpIZ2lhNisW5rJo7kzyZ2VZojFDEtOJRURSgHLgTqCewFLF\nD6rqIdcxfw4sU9VHReSPgI+r6oMishh4EbiewHr3rwNFBB6U6fearmtHLbF0dnZxqrGJulPnOdFw\ngbpT56iub6Sq7ky/I6XzZk6mePUC7rxxIZnjRkcllh6lpaUh61QnkkSuGwyvfheaWvjt9jLe3HGY\n+oYLfR6XlpbKnJwpzM6ZQvb0SWRPn8SsaROZkZXpecKx3198G25i8Xr5utVAhapWA4jIJmAd4E4C\n64AnnfJLwPec8n0EljLuBI45SxevJpBYBrpmCFWlq6ubzq5u2js6ae/ooqOzi/aOLlpa22luaeNy\nSzvNLe00twbKFy+1cr7pMo0XLnPuYjMXm1oYbIrKnjaRVYsLKF49n9k5UzzrQ0nkP+5ErhsMr34T\nM8fwqbtX8ckPXcPRmgbefLec9w7UBCcu7dHZ2UVF9Wkqqk+H7BdgQuYYJmWOJWviWCZmjmVy5hgy\nx49h7Oh0xozKYMzodMaOzmDsmAxGj0onIz2N9LRU0lJTSE9LJTW1/9mg7PeX3LxOLDmA+7GWWgLJ\nIeIxqtolIhdEJMvZv911XJ2zTwZxzaD1f/kcHR2dg04KQzFjygTm5U9jaWE2KxflMWPKBA/fzZgA\nEaGwYDqFBdN55JNwouECew7Vsq+ijqM1DTSca4p4nhK467nQ1HLFQyWDfm8Cd0TpaamkpwcSToqk\nkJoqiAg7/2M/5/72X5AUIUUC+1KCZUhJSQmWxflvf/UMfe/+v6i5D7/i3AG+4w32vd56t4K//cdf\n93+xJBaLC25H9et9eOf5UAkwZfJ4sqdNInv6RLKnTyJnxiTm5U2LehOXMUMxa9pEZk2byNpblwCB\n5HH0eAN1p85T3xBowq0/fT5kDNVQKdDRGbjzp/XK1y82t1J76tyw3ydW1Tdc4L2D1X6HEbO87mO5\nEdigqmud7ScAdXe2i8ivnWPeEZFU4ISqTg8/VkReI9BkJgNd03XtxH3kzRhjPBTLfSw7gUIRKQBO\nAA8C68OOeRl4GHgHuB/Y6uzfDLwoIk8TaAIrBHYQeBJsoGsCw/vBGGOMGRpPE4vTZ/IYsIXeR4PL\nRKQE2KmqrwAbgReczvmzBBIFqnpQRH4GHAQ6gEedR7wiXtPLehhjjBm8hB4gaYwxZuTF7QqSIpIr\nIltF5ICI7BORLzr7PyUi+0WkS0RWhZ3zNRGpEJEyEbnbn8gHJ0L9vuDsf8qJf7eI/JuITHCdkwj1\n+xsR2SMi74vIayIy03XOd5367RaRlf5F37++/jZdr39FRLqdpx979sVF3aDf392TIlIrIrucf2td\n58Tz3+YXXa99wanDPhH5O9f+eK5fz+9vk+t3VyUiu1znXF39VDUu/wEzgZVOeTxwGFgILCAwkHIr\nsMp1/CLgfQLNf7OBIzh3bLH4r5/63QWkOPv/DviWU16cIPUb7zrmC8D/ccofBn7llG8A3va7Dldb\nN2c7F3gNqAKynH33xEvdBvjdPQl8OcLxifL/XjGBJvg057WpiVS/sGP+J/CNodYvbu9YVPWkqu52\nypeAMiBHVQ+ragVXPra8DmfApaoeA3oGXMakfur3uqr2DPV/m8AHFbgGlMZ5/S65DhsH9NT1PgJT\n/6Cq7wATRSQm1xnoq27Oy08DfxV2yjripG4wYP0iPTCTEP/vAX8O/J0GBm2jqmecUxKlfm4PAD91\nylddv7hNLG4iMhtYSeDJsr6ED9bsGXAZ8/qp32eBV51ywtRPRL4pIjXAp4H/5hwWl/Vz101E7gOO\nq+q+sMPism4Q8W/z805z3nMiMtHZlyj1mw/cJiJvi8gbInKtc1ii1K9n363ASVWtdHZddf3iPrGI\nyHgCU8H8Rdi33YTQV/1E5L8CHar6z74FFwWR6qeq31DVfAJzxX3Bz/iGw103oAv4Or3TF8W9CL+7\n7wPzVHUlcBL4jp/xDVeE+qUBk1X1RuCvgX/1M77h6uezcz0wrM+VuE4sIpJG4Afzgqr+coDD64A8\n13ausy9m9VU/EfkTAn0On3YdnjD1c/kp8AmnHFf1i1C3eQTap/eISBWB+HeJyHTirG4Q+Xenqg3q\nNMoD/4/e5pKEqB+Bb+0/B1DVnQSGPkwhUJd81+nxWj8kMEj9E8C/uA6/+t+f3x1Jw+yE+jHwD328\n9gZwrWu7p3M7A5hDjHew9VU/YC1wAJgStj9R6lfoKn8B+JlTdnfe30jsd3D3+bfpvF5F4Ntv3NWt\nn9/dTFf5S8BPnXKi/G1+DihxyvOB6kSqn7N/LfBG2L6rrp/vFRzGD+YWAs0Lu51K73J+KB8j8M2i\nhcDI/F+7zvma80MpA+72uw5DqN89BDrOqp3tXcD3E6h+awl8i9rn7P8lMMt1zrNO/fbgeuIv1v71\nVbewYypxngqLp7oN8Lv7MbDX2f/vwIwE+9tMB15w/j7fBW5PpPo5r/0I+FyEc66qfjZA0hhjTFTF\ndR+LMcaY2GOJxRhjTFRZYjHGGBNVlliMMcZElSUWY4wxUWWJxRhjTFRZYjHGGBNVlliMMcZElSUW\nYzwiIgXOwkg/EpHDIvITEblTRH7vbF/vLI71Zdc5+0Qkv7/rGhPrPF3z3hjDPOCTqnpQRN4F1qvq\nB0TkowRmO34/7HibCsPEPbtjMcZbVap60CkfAH7nlPcTmO04XKSFsoyJK5ZYjPFWm6vc7druJtBi\n0Eno/4ejRyguYzxjicUYbw10B3IMuBZARFYRmJbcmLhmicUYb2kf5Z7tfwOyRGQf8ChweKQCM8Yr\nNm2+McaYqLI7FmOMMVFlicUYY0xUWWIxxhgTVZZYjDHGRJUlFmOMMVFlicUYY0xUWWIxxhgTVZZY\njDHGRNX/B5yQEGP4XnyYAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f735a6a87b8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pmf_mu1 = brink.Marginal(0)\n", "thinkplot.Pdf(pmf_mu1)\n", "thinkplot.Config(xlabel='mu', ylabel='Pmf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Extract the marginal distributions `sigma` from brink" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEPCAYAAACHuClZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0XWd57/Hvo8m2bHmUZ1meh3jIjENIQhQSSELShFIC\nSS8Q2nC7ytALt8AK9HKbeLWUNi0tpVzKLTWUUsCUQCEJkARIdCGJkziOYyce5dmSLFuW50Gyhuf+\ncfY52keWJdlH++xzjn6ftbz07q29t543UvToHfb7mrsjIiKSiaK4AxARkfynZCIiIhlTMhERkYwp\nmYiISMaUTEREJGNKJiIikrHIk4mZ3WZmW8xsm5k92Mvny8xslZnVmdlqM6sOzt9iZq+Y2XozW2Nm\nN4XueTZ45joze9XMKqOuh4iInF9JlA83syLgq8DNQCOwxsx+6u5bQpc9ABx29/lm9j7gEeBeoBm4\n092bzGwJ8BRQFbrvPndfF2X8IiIyMFG3TJYDde6+x93bgVXA3T2uuRv4dlB+lETiwd3Xu3tTUN4I\nDDez0tB96qITEckRUf9Cng7sCx3XB+d6vcbdO4GjZjY+fIGZvQd4NUhISd8Murg+P/hhi4jIhcjF\nv+4t7SDRxfVF4I9Cp3/f3S8DbgBuMLP3ZzE+ERHpIdIxE6ABqA4dVwXnwuqBGUCjmRUDo939MICZ\nVQE/Bj7g7ruTN7j7/uDjKTP7HonutP/o+cXNTAuPiYhcBHe3/q/qFnXLZA0wz8xmmlkZiYH1x3pc\n8zhwf1C+B3gGwMzGAk8AD7r7i8mLzazYzCYE5VLgTuCN8wXg7gX776GHHoo9BtVN9VP9Cu/fxYi0\nZeLunWb2ceBpEolrpbtvNrMVwBp3fwJYCXzHzOqAFhIJB+BjwFzgz83sIcCBdwCngafMrAQoBn4F\nfCPKeoiISN+i7ubC3Z8EFvY491Co3Aa8t5f7vgB84TyPvXowYxQRkczk4gC8DFBNTU3cIUSmkOsG\nql++K/T6XQy72P6xfGBmXsj1ExGJgpnhOTYALyIiQ4CSiYiIZEzJREREMqZkIiIiGVMyERGRjCmZ\niIhIxpRMREQkY0omIiKSMSUTERHJmJKJiIhkTMlEREQypmQiIiIZUzIREZGMKZmIiEjGlExERCRj\nSiYiIpIxJRMREcmYkomIiGRMyURERDKmZCIiIhlTMhERkYyVxB2ARMPdeW7tdn67djutZ9u54pIZ\n3H7DUoYPK407NBEpQObucccQGTPzQq7f+bg73/jhczz1/Ma083NnTOR/f+QOKkYOjykyEckHZoa7\n24Xco26uAvTUc5vOSSQAO/Y186V/+yVDMcGKSLSUTApMy9GTfOfxF1PHVy2eye/efDnJPzFe39bA\nU89tiic4ESlYGjMpMI89s4HWtnYApk8ay6f/8O2UlZbgwE9+/RoAP3jyFWqWL9D4iYgMGrVMCsip\nM238cvXm1PEH33UtZaWJvxfed/vVVI4bBcDxk2d48rlzu8FERC6WkkkB+c0rdbSdTbRKqiaP46rF\n1anPlZWW8HtvvzJ1/PPfvE5nZ1fWYxSRwqRkUkB+u3Z7qnz7DUsxS5+McdPyhYweNQKAlqOnWLtp\nb1bjE5HCpWRSIA4ePsHWXU0AFJlx7eVzzrmmtLSYm69ZmDr+1Qubz7lGRORiKJkUiJfW70qVL1tU\nxZiKEb1ed8tbFqfK67bs4/jJM5HHJiKFT8mkQKzb3N1ldc2ls8973ZTK0SyYNRmArq4uXgwlIRGR\ni6VkUgDazrazccf+1PEVl1T3cTVcf+W8VPn5ddv7uFJEZGCUTArAG3WNdHR0AjBjyrjUFODzCY+n\nbNrRxKkzbZHGJyKFL/JkYma3mdkWM9tmZg/28vkyM1tlZnVmttrMqoPzt5jZK2a23szWmNlNoXuu\nNLMNwTO/HHUdct0bdY2p8uWLZvR7/fgxI5ldVQkkuro2bG2ILDYRGRoiTSZmVgR8FbgVWALcZ2aL\nelz2AHDY3ecDXwYeCc43A3e6+2XAh4DvhO75Z+ABd18ALDCzW6OrRe7bFOriWjJ/2oDuCb+D8qqm\nCItIhqJumSwH6tx9j7u3A6uAu3tcczfw7aD8KHAzgLuvd/emoLwRGG5mpWY2Bahw9zXBPf8OvCvi\neuSs1rZ2dtYfSh0vmj1lQPeFx1XWbd6rxR9FJCNRJ5PpwL7QcX1wrtdr3L0TOGpm48MXmNl7gFeD\nhDQ9eE5fzxwytu0+QFdX4k32GVPGDXh5+QWzJjGqfBgAR46fZk9jS2Qxikjhy8WFHtNe2zazJcAX\ngbdfzMMefvjhVLmmpoaampoMQss9W4IXFQEumTt1wPcVFRVx2aIZPP9qYjbX2k17mTW9ctDjE5Hc\nV1tbS21tbUbPiDqZNADheapVwbmwemAG0GhmxcBodz8MYGZVwI+BD7j77tAzw6PMvT0zJZxMCtGO\nvc2p8oKZky/o3qsWV6eSybpN+9LW7hKRoaPnH9orVqy44GdE3c21BphnZjPNrAy4F3isxzWPA/cH\n5XuAZwDMbCzwBPCgu6c26AjGUY6Z2XJLLD71QeCn0VYjN7k7dXsPpo7nzZx0QfeHZ35t23MgtUik\niMiFijSZBGMgHweeBjYCq9x9s5mtMLM7g8tWApVmVgd8EvhscP5jwFzgz81snZm9amaVoc+tBLaR\nGOB/Msp65KqWo6c4diKxHMqwslKmTxpzQfePqRhB1eRxAHR2drFt98F+7hAR6V3kYybBL/qFPc49\nFCq3Ae/t5b4vAF84zzPXAssGN9L8U7en+5f/3BmVFBVd+N8GS+ZNo/7AEQA27mhk2YIhO5dBRDKg\nN+Dz2K7QlOB51RfWxZW0ODRov2n7/j6uFBE5PyWTPLa7oXs675yqi5uJtXhedzLZtvsA7e2dGccl\nIkOPkkke293Y3TKZOX3CRT1j/JiRTKkcDUB7Ryc79jX3c4eIyLmUTPLUiVOttBw9BUBJSTHTJ429\n6Gctntu9BMsb2xv7uFJEpHdKJnkq3MVVPXU8xcUX/61cEurq2rxD4yYicuGUTPJUOJnMmnZxXVxJ\ni+d1t0y27GpKLc8iIjJQSiZ5al/T4VS5eur4Pq7s38Rxoxg3uhxILBy5r+loRs8TkaFHySRP1R/o\n/oU/Y+q4jJ5lZqmtfAHq9hzI6HkiMvQomeQhd6cheNEQyGjwPWl+aCmWrbuUTETkwiiZ5KHjJ1s5\neTqx1e6wstJ+t+kdCLVMRCQTSiZ5qD7cKpk8lsR6l5mZO2MiRcFz6puOaF94EbkgSiZ5qCE0XlI1\nOfMuLoDhw0qpDmaFObB9r15eFJGBUzLJQ+ktk8wG38MWhrq6tu1WV5eIDJySSR6qbxrcwfekBbO6\nB+HrtBy9iFwAJZM8FG6ZVE0ZvJbJ/HDLZM8B3H3Qni0ihU3JJM+0trWn1uQqKipiarBI42CYNnEM\n5cPLgMTaX81HTg7as0WksCmZ5Jnw4PuUCRWUlBQP2rPNjLnVE1PHOzQILyIDpGSSZ6Lq4kqaNyOc\nTDRuIiIDo2SSZ9KnBQ9+MpkTbpnsO9THlSIi3ZRM8kxj87FUedogzuRKmhtqmWzfe1CD8CIyIEom\neeZAy/FUecogDr4nTRpfwajyYQCcbj1L06Hj/dwhIqJkklfcnaZQy2TKxDGD/jXMLK11srNeXV0i\n0j8lkzxy8nQbp1vPAokFHsdWjIjk68yr7n55UYPwIjIQSiZ5ZH+oVTJ5QsWgLPDYmzkzKlPlHfs0\nPVhE+qdkkkcOhMYvpkbQxZUU7ubase+QBuFFpF9KJnlk/6HQeEkEg+9JleNGMXpUogvtTOvZtBlk\nIiK9UTLJI+GZVVMqo2uZJAbhu7u6dupNeBHph5JJHklPJtG1TADmhgfhNW4iIv1QMskjTYeinRYc\nlj5uomQiIn1TMskTrW3tHDtxBoDi4iIqx46M9OvNTZvRdYiurq5Iv56I5DclkzwRbpVMHl9BUVG0\n37rxY0YytqIcgLaz7RqEF5E+KZnkif3NofGSiLu4IDEIH37fZKe6ukSkD0omeSLqNbl6Mye8rIpW\nEBaRPiiZ5Im0bq4J2UkmGoQXkYFSMskTzYe7t9CdlKVkMqcq1M1VrzfhReT8Ik8mZnabmW0xs21m\n9mAvny8zs1VmVmdmq82sOjg/3syeMbMTZvaVHvc8GzxznZm9amaVPZ9baJoPn0iVJ40flZWvOWHs\nyNSb8K1t7Wlrg4mIhEWaTMysCPgqcCuwBLjPzBb1uOwB4LC7zwe+DDwSnG8FPg986jyPv8/dr3D3\nK929oDv03Z2DoWQycXxFVr7uOW/Ca9xERM4j6pbJcqDO3fe4ezuwCri7xzV3A98Oyo8CNwO4+2l3\nfwFoO8+zh0wX3fGTrbR3dAJQPryMkSOGZe1rz6nSuImI9C/qX8jTgX2h4/rgXK/XuHsncNTMxg/g\n2d8Murg+PyiR5rBwF1fluOx0cSXNThs3UTIRkd7l4l/3A9mk4/fd/TLgBuAGM3t/xDHF6uCR7mSS\nrZlcSXOr06cHaxBeRHpTEvHzG4Dq0HFVcC6sHpgBNJpZMTDa3Q/39VB33x98PGVm3yPRnfYfvV37\n8MMPp8o1NTXU1NRcWA1yQHgm18QsDb6nvt64UYwqH5ba5bHp0PFI91IRkeyrra2ltrY2o2dEnUzW\nAPPMbCawH7gXuK/HNY8D9wMvAfcAz/TynFRrJUg4Y929xcxKgTuBX54vgHAyyVfp3VzZGXxPMjPm\nVE1kw7Z6IDFFWMlEpLD0/EN7xYoVF/yMSLu5gjGQjwNPAxuBVe6+2cxWmNmdwWUrgUozqwM+CXw2\neb+Z7QK+BNxvZnuDmWDDgKfM7DXgVRItm29EWY+4NafN5MpuywTSF33cpUF4EelF1C0T3P1JYGGP\ncw+Fym3Ae89z7+zzPPbqQQswD4SnBU/KcssEYHaPbXxFRHrKxQF46aH5SHjMJPvJJLysys76Zg3C\ni8g5lExy3KkzbZxpPQtAaUkxo0cNz3oMkydUUD68DICTp9vSkpuICCiZ5Lz0ZVQqMBvIzOnB1XM5\n+h3aE15EelAyyXEH0xZ4zH4XV1K4q2tXvcZNRCSdkkmOi/Pt9zAtqyIifVEyyXHNMSzw2Ju0XRe1\nHL2I9KBkkuOaY54WnDR14hhGBIPwx0+eoeXoqdhiEZHco2SS4w7GPC04ycyYPX1C6lhdXSISpmSS\n4+J++z0s/X0TDcKLSDclkxzW2tbOiVOtABQXFzF+zMhY40lLJmqZiEhIn8nEzO4JPp5vWROJUNqb\n7+NGxfKOSdjs8Lsm+/QmvIh0669l8rng44+iDkTOlSvTgpOmTxrLsLJSAI6dOMOR46djjkhEckV/\nCz22mNnTwGwze6znJ939rmjCEsidacFJZsbsqgls2dkEJFoncXe9iUhu6C+Z3AFcCXyHxFLwkkVp\nySTGacFhc2dMTCWTnfsO8aals+INSERyQp/JxN3PAi+a2VvcXSOuWRaeFjwpB1omoEF4EendQPcz\nmWlm/wLMDN/j7pdGEpUAuTUtOGl2VfogvIgIDDyZfBf4DPA60BVdOBKWa2MmAFWTx1JWWsLZ9g6O\nHD/NkeOnGTe6PO6wRCRmA33PpNndH3P3Xe6+J/kv0siGuPb2To4Gs6UMmJAjA91FRUVprRN1dYkI\nDDyZPGRm/2pm95nZu5P/Io1siDt09CTJtzjGjx1JSUlxrPGEzVFXl4j0MNBurj8AFgGldHdzOfDj\nKIKS3OziStLeJiLS00CTyZvcfWGkkUia5iO5Ny04ac4MtUxEJN1Au7leMLPFkUYiadJ2WMyxlknV\n5HGUBt1uLUdPcezEmZgjEpG4DTSZvBl4zcy2mtkGM3vdzDZEGdhQl4vTgpOKi4uYFVqOXisIi8hA\nu7luizQKOUcuj5lAYhvfuj0HgURX1xWXzIg5IhGJU5/JxMyGA38MzCPxjslKd+/IRmBDXfPh3NgU\n63zmVlfC84nyLo2biAx5/XVzfRu4mkQiuR2tz5UVnZ1dtBxNX34+18yp6p7RtWOfurlEhrr+urkW\nu/syADNbCbwcfUhy+NgpuoK9QsZUjKCsdKC9kdkzY8o4iouL6OzsovnICU6caqVi5PC4wxKRmPTX\nMmlPFtS9lT3pm2LlXhcXQElJMbOmdQ/Cb9+rri6Roay/ZHKZmR0P/p0ALk2Wzex4NgIcinJ98D1p\nXvWkVLluz4EYIxGRuPWZTNy92N1HB/8q3L0kVB6drSCHmoOhZDIpx6YFhy2cPTlVTs7sEpGhaaDv\nmUgW5U3LZGZ3y2Tb7gPaE15kCFMyyUG5Pi04adrEMYwcMQyAk6fbaDqknk+RoUrJJAelr8uVu91c\nZsb8mRo3ERElk5zj7nkxmytp/qxwMtG4ichQpWSSY46eOENHRycAI0cMo3xEWcwR9W3BzO5B+K27\n1DIRGaqUTHJMvgy+J4W7uXY3tnC2Xa8jiQxFkScTM7vNzLaY2TYze7CXz5eZ2SozqzOz1WZWHZwf\nb2bPBO+0fKXHPVcGqxdvM7MvR12HbMqXacFJFSOHM6UyMUu8s7OL3Q0tMUckInGINJmYWRHwVeBW\nYAlwn5kt6nHZA8Bhd58PfBl4JDjfCnwe+FQvj/5n4AF3XwAsMLNbo4g/DvnWMgFYMEtdXSJDXdQt\nk+VAnbvvcfd2YBVwd49r7iaxoCTAo8DNAO5+2t1fANrCF5vZFKDC3dcEp/4deFdE8Wdd2rTgHB98\nT0qb0bVXg/AiQ1HUyWQ6sC90XB+c6/Uad+8EjprZ+H6eWd/PM/NWeFpwZQ5PCw4LD8LX7VbLRGQo\nysUBeIs7gDg1p42Z5EfLZNb0CZQE2/gePHxC2/iKDEFRr23eAFSHjquCc2H1wAyg0cyKgdHufrif\nZ4a39evtmSkPP/xwqlxTU0NNTc1A4o6Fu6fv/T4hP5JJSUkxc6oq2Ra0SrbuPsDyZbPiDUpEBqy2\ntpba2tqMnhF1MlkDzDOzmcB+4F7gvh7XPA7cD7wE3AM808tzUq0Vd28ys2Nmtjx4/geBr/RyD5Ce\nTHLdiVOttJ1NrPo/YngZo8qHxRzRwC2aPSWVTLbs3K9kIpJHev6hvWLFigt+RqTdXMEYyMeBp4GN\nwCp332xmK8zszuCylUClmdUBnwQ+m7zfzHaR2N3xfjPbG5oJ9rHgvm0kBvifjLIe2XKwJX0ZFbP8\n6fFbNGdKqrx5Z1OMkYhIHCLfwi/4Rb+wx7mHQuU24L3nuXf2ec6vBZYNYpg54UBovGTyhPxa4X/R\n7O5ksmNfM2fbO3Jyh0gRiUYuDsAPWenvmOTHTK6kMRUjmD5pLJB4eVHrdIkMLUomOSTczTVpfH61\nTAAumTs1Vd60Y3+MkYhItimZ5JC0pefzrGUCcElo3GSLxk1EhhQlkxwSbpnk25gJpLdMtuxqoqur\nK8ZoRCSblExyROIdk/xblyts0vgKxo0uB6C1rZ09jX29LiQihUTJJEccP9maWr69PM/eMUkyM42b\niAxRSiY54uDh7v3T87FVknSJ3jcRGZKUTHJE2jIqeZxMFofHTXbux91jjEZEskXJJEccbOlumeTL\nmly9qZ46nhHDE1sNHzl+mgOhSQUiUriUTHJEPu5j0puioiIWze5ekn7T9sYYoxGRbFEyyRHhMZN8\nbpkALJ47LVV+ve68CzqLSAFRMskRzQUyZgJw6YLuvcreqGvUuInIEKBkkgPcnQMFMmYCMGdGJeXB\nuMnhY6dobD4Wc0QiEjUlkxxw7OQZ2js6gcQ7JiNH5N87JmFFRUUsmRfq6tqqri6RQqdkkgPSFnjM\nw2VUerMs1NWlcRORwqdkkgMOpu37nn8LPPZm6fzwuEmDxk1ECpySSQ7I96Xne1M9dRyjR40A4OTp\nNvY0tsQckYhESckkB+T70vO9MTOWzu8eN1mvcRORgqZkkgPCOywWypgJwOWLqlLl1zbvizESEYma\nkkkOOHAoNC24QFomAJctnJEqb9zRSGtbe4zRiEiUlExi1tXVxYFQy2RK5ZgYoxlcleNGMWPqeCCx\nL/wbWlpFpGApmcTs0NFTdHYmdiQcW1HO8GGlMUc0uK5Y1N06UVeXSOFSMonZ/tDb4VMmFs54SdIV\nl4SSyRYlE5FCpWQSs6ZwMimgLq6kS+ZMpay0BEgkzv1aWkWkICmZxKwpNPg+pbLwWialpcUsC73A\nuG7z3hijEZGoKJnErOlQ91/qUwuwZQJw5eLqVPmVN/bEGImIREXJJGb7C7xlAnD10pmp8hvbGzl9\n5myM0YhIFJRMYuTu6WMmEwuzZVI5bhSzplcCiSnC6zQQL1JwlExidPjYqdTS86PKhzGqPL+Xnu/L\nm5Z1t07WvL47vkBEJBJKJjFKH3wvzFZJ0vKls1LltRv30BEkUREpDEomMQoPvhfiOyZhs6sqmTB2\nJACnW8+yeWdTzBGJyGBSMolRU/PQaZmYGVcvmZU6fmnDrviCEZFBp2QSo/BMrmkFOvge9ubLZqfK\nL67fSVdXV4zRiMhgUjKJUfht8MkFtPT8+SyZNy21YdaR46fV1SVSQJRMYuLuaclk6hBomRQXF6W1\nTl5YtyPGaERkMCmZxOTQkZO0nU3s7zGqfBhjKkbEHFF2XHfF3FR5tbq6RApG5MnEzG4zsy1mts3M\nHuzl82VmtsrM6sxstZlVhz73ueD8ZjN7R+j8bjNbb2brzOzlqOsQhfoDR1PlqinjYowkuxbPnZpK\nnMdOnGHTjv0xRyQigyHSZGJmRcBXgVuBJcB9Zraox2UPAIfdfT7wZeCR4N7FwHuBS4Dbga+ZmQX3\ndAE17n6Fuy+Psg5RqW86kipXTR46yaSoqIhrL5uTOv7t2u0xRiMigyXqlslyoM7d97h7O7AKuLvH\nNXcD3w7KjwJvC8p3AavcvcPddwN1wfMAjDzvoms4ODSTCcANV81PlZ9ft4Oz7R0xRiMigyHqX8jT\ngfBCTPXBuV6vcfdO4JiZje/l3obQvQ48ZWZrzOy/RxF41Oqburu5pk8eG2Mk2bdw9uTUopZnWs/y\n8obd8QYkIhkriTuAXlj/l3Cdu+83s4nAL81ss7s/19uFDz/8cKpcU1NDTU3NoASZqfoDoZbJEBoz\ngcQLjDe+aQE/+MUrANSu2cr1V82LOSqRoau2tpba2tqMnhF1MmkAqkPHVcG5sHpgBtBoZsXAaHc/\nbGYNwflz7nX3/cHHZjP7LxLdX/0mk1xx/OQZTpxqBaCstISJ40bFHFH21SxfmEomr23ex+Fjpxg/\nZmTMUYkMTT3/0F6xYsUFPyPqbq41wDwzm2lmZcC9wGM9rnkcuD8o3wM8E5QfA+4NZnvNBuYBL5tZ\nuZmNAjCzkcA7gDcirsegagjN5Jo2aSzd8wqGjknjK1gybxqQ6LOsfXlbvAGJSEYiTSbBGMjHgaeB\njSQG1Deb2QozuzO4bCVQaWZ1wCeBzwb3bgL+E9gE/Bz4qLs7MBl4zszWAS8Cj7v701HWY7Cld3EN\nrfGSsJuWL0yVf7V6M4lvr4jko8jHTNz9SWBhj3MPhcptJKYA93bvF4Ev9ji3C7h88CPNnvDg+1Cb\nyRX2livm8M0fP8/p1rMcaDnOus370rb4FZH8kdfTa/PVUJ4WHDasrJS3XdP92tHTz2+KMRoRyYSS\nSQzSWiZDbCZXT++4fnGq/Mobu2k+fCLGaETkYimZZNnJ0200H0n8wiwuLmJqZeGvFtyX6ZPGcumC\nKiAxEK/WiUh+UjLJsl31h1Ll6qnjKSkpjjGa3HBrqHXy5HMbaW1rjzEaEbkYSiZZtquhO5nMnl4Z\nYyS5Y/myWak34k+3nuWXL2yOOSIRuVBKJlkWbpnMmaFkAonFH++66bLU8eO16+no6IwxIhG5UEom\nWRZOJmqZdLvpmoWpXRhbjp7ieW2cJZJXlEyy6Gx7R+rtdwNmTZ8Qb0A5pKy0hHe+dWnq+NGn1tLZ\nqY2zRPKFkkkW7WlsoSt4y3vqxDEMH1Yac0S55fYbljJieBkAjc3H+O3aupgjEpGBUjLJol31Lany\nrCp1cfU0qnwYd910aer4B794RWMnInlCySSLdtY3p8oaL+ndnTdeyqjyYQAcPHyCZ17aGnNEIjIQ\nSiZZFG6ZaCZX78pHlPGum7uXXvv+z9dw+szZGCMSkYFQMsmSjo5O9jR2JxO1TM7vnW9dyoSxib1N\njp88ww+fWhtzRCLSHyWTLNnd0EJ70P8/aXwFYypGxBxR7hpWVsoH77o2dfyz37xOw8GjfdwhInFT\nMsmSLbuaUuUFsyfHGEl+uO7KuSycPQWAzs4uVj76nPY7EclhSiZZsnX3gVR5UfBLUs7PzHjg3deR\n3INy/dZ67cYoksOUTLJka6hlsnCWWiYDMbd6Infc2D1V+Js/fp7Dx07FGJGInI+SSRYcaDlOy9HE\nL8FhZaXMnKY33wfqvjvexOQJ3YtAfn3Vb9TdJZKDlEyy4I26hlR58dwpFBfrP/tADR9WykfuvTF1\nvHbTHp6ofT3GiESkN/qtlgWvb2tMlZfOnx5jJPlp2YLp3Bnq7vrO4y+yfc/BGCMSkZ6UTCLm7mkt\nk6XzpsUYTf76wF3XMHfGRCAxu+tvv/U0R0+cjjkqEUlSMonYnsYWjhxP/NIrH16mN98vUklJMf/z\n/ltSC0EeOnKSv/7Gk5xt74g5MhEBJZPIvbJxb6p8+SUzKCrSf/KLNXXiGP70/ltS04Xr9hzkK//x\nLF1dWqpeJG76zRaxVzd1J5Orl8yMMZLCcOXiaj70u29JHa9+bQdfW/X/NMNLJGZKJhE6cvw024L3\nSwy4fNGMeAMqEHfcuCxtI61nX9rKv/zwt0ooIjFSMonQ6td2kPz1tmjOVK3HNUjMjD9893XcdM3C\n1Lmnn9/E33/7V9r/RCQmSiYRCu9jfv2V82KMpPCYGR+990ZuuGp+6twL63bwF1//GSdOtcYYmcjQ\npGQSkf3Nx9iys7uL682Xz443oAJUVFTEJz7wNm67fknq3Bt1jXzmb3/ErvpDMUYmMvQomUTk16s3\np8pXLK5mbEV5jNEULjPjw++5nnvf+abUueYjJ3jw73/M489u0DiKSJYomUTgbHsHvw5tN/v2tyyO\nMZrCZ2bfViepAAAKv0lEQVTcc+tVPPjh2xhWVgokXmz8t5+8wJ//02Npm5KJSDSUTCLwzItbOX7y\nDAATxo7kqsXVMUc0NCxfNotHPv1uZld1vxi6acd+Pv3Io6z80XOcPN0WY3Qihc0KuRvAzDzb9Tvb\n3sGffGEVh46cBOBD73oLv3PTpf3cJYOpo6OTH/ziFX7y69foCn3/y4eX8c63LuWOG5cxepRm1omc\nj5nh7tb/laF7lEwG149++Srfe+JlACpGDufrD/03hg8rzWoMkrCv6Qgrf/Qcr29rSDtfVlrCLdcu\n4pZrL9F2ACK9UDLpIdvJpOHgUT79yKOp9aI+/J7ruf2Gpf3cJVFyd1av38n3n3iZxuZj53x+7oyJ\n1CxfwPJls6kcNyqGCEVyj5JJD9lMJq1t7fyvf/wpuxsSU1Krp47n7z7zHu1dkiO6urpYvX4Xjz61\nlr37D/d6zdwZE7lqyUyWzJvKglmTKSstyXKUIrkhJ5OJmd0GfJnEYP9Kd/+bHp8vA/4duAo4BLzP\n3fcGn/sc8IdAB/AJd396IM8MPTsryeRM61keWfk0G7bVA1BcXMQjn3o3s6ZrheBc4+5s2NbAr1/c\nwovrd9LZ2fsikcXFRcyfOYlFs6cwa9oEZk6fwPRJY/XHgQwJOZdMzKwI2AbcDDQCa4B73X1L6JqP\nAMvc/aNm9j7gd939XjNbDHwXeBNQBfwKmE/iHcA+nxl6duTJZPueg3z1e8+yr+lI6twfv++tWZkO\nXFtbS01NTeRfJw7ZqNuJU608/+oOXtqwize2N/a7+nBJSTHTJo5hSuVoJo0fzeTKCiZNGM3EcRWM\nrRhBxchhA14VupC/d6D65buLSSZRt+OXA3XuvgfAzFYBdwPhX/x3Aw8F5UeBfwrKdwGr3L0D2G1m\ndcHzbADPjExHRycNB4+xdVcTL67fyfqt9Wmfv++O5Vl7r6SQf6CzUbeKkcO57YYl3HbDEk6ebuO1\nzft4Y3sDm7bvp+Hg0XOu7+joZO/+w+ftJjNgdMUIxowawZiKEYweNYLy4aWMGFbGiOGllA8vo3x4\nGSOGl7Hq0Z8ysWoBZaXFlJYUU1JSTFlpCSXFRZSWFKfO5+uWBYX8swmFX7+LEXUymQ7sCx3Xk0gI\nvV7j7p1mdszMxgfnV4euawjO2QCemfKXX/8Z7onujWQjxfHUcbLl4p48n7w2dN6dtrMdHD1x+rzv\nKpSWFPNH99zA2968qK//HpKjRpUP4/qr5nH9VYk11I6dOMOmHfvZVX+I3Q0t7G48RMvRU30+w4P7\njp04A/v7/nqb1tTR/E+P9RtXkRlFxUWJj0XW/bGoiOKi5Lmi4Fz3580S1xQVWWr/FzMLPnY/38xS\n58OfM+yc69I+nzwm/d7k+d+8so2//PrP+q3fYArXI2q/eaWOv/q/v8ja1wP4k/ffRMXI4Vn9mhci\nF0cYB/UnYt3mff1flKE3XzaH9//ONUydOCbyryXZMaZiBNdePodrL5+TOnfydBv7m49y4NAJDhw+\nzsGWExxoOU7LkZMcO9nKqTOD/1JklztdebgS8v7m41n5fy8u+5uPsXbTnqx+zfYc/zmIeszkzcDD\n7n5bcPxZwMMD5mb2i+Cal8ysGNjv7pN6XmtmT5LoDrP+nhl6duFOVRMRiVCujZmsAeaZ2UwSDf97\ngft6XPM4cD/wEnAP8Exw/jHgu2b2DyS6t+YBL5OYwdXfM4EL/48hIiIXJ9JkEoyBfBx4mu5pvJvN\nbAWwxt2fAFYC3wkG2FtIJAfcfZOZ/SewCWgHPhpMzer1mVHWQ0RE+lbQLy2KiEh25Oe8w16Y2Uoz\nO2BmG0LnxpnZ02a21cyeMrO8HCE3syoze8bMNprZ62b2P4LzhVK/YWb2kpmtC+r3UHB+lpm9aGbb\nzOz7ZpaLE0YGxMyKzOxVM3ssOC6kuu02s/XB9+/l4FxB/GwCmNkYM/uhmW0O/h+8plDqZ2YLgu/b\nq8HHY2b2Py6mfgWTTIBvAbf2OPdZ4FfuvpDEWMznsh7V4OgA/tTdlwDXAh8zs0UUSP3cvQ24yd2v\nAC4Hbjeza4C/Ab7k7guAo8ADMYaZqU+Q6LJNKqS6dQE17n6Fuyen6RfEz2bgH4Gfu/slwGUk3mkr\niPq5+7bg+3YliVVITgH/xcXUL/lORSH8A2YCG0LHW4DJQXkKsCXuGAepnj8BbinE+gHlwCsk3h06\nCBQF598MPBl3fBdZpyrgl0AN8FhwrrkQ6hbEvwuY0ONcQfxsAqOBHb2cL4j69ajTO4DfXmz9Cqll\n0ptJ7n4AwN2bgEkxx5MxM5tF4q/3F0l8swuifkE30DqgicQv3h3AUXdPrnFSD0yLK74M/QPwGRLv\nNWJmE4AjBVI3SNTrKTNbY2YfDs4Vys/mbOCQmX0r6Ar6FzMrp3DqF/Y+4HtB+YLrV+jJpKe8nm1g\nZqNILDnzCXc/ybn1ydv6uXuXJ7q5qki0SgpiKQEzuwM44O6vkf5CbiFNW7/O3a8G3kmiC/YGCudn\nswS4Evg/nugKOkWiC6hQ6geAmZWSWMLqh8GpC65foSeTA2Y2GcDMppDoNslLwQDto8B33P2nwemC\nqV+Sux8HakmMDY0NFguFRJJpON99Oew64C4z2wl8H3gbiT74MQVQNwDcfX/wsZlEF+xyCudnsx7Y\n5+6vBMc/IpFcCqV+SbcDa939UHB8wfUrtGRipP/F9xjwoaB8P/DTnjfkkW8Cm9z9H0PnCqJ+ZlaZ\nnC1iZiOAt5MYrH6WxIuskKf1c/c/c/dqd59D4h2qZ9z9/RRA3QDMrDxoMWNmI0n0u79OgfxsBl09\n+8xsQXDqZmAjBVK/kPtI/LGTdMH1K5j3TMzseyQGOCcAB0gsvfITEs22GcAe4L3ufu5ysDnOzK4D\nfkPif1IP/v0ZiRUB/pP8r98y4Nsk/rgpAn7g7l8ws9nAKmAcsA54v7u3xxdpZszsRuBT7n5XodQt\nqMd/kfiZLAG+6+5/bYnFWvP+ZxPAzC4D/hUoBXYCfwAUUzj1KydRhznufiI4d8Hfv4JJJiIiEp9C\n6+YSEZEYKJmIiEjGlExERCRjSiYiIpIxJRMREcmYkomIiGRMyURkkAXrNxXEcjAiA6X3TEREJGNq\nmYhkIFhO5IlgY6ENZvZeM3vWzK4MPv9AsMHQi0GL5SvB+W+Z2dfMbLWZbTezGy2xwdsmM/tm6Plf\nM7OXw5uGieQiJRORzNwGNHhig6FLgSeTnzCzqcDnSSx8eB3nroQ81t2vBf6UxFpIX3L3xcClZnZp\ncM2feWLDqcuAGjNbGm11RC6OkolIZl4H3m5mXzSz64NVj5OWA7XufszdO+le3jvp8dAzmtw9uRPj\nRmBWUL7XzNaSWL9rcfBPJOfk7b7TIrnA3euCLq13An9hZs+QvvdDX/uWtAUfu0Ll5HFJsBHap4Cr\n3P24mX0LGD5YsYsMJrVMRDIQdGWdcffvAX9HYq+LpDXAW81sTLAfze/19ahezo0GTgIngr0lbh+k\nsEUGnVomIplZBvytmXUBZ4GPkEgquHujmf0Via0CDpPYV/tYcF9fO9l5cP8GM3sN2AzsA56LqhIi\nmdLUYJEImdlIdz9lZsUk9v1YGdopU6RgqJtLJFoPm9k6EoPsO5VIpFCpZSIiIhlTy0RERDKmZCIi\nIhlTMhERkYwpmYiISMaUTEREJGNKJiIikrH/D1yGav2fD79VAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f735982b630>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "pmf_sigma1 = brink.Marginal(1)\n", "thinkplot.Pdf(pmf_sigma1)\n", "thinkplot.Config(xlabel='sigma', ylabel='Pmf')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From here, we want to compare the two distributions. To do this, we will start by taking the difference between the distributions." ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "-15.022318455572226" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pmf_diff = pmf_mu1 - pmf_mu0\n", "pmf_diff.Mean()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From here we can calculate the probability that money was stolen from the city." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.93875832542936855" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHUdJREFUeJzt3XmUFPW5PvDnnZVhcViUdWRYBhAQVFBAUWncQGTRX5RF\njaLeuEFMNOYHojeO8V4Vc6+GxJtjROW6IXHBgIZNxFYwsgmIDNtgdFgFkX0Yhlne+0c3TVfP1jNT\n3d+q6udzjuf0++2i52kbHprqripRVRARkbckmQ5ARET2Y7kTEXkQy52IyINY7kREHsRyJyLyIJY7\nEZEH1VjuIvKKiOwVkfXVbPMnEckXkXUicr69EYmIqLaieec+A8CQqu4UkWsBdFbVLgDuAfCiTdmI\niKiOaix3VV0G4GA1m4wC8Hpw2xUAMkWklT3xiIioLuzY594OwI6weVdwjYiIDOEHqkREHpRiw2Ps\nAnB22JwVXKtARHgiGyKiOlBVqc320Za7BP+rzFwAEwD8TUQGADikqnurCVibfK6Sm5uL3Nxc0zFi\nxsvPr77PraysHIv+uREvv7fMljwZDdLQIrMRMptkQFWR074lDh45jrYtM9G4YTrKyhRpqclo3KgB\nUpKTkJKchLJyRUZ6KpKTk5AkgqQkQZIIkpOTMO25Z/Hgw5ORlCRQVaSmJNuS8xSR6Honms2ifaxw\nf5j6FH47aUrljxflY9Tl51b/ePb93BZNG9f659dY7iIyE4APQAsR2Q7gcQBpAFRVX1LVeSIyTES2\nASgEcEetUxC51IKleZj+3tJa/7oO7c5El+yz0CnrLLRv0xwtWzRBszMa2l4wpzQ9oyGy2zaPyWM7\nQaOMdLRs3sR0DEepsdxV9eYotploTxwi5ztedBL3/f4tHDteHNX2/Xp1wMjB56Fz+7OQlmrHnlCi\nmvF3mo18Pp/pCDHl5ecXzXM7WngC46f8b43b9e6ahV/fdiUym2TUP5hNvPzaAd5/fnUh8dwHLiLq\n5X3u5E0lJWUY+/D0arcZdFFX3DdmEFJT7d2XTQQE9svH6gNVooT0t/mr8c6C1VXe//zk0Wjfxrv7\nssm9WO5ElSgsKsZtk2dUef+r/3G7o3a7EEViuRNF+HTFFrww89NK7/tr7q04s1ntv5ZGFG8sd6Iw\nk5+bjfyCfRXW7x83CFcO6G4gEVHdsNyJEDi47sZf/7XS+9569i40SE+NcyKi+mG5U8I7UVyCW/7/\nKxXWb7jyfNw6coCBRET1x3KnhHa86CR+PvnVCutPPjAKPTq3MZCIyB4sd0pYRScqL3Z+aEpewHKn\nhFReXo5bJ1Us9tefuQONMtINJCKyF8udEo6q4qYHX6qwPvMPdyE9jR+ckjfwYh2UcO587PUKa29O\nvZPFTp7CcqeE8taHK3DkWJFlbfrvf46MBmmGEhHFBsudEsbW7/di9uK1lrXnJt2E5pmNDCUiih2W\nOyWEwqJiPPL8B5a1+8cNQnbbFoYSEcUWy50SQuRJwM7t0panEyBPY7mT5838aGWFtdwJIwwkIYof\nljt52v6Dx/D+x2ssa689fUfMrlVK5BQsd/IsVcU9uW9a1h687So0bsiDlMj7WO7kWZG7Y5qd0RCX\n9s0xlIYovlju5EkHDhdW+Nrjnx8daygNUfyx3MmT7v7dG5b5ofFX80AlSigsd/Kc1XkF0Ii1gRd0\nNpKFyBSWO3mKquLpl+Zb1v73qfFmwhAZxHInT3nrwxWW2devG5o0amAoDZE5LHfyjOKTJfjgk3WW\ntQnjBhlKQ2QWy508479nLLbMD9x6BZKS+FucEhN/55MnHC08ga82FljWBl3U1VAaIvNY7uQJT09f\nYJmfeegGQ0mInIHlTq534HAhtnz3g2WtS3YrQ2mInIHlTq737CsLLfO0KWMMJSFyDpY7udrRwhPI\nL9hnWctq1cxQGiLnYLmTq/3XjEWWmeePIQpguZNrHS86iQ35uy1rbVs2NZSGyFlY7uRaf35riWV+\n6tfXG0pC5DxRlbuIDBWRzSKyVUQmVXL/2SKyRETWiMg6EbnW/qhEp50sKcXKb763rHXr2NpMGCIH\nqrHcRSQJwAsAhgDoCWCciJwTsdljAP6mqn0AjAPwF7uDEoWbs+Rry/zI3Xw/QRQumnfu/QDkq2qB\nqpYAmAVgVMQ25QDOCN5uCmCXfRGJKpo1b5VlvrBntqEkRM6UEsU27QDsCJt3IlD44Z4AsEhEHgDQ\nEMBV9sQjqmj9lp2W+aHxVxtKQuRc0ZR7NMYBmKGqz4vIAABvIrALp4Lc3NzQbZ/PB5/PZ1MEShRP\n/OUjy3zJ+Z0MJSGKDb/fD7/fX6/HENXIa9ZEbBAo61xVHRqcJwNQVZ0ats0GAENUdVdw/hZAf1Xd\nH/FYWtPPI6rO9j0H8OAz74TmK/qfgwk3+8wFIooDEYGqSm1+TTT73FcByBGRbBFJAzAWwNyIbQoQ\n3BUjIt0BpEcWO5EdXvv7l5Z5/A0XG0pC5Gw1lruqlgGYCGARgDwAs1R1k4g8ISLDg5s9DOAXIrIO\nwFsAbo9VYEpcJ4pLsG7z6Y9/mmc2QqOMdIOJiJyrxt0ytv4w7pahenhz7nLLlZaemzQa2W2bG0xE\nFB+x2i1D5AiRl9BjsRNVjeVOrvDt9h8t8y3D+xtKQuQOLHdyhademm+ZR/h6G0pC5A4sd3K8E8Ul\nOHT0eGgecF4npKYmG0xE5Hwsd3K8T1duscyjh15oKAmRe7DcyfFefm+ZZeYHqUQ1Y7mTo+3ed8gy\nT7x5sKEkRO7CcidHe3fhV5b50j45hpIQuQvLnRyrtLQMn6/OD81NmzTkB6lEUWK5k2OtiLjS0sN3\n8NS+RNFiuZNjRe6SOacTL6NHFC2WOzlSYVExduw5EJr79eoAkVqdWoMoobHcyZHmfb7BMt82iqf2\nJaoNljs5UuQFsNuclWkoCZE7sdzJcX46dAxFJ06G5p9d3cdgGiJ3YrmT43yw2Hpq3+G+XoaSELkX\ny50cZ/7S0/vbG6Sn4ozGGQbTELkTy50cZc+Phy3znf/vEkNJiNyN5U6O8uGn6y3zZX27GEpC5G4s\nd3IMVcXCL/JCc2aTDKSlphhMROReLHdyjJ17rWeAvG/sIENJiNyP5U6OsfifmyzzhT2zDSUhcj+W\nOzmCquKjz07vb2/apCFPN0BUDyx3coR/7dhvme8fx10yRPXBcidHmP3xGst8QfezDSUh8gaWOxmn\nqli+/rvQ3LJ5EyQl8bcmUX3wTxAZ991O6y6ZX9x0maEkRN7BcifjZv5jpWXu3bWdoSRE3sFyJ+PW\nbtoRut2razukpPA6qUT1xXInowp2/2SZhwzsaSgJkbew3MmouRHnkunTg9+SIbIDy52M8q/cErqd\n074l0tNSDaYh8g6WOxnz06FjlnnE4N6GkhB5D8udjPl8db5l7terg5kgRB7Ecidj3vxwReh2cnIS\nT+9LZKOoyl1EhorIZhHZKiKTqthmtIjkicg3IvKmvTHJa44WnrDM946+3FASIm+q8a2SiCQBeAHA\nlQB2A1glInNUdXPYNjkAJgG4WFWPiMiZsQpM3rDwi42WeWCfzoaSEHlTNO/c+wHIV9UCVS0BMAvA\nqIhtfgHgf1T1CACo6n4QVWP2x2stM78lQ2SvaMq9HYAdYfPO4Fq4rgC6icgyEfmniAyxKyB5z5Fj\nRSg+WRKafz5ygME0RN5k1ydYKQByAFwOoD2Az0Xk3FPv5InCrQg7AyQAXNY3x1ASIu+Kptx3IVDY\np2QF18LtBLBcVcsBfC8iWwF0AfBV5IPl5uaGbvt8Pvh8vtolJtfzr9oaut0oIx0tmjY2mIbIefx+\nP/x+f70eQ1S1+g1EkgFsQeAD1T0AVgIYp6qbwrYZElwbH/ww9SsA56vqwYjH0pp+HnlbSUkZxj48\nPTQP7t8NE28ebDARkfOJCFS1VtedrHGfu6qWAZgIYBGAPACzVHWTiDwhIsOD2ywE8JOI5AH4BMDD\nkcVOBAAbtu22zCN8PCqVKBZqfOdu6w/jO/eEN+HJmfhh/+mPYt6fdq/BNETuEJN37kR2UVVLsQ/o\n3dFgGiJvY7lT3OQX7LPM13GXDFHMsNwpbiKPSu3SvqWhJETex3KnuAk/d/t53bKQmsrL6RHFCsud\n4uLw0SLLfPUlPQwlIUoMLHeKi/ADlwDgonOzDSUhSgwsd4qL1+d8aZlTUrhLhiiWWO4Uc4VFxZb5\nFzdeZigJUeJguVPMrVz/vWXmuduJYo/lTjG3bM02y9ykUQNDSYgSB8udYqqkpAzrNp++HMDVl3Q3\nmIYocbDcKaa2Fuy1zFcNYLkTxQPLnWLqnQWrLXNONo9KJYoHljvF1Ib806f47ZjF66YTxQvLnWKm\nYPdPlvmW4f0NJSFKPCx3ipkly7dY5p45bQwlIUo8LHeKmcXLQ1diRI/ObZCWatf12ImoJix3ionC\nomKcKC4JzQPO62QwDVHiYblTTKz4+jvLfGmfHENJiBITy51i4sV3PrfMmU0yDCUhSkwsd4qJsrLy\n0O0x115oMAlRYmK5k+3ytu22zFcOOMdQEqLExXIn232yfLNlbp7ZyFASosTFcidbqSo+C7vq0oU9\nsyEiBhMRJSaWO9lq175DlnnYoF6GkhAlNpY72WreZxssc++u7QwlIUpsLHey1cIv8kK309NSuUuG\nyBCWO9nmxwNHLfO9Y3itVCJTWO5kmy/WfmuZ+/TINpSEiFjuZJvwb8m0PSsTjRumG0xDlNhY7mSL\nkyWl2L7nQGju25Pv2olMYrmTLdZt3mmZrx7Yw1ASIgJY7mST6e8utcztWjY1lISIAJY72UBVceBw\nYWge3L+bwTREBLDcyQZbv99rmYcO7GkoCRGdwnKneluwLM8yd2jXwlASIjolqnIXkaEisllEtorI\npGq2+5mIlItIH/sikpOpKj5fnR+ae3fNQkpKssFERAREUe4ikgTgBQBDAPQEME5EKpygW0QaA3gA\nwHK7Q5JzHTxy3DKPGNzbUBIiChfNO/d+APJVtUBVSwDMAjCqku2eBPAMgGIb85HDRZ67vU+P9oaS\nEFG4aMq9HYAdYfPO4FqIiFwAIEtV59uYjVxg1rxVpiMQUSVS6vsAEjjt33MAbg9fru/jkvMdOmrd\nJTPx5sGGkhBRpGjKfReA8H9rZwXXTmmCwL54f7DoWwOYIyIjVXVN5IPl5uaGbvt8Pvh8vtqnJkeI\n3CXTv3dHQ0mIvMXv98Pv99frMURVq99AJBnAFgBXAtgDYCWAcaq6qYrtPwXwkKqureQ+rennkXtM\neHImfth/BACQ0SANb06903AiIm8SEahqrfaI1LjPXVXLAEwEsAhAHoBZqrpJRJ4QkeGV/RJwt4zn\nHTteHCp2ABh22bkG0xBRpKj2uavqAgDdItYer2LbK2zIRQ63Yv2/LPMVAyp8O5aIDOIRqlQncz75\n2jK3PvMMQ0mIqDIsd6q10tIy7Np3KDRf1reLwTREVBmWO9Xaui3Wc7ffOIRnmyByGpY71dqLsz6z\nzDx3O5HzsNypVlTVcj6Zawb2QODwBiJyEpY71cr6rbss8zWX8HJ6RE7Ecqda+dv81ZY5u21zQ0mI\nqDosd4paeXk5tnz3Q2i+tG8OkpL4W4jIifgnk6KWX7DPMo/0nWcoCRHVhOVOUZu3dINl7tz+LENJ\niKgmLHeKSllZOZZ9tS00d+vY2mAaIqoJy52isvHbPZb5luH9DCUhomiw3CkqH/nXW+YendsYSkJE\n0WC5U43Ky8uxOq8gNGe3bcEDl4gcjuVONcrbZt0lc/dNlxlKQkTRYrlTjaa/u9Qyd+vYylASIooW\ny52qVVZWbjm9b98e2dwlQ+QCLHeq1rrNOyzzTUN5el8iN2C5U7Wee22xZc5p39JQEiKqDZY7Vam0\ntAwniktC8/BBvblLhsglWO5UpS/XWS+Cfc2lPL0vkVuw3KlKf3zjE8vMKy4RuQfLnSp17HixZb5l\neH9DSYioLljuVKkFy/Is85UDzjGUhIjqguVOlXr7Hystc2aTDENJiKguWO5UwfY9ByzzPaMvN5SE\niOqK5U4VzPzI+q590EVdDCUhorpiuZNFeXk5Vm34PjS3OSsT6Wmp5gIRUZ2w3Mniy6+/s8w8AySR\nO7HcyeKV95dZ5l5d2xlKQkT1wXKnkCPHinD4aFFoHnRRV55ugMilWO4U8va8VZb51hE8cInIrVju\nFLLoi42WuXlmI0NJiKi+WO4EANj8rx8s88N3XGMoCRHZgeVOAIDfvTDXMvfv3cFMECKyBcudcPho\nEcrKykNz/94dkZTE3xpEbhbVn2ARGSoim0Vkq4hMquT+B0UkT0TWicjHInK2/VEpVj5YvNYy3/Wz\ngYaSEJFdaix3EUkC8AKAIQB6AhgnIpGnCFwDoK+qng/gfQB/sDsoxUZ5eTk+9K+3rLVo2thQGiKy\nSzTv3PsByFfVAlUtATALwKjwDVT1M1U9ERyXA+CRLy6xMOIbMo/eM8xQEiKyUzTl3g7AjrB5J6ov\n77sAzK9PKIqfl9+zHpF6QXfuUSPyghQ7H0xEbgXQF8CgqrbJzc0N3fb5fPD5fHZGoFr4bud+y3zd\noF48IpXIAfx+P/x+f70eQ1S1+g1EBgDIVdWhwXkyAFXVqRHbXQVgGoDLVfWnKh5La/p5FD+3TZ6B\nwqLTl9Ob+Ye7eAZIIgcSEahqrd55RbNbZhWAHBHJFpE0AGMBWL4ULSIXAHgRwMiqip2c5cDhQkux\nX9gzm8VO5CE1lruqlgGYCGARgDwAs1R1k4g8ISLDg5s9C6ARgHdFZK2I/D1mickWz0xfYJn/7cZL\nDSUholiIap+7qi4A0C1i7fGw21fbnItiqLCoGN/u+DE0p6el4qzmTQwmIiK78TDEBPTq7H9a5qcf\nvN5QEiKKFZZ7gikpKYN/5RbLWnbbFobSEFGssNwTzIwPIt+132AoCRHFEss9gZSUlGHhF3mWta4d\nWhlKQ0SxxHJPIH+Z5bfMj9x9rZkgRBRzLPcEcaK4BJ+vzres9e3R3lAaIoo1lnuCmPryQss86d+G\n8lQDRB7Gck8AB48cx/qtOy1r/Xp1MBOGiOKC5Z4AfvPsu5b5P3/F77UTeR3L3eO27zmAw0eLQnN6\nWirO6dTaYCIiigeWu8c9+Mw7lnnaI6MNJSGieGK5e9iCpdbvtPfMactzyBAlCJa7R50sKcX095Za\n1qbwe+1ECYPl7lHjp7xmmW8bdTEapPN87USJguXuQV/lFaD4ZIllbeTg3obSEJEJLHePKT5Zgqde\nsl6ffNqUMTxgiSjBsNw95v7fv22Zff26IatVM0NpiMgUlruHLF2dj0NHj1vWfnnLYENpiMgklrtH\n7D94DH984xPL2ouP32IoDRGZxnL3AFXFPblvWtZuvKYPv9NOlMBY7h5w46//WmFt7LCLDCQhIqdg\nubvctIhdMQDwznN389sxRAmO5e5iC5bmVbgAx//8+81ITubLSpTo2AIutfKb7yucXuDB269C6zPP\nMJSIiJyE5e5CX2/ZiakvL7Cs3XhNH1zaJ8dQIiJymhTTAah2Vqz/Ds++Yr1kXu+uWRh3XT9DiYjI\niVjuLvKPz77Bq7O/sKy1PvMM/O7+6wwlIiKnYrm7xNMvzcfqvALLWlarZpg2ZYyhRETkZCx3hyst\nLcOY30yvsN67axYenzDcQCIicgOWu4NtK9iHSc/NrrA+wtcb42+4xEAiInILlrsDlZeX487HXsfR\nwhMV7nv0nmHo06O9gVRE5CYsd4eZs+RrvD7ny0rve/U/bkdmk4w4JyIiN2K5O8Syr7bh+dcXV3rf\nBd3PxmP38hsxRBQ9lrtBqopXZ3+BeZ9vqHKbaVPG8GIbRFRrLHcDNn67B//+pznVbjP++kswgtc9\nJaI6iqrcRWQogD8icLqCV1R1asT9aQBeB9AXwH4AY1R1u81ZXet40Un8/ZN1eP/jNTVuO8LXG7df\nfzHP6khE9VJjuYtIEoAXAFwJYDeAVSIyR1U3h212F4ADqtpFRMYAeBbA2FgEdjK/349+/S/Btzt+\nxNpN2zFnyddR/9r7xg7CVRd3j2G6+vP7/fD5fKZjxISXnxvA55eIonnn3g9AvqoWAICIzAIwCkB4\nuY8C8Hjw9nsI/GXgCaqKkyWlKCw6GfjveDH2HzyGI4VFOHSkCHnf7sbOHw7i2PFibFz+EXoMiP7A\nog7tzsTvfzkCjTLSY/gM7OPlP0Befm4An18iiqbc2wHYETbvRKDwK91GVctE5JCINFfVA5EP9p9/\nnQdVDc2nbqoqwpah0ArbVZihlsc4/TjV/DqcnlUD3ynfvucAslo1Q1l5OUpLy/HjwaMAgNSUZJSU\nllX1/6VOrhvUC+OGXYSMBmm2Pi4RUbhYfaBa5Q7jNRuduSt+596DFdbqW+w9OrfBwAtycGnfHDRu\n6I5350TkDRL+rrbSDUQGAMhV1aHBeTIADf9QVUTmB7dZISLJAPaoastKHqv6H0ZERJVS1Vp9yyKa\nd+6rAOSISDaAPQh8UDouYpsPAdwOYAWAmwAssSMcERHVTY3lHtyHPhHAIpz+KuQmEXkCwCpV/QjA\nKwDeEJF8AD8hAb8pQ0TkJDXuliEiIveJ2zVUReSXIrJJRL4RkWfC1h8RkfzgfdfEK08siMhvRKRc\nRJqHrf0p+PzWicj5JvPVhYg8G3xt1onI+yJyRth9nnjtRGSoiGwWka0iMsl0nvoSkSwRWSIiecE/\nbw8E15uJyCIR2SIiC0Uk03TWuhKRJBFZIyJzg3MHEVkefA3fFhHXHn0vIpki8m7wz1WeiPSvy2sX\nl3IXER+AEQB6qWovAP8VXO8OYDSA7gCuBfAXcemhmSKSBeBqAAVha9cC6KyqXQDcA+BFQ/HqYxGA\nnqp6PoB8AI8AgIj0gAdeu7CD9IYA6AlgnIicYzZVvZUCeEhVewK4GMCE4HOaDGCxqnZD4HOxRwxm\nrK9fAdgYNk8F8N+q2hXAIQQOrHSraQDmqWp3AOchcExRrV+7eL1zvw/AM6paCgCquj+4PgrALFUt\nVdXvESgPt17p+XkAv41YG4XAaRmgqisAZIpIq3gHqw9VXayq5cFxOYCs4O2R8MZrFzpIT1VLAJw6\nSM+1VPUHVV0XvH0MwCYEXrdRAF4LbvYagOvNJKyf4BupYQBeDlu+AsD7wduvAbgh3rnsEPyX8WWq\nOgMAgn++DqMOr128yr0rgMuD/2z6VET6BtcjD5DaFVxzFREZCWCHqn4TcZcnnl+YOwHMC972ynOr\n7CA9Nz6PSolIBwDnI/AXcytV3QsE/gIAUOHryi5x6o2UAoCItABwMOxNyE4AbQ1lq6+OAPaLyIzg\nbqeXRKQh6vDa2bZfSkQ+BhD+rlQQ+J//WPDnNFPVASJyEYB3AXSy62fHQw3PbwoCu2RcqZrn9qiq\nfhjc5lEAJar6toGIVAci0hiB04H8SlWPVXKcieu+TSEi1wHYq6rrgrt7Q3cZimS3FAB9AExQ1dUi\n8jwCu2Rq/drZVu6qWmW5ici9AGYHt1slImXBv213AQi/ZlxWcM1xqnp+InIugA4Avg7uc84CsEZE\n+iHwXM4O29yRz6+61w4ARGQ8Av8MviJs2RXPLQqu+T1YG8EPFN8D8Iaqnjq/9F4RaaWqe0WkNYB9\n5hLW2UAAI0VkGIAMAE0Q2EedKSJJwXfvbn4NdyKwF2B1cH4fgXKv9WsXr90yf0ewGESkK4A0Vf0J\nwFwAY0QkTUQ6AsgBsDJOmWyhqhtUtbWqdlLVjgi8OBeo6j4Ent9tQOhI30On/mnlFsHTPf8WwEhV\nLQ67ay6AsW5+7YJCB+lJ4NTVYxF4bm73KoCNqjotbG0ugPHB27cDqP6iAg6kqlNUtb2qdkLgtVqi\nqrcC+BSBAygBlz43AAj2w45gTwKBs/HmoQ6vXby+LjQDwKsi8g2AYgQLT1U3isg7CHzqXQLgfnX/\nF+8VwX8iquo8ERkmItsAFAK4w2iyuvkzgDQAHwe/DLNcVe/3ymtX1UF6hmPVi4gMBHALgG9EZC0C\nvyenIPCNkndE5E4EvtU12lxK200GMEtEngSwFoEDK93qAQBviUgqgH8h0BvJqOVrx4OYiIg8KG4H\nMRERUfyw3ImIPIjlTkTkQSx3IiIPYrkTEXkQy52IyINY7kREHsRyJyLyoP8DTuZcx0rb1yUAAAAA\nSUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f735984c198>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "cdf_diff = pmf_diff.MakeCdf()\n", "thinkplot.Cdf(cdf_diff)\n", "cdf_diff[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So we can calculate that the probability money was stolen from the city is 93.9%" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we want to calculate how much money was stolen from the city. We first need to calculate how much money the city collected during Brink times. Then we can multiply this times our pmf_diff to get a probability distribution of potential stolen money." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(-3594455.9999999991, -1431125.9999999991)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAENCAYAAADgwHn9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt4XNV57/HvzzYmBGLA5ZI8voXG5poLIanTpKftBBow\nOa0VQgh2+rQ0IU1PXRJOzmkeQttTWzkndUsvIcWhgcSh4GJUx6TBQCCG2MPVYIEdbpJtYbCx5CuW\nMQZ80eU9f8z2ZCxG0kia0R5Jv8/zzOM1a6+95t3j0byzL2svRQRmZmYAo9IOwMzMqoeTgpmZ5Tkp\nmJlZnpOCmZnlOSmYmVmek4KZmeWVlBQkzZC0TtIGSdcUWT5WUp2kJkmrJE0uWHZtUt8o6cKC+qsl\nPZc8vlaezTEzs4HoNSlIGgUsAC4CzgFmSzqzS7MrgdaImAZcD1yXrHs28HngLOBi4EblnJOs81Hg\nXOD3Jf16eTbJzMz6q5Q9helAU0Rsjog2oA6o6dKmBrg1KS8Fzk/KM4G6iGiPiE1AU9LfWcCTEXEw\nIjqAh4HPDmhLzMxswEpJChOALQXPm5O6om2SL/m9ksYXWbclqXse+G1JJ0p6J/BpYFK/tsDMzMpm\nTIX6VU8LI2KdpH8AHgDeANYCHRWKxczMSlRKUmgBJhc8n5jUFWom90t/q6TRwLiIaJXUwpF7APl1\nI+IW4BYASd/myD2KPEm+OZOZWR9FRI8/zrtTyuGjemCqpCmSxgKzgGVd2twNXJGULwNWJOVlwKzk\n6qTTgKnAagBJJyf/TgYuARZ3F0BE+FGGx9y5c1OPYTg9/H76/azWx0D0uqcQER2SrgKWk0siCyOi\nUVItUB8R9wALgUWSmoDd5BIHEdEgaQnQALQBc+JXEd+ZnHc4XP/6gLbEzMwGrKRzChFxP3BGl7q5\nBeWD5C49LbbufGB+kfrf6VOkZmZWcR7RPIJkMpm0QxhW/H6Wl9/P6qCBHn+qNElR7TGamVUTSUQF\nTzSbmdkI4aRgZmZ5TgpmZpbnpGBmZnlOCmZmluekYGZmeU4KZmaW56RgZmZ5TgpmZpbnpGBmZnmV\nmmTHrM8igh/95DFadrzGly79LSaeemLaIZmNOL73kaXusbUbeXzNi4w/4Vh+9vDzAJx84ru45PfO\nZcyYUXxy+hmMGuWdWrNSDeTeR95TsFS98dZB/uXfH3hb/a49+7j5x48AcNSY0fzOR08f7NDMRiT/\n/LJU7dzd+9xK3//PRwYhEjODEpOCpBmS1knaIOmaIsvHSqqT1CRpVTLF5uFl1yb1jZIuLKj/uqTn\nJT0r6fZkqk8bITo7O2nYuI0Dh9pLau9DiGaDo9dzCpJGARuAC4Ct5OZsnhUR6wra/DnwgYiYI+ly\n4JKImCXpbOB24DeAicCDwDTgPcCjwJkRcUjSfwL3RsRtRV7f5xSGoRvvyPKLJ9b13jAx7rhjeN+k\nk/jrP/s0Ur8OlZqNGJWeT2E60BQRmyOiDagDarq0qQFuTcpLgfOT8kygLiLaI2IT0JT0BzAaOFbS\nGOCd5BKOjRB9SQgAr7+xn7WNW3iofkOFIjIzKC0pTAC2FDxvTuqKtomIDmCvpPFF1m0BJkTEVuCf\ngVeSutci4sF+bYGNKC07Xks7BLNhrVJXH/W42yLpBHJ7F1OAvcBSSV+IiMXF2s+bNy9fzmQynsvV\nzKxANpslm82Wpa9SkkILMLng+cSkrlAzMAnYKmk0MC4iWiW1JPVd1/094KWIaAWQ9BPgE0CvScHM\nzI7U9cdybW1tv/sq5fBRPTBV0pTkCqFZwLIube4GrkjKlwErkvIyYFZyddJpwFRgNbnDRr8p6R3K\nnTW8AGjs91bYkLDvzQPU3VdPdvX6fvfR3tHJcxtaONRW2lVLZtY3JY1oljQD+C65JLIwIv5eUi1Q\nHxH3SDoaWAR8GNhN7uqkTcm61wJXAm3A1RGxPKmfSy7BtAFrgS8nJ7K7vravPhombrh95YASQqHT\n33sq879+SVn6MhtuBnL1kW9zYYPm0qu/X9b+fvT/ruD4dx1T1j7NhoNKX5JqVpU6/WPBrOycFMzM\nLM9JwczM8pwUzMwsz0nBzMzyPJ+CVdSBg2388M5HOdTWUfa+H1+7kc1bd/MHn/wQk97tWdrMysGX\npFpFLb5nNXc+sKairzH++GP5wbf+qKKvYTaU+JJUq1oPPlH5geqte9+s+GuYjRROCmZmluekYGZm\neU4KZmaW56RgZmZ5TgpmZpbnpGBmZnlOClYREcGBg2+bHqNimnfs4YUXt+IxLWYD48FrVnadnZ38\n9Xfv4uXmV2lrL/9I5p5c9YVP8smPnTGor2lWbSo+eE3SDEnrJG2QdE2R5WMl1UlqkrRK0uSCZdcm\n9Y2SLkzqTpe0VtKa5N+9kr7Wnw2w6vPI0y+yYdOOQU8IAAsWrxz01zQbTnq995GkUcACcvMobwXq\nJd0VEesKml0JtEbENEmXA9eRm5v5bODzwFnAROBBSdMiYgO5qTsP998M/FcZt8tStGvPG2mHYGb9\nVMqewnSgKSI2J3Mo1wE1XdrUALcm5aXA+Ul5JlAXEe3JnM1NSX+Ffg/YGBFb+hG/mZmVUSlJYQJQ\n+IXdnNQVbRMRHcBeSeOLrNtSZN3LgTv6ELOZmVVIpW6dXdIJDklHkdub+GZP7ebNm5cvZzIZMpnM\nAEIzMxtestks2Wy2LH2VkhRagMkFzycmdYWagUnAVkmjgXER0SqpJanvbt2LgacjYldPARQmBTMz\nO1LXH8u1tbX97quUw0f1wFRJUySNBWYBy7q0uRu4IilfBqxIysvInXAeK+k0YCqwumC92fjQkZlZ\n1eh1TyEiOiRdBSwnl0QWRkSjpFqgPiLuARYCiyQ1AbvJJQ4iokHSEqABaAPmHB50IOmd5E4yf6UC\n22VmZv1Q0jmFiLgfOKNL3dyC8kFyl54WW3c+ML9I/VvAyX0J1szMKsu3ubBh59afruInD6z1LS/M\n+qFSVx/ZCPTUC5tZ+cQ63th/MNU4lq18BoBfO+FYfvc3Tk81FrOhxknByqKjo5P5N9+XdhhHWLby\nWScFsz7y4SMrizTuc2Rm5eekYGZmeU4KZmaW56RgZmZ5TgpmZpbnpGBmZnlOCmZmluekYGZmeU4K\nZmaW56Rgw9amlleZ863F3LzkkbRDMRsynBRswNraqnc0847dr/Pzx15g3Uvb0w7FbEjwvY9sQFY+\nuZ6bljzMtCmnpB1Kj7bt2suZv/7utMMwq3pOCjYgCxavBKBh47aUIzGzcijp8JGkGZLWSdog6Zoi\ny8dKqpPUJGmVpMkFy65N6hslXVhQf7ykHyf1L0j6WHk2yczM+qvXpCBpFLAAuAg4B5gt6cwuza4E\nWiNiGnA9cF2y7tnkZmQ7C7gYuFGSknW+C/wsIs4CPgQ0DnxzzMxsIErZU5gONEXE5ohoA+qAmi5t\naoBbk/JS4PykPBOoi4j2iNgENAHTJY0DfjsibgFIlr8+sE0xM7OBKiUpTAC2FDxvTuqKtomIDmCv\npPFF1m1J6k4DXpV0i6Q1km6WdEw/t8HMzMqkUiea1cvyMcB5wF9ExFOSrge+Ccwt1njevHn5ciaT\nIZPJlCdKM7NhIJvNks1my9JXKUmhBZhc8HxiUleoGZgEbJU0GhgXEa2SWpL6rus2A1si4qmkfinw\nthPYhxUmBTMzO1LXH8u1tbX97quUw0f1wFRJUySNBWYBy7q0uRu4IilfBqxIysuAWcnVSacBU4HV\nEbED2CLp8AS6FwAN/d4KMzMri173FCKiQ9JVwHJySWRhRDRKqgXqI+IeYCGwSFITsJtc4iAiGiQt\nIfeF3wbMiYhIuv4acLuko4CXgC+WedvMzKyP9Kvv6OokKao9xpHs0qu/n3YIJfncRR/hXe88mo99\n8DROHv+utMMxqyhJRERv53aL8ohmGxGW/vxpAH7xxDq+883PpxyNWfXyDfFsRHllW2vaIZhVNe8p\nWJ91dnaypnEL4459R9qhmFmZOSlYn2VXb+B7d2TTDsPMKsCHj6zPnBDMhi8nBTMzy3NSMDOzPCcF\nMzPLc1IwM7M8JwUzM8tzUjAzszwnBTMzy3NSsBFn5ZPruWnJw+xs3Zd2KGZVxyOabcRZsHglAC++\nsot//MtLU47GrLp4T8FGrJe27Eo7BLOqU1JSkDRD0jpJGyS9bdrMZGa1OklNklZJmlyw7NqkvlHS\nhQX1myQ9I2mtpNXl2RwzMxuIXg8fSRoFLCA3ZeZWoF7SXRGxrqDZlUBrREyTdDlwHblpOM8GPg+c\nRW5+5gclTUtmzekEMhGxp7ybZJWy/8Ah9h9sSzsMM6ugUs4pTAeaImIzgKQ6oAYoTAo1wNykvBS4\nISnPBOoioh3YlEzXOR14EhA+fDVk7Hn9Lb767ToOOimYDWulfClPALYUPG9O6oq2iYgOYK+k8UXW\nbSlYN4CfS6qX9Kf9iN0G0Y9+8hj7Dxyi01Ojmg1rlbr6qJS5QX8rIrZJOhl4QFJjRDxaoXhsgHa/\n9mbaIZjZICglKbQAkwueT0zqCjUDk4CtkkYD4yKiVVJLUv+2dSNiW/LvLkn/Re6wUtGkMG/evHw5\nk8mQyWRKCNvMbGTIZrNks9my9KXo5XBA8iW/ntyJ5m3AamB2RDQWtJkDvD8i5kiaBXwmIg6faL4d\n+Bi5w0YPANOAY4BREfGGpGOB5UBtRCwv8vrRW4xWeX91/U9Z//L2tMMouzu/+z/SDsGs7CQREaUc\nsXmbXvcUIqJD0lXkvrhHAQsjolFSLVAfEfcAC4FFyYnk3cCsZN0GSUuABqANmBMRIelU4L8kRRLD\n7cUSgpmZDa6SzilExP3AGV3q5haUD5K79LTYuvOB+V3qXgbO7WuwZmZWWb4k1MzM8nzvIxvRbrwj\ny6G2Dr702U8w7rhj0g7HLHVOCjai/eKJ3BhMCa7+owtSjsYsfT58ZAY8/FRT2iGYVQUnBTMzy3NS\nMDOzPCcFMzPL84lm69FdK55hTcPmYTma2czezknButW8Yw+33bUq7TDMbBD58JF1a/PW1rRDMLNB\n5qRgZmZ5TgpmZpbnpGBmZnlOCmaJ/QcO0dnZmXYYZqlyUjBLfOlvbuOr367jwMG2tEMxS42Tglni\nUFs72199naU/fzrtUMxSU1JSkDRD0jpJGyRdU2T5WEl1kpokrZI0uWDZtUl9o6QLu6w3StIaScsG\nvilm5bF99760QzBLTa9JQdIoYAFwEXAOMFvSmV2aXQm0RsQ04HrgumTds8nNyHYWcDFwo6TCeUOv\nJjdVp5mZVYFS9hSmA00RsTki2oA6oKZLmxrg1qS8FDg/Kc8E6iKiPSI2AU1Jf0iaCHwa+OGAtsDM\nzMqmlKQwAdhS8Lw5qSvaJiI6gL2SxhdZt6Vg3e8A3wCi72GbmVklVOpEs3pcKP13YGdE/DJp22N7\nMzMbHKXcEK8FmFzwfGJSV6gZmARslTQaGBcRrZJakvqu69YAfyDpYuAY4F2SbouIPy4WwLx58/Ll\nTCZDJpMpIWzrrxc37+QXT65DztVmQ0I2myWbzZalL0X0fPQm+ZJfD1wAbANWA7MjorGgzRzg/REx\nR9Is4DMRMSs50Xw78DFyh40eAKZFwYtK+l3gf0fEzG5eP3qL0crr0qu/n3YIqfr4ue/jL7/4qbTD\nMOs3SUREv37V9bqnEBEdkq4ClpM73LQwIhol1QL1EXEPsBBYJKkJ2A3MStZtkLSE3BVGbcAcf8Ob\nmVWvkuZTiIj7gTO61M0tKB8kd+lpsXXnA/N76Psh4KFS4jAzs8ryiGYzM8tzUjDrov75TXz975ew\ndPmatEMxG3ROCmZdtLd38Mq2Vu64dzW7Wn3LCxtZnBTMevDqnjfSDsFsUDkpmJlZnpOCmZnlOSmY\nmVmek4KZmeU5KZiZWZ6TguUdONiG70JiNrKVdJsLG/4eW7uRG/5jBZPeMz7tUMwsRU4KBsC//PsD\nALy0ZVfKkZhZmnz4yKwHB9vaadi4jc7OzrRDMRsU3lMw68H//bd7AchMP4Ov/uEnU47GrPK8p2BW\nguzq9WmHYDYonBTMzCyvpKQgaYakdZI2SLqmyPKxkuokNUlaJWlywbJrk/pGSRcmdUdLelLSWknP\nSZrbtU8zMxt8vSYFSaOABcBFwDnAbElndml2JdAaEdOA64HrknXPJjcj21nAxcCNyk26fBD4ZER8\nGDgXuFjS9DJtk5mZ9VMpewrTgaaI2BwRbUAdUNOlTQ1wa1JeCpyflGcCdRHRHhGbgKakPyLiraTN\n0eROeHvUlJlZykpJChOALQXPm5O6om0iogPYK2l8kXVbDq8raZSktcB24IGIqO/XFpiZWdlU6pJU\n9dYgIjqBD0saB/xU0tkR0VCs7bx58/LlTCZDJpMpU5hmZkNfNpslm82Wpa9SkkILMLng+cSkrlAz\nMAnYKmk0MC4iWiW1JPXdrhsRr0taCcwAek0KZmZ2pK4/lmtra/vdVymHj+qBqZKmSBoLzAKWdWlz\nN3BFUr4MWJGUlwGzkquTTgOmAqslnSTpeABJxwCfAtb1eyusXzo7O1n93CbWNLySdihmViV63VOI\niA5JVwHLySWRhRHRKKkWqI+Ie4CFwCJJTcBucomDiGiQtITcHkAbMCciQtJ7gFuTK5tGAf8ZET+r\nxAZa9558dhP/dMvytMMYMp5d38zWnXvJTD+ddxx9VNrhmFWEqv1WybkrWKs7xqHq0qu/n3YIQ1LN\n+R/ij2s+nnYYZt2SRET0em63GI9oNuuju1Y8k3YIZhXjpGBmZnlOCmZmluekYGZmeU4KZmaW56Rg\nZmZ5TgpmZpbnpGBmZnlOCiOUBwQOzHcX/YLLvn4z61/ennYoZmXlEc0jTHt7B9++6T5adu5h92tv\nph3OsPDj73yFUaP8+8qqx0BGNFfq1tlWpX7+WAPPbmhOO4xhZf/BNo495ui0wzArC/+8GWFebnk1\n7RDMrIo5KZiZWZ6TgpmZ5TkpmJlZnpOCmZnllZQUJM2QtE7SBknXFFk+VlKdpCZJqyRNLlh2bVLf\nKOnCpG6ipBWSXpD0nKSvlW+TzMysv3pNCsmUmQuAi4BzgNmSzuzS7EqgNSKmAdcD1yXrng18HjgL\nuBi4UZKAduB/RcQ5wMeBvyjSp9mQ8KOfPM5D9RvSDsOsLErZU5gONEXE5ohoA+qAmi5taoBbk/JS\n4PykPBOoi4j2iNgENAHTI2J7RPwSICLeABqBCQPaErOUZFev51//YwWbfLmvDQOlDF6bAGwpeN5M\nLlEUbRMRHZL2Shqf1K8qaNdCly9/Se8FzgWe7Evg1jfLH2vg0TUvsm3X3rRDGbYeW7OR9044Ke0w\nzAakUiOaSxpeLek4cnsWVyd7DEXNmzcvX85kMmQymQGGN7Ls3befm5Y8nHYYZlYh2WyWbDZblr5K\nSQotwOSC5xOTukLNwCRgq6TRwLiIaJXUktS/bV1JY8glhEURcVdPARQmBeu73a91m2/NbBjo+mO5\ntra2332Vck6hHpgqaYqkscAsYFmXNncDVyTly4AVSXkZMCu5Ouk0YCqwOln2I6AhIr7b7+jNzKys\net1TSM4RXAUsJ5dEFkZEo6RaoD4i7gEWAoskNQG7ySUOIqJB0hKgAWgD5kRESPot4A+B5yStBQL4\nq4i4vwLbaGZmJSrpnELyZX1Gl7q5BeWD5C49LbbufGB+l7rHgNF9DdbMzCrLI5rNyuTFV3Zx05KH\neeHFrWmHYtZvTgpmZfLshmaWP9bA396wjPb2jrTDMesXJ4VhzrPWpWPfWwfTDsGsXzzz2jC28sn1\n3LbsCSacckLaoZjZEOGkMIwtWLwSgNff2J9yJGY2VPjwkZmZ5TkpmJlZnpOCWQU8s24L/7HsCXa2\n7ks7FLM+8TkFswq44fbc+Zxfrm/mn77xuZSjMSud9xTMKujlZs+xYEOL9xSGmba2DlY9s5FTxo9L\nOxQzG4KcFIaZu7PPcvs9nq/IzPrHh4+GGScEMxsIJwWzCntuQwuPPNXk+yHZkODDR2YVNu97dwOw\n760DfPp3PpByNGY9856C2SBZeOdjaYdg1quSkoKkGZLWSdog6Zoiy8dKqpPUJGmVpMkFy65N6hsl\nXVhQv1DSDknPlmdTRrYDB9t4c7/vzGlmA9Pr4SNJo4AFwAXAVqBe0l0Rsa6g2ZVAa0RMk3Q5cB25\nuZnPJjcj21nAROBBSdMidz/nW4AbgNvKukUj0PZXX+cb/7iU9o7OtEMxsyGulD2F6UBTRGyOiDag\nDqjp0qYGuDUpLwXOT8ozgbqIaI+ITUBT0h8R8SiwZ2DhG8D3Fq/krQOHONTWnnYo1ou9+/Zz4GBb\n2mGYdauUpDAB2FLwvDmpK9omIjqAvZLGF1m3pci6NkAtO19LOwQr0Z/OXcSX/3YRu197I+1QzIqq\n1NVHKmdn8+bNy5czmQyZTKac3ZsNmo6OTvZ3HOKHSx/lmi/PSDscGyay2SzZbLYsfZWSFFqAyQXP\nJyZ1hZqBScBWSaOBcRHRKqklqe9p3V4VJgV7O8+4OfTsbPWegpVP1x/LtbW1/e6rlKRQD0yVNAXY\nBswCZndpczdwBfAkcBmwIqlfBtwu6TvkDhtNBVYXrCfKvFcxUkQECxZnWf/yds+sZmZl0+s5heQc\nwVXAcuAFcieOGyXVSvr9pNlC4CRJTcD/BL6ZrNsALAEagJ8Bc5Irj5C0GHgcOF3SK5K+WN5NG96e\nbniF7Or1bNu1N+1QrB9aduxhweKVPPzUhrRDMTuCosqPPUiKao8xDUuXr+GOe1f33tCq3o1/+wVO\n/TXf1dbKRxIR0a+jMB7RPEQdOHAo7RCsTBpe3JZ2CGZ5vvfRELPupe088nQT9z/6QtqhmNkw5MNH\nQ0hnZyeXff3mtMOwMnvfpJM5eKidmed/kAt+86y0w7FhwIePRohDbb718nC0ccsumnfs4cY7Hko7\nFDMfPhoq9r15gIaNPvZsZpXlpDAE3P/IC/xg6SNph2GD4N6HnmP9ph1cfvFHmXDKCWmHYyOQzykM\nAZde/f20Q7BB9u6TxvG9//OFtMOwIWog5xS8p1DFtu58jda9b6YdhqVg+6uv097eQUdnJ0ePPSrt\ncGwE8Z5Clap/fhN//4P70w7DUjTuuGNob+/gW1+dyWkTT0o7HBtCfPXRMBMRTgjG62/s560Dh5j/\ng/sYiT+MLB3eU6gih9ramf2XP0w7DKtC7z5pHKf+2jj+6isXM2bM6LTDsSrnPYVhYN+bB5wQrFvb\nX32dZ9Y3c+/Dz9Oy8zU6PPWqVYj3FFJ28FAbX/jGwrTDsCFm2pRTmP/1S5B853l7u4HsKTgppGTz\n1lau+ec7aWv3KGXrn3efNI6TTjyOz37qPD50xsS0w7Eq4qQwREQE9z3yPOs37eDRp19MOxwbRi7+\n7fcD8NlPfZjxxx+bcjSWtoonBUkzgOvJnYNYGBH/0GX5WOA24CPAq8DlEfFKsuxa4EtAO3B1RCwv\npc+Cvod0UogI7n/0BV54cRurfrkx7XBsBDj+Xccw/QPv5U8+8wnGjB7lE9MjUEWTgqRRwAbgAmAr\nuek5Z0XEuoI2fw58ICLmSLocuCQiZkk6G7gd+A1y8zM/CEwjNwVnj30W9D2kksLefftpa+/gG/90\nZ9VNk7mreQMnTzw97TCGjaH0fn7uwvM47p3v4KPvn8J7Tj6e9vaOqksW2Wz2iHmGrf8qPaJ5OtAU\nEZuTF6sDaoDCL/AaYG5SXgrckJRnkpu+sx3YlEzXOZ1cUuitz6oREUjiwME29r15gHccfRTLH2+g\nrb2D5zdspfGloXGjuqH0JTYUDKX3c+nyNQD8+08ff9uyMWNG86HTJzLpPSdy2oSTmHDqCYwePYqT\nTzyOsUeNoaOzk7FHVf7mB04K1aGU/+kJwJaC583kvtiLtomIDkl7JY1P6lcVtGtJ6lRCn3l/d9N9\nBL/aW+huz+FwdeHy7nYyDvd3uO1LW17lLc9mZiNQe3sHTzds5umGzQPq5yNnTxnQ+o881cTf3XTf\ngPqwgatU+i/rdXID/bCaWeUN9O906669/luvAqUkhRZgcsHziUldoWZgErBV0mhgXES0SmpJ6ruu\nqxL6zPvJv/55CWFaKdatvjftEIYVv5/l5fczfaUkhXpgqqQpwDZgFjC7S5u7gSuAJ4HLgBVJ/TLg\ndknfIXfYaCqwmtwVR731CdDvkyVmZtZ3vSaF5BzBVcByfnX5aKOkWqA+Iu4BFgKLkhPJu8l9yRMR\nDZKWAA1AGzAnuZSoaJ8V2D4zM+uDqh+8ZmZmg6fqbogn6XOSnpfUIem8HtrNkLRO0gZJ1wxmjEOF\npBMlLZe0XtLPJR3fTbsOSWskrZX008GOs9r19lmTNFZSnaQmSaskTS7Wj5X0Xl4haWfyeVwj6Utp\nxDlUSFooaYekZ3to86/JZ/OXks7trc+qSwrAc8AlwEPdNUgG1C0ALgLOAWZLOnNwwhtSvgk8GBFn\nkDvPc2037d6MiPMi4sMR8ZnBC6/6lfhZuxJojYhp5EbpXze4UQ4Nffi7rUs+j+dFxI8GNcih5xZy\n72dRki4G3pd8Nv8M6HVu36pLChGxPiKa6Pmy1vyAuohoAw4PfrMj1QC3JuVbge6+8H0yv3ulfNYK\n3+el5Ebq29uV+nfrz2OJIuJRYE8PTWrI3YKIiHgSOF7SqT31WXVJoUTFBtRNSCmWanZKROwAiIjt\nwCndtDta0mpJj0tycj1SKZ+1IwZvAq8lgzftSKX+3X42OdSxRJJv/zowXd/zwwOIu1X5setFSHoA\nKMxWAgL464i4O42Yhqoe3su/KdK8u6sKpkTENkmnASskPRsRL5c51JHEv3T7bxmwOCLaJH2F3B6Y\n97wGUSpJISI+NcAuShlQNyL09F4mJ6BOjYgdkt4N7Oymj23Jvy9LygIfBpwUcvo9eHOQ4htKen0v\nI6LwUMgP8fmZgepuAHG3qv3wUXe/uPID6pLbds8i9wvDjrQM+JOkfAVwV9cGkk5I3kMknQR8gty4\nEssp5bN2ePAmHDl4047U63uZ/Hg5rAZ/Fkshuv+uXAb8MYCk3wReO3xIuVsRUVUPcidDtwD7yY12\nvi+pfw+5pp0VAAABq0lEQVRwT0G7GcB6oAn4ZtpxV+MDGE/uduXryQ0UPCGp/whwc1L+OPAssBZ4\nBviTtOOutkexzxpQC/x+Uj4aWJIsfwJ4b9oxV+ujhPfy74Dnk8/jL4DT0465mh/AYnLTDxwEXgG+\nSO4qo68UtFkAvJj8fZ/XW58evGZmZnnVfvjIzMwGkZOCmZnlOSmYmVmek4KZmeU5KZiZVZFSbnJX\n0PZfkhtZrklufDng8TG++sjMrIpI+m/AG8BtEfHBPqx3FXBuRHx5IK/vPQUzsyoSRW5yJ+nXJd0n\nqV7SQ5JOL7LqbOCOgb5+Kre5MDOzPrkZ+LOI2ChpOvBvFNwTKpnD472UYTS9k4KZWRWTdCy528/8\nWNLh21kc1aXZLGBplOF8gJOCmVl1GwXsiYhuZ6IklxTmlOvFzMysuuRvchcR+4CXJX0uv1D6YEH5\nTHL3NXuiHC/spGBmVkUkLQYeB06X9IqkLwJ/CFyZTD70PDCzYJXLyc1iV57X9yWpZmZ2mPcUzMws\nz0nBzMzynBTMzCzPScHMzPKcFMzMLM9JwczM8pwUzMwsz0nBzMzy/j+3Rm33YL9w9AAAAABJRU5E\nrkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7f735a9ba898>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "money_city = np.where(df['BRINK']==1, df['CITY'], 0).sum(0)\n", "print((pmf_diff * money_city).CredibleInterval(50))\n", "thinkplot.Pmf(pmf_diff * money_city)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Above we see a plot of stolen money in millions. We have also calculated a credible interval that tells us that there is a 50% chance that Brink stole between 1.4 to 3.6 million dollars." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In pursuit of more evidence, we find the probability that the standard deviation in the Brink collections is higher than that of the general contractors." ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0.0050527025817088851" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pmf_sigma1.ProbGreater(pmf_sigma0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that there is an extremely low chance that the standard deviation that the Brink collections is higher than the general collections." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "At this point, we have seemingly overwhelming evidence that Brink stole money from the city. I solved this problem using tools I learned in class. If I were to do this problem again, I would to it without calcualting the variance because the best evidence is to calculate if and how much money was stolen." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Final project ideas\n", "\n", "Over the past few weeks, I have dabbled into potential final projects. One of my ideas was to predict the content of tweets based on other words in the tweet. For example, if we were to update with word \"emails\" how does the probability change for the tweet to contain Hillary, Trump, or Hillary and Trump. I mined quite a bit of data over debate night but I'm not convinved that this is a particularly interesting project." ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-2.0
marxav/hello-world
keras_regression.ipynb
1
191207
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Example of Linear Regression with Keras and TensorFlow\n", "# Y = 10 * X +100" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.12.0\n" ] } ], "source": [ "from __future__ import absolute_import, division, print_function\n", "\n", "import tensorflow as tf\n", "from tensorflow import keras\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "print(tf.__version__)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "model = keras.Sequential([\n", " keras.layers.Flatten(input_shape=(1,)),\n", " keras.layers.Dense(50, activation=tf.nn.relu),\n", " keras.layers.Dense(50, activation=tf.nn.relu),\n", " keras.layers.Dense(50, activation=tf.nn.relu),\n", " keras.layers.Dense(1) \n", "])" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001), \n", " loss='mean_squared_error',\n", " metrics=['mean_absolute_error', 'mean_squared_error'])" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "flatten (Flatten) (None, 1) 0 \n", "_________________________________________________________________\n", "dense (Dense) (None, 50) 100 \n", "_________________________________________________________________\n", "dense_1 (Dense) (None, 50) 2550 \n", "_________________________________________________________________\n", "dense_2 (Dense) (None, 50) 2550 \n", "_________________________________________________________________\n", "dense_3 (Dense) (None, 1) 51 \n", "=================================================================\n", "Total params: 5,251\n", "Trainable params: 5,251\n", "Non-trainable params: 0\n", "_________________________________________________________________\n" ] } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "output_actions = np.array([])\n", "input_values = np.array([])" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "import random\n", "\n", "N = 20000\n", "arrayy = np.arange(0, N) \n", "input_values = arrayy[np.indices((N, 1))[0]]\n", "\n", "output_values_0 = np.multiply(input_values, 10)\n", "# add some noise (deliberately)\n", "output_values_1 = np.add(output_values_0, random.randint(0,1))\n", "output_values = np.add(output_values_1, 100)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 0],\n", " [ 1],\n", " [ 2],\n", " ...,\n", " [19997],\n", " [19998],\n", " [19999]])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "input_values" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 101],\n", " [ 111],\n", " [ 121],\n", " ...,\n", " [200071],\n", " [200081],\n", " [200091]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "output_values" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/1000\n", "20000/20000 [==============================] - 1s 45us/step - loss: 931314750.0369 - mean_absolute_error: 9895.2112 - mean_squared_error: 931314750.0369\n", "Epoch 2/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1549212.1943 - mean_absolute_error: 897.3197 - mean_squared_error: 1549212.1943\n", "Epoch 3/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 1566370.6091 - mean_absolute_error: 900.4903 - mean_squared_error: 1566370.6091\n", "Epoch 4/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1546851.4102 - mean_absolute_error: 802.4039 - mean_squared_error: 1546851.4102\n", "Epoch 5/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1543366.0469 - mean_absolute_error: 824.0517 - mean_squared_error: 1543366.0469\n", "Epoch 6/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1542465.8952 - mean_absolute_error: 904.3179 - mean_squared_error: 1542465.8952\n", "Epoch 7/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 1525593.2885 - mean_absolute_error: 829.4882 - mean_squared_error: 1525593.2885\n", "Epoch 8/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 1523187.4035 - mean_absolute_error: 799.1227 - mean_squared_error: 1523187.4035\n", "Epoch 9/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 1537970.3433 - mean_absolute_error: 899.4831 - mean_squared_error: 1537970.3433\n", "Epoch 10/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 1485208.2267 - mean_absolute_error: 846.7556 - mean_squared_error: 1485208.2267\n", "Epoch 11/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 1499856.4886 - mean_absolute_error: 805.0920 - mean_squared_error: 1499856.4886\n", "Epoch 12/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1511609.8851 - mean_absolute_error: 863.5404 - mean_squared_error: 1511609.8851\n", "Epoch 13/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1497356.7798 - mean_absolute_error: 824.6597 - mean_squared_error: 1497356.7798\n", "Epoch 14/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 1479625.4781 - mean_absolute_error: 810.5009 - mean_squared_error: 1479625.4781\n", "Epoch 15/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1468881.6829 - mean_absolute_error: 830.9410 - mean_squared_error: 1468881.6829\n", "Epoch 16/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 1471038.4939 - mean_absolute_error: 810.4743 - mean_squared_error: 1471038.4939\n", "Epoch 17/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1465161.1126 - mean_absolute_error: 874.1640 - mean_squared_error: 1465161.1126\n", "Epoch 18/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1465644.1005 - mean_absolute_error: 817.4796 - mean_squared_error: 1465644.1005\n", "Epoch 19/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1452535.6209 - mean_absolute_error: 878.5903 - mean_squared_error: 1452535.6209\n", "Epoch 20/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1448771.3371 - mean_absolute_error: 835.8036 - mean_squared_error: 1448771.3371\n", "Epoch 21/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1436427.5995 - mean_absolute_error: 814.1173 - mean_squared_error: 1436427.5995\n", "Epoch 22/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1445433.2408 - mean_absolute_error: 834.2871 - mean_squared_error: 1445433.2408\n", "Epoch 23/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1413394.5537 - mean_absolute_error: 804.4256 - mean_squared_error: 1413394.5537\n", "Epoch 24/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1421979.5564 - mean_absolute_error: 808.7175 - mean_squared_error: 1421979.5564\n", "Epoch 25/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1403953.5342 - mean_absolute_error: 848.0311 - mean_squared_error: 1403953.5342\n", "Epoch 26/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1385762.9352 - mean_absolute_error: 778.0141 - mean_squared_error: 1385762.9352\n", "Epoch 27/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1370026.2592 - mean_absolute_error: 764.1778 - mean_squared_error: 1370026.2592\n", "Epoch 28/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1381142.2740 - mean_absolute_error: 794.7016 - mean_squared_error: 1381142.2740\n", "Epoch 29/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 1377789.9318 - mean_absolute_error: 840.4099 - mean_squared_error: 1377789.9318\n", "Epoch 30/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1372745.9614 - mean_absolute_error: 793.5550 - mean_squared_error: 1372745.9614\n", "Epoch 31/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 1355011.2335 - mean_absolute_error: 808.2977 - mean_squared_error: 1355011.2335\n", "Epoch 32/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1332861.8144 - mean_absolute_error: 801.8185 - mean_squared_error: 1332861.8144\n", "Epoch 33/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1337508.4648 - mean_absolute_error: 765.0909 - mean_squared_error: 1337508.4648\n", "Epoch 34/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1348230.5390 - mean_absolute_error: 845.0201 - mean_squared_error: 1348230.5390\n", "Epoch 35/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1313560.9214 - mean_absolute_error: 737.6593 - mean_squared_error: 1313560.9214\n", "Epoch 36/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1334860.6405 - mean_absolute_error: 805.1824 - mean_squared_error: 1334860.6405\n", "Epoch 37/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1322725.7073 - mean_absolute_error: 755.2652 - mean_squared_error: 1322725.7073\n", "Epoch 38/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1332600.4097 - mean_absolute_error: 806.4171 - mean_squared_error: 1332600.4097\n", "Epoch 39/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1322744.4657 - mean_absolute_error: 828.0596 - mean_squared_error: 1322744.4657\n", "Epoch 40/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1305701.6055 - mean_absolute_error: 779.8580 - mean_squared_error: 1305701.6055\n", "Epoch 41/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1321885.0499 - mean_absolute_error: 802.7795 - mean_squared_error: 1321885.0499\n", "Epoch 42/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1291254.1011 - mean_absolute_error: 722.6558 - mean_squared_error: 1291254.1011\n", "Epoch 43/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 1288347.9625 - mean_absolute_error: 757.7389 - mean_squared_error: 1288347.9625\n", "Epoch 44/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1286090.6578 - mean_absolute_error: 778.5618 - mean_squared_error: 1286090.6578\n", "Epoch 45/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1288341.2711 - mean_absolute_error: 773.4709 - mean_squared_error: 1288341.2711\n", "Epoch 46/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1315953.0053 - mean_absolute_error: 817.4972 - mean_squared_error: 1315953.0053\n", "Epoch 47/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1280526.6313 - mean_absolute_error: 787.4418 - mean_squared_error: 1280526.6313\n", "Epoch 48/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1283821.9405 - mean_absolute_error: 762.7715 - mean_squared_error: 1283821.9405\n", "Epoch 49/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1274626.9021 - mean_absolute_error: 753.0251 - mean_squared_error: 1274626.9021\n", "Epoch 50/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1266730.5306 - mean_absolute_error: 797.7113 - mean_squared_error: 1266730.5306\n", "Epoch 51/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 35us/step - loss: 1312413.3417 - mean_absolute_error: 832.0556 - mean_squared_error: 1312413.3417\n", "Epoch 52/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1303374.9511 - mean_absolute_error: 815.4266 - mean_squared_error: 1303374.9511\n", "Epoch 53/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1322779.1226 - mean_absolute_error: 783.2957 - mean_squared_error: 1322779.1226\n", "Epoch 54/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1290640.4524 - mean_absolute_error: 788.2703 - mean_squared_error: 1290640.4524\n", "Epoch 55/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1273693.8434 - mean_absolute_error: 750.5214 - mean_squared_error: 1273693.8434\n", "Epoch 56/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 1310060.0662 - mean_absolute_error: 743.2017 - mean_squared_error: 1310060.0662\n", "Epoch 57/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 1270189.7662 - mean_absolute_error: 825.1636 - mean_squared_error: 1270189.7662\n", "Epoch 58/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1258290.4795 - mean_absolute_error: 784.3876 - mean_squared_error: 1258290.4795\n", "Epoch 59/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1221264.8094 - mean_absolute_error: 787.6222 - mean_squared_error: 1221264.8094\n", "Epoch 60/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1180733.1856 - mean_absolute_error: 762.4821 - mean_squared_error: 1180733.1856\n", "Epoch 61/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1208473.6083 - mean_absolute_error: 804.3479 - mean_squared_error: 1208473.6083\n", "Epoch 62/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1193978.9235 - mean_absolute_error: 755.1481 - mean_squared_error: 1193978.9235\n", "Epoch 63/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1178559.8693 - mean_absolute_error: 731.0714 - mean_squared_error: 1178559.8693\n", "Epoch 64/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1202827.1846 - mean_absolute_error: 759.8720 - mean_squared_error: 1202827.1846\n", "Epoch 65/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1156698.2721 - mean_absolute_error: 756.0274 - mean_squared_error: 1156698.2721\n", "Epoch 66/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1147739.3669 - mean_absolute_error: 722.5336 - mean_squared_error: 1147739.3669\n", "Epoch 67/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1151123.9782 - mean_absolute_error: 741.0561 - mean_squared_error: 1151123.9782\n", "Epoch 68/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 1130288.9604 - mean_absolute_error: 761.9443 - mean_squared_error: 1130288.9604\n", "Epoch 69/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1131194.6206 - mean_absolute_error: 707.0711 - mean_squared_error: 1131194.6206\n", "Epoch 70/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1121054.2912 - mean_absolute_error: 715.1861 - mean_squared_error: 1121054.2912\n", "Epoch 71/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1102900.8148 - mean_absolute_error: 738.3158 - mean_squared_error: 1102900.8148\n", "Epoch 72/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1109429.6793 - mean_absolute_error: 725.9432 - mean_squared_error: 1109429.6793\n", "Epoch 73/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1088610.4510 - mean_absolute_error: 688.4464 - mean_squared_error: 1088610.4510\n", "Epoch 74/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1098373.4238 - mean_absolute_error: 725.2978 - mean_squared_error: 1098373.4238\n", "Epoch 75/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1103416.8336 - mean_absolute_error: 783.2625 - mean_squared_error: 1103416.8336\n", "Epoch 76/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 1083165.5727 - mean_absolute_error: 726.2352 - mean_squared_error: 1083165.5727\n", "Epoch 77/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1060416.9413 - mean_absolute_error: 700.3848 - mean_squared_error: 1060416.9413\n", "Epoch 78/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1080521.0592 - mean_absolute_error: 699.4147 - mean_squared_error: 1080521.0592\n", "Epoch 79/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1064568.8894 - mean_absolute_error: 652.5775 - mean_squared_error: 1064568.8894\n", "Epoch 80/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1053634.0207 - mean_absolute_error: 693.0271 - mean_squared_error: 1053634.0207\n", "Epoch 81/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1047676.1505 - mean_absolute_error: 736.0491 - mean_squared_error: 1047676.1505\n", "Epoch 82/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1050376.2383 - mean_absolute_error: 725.1265 - mean_squared_error: 1050376.2383\n", "Epoch 83/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1027868.6167 - mean_absolute_error: 705.6306 - mean_squared_error: 1027868.6167\n", "Epoch 84/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1040388.2489 - mean_absolute_error: 687.6364 - mean_squared_error: 1040388.2489\n", "Epoch 85/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1025981.0631 - mean_absolute_error: 666.6759 - mean_squared_error: 1025981.0631\n", "Epoch 86/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 1024039.7377 - mean_absolute_error: 672.1152 - mean_squared_error: 1024039.7377\n", "Epoch 87/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 1012425.0410 - mean_absolute_error: 654.7248 - mean_squared_error: 1012425.0410\n", "Epoch 88/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 995779.2288 - mean_absolute_error: 684.1042 - mean_squared_error: 995779.2288\n", "Epoch 89/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 1003292.7736 - mean_absolute_error: 677.3810 - mean_squared_error: 1003292.7736\n", "Epoch 90/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 996083.9794 - mean_absolute_error: 709.2728 - mean_squared_error: 996083.9794\n", "Epoch 91/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 989392.9960 - mean_absolute_error: 613.6151 - mean_squared_error: 989392.9960\n", "Epoch 92/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 988688.0231 - mean_absolute_error: 724.2568 - mean_squared_error: 988688.0231\n", "Epoch 93/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 980686.8023 - mean_absolute_error: 662.1824 - mean_squared_error: 980686.8023\n", "Epoch 94/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 962430.4817 - mean_absolute_error: 630.6615 - mean_squared_error: 962430.4817\n", "Epoch 95/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 956295.4724 - mean_absolute_error: 644.0579 - mean_squared_error: 956295.4724\n", "Epoch 96/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 969963.6573 - mean_absolute_error: 674.5737 - mean_squared_error: 969963.6573\n", "Epoch 97/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 951322.2374 - mean_absolute_error: 696.1588 - mean_squared_error: 951322.2374\n", "Epoch 98/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 948796.4706 - mean_absolute_error: 692.2035 - mean_squared_error: 948796.4706\n", "Epoch 99/1000\n", "20000/20000 [==============================] - ETA: 0s - loss: 939977.0956 - mean_absolute_error: 644.7724 - mean_squared_error: 939977.09 - 1s 35us/step - loss: 937308.3337 - mean_absolute_error: 646.0998 - mean_squared_error: 937308.3337\n", "Epoch 100/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 937837.0005 - mean_absolute_error: 667.3138 - mean_squared_error: 937837.0005\n", "Epoch 101/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 38us/step - loss: 923626.8257 - mean_absolute_error: 667.3909 - mean_squared_error: 923626.8257\n", "Epoch 102/1000\n", "20000/20000 [==============================] - 1s 44us/step - loss: 930307.3358 - mean_absolute_error: 709.4747 - mean_squared_error: 930307.3358\n", "Epoch 103/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 924676.5534 - mean_absolute_error: 673.2807 - mean_squared_error: 924676.5534\n", "Epoch 104/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 902418.5425 - mean_absolute_error: 662.1312 - mean_squared_error: 902418.5425\n", "Epoch 105/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 890020.1738 - mean_absolute_error: 663.0623 - mean_squared_error: 890020.1738\n", "Epoch 106/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 896098.9570 - mean_absolute_error: 671.1038 - mean_squared_error: 896098.9570\n", "Epoch 107/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 877261.5013 - mean_absolute_error: 659.3917 - mean_squared_error: 877261.5013\n", "Epoch 108/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 861297.1023 - mean_absolute_error: 655.4739 - mean_squared_error: 861297.1023\n", "Epoch 109/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 863794.1230 - mean_absolute_error: 668.7294 - mean_squared_error: 863794.1230\n", "Epoch 110/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 851713.7644 - mean_absolute_error: 640.8322 - mean_squared_error: 851713.7644\n", "Epoch 111/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 861672.0186 - mean_absolute_error: 665.6824 - mean_squared_error: 861672.0186\n", "Epoch 112/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 839953.6020 - mean_absolute_error: 570.6245 - mean_squared_error: 839953.6020\n", "Epoch 113/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 856167.0151 - mean_absolute_error: 683.0892 - mean_squared_error: 856167.0151\n", "Epoch 114/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 849742.1517 - mean_absolute_error: 669.2970 - mean_squared_error: 849742.1517\n", "Epoch 115/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 829490.3069 - mean_absolute_error: 609.6478 - mean_squared_error: 829490.3069\n", "Epoch 116/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 846701.4280 - mean_absolute_error: 643.8963 - mean_squared_error: 846701.4280\n", "Epoch 117/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 843762.0358 - mean_absolute_error: 643.4638 - mean_squared_error: 843762.0358\n", "Epoch 118/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 831016.0706 - mean_absolute_error: 643.4483 - mean_squared_error: 831016.0706\n", "Epoch 119/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 840242.7334 - mean_absolute_error: 657.1329 - mean_squared_error: 840242.7334\n", "Epoch 120/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 823962.7438 - mean_absolute_error: 635.3171 - mean_squared_error: 823962.7438\n", "Epoch 121/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 830135.3011 - mean_absolute_error: 627.2357 - mean_squared_error: 830135.3011\n", "Epoch 122/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 807679.4695 - mean_absolute_error: 594.8254 - mean_squared_error: 807679.4695\n", "Epoch 123/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 822989.1434 - mean_absolute_error: 606.5997 - mean_squared_error: 822989.1434\n", "Epoch 124/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 814500.1398 - mean_absolute_error: 638.8737 - mean_squared_error: 814500.1398\n", "Epoch 125/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 814464.2128 - mean_absolute_error: 634.3386 - mean_squared_error: 814464.2128\n", "Epoch 126/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 819691.2878 - mean_absolute_error: 624.5595 - mean_squared_error: 819691.2878\n", "Epoch 127/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 798310.1952 - mean_absolute_error: 645.7442 - mean_squared_error: 798310.1952\n", "Epoch 128/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 805704.7881 - mean_absolute_error: 588.3116 - mean_squared_error: 805704.7881\n", "Epoch 129/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 798981.0828 - mean_absolute_error: 599.9985 - mean_squared_error: 798981.0828\n", "Epoch 130/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 812356.7292 - mean_absolute_error: 643.2379 - mean_squared_error: 812356.7292\n", "Epoch 131/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 799478.6643 - mean_absolute_error: 618.3464 - mean_squared_error: 799478.6643\n", "Epoch 132/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 791607.8853 - mean_absolute_error: 630.6919 - mean_squared_error: 791607.8853\n", "Epoch 133/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 799807.4282 - mean_absolute_error: 619.1259 - mean_squared_error: 799807.4282\n", "Epoch 134/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 792249.8967 - mean_absolute_error: 634.7428 - mean_squared_error: 792249.8967\n", "Epoch 135/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 781587.5046 - mean_absolute_error: 606.5682 - mean_squared_error: 781587.5046\n", "Epoch 136/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 778320.6391 - mean_absolute_error: 584.3112 - mean_squared_error: 778320.6391\n", "Epoch 137/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 781705.9652 - mean_absolute_error: 627.1400 - mean_squared_error: 781705.9652\n", "Epoch 138/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 780089.2451 - mean_absolute_error: 603.7550 - mean_squared_error: 780089.2451\n", "Epoch 139/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 770362.8581 - mean_absolute_error: 568.1287 - mean_squared_error: 770362.8581\n", "Epoch 140/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 763864.1999 - mean_absolute_error: 598.3495 - mean_squared_error: 763864.1999\n", "Epoch 141/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 768093.9767 - mean_absolute_error: 609.1263 - mean_squared_error: 768093.9767\n", "Epoch 142/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 757565.6944 - mean_absolute_error: 612.7949 - mean_squared_error: 757565.6944\n", "Epoch 143/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 757046.7144 - mean_absolute_error: 569.6434 - mean_squared_error: 757046.7144\n", "Epoch 144/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 752332.9568 - mean_absolute_error: 596.8793 - mean_squared_error: 752332.9568\n", "Epoch 145/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 759655.6694 - mean_absolute_error: 587.4353 - mean_squared_error: 759655.6694\n", "Epoch 146/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 756922.8346 - mean_absolute_error: 609.7047 - mean_squared_error: 756922.8346\n", "Epoch 147/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 750934.5616 - mean_absolute_error: 581.4416 - mean_squared_error: 750934.5616\n", "Epoch 148/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 753916.8323 - mean_absolute_error: 594.3005 - mean_squared_error: 753916.8323\n", "Epoch 149/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 766936.1669 - mean_absolute_error: 615.2146 - mean_squared_error: 766936.1669\n", "Epoch 150/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 754509.3161 - mean_absolute_error: 620.3567 - mean_squared_error: 754509.3161\n", "Epoch 151/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 742461.5545 - mean_absolute_error: 569.8233 - mean_squared_error: 742461.5545\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 152/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 744733.9025 - mean_absolute_error: 599.6969 - mean_squared_error: 744733.9025\n", "Epoch 153/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 740493.3825 - mean_absolute_error: 554.0676 - mean_squared_error: 740493.3825\n", "Epoch 154/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 753207.5627 - mean_absolute_error: 622.6101 - mean_squared_error: 753207.5627\n", "Epoch 155/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 734821.7353 - mean_absolute_error: 568.7661 - mean_squared_error: 734821.7353\n", "Epoch 156/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 740222.9415 - mean_absolute_error: 561.5578 - mean_squared_error: 740222.9415\n", "Epoch 157/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 737280.2636 - mean_absolute_error: 571.9582 - mean_squared_error: 737280.2636\n", "Epoch 158/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 725649.5590 - mean_absolute_error: 577.4001 - mean_squared_error: 725649.5590\n", "Epoch 159/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 735213.3448 - mean_absolute_error: 580.3430 - mean_squared_error: 735213.3448\n", "Epoch 160/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 719752.8180 - mean_absolute_error: 559.4052 - mean_squared_error: 719752.8180\n", "Epoch 161/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 721071.8832 - mean_absolute_error: 584.0313 - mean_squared_error: 721071.8832\n", "Epoch 162/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 718423.2250 - mean_absolute_error: 556.6795 - mean_squared_error: 718423.2250\n", "Epoch 163/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 724361.6395 - mean_absolute_error: 591.5986 - mean_squared_error: 724361.6395\n", "Epoch 164/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 720890.6092 - mean_absolute_error: 573.7270 - mean_squared_error: 720890.6092\n", "Epoch 165/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 724375.5782 - mean_absolute_error: 621.4123 - mean_squared_error: 724375.5782\n", "Epoch 166/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 722114.2097 - mean_absolute_error: 620.6903 - mean_squared_error: 722114.2097\n", "Epoch 167/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 714834.6195 - mean_absolute_error: 602.0625 - mean_squared_error: 714834.6195\n", "Epoch 168/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 727344.6613 - mean_absolute_error: 598.2711 - mean_squared_error: 727344.6613\n", "Epoch 169/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 705253.0594 - mean_absolute_error: 572.7855 - mean_squared_error: 705253.0594\n", "Epoch 170/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 726740.1282 - mean_absolute_error: 591.0394 - mean_squared_error: 726740.1282\n", "Epoch 171/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 711788.2646 - mean_absolute_error: 581.6058 - mean_squared_error: 711788.2646\n", "Epoch 172/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 700468.8119 - mean_absolute_error: 551.5494 - mean_squared_error: 700468.8119\n", "Epoch 173/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 718765.7465 - mean_absolute_error: 598.8215 - mean_squared_error: 718765.7465\n", "Epoch 174/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 702750.0299 - mean_absolute_error: 561.0323 - mean_squared_error: 702750.0299\n", "Epoch 175/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 706815.5088 - mean_absolute_error: 565.3767 - mean_squared_error: 706815.5088\n", "Epoch 176/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 713482.8697 - mean_absolute_error: 615.2356 - mean_squared_error: 713482.8697\n", "Epoch 177/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 711183.2745 - mean_absolute_error: 563.4764 - mean_squared_error: 711183.2745\n", "Epoch 178/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 701899.5405 - mean_absolute_error: 584.4317 - mean_squared_error: 701899.5405\n", "Epoch 179/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 702015.1554 - mean_absolute_error: 541.9098 - mean_squared_error: 702015.1554\n", "Epoch 180/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 696549.0106 - mean_absolute_error: 567.5951 - mean_squared_error: 696549.0106\n", "Epoch 181/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 690731.8508 - mean_absolute_error: 510.4444 - mean_squared_error: 690731.8508\n", "Epoch 182/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 702849.9345 - mean_absolute_error: 551.8382 - mean_squared_error: 702849.9345\n", "Epoch 183/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 697623.9241 - mean_absolute_error: 602.6515 - mean_squared_error: 697623.9241\n", "Epoch 184/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 701915.6626 - mean_absolute_error: 616.9856 - mean_squared_error: 701915.6626\n", "Epoch 185/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 695173.2575 - mean_absolute_error: 559.8623 - mean_squared_error: 695173.2575\n", "Epoch 186/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 688711.9790 - mean_absolute_error: 538.8298 - mean_squared_error: 688711.9790\n", "Epoch 187/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 680550.9474 - mean_absolute_error: 529.1544 - mean_squared_error: 680550.9474\n", "Epoch 188/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 687654.5041 - mean_absolute_error: 581.2620 - mean_squared_error: 687654.5041\n", "Epoch 189/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 684420.5423 - mean_absolute_error: 587.8336 - mean_squared_error: 684420.5423\n", "Epoch 190/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 688341.5460 - mean_absolute_error: 587.2429 - mean_squared_error: 688341.5460\n", "Epoch 191/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 664251.7423 - mean_absolute_error: 531.3324 - mean_squared_error: 664251.7423\n", "Epoch 192/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 678861.8483 - mean_absolute_error: 559.7774 - mean_squared_error: 678861.8483\n", "Epoch 193/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 671657.9105 - mean_absolute_error: 562.9560 - mean_squared_error: 671657.9105\n", "Epoch 194/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 677421.4332 - mean_absolute_error: 547.0092 - mean_squared_error: 677421.4332\n", "Epoch 195/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 661223.8402 - mean_absolute_error: 551.3866 - mean_squared_error: 661223.8402\n", "Epoch 196/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 666821.2640 - mean_absolute_error: 552.1169 - mean_squared_error: 666821.2640\n", "Epoch 197/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 671155.6136 - mean_absolute_error: 539.0729 - mean_squared_error: 671155.6136\n", "Epoch 198/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 672920.2925 - mean_absolute_error: 578.0097 - mean_squared_error: 672920.2925\n", "Epoch 199/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 659368.8834 - mean_absolute_error: 578.0081 - mean_squared_error: 659368.8834\n", "Epoch 200/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 663983.2688 - mean_absolute_error: 552.3742 - mean_squared_error: 663983.2688\n", "Epoch 201/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 657259.9519 - mean_absolute_error: 557.4200 - mean_squared_error: 657259.9519\n", "Epoch 202/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 34us/step - loss: 651477.8419 - mean_absolute_error: 541.0117 - mean_squared_error: 651477.8419\n", "Epoch 203/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 661158.8236 - mean_absolute_error: 555.7526 - mean_squared_error: 661158.8236\n", "Epoch 204/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 652991.5856 - mean_absolute_error: 529.5201 - mean_squared_error: 652991.5856\n", "Epoch 205/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 652546.1676 - mean_absolute_error: 530.0391 - mean_squared_error: 652546.1676\n", "Epoch 206/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 651187.7578 - mean_absolute_error: 583.3110 - mean_squared_error: 651187.7578\n", "Epoch 207/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 654375.5632 - mean_absolute_error: 540.4721 - mean_squared_error: 654375.5632\n", "Epoch 208/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 646297.1432 - mean_absolute_error: 527.6234 - mean_squared_error: 646297.1432s - loss: 642638.9082 - mean_absolute_error: 648.6363 - mean_\n", "Epoch 209/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 641981.5826 - mean_absolute_error: 524.4488 - mean_squared_error: 641981.5826\n", "Epoch 210/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 649674.7773 - mean_absolute_error: 561.8154 - mean_squared_error: 649674.7773\n", "Epoch 211/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 651393.2518 - mean_absolute_error: 556.6287 - mean_squared_error: 651393.2518\n", "Epoch 212/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 649411.9024 - mean_absolute_error: 560.7625 - mean_squared_error: 649411.9024\n", "Epoch 213/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 640328.7436 - mean_absolute_error: 515.5082 - mean_squared_error: 640328.7436\n", "Epoch 214/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 649014.6080 - mean_absolute_error: 526.8351 - mean_squared_error: 649014.6080\n", "Epoch 215/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 640903.8501 - mean_absolute_error: 553.6975 - mean_squared_error: 640903.8501\n", "Epoch 216/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 644991.2388 - mean_absolute_error: 527.1591 - mean_squared_error: 644991.2388\n", "Epoch 217/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 626522.3721 - mean_absolute_error: 509.8469 - mean_squared_error: 626522.3721\n", "Epoch 218/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 646302.7867 - mean_absolute_error: 543.2545 - mean_squared_error: 646302.7867\n", "Epoch 219/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 647182.5719 - mean_absolute_error: 587.1779 - mean_squared_error: 647182.5719\n", "Epoch 220/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 627102.5969 - mean_absolute_error: 539.2955 - mean_squared_error: 627102.5969\n", "Epoch 221/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 643476.9788 - mean_absolute_error: 561.9865 - mean_squared_error: 643476.9788\n", "Epoch 222/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 644071.6265 - mean_absolute_error: 583.6399 - mean_squared_error: 644071.6265\n", "Epoch 223/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 630483.4019 - mean_absolute_error: 543.6973 - mean_squared_error: 630483.4019\n", "Epoch 224/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 634769.9494 - mean_absolute_error: 508.3782 - mean_squared_error: 634769.9494\n", "Epoch 225/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 643318.7155 - mean_absolute_error: 540.7980 - mean_squared_error: 643318.7155\n", "Epoch 226/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 616285.4484 - mean_absolute_error: 488.2247 - mean_squared_error: 616285.4484\n", "Epoch 227/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 629087.7445 - mean_absolute_error: 553.7893 - mean_squared_error: 629087.7445\n", "Epoch 228/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 636324.3907 - mean_absolute_error: 553.8580 - mean_squared_error: 636324.3907\n", "Epoch 229/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 628250.1894 - mean_absolute_error: 533.3439 - mean_squared_error: 628250.1894\n", "Epoch 230/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 622889.4812 - mean_absolute_error: 565.6136 - mean_squared_error: 622889.4812\n", "Epoch 231/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 630287.5665 - mean_absolute_error: 537.9036 - mean_squared_error: 630287.5665\n", "Epoch 232/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 624700.9570 - mean_absolute_error: 539.1464 - mean_squared_error: 624700.9570\n", "Epoch 233/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 621733.6685 - mean_absolute_error: 540.0286 - mean_squared_error: 621733.6685\n", "Epoch 234/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 619401.9809 - mean_absolute_error: 534.1259 - mean_squared_error: 619401.9809\n", "Epoch 235/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 619059.1590 - mean_absolute_error: 536.4461 - mean_squared_error: 619059.1590\n", "Epoch 236/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 619956.3169 - mean_absolute_error: 551.6397 - mean_squared_error: 619956.3169\n", "Epoch 237/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 614996.7738 - mean_absolute_error: 560.2783 - mean_squared_error: 614996.7738\n", "Epoch 238/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 609861.6352 - mean_absolute_error: 509.8006 - mean_squared_error: 609861.6352\n", "Epoch 239/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 616496.2207 - mean_absolute_error: 567.0113 - mean_squared_error: 616496.2207\n", "Epoch 240/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 600919.6068 - mean_absolute_error: 495.4208 - mean_squared_error: 600919.6068\n", "Epoch 241/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 613096.4519 - mean_absolute_error: 567.7890 - mean_squared_error: 613096.4519\n", "Epoch 242/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 612759.3947 - mean_absolute_error: 575.6181 - mean_squared_error: 612759.3947\n", "Epoch 243/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 610113.7126 - mean_absolute_error: 542.4155 - mean_squared_error: 610113.7126\n", "Epoch 244/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 594136.8692 - mean_absolute_error: 467.6224 - mean_squared_error: 594136.8692\n", "Epoch 245/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 604641.9968 - mean_absolute_error: 556.2793 - mean_squared_error: 604641.9968\n", "Epoch 246/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 604809.4938 - mean_absolute_error: 515.8778 - mean_squared_error: 604809.4938\n", "Epoch 247/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 598485.1612 - mean_absolute_error: 538.9649 - mean_squared_error: 598485.1612\n", "Epoch 248/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 598166.3098 - mean_absolute_error: 506.6888 - mean_squared_error: 598166.3098\n", "Epoch 249/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 595381.1160 - mean_absolute_error: 507.7437 - mean_squared_error: 595381.1160\n", "Epoch 250/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 606428.1282 - mean_absolute_error: 561.9658 - mean_squared_error: 606428.1282\n", "Epoch 251/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 590789.6435 - mean_absolute_error: 499.1728 - mean_squared_error: 590789.6435\n", "Epoch 252/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 35us/step - loss: 589125.6937 - mean_absolute_error: 503.6750 - mean_squared_error: 589125.6937\n", "Epoch 253/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 593731.1024 - mean_absolute_error: 507.8781 - mean_squared_error: 593731.1024\n", "Epoch 254/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 598122.6455 - mean_absolute_error: 554.7033 - mean_squared_error: 598122.6455\n", "Epoch 255/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 601915.1569 - mean_absolute_error: 566.8675 - mean_squared_error: 601915.1569\n", "Epoch 256/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 577188.1850 - mean_absolute_error: 499.3526 - mean_squared_error: 577188.1850\n", "Epoch 257/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 585809.5959 - mean_absolute_error: 516.3987 - mean_squared_error: 585809.5959\n", "Epoch 258/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 577491.4996 - mean_absolute_error: 515.3506 - mean_squared_error: 577491.4996\n", "Epoch 259/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 585246.1667 - mean_absolute_error: 535.0930 - mean_squared_error: 585246.1667\n", "Epoch 260/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 571445.0469 - mean_absolute_error: 518.3143 - mean_squared_error: 571445.0469\n", "Epoch 261/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 577904.2313 - mean_absolute_error: 520.1843 - mean_squared_error: 577904.2313\n", "Epoch 262/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 579058.0894 - mean_absolute_error: 520.3953 - mean_squared_error: 579058.0894\n", "Epoch 263/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 571074.5298 - mean_absolute_error: 531.9904 - mean_squared_error: 571074.5298\n", "Epoch 264/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 577948.9203 - mean_absolute_error: 495.4259 - mean_squared_error: 577948.9203\n", "Epoch 265/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 573469.2075 - mean_absolute_error: 535.4097 - mean_squared_error: 573469.2075\n", "Epoch 266/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 568962.9015 - mean_absolute_error: 512.9846 - mean_squared_error: 568962.9015\n", "Epoch 267/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 569569.6024 - mean_absolute_error: 514.9281 - mean_squared_error: 569569.6024\n", "Epoch 268/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 564523.4818 - mean_absolute_error: 486.0417 - mean_squared_error: 564523.4818\n", "Epoch 269/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 563967.6960 - mean_absolute_error: 519.4160 - mean_squared_error: 563967.6960\n", "Epoch 270/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 567358.8005 - mean_absolute_error: 521.4405 - mean_squared_error: 567358.8005\n", "Epoch 271/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 563916.4297 - mean_absolute_error: 506.2778 - mean_squared_error: 563916.4297\n", "Epoch 272/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 560975.7151 - mean_absolute_error: 498.6789 - mean_squared_error: 560975.7151\n", "Epoch 273/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 559584.5269 - mean_absolute_error: 483.5264 - mean_squared_error: 559584.5269\n", "Epoch 274/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 561424.9022 - mean_absolute_error: 511.2857 - mean_squared_error: 561424.9022\n", "Epoch 275/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 553334.7929 - mean_absolute_error: 518.8695 - mean_squared_error: 553334.7929\n", "Epoch 276/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 571087.7951 - mean_absolute_error: 526.1686 - mean_squared_error: 571087.7951\n", "Epoch 277/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 548899.3261 - mean_absolute_error: 491.8969 - mean_squared_error: 548899.3261\n", "Epoch 278/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 561005.8664 - mean_absolute_error: 502.8872 - mean_squared_error: 561005.8664\n", "Epoch 279/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 563217.9522 - mean_absolute_error: 530.2066 - mean_squared_error: 563217.9522\n", "Epoch 280/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 560568.3863 - mean_absolute_error: 534.8835 - mean_squared_error: 560568.3863\n", "Epoch 281/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 556316.8085 - mean_absolute_error: 522.9960 - mean_squared_error: 556316.8085\n", "Epoch 282/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 558756.6387 - mean_absolute_error: 525.6730 - mean_squared_error: 558756.6387\n", "Epoch 283/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 550994.7873 - mean_absolute_error: 509.8676 - mean_squared_error: 550994.7873\n", "Epoch 284/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 549263.6440 - mean_absolute_error: 475.0042 - mean_squared_error: 549263.6440\n", "Epoch 285/1000\n", "20000/20000 [==============================] - 1s 40us/step - loss: 558689.2083 - mean_absolute_error: 535.1205 - mean_squared_error: 558689.2083\n", "Epoch 286/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 548558.6669 - mean_absolute_error: 483.6448 - mean_squared_error: 548558.6669\n", "Epoch 287/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 546891.5770 - mean_absolute_error: 506.1607 - mean_squared_error: 546891.5770\n", "Epoch 288/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 552333.7340 - mean_absolute_error: 531.4620 - mean_squared_error: 552333.7340\n", "Epoch 289/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 550107.4584 - mean_absolute_error: 498.7765 - mean_squared_error: 550107.4584\n", "Epoch 290/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 544564.2600 - mean_absolute_error: 489.4379 - mean_squared_error: 544564.2600\n", "Epoch 291/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 549616.2985 - mean_absolute_error: 520.6987 - mean_squared_error: 549616.2985\n", "Epoch 292/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 552470.8163 - mean_absolute_error: 538.0839 - mean_squared_error: 552470.8163\n", "Epoch 293/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 541406.4107 - mean_absolute_error: 492.2211 - mean_squared_error: 541406.4107\n", "Epoch 294/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 545237.9468 - mean_absolute_error: 513.4229 - mean_squared_error: 545237.9468\n", "Epoch 295/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 546702.0677 - mean_absolute_error: 512.6658 - mean_squared_error: 546702.0677\n", "Epoch 296/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 543461.5500 - mean_absolute_error: 515.6492 - mean_squared_error: 543461.5500\n", "Epoch 297/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 539035.0849 - mean_absolute_error: 514.9369 - mean_squared_error: 539035.0849\n", "Epoch 298/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 541383.8083 - mean_absolute_error: 493.1532 - mean_squared_error: 541383.8083\n", "Epoch 299/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 544318.4193 - mean_absolute_error: 509.9270 - mean_squared_error: 544318.4193\n", "Epoch 300/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 537883.5682 - mean_absolute_error: 499.5294 - mean_squared_error: 537883.5682\n", "Epoch 301/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 534713.0130 - mean_absolute_error: 490.8163 - mean_squared_error: 534713.0130\n", "Epoch 302/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 535244.2433 - mean_absolute_error: 521.1206 - mean_squared_error: 535244.2433\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 303/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 533440.2862 - mean_absolute_error: 507.0578 - mean_squared_error: 533440.2862\n", "Epoch 304/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 534332.3139 - mean_absolute_error: 496.5941 - mean_squared_error: 534332.3139\n", "Epoch 305/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 525308.5295 - mean_absolute_error: 493.5677 - mean_squared_error: 525308.5295\n", "Epoch 306/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 533727.9125 - mean_absolute_error: 496.3332 - mean_squared_error: 533727.9125\n", "Epoch 307/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 532880.5484 - mean_absolute_error: 488.4148 - mean_squared_error: 532880.5484\n", "Epoch 308/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 521519.2193 - mean_absolute_error: 466.2332 - mean_squared_error: 521519.2193\n", "Epoch 309/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 521886.4364 - mean_absolute_error: 466.9348 - mean_squared_error: 521886.4364\n", "Epoch 310/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 527442.6905 - mean_absolute_error: 488.0298 - mean_squared_error: 527442.6905\n", "Epoch 311/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 521788.5050 - mean_absolute_error: 475.9343 - mean_squared_error: 521788.5050\n", "Epoch 312/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 520816.2718 - mean_absolute_error: 488.8120 - mean_squared_error: 520816.2718\n", "Epoch 313/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 523265.4876 - mean_absolute_error: 480.9736 - mean_squared_error: 523265.4876\n", "Epoch 314/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 519901.2397 - mean_absolute_error: 502.0520 - mean_squared_error: 519901.2397\n", "Epoch 315/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 523935.7025 - mean_absolute_error: 502.5561 - mean_squared_error: 523935.7025\n", "Epoch 316/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 521710.1627 - mean_absolute_error: 519.1994 - mean_squared_error: 521710.1627\n", "Epoch 317/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 505713.0783 - mean_absolute_error: 451.8944 - mean_squared_error: 505713.0783\n", "Epoch 318/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 508697.0631 - mean_absolute_error: 476.3769 - mean_squared_error: 508697.0631\n", "Epoch 319/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 505699.5775 - mean_absolute_error: 466.3540 - mean_squared_error: 505699.5775\n", "Epoch 320/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 513671.4501 - mean_absolute_error: 474.8958 - mean_squared_error: 513671.4501\n", "Epoch 321/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 499165.2754 - mean_absolute_error: 491.9525 - mean_squared_error: 499165.2754\n", "Epoch 322/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 512285.2213 - mean_absolute_error: 468.0657 - mean_squared_error: 512285.2213\n", "Epoch 323/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 503043.1567 - mean_absolute_error: 486.6836 - mean_squared_error: 503043.1567\n", "Epoch 324/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 504899.3846 - mean_absolute_error: 486.1364 - mean_squared_error: 504899.3846\n", "Epoch 325/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 500657.7385 - mean_absolute_error: 462.8164 - mean_squared_error: 500657.7385\n", "Epoch 326/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 503441.5658 - mean_absolute_error: 494.3922 - mean_squared_error: 503441.5658\n", "Epoch 327/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 506333.2090 - mean_absolute_error: 497.5523 - mean_squared_error: 506333.2090\n", "Epoch 328/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 493291.4723 - mean_absolute_error: 475.4804 - mean_squared_error: 493291.4723\n", "Epoch 329/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 498329.5529 - mean_absolute_error: 475.2802 - mean_squared_error: 498329.5529\n", "Epoch 330/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 493424.4901 - mean_absolute_error: 443.1736 - mean_squared_error: 493424.4901\n", "Epoch 331/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 494844.8316 - mean_absolute_error: 455.8787 - mean_squared_error: 494844.8316\n", "Epoch 332/1000\n", "20000/20000 [==============================] - 1s 38us/step - loss: 488456.5736 - mean_absolute_error: 456.1105 - mean_squared_error: 488456.5736\n", "Epoch 333/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 496183.1388 - mean_absolute_error: 487.8786 - mean_squared_error: 496183.1388\n", "Epoch 334/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 493561.9852 - mean_absolute_error: 467.3811 - mean_squared_error: 493561.9852\n", "Epoch 335/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 491788.8636 - mean_absolute_error: 504.3472 - mean_squared_error: 491788.8636\n", "Epoch 336/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 487464.3846 - mean_absolute_error: 464.1441 - mean_squared_error: 487464.3846\n", "Epoch 337/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 488098.2588 - mean_absolute_error: 478.4004 - mean_squared_error: 488098.2588\n", "Epoch 338/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 487142.0427 - mean_absolute_error: 473.8715 - mean_squared_error: 487142.0427\n", "Epoch 339/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 487050.2905 - mean_absolute_error: 484.7214 - mean_squared_error: 487050.2905\n", "Epoch 340/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 486594.4985 - mean_absolute_error: 475.3518 - mean_squared_error: 486594.4985\n", "Epoch 341/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 482696.7015 - mean_absolute_error: 468.0256 - mean_squared_error: 482696.7015\n", "Epoch 342/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 479300.9616 - mean_absolute_error: 472.9673 - mean_squared_error: 479300.9616\n", "Epoch 343/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 479397.4417 - mean_absolute_error: 455.9110 - mean_squared_error: 479397.4417\n", "Epoch 344/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 481092.4167 - mean_absolute_error: 456.5831 - mean_squared_error: 481092.4167\n", "Epoch 345/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 476991.6291 - mean_absolute_error: 453.3176 - mean_squared_error: 476991.6291\n", "Epoch 346/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 473766.3722 - mean_absolute_error: 472.0240 - mean_squared_error: 473766.3722\n", "Epoch 347/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 473964.1178 - mean_absolute_error: 458.4535 - mean_squared_error: 473964.1178\n", "Epoch 348/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 473648.6820 - mean_absolute_error: 488.3698 - mean_squared_error: 473648.6820\n", "Epoch 349/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 467146.5624 - mean_absolute_error: 433.7826 - mean_squared_error: 467146.5624\n", "Epoch 350/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 470779.6733 - mean_absolute_error: 473.1674 - mean_squared_error: 470779.6733\n", "Epoch 351/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 459076.4174 - mean_absolute_error: 396.9253 - mean_squared_error: 459076.4174\n", "Epoch 352/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 470281.0951 - mean_absolute_error: 472.8754 - mean_squared_error: 470281.0951\n", "Epoch 353/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 35us/step - loss: 467504.7037 - mean_absolute_error: 503.9254 - mean_squared_error: 467504.7037\n", "Epoch 354/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 466043.5773 - mean_absolute_error: 480.3476 - mean_squared_error: 466043.5773\n", "Epoch 355/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 459624.6042 - mean_absolute_error: 487.3599 - mean_squared_error: 459624.6042\n", "Epoch 356/1000\n", "20000/20000 [==============================] - 1s 37us/step - loss: 463759.7860 - mean_absolute_error: 458.2281 - mean_squared_error: 463759.7860\n", "Epoch 357/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 456341.3182 - mean_absolute_error: 445.7144 - mean_squared_error: 456341.3182\n", "Epoch 358/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 451929.0337 - mean_absolute_error: 456.0110 - mean_squared_error: 451929.0337\n", "Epoch 359/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 455758.3471 - mean_absolute_error: 473.8829 - mean_squared_error: 455758.3471\n", "Epoch 360/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 447096.6124 - mean_absolute_error: 461.5313 - mean_squared_error: 447096.6124\n", "Epoch 361/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 452852.1405 - mean_absolute_error: 483.6294 - mean_squared_error: 452852.1405\n", "Epoch 362/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 440423.9466 - mean_absolute_error: 457.6793 - mean_squared_error: 440423.9466\n", "Epoch 363/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 441737.3900 - mean_absolute_error: 444.6071 - mean_squared_error: 441737.3900\n", "Epoch 364/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 442861.6370 - mean_absolute_error: 494.4739 - mean_squared_error: 442861.6370\n", "Epoch 365/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 434930.3671 - mean_absolute_error: 466.3418 - mean_squared_error: 434930.3671\n", "Epoch 366/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 431581.4386 - mean_absolute_error: 443.9317 - mean_squared_error: 431581.4386\n", "Epoch 367/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 431447.8358 - mean_absolute_error: 460.4844 - mean_squared_error: 431447.8358\n", "Epoch 368/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 427228.2318 - mean_absolute_error: 451.4678 - mean_squared_error: 427228.2318\n", "Epoch 369/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 426184.5530 - mean_absolute_error: 472.2266 - mean_squared_error: 426184.5530\n", "Epoch 370/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 422938.6798 - mean_absolute_error: 447.4706 - mean_squared_error: 422938.6798\n", "Epoch 371/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 410622.4596 - mean_absolute_error: 424.5163 - mean_squared_error: 410622.4596\n", "Epoch 372/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 417729.0137 - mean_absolute_error: 431.7269 - mean_squared_error: 417729.0137\n", "Epoch 373/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 411200.8597 - mean_absolute_error: 425.2833 - mean_squared_error: 411200.8597\n", "Epoch 374/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 412805.6507 - mean_absolute_error: 435.9536 - mean_squared_error: 412805.6507\n", "Epoch 375/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 412961.6972 - mean_absolute_error: 421.3870 - mean_squared_error: 412961.6972\n", "Epoch 376/1000\n", "20000/20000 [==============================] - 1s 38us/step - loss: 411007.9716 - mean_absolute_error: 461.6077 - mean_squared_error: 411007.9716\n", "Epoch 377/1000\n", "20000/20000 [==============================] - 1s 40us/step - loss: 408773.0953 - mean_absolute_error: 424.7616 - mean_squared_error: 408773.0953\n", "Epoch 378/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 406027.8243 - mean_absolute_error: 461.6621 - mean_squared_error: 406027.8243\n", "Epoch 379/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 405509.3428 - mean_absolute_error: 415.7281 - mean_squared_error: 405509.3428\n", "Epoch 380/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 406182.8943 - mean_absolute_error: 447.3760 - mean_squared_error: 406182.8943\n", "Epoch 381/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 393263.6046 - mean_absolute_error: 414.1522 - mean_squared_error: 393263.6046\n", "Epoch 382/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 390224.8658 - mean_absolute_error: 398.0417 - mean_squared_error: 390224.8658\n", "Epoch 383/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 397974.0141 - mean_absolute_error: 437.8018 - mean_squared_error: 397974.0141\n", "Epoch 384/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 390104.2799 - mean_absolute_error: 431.6827 - mean_squared_error: 390104.2799\n", "Epoch 385/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 394155.1598 - mean_absolute_error: 418.3815 - mean_squared_error: 394155.1598\n", "Epoch 386/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 390078.5838 - mean_absolute_error: 428.3482 - mean_squared_error: 390078.5838\n", "Epoch 387/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 388916.9598 - mean_absolute_error: 401.0554 - mean_squared_error: 388916.9598\n", "Epoch 388/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 393975.5262 - mean_absolute_error: 431.2091 - mean_squared_error: 393975.5262\n", "Epoch 389/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 387479.5062 - mean_absolute_error: 438.5329 - mean_squared_error: 387479.5062\n", "Epoch 390/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 385493.7147 - mean_absolute_error: 416.3447 - mean_squared_error: 385493.7147\n", "Epoch 391/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 380353.7916 - mean_absolute_error: 399.2506 - mean_squared_error: 380353.7916\n", "Epoch 392/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 384358.1651 - mean_absolute_error: 421.7521 - mean_squared_error: 384358.1651\n", "Epoch 393/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 384288.2744 - mean_absolute_error: 440.1518 - mean_squared_error: 384288.2744\n", "Epoch 394/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 384972.6373 - mean_absolute_error: 416.9937 - mean_squared_error: 384972.6373\n", "Epoch 395/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 368980.6372 - mean_absolute_error: 385.1386 - mean_squared_error: 368980.6372\n", "Epoch 396/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 372282.7876 - mean_absolute_error: 393.7043 - mean_squared_error: 372282.7876\n", "Epoch 397/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 368494.5334 - mean_absolute_error: 362.1668 - mean_squared_error: 368494.5334\n", "Epoch 398/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 371324.4392 - mean_absolute_error: 415.5145 - mean_squared_error: 371324.4392\n", "Epoch 399/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 371997.8353 - mean_absolute_error: 418.3123 - mean_squared_error: 371997.8353\n", "Epoch 400/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 367143.4791 - mean_absolute_error: 411.9859 - mean_squared_error: 367143.4791\n", "Epoch 401/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 366601.4151 - mean_absolute_error: 389.0088 - mean_squared_error: 366601.4151\n", "Epoch 402/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 368316.0311 - mean_absolute_error: 422.7205 - mean_squared_error: 368316.0311\n", "Epoch 403/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 361535.9191 - mean_absolute_error: 395.0927 - mean_squared_error: 361535.9191\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 404/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 359723.6001 - mean_absolute_error: 381.4973 - mean_squared_error: 359723.6001\n", "Epoch 405/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 365186.1261 - mean_absolute_error: 423.7391 - mean_squared_error: 365186.1261\n", "Epoch 406/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 358741.3065 - mean_absolute_error: 406.7810 - mean_squared_error: 358741.3065\n", "Epoch 407/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 365712.2798 - mean_absolute_error: 437.1951 - mean_squared_error: 365712.2798\n", "Epoch 408/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 367718.1140 - mean_absolute_error: 414.6435 - mean_squared_error: 367718.1140\n", "Epoch 409/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 353492.9312 - mean_absolute_error: 387.6011 - mean_squared_error: 353492.9312\n", "Epoch 410/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 358918.6669 - mean_absolute_error: 415.2333 - mean_squared_error: 358918.6669\n", "Epoch 411/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 360361.8814 - mean_absolute_error: 395.2436 - mean_squared_error: 360361.8814\n", "Epoch 412/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 358916.9549 - mean_absolute_error: 416.2013 - mean_squared_error: 358916.9549\n", "Epoch 413/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 353692.6870 - mean_absolute_error: 389.4405 - mean_squared_error: 353692.6870\n", "Epoch 414/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 359801.4209 - mean_absolute_error: 415.9145 - mean_squared_error: 359801.4209\n", "Epoch 415/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 359360.7082 - mean_absolute_error: 402.2653 - mean_squared_error: 359360.7082\n", "Epoch 416/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 356372.6704 - mean_absolute_error: 392.9234 - mean_squared_error: 356372.6704\n", "Epoch 417/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 355155.9329 - mean_absolute_error: 399.6192 - mean_squared_error: 355155.9329\n", "Epoch 418/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 351518.2665 - mean_absolute_error: 377.2360 - mean_squared_error: 351518.2665\n", "Epoch 419/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 359009.0724 - mean_absolute_error: 394.8683 - mean_squared_error: 359009.0724\n", "Epoch 420/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 353318.9121 - mean_absolute_error: 403.3059 - mean_squared_error: 353318.9121\n", "Epoch 421/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 353463.0775 - mean_absolute_error: 409.8090 - mean_squared_error: 353463.0775\n", "Epoch 422/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 350172.0295 - mean_absolute_error: 385.1625 - mean_squared_error: 350172.0295\n", "Epoch 423/1000\n", "20000/20000 [==============================] - 1s 38us/step - loss: 352819.9598 - mean_absolute_error: 413.8200 - mean_squared_error: 352819.9598\n", "Epoch 424/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 356631.9195 - mean_absolute_error: 397.8186 - mean_squared_error: 356631.9195\n", "Epoch 425/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 351362.1160 - mean_absolute_error: 389.0252 - mean_squared_error: 351362.1160\n", "Epoch 426/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 353972.0045 - mean_absolute_error: 415.0080 - mean_squared_error: 353972.0045\n", "Epoch 427/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 350778.0895 - mean_absolute_error: 394.5491 - mean_squared_error: 350778.0895\n", "Epoch 428/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 352451.4206 - mean_absolute_error: 416.5208 - mean_squared_error: 352451.4206\n", "Epoch 429/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 348378.2057 - mean_absolute_error: 394.0229 - mean_squared_error: 348378.2057\n", "Epoch 430/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 353615.5220 - mean_absolute_error: 422.2681 - mean_squared_error: 353615.5220\n", "Epoch 431/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 351573.5220 - mean_absolute_error: 421.8445 - mean_squared_error: 351573.5220\n", "Epoch 432/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 349578.7038 - mean_absolute_error: 396.6265 - mean_squared_error: 349578.7038\n", "Epoch 433/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 343487.0295 - mean_absolute_error: 366.7436 - mean_squared_error: 343487.0295\n", "Epoch 434/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 346198.2007 - mean_absolute_error: 381.0340 - mean_squared_error: 346198.2007\n", "Epoch 435/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 345600.0630 - mean_absolute_error: 397.8099 - mean_squared_error: 345600.0630\n", "Epoch 436/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 350421.0442 - mean_absolute_error: 397.7809 - mean_squared_error: 350421.0442\n", "Epoch 437/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 348130.9719 - mean_absolute_error: 428.5935 - mean_squared_error: 348130.9719\n", "Epoch 438/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 345612.2594 - mean_absolute_error: 398.9747 - mean_squared_error: 345612.2594\n", "Epoch 439/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 346876.1807 - mean_absolute_error: 409.4445 - mean_squared_error: 346876.1807\n", "Epoch 440/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 343951.6417 - mean_absolute_error: 386.4201 - mean_squared_error: 343951.6417\n", "Epoch 441/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 344832.3360 - mean_absolute_error: 406.9836 - mean_squared_error: 344832.3360\n", "Epoch 442/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 338932.6552 - mean_absolute_error: 357.8614 - mean_squared_error: 338932.6552\n", "Epoch 443/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 336999.4971 - mean_absolute_error: 377.4242 - mean_squared_error: 336999.4971\n", "Epoch 444/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 346911.5534 - mean_absolute_error: 404.4382 - mean_squared_error: 346911.5534\n", "Epoch 445/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 343779.2618 - mean_absolute_error: 383.7907 - mean_squared_error: 343779.2618\n", "Epoch 446/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 335610.3616 - mean_absolute_error: 358.7848 - mean_squared_error: 335610.3616\n", "Epoch 447/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 338408.6988 - mean_absolute_error: 382.0396 - mean_squared_error: 338408.6988\n", "Epoch 448/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 341556.3495 - mean_absolute_error: 403.5294 - mean_squared_error: 341556.3495\n", "Epoch 449/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 339399.3795 - mean_absolute_error: 418.3398 - mean_squared_error: 339399.3795\n", "Epoch 450/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 335313.5148 - mean_absolute_error: 396.0432 - mean_squared_error: 335313.5148\n", "Epoch 451/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 337349.7888 - mean_absolute_error: 386.8781 - mean_squared_error: 337349.7888\n", "Epoch 452/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 337658.5947 - mean_absolute_error: 390.1818 - mean_squared_error: 337658.5947\n", "Epoch 453/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 333633.4170 - mean_absolute_error: 393.8188 - mean_squared_error: 333633.4170\n", "Epoch 454/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 35us/step - loss: 335530.6323 - mean_absolute_error: 401.0888 - mean_squared_error: 335530.6323\n", "Epoch 455/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 337482.1761 - mean_absolute_error: 400.4531 - mean_squared_error: 337482.1761\n", "Epoch 456/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 327587.6167 - mean_absolute_error: 390.5614 - mean_squared_error: 327587.6167\n", "Epoch 457/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 338022.0267 - mean_absolute_error: 397.5923 - mean_squared_error: 338022.0267\n", "Epoch 458/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 331464.3603 - mean_absolute_error: 378.3705 - mean_squared_error: 331464.3603 0s - loss: 342635.6241 - mean_absolute_error: 415.3874 - mean_squared_error: - ETA: 0s - loss: 329576.9180 - mean_absolute_error: 380.1763 - mean_squared_error:\n", "Epoch 459/1000\n", "20000/20000 [==============================] - 1s 37us/step - loss: 328269.2402 - mean_absolute_error: 405.0350 - mean_squared_error: 328269.2402\n", "Epoch 460/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 331595.4010 - mean_absolute_error: 392.6509 - mean_squared_error: 331595.4010\n", "Epoch 461/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 326807.6098 - mean_absolute_error: 370.0097 - mean_squared_error: 326807.6098\n", "Epoch 462/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 323717.7691 - mean_absolute_error: 363.9766 - mean_squared_error: 323717.7691\n", "Epoch 463/1000\n", "20000/20000 [==============================] - 1s 37us/step - loss: 322525.4717 - mean_absolute_error: 365.7620 - mean_squared_error: 322525.4717\n", "Epoch 464/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 319237.2002 - mean_absolute_error: 355.5155 - mean_squared_error: 319237.2002\n", "Epoch 465/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 324683.6788 - mean_absolute_error: 394.7770 - mean_squared_error: 324683.6788\n", "Epoch 466/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 323262.0783 - mean_absolute_error: 400.6784 - mean_squared_error: 323262.0783\n", "Epoch 467/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 322098.1216 - mean_absolute_error: 410.5920 - mean_squared_error: 322098.1216\n", "Epoch 468/1000\n", "20000/20000 [==============================] - 1s 37us/step - loss: 314836.5703 - mean_absolute_error: 377.8314 - mean_squared_error: 314836.5703\n", "Epoch 469/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 316164.5271 - mean_absolute_error: 377.5196 - mean_squared_error: 316164.5271\n", "Epoch 470/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 315773.5361 - mean_absolute_error: 379.2456 - mean_squared_error: 315773.5361\n", "Epoch 471/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 319033.9019 - mean_absolute_error: 398.8228 - mean_squared_error: 319033.9019\n", "Epoch 472/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 310236.7075 - mean_absolute_error: 381.7454 - mean_squared_error: 310236.7075\n", "Epoch 473/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 315560.9873 - mean_absolute_error: 371.4596 - mean_squared_error: 315560.9873\n", "Epoch 474/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 311099.8647 - mean_absolute_error: 359.8299 - mean_squared_error: 311099.8647\n", "Epoch 475/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 303907.5027 - mean_absolute_error: 360.9408 - mean_squared_error: 303907.5027\n", "Epoch 476/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 308807.2066 - mean_absolute_error: 363.3023 - mean_squared_error: 308807.2066\n", "Epoch 477/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 312119.6921 - mean_absolute_error: 373.1232 - mean_squared_error: 312119.6921\n", "Epoch 478/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 309258.4571 - mean_absolute_error: 382.5656 - mean_squared_error: 309258.4571\n", "Epoch 479/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 306212.3315 - mean_absolute_error: 375.2692 - mean_squared_error: 306212.3315\n", "Epoch 480/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 309931.5751 - mean_absolute_error: 380.6373 - mean_squared_error: 309931.5751\n", "Epoch 481/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 303070.6871 - mean_absolute_error: 384.5307 - mean_squared_error: 303070.6871\n", "Epoch 482/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 307281.1711 - mean_absolute_error: 356.9093 - mean_squared_error: 307281.1711\n", "Epoch 483/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 307462.0393 - mean_absolute_error: 401.7760 - mean_squared_error: 307462.0393\n", "Epoch 484/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 306797.4205 - mean_absolute_error: 377.8190 - mean_squared_error: 306797.4205\n", "Epoch 485/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 305901.5604 - mean_absolute_error: 404.6051 - mean_squared_error: 305901.5604\n", "Epoch 486/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 302845.2693 - mean_absolute_error: 397.7220 - mean_squared_error: 302845.2693\n", "Epoch 487/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 301714.0558 - mean_absolute_error: 393.7534 - mean_squared_error: 301714.0558\n", "Epoch 488/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 307156.8530 - mean_absolute_error: 406.3553 - mean_squared_error: 307156.8530\n", "Epoch 489/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 295529.1096 - mean_absolute_error: 328.8875 - mean_squared_error: 295529.1096\n", "Epoch 490/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 300559.2358 - mean_absolute_error: 368.3625 - mean_squared_error: 300559.2358\n", "Epoch 491/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 292211.0022 - mean_absolute_error: 351.3699 - mean_squared_error: 292211.0022\n", "Epoch 492/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 300783.8063 - mean_absolute_error: 377.4716 - mean_squared_error: 300783.8063\n", "Epoch 493/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 292018.2558 - mean_absolute_error: 356.0069 - mean_squared_error: 292018.2558\n", "Epoch 494/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 294586.5894 - mean_absolute_error: 352.4431 - mean_squared_error: 294586.5894\n", "Epoch 495/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 291717.9063 - mean_absolute_error: 387.6345 - mean_squared_error: 291717.9063\n", "Epoch 496/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 293031.8982 - mean_absolute_error: 366.8249 - mean_squared_error: 293031.8982\n", "Epoch 497/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 287497.2522 - mean_absolute_error: 363.8709 - mean_squared_error: 287497.2522\n", "Epoch 498/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 287160.9354 - mean_absolute_error: 372.5097 - mean_squared_error: 287160.9354\n", "Epoch 499/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 286943.7011 - mean_absolute_error: 370.9544 - mean_squared_error: 286943.7011\n", "Epoch 500/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 283899.8907 - mean_absolute_error: 359.5854 - mean_squared_error: 283899.8907\n", "Epoch 501/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 283679.5791 - mean_absolute_error: 378.9049 - mean_squared_error: 283679.5791\n", "Epoch 502/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 283656.4094 - mean_absolute_error: 363.3718 - mean_squared_error: 283656.4094\n", "Epoch 503/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 284915.1939 - mean_absolute_error: 375.6246 - mean_squared_error: 284915.1939\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 504/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 285902.9943 - mean_absolute_error: 355.3516 - mean_squared_error: 285902.9943\n", "Epoch 505/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 278169.2187 - mean_absolute_error: 345.7422 - mean_squared_error: 278169.2187\n", "Epoch 506/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 279083.2224 - mean_absolute_error: 342.2945 - mean_squared_error: 279083.2224\n", "Epoch 507/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 285003.2839 - mean_absolute_error: 367.7468 - mean_squared_error: 285003.2839\n", "Epoch 508/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 281825.0473 - mean_absolute_error: 376.0244 - mean_squared_error: 281825.0473\n", "Epoch 509/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 283653.8570 - mean_absolute_error: 362.6497 - mean_squared_error: 283653.8570\n", "Epoch 510/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 284113.7957 - mean_absolute_error: 369.4340 - mean_squared_error: 284113.7957\n", "Epoch 511/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 280097.4725 - mean_absolute_error: 349.4451 - mean_squared_error: 280097.4725\n", "Epoch 512/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 278859.7096 - mean_absolute_error: 341.3854 - mean_squared_error: 278859.7096\n", "Epoch 513/1000\n", "20000/20000 [==============================] - 1s 41us/step - loss: 280911.6569 - mean_absolute_error: 357.6857 - mean_squared_error: 280911.6569\n", "Epoch 514/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 278575.5729 - mean_absolute_error: 348.9725 - mean_squared_error: 278575.5729\n", "Epoch 515/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 284131.2057 - mean_absolute_error: 383.2248 - mean_squared_error: 284131.2057\n", "Epoch 516/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 279823.6396 - mean_absolute_error: 356.1647 - mean_squared_error: 279823.6396\n", "Epoch 517/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 280465.7400 - mean_absolute_error: 365.4768 - mean_squared_error: 280465.7400\n", "Epoch 518/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 280353.4878 - mean_absolute_error: 370.9840 - mean_squared_error: 280353.4878\n", "Epoch 519/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 280886.4347 - mean_absolute_error: 350.9796 - mean_squared_error: 280886.4347\n", "Epoch 520/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 279280.2171 - mean_absolute_error: 364.0460 - mean_squared_error: 279280.2171\n", "Epoch 521/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 280028.4869 - mean_absolute_error: 349.2667 - mean_squared_error: 280028.4869\n", "Epoch 522/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 278636.0739 - mean_absolute_error: 348.4627 - mean_squared_error: 278636.0739\n", "Epoch 523/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 276101.2871 - mean_absolute_error: 324.7399 - mean_squared_error: 276101.2871\n", "Epoch 524/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 275307.0803 - mean_absolute_error: 328.9900 - mean_squared_error: 275307.0803\n", "Epoch 525/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 276676.7443 - mean_absolute_error: 354.6351 - mean_squared_error: 276676.7443\n", "Epoch 526/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 278539.2038 - mean_absolute_error: 361.7189 - mean_squared_error: 278539.2038\n", "Epoch 527/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 281822.8816 - mean_absolute_error: 365.0188 - mean_squared_error: 281822.8816\n", "Epoch 528/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 272213.6062 - mean_absolute_error: 332.9597 - mean_squared_error: 272213.6062\n", "Epoch 529/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 278881.9313 - mean_absolute_error: 375.8396 - mean_squared_error: 278881.9313\n", "Epoch 530/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 276453.6364 - mean_absolute_error: 362.2382 - mean_squared_error: 276453.6364\n", "Epoch 531/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 275835.0377 - mean_absolute_error: 351.5869 - mean_squared_error: 275835.0377\n", "Epoch 532/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 277298.1565 - mean_absolute_error: 376.0553 - mean_squared_error: 277298.1565\n", "Epoch 533/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 276062.0815 - mean_absolute_error: 357.1365 - mean_squared_error: 276062.0815\n", "Epoch 534/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 273107.8198 - mean_absolute_error: 322.4874 - mean_squared_error: 273107.8198\n", "Epoch 535/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 275636.7288 - mean_absolute_error: 375.4710 - mean_squared_error: 275636.7288\n", "Epoch 536/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 276273.1628 - mean_absolute_error: 366.8495 - mean_squared_error: 276273.1628\n", "Epoch 537/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 277213.1369 - mean_absolute_error: 373.2335 - mean_squared_error: 277213.1369\n", "Epoch 538/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 274570.0483 - mean_absolute_error: 373.9645 - mean_squared_error: 274570.0483\n", "Epoch 539/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 275842.3799 - mean_absolute_error: 364.1660 - mean_squared_error: 275842.3799\n", "Epoch 540/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 269201.8271 - mean_absolute_error: 363.4592 - mean_squared_error: 269201.8271\n", "Epoch 541/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 270486.8816 - mean_absolute_error: 339.1608 - mean_squared_error: 270486.8816\n", "Epoch 542/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 265836.7712 - mean_absolute_error: 328.2747 - mean_squared_error: 265836.7712\n", "Epoch 543/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 271647.9116 - mean_absolute_error: 353.6532 - mean_squared_error: 271647.9116\n", "Epoch 544/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 271954.5772 - mean_absolute_error: 354.9333 - mean_squared_error: 271954.5772\n", "Epoch 545/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 267788.4756 - mean_absolute_error: 356.6503 - mean_squared_error: 267788.4756\n", "Epoch 546/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 274570.0601 - mean_absolute_error: 369.3000 - mean_squared_error: 274570.0601\n", "Epoch 547/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 269533.7704 - mean_absolute_error: 354.2178 - mean_squared_error: 269533.7704\n", "Epoch 548/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 273492.0785 - mean_absolute_error: 371.7075 - mean_squared_error: 273492.0785\n", "Epoch 549/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 270020.7383 - mean_absolute_error: 378.2801 - mean_squared_error: 270020.7383\n", "Epoch 550/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 269085.6816 - mean_absolute_error: 354.1324 - mean_squared_error: 269085.6816\n", "Epoch 551/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 268737.1001 - mean_absolute_error: 353.3917 - mean_squared_error: 268737.1001\n", "Epoch 552/1000\n", "20000/20000 [==============================] - 1s 37us/step - loss: 268684.6364 - mean_absolute_error: 348.7292 - mean_squared_error: 268684.6364\n", "Epoch 553/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 270713.7372 - mean_absolute_error: 369.8323 - mean_squared_error: 270713.7372\n", "Epoch 554/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 36us/step - loss: 266443.9750 - mean_absolute_error: 338.2664 - mean_squared_error: 266443.9750\n", "Epoch 555/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 269495.4460 - mean_absolute_error: 323.5577 - mean_squared_error: 269495.4460\n", "Epoch 556/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 264736.0893 - mean_absolute_error: 335.0935 - mean_squared_error: 264736.0893\n", "Epoch 557/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 268704.3036 - mean_absolute_error: 361.2425 - mean_squared_error: 268704.3036\n", "Epoch 558/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 270223.2736 - mean_absolute_error: 364.2718 - mean_squared_error: 270223.2736\n", "Epoch 559/1000\n", "20000/20000 [==============================] - 1s 40us/step - loss: 269346.7354 - mean_absolute_error: 361.3770 - mean_squared_error: 269346.7354\n", "Epoch 560/1000\n", "20000/20000 [==============================] - 1s 37us/step - loss: 263112.7419 - mean_absolute_error: 350.0788 - mean_squared_error: 263112.7419\n", "Epoch 561/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 270894.8828 - mean_absolute_error: 345.6479 - mean_squared_error: 270894.8828\n", "Epoch 562/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 267804.2751 - mean_absolute_error: 365.0601 - mean_squared_error: 267804.2751\n", "Epoch 563/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 266692.2316 - mean_absolute_error: 329.0575 - mean_squared_error: 266692.2316\n", "Epoch 564/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 269557.6847 - mean_absolute_error: 350.1148 - mean_squared_error: 269557.6847\n", "Epoch 565/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 268477.2708 - mean_absolute_error: 364.8027 - mean_squared_error: 268477.2708\n", "Epoch 566/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 266759.5040 - mean_absolute_error: 345.2873 - mean_squared_error: 266759.5040\n", "Epoch 567/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 269315.1243 - mean_absolute_error: 382.2032 - mean_squared_error: 269315.1243\n", "Epoch 568/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 268373.6411 - mean_absolute_error: 386.8267 - mean_squared_error: 268373.6411\n", "Epoch 569/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 267866.0664 - mean_absolute_error: 355.0289 - mean_squared_error: 267866.0664\n", "Epoch 570/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 267380.0296 - mean_absolute_error: 375.7832 - mean_squared_error: 267380.0296\n", "Epoch 571/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 266951.6157 - mean_absolute_error: 349.9130 - mean_squared_error: 266951.6157\n", "Epoch 572/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 266608.6025 - mean_absolute_error: 353.9070 - mean_squared_error: 266608.6025\n", "Epoch 573/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 265817.1375 - mean_absolute_error: 366.7446 - mean_squared_error: 265817.1375\n", "Epoch 574/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 265130.5014 - mean_absolute_error: 345.2349 - mean_squared_error: 265130.5014\n", "Epoch 575/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 267924.0906 - mean_absolute_error: 348.9822 - mean_squared_error: 267924.0906\n", "Epoch 576/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 264396.5390 - mean_absolute_error: 334.5617 - mean_squared_error: 264396.5390\n", "Epoch 577/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 261857.3879 - mean_absolute_error: 346.0040 - mean_squared_error: 261857.3879\n", "Epoch 578/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 264814.3943 - mean_absolute_error: 353.9980 - mean_squared_error: 264814.3943\n", "Epoch 579/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 268829.6796 - mean_absolute_error: 353.2407 - mean_squared_error: 268829.6796\n", "Epoch 580/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 266370.1054 - mean_absolute_error: 368.8891 - mean_squared_error: 266370.1054\n", "Epoch 581/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 264449.1784 - mean_absolute_error: 372.0155 - mean_squared_error: 264449.1784\n", "Epoch 582/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 263608.5773 - mean_absolute_error: 344.1834 - mean_squared_error: 263608.5773\n", "Epoch 583/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 264259.3861 - mean_absolute_error: 338.4431 - mean_squared_error: 264259.3861\n", "Epoch 584/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 266111.0040 - mean_absolute_error: 357.0970 - mean_squared_error: 266111.0040\n", "Epoch 585/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 262399.3860 - mean_absolute_error: 347.9483 - mean_squared_error: 262399.3860\n", "Epoch 586/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 261839.0342 - mean_absolute_error: 344.5791 - mean_squared_error: 261839.0342\n", "Epoch 587/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 260725.7245 - mean_absolute_error: 340.8684 - mean_squared_error: 260725.7245\n", "Epoch 588/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 263739.1139 - mean_absolute_error: 341.5027 - mean_squared_error: 263739.1139\n", "Epoch 589/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 265737.4792 - mean_absolute_error: 348.3515 - mean_squared_error: 265737.4792\n", "Epoch 590/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 256769.6056 - mean_absolute_error: 337.4073 - mean_squared_error: 256769.6056\n", "Epoch 591/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 263463.1167 - mean_absolute_error: 358.9931 - mean_squared_error: 263463.1167\n", "Epoch 592/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 261716.7073 - mean_absolute_error: 349.3828 - mean_squared_error: 261716.7073\n", "Epoch 593/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 262943.1199 - mean_absolute_error: 358.3048 - mean_squared_error: 262943.1199\n", "Epoch 594/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 257265.8554 - mean_absolute_error: 322.3153 - mean_squared_error: 257265.8554\n", "Epoch 595/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 263939.9062 - mean_absolute_error: 377.3013 - mean_squared_error: 263939.9062\n", "Epoch 596/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 259374.9661 - mean_absolute_error: 347.0479 - mean_squared_error: 259374.9661\n", "Epoch 597/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 257499.5219 - mean_absolute_error: 309.7248 - mean_squared_error: 257499.5219\n", "Epoch 598/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 259030.1253 - mean_absolute_error: 345.9297 - mean_squared_error: 259030.1253\n", "Epoch 599/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 258782.4692 - mean_absolute_error: 335.7043 - mean_squared_error: 258782.4692\n", "Epoch 600/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 262261.1995 - mean_absolute_error: 355.8398 - mean_squared_error: 262261.1995\n", "Epoch 601/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 254031.7876 - mean_absolute_error: 323.9548 - mean_squared_error: 254031.7876\n", "Epoch 602/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 257036.5548 - mean_absolute_error: 340.6326 - mean_squared_error: 257036.5548\n", "Epoch 603/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 261127.9345 - mean_absolute_error: 361.7206 - mean_squared_error: 261127.9345\n", "Epoch 604/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 257602.6422 - mean_absolute_error: 338.7406 - mean_squared_error: 257602.6422\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 605/1000\n", "20000/20000 [==============================] - 1s 40us/step - loss: 255269.0304 - mean_absolute_error: 347.1714 - mean_squared_error: 255269.0304\n", "Epoch 606/1000\n", "20000/20000 [==============================] - 1s 40us/step - loss: 256970.6484 - mean_absolute_error: 346.1624 - mean_squared_error: 256970.6484\n", "Epoch 607/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 257583.0547 - mean_absolute_error: 360.9395 - mean_squared_error: 257583.0547\n", "Epoch 608/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 255610.7724 - mean_absolute_error: 342.1186 - mean_squared_error: 255610.7724\n", "Epoch 609/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 255606.1576 - mean_absolute_error: 334.3741 - mean_squared_error: 255606.1576\n", "Epoch 610/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 252891.5304 - mean_absolute_error: 344.4164 - mean_squared_error: 252891.5304\n", "Epoch 611/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 253071.1293 - mean_absolute_error: 340.6829 - mean_squared_error: 253071.1293\n", "Epoch 612/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 253367.3751 - mean_absolute_error: 344.1329 - mean_squared_error: 253367.3751\n", "Epoch 613/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 250407.1735 - mean_absolute_error: 344.1984 - mean_squared_error: 250407.1735\n", "Epoch 614/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 254857.4755 - mean_absolute_error: 354.4170 - mean_squared_error: 254857.4755\n", "Epoch 615/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 252758.1092 - mean_absolute_error: 338.8637 - mean_squared_error: 252758.1092\n", "Epoch 616/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 249581.6106 - mean_absolute_error: 326.0236 - mean_squared_error: 249581.6106\n", "Epoch 617/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 248610.8734 - mean_absolute_error: 338.3608 - mean_squared_error: 248610.8734\n", "Epoch 618/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 250302.3576 - mean_absolute_error: 328.0059 - mean_squared_error: 250302.3576\n", "Epoch 619/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 247468.1164 - mean_absolute_error: 322.6903 - mean_squared_error: 247468.1164\n", "Epoch 620/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 251504.8810 - mean_absolute_error: 336.5586 - mean_squared_error: 251504.8810\n", "Epoch 621/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 248404.6263 - mean_absolute_error: 336.7578 - mean_squared_error: 248404.6263\n", "Epoch 622/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 249873.2697 - mean_absolute_error: 347.6621 - mean_squared_error: 249873.2697\n", "Epoch 623/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 250690.4982 - mean_absolute_error: 341.5124 - mean_squared_error: 250690.4982\n", "Epoch 624/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 248041.7318 - mean_absolute_error: 334.8124 - mean_squared_error: 248041.7318\n", "Epoch 625/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 252840.3853 - mean_absolute_error: 357.4032 - mean_squared_error: 252840.3853\n", "Epoch 626/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 250198.9144 - mean_absolute_error: 366.3152 - mean_squared_error: 250198.9144\n", "Epoch 627/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 245370.0494 - mean_absolute_error: 330.9374 - mean_squared_error: 245370.0494\n", "Epoch 628/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 244702.3824 - mean_absolute_error: 348.8511 - mean_squared_error: 244702.3824\n", "Epoch 629/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 243350.5492 - mean_absolute_error: 317.8461 - mean_squared_error: 243350.5492\n", "Epoch 630/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 244421.2304 - mean_absolute_error: 345.3937 - mean_squared_error: 244421.2304\n", "Epoch 631/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 247842.9293 - mean_absolute_error: 354.9525 - mean_squared_error: 247842.9293\n", "Epoch 632/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 246230.3693 - mean_absolute_error: 324.8586 - mean_squared_error: 246230.3693\n", "Epoch 633/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 244719.7890 - mean_absolute_error: 330.0703 - mean_squared_error: 244719.7890\n", "Epoch 634/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 245211.8425 - mean_absolute_error: 361.0115 - mean_squared_error: 245211.8425\n", "Epoch 635/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 246777.5289 - mean_absolute_error: 336.6407 - mean_squared_error: 246777.5289\n", "Epoch 636/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 245454.1100 - mean_absolute_error: 332.6183 - mean_squared_error: 245454.1100\n", "Epoch 637/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 242993.3131 - mean_absolute_error: 336.1216 - mean_squared_error: 242993.3131\n", "Epoch 638/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 243549.6016 - mean_absolute_error: 340.3145 - mean_squared_error: 243549.6016\n", "Epoch 639/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 247088.7778 - mean_absolute_error: 329.3354 - mean_squared_error: 247088.7778\n", "Epoch 640/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 242516.6336 - mean_absolute_error: 342.0754 - mean_squared_error: 242516.6336\n", "Epoch 641/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 243319.6240 - mean_absolute_error: 327.1419 - mean_squared_error: 243319.6240\n", "Epoch 642/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 243985.8512 - mean_absolute_error: 336.1399 - mean_squared_error: 243985.8512\n", "Epoch 643/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 244732.4213 - mean_absolute_error: 358.6725 - mean_squared_error: 244732.4213\n", "Epoch 644/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 239528.5361 - mean_absolute_error: 293.9108 - mean_squared_error: 239528.5361\n", "Epoch 645/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 243945.2907 - mean_absolute_error: 321.4638 - mean_squared_error: 243945.2907\n", "Epoch 646/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 240231.5885 - mean_absolute_error: 330.4268 - mean_squared_error: 240231.5885\n", "Epoch 647/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 248936.6246 - mean_absolute_error: 345.3786 - mean_squared_error: 248936.6246\n", "Epoch 648/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 240705.6392 - mean_absolute_error: 325.7611 - mean_squared_error: 240705.6392\n", "Epoch 649/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 240307.9827 - mean_absolute_error: 310.4729 - mean_squared_error: 240307.9827\n", "Epoch 650/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 244348.8501 - mean_absolute_error: 332.4897 - mean_squared_error: 244348.8501\n", "Epoch 651/1000\n", "20000/20000 [==============================] - 1s 38us/step - loss: 242245.9275 - mean_absolute_error: 347.7827 - mean_squared_error: 242245.9275\n", "Epoch 652/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 243686.1952 - mean_absolute_error: 342.7584 - mean_squared_error: 243686.1952 0s - loss: 264993.2921 - mean_absolute_error: 370.1389 - mean_\n", "Epoch 653/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 246492.7114 - mean_absolute_error: 331.5664 - mean_squared_error: 246492.7114\n", "Epoch 654/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 240284.4687 - mean_absolute_error: 320.7084 - mean_squared_error: 240284.4687\n", "Epoch 655/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 34us/step - loss: 244092.1773 - mean_absolute_error: 341.4314 - mean_squared_error: 244092.1773\n", "Epoch 656/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 242092.1871 - mean_absolute_error: 354.1277 - mean_squared_error: 242092.1871\n", "Epoch 657/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 243478.9598 - mean_absolute_error: 341.6371 - mean_squared_error: 243478.9598\n", "Epoch 658/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 245924.5660 - mean_absolute_error: 347.4657 - mean_squared_error: 245924.5660\n", "Epoch 659/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 237704.5523 - mean_absolute_error: 314.1517 - mean_squared_error: 237704.5523\n", "Epoch 660/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 246911.1329 - mean_absolute_error: 359.0912 - mean_squared_error: 246911.1329\n", "Epoch 661/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 240708.9961 - mean_absolute_error: 331.8025 - mean_squared_error: 240708.9961\n", "Epoch 662/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 242311.1601 - mean_absolute_error: 322.3704 - mean_squared_error: 242311.1601\n", "Epoch 663/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 242383.5338 - mean_absolute_error: 341.4913 - mean_squared_error: 242383.5338\n", "Epoch 664/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 240109.1225 - mean_absolute_error: 328.4791 - mean_squared_error: 240109.1225\n", "Epoch 665/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 239365.4018 - mean_absolute_error: 323.3049 - mean_squared_error: 239365.4018\n", "Epoch 666/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 243545.2846 - mean_absolute_error: 347.0534 - mean_squared_error: 243545.2846\n", "Epoch 667/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 238035.3338 - mean_absolute_error: 302.2762 - mean_squared_error: 238035.3338\n", "Epoch 668/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 239454.9849 - mean_absolute_error: 334.2253 - mean_squared_error: 239454.9849\n", "Epoch 669/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 241873.5372 - mean_absolute_error: 338.6017 - mean_squared_error: 241873.5372\n", "Epoch 670/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 242272.4887 - mean_absolute_error: 342.3271 - mean_squared_error: 242272.4887\n", "Epoch 671/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 242448.1649 - mean_absolute_error: 341.9754 - mean_squared_error: 242448.1649\n", "Epoch 672/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 240067.1093 - mean_absolute_error: 338.5292 - mean_squared_error: 240067.1093\n", "Epoch 673/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 240083.8460 - mean_absolute_error: 328.2354 - mean_squared_error: 240083.8460\n", "Epoch 674/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 242646.7979 - mean_absolute_error: 358.2485 - mean_squared_error: 242646.7979\n", "Epoch 675/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 240574.0103 - mean_absolute_error: 318.3448 - mean_squared_error: 240574.0103\n", "Epoch 676/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 240110.2059 - mean_absolute_error: 314.7381 - mean_squared_error: 240110.2059\n", "Epoch 677/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 237853.9314 - mean_absolute_error: 340.5858 - mean_squared_error: 237853.9314\n", "Epoch 678/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 241211.8103 - mean_absolute_error: 342.7015 - mean_squared_error: 241211.8103\n", "Epoch 679/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 238914.4738 - mean_absolute_error: 315.6095 - mean_squared_error: 238914.4738\n", "Epoch 680/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 241302.9953 - mean_absolute_error: 342.3095 - mean_squared_error: 241302.9953\n", "Epoch 681/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 239383.0900 - mean_absolute_error: 344.8931 - mean_squared_error: 239383.0900\n", "Epoch 682/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 240219.6312 - mean_absolute_error: 346.8104 - mean_squared_error: 240219.6312\n", "Epoch 683/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 241509.7508 - mean_absolute_error: 346.6092 - mean_squared_error: 241509.7508\n", "Epoch 684/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 237172.2764 - mean_absolute_error: 319.6581 - mean_squared_error: 237172.2764\n", "Epoch 685/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 239349.3230 - mean_absolute_error: 341.2660 - mean_squared_error: 239349.3230\n", "Epoch 686/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 236943.5750 - mean_absolute_error: 306.7586 - mean_squared_error: 236943.5750\n", "Epoch 687/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 241586.9667 - mean_absolute_error: 321.4529 - mean_squared_error: 241586.9667\n", "Epoch 688/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 235896.8382 - mean_absolute_error: 318.9387 - mean_squared_error: 235896.8382\n", "Epoch 689/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 236440.2980 - mean_absolute_error: 309.8161 - mean_squared_error: 236440.2980\n", "Epoch 690/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 239250.3696 - mean_absolute_error: 334.3067 - mean_squared_error: 239250.3696\n", "Epoch 691/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 236477.0746 - mean_absolute_error: 334.4193 - mean_squared_error: 236477.0746\n", "Epoch 692/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 239225.1632 - mean_absolute_error: 343.9456 - mean_squared_error: 239225.1632\n", "Epoch 693/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 237632.2716 - mean_absolute_error: 325.3951 - mean_squared_error: 237632.2716\n", "Epoch 694/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 236818.3593 - mean_absolute_error: 330.4152 - mean_squared_error: 236818.3593\n", "Epoch 695/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 236517.0063 - mean_absolute_error: 327.2706 - mean_squared_error: 236517.0063\n", "Epoch 696/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 236776.7535 - mean_absolute_error: 343.5054 - mean_squared_error: 236776.7535\n", "Epoch 697/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 237071.3614 - mean_absolute_error: 328.9268 - mean_squared_error: 237071.3614\n", "Epoch 698/1000\n", "20000/20000 [==============================] - 1s 40us/step - loss: 240727.7334 - mean_absolute_error: 346.9461 - mean_squared_error: 240727.7334\n", "Epoch 699/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 236051.4824 - mean_absolute_error: 321.7084 - mean_squared_error: 236051.4824\n", "Epoch 700/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 236766.1238 - mean_absolute_error: 331.2269 - mean_squared_error: 236766.1238\n", "Epoch 701/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 236549.1763 - mean_absolute_error: 339.1843 - mean_squared_error: 236549.1763\n", "Epoch 702/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 237126.7115 - mean_absolute_error: 324.6867 - mean_squared_error: 237126.7115\n", "Epoch 703/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 233007.5394 - mean_absolute_error: 326.2515 - mean_squared_error: 233007.5394\n", "Epoch 704/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 235585.2041 - mean_absolute_error: 329.5564 - mean_squared_error: 235585.2041\n", "Epoch 705/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 235450.8003 - mean_absolute_error: 317.0019 - mean_squared_error: 235450.8003\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 706/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 234556.9257 - mean_absolute_error: 312.2105 - mean_squared_error: 234556.9257\n", "Epoch 707/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 235778.0331 - mean_absolute_error: 333.6085 - mean_squared_error: 235778.0331\n", "Epoch 708/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 235101.8920 - mean_absolute_error: 318.4046 - mean_squared_error: 235101.8920\n", "Epoch 709/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 236929.2989 - mean_absolute_error: 350.5491 - mean_squared_error: 236929.2989\n", "Epoch 710/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 233746.8436 - mean_absolute_error: 323.3920 - mean_squared_error: 233746.8436\n", "Epoch 711/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 233110.6776 - mean_absolute_error: 314.5176 - mean_squared_error: 233110.6776\n", "Epoch 712/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 233166.2930 - mean_absolute_error: 321.6493 - mean_squared_error: 233166.2930\n", "Epoch 713/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 233809.6877 - mean_absolute_error: 314.9205 - mean_squared_error: 233809.6877\n", "Epoch 714/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 238508.2219 - mean_absolute_error: 347.4700 - mean_squared_error: 238508.2219\n", "Epoch 715/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 229744.4552 - mean_absolute_error: 319.3654 - mean_squared_error: 229744.4552\n", "Epoch 716/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 235707.3988 - mean_absolute_error: 307.7951 - mean_squared_error: 235707.3988\n", "Epoch 717/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 232328.8799 - mean_absolute_error: 328.5887 - mean_squared_error: 232328.8799\n", "Epoch 718/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 231036.1885 - mean_absolute_error: 325.5725 - mean_squared_error: 231036.1885\n", "Epoch 719/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 234068.9400 - mean_absolute_error: 317.2739 - mean_squared_error: 234068.9400\n", "Epoch 720/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 231156.1031 - mean_absolute_error: 327.8381 - mean_squared_error: 231156.1031\n", "Epoch 721/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 233682.3001 - mean_absolute_error: 339.3749 - mean_squared_error: 233682.3001\n", "Epoch 722/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 234003.7083 - mean_absolute_error: 321.0236 - mean_squared_error: 234003.7083\n", "Epoch 723/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 230678.4223 - mean_absolute_error: 338.1144 - mean_squared_error: 230678.4223\n", "Epoch 724/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 234477.4910 - mean_absolute_error: 341.1674 - mean_squared_error: 234477.4910\n", "Epoch 725/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 230382.9533 - mean_absolute_error: 321.8457 - mean_squared_error: 230382.9533\n", "Epoch 726/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 228020.4224 - mean_absolute_error: 318.2888 - mean_squared_error: 228020.4224\n", "Epoch 727/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 229181.5436 - mean_absolute_error: 310.4607 - mean_squared_error: 229181.5436\n", "Epoch 728/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 233897.3167 - mean_absolute_error: 345.1697 - mean_squared_error: 233897.3167\n", "Epoch 729/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 230841.8325 - mean_absolute_error: 319.8765 - mean_squared_error: 230841.8325\n", "Epoch 730/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 225627.0087 - mean_absolute_error: 314.7600 - mean_squared_error: 225627.0087\n", "Epoch 731/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 229426.6828 - mean_absolute_error: 316.6988 - mean_squared_error: 229426.6828\n", "Epoch 732/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 228814.9451 - mean_absolute_error: 329.7139 - mean_squared_error: 228814.9451\n", "Epoch 733/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 231579.4230 - mean_absolute_error: 346.0292 - mean_squared_error: 231579.4230\n", "Epoch 734/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 228031.9870 - mean_absolute_error: 306.7214 - mean_squared_error: 228031.9870\n", "Epoch 735/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 225740.0041 - mean_absolute_error: 316.9918 - mean_squared_error: 225740.0041\n", "Epoch 736/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 227127.6189 - mean_absolute_error: 323.9481 - mean_squared_error: 227127.6189\n", "Epoch 737/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 227819.9996 - mean_absolute_error: 349.5769 - mean_squared_error: 227819.9996\n", "Epoch 738/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 225080.0754 - mean_absolute_error: 332.1384 - mean_squared_error: 225080.0754\n", "Epoch 739/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 222666.0243 - mean_absolute_error: 320.7852 - mean_squared_error: 222666.0243\n", "Epoch 740/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 224648.9850 - mean_absolute_error: 340.1000 - mean_squared_error: 224648.9850\n", "Epoch 741/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 219264.0554 - mean_absolute_error: 293.9142 - mean_squared_error: 219264.0554\n", "Epoch 742/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 221147.4257 - mean_absolute_error: 308.6055 - mean_squared_error: 221147.4257\n", "Epoch 743/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 220712.3851 - mean_absolute_error: 305.0763 - mean_squared_error: 220712.3851\n", "Epoch 744/1000\n", "20000/20000 [==============================] - 1s 40us/step - loss: 222175.8057 - mean_absolute_error: 309.7944 - mean_squared_error: 222175.8057\n", "Epoch 745/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 221557.3873 - mean_absolute_error: 307.1562 - mean_squared_error: 221557.3873\n", "Epoch 746/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 221871.4369 - mean_absolute_error: 306.4933 - mean_squared_error: 221871.4369\n", "Epoch 747/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 222269.9022 - mean_absolute_error: 334.5551 - mean_squared_error: 222269.9022\n", "Epoch 748/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 222173.8415 - mean_absolute_error: 307.0054 - mean_squared_error: 222173.8415\n", "Epoch 749/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 219848.5432 - mean_absolute_error: 297.1701 - mean_squared_error: 219848.5432\n", "Epoch 750/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 221243.2206 - mean_absolute_error: 328.2102 - mean_squared_error: 221243.2206\n", "Epoch 751/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 221117.6027 - mean_absolute_error: 322.1578 - mean_squared_error: 221117.6027\n", "Epoch 752/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 224262.4563 - mean_absolute_error: 334.2228 - mean_squared_error: 224262.4563\n", "Epoch 753/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 222181.5731 - mean_absolute_error: 326.8642 - mean_squared_error: 222181.5731\n", "Epoch 754/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 220654.4730 - mean_absolute_error: 303.6728 - mean_squared_error: 220654.4730\n", "Epoch 755/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 225438.4289 - mean_absolute_error: 319.6056 - mean_squared_error: 225438.4289\n", "Epoch 756/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 34us/step - loss: 220286.8543 - mean_absolute_error: 307.0943 - mean_squared_error: 220286.8543\n", "Epoch 757/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 220583.0937 - mean_absolute_error: 316.1962 - mean_squared_error: 220583.0937\n", "Epoch 758/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 220947.1899 - mean_absolute_error: 311.9116 - mean_squared_error: 220947.1899\n", "Epoch 759/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 220838.5721 - mean_absolute_error: 326.8788 - mean_squared_error: 220838.5721\n", "Epoch 760/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 217940.7378 - mean_absolute_error: 292.1213 - mean_squared_error: 217940.7378\n", "Epoch 761/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 222380.6211 - mean_absolute_error: 316.8818 - mean_squared_error: 222380.6211\n", "Epoch 762/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 221875.5669 - mean_absolute_error: 318.5823 - mean_squared_error: 221875.5669\n", "Epoch 763/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 221047.6958 - mean_absolute_error: 328.2752 - mean_squared_error: 221047.6958\n", "Epoch 764/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 221235.7468 - mean_absolute_error: 322.7350 - mean_squared_error: 221235.7468\n", "Epoch 765/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 221668.3897 - mean_absolute_error: 324.1869 - mean_squared_error: 221668.3897\n", "Epoch 766/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 221551.3058 - mean_absolute_error: 308.3457 - mean_squared_error: 221551.3058\n", "Epoch 767/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 215083.6320 - mean_absolute_error: 284.8504 - mean_squared_error: 215083.6320\n", "Epoch 768/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 221159.0011 - mean_absolute_error: 306.7558 - mean_squared_error: 221159.0011\n", "Epoch 769/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 220488.2733 - mean_absolute_error: 289.1007 - mean_squared_error: 220488.2733\n", "Epoch 770/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 220805.8274 - mean_absolute_error: 328.5213 - mean_squared_error: 220805.8274\n", "Epoch 771/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 218745.9864 - mean_absolute_error: 314.1416 - mean_squared_error: 218745.9864\n", "Epoch 772/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 219836.3821 - mean_absolute_error: 311.3009 - mean_squared_error: 219836.3821\n", "Epoch 773/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 224714.3761 - mean_absolute_error: 345.1010 - mean_squared_error: 224714.3761\n", "Epoch 774/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 216348.6719 - mean_absolute_error: 290.8924 - mean_squared_error: 216348.6719\n", "Epoch 775/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 221681.6379 - mean_absolute_error: 335.2684 - mean_squared_error: 221681.6379\n", "Epoch 776/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 218590.5912 - mean_absolute_error: 315.0789 - mean_squared_error: 218590.5912\n", "Epoch 777/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 222098.3170 - mean_absolute_error: 325.7701 - mean_squared_error: 222098.3170\n", "Epoch 778/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 219721.4246 - mean_absolute_error: 318.1849 - mean_squared_error: 219721.4246\n", "Epoch 779/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 218656.2301 - mean_absolute_error: 321.7089 - mean_squared_error: 218656.2301\n", "Epoch 780/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 218689.1643 - mean_absolute_error: 327.8237 - mean_squared_error: 218689.1643\n", "Epoch 781/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 220744.3663 - mean_absolute_error: 333.9608 - mean_squared_error: 220744.3663\n", "Epoch 782/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 223750.5265 - mean_absolute_error: 335.6381 - mean_squared_error: 223750.5265\n", "Epoch 783/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 219202.5341 - mean_absolute_error: 324.9966 - mean_squared_error: 219202.5341\n", "Epoch 784/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 218612.0700 - mean_absolute_error: 317.8077 - mean_squared_error: 218612.0700\n", "Epoch 785/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 218856.7028 - mean_absolute_error: 303.9742 - mean_squared_error: 218856.7028\n", "Epoch 786/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 217385.2170 - mean_absolute_error: 310.6703 - mean_squared_error: 217385.2170\n", "Epoch 787/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 220958.5810 - mean_absolute_error: 316.9097 - mean_squared_error: 220958.5810\n", "Epoch 788/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 219155.0131 - mean_absolute_error: 304.5442 - mean_squared_error: 219155.0131\n", "Epoch 789/1000\n", "20000/20000 [==============================] - 1s 40us/step - loss: 216799.2110 - mean_absolute_error: 307.0410 - mean_squared_error: 216799.2110\n", "Epoch 790/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 221143.6038 - mean_absolute_error: 329.3328 - mean_squared_error: 221143.6038\n", "Epoch 791/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 217507.3764 - mean_absolute_error: 320.8624 - mean_squared_error: 217507.3764\n", "Epoch 792/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 217983.1335 - mean_absolute_error: 296.8426 - mean_squared_error: 217983.1335\n", "Epoch 793/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 216125.1023 - mean_absolute_error: 318.1796 - mean_squared_error: 216125.1023\n", "Epoch 794/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 220166.2588 - mean_absolute_error: 331.0919 - mean_squared_error: 220166.2588\n", "Epoch 795/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 220938.6040 - mean_absolute_error: 337.9266 - mean_squared_error: 220938.6040\n", "Epoch 796/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 216691.9765 - mean_absolute_error: 316.5750 - mean_squared_error: 216691.9765\n", "Epoch 797/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 216158.4720 - mean_absolute_error: 295.9169 - mean_squared_error: 216158.4720\n", "Epoch 798/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 216200.3566 - mean_absolute_error: 317.0796 - mean_squared_error: 216200.3566\n", "Epoch 799/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 216442.3960 - mean_absolute_error: 310.6892 - mean_squared_error: 216442.3960\n", "Epoch 800/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 215551.0018 - mean_absolute_error: 281.2703 - mean_squared_error: 215551.0018\n", "Epoch 801/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 218163.0355 - mean_absolute_error: 329.1118 - mean_squared_error: 218163.0355\n", "Epoch 802/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 217622.0316 - mean_absolute_error: 309.0589 - mean_squared_error: 217622.0316\n", "Epoch 803/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 218911.4469 - mean_absolute_error: 319.8720 - mean_squared_error: 218911.4469\n", "Epoch 804/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 215679.0674 - mean_absolute_error: 311.2350 - mean_squared_error: 215679.0674\n", "Epoch 805/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 216660.5745 - mean_absolute_error: 317.5971 - mean_squared_error: 216660.5745\n", "Epoch 806/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 217572.9806 - mean_absolute_error: 318.6442 - mean_squared_error: 217572.9806\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 807/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 212899.4089 - mean_absolute_error: 297.8931 - mean_squared_error: 212899.4089\n", "Epoch 808/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 220387.1201 - mean_absolute_error: 342.5715 - mean_squared_error: 220387.1201\n", "Epoch 809/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 214287.3806 - mean_absolute_error: 302.6070 - mean_squared_error: 214287.3806\n", "Epoch 810/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 213445.5274 - mean_absolute_error: 304.1931 - mean_squared_error: 213445.5274\n", "Epoch 811/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 215679.3578 - mean_absolute_error: 304.4726 - mean_squared_error: 215679.3578\n", "Epoch 812/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 212243.2532 - mean_absolute_error: 309.7058 - mean_squared_error: 212243.2532\n", "Epoch 813/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 214998.4924 - mean_absolute_error: 329.2609 - mean_squared_error: 214998.4924\n", "Epoch 814/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 215618.1702 - mean_absolute_error: 289.2494 - mean_squared_error: 215618.1702\n", "Epoch 815/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 209081.9465 - mean_absolute_error: 288.1016 - mean_squared_error: 209081.9465\n", "Epoch 816/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 214850.1673 - mean_absolute_error: 307.5237 - mean_squared_error: 214850.1673\n", "Epoch 817/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 216227.2163 - mean_absolute_error: 331.7623 - mean_squared_error: 216227.2163\n", "Epoch 818/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210446.0771 - mean_absolute_error: 312.9503 - mean_squared_error: 210446.0771\n", "Epoch 819/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 212776.3120 - mean_absolute_error: 304.7695 - mean_squared_error: 212776.3120\n", "Epoch 820/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 213253.8497 - mean_absolute_error: 296.7097 - mean_squared_error: 213253.8497\n", "Epoch 821/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 207977.6108 - mean_absolute_error: 302.2524 - mean_squared_error: 207977.6108\n", "Epoch 822/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 211707.5015 - mean_absolute_error: 283.6393 - mean_squared_error: 211707.5015\n", "Epoch 823/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 211783.8915 - mean_absolute_error: 327.4937 - mean_squared_error: 211783.8915\n", "Epoch 824/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211179.7402 - mean_absolute_error: 298.2132 - mean_squared_error: 211179.7402\n", "Epoch 825/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211471.5645 - mean_absolute_error: 320.9946 - mean_squared_error: 211471.5645\n", "Epoch 826/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 210137.2676 - mean_absolute_error: 291.7544 - mean_squared_error: 210137.2676\n", "Epoch 827/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 212476.6569 - mean_absolute_error: 325.6542 - mean_squared_error: 212476.6569\n", "Epoch 828/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 214769.1067 - mean_absolute_error: 320.7349 - mean_squared_error: 214769.1067\n", "Epoch 829/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211012.7872 - mean_absolute_error: 302.1398 - mean_squared_error: 211012.7872\n", "Epoch 830/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 213571.3520 - mean_absolute_error: 338.1655 - mean_squared_error: 213571.3520\n", "Epoch 831/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 213640.3549 - mean_absolute_error: 320.9967 - mean_squared_error: 213640.3549\n", "Epoch 832/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 205578.6800 - mean_absolute_error: 271.3411 - mean_squared_error: 205578.6800\n", "Epoch 833/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 213155.6201 - mean_absolute_error: 325.5439 - mean_squared_error: 213155.6201\n", "Epoch 834/1000\n", "20000/20000 [==============================] - 1s 38us/step - loss: 213611.1446 - mean_absolute_error: 333.4323 - mean_squared_error: 213611.1446\n", "Epoch 835/1000\n", "20000/20000 [==============================] - 1s 38us/step - loss: 211270.7031 - mean_absolute_error: 309.4695 - mean_squared_error: 211270.7031\n", "Epoch 836/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 213420.1991 - mean_absolute_error: 332.8483 - mean_squared_error: 213420.1991\n", "Epoch 837/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 213372.4767 - mean_absolute_error: 331.3884 - mean_squared_error: 213372.4767\n", "Epoch 838/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211298.2453 - mean_absolute_error: 303.4195 - mean_squared_error: 211298.2453\n", "Epoch 839/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 211187.8776 - mean_absolute_error: 315.0338 - mean_squared_error: 211187.8776\n", "Epoch 840/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 210898.2155 - mean_absolute_error: 303.3319 - mean_squared_error: 210898.2155\n", "Epoch 841/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210730.2529 - mean_absolute_error: 316.2537 - mean_squared_error: 210730.2529\n", "Epoch 842/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 214833.2221 - mean_absolute_error: 334.3060 - mean_squared_error: 214833.2221\n", "Epoch 843/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208578.1747 - mean_absolute_error: 294.7775 - mean_squared_error: 208578.1747\n", "Epoch 844/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 213345.7816 - mean_absolute_error: 312.1763 - mean_squared_error: 213345.7816\n", "Epoch 845/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208968.9594 - mean_absolute_error: 290.3819 - mean_squared_error: 208968.9594\n", "Epoch 846/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 212229.7331 - mean_absolute_error: 323.0475 - mean_squared_error: 212229.7331\n", "Epoch 847/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 215095.4012 - mean_absolute_error: 315.4361 - mean_squared_error: 215095.4012\n", "Epoch 848/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 207833.6169 - mean_absolute_error: 309.5577 - mean_squared_error: 207833.6169\n", "Epoch 849/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 211034.9773 - mean_absolute_error: 295.6247 - mean_squared_error: 211034.9773\n", "Epoch 850/1000\n", "20000/20000 [==============================] - 1s 32us/step - loss: 208801.1209 - mean_absolute_error: 306.6180 - mean_squared_error: 208801.1209\n", "Epoch 851/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 213201.2239 - mean_absolute_error: 326.3341 - mean_squared_error: 213201.2239\n", "Epoch 852/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 211949.6751 - mean_absolute_error: 308.7607 - mean_squared_error: 211949.6751\n", "Epoch 853/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 209727.9981 - mean_absolute_error: 285.3352 - mean_squared_error: 209727.9981\n", "Epoch 854/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210498.9347 - mean_absolute_error: 309.7948 - mean_squared_error: 210498.9347\n", "Epoch 855/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 210837.3336 - mean_absolute_error: 315.3566 - mean_squared_error: 210837.3336\n", "Epoch 856/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 208872.4719 - mean_absolute_error: 310.6043 - mean_squared_error: 208872.4719\n", "Epoch 857/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 33us/step - loss: 213910.8760 - mean_absolute_error: 315.0222 - mean_squared_error: 213910.8760\n", "Epoch 858/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 212472.5707 - mean_absolute_error: 326.1966 - mean_squared_error: 212472.5707\n", "Epoch 859/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 212897.0501 - mean_absolute_error: 329.9492 - mean_squared_error: 212897.0501\n", "Epoch 860/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210299.8110 - mean_absolute_error: 309.5202 - mean_squared_error: 210299.8110\n", "Epoch 861/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 209739.7504 - mean_absolute_error: 312.5284 - mean_squared_error: 209739.7504\n", "Epoch 862/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 207941.7690 - mean_absolute_error: 276.8067 - mean_squared_error: 207941.7690\n", "Epoch 863/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 212965.5797 - mean_absolute_error: 305.3858 - mean_squared_error: 212965.5797\n", "Epoch 864/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 211933.0413 - mean_absolute_error: 325.2788 - mean_squared_error: 211933.0413\n", "Epoch 865/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 211858.0310 - mean_absolute_error: 317.1230 - mean_squared_error: 211858.0310\n", "Epoch 866/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 208248.5469 - mean_absolute_error: 281.9706 - mean_squared_error: 208248.5469\n", "Epoch 867/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 212086.0370 - mean_absolute_error: 318.5117 - mean_squared_error: 212086.0370\n", "Epoch 868/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210075.7338 - mean_absolute_error: 307.1878 - mean_squared_error: 210075.7338\n", "Epoch 869/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 213603.5869 - mean_absolute_error: 331.9567 - mean_squared_error: 213603.5869\n", "Epoch 870/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211755.4398 - mean_absolute_error: 317.8707 - mean_squared_error: 211755.4398\n", "Epoch 871/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210600.7438 - mean_absolute_error: 322.5297 - mean_squared_error: 210600.7438\n", "Epoch 872/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 212389.0584 - mean_absolute_error: 316.3680 - mean_squared_error: 212389.0584\n", "Epoch 873/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 211189.7452 - mean_absolute_error: 323.8769 - mean_squared_error: 211189.7452\n", "Epoch 874/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 209091.4757 - mean_absolute_error: 304.8217 - mean_squared_error: 209091.4757\n", "Epoch 875/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 215110.8412 - mean_absolute_error: 326.2334 - mean_squared_error: 215110.8412\n", "Epoch 876/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210266.6459 - mean_absolute_error: 325.9016 - mean_squared_error: 210266.6459\n", "Epoch 877/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 212599.8663 - mean_absolute_error: 330.5783 - mean_squared_error: 212599.8663\n", "Epoch 878/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 210845.1573 - mean_absolute_error: 298.9478 - mean_squared_error: 210845.1573\n", "Epoch 879/1000\n", "20000/20000 [==============================] - 1s 37us/step - loss: 209749.1438 - mean_absolute_error: 323.9651 - mean_squared_error: 209749.1438\n", "Epoch 880/1000\n", "20000/20000 [==============================] - 1s 42us/step - loss: 210544.1653 - mean_absolute_error: 322.9880 - mean_squared_error: 210544.1653\n", "Epoch 881/1000\n", "20000/20000 [==============================] - 1s 38us/step - loss: 211470.6286 - mean_absolute_error: 321.1907 - mean_squared_error: 211470.6286\n", "Epoch 882/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 208790.4965 - mean_absolute_error: 284.6429 - mean_squared_error: 208790.4965\n", "Epoch 883/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211576.2089 - mean_absolute_error: 321.7962 - mean_squared_error: 211576.2089\n", "Epoch 884/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 213189.4935 - mean_absolute_error: 308.7956 - mean_squared_error: 213189.4935\n", "Epoch 885/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208031.1713 - mean_absolute_error: 310.5109 - mean_squared_error: 208031.1713\n", "Epoch 886/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208763.2331 - mean_absolute_error: 303.2500 - mean_squared_error: 208763.2331\n", "Epoch 887/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 214322.7135 - mean_absolute_error: 345.5089 - mean_squared_error: 214322.7135\n", "Epoch 888/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 208809.0134 - mean_absolute_error: 304.4540 - mean_squared_error: 208809.0134\n", "Epoch 889/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 211776.1701 - mean_absolute_error: 304.5409 - mean_squared_error: 211776.1701\n", "Epoch 890/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 206264.2612 - mean_absolute_error: 283.3209 - mean_squared_error: 206264.2612\n", "Epoch 891/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 211189.2333 - mean_absolute_error: 315.1604 - mean_squared_error: 211189.2333\n", "Epoch 892/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207534.1261 - mean_absolute_error: 307.1945 - mean_squared_error: 207534.1261\n", "Epoch 893/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208550.9484 - mean_absolute_error: 289.7726 - mean_squared_error: 208550.9484\n", "Epoch 894/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 208860.5674 - mean_absolute_error: 288.9781 - mean_squared_error: 208860.5674\n", "Epoch 895/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207441.4462 - mean_absolute_error: 305.4749 - mean_squared_error: 207441.4462\n", "Epoch 896/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211707.2321 - mean_absolute_error: 297.3133 - mean_squared_error: 211707.2321\n", "Epoch 897/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 209433.8091 - mean_absolute_error: 316.5011 - mean_squared_error: 209433.8091\n", "Epoch 898/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 212053.3270 - mean_absolute_error: 320.0440 - mean_squared_error: 212053.3270\n", "Epoch 899/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 209641.9982 - mean_absolute_error: 326.1284 - mean_squared_error: 209641.9982\n", "Epoch 900/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 206602.2858 - mean_absolute_error: 294.5128 - mean_squared_error: 206602.2858\n", "Epoch 901/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 210896.7297 - mean_absolute_error: 315.1952 - mean_squared_error: 210896.7297\n", "Epoch 902/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210591.8121 - mean_absolute_error: 324.9047 - mean_squared_error: 210591.8121\n", "Epoch 903/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208823.9793 - mean_absolute_error: 301.6565 - mean_squared_error: 208823.9793\n", "Epoch 904/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210560.0714 - mean_absolute_error: 313.5855 - mean_squared_error: 210560.0714\n", "Epoch 905/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210021.6899 - mean_absolute_error: 319.6248 - mean_squared_error: 210021.6899\n", "Epoch 906/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 209957.2297 - mean_absolute_error: 321.6095 - mean_squared_error: 209957.2297\n", "Epoch 907/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208790.1495 - mean_absolute_error: 306.1639 - mean_squared_error: 208790.1495\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 908/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 212649.8796 - mean_absolute_error: 306.8643 - mean_squared_error: 212649.8796\n", "Epoch 909/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 208548.1014 - mean_absolute_error: 319.7774 - mean_squared_error: 208548.1014\n", "Epoch 910/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208652.5469 - mean_absolute_error: 320.1115 - mean_squared_error: 208652.5469\n", "Epoch 911/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 209191.4238 - mean_absolute_error: 311.7837 - mean_squared_error: 209191.4238\n", "Epoch 912/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 211887.5449 - mean_absolute_error: 307.2016 - mean_squared_error: 211887.5449\n", "Epoch 913/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 209516.3259 - mean_absolute_error: 324.2760 - mean_squared_error: 209516.3259\n", "Epoch 914/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 209534.4580 - mean_absolute_error: 306.9837 - mean_squared_error: 209534.4580\n", "Epoch 915/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 209729.6134 - mean_absolute_error: 323.7482 - mean_squared_error: 209729.6134\n", "Epoch 916/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207682.2692 - mean_absolute_error: 313.3062 - mean_squared_error: 207682.2692\n", "Epoch 917/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 206611.0311 - mean_absolute_error: 300.4015 - mean_squared_error: 206611.0311\n", "Epoch 918/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211583.2814 - mean_absolute_error: 312.2270 - mean_squared_error: 211583.2814\n", "Epoch 919/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 208128.9775 - mean_absolute_error: 308.8218 - mean_squared_error: 208128.9775\n", "Epoch 920/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207471.8469 - mean_absolute_error: 304.8257 - mean_squared_error: 207471.8469\n", "Epoch 921/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 209151.8295 - mean_absolute_error: 296.3614 - mean_squared_error: 209151.8295\n", "Epoch 922/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208323.5074 - mean_absolute_error: 315.3874 - mean_squared_error: 208323.5074\n", "Epoch 923/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207231.2454 - mean_absolute_error: 283.4531 - mean_squared_error: 207231.2454\n", "Epoch 924/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208830.7926 - mean_absolute_error: 302.2753 - mean_squared_error: 208830.7926\n", "Epoch 925/1000\n", "20000/20000 [==============================] - 1s 39us/step - loss: 207319.2647 - mean_absolute_error: 309.1799 - mean_squared_error: 207319.2647\n", "Epoch 926/1000\n", "20000/20000 [==============================] - 1s 38us/step - loss: 207552.2342 - mean_absolute_error: 292.9113 - mean_squared_error: 207552.2342\n", "Epoch 927/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208810.8721 - mean_absolute_error: 306.0934 - mean_squared_error: 208810.8721\n", "Epoch 928/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206345.5706 - mean_absolute_error: 287.1875 - mean_squared_error: 206345.5706\n", "Epoch 929/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208926.4924 - mean_absolute_error: 304.7588 - mean_squared_error: 208926.4924\n", "Epoch 930/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206915.5944 - mean_absolute_error: 314.7859 - mean_squared_error: 206915.5944\n", "Epoch 931/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 210708.0827 - mean_absolute_error: 305.4451 - mean_squared_error: 210708.0827\n", "Epoch 932/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 209364.5298 - mean_absolute_error: 314.6603 - mean_squared_error: 209364.5298\n", "Epoch 933/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208899.3700 - mean_absolute_error: 317.3992 - mean_squared_error: 208899.3700\n", "Epoch 934/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206438.3670 - mean_absolute_error: 309.2897 - mean_squared_error: 206438.3670\n", "Epoch 935/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207846.2443 - mean_absolute_error: 298.6538 - mean_squared_error: 207846.2443\n", "Epoch 936/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210168.3866 - mean_absolute_error: 325.9747 - mean_squared_error: 210168.3866\n", "Epoch 937/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211365.6846 - mean_absolute_error: 323.5627 - mean_squared_error: 211365.6846\n", "Epoch 938/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206026.3202 - mean_absolute_error: 302.5830 - mean_squared_error: 206026.3202\n", "Epoch 939/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210414.3013 - mean_absolute_error: 331.0339 - mean_squared_error: 210414.3013\n", "Epoch 940/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206992.4578 - mean_absolute_error: 300.9526 - mean_squared_error: 206992.4578\n", "Epoch 941/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211407.2028 - mean_absolute_error: 316.1722 - mean_squared_error: 211407.2028\n", "Epoch 942/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206695.2332 - mean_absolute_error: 313.0823 - mean_squared_error: 206695.2332\n", "Epoch 943/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 211300.7998 - mean_absolute_error: 337.2155 - mean_squared_error: 211300.7998\n", "Epoch 944/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208791.2588 - mean_absolute_error: 318.1402 - mean_squared_error: 208791.2588\n", "Epoch 945/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208504.0336 - mean_absolute_error: 322.2243 - mean_squared_error: 208504.0336\n", "Epoch 946/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 205948.7533 - mean_absolute_error: 308.6866 - mean_squared_error: 205948.7533\n", "Epoch 947/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 209288.6539 - mean_absolute_error: 307.7837 - mean_squared_error: 209288.6539\n", "Epoch 948/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 210723.8287 - mean_absolute_error: 313.6897 - mean_squared_error: 210723.8287\n", "Epoch 949/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 207247.2508 - mean_absolute_error: 313.8991 - mean_squared_error: 207247.2508\n", "Epoch 950/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 208218.0758 - mean_absolute_error: 313.3386 - mean_squared_error: 208218.0758\n", "Epoch 951/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 207932.5039 - mean_absolute_error: 315.5401 - mean_squared_error: 207932.5039\n", "Epoch 952/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206163.5891 - mean_absolute_error: 295.1722 - mean_squared_error: 206163.5891\n", "Epoch 953/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208141.0025 - mean_absolute_error: 303.3604 - mean_squared_error: 208141.0025\n", "Epoch 954/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 205548.8540 - mean_absolute_error: 321.6750 - mean_squared_error: 205548.8540\n", "Epoch 955/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 208948.7667 - mean_absolute_error: 292.8072 - mean_squared_error: 208948.7667\n", "Epoch 956/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 204819.1350 - mean_absolute_error: 296.2646 - mean_squared_error: 204819.1350\n", "Epoch 957/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 210628.7761 - mean_absolute_error: 337.7040 - mean_squared_error: 210628.7761\n", "Epoch 958/1000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "20000/20000 [==============================] - 1s 35us/step - loss: 206383.6071 - mean_absolute_error: 316.5056 - mean_squared_error: 206383.6071\n", "Epoch 959/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206081.0890 - mean_absolute_error: 305.7260 - mean_squared_error: 206081.0890\n", "Epoch 960/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208736.3296 - mean_absolute_error: 322.9757 - mean_squared_error: 208736.3296\n", "Epoch 961/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 209253.2238 - mean_absolute_error: 312.3127 - mean_squared_error: 209253.2238\n", "Epoch 962/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207373.5886 - mean_absolute_error: 294.3403 - mean_squared_error: 207373.5886\n", "Epoch 963/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207414.8255 - mean_absolute_error: 302.0926 - mean_squared_error: 207414.8255\n", "Epoch 964/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 204310.7306 - mean_absolute_error: 288.3387 - mean_squared_error: 204310.7306\n", "Epoch 965/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 205344.8608 - mean_absolute_error: 306.2038 - mean_squared_error: 205344.8608\n", "Epoch 966/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 207899.5657 - mean_absolute_error: 299.4371 - mean_squared_error: 207899.5657\n", "Epoch 967/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 206294.5683 - mean_absolute_error: 301.0484 - mean_squared_error: 206294.5683\n", "Epoch 968/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 205246.0065 - mean_absolute_error: 280.1738 - mean_squared_error: 205246.0065\n", "Epoch 969/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207537.8041 - mean_absolute_error: 305.7606 - mean_squared_error: 207537.8041\n", "Epoch 970/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 205199.7559 - mean_absolute_error: 285.4860 - mean_squared_error: 205199.7559\n", "Epoch 971/1000\n", "20000/20000 [==============================] - 1s 42us/step - loss: 203175.2173 - mean_absolute_error: 286.0423 - mean_squared_error: 203175.2173\n", "Epoch 972/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 207726.8764 - mean_absolute_error: 323.2818 - mean_squared_error: 207726.8764\n", "Epoch 973/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 209941.1758 - mean_absolute_error: 313.4742 - mean_squared_error: 209941.1758\n", "Epoch 974/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 204615.8124 - mean_absolute_error: 306.7550 - mean_squared_error: 204615.8124\n", "Epoch 975/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 206912.6118 - mean_absolute_error: 303.2047 - mean_squared_error: 206912.6118\n", "Epoch 976/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206406.1108 - mean_absolute_error: 313.6651 - mean_squared_error: 206406.1108\n", "Epoch 977/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 204855.9305 - mean_absolute_error: 309.8996 - mean_squared_error: 204855.9305\n", "Epoch 978/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207568.8980 - mean_absolute_error: 311.9940 - mean_squared_error: 207568.8980\n", "Epoch 979/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 209142.0422 - mean_absolute_error: 306.8441 - mean_squared_error: 209142.0422\n", "Epoch 980/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 205151.5899 - mean_absolute_error: 306.0218 - mean_squared_error: 205151.5899\n", "Epoch 981/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 203682.8573 - mean_absolute_error: 284.7669 - mean_squared_error: 203682.8573\n", "Epoch 982/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 209937.1951 - mean_absolute_error: 324.6341 - mean_squared_error: 209937.1951\n", "Epoch 983/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208308.1519 - mean_absolute_error: 306.4831 - mean_squared_error: 208308.1519\n", "Epoch 984/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 200092.0834 - mean_absolute_error: 292.9369 - mean_squared_error: 200092.0834\n", "Epoch 985/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207965.6163 - mean_absolute_error: 302.4512 - mean_squared_error: 207965.6163\n", "Epoch 986/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 208688.9570 - mean_absolute_error: 321.1417 - mean_squared_error: 208688.9570\n", "Epoch 987/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 201839.3496 - mean_absolute_error: 298.4949 - mean_squared_error: 201839.3496\n", "Epoch 988/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 210605.9873 - mean_absolute_error: 322.6236 - mean_squared_error: 210605.9873\n", "Epoch 989/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206770.8113 - mean_absolute_error: 304.5674 - mean_squared_error: 206770.8113\n", "Epoch 990/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 203298.3943 - mean_absolute_error: 308.4353 - mean_squared_error: 203298.3943\n", "Epoch 991/1000\n", "20000/20000 [==============================] - 1s 35us/step - loss: 208818.8942 - mean_absolute_error: 311.4374 - mean_squared_error: 208818.8942\n", "Epoch 992/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206877.4570 - mean_absolute_error: 316.2175 - mean_squared_error: 206877.4570\n", "Epoch 993/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 205993.1413 - mean_absolute_error: 323.7939 - mean_squared_error: 205993.1413\n", "Epoch 994/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 206896.7090 - mean_absolute_error: 301.3150 - mean_squared_error: 206896.7090\n", "Epoch 995/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 206854.9065 - mean_absolute_error: 316.9602 - mean_squared_error: 206854.9065\n", "Epoch 996/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 206707.9470 - mean_absolute_error: 339.3015 - mean_squared_error: 206707.9470\n", "Epoch 997/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207588.7631 - mean_absolute_error: 315.1385 - mean_squared_error: 207588.7631\n", "Epoch 998/1000\n", "20000/20000 [==============================] - 1s 36us/step - loss: 206030.6768 - mean_absolute_error: 313.4762 - mean_squared_error: 206030.6768\n", "Epoch 999/1000\n", "20000/20000 [==============================] - 1s 34us/step - loss: 207152.9517 - mean_absolute_error: 322.0871 - mean_squared_error: 207152.9517\n", "Epoch 1000/1000\n", "20000/20000 [==============================] - 1s 33us/step - loss: 206155.5049 - mean_absolute_error: 295.8557 - mean_squared_error: 206155.5049\n" ] }, { "data": { "text/plain": [ "<tensorflow.python.keras.callbacks.History at 0x7f3ac959aeb8>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.fit(input_values, output_values, epochs=1000)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[111.56281],\n", " [121.54024],\n", " [131.527 ],\n", " [201.39575]], dtype=float32)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# if prediction follows something like Y = 10 * X +100\n", "# prediction of 1 -> 110, 2 -> 120, 3 -> 130, 10 -> 200\n", "model.predict(np.array([1,2,3,10]))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
swartn/weather-with-pandas
.ipynb_checkpoints/pandas_intro-checkpoint.ipynb
1
114378
{ "metadata": { "name": "", "signature": "sha256:53eb410cc446eb137ff6a3c1f9d06a6eb602d14cbad1fb72f5f1c3b8232bf889" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Weather with Pandas\n", "[email protected]__ \n", "\n", "\n", "## Introduction\n", "This is a basic introduction to pandas using some Environment Canada weather station data. We will look at one year's\n", "worth of daily data from Victoria, BC and we'll cover three basic topics:\n", "\n", "1. Loading and looking at data\n", "1. Basic filtering of data\n", "1. Basic plotting\n", "\n", "To start with, you need to download the data from [here](http://climate.weather.gc.ca/climateData/bulkdata_e.html?format=csv&stationID=118&Year=2012&Month=12&day=1&timeframe=2&submit=Download+Data) and save the file as \n", " yyj_daily_2012.csv \n", "You can get similar data for other stations, all of which can be explored on the [EC website](http://climate.weather.gc.ca/index_e.html#access). If you want to download multiple years worth of data checkout\n", "this [wget script](https://github.com/swartn/weather-with-pandas/blob/master/get_ec_stn_data.sh) on my github for an example.\n", "\n", "Some of the material presented here was taken from a [similar tutorial](http://nbviewer.ipython.org/github/swcarpentry/bc/blob/gh-pages/lessons/misc-pandas/an-introduction-to-pandas.ipynb), which documents even more functionality:\n", "\n", "Of course also check out the official docs at http://pandas.pydata.org/" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Loading data and viewing its basic properties\n", "Now lets get started. First off lets load up our required modules, including pandas." ] }, { "cell_type": "code", "collapsed": false, "input": [ "import re\n", "import pandas as pd\n", "from datetime import datetime\n", "import pylab\n", "#%matplotlib inline " ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 87 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lets read in the yyj daily weather data from the CSV formatted file into a Pandas dataframe. We will tell pandas to skip the first 24 rows which are unwanted header info. Pandas will automatically read the column names from row 25, and the data below that." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df = pd.read_csv('yyj_daily_2012.csv',skiprows=24)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 88 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pandas dataframes have much of the functionality of numpy arrays, plus much more. Lets look at some properties of the dataframe, like its shape:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.shape" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 89, "text": [ "(366, 27)" ] } ], "prompt_number": 89 }, { "cell_type": "markdown", "metadata": {}, "source": [ "The shape tells us that the dataframe has 366 rows (one for each day of 2012) and 27 columns. Lets see what the names of those columns are:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.columns" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 90, "text": [ "Index([u'Date/Time', u'Year', u'Month', u'Day', u'Data Quality', u'Max Temp (\ufffdC)', u'Max Temp Flag', u'Min Temp (\ufffdC)', u'Min Temp Flag', u'Mean Temp (\ufffdC)', u'Mean Temp Flag', u'Heat Deg Days (\ufffdC)', u'Heat Deg Days Flag', u'Cool Deg Days (\ufffdC)', u'Cool Deg Days Flag', u'Total Rain (mm)', u'Total Rain Flag', u'Total Snow (cm)', u'Total Snow Flag', u'Total Precip (mm)', u'Total Precip Flag', u'Snow on Grnd (cm)', u'Snow on Grnd Flag', u'Dir of Max Gust (10s deg)', u'Dir of Max Gust Flag', u'Spd of Max Gust (km/h)', u'Spd of Max Gust Flag'], dtype='object')" ] } ], "prompt_number": 90 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ok so now we know what the columns are. The column names arn't particularly easy to read, but we'll get to fixing that soon. First though, lets look at some mean statistics, starting with the mean for each column.\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.mean()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 91, "text": [ "Year 2012.000000\n", "Month 6.513661\n", "Day 15.756831\n", "Data Quality NaN\n", "Max Temp (\ufffdC) 14.179508\n", "Max Temp Flag NaN\n", "Min Temp (\ufffdC) 5.578142\n", "Min Temp Flag NaN\n", "Mean Temp (\ufffdC) 9.902186\n", "Mean Temp Flag NaN\n", "Heat Deg Days (\ufffdC) 8.173224\n", "Heat Deg Days Flag NaN\n", "Cool Deg Days (\ufffdC) 0.075410\n", "Cool Deg Days Flag NaN\n", "Total Rain (mm) 2.597541\n", "Total Snow (cm) 0.037705\n", "Total Precip (mm) 2.633607\n", "Snow on Grnd (cm) 0.040984\n", "Dir of Max Gust (10s deg) 19.315789\n", "dtype: float64" ] } ], "prompt_number": 91 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Max, Min, Std, and others are available too. The flag columns have NaN values for the mean, because there is not valid numeric data in those columns. Now lets access some data, lets say the month field" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df['Month']" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 92, "text": [ "0 1\n", "1 1\n", "2 1\n", "3 1\n", "4 1\n", "5 1\n", "6 1\n", "7 1\n", "8 1\n", "9 1\n", "10 1\n", "11 1\n", "12 1\n", "13 1\n", "14 1\n", "...\n", "351 12\n", "352 12\n", "353 12\n", "354 12\n", "355 12\n", "356 12\n", "357 12\n", "358 12\n", "359 12\n", "360 12\n", "361 12\n", "362 12\n", "363 12\n", "364 12\n", "365 12\n", "Name: Month, Length: 366, dtype: int64" ] } ], "prompt_number": 92 }, { "cell_type": "markdown", "metadata": {}, "source": [ "so we got a printout of the row index (left) and month (right). Pandas truncated the data, and only actually printed the first and last 15 columns, to make it easier to read. Now say we only want the first 10 rows, we can use the head function:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.Month.head(10)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 93, "text": [ "0 1\n", "1 1\n", "2 1\n", "3 1\n", "4 1\n", "5 1\n", "6 1\n", "7 1\n", "8 1\n", "9 1\n", "Name: Month, dtype: int64" ] } ], "prompt_number": 93 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that here we also used the \"dot syntax\" (df.Month) to access the \"month\" column, compared to before when we used df[\"Month\"]. Both are valid ways to access a column. However because many of our columns names contain spaces and weird characters, using the dot syntax won't work easily for most of our columns. We'll fix that soon. Firstly, lets get focused statistics for the Total precip field using describe:\n" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df['Total Precip (mm)'].describe()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 94, "text": [ "count 366.000000\n", "mean 2.633607\n", "std 5.164477\n", "min 0.000000\n", "25% 0.000000\n", "50% 0.000000\n", "75% 2.800000\n", "max 29.800000\n", "Name: Total Precip (mm), dtype: float64" ] } ], "prompt_number": 94 }, { "cell_type": "markdown", "metadata": {}, "source": [ "The columns names are a little unweildy, so lets replace them with something better: For each column name, lets strip out the wierd unit and spaces and replace the spaces with underscores and store the result in a list called dcol. This is just a python trick, not really pandas. You could just write a list of names if you wanted." ] }, { "cell_type": "code", "collapsed": false, "input": [ "# use a list comprehension to strip off weird units, and replace spaces with underscores.\n", "dcol = [ re.sub(r'\\(.*?\\)', '', col).strip(' ').replace(' ', '_') for col in df.columns ]\n", "# now lets replace our old columns headers with dcol in the pandas dataframe. Remember, dcol\n", "# could be any list of names you make up, as long as it is a list containing the correct number strings = # columns.\n", "\n", "df.columns = dcol\n", "\n", "# check that it worked\n", "df.columns" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 95, "text": [ "Index([u'Date/Time', u'Year', u'Month', u'Day', u'Data_Quality', u'Max_Temp', u'Max_Temp_Flag', u'Min_Temp', u'Min_Temp_Flag', u'Mean_Temp', u'Mean_Temp_Flag', u'Heat_Deg_Days', u'Heat_Deg_Days_Flag', u'Cool_Deg_Days', u'Cool_Deg_Days_Flag', u'Total_Rain', u'Total_Rain_Flag', u'Total_Snow', u'Total_Snow_Flag', u'Total_Precip', u'Total_Precip_Flag', u'Snow_on_Grnd', u'Snow_on_Grnd_Flag', u'Dir_of_Max_Gust', u'Dir_of_Max_Gust_Flag', u'Spd_of_Max_Gust', u'Spd_of_Max_Gust_Flag'], dtype='object')" ] } ], "prompt_number": 95 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we have fixed the columns names, we can easily use dot sytax to get some more interesting data. Lets look at the maximum temperature field." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.Max_Temp" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 96, "text": [ "0 6.6\n", "1 10.4\n", "2 9.7\n", "3 10.6\n", "4 8.8\n", "5 6.0\n", "6 6.6\n", "7 8.1\n", "8 10.7\n", "9 6.3\n", "10 5.2\n", "11 5.9\n", "12 3.4\n", "13 5.1\n", "14 2.4\n", "...\n", "351 5.8\n", "352 5.5\n", "353 5.8\n", "354 6.9\n", "355 7.9\n", "356 5.6\n", "357 7.7\n", "358 6.4\n", "359 5.9\n", "360 6.5\n", "361 6.6\n", "362 6.6\n", "363 5.5\n", "364 5.4\n", "365 3.7\n", "Name: Max_Temp, Length: 366, dtype: float64" ] } ], "prompt_number": 96 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ok, now lets look at the \"index\" field that we heard about before. Currently the index is just an integer." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.index" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 97, "text": [ "Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, ...], dtype='int64')" ] } ], "prompt_number": 97 }, { "cell_type": "markdown", "metadata": {}, "source": [ "thats okay, but it turns out to be useful to use the datetime as the index.\n", "let write a function that converts our first column, the string Date/Time into an actual\n", "python datetime object. " ] }, { "cell_type": "code", "collapsed": false, "input": [ "# Define a function to convert strings to dates\n", "def string_to_date(date_string):\n", " return datetime.strptime(date_string, \"%Y-%m-%d\")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 98 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Run the function on every date string and overwrite the column" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.date = df['Date/Time'].apply(string_to_date)\n", "df.date.head()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 99, "text": [ "0 2012-01-01\n", "1 2012-01-02\n", "2 2012-01-03\n", "3 2012-01-04\n", "4 2012-01-05\n", "Name: Date/Time, dtype: datetime64[ns]" ] } ], "prompt_number": 99 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now lets replace our dataframes index with the date field" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.index = df.date" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 100 }, { "cell_type": "markdown", "metadata": {}, "source": [ "check that it worked" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.index" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 101, "text": [ "<class 'pandas.tseries.index.DatetimeIndex'>\n", "[2012-01-01, ..., 2012-12-31]\n", "Length: 366, Freq: None, Timezone: None" ] } ], "prompt_number": 101 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Actually, we are being inefficient. When we loaded the dataframe,\n", "we could have told pandas to parse the dates and use them. But\n", "the above example shows how you can define a function and apply\n", "it to every line in a dataframe." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Basic filtering\n", "Okay, now that we have the index as datetimes, it allows us to do some neat filetering and plotting. Lets start by doing a seasonal decomposition. Lets find the max temp in summer (JJA or months 6 to 8):" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.jja = df[ ( df.index.month >= 6 ) & ( df.index.month <= 8 )]\n", "df.jja.Max_Temp.max()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 102, "text": [ "31.399999999999999" ] } ], "prompt_number": 102 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lets find information on 18th July. To do this we will use ix, and pass it the datetime for 18 July." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.ix[ datetime(2012, 6, 18) ]" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 103, "text": [ "Date/Time 2012-06-18\n", "Year 2012\n", "Month 6\n", "Day 18\n", "Data_Quality NaN\n", "Max_Temp 18.2\n", "Max_Temp_Flag NaN\n", "Min_Temp 9.5\n", "Min_Temp_Flag NaN\n", "Mean_Temp 13.9\n", "Mean_Temp_Flag NaN\n", "Heat_Deg_Days 4.1\n", "Heat_Deg_Days_Flag NaN\n", "Cool_Deg_Days 0\n", "Cool_Deg_Days_Flag NaN\n", "Total_Rain 1.5\n", "Total_Rain_Flag NaN\n", "Total_Snow 0\n", "Total_Snow_Flag NaN\n", "Total_Precip 1.5\n", "Total_Precip_Flag NaN\n", "Snow_on_Grnd 0\n", "Snow_on_Grnd_Flag NaN\n", "Dir_of_Max_Gust 25\n", "Dir_of_Max_Gust_Flag E\n", "Spd_of_Max_Gust 39\n", "Spd_of_Max_Gust_Flag E\n", "Name: 2012-06-18 00:00:00, dtype: object" ] } ], "prompt_number": 103 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Lets look only for days that are nice and warm, lets say Mean_Temp > 18. We'll request the index so we get a print out of the datetimes." ] }, { "cell_type": "code", "collapsed": false, "input": [ "df[ df.Mean_Temp > 18 ].index" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 104, "text": [ "<class 'pandas.tseries.index.DatetimeIndex'>\n", "[2012-07-08, ..., 2012-09-08]\n", "Length: 16, Freq: None, Timezone: None" ] } ], "prompt_number": 104 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Basic plotting\n", "Lets do some basic plotting. First up, lets look at a historgram of our maximum temperature data:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.Max_Temp.hist()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 105, "text": [ "<matplotlib.axes.AxesSubplot at 0x710c8d0>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHY5JREFUeJzt3W9sU9f9BvDHNEgrhTSEwDX/JldQNySksVvadFMRTqlT\nVWvSDLqObuucQjdp0l6wXzXjbi/WbVrr7J8GdK9Yt1itVMabZdkEqHGTQxnaSgtYrUQztkI6Co41\nmriEBAYJ9/ciJDTk37n2tc89+PlIkXoT4/NwnPNt8sQxLtM0TRARkbZmqQ5ARETZ4SAnItIcBzkR\nkeY4yImINMdBTkSkOQ5yIiLNzTjIX3rpJVRWVqKqqgpf+9rX8L///Q+9vb0IBoPwer2oq6tDOp3O\nR1YiIprEtIO8u7sbu3btwtGjR/H+++9jeHgYu3fvRjQaRTAYxIkTJ7B+/XpEo9F85SUiohtMO8iL\ni4sxe/ZsDA4OYmhoCIODg1iyZAna2toQCoUAAKFQCK2trXkJS0REE007yEtLS/Hcc8/h85//PJYs\nWYKSkhIEg0GkUikYhgEAMAwDqVQqL2GJiGiiaQf5hx9+iN/85jfo7u7G2bNnceHCBbz22mvjbuNy\nueByuXIakoiIplY03QffffddfPGLX8SCBQsAABs2bMDf//53uN1u9PT0wO12I5lMYtGiRZP++aVL\nl+Ls2bP2pyYiuomtWLEC//73v6VvP+1X5OXl5fjHP/6BixcvwjRNxONxVFRUoL6+HrFYDAAQi8XQ\n2Ng46Z8/e/YsTNN0/NuPfvQj5RluhozMyZxOf9Ml54cffmhh7M/wFXl1dTW++c1vYs2aNZg1axbu\nuecefPvb30Z/fz+efPJJvPLKK/B4PNizZ4+lRZ2mu7tbdYQZ6ZARYE67Mae9dMlp1bSDHADC4TDC\n4fC495WWliIej+csFBERyeNvdgJoampSHWFGOmQEmNNuzGkvXXJa5TJNM2f/sITL5UIO755yoLi4\nFP39fXlbb968+Th/vjdv6xHpwOrs5FfkAIQQqiPMKF8ZR4a4mcVbp6Xb5/N/Gp+lw2MOMKfddMlp\nFQc5EZHmWK3QOCO/3JXPx4yfI0Q3YrVCRFRgOMihR2+mQ8YRQnUAKbrsJ3PaS5ecVnGQExFpjh05\njcOOnEg9duRERAWGgxx69GY6ZBwhVAeQost+Mqe9dMlpFQc5EZHm2JHTOOzIidRjR05EVGA4yKFH\nb6ZDxhFCdQApuuwnc9pLl5xWcZATEWmOHTmNw46cSD125EREBYaDHHr0ZjpkHCFUB5Ciy34yp710\nyWnVjIP8n//8J/x+/9jb7bffjh07dqC3txfBYBBerxd1dXVIp9P5yEtERDew1JFfvXoVS5cuxeHD\nh7Fz506UlZUhHA6jubkZfX19iEaj4++cHbl22JETqZfTjjwej2PlypVYvnw52traEAqFAAChUAit\nra3WkhIRkS0sDfLdu3fjqaeeAgCkUikYhgEAMAwDqVTK/nR5okNvpkPGEUJ1ACm67Cdz2kuXnFZJ\nD/LLly/jL3/5C77yla9M+JjL5br2LTkREeVbkewN9+3bh3vvvRcLFy4EMPJVeE9PD9xuN5LJJBYt\nWjTpn2tqaoLH4wEAlJSUwOfzIRAIALj+f0dez3wdCATytt51o9cBi9dW/zyyyuv0/bTr8XBKHu6n\n/ddCCLS0tADA2Ly0QvqHnZs2bcKjjz461ouHw2EsWLAA27ZtQzQaRTqd5g87bwL8YSeRejn5YefA\nwADi8Tg2bNgw9r5IJIL29nZ4vV50dHQgEolYT+sQE78SdR4dMo4QqgNI0WU/mdNeuuS0Sqpaue22\n23Du3Llx7ystLUU8Hs9JKCIiksfXWqFxWK0QqcfXWiEiKjAc5NCjN9Mh4wihOoAUXfaTOe2lS06r\nOMiJiDTHjpzGYUdOpB47ciKiAsNBDj16Mx0yjhCqA0jRZT+Z01665LSKg5yISHPsyGkcduRE6rEj\nJyIqMBzk0KM30yHjCKE6gBRd9pM57aVLTqs4yImINMeO3OGKi0vR39+X51XZkROpZHV2cpA7nIof\nPnKQE6nFH3ZmQI/eTKgOIEmoDiBFj8ecOe2mS06rOMiJiDTHasXhWK0QFR5WK0REBYaDHLr0ZkJ1\nAElCdQAp+XrMi4tL4XK58vZWXFyal7/XjfQ4Q/rktEpqkKfTaTzxxBNYtWoVKioq8Pbbb6O3txfB\nYBBerxd1dXVIp9O5zkqknZGnjppZvHVaun3+n6pKTiDVkYdCIaxbtw6bN2/G0NAQBgYG8LOf/Qxl\nZWUIh8Nobm5GX18fotHo+DtnR541duR642vXUCZsfx75p59+Cr/fj5MnT457f3l5OQ4cOADDMNDT\n04NAIICurq6swtBEHOR64yCnTNj+w85Tp05h4cKFeOaZZ3DPPffgW9/6FgYGBpBKpWAYBgDAMAyk\nUqnMUyumR28mVAeQJFQHkKLHYw5wP+2lS06rima6wdDQEI4ePYqXX34Z9913H7Zu3TpphTLylcdE\nTU1N8Hg8AICSkhL4fD4EAgEA1zdV9fUop+SZKt/1Qx3I8XU26yUyXs8p++2sx4/7aed1IpFwVJ7R\nayEEWlpaAGBsXloxY7XS09ODL3zhCzh16hQA4G9/+xteeuklnDx5Ep2dnXC73Ugmk6itrWW1kgOs\nVvTGaoUyYXu14na7sXz5cpw4cQIAEI/HUVlZifr6esRiMQBALBZDY2NjhpGJiCgbUk8/3LlzJ77+\n9a+juroa7733Hn74wx8iEomgvb0dXq8XHR0diEQiuc6aM3r0ZkJ1AElCdQApejzmAPfTXrrktGrG\njhwAqqur8c4770x4fzwetz0QERFZw9dacTh25HpjR06Z4GutEBEVGA5y6NKbCdUBJAnVAaTo8ZgD\n3E976ZLTKg5yIiLNsSN3OHbkemNHTplgR05EVGA4yKFLbyZUB5AkVAeQosdjDnA/7aVLTqs4yImI\nNMeO3OHYkeuNHTllgh05EVGB4SCHLr2ZUB1AklAdQIoejznA/bSXLjmt4iAnItIcO3KHu/k78tkA\nhvK22rx583H+fG/e1mNHTpmwOjulXv2QKHeGkM9B198/+b9kRaQzVivQpTcTqgNIEqoDSNHjMQe4\nn/bSJadVHORERJpjR+5wN39HfnN3yOzIKRN8HjkRUYHhIIcuvZlQHUCSUB1Aih6POcD9tJcuOa2S\netaKx+NBcXExbrnlFsyePRuHDx9Gb28vvvrVr+Kjjz6Cx+PBnj17UFJSkuu8RER0A6mO/I477sCR\nI0dQWlo69r5wOIyysjKEw2E0Nzejr68P0Wh0/J2zI88aO3L712NHTk6Xs478xjtta2tDKBQCAIRC\nIbS2tkovSkRE9pEa5C6XCw8//DDWrFmDXbt2AQBSqRQMwwAAGIaBVCqVu5Q5pkdvJlQHkCRUB5Ci\nx2MOcD/tpUtOq6Q68kOHDmHx4sX473//i2AwiPLy8nEfd7lc176FnKipqQkejwcAUFJSAp/Ph0Ag\nAOD6pqq+HuWUPFPlu36oAzm+zma9RJ7Xy+T62pUWj1/m++mUz18nXScSCUflGb0WQqClpQUAxual\nFZafR/7jH/8Yc+fOxa5duyCEgNvtRjKZRG1tLbq6usbfOTvyrLEjt389duTkdLZ35IODg+jv7wcA\nDAwM4I033kBVVRUaGhoQi8UAALFYDI2NjRlGJiKibMw4yFOpFNauXQufz4eamho89thjqKurQyQS\nQXt7O7xeLzo6OhCJRPKRNyf06M2E6gCShOoAUvR4zAHup710yWnVjB35HXfcgUQiMeH9paWliMfj\nOQlFRETy+ForDseO3P712JGT0/G1VoiICgwHOXTpzYTqAJKE6gBS9HjMAe6nvXTJaRUHORGR5tiR\nOxw7cvvXY0dOTseOnIiowHCQQ5feTKgOIEmoDiBFj8cc4H7aS5ecVnGQExFpjh25w7Ejt389duTk\ndOzIiYgKDAc5dOnNhOoAkoTqAFL0eMwB7qe9dMlpFQc5EZHm2JE7HDty+9djR05Ox46ciKjAcJBD\nl95MqA4gSagOIEWPxxzgftpLl5xWcZATEWmOHbnDsSO3fz125OR07MiJiAoMBzl06c2E6gCShOoA\nUvR4zAHup710yWmV1CAfHh6G3+9HfX09AKC3txfBYBBerxd1dXVIp9M5DUlERFOT6sh//etf48iR\nI+jv70dbWxvC4TDKysoQDofR3NyMvr4+RKPRiXfOjjxr7MjtNhvAUB7XA9iRk1W2d+Qff/wx9u7d\ni2effXbsjtva2hAKhQAAoVAIra2tGcYlyrchjAzWfL0R5d6Mg/x73/sefvGLX2DWrOs3TaVSMAwD\nAGAYBlKpVO4S5oEevZlQHUCSUB1AklAdQJJQHUCKHmdIn5xWFU33wb/+9a9YtGgR/H7/lBvgcrmu\nffs/uaamJng8HgBASUkJfD4fAoEAgOubqvp6lFPyTJXv+qEO5Pg6m/USeV4vk2ud1rO6n7OmPY92\nu/XWuRgc7B9Z3SHnZbrrRCLhqDyj10IItLS0AMDYvLRi2o78Bz/4AV599VUUFRXh0qVLOH/+PDZs\n2IB33nkHQgi43W4kk0nU1taiq6tr4p2zI88aO3Ku5/T1eMbtZ2tH/uKLL+L06dM4deoUdu/ejYce\negivvvoqGhoaEIvFAACxWAyNjY3ZpSYiooxZeh756LdskUgE7e3t8Hq96OjoQCQSyUm4fNGjNxOq\nA0gSqgNIEqoDSBKqA0jR4wzpk9OqaTvyz1q3bh3WrVsHACgtLUU8Hs9ZKCIiksfXWnE4duRcz+nr\n8Yzbj6+1QkRUYDjIoUtvJlQHkCRUB5AkVAeQJFQHkKLHGdInp1Uc5EREmmNH7nDsyLme09fjGbcf\nO3IiogLDQQ5dejOhOoAkoTqAJKE6gCShOoAUPc6QPjmt4iAnItIcO3KHY0fO9Zy+Hs+4/diRExEV\nGA5y6NKbCdUBJAnVASQJ1QEkCdUBpOhxhvTJaRUHORGR5tiROxw7cq7n9PV4xu3HjpyIqMBwkEOX\n3kyoDiBJqA4gSagOIEmoDiBFjzOkT06rOMiJiDTHjtzh2JFzPaevxzNuP3bkREQFhoMcuvRmQnUA\nSUJ1AElCdQBJQnUAKXqcIX1yWjXtIL906RJqamrg8/lQUVGB559/HgDQ29uLYDAIr9eLuro6pNPp\nvIQlIqKJZuzIBwcHMWfOHAwNDeHBBx/EL3/5S7S1taGsrAzhcBjNzc3o6+tDNBqdeOfsyLPGjpzr\nOX09nnH72d6Rz5kzBwBw+fJlDA8PY/78+Whra0MoFAIAhEIhtLa2ZhiXiIiyNeMgv3r1Knw+HwzD\nQG1tLSorK5FKpWAYBgDAMAykUqmcB80lPXozoTqAJKE6gCShOoAkoTqAFD3OkD45rSqa6QazZs1C\nIpHAp59+ikceeQSdnZ3jPu5yua59+z+5pqYmeDweAEBJSQl8Ph8CgQCA65uq+nqUU/JMle/6oQ7k\n+Dqb9RJ5Xi+Ta53W02c/nXJeprtOJBKOyjN6LYRAS0sLAIzNSyssPY/8pz/9KW699Vb87ne/gxAC\nbrcbyWQStbW16Orqmnjn7Mizxo6c6zl9PZ5x+9nakZ87d27sGSkXL15Ee3s7/H4/GhoaEIvFAACx\nWAyNjY1ZRCYiomxMO8iTySQeeugh+Hw+1NTUoL6+HuvXr0ckEkF7ezu8Xi86OjoQiUTylTcn9OjN\nhOoAkoTqAJKE6gCShOoAUvQ4Q/rktGrajryqqgpHjx6d8P7S0lLE4/GchSIiInl8rRWHY0fO9Zy+\nHs+4/fhaK0REBYaDHLr0ZkJ1AElCdQBJQnUASUJ1ACl6nCF9clrFQU5EpDl25A7HjpzrOX09nnH7\nsSMnIiowHOTQpTcTqgNIEqoDSBKqA0gSqgNI0eMM6ZPTKg5yIiLNsSN3OHbkXM/p6/GM248dORFR\ngeEghy69mVAdQJJQHUCSUB1AklAdQIoeZ0ifnFZxkBMRaY4ducOxI+d6Tl+PZ9x+7MiJiAoMBzl0\n6c2E6gCShOoAkoTqAJKE6gBS9DhD+uS0ioOciEhz7Mgdjh0513P6ejzj9mNHTkRUYDjIoUtvJlQH\nkCRUB5AkVAeQJFQHkKLHGdInp1UzDvLTp0+jtrYWlZWVWL16NXbs2AEA6O3tRTAYhNfrRV1dHdLp\ndM7DEhHRRDN25D09Pejp6YHP58OFCxdw7733orW1FX/4wx9QVlaGcDiM5uZm9PX1IRqNjr9zduRZ\nY0fO9Zy+Hs+4/WzvyN1uN3w+HwBg7ty5WLVqFc6cOYO2tjaEQiEAQCgUQmtra4aRiYgoG5Y68u7u\nbhw7dgw1NTVIpVIwDAMAYBgGUqlUTgLmgx69mVAdQJJQHUCSUB1AklAdQIoeZ0ifnFYVyd7wwoUL\n2LhxI7Zv34558+aN+5jL5bpWAUzU1NQEj8cDACgpKYHP50MgEABwfVNVX49ySp6p8l0/1IEcX2ez\nXiLP62VyrdN6+uynU87LdNeJRMJReUavhRBoaWkBgLF5aYXU88ivXLmCxx57DI8++ii2bt0KACgv\nL4cQAm63G8lkErW1tejq6hp/5+zIs8aOnOs5fT2ecfvZ3pGbpoktW7agoqJibIgDQENDA2KxGAAg\nFouhsbExg7hERJStGQf5oUOH8Nprr6GzsxN+vx9+vx/79+9HJBJBe3s7vF4vOjo6EIlE8pE3J/To\nzYTqAJKE6gCShOoAkoTqAFL0OEP65LRqxo78wQcfxNWrVyf9WDwetz0QERFZw9dacTh25FzP6evx\njNuPr7VCRFRgOMihS28mVAeQJFQHkCRUB5AkVAeQoscZ0ienVRzkRESaY0fucOzIuZ7T1+MZtx87\nciKiAsNBDl16M6E6gCShOoAkoTqAJKE6gBQ9zpA+Oa3iICci0hw7codjR871nL4ez7j92JETERUY\nDnLo0psJ1QEkCdUBJAnVASQJ1QGk6HGG9MlpFQc5EZHm2JE7HDtyruf09XjG7ceOnIiowHCQQ5fe\nTKgOIEmoDiBJqA4gSagOIEWPM6RPTqs4yImINMeO3OHYkXM9p6/HM24/duRERAVmxkG+efNmGIaB\nqqqqsff19vYiGAzC6/Wirq4O6XQ6pyFzTY/eTKgOIEmoDiBJqA4gSagOIEWPM6RPTqtmHOTPPPMM\n9u/fP+590WgUwWAQJ06cwPr16xGNRnMWkIiIpifVkXd3d6O+vh7vv/8+AKC8vBwHDhyAYRjo6elB\nIBBAV1fXxDtnR541duRcz+nr8YzbLy8deSqVgmEYAADDMJBKpTK5GyIiskHWP+x0uVzXvmrUlx69\nmVAdQJJQHUCSUB1AklAdQIoeZ0ifnFYVZfKHRisVt9uNZDKJRYsWTXnbpqYmeDweAEBJSQl8Ph8C\ngQCA65uq+nqUU/JMle/6oQ7k+Dqb9RJ5Xi+Ta53Wc/p+zsrrF3K33joXg4P9I6tncJ4SiYTy8zzZ\ntRACLS0tADA2L63IqCMPh8NYsGABtm3bhmg0inQ6PekPPNmRZ48dOdfjeuPXK4SZYnV2zjjIn3rq\nKRw4cADnzp2DYRj4yU9+gscffxxPPvkk/vOf/8Dj8WDPnj0oKSnJOgxNxEHO9bje+PUKYabYPsjz\nGUYVIcTYtzsyiotL0d/fl7tAE5gY+TY2kIe1sj2YAtZyqho8AtxPO+R/P7OZKVbPuipWZ2dGHXmh\nGxni+Tosev8gmYhyj1+RZyC/dcfN/60y1+N6Vta7GWfKjfhaK0REBYaDHLo8t1SoDiBJqA4gSagO\nIEmoDiBJqA4gRY+zbh0HORGR5tiRZ4AdOdfjeurWuxlnyo3YkRMRFRgOcujSmwnVASQJ1QEkCdUB\nJAnVASSJPK1TNPb6Trl+Ky4uzdPfKXsc5ESkkSGMVDmZvnVK3za/v/SXHXbkGWBHzvW4XiGsp25+\nsSMnIiowHORgR24voTqAJKE6gCShOoAkoTqAJKE6QE5wkBMRaY4deQbYkXM9rlcI67EjJyKiPOEg\nBztyewnVASQJ1QEkCdUBJAnVASQJ1QFygoOciEhz2nfkH3zwAT766KOcrvFZc+bMwbp168COnOtx\nvZt9PX06cu0H+erVD6C7GygqmvhvhuZCf/+buHp19LfL8uFmPihcj+s5eT19BjnMLOzbt8+86667\nzJUrV5rRaHTCx7O8eyle730m8LYJmFm8dUrf9nOfK7v2O7zZrGflbXQt+Yz2rJf7vbRnPe4n9zNX\n+4mcz6+pWF074458eHgY3/3ud7F//34cP34cr7/+Oj744INM706xhOoAEnTICDCn3ZjTXrrktCbj\nQX748GGsXLkSHo8Hs2fPxqZNm/DnP//Zzmx5lFYdQIIOGQHmtBtz2kuXnNZkPMjPnDmD5cuXj10v\nW7YMZ86csSUUERHJK8r0D478dqN6RUWzcNtt/4dbbpmf8X0MDh7DnDlHpG47MPBpxutkp1vRulZ1\nqw4gqVt1AEndqgNI6lYdQFK36gA5kfEgX7p0KU6fPj12ffr0aSxbtmzcbVasWOGYgT+T8+etfjeR\nz7/X6FqxPK+XKas58/05wv201827n6rm14oVKyzdPuOnHw4NDeGuu+7Cm2++iSVLluD+++/H66+/\njlWrVmVyd0RElKGMvyIvKirCyy+/jEceeQTDw8PYsmULhzgRkQI5/YUgIiLKvZy+1soLL7yAZcuW\nwe/3w+/3Y//+/blczrL9+/ejvLwcd955J5qbm1XHmZLH48Hdd98Nv9+P+++/X3WcMZs3b4ZhGKiq\nqhp7X29vL4LBILxeL+rq6pBOq3+612Q5nfa5efr0adTW1qKyshKrV6/Gjh07ADhvP6fK6bT9vHTp\nEmpqauDz+VBRUYHnn38egPP2c6qclvczB7+UNOaFF14wf/WrX+VyiYwNDQ2ZK1asME+dOmVevnzZ\nrK6uNo8fP6461qQ8Ho/5ySefqI4xwVtvvWUePXrUXL169dj7vv/975vNzc2maZpmNBo1t23bpire\nmMlyOu1zM5lMmseOHTNN0zT7+/tNr9drHj9+3HH7OVVOp+2naZrmwMCAaZqmeeXKFbOmpsY8ePCg\n4/bTNCfPaXU/c/7qh6ZDmxvdfqHJifu4du1azJ8//mmfbW1tCIVCAIBQKITW1lYV0caZLCfgrD11\nu93w+XwAgLlz52LVqlU4c+aM4/ZzqpyAs/YTGHmBOwC4fPkyhoeHMX/+fMftJzB5TsDafuZ8kO/c\nuRPV1dXYsmWL8m9jPkunX2hyuVx4+OGHsWbNGuzatUt1nGmlUikYhgEAMAwDqVRKcaKpOfVzs7u7\nG8eOHUNNTY2j93M05wMPPADAeft59epV+Hw+GIYxVgc5cT8nywlY28+sB3kwGERVVdWEt7a2Nnzn\nO9/BqVOnkEgksHjxYjz33HPZLmcbXZ7fDgCHDh3CsWPHsG/fPvz2t7/FwYMHVUeS4nK5HLvPTv3c\nvHDhAjZu3Ijt27dj3rx54z7mpP28cOECnnjiCWzfvh1z58515H7OmjULiUQCH3/8Md566y10dnaO\n+7hT9vPGnEIIy/uZ8dMPR7W3t0vd7tlnn0V9fX22y9lG5heanGLx4sUAgIULF+LLX/4yDh8+jLVr\n1ypONTnDMNDT0wO3241kMolFixapjjSpz+ZyyufmlStXsHHjRjz99NNobGwE4Mz9HM35jW98Yyyn\nE/dz1O23344vfelLOHLkiCP3c9RoznfffReBQGDs/TL7mdNqJZlMjv33n/70p3HPGlBtzZo1+Ne/\n/oXu7m5cvnwZf/zjH9HQ0KA61gSDg4Po7+8HAAwMDOCNN95w1D7eqKGhAbHYyG/OxWKxsYPuNE77\n3DRNE1u2bEFFRQW2bt069n6n7edUOZ22n+fOnRurIy5evIj29nb4/X7H7edUOXt6esZuI7Wftv8I\n9jOefvpps6qqyrz77rvNxx9/3Ozp6cnlcpbt3bvX9Hq95ooVK8wXX3xRdZxJnTx50qyurjarq6vN\nyspKR+XctGmTuXjxYnP27NnmsmXLzN///vfmJ598Yq5fv9688847zWAwaPb19amOOSHnK6+84rjP\nzYMHD5oul8usrq42fT6f6fP5zH379jluPyfLuXfvXsft53vvvWf6/X6zurrarKqqMn/+85+bpmk6\nbj+nyml1P/kLQUREmuM/vkxEpDkOciIizXGQExFpjoOciEhzHORERJrjICci0hwHORGR5jjIiYg0\n9/8bh80JrgCC+gAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x70fdf10>" ] } ], "prompt_number": 105 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Okay, that's not bad, but now lets look at a time-series of the data instead:" ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.Max_Temp.plot()\n", "plt.ylabel('Max. temp. ($^{\\circ}$C)')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 112, "text": [ "<matplotlib.text.Text at 0x8f23090>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEbCAYAAADTZlM/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4FFXWh3+dfV8JWSCQiIQ1JBGEiCANCIiCg4M6g4og\nMCoKygAqjKPgDo6KCuOMioofrjMiijpGEWgUBVkMQRaDQALZyb531vr+ONxUdXdVd3XSWzr3fZ48\n6equqnOruuuee5Z7rkYQBAEcDofD6XF4OLsBHA6Hw3EOXAFwOBxOD4UrAA6Hw+mhcAXA4XA4PRSu\nADgcDqeHwhUAh8Ph9FAcrgD0ej3GjBmD1NRUDB06FKtXrwYArF27Fn379kVaWhrS0tKQkZHh6KZx\nOBxOj0LjjHkADQ0NCAgIQGtrK8aNG4cXXngBu3btQnBwMJYvX+7o5nA4HE6PxCkuoICAAABAc3Mz\n2traEB4eDgDgc9I4HA7HcThFAbS3tyM1NRXR0dGYOHEihg0bBgDYuHEjUlJSsHDhQlRVVTmjaRwO\nh9NjcIoLiFFdXY1p06Zh3bp1GDp0KKKiogAAjz32GIqKivDWW285q2kcDofj9ng5U3hoaChuuOEG\nHD58GFqttuP9RYsWYebMmSb79+nTB4WFhQ5sIYfD4XR/4uLiUFBQYPK+w11AZWVlHe6dxsZG7Ny5\nE2lpaSguLu7YZ/v27UhOTjY5trCwEGvWrIEgCCZ/Su+b+8zSMXKf20u+8T72vk6l67OXfGvupS3k\nm7u3XZFj7TXa6zod+ds0fs9W98zVjrHXb0buM0v30tb3WWng7HAFUFRUhEmTJiE1NRVjxozBzJkz\nMXnyZDz88MMYMWIEUlJSsHfvXmzYsEH2eKmloOb9rhyTm5vrMPnGsux9nbm5uXa5Z0rvW3MvbSFf\nKs+WcpTeN3c/u/tvk8Fk2uqemftM7vrsIccRvxm5zyzdy87IMXcuRYRuhKObO2/ePLeUxeVxea4u\nk1+fbVHqO/lMYDPMnz/fLWVxeVyeq8vk1+cYnJoFZC0ajQbdqLkcDofjEij1ndwCMINOp3NLWVwe\nl+fqMvn1OQauADgcDqeHwl1AHA6H4+ZwFxCHw+FwDOAKwAzu7BPk8rg8V5bJr88xcAXA4XA4PRQe\nA+BwOBw3h8cAOBwOh2MAVwBmcGefIJfH5bmyTH59joErAA6Hw+mh8BgAh8PhuDk8BsDhcDgcA7gC\nMIM7+wS5PC7PlWXy63MMXAFwOD2AqiogM9PZreC4GjwGwOH0AD75BNi4Edi719kt4TgDHgPgcHow\nzc3A7787uxUcV4MrADO4s0+Qy+tZ8pqbgaIioLbWcTK7Ao8BOAaHKwC9Xo8xY8YgNTUVQ4cOxerV\nqwEAFRUVmDJlCpKSkjB16lRUVVU5umkcjtvS3Ez/T592bjs4roVTYgANDQ0ICAhAa2srxo0bhxde\neAE7duxAr1698PDDD2P9+vWorKzEunXrDBvLYwAcTqfYtAlYuhT44ANgzhxnt4bjaFwqBhAQEAAA\naG5uRltbG8LDw7Fjxw7MmzcPADBv3jx89tlnzmgah+OWcAuAI4dTFEB7eztSU1MRHR2NiRMnYtiw\nYSgpKUF0dDQAIDo6GiUlJc5omgHu7BPk8nqWvOZmICoKyMlxnMyuwGMAjsHLGUI9PDxw9OhRVFdX\nY9q0adizZ4/B5xqNBhqNxhlN43DckuZmID4euHjR2S3huBJOnwfw1FNPwd/fH5s3b4ZOp0NMTAyK\nioowceJE/Pbbbwb7ajQazJs3DwkJCQCAsLAwpKamQqvVAhC1Kt/m23zbcPvvfwf27NGhrAzIznZ+\ne/i2fbd1Oh22bNkCAEhISMATTzwhGwNwuAIoKyuDl5cXwsLC0NjYiGnTpmHNmjX45ptvEBkZiUce\neQTr1q1DVVUVDwJzOBb48kvg00+BzZsBDzMO3YcfBhoagM8/B/LyHNc+jmvgMkHgoqIiTJo0Camp\nqRgzZgxmzpyJyZMnY9WqVdi5cyeSkpKwe/durFq1ytFNM4FpVHeTxeW5j7xTp4B33iEFYI7mZqBP\nH3IBdXYM5c7Pg6NlOuP65HB4DCA5ORm//PKLyfsRERH47rvvHN0cDqdbU1MD+PpaDu42NwOhobRv\nTQ295nCcHgOwBu4C4nAMWbYM+O9/gT//GXjxReX9Fi0C0tOBdeuAr78GBg50XBs5zsdlXEAcDsd2\n1NYCERFAS4v5/ZqbAR8foHdvngnEEeEKwAzu7BPk8txDXm0tEBkpTvSSUl8P3HADvZYqgM5OsXHn\n58HRMl0lBsAVAIfTjWEKQM4CKCkB2BQbbgFw5OAxAA6nGzNuHDB0KNDYCGzdavjZ4cPAmDFAaysw\ncyZw773AgQOkCB5/3Dnt5TgHHgPgcNyQmhrlGEBlJdDeTgqAWQBBQeQa4nAArgDM4s4+QS7PPeSZ\nCwJXVNB/vV5UAN7elgPGlmQ6Ah4DcAxcAXA43RhzQeDKSvrf1GQbBcBxP3gMgMPpxvj6Ah9/DPz7\n30BGhuFnzz4LPPoolX6YNYv2OXQIyMqi15yeA48BcDhuRnMz+fiDg81bAHo9WQE+PvQnty+nZ8IV\ngBnc2SfI5XV/ebW11Pn7+JiPAdjKBSS9xqYm4L33Oncea2U5Cnd+3pXgCoDD6abU1JAC8PaWH9Xb\nOggsJScHmDcPKC3t+rk4zoMrADOwOtvuJovLcw95liwAqQvIFgpAeo16Pbmf7LVyq6Pvp6NlOuP6\n5OAKgMPppjAFYM4CCA83dAEpKQtraWqi/++8A7S1df18HOfAFYAZ3NknyOV1f3m1tUBIiHkLIDbW\n1ALobBBYeo16PXDVVYC/P/DMM507n1pZjsKdn3cluALgcLopdXU0s9ecBSCnAGxlAQQFAcuXU3kJ\nTveEKwAzuLNPkMvr/vIaGoCAAHkLoKWFOv7ISNtlARnHAPz87DexjMcAHANXABxON4UpALlOmMUH\n/Pyo9o8gAJ6etosB6PU0Cc3bm2oNmePMma7L49gHrgDM4M4+QS6v+8trbCQfvNzkLhYf8POj1z4+\ngEZjuxhAUxOd28vLvEIpLweSkyljqLOyHIU7P+9KOFwB5OXlYeLEiRg2bBiGDx+OV199FQCwdu1a\n9O3bF2lpaUhLS0OG8bx2DodjgDkLoKZGVAA1NaQAANu5bNS6gAoLaV82J4HjWjh8UXhvb29s2LAB\nqampqKurw8iRIzFlyhRoNBosX74cy5cvd3STFHFnn6C7yFu6FLjmGuCWWxwjTwlnyPvuO1EByFkA\nwcHiIvBMAXTFBWQcA2AuIHPnKy6m/0VFQK9enZPlKNz5eVfC4RZATEwMUlNTAQBBQUEYMmQICgoK\nAIAXeuNYTXY2uRlckdZWKr5mLxoayAXEOmHp4yO1AJgLCLBtFhCzAMzFAIqKDP9zXAunxgByc3OR\nmZmJ9PR0AMDGjRuRkpKChQsXoqqqyplNA+DePkF3kVdQIN+hucL1/fADcNtt9pPX2EgWgIcHBXil\nHbE0CGzsArLVPAA1MQDW8TNLoDOyHIU7P+9KOE0B1NXV4eabb8Yrr7yCoKAgLF68GDk5OTh69Chi\nY2OxYsUKZzWN040oLHTd+vbHjhn6vr/9Fti503bnZxYAYOraYRaAsQvIljEANS6goiLaj1sAronD\nYwAA0NLSgtmzZ+OOO+7ArFmzAAC9e/fu+HzRokWYOXOm7LHz589HQkICACAsLAypqakd/jSmVW21\nzd6z1/ml21qt1q7nd0d5GRk6VFUBLS2ueX0ZGTpUVADt7Vp4eAD//rcOXl7AlCmGx48bp8VbbwGD\nBlknb80aHXJyAEALb29g924dgoLo85oaoKZGhwsXgNpaLXx86Pjqavn7pWabvafVatHUBJSV6XDk\nCNDaqnz8sWPAiBFaFBU5//fSk553nU6HLVu2AEBHfymHwxeEEQQB8+bNQ2RkJDZs2NDxflFREWJj\nYwEAGzZswKFDh/DBBx8YNpYvCMORcOYMMHAg8NRTwN//7uzWmDJyJPDLL2JNnltvpRH7u+8a7ldQ\nAAwbBljr9ZwxA7jnHlrwPSoKOHmS/gPAk0/SyDwhAXj1VXLVHDkCVFcD/frR/66wdCmQlAT88Y/A\n6NF0DXJMmAAMHkzX9vHHXZPJ6TwusyDMjz/+iPfeew979uzpSPn8+uuv8cgjj2DEiBFISUnB3r17\nDZSDs2Aa1d1kuYu8wkL674oxgNZW4NQp6pBZVc6SEqCszPC4w4eBxkb6s1YeSwMFTH375lxAtooB\n+PqqiwGkpVnvAnL09+domc64Pjkc7gIaN24c2mVmhUyfPt3RTeG4KOXlQGAgBRnNYU4BOJucHCA6\nmhZsr6gALruMFIBeD7z0EjBxIhAfD6SnA998I67u5WHFkIwFgQHDGEBBAXX6l19O97CkBBg0iD6z\nRxaQpTTQtDS6Zo7rwWcCm0HqG3QnWa4ub/lyde4CcwrA2dd39ix1wEwBANQZlpUB27aRdfDZZ1RK\nmaWx6vWm52V19+XkSYPA0o74+usp2MzSQBsbyV0D0Ii9rc0wZbQz1yidCKaUBtrWRmUo4uNJIXVW\nlqNw5+ddCa4AOC5HcTF1HJa4eJEmF7miBXD2LDBggKgA9HrqBMvKgAsXaAS9bRvtK124xZibbgJ2\n7JCXYWwBMNdOdTWQmytOBANEC4CVg5C7Z3o9sHWruutT4wJiLqrgYKpcynE9uAIwgzv7BF1ZXlmZ\nfGdoTFMTdS6uGAMwVgAlJUBcHHWKhYXU9rNnqaQyUwDGcYCyMhrJy010YzEAOQugoYH+MwsAEC0A\ntq9cHODMGeDxx9VdoxoXUG0tXV9AALVJbT2g06eBsWN1FvezNe78vCvBFQDH5VCrAJqbKVbgihbA\nmTOGLqCSEqrNHxlJHWFTE/2Fhxuu3Svl889FN4ocShaAGgUgd88aGsSVvizBXECennQ90s79t9+o\nbXV1pKA9PUVXlBpKSuiPY3+4AjCDO/sEXVleWZm6jqi5mTpAV40BGFsA0dFiPZzmZupEw8KULYCf\nfqLP5RSAUgxAEEQFwFxAfn7kh2dIA8ZS6uvNK17jGICvr+hSksYBliwBNm4ULQCA/qt1A+n1gI+P\n1uJ+tsadn3cluALguBQNDfSnxgJoaSELwFI9ekcjCJQFdNllogIoLjZUAMwCCAsTLQBjBXDxIikR\n1qFLYVYEG+EzC4A6T+Duu8ni6NuXXkuzi2xhAUhlG8cBKiuB11+nmEdwML1nrQLobKoqxzq4AjCD\nO/sEXVWeuYwYY8y5gJx5feXlNDIPCiIFUFlJnXxkpKkCMOcCungRSEyUtwC+/VYHPz+xY2edOgu8\nvv463ZuICOCVVwyPZTGAL74wnJdgyQKQmwcglc2oriaL54cfRAsgMFBdYJ+du6ZGZ3E/W+POz7sS\nXAFwXArWIXXVBeRMCgoo4AuIFkBVFXX2SUk061dqASi5gC5epJm80o6zpQX46is6lrl/ANECkE4O\nU4K5gJ57jjppBgvUqrGopBaAsQuoqoqukwW5AestAFez6twVrgDM4M4+QVeVxxSANS4gV4sBFBYC\nffrQazbCr6qizv7ZZ4GFC6kz9PSk9qu1AA4cIHfOjTcC+/drDTp6Ngqvr6dzmoPty2ITDCZHSfnK\nzQOQng8g91dVFbm/zp/vvAsI0FrYy/a48/OuBFcAHJeirIzcGt05C6iw0NQCqKwkBQCI5Rl8fWkU\nL2cB1NVRZxodLcYApk2ja/35Z+Af/zC0AJhbR40FwDrs8nJSMgwmR+7eV1ZSRhJD6gKSxgAaGsjC\niI0lBSC1AKxxAfEYgGPgCsAM7uwTdFV5ZWVATEzXXUDOvD6pAmAWgJwC8POjTpyNjJkCEASqndO7\nt+g7r60lt8jWrcCoUcCwYTqDjp65ddQqgKYmapdUAZizAG69FXjpJR0EAXj6aWqrnAXALJ3ISCAv\nT7QAAgPVWwCNjYBer1O3sw1x5+ddCa4AOC5FaSm5T7rqAnIm0hiAvz+5egoLlS0ABrvmd94Bbr7Z\nUAEwpaLR0D4TJphaAGoVgI8Pjf7b29VbADk51LkXFQGPPUZKQhoEZj776mogNJSC3W1tnY8BGM8t\n4NgHqxWAXq9Hk9pcsW6OO/sEXVXeTz8BY8Z03QXkKjEAgNxA586RNQDIKwDpRKkLF2gxGTkFwHj6\naS2eeELc9vEBVq2izB41MQDm+1djAQgCkJ8PxMZqcewYveflRYqNvZazAIDOu4AArcMVuzs/70pY\nVADt7e349NNPccstt6BPnz5ITExE//790adPH9x8883Yvn07r9HPsQmlpVQeedas7p0FZNxZR0TQ\n6JpZAD4+pgogLExUeiwQ3ru3WEahoMBQqYSGAlOnGm6XlwMHD6pzAZWUkNKRswCM7315Ob1XWQlk\nZQF/+IOozNj5pAogNFRUAJ1xAbH7YBwHYDWUOLbDogLQarU4cuQIVq5ciXPnzqGoqAjFxcU4d+4c\nVq5ciUOHDmHChAmOaKvDcWefoCvK+/JL6tSknaE5zLmAnB0DuLS2EQBSAIB8DIB11hERogVQVkYu\nlJgYZQvA+PqefJJcM7m56hRAcTEViJOzAIzvfX4+/T92jFb4uukmKnUhPR/7DqqrlS0AWqXMfNtE\n+ToTBXD77ZQCay/c+XlXwuJ6ADt37oQvc/ZJ8PX1RXp6OtLT03uMS4hjXwoLxRr2rpAFJAiiz90c\n335LI3Stlo4pLxcnfAHUubOSDICoAC67TLQAwsMNLYB//hO49lraZgqgXz/lNvj5kcK4eNGyC8jH\nhxTAwIHAiRPAyy8DixeLFsDp0zTavvVW2mYKoLaWXq9cSXWGGNIYgLELSJoG+t57FEvYvt18++Qs\ngPZ2sj54jSDbYtECuHDhAvbt22fy/r59+3D27FkAkFUQ7oA7+wRdUR7LLffzU+8CsmcMYMECGPjZ\nlXj/faC+nuTp9ZTGKl3MJiJCHP0DpABYEFWqAIqLgYwMUgADB9JxzAIwdgHJXR9bVlutCygqimT8\n9a/A8eMkx9MT0OlomU1Gfj4pND8/Lc6do7ZJkcYApEFgwNACKC1VtgBSU+n6ATEGIFUAubmkgKQW\ni61x5+ddCYsKYNmyZQiRqvtLhISEYNmyZXZpFKdnwjpFX1/1FoA9YwC5ucDatcCvv4rv5eQAs2cb\n7ldTI45WpemejIgIQ585Gy8ZK4D//Q9YsUJ0AQE0Wm9vp5x6qQtIDmsVQEQEMHw4WRanT5MFEBFB\nHfXJk6JLKD8fSE6mmb2+vmKnLj2fcRA4MJDaLi0FASgr9vPnTScBShUACz7bUwH0RCwqgJKSEowY\nMcLk/REjRiAnJ8cujXIV3Nkn6IryrLUA7B0DqKmh0SwbmQK0yDsziGtrqdOqqQFOnSJ5rAOUImcB\nAOI8AIA+Ly8n33ppqagANBq6xpMnqSyEueuLjqb/amMAERG03sDcuUB2NnX4TAG0t9O1ApTBlJxM\n19i3r/z5jIPAGg0pLBb/YIpATrELAgWIDWMQhjGArCwqjGdPBeDOz7sSFhVAVVWV4md6NcM0I/Ly\n8jBx4kQMGzYMw4cPx6uvvgoAqKiowJQpU5CUlISpU6ealctxT5gF4CoxgJoa8qtLZ+hmZ1On39ZG\n+fpr19J+xiNgKcYKgC3QLrUAWEfZ3EwdqjTHPyCAjpHrfKUwC0BNDKCykmR6eFAwWGoBsJH4N99Q\nx/ztt2T1tLXJt0EaA2CL0QOkQJjbKiSE3Ety32tTEx3PsoTkLICTJ2kdZR4DsC0WFcCoUaPwxhtv\nmLz/5ptvYuTIkVYL9Pb2xoYNG3DixAkcOHAA//znP3Hq1CmsW7cOU6ZMwenTpzF58mSsW7fO6nPb\nGnf2CbqiPGYB2MIFZIvrq6kxLMUAUEfZ3k6dZFWVaAHExZE8VvRNSnIyMH68uK3kAgKoQ5YGkAHq\n0FNSDAPSctfH6v9bsgDy8uj/9On0PynJ1AU0aRIFbYcMoZF3SgoAaGUVgDQGUF8vjval9+HKK2mO\ngpxlV1srHgswhWsaA0hP5zEAW2MxC+jll1/GTTfdhPfff7+jwz9y5Aiampqw3VI4X4aYmBjExMQA\nAIKCgjBkyBAUFBRgx44d2Lt3LwBg3rx50Gq1LqEEOI6DWQBeXuQWaG2l10p0dSbwjh3AzJnKmT5M\nAUgtgNOn6X9xMXVcFRWGMQA5C+Cqq+iPIVUArLNmnWV6umknyRSAJTQace6AOfr1A+bNE11GSUlk\n2QgCKYCaGsoA+stfaL9x40i5eHgoWwCnTlFGkVIxOk9PijfIKXY28pdaAIGBMFEAY8bwGICtsWgB\nxMTE4KeffsKaNWuQkJCAxMRErFmzBgcOHECsNNm5E+Tm5iIzMxNjxoxBSUkJoi/9IqOjo1HiArae\nO/sEXVEeswA0GjFTRglWtrgrtYDmzKHRrhzNzXTeyEhTF1ByMrkipArg7FmSJxcENsacBTB1qrIF\noOb62Oxhc7zxBrBli7gdHi6WnWbtYB3+1q3APffQ68BA5RjAli3AW2+Zr0aqZNkZWwBUaE6MAdTX\n0z0eMoT2tVehOHd+3pWwaAEAgEajwaRJkzBp0iSbCa6rq8Ps2bPxyiuvIJglC0vkadQkYHPcCml9\nGRYHUOpMWlqo4zGuRQ/QSHLDBsrLV4ItnahUnqC2lvzWbCYuQJ19a6uhAigtpc+N8+DNIRcEDg+n\n4267DRg82HD/RYuoEqga7r9fnbVgzL33UgYSu99Gj2THe0ouoNJSuh/mFIBScF9OAUgtgPPngf79\nyYro1YvcbpYyojjqUKUAbE1LSwtmz56NuXPnYtasWQBo1F9cXIyYmBgUFRWhN4toGTF//nwkXEqH\nCAsLQ2pqaoc/jWlVW22z9+x1fum2Vqu16/m7g7yiIh1++w24/not/PyAPXt06NVLfv+WFsDTU4cf\nfgDa2rQQBGDvXvo8Pl6LffvMy2OZJjodkJho+nlNDeDjo8PFi0BYGH2+Y4cOoaFATIwWxcVATo7u\n0iQpLSIjSd6xY8DIkebvx7hxtF1crMPBg4CnpxaDBgHTp+tQUAD86U+G+y9YoP5+JiaK8Qhrvp+5\nc4GdO3UoLKTrCQ423X/yZKC+XgdWq5997u2tRXU1WUGlpUBgoLy8n3/WXVKmhp/r9bT966/0fej1\nWsTHa3HkiA7+/kBDgxYJCbR/QABQUqJFXBx/3s1t63Q6bLlk5iVI08eMEVRQX1+vZjdVtLe3C3Pn\nzhWWLVtm8P5DDz0krFu3ThAEQXjuueeERx55xORYlc3ldFOuukoQ9u2j1wkJgnD2rPK+5eWCEBZG\nr728BKGpSfzs118FwcfHvKzyckEABGH/fvnPjx4VhORkQXjmGUFYvZre27tXEK6+WhDWrxeEFSsE\nYeJEOgcgCHPm0D6LFgnCG29YvlYPD0FYs4ZenzhheX9H8dxzdD1Hjqg/5t576ZjrrxeE3r0FobBQ\nfr/2dkHQaAShrc3w/f/+l45ftYq2w8IEYfJkQfjPf2h70yZBuOceej12rCD88IN118RR7jstxgC+\n//57HDt2THY2cGf48ccf8d5772HPnj1IS0tDWloaMjIysGrVKuzcuRNJSUnYvXs3Vq1aZRN5XYFp\nVHeT5arypKtMWUoFbW4W0ymN16SlBUVMa8lIYW4dJRcQS2ekESi9V1ZGs2ejo0UXECM/XwdAXQwA\nECe8AcDQoZb3N8Ze3x+7/3IuICWZ3t70n+XyK7mAlGI77D5Kg8BNTeL3l51NJUJY+zqRfa4Kd37e\nlbDoAmpqasI111yDb775xiYCx40bh3aFQt/fffedTWRwugd5eVSG4JNPaFu6zqylyWAtLeYVAEAd\nCsuvN4YFdqUKYNcuYPdu4JlnDBWAXJE2lgUkbQ+gLgYAGNYGciWYUpJTAEqwTK2aGlKW5oLQrOz1\nY4/RwjZ//jPdR39/+i4Egb73gAAxBrBrF/Duu+LxvPSY7bBoASQnJ2P37t1ITk52RHtcCqlv0J1k\nuYq8//xHnFULGC4zaGkugCULANCaLT/MRvXSfd5/H9i4kToYpgACAqjDKioSFYDUAoiOpgyZ4GC6\nPmsUQFdKaNnr+zOnAJRkMgugtJS+E7ZOgNL5t24FXn0V+Ppreq+ujpRqfb04ES4hgeYB5OfTvU5L\nE4+3lwXgzs+7EhYtAGnePodjSz75xDDF0tgCsKQAWMdjrADYOaUjdGOMLQBBoBmvkZFUHsHYBTRs\nGKVoXnkldVYlJXSOwYMpJbW5WVw4heXXm8PHp2sKwF74+ZFCszSXQAr7HkpKqAyEpfMfOUL3ktX3\nqa2le1pXJ7oBfXzonn7zDVVFZUrFni6gnohFC0BQsdiLmn26I+7sE7SlvI8/tlzn3VhefT2VCpDO\nspVaAF2NAQA6VRYAUwCnTtF5HnwQ+OwzQwVQU0O+/X37yALo1YtSQuvraVJVVBRw8SJl0LS1AfHx\n5u8F0HULwF6/F1bsTS4L21IMoLXV8hwEPz+yFNLTybff0kIKIDaW7idba7ikhGIAb79NbiLp8fZy\nAbnz866EqgVh/vGPf+A0mwIpITs7G+vXr3fbBWE46njqKeDzz607pqaGXCVsQhdgaAGwxdSVUBMD\nMGcBGLuAsrOBESOoPMK331JZY+YCotRIKsncqxf5vMPDSX5UFL3X2gocOkQWgpopLK4aA/Dzs87/\nD9D9YCN/SwrA15dm80ZHk/L8178oFsQsgIYGUrpeXrQ63PnzwIwZhsdzC8B2WFQA3377LSIjI3H/\n/fcjNjYWSUlJGDhwIGJjY7FkyRJER0e7bfDWnX2CtpRXV0emujXy6uupo5EGWaUWQFyc2PHKYdkF\nZD4GYOwCYhk+SUnUgR84IFoABQXicWyWbkwMtT8ujkb8Pj5aHDpEgU01uHIMQEkBmIsBRESQ5aDW\nAggJIWX50ENUkoPFAMrLyQ03cKAWu3YBN9xgWA7Eni4gd37elbAYA/D19cWCBQuwYMECtLW1oexS\nqcBevXrB01y0h9NjqKsjv3l7O/mP1R4TFCQqgIAAcp+wTj0uTlyJSg7LLiDlNWifekpsJ9uHBXg1\nGpp1+9+qH7lvAAAgAElEQVT/As89R+eWFqZlCiA6mjqsVauoPtBNN5FLa/FiddffVQVgL4KCTIvZ\nWcLbm6y5xkZ1FgBTAG++Scs8Tp8uKoCLF0kR+/jQftJFcACeBWRrVD6uhKenJ6KjoxEdHd0jOn93\n9gnaUl59PXXArMqkGnl1ddRZMAXAykAw90mfPuYtAMsuIJ2iC+iTT8hd4+VlaAGwzv3552nxkyuv\nFIOhbDKlVAEEB5PswECguppmDastUTBlipjb3hns9XsZPZqUnzUyvbxIAQQHq7MA9Hra18+PZhdH\nRlIMoK6OOv3evYG8PJJlnH9iTxeQOz/vSjilFATHfWhtpdF4fLxhRo8lWNlgqQKQ+sTj4gxdL8aY\ncwFZsgDY2rZRUYYKgGU6S9M4Wa2eUaPIZ81q3cfEUIVKgBRRSwvJU+s/V7PUpDPw8DAddVuCWQDV\n1eoUACDeR29vsh4HDqTvorSUvhc2yjeuN+nnRwF5jm2wygLoabizT9BW8tjMT6kvX4085gJixdak\n/n/AMAbQ1ESlgKWYcwE1NpJPXskCkCqAnBwqdyy1AKQwBRATA+zdK1oozAIAWLtJnvFyifbCGT5k\nJZlRUWQhqbEA5OYZpKXRca2t9J1HRQHDhpEsOQVgLxeQOz/vSnRJARRL18rj9EikI3lrTHM5F5Cx\nBVBYSLn1NTXAwYOGnbwlF1BUlGgBfPEFsHmz+HlNjbgoemYm8OOPpAjkFIBxvX5G//6G6/Y2N5Ni\nsTaDxh2YPRt46SX1QWBAtAAYGg0p1WPHxBgAYKoAeBaQbemSAli4cKGt2uGSuLNP0FbyjDtytfKM\nXUDGFkBAAH1WWSl25NIRvSUXkJ+fOA8gK4t8/uw4VmKApW8CNA9ATgGwDsu4pMTs2cDrr9NrX1+g\nsZEqXTrKAnCGD9mSTLUxALavMUOHAvv3kwI4e1bXscCN8fE8BmA7uqQAvvrqK1u1g+NCWDOvj7ly\nrH0wjbOAjC0AgHzRBQWiAqiuFj8zdgE1NQGvvELupMZGykuX1plnr6VKJCrKUJ6cAvDwoA7e2ALw\n9BStA29vyoDy91efBeWOqHUB+fqK352UoUPpu4uKosByr16ikmfwLCDb0oN/rpZxZ5+gOXkzZ9Jk\nKDUYd+Rq5RlbDsYWAEBr0Z45I3baBw6Ii7xIXUApKZS5smwZZe/o9cCgQeI8gPp6eSuCKYDhw6lD\nVypjEBCgXFQOIPeFj4/WYaN/wLViAIyhQymYaw4/P1P3D2PYMPofFQWkpWlN3D8ArwVka1RnATU2\nNuK1117Dvn37oNFoMH78eCxevBh+rjidkdMlTp6kCoxTp1reVxoEtubBrK8nP785C2DoUGoLG1Ue\nPy4GhqUWwM03A5eWq0Z1NbWjf39x37o6eQXA3AszZlD2idIMXn9/y7nxPj490/8vZdkyy/uYm2nM\nymKz2dVyyoTXArItqi2AO++8EydPnsQDDzyAJUuW4MSJE5g7d6492+Z03NknqCSvtZXy+dUu/yB1\nAVkTA5BaDiwLSE4BnDghdt65uWIH3tQkKoC0NJrBGxwsKoD6el3HAuLGLiA2mu/dm4658UbTYKOU\n8HDLBd48PHQOVQCuGANQg6+vsgUwdChZYSEhQFubTnY+Aq8FZFtUWwAnTpzAyZMnO7YnTZqEoZ1Z\nyYLj0hQU0EOYlUUdOkuDVEKtC0juOLmJYFKGDgVefNFQAbCic5WV4qhco6FZuIsWkQJobKQFxL/5\nBjh61NQC6N+f6gyFhQEXLtD/PXuU27pvn+USz15e3AJQgzkXUGQkZWMxS0zOIuNZQLZFtQVwxRVX\nYP/+/R3bBw4cwEhmd7sp7uwTVJKXm0slji+7DPjtN8vnYdk8lkxzuVpAbB4AiwEYWwCDB1OZBRb8\nzc0la6GtzTRvPzCQFBezAK6+Wou776ZMHeMYQL9+9NrfX+zYzXXwaur7h4TwGIAaLBWbY0pdSRav\nBWRbVFsAhw8fxtVXX434+HhoNBpcuHABgwYNQnJyMjQaDY6x4t6cbk1uLpCYSMFUNSN6NpL38bHe\nAjDOAjK2AAIDqZNnhqfUpy83cUuqAPz9KWC8ejWdm7mAWBXS0FDrat5bgscA1GHOBaQGngVkW1Rb\nABkZGcjJycH333+PvXv3IicnBxkZGfjiiy+wY8cOe7bRabizT1BJXk4OzepU+6BJO3JzIzNLtYDY\ntjGxsaSMpBUha2stK4CsLB3Cw8V5BHV1lFF0/jx1QP37k8vBVrS08BiAGqZNA+67r/OyjF1A585R\nskJbW5eb5tbPuxKqFUBpaSmWLVuGWbNmYcaMGZgxYwZmzpyJhIQEJLBKWSpYsGABoqOjDZaYXLt2\nLfr27WuwSDzHOZw/TwpAra9V6gLqSi2g6mr5NMzevekhlxYFs6QAqBQEBXvZwi1tbcAjjwAbNtBI\nPTMT6NtXfXst4e3tuElg3Zn+/an0RmcxdgFduEC1hLZu7XrbAEqCuOMO6+bCdGdUK4Dbb78dd911\nF7Zt24Yvvvii0yP/u+66y6SD12g0WL58OTIzM5GZmYnrrrvO6vPaA3f2CSrJY9UY1fpapSN5a2IA\nxllA5hTA+fNilU2NRp0FMHGi1sAC8PCgeAIr12DrCVuRkVqHWgDdNQbQVVm+voaWaW0tufT++U/b\nyCwtpbWhLa1wZwtZroDqGEBUVBRuvPHGLgscP348clkZRQnuuqxkd4Nl11ijAIKC6KHsShZQdbV8\nKeXoaBqVsc/i4mjfigpTF45UAfj50bk1GqrnHx1NLiDAPr56cwupcGyH8e+yrg6YMIGsADYnpSuU\nlND/4mLL6xu7A6rHQWvWrMHChQvx4YcfYtu2bdi2bRs+/fRTmzVk48aNSElJwcKFC1ElXYHDibiz\nT1BJXkUFuU7UKgC1xeCk8gRBHImrcQEBogJISKB5CoGBpmUCQkJEF9DBgyQvPJxG+5GRYnDYHh11\nXR2PAThClvHvsraWLMHUVJrBbk2Z7aeeAl57zVCmVAHYk24XA3j33XeRlZWFjIwMfPnll/jyyy/x\nxRdf2KQRixcvRk5ODo4ePYrY2FisWLHCJuflWI/UArAUBG5vB44coUlY1swDqK4mH72/v5gGqlYB\n9OunXLkzNJQUWFubGDSOiCBlERxMo/TJky1P6uoMPAbgGLy8DNeRZgOJceNoLseFC+rPtXs3uRel\nsI6/pxQ6tioN9LfffoNGzYrXVtJbUvJv0aJFmDlzpuK+8+fP7wg6h4WFITU1tcOfxrSqrbbZe/Y6\nv3Rbq9Xa/Pxff61Deztwww3q5O3Zo0NZGRAeroWvL3D8uA46nfL5X3tNBx8fYPBgLc6fBwoLlfeX\nyouOpjovOp0Ov/0GNDZq0dQEnDtnenxREQBoERcHBAbqUF8P5ORo0auXaXtOndLh99+BuDgtJk4k\neRoNEBhI/vmwMB0efBCYPNk291e6vWSJFoJg/n65+u+luzwPfn70e9m3T4dffwX69dNizhzgwAHd\nJTef5fO3twM//8ysNvH6fvpJB0CL4uLu/f3pdDps2bIFAMwn6QgqmT9/vnD8+HG1u5slJydHGD58\neMd2YWFhx+uXXnpJmDNnjuxxVjSXIwjCk08KwuOPq9+/rk4Q/P3p9SOPCMJzzxl+3t4uCE1N4vaK\nFYKwZg293rtXEK66ShDmzxeEv/9dWcYrrwjCxx8LwoQJtH30qCAMHy4II0YIQmam6f7HjgkCIAj7\n9wvCgw9Su8aOFYQbbjDdt7yc9p0/X3zvxhsFYeBAQbjpJkFIT7d0BzjdgfBwQSgro9crVgjC88/T\n66+/FoQpU9Sd49Qp+q2wrmbTJkEoKhKEv/6Vzr9qle3b7UyU+k7VLqD9+/cjNTUVSUlJSE5ORnJy\nMkaMGKH28A7mzJmDsWPHIjs7G/Hx8Xj77bfxyCOPYMSIEUhJScHevXuxYcMGq89rD5hG7a6yysqU\nl0WUk8f8/4B8DGDHDkBa/ik3V6zg6O8PZGcD//mPWCdfTt6//01r8rLaO6zksyUXUGws8PLLZO6f\nOiVfu4dNMJo2TZQXHi66gIzXl7UljvytOEOeo2WakyXNBJKuwhYaqj575/Bh+k2w/d98E3jrLYoB\npKb2nBiAaheQrXLzP/zwQ5P3FixYYJNzcwypqrLOL11ZaagAjGPxBw8arsfKAsBs/4oKWrrxl18o\n0CvnLaypAb7/Hpgzh7YjIw1r+BsTGUnnYXKCg6kN6emm+3p5UWnna6+lyqGAGANQs1oVp3vAUocB\nw1XYWBIAAPzlL8CddwLjx8ufo6CAak2x/WtqKAW6pITKi6spg+IOqFYA1kz2chekvs/uKKuqyjRT\nxpy8igqxFot0lHX6NAV6s7JMU/BYp8qKxl1+OS3r19BAgbqqKpr8w+RVV9NxbASv0dCErLNn5UsE\neHkBb7whtos97EoP9q+/Gl5feDh1/lFR9lUAjvytOEOeo2WakxUeLg5O6urE34TUAjh9GpfiR/I0\nNFBiwdmztF1dDQQEkO//jjsAew/QnfH9yaHaBdTe3o6tW7fiySefBABcuHABBw8etFvDOF2nqsq6\nwlnGFoBeT1kVgwfTqP7YMVMFILUAAMrSCQujc731Fo3EGG1toktK6sLp25c6Zy+F4ciiReLEreBg\n6swtLTzCYBbAo48Cf/2rumM4rk1EBFBeTq+lFgCbBwKQIjCXldbQQC7B6mpx3en8fFIajnABuQqq\nFcB9992H/fv344MPPgAABAUF4T41RT26Ma7i8+wsVVXKqZxKMQA20mYK4ORJStn8y18o/16qAKQu\nIGYB9OuHjhm4v/5K7p6GBmD3bh1qa0W3kLECUDvpZtgw4P77lRdvMb6+kSOBiRPJElJSMLaAxwAc\nJysykn6rgKECCAykTr+tjTp0c4Ofhgb6DTJF0dpKWXAeHvQbKyuzTX0hKc3NwD/+Qa9dJQagWgH8\n/PPPeO211+B/6UmPiIhAi3Qlbo7LUVnZdQvg5Elg4UIKrI4Zo2wByCmA48fJlTR0KLB9O422+vSh\nB1UakLVGAQwZAqxZo/6a0tOBJUvU789xfViNJ8AwCOzhIQZ2LVkA9fX0G6ypEa2G/HzgyitpsBAe\nTjEBW1JWBlxyoLgMqhWAj48P2iQqsbS0FB4eqg/vlriKz7OzmLMALMUA2ESwkyeBESOAZ58FPv7Y\n8HzSGIDUBRQeTuc6eZLcLno95frX1FBH/9FH5FZiWKMA1OLuPvmeHAOQuoCkMQCA4khMAViyAEJD\naYBSVMQsUi1GjaLPY2Js7wZqbqb2treL1/evf1FmnLNQ3YMvXboUN910Ey5evIi//e1vuPrqq7F6\n9Wp7to3TBVpbaXSk9BAIAqVtSqmqEhc/YdVAT54U12qVpoYKgmHtFQ8Pmp3LFMAvv9D2mjVUqfHs\nWTHVc8YMQ3fMZZfZZ3Yuxz1RcgEB9Pu6eJE6W0sKICCAFEZeHlmmoaFkAQD2UQDMYSJNzT571nQ2\nsiNRrQCOHTuG9evXY/Xq1YiLi8Nnn32Gw4cP27NtTsdVfJ6dgWVDKFkAW7boMH264XvSh4l19qdO\nkdtF+p5eTw+gj49hR56TQw9UeDj5/ocPJ1/9gAHAiRM61NTIZ/pcdx1VYLQl7u6T78kxAOYCYoMQ\naapzSAi5cgDLQWCpAggJAWbN0nVkl8XG2scCAOg5Y9fH1sN2FqrDYjt37sTzzz+PIaw3APD111/j\n+eeft0vDeiKffko5yAMGWN6XFU9VCoayNDm9nkxOjcZw3/JycRTFMFYAFRX0ELGqm0wBbNpE1oNx\nWiV7EMPCgJ9/Bh58kLb79aOYwMWL8q4eDw+eo89RD3MBNTSQperpKX4WGkodOmC+Y62vJwXA9g8N\nBebPFy1ge1oA0slq9fXOXXvAogXwr3/9C8nJycjOzu6YAZycnIyEhIROzQTuTjja57l1K42c1fCX\nvwDmavFVVYl+/LvvJr+7lOhoLaqrDTMdjBVAQQG5cZji8PGhH3F5OSkApUlm4eH08A0fTtteXkD/\n/lpkZXVtOUBrcHeffE+PAVRUmLp/AOssgMBAQwtAKtNeMQCAFACTVV/v4hbAbbfdhunTp2PVqlVY\nv359R93+4OBgRNpyTT0OmppMR+VKlJWZ9x1WVdGPWK+n2Y3ffSfOvgXEuufV1WLmT22t2EH7+pKM\nlBTxGI2GlEBFBa3SpbRYOgskMwUAkFWTmYmOIBuH01lYDKCoyDR2FBoqKgA1MQBmAVxxheHnMTFk\nxdoSZgGw9akBUgA+PraVYw0WLYDQ0FAkJCTgo48+Qv/+/TuWgOwJnb+jfZ7NzYalFszR1EQdtBKV\nlfRwNDVR0GnfPsPPDx3SdezHqKkxtAAA07LLfn4kt6BA2W0THk5muTTTJyREh4MHHbfIhrv75Ht6\nDKC8nAKoxu7S0FBxYGQpDTQggAYx587RwEcq094WgKvEANw7j7ObYY0FoEYBMAugro6mxl+8KH7O\n5EgVgLELCJBXACwFT8kFFBlJpSPYOQAgOZkeSEe5gDjuCysFceaMqQIYMAA4epR+m2osgPR0oLDQ\ndGAydChlwO3fb7t2K1kAXAG4KI72eTY12c4CyM+n9Eq9nn5k0dFUy4eh0Wjh4WFZAURFGZ7X11dU\nHkoKID0d+PJLw/fuuUcLwHEWgLv75HtyDMDbmwYZe/aYKoChQ6lzj442nwLNFMCUKfSecQwgOhp4\n6SXAlpnu0iCwq8QAerQCOHeORgvWcOiQ/fJ2m5ttZwHk5pILpqmJOvb+/Q2re5aUAImJogIwTqlT\nYwEouYA8PUn5SImOJquAWwAcWzBpEvDtt/IKAKAy4kouoJYWyjzz9qYlRpV+l1dfTX2ErZCmgTLq\n6y2vvGdPuqQAirt5xaRPPgH++U/lz+X8kE89RWUNbI1Op7OpBZCbS5U5PT2p42eLqTMuXNBh8GBR\nKdTXU+fOUup8fel/Z1xAcuh0Orz6qnIVT1vj7j75nhwDAICpU+m/sQKIjKTOv3dv5ZE18/8zNm0C\ntFpTmfHxFAdgHXdXkVoATFa3tgAWLlxoq3Y4hcZG6wM9WVnqO2nGo4+qqy9uyxhATg6Nbnx9KQYQ\nFyfmH7NiWUlJ4rUYp9R5eZEykFMATU00YrJ2Ddxp00xdShxOZ5gyhTrxfv1MPxs2jCxOJQuAuX+k\n55JbLMjLi54bNq+gq8hZAN06CPzVV1/Zqh1OoaFBTIeUw9gPWVVF5ZHVdtKM774ja8McWq3W6iyg\n0lL5SSQtLaTY4uOpw/byoo6cWQDV1UBIiBZRUcoKAKBj5RQAQO4jayZvubuP3N3lOVqmJVl9+5Ir\nVm69i7lzgWuuUe5YjRWAOZkJCWRN24KWFhpUsRhAW5s4s95ZqFYAJ0+eNHnPVUqadhZLCsCYY8fo\nv7UKoLGR/JWWYC6g9nZ1+7a0yC+Bl59PIxpvb7IAgoIMF8vQ66kjZ1U7AcMUUIacAmCuocRE6y0A\nDseWGP82GXfdRS4dJQtAWsPKEomJ5hVAS4v8EqhyNDeTi4o9h2xVs26hAG699daOiWANDQ1YunQp\nVq1aZc+22Z2GBhopK03FNlZwWVk08rDWBdTYSOlk5tYrZTEAjUbduqbNzeSGGTxYXNWIwdw/AHXi\ngYGGi2U0NQGCoOtYuAWQtwCGD6frlcIsgMcfB26/3XI7pdfnSLi87i2zq7Lk1rRmKFkAcjITEuh5\nkjJ9upgempMDLFumrpxDSwspgNpa4LnndLjtNrIIukUQ+Oeff0ZeXh6uuuoqjB49GrGxsfjpp5+s\nFrhgwQJER0cjOTm5472KigpMmTIFSUlJmDp1KqqMF6M14tgxMaACkIaeN8/qpqCxkTpSaXDUHOfP\nU7XAzlgAYWHA77+b36+5mYJXas7f1EQVDIuLKY9ZSlER+S4B0QJgZXLZsazmeWUllZR46CHTTAid\nTqwDxGAKICXFVDlwOK6Cv7+pBdDWRoM4JQUgR0KCadbfwYPk1gVobo1eT89Rba35Z1xqAZw7R0ok\nIqKbWABeXl7w9/dHY2Mj9Ho9Lrvssk6tB3DXXXeZLDC/bt06TJkyBadPn8bkyZOxbt06xeP1emD2\nbECqe86doy/FWpgJphQINvYJVlZSemNnLIB+/cwvMDFhAsUAYmLE8zc2Uh0fOZqagIcfpo7YWF9W\nVBgWcGMuIKkFEB6uRXQ0XfvPPwNHjphaAHL4+dHDZe1X7+4+cneX52iZXZXFyplLR+Y//0zlUKyJ\nAfTqJWa9AWIRRTaznk2uLCykelvm5g20tNCgqbAQ8PDQorycntNuoQBGjx4NPz8/HD58GD/88AM+\n+OAD3HLLLVYLHD9+PMJZsZhL7NixA/MuDeHnzZuHzz77TPH4558nl4e0066qMj/tWwmmAIzjAGvX\nGloYDKYAOmMB9OtnPmuHBYikP7jSUlpX13hpurY2ihPMm0duGmMLhv2wAHoQWNEraQzA15eu5dw5\n0cRVqwB45U6Oq+PpSVau9NnIz6cO2zgN1BxSNylAM+oHDAAOHKA1N1jfUVhIM5Oltf6NaW6mZ66m\nRpx/FBJCSqq11brrsxWqFcDmzZvx1FNPwdvbG7GxsdixYwduvPFGmzSipKQE0ZeqOkVHR6PETGT2\njTfohhkrANaZWwNbGFp6roYG4IknqNaNsU+QKYCqKvUlXAWBOtz4ePMWwK5dOvj6kguIXT5bPUha\nwgGgEbyvL8ULQkPlLQDp0o5yFoBer0NICD0IBw7QnAE1CoApFGtxdx+5u8tztExbyPL3BwYOpMWJ\nAOqkKyro+ZILIMvJlCZKAKQA0tPpOZWWVykspIFpfb1ye1pa6PkZMgQ4eFAHT096llhqtTNQvR7A\nlVdeicrKSpw+fRpNl1rbTy4Jt4toNBpozKz4XVBA/6U6oisWQGKi4bnYzD/jThegH0Lv3vSF1dYC\nf/gDsGULzbJVgvnbe/c2bwE0N9OPIzraUAEA0iXrxHOybJywMHkFwFY2UooBsAqEAwaQabx7txg3\nMAe3ADjdBT8/eo7/8x+q9llYSAOyEyfMP7NSWN0hRnY2zZ8pLKS/ixdp4FRQYJqMYUxzMymloUOB\nw4epTUwB6PXOea5UK4A333wTr776KvLz85GamooDBw7gqquuwu7du7vciOjoaBQXFyMmJgZFRUXo\n3bu3mb3no3fvBHz9NdC7dxhSU1NRWalFQwOwZ48OGo3oy2MaXWm7rEyHIUOA/Hzxc/LtaXHxInWc\n336rQ3y8FkOGAEVFOmRnAxERWlRWAr/8osMnnwB3363F3LnAsmWm8mprAX9/yrn/4gsddDr59lx5\npRaCoENdHXDxIn2+bx99vmuXFps3A7feStuDB2vh60vHl5VRTr/0fBUVWkRG0jZNAtMiNBSoqCD5\nTU1axMRoodPpEBQEeHtrcc01wA8/6FBUZP7+FRcDgYHq7q90W6vVWrV/V7e5PNtvs/e6y/VpNJTp\n9t//avHcc/S8AsCxY1qkp6u7Ppqbo4UgAHv36vDTT1TXKjsb2L1bh+PHgdRULQoKgOxs3aVS6Frk\n5QFZWfR8sfOdO6dDZCQwdKgW0dFahIXpLs3A10Kvt+390+l02LJlCwAggaUEyiGoZNiwYUJDQ4OQ\nkpIiCIIgnDp1Spg1a5baww3IyckRhg8f3rH90EMPCevWrRMEQRCee+454ZFHHpE9DoBwzz2C8NJL\ngnD99eL7S5YIAiAITU3WtaNfP0FYt04QbrlFfO/FF+lcb71F2598IghxcYLQ3CwIwcGCUFkpCCkp\ngnD4sCB4eAjCO+8IwqlTdIxebyqjoEAQYmLoPOx2lZSY7peTIwj9+9P57ryT3vv8czrv6NGCkJAg\n7pubKwjx8fT69dcFYdEiw3ONHi0I+/fT61tvFYSlSwWhvZ3am59PbbnpJvr8sccEYcAA9ffs6acF\nQatVvz+H4ywGDRKE++8XhPR0QXj2WfrdengIQkCAIHz1lfrz+PkJQn09vb72WkH45htBWL5cEJ5/\nXhCuuYaer6uvFgSNRhBiY2m/efMEYdMmw/MsXSoIr7xCsseOFYRHHxWEu+4ShMsuE4QzZ2xyyYoo\ndfWqYwB+fn7w9/cHAOj1egwePBjZxquKq2DOnDkYO3YssrOzER8fj3feeQerVq3Czp07kZSUhN27\nd5udX7BsGTBunKkLCLA+DtDQQOaYdKLH2bNkip0/DyxapMOJE2TqffYZ+fdCQsi/nptL/vn8fNFH\nKFckrrGRTLyoKHIBlZQAaWmm+33/vXwMACBzMS9PDBRJXUBqYwAaDbU9MZHaWVWlA0C+f3MDBGM6\n6wJioxNHweV1b5m2kOXvT1lyn3wCrF9Prp/Bg8XYn1qZ0jhAXR09T7Gx5Jq9eBFITaUsxKQk8Zkt\nLDQs+QCQC8jHh9bAXr5ch4kTacayr283iAH07dsXlZWVmDVrFqZMmYLw8HDzpoUCH374oez737HE\nWgsEBlLg0jgIDIj59mppaKC6IdKJHmfPAmPGUJ7vTz8B114LTJ4M/Pvf1IF6eFCGDcv3zcsTs4Jy\nc+lHIKWxkX6IvXpRELiiQn7eQUsL/TjkYgBsZnB+PnXWxjEA4/NJ00ClQduQELpXpaViDGD2bLpe\ntbCYAofj6owcSYPFPn2o0/34Y3qeT540jKlZgimAPn3ECZOxsZQ6ffEicP31wAcf0LM5ZgzFGYqK\nTAPCLS0UD2R9CPM8vfqq81JBVSsAlpq5du1aTJw4EdXV1bjuuuvs1jAlAgPpj9XB0Wg6ZwEIAnXO\n/fvTF8U0e24ucNNNwAsvAIAW330HvPsucO+94qghNhY4fpxe5+eLCsB4xiAgKgBmAVRXy3/ZKSla\n2SBw374kIz6e2paQIAaMAVMLoK2NZDBF2KePOGGLpbBWVNAavex+Dhqk/r7FxlJbrEXqZ3UEXF73\nlmkLWZs3i69vvpnWqBgwgDpguTCjkky5GfOxsTQIrK+nc918M33u40PPd3GxqQJgFoCxLHOzlu2N\nRX9sZ7oAACAASURBVAUwc+ZMaDSajrWApWzevBk7duywS8OUCAykzi8ggL6UiAj6r9FYlwnEMmE8\nPUkJ5OZSTn1dHblFWlvFDICZM6m+CJu+EBcH7N1LWlzqApKrGcIUQEQEnauigjrp1lYq0gaISywy\nF1BpKY366+ooja2ykkzFnBwaNShZAMXFwJ130g+UlXVes0Zsy+7dNCKqqFCX8SPH7Nn0x+F0J264\nAXjxRXp2evcWnw81SDOBmAKIiSELYNIkw0mRQUH0fJWVKVsAxjhTAViMARw4cAB5eXkYP348Vq5c\niZUrV2LFihUdf46GadCoKDGvvqqKvlRrLADpbEBpwaeGBtEnPmmSDomJ9AO4/HJRAfTpQ+WdU1JE\nC2DAAPMKwNOTOmtmJUi/8FdfBf72Nx18fOj6goKo06+ro5zjVato9M7OL03jlKaBnj4N7NxpWr6B\nodGIirOkRKf+ZtkAd/eRu7s8R8u0tSx/f+Cee6jfUHL/WBsDAMR1CRhBQWI6qDkLQCrLpRVAUVER\nnn32WRw/fhzLli3Dzp07ERUVBa1WiwkTJjiijQawKQLSiU1swZPOKoABA0SfPnMLAcCsWTRqBihY\nLLUAmpvJ319fT6P3K66QrwPCFABAPz7245BaK7W1NHuXjeqZG4i5gP7+d1JSTHkoBYGLimiEwQLA\ncjAFIDcS4XDcndRUwNr5q0wBsECtry8NvPz8TBVAYCDNCAasswCcFQS2qAC8vLwwffp0/N///R8O\nHDiAyy+/HBMmTMCmTZsc0T5FmAJoaSHtaW4JODkaGsSOOTmZCsy1t9MX0a8fMHYsMGeOtkMZDBsm\n+tWZ+6RXL+qYDx+mRSXKyoAffjCUI1UAvXqJPw6pxq+vp1xjOQXAAq7SiWRSBcCKs+n1pADmz6eA\ntRJMAQwapFV7q2yCu/vI3V2eo2XaS9aQIVTqxRqZTAFIK+ZqNLQmcWqq4b5BQfSM+/iojwGwukXO\nQFUQWK/X46uvvsJHH32E3NxcPPjgg7jpppvs3TazMAVQVUUdc0BA5y2AlBTqNFmdfB8f4McfDfdf\nsEC0OJgCiIggK+Crr8gkXLOGahUNHEhWwciRphYAWxnMWAFIfxxyCsC4lANTABoNtaO0lBRAYiJZ\nI0oEBpLLih3P4XDMEx5OFQKMS6anp5vuGxREnoABA9wkBjB37lyMHTsWmZmZePzxx3Ho0CE89thj\n6NOnjyPapwjrEEtLaWQdEGCdBdDYKCqA4cOpY66pETtrwNBPd9llYv5+SAh1pEwBtLXRj2TECOr4\n33sPGDWKykQYWwCs1IT0CyfFpevolHv3pvQyNQoAoFHNyZMUBLaU3hYQQOe5cEFnfkcb4+4+cneX\n52iZrnR9LDFD+jwqERiorACam0UFIJXl79+5WmaA6FHoLBYVwPvvv4/ff/8dr7zyCsaOHYvg4OCO\nvxDjAvIOhHWI+fnkJ1d7E0tKyASUWgCBgXSOo0fVVQnUaMgKiIgQUygjIkRTsaKCXEZffGFqATBf\nn1RZsR+KOReQOQUwYgTVOS8qkp/gIoVdH48BcDjqYAMyuUWTjAkKoglnaWn0XFdXi4Uj2VwfY+Li\nxBpnjMZGYPly87La20lOQYH6NU2MsagA2tvbUVtbK/tXo2bpKjshVQDx8eotgO+/B/7xD9PR/pAh\nQGam4Xvm/JA33kjHsIlf4eFivnBFBQWHDh0ytQAYxi4gwHwMwJwCSEkRFYAaCwAARoxQvjZ74O4+\ncneX52iZrnR91iqA1lYqxlhfT/3Ezp30mdQCkMqSJngwjh4FNmwwVQxS8vOpj8jOpixFtRWKpagu\nBeFqdNYCYCsC/fKL4Wg/PJxcKGrrhL/wAt10qQIIDaUfSVkZ/QBqa6nsgtQCACj/31QBmI8BBAfT\nfm1tXVMAbFYwCx5zOBzzSBWAGheQRkPxv/p6qhTAlo9UsgDkFp7PyqL/xrFIKSyeePIk9TnShWvU\n4jYKQK0FkJVFI/XXX6eOkxESQp2uUgxAiehomgbu60u5/sHB9GVGRFAc4PvvTS2A6Gg5BWA+BuDh\nQa9raw1nAgOUopqfT1aN0kLZDKbgfv/d8rXZEnf3kbu7PEfLdKXr69VLLOGixgJISKDBXn09DSoP\nH6ZJY0oxALmF57OyKB2drTwmB1MAp0/Tf3OL1yvhVgpAjQVw7Bhwxx3kqlm4UHw/JMQ6C4Ch0dAy\ncwyWMRARQbN3f//d1AKIjjZUViwl1ZwLSHrN0olgAI3mf/oJePppy0s18hgAh2MdXl40aDx/3rIC\nCAykAZm3Nw0I9XqaSzRqFPULchYAWwZW2iccOwbcdx/wv/8p92u//UbPO6vJKVeKxhLdVgGwEghS\nF5AlC6C6msykBx8Enn3WMGDKLACpAuiMH5IFgsPDxZIJaiyAxEStgQsoL4+UiNQikSoA4zTOoUNp\njWBLsOu78krrr60ruLuP3N3lOVqmq11f796UcWNJAYwdC9x2G70ODCRrICiInte2NvkYgIcHzT1i\n1YQFAfj1V2DRIuCqq+jvX/8ylcWqEXALQKUFUFlJZRIuvxx46CHDz5gFIO1wOwObLRwRQZ3ykCHy\nFoCxAoiPFzv1wEA65sknxZnPgHkFoBYWA+DzADgc9fTuTbP4LcUAxo83VAAxMbTi3u2303tyFgBA\nbiBpCYm2NupDNm8G/vIX4O23TY/57Tfg6qtJcYSEiBaAIFAfoSYo3K0VwPnz5FdjI2VLFoBSEAYQ\nSyVLLYDO+CHZbOHQUPr/3nvAtGn0OiCAZg+GhIgKoLm5Q5pBp/zdd7TouxSmAM6cMV/uwRzs+o4f\n13XuBJ3E3X3k7i7P0TJd7frUWgBSmAJISKDJoYB8DAAAJk4EPv2UXjMPAkADtTvuAE6dEsvCA9QP\n1NRQFQNBoKBzbi4NYidOpP7wmWcst7FbK4CyMmDCBLHImSULQBqEMYZNabCFBRAWJlYbvOIK8csE\nqJqnVFk1NNAPZeZMYPp0cb/0dNOKhaGhlFJ25Ajw5z93rn08BsDhWA8rNjlxovpjAgPJ2gdoYhig\nPABdsADYtg0YPZpKzUvXNQkLo2c/L098Lzub5iAxt/KYMWQRvPMOFat87z1KJbVEt1YAgFiMKSJC\nfiF3KdJyC8YwBWCLGIC0w5dDOvW7vp5k3n+/tmOUoATLXvrrX60PVjPYcePHazt3gk7i7j5yd5fn\naJmudn233AJs304jbrXIKQC5GABACubZZ2nG8eHDpn3IsGGU7sn47Tda3YxV/h0/nuYfvP46uaCG\nDBFjA+botgrA15dG0kwBJCVRxk1rq9StYohSLQ5AXgF0hvBwy+4ZpgBOnaLgjtolFkNDybd3ww2d\nbx+PAXA41nPNNbSqmDUwFxAgLkRjzvK+7z6a2Xv6tKkCGDqUMv1YJYFTp0gBsL4mKooWpSksJK/I\nwIHkspK6jeTotgoAoHU4hwyh11FRdLGrVwOPPSa/vxoLwNp5AMZYYwH8+CPw8sv0Q1EjKzSUgsXW\nrOBlDFNwR45YlmdL3N1H7u7yHC3THa5vzBhxrlFoKOX2s6QOJVlRUTSQNe5DJk6klQkHDyYXMFvf\nmCmAXr2oEvDdd1OgOiiIPpO6jeRQvSSkI0hISEBISAg8PT3h7e2NgwcPmt1/+HDxtUZDVsDbbwMz\nZsjvbykIDHTdArjsMvpizOHnRzGA8nJyAam1ABITyRSVZgZZC48BcDiOwbjstLS/UiIqivz7xpVG\n//AH+nvrLcooKi8nfz97nllpemmV/qQksiZYSXtZBBciISFBKC8vV/zcUnPvuEMQAEGYOVP+84wM\nQZgyRf4zvZ6O/fe/1ba282zZIgh33ikIDz1EMpXaZA9aW0lmfb3jZHI4HHW8/DI9n2vXyn/e3i4I\n6emCsH69+N7mzfS+MQ88QH1hdbVy3+lSFgAA2bWH1ZKURKNjtnybMeZcQL6+4lrD9oa5gFjtDkfI\nZHh60siE1wLicFwPNldImgUkRaOh9cilFry0ooGUZ56h7MJPPlGW51IxAI1Gg2uvvRajRo3Cm2++\nafXx115L6VSVlRSxZwWVGOZcQAC5gboaA1CDVAEEBamPAdiKNWuA7793nDzA/X3k7i7P0TJ76vUx\nBWAujujjo84NHBRErqSiIuV9XMoC+PHHHxEbG4vS0lJMmTIFgwcPxvjx4w32mT9/PhIurdoeFhaG\n1NTUjpSqpiYdpk4FMjK02LoV6NNHh9mzxZSro0d1l6wD2mZfAvvc21t3aYEFtv9Rg8+N9+/stp+f\nFno9UFioQ1ISEBho2/Pzbb5tj217PQ+usu0K10flILQID+/a+XQ6HbZs2XIpdTQBSmiErvhc7MgT\nTzyBoKAgrFixouM9jUZj0UVUV0e5tyNG0MSqxx8XP/u//6OJVFu3yh97xRXASy/RZC178v33tNB7\naSnV/I6Lo/ZyOJyeTUEBlbb54Qdg3Liun+8//6G/bdvk+06XcQE1NDSgtrYWAFBfX49vv/0WydbM\nurhEYCC5es6fN10lx9w8AAB45BHDEtH2QuoCSk3lnT+HwyHYzF5LqeRqiY017wJyGQVQUlKC8ePH\nIzU1FWPGjMGMGTMwlc3ysgKNhgIoRUVU20eKuSAwAPzpT4Y3nplUtsbfn+r6V1aKebz2kqUEl8fl\nubLMnnp9vr7UJ7AZvl3FkgJwmRhAYmJihw+uq4SHk3tFzgIwpwAcRVISTdDw93eN9nA4HNfh6FHL\na3urJSbGvAJw2RiAHGpiAADNwDt4EJg8mapqMl54gW7Giy/asZEqueEGqu3RmUUcOBwORy3BwUBd\nnYvHAGxJeDjFAqx1ATmSqVNtZ+ZxOByOEubWCXdbBTB4cNddQPb0Cf7pT1TV0xGy5ODyuDxXlsmv\nz3b0WAUgZwG4Sg2cmBhxlSAOh8OxF0pp74CbxgDee486+rlzqXwqmzX38MOUZqVm7VwOh8NxF5T6\nTre0AO64g1wsnp6Gy0S6kgXA4XA4zsYtFQAjLMwwDmBtENhdfYJcHpfn6jL59TkGt1YAoaHAL79Q\n6QVBcJ15ABwOh+MKuGUMgJGeTqvn+PjQ5Iqnn6aVdebPt18bORwOx9XoUTEARlgYlYe+/HJaecuV\n5gFwOByOs3FrBfD008C6dVRyobHRcjE4Y9zZJ8jlcXmuLJNfn2NwmVpA9mDUKPrPFAC3ADgcDkfE\nrWMAjOuvB+6/nxZMfuABWieAw+Fwego9MgbACAgQLQA+D4DD4XCIHqEA/P2BhgY+D4DL4/K6i0x+\nfY6hxygAFgTmMQAOh8MhekQM4MEHgcREWhP4zTeBkSPt0DgOh8NxUXp0DIBnAXE4HI4pLqUAMjIy\nMHjwYAwcOBDr16+32Xn5PAAuj8vrXjL59TkGl1EAbW1tWLJkCTIyMnDy5El8+OGHOHXqlE3O3dkg\nMIfD4bgzLhMD2L9/P5544glkZGQAANatWwcAWLVqVcc+nY0BbNoEnDoFfP45cOAA0LevbdrM4XA4\n3QGXjwEUFBQgPj6+Y7tv374oKCiwybmlMQA+D4DD4XAIl1EAGrZslx3obBDYnX2CXB6X58oy+fU5\nBpepBdSnTx/k5eV1bOfl5aGvjK9m/vz5SEhIAACEhYUhNTUVWq0WgHhTjbf9/bVobAT0eh0OHACm\nTze/P9s+evSo2c/5Nt/uSdvu/jy40/XpdDps2bIFADr6SzlcJgbQ2tqKQYMGYdeuXYiLi8Po0aPx\n4YcfYsiQIR37dDYGkJEBbNgA7N5NZaF9eCCYw+H0IJT6TpexALy8vLBp0yZMmzYNbW1tWLhwoUHn\n3xX8/anjb23lMQAOh8NhuEwMAACmT5+O7OxsnDlzBqtXr7bZef39gaoq6vytCTUwk8oROFIWl8fl\nubpMfn2OwaUUgL3w9wfOnQP69HF2SzgcDsd1cJkYgBo6GwM4e5aWhdRqgT17bN8uDofDcWVcfh6A\nPfH3p/+Jic5tB4fD4bgSPUoBmMmGksWdfYJcHpfnyjL59TkGrgA4HA6nh9IjYgCCAHh6Anv3AuPH\n26FhHA6H48L06BiARkNWALcAOBwOR6RHKAAA+Ppr66uAurNPkMvj8lxZJr8+x+AyM4HtzTXXOLsF\nHA6H41r0iBgAh8Ph9GR6dAyAw+FwOKZwBWAGd/YJcnlcnivL5NfnGLgC4HA4nB4KjwFwOByOm8Nj\nABwOh8MxgCsAM7izT5DL4/JcWSa/PsfAFQCHw+H0UHgMgMPhcNwcHgPgcDgcjgEuoQDWrl2Lvn37\nIi0tDWlpacjIyHB2kwC4t0+Qy+PyXFkmvz7H4BIKQKPRYPny5cjMzERmZiauu+46ZzcJAHD06FG3\nlMXlcXmuLpNfn2NwCQUAwCV9+1VVVW4pi8vj8lxdJr8+x+AyCmDjxo1ISUnBwoULzd4cJdPJnEnl\niGOcLb8zx/R0+Z05xtnyO3NMd5RvDldts7OP6cy9dJgCmDJlCpKTk03+duzYgcWLFyMnJwdHjx5F\nbGwsVqxYoXgeR9783Nxch8k3lmXv68zNzXXoD9aae2kL+VJ5jnjIzN3P7v7bZDCZjuhM5a7PHnIc\n8ZuR+8zSveyMnM4oAJdLA83NzcXMmTPx66+/mnx2+eWX4+zZs05oFYfD4XRf4uLiUFBQYPK+SywI\nU1RUhNjYWADA9u3bkZycLLvfmTNnHNksDofDcWtcwgK48847cfToUWg0GiQmJuL1119HdHS0s5vF\n4XA4bo1LKAAOh8PhOB6XyQKSEhQU5BA5np6eHZPP0tLScOHCBcV9tVotjhw50ik5Hh4emDt3bsd2\na2sroqKiMHPmzE6dzxo+++wzeHh4IDs72y7nd+a1MRz1e7FGZld+Lwx7f3fGPPPMMxg+fDhSUlKQ\nlpaGgwcP2lVefn4+/vCHPyApKQmXX345li1bhpaWFsX9X375ZTQ2NnZKloeHB1auXNmx/cILL+CJ\nJ57o1LkswfqV4cOHIzU1FS+99JJLprkDLqoANBqNQ+QEBAR0TD7LzMxEv3797NKmwMBAnDhxAnq9\nHgCwc+dO9O3b16pztra2dkr2hx9+iBkzZuDDDz+06rj29nZV+9ni2rqKI2WplanRaLrcrs5+d51h\n//79+Oqrr5CZmYmsrCzs2rUL8fHxdpMnCAL++Mc/4o9//CNOnz6N06dPo66uDo8++qjiMa+88goa\nGho6Jc/Hxwfbt29HeXk5APv+Zli/cvz4cezcuRNff/213ZRNV3FJBQAA9fX1uPbaazFy5EiMGDEC\nO3bsAEBZQkOGDMHdd9+N4cOHY9q0aR2djy04cuQItFotRo0aheuuuw7FxcUdn23duhVpaWlITk7G\noUOHrDrv9ddfj6+++goAPdhz5szpGBUcPHgQY8eOxRVXXIGrr74ap0+fBgBs2bIFN954IyZPnowp\nU6ZYfS11dXX4+eefsWnTJnz88ccAKFXsmmuuwYwZMzB48GAsXry4ox1BQUFYuXIlUlNTceDAAbte\n24QJE5CVldVxjnHjxslmfqll7969BlbHkiVL8O677wIAEhISsHbt2o7fkq1G1OZkdhWl705J3v/+\n9z8MGTIEo0aNwgMPPGC1BVZcXIxevXrB29sbABAREYHY2FjF50Gr1WLZsmWdfh52794Nf39/zJs3\nDwCN0Dds2IC3334bDQ0NWLlyJZKTk5GSkoJNmzZh48aNKCwsxMSJEzF58mSrZAGAt7c37r77bmzY\nsMHks9zcXEyaNAkpKSm49tprkZeXh+rqaiQkJHTsU19fj379+qGtrc0quVFRUXjjjTewadMmAEBb\nWxseeughjB49GikpKXjjjTc69l2/fj1GjBiB1NRUrF692upr7AwuqwD8/f2xfft2HDlyBLt37zaY\nG3DmzBksWbIEx48fR1hYGLZt29YpGY2NjR3un9mzZ6O1tRVLly7Ftm3bcPjwYdx1110dIxJBENDY\n2IjMzEy89tprWLBggVWy/vSnP+Gjjz5CU1MTfv31V4wZM6bjsyFDhuCHH37AL7/8gieeeAJ/+9vf\nOj7LzMzEtm3bsGfPHquv7/PPP8d1112Hfv36ISoqCr/88gsA4NChQ9i0aRNOnjyJs2fP4tNPPwUA\nNDQ0ID09HUePHsXYsWPtem0LFy7Eli1bAACnT59GU1OTYvZXZ5COwDUaDaKionDkyBEsXrwYL7zw\ngs3kKMnsKnLfnfG5mTy9Xo97770XGRkZOHz4MMrKyqxux9SpU5GXl4dBgwbh/vvvx/fff4+WlhbF\n50Gj0XTpeThx4gRGjhxp8F5wcDD69euHzZs34/z588jKykJWVhZuv/12LF26FHFxcdDpdNi1a5dV\nshj33Xcf3n//fdTU1Bi8v3TpUtx1110dsh544AGEhoYiNTW1I7f+yy+/xHXXXQdPT0+r5SYmJqKt\nrQ0XL17EW2+9hbCwMBw8+P/t3X9MVeUfwPE3XEJESfxDMq0USxk/hQtcW6agxA+HmoXBsMJpzIzE\ncBajZsUmMzebBVNLXDplBRSbTP8wLbsYiMpSaP6growfOivFIV4Y/gKe7x93nK8glPciXup+Xn9x\nLuecz3nuOed+nvM85zyniqqqKnbs2EFjYyMHDhxg3759VFVVUVNTQ2Zmpk1ltNawuA20P93d3bz/\n/vuUl5fj7OzMH3/8wZUrVwDLFxoUFARAaGjo3z408ndGjhxJdXW1Nn3mzBnOnj3LCy+8AFiy9YQJ\nEwDLAZ+cnAzArFmzMJvNmM1mHn300fuKFRgYSGNjI4WFhcTHx/f6X2trKykpKdTV1eHk5NSruScm\nJgZPT0+byldYWMiaNWsAeOWVV7QmBYPBoNVukpOTqaioICEhAZ1OR0JCgtVxrClbTxvv4sWLWb9+\nPZs2bWLnzp0sW7bMpjLer5dffhkAvV6vJbzhbKB915dSit9++40pU6YwadIkwLJP765Z3o9Ro0Zx\n8uRJysvLMRqNJCUlsW7dugHPh544YNv5MFCCUkpRVlbG22+/jbOzpX46duxYq8oyEA8PD1JSUsjL\ny2PkyJHa58ePH6e0tBSA1157TfvxTUpKori4mMjISIqKili1atWgt+HQoUOcPn2akpISAMxmM+fP\nn+fw4cMsX74cNzc34MGV+Z8M2wTw9ddfc/XqVU6dOoVOp8Pb21tr6hkxYoQ2n06ns7ljqC+lFP7+\n/lRWVt7X/NbWshYuXMi7777LkSNHaG5u1j7/8MMPiYqKYu/evTQ1NREZGan9z93d3aoYPVpaWjAa\njZw5cwYnJye6urpwcnIiPj6+13YrpbQTzc3NzeYarLVlc3d3Jzo6mtLSUr777jvt6sRWLi4uvfot\n+h4TPceMTqezuT/F2pi2Gmjfvfjii73i9ZwPffeZrR2Ozs7OREREEBERQWBgIFu3bh2y88HPz0/7\nEexhNpu5ePEiU6ZMGbJO04yMDPR6/T0Vjv7iLViwgA8++IBr165x6tQp5s6da1PM+vp6dDodXl5e\nAGzZsuWeJt2DBw/apaN42DYBXb9+HS8vL3Q6HUajkaampiGP6ePjQ3Nzs9b+fefOHc6dOwdYDpCe\nttiKigo8PT3x8PCwav3Lly8nOzsbf3//Xp+bzWatZrVr167BFgOAkpISUlJSaGxspKGhgQsXLuDt\n7c3PP/9MVVUVjY2NdHd3U1xczPPPPz/oeLaULTU1ldWrV2MwGBgzZsyg4k+aNIlz585x+/ZtWltb\n+emnnwa1PnvGHGjfdXd394p3+PBhnJyc8PHxob6+XjtHiouLrU7kJpOJ8+fPa9PV1dX4+vpy9erV\nfs+Hnjhg2/kQFRVFR0cHBQUFgOXqYu3atSxbtoyYmBi2b9+utbdfu3YNsNTg+zbfWGvs2LEkJiby\n1Vdfad/Rc889R1FREWCpeM6ePRuw9ImFh4drfSq2VI6am5tZuXIl6enpAMTGxrJt2zatEmIymejo\n6CA6Oppdu3ZplYieMg+1YXcF0NnZyYgRI3j11VdZsGABQUFBhIWF4evrq83TX1uoLfou5+rqSklJ\nCatXr+b69et0dnayZs0a/Pz8cHJyws3NDb1eT2dnJzt37rQ6zsSJE7XLyLvbizMzM1m6dCk5OTm9\nauiDaVMuKioiKyur12cJCQl88cUXhIeHs2rVKurq6pg7dy4vvfRSv9/HUJYNLM0xY8aMGVTzT8/x\n8sQTT5CYmEhAQADe3t7o9foBt3ew7fTWxrTWQPuuqKio33hubm5s27aNuLg4Ro0aRXh4uNVlbG9v\nJz09ndbWVlxcXJg6dSr5+fmsWLGi3/OhJ64t50OPvXv3kpaWxvr16+nu7iY+Pp4NGzbg7OyMyWQi\nKChI67xNS0tjxYoVxMXFMXHiRKv7Ae7+PtauXat1yoJlIMply5axadMmvLy8elVUkpKSSExMtGqc\nnZ6+xTt37uDi4kJKSorWnJeamkpjYyN6vR6lFF5eXpSWlhIbG0tNTQ1hYWG4uroSHx9PTk6OVWW0\niRpmampq1IwZM+y9Gf9ZZWVlav78+fbeDKWUUpcuXVLTpk0b1DrscbwMx2O0vb1d+zstLU19/vnn\nQxovMjJSnTx5ckhjiKE3rJqAvvzyS5YsWfJwMp8Ds8d9833t2bOHZ599lg0bNti8DnscL8P1GN2x\nYwchISH4+/tjNpt588037b1J4l9AhoIQQggHNayuAIQQQjw8dk0AFy9eZM6cOfj7+xMQEEBeXh5g\nuQ0uOjqaadOmERMTo70hrKWlhTlz5uDh4aH1qoOl0yU+Ph5fX18CAgIe2lN0Qgjxb2bXBPDII4/w\n2WefcfbsWY4fP87WrVupra1l48aNREdHYzKZiIqKYuPGjYDlroOcnJx+n+TMzMyktraW6upqjh49\nyvfff/+wiyOEEP8qdk0A48ePJzg4GLDcc+vr68ulS5fYt2+fNkbI0qVLtaf03N3dmTlzZq8HwcDy\nRG9ERARgSSp6vb7ft98IIYT4v2HTB9DY2Eh1dTUzZszg8uXL2gthHnvsMS5fvtxr3r+7i6W1xeox\nmgAABIBJREFUtZX9+/fbNGCUEEI4kmGRANrb20lISCA3N/eepwmteXCns7OT5ORk3nnnnV4j+Qkh\nhLiX3RPAnTt3SEhI4PXXX2fRokWApdbfM+zsn3/+qY2h8U9WrFiBj48Pq1evHrLtFUKI/wq7JgCl\nFG+88QZ+fn5kZGRony9cuFAb53z37t1aYrh7ub7WrVuH2Wzud7xvIYQQ97Lrg2AVFRXMnj2boKAg\nrZnnk08+wWAwkJiYyIULF5g8eTLffvutNiTy5MmTaWtr4/bt23h6evLDDz8wevRonnrqKXx9fXF1\ndQUsY3xbO0a5EEI4EnkSWAghHJTd+wCEEELYhyQAIYRwUJIAhBDCQUkCEEIIByUJQAghHJQkACGE\ncFCSAMR/nk6nIyQkhICAAIKDg9m8eXO/DxPerampicLCwvuOMW/ePObOnUtISAhTp07F09OTkJAQ\n9Ho9x44dY+bMmYMthhAP3LB7KbwQD5q7uzvV1dUANDc3s2TJEsxmM9nZ2QMu09DQwDfffENycvI/\nrv/GjRu0tLRw4sQJAI4cOcKnn37K/v37tXmOHj06uEIIMQTkCkA4lHHjxpGfn8+WLVsAyyi0s2fP\nJjQ0lNDQUI4dOwZAVlYW5eXlhISEkJubS3d3N++99x4Gg4Hp06eTn5+vrbOsrIw5c+Zo0/1dXYwe\nPVqbNyIigkWLFvH000+TlZVFQUEBBoOBoKAg6uvrAUuiWrx4MQaDAYPBQGVl5ZB9J8KB2ett9EI8\nLKNHj77nM09PT3XlyhXV0dGhbt68qZRSymQyqbCwMKWUUmVlZWr+/Pna/Nu3b1c5OTlKKaVu3ryp\nwsLCVENDg1JKqfT0dGU0GrV5jUZjr2Xv3gaj0ag8PT3VX3/9pW7duqUmTJigPv74Y6WUUrm5uSoj\nI0MppVRycrKqqKhQSinV1NSkfH19B/ktCHEvaQISDu327dusWrWKX3/9FZ1Ox/nz54F7a/GHDh3i\n9OnTlJSUAGA2m6mrq2Py5MlUVlayefPm+44ZHh6uve/imWeeITY2FoCAgACMRiMAP/74I7W1tdoy\nbW1tdHR04O7ubnthhehDEoBwOPX19eh0OsaNG0d2djaPP/44BQUFdHV14ebmNuByW7ZsITo6+p51\nPfnkk7i43P+pdPcb7ZydnbVpZ2dnOjs7AUsCOnHihDa4oRBDQfoAhENpbm5m5cqVpKenA5aa/Pjx\n4wHYs2cPXV1dAHh4eNDW1qYtFxsby7Zt27QfaJPJREdHBwcOHGDevHkPfDtjYmLIy8vTpmtqah54\nDCEkAYj/vBs3bmi3gUZHRxMXF8dHH30EQFpaGrt37yY4OJjff/9d66ydPn06Op2O4OBgcnNzSU1N\nxc/PD71eT2BgIG+99RadnZ0cPHiQuLi4XvH6e4vd3dMDveHu7uXy8vL45ZdfmD59Ov7+/r06nYV4\nUGQ4aCFsdOvWLWbNmkVVVZW9N0UIm0gCEEIIByVNQEII4aAkAQghhIOSBCCEEA5KEoAQQjgoSQBC\nCOGgJAEIIYSDkgQghBAO6n85qkl8WcfHrwAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x8c142d0>" ] } ], "prompt_number": 112 }, { "cell_type": "markdown", "metadata": {}, "source": [ "So Pandas has given us a decent plot, with nice labelling on the time-axis. Because pandas uses matplotlib, we can add-to and alter our pandas plots in the same way we would for any matplotlib plot. Note above how I manually added the y-axis label. Now lets resample to a 5 day interval and then plot the result: " ] }, { "cell_type": "code", "collapsed": false, "input": [ "df.Max_Temp.plot(linewidth=1)\n", "df.Max_Temp.resample('5d').plot(color='r',linewidth=3)\n", "plt.ylabel('Max. temp. ($^{\\circ}$C)')\n", "plt.title('Resampled to 5 day means')" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 114, "text": [ "<matplotlib.text.Text at 0x9710450>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAElCAYAAADtFjXiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VFXawH+TXkgnhCSUUKUFEqXXAIKigPihq7giCNYV\nXZC1ropYENYV665ldcWFxUrXFQjChF4NvUNo6SG9t/P9cXLvzCTTAqnD/T1Pnplb33Nv5p73vuW8\nRyeEEGhoaGho3HA4NXYDNDQ0NDQaB00BaGhoaNygaApAQ0ND4wZFUwAaGhoaNyiaAtDQ0NC4QdEU\ngIaGhsYNiqYANJo9r7/+OlOnTm3wY+ub6dOn8+qrrzZ2MzQcGE0BaBAREYGXlxc+Pj60bt2aqVOn\nkpub29jNshudTlcvx+r1etq2bXvN59br9Tg5OeHj46P+LV26tFZtu55r09CwhaYANNDpdPz888/k\n5eVx6NAhjhw5wltvvdXYzbKbpjyWMTw8nLy8PPWvttZGU742jeaPpgA0TAgJCWHs2LEcO3ZMXbd7\n924GDx5MQEAAUVFRxMXFqduWLFlCp06d8PX1pWPHjixfvhyAc+fOMWrUKFq2bElwcDAPPvggOTk5\n6nERERH8/e9/p3fv3vj4+DBz5kxSU1MZN24cfn5+jBkzhuzsbAAuXLiAk5MT//rXvwgPDycsLIz3\n3nvP4jVYa29CQgIjRozA19eXsWPHkpGRYfYcBQUFjBs3jqSkJHx8fPD19SUlJYWSkhJmz55NeHg4\n4eHhzJkzh9LS0mu72dWIj4/n5ptvxtfXl/vvv5/i4mJ1W1ZWFuPHj6dVq1YEBgYyYcIEEhMTAfjx\nxx/p27evybkWL17MpEmTzMqJiYnh1VdfZciQIfj4+DBx4kQyMjL44x//iJ+fH/379+fixYvq/idP\nnmTMmDEEBQXRrVs3fvzxR3XbL7/8QnR0NH5+frRr14758+er25T/23/+8x/at29PcHAwCxYsULfv\n3buXvn374ufnR+vWrZk7d+713UCN2iM0bngiIiLEpk2bhBBCXL58WURGRor58+cLIYS4cuWKCAoK\nEr/++qsQQojY2FgRFBQkMjIyRH5+vvD19RWnT58WQgiRkpIijh07JoQQ4uzZs2LTpk2itLRUpKen\ni+HDh4vZs2ebyBw0aJBIS0sTiYmJolWrViI6OlocPHhQFBcXi1GjRqltSEhIEDqdTjzwwAOisLBQ\nHDlyRAQHB6ttnjdvnnjwwQdttlcIIQYOHCjmzp0rSktLxdatW4WPj4+YOnWq2fui1+tFmzZtTNa9\n+uqrYtCgQSI9PV2kp6eLwYMHi1dffdXs8Vu2bBFubm4iJCREdOjQQcyZM0cUFBSY3bekpES0a9dO\nfPDBB6K8vFz89NNPwtXVVT331atXxcqVK0VRUZHIy8sT9957r5g0aZIQQoji4mIRGBgoTpw4oZ4v\nKipKrFy50qysESNGiC5duojz58+LnJwc0aNHD9G5c2fx22+/ifLycvHQQw+Jhx9+WAghRH5+vmjT\npo1YsmSJqKioEPHx8aJly5bi+PHj6j06evSoEEKIw4cPi5CQELF69WqT/9tjjz0miouLxaFDh4S7\nu7s4efKk+r9YtmyZEEKIgoICsXv3brPt1ag/NAWgIdq3by9atGghfHx8hE6nE5MmTRIVFRVCCCEW\nLlxYo4O87bbbxDfffCMKCgqEv7+/WLFihSgsLLQqY9WqVSI6OlpdjoiIEMuXL1eXJ0+eLP70pz+p\nyx9//LHawSkdyalTp9Ttzz//vJg5c6YQwlQBWGvvxYsXhYuLi0lbH3jgAfXY6mzZsqWGAujUqZOq\nXIQQYsOGDSIiIsLs8SkpKWqnnJCQIIYPHy4ef/xxs/vGxcWJsLAwk3XWlEt8fLwICAhQl5944gnx\n17/+VQghxNGjR0VAQIAoLS01e2xMTIxYsGCBujx37lxxxx13qMvr1q0TUVFRQgghvvvuOzFs2DCT\n4x977DFVOVfnz3/+s5gzZ456zTqdTiQmJqrb+/fvL77//nshhBDDhw8X8+bNE+np6WbPpVH/aC4g\nDXQ6HWvWrCE3Nxe9Xs/mzZvZv38/ABcvXuTHH38kICBA/duxYwcpKSl4eXnx/fff89lnnxEWFsb4\n8eM5deoUAKmpqdx///20adMGPz8/pk6dytWrV03khoSEqN89PT1Nlj08PMjPzzfZ3zgg265dO5KS\nkmpci7X2JiUlERAQgKenp7p/+/bta3WvkpKSTI6x1A7l+rp16wZIl9ff/vY3VqxYYfG84eHhJuva\nt2+vxgAKCwt5/PHHiYiIwM/PjxEjRpCTk6NunzZtmup+W7p0Kffddx+urq4Wr6P6vW7VqpXJsnLv\nL168yJ49e0zu5/Lly0lNTQVgz549jBw5klatWuHv78/nn39e4//cunVr9buXl5d67q+++orTp0/T\nvXt3+vfvzy+//GKxvRr1g6YANEwYPnw4Tz/9NC+88AIgO7ipU6eSlZWl/uXl5fH8888DMHbsWDZu\n3EhKSgrdunXj0UcfBeDll1/G2dmZo0ePkpOTw9KlS6msrLQqW9gIeF66dMnke/UO01Z7Q0NDycrK\norCwUN3/4sWLFjNtzK0PCwvjwoULJu0ICwuz2m5jLN2D0NBQ1advrm3vvfcep0+fZu/eveTk5BAX\nF4eQFjwAAwcOxM3Nja1bt/Ltt9/WKthsLdOoXbt2jBgxosb9/Mc//gHAAw88wKRJk7hy5QrZ2dk8\n8cQTNv/PCp07d2b58uWkp6fzwgsvcM8991BUVGR3uzWuH00BaNRg9uzZ7N27lz179vDggw+ybt06\nNm7cSEVFBcXFxej1ehITE0lLS2PNmjUUFBTg6uqKt7c3zs7OAOTn5+Pt7Y2vry+JiYm8++67192u\nt956i6KiIo4dO8aSJUu47777auxjrb3t27enb9++zJs3j7KyMrZv387PP/9sUV5ISAhXr141SYmd\nMmUKb731FhkZGWRkZPDGG29Y7Gz1ej0XL15ECMHly5d54YUXLAZmBw8ejIuLCx999BFlZWWsXLmS\nffv2qdvz8/Px9PTEz8+PzMxMk2CrwtSpU5k1axZubm4MHjzY4nWBqbK1pnjvvPNOTp8+zbJlyygr\nK6OsrIx9+/Zx8uRJtV0BAQG4ubmxd+9eli9fbnfq6rJly0hPTwfAz88PnU6Hk5PWJTUk2t3WqEHL\nli2ZNm0aixYtok2bNqxZs4YFCxbQqlUr2rVrx3vvvYcQgsrKSt5//33Cw8MJCgpi27ZtfPrppwDM\nmzeP33//HT8/PyZMmMDkyZNtdgzG283lwI8YMYLOnTtz66238txzz3HrrbfW2NdSe5W30uXLl7Nn\nzx4CAwN54403mDZtmsX2dOvWjSlTptCxY0cCAwNJSUnhlVdeoW/fvvTu3ZvevXvTt29fXnnlFbPH\nx8fHM2TIEFq0aMGQIUOIiorio48+Mruvq6srK1euZMmSJQQFBfHDDz8wefJkdfvs2bMpKiqiZcuW\nDB48mHHjxtW4P1OnTuXYsWM8+OCDFq9Jwda9VpZ9fHzYuHEj3333HeHh4YSGhvLSSy+pmU///Oc/\nee211/D19eXNN9+soZSt/c83bNhAr1698PHxYc6cOXz33Xe4u7vbbLtG3aETtuzuOqa4uJgRI0ZQ\nUlJCaWkpd911F++88w6vv/46X375JcHBwQC888473H777Q3ZNI0myoULF+jYsSPl5eXaG6IVioqK\nCAkJIT4+nk6dOjV2czSaAS4NLdDDw4MtW7bg5eVFeXk5Q4cOZfv27eh0Op599lmeffbZhm6ShoZD\n8Omnn9K/f3+t89ewmwZXACAzAQBKS0upqKggICAA0EY9alhGK4lgnYiICHQ6HatXr27spmg0IxrF\nnq6srCQqKoqQkBBGjhxJz549Afj444/p06cPM2fOVEeBamhERERQUVGhuX+scOHCBRISEujTp09j\nN0WjGdHgMQBjcnJyuO2221i4cCE9evRQ/f+vvvoqycnJfPXVV43VNA0NDQ2Hp1FcQAp+fn7ceeed\n7N+/n5iYGHX9I488woQJE2rsHx4ebnHQjYaGhoaGecLCwmqMM4FGcAFlZGSo7p2ioiJiY2OJjo4m\nJSVF3WfVqlVERkbWODYpKYl58+apA2CM/yytt7bN1jHmtteX/Or71Pd1Wrq++pJfm3tZF/Kt3dvr\nkVPba6yv62zI32b1dXV1z5raMfX1mzG3zda9rOv7bOnFucEVQHJyMqNGjSIqKooBAwYwYcIERo8e\nzfPPP0/v3r3p06cPcXFxvP/++2aPN7YU7Fl/PccYj/isb/nVZdX3dV64cKFe7pml9bW5l3Uh31he\nXcqxtN7a/Wzuv00FRWZd3TNr28xdX33IaYjfjLlttu7ltcixdi6LiGZEQzd32rRpDilLk6fJa+oy\nteurWyz1nVpahRWmT5/ukLI0eZq8pi5Tu76GoVGzgGqLTqejGTVXQ0NDo0lgqe/ULAAr6PV6h5Sl\nydPkNXWZ2vU1DJoC0NDQ0LhB0VxAGhoaGg6O5gLS0NDQ0DBBUwBWcGSfoCZPk9eUZWrX1zBoCkBD\nQ0PjBkWLAWhoaGg4OFoMQENDQ0PDBE0BWMGRfYKaPE1eU5apXV/DoCkADQ0NjRsULQagoaGh4eBo\nMQANDQ0NDRM0BWAFR/YJavI0eU1ZpnZ9DYOmADQ0bgCysyE+vrFbodHU0GIAGho3AD/9BB9/DHFx\njd0SjcZAiwFoaNzAlJbCmTON3QqNpoamAKzgyD5BTd6NJa+0FJKTIS+v4WReD1oMoGFocAVQXFzM\ngAEDiIqKokePHrz00ksAZGZmMmbMGLp27crYsWPJzs5u6KZpaDgspaXy8/Tpxm2HRtOiUWIAhYWF\neHl5UV5eztChQ/n73//O2rVradmyJc8//zyLFi0iKyuLhQsXmjZWiwFoaFwTn3wCTz8Ny5fDlCmN\n3RqNhqZJxQC8vLwAKC0tpaKigoCAANauXcu0adMAmDZtGqtXr26MpmloOCSaBaBhjkZRAJWVlURF\nRRESEsLIkSPp2bMnqamphISEABASEkJqampjNM0ER/YJavJuLHmlpRAcDAkJDSfzetBiAA2DS2MI\ndXJy4uDBg+Tk5HDbbbexZcsWk+06nQ6dTtcYTdPQcEhKS6FtW0hLa+yWaDQlGn0cwJtvvomnpydf\nfvkler2e1q1bk5yczMiRIzl58qTJvjqdjmnTphEREQGAv78/UVFRxMTEAAatqi1ry9qy6fIrr8CW\nLXoyMuDUqcZvj7Zcv8t6vZ4lS5YAEBERwfz5883GABpcAWRkZODi4oK/vz9FRUXcdtttzJs3jw0b\nNhAUFMQLL7zAwoULyc7O1oLAGho2+PlnWLkSvvwSnKw4dJ9/HgoLYc0auHy54dqn0TRoMkHg5ORk\nRo0aRVRUFAMGDGDChAmMHj2aF198kdjYWLp27crmzZt58cUXG7ppNVA0qqPJ0uQ5jrwTJ+Drr6UC\nsEZpKYSHSxfQtb5DOfLz0NAyG+P6zNHgMYDIyEh+//33GusDAwPZtGlTQzdHQ6NZk5sL7u62g7ul\npeDnJ/fNzZXfNTQaPQZQGzQXkIaGKbNnw48/wv33w3vvWd7vkUdg4EBYuBB+/RW6dGm4Nmo0Pk3G\nBaShoVF35OVBYCCUlVnfr7QU3NygVSstE0jDgKYArODIPkFNnmPIy8uDoCDDQC9jCgrgzjvld2MF\ncK1DbBz5eWhomU0lBqApAA2NZoyiAMxZAKmpoAyx0SwADXNoMQANjWbM0KHQowcUFcHSpabb9u+H\nAQOgvBwmTIAnnoDdu6UieO21xmmvRuOgxQA0NByQ3FzLMYCsLKislApAsQBatJCuIQ0N0BSAVRzZ\nJ6jJcwx51oLAmZnys7jYoABcXW0HjG3JbAi0GEDDoCkADY1mjLUgcFaW/CwpqRsFoOF4aDEADY1m\njLs7fP89fPYZrF9vum3B2wK/V2bxeOs1vOK5mHt++AP79sGhQ3J/jRsHLQagoeFglJZKH7+Pj3kL\nwPvkAZ7in7ikJPJY0jzc3KQVYG5fjRsTTQFYwZF9gpq85i8vL092/m5u5t06bY9vMHwvOYubc0Wd\nxQBKSmDZsms7T21lNRSO/LxbQlMAGhrNlNxcqQBcXc2/1d90caP63ZVyvDKv1FkMICEBpk2D9PTr\nP5dG46HFADQ0mimHD8MDD8B//iNr/ZjUWMzLo9wvEBdRrq5K/34zcU4j+fZbWLHi+mQfPAjR0fDF\nF/Doo9d3Lo36R4sBaGg4GIoLyKwFoNebdP4A7onnLbqLaktJifz8+muoqLj+82k0DpoCsIIj+wQ1\nec1fXl4e+PpaiAFs3FjjGLfEBIvuIntlKhQXw6BB4OkJb799beezV1ZD4cjPuyU0BaCh0UzJz5cj\ne8126mYUgMul83UWAygpkbKffVaWl9BonmgKwArKXJuOJkuT5xjyCgvBy8uMBXDhApw+XeMY54vX\npwCMr7G4GDw86m9gWUPfz4aW2RjXZw5NAWhoNFM6/vwRM39/CrecdNNO2Ojt/4p/T8P6Cwl1FgMo\nLpaD0FxdZa0ha5w9e/3yNOoHTQFYwZF9gpq8Zi7vvfcY+uOfiTn+TwJn3k1ZSaVho5EC2H3TdCqc\nXQHQpaXhXpZfJzGAkhJpAbi4WFcoV69CZKQcsHatshoKR37eLdHgCuDy5cuMHDmSnj170qtXLz76\n6CMAXn/9ddq0aUN0dDTR0dGsrz6uXUNDw8DevepXlz07+EPRN3KhvBx++03ddqbzOLL9ItRl77SE\nOrMA7HEBJSXJfZXCdBpNiwYfB5CSkkJKSgpRUVHk5+dzyy23sHr1an744Qd8fHx49tlnLR6rjQPQ\nqM7TT8Pw4XDvvY3dkgamXz9Z8L+KDIJomXEKzpyR6TlAumsY7/75CjN+HEe3i3JU8OWPVzP2H3dx\n4sT1if/4Yzh1Ch5+WI4DMBmDYERsLIwdK8csREZen0yNa6fJjANo3bo1UVFRALRo0YLu3buTmJgI\noHXuGrXm1CnpZmiKlJfDvn31cOLc3Bo9bkuuIl540cT9Ex88Fg9PHSleHdV1Hsl1YwEoLiBbMYDk\nZNNPjaZFo8YALly4QHx8PAMHDgTg448/pk+fPsycOZPs7OzGbBrg2D5BR5GXmGjeBdEUrm/bNjlS\nt87ZuRN9lVO9xMNXXa376ks5NLeKY23G4uEBV9w6qOvck87X2TgAe2IASsefknLtshoKR37eLdFo\nCiA/P5977rmHDz/8kBYtWvDkk0+SkJDAwYMHCQ0NZe7cuY3VNI1mRFJS061vf/iwqe9740bpErlu\n4uLUr+eGPQwTJxq2Kda0TkdCpzG4u8NFJ4MF4Hb5fJ1nAdlSAO7umgXQVHFpDKFlZWVMnjyZBx98\nkEmTJgHQqlUrdfsjjzzChAkTzB47ffp0IiIiAPD39ycqKkrNqVW0al0tK+vq6/zGyzExMfV6fkeU\nt369nuxsKCtrmte3fr2ezEyorIzByQk++0yPiwuMGWN6/NChMXz1Fdx0k53ytm4lBtADR/wD6fHu\nHArWbmIfhXI7kBZ+M0mlR9FdgjwhFYAeqDh9VO2wr+d5KCmBjAw9Bw5Aebnl4w8fht69Y0hObvzf\ny430vOv1epYsWQKg9pdmEQ1MZWWlmDp1qpg9e7bJ+qSkJPX74sWLxZQpU2oc2wjN1WjCnDkjBAjx\n5puN3RLz3HyzbF9mply+914hHnqo5n5Xrgjh52fnSQsKhHB1lScGsX5ZuhBCiPleC9V1AsS2YS+J\nV14R4ssvhRjSM0tdX+nhIXx9Kq/72mbNEuKjj2Tbw8Is7zd8uBCPPSbEH/5w3SI1rgNLfWeDu4B2\n7NjBsmXL2LJli5ry+euvv/LCCy/Qu3dv+vTpQ1xcHO+//35DN60GikZ1NFmOIi8pSX42xRhAeTmc\nOAHBwYapGVNTISPD9Lj9+6GoSP7Zxa5dUFaGHkjw7olL65YAfOU7h7KuPdTd4sPH4+sr3S+JBf7k\nOgcAoCsuJrC0lg75KoyvUXEB2RMDiI6uvQuoof9/DS2zMa7PHA3uAho6dCiVZkaFjBs3rqGbotFE\nuXoVvL1lkNEa1hRAY5OQACEhcsL2zEzo2FEqgOJiWLwYRo6Etm1h4EDYsMEwu5eTrVeyrVvVr7+3\nGE6Yl/yuc3cj5av/0fZfr5HdpR9HLg3mZh95D1NTIcW7I765BwBoW3YeCL2u6zPOArJ2/1NSpAJY\nvPi6xGnUE9pIYCsY+wYdSVZTl/fss3KeW1tYUwCNfX3nzkHnzgYFALIzzMiQtfhPnIDVq2UpZSWN\ntbi45nmLi6uNoq0KAMcAe9xH4OkpV7u6QnFIe/jmG0b8OIvYWFkp1MNDWhcFrQyB4HaVCVxLxrXx\nNRoPBLOUBlpRAQUFUtHl5l67rIbCkZ93S2gKQKPJkZIiOw5bpKVBy5ZN0wI4dw46dTIogOJi2Qlm\nZMClS/INWpmURXERmVMAd98Na9dWLZSUmJTe3OE8HK8qC8DNzVARNCdH1oPz8ZFuGgARYUgF7eJk\nPhOouBiWLrXv+uxxASnF6nx8ZOVSjaaHpgCs4Mg+waYsLyPDfGdYnZIS2bk0xRhAdQWQmgphYbJT\nTEqSbT93TpZUVhRA9ThARoZMG1UHuu3dq87Eog8P52JpqIkFoNyHQpkMpFoAAB49DBZAJ535sQBn\nz8Jrr9l3jfa4gPLy5PV5eck22VsP6PRpGDxYb3O/usaRn3dLaApAo8lhrwIoLZWxgqZoAZw9a+oC\nSk2F0FAICpIdYUmJ/AsIMLiIql/zmjUGNwpgkv9Pnz4UFWHWAjCnAIL6GRRAB8yPBi4sNMz0ZQvF\nBeTsLK/HuHM/eVIqs/x8qaCdnQ2uKHtITZV/GvWPpgCs4Mg+waYsLyPDvo6otFR2gE01BlDdAggJ\nkS4rkG0vLgZ/f8sWwM6dcruqAIwCwDH3309hITUsACEMCkBxAXl4QPAAgwKIEOZdQAUF1hVv9RiA\nuzvodDXjALNmyVpBigUA8tNeN1BxMbi5xdjcr65x5OfdEpoC0GhSFBbKP3ssgLIyaQHYqkff0Agh\ns4A6djQogJQUUwWgWAD+/gYLoLoCSEuTSqSwEHmxO3eq2yqHjVDdMGCwAGTnCY89Ji2ONm3kd6eI\ndmqKUWhlImV5NW9wbSwAY9nV4wBZWfD55zLm4eMj19VWAVxruQqN2qEpACs4sk+wqcqzlhFTHWsu\noMa8vqxDl5jmtJQWcx7l3lduYvF3YYRs/pagoJoKwJoLKC0NOnSosgB+/91gCrRvz8aT5/HwMKSN\nKhaAEnj9/HN5bwID4cMPq3Zo2xYAJwTiwkXWrTMdl2DLAjA3DsBYtkJOjrR4tm0zWADe3vYF9pVz\n5+bqbe5X1zjy824JTQFoNCmUDul6XUCNQmwsdO5MYHR7Pi14CL78khZJpwksSWb8d39kxLmv6NoV\nevY0tQAsuYDS0iAioqrjNPL/X+kk3/4V9w8YLABFAZilo8ENREIC77wjO2kFJVBrj0VlbAFUdwFl\nZ0PXroYgN9TeAmhqVp2joikAKziyT7CpylMUQG1cQE0mBjBnjuz1zOCE4M6Vj7CgzT+ZOVN2hs7O\nsv22LIDKrBxYuVJd//qWEezaFWPS0Stv4QUF8pxm6WBIBXW6eF6NTSgob+hmle/q1cRMnSrLmxYW\nqkFgY9kcOoQYOZJPMqfQq002Fy9euwtIjnRoWBz5ebdEoxSD09CwREaGdGvUxgXUJCpNZmfDsWOA\nrMR5LPRWej05nKudB5A49UV6l1fV73/qKfpNLuWAx2zc3eVbvDkLID8fRKWg7+lvmbL2WSgx9NR/\nXjGcqHtkfEDB1bV2FoDLxfNcvSqVjIISPC4urqZEsrOpfHgGTtlZ8O23kJlJZdEa3Kt8QC4uyNKn\nD4xCl5nJ/cCgPeeY4L6RFlH+gFQAtXEBaTGAhkGzAKzgyD7BpiovIwNat75+F1CDX99XX6nfU1pH\n893DG+GVV/C6awy36n7jpG9/dfvQFXO47cACPN0r8fQ0vBkrCkAIyNh2gk1iNP0//CMBRp2/ePJP\nRN7dmZ499SYdvZubaQzALMYK4HICmZmmCsCiBfD3v+OUnYVeWd6wgS/y7sfDWd74HuIYraaMNql9\n3T5tH19dHkuwq5zXw9vbfgugqAiKi/U296trHPl5t4SmADSaFOnpEB5+/S6gBufUKfXrGf9+hIXJ\n756ekO/iz/TwWHJ7D1H3mXryr2zK689NKQbffnExcPo0Z4Y9TJs7IhlcskXdVtYqjGdCvkf3j08A\nGDHCNAZQPQhsFiMF4HzpPJWVli0AldRU+OCDGqe6q3I1Hk9Oh+PHWZYyGucs6bur9DQI78c+Znw3\nBrKyau0Cqj62QKN+qLUCKC4upsTeXLFmjiP7BJuqvJ07YcCA688CavDrM0qnOeTWj/Bww7bAQDhy\n0Zfkf68Ho3b1KTvA1K9iWMUkxrtuIOaLKdC9O113LMGFCgCEszNLg59l179PcuimP8jEe+Ctt2KY\nP98gw80NXnwR1q2zLwbgmXweELYtgLffVjf0CutNwv8ZJmpy+nY5REcTXFFlofj4cPSD31jY4XN1\nn9Ar+2HsWIJdsmrlAoKYBlfsjvy8W8KmAqisrGTlypXce++9hIeH06FDB9q3b094eDj33HMPq1at\n0uby1agT0tNleeRJk5phFpDR5L87Sg0WAEgFUFgIfuEt4NdfOXXvXynWGUqdTmIN68pup1v8dyav\nvcdDR3Fhxe+8FfAel7J8TJSKn5+cbN14+epVWS3CogUQHKxqB7eiXMLcM81aAOq9v3ABPvtM3b5p\n5Nv80O9dfo140nBQlbO+wtMb/vc/rrQZiL7rYxz7s0EJsH8/Uzc8WMsgcM04gFJDSaPusKkAYmJi\nOHDgAH/5y184f/48ycnJpKSkcP78ef7yl7+wb98+RowY0RBtbXAc2SfYFOX9/LPs1Pz9r98F1KDX\nl5KC/soV+d3Tkx1ZPQg1qrYcGCg//f0BDw8SZrzFwIDT/BzwoNnTHWx9O3f6bWfZ9N9wubk3BQWy\nfpCxUqnINfrzAAAgAElEQVR+fW+8Aa++KvtsiwpApzNxA41ol2DWAlDv/euvqzd3B4NZUezN4SM6\n0l77hNIHpqnHFTt5cnrxLzB0KDk5Vf+/qY/xKIb5ibue/R+Vyal2VQWV8vU1FMAf/wi//GL7+GvF\nkZ93S9hUALGxsbz99tsMGDBAjfoDuLu7M3DgQBYsWEBsnUx0qnGjk5Qk6+d4eDSNWkD2GrbxXxje\n/sXNN5OW6aIO+AKpAJSSDCC/nyxoy1tdlxK7YB+bGUm5zoVjnSfC3r38peevTPtiCH/5i2EAVXUF\nUB0PDxk8T0uz4gICEwVwt8s6crIFH3wg36wVC+D0aVi/+LhJadCXeIe8fB2HDkHvKCfcvvkSnn8e\nRo5kTvcNZPWWL4HZ2VIBBAXBlzxKVq9h6jnSv93ENIPesIg5C6CyEg4d0moE1TU2FcClS5fYvn17\njfXbt2/nXFXOs7FicCQc2SfYFOUpueUeHva7gOozBjBjBiZ+dktcXLFPzVqviO6Hk5PpZDaBgVVv\n/1W4u8vrc3eH4l59Gc1mJt9RzKJBa1h/tR8ZGdClizxOUQCJiZi4gMxdnzKttkULAKBbN/XrvSfe\nYJ3zJN6ek87Ro1KOszPotwhc5r+iuqMu9bidEy2H4+ERw/nzsm24uMCiRbB5M8cCh6n/g5wc6Y5S\nFGDeoDGqvAF5sRYtgKgoWS4DDDEAYwVw4YKsLWRssdQ1jvy8W8KmApg9eza+vr411vv6+jJ79ux6\naZTGjYnSKbq7228B1GcM4MIF6QU5csSwLiEBJk823a9disECyOvWz6SzB9mRBwQYlpX3JWUcAIBf\noDP/+x/MnStTYZUO1M1N9sMXL1q3AMBOBfD001zxNUwdeXvpWo45RZL/7Tp6J63nM9enWfBDJ27N\nXaXus27QAiIj5Rg3d3fD6F4F41IQigXg7V01OnmEIVAxhlhKis2bVRcv1hwEaKwADh+Wn/WpAG5E\nbCqA1NRUevfuXWN97969SUhIqJdGNRUc2SfYFOXV1gKo7xhAbq58m1XeTEGW5FEM4rw8yEgXdMra\np+bIX+1oXgFUtwBAXqeiAPz9ZRD37FkZDFcUgE4nr/H4cVkWwtr1hYTIT6sKIDyc18fv53P3p9VV\nrSpTGfHeRD48PY5Hij+hdaHRc/2HP7CjMJrISDhxQk+bNjVPWV0B+PnJdoeFgeewvurFh5NEWPbx\nGscLIVNETWMQpjGAQ4fkwLf6VACO/LxbwqYCyM7Otrit2J7XtGpcvnyZkSNH0rNnT3r16sVHH30E\nQGZmJmPGjKFr166MHTvWqlwNx0SxAJpKDCA3V/rVjUfonjol31QrKuDrr+HjZxPwK6uqYOfvT5pv\nZ5sKwM1NfhpbAEqguLRUdqjGOf5eXvIYc52vMYoFYDUGAOi8PHmi5CNin/1VXqAZ8mjB4R73UfDO\nR2zcKK2eigrzbTCuBZSbK+chAKksw9s5w6hR6r43Z9aMF5aUyOOVLCFzFsDx43IeZS0GULfYVAB9\n+/bliy++qLH+X//6F7fcckutBbq6uvL+++9z7Ngxdu/ezT/+8Q9OnDjBwoULGTNmDKdPn2b06NEs\nXLiw1ueuaxzZJ9gU5SkWQF24gOri+nJz5Vu1EhwFGSCtrJRKIDsbAs9J908MQL9+ZOfoTNw9AJGR\nMMwQCzXrAlKOcXLCJIAMskPv00cdAiDlmbk+pf6/VQsAuHxZfvZ+/nY4fJjMkdKndda5K6s7zGGi\n1ybujclgYsF3dBsRQqdOUj7EmFUAxuWgCwoMLiL1PowxxAEG5tZUAHl5hmNBUbg1YwADB2oxgLrG\nZi2gDz74gLvvvpv//ve/aod/4MABSkpKWLVqlY2ja9K6dWtaV711tGjRgu7du5OYmMjatWuJq6p4\nOG3aNGJiYpqEEtBoOBQLwMVFugXKy6vqzFggqDSZFsWulJW1tLyTFdauhQkTTDtWYxQFYGwBnD4t\nP1NSZMfVPcng/6dfP9UHbsygQfJPwVgBKJ210lkOHFjT/aUoAFvodNIKsKUA2rWDadMUl1EwuhU/\nEdS2hBLc+b+hsG4pfHY/PPqo3G/oUKlcnJwsWwAnTshSSGaL0RkpgH5FcVJzK2YQhjd/YwvA25sa\nCmDAAC0GUNfYtABat27Nzp07mTdvHhEREXTo0IF58+axe/duQo2Tna+BCxcuEB8fz4ABA0hNTSWk\nyokZEhJCahOw9RzZJ9gU5SkWgE5nyJSxROW2HSRUtCWgVxjdSg5dk7wpU6S/3RylpfKtNiiopgso\nMlK6IvLyoONVqQD0AP36kZVVUwFUx5oFMHasZQvAGEvX16qVbRfQF1/AkiWG5YAACOvgTkGBoR1K\nh790KTz+uPzu7W05BrBkCXz1lQUF0KmTmn7qLQpg1y6TzdUtADnXgCEGUFAglXH37nLf+ioU58jP\nuyXsKgWh0+kYNWoUzzzzDE8//TSjjHx610p+fj6TJ0/mww8/xEepGWskT2fptUzDYVEsALAdBxDf\n/AcXKtCVlfFg+dcm2/Lz4f33rctSpk60VJ4gL0/6spUJzUHWOisvNyiA/JwKuhUcMBxkwQKojrkg\ncECAPO6BB+Dhh033f+QRuO026+dUeOop+6yF6jzxhGyX0nlXeyTVdZZcQOnp8p5ZLEdtZAWwcaPJ\nJnMKwNgCuHgR2reXKaotW5pOYqNxfTRKOeiysjImT57M1KlTmTRpEiDf+lNSUmjdujXJycm0UiJa\n1Zg+fToRVekQ/v7+REVFqf40RavW1bKyrr7Ob7wcExNTr+dvDvKSk/WcPAl33BGDhwds2aKnZUsL\n+x89qmbeDBS7EALi4uSatm1j2L7dujwl00Svhw4dam7PzQU3Nz1paeDvL7evXavHzw9at44hJQXy\nT/yHfaKAGKCPZyj6M2c4fPgMt9xi/X4MHSqXU1L07N0Lzs4x3HQTjBunJzER7rvPdP8ZM+y/nx06\nQFiY7f9H9eWpUyE2Vk9SEkAMPj419x89GgoK9Ci1+pXtrq4x5OTAuXN60tPB29uMvDFj0H8uy0PE\nxMbC22+r28uy+/EAq0nY6YQ+KpTi4hjato3hwAE9np5QWBhDRIQ8n5cXpKbGEBamPe/WlvV6PUuq\nzLwI4/Sx6gg7KCgosGc3u6isrBRTp04Vs2fPNln/3HPPiYULFwohhHjnnXfECy+8UONYO5ur0dz4\n5Rch3n1XjO6XI7Zvl6siIoQ4d87C/pWVosLHVwj5Ii9KcBUlOUXq5iNHhHBzsy7y6lV5+K5d5rcf\nPChEZKQQb78txEsvyXVxcUIMGSLEokVCzJ0rxMJuX6tt2Bc+UQghxCOPCPHFF7Yv2clJiHnz5Pdj\nx2zv31C88468pAMH7D/miSfkMXfcIUSrVkIkJZnZKTNTVDo5CQGiUqeT/wAhhLh6VeSEdxcCRKmz\nuxBLlwp/fyFGjxbihx/kLp98IsTjj8vvgwcLsW3bdV3iDYmlvtOmC2jr1q0cPnzY7Gjga2HHjh0s\nW7aMLVu2EB0dTXR0NOvXr+fFF18kNjaWrl27snnzZl588cU6kXc9KBrV0WQ1KXmHDsH48fDcczx5\n/jl1BK1VF9CVKzjlGYaUulFGxV6DK0ZOKFKzlowxilvHrAsoK4ugBc+yIHUmMVvfoOf+byAujoKT\nlwkOlsHT1FTodHWveshql5bKoTZdQGAY8AbQo4f1fc1RX/8/5f6bcwFZkunqKj+VXH6zLqCAAHR9\n+wKgEwI2b5bBlYkT8U08Ic9TUQJTp/Jy3kuUFm9W/3+nTskSIUr7riH73C4c+Xm3hE0XUElJCcOH\nD2fDhg11InDo0KFUWij0vWnTpjqRodE8uHwZdk5ZzX1VRXfGZH3PZedPAFfrg8GMh+Yq7NoFt8p6\n+0oHkZ9vyK+vjhLYNVYAv/0GWzcUMX/7nbTZtYs2ABtgMEAsjANuCh5AZr83WJY8hpvyDBlAlzxv\nArArBgCmtYGaEopSMqcALKFkauXmSsVqMQg9ZowsVwrsmb+e8EX/pc3+HTV2e65iIX6ntlKZ0w/w\n4bff4Jtv5DZ7Bwlq2IdNCyAyMpLNmzcTGRnZEO1pUhj7Bh1JVlOR98MP0O7sb+qyb2UO/odkKrDV\nsQBHj9ZY5bR7p/pdqSVjrfywYgEY77N8aQU3v/9gjSwVYzqm76HvX29j4a4R3FRsyD4qCJkJ1E4B\nXE8Jrfr6/1lTAJZkKhZAerrM7nR2tnByo/rVA45+RZv9q9Xl9/zf5PfQO9TlxzJ2csfbg0k6kExq\nKkRHG9pXXxaAIz/vlrArDXTUqFGE2SpEoqFRS375Pp9bynabrPPTrwFsmPpmFIDL/l1q+U7l7V7J\nLjFHdQtACBjw03PcVW6YfH1Lj6c4OfF5drS5j33OAylzMuSu31K4DTfk6KcEp05cJQgh4MoVQ0kG\na7i5XZ8CqC88PGTKp62xBMYoCiA1tWadIBMGDqRAV9M82NbvWVZ0f4V5UWspefov6vqgpKMUznqe\nW281KJX6dAHdiNhUAMKOmrj27NMccWSfYF3K+/57bNZ5ry6voABaxBs6UQXP2DUgRK0VgHNaiswX\nxFBLxh4LQFEAqS9/yGMFhtzR/cPm8Mu4Tzj76CLmd/+O/hW7GNzqHKdGPoFQerwqTrToR1qazKCp\nqIC2bS3LVbheC6C+fi9KsTdzWdi2YgDl5TbGILi5sc8rxmRV5X1T+KHfu4SGQl6hM1kvv8scny/V\nDK9W+3/h/nsr1P3r0wXkyM+7JeyaEObdd9/ltDIE0ohTp06xaNEih50QRsM+3nwT1qyp3TG5uXC7\n62811jsnXoaDBwkIMJlj3EB5uSwMo1AVWARU142iOKxZACYuoFWrCFk0R932P8/JrBn2d3UcgEyN\nhP0pbTg791N0p0/zX48ZlONMhc6Zze2mU14uJwXr18/yyGJjmmoMwMOjdv5/kDEAPz/53dYgNL3/\nJPX7Lq9RfNr/ay5dcaJ1a/m/KCyEVQEzyPcIAsC3PIvxoYYAf326gG5EbCqAjRs3EhQUxFNPPUVo\naChdu3alS5cuhIaGMmvWLEJCQhw2eOvIPsG6lJefD7ZyBKrLKyiAmAqj342xi3HNGsLCDB2vCefO\nqa+AaW7hMG6cYVuVAlBqyVizAIqKwJly+m98C+69V2amAGLQIGYHLWXXHid8feVArcREw3EtWwIR\nESzq8hW9glL4eO5FUvrchptbDPv2meojazTlGIAlBWAtBhAYKC0HWwpgfdgMFvq9w9HJr/HvCat5\n9iV31q6VNekKCmRF1KCWOtp0vVM9xmWLoX5QfbqAHPl5t4RNBeDu7s6MGTOIjY3lypUrbNu2je3b\nt3PlyhViY2OZPn06bm5utk6j4cDk50NsrMl0tjYpupROj1IZRBUuLlTOf9Ow0ZoCMHL/JHj3Mi2y\nU80CsKQA3nwTUncnoCeGsdtelX4bICOgM7q1a4kZ58mBAzBkiFQAxoVplTINISFQ5teSpxaE89JL\nctTq7783nAKoL1q0oEYxO1u4usrAtz0KwM3DifklL3J55nw+XuKjWo6KAkhLk1MXX+xqNHI41lQB\naFlAdYddpSAUnJ2dCQkJISQkBGeLoX7HwZF9gnUpr6BA1s1RqkzaI89122b1e0mf/hSPv4dSqpzJ\nBw/Sxe2iTQVwyaeXrJ6mcPAgFBaqMQCzLiAhKP7Xf5jxUR+GYkhBTAgbzIonf4OWLfnb36Sh0a+f\nIRiqDKY0VgA+PrLz8/aGnBw5atjeXIkxYwy57ddCff1e+veHH3+snUwXF6kAfHxsKwDlDd7HR34f\nPVrWWwoNlQo7PV3WM9riYVQPe+dONVhTny4gR37eLVErBaChUZ3ycvn227KladE0W3jvMfj/8wfc\nSom7L1tdDDWmepxda+J6UTEaA3DZrxcEBJDg0d3QmP37rVsAH37I25en4VUutUO5zgXeeos3RsXh\n3qUdIDszZfyAUqunb18YPtxQ6751a0PGi5ubVID5+fb7z+fPN5met8ng5GQ69aQ9KBaAvQoADPfR\n1VW+4MfEyD4+PV1aAOV+QRyhl9yprAy2blWP12IAdYemAKzgyD7BupKnjPz09LSuAKrLC/jdoAAy\no0dTXAyxnnep68L2r1EtgJISWQoYMLEAEgPl2JRjvqZuoKIicHOLqWkBVFTAO++oixfdujCz206G\n/vrXGhO5KygKoHVriIszBHgVCwAUV46UZzUNsg5pDB+yJZnBwdJCskcBmBtnEB0tjysvl26/4GDo\n2TOGWGq6gerTBeTIz7slrksBpBjPladxQ6JMAOLpWYs3s4QEWqSeB6DIyYuMzgMpKQG970R1F8+9\ncRQkZiOEzBjauxfK8orhzBkAhE5HaqB88z/hb6oAiotlJ6JYAOvWwZdfIudyrCoon0IITw2OZ/mZ\nfuzYIef6NacAqtfrV2jf3nTe3tJSmXVU2wwaR2DyZFi82L4YQHULQEGnk0r18GH5v3Nzw6wC0LKA\n6pbrUgAzZ86sq3Y0SRzZJ1hX8vLz7bMATOT9Znj7P+I/nMJyN4qLIds7XI2i6srLmejyP7KyDB15\n4e8n1UhzXqtOCE/ZO58OqqYAigQeHoZxAIcOyRRNfvpJ3W0Fk2kR4q1OZXjihHkFoHRY1UtKTJ4M\nVcUtcXeHoiI9hYUNZwE0hg/ZlszauIDMKcoePWQcPzhYVhbdxnDDmIujRyElRasFVMdclwL45Zdf\n6qodGk2I2ozry8+XnV6tHkyjtOEjIbdSVCTNeg8PYJIhT3yyyxoSEw0KoPSAwf+fFdZLnVQq2b87\nZd5ViehpabRIT8DPz7TOfH5uJaxYoR7/E/cQHGzaLHMKwMlJdvDVLQBnZ4N14Ooq9ZKnp9z/RsVe\nF5C7u8mEYCo9esiXiOBgGVj2CvZGN3iwYYdNm7QsoDrmBv652saRfYLW5E2YUGPODosoCsDuGEBl\npawEWcXJ8NEUFSmzQAF3GeIAwwt/5fyJErUjT9cb/P8ZoQYF0DvKiRO+hmygdom7uOkmwziAggJo\nc3kXJCcDkEYw2ximKoBevWSHrgxmqo6Xl+WiciDdF25uMQ329g9NKwag0KMHdOli/RweHjXdPwo9\ne8rP4GCIjo4hNBTTiWRiY7VaQHWM3QqgqKiI9957j7vvvpv/+7//4/3336dYc8Y5JMePm3hprGIc\nBLbr53DkiDoPY6F3S9Ja9za1AHr2VNNjvMrz0P3wvdqROx83KIC0VpGqArjnHliRbHADdUrdSXCw\nwQLIz4f+Fw25jau4mwpcUOYcGj9evv1bGsHr6Wk7N97N7cb0/xsze7acZtMa1kYaK2Wxg4Pl/6NL\nF2ooAA93ocUA6hC7FcBDDz3E8ePHeeaZZ5g1axbHjh1j6tSp9dm2RseRfYKW5JWXy3x+e6d/MHYB\n2RUDMNIsyd1G4eHlRGGhYT5gdDow+l0N+d/LFGXIHPCgZIMCSGlpsACio+FyuEEBdL26i4ICvTqB\neGF+JUNTDe6fjT73ADLf3McHJk6UeeiWCAiwXeDNyUnfoAqgKcYA7MHd3bIF0KOHtMJ8faGiQi/H\nI9xyi0H7JicTlHpcqwVUh9g9JeSxY8c4blSDZdSoUfS4lpksNJo0iYnyITx0SHbonp7W97fXBaRi\npADSe49WjzOeD5i5c+GzzyA1laCiRCJ+fBdf5tCy8JLc7urKeecuBFS5bHQ6+HjvACrDdTgh6JB3\niFu8T7IhL4aDByHsyl5Cyq4AUOoTyOVOMXBQ5q5fuiQ/t2yx3OTt222XeHZx0SwAe7DmAgoKktlY\niiWm0yF9c6NGqfGb4EObKC7u2TCNvQGw2wK4+eab2WVUJ3337t3ccsst9dKopoIj+wQtybtwAbp1\nk16YkydtnCQvj8LccruCwDExMXJAT1ycui6332i8vFBjAGpxNB8fWLBA3a/HL3/jdtary6JbN9Ky\nXE2Ctt5hfpxoI90FzlQyfdVinpqWz+efw4DLhuyfxL6TCGsvM0s8PQ0du7UO3p76/r6+WgzAHmwV\nm1Ne9k1k3Xqr+jXw91gtBlCH2K0A9u/fz5AhQ2jfvj0REREMHjyY/fv3ExkZSe/eveuzjRoNyIUL\n0KGDfKu3+ka/YQMEBzP1tQhai2T7LIC9e9Uh/ckeETh16WTeAgCYNk2dBcS1rIhPeVLdVHZTLzIy\nambtrLvjM0rcZe/iefkM0w7N4chhwbA0gwI40+ce/P2llVObmve20GIA9mHNBWQRoziAzwE9lcVW\n5vrUqBV2K4D169eTkJDA1q1biYuLIyEhgfXr17Nu3TrWrl1bn21sNBzZJ2hJXkKCHNVpM93uo4+g\npATf3ESGH/vUZhBYr9ebuH/2+YwyGT+gjCdQcXaGDz5QFwPJUr8XdYo0qwAq23dgzZh/SHlA6M9f\nMvX0K4SVynkCKnz92e09Gl9fOZArKMjK9dWSsjItBmAPt90Gf/pTLWV16iTfSgDnogImpn2pbjp/\nXk40VlHBdePIz7sl7FYA6enpzJ49m0mTJjF+/HjGjx/PhAkTiIiIIEKplGUHM2bMICQkxGSKyddf\nf502bdqYTBKv0ThcvCgVgNV0OyFgt2Emrz5HluHhLmxbAEbpnzvcR5vEDnJyzKRhDh/O9tB7apwm\nt515C8DPD/RtHmSt533qusczDK6krf538feP3PDxgfh4aNPGRntrgatrww0Ca860bw9Dh17Dgffe\nq3599eqfVVfipUtykPDSpXXTvvJyePDB2o2Fac7YrQD++Mc/8vDDD7NixQrWrVt3zW/+Dz/8cI0O\nXqfT8eyzzxIfH098fDy33357rc9bHziyT9CSPKUao1Wf/pkzJrO1+GUm0CF5p/UYQP/+JnPtbmGk\nqgAKCy0oAGDd0L9RgumooathlhVATq6OuV6fMiy85rRcP3GPWq6hrgdsBQXFNKgF0FxjANcsa948\ng0uQcjkUOyGBvDwZo/nHP+pGZno6/Pe/tme4qwtZTQG7H4Pg4GAmTpxIx44d1bf+2rz5KwwbNowA\nM0nVjjqtZHMjK0sG4qwqADOTpnc/sMy6BbBjhyyYA9CjBwnFoSYuIEsKwLlzBxbzrLpcoPMm3bM9\nmZk1XTh+fvI8qaUBFH32H5PE/jydD8tSpS+5PjpqaxOpaNQBXl6wZg2VwVWDN65ehbvuojg9jxEj\n5NgVZXrP6yE1VX7eKGXO7FYA8+bNY+bMmXz77besWLGCFStWsHLlStsH2snHH39Mnz59mDlzJtnG\nM3A0Io7sE7QkLzNTjnqtrQLosO97ygosB+f0X3+tfhejRqtv4rYUQKtW8A4vkeYni+dvbTmZy4lO\neHsb5qJV8PWV5ykqgl3uwPPPq9t+8/s/ckvc8fSsn446P1+LAdS7rLZtqfxplcEiPHKEvh8/RHBQ\nJVFRcgT7/Pn2y3jzTfjnP01lNpQCaHYxgG+++YZDhw6xfv16fv75Z37++WfWrVtXJ4148sknSUhI\n4ODBg4SGhjJ37tw6Oa9G7TG2ACwGgY38/2VVQ0ncC7LoefF/lk98wDCva+HAUbi5yc5fSQO1pgDy\n8GXprL0MZRvLRv3bYuVOPz+pwCoqZF4+b77Jp8GvsdT1YT7t9B7u7nICEluDuq4FLQbQMDgPG8yT\nfKYudzi4mkknFzJ0qBzLcemS/efavFnGvIxROv4bxQKweyDY/v37OXnyJDp7ZryuJa2UMfnAI488\nwoQJEyzuO336dNX15O/vT1RUlOpPU7RqXS0r6+rr/MbLMTExdX7+X3/VU1kJd95pn7wtW/RkZEBA\nQAzu7nD0qB69vtr5CwuJqZqUZQuwyWcCb+etAqDFmffR6/1rtqdPH2LOnkUPoNMR2lnWedHr9Zw8\nCUVFMZSUwPnzNeXJ8j0xBHYK4KB3OUFF20hIiKFly5rXe+KEnjNnICwshpEj5fX9M2QkV11i6BUI\n/v56/vxnGD26bu6v8fKsWTEIYeZ+1dH5qy/Xx++luTwP33k+zOczj7Djk/cBGBn/Hh2/eJHdu7dy\n9iyA7fNXVsKePYrVZri+nTv1QAwpKc37/6fX61myZAmAdVe9sJPp06eLo0eP2ru7VRISEkSvXr3U\n5aSkJPX74sWLxZQpU8weV4vmaggh3nhDiNdes3///HwhPD3l9xdeEOKdd0y3V1YKUbphsxAySUIk\ntowUH//puLpconMTT07JEq+8Uu3Eq1ap+6S07Su+/16IESPkpoMHhejVS4jevYWIj6/ZpsOH5aG7\ndgnx5z/Ldg0eLMSdd9bc9+pVue/06YZ1EycK0aWLEHffLcTAgfbfC42mS0CAEBkpZUIEB6u/K3H4\nsPj1VyHGjLHvHCdOyMOUruaTT4RIThZizhx5/hdfrL/2NwaW+k67XUC7du0iKiqKrl27EhkZec0D\nwKZMmcLgwYM5deoUbdu25d///jcvvPACvXv3pk+fPsTFxfH+++/X+rz1gaJRm6usjAzLE6Obk6f4\n/8F8DGDtWvhprsH/f6zFQEJiust6LYCbKEW34ke1Tr7K5s0o0tYWjuannwy1d8LDZfkJay4gkPt/\n8IH03584Yb52jzLA6LbbDNcXECDHF/j4yFm96ouG/K00hryGlmlNlrs7lFS4yDk6FeLi8POzP3tn\n/375m8jNBRITCXj9GdY88wqpqRAVdePEAOx2AdVVbv63335bY92MGTPq5NwapmRn184vnZVlqgCq\nx+L37oXxKQb//5EWg+jeApk4XeXjn+m+jH9lP4oQRkk4RgPANjOarVsNVSODgmQaaFGReQUQFCTP\no1yHj49sp/Fc8AouLrK08623GmaODAyUCsCe2ao0mgdK6jAjRhjmeNi6Fd+Rs8jJkYuPPgoPPQTD\nhpk/R2KiLD6Xm10JkybxQMZ+tvwIOwc9RJ8BXW2XQXEQ7LYAjFM/rycNtDlh7PtsjrKysy0Hcs3J\ny8w01GJxdzcce/q0/Dx0UNA922ABHHAbJDvVKVMQzs4A3Jy3lQ5OF9Xc/sv7UuD4celldXPjt+Ih\npIj0AUgAACAASURBVKYa3uB1Ojkgq7jYfIkAFxf44gtDu5RMG0sP9pEjMkCsXF9AgOz8g4PVwaT1\nQkP+VhpDXkPLtCYrIKDq5aS6BeArVAvg9Gl1+gezFBZCWBgMu7RMmgPASKDtxR306VP/FkBj/P/M\nYbcCqKysZOnSpbzxxhsAXLp0ib1799ZbwzSun+zs2k2eUd0CKC6WWRXdusHvv0NO/Hn8yzPkDv7+\nnKjoKt/MQ0IoGWao1zLd7b9kZcFXX8GyGYbRv2LgINILZAEeYxdOmzby7dzFgj36yCOGgVs+PrIz\ntzXxiIJiAfz1rzBnjn3HaDRtAgPlMAAiI8l1qXozSEsjIO2UagHk5lqvTVVYCO2CCpiV9LLJ+rZX\nDzaIC6ipYLcC+NOf/sSuXbtYvnw5AC1atOBP9hT1aMY0FZ/ntWLNAqghTwjEocPcl7gYxo1j2kuh\nTN04lRNHynFzkyZ1+2Sj/P+BA8kvdFJdM2X3PahumlWwCN0Xn3P0cCWhx6X7Rw8UDxmluoWqKwBL\ns3FVp2dPeOopy5O3VL++W26BkSNlmqYlBVMXaDGAhpMVFFQ1EN3JiXhvgynouW8rRUUyDTg31/rL\nT2EhTDr3HqEViQaZQGTFQXr2lPGzuqgvZExpKbz7bpWs5hYD2LNnD/Hx8URXDccODAykrKys3hqm\ncf1kZdlhAZSVyQFTy5fzf8oMKoAXMDhnGVu+7MfMmc/g5wc3X9kFyi4DB5J/yOCbd548ibQng2lF\nOj6Vufi8+QTPtFhKK5GgnjPnltGEh8t2GQdka6MAuneXVQHsZeBA8/ECjeZLYKChEsku1+GMQJak\ncdoWh4/PY+Tm2rYAXNOTGLJjUY31fTiIq3MlAQFOpKfXbeJARga88QY891zdnfN6sdsCcHNzo8JI\nJaanp+PkZPfhzZKm4vO8VuyKAfzwg0yvMer8jRnwy6sMbJ/MggUwoZUhAMygQSYVPD2CvBnPz5S0\n66zuEpW/gzCRBMBAF2/SO/THzw+++066lRRqowDsxdF98jdyDEB1AQFxjDBsiIvD10eoCsDay89d\n+17BtbQQgKLOkWTqgogBvMtz4cIFWreuezdQaanMyqusNFzfp5/KuY8aC7t78Keffpq7776btLQ0\nXn75ZYYMGcJLL71Un23TuA7Ky+WcuJYeAiHg1Clg0yZ1Xb57IGej74XPPye/zU0AeJXlMva356Gg\nALcThwzH9+uvzgcM0kef0LI/JXsPs6bXX6lwMjUuD/oOJ6fQFT8/OQevsTumY8f6GZ2r4ZioLiBg\nd3EUQskMSEykp1cCaWmys7WoAOLjGXFhiWFx6mLOtIg2bD94sF4UgOIwMU7NPneu5mjkhsRuBXD4\n8GEWLVrESy+9RFhYGKtXr2Z/VfTcUWkqPs9rQcmGsGQBLFmiZ9w4YOtWdd3imHXsnP0DPPYYZ575\nRF0fsnEZLF6MrsoCrOzeg8xKf9zcTDvyhATwDfFk86i3eOTmeE74G3wv75X1JjfXfKbP7bfLCox1\niaP75G/kGIDiAhICcgtdYPAQddvQijiuyNk/zbuAhIC5c3FCFp/c4n0nvwfeyoWAKHWsCgcPEhpa\nPxYAyBcz5fqU+bAbC7sVQGxsLN27d2fWrFnMmjWLHj168Ouvv9Zn2244Vq6UbwT2oAyBtISSw19c\nLE3O6vtevQoeGVfkjBoAHh4cduurplkWDbmVDX5/MBzw2mvq16M+g3jxxZp59Uo8wN8fvjvai/88\ntgPWrKHiux9ZUziWtDTzrh4nJy1HX8N+FBdQYaFMV9bFGNxA/Yu3cvmy/G62Y42LUyeAFs7OfNrh\nXS5fhuRWUYZ94uPr1QIwHqxWUNDEFcCnn35KZGQkp06dUkcAR0ZGEhER4fBTQTa0z3PpUpMXcqs8\n+ihYq8WXnW0o6PbYY9LvbkxISAx98rYZVgwaRFaBm6oAPDzgL06LydfVHEl2Jmggp05ZHmQWECB/\n1D0jnWDiRJzvu4d2EaM4dOgapgO8RhzdJ3+jxwAyM1EryhqPB+idbcMCMBrQmjVxOpkh3bl8GdLC\now0VgerJBaRYALm5hutr8grggQceYN26dUycOFGtALpu3ToOHDjAf+vabr/BKSkxmWfFKhkZ1n2H\n2dkyg6G4WNY4N3L1A3LdMIwUwPDh5OUZOmh3dziaFc7nrV+vce4j3oM4f966AgA5KlehUyc5C1dD\nKQANx0WJASQnV8WO+vaVw4OBkIIECk9JE8Bsx2rkWioZOx4/P7h8GYradpVvPQBXrtDOK6PeLIC8\nPMO6ggIbU6/WMzYVgJ+fHxEREXz33XfqhPAREREE1eWEqk2UhvZ5lpbKFEl7KCmRSsASWVny4Sgp\nkUGn7dtNt+/bp2c4RubG8OHk5mJiAQBs7PaMTL6vIgdfjlZ0JzHRstsmIEBO6Wuc6ePrq2fv3rrP\n9rGEo/vkb/QYwNWr0l3aqRPg5gaDB6vbg0/I33UNCyAvTx31W4kO3fDh+PtLL2gLfxf07duru3bK\nP1SvFkCziwFo1D+1sQDsUQCKBZCfL4fGG2d6FqXk0ItjcsHFBQYONJjUGBRAQCtXk/n2trnfSkam\n/NlYsgCCgqCr0QsVQGSkfCA1C0DjelFKQZw9W6UAwMQN1PZ8HC1amOlYd+xQR3cddeqNZ3ggAwdC\nUlLVi0lnQwpzp9x4jh83O/fRNWPJAtAUQBOloX2eJSV1ZwFcuSLTK4uL5Y8sJAQOGbI4uTnHKCrc\nrx94eZlVAMHByKJba9fCyy8zP+hjVUlZUgADB8LPP5uue/zxGKDhLABH98nfyDEAV1f5krFli5EC\nGGEIBA+u2EpIiJmOtWoieYAtIgYvLxhTVcHE1xdi7rxT3e5z7iCLF0NdZrobB4GbTQzAkTl/Hg4e\nrN0x+/bVX95uaWndWQAXLkgXTEmJfONo3960umenRFP3jxDyx6h06ooCUGfemjAB3n6b3BZh6iAc\nSy4gZ2epfIwJCZFWgWYBaNQFo0bBxo1GCmDAAOkKArpxim7+KTVdQEZupe1OI3B1hYgIo99llFEm\n0MGDDBliSJKrC4zTQBWafAzAGinNvGLSTz+ZeDdqYM4P+eabsGpV3bdFr9fXqQVw4YK0aJ2dZccf\nFoZaKAugJPMXw8Lw4RQUyE6/qqgn7u7ys/rUix4ehlGYtSk1rdfr+egjy1U86xpH98nfyDEAgLFj\n5aeqADw8pBKoYoQuzvTNOj9fvr1Vsd/L4DL65BOIiQF9drahyNTJk7RtWURKiqHjvl6MLQDl+pq1\nBTBz5sy6akejUFRU+1SvQ4fs76QV/vpX7KovXpcxgIQE+Xbj7i5/+2FhhvzjiqxcOlSeAUDodDBk\niIn7B2RYwNnZvAIoKZFvTLWdA/e226pcShoa18mYMXI+6XbtjFaOHKl+vS1tmakFYOT/L+vem5IW\nhiSWMWOqav54ehrKzFZU4HLyKGFhqOMKrhdzFkCzDgL/8ssvtndqwhQWynRIS1T3Q2Zny/LI9nbS\nCps2SWvDGjExMbXOAkpPrzbAa+tWeP11yo6eIiUF2raVHbaLi+zIFQugcNNORleNhEwO7gN+fjUU\nAMhjzSkAkLX1azN4y9F95I4ur6Fl2pLVpo10xbq6Gq180FCRNvLyLwTmGflqjfz/+f2k/9+szGjT\nkhAREdKargvKyuRLlRIDqKiQnX+zUADHjx+vsa6plDS9VmwpgOocPiw/a6sAioqkv9IWiguostK+\nfcvKjEYVXrkiX7Hnz8fllt4s8HwD18oS3N3lm7rJdHlGo81OtJKmsHEKqII5BaC4hjp0qL0FoKFR\nl1T/bdKlixrV1QnBPZlfGLYZ9VXZvUdYfnmpFgfo0MG6Aigro+YUqBYoLZXBa+U5LJS16JqHAvjD\nH/7AokWLEEJQWFjI008/zYsvvlifbat3CgulC8hSSYXqCu7QIfnmUVsXUFGRTCezNl+pEgPQ6eyb\n17S0VLphunWrKh/xzTfqL0lXWsrcnHkQHc0QtuPtLRWAYgG47tqq1j056CMVgDkLoFcveb3GKBbA\na6/BH/9ou53G19eQaPKat8xrlvXkk+rXKYVfGkpwGvn/07sPN2sB6PV6UwUQH09EhHSnGjNunCE9\nNCEBZs+2XpZFoaxMKoC8PHjnHT0PPCAtgmYRBN6zZw+XL19m0KBB9O/fn9DQUHbu3FlrgTNmzCAk\nJITIyEh1XWZmJmPGjKFr166MHTuW7OqT0Vbj8GFDQAWkhp42rdZNoahI/j6Mg6PWuHhRZkxeiwXg\n7w9nzljfr7RUToJuz/lLSuSE6ikpkJQo4Ouva+504gQ/JA3jvfzHCXLOloqlqAj3w4aZ3Ha7DmPd\nOlmjvHqGjl4vf7DGKAqgT5+aykFDo9GZMOH/2zvv8CirrIH/JoVUICAJPSRIC6QDoUgJJZSlyIrA\n4iqIuIgIiIIuuhb8RMW1IBgbiKisFIUFcRWkJfQiIUEQJLRAaEmAhEB6ud8fN/POTJJJMiFlSO7v\nefJk3nrufWfee+49595z5IsBeIhEGWBr3z4ZHhfIaOtHap1GxSoAwNQE9PvveHvmFZn1d+iQYWV9\nYqLsdyUny4a9pHfceARw7pxUIg0b3iMjADs7O5ycnMjIyCAzM5PWrVuXKx/ApEmTiiSYX7BgAWFh\nYcTGxjJgwAAWLFhg9vrMTBg9Wn6nes6dk1+KpeiHYOYcwYXtkMnJcnpjeUYAnp7SZm+Ovn2lD6BJ\nE8P9MzJkHJ/iyMqSeVwCAsBm725DFDk3N3b/9UMy7Q32mXG3ljB0tg8BsT/AgQPocnIIBTK9O/Dn\nTQ8OHpQ53QuPAIrD0VH6yiz96mu6jbymy6tqmeWWZWdn8tKIzz4zsf+vux5KejrmfQCNGxuywKSl\n4ZlzVpv1BnIG3M2bhpX1+sWVV67IeFslrRvIyZGdprbntzD094Pk37jJfffdIwogJCQER0dHDh8+\nzO7du1m5ciVjxoyxWGDv3r1poA8WU8DGjRuZWNCFnzhxIhs2bDB7/b//Lds640Y7JaXk7D/m0CuA\nwn6AefNMRxh69AqgPCMAT8+SZ+3oHUSNGhmmWSYlyby6hVPT5eVJP8HEidJM02STUe9//Hi2+z/H\nJ9NOwMiR2m6Hm9d49dhYE7uNTd8+nDtnGOKWVQGoyJ0Kq+bJJ7X5zLpdu2DFCu3Q1pxQ0tKKVwAa\nRmagJtdiTDp8sbFy6umBA3JQoW87rlyRK5ONY/0XJjsb+tnt5rubQ3jo0Fw+YDb16knzUcEApcop\nswL48ssvefPNN7G3t6dp06Zs3LiRkUYNzN2QkJBA44KMII0bNyahBM/skiXygRVWAPrG3BLS0ykS\n9S89Hd54Ay5fLmqH1CuAlJSy2fxAnpeZKWfklDQC2L49EgcHaQLSV1+fPahwsq6srIIwuDrwcLqN\n58HvDQcnTeLmTbDzbgkbNvB6p7XccDBKwHv1KiDzn9YZKG2hBw7INQNlUQAODuVTADXdRl7T5VW1\nzLuS1awZjBpl2Daax/nLnT4kJBTjQDaWaaQAGsVHF1EA3bvL9/Ts3ms03vofPEjgyhXZMU1LM1+s\nvKxcRm6djg2CSGAg23BxMUytrg7KrAC6du1KcnIyBw8eZNeuXezatQtPk0m4FYNOp0NXQsbvywU5\nnI11xN2MALy9Te+lX/lXXIbE5GT5xTs6Sntfv36lrwrOypJT1Tw8Sh4BZGfLxrVxY1MFAFqbbXJP\n/WycXld/0FLb4esLXbpw86a0LaLTcbDFaOYMPcGdx6YWFdqnD/ffL+u8ZIkMMV0aagSguCeYNq3I\nrquNfLlOI/74A5o2LeYaPUZ+gPo7f8T2pqHnduqUXDk8pO5evEd04qH1j7HVZjCX4/M5e7bkEUDA\nb0tpkvC7tt2SSzSzS8TRsfrMQGVOCr906VIWL17MpUuXCAwM5MCBA/To0YMdO3bcdSEaN27MtWvX\naNKkCVevXsXDw6OEsx/Hw8OLTZvAw8ONwMBAkpOlXS8iIhKdzmA/1Gt0c9vXr0fi4wOXLhmOS9te\nKImJcprjli2ReDbuQYeY1XQ8e5TY40No2HAQyclw5Egka9fClCmhPPYYzJpVVN7t2+DkFIq7O/z0\nUySRkcWXp2vXUISI5M4dSEyUx/fskce3bw/lyy9h7Fi53aFDKA4O8vq8wwu1JxPZuzfs3MnNm6Hc\nd588fucO6JqFwuLPCF7dkQ+bfUDohQs4eQwn8uxZXF3PYm8fSp8+sHt3JFevlvz8rl0DF5eyPV/j\n7dDQUIvOv9ttJa/it/X77on69evHdzYtaZ4fr8X5X+HYBojk999D6d69hPr16AF2dkTm5sLpk/xE\nd8TJn9mZcI19+2B+4HVCjj7KvnzZbQ/NP8r2qN2cOiUKQqGHEh8PR49G4upacP8bN3CM+CeRQGjB\nXyTgnLAcR8d/kplZsc8vMjKSr7/+GgAvLy/MIspIp06dRHp6uggICBBCCHHy5EkxatSosl5uwvnz\n54Wvr6+2/cILL4gFCxYIIYR45513xD//+c9irwPEU08J8eGHQvzlL4b906fL/FhZWZaVw9NTiAUL\nhBgzxrDvgw/kvZYtE0Lk54v9z38v4my99Qm4RE6P3qJ3pxvi8GEhbGyEWL5ciJMn5eHMzKIyLl8W\nokkTIdauFUL/uBISjE7IyBBi+nRx67FnRECL62L5ciEmTJCHfvxR3jckRAgvL8MlcXFCtGwphDh1\nSiuXsLPTbhwSIsT+/fLcsWOFmDFDiPx8Wd5LF3LFpo9Pi4dG5QkhhHj1VSHuv7/sz2z+fCFCQ8t+\nvkJRXbzlvtDwfoB4rdNaYWMjhLOzED//XMrF4eFC6HTatflubkJs2yY+a/uByDfar//7yeMJodMJ\n0bSpvHziRHkLjaefLnKNALEu6E3RurUQZ85U0kMowFxTX2YTkKOjI04FSRcyMzPp0KEDp06dKuvl\nGuPHj6dnz56cOnWKli1bsnz5cubOncvWrVtp164dO3bsKHF9wfP/uE2vXkVNQGC5HyA9HTp2NF3o\ncfasNHHk7j3I90386P7hWFrlGSYC2+3fzX/O9yTx4Hny8+X6K72NsDhzUEaGNJu4u0sTUEKC6Uwz\nwsMhPJwjKz7hP0mDaeZyq4gJ6PBhacbUO4o0E1CBhgdkpvWCkZNmAkLKdnWV/oJ69cC7jS0nstuQ\nfEsuBmvTRoaMKCvlNQFVtc1aybu3ZVaErM2NJ5JrL9usPGz4/lofOnQw+P5KlPnMMzLoV4G3WJeS\nAmFhTD09G12BA/CWSzPt9D6JP+DfJl17Z69cMQr5EBNjslpMPDhKW4fTWReFg8M94ANo0aIFycnJ\njBo1irCwMEaOHFny0MIMq1at4sqVK2RnZxMfH8+kSZNo2LAh27ZtIzY2li1btuDm5mb2eo91n9G4\ncVEnMFjuB0hPl7lOjBd6nD0j+KrhHKZ81R2PxD+0/XfsDHGMPdNP0eef3enMYeLjDbOCilsxmJEh\np002aiSdwDdvFlp3YGRC882Koudbw7h1RXqS9D+m/Hw580ef6i4rC5zq5MnFX3omTdI+3rxpmL9v\n7LStV0/ONkpK0gInMnp0yQHxCqNfWaxQWDvtujUg4c0l4OfHfwI/4M8b7gQEyGMl+gD0PPgg7N5N\ngl1BQ2808yOxXS/mDPqdMzbtAKjHbf478UfS0uRpV68WOISFgJkzteX9lzoNRvfGPO0+rZKiqtUH\nUGYTkDGRkZHixx9/FFmW2lzuEkDkuXuIzJtpok4dadYQQoheveSIqszDqOxskZ8vR3i5uUI4OQlx\n+7Y89KbHYpMhWhb24viQ50VTx5viGfc1QtSpox27g7N4vfNP4ttv5a7PPy8k584dcekf88TLXt+J\nxEQh7rtPmmZsbQuO5+UJ0aBBkWHhzjoDhcjIEB98IESLFnJ3y5ZCRETIyw4fFmL6/b9o51+3ayxE\ndrYQQtbH1lb+F0KIefOE+Ppr+Tk0VAhXVyGmTJF/5WHtWiHmzCnftQpFdfHDD0K4uAjxyivSFKp/\nP8rCg53jxe22gYb3fthYEbEpQ3TuLMRrtvMN7+6QIcLRUYj0dCEaNRLiueeEECtXGszHOjuxYcFJ\n+a46OGj7h3ZJFHv3VlrVhRDmTUClOoFHjBiBTqdDFDPv8csvv2Tjxo2VoJbMY5OUiMM3S3B2nkVy\nsjR1JCdLE0epIwAh5ErBHTvImzYTR/u3sLW1pVUr2Xv3vR7J3MTntNO32Q1ham44v628n4RGsL/l\nWFjXlIzBD+KUkYwL6bx05GFWnzoGtC06AnjkEZpv3MhbQN4JT1JSenHzpuzN5+aC3dnTmv0o39YO\nmzxp4+mTvQ3x8BjSO/+Xtm3tSU6WCY/On5dha3Nv3GL6tX9pYjbUfYzJ9vZcuwYTJsjpnPqwzq+/\nbijOjh3Qq5ccITQzjF4tYvRo+adQ3EsMGwYffCBHzx4ehvejLOQ2acGuF3fzl8SveXLufby7fBwe\nSTZERUHbHo/C/lfkiVu2cL/bVW7ebCpn/N24LuNEFLCp3SwyWnUAe+QKzoLVq77ZR8jMHFxxlbWA\nUk1ABw4cID4+nt69ezNnzhzmzJnD7Nmztb9q4d//pvl9mdq8+pQU+aWW6gOIioKff4aMDOw+eJcN\n+SPh1i05FfTQBRgzBjvkqquDhLB0+HOI1vfToIG0lTdoAPTuzZZ5+4nDCwAHkUWP75/j/vsLmYB+\n/VVm0SrA9qcNuLkZzE2ZmZjkm/vEqQtfes/XtnU//49RK8fQN/AWc+fK9QdxcUBGBu1fGEn7tGgA\nhK0ty3RPAnKO8tatRcM3aPfUSZNmcjIkJESW8rAqlppuI6/p8qpaZkXLcnKCp56Svjhz5h9zMhs0\ngOuZrjB9Ot9mj8e1no12j8AHW8leGUB+PuPFSm1R/pid0w3zyZs2ZXXbVzXTa6SRE6JjZlS1mYBK\nVQBXr17l7bff5vjx48yaNYutW7fi7u5OaGgofY3SsFUpV68yIWeZZkvXJzwpVQEUSu8zKPcX6NGD\nXvWP4ffaKG2ifm6jxjzEfxkxuo5mou/YsUABAK6d2zOateQj1yu0O/0zk5v+bIgDkpNjovkB2L4d\nd3dDxIaMDEwUwHHRibXt/mWyltz3zI/M+jaIV8IO4u0NF8/mwJgxuP1uiOaZ8/EXRN1pr38s2Nsb\nHMDFoVcAJmF0FYpaQmCgyQL5MtGggXxn9I5aBwcZ28vRsSAxzYQJ2rkPp3/LmTPwMD/Q48Iaw02W\nLiWVeob3rl077VD7O1HVFxDOEjtSZmamWL58ubjvvvvExx9/XBGmKYvAyE6e4NBCbP1fpsjOljbv\nwYOF+OWXUm7w738XOxXLeFpXFvYiO2KP6NnT1E74r38J8eST8vOJE/L0Q0H/0K5L8Wgj2npmil27\nhBAffVSsnGHdksSIEXLz4kUhhJ+fdizMbocYOVIIkZ8vVrZ4wfRaOztxcuI7IqLpeNP9778v8vOl\nWyIjQ4iFC4X4xz+EiIoy/wj+9jchvL2FePPNu/suFIrawmuvCfH660IkJQnRsKFh//79BX7IW7ek\nI7HgvVz2ty0ikUaG93TSJCGEEIMGCbF5c8HF0dHa8UTnVmLlysqtg7mmvkyzgDIzM1m3bh2PPvoo\nn3zyCc8++yx//etfK1czmaNgqqNH1iUabPyGlBSpjZ2dyzACMJqneTtkAFk6uZxWP60L4Hn7cOxD\nH2DvXlM74RNPGBYX6u3nUX99S5sdVD/xDCtDPuLzN5PIf81geM+3NbhZ+ooIzpyRn7Ovp8Lx4/Ic\nnQ37crvK4aFOx/oe/2bvs9+TZl8w8yg3lw7fvETo1VXavdZ1+BfMno1OJ3v8SUlyBODtDcHB5h+B\ni4v0AehXEisUipJp0EC+M4VDpnfvXpBBsl49MGoP//7Dg7hTsOy/RQtYKBdr5uQYjbw7dtSm4rmn\nX0BcN4o4V4WUqgAee+wxevbsSXR0NK+99hq//fYbr776Ks0LQq5WOS+8oH1s9993SLqSQ6NGUgGU\n6gQ2UgBXRk5lWsedJhOC0x97ilV1DZEEjW2CrVsb5u/XqycbUidPd7b1+T/tnKCf32TSb09jkypt\nU7catyWm3/Pa8ZDU7ZoVSnf4N21a2YW6fqRxWGuUPTwgqvUYpnaLIcWnR5Fq/DnwGdYHv6lt+/jA\niRNyamxp09ucneU01IsXI0s+sYKp6Tbymi6vqmVaU/08PGQH686dEqZAG5mBHPKMGqJly2QyDmS4\nF70CiNy3D/z9tdNcT0WVq8z6DmV5KVUBfPfdd5w+fZpFixbRs2dP6tatq/3VKxxAviqYOlXzcta9\nHkf+iu9o0UI6eSwZAdxya0Vc424yUcRTTxHe8FV2j1lccpTAAnQ6OQpo2BBujJ3GcToBYJuRxsCU\nddp5n7T+kNNthmrbnRK2a7a+OlFG9v96spHXKwB9PKCzeV6c/HwnvPyyzN0L8Oij7BmzGAdHQ7wk\nf3+ZrObq1eIXuBijr5/yASgUZcPDQ/pyi0uapDFgQJHe16p6T3Gr2yBt+UBOjmH9DQCdO2sf6/xx\nxOTajAx4/nlKJD9fdkovXy57TpPClKoA8vPzuX37drF/qWVJXVXRuLqaPJmW/3mbli2ExSOAJOdW\nODkhh2iff87WXv/HkeN1KFjsDJQck3zkSNnzbutjx0wWFzn+Z6vBfB4/jLMePci2kzdtlHyGllwE\nwOmoQQHEOPYAQosogDt3wMXNHt56izuHTzHUKRK+/ZasHBsTE05AgEEBlGUEAODvb75ulUFJz1LJ\ns355VS3TmupXJgVgZ2cSaj3doxWvOb3HyJFyZh6YjgBCQ0NNFIDbWdMRQEyMtBzpg18Wx6VLso04\ndUrOUixrhGJjLM/oYg1Mn06mY4HtPeE0nR2Olz4CSEnRci2m48SBs+4mvf0GDaQJpSwjAID335cP\nvV07iKA/eQ89rB3L1dlxdvpCbt/Rce6yA5da9dKODWA7draCun8c0Pb9ZidHAPregbEC0A850JVG\nrwAAIABJREFUXQLbsiWrL3n5OpNooGCZAtCvCtZn9lIoFCVjrABKXAU/Zw5X7+vEJZqTtmwNiRl1\niY83TPYraQTQMtFUARw9Kv/v3Wte3J9/yv8nTsgJjDfK4Ua4NxVAvXpc7RSmbQYnby99BHDxovbx\nko0nXyzRacvCC25JQgImI4Cy2CEbN4aVK8F24Qda67usySvY+fnQpYvMv36p/QDt/AFsp8d9sdS5\nXRA/4r77OJkjoxQa+wASE00VgI2N/Hz7tiF0tJ6OHWVvIDW1+DjnxugV3OnTpdetIqnpNvKaLq+q\nZVpT/Ro1MoRwKTFnRuPGfDbtOH284nEb3I20NNmpPHxYLkEy8QFERsrw7QUaoXnWeZNMU0ePQqtW\nhsxjxaFXALGx8n9JyevNcW8qACA52NCo3h+3vfRZQEbmn7zmrUhOhsmTDYfr1bNsBKBHp4Px45Ep\nv37/ncHNjvFS5us0bChX754+DQm+pgqgv5PB/EP37qRn6HByKuoDKOx00id2z8oy7Uk4OsoUmfPn\nl56qUfkAFArLsLOTMw0vXCg9aZKLC3TspMPeXs4izMyUK/C7dJHLkExGAHXqgFFu9Kz9BX4AIWi/\neRG7bfqS/cOPZtu1P/+U77s+Jmfh5PVl4Z5VAJkPGBrVRid24lwnt+QRgJECaNazFW+/beow1Y8A\njBWAxXbIRo1IauxLcrI0KelDJqS1C5K/IKAp1xidapTCsUcP0tLA2zvUxAQUHy+dzMYjEmMFUHga\nZ8eOMkdwaejr17WrhXW7S2q6jbymy6tqmdZWPw8POeOmNAXQsyc88oj87OIiI+26usr3NS+vkA8A\nTOZs39oRBUIgZj3HrLhZtDy/i/CEh3nedwuffVZU1u0jp/nE4w1tYWitGgHU6diGa/YtAbBNu41n\nwm9lHgHU92tlPJsUMIwAjBvc8qBfLdywoWyUfXzA0cVWpg8rwC/ZsJJXrwBatjQ06i4ushz/938F\n84z15S5BAZQVvQ9ArQNQKMqOh4dcxV9aJNzevU0VQJMmcPCgwT9sMgIAEz9A3oHf4B//QLd4kbbP\nTuSy+OrD7A4/anrdli18eqgzU6/NY821vnxhP51Lp2UPWAjZRpTFKXzPKoD6bjoibAyjAM/T28s8\nAqBVqyKH69WTfmLjEUB57JD6SNYFU3/5z39g8GDkNLHC2NiQHRiil2bSKG/bJpO+G6NXAGfOlBzu\noST09Tt+PLJ8NygnNd1GXtPlVbVMa6tfWUcAxugVgJcXtG0r95n4AMBEATTdt06uG9BjJxeR1sm8\nzXsnh5F/sSAe/PLliGHDqCtua6dOyfmE2Ss7c31rNP36yQ7kW2+VXsZ7VwHUh5+zDI1qs5PbyzwC\nMKcAoGJGAG5uhlXEwcEFo4LiFICfH+k2rri4yCClQw1LBujevWjEwvr15ZSyqCj429/KVz7lA1Ao\nLEcfbNJoIF8qLi7SnAtw//3yf5ERgJ9fsS/jerfH5RqlgoapubhM7uC/wMsvwxNPoCvIDpVbx9Bg\neaadpMHQbjx169/859t8YmLKUMjKjUBRsRgXNzNTiKZc1uJp5NnXEX26pJm/uHFjQ2yOCxeKHN65\nUx56/vm7K+OcOTLWThHy84Vo1sw0ls/UqeLSJUMaudJ4+mkZRvz998tfvmPHpOhTp8p/D4WitrFz\npxCbNll2Te/eMoaQEDI+l9m0tUFBJu3CwW7TRe8HZMpWsW2bTPdaTGyxOLcAse+HS2IyS0WOg7PJ\nsUuz3hN+fgYR5pr6e3YE4OAAKU7NyGrtA4BNTjaNTu0lN1dOtzIhM1PLIZmLbbHB8PUjAEtnARWm\nQQMz5hmdrsgo4EqrHnz2WdlTLNavL217w4aVv3zKB6BQWE6fPjBkiGXX6E1AIEcANjZmRt5GL/S6\ndi/xcZvFuDUsaJoHDDA1CxUQ6z2I1dN24dq+Oct4khPfxXCxcVfteNN1H3PmtNAnIjPLPasAQOZT\ncPiLoVHtnb2dl16CV18tdKLRGoDrdZprtjVjijMBlccO2aCBwRFchEIKYE9udz76SP5QyiKrfn3p\nLG7f3uJiaegVXFRU6fIqkppuI6/p8qpaZk2oX7duaGuN6teXc/v1kzpMZL30Enz+OWzezJbQtzl9\nRmfahkyYwMlHDLG/ro+YxD87/o/WgfW0zmbd4Lbc+t9u0hzkhTbxFxnoeoD4+JLLaFUKwMvLC39/\nf4KCgggJCSn1fF9fTBrVQXbb+eor03zBgIn9P8GpqP0fKm4E0Lo1dOhg5uDAgdov4JZTY87btSUt\nrewjAG9vGDPGdGaQpSgfgEJRNcybBz2MYjn6+po50dlZZqsZPBh3dzmvv3An0ue7V2DvXn6au5de\np5ax56A9/fsbrA2NGoFfFwdc/m6ISjrRcY22SMwsllm1KhcvLy9x48YNs8eLLW5yskzyCSIPnXDj\nphgxotA5S5dqtrGtTR8t9t6ZmWby+lY0CxeKJK/O4qPQ9eKFgrD/YWGVLNOI3FwpM60Ed4lCoage\n9KlE5s0r/nh+vhDduwvx7ruGfV9+aciPLn79VWvrkl2aiZHD88StW/eQD0BYGtHIzU2bSmWDoB+R\n+jS7BoxGANddih8BODjIv7sdAZTKrFlsX3CYfR6jtNgdlS7TCFtb2TNRsYAUCuvD3V3+108nL4xO\nBzt3mkTFZ/JkI6tA//5aPBi3tCt4XdrD2rXm5VmVAtDpdAwcOJAuXbqwdOnSsl9oZAaa7rOd5GRY\nv94QUMlYAdx0LV4BgDQD3a0PoCw4Okq/9I0bcmFJWX0AFcXrr8OuXVUnD2q+jbymy6tqmbW1fnoF\nYNaPiJxKatYMbGdnCEEA/M1mDVevmr9XUW9oNbJ3716aNm1KUlISYWFhdOjQgd69e5uc8/jjj+Pl\n5QWAm5sbgYGBhA4YAAsWEAnk39pIii6cFSugefNIRo+G0AIncCQQlZ+i3Uv/JeiXZdvbRxYkWJDb\nMQUTafXHC59f3m1Hx1AyM+HKlUjatQMXl4q9v9pW25WxXVnvg7VsW0P9ZF81lAYN7uJ+48YR+cUX\nfA3kHl3GaRuZP6U4dMJim0vV8MYbb+Dq6srs2bO1fTqdrngTUUaGVJkF2VbaOF7CPbA5Q4fCa68h\nvacFgTJeGPEn720sfhpNcDB8+CFUdhiSXbvglVdklqGFC+WsVKPkQAqFopZy+bJMUbJ7N/TqVfr5\nxZKXJ29SMBvmjd7bmLd7YLFtp9WYgNLT07l9Wy5tTktLY8uWLfgZRcorEScnGYWpgN45O7hwoSBL\nTl6ejJVcQKqbp9nb/POfmISIriyMTUCBgarxVygUEn0495JMQKViawsPG/KTBMR+b/ZUq1EACQkJ\n9O7dm8DAQLp168bw4cMZNGhQ2W9g5AcYbreZq1dlbB+uXIGCZdPpdT3QOZuP9TBunOmD1w+pKhon\nJxnXPznZMI2rsmSZQ8lT8qxZZm2tn4ODbBPuM2+1KRvjxmkf+yStM3ua1fgAvL29NRtcuRg6VNpV\ngME5P+FAJrduOZo4gFMbtCoai6MaaNdOhnt2ciomNohCoajVxMSUntu7VHr2hObN4fJlGuabTxVm\ntT6A4jDrAwA587VtWxmzFRjFeu4MGMW2Sd/Bo48CcMr/YZYM/IEPPqiqEptn2DCZyq08SRwUCoWi\nVJ5/XjoZAR3FT7G3GhPQXaPTmQx7HrH9XpqAjEYAyfWsYwQAMGhQBQzzFAqFwhxG7aE5ao4CABg7\nVvs4XGwkMznDVAHUtUwBVKZNcNw4eO65qpFVHEqekmfNMlX9KoCQEJmMoARqlgLw95cGdsA5P40u\nSZtMFMANF0+riYHTpIkhS5BCoVBUODqdSae42FNqjA9Az6uvyuzowPe6cYxpfxTdn38CsHBCNDmd\nAsuUO1ehUCjueU6fhpgYdGPH1nAfgB4ju9cw8ZNJpuREp1ZWMwJQKBSKSqdtWxlC2Aw1TwF06iQz\nsQMupKPLzJT769blls7NanwA1SlLyVPyrF2mql/VUPMUgBm7l2jVipxcndXMAlIoFIrqpub5AEBO\nsO/UyWRXWugwpnn+j3794PHHK6d8CoVCYY2Yaztr3ggAoGPHIul30j1akZ2tVt4qFAqFnpqpAKCI\nGSi9UStycixLhViTbYJKnpJnzTJV/aqGWqMAbjdUIwCFQqEwpmb6APQEBcnISsCuxTG880sAM2fK\nuHEKhUJRW6hdPgA9X3wBvXrx3/ZzSWwaQHa2ZSYghUKhqMnUbAUQEgK7d7O+6zukp2OxCagm2wSV\nPCXPmmWq+lUNNVsBFODkJLNG5uQoH4BCoVDoqdk+gAKefVamBf72W1i6FDp3roTCKRQKhZVSO30A\nBehHAGoWkEKhUBiwKgWwefNmOnToQNu2bXn33Xcr7L7GJiC1DkDJU/KsX6aqX9VgNQogLy+P6dOn\ns3nzZk6cOMGqVas4efJkhdzbyYlyOYEVCoWiJmM1PoD9+/fzxhtvsHnzZgAWLFgAwNy5c7VzyusD\nCA+Hkyfhxx/hwAFo0aJiyqxQKBT3AlbvA7h8+TItW7bUtlu0aMHly5cr5N7GPgC1DkChUCgkVqMA\ndDpdpd27vE7gmmwTVPKUPGuWqepXNdhVdwH0NG/enPj4eG07Pj6eFsXYah5//HG8ChIdu7m5ERgY\nSGhoKGB4qIW3nZxCyciAzMxIDhyAoUNLPl+/HVMQRqK0+6tttV0btmv6+1CT6hcZGcnXX38NoLWX\nxWE1PoDc3Fzat2/P9u3badasGSEhIaxatQqfguxeUH4fwObNsHAh7NgBaWnKEaxQKGoX5tpOqxkB\n2NnZER4ezuDBg8nLy2Py5Mkmjf/d4OQkG/7cXOUDUCgUCj1W4wMAGDp0KKdOneLMmTO89NJLFXZf\nJydISZGNvyWuBv2QqiqoSllKnpJn7TJV/aoGq1IAlYWTE5w7B82bV3dJFAqFwnqwGh9AWSivD+Ds\nWWjTBkJDISKi4sulUCgU1ozVrwOoTJyc5H9v7+oth0KhUFgTtUoBlDAbqlhqsk1QyVPyrFmmql/V\noBSAQqFQ1FJqhQ9ACLC1hZ07oXfvSiiYQqFQWDG12geg08lRgBoBKBQKhYFaoQAANm2yPApoTbYJ\nKnlKnjXLVPWrGqxmJXBl06dPdZdAoVAorIta4QNQKBSK2kyt9gEoFAqFoihKAZRATbYJKnlKnjXL\nVPWrGpQCUCgUilqK8gEoFApFDUf5ABQKhUJhglIAJVCTbYJKnpJnzTJV/aoGpQAUCoWilqJ8AAqF\nQlHDUT4AhUKhUJhgFQpg3rx5tGjRgqCgIIKCgti8eXN1Fwmo2TZBJU/Js2aZqn5Vg1UoAJ1Ox/PP\nP090dDTR0dEMGTKkuosEQExMTI2UpeQpedYuU9WvarAKBQBYpW0/JSWlRspS8pQ8a5ep6lc1WI0C\n+PjjjwkICGDy5MklPhxzQ6eShlRVcU11yy/PNbVdfnmuqW755bnmXpRfEtZa5uq+pjzPssoUQFhY\nGH5+fkX+Nm7cyNNPP8358+eJiYmhadOmzJ492+x9qvLhx8XFVZn8wrIqu55xcXFV+oO15FlWhHxj\neVXxkpX0PO/136YevcyqaEyLq19lyKmK30xxx0p7luWRUx4FYHXTQOPi4hgxYgTHjh0rcqxNmzac\nPXu2GkqlUCgU9y7NmjXj8uXLRfZbRUKYq1ev0rRpUwDWr1+Pn59fseedOXOmKoulUCgUNRqrGAFM\nmDCBmJgYdDod3t7efPHFFzRu3Li6i6VQKBQ1GqtQAAqFQqGoeqxmFpAxrq6uVSLH1tZWW3wWFBTE\nxYsXzZ4bGhpKVFRUueTY2Njw2GOPadu5ubm4u7szYsSIct3PEjZs2ICNjQ2nTp2qlPtXZ930VNXv\nxRKZd/N70VPZ311h3nrrLXx9fQkICCAoKIhDhw5VqrxLly7x4IMP0q5dO9q0acOsWbPIyckxe/5H\nH31ERkZGuWTZ2NgwZ84cbfv999/njTfeKNe9SkPfrvj6+hIYGMiHH35oldPcwUoVgE6nqxI5zs7O\n2uKz6OhoPD09K6VMLi4u/PHHH2RmZgKwdetWWrRoYdE9c3NzyyV71apVDB8+nFWrVll0XX5+fpnO\nq4i63S1VKausMnU63V2Xq7zfXXnYv38/P//8M9HR0Rw9epTt27fTsmXLSpMnhOChhx7ioYceIjY2\nltjYWO7cucO//vUvs9csWrSI9PT0csmrU6cO69ev58aNG0Dl/mb07crx48fZunUrmzZtqjRlc7dY\npQIASEtLY+DAgXTu3Bl/f382btwIyFlCPj4+TJkyBV9fXwYPHqw1PhVBVFQUoaGhdOnShSFDhnDt\n2jXt2IoVKwgKCsLPz4/ffvvNovv+5S9/4eeffwbkiz1+/HitV3Do0CF69uxJcHAwDzzwALGxsQB8\n/fXXjBw5kgEDBhAWFmZxXe7cucPBgwcJDw9nzZo1gJwq1qdPH4YPH06HDh14+umntXK4uroyZ84c\nAgMDOXDgQKXWrW/fvhw9elS7R69evYqd+VVWdu7caTLqmD59Ot988w0AXl5ezJs3T/stVVSPuiSZ\nd4u5786cvF9++QUfHx+6dOnCzJkzLR6BXbt2jUaNGmFvbw9Aw4YNadq0qdn3ITQ0lFmzZpX7fdix\nYwdOTk5MnDgRkD30hQsX8tVXX5Gens6cOXPw8/MjICCA8PBwPv74Y65cuUK/fv0YMGCARbIA7O3t\nmTJlCgsXLixyLC4ujv79+xMQEMDAgQOJj4/n1q1beHl5aeekpaXh6elJXl6eRXLd3d1ZsmQJ4eHh\nAOTl5fHCCy8QEhJCQEAAS5Ys0c5999138ff3JzAwkJdeesniOpYHq1UATk5OrF+/nqioKHbs2GGy\nNuDMmTNMnz6d48eP4+bmxrp168olIyMjQzP/jB49mtzcXGbMmMG6des4fPgwkyZN0nokQggyMjKI\njo7m008/5YknnrBI1rhx41i9ejVZWVkcO3aMbt26acd8fHzYvXs3R44c4Y033uDll1/WjkVHR7Nu\n3ToiIiIsrt+PP/7IkCFD8PT0xN3dnSNHjgDw22+/ER4ezokTJzh79iz//e9/AUhPT6d79+7ExMTQ\ns2fPSq3b5MmT+frrrwGIjY0lKyvL7Oyv8mDcA9fpdLi7uxMVFcXTTz/N+++/X2FyzMm8W4r77grf\nWy8vMzOTqVOnsnnzZg4fPsz169ctLsegQYOIj4+nffv2PPPMM+zatYucnByz74NOp7ur9+GPP/6g\nc+fOJvvq1q2Lp6cnX375JRcuXODo0aMcPXqUv//978yYMYNmzZoRGRnJ9u3bLZKlZ9q0aXz33Xek\npqaa7J8xYwaTJk3SZM2cOZP69esTGBioza3/3//+x5AhQ7C1tbVYrre3N3l5eSQmJrJs2TLc3Nw4\ndOgQhw4dYunSpcTFxbFp0yY2btzIoUOHiImJ4cUXXyxXHS3FKqaBFkd+fj4vvfQSu3fvxsbGhitX\nrpCYmAjIB+rv7w9A586dS1w0UhJOTk5ER0dr28ePH+ePP/5g4MCBgNTWzZo1A+QPfvz48QD07t2b\n1NRUUlNTqVevXplk+fn5ERcXx6pVqxg2bJjJsZSUFCZMmMCZM2fQ6XQm5p5Bgwbh5uZWrvqtWrWK\n5557DoAxY8ZoJoWQkBCtdzN+/Hj27NnD6NGjsbW1ZfTo0RbLsaRuehvvww8/zJtvvsl7773HV199\nxaRJk8pVx7Ly0EMPARAcHKwpPGvG3HdXGCEEf/75J61bt6ZVq1aA/E6Ne5ZlwcXFhaioKHbv3k1E\nRATjxo3jlVdeMfs+6OVA+d4HcwpKCEFkZCTPPPMMNjayf9qgQQOL6mKOunXrMmHCBBYvXoyTk5O2\n/8CBA2zYsAGARx99VGt8x40bx5o1awgNDWX16tVMnz79rsuwZcsWjh07xtq1awFITU3l9OnTbN++\nnSeeeAJHR0eg4upcGlarAL777juuX7/OkSNHsLW1xdvbWzP1ODg4aOfZ2tqW2zFUGCEEnTp1Yt++\nfWU639Je1siRI5kzZw47d+4kKSlJ2//qq68yYMAA1q9fz4ULFwgNDdWOOTs7WyRDz82bN4mIiOD4\n8ePodDry8vLQ6XQMGzbMpNxCCO1Fc3R0LHcP1tK6OTs7ExYWxoYNG/jhhx+00Ul5sbOzM/FbFP5N\n6H8ztra25fanWCqzvJj77h588EETefr3ofB3Vl6Ho42NDX379qVv3774+fnxySefVNr70LFjR60R\n1JOamkp8fDytW7euNKfprFmzCA4OLtLhKE7eiBEjePnll0lOTubIkSP079+/XDLPnTuHra0tHh4e\nAISHhxcx6f7666/V4ii2WhPQrVu38PDwwNbWloiICC5cuFDpMtu3b09SUpJm/87JyeHEiROA/IHo\nbbF79uzBzc2NunXrWnT/J554gnnz5tGpUyeT/ampqVrPavny5XdbDQDWrl3LhAkTiIuL4/z581y8\neBFvb2927drFoUOHiIuLIz8/nzVr1tCrV6+7lleeuj355JPMnDmTkJAQ6tevf1fyW7VqxYkTJ8jO\nziYlJYUdO3bc1f2qU6a57y4/P99E3vbt29HpdLRv355z585p78iaNWssVuSxsbGcPn1a246OjsbH\nx4fr168X+z7o5UD53ocBAwaQnp7OihUrADm6mD17NpMmTWLQoEF88cUXmr09OTkZkD34wuYbS2nQ\noAFjx45l2bJl2jPq2bMnq1evBmTHs0+fPoD0iXXt2lXzqZSnc5SUlMTUqVOZMWMGAIMHD+bTTz/V\nOiGxsbGkp6cTFhbG8uXLtU6Evs6VjdWNAHJzc3FwcODvf/87I0aMwN/fny5duuDj46OdU5wttDwU\nvq5OnTqsXbuWmTNncuvWLXJzc3nuuefo2LEjOp0OR0dHgoODyc3N5auvvrJYTvPmzbVhpLG9+MUX\nX2TixInMnz/fpId+Nzbl1atXM3fuXJN9o0eP5rPPPqNr165Mnz6dM2fO0L9/f/76178W+zwqs24g\nzTH169e/K/OP/vfSokULxo4di6+vL97e3gQHB5st793a6S2VaSnmvrvVq1cXK8/R0ZFPP/2UIUOG\n4OLiQteuXS2u4507d5gxYwYpKSnY2dnRtm1blixZwpQpU4p9H/Ryy/M+6Fm/fj3Tpk3jzTffJD8/\nn2HDhvH2229jY2NDbGws/v7+mvN22rRpTJkyhSFDhtC8eXOL/QDGz2P27NmaUxZkIMpJkybx3nvv\n4eHhYdJRGTduHGPHjrUozo7et5iTk4OdnR0TJkzQzHlPPvkkcXFxBAcHI4TAw8ODDRs2MHjwYGJi\nYujSpQt16tRh2LBhzJ8/36I6lgthZcTExIhu3bpVdzFqLJGRkWL48OHVXQwhhBCXL18W7dq1u6t7\nVMfvxRp/o3fu3NE+T5s2TXz00UeVKi80NFRERUVVqgxF5WNVJqDPP/+cRx55pGo0Xy2mOubNF+bb\nb7+le/fuvP322+W+R3X8Xqz1N7p06VKCgoLo1KkTqampPPXUU9VdJMU9gAoFoVAoFLUUqxoBKBQK\nhaLqqFYFEB8fT79+/ejUqRO+vr4sXrwYkNPgwsLCaNeuHYMGDdIyhN28eZN+/fpRt25dzasO0uky\nbNgwfHx88PX1rbJVdAqFQnEvU60KwN7enoULF/LHH39w4MABPvnkE06ePMmCBQsICwsjNjaWAQMG\nsGDBAkDOOpg/f36xKzlffPFFTp48SXR0NHv37mXz5s1VXR2FQqG4p6hWBdCkSRMCAwMBOefWx8eH\ny5cvs3HjRi1GyMSJE7VVes7OzjzwwAMmC8FArujt27cvIJVKcHBwsdlvFAqFQmHAanwAcXFxREdH\n061bNxISErSEMI0bNyYhIcHk3JJmsaSkpPDTTz+VK2CUQqFQ1CasQgHcuXOH0aNHs2jRoiKrCS1Z\nuJObm8v48eN59tlnTSL5KRQKhaIo1a4AcnJyGD16NI899hijRo0CZK9fH3b26tWrWgyN0pgyZQrt\n27dn5syZlVZehUKhqClUqwIQQjB58mQ6duzIrFmztP0jR47U4px/8803mmIwvq4wr7zyCqmpqcXG\n+1YoFApFUap1IdiePXvo06cP/v7+mpnnnXfeISQkhLFjx3Lx4kW8vLz4/vvvtZDIXl5e3L59m+zs\nbNzc3Ni6dSuurq54enri4+NDnTp1ABnj29IY5QqFQlGbUCuBFQqFopZS7T4AhUKhUFQPSgEoFApF\nLUUpAIVCoailKAWgUCgUtRSlABQKhaKWohSAQqFQ1FKUAlDUeGxtbQkKCsLX15fAwEA+/PDDYhcT\nGnPhwgVWrVpVZhlDhw6lf//+BAUF0bZtW9zc3AgKCiI4OJj9+/fzwAMP3G01FIoKx+qSwisUFY2z\nszPR0dEAJCUl8cgjj5Camsq8efPMXnP+/HlWrlzJ+PHjS71/RkYGN2/e5ODBgwDs3LmT999/n59+\n+kk7Z+/evXdXCYWiElAjAEWtwt3dnSVLlhAeHg7IKLR9+vShc+fOdO7cmf379wMwd+5cdu/eTVBQ\nEIsWLSI/P58XXniBkJAQAgICWLJkiXbPyMhI+vXrp20XN7pwdXXVzu3bty+jRo3i/vvvZ+7cuaxY\nsYKQkBD8/f05d+4cIBXVww8/TEhICCEhIezbt6/SnomiFlNd2egViqrC1dW1yD43NzeRmJgo0tPT\nRWZmphBCiNjYWNGlSxchhBCRkZFi+PDh2vlffPGFmD9/vhBCiMzMTNGlSxdx/vx5IYQQM2bMEBER\nEdq5ERERJtcalyEiIkK4ubmJa9euiaysLNGsWTPx+uuvCyGEWLRokZg1a5YQQojx48eLPXv2CCGE\nuHDhgvDx8bnLp6BQFEWZgBS1muzsbKZPn87Ro0extbXl9OnTQNFe/JYtWzh27Bhr164FIDU1lTNn\nzuDl5cW+ffv48MMPyyyza9euWr6LNm3aMHjwYAB8fX2JiIgAYNu2bZw8eVK75vbt26Tq+jhmAAAB\neklEQVSnp+Ps7Fz+yioUhVAKQFHrOHfuHLa2tri7uzNv3jyaNm3KihUryMvLw9HR0ex14eHhhIWF\nFblXy5YtsbMr+6tknNHOxsZG27axsSE3NxeQCujgwYNacEOFojJQPgBFrSIpKYmpU6cyY8YMQPbk\nmzRpAsC3335LXl4eAHXr1uX27dvadYMHD+bTTz/VGujY2FjS09PZtGkTQ4cOrfByDho0iMWLF2vb\nMTExFS5DoVAKQFHjycjI0KaBhoWFMWTIEF577TUApk2bxjfffENgYCCnTp3SnLUBAQHY2toSGBjI\nokWLePLJJ+nYsSPBwcH4+fnx9NNPk5uby6+//sqQIUNM5BWXxc5421yGO+PrFi9ezOHDhwkICKBT\np04mTmeFoqJQ4aAVinKSlZVF7969OXToUHUXRaEoF0oBKBQKRS1FmYAUCoWilqIUgEKhUNRSlAJQ\nKBSKWopSAAqFQlFLUQpAoVAoailKASgUCkUtRSkAhUKhqKX8Py4sFE4JZl6TAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x872d410>" ] } ], "prompt_number": 114 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
gpl-3.0
ledeprogram/algorithms
class5/homework/najmabadi_shannon_5_1.ipynb
1
67057
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Assignment 1\n", "\n", "Use the data from heights_weights_genders.csv to create a simple predictor that takes in a person's height and guesses their weight based on a model using all the data, regardless of gender. To do this, find the parameters (lm.params) and use those in your function (i.e. don't generate a model each time)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "plt.style.use('fivethirtyeight')\n", "import statsmodels.formula.api as smf\n", "\n", "df = pd.read_csv('heights_weights_genders.csv')" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "<div>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>Height</th>\n", " <th>Weight</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>count</th>\n", " <td>10000.000000</td>\n", " <td>10000.000000</td>\n", " </tr>\n", " <tr>\n", " <th>mean</th>\n", " <td>66.367560</td>\n", " <td>161.440357</td>\n", " </tr>\n", " <tr>\n", " <th>std</th>\n", " <td>3.847528</td>\n", " <td>32.108439</td>\n", " </tr>\n", " <tr>\n", " <th>min</th>\n", " <td>54.263133</td>\n", " <td>64.700127</td>\n", " </tr>\n", " <tr>\n", " <th>25%</th>\n", " <td>63.505620</td>\n", " <td>135.818051</td>\n", " </tr>\n", " <tr>\n", " <th>50%</th>\n", " <td>66.318070</td>\n", " <td>161.212928</td>\n", " </tr>\n", " <tr>\n", " <th>75%</th>\n", " <td>69.174262</td>\n", " <td>187.169525</td>\n", " </tr>\n", " <tr>\n", " <th>max</th>\n", " <td>78.998742</td>\n", " <td>269.989699</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " Height Weight\n", "count 10000.000000 10000.000000\n", "mean 66.367560 161.440357\n", "std 3.847528 32.108439\n", "min 54.263133 64.700127\n", "25% 63.505620 135.818051\n", "50% 66.318070 161.212928\n", "75% 69.174262 187.169525\n", "max 78.998742 269.989699" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Height 1.000000\n", "Weight 0.924756\n", "Name: Height, dtype: float64" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.corr()['Height'].sort_values(ascending=False)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Intercept -350.737192\n", "Height 7.717288\n", "dtype: float64" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "lm = smf.ols(formula=\"Weight~Height\",data=df).fit()\n", "lm.params" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": true }, "outputs": [], "source": [ "intercept, slope = lm.params" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x10840f3c8>" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAE6CAYAAABnBUlIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlcVPX+/59nZth1BBdAUUDci80tzY1skcqlzD01v7d+\nVy2trjtRpkkZZJimpd7Kcl9Ss6sWZveqmAtq5pLmjogogguCwwzLzPn9cZiRw7Aqitrn+Xj4UM/5\nnDOfz2dmzms+7+0jZWRkyAgEAoFAIEBT1R0QCAQCgeB+QYiiQCAQCAQFCFEUCAQCgaAAIYoCgUAg\nEBQgRFEgEAgEggKEKAoEAoFAUIAQxQeMjz/+GA8PD3bu3HlXX6d79+54eHjc1deoKK+//vo9GbtA\nzb2Y999++w0PDw9iYmLu+F4eHh6EhIRUQq/uf5YvX46HhwcrVqyo6q6USGU9s6yfkVGjRlVSz4rn\noRbF06dPM2nSJDp27Iifnx+enp40a9aMfv368e2335KdnV3VXawwkiQhSdId38cqesnJySW+jkZz\nf308KmvspWF9yFTGw/lh4V7M+718naLcq4ft3aIq5qwiVNX7CrcEuSI/GnR3sT9VyieffEJMTAyy\nLNOmTRsGDRpEtWrVuHr1Krt372bs2LHMnTuX33//vaq7WiWU9UFdsGABRqPxHvbo/uF+f8g8jLRp\n04a9e/dSq1atqu6KoJIZMWIEffv2pX79+vf8tW9HkB9KUYyNjeXjjz+mfv36fPfdd7Ru3dquzY4d\nO/jwww+roHcPBj4+PlXdhSpBlmVkWRR5utc4OzvTuHHjKnlt8X7fXTw8PKrMFXM77+39ZR+rBM6f\nP09MTAyOjo6sXr26WEEE6Ny5Mxs3brQ7/p///IcePXrg6+uLt7c37dq1Y/r06RgMBru2VhNkUlIS\n8+bNo0OHDnh7ezNkyBAAli1bZjPF7d+/n759++Lv70/NmjXJzMy03ScxMZE333yToKAgvLy8aNy4\nMUOGDOHQoUPlHvfGjRsZPnw4bdq0wcfHBx8fH8LCwpg3bx4Wi0XV1sPDg127diHLMsHBwbYPbWE/\nTGk+xcWLF/PMM8/QoEED6tWrR5cuXZg7dy75+fl2bYOCgqhZsyZms5nY2Fhat26Nl5cXgYGBTJ06\nlby8vHKPsTBLly6lc+fO1K1bl6ZNm/LWW2+Rnp5ebNvMzEw++ugjOnToQL169WjQoAHPPfccP/74\no6rdG2+8wejRo5EkiejoaNu81KxZk507d/K///0PDw8PPvjgA9V1Bw4csLX966+/VOcmTpyIh4cH\n+/btUx1PS0sjIiKC1q1b4+3tjb+/Py+99BLbt28vccw//vgjL7zwAg0bNsTLy4vWrVvzwQcfkJWV\nZdf2bs37jz/+yFNPPUW9evVo2LAhr732GpcuXSq2bXnnHUr3KR44cIDevXvToEEDfH19efHFF9m3\nb1+Zvqrs7GwmT55MYGAgXl5etGrVitmzZ6vaREdH06tXLyRJspnOrX/KY3LbsWMHb7/9Nu3bt8fX\n15e6devy+OOP8/HHH2MymezaFzbnxcfH06NHD9u4BgwYwMmTJ4t9ncTERIYNG4a/vz8+Pj6Eh4fz\nyy+/AOV/8H/33Xd4eHjw7bffqo6vX78eDw8P6tSpo3ouAQwcOBAPDw8uX75s15/yPrNKe59Wr15N\nly5dqFu3Lk2aNGHEiBGkpqaWGdNw/vx5Xn31VRo1aoS3tzddu3Zl8+bNqjY9evTgk08+AZTvduHv\nc0luI3gIV4pLly4lLy+Pvn370qJFi1LbOjg4qP7/0Ucf8emnn1KzZk369u1LjRo12Lp1KzNmzCAu\nLo6ff/4ZNzc3W3vr0nzixIns3buXbt26ER4eTrVq1VTnExISiI2NpVOnTgwbNozLly+j1WoB2L59\nO4MHDyY3N5fw8HAaNWrExYsX2bhxI7/++isrVqyga9euZY572rRpaLVa2rRpQ7169cjMzCQ+Pp7I\nyEj++OMP/v3vf9vaRkREsGzZMi5cuMDIkSOpUaMGgO3vwn0vyogRI1i9ejU+Pj4MHjwYBwcH4uLi\nmDx5Mtu2bWP16tUqX6T1Hv/v//0/9uzZw9NPP0316tXZsmULs2fP5sqVK8ydO7fM8RVm7ty5xMfH\n07t3b7p168auXbtYsmQJv/32G//73/9wd3e3tb106RI9evQgMTGRxx9/nK5du5Kdnc0vv/zC//3f\n/xEREcGkSZMA5UuUmZnJpk2b6NSpE506dbLdx9fXl9q1a+Po6Mi2bduYMmWK7ZxVyCRJYtu2barP\n3Y4dO6hevbrqx9nRo0fp3bs3V69e5cknn6R79+5cu3aNTZs20bt3b+bMmcPgwYNVYx43bhwLFy7E\nx8eHnj174u7uzr59+5g1axZbtmxh8+bNdp/Nyp73r7/+mri4OJ577jk6derE/v37WbduHUePHmXH\njh2q71NF5r00du7cSZ8+fTCbzfTq1YuGDRty9OhRevbsSZcuXUo0jeXn59OnTx9SU1Pp1q0bWq2W\nn376ialTp5KTk8PEiRMB5cdxcnIyy5cvJygoiO7du9vuERQUVGb/Zs+ezalTp2jXrh3h4eGYTCYS\nEhL45JNP+O2339iwYYPd90GSJOLi4vjpp5945plnePXVVzl+/Di//PILf/zxBwkJCSpBOHv2LE8/\n/TQZGRk888wzBAUFkZiYyJAhQ3jqqafKbR4MCwsDYNu2bfzjH/+wHbd+fs1mMzt27LDNgcViYdeu\nXTRv3hwvLy9V+4o8s0p6lsyePZupU6fi7u7Oyy+/jF6vZ+vWrYSHh6PX60sc1/nz53nqqado2LAh\nAwcO5Pr16/zwww8MHjyY9evX27631u/Qrl276N69u+39lCRJ9ayzIyMjQ36Y/oSFhckajUaeM2dO\nha779ddfZUmS5Pr168snT55UnRs0aJCs0Wjk4cOHq4536tRJliRJ9vHxkf/880+7e3755ZeyJEmy\nRqORP//8c7vz58+fl2vWrCnXrl1b3rdvn+rcvn375OrVq8v16tWT09PTbccjIiJkjUYjb9q0SdX+\n4MGDxY7L2vf//ve/dn3XaDTykSNHir3Oer7wsYULF8qSJMnBwcFySkqK7fiVK1ds8/7hhx+qrvH1\n9ZU1Go3csmVLOSkpyXb80qVLckBAgKzT6eRTp06V6z16+eWXZUmSZCcnJ/m3335TnRs+fLgsSZL8\n6quv2n0etFqt/O2336qOX7hwQQ4JCZG1Wq28c+dOu/fsnXfeKbYPHTt2lHU6nXzu3DnbsSeeeEJu\n1qyZ7OvrKz/77LO24ydOnJAlSZKfe+4527Fr167JjRs3ll1cXOSff/5Zde+TJ0/K9evXl93c3OQz\nZ87Yji9YsECWJEl+4YUX5LS0NNU1kydPliVJkt988827Pu96vV7es2eP6ly/fv1kjUYjL1q06I7m\nfePGjXbzfv36dTkgIEDWaDTy6tWrVfeZNWuW7btV9LtgPR4eHi5fvnzZdvz06dNyjRo1ZHd3d/nq\n1at2rz148OByzUfhP4cOHSr2+MSJE2WNRmM3/oiICFmSJNnBwUHesGGD6tzYsWNljUYjR0VFqY53\n7dpV1mg08vTp01XHV69ebRvrvHnzytXfBg0ayDVr1lQdCwgIkDt16iS7uLionnHWZ2LhY5X1zDp4\n8KDs4OAg16pVSz569KjqPn379rWNq/Bx6/uk0Wjkd999V3Vu3bp1siRJcnh4uN18V2R+MjIy5IfO\nfGpd5lfUJ7Z48WIkSWLcuHF4enqqzk2bNg1nZ2dWrFiB2WxWnZMkibfffrtUJ3JQUBCvvPKK3fEV\nK1aQkZHBxIkTadKkiepckyZNeOWVV0hNTS3VpGbF39+/2OMjRoxAlmX+97//lXmPsrDO0ZQpU1Sr\nEp1Ox/Tp05FlmcWLFxd77QcffKD6debi4kK/fv2wWCz88ccfFerHwIEDCQwMVB2LjIzEzc2N1atX\n296jY8eOER8fT/fu3endu7eqfbVq1YiIiMBisfD999+X+7XDwsKwWCzEx8cDkJOTQ0JCAl26dKFL\nly7s2rXLZq62tunSpYvt+l9++YUzZ87w2muv8fjjj6vu7enpyZtvvonRaFSZGL/88kt0Oh2zZ8/G\n0dFRdc2YMWOoVasWq1evLra/lTXvkiQxcuRImjdvrjr+yiuvIMuyKmCtsuY9ISGBxMREOnToQLdu\n3VTnhg0bVqYPMiYmBicnJ9v/a9euzfPPP09mZianTp0q9dry4ufnV+zx119/vdTvXZ8+fejcubPq\n2LBhw+zm8uLFi2zbto369eszcuRIVftu3brZ3aMswsLCyMjI4ODBgwAkJyeTmJhIeHg4bdu2VT1r\ntm/fjiRJthUmVN4za82aNZjNZv75z3/aPaunTJlis6QVR4MGDRg/frzq2JNPPkn9+vUrJXDyoTOf\n3i6HDx8GKPZDVqdOHR555BEOHDjA6dOnadasmep8q1atSr13SX7NvXv3AvDnn38SHR1td/706dPI\nssyJEyd4+umnS32N69evM3v2bLZs2UJSUpLKBypJUol+n4pgnaPCZkUrjz76KHXq1OH06dNkZ2fj\n6uqqOh8aGmp3jfXLkJGRUe4+SJJEhw4d7I67u7vzyCOPsH//fk6dOkXz5s1JSEgAICsrq9j5vXLl\nCgAnTpwo9+uHhYXx8ccfs337dnr16sWePXswmUyEhYVhNBpZvnw5+/bto127dmzbts3uoWLtU3Jy\ncrF9Onv2rO09BzAajRw5coSaNWsyf/58u/ayLOPo6EhqaioZGRkq0zFU3ryXdC/rj8HC96qsebd+\n3tq3b293TpIkHnvsMc6cOVPstXq9vtgfirc79pLIzs5m3rx5bNq0idOnT3Pz5k2bj6+k750kSeWe\ny8JzUFyKVMeOHfntt9/K3d+wsDCWLVvG9u3bCQ0NVX1Gc3Nz+eijj7h06RJ169Zl27ZtaDQa1fe9\nsp5Zpb23DRo0wMfHp0S/X1BQULGm1fr169v57m+Hh04Uvby8OHnyJCkpKRW6zupgLrpKLHxfgBs3\nbtidK+mass5fu3YNWZZZunRpiddKklRskE9hbty4wRNPPEFycjKtW7dm0KBBuLu7o9PpuHHjBvPm\nzSMnJ6fUe5SHzMxM9Hq96td3Yby8vLhy5QqZmZl2oqjX6+3a63TKx6/o6rssSprPOnXq2PoJyvyC\n8ou3pF+ukiRVKF+1devWVKtWzXa/+Ph4tFotnTt3JicnB1mW2b59O+3atSM+Pp7atWvzyCOP2K63\n9mnDhg1s2LChzD5lZGQgyzLXrl2zBQ2UdM3NmzftRLEy5704P4z1F33he1XWvGdmZiJJku19LUpp\n37uSfEa3O/biyM/Pp2fPnhw4cIBHHnmEPn36UKtWLZtvNTo6usTvXXnn0vpZvp05KA6r1WL79u28\n/fbbxMfHU7NmTYKDg8nLy+PDDz9k+/bttmCmkJAQVV8r65lVnnGVJIolvbdardYuqPB2eOhEsX37\n9sTHxxMfH8/QoUPLfZ314ZGWllbsg8Rqli3uXFmO7pLOW53J27dvL5dTvyQWL17M+fPneeedd2wB\nBFb27dvHvHnzbvvehdHr9WRkZJCTk1OsMJY2R5VJWlpascet0afW17f+/eGHH/LGG29UymvrdDo6\ndOjAli1buHDhAtu3b1c9OFq0aMG2bdvo27cvFy5coG/fvqrrre/5kiVLVEEdJWEdwyOPPFKhFUFV\nUlnzXr16dWRZLjGquKTPwb1i06ZNHDhwgCFDhjBnzhzVucuXLxe7kqoo1rmsrDnw8vKyWVFycnKI\nj4+3WcdatmyJXq9n27ZteHt7k5OTo7JyWPtTGc+s6tWrA5U3rsrkofMpWiMi//Of/3D8+PFS2+bm\n5tr+bU1H2LFjh127K1eu8Ndff+Hm5mZnR78T2rZtiyzL7Nq1647uk5iYiCRJ9OzZ0+5cSQ/S4n6V\nloV1joq757Fjx0hPT6dJkyZ2q8TKRJblYkO7MzIyOHbsGK6urrb3qG3btgDs3r273Pcvz7xYf23/\n+OOPHDx4kCeeeMJ2LiwsjN9//51NmzYB9ub4ir7nbm5utGjRglOnTnH9+vVyj6MquZ15L47g4OAS\n7yPLss2Ud6fczncBbn3vevToYXeusn7AWOcgISGh2FXQ7bxOly5dMBqNfPvtt6Slpdk+v1ZT6Y4d\nO4r1J0LlPbOCg4ORZbnY9zY5ObnClr6SuJ339qETRV9fXyIiIsjNzaVfv34lOl63b9+u+qU+ZMgQ\nZFkmNjbW7lfK+++/T3Z2NoMGDSrVAVxRhgwZgru7OzNmzCjRFr5nz55i8/8K4+vriyzLdl+QQ4cO\n8dlnnxW7Uq1ZsyYAFy5cKHd/hw4diizLTJs2TWUeyc/P591330WSpAqtzm+XVatW2XwSVj766CMM\nBgP9+/e3vUehoaF07NiRn376qcQAoDNnzqjmoDzzEhYWhizLzJ49G4vFogqksfpm5syZU+xD5fnn\nnycgIIBvv/2Wn3/+udj7Hz58WCWAo0ePJjc3l9dff71YX9jNmzfvq8pMtzPvxdG+fXsaNmzI7t27\niYuLU5379ttvOX36dKX093a+C1Dy9+7cuXNMnTq1Uioj1atXj65du5KcnGxn8YmLi7stUbR+fmfO\nnGn3GQ0LC+PixYssW7YMJycnO59fZT2z+vXrh06n4+uvv7Yzk37wwQeVYt4G5b2VZblC7+1DZz4F\nGDt2LGazmZiYGJ5++mkee+wxWrZsSbVq1bhy5Qq7d+/m5MmTqlVf27ZtGTt2LJ999hmPP/44L774\noi1v5tChQwQGBvL+++9Xaj/d3d1ZvHgxQ4YMoVu3bnTp0oXmzZvj4OBASkoK+/fvJyUlhXPnzpVq\nkhw4cCCff/45ERERxMfH06hRI86cOcPmzZvp1asXa9eutbuma9eurF+/nrfeeotevXpRrVo1atSo\nwT//+c8SX+ell14iLi6ONWvW0K5dO3r06GHLUzxz5gxPPPFEhc1lt1Nx4qmnnuLZZ5+ld+/eeHl5\nsXPnTvbu3UtAQACTJ09Wtf3666958cUX+de//sWCBQto27YtHh4eXLx4kePHj3PkyBGWLl1qC3J4\n7LHHcHNzY926deh0Oho0aIAkSQwcONDWJjAwkFq1apGeno6Li4sqirRTp07odDrS09Px8/Ozi07U\n6XQsXbqUPn368PLLL9OmTRtCQkJwc3MjJSWFw4cPc/r0aeLj4225ai+//DKHDx/m3//+N6GhoTz1\n1FP4+vpy48YNzp8/z65du3jyySdL9fNUxrxXhIrOe3FIksTnn39Ov379GDJkCL169SIgIICjR4+y\nbds2unXrxpYtW+64Rm+TJk3w8fFh9+7dDB8+nEaNGqHVann++edV/uCiPPvsswQEBPDFF19w9OhR\ngoODSU5O5pdffiE8PLzY7x1UfO4//fRTnnnmGVsucHBwMImJiWzcuJHnnnuuxB9XJdGpUye0Wi3p\n6en4+vqqApKsq8b09HQ6d+5s5yaprGeWv78/kZGRREVF0blzZ1566SVbXnhGRgaBgYEcO3asQuMq\nji5duqDRaJg3bx5Xr161xYaMGDHCZsItSpWK4tdff823335r+6XQvHlzxo8frwq//vjjj1m8eDEZ\nGRm0bt2aTz/9VBUWnpuby7vvvsu6deswmUx06dKF2NhYJkyYQO/evfn666/ZsWMHK1aswGg04uHh\nQWBgIK+//joDBw5U9Wfy5MkEBwfz1Vdf8f3335Obm4ufnx8TJkzg7bffVqUhWCmPP7G0Np07d2bX\nrl3MnTuX//73v+zbtw+dToeXlxft2rWje/fuZfrovL29iYuLY+rUqSQkJLB161aaNGnCzJkz6dKl\nC+vWrbPrw9ChQ0lJSWHNmjXMmzePvLw8GjRooBLF4vr973//m44dO7JkyRKWLl2KxWKhUaNGTJs2\njZEjRxb7gCpt/BX9NS1JEqNGjaJ79+7Mnz+fM2fOUK1aNV555RUmT55sVwXD29ubrVu38tVXX/Hj\njz+ybt068vLy8PT0pHHjxnzyySd07NjR1r5GjRosW7aM6Oho1q9fz82bNwF4/PHHVQ/wLl26sH79\netq1a6dKk6hWrRqtWrVi3759dqtEKy1atGDnzp18+eWX/Pzzz6xcuRJZlm3+nrffftvOTB8dHU23\nbt345ptv2LlzJxs3bqRGjRrUq1eP4cOH06dPnwrNbWXWdy3uM17ReS/pPp06dWLTpk18+OGH/Prr\nr4BSJ3XDhg2sWrUKoNiHW0XGp9FoWL58OVOnTuWXX34hKysLWZbx8fEpVRRdXV3ZsGEDU6dOZefO\nnezZswd/f38mTpzIG2+8Uez3rqy+FTcHAQEB/Pe//2Xq1Kls27aN3bt38+ijj7J8+XLS0tLsVtFl\nodfrCQ0N5cCBAyrTP0DTpk2pW7cuqampJX5+K+OZBUo6kY+PD1988QUrVqygWrVqPPXUU3zwwQf0\n7t27xPe1Ip/rJk2a8NVXXzFnzhyWL19uq+c8YMCAEkVRysjIqLLCfz///DOOjo40atQIi8XC8uXL\nmT17Nlu3biUwMJBZs2Yxc+ZMvvzySxo3bkxMTAx79uxh//79NoEaO3YscXFxzJs3Dw8PDyIjI7lx\n4wbx8fGisLNA8BATHh7OgQMHOH/+PC4uLlXdHUElkZWVRdOmTQkODrYr3XYvqFKf4nPPPcdTTz2F\nv78/AQEBvPfee1SrVs3mH5k/fz5jxoyhR48eNG/enHnz5nHz5k3WrFkDKGG9S5cuJSoqirCwMIKD\ng1mwYIHNvCIQCB5sTCZTsX7UZcuWsXfvXp588kkhiA8o165ds/M9ms1m3n33XXJycooNYLoX3Dc+\nRYvFwg8//EBOTg4dO3bk3LlzXL58WVVDz9nZmQ4dOpCQkMCwYcP4448/yM/PV7Xx8fGhWbNmJCQk\nlKtmqEAguH+5dOkSHTp04IknniAgIID8/HwOHz7Mnj178PDwEDvdPMBs3LiRqKgonnjiCXx8fLh+\n/Tq7du3i9OnThISEMHz48CrpV5WL4rFjx+jWrRsmkwlXV1e+/fZbGjduzN69e4tN3K1Tpw6pqamA\n4gzWarW26LHCbao6h0kgENw5tWrVYsCAAezcuZOdO3eSk5ODp6cnQ4cOZezYsSWWNxTc/7Rq1YoO\nHTqwe/duW8GHwjEcJRUJudtUuSg2bdqU3377jRs3bvCf//yH1157rdgtnQQCwd8PvV7PrFmzqrob\ngrtAYGAgixYtqupu2FHleYo6nQ5/f39CQkKYPHkybdq04auvvsLT07PYahbp6em20kaenp6YzWbb\nr4zi2ggEAoFAUF6qXBSLYrFYMJvN+Pv74+XlxdatW23nTCYTu3fvtiWUhoaGotPpVG1SUlI4ceJE\nsYVmBQKBQCAojSoVxQ8++IDdu3dz/vx5jh07xgcffMDOnTtt+YOvv/46s2bNYsOGDRw7dow33niD\natWq2XKy9Ho9Q4cOZcqUKWzfvp1Dhw4xcuRIgoKCSsyxeZiprO1w7icexjGBGNeDxMM4Jnh4x3Wn\nVKlP8fLly4wYMcJWhPvRRx9l7dq1toTSt99+G5PJxMSJE23J++vWrVMl0UdHR6PT6Xj11VdtW/gs\nWLBA5CgKBAKBoMJUafK+oHI5depUpRYsvx94GMcEYlwPEg/jmODhHdedct/5FAUCgUAgqCqEKAoE\nAoFAUIAQRYFAIBAIChCiKBAIBAJBAUIUBQKBQCAoQIiiQCAQCAQFCFEUCAQCgaAAIYoCgUAgEBQg\nRFEgEAgEggKEKAoEAoFAUIAQRYFAIBAIChCiKBAIBAJBAUIUBQKBQCAoQIiiQCAQCAQFCFEUCAQC\ngaAAIYoCgUAgEBQgRFEgEAgEggKEKAoEAoFAUIAQRYFAIBAIChCiKBAIBAJBAUIUBQKBQCAoQFfV\nHRAIBALBnWE2w6FDWs6elQgIkAkNNaMRS57bQoiiQCAQPOAcOqQlPNyNvDwJBweZuDgDrVubq7pb\nDyTit4RAIBA84Jw9K5GXJwGQlyeRmChVcY8eXIQoCgQCwQNOQICMg4MMgIODTECAXMU9enAR5lOB\nQCB4wAkNNRMXZyAx8ZZPUXB7CFEUCASCBxyNBlq3NtO6dVX35MFHmE8FAoFAIChAiKJAIBAIBAUI\nURQIBAKBoAAhigKBQCAQFCBEUSAQCASCAkT0qUAgEDzgnDt3jsTERLRaLY0aNcLHx6equ/TAIkRR\nIBAIHlDy8/P573//qzp29OhRateujZOTUxX16sFGiKJAIBA8gFy6dInDhw/bHZdlUc3mThCiKBAI\nBHeRO93Bouj1wcF5xMdvIy8vr9j2Pj4+YpV4BwhRFAgEgrvIne5gUfj6IUMO0bPniRLb+vn50bx5\n88ro9t+WKo0+nTlzJk8++SS+vr40btyYgQMH8tdff6navPHGG3h4eKj+dOvWTdUmNzeXCRMm2BzM\ngwYN4uLFi/dyKAKBQFAs1h0sGjSwEBVl4sgRDQcOaLFYyn99fr7MqlWrSxXEzp07C0GsBKp0pbhr\n1y7++c9/0rJlS2RZ5qOPPuLFF18kISEBd3d3W7uuXbvy73//22Yrd3BwUN0nIiKCuLg4Fi5ciIeH\nB5GRkQwYMID4+HgkSWyhIhAIqg7rDhajRuUwebJzsSvG0kysdesmsnLlsRLv7+joTdeuIfdiKH8L\nqlQU16xZo/r/ggUL8PX1JSEhgfDwcNtxR0dHateuXew9MjMzWbp0KfPmzSMsLMx2n6CgILZt20bX\nrl3v3gAEAoGgDKw7WBw5olHteXjkiAZJUs6XZGLdvHlzqfeOiHiad991AvLvwUj+HtxXyftZWVlY\nLBbVKhFgz549NGnShDZt2vD2229z5coV27mDBw+Sn5+vEj8fHx+aNWtGQkLCPeu7QCB4OJEkHQcO\naFmzRlchs6cV6w4WwcEW1Z6HJpNEeLgbf/yhtdsk+MKF82UK4sCBfblwwUPsnVjJ3FeBNhEREYSE\nhPDYY4/Zjj3zzDP06tULPz8/zp8/T1RUFL169WL79u04ODiQlpaGVqulZs2aqnvVqVOHtLS0ez0E\ngUDwgFJl9f7MAAAgAElEQVSSCTMtzYcXXrBfxVU0qtS6Yjx6VEPt2jJJSRqiokxcunTLxJqXJ7Fq\n1epS++nv35CbN1vw1VdGsXfiXeC+EcXIyEj27t1LXFycyg/Yu3dv279btGhBSEgIQUFBbN68mR49\nelRFVwUCwUNIURPmli03sVgkTp50JSrKxBdfOJGcrCExUaJ164pHlVpXjAYD9Olz67q1aw2Ehpr5\nz3+SyMzcW2ofn376abRaLSD2Trxb3Bei+M4777B+/Xo2btyIr69vqW29vb2pV68eZ8+eBcDT0xOz\n2cy1a9dUq8X09HQ6dOhQ6r1OnTp1552/zxBjenAQ47q/OHGiscqEefkyDBlyS7ymTTPx/vvO1KuX\nzalTSXbtT57MR68/jSTpSEvzISnJAT+/PLy8UrBYbvn8Ll5sorru4kUzW7aUbioFCAgIsD33KosH\n9b0qiSZNmtzxPapcFCdNmsSPP/7Ixo0badSoUZntr1y5wqVLl/Dy8gIgNDQUnU7H1q1b6dOnDwAp\nKSmcOHGC9u3bl3qvypjA+4lTp06JMT0giHHdf2RlaW0mTAcHmStXtCrxcnGR2bzZQGioIxpNE7v2\nzZrpaNKkCQcOaFXm1mXLXKhdG5t5tfB1jRtfw8Pj11L71blzZ1xdXSt9vA/ye3U3qVJRHD9+PKtX\nr2bZsmXo9XqbD9DNzQ03NzcMBgPR0dH06tULLy8vkpKSiIqKwtPT02Y61ev1DB06lClTplC7dm3c\n3d157733CAoKskWjCgQCQVlYfX6JiYqPUJZRiV5wsIVWrcwltrf69ooGzRw8qGPGDCebedV63ZUr\nP5XZp8JR+IW50yo5gpKpUlH85ptvkCSJF154QXV80qRJTJo0Ca1Wy7Fjx1i1ahU3btzAy8uLLl26\n8N133+Hm5mZrHx0djU6n49VXX8VkMhEWFsaCBQtEjqJAICg3Vp+f1VdnsUBcnIGTJ/Np1kxnF9BS\ntL2VwkEzDg4yer3yb6svMjfXxJUr20vtS9u2be2CBwtzp1VyBCVTpaJ4/fr1Us87Ozuzdu3aMu/j\n4OBATEwMMTExldU1gUDwN8cqenr96QqZGa0rwePHNVgskJcHkZFGPD3lMtMsoOTVYWGKrkatgiu4\nc6rcpygQCAT3gntlcrSKacuWZn77TUufPm7IsoVly0r/ge/vH4DB0Jw1a8ruX9HVqMhVrDyEKAoE\ngr8FhU2O/v5mPv/cSFqaRMOGisCcPKkpt1iWR2CVHEeJpUu/L7Nv4eHhHDhQfpNoSf5MwZ0jRFEg\nEPwtKGxyHDkyV5UrGBVlIiLCpVQxKiyEnp4yb73lwrlzWts11nJthYWyevVNpfZJlnV4enbDYjFX\nyCRakj9TcOcIURQIBH8LCpscMzNRCVBmplqMJOmWuNWooTwmiwa3LFqUzZ9/atHrZS5dAkm6dX7V\nqtVs2VJ6f4YN64PJdEtUhUn0/kCIokAg+FsQFGRm7VoDZ89q8POzqASoRo1bNUk9PWXCw93w9pYZ\nPToHN7fG3LhhH9zy558apk93xsFBZvVqA4cPK2XbGjbcUGZfcnO7YzJpbfdKTJR46aV8YRK9DxCi\nKBAIHlpKMnn6+5tZssTA4cM6ate2oNPBrFnZBAdbuHhREapRo0y8996trZ7WrjUUSbVQXiMvT2Lf\nPi0hIWWL4aVLT2EyueLmZr8qFCbR+wMhigKB4KGlqMlz2jQT77yjCKNWCzNmONnObd5sKEjOV0TT\nKlqAzeRqXclZBRaU1WV5BNHZ+Xn8/WVSUmQCA0WgzP2KEEWBQPDQUtTkmZWlHHdwkPHyklXCFBRk\n5sABZVX52WdGLlzQqFZz9epBq1bKSs5iga+/NnL1atlVaXJyGuPu3lQV2GMN5hGrwvsPIYoCgeCh\npWjwSvv2Zr7+WglqCQy0FJgslbZFUyKio41Mm2YiK0uiZct81WpOo6FcglinzvOEhppZsUK9wfDx\n4xpRgeY+RYiiQCB4aCiaPxgcbGbLlpukp0ukpWlwc4OXXsovNg+x6Kry6lWJ6dOVNI3ly/M5eFBL\naKiZM2dOlWu3igED+tu2oKpb10JkpBG9HubPd8TTU71Tsahlev8gRFEgEDw0FPUhrl1rQK+XOXtW\ny40bEjdvShiNSpBMixYWjhy5JUTWJH7rtUFBZlauvEl6uoaxY11JTS1fIr4sP8+ECcquFnl5Eunp\nEi+/rE7l8PJSp1uIWqb3D0IUBQLBA4PZDAcPajl+XIOnpwUvr1tmULMZjh9Xmyn379fy6KNmVRTp\nN99k8+efGm7cMPPSS7eE6NdfbxIXZ+DYMQ3Z2RITJypCOG2aifx8A0uX/lxm/8aP70tqqmTblHj0\n6BwuXNCoNim+fl3i2WfVK0VRy/T+QYiiQCCocoozH8qy/bFDh7Q8++wtIYuJMZKRIZGWpkSEurur\nV3shIWby82HChBz0epkvvnDiyhUJHx8Lly9LeHvLjBplIjNTIjVV4sknzfz1l4a5c50YNSqH7GwI\nCNjArFml999qKp02zcSXXzrRsKGZGTOyGTrUfpPiFi0sdqZRkbh//yBEUSAQVAlFcwiLRmdKEiqT\n4pYtN8nMlFm4MJu0NAlJAje3W9dFRhqpXh1bcIxeL2M2w5Ah6nJuderIXLyo4ZFH8hk9Oke1ivz+\newN5eRQcd2Lp0jVljmPAgP6ANbpVYvToHIYMcWPChBzV6k+nU8y5oaHmYn2fIkXj/kCIokAgqBIK\n+9EiI4125kPrvwG8vWWuXZM4d04xj86d60RqqsSqVQZbG70eJAmVyMXEqO/r6Chz/brEjRuQmytR\nq5ZFdT45WYMkgb//BpYuLb3/w4e/wHff5alWeC1b5pOWpvRRr1ev/rRayMmBdet0xdZOLU+KhgjI\nufsIURQIBFVCYT+aXk+x5kPrsdGjcxgwQG2K/PJLJ3JzsUV1rl+vY8oUE4sXGzhyRIder76Hg4OM\nt7fMsGGuqqAX63l/fzO1aslotaUX8Qa4fLkH77xj4epVxX+YmSlRo4Yigg0aKCXkvvjCiagoE46O\nMrm5Eg4OqAJurIUEKuJDFAE5dx8higKB4I6xrmBOnGhMVpaWoCCzKrKzuBVNYT/a/PmOrF1rIC1N\nbT60mhRzchQBbdDAwqhROTg6ynz+eTYXLmgACUmSmTzZREqKBh8fCyEh+Zw/r9Q4XbPGQEKCluBg\nM4mJ6kCcy5clFi82kJEhUbNm2WL4ww+hrFzZlBkzsomIcCEy0sT06c6285GRJpYvd2DtWgNnzmiQ\nZdDp4MoVCVdXdYWcwoUEyutDFAE5dx8higKB4I4pLhWiqI+w6NZK5ckhtJoUDxxQzIyjRuUwebKz\nrVi3Tiej18v88IOORo3MnD2rxdUVIiOdbabJVasMtGhhxmKBgAB1IfDcXIlBg6qxatXqMseYm9ud\nnTuVvEUfH0XEatSQ8fc3M3JkLpmZEBhowWx2JC1NIjjYogoKKlo7tXAhgfL6EEVAzt2nQqJ4/Phx\nTpw4wdWrV5EkiZo1a9KsWTOaN29+t/onEAgeAIquYM6e1ditaApvrVQ4mKawSfHnnw1oNNitMEND\nzaxebbCt9IoW6160KJtBg4o3TZ49q6FRIwt//aUhIMDCJ58YqV/fgpOTjNH4M6tWlT0+a3Tp4sUG\nnJ1Br7cwf74BDw+ZsWNzMBollixxsqVjeHrKtGypDp4pLpimov5Asbnw3adMUdy1axfLli3jp59+\n4saNG8iy+peJJEno9Xqef/55Bg8eTMeOHe9aZwUCwf2H2QyenkVXMBa7FU1xpj/rv61/nzih4V//\ncrHzmWk0kJSkwdtbeZ3MTPW9UlJKrnHaqJGF/v3diI01kpSkJPHn5kr4+5ddxPvate4YjRKxsdl4\nesrodHDhggaNRjHT9utnL8RK/4rfCPhO652KnTTuPiWK4rZt2/joo4/Yv38/TZs2pX///oSGhuLv\n74+7uzuyLJORkUFSUhIHDx5k27ZtrFixglatWvH+++8TFhZ2L8chEAiqiEOHtLz1lktBKgS0b2+m\nQwf7FY1WqyEmxsiNG0pQStOmFlUAzOjROVgsEBNjRKeD1FQN164pxbdlGfz8LMTEOLFqlQGDQSpV\nhFu3VvIEfXxkMjIUofTwkBk3zqVcVWkAdLrn8faW6d//VmBOVJQJoMCfaCwixEqb/HyJevXu2nQL\n7jIliuKgQYMYPHgws2bN4tFHHy3xBh06dGDQoEEAHD16lIULFzJo0CAuXrxY+b0VCAT3HWfPSpw7\np2XdOgfGjMnhzBnFJtihw60VjdkMWVmSyuT5888G8vKUCjMODjKvvOJmiwKNjTVy/bqy+vvhBx3V\nqsmYTDBxYg6JiRpmzXK25SMGBeUTHX3r/yEh+YwbdyvdYfVqxZeXlla+Mm2Ojs9z/boion/8oVUJ\nX3Y2NGliITLSRGCgWohDQvJZvjzfVmVH8GBSoigePnyYOnXqVOhmjz76KLGxsURERNxxxwQCwf1D\n0UT7zEyoV0/xcVlrho4Zk6NKd1i71kCXLorP69AhLSdP2u8UMWaMi12e4siRuYwb58LIkbn8+aeG\nwEALkya5MH26icuXoWFDC6mpkk2EU1M1jBmTw2efOXHwoJZFi8yMGJFrS+A3GGDu3LO4u/9e5jh1\nuuc5eVKLTifj4iJTu7baLNy8ucU2Rn9/M6tWGbh2TeQMPkyUKIoVFcTKulYgENxfmM2wc6eWPXu0\n6PXw4YeOjBiRyz/+4cyWLTfJzoboaCOXL6v9emfOaEhLk2jYUObmTZm6ddUrqzp1biXOFxafzExF\nGCdPvrWqXLHCwPnzGho2tODgYGHJEgOOjqhyF5cvN9h8fu+/f+vapUu/x9299DHm5nanWjULRqNk\nl/y/bJmBy5c11K6tBOd4e8skJyur4/37tTz1lLlgc2L7eROJ9g8e5Y4+zcvLw2g0otfrbceuX7/O\nkiVLuHHjBj179iQ0NPSudFIgEFQdhw5pVekV06aZMBohKsrEkSNaatVSUhuaNzerRM/Hx8K4ca62\n1ImmTc2qRHdXV5k5c7LJywNXV0X4DhxQ8gkPH1abLU+c0NCwoczp0xoCAmDxYkfCw/NVbS5c0BAc\nnIefn8zKlQbOn5eoV698ifgA6eladDp14I+Dg+LPHDv2VvBPVJSJiAgloEavp8RcQZFo/2BSblF8\n8803OXr0KDt27ADAaDTy9NNP2/YVmzNnDhs3buSxxx67Oz0VCARVQnG71wcGWlSm0mnTTKSlqau7\nuLjIxMZmk5io5epVDUlJ8Oij+Rw/rsXHRyYxUatamfn7m/n0UyOOjkqgTGGBbdHColoVrlxp4PRp\nraqNr6+FzEwNRqMGrXZTmcEuw4f3IjvbiaVLlZXg2LGuxMQYVff09LRw6JBONX5XV1m1N+LnnxvL\nNW8i0f7BoNyiuHPnTl5++WXb/7///nvOnj3LypUrCQoKom/fvsyYMYPvvy9fZJdAIHgwKJww7u9v\npm1bM0lJ6u2QsrIksrK0Raq7GGnRwqIyRxZeZS1dqtQtDQ01M3RoLh4eMpcuafDyspCVBYsWZZOS\nolSxcXS0qHa6SEpSdrIoHFxTvbqFq1c15SrT5uDwPKNGyej1JiZNUiJnAebOdWLxYgPp6Uo/atRQ\nzLyFhdLLy0J+vmIHnT7dRGZm2fMmEu0fHMotileuXKF+/fq2///888+0bduW8PBwAIYMGcKssvZX\nEQgEDxyFE8aL7mZh3Q5Jr5eRJGjfPo+33srl+nWoV0+2FfAGCvyFanPnnDlOxMYaOX1ay7hxt0yU\nq1YZGDBAnQoxfbqz7d/+/kqwjTUvcNEiM9evx5XpszMaazN1ahhjx+YwfbqL7fiVK0q/UlMlNBoY\nN87Flibi5mZh9WoD6ekSderIXL2q/H39ukRkpDMLFxa/UgwKMrN2rYGzZ5WiAcHBwnT6IFBuUXRz\nc+PGjRsA5Ofns3PnTkaOHGk77+rqSpY1Y1YgEDzQFA0SadlSSa9Ys0ZtStTplBVfdrZEnToWmjY1\n07+/G1FRJvr3dyYqyqTKQ3RwkImONrJ+vQ4/Pwtjx+aQmwsuLrLN9KrXK+kThV/HYoGZM7PRaJR8\nxcxMCvyGGry8ylfE21qVZtUqA1otdv7PyEgTdetakCRl/8XAQLOqXNy0aSZGjXLm119vkp8vkZMD\nCxcaS6wqc+SI1q7UnfAp3v+UWxRDQkJYsmQJXbt25aeffuLmzZs8++yztvOJiYl4enrelU4KBIJ7\nS9EgkS1bbmI2S5hMEjExRtvWTd7eMm5uMhkZEidOaHFwuLUizMuT+OILxcTp72+25SFao0kLl2VT\nVobq84VFy9/f3of5/vvO5U7EL7znYWKiBgcHZd9FR0fl3idPatHrZfLyYPDg4svFZWUpY0pOLl9y\nfnE+RUkS0aj3O+UWxffee4/evXvTuXNnZFmmZ8+etGrVynZ+06ZNtGvX7q50UiAQ3DvMZvjrL/vd\nJApv1rtkiYFLlzRERrqoNuq1BqpY9xJMTlbSI6Kj1dVfzp/XqHa9v3BB/XoXLmiIjTWSkwNaLXbp\nHo6OcrkEccCA/ixZYi+whw5pcXODpk3NHDumIytLCQ6SJHX0aeFycdYx6fWUK6q0qE/R01MW0agP\nAOUWxZYtW7J371727NlDjRo16NKli+1cRkYGw4YNo3PnznelkwKB4N5x6JCWmzfVZdRSUtSidfiw\nlurVITlZw40btwRr7lwnVq26SV6exMyZRjw8lM2BNRq1ubJePYtKTOfMyVaVgNNqwWBQ7jlhggvR\n0beiQsuzowXA9evdC/6+FRUbGGhWVbtZudKgCgRauVItoIGBFiIjjbRta8ZggM2bDeWOKi1avPvi\nRcp1naBqqdAuGZ6envTq1cvuuLu7O2+++WaldUogEJTM3UwKN5vh6lWl3mjhzXodHG6Jmr+/meBg\nM8nJGmbOzMbPz8L06dn4+8scP65BkiQmTbolPN98k42bm5IIL8tK8fBq1Sy4uhYWWlTiFB1txM1N\nJjbWCVBSH1atMpCX91OZY7D6DpcuNQAwc6YT06ebSE2VSE1Vku6V11RWrIWF6vp1iYULs7l+XSI/\nHyZNciE5WcPnn2cTGGgp8B+qU0FKiiq1L95dvusEVUuF91PcuXMnmzdv5vz58wD4+voSHh4udscQ\nCO4Rt5sUXlRMg4KUJPnjxzV4elrw8lKS8K1bOcXEGJkxw8m2krOutoKD8xk69NbrR0WZ0Ghg2LBb\n0aOFfXHHjysipNfLqio11pqkeXkSV66oV19XryqrOmu5Nl/fE+TlnShzjFrt88yalY1WC9euSUyf\nbqRZM2UfxwYNLLi5qVesfn7qdAu9XqZ//2rExBhVIp2dLREe7kZcnMFuS6jybt8ktn16MCi3KGZn\nZ/Paa6+xefNmZFmmevXqAGRlZTF37ly6devGwoULcXV1vWudFQgEt58UXtxGwG+9pdQYTUnR0rq1\nmfx8bPmAa9Y4sGKFgbw8yMyUbObMtLSS0yysfxf2xQUGmsnKUrZ+Kip81tVjUXEKDjaTlqYpdzDN\noUM9bcn0Vv+lstO9zMCBypiXLzcQGels282jbVszDg4WVcEBNzclMd/FRS7wj0KtWjKTJikCf+kS\nSJL2tvZEFNs+PRiUWxQnT55MXFwcY8eOZcSIEbZI07S0NObPn89nn33G5MmTiY2NvWudFQgEt58U\nXtxGwG+9lcOkSUpOXmCgURXhGRVlQpLglVfcWLQom9Gj1cE01nY1asjIMna+uOnTjQQG5pOdLZGX\np6FNGzP+/mabWTUrSyInRxHQpk2V4J3z5zXUr68k8Ts4WMoliOfO9bRt8DttmonDh3XMmOHEwoXZ\n+PhYiI01MmOGM8ePazh3Tss77yj5iZ99lk21ahJNmijFCPz8lCIBhfMXZ83KJjLSmeRkTYWCbAQP\nLuUWxXXr1jF06FAmT56sOu7p6cn7779Peno669atE6IoENxlbtcMZy+mFq5dUyrHpKcr/rai5cyS\nkzUsWpStiv6cO9eJb77J5vhxDSEhZlxcZI4e1dna5eYqPsXRo3P46y+dXSDL2bMafH0tLFrkyJAh\neaSkKOI4a5YTb72Vy7BhruUSwzfe6MnVqy4qc21WFgWpFRJ//aVlxgwnoqJMvPFGjl2wj7+/mdxc\niYsXNdStq2z1ZLFIdubVL764xqVLriVulCxWfg8X5RZFs9lMSEhIiedDQkL48ccfK/TiM2fOZOPG\njZw+fRpHR0fatGnDlClTaNGihardxx9/zOLFi8nIyKB169Z8+umnNG/e3HY+NzeXd999l3Xr1mEy\nmejSpQuxsbHUEzt9Ch5CijPDFfYX1qqlJL/XrSvToYMZXcG3vHCFFT8/C7JsoUYNDWPGODNyZC6O\njrIqB9FoVMStaN5gaqriA9TrISNDEc8GDSxcuiRRrZpM8+b5zJhh5sYNRezy8pRSbaNG5XD2rAaz\nWSItTcOQIXmqbZhiY40kJWnKJYgXL/bg6lVlRWfNIbSuUK19topjZqZEzZoWfH2V3TUOH9YSGGjh\n3DktEyeqC30HBMDq1QbOndPg72+hY0czSUlJdOzYpOCVRbDMw065RfHpp5/ml19+4bXXXiv2/JYt\nW3jmmWcq9OK7du3in//8Jy1btkSWZT766CNefPFFEhIScC/Y62XWrFnMmzePL7/8ksaNGxMTE0Pv\n3r3Zv38/bm5uAERERBAXF8fChQvx8PAgMjKSAQMGEB8fjyRJFeqTQHA/Ud5I06L+wmnTTIwe7aza\n0/DYMQ1//aW1iVXjxsp1Rbdp+uabbJycZMaPd7WJWXKyhlWrDGRmYkvFkCRFoLOyNPzjH66q1eCl\nSxq0WvD0tDBnTjayjKqM28yZ6q2mRo7MJT//J3x8Sp+Ps2c9yMrqRFBQ0YLhZlvN0vHjTZhMEnPn\nOtnMu40aWbhwQcOyZQ689VZugbDb+0bT0zUMHpwHFL/6FsEyDz8liuL169dV/3/nnXf4v//7PwYN\nGsSIESNo2LAhAGfPnmXBggWkpKTw3XffVejF16xZo/r/ggUL8PX1JSEhwVZTdf78+YwZM4YePZTt\nXebNm0eTJk1Ys2YNw4YNIzMzk6VLlzJv3jzCwsJs9wkKCmLbtm107dq1Qn0SCO4nyhtpar+ThWTz\nG3bsqERfHj2qqOmSJY6kpkosWmSgeXMLf/6pFocrV5Q9ELVa2U4wFy3KZuDAWwJo3e6p8PW5udit\nwHx9zao2eXng7X3LnNuw4YYy58KaarFoUTY3b0osW2YgOVmDp6dSh9RgUAJzVq26iSxLTJhgok4d\nC46OMsnJWurXtzBpkomTJ3XodEoAUFHfqKenhQMHtCX++BDBMg8/JYpiQECA3SpLlmWOHTvG5s2b\n7Y4DtGvXjqtXr952Z7KysrBYLLZV4rlz57h8+bJK2JydnenQoQMJCQkMGzaMP/74g/z8fFUbHx8f\nmjVrRkJCghBFwQNNeX1YRf2Fer1M+/Z5+PlZ2LJFq0qhsPrfrl7V2EyOha/NzZXo318JrinqZyz6\n//PnNej1al9derpaZB0cZDIz1b66evUsxMaWv0xbYmJPPv88m/r1LYwdq+RALl9uICLCRSXQK1cq\nuYnjxilRtUeOKFG1BoPE/v1aHnnEotqqyrqqrVPHQlqasn1UaqokAmj+xpQoiuPGjbuX/QAUM2hI\nSIhtT8a0tDQkSaJOnTqqdnXq1CE1NRWA9PR0tFotNWvWtGuTlpZ2bzouENwlyhtpWtRfePMmTJyo\nFOeeMCFH5dfTahXfoaOjzPXrGqKjHW3bNJnNSr1S64qxbl21YBZe3Tk4yDRsaGHMGBdiY5XqNRkZ\nyusUbqPRQJ06SjL90aNaWrY04+goM378ujLH7+b2nC3ox8vLgsUCZrMiuMePq8XXuu3U9esauxXu\nmjU3MZmUoBrrllfnzmm5eFHD0KF5rFmj4803b6WTiQCavy8liuJ77713L/tBZGQke/fuJS4u7p75\nAU+dOnVPXudeIsb04FCecdWooWP9eh/On3fAzy+PGjVSOHUqX9VGknSkpATQt++t1eCiRdmcOaOs\n6qw1O0eNylEJRXS0kS++cOKNN3K4fFkRxMLnnZxknJ3h00+NeHsrQvfxxy62PQxbtconJkapFmM2\nw6uvuuLtLTNrVrYq90+rhUuXlAIBtWvL5Ob+RG5u2fPj4PA8BgOqmqtRUSZGjcohIsLFLhE/O1vi\n7FltQYqFOm8yM1PDq6/aFxT38rJw6tQp6tXzw8HBtdBKNptTp5Iq9F49iDxs42rSpEnZjcqgwhVt\n7gbvvPMO69evZ+PGjfj6+tqOe3p6Issy6enp+BTywKenp9vyJD09PTGbzVy7dk21WkxPT6dDhw6l\nvm5lTOD9xKlTp8SYHhAqMq5GjUApGOWI2dzQLvDm4EEtCQlaOzOndVX3xRdKWoKjo2yXPG8t2L16\n9U0uXNCyaJGBP/9USru5u8v076/eyeLgQS379ukKRNXCnj0OPPmk2XbPCROUCNKIiFu5fpGRRlq3\nNjNwoFu5zKVDhvRj5UoD+/dr8fCQi4ibhLe3xZZg/913Bo4eVfo7d64TQ4fmcumSkhNZWDCLVsxx\ndJT58EMTbm4yhw61oGlTS5EAGkc0miYVfq8eJB7Wcd0pJYri99+Xz9ZflH79+lWo/aRJk/jxxx/Z\nuHEjjRo1Up3z9/fHy8uLrVu3EhoaCoDJZGL37t18+OGHAISGhqLT6di6dSt9+vQBICUlhRMnTtC+\nffvbGoNAcL9y8KCWZ59VV6VJS5Ps/Hp5eRKff+7IypVKRZq0NMW0WDh5vnVrM198YcDbW+biRQ21\nasm2gtxr1jgwaJBakA4e1NoCa/R6Jeikffs8WrfO58IFDTExRmrXlm2J7t7eMhMnmvD0tHDz5kGW\nLr1Y5vhSUnrw/fcGm6/Sx0dtrg0MNKPTybz1VjUAoqNvlaKzBsvUr2/hm28cWLQomz//1BAYaEGj\nUYetBp4AACAASURBVN/H39+CRgOjRrna5iMuzkDfvvll9FDwsFOiKA4fPrzCN5MkqUKiOH78eFav\nXs2yZcvQ6/U2H6Cbm5st3eL1119n5syZNG7cmEaNGvHpp59SrVo1mwDq9XqGDh3KlClTqF27Nu7u\n7rz33nsEBQXZolEFgoeFon60P//U8MgjFtLTFZPpqVMaHnnEzNWrEkOHKjbKpCQlDcNolIiNNXLx\nogZ/fzOnT2uxWOD0aQ1r1jjQt28eOp2Mo6PM1KlGW+6fVUhCQpTKL61bm0lNVfyNkyZZbKtJf38z\n48blMHeusodi/foWLl7UAD/h7Fz6uMaP70tqqsSHHyqFuwGcnGSysmDVKmXVqNdDZKQzs2bdqqgz\nf74jS5YYSElRolDd3S189JEzkyYpaSRt25q5cQPy8yWb2VevV6JVb95UFwcXfkQBlCKKBw4cuOsv\n/s033yBJEi+88ILq+KRJk5g0aRIAb7/9NiaTiYkTJ9qS99etW2cTTYDo6Gh0Oh2vvvoqJpOJsLAw\nFixYIHIUBQ8VZjPUrauYDvV6WL9eR7NmFvr1U5s48/LgzTcV/9iSJeqtkZYsMbBsmQMTJ1qYPduJ\nkSNzycyEiAiTakslazBKVJQJBweZunVlZsxw4sUX8/n9dyX5PSVFa0utGDVKaVerlpLK8c47Lrz7\n7k2Cg8tOtRgypB/ffJNNRoayM4XRKOHndyvKNDLSqCq9lpysYfFiJWq0YUMLqalSQSStBa1WQ79+\neZw8qbUVIZg2zYSTk8z779+ah08+MZKToxZ9kYgvgFJE0ZqHeDcpmgtZEoVFsjgcHByIiYkhJiam\nsromEFQZhRP2GzZUzH4nTyorocK7069caeD339W+xP37tcAt/1lamtqXlp6uoX//PPbvt0/aL7yz\nhcUCo0blkJkp0aKFhaQkDS++mF8kotOAxYJqX0QHB5nvvstGp9tU5jiTksKZM6e6LdIVsBXeLtyf\noqZhT08LmZlKtZ2oKBOTJzvj7a1E1Bau3Wq93slJZsUKR5vAe3rKREYqIjttmgkXF5ngYItIxBcA\n90mgjUAguEVRv+HMmUYMBomcHGVHB4sF/P0tJCdrCA5WB5To9QC3/GdF633WqqVs+qvXQ2ZmyTtb\nNG9uthPgkyfVptu0NCVgxcVF7XssjyCePduT9993tkWB5uVJdvfJyoIGDSw4Ocm2lA9XV9mWKrJo\nUTaXLkmsXGlAkmT279fZFTCwjn3CBBPOzth2BbHmW77/vjObNxto1UoIokChRFEcPXo0Y8eOJSAg\noEI3PHPmDJ999hlz5869484JBH9HivoNZVnZEik21si//uVMVJRJVTPUKg5168pERjpjNksFBbu1\n+PpaVMExkZHOxMYaGTfOhenTTSrBbNPGbDPNFt3m6ffftXYRnTVrKtsyWVdg5YksTU7WM378s0RG\nmmz5h9ZdLKZPV+++ERho4eOPjaoSckuWGMjJkcjOllSrwlWrbtoVIQgKyicqSolKnTLFyNNP5/PN\nN0YuXcIWoCRKtQmKUqIopqam8thjj9GpUydeeuklwsLC8PPzK7ZtUlIS27Zt44cffuC3337jySef\nvGsdFggeFsxmZVV4/LgSGermJpOSorFLmK9Tx8LIkbk2U6nFgi0PUK+XSUrSkJUlMWuWIxMmmGxJ\n9DVqyJw8qcXRUVb55K5fVwJurl1TVlmHDmlxd1eKiFvbLVlisFuBJiVpbP45Pz9lpZqXpyT7lzfV\nonDFHQcHGZNJGU9qqoTJpOzYcfGiRECAUqs0P1+9mj18WAfISJJGVZDgwgUtkqREo169KtGhQz7n\nzmnJzJQYPTqHpk0tthJtAkFplCiKa9asYdeuXcyePZuxY8disVjw8PDAz88Pd3d3ZFkmIyODpKQk\nMjIy0Gq1PPPMM2zYsIHHH3/8Xo5BIHggOXRIbSaNijIREeFiW/39+aeWGjUUAcnMBL0e/P3NNGtm\n5vfftej1MvPnO/Lpp0Zyc5XcxOxsSVV4e+VKJb3BKnD+/maqV1dSMGrXtnDtmsS0aS62jXmtqRSu\nrrItmAXg88+diIkxotOBVott+6dVq1aXa6yOjs+xaJGy3VTz5haSkiQWLcpm0iQXxowxsWqVgYsX\nNbzxhtqnWNT8GxKSj4sLODtbii1IMG2aienTXfj++5uMGXPrXmvXKv7P8m4ILPj7UqpPsUOHDnTo\n0IHLly8TFxfH3r17OXXqFOfPnwegVq1adO/enXbt2hEeHm5Xjk0gEJRM0bqm1h3sz53TcvWqhJeX\nhQYNLNSqZaF9ezPTpzsRG2u07SRvFYHDh7UkJUmsXm0gMfGW2dPbWyY3F3Q6WLlSMRd6eMiqCjEr\nVhjw9zfj42Ph1Cll70RA9RqLFxv4+GMj48e7qoJqyiOIhw71Qq+XqVlTKdEWGmrm3DkNGo3EpEnO\npKYq+y8OGOBGbKzRzie4ZIkjq1YpWznl5UmMH6/UJl282MC0aSa02qJ+SKXPaWn/n70vj4viTvP+\nVlXfjSACTQsiKOKJgjFETTKTzbtjspPJfRHzemySNxsUdUSDBzHmM+KgiIBJiJrdwYmgAkaTbHYO\nk0xmsjM7GV3jrRNPTrlBoaH6rqr3jx9V3dXN0Ro8p76fTz4Kff2qMTz9PM/3kI9/Dx5kYDQqnaKC\ngREQ0SYyMhLz58/H/Pnzb/R5FCj4h4Gvr2lICJEEiJZlPA9s2qRFZibR3K1c6cDhw3K2qdFIrNim\nTuXw2WcqPPqoZ++3bJkd8+bJCTv19fJC3NhI4913bTKLuE2bbLLCynEUrl6lkJNjQ3c3AjbxPnHi\nCamb3biR6CMvX6ZQWKjDwoUOLFlil3mthob6m5o3NVGorqbR1kYjJ8cjdrx8mcbWraR79X7MlClu\nfPGFG4IAv/GvokNUEAgU9qkCBTcBvrmIoaFGOBzEJLulhewRdToBhYVWhIcLAAQYDMD//b8CLl5k\neizMHH7yBO8g4IoKFsuWid6kpEMUNYQWCwWTiYjpff1CfUk1I0d6dpqLFjlkRJdACuLKlc8hJ8cO\ngAJFCXj/fSsWLybOMbm5NjQ1UVi9Wo/cXJs0+pwxwwWjkRTk2FgeBgOP2loG69fbERXFy5x61GoB\n0dFkdJqVpZOud8oUDlFRRF7B84RMc/AgIRht367Bjh22G/tDVnBXQCmKChQEiEADf3t73F//yki/\noNev16CwMEbmK/qf/9kNh4NCaysJAB41ivMbk1IU+eW+bp0dNhswcSKHzEyS7OBykY6quprB6tWE\nLFNW1u2nISwvZ1FSwuLUKY9fqC/rs6XF4/6iUpHv5+V9hZEjB9YV19U9joICmyS8F5mhq1bZYTQC\nra0UKipYNDaS4ltQYIPTCYwaxcskIBUVLIxGARERHFgWmDTJjZISFm1tNGJieKhUPDQaSna9H3xg\nxSOPuACQ3eGDD3IwGkmHuGOHTWGZKggISlFUoCBABBr429vjnnvO87j8fBvsdmD1ansP6YSGzUbJ\nHGU2b5bv11QqASoVUFRkxfnzDMaO5eFwUJIlmujnmZtrQ1GRFgxD9ngUBWRmOhAcTIzBjxwh+YJ7\n9qiRlubEggV2BAWR0WpEBGHANjQQk3BREB/I7pBhHsPs2f6ZjS4XGdd2dtJYvNhTnEtKWLAscbCJ\ni+P9utVLl2hERQlwuwW88orneYuLrejqonDhghoGg7xrnjCBl31IUQKBFVwPlKKoQEGACDTwd6DH\nhYYKsl3funV2vPSSUVZIIiPlsgyOo5CVpZO6JYOB7B9LSli0ttIwm3lYLOgpqFZotcDx42pZl5id\nbcfIkTza2igUFtpw+DCDxER5EkZ2th1jx7p70uvdcLu/GvD65sx5AQUF8iKu1QqIiSEWbPX1NDo7\n/Z11DAYBgkA+NEydKtdAxsTwEASyOxQt5+rqaJw9S4zCDQZP19zVBcyYwSmdoIJBgVIUFSgIEIEG\n/vrCZJI/7upVeYHo6iJfM4yAPXtY1NdT0OuBzz7rxrlzDMxmAYWFhIxy6hSDnBwd9uxhMX8+yS9c\ntMiBlhYaw4YJcDjISDE4mPcrRAaDgPZ2ShYJlZUlL2YWC4XvvlMjKenzAa9LrX4E331H/FHdbv+U\njl/+0gaKIiPTkBD5exAe7olz+vWvtfjySw5lZYQ9O3o0j6tXKSxY4NlllpWxOHmSFM/cXC3q6xlk\nZNih0QBjxvAYOlTxLVUwOFCKogIFASI5mfPJ3AusM7FYIO0Bx48ntmW+LEu1WsDYsXJzb2/dYn6+\nDZWVNOLjefzHf7BoaKCQnW1HdDTvF567Zo0OZWUsLBbBr/s6fJiB0+kRxPsSdxITOTDMwDZtK1c+\nhw0bPEbdMTG8364yK8uGiAgBHR00kpPd2LWLRXMzjREjeNnOUeyQjx7lkJOjQ2GhFYIgF+0fPcog\nJ0cvaQ5bWiiYTIJsLB3oOFuBgv4QcFGcNm0a1q9fj5/+9Ke93v7ll19i9erVOHLkyKAdToGC2wnX\nu6OKigJeeUUndXUTJ7qRnW2H1UqKJMsSpqTvXk3ULaalOWWkm507rRg2jMdLLxmRmenws4TLzraj\nro7G2LEc9u4VCTw0qqtplJZqsWiRQyqE27drpGimpKSBEy0cjjC0ts5EdrYdOp0g5TM2NVHQaiHL\nNjSZBNm5xSKflWWTRTaJ2kLxw0FUFA+Oo3w+OEC6f0sLheefd2PfPrnXqSK5UDAYCLgoVlZWoru7\nu8/bu7q6UFVVNSiHUqDgboLYYba1kRSIDRs4yaKtsFCLlSvtqKmhYTLJ94iibtHXuLu+noJaTUaP\nYiERHxMXx8s8QUtKWL/9ZVGRFp980gWXi0ZNDQ1BQEAFUat9TCb8z862Y+tWK+x2CrW1NGga2L2b\nRV0d+Xttbe9F3rc7nTLFjdJSN7q6SJ7im28awDCC5NmamMgjK4toFOPiOJhMAvbtU8FkEmShyUr0\nk4LBwDWNT/vLJ6ysrERQUNAPPpACBXc6fKUb48dzsFiA+npaMuMWf5GXlpIismePBmvX2lBcbEVr\nK4X4eB61tTSysuyYNs2fhKJWk8IiZh7qdKQza2yU7xGbmuSFSaMheYccRyM11Yhduz6GO4Cw+Tlz\nXvBjxFospMvzLpRi6kVFBel8eyvy27drUFZGgoF5noQJnzungsUCP4/WlBQOdXU0CgttYFlSUL1H\npoqxt4LBRr9Fsby8HBUVFdLXBQUF2L17t9/9Ojo6cOrUKTzyyCODf0IFCu4wiNINs1nAsmV2dHRA\npsHzZpmePKlCXp4WZWUsnn02SKYnBICpU0nFKiiwwWTi0dJCIzOTdFKlpYR5OnSogKAgQp4REyvk\nBdTztdtNzMAdjsCcaVJTX5T+bjb7d7LNzfKiq1KRDrKjAxg5kkdxsRVtbRRGjOChUhFzguHDeTQ0\nEDPv+noaAAVBEBAcLB+ZRkb67wyrquRFXxylKlAwWOi3KHZ1daG+vh4A6RKvXr0Kt8/HSoqiYDAY\nMG/ePKxaterGnVSBgkHA9Qrwr+W5z5yhpYy/1NQg5OT4enqS+4t7tORkDm438Itf2BEXx+PsWRpW\nK4W8PB0WLXJg2zYN0tKcOHGCjBIB4o/a2kpj2TJSXN9/34qdO62S0bZIRGlqImL5y5dpL5nH7wO6\nnurqJ2RFSqMhhbi+ngQed3SQYud9H4YBeB5gWRpDh5J9aUSEgKYmGnY7EB/PS3FTqakeuUhFBYvj\nxxnpGsaP5/0CkquqKERGysfFo0YpI1MFg4t+i+Lrr7+O119/HQAwadIkbNq0CT/72c9uysEUKLgR\nuF4Bfl/wLrK+bMjiYivMZgGjR8sLR0oKh+3bWQQHAxcukBHp2bO03z5w504r6usppKU5/ZIgPvxQ\ng+hoHjk5NkRHC7h8mcLp04zkD1paysqeKzvbjqoqBqNGDbw7FLvDmBgeO3Z4CqzLRaGkRIPXXnOi\ntpakZLAsea2WFlJ0r16lsHixJ52irMyTtBEfz0vG3haLvOB9952HXUqE/f4SGJNJQHU1LcVmhYQI\nUKmUoqhgcBHwTvHMmTM38hwKFNwUXK8Avy94F1lfzV9rK/EOXb5cLyXHd3RQsNlIwXn66SBZARXT\n4MXHnz5NhOo8L8jyE4cO5VFYaENGBkmRP32a7N5aWgjxJC3NidZW+XMNH/4n6HR9E+VEcNzPpOew\nWACDQcD77+ukHWhZGSsxSnNzbX7mAGIRE19XDDeOiuIl4o0307Q3dmlDA42pU3k/CUxDA9DYKDcG\n/9WvWCQl8df/A1SgwAfXrFO0Wq24fPkyOjo6IAj+n9KmT58+KAdToOBG4HoE+P2NXL2LrC+rkqIA\nlUpAdTXjl3O4Y4fVr4D6ZgeOHMlj2DCyt7NagdJSDZqaKJSWEpG72EGazQIiIuxQqYDCQiucTlJY\nRMu3zZv3DXiNqakvoqjIivBwHsuXO2C1Uigt1SIvj+wgrVaxuyMm43V1lJ85gMVCYcoUzq/YWSwU\nNBoKERGCZOAdFsZL+YpTpnB4801CsFGrBYwYwUvvsVwCw6C+/voMFBQoCBQBF8WrV69i5cqV+PTT\nT8Fx/uMmQRBAURSuXLkyqAdUoGAwcT0C/P5Grt5Fdvt2DXbutKK9nezaxLGjWi34jQs7Ojykkrg4\nDsOHC2huprB/fzfsdgrNzWRv1xtBp6GBRkSEgO+/J8+Znm7Hu+9qkZbmRFUViZYqKtKiu9uJ7dsD\nK4hqtYDhw3k/E/LVq/UIDRWwfLm+R2cpYOlSO1wuElvlS7wZMoSQhEgIMmGaLljgxKhRPC5fplFX\nR3xVP/+8GydOqOB2U6Ao9HSmZCQ6fLjQ6543OZkDwwjYvZsQjMaP5xXGqYJBR8BF8ec//zl+97vf\n4bXXXsP999+PoUOH3shzKVBwQ3A9AvzeRq7JyZ7uce9eFmfP0jAaga4uSBFNsbE83G4Be/eycDjk\nXaDbDRQXW3H2LIPERE7a/3mPJH3HsaLInbjEUEhM5KWC67t3DIRZ2tDwU4wcSWHbNhbDhgl+xBbx\n9To6PMXXe1xaUcFizx4WtbWkgF+9SqGujuwWZ8zgUFtLY+NGG4YMEdDYSNItdu3qRlQUMGUKD42G\nQ1UV6SCHDuWkDyoimai3n51nVKoUQwU3BgEXxa+//hoLFixAdnb2jTyPAgW3HXxHrgkJPP76V5J8\nIbrUBAWRsV97O/Ee7eyk0N1NYcIEFziOQns7hfJyokkcPpzHm28akJ7uQF6eFr/4hV3aGYpRTTEx\nvFT0xNedPNmNHTs4RERwCAmh0dEBfPwxC6cTOH7cEz4cSEGcM+cF2S7QbOYwZIhv6gSHvXtZcJwY\nfCw3EaipoaFSAatW6b2KMYthw4CkJA48z+F//oeR7U4PHGBxzz2koPl+OFHcaBTcDgi4KOp0OsTF\nxd3AoyhQcGswkEzDd+QqCEBnJ4XMTAcSEzlkZcmJKAsWeOcXynMRP/qI+Ho2NVGS8D4hwXOf99+3\nIjfXBpWKmHdv3GhDezsh0uTmavH0026JRDNsGA+rlewtExP5ACOeRqC2NtlP0O90Au++S85jNAqI\njCQpFceOkU52zx4WFCUvmpGRAnQ6HhUVLC5dohEdLcBmI4zaxES+5z2Vp1woVmwKbncEXBRfeOEF\n/Pa3v8Vrr712I8+jQMFNx0AyDd+R61dfMX4m3Fu3apGe7kBtrbwI1NbSMJsFpKeTTpBhBISF8dLo\nVKMRcPmytwAeshHlunV25OTokZ9vxdNPu6URaVwcJ8U/TZjAQ6MZ2MR7zpwXsHcvKz23+Gd0NA+O\nA1avtuHnPzdi+XI7KisZ2Ti2ooKVhQ8HBwvo7ARaWxnY7WSH2dREoaSEhV4v4NtvGTz7rL/TjUKM\nUXC7o8+iePz4cdnXzzzzDDIzM/HCCy9gzpw5iImJAd3LNjw5OXnwT6lAwQ2EuDOMieGRnu7AqVPk\n37VaLeD8eVrqHt1u4OBBxqeIkZFnbq5NpgsUi8CYMRxyc2098goBq1bpUVBgg0pFzLPz822IjvaM\nScU4JfG5bTYgN9cGjYbsKkXmZ1qaEy++aAxoVAoAgvAY1q+3o7qaRlGRVipuEyZwePNNA5qaSOpG\nbi7pTPV6QVbMXS4gMpLH4sWea1y/3o6VK/UyUs6pU8ShJzdXvg/V6wV88QWrEGMU3Pbosyg+/PDD\nfl6ngiDg1KlT+Prrr/3ur7BPFdypEHeG6ekOWXckpjrMmOHCypUOOBzA3Ln+VmocR+HsWXkx0+kI\nwYbnKb9iefkyDZYlzjMUJaC+nsInn3TDaqXQ0uKRUjQ1EYmDd6J9bq4NTicFk4kLqCBevvw4hg8X\nYDK5UV3NwGwmwb+rV+slgwDxzBYL0Ubm5OiRm2vDokUOWddaXs4iN9cGQSC6wxUrDNJjvZMuiC5S\nvg+dMoWXdokKFNzO6LMovvvuuzfzHAoU3DIkJ3P46qtunDrFyAqbmOqwZAnpysSYpg8+IJ2WVivA\n6SRf5+bafMg4HCwW2k+Q39UFTJ7Mwekkvp2RkUBkpICLFxmsWOEhrJSUsKitZXDhAiPrYikKAbnS\nAABFPQaKAk6fppGSwmD7dg04jkJZGYvz52nExQk4e5YU4awsHUJCyL5U9Es1GuWmAW1t5DrUakCn\nI3tR8jVJuli/nuQoxsVxCAoipJu2NkU6oeDOQp9Fcd68eTfzHAoU3BKIJJv2dsBqle/akpLcKCgg\nTjNmMwngVasFSWtXUcFKOsKaGkoKEp40iYPLRTrE7Gy7zCEmJYUDRRGD8OxsOxYv1iEz04GwMF42\nrqRpIDiYl+KRRMlFIN1hY+PjMJkIW3TlSr20g8zJseP0abID1Okg62DLy1nodALS0w3IzLTDZqMQ\nFsZj0SJPp7hzpxVXrlA97wHpdC9cIOJ7liXF9JVXHBg/npeZm+/fz+LYMUamDaXpG+tDq0DB9eKa\nHW0UKLibIJJsMjMdKC3VYN06OwQBGDuWRBaJ+7BFixySG0tXF3D//W5wHIXCQhsiIngEB/M4eVIt\nxSM1N1NSV+m7bywpYWX+n8HBxNdTHFcmJ3NITORgs1FwOIAPP2TR3v4X7NrFDng9c+a8gHXr7Jg/\nXy95r6an2xEdTXxVRQmJrx1bQwON7m7gjTeciIjgMW+eEatX22X3OXuWhttNusSMDKNUKF98Ue73\n6htfdfEiLRVnbyLTYPvQKlAwGLgm8X5/oCgKWq0W0dHRePDBB3HPPff84MMpUHC9CLQLEUk2ZjOP\nRYsc4Dhg3DjyC9tgII4sixc7JLu21auJHVl5eTfmzvX8Qi8rY2X7t507rVJXefq0nJjT1kYjLo7r\nkXPYoNEQP9PubiA7247YWE4WDLxr18dgmP6vVyyG4n5PJO2Io9GXX3bJBPi+e1GTiYcg0LDZgNZW\ncl6DQS7BMBrJhwXRe9TlIoHHvoXT1+4uIkLwu8+0adyg+9AqUDAYCLgo/uEPf4DdbpeINEOGDAFA\n4qUAYNiwYXC73bBYLKAoCo888gh+/etfQ6/X9/mcChTcKATahYweLfSkufMSicbX6qyzk8KkSXJP\nz4YG2ucXOu33i19kePqGBLvdQH6+TfY6paUszGYBS5bopN1laKgN27cHnmrhTXaJi+NgNgs9xBk7\nmpoomd2cuBdVqQhRqKWFBscROYi4HxV1lEajgKFDiWONaEJ++LAKarWAMWPkhJrERB52O7B3LxmZ\nGgyQWdqJBVh87xUfUwW3GwIuip9++imeffZZvPnmm3jjjTcQHh4OAGhra8P27dtRUVGBTz75BGFh\nYdi6dSvy8/OxYcMGrFu37oYdXoGCvhBoF5KczKGgwIbvvmNkI03xcV1dRKPY0CCPLPKWURCtn+DX\nVYlyhYICoku8eJGQTmpqaDid5LWfe84Fi4WC202hrQ3SODUQIX519eNYs8ZjpC060DQ3U8jJsctG\ntvn5NqkL9d6L7txpxenTNDQaASoVef3CQp1UMFUqIDaWw8GDaoSH81i2jHTT5eXdUKuB3FytNFK+\n914OQ4faIAh6VFVRuPdeDhYLkXKUlhI3n+hoAVFRvPTeX6sPrQIFNxoBF8XMzEz85Cc/wVtvvSX7\nfnh4ONasWYPW1lZkZmbis88+w5o1a1BZWYlPP/1UKYoKbgkC7UJomsQRiSM/30ijxEQe588z6Oqi\nZJFFGzbYpC7KaqVQWCgyUImeUK8XsHatDQkJPLKy9EhPdyA0VPDLS/T+eu9eFmq1EBC7tLn5ceh0\nQEUFi8pKGlFRAgoLtXj5ZSccDgq1tXJLNqeTjD47OoCyMhZnzjCYMoVDRoZecuMpL2dlBXPXLhZq\nNfDccx7SjChTEXejBw+qcfCgGgCJcdLpgKeeknfoAC0bNZPv9ZaCoUDBrUfARfG7777DU0891eft\nU6ZMwb59Hkf+Bx54AL/97cAuGwoUXCsC2ReKXUhjI4l0qqykADC93nf8eB6vvUaIKfX1tBRpNHEi\nh8xM4lEaESHvDOPjOTgcFHheQFgYhRdfdCI2lsfy5aTIxMVxyM+3weUCMjPtGD2aA8sSa7jgYDKa\nbGujJDE+KVy/w65d/V97V9d4tLcnSHtB7xQNwnTl0dBAYexYeXF3uyksW6ZHTo4djY0Uxo/nUF9P\no7qaLCtdLgpXr1I+Ab6QOmjxPqJMxeWi0NRE+33wOHdO7dehi3/3/p5SCBXcrgi4KA4ZMgR//OMf\n8eqrr/Z6+9dffy3tGQGSu+j9tQIFg4VA9oViF3L06MD3nTqVQ3GxDVeuAGvX6mSd26JFDrAsMG4c\nj/x8G7q7qZ7CQ5IhjEZg2TId0tKcOHKEwYYNNrS20ggNJdrDbds0SEtz4vx5UlzETMTsbCJ7SE93\nYNUqfYDj0idQVKSVopt8R71GoyB1fnFxHCoqWBw/TjrC+nqyWzx7lsbYsWKBlxNitFpi7i2ioMDq\nR5oR2bVqtQCzmZf2pklJbiQnc7DbXb126MruUMGdgoCL4ty5c7F582bMmzcPr732GkaNGgUATmKn\n3gAAIABJREFUqKqqQnFxMQ4cOIDly5dL9//qq6+QmJg4+CdW8A+Pa2Et9ndf347zxz/msH8/GUfG\nx/OgaUFilIo6P5cLqKsjVmkMI2DNGrvf/i47246mJtKO+kY6iXZoarWALVt02Lx5HyoqBr5mtfox\nDBvGY+5cJ+Li+F5HvVFRPDiOXGt1NYPqahqTJnEICuIRGQmcPEkyDkUyzdixHEpLWTQ3k+QO387P\nbBaQlaWVfFrDw/keezorOI5CdTUtXcv+/W7QNBAZWY8DB/R+e0Jld6jgTkHARXH16tWwWq348MMP\n8Zvf/EZ2G03TeOONN5CVlQUAsNvteOGFFzB58uQBn/fbb7/F+++/jxMnTqCxsRFbt27F7NmzpdsX\nLlyIsrIy2WNSUlLw5ZdfSl87nU689dZb+OSTT2C32/HjH/8Y+fn5iIqKCvTyFNzG8C1eo0b1vi/s\nbazqvVskLFMB+/apMHq0AJVKwKuv6rFsmQNNTQLOnFEjNJQE3FqtwIkTKqmgpqU5/faBFgsQGiqg\nstLfC3XaNA4XLzLo7JSPDkWG6PDhAjZvHjgA2DfiKSdHhw0brJKecudOogukKKChgZa6yO3bNTCb\nBcyZY/TbXa5bZ0dzM42VK7XSPnHfPpKCsWOHFVevEps2liW+qzxPfFq9z/H22zrs3ctiyxYrRo/m\ncf/9pNDxvLvXPaGyO1RwpyDgokjTNH75y19i8eLF+Oabb1BXVwcAiImJwT/90z/BbDZL99XpdJg7\nd25Az8uyLCZNmoTZs2djwYIFvd7n4Ycfxr//+79DEMRRjFp2+6pVq3DgwAHs2LEDoaGhyMrKQmpq\nKv785z/7+bcquPPgOy79wx+6pc5j1ChS3PbtUyEsTJARRw4cYDF1qofhaDIJeO45z/NUVLDIzraj\noYHG/Pme7+fn2wAAYWGC5EPqmyXY2EjGqC+95O+F6nZTWL5cj6IiKxwOuRxhwoTAPEsBwOn8mWzn\nqFYLyMqyY+xYXibn2LnTirY2sjP0lni0ttJITub8TMa7ugCapvDGG06sXk0eU1tLyx6/bp0dNE26\nSrOZFEKNhnSPNTU09uxh8dBDHGha6foU3F24Zkcbs9mMl156adAOMGvWLMyaNQsA6Qp7g0ajkSQg\nvrBYLNi1axe2bduGhx56CADw4YcfYvLkyfjmm2/w8MMPD9pZFdwa+I5AL1yg8fzzbkybBhw9ymDe\nPAPS0pyorARyckhyg3d237RpHJKTgfJyDwnEbCas0dZWClFRvKz4DB/Oo7KSBAWHhAjYvNkKjUa+\nF4uL46UO0VvzFxPDo6WFxssvu9DdTYKGi4tJ0YqO5gH8bsDrdTp/hqtXKRQUkDiqDz7QYtEiBwAg\nJESARkMK+nffkXFoVhYZh3r7lFZVMZLkoq5OPhZNTOSxcqUec+eS5yQCe7nN3IgRvJQGUldHrjEn\nx4bTpxmEhJAsRV/CEscBra2xOHFCpdi2KbhjcUfYvB08eBAJCQkICQnBAw88gLffflsqksePH4fb\n7ZYVv+joaIwbNw6HDh1SiuJdgP7kFZWVlN/eTtTehYURobxKRbrN7m5P17ZokQOvvCLfA4pSA0GQ\nZxru3s3iwgValiV4/jwNihJ9QImEobycRUMDjeXL9X7Pu3btXxAd3Tjgtaamvig97o03nDAYBKxY\nYYfbDRQU6NDURGHbNiuCggQAFDQaoh0UBPi9B4QhSvlFRa1cqUdTE4WZM93YtYvoGrVaYMUKu6xb\nFF15xPfLO0OSyCrkOHGCwVNPhQ9omKBAwe2MPotieHg4aJpGfX091Go1wsPDBxxFUhSFlpaWQT3g\nrFmz8OSTTyI2Nha1tbXIzs7Gk08+if/+7/+GWq1GS0sLGIbBsGHDZI+LiIgY9LMouDXoT+Q9erSA\nykr5aFOMPxLNqB94gMP33xNyTH6+DaGhJPHBOwxYqxXw6addEAQK9fXyHWFLC43YWB5z5shHlrt2\nqbBzJzEMj4sjOzieJ48RUy202sCE+C0tj2PxYk8UE5E+CKBpyi+zUKeDTPeXnW3HyZMq2ZnPnqUl\nsox3VFRZGYsVK+wYMYJHTQ2DjAyPYXhhoQ2rV9thMAAffKBFczOFjz6y4swZGkaj3KqtN3KTYtum\n4G5An0Vx6dKlAACmx3RR/Ppm45lnnpH+PmHCBCQlJWHy5Mn44osv8Pjjj/+g575w4cIPPd5th7vx\nmi5duoDgYCApSfzac1tIiAr33TcaarWnSwoOJokNmZl2WK1AWZka0dE8Fi4kxtiEAENGo5mZdixf\nrkdkJPE2XbFCj7Iy1sethmj/ystZnDjB9LjSUHjtNaekS1SriRl2RIQn1SI/X0BR0W96vygvpKa+\niN275a8ZEkK0kBkZ/pmFV67Iiw/DkJFoXBwnnSUhgUdFBYsNG3TYuJGEFFutFDIySKDwxo026fEA\npNBi70LrdFJQqTg8+KAVAAW12tNFRkVZceFCjew6oqJioVYb+r3PnYq78f8r4O67roSEhB/8HH0W\nxTVr1vT79a2C2WxGVFQUKisrAQAmkwkcx+HKlSuybrG1tRX3339/v881GG/g7YQLFy7cldc0enRC\nv2L9UaMEfPVVN1pbiaDc7QYyMogO0LujWrfODquVko1GS0pYlJezaG8n3d6sWS7QNClwra2E1Xn2\nLI3Vqw0oKLDCYADee0+DJUucqKykkZ9vw8aNOhw+rMLZswzy8rT46CMrVKrfoqio/2ubM+d5uFx0\nTyHnpQBfk0nAsGFkr+mdWZiURDIL3W75fpPjKMyfr5cIN6GhxKfUagUOH1bh+HEGBQU2rFzp0SC2\nt9MyQwKLRd5tG40CkpI4JCbyEAQNzpyhsXs3Ie+MH89j6lQNaFr+by0+HvjsszY0Nhp6fk7+97kT\ncTf+fwXcvdf1Q3FH7BS90dbWhsbGRkRGRgIAkpOToVKp8Kc//QnPPfccAKC+vh7nzp3DjBkzbuVR\nFQwSBhLr0zTA8xReftlzn61brdDpBJmDjEpFioX3L//2dhouF0mGuHpVwOuvO/Hiix5bs+JiK1Qq\n0nkCgMVCQoe9JQ4ffWTFv/4r0fFlZ9uhUgXi5PQYSkqsaGujYTLx+P57RkqyB4C1a20IDyev39lJ\nwWTiYbGQUWpMDO8XckyuhZBzxG6xooJFXp4V0dECDAZSdMUOedQoDgwDaf+amCh37Jk0iceUKeSa\nezNA6I1AQ9OAyVSDBx5QftEquHNxTUWxqqoKmzZtwl/+8he0t7dj7969+NGPfoT29nasW7cO8+fP\nv+bIKJZlUVlZCUEQwPM8Ll++jFOnTiE0NBShoaHYuHEjnnzySURGRqKmpgbZ2dkwmUzS6DQ4OBhz\n587FO++8g/DwcAwdOhRr1qzB5MmTJTaqgjsbgeyqfO8TFib4WaBxHAWzmZOF/kZH88jN1eLpp91g\nWcDpJMxUQEB6ugPNzRR4nsLatTY4HBSSkjjU1sp3js3NFCoqWLhcAzNLOS4FK1fGoq6OVJWsLEJu\nKSmRj08NBmDJEkPPfWxYvDhISq/wNvOeP98z0jSZeJltW0MDDZoGVCoBly8zsg65tJTF6dMMfv1r\nLRYudKCmhkZFBYsrV/z3tsquUME/EgIuimfOnMFPf/pTqNVqTJ8+HQcOHADPk0+SYWFhOHnyJIqL\ni6+5KB47dgxPPPGEROLZsGEDNmzYgNmzZyM/Px9///vfUVFRgc7OTkRGRuLHP/4xPvroIxiNRuk5\nNm7cCJVKhVdffRV2ux0PPfQQPvzwQ0WjeJcgEHNv3/t0dlIyicKwYTzsdgpXrvgnSOzcaUVWFrFq\nO3GCwZYtVrjdwJkzDMaPF1BTA4SHC8jI0IHjKGzZYpW9ltksBFQQU1NfxJ49rGwkGhxMnqejg5IM\nxaOjeSxbpve6D3l8UZFWEtfbbMSEPDvbDoOBjFRbWmhZwR8+nHix5ufbJAIQQP48eZJBYiIvI+F8\n8QWL//N/3Nf1/itQcLeA6ujoCOhf+AsvvIDKykp8/fXX4DgOY8aMwWeffSZ1Y+vXr8enn36KI0eO\n3NADK+gbd+OO4MKFC4iPT8CxY4yMfeo7vuN54ORJGq2thC0aFcXLiCMlJSzefVeLt96yo6ODxvff\nMwgOFrB/vxrLltnBMEBVFSHgJCZyfkVTHDGuXKmH2cxj1So7ampoREcPTKQBGFRXP9bz3G50dpLO\ny2ajsG+fGs8/74JeTwg9y5frwXHEE1V0vsnK0kkj0bIyFps3a7FkiRP19RRGj+aRl6fFyy+74HYD\nUVG8bI+6caMNI0aQD6/e7NnsbDuGDuXBsmTsmpLC9Yjx/U/P8xjw/ff+ed2N/wbvtmsC7t7r+qEI\nuFM8ePAgVqxYgaFDh0pBw94YOXIkGhsH1mEpUBAIRMu2c+fGoKuLwdSp/duECQIJ2RX3imvX2mSd\nUVMTjSVLnLh4kTBMvQvevHlG7Nhhlcy7fdPkT5+mUVpKBPRLl9rhdlM9RWzggigIj0Gjkesed+60\nor0d0OsFrFxpx+zZcjLQ6tV6rFqlR1aWHVu2aLBpkxUNDTTcbgoXLjB4+mm3n21baKiAV181SAHF\n4tkpihRD0ZVG7Pi2byfXKhqAb91q7dOdRol4UvCPhID9Jnieh06n6/P21tZWaDSaQTmUAgUiuWbB\ngqF49FEjjh1j/O7DcYQEsm+fCn/9K4MLFzy7PoOBjB4B8ufIkTw6OgihRl4sqR4toscEgGE8j42L\n4zBlCoelS+0AgC1bdIiL+y90df1+wGtITX0RjY00amp8dY8UNm3SITxcwNGj8mimri5IZw4OJhpD\nt5uS3HK0WiL5IHtPz2NEmYZoEi4+R1QU3+NKQ0sF0GoF8vNtEATSScbFcRg3jr/2H5ICBXchAu4U\nk5KS8NVXX+H111/3u83tdmP//v1ISUkZ1MMp+MeD2CGePEnLxPUiucPb9Dsqise5czRaW2lotcTs\n27sTKitjcf48jbg4ASdOkG6T4+Qsy1GjyNcUBUmWoFJB2kcmJnKycWQgvqXV1U9Igvvhw3mo1XIJ\nRWws2eWdPs34JV2kpHAoKLBi1CgebW0U1q8nLNORI+GnIxQdeO65hwPHkdf44AOtFH4cFsZjyBD/\nXEWDATLv1P37iUesAgUKrqEoZmRkIDU1FcuWLcOzzz4LgHSH33zzDfLz83H+/Hnk5eXdsIMquLvQ\nV1Cwr/xC3OeZTAJ4Xn57bq5NGnl+/z2NlBQS7NvURDR4TU00aJqSMTT37GHx+eddsFpp1NaSQckn\nn3Tj9GkG06ZxUKsFNDXRyMkhU5GsLJI68S//ch6vvHJ8wOtqbn4cY8dy+NWvWLS308jMNGDhQrvk\npNPSQsHlAn79axZ6PbB8ub7Hgg1ISeFkhubl5SyCgzksX27Az39ul3WUBoOA99+3IiaGx8WLNEaN\n4vHRR+Q1RR2j0Qikpxuk558xg1zf6dPy7pQwYZWiqEABcA1FcdasWdi6dStWrFiBjz76CADwb//2\nbwCAoKAgbNu2DQ888MANOaSCuw99aQ996f/elm2i1ZtooxYVxWPxYgfcbgqlpVrk5RHXGQCw2SgI\nguAnSq+roxEbK++U9uxhsXq1ATExPEpKWLjdHo/UkJDAbNoE4TFZR1lcbJXE8hRFgeMEmXdoaSmL\n5cv1KCiw4fhxwgRtbiYjXLE7rqmhodORpA6alnd84eGEgJOfb4NWC7jdwJUrNEpLNXj+eRccDsBu\nJ8L+1avJOYqKiHZzzBh5t9zdTeHYMUbxKVWgANeoU3zppZfw+OOP4+uvv8alS5fA8zxGjRqFn/zk\nJwgJCblRZ1RwF8K3+J06RYOi4JeVKMoRXC4KjY3E7SUnx4px4+TxSSJB5fRpBtHRPKxWCg4HJXV/\n4v2cThKO6/3a9fVEyrBsmQMtLTQ2b9b1uN+4EBd3YMBrSU19EVlZcmJPa6unsG7frsHy5XICTHMz\njepqBpcu0TAY4EecWbuWRDa1tZGUCpYlQnuWBYxGoLBQi7Q0p+w9KCtjkZFhl8VgeY9ZQ0IEzJ1r\nRFwcCRc+eVKF4GABRUVavPOOTSHSKFCA63C0CQoKwlNPPXUjzqLgHwi+2je7ncKjjxplWYkmk4Al\nS4iDy6JFDhiNAi5dYhAURET2+fk25OXpUFdHS76gU6a4AVCorASCg0k4bkUFi5oaGg4HcX/x1RnG\nxvLIz7fh4kVC5mlqojB69H8NeA0nTjwpjVmDg+V7wxEjeHz8MYv//V8S7+RtqaZWC4iJ4VBYSNxy\nwsM5WXSVTidg//5u1NQwiIjgMW+eXFoifj1rlktWaI8eZXo0k57vqdUkgzEkhLj5AEB1NQOGkQcH\nK9pDBQoI+i2KkyZNwsyZMzF9+nTMnDkTiYmJN+tcCu5yiMkXp07RsNs9VmXeWYk8D3zwwRVYrXq8\n/DKRTXjLKbKz7Vi40IG1a3WYPNmNwkIeACUjpKxbZ8flyzScTkqKVrp0iZZ2lcHBQEYG2et1dlIo\nLdUERKZJTX1RcpgRu0Ex4zA8XEBLCw1BIMXygw+0eOstT95hSIgAiqL8rkXs6EaO5OF0ktBgX4lF\nWxvtRQLi/Uaq0dHy7yUk8AgJEaQPGAAp3pGRQp/JIwoU/COj36IYHR2N//qv/8L+/ftBURSGDBmC\n++67DzNnzsSMGTMwbdo0aLXam3VWBXcRRO0bRQGvvqpHeroDFgsRnx85wqCxkRSUhgYN3G5akjJ4\nFwiGIR0ZIcqoMGoUh8OH/SUOo0fz2LyZ2KLV11MYM4bHsWMMcnI8BtkdHRSSkj6Xkjj6Qnv7P2HY\nMAP+4z9YREXxeP99K1iW7Dg5DgAomM28THC/bp0dGzfqUFhoQ10d8ToVA3zFc6rVAvLyrOA4CufP\n07DZ5BIL8T5EZiHAYmHQ1kbSLkTjJrVaTtyZMYPDgw9yPd6wQHGxTSqCiYl8z89gsH+yChTc2ei3\nKH755ZdwOBw4cuQIDh06hIMHD+LQoUP4wx/+AIqioNFokJycjBkzZkj/DR069GadXcFdgORkDu+9\nZ8Nzz3kYpWvW6JCdbZc6u9xcoqXz7YI4jsK8eUZ8/DGLsWM51NTQGDlSbnydkOBGfT2D5593SXs7\nMTvQ+7kiIwcW4p848YRXTmM3HA4KViuF2FgePA+ZIbm44yQSDwFpaU5UV9NSd+jdZRLfUgEMA2Rl\nabFsmQOxsTyysmwwGAjRBgBiY4l7zZIlTtnos6KCBAXbbBSqqxmJWPOrX3mMuxUBvgIFgWHAnaJW\nq8X9998vi2E6c+aMVCQPHjyI9957D++99x5omkZbW9sNPbCCOwd9yS58bxs2jBQRiiIuL/n5NkRE\n8FIOoFotYNMmG1as0EudkXc6RF0dSboYNYqHywUsXuxxj9mzh4XJxKOhwdOZpaU5pZFpILvDvXsn\n4fPPJyI72y6FB1ut8liqggKbX4cKQCreokONeJ+iIm1P6j3pCrOy9GhqolBWxqKujpYRb8rLWVy+\nTIhIS5c6sGWLFuXlLCoraURHC9i0SYuFC51wuSD7QDB2rCLIV6DgWnFd0VGTJk3CxIkTce+992La\ntGn49NNPcejQIckgXIECoP/IJ9/b1q0jnWF5OYuLFxkZuSQ72w6WJSHAy5cbsHGjTeoi1WoBVqsn\nnX7TJnlxqq0lTi7eFmcWCyGbBFIQKyufwLhxQHk5kVCkpzvw9ts6v11feLi8i502jZNim7KyCBkn\nJMQzCm1qoiAIQFsbhXXrPGPckycZhITIyTIiWzY11YjMTAeeftrtx7zt7KTAcXI7uQMH2EH9eSpQ\n8I+AgIui3W7H4cOHpe7w8OHD6O7uRmhoKFJSUvDOO+9g+vTpN/KsCu4gcBzw/ffyvVlVFYXkZOD0\naRpnztA+nRUlFTHRMFu8Ta8nFmfepJbychYNDTQiI3kwDMkfNBiAuDjebyzpcpGuct06O1QqASNG\n/B0VFZX9nt/hMGDevMelr9eutSEnxy75ovru+oYMIZZpPE/GnFeuUBg1isebb+rxxhtOdHUBY8aI\nUgjCSF21iiRYeD/P1KkcHA74XYP4XgYHe7SXYtfKMOT9Ea3evN9vZVyqQMG1od+i+Jvf/EYqgidO\nnADHcUhISMB9992HnJwcTJ8+XXFZV9ArTpxg0N1NyX65jx5N7NYOHybSB7keUZCYl5GR/nKNy5dF\nxiiD4cN5UBSwbBkpKjYb8QelKAFaLY89e0jBtNspXL1KnkPMIAyEWarRPAZBkJ/PYIAklve2UwsL\n4zFsmICLFxkMHy5ApRJgMBD5g91OYdkyB8xm4q6zdKkBc+c6JRkHAJw/z2DjRhIZNWIEj4wMkpIh\ndrZuN4mVEt+fDz7QSvtIsWv1tmvzfb8VKFBwbei3KM6dOxdqtRrPPPMMVqxYgZSUFISGht6ssym4\ng1FZSaGoSNvDhKQwdaobyckcPvlEJUkf1q2zw2YDkpI4tLeToF6nkxQfkUEpxjW98ooDkZE8Ro/m\nEBYm4OJFGmazIOn4kpM5ZGQ4cO6cCiNH8hg6lMgaQkLIjtJsvgJB+HbAc5858wTGj+dlZ7j3XnK+\nJUsc2LhRh7IyFkePksLe3U1h4ULP/q+khMX580Qv6L0XzM62o66Olo1Q1WoBWq2AlSv1KCtjcekS\nLYUEr1qlR16eFQkJHC5fJvKOnTutaGmhJNYpTcvdelpaKEVmoUDBD0S/RXHGjBk4fvw49u7di2+/\n/VaSYkyfPh0TJ05UQnz/QcFxZATa0kKyC8eP5zF1qjxjb/RowSfA1g2aJt9vb5fftn8/i6AgSDuz\n6moGW7dqkZ7uQH09hUWLHBgzhsNLLxmRnW3HggWEnbpokQONjWSsmJHh8MtADAoS8NJLRuza9TGE\nAZqm1NQXpZ1kUxMFjqN6pA4UWJZCcbEGS5c68NJLhNBSWkqs2LzJM8R1h0ZbG42ICLkgX6sVUFbW\njWHDeOTmCmhrIwUyOppHdrYd3d1EOuJdMEeO5GG3QzIoAICCAivy83VoaqKwdy/rN2ZVGKYKFPww\n9FsUf//738PlcuHYsWM4dOgQ/va3vyEnJwft7e0YMmQIUlJSpCJ57733wmAw3KxzK7iFEEegvqQO\nb+9MUZzv27UkJ3PQaHhUVBAJRVwcj6AgDtXVatmuznc0WFHBIieHBOaazWSMKMY5qdWCXwZifT0F\niuIDGpdWVT0hub7Ex3PgOFKIva9PJNqI2kNRbO/b+blcFHJydH6CfEEAamsZtLYSI4HSUo1UVPPy\ntJIX6rp1JBXD5aLw5psGNDVR0vOIkVGZmXbExfFwuQSpEw8OJpZwChQo+GEYkGijVqtx33334b77\n7sPixYsBAOfOnZMkGWVlZdiwYQMYhsHkyZPxxz/+8YYfWsGtRWUl5UeG8SV19KWLEwRiXP3dd4Rs\nkpurxcqVDrjdRE6wb58a2dmewiA+/3ffMVLQb2amvScJAsjPJyNaMQLK02UNrDucM+cFlJSwUs4g\nAGRl2TBzphsGg/z1jxxh8MYbTkl7SGQYVqjVwMaNRAYxaRKHN980SI8xGkmShcsFqFTAypWeIiv6\nm957rwvl5W7U1NCSGbjv3nHYMB6lpSyuXiXyk6IiLZqayLh57Vq5/ESBAgU/DNclyRg3bhwSEhIw\nefJkTJo0CZ9//jn+93//F8ePDxyto+DOhzgCvR5Sx4kTjCTUF8ec3rZsxcVWUBRkhtqiMXh6Oune\nzGaSWC8IpCAZjQJCQ3ns3cuiqopGdPTABTE19UUAQGMjLXudlBQOdjtgMvF+r2+xkMeKBBgxYUKt\nFjB+PCH/NDVR0n1cLvIhYNUqf7s2lUrA+vV2AJSfvIKm5SSfsDChV/PzhgYaxcVWtLZSoGkgMlIh\n1ihQ8EMRcFFkWRaHDx/G3/72Nxw8eBBHjhyB1WqFIAgwGAz40Y9+hBkzZtzIsyq4TZCczIFhBOze\nzaK1lewUAyV1+KZj+I4929spREfz0OuJNrC2lkZsLI9ly/R4+WVigJ2ebkdGhtw3NCGBg9v9O0RH\n9//61dU/xZo1QQBI4YmP51FRweL4cQbjx/M4e5bGuHE8jEZSsM+eJddXU0Nh2jQeGzZYMX48j/Z2\nCr/4BRHcl5Sw0GiIxZq3p+p772mxZIkD2dl2xMbK0zpEQX9entWvWGq1pGsWBDE+y9e6jjwHy1JY\ntMgg7WUTExWdsAIFPxT9FsX//M//lIrgmTNnwHEcBEFAREQEHn74YcyYMQMzZ85EUlISGIa5WWdW\ncItB00BSkvgL2L8Y9udk45uOMWYMj7g4DmlpTlgswMiRvN/uDiAMUqtVFOsDZrOA9HRijB0dzcPt\n/t2A59ZqH8O2bXoZq9RuBxoaPPFNZrOAZcvsUKuB6GgeKSluPPtskIxdWl1NIyaGx9KldrjdFFas\nMGDuXEIQWrlSj4ULHVCpyJnPnydONO++q0VZGZGKcBx6LN1sftmG8fGk4K5bp8eqVXaEhPAwmeTv\n2YQJHHbssCIri4x9ReapN9FJgQIF14d+i+K//uu/AgDi4+ORmpoqFcH4+PibcTYFdyi83WpmzHBh\n5UoH6upIIXG7SVfT0kIhLExAbq4WmzfbMHu2fKR6+jSD4GBCUKmuZlBYqMMHH7AoLSVdmUiEmT//\nCJKS+hfir1nzE2zYoMHSpR4h/bRpHDZs0GHWLDemTHHj5Emmh8Vqk6VXFBfLO7lTp1TIy9OiuNiK\n9nbaLzpK1EPu3GnF+fOk6zx+nMGSJU68+SbRIObm2mQ+rGK6RnAw0V7m5NiRnu5ATAyPBx8kHzq8\n47QsFvJ63qNaRZOoQMHgoN+iWFJSgpkzZyI8PPxmnUfBHYbeukLvEemSJU6/KKe1a3U4cIDFmTM0\nDh5Uo7ZWngso/rKnKCAhgYPDQb5XXc3AZOJx7hxJpA804gkA6uqsMrPstWtJ4v3s2U7k5+uQlWWX\nWKLeZ/HfbZK/d3RQmDDBMxIVXXbq62mMGMGjpYXCuHE8goJ4GAwM6uspSYPoPQ4Vg4beKfxYAAAg\nAElEQVS9EzuamijExnLIydHil7909BCW5KQlnoeiSVSg4Aag36L4xBNP3KxzKLhD4d0VxsWRxAuH\ng3RDRUVaaWeYkuJGRoYDTU0Udu60orubR0wMGSH6Mke9ZQ2lpSx27VL3EFAEtLbSUKutiIrqn+XM\nMBMxe/YkAKST8rV/S0risH69HSoVIfWoVOS1xPuL96MoIDvbDqOReKwWFWmhVgswm3k0N9PYuNGG\n9naSbbh0qUHaMXZ20oiJceP8eQarVul7XGvI8/rKOKKj5V87nST9Y906e59WbUrqhQIFNwbXxT5V\noECE2BXGxPDIybHLmKUVFSwYhhQZX3F9RQWL1FRPMf3oIyvOnGGQlOTG5s06bNxog8VCuqknn3Qh\nLc3YEyE1sIk3x/0MNpuAsjLCRh09mkd9PSXT9NXXkzM3NVEoLLRJe8P337ciN5ckccTE8Lh6lSRe\n7N6txptvOpCRQZIyOjooLF7s0eUWFlqRk2NDSwsFhgESEtxITzdIdm2iLRwZdXL47LN2NDbqYTIJ\nyMnR+jn4EEINMH26MhZVoOBmQimKCn4QROJMZqYdHAdkZjoQHCxg/341WJYwJffuJXl/vSU/AOhx\njxEQFsZDowGef97lJ5wvKrIgIuJAv2fp7o5FZ+dkvPeeFlu22FBVRePqVRoXL5LCm5Gh8yvKZrOA\nnBybdO6SEg0WL3bg7FkGkZHkTDYbg6VLHejuJkSgpiYaUVHyzjMyUm7rVlrKorqawdWrlMRIBYD3\n39eiuNiG4OBqPPBAAnge+OUvHaiqojBpkoAlS/SoqyMykRkzOGUsqkDBTYZSFBUEhL4YpaJzTWsr\nZPmCZWWsjDxTUSG3JIuN9RSVRYscmD+fFKgVK+zQ6+XC+YaGczCZLvV7vqCgfwHD0Lh0iUJamhN1\ndTTefVeLtDQnOjsBo5FkHjY2klFnSwsFs1mQkV5EtmtDA428PG2PjpDG2LGcZBMnXlNcHIeSEhan\nTjGYMoVDVZVcNkHGvALy8nTIzLRjyhQO7e00iottmDqVw6Wey/Eeg/I8UFxsk+0JFUapAgU3F0pR\nVBAQ+spGFH+p796tlhWF2lrarzPctYsE444dy8NmA7ZutSI0VEBtLUnAsFiAxYsNUgqE2y2gvHxf\nv+dqa5uMAwdG45VXXKitJfpA0RUmLc0ps4r7+ONuhIXROHuWxtSpHNasseH0afk5jUYBOp2AvXtZ\naLU8BIFCZSUDq5UCz3tIONXVDBobaaSkcKiupv0E97GxvEzHOXUqB0HgcOIEg08+USEqKhbx8ZAV\nPWVPqEDBrYdSFBUEBF/RfVUVhcmTgYMHCXvSl8hiNvuTR+bMIeSRhgYabjcZRXo7tZSUsD0CdmDL\nlmqEhx/u90xVVU/g7bd1sv2kKKNQqYCaGvmZ7XbKb8QpSinE71mtFDZt0mHRIgcMBloi14gEIV9C\nUFsbhZEjeWg0gsxdxu0WsHy5EU1NJLmCpoGjR70/WBj8/GIVKFBw66EURQUBwVd0P3q0gIMHPZZt\ncXGcFKk0YQKPwkJPqC/HkZBfl4uCIAiIiuJx5IgKZjNxwnnuORcsFgo6HUmScDqPQqdr6vMsXV0J\naGsbLz2n937S5aJw9iyDvDyt38i2pUV+v7Y2GlotCQc2mQQMHcpj4UKjZCfna6t29iwtkWVcLlIs\nc3JseOklku7h7VealWXDwoUOrF6tlxikvX2wULpCBQpuLyhFUUFA6C31oqRELRsnnjzJICaGZBk+\n/7wLnZ0UpkzhsGqVhzwyfjyxbEtLc+LUKQarVtklB5v8/G6MGPFH6HR9n4PjHoPFQkNMLVOrBT9J\nh6glrKujUVHhYaBynLwrjIriZR1mRQWLpiYKFou8eIm2apMnc1CpgIwMj+NORwe5r5juIfdKlfvC\n9vbBovdr7NsRSIECBTcWSlFUEBB623d5k2XUagFGIxASAly8KI+VEh1qQkIEKQ3Ce9e3caMNQ4ac\nQUhIVZ+v/8knEzB16hjZ40pKWDQ20ujuBsrKiHDebvdoCePiyO4SIAn3w4aR7EKLhWgFW1rkxa+h\ngepVqzhhAoe9e1nQtICf/9wgueLMmMHBaIQkufD2Pd2+XYO8PBu++MIti80SP1hERVmRnKzp9Vr7\n2t8qUKDgxkMpinc5Brvr8H4+k4lEGtXV0dJeraqKQVubfEx5+jQjjRb37u3G8eMepqbB4MCIEf2n\nWlRX/wzx8Qw0Gt6niNFYtYpo+nJzbdi2TYM33nBi7lwH7r2Xg0olYO7cIFnxFQQgIoJHdDQPQZAX\nv+hoAZ99psKTT7pRWkpIMsOGkbFqeroBL7/skrni/OpXLJ591o3du1kcP65CWxuxrmMYYMcOm997\n7f3B4sKFGtB0Qq/Xq4xZFSi4dVCK4l2O6+k6+iuk4vOZzQIWLXJAryekmpYWGlOnugHwMiKKWi1g\n+HC+R4wP6PUCpkwh9miPPnoOc+ee7PMce/bch9mzw7FmjUEqfL5uM2Io79ixHJYs8STaU5SAS5fk\nMon2diK12LWLhdtN4b33NFJ3Fx4u4PJlGtOm8XA4KNTUEEbpqFEcrFYyHg4OdvqNP2kaCA8H8vK0\n0ve/+ILFPfdcf2cX6JhVgQIFgw+lKN7luJ6uozfrtpYWYkbd2EieLz3dLhuRZmfbceUKjdxcLVas\nsKO0lCRCqNUkm3DOHE9hLijoGtC39NSpxzBzJoOuLk93WFSkRUkJ6eDCwwVZ4aqqYnq0hAJiYngs\nWWLEokUOWXGZPNmNTZuIPVtTE4XMTGI7l5NDbNi8Q4A3brRh1So9SktZmEyeEWl2th1DhgiYMIHv\ndSw6GD6kg/18ChQoCBxKUbzL4dt1JCTwOHq0/3GqdyFNS3PKrNtKSgij05eMotEQXeGTT7pBUYTk\nwnEUCguJZlC87/TptTCZDvV5XpqegMzMiRKRpbzcwyBtaqKg0wEmE4eaGhW6ushuUKMhpJnaWqIb\nbGmhkJNjg91OMhmPHCEJFNXVNCiKku0lRZmF7/WIf7a20njkEZdfkbqR+kJFr6hAwa3DLee0ffvt\nt5g9ezYmTpyI0NBQlJWV+d1nw4YNmDBhAoYPH47HH38cZ8+eld3udDqRmZmJ+Ph4REdHY/bs2Who\naLhZl3BbQ+w6fvUrFvv3s2htpfDoo0b8v/9nxKOPGnHsmH8OplhIAcBqlReJ5mYiSxATIgDPXu7y\nZQZxcTxefNGIzEwD3n5bh4ULHQgJEaDTcSgu/hSLF/dXEP8ZLS2jpTQJkUFaVsYiK8uG7GwSLqxW\nU1izRoecHB22bdPA4aBx5AgDh4NCRoYeV67QePVVA9rbabhcxE/UYgFiY0nskvf1tLRQ2LHD6nc9\nsbE8srJsiIkhuZHTpnF4/nk37rmHFESOI7rDfftUOHqUAa/k+ypQcFfglneKLMti0qRJmD17NhYs\nWOB3+5YtW7Bt2zZs3boVY8aMQW5uLp555hl89913MBqNAIBVq1bhwIED2LFjB0JDQ5GVlYXU1FT8\n+c9/BiVy9/9BIXYdFEVGopmZjj7Hqd67xP37WVgskNiVYmc1YgSP558PQkqKu8fmTIXgYEHS7Pk6\nxGi1AqKjm7FzZ99C/N/8ZhxKS5P87ODi4jiYTAKqqjxONXV1NGpqaFkn6y2rEE2/XS4K4eGkUrW3\nU5g+nZOChb2vRyTGZGXpkJ9vQ2gokVnU1dEoLdUiL4+8Fw8+KO8OFYaoAgV3J255UZw1axZmzZoF\nAFi4cKHf7du3b0dGRgYef/xxAMC2bduQkJCAffv2Yf78+bBYLNi1axe2bduGhx56CADw4YcfYvLk\nyfjmm2/w8MMP37yLuY0hjkR99XTeJI4TJxi8+irREFZWEsmBw0H2awBgMgmgaQFxcURwX1vLyAgm\nV69SMocYjYaHyfRnAJY+z/X99/+M0tIwAJ7OTRTIx8byMv9UMYvRW5fo2/l1dUG6RoNB7seam2uD\nSgUUF1vR2UnBaqWQlaUHwwjYsMEGmoZs9ymK9g8eZGA0Qlb0FIaoAgV3J255UewP1dXVaG5ulhU2\nnU6H+++/H4cOHcL8+fNx7NgxuN1u2X2io6Mxbtw4HDp0SCmKPRBHon2RRQDyi17UEJrNAkJCHDAa\nBQwfLiArSyft+T76yIqGBgrvvaeTOrN773WjpobG9u0abNxog17fgbCw/+nzPFZrFIYOTYZez8iK\ndFAQkJamR1aWHYC84Ol0ZMeYm+uJWkpJkXd+06ZxOH+eRmkpi7//Xc4+VamA5cuJhCMnxwqaBubO\ndSI4WIDNJvc29RbtBwfDr+gNBkNUEekrUHD74bYuii0tLaAoChEREbLvR0REoKmJ2IC1traCYRgM\nGzbM7z4tLS037ay3O3pjNPr+Ah49WkBlJXpll4pdEyGfkFT5piYKq1froVYLyM/nUVBAdohRUYdB\n0819nqW5+UcoKDDhrbdIIoboGTp8OI+gINKJJiZyaG6WSzsEATh3jsbTT7thsZCut7OTCPdra2k4\nnRSWLjWgro7Gvn3dfqPf0FBP+kZcnID58/XSbfv3s373nzCBQ3a2Hdu3a7Bjh23A9/NaoYxgFSi4\n/XBbF0UFg4dAGI3JyRy6u9ErG1OrFVBQYMV772kxdiyHri4KBQU2mM08GEZATQ0DQejG6NF9Zx6e\nPx+G+PjpAGjk59ug1wt46qkgSfPY1kaDYXgUFVmxaJEBy5Y5pFGnywUUFup6op700mO6uoi8wmAQ\nZJKKoCAeEycStmxbG43hw/keiYjQ448q3322tFAYO9bjeBMRwcNgEDBkiCAJ8a/1/RwIyghWgYLb\nD7d1UTSZTBAEAa2trYiOjpa+39raCpPJJN2H4zhcuXJF1i22trbi/vvv7/f5L1y4cGMOfgtxPddE\nUSq0tESjpkaN2Fg79u7l0d0tH2s6nUTK8Mkn3bBYKJw8SWQOmZl65OfbEBR0Gvn51X2+xqVLMzFp\nUiiWLfP4hu7axaKsjIXNRuHVV/0DevPydEhPd0CjIQYBZjMvFTPfTjY314bSUmL1ZjKRc1+8SFih\nbjcFg4FDQYFeGrtOnSofu0ZFWXHmjBqrVg2RzlxU1I2ZM8+D591S/uFgIirKCrXaIDvDhQs1g/9C\nNxnK/1d3Du6260pI6N0l6lpwWxfFuLg4REZG4k9/+hOSk5MBAHa7HX/729+wfv16AEBycjJUKhX+\n9Kc/4bnnngMA1NfX49y5c5gxY0a/zz8Yb+DthAsXLlzzNXEc8Ne/MjItYnk5i7ff1mHnTlJkvFMu\nWJaSyCtxcRxycjrgdn+N4ODen7+zU4crV/4Z3d0MHA43OM7TGdXX0+jooOB2Uz5dG+no0tMdMk1h\nRYXHl9S3k6UoEiTMcYDBIMDlApxOCp2dRMtoMNBSgO/06cRVRz7+1ECnk38QmDgRiI8fdZ0/jf5x\n4cIFzJih8TtDX9Zvdwqu59/g7Y678ZqAu/e6fihueVFkWRaVlZUQBAE8z+Py5cs4deoUQkNDMWLE\nCCxYsAAFBQUYM2YM4uPjsXnzZgQFBUkFMDg4GHPnzsU777yD8PBwDB06FGvWrMHkyZMlNqqCvnHi\nBIODB+WElNpaGv+/vXuPirrMHzj+HgYQL6Bj3FRAVEApFAhZEW+rprKtoqBlF7eUdF0sMzO19Zcn\nN10Jzcvaeik0LbLOrlpuZ7WyNC+ZUmYpbquiiFaigDCuogjMzO+Pga8MM8NVhS98Xud4Tnyvz8Oz\n+tnn9vm+9loRLi5gNFpuds/NvT3sOHfuT2i1/7X7bAeHMAoKfC3uX7iwiJdfNs9DOjlBaKiBM2cs\ng5Gfn3kY09nZZFGun392UD5J5eNjXoFaPoxqNMKNGxpatoTHHmvNO+/csOhJbt5cyPDhlsOdlYc/\n73UmGdmkL0Tj0+BB8YcffmDUqFHKfsKkpCSSkpJ4/PHHWb16NTNmzKCoqIg5c+ag1+uJiIjgo48+\nUvYoArz++us4OjqSkJBAUVERgwYN4q233mr2exRtqbzi8eJFrD60W1ys4amnWhEVVcIrrxQp83Le\n3uZ9f25uxaSkbK/yPSbTcK5edSrrtd0ObC1bmli2zLzy02SC++4z0apVqfIOjQb0evMz/Pwsv8Lh\n6WlUEnL7+hp5771CDAYNkyZZDr2WzxFWzkwDVQc5CVJCiAYPiv3796egoKDKa+bOncvcuXPtnndy\nciI5OZnk5OQ7Xbwmp/KKx23bClm3zllJrO3hYWLePPNXIH79VUtxsXl488UXzSs14+MzSUk5Yvf5\nGzeG8eCDfoA5SXbFNG1OTuatD/Pnm7dyuLmZE2rHxt7+ksVrrxVx65b56xcPP1ysrCz19zdy7drt\n4H3pkobz57VW+xSvXHFQkoVXfG+PHrVPOSNbJoRofho8KIp7q/KKx5wcjTLXFhRkRK83BxyA5567\nxfjx5iw4JpORjRv/RatWpXafPXnyaIqKnBkx4ia3bmnKgpRGSQ5eXHx7bvLaNejTx8jp05arQK9d\ng+Bg8x7AgQMNFpv3U1MLSU6+SYsW4OtrTt1WuZfbo4eRzz4rJDsbtm0rJCdHtkwIIWpOgmIzY2vT\n+YMPmocMDQb48UctK1fexNPTyNWrGry9TYSEZLN5s/00bdu396Bv3wCmTzfRtm0RnTsbyMrSMm/e\nTe67z8TFiw506mT5pYzISAMPPGCwWuUaFWXAYDCvJgXLXuDFi+Ye48CBBhzL/pdrNFLt/su6ki0T\nQjQ/EhSbmbAwA59+WsipUw54ehpxdDSv1ExP1/Lf/zpw/br5y/VarXlfYlLS52i11+w+77nnfo9e\n34qHH77B88+bPyS8atUN5s69vTF+4cIiXnqplZK+TaOBkhLYssWJkhJYtuwmly5piIoy0L+/uSfm\n5qYhP996rnP8+NZ89lkhYWEGi6HN+PjSOz60Kd81FKL5kaDYzJhM5i9f/PqrhmvXtMye7cyqVTct\ntmSY5xcLKCn5Gicn289xdOxARkZvpkzR0LZtEXq9uUdVOXOMOT+peeXoyy+b07e1bWviySct37d4\ncUvWry9UAltEhAGjEbZvv8Lp0624dev20Ou5cxolwfndHNqU7xoK0fxIUGwiDAbIze3MsWOOeHqa\nP5HUsSNWw4nHjmmtAmBmZsV5Pbjvvm9p29Z+mrY5c4aj0biyeHERJ05ocXY20bmzgXnzbuLubqJV\nK8seVtu2tz/JFBxssFoZWp5jtHJPzMEBPD2zaNmyh0UANKeju/tDm7IaVYjmR4JiE3HsmJbRo90t\ngt2kSS5WPaiLF1FSmbm5mTCZTHTtat764O5+nZUrP7X7jpISHRMmPASYg9GJE1oWLzYPma5YcYPF\ni82rVn19jaSmFnL8uJYOHcwBc+nSG/j5GSko0NCpk+VWi/DwUj7/vNSiJ1a+8vPUqQCCguDLL6+T\nkeFQocemlaFNIcQdJ0Gxiajccyr/pmDlHpSbGxab6f/5z0Kiow18+GEaBsMFu89v3/433LzpjpOT\nuTdZuQfo73870F26pMHDA4YONXDunIZ27SA83KjMY3bsaLSY1/TyMhESYqzye4Wfflqo9BBBayMj\njQxtCiHqT4JiE1F5UUj5NwUDA40cPWpekBIYaKS4GGbPvoWbm/kzUvn5t9i9e7fd5xqNLnh6/pbw\ncBM7d6J8Ksrd3UhQkHnI1M0NkpNbKFsgunQxv/v0aXPPrjzg9e59O3AdPQovvNDS7pxg5SB/6pSD\nzetlaFMIcSdJUGwiwsIMbN+eR3Z2K2VO8fPPCykt1RATY+5xJSfftEh9tmpVOm3anLT7TEfHcAoK\nOqLRmAADHTvCpEm371+58qYyZAqQk1PMuHGlHD2qZejQNlUugqluTrBykPf0NMr2CCHEXSdBsYkw\nL0o5T79+lgl+t251VIKJ+RNMGlq2LGbTpqrTtGVl/Y5XXrEMbOHhlkOWDg7m/YTlSbeDgsxZY2qy\nCKa67Q7lKz9Pny6le3dHHB1le4QQ4u6ToNjEVQw+bduaGDLkHFOn2t+In5//AImJDzBvXpHNwFZx\nyPL777UWPc/PPiu0eqe9AFbddofylZ9ubmcIDAykpMScoSYz04GuXY306iVziEKIO0+CYhN3O/gY\ncXP7gqlT7QeTa9eG4e3tZDEnWVVgO3fOdo+wJvv7arvdIT3dciuJpFwTQtwNEhSbOAcH8PO7RF7e\nUUx2Rhy7dOlCUFAQAKWlBrZtKyQ7W8M//1nIlSv2A5u9HuHd2N8nKdeEEPeCBEUVq/wVh7ZtLZvT\nZDJx8OBBCgsL7T5DpxtMUJCz8rzjx7Xk5GgIDKw+j+i9zPgiKdeEEPeCBEUVq7yXb/v2TnTrZj6n\n1+tJS0uze++1az5kZj5IeHgpRqM5+NX2qxCVe4QGA8r2jzudnFtSrgkh7gUJiipWeUjxwgUnoqNN\nHD16lLy8PLv3/frrIObO9bQKfvUdorybn1qSlGtCiHtBPpmqYuVDimDOKuPre5Vdu3bZDYg6nY6H\nHhpOixauVsHP1vNqO0RpK6gKIYSaSE9RxSoOKXp4pFNYaD9NW2RkJO3btwcgONhoc36uvkOUMu8n\nhFA7CYoq5uAADzxQSF7ePoqKbF/j4uLCgAEDcKgwuWcv+NV3iFLm/YQQaidBUcXOnj3LmTNn7J4P\nDQ3F29vb6nhdgl/lla62FtHIvJ8QQu0kKKqMwQA//GDkypUvqrzuoYceQqvV3rH33s1FNEII0VhI\nUFSZw4cvcv16ut3zwcHB+Pn53fH3yuZ5IURzIEFRJQwGA3v27MFoNNq9pnPnznclIIIsohFCNA8S\nFFUgNzeXo0eP2j3ftWtXAgMDycjIsDpXk7nAmpBFNEKI5kCCYiNXXFxcZUDs338grVu3tHv+Ts0F\nyiIaIURzIEGxkdPr9TaPd+zYkZ49e1Z7v8wFCiFEzUlQbORcXV3RarUYDLd7d9HR0bi6utbofpkL\nFEKImpOg2Mi1bNmSyMgojh/P5coVV3x9PWnd2v5im8pkLlAIIWpOgqIKnD3blvj4jnWaF5S5QCGE\nqDlJCK4CkmhbCCHuDQmKKlDfr1cIIYSoGRk+VQGZFxRCiHtDgqIKyLygEELcGzJ8KoQQQpSRoCiE\nEEKUkaAohBBClJGgKIQQQpRp9EHx9ddfR6fTWfzp0aOHxTVJSUkEBwfToUMHRo4cycmTJxuotEII\nIdSs0QdFgKCgIDIyMjh9+jSnT5/mm2++Uc6tXLmStWvXsnTpUr766is8PDyIi4ujsLCwAUsshBBC\njVQRFLVaLe7u7nh4eODh4UH79u2Vc+vWrWPmzJmMHDmSHj16sHbtWq5fv87WrVsbsMRCCCHUSBVB\n8fz58wQHBxMaGsozzzxDVlYWAFlZWVy+fJnBgwcr17q4uBAdHU1aWloDlVYIIYRaNfqgGBkZyZo1\na9i2bRurVq3i8uXLxMTEoNfrycnJQaPR4OHhYXGPh4cHOTk5DVRiIYQQatXoM9oMHTrU4ufIyEhC\nQ0P54IMP6N27dwOVqnEKDAxs6CLccU2xTiD1UpOmWCdouvWqr0bfU6ysVatW9OjRg8zMTDw9PTGZ\nTOTm5lpck5ubi6enZwOVUAghhFqpLigWFRWRkZGBt7c3/v7+eHl58dVXX1mcP3ToEFFRUQ1YSiGE\nEGrU6IdP58+fT0xMDD4+PuTm5rJ06VJu3LjBY489BkBiYiLLly8nICCAbt268cYbb9CmTRvGjh3b\nwCUXQgihNo0+KF68eJEpU6Zw5coV3N3d6d27N19++SU+Pj4AzJgxg6KiIubMmYNeryciIoKPPvqI\n1q1bN3DJhRBCqI1Gr9fLF2uFEEIIVDinWBNNNTVcdfWaNm2a1fnhw4c3YIlr5vLlyyQmJhIQEIC3\ntzd9+/a1yFoE6myv6uqlxvbq1auXVZl1Oh3jx49XrlFjW1VXr8TERNW1lcFg4LXXXiM0NBRvb29C\nQ0NZtGgRRqPR4jq1tZe9ehkMtz++Xp+/W41++LSugoKC2LFjByaTuSOs1WqVc+Wp4dasWUNAQADJ\nycnExcVx5MiRRj/sWlW9AAYPHszbb7+tnHdycrrnZayNq1evMmLECKKjo9m6dSvt27cnKyvLYu+p\nGturJvUC9bXX3r17Lf7xyc7O5re//S3x8fGAOtsKqq+XRqNRXVu98cYbbNq0iXXr1hEcHMx//vMf\nEhMTcXFx4aWXXgLU2V41qRfU/e9Wkw2K5anhbKmYGg5g7dq1BAYGsnXrVp5++ul7Wcxaq6peAM7O\nzlWeb2z+9re/0aFDB9asWaMc8/Pzs7hGje1Vk3qB+tqrYopFgHfffRc3NzfGjBkDqLOtoPp6gfra\n6ujRo8TExCg9JF9fX2JiYjhy5IhyjRrbqyb1grq3V5McPoWmmxrOXr3KHT58mMDAQHr37s2MGTPI\ny8trmILW0M6dO4mIiCAhIYHAwEAGDBhASkqKcl6t7VVdvcqprb0qe//99xk/fjwtWrRQbVvZUrFe\n5dTWVsOGDePAgQNkZGQAcPLkSQ4cOMCIESMA9f7dqq5e5eraXk2yp1ieGi4wMFDZxhETE8Phw4er\nTA136dKlBipxzdiq14gRI0hLS6Ndu3YMGzaM2NhYOnfuzIULF1i4cCGxsbHs27ev0Q71ZGVlsWHD\nBqZNm8bMmTNJT09nzpw5aDQaJk+erNr2qq5egCrbq6I9e/Zw4cIFpUeh1raqrHK9QJ1tNXnyZLKz\ns/nNb36Do6MjBoOBWbNmMWnSJEC97VVdvaB+7dUkg2JTTQ1XVb2mTZtGXFyccq68N9mzZ08+//xz\nZXiksTEajURERDB//nwAevbsydmzZ1m/fr0SPNSoJvVSY3tV9O677/Lggw9y//33N3RR7ihb9VJj\nW61bt47NmzezceNGunfvTnp6OnPnzqVz585MmDChoYtXZzWpV33aq8kOn1bUVFPDVayXLd7e3nTs\n2NHu+cbAy8uLoKAgi2NBQUH88ssvAKptr+rqZYsa2qtcXl4en376qUVvSq1tVcEcS8IAAAuRSURB\nVJGtetmihrZavnw5L774ImPGjCE4OJhHH32UZ599lhUrVgDqba/q6mVLbdqrWQTFppoarrxeXl5e\nNs/n5eWRnZ1t93xjEBUVpcwNlMvIyMDX1xdAte1VXb1sUUN7ldu8eTMuLi4WmaPU2lYV2aqXLWpo\nK6PRiIOD5T/xDg4OypYMtbZXdfWypTbtpX355ZcX1LeQjc38+fNp0aIFJpOJM2fOMHv2bM6dO8eK\nFStwc3PDYDCwYsUKAgICMBgM/N///R85OTmsWLECZ2fnhi6+XfbqtXLlSrRaLQsXLsTV1RWDwcDx\n48eZMWMGRqORpUuXNtp6+fr6smTJEhwcHOjQoQP79u1j0aJFzJo1i/DwcABVtld19SosLFRle5V7\n7rnniImJYdSoURbH1dhWFdmql1rb6uzZs3z44YcEBATg5OTE/v37WbRoEePGjVMW16ixvaqrV33b\nq0nOKTbV1HBV1auoqIiffvqJf/zjH1y9ehUvLy8GDhzIpk2bGnW9wsPD2bx5M3/5y19444038PHx\nYf78+SQkJCjXqLG9qquXVqtVZXsBHDhwgMzMTNavX291To1tVc5evdTaVklJSSQlJTF79mxyc3Px\n8vJi4sSJzJkzR7lGje1VXb3q216S5k0IIYQo0yzmFIUQQoiakKAohBBClJGgKIQQQpSRoCiEEEKU\nkaAohBBClJGgKIQQQpSRoCiEEEKUkaAoRD0lJibSq1evOt2blJSETqezyj95J/Xr14/FixcrP3/9\n9dfodDoOHjx4196p0+mYNWvWXXu+LevXryckJISSkpJ7+l7RtEhQFM3CBx98gE6n4/vvv7d5fvz4\n8YSGhtbp2RqNxioXY23u1Wg0Nbp2+fLl7Nixo1bP37JlC+fPn2fatGlW721qJkyYQHFxMRs3bmzo\noggVk6Aomo27FQjefPNNvvvuu7vy7IqWL1/Ozp07a3XPm2++yejRo2nXrp1yrH///ly6dIl+/frd\n6SI2KBcXFx5//HH+/ve/N3RRhIpJUBSinrRabaP80OyxY8dIT0+3+LZcucaa7Lm+4uLi+Pnnn9m3\nb19DF0WolARFIaqwZcsWhgwZQocOHfD392fixImcP3/e4hpbc4rlSZa7deuGr68vTzzxBBcvXkSn\n05GcnGz1nqtXr5KYmEjnzp3x8/Pj2WefpaioSDmv0+m4ceOGMgys0+msvlBR2Y4dO3B0dGTAgAEW\nx23NKSYmJuLt7U12djZPPPEEPj4+BAQEMH/+fEwm6/TIKSkpDBgwgA4dOtCtWzfi4uI4fPiwzTJE\nR0fj5eVF37592b17t9U1ly9fZvr06XTv3h0vLy/69OnDO++8Y3Xd+vXriY6OplOnTvj5+TFgwAA2\nbdpkcU1YWBg6nY5///vfVf5uhLCnSX4lQwh7/ve//5Gfn29xzGQyUVpaanXtihUrWLhwIXFxcUyY\nMAG9Xk9KSgq/+93v+Prrr2nfvj1ge14wMTGRf/3rX4wfP57IyEgOHjzIo48+anMI12QykZCQQJcu\nXViwYAHHjh3jvffew9PTk1dffRWAt99+m+nTpxMREcHEiRMBqv0Q7HfffUf37t1p0aKF1bnK5dBo\nNJhMJsaOHUvv3r1ZtGgRe/fuZfXq1XTt2pVJkyYp1z7//POkpqYybNgwnnzySUwmE99++y3ffPON\nxXf40tLS+Oyzz0hISKBNmza89dZbPP3005w4cUIZzs3Ly2Po0KEATJ48GQ8PD/bt28esWbMoKChQ\nFuu89957zJ49m7i4OKZOnUpJSQknT57k22+/VX4f5UJDQ0lLS6vydyOEPRIURbNhMpmIj4+3e97P\nz0/5719++YXFixczb948XnrpJeV4fHw8UVFRrFmzhldeecXmc44dO8b27duZOnUqr7/+OgAJCQk8\n++yz/PTTTzbvCQsLY9WqVcrPV65cITU1VQmKjzzyCDNnzsTf359HHnmkRvXNyMggLCysRtcClJSU\nEB8fr9R34sSJDBo0iNTUVCUoHjhwgNTUVKZMmcKSJUuUexMTE22+Py0tDX9/f8A8l9m/f3+2bt3K\n5MmTAVi4cCGlpaUcOnQInU6nvNfNzY3ly5czZcoU3Nzc2LVrF8HBwTZ7kJX5+/tz6NChGtdbiIpk\n+FQ0GxqNhqVLl7J9+3arP71797a49pNPPsFgMBAXF0d+fr7yx9XVlfvvv58DBw7Yfc/u3bvRaDQ8\n88wzFsf/+Mc/2hyK1Gg0PPXUUxbH+vbtS35+PtevX69zffPz8y0W2NSErXJkZWUpP3/yySdoNBr+\n/Oc/V/usgQMHKgER4IEHHsDV1dXqecOHD8dkMln8ngcPHsyNGzeU1cJubm5cvHiRH374odr3tmvX\njuLi4nr97kTzJT1F0ayEh4cTERFhdXzNmjXk5OQoP2dmZmIymayCJZiDWMV/7Cv7+eef0Wg0dOnS\nxeJ4165d7d5T/gHscuXBTK/X06ZNG7v3VcdWELbHycnJaki2Xbt26PV65eesrCw8PT2VXl1VOnXq\nZHWs4vPy8vLQ6/W8//77pKamWl2r0WiU/ZsvvPAC+/fvZ8iQIfj7+zN48GDi4uKs5kvhdp2b4rYT\ncfdJUBTCBqPRiEajYdu2bTb3ILZs2fKOvk+r1do8XpugVln79u0tAlp16rrX0p7q6mQ0GgEYN24c\nTz75pM1rg4ODAQgKCuLIkSPs2rWLPXv2sGvXLjZu3MjkyZNZunSpxT16vR5nZ+dG/fV40XhJUBTC\nhvJeXqdOnQgKCqrVvb6+vphMJs6dO0dgYKBy/OzZs/UqU217Pt27d7daKVtf/v7+7N69m/z8fGWh\nUV25u7vj6upKaWkpgwYNqvZ6FxcXYmNjiY2NxWg08qc//YkNGzYwa9YsvL29levOnz9f6zYTopzM\nKQphw6hRo3BwcLBYTFJR5RWsFQ0ZMgSTycT69estjr/99tv1GtJr1apVrXp+ffr04dSpU9y6davO\n76xs9OjRmEwmkpKS6v0sBwcHYmNj2bFjBydOnLA6f+XKFeW/CwoKrO69//77AfN2loqOHTtGnz59\n6l0+0TxJT1E0G7UZivT39+fVV1/l1Vdf5cKFC/z+97+nbdu2nD9/np07dxIfH8/cuXNt3hsWFkZs\nbCwpKSlcvXpV2ZJx5swZoO5zXWFhYezbt48333yTTp064e7uzsCBA+1e//DDD5OUlMT+/fsZNmyY\nxbm6Dsv279+fJ554gg0bNnDu3DkeeughwLz9IyQkhJkzZ9bqeQsWLODgwYMMHz6cp556iuDgYPR6\nPcePH2fnzp1kZ2cD5k35Hh4eREVF4enpSWZmJikpKYSEhNC9e3fleT/++CMFBQWMHDmyTvUTQoKi\naDaqC0aVz0+fPp2AgABWr17NsmXLMBqNdOzYkUGDBjFmzJgq733rrbfw8vJi27Zt7Nixg4EDB/LO\nO+8QGRmJi4tLncqflJTEzJkzWbJkCYWFhfTr16/KoBgSEkJoaCgff/yxVVC09buw9/upfHz16tWE\nhISQmprKggULaNOmDaGhoRZp4+zldK183N3dnd27d7NkyRJ27tzJxo0b0el0BAUF8de//lW5LiEh\ngS1btrBu3TquXbuGt7c3f/jDHyy2ywB8/PHH+Pj41Gg4VghbNHq9vu4z+UKIGjt+/DiDBg0iJSWF\ncePG3ZN3btu2jRdeeIH09PRab89Qm1u3btGrVy9efPFFpk6d2tDFESolc4pC3AUVU7SVW7t2LVqt\nlujo6HtWjrFjx+Lv78+aNWvu2TsbSmpqKs7OziQkJDR0UYSKSU9RiLsgOTmZH3/8kQEDBuDo6MgX\nX3zB7t27mTRpEsuWLWvo4gkh7JCgKMRdsHfvXpKTkzl16hSFhYX4+Pjw2GOPMWvWrDu+H1AIcedI\nUBRCCCHKyP9lFUIIIcpIUBRCCCHKSFAUQgghykhQFEIIIcpIUBRCCCHKSFAUQgghyvw/f0iqYk2G\ngboAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x108241550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df.plot(kind=\"scatter\",x=\"Height\",y=\"Weight\")\n", "plt.plot(df[\"Height\"],slope*df[\"Height\"]+intercept,\"-\",color=\"darkgrey\") \n", "\n", "plt.title('Correlation between height and weight')\n", "plt.xlabel('Height (inches)')\n", "plt.ylabel('Weight (lbs)')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Function:" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Height (in inches): 57\n", "If a person is 57 inches tall, they probably weigh 89.15 pounds.\n" ] } ], "source": [ "height = int(input('Height (in inches): '))\n", "weight = slope * height + intercept\n", "print('If a person is ' + str(height) + ' inches tall, they probably weigh ' + str(round(weight,2)) + ' pounds.')" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Height (in inches): 57\n", "If a person is 57 inches tall, they probably weigh 89.15 pounds.\n" ] } ], "source": [ "height = int(input('Height (in inches): '))\n", "weight = 7.717288 * height - 350.737192\n", "print('If a person is ' + str(height) + ' inches tall, they probably weigh ' + str(round(weight,2)) + ' pounds.')" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.0" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
2php/CodeToolKit
9.caffe-ssd/examples/convert_model.ipynb
1
1730512
null
mit
rohinkumar/AngDiameterTest
Diff_DA_LCDM_LC_z_0.57.ipynb
1
193930
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import numpy as np\n", "import scipy as sp\n", "from scipy import integrate\n", "from math import *\n", "import matplotlib.pyplot as plt\n", "from astropy.io import ascii\n", "import healpix_util as hu" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 79 }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define angular diameter distances for Flat LambdaCDM cosmology with $\\Omega_M=0.3$ and $\\Omega_{\\Lambda}=0.7$ starting with definition of $E(z)=\\sqrt{0.3(1+z)^3+0.7}$. As we know Angular diameter distance ($D_A$) is comoving distance ($D_C$) divided by $1+z$. We write $D_A=\\frac{D_C}{1+z}=\\frac{1}{1+z}\\int_0^z\\frac{dz}{E(z)}$" ] }, { "cell_type": "code", "collapsed": false, "input": [ "Ez = lambda x: 1/sqrt(0.3*(1+x)**3+0.7)\n", "\n", "np.vectorize(Ez)\n", "#Calculate comoving distance of a data point using the Redshift - This definition is based on the cosmology model we take. Here the distance for E-dS universe is considered. Also note that c/H0 ratio is cancelled in the equations and hence not taken.\n", "\n", "def DC_LCDM(z):\n", " return integrate.quad(Ez, 0, z)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 80 }, { "cell_type": "code", "collapsed": false, "input": [ "z=0.57\n", "DMLCDM=DC_LCDM(z)\n", "DMLC=z*(z/2+1)/(z+1)\n", "print DMLCDM[0]\n", "print DMLC" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "0.493380449608\n", "0.46652866242\n" ] } ], "prompt_number": 81 }, { "cell_type": "code", "collapsed": false, "input": [ "print DMLCDM[0]*4285.714/(1+z)\n", "print DMLC*4285.714/(1+z)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "1346.80732497\n", "1273.50854773\n" ] } ], "prompt_number": 82 }, { "cell_type": "code", "collapsed": false, "input": [ "th,phi=hu.randsphere(1000,'ang',theta_range=[0,0.25], phi_range=[0,0.25] )\n", "thw,phiw=th,phi\n", "#print th,phi\n", "#print len(thw)" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 83 }, { "cell_type": "code", "collapsed": false, "input": [ "data = open(\"DAvspsi_z_0.57.dat\",'w')\n", "data.write(\"psi \\t lfproper \\t loproper \\t DAf \\t DAo \\n\")\n", "#for i in range(len(thw)):\n", "for thi,phii in zip(thw,phiw):\n", " for i in range(len(thw)-1):\n", " #print \"i j\"\n", " #print thw[i],phiw[i]\n", " #print thi,phii \n", " #print cos(thw[i])*cos(thi)+sin(thw[i])*sin(thi)*cos(phiw[i]-phii)\n", " psi=acos(round(cos(thw[i])*cos(thi)+sin(thw[i])*sin(thi)*cos(phiw[i]-phii),6))\n", " xf1=DMLCDM[0]*sin(thw[i])*cos(phiw[i])\n", " yf1=DMLCDM[0]*sin(thw[i])*sin(phiw[i])\n", " zf1=DMLCDM[0]*cos(thw[i])\n", " xf2=DMLCDM[0]*sin(thi)*cos(phii)\n", " yf2=DMLCDM[0]*sin(thi)*sin(phii)\n", " zf2=DMLCDM[0]*cos(thi)\n", " lf=sqrt((xf1-xf2)**2+(yf1-yf2)**2+(zf1-zf2)**2)\n", " lfproper=lf/(1+z)\n", " xo1=DMLC*sin(thw[i])*cos(phiw[i])\n", " yo1=DMLC*sin(thw[i])*sin(phiw[i])\n", " zo1=DMLC*cos(thw[i])\n", " xo2=DMLC*sin(thi)*cos(phii)\n", " yo2=DMLC*sin(thi)*sin(phii)\n", " zo2=DMLC*cos(thi)\n", " lo=sqrt((xo1-xo2)**2+(yo1-yo2)**2+(zo1-zo2)**2) \n", " loproper=lo/(1+z)\n", " if psi!=0: \n", " DAf=lfproper/psi\n", " DAo=loproper/psi\n", " #print psi,DAf,DAo\n", " data.write(\"%f \\t %f \\t %f \\t %f \\t %f \\n\"%(psi,lfproper,loproper,DAf,DAo))\n", " thw=np.delete(thw,0)\n", " phiw=np.delete(phiw,0)\n", " #print thw\n", " #print phiw\n", " #print \"array length\"\n", " #print len(thw)\n", "data.close()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 84 }, { "cell_type": "code", "collapsed": false, "input": [ "DAvspsi=ascii.read(\"DAvspsi_z_0.57.dat\")" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 85 }, { "cell_type": "code", "collapsed": false, "input": [ "print DAvspsi" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " psi lfproper loproper DAf DAo \n", "-------- -------- -------- -------- --------\n", "0.201572 0.063238 0.059796 0.313724 0.29665\n", "0.049523 0.015558 0.014711 0.314162 0.297064\n", "0.106972 0.033601 0.031773 0.314115 0.29702\n", "0.164783 0.051724 0.048909 0.313895 0.296811\n", "0.187748 0.058914 0.055707 0.313791 0.296713\n", "0.026982 0.008477 0.008015 0.314162 0.297064\n", "0.027569 0.008666 0.008195 0.314346 0.297238\n", "0.149652 0.046985 0.044428 0.31396 0.296873\n", "0.021495 0.006759 0.006392 0.314474 0.297359\n", "0.101414 0.031855 0.030121 0.314107 0.297012\n", " ... ... ... ... ...\n", "0.032682 0.01027 0.009711 0.314253 0.29715\n", "0.069785 0.021924 0.020731 0.314168 0.29707\n", "0.040917 0.012859 0.012159 0.31426 0.297157\n", "0.037605 0.011813 0.01117 0.314135 0.297039\n", "0.047733 0.014996 0.01418 0.314166 0.297068\n", "0.094162 0.029581 0.027971 0.314151 0.297054\n", "0.085887 0.026983 0.025514 0.314169 0.29707\n", "0.113516 0.035653 0.033713 0.314082 0.296988\n", "0.008832 0.002774 0.002623 0.314041 0.296949\n", "0.027786 0.008727 0.008252 0.314068 0.296975\n", "0.035555 0.011171 0.010563 0.314186 0.297087\n", "Length = 498297 rows\n" ] } ], "prompt_number": 86 }, { "cell_type": "code", "collapsed": false, "input": [ "DAvspsi.sort('psi')" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 87 }, { "cell_type": "code", "collapsed": false, "input": [ "xint=DAvspsi['psi']\n", "yint=1408*np.ones(len(xint))\n", "#print xint" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 88 }, { "cell_type": "code", "collapsed": false, "input": [ "idx = np.argwhere(np.isclose(yint, DAvspsi['DAf']*4285.714 , atol=0.05)).reshape(-1)\n", "print idx\n", "print xint[idx]" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "[1699]\n", " psi \n", "--------\n", "0.003162\n" ] } ], "prompt_number": 91 }, { "cell_type": "code", "collapsed": false, "input": [ "print DAvspsi['DAo'][idx]*4285.714" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ " DAo \n", "-------------\n", "1331.36991124\n" ] } ], "prompt_number": 92 }, { "cell_type": "code", "collapsed": false, "input": [ "plt.plot(xint,yint,label=\"DA=1408\")\n", "plt.plot(xint[idx], yint[idx], 'ro')\n", "#plt.plot(xint[idx]*np.ones(700),range(800,1500),'c',label=\"theta=inters\")\n", "plt.plot(xint[idx], DAvspsi['DAo'][idx]*4285.714, 'ro')\n", "plt.plot(DAvspsi['psi'],DAvspsi['DAf']*4285.714,'g',label=\"DAf\")\n", "plt.plot(DAvspsi['psi'],DAvspsi['DAo']*4285.714,'r',label=\"DAo\")\n", "plt.legend(frameon=0, loc='upper right')\n", "plt.show()" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAADHkAAAhNCAYAAAC75BdSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAABcRgAAXEYBFJRDQQAAIABJREFUeJzs3WmUlOW1NuBdDdiiTIICDhAHRBBQNJoEJxLiPEVFIyhK\njBPGmRCNQ6IHjTFHEyEGOUbRiHriBNGloqgo6jEgRsMQYhQEREWlw9QgIHR3fT/ymWWUt3qq6nq7\nva61+GHvp/ZzF41r1Y+615vJZrPZAAAAAAAAAAAAAAAAoKhKih0AAAAAAAAAAAAAAAAAJQ8AAAAA\nAAAAAAAAAIBUUPIAAAAAAAAAAAAAAABIASUPAAAAAAAAAAAAAACAFFDyAAAAAAAAAAAAAAAASAEl\nDwAAAAAAAAAAAAAAgBRQ8gAAAAAAAAAAAAAAAEgBJQ8AAAAAAAAAAAAAAIAUUPIAAAAAAAAAAAAA\nAABIASUPAAAAAAAAAAAAAACAFFDyAAAAAAAAAAAAAAAASAElDwAAAAAAAAAAAAAAgBRQ8gAAAAAA\nAAAAAAAAAEgBJQ8AAAAAAAAAAAAAAIAUUPIAAAAAAAAAAAAAAABIASUPAAAAAAAAAAAAAACAFFDy\nAAAAAAAAAAAAAAAASAElDwAAAAAAAAAAAAAAgBRQ8gAAAAAAAAAAAAAAAEgBJQ8AAAAAAAAAAAAA\nAIAUUPIAAAAAAAAAAAAAAABIASUPAAAAAAAAAAAAAACAFFDyAAAAAAAAAAAAAAAASAElDwAAAAAA\nAAAAAAAAgBRQ8gAAAAAAAAAAAAAAAEgBJQ8AAAAAAAAAAAAAAIAUUPIAAAAAAAAAAAAAAABIASUP\nAAAAAAAAAAAAAACAFFDyAAAAAAAAAAAAAAAASAElDwAAAAAAAAAAAAAAgBRQ8gAAAAAAAAAAAAAA\nAEgBJQ8AAAAAAAAAAAAAAIAUUPIAAAAAAAAAAAAAAABIASUPAAAAAAAAAAAAAACAFFDyAAAAAAAA\nAAAAAAAASAElDwAAAAAAAAAAAAAAgBRQ8gAAAAAAAAAAAAAAAEgBJQ8AAAAAAAAAAAAAAIAUUPIA\nAAAAAAAAAAAAAABIASUPAAAAAAAAAAAAAACAFFDyAAAAAAAAAAAAAAAASAElDwAAAAAAAAAAAAAA\ngBRQ8gAAAAAAAAAAAAAAAEgBJQ8AAAAAAAAAAAAAAIAUUPIAAAAAAAAAAAAAAABIASUPAAAAAAAA\nAAAAAACAFFDyAAAAAAAAAAAAAAAASAElDwAAAAAAAAAAAAAAgBRQ8gAAAAAAAAAAAAAAAEgBJQ8A\nAAAAAAAAAAAAAIAUUPIAAAAAAAAAAAAAAABIASUPAAAAAAAAAAAAAACAFFDyAAAAAAAAAAAAAAAA\nSAElDwAAAAAAAAAAAAAAgBRQ8gAAAAAAAAAAAAAAAEgBJQ8AAAAAAAAAAAAAAIAUUPIAAAAAAAAA\nAAAAAABIASUPAAAAAAAAAAAAAACAFGhe7ACNzbp166Jnz56xePHi//j5okWLomvXrkVK1TiVl5fH\nyy+/HK+88kpMnz49Pvzww1i+fHmsWLEiWrRoEW3atIkddtghevXqFfvuu28cddRRseOOOxY7dmSz\n2fjLX/4Sr7zySrzyyisxb968WLZsWSxfvjwqKiqidevW0aFDh+jZs2f06dMnDjvssNhvv/2ipESn\nCgAAAAAAAAAAAACAZJlsNpstdojG5LrrrotrrrnmP36WyWRi4cKFeSl5/OAHP4jx48fXe08hVFVV\n5WXPm2++GbfeemuMHz8+1q5dW6vXfuMb34jhw4fHiSee2OClidWrV8cf/vCH+N3vfhfz5s2r1Wu3\n2WabGDZsWJx//vnRsWPHAiUEAAAAAAAAAAAAAKAx82iBWpg1a1bccMMNxY5RFJlMpt471q5dGxdf\nfHH06tUr/ud//qfWBY+IiBkzZsSgQYNin332iRkzZtQ7U009+uijseuuu8bFF19c64JHRERZWVlc\nd9110a1btxg1alTeCjMAAAAAAAAAAAAAADQdSh419Mknn8SgQYPi008/LXaURmnOnDnRt2/fuPXW\nW/Oyb+bMmbHffvvFTTfdlJd9STZs2BBDhw6NE044IZYuXVrvfWvWrInhw4fHd7/73Vi2bFkeEgIA\nAAAAAAAAAAAA0FQoedRAZWVlDB48ON56661iR2mU/vKXv8S3v/3tmD9/fl73VlVVxeWXXx5nn312\nXvd+Zt26dXHsscfGvffem/fdL774YnzjG9+I9957L++7AQAAAAAAAAAAAABonJQ8auC8886LJ554\notgxGqVZs2bFwQcfHCtWrKjR+Uwm8+8/NTVu3Li49NJL6xpxkyoqKuKYY46JZ555pkbnP5+7ptkX\nLlwYBx98cJSVldUnKgAAAAAAAAAAAAAATYSSRw7ZbDYuuuiiuPPOO4sdpehatWpV69eUl5fHwIED\no7y8POe5nXbaKUaOHBl//vOf45///Gds3LgxVq1aFa+//nr8+te/jj322KPau0aPHh33339/rTMm\nueKKK+L555/PeaZly5ZxxhlnxGOPPRbvvvturF+/PtatWxcLFiyIhx56KE466aRo1qxZzh3z5s2L\nIUOG5C03AAAAAAAAAAAAAACNVyabzWaLHSKNqqqq4pxzzom77rqr2rOZTCYWLlwYXbt2rfe9Z5xx\nRtxzzz21epJFfVX3T6BFixbx+OOPx6GHHlqrvSeddFJMmDAhcd6yZcu48cYb44ILLqj2/T788MNx\n4YUXxtKlSxPPtGrVKubMmRNf+9rXapXzi5544ok49thjc545/vjjY8yYMdG5c+ec5955550499xz\nqy2M3HTTTfHjH/+41lkBAAAAAAAAAAAAAGg6lDw2YfXq1TFkyJB4/PHHa3Q+nyWPhrZ+/fo44IAD\n4o033tjkPJPJxN133x2nn356rfY+9dRTcdRRRyXOO3ToEJMnT4699967xjs/+OCDOProo2PWrFmJ\nZ0444YR45JFHapX189avXx89evSIxYsXJ5659tpr4+c//3mNd2az2bj88svj5ptvTjzTqlWrePvt\nt6stjQAAAAAAAAAAAAAA0HSVFDtA2ixatCj222+/Ghc8GruhQ4cmFjwiIq677rpaFzwqKyvjsssu\nS5xvvvnm8dRTT9Wq4BERsf3228dzzz0XPXv2TDwzceLEeOWVV2q19/NGjx6ds+AxfPjwWhU8Iv5V\nlPnv//7vGDFiROKZNWvWxM9+9rNa7QUAAAAAAAAAAAAAoGnxJI/Peeihh2LYsGGxcuXKWr2usT7J\nY+TIkXHttdcmzr///e/HAw88UOu948ePjx/84AeJ81tuuSUuvvjiWu/9zLx582KfffaJ1atXb3J+\n+OGHx6RJk2q9t7y8PLp27Rrl5eWbnH/961+PV199NUpK6t6NOuqoo+Kpp57a5KxFixaxYMGC2H77\n7eu8HwAAAAAAAAAAAACAxsuTPCJi1apVMXTo0Bg0aFCtCx6N1eOPP56z4LHbbrvFuHHj6rR7zJgx\nibNevXrFhRdeWKe9n9l1111j5MiRifOnn346/va3v9V67/33359Y8MhkMnHrrbfWq+AREXHHHXfE\nlltuucnZxo0bY9SoUfXaDwAAAAAAAAAAAABA4/WVL3nce++9sdtuu8W9995b7CgNZsmSJXHGGWck\nzrfccsuYMGFCYhkhl5kzZ8Zrr72WOL/sssvqXZSIiLjggguiS5cuifO77rqr1jtvv/32xNm3v/3t\n+Na3vlXrnV+03XbbxUUXXZQ4Hz9+fFRWVtb7HgAAAAAAAAAAAAAAGp+vbMnj1VdfjYMOOiiGDh0a\nS5cuzXm2pKQkjjvuuAZKVlhVVVUxZMiQWL58eeKZ2267LXbfffc67c/19I8OHTrEoEGD6rT3i5o1\naxbDhg1LnP/v//5vrcoSr7/+esyePTtxfv7559cqXy7Dhg2LZs2abXJWVlYWTz31VN7uAgAAAAAA\nAAAAAACg8fjKlTz++te/xjHHHBP9+vWL//u//6v2fMuWLePee++Niy++uAHSFd4vf/nLmDp1auL8\nxBNPjNNOO63O+//0pz8lzo499tho0aJFnXd/0cknn5w4W7p0aY1+v5+ZOHFi4mzLLbeMo446qlbZ\ncunSpUv069cvcT5hwoS83QUAAAAAAAAAAAAAQOPxlSt5HH/88fHkk0/W6Gy3bt1i2rRpMXjw4Mhm\nswVOVnizZs2Ka6+9NnHesWPHGDt2bJ33z5kzJ5YsWZI4/973vlfn3Zuy8847R8+ePRPnNf09R0Q8\n/fTTibNDDjkkSktLa5WtOsccc0zizJM8AAAAAAAAAAAAAAC+mr5yJY+ayGQycfbZZ8fMmTNjjz32\nKHacvKisrIyzzjorKisrNznPZDIxduzY6NChQ53veOmllxJnmUwmDjzwwDrvTnLQQQclziZPnlyj\nHeXl5TFz5sw63VFXuXYuXbo0/vrXv+b9TgAAAAAAAAAAAAAA0k3J4wt23XXXePbZZ+P222+PLbbY\nothx8mbUqFHx+uuvJ84HDx4cxx9/fL3umD59euKse/fusdVWW9Vr/6Z84xvfSJz9/e9/j7Vr11a7\n47XXXsv5pJZ+/frVKVsuffv2jRYtWiTOX3311bzfCQAAAAAAAAAAAABAuil5/H+tWrWK6667LubM\nmRMDBgwodpy8WrhwYfz85z9PnG+11VYxevToet+T6+kTe+21V73313ZvZWVlvPHGG9XuyJW7pKQk\n9txzzzply6W0tDR69uyZOP/LX/6S9zsBAAAAAAAAAAAAAEi3r3zJo0WLFnH22WfHvHnz4qqrrorN\nNtus2JHy7qKLLop169Ylzq+//vro0KFDve6oqKiIt99+O3Heo0ePeu1Psssuu+Scz5w5s9odc+fO\nTZx17do1Nt9881rnqoldd901cVaT3AAAAAAAAAAAAAAANC1f2ZJHixYtYujQofHmm2/G7bffHp06\ndSp2pIJ49tln48knn0yc77333nHeeefV+55FixZFRUVF4rxQJY/WrVtH586dE+eLFi2qdse8efMS\nZ4XKHZG75FGT3AAAAAAAAAAAAAAANC3Nix2goXXq1CkGDx4c559/fuywww7FjlNQlZWVcemllybO\nS0pKYsyYMXm5a+HChTnnXbp0ycs9m7LddtvFRx99tMnZggULqn19ruyFzp1kxYoVsXr16mjdunXB\n7gcAAAAAAAAAAAAAIF2+ciWP6dOnRyaTKXaMBnH77bfH3//+98T50KFD45vf/GZe7nr//fcTZ5lM\nJrbddtu83LMpuZ7ksXjx4pyvraioiI8//jhxXqzcERHvvvtu9O7du2D3AwAAAAAAAAAAAACQLiXF\nDtDQvioFj/Ly8rjmmmsS5y1btozrr78+b/clPUnjM4UsS3Tq1ClxtmzZspyvLSsri6qqqsR5sXJn\ns9lqswMAAAAAAAAAAAAA0LR85UoeXxWjR4/OWRK48MIL81pgyHVXaWlplJaW5u2uL2rXrl3ibMWK\nFTlfW12RYquttqpTpprIlTui+uwAAAAAAAAAAAAAADQtSh5NUHl5edxyyy2J83bt2sVPf/rTvN6Z\nq5DQpk2bvN71Ra1atUqcrV69OueTOqorUhQye67cEUoeAAAAAAAAAAAAAABfNUoeTdCoUaNi5cqV\nifPLLrus2qdI1NaaNWsSZ61bt87rXbXdX15enjjLlbsmu+ujut2rVq0q2N0AAAAAAAAAAAAAAKSP\nkkcTs2rVqpxP8ejcuXNccskleb937dq1ibOWLVvm/b7P23zzzXPON27cmDjLlTuisNnrkxsAAAAA\nAAAAAAAAgKZHyaOJue2223I+AeKSSy6ptlxQF59++mnirHnz5nm/rzb7N2zYkDjLlbsmu+ujPrkB\nAAAAAAAAAAAAAGh6lDyakIqKirjtttsS523bto3zzjuvIHdXVlYmzopd8sj1RIxcuWuyuz7qkxsA\nAAAAAAAAAAAAgKZHyaMJmThxYnzwwQeJ83POOSdat25dkLurqqoSZ4UueTRr1iznvKKiInGWK3cm\nkylo9vrkBgAAAAAAAAAAAACg6VHyaEJGjx6dOCstLY1LLrmkYHfnKkNU97SM+qquDFFSkvzPvLoS\nRyGz1yc3AAAAAAAAAAAAAABNj2+RNxGvv/56TJs2LXF+yimnxLbbbluw+zfbbLPEWaGfSFFdESNX\nkSNX7mw2W9Ds9ckNAAAAAAAAAAAAAEDT41vkTcSdd96ZOMtkMnH++ecX9P5cZYliP8kjV7Zcs4ji\nPsmjumwNae7cucWOAAAAAAAAAAAAAACNXq9evYodgZRT8mgCNmzYEA8++GDivG/fvrH33nsXNENp\naWnibP369QW9u7r9W265ZeIsV+6a7K6P+uRuaL179y52BAAAAAAAAAAAAABo9LLZbLEjkHIlxQ5A\n/T3xxBOxcuXKxPlZZ51V8Azt2rVLnK1evbqgd1e3P1dZIlfumuyuj/rkBgAAAAAAAAAAAACg6VHy\naALGjx+fONtiiy3i1FNPLXiGDh06JM6KWfJo3bp1lJQk/zPPlbu63fVV3e727dsX7G4AAAAAAAAA\nAAAAANJHyaORW758eUyaNClxftJJJ0WbNm0KniNXWeKTTz6JysrKgt2d6ykm1ZU4qpvn2l1f1e2u\nLhsAAAAAAAAAAAAAAE2Lkkcj9+STT0ZFRUXivCGe4hER0bFjx5zzpUuXFuzujz/+OHHWuXPnnK/d\naqutonnz5nXaXV+5dmcymWqzF8rcuXMjk8n8xx8AAAAAAAAAAAAAoP6++D3duXPnFjsSKaPk0cg9\n/vjjibMOHTrEgAEDGiTHzjvvnDjLZrPx0UcfFezuXLt32GGHnK/NZDKx44471ml3fVW3u7rsAAAA\nAAAAAAAAAAA0LUoejdjGjRtj8uTJifPvfe97UVLSML/inXbaKef8vffeK9jd77//fuIsV4HjM7kK\nKrl211eu3VtvvXW0bNmyYHcDAAAAAAAAAAAAAJA+Sh6N2EsvvRSrV69OnJ944okNlmXbbbfNWUqY\nN29eQe4tLy+PsrKyxHn37t2r3bHLLrskzt5+++065aqJXH8nNckNAAAAAAAAAAAAAEDT0rzYAai7\nJ598MnHWrl27OPjggxswTUSfPn1ixowZm5wVqixRXXmkV69e1e7o06dP4mzBggW1zlRTubLXJHcx\nPfroo9GtW7dixwAAiIiI5cuXx0EHHfQfP3vppZeiffv2RUoEALBpPrcAAI2Fzy0AQGPhcwsAkHbz\n58+P4447rtgxaGSUPBqx559/PnF2+OGHR/PmDfvr3WeffRJLHjNnzizInW+88UbirFmzZrHnnntW\nu2OfffZJnK1fvz7efPPN6NmzZ53yJVm3bl384x//SJzvtddeeb0v37p165b6IgoA8NWxqSe79ejR\nI7bZZpsipAEASOZzCwDQWPjcAgA0Fj63AADQFJUUOwB1s3LlypgzZ07ifMCAAQ2Y5l9ylSVmz54d\nGzduzPudSaWSiH89DaNly5bV7ujTp09sttlmm5xls9mcd9TVG2+8EZWVlYnzb37zm3m/EwAAAAAA\nAAAAAACAdFPyaKRefvnlyGazm5xlMpmilDz69++fOPv0009j2rRpeb/zxRdfrFOezystLc1Zqsh1\nR13l2tmuXbvo27dv3u8EAAAAAAAAAAAAACDdlDwaqVwlga5du8bOO+/cgGn+Zaeddoru3bsnzp94\n4om83vf222/H/PnzE+eHH354jXcdccQRibNJkybVKldN5Pq7OOSQQ/J+HwAAAAAAAAAAAAAA6afk\n0Ui98soribNcT6UotCOPPDJx9tBDDyU+faQu/vjHPybO2rRpE9/97ndrvCtX7qVLl8aUKVNqlS2X\nhQsXxquvvpo4P+644/J2FwAAAAAAAAAAAAAAjYeSRyNUVVUVs2fPTpz37t27AdP8p8GDByfOFi9e\nHI8//nhe7tmwYUP8/ve/T5yfcsopsdlmm9V43x577BG777574nzMmDG1ypfLbbfdllh2ad++fZxw\nwgl5uwsAAAAAAAAAAAAAgMZDyaMReuutt2LdunWJ8z59+jRgmv+077775rz/qquuisrKynrfM3r0\n6Pjwww83OctkMnHOOefUeueZZ56ZOHvsscdi2rRptd75RYsXL85ZGBkyZEiUlpbW+x4AAAAAAAAA\nAAAAABofJY9GaObMmYmzTCZT1JJHRMR5552XOJs7d26MHDmyXvvffPPN+K//+q/E+be+9a3o27dv\nrfeefvrpscUWW2xyls1m46yzzoq1a9fWeu9nqqqq4swzz4z169dvct6sWbMYNmxYnfcDAAAAAAAA\nAAAAANC4KXk0QrNmzUqclZSUxE477dSAab7szDPPjK5duybOr7/++pgwYUKddpeVlcVxxx2XWLbI\nZDJx44031ml3hw4d4sILL0ycv/nmmzFkyJCoqqqq0/4RI0bElClTEuenn3569OjRo067AQAAAAAA\nAAAAAABo/JQ8GqF58+Ylzjp27BiZTKYB03xZixYt4pprrkmcZ7PZOPXUU+OBBx6o1d73338/vvvd\n7+Z8/8ccc0wceOCBtdr7eZdddlm0bds2cf7oo4/G4MGD49NPP63xzmw2GyNGjIhRo0Ylntliiy3i\nuuuuq1VWAAAAAAAAAAAAAACaFiWPRmjRokWJs2233bbhguRwxhlnxHe+853E+YYNG+LUU0+NCy64\nIMrLy6vd9/DDD8fXv/71+Nvf/pZ4pm3btnHLLbfUKe9nttpqq5xljM+yfOtb34rXX3+92n3vvPNO\nHHLIIfGb3/wm57mRI0fGdtttV6usAAAAAAAAAAAAAAA0LUoejVCukkeaigJ/+MMfcj4VI5vNxm23\n3RZf+9rX4tJLL40pU6ZEWVlZVFRUxJo1a2L27Nlx6623xt577x0nn3xylJWVJe7KZDJx5513xk47\n7VTv3EOHDo3jjz8+55lZs2bFvvvuG0cffXTcf//9sWDBgli/fn1s2LAh3nvvvZg4cWKccsop0aNH\nj3j++edz7jrmmGNi+PDh9c4NAAAAAAAAAAAAAEDj1rzYAaidNWvWxIoVKxLnW2+9dQOmya1Lly4x\nYcKEOOKII2Ljxo2J51atWhWjR4+O0aNH1/muESNGxMCBA+v8+i+65557YuHChTFz5syc5yZNmhST\nJk2q8z09evSIe+65p86vBwAAAAAAAAAAAACg6fAkj0Zm+fLlOeebb755AyWpmQEDBsQDDzwQpaWl\nBbvjJz/5SfzqV7/K685WrVrFU089FXvssUde935e796948UXX4x27doV7A4AAAAAAAAAAAAAABoP\nJY9G5pNPPsk5T1vJIyLi+OOPj2effTa23XbbvO5t0aJF3HjjjXkveHymU6dO8dJLL8WRRx6Z990D\nBgyIqVOnxjbbbJP33QAAAAAAAAAAAAAANE5KHnmQzWYb7K41a9bknKex5BERccABB8ScOXPilFNO\niUwmU+99ffr0iVdffTUuu+yyPKRL1qZNm3jiiSfitttui/bt29d735Zbbhm33nprPPfcc3nZBwAA\nAAAAAAAAAABA09G82AEai8+KCV8sKGSz2byUFmqqc+fOcc011yTe2b9//wbLUlvt27eP++67L0aM\nGBE333xzTJw4MdavX1/j12cymdhvv/3ioosuioEDB0ZJScN1lIYNGxannHJK/Pa3v40777wzFi9e\nXKvXd+7cOc4999w477zzomPHjgVKCQAAAAAAAAAAAABAY6bkUUP9+/ePqqqqYseILl26xDXXXFPs\nGPXSt2/fuO+++2LVqlXx3HPPxYsvvhh/+9vfYsGCBbFy5cpYu3ZtbLHFFtG+ffvo0KFD9O7dOw44\n4IDo379/dOvWrWi527RpE1dffXVcddVVMX369Hj++efjtddei/nz58dHH30Ua9asiZKSkthqq62i\nffv2seOOO8Z+++0X+++/f+y3337RvLn/3QAAAAAAAAAAAAAASOZb5xRN27ZtY+DAgTFw4MBiR6mV\nTCYT/fr1i379+hU7CgAAAAAAAAAAAAAATUhJsQMAAAAAAAAAAAAAAACg5AEAAAAAAAAAAAAAAJAK\nSh4AAAAAAAAAAAAAAAApoOQBAAAAAAAAAAAAAACQAkoeAAAAAAAAAAAAAAAAKaDkAQAAAAAAAAAA\nAAAAkAJKHgAAAAAAAAAAAAAAACmg5AEAAAAAAAAAAAAAAJACSh4AAAAAAAAAAAAAAAAp0LzYAQAA\nAOpjm222iWw2W+wYAADV8rkFAGgsfG4BABoLn1sAAGiKPMkDAAAAAAAAAAAAAAAgBZQ8AAAAAAAA\nAAAAAAAAUkDJAwAAAAAAAAAAAAAAIAWUPAAAAAAAAAAAAAAAAFJAyQMAAAAAAAAAAAAAACAFlDwA\nAAAAAAAAAAAAAABSQMkDAAAAAAAAAAAAAAAgBZQ8AAAAAAAAAAAAAAAAUkDJAwAAAAAAAAAAAAAA\nIAWUPAAAAAAAAAAAAAAAAFJAyQMAAAAAAAAAAAAAACAFlDwAAAAAAAAAAAAAAABSQMkDAAAAAAAA\nAAAAAAAgBZQ8AAAAAAAAAAAAAAAAUkDJAwAAAAAAAAAAAAAAIAWUPAAAAAAAAAAAAAAAAFJAyQMA\nAAAAAAAAAAAAACAFlDwAAAAAAAAAAAAAAABSQMkDAAAAAAAAAAAAAAAgBZQ8AAAAAAAAAAAAAAAA\nUkDJAwAAAAAAAAAAAAAAIAWUPAAAAAAAAAAAAAAAAFJAyQMAAAAAAAAAAAAAACAFlDwAAAAAAAAA\nAAAAAABSQMkDAAAAAAAAAAAAAAAgBZQ8AAAAAAAAAAAAAAAAUkDJAwAAAAAAAAAAAAAAIAWUPAAA\nAAAAAAAAAAAAAFJAyQMAAAAAAAAAAAAAACAFlDwAAAAAAAAAAAAAAABSQMkDAAAAAAAAAAAAAAAg\nBZQ8AAAAAAAAAAAAAAAAUkDJAwAAAAAAAAAAAAAAIAWUPAAAAAAAAAAAAAAAAFJAyQMAAAAAAAAA\nAAAAACAFlDwAAAAAAAAAAAAAAABSQMkDAAAAAAAAAAAAAAAgBZQ8AAAAAAAAAAAAAAAAUkDJAwAA\nAAAAAAAB9tCiAAAgAElEQVQAAAAAIAWUPAAAAAAAAAAAAAAAAFJAyQMAAAAAAAAAAAAAACAFlDwA\nAAAAAAAAAAAAAABSQMkDAAAAAAAAAAAAAAAgBZQ8AAAAAAAAAAAAAAAAUkDJAwAAAAAAAAAAAAAA\nIAWUPAAAAAAAAAAAAAAAAFJAyQMAAAAAAAAAAAAAACAFlDwAAAAAAAAAAAAAAABSQMkDAAAAAAAA\nAAAAAAAgBZQ8AAAAAAAAAAAAAAAAUkDJAwAAAAAAAAAAAAAAIAWUPAAAAAAAAAAAAAAAAFJAyQMA\nAAAAAAAAAAAAACAFlDwAAAAAAAAAAAAAAABSQMkDAAAAAAAAAAAAAAAgBZQ8AAAAAAAAAAAAAAAA\nUkDJAwAAAAAAAAAAAAAAIAWaFzsAAAAAAAAAAAAAQBqde+65cccdd1R7rlWrVrFkyZJo1apVA6Si\nIc2cOTO+/vWvRzab/Y+f9+/fP1544YUipcq/F198MQYMGPCl9/mZF154Ifr379/AqTbtn//8Z0yZ\nMiVmzJgRc+bMicWLF8fHH38ca9eujaqqqmjdunW0bt06unTpErvvvnv06dMnDj300Nhtt92KHb1a\n69ati5dffjlmzJgRM2fOjHfffTc++OCDWL16daxbty6aNWsWW2yxRbRv3z523HHH6NatW+y7776x\n//77R8+ePYsdH8gTJQ8AAAAAAAAAAABoRKZOnRoDBgwo+D3NmjWLFi1aRPPmzaO0tDRat24dbdq0\nibZt20bnzp1jhx12iK5du8buu+8ee+yxR3Tq1KngmRrS2rVr44EHHqjR2TVr1sT9998f5557boFT\n0dAuvvjiTRYfMplMEdIURnl5eQwdOjSx4JHJZIr+fisqKuKhhx6KcePGxdSpUxOzRkSsXLkyVq5c\nGe+99178+c9//vfPd9lllzjttNPiRz/6UWy99dYNEbtGqqqq4umnn4477rgjnnnmmVi3bl3Os6tW\nrYpVq1bFwoUL44UXXvh3EW3nnXeO73//+zFs2LDo2rVrQ8UHCkDJAwAAAAAAAAAAAPiSysrKqKys\njIh/lRiWLVuW8/yOO+4YRxxxRBx55JFx8MEHR2lpaUPELJhHHnkkVq9eXePzY8eOVfJoYu677754\n+eWXix2j4C644IJYvHhx4jxXoaIhPPjgg3HFFVfEokWL6rXnnXfeiWuvvTZuvPHGGDZsWIwcObLo\nT9+ZMGFCXHXVVfH222/Xe9eCBQvixhtvjJtuuikGDx4c119/vbIHNFIlxQ4AAAAAAAAAAAAANH6L\nFi2KsWPHxjHHHBM77LBDXHbZZbFgwYJix6qzcePG1er87NmzY9q0aQVKQ0ObP39+/OhHPyp2jIJ7\n5JFH4r777it2jE1aunRpHHHEETF48OB6Fzw+b/369TFq1Kjo0aNHPPnkk3nbWxsffPBBHHbYYXHS\nSSflpeDxeZWVlXHfffdFjx494pZbbsnrbqBhKHkAAAAAAAAAAAAAebVs2bK4+eabo3v37nHWWWfF\nRx99VOxItTJ//vw6PcFh7NixBUhDQ/v0009j0KBBsWbNmmJHKagPP/wwtU+fmTt3buy1114xefLk\ngt2xZMmSOPbYY+O6664r2B2b8tJLL8Wee+4Zzz77bEHvWb9+ffz4xz+OI488slZPJQKKT8kDAAAA\nAAAAAAAAKIiqqqq46667onv37jFq1Khix6mxu+66q06ve/jhh2PZsmV5TkNDqqqqilNPPTXeeOON\nYkcpuB/+8IexYsWKYsf4kjfeeCP69+8fH374YcHvymazcc0118TZZ59d8LsiIiZOnBiHHHJILF++\nvEHui4h4+umn44ADDoiysrIGuxOoHyUPAAAAAAAAAAAAoKDWrFkTw4cPj6OPPjr1JYjKysoYP358\nnV776aefxt13353nRDSkSy65JCZOnFjsGAU3ZsyYgj4lo65mzpwZAwYMaNASRETEuHHjYvjw4QW9\n4+mnn47BgwfHxo0bC3rPpsyZMycOOeSQWLlyZYPfDdRe82IHAAAAAAAAAAAAAL4aJk2aFPvss09M\nmTIldt5552LH2aTJkyfHkiVLEuctW7aMdevWJc5vv/32GDFiRCGiUWBXXXVV/O53vyt2jIJ76623\n4ic/+UmxY3zJqlWrYuDAgVFeXl6j882aNYt+/frFIYccEr169YoOHTpEs2bNYtmyZTF37tyYOnVq\nvPDCC1FZWVmjfaNGjYrevXvHD3/4w/q8jU16++234+STT65VwaN169bRv3//+M53vhM77LBDdOzY\nMSoqKmLp0qXxzjvvxOTJk2P69Ok1fn+zZ8+Ok08+OZ5++unIZDJ1fStAA1DyAAAAAAAAAAAAgCYq\nn1/kzWazednz7rvvxkEHHRRTpkyJ3XbbLS8782ncuHE55z/60Y/i17/+deL8nXfeiWeeeSYOPfTQ\nfEejgC699NIYPXp0sWMUXEVFRQwZMiTWr19f7ChfcsYZZ8TChQurPVdSUhJnnHFGXHnllbHTTjtt\n8sz3vve9uPLKK+PDDz+Mm266KcaMGVOjgsVFF10U/fr1i549e9Y6f5KKiooYNGhQrF69ukbnO3Xq\nFJdffnmcd955UVpamnju6quvjo8//jh+8YtfxO9///vYsGFDtbufffbZuP766+NnP/tZjfMDDa+k\n2AEAAAAAAAAAAACA/Js6dWpUVlbW+c/GjRtj3bp1sWzZsli8eHHMnj07nnvuuRg/fnz8/Oc/jxNO\nOCG6du1ap2xLliyJgw46KP7+97/n+V3XT1lZWTz++OOJ80wmEyNGjIi2bdvm3DN27Nh8R6NAKioq\n4pxzzvlKFDwiIkaOHBmvv/56sWN8ybhx4+LRRx+t9lynTp3i+eefjzvuuCOx4PF52267bfzmN7+J\n1157Lbp3717t+bVr18ZZZ51Vo8w1NXr06Jg5c2aNzh577LExb968uOSSS3IWPD7TqVOn+O1vfxt/\n/etfY9ddd63RHb/4xS/irbfeqtFZoDiUPAAAAAAAAAAAAIAvKSkpic022yzatWsX22+/ffTu3TsG\nDBgQQ4YMiWuvvTYeeeSRWLRoUcybNy9GjhwZHTp0qNX+srKyOPbYY2PlypUFege1d++990ZFRUXi\nvFu3btGpU6c47LDDcu554okn4oMPPsh3PPJsxYoVccQRR8Sdd95Z7CgNYvr06XHDDTcUO8aXrFmz\nJq6++upqz3Xp0iWmTZsWBx10UK3v2GOPPWL69Omx//77V3t22rRpcf/999f6jk1ZvXp1jf/Ohw8f\nHo8++mi0atWq1vf07NkzZsyYUaP3t2HDhrjiiitqfQfQcJQ8AAAAAAAAAAAAgDrbZZdd4uqrr46F\nCxfG9ddfX6svKC9YsCAGDx4c2Wy2gAlr7u677845/+wL1Mcff3zOc5WVlXHHHXfkLRf5949//CO+\n+c1vxpQpU4odpUF88skncdppp0VVVVWxo3zJr371q/j4449znmndunVMnjw5dtxxxzrf065du5g0\naVLstdde1Z694oorYuPGjXW+6zPjxo2LFStWVHvu5JNPjptvvrled7Vt2zYeffTR2Hnnnas9+9hj\nj8XcuXPrdR9QOEoeAAAAAAAAAAAAQL21atUqrrzyynjttdeiV69eNX7d5MmT49prry1csBqaMWNG\ntV96HjBgQEREHH300bH55pvnPHvnnXdGZWVl3vKRP3fffXfsu+++MX/+/GJHaTDDhw+Pd955p9gx\nvqSsrCx+85vfVHtuzJgx0aNHj3rf17p16/jTn/5U7ZOH3n///bj33nvrfd8999xT7ZmuXbvGH/7w\nh3rfFRHRoUOHeOSRR6KkJPdXxLPZbLWlNqB4lDwAAAAAAAAAAACAvNltt91ixowZMXDgwBq/5sYb\nb4x//OMfBUxVvXHjxuWcZzKZf5c8ttxyyzj00ENznl+yZEk89thjectH/S1fvjxOOumkOPPMM+OT\nTz4pdpwG8+STT6b2yTJ33XVXrFu3LueZAw88MIYMGZK3O7t27Rq33nprteduuummet2zePHimDVr\nVrXnbrjhhigtLa3XXZ/Xt2/fOOWUU6o998gjj+TtTiC/lDwAAAAAAAAAAACAvGrZsmX88Y9/jCOP\nPLJG5zdu3BgXXHBBgVMlW7t2bTzwwAM5z3Tv3j222267f//3SSedVO3esWPH1jsb+fHggw9Gnz59\nYsKECcWO0qDKysrizDPPzHmmNk/eyadsNltt+SSTycQvf/nLvN89aNCg2H///XOeeeutt2Lq1Kl1\nvuOll16q9kzHjh1rVMiorZ/+9P+xd+dxPtb7/8ef16yGGTtjGTtZQxNCZSkdOVKERJgWW4X6cs7p\naFV0lE511KkhmYappIykI1myq7EdxHBk39exzYwZs31+f/RzTuFzXddnn+FxP7e5nfJ+Xq/XawaT\nP66X918tMwcPHtTevXu93huA51jyAAAAAAAAAAAAAAAAAAAAXhcSEqLZs2frzjvvtJVfunSpvvzy\nSx9PdW2zZ89Wenq6aaZr166/+/cHHnhAERERps8sXbpUu3bt8ng+uO8///mPOnXqpL59++rYsWO2\nnjEMw8dT+c+QIUN08uRJp+e9evVSr169/DjR//zwww+WSwaxsbFq27atT/r/6U9/ssxMnz7d7fpb\nt261zNx3331u1zfTqFEj1axZ0zK3ceNGn/QH4BmWPAAAAAAAAAAAAAAAAAAAgE8UK1ZMs2bNUrly\n5Wzlx48f7+OJri0hIcEyc+XL2JGRkVctflzJ4XBo8uTJHs0G9xw7dkwjRoxQ06ZNtXTpUtvPhYeH\nW97qUlQkJCTom2++cXpeqVIlTZ48WQ6Hw49T/U9SUpJlZsiQIT7r361bN8XExJhmkpOTlZWV5Vb9\nPXv2WGZatmzpVm07OnbsaJnZvXu3z/oDcB9LHgAAAAAAAAAAAAAAAAAAwGcqVaqkKVOm2Mpu27ZN\nixYt8vFEv7dnzx6tXLnSNFO6dOlr3kjSt29fy/qJiYnKzs52ez645vTp0/rTn/6kOnXq6IMPPlBe\nXp7tZytWrKjFixerd+/ePpzQP/bt26dnn33W6blhGPr4449VtmxZP071P/n5+Zo/f75pJjg4WA88\n8IDPZggKClL37t1NMxkZGS4tCf3W2bNnLTOVK1d2q7YddmqfOnXKZ/0BuI8lDwAAAAAAAAAAAAAA\nAAAA4FMPPvigHnnkEVvZd955x8fT/J7dWzyCg4Ov+vGuXbuqVKlSps+ePXtWs2bNcns+uGb8+PF6\n5513XF6sadu2rTZt2qQ77rjDR5P5T0FBgQYMGKCMjAynmSeeeEJ//OMf/TjV761fv15nzpwxzdx2\n222qWLGiT+e48oaea7FaRnHm0qVLlpmIiAi3attRoUIFy0xmZqbP+gNwH0seAAAAAAAAAAAAAAAA\nAADA59544w0VK1bMMrdo0SLt3bvXDxP9epvA9OnTLXN9+vS55o+HhYXZuvUhPj7e5dngH6GhoRo7\ndqxWrlzp01sV/OnNN9/Ujz/+6PS8du3aevfdd/040dVWrFhhmenQoYPP52jXrp1CQkJMM999951b\ntSMjIy0zp0+fdqu2HWZLPpf5cskEgPtY8gAAAAAAAAAAAAAAAAAAAD5XtWpVDR482FY2OTnZx9P8\nauHChTp69KhppkyZMurcubPT84EDB1r2WbdunTZv3uzyfPCtZs2a6aefftLLL7+soKDr45XaTZs2\n6ZVXXnF6HhwcrMTERJUoUcKPU11tzZo1lpm2bdv6fI5ixYqpSZMmpplDhw7p0KFDLtcuU6aMZcbq\n+48nTpw4YZmxMyMA/7s+/osEAAAAAAAAAAAAAAAAAAAKveHDh8swDMucv5Y8EhISLDM9evQw/Zv+\n77jjDtWqVcuyDrd5FB6RkZF66623tHHjRsXGxgZ6HK/Jzs5W//79lZeX5zTz7LPP6o477vDjVNe2\nceNG03PDMNS6dWu/zHLbbbeZnjscDqWkpLhct27dupaZVatWuVzXrvXr11tmqlev7rP+ANzHkgcA\nAAAAAAAAAAAAAAAAAPCLevXqqU2bNpa59evX68iRIz6d5fTp0/r2228tcwMGDPBK5vPPP1d6erqt\n2TyRmJiooKCgIvlhZ1nGE0FBQRowYIB27typ0aNHXze3d1z217/+VTt27HB63rhxY73++ut+nOja\nTp06pWPHjplmKlasqLJly/plnkaNGllm3LmJx2p5RJKWLl2q3Nxcl2tbOXXqlNatW2eZszMjAP+7\nvv7rBAAAAAAAAAAAAAAAAAAACrVevXpZZhwOhxYtWuTTOZKSkixfrq5Zs6bat29vWcvOkkdmZqZm\nzJhhe74bkZ1bXtyte9dddyklJUXTp09X5cqVfdInkH744Qe99957Ts/DwsKUlJSksLAwP051bWaL\nKJc1aNDAD5P8ql69epaZ7du3u1z39ttvV2hoqGkmIyPD1o1Crvrwww/lcDhMMxUqVLC14ALA/1jy\nAAAAAAAAAAAAAAAAAAAAftO5c2dbubVr1/p0DjsvVvfv399WrTp16uj222+3zE2ePNlWPXiHYRi6\n8847tWTJEi1ZskQtWrQI9Eg+cfbsWT366KOmmZdeeknNmzf3z0AWdu3aZZkpbEsedma+UpkyZdSt\nWzfL3Pjx45Wdne1yfWdOnjypt99+2zJnZzkNQGCw5AEAAAAAAAAAAAAAAAAAAPymYcOGqlixomXO\nl0se69atU2pqqmnGMAwNHDjQdk2rl+wlKTU1VatWrbJdE64zDEPBwcHq0aOHVq9erRUrVqhjx46B\nHsunnnrqKR05csTp+W233abnn3/ejxOZ27dvn2WmRo0afpjkV1WrVrXMHDhwwK3aTz31lGXmyJEj\neuKJJ9yqf6Xc3Fz16dNHGRkZprmQkBANHTrUKz0BeB9LHgB84qvUr2S8avz3I2lLUqBHAgAAAAAA\nAAAAAAAAAFBItGzZ0jKTmpqqixcv+qS/nVs8Wrdurbp169qu+dBDDykiIsIyFx8fb7smXPfQQw/p\n4MGDSk5OVps2bQI9js/NnDlTs2bNcnpevHhxzZgxQ4Zh+HEqc4cOHbLMVKlSxQ+T/KpYsWIqWbKk\naebixYs6d+6cy7XvuusuW7d5zJw5Uy+99JLL9X8rLy9PgwcP1ooVKyyzTz75pK0bTAAEBkseALzu\nzk/u1EOzH/rdjw2cO1BNPmwSoIkAAAAAAAAAAAAAAAAAFCZNmza1zOTl5VnetuGOrKwsffHFF5a5\nuLg4l+pGRUWpe/fulrk5c+bo1KlTLtWGfW3atFHlypUDPYZfHD582PKmiDfffLPQvcxvduvIZf5c\n8pCkSpUqWWaOHTvmVu1JkyapTJkylrnXX39dffv2VVZWlss90tLS1LlzZ82YMcMyW6NGDb322msu\n9wDgPyx5APCqr3d8rdUHV1/zLPVUqqZvnu7niQAAAAAAAAAAAAAAAAAUNg0bNrSVO3jwoNd7z549\nWxcuXDDNFCtWTH369HG5tp3FkJycHE2bNs3l2jcCh8MR6BGKDIfDoUcffVTnz593mrnnnnv09NNP\n+3Eqe06ePGmZsbN04U3R0dGm5w6HQ6dPn3ards2aNZWcnKzQ0FDL7KxZs3TTTTfpww8/VE5OjmX+\n4sWLmjhxourXr69ly5ZZ5qOiovTtt9+qVKlStmYHEBghgR4AwPXl6e/M/0A49F9DFdfctQ13AAAA\nAAAAAAAAAAAAANeX6tWr28odOHDA670TEhIsM926dXPrJehOnTqpSpUqOnr0qGnuo48+0nPPPSfD\nMFzuYeVyTV/U9rWiOHOgTJo0SUuXLnV6Xrp0aVu/1gMhLS3N9NwwDJUsWdJP0/wqKirKMnPmzBm3\n63fo0EGzZ8/WI488ooyMDNPskSNHNHz4cI0ZM0YdO3ZU+/btVbVqVZUvX16GYejUqVM6dOiQli5d\nquXLl9u++aNcuXKaM2eOmjRp4vbnAcA/WPIA4FXHMsyvI7uUf8lPkwAAAAAAAAAAAAAAAAAorAK1\n5LFnzx6tWLHCMmfnRo5rCQoKUv/+/TVx4kTT3P79+/X999+rS5cubvUxExcX5/b8KBq2b9+uMWPG\nmGbee+89Va1a1U8Tuebs2bOWGX8veURGRlpmrG4AstKtWzetWbNGPXv21O7duy3z6enpmjdvnubN\nm+dRX0lq1KiR5s6dq7p163pcC4DvseQBAAAAAAAAAAAAAAAAFFHZ2dKePYGeAteTOnWkYsUCPQVu\nBOXLl7eVO3z4sFf7fvLJJ5aZ6Oho3XvvvW73iIuLs1zykKT4+HifLHng+pabm6tHHnlEly45/wuX\ne/bsqf79+/txKvsKCgqUnZ1tmSuMN3l4uuQhSTfffLO2bt2qN998U2+88Yatr4UnIiIi9Pzzz+u5\n555TSAivjQNFBb9bAQAAAAAAAAAAAAAAgCJqzx6pSZNAT4HrybZtUuPGgZ4CN4LIyEgFBwcrPz/f\nNJeenu61ngUFBZo+fbplrl+/fgoKCnK7T8OGDdWyZUutX7/eNPfdd9/p4MGDtm81ASTp5Zdf1pYt\nW5yeR0dHa/LkyX6cyDUXL160zISHh3v0e9AdJUqUsMx4ayEjPDxcL7/8sgYPHqwPP/xQU6ZM0enT\np71S+7LSpUtryJAhGjlypKpUqeLV2gB8z7/fAQEAAAAAAAAAAAAAAAAAAGTvb+q380K4XQsXLtSR\nI0dMM4ZhaODAgR73iouLs8wUFBToo48+8rgXbhyrV682vSXGMAxNnTpV5cqV8+NUrsnKyrLMBOLG\nieDgYMuMt2/dKFOmjGJjY3XHHXd4ta4k3X777ercuTMLHkARxZIHAAAAAAAAAAAAAAAAAADwu9DQ\nUMuMN5c8EhISLDM333yzmjVr5nGvvn37KiwszDI3bdo05eXledwP17/09HQNHDhQDofDaeaxxx7T\nfffd58epXJebm2uZCcSSh52edma348SJE3rmmWdUoUIF9ezZU3PnzvVK3d+aP3++7r77btWvX18f\nf/yx6a8bAIUPSx4AAAAAAAAAAAAAAAAAAMDv7CxB2Plb/+04ffq05s2bZ5nzxi0e0q9/Q7+dl+1P\nnDihOXPmeKUnrm/PPPOM9u/f7/S8Zs2amjRpkv8GclN+fr5lprAueRQUFHjUIzs7W88//7xq166t\n999/X5mZmR7Vs2PXrl0aMmSIbr31Vq1atcrn/QB4B0seAAAAAAAAAAAAAAAAAADA7+y8MG3nhXA7\nPv30U8u/hT8kJESPPPKIV/pJUlxcnK1cfHy813ri+jR37lwlJiY6PQ8KClJiYqJKlCjhv6HcZOf3\nfWFd8vDk+9HevXvVtm1bvfHGGy4vrxmGcdWHqzZv3qz27dvr5ZdfdvlZAP7HkgcAAAAAAAAAAAAA\nAAAAAPC77Oxsy0x4eLhXeiUkJFhm7rnnHkVHR3ulnyR16dJFFSpUsMytWLFCO3bs8FpfXF9OnDih\nwYMHm2aeffZZtWvXzk8TecbXyxTuysvLs8wEBwe7VXv16tW69dZbtXnzZtvP1K5dW6NGjdLXX3+t\n7du36/z588rLy1NWVpaOHj2qH3/8Ue+9954eeOABFStWzHbd8ePH68EHH9TFixfd+VQA+AlLHgAA\nAAAAAAAAAAAAAAAAwO/sLHm48vKyM+vXr9e2bdssc3Zv3rDLlZtBJk+e7NXeuH488cQTSktLc3re\nqFEj/e1vf/PjRJ4JCwuzzNhZuPA2Oz3duWFk69at6tatm86fP28r37ZtWy1cuFC7d+/W3//+dz3w\nwAOqX7++IiMjZRiGwsLCFB0drdatW2v48OH6+uuvdezYMU2YMEFlypSx1WPu3Lnq3bu3rVtVAAQG\nSx4AAAAAAAAAAAAAAAAAAMDvLl26ZJnxxpKHnVs8Spcure7du3vc60p2F0eSkpKUlZXl9f4o2qZM\nmaLvvvvO6XloaKiSkpJsLU4UFjfSksfx48d177332lrwKFGihKZOnarVq1frnnvucalPqVKl9Nxz\nz2nXrl16+OGHbT2zYMECDR8+3KU+APzH9ZUyAAAAAAAAAAAAAAAAAIVCnTqSjb+cHrCtTp1AT4Ab\nRXp6uvLz8y1zpUuX9qhPVlaWZs6caZnr3bu3T16Ub9asmZo2baqff/7ZNHfu3DnNnDlTjz/+uNdn\nQNG0e/dujR492jTz4osv6pZbbvHTRN5RWJc87Hw/ioiIcKnmyJEjdezYMctc5cqVtWDBAjVt2tSl\n+lcqW7asPv/8c7Vu3VqjRo2yvKlj8uTJat++vfr06eNRXwDex5IHAAAAAAAAAAAAAAAAUEQVKyY1\nbhzoKQDAdXZefJZ+ffnZE8nJybpw4YJpxjAM2zduuCMuLs7yZX1Jio+PZ8kDkn5dOOjfv78uXrzo\nNNOqVSu98MILfpzKO8LDwy0z2dnZfpjk9zIzMy0zJUqUsF1vwYIFmj17tmWuQoUKWr58uerVq2e7\ntpWRI0eqVKlSevzxx+VwOEyzo0ePVteuXRUZGem1/gA8x5IHAAAAAAAAAAAAAAAAAADwK7tLHpUq\nVfKoz7Rp0ywzZcuWVXBwsFJSUjzq5Uzt2rVt5TZu3KgNGzaoRYsWPpkDRcfrr7+udevWOT0vXry4\nZsyYoaCgID9O5R1BQUEqVaqUzp8/b5rLyMjw6+JBenq6ZcaVecaMGWOZCQkJUXJyslcXPC6Li4vT\ngQMHNHbsWNPc0aNH9frrr2vChAlenwGA+1jyAAAAAAAAAAAAAAAAAAAAfnXkyBFbOU9u8ti7d69W\nrFhhmUtLS1ObNm3c7uNN8fHxthZTcP1av369xo0bZ5qZMGGCbrrpJj9N5H3lypWzXPJIT08vdEse\nZcqUsVVr7dq1+vnnny1zf/7zn3XHHXfYqumOl156SUuWLNHq1atNcx999JHGjh1r65YVAP5R9Fb4\nAAAAAAAAAAAAAAAAAABAkZaammorV79+fbd7fPLJJ24/GyhffPGFzp0751GNxMREBQUFFcmPWrVq\nebYDyDYAACAASURBVOkrWTRdvHhRAwYMUH5+vtPM3XffrREjRvhxKu8rV66cZebChQt+mOR/7Cx5\n2JlbkqZOnWqZiY6O1osvvmirnrsMw9A///lPGYZhmjt79qySk5N9OgsA17DkAQAAAAAAAAAAAAAA\nAAAA/Grr1q2WGcMw1KRJE7fqFxQUKDEx0a1nAykrK0vTp08P9BgBY/Uy+vXuz3/+s3755Ren56VL\nly6Sy0tXslqWcDgcOnnypJ+m+dWJEydMzw3DUIUKFWzV+v777y0zTz/9tCIiImzV80TTpk3VrVs3\ny9znn3/u81kA2MeSBwAAAAAAAAAAAAAAAAAA8Cs7Sx7ly5dXxYoV3aq/aNEiHTlyxK1nA23y5MmB\nHgEBsHDhQsXHx5tmJk2apJiYGD9N9HsOh8Nrtex8DsePH/daPzvs9Ktatapl5vDhwzp69KhpxjAM\nDRgwwPZsnnr88cctMykpKX6YBIBdLHkAAAAAAAAAAAAAAAAAAAC/OXTokA4cOGCZi42NdbvHtGnT\n3H420Hbu3Klly5YFegz42cyZMy0zcXFxCgoK8vrHa6+9Ztm7Y8eOlnVq1apl63OtXbu2ZcbqZg1v\nysrKUnp6ummmXLlyCgsLs6y1du1ay0z9+vVVo0YN2/N5qnPnzpaznzlzxvQWGQD+xZIHAAAAAAAA\nAAAAAAAAAADwm0WLFtnKdezY0a36aWlpmjdvnlvPFhbc5oGiyDAMWzk7yyB2FsG85dChQ5YZO4sp\nkrR//37LTMuWLW3V8pbw8HDdcsstljk7NywB8A+WPAAAAAAAAAAAAAAAAAAAgN8sXrzYVu6uu+5y\nq/6nn36q3Nxcy5xhGAH5sGPu3Ll+vckA8Kc6depYZnbt2uWHSez3uummm2zVOnfunGXG7sKIN9Wr\nV88yc/bsWT9MAsAOljwAAAAAAAAAAAAAAAAAAIBfZGRk6F//+pdlrmzZsrr11lvd6pGQkGCZadCg\ngfLz8wPyYedl8dzcXH388cduff5FmcPhCPQI8IP69esrKMj8FebCtuTRoEEDW7XsLEqULVvWVi1v\nio6Otsyw5AEUHix5AAAAAAAAAAAAAAAAAAAAv/jqq6908eJFy9yDDz5o+9aL39qwYYO2bt1qmRsw\nYIDLtb3l8ccft5X76KOPVFBQ4HL9y1+3QN1U4o+bTlC0RUVFWS477dmzRzk5OX6ZJzU11TJzyy23\n2KqVnZ1tmQkODrZVy5uKFStmmUlPT/fDJADsYMkDAAAAAAAAAAAAAAAAAAD4hd3bKfr06eNW/WnT\npllmgoKCArrkERcXp5CQEMvcoUOHNH/+fLfqFxQUBOymEk8+9u7d686XFEVQy5YtTc9zcnK0efNm\nv8yydu1a03PDMBQbG2urVvHixS0zFy5csFXLm+wsn0RERPhhEgB2sOQBAAAAAAAAAAAAAAAAAAB8\nbtmyZfrpp58sc5UrV9Zdd93lcv3s7Gx98cUXlrn27dsrJibG5freEh0dra5du9rKxsfH+3gawHsc\nDoftrNWShyStW7fOk3FsyczM1Pbt200ztWrVUnR0tK16pUqVsswcOnTIVi1vOnXqlGUmKirKD5MA\nsIMlDwAAAAAAAAAAAAAAAAAA4HNjx461lRsyZIgMw3C5fnJyss6fP2+ZGzhwoMu1vW3QoEG2cgsX\nLtS+fft8PA0Kg8u/5g3D8PuHKzN6q1bHjh0tMz/88IPteu5atmyZCgoKTDPt27e3Xa9WrVqWGX/d\nUPJbu3btsszUqFHDD5MAsIMlDwAAAAAAAAAAAAAAAAAA4FOzZs3SqlWrLHNhYWEaOnSoWz2mTZtm\nmSlevLh69erlVn1v6tKli6pUqWKZczgcmjJlih8mQqB98sknKigoUH5+vt8/XnnlFcv5li9fblln\n7969tj/fxo0bq1q1aqaZJUuWKCcnx3ZNd3z77beWmXvvvdd2vZtuuskys3HjRqWnp9uu6amcnBz9\n+9//Ns0YhqF69er5aSIAVljyAAAAAAAAAAAAAAAAAAAAPnPq1CkNHz7cVrZfv36qVKmSyz327dun\n5cuXW+a6d++uEiVKuFzf24KCgvToo4/ayiYkJPj8RXfc2BwOR0D6dunSxfQ8MzNTCxYs8Fn/3Nxc\nzZs3zzQTFhbm0pJHbGysQkNDTTM5OTmaP3++7ZqeWrJkiS5dumSaKVmypOrXr++niQBYYckDAAAA\nAAAAAAAAAAAAAAD4RF5envr376+0tDTLbHh4uMaOHetWn4SEBFu5gQMHulXfFx5//HEZhmGZO336\ntGbPnu2HiQD/6t69u2UmPj7eZ/2//vprnThxwjRz//33KyoqynbN4sWLq0WLFpa5yZMn267pqU8+\n+cQyc8cdd9j6fgTAP1jyAAAAAAAAAAAAAAAAAAAAPvHkk09q8eLFtrLDhg1T9erVXe5RUFCg6dOn\nW+YqV66se+65x+X6vlK7dm116NDBVtafL4QD/vKHP/xBMTExppnFixdry5YtXu/tcDj097//3TI3\nZMgQl2v37NnTMrNy5UqlpKS4XNtVO3bs0Jw5cyxzPXr08PksAOxjyQMAAAAAAAAAAAAAAAAAAHhV\nXl6eBg0apGnTptnKV69eXePHj3er1+LFi3X48GHLXL9+/Qrd31T/xBNP2MqtXr1aqampPp4G8K+g\noCA99thjphmHw6GRI0d6vXdiYqI2bNhgmqldu7Y6derkcu2+ffsqODjYMjdixAg5HA6X69vlcDg0\nfPhwyx4RERHq3bu3z+YA4DqWPAAAAAAAAAAAAAAAAAAAgNf88ssvateunRISEmzlDcPQlClTVKJE\nCbf62VkkMQxDAwcOdKu+L/Xs2VOlS5e2lY2Pj/fxNID/DR48WKGhoaaZVatW6e233/Zazz179mjU\nqFGWuSeffNKt+pUrV9ZDDz1kmdu4caPGjh3rVg873njjDS1btswy99hjjykqKspncwBwHUseAAAA\nAAAAAAAAAAAAAADAY8ePH9ezzz6rZs2aKSUlxfZzf/7zn9W5c2e3eqalpembb76xzDVt2lQ333yz\nWz18KTw8XI888oitbFJSkjIzM308EeBfMTExGjx4sGVuzJgxWrhwocf9zp07px49euj8+fOmuerV\nq2v48OFu93n++ecVFGT9mva4ceM0ffp0t/s4k5SUpBdeeMEyFx4erueee87r/QF4hiUPAAAAAAAA\nAAAAAAAAAADglvT0dH3zzTfq1auXatSooffee0+XLl2y/XynTp00YcIEt/t/+umnys3NtcwVxls8\nLhs0aJCtXHp6uj777DMfTwP434svvqiIiAjTTF5enh588EEtWbLE7T5nzpxRly5dtG3bNsvs+PHj\nFR4e7navxo0b6+mnn7aVffzxx/Xmm2+63eu3HA6HXnnlFcXFxdnKjxkzRtWqVfNKbwDew5IHAAAA\nAAAAAAAAAAAAAADXIYfD4dHzOTk5ysjI0JkzZ7R3716lpKRo3rx5+sc//qGhQ4eqdevWKlu2rHr0\n6KE5c+bYWrb4rdjYWM2ZM0eGYbg94yeffGKZCQkJUb9+/dzu4WvNmjVTbGysrWx8fLyPpwH8r1Kl\nSrZuncjKytIf//hHvffeey732LJli1q3bq21a9daZlu0aKH+/fu73ONK48ePV82aNS1zDodDY8aM\n0d13363du3e73W/fvn26//77NW7cOFv5Jk2aaMyYMW73A+A7LHkAAAAAAAAAAAAAAAAAAHAd6tix\no4KCgtz+KFasmEqWLKny5curbt26atu2rbp3765Ro0Zp6tSpWrdunfLz892arWnTpvr+++8VGRnp\n9ue3ceNG/fzzz5a5Tp06KTo62u0+/mD3No8tW7YoJSXFx9MA/vfXv/5Vt912m2UuLy9Pzz77rO68\n806tXLnSMn/ixAmNHj1aLVu2tLVAUbJkSX3++ee2ZrYSFRWl2bNn274RZNmyZWrUqJEGDBigdevW\n2e6zc+dODRs2TPXr19f8+fNtPVOqVCklJycrNDTUdh8A/hMS6AEAAAAAAAAAAAAAAAAAAMCNo337\n9po3b56ioqI8qjNt2jRbuYEDB3rUxx/69eun0aNHKysryzIbHx+v1q1b+2EqwH+CgoKUlJSkli1b\n6vz585b5NWvWqEOHDqpfv77uu+8+xcbGKjo6WqGhoTp37px27NihZcuW6YcfflBeXp6tGQzD0Mcf\nf6y6det6+un8V2xsrBITE/XII4+ooKDAMp+Xl6fPPvtMn332mWJiYtSpUyc1b95cNWvWVKlSpVRQ\nUKBTp07p5MmT2rZtmxYuXKgDBw64NFNYWJi++OIL1atXz91PC4CPseQBAAAAAAAAAAAAAAAAAAB8\nLigoSM8++6zefPNNBQcHe1QrOztbM2fOtMyVLFlSPXr08KiXP5QsWVK9evVSUlKSZfarr77Su+++\nq7Jly/phMsB/6tatqzlz5qhLly7Kycmx9czOnTu1c+dOr/T/y1/+ol69enml1m/16dNH6enpGjp0\nqBwOh+3nDh8+rMTERK/OEhoaqpkzZ6pz585erQvAu4ICPQAAAAAAAAAAAAAAAAAAALi+1a9fXwsX\nLtTf//53jxc8JCk5OdnW3/bfq1cvhYeHe9zPHwYNGmQrl52d7fUXv4HComPHjpo5c6bff9+OGTNG\nEyZM8Fn9QYMG6csvv1SxYsV81sNKqVKl9N133xWJxTfgRseSBwAAAAAAAAAAAAAAAAAA8Ilq1app\n0qRJ2rp1q+6++26v1U1ISLCVGzBggNd6+tqdd96pevXq2cpOnjzZx9MAgdOjRw8tXLhQZcqU8Xkv\nwzA0btw4vf766z7v1bNnT61cudL273Nvat68uX766Sevfh8G4DsseQAAAAAAAAAAAAAAAAAAAK8J\nDg5Wp06d9Omnn2rv3r0aMWKEQkJCvFZ/3759WrZsmWWuRo0aat++vdf6+sMTTzxhK7d7924tWbLE\nx9MAgdOuXTtt2bJFHTp08FmP8uXL65tvvtELL7zgsx5XatGihTZt2qRnnnlGoaGhPu9XvHhxvfTS\nS1q3bp0aNGjg834AvIMlDwAAAAAAAAAAAAAAAAAA4DbDMFSpUiX17t1b06ZN0+HDh7Vo0SL169dP\nwcHBXu/3ySef2Mr179/f6719LS4uzvZCTHx8vI+nAQIrJiZGP/zwg6ZPn66aNWt6rW5YWJiefPJJ\n7dy5U/fdd5/X6tpVvHhxvfvuu0pNTVW/fv18suxRvHhxDRkyRL/88oteffVVry7aAfA9fscCAAAA\nAAAAAAAAAAAAAFCEGIbxu//3pZCQEIWFhSk8PFylS5dW+fLlVaFCBVWvXl116tTRTTfdpFtuuUVV\nq1b1+SyXVa9eXWPHjrXMPfbYY74fxsuio6MVHx+vI0eOWGZDQ0PlcDj88uvgRnWjfG39+T3FVYZh\naMCAAXr44Yc1e/Zsffzxx1q+fLkcDofLdapWraoBAwboySefVExMjI8mtq9u3br69NNP9fbbbysx\nMVFz5szRhg0bXP7cLgsODlabNm3Us2dPxcXFqXTp0l6eGIC/GA53vxMAuC6lpqaqSZMmpplt27ap\ncePG1zwzXrX+Q57jFb7tAAAAAAAAAAAAAAAAAAAA16WlpWnZsmX68ccf9Z///Ed79uzRmTNnlJmZ\nqdzcXIWHh6tMmTKKiYlRvXr1FBsbq44dO6pZs2aBHt3SiRMn9OOPP2r9+vX6z3/+o4MHD+rYsWPK\nyMhQVlaWDMNQRESEIiMjVbVqVdWoUUONGjVSy5Yt1aZNG5UtWzbQnwKu4Ol7ubgxcZMHAAAAAAAA\nAAAAAAAAAAAAgCKhXLly6tWrl3r16hXoUbwuOjpaPXr0UI8ePQI9CoAACgr0AAAAAAAAAAAAAAAA\nAAAAAAAAAGDJAwAAAAAAAAAAAAAAAAAAAAAAoFBgyQMAAAAAAAAAAAAAAAAAAAAAAKAQYMkDAAAA\nAAAAAAAAAAAAAAAAAACgEGDJAwAAAAAAAAAAAAAAAAAAAAAAoBBgyQMAAAAAAAAAAAAAAAAAAAAA\nAKAQYMkDAAAAAAAAAAAAAAAAAAAAAACgEGDJAwAAAAAAAAAAAAAAAAAAAAAAoBBgyQMAAAAAAAAA\nAAAAAAAAAAAAAKAQYMkDAAAAAAAAAAAAAAAAAAAAAACgEGDJAwAAAAAAAAAAAAAAAAAAAAAAoBBg\nyQMAAAAAAAAAAAAAAAAAAAAAAKAQYMkDgN85HI5AjwAAAAAAAAAAAAAAAAAAAAAAhQ5LHgD8Lt+R\nH+gRAAAAAAAAAAAAAAAAAAAAAKDQYckDgN/lF7DkAQAAAAAAAAAAAAAAAAAAAABXYskDgN8VOAoC\nPQIAAAAAAAAAAAAAAAAAAAAAFDoseQDwu3wHN3kAAAAAAAAAAAAAAAAAAAAAwJVY8gDgd/kFLHkA\nAAAAAAAAAAAAAAAAAAAAwJVY8gDgd9zkAQAAAAAAAAAAAAAAAAAAAABXY8kDgN9xkwcAAAAAAAAA\nAAAAAAAAAAAAXI0lDwB+x00eAAAAAAAAAAAAAAAAAAAAAHA1ljwA+F2BoyDQIwAAAAAAAAAAAAAA\nAAAAAABAocOSBwC/yy/gJg8AAAAAAAAAAAAAAAAAAAAAuBJLHgD8Lt/BkgcAAAAAAAAAAAAAAAAA\nAAAAXIklDwB+x00eAAAAAAAAAAAAAAAAAAAAAHA1ljwA+B03eQAAAAAAAAAAAAAAAAAAAADA1Vjy\nAOB33OQBAAAAAAAAAAAAAAAAAAAAAFdjyQOA3xU4CgI9AgAAAAAAAAAAAAAAAAAAAAAUOix5APC7\nfAc3eQAAAAAAAAAAAAAAAAAAAADAlVjyAOB3+QUseQAAAAAAAAAAAAAAAAAAAADAlUICPUBRk5WV\npYYNG+rgwYO/+/H9+/erevXqAZpKSktL07Jly7Rq1Srt2LFDe/bs0dmzZ5WRkSFJioyMVNWqVVW3\nbl21aNFCnTp1UqtWrWQYRsBmvnDhglatWqU1a9YoJSVFx44d05kzZ3T27FmFhoaqZMmSiomJUePG\njdWyZUt17dpVNWvWDNi8lzkcDm3YsEFr1qzRmjVrtGvXLqWlpenMmTPKy8tTVFSUypUrp4YNG+rm\nm29W586d1bZtWwUFsVN1GTd5AAAAAAAAAAAAAAAAAAAAAMDVDIfD4Qj0EEXJuHHj9Morr/zuxwzD\n0L59+wKy5PHtt9/qo48+0oIFC1RQUODSszExMRo2bJhGjBihqKgoH014tR07duj999/XjBkzdPHi\nRZeebdWqlUaNGqVevXr5fWkiPT1diYmJ+uc//6ldu3a59GyFChU0bNgwPf3006pYsaKPJvSO1NRU\nNWnSxDSzbds2NW7c+JpnxqvWi0MpT6Totpjb3JoPAAAAAAAAAAAAAAAAAAAAKAo8fS8XNyauFnDB\nli1b9Le//S3QY0iSVq1apVatWumBBx7Q/PnzXV7wkKTDhw/rxRdfVK1atZSQkOCDKX/v4sWLeuaZ\nZ9S4cWNNnjzZ5QUPSVq3bp0efvhhtWjRQuvWrfPBlNc2d+5c1atXT88884zLCx6SdOrUKY0bN051\n69bVP/7xD7d+vq4n3OQBAAAAAAAAAAAAAAAAAAAAAFdjycOmzMxMPfzww7p06VJA58jJydHo0aPV\nvn17bdiwwSs1z5w5o0GDBqlnz57KzMz0Ss0rbd26Vc2bN9f777/vlXqbN29W27Zt9dZbb3mlnjM5\nOTmKi4vTgw8+qJMnT3pcLyMjQ6NGjdLdd9+ttLQ0L0xYNOUXsOQBAAAAAAAAAAAAAAAAAAAAAFdi\nycOG/Px89e3bVzt37gzoHOfOndMf/vAHvfvuuz6p//XXX+uee+5RVlaWV+tu2LBBHTp00O7du71a\nt6CgQM8995wGDx7s1bqXZWVl6f7771dSUpLXa69YsUKtWrXSoUOHvF67KChw3Ng3mQAAAAAAAAAA\nAAAAAAAAAADAtbDkYcOTTz6pf/3rXwGd4dy5c2rfvr1Wrlxp+xnDMP77YVdKSop69+6t/Hzv3LSw\nZcsWderUSWfPnrWVd2fmadOm6f/+7//cHfGa8vLy1K1bNy1atMhW/rdz251937596tSpk06dOuXJ\nqEVSvoObPAAAAAAAAAAAAAAAAAAAAADgSix5mHA4HBo5cqQ+/vjjgM6RnZ2tbt26aevWraY5wzB0\n++2364MPPtDmzZuVlpamnJwcHT58WGvWrNHzzz+v2rVrW/b77rvv9Kc//cnjuS9cuKCePXvqwoUL\nprlatWrptdde048//qjTp08rNzdX58+f18aNG/X222+radOmlr0mTZqkzz77zOOZLxszZoyWLl1q\nmomIiNBjjz2mb775RgcOHFB2draysrK0d+9effnll+rdu7eCg4NNa+zatUv9+/f32txFRX4BSx4A\nAAAAAAAAAAAAAAAAAAAAcCXD4XA4Aj1EYVRQUKAhQ4YoISHBMmsYhvbt26fq1av7ZJYRI0bogw8+\nMM00adJEkydPVtu2bU1zeXl5mjRpkl599VVlZGQ4zQUHB2v9+vVq3ry5WzNLUu/evZWcnOz0PCIi\nQm+88YaGDx9uefvFV199pREjRujkyZNOM5GRkdq6datq1Kjh9syS9K9//Uv333+/aaZHjx764IMP\nVKlSJdPcnj17NHToUMuFkbfeekujR492eVZfSE1NVZMmTUwz27ZtU+PGja95ZrxqfZPJgkcW6N66\n97o1HwAAAAAAAAAAAAAAAAAAAFAUePpeLm5M3ORxDenp6erRo4etBQ9fW7BggeWCR+/evbVhwwbL\nBQ9JCgkJ0ejRo7V8+XJVqFDBaS4/P19PPfWUy/NetmDBAtMFj3LlymnVqlUaMWKE5YKH9OvnuHHj\nRjVr1sxpJiMjw+NFiezsbA0fPtw0M3bsWCUnJ1sueEhSnTp1tHjxYsubUV599VUdP37cpVmLMm7y\nAAAAAAAAAAAAAAAAAAAAAICrseRxhf3796tt27b69ttvAz2KcnJyLBctBg8erFmzZiksLMyl2rGx\nsVq+fLlKlCjhNJOSkqLly5e7VFf6dUHkL3/5i9PzYsWKacGCBYqNjXWpbtWqVbVkyRI1bNjQaWbO\nnDlas2aNS3V/a9KkSTp48KDT81GjRunll192qaZhGJo4caLpokdGRoZeeukll+oWZfkOljwAAAAA\nAAAAAAAAAAAAAAAA4EosefzGl19+qdjYWKWmpgZ6FEnSBx98oAMHDjg9/8Mf/qD4+Hi36zds2FAT\nJ040zSQmJrpc97PPPjP9Gk6YMEEtWrRwua706w0gc+fOVVRUlNPM66+/7lbtCxcuaMKECU7Pb731\nVsuvl5mJEyeqS5cuTs9nzJihI0eOuF2/KClwFAR6BAAAAAAAAAAAAAAAAAAAAAAodFjykHT+/HnF\nxcXp4Ycf1rlz5wI9jiQpOztbf/vb35yeR0dH64svvlBQkGc/hYMHD1bNmjWdnicnJyszM9Olmh98\n8IHTs8aNG2vEiBEu1btSvXr19Nprrzk9//7777Vt2zaX63722We6cOHCNc8Mw9D777/v8dd76tSp\nTm9Pyc3N1T/+8Q+P6hcV+QXc5AEAAAAAAAAAAAAAAAAAAAAAV7rhlzySkpJUv359JSUlBXqU35k1\na5bS0tKcnr/77rsqXbq0x31CQkI0dOhQp+eZmZlas2aN7XqbN2/W+vXrnZ7/5S9/8XhRQpKGDx+u\natWqOT1PSEhwueaUKVOcnnXo0EGtW7d2ueaVqlSpopEjRzo9nzFjhvLzr/8FiHzH9f85AgAAAAAA\nAAAAAAAAAAAAAICrbtglj7Vr16pdu3aKi4vTyZMnTbNBQUHq3r27nyb71eTJk52etWnTRg8//LDX\nevXr18/0fOPGjbZrTZs2zelZuXLlvDZ3cHCwhg0b5vT8888/d2lZYuPGjfr555+dnj/99NMuzWdm\n2LBhCg4OvubZqVOntGDBAq/1Kqy4yQMAAAAAAAAAAAAAAAAAAAAArnbDLXls2rRJ3bp1U5s2bbR6\n9WrLfEREhJKSkvTMM8/4Ybpf7d27V2vXrnV6PmbMGK/2q1atmho1auT0/N///rftWl9//bXTs/vv\nv1+hoaEuzWamT58+Ts9Onjxp6+f3sjlz5jg9K1GihLp27erSbGaqVaumNm3aOD1PTk72Wq/Cips8\nAAAAAAAAAAAAAAAAAAAAAOBqIYEewN969OihgwcP2srWrVtXs2fPVtOmTbV8+XLfDvYb3377rdOz\nBg0a6L777vN6z+7duysoKEgVKlRQhQoVVL58+f/+c926dW3V2Lp1q44ePer0/IEHHvDWuJKk2rVr\nq2HDhtqxY8c1z+fPn6/27dvbqvX99987PbvnnnsUHh7u1ozOdOvWzekSCjd5AAAAAAAAAAAAAAAA\nAAAAAMCN6YZb8rDDMAwNGjRI7777rooXL+73/mZLHgMGDPBJz/Hjx2v8+PEe1Vi5cqXTM8MwdOed\nd3pU/1ratWvndMlj4cKFmjhxomWNCxcuaPPmzaY9vM2s5smTJ7Vp0ybdcsstXu9bWBQ4CgI9AgAA\nAAAAAAAAAAAAAAAAAAAUOkGBHqCwqVevnhYvXqwpU6YEZMEjJyfH6Q0PhmHo/vvv9/NE9qWkpDg9\nu+mmm1SmTBmv92zVqpXTs+3bt+vixYuWNdavXy+Hw+H0vE2bNm7NZqZ58+YKDQ11er527Vqv9yxM\n8h3c5AEAAAAAAAAAAAAAAAAAAAAAV2LJ4/+LjIzUuHHjtHXrVt11110Bm2PLli3Kycm55lnFihXV\nuHFjP09k36ZNm5ye+epWCrO6+fn5+ve//21Zw2zuoKAgNWvWzK3ZzISHh6thw4ZOzzds2OD1noVJ\nfgFLHgAAAAAAAAAAAAAAAAAAAABwpRt+ySM0NFSDBw/Wrl279MILLygsLCyg85jd4NC6dWs/TuKa\nvLw8/fLLL07PGzRo4JO+derUMT3fvHmzZY3U1FSnZ9WrV1exYsVcnsuOevXqOT2zM3dRxk0eOlGO\n0wAAIABJREFUAAAAAAAAAAAAAAAAAAAAAHC1G3bJIzQ0VHFxcdqxY4emTJmi6OjoQI8kSaY3T9x8\n881+nMQ1+/fvV15entNzXy15REVFqVKlSk7P9+/fb1lj165dTs98NbdkvuRhZ+6ijJs8AAAAAAAA\nAAAAAAAAAAAAAOBqIYEewN+io6PVt29fPf3004qJiQn0OFcJ1MKBp/bt22d6Xq1aNZ/1rlKlio4f\nP37Ns71791o+bza7r+d25uzZs0pPT1dUVJTP+gcSN3kAAAAAAAAAAAAAAAAAAAAAwNVuuCWPlJQU\nGYYR6DGc2r17t9OzmjVrmj6bnp6uxYsXa+nSpdq2bZt2796t8+fPKysrSyVKlFB0dLTq1aunVq1a\nqVOnTrr99tu9Nvfhw4ednhmGocqVK3ut15XMbvI4ePCg6bN5eXk6ceKE0/NAzS1JBw4cUJMmTXzW\nP5AKHAWBHgEAAAAAAAAAAAAAAAAAAAAACp0bbsmjMC94XLx40enCgWEYqlq16jXPUlJS9M9//lNf\nffWVcnNzr5lJT09Xenq6du/erQULFujVV19V9erVNWzYMA0fPlyRkZEeze7sJo3LfLksER0d7fQs\nLS3N9NlTp06poMD5wkGg5nY4HJazF2X5BdzkAQAAAAAAAAAAAAAAAAAAAABXCgr0APifI0eOmJ5X\nqFDhd/++e/du9ejRQ23bttXnn3/udMHDmYMHD+r5559X7dq1NWPGDJfn/S2zhYTw8HCFh4d7VN9M\n6dKlnZ6dPXvW9FmrRYoyZcq4NZMdZnNL1rMXZfkOljwAAAAAAAAAAAAAAAAAAAAA4EoseRQip0+f\ndnoWGhqq4sWL//ffk5KS1Lx5c33zzTde6fvoo4+qV69eysjIcKuG2UJCyZIl3R3NFrNbSNLT001v\n6rBapPDl7Fa3p1zXSx7c5AEAAAAAAAAAAAAAAAAAAAAAV2HJoxAxW/IoUaLEf/95zJgxiouL08WL\nF73af86cObr99tt14sQJl581Ww6JioryZCxLVvUvXLjg9MxqqcWXs1vVPn/+vM96Bxo3eQAAAAAA\nAAAAAAAAAAAAAADA1VjyKETS0tKcnkVEREiSnnvuOb355puWtQzD+N2HXVu3blW7du1MF06uxWzh\n5PLsvlKsWDHT89zcXKdnVosyvpzdk7mLOm7yAAAAAAAAAAAAAAAAAAAAAICrseRRiGRmZjo9Cw4O\nVmJiot566y2nmVtuuUWvvPKKVq9erX379ikrK0tnzpzR9u3bNWfOHD322GMqX7685Ry7du1St27d\nlJOTY3v2S5cuOT0LCQmxXccdVvXNPg+zue3U9oQncxd13OQBAAAAAAAAAAAAAAAAAAAAAFfz7dv3\ncInZS/1nzpzRU089dc2zm2++WRMnTlTnzp2vOgsLC1OpUqVUv359de/eXZmZmXrjjTf0zjvvKCsr\ny2m/tWvX6q9//aveeecdW7Pn5zt/aT/QSx5mN2KYzW2ntic8mbuoK3AUBHoEAAAAAAAAAAAAAAAA\nAAAAACh0uMmjEDFb8sjMzFR2dvZVPz5kyBBt2rTpmgse11KiRAmNGzdOP/30k6pUqWKanTRpktau\nXWurbkGB85f2fb3kERwcbHqel5fn9MxsbsMwfDq7J3MXdfkF3OQBAAAAAAAAAAAAAAAAAAAAAFdi\nyaMQMVvyuJbx48dr8uTJCgpy/aexadOmSklJUa1atZxmHA6HRo0aZaue2TKE1W0ZnrJahjD7+lgt\ncfhydk/mLuryHSx5AAAAAAAAAAAAAAAAAAAAAMCVrt+3yK9z/fv31/PPP+9RjZiYGM2aNUuhoaFO\nMz/99JNWrVplWSssLMzpma9vpLBaxDBb5DCb2+Fw+HR2T+Yu6rjJAwAAAAAAAAAAAAAAAAAAAACu\nxpJHIWK2cPBbdevW1dSpU73Ss0WLFnr55ZdNMx9++KFlHbPZA32Th9lsVl/zQN7kYffXQ1HETR4A\nAAAAAAAAAAAAAAAAAAAAcLXr96qAIsjuS/0vvviiwsPDvdZ35MiReuutt3ThwoVrns+fP185OTmm\n85nNk52d7fGMZqzqlyhRwumZ1dfRl7N7MnegnTlzRqdOnbr2Yab18xlnM5w/70SFChVcygMAAAAA\nAAAAAAAAAAAAAAC/5er7q546c+aMX/vh+sCSRyFiZ3GjevXq6t+/v1f7RkVFadCgQXrnnXeueZ6R\nkaE1a9aoY8eOTmuULl3a6Vl6errHM5qxqm+2LGE2t53anvBk7kBr166dR89/8v//5wqHw+FRTwAA\nAAAAAAAAAAAAAAAAANzYKlasGOgRAEtBgR4A/1OqVCnLzB//+EcFBXn/p61r166m5ykpKabn5cqV\nc3oWyCWPqKgo06+X2dxWtT1lVbts2bI+6w0AAAAAAAAAAAAAAAAAAAAAKHy4yaMQKV++vGWmU6dO\nPul92223KSQkRHl5edc8T01NNX3ebFkiMzNT+fn5Cg4O9mhGZ86dO+f0zGqJw+rcrLanrGpbzQYA\nAAAAAAAAAAAAAAAAgCfOnz+v+fPn66efftL27du1d+9eXbhwQRkZGTIMQyVLllTJkiVVqlQpVa9e\nXfXr1//vR4sWLRQWFhboTwEAgOsOSx6FiNWSh2EYatq0qU96Fy9eXA0aNNC2bduueX7w4EHT562u\nLjp58qQqV67s9nxmTpw44fSsUqVKps+WKVPGdLnFrLanzGobhmE5OwAAAAAAAAAAAAAAAADAt4YO\nHaqpU6da5iIjI3X06FFFRkb6YSrP/fLLL3rllVc0Z84c5ebmOs2dPn1ap0+fliRt2rTpd2dHjhzx\n2XuBAADcyFjyKETs/GHHzm0f7jK7OeLyH9KcqV27ttMzh8Oh48eP++wPc8ePH3d6FhMTY/qsYRiq\nWbOmdu/e7XJtT1nVtpo9kFauXKkGDRpc86ziW+YLP5LUq1Evffj/2LvTIKnra3/8p2dYlWXEBdxw\nQXFB0bgk7lwRFxTigsYSkXEhbtFUosYH0SRqyI3JtRK9uWbQOIOICgpYMRqu4Ire/FRcogjRKJso\nuCBu4LB29/+BfxJJnO6enu75DvTrVdWFM5/zPZ8jYtVQ1e8+J/2+1GMBAAAAAAAAAEBFeOqpp2Lg\nwIFlv6e6ujrat28f7dq1i44dO0bXrl3/sdWhV69escMOO0Tv3r1j7733jv79+0fPnj3LPlNramxs\njIkTJxZUu2LFirjnnnvioosuKvNULZPNZuM///M/42c/+1lkMpmi+/To0UPAA9goffjhh6163xtv\nvBFHHXVUq97Jxk/Iow3Zdttto3PnzrFy5cqvPa+uro6ampqy3d+jR48mzxobG3M+u8suu+Q8f+ed\nd+Ib3/hGUXPl8+677zZ5tvPOO+d9ftddd20y5JGrd0vl6r3VVltF586dy3Z3S/Xo0SO23nrrrz/c\nPP/z7bu2b/p5AAAAAAAAAACgTUin05FOpyPiyxDDsmXLctbvvPPOMXjw4DjxxBNj0KBB0bFjx9YY\ns2wmT54cy5cvL7i+rq6uTYc80ul0nHXWWTF58uQW99pnn31KMBFA62vt96+2dqiETUNV0gPwT6lU\nKvr06dPkeUtSs4XI9QN1VVXuPyrrAypNeeutt4qeK5fPP/88li5d2uR537598/bI9Xv+5ptvFjVX\nIXL9nhQy98Ysky3vn2UAAAAAAAAAAKD1LVy4MOrq6mLo0KGxww47xNVXXx3z589Peqyi1dfXN6t+\n1qxZ8eyzz5ZpmpYbNWpUSQIeERH77rtvSfoAAP9OyKON2XPPPZs8y2az8fnnn5ft7o8//rjJs27d\nuuV9PtcPbeUKS+QLj/Tr1y9vj1xzl/MvGLlmL2TujVk6m056BAAAAAAAAAAAoIyWLVsWN910U/Tt\n2zdGjRoV77//ftIjNcvcuXPjmWeeafZzdXV1ZZim5SZOnBjjxo0rWT+bPACgfIQ82phvfvObTZ5l\ns9mybcSIiPjkk0+aPKupqcn7/EEHHdTk2SuvvFLUTPm8/PLLTZ5VV1fHfvvtl7dHrrlXrVoVr7/+\nelGz5bJy5cp44403mjz/xje+UfI725J0RsgDAAAAAAAAAAAqQSaTiYaGhujbt2/cfPPNSY9TsIaG\nhqKemzRpUixbtqzE07TMmjVr4sorryxpT5s8AKB8hDzamEMOOSTn+auvvlq2uxctWtTk2e677573\n+VxhiVmzZsXatWuLmiuXmTNnNnnWr1+/6Ny5c94e++67b3To0OFrz7LZbM47ivXyyy9HOt100OFb\n3/pWye9sS2zyAAAAAAAAAACAyrJixYq44oorYsiQIW0uBPGv0ul03HXXXUU9u3r16hg7dmyJJ2qZ\nCRMmxHvvvdfs51Kp1L+91n/fJg8AKB8hjzbmoIMOyhlMeOyxx8py74IFC+KDDz5o8ryQ1O2AAQOa\nPFu9enU8++yzRc2Wy4wZM4qa56s6duyYM1SR645i5epZU1MT+++/f8nvbEts8gAAAAAAAAAAgMo0\nderUOOigg2L+/PlJj9KkadOmxZIlS5o8z/fhw7fddlupR2qRKVOmFFx79NFHR319fbz22muxbNmy\nWLt2bXzxxRfxwQcfxN/+9rd4+OGH4/bbb49u3bqVcWIAqGxCHm1Mp06d4phjjmny/JFHHonVq1eX\n/N6//OUvOc9zbelYb5dddom+ffs2ef7www83e65c3nzzzZg7d26T5yeccELBvQYPHtzk2dSpU5s1\nVyFy/V4ce+yxJb+vrbHJAwAAAAAAAAAAWsfXbWMo9lUqb7/9dhx11FHx97//vWQ9S6m+vj7n+aWX\nXprzfN68eTF9+vRSjtQi+d4fGPHlhyVPmjQpHn/88TjvvPOiX79+UVNTE1VVVdGpU6fYaqutYo89\n9ogTTzwxLrjgglaYGgAql5BHG3TyySc3efbpp5/GpEmTSn7nPffc0+TZlltuGYceemhBfU488cQm\nz+6///7IZrPNnq0pEyZMaPKsW7duOcMy/yrX3B9++GE8/vjjzZotlwULFsTzzz/f5Pkpp5xSsrva\nqkw2k/QIAAAAAAAAAACwyXvqqacinU4X/Vq7dm2sXLkyli1bFosWLYpZs2bFY489FnfddVf89Kc/\njdNOOy169+5d1GxLliyJo446Kv72t7+V+N+6ZZYuXRoPPfRQk+epVCquuuqq6N69e84+dXV1pR6t\nKB988EF88skneeuuv/76GDZsWCtMBADkI+TRBg0bNiw222yzJs9/9atfRSZTujfJ/+1vf4tp06Y1\neX7SSScVnMI+66yzmjxbtGhRzh9+m2PNmjVx++23N3k+fPjw6NChQ8H9+vfvH3vvvXeT57feemuz\n5svl97//fZNhlx49esRpp51WsrvaqnTGJg8AAAAAAAAAAGjrqqqqokOHDlFTUxPbb7997LPPPjFw\n4MAYMWJEXHfddTF58uRYuHBhvPXWW3HDDTfElltu2az+S5cujW9/+9vx6aeflunfoPnGjx8f69at\na/J8t912i549e8bxxx+fs8/DDz8cixcvLvV4zfbuu+/mrdlss83ie9/7XitMAwAUQsijDaqpqYnh\nw4c3eT5nzpz4wx/+ULL7fvrTn+Y8HzVqVMG9Dj744Nh3332bPL/mmmsinW75G/xvueWWeO+99772\nLJVKxYUXXtjsnrlWyD344IPx7LPPNrvnv1q0aFHOwMiIESOiY8eOLb6nrUtnhTwAAAAAAAAAAGBT\n0adPn7j22mtjwYIFMXr06OjSpUvBz86fPz/OOuusJj84t7WNHTs25/nhhx8eERGnnnpqzrp0Ol3S\n9/kVa+nSpXlrjjrqqNh8881bYRoAoBBCHm3UD37wg6iqavo/z1VXXRVvvPFGi+9paGiIBx54oMnz\nAw88MI444ohm9bzkkkuaPJszZ07ccMMNzer3r15//fW4/vrrmzw/5JBDYv/9929235EjRza5QSWb\nzcaoUaOisbGx2X3Xy2QyccEFF8SqVau+9ry6ujouvvjiovtvTGzyAAAAAAAAAACATU+XLl3ixz/+\ncbzwwgvRr1+/gp+bNm1aXHfddeUbrEAzZ86MOXPm5KwZOHBgREQMGTIkOnXqlLP2jjvuKMmHIrfE\n8uXL89bk+mBnAKD1CXm0UXvvvXecf/75TZ5/8cUXcdJJJ8U777xT9B1/+ctf4vvf/37OmmuuuabZ\nfS+44ILo3bt3k+ejR4+OKVOmNLtvxJep4lNOOaXJsEUqlYobb7yxqN5bbrllXH755U2ev/766zFi\nxIjIZDJF9b/qqqvi8ccfb/J85MiRseeeexbVe2NjkwcAAAAAAAAAAGy69thjj5g5c2YMGzas4Gdu\nvPHGknzwcUvU19fnPE+lUv8IeWy++eZx3HHH5axfsmRJPPjggyWbrxhr1qzJW7Ptttu2wiQAQKGE\nPNqw0aNHx5Zbbtnk+YIFC+LII4+MmTNnNrv31KlT49hjj825meK4446LU045pdm927dvHz/72c+a\nPM9ms3H22WfHxIkTm9X33XffjWOOOSbeeuutJmuGDh0aRx55ZLP6ftXVV18d3bt3b/L8j3/8Y5x1\n1lmxevXqgntms9m46qqr4uabb26yZrPNNouf//znzZp1Y2aTBwAAAAAAAAAAbNo6d+4cEyZMiBNP\nPLGg+rVr18Zll11W5qma1tjYmPc9bX379o3tttvuH1+fccYZefvW1dW1eLaWWLduXd6aLl26tMIk\nAEChhDzasG222SbGjRsXqVSqyZpFixbFkUceGVdddVV88skneXt+/PHHcfHFF8fQoUNj1apVTdZ1\n6dIlfve73xU1d0TEeeedF0cffXST52vWrImzzz47Lrvssvj888/z9ps0aVIceOCBMXv27CZrunfv\nHr/97W+Lmne9LbbYImcYY/0shxxySLz00kt5+82bNy+OPfbY+M1vfpOz7oYbbtjgh/9NnU0eAAAA\nAAAAAACw6WvXrl1Mnjy54A/ufeKJJ+L+++8v81Rfb/LkybF8+fKcNSeddNIGX5988snRuXPnnM88\n8cQTOT/YuNyy2Wzemg4dOrTCJABAoYQ82rgTTzwxrr/++pw1a9eujd/85jex4447Rm1tbUyaNCkW\nLlwYjY2N0djYGHPnzo2HHnoozj333Nh1113j9ttvz/mDWyqVioaGhth9991bNPudd96ZcytGNpuN\n3//+97HTTjvFD3/4w3j88cdj6dKlsW7dulixYkXMmjUrfve738UBBxwQZ555ZixdujTnzHfccUfs\nsssuLZo5IqK2tjZOPfXUnDWvvvpqHHzwwTFkyJC45557Yv78+bFq1apYs2ZNvPPOO/HAAw/E8OHD\nY88994wnnngiZ6+hQ4fGFVdc0eK5NyaZbCbpEQAAAAAAAAAAgFbQqVOnuO+++2LLLbcsqH706NFl\nnujrNTQ05K0ZMmTIBl936dLl34If/yqbzcaYMWNaNBsAUFnaJT0A+V177bXx6aef5t0G0djYGOPH\nj4/x48cXfVcqlYrrr78+Tj/99KJ7rLfjjjvGlClTYvDgwbF27dom6z777LO45ZZb4pZbbin6rquu\nuiqGDRtW9PP/aty4cbFgwYJ45ZVXctZNnTo1pk6dWvQ9e+65Z4wbN67o5zdW6YxNHgAAAAAAAAAA\nUCl69eoVt912W0HvS5s9e3ZMnz49jjvuuFaY7Evz5s2Lp59+OmdNTU3N124kOeuss2Ly5Mk5n73z\nzjvjF7/4RXTq1KlFcwIAlcEmj43ETTfdFDfeeGOkUqmy3ZFKpeLXv/51XHvttSXrOXDgwJg4cWJ0\n7NixZD3/1Y9+9KP41a9+VdKeXbp0if/93/+N/v37l7TvV+2zzz4xY8aMqKmpKdsdbVU6K+QBAAAA\nAAAAAACV5LTTTouzzz67oNp8H4hcaoVu8aiurv6375900knRvXv3nM9+8skncd999xU9HwBQWWzy\n2IhcffXVse+++8YFF1wQ77//fkl7b7311nHbbbfFKaecUtK+ERGnnnpqPProo3HmmWfGe++9V7K+\n7du3j5///Odx9dVXl6znV/Xs2TOefvrpGD58eIu2dXydgQMHxv333x89evQoad+NhU0eAAAAAAAA\nAABQeW688caYMmVKrFq1Kmfd9OnTY/78+bHrrruWfaZ0Oh3jxo3LW3fmmWd+7fc7dOgQZ5xxRtxx\nxx05n6+rq4va2tqiZsxlzZo18fLLLzd5Pm/evLw95s6dG88991zeuh133DG23377Zs0HADSfTR4l\nkM1mW+2uwYMHx5w5c+KSSy6J9u3bt7hfdXV1nH322fHaa6+VJeCx3hFHHBGvvfZaDB8+vCTbSPbd\nd994/vnnyxbwWK9bt27x8MMPx+9///uSBDI233zz+N3vfhePPfZYxQY8ImzyAAAAAAAAAACASrT9\n9tvHd7/73YJqp0yZUuZpvjRt2rRYsmRJzpotttgijj/++CbPR44cmfeemTNnxiuvvNLs+fJZsmRJ\nHHbYYU2+fvGLX+TtMXr06Jw91r/yBVkAgNIQ8ijQ+mBCKpXa4PXVs9ayxRZbxK233hpvvvlmXHnl\nlbHNNts0u0dNTU2cd955MXv27Bg/fnxRPZqrR48ecffdd8dLL70Uw4cPj06dOjXr+VQqFYcffnjc\nd9998de//jX233//Mk367y6++OKYP39+3HDDDdG7d+9mP9+rV6/42c9+FvPmzYvvfe97ZZhw42KT\nBwAAAAAAAAAAVKbLLrusoPfctVbIo6GhIW/NqaeeGu3atWvy/Igjjohddtklb5+6urpmzdbWtPZ7\nJQGgUjX9UwcbGDBgQGQymaTH2MBOO+0U//Vf/xU33nhjPP/88/HEE0/EX//615g7d2689957sWLF\nikin09GtW7fYYostYvfdd4/9998/DjvssDjuuONKsgmkGPvvv3/cfffd8dlnn8Vjjz0WM2bMiNmz\nZ8f8+fPj008/jcbGxthss82iR48eseWWW8Y+++wTRxxxRAwYMCB22223RGaO+HKrx7XXXhvXXHNN\nPPfcc/HEE0/ECy+8EHPnzo33338/VqxYEVVVVbHFFltEjx49Yuedd47DDjssDj/88DjssMNy/pBf\naTLZtvX/EgAAAAAAAAAA0Dp23333OPTQQ+P//b//l7PuhRdeiMWLF8f2229ftlk++uijeOihh/LW\nnXPOOQXV3HDDDTlr7r333rjpppuia9euBc8IAFQe7zrfBFRXV/9jHdrGpHv37jFs2LAYNmxY0qM0\nSyqVikMPPTQOPfTQpEfZaKWzNnkAAAAAAAAAAEClOv300/OGPLLZbEyfPj3OO++8ss0xfvz4WLt2\nbc6anXfeOQYMGJC3VyEhjy+++CLuuuuu+N73vtesOQGAylKV9ABA5UlnhDwAAAAAAAAAAKBSHX/8\n8QXVPf/882Wdo6GhIW/NiBEjCurVp0+fOPzww/PWjRkzpqB+AEDlEvIAWp1NHgAAAAAAAAAAULn2\n2muv2GabbfLWlTPkMXPmzJgzZ07OmlQqFSNHjiy457nnnpu3Zs6cOfHMM88U3BMAqDxCHkCrs8kD\nAAAAAAAAAAAq28EHH5y3Zs6cOdHY2FiW+wvZ4nHIIYfEbrvtVnDP73znO9G5c+e8dXV1dQX3LFQq\nlfraV0ufL6YXANAyQh5Aq7PJAwAAAAAAAAAAKlv//v3z1qxbty7vto1irFy5MiZOnJi3rra2tll9\nu3btGqecckreugceeCCWLl3arN5N2XnnnSOTyUQ6nf7a19ixY/P2uPPOO5t8/quvn/70pyWZGQDI\nTcgDaHWZbCbpEQAAAAAAAAAAgATttddeBdUtWrSo5HdPnjw5Pv/885w1nTp1ijPPPLPZvQsJhqxZ\nsybq6+ub3bsY2Wy2Ve4BAEpHyANodemMTR4AAAAAAAAAAFDJevfuXVDd22+/XfK7Gxoa8tYMHTo0\nunfv3uzegwYNiu222y5v3e233y6AAQB8LSEPoNWls0IeAAAAAAAAAABQyZIKecybNy9mzJiRt66Q\njRxfp6qqKkaMGJG3buHChfHII48UdQcAsGlrl/QAQOWxyQMAAAAAAAAASmPVulUx7+N5SY/BJqRP\njz7RqV2npMegAmy11VYF1b377rslvXfs2LF5a3r27BknnHBC0XfU1tbGr3/967x1dXV1MXjw4KLv\nAQA2TUIeQKuzyQMAAAAAAAAASmPex/Nin7p9kh6DTcjsS2ZHv236JT0GFaBLly5RXV0d6XTu9xIt\nX768ZHdmMpkYN25c3rrhw4dHVVVV0ffstddecfDBB8cLL7yQs27q1KmxaNGigreaAACVofifQgCK\nZJMHAAAAAAAAAADQrVu3vDWNjY0lu2/atGmxePHinDWpVCpGjhzZ4rtqa2vz1mQymbj99ttbfBcA\nsGkR8gBaXTaykc1mkx4DAAAAAAAAAABIUPv27fPWlDLk0dDQkLdm3333jf3226/Fd5111lnRoUOH\nvHX19fWxbt26Ft8HAGw6hDyARGSymaRHAAAAAAAAAAAAElRICGLlypUlueujjz6KP/3pT3nrSrHF\nIyJiiy22iCFDhuSt++CDD+KBBx4oyZ0AwKZByANIRDqbTnoEAAAAAAAAAAAgQZlM/g+KTadL8z6j\nu+++O9auXZuzpl27dnH22WeX5L6IiNra2oLq6urqSnYnALDxE/IAEpHOCHkAAAAAAAAAAEAlW7Vq\nVd6ajh07luSuhoaGvDXHHnts9OzZsyT3RUQMHjw4tt5667x1M2bMiNdff71k9wIAGzchDyARNnkA\nAAAAAAAAAEBlKyTk0alTpxbf88ILL8Ts2bPz1hW6eaNQzdkMMmbMmJLeDQBsvIQ8gETY5AEAAAAA\nAAAAAJVt9erVeWtKEfIoZItHTU1NnHLKKS2+618VGhwZP358rFy5suT3AwAbn3ZJDwBUJps8AAAA\nAAAAAKDl+vToE7Mvyf/p9FCoPj36JD0CFWL58uWRTud/D1FNTU2L7lm5cmVMmDAhb91e1rjKAAAg\nAElEQVQZZ5wRHTp0aNFdX2e//faL/v37x6xZs3LWffrppzFhwoQ4//zzSz4DALBxEfIAEpHJZpIe\nAQAAAAAAAAA2ep3adYp+2/RLegyAZnvvvfcKqtt2221bdM+UKVPi888/z1mTSqUK3rhRjNra2rjy\nyivz1tXV1Ql5AABCHkAy0hmbPAAAAAAAAAAAoFIVGvLo1atXi+6pr6/PW9OjR4+orq6O5557rkV3\nNWXXXXctqO6ll16KF198MQ466KCyzAEAbByEPIBEpLNCHgAAAAAAAAAAUKkWL15cUF1LNnnMnz8/\nZsyYkbdu2bJlceihhxZ9TynV1dUVFEwBADZdVUkPAFQmmzwAAAAAAAAAAKByzZkzp6C6PfbYo+g7\nxo4dW/SzSZk4cWJ8+umnSY8BACRIyANIhE0eAAAAAAAAAABQuV577bW8NalUKvbZZ5+i+mcymbjz\nzjuLejZJK1eujHHjxiU9BgCQICEPIBE2eQAAAAAAAAAAQOUqJOSx1VZbxTbbbFNU/+nTp8fixYuL\nejZpY8aMSXoEACBBQh5AIjLZTNIjAAAAAAAAAAAACXjnnXfi7bffzlt3wAEHFH1HfX190c8m7e9/\n/3s8+eSTSY8BACREyANIRDprkwcAAAAAAAAAAFSi6dOnF1R39NFHF9V/2bJl8ac//amoZ9sK2zwA\noHK1S3oAoDKlM0IeAAAAAAAAAABQiR599NGC6gYOHFhU/7vvvjvWrl2bty6VShXVv6Wy2Wzemj/+\n8Y/xwQcfRM+ePVthIgCgLbHJA0iETR4AAAAAAAAAAFB5VqxYEQ8//HDeuh49esSBBx5Y1B0NDQ15\na/bcc89Ip9OJvPr27Zt3vrVr18Ydd9xR1L8/ALBxE/IAEmGTBwAAAAAAAAAAVJ5JkyZFY2Nj3rrT\nTjutqE0bL774Yrz22mt5684555xm9y6V888/v6C622+/PTKZTJmnAQDaGiEPIBE2eQAAAAAAAAAA\nQOUpdDvFmWeeWVT/+vr6vDVVVVWJhjxqa2ujXbt2eeveeeed+POf/9wKEwEAbYmQB5CITFbCHAAA\nAAAAAAAAKsmTTz4Zzz77bN66bbfdNgYOHNjs/qtWrYqJEyfmrRswYEDssMMOze5fKj179oyTTjqp\noNq6uroyTwMAtDVCHkAi0hmbPAAAAAAAAAAAoJJcd911BdVdeOGFkUqlmt1/ypQp8dlnn+WtGzly\nZLN7l9qoUaMKqps2bVosWLCgzNMAAG2JkAeQiHRWyAMAAAAAAAAAACrFfffdF88880zeug4dOsRF\nF11U1B319fV5azbbbLM4/fTTi+pfSoMHD47tttsub102m43bbrutFSYCANoKIQ8gETZ5AAAAAAAA\nAABAZVi6dGlcdtllBdUOHz48evXq1ew7FixYEE899VTeulNOOSU233zzZvcvtaqqqjj33HMLqm1o\naIg1a9aUdyAAoM0Q8gASYZMHAAAAAAAAAABs+tatWxcjRoyIZcuW5a3t2LFjXHfddUXd09DQUFDd\nyJEji+pfDueff36kUqm8dR999FFMnjy5FSYCANoCIQ8gETZ5AAAAAAAAAADApu+SSy6JRx99tKDa\niy++OHr37t3sOzKZTIwbNy5v3bbbbhvHHntss/uXy6677hr/8R//UVDtmDFjyjsMANBmCHkAibDJ\nAwAAAAAAAAAANl3r1q2LUaNGRX19fUH1vXv3jtGjRxd116OPPhrvvvtu3rrhw4cXtDmjNV1wwQUF\n1f3f//1fzJkzp8zTAABtgZAHkIhMNpP0CAAAAAAAAAAAQBm8+eabcdRRR0VDQ0NB9alUKm677bbY\nfPPNi7qvkCBJKpWKkSNHFtW/nIYNGxY1NTUF1dbV1ZV5GgCgLRDyABKRztjkAQAAAAAAAAAAm5L3\n338/fvCDH8R+++0Xzz33XMHP/ehHP4rjjz++qDuXLVsWDz74YN66/v37x7777lvUHeXUsWPHOPvs\nswuqHT9+fHzxxRdlnggASJqQB5CIdFbIAwAAAAAAAAAANnbLly+PBx98ME4//fTYaaed4r//+79j\n9erVBT8/aNCg+OUvf1n0/XfffXesXbs2b11b3OKx3qhRowqqW758edxzzz1lngYASFq7pAcAKpNN\nHgAAAAAAAAAAUF7ZbLZFz69Zs+Yfr08//TQ+/PDD+PDDD2P+/Pnx+uuvx6uvvhovvfRSpNPFvRfo\ngAMOiAceeCBSqVTRM44dOzZvTbt27WL48OFF31Fu++23XxxwwAHx8ssv562tq6uLCy+8sBWmAgCS\nIuQBJMImDwAAAAAAAAAAKK+jjz466RGa1L9//3jkkUeiS5cuRfd46aWXYtasWXnrBg0aFD179iz6\nntYwatSouPTSS/PWvfrqq/Hcc8/FIYcc0gpTAQBJqEp6AKAy2eQBAAAAAAAAAACVacCAAfHMM8/E\nVltt1aI+9fX1BdWNHDmyRfe0huHDh0fnzp0Lqq2rqyvzNABAkoQ8gERkspmkRwAAAAAAAAAAAFpR\nVVVVXHHFFfHYY49F165dW9Rr1apVMWHChLx13bp1i1NPPbVFd7WGbt26xemnn15Q7aRJk+Ljjz8u\n80QAQFKEPIBEpLM2eQAAAAAAAAAAQKXYY489Ytq0aXHTTTdFdXV1i/tNmTIlPvvss7x1p59+enTs\n2LHF97WGUaNGFVS3atWquPPOO8s7DACQGCEPIBHpjJAHAAAAAAAAAABs6nbccce45ZZb4rXXXotj\njjmmZH0bGhoKqjvnnHNKdme5HXnkkbH77rsXVDtmzJgyTwMAJEXIA0iETR4AAAAAAAAAALBpqq6u\njkGDBsXdd98d8+fPj8svvzzatWtXsv4LFiyIJ598Mm/dTjvtFAMGDCjZva3hggsuKKhu7ty58dhj\nj5V5GgAgCUIeQCJs8gAAAAAAAAAAgE1DKpWKXr16xRlnnBH19fXx7rvvxvTp02P48OFRXV1d8vvG\njh1bUN2IESNKfne51dbWFhyIqaurK/M0AEASSheNBWgGmzwAAAAAAAAAAKA4qVRqg1/LqV27dtGh\nQ4fo2LFj1NTUxFZbbRVbb7119O7dO/r06RN9+/aNb3zjG7H99tuXfZb1evfuHdddd13euvPOO6/8\nw5RYz549o66uLhYvXpy3tn379pHNZnP+OWjNPysAQGkIeQCJyGQzSY8AAAAAAAAAAAAbpQEDBkQm\nU7nvvxk1alTSI5TVBRdcULJetbW1UVtbW7J+AED5VSU9AFCZ0hmbPAAAAAAAAAAAAAAAvkrIA0hE\nOivkAQAAAAAAAAAAAADwVUIeQCJs8gAAAAAAAAAAAAAA2JCQB5AImzwAAAAAAAAAAAAAADYk5AEk\nwiYPAAAAAAAAAAAAAIANCXkAichkM0mPAAAAAAAAAAAAAADQpgh5AIlIZ23yAAAAAAAAAAAAAAD4\nKiEPIBHpjJAHAAAAAAAAAAAAAMBXCXkAibDJAwAAAAAAAAAAAABgQ0IeQCJs8gAAAAAAAAAAAAAA\n2JCQB5AImzwAAAAAAAAAAAAAADYk5AEkwiYPAAAAAAAAAAAAAIANCXkAichkM0mPAAAAAAAAAAAA\nAADQpgh5AIlIZ23yAAAAAAAAAAAAAAD4KiEPIBHpjJAHAAAAAAAAAAAAAMBXCXkAibDJAwAAAAAA\nAAAAAABgQ0IeQCJs8gAAAAAAAAAAAAAA2JCQB5AImzwAAAAAAAAAAAAAADYk5AEkIpPNJD0CAAAA\nAAAAAAAAAECb0i7pAYBN1+FvR/RdFjGvR8TTO294ZpMHAAAAAAAAAAAAAMCGhDyAkuv/fsSrY/79\n+4dcEPH8jl/+czoj5AEAAAAAAAAAAAAA8FVVSQ8AbFo2X/31AY+IiOfqI2pWfvnPNnkAAAAAAAAA\nAAAAAGxIyAMoqbEP5j6fct+Xv9rkAQAAAAAAAAAAAACwISEPoKTO+Fvu84ELv/zVJg8AAAAAAAAA\nAAAAgA0JeQCJyGQzSY8AAAAAAAAAAAAAANCmCHkAiUhnbPIAAAAAAAAAAAAAAPgqIQ8gEemskAcA\nAAAAAAAAAAAAwFcJeQCJsMkDAAAAAAAAAAAAAGBDQh5AImzyAAAAAAAAAAAAAADYkJAHkAibPAAA\nAAAAAAAAAAAANiTkASQik80kPQIAAAAAAAAAAAAAQJsi5AEkIp21yQMAAAAAAAAAAAAA4KuEPIBE\npDNCHgAAAAAAAAAAAAAAXyXkASTCJg8AAAAAAAAAAAAAgA0JeQCJsMkDAAAAAAAAAAAAAGBDQh5A\nImzyAAAAAAAAAAAAAADYkJAHkAibPAAAAAAAAAAAAAAANiTkASQik80kPQIAAAAAAAAAAAAAQJsi\n5AEkIp21yQMAAAAAAAAAAAAA4KuEPIBEpDNCHgAAAAAAAAAAAAAAXyXkASTCJg8AAAAAAAAAAAAA\ngA0JeQCJsMkDAAAAAAAAAAAAAGBDQh5AImzyAAAAAAAAAAAAAADYkJAHkIhMNpP0CAAAAAAAAAAA\nAAAAbYqQB5CIdMYmDwAAAAAAAAAAAACArxLyABKRzgp5AAAAAAAAAAAAAAB8lZAHkAibPAAAAAAA\nAAAAAAAANiTkASTCJg8AAAAAAAAAAAAAgA0JeQCJsMkDAAAAAAAAAAAAAGBDQh5AIjLZTNIjAAAA\nAAAAAAAAAAC0KUIeQCLSWZs8AAAAAAAAAAAAAAC+SsgDSEQmm4lsNpv0GAAAAAAAAAAAAAAAbYaQ\nB5CYTDaT9AgAAAAAAAAAAAAAAG2GkAeQmHQ2nfQIAAAAAAAAAAAAAABthpAHkJh0RsgDAAAAAAAA\nAAAAAGA9IQ8gMZlsJukRAAAAAAAAAAAAAADaDCEPIDHprE0eAAAAAAAAAAAAAADrCXkAiUlnhDwA\nAAAAAAAAAAAAANYT8gASY5MHAAAAAAAAAAAAAMA/CXkAibHJAwAAAAAAAAAAAADgn4Q8gMTY5AEA\nAAAAAAAAAAAA8E9CHkBibPIAAAAAAAAAAAAAAPgnIQ8gMZlsJukRAAAAAAAAAAAAAADaDCEPIDHp\nrE0eAAAAAAAAAAAAAADrCXkAiUlnhDwAAAAAAAAAAAAAANYT8gASY5MHAAAAAAAAAAAAAMA/CXkA\nibHJAwAAAAAAAAAAAADgn4Q8gMTY5AEAAAAAAAAAAAAA8E9CHkBiMtlM0iMAAAAAAAAAAAAAALQZ\nQh5AYtIZmzwAAAAAAAAAAIC266KLLoqqqqq8r27dusWKFSuSHhcA2AS0S3oAoHKls0IeAAAAAAAA\nAADQXE899VQMHDiw7PdUV1dH+/bto127dtGxY8fo2rVrdOvWLbp37x69evWKHXbYIXr37h177713\n9O/fP3r27Fn2mVpTY2NjTJw4saDaFStWxD333BMXXXRRmacCADZ1Qh5AYmzyAAAAAAAAAACAtiud\nTkc6/eV7fFasWBHLli3LWb/zzjvH4MGD48QTT4xBgwZFx44dW2PMspk8eXIsX7684Pq6ujohDwCg\nxaqSHgCoXDZ5AAAAAAAAAADApmPhwoVRV1cXQ4cOjR122CGuvvrqmD9/ftJjFa2+vr5Z9bNmzYpn\nn322TNMAAJVCyANIjE0eAAAAAAAAAACwaVq2bFncdNNN0bdv3xg1alS8//77SY/ULHPnzo1nnnmm\n2c/V1dWVYRoAoJIIeQCJyWQzSY8AAAAAAAAAAACUUSaTiYaGhujbt2/cfPPNSY9TsIaGhqKemzRp\nUixbtqzE0wAAlUTIA0hMOmuTBwAAAAAAAAAAVIIVK1bEFVdcEUOGDGnzIYh0Oh133XVXUc+uXr06\nxo4dW+KJAIBKIuQBtL7sl7+kM0IeAAAAAAAAAABQSaZOnRoHHXRQzJ8/P+lRmjRt2rRYsmRJk+ed\nO3fO+fxtt91W6pEAgAoi5AG0uqr1IQ+bPAAAAAAAAAAAoKxSqVTJXqXy9ttvx1FHHRV///vfS9az\nlOrr63OeX3rppTnP582bF9OnTy/lSABABWmX9ABA5anORGSqbPIAAAAAAAAAAIByeuqpp+Koo44q\n+vlMJhPr1q2LxsbG+OKLL+KTTz6JDz/8MJYsWRJz586N2bNnx4svvhiLFi1qdu8lS5bEUUcdFU8+\n+WTsvffeRc9YakuXLo2HHnqoyfNUKhVXXXVV3HHHHfHZZ581WVdXVxfHHXdcOUYEADZxQh5Aq6vO\nRqwNmzwAAAAAAAAAAKAtq6qqig4dOkSHDh2ipqYmtt9++6+tmzdvXkyYMCFuueWWWLZsWcH9ly5d\nGt/+9rfjxRdfjJqamlKN3SLjx4+PdevWNXm+2267Rc+ePeP444+P+++/v8m6hx9+OBYvXtzk7xkA\nQFOqkh4AqDzVmS9/zWQzyQ4CAAAAAAAAAAC0WJ8+feLaa6+NBQsWxOjRo6NLly4FPzt//vw466yz\nIpvNlnHCwo0dOzbn+eGHHx4REaeeemrOunQ6HX/4wx9KNhcAUDmEPIBWV/3//30snbHJAwAAAAAA\nAAAANhVdunSJH//4x/HCCy9Ev379Cn5u2rRpcd1115VvsALNnDkz5syZk7Nm4MCBERExZMiQ6NSp\nU87aO+64I9Jp75ECAJpHyANodes3eaSz/gIDAAAAAAAAAACbmj322CNmzpwZw4YNK/iZG2+8Md54\n440yTpVffX19zvNUKvWPkMfmm28exx13XM76JUuWxIMPPliy+QCAyiDkAbQ6mzwAAAAAAAAAAGDT\n1rlz55gwYUKceOKJBdWvXbs2LrvssjJP1bTGxsaYOHFizpq+ffvGdttt94+vzzjjjLx96+rqWjwb\nAFBZhDyAVmeTBwAAAAAAAAAAbPratWsXkydPjiOPPLKg+ieeeCLuv//+Mk/19SZPnhzLly/PWXPS\nSSdt8PXJJ58cnTt3zvnME088EW+99VaL5wMAKoeQB9DqbPIAAAAAAAAAAIDK0KlTp7jvvvtiyy23\nLKh+9OjRZZ7o6zU0NOStGTJkyAZfd+nS5d+CH/8qm83GmDFjWjQbAFBZhDyAVmeTBwAAAAAAAAAA\nVI5evXrFbbfdVlDt7NmzY/r06WWeaEPz5s2Lp59+OmdNTU3N124kOeuss/L2v/POO2PVqlVFzwcA\nVBYhD6DVrd/kkclmkh0EAAAAAAAAAABoFaeddlqcffbZBdX+5je/KfM0Gyp0i0d1dfW/ff+kk06K\n7t2753z2k08+ifvuu6/o+ZK0evXqWLhwYcyZMydefPHFmDVrVsybNy+WLVuW9GgAsMlql/QAQOX5\nxyaPjE0eAAAAAAAAAABQKW688caYMmVK3q0W06dPj/nz58euu+5a9pnS6XSMGzcub92ZZ575td/v\n0KFDnHHGGXHHHXfkfL6uri5qa2uLmrG1rF69Op588smYMWNGvPjiizF79uz44IMPmqzv0qVL7Lrr\nrnHggQfG4YcfHsccc0zstNNOrTgxAGyabPIAWt36TR7prJAHAAAAAAAAAABUiu233z6++93vFlQ7\nZcqUMk/zpWnTpsWSJUty1myxxRZx/PHHN3k+cuTIvPfMnDkzXnnllWbP1xqeeeaZOPvss2PLLbeM\nE088MX71q1/F448/njPgERGxYsWKmDVrVowdOzZGjRoVu+yySxx66KFx6623RmNjYytNDwCbHiEP\noNXZ5AEAAAAAAAAAAJXpsssui1QqlbeutUIeDQ0NeWtOPfXUaNeuXZPnRxxxROyyyy55+9TV1TVr\ntnKbPn16fPOb34wBAwbEhAkTShLMeP755+Pyyy+PnXbaKX7xi1/k3doCAPw7IQ+g1dnkAQAAAAAA\nAAAAlWn33XePQw89NG/dCy+8EIsXLy7rLB999FE89NBDeevOOeecktTce++9sXz58oJmK6d33303\nhg4dGieccEK8+OKLZblj2bJl8ZOf/CT23nvvmDp1alnuAIBNlZAH0Ops8gAAAAAAAAAAgMp1+umn\n563JZrMxffr0ss4xfvz4WLt2bc6anXfeOQYMGJC3VyEhjy+++CLuuuuugucrhylTpkS/fv3iz3/+\nc6vct3DhwhgyZEhcccUVsW7dula5EwA2dkIeQKtbv8kjk80kOwgAAAAAAAAAANDqjj/++ILqnn/+\n+bLO0dDQkLdmxIgRBfXq06dPHH744XnrxowZU1C/crjmmmvijDPOSGSbyM033xzHHntsm9hkAgBt\nnZAH0Or+sckja5MHAAAAAAAAAABUmr322iu22WabvHXlDHnMnDkz5syZk7MmlUrFyJEjC+557rnn\n5q2ZM2dOPPPMMwX3LJXLL788fvnLXxb1bCqV+rdXMWbMmBFHH310fPzxx0U9DwCVQsgDaHXrN3mk\nM0IeAAAAAAAAAABQiQ4++OC8NXPmzInGxsay3F/IFo9DDjkkdtttt4J7fuc734nOnTvnraurqyu4\nZylceeWVceuttzbrme222y4uvfTSmDRpUsyePTs+/fTTWLduXXzxxRexaNGieOyxx+L6668v6L/j\nV7388ssxdOjQWL16dbOeA4BKIuQBtDqbPAAAAAAAAAAAoLL1798/b826devybtsoxsqVK2PixIl5\n62pra5vVt2vXrnHKKafkrXvggQdi6dKlzepdrHvvvTd++9vfFlzfr1+/mDx5crzzzjvxP//zPzFs\n2LDYa6+9omvXrpFKpaJTp06x/fbbx8CBA+MnP/lJPP/88zFr1qw47bTTCr7j2WefbfbvLQBUEiEP\noNXZ5AEAAAAAAAAAAJVtr732Kqhu0aJFJb978uTJ8fnnn+es6dSpU5x55pnN7l1IeGHNmjVRX1/f\n7N7N9eabb8aFF15YUG379u3j5z//ebz66qtx2mmnRSqVKvieffbZJyZPnhyPPPJIbLfddgU9c//9\n9xe0TQUAKpGQB9DqbPIAAAAAAAAAAIDK1rt374Lq3n777ZLfXUi4YOjQodG9e/dm9x40aFBBQYfb\nb789stlss/s3x/e///1obGzMW9e9e/eYOnVqXHPNNVFVVfzbSo877rh48cUX48ADDyyo/oc//GG8\n8847Rd8HAJsqIQ+g1a3f5JHJZpIdBAAAAAAAAAAASERSIY958+bFjBkz8tYVspHj61RVVcWIESPy\n1i1cuDAeeeSRou4oxB//+MeYPn163rquXbvGI488Esccc0xJ7u3Vq1c8/vjjBQU9li9fHtdcc01J\n7gWATUm7pAcAKs8/NnlkbPIAAAAAAAAAgBZZtSpi3rykp2BT0qdPRKdOSU9BBdhqq60Kqnv33XdL\neu/YsWPz1vTs2TNOOOGEou+ora2NX//613nr6urqYvDgwUXfk8vPf/7zvDWpVCruuuuu+Na3vlXS\nu7t16xYPP/xwHHDAAfHee+/lrL333nvjRz/6Uey7774lnQEANmZCHkCrW7/JI50V8gAAAAAAAACA\nFpk3L2KffZKegk3J7NkR/folPQUVoEuXLlFdXR3pdO73EC1fvrxkd2YymRg3blzeuuHDh0dVVVXR\n9+y1115x8MEHxwsvvJCzburUqbFo0aKCt5oU6umnn46//vWveesuueSSOPnkk0t693o9e/aM8ePH\nx6BBg3LWZTKZ+O1vfxsNDQ1lmQMANkbF/xQCUCSbPAAAAAAAAAAAgG7duuWtaWxsLNl906ZNi8WL\nF+esSaVSMXLkyBbfVVtbm7cmk8nE/8fefUdZQV/7At+HXgSpAhaMIAhBiliimICi3AQVrxiMMhYS\nUaOxJNab91I0atQUWzSiRtSIXEUjV43GCNYoigpKtdFEQBQEpbeZOe+P+1DHzClz5sycGebzWYuV\ntdj77N8Gkyxc63zZd955Z6Xf+rrbbrstY0/79u3jmmuuyfvbXzV48OAoKirK2DdhwoT4/PPPq3QX\nAKhNhDyAaueSBwAAAAAAAAAA0LBhw4w9+Qx5ZHMtonfv3tG3b99KvzVy5Mho1KhRxr6xY8dGcXFx\npd/bbsuWLfHkk09m7LvggguyCtlU1uWXX57xKsqmTZvioYceqvJdAKC2EPIAqp1LHgAAAAAAAAAA\nQDYhiE2bNuXlrU8//TQef/zxjH35uOIREdG6des45phjMvZ98sknMXHixLy8GRExefLk2LBhQ9qe\nRo0axTnnnJO3N9Pp1q1bHH300Rn7sgmmAEBdIeQBVLvtlzxKk6WFXQQAAAAAAAAAACiY0tLM3x8q\nKcnPXyR7//33x7Zt29L2NGjQIE4++eS8vBcRMWrUqKz6xowZk7c3J02alLFnyJAh0aZNm7y9mUk2\nv6fPPvtsbN26tRq2AYCaT8gDqHZfXPJIuuQBAAAAAAAAAAB11ebNmzP2NG7cOC9v3X333Rl7hgwZ\nEh06dMjLexERQ4cOjfbt22fse/HFF+Odd97Jy5uvv/56xp5jjz02L29l65hjjokGDRqk7dm4cWPM\nmjWrmjYCgJpNyAOodtsveQh5AAAAAAAAAABA3ZVNyKNJkyaVfueNN96IOXPmZOzL9vJGtipyGeT2\n22+v9Hvbtm2LGTNmpO1JJBIxaNCgSr9VEc2aNYsDDzwwY9/06dOrYRsAqPmEPIBq98Ulj1IhDwAA\nAAAAAAAAqKu2bNmSsScfIY9srni0atUqjjvuuEq/9XXZBkfGjRsXmzZtqtRb8+fPj61bt6btadmy\nZXTv3r1S7+TioIMOytjjkgcA/K/0968AqoBLHgAAAAAAAACQJ127RmTxt9ND1rp2LfQG1BHr1q2L\nkpLM3x9q1apVpd7ZtGlTPPDAAxn7TjjhhGjUqFGl3ipP3759o0+fPhkDDJ9//nk88MADcfrpp+f8\n1uLFizP29OzZM+f5ldGrV6+MPUuWLKmGTQCg5hPyAKqdSx4AAAAAAAAAkCdNmkRk8cVZgJpm+fLl\nWfV16tSpUu888sgjsXbt2rQ9iUQi64sbuRg1alRcfPHFGfvGjBlTqZBHNiGJrgUKcu21114Ze5Yu\nXVoNmwBAzSfkAVQ7lzwAAAAAAAAAAKBuyzbk0bFjx0q9M3bs2Iw9bdq0ifr165xY274AACAASURB\nVMfUqVMr9VYqXbp0yapv+vTpMW3atDjggANyeuejjz7K2NOhQ4ecZldWNu+uWLGiGjYBgJpPyAOo\ndtsveZQmSwu7CAAAAAAAAAAAUBDLli3Lqq8ylzwWLlwYL774Ysa+VatWxSGHHJLzO/k0ZsyYrIIp\n5dmwYUPGnnbt2uU0u7KyeXfjxo3VsAkA1Hz1Cr0AUPd8ccmj1CUPAAAAAAAAAACoi+bOnZtV3z77\n7JPzG/fcc0/Ony2UBx98MD7//POcPrtp06aMPU2bNs1pdmU1btw4Y082+wNAXSDkAVS77Zc8SpJC\nHgAAAAAAAAAAUBfNnj07Y08ikYh99903p/mlpaVx77335vTZQtq0aVP89a9/zfmzmWQTtqgK2bxb\nXFxcDZsAQM0n5AFUO5c8AAAAAAAAAACgbssm5NGuXbvYZZddcpo/adKkWLZsWU6fLbTbb7+9ymaX\nlpZW2ex0tm3blrGnYcOG1bAJANR8Qh5AtXPJAwAAAAAAAAAA6q4lS5bE4sWLM/b1798/5zfGjh2b\n82cL7b333ovnn3++wp9r2rRpxp4tW7bkslKlZfNuo0aNqmETAKj5hDyAaueSBwAAAAAAAAAA1F2T\nJk3Kqu/www/Paf6qVavi8ccfz+mzNUUu1zyaNGmSsWfDhg25rFNpa9euzdjTsmXLatgEAGq+BoVe\nAKh7tl/yKE0W5vQfAAAAAAAAAABQOJMnT86qb/DgwTnNv//++2Pbtm0Z+xKJRE7zKyuZTGbsefTR\nR+OTTz6JDh06ZD23VatWGXtWrFiR9bx8+uSTTzL27LzzztWwCQDUfC55ANXui0seSZc8AAAAAAAA\nAACgLlm/fn088cQTGfvatGkT+++/f05v3H333Rl7evToESUlJQX50b1794z7bdu2Le66664K/bp3\n2223jD3Lly+v0Mx8+eijjzL2VCTQAgA7MiEPoNptv+RRUirkAQAAAAAAAAAAdcnDDz8cGzduzNh3\n/PHH53RpY9q0aTF79uyMfaeeemqFZ+fL6aefnlXfnXfeGaWlpVnPzSbk8e6772Y9L5+yeXf33Xev\nhk0AoOZrUOgFaptNmzZFz54948MPPyzz8x988EF07ty5QFvVTmvXro2XXnoppkyZElOnTo3ly5fH\n6tWr47PPPouGDRtGy5YtY/fdd49evXrFgQceGEcffXR84xvfKPTakUwmY9q0aTFlypSYMmVKzJs3\nL1atWhWrV6+O4uLiaNGiRbRt2zZ69uwZvXv3ju9+97sxYMCAqFdPpmo7lzwAAAAAAAAAAKBuyvY6\nxYknnpjT/LFjx2bsqVevXkFDHqNGjYpf/vKXUVxcnLZvyZIl8eSTT8awYcOymtutW7eMPfPnz4/i\n4uJo0KB6vz46d+7cjD1dunSphk0AoOYT8qigP/7xj/8W8MglLVxRc+bMiT59+lT5O1937rnnxi23\n3JLXme+8807ccsstcd9996VMZBcXF8emTZvik08+ienTp8d9990X559/fhx00EFx0UUXxYgRI6o9\nNLFu3bq4995749Zbb4158+al7Fu9enWsXr065s2bF48//nj89re/jfbt28fZZ58d5557buyyyy7V\nuHXN5JIHAAAAAAAAAADUPc8//3y8+uqrGfs6deoUgwcPrvD8zZs3x4MPPpixb9CgQQW9GtGhQ4c4\n+uij47HHHsvYO2bMmKxDHnvuuWe0bNky1q5dm7Jny5YtMW3atDj44IOz3jcfpkyZkrGnZ8+e1bAJ\nANR8TgtUwMyZM+Oaa64pyNszZswoyLv5DLBs3LgxfvrTn0avXr3i9ttvz+rk3te9/vrrcdJJJ8UB\nBxwQr7/+et52y+TRRx+Nbt26xU9/+tO0AY9UVq5cGVdddVXsvffecdNNN1XohN6OyCUPAAAAAAAA\nAACoe6644oqs+s4666ycvrv2yCOPxJo1azL2nXbaaRWenW9nnHFGVn1PP/10LFq0KKveRCIR/fr1\ny9j3/PPPZzUvXxYsWBDLli1L25Pt7gBQFwh5ZGnDhg1x0kknxZYtWwryfqFCHvkye/bs6NevX96u\ngsyYMSMGDBgQf/jDH/IyL5WtW7fGqFGj4vjjj48VK1ZUet769evjoosuiiOOOCJWrVqVhw1rp+2X\nPEqTdTvsAgAAAAAAAAAAdcWECRPipZdeytjXqFGj+PGPf5zTG2PHjs3Y06xZsxgxYkRO8/Np6NCh\nseuuu2bsSyaTcccdd2Q9d+DAgRl7Jk6cmPW8fPjb3/6Wsadt27bRrVu3atgGAGo+IY8slJSUxMiR\nI+O9994r2A61OeQxbdq0OOyww2L+/Pl5nVtaWhr/9V//FWeeeWZe5263adOmOPbYY2PcuHF5n/3i\niy/GQQcdFEuWLMn77Nrgi0sepS55AAAAAAAAAADAjm7lypVx3nnnZdVbVFQUHTt2rPAbixYtihde\neCFj33HHHRfNmzev8Px8q1evXvzwhz/Mqvfuu++OrVu3ZtU7dOjQjD3Tp0+Pd955J6t5+XD//fdn\n7DnssMOqfhEAqCWEPLJwzjnnxBNPPFHQHWbOnFnQ93M1c+bMOPLII+Ozzz7Lqj+RSHzxI1tjx46N\nCy+8MNcVy1VcXBzDhg2LSZMmZdX/1b2z3X3RokVx5JFHxsqVKyuzaq20/ZJHSVLIAwAAAAAAAAAA\ndmTFxcVxyimnxKpVqzL2Nm7cOK644oqc3rn77ruz6jvttNNyml8VTj/99Ky+b/bpp59mdQ0jIuJb\n3/pWtGvXLmPfDTfckNW8ypo0aVLMnTs3Y9/RRx9dDdsAQO0g5JFGMpmMCy64IO66666C7rFs2bKs\n/oBb06xduza+//3vx9q1a9P27bXXXnHllVfGK6+8Ep9++mls27Yt1qxZE9OnT4/rr78++vTpk/Gt\nm2++OcaPH5+v1eP//J//E88991zanqZNm8aPfvSjeOyxx2Lx4sWxefPm2LRpUyxcuDAeeuihOOGE\nE6J+/fppZ8ybNy9OOeWUvO1dW7jkAQAAAAAAAAAAdcM555wTkydPzqr37LPPjs6dO1f4jdLS0vjr\nX/+asa9Tp04xZMiQCs+vKl26dMn6gsXtt9+eVV+9evXi1FNPzdh33333xXvvvZfVzFwlk8n45S9/\nmbGvadOmMXz48CrdBQBqEyGPFEpLS+PMM8+MW2+9tdCrxIwZM9LWv35FIp8/KmP06NGxcOHClPWm\nTZvGzTffHPPnz49f/vKXcfDBB0fr1q2jXr16sdNOO8V+++0XF154YcyYMSMmTJgQu+yyS9r3zjnn\nnFi8eHGldo6IeOKJJ+L6669P2zN8+PBYsGBBjB07NoYNGxa77757NGzYMBo1ahR77rlnjBgxIiZM\nmBDvvvtuDB48OO2syZMnZ3xvR+OSBwAAAAAAAAAA7NiKi4vjjDPOiLFjx2bV37lz57j66qtzemvy\n5MmxdOnSjH1FRUWV/l5cvo0ePTqrvpdffjmrixjZzty2bVucc845kUwms5qZizFjxsS0adMy9o0Y\nMSJatmxZZXsAQG0j5FGOdevWxfDhw7M+31bV0oU8hg8fHiUlJVX2409/+lNOOz/11FPxyCOPpKy3\nbds2XnrppTj//POz+kPzCSecENOnT4++ffum7Fm/fn1cfPHFOe273ebNm+O8885L23PFFVfEI488\nEh07dsw4r2vXrjF58uS45JJL0vb95je/iY8//rhCu9ZmLnkAAAAAAAAAAMCO6/3334+BAwdm/R28\nRCIRd9xxRzRv3jyn97IJkiQSiTjttNNyml+Vvv/970erVq2y6h0zZkxWfd/85jfj6KOPztj3wgsv\nxBVXXJHVzIp68803s/o+XyKRyPj9OgCoa4Q8vuaDDz6IAQMGxN///vdCr/KFdCGP/v37V+Mm2Skp\nKYnLLrssZb1Jkybx1FNPVXj33XbbLZ555pno2bNnyp6JEyfGlClTKjT3q26++eb48MMPU9Yvuuii\n+PWvf12hmYlEIn7/+9+n/YPo+vXr41e/+lWF5tZm2y95lCZLC7sIAAAAAAAAAACQNx9//HH87Gc/\ni759+8bUqVOz/tyll14a3/3ud3N6c9WqVfHYY49l7OvTp0/07t07pzeqUuPGjePkk0/OqnfcuHGx\nYcOGrHqvvvrqrP4C5quuuipuv/32rGZm67333ouhQ4fGli1bMvaOGjWqRv5zAYBCEvL4ioceeij6\n9++f9Umz6lLbQh7jx49P+3t47bXXxgEHHJDT7LZt28ajjz4aLVq0SNnz29/+NqfZa9eujWuvvTZl\nff/994/f//73Oc2OiPj9738fQ4cOTVm/7777YtmyZTnPr02+uOSRdMkDAAAAAAAAAABqs3Xr1sVj\njz0WI0aMiD333DP+9Kc/ZfXl/u2OPPLItN/byuT++++Pbdu2ZeyriVc8tjvjjDOy6lu3bl2MHz8+\nq96+ffvG6NGjs+o999xz4+qrr86qN5NXX301Bg4cGCtXrszY27Zt2/jjH/+Yl3cBYEci5BERa9as\niVGjRsVJJ50Un3/+eaHXKWP9+vWxYMGCcmuJRKJGhjz+/Oc/p6z16tUrzj///ErN79atW1x55ZUp\n6//85z9jzpw5FZ47fvz4WLt2bbm1RCIRt9xyS9SrV7n/yfzlL39JeVJw27ZtcdNNN1Vqfm2x/ZJH\nSamQBwAAAAAAAAAAVJVkMlmpz2/dujXWr18fq1evjoULF8bUqVPj8ccfj5tuuil+/OMfx8EHHxxt\n2rSJ4cOHx8SJE7MKW3xV//79Y+LEiVldnEjlnnvuydjToEGDKCoqyvmNqta3b9+svws4ZsyYrOde\nf/31sccee2TsSyaT8etf/zqOOuqonP+i4uLi4rj22mvjsMMOyyrgkUgk4vrrr482bdrk9B4A7Mjq\nfMhj3Lhxsc8++8S4ceMKvUq5Zs2albLWsWPH6NChQzVuk9mMGTPijTfeSFm/7LLLKh2UiIg477zz\n0v7h8+67767wzDvuuCNl7bDDDouDDz64wjO/btddd40LLrggZf2+++6LkpIdP/jgkgcAAAAAAAAA\nAFS9ww8/POrVq5fzjyZNmkTLli2jXbt2sffee8eAAQPiuOOOi4suuij+8pe/xOuvv57z95369OkT\n//znP2OnnXbK+dc3ffr0tN+x2+7II4+scd+1+7psr3nMnDkzpk6dmlVvixYt4oEHHojGjRtn1f/P\nf/4zunXrFhdffHHKv5z66zZs2BB333139OzZM37xi19kHfQ577zzavR1FQAopDob8njttddi4MCB\nMWrUqFixYkXa3nr16sVxxx1XTZuVNWPGjJS1/fbbrxo3yc7YsWNT1tq2bRsnnXRSXt6pX79+nH32\n2Snr//3f/12hf3nI9If9c889t0L7pXP22WdH/fr1y62tXLkynnrqqby9VVO55AEAAAAAAAAAAHXX\noEGD4qWXXop27dpVak6676t9VW0IExQVFUXTpk2z6q3INY8BAwZk/fsUEbF58+a48cYbo3v37nHA\nAQfEJZdcEvfee29MmjQppkyZEs8//3w88sgjce2118awYcOiY8eOccYZZ2QdComIGDp0aNx0001Z\n9wNAXdOg0AtUt7feeit+/etfx5NPPplVf9OmTeOuu+6KXXfdNR599NEq3u7fpQt5ZHuerTr9z//8\nT8rascceGw0bNszbWyeeeGL84he/KLe2YsWKePnll2PQoEFZzZo4cWLKWvPmzePoo4/Oacfy7LHH\nHnHIIYfEyy+/XG79kUceiWOOOSZv79VELnkAAAAAAAAAAEDdU69evfjZz34Wv/vd71L+RbnZ2rx5\nczzwwAMZ+1q2bBnDhw+v1FvVoWXLljFixIgYN25cxt6HH344brzxxmjTpk1Ws4uKimLDhg1xzjnn\nRGlpaVafSSaT8eabb8abb76ZVX+2hg0bFg8++GAkEom8zgWAHUmdu+QxfPjwrAMee++9d7z66qsx\ncuTISCaTVbxZ+WpTyGP27Nnx0Ucfpaz/53/+Z17f69KlS/Ts2TNlPdt/zhH/e2YulSFDhmR9ri5b\nw4YNS1lzyQMAAAAAAAAAANjR7LPPPvH000/HH//4x0oHPCL+9y/TXbNmTca+ESNG5P37X1XljDPO\nyKpv8+bNce+991Zo9plnnhnjx4+PJk2a5LBZ5SUSifjJT34Sjz76aNYXSwCgrqpzIY9sJBKJOPPM\nM2PGjBnRp0+fgu1RUlISc+bMKbeWSCRqXMjjX//6V8paIpGI73znO3l/c+DAgSlrTz/9dFYz1q5d\nmzZMk+6NXKWbuWLFinjrrbfy/mZNsv2SR2kyu1Q4AAAAAAAAAABQO+2xxx5x8803x+zZs+OII47I\n29y77747q75TTz01b29Wte985zvRrVu3rHpvv/32Cs8/8cQT45VXXom99967wp+tjHbt2sV9990X\nt956qwseAJAFIY+v6datW0yePDnuuOOOaNasWUF3ef/992Pz5s3l1lq3bh2dO3eu5o3Smzp1aspa\n9+7do3Xr1nl/86CDDkpZe/vtt2Pjxo0ZZ7zxxhtpL7UccsghOe2WTr9+/aJhw4Yp66+99lre36xJ\nvrjkkXTJAwAAAAAAAAAAdjT169ePI488Mu6///5YuHBhnH/++dGgQYO8zV+0aFE8//zzGfv23HPP\nGDRoUN7erQ6jR4/Oqm/+/PnxzDPPVHh+v3794q233oqLL744r/9MypNIJGLkyJHx9ttvx8knn1yl\nbwHAjkTI4//baaed4qqrrorZs2fH4MGDC71ORETa6xL77bdfNW6SnXTXJ6pq33RzS0pK4s0338w4\nI93e9erVi759++a0WzqNGzeOnj17pqxPmzYt72/WJNsveZSUCnkAAAAAAAAAAEBtl0gkomPHjnHC\nCSfE2LFjY+nSpTFp0qQoKiqK+vXr5/29e+65J6u+U045Je9vV7VRo0ZlHb4YM2ZMTm80b948/vCH\nP8SsWbPi1FNPTfsXFueiQYMGMXLkyJg5c2aMHz8+2rVrl9f5ALCjq9oYZi3QsGHD+OEPfxhXXnll\ndOjQodDrlJEu5NG/f/9q3CSz4uLieP/991PWe/ToUSXvdu3aNW19xowZ8e1vfzttz9y5c1PWOnfu\nHE2aNMlpt0y6desWs2bNKreW7p/9jsAlDwAAAAAAAAAAyF0ikSjzn1WpQYMG0ahRo2jcuHG0atUq\n2rVrF+3bt4/OnTtH165do3v37rHffvvFbrvtVuW7bNe5c+e44oorMvb96Ec/qvpl8qxDhw4xZsyY\nWLZsWcbehg0bRjKZzPm/Bz169Ii//vWvcc0118S4cePioYceyvm7a4lEIvr37x/f//73Y+TIkbHn\nnnvmNAcAqMMhj4YNG0ZRUVH86le/ii5duhR6nXLVppDHBx98EMXFxSnrVRXyaNGiRXTs2DE+/vjj\nlHtlMm/evJS1qto74n9DHqlks3dttv2SR2mytFL/kgEAAAAAAAAAAHXRoEGDorS0tNBrFMwZZ5xR\n6BWq1OjRo6v1vd122y1+/vOfx89//vNYvnx5TJkyJV577bWYN29eLFq0KFasWBEbNmyIzZs3R5Mm\nTWLnnXeOnXfeOTp37hx9+/aNfv36xYABA2KPPfao1r0BYEdV50IeHTp0iJEjR8a5554bu+++e6HX\nSWvmzJnl/vz2xOtXlZSUxGuvvRZTpkyJV155JRYsWBCffvpprFq1KhKJRLRo0SL22GOP6NatWxxy\nyCFxxBFHRO/evfO266JFi9LWq/IPb7vuumvKkMfChQszfj7d7lW9dyqfffZZrFu3Llq0aFFl7xdS\n/a/8+2VpsjTqJ/J/khEAAAAAAAAAAICK6dSpU4wYMSJGjBhR6FUAoM6qcyGPqVOn1oqrAR9//HGs\nWLGi3NpOO+30xRWIhQsXxtixY+Pee++N5cuXp5y3atWqWLVqVcyYMSMefvjhiIjYZ5994qyzzoqz\nzjormjdvXql9ly5dmrKWSCSiU6dOlZqfTseOHVPWPvzww7SfLS4ujk8++SRlvVB7R0QsXrw49t13\n3yp7v5C2X/KI+P8hjxDyAAAAAAAAAAAAAACoV+gFqlttCHhERMyYMSNlrW/fvvHJJ5/EWWedFd27\nd49rr702bcAjlffeey8uvvji2GuvveKuu+6KZDKZ+UMppLqksV1VhiU6dOiQsrZq1aq0n125cmXa\ns4WF2juZTGbcvTb76iWPkmRJ4RYBAAAAAAAAAAAAAKhB6lzIo7ZIF/JYunRp7L333nHXXXelDShk\n69NPP42zzjorhgwZkvaqRTrpAgmNGzeOxo0b57peRq1atUpZ++yzz9J+NlOQonXr1jntlI10e0dk\n3r02++olj5JSIQ8AAAAAAAAAAAAAgAghjxorXcjjgw8+iA0bNuT9zeeeey7233//mD17doU/my6Q\n0LJly8qsldFOO+2UsrZu3bq0QZhMQYqq3D3d3hE7eMjjK/9Idrp2p5j58czCLQMAAAAAAAAAAAAA\nUEMIedRQM2fm/qX3RCJR5kdFfPTRRzFw4MCYPn16hT63fv36lLUWLVpUaFZFZZq/du3alLV0e2cz\nuzIyzV6zZk2VvV1oX73kERHR745+8a/F/yrMMgAAAAAAAAAAAAAANYSQRw20adOmmDdvXtb9DRo0\niCOPPDJuueWWePXVV2PFihWxZcuWWLt2bcyfPz9efvnluOaaa2LQoEFRv379jPPWrFkTRx11VCxY\nsCDrHTZu3Jiy1rRp06zn5KJJkyZp69u2bUtZS7d3RNXuXpm9a7v65RxXGXTvoOpfBAAAAAAAAAAA\nAACgBhHyqIFmzZoVpaXlfAv+a+rVqxejRo2Kd999NyZNmhTnnntufOtb34q2bdtGgwYNonnz5rHX\nXnvFgAED4uc//3k8//zzMXfu3PjBD36Q8cLHypUr44QTToitW7dmtfOWLVtS1ho0aJDVjFxlmp/u\n15Bu72xmV0Zl9q7tvn7JY7sla5ZU7yIAAAAAAAAAAAAAADWIkEcNNGPGjIw9u+66azz77LNxzz33\nRJcuXbKe3b1793jwwQfjH//4R7Rs2TLjHpdffnlWc0tKSlLWCh3ySHcRI93e2cyujMrsXduVd8kj\nIuKRdx6p3kUAAAAAAAAAAAAAAGoQIY8aKFPIo1evXvHGG2/EoEGDcn7ju9/9bkydOjV22223tH03\n3nhjLFiwIOO8dJdHqjrkUb9+/bT14uLilLV0eycSiSrdvTJ713apLnkUl+64v2YAAAAAAAAAAAAA\ngEyEPGqgDz/8MBKJRCQSiX+rde7cOSZPnhydOnWq9Ds9evSIhx9+OBo2bJiyZ+vWrXHddddlnJUu\nDJHpWkZlZQpD1KuX+r/mmUIcVbl7Zfau7VJd8nj5w5erdxEAAAAAAAAAAAAAgBqkak8skJMnn3wy\nNmzYEAsXLoxFixbFBx98EAsXLowPPvggLrvssujYsWPe3jr44IPjuuuui4svvjhlz/333x+/+93v\nok2bNil7GjVqlLJW1RcpMgUx0gU50u2dTCardPfK7F3bpbrkMXXp1OpdBAAAAAAAAAAAAACgBtlx\nv0VeyzVv3jx69+4dvXv3rvK3zjvvvLjhhhti2bJl5da3bNkSjz76aJx++ukpZ6QLSxT6kke63dLV\nIgp7ySPTbrVZqkseAAAAAAAAAAAAAAB1Wb1CL0DhNWzYMC655JK0PU888UTaeuPGjVPWNm/enNNe\n2co0v3nz5ilr6fbOZnZlVGbv2i7VJQ8AAAAAAAAAAAAAgLrMJQ8iIuIHP/hBXHjhhSnrr7zyStrP\nt2rVKmVt3bp1Oe+VjUzz04Ul0u2dzezKqMzehbZ69epYuXJlzp9fUxIRG/7950uTpSnntm/fPuf3\nAAAAAAAAAAAAAKAy33/NxerVq6v1PXYMQh5ERESnTp2iW7duMW/evHLrK1eujE8++SQ6dOhQbr1t\n27YpZxcy5NGiRYuoVy/1wZp0e2eaXVmZZrdp06bK3q6sgQMHVm7A1oj4w7//9MpYGbv8ZpdyP5JM\nOv8BAAAAAAAAAAAAQO522aX876lCTZL62+/UOYceemjKWjKZjEWLFqWspwtLbNiwIUpKSiq1Wzqf\nf/55ylqmEEemerrZlZVpdqbdAAAAAAAAAAAAAADYsQh58IWOHTumrac7T5Qp1bZixYqcdsrGJ598\nkrKW6dfUunXraNAg9UGbdLMrK93sRCKRcXcAAAAAAAAAAAAAAHYsQh58IdPliI0bN6asdenSJWUt\nmUzGxx9/nPNemaSbvfvuu6f9bCKRiG984xs5za6sTLMz7Q4AAAAAAAAAAAAAwI4l9QkD6pyWLVum\nrZeWlqas7bXXXmk/u2TJkthvv/1y2iuTpUuXpqylC3Bs16VLl5g/f36FZ1dWutnt2rWLpk2bVtnb\nlfWvf/0revToUX4xw1WXL9ouLf/nV1xadVdfAAAAAAAAAAAAAKi7Vqyo3u+pvvvuuzFw4MBqfZPa\nT8iDL6xZsyZtvVmzZilrnTp1iqZNm8amTZvKrc+bN69Su6Wydu3aWLlyZcp69+7dM87o2rVrytr7\n77+f017ZSPd7ks3ehdSmTZto3759pWYkmkYky7klVNm5AAAAAAAAAAAAAFCe6v6eanWHStgxlPMV\na+qq1atXp623bds2bb13794pa1UVlsgUHunVq1fGGen2XrhwYYV3yla63bPZu7arnyz0BgAAAAAA\nAAAAAAAANYuQRy3w+eefx7x582LJkiVV+k66pFgikYjOnTun/fwBBxyQsjZjxoyc90rnzTffTFmr\nX79+9O3bN+OMdHtv3rw53nnnnZx2S2fTpk3x7rvvpqzvt99+eX+zpqlfWugNAAAAAAAAAAAAAABq\nFiGPGuSzzz6Lk08+OYYMGRL9+vWL3XbbLRo1ahRt2rSJffbZJy644IIqfX/q1Kkpay1atKhUyGPW\nrFmxbdu2nHdL5fXXX09Z69WrVzRt2jTjjN69e0ejRo3KrSWTybRv5OrNn/bKGAAAIABJREFUN9+M\nkpKSlPVvfetbeX+zpnHJAwAAAAAAAAAAAACgLCGPGmSnnXaKCRMmxLPPPhuzZs2K5cuXR3Fx8Rf1\nqggbbPfpp5/G22+/nbLev3//jDMGDRqUsrZly5Z49dVXc9otnRdffDGnfb6qcePGaUMV6d7IVbqZ\nrVq1in79+uX9zZrGJQ8AAAAAAAAAAAAAgLKEPGqQhg0bRrdu3VLWly9fHu+//36VvP3000+nrQ8Z\nMiTjjL322iu6d++esv7EE09UeK903n///Zg/f37K+ve+972sZw0dOjRl7R//+EeF9spGut+LbH6v\ndwQueQAAAAAAAAAAAAAAlCXkUcMccsghaevjxo2rkndvuOGGlLVEIhHHHntsVnOOOuqolLWHHnoo\nksn8fbP/gQceSFlr2bJlHHHEEVnPSrf3ihUr4tlnn63QbuksWrQoXnvttZT14447Lm9v1WQueQAA\nAAAAAAAAAAAAlCXkUcP8x3/8R9r6fffdFyUlJXl985lnnom33norZf2AAw6IXr16ZTVr5MiRKWsf\nfvhh/P3vf6/wfuXZunVr3HnnnSnrRUVF0ahRo6zn9enTJ775zW+mrP/5z3+u0H7p3HbbbSnDLm3a\ntInjjz8+b2/VZC55AAAAAAAAAAAAAACUJeRRwxx99NHRpEmTlPUlS5bErbfemrf31q1bFz/5yU/S\n9lxwwQVZzzvwwAOjd+/eKeu/+MUv8hJSufnmm2P58uXl1hKJRJx11lkVnjl69OiUtcceeyxeffXV\nCs/8ug8//DBtYOSUU06Jxo0bV/qd2sAlDwAAAAAAAAAAAACAsoQ8apgWLVrEySefnLbniiuuiGXL\nluXlvbPOOivmz5+fst69e/coKiqq0MxzzjknZW3u3Llx5ZVXVmje173zzjvxm9/8JmX94IMPjn79\n+lV47mmnnRbNmjUrt5ZMJuOMM86IjRs3VnjudqWlpTF69OjYvHlzufX69evH2WefnfP82sYlDwAA\nAAAAAAAAAACAsoQ8aqBLL700GjRokLK+Zs2aOOqoo2Lt2rU5v5FMJuPCCy+MCRMmpOxJJBJx0003\nRSKRqNDs0aNHR+fOnVPWr7766njkkUcqNHO7lStXxnHHHZcybJFIJOK6667LaXbbtm3j/PPPT1l/\n55134pRTTonS0txOUFxyySXx7LPPpqyfdtpp0aNHj5xm10YueQAAAAAAAAAAAAAAlCXkUQN17949\nfvzjH6ftmT17dhx55JGxePHiCs/fuHFjFBUVxc0335y2r6ioKL73ve9VeH7Dhg3j8ssvT1lPJpNx\n8sknx4MPPlihuUuXLo0jjjgi5s2bl7Jn2LBh8Z3vfKdCc7/qsssui5133jll/dFHH42RI0fGli1b\nsp6ZTCbjkksuiZtuuillT7NmzeKqq66q0K61nUseAAAAAAAAAAAAAABlCXnUUNdee23stddeaXum\nTZsW/fv3jzvvvDO2bduW1dwHH3wwevTokfaCR0REt27d4vbbb89636/70Y9+FIcffnjK+tatW+Pk\nk0+O8847L6uLJA8//HDsv//+MWfOnJQ9O++8c9x444057btd69at04Yxtu9y8MEHx/Tp0zPOW7Bg\nQQwZMiRuuOGGtH1XXnll7LrrrhXatbZzyQMAAAAAAAAAAAAAoCwhjxpqp512ir/97W/RrFmztH2f\nffZZnH322dG1a9e49NJL4+mnn47FixfHxo0bY8OGDTF//vx49tln45JLLomuXbtGUVFRLF26NO3M\n9u3bx5NPPhnNmzev1K/h3nvvTXsVI5lMxm233RZ77rlnXHjhhfHss8/GypUro7i4ONavXx+zZs2K\nW265Jfr37x8nnnhirFy5MuWsRCIRd911V8ZgTDZGjRoVw4cPT9szc+bMOPDAA+OYY46J8ePHx8KF\nC2Pz5s2xdevWWLJkSUycODGKioqiR48e8dxzz6WdNWzYsLjooosqvXdt45IHAAAAAAAAAAAAAEBZ\niWQy6avWWXjhhRdi8ODB5dYSiUQsWrQoOnfunPd3n3rqqTj++ONjy5YteZ9dntatW8fTTz8dBxxw\nQF7mPffcczF06NCsL43k6tJLL43f/e53eZu3fv36GDhwYMyYMSNvM8vTo0ePeOWVV6JVq1ZV+k5F\nzJ07N/bdd9+0PXPmzIlevXqVX0wksnpn33Mi5nb4959PXu7/kgAAAAAAAAAAAACo/Sr9vVzqJJc8\narihQ4fGk08+WS0hgD322CNeeumlvAU8IiIGDx4cDz74YDRu3DhvM78u3wGPiP+9pPLUU09Fnz59\n8jr3q/bdd9948cUXa1TAozq55AEAAAAAAAAAAAAAUJaQRy0wePDgeP3112P//fevsjeOO+64ePPN\nN+Ob3/xm3mcPHz48Jk+eHJ06dcrr3IYNG8Z1112X94DHdh06dIh//etfcdRRR+V99uDBg+OFF16I\n9u3b5312bVG/tNAbAAAAAAAAAAAAAADULEIeeZBMVv1Jgr333jtee+21uPHGG6Ndu3Z5m9utW7eY\nMGFCTJw4Mdq2bZu3uV/37W9/O2bPnh1FRUWRSCQqPa93797x2muvxWWXXZaH7VJr2bJlPPHEE3Hb\nbbdFmzZtKj2vefPmccstt8QzzzyTl3m1mUseAAAAAAAAAAAAAABlCXlkaXswIZFIlPnx1VpVq1ev\nXvz0pz+NRYsWxS233BL9+vXLec7hhx8e48ePj3feeSdOOOGEPG9avjZt2sT9998f06dPj6KiomjS\npEmFPp9IJOLQQw+NCRMmxFtvvZXzrz8XZ599dixcuDCuvPLK6Ny5c4U/37Fjx7j88stjwYIFce65\n51bBhrWPSx4AAAAAAAAAAAAAAGUlktVxhoIq8+GHH8akSZNi2rRp8fbbb8fSpUtj9erVsWnTpkgk\nEtG8efNo3bp1dO3aNfbZZ5849NBDY/DgwdG+fftCrx5r1qyJZ555Jl588cWYM2dOLFy4MD7//PPY\nuHFjNGvWLNq0aRNt27aNfffdN7797W/HoEGDYu+99y702pFMJmPq1Knx3HPPxRtvvBHz58+Pjz/+\nONavXx/16tWL1q1bR5s2beIb3/hGDBgwIA499NAYMGBANGjQoNCrZ2Xu3Lmx7777pu2ZM2dO9OrV\nq/xilqGnQ0+PeKWcvEzycv+XBAAAAAAAAAAAAEDtV+nv5VInCXkAZVRXyGPgDyNe+sa//7yQBwAA\nAAAAAAAAAAA7AiEPclGv0AsAdVN9WQ4AAAAAAAAAAAAAgDKEPICCqF9a6A0AAAAAAAAAAAAAAGoW\nIQ+gIFzyAAAAAAAAAAAAAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLyAArCJQ8AAAAAAAAAAAAAgLKE\nPICCcMkDAAAAAAAAAAAAAKAsIQ+gIFzyAAAAAAAAAAAAAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLy\nAArCJQ8AAAAAAAAAAAAAgLKEPICCcMkDAAAAAAAAAAAAAKAsIQ+gIFzyAAAAAAAAAAAAAAAoS8gD\nKAiXPAAAAAAAAAAAAAAAyhLyAArCJQ8AAAAAAAAAAAAAgLKEPICCcMkDAAAAAAAAAAAAAKAsIQ+g\nIFzyAAAAAAAAAAAAAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLyAArCJQ8AAAAAAAAAAAAAgLKEPICC\ncMkDAAAAAAAAAAAAAKAsIQ+gIFzyAAAAAAAAAAAAAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLyAArC\nJQ8AAAAAAAAAAAAAgLKEPICCcMkDAAAAAAAAAAAAAKAsIQ+gIFzyAAAAAAAAAAAAAAAoS8gDKAiX\nPAAAAAAAAAAAAAAAyhLyAArCJQ8AAAAAAAAAAAAAgLKEPICCcMkDAAAAAAAAAAAAAKAsIQ+gIFzy\nAAAAAAAAAAAAAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLyAArCJQ8AAAAAAAAAAAAAgLKEPICCcMkD\nAAAAAAAAAAAAAKAsIQ+gIFzyAAAAAAAAAAAAAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLyAArCJQ8A\nAAAAAAAAAAAAgLKEPICCcMkDAAAAAAAAAAAAAKAsIQ+gIFzyAAAAAAAAAAAAAAAoS8gDKAiXPAAA\nAAAAAAAAAAAAyhLyAArCJQ8AAAAAAAAAAAAAgLKEPICCcMkDAAAAAAAAAAAAAKAsIQ+gIFzyAAAA\nAAAAAAAAAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLyAArCJQ8AAAAAAAAAAAAAgLKEPICCcMkDAAAA\nAAAAAAAAAKAsIQ+gIFzyAAAAAAAAAAAAAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLyAArCJQ8AAAAA\nAAAAAAAAgLKEPICCcMkDAAAAAAAAAAAAAKAsIQ+gIFzyAAAAAAAAAAAAAAAoS8gDKAiXPAAAAAAA\nAAAAAAAAyhLyAArCJQ8AAAAAAAAAAAAAgLKEPICCcMkDAAAAAAAAAAAAAKAsIQ+gIFzyAAAAAAAA\nAAAAAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLyAArCJQ8AAAAAAAAAAAAAgLKEPICCcMkDAAAAAAAA\nAAAAAKAsIQ+gIFzyAAAAAAAAAAAAAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLyAArCJQ8AAAAAAAAA\nAAAAgLKEPICCcMkDAAAAAAAAAAAAAKAsIQ+gIFzyAAAAAAAAAAAAAAAoS8gDKAiXPAAAAAAAAAAA\nAAAAyhLyAArCJQ8AAAAAAAAAAAAAgLKEPICCcMkDAAAAAAAAAAAAAKAsIQ+gIFzyAAAAAAAAAAAA\nAAAoS8gDKAiXPAAAAAAAAAAAAAAAyhLyAAqiXkSEax4AAAAAAAAAAAAAAF8Q8gAKxjUPAAAAAAAA\nAAAAAIAvCXkABVPfJQ8AAAAAAAAAAAAAgC8IeQAF45IHAAAAAAAAAAAAAMCXhDyAgnHJAwAAAAAA\nAAAAAADgS0IeQMG45AEAAAAAAAAAAAAA8CUhD6BgXPIAAAAAAAAAAAAAAPiSkAdQMC55AAAAAAAA\nAAAAAAB8ScgDKBiXPAAAAAAAAAAAAAAAviTkARRMeZc8kknJDwAAAAAAAAAAAACgbhLyAAqmvEse\npclykh8AAAAAAAAAAAAAAHWAkAdQMOVd8hDyAAAAAAAAAAAAAADqKiEPoGBc8gAAAAAAAAAAAAAA\n+JKQB1AwLnkAAAAAAAAAAAAAAHxJyAMomPIueTS7plkkfpOIa1+6tvoXAgAAAAAAAAAAAAAoICEP\noGDKu+Sx3f997v/GH6b8ofqWAQAAAAAAAAAAAAAoMCEPoGDKu+TxVZc9c1n1LAIAAAAAAAAAAAAA\nUAMIeQAFk+6Sx3ZvLHuj6hcBAAAAAAAAAAAAAKgBhDyAgsl0ySMiYvLCyVW/CAAAAAAAAAAAAABA\nDSDkARRMNpc8AAAAAAAAAAAAAADqCiEPoGCyueQBAAAAAAAAAAAAAFBXCHkABeOSBwAAAAAAAAAA\nAADAl4Q8gIJxyQMAAAAAAAAAAAAA4EtCHkDBuOQBAAAAAAAAAAAAAPAlIQ+gYFzyAAAAAAAAAAAA\nAAD4kpAHUDDZXPLYWrK16hcBAAAAAAAAAAAAAKgBhDyAgsnmksfDbz9c9YsAAAAAAAAAAAAAANQA\nQh5AwWRzyWPx54urfhEAAAAAAAAAAAAAgBpAyAMomGwueQAAAAAAAAAAAPD/2LvTKCnLc23YVzVD\nM4gKxDFqQMRAGDWKiokajIomuCWGV0WWbJfBBeLwSdAsP+MAmJjtEOVDUXcUFSXObt1RUVETNURB\nURANhqFBxEggiAwyNHTX9yOvaWy7qofq6qeaPo61XEnX9Tz3fTZZ8qvOXABAU6HkASSmJps8AAAA\nAAAAAAAAAACaCiUPIDE2eQAAAAAAAAAAAAAAVFDyABJjkwcAAAAAAAAAAAAAQAUlDyAxNnkAAAAA\nAAAAAAAAAFRQ8gASY5MHAAAAAAAAAAAAAEAFJQ8gMTZ5AAAAAAAAAAAAAABUUPIAEmOTBwAAAAAA\nAAAAAABABSUPIDE2eQAAAAAAAAAAAAAAVFDyABJjkwcAAAAAAAAAAAAAQAUlDyAxNnkAAAAAAAAA\nAAAAAFRQ8gASY5MHAAAAAAAAAAAAAEAFJQ8gMTZ5AAAAAAAAAAAAAABUUPIAEmOTBwAAAAAAAAAA\nAABABSUPIDE2eQAAAAAAAAAAAAAAVFDyABJjkwcAAAAAAAAAAAAAQAUlDyAxNnkAAAAAAAAAAAAA\nAFRQ8gASY5MHAAAAAAAAAAAAAEAFJQ8gMTZ5AAAAAAAAAAAAAABUUPIAEmOTBwAAAAAAAAAAAABA\nBSUPIDE2eQAAAAAAAAAAAAAAVFDyABJjkwcAAAAAAAAAAAAAQAUlDyAxNnkAAAAAAAAAAAAAAFRQ\n8gAS09wmDwAAAAAAAAAAAACAf1PyABLTTMkDAAAAAAAAAAAAAODflDyAxDRLJ50AAAAAAAAAAAAA\nAKBwKHkAibHJAwAAAAAAAAAAAACggpIHkBibPAAAAAAAAAAAAAAAKih5AImxyQMAAAAAAAAAAAAA\noIKSB5AYmzwAAAAAAAAAAAAAACooeQCJsckDAAAAAAAAAAAAAKCCkgeQGJs8AAAAAAAAAAAAAAAq\nKHkAibHJAwAAAAAAAAAAAACggpIHkBibPAAAAAAAAAAAAAAAKih5AImxyQMAAAAAAAAAAAAAoIKS\nB5AYmzwAAAAAAAAAAAAAACooeQCJsckDAAAAAAAAAAAAAKCCkgeQGJs8AAAAAAAAAAAAAAAqKHkA\nibHJAwAAAAAAAAAAAACggpIHkBibPAAAAAAAAAAAAAAAKih5AImxyQMAAAAAAAAAAAAAoIKSB5AY\nmzwAAAAAAAAAAAAAACooeQCJsckDAAAAAAAAAAAAAKCCkgeQGJs8AAAAAAAAAAAAAAAqKHkAibHJ\nAwAAAAAAAAAAAACggpIHkBibPAAAAAAAAAAAAAAAKih5AImpySaPL7Z9Ebe8cUv+wwAAAAAAAAAA\nAAAAJEzJA0hMTTd5jHlxTKTGpeJv//xbfgMBAAAAAAAAAAAAACRIyQNITE02eeyo2+3dYlvZtvyE\nAQAAAAAAAAAAAABImJIHkJiabvLY0QPvPVD/QQAAAAAAAAAAAAAACoCSB5CY2m7yiIi49c1b6z8I\nAAAAAAAAAAAAAEABUPIAElOXTR4r1q+o/yAAAAAAAAAAAAAAAAVAyQNITF02eQAAAAAAAAAAAAAA\n7KyUPIDE1GWTBwAAAAAAAAAAAADAzkrJA0iMTR4AAAAAAAAAAAAAABWUPIDE2OQBAAAAAAAAAAAA\nAFBByQNIjE0eAAAAAAAAAAAAAAAVlDyAxBRFRNjmAQAAAAAAAAAAAAAQEUoeQMJs8wAAAAAAAAAA\nAAAA+BclDyBRzWzyAAAAAAAAAAAAAACICCUPIGE2eQAAAAAAAAAAAAAA/IuSB5CoSdMjwjYPAAAA\nAAAAAAAAAAAlDyBZ570bkR4X0X5T0kkAAAAAAAAAAAAAAJKl5AEUhM9uqNlza7eszW8QAAAAAAAA\nAAAAAICEKHkABaPt1qQTAAAAAAAAAAAAAAAkR8kDKBhnfJB0AgAAAAAAAAAAAACA5Ch5AAWj/eak\nEwAAAAAAAAAAAAAAJEfJAygYvf+RdAIAAAAAAAAAAAAAgOQoeQAF48QlSScAAAAAAAAAAAAAAEiO\nkgcAAAAAAAAAAAAAAEABUPIAGp3NmzdHOp1OOgYAAAAAAAAAAAAAQL1qnnQAgNpq06ZNFBUVxUEH\nHRT9+vWLI444Ivr16xd9+vSJ4uLipOMBAAAAAAAAAAAAANSJkgfQKJWXl8fChQtj4cKF8eCDD0ZE\nRMuWLePEE0+MCy64IE466aQoKrKsCAAAAAAAAAAAAABoPHwDGigYe3+R2/ulpaXxzDPPxCmnnBJd\nu3aNm266KdasWVM/4QAAAAAAAAAAAAAA8kzJA9gplZSUxGWXXRb77bdfXH311bF58+akIwEAAAAA\nAAAAAAAAZKXkATQ6iyNiVkRMjojhEdE9IlIZnt2yZUtMmDAhevbsGc8//3xDRQQAAAAAAAAAAAAA\nqDUlD6DR6RIR/SJiVETcFxF/jYi1EfHfEdEnwzslJSVx8sknx5AhQ+LTTz9tkJwAAAAAAAAAAAAA\nALWh5AHsFHaLiBER8W5EzIyIoRHRrIrnHn/88ejbt2+88sorDRkPAAAAAAAAAAAAAKBaSh7ATiUV\nEf0jYlpEvPN//3tlq1atihNOOCHuuOOOBs0GAAAAAAAAAAAAAJBN86QDNDabN2+O7t27x/Lly7/y\n+bJly+KAAw5IKFXjtH79+nj99ddj5syZ8eabb8ann34an332WaxduzZatGgRu+66a+y3337Ro0eP\nOPzww+NHP/pRdOrUKenYkU6n4+23346ZM2fGzJkzY9GiRbFmzZr47LPPYvv27dGuXbvo2LFjdO/e\nPXr16hUnnXRS9O/fP4qKdKoaWu+IeD0i7o2IyyPisx1m5eXlceGFF8a3v/3tGDBgQCL5AAAAAAAA\nAAAAAAB2lEqn0+mkQzQmEyZMiGuuueYrn6VSqVi6dGnBlzzKy8vjhBNOiD/+8Y9fmw0fPjzuvffe\nBsmxYMGCmDRpUkydOjU2bdpUq3f79esXY8aMiZ/+9KcNXprYsGFD3HfffXHbbbfFokWLavXuHnvs\nESNHjozRo0fHnnvumaeE9eODDz6Inj17Zn3m/fffjx49elQ9TKVyuj91bfXPpGvwTGX/jIhzI+KZ\nSp/vscceMW/evNhnn31qfygAAAAAAAAAAAAAZJDz93JpkqwWqIV58+bFr3/966Rj1NmNN95YZcEj\n4l9FlXzbtGlTXHLJJdGjR4+48847a13wiIiYPXt2nHnmmXHYYYfF7Nmz85Cyak899VR07do1Lrnk\nkloXPCIiVq9eHRMmTIiDDjoobr311igvL89DSrL5RkQ8HRG/qPT56tWr45JLLkkgEQAAAAAAAAAA\nAADAVyl51NAXX3wRZ555ZmzdujXpKHXy9ttvx1VXXZXY/fPnz4++ffvGpEmT6uW8uXPnRv/+/ePG\nG2+sl/MyKS0tjeHDh8dPfvKTWLVqVc7nbdy4McaMGRPHH398rFmzph4SUhtFEfHriPhxpc8fe+yx\neP755xNIBAAAAAAAAAAAAABQQcmjBsrKyuKss86Kv/3tb0lHqZMvvvgihg4dGtu3b0/k/rfffjuO\nO+64WLx4cb2eW15eHr/4xS9ixIgR9XrulzZv3hynnnpqPPDAA/V+9quvvhr9+vWLjz/+uN7Pbgru\nOKzu7xZFxL0R0aHS56NHj47NmzfnkAoAAAAAAAAAAAAAIDdKHjUwatSoeOaZZ5KOUWcXXXRRvRcs\namrevHnxwx/+MNauXVuj51Op1L//qal77rknLr300rpGrNL27dtj0KBB8eKLL9bo+R1z1zT70qVL\n44c//GGsXr06l6hN0gU/jkhdG7Gled3e/0ZE3FDps5KSkrj++utzTAYAAAAAAAAAAAAAUHdKHlmk\n0+m4+OKL4+677046Sp099thjcd999yVy9/r16+P000+P9evXZ32uc+fOMX78+PjLX/4S//znP2Pb\ntm2xbt26mDNnTtx8883Ru3fvau+aOHFiTJs2rb6ixxVXXBGvvPJK1mdat24d5557bjz99NPx0Ucf\nxZYtW2Lz5s1RUlISjz76aAwZMiSaNWuW9YxFixbFsGHD6i130tasWdOg97X+Zd3fPTci+lf67MYb\nb2zw3wEAAAAAAAAAAAAA4EtKHhmUl5fHiBEj4rbbbks6Sp19/PHHcf755yd2/3nnnRclJSUZ561b\nt46JEyfG4sWL45e//GUceeSR0b59+ygqKopddtklDjnkkLj00ktj7ty58cgjj8See+6Z9b5Ro0bF\nRx99lHPuZ555Jm6++easzwwePDiWLFkS99xzTwwaNCj222+/aNGiRbRs2TK+9a1vxU9/+tN45JFH\n4sMPP4wBAwZkPWvGjBnV3tdY3HvvvQ1+5/Y6/i1WFBF3RsSONZwtW7YkVooCAAAAAAAAAAAAAFDy\nqMKGDRti8ODBMWXKlKSj1Fl5eXkMGzYs1q1bl8j906dPjyeeeCLjvGPHjvH666/HRRddFKlUqtrz\nhgwZEnPmzIk+ffpkfGbjxo3x85//vE55v7Rly5a48MILsz5z7bXXxhNPPBF77713ted16dIlZsyY\nEWPHjs363Lhx42LlypW1ylpoysvL44477mjwe5/tWvd3e0XE/6n02R133BHl5eW5RAIAAAAAAAAA\nAAAAqBMlj0qWLVsW/fv3jz/84Q9JR8nJr3/963j99dcTubusrCwuv/zyjPNWrVrF9OnT49BDD63V\nud/85jfjpZdeiu7du2d85sknn4yZM2fW6twdTZw4MZYvX55xPmbMmLj66qtrdWYqlYobbrgha9Fj\n48aNcdVVV9Xq3ELz/PPPZ93cki+LOub2/uhKPy9ZsiReeOGF3A4FAAAAAAAAAAAAAKgDJY8dPPro\no3HooYfGBx98kHSUnMyaNSvGjRuX2P3Tpk3L+md4/fXXx2GHHVanszt27BhPPfVUtGvXLuMzv/rV\nr+p09vr16+P666/POP/ud78bN9xwQ53Ojoi44YYb4uSTT844nzp1anzyySd1Pj9pSWzxiIj432/n\n9n7/iKi8H2by5Mm5HQoAAAAAAAAAAAAAUAdKHhGxbt26GD58eJx55pnx+eefJx0nJxs2bIihQ4dG\nWVlZYhluv/32jLMePXrERRddlNP5Xbt2jfHjx2ecP//88/H+++/X+txp06bF+vXrq5ylUqmYNGlS\nFBXl9q/M7373u2jbtm2Vs23btsWtt96a0/lJ2bp1a7z44ouJ3F3aLLf3UxFxQaXPXnzxxdi6dWtu\nBwMAAAAAAAAAAAAA1FKTL3k88MAD8e1vfzseeOCBpKPUi9GjR8fW8FZzAAAgAElEQVTSpUurnO2+\n++55v3/u3Lnx1ltvZZxffvnlORclIiIuvPDC2H///TPOp0yZUusz77rrroyz4447Lo488shan1nZ\nvvvuGxdffHHG+dSpUxMt6NTVvHnzorS0NOkYdfZ/Kv1cWloa7733XiJZAAAAAAAAAAAAAICmq8mW\nPGbNmhXHHHNMDB8+PFatWpX12aKiojjttNMaKFndPfTQQ/Hggw9WObvggguiT58+ec9wzz33ZJx1\n7NgxzjzzzHq5p1mzZjFy5MiM89///ve1KkvMmTMn65f6R48eXat82YwcOTKaNat6/cTq1atj+vTp\n9XZXQ5k9e3bSEXKye0R0q/RZY/+dAAAAAAAAAAAAAIDGp3nSARrau+++G1dffXU8++yzNXq+devW\ncffdd8e+++4bTz31VJ7T1d2yZcti1KhRVc66d+8eN910UwwcODDvOf7nf/4n4+zUU0+NFi1a1Ntd\nZ5xxRlx55ZVVzlatWhV//vOf49hjj63RWU8++WTGWdu2beNHP/pRnTJWZf/994+jjjoq/vznP1c5\nf+KJJ+LHP/5xvd3XEGbNmpV0hJwdEREf7vDzrbfOinnz6q/cAwAAAAAAAAAAAEDDuvnmiHbtkk4B\ntdPkSh6DBw+O5cuX1+jZgw46KB5//PHo3bt3/OlPf8pvsByUlZXF2WefHevXr//arGXLljFt2rRo\n1apV3nPMnz8//v73v2ec/8d//Ee93nfggQdG9+7dY8GCBVXOn3322RqXPJ5//vmMsxNOOCGKi4vr\nlDGTQYMGZSx52OSRjH4Rcf8OPy9ePCsWL04qDQAAAAAAAAAAAAC5+tWvlDxofIqSDlCIUqlUjBgx\nIubOnRu9e/dOOk61JkyYEG+88UbGWd++fRskx2uvvZZxlkql4vvf/36933nMMcdknL3wwgs1OmP9\n+vUxd+7cOt1RV9nOXLVqVbz77rv1fme+pNPpWLwTtCG++7VPFkdEuuGDAAAAAAAAAAAAAABNlpJH\nJV27do0ZM2bEXXfdFW3atEk6TrVmzpwZ1113XZWz4447Li677LIGy/Lmm29mnB188MHRvn37er+z\nX79+GWd//etfY9OmTdWe8dZbb0U6nfnL/EcddVSdsmXTt2/faNGiRcb5rFmz6v3OfNmyZUuUl5cn\nHSNnHb/2SXlEbG34IAAAAAAAAAAAAABAk6Xk8X/tsssuMWHChJg/f34MGDAg6Tg1sm7duhg2bFiV\nX7Bv3759TJ06tUHzZNs+ccghh+TlzmznlpWVxTvvvFPtGdlyFxUVRZ8+feqULZvi4uLo3r17xvnb\nb79d73fmy+bNmxO9v6SeukOtq/w02d8NAAAAAAAAAAAAAGhamnzJo0WLFjFixIhYtGhRXHnlldGy\nZcukI9XYqFGj4qOPPqpyNnny5Nhvv/0aLMv27dtj4cKFGefdunXLy71dunTJOp87d261Z3zwwQcZ\nZwcccEC0atWq1rlqomvXrhlnNcnNv6xum3QCAAAAAAAAAAAAAID60WRLHi1atIjhw4fHggUL4q67\n7oq99tor6Ui1MnXq1Hj44YernA0bNizOOOOMBs2zbNmy2L59e8Z5vkoe7dq1i7333jvjfNmyZdWe\nsWjRooyzfOWOyF7yqEnuQtG6ddU7MBqbqnd27By/GwAAAAAAAAAAAADQODRPOkBD22uvveKss86K\n0aNHN+imi/pUUlISF154YZWzTp06xe23397AiSKWLl2adb7//vvn7e599903Vq5cWeWspKSk2vez\nZc937kzWrl0bGzZsiHbt2uXt/vrSqlWrKCoqivLy8qSj5GTN1z4piojihg8CAAAAAAAAAAAAADRZ\nTa7k8eabb0YqlUo6Rp1t3749hg4dGhs3bvzarFmzZvHAAw8kUgxYsWJFxlkqlYp99tknb3dn2+Sx\nfPnyrO9u3749/vGPf2ScJ5U7IuKjjz6Knj175u3++pJKpeKggw6KhQsXJh0lJ3Mq/dymzUFx1FGN\n9+8KAAAAAAAAAAAAgKauRYukE0DtNbmSR2MueEREXHvttTF79uwqZ7/4xS/i6KOPbuBE/5Jpk8aX\n8lmW2GuvvTLO1qz5+n6GHa1evTrrBoqkcqfT6WqzF5J+/fo1+pJH5X+rTj/9iJg6NZEoAAAAAAAA\nAAAAAEATVZR0AGrutddei+uvv77K2WGHHRbjxo1r4EQVshUSiouLo7i4OG9377777hlna9euzfpu\ndUWK9u3b1ylTTWTLHVF99kJyxBFHJB0hZ7Mq/bwz/E4AAAAAAAAAAAAAQOOi5NFIfP755zFs2LBI\np9Nfm7Vt2zamTZsWzZo1SyDZv2QrJOy66655vXuXXXbJONuwYUPWTR3VFSnymT1b7ojGVfLo169f\n0hFy8nlEfFjps8b+OwEAAAAAAAAAAAAAjY+SRyNx/vnnx4oVK6qc/fa3v42uXbs2cKKv2rhxY8ZZ\nu3bt8np3deevX78+4yxb7pqcnYvqzl63bl3e7q5vffr0iZYtWyYdo84erfRzy5Yto3fv3olkAQAA\nAAAAAAAAAACaLiWPRmDKlCnx+OOPVzk79dRTY8SIEQ2c6Os2bdqUcda6deu83t2qVaus823btmWc\nZcsdkd/sueQuNMXFxXHiiScmHaNO0hFxe6XPTjzxxCguLk4iDgAAAAAAAAAAAADQhCl5FLhFixbF\nxRdfXOVs7733jnvuuaeBE1Vt69atGWfNmzfP693VnV9aWppxli13Tc7ORS65C9GoUaOSjlAnf4mI\n9yp9dsEFFyQRBQAAAAAAAAAAAABo4pQ8Cti2bdti6NChVW6bSKVSMWXKlOjYsWMCyb6urKws4yzp\nkke2jRjZctfk7FzkkrsQDRw4MA488MBE7j7qvIhtdfzbrPIWjy5dusRJJ52UcyYAAAAAAAAAAAAA\ngNpS8ihgv/zlL2POnDlVzkaPHh0DBw5s4ESZlZeXZ5zlu+TRrFmzrPPt27dnnGXLnUql8po9l9yF\nqKioKLFtHm/uH9Hy6tq/915EPFrps1GjRkVRkb8aAQAAAAAAAAAAAICG55vMBeqVV16Jm266qcrZ\nd77znbjxxhsbOFF22coQ1W3LyFV1ZYhsX9ivrsSRz+y55C5U5557bqL3/75XzZ8tj4hREbHj/8Kt\nWrVK/HcAAAAAAAAAAAAAAJquxvct8iZgzZo1cc4550Q6nf7arLi4OKZNmxbFxcUJJMusZcuWGWf5\n3khRXREjW5EjW+50Op3X7LnkLlQdO3ZM9P6zT6/5s/dGxF8qfXbZZZdFhw4d6jMSAAAAAAAAAAAA\nAECNKXkUoJ/97Gfx97//vcrZhAkTok+fPg2cqHrZyhJJb/LIli3bLCLZTR7VZaPu/hkRl1f67MAD\nD4wrrrgiiTgAAAAAAAAAAAAAABER0fhWBezk7rrrrnj66aernP3gBz+IsWPHNnCimsm2WWTLli15\nvbu689u2bZtxVt1GlHxmzyV30j777LNYvXp1fg7/IsPn9fTHUR4R/xkRn1X6/Pbbb4/WrVvXzyUA\nAAAAAAAAAAAAFJy8ff81g88+q/yNVaiekkcB+fDDD2PMmDFVztq3bx9Tp05t4EQ1t/vuu2ecbdiw\nIa93V3d+trJEttw1OTsXueRO2jHHHJO/w2/M8Pm1uR9dHhH/b0Q8W+nzIUOGxMCBA3O/AAAAAAAA\nAAAAAICCteeeeyYdAaql5FEgSktL46yzzorNmzdXOb/zzjvjm9/8ZgOnqrmOHTtmnCVZ8mjXrl0U\nFRVlnGfLXd3Zuaru7A4dOuTt7qbon/GvDR6VCx577rlnTJw4seEDAQAAAAAAAAAAAABUkvnb7zSo\nK664IubNm1fl7JxzzokhQ4Y0cKLayVaW+OKLL6KsrCxvd3/++ecZZ9WVOKqbZzs7V9WdXV02aqY8\nIu6OiG/H1wseRUVF8dBDD8U+++zT8MEAAAAAAAAAAAAAACpR8igAM2bMiFtuuaXKWefOnWPSpEl5\nz5BOp3N6v7rVRatWrcrp/Gz+8Y9/ZJztvffeWd9t3759NG+eeaFNtrNzle3sVCpVbXaq915EfD8i\nRkTEZ5VmRUVFcdttt8WAAQMaPhgAAAAAAAAAAAAAQBUyf7udBjNt2rSMs6VLl8Zuu+2W9wz3339/\n3H///Rnnw4cPj3vvvTfj/MADD8w4S6fTsXLlyrxtS1i5cmXG2X777Zf13VQqFZ06dYrFixfX+uxc\nVXd2ddmT9Nprr0W3bt2qHlZT+KnOnpfl9HqkI+IvEXF7RDwaEVXtkNlzzz3joYceUvAAAAAAAAAA\nAAAAaELy+X9cX5UPP/wwjjnmmAa9k8ZPyYMaSaVSWeedO3fOOv/444/jkEMOqc9I/7ZixYqMs06d\nOlX7/oEHHpix5JHt7FxlO/sb3/hGtG7dOm9356pDhw6xxx575Ofwtrm9fkhEzMsyHzJkSEycODFv\npSMAAAAAAAAAAAAAClPevv+aQUOXStg5FCUdgJ3DPvvsk7WUsGjRorzcu379+li9enXG+cEHH1zt\nGV26dMk4W7hwYZ1y1US2P5Oa5KZqmQoeXbp0ienTp8ejjz6q4AEAAAAAAAAAAAAAFCQlD+pNr169\nMs7yVZaorjzSo0ePas/IlrukpKTWmWoqW/aa5KZmWrVqFVdddVXMnz8/Bg4cmHQcAAAAAAAAAAAA\nAICMlDyoN4cddljG2dy5c/Ny5zvvvJNx1qxZs+jTp0+1Z2TLvWXLlliwYEGdsmWzefPm+PDDDzPO\nDznkkHq/s6np0qVL3HTTTbFixYoYP3581k0zAAAAAAAAAAAAAACFoHnSAdh5ZCtLvPfee7Ft27Zo\n0aJFvd45e/bsjLMePXrU6Iv9vXr1ipYtW0ZpaenXZul0OmbPnh3du3fPKWdl77zzTpSVlWWcH3HE\nEfV6X1MyaNCguOCCC+LEE0+MoiI9NgAAAAAAAAAAAACg8fAN6AKQSqX+/Z/5/KcmOer6bkTEscce\nm3G2devWeOONN2r2B1ILr776ap3y7Ki4uDhrqSLbHXWV7czdd989+vbtW+93NhX/+7//GwMHDlTw\nAAAAAAAAAAAAAAAaHd+CLgD33ntvlJeXR1lZWV7/yVZ6+M///M+s706ZMqXa36Nz585x8MEHZ5w/\n88wzdfrzyWThwoWxePHijPOBAwfW+KyTTz454+y5556rVa6ayPZnccIJJ9T7fQAAAAAAAAAAAAAA\nFD4ljyYknU7n/Y5TTjkl4+zRRx+t1wwPPfRQxtmuu+4axx9/fI3PypZ71apV8fLLL9cqWzZLly6N\nWbNmZZyfdtpp9XYXAAAAAAAAAAAAAACNh5IH9eqss87KOFu+fHn84Q9/qJd7SktL47//+78zzocO\nHRotW7as8Xm9e/eO73znOxnnt99+e63yZTN58uSMZZcOHTrET37yk3q7qylKjUvF239/O+kYAAAA\nAAAAAAAAAAC1puRBvTr88MOjV69eGedXXnlllJWV5XzPxIkT49NPP61ylkql4vzzz6/1meedd17G\n2dNPPx1vvPFGrc+sbPny5VkLI8OGDYvi4uKc72nqDv/d4VFaVpp0DAAAAAAAAAAAAACAWlHyoN6N\nGjUq4+yDDz6I8ePH53T+ggULYty4cRnnRx55ZPTt27fW555zzjnRpk2bKmfpdDp+9rOfxaZNm2p9\n7pfKy8vjvPPOiy1btlQ5b9asWYwcObLO5/NVxdcpywAAAAAAAAAAAAAAjYuSB/XuvPPOiwMOOCDj\n/LrrrosnnniiTmevXr06TjvttIxli1QqFb/5zW/qdHbHjh3joosuyjhfsGBBDBs2LMrLy+t0/tix\nY+Pll1/OOD/nnHOiW7dudTobAAAAAAAAAAAAAIDGT8mDeteiRYu45pprMs7T6XScffbZ8fDDD9fq\n3BUrVsTxxx8fixYtyvjMoEGD4vvf/36tzt3R5ZdfHrvttlvG+VNPPRVnnXVWbN26tcZnptPpGDt2\nbNx6660Zn2nTpk1MmDChVlkBAAAAAAAAAAAAANi5KHmQF+eee2784Ac/yDgvLS2Ns88+Oy688MJY\nv359tec99thj8d3vfjfef//9jM/stttuccstt9Qp75fat2+ftYzxZZYjjzwy5syZU+15S5YsiRNO\nOCF++9vfZn1u/Pjxse+++9YqKwAAAAAAAAAAAAAAOxclD/Lmvvvuy7oVI51Ox+TJk+Nb3/pWXHrp\npfHyyy/H6tWrY/v27bFx48Z47733YtKkSXHooYfGGWecEatXr854ViqVirvvvjs6d+6cc+7hw4fH\n4MGDsz4zb968OPzww+PHP/5xTJs2LUpKSmLLli1RWloaH3/8cTz55JMxdOjQ6NatW7zyyitZzxo0\naFCMGTMm59wAAAAAAAAAAAAAADRuzZMOwM5r//33jyeeeCJOPvnk2LZtW8bn1q1bFxMnToyJEyfW\n+a6xY8fG6aefXuf3K7v//vtj6dKlMXfu3KzPPffcc/Hcc8/V+Z5u3brF/fffX+f3AQAAAAAAAAAA\nAADYedjkQV4NGDAgHn744SguLs7bHZdddln813/9V72eucsuu8T06dOjd+/e9Xrujnr27Bmvvvpq\n7L777nm7AwAAAAAAAAAAAACAxkPJg7wbPHhwzJgxI/bZZ596PbdFixbxm9/8pt4LHl/aa6+94rXX\nXotTTjml3s8eMGBA/OlPf4o99tij3s8GAAAAAAAAAAAAAKBxUvKoB+l0OukIBe973/tezJ8/P4YO\nHRqpVCrn83r16hWzZs2Kyy+/vB7SZbbrrrvGM888E5MnT44OHTrkfF7btm1j0qRJ8dJLL9XLeQAA\nAAAAAAAAAAAA7DyUPGroy2JCKpX6yj87zgpd5eyVf49869ChQzz44IMxZ86cGDp0aLRq1apW76dS\nqTj66KPjkUceiXfffTf69u2bp6RfN3LkyCgpKYnx48fHAQccUOv3995777jmmmtiyZIlMXr06Dwk\nBAAAAAAAAAAAAACgsUulraEgIevWrYuXXnopXn311Xj//fejpKQkPv/889i0aVO0adMmOnToEB07\ndoyePXvG9773vTj22GPjoIMOSjp2pNPpePPNN+OVV16Jt956KxYvXhwrV66MjRs3RlFRUbRv3z46\ndOgQnTp1iv79+8fRRx8d/fv3j+bNmycdvUY++OCD6NmzZ9Zn3n///ejRo0fVwxxLQ6lrc3r9K9LX\n+OsNAAAAAAAAAAAAgGTk/L1cmqTG8a1zdkq77bZbnH766XH66acnHaVWUqlUHHXUUXHUUUclHYVq\nbN2+NYqbFycdAwAAAAAAAAAAAACgRoqSDgCQL13+vy4x/x/zk44BAAAAAAAAAAAAAFAjSh7ATuuT\nDZ/E4EcGx4atG5KOAgAAAAAAAAAAAABQLSUPYKe2ZO2S+NOyPyUdAwAAAAAAAAAAAACgWkoewE7v\nzjl3Jh0BAAAAAAAAAAAAAKBaSh7ATu+5Rc8lHQEAAAAAAAAAAAAAoFpKHgAAAAAAAAAAAAAAAAVA\nyQMAAAAAAAAAAAAAAKAAKHkAAAAAAAAAAAAAAAAUACUPAAAAAAAAAAAAAACAAqDkATQJzy16LukI\nAAAAAAAAAAAAAABZKXkATcKPfv+juPkvNycdAwAAAAAAAAAAAAAgIyUPoMkYO2Ns0hEAAAAAAAAA\nAAAAADJS8gCalOmLpicdAQAAAAAAAAAAAACgSkoeQJNyyu9PSToCAAAAAAAAAAAAAECVlDwAAAAA\nAAAAAAAAAAAKgJIHAAAAAAAAAAAAAABAAVDyAAAAAAAAAAAAAAAAKABKHgAAAAAAAAAAAAAAAAVA\nyQNocp5f/HzSEQAAAAAAAAAAAAAAvkbJA2hyTp52cnz0+UdJxwAAAAAAAAAAAAAA+AolD6BJ6jSx\nU9IRAAAAAAAAAAAAAAC+QskDAAAAAAAAAAAAAACgACh5AAAAAAAAAAAAAAAAFAAlDwAAAAAAAAAA\nAAAAgAKg5AEUlnTSAQAAAAAAAAAAAAAAkqHkARSUVAOWPFLjUg13GQAAAAAAAAAAAABANZQ8gIJS\n1MCbPBQ9AAAAAAAAAAAAAIBCoeQBFJRmDVzyiIgoKy9r+EsBAAAAAAAAAAAAACpR8gAKSkNv8oiI\nOP8P5zf8pQAAAAAAAAAAAAAAlSh5AAVl868i0tdG/Hxmw905Ze6UhrsMAAAAAAAAAAAAACADJQ+g\nIN00I+L/eSPpFAAAAAAAAAAAAAAADUfJAyhYt7zQcHelxqUa7jIAAAAAAAAAAAAAgCooeQAF7buf\nNNxd096b1nCXAQAAAAAAAAAAAABUouQBFLQTlzTcXcP+Z1jDXQYAAAAAAAAAAAAAUImSBwAAAAAA\nAAAAAAAAQAFQ8gDYwaZtm5KOAAAAAAAAAAAAAAA0UUoeADto++u2kU6nk44BAAAAAAAAAAAAADRB\nSh4AlZw87eSkIwAAAAAAAAAAAAAATZCSB0AlLyx5IekIAAAAAAAAAAAAAEATpOQBAAAAAAAAAAAA\nAABQAJQ8gILWZW0y9+5/y/7JXAwAAAAAAAAAAAAANFlKHkBBO/2vydy7Yv2KuODZC5K5HAAAAAAA\nAAAAAABokpQ8gILWvDy5u+94+47kLgcAAAAAAAAAAAAAmhwlD4AsStaWJB0BAAAAAAAAAAAAAGgi\nlDwAsjh6ytHx6YZPk44BAAAAAAAAAAAAADQBSh4AWazcuDJ+/uLPk44BAAAAAAAAAAAAADQBSh4A\n1Xjo/YcinU4nHQMAAAAAAAAAAAAA2MkpeQDUQNH4IkUPAAAAAAAAAAAAACCvlDwAaujIe45MOgIA\nAAAAAAAAAAAAsBNT8gCoodmfzE46AgAAAAAAAAAAAACwE1PyAKiF5uObJx0BAAAAAAAAAAAAANhJ\nKXkA1EJZuixGPjMy6RgAAAAAAAAAAAAAwE5IyQOglu6ac1dc9uJlSccAAAAAAAAAAAAAAHYySh4A\ndXDTGzfFH5f+MekYAAAAAAAAAAAAAMBORMkDoI4GTB0Qyz5flnQMAAAAAAAAAAAAAGAnoeQBkIPO\nEztHaVlp0jEAAAAAAAAAAAAAgJ2AkgdAjoqvK046AgAAAAAAAAAAAACwE1DyAKgHqXGppCMAAAAA\nAAAAAAAAAI2ckgdAPVH0AAAAAAAAAAAAAAByoeQBUI8UPQAAAAAAAAAAAACAulLyAKhnJz5wYtIR\nAAAAAAAAAAAAAIBGSMkDoJ7NKJkR+/12v6RjAAAAAAAAAAAAAACNjJIHQB58suGTSI1LRXm6POko\nAAAAAAAAAAAAAEAjoeQBkEfNxjeLTzd8mnQMAAAAAAAAAAAAAKARUPIAyLN9f7tvXP3Hq5OOAQAA\nAAAAAAAAAAAUOCUPgAYw4bUJkRqXinQ6nXQUAAAAAAAAAAAAAKBAKXkANKCi8UWxrWxb0jEAAAAA\nAAAAAAAAgAKk5AHQwFpe1zIG3D/AVg8AAAAAAAAAAAAA4CuUPAAS8Mdlf4yi8UWKHgAAAAAAAAAA\nAADAvyl5ACSoaHxRpMalYlvZtqSjAAAAAAAAAAAAAAAJU/IAKAAtr2sZqXGppGMAAAAAAAAAAAAA\nAAlS8gAoIKlxqRj97OikYwAAAAAAAAAAAAAACVDyACgwk9+eHKlxqfjdnN8lHQUAAAAAAAAAAAAA\n+P/Zu/P4uOs6f+DvmVxNmp7pSQ/aQoHSi7NU5JBLQbZVUH7CgrAsl1wiXWDZn4tcu8qCK7CKiqKr\nIMLKD4FFBERU1HIUSiltKdDSlgLSNr0pbdJmZn5/YGKTZiZ3Jm2ez8ejj8zM+/N9f94zmbZY55VP\nJxLyAOiizv/V+ZG4PhGJ6xNRk67J9zgAAAAAAAAAAAAAQAcT8gDYCRTdWBSJ6xOxctPKfI8CAAAA\nAAAAAAAAAHQQIQ+AnciQ/xwSiesT8bNXf5bvUQAAAAAAAAAAAACAdibkAbAT+uJDX4zE9YlIXJ+I\n++bdl+9xAAAAAAAAAAAAAIB2IOQBsJP7+1/+fV3g49E3Ho1MJpPvkQAAAAAAAAAAAACAVijM9wAA\ntJ/p90+vdz9zrcAHAAAAAAAAAAAAAOwshDwAdmGJ6xN1t584/Yn41J6fyuM0AAAAAAAAAAAAAEAu\nQh4A3cTx9x5fd/uMSWfEeQecF4ePPDwSiUSOqwAAAAAAAAAAAACAziLkAdAN/ezVn8XPXv1ZvcdG\n9hkZs8+fHQPKBuRpKgAAAAAAAAAAAADo3oQ8AIiIiOUblsfAWwbWe+zUCafGzcfeHCP6jMjTVAAA\nAAAAAAAAAADQfQh5AJDV/fPvj/vn37/D41d//Oq44agboqigKA9TAQAAAAAAAAAAAMCuScgDgBa7\naeZNcdPMm3Z4/Nz9z43bT7g9yorK8jAVAAAAAAAAAAAAAOzchDwAaDd3zbkr7ppzV9b67n12j+fP\nfT6GlA/pxKkAAAAAAAAAAAAAYOcg5AF0aeXbIjLXRex7UcTCQfmehrZ6e8PbMfQ/h+ZcU5gsjHtP\nvjc+v+/nI5lIdtJkAAAAAAAAAAAAAJB/Qh7ATuG170Zc/OmI707J9yR0tJp0TXzh/32hWWvv/9z9\n8bl9PxeFSX+dAQAAAAAAAAAAALDz86lYYKdxx68jHtg3orI835PQVZz64KkRD7bsmuP3PD7+/eh/\njz377xllRWUCIgAAAAAAAAAAAAB0GT7ZCuxUvvxCxDXH5HsKdmZPLH4inlj8RJv7lBaWxjc/+c04\ndcKp0bdH30gmku0wHQAAAAAAAAAAAADdmZAHsFM5+xUhD7qGLTVb4uJfXxwX//ridu89cdDEOGrU\nUXHC2BNiyrAp0aekTxQkC9p9HwAAAAAAAAAAAAC6FiEPYKdSui3fE0DHm7dqXsxbNS/+a9Z/5XuU\niIjYf8j+MWXYlJi+9/Q4evTRUVJQEolEIt9jAQAAAAAAAAAAAOxyhDwAgJzmrJgTc1bMiTtn35nv\nUTrc1OFT48xJZ8akwZNiRJ8RMbR8aBQVFEUmk4mIEG4BAOCNk9EAACAASURBVAAAAAAAAAAAOpSQ\nBwDAXz3/7vPx/LvP53sMOsDAsoExZdiUOHXCqVGULIqRfUZG75LeMaBsQPQu6R1FBUWRTCQjk8lE\nQbJgh+sFfQAAAAAAAAAAAOgMQh4AAOzyKjdXxmOLHovHFj2W71GAbm7cgHExftD4GNZrWKz8cGWU\nFpbGuAHjYkSfETGq76ioSddEvx79ol9pvyguKI5tqW1RXFAchcnCKCsqqzthqiZdE0UFRXV9M5lM\no0G0dCYdyURyh8ezrQcAAAAAAAAAIL+EPAAAAKCTLFy9MBauXpjvMQDYiQwpHxIrNq3Y4fGjRh0V\nFWUVUV5cHrv32T369egXU4ZNiepUdWQymSgpLImh5UMjmUhGeXF59CrpFelMOjZWb4yIiLKislhf\ntT5267VbrN2yNiIi+pT0icJkYdSka6Iw+bd/Ok5lUlGQ+OjEu0xkIhGJuiBhIpGoCw82DBE2fFzI\nEAAAAAAAAJom5AEAAAAA0EU1FvCIiPj9st938iQAzfPieS/WnSaXyWQiE5nIZDIf3Y9MvL3+7fg/\n/+//dOpMvUt614Xcao3qOyqG9x4eU3abEhurN8aG6g2xLb0tjh19bAwoGxAVZRWxYNWCGN1vdAzr\nNSwKk4WRzqSjrKgsehb3jH49+kVERGlRad3zTKVTUVxQHDXpmoiISCaSUZ2qjpKCkshEJtKZdBQl\ni+rCc6lMqi5UV9ujsZP4AAAAAADoXoQ8AAAAAAAAaBcH//DgfI+wg4YBj4iIZeuXxbL1y+LPy/9c\n7/GHX3+4s8Zqs0E9B0UykYwNVRtiS82Wdus7afCkiIhIRP3TlxqextRYvSZdE6+ufLXdZmkPBw49\nMPYesHebevzvG/8bm7ZuyrmmIFEQ5x5wbkREXbAp4qNwU93tTCbumnNXm2aJiDhk2CHxd3v9XSQT\nyY9O1orE324nPrp9+ZOXt3mfiIhvn/DtKCsqi4JEQSQTyShI/vXrX+8v37A8Zvxmxg7XXf+J6+ve\nS03Z/vVqju/P/n785q3fNFr73LjPxYUHXRg/nfvTuOfVe7KuuerjV9V77Wpft+3vr92yNn639Hdx\nzOhjom+PvvV6NHY6We3viUxk4pZnb4mfvPKTKCsqi/MOOC8+PuLjcdjIwyKRSEQiEs3+molMbKja\nEAXJgigvLo+iZFFd6Ky4oNgpaQAAAAC7qESmpf9qBuzSFixYEBMmTMi5Zv78+TF+/PjGix38j8lr\ne0RUXN2hWwAAAAAAAMBOoyhZVHc7VwBlh8dzrM0VHqsorWgy+FW5uTL7wM0wefDkurBLbfAmWyBm\nxaYVsWTdknrXjxswLkb0GVG3pmGIp6nb98+/v15Ia3ufHvvp+PWiX7fqeR0z+pgYN2Bcvfkjot5z\niois9e1vr9i0Iv77lf+u6336xNNjwqAJ9XrUrt/+fmOPbf/9y3ZdVU1V/PNv/7ne8/nOCd+J/qX9\nmzV7a+tzV8yNq59u/P8gLi0sjae++FQUJgtbHKJqbP/Gvi5euzgeef2RKCksiVdXvhq/X/b7SEQi\n7j353hg/aPwOvWrSNfH00qej8sPKGFsxNo7f8/joWdRzh9e34feiqVpTdcEvAADoutr8uVy6JSEP\noB4hDwAAAAAAAADYOfUs6pkzxBIROUMvKz9c2Wjfsf3H1gtNNbydKzyVSCRia2prvPz+y816Dkfu\nfmTdnLVzNfd+Tbomfrf0d/X6HbTbQbFbr90anf3l91+Ot9a9Vbe2pKAkTp94el14qGH/XHtvf7ty\nc2U8vujxWFe1bofnN3X41Jg8eHLs3mf3Rr8XDV/Xhl+zhd/mvD8nvvvSdyMi4pR9T4ljxxzb7J61\nX9/e8HY8/+7z8Ydlf4gN1RvqZj53/3Nj8brFcczoY2JU31FRXlwe5cXlzXovZNu/9lSw++bfF2s2\nr4mJgyZGKpOKvSv2jkmDJ0V1qjoqSiti+YblMfOdmXHYyMNij3571J1gtv1pXNlON9uW2hYFyYJ6\ntYbXNby24eyZTCbSmXRsS2+r+543PAlMyAoAyEXIg9YQ8gDqEfIAAAAAAAAAAIDmqw17pDPprGsG\n9RxUb21jwavt642tXbp+ab2ew3sPj/Li8rqASkGiIN7Z+E6s3bI2IiKSiWRMGjyprlaQLKh3u7qm\nOp5797mIiDhs5GFRmCyMPyz7Q709TtjzhCguKI6nlz4dm7ZuipP2OSlKi0pzB4eaESraPhSUzqRj\n0dpF8fTSpyOTycRFB18UT771ZOzZf8+PTvhqQb9cwajFaxfHS++/FIXJwnhlxStRVVMVU4ZNiTMm\nnlF3atO6qnVx6PBDo6igKGuop7HbyUQyNlRviB/P+XH0KOwRkwdPjgFlA2JMvzHxwGsPxOi+o2PS\n4EkxoGxA1sBRtl9bU1vrvp+5wkkNr8u2JpVORU26JgqThVFcUBzpTDoKkgVRkCjIGcxqTuAMgB0J\nedAaQh5APUIeAAAAAAAAAAAAtFTD0Ec6k25WUKQ5JwCVFpY2es32gZZcIZxEIhFvrnkz1m5ZG/1L\n+9eFoSIixg8cH/1L+0cykYxMZKIoWVRv79pgVHOCLtlOT6q3fru16Uw6fjTnR5GIRJyz/zlRVlTW\n5Alc24dqtg/z5AoORUSkM+koLiiuC/Rs/32rVbm5MuasmBOHjzw8+pT0iYioCwFFRGQiE5lMJgqS\nBVFcULzDc9xSsyV6FfeKksKSSKVTH70HEokoKSipu7Y54aaGAaX1VevrvkdtCX41/FobfqsNwDV1\n8pMwE60h5EFrFOZ7AICW6F+V7wkAAAAAAAAAAABoqPZD/H+9s32hS9k+4BERsaByQZ4m+ZtMZOKu\nOXfle4w6v3rzV/keocvKFiJqeL+1tVxBpS7XJ5q/V8OATd3r2SBw1DBk07BXrueS7bozJp0R5cXl\n+Xi7QKsJeQAAAAAAAAAAAAAANKE2zJTOpPM9Cs00fe/pQh7sdIQ8AACglQ4cemAM7Dkw+pf2j1F9\nRsWIPiMilU7FknVLYn3V+hjTb0xMHT41xvQbE5nIRFlRWfQp6RPFBcXx4bYPo6Sg5KPjS7c7pjYi\nHO8J0IkymUyH/rlb27+xfZqzd8Prt/8a8dHfGTXpmihMFu7Qr+4nZUVETbqm7iju2p+Ok86koyBZ\nUG9t7ZHZqXQqigqKYmtqa92R29tS26IgWVB3v7qmuu7I8g+3fRjrq9bHh1s/jMHlgyOZSEZ1TXW8\nu/HdWL15dZQVlUVJYUlsrN4Yr1W+Fql0KtZXrY/KzZWx6sNVMfv92fHuxncjIqIwWRh79Nsjkolk\nLFy9sI3fAQAAAAAAAKA72/7kENhZCHkAALu8vSv2jml7TYvpe0+PHoU9okdhjxjUc1AM6jnIh+nJ\nm94lvevdr/3gLQCdq6P/W6C2f2P7NGfvhtc31q8wWdhov+3vFxUU7dC7IFGww9rax5IFH/29VFxQ\nvMM+dfeL/3a/pLAk+pf232GPYb2H7fDY8Xsev8NjANDVNAxW1qp9LBN/DVxGIhKJRGxLbYuIj/6+\n3JraWvd36Pbram9vS22L6lR1bKzeGEPLh8bqzaujtKg0SgtLY82WNVFeXB5L1i2JHoU9ojBZGOu2\nrIu1W9bGvgP3jY3VG2NB5YJIZ9KxctPKWPnhyvjz8j/HM28/E4XJwqhJ19Sbt2dRz/hw24cd+lo1\ntPDihX/775O/vj7b3579l9nx+Qc+36kz7Yr+6/j/qvdTI19f/Xr84OUftLnv/z3s/0bE3967tRr+\nXshVv/nZm9s8R3s6cOiBMbz38Db1eOSNR5q17qhRR9V7z9eqfey3S37bpjm2V15cHoN7Do50Jh2Z\n+Oh9kM6kI5PJxHsfvNdu+0RElBSURDKRjFQmFelMOlLp1A7vAQAAAICuymdy2BkJeQBAN7ZHvz1i\n34H7xoFDD4yJgyfGIcMOiaG9hvoPWwAAAKBbayqo2fAnv20fqCwpLPnb2u0/5P3X2yWFJVFSWFIX\n/h9cPrhuzZDyIRERMWnwpL817/e3m8NiWIwbOK6lT6dLGdV3VGSu9eHwjnDntDvzPUJERPzHcf+R\n7xHoBLUBo9pfxQXFUZ2qjqJkUWxLb2vy35ib8xM0swXjq2qqYubymfHGmjfinQ3vxDsb34m5K+fG\n0aOOjhuOuiEiIuatmhcn/c9Jsb5qfUwdPjXOmnxWfP+l70ffHn3jluNuiYE9B9aFYrYPymx//9l3\nno25K+bGp8d+Okb3G13vue/wemwXenlj9RuNhtnuPfneGN57eN0+tUGtbF9TmVQ88NoDkUqnYl3V\nujj/gPMjmUjG1U9fHa9Vvhb7DNgnvnr4V+u9lo2Fbxqbt7lr397wdlz7h2vrPXbHp+9o9mtx6eOX\nNrp3U04ed3Ls1X+vemG2pl6v77z4nXo9zt3/3L99X7f7/jbndjqTjpnvzIzVm1c3Ot+Zk8+Mu+fe\n3arnFhFx2MjD6s0eETs8n4aPRcQOz/vVla/u0HtU31H17m/fqy33KzdXRjqTbvT5bB9mBQAA6Ir8\nEGB2RolMtn/VAbqlBQsWxIQJE3KumT9/fowfP77xYif8ZZi4rsO3gE4zfe/p8fWjvx4j+oyIsqKy\nHX46MgAAAAAAAOwsmgqpbH+74dps122p2RLJRDIymUxsqN4QvYp7xTsb34lexb2iZ3HPZgWncn1t\nONP2X299/tb4+byfx269dou/fPCXuud59cevji9O/uIOPd5Y80ac8sApdeum7TUtLjr4opynYm1f\ny3VaVmPXfLD1g/j5vJ/HxuqNsc+AfeLjIz6e8zk1fI2zvQbPvftc/M+C/6nb77ojr/voe9BI+Crb\n7caCVM+9+1y89JeXsrx7PlJcUBzn7H9Oq0NJ29Lb4p5X76nX84Q9T4h+pf12CPSl0ql46PWHdpjh\n8JGHR1FBUaN7NLZ/w9upTCpmvTcr5/OMiCgrKovBPQfv8Fo1/Jqttv3r/cHWDxrdo1dxr2b9Pmh4\nKiAAwK6k8srKGFA2IG/7t/lzuXRLQh5APUIe0Lj7PndfHDXqqOhf2r/eT2YEAAAAAAAAgF1JbYgk\n4qNTtGpDIDXpmshEJgoSBTkDPdnCKA2DQO9ufDf+vPzP0aOwR0RE9OvRLwqSBTG2/9hIZVKRSqfi\nzTVvxlNLnopPjPpETB0+NUoKSur22T64s/3pTelMOtZXrY+N1RtjeO/hkUwk651C1vBUsobX1q7Z\ntHVTzFkxJ7altsX+Q/ePIeVDsp4GVp2qjtl/mR2DywdHWVFZXP7k5RHx0QlOXxj/hbrXNVtoqLHA\nVcSOQaJn33k2Vm9eHceOOTaSiWQUJAp2eC61v9ZuWRt3zbkrIiIuOPCCKC8uj1Q6FelMuu71rb29\naeumeuGu7fUp6RMbqjfEZ/b+TN1r2ZzwULb3QbavBcmCeH316/VO09pvyH5tCvNtv+87G99p1vu/\nX49+LQq11d4GoOtafeXqqCiryNv+Qh60hpAHUI+QB7uif9jvH+Kc/c+Jg3c7OEoKS/I9DgAAAAAA\nAAAAu5DtwyXVqeooTBZGRERBoiCqaqoikUjsEDhqzq9UOhWFycIoSBbUCyE1FVLaoU8mVTdjMpGM\nomRRLF67OH639Hex35D9YtzAcc0Ka7U0zNUwFNbSU6AymUwUFRTFhqoN9R5rGLRqrNbYug3VG+Kh\n1x+K9VXrIyJiwqAJcfSoo6OqpiqSiWRERCQSiY9CbdvNXJOpafHr0tRrtS29Lf6w7A8RETF58OQo\nLy7/6L3USNCrsa/bv/ea816q/d5vTW2tC/Jt//HhlR+urLvdr0e/SGVSkUwkIxEfvR6pTCoiIral\ntmUNqRUkC5wORZe09qq10a+0X972F/KgNQrzPQAAtMT+Q/aPKw+9MqbtPa3uf9wAAAAAAAAAAEC+\nJBKJSEQiIhFRliyrV+tZ3DNPU+V28LCD47SJp+V7jE7348/8ON8j7JIymUxdmCidSce29LYoSBTU\nhZu2pbdFMpFs1mlKjf36cOuHkYlM9Cjs0eaTgxoGcRoLVzWs1T7WVJCoK9YaDUNFfmZqGGKqfe/U\n3m8stNXU82rO/doQF+xMhDwA6BJ+OO2Hccq+p0Tvkt6R6IQTYQAAAAAAAAAAAGi7RCIRhYm/fSS5\nJErq1UujtLNHAtipCXkA0OFePO/FOGi3g/I9BgAAAAAAAAAAAAB0aUIeALSLw0YeFo+c+kj0L+2f\n71EAAAAAAAAAAAAAYKck5AFAizxwygPx+X0/n+8xAAAAAAAAAAAAAGCXI+QBQKPOnHxmfP/E70dp\nUWm+RwEAAAAAAAAAAACAbkHIA4D4/Vm/jyN3PzISiUS+RwEAAAAAAAAAAACAbkvIA6AbuvLQK+Pm\n427O9xgAAAAAAAAAAAAAwHaEPAC6gbs/e3d8cfIX8z0GAAAAAAAAAAAAAJCDkAfALurtr7wdI/uM\nzPcYAAAAAAAAAAAAAEAzCXkA7CLe+vJbMabfmHyPAQAAAAAAAAAAAAC0kpAHsNNJXRcx9ssRS/rn\ne5KuIfW1VCQTyXyPAQAAAAAAAAAAAAC0kU8FA+1mzZo1nbJPMiLe+q+Iye93ynZd0vwL50fm2kxk\nrs0IeAAAAAAAAAAAAADALsIng4F289///d+dut8rd3bqdl1CbbBj/KDx+R4FAAAAAAAAAAAAAGhn\nhfkeANg1pNPp+N73vhdXdPK+/TZHrCvr5E072eJLF8ce/ffI9xgAAAAAAAAAAAAAQAdzkgfQLp54\n4olYsmRJp+877c1O37LT/Ovh/xqZazMCHgAAAAAAAAAAAADQTTjJA2gX3/ve9/Ky75T3Iu7eLy9b\nd5jU11KRTMjgAQAAAAAAAAAAAEB341PEQJtVV1fHb37zm7zsfeBf8rJth9ij3x6RuTYj4AEAAAAA\nAAAAAAAA3ZSTPIA2mzt3bmzdujXfY+zUMtdm8j0CAAAAAAAAAAAAAJBnQh5Am82aNSvfI+y0ln9l\neYzoMyLfYwAAAAAAAAAAAAAAXUAy3wMAO78XXngh3yPsdC6fenlkrs0IeAAAAAAAAAAAAAAAdZzk\nAbSZkzxa5q5pd8U5B5yT7zEAAAAAAAAAAAAAgC5GyANok0wmE4sXL873GDuFI3c/Mv7wD3/I9xgA\nAAAAAAAAAAAAQBcl5AG0SVVVVaTT6XyP0eX976n/G9P2npbvMQAAAAAAAAAAAACALkzIA2iTLVu2\n5HX/IZvyun2zZK7N5HsEAAAAAAAAAAAAAGAnkMz3AABtMWpDvifITcADAAAAAAAAAAAAAGguIQ+g\nTUpLS/M9QpdVc01NvkcAAAAAAAAAAAAAAHYihfkeANi59ejRI5LJZKTT6XyP0qU4wQMAAAAAAAAA\nAAAAaCkneQBtkkgkYs8998z3GF3GLcfdIuABAAAAAAAAAAAAALSKkAfQZlOmTMn3CF3CEbsfEVcc\nekW+xwAAAAAAAAAAAAAAdlJCHkCbHXLIIfkeoUt45h+eyfcIAAAAAAAAAAAAAMBOTMgDaDMneURs\nuHpDvkcAAAAAAAAAAAAAAHZyQh5Am02ePDmKi4vzPUZejO47OjLXZqJ3Se98jwIAAAAAAAAAAAAA\n7OSEPIA2KykpiU9+8pP5HiMvlly2JN8jAAAAAAAAAAAAAAC7CCEPoF1ceOGFedt7zNr87DugbEB+\nNgYAAAAAAAAAAAAAdklCHkC7OP7442PMmDF52fut/4q4+k+dv2/llZWdvykAAAAAAAAAAAAAsMsS\n8gDaRTKZzOtpHt94OmKv1Z23X+baTOdtBgAAAAAAAAAAAAB0C0IeQLs5++yz87r/g//TOfsIeAAA\nAAAAAAAAAAAAHUHIA2g3FRUVed1/QmXH75H6WqrjNwEAAAAAAAAAAAAAuiUhD4AWSCb8sQkAAAAA\nAAAAAAAAdAyfVgZopoe+8FC+RwAAAAAAAAAAAAAAdmFCHgDNcPvxt8dn9/lsvscAAAAAAAAAAAAA\nAHZhQh4AzfDlQ76c7xEAAAAAAAAAAAAAgF2ckAdAE1ZfuTrfIwAAAAAAAAAAAAAA3YCQB0AOK69Y\nGRVlFfkeAwAAAAAAAAAAAADoBoQ8AHIY1HNQvkcAAAAAAAAAAAAAALoJIQ8AAAAAAAAAAAAAAIAu\nQMgDIIsf/N0P8j0CAAAAAAAAAAAAANCNCHkANOIf9/vHOO/A8/I9BgAAAAAAAAAAAADQjQh5ADTi\nR5/5Ub5HAAAAAAAAAAAAAAC6GSEPAAAAAAAAAAAAAACALkDIAwAAAAAAAAAAAAAAoAsQ8gB2Kc//\nsO09Mtdm2t4EAAAAAAAAAAAAAKCFhDyAXcoh70Vkrmv99QIeAAAAAAAAAAAAAEC+CHkAu6S3bsv3\nBAAAAAAAAAAAAAAALSPkAeySxqxv+TU/+LsftP8gAAAAAAAAAAAAAADNJOQB8FfnHXhevkcAAAAA\nAAAAAAAAALoxIQ+AiMhcm8n3CAAAAAAAAAAAAABANyfkAQAAAAAAAAAAAAAA0AUIeQAAAAAAAAAA\nAAAAAHQBhfkeYGezZcuWGDduXCxfvrze48uWLYuRI0d2+jzvv/9+/PGPf4w//vGPMXfu3FizZk2s\nWbMm1q1bF6WlpdG7d+/YfffdY8KECXHQQQfFiSeeGLvttlunz9mYjRs3xp/+9KeYOXNmPP/88/H+\n++/H2rVrY926dVFUVBS9e/eO4cOHx/jx4+Pggw+OE088MUaNGpXvsSOTycRLL70UM2fOjJkzZ8ai\nRYtizZo1sXbt2qipqYlevXpFRUVFjBs3LiZOnBif+tSn4tBDD41kUqaqq5o6fGq+RwAAAAAAAAAA\nAAAAiEQmk8nke4idyY033hjXXnttvccSiUQsXbq000IemUwmHnvssfjWt74Vf/jDH1p8/ZQpU+KS\nSy6JL3zhC1FUVNT+AzZh4cKF8e1vfzvuvvvu2Lx5c4uunTJlSsyYMSM+//nPd3po4oMPPoif/OQn\n8Z3vfCcWLVrUomsHDhwYX/rSl+Liiy+OQYMGddCE7WPBggUxYcKEnGvmz58f48ePb7yYSHTAVK2T\nuK556zZcvSF6l/Tu0FkAAAAAAAAAAAAA6F7a/LlcuiVHC7TA3Llz4+tf/3peZ5g5c2aMHz8+pk+f\n3qqAR0TErFmz4swzz4wxY8bEfffd174D5rB58+a47LLLYvz48fH973+/xQGPiI9mP/XUU+Oggw6K\nWbNmdcCUjXv44Ydj7Nixcdlll7U44BERUVlZGTfeeGPsueeecdttt0U6ne6AKWktAQ8AAAAAAAAA\nAAAAoCsQ8mimDz/8ME499dSorq7Oy/5bt26Nf/mXf4kjjjgiXn/99Xbp+d5778Xpp58exx13XFRW\nVrZLz2zmzZsX++23X3z7299ul36vvPJKHHrooXHLLbe0S79stm7dGmeddVacfPLJsWrVqjb327Rp\nU8yYMSOOOeaYWLNmTTtMSFtV/2t+fk8DAAAAAAAAAAAAADQk5NEMqVQqTjvttHjjjTfysn9VVVVM\nmzYt/uM//iMymUy793/66afjgAMOiLlz57Z774iIl156KT7xiU/E4sWL27VvOp2Of/7nf47zzjuv\nXfvW2rJlS0yfPj3uueeedu/9zDPPxJQpU+Kdd95p9940X+baTBQXFOd7DAAAAAAAAAAAAACAiBDy\naJYLL7wwfvWrX+Vl761bt8bJJ58cTz31VLOvSSQS9X41x3vvvRfHHXdcLFy4sLWjNmru3Llx7LHH\nxrp165q1vqVzR0T86Ec/issvv7y1IzaqpqYmpk2bFr/5zW+atb41r/nSpUvj2GOP7fBTVLqz6a9H\nRPvnogAAAAAAAAAAAAAAOoSQRw6ZTCa+/OUvx1133ZW3GS644IJ44oknmlw3efLk+Ld/+7d49tln\n47333ovq6upYt25dvPHGG3HvvffGWWedFSUlJTl7rF69Oj796U/Hxo0b22X2jRs3xuc+97km+40e\nPTpuuOGGePbZZ2P16tWxbdu22LBhQ8yePTv+8z//MyZNmtTkXrfffnvce++97TJ3RMS//Mu/xO9+\n97uca0pLS+Pss8+ORx55JN5+++2oqqqKLVu2xJIlS+IXv/hFnHLKKVFQUJCzx6JFi+KMM85ot7mp\n75H7Iy57Pt9TAAAAAAAAAAAAAAA0TyKTyfg5941Ip9Nx/vnnx49//OMm1yYSiVi6dGmMHDmyXWd4\n7LHHYtq0aTnXDB8+PL7zne/E9OnTm+z3/vvvx9VXXx333HNPznVnnHFG3H333S2atTGnnHJKPPjg\ng1nrpaWlcdNNN8Ull1zS5OkXDzzwQFx66aWxatWqrGvKy8tj3rx5sfvuu7d65oiIX/3qV02+nied\ndFLccccdMWTIkJzr3nrrrbjggguaDIzccsst8U//9E8tnrUjLFiwICZMmJBzzfz582P8+PGNF1tw\nCktnqElE7HNJxFsVO9Yy1/rjDwAAAAAAAAAAAICO0ebP5dItOcmjER988EGcdNJJzQp4dJQNGzbE\nBRdckHPNkUceGXPmzGlWwCMiYujQofHTn/407rjjjpyhip/97Gcxa9asFs3b0OOPP54z4FFRURF/\n+tOf4tJLL20y4BHxUWBk9uzZMXny5KxrNm3a1OagRFVVVVxyySU511x33XXx4IMPNhnwiIjYY489\n4qmnnoorrrgi57rrr78+VqxY0aJZaZ7CTMQnluV7CgAAAAAAAAAAAACApgl5NLBs2bI49NBD49FH\nH83rHN/73vfiL3/5S9b65MmT49FHH42KikaOJ2jChRdeGN/4xjdyrrnmmmta3LdWKpWKq666Kmu9\nR48e8fjjj8cBBxzQor7Dhg2L3/72tzFu3Lisa375y1/GzJkzW9R3e7fffnssX748a33GjBnxta99\nrUU9E4lE3HzzzTmDHps2bWrTa05u33oy3xMAAAAAAAAAAAAAADRNyGM7v/jFL+KAAw6IBQsW5HWO\nmpqauOOOO7LWe/ToEb/85S+jvLy81XtcddVVcdhhjGaKiQAAIABJREFUh2Wt//a3v80Zdsjl3nvv\nzfkafuMb34iDDjqoVb0rKiri4Ycfjl69emVd8+///u+t6r1x48ac4ZcDDzwwbr755lb1joi4+eab\n44QTTshav/vuu+O9995rdX+y6711x8fWXLWm8wcBAAAAAAAAAAAAAMhByCMiNmzYEGeddVaceuqp\nsX79+nyPEw899FDOD/t/5StfidGjR7d5n69//etZa5lMJu6///5W9c0VUBk/fnxceumlrepba+zY\nsXHDDTdkrT/xxBMxf/78Fve99957Y+PGjY3WEolEfPvb345ksm2/ZX74wx9Gz549G61t27Ytbrvt\ntjb1p3leOu+l6F/aP99jAAAAAAAAAAAAAADU0+1DHvfcc0/svffecc899+R7lDoPPvhg1lpRUVHM\nmDGjXfY57LDDYujQoVnrM2fObHHPV155JV588cWs9auuuqrNQYmIiEsuuSRGjBiRtf7jH/+4xT3v\nvPPOrLVPfOITMXXq1Bb3bGi33XaLL3/5y1nrd999d6RSqTbvQ24H7nZgvkcAAAAAAAAAAAAAANhB\ntw15vPDCC3HEEUfEWWedFatWrcq5NplMxmc/+9lOmizi97//fdbapz71qRgwYEC77XX44Ydnrc2d\nO7fF/X70ox9lrVVUVMSpp57a4p6NKSgoiC996UtZ6z//+c9bFJaYPXt2vPrqq1nrF198cYvmy+VL\nX/pSFBQUNFqrrKyMxx9/vN32AgAAAAAAAAAAAABg59HtQh5z5syJadOmxcc+9rH485//3OT60tLS\nuOeee+Kyyy7rhOki5s+fH5WVlVnr06dPb9f9hgwZkrWWa45sHnrooay16dOnR1FRUYt7ZvOFL3wh\na23VqlXN+v7W+uUvf5m11rNnzzjxxBNbNFsuI0aMiI997GNZ67lOcqH19lqd7wkAAAAAAAAAAAAA\nAHLrdiGPk046KR577LFmrd1zzz3jueeei9NOOy0ymUwHT/aRfv36xTe/+c0466yz4oADDoiysrJI\nJBIREZFIJGLq1Kntul9JSUnWWlVVVYue97x58+Ivf/lL1vpnPvOZFs3WlDFjxsS4ceOy1pv7fY6I\neOKJJ7LWjjvuuJyvU2tMmzYta81JHh3jje9EfG5BvqcAAAAAAAAAAAAAAMiuMN8DdEWJRCLOPffc\nuPXWW6OsrKxT9x42bFjMmDGj3mOLFi2KefPmxWuvvRb77rtvu+73/vvvZ6317NmzLmDSHH/84x+z\n1hKJRBx++OEtmq05jjjiiFi4cGGjtSeffDJuvvnmJnts3LgxXnnllZx7tLdcPVetWhVz5syJ/fff\nv9337e7+3wMR1190Xb7HAAAAAAAAAAAAAABoVLc7yaMpY8eOjaeeeiruvPPOTg94ZDN27Ng4+eST\n41//9V8jmWzfb9myZcuy1oYNG9aiXs8//3zW2l577RX9+vVrUb/mmDJlStbaa6+9Fps3b26yx4sv\nvpjzxJKPfexjrZotl/322y+Kioqy1l944YV235OPXJ45JN8jAAAAAAAAAAAAAAA0Ssjjr8rLy+PG\nG2+MefPmxdFHH53vcTrFypUr49lnn81aP/jgg1vUb86cOVlrHXUqRa6+qVQqXn755SZ75Jo7mUzG\n5MmTWzVbLiUlJTFu3Lis9Zdeeqnd9+QjvY8+Id8jAAAAAAAAAAAAAAA0qtuHPIqKiuK8886LRYsW\nxVe/+tUoLi7O90id5u677450Op21fvzxxze7V01NTbz55ptZ6/vss0+LZmuuPfbYI2f9lVdeabLH\nggULstZGjhwZPXr0aPFczTF27NistebMDQAAAAAAAAAAAADArqXbhjyKiorirLPOioULF8add94Z\ngwcPzvdInWrRokVx3XXXZa337ds3Tj755Gb3W7ZsWdTU1GStd1TIo1evXjFkyJCs9WXLljXZY9Gi\nRVlrHTV3RO6QR3PmBgAAAAAAAAAAAABg11KY7wE62+DBg+O0006Liy++OIYPH57vcfJi+fLlcdJJ\nJ8WWLVuyrrnyyitbdILF0qVLc9ZHjBjR7F4ttdtuu8WKFSsarS1ZsqTJ63PN3tFzZ7Nu3br44IMP\nolevXh22PwAAAAAAAAAAAAAAXUu3C3k8//zzkUgk8j1G3jz55JNx5plnRmVlZdY1Y8eOjRkzZrSo\n77vvvpu1lkgkYujQoS3q1xK5TvJYvnx5zmtrampi5cqVWev5mjsi4u23344JEyZ02P4AAAAAAAAA\nAAAAAHQtyXwP0Nm6a8Djz3/+c3zqU5+KE044IWfAo2fPnvHggw9GSUlJi/pnO0mjVkeGJQYPHpy1\ntmbNmpzXVlZWRjqdzlrP19yZTKbJ2WmDPffM9wQAAAAAAAAAAAAAADvodid57Mq2bNkSRUVFsWHD\nhlizZk3MnTs3Zs2aFQ899FAsWbKkyet79eoVjzzySKtOj8gVSCgpKWlxaKQl+vbtm7W2bt26nNc2\nFaTo169fq2ZqjlxzRzQ9O23w1lsR3/xmxBVX5HsSAAAAAAAAAAAAAIA6Qh67kN133z1Wr17dqmvH\njh0b999/f+y///6tuj5XIKF3796t6tlc5eXlWWsffPBBpNPpSCYbP7SmqSBFR86ea+4IIY8Od+WV\nQh4AAAAAAAAAAAAAQJfS+Cff2elUVVW1KuBRUlISl112WcyZM6fVAY+IiE2bNmWt9erVq9V9m6Op\n/hs3bsxayzV3c3q3RVO9N2zY0GF7AwAAAAAAAAAAAADQ9TjJYxexfPnyFl9TUFAQ3/jGN+KCCy6I\n0tLSNu2/efPmrLW29m5Kjx49cta3bduWtZZr7oiOnb0tcwMAAAAAAAAAAAAAsOtxkscuojUhj1Qq\nFTNmzIiKioo4/fTTY+HCha3ev7q6OmutsLBjs0RN9d+6dWvWWq65m9O7LdoyNwAAAAAAAAAAAAAA\nux4hj13E22+/3eprq6qq4r777ouJEyfG2WefHZs2bWpxj1QqlbWW75BHrhMxcs3dnN5t0Za5aScX\nXJDvCQAAAAAAAAAAAAAA6gh57CIanuSRSCTq/WqOdDodP/3pT+OAAw6IefPmtWj/dDqdtdbRIY+C\ngoKc9Zqamqy1XHMnEokOnb0tc9NOfvCDiBNPzPcUAAAAAAAAAAAAAAARIeSxy+jbt29cdtll8fOf\n/zzmzZsXK1asiK1bt8aqVati/vz5ce+998aZZ54Z/fv3b7LX4sWL4+ijj47XX3+92fvnCkM0dVpG\nWzUVhkgms7/NmwpxdOTsbZmbdvTrX+d7AgAAAAAAAAAAAACAiIjo2CMW6DSXX355o49XVFRERUVF\njBs3Lk477bTYtGlT3HrrrfHNb34zPvjgg6z91qxZE5/85Cdj9uzZMXDgwCb3Ly4uzlrr6BMpmgpi\n5Apy5Jo7k8l06OxtmZt29uMfR/zjP+Z7CgAAAAAAAAAAAACgm3NUQDdTXl4e11xzTbzwwgsxduzY\nnGvffffd+MpXvtKsvrnCEvk+ySPXbLlqEfk9yaOp2WhH55yT7wkAAAAAAAAAAAAAAIQ8uqt99tkn\nZs2aFRMnTsy57r777ovf//73TfYrKSnJWquqqmrxfC3RVP+ePXtmreWauzm926ItcwMAAAAAAAAA\nAAAAsOspzPcA5E+fPn3i0UcfjYMPPjgqKyuzrrv11lvjqKOOytmrb9++WWsffPBBq2dsjqb65wpL\n5Jq7Ob3boi1z59vatWtzvmc6wsCO3iCRiMhkOnoXAAAAAAAAAAAAAPKksz//unbt2k7dj12DkEc3\nN3LkyLj11lvjjDPOyLrm8ccfj/feey+GDRuWdU1FRUXWWj5DHr169YpkMvuBNbnmbqp3WzXVu3//\n/h22d1sdccQRnb5np8Qvbrst4itf6YydAAAAAAAAAAAAAOhkgwYNyvcI0KTsn36n2zjttNNi4sSJ\nWeupVCqeeOKJnD1yhSU+/PDDSKVSrZ6vKevXr89aayrE0VQ9V++2aqp3U7PRAS6/PN8TAAAAAAAA\nAAAAAADdmJAHkUgk4txzz8255oUXXshZbyrVtmrVqhbP1VwrV67MWhsyZEjOa/v16xeFhdkPtMnV\nu61y9U4kEk3ODgAAAAAAAAAAAADArkXIg4iIOP7443PWX3755Zz1MWPGZK1lMplYsWJFq+Zqjly9\nhw8fnvPaRCIRo0aNalXvtmqqd1Oz00EeeyzfEwAAAAAAAAAAAAAA3VT2IwzoVsaOHRt9+/aN9evX\nN1pfvXp1zutHjx6ds/7OO+/E/vvv3+r5cnn33Xez1nIFOGqNGTMmFi9e3OLebZWr94ABA6K0tLTD\n9m6rP/7xj7HPPvs0XmziVJcu7+/+LmLp0ohmvHcAAAAAAAAAAAAA2HmsWrWqU/d7/fXX44gjjujU\nPdn5CXlQZ9CgQVlDHuvWrct57dChQ6O0tDS2bNnSaH3RokVtnq8xGzdujMrKyqz1vfbaq8kee+yx\nR9bam2++2aq5miPXa9KcufOpf//+MXDgwHyP0XFGj47IZPI9BQAAAAAAAAAAAADtqLM//9rZoRJ2\nDcl8D0DXUVFRkbVWVVXV5PUTJ07MWuuosERT4ZHx48c32SPX3EuWLGnxTM2Va/bmzA0AAAAAAAAA\nAAAAwK5FyKOLWrduXcyePTt+8YtfxE033RTnn39+vPjiix26Z7ZTPCIievbs2eT1Bx10UNbaK6+8\n0qqZmvLyyy9nrRUUFMTkyZOb7JFr7qqqqli4cGGrZstly5Yt8frrr2et77///u2+Jy30xBP5ngAA\nAAAAAAAAAAAA6GYK8z0Af7N58+Y44ogj4q233ooNGzbsUB84cGAcfPDBHbb/ypUrs9aaczRRrrDE\nq6++Gtu2bYuioqJWzZbNrFmzstbGjx8fpaWlTfaYOHFiFBcXx9atW3eoZTKZmDVrVowbN65Nczb0\n8ssvRyqVylo/5JBD2nU/WuGEEyIWLIjYd998TwIAAAAAAAAAAAAAdBNO8uhCysrKYtGiRY0GPCIi\nfve733XY3itWrIi1a9dmrY8dO7bJHkceeWTWWnV1dTz33HOtmi2XZ555plXzbK+kpCRnqCLXHq2V\nq2ffvn1jv/32a/c9aYXx4/M9AQAAAAAAAAAAAADQjQh5dDGTJk3KWnvppZdixYoVHbLv448/nrN+\nwAEHNNlj9OjRsddee2Wt/+pXv2rxXLm8+eabsXjx4qz1448/vtm9TjjhhKy1X//61y2aqzlyvRbH\nHXdcu+9HGzRywgsAAAAAAAAAAAAAQEcQ8uhiPv7xj2etpVKp+MlPftIh+z744IM560cddVSz+nz6\n05/OWvvFL34RmUymRXPlct9992Wt9e7dO4455phm98o196pVq+Lpp59u0Wy5LF26NF544YWs9c9+\n9rPtthft4PDDI6qr8z0FAAAAAAAAAAAAANANCHl0MSeeeGLO+l133RXpdLpd93zhhRdynlYxaNCg\nOPLII5vV67TTTstaW758eTz66KMtnq8xW7dujR/84AdZ63//938fxcXFze43adKk2HfffbPW77jj\njhbNl8t3v/vdrGGX/v37x8knn9xue9EOZs2KuOaafE8BAAAAAAAAAAAAAHQDQh5dzGGHHRbDhg3L\nWl+yZEl873vfa7f9UqlUXHHFFTnXnHnmmZFMNu+tcvDBB8fEiROz1r/61a9GKpVq0YyNuf322+P9\n999vtJZIJOL8889vcc9zzjkna+2RRx6J5557rsU9G1q+fHnOwMgZZ5wRJSUlbd6HdnbLLfmeAAAA\nAAAAAAAAAADoBoQ8uphEIhEXXXRRzjVf+9rXYtWqVe2y35VXXhkzZ87MWu/Ro0fMmDGjRT0vvPDC\nrLUFCxbEDTfc0KJ+DS1cuDCuv/76rPWpU6fGfvvt1+K+Z555ZpSVlTVay2Qyce6558bmzZtb3LdW\nOp2Oc845J6qqqhqtFxQUxJe+9KVW96eDJRL5ngAAAAAAAAAAAAAA2MUJeXRBF110UfTv3z9rfd26\ndTFt2rQ2BQ4iIm677ba47bbbcq75p3/6pxgyZEiL+p5zzjkxcuTIrPV/+7d/iwcffLBFPWtVVlbG\nZz/72azPPZFIxE033dSq3hUVFXHppZdmrS9cuDDOOOOMSKfTrep/xRVXxNNPP521fuaZZ8Y+++zT\nqt50kuOPz/cEAAAAAAAAAAAAAMAuTMijC+rTp0+Tp128+OKLceKJJ7bqRI+ampq48MILmzyhY++9\n945rrrmmxf2Liori2muvzVrPZDJx+umnx/3339+ivu+++24cc8wxsWjRoqxrpk2bFocffniL+m7v\nqquuij59+mStP/zww3HaaadFdXV1s3tmMpm44oorcgZqysrK4sYbb2zRrOTBk0/mewIAAAAAAAAA\nAAAAYBcm5NFFXXTRRXHMMcfkXPPMM8/EfvvtF/fdd1+zT5d4+OGHY9KkSXHnnXfmXFdeXh4PPvhg\nFBcXN3vm7Z199tlx1FFHZa1v3bo1Tj/99Ljkkkti48aNTfZ74IEH4sADD4z58+dnXdOnT5+49dZb\nWzVvrX79+jV5uskDDzwQU6dOjdmzZzfZ76233orjjjsuvvWtb+Vc9//Zu/MoOcs6X+C/6iWdnSyE\nhC1EkmgwTWAEgoTFEFBH9sgOKjoOGAc0RxS46FUcPIrCeIWD4CDCMAQEQRAEZWdYjBLWkIUAgSwE\nAkmAkBCSQLq77h/vrdudpKu6q7u63+ruz+ecOrU8z/u831poIKlvPxdeeGHssMMORWUlJZlM2gkA\nAAAAAAAAAAAAgG4qk81ms2mH6AoeeeSRmDJlSrNjmUwmFi9eHCNHjizpOd9+++2YOHFiLFmypMW5\nY8aMiRNOOCEOPfTQGDNmTGy77bZRV1cXK1asiCVLlsT9998fd911V7z44ostrlVdXR233XZbHHHE\nEe3Kv2zZspgwYUKsWbOm4LxtttkmvvrVr8YRRxwREyZMiMGDB8fGjRtj0aJF8eijj8Z//dd/xezZ\nswuukclk4pZbboljjz22XZlzjj322PjTn/7U4rzDDjssTj755Nhvv/1ihx12iIqKilixYkU89dRT\n8cc//jFuvfXWqK+vL7jGkUceGXfeeWdJcpfC/Pnzo7a2tuCcefPmxfjx45sf7CklCD86AQAAAAAA\nAAAAACig3d/LpUdS8milNEoeERELFy6Mgw8+OJYvX17ytZvTq1evmDFjRhx//PElWe/hhx+OL3zh\nC7Fp06aSrJfPOeecE7/4xS9Ktt66devioIMOarFc0l7jxo2Lv//97zFo0KAOPU8xlDyK4McnAAAA\nAAAAAAAAAHkoedAWFWkHoLCxY8fGY489Fp/4xCc6/FyDBw+Oe++9t2QFj4iIKVOmxM033xw1NTUl\nW3NLpS54RET0798/7rnnnpgwYUJJ122qtrY2Hn300bIqeFCkww9POwEAAAAAAAAAAAAA0I0oeXQB\nu+66a8yaNauk5YstHXzwwTFnzpyYPHlyydeeOnVqPPDAA7H99tuXdN3q6ur4+c9/XvKCR87w4cPj\nsccei8MOO6zka0+ZMiUeeeSRGDZsWMnXphP99a8RF12UdgoAAAAAAAAAAAAAoJtQ8iiBbDbb4ecY\nOHBg/OEPf4jbb789xowZU7J1d9lll7jhhhvioYceih133LFk627pgAMOiLlz58Ypp5wSmUym3evt\nvvvuMWvWrDj33HNLkC6/gQMHxt133x1XXnllDBkypN3r9evXLy6//PJ48MEHS7IeZeD73494+um0\nUwAAAAAAAAAAAAAA3YCSRyvligmZTGazS9OxznDMMcfEggUL4sYbb4wDDzywTeeuqqqKgw8+OG66\n6aZ49dVX45RTTumApFsbMmRI3HDDDfHMM8/EKaecEr179y7q+EwmE/vvv3/84Q9/iOeeey723HPP\nDkq6tWnTpsWiRYviwgsvjJEjRxZ9/IgRI+KCCy6IV199Nc4888wOSEiq9tknYtGitFMAAAAAAAAA\nAAAAAF1cJtsZ21DQYVasWBH33XdfzJo1K+bNmxfLli2Ld955JzZs2BAVFRXRt2/fGDZsWIwaNSpq\na2tj3333jUMOOSSGDh2advRYs2ZNPPjgg/Hoo4/GvHnzYtGiRfHee+/F+vXro2/fvjFkyJAYOnRo\n1NbWxgEHHBCf+cxnSrqLSVtls9l44okn4uGHH46nnnoqXnnllXjrrbdi3bp1UVFREYMHD44hQ4bE\nqFGjYtKkSbH//vvHpEmToqqqKu3orTJ//vyora0tOGfevHkxfvz45gc7sfRUdt56K2L48LRTAAAA\nAAAAAAAAAFAG2v29XHokJQ9gM0oe7fTIIxGf+UzaKQAAAAAAAAAAAABImZIHbVGRdgCAbmXy5Ij7\n7ks7BQAAAAAAAAAAAADQBSl5AJTaP/9zxLx5aacAAAAAAAAAAAAAALoYJQ+AjrD77hGZTNopAAAA\nAAAAAAAAAIAuRMkDoCNlMhF1dWmnAAAAAAAAAAAAAAC6ACUPgI5WXR3x+9+nnQIAAAAAAAAAAAAA\nKHNKHgCd4dRTI0aMSDsFAAAAAAAAAAAAAFDGlDwAOsuKFRGZTMS776adBAAAAAAAAAAAAAAoQ0oe\nAJ1t6NCIkSMjGhrSTgIAAAAAAAAAAAAAlBElD4A0LFsWUVkZ8dJLaScBAAAAAAAAAAAAAMqEkgdA\nmsaNi8hkIm69Ne0kAAAAAAAAAAAAAEDKlDwAysEJJyRlj6VL004CAAAAAAAAAAAAAKREyQOgnIwa\nlZQ9li1LOwkAAAAAAAAAAAAA0MmUPADK0ciRSdnjmmvSTgIAAAAAAAAAAAAAdBIlD4By9q//mpQ9\nMpmItWvTTgMAAAAAAAAAAAAAdCAlD4CuYpttkrLHCy+knQQAAAAAAAAAAAAA6ABKHgBdzfjxjbt7\nLF+edhoAAAAAAAAAAAAAoESUPAC6sh13bCx8rFiRdhoAAAAAAAAAAAAAoB2UPAC6ixEjGgsfmUzE\nqlVpJwIAAAAAAAAAAAAAiqDkAdBdbbddY+HjhhvSTgMAAAAAAAAAAAAAtEDJA6An+PKXN9/lo6Eh\n7UQAAAAAAAAAAAAAwBaUPAB6osrKzUsfmUzEXXcpfwAAAAAAAAAAAABAipQ8AEgcddTW5Y877lD8\nAAAAAAAAAAAAAIBOouQBQH5Tpza/68cll0TU16edDgAAAAAAAAAAAAC6FSUPAIp37rkRVVVblz8m\nTIhYvDjtdAAAAAAAAAAAAADQJSl5AFA6c+dG7Lrr1uWPppepUyM2bkw7KQAAAAAAAAAAAACUHSUP\nADrXHXdE9OlTuAiSyURUV0esXp12WgAAAAAAAAAAAADoNEoeAJSnurqIIUNaLoPkLv/6rxGLF0ds\n2pR2cgAAAAAAAAAAAABoEyUPALqHa66J2HXXiF69Wl8MyWQixoyJ+MMfIp58MuLtt9N+FgAAAAAA\nAAAAAAD0YFVpBwCAVL36asRJJ5V2zT33jJgxI2Lw4OTSt29p1wcAAAAAAAAAAACgW1LyAIBSmz07\nYvfdO/ec22wT8dvfJgWT4cOT+wAAAAAAAAAAAAB0KUoeANAdrFkTceKJaaco3tSpEUcfnZRTxoyJ\n6Ncv7UQAAAAAAAAAAAAAqVHyAADS86c/JRfar0+fiFGjksLPP/9zUp456KCI3r0jKioievWKyGaT\nuZlMqlEBAAAAAAAAAACA5il5AAB0Bxs2RCxYkNy+9trkArTO0KER224bMXp0xEcfRey0U8T++0d8\n/ONJOaqmJqJ//4jtt08KVTU1yXHZbFKiqqiI2LgxKVNlMvmLVNns5mNb3m/pcQAAAAAAAAAAoNtT\n8gAAAHq2d95JLi+91PjYddelFgeAbmrcuIi1a5NS4NixEaefnuy69tJLSblwp50i6uoiGhoihgxJ\n5lVURFRXJ+W/TZsiKisby4UffhgxcGByv74+uVRWRlRVNZYF6+qS+013dMvdjtj8dkVFcj9XYmyJ\nUiIAAAAAAABAh1DyAAAAAICO9uKLjbeXLIl44IHUogB0mj/+MWLHHRtLYddfH3HllelmSsM++0TM\nmxexyy4RY8ZEDBuWFP5GjEgKejvtlOwqmM1GjByZ3B42LCn1DRiQFPvWrUtKgP36JeO9eyeFwA8+\nSHYcjEiKfbmiXn19UhCsqWldea8lyn0AAAAAANBplDwAAAAAAIDSO+64tBOUh6eeSq5ffHHz0l8a\nhgxJyhoVFckld3vL602bIt54o+PzjBqVlB97skMPjdhuu+S1b/o+bHlp+nhDQ8TVV3dMnvPOy5+h\nUL7mLuec0/Ycv/hFxO23R8yalX/O2Wcnxammmu5UtqV8Y6++GvGrXxWfsa3+538ad1/Llaeau93e\nsYiI2trW5/r1ryMOPDApI3/vexGDB0f89rcRe+659fvf9HOQu/3RR8mxV18dsddeEdOnR2y7bcvH\nNTfWVH19UnQbOFDZDAAAAIAeI5PNFvrTTqCnmT9/ftS28If+8+bNi/Hjxzc/6A/YAQAAAAAAaKtM\npnBhp6am5eOLOVchGzY0//guuzRffGrpftPH3nln66Lb0KGN5Zh8GhoiXn659c+xWJ/9bET//o33\nm8uSL1+huQ0NEXfeGVFXt/WcL32pcUeqa6/Nn+2rX012uWpN0ew//iM5Z6l9/vMRBx3U+F7+r/9V\neP7Xvx4xefLmr01H3G5oiLjqqoiHH24+xyc/GXHppckuYq0pbjV3+4wzIp58MlmvaVFzr70iXnkl\nYs2a5P6nPx3xuc9FHH54xPDhHfOc8z1WXZ1cCpXhWrrd9NpuZgAAQAm0+3u59EhKHsBmlDwAAAAA\nAAAAoJW22SYpKm3aFLF2bfNzRoyI6NevdeWSYsdefTXZ9aipj30sYtiw1hXR3nsv4rnnts58yCGN\nmfMV11oaq6iIWLq0+QLSN76RFI+ae54tPdaa8aVLI267rfH+178eMXJkceWmptcvvRRx990Rixdv\n/VwiklLTihUR//ZvSfFqn302f/1ac8k9h9ZrE6vbAAAgAElEQVReGhqS9+7JJyNuvTXi1FMj9t03\nYv78iF13jVi5MmLBgoj994+YOLGxBNWay8yZES+8EHHKKRGDBm3+euS7nclEvPZaxPbbJ8+9oSEp\nS330UVLyGzQoec8L7SqYr4TW9L3NfdXN91MAgC5CyYO2UPIANqPkAQAAAAAAAABAl9JcqaZQOaml\nuVvuuJUzZEjEdtu1bleglsZzRZ3m7L9/RJ8++YtHLRVjcrfnzImYN69x3fHjkyLQlqZO3fx5FVNC\nyje2aFHEM89EfPnLSUFq2LCkDDVjRnLM4YcnO0AVKg41d930djYb8cc/Rtx/f8T55ye7TTV9DSoq\nIj78MOL55yPGjk12TqusjOjdu+XPRzGfn9ylvj7iwQeTUtWeezbuDNe/f/LZyWXKd8kVoXLnfvfd\niMGDkzVyO0y1JV82m8zv3btxZ6/c65dbJ1e8A6DklDxoCyUPYDNKHgAAAAAAAAAAAD1UrgjSXJmk\nmPuF1im2VLPl+NNPJ1l32SXZVatpQabp7VyZ5fHHk/kHHhjRq1dyqa5OdrRavDhi3LjGEkw2m4zV\n1yfHtKf4k7v06hVRU5Osl8vY2mObZmhtqaeqauvSUDbbuBvSu+8mmYYPb/75FSqPNXe7ujpi48bk\ndq9ejRlystmI1auTx4YO3fy5Nff82pOl2LnFHrdldmgFJQ/aoqrlKQAAAAAAAAAAAAB0e7lyQ1ew\ndGlx83Nljy0tW9b+LPQsHVU6MTd/uabQ/Zbmfv3rya5f0IUoeQAAAAAAAAAAAAAAtEZDQ9oJKMbx\nxyt50OVUpB0AAAAAAAAAAAAAAABKLpNJOwEUzU4eAAAdYfToiClTki09Dz444stfjqiujqipiejd\nO6KyMtkaEAAAgPRks/n/ciebbbydyUTU12/+/3G539RWWdk4N7debn5lZTKvoSF5rK6u8XZNTcS6\ndRFVVcnc3Pz16yMGDkzWqq5O7ldURHzwQUSfPhGvvx7Rt2+y1nvvRWzcGPHssxFr1iTHLVgQMWRI\n8vj69RFLlkSMHx8xd27ESy8l69bURKxcGTFqVMScOR3xykYcdljE5Zcnzy/32ixfHjFpUsecj8IO\nOyziyCOT96GhoXXXa9ZE/PznHZfpoouSz/bSpRFXXtlx5yl3Rx6ZXGezzV9y70fTyzvvdNw/uxER\ne+zRuhyFHl+2rOPyNdW/f/IzrZBCf4n/9tulzQMAAABA+fEdLbogJQ8AoDijRiWXAw6IOOGEiHHj\nki+dAAAAQFdT6Iu/W45VVua/n5vb9JjceEVF418gbbnGgAFbn7d//83vDxy4+eOf/OTWxxxwwNaP\nlaNddtm8PEP5u+iizjnPFVd0znmgkIaGpEDX9Gd1rshSVZWU53I/0z/8MGLDhmRu7pe5NDREfPRR\nxNq1yZ+XDhyYzPvgg+Q6ImKHHZICXm7tpiXB5u635nahsRNOSMp/rXHhhRHHHBMxYULjYyedFHHO\nOZuXebYshOVuv/hixLRpm695//35jyu0Zu565cqI73yncb0rrtj635Ot1Z5//5x1VlLMjIiYODHi\nuOMKF522fKzQnMsui9i0qfFcZ5yRfE5a8uMft/35FHLMMZsXp5p73fK9li3N/eijiLvuav7YffdN\nSqqbNkU8+GDhjPvvn78Yl7t88EHymewo222XfBYXLWr9Mbm/R2n6mhR7GwAAgLaxkwddUCab9acC\nQKP58+dHbW1twTnz5s2L8ePHNz/oX4bQfsOGRfzqV8kXPXbcMaK2tuXfRgcAAAAAAEDP0FwRpK4u\nKaBlMkkxrW/fiJdfjhgxIpnTp0/rSlv5Hnv55Yhrr43YffektDNnTrLmpz4V8fzzEY8+mpSz9tkn\nYvLkiCOOSHY2b1pAK5S/PeNvvhlx331Jto99bOtSTWvLc7nrt96KmD69xbchfvKTiO23T3blq6tL\nrj/8MCnINfX970f069f8uQrlaO11Nrv5Dmw77xxx4omtK541NCSfl//+762f3ymn5C9T5dvNq7k5\n992X/zXcc8/GYnspPxfz5zcW9HK23TZi6ND8n/FCt+vrk93UAADomlatSv57MCXt/l4uPZKSB7AZ\nJQ9owec/H/GznyV/MD527Na/gRMAAAAAAAAAcloqxGxZ2mntJSIpo3zwQfKlxXffTR7r0yfZaWzF\nimSXpF12SYpIxZR2XnwxKXSNHp38QsKmJbB8u3Bt2BAxa1ZyXFVVxJQpEWvWRFx9dfL36sceG7HN\nNs0f25rrhoaIU09tfF1HjozYb7+Iz30u+a5Ka8pHxZaWli6NuO66pAzVv39jiavY8lhLtxsaIv7P\n/9n8c9O3b8QXv5gU5tqyK1rT24sWJeWnfA4+uPnPYL7PZTGPP/98/vPm9OuX7JTV2s9BNhvx3nub\nr9G7d/I+5QwcmBS0csfkyngA9Exvv50UflOi5EFbVKUdAAA6RSYTcfvtEV/4gl0xAAAAAAAAAOgc\nmUzn/MLM3K4oOcOGtX2tXXdt23EHHrj1Y4cc0vYcWzrllNKt1Vq/+U3nnOeXv+yc85DYsvjU2pJQ\na+Zt2JDs7DRwYHK7d++ktPPhh42lky0vTQspufu5LyRns8nPkIqKtuXatCli3rykZNW/f8Rrr0Us\nW5aUpP7+94jlyyNqayM++cmW12xph6gtH6uvb93rVswOUbnbVVXJ9bp1Ec8+G7HHHslzzPea5h67\n+ebkdRg3LmLhwuR6p52S9yf3Guc+I7lf/Nre55DbOauhoXHtthbT8l1yObPZpGyXux+xedlpzZrk\nsQEDts6eb0cr6A788nK6ICUPALqe6dMjzjsv2f4YAAAAAAAAAABaq6qHfW3yc59r/vGTT+7cHOXg\nd79LO0HX01IZJKKxiFRfn5RMciWf3BfrM5nk8crKxtJJ07UjCpeICu1gVOztzj5O5rYf19L9Yubm\nSlvQhfSw/1oBoGzNnBmx11522QAAAAAAAAAAACgHuR2pKipaN79fv47NA9BDtPKnLgC00bRpEatW\ntbxt4KRJCh4AAAAAAAAAAAAA9Gh28gCgfUaOjDj33IhTT40YNCjtNAAAAAAAAAAAAADQZSl5ANB6\n69bZUg8AAAAAAAAAAAAAOkhF2gEAKDMjRkQsXRrR0BCRzW5+UfAAAAAAAAAAAAAAgA5jJw+Anm71\n6ohBg9JOAQAAAAAAAAAAAAA9np08AHqS669PSh1Nd+dQ8AAAAAAAAAAAAACAsmAnD4DubPvtI+bO\njRg6NO0kAAAAAAAAAAAAAEAL7OQB0N38z/807tKxfLmCBwAAAAAAAAAAAAB0EXbyAOgOGhoiMpm0\nUwAAAAAAAAAAAAAA7WAnD4Cuav36xh07FDwAAAAAAAAAAAAAoMtT8gDoSk49tbHY0adP2mkAAAAA\nAAAAAAAAgBKqSjsAAK2wZk3EwIFppwAAAAAAAAAAAAAAOpCSB0A5q6uLqKxMOwUAAAAAAAAAAAAA\n0Akq0g4AwBZmzozIZpOLggcAAAAAAAAAAAAA9Bh28gAoJ9ls2gkAAAAAAAAAAAAAgJQoeQCUA+UO\nAAAAAAAAAAAAAOjxKtIOANCjvfeeggcAAAAAAAAAAAAAEBFKHgDpePjhpNyxzTZpJwEAAAAAAAAA\nAAAAykRV2gEAepylSyNGjkw7BQAAAAAAAAAAAABQZuzkAdBZHnww2b1DwQMAAAAAAAAAAAAAaIad\nPAA6Wu/eEcuXRwwenHYSAAAAAAAAAAAAAKCM2ckDoCP97W8RGzYoeAAAAAAAAAAAAAAALVLyAOgo\nxx0Xsf/+aacAAAAAAAAAAAAAALqIqrQDAHRLK1dGDBuWdgoAAAAAAAAAAAAAoAtR8gAotdWrIwYN\nSjsFAAAAAAAAAAAAANDFKHkAlFJ9fURFRdopAAAAAAAAAAAAAIAuyDeRAUrl/fcVPAAAAAAAAAAA\nAACANvNtZIBSePzxiP79004BAAAAAAAAAAAAAHRhVWkHAOjyNm2KqPLjFAAAAAAAAAAAAABoHzt5\nALSHggcAAAAAAAAAAAAAUCJKHgDtoeABAAAAAAAAAAAAAJSIkgdAW2WzaScAAAAAAAAAAAAAALoR\nJQ+AtlDwAAAAAAAAAAAAAABKTMkDoFgKHgAAAAAAAAAAAABAB1DyACiGggcAAAAAAAAAAAAA0EGU\nPAAAAAAAAAAAAAAAAMqAkgdAa73xRtoJAAAAAAAAAAAAAIBuTMkDoDUWL47YYYe0UwAAAAAAAAAA\nAAAA3ZiSB0BLvvKViFGj0k4BAAAAAAAAAAAAAHRzSh4Ahey0U8R//3faKQAAAAAAAAAAAACAHkDJ\nA6CQZcvSTgAAAAAAAAAAAAAA9BBKHgAAAAAAAAAAAAAAAGVAyQMgn9ratBMAAAAAAAAAAAAAAD2I\nkgdAPnPmpJ0AAAAAAAAAAAAAAOhBlDwAmtPQEJHJpJ0CAAAAAAAAAAAAAOhBlDwAmqPgAQAAAAAA\nAAAAAAB0MiUPAAAAAAAAAAAAAACAMqDkAbClbDbtBAAAAAAAAAAAAABAD6TkAdCUggcAAAAAAAAA\nAAAAkBIlDwAAAAAAAAAAAAAAgDKg5AGQc999aScAAAAAAAAAAAAAAHowJQ+AiIhevSI+97m0UwAA\nAAAAAAAAAAAAPZiSB0BExIcfpp0AAAAAAAAAAAAAAOjhlDwAAAAAAAAAAAAAAADKgJIHAAAAAAAA\nAAAAAABAGVDyALjpprQTAAAAAAAAAAAAAAAoeQDESSelnQAAAAAAAAAAAAAAQMkD6OGmTk07AQAA\nAAAAAAAAAABARCh5AD3Z6adH3H572ikAAAAAAAAAAAAAACJCyQPoyX7727QTAAAAAAAAAAAAAAD8\nf0oeAAAAAAAAAAAAAAAAZUDJAwAAAAAAAAAAAAAAoAwoeQAAAAAAAAAAAAAAAJQBJQ8AAAAAAAAA\nAAAAAIAyoOQB9EyvvJJ2AgAAAAAAAAAAAACAzSh5AD3PHXdEjB6ddgoAAAAAAAAAAAAAgM0oeQA9\nz9FHp50AAAAAAAAAAAAAAGArSh4AAAAAAAAAAAAAAABlQMkDAAAAAAAAAAAAAACgDCh5AD3LLruk\nnQAAAAAAAAAAAAAAoFlKHkDP8h//kXYCAAAAAAAAAAAAAIBmKXkAPcvUqWknAAAAAAAAAAAAAABo\nlpIH0HMccUREZWXaKQAAAAAAAAAAAAAAmqXkAfQMkyZF3HVX2ikAAAAAAAAAAAAAAPJS8gB6hpkz\n004AAAAAAAAAAAAAAFCQkgcAAAAAAAAAAAAAAEAZUPIAAAAAAAAAAAAAAAAoA0oeAAAAAAAAAAAA\nAAAAZUDJAwAAAAAAAAAAAAAAoAwoeQAAAAAAAAAAAAAAAJQBJQ8AAAAAAAAAAAAAAIAyoOQBdH//\n9m9pJwAAAAAAAAAAAAAAaJGSB9D9XXBB2gkAAAAAAAAAAAAAAFqk5AF0b3fcEbHddmmnAAAAAAAA\nAAAAAABoUVXaAQA6zIYNEb17p50CAAAAAAAAAAAAAKBV7OQBdF8KHgAAAAAAAAAAAABAF6LkAQAA\nAAAAAAAAAAAAUAaUPAAAAAAAAAAAAAAAAMqAkgcAAAAAAAAAAAAAAEAZUPIAAAAAAAAAAAAAAAAo\nA0oeAAAAAAAAAAAAAAAAZUDJAwAAAAAAAAAAAAAAoAwoeQAAAAAAAAAAAAAAAJQBJQ8AAAAAAAAA\nAAAAAIAyoOQBAAAAAAAAAAAAAABQBpQ8AAAAAAAAAAAAAAAAyoCSB9A93Xxz2gkAAAAAAAAAAAAA\nAIqi5AF0P2PGRJx4YtopAAAAAAAAAAAAAACKouQBdC8vvhixcGHaKQAAAAAAAAAAAAAAiqbkAXQv\nn/hE2gkAAAAAAAAAAAAAANpEyQMAAAAAAAAAAAAAAKAMKHkAAAAAAAAAAAAAAACUASUPAAAAAAAA\nAAAAAACAMqDkAQAAAAAAAAAAAAAAUAaUPAAAAAAAAAAAAAAAAMqAkgcAAAAAAAAAAAAAAEAZUPIA\nAAAAAAAAAAAAAAAoA0oeAAAAAAAAAAAAAAAAZUDJAwAAAAAAAAAAAAAAoAwoeQAAAAAAAAAAAAAA\nAJQBJQ8AAAAAAAAAAAAAAIAyoOQBAAAAAAAAAAAAAABQBpQ8AAAAAAAAAAAAAAAAyoCSBwAAAAAA\nAAAAAAAAQBlQ8gC6jwsvTDsBAAAAAAAAAAAAAECbKXkA3ccPfpB2AgAAAAAAAAAAAACANlPyALqH\n5csjKvxIAwAAAAAAAAAAAAC6rqq0AwC0WzabdgIAAAAAAAAAAAAAgHbza+8BAAAAAAAAAAAAAADK\ngJIHAAAAAAAAAAAAAABAGVDyALq28ePTTgAAAAAAAAAAAAAAUBJVaQfoajZs2BC77bZbvPbaa5s9\nvmTJkhg5cmSn51m3bl088sgjMWvWrJgzZ04sXbo03nzzzVi3bl1s3LgxevXqFX379o0RI0bEyJEj\nY8KECbHPPvvEoYceGoMGDer0vE2tXbs2Hn/88Zg5c2Y88cQT8eabb8a7774bq1evjurq6hg4cGDs\ntNNOMX78+Nhnn33i8MMPj1GjRqWaOSIim83G008/HTNnzoyZM2fGwoUL45133ol333036urqYsCA\nATF06NDYbbfdYvfdd4/Pf/7zMWnSpKio0KnqEP37p50AAAAAAAAAAAAAAKAkMtlsNpt2iK7kJz/5\nSVxwwQWbPZbJZGLx4sWdVvLIZrNx1113xe9+97u49957o66urug1KisrY/LkyTFt2rSYOnVqpxYQ\nFixYEJdffnlcf/31sX79+qKOnThxYpx99tlx3HHHdXpp4v3334/rrrsufv3rX8fChQuLOnbYsGEx\nbdq0OPPMM2O77bbroISlMX/+/KitrS04Z968eTE+3w4amUwHpCpg330jnniic88JAAAAAAAAAAAA\nAC1o9/dy6ZFsLVCE559/Pn72s5+lmuGvf/1rTJgwIY455pi4++6721TwiIior6+Phx56KI4//vio\nra2Nu+++u8RJt7Z+/fqYPn16jB8/Pv7zP/+z6IJHRMSTTz4ZJ510Uuy9997x5JNPdkDK5t1xxx0x\nduzYmD59etEFj4iIVatWxU9+8pMYM2ZMXHrppdHQ0NABKQEAAAAAAAAAAAAA6MqUPFrpgw8+iJNO\nOik+/PDDVM6/bt26OPXUU+OII46I+fPnl3TtF198MY466qj4yle+Eh988EFJ186ZO3du7LnnnnH5\n5ZeXZL3Zs2fHpEmT4pJLLinJevl89NFHcdppp8UXv/jFWLlyZbvXW7duXZx99tlxyCGHxDvvvFOC\nhAAAAAAAAAAAAAAAdBdKHq1QX18fJ598crz00kupnH/ZsmWx7777xk033dSh57nhhhviwAMPjDff\nfLOk6z799NMxefLkeOWVV0q6bkNDQ5x33nlx+umnl3TdnA0bNsRRRx0VM2bMKPnajz76aEycODGW\nLVtW8rUBAAAAAAAAAAAAAOialDxa4Zvf/GbcfffdqZz7jTfeiM985jOxYMGCVh+TyWS2urTW7Nmz\nY8qUKbFq1aq2xN3K888/H4ceemisXr26VfPbkvmaa66J73znO22N2Ky6uro48sgj4/7772/V/La8\n3osXL45DDz20ZK81AAAAAAAAAAAAAABdm5JHAdlsNr797W/H7373u1TOv3Hjxjj66KNjyZIlLc7d\neeed45vf/Gbcfvvt8cILL8SqVavio48+ipUrV8b8+fPjhhtuiK997WsxaNCgFtd66aWX4uijj45N\nmza1K//atWvj2GOPjbVr1xac97GPfSwuvPDC+Pvf/x5vv/12bNq0KdasWRPPPPNM/PKXv4wJEya0\neK7LLrssbrzxxnblber888+Phx9+uOCcPn36xNe+9rW48847Y+nSpbFx48bYsGFDLFq0KG655ZY4\n/vjjo7KysuAaCxcujC996Uslyw0AAAAAAAAAAAAAQNeVyWaz2bRDlKOGhoY444wz4tprr21xbiaT\nicWLF8fIkSNLmuG73/1u/OpXvyo4Z8cdd4wf/vCH8S//8i9RVVXV4prvv/9+XH755fHTn/40NmzY\n0OL5L7nkkqIyN3X88cfHbbfdlne8T58+8fOf/zzOOuusFne/uPXWW+Nb3/pWrFy5Mu+c/v37x9y5\nc2OXXXZpc+aIiLvvvjuOOuqognOmTp0aV1xxRYwYMaLgvFdffTW+8Y1vtFgYueSSS+K73/1u0Vk7\nwvz586O2trbgnHnz5sX48eObHyxiF5aS2HffiCee6NxzAgAAAAAAAAAAAEAL2v29XHokO3k04/33\n34+pU6e2quDRUebMmROXXnppwTkHHXRQPPfcc3HGGWe0quARETFgwID4/ve/H//4xz9i9OjRBede\neuml8fzzz7c6c1P33HNPwYLH0KFD4/HHH49vfetbLRY8IpLCyDPPPBN77LFH3jnr1q1rd1Fi48aN\ncdZZZxWc8+Mf/zhuu+22FgseERGjR4+OBx54IL73ve8VnPfv//7v8dZbbxWVFQAAAAAAAAAAAACA\n7kXJYwtLliyJSZMmxV133ZVqjh/96EdRaJOVQw89NB566KHYdttt27T+hAkT4m9/+1vB3Ufq6+vj\nggsuKHrt+vr6OPfcc/OO9+7dO+6555741Kc+VdS6O+64Yzz44IOx22675Z1z++23x8yZM4tat6nL\nLrssXnvttbzjZ599dvzoRz8qas1MJhMXX3xxwaLHunXr4oc//GFR6wIAAAAAAAAAAAAA0L0oeTRx\nyy23xKc+9amYP39+qjkWLVoUf/7zn/OOjxo1Km6++eaorKxs13mGDx8ef/nLX6J379555/z5z3+O\nRYsWFbXujTfeWPA1vOiii2Lvvfcuas2coUOHxh133BEDBgzIO+enP/1pm9Zeu3ZtXHTRRXnH99pr\nr7j44ovbtHZExMUXXxxf+MIX8o5ff/318cYbb7R5fQAAAAAAAAAAAAAAujYlj4hYs2ZNnHbaaXHS\nSSfFe++9l3acuO666wqOX3zxxTFkyJCSnGv8+PExffr0gnNuuummota84oorCp7vW9/6VlHrbWns\n2LFx4YUX5h2/9957Y968eUWve+ONN8batWubHctkMnH55ZdHRUX7/pG5+uqro1+/fs2Obdq0KS69\n9NJ2rQ8AAAAAAAAAAAAAQNfV40seM2bMiE984hMxY8aMtKP8f3feeWfesXHjxsVxxx1X0vOdf/75\nUVNTk3f8gQceaPVas2fPjqeeeirv+LnnntvuokRExFlnnRU777xz3vFrr7226DWvuuqqvGOTJ0+O\nT3/600WvuaUddtghvv3tb+cdv/7666O+vr7d5wEAAAAAAAAAAAAAoOvpsSWPWbNmxUEHHRSnnXZa\nrFy5suDcioqKOOaYYzol14oVK2Lu3Ll5x0899dSSn3PgwIExZcqUvONPP/10q9e65ppr8o4NHTo0\nTjrppKKy5VNZWRnTpk3LO/773/++qLLEM888E3PmzMk7fuaZZxaVr5Bp06ZFZWVls2OrVq2Ke+65\np2Tn6hF22y3tBAAAAAAAAAAAAAAAJdHjSh7PPfdcHHnkkbHffvvF3/72txbn9+nTJ2bMmBHTp0/v\nhHRRcBeMiIiDDz64Q847efLkvGMbNmyI119/vVXr/OlPf8o7dtRRR0V1dXWx0fI68cQT846tXLmy\nVe9vzu233553rF+/fnH44YcXla2QnXfeOfbbb7+847fddlvJztUj/O//nXYCAAAAAAAAAAAAAICS\n6HElj6lTp8Zf/vKXVs0dM2ZM/OMf/4iTTz45stlsBydLFNpNoqKiIiZOnNgh5x0xYkTesWw2G2+/\n/XaLa8ydOzeWL1+ed/zoo49uU7Z8dt1119itwC4OrX2fIyLuvffevGOf/exno6ampqhsLTnyyCPz\njtnJo0ijR6edAAAAAAAAAAAAAACgJHpcyaM1MplMnH766TF79uyYMGFCp5578eLFeccGDhwYVVVV\nHXLegQMHFhxfv359i2s89thjeccymUwceOCBRedqyUEHHZR37L777mvVGmvXro3Zs2e36RxtVWjN\nlStXxnPPPVfyc3ZLV16ZdgIAAAAAAAAAAAAAgJLpmMZAFzZ27Nj4zW9+E1OmTEnl/GeddVZMnjw5\nli9fHsuXL4833ngjli9fHq+//nr069evw867YsWKguN9+vRpcY0nnngi79jHP/7xGDx4cNG5WjJx\n4sS46qqrmh174YUXYv369dG3b9+Cazz11FMFd2rZb7/92pWxOXvuuWdUV1fHpk2bmh2fNWtW/NM/\n/VPJz9utXHJJxDe/mXYKAAAAAAAAAAAAAICSUfL4f/r37x/nnXdenHPOOdGrV6/Ucuyxxx6xxx57\ndPp5lyxZkncsk8nEkCFDWlyj0O4THVVYKLRufX19PPvss3HAAQcUXKNQ7oqKig55P2pqamK33XaL\nOXPmNDv+9NNPl/yc3UqBUg4AAAAAAAAAAAAAQFdVkXaAtFVXV8fpp58eCxcujB/84AepFjzSdP/9\n9+cdq6mpiZEjRxY8vq6uLl5++eW84+PGjWtztkJGjx5dcHz27NktrjF//vy8YyNHjozevXsXnas1\nxo4dm3esNbkBAAAAAAAAAAAAAOheemzJo7q6Ok477bRYsGBBXHXVVTF8+PC0I6Vm+fLl8eyzz+Yd\n33333SOTyRRcY8mSJVFXV5d3vKNKHgMGDIgRI0bkHS+0Q0nOwoUL8451VO6IwiWP1uQGAAAAAAAA\nAAAAAKB7qUo7QGcbPnx4nHzyyXHmmWfGTjvtlHacsnDZZZcVHD/kkENaXGPx4sUFx3feeeeiMhVj\nhx12iLfeeqvZsUWLFrV4fKHsHZ07n9WrV8f7778fAwYM6LDzAwAAAAAAAAAAAABQXnpcyeOJJ55o\ncVeKnuS9996L3/zmN3nHM5lMfPGLX2xxnddff73gGttvv32b8rVGoZ08XnvttYLH1tXVxYoVK/KO\np5U7ImLp0qVRW1vbYecHAAAAAAAAALJq83sAACAASURBVAAAAKC8VKQdoLMpeGzu/PPPj3Xr1uUd\n32233WLvvfducZ18O2nkdGRZYvjw4XnH3nnnnYLHrlq1KhoaGvKOp5U7m822mB0AAAAAAAAAAAAA\ngO6lx5U8aPT444/HVVddVXDOueee26q1ChUSampqoqampqhsxRg0aFDesdWrVxc8tqUixeDBg9uU\nqTUK5Y5oOTsAAAAAAAAAAAAAAN2LkkcPtWbN/2XvXqOsLM/7Ad97OAgIA+IBzIoEiBgUsaCxikTS\nYKSIsUJYDXIILEtNNIJJjbF10USDriYmLtGoWA+IBk1pAFdcUuIJKzQW1CCQSDGigwEPHAKCDshp\nZv8//Gvqgffdc9h79svMda3FF+9n38/PAf20fzw74+KLL049c8IJJ8SECRPqtC+tkFBZWVmvbPXV\nsWPHxNl7772X+lJHoSJFKbOn5Y5Q8gAAAAAAAAAAAAAAaGmUPFqgmpqaGD9+fFRVVSWeyeVycfvt\nt0dFRd3+iFRXVyfOOnXqVO+M9VFo/7vvvps4S8tdl92NUWj3zp07S3Y3AAAAAAAAAAAAAADZo+TR\nAn3729+ORYsWpZ75+te/Hl/+8pfrvHP37t2Js/bt29d5T0O0a9cudb5///7EWVruiNJmb0xuAAAA\nAAAAAAAAAACaHyWPFua6666LmTNnpp45/vjj44477qjX3r179ybOWrduXa9d9VVo/759+xJnabnr\nsrsxGpMbAAAAAAAAAAAAAIDmR8mjBbnxxhtj+vTpqWc6duwY8+fPj8MPP7xeu2tqahJn5S55pL2I\nkZa7LrsbozG5AQAAAAAAAAAAAABofpQ8Wogf/ehHcc0116SeqaioiDlz5sQpp5xS7/21tbWJs1KX\nPFq1apU6P3DgQOIsLXculytp9sbkBgAAAAAAAAAAAACg+Sntt+/JhGnTpsWPfvSj1DO5XC5mzJgR\nF154YYPuSCtDFHoto7EKlSEqKpK7TIVKHKXM3pjcAAAAAAAAAAAAAAA0P0oezVhtbW1MnTo17rzz\nzoJnf/jDH8bUqVMbfFfbtm0TZ6V+kaJQESOtyJGWO5/PlzR7Y3IDAAAAAAAAAAAAAND8+BZ5M7V3\n794YP358PPzwwwXP/uAHP4h//ud/btR9aWWJcr/kkZYtbRZR3pc8CmUDAAAAAAAAAAAAAKB5UfJo\nhrZv3x4jR46M3/zmN6nncrlc3HDDDXHNNdc0+s7DDjsscbZnz55G709TaP/hhx+eOEvLXZfdjdGY\n3OW2ffv22Lp1a5PeeXST3gYAAAAAAAAAAABAc9PU33/dvn17k95H86Dk0cy89tprMWLEiFi3bl3q\nuYqKirjllltiypQpRbm3S5cuibP33nuvKHc0dH9aWSItd112N0ZjcpfbkCFDmvzOfJPfCAAAAAAA\nAAAAAEBzcswxx5Q7AhSk5NGMLFmyJEaPHl2w8dWmTZuYPXt2jBs3rmh3H3nkkYmzcpY8OnXqFBUV\nFYnztNyFdjdWod1du3Yt2d0AAAAAAAAAAAAAAGRP8rffOaTMmjUrzj333IIFj44dO8ajjz5a1IJH\nRHpZYteuXVFTU1PU+z5sx44dibNCJY5C87TdjVVod6FsAAAAAAAAAAAAAAA0L0oeh7ja2tq4+uqr\n45JLLokDBw6knu3evXs888wzMWzYsKLnKPR00ZYtW4p+5wc2b96cOOvevXvqZ4844oho3Tr5QZu0\n3Y2VtjuXyxXMDgAAAAAAAAAAAABA85L87XYyb9euXTFhwoR45JFHCp498cQT49e//nX06NGjJFl6\n9+6dOMvn87Fp06Y49thjS3L3pk2bEmef/vSnUz+by+WiZ8+e8eqrr9Z7d2MV2l0oezktXbo0+vbt\ne/BhgcIPAAAAAAAAAAAAAJRDKf/i+oN5+eWXY8iQIU16J4c+JY9D1ObNm2PEiBGxcuXKgmfPOeec\nWLBgQVRWVpYsT69evVLnGzdujIEDB5bk7jfeeCNx1rNnz4Kf7927d2LJI213Y6XtPuqoo6J9+/Yl\nu7uxunbtGkcffXS5YwAAAAAAAAAAAABAnTX191+bulRC81BR7gDUX1VVVQwePLhOBY/JkyfHY489\nVtKCR0TEsccem1pKWLduXUnufffdd2Pr1q2J8xNOOKHgjs9+9rOJs1deeaVBueoi7WdSl9wAAAAA\nAAAAAAAAADQvSh6HmNWrV8fgwYOjqqoq9VxFRUX85Cc/iXvuuSdatWrVJNn69++fOCtVWaJQeaRf\nv34Fd6TlLvRzboy07HXJDQAAAAAAAAAAAABA86LkcQhZuXJlDB06NDZv3px67vDDD4/58+fHVVdd\n1UTJ/r/Pf/7zibNVq1aV5M4XX3wxcdaqVav4i7/4i4I70nLv2bMn1q5d26Bsad5///14+eWXE+cD\nBw4s+p0AAAAAAAAAAAAAAGSbksch4sUXX4xzzjkn3nnnndRz3bt3j2eeeSZGjhzZRMn+T1pZ4ne/\n+13s37+/6Hc+//zzibN+/fpF+/btC+7o379/tG3b9qCzfD6fekdDvfjii1FTU5M4P+OMM4p+JwAA\nAAAAAAAAAAAA2abkcQj4wx/+EMOGDYsdO3aknjvxxBNj+fLlcdpppzVRso/64he/mDjbu3dvLFu2\nrOh3LlmypEF5Puywww5LLVWk3dFQaTu7dOkSAwYMKPqdAAAAAAAAAAAAAABkm5JHxr311lvx13/9\n17F9+/bUc4MHD45nn302evTo0UTJPqlXr15xwgknJM4XLlxY1PteeeWVePXVVxPnw4cPr/Ou8847\nL3G2aNGieuWqi7Sfxbnnnlv0+wAAAAAAAAAAAAAAyD4ljwzbu3dvjBw5MjZs2JB67vzzz4+nnnoq\nunTp0kTJko0YMSJx9stf/jLy+XzR7vq3f/u3xFllZWWcc845dd6VlnvLli2xePHiemVLs379+nju\nuecS5yNHjizaXQAAAAAAAAAAAAAAHDqUPDLsiiuuiN/+9repZ0aPHh2/+tWv4rDDDmuiVOnGjh2b\nONuwYUM8+uijRbln3759cffddyfOx40bF23btq3zvlNOOSVOOumkxPkdd9xRr3xpZs6cmVh26dq1\na3z1q18t2l0AAAAAAAAAAAAAABw6lDwy6pFHHol77rkn9czQoUNj7ty50apVqyZKVdjpp58e/fv3\nT5xPmzYtampqGn3PrbfeGm+//fZBZ7lcLr7xjW/Ue+fkyZMTZ4888kgsW7as3js/bsOGDamFkQkT\nJmSmsAMAAAAAAAAAAAAAQNNS8sigd955Jy699NLUMyeddFI8/PDDmSp4fOCyyy5LnK1ZsyamT5/e\nqP1r166NH/7wh4nzM888MwYMGFDvvRMnTowOHTocdJbP5+Pv//7vY/fu3fXe+4Ha2tqYPHly7Nmz\n56DzVq1aFfx9BwAAAAAAAAAAAACg+VLyyKDrrrsuNm/enDjv0KFDLFiwICorK5swVd1Nnjw5evTo\nkTi/4YYbYsGCBQ3avXXr1hg5cmRi2SKXy8WPf/zjBu0+8sgjY+rUqYnztWvXxoQJE6K2trZB+6+6\n6qpYvHhx4nzixInRt2/fBu0GAAAAAAAAAAAAAODQp+SRMVVVVfGv//qvqWduvPHG+NznPtdEieqv\nTZs2ce211ybO8/l8jB8/PubOnVuvvW+88Uacc845sW7dusQzF1xwQZx99tn12vthV199dXTu3Dlx\n/qtf/SrGjh0be/furfPOfD4fV111Vdxyyy2JZzp06BDXX399vbICAAAAAAAAAAAAANC8KHlkzE03\n3RT79+9PPTN16tSoqKho0l8PPPBAvf49Lr744vjSl76UON+3b1+MHz8+pkyZEu+++27BffPmzYvT\nTjstXnrppcQznTt3jhkzZtQr58cdccQRqWWMD7KceeaZsWLFioL7XnvttTj33HPj5ptvTj03ffr0\n+NSnPlWvrAAAAAAAAAAAAAAANC9KHhmyc+fO+PnPf17uGAeVy+Xq/Zn7778/9VWMfD4fM2fOjM98\n5jPxD//wD7F48eLYunVrHDhwIKqrq+N3v/td3HbbbXHqqafGmDFjYuvWran57r333ujVq1e9c37c\npEmTYtSoUalnVq9eHaeffnp85StfiYceeiiqqqpiz549sW/fvti4cWM8/PDDMW7cuOjbt288/fTT\nqbsuuOCCuPLKKxudGwAAAAAAAAAAAACAQ1vrcgfg/yxcuDB2795d7hhFc9xxx8WCBQvivPPOS32d\nZOfOnXHrrbfGrbfe2uC7rrrqqhg9enSDP/9xDzzwQKxfvz5WrVqVem7RokWxaNGiBt/Tt2/fer+S\nAgAAAAAAAAAAAABA8+Qljwx57LHHyh2h6IYOHRpz586Nww47rGR3fO9734sbb7yxqDs7duwYv/71\nr+OUU04p6t4PO/nkk2PJkiXRpUuXkt0BAAAAAAAAAAAAAMChQ8kjQ5YsWVLuCCUxatSoePLJJ+PY\nY48t6t42bdrEj3/846IXPD7QrVu3WLp0aYwYMaLou4cOHRrPPPNMHH300UXf3ezNnFnuBAAAAAAA\nAAAAAAAAJaHkUQT5fL4oO95+++0ipMmmL3zhC/H73/8+xo0bF7lcrtH7+vfvH88991xcffXVRUiX\nrLKyMhYuXBgzZ86Mrl27Nnrf4YcfHrfddls89dRTRdnXIn3zm+VOAAAAAAAAAAAAAABQEkoedfRB\nMSGXy33k14dnjbFt27aoqan5xP6s/CqGrl27xoMPPhgrVqyIcePGRbt27er1+VwuF4MHD45///d/\nj5UrV8aAAQOKkqsuLr300qiqqorp06dHjx496v357t27x7XXXhuvvfZaXH755SVI2EJs2hRR4X9b\nAAAAAAAAAAAAAEDzlMsX4xkKaICdO3fGU089FUuWLImXXnopqqqqYseOHbF79+7o0KFDdO3aNY48\n8sg4+eST4wtf+EJ88YtfjOOPP77csSOfz8fy5cvj6aefjhdeeCFeffXV2LRpU1RXV0dFRUUcccQR\n0bVr1+jZs2ecddZZMXjw4DjrrLOidevW5Y5eJ2vWrImTTz459cxLL70U/fr1O/iwSKWgj3j88Yhh\nw4q/FwAAAAAAAAAAAABKpNHfy6VFOjS+dU6z1Llz5xg9enSMHj263FHqJZfLxaBBg2LQoEHljtIy\nDB+u4AEAAAAAAAAAAAAAtAgV5Q4AAAAAAAAAAAAAAACAkgcAAAAAAAAAAAAAAEAmKHkAAAAAAAAA\nAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAA\nAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABA\nBih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAA\nAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAA\nAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABk\ngJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAA\nAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAA\nAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgeQbfl8uRMAAAAAAAAA\nAAAAADQJJQ8g25Q8AAAAAAAAAAAAAIAWQskDyLba2nInAAAAAAAAAAAAAABoEkoeQLYpeQAAAAAA\nAAAAAAAALYSSB5BtSh4AAAAAAAAAAAAAQAuh5AFkm5IHAAAAAAAAAAAAANBCKHkA2VZTU+4EAAAA\nAAAAAAAAAABNQskDyDYveQAAAAAAAAAAAAAALYSSB5BtSh4AAAAAAAAAAAAAQAuh5AFkm5IHAAAA\nAAAAAAAAANBCKHkA2abkAQAAAAAAAAAAAAC0EEoeQLYpeQAAAAAAAAAAAAAALYSSB5BtNTXlTgAA\nAAAAAAAAAAAA0CSUPIBs85IHAAAAAAAAAAAAANBCKHkA2abkAQAAAAAAAAAAAAC0EEoeQLYpeQAA\nAAAAAAAAAAAALYSSB5BtSh4AAAAAAAAAAAAAQAuh5AFkm5IHAAAAAAAAAAAAANBCKHkA2VZTU+4E\nAAAAAAAAAAAAAABNQskDyDYveQAAAAAAAAAAAAAALYSSB5BtSh4AAAAAAAAAAAAAQAuh5AFkm5IH\nAAAAAAAAAAAAANBCKHkA2abkAQAAAAAAAAAAAAC0EEoeQLYpeQAAAAAAAAAAAAAALYSSB5BtNTXl\nTgAAAAAAAAAAAAAA0CSUPIBs85IHAAAAAAAAAAAAANBCKHkA2abkAQAAAAAAAAAAAAC0EEoeQLYp\neQAAAAAAAAAAAAAALYSSB5BtxxxT7gQAAAAAAAAAAAAAAE1CyQPItlGjyp0AAAAAAAAAAAAAAKBJ\nKHkA2Xb++eVOAAAAAAAAAAAAAADQJJQ8gGwbMqTcCQAAAAAAAAAAAAAAmoSSB5Bd3/lORC5X7hQA\nAAAAAAAAAAAAAE1CyQPIpr/7u4gZM8qdAgAAAAAAAAAAAACgybQudwCAj1i/PqJHj4gKHTQAAAAA\nAAAAAAAAoGVR8gCypWfPcicAAAAAAAAAAAAAACgLf1U+AAAAAAAAAAAAAABABih5AAAAAAAAAAAA\nAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAA\nAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYo\neQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAA\nAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAA\nAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICS\nBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAA\nAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAA\nAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5\nAAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAA\nAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAA\nAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIH\nAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAA\nAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAA\nAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkA\nAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAA\nQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAA\nAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcA\nAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAA\nZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAA\nAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAA\nAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABA\nBih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAA\nAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAA\nAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABk\ngJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAA\nAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAA\nAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAG\nKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABrQud4Dm4v33348TTzwxNmzY8JF//vrrr0eP\nHj3KlOr/fO1rX4v58+d/5J/Nnj07Jk2aVKZEEX/6059i6dKl8eyzz8bzzz8fW7ZsiW3btsXOnTuj\nXbt20alTp+jZs2f069cvBg0aFOeff35069atbHk/cODAgVi+fHk8++yz8eyzz8b69etj+/btsX37\n9sjn89GpU6c45phj4qSTTooBAwbE8OHD47TTTit3bAAAAAAAAAAAAAAAMk7Jo0huuummTxQ8crlc\nmdJ81H/91399ouARUb58zz//fPzsZz+LefPmxf79+w96ZteuXbFr167YtGlTLF++PGbNmhW5XC6G\nDh0a3/3ud2P48OFNnDpi69atcffdd8edd94Zb731VuK5bdu2xbZt22Lt2rWxYMGC+P73vx89evSI\nqVOnxje+8Y3o1KlTE6YGAAAAAAAAAAAAAOBQUVHuAM3B6tWr41/+5V/KHeOgqqurY/LkyeWOERER\n27dvj3HjxsWZZ54Zv/jFLxILHkny+XwsXrw4RowYEUOHDo0//OEPJUr6SXfffXd89rOfje9///up\nBY8kGzZsiO9973vRp0+fePDBB0uQEAAAAAAAAAAAAACAQ52SRyPt2rUrLrrooti7d2+5oxzUt771\nrXj11VfLHSOeeeaZ6NevX8ydO7do+wYOHFjywsSOHTti+PDhcemll0Z1dXWj923ZsiUmTpwYY8aM\niffff78ICQEAAAAAAAAAAAAAaC6UPBqhpqYmxo4d26QvStTHT37yk0y8GrFo0aI477zzYvPmzUXd\nu2fPnpg4cWLccMMNRd37gW3btsXQoUPjiSeeKPruefPmxZAhQ2Lnzp1F3w0AAAAAAAAAAAAAwKFJ\nyaMRLrvssli4cGG5YxzUgw8+GP/0T/9U7hjx+OOPx6hRo+r80kkul/vzr7r6wQ9+ELfeemtDIx7U\ne++9F3/1V38Vq1atqtP5D+eua/YVK1bE+eef70UPAAAAAAAAAAAAAAAiQsmjQfL5fFxxxRVx7733\nljvKQc2dOzcuvvjicseIjRs3xvjx42P//v2p5/r37x833XRTrFixInbs2BH79++Pd955J5YtWxbX\nX3999O7du+Bd3/3ud2Pp0qXFih6TJ0+ONWvWpJ7p3LlzTJkyJR577LF48803Y9++fbFr1654+eWX\n44EHHojhw4cXvOe///u/Y+rUqcWKDQAAAAAAAAAAAADAIUzJo55qa2vjkksuidtvv73cUQ5q9uzZ\nMX78+KipqSlrjpqamvja174W27dvTzxz5JFHxkMPPRSrV6+OK6+8MgYOHBidOnWKioqKqKysjDPO\nOCOmTZsWr7zyStxxxx3RsWPHxF21tbUxfvz4ePfddxud/Y477oj58+ennvnmN78Zf/zjH+NnP/tZ\nDBs2LLp37x6tWrWKdu3aRZ8+feLrX/96LFq0KFasWBEDBw5M3XXffffFggULGp0bAAAAAAAAAAAA\nAIBDm5JHPbz33nsxatSouO+++8od5RPy+XxMnz49Jk+eHPl8vtxx4u67747nnnsucd67d+944YUX\nYuzYsQV3VVRUxGWXXRbLli2LHj16JJ578803Y/r06Q3K+4EtW7bENddckzhv1apVzJo1K+68886o\nrKwsuG/gwIGxbNmyGDduXOq5K6+8Mt5///165wUAAAAAAAAAAAAAoPlQ8qij119/Pc4666x49NFH\nyx3lE3bv3h1jxoyJ6667rtxRIuL/l2HSshx11FGxePHi6NmzZ7329uvXL55++uno3r174pnbbrst\n1q9fX6+9H3bttddGdXV14nzGjBlx8cUX12tn27ZtY86cOTFmzJjEMxs3boybb765XnsBAAAAAAAA\nAAAAAGhelDzq4Je//GWceuqpsWbNmnJH+YRVq1bF6aefHvPnzy93lD+bMWNGbN26NXF+zz33xGc+\n85kG7e7du3fMmzcvWrdufdD5/v3746c//WmDdldVVcW9996bOB85cmRMmTKlQbtzuVzMnj07BgwY\nkHjmlltu8ZoHAAAAAAAAAAAArPSwxQAAIABJREFUAEALpuSRYufOnTFp0qS46KKLYseOHeWO8xG1\ntbXx05/+NM4444xYu3ZtueP82YEDB+Kuu+5KnA8bNiwuvPDCRt0xePDguPzyyxPn999/f/zpT3+q\n99677rorampqDjpr165dzJgxo947P75j1qxZUVFx8P/stm3bFvfdd1+j7gAAAAAAAAAAAAAA4NCl\n5JFgzpw58bnPfS7mzJlT7iifsHz58jj99NPjH//xH2P//v3ljvMRCxcujLfffjtxPm3atKLcc+21\n10aHDh0OOtuzZ0/84he/qNe+ffv2xezZsxPnY8eObfDrIx82cODAGDNmTOJ81qxZjb4DAAAAAAAA\nAAAAAIBDk5LHxzz33HMxZMiQmDRpUmzZsiX1bEVFRYwcObKJkkVs3LgxJk+eHGeddVasXLmy4Pmv\nfvWrTZDqo9JKCieffHKcffbZRbmnS5cuMX78+MT5z3/+83rte/TRRxNf/8jlcqkvh9TXlClTEmer\nVq2Kl156qWh3AQAAAAAAAAAAAABw6FDy+F8rV66MCy64IAYNGhS/+c1vCp5v3759zJkzJ7797W+X\nPNvbb78dV1xxRfTp0yf1tYkP5HK5+M53vhPz5s0rebYPq66ujieffDJx/rd/+7dFvS/tRYwXX3wx\n/vjHP9Z518MPP5w469WrV5x66qn1ypZm0KBBcdxxxyXOFyxYULS7AAAAAAAAAAAAAAA4dCh5/K9R\no0bFf/zHf9Tp7PHHHx/Lli2LsWPHRj6fL3GyiGuuuSZuv/322LdvX8GznTp1ioceeihuvvnmyOVy\nJc/2Yf/5n/+ZmvHCCy8s6n1DhgyJysrKxHldfz/z+Xw88cQTifO/+Zu/qXe2Qr7yla8kzuqaGwAA\nAAAAAAAAAACA5kXJox5yuVxccsklsWrVqjjllFPKHecTzj777Fi9enVcdNFFZbl/6dKlibMuXboU\n/WfWunXrGDRoUOL88ccfr9Oe//mf/4lt27YlzocMGVLvbIWk7VyxYkVqHgAAAAAAAAAAAAAAmicl\njzrq06dPPPnkk3HXXXdFhw4dyh3nIzp37hy33357LFmyJHr27Fm2HMuXL0+cnXHGGSW58y//8i8T\nZ88//3yddqTlzuVyqUWShkrLnc/n44UXXij6nQAAAAAAAAAAAAAAZJuSRwEdO3aM66+/Pn7/+9/H\n0KFDyx3nIyoqKmLixInx8ssvx7e+9a2yZsnn87F69erE+cCBA0tyb9reLVu2xBtvvFFwx8qVKxNn\n3bp1i27dujUoW5pevXpFZWVl4vy3v/1t0e8EAAAAAAAAAAAAACDblDwStGnTJi655JJYt25dTJs2\nLdq2bVvuSH+Wy+Xiy1/+crzwwgtx//33l6SEUF8bNmyI6urqxHnfvn1Lcm+fPn0SZ/l8PlatWlVw\nx5o1axJnpcodkZ69LrkBAAAAAAAAAAAAAGhelDw+pk2bNjFp0qRYu3Zt3HXXXZkoUHwgl8vFl770\npXj66afjiSeeKNnrGA2xbt261HmpyhK9e/dOnb/++usFd6RlL1fJoy65AQAAAAAAAAAAAABoXlqX\nO0BWdOvWLcaOHRuXX355fPrTny53nI9o3759TJgwIa644or4/Oc/X+44B7V+/frEWS6Xi+OOO64k\n97Zv3z66du0a27dvP+i8qqoq9fP79u2Lt956K3FeqtwREZ/61KcSZ2k/TwAAAAAAAAAAAAAAmicl\nj/+1fPnyyOVy5Y5xUDNnzsxstg+88cYbibOKioqSvojSvXv3xJLHhg0bUj/75ptvps6PPfbYBucq\npHv37omzHTt2RHV1dXTs2LFk9wMAAAAAAAAAAAAAkC0V5Q6QFVkuUWQ52wc2bdqUODvqqKOioqJ0\nf9TSCiTbtm1L/Wxa7ojSljwKFV8KZQcAAAAAAAAAAAAAoHlR8qAo0goJRxxxREnv7tKlS+LsnXfe\nSf1soSJFKbOn5c7n8wWzAwAAAAAAAAAAAADQvCh5UBRphYTKysqS3t2xY8fEWaGiRNo8l8uVNHta\n7ojC2QEAAAAAAAAAAAAAaF6UPCiK6urqxFmnTp1Kenfa/p07d6Z+Ni13od2NVWh3oewAAAAAAAAA\nAAAAADQvSh4Uxe7duxNn7du3L+nd7dq1S5zt378/9bNpuSNKmz0td0Th7AAAAAAAAAAAAAAANC9K\nHhTF3r17E2etW7cu6d1p+/ft25f62bTchXY3VqHdhbI3S926lTsBAAAAAAAAAAAAAEDZKHlQFDU1\nNYmzcpY8amtrUz+blrvQ7sYqtNtLHgAAAAAAAAAAAAAALYuSB0WRVqYodcmjVatWqfMDBw4kzgqV\nQEqZvTG5m60zzyx3AgAAAAAAAAAAAACAslHyoCjSyhCFXstorEJliIr/x969B2lZl/8Dv55dlgU5\nKEdRkQiR3NYzhoFE5mGyHEwjDcaKqcbS0ByNbCrL0L7a6Dijoo1MmY2MlRpmpWnahFIkHkEBLRcF\nxRIX5bCcD7vP749+fr9m3Pezz4nnZnm9Zpwmr/u+Pu9uyb+e93zqkv+YFypxVDN7Obm7rJtvrnUC\nAAAAAAAAAAAAAICa2Qt/RU41dO/ePXFW7RspChUx0soSabkjqpu9UO5q34CSSUOH1joBAAAAAAAA\nAAAAAEDNKHlQEWlliVre5NHQ0JD6bqGSRy1v8iiUrcuZP7/WCQAAAAAAAAAAAAAAamovvCqAamhs\nbEycbd26tapnp+3v1atX6rtpuQvtLleh3YWy79H23Tdi/fr/++9Ll0Z88IO1ywMAAAAAAAAAAAAA\nkAFKHlTEfvvtlzjbsGFDVc9O21+oKJGW+53dQ4YMKSlXIYW+S5ZLHmvWrInVq1eXvqCl5b//XoF9\ngwYNKv08AAAAAAAAAAAAAPZ6Zf3+tQRr1qzZrefRNSh5UBEDBgxInNWy5NG/f//Ud9Ny5/P5qmYv\ntLtQ9lqaMGFCeQsGDy76lXw+X96ZAAAAAAAAAAAAAOzVBpfwG1bY3epqHYCuIa0ssW7duqqenbY/\nLVdn5tXMnrY7l8sVzAYAAAAAAAAAAAAAQNei5EFFpLXaWltbq3r2m2++mTgbMmRI6ruF2nhpu8tV\naHeh7AAAAAAAAAAAAAAAdC1KHlTEiBEjEmc7duyItWvXVu3sVatWJc6GDh2a+u6BBx4Y3bt3L2l3\nudJ2Dxw4MBoaGqp2NgAAAAAAAAAAAAAA2dOt1gHoGtJKHvl8PlauXBn9+vWr+LmbN29OLZAMHz48\n9f26uroYPnx4vPTSS7ucr1y5spx4qV5//fXEWaHctTZv3rw47LDDdj0scDtKRERU+XYXAAAAAAAA\nAAAAAHiv1t38G9a///3vMWHChN16Jns+JQ8qIq3kERHR0tISRx55ZMXPXbZsWep81KhRBXcccsgh\niSWPlpaWknJ1RtruzuSupf79+8egQYNKX1DOuwAAAAAAAAAAAABQgrJ+/1qC3V0qoWuoq3UAuobB\ngwfH/vvvnzhPKlGUK60okcvlorm5ueCOI444InFWrdwR6QWVzuQGAAAAAAAAAAAAAKBrUfKgYkaP\nHp04W7RoUVXOfPbZZxNngwcPjiFDhhTccdxxxyXOXnnlldi0aVNJ2dK0tLTExo0bE+fHHHNMxc8E\nAAAAAAAAAAAAACDblDyomLSyxJNPPlmVM9P2Hn/88Z3akZa7vb09nn766aJzFZKWu66uLsaMGVPx\nMwEAAAAAAAAAAAAAyDYlDyrmox/9aOLs1Vdfjddee62i523fvj0WLFhQUp53Gz58eAwbNixx/thj\njxWdrZC0nc3NzdGvX7+KnwkAAAAAAAAAAAAAQLYpeVAx48ePjz59+iTO77///oqe9+ijj8amTZt2\nOcvlcnHaaad1elfas5XOHRHxwAMPlJQFAAAAAAAAAAAAAICuS8mDimloaIiTTz45cf7LX/6youel\n7Rs5cmQ0NTV1etcnP/nJxNkzzzwTy5YtKypbmsceeyzeeOONxPmZZ55ZsbMAAAAAAAAAAAAAANhz\nKHlQUVOmTEmczZ8/P55//vmKnPPWW2/Fr371q8T5l7/85aL2ffzjH49+/frtcpbP5+PHP/5xUfvS\n3HzzzYmzpqamGDt2bMXOAgAAAAAAAAAAAABgz6HkQUWdeeaZMXDgwMT5ZZddVpFzrrjiiti2bdsu\nZ927d48vfvGLRe1rbGyMz33uc4nzW2+9NVasWFHUzl158sknY86cOYnz8847r+wzAAAAAAAAAAAA\nAADYMyl5UFENDQ3xpS99KXH+8MMPx+23317WGXPnzo1Zs2YlzidNmhSDBg0qeu9Xv/rVyOVyu5xt\n3bo1vvzlL0dHR0fRe9+xefPm1BtGevfuHVOnTi15PwAAAAAAAAAAAAAAezYlDypu+vTp0bt378T5\ntGnT4m9/+1tJu1taWmLy5MmJZYvu3bvHlVdeWdLuD37wg3HOOeckzufOnRuXXHJJSbs7Ojpi6tSp\nsXTp0sRnvvnNb0a/fv1K2g8AAAAAAAAAAAAAwJ5PyYOKGzhwYGoZYuvWrfHJT34y5s6dW9TeJUuW\nxMknnxyrV69OfOb888+PQw45pKi97zZjxozo1q1b4nzmzJlxySWXRD6f7/TObdu2xbnnnhtz5sxJ\nfOaAAw6I6dOnF5UVAAAAAAAAAAAAAICuRcmDqvjOd74Thx12WOK8ra0tTjvttJgxY0Zs27YtdVd7\ne3vceuutMXbs2Hj99dcTnxs2bFj84Ac/KDVyRESMGjUqvvvd76Y+c+ONN8Ypp5wSy5YtK7hv4cKF\nMW7cuLjrrrsSn8nlcnHTTTdFz549i84LAAAAAAAAAAAAAEDXoeRBVTQ2Nsbs2bOjoaEh8ZkdO3bE\njBkz4v3vf39cfvnlMX/+/FizZk20t7dHW1tbPPXUU/GjH/0ompqa4mtf+1ps2rQpcVdDQ0Pcdddd\nsd9++5Wd/fLLL48PfehDqc/MnTs3mpqaYsqUKTFnzpxYuXJlbN++PbZu3RqvvPJK3HnnnTFx4sQY\nPXp0LFy4MHXXtGnTYtKkSWXnBgAAAAAAAAAAAABgz9at1gHoukaPHh0//elPY+rUqanPrVq1Kq6+\n+uq4+uqrSzonl8vFDTfcEMcff3xJ779XfX193HffffHhD384Vq5cmfhce3t73HXXXam3dBQyfvz4\nuP7660t+HwAAAAAAAAAAAACArsNNHlTV5z//+Zg5c2bU1VXnj1pdXV3cdNNNccEFF1R07wEHHBAP\nP/xwHHzwwRXd+24nnnhiPPTQQ6m3nQAAAAAAAAAAAAAAsPdQ8qDqpk2bFvfcc0/07du3ont79+4d\nt99+e0ybNq2ie9/xgQ98IB5//PGK3RDybp/97GfjwQcfjH322afiuwEAAAAAAAAAAAAA2DMpeVRR\nPp+vdYTMOOuss+L555+P0047rSL7JkyYEM8//3x8/vOfr8i+JAceeGD89a9/jRkzZlSkkDFw4MD4\n1a9+Fb/85S+jsbGxAgkBAAAAAAAAAAAAAOgqlDzKlMvl/vc/3/3Xu2e19t5s7864Ow0bNiz+8Ic/\nxNy5c2PixIlRX19f1Pt1dXXxiU98Iv7whz/Eo48+GsOHD69O0Peor6+P733ve/Hyyy/H9OnTY9Cg\nQUXvGDFiRFx//fWxbNmyOOecc6qQEgAAAAAAAAAAAACAPV0u77oJaqS1tTUeeeSRmDdvXrz44oux\nfPnyWL9+fWzdujV69+4d/fv3j4EDB8YxxxwTJ5xwQpx44okxdOjQWseOnTt3xrx582Lu3LmxcOHC\nWLZsWbS2tsamTZuiW7du0b9//+jfv3+MHDkyTjjhhBg/fnyMGTOm1rE7benSpXH44YenPrNkyZJo\nbm7e9bAzBSL/2gEAAAAAAAAAAACgiyv7d7nslbrVOgB7r8GDB8e5554b5557bq2jFKVbt25x0kkn\nxUknnVTrKAAAAAAAAAAAAAAAdCF1tQ4AAAAAAAAAAAAAAACAkgcAAAAAAAAAAAAAAEAmKHkAAAAA\nAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYo\neQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAA\nAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAA\nAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICS\nBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAA\nAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAA\nAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5\nAAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAA\nAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAA\nAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIH\nAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAA\nAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAA\nAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkA\nAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAA\nQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAA\nAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcA\nAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAA\nZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAA\nAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAA\nAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABA\nBih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAA\nAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAA\nAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABk\ngJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAA\nAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAA\nAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAG\nKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAA\nAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAA\nAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSA\nkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAA\nAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAA\nAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYo\neQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAA\nAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAA\nAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICS\nBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAA\nAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAA\nAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5\nAAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAA\nAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAA\nAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIH\nAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAA\nAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAA\nAAAAAAAAZICSBwAAAAAAAAAAAAAAQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkA\nAAAAAAAAAAAAAABkgJIHAAAAAAAAAAAAAABABih5AAAAAAAAAAAAAAAAZICSBwAAAAAAAAAAAAAA\nQAYoeQAAAAAAAAAAAAAAAGSAkgcAAAAAAAAAAAAAAEAGKHkAAAAAAAAAAAAAAABkQLdaB9jTbNmy\nJZqamuK11177j7+/YsWKGDZsWE0yvfzyyzFv3ryYP39+PPfcc/H222/HmjVrYtOmTdGrV6/Yd999\nY9SoUdHc3Bwf+9jH4tRTT4199tmnJlnfra2tLf7yl7/E/PnzY8GCBfHGG2/EmjVrYu3atdHQ0BB9\n+/aNoUOHRnNzc3zoQx+K008/PYYPH17r2JHP5+Ppp5+O+fPnx/z586OlpeV/v/nOnTujT58+MWDA\ngGhqaoojjjgiPv7xj8e4ceOirk6nCgAAAAAAAAAAAACAZLl8Pp+vdYg9yVVXXRVXXHHFf/y9XC4X\ny5cv360lj/b29vjd734XN910Uzz22GNFvdvY2BhTpkyJSy+9NA4//PAqJUz24osvxsyZM+OOO+6I\nzZs3F/XumDFj4tJLL43PfOYzu700sWHDhvj5z38eN998c7S0tBT17qBBg+L888+PadOmxeDBg6uU\nsDKWLl1a8M/FkiVLorm5edfDXK7wIf61AwAAAAAAAAAAAEAXV/bvctkruVqgCM8991xcffXVtY4R\nS5YsieOPPz4mTZpUdMEjImLbtm3x85//PI466qi44IILYv369VVI+d82b94cF198cTQ3N8ett95a\ndMEjIuLJJ5+MyZMnx3HHHRdPPvlkFVLu2n333ReHHnpoXHzxxUUXPCIiVq9eHVdddVWMHDkybrjh\nhujo6KhCSgAAAAAAAAAAAAAA9mRKHp20adOmmDx5cmzbtq2mOW688cYYPXp0PPvss2XvyufzMWvW\nrDjyyCNj4cKFFUiXbPHixXH00UfHzJkzK7Jv0aJFMW7cuLjuuusqsi/J9u3bY+rUqfHpT386Wltb\ny963cePGuPTSS+Pkk0+Ot99+uwIJAQAAAAAAAAAAAADoKpQ8OqG9vT2mTJkS//jHP2qa44orrohL\nLrkkduzYUdG9K1eujPHjx8fDDz9c0b3vePrpp+PEE0+MZcuWVXRvR0dHfOtb34rzzjuvonvfsWXL\nljjjjDNi9uzZFd/92GOPxZgxY2LlypUV3w0AAAAAAAAAAAAAwJ5JyaMTLrjggrj//vtrmuGKK66I\nq666qlPP5nK5//irM7Zs2RKf/vSn4/HHHy8n5n957rnn4pRTTom1a9d26vlic0dE3HbbbXHJJZeU\nGnGXdu7cGRMnTux08aWUb758+fI45ZRTYvXq1eVEBQAAAAAAAAAAAACgi1DySJHP5+PrX/96/PSn\nP61pjgceeKBgwSOXy8Vpp50Wt99+e7zwwguxcePG2L59e7zxxhvx8MMPx0UXXRT77rtv6o7NmzfH\nZz7zmXjrrbcqkrutrS0mTZoUbW1tqc+9//3vjyuvvDL+9re/xVtvvRU7duyI9evXxzPPPBPXX399\nHHnkkQXPuvHGG+POO++sSO6IiG9/+9vx5z//OfWZnj17xhe/+MX47W9/G6+++mps3bo1tmzZEq+8\n8krcfffdcfbZZ0d9fX17k3plAAAgAElEQVTqjpaWlvjc5z5XsdwAAAAAAAAAAAAAAOy5cvl8Pl/r\nEFnU0dERX/nKV+JnP/tZwWdzuVwsX748hg0bVvEcK1eujKOPPjr1JowjjjgibrvttjjuuONSd7W1\ntcXll18et9xyS6T9Yz/99NPj97//fcmZ33H22WfHnDlzEuc9e/aMH/3oR3HhhRcWvP3innvuiYsu\nuihaW1sTn+ndu3csXrw43ve+95WcOSLi/vvvjzPOOCP1mbPOOituueWWGDJkSOpzL7/8cnz1q18t\nWBi57rrr4hvf+EbRWath6dKlcfjhh6c+s2TJkmhubt71sDM3mfjXDgAAAAAAAAAAAABdXNm/y2Wv\n5CaPXdiwYUOcddZZnSp4VNv06dNTCx6nn356LFiwoGDBIyKib9++cdNNN8Xdd98djY2Nic898MAD\ncf/995eU9x0PPvhgasFjwIAB8Ze//CUuuuiiggWPiH8XRp555pk46qijEp/ZuHFj2UWJrVu3xoUX\nXpj6zA9+8IOYM2dOwYJHRMQhhxwSjzzySEyfPj31uRkzZsSqVauKygoAAAAAAAAAAAAAQNei5PEe\nK1asiHHjxlXkJotyPfHEE3HPPfckzseNGxf33ntv9OzZs6i9kyZNirvvvjvq6+sTn5k+fXp0dHQU\ntfcd7e3tcdlllyXOe/ToEQ8++GAce+yxRe096KCD4k9/+lM0NTUlPnPvvffG/Pnzi9r7bjfeeGO8\n9tprifNLL700vv/97xe1M5fLxbXXXpta9Ni4cWN873vfK2ovAAAAAAAAAAAAAABdi5LHu9x9991x\n7LHHxtKlS2sdJSIivv3tbyfOevfuHXfddVc0NDSUtHvixInxwx/+MHH+0ksvxa9//euSdt95552p\n3/Caa67p1M0juzJgwIC47777ok+fPonP/M///E9Ju9va2uKaa65JnI8ePTquvfbaknZHRFx77bXx\niU98InF+xx13xD//+c+S9wMAAAAAAAAAAAAAsGdT8oiI9evXx9SpU2Py5Mmxbt26WseJiIgXX3wx\nHn300cT5d77znTjooIPKOuOyyy5LvU3juuuuK2nvLbfckjhrbm6Oiy66qKS97zj00EPjyiuvTJw/\n9NBDsWTJkqL33nnnndHW1rbLWS6Xi5kzZ0ZdXXn/l/nJT34SvXr12uVsx44dccMNN5S1HwAAAAAA\nAAAAAACAPddeX/KYPXt2fOADH4jZs2fXOsp/mDVrVuKsb9++ZRclIv5dXEi7ueKZZ56J559/vqid\nixYtiqeeeipxftlll5VdlIiIuPDCC+Pggw9OnP/sZz8remfaNz/xxBPjwx/+cNE73+vAAw+Mr3/9\n64nzO+64I9rb28s+BwAAAAAAAAAAAACAPc9eW/J44oknYsKECTF16tRobW1Nfbauri7OPPPM3ZTs\n3zc63HHHHYnzL3zhC4m3QRTr1FNPjVGjRiXO03Lsym233ZY4GzBgQEyePLmofUnq6+vj/PPPT5z/\n4he/KKosUajQMm3atKLypTn//POjvr5+l7PVq1fHgw8+WLGzAAAAAAAAAAAAAADYc+x1JY+FCxfG\nxIkTY+zYsfHXv/614PM9e/aM2bNnx8UXX7wb0v3bo48+GuvWrUucn3322RU975xzzkmczZkzp6hd\nv/nNbxJnZ5xxRjQ0NBS1L81nP/vZxFlra2un/vm+4957702c9erVK04//fSisqU5+OCDY+zYsYnz\nYr85AAAAAAAAAAAAAABdw15X8jjrrLPigQce6NSzI0eOjMcffzymTJkS+Xy+ysn+z0MPPZQ4GzBg\nQIwfP76i502cODFx9uqrr8YLL7zQqT2LFy+Of/3rX4nzT33qU0VnSzNixIhoampKnHf2n3NE+jc/\n9dRTo7GxsahshaR9czd5AAAAAAAAAAAAAADsnfa6kkdn5HK5OO+882LRokVx5JFH7vbz582blzg7\n4YQTIpfLVfS8Y489Nnr16pU4/+Mf/9ipPWm5c7lcfOQjHyk6WyETJkxInHU2d1tbWyxatKikM0qV\ntrO1tTUWLlxY8TMBAAAAAAAAAAAAAMg2JY/3OPTQQ+ORRx6JWbNmxT777LPbz9+2bVtq4WDs2LEV\nP7O+vj6OPfbYxPkTTzzRqT0LFixInI0aNSr69etXdLZCxowZkzh74YUXYvPmzQV3PPXUU6k3tVTj\nmx999NHR0NCQOO/sNwcAAAAAAAAAAAAAoOtQ8vj/evfuHVdddVUsXrw4TjrppJrlWLx4cbS3tyfO\njznmmKqcm7b36aef7tSOtNsnapG7vb09nn322YI70nLX1dXFUUcdVVK2NI2NjdHU1JQ47+w3BwAA\nAAAAAAAAAACg69jrSx4NDQ1x3nnnRUtLS3z3u9+N7t271zTP0qVLE2e5XC4OO+ywqpx76KGHJs6W\nL18emzZtSn1/586d8dJLLyXOq5X7kEMOSZ2n3YryjrRvPmzYsOjRo0fRuToj7Zt3JjcAAAAAAAAA\nAAAAAF3LXlvyaGhoiKlTp8aLL74Ys2bNiv3337/WkSIioqWlJXHWo0ePGDZsWFXOHTlyZOr8lVde\nSZ2vWLEidu7cmTivVsmjT58+MWTIkMT5ihUrCu5I++bVyh2RXvLoTG4AAAAAAAAAAAAAALqWva7k\nsf/++8e3vvWtePnll+P222+PESNG1DrSf1i+fHnibOjQoVU796CDDkqc5fP51FwR6bkjIg4++OCS\ncnXGgQcemDgrVE6JSM9eq9xr166NDRs2VO1sAAAAAAAAAAAAAACyp1utA+xuCxYsiFwuV+sYiV5/\n/fXE2QEHHFC1c9Nuw4iIeO2111LnablzuVzNshfKvXPnznjzzTcT57X85q+++mocfvjhVTsfAAAA\nAAAAAAAAAIBs2etu8shywSMiYtWqVYmzahYOBgwYEPX19Ynzt99+O/X9tNwR1c2+//77J84K5V69\nenV0dHQkzmuVO5/PF8wOAAAAAAAAAAAAAEDXsteVPLIu7Yf9/fr1q9q5uVwu+vbtmzhfu3Zt6vtp\nuRsbG6OxsbHkbIXst99+ibNyckdU95un5Y4onB0AAAAAAAAAAAAAgK5FySNj1q1blzhLK2FUQu/e\nvRNnhQoHafNa5t6wYUPqTR2F/ndVM3ta7gglDwAAAAAAAAAAAACAvY2SR4Zs2bIltZDQp0+fqp6f\ntn/9+vWp727cuLGkvZVQaH9bW1viLC13Z3aXo9DuQt8cAAAAAAAAAAAAAICuRckjQzZv3pw679mz\nZ1XP79GjR+Jsx44dqe+mZa9l7oj07LX85uXkBgAAAAAAAAAAAACg61HyyJBt27alzrt161bV89P2\nb9++PfXdtOy1zB2Rnr2W37yc3AAAAAAAAAAAAAAAdD1KHhnS3t6eOq9lWaLQrRJp2Wtd8kjLXstv\nXk5uAAAAAAAAAAAAAAC6HiWPDOno6EidV7ssUV9fnzjbuXNn6rtp2WuZOyI9e1ruXC5X1ezl5AYA\nAAAAAAAAAAAAoOtR8siQQoWCQrdOlCutVFBXl/5HJS17LXNHpGev5TcvJzcAAAAAAAAAAAAAAF2P\nX5FnSPfu3VPn1b7ZIa3QUKgMkZa9lrkj0rOn5c7n81XNXk5uAAAAAAAAAAAAAAC6HiWPDClU8qjl\njRiFsqXNa32TR1q2Wn7zcnIDAAAAAAAAAAAAAND1uCogQxobG1PnW7durer5aft79eqV+m5a9lrm\njkjPXstvXk7uWluzZk2sXr269AUlvDto0KDSzwMAAAAAAAAAAABgr1fW719LsGbNmt16Hl2DkkeG\n9OjRI7p37x7bt2/f5XzDhg1VPT9tf6HCwX777VfS3kootD8te1ruzuwuRzm5a23ChAnlLRg8uOhX\n8vl8eWcCAAAAAAAAAAAAsFcbXMJvWGF3q6t1AP7TgAEDEme1LEv0798/9d2s5u7Tp0/U1SX/MU/L\nXWh3uQrtLvTNAQAAAAAAAAAAAADoWpQ8MiatdLBu3bqqndvR0RFtbW2J80JliLT5pk2bor29veRs\nhaR9l3JyF9pdrkK7C2UDAAAAAAAAAAAAAKBrUfLImLQrgN58882qnfv2229HR0dH4nzIkCGp7xe6\nuqi1tbWkXJ2R9l0K5e7Xr19069atpN3lStudy+UKZgcAAAAAAAAAAAAAoGtJ/nU7NTFixIj485//\nvMvZqlWrqnZuod1Dhw5NnY8YMSJxls/nY9WqVXHAAQeUlK2QtOyFcudyuRg+fHgsW7as6N3lKveb\n19K8efPisMMO2/WwQOEnIiKqWPoBAAAAAAAAAAAAgF35f+zdaZSW9Xk/8OthhGGHgURFIooYJBkW\n2YTK4n4iQQzEFVBzLCbRRGqllpwkPbVB29h6oiUmIq1GY8WI1iVV3AoopMqiKMimrAqcgIwI4sgy\nMDz/Fz30n1Tu+5k1cw/9fM7hzXx/9/W7zqNy5sXz9a7P/3H9kbz77rsxfPjwP+mdNH5KHhmTVpbY\nsmVLvd1baPbJJ5+cmnft2jU137x5c/Tt27e6a1VJ2u6F9o747888qeTRUJ/5F77whWjRokW93V1b\nHTp0iC9+8Ys1H1CbZwEAAAAAAAAAAACgBmr1/dca+FOXSjg6NGnoBfhj3bp1S8x27doVO3bsqJd7\n165dm5gVFRXFqaeemvp8p06dUksJafNrY/fu3VFWVpaYd+/eveCMtM98zZo1NdqrKtI+k6rsDQAA\nAAAAAAAAAADA0UXJI2N69eqVmOXz+XorHaQVDrp16xZNmzYtOCNt94bYOyKitLS04Iy0vTds2FDt\nnaoqbfeq7A0AAAAAAAAAAAAAwNFFySNjunfvHm3atEnMly5dWi/3vvXWW4lZ3759qzRjwIABiVlD\n7F1UVBR9+vQpOCNt73379sXq1atrtFuavXv3xrvvvpuYV/UzBwAAAAAAAAAAAADg6KHkkTFNmjRJ\n/YL/4sWL6/zOgwcPxttvv52YDxo0qEpz0soS77zzThw4cKDauxWS9nmUlpZGixYtCs7o1atXNGvW\n7IhZPp+vl8/8rbfeisrKysS8qp85AAAAAAAAAAAAAABHDyWPDDrrrLMSs/nz59f5fYsXL459+/bV\naJ+qntu/f38sWLCg2rsVMm/evBrt84eKi4tTSxVpd9RU2sz27dvH6aefXud3AgAAAAAAAAAAAACQ\nbUoeGTRixIjEbOPGjbFq1ao6ve+5555LzI477rjUN4v8oa5du0b37t1rdE9NrFmzJtatW5eYX3jh\nhVWelfaZP//889XaqyrSPosLLrigzu8DAAAAAAAAAAAAACD7lDwyaNCgQdGxY8fE/De/+U2d3XXo\n0KGYOXNmYn7xxRdXa97Xv/71xOzxxx+PfD5frXlp0j6Htm3bxnnnnVflWWl7b9++PebMmVOt3dJs\n3LgxFi1alJiPHj26zu4CAAAAAAAAAAAAAKDxUPLIoFwuF5dffnlifv/990dFRUWd3PXCCy/Exo0b\nE/eYMGFCteaNHTs2Mdu0aVM8++yz1ZqXpKKiIv7lX/4lMR83blw0a9asyvN69+4dX/3qVxPzX/7y\nl9XaL829996bWHbp0KFDfPOb36yzuwAAAAAAAAAAAAAAaDyUPDLquuuuS8w+/PDDuOuuu2p9R2Vl\nZfzoRz9KzHv37h1nnHFGtWYOHDgwevXqlZj/+Mc/jsrKymrNPJKpU6fG1q1bj5jlcrn4zne+U+2Z\naYWW3/72t7FgwYJqz/zfNm3alFoYueqqq6K4uLjW9wAAAAAAAAAAAAAA0PgoeWRU3759UwsWt99+\ne6xcubJWd/zDP/xDLF++PDH/3ve+V6O5N9xwQ2K2cuXKmDJlSo3mHrZ69er4yU9+kpgPHjw4Tj/9\n9GrPveaaa6Jly5ZHzPL5fFx33XWxZ8+eas897NChQzFhwoTYt2/fEfOioqK4/vrrazwfAAAAAAAA\nAAAAAIDGTckjw9KKDHv27IkxY8bE9u3bazT76aefjr/7u79LzLt37x5//ud/XqPZEyZMiC5duiTm\nt99+ezz55JM1ml1WVhajR49OLFvkcrm44447ajS7Y8eOMXHixMR89erVcdVVV8WhQ4dqNP+WW26J\nOXPmJObXXHNN9OjRo0azAQAAAAAAAAAAAABo/JQ8MuxrX/taDBs2LDFft25dnHfeebF58+ZqzX3i\niSdi7Nixkc/nE8/ccccdUVRUVK25hzVt2jRuvfXWxDyfz8f48ePjscceq9bcLVu2xHnnnRdr165N\nPDNq1KjUz6yQyZMnR7t27RLzZ555JsaOHRv79++v8sx8Ph+33HJL/PM//3PimZYtW8Ztt91WrV0B\nAAAAAAAAAAAAADi6KHlk3PTp06N58+aJ+cqVK2PAgAExc+bMgrN2794df/EXfxFXXHFFVFRUJJ67\n6KKLYvTo0TXa97Brr702zjnnnMS8oqIixo8fHzfeeGPs3r274Lwnnngi+vfvHytWrEg8065du7j7\n7rtrtO9hJSUlqWWMw7sMHjw4lixZUnDe+vXr44ILLoi77ror9dyUKVPihBNOqNauAAAAAAAAAAAA\nAAAcXZQ8Mq5Hjx7xj//4j6lnysrKYuzYsdG3b9+YOnVqLFu2LMrLy+PgwYNRVlYWc+fOjUmTJsXJ\nJ58cv/jFL1JnnXTSSfHwww/Xye4PPfRQ6lsx8vl83HvvvXHSSSfFzTffHHPmzImysrI4ePBglJeX\nxzvvvBP33HNP9OvXL6644oooKytLnJXL5eL++++Prl271nrvb33rWzFmzJjUM8uWLYuBAwfGRRdd\nFDNmzIgNGzbEvn37oqKiIjZv3hxPPfVUjBs3Lnr06BFz585NnTVq1KiYNGlSrfcGAAAAAAAAAAAA\nAKBxy+Xz+XxDL9EYvPrqq3HuueceMcvlcrFx48bo0qVLvd3/7W9/Ox544IF6mx8R0bp165gzZ04M\nHDiwzmbOnTs3RowYEQcOHKizmUfy13/91wXLMNVRXl4ew4cPj6VLl9bZzCPp0aNHvP7669G+fft6\nvac6Vq5cGT179kw9s2LFiigtLT1ymMsVvsRfOwAAAAAAAAAAAAAc5Wr9vVz+T/Imj0bivvvui3Hj\nxtXb/Hbt2sXLL79cpwWPiIhzzz03HnvssSguLq7TuX+orgseEf9deHnhhReid+/edTr3D/Xs2TPm\nzZuXqYIHAAAAAAAAAAAAAAANR8mjkSgqKopHHnkkfvzjH0eTJnX7j61r164xZ86cGDx4cJ3OPWzM\nmDHxn//5n9GpU6c6ndu0adO444476rzgcdhxxx0X8+fPj69//et1Pvvcc8+NV199Nb74xS/W+WwA\nAAAAAAAAAAAAABonJY86kM/n/2R33XbbbTF37tzo0aNHrWflcrn47ne/G8uXL49+/frVwXbJhg4d\nGsuXL49x48ZFLper9bxevXrFokWLYvLkyXWwXbK2bdvGc889F/fee2906NCh1vNatWoV99xzT8ye\nPbtO5gEAAAAAAAAAAAAAcPRQ8qiiw8WEXC73R3/+MPtTGT58eKxYsSIefPDBGDBgQLWfb9myZVx3\n3XWxbNmymDZtWrRs2bIetvy8Dh06xCOPPBJLliyJcePGRfPmzav1fC6XiyFDhsTMmTPj7bffjtNP\nP72eNv2866+/PjZs2BBTpkyJLl26VPv5448/Pm699dZYv359fP/736+HDQEAAAAAAAAAAAAAaOxy\n+T/layioF++9917Mnj07FixYEO+9915s3rw5Pv300zh48GC0b98+SkpKolOnTjFo0KAYMmRInHXW\nWdG2bduGXjs++eSTmD17dsybNy9WrFgRGzZsiF27dsWePXuiZcuW0aFDh+jYsWP07Nkzhg4dGmed\ndVaceuqpDb125PP5WLhwYcydOzfeeOONWLduXWzbti3Ky8ujSZMmUVJSEh06dIiTTz45zjzzzBgy\nZEiceeaZccwxxzT06lWycuXK6NmzZ+qZFStWRGlp6ZHDqpSe/LUDAAAAAAAAAAAAwFGu1t/L5f8k\nJQ/gjyh5AAAAAAAAAAAAAEDtKXlQE00aegEAAAAAAAAAAAAAAACUPAAAAAAAAAAAAAAAADJByQMA\nAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAA\nMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAA\nAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAA\nAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAg\nA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAA\nAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAA\nAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAy\nQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAA\nAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAA\nAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACAD\nlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAA\nAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAA\nAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJA\nyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAA\nAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAA\nAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOU\nPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAA\nAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAA\nAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJ\nAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAA\nAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAA\nAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8\nAAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAA\nACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAA\nAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkD\nAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAA\nADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAA\nAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwA\nAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAA\nIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAA\nAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMA\nAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAA\nMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAA\nAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAA\nAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAg\nA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAA\nAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAA\nAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAy\nQMkDAAAAAAAAANdyoh0AACAASURBVAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAA\nIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAA\nAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMA\nAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAA\nMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAA\nAAAAAAAyQMkDAAAAAAAAAAAAAAAgA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAA\nAAAAAAAAAAAAADJAyQMAAAAAAAAAAAAAACADlDwAAAAAAAAAAAAAAAAyQMkDAAAAAAAAAAAAAAAg\nA5Q8AAAAAAAAAAAAAAAAMkDJAwAAAAAAAAAAAAAAIAOUPAAAAAAAAAAAAAAAADLgmIZegLqxcuXK\nmDNnTixYsCDWrl0bmzZtivLy8jh48GCUlJREhw4domvXrjFo0KAYNGhQnHvuudGsWbOGXjvWr18f\n8+fPj9deey2WLVsWO3bsiI8//jg+++yzaNWqVbRr1y66d+8epaWlcc4558QFF1wQLVu2bOi1Y/fu\n3fG73/0uXnvttVi4cGFs3bo1Pv7449i5c2c0bdo02rZtG1/60peitLQ0Bg4cGCNHjoyTTz65odcG\nAAAAAAAAAAAAACDDcvl8Pt/QS1Az+/btiwceeCCmT58eK1asqNazJSUlceWVV8Z3vvOd6NOnTz1t\neGSVlZXxH//xH/Hzn/885s2bV61ni4uLY+zYsTFp0qTo2bNnPW2YbPXq1XHPPffEww8/HHv27KnW\ns2eccUZMmjQpLr300mjSJLsv0Vm5cmXBz3bFihVRWlp65DCXK3yJv3YAAAAAAAAAAAAAOMrV+nu5\n/J+U3W+ak2rGjBlxyimnxMSJE6td8IiI2LlzZ0ybNi369esXV111VWzatKketvy8FStWxKBBg+KS\nSy6pdsEjImL//v3x0EMPRZ8+feKGG26ITz75pB62/Lw9e/bETTfdFKWlpXHfffdVu+AREbF48eK4\n8sorY8CAAbF48eJ62BIAAAAAAAAAAAAAgMZMyaOR2blzZ4waNSquvvrq2LZtW63n5fP5ePTRR6NH\njx4xbdq0Otgw2dSpU6N///7x1ltv1XpWPp+P6dOnR+/evePtt9+ug+2SLV++PE4//fS455576mTe\n0qVL48wzz4w777yzTuYBAAAAAAAAAAAAAHB0UPJoRNatWxf9+/ePWbNm1fnsffv2xfe///0YP358\njd5SUcitt94aN998cxw4cKBO527evDmGDh0aL7/8cp3OPezNN9+Ms88+O9atW1encw8dOhQ/+MEP\n4tvf/nadzgUAAAAAAAAAAAAAoPFS8mgk3nvvvRg+fHi8//77VX4ml8v90Z+q+M1vfhMjR46Mffv2\n1XDTz7v11lvjtttuq9LZmuy8d+/e+OY3vxkLFiyozZqfs2zZsjj//PNj586dVTpf3b0jIh544IG4\n+eaba7oiAAARUVZW9rnfI8vKyhp6LQCAz/F7CwDQWPi9BQBoLPzeAgDA0UjJoxHYvn17jBgxIrZt\n21bwbHFxcVx55ZUxc+bMWLduXezZsyc+++yzWLNmTTz//PMxYcKEKCkpSZ0xb968GDNmTJ28dWPW\nrFkFCx65XC4uvPDCePDBB2PVqlVRXl4eFRUVsXXr1nj55Zdj4sSJ0a5du9QZe/bsiUsvvTQ++uij\nWu8cEbF79+645JJLYvfu3annunbtGlOmTInXX389Pvroozhw4EB88sknsWTJkvjZz34WvXv3LnjX\n1KlTY8aMGXWyNwAAAAAAAAAAAAAAjZeSR8bl8/kYP358ld7gMXbs2Fi/fn08+uijcdlll0XXrl2j\nuLg4mjdvHt26dYsLL7ww/vVf/zU++OCDuOmmm6KoqChx1ksvvRQ/+MEParX75s2b45prrkk906tX\nr1i0aFE8//zz8a1vfStOO+20aNGiRRQVFcWxxx4b559/fkydOjU++OCDuPHGG1PfkrF169a49tpr\na7XzYRMmTIgNGzYk5i1atIipU6fGunXr4m/+5m9i8ODBUVJSEk2aNInWrVtH37594+abb46lS5fG\nzJkz49hjj02974YbbogPPvigTnYHAAAAAAAAAAAAAKBxUvLIuHvvvTfmzJmTeqa4uDj+7d/+LWbM\nmBEnnHBCwZmtW7eOu+++O+bOnRtt27ZNPDd16tSCd6e55ZZbYufOnYn5yJEjY+HChTFgwICCs9q2\nbRs///nP4/HHH4/i4uLEc7NmzYrnnnuuRvse9sILL8STTz6ZmHfs2DF+97vfxcSJE1NLJ4dddtll\nsWTJkujTp0/imfLy8virv/qrGu0LAAAAAAAAAAAAAMDRQckjw3bt2hV/+7d/m3qmefPm8dxzz8X4\n8eOrPX/YsGExZ86cKCkpOWKez+fj2muvjf3791d79qJFi+KJJ55IzM8888x46qmnokWLFtWae8kl\nl8Tjjz+e+haSW265JQ4dOlStuYdVVlbG5MmTE/PmzZvHCy+8EP369avW3M6dO8fs2bPjK1/5SuKZ\np556Kl577bVqzQUAAAAAAAAAAAAA4Oih5JFhd999d+qbMCIipk+fHuedd16N7+jfv3/86le/Ssy3\nbNkS06ZNq/bcH/7wh4lZ69atY+bMmdG0adNqz42IGDVqVNx+++2J+Zo1a+Lf//3fazR7xowZsXLl\nysT8pz/9aZXePHIkHTt2jGeeeSbatGmTeObv//7vazQbAAAAAAAAAAAAAIDGT8kjoyoqKmL69Omp\nZ8aOHRtXX311re/6xje+Edddd11ifscdd8TevXurPG/16tXx6quvJuY/+tGPonPnztVZ8XMmT56c\n+jaNO++8s0Zzf/nLXyZmpaWlMXHixBrNPezLX/5yTJkyJTF/8cUXY8WKFbW6AwAAAAAAAAAAAACA\nxknJI6Neeuml2L59e2JeUlIS9913X53dd/vtt0ezZs2OmG3fvj1+/etfV3lWWjmlbdu2tS5KRETk\ncrn46U9/mpgvWbIk3nnnnWrNXLp0abzxxhuJ+eTJk6NJk9r/J3PjjTfGiSeemJinvVkFAAAAAAAA\nAAAAAICjl5JHRv32t79Nzb/73e9GmzZt6uy+Y489Nq688srE/KGHHqrSnAMHDsTDDz+cmF9zzTXR\nqlWr6q53RBdccEF07949MU/b40geeOCBxKxjx46pn091FBUVxfXXX5+YP/roo1FZWVkndwEAAAAA\nAAAAAAAA0HgoeWTUK6+8kpg1bdq0Tt6G8b9NmDAhMXvjjTdi69atBWe8+uqrsWvXrsT8sssuq9Fu\nSS6//PLE7Mknn6zWrKeffjoxu/jii6Np06bVmpfmiiuuSMy2b98e//Vf/1VndwEAAAAAAAAAAAAA\n0DgoeWTQjh07YuPGjYn5wIEDo1OnTnV+78CBA6NZs2ZHzPL5fLz44osFZ6Sd6dixYwwdOrTG+x3J\nqFGjErMPPvggVq1aVaU5y5cvj9///veJ+Te+8Y1q75bmlFNOia985SuJ+axZs+r0PgAAAAAAAAAA\nAAAAsk/JI4NWr16dmg8fPrxe7m3evHn069cvMa/K2yXmz5+fmA0ZMiRyuVyNdkvSr1+/aNWqVWL+\n0ksvVWlO2t65XC6GDRtW7d0KSfvnWNW9AQAAAAAAAAAAAAA4eih5ZNCmTZtS87p+G8Yf6tGjR2K2\nePHi1Gf3798fS5cuTcz/7M/+rMZ7JSkqKkotpixatKhKcxYuXJiYde/ePUpKSqq9WyFnnHFGYrZq\n1arYs2dPnd8JAAAAAAAAAAAAAEB2KXlkUFlZWWreuXPners7rcywdu3aqKysTMyXL1+emvft27dW\nu9Vk7ptvvlmlGW+//XaN5tdG2tzKysp466236uVeAAAAAAAAAAAAAACySckjg9Le4JDL5aJDhw71\ndnfa7AMHDsTatWsT85UrVyZmuVwu9S0htfHlL385Mdu4cWN89tlnqc8fPHgw1qxZk5jX197dunVL\nzdPeigIAAAAAAAAAAAAAwNFHySODDh48mJrXZ8mjadOmiVk+n4+NGzcm5mkFkObNm0eXLl1qtVuS\nU089NTXfsGFDav7++++nfub1VfJo06ZNHH/88Yn5+++/Xy/3AgAAAAAAAAAAAACQTUoeGdS8efPU\nfN++ffV298cff5yab9myJTFLK4B86UtfqvFOhXTu3DkxK1RMiUjfOyLixBNPrNFeVXHCCSckZoXK\nKQAAAAAAAAAAAAAAHF2UPDKodevWqflHH31Ub3fv3LkzNd++fXtillYA6dSpU413KiTtbRgREZs2\nbUrN0/bO5XINtnuhvQEAAAAAAAAAAAAAOLooeWRQ2lsv8vl8bNu2rd7u3rx5c2peVlaWmKXtVZ9F\niY4dO0ZRUVFivmPHjtTnC32e9bn7cccdl5gV2hsAAAAAAAAAAAAAgKOLkkcGnXLKKan566+/Xi/3\n5vP5WLhwYeqZTz75JDFLKyWUlJTUeK9CcrlctG3bNjEv9HaStL2Li4ujuLi4xrsV0r59+8Ss0N4A\nAAAAAAAAAAAAABxdlDwy6LTTTosWLVok5q+88kq93Pvee+/Frl27Us+Ul5cnZmnPppUw6kLr1q0T\ns0JlibS8Iff+9NNP49ChQ/V6PwAAAAAAAAAAAAAA2aHkkUHHHHNM9O/fPzGfP39+bN26tc7vfeyx\nxwqe2bt3b+LP0woJbdq0qfFeVZE2P+3tIxHpxZWG3DsiYvfu3fV6f7046aT0vJ4/UwAAAAAAAAAA\nAACAxkrJI6NGjhyZmFVUVMRdd91Vp/dVVFTEfffdV/DcwYMHj/jzPXv2pD6X9maSutC8efPE7MCB\nA6nPpu3ekHtHFN49kwr9e3T//X+aPQAAAAAAAAAAAAAAGhklj4y69NJLI5fLJebTp0+P999/v87u\nmzZtWmzfvr3guaSSx/79+1OfO+aYY2q0V1Wlza+oqEh9Nm33htw7ovDumXThhRGjRx85O+usiMsv\n/9PuAwAAAAAAAAAAAADQSCh5ZFS3bt3i/PPPT8zLy8vj8ssvr5M3PaxatSp++MMfVulsUvGksrIy\n9bmGLEsU+ozSdm/okkejfJNHRMTTT0e88sof/+zFFyNefbVB1gEAAAAAAAAAAAAAaAyUPDKsUPHi\nzTffjGuvvbZgwSLNhx9+GJdddlns27evSueLioqO+PNDhw6lPlffZYmkvSKS3z5yWNruDbl3ROHd\nM+3ssyPy+f//52tfa+iNAAAAAAAAAAAAAAAyTckjw84+++y46KKLUs88+uijMXLkyCgvL6/2/I0b\nN8bQoUNj9erVVX4mqfRQqAxRmyJKVaSVIZo0Sf/XPG33htw7ovDuAAAAAAAAAAAAAAAcPXyDPOOm\nTZsW7dq1Sz3z8ssvx1e/+tWYMWNGlWZWVFTEP/3TP0WfPn1i/fr1n8tLSkoSn23ZsuURf96sWbPU\nO+v7jRRpZYxCBZS03Rty74j6f5MIAAAAAAAAAAAAAADZ4RvkGde5c+d48MEH45JLLol8Pp94bsuW\nLXH11VfHT37ykxgzZkyMGDEiunTpEscff3xUVlbGtm3bYv369fHss8/GM888E1u3bj3inEsvvTRa\ntWoVv/71r4+Yt2rV6og/L1TyaMg3YhTaLS1v6Dd5FNq9oaxbt66hVwAA+B8ff/zx53727rvvxvbt\n2xtgGwCAZH5vAQAaC7+3AACNhd9bAICs851bakLJoxEYPXp0/OxnP4tJkyYVPLtu3bq488474847\n76z2PYMHD45f/epXcf311yeeadu27RF/XlxcnDp737591d6nOtLmJxVTDkvbvSH3jii8e0MZPXp0\nQ68AAJBq+PDhDb0CAECV+L0FAGgs/N4CADQWfm8BAKCxa9LQC1A1f/mXfxl333135HK5epk/ZMiQ\neOmll6J169axd+/exHMdO3Y84s+bN2+e+taJTz/9tNY7pkmbX6go0b59+xrNrQuF5me15AEAAAAA\nAAAAAAAAQN1T8mhEbrrppnj66acT36ZRE7lcLr73ve/FK6+8Em3atImIiPLy8sTzX/jCFxKzpAJI\nRMOWJTp06JD6bFb3btOmTTRp4j9RAAAAAAAAAAAAAID/K3yDvJG5+OKLY/ny5TFy5MhazzrttNNi\n9uzZ8Ytf/CKOOeaY//n5tm3bEp/p3LlzYpZWlti1a1fNlqyCQ4cOxe7duxPztL0K5Z999llUVlbW\neLdC0j6XQnsDAAAAAAAAAAAAAHB0UfJohE488cR49tlnY968eTFixIgoKiqq8rO5XC769esXjzzy\nSKxcuTLOOeecz535/e9/n3p3kmOPPTYx+/DDD6u8Y3Xt2LEjDh06lJgff/zxqc+n7R0RsX379hrt\nVRVpn0uhvetLaWlp5PP5P/oDAAAAAAAAAAAAANTe//6ebmlpaUOvRMYcU/gIWTVs2LAYNmxYbNu2\nLWbNmhXz58+PVatWxaZNm2L37t2Rz+ejbdu2cdxxx0WvXr1i4MCBcfHF/6+9+46Tsrwax31maUIA\nFRABsQDWKEYUEWJDMRGNRo0SCyaxxcRYotEUy6tJ3jR9o74qMWqsiV+7JsaWYARFEUQRxBpRSCg2\nQlNAysL8/siPF8juPLOzO7Mz8+x1fT784z177pvn6J6zt3N2vhz9+vXLGXPBggUxf/78etcymUz0\n6dMn59f27ds3xowZU+9a0qeDNFW+2L17905c79u3b861bDYbH3zwQfTs2bNRZ8sn6ez5zg0AAAAA\nAAAAAAAAQLoY8kiBHj16xKmnnhqnnnpqk2O98cYbOdc222yz2HTTTXOuJw1LzJkzp0nnSpIv9jbb\nbJO4njS4EhExe/bsGDBgQKHHapCks+c7NwAAAAAAAAAAAAAA6VJT7gNQWV544YWca/k+CijpE0IW\nLVqU8xNCmmr69Ok511q1ahXbbrtt4tf37Nkz2rdv36j4TfHxxx/HvHnzcq5vv/32JdkXAAAAAAAA\nAAAAAIDK5JM82MCECRNyrg0cODDxa/v3759zLZvNxttvvx1Dhgxp9NlySRrC6NevX7Rp0yZvjP79\n+8ekSZPqXXv77bcbfbYk+YZH8g3VNKfXXnut3EcAAAAAAAAAAAAAAEg9Qx78n9WrV8eYMWNyru+1\n116JX7/99ttHp06d4pNPPql3ferUqSUZ8nj55Zdzrg0YMKBBMQYOHJhzyGPq1KmNOlc+Sedu1apV\nfO5znyvJvo1RSQMnAAAAAAAAAAAAAABpVVPuA1A5JkyYEIsWLap3raamJg444IDEr6+pqUkcqsg1\nRNEUtbW1MWXKlJzr+QZT1kr6lJJp06bFqlWrCj5bPknPY+edd4727dsXfU8AAAAAAAAAAAAAACqX\nIY8qsXLlypgzZ0689NJLJftkifvuuy/n2h577BGbbrpp3hj7779/zrVx48Y16lxJJk2aFMuXL2/U\neRr6uhUrVsSECRMKPls+zzzzTKPOAwAAAAAAAAAAAABAOhnyqFDPP/98DBs2LHbeeefo2rVrbLTR\nRrHVVlvFoEGD4sQTTyz6fitXrox777035/rRRx/doDiHHHJIzrWZM2fGG2+8UfDZkjz66KM51zbf\nfPPETxZZX58+fWL77bdv1D6N8fbbb8c777yTc3348OFF3Q8AAAAAAAAAAAAAgMpnyKNCbbzxxjF2\n7Nh48803Y+HChRusvfXWWzF//vyi7nfXXXfFvHnz6l1r3bp1jBw5skFx9tprr+jatWvO9bvvvrtR\n56vPmjVrEgdTvvzlLxcU79BDD825dt9990U2my0oXpKk59C5c+cYNmxY0fYCAAAAAAAAAAAAAKA6\nGPKoUDvuuGN85jOfqXdtzZo18ac//aloe61atSp++ctf5lz/yle+EltssUWDYmUymfjqV7+ac/3m\nm2+OlStXFnzG+jzxxBMxc+bMnOc49dRTC4p3/PHH51ybNWtWPPLIIwXFy2XlypVx00035Vw/4YQT\nom3btkXZCwAAAAAAAAAAAACA6mHIo0K1atUqBg4cmHP9lltuKdpeV155ZUyfPr3etUwmE+eee25B\n8U477bScax9++GFcddVVBcWrz+rVq+Oiiy7Kub7rrrvGoEGDCoq55557Rv/+/XOuX3zxxbF69eqC\nYtbnmmuuiffff7/etUwmE6effnqT9wAAAAAAAAAAAAAAoPoY8qhgSZ8sMXHixPjrX//a5D1Gjx4d\nl1xySc71oUOHxuDBgwuKOWDAgMQBi5/97Gfx+uuvFxTzP/3iF7+IV199Nef6d77znUbFPeOMM3Ku\nvf766/HTn/60UXHXevPNN+MnP/lJzvXBgwfHbrvt1qQ9AAAAAAAAAAAAAACoTplsNpst9yGo3yef\nfBI9e/aMZcuW1bu+3XbbxUsvvRSdOnVqVPw33ngj9t5771i8eHG9623bto0pU6bETjvtVHDsv/71\nr3HIIYfkXN92223jueeei+7duxcc+49//GMcc8wxketf3e233z5ef/31aNWqVcGxV61aFdttt13M\nmjWr3vVMJhP33XdfHH300QXHnjdvXuyzzz6Jn5ry9NNPx7777ltwbAAAAAAAAAAAAAAAqp9P8qhg\nnTp1ipEjR+Zcnz59ehxxxBHx6aefFhz7vvvui8GDB+cc8IiIOPfccxs14BERcfDBBycOK7zzzjsx\nbNiwmD17dkFx77///jj++ONzDnhERPzqV79q1IBHRESbNm3isssuy7mezWZj5MiRcc899xQUd86c\nOTFs2LCcAx4REYcffrgBDwAAAAAAAAAAAACAFswneVS4efPmxY477hgLFy7M+Zqddtop7rjjjhg4\ncGDeeB988EFceumlcfPNNye+buDAgfHss89Gu3btCj7zWm+99VbsvvvusXz58pyv2WyzzeLaa6+N\nY489NjHWxx9/HJdcckmMGjUq8XWHHXZY/PnPf27Uedc3bNiwGDt2bM71TCYTZ5xxRvziF7+Izp07\nJ8a6//7746yzzop58+blfM3GG28cL7/8cvTp06fRZwYAAAAAAAAAAAAAoLoZ8qgCv/vd7+Jb3/pW\n3tcNGzYsjjnmmNh7772jV69e0blz51i2bFnMnTs3pkyZEo888kg8/PDDiUMXERFbbLFFvPjii9Gj\nR48mn/26666L7373u3lf97nPfS5OOumkGDp0aPTr1y822mijWLhwYbz66qvx6KOPxu233x6LFi1K\njLH11lvHlClTYpNNNmnyuWfPnh277rpr4iedRPx7OOOkk06Kww47LHbdddfYdNNNY/ny5TFjxox4\n5pln4rbbboupU6cmxshkMnHffffF0Ucf3eRzAwAAAAAAAAAAAABQvQx5VIlTTjklbr/99pLvs9lm\nm8Xo0aPjc5/7XNFifvOb34xbbrmlaPHq07Fjx3jqqadizz33LFrMMWPGxCGHHBKrVq0qWsz6fP/7\n34/LL7+8pHsAAAAAAAAAAAAAAFD5asp9ABrm5ptvjmOOOaake+y4444xceLEog54RETccMMNccIJ\nJxQ15vo23njjGD16dFEHPCIiDjzwwLjnnnuiXbt2RY27PgMeAAAAAAAAAAAAAACsZcijStTU1MRd\nd90V5513XmQymaLGzmQycfTRR8eECROiT58+RY0dEdGqVau488474+KLL46amuL+K9enT5946qmn\nYvDgwUWNu9ZRRx0VTz75ZPTs2bOocdu0aRO/+tWvDHgAAAAAAAAAAAAAAPB/MtlsNlvuQ1CYp556\nKk455ZSYPXt2k2P169cvRo0aFQcffHARTpbfuHHj4tvf/na89dZbTYqTyWTi9NNPjyuvvDI6dOhQ\npNPltmDBgjjnnHPi7rvvjqb+J9O/f/+44447YrfddivS6QAAAAAAAAAAAAAASANDHlWqtrY27r77\n7rj66qtj6tSpBX1tTU1NHHjggXH66afHUUcdFa1atSrRKeu3Zs2a+MMf/hC/+c1v4qWXXiroazt0\n6BAnnHBCnHPOObHLLruU6IS5TZ06NX7961/HQw89FMuXL2/w12Uymfj85z8f55xzThx99NFF/0QT\nAAAAAAAAAAAAAACqnyGPFPj73/8ezz77bDz77LPx1ltvxfz582PBggWxdOnS6Ny5c3Tp0iW6d+8e\nu+++e3z+85+PfffdN3r16lXuY0fEv8/+t7/9LSZMmBB///vfY/bs2fHJJ59EbW1tbLLJJrHppptG\nz549Y6+99oq999479t9//+jcuXO5jx2LFy+Ov/3tb/HMM8/Ea6+9FjNmzIhFixbFsmXLokOHDtGl\nS5fo2rVr7LLLLrHPPvvE/vvvH9tuu225jw0AAAAAAAAAAAAAQAUz5AEAAAAAAAAAAAAAAFABasp9\nAAAAAAAAAAAAAAAAAAx5AAAAAAAAAAAAAAAAVARDHgAAAAAAAAAAAAAAABXAkAcAAAAAAAAAAAAA\nAEAFMOQBAAAAAAAAAAAAAABQAQx5AAAAAAAAAAAAAAAAVABDHgAAAAAAAAAAAAAAABXAkAcAAAAA\nAAAAAAAAAEAFMOQBAAAAAAAAAAAAAABQAVqX+wBQ6Wpra2PixIkxfvz4GD9+fMycOTMWLFgQCxYs\niGw2G506dYru3bvHZz/72dhtt91i+PDhsccee5T72CX1r3/9K8aNGxfjx4+PSZMmxUcffRTz58+P\nxYsXx0YbbRSdOnWKbbbZJnbeeecYMmRIfOlLX4rNN9+83MeWSwBST62rq1r7FgBIO31L4zz++ONx\n2GGHbfDP9t9//xg7dmyZTiSXAKSfWtc4ldi3AEDa6Vs2VFtbGy+88EI899xz8corr8S7774bc+fO\njcWLF8enJN8ySQAAIABJREFUn34aNTU10aFDh+jatWtstdVWsdNOO8Uee+wRw4YNi2222absZ5dL\nANJMrdtQNfctlE4mm81my30IqETz5s2Lm266KX7729/Ge++9V9DXbrXVVnH22WfH6aefHp06dSrR\nCZvfpEmT4tprr437778/Vq1a1eCvy2QyceCBB8b5558fw4cPL+EJ6yeXAKSdWldXtfQtF1xwQVx1\n1VUl3+c/vfjii6m+AAGgculbGm/VqlXRv3//ePvttzf450OHDo0xY8Y0+3nkEoC0U+sar9x9i/sW\nAFoafcuGJk+eHDfddFPcd999sXjx4kbF6N+/f5x22mlx0kknNetzkUsA0k6t21A19S3uW5qfIQ+o\nx0033RQXXHBBLFmypElxunfvHr/+9a/jxBNPLNLJymPBggVx1llnxT333NPkWEOHDo3f/va3scMO\nOxThZPnJJQBpp9ZtqNr6loMOOqjZ35SZyWTixRdfjN13371Z9wUAfUvTXHjhhXH55ZfX+eflGPKQ\nSwDSTq1rmnL3Le5bAGhJ9C3rvPnmm3HBBRfEE088UbSYXbp0iYsuuii++93vRqtWrYoWtz5yCUDa\nqXXrVGPf4r6l+RnygPUsWrQojjvuuBg9enRR444YMSJuv/32aN++fVHjNoenn346jj/++Pjwww+L\nFnOjjTaKm266qaRFVi4BSDu1rq5q7Fs222yzmD9/fkliJ3nppZda7A/BADQ/fUvT/e1vf4svfvGL\n9a4155CHXAKQdmpd01VC3+K+BYCWQN+yTjabjSuuuCIuvfTSgj7dvRB77rln3HXXXdGvX7+ix5ZL\nANJOrVunmvsW9y3Nr6bcB4BKMX/+/DjwwAOLXkgiIu6///7Yb7/9Gv1xSuXy+OOPxyGHHFLUN0pG\nRCxfvjy+/vWvx89+9rOixl1LLgFIO7WurmrsW+bMmVOWH4ABoDnpW5rurbfeimOPPbbcx5BLAFJP\nrWu6Suhb3LcA0BLoW9ZZuXJljBgxIi688MKSvVEyIuLFF1+MwYMHx/jx44saVy4BSDu1bp1q7lvc\nt5SHIQ+IiE8++SSGDh0aU6dObdDrM5nMBn8aYvLkyfGlL30pPv3006Yctdn89a9/jaOOOipWrFjR\noNcX+jwiIi699NK45pprGnvEesklAGmn1tVVrX1LQ3NYbIX8vQGgKfQtTff+++/H8OHDY+HChWU9\nh1wCkHZqXdNVSt/ivgWAtNO3rFNbWxtHHXVUPPTQQwV9XWOeScS/36Q6fPjwmDBhQqFHrZdcApB2\nat061d63uG8pD0MeEBGnnnpqvP7664mv2XjjjeOss86Kv/zlLzF37txYuXJlLF26NN5666244447\nYvjw4Xn3ef755+Pss88u1rFLZvbs2TFy5Mi804L9+/ePX//61zF58uRYtGhRrFq1KhYuXBgTJkyI\n//7v/46+ffvm3ev888+PcePGFevocglA6ql1G6rmvuWVV14pWqxCZLPZsuwLQMujb2mauXPnxgEH\nHBCzZs0q91HkEoDUU+uappL6FvctAKSdvmWd7373u/HEE0/kfV2nTp3iuOOOi5tvvjmmTZsW7733\nXqxYsSIWLlwY06dPj8ceeyy+973vRb9+/fLGWrp0aRx++OHxz3/+s8nnl0sA0k6tW6fa+xb3LWWS\nhRZu1KhR2Uwmk/jn29/+dnbx4sV5Y7388svZ3XffPW+8Bx54oBn+Zo1TW1ubHTx4cOL5u3Xrlr3r\nrrvyxlq9enX2+uuvz3bq1CkxXu/evRv0fPORSwDSTq3bUDX3LdlsNnvMMcck7lVTU1OyP5MnTy7K\n3wEActG3NM3MmTOzffr0yft3zmQy2QMOOKCkZ5FLANJOrWuaSupbsln3LQCkm75lnT//+c95z96h\nQ4fshRdemJ0/f36DYq5evTp75513ZrfZZpu8sffaa6/smjVrGn1+uQQg7dS6daq9b8lm3beUiyEP\nWrQPP/ww8Y18rVu3zt56660FxVyxYkV25MiRid/Qttpqq+yyZctK9Ldqmuuvvz7x7P369cvOnDmz\noJivvfZaduutt06Me/755zfp3HIJQNqpdXVVa9+y1rbbbptzjz//+c9F2QMAykHf0jQTJ07M9ujR\nI++l/No/pXyzpFwCkHZqXdNUUt+ylvsWANJK37LOp59+mu3du3fiubfccsvsSy+91Kj4CxYsyA4f\nPjxvbzNq1KhGxZdLANJOrVun2vuWtdy3lEdNuT9JBMrpsssuiyVLluRcv/rqq+Pkk08uKGbbtm3j\nD3/4Qxx77LE5XzN79uy46qqrCorbHD755JP48Y9/nHO9W7du8dRTT8U222xTUNydd945xowZEz16\n9Mj5muuuuy5mzpxZUNz1ySUAaafWbaia+5aIiCVLlsS7775b71omk4ndd9+9SfEBoJz0LY135513\nxv777x8ffvhhuY8SEXIJQPqpdY1XaX1LhPsWANJN37LODTfcEHPnzs253qtXr3jhhRdijz32aFT8\nTTfdNB577LE45JBDEl/3s5/9LJYvX15wfLkEIO3UunWqvW+JcN9STplsNpst9yGgHGbMmBE77LBD\nrF69ut71I488Mh566KFGx1++fHl8/vOfj6lTp9a73rVr15g1a1a0b9++0XsU209/+tPEN0v+8Y9/\njCOOOKLR8cePHx8HHHBA1NbW1rv+7W9/O66//vqC48olAGmn1tVVrX3L+vH33Xffete6d+8eH3zw\nQaNjA0A56VsaZ+nSpXHeeefFzTffXPDXDh06NMaMGVP0M8klAGmn1jVOJfYta7lvASCt9C3rZLPZ\n6Nu3b/zzn/+sd71t27bx9NNPx+DBg5u815IlS2KvvfaKN998M+drbrnlloLepCqXAKSdWrdOtfct\na7lvKR+f5EGLdeONN+YsJBtttFFcffXVTYq/0UYbxS233BI1NfX/ZzZ//vy49dZbm7RHMdXW1saN\nN96Yc/2LX/xik94oGRGx9957x5lnnplz/fbbb49//etfBceVSwDSTq3bUDX3LWu98sorOdcGDBjQ\n6LgAUG76lsJNmjQpBgwY0Kg3SpaSXAKQdmpd4Sq1b1nLfQsAaaVvWWfs2LE53ygZEXHaaacV5Y2S\nEREdO3bM+9vA77rrroJiyiUAaafWrVPtfcta7lvKx5AHLdLKlSvjtttuy7l+/PHHx9Zbb93kfQYM\nGJD48VC33HJLk/colkcffTTef//9nOsXX3xxUfa57LLLokOHDvWuLV++vOBCIpcApJ1aV1e19i3r\ny/VbJSLCR1kCULX0LYVZuHBhnHHGGTFkyJB45513yn2cDcglAGmn1hWmkvuW9blvASCN9C0bevjh\nh3OutWnTJn74wx8Wdb+DDz448c2Xzz33XKxYsaJBseQSgLRT6zZUzX3L+ty3lI8hD1qkRx55JOdv\nXs5kMom/tblQZ511Vs61qVOnxmuvvVa0vZoiqbDtsssuOT9uqVCbbLJJjBw5Muf673//+4LiySUA\naafW1VWtfcv6kn4I9psOAKhW+paGWbVqVdxwww2xww47xI033hjZbDbx9b169Srab3JqKLkEIO3U\nuoaphr5lfe5bAEgjfcuGnnzyyZxr++23X2y55ZZF3/Ooo47KubZixYrEHmR9cglA2ql1G6rmvmV9\n7lvKx5AHLdJDDz2Uc61Pnz5FnS4bMmRI4jfjBx98sGh7NdaSJUsSC8qIESOKul/SFOXLL7+c+BFV\n/0kuAUg7tW5D1dy3rLV69eqcFwqZTMZvOgCgaulbkq1evTpuu+222H777eM73/lOzv/Rsb5dd901\nJkyYENtvv30znHAduQQg7dS6ZNXUt6zlvgWAtNK3rPPxxx/HW2+9lXP9gAMOKMm+Q4cOTVxv6Ced\nySUAaafWrVPtfcta7lvKy5AHLU42m43Ro0fnXP/yl79c9D0PO+ywnGuPPfZY0fcr1NixY2PlypU5\n14844oii7rfffvtF586dc6439JnIJQBpp9bVVa19y/r+/ve/x/Lly+td23jjjaNv374FxwSActO3\n5Pfss8/Gqaee2uAh0a997WsxceLEkvwmpyRyCUDaqXX5VUvfsj73LQCkkb5lQ/l+I/dee+1Vkn17\n9OiRuD5v3ry8MeQSgLRT6zZUzX3L+ty3lJchD1qcN954I+bPn59zfb/99iv6nkkxJ0+enHie5jBu\n3Lica5tssknsuuuuRd2vdevWMWTIkJzrf/3rXxsURy4BSDu1rq5q7VvW98orr+Rc22233QqOBwCV\nQN9SPF26dIl77rkn7rjjjthoo42afX+5BCDt1LriKXffsj73LQCkkb5lQzNmzEhc32yzzUqyb9Iv\nA4uIWLZsWd4YcglA2ql1G6rmvmV97lvKy5AHLc7EiRNzrmUymcQ38TXWoEGDcq5ls9l48cUXi75n\nIZKeSakmBpOeyaRJkxoUQy4BSDu1rq5q7VvWN3Xq1JxrPsoSgGqlb2m6TCYTxx13XLzxxhvx1a9+\ntWznkEsA0k6ta7pK6VvW574FgDTSt2xo6NChce+998b//u//xve///0YOXJkDB06NLbbbrvo2LFj\ndO3atST7fvjhh4nr7du3zxtDLgFIO7VuQ9Xct6zPfUt5tS73AaC5TZkyJefa5ptvHptvvnnR9+zT\np0907tw5Pv7443rXX3rppRg+fHjR922IbDabOG03YMCAkuybFPejjz6KOXPmRO/evRNjyCUAaafW\nbaia+5b1Jf0QXKq/AwCUmr6laXbZZZe4+uqrY9iwYeU+ilwCkHpqXdNUUt+yPvctAKSRvmVDvXv3\njhEjRjT7vv/4xz8S17t06ZI3hlwCkHZq3YaquW9Zn/uW8vJJHrQ4r7/+es61HXfcsWT7brfddjnX\nkr4RltqsWbNiyZIlOddL9UySnkc2m23QM5FLANJOrdtQNfct68s1qJLJZPymAwCqlr6lcbbYYou4\n8cYb45VXXqmYN0rKJQBpp9Y1TiX2Letz3wJAGulbKsPo0aMT15Oe11pyCUDaqXWVoRh9y/rct5SX\nIQ9anOnTp+dcK1cxyTc9V0pJzyOidM+kb9++iesNeSZyCUDaqXUbqua+Za33338/Pvroo3rXOnTo\nUNK8AkAp6VsKs8UWW8RVV10V7777bnzzm9+MTCZT7iP9H7kEIO3UusJUct+ylvsWANJK31IZHn30\n0ZxrrVu3jv79++eNIZcApJ1aVxmK0bes5b6l/FqX+wDQnFauXBnvvfdezvUtt9yyZHv36tUr59rM\nmTNLtm8+SXtnMpmSPZP27dtHly5dYsGCBfWuz5gxI/Hr5RKAtFPrCtu7kvuW9eX6LQcREbvuumud\nN0osWLAgxo0bF+PHj49JkybF+++/H/Pnz4/FixdH+/btY5NNNom+ffvGzjvvHPvuu2988YtfjK5d\nuzb4PABQDPqWhqmpqYlBgwbFGWecESNHjozWrSvvalYuAUg7ta5hqqFvWZ/7FgDSSN9SGZ544ol4\n++23c64PHDgwOnXqlBhDLgFIO7WuMhSjb1mf+5byq+wbOSiyuXPnJq737NmzZHv36NEj59qiRYti\nyZIl0bFjx5Ltn8ucOXNyrtXU1MTmm29esr179OiR882Ss2bNSvxauQQg7dS6uqq1b1lf0seBrv0o\ny2w2G08++WTcfPPN8fDDD8eqVavqff3SpUtj6dKlMXfu3Hj22WfjhhtuiNatW8cXvvCF+N73vhfD\nhg1r8LkAoCn0LQ2z7777xsSJE8t9jERyCUDaqXUNUw19y/rctwCQRvqWyvDLX/4ycf0rX/lK3hhy\nCUDaqXWVoRh9y/rct5RfTbkPAM3pgw8+SFwvZTHJ96bD+fPnl2zvJEnPpFu3blFTU7pvE0nPJN/z\nkEsA0k6tq6ta+5b1Jf0QvNtuu8XYsWNjjz32iOHDh8cDDzyQ8wfgXGpra+OJJ56IL3zhC7HffvvF\ntGnTCvp6AGgMfUvD/OdvNKpEcglA2ql1DVMNfcv63LcAkEb6lvK7995747nnnsu53qZNmzjxxBPz\nxpFLANJOrSu/YvUt63PfUn6GPGhR8n3D3nTTTUu29yabbJJzLZvNxsKFC0u2d5KkZ1LK5xGR/Ezy\nPQ+5BCDt1Lq6qrVvWV/SD8HXXHNNDBs2LPE1hXjuuedi4MCBccUVVxQlHgDkom9JD7kEIO3UunRy\n3wJAGulbymvBggVxzjnnJL5m5MiRib89fC25BCDt1LryKmbfsj73LeVnyIMWJekbdiaTic6dO5ds\n73wf+VSuYpK0bymfR0TyM8n3POQSgLRT6wrbt5L7lrWWLVsW06dPz7n+2muvFXyufGpra+NHP/pR\njBgxIlauXFn0+AAQoW9JE7kEIO3UuvRx3wJAWulbyutb3/pWzJs3L+d6u3bt4uKLL25QLLkEIO3U\nuvIqZt+ylvuWymDIgxZlyZIlieudOnUq2d75Yi9evLhkeydJeialfB754ud7HnIJQNqpdXVVa9+y\n1quvvhrZbLZR+2cymTp/CvHggw/GoYce6gdhAEpC35IecglA2ql16eO+BYC00reUz+WXXx4PPvhg\n4mvOP//86NevX4PiySUAaafWlU+x+5a13LdUBkMetCjLli1LXG/fvn3J9t5oo40S11etWlWyvZMk\nPZNSPo+I5GeS73nIJQBpp9bVVa19y1qFfkxlt27d4rTTTov77rsv3nzzzVi0aFGsWrUqPvroo3jt\ntdfi4YcfjjPPPDP69u3boHhjxoyJE044oaAzAEBD6FvSQy4BSDu1Ln3ctwCQVvqW8rj//vvjwgsv\nTHzNjjvuGJdcckmDY8olAGmn1pVHKfqWtdy3VIbW5T4ANKcVK1YkrrduXbr/JPLFLtfUWdIzKeXz\nyBc/3/OQSwDSTq2rq1r7lrUa+kNwt27d4tJLL41vfvOb0a5duzrrXbt2ja5du8ZOO+0Uhx9+eET8\n+4f3yy67LN56663E2A899FBcccUV8YMf/KBBZwGAhtC3pIdcApB2al36uG8BIK30Lc1v9OjRceKJ\nJya+pl27dnHPPffkfUPp+uQSgLRT65pfqfqWtdy3VAaf5EGLsnr16sT1chaTck0MJj2Tcr5Zcs2a\nNYlfK5cApJ1aV1e19i1rNeSH4C9/+cvx5ptvxllnnVXvD8C5jBgxIl599dX4zne+k/e1l1xySbz+\n+usNjg0A+ehb0kMuAUg7tS593LcAkFb6luY1duzYOOqooxL/bplMJn7zm9/ErrvuWlBsuQQg7dS6\n5lXKvmUt9y2VwZAHLUq+N+CVspi0atUqcb22trZkeydJeialfrNkU56JXAKQdmpdXdXat0T8++yv\nvvpq4mvOO++8+NOf/hRdu3Yt+HwR/z7jqFGj4pprrkl8XW1tbZxzzjmN2gMA6qNvSQ+5BCDt1Lp0\ncd8CQJrpW5rPU089FYcddlh8+umnia8799xz45RTTik4vlwCkHZqXfMpdd8S4b6lkhjyoEXJVyzy\nTRQ2Rb5iUVNTnv8ck55JKZ9HRNOeiVwCkHZqXV3V2rdERMyePTvWrFkTmUym3vXTTjstrrzyykaf\nb31nn312nHXWWYmvGTt2bIwfP74o+wGAviU95BKAtFPr0sV9CwBppm9pHo888kiD3ih5zDHHNLqv\nkEsA0k6tax7N0bdEuG+pJKX9dbdQYdq2bZu4XsqpvXJ+JFWSpGdS6inGfM8kqcDKJQBpp9bVVa19\nS0TE1ltvHcuWLYsPPvggZs6c+X9/ZsyYEZ9++mmMGjWqmMeNq666KiZMmBCTJ0/O+Zprrrkm9t57\n76LuC0DLpG9JD7kEIO3UunRx3wJAmulbSu/OO++Mk08+Oe/fd/jw4XHXXXc1eh+5BCDt1LrSa66+\nJcJ9SyVJx7+90ED5ikk5Jwbzna1UkvYt52/EbtOmTeLXyiUAaafWFbZvJfct6+vRo0f06NEjhgwZ\nUoxj5dS6dev46U9/Gl/60pdyvubRRx+NpUuXxmc+85mSngWA9NO3pIdcApB2al06uW8BII30LaX1\nP//zP/HDH/4w7+sOPvjg+NOf/tSkN4jKJQBpp9aVVnP2Letz31J+6fkcGmiAdu3aJa4vX768ZHvn\ni12ubz5Jz6SUzyNf/HzPQy4BSDu1rq5q7VvK5ZBDDonddtst5/ry5cvjqaeeasYTAZBW+pb0kEsA\n0k6to6nctwDQXPQtpbFmzZo455xzGvRGycMPPzwefvjhJr85VC4BSDu1rjTK0beUi/uW+hnyoEXZ\nZJNNEtc/+eSTku2dL3a5iknSMynl88gXP9/zkEsA0k6tq6ta+5ZyGjFiROL6+PHjm+kkAKSZviU9\n5BKAtFPrKAb3LQA0B31L8S1dujSOPPLIGDVqVN7XHnfccfHQQw8V5Y2ScglA2ql1xVeuvqWc3LfU\nZciDFqVr164517LZbFmLSZcuXUq2d5KkZ1LON0vmex5yCUDaqXV1VWvfUk5Dhw5NXJ82bVrzHASA\nVNO3pIdcApB2ah3F4L4FgOagbymuOXPmxD777BOPPvpo3teeeeaZcdddd0WrVq2KsrdcApB2al1x\nlbNvKSf3LXUZ8qBFSSomERGLFi0q2d5JsTOZTN6zlUrSvqV8Hvni53secglA2ql1dVVr31JOAwcO\njNatW+dc/8c//tF8hwEgtfQt6SGXAKSdWkcxuG8BoDnoW4pn0qRJseeee8Yrr7yS+LpMJhM/+9nP\n4rrrrivq/nIJQNqpdcVT7r6lnNy31GXIgxale/fuiesffvhhyfbOF7tHjx4l2ztJ0jP56KOPSrp3\n0jPJ9zzkEoC0U+vqqta+pZzatGkT3bp1y7le6ucGQMugb0kPuQQg7dQ6isF9CwDNQd9SHPfff38M\nHTo079+pTZs2ccstt8RFF11U9DPIJQBpp9YVRyX0LeXkvqUuQx60KL169Yq2bdvmXP/ggw9KtndS\n7G7dukWbNm1KtneSvn375lxbtWpVLFy4sGR7Jz2T3r17J36tXAKQdmpdXdXat5Rb0m+mWLZsWTOe\nBIC00rekh1wCkHZqHcXivgWAUtO3NN3Pf/7zOPbYY2P58uWJr9t4443j8ccfj5NOOqkk55BLANJO\nrWu6Sulbys19y4YMedCi1NTUxDbbbJNzffbs2SXbe86cOTnXks5UaklvlsxmsyV7JsuWLUt8I2a+\nZyKXAKSdWldXtfYt5da5c+eca2vWrGnGkwCQVvqW9JBLANJOraNY3LcAUGr6lsarra2Nk08+Of7r\nv/4r72u33nrreO6552LYsGElO49cApB2al3jVVrfUm7uWzZkyIMWp1+/fjnXpk+fXrJ9k2Jvv/32\nJds3n6Q3S0aU7pm88847iesNeSZyCUDaqXUbqua+pZwWL16cc61Dhw7NeBIA0kzfkh5yCUDaqXUU\ng/sWAJqDvqVwy5YtiyOOOCLuuOOOvK8dNGhQvPDCC7HzzjuX/FxyCUDaqXWFq9S+pZzct2zIkAct\nTv/+/XOuvf322yXbN+nNgeX8xtu9e/fYfPPNc66X6pkkFddMJtOgZyKXAKSdWrehau5bymnBggU5\n15I+6hIACqFvSQ+5BCDt1DqKwX0LAM1B31KYhQsXxkEHHRRPPPFE3teOGDEinnnmmejevXsznEwu\nAUg/ta4wldy3lJP7lg0Z8qDFGThwYM61GTNmxNKlS4u+5/Tp02PJkiU51wcMGFD0PQuxxx575Fyb\nOnVqSfZ8+eWXc6517949evTokTeGXAKQdmpdXdXat/yn2tra+OCDD+LVV1+NTz/9tCnHS7R69eqY\nP39+zvWtttqqZHsD0LLoW9JDLgFIO7Uuvdy3AJA2+paGW7BgQRx00EExceLExNdlMpm48MIL4957\n74127do10+nkEoD0U+sartL7lv/kvqV8DHnQ4iQVk9WrV8dLL71U9D0nTZqUc62mpiYGDRpU9D0L\nkfRMks7eFElx99prrwbFkEsA0k6tq6sa+5ZHHnkkjj766Nh3331jxx13jK5du0bbtm2jV69e8bnP\nfS5Gjx5dzONuYMqUKbFq1aqc65X8mysAqC76lvSQSwDSTq1LB/ctALQE+paGWftGySlTpiS+rk2b\nNnHzzTfHz3/+82Y62TpyCUDaqXUNU+l9i/uWymLIgxZnm222SZzoeuaZZ4q+Z1LMnXfeOTbddNOi\n71mI/fffP+faP//5z5g1a1ZR91u5cmXiFGLSedYnlwCknVpXVzX2LfPmzYs//vGPMX78+Hj77bdj\n4cKFG6zn++0MTZHv35E999yzZHsD0LLoW9JDLgFIO7UuHdy3ANAS6FvyW7p0aRx66KF5P+29c+fO\n8dhjj8XJJ5/cTCfbkFwCkHZqXX7V0Le4b6kshjxokYYPH55z7dFHHy36fo899lijztJc9tlnn+jU\nqVPO9WI/k6effjrnx29lMpmCnolcApB2at2GqrFvyffbBEpxmbHWX/7yl5xrmUwmDjrooJLtDUDL\no29JD7kEIO3UuurnvgWAlkLfklttbW2MGDEi7ye99+zZM8aNG1f2Gi2XAKSdWpdbtfQt7lsqiyEP\nWqRDDz0059rkyZPjnXfeKdpezzzzTLz//vs514888sii7dVYbdq0iWHDhuVcv/vuu4u6X1K8bbfd\nNnbaaacGx5JLANJOrdtQNfYtu+22W7Rr1y7n+sSJE+Pdd99t1PmSTJs2LZ566qmc67vvvnv06tWr\n6PsC0HLpW9JDLgFIO7Wu+rlvAaCl0Lfkdv755ye+GTDi3/8v5/nnn49dd921mU6Vm1wCkHZqXW7V\n0re4b6kshjxokQ4++OCcH8WUzWbj+uuvL9peo0aNyrm20047xZAhQ4q2V1Mcf/zxOdfGjx8f06ZN\nK8o+//rXv+Kee+7JuX7qqacWFE8uAUg7ta6uautb2rVrF/vvv3/ia2699daCztYQV1xxReL6Kaec\nUvQ9AWjZ9C3pIZcApJ1aV/3ctwDQUuhb6nf33XfHddddl/iaHXfcMcaNGxdbb711M50qmVwCkHZq\nXf2M1Z6NAAAOLUlEQVSqqW9x31JZDHnQIrVr1y5OPPHEnOs33HBD/OMf/2jyPpMmTYoHH3ww5/o3\nv/nNJu9RLEceeWR069Yt5/oPfvCDouxz2WWXxYoVK+pda9u2bZx88skFxZNLANJOraurGvuWY445\nJnH92muvjffee6+g8yV54okn4q677sq5vummm8bXvva1ou0HABH6ljSRSwDSTq1LB/ctALQE+pa6\nZs+eHd/+9rcTX9OrV68YPXp09OjRo5lOlZ9cApB2al1d1di3uG+pHIY8aLG+9a1vRSaTqXdt+fLl\nceqpp8aaNWsaHX/ZsmWJv925Y8eO8Y1vfKPR8YutTZs2idNuo0ePjttuu61Je4wdOzZuvPHGnOtH\nH310bLbZZgXHlUsA0k6t21A19i3HH398bLzxxjnXly5dGueee25BZ8xl7ty58fWvfz3xNeedd150\n7NixKPsBwPr0LekhlwCknVpX/dy3ANBS6Fs2dNppp8Unn3ySc71jx47x6KOPRu/evZvxVA0jlwCk\nnVq3oWrsW9y3VA5DHrRYn/3sZ+OrX/1qzvWxY8fGeeed16jYa9asiW984xvx+uuv53zN97///Zwf\nTVUuF1xwQeI3wzPPPDOef/75RsWePn16HHfccTkLdNu2beOnP/1po2LLJQBpp9bVVW19y2c+85k4\n++yzE1/zwAMPxGWXXVZQ3P80Z86cOPjgg2P+/Pk5X9OnT5+44IILmrQPAOSib0kPuQQg7dS66ue+\nBYCWQt+yzh//+Md48sknc65nMpn4zW9+E7vttlsznqrh5BKAtFPr1qnWvsV9SwXJQgv297//Pdum\nTZtsJpPJ+efcc8/NrlmzpsExly9fnj3uuOMSY/bq1Su7bNmyRp87KXYmk8nefvvtjY596aWXJsbe\neOONs2PGjCko5quvvprdcsstE+N+97vfbfSZs9nqzSUANFS11jp9yzqffPJJtmfPnnmfyY9+9KPs\n6tWrC47/yiuvZHv37p0Yu1WrVtnRo0c36vwA0FD6luL7xje+kfNcBxxwQMn2rdZcAkBDVWut07es\n474FgJZC35LN1tbWZnfYYYfEeMccc0yjz9pcqjWXANBQ1Vrr9C3ruG+pDD7JgxZt++23j4svvjjx\nNddcc00cdNBB8c477+SNN2XKlPj85z8f9957b87XZDKZuPbaa6N9+/YFn7ehMjk+7qohLrroothx\nxx1zrn/88ccxfPjw+MlPfhIrVqxIjLV69eq44YYbYsiQITFnzpycr9tqq63ixz/+cWOPHBHpzSUA\nrJXWWteS+paOHTvG7373u7yvu/zyy2P//fePF154oUFxFy1aFOeee27sscceMXfu3MTX/uAHP4gv\nfOELDYoLAI2lb0mPtOYSANZKa61rSX2L+xYAWgp9S8SDDz4Yb7/9dt7X1NTUNOufk08+uaC/c1pz\nCQBrpbXWtaS+xX1LhSj3lAmUW21tbXbQoEF5J85at26dPe6447IPPPBAdtasWdkVK1ZkP/300+y7\n776bvfPOO7OHHXZY3hiZTCZ79tlnN/nM+fa44447mhT/pZdeyrZt2zbvPj179sxefPHF2eeeey47\nf/78bG1tbXbx4sXZSZMmZX/5y19mt9tuu7wx2rZtm504cWKTn0k2W525BIBCVGOt07fU9aMf/ahB\nzz+TyWSHDh2aveqqq7KTJ0/OfvDBB9mVK1dm582bl502bVr2//2//5cdMWJEtmPHjg2KdfTRRzf5\n7ADQUPqW4irXJ3lks9WZSwAoRDXWOn1LXe5bAGgJWnrfss8++zS43jfnn5NPPrng51KNuQSAQlRj\nrdO31OW+pbwy2Ww2W+5BEyi3999/PwYPHhyzZ88u6T777LNPPPXUU9GmTZsmxampSf4Qnttvvz2+\n/vWvN2mPP/zhD/GNb3yjSTHyyWQyMWrUqDjjjDOKFrPacgkAhaq2Wqdvqd/JJ58cd9xxR1FiNcSw\nYcPisccei7Zt2zbbngCgbymek046KX7/+9/XuzZ06NAYM2ZMSfevtlwCQKGqrdbpW+rnvgWAlqCl\n9i1z586NLbfcsklnKZWTTjopbr311oK/rtpyCQCFqrZap2+pn/uW8kn+NxJaiJ49e8bo0aNL+o11\n6NCh8Ze//KVqfmj62te+Ftddd13ewtVYNTU1ce211xZ1wCNCLgFIP7WurmrsW2677bY4++yzixYv\nybHHHhuPP/64H4ABaHb6lvSQSwDSTq1LB/ctALQELbVv+ctf/lLuIxRdS80lAC1HS611aetb3LeU\njyEP+P/tsMMOMWHChNhrr72KHvvYY4+NJ554Ijp06FD02KV05plnxv333x+dO3cuatyOHTvGbbfd\nFmeeeWZR464llwCknVpXVzX2Lddcc03cfvvtRT/zWu3bt49rr7027r777oq60ACgZdG3pIdcApB2\nal06uG8BoCVoiX3LM888U+4jlERLzCUALUtLrHVp7Fvct5SHIQ9YT69eveK5556Ln/zkJ0X5xt+t\nW7e455574u6774527doV4YTN76ijjopp06bF8OHDixJvv/32i2nTpsXXvva1osTLRS4BSDu1rq5q\n7Fu+/vWvx+uvvx4nnHBC0T6JJJPJxFe+8pWYOnVqnHXWWUWJCQBNoW9JD7kEIO3UunRw3wJAS9DS\n+pa5c+eW+wgl09JyCUDL09JqXVr7Fvctzc+QB/yHVq1axX/913/Fu+++GxdccEFsttlmBcfo27dv\nXHnllfHOO+/EV7/61RKc8t/f3HL9KbatttoqHn/88Rg7dmwcfvjh0apVq4K+vqamJg455JB4/PHH\n4+mnn45tttmm6GesT7XkEgAaq1pqnb4l2RZbbBF33nlnvPbaa3H22WdH165dGxWnc+fOcfrpp8fk\nyZPjgQceiO22267IJwWAxtO3NP1cuc7X3KollwDQWNVS6/Qtydy3ANAStKS+5aOPPkqMU84/xVAt\nuQSAxqqWWqdvSea+pXllstlsttyHgEpWW1sb48aNi7Fjx8aUKVPinXfeiY8++iiWLl0arVu3ji5d\nukSXLl1i2223jb333jv22WefGDRoULmPXVIfffRRPPnkkzFu3Lh48803Y+bMmbF48eJYvnx5dOzY\nMbp06RLdunWLAQMGxN577x1Dhw6N3r17l/vYcglA6ql1dVVj37JmzZqYOHFijBs3Ll5++eWYMWNG\nvPfee/Hxxx/HihUrol27dvGZz3wmevbsGdttt13ssssuccABB8SQIUN8bCUAVUPfkh5yCUDaqXXp\n4L4FgJZA35IecglA2ql16eC+pbQMeQAAAAAAAAAAAAAAAFSAmnIfAAAAAAAAAAAAAAAAAEMeAAAA\nAAAAAAAAAAAAFcGQBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAAAABU\nAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAA\nAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkA\nAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAA\nAFABDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw5AEAAAAA\nAAAAAAAAAFABDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw\n5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAA\nAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAA\nAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAA\nFcCQBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAA\nAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAAAABUAEMe\nAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAA\nAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAA\nAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFAB\nDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAA\nAAAAAFABDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAAQAUw5AEA\nAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAAAAAAAAAA\nQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQBwAAAAAA\nAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAAAABUAEMeAAAAAAAAAAAAAAAAFcCQ\nBwAAAAAAAAAAAAAAQAUw5AEAAAAAAAAAAAAAAFABDHkAAAAAAAAAAAAAAABUgP8PsqWHwGjwLV0A\nAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x7f6079f51b50>" ] } ], "prompt_number": 93 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
gpl-2.0
DavidBrear/sklearn-cookbook
Chapter 3/3.8 Using KMeans for Outlier Detection.ipynb
1
61538
{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Using KMeans to find outliers in a cluster of points.\n", "# Finding outliers means finding the centroids and then looking\n", "# for elements by their distance from the centroids" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.datasets import make_blobs\n", "import matplotlib.pyplot as plt\n", "X, label = make_blobs(100, centers = 1)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# a cluster with one center is similar to an SVM with one class." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from sklearn.cluster import KMeans" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "kmeans = KMeans(n_clusters=1)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "KMeans(copy_x=True, init='k-means++', max_iter=300, n_clusters=1, n_init=10,\n", " n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001,\n", " verbose=0)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "kmeans.fit(X)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x108b4cb10>" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAFCCAYAAAC3ugnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu0XWV57/HvL0RCEgyQUCmKGOtQaOsVkVoFTRWIFJCD\no+eox3o7ldEObCMNWi8HNR4tHXZIRNTKqBcSKeKFntgqVjai20OtVZRoVYhWKgJBlIZLKDsEkjzn\njzk3e2VnX+Zaa675zsvvM8YcybrsuZ4199rzWe/7PvN9FRGYmZlVbUHqAMzMrJucgMzMLAknIDMz\nS8IJyMzMknACMjOzJJyAzMwsCScgswFI2iDp3QWfu0fSb4w6JrOmcQIym4WkmyVNSLpP0l2Svijp\niPzhyDczG5ATkNnsAjgtIh4JHA78Evhgz+NKEpVZSzgBmRUQETuBvwd+K79rr+Qj6SxJ/y5pm6R/\nkHT4tF2cKukmSXdK+mtJTl7WeU5AZnMTgKQlwEuBb+b3P9z9JukFwPnAfydrKf0c+PS0/fw34JnA\nMcAZwP8aadRmDbAwdQBmNSbg85J2AUuBXwEv6nl8Mgm9Avh4RHwPQNJbgbslHRkRt+TPeW9E3APc\nI+lC4OXAx6t4E2Z15RaQ2ewCOCMiDgEWAX8GfF3SYdOeN9nqyX4o4n5gG/CYnufc2vP/W4BHjyRi\nswZxAjIrIDKbgN3A8dMevh1YOXlD0lJgBbC15zlHTvt/72NmneQEZDa3yTEgSToDOBi4Ib9/spDg\ncuC1kp4maRHZeNC/9nS/AbxR0sGSHgusAT5T2TswqymPAZnN7QuSdpN1x90MvDoibpT08HVAEXGN\npLeTVckdAnwDeNm0/fwD8F3gIOAS4BPVhG9WX5pvQTpJbwBeR/Zt76MR8YEqAjMzs3abswtO0pPJ\nks+zgKcBp0l6QhWBmZlZu803BnQ08K2IeCAidgNfB14y+rDMzKzt5ktAPwROkLQ8vxDvVOCIeX7G\nzMxsXnMWIUTEFknvBcaA+4HNwJ4qAjMzs3abtwhhrydL5wO3RMTFPfd5RmAzM9tHRMw55+G8ZdiS\nHhURv5J0JHAm8Dv9vkgXSFoXEetSx5GSj4GPAfgYgI8BFGucFLkO6ApJK4CHgLMjYvvQkZmZWefN\nm4Ai4nlVBGJmZt3iqXjKM546gBoYTx1ADYynDqAGxlMHUAPjqQNogr6KEGbcgRQeAzIzs15FcoPn\ngjOzVnFlbvUGbYQ4AZlZ67hXpjrDJHyPAZmZWRJOQGZmloQTkJmZJeEEZGZWU5J+KKm112I6AZmZ\nVUDSzZImJN0n6Q5Jl0haOtfPRMSTI+L/9bH/F5QTbTWcgMzMAGV+R9KLJY1i2ZkATouIRwLHAMcC\n55W8/0ZV/zkBmVknSFoi6QRJx0nab9pjgmWXwq9fA8//JCzZIunEUcUSEbcDXwaenCe8H0m6W9LX\nJB3dE9fDrRpJ6yR9VtJGSdvz7rln5o9dChwJfCFvYb1R0iJJfyfpP/N9f1vSo0b1ngbhBGRmrZe1\naA7cAkd/EY64Bh55raQDep6yGlacATcthfGD4AtLYfFnpu1jobT0ndKh35YO3iTpCYOEku/rscAp\nwH3Ap4A1wKHAl8iSyOQ1mtOvsTkduBw4CPhH4EMAEfFK4BbyFlZEvA94DbCMbBHR5cAfAzsGiHlk\nnIDMrAMOuhjOORxuXAY3HwgnPB0ecW7PEx4Hz10AS/KbzwceOETSI6aecuBH4Kl/AZc+C950Oiy+\nTtJhfQQh4POS7gauJZsv7gbgixFxTUTsBt4HLAaeM8s+ro2IL0c2h9rfAU+b4/UeBFYAT4zM5oi4\nr494R84JyMw6YMFRcHreqtgPOGMxLHlyzxOuhyuBn+U3PxJw4E8j4iEASQvggdfAlUuyhsv/3g9O\n3h84tY8gAjgjIg6JiJUR8afAo8laLtkTssRyK/CYWfbxy57/TwAHZLHN6FLgKuDTkrZKem9Py6oW\nnIDMrAP2XA8ffxD2kPVCbZyA//rXyUcj4jrY8WY46kE4aAe8ZSvcd1rPDgK0B3b13LUrv38otwOP\nm7yRjUXxWGDrAPvaK5aI2BUR/ycifpusRXUa8KohYi2dE5CZdcC9Z8PlW+DXJuBRD8APr4LdH+59\nRsSOD8FDh8D2J8L9KyPiJ1OPRcD+F8NJE/A54K274GsTZOMww/gscKqkF+TdfecCDwD/MsC+fgk8\nPC4laZWkp+QFF/eRLSq6e8h4S1Wr5piZ2ShExDZJzwBWAg9GxG2zPG+CrGtrBvf/Ofz4Z/Anp8KD\nW2HivIjYNmRcP5H0h8AHybrdNgOnR8SumZ7Ovi2u3tt/BXxQ0l8D7yFrRV1MVoTwX8CnybrlasPr\nAZlZq/icVK3ZjneR34O74MzMLAknIDMzS8IJyMzMknACMjOzJJyAzKwSklZLK8ayTatTx2PpuQrO\nzEYuSzjLNsFFi7N71uyA7WdGxFUjeC2fkyo0TBWcrwMyswosPxfWL4ZXT96xGNaeSzZVjHWUu+DM\nzCwJt4DMrAJ3XQBrjieb6Zm8C+6CpCHZXiR9Cbg8IvaZLUHSSuA/gIURsae01/QYkJlVIRsHWp4v\ngXDXBaMY/8lfp9bnJEn/E1gLHEU2R9v3gL+MiG8Msc91wBPydYFKN1cC8hiQmdVennDqO+aTzUR9\nHHAYcD2zzBc35EusBd5MtjjcVWRr9rwIeDEwcAIq8LqCh5d7qA2PAZlZN0hLkE5AOo5pS3LnyedS\n4Brgk8AWSl6SW9JBwLuAsyPi8xGxIyJ2R8SVEfFmZd4i6af5MtqfkXRI/rMrJe2R9CpJP5d0p6S3\n5Y+9CHgr8NJ8Oe7N+f3jkt4j6RvA/cDjJT1H0nWS7smX6P7dnvjGJf1R/v/9JL0vf52b6G/do8Kc\ngMys/aQjgC3AF8mSzLXssyQ3ZwBLyZa7Xgp8Zto+FiK9E+nbSJvof0nu3wUOADbN8vgaspbQ84DD\ngbuBD097znOBJwEvBN4h6aiI+DJwPvDpfDnuZ/Q8/w+B1wEHkiWhK4ELyZboXg9cOZnk2Hu27bPI\nks7TgWOBP2D4tY/24QRkZl1wMdlJfRnZyfjpZGvvTHoc+54PD2GvJbn5CPAXwLOA04Hr6G9J7hXA\nf84xiP/HwHkRcXu+Euu7gD+YtuLpuyJiZ0T8G/B9ppbkVr71CmBDRNyYv+bJwI8j4rKI2BMRnyZL\nyi+eIZb/Abw/IrZGxN1kCa70cTUnIDPrgqPYe8x7MTBtSe69BPBT8iW5yZLAa4Al+eP7Af0uyb0N\nOHSOJbRXApsk3S3pbuAGsmVXe5PcHT3/nyBLpnO5tef/ey3/nft5fv90h0/72ek/VwonIDPrguvJ\nBvwnTQAPL8lNxHVkxQEPkq3ZvZVsCeuHn0G2nvd0/XRLfRPYCZw5y+O3AC+KiEN6tiUR8YsC+54t\njt77t9Kz/Hfuccy8/PcvgCN7bh85w3OG5gRkZl1wNll30wTZktdXMX18JeJDwCHAE4GV9CzJTVY9\ndjFTq6Xuyv9feEnuiLgXeAfwYUlnSFoi6RGSTpH03nz/50s6EkDSr0maqXtsJncAKyer3Xr03v4S\n8CRJL5e0UNJLgaPJxsWm+yywRtJj8jGitxR9n/1wGbaZtV/ENnqW5J61xHrOJbn5c+BnZN1uW4Hz\n6HNJ7ohYL+kO4DzgMrLrgL4D/CXwLbKEMSbp0cCvyJbRnkxyc7W2PkdWcLBN0n9ExLHTfyYi7pJ0\nGvABsvGsfwdOi4i7ZtjfR8mKHb4P3AtcAKzq570W4QtRzaxVfE6qlpfkNjOzxpk3AUl6q6QfSfqB\npE9JWlRFYGZm1m5zJqB8/p+zgGMi4ilkpYcvG31YZmbWdvMVIWwHHgKWSNpNVgM/U8memZlZX+Zs\nAeXVEReQ1affDtwTEV+pIjDbV1eXNO7q+zZruzlbQMrmOjqHrHTxXuBzkl4REZdNe966npvjETFe\nbpg2taTx+sn1VI6XNJIljeukq+/brGkkraLPUu05y7DzC5VOiojX5bdfCTw7Il7f8xyXPFZAWjEG\n60+aWtJ4I7D26ohtJ6eMa9S6+r5tcJJqteRAF4xqPaAtwNslLSa7evhE4NsDR2lmNmL+Qtwccyag\niPi+pE+SXam7h2w+pb+tIjCbrqtLGnf1fZu1n2dCaJCqljSum66+b7MmK5IbnIDMzKx0norHascl\n1WY2yS0gq8xUSfVFveM5Lqk2ayG3gGxeZbVIiu1n+blZ8nk12XbR4qmxHTPrGq8H1GFlXeTpi0XN\nbBBOQJ22/NwsaUxe5MliWHsu2WqRI9iPS6rNbIq74KwyWYto+5mw9upsK2/8py7FDYPGUZf4q9Cl\n92rziIihtmwXw+3DW5oNWA3LJmBDZNuyCWB1qv2kfh+p4qhL/HU+Rt6atxXJDZW8iLf6btkJYflY\ntg1+IihrP4O99vKx7GQW+bYhYPlY9cdysDjqEn+dj5G35m1FcoPHgDousi6wobvBytqPmXWHE5C1\nQF2KGwaNoy7xV6FL79Xm4wtRrRXqMl/coHHUJf4qdOm9dpnngrPO8knOLC0nIOskT/ljlp6n4rGO\nGt2UP76Gxaw8LkIwK8hTDpmVywnIWmhUlVZlTV1kZuAEZC0UEVdJOjNPDsB2FyGY1ZCLEMwKcnGD\nWXGugjMrmcu7zYpxAjJLwEnKzAnIbF5lJwt305lliuQGFyFYZ42mrLo7lXJu6dmwfCGq9a0NF2Pm\nJ8/LyrpgdfKYAMeUGmhN9STvk7Jt2aamfhYsHbeArC9NvRhz2rf1cVh2HjxpcXn7njwmPwDW9Dza\n1tmeu9PSK4tbjPtyArI+Ne/Es2/SPOeFcOEC+HV63geDJ4t9jgmwdhtwfbeuQdq5Im8F4hPs3pr6\nxW3UnICsA6YniIvzrufVwEZgHfCTbbD9FeWcEJ4CcH3EtpOH39eUqW/QO1fAI4AF29Kd6KfPNnH2\nTlj427B+UXbbJ9i9Ne+LWxWcgKxPw01zU49uiOcCa/bw8BjoDTuGSz6jX2Rt6hv0axdnSfN9+SNp\nTvT7zjax/wq48BifYK0vVaz77a1dG7Aalo9lG6v7+7llE7Ahsm3ZRD8/P2gcs7zu2wZ5D2Ufk+L7\nXz6Wxf6S/D1Evm0IWD6W/jMxGV+94qrLVvZnvwlbkdxQyYt48xZR7kmq3z/oUSeI6o5dXRNQ806w\nVX8mmv4ZHOD9xnzPcRecNVR/feqRdVE1uDtospvvrMXwxp7761FlFw2bADZFUUDzP4PlcwKyCo1+\nrKStpk7wl+RFCOeQFSHU50TfrBOsiwLqwAnIKlPut+TuJbNmneDN5ue54Kyx6lFRZ03kOftGz5OR\nmpnNwl9gRssJyMzMkiiSGzwZqZmZJTFvApJ0lKTNPdu9ktbM93NmZtO1YSZ1K09fXXCSFgBbgeMi\n4tb8PnfBmdm8PPDfLaNYkO5E4KbJ5GNmVpyvvbG99TsG9DLgU6MIxMxm564ra6PCXXCS9ifrfvut\niLiz5353wVmnjbqcty1dV215H1ZM2V1wpwDf7U0+PS+0rufmeESM97Ffa5GuXVtRzZxi7ei6atp8\ncdYfSauAVf38TD8J6OXA5TM9EBHr+nlRa6durvo4muSwdyLfs2KoEGvE0wm1V97wGJ+8Lemd8/1M\noQQkaSlZAcJZA8ZmndCOb+qp7ZvIz94Ja3YCk6uNtn7eO+uGQgkoIu4HDh1xLGaF1aerbxSTou6T\nyBfB66+Htduym3t3XdXnWJj1x7NhW4mqmaG6SFdfVSfl6sY1Fm2L2Hby9Hvr2O3phGiFVbHqXZ02\nOrYqYRuP73wrq1Lh6pyjeL/9xF+3pbCrPPbe6r0VyQ2dagHV8dti20QtBpmrGYuS9DZY9m5Yn19P\nV87nKRpdLeZxQCuuUwnIfxxtkWYxumldS+Nw8LvhwgWj+DwVT+TFjoW7xayOOpaArA3yFsJ7YO3a\n7J7t6/c+oZafoGZoPb8Qjhh4NvmyEkKR1lK1Lf/urVRrQ6iin68uG+6fbsVW5PdIyWMzM4+1HB1w\nWPTEsbvIaw3zORzkfVU9TlT2sffWzK1IbuhUCyga3bfeXdNbC0W6UqOSsag79sAfLYCLgS17YPvb\ni32eBusKbsoYZjXH3tqgUwkI/MfRBPuOtSw7r/ekCztvrD6qGbuW3gOXrMpu31PBl5lBxzDdLWb1\n1LkEZPU281jLWdMG+s8hO4lWd0Kdo/V8fv97qzYhuOVvddXXgnQz7sCzYVuJpBVjsP6kqYSzkayL\n65s9t9dePdUVt2cFPAQs2tak6q5BihDqOJu0q+tsNqNYkM4sgS17YOPktTY7Jr/BSyI7IX+41mMi\nMxmkK7huLZmmjElZfbkFZLUyy7f898DyVdntqW/ZM7eW1l4905Q1Vj4ff5uLW0A2tKq7WModazGz\nOnMLyGZVxzGHXnWPby5tGDtp8vG30SuSG5yAWqTsk1oTuliaeCJv04m7icffquEuuA7p6oBwM6/r\nas+chM08/lYXTkCtMYqTmi9gNLPRcQKyWdWt7Lc9nNjNwGNArdGmcYUuKH+8zmMxVi8uQuiYYU5C\nPoE1V5u/fPhz2VxOQIk07Y+mzSewLqhbtWJZn39/LpvNVXAJNLMarf5VWU1L6l1V7ue//p9LG44T\nUOn8R1O2Zib1KvVf1DC6hO7PvxXnBGTUvyrLJ7W59Fut2JyEXvfPpQ3LCah0zfujcbl1n6TVQH6s\nuIAaHKv+LggdZUIv7/Pvz2X7OQGVrKl/NPW+or1GST1LPpumYuF4pDNTJ6Eyu9SG2VfZn/96fy5t\nWK6Cs0aoTRGCNAacNO3eq4lINj9ev9Vicz3flWdWFlfBdVBtTtQl8zfhufTXpTZ3K8XjbVYdJ6AW\nac7gcqNdAPR0B7Ijv69Uo/4i4YReL2394jiviBhqy3Yx3D68lbPB8jHYEBD5tiFg+VjquFq3weqA\nsXxbXf7vkdWwbCL7/W2I7P+zv06/zy/ztb1V//tuylYkN7gFZI2U9BvjyFsPZXap9afMfVlR3e32\ndAJqlRpVi42Quxr3FSUmxTL3ZTYXV8G1TBf6kus291nZXInWLW39fbsKroP87bX53A3WLV3+fbsF\nZI3T1m+MZm3i5RistbrQ1WjWZE5AZmaWRJHcsKCqYMzMzHrNm4AkHSzpCkk3SrpB0rOrCMzMzNqt\nSAvoA8CXIuI3gacCN442JDOrC0mrpRVj2abVqeOxdplzDEjSQcDmiPiNOZ7jMaCKeODdquRqQxtG\nGdcBPR64U9IlwNOA7wJviIiJkmK0gnz1v1Wvu1PEWDXmS0ALgWOAP42I6yRdCLwFeEfvkySt67k5\nHhHjZQZp4JOBmdWZpFXAqn5+Zr4EdBtwW0Rcl9++giwB7SUi1vXzotY87v7rom7MLWjlyBse45O3\nJb1zvp+ZMwFFxB2SbpX0pIj4CXAi8KMh47SBpDsZuPuvm7o8RYxVY94LUSU9DfgYsD9wE/DaiLi3\n53EXIVQkVSuk7ZN/mln5SpmMNCK+DzyrtKhsYJ5o1MzaxLNhWwEeCzCz8nkuOCvERQhm1g9PRmpm\nZkl4MtIR8NQk5WjScWxSrGZN4hZQHzw1STmadBybFKtZnbgFVLrl52YnoleTbRctnhoXseKadBz7\nj9UtpmJ8nMxVcC3n4oFq+aLdYnycDICIGGrLdjHcPpqyAath2QRsiGxbNgGsTh1XU+LN4lk+Bgd/\nF5Y8UJe4yjyG2fvbEBD5tiFg+Vjq91G3zcep/VuR3OAWUB+icVOT1GcC0xm+8e6E118Pi7bV+TjW\n5Xfulqy1kRNQn8KzEQxon2S4CNZua8J0Pv39zsu/aLed3VW+uNmcgFrOf+RVG02LqT4t2bLUpWVp\naTkBtVi9/sirT4apuq3cSi7Gx8l8HZBVpsqE0Kbrd9r0Xqw7PBWPdVZTl5CYLUnXoQihDjFYc5Sy\nHIOZVWOuYoPU3VXtLISw1JyArKWaWIBR52KDOsdmTeWpeKyVsm/m28+EtVdnW7oxE085Y/3qymfG\nY0BmI9RPAUGdiw3qHFvbtOVYuwjBLLF+iyGGHegfZaGAixCq0dQCmulchGDWMMMUG4y6UCB1IYS1\njxOQ2UhVWQzhQoF2aGIBzWCcgMxGqF6zUVgTdOkz4zEgqzWPOxTXlsFrawcXIYyQT4yj5xNq//y5\ntLpwAhoRnxir0ZZqILMuKpIbfCHqQJafmyWfV5NtFy2e+tZpddSVC/vMmsRFCFZj5VQDeR4zs3py\nF9wA3AVXnTLGNNyVZ1Y9X4g6Il0qk6zCXEnGFz+atZdbQJZUFa1Jt1gzrpCzKrkKzmqvjO6xuU6s\nU4/tXAGPABZs6+LJtwtJ2Am2XtwFZ603V4HBDI/tgHtaddItrt3T9LjQpJmcgCyxYSvd5jqxtvuk\na738u24iJyBLygUdVenOBJfWHB4Dskaba2yjC+Me/WjzGIl/1/XjIgTrhGJFCPs+Zu3i33W9OAGZ\nmVkSpVXBSboZ2A7sBh6KiOOGD8/MzLqsaBFCAKsi4q5RBmNmZt3Rz2zY7mYzM7PSFE1AAXxF0nck\nnTXKgMzMrBuKJqDnRsQzgFOA10s6YYQxmXWK1yqyrio0BhQRv8j/vVPSJuA44NrJxyWt63n6eESM\nlxijWWt5ChlrC0mrgFV9/cx8ZdiSlgD7RcR9kpYCY8C7ImIsf9xl2GYD8lpF1lZlLcl9GHCtpO8B\n3wK+OJl8zKxa7q6zNvGFqGYJ9TOFjKebsSbxTAhmDVB0Chl311mTeD0gswbwsuPWVU5AZo3hJRWs\nXdwFZ9YgxbvrPDO0peUxILMOcrGC1YHHgMw6yctTWzP0MxmpmZlZadwCMmsdFytYM3gMyKyFXIRg\nqbkIwcwG4gRmw3ICMrO+uYrOyuAqODMbgKvorBqugusIz6JsZnXjLrgOcJeK9cOfFyuDx4AM8CzK\n1j8XIdiwPAZk1jB1OfF7hm6rgltAHeAulWao8vdUl0Rn7eUuOHuYTzj1V1VXqb+QWBXcBWcPc5eK\nTXGZtdWDE5BZbXgON+sWd8GZ1UgVXaXugrMqeAzIzGbkMUEbNScgMzNLokhu8FQ81hdP6WNmZXEL\nyArz2IGZFeUybCuZy3fNrDzugjMzsyTcArI++DoVMyuPx4CsLy7fNbMiXIZtZmZJuAzbzMxqywnI\nzMyScAIyM7MknIDMzCwJJyAzM0vCCcjMzJJwAjJLyJO7Wpf5OiCzRDy5q7VZaZORStoP+A5wW0Sc\nXkZwZubJXa3binbBvQG4ARiuuWRmZpabNwFJOgL4feBjgLvazEpz1wVZt9tGsm3Njuw+s24o0gX3\nfuBNwLIRx2KWRKoJViPiKkln5t1uwHZP7mqdMmcCknQa8KuI2Cxp1RzPW9dzczwixkuJzmzEpgoB\n1k8WAhwvqbJCgPx1nHSs8fIcsaqvn5mrCk7S+cArgV3AAWStoL+PiFf1PMdVcNZY0ooxWH/SVCHA\nRmDt1RHbTk4Zl1nTDT0bdkS8LSIeGxGPB14GfLU3+ZiZmQ2q3xVRXQVnLeNVXs1S8YWo1nle5dWs\nfF4R1czMkvCKqGZmVltOQGYFeeJQs3K5C86sAE8cataf0iYjNTNPHGpWNnfBmZlZEm4BmRXi64XM\nyuYxILOCfL2QWXG+DsjMzJLwdUBmZlZbTkBmZpaEE5CZmSXhBGRmZkk4AZmZWRJOQNZInpfNrPlc\nhm2N43nZzOrPc8FZS3leNrM2cBecmZkl4RaQNZDnZTNrA48BWSN5XjazevNccGZmloTngjMzs9py\nAjIzsyScgMzMLAknIDMzS8IJyMzMknACMjOzJJyAzMwsCScgMzNLwgnIzMyScAIyM7MknIDMzCwJ\nJyAzM0vCCcjMzJJwAjIzsyScgMzMLAknIDMzS2LeBCTpAEnfkvQ9STdI+qsqAjMzs3abNwFFxAPA\n70XE04GnAr8n6fiRR9YwklaljiE1HwMfA/AxAB+Dogp1wUXERP7f/YH9gLtGFlFzrUodQA2sSh1A\nDaxKHUANrEodQA2sSh1AExRKQJIWSPoe8EvgaxFxw2jDMjOztivaAtqTd8EdATzPzUszMxuWIqK/\nH5DeDuyIiPflt/vbgZmZdUJEaK7HF863A0mHArsi4h5Ji4GTgHcVfQEzM7OZzJuAgMOBjZIWkHXZ\nXRoR14w2LDMza7u+u+DMzMzKMPBMCL5AdYqk/SRtlvSF1LGkIOlmSf+WH4Nvp44nBUkHS7pC0o35\n38OzU8dUNUlH5Z+Bye1eSWtSx1UlSW+V9CNJP5D0KUmLUseUgqQ35Mfgh5LeMOvzhmkBSVoSEROS\nFgL/DLwxIv554B02lKS1wDOBR0bEi1PHUzVJPwOeGRGdvT5M0kbg6xHxifzvYWlE3Js6rlTyLvut\nwHERcWvqeKogaSXwVeA3I2KnpM8AX4qIjUkDq5ikJwOXA88CHgK+DPxJRNw0/blDzQXnC1RB0hHA\n7wMfA7pckNHZ9y7pIOCEiPgEQETs6nLyyZ0I3NSV5JPbTnbCXZJ/CVlCloS75mjgWxHxQETsBr4O\nvGSmJw6VgHyBKgDvB94E7EkdSEIBfEXSdySdlTqYBB4P3CnpEknXS/qopCWpg0rsZcCnUgdRpbwH\n4ALgFuB24J6I+EraqJL4IXCCpOX538GpZNeQ7mPYFlCnL1CVdBrwq4jYTIdbAMBzI+IZwCnA6yWd\nkDqgii0EjgH+JiKOAe4H3pI2pHQk7Q+cDnwudSxVkvQE4BxgJfBo4EBJr0gaVAIRsQV4LzAG/BOw\nmVm+oJeyHEPe3XAlcGwZ+2uQ5wAvzsdALgdeIOmTiWOqXET8Iv/3TmATcFzaiCp3G3BbRFyX376C\nLCF11SnAd/PPQ5ccC/xLRGyLiF3A/yU7R3RORHwiIo6NiOcD9wA/nul5w1TBHSrp4Pz/kxeobh50\nf00UEW+LiMdGxOPJuhy+GhGvSh1XlSQtkfTI/P9LgZOBH6SNqloRcQdwq6Qn5XedCPwoYUipvZzs\nC1nXbAGeLWmxJJF9Dro4LIGkR+X/HgmcySzdsUUuRJ2NL1DdVxcvqjoM2JT9vbEQuCwixtKGlMSf\nAZfl3U+zOMnAAAAAaElEQVQ3Aa9NHE8S+ZeQE4HOjQVGxPfzHpDvkHU5XQ/8bdqokrlC0gqyooyz\nI2L7TE/yhahmZpaEl+Q2M7MknIDMzCwJJyAzM0vCCcjMzJJwAjIzsyScgMzMLAknIDMzS8IJyMzM\nkvj/EB7Xp56/3YgAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x108ac0790>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# looking at the plot\n", "f, ax = plt.subplots(figsize=(7,5))\n", "ax.set_title('Blob')\n", "ax.scatter(X[:, 0], X[:, 1], label='Points')\n", "ax.scatter(kmeans.cluster_centers_[:, 0],\n", " kmeans.cluster_centers_[:, 1], label='Centroid',\n", " color='r')\n", "ax.legend(loc='best')" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# identify the 5 closest points\n", "distances = kmeans.transform(X)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# argsort returns an array of indexes which will sort the array\n", "# in ascending order. Reverse it with [::-1]\n", "sorted_idx = np.argsort(distances.ravel())[::-1][:5]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x108d3da10>" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAFCCAYAAAC3ugnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8G3Wd//HXu5SWFmihRZCruLCAiqIFWUTAqpQCcll0\n1zsoi6grClpcURZNg4jizyLeUVToIiDICqvcbFGrLIJcVQQLK4LcEVqgQFuk9PP74zuHpqcn5yQn\nk0wmeT8fj3n0JDOZfDJN5jPfy3y/igjMzMw6bUzRAZiZWX9yAjIzs0I4AZmZWSGcgMzMrBBOQGZm\nVggnIDMzK4QTkPUESe+S9LOc9rVA0hF57KuT+zYrGycgKw1Je0j6jaTHJS2S9L+SdgGIiHMiYmZO\nbxXZMpoYx0maLekOSU9JukvS9yS9qNV917zHeyVd1co+zLqBE5CVgqRJwCXAV4ANgc2BKvBMkXEN\n4ULgAOAdwCRgJ+AG4A1FBlVL0tiiYzADJyArj+2AiIjzI1keEfMj4hZYs1QgaaWkD2Qlkcckfb1m\n3RhJcyQ9Iukvkj6cbT/k70HSv0m6TdJiSVdI2qrOdnsDewMHR8SNEbEyIpZExLci4swhtp8t6eya\nx1vXxpF9pjslLcnifKekHYDTgddIelLS4mzb8ZK+JOmvkh6S9C1J62Trpku6T9InJD0IfK/Zg2/W\nDk5AVha3A89JOkvSvpI2bOA1bwJ2AV4BvFXSQBXd+4F9SaWTacA/U6daTNLBwKeAQ4CNgKuA8+q8\n397AbyPi/sY+Uv2qOEnrkkp7+0bEJOA1wO8iYiHwAeCaiFg/IqZkL/kCsG32mbYllRA/U7PLTUgl\nx62y15sVzgnISiEingT2IJ20zwD+Jul/JG08zMu+kJVA7gV+STo5A7wVOC0iHoiIx4HPA6qzjw8C\nn4+I2yNiZbbtKyVtOcS2U4GHmvhY9d5zwErg5ZImRMTDEXHbUK+TJOBIYFZEPB4RT2Vxvn3QvioR\n8WxELG8iRrO2cQKy0oiIhRFxeERsCewIbAacNsxLapPBUmC97O9NgXtr1t03zD5eBHwlq8Z7DFiU\nPb/5ENs+mu27ZRHxNPA2UgJ8QNIlkravs/kLgInAjTVxXk4qsQ14JCL+nkdsZnlxArJSiojbgbmk\nRNSsB4HaEsxQpZkB9wDvj4gNa5Z1I+LaIba9EthV0lDJaShPkRLHgBfWroyIeRGxT/b8QlLJD9as\nunsUWAa8tCbGDbKqO+q8xqxwTkBWCpK2lzRr4OSeVYG9A7im0V2wqurqAuAYSZtJ2gA4jvon6NOB\n4yW9NHvfyZL+dagNI+LnwHzgIknTJI2VtL6kD0o6fIiX/A7YS9KWkiaT2poGPu/Gkg7O2oKeBZ4G\nnstWPwxsIWnt7H1XkpLTaZJekL1+c0n7NHRkzAriBGRl8STwT8BvJT1FSjx/AI7N1g++v2ZwQqld\nfwYwL3v9jcClwHPZiXz1F0VcDJwC/FDSE8AtwHD3G/0LcBlwPvB4tv00UmIavO8rs+3+AFwP/LQm\nxjHAx4D7SdV+ewL/nq37OXAr8JCkv2XPHQf8Gbg2i3M+qedgveNhVjiNNCGdpGOA95GuHs+IiK90\nIjCzTpG0H/CtiNi66FjM+smwJSBJO5KSz6tJPYgOkLRNJwIzaxdJ60jaP6si2xyoAD8uOi6zfjNS\nFdwOpPsalkfEc8CvgDe3PyyzthIwG1gM3ESqzvrMcC8ws/yNNCTHH4HPSZoCLCfd2Hdd26Mya6OI\nWAbsWnQcZv1u2AQUEQslnUJqsH0auJl0Q5uZmVlLRuyEsNrG0snAPRFxes1z7l1jZmZriIhhR/sY\ncVRcSRtHxN+yARgPIXWFbepN+oGk2RExu+g4iuRj4GMAPgbgYwCNFU4aGZb9QklTSTfDfSgilrQc\nmZmZ9b0RE1BE7NWJQMzMrL94JIT8LCg6gC6woOgAusCCogPoAguKDqALLCg6gDJoqhPCkDuQwm1A\nZmZWq5Hc4Kl5zWxU3APWBoy2EOIEZGaj5toPa+VCxG1AZmZWCCcgMzMrhBOQmZkVwgnIzPqepD9K\n8j2PHeYEZGY9RdLdkpZKelLSQ5LOzKY2rysidoyIXzex/zfkE21/cwIys46TtK2kgyW9og27D+CA\niFifNB36LsAJOe/fvf9y4ARkZrlSMk3SXpLWX3P9uENhvd/D9Lmw4TXS+ie2K5aIeAC4AthR0kGS\nbpX0mKRfStqhJubnSzWSZku6QNJcSUuy6rmds3VnA1sBP81KWB+XNF7SDyQ9mu37Okkbt+sz9RIn\nIDPLjaSxMOkyeOGv4eU/gYl3StquZv16MOY7cN1E+OVkWDgR1jpW0ksG7ecQaaNfS1MXSNp3NKFk\n+9kS2A94EjgXOBrYCLiMlEQG7oUcfC/LgcB5wGTgJ8DXASLiUOAeshJWRHwJeC8wCdgCmAJ8AFg2\nipj7jhOQmeXpcHjJXvDXdeEPk+HkqTD57Jr1m8Ck52Ag32wM7PAsqVQBpOQDU38A39wTvvY6mPRj\nSTOaiEHAxZIeA64ijct2G3BJRPw8Ip4DvgRMAHavs4+rIuKKSGOV/QDYaZj3+zswFfjHSG6OiCeb\niLdvOQGZWY7W3h4OmgjjsscHjoHntqnZ4D546tlUqAC4EbhlbeDWVZtM/Rh8cyK8FXgnMGcCbPiR\nJoII4OCI2DAito6IDwObkUouaYOUWO4FNq+zj4dr/l4KrCOp3vnybOBnwA8l3S/plJqSlQ3DCcjM\ncvTszXDO07CElAe+vwLG/mFgbUQ8A8v2g7c/BpOXwWuXwfJ3R8R9NTsJeK7m4QogVrYY2APAiwYe\nSBKwJXD/KPa1WnVdRKyIiBMj4mWkEtUBwGEtxNo3nKXNLE/nwr2vhxe+G9ZbAcsegqcOrd0gIq5N\njfTLXgg8kpJSrUVfgH/fBZZOTMnnP5bCU3NajOsC4JNZR4OrgGOA5cBvRrGvh4FtgF8ASJoOLCJV\n8z1JmrzzuXovtlWcgMwsN1nV1vsknQDL1gPujogVQ2y3ArhvjR2kdZendqBPfCSVfJ76UkRc1WJc\nd0h6N/A1UrXbzcCBQ8VGKuEM7pRQ+/jzwNckfRE4iVSKOp3UCeEp4IekajkbgecDMrNR8W/foP73\noJHvh9uAzMysEE5AZmZWCCcgMzMrhBOQmZkVwgnIzDpC0kxp6ry0aGbR8Vjx3AvOzEalmd9+SjiT\nLoKvTkjPHL0MlhwSET9rZ4zWfq30gvN9QGbWAVOOhVMnwHsGnpgAs44lDWFjfcpVcGZmVgiXgMys\nAxbPgaP3II1ATVYF1+rwOqUk6TLgvIhYY7QESVsDfwHGRrQ8/l3XcxuQmY1Ks7/91A405dj0aPGc\ndrf/SHonMAvYnjRG2++Az0XE1S3sczawTTYvUO7KmIDcBmRmXS9LOCnpSNsiHQzcRcQfhn3hKEia\nBRxHmhzuZ6Q5e/YFDgJGnYAaeF/B82Pi2QjcBmRm+ZKENA1pL4aYkhvpUOD3wFzgGqRcp+SWNBmo\nAh+KiIsjYllEPBcRl0bEcdmU4Z+U9OdsGu3zJW2YvXZrSSslHSbpr5IekXR8tm5f4FPA27LpuG/O\nnl8g6SRJVwNPAy+WtLuk6yU9nk3R/Zqa+BZIOiL7ey1JX8re507gTXkei27nBGRm+UkTsV0G/Jo0\n69yd1EzJjbQe8B1gImm664nAsQyakhvpEKRfIy2g+Sm5XwOsA1xUZ/3RpJLQXsCmwGPANwZt81pg\nO+CNwGckbR8RVwAnAz/MpuN+Vc327wbeB6xHSkKXAqeRpug+Fbh0IMmx+mjbR5KSziuBXYB/Yc2R\nuHuWE5CZ5elw0ol9XVKCmcrqUxNswppz5aw2JTfSIaRpsPcEXgf8mOam5J4KPDpMG8oHgBMi4oGI\neJZUWvqXQTOeViPimUjVg79n1ZTcypZaAZwVEX/K3nMf4PaIOCciVkbED4GFpKQ32FuBL0fE/RHx\nGCnB9U2butuAzCxP25NKNQPGkCZvG3AfKeHUGjQlNx8btI8JwEeA+Q3GsAjYSNKYOkloa+AiSbXr\nVpCS44CHav5eSirZDOfemr9Xm/4789fs+cE2HfTawa/raS4BmVmebiZVQQ1YAazqZJBmP92PVO21\nLFvezRpTcq+hmR5h1wDPAIfUWX8PsG9EbFizTIyIBxvYd73qsdrn76dm+u/Mixh6+u8HqS39rf53\nz3MCMrM8nUuaEfQZUiL6K7B6l+WIa4GNSW0sGxIxuK3mC6RSx4ClQMP3DEXEE8BngG9IOljSRElr\nS9pP0imk2UtPlrQVgKQXSBqqemwoDwFbD/R2q1H7+DJgO0nvkDRW0tuAHYBLhtjfBcDRkjbP2og+\n2ejn7AVOQGaWn4gg4n2kaq5XAjsQseaVf8QKIu7LSkSD111OKr1cQurIsC9NTskdEaeS7gE6Afgb\nqdTzIVLHhK9k+50naQmpxLRr7cuH2fWPsn8XSbphqNdExGLgAOBY4FHg48AB2fODnUHqJv574Abg\nv0d4/57iG1HNbFT82zfwlNxmZlZCIyYgSZ+SdKukWySdK2l8JwIzM7PeNmwCysYlOhKYFhEvB9YC\n3t7+sMzMrNeNdB/QElKf/YmSniP1zR+qK6GZmVlThi0BZb025pB6kDwAPB4RV3YiMFtTv05p3K+f\n26zXDVsCkrQN8FFSl8ongB9JeldEnDNou9k1DxdExIJ8w7RVUxqfOjCfyh6Sen5K43793GZlI2k6\nML2p1wzXDTu7gWpGpH79KI1iu1tEHFWzjbtidoA0dR6cOmPVlMZzgVnzIxbtU2Rc7davn7sM/Ns3\naO98QAuBT0uaACwH9gauG3WkZmaAqhoHbAA8GZVYVnQ8VowRb0SV9AnS5edK4CbgfdkIsgPrfRXU\nAauqor5aO6Vxz1dF9evnLoPhfvuqaiwwNiqxfNDzO5FGKHgL6aJ2IjAPOC0qrrpvp3bN5tpKCcgj\nIZRIp6c07hb9+rm73eDfvqoS8GbgKNKUDCtJnZe+TRp/bS/S0DP/D/h+VGKRqloPeCfwaeCLUYmv\nqaq1gP2BaaRhaX4LzI9K41NUS7qbNN5c7dQPZ0bE0SO8bjpwdkRs2eh7dYqk3YArgU0i4ulB624G\nzoiIbw7z+gqwrROQmZVe7W9fVY0BvktKGicDF5Nu4ZgGHAPsQZofaGZU4oY19lXVVsBvgK+SEtiD\npOkXRJqwbX3gyKjELxuM7S7giIj4RZOfaTojJCBJa0XE4DmNOkLSQuDzETG35rkdSePIbZrNKVTv\ntbPpshKQh+KxjnKX6p51LPCPwO5RiQuiEn+PSkRU4saoxGHA3aSEdONQL45K3EMaIPRE4LCoxG5R\niU9HJU4gJbEPA+erqumtBirpW5IurHl8iqQrJU0ELgc2y6bcXiJpU0mzJV0o6WxJTwDvkTRZ0vck\nPSDpPkmfHZjQTtJ7JV0t6VRJjylN/b27pMMl3SPpYUmH1bz/+Gxa7r9KeiiLb5064c8FDhv03GHA\npRHxmKSvZO/xhKQbJO1R5xhMl3TvoOfulvTG7G+pzrTleXICso6p6VI9Iy2TLnISKj9VtTaplHNU\nVGJpnc22JE3PsFedfaxFGkFawNW167JEdgVwBPD1rKqvodDqPD8LeLmk90jaE/g34LCIWArsCzyQ\nTbk9qWaOoIOAH0XEZNKUE2cBfydNtvcq0iyo76t5j11JI1xPAc4jTbswLdv+3cDXs4QHafqJbUmz\nrm4LbE6aTmIoPwD2krQFQJb03kFKTJA6ie0EbJjF+SNJ44Y7SDVqpwpvZNryljkB9bm8SiSN7WfK\nsakzwXtIy1cnrGrbsRLbHXgwKvGHYbaZTDp51hvKa3/SKCt/Z/XZUGtdQjpn7dlATAIuzkogA8sR\nABGxjDRH0ZdJ04V/OCIeqHndUH4TET+p+Sz7AR+LiGUR8Qhw2qDPdldEzI3UxnEBaTbUEyPi2YiY\nn33ObSWJNNzZrIh4PCKeAj5PneMUEfcCC1g1x9IbgfHApdn6cyLisWwq8FOzdds3cLwGa2Ta8pZ5\nSu4+ltdNnr5ZtO9NIXU2GM7A+il11u8MXAu8DHhqqA2iEqGq5mXb/nqE9wvg4HptQBFxnaS/ABux\nao6f4dTO2Poi0jTiD2pVYWwMq0+n/XDN38uy93xk0HPrAS8gJdwba/Ylhi8czAWOJyWqQ4HzBtqk\nJH2cVKLbjHQMJmWfsVlbU3/a8kZmjm2IE1Bfm3JsShoDN3kyAWYdS5ogqw37WTwHjt4jrYesS3XD\nM11a13oY+AdVpajU7dX0X6S2il/VWR+kKqofjNDbLZcrcElHAeNIifETpGqwgTiGiq32+XtJM75O\njWi8Z14dj5KS0UsbnBIc0qR635T0etLEfa8DyKoT/wN4Q0Tcmj23mKFLdU9TU9KUtBYpGQ64Bzg8\nIq5p7uM0x1Vw1jGpRLTkEJg1Py353c/TLZ0bRhtHt8Q/SteSLir+aZht5gI7An+r81mfJlXlfaXe\nDrKedvtl79eIoe9RkrYDPgu8i5QUPyFpp2z1w8BUSZPq7SdLFPOAUyWtL2mMpG0kDdm+NZwsgZ0B\nnCbpBVl8m0uqO9JH1gX7QuBM4O6IuClbtT6plPKopHGSPkMqAQ3lDmAdSftLWps0c2ztVDutTFve\nMCegvrZ4TiqFzCUtRy9Lz7VvPxHxs4hF+6Qlv+TTDZ0bRhtHt8Q/WlmJ5RTgO6pqjeqerNPA8cD1\nPMtH+dexl/Li981g8vEz2GLi/+gjugw4jjR19ouGeau3kKrnGk1AP816sw0s/51d6Z8NfCEibomI\nP2exnS1p7YhYSOo08BdJiyVtypolIEiJaxxwG7CYVI33woFDMsT2w93vchzwZ+DarJfdfGC7ET7b\nXGArUslywBXZcgep1+EyVq8WfD6uiHiCNEX5d0nVi0+RSnYDRpq2PBe+D6jPKaebPPPaz+jeuzvG\nixttHN0Sf7O0+n1AAj5HKlWcRrpCXwa8htRDbjKwL1/c4Efs+KbXs9PtsN7DsDzgrkf+zG7P7Elq\n/zmP1IZx6UB1XlbyeQvwTeDAqESjCcg6oF4OaCQ3uA2oz2WJouVkkdd+rJyyZHG8qrqEdCPpcaQS\nwkJSdc4FUYnlmj11BdfNgOt+kL1yLjDrrrh8+UPAQ6rqbaTuvl/MOhwMVLs9jZNPz3EJyEpPXTJe\n3Gjj6Jb4mzWa334jnzUrTe1F6u02MBTPNcN0cLACtVICcgKynlBkFWAecXRL/M0Y7W+/jJ/V6nMC\nMhvEJ7n282/fwAnIbDVlrdIqG//2DTwYqdkg7Rvyp+T365h1FfeCM2uQhxxakyR3DLBRcwKyHtSu\nIX/yGrqoN7j6zVrlBGQ9JyJ+JumQLDkAS9wJwawLuROCWYPcucGsce4FZ5Yzd+82a4wTkFkBnKTM\nnIDMRpR3snA1nQ0lG17oVaSJ4p4Aro1KPFtsVO3lBGQ2jHYki7KObD0aLuk1RlW9lTTfzkTSVAkb\nA5sCXwe+GJU0m2mv8Y2o1ha9cDNmdvI8J68bVgeOCWlWz55X9jmMOkVVzSJNnT0L+MeoxP5RiV2A\nmcDewLnZdBN9yd2wrSllvRlz0NX6Aph0Amw3Ib99DxyTW4Cja9b26rTjvidqJKrqJaRpKXaJStwr\naaZmTx24wJnDbPYHFpAO4pkFhVkoJyBrUvlOPGsmzY++EU4bkyawfE/NlqNNFmscE2DWIuCm/roH\n6ZmpWSkQV8kB8O/AtweSz+ALN2YvOYTZnAiciBOQWa8anCBOz6o8ZpLaaGYDdyyCJe/K56T5coCb\n8m73WVWKe2YqrA2MWVTciX7waBMfegbGvgxOHZ8el6Nk3Gb7AG9Nf9a7cFu8L3C+qtowKvFYMWEW\nxwnImtTaMDfd0XD9WuDolTzfBnrbstaST7uG/lll1RX04RNS0vxStqaYE/2ao02MmwqnTStTybgD\nxpFmcq0rKrFSVS0HxncmpO7iBGRNaWWYm7zbjxpPZoMTxBnLYMlJMGt6s59hKJ0Z+mfgCvonpORT\n/Im+dhr2VVVvVuN2YDfgznoXKapqG0DAo4VFWSAnIGta7YmnOfm1HzWTzIZJECc3/xmGNvpj0iva\nXwrMWwdK498BjlNV59X7Dqqq04AzoxIrcn7vUnACspJqLpmVP0EMnOCPnAAfr3m+O070ZRsAtkO9\nOX8KfAz4hqr68ODvoKr6N+AtwD/l+J6l4gRkHVS+q+RuseoEf2bWCeGjpE4I3XOiL1eSb39vzqjE\nClV1IPBD4E5VdQapWm4T0htPBmZEJR7I6z3LxgnIOibfq+T+S2blOsEbQFTiCWA/VbULKelMA5YA\nVeCKXh0FoVEeisdKqzt61FkZecy+9vNYcGZmdfgCpr2cgMzMrBAejNTMzLrWiAlI0vaSbq5ZnpB0\n9EivMzMbrBdGUrf8NFUFJ2kMcD+wa0Tcmz3nKjgzG5Eb/vtLI7mh2W7YewN3DiQfM7PGlW8kdWuv\nZtuA3g6c245AzKw+V11ZL2q4Ck7SOFL120sj4pGa510FZ32t3d15e6Xqqlc+hzUm7yq4/YAba5NP\nzRvNrnm4ICIWNLFf6yH9dm9FZ8YU642qq7KNF2fNkTQdmN7Ma5pJQO8AzhtqRUTMbuZNrTeVdbru\n1rQnOayeyFdObSnELuLhhHpXVvBYMPBYUmWk1zSUgCStS+qAcOQoY7O+0BtX6kVbM5F/6Bk4+hme\nn7Ss98e9s/7QUAKKiKeBjdoci1nDuqeqrx2Doq6RyMfDUTfBrEXp4epVV91zLMya49GwLUedGaG6\nkaq+Tp2UO9euMX5RxKJ9Bj/bjdWeTojWsIhoaUm7aG0fnVyAmTBlXlqYWXQ8vbZ04vimfZ8VENly\nVsCUeavHMGlpev6sSH+3K5b8P28z8Y90LIr5/+/MsffS3UsjuaGvSkDdeLXYa6IrGpk70xYl6XiY\n9Fk4NbufLp/vU5S6t5jbAa1xfZWA/OPoFcVMRjeoamkBbPBZOG1MO75PjSfyxo6Fq8WsG/VZArJe\nkJUQToJZs9IzS05d/YSaf4IaovT8Rthi1KPJ55UQGiktdbbk338z1VoLOlHP1y0Lrp/uiaWR/0dy\nbpsZuq1lh4BNoiaO5xp5r1a+h6P5XJ1uJ8r72Hsp59JIbuirElCUum69fw0uLTRSlRodaYt6aCUc\nMQZOBxauhCWfbuz7NLqq4LK0YXbm2Fsv6KsEBP5xlMGabS2TTqg96cIzf+p8VENWLZ0EZ05Pjx/v\nwMXMaNswXS1m3anvEpB1t6HbWo4c1ND/UdJJtHMn1GFKzyc3v7fOJgSX/K1bNTUh3ZA78GjYliNp\n6jw4dcaqhDOXVMV1Tc3jWfNXVcWtnArPAuMXlal312g6IXTjaNLuXWf1tGNCOrMCLFwJcwfutVk2\ncAUviXRC/kZXt4kMZTRVwd1WkilLm5R1L5eArKvUuco/CaZMT49XXWUPXVqaNX+oIWssfz7+NhyX\ngKxlna5iybetxcy6mUtAVlc3tjnU6vb4htMLbSdlPv7Wfo3kBiegHpL3Sa0MVSxlPJH30om7jMff\nOsNVcH2kXxuEy3lfV++MSVjO42/dwgmoZ7TjpOYbGM2sfZyArK5u6/bbO5zYzcBtQD2jl9oV+kH+\n7XVui7Hu4k4IfaaVk5BPYOXVyxcf/l6WlxNQQcr2o+nlE1g/6Lbeinl9//29LDf3gitAOXujdX+v\nrLIl9X6V7/e/+7+X1honoNz5R5O3cib1Tmq+U0P7Erq//9Y4JyCj+3tl+aQ2nGZ7K5YnoXf799Ja\n5QSUu/L9aNzduknSTCA7VsyhC45VczeEtjOh5/f99/ey9zkB5aysP5ruvqO9i5J6Sj4XrYqFPZAO\nKToJ5Vml1sq+8v7+d/f30lrlXnBWCl3TCUGaB8wY9Ox8IgobH6/Z3mLDbe+eZ5YX94LrQ11zos6Z\nr4SH01yV2vClFLe3Wec4AfWQ8jQul9ocoKY6kGXZc7lq94WEE3p36dULxxFFREtL2kVr+/CSzwJT\n5sFZAZEtZwVMmVd0XD23wMyAedkyM///R2bCpKXp/++sSH/Xf59mt8/zvb10/v+7LEsjucElICul\nQq8Y2156yLNKrTl57ssa1b/Vnk5APaWLeou1kasa1xQ5JsU892U2HPeC6zH9UJfcbWOf5c090fpL\nr/5/uxdcH/LVa/m5Gqy/9PP/t0tAVjq9esVo1ks8HYP1rH6oajQrMycgMzMrRCO5YUyngjEzM6s1\nYgKStIGkCyX9SdJtknbrRGBmZtbbGikBfQW4LCJeArwC+FN7QzKzbiFppjR1Xlo0s+h4rLcM2wYk\naTJwc0T8wzDbuA2oQ9zwbp3k3obWijzuA3ox8IikM4GdgBuBYyJiaU4xWoN89791Xv8OEWOdMVIC\nGgtMAz4cEddLOg34JPCZ2o0kza55uCAiFuQZpIFPBmbWzSRNB6Y385qREtB9wH0RcX32+EJSAlpN\nRMxu5k2tfFz914/6Y2xBy0dW8Fgw8FhSZaTXDJuAIuIhSfdK2i4i7gD2Bm5tMU4bleJOBq7+60/9\nPESMdcaIN6JK2gn4LjAOuBM4PCKeqFnvTggdUlQppNcH/zSz/OUyGGlE/B54dW5R2ah5oFEz6yUe\nDdsa4LYAM8ufx4KzhrgTgpk1w4ORmplZITwYaRt4aJJ8lOk4lilWszJxCagJHpokH2U6jmWK1ayb\nuASUuynHphPRe0jLVyesahexxpXpODYfq0tMjfFxMveC63HuPNBZvmm3MT5OBkBEtLSkXbS2j7Is\nwEyYtBTOirRMWgrMLDqussSb4pkyDza4ESYu75a48jyG6fOdFRDZclbAlHlFf45uW3ycen9pJDe4\nBNSEKN3QJN0zgOkQV7zPwFE3wfhF3Xwcu+X/3CVZ60VOQE0Kj0YwSmskw/Ewa1EZhvNp7v88/5t2\ne7O6yjc3mxNQj/OPvNPaU2LqnpJsXrqlZGnFcgLqYd31I+98Miyq2sql5Mb4OJnvA7KO6WRC6KX7\nd3rps1j/8FA81rfKOoVEvSTdDZ0QuiGGfqGq1gdeTrpX809RiUUFh9S0XKZjMLPOGK6zQdHVVb3Z\nEaL7qKpmbPv/AAANRUlEQVQXALOBdwB/BlYAL1FVPwUqUYm7Cgwvdx4JwXrU4jmpqmouaTl6WXqu\nm3XzCBHdHFtvUFUvBK4mJZ2XRyV2jUrsDmxLSkZXq6rti4wxby4BWU/qpg4YrrqyBn0LuCAqcYKk\nmZo99czs+TkRcaKqehA4V1XtEpUW2066hNuAzNqomQ4E3dzZoJtj6wWq6kXATcBWzGaPoY41s5kP\n3AEcGpW4prhoG+PBSM0K13jVVTqZLzkEZs1PS/Mn+HYN8JlHbDasvYHLohJP1/vORCVWAucD+xUa\naY5cBWfWRVrpbNDujgJFd4TocROAJxvYbgkwtc2xdIwTkFlbdfIG3N4bMaGP3Akcmv4c9juzM/Dz\nzofXHk5AZm3UTZ0hrKvNA05XVa+u951RVVsAM4AjC4wzV+6EYF3NPcga544C5aaqDgMqwN6D7/dR\nVRsBVwAXRyVOKiK+ZnkkhDbyibH9fEJtnr+X5aaqjgJOAn4EXEK6J2hv4DDgO8B/lqULthNQm/jE\n2BllHU7HrBWqahPgCOC1pJ7KNwPfiUrcXWRczfJQPG3jxt6yccnAyiIq8TBwctFxdIITkHWxfHqQ\neRwzs+7kKrhRcBVc5+RRcnFVnlnnuQquTdy1Nl/DJRnf/GjWu1wCskJ1ojTpEmvidjDrJPeCs66X\nR/XYcCfWVeuemQprA2MW9ePJtx+SsBNsd3EVnPW84ToYDLFuGTzeUyfdxvV2z013NCknJyArWKs9\n3YY7sfb2Sddq+f+6jJyArFDu0NEpnRwU1awxbgOyUhuubaMf2j2a0cttJP6/7j7uhGB9obFOCGuu\ns97i/+vu4gRkZmaFyK0XnKS7STPxPQc8GxG7th6emZn1s0Y7IQQwPSIWtzMYMzPrH2Oa2NbVbGZm\nlptGE1AAV0q6QVLPTAdrZmbFaTQBvTYiXgXsBxwlac82xmTWVyTNlKbOS4tmFh2PWac01AYUEQ9m\n/z4i6SJgV+CqgfWSZtdsviAiFuQYo1nP8hAy1iskTQemN/WakbphS5oIrBURT0paF5gHVCNiXrbe\n3bDNRslzFVmvaiQ3NFIFtwlwlaTfAb8FLhlIPmbWWa6us17iG1HNCtTMEDIebsbKxCMhmJVAo0PI\nuLrOysTzAZmVgKcdt37lBGRWGp5SwXqLq+DMSqTx6jqPDG3FchuQWR9yZwXrBm4DMutLnp7ayqGZ\nwUjNzMxy4xKQWc9xZwUrB7cBmfUgd0KworkTgpmNihOYtcoJyMya5l50lgf3gjOzUXAvOusM94Lr\nEx5F2cy6javg+oCrVKwZ/r5YHtwGZIBHUbbmuROCtcptQGYl0y0nfo/QbZ3gElAfcJVKOXTy/6lb\nEp31LlfB2fN8wul+naoq9QWJdYKr4Ox5rlKxVdzN2rqDE5BZ1/AYbtZfXAVn1kU6UVXqKjjrBLcB\nmdmQ3CZo7eYEZGZmhWgkN3goHmuKh/Qxs7y4BGQNc9uBmTXK3bAtZ+6+a2b5cRWcmZkVwiUga4Lv\nUzGz/LgNyJri7rtm1gh3wzYzs0K4G7aZmXUtJyAzMyuEE5CZmRXCCcjMzArhBGRmZoVwAjIzs0I4\nAZkVyIO7Wj/zfUBmBfHgrtbLchuMVNJawA3AfRFxYB7BmXUDVTUROAjYDHgcuCQq8bfOvLsHd7X+\n1mgV3DHAbUBrxSWzLqGqxqiqzwD3AIcBWwEzgNtV1fdU1bqFBmjWB0YsAUnaAtgf+Bwwq+0RmbWZ\nqhLwTWBHYJeoxN016zYETgWuUFUzohLL2xeJB3e1/tZICejLwH8AK9sci1mn7E4q7ewXlbi7tiMA\ns9kVOAJ4EvhAO4NIbT1LDoFZ89Pi9h/rL8N2QpB0ALBfRBwlaTpw7OA2IEkBVGueWhARC9oQq1ku\nVNU5wPVRidPqdQRgNkuBM4CXRKXFnjpmfSDLEdNrnqq02glhd+AgSfsD6wCTJP1XRBxWu1FEzG46\nWrPivAaYnf6s1xFg8UxgU2AD4LECYjQrlazgsWDgsaTKSK8ZtgouIo6PiC0j4sXA24FfDE4+ZiU0\nhhGqlLNSz0p8r5xZ2zQ7I6qrIqwX3ATsDdxZryOAqno1qVu2Sz9mbeIbUa3vqKoZwGnAzlGJ5YNn\neWU284AfAjdFJU7JXjMGeAOwM6lkdA1wtduHzIbmGVHNhpB1wz4fmAgcGpV4rGbdeOAkYB9gj6jE\nk6pqH+DrwFLgSlK13P7A34H3RyWu7fBHMOt6TkBmdaiqccAc4N3A/wB3AJuQ2jqvAw6PSjyqqvYF\n5mbbXTlQ4smS2JuB04EDnYTMVucEZDYCVbUxKelsCjwB/DgqcUe2bi3gL8B7oxK/HFxVFxE/U1Vv\nA44jVee5Os4s4wRk1gJVdSDwn1GJ3Ya5X2g+8H/AO6MSvy0wXLOu0khucBdTs/p2BS5Pf045NiWf\n95CWr06AKcdGJVaSBg/dtbAozUrKCcisda56MxsFJyCz+m4g9YYju19oWeqPMJf09+I5WffsfYAb\nC4vSrKScgMzquxTYUlXtOczAoYcAT5PuCzKzJrgTgtkwVNUBwHeBt0dl1SC7WTfsA4HvAf8clbi6\nmAjNupN7wZnlQFW9iXQj6qPAfFLNwZtIQ1m9PypxVYHhmXUlJyCznGT3BM0EprFqKJ4FvvfHbGhO\nQNaTVNVY4CDgjcA44HZgblTikUIDM7Pn+T4g6zmqag/S6ASzSDeA3gC8DPg/VXVi1jZjZiXQ7HQM\nZoVRVTsDFwGHRSUur1n1bVX1SeAS0kXVCUXEZ2bNcQnIyuRk4PioxOWSZkpT56VFM6MSD5NGqD5K\nVW1WcJxm1gAnICsFVfUPwKuAs1eNy3bqjLRMuihLQo+Q5vE5othozawRTkBWFi8FbohKLK83Llu2\n3a9JbUJm1uWcgKwsngXGN7DdeGBFm2Mxsxy4E4KVxfXAtGz+njlw9B5A7dQIc7Lt3gz8tJAIzawp\nvg/ISkNVfR94PCoxq87kcLuQpkbYKirxdIGhmvU934hqPUVVvQC4GrgY+HxU4rHs+bWAA4BvAx+M\nSlxcXJRmBk5A1oOyKrgvk7pcXwUsJU0Gtxj4VFRifoHhmVnGCch6lqraBNiTNBTPwqjETQWHZGY1\nnIDMzKwQHgvOzMy6lhOQmZkVwgnIzMwK4QRkZmaFcAIyM7NCOAGZmVkhnIDMzKwQTkBmZlYIJyAz\nMyuEE5CZmRXCCcjMzArhBGRmZoVwAjIzs0KMmIAkrSPpt5J+J+k2SZ/vRGBmZtbbRkxAEbEceH1E\nvBJ4BfB6SXu0PbKSkTS96BiK5mPgYwA+BuBj0KiGquAiYmn25zhgLdLsk7a66UUH0AWmFx1AF5he\ndABdYHrRAXSB6UUHUAYNJSBJYyT9DngY+GVE3NbesMzMrNc1WgJamVXBbQHs5eKlmZm1qukpuSV9\nGlgWEV/KHrc2p7eZmfWkkabkHjvSDiRtBKyIiMclTQBmANVG38DMzGwoIyYgYFNgrqQxpCq7syPi\n5+0Ny8zMel3TVXBmZmZ5GPVICL5BdRVJa0m6WdJPi46lCJLulvSH7BhcV3Q8RZC0gaQLJf0p+z3s\nVnRMnSZp++w7MLA8IenoouPqJEmfknSrpFsknStpfNExFUHSMdkx+KOkY+pu10oJSNLEiFgqaSzw\nv8DHI+J/R73DkpI0C9gZWD8iDio6nk6TdBewc0T07f1hkuYCv4qI72e/h3Uj4omi4ypKVmV/P7Br\nRNxbdDydIGlr4BfASyLiGUnnA5dFxNxCA+swSTsC5wGvBp4FrgA+GBF3Dt62pbHgfIMqSNoC2B/4\nLtDPHTL69rNLmgzsGRHfB4iIFf2cfDJ7A3f2S/LJLCGdcCdmFyETSUm43+wA/DYilkfEc8CvgDcP\ntWFLCcg3qALwZeA/gJVFB1KgAK6UdIOkI4sOpgAvBh6RdKakmySdIWli0UEV7O3AuUUH0UlZDcAc\n4B7gAeDxiLiy2KgK8UdgT0lTst/Bm0j3kK6h1RJQX9+gKukA4G8RcTN9XAIAXhsRrwL2A46StGfR\nAXXYWGAa8M2ImAY8DXyy2JCKI2kccCDwo6Jj6SRJ2wAfBbYGNgPWk/SuQoMqQEQsBE4B5gGXAzdT\n5wI9l+kYsuqGS4Fd8thfiewOHJS1gZwHvEHSfxUcU8dFxIPZv48AFwG7FhtRx90H3BcR12ePLyQl\npH61H3Bj9n3oJ7sAv4mIRRGxAvgx6RzRdyLi+xGxS0S8DngcuH2o7VrpBbeRpA2yvwduUL15tPsr\no4g4PiK2jIgXk6ocfhERhxUdVydJmihp/ezvdYF9gFuKjaqzIuIh4F5J22VP7Q3cWmBIRXsH6YKs\n3ywEdpM0QZJI34N+bJZA0sbZv1sBh1CnOraRG1Hr8Q2qa+rHm6o2AS5KvzfGAudExLxiQyrER4Bz\nsuqnO4HDC46nENlFyN5A37UFRsTvsxqQG0hVTjcB3yk2qsJcKGkqqVPGhyJiyVAb+UZUMzMrhKfk\nNjOzQjgBmZlZIZyAzMysEE5AZmZWCCcgMzMrhBOQmZkVwgnIzMwK4QRkZmaF+P+GD/mB0x96RAAA\nAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x108d11790>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(figsize=(7,5))\n", "ax.set_title('Single Cluster')\n", "ax.scatter(X[:, 0], X[:, 1], label='Points')\n", "ax.scatter(kmeans.cluster_centers_[:, 0],\n", " kmeans.cluster_centers_[:, 1],\n", " label='Centroid', color='r')\n", "ax.scatter(X[sorted_idx][:, 0],\n", " X[sorted_idx][:, 1],\n", " label='Extreme Value', edgecolors='g',\n", " facecolors='none', s=100)\n", "ax.legend(loc='best')" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# simulating removing these outliers\n", "new_X = np.delete(X, sorted_idx, axis=0)" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "KMeans(copy_x=True, init='k-means++', max_iter=300, n_clusters=1, n_init=10,\n", " n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001,\n", " verbose=0)" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# this causes the centroids to move slightly\n", "new_kmeans = KMeans(n_clusters=1)\n", "new_kmeans.fit(new_X)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x108fce790>" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAFCCAYAAAC3ugnQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XfYXFW59/HvLwmBJJBAAihFuogiKIgIYnmUqiJeeGyI\nFAvqC+eAL8H6WrAcPCog4lE5BwsICAqKjWJAHMVGkXKQchAQCB2SkAQSQsn9/rHWkMlkZp6Z55mZ\nPeX3ua65MjN7z5619zPZ915r3XstRQRmZmbdNqHoApiZ2XByADIzs0I4AJmZWSEcgMzMrBAOQGZm\nVggHIDMzK4QDkFmLJB0r6Yyiy9HvJC2XtEXR5bDiOABZQ5LulLRE0uKKx8lNfG5E0txulLFVknaR\n9JikaTWWXSvp8FE20fWb56r+Dg9IOkPS9G6Xw6ydHIBsNAHsGxFrVTyObMeGJU1sx3ZaFRF/Be4B\n3lZVnhcDLwTOHmUT6lDRGnn27wC8BNgO+HQB5TBrGwcgGzNJ35F0XsXrr0i6VNJU4CJgw3zFvkjS\nBrnp6rx89b4QOETSDEnfk3SfpHskfVHShLy9QyX9SdKJkhZIuk3SKyW9V9Ldkh6UdHDF968u6XhJ\nd+VawnckrVGn+KcDB1e9dzBwQUQskPSN/B0LJV0t6VV1jsEqNb1cW9k9P5ekT+SyPyLpx5LWycvW\nkHRmfn+BpCslrT/acY+IB4E5wLYV37mLpD/n7Vwn6bUVy0r5uP4p/z1+KWldSWfl/btS0qYV679S\n0lWSHs3Lds3vv1PSVVX7+n8l/SI/b3j8JX204u/8vtH20wafA5A1o94V/9HAdpIOkfRq4H3AwRGx\nBNgHuC/XmKZHxP35M/sB50bEDOBHwGnAk8CWwA7AXsAHKr5jZ+B6YCapZvITYMe8/nuA/8wBD+A/\ngK1INYStgI2Az9Yp+5nAayRtDJCD3gGkwARwZd7OOrmc50qa3OggVQhWNNMdmff5NcAGwALgW3nZ\nIcB0YOO8fx8CljbYrnJZNyYd3yvy642AXwNfiIh1gGOAn0qaVfHZd5KO10akY/cX4Hv5e28GPpe3\nNRO4ADgpLzsRuCAHzV8BL5C0VcV23w2clZ/XPf6S9gFmA3sAW+d/bdhFhB9+1H0AdwKLSSfO8uP9\nFct3Bubn9d5Z8f4IMLdqW8cCpYrXzwGeANaoeO8A4LL8/FDg1opl2wHLgfUq3nsE2J50cn4M2KJi\n2a7AHQ327RLgk/n5nsBDwMQ6684HtqvYjzMa7Oc/gdfn5zeVn+fXG5AC7kTgvcCfyttt8u+wKB+D\n84EJednHgR9WrX8x6WIA4Hfl/cyvjyfV9Mqv9wWuzc8PAv5ata0/A4fk52cAn8nPn5/Ls8Zoxx/4\nPnBcxbLn5/3YYrR992NwH64B2WgCeEtErFPx+N6zCyOuBO7IL89tYnv3VDzfFFgNuD83HS0ATgHW\nq1jnwYrnS/N3Plz13pr5M1OBv1Vs6yJg3QZlOZ10wiX/e3ZEPAMg6RhJN+VmqAXAjFG2Vc9mwPkV\nZboJeBpYn3Qy/w1wjqR7cxPmpDrbKf8dppOC3uuBnfKyTYG3l78jf89uwHMrPl95HJ8gBdvK12vm\n5xsCd1d99135fUi1wQPy83cD50fEE4x+/DcAKpsqq7/DhpADkI2LpCOAycB9wMcqFtXKFIuq9+cC\ny4BZFcFtRkRsN4aiPEIKRi+q2Nba+YRdz/nAxpJeB+xPbn7LzYkfBd6et7EOsJDaTZGPk0685M9O\nZOUAejewT1UAnxoR90fE0xHxhYjYFnglqSZS3S+1ioj4A/BN4CsV33FG1XesFRFfrbeJBpu/lxTQ\nKm2a3we4FFhP0kuAd5ECEox+/O8HNqnYZuVzG1IOQNaMmn1AkrYGvggcSDpxfiyfmCBdcc/SyqnC\nK20nUr/QHOBESWtJmiBpS0mvabWAEbEcOBU4SdJ6uXwbSdqrwWceB84DfgDcGRHX5EVrkWopj0ia\nLOmzpL6aWm4F1pD0RkmrkTLTVq9YfgpwnKRNcpnWk7Rffj4iabsctBYDTwHPNLnLJwE7S3oFqT/r\nzZL2kjQxJzeM5L6hMtV5Xu0iYGtJB0iaJOmdwDakPiYi4ilSTfd4Uv/YJfn90Y7/T4BDJb0w99l9\nrsn9tAHmAGTN+JVWvg/op/mkeQbwHxFxQ0TcBnwKOEPSahFxCylp4A5J8yVtwKo1IEiBazKpaWo+\n6eRWbjqqtX6jq/ePA7cBf1XKsruE1OHdyOmkq/EfVrx3cX7cSup7WcrKTUbPlisiFgKHA98lNS8+\nxspNTd8AfgnMkbSI1Pm/c172XNL+LiTtf4l0TEcVEY/ksn88Iu4B3kI6/g/lss5m5UATVc9rHteI\nmEeqic0m1WqOIaV/z69Y90fA7qRkkuUV79c9/hFxMSloXkY6rr+tUQYbMopo/BuQdBQpK0nAqRHx\njW4UzMzMBlvDGpDSjXkfAF5OSq3cV9KW3SiYmZkNttGa4LYBroiIJ3J20O+Bt3a+WGZmNuhGC0B/\nB14taWbuOHwT6aY5MzOzcal3zwEAEXGLpK+QMpUeB64l3TxmZmY2LqMmIay0snQccHdEnFLxnjNZ\nzMxsFRHRcODehjUgAEnrR8RD+T6G/YFXtPolw0DSsRFxbNHlKJKPgY8B+BiAjwE0VzkZNQAB5+VB\nDZ8CDo+IReMumZmZDb1RA1BEtHxXupmZ2Wg8EkL7lIouQA8oFV2AHlAqugA9oFR0AXpAqegC9IOW\nkhBqbkAK9wGZmVmlZmJDM31AZmZNcVbscBprJcQByMzayi0iw2U8Fx3uAzIzs0I4AJmZWSEcgMzM\nrBAOQGZmBZO0maTlktp6Tpb097HMMNwtDkBmNjQk3SlpSZ7Z9wFJP5A0rehyjWas5Y6IF0fEH1r4\njtePv7TNcwAys54gaYKk10jaV9J6HfqaIE0xvhawI7AT8OkaZem1DOGmyt2G7+hqBqMDkJl1haQZ\nkl4raQdJqlq2Gky/BDa7AF51Jky5TdIOnSxPRNwHXAxsm8uwXNLhkv4B/K+kTaubxSSVJL0/Pz9U\n0h8lfU3SfEl3SNqnan+/J+k+SfdI+mJ5WznYHi/pYUm3k+Zaa7XcL87b2k/SjZIWSPqdpG0qyvBs\nrUbSsZJ+Iul0SYty89zL8rIzgE2AX+Va1jGSVpd0pqRH8ravlLT+2I52bQ5AZtZxkraFqbfD9r+A\n9S+H6T+r6u84BLZ9BfxjTbh8BnxnLZhxRtU2pkhrfV1a9yppxlmSnjvW4uTtPQ94A2mes7K3AC8H\nXkTt2kDkR9nOwC3ALOCrwPcqlp0GPAlsCewA7AV8IC/7ICnovJRUm3lb1XabKfc1krYGfgQcCawL\nXEgKIuUaXPU23wycDcwAfgn8J0BEHATcTa5lRcTxwKHAdNIkpDOBDwFLRyljSxyAzKwLZvwIvj4T\nrp8Bd02DLfYEDlyxfMJmsNe0FffG7y546tnZl1ONafov4HUfgjN3gg+8HaZdMYb+GwE/l7QAuJw0\nZttxFcu/HBGPRsSyJrd3V0R8L9KYZj8ENpC0vqTnkILE/42IpRHxMHAS8K78uXcAX4+IeyNiQS5D\no+avWuX+MvBO4NcR8duIeAY4HpgCvLLOdi6PiItzec8EXtLgO58kBdbnR3JtRCwe5Xi0pNfaOc1s\nID25OeybT7BrAPtOheu2WrF8+VVw2uNwxLR0IX/y0zC5smYyC556LZw3GSYD+6wGl60N1+1GmrG5\nWQG8JSIuq7N8bgvbAnjg2Q1HLMkti2uSdmI14P6K1sYJpFoGwAZV33U3jdUst6QNKj8bESFpLrBR\nne08WPF8CbCGpAkRUWum6zOA5wHnSFqbFLD+X0Q8PUpZm+YakJl1weQb4fvPpOcLgLOXANeXl0bE\nL+CRk2Gjp2D6E3DKP+DRd1dsINI5+JkVL3lajN5s1arK7T2e/51a8V6zzX5zgWXArIhYJz9mRMR2\nefn9pD6Xsk1W2UJz7gM2Lb/IfWvPA+4dw7ZWOpYR8XREfCEitiXVqPYFDh5jOWtyADKzLlj4LvjK\nXFj/cdhoGTz4A+D8yjUiHvsUPDULHtsCFm8bEfevWBbzYLWLYN8lcC7wwSfhzgdIzVEdkZvN7gUO\nkjRR0vtI/TnNfPZ+Us3sRElr5aSDLSvuyfkJcKSkjSStA3xijMX8CfAmSa9PiRzMBp4A/jyGbT1I\nxf5JGpG0naSJwGLSpKTP1PvwWDgAmVnHRcRd8Njz4eEdYOmmEYv/LWrMBRMRiyPi/lrLYPE74C9f\nhf/zWzjne/DYLhHxRDuLWeO9w4CPAo+QEhP+VLV+9WcqXx9Mai+8CZhPipzlGtSpwG9ItcCrgZ/W\n+f7GBY64FXgP8E3gYVJiw5vrNJONVt4vA5/OGW+zc1nPBRbmfSiRmuXaxvMBmVnb+HwwfOr9zZv5\nLbgGZGZmhXAAMjOzQjgAmZlZIRyAzMysEA5AZtYVkvaWZs1JD+1ddHmseM6CM7O2aZARtTdMPx9O\nnpLeOXIpLNo/In7T7TJae40nC85D8ZhZF8ycDSdOgUPKb0yBo2eT7oWxIeUmODMzK4QDkJl1wfwT\nUrPb6aTHkUvTe5kkpOch7Yn0JqSXkoaW6bo8b07dO/7zHDu7d7NM7SLpk5JObbC8q/vmJjgz67iA\nSw9n0VEPcsQHl6F4nMeO/125/0dakzRPTnlqgOWki+NFSN8h4pZ2lkXSoaQx07YAFpHGpPtkRCxc\nUdzRdqf+OpJ2Bo4FdiXty23AdyLitHGWewQ4IyKeN9ZtRMSXR1uF9g/wWpcDkJl1lrQV8OFvwyx4\n/O+kuW3eQBqE80zg34CtgLuqPrkW8FGkL5AGynwFsA+wHvAY8FvgciIebb4omk0a2+3g/PmNgW8D\nl0jaLSKeYhzTUkvalTQI6ReA90TEfEk7Ah8jTVDXUZIm5nmB+oKb4Mysc9LsnR8DJpICzF3AnaQ5\nbF4BfA54AbXn4VlMmhTtX4CPA+8lzbFzL2mqg/2Bz5PmxGmiKJpOqpn8a0TMiYhn0iCpvAPYjDSo\nZ63PHSTprjw19adG+ZqvAadFxNciYj5ARFwTEeWJ6JC0r6Tr8qCff5K0XcWyOyXNlnS9pEclnZOn\nxp4GXARsmKfMXiRpg9xceJ6kMyQtBA6RtKGkX0qaJ+kfkj5Qsf2Vmhdb3Le2cwAys056M6kZamHV\n+0EKQq8CVm/w+YeBt5Kay+4k1XyCNDX03aRWnH9l5em963klaTa8n61UkIjHSVNZ71n9AUkvItWQ\nDgQ2JM0QunH1enndqcAuwHn1CiBpB9K03YeRprn+L+CXWtHfFcDbgb2BzYHtgUNzGfcB7stTZk+v\nmK5iP+DciJhBmp77HNKx2YA01fdxkl5Xsf2W961THIDMrDPSVfvLgIcarUU68dUzmdTk9nCd5Q+T\nTp5bN1GidYFH6sz++UBeXu1twK8i4o8R8STwGVJArWUd0jn1/jrLAT4I/FdEXJWnuf4hqTa3S8U6\nJ0fEA3mq7l8BL83v12sa/HNE/DI/X48UaD8eEU9GxPXAd1kxkVzlNlrZt45wADKzTplKuuJudFJb\nSOrrqWedvI1G8/4EqQltNI8A66p2bWkDage5DYF7nv2iiCXAvDrbX0Da10ZNgpsCs3Pz2wJJC0i1\njg0r1nmg4vlS0hTfjdxT8XxDYH6uMZXdTe0pulvZt45wADKzTimfBCc2WGc+aabNeueidUkn5FoT\nrJU1OzX3X0i1jX9Z6cMpC28fUlJCtftIU1yX151KnRpbPoH/hVSzqOdu4N8rpuleJyLWjIgfN1H+\nWvtYnbV2HzAz71PZJqwcpCrXbWrfOsUByMw6I52Q/8yKWUCriZRk8GtSDWZy1bLnkoLPXBoHMQF3\njF6cWAh8HvhmGpdOq0najDSt9Vxqz/b5U2BfSbtJmkzKbmt03vwYcKikYyTNApD0Ekln5+WnAh+W\ntLOSaZLeVBUw6nkQmJWTKcpWapaLiLmkY/7lnLywPfA+UrbhePet7RyAzKyTfk1qPlu/6v1JpKDz\nZ+AEUsf9TNIV+cakq/ZbSQHjt9RuQiJv9y7SvTajioivAZ8Cjic1//01f373nIINFbWKiLgROILU\nuX8fqcZWK2OvvP2/AK/Pj9slzSMlGlyQl/+NlIDwn3lb/yD1z9SrwVWW5RbgbOAOSfOVsv9q3bdz\nAOnY3kdKuPhsRFw23n3rBA9GamZtU/N8IG1IugrfgnTyE/AMcAlwPuUTv7QGKfNrEvAQEQ/m96cA\nHwG2IfWzPE7KnJtF6rP4KhGNEh2sg8YzGKkDkJm1Td3zgSRSzeY5pP6c24h4rIUNTwZ2APbK21hE\nqhld0dJ2rO06GoAkfZJ0g9Zy4AbgvRGxrJUvMbPh4PPB8BlPAGrYB5Q76A4DdoyI7Ugdge9q9Bkz\nM7NmjDYW3CJSiuRUSc+Q8vrv7XipzMxs4DWsAeWxjE4g5a7fBzwaEZd2o2C2qmGd0nhY99ts0DWs\nAUnakpR9shkpZfFcSQdGxFlV6x1b8bIUEaX2FtNWTGl8YnlK41dJGvgpjYd1v836TZ4uYqSlzzRK\nQpD0TmDPiPhAfn0QsEtEHFGxjjsdu0CaNQdO3HPFlManA0dfEjFvryLL1WnDut/9yueD4dOxJATg\nFmAXSVOU0ij3AG4ae1HNzMyShk1wEXG9pB8CV5PSsK8B/rsbBbNq80+AI18FlJuilsKiExp+ZCAM\n634Pl5JK5fuEtiENyXMvcONIjDzV8IPWFpIuBM6OiFWGI8rZ0HcAk+qMJD727/WNqP0j9YfMnJ1e\nzT9hWPpBhnW/+1G980FJpYmkieeeQ8qsvXUkRh7Ky+pPyQ3fGYmRtk3JLelO0sXM5nnwUPKEbQdG\nxOsafbYN3/1u4GjScVgMXEcamPRP49zuscCWEXHQuAtZe/ub0SAAjacJzlNy95F84h26k++w7veg\nKKm0FfBhVoy0LCBKKv2VJqbkLqnUcErukRhpekrubAJwFPDl1vdmbCQdTZrV9UOk3/KTpH3ZDxhX\nAGriuwUQ461tdIAHI7Wuckr1cCmp1PEpuUsqNTUldxakgUiPkTSj1gqStpF0SZ7S+hZJb8/vb57n\n7ymvd6qkBytenyHpqBrbm0EaVPXwiPh5RCzN04FfEBEfz+tI0ick3Zanx/6xpHXyss0kLZd0cJ4+\n++Hy9NmS9gE+CbxTaarua/P7JUlfkvQn0th5m0t6paSrlKb6vlLSrhVlLEl6f34+UdLx+XtuB97U\nwvFtiQOQdU1FSvWe6TH9fAehgdeVKblLKrVyLrsaKAHHVC9QmsX1ElLNbD3SyC/flrRNRPwTWKQ0\nrTbAa4DFkrapeF2q8X27kqYCP79BmY4k1YZeQ5rQbgHwrap1diPN/Lo78FlJL4iIi4HjgHPyVN07\nVKz/HlLT5pqkIHQBcBJp1PETgQvKQY6VR9U+jBR0XgrsRJrfqCO1JwegIdeuGklz25k5G06eklKq\nDyE9L/ft2KApqdRrU3KXBfBZ4N8kVU/DvS/wz4g4PSKWR8R1pCkN3pGX/x4YkfTcvJ3zgNdK2hyY\nnqfArjaL+lOBl30I+HRE3Jenhfg88DatPHvr5yNiWUT8D3A9K/rMxKrTdQdwWkTcnL93L+B/I+Ks\nvF/nkLKc96tRlncAX4+Ie/O04MfV2H5buA9oiLXrJk/fLGp1NDsld82msKyVKbmbTlaIiBsl/Rr4\nBHBzxaJNgVdUNrWRzpM/zM9/Tzpp3wP8Ib8+KJfv8jpfN488FXiDILQZcL6kyuVPk5I2yiqn6l7C\n6FN1VzZrbkiqMVa6i5WnAi/boOqz1Z9rGwegoTZzdgoa5Zs8mQJHz6blDv9mt+OU6iFTOSX3M3XW\nmU8KVBOoHajaOSV3tc+Rbi2p/A3eDfw+Iurd6Px74GukAFQC/gicQgpApTqfKU8Fvj9pFtJa7ibN\nNPCX6gU5C62RRpPZld1LasqstClwUY3P3U+aELBskxrrtIWb4KxrUo1o0f5w9CXpsahttaReSW4Y\nazl6pfztNBIjNafkvombtjyfiw76ORcddA/3rEuXpuSuFhG3Az8mZcSVXQBsLek9SlN2rybp5eV+\nnoi4jRRs3kMKVItJTYz/QgpOtb5nIanJ71uS3iJpat7uGyR9Ja92CnCcpE0AJK0nqVbzWC0PAJuV\ns90qVL6+MO/XAZIm5VFutiEd+2o/AY6UtFHuI/pEk+VomWtAQ61dNZLmt9OJlOpeaQIcazl6pfwd\n8mvSRHLrAw/dxE1bXs0N7xJ7T1qPifyEMze+lF99/UIuvAV4IynLLUgB5wZSMsAbSZ3ztZqCWpqS\nu4YvkJrQytNUL5a0F6mT/kTSRfp1pPt3ykrAKyLi3orXW5NqUzVFxImSHgA+DZxFyvC7Gvj3vMo3\nSAFjjtIMsg8B5wC/LG+iwT6cSwqI8yTdERE7VX8mIuZL2jd/z3dIU4HvmwecrnZq3p/rSU2kJ9Di\nGG/N8o2oQ65dN3kWebNor4wXN9Zy9Er526HW+aCk0rNTcv+RK/ZazIs2Ws7zuYp1+CMX80ze15JK\nK03JPRIjD+bPjzold/mmVus+34hqY9auGolvFrV6RmLkvpJK/w5s/DMufNEinrfRvWzFE1Wnn5EY\neYKVEwLK7y8tqXQCq07JfSZwxUiMeEruPuUakPW9FU1YJ1c2ARbYBNdaOXql/O0w2vlgkPbVkvHU\ngByAbCAU2QTYjnL0SvnHq6mTzoDsqyUOQGZVfJIrhs8Hw8cByKyCm3mK4/PB8BlPAPJ9QDaAOjfk\nzyDer2NWFGfBmTVpwO/XaRtJPTfsv/UmByAbQJ0a8qddQxcNLje/WSscgGzgRMRvJO2fgwOwyEkI\nZj3ISQhmTXJyg1nznAVn1mZO7zZrjgOQWQEcpMwcgMxG1e5g4WY6s8SDkZo10Jm06uHJlHNNz8bL\nN6JaywbhZsx88jyrXTeslo8JsGNbC9qjKoL3nukx/fx+/S1YcVwDspb0682YVVfrJZj+adh6Svu2\nXT4mNwBHViwd1GnHh6emZ53jAGQt6r8Tz6pB8yO7w0kT0ozPh1SsOdZgscoxAY6eB1wzXPcgLZuV\na4G4Sc6a4QBkQ6A6QJySm573Js0+eixw6zxYdGB7TprbAVzT7hlNV9Tils1KM1dPmFfcib56tInD\nl8GkbeHE1dPr/qgZW7EcgKxF4xvmpjc6rncDjlzOs32gNy0dX/Dp1NA/K6yoxb13Sgqax+clxZzo\nVx1tYvIsOGnHfqoZWw+IiHE90ibGtw0/+usB7A0z56QHe7f2uelL4LRIj+lLWvn8WMtR53s/NZZ9\naPcxaX77M+eksr8170Pkx2kBM+cU/5sol6+3yuVHkb8JYrR1XAOylkW62h7DlW37+o9aSYaI+mPD\nHdf6PtQ29mMyKDpfC2y33qiNDzcHIOtTrQWz/g8Q5RP8YVPgmIr3e+NE3yDI96R+zeYcNA5A1kX9\nd5XcK1ac4H+QkxA+QkpC6J0TfX8F+f7L5hxEDkDWNe29Sh6+YNZfJ3iz0XksOOtbbsO3sfKYfZ3n\nwUjNzOrwBUxnOQCZmVkhmokNHozUzMwKMWoAkvQCSddWPBZKOnK0z5mZVRuEkdStfVpqgpM0AbgX\n2Dki5ub33ARnZqNyx/9w6cSEdHsAt5eDj5lZ83zvja2s1T6gdwE/6kRBzKw+N13ZIGq6CU7SZFLz\n24si4uGK990EZ0Ot0+m8g9J0NSj7Yc1pdxPcG4C/VQafii86tuJlKSJKLWzXBsiw3VvRnTHFBqPp\nqt/Gi7PWSBoBRlr5TCsB6ADg7FoLIuLYVr7UBtNwDvDYmeCwciBfPmtcRewhHk5ocOWKR6n8WtLn\nRvtMUwFI0jRSAsJhYyybDYXBuFIv2qqB/PBlcOQyoDzb6MCPe2fDoakAFBGPA+t2uCxmTeudpr5O\nDIq6SiBfHY64Bo6el16u3HTVO8fCrDUeDdvaqDsjVDfT1Netk3L3+jVWnxcxb6/qd3ux2dMB0ZrW\njWlXe+lBh6dOHvZHN47vaNM/0+apv7u9v62Uv9emwu7msfejtx/NxIahqgH14tXioIme6GTuTl+U\npE/B9C/Cifl+uvb8nqKvs8XcD2jNG6oA5P8cg6KYyeiqmpZKsPYX4aQJnfg9NR/ImzsWbhazXjRk\nAcgGQa4hfAmOPjq9s+jElU+o7Q9QNWrPu8PGYx5Nvl0BoZnaUndr/sM3U62NQzfa+XrlgdunB+LR\nzN+RNvfN1O5r2SbgOVFRjmea+a7x/A7Hsl/d7idq97H3oz8fzcSGoaoBRV+3rQ+v6tpCM02p0ZW+\nqAeWw/snwCnALcth0Wea+z2NrSm4X/owu3PsbRAMVQAC/+foB6v2tUz/dOVJF5bd3P1S1Wxa+hL8\nYCS9frQLFzNj7cN0s5j1pqELQNbbave1HFbV0f8R0km0eyfUBrXn41rfWncDgmv+1qtampCu5gY8\nGra1kTRrDpy454qAczqpiesvFa+PvmRFU9zyWfAUsPq8fsruGksSQi+OJu3sOqunExPSmRXgluVw\nevlem6XlK3hJpBPyt3q6T6SWsTQF91pNpl/6pKx3uQZkPaXOVf6XYOZIer3iKrt2benoS2oNWWPt\n5+NvjbgGZOPW7SaW9va1mFkvcw3I6urFPodKvV6+Rgah76Sfj791XjOxwQFogLT7pNYPTSz9eCIf\npBN3Px5/6w43wQ2RYe0Q7s/7ugZnTML+PP7WKxyABkYnTmq+gdHMOscByOrqtbTfweHAbgbuAxoY\ng9Sv0ItKKm0J7AG8JL91PXDpSIzcPpbttb+/zn0x1luchDBkxnMS8gmsvpJKewIHAk8A8/Lbs4A1\ngLNGYuSSosoGg33x4d9l/3IAKki//acZ5BPYeOWaz2eAe0lj/lRaDdgI+OJYa0Lt0GvZiu36/ft3\n2d+cBVeA/sxG6/2srAKD+h6kmk918CG/twzYHSgsAPWS9v7+e/93aePjANR2/k/TbgUH9ZewotmN\n1XlwnWncucVqPPpcgCeZ9fBjbDkN+O8ulKWO1pMaOhfQ/fu35jkAGb2fldUbJ7W1uHmLafxz+2DC\n08uZvATUMbShAAANe0lEQVRgEgueO52btkBv3ZOIQvqCWs1W7J9aeq//Lm28HIDarv/+0zjduqHr\ngR1W58Fl0/jn9s+wxiKYsLy88EnWWb4mt98BHIh0BxGFNMW1dkNoJwN6+37//l0OPgegNuvX/zS9\nfUd7oUH9UmDXKczdJJjwdGXwWc7ECcGkSevxh3+QMuIK6wtqZ5PaeLbV7t9/b/8ubbycBWd9ocjM\nwpJKe67NNd8MWDKJxx8DeJo1pwaTJq3PZf+zMT+/g5QRtw4Rh3erXGWtZos1Wt+ZZ9YuTsMeQv2W\nAt4vFumFZz7IHjMfZ/P1AKZy5wPrU7pjbW5YkFcpMAC1noZd73fSaynd1r+chj1k+qdzuf9M55bL\np3PLDsCVdVZZF/hbu76v0xcSbtrqLcN64egANFB6I1tsQF0K7Eqq6dS6IXV14Lft+KLWLyTa2UfW\nf0k0/W6YLxwdgKwvdf2KMeJ2pLNIQ/IsAx7JS9YlBZ8z25cB19qFRDs7/vs1iaa/De+FowPQQBmO\nq9fCrhgjLkG6g5UHJb0GuLSo9OuydjapuXnOusVJCANmGNqSB72j3Jlow2VQ/95OQhhCvnrtf24G\nGy7D/Pd2Dcj6zqBeMZoNEt8HZANrGJoazfqZA5CZmRWimdgwoVuFMTMzqzRqAJK0tqTzJN0s6SZJ\nu3SjYGZmNtiaqQF9A7gwIl4IbA/c3NkimVmvkLS3NGtOemjvostjg6VhH5CkGcC1EbFFg3XcB9Ql\n7ni3bnK2oY1HO+4D2hx4WNIPSHd+/w04KiKWtKmM1qRhHi/KijK8Q8RYd4wWgCYBOwL/GhFXSToJ\n+ATw2cqVJB1b8bIUEaV2FtLAJwMz62WSRoCRVj4zWgC6B7gnIq7Kr88jBaCVRMSxrXyp9R83/w2j\n4Rhb0NojVzxK5deSPjfaZxoGoIh4QNJcSVtHxK2kQRhvHGc5bUyKOxm4+W84DfMQMdYdo96IKukl\nwHeByaT57t8bEQsrljsJoUuKqoUM+uCfZtZ+bRmMNCKuB17etlLZmHmgUTMbJB4N25rgvgAzaz+P\nBWdNcRKCmbXCg5GamVkhPBhpB3hokvbop+PYT2U16yeuAbXAQ5O0Rz8dx34qq1kvcQ2o7WbOTiei\nQ0iPk6es6Bex5vXTcWy9rK4xNcfHyZwFN+CcPNBdvmm3OT5OBkBEjOuRNjG+bfTLA9gbpi+B0yI9\npi8B9i66XP1S3lSemXNg7b/B1Cd6pVztPIZp/04LiPw4LWDmnKL3o9cePk6D/2gmNrgG1ILou6FJ\nemcA0xpXvMvgiGtg9Xm9fBx75W/umqwNIgegFoVHIxijVYLh6nD0vH4Yzqe1v3n7b9odzOYq39xs\nDkADzv/Ju60zNabeqcm2S6/ULK1YDkADrLf+k3c/GBbVbOVacnN8nMz3AVnXdDMgDNL9O4O0LzY8\nPBSPDa1+nUKiXpDuhSSEXiiD9Y+2TMdgZt3RKNmg6OaqwUyEsKI5ANmA6scEjF5ONujlslm/cgCy\ngdRLCRhuujKrzX1AZh3USgJBLycb9HLZrDc5CcGsYK0mQ4y3ttTJ2pZrctYKJyGY9ZnxJBt0OlGg\n6EQIGzwOQGYd1c1kCCcKWH9xADLroF5KhjDrNe4Dsp7mfofmOVHAeomTEDrIJ8bO8wm1df5dWq9w\nAOoQnxi7o1+H0zGz5mLDhG4VZrDMnJ2CzyGkx8lTVlx1Wi+StLc0a056aO+iy2NmTkKwntaeDDKP\nY2bWm9wENwZuguuedvRpuCnPrPt8I2qHOLW2vRoFGd/8aDa4XAOyQnWjNukaa+IMOesmZ8FZz2tH\n81ijE+uKZctmwWrAhHnDePIdhiDsANtb3ARnA69RgkGNZUvh0YE66TZvsIfpcaJJf3IAsoKNN9Ot\n0Yl1sE+6Vsl/637kAGSFckJHt/TjDLE26NwHZH2tUd/GMPR7tGKQ+0j8t+49TkKwodBcEsKqy2yw\n+G/dWxyAzMysEG3LgpN0J7AIeAZ4KiJ2Hn/xzMxsmDWbhBDASETM72RhzMxseLQyGrab2czMrG2a\nDUABXCrpakmHdbJAZmY2HJoNQLtFxA7AG4AjJL26g2UyGyqeq8iGVVN9QBFxf/73YUnnAzsDl5eX\nSzq2YvVSRJTaWEazgeUhZGxQSBoBRlr6zGhp2JKmAhMjYrGkacAc4PMRMScvdxq22Rh5riIbVO2a\nkvs5wOWSrgOuAH5dDj5m1l1urrNB4htRzQrUyhAyHm7G+olHQjDrA80OIePmOusnng/IrA942nEb\nVg5AZn3DUyrYYHETnFkfab65ziNDW7HcB2Q2hJysYL3AfUBmQ8nTU1t/aGUwUjMzs7ZxDchs4DhZ\nwfqD+4DMBpCTEKxoTkIwszFxALPxcgAys5Y5i87awVlwZjYGzqKz7nAW3JDwKMpm1mvcBDcE3KRi\nrfDvxdrBfUAGeBRla52TEGy83Adk1md65cTvEbqtG1wDGgJuUukP3fw79Uqgs8HlJjh7lk84va9b\nTaW+ILFucBOcPctNKraC06ytNzgAmfUMj+Fmw8VNcGY9pBtNpW6Cs25wH5CZ1eQ+Qes0ByAzMytE\nM7HBQ/FYSzykj5m1i2tA1jT3HZhZs5yGbW3m9F0zax83wZmZWSFcA7IW+D4VM2sf9wFZS5y+a2bN\ncBq2mZkVwmnYZmbWsxyAzMysEA5AZmZWCAcgMzMrhAOQmZkVwgHIzMwK4QBkViAP7mrDzPcBmRXE\ng7vaIGvbYKSSJgJXA/dExJvbUTgz8+CuNtyabYI7CrgJGF91yczMLBs1AEnaGHgj8F3ATW1mbTP/\nhNTsdjrpceTS9J7ZcGimCe7rwEeB6R0ui9lQiYjfSNo/N7sBizy4qw2VhgFI0r7AQxFxraSRBusd\nW/GyFBGltpTObMDlgOOgY30vx4iRlj7TKAtO0nHAQcDTwBqkWtBPI+LginWcBWdmZitp63QMkl4L\nHFOdBecAZGZm1ToxHYOz4MzMrC18I6qZmbWdJ6QzM7Oe5QBkZmaFcAAyM7NCOACZmVkhHIDMzKwQ\nDkBmZlYIByAzMyuEA5CZmRXCAcjMzArhAGRmZoVwADIzs0I4AJmZWSEcgMzMrBAOQGZmVggHIDMz\nK4QDkJmZFcIByMzMCuEAZGZmhXAAMjOzQjgAmZlZIRyAzMysEA5AZmZWCAcgMzMrhAOQmZkVwgHI\nzMwK4QBkZmaFcAAyM7NCOACZmVkhHIDMzKwQDkBmZlYIByAzMyuEA5CZmRXCAcjMzArhAGRmZoVw\nADIzs0I4AJmZWSEcgMzMrBCjBiBJa0i6QtJ1km6S9OVuFMzMzAbbqAEoIp4AXhcRLwW2B14n6VUd\nL1mfkTRSdBmK5mPgYwA+BuBj0KymmuAiYkl+OhmYCMzvWIn610jRBegBI0UXoAeMFF2AHjBSdAF6\nwEjRBegHTQUgSRMkXQc8CPwuIm7qbLHMzGzQNVsDWp6b4DYGXuPqpZmZjZciorUPSJ8BlkbE8fl1\naxswM7OhEBFqtHzSaBuQtC7wdEQ8KmkKsCfw+Wa/wMzMrJZRAxCwAXC6pAmkJrszIuK3nS2WmZkN\nupab4MzMzNphzCMh+AbVFSRNlHStpF8VXZYiSLpT0v/kY3Bl0eUpgqS1JZ0n6eb8/2GXosvUbZJe\nkH8D5cdCSUcWXa5ukvRJSTdKukHSjyStXnSZiiDpqHwM/i7pqLrrjacGJGlqRCyRNAn4I3BMRPxx\nzBvsU5KOBl4GrBUR+xVdnm6T9E/gZRExtPeHSTod+H1EfD//f5gWEQuLLldRcpP9vcDOETG36PJ0\ng6TNgMuAF0bEMkk/Bi6MiNMLLViXSXoxcDbwcuAp4GLgwxFxe/W64xoLzjeogqSNgTcC3wWGOSFj\naPdd0gzg1RHxfYCIeHqYg0+2B3D7sASfbBHphDs1X4RMJQXhYbMNcEVEPBERzwC/B95aa8VxBSDf\noArA14GPAsuLLkiBArhU0tWSDiu6MAXYHHhY0g8kXSPpVElTiy5Uwd4F/KjoQnRTbgE4AbgbuA94\nNCIuLbZUhfg78GpJM/P/gzeR7iFdxXhrQEN9g6qkfYGHIuJahrgGAOwWETsAbwCOkPTqogvUZZOA\nHYFvR8SOwOPAJ4otUnEkTQbeDJxbdFm6SdKWwEeAzYANgTUlHVhooQoQEbcAXwHmABcB11LnAr0t\n0zHk5oYLgJ3asb0+8kpgv9wHcjbwekk/LLhMXRcR9+d/HwbOB3YutkRddw9wT0RclV+fRwpIw+oN\nwN/y72GY7AT8OSLmRcTTwM9I54ihExHfj4idIuK1wKPA/9ZabzxZcOtKWjs/L9+geu1Yt9ePIuJT\nEfG8iNic1ORwWUQcXHS5uknSVElr5efTgL2AG4otVXdFxAPAXElb57f2AG4ssEhFO4B0QTZsbgF2\nkTRFkki/g2HslkDS+vnfTYD9qdMc28yNqPX4BtVVDeNNVc8Bzk//35gEnBURc4otUiH+DTgrNz/d\nDry34PIUIl+E7AEMXV9gRFyfW0CuJjU5XQP8d7GlKsx5kmaRkjIOj4hFtVbyjahmZlYIT8ltZmaF\ncAAyM7NCOACZmVkhHIDMzKwQDkBmZlYIByAzMyuEA5CZmRXCAcjMzArx/wHvINLUtqu7MAAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x108e42210>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f, ax = plt.subplots(figsize=(7,5))\n", "ax.set_title(\"Extreme Values Removed\")\n", "ax.scatter(new_X[:, 0], new_X[:, 1], label='Pruned Points')\n", "ax.scatter(kmeans.cluster_centers_[:, 0],\n", " kmeans.cluster_centers_[:, 1],\n", " label='Old Centroid',\n", " color='r', s=80, alpha=.5)\n", "ax.scatter(new_kmeans.cluster_centers_[:, 0],\n", " new_kmeans.cluster_centers_[:, 1],\n", " label='New Centroid',\n", " color='m', s=80, alpha=.5)\n", "ax.legend(loc='best')" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# There is a fundamental connection between Gaussian distribution\n", "# and the KMeans clustering. Let's create an empirical Gaussian\n", "# based off the centroid and sample covariance matrix and look\n", "# at the probability of each point that we removed.\n", "# this will show that the points we removed were the least likely\n", "# to occur." ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from scipy import stats\n", "emp_dist = stats.multivariate_normal(kmeans.cluster_centers_.ravel())\n", "lowest_prob_idx = np.argsort(emp_dist.pdf(X))[:5]\n", "np.all(X[sorted_idx] == X[lowest_prob_idx])" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 5.92830283 6.32759144]]\n", "[ 5.92830283 6.32759144]\n" ] } ], "source": [ "print kmeans.cluster_centers_\n", "print kmeans.cluster_centers_.ravel()" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Help on multivariate_normal_gen in module scipy.stats._multivariate object:\n", "\n", "class multivariate_normal_gen(__builtin__.object)\n", " | A multivariate normal random variable.\n", " | \n", " | The `mean` keyword specifies the mean. The `cov` keyword specifies the\n", " | covariance matrix.\n", " | \n", " | Methods\n", " | -------\n", " | pdf(x, mean=None, cov=1, allow_singular=False)\n", " | Probability density function.\n", " | logpdf(x, mean=None, cov=1, allow_singular=False)\n", " | Log of the probability density function.\n", " | rvs(mean=None, cov=1, allow_singular=False, size=1)\n", " | Draw random samples from a multivariate normal distribution.\n", " | entropy()\n", " | Compute the differential entropy of the multivariate normal.\n", " | \n", " | Parameters\n", " | ----------\n", " | x : array_like\n", " | Quantiles, with the last axis of `x` denoting the components.\n", " | %(_doc_default_callparams)s\n", " | \n", " | Alternatively, the object may be called (as a function) to fix the mean\n", " | and covariance parameters, returning a \"frozen\" multivariate normal\n", " | random variable:\n", " | \n", " | rv = multivariate_normal(mean=None, cov=1, allow_singular=False)\n", " | - Frozen object with the same methods but holding the given\n", " | mean and covariance fixed.\n", " | \n", " | Notes\n", " | -----\n", " | %(_doc_callparams_note)s\n", " | \n", " | The covariance matrix `cov` must be a (symmetric) positive\n", " | semi-definite matrix. The determinant and inverse of `cov` are computed\n", " | as the pseudo-determinant and pseudo-inverse, respectively, so\n", " | that `cov` does not need to have full rank.\n", " | \n", " | The probability density function for `multivariate_normal` is\n", " | \n", " | .. math::\n", " | \n", " | f(x) = \\frac{1}{\\sqrt{(2 \\pi)^k \\det \\Sigma}} \\exp\\left( -\\frac{1}{2} (x - \\mu)^T \\Sigma^{-1} (x - \\mu) \\right),\n", " | \n", " | where :math:`\\mu` is the mean, :math:`\\Sigma` the covariance matrix,\n", " | and :math:`k` is the dimension of the space where :math:`x` takes values.\n", " | \n", " | .. versionadded:: 0.14.0\n", " | \n", " | Examples\n", " | --------\n", " | >>> import matplotlib.pyplot as plt\n", " | >>> from scipy.stats import multivariate_normal\n", " | >>> x = np.linspace(0, 5, 10, endpoint=False)\n", " | >>> y = multivariate_normal.pdf(x, mean=2.5, cov=0.5); y\n", " | array([ 0.00108914, 0.01033349, 0.05946514, 0.20755375, 0.43939129,\n", " | 0.56418958, 0.43939129, 0.20755375, 0.05946514, 0.01033349])\n", " | >>> plt.plot(x, y)\n", " | \n", " | The input quantiles can be any shape of array, as long as the last\n", " | axis labels the components. This allows us for instance to\n", " | display the frozen pdf for a non-isotropic random variable in 2D as\n", " | follows:\n", " | \n", " | >>> x, y = np.mgrid[-1:1:.01, -1:1:.01]\n", " | >>> pos = np.empty(x.shape + (2,))\n", " | >>> pos[:, :, 0] = x; pos[:, :, 1] = y\n", " | >>> rv = multivariate_normal([0.5, -0.2], [[2.0, 0.3], [0.3, 0.5]])\n", " | >>> plt.contourf(x, y, rv.pdf(pos))\n", " | \n", " | Methods defined here:\n", " | \n", " | __call__(self, mean=None, cov=1, allow_singular=False)\n", " | Create a frozen multivariate normal distribution.\n", " | \n", " | See `multivariate_normal_frozen` for more information.\n", " | \n", " | __init__(self)\n", " | \n", " | entropy(self, mean=None, cov=1)\n", " | Compute the differential entropy of the multivariate normal.\n", " | \n", " | Parameters\n", " | ----------\n", " | %(_doc_default_callparams)s\n", " | \n", " | Notes\n", " | -----\n", " | %(_doc_callparams_note)s\n", " | \n", " | Returns\n", " | -------\n", " | h : scalar\n", " | Entropy of the multivariate normal distribution\n", " | \n", " | logpdf(self, x, mean, cov, allow_singular=False)\n", " | Log of the multivariate normal probability density function.\n", " | \n", " | Parameters\n", " | ----------\n", " | x : array_like\n", " | Quantiles, with the last axis of `x` denoting the components.\n", " | mean : array_like, optional\n", " | Mean of the distribution (default zero)\n", " | cov : array_like, optional\n", " | Covariance matrix of the distribution (default one)\n", " | allow_singular : bool, optional\n", " | Whether to allow a singular covariance matrix. (Default: False)\n", " | \n", " | Notes\n", " | -----\n", " | Setting the parameter `mean` to `None` is equivalent to having `mean`\n", " | be the zero-vector. The parameter `cov` can be a scalar, in which case\n", " | the covariance matrix is the identity times that value, a vector of\n", " | diagonal entries for the covariance matrix, or a two-dimensional\n", " | array_like.\n", " | \n", " | \n", " | Returns\n", " | -------\n", " | pdf : ndarray\n", " | Log of the probability density function evaluated at `x`\n", " | \n", " | pdf(self, x, mean, cov, allow_singular=False)\n", " | Multivariate normal probability density function.\n", " | \n", " | Parameters\n", " | ----------\n", " | x : array_like\n", " | Quantiles, with the last axis of `x` denoting the components.\n", " | mean : array_like, optional\n", " | Mean of the distribution (default zero)\n", " | cov : array_like, optional\n", " | Covariance matrix of the distribution (default one)\n", " | allow_singular : bool, optional\n", " | Whether to allow a singular covariance matrix. (Default: False)\n", " | \n", " | Notes\n", " | -----\n", " | Setting the parameter `mean` to `None` is equivalent to having `mean`\n", " | be the zero-vector. The parameter `cov` can be a scalar, in which case\n", " | the covariance matrix is the identity times that value, a vector of\n", " | diagonal entries for the covariance matrix, or a two-dimensional\n", " | array_like.\n", " | \n", " | \n", " | Returns\n", " | -------\n", " | pdf : ndarray\n", " | Probability density function evaluated at `x`\n", " | \n", " | rvs(self, mean=None, cov=1, size=1)\n", " | Draw random samples from a multivariate normal distribution.\n", " | \n", " | Parameters\n", " | ----------\n", " | mean : array_like, optional\n", " | Mean of the distribution (default zero)\n", " | cov : array_like, optional\n", " | Covariance matrix of the distribution (default one)\n", " | allow_singular : bool, optional\n", " | Whether to allow a singular covariance matrix. (Default: False)\n", " | size : integer, optional\n", " | Number of samples to draw (default 1).\n", " | \n", " | Notes\n", " | -----\n", " | Setting the parameter `mean` to `None` is equivalent to having `mean`\n", " | be the zero-vector. The parameter `cov` can be a scalar, in which case\n", " | the covariance matrix is the identity times that value, a vector of\n", " | diagonal entries for the covariance matrix, or a two-dimensional\n", " | array_like.\n", " | \n", " | \n", " | Returns\n", " | -------\n", " | rvs : ndarray or scalar\n", " | Random variates of size (`size`, `N`), where `N` is the\n", " | dimension of the random variable.\n", " | \n", " | ----------------------------------------------------------------------\n", " | Data descriptors defined here:\n", " | \n", " | __dict__\n", " | dictionary for instance variables (if defined)\n", " | \n", " | __weakref__\n", " | list of weak references to the object (if defined)\n", "\n" ] } ], "source": [ "help(stats.multivariate_normal)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.8" } }, "nbformat": 4, "nbformat_minor": 0 }
apache-2.0
mtmarsh2/vislab
image_style_experiments/pascal results.ipynb
4
377557
{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "%load_ext autoreload\n", "%autoreload 2\n", "import re\n", "import pandas as pd\n", "import aphrodite.results\n", "import vislab\n", "import vislab.results\n", "import vislab.datasets" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "label_df = vislab.datasets.pascal.get_clf_df()" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Normal VOC 20-class results" ] }, { "cell_type": "code", "collapsed": false, "input": [ "results_df, preds_panel = aphrodite.results.load_pred_results(\n", " 'pascal_oct16', vislab.config['paths']['shared_data'] + '/results', force=False)\n", "preds_panel" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Loaded from cache: 38 records\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 3, "text": [ "<class 'pandas.core.panel.Panel'>\n", "Dimensions: 19 (items) x 17125 (major_axis) x 4 (minor_axis)\n", "Items axis: clf pascal_class_aeroplane to clf pascal_class_tvmonitor\n", "Major_axis axis: 2007_000027 to 2012_004331\n", "Minor_axis axis: decaf_fc6 vw to split" ] } ], "prompt_number": 3 }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Results for a single class." ] }, { "cell_type": "code", "collapsed": false, "input": [ "selected_score = 'decaf_fc6 vw'\n", "pred_prefix = 'clf pascal'\n", "label = 'class_dog'\n", "\n", "pred_df = preds_panel['{}_{}'.format(pred_prefix, label)]\n", "pred_df['pred'] = pred_df[selected_score]\n", "pred_df\n", "full_binary_metrics = vislab.results.binary_metrics(\n", " pred_df, '{} full'.format(label), False, with_plot=True)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAVcAAAFRCAYAAADAaO4FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVHX7P/D3wKCAyqKiIqAoqKCyCriCKAqiaO6itrmn\nuVZulY9k+ZRppf6oXDOf3DMTV/DRJBVCciksNFcEUdwJFVQYzu8Pvs4TziCjzJkzc+b9uq6uyzNz\nlnvuxtvP3OdzzlEIgiCAiIj0ykLqAIiI5IjFlYhIBCyuREQiYHElIhIBiysRkQhYXImIRMDiSgbx\n7bffIjQ0VOowEBcXh1deeUWUfb///vtwcnJCw4YNnyuOrKwsWFhYoLS0VJS4SBpKqQMgMiSFQiHK\nfrOzs/H5558jJycHderUkSwOMh4cuRLpQXZ2NurUqaNTYQUAXrsjfyyupFc5OTno378/6tWrh7p1\n62LSpEla15syZQoaNWoEe3t7BAUF4ciRI+r30tPTERQUBHt7ezRo0ABvv/02AODhw4d4+eWXUbdu\nXTg6OiIkJAQ3btx4ZjyXLl1C586dYWdnh8jISNy6davc+zt27ECrVq3g6OiILl264MyZM+r3Tpw4\ngYCAANjZ2WHw4MEYMmQI5syZo3GM/fv3IzIyElevXkWtWrUwcuRIJCcnw83Nrdx67u7u+Omnn56d\nQJINFlfSG5VKhZiYGDRp0gSXL19Gbm4uhg4dqnXdkJAQ/P7777h79y6GDRuGQYMG4fHjxwDKCu+0\nadPw999/4+LFixgyZAgAYO3atSgoKMCVK1dw584dLF++HDY2Ns+MadiwYQgODsbt27cxZ84crF27\nVv2T/OzZsxg2bBiWLl2KW7duoWfPnujduzdKSkrw+PFj9OvXDyNHjsTdu3cxdOhQbN++XevP+W7d\numHv3r1o2LAh7t27h2+++UZrLGwFmBcWV9Kb9PR0XLt2DQsXLoSNjQ2qV6+ODh06aF13+PDhcHR0\nhIWFBd566y08evQIf/31FwCgWrVqOHfuHG7dugVbW1uEhISoX799+zbOnTsHhUKBgIAA1KpVq8J4\nsrOzcezYMXz44YewsrJCaGgoevfurX5/8+bNiImJQUREBCwtLfHOO++gqKgIKSkpSEtLg0qlwqRJ\nk2BpaYl+/fqp49CGP/PpaSyupDc5OTlo3LgxLCwq/1otWrQILVu2hIODAxwdHfH333+rf7KvXr0a\nZ8+ehbe3N0JCQrB7924AwCuvvIKoqCjExsbCxcUFM2fORElJSYXHuHr1KhwdHcuNbhs3blzu/UaN\nGqmXFQoF3NzckJubi2vXrsHFxaXc/tzc3FhESWcsrqQ3bm5uyM7OhkqleuZ6hw8fxsKFC/H9998j\nPz8fd+/ehb29vbpweXp6YsOGDbh58yZmzpyJgQMHoqioCEqlEv/617/w559/IjU1Fbt27cJ//vOf\nCo/j7OyMu3fvorCwUP3a5cuX1X92cXEptywIAnJycuDq6gpnZ2fk5uaW2192drbOP+1r1KhR7rgq\nlQo3b97UaVuSBxZX0pu2bdvC2dkZs2bNQmFhIR4+fIjU1FSN9e7duwelUom6devi8ePHmDdvHgoK\nCtTvr1u3Tl2I7O3toVAoYGFhgYMHD+LUqVNQqVSoVasWrKysYGlpWWE8jRs3RlBQEObOnYvi4mIc\nOXIEu3btUr8/aNAg7N69Gz/99BOKi4vx2WefwdraGh06dEC7du1gaWmJ+Ph4lJSUICEhAb/++qvO\nuWjevDkePnyIPXv2oLi4GB999BEePXqk8/Zk+lhcSW8sLCywc+dOnD9/Ho0aNYKbmxu2bNkCoOwn\n95NRX48ePdCjRw80b94c7u7usLGxKffzPCkpCa1bt0atWrUwbdo0bNq0CdWrV8f169cxaNAg2Nvb\no2XLlggPD6/0goANGzbg6NGjqF27NubNm4fXXntN/V6LFi2wbt06TJo0CU5OTti9ezd27twJpVKJ\natWqYdu2bVi9ejUcHR2xfv16xMTEoFq1ahUe65+jWnt7e3z11VcYPXo0XF1dUbNmzXKzB/6Zj6e3\nJXlQiHmz7JEjR2L37t2oV68eTp06pXWdyZMnY+/evbC1tcW3336LgIAAAEBiYiKmTp0KlUqF0aNH\nY+bMmWKFSaSTtm3bYsKECeUKNFFFRB25jhgxAomJiRW+v2fPHpw/fx7nzp3DihUrMH78eABl/amJ\nEyciMTERmZmZ2LhxI06fPi1mqEQaDh06hLy8PJSUlGDt2rX4448/0KNHD6nDIhMh6uWvoaGhyMrK\nqvD9HTt2qEcBbdu2RX5+PvLy8nDp0iV4enrC3d0dABAbG4uEhAR4e3uLGS6ZqJo1a2r9WZ2YmIiO\nHTu+8H7/+usvDB48GA8ePICHhwe2bt2K+vXrVyVUMiOS3lsgNze3XB/K1dUVubm5uHr1qsbrR48e\nlSJEMgH3798XZb9jxozBmDFjRNk3yZ/kJ7Q4b5CI5EjSkauLiwtycnLUy1euXIGrqyuKi4vLvf5k\n7uHTGjRogOvXrxskViIyHx4eHjh//nyV9iFpce3Tpw/i4+MRGxuLtLQ0ODg4oH79+qhTpw7OnTuH\nrKwsNGzYEJs3b8bGjRs1tr9+/brkI987d+5gwoQJKC4u1vr+9evXUb16dWzduhUODg4GmXITFxeH\nuLg40Y9japgXTcyJdvr4eypqcR06dCh+/vln3Lp1C25ubvjggw/URWjcuHHo2bMn9uzZA09PT9So\nUQNr1qwpC0qpRHx8PKKioqBSqTBq1CijPZlVu3ZtbNq0qcL3T5w4ge7du6N+/fpYu3ZthTcy0af8\n/HzRj2GKmBdNzIl4RC2u2kabT4uPj9f6enR0NKKjo/UdksEFBgbi9u3bePnll7Fp0yaEhYVprOPs\n7KzT9fhEZDr4JAIDiY6OxogRIzTurJSfn4/Fixfr9ax037599bYvOWFeNDEn4hH1Ci2xKRQKyXuu\nVTVp0iTcvn0b3bp1U7/WoUMHeHl5SRgVkXnTR23hb1GJ9erVC9bW1jhy5AiOHDmClStXYunSpVXa\n57Mu3DBnzIsm5kQ8bAtI7MlNTJ746quv8Mcff0gYERHpA0euRigtLa1K2z+5bJjKY140MSfiYXE1\nMp06dcLJkycxY8YMPseeyISxLWBkfH19sWnTJsTGxuL+/fvo1KkTgLIb23h4eOi0j6ysLI5ItGBe\nNDEn4mFxNUJDhgxBbm4ujh49il27duHs2bNwdXVVP6b6yd3yeYNlIuPFqVgm4NChQ/jggw/Uyz/9\n9BOaNm0KR0fHcuvdu3cPvXr1QnBwMKysrGBlZQWlUolmzZqhefPmhg6byGTpo7awuJqgrKws9ZNS\n/ykpKQmnT5+GSqVCcXExHj9+jBs3bqBatWo4dOiQBJESmSYWVzMtrpX5Zx8tJSUFffr0QXh4OICy\nixae/NncsL+oiTnRjhcRUKWCg4OxevVqDBs2DEDZM8uGDh0q2g2miagMR65mJCcnBykpKRg6dCh8\nfHzQvXt3AEBJSQmCgoLQunVr9QMiicwZ2wIsri/kl19+QWpqqnr54MGDuH37Nn7//XdkZmbyZyKZ\nPRZXFletXqSPVlJSgvDwcNy8eRMfffSR+nUnJyfZ9GjZX9TEnGinj9rCea4EoOwG5du2bcOUKVOw\nZcsWAGUFd//+/bh3757E0RGZHo5cqUJFRUWwtbVFp06d8O6776Ju3boIDg6WOiwi0XG2AInKxsYG\nR48eRa1atbBkyRKEhITAx8cHJ06ckDo0IqPHkasMidVH++233/DSSy8hOzsbHTp0AABYWFhg1apV\naNGihd6Pp2/sL2piTrRjz5UMyt/fHxcuXMCxY8egUqkAALNnz0ZYWBiqV6+Oq1ev4vz58/zLSgSO\nXKmK7t+/j1u3bkEQBLRr1w4NGjTA7t274erqKnVoRC+MU7FYXI3KlStXEBgYCEdHR/zyyy+oXbu2\n1CERvRCe0CKtpHoukqurK7Zu3YqzZ8+iTp06CAoKQq9evSSJRRs+L0oTcyIe9lxJr8LCwvD48WNk\nZGRApVKhbdu2CA8Px+bNm1G/fn2pwyMyGLYFSFQ//vgj+vfvD0dHR9y5c0fqcIh0wp4ri6tJOHPm\nDLy9vXHs2DG0adNG6nCIKsWeK2llbH00Ly8vBAYGIigoCIWFhZLFYWx5MQbMiXhYXMkgUlNTYWtr\nixo1aqB58+bl7spFJEdsC5DBFBcX4+LFixg/fjwOHjyIvLw8nuQio8SeK4urybKzs0OnTp2wZ88e\nqUMh0sCeK2llCn20jRs3Yu/evXjw4IHBjmkKeTE05kQ8nOdKkujVqxdq1qyJGzduoGbNmgCAunXr\nQqFQSBwZkX6wLUCSadOmDbKzswFA/ajw1atXY+TIkVKGRcSeK4urfJSUlCAqKgr5+fk4cuQIbGxs\npA6JzBh7rqSVKfbRlEol3n//fZw4cQK2trbw9/dHVFQU8vLy9HYMU8yL2JgT8bC4ktHo0qULSktL\nkZGRgfnz52Pfvn3YvXu31GERvRC2Bcho9evXD9u3b8epU6fQsmVLWFhwLECGwbYAydry5cvRoEED\n+Pj4YNy4cVKHQ/RcWFxlSC59tHr16uHatWuYN28eUlJSqjySkEte9Ik5EQ+LKxm9Hj164PTp07Cw\nsMC6deukDodIJ+y5kklQqVQYPXo01q9fjxs3bsDBwUHqkEjGOM+VxdWs3Lx5E/Xq1cOff/6Jli1b\nSh0OyRhPaJFWcu2jOTk5wdnZGWvWrHmh7eWal6pgTsTD4komZezYsVi0aBECAwNx4cIFqcMhqhDb\nAmRSBEFAZmYmXn/9dVhaWqJt27YYMGAAwsLCpA6NZIQ9VxZXs5WVlYWNGzfihx9+wPHjx9GnTx+E\nhYXhtddeQ926daUOj0wce66klTn00dzd3TF79mwcO3YMu3btgpOTE9555x3MmTOnwm3MIS/PizkR\nD4srmbxevXph1apVmD59OpYtW4aLFy9KHRIR2wIkHwUFBQgKCsK5c+cwd+5c9O/fH76+vlKHRSaI\nbQGif7Czs8Mff/yBuLg4bNiwAX5+fvjxxx+lDovMFEeuMpSVlQV3d3epw5DckCFDsGXLFri7u2Pd\nunVwcXFhXp7C74p2HLkSPcOmTZtw5swZeHt7Y9iwYVKHQ2aGxVWGOBIpo1Ao0KJFC0yfPh3Z2dlY\nsmQJCgoKpA7LqPC7Ih62BcgsLFy4EDNmzEBoaCgOHTokdThk5NgWIK04d1HT9OnTsWHDBhw+fBgv\nvfSS1OEYDX5XxMPiSmajffv2SExMRFJSEr766iupwyGZU0odAOkf+2jaubu7w9nZGbNmzcKbb76J\nGzduIC4uTuqwJMXvinhYXMmsVK9eHXFxcVAqlZgzZw6qVauGd999V+qwSIZ4QkuGOHdRu6fzMnXq\nVCxZsgS5ublo2LChdIFJiN8V7XhCi6gKPv/8c9ja2sLFxUXqUEiGOHIls3bnzh3UqVMHqampCAoK\ngpWVldQhkREw+pFrYmIivLy80KxZMyxYsEDj/UWLFiEgIAABAQHw8fGBUqlEfn4+gLJGu6+vLwIC\nAhASEiJmmGTGHBwc0KNHD0RHR+Odd96ROhySE0EkJSUlgoeHh3Dp0iXh8ePHgp+fn5CZmVnh+jt3\n7hQiIiLUy+7u7sLt27efeQwRwzdply5dkjoEo/SsvCxevFgAICxfvtxwARkBfle000dtEW3kmp6e\nDk9PT7i7u8PKygqxsbFISEiocP0NGzZg6NChTxd+scIjKmfKlCkYOHAgxo0bJ3UoJBOiFdfc3Fy4\nubmpl11dXZGbm6t13cLCQiQlJWHAgAHq1xQKBbp164agoCCsXLlSrDBliWd/tassLytWrAAAXLp0\nyQDRGAd+V8Qj2jxXhUKh87o7d+5Ep06d4ODgoH4tJSUFzs7OuHnzJrp37w4vLy+EhoaKESoRAMDR\n0RGOjo4YPXo0Dhw4IHU4ZOJEK64uLi7IyclRL+fk5MDV1VXrups2bdJoCTg7OwMoe1Z9v379kJ6e\nrrW4Tp06VV2Uvby80K5dO/W/xk+umza35SevGUs8xrKclpaGBg0aPHP9BQsWYOzYsXj77bcxadIk\no4pfjOW8vDy0a9fOaOKRajk5ORnbt28HgHKDvCqpeutXu+LiYqFp06bCpUuXhEePHlV4Qis/P1+o\nXbu2UFhYqH7twYMHQkFBgSAIgnD//n2hQ4cOQlJSksa2IoZv0niSQjtd8zJt2jTB2dlZePTokbgB\nGQF+V7TTR20RreeqVCoRHx+PqKgotGzZEkOGDIG3tzeWL1+O5cuXq9fbvn07oqKiYGNjo37t+vXr\nCA0Nhb+/P9q2bYuYmBhERkaKFarsPPmXmcrTNS9vvPEGrl27hhkzZogbkBHgd0U8vIiASIvFixdj\n2rRpyMzMhLe3t9ThkIHpo7awuMpQFq8X1+p58+Lh4YGGDRvi0KFDz3WC1pTwu6KdPmoL74pFVIF/\n/etfeP3112FhYYEaNWpgyJAhaN68OYCy6YMBAQFo1KgRAgMDJY6UjJHJj1zv378vdRgkc+fPn8e2\nbdtQUFCgHsH++eefuHPnDo4dO4YWLVpg7NixvABBRmrWrMm2QEUXJhAZQkZGBubNm4dffvkFWVlZ\nvPGLTLi4uBj3jVtIGlevXpU6BKMkRl58fX2xdetWAGVn3rt06YL//Oc/uHPnjkmcD+B3RTwsrkR6\ncOHCBezfvx+dO3fGe++9Bx8fH7z22mt4+PCh1KGRRNgWIBLB3r17MXr0aLz00kt8GKIJYluAyEhF\nR0fj888/R2pqKh49eiR1OCQBsy6uiYmJcHV1xfnz59Wv5eTkwMPDA5GRkejSpQtmzZpV6b9g2dnZ\niImJQceOHTF+/HgUFxdrrJOSkoLIyEj1fx4eHti3bx8AYOLEiQgLC0NERATefvttlJSUAACWLVum\nXj8iIgKNGjXC33//XennYh9NO0PnpVu3blAoFGjatClatmyJuLg4qFQqg8ZQGX5XxGPWxXX79u3o\n1q2bxn1m3d3dsW/fPuzfvx/nzp1DYmLiM/czf/58jB07FikpKbC3t8fGjRs11unYsSP27duHffv2\nYcuWLbC2tkZYWBgAoH///jh06BAOHDiAhw8fYsOGDQDKLsN8ss2sWbPQvn172Nvb6+nTk9jq1KmD\nkydP4ujRo5g2bRpWrlyJzz77TOqwyEDMtrg+ePAAJ0+exPz587Fjxw6t61haWiIoKKjc3aaeJggC\nUlNTERMTAwAYNGgQkpKSnnnsXbt2oWvXrrC2tgYAdO3aVf2en58frl27prHN9u3b0bdv38o+FgCY\n7ZNMKyNVXlxdXTFmzBiMGTMGt27dkiSGivC7Ih6zLa5JSUkIDw+Hi4sL6tSpg1OnTmmsU1RUhCNH\njqivLdd285i7d+/Czs4OFhZlqWzQoAHy8vKeeeyEhASthbK4uBjbtm0rV2yfxJGcnIyePXvq/PnI\n+DRu3Bjr16/HgwcPpA6FDMBsi+v27dvVo82YmBj1vRyBsuutIyMj0bdvX3Tr1g3h4eEAoO6RVsX1\n69fx119/qff5T++++y7atWuH4ODgcq/v27cPISEhOrcE2EfTTuq89OvXDwA0/v9KSeqcyJlZ3lvg\n7t27SE1NxV9//QWFQgGVSgWFQoE5c+YA+F/PVReOjo4oKChAaWkpLCwscO3aNTRo0KDC9Xfu3Ino\n6GhYWlqWe/3zzz/H3bt3sXDhQo1tduzYoXNLgIyXg4MDTpw4gcDAQEyaNAn/7//9P6lDIhGZ5ch1\n9+7dGDhwII4ePYq0tDT8+uuvaNSoEY4ePfrc+1IoFOjQoQN27twJAPj+++8RFRVV4fraeqcbNmzA\nzz//jPj4eI31CwoKkJaW9lz3s2UfTTtjyEv9+vWxdu1abNu2DSdOnJA6HKPIiVyZZXFNSEhAdHR0\nudd69uyJhIQEKBSKCm8vV1GBe++997By5Up07NgRf//9t/qRNRkZGZg+fbp6vZycHOTl5aF9+/bl\ntp89ezZu3bqFPn36IDIyEosXL1a/l5iYiPDw8HI3EyfT1q1bN/j7+6N3797IzMyUOhwSCa/QkqGr\nV69yRKKFMeXl4sWLGDZsGJRKJY4cOSJZHMaUE2PCK7SITFTTpk2xbt06XLp0qdxFLCQfLK4yxJGI\ndsaWF09PTzg7O6Nz587YvXu3JDEYW07khMWVSEJJSUno2rUrxo4di4sXL0odDukRi6sMce6idsaY\nlzp16uC7776Dp6dnpRefiMEYcyIXLK5ERsDS0hJbtmyROgzSIxZXGWIfTTtjzsvgwYPx/fffY9eu\nXQZ9goEx58TUsbgSGYE33ngD4eHhGDduHO+cJRMsrjLEPpp2xp6X9evXY/Lkyfjiiy/w9ddfG2SK\nlrHnxJSxuBIZkREjRmDUqFFYunQpOnfujJSUFKlDohfEK7SIjFBRURGmTJkCpVLJZ3BJgFdoEcmU\njY0NwsLCkJCQgPXr16O0tFTqkOg5sbjKEPto2plaXl5++WXMmDEDM2bMQHp6uijHMLWcmBIWVyIj\nNmXKFDRt2rTcndLINLC4yhDnLmpnqnmZMGECLl++LMq+TTUnpoDFlcjIhYSEIDs7G97e3ryDlglh\ncZUh9tG0M9W8eHh4ICMjA1ZWVujcuTNGjRqFx48f62XfppoTU8DiSmQC6tSpg99++w2bN29GYmIi\nBg0aJHVIVAnOcyUyMSdPnkRMTAx69uyJQYMGPdfz1Ug3nOdKZIYCAgLw9ddfw8bGBiNGjICLiwvW\nrl0rdVj0FI5cZYjPRdJOjnm5f/8+pk6dir1792LXrl0ICAh4ru3lmBN94MiVyMzVrFkTixYtQnBw\nMGJiYnhHLSPCkSuRTEyZMgXJyclYsGABevToIXU4Jo0jVyJS+/DDDxEeHo5Ro0bh+++/lzocs8fi\nKkOcu6id3PNiZ2eHxYsXIzY2FlOnTsW4ceOgUqmeuY3ccyIlpdQBEJH+KBQKfPrpp/Dx8cF7772H\nBw8eYN26dVKHZZbYcyWSqYSEBEyYMAE+Pj748MMPERwcLHVIJkMfPVcWVyIZ++OPPzBu3Dg8evQI\nx44dkzock8ETWqQV+2jamWNeWrdujc8++wzXrl3D2bNnNd43x5wYSqXF9ciRI+jevTuaNWuGJk2a\noEmTJmjatKkhYiMiPWjdujUAoEuXLhJHYl4qbQu0aNECixcvRmBgICwtLdWv161bV/TgKsO2AJFu\nCgoK4O3tjcmTJ2PmzJlSh2P09NEWqHS2gIODA6Kjo6t0ECKSlp2dHSZOnIilS5fCzs4O48ePlzok\n2au0uHbp0gXTp09H//79Ub16dfXrgYGBogZGL47Xi2tn7nmZNWsWXFxcMHv2bFy7dg3z5s0z+5yI\nqdLimpaWBoVCoXGm8eDBg6IFRUT6p1Ao8Oqrr8LCwgIzZ86Ek5MTBgwYIHVYssWpWERmaNKkSdi2\nbRv//lTAIFOx8vPzMW3aNLRp0wZt2rTB22+/jb///rtKByUiaX366acAgFWrVkkciXxVWlxHjhwJ\nOzs7fP/999iyZQtq1aqFESNGGCI2ekGcu6gd8/I/NjY2mDhxItasWYMDBw5IHY4sVdpzvXDhArZt\n26ZejouLg5+fn6hBEZH4Zs+ejcLCQrz66qs4e/YsatSoIXVIslLpyNXGxgaHDx9WLx85cgS2trai\nBkVVw7O/2jEvmubNmwcAaN68OfuvelbpyHXZsmV49dVX1X1WR0dHPq+HSCYUCgWys7Ph6+uLdevW\n8QIDPaq0uPr7+yMjIwMFBQUAyiYjk3Hj3EXtmBdNT3IyZswYLFy4EHfu3MGCBQukDksWKiyu3333\nHV555RV89tlnUCgU6tcFQYBCocBbb71lkACJSHxTp05FmzZtEBsbiw8++ADW1tZSh2TyKiyuhYWF\nAIB79+5pLa5kvDg604550fTPnHTq1AkA8Pvvv6Nt27ZShSQbvIiAiNTatWsHS0tLpKSkSB2KpAxy\nEcGMGTNQUFCA4uJiREREoG7duvjuu++qdFASF+dzase8aHo6J4sWLUJWVhbCw8OxYsUKiaKSh0qL\na1JSEuzs7LBr1y64u7vjwoULWLhwoU47T0xMhJeXF5o1a6a1SZ6cnAx7e3sEBAQgICAAH330kc7b\nEpH+derUCUlJSWjfvj0++OADxMfHSx2Syap0tkBJSQkAYNeuXRg4cCDs7e116rmqVCpMnDgR+/fv\nh4uLC4KDg9GnTx94e3uXW69z587YsWPHC21L2rG3qB3zoklbTlq3bo2PP/4YtWvXxscff4ygoCC0\na9dOguhMW6Uj1969e8PLywvHjx9HREQEbty4odOZxPT0dHh6esLd3R1WVlaIjY1FQkKCxnra+hq6\nbktE4pk+fTo6d+6MgQMHSh2KSaq0uH7yySdISUnB8ePHUa1aNdSoUUOnQpebmws3Nzf1squrq8bJ\nJ4VCgdTUVPj5+aFnz57IzMzUeVuqGHuL2jEvmirLyYoVKyAIAn799VcDRSQfFbYFDhw4gIiICPzw\nww/qNsCTUaZCoUD//v2fuWNdWgeBgYHIycmBra0t9u7di759+2p9iNqzxMXFoVatWgDKLuFr06aN\n+qfOky+OuS0/YSzxGMvy7du3jSoeY1i+fft2peuHhoaib9++SE1NhZWVlVHFr6/l1NRU7Nu3DwDU\n9aSqKpyKNXfuXHzwwQd4/fXXtRbKNWvWPHPHaWlpiIuLQ2JiIgDg448/Vt+ktyJNmjTB8ePHcfbs\nWZ225VQsIvHdvHkT/v7+AIArV66YxTx3fUzFEm2ea0lJCVq0aIEDBw6gYcOGCAkJwcaNG8udlLp+\n/Trq1asHhUKB9PR0DB48GFlZWTptC7C4EhnKkwKbnp4OFxcXqcMRnUHmub777rvIz89XL9+9exfv\nv/9+pTtWKpWIj49HVFQUWrZsiSFDhsDb2xvLly/H8uXLAQBbt26Fj48P/P39MXXqVGzatOmZ25Ju\n2FvUjnnRpGtOnJycULNmTYwZM0bkiOSj0pGrv78/fvvtt3KvBQQE4OTJk6IGpguOXLXjDUq0Y140\nPU9OkpPMD4w/AAAVYUlEQVSTMWHCBPWJZzkzyMi1tLQUDx8+VC8XFRXh8ePHVTooiYsFRDvmRdPz\n5KRx48ZwdHQUMRp5qbS4Dh8+HBEREVi9ejVWrVqFbt264dVXXzVEbERkRKpVq4asrCw0a9bM7O89\noAudTmjt3btX/Zyd7t27IyoqSvTAdMG2gHb8+asd86LpeXNy9epVREZGwtbWFmlpabCwqHR8ZpL0\n0Rao9PJXAPD29oZSqUT37t1RWFiIe/fu6W0uGBGZjoYNGyIhIQFhYWFwc3Mzm6lZL6LSf3ZWrFiB\nQYMG4Y033gBQNs+tb9++ogdGL46jM+2YF00vkhMPDw9cvHgRABAdHY1Tp05VeZQnR5UW1y+//BJH\njhxRP96lefPmuHHjhuiBEZHxql69OtasWYP8/Hz06NED3bt3R1FRkdRhGZVKi2v16tVRvXp19XJJ\nSQl/Bhg5zufUjnnRVJWcREZGIi0tDT///DNOnz7NE91PqbS4du7cGfPnz0dhYSH++9//YtCgQejd\nu7chYiMiE+Dp6Ymvv/4aqampePDggdThGI1KZwuUlpZi1apV6psaREVFYfTo0UYxeuVsASLjUFJS\ngrCwMFy+fBkzZ87E5MmTpQ6pSkS/t0BJSQlat26NM2fOVOkgYmFxJTIepaWlWLFiBT788EMMHz4c\nn376qdQhvTDRr9BSKpVo0aIFLl++XKWDkGGxt6gd86JJnzmxsLDAG2+8gfnz52P9+vXYvn273vZt\niiqd53rnzh20atUKISEhqFGjBoCyEePTj2YhIgKA119/HcnJyXjzzTfRvXt3dd0wN5X2XH/++WcA\n5R/HolAo0LlzZ3Ej0wHbAkTG6eHDh/Dw8ICLiwvS09OlDue5iXqFVlFREZYtW4bz58/D19cXI0eO\nhJWVVZUORkTmwdraGjt27ECfPn2gUqlgaWkpdUgGV2HP9bXXXsPx48fh6+uLPXv24J133jFkXFQF\n7C1qx7xoEjMnfn5+AGC2z9+qcOR6+vRpnDp1CgAwatQoBAcHGywoIjJ9SqUSrq6uGDBggFneg6DC\nkatSqdT6ZzJ+vIZeO+ZFk9g52bt3L4CyZ/KpVCpRj2VsKjyhZWlpCVtbW/VyUVERbGxsyjZSKFBQ\nUGCYCJ+BJ7SIjN+WLVswbdo0bNmyBR07dpQ6HJ0Y9QMKDYHFVTvet1Q75kWToXLSs2dPZGZm4vTp\n0+pBmjEzyGNeiIiqavny5SguLjarE+MsrjLE0Zl2zIsmQ+XEzc0NS5cuxfbt29X3gpU7FlciMoj+\n/fujQYMG2L9/v9ShGASLqwxxPqd2zIsmQ+ZEoVAgMDAQCQkJBjumlFhcichgRowYgd9++80sHgvD\n4ipD7C1qx7xoMnROAgMDAZRNz8rPzzfosQ2NxZWIDMba2hpDhw7FW2+9hVatWmHAgAGyLbKc5ypD\nnM+pHfOiScqcnDlzBhEREXByckJaWhqsra0liUMbznMlIpPl5eWF//73v7h58yamT58udTh6x+Iq\nQxydace8aJI6Jy1btsS8efOwbds2HD58WNJY9I1tASKSXEBAABo0aKC+0YvU2BYgrTifUzvmRZOx\n5GTJkiXIyMhAUVGR1KHoDYsrEUnO19cXQNlN+uWCxVWGpO6jGSvmRZOx5MTBwQHx8fFISUlBXl6e\n1OHoBYsrERmFfv36oWbNmpg7d67UoegFi6sMGUsfzdgwL5qMLSczZ87Erl27cPfuXalDqTIWVyIy\nGkOHDgUA7NmzR+JIqo7FVYaMpY9mbJgXTcaWExsbG0RERGDnzp1Sh1JlLK5EZFSGDRuGw4cPm/y0\nLBZXGTK2PpqxYF40GWNOevToAQBYtmyZxJFUDYsrERmdCRMm4P79+1KHUSUsrjJkbH00Y8G8aDLW\nnDg5OWHZsmUmPXpVSh0AEdHTxo4dC4VCgbi4OPj4+KBjx45Sh/TcOHKVIWPsoxkD5kWTMedkzJgx\nCA8Px7Rp01BcXCx1OM+NxZWIjNbHH3+M3Nxc/PDDD1KH8tx4y0EiMmrTpk3Dzz//jIMHD8Le3t4g\nx+QtB4lI9t58801cv34dMTExJvW8LRZXGTLmPpqUmBdNppATT09PfPHFF7h48SJatWqF3bt3Sx2S\nTlhcicjoDR48GFeuXMGAAQMwduxYlJaWSh1SpdhzJSKTUVJSgsaNG6NBgwY4fvy4aMdhz5WIzIpS\nqURaWhry8vLw73//W+pwnonFVYZMoY8mBeZFkynmxM3NDZ9//jm+/PJLzJw5U+pwKsQrtIjI5Awe\nPBhWVlaYNGkSQkNDERMTI3VIGthzJSKTNWPGDNy6dQvffPONXvfLnisRmbVevXohKSkJGRkZUoei\ngcVVhkyxj2YIzIsmU89JWFgY2rRpg0uXLkkdigYWVyIyWQqFAtbW1pgwYYLUoWhgcZUhY71Hp9SY\nF01yyMmTfuu0adMkjqQ8FlciMmk1a9bE0qVLsWXLFhQUFEgdjhqLqwyZeh9NLMyLJrnkJDo6GgCQ\nk5MjcST/w+JKRCbP1tYWDRo0wJkzZ6QORU3U4pqYmAgvLy80a9YMCxYs0Hh//fr18PPzg6+vLzp2\n7FhuOoW7uzt8fX0REBCAkJAQMcOUHTn00cTAvGiSU06aNm2KyZMnV3l+qr6IVlxVKhUmTpyIxMRE\nZGZmYuPGjTh9+nS5dZo2bYpDhw4hIyMDc+bMwdixY9XvKRQKJCcn4+TJk0hPTxcrTCKSia+++gpA\n2YUFxkC04pqeng5PT0+4u7vDysoKsbGxSEhIKLdO+/bt1XcWb9u2La5cuVLufWP5F8jUyKWPpm/M\niyY55cTJyQkfffQRNmzYgFWrVkkdjnjFNTc3F25ubuplV1fXZ16qunr1avTs2VO9rFAo0K1bNwQF\nBWHlypVihUlEMjJixAiMGTMGa9aswZ07dySNRbTiqlAodF734MGD+Oabb8r1ZVNSUnDy5Ens3bsX\nX375JQ4fPixGmLIkpz6aPjEvmuSYk65duyIrKwtLliyRNA7R7orl4uJSblpETk4OXF1dNdbLyMjA\nmDFjkJiYCEdHR/Xrzs7OAMqG+v369UN6ejpCQ0M1to+Li0OtWrUAAM2bN0ebNm3UX5gnP3m4zGUu\nm89yWFgYPvnkEyxbtgyRkZHo2LFjpdunpqZi3759AKCuJ1Ul2l2xSkpK0KJFCxw4cAANGzZESEgI\nNm7cCG9vb/U62dnZ6Nq1K9atW4d27dqpXy8sLIRKpUKtWrXw4MEDREZGYu7cuYiMjCwfPO+KpdXV\nq1dlOSKpKuZFk5xz0rVrV9SuXRtbt2597m31cVcs0UauSqUS8fHxiIqKgkqlwqhRo+Dt7Y3ly5cD\nAMaNG4d58+bh7t27GD9+PADAysoK6enpyMvLQ//+/QGUFenhw4drFFYiomeZN28ehgwZgtLSUlhY\nGH5KP+/nSkSypFKp0KRJE4SGhmL9+vXPtS3v50pEVAFLS0skJiYiOTlZkmmdLK4yJKe5i/rEvGiS\ne05atmwJAPj6668NfmwWVyKSteHDh2P+/PkoLi426HFZXGVIrmd/q4p50WQOOXkyf/6LL74w6HFZ\nXIlI1hQKBV555RUsWbLEoPcdYHGVIbn30V4U86LJXHLyySefYNasWc89a6AqWFyJyCwMHz4cAJCc\nnGyQ43GeKxGZBUEQ0Lp1a1hbW+P48ePPXJfzXImIdKRQKPDjjz8iLy/PIMdjcZUhc+mjPS/mRZO5\n5aRRo0YAgJ07d4p+LBZXIjIb1tbWCA0NxcyZM0U/FnuuRGRWcnNzERISgpycnApv6MKeKxHRc3Jx\ncQEADBw4UNTjsLjKkLn10XTFvGgy15xs2LABR48eFfWGLiyuRGR2QkJCAABFRUWiHYPFVYbM4Xrx\nF8G8aDLXnNjY2AAATp48KdoxWFyJyCx5eXmpr9oSA4urDJlrH60yzIsmc87Jtm3bUFxcjPPnz4uy\nfxZXIjJL9vb2cHZ2xpEjR0TZP4urDJlrH60yzIsmc89JYGAg9u/fL8q+WVyJyGwNHDgQBw8eRGlp\nqd73zeIqQ+bcR3sW5kWTueckPDwcAHDu3Dm975vFlYjMVrVq1dCoUSP1o2D0icVVhsy9j1YR5kUT\ncwJMnToVSUlJyMjI0Ot+WVyJyKwNGjQIISEh+Oqrr/S6XxZXGTL3PlpFmBdNzAlgYWGBqVOn6v0e\nryyuRGT2wsLCAAAXL17U2z5ZXGWIfTTtmBdNzEkZhUKB1q1b4969e3rbJ4srERFQ4Y2zX3h/et0b\nGQX20bRjXjQxJ+JhcSUiAlBQUIDdu3frbX8srjLEPpp2zIsm5uR/goODsXnzZr3tj8WViAjAuHHj\nYG9vr7f9sbjKEPto2jEvmpiT/1Eqlbhw4QJUKpVe9sfiSkQEwMPDAwCQn5+vl/2xuMoQ+2jaMS+a\nmJP/sbCwgK2trd5uns3iSkT0f8LDw7Fr1y697IvFVYbYR9OOedHEnJQXExOjt32xuBIR/R+lUok9\ne/boZV8KQRAEvexJAgqFArm5uVKHQUQyUVBQAG9vbwBAVUsjR65ERP/Hzs4OAQEBetkXi6sMsY+m\nHfOiiTnR5OnpqZf9sLgSEf2Dvk5qsedKRPQUFxcX9lyJiIwRi6sMsY+mHfOiiTkRD4srEZEI2HMl\nInoKe65EREaKxVWG2EfTjnnRxJyIh8WViEgE7LkSET2FPVciIiPF4ipD7KNpx7xoYk7Ew+JKRCQC\n9lyJiJ7CnisRkZFicZUh9tG0Y140MSfiYXElIhIBe65ERE9hz5WIyEiJWlwTExPh5eWFZs2aYcGC\nBVrXmTx5Mpo1awY/Pz+cPHnyubYl7dhH04550cSciEe04qpSqTBx4kQkJiYiMzMTGzduxOnTp8ut\ns2fPHpw/fx7nzp3DihUrMH78eJ23pYodP35c6hCMEvOiiTkRj2jFNT09HZ6ennB3d4eVlRViY2OR\nkJBQbp0dO3bgtddeAwC0bdsW+fn5yMvL02lbqtjZs2elDsEoMS+amBPxiFZcc3Nz4ebmpl52dXXV\nOPlU0TpXr16tdFsiImMmWnFVKBQ6rWfCkxWM1r1796QOwSgxL5qYE/Eoxdqxi4sLcnJy1Ms5OTlw\ndXV95jpXrlyBq6sriouLK90WADw8PODi4iJC9KZv5cqVUodglJgXTcyJJg8PjyrvQ7TiGhQUhHPn\nziErKwsNGzbE5s2bsXHjxnLr9OnTB/Hx8YiNjUVaWhocHBxQv3591KlTp9JtAeD8+fNihU9EVCWi\nFVelUon4+HhERUVBpVJh1KhR8Pb2xvLlywEA48aNQ8+ePbFnzx54enqiRo0aWLNmzTO3JSIyFSZ9\nhRYRkbEy2iu0eAGCdpV9tvXr18PPzw++vr7o2LEjMjIy1O+5u7vD19cXAQEBCAkJMWTYoqosJ8nJ\nybC3t0dAQAACAgLw0Ucf6bytKavssy1atEidEx8fHyiVSuTn5wOQ73dl5MiRqF+/Pnx8fCpcR291\nRTBCJSUlgoeHh3Dp0iXh8ePHgp+fn5CZmVlund27dwvR0dGCIAhCWlqa0LZtW523NVW6fLbU1FQh\nPz9fEARB2Lt3rzovgiAI7u7uwu3btw0as9h0ycnBgweF3r17v9C2pup5P9vOnTuFiIgI9bIcvyuC\nIAiHDh0STpw4IbRu3Vrr+/qsK0Y5cuUFCNrp8tnat28Pe3t7AGV5uXLlSrn3BZl1gXT9/63tc5v7\nd+WfNmzYgKFDh5Z7TW7fFQAIDQ2Fo6Njhe/rs64YZXHlBQja6ZKXf1q9ejV69uypXlYoFOjWrRuC\ngoJkM/1Gl5woFAqkpqbCz88PPXv2RGZmps7bmqrn+WyFhYVISkrCgAED1K/J8buiC33WFdFmC1QF\nL0DQTte8AMDBgwfxzTffICUlRf1aSkoKnJ2dcfPmTXTv3h1eXl4IDQ0VI1SD0SUngYGByMnJga2t\nLfbu3Yu+ffvK/rLP5/mu7Ny5E506dYKDg4P6NTl+V3Slr7pilCPXqlyAoMu2pkrXz5aRkYExY8Zg\nx44d5X4COTs7AwCcnJzQr18/pKenix+0yHTJSa1atWBrawsAiI6ORnFxMe7cuQNXV1ez/64AwKZN\nmzRaAnL8ruhCr3VFb51iPSouLhaaNm0qXLp0SXj06FGlJ7R++eUXdeNZl21NlS6f7fLly4KHh4fw\nyy+/lHv9wYMHQkFBgSAIgnD//n2hQ4cOQlJSksFiF4suOcnLyxNKS0sFQRCEo0ePCo0bN9Z5W1Ol\n62fLz88XateuLRQWFqpfk+t35YlLly7pdEKrqnXFKIurIAjCnj17hObNmwseHh7Cv//9b0EQBGHZ\nsmXCsmXL1Ou8+eabgoeHh+Dr6yscP378mdvKRWV5GTVqlFC7dm3B399f8Pf3F4KDgwVBEIQLFy4I\nfn5+gp+fn9CqVStZ5aWynMTHxwutWrUS/Pz8hPbt25f7h8ecvyuCIAjffvutMHTo0HLbXbx4Ubbf\nldjYWMHZ2VmwsrISXF1dhdWrV4tWV3gRARGRCIyy50pEZOpYXImIRMDiSkQkAhZXIiIRsLgSEYmA\nxZWISAQsrmRyLC0tERAQAF9fX/Tv3x/379/X6/7d3d1x584dAEDNmjX1um8yHyyuZHJsbW1x8uRJ\nZGRkwM7OTv10C33553X5z3ONPtE/sbiSSWvfvj0uXLgAALhw4QKio6MRFBSEsLAw/PXXXwCA69ev\no1+/fvD394e/vz/S0tIAAP369UNQUBBat25tVnd+IsMwyrtiEelCpVJh3759iIiIAACMHTsWy5cv\nh6enJ44ePYoJEybgwIEDmDx5Mrp06YIff/wRpaWl6jbCN998A0dHRxQVFSEkJAQDBw585r0+iZ4H\nL38lk6NUKuHj44Pc3Fy4u7sjLS0NhYWFqFevHlq0aKFe7/Hjx/jzzz9Rr1495ObmwsrKqtx+4uLi\nsH37dgBAVlYW9u3bh5CQEDRp0gTHjx9H7dq1UatWLdy7d8+gn4/kgSNXMjk2NjY4efIkioqKEBUV\nhYSEBHTr1g0ODg7lnnn0T0+PIZKTk3HgwAGkpaXB2toaXbp0wcOHDw0RPpkJ9lzJZNnY2GDp0qV4\n7733ULNmTTRp0gRbt24FUFZMnzycMSIiAl9//TWAslZCQUEBCgoK4OjoCGtra5w5c0bdhyXSFxZX\nMjn/PIPv7+8PT09PbNmyBevXr8fq1avh7++P1q1bY8eOHQCAJUuW4ODBg/D19UVQUBBOnz6NHj16\noKSkBC1btsTs2bPRvn37So9F9DzYcyUiEgFHrkREImBxJSISAYsrEZEIWFyJiETA4kpEJAIWVyIi\nEbC4EhGJgMWViEgE/x8ESb4ubgpmUgAAAABJRU5ErkJggg==\n", "text": [ "<matplotlib.figure.Figure at 0x118ea0290>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAVcAAAFRCAYAAADAaO4FAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYE+f2B/BvWGSp7LggoCgoUAUMIrhxtUVAveqtW4X6\nq/tera3Vq7a1WmvttSrttWhrW6ytK2qtoCAuFaoSEStcNyyComyiqKCsQsL8/uCSCyYhATKZSXI+\nz9OnTTIzOTmNxzdn3nlHwDAMA0IIIWplwHUAhBCii6i4EkIIC6i4EkIIC6i4EkIIC6i4EkIIC6i4\nEkIIC6i4Eo3YtWsXAgMDuQ4Da9euxdtvv83KsT/++GN06NABXbp0aVEc9+7dg4GBAerq6liJi3DD\niOsACNEkgUDAynFzc3MRERGBvLw82NnZcRYH4Q8auRKiBrm5ubCzs1OpsAIAXbuj+6i4ErXKy8vD\n+PHj0bFjR9jb22Px4sVyt1uyZAm6du0KKysr+Pn54cKFC9LXUlNT4efnBysrK3Tu3BkffPABAKC6\nuhr/93//B3t7e9jY2MDf3x+PHj1qNp6cnBwMHToUlpaWCAkJwePHj5u8Hhsbi969e8PGxgavvfYa\n/vrrL+lraWlpEAqFsLS0xJtvvonJkydj9erVMu9x5swZhISEoLCwEBYWFpg5cyaSkpLg7OzcZDsX\nFxecPXu2+QQSnUHFlaiNRCLB6NGj0b17d9y/fx8FBQUIDw+Xu62/vz+uXr2KkpISvPXWW5g0aRJq\namoA1Bfe999/H8+ePcPdu3cxefJkAMDPP/+M58+fIz8/H0+fPsWOHTtgZmbWbExvvfUW+vfvjydP\nnmD16tX4+eefpT/Jb9++jbfeegtbt27F48ePMWrUKIwZMwZisRg1NTUYN24cZs6ciZKSEoSHh+Po\n0aNyf84PHz4cJ06cQJcuXVBWVoadO3fKjYVaAfqFiitRm9TUVDx48ACbNm2CmZkZTExMMGjQILnb\nTpkyBTY2NjAwMMDSpUvx4sULZGZmAgDatWuHrKwsPH78GObm5vD395c+/+TJE2RlZUEgEEAoFMLC\nwkJhPLm5ufjzzz/x2WefwdjYGIGBgRgzZoz09ejoaIwePRpBQUEwNDTEsmXLUFVVheTkZKSkpEAi\nkWDx4sUwNDTEuHHjpHHIQz/zycuouBK1ycvLQ7du3WBgoPxrtXnzZrz66quwtraGjY0Nnj17Jv3J\nHhUVhdu3b8PT0xP+/v6Ii4sDALz99tsIDQ1FWFgYHB0dsWLFCojFYoXvUVhYCBsbmyaj227dujV5\nvWvXrtLHAoEAzs7OKCgowIMHD+Do6NjkeM7OzlREicqouBK1cXZ2Rm5uLiQSSbPbnT9/Hps2bcKh\nQ4dQWlqKkpISWFlZSQuXm5sb9u3bh+LiYqxYsQITJ05EVVUVjIyM8Mknn+DmzZsQiUQ4fvw4fvnl\nF4Xv4+DggJKSElRWVkqfu3//vvS/HR0dmzxmGAZ5eXlwcnKCg4MDCgoKmhwvNzdX5Z/2r7zySpP3\nlUgkKC4uVmlfohuouBK1CQgIgIODA1auXInKykpUV1dDJBLJbFdWVgYjIyPY29ujpqYG69atw/Pn\nz6Wv79mzR1qIrKysIBAIYGBggMTERFy/fh0SiQQWFhYwNjaGoaGhwni6desGPz8/rFmzBrW1tbhw\n4QKOHz8ufX3SpEmIi4vD2bNnUVtbiy1btsDU1BSDBg3CgAEDYGhoiMjISIjFYsTExODy5csq56JX\nr16orq5GfHw8amtrsX79erx48ULl/Yn2o+JK1MbAwADHjh1DdnY2unbtCmdnZxw8eBBA/U/uhlHf\niBEjMGLECPTq1QsuLi4wMzNr8vP85MmT6NOnDywsLPD+++/jwIEDMDExwcOHDzFp0iRYWVnh1Vdf\nxbBhw5ReELBv3z5cunQJtra2WLduHaZNmyZ9zd3dHXv27MHixYvRoUMHxMXF4dixYzAyMkK7du1w\n5MgRREVFwcbGBnv37sXo0aPRrl07he/VeFRrZWWF7du3Y/bs2XByckL79u2bzB5onI+X9yW6QcDm\nYtkzZ85EXFwcOnbsiOvXr8vd5t1338WJEydgbm6OXbt2QSgUAgASEhLw3nvvQSKRYPbs2VixYgVb\nYRKikoCAACxcuLBJgSZEEVZHrjNmzEBCQoLC1+Pj45GdnY2srCx8//33WLBgAYD6/tSiRYuQkJCA\njIwM7N+/H7du3WIzVEJknDt3DkVFRRCLxfj5559x48YNjBgxguuwiJZg9fLXwMBA3Lt3T+HrsbGx\n0lFAQEAASktLUVRUhJycHLi5ucHFxQUAEBYWhpiYGHh6erIZLtFS7du3l/uzOiEhAYMHD271cTMz\nM/Hmm2+ioqICrq6uOHz4MDp16tSWUIke4XRtgYKCgiZ9KCcnJxQUFKCwsFDm+UuXLnERItEC5eXl\nrBx3zpw5mDNnDivHJrqP8xNaNG+QEKKLOB25Ojo6Ii8vT/o4Pz8fTk5OqK2tbfJ8w9zDl3Xv3r3Z\ntgMhhLSGq6srsrOz23QMTovr2LFjERkZibCwMKSkpMDa2hqdOnWCnZ0dsrKycO/ePXTp0gXR0dHY\nv3+/zP737t2jka8ca9euxdq1a7kOg3ca5+Xu3bt4+vSp2o6dm5uLs2fPoqysTHqFWmxsLDp37tyi\naVY3b94EAJiamircprq6Gm5ubnBwcJD7elVVFQwNDTF16lSlq3QdOnQIkyZNUvi6RCKBt7c3zM3N\n5b5uZWWl8kpg2kQdU+NYLa7h4eH4448/8PjxYzg7O+PTTz9FbW0tAGDevHkYNWoU4uPj4ebmhlde\neQU//fRTfVBGRoiMjERoaCgkEglmzZpFJ7NaoLS0lOsQNK68vBwHDhyAsbExACArKws///yztABd\nvnwZVlZW+PTTT6X79OnTByYmJmp5/4qKCnTq1AlDhgyBq6srAGDIkCEICAho0XEMDAzg4eGh0iXE\n6nDx4kXpwjj6rKCgQOZy57ZitbjKG22+LDIyUu7zI0eOxMiRI9UdEtFCxcXFTS4ljY6ORnFxMerq\n6nDy5El06NABSUlJAICpU6cC+N8KXTNmzABQPxKMiorC119/LT0OTdwnAJCUlIQ333wT6enpai2w\nrF5EwDaBQEBtATmSkpIwbNgwrsNQ6Pnz53jx4gVu3rwpLZrp6enSXzXXr1/H0aNHpT83i4uLm1zB\n9eDBAyxbtgzW1tYQi8UYOHAggPqRYsPIVR6+54UL+p6TpKQkTJo0CYcOHWqSB3XUFiquRK3EYnGT\na+gZhsGRI0eQn5+Pjz76CPb29nj8+LH038OHD4exsTEqKirQu3dvdOzYEQDQt29f6XKFpqamsLS0\n5OTzEN2lqLACVFypuCpw79496QUYbGnIe3JyMhYuXIinT5/C0tJSeiVdwwmQhpHp6NGj0a1bN3zw\nwQewsLCAvb09q/HJo4m8aBt9zckff/yBiRMnyi2sgHpqC92gkKgkNjYWJ06cwIULF5CZmSn9CQ/U\nL8Syfft22NrawsDAAL169dLYCRlCWsPBwQGHDx/G0KFDWXsPGrmSJrKysjBhwgSYmZkhNTUVQP3P\n8urqakyePBk9e/bEiBEj4OXlRT/Vic6ikStpkxcvXmDbtm348MMP0b59ewDAkydPIBAIkJCQAHNz\ncwiFQggEAukyfIQQ1VBx1UHN9dEYhkF5eTlEIpF0haelS5di1apVAOrnWdra2moqVI3S1/5icygn\n7KHiqgfq6upw4cIF/Pbbb03meXp6euLmzZs035PotKSkJKSnp+P999/X6PvSWQcd5OLiAoZhEBQU\nhC5dusDQ0BBDhw7FxYsXsXTpUlRVVYFhGGRkZOhVYaURmixdz0nDdKuGRfg1iUauOoJhGCQmJuLX\nX3/F9u3bpc//+OOPCA4ObjIJnxB90Nw8Vk2gkauWq6mpwapVq/Daa68hKCgIV69excqVK1FVVQWx\nWIxZs2ZRYf0vWkFNlq7mhOvCCujAyLWiooLrEDiRlpaGM2fO4IcffsCDBw+watUqfP755+jbt6/0\n9tbKbnGtb6qqqvT2+6KILuZELBZj6dKl+OWXX9C/f3/OPp/Wz3N9+d7y+iAqKgqffPIJTExMMGvW\nLAwdOhRDhgzhOixCeEMsFsPIqPVjR0dHR5rnqg+ys7NRUVGBM2fOICIiAkD9fcW+/PJLGBoachwd\nIfzTlsKqthi4DoAoFh0djW+++QY5OTlNbta4Zs2aZq+OKiwsRJcuXTQUpfagvMiinLCHiivPZGRk\n4N69e5g7dy4YhsHUqVOxe/dudO/enevQCOGl3NxcODs7825aIfVceeLEiROIiorCxYsX0aNHD1hb\nW+P7779XeCsPQgggEokwb948xMXFqXVWjDp6rno9FSshIQFOTk5NbkQmEokwbdq0Jtu99957iIuL\nAwDU1tZiw4YNGDJkCEaMGIGxY8ciMTGx2fd58eIF5s+fj8GDB2P06NHIz89v8vrWrVsxe/ZsPHjw\nAM7OzjA2NsbAgQNlCmtcXBycnJxw/fp1APXL/YWEhEj/cXV1xalTp1qdD0K0SUNh3bFjBy+nG+p1\ncT169CiGDx+OmJiYZrcTCATSnxybNm1CcXExEhMTkZCQgJ07d6K8vLzZ/ffv3w8bGxskJydjzpw5\n+Pzzz6WvbdmyBRs3bsTKlStRW1uL+Ph4nD17Fo8ePcKFCxek25WXlyMqKgq+vr7S5wYPHoxTp07h\n1KlTOHjwIExNTfG3v/0NhYWFrUmHzqO8yNLWnDQurA2LqvON3hbXiooKpKen4/PPP0dsbKxK+1RV\nVWHfvn1Yv3699HYi9vb2GDNmTLP7nT59WnqHzb///e+4cOEC6urqMGzYMERERCAiIgKDBw9G9+7d\npYumDBkyBPHx8dJjfPnll3jnnXfQrl07uT9Xjh8/jtdff73Zu4YSogsuXbrE+8IK6HFxPXnyJIYN\nGwZHR0fY2dlJf2orwjAMcnJy4OjoiFdeeUXuNsuXL8e1a9dkni8qKpKekTUyMoKZmRmcnZ2RlZWF\nc+fOYfLkyejRowfu3LmD/Px8iMVinDx5Eg8ePABQf0+poqIiBAUFAZB/Y72YmBi88cYbAEBnfxWg\nvMjSxpw4OTnhxx9/5HVhBfR4tsDRo0cxZ84cAPW3IDl69Ci8vLwUnnE0MDBQejZy06ZNSt+3rq4O\nBQUFcHd3x8mTJ6UjYGtra3zxxReYP38+DAwM4Ofnh9zcXDAMg08//bTJalYvj1wfPnyIzMxMvb7R\nHNEfjo6Oar8NNhv0sriWlJRAJBIhMzMTAoEAEokEAoEAq1evho2NDZ49e9Zk+9LSUtja2sLFxQUF\nBQUoLy+XLi6tis6dO6OgoAB2dnbSWz8fP35c5k6lwcHBCA4OBgDs2bMHRkZGKC8vR2ZmJiZOnAig\n/k6oM2bMwK5du+Dl5QUAOHbsGEaOHCm9oIDmLspHeZFFOWGPXrYF4uLiMHHiRFy6dAkpKSm4fPky\nunbtikuXLqFHjx54+PChdAZBfn4+MjIy0Lt3b5iZmSE8PByffPKJ9B5ST548wfHjx5t9v+DgYOzY\nsQNjx47FuXPn0KdPH+kN/Bp7/PgxgPpi/ssvvyA8PBwWFha4fv06UlJSkJKSAqFQ2KSwAvWj8IaW\nACGEH/SyuMbExGDkyJFNnhs1ahRiYmLQrl07bN26Fe+//z5CQkIwb948bN68WTpS/ec//wk7OzsM\nGzYMQUFBmDZtmvRqKUU9V2NjY8TFxSEzMxOurq748ccfpa+FhIRI/3vNmjV47bXXMG7cOCxatEil\nCwfy8vJQVFSEgQMHSp+jkYh8lBdZfM+JSCRq0hLTJnQRAcs2bdqEr7/+Gu+++y5WrFjBdTiEaA0u\np1vRwi08duPGDRw5cgQ7duxAREQEJk+erLH3pj6afJQXWXzNiTbMY1WGiqua3b9/HytWrMD58+fh\n5OSE1atXa7SwEqLtdKGwAtQWUBuGYfDVV19hy5YtsLKywmeffYYJEyZwHRYhWqWurg7jxo3DihUr\nOC2s6mgLUHFVA4Zh4Ofnh6KiIsyaNQtr166FgYFeniskpM3q6uo4//NDC7fwQHp6Orp3746ioiJE\nR0dj3bp1nH8xtPV6cbZRXmTxMSdc//lRF+q5tkF2djZGjx4NoL5P1K1bN44jIoTwBbUFWolhGPTu\n3RvPnj1DdnY2zMzMOImDEG12584d9OjRg3cLXVNbgEO//vornj17BpFIRIWVkFYQiUR44403cPfu\nXa5DYQUV11aKjY3FP/7xD162AvjYR+MDyossrnLSeLqVq6srJzGwjYprK0gkEpw/f57mrxLSCroy\nj1UZKq4tFBERga5du6Kmpgb+/v5chyMXH6+44QPKiyxN5+Ty5ct6UVgBKq4t8uGHH2LLli0ICwtD\nTk4O9VoJaaFu3bph586dOl9YASquKjt37hx+/vlnbNu2DVu2bEG7du24Dkkh6i3KR3mRpemcdOzY\nEf3799foe3KFiqsKxGIxwsPDERgYSOumEkJUQvNclWAYBsHBwbh16xZycnJ4PWIlhKgHzXPVgO7d\nu+PWrVs4evQoFVZCWkAkEuGLL77gOgzOUHFtxldffYXa2lpcu3ZNq/pE1FuUj/Iii62cNEy3Gjp0\nKCvH1wZUXBUQi8XYvHkzPvjgA9jZ2XEdDiFaQ1/msSpDxVWByMhIAMDSpUs5jqTlaD6nfJQXWerO\nCRXW/6HiqsDRo0e1srASwhWGYfDvf/+bCut/UXGVY9OmTcjKysKbb77JdSitQr1F+SgvstSZE4FA\ngAMHDlBh/S8qrnLs2LEDEydOhLOzM9ehEKJV+LZ0IJdonutLnj59Ci8vL9y5cwempqZqPTYhRDvQ\nPFcWnD17Fp07d6bCSogSmZmZqKur4zoM3qLi+pIlS5agb9++XIfRJtRblI/yIqu1ORGJRJg4cSKy\nsrLUHJHuoOLayNmzZwH8bxoWIURW4+lW7u7uXIfDW1RcG4mJicHQoUO1filBms8pH+VFVktzQvNY\nVUd3f/2vzz77DIcPH8auXbu4DoUQXvrzzz+psLYAjVwBpKWl4bvvvsOGDRsQFBTEdThtRr1F+Sgv\nslqSEzc3N/z0009UWFVEI1cAGzZswMCBAzFt2jSuQyGEt6ytreHn58d1GFpD74vr77//josXL2L3\n7t1ch6I21FuUj/Iii3LCHr2/iGDs2LFgGAbHjh1TU1SEEG1HFxG0UU1NDa5cuYJPP/2U61DUinqL\n8lFeZCnKSXJyMj755BMNR6Nb9Lq43r17FwDg6+vLcSSE8EdycjLmz5+PESNGcB2KVtPr4vrVV1/B\nxcWF6zDUjvpo8lFeZL2ck4bCStOt2o7V4pqQkAAPDw/07NkTGzdulHl98+bNEAqFEAqF8PLygpGR\nEUpLSwEALi4u8Pb2hlAohL+/v9pju3HjBo4fP45Zs2ap/diEaCMqrOrF2gktiUQCd3d3nDlzBo6O\njujfvz/2798PT09PudsfP34cX3/9Nc6cOQOg/saAV65cga2treLg23BCa/HixSguLsaBAwdatT+f\nFRYW0ihNDsqLrIacMAyDGTNmYO7cuVRYwfMTWqmpqXBzc4OLiwuMjY0RFhaGmJgYhdvv27cP4eHh\nTZ5jcyLDkSNHMHz4cNaOT4g2EQgEdIGAmrFWXAsKCposNu3k5KRwlFlZWYmTJ09iwoQJ0ucEAgGG\nDx8OPz8//PDDD2qN7fTp0wCAmTNnqvW4fEGjM/koL7Ia54QWulYv1i4iaMn/qGPHjmHIkCGwtraW\nPpecnAwHBwcUFxcjODgYHh4eCAwMVEtsv/76K/z9/WFgoNfn8wghLGKtuDo6OiIvL0/6OC8vD05O\nTnK3PXDggExLwMHBAQDQoUMHjBs3DqmpqXKL69q1a2FhYQEA6NWrF/r16yf927hhDl/jx1VVVTh2\n7Bi+++47ua/rwuOG5/gSD18eX79+HXZ2dryJh8vHGRkZsLCwQGlpKby8vDiPh+vHIpEIp06dAgBp\nPWkr1k5oicViuLu74/fff0eXLl3g7+8v94TWs2fP0KNHD+Tn50uX+qusrIREIoGFhQUqKioQEhKC\nNWvWICQkpGnwrTihtXv3bqxfvx6ZmZlt+4A8Ridu5KO81GtYNjA6OhrW1taUEznUcUKLtZGrkZER\nIiMjERoaColEglmzZsHT0xM7duwAAMybNw9A/S2sQ0NDm6yh+vDhQ4wbNw5AfZGeMmWKTGFtrT/+\n+ENr7+qqKvrDIh/lpel6rK+++irX4eg0vVtbwNHRET/++CNGjhzJUlSE8BMtdK06Xk/F4qMLFy4A\nAF5//XWOI2EXXUMvnz7nJT09XW5h1eecsE2vlhzcunUrAgMDYWJiwnUohGhUz5498csvv0AoFHId\nit7Qq7aAo6Mj9u7di2HDhrEXFCFE61FboAUePXoEABgwYADHkRBC9IHeFNdz587B3t4epqamXIfC\nOuqjyUd5kUU5YY/eFNf//Oc/GDhwINdhEMI6kUiE5cuXcx2G3tOb4pqSkgIfHx+uw9AIms8pnz7k\npWG6VcM8cWX0ISdc0YviKpFIcOvWLZ24bTYhitA8Vn7Ri+Kak5MDoH46ij6gPpp8upyX1hZWXc4J\n1/SiuJ4/fx6urq60pBrRWbt376YRK8/oxUUEN27cUNtyhdqA+mjy6XJevv3221btp8s54ZpejFzv\n3LmjNy0BQgg/6EVxLSoqUnjvLl1EfTT5KC+yKCfs0fniWl1djby8PHTt2pXrUAhRi+vXr6O6uprr\nMIgSOl9cr169CuB/dzbQB9RHk08X8iISifDWW28hKytLLcfThZzwlc4X18zMTFoJiOiExtOtGm7N\nQvhL54vr/fv34e7uznUYGkV9NPm0OS9sXSCgzTnhO50vrkePHoWHhwfXYRDSateuXaMrr7SQTq/n\n+vjxY/j4+OD69euwtbXVYGSEqE91dTVu374Nb29vrkPRG7SeqxInT56Ek5MTFVai1UxNTamwaiGd\nLq5//vkn/P39uQ5D46iPJh/lRRblhD06XVyLiopoDVdCCCdULq6VlZVsxsGKmzdvolu3blyHoXE0\nd1E+bciLSCTCO++8o7H304acaCulxVUkEuHVV1+VTmf6z3/+g4ULF7IeWFuJxWI8efJEbxbIJtqv\nYbrVlClTuA6FqIHS4vree+8hISEB9vb2AIC+ffvijz/+YD2wtkpOToaxsTHat2/PdSgaR300+fic\nF64WuuZzTrSdSm2Bl6/LNzLi/0qFUVFR8PPz4zoMQpSiOwjoJqXFtWvXrkhOTgYA1NTUYPPmzVqx\nwtTDhw8xe/ZsrsPgBPXR5ONrXo4cOcJZYeVrTnSB0osIiouLsWTJEpw5cwYMwyAkJARbt26FnZ2d\npmJUSNFFBFVVVXBzc4NIJNLLE1qEkLbRyEUEt2/fxr59+/Do0SMUFxdj7969+Ouvv9r0pmzLzMwE\nAL0trNRHk4/yIotywh6lxXXRokUqPccn58+fR58+fbgOgxCixxSembp48SJEIhGKi4sREREhHSKX\nlZWhrq5OYwG2xtWrV/X6ckHqo8nHh7ykp6fD3d0d5ubmXIcCgB850VUKR641NTUoKyuDRCJBWVkZ\nysvLUV5eDktLSxw+fFiTMbZYWloaAgICuA6DkCZEIhGmTp0qbVsR3ab0hNa9e/fg4uKioXBaRt4J\nrefPn8PT0xNZWVm8GR1oWmFhIY1I5OAyL3ydbkXfFfnUcUJL6YRVc3NzLFu2DBkZGaiqqgJQX9TO\nnj3bpjdmy9OnT+Ho6Ki3hZXwD18LK2GX0hNaU6ZMgYeHB+7evYu1a9fCxcWF15Pzi4uLIRAIuA6D\nUzQSkY+LvNy8eZPXhZW+K+xRWlyfPHmC2bNno127dhg6dCh++ukn3o5aAeCvv/6iO70S3ujVqxcO\nHDjAy8JK2KW0uLZr1w4A0LlzZxw/fhxpaWkoKSlhPbDWunPnjnQdBH1Fcxfl4yIvxsbG6N27t8bf\nV1X0XWGP0p7rRx99hNLSUmzZsgWLFy/G8+fP8dVXX2kitlZ5/Pgx+vfvz3UYhBA9p7S4jhkzBgBg\nbW2NpKQkAEBqaiqrQbVFdXU1zMzMuA6DU9RHk08TeWEYRqt6/vRdYY/CtkBdXR1+/fVXfPnll4iP\njwdQf9uUkJAQzJ07V2MBtlReXh46dOjAdRhED4lEIsyaNavNU3iIblBYXOfOnYvt27ejpKQE69ev\nx4QJEzBt2jQsXLgQ6enpmoyxRSoqKvT+hoTUR5OPzbw0TLeaPXu2Vo1c6bvCHoVtgZSUFFy7dg0G\nBgaorq5G586dcefOHV6shtWcnJwcdOrUieswiB6heaxEHoUjV2NjYxgY1L9samqK7t27876wNlzk\noO99JH3//IqwkRdtL6z0XWGPwpHrX3/9BS8vL+njO3fuSB8LBAJcu3aN/ehaqLy8HPb29lr1s4xo\nt/j4eK0trIRdCovrrVu3NBmHWpSWlkpHr/qMrheXj428rF+/Xq3H0zT6rrBHYXHl62ItzampqYGT\nkxPXYRBCiGo3KNQWNTU1MDU15ToMztFIRD7KiyzKCXt0rrg2XK5LiLr9+eefKC0t5ToMoiVUKq6V\nlZVascBvcXEx9VxBcxcVaUteRCIRZsyYgezsbDVGxD36rrBHaXGNjY2FUChEaGgogPrbVIwdO5b1\nwFpDIpHo7U0JCXsaT7fi83KbhF+UFte1a9fi0qVLsLGxAQAIhULcvXuX9cBao6CgQDo3V59RH02+\n1uRF2+exKkPfFfYorUTGxsawtrZuuhNPC1hxcTEcHR25DoPoiMzMTJ0urIRdSqtk7969sXfvXojF\nYmRlZWHx4sW8/aLl5uZKR9j6jPpo8rU0L25ubjh8+DBvv+/qQN8V9igtrt988w1u3rwJExMThIeH\nw9LSEl9//bUmYmuxK1eu8HphYqJdDA0N4e7uznUYREspvftrWloafH19NRVPizS++6tEIkHXrl1x\n69YtWFpachwZIUSbqePur0pHrkuXLoWHhwdWr16NGzdutOnN2HT16lUAoMJKWo3WYSXqpLS4JiUl\nITExEfaFNvewAAAcy0lEQVT29pg3bx68vLzw2WefaSK2FsnOzsbgwYO5DoMXqI8mX3N5EYlEeOut\nt/SuwNJ3hT0qnfZ3cHDAkiVL8N1338HHxwfr1q1jO64We/r0KRwcHLgOg2ihhulWixcvphXViNoo\nLa4ZGRlYu3Yt+vTpg0WLFmHQoEHSPief3Lp1i4rrf9HcRfnk5UXX57EqQ98V9ii9QeHMmTMRFhaG\nkydP8noO6d27d/H6669zHQbRIvpeWAm7lBbXlJQUTcTRZnl5eXTp63/RGp3yvZyXP/74Q+8LK31X\n2KOwLTBp0iQAgJeXl8w/3t7eKh08ISEBHh4e6NmzJzZu3CjzelJSEqysrCAUCiEUCpssPKxs35dV\nVFRQW4C0yKpVq/S6sBJ2KZzn2vA32v3792XOoAoEAqWjRIlEAnd3d5w5cwaOjo7o378/9u/fD09P\nT+k2SUlJiIiIQGxsbIv3bYijoKAA1dXVcHV1RXZ2NszMzFqUAEIIeRmr81wbfips374dLi4uTf7Z\nvn270gOnpqbCzc0NLi4uMDY2RlhYGGJiYmS2k/cBVN23QUFBAczNzamwEkJ4Q+lsgVOnTsk8Fx8f\nr/TABQUFcHZ2lj52cnKSmWUgEAggEong4+ODUaNGISMjQ+V9G3v8+DG1BBqhuYuyLl++LP1+kf+h\n7wp7FJ7Q+vbbb7F9+/Ymd30FgLKyMpUm66syX9DX1xd5eXkwNzfHiRMn8MYbb+D27dsqhl5v7dq1\nKCgoQG1tLY4dO4Z+/fpJR90NXxx9e9yAL/Fw/fjevXuYN28e/vWvf8Ha2przePj0+MmTJ7yKh6vH\nIpFIOpC0sLCAOijsuT579gwlJSVYuXIlNm7cKP35bmFhATs7O6UHTklJwdq1a5GQkAAA+OKLL2Bg\nYIAVK1Yo3Kd79+64cuUKbt++rdK+DT3XQ4cOISEhAVFRUap9aqI3aLoVaQ1We64CgQAuLi7Ytm0b\nLCwsYGlpCUtLSwgEAjx9+lTpgf38/JCVlYV79+6hpqYG0dHRMncwePjwofQDpKamgmEY2NraqrRv\nY3l5eejQoYOqn5noCSqshEsK2wLh4eGIi4tDv3795P7Ez8nJaf7ARkaIjIxEaGgoJBIJZs2aBU9P\nT+zYsQMAMG/ePBw+fBjffvstjIyMYG5ujgMHDjS7ryJisRgmJiYqfWB9QHMX69eaeLmwUl5kUU7Y\no3TJQT5raAu89957cHd3x4IFC7gOiRfoD0z9LJQ7d+7Azc1N+hzlRRblRD6NLDmYnJyM8vJyAMDu\n3buxdOlS3L9/v01vqm41NTU0cm2E/rDU/8XbuLAClBd5KCfsUVpc58+fD3Nzc1y9ehURERHo0aMH\npk6dqonYVJafn8/rdQ8IIfpHaXE1MjKCgYEBjh49infeeQeLFi1CWVmZJmJT2YsXL9C+fXuuw+AN\nfZy7WFdXp3QbfcyLMpQT9igtrhYWFtiwYQP27NmD0aNHQyKRoLa2VhOxqayyshK2trZch0E4IhKJ\nMGHCBJUKLCGaorS4RkdHw8TEBDt37kTnzp1RUFCA5cuXayI2lRUWFsLU1JTrMHhDn/poDdOtli9f\nrvSW7/qUF1VRTtijtLg6ODhgypQpKC0txfHjx2Fqasq7nqupqSmsrKy4DoNoGM1jJXymtLgePHgQ\nAQEBOHToEA4ePAh/f38cOnRIE7GprLS0lEaujehDH601hVUf8tJSlBP2KF0se/369bh8+TI6duwI\nACguLkZQUJB0vVeuNZxco+KqXy5dukQjVsJrSosrwzBNLi21s7Pj1R0yy8rKYGpqqrTfpk/0oY/2\n/vvvt3gffchLS1FO2KO0uI4YMQKhoaHS2w5HR0dj5MiRmohNJdnZ2dRvJYTwjtLiumnTJhw5cgQX\nLlwAUL8mwLhx41gPTFUlJSXo0aMH12HwCl3SKB/lRRblhD0Ki+vt27exfPlyZGdnw9vbG5s2bYKT\nk5MmY1NJYWEhOnXqxHUYhEWXLl2Ck5MTXYVHtIrCRuXMmTMxevRo/Prrr/D19cW7776rybhUVlNT\nQ1dnvUSXRiIikQizZ89Gfn5+m4+lS3lRF8oJexSOXMvLyzFnzhwAgIeHB4RCocaCaonCwkIa0eio\nxtOtAgICuA6HkBZRWFyrq6uRlpYGoH7GQFVVFdLS0sAwDAQCAXx9fTUWZHMqKipgZKS0daxXdKGP\nxsYFArqQF3WjnLBHYVXq3LkzPvjgA4WPExMT2Y1MRRKJhEauOub+/ft05RXRegqLa1JSkgbDaL3a\n2loYGxtzHQavaPtIpGvXrjh+/Di6deum1uNqe17YQDlhj9bPvH/w4AG1BXSMQCBQe2ElRNO0vrhK\nJBK69PUldL24fJQXWZQT9mh9cRUIBLC0tOQ6DNIGEomE6xAIUTulxbWurg67d+/GunXrAAC5ublI\nTU1lPTBV1dbWUlvgJdrURxOJRBgzZoxGCqw25UVTKCfsUVpcFy5ciIsXL2Lfvn0AgPbt22PhwoWs\nB6aqmpoaOqGlpRqmW3388ccwNDTkOhxC1Eppcb106RK2b98OMzMzAICtrS2vbvNy584dukLrJdrQ\nR+NioWttyIumUU7Yo7S4tmvXrslPtuLiYt4t79e5c2euQyAtQHcQIPpAaZVcvHgxxo0bh0ePHuHD\nDz/E4MGDsWrVKk3EphJLS0v6SfkSvvfRrl+/zklh5XteuEA5YY+AUWHl61u3buH3338HAAQFBcHT\n05P1wFQhEAhgY2ODGzducB0KIUSHODo6tvmmAEqLa25uLgBI30ggEACov4qGawKBAGZmZsjOzuY6\nFF6h68Xlo7zIopzIp47iqnQO06hRo6QFtbq6Gjk5OXB3d8fNmzfb9MbqQgtlE0L4SGlxffknd1pa\nGrZt28ZaQC1lYmLCdQi8w6eRyMWLF9GpUyde/CXIp7zwBeWEPS0+7e/r64tLly6xEUur2Nrach0C\nUUAkEmHu3Ll4+PAh16EQonFKR65btmyR/nddXR3S0tJ4tcRfu3btuA6Bd/jQR2s83WrgwIGcxtKA\nD3nhG8oJe5QW1/Ly8v9tbGSE0aNHY8KECawG1RI0DYt/aB4rIUqKq0QiwfPnz5uMXvmGLn2VxeVI\npKCgAPPnz+dlYaURmizKCXsUFlexWAwjIyMkJydLb+3CR/b29lyHQBpxdHTEiRMneNU6IoQLCour\nv78/0tLS0LdvX/zjH//ApEmTYG5uDqB+fun48eM1FmRzaLk6WVz30fhaWLnOCx9RTtijsLg2TKCt\nrq6GnZ0dzp492+R1vhRXmi1ACOEjhcW1uLgYERER8PLy0mQ8LUY9V1maHIlo0z3MaIQmi3LCHoXz\nXCUSCcrKylBeXi73H76g2QLcEYlEGDlyJK+WoCSEL5q9tfaaNWs0GUurUHGVpYk+WuPpVtoycqX+\noizKCXv4tTBrK9AtXjSP5rESopzC4nrmzBlNxtFqNHKVxeZIRJsLK43QZFFO2KOwuNrZ2WkyDqIl\nsrOztbKwEqJpWt8W4OvFDVxi875IU6dO1drCSveLkkU5YY/WF1cLCwuuQyCEEBlaX1z5drNEPqA+\nmnyUF1mUE/ZofWWi2QLsEYlEuHXrFtdhEKKVtL640mwBWeroozXMCigpKVFDRPxA/UVZlBP2UHEl\nMrR5uhUhfEHFVQe1pY+my4WV+ouyKCfs0friWldXx3UIOuPRo0dYsGCBThZWQjRN64srLTkoq7V9\ntI4dO+L06dM6W1ipvyiLcsIerS+u2rJoiLbo2LEj1yEQohO0vrhSz1UW9dHko7zIopywh4qrHnvx\n4gXXIRCis6i46iBV+mgikQjBwcF6VWCpvyiLcsIerb+8iYpryzWebmViYsJ1OIToJBq56qDm+mi6\nPI9VGeovyqKcsEfriyst3KI6fS6shGia1lcmU1NTrkPgHUV9tMLCQr0urNRflEU5YY/W91xpnqvq\nJk6cyHUIhOgNVkeuCQkJ8PDwQM+ePbFx40aZ1/fu3QsfHx94e3tj8ODBuHbtmvQ1FxcXeHt7QygU\nwt/fX+F7UFtAFvXR5KO8yKKcsIe1katEIsGiRYtw5swZODo6on///hg7diw8PT2l2/To0QPnzp2D\nlZUVEhISMHfuXKSkpACov31LUlKS0stb6TYvhBA+Ym3Yl5qaCjc3N7i4uMDY2BhhYWGIiYlpss3A\ngQNhZWUFAAgICEB+fn6T1xmGUfo+NHKVVVhYCJFIhLS0NK5D4RXqL8qinLCHtcpUUFAAZ2dn6WMn\nJycUFBQo3D4qKgqjRo2SPhYIBBg+fDj8/Pzwww8/KNyPRq6ybt68iXnz5qG6uprrUAjRW6y1BVpS\n9BITE7Fz504kJydLn0tOToaDgwOKi4sRHBwMDw8PBAYGtul99IFIJMLSpUv1elaAItRflEU5YQ9r\nxdXR0RF5eXnSx3l5eXBycpLZ7tq1a5gzZw4SEhJgY2Mjfd7BwQEA0KFDB4wbNw6pqalyi+vnn38u\nbS306tUL/fr1k35hGn7y6Mvj06dPY8uWLdLCynU89Jgea8tjkUiEU6dOAVDfHaUFjCqNzVYQi8Vw\nd3fH77//ji5dusDf3x/79+9vckIrNzcXr7/+Ovbs2YMBAwZIn6+srIREIoGFhQUqKioQEhKCNWvW\nICQkpGnwAgFyc3PpKi0AT58+RVBQELZt2wYXFxcakchRWFhIeXkJ5UQ+R0dHlc75NIe1kauRkREi\nIyMRGhoKiUSCWbNmwdPTEzt27AAAzJs3D+vWrUNJSQkWLFgAoH7OampqKoqKijB+/HgA9UV6ypQp\nMoW1AZ3Qqmdra4vff/8dtra2dJKCEB5gbeSqCQKBoNmTZIQQ0hrqGLnSsI8QQlhAxVVLVVVVKXyN\n2gLyUV5kUU7YQ8VVC4lEIgQFBTVbYAkh3NL6hVv0TeNlA83MzORuQ2d/5aO8yKKcsIdGrlqE1mMl\nRHtQcdUSLSms1EeTj/Iii3LCHiquWqKkpIRGrIRoEZrnSgghL6F5roQQwlNUXHUQ9dHko7zIopyw\nh4orD4lEIohEIq7DIIS0ARVXnmmYFdAWNHdRPsqLLMoJe6i48gjNYyVEd1Bx5Ql1Flbqo8lHeZFF\nOWEPFVceePbsGRYvXkwjVkJ0CM1z5Ylnz55Jb1dDCOEWzXPVIVRYCdEtVFx1EPXR5KO8yKKcsIeK\nKwfKy8u5DoEQwjIqrhomEonw2muvsVpgae6ifJQXWZQT9tBi2RrUeLpV+/btuQ6HEMIiGrlqiCYv\nEKA+mnyUF1mUE/ZQcdUAuvKKEP1D81w1IDExESYmJlRYCdES6pjnSsWVEEJeQhcRELmojyYf5UUW\n5YQ9VFwJIYQF1BZQM5FIhIqKCgQHB3MdCiGklagtwDMNswJeeeUVrkMhhHCMiqua8Gm6FfXR5KO8\nyKKcsIeKqxrwqbASQviBeq5tVFFRgddffx1fffUVFVZCdATNc+VBcQXqCyz1WQnRHXRCiyf4Vlip\njyYf5UUW5YQ9VFwJIYQF1BZoodLSUlhbW2v0PQkhmkVtAQ0TiUQICgpCaWkp16EQQniOiquKGqZb\nffPNN7wfuVIfTT7KiyzKCXuouKqA5rESQlqKeq5KUGElRP9Qz1UDDAwMqLASQlqMiqsSAwYM0LrC\nSn00+Sgvsign7KHiSgghLKCeKyGEvIR6rmomEokQGxvLdRiEEB1AxfW/GmYF2Nvbcx1Km1EfTT7K\niyzKCXuouIKmWxFC1E/ve65UWAkhL6OeaxtVVVVh+fLlVFgJIWqn18XVzMwMZ86c0bnCSn00+Sgv\nsign7NHr4grUF1hCCFE3ve+5EkLIy6jn2kJPnjzhOgRCiJ7Qm+LasNC1PhRY6qPJR3mRRTlhjxHX\nAWhC4+lWdnZ2XIdDCNEDOt9zpXmshJCWop6rElRYCSFc0eni2r59e70srNRHk4/yIotywh6d7rl6\ne3tzHQIhRE/pfM+VEEJainquhBDCU6wW14SEBHh4eKBnz57YuHGj3G3effdd9OzZEz4+PkhPT2/R\nvo2JRCJER0erLXZtRn00+Sgvsign7GGtuEokEixatAgJCQnIyMjA/v37cevWrSbbxMfHIzs7G1lZ\nWfj++++xYMEClfdtrGFWgLOzM1sfR6tcuXKF6xB4ifIii3LCHtaKa2pqKtzc3ODi4gJjY2OEhYUh\nJiamyTaxsbGYNm0aACAgIAClpaUoKipSad8GNN1K1u3bt7kOgZcoL7IoJ+xhrbgWFBQ0GUk6OTnJ\nnHxStE1hYaHSfRtQYSWE8BFrxVUgEKi0XVvPyFFhlVVWVsZ1CLxEeZFFOWEPa/NcHR0dkZeXJ32c\nl5cHJyenZrfJz8+Hk5MTamtrle4LAK6urpg0aRIL0Wu/H374gesQeInyIotyIsvV1bXNx2CtuPr5\n+SErKwv37t1Dly5dEB0djf379zfZZuzYsYiMjERYWBhSUlJgbW2NTp06wc7OTum+AJCdnc1W+IQQ\n0iasFVcjIyNERkYiNDQUEokEs2bNgqenJ3bs2AGgvlc6atQoxMfHw83NDa+88gp++umnZvclhBBt\nodVXaBFCCF/x9gotTV6AoE2Ufba9e/fCx8cH3t7eGDx4MK5duyZ9zcXFBd7e3hAKhfD399dk2KxS\nlpOkpCRYWVlBKBRCKBRi/fr1Ku+rzZR9ts2bN0tz4uXlBSMjI5SWlgLQ3e/KzJkz0alTJ3h5eSnc\nRm11heEhsVjMuLq6Mjk5OUxNTQ3j4+PDZGRkNNkmLi6OGTlyJMMwDJOSksIEBASovK+2UuWziUQi\nprS0lGEYhjlx4oQ0LwzDMC4uLsyTJ080GjPbVMlJYmIiM2bMmFbtq61a+tmOHTvGBAUFSR/r4neF\nYRjm3LlzTFpaGtOnTx+5r6uzrvBy5KqpCxC0jSqfbeDAgbCysgJQn5f8/PwmrzM61gVS9f+3vM+t\n79+Vxvbt24fw8PAmz+nadwUAAgMDYWNjo/B1ddYVXhZXTV2AoG1UyUtjUVFRGDVqlPSxQCDA8OHD\n4efnpzPTb1TJiUAggEgkgo+PD0aNGoWMjAyV99VWLflslZWVOHnyJCZMmCB9The/K6pQZ13h5Xqu\nmroAQduomhcASExMxM6dO5GcnCx9Ljk5GQ4ODiguLkZwcDA8PDwQGBjIRqgao0pOfH19kZeXB3Nz\nc5w4cQJvvPGGzl/22ZLvyrFjxzBkyBBYW1tLn9PF74qq1FVXeDlybcsFCKrsq61U/WzXrl3DnDlz\nEBsb2+QnkIODAwCgQ4cOGDduHFJTU9kPmmWq5MTCwgLm5uYAgJEjR6K2thZPnz6Fk5OT3n9XAODA\ngQMyLQFd/K6oQq11RW2dYjWqra1levToweTk5DAvXrxQekLr4sWL0sazKvtqK1U+2/379xlXV1fm\n4sWLTZ6vqKhgnj9/zjAMw5SXlzODBg1iTp48qbHY2aJKToqKipi6ujqGYRjm0qVLTLdu3VTeV1up\n+tlKS0sZW1tbprKyUvqcrn5XGuTk5Kh0QqutdYWXxZVhGCY+Pp7p1asX4+rqymzYsIFhGIb57rvv\nmO+++066zTvvvMO4uroy3t7ezJUrV5rdV1coy8usWbMYW1tbpm/fvkzfvn2Z/v37MwzDMHfu3GF8\nfHwYHx8fpnfv3jqVF2U5iYyMZHr37s34+PgwAwcObPIXjz5/VxiGYXbt2sWEh4c32e/u3bs6+10J\nCwtjHBwcGGNjY8bJyYmJiopira7QRQSEEMICXvZcCSFE21FxJYQQFlBxJYQQFlBxJYQQFlBxJYQQ\nFlBxJYQQFlBxJa1iaGgoXa5OKBQiNzdX4bbt27dv8/tNnz4dPXr0gFAoRL9+/ZCSktLiY8yZMwd/\n/fUXAGDDhg1NXhs8eHCbYwT+lxdvb2+MHz8e5eXlzW5/9epVnDhxQi3vTfiF5rmSVrGwsFD55nYt\n2VaRGTNmYMyYMRg/fjxOnz6NZcuW4erVq60+njpiUnbc6dOnw8vLCx988IHC7Xft2oUrV67gm2++\nUXsshFs0ciVqUVFRgeHDh6Nfv37w9vZGbGyszDYPHjzA3/72N+nizBcuXAAAnDp1CoMGDUK/fv3w\n5ptvoqKiQu57NIwDAgMDpfdPi4iIgJeXF7y8vPDvf/9bGsvf//539O3bF15eXjh06BAAYNiwYbhy\n5QpWrlyJqqoqCIVCvP322wD+N7oOCwtDfHy89D2nT5+OI0eOoK6uDsuXL4e/vz98fHzw/fffK83J\nwIEDcefOHQD1SwAOGjQIvr6+GDx4MG7fvo2amhp88skniI6OhlAoxKFDh1BRUYGZM2ciICAAvr6+\ncvNItIS6Ly8j+sHQ0FB6ie348eMZsVgsvR69uLiYcXNzk27bvn17hmEYZvPmzcznn3/OMAzDSCQS\npqysjCkuLmb+9re/Sa9t/9e//sWsW7dO5v2mT5/OHD58mGEYhjl48CAzYMAA5sqVK4yXlxdTWVnJ\nlJeXM71792bS09OZw4cPM3PmzJHu++zZM4ZhGGbYsGHSyxkbYno5xt9++42ZNm0awzAM8+LFC8bZ\n2Zmprq5mduzYwaxfv55hGIaprq5m/Pz8mJycHJk4G44jFouZ8ePHM9u2bWMYhmGeP3/OiMVihmEY\n5vTp08yECRMYhqm//HTx4sXS/VetWsXs2bOHYRiGKSkpYXr16sVUVFTI/X9A+I2XSw4S/jMzM2ty\nC4za2lqsWrUK58+fh4GBAQoLC/Ho0SN07NhRuo2/vz9mzpyJ2tpavPHGG/Dx8UFSUhIyMjIwaNAg\nAEBNTY30vxtjGAbLly/H+vXr0bFjR0RFReH06dMYP348zMzMAADjx4/H+fPnMWLECCxbtgwrV67E\n6NGjMWTIEJU/14gRI7BkyRLU1NTgxIkTGDp0KExMTHDq1Clcv34dhw8fBgA8f/4c2dnZcHFxabJ/\nw4i4oKAALi4umD9/PgCgtLQUU6dORXZ2NgQCAcRisfRzMY06c6dOncKxY8ewefNmAMCLFy+Ql5cH\nd3d3lT8D4QcqrkQt9u7di8ePHyMtLQ2Ghobo3r07qqurm2wTGBiI8+fP4/jx45g+fTqWLl0KGxsb\nBAcHY9++fc0eXyAQYPPmzRg/frz0uTNnzjQpTAzDQCAQoGfPnkhPT0dcXBw+/vhjBAUFYfXq1Sp9\nDlNTUwwbNgwnT57EwYMHmyzFFxkZieDg4Gb3b/hLp6qqCqGhoYiJicG4ceOwevVqBAUF4bfffsP9\n+/cxbNgwhcc4cuQIevbsqVK8hL+o50rU4vnz5+jYsSMMDQ2RmJiI+/fvy2yTm5uLDh06YPbs2Zg9\nezbS09MxYMAAJCcnS3uTFRUVyMrKkvsezEvnXgMDA3H06FFUVVWhoqICR48eRWBgIB48eABTU1NM\nmTIFy5YtazLCbmBsbCwdPb5s8uTJ2Llzp3QUDAChoaHYvn27dJ/bt2+jsrJSYT7MzMywdetWfPTR\nR2AYBs+fP0eXLl0AQHoLeQCwtLRscmItNDQUW7dulT6WFzvRDlRcSau8vNL9lClT8Oeff8Lb2xu7\nd++Gp6enzLaJiYno27cvfH19cfDgQSxZsgT29vbYtWsXwsPD4ePjg0GDBiEzM1Ol9xQKhZg+fTr8\n/f0xYMAAzJkzBz4+Prh+/ToCAgIgFAqxbt06fPzxxzLHmjt3Lry9vaUntBofOyQkBOfOnUNwcDCM\njOp/3M2ePRuvvvoqfH194eXlhQULFsgtzo2P07dvX7i5ueHgwYP45z//iVWrVsHX1xcSiUS63Wuv\nvYaMjAzpCa3Vq1ejtrYW3t7e6NOnD9asWaP4fwLhNZqKRQghLKCRKyGEsICKKyGEsICKKyGEsICK\nKyGEsICKKyGEsICKKyGEsICKKyGEsICKKyGEsOD/AWTvOYmHbXqwAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x1171b5d90>" ] } ], "prompt_number": 23 }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Results for multi-class." ] }, { "cell_type": "code", "collapsed": false, "input": [ "mc_pred_df = preds_panel.minor_xs('decaf_fc6 vw').join(label_df)\n", "pred_prefix = 'clf pascal'" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 24 }, { "cell_type": "code", "collapsed": false, "input": [ "full_mc_metrics = vislab.results.multiclass_metrics(\n", " mc_pred_df, pred_prefix, balanced=False,\n", " with_plot=True, with_print=True)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "------------------------------------------------------------\n", "Classification metrics on the full dataset\n", "top_k_accuracies: [0.627, 0.791, 0.872, 0.919, 0.948, 0.963, 0.972, 0.981, 0.986, 0.99, 0.992, 0.994, 0.995, 0.997, 0.998, 0.998, 0.999, 1.0, 1.0]\n", " precision recall f1-score support\n", "class_aeroplane 0.845722 0.842179 0.843947 716\n", "class_bicycle 0.684800 0.709784 0.697068 603\n", "class_bird 0.824087 0.753713 0.787330 808\n", "class_boat 0.742215 0.812500 0.775769 528\n", "class_bottle 0.528107 0.463636 0.493776 770\n", "class_bus 0.930131 0.488532 0.640602 436\n", "class_car 0.770690 0.478075 0.590099 935\n", "class_cat 0.834171 0.755232 0.792741 1099\n", "class_chair 0.650485 0.191246 0.295588 1051\n", "class_cow 0.591912 0.501558 0.543002 321\n", "class_diningtable 0.154143 0.615385 0.246533 130\n", "class_dog 0.817500 0.569191 0.671113 1149\n", "class_horse 0.574928 0.827801 0.678571 482\n", "class_motorbike 0.708625 0.706977 0.707800 430\n", "class_pottedplant 0.320080 0.626459 0.423684 257\n", "class_sheep 0.594667 0.688272 0.638054 324\n", "class_sofa 0.280967 0.657244 0.393651 283\n", "class_train 0.537217 0.905455 0.674340 550\n", "class_tvmonitor 0.397338 0.749104 0.519255 279\n", "accuracy: 0.627028966012\n", "\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAA7kAAAEWCAYAAACjclDSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtcVNX+//E3CHkpj5qWJVijQqJZaN4LL6VlWtnFMky7\nKCpZpJSWUdnBPJWerx4rMTPNrFRILcMrVnTymIqUdwUTDAzxFibeQp0ZPr8/+M3EgAIjrNl7Me/n\n4+HjnC2bPS9Xm8Wsmb3BR0QERERERERERNWAr9EBRERERERERFWFi1wiIiIiIiKqNrjIJSIiIiIi\nomqDi1wiIiIiIiKqNrjIJSIiIiIiomqDi1wiIiIiIiKqNky1yB02bBgaN26MW2655ZL7jB49GsHB\nwQgNDcW2bds8WEdERERERERmZ6pF7tChQ5GUlHTJj69evRqZmZnIyMjAxx9/jFGjRnmwjoiIiIiI\niMzOVIvcbt26oUGDBpf8+PLly/H0008DADp37oz8/HwcPXrUU3lERERERERkcqZa5JYnNzcXTZs2\ndW4HBgbi4MGDBhYRERERERGRmWi1yAUAEXHZ9vHxMaiEiIiIiIiIzMbP6AB3BAQEICcnx7l98OBB\nBAQElNqvdevWSE9P92QaEREREREReUhoaCi2b99+0Y9p9U5u//798fnnnwMAUlJSUL9+fTRu3LjU\nfunp6RARj/0ZM2aMRx+Pveb+w1726tyrYzN72cte9rKXvdWxV8dmT/bu2LHjkutGU72TO2jQIKxb\ntw55eXlo2rQpJk6cCKvVCgCIjIxEv379sHr1agQFBeHKK6/Ep59+anAxERERERERmYmpFrnx8fHl\n7hMXF+eBEvfUr1/f6AS3sFct9qrFXvV0a2avWuxVi71qsVct9qqnW7NZerW6XNmsevbsaXSCW9ir\nFnvVYq96ujWzVy32qsVetdirFnvV063ZLL1c5FYBi8VidIJb2KsWe9Vir3q6NbNXLfaqxV612KsW\ne9XTrdksvVzkEhERERERmcz58+fxzDPPwN/fHz4+Plr8adasWZUdy9/fH/feey/Onz/v9tj5iIiU\nv5tefHx8UA3/WURERERE5CVef/117NmzB/Hx8ahdu7bROR5XUFCA8PBwtGnTBm+//Xapj5e15uMi\nl4iIiIiIyGSuu+46bNy4Ec2bNzc6xTD79+9HWFgYDh8+XOpjZa35eLlyFcjOzjY6wS3sVYu9arFX\nPd2a2asWe9Vir1rsVYu9ah07dgw33HCD0RmGuvHGG3Hs2DG3P4+LXCIiIiIiIpMREfj5meo3vnqc\nn58fCgsL3f48Xq5MRERERERkMlzTFLnUOPByZSIiIiIiIvIKXORWAd2u72evWuxVi73q6dbMXrXY\nqxZ71WKvWuz1PKvVqvXxPYWLXCIiIiIiIg2o/p25/v7+FeqYPHkygoKC8I9//AM333wzvvnmGwDA\n/Pnzcccdd+CFF15A/fr10apVK/zwww8qh+SiTHdPblJSEqKjo2G32zF8+HCMHz/e5eMnTpzAsGHD\n8Ntvv6FWrVqYN28ebr75Zpd9eP06ERERERHprKx7UVWp6Bpq6dKlCAsLw3XXXYfFixdj2LBhyMzM\nRFJSEkaMGIGpU6ciKioKX331FUaOHImsrCw0aNDgspq0vyfXbrcjKioKSUlJSEtLQ3x8PNLT0132\neeedd3Dbbbdhx44d+PzzzzFmzBiDaomIiIiIiLzPo48+iuuuuw4AMHDgQAQHByM1NRUAcO2112LM\nmDGoUaMGBg4ciJYtW2LVqlUe7TPVIjc1NRVBQUGwWCzw9/dHeHg4EhMTXfZJT0/HnXfeCQBo2bIl\nsrOz8ccffxiR66Tb9f3sVYu9arFXPd2a2asWe9Vir1rsVYu93uvzzz9Hu3bt0KBBAzRo0AC7d+9G\nXl4efHx8EBAQ4LLvjTfeiEOHDnm0z1SL3NzcXDRt2tS5HRgYiNzcXJd9QkND8fXXXwMoWhQfOHAA\nBw8e9GgnERERERGRNzpw4ABGjhyJmTNn4s8//8SJEyfQpk0bAEWXO5dcvx04cKDUwlc1Uy1yK3J9\n+auvvor8/Hy0a9cOcXFxaNeuHWrUqOGBukuzWCyGPr672KsWe9Vir3q6NbNXLfaqxV612KsWe73T\n2bNn4ePjg0aNGqGwsBCffvopdu/e7fz4sWPH8MEHH8BqtWLJkiX49ddf0a9fP482+nn00coREBCA\nnJwc53ZOTg4CAwNd9qlbty7mzZvn3G7WrBmaN29e6ljR0dGoX78+ACAkJARdunRxntiOSxW4zW1u\nc5vb3OY2t7nNbW5z26zbZtS6dWuMHTsWXbt2ha+vL5566imEhYUBKHrTsnPnzsjIyMA111yD6667\nDkuXLr3sHzrlkJ2djZSUFOzduxcAkJ+fX+b+pvrpyjabDS1btkRycjKaNGmCTp06IT4+Hq1atXLu\nc/LkSdSuXRtXXHEF5syZgw0bNmD+/Pkux/H0T1fOzs52npA6YK9a7FWLverp1sxetdirFnvVYq9a\n7FXrYmsaq9Va4V/zczkqe/z58+fjk08+wfr166us6XJ+urKp3sn18/NDXFwc+vTpA7vdjoiICLRq\n1QqzZ88GAERGRiItLQ3PPPMMfHx80KZNG3zyySeVesyqOFFsNlulPp+IiIiIiKg8Khe4nji+p5jq\nndyq4u47uZX9XVPVcAiJiIiIiMhAnr46tSp89tln+OSTT/C///2vyo55Oe/kcpELLnKJiIiIiMhc\ndFzkqnA5i1xT/XRlXZn5xvCLYa9a7FWLverp1sxetdirFnvVYq9a7CWz4iKXiIiIiIiIqg1ergxe\nrkxERERERObCy5WL8HJlIiIiIiIi8mpc5FYB3a7vZ69a7FWLverp1sxetdirFnvVYq9a7CWz4iKX\niDzKarVW6vP5e6mJiIiIqCy8Jxe8J5fI0yrzNcevNyIiIvIGvCe3CO/JJSIiIiIiqq4qeUWc4cf3\nEC5yq4Bu1/d7ureyl6dmZmZWUYln8HxQi73q6dbMXrXYqxZ71WKvWuw1gL8/4OOj7o+/f7kJFosF\nU6dOxa233oq6desiIiICR48eRd++fVGvXj3cfffdyM/PBwD89NNPuP3229GgQQPccMMN+OyzzwAA\nBQUFGDt2LCwWC+rXr49u3brh3LlzVTZMflV2JKJL8Pf3r9TlqVlZWVVYQ0REREREl8vHxwdff/01\nkpOTYbVa0a5dO2zbtg2ffvopQkJC0K9fP3zwwQd4+umn0a9fP8yZMwePPvooTp48iZycHADAuHHj\nkJ6ejk2bNqFx48ZITU2Fr2/Vvf/Ke3LBe3I9gfdgUnE8H4iIiIjKdsk1TSXXLmWqwPOsZs2a4Z13\n3sGgQYMAAI8++igaN26MmTNnAgDi4uKQnJyMzp074+eff8ZXX33l8vmFhYW46qqrsHnzZtxyyy3l\nPl61uCc3KSkJISEhCA4OxpQpU0p9PC8vD/feey/atm2LNm3aYP78+Z6PJCIyqcreHlBVxyAiIqLq\nq3Hjxs7/X7t2bZftWrVq4cyZM8jJyUHz5s1LfW5eXh7OnTuHFi1aKOsz1SLXbrcjKioKSUlJSEtL\nQ3x8PNLT0132iYuLQ7t27bB9+3b8+OOPGDt2rOG/UkS36/vZqxZ71WJv2Ry3B1TmT25urkebK4vn\nhFrsVYu9arFXLfaSw8XeUW3atCn2799f6u8bNWqEWrVqKf25O6Za5KampiIoKAgWiwX+/v4IDw9H\nYmKiyz7XX389Tp06BQA4deoUGjZsCD8/3lpMRERERERkFoMHD8b333+PJUuWwGaz4fjx49ixYwd8\nfX0xbNgwvPTSSzh8+DDsdjs2bdqECxcuVNljm2qRm5ubi6ZNmzq3AwMDS72jMGLECOzZswdNmjRB\naGgo3n//fU9nlmKxWIxOcAt71WKvWuxVT7dm9qrFXrXYqxZ71WIvORT/eSuOK8OaNm2K1atXY9q0\naWjYsCHatWuHnTt3AgCmTp2KW265BR07dkTDhg0RExODwsLCKusx1VugFflhNO+88w7atm2LH3/8\nEfv378fdd9+NHTt2oG7dui77RUdHo379+gCAkJAQdOnSxXliOy5VcGxf6u8run25n+dN2xaLhePL\nbec2zwfzjq/jc8307+E2t7nNbW5z21u3S7FaK/TDoS6b1VrurxEq+ZtPvvjiC5ftiIgIREREAADC\nwsKQkpJS6hi1atXC9OnTMX369AplZWdnIyUlBXv37gUA568ouhRT/XTllJQUxMbGIikpCQDw7rvv\nwtfXF+PHj3fu069fP7z++uu44447AAC9evXClClT0KFDB+c+nv7pyllZWc4TUgfZxZ7Aekplf4UQ\nx1cdng9q6Ta+AMdYNfaqxV612KsWe9XSrdfdNU11pf1PV+7QoQMyMjKQnZ2NCxcu4Msvv0T//v1d\n9gkJCcH3338PADh69Ch+/fXXi/7ULiIiIiIiIvI+pnonFwDWrFmD6Oho2O12REREICYmBrNnzwYA\nREZGIi8vD0OHDsXvv/+OwsJCxMTE4IknnnA5Bn9Prvnw96JScTwf1OKcRkREpD++k1vkct7JNd0i\ntypwkWs+Oi1qrFYr/Mu5F0Hl53sDnc4HHXFOI11VxfzJOZiIqgsucotof7myri55Y7hJsbdslf09\no/wdo2qxVz3dmtmrlid7+Xue1bNarZX6fJW/11IFfr2pxV61fHx8YLPZjM4wlM1mg6+v+0tWLnKJ\niIiIvERlX0jw8zPVL+YgqtauvfZa/P7770ZnGOrAgQO49tpr3f48Xq4MXtrnCbpdnqpbr244vmpx\nTiOd8fxVj3MwkR5ef/117NmzB/Hx8ahdu7bROR5XUFCA8PBwtGnTBm+//Xapj/Oe3ArsXxnVcAir\nnG7fUHXr1Q3HVy3OaaQznr/qcQ4mXXnbz005f/48HnzwQSQnJ3vlZct+fn7o1asXEhMTUbNmzVIf\n5z25iul2fT971WKvWuxVT7dm9qrFXrXYqxZ71eLPTVGrZs2a+Oijj2C1WiEiWvzJysqqsmNZrVYk\nJSVddIFbHi5yiYiIiIiIqNrg5crgpVGeoNulUbr16objqxbnNNIZz1/1OAeTznj+kgMvVyYiIiIi\nIiKvwEVuFeD9E2qxVy32qqVbL6BfM3vVYq9a7FWLvWqxVz3dms3Sy0UuERERERERVRu8Jxe8/8cT\ndLt/Qrde3XB81eKcRjrj+ase52DSGc9fctDqntykpCSEhIQgODgYU6ZMKfXxqVOnol27dmjXrh1u\nueUW+Pn5IT8/34BSIiIiIiIiMhtTLXLtdjuioqKQlJSEtLQ0xMfHIz093WWfcePGYdu2bdi2bRve\nffdd9OzZE/Xr1zeouIhZrj2vKPaqxV612Kuebs3sVYu9arFXLfaqxV71dGs2S6+pFrmpqakICgqC\nxWKBv78/wsPDkZiYeMn9Fy1ahEGDBnmwkIiIiIiIiMzMVPfkLl26FGvXrsWcOXMAAAsWLMDmzZsx\nY8aMUvv+9ddfaNq0Kfbv31/qnVzek2s+ut0/oVuvbji+anFOI53x/FWPczDpjOcvOWhzT647J+2K\nFSsQFhZm+KXKREREREREZB6mWuQGBAQgJyfHuZ2Tk4PAwMCL7puQkFDmpcrR0dGIjY1FbGwsEhIS\nXK4Pz87Odtm2WCywWCyXvZ2SklLm8c22bUSvbuOrWy/PB/Nu6za+FosFKSkpHu2t7DZ7q1cvz1/P\nPT7H13zb7K34tjecv8X/ziw9RvYmJCQ413fR0dEoi6kuV7bZbGjZsiWSk5PRpEkTdOrUCfHx8WjV\nqpXLfidPnkTz5s1x8OBB1K5du9RxPH25clZWlssXkdllZ2d7vLcyY2zE+OrWWxk8H9TSbXwBjrFq\n7C0bz1/1OAebF3vLp9P5a7Va4e/vX6ljZGZmIigoqIqK1PPkOVHWms9Ui1wAWLNmDaKjo2G32xER\nEYGYmBjMnj0bABAZGQkA+Oyzz7B27VosWrToosfgPbnmo9v9E7r16objqxbnNNIZz1/1OAeTznQ7\nfzmnqaPVIrcqcJFrPt40IfF8KB/HVy3OaeRQFe8iVMUx3KHT+avj+AKcg0lvup2/nNPU0eYHT+mq\n+PXiOmCvWuxVi73q6dbM3kvz9/eHj49Ppf7k5uZ6rLcqcHzV4tebWuxVS7degHPa5eIil4iIiIiI\niKoNXq4MvS4j0JU3XVrC86F8HF+1OKdRcbqdD+xVj3Mw6Uy381e3OUKnXl6uTERERERERF6Bi9wq\noNv1/exVi71qebrXarVW6vMzMzOrqMRzPDnGlR1fQL8x5tecWuxVi71qsVct3XoB/ZrN0stFLhFR\nGSr7Qxj8/PyM/ieYWlX8kAuOMRERERXHe3Kh17Xnuv1obwdvun+iGn5JVTndxtebegHe/1Pd6Da+\n7FVPtzmNqDjdzl/d5gidesta8/Hlb8043vWoDH6DIiIiIiKi6oqXK1cBs1x7XlHsVYu9arFXPd2a\n2asWe9Vir1rsVYu96unWbJZeLnKJiIiIiIio2uA9udDr2nNAv17Au+6fqIZfUlVOt/H1pl6Ac1p1\no9v4slc93eY0ouJ0O391myN06tXq9+QmJSUhJCQEwcHBmDJlykX3+fHHH9GuXTu0adMGPXv29Gwg\nERERERERmZapFrl2ux1RUVFISkpCWloa4uPjkZ6e7rJPfn4+nn/+eaxYsQK7d+/G0qVLDar9m1mu\nPa8o9qrFXrXYq55uzexVi71qsVct9qrFXvV0azZLr6kWuampqQgKCoLFYoG/vz/Cw8ORmJjoss+i\nRYswYMAABAYGAgAaNWpkRCoRERERERGZkKnuyV26dCnWrl2LOXPmAAAWLFiAzZs3Y8aMGc59Xnzx\nRVitVuzZswenT5/GmDFj8OSTT7och/fklk23+xHYW/3oNr7e1AtwTqtudBtf9qqn25xGVJxu569u\nc4ROvdr8ntyKDKrVasXWrVuRnJyMv/76C127dkWXLl0QHBzsgUIiIiIiIiIyM1NdrhwQEICcnBzn\ndk5OjvOyZIemTZvinnvuQe3atdGwYUN0794dO3bsKHWs6OhoxMbGIjY2FgkJCS7Xh2dnZ7tsWywW\nWCyWy95OSUkp8/hVva1bb3Z2NntNvM3xZW/J7ZSUFPYq3Ob4stfI3uLbuvVezjZ7q2+vbufv5fRa\nLBbnMdibjYSEBOf6Ljo6GmUSE7FardK8eXPJysqS8+fPS2hoqKSlpbnsk56eLr169RKbzSZnz56V\nNm3ayJ49e1z2cfefBaBSf7Kysir7T6/WvZVtZq9aHF/2Gt2sW29lcXzZa/T5q1tvZbBXLZ6/ans5\np5XfeimmuicXANasWYPo6GjY7XZEREQgJiYGs2fPBgBERkYCAKZOnYpPP/0Uvr6+GDFiBEaPHu1y\nDN6TWzYj/pN70/0TJvuSMiXdxtebegHOadWNbuPLXvV0m9OIitPt/NVtjtCpt6w1n+kWuVWBi9yy\n6fYFzt7qR7fx9aZegHNadaPb+LJXPd3mNKLidDt/dZsjdOota81nqntydVX8enEdsFct9qrFXvV0\na2avWuxVi71qsVct9qqnW7NZernIJSIiIiKqAlartVKfb7PZqqiEyLvxcmXo9bY8oF8v4F2XllTD\nL6kqp9v4elMvwDmtutFtfNmrnm5zmm44vmrpNr66zRE69fJyZSIiIiIiIvIKXORWAbNce15R7FWL\nvWqxVz3dmtmrFnvVYq9a7FWLverp1myWXi5yiYiIiIiIqNrgPbnQ69pzQL9ewLvun6iGX1JVTrfx\n9aZegHNadaPb+LJXPd3mNN1wfNXSbXx1myN06uU9uUREREREROQVuMitAma59ryi2KsWe9Vir3q6\nNbNXLfaqxV612KsWe9XTrdksvVzkEhERERERUbXBe3Kh17XngH69gHfdP1ENv6SqnG7j6029AOe0\n6ka38WWverrNabrh+Kql2/jqNkfo1KvVPblJSUkICQlBcHAwpkyZUurjP/74I+rVq4d27dqhXbt2\n+Ne//mVAJREREREREZmRqRa5drsdUVFRSEpKQlpaGuLj45Genl5qvx49emDbtm3Ytm0b3njjDQNK\nXZnl2vOKYq9a7FWLverp1sxetdirFnvVYq9a7FVPt2az9JpqkZuamoqgoCBYLBb4+/sjPDwciYmJ\npfbjpRxERERERER0Maa6J3fp0qVYu3Yt5syZAwBYsGABNm/ejBkzZjj3WbduHR555BEEBgYiICAA\nU6dORevWrV2O4/F7ci9cAPz9L/8AVqtbn6/TtfIO3nT/hIm+pExLt/H1pl6A9/9UN7qNL3vV021O\n0w3HVy3dxle3OUKn3rLWfH4eq6iAigzqbbfdhpycHNSpUwdr1qzBQw89hH379nmgrgz+/kBlTghO\naERERERERFXCVJcrBwQEICcnx7mdk5ODwMBAl33q1q2LOnXqAAD69u0Lq9WKP//8s9SxoqOjERsb\ni9jYWCQkJLhcH56dne2ybbFYYLFYLns7JSUF2cW2sy0W97ZL9JS3XSW9bjxeVWyz17zbHF/2ltxO\nSUlhr8Jtji97jewtvq1Db2ZmZqU+f8OGDR7t1W18K7vN81dtr8VicR6DvdlISEhwru+io6NRFlNd\nrmyz2dCyZUskJyejSZMm6NSpE+Lj49GqVSvnPkePHsW1114LHx8fpKamYuDAgS4DAHj+cuWsrCxY\nmjW7/AO4+Z+gSnqLnZSeUJlm9qqVXeJJmifoNr7e1At4vlm33sry9NecbuPLXvW8aU5jr1p8DlE+\n3eYInXrLWvOZapELAGvWrEF0dDTsdjsiIiIQExOD2bNnAwAiIyMxc+ZMzJo1C35+fqhTpw7+85//\noEuXLi7HMOT35FbmGB5e5Op2PwJ7y2a1WuFfiXvCK/v5l0On8QW8qxfg/T/VjW7jy171vGlOY2/1\no9v46jZH6NSr1SK3KnCRW97D6fUFzt7ysVctb+oF+A21utFtfNmrnjfNaeytfnQbX93mCJ16y1rz\nmeqeXF2VvFza7NirFnvVYq96ujWzVy32qsVetdirFnvV063ZLL1c5BIREREReSGr1Vqpz7fZbFVU\nQlS1eLkyeLmyJ3jTpSXsLR971dJtjtCtVze6jS971fOmOY295WOvWrrNETr18nJlIiIiIiIi8gpc\n5FYBs1x7XlHsVYu9arFXPd2a2asWe9Vir1rsVYu96unWbJZeLnKJiIiIqGKq4h7MSt4HSkRUHt6T\nC96T6wnedP8Ee8vHXrV0myN069WNbuPLXvUqPadV8t/syec9Wo6vh7FXLd3mCJ16eU8uERERERER\neQUucquAWa49ryj2qsVetdirnm7N7FWLvWqxVy32qsVe9XRrNksvF7lERERERERUbfCeXPCeXE/w\npvsn2Fs+9qql2xyhW69udBtf9qrHe3LVYq9a3tQLcE4ri1b35CYlJSEkJATBwcGYMmXKJff7+eef\n4efnh6+//tqDdURERERERGRmplrk2u12REVFISkpCWlpaYiPj0d6evpF9xs/fjzuvfdeU7yCb5Zr\nzyuKvWqxVy32qqdbM3vVYq9a7FWLvWqxVz3dms3Sa6pFbmpqKoKCgmCxWODv74/w8HAkJiaW2m/G\njBl49NFHcc011xhQSURERERERGZlqkVubm4umjZt6twODAxEbm5uqX0SExMxatQoAJW/brwqWCwW\noxPcwl612KsWe9XTrZm9arFXLfaqxV612Kuebs1m6TXVIrciC9bo6GhMnjzZeaOxGS5XJiIiIpOw\nWo39fCIiMpypFrkBAQHIyclxbufk5CAwMNBlny1btiA8PBzNmjXDV199heeeew7Lly8vdazo6GjE\nxsYiNjYWCQkJLteHZ2dnu2xbLBaXVx3c3U5JSUF2se1si8W97RI95W1XSa8bj1cV2+xlL3v16LVY\nLEhJSWGvwm2Or+LeLVuKfvqvjw+ymzVDdrNm7m0Xu4KsOo5v8e1K97r7fMeA5z9ajy97vb7XYrE4\nj8HebCQkJDjXd9HR0SiLqX6FkM1mQ8uWLZGcnIwmTZqgU6dOiI+PR6tWrS66/9ChQ/HAAw/gkUce\ncfl7T/8KoaysLFiaNbv8A3j4VwhlZWW5nJSeUJlm9pbPq3ozMmAJCqpcgNUK+PtXeHdvGl+gCsbY\ng+MLGDPGlZFdYmGkmm7jy+/J6lV6TqvM+AIeHWMtx5e9ZfKmXkDTOdhDvWWt+Uy1yAWANWvWIDo6\nGna7HREREYiJicHs2bMBAJGRkS77mmWRy9+TWz5v+p1m7C0ff0ejWpzTqDjdxpfnr3qcg9Vir1re\n1AtoOgd7iFaL3KrARW55D6fXFzh7y+d1vXyCVSbOaVScbuPL81c9zsFqsVctb+oFNJ2DPaSsNZ+p\n7snVVfHrxXXAXrWyMzMrfxAP/uAT7caXvcrp1sxetdirFnvVYq9a7FVPt2az9PoZHUBU7fj5efxV\nbiIiIiIiKsLLlcFLozzBmy4t4aVc5eP4qsU5jYrTbXx5/qrHOVgt9qrlTb2ApnOwh/ByZSIioipg\nrYJbCariGERERHRpXORWAbNce15R7FWLvWqxVz3dmj3Z6+/vDx8fn0r9yS32e1h1wPNBLfaqxV61\n2Kuebs1m6eUil4iIiIiIiKoN3pML3v/jCd50/wTvVyofx1ctzmlqsVctnr/qcQ5Wi71qeVMvoOkc\n7CG8J5f0VhX3r/EeODIKz1/1Kjs+HF8iIqJqhYvcKmCWa88rSrve3NyiV40r88ff33O9uo0ve5XS\n7fwFvHCMOb5lqvTv/vbwiwjajS97lWKvWuxVT7dms/Ty9+QSERHRpVX2d39Xv7uiiIjI5HhPLnj/\njyd43f0/uvV6mNeNr0a9RQ+n4ZymW68HeeX46tbrYd40p2k5vh7GXrV0myMq3XvhQuWukLJaK/z5\nWt2Tm5SUhJCQEAQHB2PKlCmlPp6YmIjQ0FC0a9cO7du3xw8//GBAJREREREREbnw9zfFLUSmWuTa\n7XZERUUhKSkJaWlpiI+PR3p6uss+vXv3xo4dO7Bt2zbMnz8fI0eONKj2b2a59ryi2KsWe9Vir3q6\nNbNXLfYiE7A6AAAgAElEQVSqxV612KsWe9XTrdksvaZa5KampiIoKAgWiwX+/v4IDw9HYmKiyz5X\nXnml8/+fOXMGjRo18nQmERERERERmZSp7sldunQp1q5dizlz5gAAFixYgM2bN2PGjBku+33zzTeI\niYnB4cOH8e2336JTp04uH+c9ueU9nF73I2h5/49uvR7mdeOrUW/Rw2k4p+nW60FeOb669XqYN81p\nWo6vh7FXLd3mCJ3mYG3uya3ooD700ENIT0/HihUr8OSTTyquIiIiIiIiIl2YapEbEBCAnJwc53ZO\nTg4CAwMvuX+3bt1gs9lw/PjxUh+Ljo5GbGwsYmNjkZCQ4HJ9eHZ2tsu2xWKBxWK57O2UlBRkF9vO\ntljc2y7RU952lfS68XhVsW3o+Fos7OX54LrN3jK3U1JS2OupXpN/vWk/vrr1euB8KL5tyPgW3/Z0\nr27jy16v77UUm5O061UwPyQkJDjXd9HR0SiTmIjVapXmzZtLVlaWnD9/XkJDQyUtLc1ln8zMTCks\nLBQRkS1btkjz5s1LHcfdfxaASv3JysoSKXpz/fL+uKlKej3M0PH18Bhr2ethXje+GvVqO6fp1utB\nXjm+uvV6mDfNadqNb0ZG5QMuXPBcL8dXaa8RY6zTHIwy9jfVPbkAsGbNGkRHR8NutyMiIgIxMTGY\nPXs2ACAyMhL//ve/8fnnn8Pf3x9XXXUV/vOf/6Bjx44ux+A9ueU9nOf/k3vd/T+69XqY142vRr1F\nD6fhnKZbrwd55fjq1uth3jSncXzLx/F1+yBu7a7T750F9JqDy1rzmW6RWxW4yC3v4Tghlcfrej3M\n68ZXo96ih9NwTtOt14O8cnx16q3sE1jAo09idZvT+D2ufBxftw/i1u5eN6eZZJFrqntydVX8enEd\nZGdmVv4gVmvlj1FB2o0ve5Vir3q6NbNXLfaqlZ2bW/SEsDJ/KrtIdqdXt/Flr1LsVU+3ZrP0+hkd\nQAbw8/P4q1hERERERESewMuVodfb8oAJeosO4tbu3nRpiZa9HuZ146tRb9HDedmcxsuVy6Tl+HpT\nb9FB3Nrdm+Y0fo8rH8fX7YO4tbvhc0Q17uXlykRERGZR2ds9PHi7CBERkY64yK0CZrn2vKLYqxZ7\n1WKvero1a9db2XswPXj/JaDh+LJXKfaqxV61dOsF9Gs2Sy8XuURERERE5D6brfLH4NUppADvyYVe\n154DJugtOohbu3vT/RNa9nqY142vRr1FD+dlcxp7y3k49pbF8N6ig7i1uzfNafweVz72un0Qt3Y3\nfI6oxr28J5eIiIiIiIi8Ahe5VcAs155XFHvVYq9a7FVPt2b2qsVetdirFnvVYq96ujWbpZeLXCIi\nIiIiIqo2eE8u9Lr2HDBBb9FB3Nrdm+6f0LLXw7xufDXqLXo4L5vT2FvOw7G3LIb3Fh3Erd29aU7j\n97jysdftg7i1u+FzRDXu1eqe3KSkJISEhCA4OBhTpkwp9fGFCxciNDQUt956K+644w7s3LnTgEoi\nIiIiIiIyI1Mtcu12O6KiopCUlIS0tDTEx8cjPT3dZZ/mzZvjf//7H3bu3IkJEyZg5MiRBtX+zSzX\nnlcUe9Vir1rsVU+3ZvaqxV612KsWe9Vir3q6NZul11SL3NTUVAQFBcFiscDf3x/h4eFITEx02adr\n166oV68eAKBz5844ePCgEalERERERERkQqa6J3fp0qVYu3Yt5syZAwBYsGABNm/ejBkzZlx0/6lT\np2Lfvn34+OOPXf6e9+SW93B63Y/A3vLxfiW3D+LW7t7UW/RwXjansbech2NvWQzvLTqIW7t705zG\n73HlY6/bB3Frd8PniGrcW9aaz+/yC6qeO4P63//+F/PmzcOGDRsUFhEREREREZFOTHW5ckBAAHJy\ncpzbOTk5CAwMLLXfzp07MWLECCxfvhwNGjS46LGio6MRGxuL2NhYJCQkuFwfnp2d7bJtsVhgsVgu\nezslJQXZxbazLRb3tkv0lLdteK/F4lZvdnY2e83e6+bjVXbb68ZXo16LxYKUlBT2spe9uvQW3/bA\n8wmtez3w/c2rx5e9Vd5rKTYnsTcbCQkJzvVddHQ0yiQmYrVapXnz5pKVlSXnz5+X0NBQSUtLc9nn\nwIED0qJFC9m0adMlj+PuPwtApf5kZWWJFL25fnl/3GR4r4eb2euBXg/zuvHVqNcr5zT2slfnXg83\na9nrYV43vuxV1uuVc5qbrZdiqntyAWDNmjWIjo6G3W5HREQEYmJiMHv2bABAZGQkhg8fjmXLluGG\nG24AAPj7+yM1NdXlGLwnt7yHq2Rv0UHc2t2b7p/QstfDvG58Neotejgvm9PYW87DsbcshvcWHcSt\n3b1pTuP3uPKx1+2DuLW74XNENe4ta81nukVuVeAit7yH0+sLnL3l4xMAtw/i1u7e1Fv0cF42p7G3\nnIdjb1kM7y06iFu7e9Ocxu9x5WOv2wdxa3fD54hq3FvWms9U9+Tqqvj14jpgr1ra9WZmVv4gVmvl\nj1FB2o2vZr2Afs3sVYu9arFXLfaqxV71dGs2S6+pfroyERnAz8/jr2oSERF5hM1W+WNYrYC/f+WP\nQ0Qew8uVodfb8oAJeosO4tbu3nRpCXvLx163D+LW7obPEewt5+HYWxb2XtZB3Nrdm+Y09paPvW4f\nxK3dDZ8jqnEvL1cmIiIiIiIir8BFbhUwy7XnFcVetdirFnvV062ZvWqxVy32qsVetdirnm7NZunl\nIpeIiIiIiIiqDd6TC72uPQdM0Ft0ELd296b7J9hbPva6fRC3djd8jmBvOQ/H3rKw97IO4tbu3jSn\nsbd87HX7IG7tbvgcUY17eU8uEREREREReQUucquAWa49ryj2qsVetdirnm7N7FWLvWqxVy32qsVe\n9XRrNksvF7lERERERERUbfCeXOh17Tlggt6ig7i1uzfdP8He8rHX7YO4tbvhcwR7y3k49paFvZd1\nELd296Y5jb3lY6/bB3Frd8PniGrcy3tyiYiIiIiIyCuYbpGblJSEkJAQBAcHY8qUKaU+vnfvXnTt\n2hW1atXCtGnTDCgszSzXnlcUe9Vir1rsVU+3ZvaqxV612KsWe9Vir3q6NZul18/ogOLsdjuioqLw\n/fffIyAgAB07dkT//v3RqlUr5z4NGzbEjBkz8M033xhYSkRERERERGZkqntyN23ahIkTJyIpKQkA\nMHnyZADAq6++WmrfiRMn4qqrrsLYsWNLfYz35Jb3cHrdj8De8rHX7YO4tbs39RY9nJfNaewt5+HY\nWxbDe4sO4tbu3jSnsbd87HX7IG7tbvgcUY17tbknNzc3F02bNnVuBwYGIjc318AiIiIiIiIi0omp\nFrmVfeXAKGa59ryi2KsWe9Vir3q6NbNXLfaqxV612KsWe9XTrdksvaa6JzcgIAA5OTnO7ZycHAQG\nBl7WsaKjo1G/fn0AQEhICLp06QKLxQLg78F3bF/q7yu6feTIEcBigeX/b2c7jlvRbTcf1/BeiwXI\nznbrcS0WC3vZy14Nei0WC44cOYKiv2Uve9lr+l7g78+v4OM6sJe97DV3b3HszUZKSgr27t0LAMjP\nz0dZTHVPrs1mQ8uWLZGcnIwmTZqgU6dOiI+Pd/nBUw6xsbGoW7cu78m9rIfT634E9paPvW4fxK3d\nvam36OG8bE5jbzkPx96yGN5bdBC3dvemOY295WOv2wdxa3fD54hq3FvWms9U7+T6+fkhLi4Offr0\ngd1uR0REBFq1aoXZs2cDACIjI3HkyBF07NgRp06dgq+vL95//32kpaXhqquuMrieiIiIiIiIjGaq\nRS4A9O3bF3379nX5u8jISOf/v+6661wuaTaD7Oxs51vrOmCvWuxVi73q6dbMXrXYqxZ71WKvWuxV\nT7dms/Sa6gdPEREREREREVWGqe7JrSq8J7e8h9PrfgT2lo+9bh/Erd29qbfo4bxsTmNvOQ/H3rIY\n3lt0ELd296Y5jb3lY6/bB3Frd8PniGrcq83vySUiIiIiIiKqDC5yq0DJH7ltduxVi71qsVc93ZrZ\nqxZ71WKvWuxVi73q6dZsll4ucomIiIiIiKja4D250Ovac8AEvUUHcWt3b7p/gr3lY6/bB3Frd8Pn\nCPaW83DsLQt7L+sgbu3uTXMae8vHXrcP4tbuhs8R1biX9+QSERERERGRV+AitwqY5drzimKvWuxV\ni73q6dbMXrXYqxZ71WKvWuxVT7dms/RykUtERERERETVBu/JhV7XngMm6C06iFu7e9P9E+wtH3vd\nPohbuxs+R7C3nIdjb1nYe1kHcWt3b5rT2Fs+9rp9ELd2N3yOqMa9vCeXiIiIiIiIvILpFrlJSUkI\nCQlBcHAwpkyZctF9Ro8ejeDgYISGhmLbtm0eLizNLNeeVxR71WKvWuxVT7dm9qrFXrXYqxZ71WKv\nero1m6XXVItcu92OqKgoJCUlIS0tDfHx8UhPT3fZZ/Xq1cjMzERGRgY+/vhjjBo1yqDav6WkpBid\n4Bb2qsVetdirnm7N7FWLvWqxVy32qsVe9XRrNkuvqRa5qampCAoKgsVigb+/P8LDw5GYmOiyz/Ll\ny/H0008DADp37oz8/HwcPXrUiFynvXv3Gvr47mKvWuxVi73q6dbMXrXYqxZ71WKvWuxVT7dms/Sa\napGbm5uLpk2bOrcDAwORm5tb7j4HDx70WCMRERERERGZl6kWuRX9aV4lf4pWZX8KWGXl5+cb+vju\nYq9a7FWLverp1sxetdirFnvVYq9a7FVPt2az9JrqVwilpKQgNjYWSUlJAIB3330Xvr6+GD9+vHOf\nZ599Fj179kR4eDgAICQkBOvWrUPjxo2d+7Rt2xY7duzwbDwRERERERF5RGhoKLZv337Rj/l5uKVM\nHTp0QEZGBrKzs9GkSRN8+eWXiI+Pd9mnf//+iIuLQ3h4OFJSUlC/fn2XBS6AS/5jiYiIiIiIqHoz\n1SLXz88PcXFx6NOnD+x2OyIiItCqVSvMnj0bABAZGYl+/fph9erVCAoKwpVXXolPP/3U4GoiIiIi\nIiIyC1NdrkxERERERERUGab6wVPk3X7//XecOXPG6AwiIiIiItIYF7nVkIigsLDQ+f91sH//frz9\n9tuYP3++0SkVcuHCBW3GVkS0aS1Op2a73W50ApmMTucvoF+v42vO8b2OqpZu5wOgV7NurTr12u12\nrXoBPodQhYvcCrDZbEYnVJjdboePjw98fX1RWFho+K9XKo/jC7tFixa44447sGfPHvz2228AzPtN\nYP369diyZQt8fHxK/R5ns3GcDz4+Prhw4YLRORXiOCfMfu4Cf3/zr1GjBgDgjz/+cP69WZ04cQI7\nd+50bpt9ftP1m7/j/DXzuQDo9fUG/N3r+Jo7d+4cAHOPs9m/xkqy2Wwu54OZxxYANmzYgOTkZPj4\n+DjnYLMSEef3ZQczv1BjtVqdzyHMzvEGT40aNeDj44MTJ04YnVRhjvlswYIFOHTokME1Fbdy5Ups\n27bN6IxLqhEbGxtrdITZ+foWvRawbds21KlTB7Vq1TK46OIcX9wAMGPGDHz44Yc4c+YMAgICUKdO\nHYPrXDkW4I6xXbZsGdauXYvc3FwUFhaic+fOpptURQQ+Pj44duwYxo0bh6SkJMycORPh4eGmPCds\nNhv8/PwgInjttdfw1VdfoUaNGmjcuDFq1qxpdN4lOc6JxYsX46effkKHDh0MLro0xzf/33//HSNG\njMC+ffvQq1cv0527xaWnp+O7777Drl27sGDBAjRr1gzXXHON0VkXVXxOmzt3Lvbs2YPQ0FCDqy7N\nMUc4LFu2DDt37kSbNm1KfcwMRMT59fbZZ59h586d8PHxQePGjU37Iqmjd+vWrRg/fjxWrVqFhx9+\n2JStDr6+vhARbN++HVdddZWp51/g7zGeP38+/Pz8ULt2bdSsWdN054Tja8rX1xc9evTAqVOnMHv2\nbPTs2RP/+Mc/jM4rpbCwEL6+vvD19UVubi7+97//wWKxwM/PVD8DFgCwevVqBAcHO+ffSZMmYcuW\nLRARNG3a1FTngtVqdS5sfXx8cPLkSTz33HN47733UK9ePTRu3Bh16tQx1RxcsmXHjh0YP348/vzz\nT9x9992oXbu2gXXl27VrF1588UUkJiZi1apVaNy4sSnPZb6TWwbHq5erV6/GzTffjJkzZyIiIgKZ\nmZkGl/2tsLAQ3bp1Q0pKCnx9fXHmzBnExMRg69atePnll/H+++9j5syZOH36tNGpAP5+FdPxTfTC\nhQtISEjAv/71LzzxxBNo0KABNm3ahA0bNjj3N1rJdzoCAgJw/PhxHD58GD/++CPq1atnZJ6LvLw8\ntGrVCufPn4efnx+OHDmCIUOGoGbNmhg8eDBeeeUVLFmyxHTvjjl6RAR5eXno27cvPv74YzRp0sTg\nstJKXia5atUqjBs3Dq1bt8Y777xjZNolFf/vfeONN2LRokV46623cO2116JVq1YGll3c448/jh07\ndsDX1xeHDx/Gc889h++++w4tWrQwOu2iHOeCY45wvFNus9kwefJkl48ZLTc3F/PmzcPhw4fh4+OD\nI0eOoF+/fli1ahVq166Nhx56CPv27XPO0UYr+T0gPz8fvXv3xptvvolatWph8+bNSElJuei+RnF0\nOP7366+/RqtWrfDhhx9ixIgRyM7ONrCutOK3OAHATz/9hNDQUPz000+Ij4/HhAkTXF4QMVphYaFz\nkWC321G7dm00bNgQS5YswapVqxAQEGB04kU5xu+jjz7Cvffei+nTpyMyMhLffvutwWV/O3bsGLp0\n6YLFixdDRLBz50506NABeXl5CAoKwoMPPohDhw6Z5lzYvn07hg8f7tyOj4/HiBEj0LFjR4wdOxZr\n1qzBsmXLAJhjDr7YO/nZ2dl4+eWXkZubi/fffx8NGjQwzVx2MT///DMGDx6Mjh07IiUlBU899RS+\n//57bN261ei0UsxxlpqEiLhcVuS43OGbb75BYmIi3nvvPaxduxZr1qyB1Wo1sLSI1WqFr68vevbs\niTFjxgAA/P39YbfbERUVhRUrVsBms+Guu+5C3bp1DW212WzOV/5q1KiB8+fP46WXXsK6deuwdu1a\nDB8+HHfffTcmTZqE2267DStWrDDFK4XFL0X94Ycf8Msvv6Bhw4b44osvUKdOHWRkZJjicjnHk5RG\njRqhadOmeP755wEABQUFuP766/H444/jiy++QOPGjdGjRw/nv8ksatSogXPnzsHHxwe//fYbQkND\nkZSUhAceeAB5eXlG5wH4+7+vY+wcPyStbt26+OOPP0x5j2DJ5lOnTqFhw4Z4+umncf/996Nz584u\n+xnNMYbvvfceWrduDQD47bffkJCQgH79+uH22283xdxbUvEnfD/99BPatm2Ljz76CPfffz9uvvlm\nfPfddwbWuUpPT8eGDRuwfv16AEWX2IeHhyM+Ph5bt25FzZo1TfOiaMnLZgEgKysLN9xwA1auXImp\nU6di6NChePPNNwEY/yS25BNYHx8fHDp0CGvWrEFycjImTZqE5cuXIzk52RSXMB86dAj5+fnOd0MP\nHDgAANiyZQsWLlyI6dOnY926dcjPz8fJkycNri3ieDfUx8cHu3btwq5du1C/fn0sXrwYeXl5yMjI\nAABT3J5TWFjo8v3gr7/+wptvvon33nsPKSkpSE5Oxm233YYlS5aY5oWP/Px8hIWFISIiAomJiQgI\nCMCMGTMQExODlStX4sKFC86vNyM5vme1bdsWs2bNwrFjxwAUfb9Ys2YNRo0ahcceewzdu3fHnj17\n8Msvv7h8nlEcz4FPnjyJadOmYevWrbjhhhswYsQIXHnlldixY4dzP7NxjPFNN92EJk2aYPfu3QCA\nQYMGAQBSU1Nx/Phxw/ouhovc/8/xjcnPzw9nzpzB8ePHUVhYiNOnT6NmzZqYNGkS7rrrLkyePBkv\nvPAC/P39DW0F4GyYNGkS8vLy8MUXX6BmzZrIzs7GgAEDYLfbsX37dnTr1g25ubmGfVPNycnBCy+8\n4Lw/Ij4+HkOGDEGtWrVw99134/bbb8e2bdtgt9vRvHlz1K5dGxs2bMDy5csN6S3Ox8cH+/fvR79+\n/fDvf/8bcXFxmDVrFtq3b4/u3btj1qxZLvsaYfv27UhMTHTeh71kyRIsWbIEe/fuRc2aNbF582YM\nGDAAd9xxB5KTkxEUFIScnBxDWh1KfqM5e/Yshg0bhk8++QQ1atTA1q1b0bt3b7z44ovo3LkzpkyZ\nYthi19Hq+O+7atUqdO/eHa+//jrmzZuH7t2746GHHoLNZkNmZqbz0kQjXay5W7duzubo6Gjccsst\nWLt2Lfbu3Wv4N9SS91lef/316NSpEyZNmoQ77rgDI0eOxKpVqwDA0Lm3OEez44ecTJgwAUeOHEGn\nTp0wePBgbNq0CePHj8e9995r+D1WNpvNeU707t0bbdq0wZYtW5Cbm4tdu3ZhwoQJCAsLQ2FhIXbv\n3o327dsjPz8fgHFPCkXEeelbQkICNm7cCKvViiNHjjifsNasWRNPP/00jh07hiVLlgAw9kUmxxPY\nP/74A//85z9hs9lw+vRp1KpVC6+++ioefPBBzJgxAxEREYZe1ldYWIj8/HxMmjQJc+bMAVC0OHj8\n8cdx8uRJbN68GcOHD8c999yDgQMH4rPPPkO9evVM8QKTr68vTp06hZdffhmDBg3Ck08+idmzZ6ND\nhw4YN24chgwZAgC44oorDH/h2XFp8q+//oqsrCzUqVMHHTp0wLFjx5yL2t69e6NmzZrYt2+fYa3F\nr/SpU6cOli9fjsGDB+Pw4cNo2LAhAgMD8cQTT6BLly7Izc113l5mhIu9E/rbb7+hZcuWyMvLwyuv\nvIKbbroJn376KQCgW7du+Mc//oFVq1bhwoULhnyvK/kC0erVqxEWFoadO3figw8+wJAhQ/DYY4+h\nQYMG+OWXX5wvoBv9PMJh4cKFaNOmDd566y1ERkaiXr16ePXVV3H06FFs374dDRo0QJ8+fZCamoqN\nGzcaneuCi9z/z/Hkav78+bjpppswevRozJw5E40bN8aePXtQp04d/PDDD3j++efx559/IjEx0RSt\nEydOBFD0zsdrr70GAAgJCcHgwYOd7+Z9+OGHGDdunMd/PY/jC7Rp06aYOnWq8xvklVdeia+++gqP\nP/44AKB58+bw8/PD3LlzARRNsldffTUOHjzo8ScsJV8IEBGsWLECI0aMQFJSEk6fPo1FixZh8eLF\neOmll5CVlYUFCxZg0KBBWLRokUdbHeMbHByMp59+GuPHj0evXr1wxRVX4Pnnn0dUVBSaNGmC4OBg\nREZGYujQoQCA8ePH44MPPjDkRY+Sk7bjh4zVrFkTDz/8MJYsWYLWrVvjgw8+wNtvv42JEydi1qxZ\n2L17tyH3qJR8J2np0qWYMWMGZsyYga5du2LmzJn49ttvMXDgQJw9exbr1q0DYOyrsJdqjouLc2ke\nMGAACgoKkJqaiv3792P9+vWGPIktft/tr7/+6nwl+D//+Q9mzpyJCxcu4Nlnn3W+gAMY+8OoSr47\nfvbsWfj4+ODMmTOYMGECNm3ahBYtWuC1115DVlYW5s2b53xRydNfc9999x3Onj0LPz8/57uKAHDf\nfffhr7/+wtq1a/HII48454wpU6agRo0amDdvHr788ksAnj2XMzIy8Mknn+DUqVPw8fHBvn370Llz\nZ3zxxReYPXs2nnrqKdx+++1o1KgRFixYgJo1a6JOnTq48cYb8dFHH8Fms3n8MsqS36Pi4uLQo0cP\n5xPbwsJC7Ny5Ew0bNsT69esRERGBI0eOOF+08bStW7di9OjRqF+/PsLCwpCRkYGMjAxs27YNnTt3\nRr169dCrVy/4+vpi2bJlGD16NICiS2wd87Unlfxa37t3L8aMGYNDhw5h9+7deO+997By5Ups3boV\nb7zxBnJycrBo0SLExcVh4cKFHu918PHxwalTpxAREYGnn34aMTExmDNnDjp27IjIyEjniwutWrXC\nb7/9hiuuuAKAZxc2JX9woojgxIkT6NWrF+6880706dMHQNEcV69ePQwdOhRXXXUVrrvuOsyaNcvj\n75Y7LlGvUaMGzpw5g927d+PcuXNo06YN+vTpg0mTJsHf3x9vvPEG4uLicP78ebRo0QIhISE4e/Ys\njhw54tFeoOhn+fzwww+wWq3IyMjA2bNnsW/fPkRFReGzzz7DvHnz8PPPP2PFihWIiIjAxo0bnbe7\nGP3iMwB8++23WLx4MVasWIFhw4Zh7ty5+Prrr9GzZ0+0b98eH3/8MQCgX79+CAsLQ9u2bQ0uLkG8\nlN1uF7vd7vz/mZmZMmrUKBk9erRkZGTIli1bJCgoSLKysmTGjBny7LPPysKFCyU5OVk6d+4sI0eO\nlAsXLnis12azOVtPnjwpgwcPlt69e8v69evl3LlzIiLSrVs3efvttyU/P19iYmIkLCxM7rrrLund\nu7ds2LDBY61Wq7XU3x06dEhuueUW+fbbb0VEJCwsTMaNGyciIqdOnZJvv/1WWrVqJffee6+0b99e\nfvnlF4/1Xszy5ctlx44dzu2MjAzp1KmTPPfcczJ16lR55pln5MSJE7JlyxZ5+eWXJTIyUs6ePeuR\ntgsXLsiiRYvk9OnTIiKyf/9+6dmzpzRq1EjOnDnj3O/666+X5ORkSU9Pl6FDh0rfvn2lffv2MmjQ\nIMnOzvZIq8PFzon9+/dL/fr1Zf/+/SIicvz4cYmMjJQ33nhDREQKCwslMzNThg0bJo899picPHlS\nCgsLPdotUjTes2bNkpMnT8rBgwfl7Nmz8vHHH0ubNm0kMjJSevXqJQUFBbJgwQJ55pln5Oeff/Z4\n4+U0nzt3TlasWCHh4eHSqFEjiY+PN6x3586d0rdvX+nXr5/06dNHMjIyRESkf//+MnLkSBER+fTT\nT6Vv374u57gnlTz31q5dK926dZMnnnhC3n33XREReffdd+Wdd96RLl26SGJiouTk5EifPn3E39/f\n+RRAEYgAACAASURBVP3Gk26//XaJiYmRvLw86dmzp9x5553yyiuvyOnTp2Xp0qXy3HPPyd69eyU+\nPl7atGkj06ZNk/vvv1+6du0q27Zt81inY2yXLVsmERERsnLlShERWbp0qUyYMEFERPLy8mTUqFEy\nfvx42bx5swQGBkp8fLw8+OCD8sorr8jDDz8sP/74o8eaRcTlv+kPP/wgP/74o4waNUr++OMPl/3+\n+c9/yujRoyUhIUFWr14t7du3l+joaOf3dU86d+6c5OfnS0FBgZw6dUpiYmLkrbfeknfffVdSUlJE\npOjrceTIkTJw4ED58ssv5fbbb5dHH31UTpw44bHOwsJCl/E9ePCgiIj88ccfEhUVJXfddZfzY2PG\njJHx48eLiMi6devkgQcekPDwcDl06JDHei/233Lu3Lny9ttvi4jIiBEjpH379pKZmSmpqaly0003\nyf/93//J3Llz5dZbb5UtW7Z4rLWkFStWyAMPPCBjx46V5ORkERGJjo6WyZMnS35+vuzZs0eGDx8u\nQ4cOlV69esm//vUv+e233zzWV3JsP/jgAwkKCpKhQ4fKM888IyIiubm5YrFYZOvWrSIiMmjQIHn+\n+edFROTMmTMXfQ6iyrlz52Ty5MmyZ88eSUtLk4EDB0qHDh2kT58+kpeXJ/3795ePP/7YuX98fLzc\nc889IiIyZMgQmTt3rkfXFyWdPHlScnNzpbCwUM6dOydnz56VyZMnS9euXWXMmDFSv359ERFJS0uT\nsLAwWb16tWGt5fHKRW7xk92xUMjPz5euXbtKRESE82MTJ06Uhx9+WESKvtkOGzZM+vbtK4mJiZ4N\n/v9OnDghNptNcnJyZMiQIVJQUCAi4vxi2Ldvn1x99dVy5MgRERH55Zdf5IcffnB+vicWCN98840M\nGzZMREQKCgrks88+cy5ipk2bJk899ZSIiOzdu1fq1q3rbBURycrKkv/+978ux1P9xLDkmKSlpUnb\ntm2lb9++0r9/f4mJiZEzZ87IwoUL5cUXXxSRom+izZo1k0mTJklhYaHL+eSp3smTJ0uPHj1k4MCB\nMnjwYNm9e7dce+218tNPPzn3XbBggbRs2dLZtWHDBtm8ebPHWh0udk5kZmaKiMjYsWNlyJAhIlJ0\nHn///ffSvXt32b9/v2zatEnCwsKcTxKMsGzZMmnVqpWMGjVKjh07JiJF58ijjz4qhw4dkiNHjkho\naKhMmTJF/vrrL1m8eLHzRSezN0+aNElERH7//XePPnkt6ezZszJgwABZunSpiIi0bt1a7r//fhER\nOXr0qFx99dWyd+9eOX36tIwaNcqjiy+Hkk+QsrOzpUuXLrJ8+XLZvXu3y3m6ePFiueGGG+Tuu++W\ngoICycrKknXr1omIZ+Zgm83mfFKYnp4uLVq0kOeff17mzp0rOTk58uSTT8qgQYNERGTcuHEydepU\nERHZsGGDTJs2TebNm6e88VJOnjwpL7/8skyYMEEKCgpkwoQJMnDgQBEpmh/27NkjvXr1EqvVKitW\nrJA33nhDFixYIEePHpUnnnjCeb6r5Phv6PjfAwcOyP/93//JfffdJxkZGdK+fXsZMGCADBs2TO67\n7z7p37+//Prrr/Lll1/K0KFDpV+/frJ27VrlnQ4Xm+d/+eUXufHGG+X8+fOSnJwsDzzwgNSqVUtG\njx7tfIH52LFjEhcXJ8OHD5fly5d7rDcrK8vlv+PWrVulb9++MmDAAHn11Vfl5MmTsmXLFhkxYoR8\n9dVXIlL03OfOO++UZcuWiUjReeTgia+54o/x66+/yp9//ikiIjNnzpSRI0fKXXfdJY899phzYVhQ\nUCCTJk2S0NBQefnll+XAgQPKGx1KzmWbN2+WDh06yOrVq2Xy5Mny2GOPyapVq2TXrl3yxBNPOF84\nOnDggMTExDjHWMQzzyFKvtCxa9cuGTJkiJw5c0Y2btwoV1xxhXz44YciIvLWW29J//79nf8ux5tR\nxd/Q8oSCggLnc5y8vDzp2LGjdO/eXdLT00VEJCEhQZo1a+bcf82aNfLqq6+KSNH3YyNNnz5dbrrp\nJnn22WdlzJgxIlL0Ndm/f3/Jy8sTEZGrr75aXnrpJRER2bhxo8uLEEa8EVEWr1nk2u12yc/Pd24X\nFBRIdHS0PPLII86JctmyZfLAAw9Ibm6uiBS9GnPLLbfI/PnzRURKvYOg8lXYi50offr0kbi4ONm4\ncaOEhYWJiDjfPXR88T7xxBPSp0+fUp/rqVeMMzIy5Oabb5a4uDjp06eP9O7dWx5++GGZNm2a2Gw2\n6dOnj3zxxRciIvLss89Kjx49Lnoc1a+6Xez4hYWFMmvWLJk2bZqIiPz8888SFRUlH3zwgaxfv17q\n168v27dvlyFDhsjYsWMlLS3N5XNVTqAle7/++mupW7euPPfcc86/++ijjyQ4ONhlv5YtWzoXM8Vb\nPfkOwqXOienTp8uFCxekZcuWzlePU1NTpV27dhIZGSkirl9znn7X46+//pJnnnlGNm7c6PL38+bN\nc774tWrVKhkyZIg899xzhr7y6uBuc0FBgXOusVqtSr9Bff/99y5XlKSnpzufjJ44cULWr18v7du3\nl1deeUVat24tc+bMERGRqKgo6dy5s4h47knKxTjeHT9+/LgkJyc7X7gRKVr0XnvttXL8+HERERk+\nfLj06NHDo09YSo6NY8547bXXpEWLFi7vvFx33XWyc+dOWbdunQwePFhWrFhR6niefOdDRGThwoXS\ntm1beeihhyQ4OFhWrlwpR44ckRYtWsju3btFRGT79u0ydOhQ53l67tw5SUpKkttuu02io6OVfw2W\nHBO73S69e/d2eQK7a9cuWblypWzfvl2OHTsm99xzj/MKJseL6iLq5+HCwkJZtmyZ87ELCgpkz549\n8tdff4lI0TtdEydOFJGiF03vu+8+mTJlivTq1Uvuvvtu55Pu4lTPwadPn5YxY8Y4v6+lpaXJPffc\nI6tXr5b9+/fLrbfeKq+//rqIiLz//vvywgsvOBfE06dPd76Y5Kne4n799Ve59957pX///nLffffJ\n3r175f3335cOHTq4vEiwfPlyOXz4sGRkZMiwYcNk0aJFIiJy/vx5pfNv8WNfuHBBNm3aJDabTaZM\nmeJcsJw+fVpWrFghAwcOlMLCQnnzzTflhRdeuOiVXyrn4pLHzs3NlcjISOnevbvY7XY5deqUvP76\n6xIWFiYxMTHSo0cP56LymmuukTVr1ihruxSbzeYyxmfPnpVRo0bJjBkz5PDhw/LGG2/IrFmznHPA\n/fffLxERETJhwgS59dZbZebMmSLy938nI77X/fe//5Vnn31WCgsL5ZtvvhF/f3/ZsmWLJCUlyZAh\nQ2Tv3r2ycuVKGTJkiISHh7s0mm1x6+AVi9w///xTRo4cKfHx8WK1WmXv3r3St29feffdd2XdunUS\nFhbmfEI1cOBAef/9953vkn7xxRfyz3/+U0T+PulUTpzFL6MWKXoFxeGTTz5xLlgCAwNdJs4VK1ZI\nTk6O2Gw2w18J+uijj6RJkybOS87WrVsnjz76qKxbt05Wr14tDzzwgBw9elTOnz8v/fr1kzNnznj0\nC+Ri7yw6ngBGRUXJiBEjRKRoklq1apUMHTpULly4IG+++ab07t1b3nrrLY+1lpSYmCiZmZmSk5Mj\n8+fPd77Ycf78eRERuemmm2T69Okyd+5c+fLLL+X48eMeu4y6LBc7JwYMGCAbN26UhQsXyp133ilx\ncXFy3333yYcffij79u1zfm7Jbx6ecv78eenUqZPz6gLHOJ46dUruuusuueeeeyQoKKjUrQBGTvaX\n2+wJQ4cOlf/X3nnGRXV8ffwAiUaNGmMUNdYo1mggEgEVpSkIIsVHCSBWlKIIYkEFg0HFgoA1YBCN\nvaISeyN2LFixF7ChYAAFAWXZ3d/zgs/Of3fBBMsue8l8X+l6d5ydO/fcc86cEhYWhkOHDkFfXx/m\n5uaws7Nj/+7n58c88tOnT0fDhg2ZY1IWvgxUzstfdjru7e2NgoIC3LhxA40aNVIwqlxcXBSMGXmD\nRpUo77edO3fi559/RkREBIqLi/H27Vu0a9cOhw8fZtf4+/tj9erVKCoqwoYNG5iHXjaeuvdwdnY2\nbG1t2Sl9YGAgJk6ciKdPnyIyMhKGhoZYu3YtrKys4Ofnx97Bjx8/xvz581mYrbrYtGkTTpw4AQA4\ndeoUjI2NcenSJQXdoLCwEFu3boWRkRF73mTrqg7j69WrVwgICMCvv/6K+Ph4tG7dGtbW1hgwYABe\nvnyJa9eu4fvvv8fDhw9x/fp1+Pr6Ytu2bQBKT+3koztU/czJ1kMqleLMmTNwcHBg9zQ7OxsHDx6E\nvr4+AgMD8d133+HKlSt4+PAhPDw8sGTJEpXOrTzKc6b4+flh69atAIA2bdrA398fV65cwcCBAzF7\n9mykpqZiwoQJ6NixI1JSUvD27VvEx8dj8ODBzPGgDlavXg09PT2mSx46dAimpqZM501OToarqyuK\niopw/fp1xMXFKfxeVe+FtLQ07Nq1C0DpOj948AA2NjYsChAodSrKH+Y0bdoUPj4+AMCcTTJU/awp\nH3Ckp6ez9dq4cSMcHBzw+vVrbNu2DePGjWPRdGlpaTh27BgmTpzIQqwrg4yMDHbv169fj9DQULi7\nu8PU1JSFIWdnZ2PGjBno3r07DAwMkJqaWmnzfV+qtJEr/7KeN28eAgMDkZ6ejry8PFy/fh0PHjyA\no6MjunbtihEjRiA1NRUpKSno1q1bpYTEyT+M2dnZePDgAVq2bInExES8ffsWa9asYd7VLVu2wNjY\nGNOmTcOAAQPQrVs35slSHkvd5Ofno0WLFpg/fz6A0tCh5cuXY9q0aQAAS0tL5rWqDN51shgREYHL\nly/Dzs4Od+7cAVDqPJAZvSUlJQqhqOo8yZeFUdvY2MDe3p55s62srBAVFcWuu379OhwcHODo6FjG\nUKxM/m1P7NixAyNGjMDq1avZd1StaP/bmrx69QozZsxAXFwcm8vff/+Np0+foqSkpIyhqI41Ftqc\n5U++Ll26BDc3N4Xwxx49ejCZ5ufnh9mzZ+P27dsYP348bGxskJ6eXqmebeDdp+Nubm5wdXVFbm4u\n/vrrL1hYWDBjUR3GTEFBgULOYUlJCQICAtCvXz9cvnwZlpaWmDhxIoDS3MAff/wRx44dw927d9Gt\nW7cyv6cyKSgoQPfu3Vm6xY0bN+Du7o6VK1cCKD39CgwMxPr169U6L2UZJKvNYGtri6FDh8LFxQXF\nxcUYM2YMwsPDmbKYnZ0Ne3t7ODk5qVUhVFa4t23bhuDgYFhbWzPl39XVFfPmzcOLFy8wY8YMltMY\nHR2NiIgItYZ3lhcBVVBQgHnz5mHYsGEASve1u7s7U7jt7OxYPu7Ro0cVUp5U/c6QGV8yZKfIL1++\nRFBQEH755RcYGRnBz8+PRSGlpKQgLCwMjo6OCp8DpfJanRFAFy9eRM+ePRXCozMzM+Hn58fSsXbt\n2gVnZ2e1R3LIKCwshJGRESZPngxXV1f89ddfmDhxIrp16wbgf7U6rKyssGPHDuzYsQN9+vRBTEyM\nWlPHlHn58iXc3NzQrl07jBw5EtevX4dYLIaPjw/Cw8NRUlKCadOmYdy4cbC1tUVsbKzC95UPuFSN\nVCrF1KlT0bhxY/j4+ODMmTM4duwYdHV12aEfAJw8eZLpwzdu3FAYo7L1yopQZY1c5cXPzMzE0KFD\nER8fj8LCQhQXF8PDwwNbtmyBSCRCnz59WCGksLAwXLt2TeH7qtp8JSUlCmO/fv0aAQEBMDIyglQq\nxf79+xEQEICJEyfi6tWr6NixIxPkV65cwe+//65gGKiDimzsLVu2oEuXLkzoREZGshNx+dPpio73\nqVE+WTx27Bjc3NywatUqREZGwsjICAcOHIClpSVCQ0PLFCpT1cu0omHUvr6+iI2NxbVr19C2bVsc\nOXIEgwcPxqNHjxS8wuo6kfnQPSELl1NG1cJefnx5Z4Ay27Ztg6urK6ZPn46tW7fCxMQEixYtUrhG\nXcqAEOcMlJ4ux8TEoLi4GEuXLoWJiQlOnjwJoNR5U6dOHbx69QpJSUnw8PBA8+bNFYpyVDbKp+My\nJfX169fw8vLCwIED0bVrV2zZskWt80pJScGIESNQUFCAX3/9FYWFhThz5gwKCgqwfPlytGzZEtbW\n1mxeVlZW6Nq1K0aNGoXw8HCFsSrboZSdnY3g4GDExcWxfe7k5ARLS0uFOgMVHe9jedf4CQkJrBCW\nrFBecHAwnjx5AgsLC5w7d47NX97prMp3RnlkZ2djzJgxmD59OhYuXIgOHTqwgnhnz56Fs7MzHj16\nhMzMTDRt2hTJycksGkgdlOfEHTt2LNatW4fi4mI8ePCAFb3KysqCjY0N7ty5g1u3bsHf3x+WlpZq\nNW5lNGrUCJs3b8bNmzfRqVMn2NvbIzo6GgDg4OAAc3NzhagT2ckuUOrolVFZBuTly5fh5uaG8ePH\nY+HChfDz88OiRYvw9OlTGBgYwNnZGR07dsTevXsB/O+do671lUqlyM3Nhb6+Pr755hsF40q+bkNu\nbi42b94MIyMj9OnTh6UzqAv5QrAAsGbNGvj4+GDBggV48+YNwsLC0KdPHwDAiRMnWPh6fn4+FixY\ngJkzZyqMp26DfNeuXdi3bx+io6ORm5uL1atXw9TUFADQt29fRERE4OrVq4iPj0eHDh0QHx+v8P3K\n2r8fQpUzcuUfRqlUimXLluH8+fMAgD179mD48OG4ePEi8vLy0LBhQ5YTZmNjA09PTwUBpWoeP34M\nb29vlsdVUlKCIUOGICAgAFlZWey6t2/fwt7eHpMmTYKxsfE7w5HVsfEqqmhLpVJYW1vDxsYGu3fv\nRocOHRATE6MwRmXm1ymfLL569QoxMTHsVCkmJgZeXl4sH1sdfEgYNVBa3MLFxYU5EWSoy3nwKfZE\neWN9apRf1BcuXICFhQVcXFxYoRDlayUSCa5du4bp06dj4MCBZXK+VI0Q5yyPLMzXy8sLr1+/RkZG\nBoYMGYLNmzczpW/kyJFMIXj16pVC0RhNPR3Pzs5mz6a6827l94Senh4aNWoEX19fFBUVQSKRIC4u\njhVzmzFjBqysrJCVlYXk5GRMmTKFnTYC6lFeKyoftmzZgiFDhmDOnDk4cOAArKyssHLlSoWTL3W8\nM5TlcGxsLLvXISEh5RbCEolE8PX1xYQJE8oUnlOXQS67l4mJiRg1ahQrGpOWloZx48YpnM50796d\nFdBUruqr6jXesWMHU5qLi4uRmJiIXr16ITw8HHZ2dhgxYgSeP3+O9evXw8nJCRKJBEFBQXB2dkaD\nBg1YSLW6kNerdu3ahXbt2mHatGnYt28fkpOT4eDggN27d+PIkSOwsrLC7t27cevWLQwaNAhWVlbI\nzMxUMBZVub7/ttcKCgqwfft2TJo0CZs2bcLixYvh6OiIhw8fIj8/v8zhTmVx6NAhWFhYsHo5L1++\nxB9//IFBgwYppF89efKE/VnVaytD/v+Qvas2bdqEDh06sPmKxWJ07dqVdSyYPHkyk8nvGksdpKSk\nwMPDA927d0fbtm0xfvx4AKVr5+DggJiYGDx//hxhYWEsEkVT9sSHUmWMXOWX9fHjxzF06FBYWlrC\nw8ODvbT8/f1Zuwd/f3+YmpqiY8eOmDhxooKnTV0FAAoKClh+6pMnT6Cvr8/+TSQSMaGVkZGBuLg4\n1KhRgz3Y8lUe1TVf4J8VbXnOnj2LmjVrIiAgQO2hcR96sqjsYXuf8T6WjwmjVnfRI6HtCWUHUFZW\nFnr06MGKfryL8kJl1fUyFeKc5XlXmO/KlSvh6+vLqri+ffuWtQaSPWfqysP+FKfj8oW7VIVykaKH\nDx/i9OnTCA4ORrNmzRSuHTduHKZMmQIAWLRoEQwNDcuEWar6ZPFDnDMlJSW4cOECPD09YWNjw3Je\n1Y1MDsfExGDAgAEwNTWFk5MT/vzzT2RlZaF169YsBFlWCAsodYbI6xDqQH6dZaHySUlJMDExUYiS\niYuLg6OjI5YuXYp9+/bB0NBQoXCi8liqmmthYSF+++03jBo1Cs+ePcOWLVugr6/PTsdfvXoFe3t7\nttYjRoxAREQEgNLCTvJ5wurItZRRXFyM5ORkAKV1WywtLQGU6mg7d+6ElZUVRCIRNm/eDB8fH/Tu\n3ZvpmeqiorJMnq1bt8LOzq7MvlX1gcm77p38mickJMDQ0JDNJS0tDe7u7mw/VGQ8VXH27FkMGDAA\nrq6uzHnk6emJiIgI5kTctWsXWrRoAalUikePHuH27dsA/qevq7vuwfXr1/HVV19h8eLFAIAFCxZg\nwoQJLI3h7Nmz0NPTY5GW8gdt6g6l/pQI3sgtr0JhUlIStLS0sHTpUgClocr29vaIi4vD7du34e7u\njsOHD0MikWDv3r3spBdQrWfln/rHHj58GCKRiHkF34W7u7taQ/k+VNGWIe8FqgxPmyafLJbH+4ZR\nywtLdYXECXFPyIiKisLVq1dZ3mdkZCTWrl2L4OBg/Pnnn//6sq+M0Hohzhl4dxGsN2/eYOTIkZgz\nZ06ZfqLqQMin448ePUJQUBCMjIxYwR1PT094e3uza44cOYKuXbvCxsYGZmZmZYxFVT9vH+ucUU63\nqAzlKjY2Fs2bN2ftU5YuXQp/f3/cv3+fOQ7kC2GVlJSUCWFUFeXtXxsbGzg6OmLGjBkQiUSYO3cu\nQkJCWFXczMxMjBkzBmZmZnB1dVV7P2H5Oe/Zswc+Pj5YsWIFRCIRRo8ejWnTpjGletGiRTAzMwNQ\neio9ZcoUhVBqVVeBV0ZWqEnmNLh+/TpatmzJDhtkYeuTJ08GUHr/5U8b1Vm7oyLO5pKSEly7dg02\nNjawsLBQuzOpovqZWCyGk5MTgoODcfz4cSxZsgSpqan/6ERXBTJ5JlvrrKwsdO/eHevXr8f+/fsx\nePBghIeHIz09Hb1798bly5fZtUOGDFGo71PZFYgHDBjAIlEyMjIwbNgwrFq1ihVJnDhxYhn7Qwh5\nt/+EzsyZM2eSgNHS0iJtbW3KycmhM2fOUOPGjUlPT4+OHj1KIpGIHBwcqGbNmvTNN9/QunXryM/P\nj06ePEm5ublkbGxMHTp0oG+//ZZQavCTtra2SuaZmJhIkZGR5ODgQG/fvqWNGzdS7dq1qXnz5vTm\nzRs6fvw46evrExHRvn37yNLSkr744guaMGEC5ebmUufOnamkpIQ2bNhAAwYMoBYtWqhknsrI1iM6\nOppq1apFJSUllJGRQTo6OnT//n3atm0bFRYWUpMmTah69ersexKJhLS1tUlXV1fh71paWiqZJwA2\ntpaWFqWkpJCHhwedO3eOLC0tqUaNGmW+o6WlRXp6ehQWFkZff/01TZ8+nZycnMpco07atWtHK1as\noJYtW1KPHj2oXr16lJ+fT2lpaTRjxgwSi8V07NgxsrOzo4CAANLS0lL43eqYrxD2hPx+ICJKTk6m\n/v37U2FhIdna2lLz5s0pMzOTkpOTqUmTJnTv3j1KTU2lZs2aUbNmzUgqlRIA0tHRISKi1NRU0tXV\nVZl8EOKcZffvXRQUFNCLFy9IIpGQgYEBVatWjXJycujt27fUqlUrqlGjBnXt2rXC430KxGIxWx8i\nohcvXtCIESPI29ubfv311zJyQv5+6Orqkrm5Obm4uFCLFi3YO0NVz5xUKlUY+9ixY+Tm5kb9+vUj\nsVhMx48fp549e5KdnR1NnTqVbG1tqX79+iQWi8ne3p7q1q1LixcvZu8K2VxVLSM+Vj58/vnnRPS/\ne6VuGUz0PzncvHlzMjExobp169KtW7fo8ePHNGHCBGrSpAmdPXuW+vXrR0FBQaStrc1+tyr3w717\n96ikpIRq165NYrGYioqKaOTIkeTq6kqenp60efNmOnXqFE2dOpXWrl1L33zzDbVu3Zrq1KlDOjo6\n5OTkRH5+ftSyZUsCoNL5yqOlpUX5+fnk5uZGR44coZcvX9Ldu3fJ1NSUmjZtSmfOnKGaNWtS+/bt\niYjo4cOHZG9vT9999x3Z2NgoPLOq1COUuXTpEoWHh1NiYiINGDCAiIgaNmxIDx8+pD///JOcnZ2p\nevXqVLduXbp27RqZmZmRjo4OVa9enSQSCdNPVcH7yjIZ2traJBaLqUOHDhQaGspkmSrX9EP0M21t\nberWrRstXbqUTp48SZ6envTDDz9QjRo1yshGVc5Zdv/evn1Ln3/+OZ05c4Zu3bpFc+bMoTZt2pCJ\niQmFhISQl5cXZWRkUFJSEpmZmdEXX3xBzs7O1KhRIzZmZcgyefT19SkmJoa6d+9Oenp6VFBQQPv2\n7aNWrVpRs2bNqE+fPtSuXTuF76j6naxyKsOy/liUPaW//fYbWrVqBTs7OwwaNAgXLlzA3bt3Ua1a\nNRbCc/DgQYwdOxZAqSdG3f2d/q1/bN++fZGQkICsrCx4enrC3t4eHTt2hI+PDwvR2bNnD8aOHavS\nljDKa3HmzBl06dIFAwcOxP379/H27VvExcXB3d0dsbGx8PT0xNChQ1nVVuWwBnXE8wvpZFGIYdRC\n2hPlRXaIRCLMnDmTFdMAUOb0U1atUb6XKFDajsDJyQkeHh4qW2shzvlDw3yNjY0rpeWHMpp8Oq4s\ng2TPX3x8PEu7kUqlrGonAMyfPx/9+vVDq1atWOinOuYqPz8ZmiwfZFRkTbZt26YQLrl9+3YMGTIE\nBw8e/KDxPpb8/Hz88ccfiI6OxsyZMxEXF4fTp0/DxcWFXSORSNCgQQM8fvwYcXFxGD58eLlFeSqj\ncNeBAwfYXK9cuYIpU6awLgFBQUEwMDCAv78/mjVrVqYWRmWFSsoXaoqMjIS3tzd+//13iEQitGzZ\nkvVjrczTrveVZe/qp60qPlQ/k81TVsFaXSjLo6NHj6JTp04YNmwYTp48idzcXDRr1oyF9RYWFsLD\nwwOXL1/Go0ePEBISolD3QNPCfGfNmgVnZ2cApbI7IiKiTBG3yj5x/pQIzsiV3zDJyclMCMlCdKFF\nWQAAHWBJREFUXZYuXcoqTo4aNQp6enrYtGkTOnfujJCQEIUxKjsUVb5/7N69e+Hg4ICMjAxIJBI8\nefKExfDLULViJTRFW5n3FfbK81L1PIUWRi3kPVFQUIDY2FhWFMjPzw8WFhYYNGgQvLy80KpVK6Sk\npODevXsIDAwss8YFBQUICAiAubm52govaPqcVRHmq448QHmEYIDJOH36NLy9vbFu3ToApT0XJ02a\nhKdPnwIoDeVs3rw5m+vp06fL9FtUdd6tEOVDReWwRCKBq6srcxpkZWVh165dCr9HHVXg5f+P+fPn\no2bNmujZsycKCgrw+vVrNG7cWGEtR48ejd27d+PFixdYvHixQuEudXPgwAGWDrZ7927WBgYoddo7\nOjoiJSUFaWlpcHR0xLx58/D8+XO1ze9DCjU5ODggNzcXixcvLtPZQp2hyUKSZcDHOxbVXVg1LS0N\nFy5cQEhICI4ePYply5Zh1KhRuHHjBubPn8/ysi9fvgxzc3O1FiD8GP7++2+0bt2a2SFVHUEYufIF\nlgDgwYMHiIqKgp2dHW7evMmag8v+bdy4cUhKSkJhYSG+/vpr+Pv7lymyUBlUpH/sihUrFISZuhO+\nNV3RBoQl7IVWoKk8NH1PnDx5UsErHB8fj06dOsHLywvjx4/Hpk2bIBKJsHv3bpw5cwavXr3C5MmT\nMWfOHFa1UfkFGxkZqdKenEKbs9CKYAnJABOJRFizZg1rlZOfn49NmzbB3NwcERER+OmnnxAVFYW0\ntDSMHDkSmzdvBlCaZ2loaIh58+YpjKfuPFZNlw/Ah8vhc+fOQVdXFxkZGf84niqQv4eyfshXr17F\nsGHDsGDBAlbZNSgoCL1798azZ89w7do19O7dmxWTURfK6/HgwQNWsMvX1xdhYWE4fvw4/P39WY/s\nJ0+eoHPnzhgyZAikUinCw8MRGBjIeriqeo0/tFCTrEieuhCSLJPNVx5N1s9kyP9/b968QWhoKFq0\naAEzMzPY2toCKK2HMHfuXEybNg1isRiOjo74+eef0b59e9bPu7J7ulcUdVdUr0w03sgt77StdevW\nsLW1ZUVLQkNDFSrZOTk5sWqSERER+PHHHwGULyxUOdfyeJ/+sapGaIq20IS9kMKoZQhpT8heKAsW\nLICfnx+uX7+Oly9fIiIiAjk5OUhNTUX79u1ha2vLDAhZBVdLS0ssW7ZMYTzlntWqQIhzlkeTw3zL\nQwgGWH5+Pq5evcr+HhUVhZ9++glr164FUKqQ1KtXD0VFRdi6dSvs7e3h7OwMAwMDhISEoH379qxY\nk6oNAyHJBxkfK4dlJ5HKznZ1UFRUBH9/f/zwww8YNmwYDh48iIcPH8LX11chpNfX1xdDhw7F999/\nz/avuhTuy5cvY+fOnQDAUqtWr17NesT27dsX//d//4crV65g1apV6NSpE44fP46xY8fCy8uLOXHv\n3bsHHx8fPHjwQGVz/ZSFmtS9HzRdlglNPyuPu3fvIiAgAP379wcAnDp1Ci1btmT7OikpCaNHj2aO\nmkePHqk0ffBTU96hWVUKTS4PjTdyZWzYsIEJQ1mvsvz8fIjFYiQlJTGv96pVq9C9e3eFismNGzdm\n5d9VhZD6xwpd0dZ0Ya+MpodRA8LbE/JrcuHCBfzyyy9YvHgxxGIxSkpKsHLlShgYGGDVqlWYMWMG\nJk6cCKDUIWZsbIwtW7aU+/tViZDmLERvvJAMMOX1KSgoQFhYGFauXIm8vDy4uLjgt99+Y6d1rq6u\nrFVNWloaNm7ciJcvX+L8+fMYNmyYylvXCE0+lMfHymFVy4jy5Pz8+fPh5uaGoqIibNiwAe3atUNu\nbi6WLVuGKVOmIDU1FWfPnsXTp0+Rk5NTpjK1KpGNX1BQgDp16iAoKAiWlpZ48OAB5s6di+7du8PI\nyAiTJk1iLe4kEglWrlyJUaNGYfz48Wp1en2Ms+Pp06esSjzAnUn/hBD0M/n7J5VKkZmZiXnz5iE5\nORkhISEwMjJiz9LgwYMxbtw4AEBubi4WLlyIpUuXKrS5U1fLuw9F2QFx8eJFDB8+vFJTGdSFxhu5\n165dg6GhIYYMGYLg4GD4+PgAAHr37s36PQGl4Z0hISFwcXFhPexkN1VVN1KIoahCUrQBYQl7IRoG\ngPD2hIySkhJMnz4dgwYNwvz58xEQEMAUkaFDh7Kewj4+PtDX18fhw4dZIToZ6la0NX3OQvTGC8kA\nU47IkOUfikQirFixAqNHj0Z2djbWr18PX19fFlaWl5cHLS0tJhOysrLwf//3fzAxMUFSUpJK5ipD\naPJBaHJYeb7p6enMKJw4cSI2bdrE/m3w4MGYMWMG8vPzMWvWLLRq1QpOTk4K+oaqFW6RSISNGzey\ntiMPHjyAmZkZ6tevzwrurFmzBubm5gqtijZs2MAOAOT7uqs7ukOTCzUJSZYBwtLPgLL3Urb3ioqK\n0KZNG9y+fRv379+Hj48Py7d+/PgxGjVqhLNnzwIo7eUsVF6+fAk/Pz9YW1uXW5CuKqJRRm55wmPV\nqlVMUPbt2xf9+/eHRCLB8ePH0bFjR4XKa/IbWNU9Q4UYiipD0xVtQFjCXoiGgTJC2BPyFBUVYfjw\n4Rg5ciRycnKQl5eH4OBgzJo1C0Bpfru3tzc2bNgAGxsbbN26lSllQOVUwxTSnIXgjQeEY4CJRCKF\n57+4uBgBAQFo1aoVgoKCcOnSJeTk5CAwMBBRUVEQi8Xw8vLC0qVLWVHFlJQU9n2JRFLhd82nQAjy\nQYhyWH7c169fY8CAAejUqRP8/Pzw999/Izg4GFOnTmXXnD59GtbW1igpKUFJSQlu3Lihknm9C9nz\nMW/ePPTu3RuDBw+Gu7s7rl+/joYNG7JQ3uTkZEybNg0ODg44efIkBgwYgB49eiikZKla7xGas0Mo\nskx+bCHoZzLS0tJYGqNIJEJ8fDxWr17NwuOnTJmC+fPnQyqVYuXKlfDx8cH9+/cBADNmzEBCQoLC\neELLY92+fTvatGmjIAv/C2iEkSv/MIpEIly9epXFufv5+eHHH3+EkZERZs+erfC9/v37IyAgoMx4\n6lQGhRCKKo8QFG0hCXt5hGIYKCOEPaHM06dP0bVrV4XPDh48CF9fXxw/fhx///03JkyYABsbG4VU\nhcoMKdLUOQvNG6+Mphtgubm5mDZtGlOmEhISMGLECCxYsAD37t1DREQEa+mwb98+jBw5Ejdv3sSR\nI0fw888/M0VL/veqE6HJByHIYfn9JhKJsGXLFuzZswcrVqzA69evMXnyZHh5eeHVq1cwMDDA2rVr\n8fz5c/j4+GDOnDllxlP1GivvuR07dqB27drw9fVln8XGxqJNmzbs77m5uYiOjsbw4cMVou5UjRCd\nHTI0XZYBwtXPCgsLYWRkhMmTJ8Pb2xthYWEICQmBg4MDACAmJgaLFi0CUOrQ8PX1ZTKuKvD06VMU\nFxdX9jTUjkYYuTLi4+PRtm1bjBgxAj///DOKi4uRkJAAIyMjhcIcMTExSEtLQ15entpCB4TmFXwX\nmqpoK6Ppwl7ohoE8QtkT8rx+/Rpubm44evSowudhYWEYP348a8UlQxN6v2nanIXojVdGkw2wu3fv\nYuXKlSguLoZUKsXTp09RWFiIpKQk1K1blyncGRkZGDx4MFauXAmJRIJp06axHDB194gsD02WD0KX\nwwcOHIClpSXMzMzQqlUrxMbGAiht8/Hjjz/iwoULOHHiBAIDA9GtWzeMGTOGFcGpDBITE3H//n08\nefIEf/zxB3r27AkATHlu27YtoqKisHr1aqxYsQKA4ntYnQ4aITg75NFkWaaMputnykilUuTm5kJf\nXx/169fHvXv32L/169cPCxcuREBAAHM2SiQS/PXXXwqVvjVBh+C8Pxpj5J4/fx5ubm548eIFbt26\nhc8//xzLli3DpUuXMHXqVFhbW2PXrl2wsLCAtbU1K6kP8P6x74OmKdrlocnCvioYBsoIYU8oIxaL\nERYWhqlTp7KX59KlSzFx4kSFAiGyazUBTZqzUL3xymiiASYbe+fOnRg5ciT27t2LN2/eoH///vj9\n998BAO7u7pg8eTKA0nuxb98+mJiYIDs7G6mpqawlHlD5YXGaKB+qghxOSEhArVq1WIivj48P5s+f\nz3SbuLg4GBoasuvl2xipK11Ixs2bN6Gvrw8bGxvY29sjODgYAGBlZYWoqCh23fXr1+Hg4ABHR0eF\nApyqTh8TurMD0ExZVh6arJ/9G4cOHYKFhQV27NjBPnvy5AmWLFkCa2trfPPNN2UiZypb1+F8HBpj\n5AKlnrN58+ahW7dumDZtGszNzXHx4kWIRCIsX76cPTiVNTcheQXfhSYp2u9CU4V9VTEMlBHCnigP\nWfietbU1OnfujOHDh7P8RU1Fk+YsNG98eWiiASYjLy8PkydPRnBwMMRiMTZs2IDRo0cjPT0dDx8+\nRMuWLVk/05ycHPj7++PkyZNqmdv7oGnyoarI4by8PLRu3ZqFSJ46dQpDhgzB3r17IZFIIBKJMGTI\nENy6dYvtYXXU7yivqnRMTAwiIyMBlK65r68vYmNjce3aNbRt2xZHjhzB4MGD8ejRo0qp8CxkZ4cM\nTZZl8miqfga8W/7I/98JCQkwNDQsE1WwaNEi/PrrryqdH0f9qM3IrcjL78WLF+jXrx9rm9ChQwd4\neHiUUawqOt6HUhW8gv+EJina5aHJwr4qGAbloel74l1IpVKkpqbi0qVL7DNVnxp8LJowZyF74+XR\nNANMxoYNG6Cvrw9HR0fo6ekhMTGRFZOSGQvBwcGwtLSslPm9L5omH4QghytyP7dt24auXbsyhTss\nLAxeXl4K4ZTqQjlPeM2aNSwSbdy4cRg9ejSA0tzGvXv3spZWy5cvh4uLC0JDQxXG49Eo74emyjJl\nNFU/q2gbT7FYDCcnJ4SEhODo0aNYvny5yufGqTzUYuRWdPM9e/YMtra2WLt2Lfbv3w8bGxtERkYq\nJEuroxpfVfAK/huaoGi/C00V9lXFMHgXmrwnKkJ5qQWaTmXNWZO98e+Lphlg2dnZsLW1xeXLlwEA\ngYGBCAwMREZGBk6cOAEPDw+cPn0aIpEIbm5uzKkLaEYqwLvQFPkgBDlcUZ1HIpHA1dUVISEhAErb\n8Sxfvpy14lEeSx3s378fffr0gZWVFZycnBAREYHLly/Dzs6OOQ92797NjN6SkhKFlkDqRAjOjvdB\n02RZeWiSfvahbTzT0tLQu3dvWFpasjZtsn2gSfuB8/GozMj9kM1XWFiInTt3wtTUFL169cKFCxdU\nNb0yVDWv4PugicaBJgr7qmQY/BuauCc4nw5N9cZ/KJpigAGlqSndu3dnjtAbN27A3d0dcXFxAICx\nY8di3rx5ap/Xp6Qy5YOmyuEPVbjPnTsHXV1dPH36VKXzqwg7duzAF198gT179gAAjh07Bjc3N6xa\ntQqRkZEwMjJixbJCQ0MV5AKPRvk0aJIsexeaoJ99aBtP2XtNE4r6cVSPFgDQJ0YsFtNnn33G/v7i\nxQtydnamsWPHkqur679+/9mzZ9SkSRMiIkKpIU7a2tqfepplEIvFFBoaSvfu3SNDQ0N6/vw5OTg4\nkJmZGQ0bNoyCg4Opbdu25OvrS8nJyRQREUEGBgZUv359NoZUKlXLXP8LAKAbN25QSUkJGRgYEFHp\n+mppaZGWlpba51NQUEBeXl40atQosrCwYJ/PmjWLsrOzKSgoiBo1asTuv+zRqoy5cjj/hEQiofDw\ncCoqKqJJkyZR/fr1admyZfTw4UPq378/mZmZKVyro6NTeZN9TwCQVCpV2Zz/bT1ycnIoOjqaWrZs\nSSNHjiRtbW1ydnamvLw8WrRoETVt2pTq1atX4fE4imiiHP5YnefChQv0008/EQDS0tKqND0iPz+f\nDAwMyNvbmyZPnkx5eXm0adMmevToEc2dO5diY2PpypUrZGJiQsOGDVP7/OTJyMggBwcHSklJYZ8d\nOnSIEhMTycXFhTp27Ejh4eF069YtCg0NJWNjYyIitsZCQNWy7GPQFP0sOjqaLC0tqXr16vTbb79R\nixYtqEGDBnTnzh0yMjIiMzMzql27Nrte+VlV/junaqEzc+bMmZ96UJlwjo6Oplq1alFJSQllZGSQ\njo4O3b9/n7Zt20aFhYXUpEkTql69OvueWCwmbW1ttiHFYjHp6Oio5YF58+YNeXt7U2FhIS1ZsoS6\ndetGFy5coGfPnlGvXr1o+fLldPfuXcrPz6fjx4/T+PHjydzcnL766isiKlVUtLW1BSM8hYCWlhY1\nbNiQGjdurCDsK2uNdXR06NatW3Tnzh0yMDCgmjVr0rJlyygrK4scHByoc+fObG58P3A0GW1tbWrX\nrh0dOnSI4uPjacGCBURENHPmTOrUqVOZa4WElpaWyuYsr3Deu3dPwcEpo2bNmpSdnU2HDh2iO3fu\nUFFRER07doxcXV3J1NSU6tSpw8ZS5VyrKpoohz9U55HN79tvv2WfqdJIkP1/76J69erUuHFjWr58\nOY0ePZpq1qxJJ06cIKlUSmZmZmRoaEj9+/cnfX39Co2nSrS1tSk5OZnq1atHrVq1IiKi1q1b06VL\nl+jixYtkYmJCzs7O5OHhQU2bNhWk01mT5YO69TNl50RycjL179+fCgsLydbWlpo3b06ZmZmUnJxM\nTZo0oXv37lFqaio1a9aMmjVrRlKplAAw+Z2amkq6uroau76cT8MnubvKh8HJycn0ww8/0OnTp6lW\nrVrUsmVL6ty5M126dImKioooKyuLtm/fTqmpqURU+rKXSqXMmyL7XJ3eldzcXEpNTaX4+Hj6+uuv\nqU6dOtSrVy96/vw5nThxgjZv3kw1atSgdevWUWhoKA0aNIi+/PJL9ts10dNWldDS0qr0NdbR0aHR\no0dTXl4eubu7U5cuXejixYs0ZcoUhZMv2bUcjibTqFEjWr58OS1cuJDWrFlDq1evpoYNGzJlgFOK\n/Fpoa2tTSkoKWVpa0owZM+jly5flXuvs7Ez+/v6Unp5OixYtol9++YVGjRpFtWrVUhiL8/5oghz+\nVDqPvMJNpFoDTNlB8y4GDRpEurq6ZGdnR3/++SetXLmSdHV1y4xFVLnvuRo1alD79u3p8OHDlJOT\nQ0REy5Yto7y8PHJycqImTZqwZ0wikVRaBNh/AVXqZwDY/ZNRUlJChw4dorlz59L27dupdevWJBKJ\nyNPTk9avX09eXl40depUevbsGTVu3JiISuWttrY23b59m5ydnSkiIoIkEolK5szRID4m1rkq9ZCt\najlqHNUhhJwZDud94XnYZfnQvC+ZLFBup8KLmnw6KkMOC03n+dA84fPnz6NFixbw9fWt1JaH/4Ym\n5IZy1ENVaePJUS+fJCe3sLCQ1q9fT7a2ttSsWTMaP3483bhxg+rXr09ff/01HTp0iLZt20Z169al\nmJgY2r9/P40fP568vb3Z90NCQujq1au0ePFi6ty580cb7+9LVc5R46gOaHDODIfD+TTwvC/NRt1y\nWAg6z8fmCc+cOZPu379P69evZydpmhh9AA3JDeV8Ok6dOkVPnjxh+3TVqlUUFRVFPXv2pOrVq5OJ\niQkNHDiQDh48SPXr16eOHTvSnDlz6KuvviJfX19KTEwkZ2dnBZkcFRVFurq65O7uXlk/i1MJvHdO\n7qlTp+j06dNMKK9atYpGjRpF1apVo/Pnz1NeXh4FBARQgwYNyMLCgtzc3CgnJ4cyMjKod+/e9OrV\nK4qKiqIePXqwMZctW0Zt27alyMjIMmEx6qIq56hxVIemvvg5HM77A573JUhUKYeFqvN8bJ6wnp4e\nc+40aNBAYw1GTavdwflwZPJ3y5YtdOPGDWrevDlVq1aNTp8+TUuWLKEOHTrQvHnz6MmTJ/Tdd9+R\nlZUVNW7cmG7evEnr1q0jfX196tWrF+nr61P16tVJLBYTUekeMTExoS5dulTyL+Somwq7lmWbLzk5\nmZ48eUJdunShb7/9lnJzc+nEiRP07NkzGjRoEN2/f5+aNWtG/fv3J7FYTFeuXKFLly6Rk5MTffXV\nV6win6zIlLa2NgUGBqrsB74Pshw17hXkcDic/w7lnQTK533Z2toSEdHr16/J09OTPD09iYjIysqK\nvL29FfK+iIhu375N06dPpy+//JJWr17NIz0EiNB0nvIcNN7e3qSnp0cDBgygpk2bUufOnenYsWNk\namrK8oTr169P3bt3L5Nnm5+fT+fPn1cwgDUdTajdwfkw5CMkzc3Naffu3XT06FEaO3YsBQQE0Jo1\na2j58uU0ZcoUSk9Pp507d1KPHj1o9uzZdPDgQZowYQINHjyYjQeAR89wqELhyvKbLyUlhXbv3k31\n69ensWPHEgC2+fz8/Cg9PZ2Kiopo4cKFNHPmzHduPiEYjDwUlcPhcP47CCEMlaN6hKTzvMtBEx4e\nTj/99JOCg0Y+fPPBgwfk7e1Nv//+O6tOTER069YtCg4O5g4ajtrhbTw5n5oK5+TyzcfhcDicqgLP\n++L8E0LTebiDhiNk3rx5Q76+vqStrU0RERH02Wef0YIFC+iLL76gkJAQsrKyIj09PTI1NaV169bR\nyJEjqV+/fvTll18SEa+VwymfCp3ly2++2NhYtvlOnTpFZmZmlJGRQdHR0WRqakrp6ek0ffp0MjY2\nLrP5uIHL4XA4nMpEaGGoHPWj6TrPPzlobt68SSYmJhQZGangoKlTpw4dPHiQfH19qUuXLjRz5kwF\nB82KFSvI0NCQoqOjVTJnDuefkLXxTElJYZ/16tWLEhMTWRvP8PBw1sbT2NiYiP4nz7mByymPChWe\nevHiBS1evJj27t1LNWrUYAndKSkpVLt2bfLx8aGzZ8/S0aNHKTQ0lKytralatWps83HjlsPhcDiV\njayoDhFR9erV6fHjx5SZmUk9e/YkY2Nj2rx5M02fPp0CAwOpRo0alJqaSn379qWwsDBaunQpjRs3\njkaMGMHGkxWZEkL6DafiaKrOwwvzcKoq2tralJycTPXq1WPh861bt6ZLly7RxYsXycTEhJydncnD\nw4OaNm3KelVz2cv5JyokievWrUvt2rWjpKQk9lnfvn2pUaNGlJCQQCKRiBYuXEj79+8nY2NjAiCY\nvFsOh8Ph/DfQ0dEhsVhMwcHBtGDBAqpVqxalp6fTyZMn6bPPPmMnBiNGjKDs7Gw6evQoHTlyhPz8\n/Cg5OZnlWcqK9PB3XNVEE3UeWRsfotLCPPXq1aOjR49S7dq1KSAggHbu3ElDhw6lKVOmUNeuXWnn\nzp1ERDR79mzy8/OjMWPG0NixY9l4ssI8/BCCownUqFGD2rdvT4cPH6acnBwiKq1CnpeXR05OTtSk\nSRO2V2XPApe/nH+jQtKNbz4Oh8PhCJ03b97Q6NGjKTMzk2JjY8nb25tq1apFp06dIiJiYagbN25U\nCEOV5VlKJBIi4m3kqjqaqPNwBw2nKqOjo0OjR4+mvLw8cnd3py5dutDFixdpypQpZGZmVuZaDqci\nVLjwVGZmJoWFhVFaWho9e/aMunbtSvPnz6eGDRuqeo4cDofD4Xw0GRkZ5ODgoJD3dejQIUpMTCQX\nFxfq2LEjhYeH061bt8rN++L8d9A0nYcX5uH8FwDA23hyPhkVNnKJ+ObjcDgcjnApKCggLy8vGjVq\nFFlYWLDPZ82aRdnZ2RQUFESNGjVip3Q87+u/jSbpPNxBw/mvwdt4cj6W9+qUrKWlRd9//z0R8c3H\n4XA4HGEhH4b6ww8/UP369cuEocrgJ18cTdJ55POEZQ6avn370rlz5yghIYHatGlDCxcu5A4aTpWB\nV03mfCwfnFjENx+Hw+FwhATP++J8KJWt82hinjCHw+FoMu8VrszhcDgcjtDRpDBUDqeiaFqeMIfD\n4Wgy3MjlcDgczn+Wyg5D5XDeB+6g4XA4nIrBjVwOh8PhcDgcgcEdNBwOh/NuuJHL4XA4HA6Hw+Fw\nOJwqA+9oz+FwOBwOh8PhcDicKgM3cjkcDofD4XA4HA6HU2XgRi6Hw+FwOBwOh8PhcKoM3MjlcDgc\nDofD4XA4HE6VgRu5HA6Hw+FwOBwOh8OpMnAjl8PhcDgcDofD4XA4VQZu5HI4HA6Hw+FwOBwOp8rw\n//rGZ8Nf2pMCAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x1188bb2d0>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAABLoAAATCCAYAAAC66Y/MAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xtczuf/B/DXp5POB1JSOmpKGg3DkPQtpzEbNhlzShib\nU05zSDmtsRCzEV/CmNkcZs6HkkOMhUboICmH5CxF0n39/vDt/nXvxuquue7P1fv5ePT4ct398Xo9\n5nv36bqvg8QYYyCEEEIIIYQQQgghROZ0eAcghBBCCCGEEEIIIaQq0EQXIYQQQgghhBBCCBECTXQR\nQgghhBBCCCGEECHQRBchhBBCCCGEEEIIEQJNdBFCCCGEEEIIIYQQIdBEFyGEEEIIIYQQQggRAk10\nEUIIIYQQQgghhBAh0EQXIYQQQgghhFQzM2fOREFBgdr4kydPMHPmTA6JCCGkakiMMcY7BCGEEEII\nIYSQN0dHRwe5ubmwsbFRGb9z5w5sbGygUCg4JSOEkMqhFV2EEEIIIYQQQgAAGRkZsLKy4h2DEEI0\npsc7ACGEEEIIIRVx584drF+/HhkZGQgPD0etWrVw/Phx1K1bF05OTrzjEaLVXFxclH9u1qwZdHV1\nlX8vKSlBbm4uPv74Yx7RCCGkStBEFyGEEEIIkY3z58/Dz88PlpaWuHr1KsaOHYtatWphx44dyMnJ\nwdq1a3lHJESrBQcHAwDCwsLQt29fmJiYKF8zMDCAq6srPvzwQ17xCCGk0uiMLkIIIYQQIhsdO3ZE\ngwYNEB0dDXNzcyQnJ8PV1RVHjx5Fv379kJWVxTsiIbIQGxuLoKAgGBoa8o5CCCFViia6CCGEEEKI\nbNSsWRN//PEH3N3dYWZmppzoysrKgoeHB54+fco7IiGEEEI4osPoCSGEEEKIbDDG8OzZM7Xxa9eu\nwdzcnEMiQuQpLy8P/fv3R926daGrqwsdHR3lV9lzuwghRG7ojC5CCCGEECIb/v7++P7777F06VLl\nWFFREWbPno0OHTpwTEaIvISEhODcuXMYM2YM7OzsIEkS70iEEFIlaOsiIYQQQgiRjYyMDLRp0wYu\nLi5ISkpCQEAAzp8/j5KSEhw/fhyOjo68IxIiCxYWFti7dy9atmzJOwohhFQp2rpICCGEEEJko379\n+khOTkbHjh0RGBgIABg4cCDOnDlDk1yEVIClpSVt9yWECIlWdBFCCCGEEEJIOTx8+BAZGRlo1KgR\natSowTtOpcTExCAhIQGxsbHQ19fnHYcQQqoMTXQR7kR6YCCEEEJI1btx40a5v7du3br/YhJSXRUW\nFmL48OH48ccfIUkS0tPT4erqiuHDh8PBwQHTpk3jHbHCAgMDcerUKRgaGsLDwwP6+vqQJAmMMUiS\nhH379vGOSAghGqHD6Ak3Ij4wEEIIIaTqOTg4lOv7JElCSUnJv5yGVEfTp09HcnIyDh06hC5duijH\nO3XqhIiICFk+t9rb28Pe3v6lr9HB9ISUT3FxMcLCwjBs2DA4OzvzjkP+h1Z0EW5CQ0Nx4MABLFmy\nBF26dMFff/0FV1dXbNu2DREREThz5gzviIQQQgjRAocOHSr39/r5+f1rOUj15eLigrVr16Jt27Yw\nMzNDcnIyXF1dkZqainfffRcPHz7kHZEQwompqSlSUlLg5OTEOwr5H1rRRbjZsmWL8oGh7KdGnp6e\nyMzM5JiMEEIIIdqEJq8Ib7m5uahXr57aeHFxMZ4/f84hESFEW/j6+iIxMZEmurQITXQRbuiBgRBC\nCCGaePr0KTZs2IALFy4AABo2bIhPP/0UhoaGnJMRUTVo0ADHjh1T25q0fft2NG7cmE+oKhAbG4sN\nGzYgOzsbRUVFKmd00QfPhJRPv379MHHiRGRmZuLdd9+FiYmJyuvvvfcep2TVF010EW5EfWAghBBC\nyL8nOTkZ77//Ph4+fAhPT08wxrB8+XJMnz4dO3fuRJMmTXhHJAKaPHkyRowYgYKCAigUCsTHx+OH\nH37A4sWLsWnTJt7xNLJgwQLMmDEDgwcPxuHDhzFkyBCkpaXh5MmTGDVqFO94hMhGv379ALw4y+/v\n6OxIPuiMLsLNxo0bMWLECERGRmLs2LFYvHgxLl26pHxg6N69O++IhBBCCNEyLVu2RO3atbFu3TpY\nWloCAB48eID+/fsjLy8PJ06c4JyQiCo2Nhbh4eHIzs4GANSrVw9z5sxR/pIrNx4eHpg+fTr69u2r\ncu7YtGnT8PDhQyxZsoR3REJkISsr67Wv0yH1bx5NdBGuRHtgIIQQQsi/y8jICCdPnoS3t7fK+Llz\n59C8eXM8ffqUUzIisvz8fJiZmQEAbt++DYVCAVtbWwDA5cuX4ebmxjOeRoyNjXHx4kU4OTmhdu3a\nOHDgABo3boy0tDS89957uHPnDu+IhBCiER3eAUj1NnDgQGRlZeHWrVu4efMmrl69SpNchBBCCHkl\nV1dXPHjwQG38wYMHcHV15ZCIVAcffvghiouLAQC1a9dWTnJduXIF7du35xlNY7Vr18b9+/cBAPb2\n9sobz2/cuKHsSggpn9TUVAQHB6Nly5Zo2bIlQkJCkJaWxjtWtUUTXUQrlH1gIIQQQgh5lcWLF2Ps\n2LGIj4/H06dP8fTpU8THxyM0NBSLFy/mHY8IqqioCJ999pnKWHZ2Nvz9/dGuXTtOqSqnbdu22Lt3\nLwAgKCgIY8aMQZ8+fRAUFIROnTpxTkeIfOzfvx9vv/02zp49i1atWqFly5ZISkrC22+/jQMHDvCO\nVy3R1kXCTUFBAb755hscOHAAt27dgkKhUL5GN70QQgghpJS+vr7K3xUKBf7+CCtJEnR1dfHs2bM3\nGY1UE/fu3UPr1q3RoUMHREdH4/r162jXrh2aNWuGDRs2QEdHfusHHjx4gKKiItja2kKhUCAqKgqH\nDx9Wnt1lbm7OOyIhstC8eXO0bt0aixYtUhkfPXo0jh8/jpMnT3JKVn3RRBfhZsCAAdixYwd69+4N\nOzs7SJKkfE2SJEydOpVjOkIIIYRoi9jY2HJ/78CBA/+1HKR6y87ORqtWrdCvXz9s3boV3t7e2LRp\nE3R1dXlHI4RwZGhoiOTkZDRo0EBl/NKlS2jSpAmdHcmBHu8ApPrasWMHNm7ciMDAQN5RCCGEEKLF\naPKKaANHR0fs3r0b7dq1g6+vL01yEUIAAObm5sjOzlab6MrOzqaVkZzQRBfhxsDAAE5OTrxjEEII\nIUSmcnNz1bYqOjo6ckpDROPu7g5JktS2yTLGkJycDE9PTzDGIEmSbA6d/vs24FeRJIm2ARNSTh99\n9BGGDRuG77//Hr6+vgCAhIQEjBgxAj169OCcrnqiiS7CzYgRI7B8+XJERUXxjkIIIYQQmXj06BFG\njRqFjRs3ori4WGUSQpIklJSUcExHRNK3b99yfV/Z4ze03YoVK3hHIEQ43377LQYPHowuXbqojH/8\n8ceYP38+p1TVG53RRbgJCQnBr7/+CmdnZzRu3BgGBgYAoPxkLCYmhnNCQgghhGibzz//HIcOHcLc\nuXPRr18/LFu2DDk5Ofjhhx8wf/58BAUF8Y5ICCGkGsrIyMCFCxcAAF5eXnBzc+OcqPqiiS7CjZ+f\nn/LPZT8JK53oio+P55CKEEIIIdrM0dERsbGx8Pf3h5mZGc6cOYP69etj7dq12LRpE3bs2ME7IiGy\nEh8fj5SUFABAw4YN4e/vzzkRIfIyc+ZMjB8/HsbGxirjT548wfz58xEWFsYpWfVFE12EEEIIIUQ2\nTExMcPHiRTg6OsLe3h7btm1D8+bNkZmZibfffhuPHz/mHZEIwt3dHX/88Qdq1qwJd3f3V36fnM7o\nKuvq1avo0aMHzpw5A2trawDAnTt34OPjgy1bttBZuoSUk46ODnJzc2FjY6MyfufOHdjY2EChUHBK\nVn3RGV2EEEIIIUQ2nJyckJOTA0dHR7i5ueH3339H8+bNcejQIZiamvKORwTSt29f1KhRQ/nnV5HT\nGV1lhYSEQF9fH6mpqcqJvLS0NAwYMABDhgzB/v37OSckRN4yMjJgZWXFO0a1RCu6CFeHDh3Chg0b\nkJ2djaKiIuXNNpIkIS4ujnc8QgghhGiZqVOnwtjYGFOnTsWWLVvwySefwNraGrdv38bUqVMxc+ZM\n3hEJkQUjIyMcOXIEzZo1Uxn/888/0bZtWzx58oRTMkLkwcXFBcCL1ZEODg7Q1dVVvlZSUoLc3Fx8\n/PHHWL9+Pa+I1Rat6CLc/Pjjjxg0aBDef/99xMXFoUuXLkhNTcXNmzfRq1cv3vEIIYQQooXmzJmj\n/HOPHj1w7NgxHD16FB4eHnj//fc5JiPVQWZmpvKw6YYNG8LV1ZVzIs3Z2dlBR0dHbVySJNSpU4dD\nIkLkJTg4GAAQFhaGvn37wsTERPmagYEBXF1d8eGHH/KKV63Rii7Czdtvv42hQ4fiiy++gJmZGc6e\nPQsXFxcMHToU9erVw4wZM3hHJIQQQoiWOXz4MFq1agV9fX2V8efPnyMxMRG+vr6ckhGR3b9/H8HB\nwdi2bZvKePfu3bFq1SpZbk/asGEDli1bhtjYWOWEXWZmJgYNGoRhw4bh008/5ZyQEHmIjY1FUFAQ\nDA0NeUch/0MTXYQbExMTnD9/Hi4uLqhVqxYOHToEb29vXLhwAQEBAbhx4wbviBqJi4vDkiVLkJGR\ngd27d8PBwQErV65E/fr1VW6aJIQQQkjFve7QX1tbW5SUlHBKRkT2ySef4OzZs1i6dCnee+89AEBi\nYiJGjhyJxo0b45dffuGcsOLc3d1x8+ZNFBYWonbt2gCA27dvw9jYGHZ2dsrvk+th+4SQ6ou2LhJu\nLC0tlTcj2dnZITU1Fd7e3igoKMCjR484p9PM1q1bERQUhL59+yItLQ3Pnj0D8OJq2Xnz5tFEFyGE\nEPIvefTokdrV7oRUlZ07d2LXrl1o166dciwwMBArV65E586dOSbT3OsO2C9LroftE/JvEv1WVrmj\niS7CTYsWLXDkyBF4e3uja9euGDt2LJKSkrBt2za0adOGdzyNzJo1C9999x1CQkJUPtl77733MHfu\nXI7JCCGEEHkbNGiQ8s+jR4+GkZGR8u/Pnz9HUlIS3nnnHR7RSDVgaWkJa2trtfFatWrBwsKCQ6LK\nCw8P5x2BENkS/VZWuaOti4SbK1euoKCgAI0aNUJhYSEmTJiAI0eOoEGDBli4cCEcHBx4R6wwExMT\npKSkwNnZGWZmZkhOToarqysyMzPh6emJoqIi3hEJIYQQWQoICADw4oiAtm3bwsDAQPmagYEBXFxc\nEBoaqrwFi5CqtHDhQiQkJGDdunUwMzMDAOTn56N///5o06YNQkNDOSckhBBSilZ0EW7KPogaGxtj\n6dKlHNNUDSsrK9y4cQPOzs4q4+fOnYO9vT2fUIQQQogADhw4AAAYOHAgFi9eDHNzc86JiOgCAwOV\nqzEYYzh58iTs7e3RsGFDMMZw8eJFSJKEgoIC2Ux0/f0Sh7L9Sv/OGIMkScojOAghRG5ooouQKtSz\nZ09MmzZN5UaelJQUTJw4Eb179+aYjBBCCBFDbGws7wikmrC3t1dO/ADARx99pPK6p6cnAHltTVqx\nYoXyz/fv30dERAQCAwPRunVrAMCxY8dw8OBBhIWF8YpIiOwUFBTgm2++wYEDB3Dr1i0oFArla5Ik\nITMzk2O66om2LpI3yt3dXeWB4VXkemjf48eP0a1bN5w4cQLPnj2DhYUFHjx4gICAAGzfvp2unCWE\nEEIqqewqm7IkSUKNGjXQoEEDDBw4EF5eXhzSEREpFAqkpaXBwcEBpqamvONUmaCgIDRt2hQTJkxQ\nGY+KisIff/yBTZs2cUpGiLwMGDAAO3bsQO/evWFnZ6fyM0qSJEydOpVjuuqJJrrIG1XeQy8lScKM\nGTP+3TD/EsYYEhIScOrUKSgUCjRr1gz/+c9/eMcihBBChDBw4ED89ttvMDMzQ7NmzcAYQ1JSEh49\neoQOHTrgzJkzyM7ORnx8PN577z3ecYkAFAoFatSogYsXL6J+/fq841QZMzMznDlzRq1Teno6fHx8\nlLejy8327dvx7bffIiUlBQDg5eWF0NBQdO/enXMyIqpatWph48aNCAwM5B2F/A9tXSRvVHW43UWS\nJPj5+cHPz493FFKNFBUVYc+ePcjIyEBwcDAsLS1x5coVWFpawsrKinc8QgipMq6urvjoo48QExMD\nPb0Xj7LPnz/HsGHD4ODggJ9++gmDBw/GV199hYSEBM5piQh0dHTg5uaG+/fv845SpYyMjHD8+HG1\nia4//vhD5VZTOVm8eDFCQ0PxySefKI8NSUxMRK9evTB//nyMGTOGc0IiIgMDAzg5OfGOQcqgFV2E\nu8zMTFy4cAEA0LBhQ7i6unJOVDEbNmwo9/d++umn/2ISUl1lZ2cjMDAQ165dQ1FREdLS0uDq6oox\nY8bg6dOnWLZsGe+IhBBSZezs7HDw4EE0bNhQZfzChQvw9/dHbm4uzp49C39/f9y7d49TSiKaTZs2\n4YcffsC6detkeTP4y0yfPh0LFy7E2LFjlasfjx07hujoaIwaNQpz5szhnLDiHBwcMHHiRIwaNUpl\nfMmSJYiMjMT169c5JSMimzVrFh48eICoqCjeUcj/0EQX4eb+/fsIDg5WObgdALp3745Vq1bJZhWK\njo5Oub+37MGEhFSVnj17QldXF+vWrYO1tTWSk5Ph6uqK+Ph4DB06FOnp6bwjEkJIlTE1NcXOnTvR\nrl07lfHDhw+jc+fOKCgowOXLl9GkSRPk5+dzSkkA4NKlS1i+fDkyMjKwYsUK1KlTB7/99hucnZ3R\nuHFj3vEqxN3dHTdu3MDTp09ha2sLExMT5WtyPVuWMYbFixdj/vz5uHHjBoAXB/CHhoZi9OjRsjpk\nv5SpqSnOnj370u2YTZo0QUFBAadkRGQhISH49ddfle9tBgYGAKC8wTQmJoZzwuqHti4SboYNG4bz\n589j7969yk+REhMTMXLkSAwdOhS//PIL54TlQ5NXhLcjR44gPj4eNWrUUBl3dnamTy4JIcLp3Lkz\nhg0bhh9++AEtW7aEJEnK54cuXboAwEvPHSJv1pEjR5S3+R05cgSFhYUAXqy8W7t2LTZv3sw5YcX0\n7dv3la/JcUIIeJF79OjRGD16NB49egQAMDc355yqcjp27Ii9e/eq/f9/37596NChA6dURHTp6enK\nyfusrCzle0LpRBd582hFF+HGxMQEu3bteu0nsoSQf2ZmZoakpCS89dZbMDMzU67oOnXqFDp27Ehb\ndwghQrl79y4GDRqEHTt2qIx369YNq1evRs2aNXHkyBGUlJTQeZkctWnTBl26dMGUKVNUfjb98ccf\n6NmzJ65du8Y7Ivmfv/76C+np6ejUqRNMTEzw9OlT6OvrQ1dXl3e0Clu8eDEiIiLQtWtXtGrVCgBw\n/Phx7Ny5E2FhYbC2tlZ+Lx0pQoi4aKKLcGNvb499+/apXf+dkpKCwMBA5RJqOfn6669hY2OD4OBg\nlfH//ve/uHv3LiZOnMgpGRFZhw4d0Lp1a8yYMUPll4l+/frh8ePHatuDCSGvVlRUBH19/QptSyd8\npKenq5zx6e7uzjkRKcvc3Bxnz56Fq6urys+mrKwsNGjQAEVFRbwjauTo0aPK2/waNWqE1q1bc06k\nuXv37qFHjx44fPgwJElCeno6XF1dMWTIEJibm2PBggW8I1YYHSlCeHr+/DkuX74MAHBzc1NemELe\nPHqKI9yMHz8eU6dOVTk/Iz8/H9OmTUNoaCjHZJqLiYmBh4eH2riHhwcdCE7+NV9//TW+/fZb9OnT\nB8XFxYiMjESLFi2wfft2zJ49m3c8QmSjuLgYxsbGuHjxIu8opBzc3d3RvXt3dO/enSa5tJChoSEe\nPHigNp6eno7atWtzSFQ5t2/fRrt27eDr64vJkydj8uTJaNu2Lfz8/HDnzh3e8TQyfvx46OjoICsr\nC8bGxsrxXr16Yc+ePRyTaU6hUJT7i5CqUlJSgrCwMJibm8PT0xOenp6wtLTEjBkz6N8aJzTFSLjZ\ntWsXTp48CXt7ezRs2BCMMVy8eBGSJOHx48fKH7CSJGHfvn2c05bPzZs3YW9vrzZet25dOiuJ/Gua\nNm2KP/74A/PmzYObmxuOHj2KZs2aYc2aNS+deCWEvJy+vj7q1atHD6UyEBcXhwMHDiAvL0/536v0\nLJRVq1ZxTkcAoEuXLvj666+xceNG5djt27cxdepUfPDBBxyTaWbMmDF48OABzp49i7fffhsAkJyc\njM8++wxjxozBjz/+yDlhxe3btw/btm2Do6Ojyri7uzuys7M5pSJEfsLDw7F06VJERkbC19cXAJCQ\nkICIiAgoFArMmjWLc8Lqh7YuEm4GDhxYru+TJAmrV6/+d8NUEUdHR3z33XdqD3Dbt2/H8OHDZbkd\nkxBCqpMlS5bg0KFDWLduncoKB6I9IiMjMWXKFHh4eKBu3boAXjwrlE507d+/n3NCAgC3bt1C+/bt\nkZ+fj9zcXHh6eiIzMxMuLi5ISEhAzZo1eUeskJo1a+L3339X26p49OhRdOvWDffv3+eUTHPGxsY4\nd+4c3NzcVLaXnj17Fr6+vsoD6uVm1apVWLJkCTIyMvDXX3/BxcVF+WFgz549eccjAqpXrx6ioqLw\nySefqIxv2rQJ48aNozMJOaAVXYSb2NhY3hGqXI8ePTBu3Dg4ODjgnXfeAQAkJSVh3Lhx6NWrF+d0\nhBBC/sn27dtx8uRJODg4wNPTU2WyS04rjEW2dOlSfPfddxgxYgTvKOQ1bG1tkZSUhJ9//hmnTp2C\nQqHA6NGj0a9fP7VbguXg6dOnsLS0VBu3srKS7XljPj4+2LNnD0aOHKkyvm7dOrRo0YJTqsqJiYnB\npEmTMHbsWHz99dcoXdNhbW2N7777jia6tEh6ejoOHTqEW7duqa2kDgsL45RKM3l5ecrf/cpq0qQJ\nbt++zSERoRVdhLucnBzlYbJeXl5wcHDgnEhzjx8/RteuXXH48GFYWVkBAO7fv4+2bdti586dMDU1\n5ZyQAICuri5u3rwJGxsblfE7d+7A1tYWJSUlnJKVn76+frm+T5IkPHv27F9OQ4g4XrfaWE4rjEVm\nbm6O5ORkuLi48I5CqhFfX184OjoiNjZWecB0cXExBg4ciGvXriEhIYFzworbv38/PvzwQ4wePRoL\nFy7E5MmTcf78efz222+Ii4tDmzZteEessEaNGiEsLAyffPKJyiq15ORkBAQE0KSDllizZg2GDBkC\nIyMj2NjYQJIkAP+/BT09PZ1zwopp2LAhBgwYgEmTJqmMf/PNN1izZo3yd13y5tCKLsJNYWEhhg8f\njvXr1ys/bZEkCf369cOyZctgZGTEOWHFmZqaIj4+HnFxcUhKSgIANGvWDP7+/pyTkbJeNb9fXFws\nm9tRVqxYwTsCIUIScbWxaLp37464uDi1G46Jdtm3bx+MjY2VkyUxMTGIiYmBl5cXvvvuO5iZmXFO\nWDHz5s1Dhw4d4OrqipYtW4IxhhMnTuDRo0eyXekZGBiI33//HTNnzoSOjg6++eYbNGvWDPv27ZPl\nJBcAXL58+aWr0UxMTGS7FVNEM2fOxMSJEzFr1iwhbjmeNGkSgoODcebMGZUzujZv3kznRnJCK7oI\nNyNHjsSOHTuwZMkSlTeEL7/8Et26dcPSpUs5J6y4nJwc1KtXj3cM8gpr164FYwyDBg1CdHQ0LCws\nlK+VlJQoJyjpUxdCCNFeP/zwAyIiIhAUFIQmTZrAwMBA5fVPP/2UUzJSVpMmTRAREYHu3bsjLS0N\njRo1QnBwMI4cOYLWrVtj+fLlvCNWWG5uLpYuXYqUlBRIkgQvLy988cUXaivECT+urq6IiYlBQECA\nyoquH3/8EXPmzJH1rbo3b97E1atX1Vbql/4eJScmJiY4d+4cXF1deUepMjt37kRkZKTKTqWvvvoK\nnTt35pyseqKJLsKNra0t1qxZg06dOqmM79mzB/3790deXh6nZJrT09NDx44dMXToUHTr1k2ITyhE\noqenB0mSUFJSAl1dXZXXDAwM4OLigqioKHTs2JFTQs24urri1KlTqFWrlsr4/fv30bRpU2RmZnJK\nRog8BAYG4tdff4WFhQUCAwOVB5v/HZ3RpR3+6Wcr3ZqpHczNzXHmzBm4ubnhm2++QUJCAnbt2oXj\nx4+jV69esruNOjs7Gw4ODmr//hhjyMnJUbu5UA5EfH4IDw/Htm3bsGnTJjRt2hTHjx/H1atXERIS\ngrFjx2LChAm8I1ZYbm4ugoKCcPjwYbXXSp9r5aZr164YOHAgnWFM/jXy2KNDhPTw4cOXzuI7OzvL\ndmlxXFwcVqxYgU8//RSWlpYYNGgQhgwZAmdnZ97RCIDnz58DePFv7M8//4S1tTXnRFUjKyvrpQ85\nRUVFyMnJ4ZCIEHmxt7dX/vJqb2//2okuubG3t4e/v7/yy8nJiXekSqOJLPlJSEhAYGAgAKBu3bq4\ne/cu50QV5+zsjNzcXLXVW3fv3oWLi4ssJxtEfH6YOnUqsrKy4OnpCcYY3n77bQDA4MGDERoayjmd\nZsaOHYvi4mIkJSWhbdu22L59O3JzczFr1iwsWrSIdzyNlJ5nde3atZeuzH3vvfc4Jas8xpjaMwQt\nfnjzaEUX4aZp06bw8/NDVFSUyvi4ceNw+PBh/Pnnn5ySVd6DBw/w448/YuXKlTh37hwCAgIwdOhQ\ndO/eXRZnQLm7u6v8olf2gMiyfweAtLS0Nx+QAAAOHz4Mxhjat2+PLVu2qFzVXlJSgr1792LTpk2y\n/ESWEFI1VqxYgbi4OOXNVs7OzvjPf/6jnPiytbXlHZEIqnXr1mjVqhW6deuGjh07IikpCV5eXjh2\n7BiCgoJkN5Gio6Pz0omunJwcNGjQAIWFhZySVVx1eH64cuUK/vzzTygUCjRt2hT169fnHUljdnZ2\n2Lp1K1q2bAlzc3MkJSXB3d0d27Ztw4IFC1660kvbvW7iR46r1G7cuIFx48bh4MGDahP5cuwjApro\nItzs2rULH3zwAZo1awZfX18wxnD48GGcPn0a27dvF2Y/87JlyzBmzBg8e/YMtra2GDlyJCZMmKDV\nV2uHh4ckWwxxAAAgAElEQVQr/1xUVITvv/8eb731Flq3bg0AOHbsGNLS0jBy5EjMnTuXU8rKuXfv\nHvbs2YPs7Gy1sw7kcqXxP306ZGpqiqVLl+Kzzz57Q4n+PQqFAhcvXoSjo6PsDjAmRFukpKQgLi4O\ncXFx2LlzJ0pKSmTz8L1hwwb07NkTNWrUwPr161+7uk6OZ3Tp6+u/9EMlSZJQo0YNNGjQACEhIRg6\ndCjPmBVy9OhRfPDBB3jw4AGGDBmCmJgYAC8Obc7IyMDmzZs5JyyfiIgI5f+OHz9e5QbtkpISHD16\nFA8ePFBeQiQH1eX54e7du7CyspL9ahozMzOcP38eTk5OcHR0xM8//4xWrVrhypUr8PLyktUka6ms\nrKzXvi633TCBgYG4du0ahg0bBltbW7WfUUFBQZySVV800UW4+uuvvzB//nyVQ/smTJgAb29vzskq\nJz8/H+vXr8eKFSuQnJyMTp06ISQkBNevX8e8efPg7e2N33//nXfMchkxYgRMTEwwf/58lfGJEyfi\n0aNHWLZsGadkmjt16hQ6deoExhgePnwIGxsb5OXlwcjICHZ2drK50vjatWsAAEdHR5w+fVplK6aB\ngQGsra1l+3AXGhqKhg0bIjg4GIwx+Pv7IyEhAWZmZti9e7esl7QT7Xfo0CFs2LAB2dnZKCoqUq5w\nlSQJcXFxvONpJC0tDQcPHlSu7lIoFGjfvj1+/fVX3tHKpexqGhHP6IqOjsbMmTPRoUMHtGzZEgBw\n4sQJ7N+/H6GhoUhPT8e6deuwbNky2dw2WVRUBODFLdtWVlbK8cuXL8PExAR16tThFa1C6tevD0mS\ncPnyZTg7O6uc8Vl6vmdERASaNm3KMWXFiPz8UFJSgoiICCxZsgSPHj1Ceno6XF1dMXnyZLi4uGDY\nsGG8I1aYj48PoqKi4O/vj44dO8LV1RWLFi3Ct99+i+XLlyM7O5t3xGrP1NQUx44dQ+PGjXlHIaUY\nIRwUFRWxli1bsosXL/KOUqUSExPZoEGDmImJCatbty6bPn06u3r1qsr3XLx4kRkYGHBKWHFWVlYs\nNTVVbfzSpUvMwsKCQ6LKa9euHRsyZAgrKSlhpqamLCMjg+Xk5LA2bdqwzZs3845XYYcOHWLPnj1T\nGy8uLmYJCQkcElVevXr1WGJiImOMsd27d7NatWqxEydOsC+++IL5+flxTkdEtm7dOqanp8e6d+/O\n9PX1Wffu3ZmHhwezsLBgwcHBvONVWL9+/Zi9vT0zNzdn77//PouKimJnzpxhCoWCdzRSRt++fdmC\nBQvUxhcuXMj69OnDGGNs/vz5rHHjxm86mkaePXvGdHV12fnz53lHqTLt2rVj9+7d4x2jSon4/DBn\nzhzm6OjI1qxZw4yMjNjly5cZY4z99NNPrGXLlpzTaWbRokUsOjqaMcZYfHw8MzIyYpIkMR0dHbZ0\n6VLO6crv2LFjrLi4WPnn133JTePGjdkff/zBOwYpgya6CDe1atVi6enpvGNUKUmSWMeOHdmWLVuU\nb+R/9/jxYzZgwIA3G6wSLCws2Pbt29XGt2/fLtuJLgsLC3bhwgXGGGPm5ubKCdfExETm4eHBM5pG\ndHR02K1bt9TGb9++zXR0dDgkqrwaNWqwnJwcxhhjo0ePZsOGDWOMMZaWlibLf3eiTu5fvXqVlZSU\nqI0rFAq1SX658Pb2ZkuWLGGMMeVEeElJCQsODmbh4eGc01WcJEnMxsaGzZgxgyUmJr70vxfhz8zM\njGVkZKiNp6WlMVNTU8bYiw+YjI2N33Q0jTk5ObG//vqLd4x/xZMnT9iTJ094x6g0EZ8f3N3d2a5d\nuxhjL97DSye6zp8/z6ysrHhGqzJXr15lv/76q+z+/yVJkvLfmyRJr/yS47+9uLg45uvry06fPs2e\nP3/OOw5hjGn/qdhEWJ988gk2bNggm/OQyiMjI+OlN0mWZWJigtjY2DcTqAr06dMHQ4YMwdy5c5Xb\nxY4dO4Zp06bJdr+5rq6u8lIAGxsb5OTkwMPDA9bW1v94ZoA2Yq/Ygf7o0SMYGxu/4TRVw8rKCjdv\n3oSDgwMOHjyIqVOnAnixJUkuZwqVZWBggPT0dFlcRlERIt5CdvnyZbz//vsAXvx3KywshI6ODsaN\nG4eAgADMmDGDc8KKuXz5svJcrhUrViA/Px/t2rVTHkYv120WDx48wKlTp3Dr1i21rYr9+/fnlEpz\nNWrUwIkTJ+Dm5qYyfurUKRgaGgJ4sSWr9M9yEBoaivDwcKxbt062P4v+btWqVZgzZ47yWcHV1RVT\npkzBoEGD+AbTkIjPDzk5OWjYsKHauJ6eHp48ecIhkWZ0dXVx8+ZN2NjYYPDgwYiOjlaeUero6AhH\nR0fOCSsuMzNTuU1WzhcdvIynp6fy4oO/o8Po+RDriZvISq1atRAVFYUjR47g3XffhYmJicrrU6ZM\n4ZRMc3fu3MHt27fRokULlfETJ05AT08PzZo145RMcwsXLoShoSG++OIL5XkbBgYGGD58OCIjIzmn\n04y3tzeSk5Ph7u6Oli1bYu7cuVAoFIiJiUGDBg14xyu3sg/Wo0ePhpGRkfLvz58/R1JSEt555x0e\n0Sqt9Fw7Hx8fZGVloWPHjgCACxcuyO6A0lIiTu6/ypMnT7T6wo3XsbS0xOPHjwG8uOkqNTUV3t7e\nKCgowKNHjzinqzgXFxcEBwcrz3W6ePEiFixYgEmTJsnqMPqy9uzZg969eyM/P1/lvKRScpzoCgkJ\nwfDhw5GWloaWLVtCkiQkJiZi0aJF+OKLLwAA8fHxePvttzknLb/t27fj5MmTcHBwgKenp8rEiSRJ\n2LdvH8d0FRcdHY3Jkyfj888/h6+vLwAgISEBI0aMQH5+PkaNGsU5YfmJ/Pzg5OSEs2fPwsnJSWX8\n4MGD8PDw4JSq4oyMjJCfnw8bGxvExsYiMjJS9pfxlH1+k+uz3Kt8+umnuHXrFubNm/fSw+jJm0cT\nXYSbdevWwcrKCunp6cjIyFCOs/8d+CvHia4vv/wS48ePV5voysnJwcKFC5GYmMgpmWaeP3+OhIQE\nTJ06FbNnz8bly5cBAG5ubmoTk3IydepUFBQUAABmzpyJrl27onPnzqhduzZ++eUXzunKr+zV7Ddu\n3IC+vj6AF79AGBgYoH379ggNDeUVr1Kio6Mxbdo0ZGdnY/PmzcqDjP/880/07t2bczrNiDS5X3oL\nGQB8++23L72FzNPTk0e0SmvRogWOHDkCb29vdO3aFWPHjkVSUhK2bduGNm3a8I6nkfT0dBw8eBAH\nDx5EfHw87t27h/r168Pf3593NI2EhoaiZ8+eiIyMVFtNKFdz5syBtbU1oqKiMGvWLABA3bp1ERER\ngTFjxgAAevTogY8//phnzAqxt7fHRx999NLX5PhL4JIlS7Bo0SKVw8w//PBDeHh4YP78+bKa6BL5\n+WHkyJHKyTvGGNLS0rB7925MmTIFCxYs4B2v3Fq0aIEePXqgefPmAF6875WdkAT+/3em0htN5ejm\nzZu4evWq2g3opZPJcnHixAkcO3YMPj4+vKOQ/6FbFwmpQmZmZkhOTlbbvnj58mX4+PjIbjUAYwyG\nhoZITU0V7pOXv5PzFdQDBw7E4sWLYW5uzjsKeY2y/x8q+0te6YPqlStXOKTSjIi3kJW6cuUKCgoK\n0KhRIxQWFmLChAk4cuQIGjRogIULF8LBwYF3xAqpV68erl+/DicnJ7Rv3x7+/v7w8/OTXY+yTExM\n8Ndff6lt8xPFw4cPAQAWFhack5CyatSogQsXLqj9u0tPT4eXl5faL+pyIOrzQ3h4OObPn6/cqmho\naIgpU6Zg2rRpnJOVX05ODubOnYv09HTExcWhVatWMDAwUPme0ueH+Ph4Tik1l5ubi6CgIBw+fFjt\nNTlu9fP29saqVauUE5OEP5roIlpBzpMMZVlYWCA+Pl5tuXdSUhLatWun3A4jJz4+Pli0aBHatWvH\nO0qVe/78ucoqNbmfnyRSn3+6KluOZ1OIyM/PD1u3blWuuCPa57///S/at2//j+dHyomvry+mTZuG\nDh068I5S5XJycnDhwgUAgJeXl6wnJEuJ0qn0PK4hQ4aojK9cuRJz586V9ZlDIj0/lCosLERKSgoU\nCgW8vLxUVh7LjY6ODm7evAlbW1veUapMnz59kJ2dje+++w5t27bF9u3bkZubi1mzZmHRokXKIyvk\n4tChQ5g5cyYWLVoEb29vWa5aFQ6fM/AJYez58+ds+vTpzNLSkuno6ChvRZk0aRJbtmwZ53Sa6dix\nI/v0009VxhQKBevTpw8LCAjglKpy4uPjWYsWLdjRo0dZUVER7zhVovTfXun1zJIkMRMTExYWFibL\nG8lE68OYeLfxEKINRLkpbv/+/axx48Zs69at7MqVK+z69esqX3JUUFDAPvvsM6ajo6PyXte/f39W\nWFjIO55GROs0f/58ZmRkxCZNmsR27tzJdu7cySZOnMiMjIzY/PnzecfTiIjPD0Qe6tSpw44fP84Y\ne3HrbFpaGmOMsa1bt7K2bdvyjKYRPT095Xudjo4O09PTU37p6+vzjlctyX+6nsjWN998gzVr1iA6\nOhrDhw9Xjjdp0gTR0dEqZyDIxZw5c+Dr6wsfHx/85z//AWMMBw8eRHp6Og4dOsQ7nkYCAwOhUCjQ\ntm1bAFDZoiRJkiyX6oeHh2Pp0qWIjIxUOVA2IiICCoVCeT6KXIjWB4DaUvbi4mKcPn0a33//PebO\nncspVeWlp6fjl19+QXZ2tvL/O+x/Ww9WrVrFOZ1mROuUl5eH8ePH48CBA7h165bKrWRy3E4BiHdT\nXOlKrh49eqi9Jtf/RhMmTEBCQgK2bt2q8j5eevbn0qVLOSesONE6jR8/HkZGRoiMjMS8efMAAA4O\nDoiKisLnn3/OOZ1mRHx+KCkpwZo1a5Tv4WVvZZUkCXFxcRzTaS41NRXz5s1DSkoKgBdb5SZMmIC3\n3nqLczLNPH78GHZ2dgBeXAJz584duLu7o3Hjxvjzzz85p6u4FStW8I5A/oa2LhJu3nrrLURHR6Nz\n584qZ1ulpKSgbdu2uHfvHu+IGklJSUFkZCSSkpIgSRKaNm2KiRMnolGjRryjaSQ2Nva1rw8cOPCN\n5KhK9erVQ1RUFD755BOV8U2bNmHcuHG4du0ap2SaEa3P6/zyyy+IjY3Fzp07eUepsL179+KDDz6A\np6cnUlJS0KRJE1y+fBkKhQLNmzfH/v37eUesMBE7de/eHefOncPw4cNhZ2entv2gX79+nJJp5lU3\nxS1btgzffPONrA7QLvVPHxz5+fm9kRxVydbWFmvWrEGnTp1Uxvfs2YP+/fsjLy+PUzLNidipVOmZ\nq3I/20rE54dx48bhu+++Q0BAgNp7uCRJspyQ2L9/P7p27YpGjRrB19cXjDEcPnwYFy5cwI4dOxAQ\nEMA7YoX5+PggKioK/v7+6NixI1xdXbFo0SJ8++23WL58+T8eYUHIP+K4moxUc4aGhiwrK4sxxpip\nqaly6+KlS5eYoaEhz2hEcAYGBiw9PV1tPDU1lRkYGHBIVDmi9XmdjIwMZmRkxDuGRpo3b86mTZvG\nGHvxnpeRkcEeP37MunXrxn744QfO6TQjYidzc3PldgoRuLm5vfQ4gGXLljE3NzcOicjL1KhRg6Wm\npqqNX7x4kdWoUYNDosoTsZNoRHx+sLW1ZZs2beIdo0o1a9aMjR49Wm181KhRrHnz5hwSVd6iRYtY\ndHQ0Y+zFMSml22d1dHTY0qVLOaeruDZt2rAVK1awhw8f8o5C/kfeJ38TWXNycsLZs2fVxg8ePAgP\nDw8OiUh14ebmhs2bN6uNb926VZa3eInW51UUCgVWr16tXOouNxcvXsSAAQMAAHp6enj69ClMTEww\nc+ZM5TYYuRGxk6WlpexXaZSVk5Pz0k/7/f39ZfWJ+Y0bN5TbSG/cuPHaLzny8vLC8uXL1cZjYmJk\nuyJctE6PHj3C5MmT0bx5czg5OaFevXrKL7lekCLi80NxcbHapVByd+7cuZduj/3888/x119/cUhU\neaNHj1auKPbz88OlS5fwyy+/4OzZsxgxYgTndBXXqFEjTJo0CXXq1EGfPn2wZ88elaMPyJtHZ3QR\nbkaOHInRo0fDyMgIjDGkpaVh9+7dmDJlChYsWMA7Xrnp6+vjxo0bqF27NvT19V/5fXI6z0rETmVN\nmjQJwcHBOHPmjMpWns2bN8vyTCHR+gCAu7s7JElSPiQwxpCXl4fCwkJZbjsAAGNjYxQXFwMA6tSp\ngytXrsDLywt6enrIzc3lnE4zInaaOnUq5syZg9jY2Ne+/8mFvb094uPj1X5pTUhIkNXtdw4ODsjN\nzYWNjc1rc8v1jK5Zs2bhgw8+wLFjx1S2Jp0+fRrbt2/nHU8jonUKDg7GkSNHEBQUBFtbW7UtcXIk\n4vNDv379sHnzZkycOJF3lCpjbm6O7OxsNGjQQGU8Oztblh/MPHv2DO3atcPq1auVixscHR1lO2EM\nAD/88AMWLVqE33//HWvXrkX37t1Rs2ZN9OvXD/3794e3tzfviNUOTXQRbr788kvcvXsXH330EZ48\neYIuXbrA0NAQU6ZMQXBwMO945bZixQqYmZkp/ywCETuVNWDAAFhbWyMyMhLTp08H8OKT599//x2d\nO3fmnK7iROsDAH379lX5u46ODmxsbODv7y/bg1ffeecdnDp1Cp6enmjfvj2mTp2K69ev48cff4SP\njw/veBoRpVNgYKDyF1XGGE6dOoV69erBw8MD+vr6yklXSZKwb98+zmkrZsSIERg1ahQyMjJUfpFd\nsmQJZs6cyTld+cXFxcHKykr5Z9F06dIFp0+fxvz583Hw4EEAL97HV65cKdtfkETrtHfvXuzevRut\nW7fmHaXKiPL8MGfOHOV7uKWlJSIjI5GYmIgmTZrAwMBA5XunTJnCI2KlfPTRRxg2bBi+//57lffx\nESNGvPRSDm1nYGCA9PR06OmJNRVRo0YN9OrVC7169cLt27fx008/Yfny5ViwYIEsP4CROzqMnnBX\nWFiIlJQUKBQKeHl5wdTUlHckQgipcqdPn0Z+fj7atWuH27dvY+DAgThy5AgaNGiA1atXy3Irjyid\nBg4cqLKC8FUkScLq1avfUKqqU3qr2vXr1wG8WB311VdfyfamOEJ4aNCgAX799VdZTtKJztnZWWVV\nXel7+d/HJEnClStX3ni+ysrPz8fgwYPVtpl+/PHHWLlypfLDaTkZMWIE6tSpg7CwMN5RqlxJSQl2\n7NiBdevW4ffff4elpSVu3brFO1a1QxNdhPwL4uPjldf/NmzYEP7+/pwTVR510n6i9QHE7EQIL3K+\nKa4iZ2/VrVv3X0xSdUTs9DLPnj1DXl4eFAqFyrjctimV3vq7du1a1KpVi3ecKkU/a+UhIyMDFy5c\nAPBi5Z1cz1EDgOnTp2Px4sV499138e6778LExETldTmuvDt58iTWrl2Ln3/+Gfn5+ejWrRv69++P\nzp07C7d6TQ5oootwdejQIWzYsAHZ2dnKs55KP3GR49aEq1evokePHjhz5gysra0BAHfu3IGPjw+2\nbNkCJycnzgkrjjppP9H6AGJ2yszMxPPnz9W2XqalpcHAwADOzs58glUCddJ+ovTR0VG9P+lVK/Dk\ndEaXiJ3KysjIwODBg3Hs2DG1XnLs9PjxY/To0QNxcXGoU6eOyhl+kiQhMzOTYzrNiPiz9mUeP34s\n3I4RuXcq+7NHhJV3Hh4eSEtLQ4sWLTBgwAD07t1bud2e8EG3LhJufvzxRwQGBiIvLw9xcXEwNzfH\nzZs3cebMGbi6uvKOp5GQkBDo6+sjNTUVeXl5yMvLw6VLl2BgYIAhQ4bwjqcR6qT9ROsDiNlp8ODB\nOH78uNp4YmKirM4lLIs6aT9R+sTFxSm/YmNjYW1tjdDQUGzZsgVbtmxBaGgobG1tZbW1VMROZYWE\nhKCwsBA//fQTEhIScPjwYeVXQkIC73gVNmDAAJw9exbDhw/HsGHDEBwcrPIlRyL+rP3222+xceNG\n5d8/++wzmJubw9nZGRcvXuSYTHMidsrKylJ+XblyRflV+ne56dmzJ1JTU3H8+HEMHz6cJrm0ASOE\nE29vb7ZkyRLGGGOmpqYsIyODlZSUsODgYBYeHs45nWYMDQ3ZqVOn1MZPnTrFDA0NOSSqPOqk/UTr\nw5iYnSwsLFhqaqra+KVLl5iFhQWHRJVHnbSfaH0YY6xjx47sv//9r9r4qlWrWGBgIIdElSdiJxMT\nE5acnMw7RpUxNjZmCQkJvGNUKRF/1rq6urL4+HjGGGOHDx9mJiYm7KeffmIff/wx69q1K99wGhKx\nU0REBCsoKFAbLywsZBERERwSVU54eLhQfURAK7oIN5cvX8b7778P4MXtG4WFhdDR0cG4ceOwfPly\nzuk0Y2dnp7YVAXixJLdOnTocElUeddJ+ovUBxOxUXFyMoqIitfGioiLl1m25oU7aT7Q+AHDkyBHl\nzWNltWnTBkePHuWQqPJE7OTg4CC77YmvY2dnh5o1a/KOUaVE/Fl748YN5c6QnTt3omfPnggKCsKM\nGTNeurpVDkTsFB4ejsePH6uNFxQUIDw8/M0HqqSIiAih+oiAJroIN5aWlso3BDs7O6SmpgJ48YZQ\nemCu3MyePRtjxoxROachMzMT48aNw5w5czgm0xx10n6i9QHE7PTOO++8dAvS6tWr0aRJEw6JKo86\naT/R+gCAlZUVduzYoTa+e/du2U5EiNhp3rx5mDp1Ku7evcs7SpX4+uuv8dVXX+HevXu8o1QZEX/W\nmpqa4sGDBwBenAXcvn17AIChoSEKCwt5RtOYiJ1eJSMjQ6htf6L1kRM6jJ5w06NHDwQEBGDEiBGY\nPHky1q9fj379+mHbtm1wcnLCnj17eEcsF3d3d5W/37x5E4WFhahduzYA4Pbt2zA2NkbdunWRlpbG\nI2KFUSft7yRaH0DMTmUdOHAAnTp1QpcuXdChQwcAwN69e7F7927s2rVLOSYn1En7idYHAJYsWYJx\n48YhKCgI7733HgDg2LFj+PnnnxEVFYVRo0ZxTlhxonR62ft4UVER6tatCwMDA+W4JEmyex93d3dX\n9rG3t1c7jF5ufYD/7/Syn7V2dnbK75NTv549eyI/Px+tW7fG3LlzcfXqVdSpUwe7d+/GmDFjlB+s\ny4lInVxcXAC8uAjBwcEBurq6ytdKSkqQm5uLjz/+GOvXr+cVsUJE6yMSuueScBMVFYWCggIAQFhY\nGPLz87Fz5040atQICxcu5Jyu/Pr27Vuu7yt7o4i2o07aT7Q+gJidygoICMCePXsQERGBSZMmAQCa\nNm2K3bt3IzAwkHM6zVAn7SdaHwD48ssv4ejoiPnz52PXrl0AgIYNG+KXX37Bhx9+yDmdZkTpJPL7\n+Ou6ybEPIOZ/r+joaIwYMQJbt27F8uXLlVswd+7cKdv3PJE6lV7cEBYWhr59+8LExET5moGBAVxd\nXWX1nidaH6HwPiSMkH+yYcMGlp+fzztGlaJO8iBaJ9H6MEad5II6aT/R+jBGneRCtE6i9WGMsfXr\n1wvXScT/TnLqtHr1avbkyZN//D65dBKtjwho6yLRemZmZkhOTlYewigC6iQPonUSrQ9AneSCOmk/\n0foA1EkuROskWh+AOskFddJ+ovXRZnQYPSGEEEIIIYQQQggRAk10EUIIIYQQQgghhBAh0EQXIYQQ\nQgghhBBCCBECTXQRQgghhBBCCCGEECHQRBchhBBCCCGEEEIIEQJNdBGtJ+LFoNRJHkTrJFofgDrJ\nBXXSfqL1AaiTXIjWSbQ+AHWSC+qk/UTro81oootoDYVCgZSUFOTn56uMX7hwAU5OTpxSVQ51kgfR\nOonWB6BOckGdtJ9ofQDqJBeidRKtD0Cd5II6aT/R+sgSI4STcePGsZUrVzLGGFMoFMzPz49JksTM\nzc3ZsWPHOKfTDHWSB9E6idaHMeokF9RJ+4nWhzHqJBeidRKtD2PUSS6ok/YTrY8IaKKLcFOvXj2W\nmJjIGGNs9+7drFatWuzEiRPsiy++YH5+fpzTaYY6yYNonUTrwxh1kgvqpP1E68MYdZIL0TqJ1ocx\n6iQX1En7idZHBHq8V5SR6isvLw/16tUDAOzZswe9evVCixYtULNmTTRv3pxzOs1QJ3kQrZNofQDq\nJBfUSfuJ1gegTnIhWifR+gDUSS6ok/YTqc+zZ88wYMAAzJ49G25ubrzjaIzO6CLcWFlZ4ebNmwCA\ngwcPws/PD8CLPc0lJSUck2mOOsmDaJ1E6wNQJ7mgTtpPtD4AdZIL0TqJ1gegTnJBnbSfSH0MDAyw\ne/du6OjIe6qIVnQRbjp16oSQkBD4+PggKysLHTt2BPDikD5nZ2e+4TREneRBtE6i9QGok1xQJ+0n\nWh+AOsmFaJ1E6wNQJ7mgTtpPtD5dunTB7t27MWLECN5RNCbvaToia9HR0fD19cX9+/exefNmWFlZ\nAQD+/PNP9O7dm3M6zVAneRCtk2h9AOokF9RJ+4nWB6BOciFaJ9H6ANRJLqiT9hOtT6tWrRAWFoaQ\nkBCsWLECGzZsUPmSA4kxxniHIIQQQgghhBBCCCF8/dO2RYVC8YaSaI5WdBFurl+/juvXryv/fvr0\naYwfPx6rV6/mmKpyqJM8iNZJtD4AdZIL6qT9ROsDUCe5EK2TaH0A6iQX1En7idZHoVC89ksOdMPD\nw8N5hyDVU7du3WBqagofHx/cvXsXzZo1Q25uLn7++Wfo6emhdevWvCNWGHWSB9E6idYHoE5yQZ20\nn2h9AOokF6J1Eq0PQJ3kgjppP9H6CIERwknNmjXZuXPnGGOMxcTEsHfeeYcxxtiWLVvYW2+9xTOa\nxqiTPIjWSbQ+jFEnuaBO2k+0PoxRJ7kQrZNofRijTnJBnbSfaH0YY+zgwYPM39+f2draMltbWxYQ\nEMDi4uJ4xyo32rpIuCksLISFhQUAIC4uDl27dgUANG3aFNnZ2TyjaYw6yYNonUTrA1AnuaBO2k+0\nPr/5VkIAACAASURBVAB1kgvROonWB6BOckGdtJ9ofX766ScEBgbCwsICkydPxuTJk2FqaoqAgABs\n3LiRd7xyoYkuwo2zszMSEhKQn5+P/fv3IyAgAABw+/ZtmJmZcU6nGeokD6J1Eq0PQJ3kgjppP9H6\nANRJLkTrJFofgDrJBXXSfqL1mT17NmbPno0tW7ZgzJgxGDNmDLZu3YpZs2Zh9uzZvOOVD+8lZaT6\nWrFiBdPT02MWFhbMx8eHlZSUMMYYW7hwIfP39+ecTjPUSR5E6yRaH8aok1xQJ+0nWh/GqJNciNZJ\ntD6MUSe5oE7aT7Q+BgYGLD09XW08NTWVGRgYcEhUcRJjjPGebCPVV1JSErKzs9GhQweYmJgAAH77\n7TfUrFkTbdu25ZxOM9RJHkTrJFofgDrJBXXSfqL1AaiTXIjWSbQ+AHWSC+qk/UTq4+DggOjoaPTs\n2VNl/Ndff8WYMWNw7do1TsnKjya6CCGEEEIIIYQQQggmT56MlStXYvbs2fD19QUAJCQkYPr06QgJ\nCcHXX3/NOeE/o4kuwtW9e/ewZ88eZGdn49mzZyqvhYWFcUpVOdRJHkTrJFofgDrJBXXSfqL1AaiT\nXIjWSbQ+AHWSC+qk/UTqU1xcjClTpmDJkiXKLjVq1MCoUaMwZ84c6OnpcU5YDjz3TZLq7eTJk6xm\nzZrMysqK6ejosDp16jAdHR1mYmLC6tevzzueRqiTPIjWSbQ+jFEnuaBO2k+0PoxRJ7kQrZNofRij\nTnJBnbSfaH1KFRQUsOTkZJacnMwKCgp4x6kQmugi3LRr144NGTKElZSUMFNTU5aRkcFycnJYmzZt\n2ObNm3nH0wh1kgfROonWhzHqJBfUSfuJ1ocx6iQXonUSrQ9j1EkuqJP2E62PCGiii3BjYWHBLly4\nwBhjzNzcnF28eJExxlhiYiLz8PDgGU1j1EkeROskWh/GqJNcUCftJ1ofxqiTXIjWSbQ+jFEnuaBO\n2k+EPiEhISw/P58xxtiQIUNYSEiI2lfpuBzo8N46SaovXV1d5f5eGxsb5OTkAACsra2RlZXFMZnm\nqJM8iNZJtD4AdZIL6qT9ROsDUCe5EK2TaH0A6iQX1En7idAnLS0Nz58/BwCkp6e/9ksOZHCKGBGV\nt7c3kpOT4e7ujpYtW2Lu3LlQKBSIiYlBgwYNeMfTCHWSB9E6idYHoE5yQZ20n2h9AOokF6J1Eq0P\nQJ3kgjppPxH6HDp06KV/li3eS8pI9bVv3z62detWxhhjmZmZrGHDhkySJGZjY8MSEhI4p9MMdZIH\n0TqJ1ocx6iQX1En7idaHMeokF6J1Eq0PY9RJLqiT9hOpT1FREbOzs2Pnz5/nHaVSJMYY4z3ZRkip\nu3fvwsrKCjo64uyqpU7yIFon0foA1EkuqJP2E60PQJ3kQrROovUBqJNcUCftJ+c+dnZ2iI+Ph4eH\nB+8oGqOJLkIIIYQQQgghhBCC6dOn4+7du/j+++95R9EYndFF3qiQkBBIkvTa72GMQZIkxMTEvKFU\nlUOdqBMPovUBqBN14ke0TqL1AagTdeJDtD4AdaJO/IjWSbQ+Zd28eRObNm1CXFwcmjZtChMTEwDy\n6kMTXeSNSk9PV74hlC4m/PsbROn/geSCOsmDaJ1E6wNQJ7mgTtpPtD4AdZIL0TqJ1gegTnJBnbSf\naH3KysjIwDvvvAMAuHHjBoBXd9RWtHWREEIIIYQQQgghhCgVFhbi8uXLAAA3NzcYGxtzTlR+8jsZ\njQijV69eiIyMVBuPjIxE7969OSSqPOokD6J1Eq0PQJ3kgjppP9H6ANRJLkTrJFofgDrJBXXSfqL1\nKSoqwrhx41CrVi00btwYjRs3hrW1NcaOHYuioiLe8cqn0vc2EqIhGxsbdvbsWbXxs2fPMltbWw6J\nKo86yYNonUTrwxh1kgvqpP1E68MYdZIL0TqJ1ocx6iQX1En7idZn6NChzMbGhsXExLDz58+z8+fP\ns5iYGFanTh0WEhLCO1650BldhJuHDx8qD7Yry8jICPfv3+eQqPKokzyI1km0PgB1kgvqpP1E6wNQ\nJ7kQrZNofQDqJBfUSfuJ1mfjxo1Yv349unbtqhzz8vJC3bp10adPH1kcRk9bFwk3rq6u2Ldvn9r4\ngQMH4OLiwiFR5VEneRCtk2h9AOokF9RJ+4nWB6BOciFaJ9H6ANRJLqiT9hOtj4GBAdzd3dXG3dzc\nYGBgwCFRxemGh4eH8w5Bqq/JkyfD0NAQZmZmyMvLw7p16zBt2jRMnjwZLVq04B1PI9RJHkTrJFof\ngDr9H3t3HhdVvf8P/MWWIBguuQCKAoIsAwPIkiVB5gKIeiuvqFmuWOm9pXkrH5XC3NJWLbVM08pK\nvaWmySZqLpgri+JKilsgZCkKKgIDw+f3hz/O14EBB8WZ4fh6Ph7nUTPnfc683/M553MOH8+c01Kw\nJtMnt3oA1tRSyK0mudUDsKaWgjWZPjnVc+XKFezYsQMxMTHSUxZramowe/ZsPProoxgwYICRM9SD\nsX87SQ+22bNnC2tra2FmZibMzMyEjY2NeOedd4yd1j1hTS2D3GqSWz1CsKaWgjWZPrnVIwRraink\nVpPc6hGCNbUUrMn0yameCRMmiIcffli4uLiI2NhYMWLECOHi4iIefvhhMXHiRBEXFycmTZpk0vfr\nMhNCCGMPttGDraysDMePHwcAeHt7w87OzsgZ3TvW1DLIrSa51QOwppaCNZk+udUDsKaWQm41ya0e\ngDW1FKzJ9MmlnoiIiAbn1V7hJYSAmZkZduzYYaCsmoYDXUREREREREREJAu8GT0REREREREREckC\nB7qIiIiIiIiIiEgWONBFRERERERERNSCqFQqqFQqY6fR7Kqrq+95HRzoIiIiIiIiIiIio7O0tLzn\ndXCgi4iIiIiIiIiIZIEDXUREREREREREJAv3fk0YPXC8vLyMncJdyc3NbXCeEMKAmTQfMzOzBudp\nNBoDZtI8LCwsGpx348YNA2bSfOzs7BqcV1NTY8BMmo+5+YP1byRVVVXGTqHJrKysjJ0CEZFJkOM5\nHpExVFZWGjuFu9KqVasG58mxfygpKTFgJvdH27Zt73kdD9ZfK0REREREREREJFu8oouIiIiIiIiI\nqAWJj483dgomi1d0ERERERERERGRLHCgi4iIiIiIiIiIZIEDXUREREREREREJAsc6CIiIiIiIiIi\nIlngQBcREREREREREckCB7qIiIiIiIiIiFoQlUoFlUpl7DRMEge6iIiIiIiIiIhIFjjQRURERERE\nREREssCBLiIiIiIiIiIikgUOdBERERERERERkSxwoIuIiIiIiIiIiGTB0tgJEBERERERERGR/uLj\n442dgsniFV1ERERERERERCQLBh3oioiIQFxcnCE/skVLSEiAu7u7sdMgIiIiIiIiImoRDDrQZWZm\nBjMzM0N+ZIvH74uIiIiIiIiISD/86WIzU6vVzbo+IUSzro+IiIiIiIiISK7uy0DXF198AW9vb1hb\nW6Nz584YPnw4gPqDNlu3bkVERAQ6dOiAtm3bIiIiApmZmVoxy5cvh5eXF2xsbNChQweEh4ejsLAQ\nAHDt2jWMHz8eDg4OsLa2hrOzM2bMmKFXjufOncMzzzwDJycn2Nraws/PDytXrqwXt2jRInh6esLG\nxgYeHh6YO3cuNBqNNL9Hjx6YNWsWpkyZgkceeQTh4eEAgNTUVPTu3Vv6DqZOnYqbN29Ky40bNw4D\nBgzAp59+KuUwYsQIXL169Z5yrv156LvvvgsHBwd06NABY8eORVlZmVbcjz/+CH9/f9jY2MDFxQUz\nZszQyo+IiIiIiIiIqKVp9oGu+Ph4zJw5E//6179w7NgxbNmyBUFBQTpjy8rK8K9//Qv79+/Hvn37\n4O7ujsjISFy5cgUAkJ2djZdffhlvv/02Tp06hfT0dIwdO1Za/p133sGhQ4eQmJiI06dP46effoK3\nt7deeZaVlaF///5IS0vDsWPHMHnyZIwfPx47d+6UYhISEjBv3jx8+OGH+P3337FgwQIsXboUKpVK\na10LFy5Ely5dsH//fnz77bc4cuQIhg4dioiICBw5cgTfffcdkpOT8dJLL2ktl5GRgfT0dGzZsgWp\nqanIycnBxIkT7ylnAFi3bh1KSkqQnp6OH3/8EcnJyfjwww+l+StWrMCUKVPw+uuvIzc3F99//z1+\n/fXXevk1p759+yIlJQVpaWmYNGlSvflt27bFV199hfXr1yMxMRH/+Mc/tOabm5vj559/xuLFi+9b\njk2VlpYGLy8veHh4aH2/t3vllVfg4eEBf39/HDp0SHp/woQJ6NKlC/z8/AyV7h2lpaXBx8cHnp6e\n+Oijj3TGTJs2DZ6enggMDNSqZ9KkSXB0dIS/v7+h0tXL1q1bERgYCH9/f8yfP19nzOuvvw5/f3/0\n6dMHhw8flt738fHBo48+iscffxwREREGyvjO0tLS4O3tjV69ejXYTq+++ip69eqFgIAArXaaOHEi\nHBwcoFQqDZWuXtLS0uDp6Ql3d/dG9yV3d3colUqtmvRZ1tA2b94MhUIBb29vfPzxxzpjpk+fDm9v\nb/Tu3Vuqp6CgAAMGDIBSqYS/vz8+//xzQ6bdKLm1EcCaWJNxyK0eQL41yekcD5BvO8mpJrnVAwBb\ntmyBn58ffHx88Mknn+iMee211+Dj44Pg4GDk5OQAACoqKhAWFoaQkBD4+/vjnXfeMWTajbqX/kGf\nZZtCpVLVG5u4G7/++itCQkLQu3dvfPbZZzpj3nzzTfTu3Rt9+/bFkSNHpPdLS0sxduxYhIaG4tFH\nH6134ZLRiGZ048YNYW1tLebNm6dzfkREhIiLi2tweY1GI9q1aydWrVolhBBi/fr1wt7eXly7dk1n\n/LBhw8S4cePuPfHb1lebX1lZmWjdurXYvHmzVsx3330n2rZtK73u3r276N+/v1bMmDFjRGhoqNZ7\nGzduFObm5iI/P18IIcTYsWNFmzZttGrbsmWLMDMzE2fOnBFCCBEfHy969uypd85CCBEeHi78/f21\nYl5++WXRp08frZyXLl2qFZOeni7MzMxESUlJo58nhBCenp5Nmry9vcX58+dFv379hEKhECdOnBDR\n0dFaMYsWLRJLly4Vnp6e4tFHHxVXr14VPj4+0vz3339fJCYmim3btjX582unxtTU1DRpqqqqEm5u\nbuLs2bOisrJSKJVKcfz4ca2Y5ORkERUVJWpqasS+fftEaGioNC89PV1kZ2cLhULR5M++fWpMdXW1\n3lNlZaVwc3MTp0+fFuXl5UKpVIqjR49qxSQmJorIyEhRXV0t9uzZI0JCQqR5O3bsEJmZmUKhUDTp\nc+tOjbl+/XqTppKSEuHq6iqOHTsmrly5Inx9fUVmZqZWzLp168TAgQPF9evXxfbt20VQUJA0r3v3\n7uKPP/5o8ufWnRqj0WiaNKnVauHm5ibOnDkjKioqhFKpFMeOHdOKSUpKEpGRkUKj0Yi9e/eK0NBQ\nad7OnTtFVlaWUCgUTf7s26fmVF1dLdzc3MS5c+eEWq0WSqVSnDhxQismJSVFREVFCSGE2L9/v9S/\n6rNsc1Cr1XpP5eXlws3NTZw6dUqUlZUJPz8/cfjwYa2YjRs3isjISKFWq8Xu3btFSEiIUKvVIj8/\nX2RkZAi1Wi2uXLki3N3d6y2r79ScWkIbNRVrYk3GILd69M3L2DXJ8RyvqVpCOzWV3GpqCfVUVFQ0\naSorKxOurq7i999/F9evXxd+fn4iJydHK+aXX34RgwYNEhUVFWLXrl0iJCREmnflyhVRUVEhbty4\nIUJCQsS2bduanENFRUWjNRmyf9Bn2ab2DwkJCSIhIUGrpqtXrzZpunz5snBxcRGHDx8Wf//9t1Ao\nFGL//v1aMT/99JPo37+/uHr1qti6dasICgqS5o0cOVIsWrRIXL16VVy6dEmcP3++yTnUnZpDs17R\ndfz4cVRWVmLgwIF6xZ87dw7PP/883N3dYW9vD3t7e5SWliI/Px8AMHDgQLi6usLFxQWjRo3CsmXL\nUFxcLC0/ZcoUrFu3Dr6+vpg2bRrS0tL0vqfVzZs3MXPmTCgUCnTo0AFt2rRBamqq9NnHjx9HeXk5\nnnnmGbRp00aaXnrpJVy7dk3Kw8zMDCEhIVrrPnHiBJ544gmt95544gkIIXDixAnpPW9vb7Rp00Z6\n/dhjj0nL303OtfnUvVrDwcEBf/31FwDg0qVLyM/Px/Tp07Xqio6OhpmZGU6fPq3X99cUfn5+yM/P\nR1FREaqrq5Gamop+/fppxVy6dAl2dnYAADs7O5SUlEg/Ee3cuTPCw8Oxbt06k7k5f0ZGBnr27Ike\nPXrAysoKsbGx2Lhxo1ZMYmIiXnjhBQBAaGgoSkpKcPHiRQBAWFgY2rVrZ/C8G5KRkQE3NzepnhEj\nRiAxMVErJjk5Waue0tJSk60HALKysuDq6oru3bvDysoKzz77LFJSUrRiUlNTMXr0aABAcHAwSktL\n8ffff0vz9e1PDKVuO8XGxtZrp6SkpBaz3QH196WRI0fq3Jdqr+a9vSZ9ljW0zMzMevtSUlKSVkxy\ncjLGjBkDAAgJCUFJSQn++usvdOnSRboq0s7ODp6envjzzz8NXkNdcmsjgDUBrMkY5FYP8GDU1NLP\n8YAHo51aek1yqweof070z3/+U+9zIgBo3bo1gFv3wNZoNGjfvr1hC9DhXvoHfZY1huzsbLi6usLZ\n2RlWVlZ45plnkJqaqhWzadMmjBo1CgAQFBQk/c1UWlqKffv2SW1oaWkJe3t7g9egi1FvRh8TE4ML\nFy5g8eLFOHDgAHJyctCpUyfphu62trbIysrChg0b4OHhgSVLlqBnz544ePAggFsDYfn5+Xj77bdR\nUVGBMWPGoF+/fqipqbnjZ7/++utYtWoVEhISsHPnTuTk5CA6Olr67Np1rFu3DocPH5amY8eOIS8v\nT+sAZmtrW2/9+vyB3NQ/ohvKubKyUivuoYce0nptZmYm1VP734ULF2rVdeTIEeTl5UGhUDQpJ310\n6tRJOvgDwF9//YXOnTtrxaxduxY9e/ZEeno6fvnlF8ydO1eaN3PmTHz88ccmNehQWFiIrl27Sq+7\ndu0q3TuuVlFREbp169ZojKnQlWtRUZFWTN2anZycTLYeAPjzzz/h5OQkvXZycqo3aFBUVFQvprZu\nMzMzDB06FE888QS+/fZbwyR9B4WFhVrtpKsN6saY8nYH6JdvQzGmuI/p2k907Ut3yvv8+fM4fPhw\nvX9IMQa5tRHAmurGsCbDkFs9gHxrktM5HiDfdpJTTXKrB7i1n9zpnEhXTG3uGo0GISEhcHZ2Rnh4\nOLy8vAyTeCPupX+oW6uptFPdv5kcHR3r/c2kK6aoqAj5+fl45JFHMHXqVISHh+PVV181mft+N+tA\nV+0N6Ddv3nzH2OLiYuTm5mLmzJkYMGAAPD090apVK62rKYBb92YKCwuDSqVCdnY2HBwcsHr1aml+\nu3btMHLkSCxZsgQpKSlIT09Hbm7uHT//t99+w5gxYzB8+HD4+vrCxcUFJ0+elOb7+PjA2toaZ86c\ngaura73J3Lzhr87Hxwe7du3Sei89PR1mZmbw8fGR3svNzcX169el13v37gWABu8z1lDOTbnKqXPn\nzujWrRt+//13nXW1atVK73XpS58BqhdffBG///47wsPD8fTTT2PWrFlo3bo1IiIicOXKFb3a1JD0\n/c7r1m4qV6TVJbd6gLuvqdaWLVuwZ88e/Pzzz1i2bBn27NnTnOndFbaT6WuONrpx4wZGjhyJefPm\nSVe6GpPc2ghgTS2F3GqSWz0Aa7qb5YyB7WT65FYPcO/7koWFBTIyMnDmzBns3r0b6enpzZ5jU7Gd\ntJerrq7G4cOHMXHiRKSnp6N169YN3uPL0Cybc2V2dnaYMWMGEhISYGNjg/79+6O8vBybNm3CzJkz\nIYSQvqB27dqhY8eO+Oqrr+Dq6orLly/jjTfegI2NjbS+jRs34ty5cwgLC0PHjh2RnZ2NgoICabDo\n7bffRlBQELy9vWFubo6VK1eiTZs2cHZ2vmOuvXr1wi+//IJnnnkGtra2mD9/Pv7880906dJFquWt\nt97CW2+9BTMzMzz11FOorq7G0aNHkZOTgw8++ACA7o349ddfR2BgIF577TVMnjwZ58+fx7///W+M\nGTNGaxTXzMwML7zwAt577z0UFxdj6tSpGDZsGFxdXe8q59p87rRjzZkzBxMnTkS7du0wdOhQWFlZ\nITc3F2lpaViyZMkdv7um+vvvv7Vy7NKli3RJaq2AgADpswsKCnDhwgW4urrC398fTz75JJ544gm0\natUKtra2+OCDDzBz5sxmz7MpnJyccOHCBel1QUGBVtsCt0a6CwoKpNcXLlzQGgk3JXVzLSgoqJdr\n3ZoLCwtNth7g1k92b/9XkgsXLsDR0VErxtHRUSumsLBQinFwcAAAdOzYEUOGDEF2djYef/xxA2Te\nMCcnp3rbVN3tTleMKbdT3Xx17UsN1V1VVXXHZQ2t7n6i6/vXVU/tdldVVYXY2FiMHj0aw4YNM0zS\ndyC3NgJYUy3WZFhyqweQb01yOscD5NtOcqpJbvUAt/aTO50T1Y25/Vy8lr29PSIjI3Hw4EGEh4ff\n36Tv4G77h9p2utOyxlD3byZdbVA3pqioCA4ODhBCwNHREYGBgQCAoUOHmsxAV7P/dPHdd9/FnDlz\nsHDhQvj6+mLQoEHSkwbMzMykEUNzc3OsXbsWZ86cgZ+fHyZMmIDp06dLf1wCQPv27ZGUlISoqCj0\n6tULM2fOxKxZszB+/HgAgI2NDWbPno2goCAEBwfj2LFj2LRpk9Z9rxry6aefonv37njyySfRv39/\ndOvWDcOHD9ca0XznnXcwf/58LFu2DP7+/ggLC8OCBQvg4uIixegaAfX19UViYiJ27doFf39/vPDC\nCxgyZEi9QaSQkBD07dsXAwYMQFRUFJRKJb755hutdd++fn1yrruMrvfGjBmDNWvWIDk5GaGhoQgJ\nCYFKpbpvO9qxY8fQvXt3ODo6wsrKClFRUdi+fbtWzNmzZ9GnTx8AQIcOHeDi4oKCggJ89tln6Nev\nHwYMGIAZM2bgwIEDRh/kAm79NjkvLw/nz5+HWq3GmjVrMHToUK2YoUOH4ocffgAA7N+/H23btq33\nk01TERQUhNOnT0v1rF27FkOGDNGKiYmJ0arH3t7eZOsBgMDAQJw5cwZ//PEH1Go11q9fj+joaK2Y\n6Oho/O9//wNw6zf39vb26NSpE27evCldbVlWVoZt27ZpXY1pLHXbac2aNfXaaciQIS1muwPq70s/\n/fSTzn3p+++/B6Bdkz7LGlrv3r3r7UsxMTFaMTExMVi1ahUA4MCBA1I9QghMnjwZXl5eeOWVV4yR\nvk5yayOANQGsyRjkVg/wYNTU0s/xgAejnVp6TXKrB6h/TrRu3Tq9z4kuX76MkpISAEB5eTm2bdtm\nEk8Nv5f+QZ9lmyo+Ph7x8fH3tI6AgACcOXMG+fn5UKvV2LBhA6KiorRioqKi8OOPPwK4de+12r+Z\nOnfuDCcnJ+k+3+np6fD09LynfJpNs9zSnpps7Nix9Z7W2FLczRMP4+LixNmzZ8X58+fFvHnzhKen\np5g9e7aYPXu29KTF7du3i9zcXHHy5EkxY8aMeut4/vnnTeapizU1NSIlJUV4eHgINzc3MWfOHFFT\nUyO+/PJL8eWXX0oxU6ZMEW5ubsLPz09kZWVJ748cOVI4ODiIhx56SHTt2lV8/fXXRn3qYnV1tUhK\nSpLqee+990R1dbVYvHixWLx4sRRzez0ZGRnS+7GxsVr1LF++3OhPXbx+/br4+eefRc+ePYWrq6uI\nj48X169fFwsWLBALFiyQYiZPnixcXV2FQqEQv/32m7h+/bo4cuSI8PX1Fb6+vsLLy0ta1thPXdRo\nNCI5OVlru9NoNFI71cbc3k6ZmZnS+7raydhPXRRCiNTUVKmmuXPnCiGEWLJkiViyZIkUM3XqVKmm\n7OzsRpdtbk194mFiYqJwd3cXbm5u4t133xVqtVp88cUX4osvvpBiXn75ZeHm5iZ8fX3FgQMHhFqt\nFjt27BBmZmbCz89PKJVKoVQqRVJSktGfuiiE6bfR3WBNrMkY5FaPEKZfkxzP8e6GqbfT3ZBbTaZe\nz9088XDjxo3C3d1duLq6iv/+97+ioqJCLFq0SCxatEiKeemll4Srq6vw9fUV+/btExUVFSIrK0v4\n+/sLPz8/oVAoxNy5c+/q85v7qYv32j/oWra5+4e7ecrhmjVrRM+ePYWLi4uYNWuWuHr1qpg/f76Y\nP3++FDNp0iTh4uIifHx8xM6dO6X3d+3aJQICAoSPj4+IiYkxmacumgnRgn5AKiPjxo1DYWEhtm7d\nauxUmswUbgR4Nxq7z1dL3Q0a+0117VMrWxILC4sG5924ccOAmTSfxu6xpM+DM0xRY/colKOqqipj\np9BkVlZWxk6BiMgkyPEcj8gY6j4AraVo7B7Ucuwfaq+Ea8natm17z+uQ5V8r+fn5sLOzQ5s2bXRO\ntT9VMiZdPzEkIiIiIiIiIqK716w3ozcVTk5OOHLkSIPzO3XqZMBsdPv222+NnQIRERERERERkazI\ncqDLwsKiwScXEhERERERERGRPMnyp4tERERERERERHKlUqmgUqmMnYZJ4kAXERERERERERHJAge6\niIiIiIiIiIhIFjjQRUREREREREREssCBLiIiIiIiIiIikgUOdBERERERERERkSxYGjsBIiIiIiIi\nIiLSX3x8vLFTMFm8oouIiIiIiIiIiGSBA11ERERERERERCQLHOgiIiIiIiIiIiJZ4EAXERERERER\nERHJAge6iIiIiIiIiIhIFjjQRURERERERETUgqhUKqhUKmOnYZIsjZ0AtTy5ubnGTqHZmZmZGTuF\nZmdhYWHsFJqVnZ2dsVNodubm/LeGlsDKysrYKRAR0V2S4zkekTG0atXK2Ck0Ozn2D23btjV24BYM\nKwAAIABJREFUCiaBf2UREREREREREZEscKCLiIiIiIiIiIhkgQNdREREREREREQkCxzoIiIiIiIi\nIiIiWTATQghjJ0FERERERERERHSveEUXERERERERERHJgqWxE6CWp6amxtgp3BVz84bHdaOjow2Y\nSfNJTU1tcF51dbUBM2kelpYNd0ly3O7Ky8sNmEnzsbGxaXCeRqMxYCbNx8LCosF5arXagJk0j4ce\nesjYKRiUHPuHlnrBfWOPapdjO8lNRUWFsVO4K9bW1g3Ok2NNLfG4BDxYxyY59uFyPG+V43Hp+vXr\nBszk/mjTps09r+PBOXITEREREREREZGscaCLiIiIiIiIiIhkgQNdREREREREREQkCxzoIiIiIiIi\nIiJqQVQqFVQqlbHTMEkc6CIiIiIiIiIiIlngQBcREREREREREckCB7qIiIiIiIiIiEgWONBFRERE\nRERERESywIEuIiIiIiIiIiKSBUtjJ0BERERERERERPqLj483dgomi1d0ERERERERERGRLHCgi4iI\niIiIiIiIZIEDXUREREREREREJAsc6CIiIiIiIiIiIlngQBcREREREREREckCB7qIiIiIiIiIiFoQ\nlUoFlUpl7DRMkiwGuiIiIhAXF2fsNAAACQkJcHd3bzRmxYoVsLKyMlBGt5ibm2P16tUG/UwiIiIi\nIiIiIkOSxUCXmZkZzMzMjJ2G3kaOHImioiJjp0FEREREREREJCuWxk7gQWRtbQ1ra2tjp0FERERE\nREREJCst6oquL774At7e3rC2tkbnzp0xfPhwAIAQQitu69atiIiIQIcOHdC2bVtEREQgMzNTK2b5\n8uXw8vKCjY0NOnTogPDwcBQWFgIArl27hvHjx8PBwQHW1tZwdnbGjBkzmpTr6tWr4erqChsbGwwc\nOBB//PGHNE/XTxezs7MRGRkJe3t7tGnTBqGhocjIyMDZs2dhbm6Offv2acXv2rULlpaWKCgoAADc\nuHED06ZNg7OzM6ytreHi4oL333+/wfxu3LiBV199FV27doWtrS0CAwOxYcOGJtXYFGlpafD29kav\nXr3w0Ucf6Yx59dVX0atXLwQEBODQoUPS+xMnToSDgwOUSuV9y+9u9O7dG0uXLsWyZcukbfF2zzzz\nDBYtWoRFixZh8eLFSEpKgq2tLQBg2rRpWLVqFRYvXmzotBu0efNmKBQKeHl54eOPP9YZM23aNHh5\neSEwMFBqo4KCAvTv3x9KpRL+/v5YtGiRIdNulBy3uy1btsDf3x++vr6YN2+ezpgZM2bA19cXoaGh\nyMnJ0Zqn0Wjw6KOP4tlnnzVEunpJS0uDj48PPD09G2ynadOmwdPTU2vbA4BJkybB0dER/v7+hkr3\njjZv3gxfX194e3vjk08+0Rkzffp0eHt7IygoSGqjiooK9O3bF8HBwVAqlXjnnXcMmXaj0tLS4Onp\nCXd3d3z44Yc6Y1555RW4u7tDqVRqtZE+yxqDHPuHtLQ0eHl5wcPDo9F28vDwgL+/f712utOyxiC3\ndpLjvrRlyxYolUooFIoG+7zXXnsNCoUCISEhWn1eWFgYQkNDERAQgFmzZhky7UbJsSYem0x/f7qX\nPnzChAno0qUL/Pz8DJWuXuR63iqn4xJwa/ykd+/e8Pf3x6effqoz5vXXX4e/vz8ee+wxHD58WHpf\noVCgT58+6Nu3LyIiIgyUsR5ECzF79mxhZ2cnvvjiC5GXlydycnLE+++/L4QQIjw8XMTFxUmxGzZs\nEGvXrhWnTp0SJ06cEJMmTRLt27cXxcXFQgghsrKyhKWlpfjhhx9Efn6+OHr0qPj666/FhQsXhBBC\n/Pvf/xZKpVJkZGSIgoICsXfvXrF8+XK98oyPjxe2trYiLCxMZGdni8zMTBEaGioCAwOlmG+//VZY\nWlpKr48dOyZat24tRo8eLbKzs8WZM2fEmjVrxP79+4UQQgwaNEiMHz9e63PGjBkjoqOjhRBC1NTU\niPDwcOHm5iY2btwozp07J3bv3q2Vs5mZmVi1apUUHxERIZ588kmxZ88ece7cOfHVV1+Jhx56SGzb\ntu2ONWo0miZNarVauLm5iTNnzoiKigqhVCrFsWPHtGKSkpJEZGSk0Gg0Yu/evSI0NFSat3PnTpGV\nlSUUCkWTP/v2qTFRUVFNmgYPHiwKCwvF2LFjRUxMjDh9+rSYPHlyg/Hx8fHi4MGD0uv//Oc/YurU\nqeLcuXNN/uzbp8ZUVVXpPVVUVAg3NzeRl5cnbt68Kfz8/MSRI0e0YhITE0VkZKSoqqoSu3fvFiEh\nIaKqqkoUFBSIzMxMUVVVJa5evSo8PDzqLavv9KBtdzdv3mzSdP36deHq6ipyc3NFaWmp8PX1FQcP\nHtSKWb9+vRg4cKC4efOm2LlzpwgODtaa/8EHH4jY2FgRHR3d5M+vnRpTXV3dpKmyslK4ubmJ06dP\ni/LycqFUKsXRo0e1Ymq3verqarFnzx4REhIizduxY4fIzMwUCoWiyZ99+9SYyspKvaebN28KV1dX\ncfLkSXHjxg3h5+cncnJytGJ++eUXMWjQIFFZWSl+++03ERISIs27evWqqKysFGVlZSIkJERs3769\nSZ9fOzWn6upq4ebmJs6dOyfUarVQKpXixIkTWjEpKSlSn7R//34RGhqq97LNQY79Q01NTZOmqqoq\n4ebmJs6ePSsqKyuFUqkUx48f14pJTk4WUVFRoqamRuzbt0+Ehobqvay+04PWTk3REval8vLyJk03\nbtwQrq6u4vfffxfXrl0Tfn5+4tChQ1oxGzZsEIMGDRLl5eUiPT1dBAcHS/OKi4tFeXm5uH79uggO\nDha//vprk3MoLy9/4Gpq6jGBxybD70+G7MNrampEenq6yM7OFgqF4q76bn36cDmet7b041JCQoJI\nSEjQqunatWtNmq5evSpcXFzE0aNHRXFxsfD19RWZmZlaMWvXrhUDBgwQ165dE9u2bRNBQUHSvO7d\nu4vz5883+XMbm5pDi7iiq6ysDB999BFUKhWmTJmCnj17QqlUYubMmQBQ7/5c//jHPzB8+HC4u7vD\ny8sLS5cuhRACaWlpAID8/HzY2tpi2LBh6NatGxQKBSZMmAAnJydpfkBAAIKDg9G1a1f06dMHEydO\n1DvfmzdvYsWKFQgMDERQUBB++OEHHDp0CDt27NAZ/8EHH8DDwwOrVq1CYGAgXF1d8c9//hOhoaEA\ngBdffBFr1qzB9evXAQAlJSVYv349Jk+eDADYvn07du3ahTVr1mDo0KHo0aMHHn/88QZzTk9Px/79\n+/HLL7/gscceQ48ePRAXF4fnnnvuvlyNk5GRATc3N/To0QNWVlaIjY1FYmKiVkxSUhJeeOEFAEBo\naChKSkpw8eJFAEBYWBjatWvX7HndCw8PDxQVFeHvv/+GRqPBrl278OijjzYYHxERgfT0dOn18ePH\ncePGDUOkqhddbZSUlKQVk5SUhOeffx7ArTYqLS3FX3/9hS5dukhX09jZ2cHT0xN//vmnwWuoS47b\nXVZWFlxdXdG9e3dYWVnhn//8J5KTk7ViUlJSMGbMGABASEiI1E4AcOHCBWzevBnjxo2rdyWssdRt\npxEjRtRrp+TkZK12Ki0tNdl2yszMrFdP3TZKTk6W9qWQkBCUlJRIbdS6dWsAgFqthkajQfv27Q1b\ngA4ZGRno2bOnVNPIkSOxceNGrZjExESMHTsWgPa+pM+yxiDH/qHudx0bG6uznXTVpM+yxiC3dpLj\nvlTb59Uel4YPH17v/CElJQXPPfccgPrHJVPs8+RcE49Nprs/3UsfDphefwc8GOetxj4uxcfHIz4+\n/p7WUbednn32WaSkpGjFbNq0CaNHjwYABAcHo7S0FH///bc031Ta53YtYqDr+PHjqKysxMCBA/WK\nP3fuHJ5//nm4u7vD3t4e9vb2KC0tRX5+PgBg4MCBcHV1hYuLC0aNGoVly5ahuLhYWn7KlClYt24d\nfH19MW3aNKSlpTWp8Tp27AhXV1fptbu7Ox555BEcP35cZ3x2djaeeuqpBtc3ZMgQ2NvbY9WqVQCA\nlStXom3bthgyZIi0fLt27RAYGKhXfpmZmVCr1XByckKbNm2kadWqVTh9+rS+ZeqtsLAQ3bp1k147\nOTlJPxNtKKZr1671YkxJhw4dcPnyZen15cuX0aFDB52xrVq1QmBgIPbs2WOo9JqsqKgIXbt2lV7r\naiNdMRcuXNCKOX/+PHJychASEnJ/E9aDHLc7XW1Q98EWjcW8+eabmDNnDszNTafrLyoqqtcGdWsq\nLCy84/ZpKurWo+++VBuj0WgQHByMbt26ITw8HF5eXoZJvBH67CcNxehqX1NoOzn2D3X3E135NtQe\ndbdJU6lVbu0kx31J17ajz3Hp9j4vNDQU3bt3N5k+T6418dhk2vvTvfThpkqO561yOy4BwJ9//qnV\nBo6Ojk1qJzMzMwwbNgzh4eFYsWKFQXLWh+lsNc0oJiYGFy5cwOLFi3HgwAHk5OSgU6dOUKvVAABb\nW1tkZWVhw4YN8PDwwJIlS9CzZ08cPHgQwK2BsPz8fLz99tuoqKjAmDFj0K9fP9TU1NyXfM3MzBod\nSLO0tMTEiROxbNkyALfuLzZ+/Pi73ulrampgb2+Pw4cPa025ubnYtGnTXa2zMfo+EbPud9CSnqTZ\nmNDQUBw/fhxlZWXGTqVBzdFGN27cQGxsLObPnw87O7tmze9uyHG7u9uahBBITU1Fx44d4e/vb1L/\n6iK3drrXeiwsLJCZmYmzZ89i9+7dWleCGsvd1mTK5LbdAWynu1nO0NhG9ZezsLDAgQMHcPr0aeze\nvRu7du1q9hybijXVX47HpvtPbv0dwPPWu1nOGO51X9q8eTN2796Nn3/+GcuWLcPevXubM7271iIG\numpvQL958+Y7xhYXFyM3NxczZ87EgAED4OnpiVatWmldWgcA5ubmCAsLg0qlQnZ2NhwcHLB69Wpp\nfrt27TBy5EgsWbIEKSkpSE9PR25url75Xrp0CWfPnpVenzp1CpcvX4a3t7fO+N69e2Pbtm2N7sST\nJk3C4cOHsWTJEhw9ehSTJk2S5gUFBeHq1avIzs7WK7+goCCUlJSgvLwcrq6uWtPtI7XNxcnJSbpp\nPnDrMtS6n6MrpvanpKbo8uXLeOSRR6TXHTt21LrC63ZPPPGESZwQNMbR0VHr6ixdbVQ3prCwUGqj\nqqoqjBgxAqNHj8awYcMMk/QdyHG709VOdfPV1U6Ojo7Yv38/UlJS4OXlhbFjxyI9PV2rHzEWR0dH\nrTYoKCioV1Pdqwdv3/ZMTd169N2XHB0dtWLs7e0RFRWld79+P9XdTwoKCvTal7p27arXssYgx/6h\n7n6i67tuaPvUZ1ljkFs7yXFfupfj0u1Mqc+Ta008Npn2/nS3fbip9neAPM9b5XZcAgAHB4c7nmc3\n1j84ODgAAB555BHExMSYRP8AtJCBLjs7O8yYMQMJCQlYvHgxTp06hcOHD+ODDz4AcGt0sXaQqF27\ndujYsSO++uor5OXlYd++fRg1ahRsbGyk9W3cuBGfffYZsrOzkZ+fjw0bNqCgoAA+Pj4AgLfffhsb\nNmzAyZMnkZeXh5UrV6JNmzZwdnbWK9/WrVtj/PjxyM7ORlZWFsaOHYuAgAD069dPZ/wbb7yBvLw8\nPPfcc8jOzsaZM2ewdu1a7N+/X4pxdnZGZGQkpk2bhv79+6NHjx7SvH79+iEsLEz6jfC5c+ewZ88e\nfP311zo/76mnnkL//v3xzDPPYOPGjTh79iyys7OxaNEiLF++XK8amyIoKAinT5/G+fPnoVarsWbN\nGulnl7WGDBmCH374AQCwf/9+tG3bFp07d272XJpLXl4enJyc0KlTJ1haWiIsLAwHDhyoF9e6dWso\nFAqttjRFutooJiZGK2bIkCFYuXIlgFttZG9vj86dO0MIgbi4OHh5eeHVV181Rvo6yXG7CwwMxJkz\nZ/DHH39ArVZj3bp1GDx4sFbM4MGDpZ85Z2RkwN7eHl26dMF///tf5OXlITc3F99//z3Cw8Pvy/7e\nVHXbae3atfXaKSYmRqudarc9U9S7d+969dRto5iYGGlfOnDggLTdXb58GSUlJQCA8vJybNu2zSSe\nJhkUFIS8vDyppp9++glDhw7Vihk6dCi+//57ANr7kj7LGoMc+4e633XtfTtvN3ToUJ016bOsMcit\nneS4L9X2ebcfl+qePwwePFj6x+QDBw5Ifbip9nlyronHJtPdn+6lDzdVD8J5a0s/LgH122n9+vWI\njo7WiomKisL//vc/AP/XTp06dcLNmzel+4iXlZVh+/btDV7cY2iWxk5AX++++y46duyIhQsXYvr0\n6WjXrh3Cw8MB3LrcrvaSO3Nzc6xduxavvPIK/Pz80KNHD8yZMwdvvvmmtK727dtj4cKFmDt3Lq5f\nvw5nZ2fMmjUL48ePBwDY2Nhg9uzZOH/+PCwsLBAQEIBNmzahTZs2d8zTzMwMjo6OePHFFzF8+HBc\nvHgRffv2rbdj3n6JoEKhwM6dO/HWW28hPDwc5ubmUCgUWLhwodYycXFxSE1NlW5Cf7uUlBS89dZb\neOmll1BcXAwnJye89NJLDeaZmJgIlUqF6dOno7CwEO3bt0dAQADeeOONO9bYVJaWlli4cCGioqKg\n0WgwYcIE6SEBwK2b7UdHR2PTpk3w8PCAra2t1iDd6NGjsWvXLhQXF6N79+5ISEiQ2spYampq8OWX\nX+K9996Dubk5tmzZgoKCAkRFRQGA9BPQPn364ODBg9LPZmu98cYb8PX1xcMPP4zvvvsOK1euxNat\nWw1eRy1LS0ssWLAAgwcPhkajwfjx4+Hl5YWvvvoKADB58mRERUVh06ZN8PT0ROvWraVtes+ePVi9\nejV8fX0RFBQEAJgzZw4GDRpktHoAeW53lpaWmD9/PoYOHQqNRoOxY8fC09NTaotJkyYhMjISmzdv\nhkKhgK2tLZYsWaJzXaZyCXXtthcdHd3gthcdHY20tDT06tULtra2Wv3pc889J7VTjx49kJCQgHHj\nxhmpmlv1fPbZZ4iJidGqp/an53FxcYiKipIeIW5rayvNu3jxIiZOnIiamhrU1NRg9OjRDf4DiSFZ\nWlri888/x6BBg6DRaDBx4kSd+1Jqaip69uwJW1tbfPvtt40ua2xy7R8WLVqEyMjIRmtKTU2Fu7s7\nbG1t8c033zS6rLHJrZ3kui99+umnGDJkCDQaDcaNG6fzuJSWlgYfHx/Y2tpK9V68eBFxcXFSnzdq\n1Cg8+eSTxiwHgHxr4rHJtPene+nDgVv9XXp6OoqLi+Hs7AyVSmUSxyU5nrfK6bgE3Krpk08+wdNP\nPw2NRoMXXngBvXr1kravCRMmYNCgQdiyZQuUSiVsbW2xePFiAMBff/0lPUyguroaI0aMaPTe44Zk\nJkzpR6/UqMWLF+Pdd99FQUEBLC2NN0Z5v+5Vdr81dk+zuqPWLUVqamqD86qrqw2YSfNobLuW43ZX\nXl5uwEyaz+1XyNal0WgMmEnzsbCwaHBe3YHqluChhx4ydgoGJcf+oaWenjX2x4gc20luKioqjJ3C\nXbG2tm5wnhxraonHJeDBOjbJsQ+X43lrSz8uqVQqANB68mLtFVYtmT4XGN1Ji7mi60FWVlaGgoIC\nfPTRR5g6dapRB7mIiIiIiIiIiEzVg/NPVM0gPz8fdnZ2aNOmjc6p9nerzW3q1KlQKpXw9fXF66+/\nfl8+g4iIiIiIiIiopeOlQU3g5OSEI0eONDi/U6dO9+VzV6xYgRUrVtyXdRMRERERERERyQUHuprA\nwsICrq6uxk6DiIiIiIiIiIh04E8XiYiIiIiIiIhIFnhFFxERERERERFRC3L70xZJG6/oIiIiIiIi\nIiIiWeBAFxERERERERERyQIHuoiIiIiIiIiISBY40EVERERERERERLLAgS4iIiIiIiIiIpIFDnQR\nEREREREREbUgKpUKKpXK2GmYJA50ERERERERERGRLHCgi4iIiIiIiIiIZIEDXUREREREREREJAsc\n6CIiIiIiIiIiIlngQBcREREREREREcmCmRBCGDsJIiIiIiIiIiKie8UruoiIiIiIiIiISBY40EVE\nRERERERERLLAgS4iIiIiIiIiIpIFDnQREREREREREZEscKCLiIiIiIiIiIhkgQNdREREREREREQt\niEqlgkqlMnYaJsnS2AlQy3Pz5k1jp3BXWrdu3eC86upqA2bSfCwtG96FIyIiDJdIM9m5c2eD8yoq\nKgyXSDOytrZucF5NTY0BM2k+5ub8N5KWTI79nRDCgJk0HzMzswbnaTQaA2bSfCwsLBqcJ8d2aok1\nNVZPVVWVATNpPlZWVsZOwaDkeE7UEo9ND9pxSY7nrXJspytXrhgwk/ujffv297wO/rVCRERERERE\nRESywIEuIiIiIiIiIiKSBQ50ERERERERERGRLHCgi4iIiIiIiIiIZIE3oyciIiIiIiIiakHi4+ON\nnYLJ4hVdREREREREREQkCxzoIiIiIiIiIiIiWeBAFxERERERERERyQIHuoiIiIiIiIiISBY40EVE\nRERERERERLLAgS4iIiIiIiIiohZEpVJBpVIZOw2TxIEuIiIiIiIiIiKSBQ50ERERERERERGRLHCg\ni4iIiIiIiIiIZIEDXUREREREREREJAsc6CIiIiIiIiIiIlngQNcdREREIC4uzthpAAASEhLg7u7e\naMyKFStgZWV139ZPRERERERERMYVHx+P+Ph4Y6dhkjjQdQdmZmYwMzMzdhp6GzlyJIqKiu56+ZZU\nKxERERERERHR7SyNnQA1L2tra1hbWzc4XwgBjUYDS0vdTS+EuF+pERERERERERHdV7yi6//74osv\n4O3tDWtra3Tu3BnDhw8HUH/gZ+vWrYiIiECHDh3Qtm1bREREIDMzUytm+fLl8PLygo2NDTp06IDw\n8HAUFhYCAK5du4bx48fDwcEB1tbWcHZ2xowZM5qU6+rVq+Hq6gobGxsMHDgQf/zxhzSv7k8Xa1/v\n3LkTAQEBsLa2xrZt21BRUYGXX34Zbdu2Rfv27TFlyhRUVlY2KY+m2LJlCwICAuDn54d58+bpjPnP\nf/4DPz8/hIaGIicnR2ueRqNBnz59pHYxBZs3b4ZCoYCXlxc+/vhjnTHTpk2Dl5cXAgMDcejQIQBA\nQUEB+vfvD6VSCX9/fyxatMiQaTcoJCQE33//PVauXIlRo0bVmx8bG4tly5Zh2bJl+Oabb7Bt2zbY\n2dkBAH788Ud8/fXXWLZsGb788ktDp96gLVu2QKlUQqFQ4JNPPtEZ89prr0GhUCAkJETa7ioqKhAW\nFobQ0FAEBARg1qxZhky7UWlpafD29kavXr3w0Ucf6Yx59dVX0atXLwQEBEjbHQBMnDgRDg4OUCqV\nhkpXL2lpafD09IS7uzs+/PBDnTGvvPIK3N3doVQqtWrSZ1lDk1s9gPz6O+DWd+3l5QUPD49G28nD\nwwP+/v5a7TRhwgR06dIFfn5+hkpXL2lpafDx8YGnp2eD/cO0adPg6emp1U4AMGnSJDg6OsLf399Q\n6erlXtpJn2UNTW71AP/XP3h7ezfYP0yfPh3e3t7o3bu3Vv8wYMAAqX/4/PPPDZl2o+TYj8vxnEhu\nxya5HpfkeN4qt35827ZtCA0NRXBwMBYsWKAzZubMmQgODsYTTzyBI0eOAADy8vIQEREhTT169MDS\npUsNmXrDBInZs2cLOzs78cUXX4i8vDyRk5Mj3n//fSGEEOHh4SIuLk6K3bBhg1i7dq04deqUOHHi\nhJg0aZJo3769KC4uFkIIkZWVJSwtLcUPP/wg8vPzxdGjR8XXX38tLly4IIQQ4t///rdQKpUiIyND\nFBQUiL1794rly5frlWd8fLywtbUVYWFhIjs7W2RmZorQ0FARGBgoxXz77bfC0tJS67W5ubkIDQ0V\nO3fuFOfOnROXLl0S06ZNE506dRKJiYni5MmT4j//+Y94+OGHhbu7+x3zKCsra9J07do14erqKk6c\nOCFKSkqEr6+vyM7O1or5+eefxcCBA0VZWZnYuXOnCA4O1pr//vvvixEjRojo6Ogmf37t1Jiqqqom\nTRUVFcLNzU3k5eWJmzdvCj8/P3HkyBGtmMTERBEZGSmqqqrE7t27RUhIiKiqqhIFBQUiMzNTVFVV\niatXrwoPD496y+o7NSY8PFzv6cknnxQXLlwQsbGxol+/fiIvL088//zzDcbPnDlTZGVlSa+LiopE\nTExMkz5T19SY8vLyJk03btwQrq6u4vfffxfXrl0Tfn5+4tChQ1oxGzZsEIMGDRLl5eUiPT1dBAcH\nS/OKi4tFeXm5uH79uggODha//vprk3MoLy9vtCaNRtOkSa1WCzc3N3HmzBlRUVEhlEqlOHbsmFZM\nUlKSiIyMFBqNRuzdu1eEhoZK83bu3CmysrKEQqFo8mffPjWn6upq4ebmJs6dOyfUarVQKpXixIkT\nWjEpKSkiKipKCCHE/v37RWhoqN7LGlpLqEeO/V1NTU2TpqqqKuHm5ibOnj0rKisrhVKpFMePH9eK\nSU5OFlFRUaKmpkbs27dPhIaGSvPS09NFdna2UCgUTf7s26fGVFdXN2mqrKwUbm5u4vTp06K8vFwo\nlUpx9OhRrZjadqqurhZ79uwRISEh0rwdO3aIzMxMoVAomvzZt0+m0k76LNsc7SS3etRqdZOm8vJy\n4ebmJk6dOiXKysqEn5+fOHz4sFbMxo0bRWRkpFCr1VL/oFarRX5+vsjIyBBqtVpcuXJFuLu711tW\n36k5tYR+XI7nRC3x2NQYOR6X5HjeKsfjUnFxcZOmv//+W7i4uIhDhw6JixcvCoVCIfbu3asV8+OP\nP4r+/fuL4uJisXnzZtG7d+9667l06ZLo3LmzOHLkSJNzqDs1hwf+iq6ysjJ89NFHUKlUmDJlCnr2\n7AmlUomZM2cCqH/Pqn/84x8YPnw43N3d4eXlhaVLl0IIgbS0NABAfn4+bG1tMWzYMHSM82EyAAAg\nAElEQVTr1g0KhQITJkyAk5OTND8gIADBwcHo2rUr+vTpg4kTJ+qd782bN7FixQoEBgYiKCgIP/zw\nAw4dOoQdO3Y0uIwQAvPmzUN4eDh69OgBGxsbLFmyBHPnzsWQIUPg4eGBjz/+GB4eHk39+vSSlZUF\nV1dXdO/eHVZWVhg+fDiSk5O1YlJTU/Hcc88BAIKDg1FaWoq//voLAFBYWIjNmzdj3LhxJvPTyoyM\nDLi5uaFHjx6wsrJCbGwskpKStGKSkpLw/PPPAwBCQ0Olmrp06SL9i7mdnR08PT3x559/GryG23l6\neqKwsBAXL16ERqPB9u3b0bdv3wbjn3rqKWzbtk3rPVO7v1tmZibc3Ny0tru6bZSSkiJtdyEhIVrb\nXevWrQEAarUaGo0G7du3N2wBOuja7hITE7VikpKS8MILLwC4td2VlJTg4sWLAICwsDC0a9fO4Hk3\nJiMjAz179pRqGjlyJDZu3KgVk5iYiLFjxwLQrkmfZQ1NbvUA8uvvgPrtFBsbq7OdWtq+dHs7jRgx\nol7/kJycrFVTaWmpydd0t+2kz7KGJrd6gP871t6+3dXtH5KTkzFmzBgAt461JSUlLap/kEM//qCc\nE7XkY9ODcFyS43mrHPrxgwcPwsXFBc7OzrCyssLTTz+NTZs2acWkpaVh5MiRAICgoCCUlpbi77//\n1opJT09Hjx49pHEPY3vgB7qOHz+OyspKDBw4UK/4c+fO4fnnn4e7uzvs7e1hb2+P0tJS5OfnAwAG\nDhwIV1dXuLi4YNSoUVi2bBmKi4ul5adMmYJ169bB19cX06ZNQ1paWpMGbzp27AhXV1fptbu7Ox55\n5BEcP3680eWCg4Ol/z9z5gwqKyvx2GOPacU8/vjj92UgqaioCF27dpVeOzk51TuY1I1xdHSUbqr/\n5ptvYs6cOTA3N53NVVdNtT9PbSzmwoULWjHnz59HTk4OQkJC7m/Cd9CxY0etzurSpUt45JFHdMa2\natUKwcHB2LVrl/Re7WDq0qVLMXjw4Puerz7qfv9du3at96CGxtpRo9EgNDQU3bt3R3h4OLy8vAyT\neCMKCwvRrVs36bWu7a5uTNeuXevFmBJ98m0opqioyORqlVs9gPz6O+BWG9TtH3TVZIrt0RBd+dbt\n8+rWrastTcm9tJOuY4Cxa5VbPYDubUrXdnenfen8+fM4fPiwyfQPcu/H5XBOJLdjkxyPS3I9bzWl\nflylUkGlUt3TOv7880+twSlHR8d6f6vriqnbh6xfvx7PPvvsPeXSnExn5KCFiImJwYULF7B48WIc\nOHAAOTk56NSpE9RqNQDA1tYWWVlZ2LBhAzw8PLBkyRL07NkTBw8eBHBrICw/Px9vv/02KioqMGbM\nGPTr1w81NTX3LWcLCws89NBD9239d6LvlT66Btk2bdqEjh07wt/f32Su5gLuvqbbl7tx4wZiY2Mx\nf/586V5XxtKU7/axxx7D0aNHcePGDem9f/3rX4iLi8Mbb7yBp59+Gr6+vvcjzSa51zaysLDAgQMH\ncPr0aezevVtrYM9YmmO7MzX30j+YIrnVA8ivvwO4L93NcsYgt/1JbvUAzdc/jBw5EvPmzWvR/YMp\n4zmR7uVM6djEPrzpyxmDHPsHfTXWTmq1Gps3b8awYcMMnVaDHviBrtob0G/evPmOscXFxcjNzcXM\nmTMxYMAAeHp6olWrVvUu2zM3N0dYWBhUKhWys7Ph4OCA1atXS/PbtWuHkSNHYsmSJUhJSUF6ejpy\nc3P1yvfSpUs4e/as9PrUqVO4fPkyvL299awYcHNzw0MPPYQ9e/Zovb9nz5770rE4Ojpq/evJhQsX\n4Ojo2GhMUVERHBwcsH//fqSkpMDb2xvjxo1Deno6Jk2a1Ow5NpWumm4fodcVU1hYKI2EV1VVYcSI\nERg9erRJdAiXL19Gp06dpNcdO3bEpUuXdMb269cP27dv13rvypUrAIDS0lL89ttvJvEvfbraqO6l\ntLraqO62aW9vj6ioKGRnZ9/fhPXg5OSEgoIC6bWu7U5XjKlcQqxL3XwLCgr0qqlr1656LWtocqsH\nkF9/B9T/V31d37Wjo2OL2pfq5ltQUFAv37p1395Opuhu26l2f7rTsoYmt3qA+jXp2k909Xm1x9qq\nqirExsaaXP/wIPTjLf2cSG7HJjkel+R63iq3ftzBwUHryjJd+37dmNq/1Wv9+uuvUCqVDf4iyBge\n+IEuOzs7zJgxAwkJCVi8eDFOnTqFw4cP44MPPgBwa+SydvSyXbt26NixI7766ivk5eVh3759GDVq\nFGxsbKT1bdy4EZ999hmys7ORn5+PDRs2oKCgAD4+PgCAt99+Gxs2bMDJkyeRl5eHlStXok2bNnB2\ndtYr39atW2P8+PHIzs5GVlYWxo4di4CAAPTr10/vmm1tbfHSSy/hnXfeQVJSEk6ePIk33ngDp06d\n0nsdTREYGIgzZ87gjz/+gFqtxs8//1zv523R0dHSYGBGRgbs7e3RpUsXqFQqnDp1CidOnMB3332H\n8PBwLF++/L7k2RRBQUE4ffo0zp8/D7VajTVr1iAmJkYrZsiQIVi5ciUAYP/+/bC3t0fnzp0hhEBc\nXBy8vLzw6quvGiP9ek6ePAknJyd06dIFlpaW6NevX72BUODWtuPn54fdu3dL77Vq1UraB6ytrREU\nFKQ1GGssvXv3xunTp6Xtbt26dfXaaPDgwdJ2d+DAAamNLl++jJKSEgBAeXk5tm3bZhJPItO13Q0Z\nMkQrZsiQIfjhhx8A3Nru2rZti86dOxsjXb0EBQUhLy9Pqumnn37C0KFDtWKGDh2K77//HoB2Tfos\na2hyqweQX38H1G+nNWvW6GynlrYv3d5Oa9eurdc/xMTEaNVU206m6l7aSZ9lDU1u9QD/d6y9fbur\n2z/ExMRg1apVAG4da2trEkJg8uTJ8PLywiuvvGKM9HWSYz/+oJwTteRj04NwXJLjeasc+vGAgACc\nPXsW+fn5UKvV+OWXXxAZGakVExkZiZ9++gnArXv+2dvba10ksX79ejzzzDMGzftOLI2dgCl49913\n0bFjRyxcuBDTp09Hu3btEB4eDuDWJXm1VzmZm5tj7dq1eOWVV+Dn54cePXpgzpw5ePPNN6V1tW/f\nHgsXLsTcuXNx/fp1ODs7Y9asWRg/fjwAwMbGBrNnz8b58+dhYWGBgIAAbNq0CW3atLljnmZmZnB0\ndMSLL76I4cOH4+LFi+jbt2+9gZ+6V2Xpukrrgw8+QEVFhXSDxpEjR2Lq1KlYt25dE745/VhaWmLe\nvHkYNmwYNBoNXnjhBXh6euLrr78GcOvRsZGRkdiyZQt8fX3RunVrLFmyROe6TOVSVktLSyxYsACD\nBw+GRqPB+PHj4eXlha+++goAMHnyZERFRWHTpk3w9PRE69atpXbas2cPVq9eDV9fXwQFBQEA5syZ\ng0GDBhmtHo1GgwULFuCjjz6ChYUFUlJSkJ+fLx2Mam/u2bdvX2RmZko/1QVuDQC/9957AG5d2r51\n61ZkZWUZvog6LC0t8emnn2LIkCHQaDQYN24cPD09pXaYNGkSIiMjkZaWBh8fH9ja2kqPw7148SLi\n4uJQU1ODmpoajBo1Ck8++aQxywFwq6aFCxciKioKGo0GEyZMkB6KAQAvvvgioqOjsWnTJnh4eMDW\n1lbazwBg9OjR2LVrF4qLi9G9e3ckJCRIfZOxWFpa4vPPP8egQYOg0WgwceJEnTWlpqaiZ8+esLW1\nxbffftvossYkt3pq85JTfwfcqmnRokWIjIxsdF9KTU2Fu7s7bG1t8c0330jLjx49Gunp6SguLoaz\nszNUKpVJ7EsLFixAdHR0g+0UHR2NtLQ09OrVC7a2tlrnD88995zUP/To0QMJCQkYN26ckaq55V7a\nqaFljUlu9dTm9dlnn2Hw4MGoqanBuHHj4PX/2LvvsKjO9G/gX5oiJVhRio0OAoMIGjeLsm4sKJY1\nBI0djboxxhJ3EzZqYNJWXU3sYslGo9HF3hDQGMXYAcWuYKVY0YgVgeF5/+Dl/BwYEBSnHL+f65rr\nCpznyH3nPs/DzM0pnp5YunQpAGDkyJEICQlBQkICPD091daHgwcPSutD6b1kv/nmG71YH+S4jsvx\nPZGcfjfJ9feSHN+3ynEdnz59OsLCwlBcXIyBAwfC3d0dy5cvBwAMGzYMnTt3xq5duxAQEAALCwvM\nmzdP2v/x48dISkrCDz/8oKMMNDMScryAlF6rJ0+e6DqEl1L6xBhNioqKtBhJzTE1rbhXHRwcrL1A\nasjevXsr3Jafn6+9QGqQubl5hdte5735Xid9ejAEVZ8c1ztDfStT2R9vVCqVFiOpOSYmJhVuk2Od\nDDGnyvIpLCzUYiQ1x8zMTNchaJUc3xMZ4u+mN+33khzftxp6nUpvRB8VFSVtK72ljCGriSe78owu\nIiIiIiIiIiID8nyDi9Txz/J6IjMzE1ZWVrC2ttb4WrNmja5DJCIiIiIiIiLSazyjS084ODjg5MmT\nFW5//mZvRERERERERERUHhtdesLExAROTk66DoOIiIiIiIiIyGDx0kUiIiIiIiIiIpIFNrqIiIiI\niIiIiEgW2OgiIiIiIiIiIjIgSqUSSqVS12HoJTa6iIiIiIiIiIhIFtjoIiIiIiIiIiIiWWCji4iI\niIiIiIiIZIGNLiIiIiIiIiIikgU2uoiIiIiIiIiISBZMdR0AERERERERERFVXVRUlK5D0Fs8o4uI\niIiIiIiIiGSBjS4iIiIiIiIiIpIFNrqIiIiIiIiIiEgW2OgiIiIiIiIiIiJZMBJCCF0HQURERERE\nRERE9Kp4RhcRERERERERkQFRKpVQKpW6DkMvsdFFRERERERERESywEYXERERERERERHJAhtdRERE\nREREREQkC2x0ERERERERERGRLLDRRUREREREREREsmAkhBC6DoIMy7Nnz3QdwkupXbt2hduKi4u1\nGEnNMTauuFddWFioxUhqhpmZWYXb/Pz8tBhJzUlLS6twm6Euv0ZGRroOQauKiop0HUK1mZqa6joE\nonK45uk/1sgwqFQqXYfwUkxMTHQdgtbI8bPFo0ePtBhJzbGystJ1CFplqHV6Xk3UjGd0ERERERER\nERGRLLDRRUREREREREREssBGFxERERERERERyQIbXUREREREREREJAtsdBERERERERERkSyw0UVE\nREREREREZECUSiWUSqWuw9BLbHQREREREREREZEssNFFRERERERERESywEYXERERERERERHJAhtd\nREREREREREQkC2x0ERERERERERGRLJjqOgAiIiIiIiIiIqq6qKgoXYegt3hGFxERERERERERyQIb\nXUREREREREREJAtsdBERERERERERkSyw0UVERERERERERLLARtdzgoODMXLkSF2HAQCIjo6Gq6ur\nrsMgIiIiIiIiIjIYbHQ9x8jICEZGRroOQ+tMTU3x888/6zoMIiIiIiIiIqoCpVIJpVKp6zD0Ehtd\nBCMjIwghdB0GEREREREREdEreSMbXQsWLICXlxfMzc3RuHFjhIWFAUC5Zs+uXbsQHByMBg0aoG7d\nuggODkZycrLamGXLlsHT0xN16tRBgwYN0LFjR+Tk5AAAHjx4gIiICNjZ2cHc3BzNmjXDpEmTqhXr\n6tWr4eTkhDp16qBLly64du2a2vYVK1bAy8sLtWvXRtOmTTF16lSoVKoq59CiRQuoVCpERETA2NgY\nJiYm1Yqvqnbu3AlfX1+0atUKM2fO1Djm008/RatWrRAYGIi0tDQAQH5+PoKCgtC2bVv4+flhypQp\nryW+l5GQkAAvLy+4u7tjxowZGseMHz8e7u7uaN26NY4fPy59f8SIEbCzs4NCodBWuC+UmJgIb29v\neHl54T//+Y/GMRMnToSXlxfatGkj5ZOVlYXOnTtDoVDAz88P8+fP12bYlfrTn/6ETZs2YevWrRg2\nbFi57XXr1sWCBQsQGxuL9evXo1evXtK26Oho7N69G+vWrdNixC+WkJAAT09PuLm5Yfr06RrHjBs3\nDm5ubvDz81M77oYPH44mTZrA19dXW+FWSUJCAjw8PODq6lppTq6urlAoFGo5VWVfbSudS56enhXO\npQkTJsDT0xP+/v5qc+ndd9+V5tK8efO0GXal5FYjgDkZUk5yWvNYI/2vESDfOrVq1QoeHh4Vvm+d\nMGECPDw8yv1u+utf/wpfX18oFAr+bnqN5PbZAij5LOrv7w8/Pz98//33Gsf885//hJ+fH9q3b48T\nJ05I32/VqhXefvttvPPOOwgODtZSxC8mt+MOkGedIN4wX375pbCyshILFiwQGRkZIi0tTfz73/8W\nQgjRsWNHMXLkSGnspk2bxLp160R6ero4e/as+PDDD0X9+vXF3bt3hRBCpKSkCFNTU7Fy5UqRmZkp\nTp06JX788UeRnZ0thBDik08+EQqFQhw9elRkZWWJgwcPimXLllUpzqioKGFpaSmCgoJEamqqSE5O\nFu3atRP+/v7SmO3btwsTExMxbdo0kZGRIWJjY0W9evXE1KlTq5zDnTt3hKmpqZg7d664deuWuHXr\n1gtjy8/Pr9br8ePHwsnJSZw/f148fPhQ+Pr6irS0NLUxmzdvFl27dhX5+fli3759om3bttK2e/fu\nifz8fPHo0SPRtm1bsXv37mrHkJ+fX2lOKpWqWq+CggLh7OwsLl26JPLz84VCoRCnT59WG7Nt2zbR\nrVs3oVKpxMGDB0W7du2kbXv37hUpKSnC29u72j/7+VdlCgoKqvx6+vSpcHZ2Funp6eLx48fC19dX\nnDhxQm3Mli1bRLdu3URBQYHYv3+/aNu2rSgoKBCZmZni6NGjoqCgQNy7d0+4urqW27eqr8ooFIpq\nvVq3bi2uXbsmQkJCRJs2bcT58+dFnz591MYsWrRILFu2TCgUCtGxY0fxxx9/CH9/f6FQKMSwYcNE\neHi4SE9Pr/bPfv5VmeLi4mq9CgsLhbOzs7h8+bJ49uyZUCgU4syZM2pjtm/fLkJCQkRxcbE4dOiQ\naNeunbQtKSlJpKamCm9v72r/7OdfNamoqEg4OzuLK1euiIKCAqFQKMTZs2fVxsTFxYmQkBAhhBCH\nDx8W7dq1q/K+NaGwsLDKr/z8fOHs7CwyMjLEkydPhK+vrzh58qTamK1bt4pu3bqJwsJCaS4VFhaK\nrKwskZycLAoLC8Uff/wh3Nzcyu1b1VdNMoQaVRdz0k1Ob/qaxxrpf42EMIw6FRUVVev17Nkz4ezs\nLC5evCiePn0qFAqFOHXqlNqY0t9NRUVF4sCBA6Jt27aiqKhIZGdni5SUFFFUVCTu378v3Nzcyu1b\n1VdN/z/Q5zrJ8bPFw4cPq/W6f/++cHJyEqdPnxb37t0TPj4+Ijk5WW3M+vXrRZcuXcTDhw/Fb7/9\nJgICAqRtzZs3F9euXav2zy37qkn6dtxFR0eL6Ohote8Zap1qumZv1Bldjx8/xowZM6BUKjFmzBi4\nuLhAoVAgMjISAMrdn6tPnz4ICwuDq6srPD09sXjxYgghkJCQAADIzMyEpaUlevfujaZNm8Lb2xvD\nhw+Hg4ODtL1169YIDAyEo6Mj2rdvjxEjRlQ53idPnmD58uXw9/dHQEAAVq5ciePHj2PPnj0AgGnT\npiEsLAyff/45XFxcEB4ejujoaMycORNFRUVVyqFhw4YAABsbG9ja2sLW1vYV/g9rlpycDGdnZ7Ro\n0QJmZmZ4//33sW3bNrUx27dvx6BBgwAAbdu2xf3793Hr1i0AgIWFBQCgoKAAKpUK9evXr/EYq+vo\n0aNqOfXr1w9bt25VG7Nt2zYMGTIEANCuXTvcv38fN2/eBAAEBQWhXr16Wo+7ImVrFB4eXuUaNWnS\nBH5+fgAAKysreHh44MaNG1rPoSxvb29kZWXh+vXrKCoqQkJCQrm/Mty5cwdWVlYAAEtLS+Tl5Uln\nRB4/fhwPHz7UdtiVOnr0KFxcXNSOuy1btqiN2bp1q8Ecd0D5nPr3768xp6FDhwJQz6kq+2qbprWh\n7Fzatm0bBg8eDKAkn7y8PL2eS3KrEcCcAMPMydDXPNZI/2sEyLdOZd/nlX3fun37drU6Vfa76fr1\n61rPoSy51Uluny0AICUlBU5OTmjevDnMzMzw3nvvIS4uTm3Mjh07MGDAAABAYGAg8vLycPv2bWm7\n0LPb68jtuAPkWSfgDbt08cyZM3j27Bm6dOlSpfFXrlzB4MGD4erqChsbG9jY2CAvLw+ZmZkAgC5d\nusDJyQktW7bEBx98gKVLl+Lu3bvS/mPGjMH69evh4+ODCRMmICEhoVoHQaNGjeDk5CR97erqioYN\nG+LMmTMAgLNnz6JDhw5q+3To0AH5+fm4dOlSlXLQhuvXr8PR0VH62sHBodwvSE1jSi8BValUaNu2\nLZo1a4aOHTvC09NTO4FXIicnB02bNpW+fj7eisY4OjqWG6MvcnJyXlijquRz9epVnDhxAm3btn29\nAVeBra2t1CwFgFu3bpVr5G7cuBHOzs7YuXMn1q5dW+Fp4vqibJ001eD69esGc9wBVTuuKhqjj7lW\ntpZVNiY7O1ttzNWrV5GWlqYXc0luNQKYU9kx+pyTnNY81qjiMfpEjnXSFJem93lV/d3Url271xtw\nFcitTnL7bAEAN27ckE4AAUpyKvsHvOvXr5cbU3psGhkZoVevXujQoQN++ukn7QT9AnI77gB51gkA\nTHUdgD4LDQ2Fra0tFi5ciKZNm8LMzAx//vOfUVBQAKDkDJCUlBQcOHAAv/76K2JiYvDZZ59h9+7d\n8Pf3R5cuXZCZmYnExETs3bsXgwYNgo+PD3bv3g1jY+30GF+UgzZU9UmWZZuApfuZmJjg6NGjyMvL\nQ8+ePZGUlISOHTvWeJzV8ao56ZuayOfRo0fo378/Zs2aJZ0lpUtVaSqPGDECFy5cwIcffghHR0fE\nxMQgPDwcT5480UKE1Se34w54+Zz0VU3NpX79+uH777/Xi7kktxoBzMlQyG3NY42qv58usE6a9yv9\n3fTDDz/wd9NrwLlU3s6dO2FnZ4c7d+6gd+/ecHNzwzvvvFOTIVabvh13UVFRr/xvyLFOwBt2Rlfp\nDegTExNfOPbu3bs4d+4cIiMj0blzZ3h4eKB27dpqp+gBgLGxMYKCgqBUKpGamgo7OzusXr1a2l6v\nXj30798fMTExiIuLQ1JSEs6dO1eleO/cuYPLly9LX6enpyM3NxdeXl4ASm78lpSUpLZPUlISLCws\n4OzsXOUcatWqpXYD+5pmb2+v9heh7OxstY6wpjE5OTmwt7dXG2NjY4Nu3brh2LFjry3WqnJwcEBW\nVpb0dXZ2ttpfwSoaUzZvfVH2r3aaYtWUT2mNCgsL0a9fPwwYMAC9e/fWTtAvcPv2bTRu3Fj6ukmT\nJmpneAGAn58fdu3aBaAkn5ycHLRo0UKbYVZL2TplZWWVO+7s7e0N5rgDyh9XmnKqaL5VZV9t07Te\naapR2fWutEaFhYUIDw/Xq7kktxoBzKmUIeQkpzWPNSqhzzUC5FmnsjXIysrS+D6vst9N77//Pn83\nvUZy+2wBAHZ2dmpnLD3/2aGUvb292pjnPwPa2dkBKLnKqWfPnkhNTdVC1JWT23EHyLNOwBvW6LKy\nssKkSZMQHR2NhQsXIj09HSdOnMC0adMAlHQpSzuV9erVQ6NGjbBkyRJkZGTg0KFD+OCDD1CnTh3p\n39uyZQtmz56N1NRUZGZmYtOmTcjKykKrVq0AAJMnT8amTZtw4cIFZGRkYNWqVbC2tkazZs2qFK+F\nhQUiIiKQmpqKlJQUDB06FK1bt0anTp0AAP/617+wYcMGTJ8+Henp6Vi7di2USiUmTZoEU1PTKuUA\nAC1btsRvv/2GGzduIDc395X/P5fVpk0bXLx4EVevXkVBQQHWr1+P0NBQtTGhoaH45ZdfAABHjhxB\n3bp10bhxY+Tm5uL+/fsAgKdPn2L37t168TSRgIAAtZzWrl2Lnj17qo3p2bMnVq5cCQA4fPiwlJM+\nKlujdevWVblGQgiMGjUKnp6eGDdunC7C1+js2bNo1qwZ7O3tYWpqiq5du5ZrDF+5ckU6/b5+/fpo\n0aJFudP09UlAQAAyMjLUjrvnnxQJAL169TKY4w4on1NsbKzGnH7++WcA6jlVZV9t07Q2lJ1LPXv2\nxKpVqwCU5GNjYyPNpZEjR8LT0xPjx4/XRfgaya1GAHMCDDMnQ1/zWCP9rxEg3zqVfZ9X9n1raGio\nWp34u0m75PbZAgD8/f1x6dIlXLt2DQUFBdi4cSO6d++uNqZ79+5Ys2YNgJL7X5XeN/rJkyfSvXIf\nP36M3bt3S5+xdUluxx0gzzoBePOeuiiEEHPmzBHu7u6iVq1aonHjxiI8PFwIIURwcLDaUxeTkpKE\nQqEQ5ubmwsPDQ2zYsEG4uLgIpVIphBBi3759olOnTqJRo0bC3NxcuLm5ienTp0v7f/3118Lb21tY\nWVkJGxsbERwcLA4cOFClGKOjo4Wrq6v45ZdfRIsWLYS5ubl49913xdWrV9XGrVixQnh6eopatWoJ\nBwcHMWXKFLUnZrwoByGESEhIkP4NY2PjF8b2Mk883LJli3B1dRVOTk7iq6++Evn5+WLevHli3rx5\n0pi///3vwsnJSfj4+IhDhw6J/Px8kZKSIvz8/ISvr6/w9vYW33333Uv9/Jp+6qJKpRLbt28Xbm5u\nwtnZWXz77bdCpVKJhQsXioULF0pjxowZI5ydnYWvr69ITk6Wvt+vXz9hZ2cnatWqJRwdHcWyZct0\n+tTFgoICsXXrVuHq6iqcnZ3F119/LQoKCsSCBQvEggULpDEfffSRcHZ2Fj4+PuLIkSOioKBA7Nmz\nRxgZGQlfX1/pSYPbtm3T+VMXFQqFGDNmjLhy5Yq4du2amDNnjlAoFOKrr74SX331lfSkxb1794rz\n58+L9PR0ERkZKe27Y8cOcevWLfHs2TNx48YN8eWXX+r8qYvFxcUiLi5O7bgrLjBIVdcAACAASURB\nVC4WixYtEosWLZLGPH/cpaSkSN/v37+/2nH3448/6vzpVkIIsWPHDimn7777TgghRExMjIiJiZHG\nfPzxx1JOqample5b06r7xMNt27ZJMX3zzTeisLBQmkulY8rOpcLCQo1zafv27Tp/6qIQ+l+jl8Gc\ntJ8T1zzWyBBqJIT+1+llnnhY9ndTUVGR9L61dMzzdTp69KgoKioSe/fuFUZGRkKhUAg/Pz/h5+cn\ntm/frvOnLgqh33WS42eLl3l6XulnTycnJxEVFSUePnwo5syZI+bMmSONGTVqlHBychLe3t7i999/\nFw8fPhQnT54UPj4+wsfHR3h6ekr76vqpi0Lo93EnhOHWqaZrZiSEgVy4THrj2bNnug7hpdSuXbvC\nbcXFxVqMpOZUdq+3wsJCLUZSM8zMzCrcVvrEH0OTlpZW4TZDXX71+X4Qr0PpU2wNiakpb8FJ+odr\nnv5jjQzD67zlyOtkYmKi6xC0Ro6fLR49eqTFSGqOPtxTTpsMtU7Pq4mavVGXLhIRERERERERkXyx\n0aUDmZmZsLKygrW1tcZX6fWvRERERERERERlKZVKKJVKXYehl3htgw44ODjg5MmTFW63tbXVYjRE\nRERERERERPLARpcOmJiYwMnJSddhEBERERERERHJCi9dJCIiIiIiIiIiWWCji4iIiIiIiIiIZIGN\nLiIiIiIiIiIikgXeo4uIiIiIiIiIyIBERUXpOgS9xTO6iIiIiIiIiIhIFtjoIiIiIiIiIiIiWWCj\ni4iIiIiIiIiIZIGNLiIiIiIiIiIikgU2uoiIiIiIiIiISBbY6CIiIiIiIiIiMiBKpRJKpVLXYegl\nNrqIiIiIiIiIiEgW2OgiIiIiIiIiIiJZYKOLiIiIiIiIiIhkwVTXAZDhqV27tq5DqHHGxvLr+ZqZ\nmek6hBqVlpam6xBqnJGRka5DoCowNeWvSqKawDVP/7FGhsHExETXIdALyPGzhZWVla5DoCpgnUrI\nbwYSEREREREREdEbyUgIIXQdBBERERERERER0aviGV1ERERERERERCQLbHQREREREREREZEssNFF\nRERERERERESywEYXERERERERERHJAp+ZTtVmqM8vqOyR2SqVSouR1JzKHi9dXFysxUhqRmWPYjbE\nfIDKc5oxY4YWI6k5n332ma5D0CpDXPPetPUuPz9fi5HUHHNzc12HoFWnT5/WdQgvxdvbu8Jthjif\nKptLhpgPUHlOhriGA5Wv4w8fPtRiJDXH2tq6wm2GWKfKanT37l0tRlJzGjRoUOE2Oa4Pubm5Woyk\n5jRs2LDCbX/88YcWI3k96tWr98r/Bs/oIiIiIiIiIiIyIEqlEkqlUtdh6CU2uoiIiIiIiIiISBbY\n6CIiIiIiIiIiIllgo4uIiIiIiIiIiGSBjS4iIiIiIiIiIpIFNrqIiIiIiIiIiEgWTHUdABERERER\nERERVV1UVJSuQ9BbPKOLiIiIiIiIiIhkgY0uIiIiIiIiIiKSBTa6iIiIiIiIiIhIFtjoIiIiIiIi\nIiIiWWCji4iIiIiIiIiIZIGNLiIiIiIiIiIiA6JUKqFUKnUdhl5io4uIiIiIiIiIiGSBjS4iIiIi\nIiIiIpKFN6LRFRwcjJEjR+o6DABAdHQ0XF1dtfozly9fDjMzM63+TCIiIiIiIiIibXsjGl1GRkYw\nMjLSdRg16t1330VERITa97Kzs2FsbIx9+/bpKCoiIiIiIiIiIt15IxpdbxohhK5DICIiIiIiIiLS\nOlk1uhYsWAAvLy+Ym5ujcePGCAsLA1C+8bNr1y4EBwejQYMGqFu3LoKDg5GcnKw2ZtmyZfD09ESd\nOnXQoEEDdOzYETk5OQCABw8eICIiAnZ2djA3N0ezZs0wadKkasW6evVqODk5oU6dOujSpQuuXbum\ntn3FihXw8vJC7dq10bRpU0ydOhUqlQoAMGzYMPz2229YsWIFjI2NYWJigqSkJDRr1gwA8Je//AXG\nxsZwcnKq8OenpqaiS5cusLa2hq2tLd577z1kZmZWKwciIiIiIiIi0r6oqChERUXpOgy9JJtGV1RU\nFCIjIzF27FicPn0aO3fuREBAgMaxjx8/xtixY3H48GEcOnQIrq6u6NatG+7duwegpAn00UcfYfLk\nyUhPT0dSUhKGDh0q7T9lyhQcP34cW7duxcWLFxEbGwsvL68qx3rjxg3ExMRg/fr1+P333/HgwQP0\n7dtX2h4XF4cRI0Zg6NChOHPmDGbNmoUFCxZIjw6dO3cugoKC0K9fP9y8eRM3btzAn/70Jxw7dgwA\nsHHjRty8ebNc867U2bNnERwcjHfeeQepqanYs2cPTExM0LlzZzx79qzKeVRHQkICPD094ebmhunT\np2scM27cOLi5ucHPzw/Hjx+Xvj98+HA0adIEvr6+ryW2l5WQkIBWrVrBw8MDM2bM0DhmwoQJ8PDw\ngL+/v1pOH374Iezt7eHn56etcF8oISEBXl5ecHd3rzCf8ePHw93dHa1bt1bLZ8SIEbCzs4NCodBW\nuFUix5wuXLiAmTNnYsaMGdi7d2+F47KysvCvf/0Lp0+flr739OlTrFy5EjNnzsSsWbPKNdh1JSEh\nAR4eHnB1da10fXB1dYVCoVCrU1X21Taud/q/3gHAzp07oVAo4O3tjZkzZ2oc8+mnn8Lb2xtt27ZF\nWloaACA/Px9BQUFo164dWrdujalTp2oz7ErJbS4BwP79+9GzZ0/06NEDP/74Y7ntly9fxsCBA9Gm\nTRusWLFC+v6VK1fw/vvvS6/27dvjl19+0WboGslxLsk1J7mt47t27UKbNm3g5+eHH374QeOYf/7z\nn/Dz88Of/vQnnDhxQvq+t7c32rdvjz//+c8IDg7WUsQvJrc67d69G2+//TYCAwMxd+5cjWP+9a9/\nITAwEB07dsTJkyel78+ePRvvvPMOgoKCMGrUqNf2ma665Lg+7N69G+3bt0fbtm0rrVPbtm0RHBxc\nrk5//vOf0aFDB4wePVpv6vTrr7+iXbt2CAgIwJw5czSOiYyMREBAAIKCgqScMjIy0LFjR+nVvHlz\nLF68WJuhV0gWja7Hjx9jxowZUCqVGDNmDFxcXKBQKBAZGQkA5e7P1adPH4SFhcHV1RWenp5YvHgx\nhBBISEgAAGRmZsLS0hK9e/dG06ZN4e3tjeHDh8PBwUHa3rp1awQGBsLR0RHt27fHiBEjqhzvkydP\nsHz5cvj7+yMgIAArV67E8ePHsWfPHgDAtGnTEBYWhs8//xwuLi4IDw9HdHQ0Zs6ciaKiIrz11lsw\nMzNDnTp1YGtrC1tbW5iZmaFhw4YAgPr168PW1hYNGjTQ+PNnzJiB0NBQREVFwc3NDa1atcLKlSuR\nnZ0t/T+oSSqVCp988gni4+Nx5swZ/O9//8O5c+fUxuzYsQOXLl1Ceno6Fi9ejDFjxkjbIiIiEB8f\nX+NxvQqVSoXx48cjLi4Op06dQmxsrMacLl68iPPnz2PRokX4+OOPpW1Dhw5FXFyctsOukEqlwrhx\n47Bjxw6cPn26whpdvHgRFy5cQExMjFo+w4YNw44dO7QddqXkmFNxcTG2bNmC4cOHY9KkSUhLS8Ot\nW7c0jouPj4ebm5vaGa1bt26Fh4cH/vGPf2DChAmwtbXVZvgaqVQqjB07FgkJCTh79izWrFlTYZ0y\nMjKwZMkSfPTRR1XeV9u43un/egeU5DRx4kRs3boVx48fx7p163D+/Hm1MQkJCbh8+TJOnz6N+fPn\nY9y4cQAAc3NzJCYm4siRI0hOTkZSUhIOHDigizTUyG0ulcb13XffISYmBps3b0Z8fDwuX76sNqZu\n3br44osv1P4gCQAtW7bEunXrsG7dOsTGxsLc3Bx//etftRl+OXKdS3LMSY7r+D/+8Q9s3LgRycnJ\nWL9+PS5cuKA2JjExEZcvX0ZaWhrmzJmDiRMnStuMjIwQFxeH/fv3V/pHNm2SW51UKhUiIyOxdu1a\nHDx4EBs3bkR6erramF27duHKlStITk7G999/j3/+858ASj6brly5Er/99ht+//13qFQqbNq0SRdp\nqJHr+hAZGYnY2FgcOHCg0jodPXoUs2bNwmeffQagpE6rVq3C7t27sW/fPr2q0+eff45169bh0KFD\n2LBhQ7n1YdeuXbh8+TJSUlLwww8/SFezubq6IikpCUlJSdizZw8sLCzQo0cPXaRRjiwaXWfOnMGz\nZ8/QpUuXKo2/cuUKBg8eDFdXV9jY2MDGxgZ5eXnSpXtdunSBk5MTWrZsiQ8++ABLly7F3bt3pf3H\njBmD9evXw8fHBxMmTEBCQkK17ovVqFEjtcsKXV1d0bBhQ5w5cwZAyRlXHTp0UNunQ4cOyM/Px6VL\nl6r8cyqSnJyMTZs2wdraWno1bNgQz549w8WLF1/53y/r6NGjcHFxQYsWLWBmZoZ+/fphy5YtamO2\nbt2KIUOGAADatWuH+/fv4+bNmwCAoKAg1KtXr8bjehVHjx6Fs7OzlFN4eDi2bt2qNmb79u1qOeXl\n5eltTmXz6devX7l8tm3bZtA1kkNOWVlZaNCgAerXrw8TExMoFAqcPXu23LgDBw7Ax8cHlpaW0vee\nPn2Kq1evIjAwEABgYmKCOnXqaC32ipRdH/r3769xfSj9EPt8naqyr7ZxvdP/9Q4o+T3o7OyM5s2b\nw8zMDGFhYdi2bZvamLi4OAwcOBAA0LZtW+Tl5UmNZQsLCwBAQUEBVCoV6tevr90ENJDbXAKAU6dO\noVmzZnBwcICZmRm6deuG3377TW1M/fr10apVq0qfLn348GE0bdoUTZo0ed0hV0qOc0muOcltHU9J\nSYGTk5O05r333nvlGgjx8fEYMGAAACAwMBB5eXm4ffu2tF3f7gEstzodO3YMLVu2RLNmzWBmZoa/\n/e1v5RpxCQkJ6NevHwCgTZs2Uo2sra1hamqKp0+foqioCE+fPoWdnZ0u0lAjx/WhKnVKTEw0qDql\npqaq5dS3b99yOcXHx6N///4AgICAADx48EBtfQCAvXv3okWLFnB0dNRa7JWRRaOrukJDQ5GdnY2F\nCxfiyJEjSEtLg62tLQoKCgAAlpaWSElJwaZNm+Dm5oaYmBi4uLhIlwZ26dIFmZmZmDx5MvLz8zFo\n0CB06tQJxcXFWsvhVZ4iKYTAkCFDcOLECbVXenp6tc5Mq6qcnBy1A97R0VG631mp69evo2nTppWO\n0Sea4r1+/bramLJ5Ozg46G1OOTk5avloirXsGH2vkRxzysvLg42NjfS1jY0NHjx4UG7M2bNn8fbb\nbwP4v7Xijz/+gKWlJdauXYs5c+Zg/fr10pqnS1WpQUVj9HHd4HpXQp/XO6Akp7J1KptT2THP56RS\nqdCuXTs0b94cHTt2hKenp3YCr4Tc5hIA3L59W6051bhx43JvrKsiPj4e3bt3r8nQXopc55LccpLj\nOn7jxg21nOzt7au05pWOMTIyQu/evdGxY0csX75cKzG/iNzqdOPGDdjb20tf29nZ4caNG+XGlF5h\nBJTU8caNG6hXrx7GjBkjXY5vY2ODjh07ai32ishxfaioBlUZU1onPz8/+Pj46E2dXjansrXcuHGj\ndI90fSCLRlfpDegTExNfOPbu3bs4d+4cIiMj0blzZ3h4eKB27drl3jgZGxsjKCgISqUSqampsLOz\nw+rVq6Xt9erVQ//+/RETE4O4uDgkJSVV+TT/O3fuqJ16n56ejtzcXOk+X61atUJSUpLaPklJSbCw\nsICzszMAoFatWigqKlIbU6tWLQCQblpfkYCAAJw4cQJOTk7lXnXr1q1SDtVR1aZc2b8UvUoz73WT\nW05yywd4c3Patm0bQkJCpLGl+RUXFyMnJwft27fH+PHjUatWLb24/OBl66Sv3tTjDnizcjIxMcGR\nI0dw8eJF7N+/H/v27avxGKtLbnMJqJljqLCwEElJSVU+6/914lyq/n66wJzKS0xMxP79+7FhwwYs\nXboUBw8erMnwXorc6vQqNbpy5QoWL16M48eP4/Tp03j8+DHWrVtX0yFWm9xqBNRMnY4dO4ZTp07h\n8ePHWL9+fU2HWG01UaeCggIkJiaid+/eNRrbq5BFo8vKygqTJk1CdHQ0Fi5ciPT0dJw4cQLTpk0D\nUFKU0sLUq1cPjRo1wpIlS5CRkYFDhw7hgw8+ULuEZ8uWLZg9ezZSU1ORmZmJTZs2ISsrC61atQIA\nTJ48GZs2bcKFCxeQkZGBVatWwdraWnrq4YtYWFggIiICqampSElJwdChQ9G6dWt06tQJQMnN6zZs\n2IDp06cjPT0da9euhVKpxKRJk2Bqagqg5N4TqampuHz5MnJzc1FUVISGDRvCysoKiYmJuHnzJv74\n4w+NP/+LL77AuXPnMGjQICQnJ+PKlSvYs2cPJkyYgCtXrrxcESrh4OCA7Oxs6eusrKxypzTa29sj\nKytL+jo7O1uta6xvysablZVVLt6yeefk5OhtTg4ODuX+/5etkaYx+poPIM+c3nrrLeTl5Ulflz3D\nCyg5zlavXo1p06bh1KlT2Lx5M86ePStdpl36lzUfHx+9+ItZ2RpoWh8qqmVV9tU2rncl9Hm9A0py\nej5eTTUoOyYnJ0ftr+1AyVmVISEhSE1Nfb0BV4Hc5hIA2NraSpewAMCtW7fQuHHjav0bv//+O7y8\nvPTi8lK5ziW55STHddzOzu6FNahszSu9vKphw4YIDQ3VmzVPTnWys7NTO0Pm+vXr5X7n2NnZqb13\nu379Ouzs7JCWlobAwEDUr18fpqamCA0NrfChZNokx/WhbA00vTfQVEtNderRoweOHj36SvEolUrp\ngXUvq6o5aTr2Sv36669QKBTSPcP1gSwaXQDw9ddf49tvv8XcuXPh4+ODrl27Sk9tMDIykjqOxsbG\nWLduHS5dugRfX18MHz4cEydOVCtU/fr1pbMi3N3dERkZialTpyIiIgIAUKdOHXz55ZcICAhAYGAg\nTp8+jfj4eFhbW78wTiMjI9jb22P06NEICwtDUFAQrKyssHHjRmlMSEgI/vvf/2LFihXw8fHBp59+\nio8//ljt0aGTJk1Cw4YNoVAo0LhxYxw8eBDGxsZYsGAB1q5di6ZNm6JNmzZqP7eUh4cHDh48iEeP\nHqFr165o1aoVRo0ahfz8/NdyRldAQAAyMjJw9epVFBQUYO3atejVq5famF69emHlypUASu6lUbdu\n3Wq/mdWmgIAAXLx4Ucpp3bp16Nmzp9qY0NBQtZxsbGz0Nqey+axdu7ZcPj179jToGskhJ0dHR+Tm\n5uLevXsoKirCiRMnyl0y9fnnnyMyMhKRkZHw8fHB3/72N3h5ecHa2hp169bFnTt3AAAXL17Ui1zL\nrg+xsbEa14eff/4ZgHqdqrKvtnG90//1Dii5Z8bFixdx7do1FBQUYP369QgNDVUb06NHD+lM7iNH\njkg55ebm4v79+wBK7n23e/duvXgilNzmElByhvu1a9eQk5ODwsJCJCQk4C9/+YvGsRWdiRIfH4+Q\nkJDXGWaVyXEuyTUnua3j/v7+uHTpkrTmbdy4sdzlvCEhIVizZg2Aknsr2djYwNbWFk+ePMHDhw8B\nlDwA7LfffqvW0+ZfF7nVyc/PD5cvX0ZmZiYKCgqwefNmdOvWTW1Mt27dsHbtWgAl910rrZGLiwtS\nU1Px9OlTCCGQlJQEd3d3XaShRo7rg5+fH65cuVJpnbp27YrY2FgAhlGn1q1bqx17mzZtKpdTSEiI\nlFNycjLeeusttYdabdiwAe+9955W434RU10HUJPGjRsnPRXpeaVPMyzVoUMH6THhpfr27Sv9d1BQ\nEHbv3l3hz5kyZQqmTJnyUjFGRUVJDavSGz5qMmTIEOnGfJq0bNmy3OWNADB48GAMHjxY7XvDhg3D\nsGHD1L7n7e2NzZs3VyPyl2dqaop58+ahW7duUKlUGD58uPS0SwAYPXo0unfvjh07dsDV1RWWlpb4\n73//K+0/YMAAJCUl4e7du2jWrBmUSqXUdNQVU1NTzJkzB927d4dKpUJERAQ8PT2xZMkSAMCoUaPQ\nvXt3JCQkwN3dHZaWlli2bJm0/8CBA7Fv3z7cvXsXLVq0QHR0dLkaaZOpqSnmzp2LkJCQSmtU+iQ/\nS0tLtce8DxgwQMqnefPmiI6O1osayS0nExMT9O7dGz/++COEEAgMDETjxo1x+PBhAJDuy1WRXr16\n4X//+5908+z3339fG2FXytTUFPPnz0fXrl2hUqkwYsSICtcHFxcXWFpa4qeffqp0X13ieqf/6x1Q\nktMPP/yAnj17QqVSYdiwYfDw8JDi/vDDD9GtWzfpseiWlpZSDW/evImRI0eiuLgYxcXF+OCDDyps\nvmiT3OZSaVxffPEF/v73v0OlUqFv375wcnKSPuiFh4cjNzcX/fv3x+PHj2FkZIRVq1Zhy5YtsLCw\nwJMnT3D48GFER0frNpH/T65zSY45yXEdnzlzJv72t79BpVJhyJAhcHd3l+IePnw4unbtip07d0Kh\nUMDS0hILFy4EUHIm5aBBgwAARUVFCA8P1/kTTAH51cnU1BTTpk3D+++/j+LiYgwcOBBubm7SPdGG\nDRuGzp0749dff0VgYCAsLCwwd+5cACVn6YeHh+Pdd9+FsbExfH19K/0cqS1yXR/+/e9/Izw8HCqV\nSqrTihUrAJQ8KfL5OllaWmLOnDkA/q9OnTt3hrGxMXx8fPSmTtOnT0dYWBhUKhUGDRoEd3f3csfe\nrl270KZNG1hYWGD+/PnS/o8fP0ZSUhJmz56toww0MxKGdLMG0guGeshUdv3xi+5rpq9MTEwq3KbN\nhyPUFGPjik8yNcR8gMpzmjFjhhYjqTmlj0l+UxjimvemrXf5+flajKTmmJub6zoErTp9+rSuQ3gp\n3t7eFW4zxPlU2VwyxHyAynMyxDUcqHwdLz3DytBUdvWLIdapshrdvXtXi5HUnAYNGlS4TY7rQ25u\nrhYjqTmllwiWXrb4/JVfFd2+yJDUxNM2ZXPpoj7IzMyElZUVrK2tNb5KTwcmIiIiIiIiIqKaJ6tL\nF3XNwcEBJ0+erHD789exEhERERERERFRzWKjqwaZmJjAyclJ12EQERERERERkYw9f8kiqeOli0RE\nREREREREJAtsdBERERERERERkSyw0UVERERERERERLLARhcREREREREREckCG11ERERERERERCQL\nbHQRERERERERERkQpVIJpVKp6zD0EhtdREREREREREQkC2x0ERERERERERGRLLDRRURERERERERE\nssBGFxERERERERERyQIbXUREREREREREJAumug6AiIiIiIiIiIiqLioqStch6C2e0UVERERERERE\nRLLARhcREREREREREcmCkRBC6DoIIiIiIiIiIiKiV8UzuoiIiIiIiIiISBbY6CIiIiIiIiIiIllg\no4uIiIiIiIiIyIAolUoolUpdh6GX2OgiIiIiIiIiIiJZYKOLiIiIiIiIiIhkgY0uIiIiIiIiIiKS\nBVNdB0CGRwih6xBeipGRUYXbioqKtBhJzTE1rXgKG2KdKqtRcXGxFiOpOcbGFf89QY45ff3111qM\npOZMnTq1wm2XL1/WYiQ1w8nJSdchaJUhrndA5WsekS7IcS7JMSc5vm8l/bdr1y5dh/BSOnfuXOG2\nwsJCLUZSc8zMzCrc9uTJEy1G8npYWFi88r/BM7qIiIiIiIiIiEgW2FYnIiIiIiIiIjIgUVFRug5B\nb/GMLiIiIiIiIiIikgU2uoiIiIiIiIiISBbY6CIiIiIiIiIiIllgo4uIiIiIiIiIiGSBjS4iIiIi\nIiIiIpIFNrqIiIiIiIiIiAyIUqmEUqnUdRh6iY0uIiIiIiIiIiKSBTa6iIiIiIiIiIhIFtjoIiIi\nIiIiIiIiWWCji4iIiIiIiIiIZIGNLiIiIiIiIiIikgVTXQdARERERERERERVFxUVpesQ9BbP6CIi\nIiIiIiIiIllgo6sKgoODMXLkSF2HAQCIjo6Gq6urrsMgIiIiIiIiItI7bHRVgZGREYyMjHQdBhER\nERERERERVYKNLiIiIiIiIiIikgU2up6zYMECeHl5wdzcHI0bN0ZYWBgAQAihNm7Xrl0IDg5GgwYN\nULduXQQHByM5OVltzLJly+Dp6Yk6deqgQYMG6NixI3JycgAADx48QEREBOzs7GBubo5mzZph0qRJ\n1Yp19erVcHJyQp06ddClSxdcu3ZN2qbp8sb9+/fD2NgYmZmZNRYDEREREREREZE+YaPr/4uKikJk\nZCTGjh2L06dPY+fOnQgICNA49vHjxxg7diwOHz6MQ4cOwdXVFd26dcO9e/cAAKmpqfjoo48wefJk\npKenIykpCUOHDpX2nzJlCo4fP46tW7fi4sWLiI2NhZeXV5VjvXHjBmJiYrB+/Xr8/vvvePDgAfr2\n7as25kWXWr5qDNWVkJAAT09PuLm5Yfr06RrHjBs3Dm5ubvDz88Px48el7w8fPhxNmjSBr6/va4vv\nZSQmJsLb2xuenp74z3/+o3HMhAkT4OnpCX9/fymnrKwsvPvuu1AoFPDz88O8efO0GXaFXqVGVdlX\nFxISEuDl5QV3d3fMmDFD45jx48fD3d0drVu3VstpxIgRsLOzg0Kh0Fa4VSLHnDIyMjB37lzMnj0b\nv//+e4XjcnJyEB0djTNnzkjfO3ToEObPn4/58+fj0KFD2gj3hZKSktC5c2d06tQJixcvLrf90qVL\nCAsLg6enJ5YtWyZ9/9mzZ+jbty9CQ0PRtWvXCtcVXUhISICHhwdcXV0rXR9cXV2hUCjKrQ8v2lcX\n5LrmybFOcspJbvkA8p1LcstJbu9bAfnNJ7nlAwDJyckYPnw4hg0bhtjY2HLbd+/ejb///e8YPXo0\nJkyYgMuXLwMoOe4++ugj6dWnTx9s2rRJ2+FrVDqXvLy8KpxLEydOhJeXF9q0aaM2lzp37izNpfnz\n579yLEqlEkql8pX/nZ07d6J169bw9fXFrFmzNI75xz/+AV9fX7Rr1w5pG5PZpAAAIABJREFUaWlq\n21QqFdq3by+dKKQP2OhCSeNqxowZUCqVGDNmDFxcXKBQKBAZGQmgfNOoT58+CAsLg6urKzw9PbF4\n8WIIIZCQkAAAyMzMhKWlJXr37o2mTZvC29sbw4cPh4ODg7S9devWCAwMhKOjI9q3b48RI0ZUOd4n\nT55g+fLl8Pf3R0BAAFauXInjx49jz5490piyZ6GV9aoxVIdKpcInn3yC+Ph4nDlzBv/73/9w7tw5\ntTE7duzApUuXkJ6ejsWLF2PMmDHStoiICMTHx7+W2F6WSqXC+PHjsX37dpw8eVJjTvHx8bh06RLO\nnTuHRYsWYezYsQAAMzMzzJw5EydOnMD+/fsRExNTbl9te5UaVWVfXVCpVBg3bhx27NiB06dPV5jT\nxYsXceHCBcTExODjjz+Wtg0bNgw7duzQdtiVkmNOxcXFiIuLw+DBg/HJJ5/g1KlTuHPnjsZxO3fu\nhIuLi/S9W7duITU1FaNHj8aYMWNw4cIF6Q8OuqJSqRAdHY2ffvoJiYmJ2LZtGy5evKg2pm7duvjy\nyy/x4Ycfqn2/du3a+OWXX7B9+3bExcXh8OHDSElJ0Wb4GqlUKowdOxYJCQk4e/Ys1qxZU+Fxl5GR\ngSVLluCjjz6q8r66INc1T451klNOcsunNC45ziU55iSn962A/OaT3PIpjWvBggX47rvvsGzZMuzZ\ns0e6uqiUnZ0dZs2ahcWLF2PgwIGYPXs2AKBp06ZYtGgRFi1ahAULFsDc3BzvvPOOLtJQo1KpMGHC\nBGzfvh0nTpxAbGxshXPp7NmzWLRoET755BMAJXPpP//5jzSXFi1apDd1mjRpEjZv3ozU1FSsW7cO\n58+fVxuTkJCAS5cu4eTJk5g/fz4mTJigtn3BggXw8PDQq/uas9EF4MyZM3j27Bm6dOlSpfFXrlzB\n4MGD4erqChsbG9jY2CAvL0+auF26dIGTkxNatmyJDz74AEuXLsXdu3el/ceMGYP169fDx8cHEyZM\nQEJCwgsbU89r1KgRnJycpK9dXV3RsGFDtbMcXuRVY6iOo0ePwsXFBS1atICZmRn69euHLVu2qI3Z\nunUrhgwZAgBo164d7t+/j5s3bwIAgoKCUK9evdcS28s6evQonJ2d1XLatm2b2pht27Zh8ODBAEpy\nysvLw61bt9CkSRP4+fkBAKysrODh4YEbN25oPYfnvUqNqrKvLmiq0datW9XGbNu2zeCPO0PPKTs7\nG/Xr10e9evVgYmICb29vjb/0Dx8+jFatWsHS0lL63p07d+Do6AgzMzMYGxujRYsWOHv2rDbDL+fE\niRNo3ry5FFdoaCh+/fVXtTENGjSAr68vzMzMyu1fp04dAEBhYSFUKhVsbGy0Endlys7x/v37a1wf\nSs9crmx90LSvLsh1zZN7nQw9J7nlA7wZc0kuOcnpfSsgv/kkt3wA4MKFC7C3t0eTJk1gamqK4OBg\nHDx4UG2Ml5eX9N7Ow8MDubm55f6dY8eOwc7ODra2tlqJuzLJyclqcyk8PLzcXNq+fTsGDRoEAGjb\nti3u37+v13MpJSUFTk5OaN68OczMzBAWFobt27erjdmxYwcGDhwIAAgMDJTWB6DkiovExEQMGzbs\ntfUTXgYbXS8hNDQU2dnZWLhwIY4cOYK0tDTY2tqioKAAAGBpaYmUlBRs2rQJbm5uiImJgYuLC44d\nOwagpBGWmZmJyZMnIz8/H4MGDUKnTp1QXFxcI/EZGxuXO8gKCwvVvn7dMTwvJycHjo6O0teOjo7S\n/cpKXb9+HU2bNq10jD65fv26Wk4ODg4acyo7Jjs7W23M1atXkZaWhrZt277egF/gVWpUNk99qV1O\nTo5avJpqVHaMvsReETnm9PDhQ7Vmjo2NDR4+fKg25sGDBzh//jwCAwMB/N9Zto0bN8a1a9fw5MkT\nFBQUID09HQ8ePNBe8BrcunULdnZ20tdNmjSRGo1VUVxcjNDQULRr1w5vv/12ufst6kJVjqmKxujr\n2v4mrHlyqZOccpJbPoB855LccpLb+1ZAfvNJbvkAQG5uLho1aiR93bBhQ7WTP8pKSEiQ3us9Lykp\nCX/5y19eS4zVVXZ9cHBwwPXr18uNeVE9rl69ihMnTujFXNI098s24MqOsbe3l/L+/PPP8e2338LY\nWL9aS/oVjY6U3oA+MTHxhWPv3r2Lc+fOITIyEp07d4aHhwdq166N27dvq40zNjZGUFAQlEolUlNT\nYWdnh9WrV0vb69Wrh/79+yMmJgZxcXFISkqq8qmLd+7cka5fBoD09HTk5uZK99iytbXF7du31ZpW\npU22571KDNVR1VMYyzbn9OnUx7JqIqdHjx6hX79++P7772FlZVWj8VXXy+ajz3jcVX8/fRUfH4/O\nnTvDyMgIQggpv0aNGiEoKAg///wzVq5cCTs7O53n+qo/39jYGNu3b8eBAweQnJyMw4cP11BkL4/r\ng2FgTvpPbvkAzMlQyO19KyC/OsktH6B674nS0tKQmJhY7rYOhYWFOHz4MDp06FDT4b2UmppL/fv3\nx6xZswx+LsXHx6NRo0bw8/PTu2PTVNcB6AMrKytMmjQJ0dHRqFOnDt599108ffoU8fHxiIyMVPtg\nVa9ePTRq1AhLliyBk5MTcnNz8dlnn0mXmwDAli1bcOXKFQQFBaFRo0ZITU1FVlYWWrVqBQCYPHky\nAgIC4OXlBWNjY6xatQrW1tZo1qxZleK1sLBAREQEvv/+ewgh8Mknn6B169bo1KkTAKBTp0548uQJ\nvvzyS0RERODYsWNYuHCh2r/xqjFUR9m/CGVlZal1hIGSrnBWVpb0dXZ2tnRPM31kb2+vllN2drbG\nnJ4fk5OTI+VUWFiI8PBwDBgwAL1799ZO0JV42Ro5OjqisLDwhfvqgoODg8Z4XzRGn487Oeb01ltv\nIS8vT/o6Ly8Pb731ltqY69evY926dQBK7lGYkZEBExMTeHh4wN/fH/7+/gBKnohbt25d7QWvQePG\njdX+Cnbjxg21M7yqytraGsHBwTh16hTefvvtmgyx2soeU5rmeEXHZmFh4Qv31YU3Yc2TS53klJPc\n8gHkO5fklpPc3rcC8ptPcssHKDmD6/n7rt65cwcNGzYsN+7y5cuYPXs2vv32W1hbW6ttS05Ohqur\nq87f35Uquz5oep+tqU729vYASuZSv3799GouaVofSuOtaMz169dhZ2eHzZs3Iy4uDomJicjPz8fD\nhw/x4Ycfqj1sSVd4Rtf/9/XXX+Pbb7/F3Llz4ePjg65du0pPSDAyMpI6ncbGxli3bh0uXboEX19f\nDB8+HBMnTlT7IFO/fn1s27YNISEhcHd3R2RkJKZOnYqIiAgAJfdg+fLLLxEQEIDAwECcPn0a8fHx\n5Sa2JkZGRrC3t8fo0aMRFhaGoKAgWFlZYePGjdIYNzc3LF26FGvWrIGPjw+WL1+O7777Tq1b+yox\nVFdAQAAyMjJw9epVFBQUYO3atejVq5famF69emHlypUASu7FU7duXTRu3LjGY6kpAQEBuHjxolpO\noaGhamN69uyJVatWASjJycbGBo0bN4YQAiNHjoSnpyfGjx+vi/DLeZUaVWVfXdBUo549e6qN6dmz\np8Efd4aek729Pe7evYs//vgDRUVFOH36NDw8PNTGTJw4EZ9++ik+/fRTtGrVCj179pTGPHr0CABw\n//59nDt3Dj4+PlrP4Xk+Pj64du0asrOzUVBQgLi4OPz1r3/VOLbsX77u3bsnXXqZn5+PAwcOvNan\n4VZV2TkeGxurcX34+eefAVS+PmjaVxfkuubJvU6GnpPc8gHejLkkl5zk9L4VkN98kls+QMln0pyc\nHNy8eROFhYVISkpC+/bt1cbcvn0bX331FT7//HONf5jds2cPgoODtRTxi7Vp00ZtLq1bt67cXAoN\nDcUvv/wCADhy5IhUJyEERo0aBU9PT4wbN65G4omKikJUVNQr/Rv+/v64dOkSrl27hoKCAmzYsAE9\nevRQG9O9e3fp6rSjR4/CxsYGTZo0gVKpRHp6Os6ePYsVK1agY8eOetHkAnhGl5px48ZpPOief5oh\nAHTo0KHcIzX79u0r/XdQUBB2795d4c+ZMmUKpkyZ8lIxPn8wDxgwoMJxERERUmOtVL9+/Wokhuoy\nNTXFvHnz0K1bN6hUKgwfPlx6WiUAjB49Gt27d8eOHTvg6uoKS0tL/Pe//5X2HzBgAJKSknD37l00\na9YMSqWyXG7aZmpqijlz5qBHjx5QqVSIiIiAp6cnlixZAgAYNWoUQkJCEB8fDw8PD1hYWEiT/sCB\nA1i9ejV8fHwQEBAAAPj222/RtWtXnebzsjWqaF9dMzU1xdy5cxESElJpTvHx8XBzc4OlpSV+/PFH\naf8BAwZg3759uHv3Lpo3b47o6Gi9OO7klpOJiQl69OiBn3/+GUII+Pv7o1GjRkhOTgYAjfdqeF5s\nbCyePHkCExMThIaGwtzcXBthV8jU1BRRUVEYNmwYVCoVwsPD4eLiIr05GDBgAO7cuYM+ffrg0aNH\nMDY2xvLly5GYmIjbt2/js88+Q3FxMYqLi9GnTx+9eMKQqakp5s+fj65du0KlUmHEiBEVrg8uLi6w\ntLTETz/9VOm+uibXNU+OdZJTTnLLpzQuOc4lOeYkp/etgPzmk9zyAUre43388cf44osvUFxcjK5d\nu6JZs2bSjc5DQ0OxatUqPHz4EHPnzgXwf3MIAJ4+fYrjx49j4sSJOsuhLFNTU8yePRs9evRAcXEx\nhg0bBk9PTyxduhQAMHLkSISEhCAhIQGenp5qc+ngwYPSXCp9f/vNN9/oxVyaNWsWevfuDZVKhSFD\nhsDDw0P6DDFixAh069YNO3fuhI+PDywsLBATE6Px39L1LUSeZyT07WJK0nuGeshUNvGKioq0GEnN\nMTWtuFdtiHWqrEav40EJ2lDZjRnlmNPXX3+txUhqztSpUyvc9vw9EQ3F80/mfRMY4noH6NcbQiJA\nnnNJjjnJ8X0r6b9du3bpOoSX0rlz5wq3lX1gm6HQ9OTuUk+ePNFiJK+HhYXFK/8bvHRRj2RmZsLK\nygrW1tYaX2vWrNF1iEREREREREREeottdT3i4OCAkydPVrjd1tZWi9EQERERERERERkWNrr0iImJ\nyRt3uQkRERERERERUU3hpYtERERERERERAZEqVRCqVTqOgy9xEYXERERERERERHJAhtdRERERERE\nREQkC2x0ERERERERERGRLLDRRUREREREREREssBGFxERERERERERyYKprgMgIiL6f+zdZ1hU1/o2\n8BsYLAyIaKSLDZABKUpRkxiICYqIJTnG3ltOiLH8NdHEOm+OKWoSe8/RRKOxJFhpghGjUUEUsUVQ\nUbqFROyAw34/cLGPAzMIijPDzv27Lj7AXnt4Fquw9rMbERERERFV39y5c/UdgsHiFV1ERERERERE\nRCQJTHQREREREREREZEkMNFFRERERERERESSwEQXERERERERERFJAhNdREREREREREQkCUx0ERER\nERERERHVIUqlEkqlUt9hGCQjQRAEfQdBRERERERERETVU57kmjt3rp4jMTy8oouIiIiIiIiIiCSB\niS4iIiIiIiIiIpIEJrqIiIiIiIiIiEgSmOgiIiIiIiIiIiJJ4MPoiYiIiIiIiIhIEnhFFxERERER\nERERSYJM3wFQ3VNSUqLvEJ6Lqamp1m0PHz7UYSS1x8zMTOu2unixppGRkdZtRUVFOoyk9tSvX1/r\ntkePHukwktrTsGFDfYegU1988YW+Q6ixzz77TOu2ujg3AFXPD1KsU2lpqQ4jqT3GxtrPoUqxTiqV\nSoeR1A4TExOt26S4Hrp9+7YOI6k9r7zyitZtUmynujiPVzWHS9HVq1f1HcJzad26tdZtUjy+uHXr\nlg4jeTmaNWv2wp/BK7qIiIiIiIiIiEgSmOgiIiIiIiIiIiJJYKKLiIiIiIiIiIgkgYkuIiIiIiIi\nIqI6RKlUQqlU6jsMg8REFxERERERERERSQITXUREREREREREJAlMdBERERERERERkSQw0UVERERE\nRERERJLARBcREREREREREUmCTN8BEBERERERERFR9c2dO1ffIRgsXtFFRERERERERESSwEQXERER\nERERERFJAhNdREREREREREQkCUx0ERERERERERGRJDDRRUREREREREREksBEFxERERERERFRHaJU\nKqFUKvUdhkFioquGgoKCMG7cOH2HQUREREREREREFTDRVUNGRkYwMjLSdxhERERERERERFQBE12k\npri4WN8hEBERERERERE9Fya6tFixYgXc3d3RoEED2NjYoF+/fgAAQRDUyh04cABBQUFo2rQpGjdu\njKCgICQlJamVWb9+PRQKBRo2bIimTZsiMDAQOTk5AIC7d+9i1KhRsLOzQ4MGDeDk5ISpU6dWO864\nuDh06dIFcrlc/P1Xr14FAJw6dQo9evSAjY0NLCwsEBAQgJiYGLX9W7ZsidmzZyM8PByvvPIKAgMD\na/y3qo6YmBi0a9cO7u7uWLhwocYyU6ZMgbu7O3x9fXH69GkAQFZWFoKDg+Ht7Q0fHx8sX778pcT3\nPGJjY9G+fXt4eXnhm2++0Vhm2rRp8PLyQseOHZGSkqK2TaVSoXPnzmLf0rfo6GgoFAq4urri66+/\n1lhm4sSJcHV1hY+Pj9hGADB69GjY2trCy8tLV+FWS2xsLLy8vODh4YFFixZpLPN///d/8PDwgL+/\nv9hGjx8/RpcuXRAQEAAfHx/MmjVLl2FXKTY2Fj4+PvD09NTa76ZOnQpPT0+t/a5Tp07417/+pYtw\nqyU6Ohpubm5wcXGpsu+5uLjA29tbre9VZ19dS0tLw3fffYdvv/0Whw8f1louOzsbs2fPxrlz58Sf\nJSQkYMmSJVi6dCm2bduGJ0+e6CLkZ5Li/CDVOrm7u6Nt27ZYsGCBxjKTJk1C27Zt0b59e7U6jRkz\nBnZ2dvD29tZVuNUitTpFR0fDw8MDbm5uWuszefJkuLm5oUOHDmr1GTt2LOzt7eHj46OrcKtFaush\nAIiPj0fnzp0REBCApUuXaizz6aefIiAgAEFBQUhNTRV/vnjxYrz++ut444038P7776OoqEhXYVdJ\niu0ktXlcaushoGxdExwcjK5du2LNmjWVtl+5cgX9+vWDQqHA+vXrK21XqVTo1auXQT06SIrHFwcP\nHsSrr76Kjh07ap3zPvvsM3Ts2BFBQUE4e/as+PMlS5agS5cuCAwMxL///W+DmfOY6NJg7ty5mDFj\nBiZMmIBz584hNjYWfn5+Gss+ePAAEyZMwPHjx3Hs2DG4uLggJCQEf/31FwAgOTkZH3zwAWbOnIm0\ntDQkJCRgxIgR4v6zZs3C6dOnsWfPHly+fBnbtm2Du7t7teKMi4tDSEgI/P39cfz4cSQmJmLUqFHi\ngdG9e/cwaNAgHDp0CKdPn0b37t3Ru3dvpKenq33O0qVLYWtri+PHj2PDhg3P8yerkkqlwuTJk7Fv\n3z6cOXMG27Ztw8WLF9XKREVF4cqVK7hw4QJWrVqFjz76CABgamqKhQsX4syZMzhy5AhWrVpVaV99\nUKlUmDp1Knbt2oXk5GTs2LEDf/75p1qZ6OhoXLlyBampqVi+fDkmT56stn3FihVwc3MziFthVSoV\nPvroI0RFReH8+fP4+eefK/2dIyMjceXKFaSlpWHNmjUIDw8Xt40aNQpRUVG6DrtK5f1uz549SElJ\nwfbt27W20fnz57FixQpMnDgRANCgQQPExMQgMTERJ0+exOHDh3H06FF9VEONSqXC//3f/2H37t04\ndepUlXU6e/Ysli1bhkmTJqltX7FiBRQKhUH0O6CsThMmTEB0dDQuXLiArVu3aux7ly9fRnp6Otau\nXYsPPvig2vvqWmlpKfbu3YuRI0di0qRJOHPmDG7evKmxXExMDFxcXMSf/f3330hKSsKHH36IiRMn\nQhAEtYMnfZHq/CDFOk2cOBGRkZE4d+6c1jpdvnwZly5dwurVq/Hhhx+K20aOHInIyEhdh10lqdVJ\npVJh0qRJ2L9/P86ePatxPVRenz///BOrVq1Sq8+IESOwf/9+XYddJamth4CyOs2YMQPbtm3D0aNH\n8euvvyItLU2tzIEDB5CRkYHExER88803+OSTTwAAmZmZ2Lx5M+Lj43H48GGoVCpERETooxpqpNpO\nUprHpbYeKo9r3rx52LBhA2JiYrB3715cvnxZrUzjxo0xZ84cjB07VuNnbNy4Ec7OzgbV76R4fDFj\nxgz8/PPPOHLkCCIiIirNeXFxccjIyMCJEycqzXmbNm1CXFwcEhISDGbOA5joquTBgwdYsGABlEol\nwsPD4ezsDG9vb8yYMQMAKg2yvn37ol+/fnBxcYFCocCaNWsgCAKio6MBlDW+XC5Hnz590Lx5c7Rr\n1w6jR4+Gg4ODuL19+/bw9/eHo6MjOnfujDFjxlQrVqVSidDQUHz77bfw9PSEq6srRowYAVdXVwBA\nYGAghg8fDoVCAWdnZ3z++edQKBTYsWOH2ucEBARgzpw5cHZ2hpub2wv9/TRJSkpCmzZt0LJlS5ia\nmqJ///7Yu3evWpl9+/Zh6NChYjx37tzBjRs3YGtrK565NDc3h5ubG/Ly8mo9xpo6efIkWrdujRYt\nWsDU1BT9+vXDvn371MpERkZiyJAhAAB/f38UFhbixo0bAICcnBzExMRg5MiRla4S1IfExEQ4OzuL\nbTRgwADs3r1brcyePXswfPhwAEDHjh1x584d5OfnAwC6dOkCKysrncddlYr97r333qt2vwMAMzMz\nAGW386pUKjRp0kS3FdCgYr977733KvW7/fv3q9Xp6X6XnZ1tUP0OqNz3Bg4cqLHvlZ8geLrvVWdf\nXcvOzkbTpk1hZWUFExMTeHl5aVxsHjt2DB4eHpDL5eLP6tevDxMTE5SUlEClUqG4uBiNGjXSZfga\nSXF+kGqdnp7zBgwYgD179qiV2bt3L+ukRxXr079//0r12bdvn1p9CgsLDbY+gPTWQ0DZHRGtWrWC\nk5MTTE1N8c4771RKiMTExGDAgAEAAF9fXxQWFuLmzZuwsLCATCbDo0eP8OTJEzx69Ah2dnb6qIYa\nKbaT1OZxqa2HAODMmTNo0aIFHB0dYWpqirCwMMTFxamVadq0Kby8vGBqalpp/7y8PBw6dAj9+/c3\nmH5naMcXc+fOxdy5c1/oMzTNeeW5jHLR0dFa5zxTU1ODm/MAJroqOX/+PIqKitCtW7dqlc/IyMCw\nYcPg4uICS0tLWFpaorCwEJmZmQCAbt26oXXr1mjVqhUGDRqEdevWoaCgQNw/PDwcO3fuhKenJyZP\nnozo6OhqD+RTp05VGeetW7cQHh4OhUIBKysrWFhY4Pz582JsQFniLiAgoFq/73nl5OTA0dFR/N7B\nwQG5ubmVyjRv3lz83tHRUby9s9y1a9dw5syZlx5vdeTm5laqU8UEXMUy9vb2Yr2nT5+O+fPnw9jY\nMIZgxTbS9PfPzc19ZhsZEk1tVLHfaSpTXieVSoWAgAA4OTkhMDAQCoVCN4FX4XnrZKj9Dqje2NdW\nxhD75N27d2FpaSl+b2lpibt376qVKSwsxMWLF9GxY0cA/zuBYmZmhtdeew0LFizA119/jYYNG8LZ\n2Vl3wWshxflBqnV6Ot6n5zNtZVgn3dLUpzSth7T9XzJEUlsPAWUH1+UnpIGyeCvWSVsZKysrhIeH\ni48YsLS0fGmPBakJKbaT1OZxqa2HAODGjRtqSQ9bW1sx0Vgd8+fPx4wZMwyq30nx+CI/P19tPrOz\ns6s0P+Tn58Pe3l6tTH5+PqysrPDBBx+It0U3atTIIOY8gImuFxYWFobs7GysXLkSJ06cQEpKCqyt\nrcWHusvlcpw8eRIRERFwdXXF6tWr4ezsjFOnTgEoS4RlZmZi5syZePz4MYYOHYquXbuitLT0hWMb\nOXIkjh49ioULF+LIkSNISUmBj49PpQfOP31FwctQ3UtNKyb4nt7v/v37GDhwIL755huYm5vXanzP\n43nrBJTdptmsWTP4+PgYzNmJ2mgjQ/OidTIxMUFiYiKuXLmCI0eOICEhodZjrKnnrZMgCIiMjDS4\nfge82FiqqyIjI9G9e3cYGRlBEASxbgUFBfjjjz/w8ccfY/r06SgqKqr0jBR94PxQ8/30gXWq+X66\nJrX6ANJbDwEvVqeMjAysWbMGp06dwtmzZ/HgwQPs3LmztkOsMbZTzffTNSmuh17kb33w4EE0bdoU\nHh4eBlVnKR5fVJe2OW/t2rVITk5Gamqqwcx5ABNdlZQ/gL7iQ9s1KSgowMWLFzFjxgwEBwfDzc0N\n9evXr/Q8FmNjY3Tp0gVKpRLJycmws7PDli1bxO1WVlYYOHAgVq9ejf379yMhIaFa91X7+vpWGefv\nv/+O8PBwhIWFwcPDA7a2trhy5cozP7e2OTg4IDs7W/w+OztbLWtcXiYrK0utTHnWuKSkBAMGDMDg\nwYPRp08f3QT9DPb29pXq9HSWW1OZ3Nxc2NnZ4fjx49i/fz/c3d0xcuRIJCQkaL0vXVcqtlFWVpba\nmQigrD4V26hiOxoSTW1UMd6KZXJyciq1o6WlJUJCQsTktD69SJ3K+51CocCIESMMot8Blce+pr6n\naX5wdHSs1r661qhRIxQWForfFxYWql3hBZS1ybZt27Bo0SKcP38ee/bswYULF5CbmwsnJyeYmZnB\nxMQEHh4ealfg6osU5wep1knTOHlWGdZJdyr2qaysLI3roYpzuKHWB5Deeggou1Lh6athNK0N7Ozs\n1K7iKK9TSkoK/P390aRJE8hkMvTs2ROJiYk6i10bKbaT1OZxqa2HAMDGxkbtyqC8vLxq39Z26tQp\nxMXFITAwEJMnT8axY8dq9MK2l0WKxxcV57zysf80W1tbtTkvLy8Ptra2OHPmTKU5r+KL+fSFia4K\nzM3NMXXqVMybNw8rV65EWloazpw5g6+++goA1M6+W1lZoVmzZlhvYAEhAAAgAElEQVS7di3S09Nx\n7NgxDBo0CA0bNhQ/b/fu3Vi8eDGSk5ORmZmJiIgIZGVlwcPDAwAwc+ZMRERE4NKlS0hPT8fmzZth\nYWEBJyenZ8Y6e/ZsREVFYcqUKUhNTcWlS5ewceNG8eFxbdu2xebNm3Hu3DmkpKRg0KBBKC0tVcvG\n6iJD7uvri8uXL+PatWsoLi7Gjh07EBYWplYmLCwMP/30EwDgxIkTaNy4MWxsbCAIAsaPHw+FQiE+\nyM8QdOjQAVeuXMH169dRXFyMX375BT179lQrExoaKiY0ExMTYWlpCVtbWyiVSqSlpeHChQv44Ycf\nEBgYqPEtI7rk5+eH9PR0sY22b9+O3r17q5Xp3bs3Nm3aBAA4fvy42EaGqmK/27lzZ7X73e3bt3Hn\nzh0AwKNHjxAfH28Qb+2q2O927txZqd/17NlTrNPT/e7//b//h/T0dFy8eBE//vijQfQ7oHLf27Zt\nm8a+9+OPPwJQ73vV2VfXHBwcUFBQgL///htPnjxBampqpWcfTps2Tfxq164d+vTpA3d3d7zyyivI\nyspCSUkJBEHAlStXYG1traea/I8U5wep1unpOW/79u3o1auXWplevXqxTnpUsT47duyoVJ+wsDC1\n+lhaWhpsfQDprYcAwMfHBxkZGcjMzERxcTF27dqFkJAQtTLdu3fHtm3bAJQ9/8rS0hLW1tZwdnZG\ncnIyHj16BEEQkJCQgLZt2+qjGmqk2E5Sm8elth4CAE9PT1y/fh3Z2dkoLi7G/v378dZbb2ksW/GY\ndNq0aTh69Kj4NurOnTtrfVuoLknx+MLHxwdXr16tcs4LCQnB9u3bAajPeW3atFGb8w4fPiw+L1zf\nZPoOwBB9/vnnaNasGZYuXYopU6bAyspKvNfUyMhIvPTQ2NgYO3bswMSJE+Hl5YWWLVti/vz5mD59\nuvhZTZo0wdKlS/HFF1/g3r17cHJywuzZszFq1CgAQMOGDTFnzhxcu3YNJiYmaN++PaKiomBhYfHM\nOIODgxEZGYl58+ZhzZo1qFevHnx9fREUFAQA2LBhA95//30EBATA1tYWn3zyCR49eqR2yaUuLt+V\nyWRYvHgxevbsidLSUowcORIKhQLr1q0DAIwbNw49evQQXxFsZmYm/gP9448/sGXLFnh6esLf3x8A\n8J///Afdu3d/6XFXRSaT4ZtvvkGfPn2gUqkwfPhwuLm54fvvvwdQ9krzkJAQxMbGwtPTE2ZmZli9\nerXGzzKES6hlMhmWLVuGkJAQqFQqjB49Wny5AgC8//77CA0NRWRkJFxcXCCXy/Hf//5X3H/w4MFI\nSEhAQUEBnJycoFQqxT6uL+X9rlevXlCpVBg5ciTc3NzU+l1ISIj46nq5XI61a9cCKLsPfezYsSgt\nLUVpaSkGDx6Mrl276rM6AMrq9O2336J3795QqVQYMWIE3NzcxPEyduxYhISEICYmBu3atYNcLjfo\nfgeU1Wn58uXo3r07VCoVxowZo7XvOTs7Qy6Xi2+H1bavPpmYmCAsLAwbN25EaWkp/Pz8YG1tLZ7R\nr+oZg3Z2dmjfvj1WrlwJIyMj2Nvbi/OePkl1fpBinZYuXYoePXpUWaeoqCi4urpCLpeL/7OAsjod\nPnwYBQUFaNGiBebNm8c61TKZTIYlS5YgNDQUKpUKo0aNgkKhEP/3jB8/HqGhoYiOjkbbtm0hl8vV\nEgpDhgwR69OyZUvMmzcPI0eO1FNtykhtPQSU1enLL79E//79oVKpMGTIELi6uuKHH34AUPb2y+Dg\nYMTFxcHf3x9yuRxLliwBUHZg379/fwQHB8PY2Bienp7iw9D1SartJKV5XGrrofK45s6di5EjR0Kl\nUqF///5wdnYWE6qDBw/GrVu30LdvX9y/fx/GxsbYuHEjYmJiKj1ax5D6nRSPL7766isMGDBA65z3\n9ttvIy4uDgEBATAzM8PSpUsBlM157733Hrp162ZQcx4AGAmGdNMr1QklJSX6DuG5aHqbR7mHDx/q\nMJLaU/7mDk3q4tCu6p9YUVGRDiOpPfXr19e67dGjRzqMpPY8fdXqP8EXX3yh7xBq7LPPPtO6rS7O\nDUDV84MU61Qbz+rUh6oeGizFOqlUKh1GUjtMTEy0bpPieuj27ds6jKT2vPLKK1q3SbGd6uI8bijJ\nF125evWqvkN4Lq1bt9a6ra4fXyiVSgBQe/PirVu39BJTbWrWrNkLfwZvXSQiIiIiIiIiIklgostA\nZWZmwtzcHBYWFhq/tm7dqu8QiYiIiIiIiIgMCp/RZaAcHByQmpqqdbshPKCYiIiIiIiIiMiQMNFl\noExMTKq8n5iIiIiIiIiIiNTx1kUiIiIiIiIiIpIEXtFFRERERERERFSHPP22RVLHK7qIiIiIiIiI\niEgSmOgiIiIiIiIiIiJJYKKLiIiIiIiIiIgkgYkuIiIiIiIiIiKSBCa6iIiIiIiIiIhIEpjoIiIi\nIiIiIiKqQ5RKJZRKpb7DMEhMdBERERERERERkSQw0UVERERERERERJLARBcREREREREREUkCE11E\nRERERERERCQJTHQREREREREREZEkGAmCIOg7CCIiIiIiIiIiohfFK7qIiIiIiIiIiEgSmOgiIiIi\nIiIiIiJJYKKLiIiIiIiIiIgkgYkuIiIiIiIiIiKSBCa6iIiIiIiIiIhIEpjoIiIiIiIiIiKqQ5RK\nJZRKpb7DMEgyfQdARC+HSqXSdwg1ZmJiou8QdKouthHwz2snqQkMDNR3CM8lISFB6zaOpbpBiu10\n//59HUZSO8zNzbVuEwRBh5HUHiMjI32HoFPFxcX6DuG51KtXT+u2J0+e6DCS2iGTaT+Uvnv3rg4j\nqT2NGjXSuk2K80Nd7HdA1X0vLy9Ph5G8HHZ2di/8Gbyii4iIiIiIiIiIJIGJLiIiIiIiIiIikgQm\nuoiIiIiIiIiISBKY6CIiIiIiIiIiIkngw+iJiIiIiIiIiOqQuXPn6jsEg8UruoiIiIiIiIiISBKY\n6CIiIiIiIiIiIklgoouIiIiIiIiIiCSBiS4iIiIiIiIiIpIEJrqIiIiIiIiIiEgSmOgiIiIiIiIi\nIqpDlEollEqlvsMwSEx0ERERERERERGRJDDRRUREREREREREksBEFxERERERERERSQITXURERERE\nREREJAlMdBERERERERERkSTI9B1AXRQUFAQXFxesW7dO36EQERERERER0T/M3Llz9R2CweIVXc/B\nyMgIRkZG+g6j1jg7O/O1pERERERERERU5zHRRZJK2hERERERERHRPxcTXVVYsWIF3N3d0aBBA9jY\n2KBfv34AAEEQ1ModOHAAQUFBaNq0KRo3boygoCAkJSWplVm/fj0UCgUaNmyIpk2bIjAwEDk5OQCA\nu3fvYtSoUbCzs0ODBg3g5OSEqVOnVjvOuLg4dOnSBXK5XPz9V69eBQCcOnUKPXr0gI2NDSwsLBAQ\nEICYmBhx36CgIFy5cgVKpRLGxsYwNjZGZmbmc/29qhIdHQ03Nze4uLjg66+/1lhm4sSJcHFxgbe3\nN06fPl2jffVBanWKjo6Gh4cH3NzcsGDBAo1lJk+eDDc3N3To0EGtPmPHjoW9vT18fHx0FW61SK2N\nALZTXWgnqdUHAAICAvDjjz/ip59+wqBBgyptHzBgANavX4/169djw4YNiI+Ph7m5OQDA3NwcSqUS\nP/74I3744Qe4u7vrOnyNOJbqRt+TWjsdOHAAHTp0gI+PD7799luNZT7++GP4+Pigc+fOOHPmjPhz\nDw8PdOrUCa+99hqCgoJ0FPGzRUdHQ6FQwNXVtcp+5+rqCh8fn0r97ln76oMUx1JMTAw8PT3h7u6O\nRYsWaSwzZcoUuLu7w8/PDykpKQCAx48f4/XXX4e/vz+8vb0xa9YsXYZdpZiYGLRr1w4KhQILFy7U\nWGby5MlQKBRq80NWVhbefvtteHt7w8fHB8uWLdNl2FrFxcXBz88P7du3x3fffaexzCeffIL27dvj\ntddeU5sf7ty5g2HDhsHf3x8BAQGVjkX15UXmh9GjR8PW1hZeXl66CrdapNbvAOC3335Dly5d8Npr\nr2H58uWVtqenp6NXr15o1aoVVq9eXaN99UYgjebMmSOYm5sLK1asENLT04WUlBThyy+/FARBEAID\nA4Vx48aJZSMiIoQdO3YIaWlpwoULF4SxY8cKTZo0EQoKCgRBEISTJ08KMplM2LRpk5CZmSmcPXtW\n+P7774Xs7GxBEATho48+Ery9vYXExEQhKytL+OOPP4T169dXK84DBw4IJiYmwpQpU4TU1FTh0qVL\nwsaNG4VLly4JgiAIhw4dEn744QfhwoULQnp6ujBr1iyhXr16QlpamiAIgvDXX38JrVq1Ej7++GPh\nxo0bwo0bNwSVSlVrf0dBEIQnT54Ibdq0ETIyMoTi4mLB29tbuHDhglqZ/fv3Cz169BAEQRCOHz8u\ndOzYsdr76kNdqNOTJ0+q/VVUVCS0adNGuHz5svDo0SPB29tbOHv2rFqZPXv2CCEhIcKTJ0+Eo0eP\nCgEBAeK23377TUhKShLatWtXo99b8au26y+lNmI71Y35oS7U54033qjRV1BQkJCVlSX0799fePPN\nN4W0tDRh2LBhWstPnz5dSEpKEr+PiooSvvrqK+GNN94Q3nzzTaFHjx41juGNN9545t+dY8nw+54U\n2+nevXvV/rpz547QunVr4dy5c8Jff/0leHp6CklJSWpldu7cKXTr1k24d++ecPDgQcHPz0/c1qJF\nC+H69es1+p2avqpSWlpao6+SkhKhTZs2wtWrV4WioiLB29tbOH/+vFqZffv2CT169BBKS0uFY8eO\nCR07dqz2vtX9qk11YSwVFRXV6Ovhw4dC69athUuXLgn3798XvLy8hJSUFLUyu3btErp37y4UFRUJ\nv//+uxAQECBu+/vvv4WioiLhwYMHQkBAgHDw4MEax1BUVFRlnUpKSmr09fjxY6FNmzZCenq68PDh\nQ8HLy0tITU1VK1M+P5SUlAhHjhwRAgIChJKSEiErK0tISkoSSkpKhL///ltwdXWttG91vqpSWFhY\no6/yY7LU1FTh9u3bgqenp5CYmKhWZseOHUJwcLBQWFgoxMfHC35+fuK2QYMGCcuXLxcKCwuFgoIC\nITMzs8YxFBYWVlknXc4PpaWlQkJCgpCcnCy0a9fuueaF6swPdbHfPavv5ebm1ugrKytLaNmypXDi\nxAnh+vXrgru7u5CQkKBW5uzZs0JUVJQwadIkYc6cOTXa93m+agOv6NLgwYMHWLBgAZRKJcLDw+Hs\n7Axvb2/MmDEDQOVb/fr27Yt+/frBxcUFCoUCa9asgSAIiI6OBgBkZmZCLpejT58+aN68Odq1a4fR\no0fDwcFB3N6+fXv4+/vD0dERnTt3xpgxY6oVq1KpRGhoKL799lt4enrC1dUVI0aMgKurKwAgMDAQ\nw4cPh0KhgLOzMz7//HMoFArs2LEDAGBlZQUTExOYm5vD2toa1tbWMDau3W6RmJgIZ2dntGzZEqam\nphg4cCB2796tVmbPnj0YMWIEAKBjx464c+cO8vPzq7WvPkitTomJiWjTpo0YU//+/bFnzx61Mvv2\n7cPw4cMBlNWnsLAQ+fn5AIAuXbrAyspK53FXRWptBLCdAMNvJ6nVBwAUCgVycnKQn58PlUqFgwcP\n4rXXXtNa/u2330Z8fDwAQC6Xw8vLC5GRkQAAlUqFBw8e6CTuqnAs1Y2+J7V2OnnyJFq3bo0WLVrA\n1NQU//rXv7B//361MpGRkRg8eDAAwN/fH4WFhbh586a4XahwV4G+Vew7AwYM0Njvnm4jbf1O0776\nIMWxlJSUVGks7du3T63Mvn37MGzYMABlV/HeuXMHN27cAACYmZkBAIqLi6FSqdCkSRPdVkCDivPD\ngAEDsHfvXrUye/fuFetUPj/cuHEDtra24pWe5ubmcHNzQ15ens7r8LTk5GS1+eHdd9/VOD+UX1Xt\n5+cnzg+FhYX4448/xLrKZDJYWlrqvA4Vvcj8ABjeHA5Ir98BwOnTp9GyZUs0b94cpqam6NOnj5jH\nKNe0aVN4e3tDJpPVeF99YaJLg/Pnz6OoqAjdunWrVvmMjAwMGzYMLi4usLS0hKWlJQoLC8VbALt1\n64bWrVujVatWGDRoENatW4eCggJx//DwcOzcuROenp6YPHkyoqOjq72QOXXqVJVx3rp1C+Hh4VAo\nFLCysoKFhQXOnz//Um5P1CYnJwfNmzcXv3d0dBRv23xWmdzc3Gfuqw9Sq5OmmHJzc9XK5OTkwNHR\nUfzewcFB73FXRWptBLCdKpYxxHaSWn0A4JVXXsGtW7fE72/duoVmzZppLFu/fn34+/vj8OHDAAA7\nOzvcuXMHM2bMwLp16/Dxxx+jfv36Oom7KhxL6mUMte9JrZ3y8vLEk5xAWawVD3Jyc3MrlSmvs5GR\nEXr37o033ngDGzZs0E3Qz1Dx76+p72jrX7m5uc/cVx/+CWNJ0zip2B5Pl1GpVPD390fz5s0RGBgI\nhUKhm8CrUFW8VZXJzs5WK3Pt2jWkpKQgICDg5Qb8DJrGfsX5IS8vT60+9vb2yMnJwfXr1/HKK68g\nPDwcXbp0wUcffYSHDx/qLHZtXmR+MFSG1u+USuULv1QuPz8f9vb24vf29vZisvFl7vuyMdFVC8LC\nwpCdnY2VK1fixIkTSElJgbW1NYqLiwGUndE+efIkIiIi4OrqitWrV8PZ2RmnTp0CUJYIy8zMxMyZ\nM/H48WMMHToUXbt2RWlp6QvHNnLkSBw9ehQLFy7EkSNHkJKSAh8fHzE2Xajuw+4N7SxlVaRWp+et\njyG/yEBqbQSwneoCqdUHqFmsr776Ks6ePYv79+8DAExMTODq6opdu3Zh3LhxePToEYYMGfKyQq02\njqW6QWrt9KJtFBsbi6NHj+KXX37BunXrcPTo0doM77mw39UNLzqWTExMkJSUhKtXr+LIkSNISEio\n9Rhrqjbmh/v372PAgAH49ttvxedK6suL1OfJkyc4c+YMxowZg99//x1yuVzrM750SWpzOCC9fge8\n2N/bkNuKiS4Nyh9A//RD27UpKCjAxYsXMWPGDAQHB8PNzQ3169dXu8wcAIyNjdGlSxcolUokJyfD\nzs4OW7ZsEbdbWVlh4MCBWL16Nfbv34+EhARcvHjxmb/f19e3yjh///13hIeHIywsDB4eHrC1tcWV\nK1fUytSrVw8qleqZv+t5OTg4ICsrS/w+KytLLcutqUx2djYcHR2rta8+SK1O9vb2lWJ6+qwSUPls\nRE5OTqUyhkRqbQSwncoZcjtJrT4AcPv2bbUruKytrSv9jyv31ltvibctAmVXf926dQt//vknACAh\nIQEuLi4vN+Bq4FgqY+h9T2rtZGdnp3bmPzs7W+1MOPC/KzTK5eTkiGXs7OwAAM2aNUOvXr2QnJys\ng6irVvHvr6nvVGzHp/vds/bVh3/CWCqPt2KZimOpYv+0tLREjx49DKLvVYy3unUqnx9KSkrQv39/\nDB48GH369NFN0FWoOPY1zQ92dnZq9cnNzYW9vT0cHBxgb28PX19fAECfPn3UHlSvL887PxjqHA5I\nr98BgK2trdrV0rm5ueL/m5e578vGRJcG5ubmmDp1KubNm4eVK1ciLS0NZ86cwVdffQWgLENbnqW1\nsrJCs2bNsHbtWqSnp+PYsWMYNGgQGjZsKH7e7t27sXjxYiQnJyMzMxMRERHIysqCh4cHAGDmzJmI\niIjApUuXkJ6ejs2bN8PCwgJOTk7PjHX27NmIiorClClTkJqaikuXLmHjxo1IS0sDALRt2xabN2/G\nuXPnkJKSgkGDBqG0tFQty9yqVSscOXIEWVlZuH37dq2fofLz80N6ejquXbuG4uJibNu2Db1791Yr\n07t3b/z4448AgOPHj6Nx48awsbGp1r76ILU6+fn54fLly2JMO3bsQK9evdTKhIWFYdOmTQDK6mNp\naQkbGxt9hFstUmsjgO0EGH47Sa0+AHDp0iU4OjrC1tYWMpkMb775Jv74449K5cqfx3XkyBHxZ3/9\n9Rdu3rwpLgJ9fX1x7do1XYWuFcdS3eh7UmunDh064MqVK7h+/TqKi4vx66+/IjQ0VK1MaGgotm7d\nCqDsWTCWlpawtrbGw4cPce/ePQBlz5KNj48X15H6VLHvbN++XWO/e7qNtPU7TfvqgxTHkq+vb6Wx\n1LNnT7UyYWFh2Lx5MwDgxIkTYp1u376NO3fuAAAePXqE+Ph4g3iTacX5Yfv27QgLC1Mr06tXL7FO\nT88PgiBg3LhxUCgUmDRpkj7Cr6R9+/Zq80NERITG+eHnn38GUPbctfL5wcbGBo6Ojrh8+TIA4NCh\nQ3Bzc9N5HSp6kfnBUEmt3wGAt7c3MjIykJWVheLiYuzevRvdu3fXWLZinqAm++qa7NlF/pk+//xz\nNGvWDEuXLsWUKVNgZWWFwMBAAGWX6JVfpmdsbIwdO3Zg4sSJ8PLyQsuWLTF//nxMnz5d/KwmTZpg\n6dKl+OKLL3Dv3j04OTlh9uzZGDVqFACgYcOGmDNnDq5duwYTExO0b98eUVFRsLCweGacwcHBiIyM\nxLx587BmzRrUq1cPvr6+4munN2zYgPfffx8BAQGwtbXFJ598gkePHqldZqhUKjF+/Hi0bdsWRUVF\nyMjIqFaSrbpkMhmWL1+O7t27Q6VSYcyYMeJD+wHg/fffR2hoKCIjI+Hs7Ay5XC4+e0LbvvomtTrJ\nZDIsWbIEoaGhUKlUGDVqFBQKBdauXQsAGD9+PEJDQxEdHY22bdtCLpdj/fr14v5DhgzB4cOHUVBQ\ngJYtW2LevHkYOXKknmpTRmptVB4X28mw20lq9QHKns2yZMkSLFy4EMbGxoiMjMT169fFhEP5Q1hf\nf/11JCUlVbo1fsmSJZg9ezZkMhlyc3PFk0b6xLFUN/qe1NpJJpNh0aJF6Nu3L0pLSzFs2DC4ubnh\nv//9LwBg9OjR6N69O2JjY+Ht7Q0zMzOsWrUKAHDjxg3xtt8nT56gf//+eOutt/RWl3IymQzLli1D\nSEgIVCoVRo8erbXfubi4QC6Xi/XVtq++SXUsLV68GGFhYWpjad26dQCAcePGoUePHoiOjoZCoYBc\nLhe35efnY8yYMSgtLUVpaSkGDx6Mrl276rM6AP43P/Ts2VPr/NCjRw9ERUXBzc0NZmZm4vxw9OhR\nbNmyBZ6envDz8wMAzJ8/X68H6OXzw7vvvguVSoVhw4ahbdu2avNDt27dEBsbCx8fH8jlcqxYsULc\nf8GCBRg7dixKSkrQsmVLrFy5Ul9VEb3I/AAAgwcPRkJCAgoKCuDk5ASlUikeP+uL1PodUFan+fPn\nixfEDBo0CC4uLmICctiwYbh58yZ69OiB+/fvw9jYGOvXr0dCQgLkcrnGfQ2BkVCXbjAnomp7mbej\nviwmJib6DkGn6mIbAf+8dpKa8pM2dU1Vz4ThWKobpNhO5c+jq0uqeiZMXT0sMOTnxLwMunzWbm2q\nV6+e1m1PnjzRYSS1o+Ib6J529+5dHUZSexo1aqR1mxTnh7rY74D/9b3yB9HPnTtX3GYIb3J8UbVx\n+yOv6CIiIiIiIiIiqkOeTnCROj6jy4BlZmbC3NwcFhYWGr/Kn+FARERERERERES8osugOTg4IDU1\nVet2a2trHUZDRERERERERGTYmOgyYCYmJmjdurW+wyAiIiIiIiIiqhN46yIREREREREREUkCE11E\nRERERERERCQJTHQREREREREREdUhSqUSSqVS32EYJCa6iIiIiIiIiIhIEpjoIiIiIiIiIiIiSWCi\ni4iIiIiIiIiIJIGJLiIiIiIiIiIikgQmuoiIiIiIiIiISBJk+g6AiIiIiIiIiIiqb+7cufoOwWDx\nii4iIiIiIiIiIpIEJrqIiIiIiIiIiEgSmOgiIiIiIiIiIiJJYKKLiIiIiIiIiIgkwUgQBEHfQRAR\nEREREREREb0oXtFFRERERERERFSHKJVKKJVKfYdhkJjoIiIiIiIiIiIiSWCii4iIiIiIiIiIJIGJ\nLiIiIiIiIiIikgQmuoiIiIiIiIiISBKY6CIiIiIiIiIiIkkwEgRB0HcQRPqmUqn0HcJzMTEx0XcI\nOlNaWqrvEJ6LsbH28wk3b97UYSS1x9raWt8h6FRd/DdpZGSkdZsUx1JKSooOI6k9Pj4++g5BpxIT\nE/UdwnMJCAjQuq2kpESHkdQOU1NTrdu4Hqobbty4oe8QnouNjY2+Q9CZs2fP6juE5+Lp6al1W3Fx\nsQ4jqT316tXTuu369es6jKT2tGjRQuu2/Px8HUbyctja2r7wZ/CKLiIiIiIiIiIikgQmuoiIiIiI\niIiISBKY6CIiIiIiIiIiIklgoouIiIiIiIiIiCSBiS4iIiIiIiIiIpIEJrqIiIiIiIiIiOoQpVIJ\npVKp7zAMEhNdREREREREREQkCUx0ERERERERERGRJDDRRUREREREREREksBEFxERERERERERSQIT\nXUREREREREREJAkyfQdARERERERERETVN3fuXH2HYLB4RRcREREREREREUkCE11ERERERERERCQJ\nTHQREREREREREZEkMNFFRERERERERESS8I9OdAUFBWHcuHH6DqNaRo4cieDgYIP5HCIiIiIiIiIi\nQ/OPfuuikZERjIyM9B1GtdRWrMuWLUNpaWktRERERERERERE+qBUKgHw7Yua/KMTXXWJIAi18jkW\nFhZVbi8pKYGpqWmt/C4iIiIiIiIiIl36R9y6uGLFCri7u6NBgwawsbFBv379AFROHh04cABBQUFo\n2rQpGjdujKCgICQlJamVWb9+PRQKBRo2bIimTZsiMDAQOTk5AIC7d+9i1KhRsLOzQ4MGDeDk5ISp\nU6dWO864uDh06dIFcrlc/P1Xr14VtwuCgLVr16JFixawtLREnz59cPPmTXF7RkYG3n33XTg4OEAu\nl8PLywubN29W+x0Vb10s/37ZsmVo2bIlGjRogKKiomrHXJ21UOQAACAASURBVF3R0dFwc3ODi4sL\nvv76a41lJk6cCBcXF3h7e+P06dM12lcfoqOj4eHhATc3NyxYsEBjmcmTJ8PNzQ0dOnQQ65SVlYW3\n3noLXl5e8Pb2xrJly3QZtlZSbSN3d3e0bdtWaxtNmjQJbdu2Rfv27dXqNGbMGNjZ2cHb21tX4VbL\nwYMH8dprr6FTp05a+85nn32GTp064c0338TZs2fFn69duxaBgYF44403sHbtWl2F/ExS63vR0dFQ\nKBRwdXWtsj6urq7w8fFRq8/o0aNha2sLLy8vXYVbLVIcS0ePHsU777yD3r17Y8OGDZW2Z2RkYPjw\n4ejYsSN+/PFHtW1btmzBe++9h379+mHLli26CvmZpDaWAODYsWPo378//vWvf1VqB6As7iFDhmDI\nkCEYN24c0tPTxW2ff/45QkJCMHjwYF2GXKWYmBi0a9cO7u7uWLhwocYyU6ZMgbu7O3x9fdXWDsHB\nwfD29oaPjw+WL1+uy7Cr9LzrIQAYO3Ys7O3t4ePjo6twq0WKY+ngwYN4/fXX0blzZ63rh5kzZ6Jz\n587o2rWr2vph3bp1CAoKQmBgINatW6erkJ9Jau105MgR9O7dG2FhYfjvf/9baXtGRgaGDh0KPz8/\n/PDDD2rb1q9fj3feeQfvvvsupk+fjuLiYl2FXaWYmBh4enrC3d0dixYt0limfM7z8/NDSkoKAODx\n48d4/fXX4e/vD29vb8yaNUuXYVfp0KFD6Nq1K4KCgrBq1apK2y9fvox33nkHrq6uauMlNzcXAwcO\nRHBwMLp166Zx7aEv5fPDq6++qvX/y6xZs/Dqq6/irbfeqjQ/vPnmmwgKCjKo+UHyia65c+dixowZ\nmDBhAs6dO4fY2Fj4+flpLPvgwQNMmDABx48fx7Fjx+Di4oKQkBD89ddfAIDk5GR88MEHmDlzJtLS\n0pCQkIARI0aI+8+aNQunT5/Gnj17cPnyZWzbtg3u7u7VijMuLg4hISHw9/fH8ePHkZiYiFGjRuHJ\nkydimaSkJCQkJCAqKgoxMTE4e/Yspk2bphb/22+/jejoaJw7dw7jx4/HqFGjcOjQIbGMplsgExMT\ncejQIezduxepqam1fkWXSqXChAkTEB0djQsXLmDr1q24ePGiWpnIyEhcvnwZ6enpWLt2LT744INq\n76sPKpUKkyZNwv79+3H27Fls27ZNa53+/PNPrFq1Ch9++CEAwNTUFN988w1SU1Nx9OhRrFq1Su91\nkmobTZw4EZGRkTh37hx+/vlnrXW6dOkSVq9eLbYRUJYEjoyM1HXYVVKpVPj000+xdetW/P7774iI\niEBaWppambi4OFy7dg3Hjx/HokWL8MknnwAALl68iJ9++gkxMTH47bffcODAAVy7dk0PtVAntb6n\nUqnw0UcfISoqCufPn9fa765cuYK0tDSsWbMG4eHh4rZRo0YhKipK12FXSapj6euvv8aKFSvwyy+/\nIDo6Wu3EEgBYWlpi+vTpGD58uNrPL1++jIiICGzevBnbtm3D4cOHkZWVpcvwNZLaWCqPa9GiRVi8\neDG2bduG2NhYZGRkqJVxcHDAmjVr8NNPP2H06NH48ssvxW1hYWFYsmSJrsPWSqVSYfLkydi3bx/O\nnDmjce0QFRWFK1eu4MKFC1i1ahU++ugjAGVrh4ULF+LMmTM4cuSIQawdgBdbDwHAiBEjsH//fl2H\nXSWpjqXPPvsMW7ZsweHDh7Fr1y6N64eMjAwcO3YMixYtwvTp0wH8b/0QHR2NgwcPcv3wkqhUKnz5\n5ZdYtWoVIiIiEBUVpfH/0qeffqp2/AkAOTk5+OWXX7Bt2zb8+uuvKC0tNYi1RPmct3fv3mrNeStX\nrhTnvAYNGiA2NhZJSUlITk5GQkICjh49qo9qqFGpVJg7dy5++OEHHDhwQDzuf5qVlRWUSiXGjx+v\n9nOZTIbZs2fjwIEDiIiIwKZNmyrtqw8qlQozZ87E1q1bkZCQoHF+iI+PR0ZGBv744w8sXLgQM2bM\nAAD8+eef2LJlC6KiohAfHy8ehxgCSSe6Hjx4gAULFkCpVCI8PBzOzs7w9vYWG6Ziwqdv377o168f\nXFxcoFAosGbNGgiCgOjoaABAZmYm5HI5+vTpg+bNm6Ndu3YYPXo0HBwcxO3t27eHv78/HB0d0blz\nZ4wZM6ZasSqVSoSGhuLbb7+Fp6cnXF1dMWLECLi6uoplGjRogI0bN8Ld3R2dOnXCv//9b8TFxYnb\n27Vrh/DwcHh6eqJVq1aYMGECevbsqXa2WRCESleymZiYYNOmTfD09ISHhweMjWu3WyQmJsLZ2Rkt\nW7aEqakpBg4ciN27d6uV2bNnjzhpd+zYEXfu3EF+fn619tWHxMREtGnTRoyrf//+2LNnj1qZffv2\niQdIHTt2RGFhIW7cuAFbW1vxzKW5uTnc3NyQm5ur8zo87Z/QRgMGDKjURnv37lVro/I6AUCXLl1g\nZWWl87ircurUKbRq1QpOTk4wNTVF3759xfmpXExMDPr37w8A8PX1xd27d3Hz5k2kp6ejQ4cOaNCg\nAUxMTNC5c2eDOLiQWt+rGNOAAQM01qcu9TspjqVz586hefPmsLe3h6mpKbp37652UggAmjRpAg8P\nD8hk6k95yMjIQLt27VC/fn2YmJjA19cXBw8e1GH0mkltLAHAhQsX4OjoCHt7e8hkMgQHB+Pw4cNq\nZTw9PWFubg4A8PDwULvSvX379s98ZIMuJSUlVVo77N27V63Mvn37MHToUABAQEAA7ty5o3XtkJeX\np/M6VPS86yFDnh+kOJZOnz5daf0QExOjViY2NlZcP3To0IHrBx0r/7/k4OAAU1NThISE4LffflMr\no+3/krm5OWQyGR4/fownT57g0aNHsLGx0WX4Gmma8/bt26dWZt++fRg2bBgA9TkPAMzMzAAAxcXF\nUKlUaNKkiW4roEFKSgpatGiB5s2bw9TUFL169UJsbKxamaZNm8LLy6tSO1lbW8PDwwMAIJfL0aZN\nG7Gu+nT69Gm0bNlSrFOfPn0qzQ9PH1906NABhYWFGueHTp06GczJTUknus6fP4+ioiJ069atWuUz\nMjIwbNgwuLi4wNLSEpaWligsLERmZiYAoFu3bmjdujVatWqFQYMGYd26dSgoKBD3Dw8Px86dO+Hp\n6YnJkycjOjq62s/WOnXq1DPjdHNzU7vays7OTm1wPHz4EDNmzEC7du3QtGlTWFhYIDIyUoxfG4VC\nIU4kL0NOTg6aN28ufu/o6Cje7vmsMrm5uc/cVx80xVUxWZWTkwNHR0fxewcHB2RnZ6uVuXbtGlJS\nUtCxY8eXG/AzSLGNKsbr4OBQ7ToZqvz8fNjb24vf29vbVzrQycvLE5PvQNk8kZ+fD4VCgRMnTuDv\nv//Gw4cPERcXp/cEKyC9vldx3GuKyRDjrooUx9LNmzfVDgJsbGzUEiRVcXZ2xunTp1FYWIhHjx7h\n999/N4iFqtTGElC5naytrXHr1i2t5ffs2YNXX31VF6E9F03rAk1rh2e1xbVr13DmzBkEBAS83ICr\n4XnXQ4bQv7SR4ljKy8tTWz/Y2dm90PrBEJKsUmun8oR2uZr8X7K0tMSIESPQrVs3vPXWW2jUqBE6\nder0skKttop/Z01jPzc3V+v8oFKp4O/vj+bNmyMwMBAKhUI3gVfhxo0blcbS86wBsrKycOHCBYO4\nbbvi8UX52K+qjL29PfLz8+Hm5qY2P8THxxvE8QXAh9GrCQsLg7W1NVauXClmNF9//XXxHme5XI6T\nJ0/i6NGjiIuLw+rVq/HJJ58gPj4eHTp0QLdu3ZCZmYmYmBgcOnQIQ4cOhaenJ+Lj42vlKqmKtxQa\nGRmpJdI+/vhj7NmzB9999x3atm0LMzMzTJ06FYWFhVV+7stMcpXHWR219cB9XXjeOj293/379zFg\nwAB899134tlofWEb1Xw/fXiRdnJxccGECRMwYMAAmJmZwdPTs9av3nweUut77Hc1308fXiS2Vq1a\nYeTIkfjggw/QsGFDuLm5cSy9JDVpp5MnT2Lv3r0G9XyQimpr7TBw4EB88803el87AP/s+UGKY0nb\n+uHDDz8U1w/t2rXjnPcSvMiYyMrKwubNmxEdHQ1zc3NMmzYN+/fvR8+ePWsxwpp70fnBxMQESUlJ\nKCwsRFhYGBISEhAYGFjrcdZEbcxdDx48QHh4OObMmQO5XP5Cn6XLty1WNT8MHDjQoOYHQOJXdJU/\ngL7ipXeaFBQU4OLFi5gxYwaCg4Ph5uaG+vXrV8qkGxsbo0uXLlAqlUhOToadnZ3arYFWVlYYOHAg\nVq9ejf379yMhIaFa93z7+vo+M85nDazff/8dQ4cORb9+/cTbFy9duqT3xYSDg4Pa80uysrLUMvea\nymRnZ8PR0bFa++qDvb19pbiePgsGVL6CKycnRyxTUlKC9957D4MHD0afPn10E3QVpNhG2uJ9VpmK\n7WhIbG1t1c6S5OTkqJ1dAcrOwjx9tiwvL088Qzh48GDExsZi165daNSoEZydnXUTeBWk1vcqjntN\nMVWcPwy930lxLFlbW6udgc3Pz6/RbR59+/bFli1b8P3338PCwgItWrR4GWHWiNTGEgA0a9ZMrZ1u\n3LgBa2vrSuXS09Px5ZdfYtGiRWjUqJEuQ6yRivODpnGiqY3K5/mSkhIMGDDAYNYOwIuvhwyRFMeS\nnZ2d2vohNzcXdnZ2VZbJy8sTyzy9frC0tESbNm10E3gVpNZO1tbWalfR1OT/0vnz5+Ht7Y3GjRtD\nJpPhrbfeEh/qrk+a1jua1kQV54eKa1tLS0v06NEDycnJLzfgarCxsak0lp6+Eu9ZSkpK8O9//xt9\n+/ZF9+7dX0aINVad+aHiMcjTZQYNGoSYmBhERESgUaNGBjE/ABJPdJmbm2Pq1KmYN28eVq5cibS0\nNJw5cwZfffUVAPXnVVlZWaFZs2ZYu3Yt0tPTcezYMQwaNAgNGzYUP2/37t1YvHgxkpOTkZmZiYiI\nCGRlZYn32s6cORMRERG4dOkS0tPTsXnzZlhYWMDJyemZsc6ePRtRUVGYMmUKUlNTcenSJWzcuFHt\nQXDPOiPRtm1b7Nq1C0lJSbhw4QLGjx+PvLw8vZ/J8PPzQ3p6Oq5du4bi4mJs27YNvXv3VivTu3dv\n8W1Kx48fR+PGjWFjY1OtffXBz88Ply9fFuPasWMHevXqpVYmLCwMmzZtAlBWJ0tLS9jY2EAQBIwb\nNw4KhQKTJk3SR/iV/BPaaPv27ZXaqFevXmptVF4nQ+Xj44OrV68iMzMTxcXF2L17d6V/kt27d8eO\nHTsAlF3h0KhRI/HAsPyWn+zsbERFReHdd9/VbQU0kFrfqxjT9u3bNdanLvU7KY4ld3d3ZGZmIjc3\nFyUlJYiNjdV6lljT/9Dyl9Tk5eXht99+Q48ePV5qvNUhtbEElD1aISsrS2yn8rdTPy0/Px8zZszA\nvHnz1G6RMUS+vr6V1g5hYWFqZcLCwvDTTz8BAE6cOCG2kSAIGD9+PBQKBSZOnKiP8DV6kfWQoZLi\nWPL29n7m+qFbt27Yvn07gLIXcDVq1AjNmjUDwPWDLnh4eCAzMxM5OTkoKSlBTEwMgoKCNJat+H+p\nVatWSE1NxePHjyEIAo4fP24QyQZNc17Fq8zCwsKwefNmAOpz3u3bt3Hnzh0AwKNHjxAfH28Qt/l5\neXnh2rVryMrKQnFxMfbt24fg4GCNZSu2kyAImD59OlxcXKr9HG9d8Pb2RkZGhlinPXv2VHqk0tPH\nF8nJybC0tBTnh9u3bwMwrPkB+Afcuvj555+jWbNmWLp0KaZMmQIrKytxMfv0GwiNjY2xY8cOTJw4\nEV5eXmjZsiXmz58vvnEEKHsA4NKlS/HFF1/g3r17cHJywuzZszFq1CgAQMOGDTFnzhxcu3YNJiYm\naN++PaKioqr1INTg4GBERkZi3rx5WLNmDerVqwdfX19xgtP0tsTyn5f77rvvMHbsWLz55pto1KgR\n3n//ffTr10/tjR0VP0fb59YmmUyG5cuXo3v37lCpVBgzZoz4sH8AeP/99xEaGorIyEg4OztDLpeL\nr1vVtq++yWQyLFmyBKGhoVCpVBg1ahQUCgXWrl0LABg/fjxCQ0MRHR2Ntm3bQi6XY/369QDKXmn/\n008/wcvLS3wD6H/+8x+EhITotT5SbKOlS5eiR48eUKlUGD16tMY6RUVFwdXVFXK5HN9//724/+DB\ng3H48GEUFBSgRYsWmDdvnjjW9UUmk+HLL7/EwIEDoVKpMHjwYLi6uoqLuOHDh+Ptt99GfHw8Onbs\nCDMzM7U3jo0dOxZ///03ZDIZvvrqK4N4SLPU+p5MJsOyZcsQEhJSZb+LjIyEi4sL5HK52ivEBw8e\njISEBBQUFMDJyQlKpdIg+p0Ux9L06dMRHh6O0tJS9OnTB61bt8bOnTsBAP369cPt27cxdOhQPHjw\nAEZGRti6dSt++eUXmJmZYdq0aSgsLIRMJsOnn35qELeQSW0slcc1bdo0TJo0CaWlpejVqxdatWqF\nX3/9FQDw7rvv4vvvv8fdu3exYMECcZ/yev1/9u47LIpz/R//eyk2VESjSBEU6cVFBJVY4BjFElsS\no4hGBWOMXWMJHzHB9RxNYi8xYklMTtQcE2NXiohg7IpiTwQV6ViwN2SZ3x/8mK/LAi6Iu8v4fl3X\nXsnuPLPeN8/MszP3tOKnYd+/fx99+vTBZ599plaE0XY+S5cuxfvvv4/CwkKMGDECLi4u4uWWo0aN\nQs+ePREVFSXeP7V42+HIkSPYtGkTPDw84OPjA6Bo20HXZwS8zvYQAAwZMkQcH5o3b47Zs2djxIgR\nOsqmiFTXpXnz5mHw4MGv3H5o37496tSpg6VLl4rzjxo1Cnl5eTA2NsY333zD7Yc3oPj35PPPP0dh\nYSE++OAD2NnZicWFjz/+GLdv38bgwYPF36WNGzdi+/btcHJyQp8+fTB48GDIZDK4uLjgo48+0mk+\nwP8b83r37q0yPpQ15pmYmIjTcnJyMHLkSBQWFqKwsBBBQUHo0qWLLtMBUJSTQqHA8OHDoVQqMXDg\nQNjb24sHKIYMGYKbN2+iX79+ePToEWQyGdavX499+/bh0qVL2LZtG5ydndGrVy8AwIwZM8osaGqL\nkZER5s6dK44PgwcPVhsf3nvvPezfvx++vr6oU6cOlixZIs5fvH9hbGysN/sXACATdH26D5EeUCqV\nug6hUgwNDXUdgtYUFhbqOoRKKe86dU1vMqpvSrt0SMqq489keQcwpLgu6cMlGpWhD0entenEiRO6\nDqFSyrvp+4sXL7QYSdUoec/Xl3F7qHrQhwdgVIY+n8lX1c6fP6/rECrFw8OjzGnF962ubmrUqFHm\ntBs3bmgxkqpT3i0TSt5IvjqqyOWgZZH0pYtERERERERERPT2YKFLC9LS0lC3bl3Uq1ev1Ndvv/2m\n6xCJiIiIiIiIqJpQKBRQKBS6DkMvSf4eXfrAysoK586dK3P623YZEBERERERERHRm8BClxYYGhrC\nzs5O12EQEREREREREUkaL10kIiIiIiIiIiJJYKGLiIiIiIiIiIgkgYUuIiIiIiIiIiKSBN6ji4iI\niIiIiIioGgkPD9d1CHqLZ3QREREREREREZEksNBFRERERERERESSwEIXERERERERERFJAgtdRERE\nREREREQkCSx0ERERERERERGRJLDQRURERERERERUjSgUCigUCl2HoZdY6CIiIiIiIiIiIklgoYuI\niIiIiIiIiCSBhS4iIiIiIiIiIpIEmSAIgq6DICIiIiIiIiIizRTfnys8PFzHkegfntFFRERERERE\nRESSwDO6iIiIiIiIiIhIEnhGFxERERERERERSQILXUREREREREREJAksdBERERERERERkSSw0EVE\nRERERERERJJgpOsAqPopKCjQdQiVYmRU9uIuxZyUSqUWI6kahoaGZU4rLCzUYiRVx8Cg7OMJ1fVZ\nIDKZTNchaFV17Kfy+qg65gO8fcvd7NmzdR1CpZQXtxSXvYcPH2oxkqpRr169MqcdOnRIi5FUnY4d\nO5Y5TYrLnRRzys3N1WIkVcPc3LzMaVLso+q4bwGUv38hRc+fP9d1CK+tZs2ar/0dPKOLiIiIiIiI\niKgaUSgUUCgUug5DL7HQRUREREREREREksBCFxERERERERERSQILXUREREREREREJAksdBERERER\nERERkSSw0EVERERERERERJJgpOsAiIiIiIiIiIhIc+Hh4boOQW/xjC4iIiIiIiIiIpIEFrqIiIiI\niIiIiEgSWOgiIiIiIiIiIiJJYKGLiIiIiIiIiIgkgYUuIiIiIiIiIiKSBBa6iIiIiIiIiIiqEYVC\nAYVCoesw9BILXUREREREREREJAksdBERERERERERkSSw0FUOf39/jBo1StdhEBERERERERGRBljo\nKodMJoNMJtN1GEREREREREREpAEWuoiIiIiIiIiISBJY6AKwcuVKuLq6olatWjA3N8eAAQMAAIIg\nqLTbt28f/P390ahRIzRo0AD+/v44efKkSpt169bBxcUFtWvXRqNGjeDn54fMzEwAwIMHDxAcHAwL\nCwvUqlULNjY2mDp1qsZxxsbGolOnTjAxMRH//WvXronTFy5cCDs7O9SsWRP29vZYtmyZOO3HH39E\ns2bNxPfXr1+HgYEBPvnkE/GztWvXwsrKSuN4iIiIiIiIiEj7wsPDER4erusw9NJbX+gKDw9HaGgo\nxo8fjwsXLiAmJgbe3t6ltn38+DHGjx+PY8eO4ejRo3BwcECPHj2Ql5cHAEhMTMSYMWMQFhaGK1eu\nICEhAcOHDxfnnzVrFs6cOYOdO3ciJSUFmzdvhqurq0ZxxsbGokePHvDx8cGxY8dw4sQJBAcHo6Cg\nAEBRse7rr7/GzJkzcenSJUyfPh2hoaH46aefAAD/+te/kJmZieTkZABAXFwcGjdujAMHDoj/Rlxc\nHLp06VLxP6IGoqOj4e7uDhcXFyxYsKDUNpMnT4aLiwu8vLxw5swZAEB6ejq6du0KuVwOT09PrFix\n4o3EVxlSyykqKgpubm5wdnbG/PnzS20zefJkODs7q+QDAJ9++iksLS3h6emprXA1EhUVBVdXVzg5\nOZWZ06RJk+Dk5ITWrVur5DRy5EhYWFhALpdrK1yNREVFwcXFBY6Ojvjuu+9KbTNx4kQ4OjrC09NT\nJaeQkBA0bdoUrVq10la4GomKioKzszMcHBzKzcnBwQFyuVwlJ03m1Tap9pEUc5LScgcA9vb2GD9+\nPCZMmIAOHTqoTW/evDlCQ0MxevRojB49Gp07d9Z4Xl2R2rK3b98+tGnTBp6enliyZEmpbaZPnw5P\nT0+8++67OHv2rPi5u7s7fH190bFjR/j7+2sp4lc7fvw4hgwZgsGDB2Pjxo1q02NiYjBixAgMHz4c\nY8aMQUpKCgDg+fPn+OyzzxAcHIyhQ4ciIiJC26GXSWrLHSDNnOLi4tCxY0f4+vqWuT0dFhYGX19f\ndOnSBefPnxc/X7t2Lfz9/eHn54e1a9dqK+RySbGPpLp/IbXth5iYGLRq1Qpubm5YuHBhqW2++OIL\nuLm5wcfHB0lJSQCAZ8+eoVOnTmjbti08PT0xa9YsbYZdrre60PX48WPMnz8fCoUCY8eOhb29PeRy\nOUJDQwFA7f5c/fv3x4ABA+Dg4AAXFxesXr0agiAgKioKAJCWlgYTExP069cPzZo1g7u7O0JCQsSz\npNLS0tC6dWv4+PjA2toavr6+GDlypEaxKhQK9OrVC4sXL4aHhwccHR0xfPhwODo6AgC+/fZbTJw4\nEZ9++ilatmyJ0aNHY8yYMZg7dy4AwM7ODra2tti/fz+Aoh+GMWPG4OHDh7hy5QoAID4+/o0UupRK\nJSZNmoTdu3fj3Llz+N///ofLly+rtImMjMTVq1dx+fJlrFq1CuPHjwcAGBsbY+HChTh79iwOHTqE\niIgItXl1QWo5FeezZ88enD9/Hps3b1aLae/evUhJScHff/+NVatWYdy4ceK04cOHY8+ePdoOu1xK\npRITJ07E3r17ceHChVL7qDinf/75BxERESo5jRgxAnv37tV22OVSKpWYMGECIiMjcfHixTJzunr1\nKq5cuYLVq1dj7Nix4rTg4GBERkZqO+xyKZVKjB8/HlFRUbh06RJ+++23MvspOTkZa9aswZgxYzSe\nV9uk2kdSzElKyx1QtM3Sq1cvbNiwAStXroSHhwfeeecdtXY3btzA6tWrsXr1ahw8eLBC82qb1JY9\npVKJadOmYevWrTh58iS2bNmCf/75R6VNdHQ0rl27hqSkJCxbtgxTpkwRp8lkMuzZsweHDh1CfHy8\nlqMvnVKpxJIlS7Bw4UL8+uuviI2NRWpqqkobS0tLfP/99/jll18wYsQI8eBgzZo1sXz5cqxfvx4/\n//wzzpw5g3PnzukgC1VSW+4A6eY0c+ZMbNq0CQcPHsT27dvFfZpisbGxuH79Oo4ePYqFCxfiyy+/\nBABcvnwZGzduRFRUFOLi4rBv3z615VbbpNpHUty/kNr2g1KpxOTJk7Fz504kJSXh999/x99//63S\nJioqClevXsXFixexcuVKTJw4EQBQq1YtREdH48SJEzh16hQOHjyIw4cP6yINNW91oevixYt4/vw5\nAgICNGp//fp1fPLJJ3BwcICpqSlMTU1x//59pKWlAQACAgJgZ2eHFi1aYPDgwVi7di3u3Lkjzj92\n7Fhs2bIFHh4emDx5MqKiotQujyzL6dOny4zzwYMHyMzMVDkyCwCdO3dGamoqnj17BqDorK7iQld8\nfDy6d++OTp06Yf/+/bh48SJyc3PfSKHrxIkTaNmyJZo3bw5jY2MMGjQIu3btUmmza9cu8TLKdu3a\n4f79+8jNzUXTpk3FKn7dunXh7OyM7OzsKo+xoqSWU8l8Bg4ciJ07d6q02b17N4YNGwbg/+WTk5MD\nAOjUqRPMzMy0Hnd5Suujkjnt2rVLJad79+7pfU72zYoFbgAAIABJREFU9vYqOe3YsUOlzc6dO6t1\nToGBgaXmVHx27Ms5aTKvtr0NfSTFnKr7cgcAVlZWyMvLw71791BYWIgLFy7A2dn5jc/7Jklt2Tt1\n6pR44NHY2BgfffSR2k5cZGQkgoKCAAA+Pj64f/8+bt68KU7XdLtRWy5fvgwrKytYWFjAyMgI7733\nHg4dOqTSxt3dHXXr1gUAuLq64tatW+K0WrVqAQAKCgpQWFiIevXqaS/4MkhtuQOkmdOZM2fQokUL\n2NjYwNjYGP3790d0dLRKm5iYGAwcOBAA4OXlhQcPHuDmzZtITk6Gl5cXatWqBUNDQ/j6+uq8oCLF\nPpLq/oXUth9Onjyp0k8ff/yx2n7t7t27MXToUABA27Ztce/ePeTm5gIA6tSpAwDIz8+HUqlEw4YN\ntZtAGd7qQldF9e7dGxkZGfjhhx9w/PhxJCUloUmTJsjPzwcAmJiY4NSpU9i2bRscHR0REREBe3t7\nnD59GkBRISwtLQ1hYWF49uwZhg4dii5duqCwsFAr8Xfp0gUHDhzA5cuX8fDhQ7Rr1w5dunRBXFwc\n4uLi0Lx5c9ja2lb5v5uVlQVra2vxvZWVlXjfsvLaZGRkqLRJTU1FUlIS2rZtW+UxVpTUcsrKylK5\nh5u1tTWysrJU2mRmZr4yZ32SmZmpklNp8ZZsY21trfc5vdwHpcVbWl/qe06viresNvqYq1T7SIo5\nSWm5A4D69evj/v374vsHDx6oFQ0EQUCzZs3w+eefY8iQIWjcuLHG8+qC1Ja97OxslXwsLS3VfmtL\n23YobiOTydCvXz/4+fnh559/1krMr3Lr1i00adJEfN+4cWOVQlZJu3fvRvv27cX3hYWFCA4ORt++\nfdG6dWu0aNHijcarCaktd4A0c8rOzoalpaX43sLCQu3AcXZ2tsr9hy0sLJCTkwMXFxccP34cd+/e\nxZMnTxAbG6vzg85S7KO3Yf9CCtsP5f3ulNemOHalUom2bdvCxsYGfn5+cHFx0U7gr/BWF7qKb0Bf\nsvpfmjt37uDy5csIDQ1Ft27d4OzsjJo1a6ocZQMAAwMDdOrUCQqFAomJibCwsMCmTZvE6WZmZggM\nDERERAT27NmDhIQEjU5ZbNOmTZlx1q9fH9bW1khISFD5PCEhAXZ2duLRMn9/f+Tl5WHx4sXw8/OD\ngYEBunTpgvj4eMTFxeG99957ZRyVUfIS0LKUPEr58nyPHj3CoEGDsHjxYvGooC5JLaeqyEffMKeK\nz6cLlc1JX7GPKj6fLkhtuQM0izU7OxtLlixBREQEjh8/jsDAQC1EVnlSW/Zed7mLjo7GoUOH8Oef\nf2Lt2rU4cuRIVYZXKRX5W58+fRp79uwRL+MBirab169fj61bt+Ls2bMq97LRFaktdwBzKsnBwQHj\nxo3DoEGDEBQUBHd3dxgY6Ha3mH1U8fl0QYrbD6/bT4aGhjhx4gSuXr2KQ4cOqdUkdMVI1wHoUt26\ndTF16lTMnj0btWvXRteuXfH06VNERkYiNDQUgiCIHWpmZobGjRtjzZo1sLOzw+3btzFjxgzUrl1b\n/L4dO3bg+vXr6NSpExo3bozExESkp6fDzc0NQNHNEL29veHq6goDAwNs2LAB9erVg42NzStj/eqr\nr9CzZ09MmTIFwcHBqFmzJo4ePYp3330Xjo6O+L//+z9MnToVDg4O8PPzQ1xcHCIiIvDDDz+I32Ft\nbQ17e3v88ssv4s3v5HI5CgsLsWfPHvzyyy9V+ecVWVpaqpzJlJGRoVIRLq1NZmameATmxYsXGDhw\nIIKCgtCvX783EmNFSS0nS0tLpKeni+/T09PVnsBZ8oy0l/PRR1ZWVio5ldZHpbXR95xe7oP09PRS\nl7vqllPJZU+TfrK2tsaLFy9eOa+2SbWPpJiTlJY7AHj48CFMTU3F9/Xr18eDBw9U2hSfgQ4AKSkp\nMDAwQO3atfHgwYNXzqsLUlv2LCwsXvk7Wtq2Q/FZKxYWFgCAd955B71790ZiYiLeffddLURetsaN\nG6sc9L1586bKGV7FUlJSMH/+fCxcuLDUswXr1q0LX19f/P3332jduvUbjflVpLbcAdLMycLCQuWs\nk6ysLHEdKatNdna22CYoKEi8THjevHk6z1WKffQ27F/oevtBoVAAwGs9ebG0/dqK/DYVMzU1RY8e\nPXD69Gn4+flVOp6q8laf0QUA//73vzF37lwsX74cHh4e6N69u3g0SSaTiZVKAwMD/PHHH7h69Spa\ntWqFkJAQTJkyRWVAbdiwIXbt2oWePXvCyckJoaGh+OqrrxAcHAwAqF27Nr7++mt4e3vDx8cHFy5c\nQGRkpEaXB3Tr1g179+7F8ePH0b59e7Rr1w6//voratSoAQAYM2YM5syZg3nz5sHNzQ0LFizAd999\nJ/7bxbp06QKlUinei0smk+Ff//qXymdVzdvbGykpKUhNTUV+fj5+//139O7dW6VNnz59sGHDBgDA\nsWPHYGpqCnNzcwiCgFGjRsHFxQWTJk16I/FVhtRyKpnPH3/8gT59+qi06d27N3799VcAqvnoq9L6\nqGROffr0UcmpQYMGep9TcnKySk59+/ZVadO3b99qndPmzZtLzem///0vANWcNJlX296GPpJiTtV9\nuQOKdvIaNmyIBg0awNDQEO7u7mo3OjcxMRH/38rKCjKZDE+fPtVoXl2Q2rLn5eWFq1ev4saNG8jP\nz8fWrVvRq1cvlTY9e/bEb7/9BqDoXjCmpqZo0qQJnjx5gocPHwIoephSXFycxk/ufpOcnJyQkZGB\n7OxsvHjxAnFxcWpP7czNzcWsWbPw1VdfqezU3bt3T8zp+fPnOHXqFBwcHLQaf2mkttwB0sxJLpfj\n2rVrSEtLQ35+Pnbs2IHu3burtAkICMDvv/8OAEhMTET9+vXFS7aLL7HNyMhAZGQkPvzwQ+0mUIIU\n+0iq+xdS235o06aNSj9t2bJFbb+2d+/e4lN1jx8/LuZ0+/Zt3Lt3DwDw9OlT7N+/X2+eWP9Wn9FV\nbOLEieKTA1524MABlfedO3cWH6VZ7OVBsfjG7mWZNWvWaz1yMyAgoNwb50+bNg3Tpk0r9zsiIiLU\nHt+8ZcuWSsekCSMjIyxbtgzvv/8+lEolgoOD4eLigjVr1gAAPvvsM/Ts2RORkZFwdnZGnTp1sG7d\nOgDA4cOHsWnTJnh4eMDb2xsAMHfuXLUfMm2TWk7F+fTq1avMfHr16oWoqCg4OTnBxMREzAcAhgwZ\ngoMHD+LOnTto3rw5Zs+ejREjRugomyJGRkZYvnw5evbsCaVSiZCQEPFpqQAwevRo9OrVC5GRkXB0\ndISJiQl+/PFHcf6goCAxJ1tbW8yePVutcKxtRkZGWLFiBXr06FFuTnv37oWDgwNMTEzw008/ifMH\nBQUhISEBd+7cgY2NDRQKhV7k9P3336N79+5QKpUYOXJkmTnZ29vDxMQE69evL3deXZJqH0kxJykt\nd0DRvY727t2LoUOHwsDAAKdPn8bt27fRpk0bAEU7ea6urvDx8UFhYSFevHgh/v6XNa+uSW3ZMzIy\nwsKFC/HBBx9AqVRi2LBhcHJyEmMOCQlB9+7dERMTA7lcDhMTE/HM/NzcXPFGwAUFBRg4cOAbu+VE\nRRgZGWHKlCmYOnUqCgsL8f7776N58+biDZb79euH9evX4+HDh1i0aJE4z5o1a3D79m3MmzcPgiCg\nsLAQ3bt3F7eLdElqyx0g3ZzmzZuHwYMHQ6lUIigoCI6OjmKBYdiwYejatSv279+P9u3bo06dOli6\ndKk4/6hRo5CXlwdjY2N88803Or8voVT7SIr7F1LbfjAyMsLSpUvRp08fKJVKjBgxAs7Ozli7di2A\nonWlR48eiIqKgqurK0xMTMQ+zMnJwaefforCwkIUFhYiKCjojZ08U1EyoTpdQEp6oaCgQNchVIqR\nUdl1XSnmpFQqtRhJ1TA0NCxzmrYe2lDVyrvnQ3UdfvX53glvQnXsp/L6qDrmA7x9y93s2bN1HUKl\nlBe3FJe94jOSqpPyduhLPjGxuujYsWOZ06S43Ekxp+InuFUn5Z15JMU+qo77FkD5+xfVXWmXLj5/\n/lxX4VSZmjVrvvZ3vPWXLuqDtLQ01K1bF/Xq1Sv1VXwKOxERERERERERlY2XLuoBKysrnDt3rszp\npd3Uk4iIiIiIiIiIVLHQpQcMDQ1hZ2en6zCIiIiIiIiIqBp4nactSh0vXSQiIiIiIiIiIklgoYuI\niIiIiIiIiCSBhS4iIiIiIiIiIpIEFrqIiIiIiIiIiEgSWOgiIiIiIiIiIiJJYKGLiIiIiIiIiKga\nUSgUUCgUug5DL7HQRUREREREREREksBCFxERERERERERSQILXUREREREREREJAksdBERERERERER\nkSSw0EVERERERERERJJgpOsAiIiIiIiIiIhIc+Hh4boOQW/xjC4iIiIiIiIiIpIEmSAIgq6DICIi\nIiIiIiIiel08o4uIiIiIiIiIiCSBhS4iIiIiIiIiIpIEFrqIiIiIiIiIiEgSWOgiIiIiIiIiIqpG\nFAoFFAqFrsPQSyx0ERERERERERGRJLDQRUREREREREREkmCk6wCI9IEgCLoOoVJkMlmZ05RKpRYj\nqRqGhoa6DkGrbty4oesQKsXW1lbXIdBrkOJ4d/fuXS1GUnXMzMx0HYJWhYSE6DqESvnpp5/KnFYd\n16fy1qXqmA9Qfk5S9PjxY12HUCkmJia6DkFrcnNzdR1CpZibm+s6BK2S4phXWFioxUjeDAOD1z8f\ni2d0ERERERERERGRJLDQRUREREREREREksBLF4mIiIiIiIiIqpHw8HBdh6C3eEYXERERERERERFJ\nAgtdREREREREREQkCSx0ERERERERERGRJLDQRUREREREREREksBCFxERERERERERSQILXURERERE\nRERE1YhCoYBCodB1GHqJhS4iIiIiIiIiIpIEFrqIiIiIiIiIiEgSWOgiIiIiIiIiIiJJYKGLiIiI\niIiIiIgkgYUuIiIiIiIiIiKSBCNdB0BERERERERERJoLDw/XdQh6i2d0ERERERERERGRJFRZocvf\n3x+jRo2qqq+rcvHx8TAwMEBWVlap7zVlYGCATZs2vYkQK+Xnn3+GsbFxuW0qmysRERERERERUXVS\nZZcuymQyyGSyqvq6N65Dhw7IyclB48aNKzRfTk4OTE1Nqzyerl27olmzZli/fn2VfzcRERERERER\n0dvgrb1Hl7GxMZo0aVLh+SozDxERERERERERvXkVvnRx5cqVcHV1Ra1atWBubo4BAwYAAARBUGm3\nb98++Pv7o1GjRmjQoAH8/f1x8uRJlTbr1q2Di4sLateujUaNGsHPzw+ZmZkAgAcPHiA4OBgWFhao\nVasWbGxsMHXqVI3jXLFiBaytrWFiYoIePXogLS1NZXpZlzLGxsaic+fOMDExgZubG6KiolTmMzAw\nwMaNG1Xer1q1Cp988gnq16+PZs2a4dtvv1WZ586dO/j4449Rt25dWFhYYM6cORgxYgS6desGABgx\nYgTi4uLwyy+/wMDAAAYGBjh48CAAICwsDK6urjAxMYGNjQ3GjBmDBw8eqOW7f/9+uLm5oXbt2mjf\nvj3Onj1b7t8nJSUFH330EczMzNCwYUN0794dFy5c0PCvW3FRUVFwdnaGg4MDvvvuu1LbTJw4EQ4O\nDpDL5Thz5kyF5tWFqKgouLi4wNHRsdycHB0d4enpqZJTSEgImjZtilatWmkr3FeKioqCm5sbnJ2d\nMX/+/FLbTJ48Gc7OzvDy8hLzSU9Px3vvvYdWrVpBLpdjxYoV2gy7XFJc7uLj49GlSxf4+/tj1apV\natNTUlLwwQcfwNHREWvXrhU/z8rKQmBgILp164aAgAC9OntUav0ktXwA6Y13ABAbG4t27drB29sb\ny5YtK7VNaGgovL290alTJ5w7dw4AkJycDD8/P/Fla2uL1atXazP0Mklx2XN3d8fcuXPxzTffoGfP\nnqW2cXJyQnh4OObMmYMZM2YAAMzMzDB9+nT8+9//xpw5c9C1a1dthl0mKa5LUs1JauvSvn370Lp1\na8jlcixevLjUNtOmTYNcLlfbl3B1dUW7du3w7rvvws/PT1shv5LU+ikuLg4dO3aEr69vmdvTYWFh\n8PX1RZcuXXD+/Hnx87Vr18Lf3x9+fn4q23+6JrU+AqQ75rm6usLJyanM/cBJkybByckJrVu3Vslp\n5MiRsLCwgFwu11a4mhEq4Ouvvxbq1q0rrFy5UkhOThaSkpKEb775RhAEQfDz8xNGjRoltt22bZvw\nxx9/CFeuXBEuXbokfPrpp0LDhg2FO3fuCIIgCKdOnRKMjIyEX3/9VUhLSxPOnz8v/Pjjj0JGRoYg\nCIIwYcIEQS6XCydOnBDS09OFI0eOCOvWrdMozu3btwtGRkbCkiVLhOTkZOHHH38UmjRpIhgYGAiZ\nmZmCIAjCgQMHBJlMpvZeLpcL0dHRQkpKihAcHCzUr19fuHv3rvjdMplM2Lhxo8p7c3NzYd26dcK1\na9eElStXCjKZTNi/f7/Ypk+fPoKTk5MQHx8vXLx4UQgODhYaNGggdOvWTRAEQbh//77QuXNnITAw\nUMjNzRVyc3OF/Px8QRAE4T//+Y9w6NAh4caNG8L+/fsFZ2dnYfjw4eJ3r1+/XjAwMBDatGkjHDx4\nUDh37pzQu3dvwcrKSnj69Gmpuebk5Ajm5ubC2LFjhQsXLghXrlwRJkyYIDRq1Ei4deuWRn/jiigo\nKBBatmwpXL9+XcjPzxfkcrlw6dIllTZ79uwRevbsKQiCIBw7dkxo166dxvNWhcLCwgq9Xrx4IbRs\n2VK4du2a8Pz5c0EulwsXL15UabN7926hZ8+eQmFhoXD06FGhXbt24rSEhAQhMTFRcHd3r/C//fLr\nVX93TV/Pnz8XWrZsKaSkpAhPnz4V5HK5cP78eZU2O3fuFHr06CEUFBQIhw8fFtq2bSsUFBQIGRkZ\nwqlTp4SCggLh3r17gqOjo9q8mr6qUnVY7lJTUyv0unr1qmBrayv89ddfQnJysuDi4iLExsaqtElM\nTBR27twpjB8/XggLCxM/P3HihLBnzx4hNTVVuHjxomBnZ6c2r6avqlQd+qkiqkM+Uhzv8vLyKvS6\ndeuW0KJFCyEpKUnIzc0V3N3dhaNHj6q02bx5s9C1a1chLy9PiImJEdq0aaP2Pbdv3xbMzc2Fc+fO\nVTiGvLy8Ku3X6rDsBQcHV+gVEhIi5OTkCNOmTRM+/fRT4caNG8LMmTNV2owdO1bIyMgQvvjiCyE4\nOFiYMGGCEBwcLEyaNEn4+uuvheDgYOHzzz8XsrOz1ebV9FUeqa1LUhwfKqo6rEuPHj2q0Ov+/fuC\nnZ2dcPHiReHu3buCh4eHcOrUKZU2f/75pxAQECA8evRIOHDggODj4yNOs7W1FdLS0ir875Z8VSV9\n76ecnJwKvTIzM4XmzZuL+75ubm7CwYMHVdps2LBB6NKli5CTkyPs3btX8PLyEnJycoQDBw4Izs7O\nQmpqqpCZmSl07txZOHbsWIVjyMnJqdK/gb73kSBU/zFv9uzZwuzZs1VyUiqVFXrl5+cLLVu2FK5e\nvSo8e/ZMkMvlwoULF1Ta7Nq1S+jRo4egVCqFI0eOCO3atROnxcfHC6dOnRLc3d0r/G+X9aoKGp/R\n9fjxY8yfPx8KhQJjx46Fvb095HI5QkNDAUDt/lz9+/fHgAED4ODgABcXF6xevRqCIIhnSKWlpcHE\nxAT9+vVDs2bN4O7ujpCQEFhZWYnTW7duDR8fH1hbW8PX1xcjR47UKNYFCxYgMDAQkydPhr29PUJC\nQjBs2DC1s85KM3v2bAQEBKBly5b49ttv8fDhQ7Uz0UoKDAzEyJEj0aJFC4wdOxbOzs6IjY0FUHTk\nd/fu3Vi1ahX8/Pzg6uqKNWvWoF69euL89evXR40aNVC7dm00adIETZo0EW8wHxYWhg4dOsDGxgZd\nunTBvHnz8L///U/l3xcEAQsWLECnTp3g4eGBX3/9Fffv3y/zpvmrVq1CixYtsHLlSri5ucHBwQHL\nli1DgwYNVM5WqyonTpyAvb09mjdvDmNjYwQGBmLHjh0qbXbu3Inhw4cDANq1a4d79+4hJydHo3l1\noWRcgwYNKjWnYcOGAVDNCQA6deoEMzMzrcddlhMnTqBly5ZiPgMHDsTOnTtV2uzevVsln/v37yM3\nNxdNmzaFp6cnAKBu3bpwdnbWiwcfSHG5S0pKgq2tLZo1awZjY2P06dMHMTExKm0aNWqEVq1awchI\n9cr0Jk2awM3NDQBgYmKCli1bIjc3V2uxl0Vq/SS1fADpjXcAkJiYiBYtWsDGxgbGxsb48MMPERkZ\nqdImMjISgYGBAABvb288ePAAN2/eVGkTHx+P5s2bw9raWmuxl0WKy56dnR1u3ryJO3fuQKlU4sSJ\nE2jdurVKm/bt2yMxMRF3794FADx69AhA0ZUB6enpAIDnz58jKysLDRo00G4CJUhxXXobcpLCunTq\n1CnY2dnB1tYWxsbGGDBgAPbs2aPSZs+ePQgKCgIA+Pj44N69eyrbCZrsR2mT1PrpzJkzKr9L/fv3\nR3R0tEqbmJgYDBw4EADg5eUl/i4lJyfDy8sLtWrVgqGhIXx9fdX6Vxek1keAdMe8l/cDBw0apLYf\nuGvXrmqVE1CBSxcvXryI58+fIyAgQKP2169fxyeffAIHBweYmprC1NQU9+/fFy8hDAgIgJ2dHVq0\naIHBgwdj7dq1uHPnjjj/2LFjsWXLFnh4eGDy5MmIiorSeIC9fPky3n33XZXPOnTooNG8xTvsQNGO\noaGh4St3Bl+eBwAsLS3FjeFLly4BKNoQK2ZkZARvb2+N4tm6dSs6d+4MKysr1KtXD0OHDsWLFy/E\nBauYr6+v+P8NGjSAi4uL+G+XdPLkSSQmJqJevXriq379+rhx4wZSUlI0iqsiMjMz0axZM/G9tbW1\neInqq9pkZWW9cl5dyMzMVNmxKS0ufY29NKXFWrJYVTJnKysrZGRkqLRJTU1FUlIS2rVr92YD1oAU\nl7vc3FxYWlqK7y0sLCpVrEpPT8elS5fUxi5dkFo/SS0fQHrjHQBkZ2eLB9aAot/t7OzsV7YpOS5u\n3bpVvIWDrklx2WvQoAHy8vLE93l5eWrFKnNzc5iYmGD69On4+uuvVbaHijVq1Ag2Nja4du3aG4+5\nPFJcl6Sak9TWpaysLLVtuJLjWXZ2tlqb4nFRJpOhT58+6NSpk97c+kBq/ZSdna22jfeq3yULCwvk\n5OTAxcUFx48fx927d/HkyRPExsaqzasLUusj4O0Y86ysrDTuJ332xm5G37t3bzRp0gQ//PCDePZB\nx44dkZ+fD6DojIJTp07h8OHDiI2NRUREBGbMmIH9+/fDy8sLAQEBSEtLQ3R0NOLj4zF06FB4eHhg\n//79MDCo8K3FNFajRg21zwoLC197npJnvGlStDt+/DgGDhyImTNnYtGiRTAzM8PRo0cxfPhw8e9Y\nlvK+XxAEdO3aFd9//73atDfxRElNn8apb0eKylPZnPT1yaRVkc+jR48waNAgLFmyBHXr1q3S+Crj\nbV7uyvP48WOMHTsWX3/9NUxMTKogqtcjtX6SWj6A9MY7oGpyys/PR3R0NGbPnl2VoVWaFJc9TRga\nGsLW1hYLFixAjRo1EBYWhqtXr4oHHGvWrIlx48bht99+w/Pnz3UaK9elis+nC1Jcl143p3379sHC\nwgK3bt1C37594ejoqPFJBG+K1PrpdfJxcHDAuHHjMGjQINSpUwfu7u5vdH9ZU1LrI4BjXmXm0xWN\n14DiG9CXPIWyNHfu3MHly5cRGhqKbt26wdnZGTVr1lQ75d/AwACdOnWCQqFAYmIiLCwsVC63MzMz\nQ2BgICIiIrBnzx4kJCTg8uXLGsV6+PBhlc9Kvn+TXu50V1dXAMCRI0fEzwoKCpCYmKgyT40aNVBQ\nUKDy2aFDh/DOO+9gzpw58PHxgb29vXgafklHjx4V///evXv4+++/xX+7JG9vb1y4cAFWVlaws7NT\neTVq1KhiyWrAyspKJe709HS1yzxKtsnIyIC1tbVG8+pCybOZSovL0tJSLaeXj8Lok5Kxpqenq8Va\nMufMzEyxzYsXL/Dxxx8jKCgI/fr1007QryDF5c7c3FzlCGxWVhaaNm2q8fwvXrzA559/jv79+6N7\n9+5vIsQKk1o/SS0fQHrjHVB0FPzlI5GZmZkqR9JLa5OVlQULCwvxfWxsLORyOd555503H7AGpLjs\n3b17Fw0bNhTfN2zYULxEsVheXh4uXryIFy9e4PHjx7hy5Yp41NnQ0BDjxo3D0aNHVW6cqytSXJek\nmpPU1iVLS0uVfiqtDywsLNS284rHvOL/Nm7cGH369FHbj9EFqfWThYWF2jbey785pbXJzs4W2wQF\nBSEmJgbbt2+HqakpWrZsqZ3AyyG1PgLejjGvuA9e1UafcwIqUOiqW7cupk6ditmzZ+OHH37AlStX\ncPbsWfEJg4IgiFU+MzMzNG7cGGvWrEFycjKOHj2KwYMHo3bt2uL37dixA0uXLkViYiLS0tKwbds2\npKeni/eQCQsLw7Zt2/DPP/8gOTkZGzZsQL169WBjY/PKWKdOnYrNmzdj+fLlSE5Oxvr167Fhw4YK\n/WFex8t/CwcHB/Tp0wfjxo3DwYMHcenSJYwePRoPHjxQKYi1aNECiYmJuHbtGm7fvo2CggI4Ozvj\n1q1b+Omnn3Dt2jX897//LfUpazKZDF9++SX++usvnD9/HsOGDUP9+vXF6+xLGj9+PJRKJfr164dD\nhw4hNTUVhw4dQlhYmErBrKp4e3sjOTkZqampyM/Px+bNm9G3b1+VNn379sV///tfAMCxY8fQoEED\nmJubazSvLpSM6/fffy81p19//RWAak76yNvbGykpKWI+f/zxB/r06aPSpnfv3ir5mJqawtzcHIIg\nYNSoUXBxccGkSZN0EX6ppLjctWrVCqmpqUjqOLI+AAAgAElEQVRPT0d+fj52794tPr21pJJHXQRB\nwJdffgkHBweN73eoDVLrJ6nlA0hvvAOA1q1b49q1a0hLS0N+fj62bduGHj16qLTp2bMnNm/eDKDo\nkv/69eujSZMm4vQ///wTH330kVbjLo8Ul73U1FSYm5ujUaNGMDQ0RNu2bZGUlKTS5syZM3BwcIBM\nJkONGjVgZ2cnXrITHByMrKws7Nu3Txfhq5HiuvQ25CSFdcnLywtXr17FjRs3kJ+fjz///BO9evVS\nafP+++/jt99+A1B0z57inJ48eYKHDx8CKDorPC4uTtxf0yWp9ZNcLlf5XdqxY4faQcmAgAD8/vvv\nAIruNVm/fn00btwYAHDr1i0ARQWIyMhIfPjhh9pNoBRS6yNAumPey/uBv//+u9p+YJ8+fapVTkAF\nL13897//jcaNG2P58uWYMmUKzMzMxEfMymQysXBjYGCAP/74AxMnTkSrVq3QvHlzzJ07F19++aX4\nXQ0bNsTy5csxb948PHz4EDY2Nvjqq68QHBwMAKhduza+/vprpKamwtDQEK1bt0ZkZKTKTdzL0r9/\nfyxatAjz589HaGgoOnbsiO+++0787mIlT7erqtPvXv5bAMD69esxevRo9OzZE/Xq1cPo0aMREBCA\nZ8+eiW2mTp2K8+fPQy6X48mTJzhw4ADef/99hIWFYebMmXj06BH8/f2xYMECDBkyROXfMzQ0xLx5\n8zB69Ghcu3YNnp6e2LNnD2rVqlVqbk2aNMHRo0cxc+ZMfPjhh3jw4AGaNm2Kzp07qx3RrgpGRkb4\n/vvv0b17dyiVSowcOVJ8QAEAjB49Gr169cLevXthb28PExMT8fr/subVNSMjI6xYsQI9evSAUqlE\nSEhImTk5ODjAxMQEP/30kzh/UFAQEhIScOfOHdjY2EChUKgtn9pkZGSEZcuWoVevXlAqlQgODoaL\niwvWrFkDAPjss8/Qq1cvREVFwcnJCSYmJli3bh2AorMlN27ciFatWon3nvvPf/6jttOobVJd7hQK\nBYYPHw6lUomBAwfC3t5efIjEkCFDcPPmTfTr1w+PHj2CTCbD+vXrsW/fPly6dAnbtm2Ds7OzuHE7\nY8YM+Pv76zAj6fWT1PIpjktK4x1QlNN3332HAQMGQKlUYujQoXBycsLPP/8MABgxYgS6deuGffv2\noU2bNqhTp47K5f6PHz9GQkICli5dqqMM1Elx2SssLMTGjRsxdepUyGQy/PXXX8jOzha3PRMSEpCT\nk4Pz589jzpw5EAQBBw8eRFZWFhwcHNC+fXtkZGQgPDwcQFFx8sKFCzrLR6rrkhRzktq6ZGRkhEWL\nFqF///5QKpUYNmwYnJ2d8eOPPwIARo4cie7duyM6OhqtWrVCnTp1EBERAaDo/qDFB88LCgowaNAg\nvPfeezrLpZjU+snIyAjz5s3D4MGDoVQqERQUBEdHR7EINGzYMHTt2hX79+9H+/btUadOHZXfoFGj\nRiEvLw/Gxsb45ptvNNpnftOk1kfFcenTmFf8+/a6OS1fvhw9e/YsN6fIyEg4OjrCxMREHDuKczp4\n8CDu3LkDW1tbzJ49W+fjOADIhOp0UaxEKJVKODs7o3///liwYIGuwyFUr2vDX1ZecVapVGoxkqph\naGio6xC06saNG7oOoVJsbW11HQK9BimOdyUvZ6su9PEpRW9SSEiIrkOolJd3UkqqjutTeetSdcwH\n0P97xVS1x48f6zqEStGHe4Nqiz482boy9P0snaomxTHvVfcXrw6q4h5zb+xm9PT//PXXX8jNzUXr\n1q3x8OFDLFmyBGlpaRgxYoSuQyMiIiIiIiIikoxqV+hKS0uDq6trmVXMNWvWYPDgwVqOqnxKpRJz\n585FSkoKjI2N4eHhgQMHDujF9e1ERERERERERFJR7QpdVlZWOHfuXJnTX75RrL7w9/fXi6f9EBER\nERERERFJWbUrdBkaGsLOzk7XYRARERERERERkZ55/bt8ERERERERERGR1igUCigUCl2HoZdY6CIi\nIiIiIiIiIklgoYuIiIiIiIiIiCSBhS4iIiIiIiIiIpIEFrqIiIiIiIiIiEgSWOgiIiIiIiIiIiJJ\nMNJ1AEREREREREREpLnw8HBdh6C3eEYXERERERERERFJAgtdREREREREREQkCSx0ERERERERERGR\nJLDQRUREREREREREksBCFxERERERERERSQILXURERERERERE1YhCoYBCodB1GHrJSNcBEOkDmUym\n6xCqnKGhoa5DoFewtbXVdQj0FpLieGdmZqbrEEgDP/30k65DqHJSW5+klo9UmZiY6DoEegVzc3Nd\nh0AakOKYZ2DAc5kAntFFREREREREREQSwUIXERERERERERFJAgtdREREREREREQkCSx0ERERERER\nERGRJMgEQRB0HQQREREREREREdHr4hldREREREREREQkCUa6DoBIHxQWFuo6hEop7/Gx+fn5Woyk\natSoUaPMaVLso4KCAi1GUnWMjPjTUZ3l5ubqOoRKKe9R7dX15PTyHmv+4sULLUZSdYyNjcucJsVx\nfNKkSVqMpGosW7aszGl5eXlajKTqNGzYUNchaFV13MYDyt/Oe/TokRYjqRp169Ytc9rt27e1GEnV\neeedd3QdglZJ8XcpKytLi5G8GZaWlq/9HTyji4iIiIiIiIiIJIGFLiIiIiIiIiIikgQWuoiIiIiI\niIiISBJY6CIiIiIiIiIiqkYUCgUUCoWuw9BLLHQREREREREREZEksNBFRERERERERESSwEIXERER\nERERERFJAgtdREREREREREQkCSx0ERERERERERGRJBjpOgAiIiIiIiIiItJceHi4rkPQWzyji4iI\niIiIiIiIJIGFLiIiIiIiIiIikgQWuoiIiIiIiIiISBJY6CIiIiIiIiIiIklgoYuIiIiIiIiIiCSB\nhS4iIiIiIiIiompEoVBAoVDoOgy9xEKXBvz9/TFq1Chdh1Gm+Ph4GBgYICsrS9ehEBERERERERHp\nDAtdGpDJZJDJZLoOg4iIiIiIiIiIysFCFxERERERERERSQILXS9ZuXIlXF1dUatWLZibm2PAgAEA\nAEEQVNrt27cP/v7+aNSoERo0aAB/f3+cPHlSpc26devg4uKC2rVro1GjRvDz80NmZiYA4MGDBwgO\nDoaFhQVq1aoFGxsbTJ06VeM4V6xYAWtra5iYmKBHjx5IS0tTa7N37160adNGzGXcuHF48uSJOF0Q\nBMycORONGzdG/fr1MXToUCxbtgzGxsYax1ERUVFRcHZ2hoODA7777rtS20ycOBEODg6Qy+U4c+ZM\nhebVhaioKLi6usLJyQnz588vtc2kSZPg5OSE1q1bq+Q0cuRIWFhYQC6XayvcV4qOjoaHhwdcXV2x\ncOHCUttMmTIFrq6u8Pb2RlJSEgDg2bNn6NixI3x8fCCXyzFr1ixthl0uqfURUNRP7u7ucHFxwYIF\nC0ptM3nyZLi4uMDLy0vMKT09HV27doVcLoenpydWrFihzbDLJbXxQWr5AEBcXBw6duwIX1/fMped\nsLAw+Pr6okuXLjh//rz4+dq1a+Hv7w8/Pz+sXbtWWyG/UlRUFFxcXODo6FhuPzk6OsLT01Oln0JC\nQtC0aVO0atVKW+FqpHh8cHV1LXN8KB7H27RpozI+dOvWTRwfvv/+e22GXS6pjePOzs6YOXMmZs2a\nhffee09tur29Pb799ltMnz4d06dPR0BAAACgSZMm4mfTp0/Ht99+i86dO2s7/FLt378f7dq1g4+P\nD5YtW1Zqm9DQUPj4+KBz5844d+4cACA5ORn+/v7iq3nz5li9erU2Qy+TFMfxym7npaenIyAgAJ6e\nnmjdurVejQ/79u2Dl5cXPD09sXjx4lLbTJ8+HZ6envD19cXZs2fFz93c3NC+fXt06NAB/v7+Woq4\nfPv374evry/atm2L5cuXl9rm//7v/9C2bVv4+/uL6xIALF26FB07dkTnzp0xevRoPH/+XFthl0uK\n65LUfpcA4MCBA+jcuTM6dOiAlStXqk1PSUlBnz59YGdnh4iIiArNqyssdP3/wsPDERoaivHjx+PC\nhQuIiYmBt7d3qW0fP36M8ePH49ixYzh69CgcHBzQo0cP5OXlAQASExMxZswYhIWF4cqVK0hISMDw\n4cPF+WfNmoUzZ85g586dSElJwebNm+Hq6qpRnDt27MAXX3yBadOm4ezZsxg4cCCmT5+ucmnluXPn\n0LdvX3EA/OWXX7B79258/vnnYpslS5ZgxYoVWLp0Kc6cOYM2bdpgzpw5b+QSTaVSifHjxyMqKgqX\nLl3Cb7/9hsuXL6u02bt3L1JSUpCcnIw1a9ZgzJgxGs+rC0qlEhMnTsTevXtx4cIF/O9//yszp3/+\n+QcREREYN26cOG3EiBHYu3evtsMuk1KpxOTJk7Fr1y6cPXsWmzdvVssnMjISV69exaVLl/DDDz9g\nwoQJAIBatWohJiYGJ0+eRGJiIhISEnD48GFdpKFCan0EFOU0adIk7N69G+fOnSs1p+J+unz5Mlat\nWoXx48cDAIyNjbFw4UKcPXsWhw4dQkREhN6sS1IaH6SWT3FcM2fOxKZNm3Dw4EFs374dV65cUWkT\nGxuL69ev4+jRo1i4cCG+/PJLAMDly5exceNGREVFIS4uDvv27UNqaqoOslClVCoxYcIEREZG4uLF\ni2WOD1evXsWVK1ewevVqjB07VpwWHByMyMhIbYddruJxfPfu3RqN46tWrRLHcWNjYyxYsEAcH1at\nWqU3y56UxnGZTIYBAwYgIiIC8+bNg5eXF8zNzdXapaSkYMGCBViwYAFiYmIAADdv3hQ/W7hwIfLz\n81V2cnVFqVTiyy+/xB9//IEjR45g69at+Oeff1Ta7Nu3D9evX8fJkyexePFiTJs2DQDg4OCA+Ph4\nxMfHIy4uDnXq1EHv3r11kYYKqY7jld3OKx4fkpKS8Ndff+nV9sO0adOwbds2nDx5Elu2bMHff/+t\n0iY6OhrXrl1DUlISli9fjsmTJ4vTZDIZ9u7di8OHDyM+Pl7L0atTKpUIDQ3F5s2bcfjwYWzdulXt\nt7Z4XTpx4gQWLVqEGTNmAADS0tKwYcMG7N+/HwcPHoRSqcS2bdt0kYYKqa5LUvpdAopymjVrFjZu\n3Ij4+Hhs374dycnJKm3MzMzwn//8B6NHj67wvLrCQheKClfz58+HQqHA2LFjYW9vD7lcjtDQUABQ\nK/70798fAwYMgIODA1xcXLB69WoIgoCoqCgARYONiYkJ+vXrh2bNmsHd3R0hISGwsrISp7du3Ro+\nPj6wtraGr68vRo4cqVGsCxYsQGBgICZPngx7e3uEhIRg2LBhKmedLViwAN7e3li0aBEcHR3Ro0cP\nrFixAhs3bkR6ejoAYNGiRfjiiy8wZMgQtGzZElOmTBGPGla1EydOwN7eHs2bN4exsTECAwOxY8cO\nlTY7d+4Ui4Ht2rXDvXv3kJOTo9G8unDixAm0bNlSjGvQoEHYuXOnSptdu3Zh2LBhAFRzAoBOnTrB\nzMxM63GX5eTJkyr5DBw4ELt371Zps3v3bnzyyScAgLZt2+LevXvIzc0FANSpUwcAkJ+fD6VSiYYN\nG2o3gVJIrY+A0nPatWuXSptdu3aJ/dSuXTvcv38fubm5aNq0KTw9PQEAdevWhbOzM7Kzs7WeQ0lS\nGx+klg8AnDlzBi1atICNjQ2MjY3Rv39/REdHq7SJiYnBwIEDAQBeXl548OABbt68ieTkZHh5eaFW\nrVowNDSEr68v9uzZo4s0VJT8Ww8aNKjUfqpO40Np43jJ8WH37t0YOnQoANVxXJ/HBymN47a2trh9\n+zby8vJQWFiIM2fOwMPDQ63dqw46Ojo64s6dO7h3796bClVjp0+fVhkfPvjgA7UicFRUFAIDAwEA\n3t7euH//Pm7evKnSJiEhAc2bNxe3lXVJiuP462znNW3aVDz7RJ/Gh1OnTsHOzg62trYwNjbGRx99\npPb7snfvXgQFBQEAfHx81Ja9klft6JIm61J0dDQGDRoEAGjTpo2YT7169WBkZISnT5+ioKAAT58+\nhYWFhS7SUCHFdUnffpfCw8MRHh7+Wt9x5swZNG/eHM2aNYOxsTH69euntp3XqFEjyOVytau/NJlX\nV1joAnDx4kU8f/5c40LP9evX8cknn8DBwQGmpqYwNTXF/fv3xUsIAwICYGdnhxYtWmDw4MFYu3Yt\n7ty5I84/duxYbNmyBR4eHpg8eTKioqI0HmgvX76Md999V+WzDh06qLy/dOmS2unsnTt3hiAIuHTp\nEu7fv4/s7Gy0b99epU379u3fyICfmZmJZs2aie+tra3Fyzhf1SYrK+uV8+pCyXitrKw0zkkflfw7\nl5ZPVlYWrK2tS22jVCrh4+ODZs2awc/PDy4uLtoJvBxS6yOg/D4or01GRoZKm9TUVCQlJaFt27Zv\nNmANSG18kFo+AJCdnQ1LS0vxvYWFhdpOTnZ2tsoOqoWFBXJycuDi4oLjx4/j7t27ePLkCWJjY/Vi\nBykzM1NlPSntb62v/VGWkjlZWVmpPY1Zk+UzNTUVZ8+e1cvxobqP46amprh79674/t69ezA1NVVp\nIwgCWrRogRkzZmD06NGlnvHl5eWFxMTENx6vJkqu+5aWlq8cHywtLdWWza1bt+Kjjz56s8FqSIrj\n+Otu5xXTp/Gh5HJlZWWltuxlZWWptSle9mQyGfr27YvOnTtj/fr12gm6HJVdl7Kzs2FmZoaxY8fC\n09MTHh4eMDU1hZ+fn9ZiL4sU1yWp/S4BQE5Ojtp2XnFh7k3O+6ax0FUJvXv3RkZGBn744QccP34c\nSUlJaNKkCfLz8wEAJiYmOHXqFLZt2wZHR0dERETA3t4ep0+fBlBUCEtLS0NYWBiePXuGoUOHokuX\nLigsLKyyGDUpWGnrSZKa/jv6dFTlVSqbk74+vfN18zE0NMTJkydx7do1HDp0CAkJCVUeY0VJrY+A\nqsnp0aNHGDRoEBYvXoy6detWaXyVIbXxQWr5AK+Xk4ODA8aNG4dBgwYhKCgI7u7uMDDQ/aYHx4fS\n53v06BECAwOxaNGiaj0+6HM/vUpGRgbCw8Mxf/58HDx4EJ9++qnKdENDQ7i7u6vc86U6KK+P8vPz\nER0djX79+mk7rFJxHC99vkePHmHw4MFYuHBhtR4fisXExODw4cP4888/sXbtWp3fduN18rl+/TpW\nr16N06dP4/z583j8+DG2bNlS1SFWGNelis+nC68Tmz7npfutTT1QfAN6TU6zu3PnDi5fvozQ0FB0\n69YNzs7OqFmzptop2AYGBujUqRMUCgUSExNhYWGBTZs2idPNzMwQGBiIiIgI7NmzBwkJCRpdd+zq\n6qo2EJd87+bmhoMHD6p8lpCQAJlMBjc3N5iamsLS0hJHjhxRaXPs2LE3srBaWVmJl0wCRTe1fPmI\nUWltMjIyYG1trdG8ulBWvK9qow+n5JfG0tLylflYWlqqnBmUmZmpUsEHio5W9+zZUy+ONEutjwD1\nPtC0n4pzevHiBQYOHIigoCC92aGQ2vggtXyAoqNzL599kZWVpXZJRMk22dnZYpugoCDExMRg+/bt\nMDU1RcuWLbUTeDlKnulY2t+6tHFRn8eHkjmVFm9py17xOP7ixQuxIKmv40N1H8fv3buncslKgwYN\n1C4/fP78OV68eAGg6Cx+Q0ND8fYAAODi4oL09HQ8fvxYO0G/goWFhcqZCqVtG5RsU3IMiY2NhVwu\nxzvvvPPmA9aAFMfx193OKx4fBg8erDfjQ8nl6uXxrJjl/8fencdFXe3/A38Ni4qIiF5EhFCHRRCG\nQWWxUvFWIIJo3zIx0wDNFiuXqPReU5xyrSyXNDO715tp1+W6ICBolpjmBipumEgqi+KCoqIgMJzf\nHzz4/Bw2AZEZPr6ej8fn8XDmc87M+z3nzJnD8bN07lxj/6zog9bW1ggNDdX73LWu36Xqfo+PHTsG\nHx8ftG/fHiYmJggJCcGhQ4eaLPaayPG7JLffJQDo1KnTQ+d5j6Pu48aFLpSfbx4VFYWZM2di2bJl\nOHv2LFJTUzFv3jwA5SuyFauyVlZWsLa2xooVK5Ceno79+/fj1VdfhZmZmfR6W7duxcKFC5GSkoLM\nzExs3rwZWVlZcHd3B1B+Z6rNmzfjzz//RHp6On766SdYWFjAwcHhobFGRUVh3bp1WLx4MdLT0/Hv\nf/8bP/30k06Zjz76CEeOHMEHH3yAM2fOICEhAe+//z5GjRolfRGjoqKwcOFCrF27Funp6Vi4cCF2\n7tz5WBa6vL29kZ6ejgsXLqC4uBjr1q3DkCFDdMoMGTIEP/74I4DyBbd27drBxsamTnX1wdvbG+fO\nnZPiWr9+PUJDQ3XKhIaGYvXq1QB0czJEvXv31slnw4YNCAkJ0SkzePBgqa8dPHhQyuf69evSRL2w\nsBC7du2SrvWiT3JrI6D6nCpfuDc0NFRqpwMHDsDS0hI2NjYQQmDcuHFwc3PDxIkT9RF+teQ2Psgt\nHwBQq9X466+/kJmZieLiYmzduhUDBw7UKRMYGIj169cDKL8hS9u2bWFtbQ0AuHbtGoDyid727dvx\n0ksvNW0C1aj8Wa9fv77admpO40N143jl8WHw4MFYs2YNAN1xXAiBN998E25ubpgwYYI+wq+W3Mbx\nrKwsWFtbo3379jA2NkbPnj1x8uRJnTIWFhbSvyvmhQ/eNbt37956/4P8QT179tQZH7Zs2YKgoCCd\nMkFBQVi3bh2A8mtFWVpaomPHjtL+TZs2GcS4UEGO4/ijzPOEEHjrrbcMbnzo1asXMjIycPHiRRQX\nF2PTpk0IDg7WKRMcHIyff/4ZQPm1lSr63r1793Dnzh0A5ddq3rVrl/R3mr54eXnh/PnztX6XBg4c\nKH2XkpOTpXycnJyQkpKCwsJCCCGQlJSE7t276yMNHXL8Lsntdwkon+edP38eWVlZKC4uRkxMTI2X\ndKp8pFp96jY1E30HYCg+++wzWFtbY/HixZg8eTKsrKykc5sVCoW0AGRkZIQNGzZgwoQJ8PT0RNeu\nXTF79mzpDlMA0L59eyxevBhz5szBnTt34ODggOnTpyMyMhIAYGZmhhkzZuDChQvSRGf79u06k5ua\nvPjii1iwYAE+//xzTJ06FX379sX8+fOl1wYAlUqFmJgYTJ8+HcuWLUPbtm3xyiuv6NxKeNKkSbh2\n7RomTpyIoqIihIaGIioqCnPnzm2Uz/NBJiYm+OabbzBw4EBotVqMHTtWuog/ALz11lsIDg5GfHw8\nnJycYG5uLp0rX1NdfTMxMcHixYsxaNAgaLVajBkzptqctm/fDhcXF5ibm+OHH36Q6o8cORJ79uxB\nXl4eunTpgpkzZ+q0YVMzMTHBwoULMXjwYGi1WkRGRsLNzQ3ff/89AGDcuHEYNGgQEhIS4ObmBnNz\nc2lfbm4uxo4di7KyMpSVlWHkyJF47rnn9JZLBbm1EVCe06JFixASEqLTTitWrAAAvPnmmxg0aBC2\nb98OV1dXtG7dGitXrgRQfuTn2rVroVKppDvKzp49u8qCRVOT2/ggt3wq4pozZw5effVVaLVajBw5\nEi4uLtLE9PXXX8cLL7yAXbt2oU+fPmjdujUWLlwo1R83bhxu3LgBU1NTzJ07t06/dY+biYkJlixZ\ngqCgoFrHh/j4eDg7O8Pc3Bz/+te/pPojR45EUlIS8vLy4ODgAI1GYxDjw8KFCxESEoKysjJERETU\nOo4/OD788ccf0vjg4+MDAJg1a5ZBjA9yGsfLysqwceNGvP322zAyMsKBAwdw5coV6dqrf/zxB9Rq\nNfr27QutVouSkhL85z//keq3aNECLi4u+O9//6uvFKowMTHB/PnzMWzYMJSVleG1115D9+7dsWrV\nKgDldxgLCAjAzp074e3tjdatW2PJkiVS/bt37yIpKQlff/21njKoSq7jeEPneQ+ODxXX5vrss88M\nYnz48ssv8eKLL6KsrAyjR4+Gq6urNFaPGTMGAwcOxI4dO6BWq9G6dWt8++23AIArV67gtddeAwCU\nlpZi+PDheP755/WWC1Cez9y5czF8+HBotVq89tprcHFxkcaA8PBwBAQE4JdffoGPjw/Mzc2xaNEi\nAOV/+w0fPhwBAQEwMjKCSqWSLoauT3L9Lsnpdwkoz2nWrFkYOXIkysrKMGLECDg7O0uLdaNHj8bV\nq1cRHByMgoICGBkZ4YcffsDu3bthbm5ebV1DoBDN6aRYeqzGjBmDEydO4PDhw/oOpck15vXRmlJt\n17qpuGZcc9KiRYsa98mxjUpLS5swksZjYsL/I2nOKu6W2tzU9r+hzXUqU9tR1BWnrzU3le/I9CA5\njuOGdIRsXVX8cVydGzduNGEkjccQ7vbclJrjHA+ofZ5XUFDQhJE0jtquVXb9+vUmjKTxGMopxE2l\nuf8uaTQaANC582Llm300R5VP220I/rXyhLp8+TI2bdqEv//97zA2Nsa2bduwevVqLF26VN+hERER\nERERERE1CK/RZUAyMzPRpk0bWFhYVLtVnGPeGIyNjbFx40b069cPvXr1wk8//YTly5fjzTffbLT3\nICIiIiIiIiJqSjyiy4DY2dnh+PHjNe5/8MKdj6pjx4747bffGu31iIiIiIiIiIj0jQtdBsTY2BhK\npVLfYRARERERERERNUs8dZGIiIiIiIiIiGSBR3QRERERERERETUjD95tkXTxiC4iIiIiIiIiIpIF\nLnQREREREREREZEscKGLiIiIiIiIiIhkgQtdREREREREREQkC1zoIiIiIiIiIiIiWeBCFxERERER\nERFRM6LRaKDRaPQdhkHiQhcREREREREREckCF7qIiIiIiIiIiEgWuNBFRERERERERESywIUuIiIi\nIiIiIiKSBS50ERERERERERGRLCiEEELfQRARERERERERET0qHtFFRERERERERESywIUuIiIiIiIi\nIiKSBS50ERERERERERGRLHChi4iIiN6+KFsAACAASURBVIiIiIiIZIELXUREREREREREJAtc6CIi\nIiIiIiIiakY0Gg00Go2+wzBIJvoOgMgQaLVafYfQIMbGxjXua4451ZaPHJWVlek7hAYxMuL/kRA9\nboWFhfoOoUHMzMxq3CeEaMJIGo9CoahxX0lJSRNG0jhMTU1r3KdSqZowksZz4sSJGvfJsd81xzke\nUPs8T27fJTnO8ZpjGwG1t5Mc3b17V98hPDJzc/NHfg3+tUJERERERERERLLAhS4iIiIiIiIiIpIF\nLnQREREREREREZEscKGLiIiIiIiIiIhkgRejJyIiIiIiIiJqRqKjo/UdgsHiEV1ERERERERERCQL\nXOgiIiIiIiIiIiJZ4EIXERERERERERHJAhe6iIiIiIiIiIhIFrjQRUREREREREREssCFLiIiIiIi\nIiKiZkSj0UCj0eg7DIPEhS4iIiIiIiIiIpIFLnQREREREREREZEscKGLiIiIiIiIiIhkgQtdRERE\nREREREQkC1zoIiIiIiIiIiIiWXiiFroGDBiAcePG6TsMAMDMmTPh7Oys7zCIiIiIiIiIqJmJjo5G\ndHS0vsMwSE/UQpdCoYBCodB3GERERERERERE9Bg8UQtdT4KSkhJ9h0BEREREREREpBeyXOhaunQp\nevTogVatWsHGxgbDhg0DAAghdMrt3LkTAwYMQIcOHdCuXTsMGDAAhw8f1imzcuVKuLm5wczMDB06\ndIC/vz9ycnIAALdv30ZkZCRsbW3RqlUrODg4ICoqql6xxsTEwNXVFW3atMHf//53nDt3Tmd/fHw8\nevfuLeXy7rvv4t69e9L+iIgIBAQEYMmSJejatSvMzMxw//597N27F88++yzatm2Ltm3bwsvLCzt2\n7JDqXblyBREREejYsSPatm2Lvn374vfff69X7PWRkJAAV1dXODs7Y/78+dWWmTBhApydnaFWq3H0\n6NF61dWHhIQEuLu7w9XVFZ9//nm1ZSZNmgRXV1f06tVLJ6c33ngDnTt3hpeXV1OF+1ByyweQb7/r\n0aMHunfvXmM7TZw4Ed27d0fPnj11cho7dixsbW2hVqubKtw6kVs7yS0fgDk1l5x27NgBLy8vqFQq\nLFiwoNoyUVFRUKlU8PPzw7Fjx3T2abVa9OnTBy+//HJThFsnCQkJcHNzg4uLS63t5OLiAi8vL512\nGjNmDDp16gRPT8+mCvehEhMT4eHhgR49euCLL76otszkyZPRo0cP9O7dW8onKysLAQEBUKvV8PLy\nwjfffNOUYdfq2WefRUxMDGJjYzFmzJgq+9u1a4dvv/0WGzZswKZNmzB06FAAQIsWLbBmzRps2LAB\nW7ZswcSJE5s69BrJrd8B8pznye37JMc5ntzaCJDn/GHnzp3o2bMn1Go1vvrqq2rLfPjhh1Cr1ejT\npw9SU1N19mm1WjzzzDN45ZVXmiLcuhEyM2PGDNGmTRuxdOlSkZ6eLo4dOybmzp0rhBDC399fjBs3\nTiq7efNmsWHDBnH27Flx+vRp8cYbb4j27duLvLw8IYQQycnJwsTERKxevVpkZmaKEydOiB9++EFk\nZ2cLIYR4//33hVqtFocOHRJZWVnijz/+ECtXrqxTnNHR0cLc3FwMGjRIHDlyRKSmporevXuLfv36\nSWVSU1OFsbGx+OCDD8Sff/4ptm/fLhwcHMTo0aOlMuHh4aJt27bipZdeEsePHxcnT54URUVFwsrK\nSkRFRYlz586Jc+fOiS1btojff/9dCCHEvXv3hJubmxg2bJhISUkRGRkZYvbs2aJly5YiLS3t0Rqg\nGqWlpcLR0VGcP39eFBcXC7VaLU6fPq1TJi4uTgwaNEgIIcSBAweEn59fnes2Voz12e7fvy8cHR3F\nuXPnRGFhoVCr1eLEiRM6ZWJiYkRQUJAoLS0V+/btE76+vtK+3377TRw+fFh4eHjU+70f3Borp+aQ\nT0Pa1ND7nVarrddWXFwsHB0dRUZGhigqKhJqtVqcPHlSp8y2bdtEUFCQ0Gq14o8//hB+fn7Svt27\nd4vk5GTh4eFR7/d+cGtMzaGd6kNu+dQ1LubU+Dndu3evXtudO3eEUqkUaWlp4tatW0KlUokjR47o\nlNm0aZMIDAwU9+7dE7t37xY+Pj46++fNmyfCwsJEcHBwvd+/YqtNWVlZvbaSkhLh6Ogo/vrrL3H/\n/n2hVqvFqVOndMrExsaKQYMGibKyMrF//37h5+cn7UtKShIpKSnCw8Oj3u/94Fab4uLiOm+FhYXC\n0dFRnD17Vty9e1d4enqK1NRUnTJbt24VQUFBori4WOzdu1f4+vqK4uJikZmZKQ4dOiSKi4vFjRs3\nhLOzc5W6dd1q4+HhUa/N09NTXLx4UQQGBgovLy+RlpYmQkNDdcosXbpUfP/998LDw0P07dtX3Lx5\nU6jVauHh4SG8vb2Fh4eHUKvV4tixY2L06NH1jsHDw+OJ63dynLfWtx8bwvepNnKc4zXHNnpYO9VX\nc5g/FBQU1Gu7deuWUCqV4tSpU+LmzZtCpVKJ5ORknTL/+9//RGBgoCgoKBC//fab8PHx0dk/d+5c\nMXz4cBEcHFzv969uawyyOqLr7t27+Pzzz6HRaDB+/Hg4OTlBrVZj6tSpAFDl+lwvvvgihg0bBmdn\nZ7i5ueG7776DEAIJCQkAgMzMTJibm2Po0KF46qmn4OHhgTFjxsDOzk7a37NnT/j4+MDe3h5PP/00\nxo4dW+d479+/j9WrV6Nnz57w9PTExx9/jH379qG4uBgA8MUXX8Db2xsLFiyAi4sLgoKCsGTJEqxZ\nswZZWVnS6xgbG2P16tVQqVRwd3fHvXv3kJ+fj9DQUDg6OsLR0RFDhw5F3759AQDr1q3DnTt38N//\n/he9evWCUqnEP//5Tzz77LP47rvvGt4ANTh06BCcnJzQtWtXmJqaYsSIEdi6datOmZiYGISHhwMA\n/Pz8kJ+fj9zc3DrV1YdDhw7B0dFRimv48OGIiYnRKRMbG4vXX38dQHlOt27dQm5uLgCgX79+sLKy\navK4ayK3fIAno9+FhYVVaadt27bptFNFTgDbqSnILR+AOQHNI6fk5GQolUp06dIFpqameOWVVxAb\nG6tTJi4uDqNGjQIA+Pr64tatW7hy5QoAIDs7G4mJiYiIiKhyBLy+VP6sw8LCqm2n5jLmHT58uMpv\n7bZt23TKxMbG6rRRfn4+rly5gk6dOklH07Rp0waurq64fPlyk+dQmUqlQmZmJi5duoTS0lIkJCTg\nueee0ylz/fp1tGnTBkB57Pn5+dBqtQCAoqIiAICpqSmMjY1x69atpk2gGnLrd4A853ly+z7JcY4n\ntzYCnoz5w7BhwxAXF6dTJi4uDiNHjgQA+Pj4SO0EADk5OUhMTER4eLjBzB8AmZ26eOrUKdy/fx+B\ngYF1Kn/+/HmMHj0azs7OsLS0hKWlJW7duoXMzEwAQGBgIJRKJbp164ZXX30V33//PfLy8qT648eP\nx8aNG6FSqTBp0iQkJCTUq3E7d+6MDh06SI9tbW0hhMDVq1cBAKdPn0b//v116vTv3x9CCJw+fVp6\nzs3NDa1bt5YeW1lZ4Y033sDAgQMRHByM+fPn4+zZs9L+w4cPIzc3F+3atYOFhYW0/f7771VOnWwM\nOTk5eOqpp6TH9vb20umfDytz6dKlh9bVh+riunTpkk6ZnJwc2NvbS4/t7OwMIvbqyC0fQJ79rnK8\n1bVBXfI2JHJrJ7nlAzCnymUMNadLly5VGaMrj+O1lZkyZQpmz54NIyPDmRpW/t2p7rM21PaoTnW/\no9X91j4snwsXLiA1NRW+vr6PN+A66Nixo/SHNlB+aYyOHTvqlNm4cSMcHR2xa9cubNy4Ued0HYVC\ngQ0bNmD37t04dOgQ/vrrryaLvSZy63eAfOd5cvo+yXWOJ6c2Agxv/qDRaKDRaB7pNeoyf7h8+XKV\nMhULj4Y4fwBkttBVX4MHD0Z2djaWLVuGgwcP4tixY+jYsaN0RJW5uTmSk5OxefNmuLi4YPny5XBy\ncsKRI0cAlC+EZWZmYtq0aSgqKsKoUaPw3HPPoaysrE7v36JFC53HFUecPVi/LgtnDy5yVVixYgVS\nUlIQEBCApKQkeHh4YMWKFdLru7m5ITU1VWc7c+YMvv/++zrFXh91vdOlIa0AP0xDczLUu37KLR+A\n/a4h9fRBbu0kt3wA5tRcNDQnIQTi4+NhbW0NLy8vg8pZbmNeY+RTUFCAESNGYMGCBdJRUvpUl/4y\nbtw4nDlzBs8//zyGDRuGadOmSXNXIQReeeUVvPDCC+jduze8vb0fd8gPJbd+BzCnmuoZ0veJbVR9\nPUNqI4Dzh8qPt2/fDmtra6jVaoPLWVYLXRUXoE9MTHxo2by8PKSlpWHq1KkICAiAq6srWrZsKR1N\nVcHIyAj9+vWDRqNBSkoKbG1tsXbtWmm/lZUVRowYgeXLlyMuLg5JSUlIS0trlHzc3d2xZ88eneeS\nkpKgUCjg7u5ep/qTJ09GfHw8xo4dKy10eXt746+//oKFhQWUSqXO1qlTp0aJ/UF2dnY6p1pmZWXp\nrAhXVyY7Oxv29vZ1qqsPnTt3rhJXxSmtFezs7JCdnS09zsnJqVLGUMgtH0Ce/a6meB9Whu3UdOSW\nD8CcKhh6Tp07d9YZo6v77lcuk5OTg86dO+PAgQOIi4uDm5sbwsPDkZSUhDfeeKPJYq9J5d+d6j7r\nyr9fhjzmVc6nulir63edO3cGUH5n7bCwMIwcOVK6oLu+Xb16VWfuaGNjI53OUuHBGyJlZ2cjOzsb\nXbt21SlTUFCA33//vU7z28dNbv0OkO88T07fJ7nO8eTURsCTO3+wtbWtdv5w8OBBxMfHw93dHZGR\nkUhKSsK4ceOaLPbayGqhq02bNoiKisLMmTOxbNkynD17FqmpqZg3bx6A8lXHipVGKysrWFtbY8WK\nFUhPT8f+/fvx6quvwszMTHq9rVu3YuHChUhJSUFmZiY2b96MrKws6Ud42rRp2Lx5M/7880+kp6fj\np59+goWFBRwcHBoln48++ghHjhzBBx98gDNnziAhIQHvv/8+Ro0aVeuXIiMjA1OmTMG+fftw8eJF\n7N+/X2fyMGrUKHTr1g0hISHYuXMnLly4gIMHD2Lu3LmP5Txhb29vpKen48KFCyguLsa6deswZMgQ\nnTJDhgzBjz/+CAA4cOAA2rVrBxsbmzrV1Qdvb2+cO3dOimvDhg0IDQ3VKTN48GCsXr0aQHlOlpaW\nsLGx0Ue4DyW3fIAno9+tX7++SjuFhobqtFNFToZKbu0kt3wA5gQ0j5x69eqFjIwMXLx4EcXFxdi4\ncSNCQkJ0yoSEhGDNmjUAyq8zYmlpiU6dOuHTTz9Feno60tLS8OOPP8Lf3x8rV67URxo6Kn/W69ev\nr7admsuY17t37yq/tYMHD9YpM3jwYKmNDh48KOUjhMCbb74JNzc3TJgwQR/hV+vUqVPo0qULOnfu\nDBMTEwQFBeG3337TKXP+/Hn06dMHANChQwd069YN2dnZ0iU0AKBly5Z4+umncebMmSbPoTK59TtA\nnvM8uX2f5DjHk1sbAU/G/OF///sfgoODdcqEhITg559/BlA+f6jIaebMmfjzzz9x6tQprFq1Cv7+\n/o/lDLGGMNF3AI3ts88+g7W1NRYvXozJkyfDysoK/v7+AMoPy6s4NM/IyAgbNmzAhAkT4Onpia5d\nu2L27NmYMmWK9Frt27fH4sWLMWfOHNy5cwcODg6YPn06IiMjAQBmZmaYMWMGLly4AGNjY/Ts2RPb\nt2+XfrRr82AslZ+voFKpEBMTg+nTp2PZsmVo27YtXnnlFXz55Ze1vo65uTnOnTuHESNG4Nq1a+jQ\noQMGDx4s1WvZsiWSkpLwySefIDIyEteuXYO1tTX8/PyqdOrGYGJigm+++QYDBw6EVqvF2LFjpYv/\nA8Bbb72F4OBgxMfHw8nJCebm5vj3v/9da119MzExwaJFixAcHAytVovIyEi4ublJR829+eabCA4O\nRkJCArp37w5zc3OdPxpee+017NmzB3l5eejatStmzpyJiIgIPWUjv3wA+fa7xYsXY9CgQdBqtRgz\nZky1OW3fvh0uLi4wNzfHDz/8INUfOXKk1E5dunTBzJkzpfFMX+TWTnLLp7a4mJPh5fTVV19hyJAh\n0Gq1CA8Ph6urqzRWv/HGGwgKCpJu9W5ubo7ly5dX+1qGciqMiYkJlixZgqCgoFrHvPj4eDg7O8Pc\n3Bz/+te/pPojR45EUlIS8vLy4ODgAI1Go9cxz8TEBAsXLkRISAjKysoQEREBNzc36Y+CcePGYdCg\nQUhISJCuv1rRfn/88QfWrl0LlUoFHx8fAMCsWbMwcOBAveUDlN9Sfs6cOVi+fDmMjY2xadMmnD9/\nXrrF/IYNG/D999/js88+w8aNG2FkZISvvvoKt2/fhrOzM2bNmgUjIyMYGRlh27ZtOHjwoF7zAeTX\n7wD5zvPk9H2S6xxPTm0EyHf+sGDBArz44ovQarV4/fXX4erqKvWvsWPHYuDAgUhMTISnpydat25t\n8PMHAFAIQzuZkkgPKu7+09wYGxvXuK855lRbPnJU1+v5GRpDu9gkkRwVFhbqO4QGefDI+Mqa65Sz\ntol7SUlJE0bSOExNTWvcp1KpmjCSxnPixIka98mx3zXHOR5Q+zxPbt8lOc7xmmMbAbW3U3NXcSH6\n6Oho6bm7d+/qK5xGY25u/sivIbsjuoiIiIiIiIiI5OzBBS7Sxf+WfwwyMzPRpk0bWFhYVLtVnN9K\nRERERERERESNh0d0PQZ2dnY4fvx4jfs7duzYhNEQERERERERET0ZuND1GBgbG0OpVOo7DCIiIiIi\nIiKiJwpPXSQiIiIiIiIiIlngQhcREREREREREckCF7qIiIiIiIiIiJoRjUYDjUaj7zAMEhe6iIiI\niIiIiIhIFrjQRUREREREREREssCFLiIiIiIiIiIikgUudBERERERERERkSxwoYuIiIiIiIiIiGTB\nRN8BEBERERERERFR3UVHR+s7BIPFI7qIiIiIiIiIiEgWuNBFRERERERERESywIUuIiIiIiIiIiKS\nBS50ERERERERERGRLCiEEELfQRARERERERERET0qHtFFRERERERERNSMaDQaaDQafYdhkLjQRURE\nREREREREssCFLiIiIiIiIiIikgUudBERERERERERkSxwoYuIiIiIiIiIiGSBC11ERERERERERCQL\nCiGE0HcQ1Lw01y6jUChq3Hf27NkmjKTxuLi46DuEJiPHfnf//v0mjKTxtGzZUt8hNKmysjJ9h1Bv\nRkb8f6zmTo5jnhxzkpvmON4BtY95gwcPbsJIGk9sbGyN+0pLS5swksZjYmJS477mOD7UNjbI8bvE\neWvzUFhYqO8QHpmZmdkjvwZnwkREREREREREJAtc6CIiIiIiIiIiIlngQhcREREREREREckCF7qI\niIiIiIiIiEgWuNBFRERERERERESywIUuIiIiIiIiIqJmRKPRQKPR6DsMg8SFLiIiIiIiIiIikgUu\ndBERERERERERkSxwoYuIiIiIiIiIiGSBC11ERERERERERCQLXOgiIiIiIiIiIiJZMNF3AERERERE\nREREVHfR0dH6DsFg8YguIiIiIiIiIiKSBS50ERERERERERGRLHChi4iIiIiIiIiIZKHJFroGDBiA\ncePGNdXbyUZERAQCAgJqLTNz5kw4OzvX+JiIiIiIiIiI6EnQZAtdCoUCCoWiqd5Ob5ycnKDRaBrt\n9eryuX300Uc4ePBglXpERERERERERE8S3nWxkTXWAlNZWRkAQAjx0LLm5uYwNzfXea4u9YiIiIiI\niIio+ak4wIZ3X6yq0Y/oWrp0KXr06IFWrVrBxsYGw4YNA1B14WXnzp0YMGAAOnTogHbt2mHAgAE4\nfPiwTpmVK1fCzc0NZmZm6NChA/z9/ZGTkwMAuH37NiIjI2Fra4tWrVrBwcEBUVFRdYqx4tS+DRs2\nwMnJCebm5nj55ZdRUFCADRs2oHv37mjbti1eeeUV3L59W6ful19+CaVSiZYtW8LJyQmLFi2S9g0Y\nMAAZGRnQaDQwMjKCkZERMjMzAQAHDhxA//790bp1a7Rv3x6vvfYarl27ViWm9evXw9XVFS1btsTZ\ns2elz+7rr7+GnZ0dzM3NMXz4cNy8ebNK3ZrcuHEDffv2xfPPP487d+4AAP773//Cy8sLZmZm6Nat\nG6KionDv3r06fX5ERERERERERIaoURe6oqOjMXXqVLz33ns4efIkduzYAW9v72rL3r17F++99x4O\nHDiA/fv3w9nZGUFBQbhx4wYAICUlBe+88w6mTZuGs2fPIikpCeHh4VL9Tz75BEePHkVMTAzOnTuH\ndevWoUePHnWO9fLly/jxxx+xZcsWbN++Hb///jteeuklrFq1Chs3bpSemzNnjlRn6dKlmDFjBv75\nz3/i9OnT+OijjzB16lT861//AgBs3rwZXbt2xYcffojc3Fzk5ubC3t4eubm5CAwMhIODAw4fPoxt\n27bh5MmT0iJghUuXLuHbb7/F6tWrkZaWBnt7ewDAoUOHkJSUhB07diA+Ph7Hjh3D2LFj65RnZmYm\nnn32Wdjb2yMhIQEWFhZYtWoVxo8fj48++ghpaWn48ccf8csvv+Dtt9+u8+dXXwkJCXBzc4OLiwvm\nz59fbZkJEybAxcUFXl5eOHr0aL3q6sOePXsQFBSEwMBArFixosr+jIwMhIWFQaVSSX2kwnPPPYfQ\n0FC8+OKLVfqBviQkJMDV1RXOzs61tpGzszPUanWVNnpYXX14lH43ZswYdOrUCZ6enk0Vbp3s2LED\nnp6ecHd3x5dfflltmQ8++ADu7u7w8fHBsWPHAABFRUXo168ffH194eXlhU8++aQpw66V3PpeQkIC\nevToge7du+Pzzz+vtszEiRPRvXt39OzZUyefsWPHwtbWFmq1uqnCrRO5tREg35zk9lsrt3Fcrv1O\nbmNer1698O2332LFihV4+eWXq+z/v//7PyxatAiLFi3CN998g61bt0pnV0ycOBGrV6/GN99809Rh\n1yoxMREeHh5wc3PDF198UW2ZSZMmwc3NDb169ZLaKSsrCy+88ALUajW8vLywZMmSpgy7VnIcH+T2\nXeK8tXmM4zt27ICXlxdUKhUWLFhQbZmoqCioVCr4+flJ7VRBq9WiT58+1Y6XeiMaSUFBgWjVqpVY\nsGBBtfsHDBggxo0bV2N9rVYrrKysxJo1a4QQQmzatElYWlqK27dvV1t+6NChIiIiokGxRkdHCxMT\nE5GXlyc99+677wpjY2Nx/fp16bmJEycKb29v6bG9vb2YMmWKzmtNnjxZKJVK6bGTk5PQaDQ6ZT75\n5BPx1FNPiZKSEum51NRUoVAoxO+//y7FZGRkJLKysnTqhoeHCwsLC53PYceOHUKhUIiMjAyprpOT\nk05+Tk5OIjU1VXTu3FlMmDBB5zW7dOkivvvuO53nkpKShEKhEPn5+dV9ZDrKysrqtZWUlAhHR0fx\n119/ifv37wu1Wi1OnTqlUyY2NlYMGjRIlJWVif379ws/P786163rVps///yzXtvp06eFg4OD2LVr\nlzh58qRwdXUV8fHxOmX2798vNm7cKN5++20xZcoUnX12dnbi4MGD9X7fyltjKS0tFY6OjuL8+fOi\nuLhYqNVqcfr0aZ0ycXFxYtCgQUIIIQ4cOCD8/PzqXLcxNGW/KysrE0lJSSIlJUV4eHg0qL/Vpd8V\nFRXVa7t7965QKpXizJkz4s6dO8LT01McO3ZMp8yWLVvEwIEDRVFRkdizZ4/w9fWV9t24cUMUFRWJ\ngoIC4evrK3bt2lXvGIqKihq1XZtD39NqtXXeiouLhaOjo8jIyBBFRUVCrVaLkydP6pTZtm2bCAoK\nElqtVvzxxx/Cz89P2rd7926RnJwsPDw86vW+lbfG1BzaqL6aQ05y/K2V4zheH82h39V3rGkOY15I\nSEi9ttDQUJGTkyMiIyPFkCFDREZGhnjrrbdqLD9z5kxx9OhR6fHHH38s3n//fXH+/Pl6v/eDW21K\nSkrqtRUVFQlHR0eRnp4u7t27Jzw9PcXx48d1ysTExIigoCBRUlIi9u7dK3x9fUVJSYnIysoShw8f\nFiUlJeLmzZvCxcWlSt26brVpjuPDk/Zd4rzV8MbxmTNnipkzZ+o8d+/evXptd+7cEUqlUqSlpYlb\nt24JlUoljhw5olNm06ZNIjAwUNy7d0/s3r1b+Pj46OyfN2+eCAsLE8HBwfV+/+q2xtBoR3SdOnUK\n9+/fR2BgYJ3Knz9/HqNHj4azszMsLS1haWmJW7duSaf6BQYGQqlUolu3bnj11Vfx/fffIy8vT6o/\nfvx4bNy4ESqVCpMmTUJCQkK9rktlZ2eH9u3bS49tbGzQqVMndOjQQee5q1evAig/VTInJwf9+/fX\neZ3+/fvjwoULKCoqqvG9Tp06hT59+sDE5P9fEs3T0xOWlpY4deqUzvtVHMX1oB49esDCwkJ6/Mwz\nzwAATp8+XeN7Xrt2Df7+/hg1apTO6ZXXrl1DZmYmJk+eDAsLC2kLDg6GQqHAuXPnanzNhjp06BCc\nnJzQtWtXmJqaIiwsDFu3btUpExMTg9dffx0A4Ofnh/z8fOTm5taprj4cP34cDg4OsLe3h6mpKUJC\nQrBr1y6dMu3bt4dKpYKpqWm1r1Gf/vq4Vf6cR4wYUW0bVRxVWVsbVVdXHx6l3wFAv379YGVl1eRx\n1+bw4cNwdHSUcnrllVewbds2nTKxsbEYNWoUAMDX1xf5+fm4cuUKAKB169YAgOLiYmi1Wp0xUF/k\n1vcOHTqk00ZhYWGIiYnRKbNt27Zm1e/k1kbAk5GTHH5r5TaOy7XfyW3Mc3FxweXLl3H16lVotVrs\n2bMHffr0qbG8v78/kpKSpMenTp1CQUFBU4RaZ9W1U+X5w7Zt2zB69GgA5e1069YtXLlyBZ06dYKX\nlxcAoE2bNnB1dcXly5ebPIfKuLLeygAAIABJREFU5Dg+yO27xHlr8xjHk5OToVQq0aVLF6mdYmNj\ndcrExcXptFPF+AAA2dnZSExMREREhEH9fdtkd12sbPDgwcjOzsayZctw8OBBHDt2DB07dkRxcTGA\n8gusJycnY/PmzXBxccHy5cvh5OSEI0eOAChfCMvMzMS0adNQVFSEUaNG4bnnnpMu4v4wlRcfFApF\ntc/V9fVqo1Ao6nxR+eo0pMO0a9cO/fv3x+bNm6XrmgH//yL3ixcvRmpqqrQdP34c6enp8PDwqPd7\nPUxOTo7OAp69vb1OTED5aZtPPfVUlTKXLl16aF19uHLlCmxtbaXHNjY20pe9LhQKBSIjI/HSSy9h\n/fr1jyPEesnJyan2869LmZraTt8epd8ZqsrfBzs7O1y6dOmhZSpy0mq18PX1hYODA/z9/eHm5tY0\ngddCbn2vcqwPfv41lTGEuGsjtzYC5JuT3H5r5TaOy7XfyW3M69ChA65fvy49vn79us5/hD+oZcuW\n6NWrF/7444+mCq9Bapsb1FYmOztbp8yFCxdw7Ngx+Pr6Pt6A60Du44Mcvkuct+qWMdT+2NB2qigz\nZcoUzJ49G0ZGeltaqlajRVNxAfrExMSHls3Ly0NaWhqmTp2KgIAA6eLrFUdPScEZGaFfv37QaDRI\nSUmBra0t1q5dK+23srLCiBEjsHz5csTFxSEpKQlpaWmNlZKOtm3bwt7eXud/bAAgKSkJSqUSrVq1\nAgC0aNECWq1Wp4y7uzsOHDiAkpIS6bnU1FTcunWrTgtLaWlp0kXkAUg/prVdk6xFixbYtGkTVCoV\n/P39pSPlbGxs8NRTT+HMmTNQKpVVtpYtWz40nvqq650oDWkF+GEe9e6aP//8M7Zs2YKVK1dizZo1\nSE5ObqTIGuZJbqPKOTXWnVMfh0fNydjYGIcOHUJGRgb27t1bZTzTB7n1Pfa75oE5NQ9y+z6xjepf\nTx/q8/n7+vri9OnTuHv37mOM6NE1RjsVFBQgLCwMX331Fdq0adOo8TWE3Pqe3PIBOG9tCtHR0Y98\nx8WG5iSEQHx8PKytreHl5WVwv10mDy9SN23atEFUVBRmzpwJMzMzvPDCCygsLMT27dsxdepUCCGk\n5K2srGBtbY0VK1ZAqVTi+vXr+Pjjj2FmZia93tatW3H+/Hn069cP1tbWSElJQVZWFtzd3QEA06ZN\ng7e3N3r06AEjIyP89NNPsLCwgIODQ2OlVMU//vEPREVFwdnZGf7+/vj111+xfPlyLFu2TCrTrVs3\n7N27F1lZWdLdIt977z0sWrQIERER+Oc//4mbN29i/Pjx6N+/P5599tmHvq9CocDrr7+OWbNmIS8v\nD++++y6GDh0KpVJZYx0hBIyNjbF+/Xq89tprUrzdunXD7NmzMXbsWFhZWWHIkCEwNTVFWloaEhIS\nsHz58kb5rB5U+X+EsrKyqpyi2blzZ2RlZUmPs7OzYW9vj5KSkofW1QcbGxudw7Zzc3NhY2NT5/od\nO3YEUH56Y0BAAI4fP17jjRuagp2dnc7nX93nXLnMg230sLr60NB+Z2dn12Qx1lfnzp11cqou3spl\ncnJy0LlzZ50ylpaWCAoKwpEjR+Dv7/94g34IufW9mmJ9WBlD7ndyayNAvjnJ7bdWbuO4XPud3Ma8\nvLw8/O1vf5MeW1tb6xzh9aD+/ftjz549TRVag1U3f6juu1R5/lDRTiUlJRg+fDhGjhyJoUOHNk3Q\nDyH38UEO3yXOW8sZ+jj+KO20ZcsWxMXFITExEUVFRbhz5w7eeOMNrFy5ssnir0mjHl/22WefYfbs\n2Vi8eDFUKhUGDhwo3WVAoVBIq4VGRkbYsGEDMjIy4OnpiTFjxmDy5Mk6p4K1b98e27Ztw6BBg9C9\ne3dMnToV06dPR2RkJADAzMwMM2bMgLe3N3x8fHDy5Els375d51pWNXkwlvo898477+DTTz/FnDlz\n4O7uji+++ALz58+XYgIAjUaD/Px8dO/eHTY2NsjKykLHjh2xY8cOZGdnw8fHB6GhofD09MTGjRtr\nff+K5/38/NC3b18EBARg0KBBUKvVOnfxq1z3wcfGxsZYu3Yt+vbtC39/f2RkZGDUqFFYv349YmNj\n4efnB19fX2g0msf2RfP29kZ6ejouXLiA4uJirF+/HkOGDNEpM2TIEKxevRoAcODAAbRr1w42NjZ1\nqqsPHh4euHjxIrKzs1FcXIz4+Hg8//zz1ZatvLpdWFgoXbvh3r172Lt3L1xcXB57zLWp/DmvW7eu\n2jb68ccfAdTeRtXV1YdH6XeGqnfv3jh37pyU08aNGzF48GCdMoMHD8aaNWsAAAcPHpRyun79OvLz\n8wGU98Fdu3YZxJ155Nb3vL29ddpo/fr1CA0N1SkTGhrarPqd3NoIeDJyksNvrdzGcbn2O7mNeenp\n6ejcuTM6duwIExMT9OvXDwcPHqxSrnXr1tJZG4auunaqPH8IDQ3FTz/9BKC8nSwtLWFjYwMhBMaN\nGwc3NzdMnDhRH+FXS47jg9y+S5y3No9xvFevXsjIyMDFixeldgoJCdEpExISIrXToUOHYGlpiU6d\nOuHTTz9Feno60tLS8OOPP8Lf398gFrkANN5dF+nJ0ZC7ksTFxQkXFxfh6OgoZs+eLcrKysS3334r\nvv32W6nM+PHjhaOjo/D09BTJycm11m3sO6M05I6HK1asEF27dhUODg7igw8+EH/++afQaDRCo9GI\nP//8U+zdu1d06tRJtGnTRrRt21bY2tqKI0eOiF9++UW4uroKV1dX4ezsLNXV510XhRAiPj5e+pzn\nzJkjhBBi+fLlYvny5VKZd999V2qjlJSUWus2tqbudyNGjBC2traiRYsWwt7eXvzwww+N3u8acueY\nrVu3CmdnZ6FUKsWnn34qioqKxJIlS8SSJUukMm+//bZQKpVCpVKJ/fv3i6KiIpGcnCy8vLyEp6en\n8PDwEHPmzGnQ+zf23WuEMPy+V987FsXGxur0O61WK5YtWyaWLVsmlXmw3x0+fFh6PiwsTKffrVy5\nUu93XRTC8NuoIQw9Jzn+1spxHK8vQ+93DRlvDH3Ma8gdD2fMmCGysrJETk6OWLVqlQgJCZF+ayvK\nLFiwQPz2229V6u7evVtcv35dFBcXi6tXr4qvv/5a73ddLCkpEdu2bZPaadasWaKkpEQsXbpULF26\nVCrzzjvvCEdHR6FSqcTBgwdFSUmJ+O2334RCoRCenp5CrVYLtVotYmNj9X7XRUMYH5607xLnreUM\nfRxvyF0ON2/eLLWTRqMR9+7dE4sXLxaLFy+Wyrz11ltSO+3bt6/KayQmJhrUXRcVQhjYyZRk8Jpr\nl6nt/OOzZ882YSSNR99HgjUlOfa7+/fvN2EkjedxXMvPkJU1wk1JmpqhXRCU6k+OY54cc5Kb5jje\nAbWPeZWPIGkuKt/17EGlpaVNGEnjefAO9JU1x/GhtrFBjt8lzlubh8LCQn2H8MgevKRVQ8luJpyZ\nmYk2bdrAwsKi2u3nn3/Wd4hERERERERERPQYNNrF6A2FnZ0djh8/XuP+iouAExERERERERE1RxqN\nBgAe+c6LciS7hS5jY+Na70ZIRERERERERETyJLtTF4mIiIiIiIiI6MnEhS4iIiIiIiIiIpIFLnQR\nEREREREREZEscKGLiIiIiIiIiIhkQXYXoyciIiIiIiIikjPebbFmPKKLiIiIiIiIiIhkgQtdRERE\nREREREQkC1zoIiIiIiIiIiIiWeBCFxERERERERERyQIXuoiIiIiIiIiISBa40EVERERERERE1Ixo\nNBpoNBp9h2GQuNBFRERERERERESywIUuIiIiIiIiIiKSBS50ERERERERERGRLJjoOwBqfhQKhb5D\naHQuLi76DoEeQo79rmXLlvoOgerAyIj/J0RNT45jnhxzkhs5jnexsbH6DqHRmZjI7084uY0Pcvwu\ncd7aPJiZmek7BIMgv28gERERERERERE9kRRCCKHvIIiIiIiIiIiIiB4Vj+giIiIiIiIiIiJZ4EIX\nERERERERERHJAhe6iIiIiIiIiIhIFrjQRUREREREREREsiC/e9MSEQCgpKRE3yHUm6mpqb5DaFL5\n+fn6DqFB2rVrp+8Q6BFotVp9h9AgxsbGNe5rjuMd8OSNeUVFRfoOoUFatWql7xCIdEREROg7hAZZ\ntWqVvkNoMtevX9d3CA3yt7/9rcZ99+7da8JIGk/r1q1r3CfHuXhznRM9qDHmRzyii4iIiIiIiIio\nGdFoNNBoNPoOwyBxoYuIiIiIiIiIiGSBC11ERERERERERCQLXOgiIiIiIiIiIiJZ4EIXERERERER\nERHJAhe6iIiIiIiIiIhIFkz0HQAREREREREREdVddHS0vkMwWDyii4iIiIiIiIiIZIELXURERERE\nREREJAtc6CIiIiIiIiIiIlngQhcREREREREREckCF7qIiIiIiIiIiEgWuNBFRERERERERNSMaDQa\naDQafYdhkLjQRUREREREREREssCFLiIiIiIiIiIikoVHWugaMGAAxo0b11ixPDFWrVoFU1PTx16H\niIiIiIiIiOhJ8kgLXQqFAgqForFiMQgvvPACIiMjdZ7Lzs6GkZER9uzZo6eoHp9Zs2ahW7du+g6D\niIiIiIiIiOiR8dTFehBC6DsEIiIiIiIiIiKqQZ0WupYuXYoePXqgVatWsLGxwbBhwwBUXfjZuXMn\nBgwYgA4dOqBdu3YYMGAADh8+rFNm5cqVcHNzg5mZGTp06AB/f3/k5OQAAG7fvo3IyEjY2tqiVatW\ncHBwQFRUVJ0SmTlzJpydnbF27VoolUqYmZkhMDAQFy9e1Cn3n//8Bz169EDLli3x1FNPYfr06dBq\ntQCAiIgI/Prrr/jPf/4DIyMjGBsbIykpCQ4ODgCAv//97zAyMoJSqdTJ+dlnn0Xr1q1hb2+PMWPG\n4MaNG9J+IQSmT5+Ojh07wsLCAiNGjMDNmzcbFPuD8vPzMWrUKHTp0gWtW7eGq6srvvrqK50yERER\nCAgIwIoVK9ClSxdYWlpi6NChuHr1KoDy0yFnzJiBixcvwsjICEZGRvj000/r9HkTERERERERkX5E\nR0cjOjpa32EYpIcudEVHR2Pq1Kl47733cPLkSezYsQPe3t7Vlr179y7ee+89HDhwAPv374ezszOC\ngoKkhZ+UlBS88847mDZtGs6ePYukpCSEh4dL9T/55BMcPXoUMTExOHfuHNatW4cePXrUOZnLly9j\n+fLl2LhxI37//Xfcvn0bL730krQ/Li4OY8eORXh4OE6dOoUFCxZg6dKl0i05Fy9ejH79+iEsLAy5\nubm4fPkynnnmGRw5cgQAsGnTJuTm5kqLd7/++itefPFFjBw5EidOnMCWLVtw4cIFnfdcvHgxvv76\nayxYsABHjx5F7969odFoqpzy+bDYK7t//z5UKhW2bt2KtLQ0TJ8+HdHR0Vi1apVOucOHDyMpKQnb\nt29HYmIiTpw4gQ8//BAAMGLECEyZMgX29vbIzc1Fbm5unRcW6yshIQGurq5wdnbG/Pnzqy0zYcIE\nODs7Q61W4+jRo/Wqqw9yyykxMREeHh7o0aMHvvjii2rLTJ48GT169EDv3r2lfLKyshAQEAC1Wg0v\nLy988803TRl2reTWRgDwyy+/wNfXF71798bChQurLTNlyhT07t0bffv2xfHjxwEA6enp6N+/v7Q5\nODjgu+++a8rQayS3dpJbPkB5XO7u7nB1dcXnn39ebZlJkybB1dUVvXr10hkfnn/+eXh6ekKtVmPJ\nkiVNGXatOOY1j763Y8cOqNVqeHh44Msvv6y2zAcffAAPDw/4+vri2LFjOvu0Wi369OmDl19+uSnC\nfSg5thFzah45qVQqzJ07F/PmzUNwcHC1ZVxdXaHRaDBr1ixMnToVAGBqaorp06fj008/xezZs6UD\nHgyB3Npp165dePrpp+Hr64vFixdXW+Yf//gHfH19MWDAAGmOBwALFy5E37590b9/f7z11lu4f/9+\nU4Vdqx07dqBnz57w9PTEggULqi3z4YcfwtPTE35+ftWO4U8//bRB9Ts5zsXlOCeCqEVBQYFo1aqV\nWLBgQbX7BwwYIMaNG1djfa1WK6ysrMSaNWuEEEJs2rRJWFpaitu3b1dbfujQoSIiIqK2kGoUHR0t\nFAqFyMjIkJ47e/asUCgU4tdffxVCCNG3b18RFhamU2/RokXCzMxMlJSUCCGEeP7550VkZKROmays\nLKFQKERSUpLO8/7+/uIf//iHznMXL14UCoVCpKamCiGEsLOzE5988olOmWHDhglTU9N6xf7vf/9b\nmJiY1PoZTJgwQQQEBEiPw8PDhY2NjSguLpaemz9/vrC1tZUef/bZZ6Jr1661vu6jKi0tFY6OjuL8\n+fOiuLhYqNVqcfr0aZ0ycXFxYtCgQUIIIQ4cOCD8/PzqXFcfmkNOxcXFdd4KCwuFo6OjOHv2rLh7\n967w9PQUqampOmW2bt0qgoKCRHFxsdi7d6/w9fUVxcXFIjMzUxw6dEgUFxeLGzduCGdn5yp167o1\npubQRjdv3qzXdv36ddGtWzeRmpoqrl69Kjw8PMSBAwd0yqxbt0688MIL4ubNm2Lnzp3C29u7yuvk\n5eUJGxsbceLEiXrHcPPmzUb9DJpDO9VHc8intLS0Xtv9+/eFo6OjOHfunCgsLBRqtVqcOHFCp0xM\nTIwICgoSpaWlYt++fcLX11eUlpaK7OxskZycLEpLS0V+fr5wcXGpUreuW23qO9ZwzNNP3yssLKzX\nVlBQIJRKpThz5oy4ffu28PT0FEePHtUps3nzZjFw4EBRWFgokpKShI+Pj87+efPmibCwMBESElLv\n96/YGktzaKP6Yk76ySk8PLxeW0REhMjNzRVRUVFizJgx4uLFi2Lq1Kk6Zd555x2RnZ0tJk2aJMLD\nw8W7774r7Rs3bpwIDw8XkZGR4ty5c2LWrFn1jiE8PLxRPwNDb6dr167Va8vNzRVdu3YVKSkp4tKl\nS8Ld3V3s27dPp8zatWvF888/L65duyYSEhJE7969xbVr10RKSoro0qWLyM7OFteuXRNDhw4VS5Ys\nqXcM165dqzWnu3fv1mu7ffu2UCqV4vTp0yI/P1+oVCqRkpKiU+Z///ufCAwMFHfv3hW7d+8WPj4+\nOvvnzp0rhg8fLoKDg+v9/hVbbeQ4F2+uc6LGnh/VekTXqVOncP/+fQQGBtZp0ez8+fMYPXo0nJ2d\nYWlpCUtLS9y6dQuZmZkAgMDAQCiVSnTr1g2vvvoqvv/+e+Tl5Un1x48fj40bN0KlUmHSpElISEio\n13WxrK2tdU4rdHZ2xt/+9jecOnUKAHD69Gn0799fp07//v1RVFSEjIyMOr9PhcOHD+Prr7+GhYWF\ntLm7u0OhUCA9PR23b9/GpUuX8Mwzz+jUe/bZZ6vk9bDYKysrK8O8efPg5eUFa2trWFhY4LvvvpM+\n6wqurq46d2u0tbXFlStX6p3rozh06BCcnJzQtWtXmJqaYsSIEdi6datOmZiYGOnoPj8/P+Tn5yM3\nN7dOdfVBbjkdPnwYjo6OUkzDhw/Htm3bdMrExsZi1KhRAABfX1/k5+fjypUr6NSpE7y8vAAAbdq0\ngaurKy5fvtzkOVQmtzYCyo+KVSqVcHBwgKmpKV566SXEx8frlNm+fTteffVVAIC3tzdu3bolna5c\nYffu3ejatSvs7e2bLPaayK2d5JYPUJ5T5fEhJiZGp0xsbCxef/11AOU53bp1q8bx4dKlS02eQ2Uc\n85pH36topy5dusDU1BTDhg2r0k5xcXF47bXXAJS3U0XfA8pvJpSYmIjIyEiDuM6qHNuIOTWPnJRK\nJa5evYrr169Dq9Xi4MGD6NWrl06ZPn36IDk5WbrESkFBgbSvuLgYAGBiYgKFQoG7d+82XfA1kFs7\nHTlyBN26dZPmeP/3f/+H7du365RJTExEWFgYAKB3797SHM/CwgImJiYoLCxEaWkpCgsLYWtrq480\ndCQnJ0OpVOqM4bGxsTpl4uPjpTHcx8dHZwzPyclBYmIiIiIiDGIMB+Q5F5fjnAho5IvRDx48GNnZ\n2Vi2bBkOHjyIY8eOoWPHjtLgaG5ujuTkZGzevBkuLi5Yvnw5nJycpFMDAwMDkZmZiWnTpqGoqAij\nRo3Cc889h7KyssYMs1b1uYukEAJTp05Famqqzpaeno6goKDHGCWwYMECzJs3D5MmTcIvv/yC1NRU\nvPHGG1UOU31wkQsoz6+pB4qcnBw89dRT0mN7e3vpumwPK3Pp0qWH1tUHueWUk5OjM9Da2dlV+WO0\nLjlfuHABqamp8PX1fbwB14Hc2ggoP8XZzs5Oety5c+cqPybVlanclps2bTKYQ8Dl1k5yywdAtXFV\nNz5UHkOys7N1yly4cAHHjh2Dn5/f4w24Djjm6ZYx5L73YDtV1/cql3mwLT/++GPMmTMHRkaGce8l\nObYRc9ItY6g5WVlZ6VxD+MaNG7CystIpY2NjA3Nzc0yZMgXR0dE6/1GvUCjw6aefYtGiRThz5oxB\n/IeF3NqpoXO8y5cvw8rKCuPHj4eXlxdUKhUsLS3h7+/fZLHXpLrxuXJOlcs8OG+dMmUKZs+ebTBj\nOCDfubjc5kTAQxa6Ki5An5iY+NAXysvLQ1paGqZOnYqAgAC4urqiZcuWVVYvjYyM0K9fP2g0GqSk\npMDW1hZr166V9ltZWWHEiBFYvnw54uLikJSUhLS0tDolc+3aNfz111/S47Nnz+L69evSdb7c3d2R\nlJSkUycpKQmtW7eGo6MjAKBFixYoLS3VKdOiRQsAkC5aX8Hb2xsnT56EUqmsspmbm6Nt27aws7PD\nvn37dOrt27evyoLaw2KvbM+ePRg0aBAiIiKgVquhVCpx9uzZKq/7sIW7Fi1aVMmrsdV18dBQVurr\nQm45NTSfB+sVFBRgxIgRWLBgAdq0adOo8TWE3NoIaJx2Ki4uRkJCAl588cVGja2h5NZOcssHaLzx\nISwsDF9//XWzHh845jWthuYkhEB8fDw6duwILy8vg8mZbdQ8yDGnujA2NkaXLl3w1Vdf4csvv8SQ\nIUNgY2MDoDzXGTNm4IMPPkD37t3h6uqq52jl106Pks/58+fx3Xff4ciRIzhx4sT/Y+/Ow6Iq+/+B\nv9mUTXFFQARkk2EbUBbNFJ5SWcSlMlHSQsV8vlYu+avHb+UymVmmJaY+pVZPmZXL477gLpYbaLmk\npriwKyYqbsDgcP/+4OJ8HRgQFJmZ4/t1Xeeq8dzn8PnMfZ977rnnLLh79y5Wr17d0CHW2+PktHXr\nVrRt29ag+nCAY/GatjO0MREAmNe20tbWFpMmTcL06dNhZWWFXr16obi4GFu3bsXkyZMhhJASbtmy\nJdq2bYvFixfD3d0d165dw7vvvgsrKytpf+vXr8elS5fQo0cPtG3bFkePHkVOTg78/PwAAO+//z5C\nQkLg6+sLU1NT/Pjjj2jWrJn01MOHsba2xogRI/D5559DCIG33noLwcHBeO655wBU3LyvX79++PTT\nT/HCCy/g2LFjUKlUmDRpEszNK96Kjh07Ys+ePbh48SKaN2+OFi1aoE2bNrC1tcW2bdugUCjQtGlT\ntGzZEh9++CH69OmDSZMmYfjw4WjWrBkyMjKwevVqLFiwAJaWlpg0aRKmTJkCHx8fhIeHY8OGDdi1\na1e1hvKw2Kvy8fHBsmXLsHfvXjg5OeGHH35AWlpatV9nHtYxuLu748qVKzh06BA8PT1hY2OjVWcN\noX379sjJyZFe5+TkVDtNs2qZ3NxcODs7o6ys7KHb6oPccqp69kVubq7WLxGVZarm4+TkBAAoKytD\nfHw8EhISMGDAgMYJ+iHkVkdAxaXHD/56kpeXJ9VBTWXy8/O1Tl/fuXMngoKC0KZNmycfcB3IrZ7k\nlg9Q8Utk1bh09Q8P9iF5eXlSmbKyMrz88ssG1z+wzzOOtveweqpaprJfXLduHTZt2oSUlBSUlpbi\n1q1bGDVqFL755ptGi78qOdYRc6pg6DnduHEDrVq1kl63atVK6wwvoOIsrzt37qCsrAxlZWU4e/Ys\nOnTooHXLk+LiYhw/fhxubm7466+/Gi1+XeRWT3Ud4z14pk3lGG///v0IDQ2V6rhv375IS0vT+xlD\nuvrwqjlVLVOZ07p167B582Zs27YNJSUluH37NpKSkrB06dJGi18XQxuLVz5U73GevCjHMRFQh0sX\nZ8yYgZkzZ2L+/PkICAhAVFSUdJd9ExMTaSbP1NQUq1atwoULFxAYGIiRI0di4sSJWpXaqlUrbNy4\nETExMejUqRMmT56MKVOmYMSIEQAAKysrTJ06FSEhIQgNDcWff/6JrVu3olmzZnVKxtHREWPGjMGg\nQYPQo0cP2NraYs2aNdL6mJgYfPvtt/j+++8REBCAt99+G2+88YZWw5g0aRLatGkDpVKJdu3a4cCB\nAzA1NcXChQuxcuVKdOjQAV26dAEAREZGYvfu3Thx4gR69uwJpVKJt99+G82bN5cuGRw/fjzGjRuH\niRMnIjg4GIcPH8bUqVOrzZw+LPbK97vSlClTEBERgQEDBuCZZ55BUVERxo0bp1XmwfqpaT8DBw7E\nyy+/jL59+8Le3r7Gpyw8jpCQEGRkZCAzMxNqtRorVqxA//79tcr0798fP/zwAwDg0KFDaNGiBdq1\na1enbfVBbjl16dIF58+fl2JatWoV4uLitMrExcVh+fLlAIDDhw9L+Qgh8Prrr0OhUGDcuHH6CF8n\nudURAAQHB+PChQvIzs6GWq3G2rVrERMTo1UmJiYGv/zyC4CKa+7t7Oxgb28vrV+9erXBPH0MkF89\nyS0foCKnqv1Dv379tMrExcVh2bJlACpysrOzk/qH0aNHQ6FQYPz48foIXyf2ecbR9irrKSsrC2q1\nGqtXr65WT3379pWuDDh8+DDs7Ozg4OCADz/8EOfPn8dff/2FH374AZGRkXqd5ALkWUfMyThyunTp\nEtq1a4c2bdrAzMwM4eGHf0CAAAAgAElEQVThWk8gBIA//vgDXl5eMDExQZMmTeDu7o78/HzY2trC\n2toaQMUtUfz8/JCVlaWPNLTIrZ6CgoJw6dIlaYy3bt26arfCiYqKwooVKwBU3P+qcozn6emJo0eP\nori4GEIIpKamolOnTvpIQ0vnzp1x4cIFqQ//73//i759+2qViY2NlfrwtLQ0qQ9XqVQ4d+4cTp8+\nje+//x4RERF6n+QC5DkWl+OYCHjIGV2Vxo0bpzPwPXv2aL3u2bNntUeCvvjii9L/9+jRA7t27arx\n73zwwQf44IMP6hJSjRISEpCQkFDj+ldffVW6Ya4uHTt2rHZ5IwAMHz4cw4cPr/bvzz77LHbs2FHj\n/kxMTDBz5kzMnDlT698nTJhQr9gTExORmJgovW7evLnU0T3oww8/lP7/u+++q7Z+2LBh0o3kgIqb\nSlY22ifF3NwcCxYsQFRUFDQaDUaNGgWFQiE9TnXMmDGIjY3Fli1bpLPKKmOvaVt9k1tO5ubmmDdv\nHvr27Yvy8nIkJiZCoVBgyZIlAIDRo0cjJiYGKSkpUCgUsLa2lj5sDhw4gJ9++gkBAQEIDQ0FAHz0\n0UeIiorSWz6A/OqoMq7Zs2fjpZdegkajwbBhw9CpUycp7hEjRqBPnz7YsWMHOnfuDGtrayxcuFDa\n/u7du0hNTUVycrK+UqhGbvUkt3wq40pOTkZsbCw0Gg1GjBgBhUKBxYsXAwBef/11xMbGIiUlBZ06\ndYKNjY3UP+zfvx/Lly9HYGAgQkJCAFT0D0/6PpYPwz7PeNreF198gX79+kGj0SAxMRE+Pj5SXSQl\nJSE6OhopKSnw8/ODjY1NjY9qr889WJ8UudYRczL8nMrLy7Fs2TJMmjQJpqam2LdvHy5fvozIyEgA\nFTfGvnz5Mk6ePImPPvoI5eXlSE1Nle6flJSUBFNTU5iYmODAgQN1vq3MkyS3ejI3N8esWbMwePBg\naDQavPLKK/D29sb3338PAHjttdfQu3dv7Ny5E6GhobCxsZHGcwEBARg8eDB69+4NU1NTBAQE1Pp9\nt7GYm5tj7ty5GDBgADQaDV599VX4+PhIPzqMGjUK0dHR2L59OwICAmBtbY2vvvpK574MoQ8H5DsW\nl9uYCABMhCFd9PoYpk+fjuXLlyMjI0PfodSbMcdOhqusrEzfIdRb1YcnyN3Nmzf1HcIjadGihb5D\noMfwpO/L+KSYmZnVuM4Y+zvg6evzSkpK9B3CI7G0tNR3CERaHvzx25j85z//0XcIjebatWv6DuGR\n1HY53b179xoxkoZTeUaiLsY+Ftd16aKxjoke1BDjozqd0aVv2dnZ8PX1rXEm9+uvv67xMj1jYMyx\nExEREREREREZCqOY6Grfvj1OnDhR43p7e3vY2to+1k3Y9GnatGlGGzsRERERERERkaEwiokuMzMz\nuLu76zsMIiIiIiIiIiK948kyNXvoUxeJiIiIiIiIiIiMASe6iIiIiIiIiIhIFjjRRURERERERERE\nssCJLiIiIiIiIiIikgVOdBERERERERERkSxwoouIiIiIiIiIyIioVCqoVCp9h2GQONFFRERERERE\nRESywIkuIiIiIiIiIiKSBU50ERERERERERGRLHCii4iIiIiIiIiIZIETXUREREREREREJAvm+g6A\niIiIiIiIiIjqbtq0afoOwWDxjC4iIiIiIiIiIpIFEyGE0HcQREREREREREREj4tndBERERERERER\nkSxwoouIiIiIiIiIiGSBE11ERERERERERCQLnOgiIiIiIiIiIjIiKpUKKpVK32EYJE50ERERERER\nERGRLHCii4iIiIiIiIiIZMFc3wGQ8dFoNPoO4ZGYmZnVuK68vLwRI2k4pqY1z1WXlJQ0YiQNw9LS\nssZ1cmx3csyJDJ9ardZ3CI+kSZMmNa4TQjRiJA3HxMSkxnVXr15txEgajr29vb5DaFRlZWX6DqHe\nLCwsalx3586dRoyk4dja2uo7hEYlx/HDwIEDGzGShrFu3boa18nxc8kY+zug9j5PjkpLS/UdwmNr\n2rTpY++DZ3QREREREREREZEscKKLiIiIiIiIiIhkgZcuEhEREREREREZkWnTpuk7BIPFM7qIiIiI\niIiIiEgWONFFRERERERERESywIkuIiIiIiIiIiKSBU50ERERERERERGRLHCii4iIiIiIiIiIZIET\nXURERERERERERkSlUkGlUuk7DIPEiS4iIiIiIiIiIpIFTnQREREREREREZEscKKLiIiIiIiIiIhk\ngRNdREREREREREQkC5zoIiIiIiIiIiIiWTDXdwBERERERERERFR306ZN03cIBotndBERERERERER\nkSzIfqIrMjISo0eP1ncYdeLm5oaZM2fqOwwiIiIiIiIiIqMk+4kuExMTmJiY6DuMOjGmWImIiIiI\niIiIDI3sJ7qIiIiIiIiIiOjpIJuJroULF8LX1xeWlpZo164dBg0aBAAQQmiV27FjByIjI9G6dWu0\naNECkZGRSE9P1yqzdOlSKBQKWFlZoXXr1oiIiEBeXh4A4NatWxgxYgQcHR1haWkJFxcXTJo0qU4x\n5ubm4qWXXkLbtm1hZWUFDw8PzJkzR6tMaWkpxo8fj9atW8PBwQFvv/02NBqNVpkvv/wSPj4+sLKy\ngre3Nz7++GOtMmVlZZg+fTrc3d1hZWUFf39/LF68WGsfpqammD9/Pl566SXY2trC2dkZ8+fPr1Me\njyIlJQV+fn7w8fHB7NmzdZaZMGECfHx80LlzZ/zxxx/SvyclJcHJyQlBQUFPLL5HkZKSAl9fX3Tq\n1KnGnMaPH49OnTohODhYK6dRo0bB0dERSqWyscJ9qO3bt0OpVMLf379au6z09ttvw9/fH2FhYTh2\n7BgAoKSkBD169EB4eDiCg4MxZcqUxgy7VnJtd3LMycfHB15eXvj00091lhk3bhy8vLygVCq1cqrL\nto1NbvkAwLZt2xAQEABfX98a+4eJEyfC19cXISEhUv+Qk5ODPn36ICgoCMHBwViwYEFjhl2rlJQU\nKBQKeHt711pP3t7eCAoK0qqnkSNHwsHBAYGBgY0Vbp3s3r0b3bt3R9euXfHll1/qLPPee++ha9eu\n+Mc//oGTJ09K/7548WJERESgZ8+e1cYM+iS342nbtm3w9/eHr68vPvvsM51lKo+lLl26SPnk5OSg\nd+/eUCqVCAoKMqhjaceOHejcuTOCgoLw+eef6yzzzjvvICgoCN26dcPx48elf/fz80PXrl3RvXt3\nREZGNlLEDye3dgfIc/xQ+bmyaNEivPDCCzrL+Pv74/PPP0dycjI++ugj6d/j4uKQnJyM5ORkxMXF\nNVbItZLj55Ic+zw59g/bt29HYGAg/Pz8av0e6Ofnh9DQ0GrfA8PCwhAUFIQPPvigMcOunZCBqVOn\nCltbW7Fw4UKRkZEhjh07JmbNmiWEECIiIkKMHj1aKrt27VqxatUqce7cOXH69GmRlJQkWrVqJQoL\nC4UQQhw5ckSYm5uLZcuWiezsbHHy5EnxzTffiNzcXCGEEG+99ZZQKpUiLS1N5OTkiAMHDoilS5fW\nKc5+/fqJ3r17i+PHj4usrCyxZ88e8fPPP0vrXV1dRcuWLcWnn34qzp8/L1auXCksLCzEN998I5WZ\nNm2acHV1FevWrROZmZliy5YtwsXFRUyZMkUq89prrwmlUil27NghMjMzxYoVK0SLFi209mNiYiJa\ntWolFixYIDIyMkRycrIwNzcX69evf2ge9+/fr9dSWloqPDw8xPnz50VxcbFQKpXi5MmTWmU2bNgg\noqOjxf3798X+/ftFWFiYtG7Pnj0iPT1d+Pv71/tvP7jURqPR1GtRq9XCw8NDXLhwQZSUlAilUin+\n/PNPrTIbN24U0dHRQqPRiAMHDojw8HBp3d69e8WRI0eEv79/vf/2g0ttiouL67zcuXNHuLu7i7/+\n+kvcunVLBAYGij/++EOrzNq1a0VUVJQoLi4WqampIjQ0VFpXWFgoiouLxe3bt0VoaKjYuXNnvf5+\n5fK0tTs55lRf9+/fFx4eHuLSpUtCrVYLpVIpTp8+rVVm8+bNIiYmRgghxKFDh0R4eHidt21sxpBP\naWlpvZZ79+4Jd3d3cfbsWXHnzh0RGBgojh07plVm3bp1IioqSpSWlopff/1VhIWFidLSUpGVlSXS\n0tJEaWmpKCwsFF5eXtW2retSm/Ly8notZWVlwsPDQ1y8eFGUlpYKpVIpTp06pVVm06ZNIiYmRpSX\nl4uDBw+K8PBwaV1qaqo4evSo8Pf3r/fffnCpTUFBQb2W/Px84ebmJtLT00Vubq7w8/MTv/76q1aZ\n5cuXi+eff14UFBSILVu2iM6dO4uCggKxd+9e4ePjI7KyskR+fr7o2bOnOHz4cL1jKCgoaMimahTH\nk1qtrvNSXFwsPDw8xLlz58Tdu3dFYGCgOH78uFaZ9evXi+joaKFWq8Vvv/0mwsLChFqtFtnZ2SIt\nLU2o1Wpx/fp14eXlVW3bui61uX37dr2WmzdvCnd3d/Hnn3+K69evi4CAAJGenq5VZvXq1aJPnz7i\n9u3bYvfu3SIkJERa5+rqKrKysur9d6suDckY2p0cxw8DBgyo1/LCCy+I/Px8MXr0aPHiiy+Kixcv\nijfeeEOrTEJCgsjKyhIjR44UAwYMEMOGDRMDBgwQb731lsjMzBSDBg0SL7zwgvjjjz/EmDFj6h1D\nbeT4uVTfvsYY+rz6MrT+Yfr06WL69Ola/1ZSUlKv5e7du9L3wNu3b0vjvAfLVI7zSkpKxL59+0RY\nWJi07vr166KkpETcuXNHhIWFiV27dtU7hqpLQzD6M7ru3r2L2bNnQ6VSYezYsfD09IRSqcTkyZMB\noNo9rwYOHIhBgwbBy8sLCoUCX3/9NYQQSElJAQBkZ2fDxsYGAwYMQIcOHeDv74+RI0eiffv20vrg\n4GCEhobC2dkZ3bp1w6hRo+oUa3Z2Nrp3747AwEC4uLggMjISQ4YM0SrTs2dPvPvuu/Dw8MDLL7+M\nXr16YefOnQCAe/fu4bPPPsPixYsxYMAAuLq6IiYmBjNmzJB+ub106RKWLVuGlStXolevXnB1dcXg\nwYMxceLEar/uxsXF4Y033oCnpyfGjRuHwYMH1ziD+zjS0tLg4eEBNzc3WFhYYPDgwdiwYYNWmU2b\nNuHVV18FAISHh6OoqAhXrlwBAPTo0QMtW7Zs8LgeR9Wc4uPjq+W0ceNGrZxu3rxpsDmlp6fDw8MD\nrq6usLCwwKBBg7Bx40atMps3b8Yrr7wCAAgLC0NRUREKCgoAANbW1gAAtVoNjUaDVq1aNW4COjwN\n7U4uOXl6eko5DRkyBOvXr9cqs2HDBrz22msAtI+lumzb2OSWD/B//cOD7W7Tpk1aZTZt2oThw4cD\nqOgfbt68iYKCAjg4OEhnrtra2sLHxweXL19u9Byqqvpex8fH66wnY+nDAeD3339Hx44d4eLiAgsL\nCwwcOFAa21Tatm0bBg8eDADo0qULbt26hatXryIjIwOdO3eGpaUlzMzM0K1bN2zevFkfaWiR2/Gk\n61iq+lm7adMmDBs2DED1Y6nybBpDOpaOHDkCd3d3afzw0ksvVWs7W7ZsQUJCAgAgNDQURUVFuHr1\nqrReVLn6Qt/k1u4AeY4fvLy8cPnyZVy9ehUajQa//vorwsLCtMr07NkTBw8eRGFhIQDg9u3bAID2\n7dvj3LlzKCsrQ3l5OU6dOoWuXbs2eg4PkuPnkhz7PDn2D1Xr6eWXX65zPQGG+T0QkMGli6dOnUJp\naSn69OlTp/KXLl3C8OHD4eXlBTs7O9jZ2aGoqAjZ2dkAgD59+sDd3R0dO3bE0KFDsWTJEqlzBICx\nY8di9erVCAgIwIQJE5CSklLnD+gJEybg448/RteuXTF58mT8+uuvWutNTEyqnRLs6OgoNaJTp06h\nuLgYL774Ipo1ayYt//znP3Hr1i0UFhbiyJEjEEKgS5cuWmVmzZqF8+fPa+27W7duWq+feeYZnDp1\nqk651Ed+fj46dOggvXZ2dkZ+fr5Wmby8PDg7O0uv27dvL10uaojy8vK0ctIVb9Uyzs7OBptTfn6+\n1vuvq46qlnkwZ41Gg/DwcLi6uiIiIgIKhaJxAq+FHNudHHOqy3FSUxld74e+c5VbPkD1dqerTdXW\nP1TKzMzE8ePHq30R0Yeqx4mu99pQ66MmV65cgZOTk/Taycmp2peCy5cvSz/cARVjjCtXrkChUODw\n4cO4ceMG7t27h507d1brW/RBbseTrv5ZVx/+sLgN6Viq2qbat29frd3l5+dXK1OZt4mJCfr374+e\nPXviu+++a5ygH0Ju7Q6Q5/ihVatWuHbtmvS6sLAQrVu31irj6OgIW1tbzJgxA3PmzJEuj83Ozoav\nry9sbW3RpEkTdOnSpdq2jU2On0ty7PPk2j88rJ4e9j0wLCwMLi4uBvM9EADM9R1AY4uLi4O9vT0W\nLVqEDh06wMLCAs8++yzUajUAwMbGBkeOHMH+/fuxc+dOfPXVV3j33Xexa9cudO7cGX369EF2dja2\nbduGvXv3YtiwYQgICMCuXbtgalr7vGFiYiKio6ORkpKCPXv2ICYmBi+88AKWLVsmlWnSpInWNiYm\nJigvLwcA6b+rV6+Gt7d3tf23bNlSKnPw4EFpdvXBfelDXf9u1QlDQ34Cpdxyetx8zMzMcPjwYRQV\nFaFfv37Yt28fevbs2eBx1ofc6ghgTsZAbvkADdPu7ty5g6FDh2LOnDmwtbVt0PgeBY8lbV5eXnjz\nzTcRHx8Pa2trBAQEPHRM0xjkdjw11LE0ZMgQzJ0716iPpUrbt2+Ho6Mj/v77bwwYMADe3t7o3r17\nQ4ZYb3Jrd4A8+7y6MDMzg4eHB6ZOnYqmTZvik08+wdmzZ5GXl4c1a9Zg+vTpKCkpwaVLl/Ren3Ks\nI/Z5xqEhvgempaVJ3wNTU1MRERHR4HHWl/5HMY+p8gb027Zte2jZwsJCnDlzBpMnT0bv3r3h4+OD\npk2bap0+DVTcqL1Hjx5QqVQ4evQoHB0d8dNPP0nrW7ZsiSFDhuCrr77C5s2bkZqaijNnztQpXgcH\nByQmJuL777/H0qVLsXz5cty5c6dO2/r5+cHS0hIXLlyAu7t7tcXU1BRdunQBAGRlZVVb37FjR639\nHTx4UOv1gQMH4OfnV6dY6sPJyQk5OTnS65ycHK1f9oCKWeHc3FzpdV5eXrUyhqR9+/ZaOeXm5mrN\nctdUxlBzcnJy0nr/dcVatUxeXp7W2QMAYGdnh5iYGBw9evTJBlwHcmx3csyp6nGSk5NTp2PJ2dm5\nTts2NrnlA1Rvd7r6u9r6h7KyMsTHx2Po0KEYMGBA4wT9EFWPE13vta68DflYcnBw0PoFVlcf7ejo\nqPXr8eXLl+Hg4AAASEhIwPbt27Fu3To0b94cnp6ejRN4LeR2PFVtd7ralK58qh5LCQkJBnMsVW1T\nD8ZbycnJSavMg23T0dERANC2bVv069fPIMYPcmt3gDzHD4WFhWjTpo30uk2bNlpneAHAtWvXcOzY\nMajVaty+fRunT5+Gm5sbAGDXrl34f//v/+GDDz7A3bt39X5mjRw/l+TY58m1f2io74HR0dH4/fff\nn2zAdWT0E122traYNGkSpk+fjkWLFuHcuXM4fvw4PvnkEwAVM4+Vs48tW7ZE27ZtsXjxYmRkZODg\nwYMYOnQorKyspP2tX78e8+bNw9GjR5GdnY21a9ciJydHmgB6//33sXbtWpw9exYZGRn48ccf0axZ\nM7i4uDw01jfffBNbt27FhQsXcOrUKaxZswYuLi7S7PTDZn5tbW3x3nvv4b333sOiRYtw9uxZnDp1\nCr/88ot0TzJPT0+MHDkSo0ePxo8//ojz58/j+PHj+Pbbb6s9YWXz5s1YuHAhMjIy8OWXX2LlypV1\nfoJkfYSEhOD8+fPIzMyEWq3GqlWr0K9fP60ycXFx0plthw4dgp2dHdq1a9fgsTSUqjmtXLmyWk79\n+vXTyqlFixYGm1OXLl1w/vx5ZGVlQa1WY/Xq1dWeQNO3b19pwvfw4cNSHV27dg03b94EABQXF2PX\nrl0G8VSep6HdySWnjIwMKacVK1agf//+WmX69++PH374AYD2sVSXbRub3PIB/q9/eLDd9e3bV6tM\nXFwcfvzxRwAV/UNlTkIIjBkzBgqFAuPGjdNH+DpVfa9Xrlyps56MpQ8HgKCgIFy8eBHZ2dlQq9VY\nv349oqKitMpERUVh1apVACrurdS8eXPY29sDAP7++28AFQPcrVu34sUXX2zcBHSQ2/Gk61iq+lkb\nFxeH5cuXA6h+LL3++usGdyx17twZFy5ckMYPa9asQWxsrFaZ2NhY/PzzzwAq7m9jZ2cHe3t73Lt3\nT7pn0t27d7Fr164n8oNrfcmt3QHyHD+cP38eTk5OsLe3h7m5OZ599lmkp6drlUlLS4NCoYCpqSma\nNGkCb29vaaLBzs4OQMUEWXh4OPbt29foOTxIjp9Lcuzz5Ng/VK0nXd8Da6onXd8DK+/Nqm+yuHRx\nxowZaNu2LebPn4+JEyeiZcuW0ulyJiYm0ml1pqamWLVqFcaNG4fAwEC4ublh5syZ+Ne//iXtq1Wr\nVpg/fz4+/vhj3L59Gy4uLpgyZQpGjBgBALCyssLUqVORmZkJMzMzBAcHY+vWrWjWrFmdYp0wYQJy\ncnJgbW2Nbt26YevWrdI6XacNPhg/AHzwwQdwdHTEggULMGnSJFhZWaFTp05ITEyUyixevBhz587F\nzJkzcfHiRTRv3hz+/v548803tfY9depU7Ny5E++++y5atGiBzz777InMlpubmyM5ORmxsbHQaDQY\nMWIEFAqF9Pjy119/HbGxsUhJSUGnTp1gY2ODpUuXStu/8sor2LdvHwoLC+Hm5obp06dr5asP5ubm\nmD9/PmJiYqDRaDBy5Ejp4QYAMGbMGMTGxmLr1q3w9vaGjY0NvvnmG2n7hIQEKSdXV1dMnz5damP6\nYG5uji+++AL9+vWDRqNBYmIifHx8pHpISkqSLrv18/ODjY2NlOuVK1cwevRolJeXo7y8HEOHDsU/\n/vEPveVSSa7tTo45LViwAFFRUdBoNBg1apTOY2nLli3w9PSEjY2NdB+XmrbVJ7nlUxnXvHnzEBcX\np9XulixZAgAYPXo0YmJipMei29jYSOsOHDiAn376CQEBAdK9NWbMmFFtAqaxmZub48svv0R0dHSt\nffiWLVvg5eUFGxsbfPvtt9L2CQkJSE1NRWFhIVxcXKBSqfTahwMVOc2aNQtDhgyBRqNBQkICvL29\npcH2q6++il69emHXrl0IDw+HtbU1kpOTpe2TkpJw48YNmJub45NPPqnzuOZJktvxVHks9e3bF+Xl\n5UhMTKz1WLK2tpb68AePpdDQUADARx99ZBDH0pw5czBw4ECUl5dj+PDh8PHxkY6XkSNHIioqCtu3\nb4dSqYS1tTX+/e9/AwAKCgqkh9zcv38fgwcPxvPPP6+3XCrJrd1VxiW38UN5eTkWL16MadOmwdTU\nFDt37kRubq503+bt27cjLy8Pv//+O+bNmwchBLZv3y6dlfLuu++iWbNm0Gg0+Prrr1FcXKzPdGT7\nuSTHPs+Q+odp06Y1SE7z5s2r9j3wwXqq/B7o6+sLGxsbqe+4cuUKkpKSpO+BCQkJeO655x47poZg\nIozpAlJqMKampvjxxx+lp+DUh0ajeQIRPXlmZmY1rqu8t5mxqe0eKiUlJY0YScOwtLSscZ0c250c\ncyLDV3lPSmNT9R6WDzLWoUxt98WoelsFY1F5htjToqysTN8h1JuFhUWN6+p6Ow1DYwj37mlMchw/\nDBw4sBEjaRjr1q2rcZ0cP5eMsb8Dau/z5Ki0tFTfITy2pk2bPvY+jP7SRSIiIiIiIiIiIoATXQ0m\nOzsbtra2aNasmc6l8t4ERERERERERET0ZMjiHl2GoH379jhx4kSN6w3tVH5jvVSPiIiIiIiIiKgm\nnOhqIGZmZnB3d9d3GERERERERERETy1eukhEREREREREZERUKhVUKpW+wzBInOgiIiIiIiIiIiJZ\n4EQXERERERERERHJAie6iIiIiIiIiIhIFjjRRUREREREREREssCJLiIiIiIiIiIikgVzfQdARERE\nRERERER1N23aNH2HYLB4RhcREREREREREckCJ7qIiIiIiIiIiEgWONFFRERERERERESywIkuIiIi\nIiIiIiKSBU50ERERERERERGRLHCii4iIiIiIiIjIiKhUKqhUKn2HYZDM9R0AGR8zMzN9h9DgTE3l\nN+draWmp7xAalBzbnRxzIsPXpEkTfYfQ4ExMTPQdQoOzt7fXdwhUBxYWFvoOoUHZ2trqOwSqAzmO\nH9atW6fvEBqUHD+X5NbfyVXTpk31HYJBkN+3eyIiIiIiIiIieipxoouIiIiIiIiIiGSBE11ERERE\nRERERCQLnOgiIiIiIiIiIiJZMBFCCH0HQURERERERERE9Lh4RhcREREREREREcmCub4DIONjrCcB\nyvExv7XRaDT6DqHeantctjHmA9Se0/Xr1xsxkobTqlUrfYdAj0GOfTiPJeNQXFys7xAeiZWVlb5D\nINJy//59fYfwSMzNn56vnkOGDNF3CI/kl19+qXFdWVlZI0bScCwsLGpcd+PGjUaMpOG0bNmyxnVq\ntboRI3kymjRp8tj74BldREREREREREQkC5zoIiIiIiIiIiIiWeBEFxERERERERERyQInuoiIiIiI\niIiIjIhKpYJKpdJ3GAaJE11ERERERERERCQLnOgiIiIiIiIiIiJZ4EQXERERERERERHJAie6iIiI\niIiIiIhIFjjRRUREREREREREsmCu7wCIiIiIiIiIiKjupk2bpu8QDBbP6CIiIiIiIiIiIlngRBcR\nEREREREREckCJ7qIiIiIiIiIiEgWONFFRERERERERESywIkuIiIiIiIiIiKSBU50EREREREREREZ\nEZVKBZVKpe8wDIq2E1oAACAASURBVBInunSIjIzE6NGj9R1Gg8nJycHzzz8PW1tbmJmZ6TscIiIi\nIiIiIqInwlzfARgiExMTmJiY6DuMBvPxxx/j2rVrOH78OJo1a6bvcIiIiIiIiIiInghOdD0FMjIy\nEBoaCg8PD32HQkRERERERET0xDzVly4uXLgQvr6+sLS0RLt27TBo0CAAgBBCq9yOHTsQGRmJ1q1b\no0WLFoiMjER6erpWmaVLl0KhUMDKygqtW7dGREQE8vLyAAC3bt3CiBEj4OjoCEtLS7i4uGDSpEl1\nijE3NxcvvfQS2rZtCysrK3h4eGDOnDnS+tu3b2PMmDGwt7eHpaUlQkNDsWPHDmm9qakpdu/ejW+/\n/RampqYYOXIkACA5ORnBwcFo1qwZHB0dMXToUFy5cqX+b2IdpaSkQKFQwNvbG59++qnOMuPGjYO3\ntzeCgoLwxx9/SP8+cuRIODg4IDAw8InF9yhSUlLg4+MDLy+vWnPy8vKCUqnUyqku2za2lJQU+Pn5\nwcfHB7Nnz9ZZZsKECfDx8UHnzp218klKSoKTkxOCgoIaK9w6kWNOu3btQnh4OEJDQ5GcnKyzzOTJ\nkxEaGoqePXvixIkTAComvCMjI6XFzc0NX3/9dWOGXiM5HktyygeQZx/OY8k42t727dsRFBSEgIAA\nzJ07V2eZSZMmISAgAOHh4Th27JjWOo1Gg65du+Kll15qjHAfSo51xJyMI6dt27bB398fCoUCn332\nmc4yEyZMgEKh0BoT5eTkoFevXlAqlQgKCsKXX37ZmGHXSm71pFQqMXfuXHzxxRfo37+/zjK+vr6Y\nNWsWPvvsM0ydOlX6d2tra0ycOBFz587FnDlz4Onp2Vhh16qy3fn6+tbY7iZOnAhfX1906dJFq931\n7t1bancLFixozLBrtXPnToSHhyMkJKTW8UNISAh69OihNX6IiIiQFldXV4MZP2zbtg0BAQHw9fXV\nmmt4UGU9hYSESJ+1JSUlePbZZxEaGgqlUokPPvigMcOunXhKTZ06Vdja2oqFCxeKjIwMcezYMTFr\n1iwhhBARERFi9OjRUtm1a9eKVatWiXPnzonTp0+LpKQk0apVK1FYWCiEEOLIkSPC3NxcLFu2TGRn\nZ4uTJ0+Kb775RuTm5gohhHjrrbeEUqkUaWlpIicnRxw4cEAsXbq0TnH269dP9O7dWxw/flxkZWWJ\nPXv2iJ9//llaP2jQINGxY0exfft28ddff4nx48eLJk2aiL/++ksIIcSVK1fEM888I4YNGyYKCgrE\nrVu3hBBCJCcni127donMzExx8OBB8cwzz4iIiIg6xVReXl6vpaysTHh4eIiLFy+K0tJSoVQqxalT\np7TKbNq0ScTExIjy8nJx8OBBER4eLq1LTU0VR48eFf7+/vX+2w8uDen+/fvCw8NDXLp0SajVaqFU\nKsXp06e1ymzevFnExMQIIYQ4dOiQCA8Pr/O2DRVjXZfS0lLh4eEhzp8/L4qLi4VSqRQnT57UKrNh\nwwYRHR0t7t+/L/bv3y/CwsKkdXv27BHp6enC39+/Xn+36tJQ+RhLToWFhfVarl69Kjp27Cj++OMP\nceXKFeHv7y8OHDigVeaXX34RvXr1EoWFhWLbtm2iS5cu1fbz999/i3bt2okTJ07UO4bKfq+hGMOx\nVB/GkI8c+3AeS8bR9u7du1ev5fbt28Ld3V2cOXNGFBUViYCAAPH7779rlVmzZo3o06ePuHfvnti7\nd68IDQ3VWv/JJ5+I+Ph4ERsbW++/X7k0FGOoo/piTvrJqaysrF5LSUmJ8PDwEBkZGeLevXsiMDBQ\nnDhxQqtM5ZiorKxM/PbbbyIsLEyUlZWJnJwckZ6eLsrKysSNGzeEt7d3tW3rujQkQ6+n+Pj4ei1D\nhgwRly9fFm+++aZISEgQly5dEhMnTtQqM2LECJGdnS3+53/+R8THx4ukpCRp3d69e8W///1vER8f\nL4YOHSoSExPrHUN8fHytOanV6notxcXFwsPDQ5w7d07cvXtXBAYGiuPHj2uVWb9+vYiOjhZqtVpq\nd2q1WmRnZ4u0tDShVqvF9evXhZeXV7Vt67rU5vr16/Va/v77b9GxY0dx7NgxUVBQIPz9/cXBgwe1\nyqxYsUL06tVLXL9+XWzfvl106dKl2n6uXbsmjR/qG8P169el+KdPny6mT5+ulVNpaWm9lnv37gl3\nd3dx9uxZcefOHREYGCiOHTumVWbdunUiKipKlJaWil9//VWEhYVJ627cuCFKS0vF3bt3RVhYmNi9\ne3e9Y6i6NISn8oyuu3fvYvbs2VCpVBg7diw8PT2hVCoxefJkAKh2f66BAwdi0KBB8PLygkKhwNdf\nfw0hBFJSUgAA2dnZsLGxwYABA9ChQwf4+/tj5MiRaN++vbQ+ODgYoaGhcHZ2Rrdu3TBq1Kg6xZqd\nnY3u3bsjMDAQLi4uiIyMxJAhQwAA58+fx3//+18sWrQIvXv3RqdOnTBv3jz4+/tLZ6+0a9cOTZo0\ngZWVFezt7aV7dI0bNw7PPfccXF1d0bVrVyxYsAD79u3D5cuXH/8NriItLQ2enp5wc3ODhYUF4uPj\nsX79eq0yGzZswKuvvgoACA8Px82bN6UzzHr06IGWLVs2eFyPo2pOQ4YM0ZnTa6+9BkA7p7ps29jS\n0tLg4eEhxTR48GBs2LBBq8ymTZu06qioqMjg60huOf3+++/o2LEjXFxcYGFhgRdeeAFbt27VKpOS\nkiL1ESEhISgqKsLVq1e1yqSmpsLNzU3qo/RJjseSnPIB5NmH81gyjrZ35MgRuLu7w9XVFRYWFnj5\n5ZexadMmrTKbN2/GsGHDAABhYWEoKipCQUEBgIqz4rdt24bExMRqZ+vrgxzriDkZT04Pjoni4+Ox\nceNGrTIbN27E8OHDAfzfmKigoAAODg7S2e22trbw8fF5It8X6ktu9eTp6YkrV67g77//hkajwYED\nBxASEqJVpnv37khLS8P169cBVFzZAwBWVlbw8fHB3r17AQDl5eUoLi5u1Ph1SU9PrzYWr9ruNm3a\npNWH37x506Db3dGjR7XGDy+++GK18cPWrVu1xg+3bt2qNn7Yu3cv3Nzc4Ozs/FjxTJs2DdOmTXus\nfeiqp6qftZs2bZL6hwfrCag4mxAA1Go1NBoNWrVq9VjxNJSncqLr1KlTKC0tRZ8+fepU/tKlSxg+\nfDi8vLxgZ2cHOzs7FBUVITs7GwDQp08fuLu7o2PHjhg6dCiWLFmCwsJCafuxY8di9erVCAgIwIQJ\nE5CSklLnAdeECRPw8ccfo2vXrpg8eTJ+/fVXad3p06cBAD179tTapmfPnjh16lSt+927dy+ioqLg\n4uKC5s2bo0ePHgCArKysOsVVH3l5eVoHsbOzs3RZZ6X8/Hx06NCh1jKGJC8v76Hx1lTGEHPVFVN+\nfr5Wmar12L59e73HXRs55nT58mWtL9ROTk7VPvR1lama95o1awzmMh65HUtyyweQZx/OY0m7jKHW\nX35+frU+umod1FbmX//6F2bOnAlTU8MY7sqxjpiTdhlDzUnXcaKrH69aJjc3V6tMZmYmjh07hrCw\nsCcbcB3IrZ5atWql9f3x+vXr1SYMHB0dYWtriylTpmDmzJnS9zd7e3vcvn0b//znPzFr1iyMHj0a\nTZo0adT4ddE1ztY1Fn9YXWRmZuL48eMG0e4acvxQedskfat6PNS1f6gso9FoEBoaig4dOiAiIgIK\nhaJxAn8Iw/jkN3BxcXHIzc3FokWLcPjwYRw7dgz29vZQq9UAABsbGxw5cgRr166Ft7c3vvrqK3h6\neuL3338HUDERlp2djffffx8lJSUYNmwYnnvuOZSXlz/0bycmJiIrKwv//Oc/cfnyZcTExEizqTV5\n2CRadnY2YmNj4e7ujhUrVuDo0aPSmS6VOTWkuj7Bsmrchvzky0fNyVCxjuq/nSGrLSe1Wo1t27Zh\nwIABjR2WTjyWDB+Ppf/DY6lxPWpOQghs2bIFbdu2RVBQkMHkzDoyDsxJ93Z37txBfHw8Pv/8c9ja\n2jZofI9CbvVUlzjNzMzQsWNHfPLJJ5g1axZefPFFODg4wMzMDG5ubti+fTv+93//F6WlpQbx2dRQ\n7W7IkCGYO3euUbc7OY4fKrczMzNDeno6Ll68iN9++w2pqakNHuOjeConuipvQL9t27aHli0sLMSZ\nM2cwefJk9O7dGz4+PmjatGm10w9NTU3Ro0cPqFQqHD16FI6Ojvjpp5+k9S1btsSQIUPw1VdfYfPm\nzUhNTcWZM2fqFK+DgwMSExPx/fffY+nSpVi+fDnu3LkDPz8/AKjWmPbt24eAgIAa95eeno6SkhLM\nmzcP3bp1g5eX1xO9EX3VX4RycnKqnabp5OSEnJwc6XVubq5BXApSk/bt22vFqyunqmVyc3Ph7Oxc\np20bW9X3Pycnp9r7X7Ue8/LyDLqO5JiTo6Oj1i8seXl5cHJyqrVMfn4+HB0dpdc7d+6EUqlEmzZt\nnnzAdSC3Y0lu+QDy7MN5LFUw9Lbn5OSk1fZ0tauqZSrr8tChQ9i8eTMUCgVee+01pKamIikpqdFi\n10WOdcScKhh6TrqOJV39eE1jorKyMgwePBgJCQkG8+VcbvV0/fp1tG7dWnrdunVr6RLFSoWFhThx\n4gTKyspw584dnDlzBi4uLigsLMT169dx8eJFAMDhw4fRsWPHRo1fl6rjB119uK46qvw8LisrQ3x8\nvEG1OzmOH3SN4erSP1TN287ODjExMTh69OiTDbiOnsqJLltbW0yaNAnTp0/HokWLcO7cORw/fhyf\nfPIJgIrZysoZy5YtW6Jt27ZYvHgxMjIycPDgQQwdOhRWVlbS/tavX4958+bh6NGjyM7Oxtq1a5GT\nkyNNRL3//vtYu3Ytzp49i4yMDPz4449o1qwZXFxcHhrrm2++ia1bt+LChQs4deoU1qxZAxcXF9ja\n2sLDwwMvv/wyxo4di+3bt+Ovv/7C+PHjcfr0abzzzjvSPh7MBwC8vb1hYmKCOXPm4NKlS1i3bh1m\nzJjRIO+tLiEhIcjIyEBmZibUajVWrlxZ7Uki/fv3x7JlywAAhw4dQosWLdCuXbsnFtPjqprTihUr\ndOb0ww8/ANDOqS7bNraQkBCcP39eimnVqlXo16+fVpm4uDitOrKzszP4OpJbTsHBwbh48SKys7Oh\nVquxbt06REdHa5WJjo7GihUrAFRMatvZ2cHe3l5av2bNGrz44ouNGndt5HgsySkfQJ59OI8l42h7\nnTt3xoULF5CVlQW1Wo3Vq1ejb9++WmX69u2L5cuXA6i4Z4+dnR0cHBzw4YcfIiMjA2fOnMEPP/yA\niIgILF26VB9pSORYR8zJeHJ6cEy0cuVKxMXFaZXp168ffvzxRwDaYyIhBEaPHg2FQoHx48frI3yd\n5FZPFy9ehKOjI9q2bQszMzN069YNR44c0Spz5MgRdOrUCSYmJmjSpAk8PT2Rl5eHoqIiFBYWSpMp\nAQEB1S471YcuXbpUG4tXbXdxcXFSH3748GGpjoQQeP3116FQKDBu3Dh9hK9T1fHD2rVrq40fYmJi\ntMYPzZs31xo//Pe//zWY2x4Auuup6mdtXFyc1D88WE/Xrl3DzZs3AQDFxcXYtWuXwTyx3lzfAejL\njBkz0LZtW8yfPx8TJ05Ey5YtERERAaDiNLzKU/FMTU2xatUqjBs3DoGBgXBzc8PMmTPxr3/9S9pX\nq1atMH/+fHz88ce4ffs2XFxcMGXKFIwYMQJAxQ0Cp06diszMTJiZmSE4OBhbt26Vbgz/MBMmTEBO\nTg6sra3RrVs3rRveLV26FO+88w6GDRuGW7duITAwEJs2bYK3t7dU5sF8gIrO78svv8Qnn3yCmTNn\nIiQkBPPmzUNsbOyjv6G1MDc3x5dffono6GhoNBqMHDlSuqk/AIwZMwaxsbHYsmULvLy8YGNjg2+/\n/VbaPiEhAampqSgsLISLiwtUKpX03uqLubk5FixYgKioKGg0GowaNarGnDw9PWFjY4Pvvvuu1m31\nydzcHMnJyYiNjYVGo8GIESOgUCiwePFiAMDrr7+O2NhYpKSkoFOnTrCxsdH6wvDKK69g3759KCws\nhJubG6ZPn47ExEQ9ZVNBrjl9+umnGDRoEMrLy/HKK6+gU6dO+M9//gOg4lLn3r17Y8eOHQgJCYG1\ntbXWY8Dv3r2L1NRUfPHFF3rKoDo5HktyyqcyLjn24TyWjKPtff755+jfvz80Gg1ee+01+Pj4SH11\nUlISoqOjpcfX29jY4KuvvtK5L0O4lFaudcScjCOn5ORk9O3bt8YxUUxMDLZu3QofHx9YW1tLx9n+\n/fvx008/ISAgQLo5+syZMxEVFaW3fAD51VN5eTm+++47/O///i9MTU2xZ88e5Ofn4/nnnwcA7Nq1\nC/n5+Th+/Dhmz54NIQR2794tnTn03Xff4c0334S5uTkKCgrw73//W5/pAKh4n+fNm4e+ffuivLwc\niYmJUCgUWLJkCQBg9OjRiImJQUpKChQKhVa7O3DggNTuQkNDAQAfffSRQbS7yvGDRqPBsGHDahw/\ndOnSBdbW1liwYIG0feX4Yd68eXrKoLrKeoqLi9PqH2qqJxsbG2ndlStXMGrUKJSXl6O8vBwJCQl4\n7rnn9JmOxEQYy4XLZDCMtckYwiC3MWk0Gn2HUG9mZmY1rjPGfIDac6p6SrqxMJSnqdCjkWMfzmPJ\nOBjCU8AexYNn8RMZgvv37+s7hEdibv70nGNR+dQ9Y/PLL7/UuK6srKwRI2k4FhYWNa67ceNGI0bS\ncCqfZq1SqQBA68mLT+Ke242tIR6m8FReukhERERERERERPLDiS49ys7Ohq2tLZo1a6Zz+fnnn/Ud\nIhERERERERGR0Xh6zh81QO3bt8eJEydqXP/gTeuIiIiIiIiIiKh2nOjSIzMzM7i7u+s7DCIiIiIi\nIiIiWeCli0REREREREREJAs8o4uIiIiIiIiIyIg8+LRF0sYzuoiIiIiIiIiISBY40UVERERERERE\nRLLAiS4iIiIiIiIiIpIFTnQREREREREREZEscKKLiIiIiIiIiIhkgRNdRERERERERERGRKVSQaVS\n6TsMg8SJLiIiIiIiIiIikgVOdBERERERERERkSxwoouIiIiIiIiIiGSBE11ERERERERERCQLnOgi\nIiIiIiIiIiJZMBFCCH0HQURERERERERE9Lh4RhcREREREREREckCJ7qIiIiIiIiIiEgWONFFRERE\nRERERESywIkuIiIiIiIiIiKSBU50ERERERERERGRLHCii4iIiIiIiIjIiKhUKqhUKn2HYZDM9R0A\nGR+NRqPvEB6JmZlZjeuEEI0YScMxMTHRdwiNRo51VF5e3oiRNBxT06frNxJjbHtPU99ARA3HGPs7\n4Onr8+Q4FifD5+joqO8QHsnly5drXCfHsfidO3caMZInw9bW9rH38XR9WyEiIiIiIiIiItniRBcR\nEREREREREckCJ7qIiIiIiIiIiEgWONFFRERERERERESyYCKM9a6TpDdyvAGmsR4GT9PNV+VYR3K8\nAaYcGWPbe5r6BiJqOMbY3wFPX58nx7E4GT7ejN5w8Gb0D/d0fVshIiIiIiIiIiLZ4kQXERERERER\nERHJAie6iIiIiIiIiIhIFjjRRUREREREREREssCJLiIiIiIiIiIikgVOdBERERERERERGRGVSgWV\nSqXvMAwSJ7qIiIiIiIiIiEgWONFFRERERERERESywIkuIiIiIiIiIiKSBU50ERERERERERGRLHCi\ni4iIiIiIiIiIZMFECCH0HYQhiIyMhJeXF5YsWaLvUBpcZmYm3N3d8dtvv+GZZ5557P1pNJoGiKrx\nmZmZ1bjOWA8DExMTfYfQaORYR+Xl5Y0YScMxNX26fiMxxrb3NPUNRNRwjLG/A56+Pk+OY3EyfI6O\njvoO4ZFcvny5xnVyHIvfuXOnESN5MmxtbR97H0/Xt5VamJiYGMyH5EcffYSOHTs22P5cXFxw5coV\nhIWFNdg+iYiIiIiIiIgMDSe6jJhara5TOVNTU9jb28Pc3PwJR0REREREREREpD9P3UTXwoUL4evr\nC0tLS7Rr1w6DBg0CUP1U7R07diAyMhKtW7dGixYtEBkZifT0dK0yS5cuhUKhgJWVFVq3bo2IiAjk\n5eUBAG7duoURI0bA0dERlpaWcHFxwaRJkx4a33/+8x9MnToVWVlZMDU1hampKT788EMAgJubG6ZM\nmYKxY8eiTZs2iIiIAAAkJycjODgYzZo1g6OjI4YOHYorV65I+8zMzISpqSkOHDig9XrVqlWIi4uD\njY0NPDw88P333z/iu/pwKSkp8PPzg4+PD2bPnq2zzIQJE+Dj44POnTvjjz/+kP49KSkJTk5OCAoK\nemLxPYqUlBQoFAp4e3vj008/1Vlm3Lhx8Pb2RlBQkFZOI0eOhIODAwIDAxsr3IdKSUmBj48PvLy8\nas3Hy8sLSqVSK5+6bKsPcqsjoCInX19fdOrUqcZjafz48ejUqROCg4O1cho1ahQcHR2hVCobK9w6\nkVvbk2u7k1MdAcyJOemH3PIB2OcZUz3JcSwup3qSWz4A8I9//AO//vor9u/fjzfeeKPaejs7O3z7\n7bfYuXMnNm/eDG9vb2nd559/jhMnTmD37t2NGfJDyXEsvmPHDnTu3BlBQUH4/PPPdZZ55513EBQU\nhG7duuH48ePSv/v5+aFr167o3r07IiMjGyniOhBPkalTpwpbW1uxcOFCkZGRIY4dOyZmzZolhBAi\nIiJCjB49Wiq7du1asWrVKnHu3Dlx+vRpkZSUJFq1aiUKCwuFEEIcOXJEmJubi2XLlons7Gxx8uRJ\n8c0334jc3FwhhBBvvfWWUCqVIi0tTeTk5IgDBw6IpUuXPjTG4uJiMXnyZNGhQwdRUFAgCgoKxN27\nd4UQQri6uormzZsLlUolMjIyxJkzZ4QQQiQnJ4tdu3aJzMxMcfDgQfHMM8+IiIgIaZ+XLl0SJiYm\nYv/+/Vqv3d3dxapVq8SFCxfEe++9J8zNzcW5c+ceGuP9+/frtZSWlgoPDw9x/vx5UVxcLJRKpTh5\n8qRWmQ0bNojo6Ghx//59sX//fhEWFiat27Nnj0hPTxf+/v71/tsPLrUpLy+v11JWViY8PDzExYsX\nRWlpqVAqleLUqVNaZTZt2iRiYmJEeXm5OHjwoAgPD5fWpaamiqNHjwp/f/96/+0Hl4Zy//594eHh\nIS5duiTUarVQKpXi9OnTWmU2b94sYmJihBBCHDp0SISHh9d524YgxzrSaDT1WtRqtfDw8BAXLlwQ\nJSUlQqlUij///FOrzMaNG0V0dLTQaDTiwIEDIjw8XFq3d+9eceTIEeHv71/vv/3g0pDk1vaMod3V\nlzHUUX0xJ+akD8aQjxw/a+vLGOpJjmPxR3kPDL2e6sMY8nFwcKjX4uTkJC5evChCQkKEs7OzOHny\npOjRo4dWmYULF4pPP/1UODg4iO7du4vU1FRp3YABA0SvXr3E6dOn6/23H1xqI8ex+O3bt+u13Lx5\nU7i7u4s///xTXL9+XQQEBIj09HStMqtXrxZ9+vQRt2/fFrt37xYhISHSOldXV5GVlVXvv1vb0hCe\nmjO67t69i9mzZ0OlUmHs2LHw9PSEUqnE5MmTAVS/ieXAgQMxaNAgeHl5QaFQ4Ouvv4YQAikpKQCA\n7Oxs2NjYYMCAAejQoQP8/f0xcuRItG/fXlofHByM0NBQODs7o1u3bhg1atRD47S0tISNjQ3MzMxg\nb28Pe3t7WFtbS+vDwsIwdepUeHp6wsfHB0DFzP5zzz0HV1dXdO3aFQsWLMC+fftqvfEeALz11lsY\nNGgQ3N3dMWPGDFhZWWHv3r11fk/rKi0tDR4eHnBzc4OFhQUGDx6MDRs2aJXZtGkTXn31VQBAeHg4\nioqKpLPSevTogZYtWzZ4XI8jLS0Nnp6eUk7x8fFYv369VpkNGzZo5XTz5k2DzalqPkOGDNGZz2uv\nvQZAO5+6bKsPcqsjoPqxFB8fX+1Y2rhxo9HlJKe2J9d2J6c6ApgTwJz0QW75AOzzAOOpJ7mPxY29\nnuSWDwAEBwcjMzMTubm5uH//PtavX4+oqCitMl5eXti/fz8A4MKFC+jQoQNat24NADh8+DBu3rzZ\n6HHXRo5j8SNHjsDd3R2urq6wsLDASy+9hM2bN2uV2bJlCxISEgAAoaGhKCoqwtWrV6X1wgAfZPLU\nTHSdOnUKpaWl6NOnT53KX7p0CcOHD4eXlxfs7OxgZ2eHoqIiZGdnAwD69OkDd3d3dOzYEUOHDsWS\nJUtQWFgobT927FisXr0aAQEBmDBhAlJSUh67AZiYmOi8ofzevXsRFRUFFxcXNG/eHD169AAAZGVl\n1bq/B08/rryPV0FBwWPFqEt+fj46dOggvXZ2dkZ+fr5Wmby8PDg7O0uv27dvL10Gaoiqxuvs7Fwt\nXl15G2pOeXl5D421pjKGmqfc6gioXge6jpO61KUhkVvbexranbHXEcCcqpb5/+3deXxU9b3/8fcE\nCEtCAypkheKEhDUL3ATqEgncKoKA7eMhEi2K4FWvy623LpU+aCUjYi+30lsUIUXUigvFBQXCahWi\ntWyJgoVQDMiShKQXqSAEk9Dk+/uDm/PLZCELITP55vV8PObxyDnne2Y+n/lMTmY+OXO+5NQ6bMtH\n4phXc4y/5mrre3Gb6mRbPpIUFhbm9TorKipSWFiY15jc3FyNHz9e0vnPplFRUX49u6O/vRf3eDzy\neDwXdR9FRUXOyTrS+ZxqnjBz7NixWmOqautyuTRp0iRdd911euWVVy4qlpbUbhpdTTVhwgQVFBRo\n0aJF2r59u3bt2qXevXs7F4APCgpSdna23nvvPcXGxiojI0P9+/fXZ599Jul8I+zo0aOaNWuWSktL\nNXXqVI0ZM+aipzANCgryWj569KjGjx8vt9utFStWKCcnx+kqN3Sx+sDAQK9ll8t1SaZYbexsljUb\ngf4yC2ZdkCcvKwAAIABJREFUbMupufn4M9tqJJFTW0CN2gZyahtsy8m2fCSOeW0FdfJ/tuXTWM8/\n/7y+973vadOmTZoxY4b27NmjiooKX4dVL36Xatu0aZM+/fRTvfvuu3rxxRedM/R8rd1Mw1d1AfqN\nGzdq6NChFxx74sQJ7du3T7/97W91/fXXS5IKCgq8Ts+Tzp8FlZKSopSUFHk8Hg0ePFhvvvmmhg8f\nLknq2bOn0tLSlJaWpunTp+uqq67Svn37NGTIkAs+fmBgYKN/wXfu3KnS0lL97ne/U+fOnZ11/iQi\nIkL5+fnOcn5+vldHWDrfFS4oKHCWCwsLa43xJzXjzc/P9/ovmFQ774KCAr/NKTIyslaNauZTc0xB\nQYGioqJ07ty5Bvf1BdtqJNVfg4bGtKWc2vprrz287tp6jSRyqkJOrcu2fCSOeVX8vU62vhe3qU62\n5SOdP1MoIiLCWY6IiKh1plBJSYkeeeQRZ3n79u0NfivJl2x8Lx4eHu51xllBQYFX3aTztas+prCw\n0BlTdQZer169NHHiROXk5Oiaa65phcgvrN2c0RUcHKxHH31U6enpWrRokb788kvt3r1b//Vf/yXp\nfIeyqkvZs2dP9erVS0uWLFFeXp62bt2q2267TV27dnXub9WqVfrd736nnJwcHT16VO+9957y8/Od\nJtasWbP03nvvaf/+/crLy9Prr7+u7t27q2/fvg3G6na7VVxcrG3btunrr7/Wd99958RYU2xsrFwu\nl5599lkdOnRI77//vubMmdOs5+hS/YcgKSlJBw4c0OHDh1VeXq63335bEydO9BozYcIEvfbaa5Kk\nbdu2KSQkRKGhoZcknpaQlJSkvLw8J6e33npLkyZN8hozadIkr5x69OjhtznVzGfFihV15rNs2TJJ\n3vk0Zl9fsK1GUu3fpbfeeqvW79LEiRPbXE42vfZsfd3ZVCOJnCRy8gXb8pE45kltp062vxdv63Wy\nLR9J2r17t6688kpFRUWpU6dOmjRpkjZt2uQ1pnv37urUqZMk6Sc/+Ym2bt2qs2fP+iLcRrHxvfjw\n4cN18OBBHTlyROXl5Vq5cqXzddIq48eP1/LlyyWdv05ZSEiIevfurbNnz+r06dOSzjctP/zwwwZP\n6mk1LXJJ+zZkwYIFZsCAASYwMNCEhoaaW2+91RhjTGpqqtesi1lZWSYhIcF06dLFDBw40Lz77rum\nf//+xuPxGGOM+fjjj82YMWNMr169TJcuXUxsbKyZN2+es/+cOXPM0KFDTXBwsAkJCTGpqanOrIcN\nOXfunLn99tvNZZddZlwul/OY/fr1M3Pnzq01/oUXXjB9+vQxXbt2NSkpKWbDhg0mICDAZGVlGWPO\nz7IYEBDgNeti9eUq1fO7kObMsrJmzRoTGxtroqOjzdNPP23++c9/mkWLFplFixY5Yx544AETHR1t\n4uPjzY4dO5z1U6ZMMeHh4SYwMNBERUWZpUuX+nzWxcrKSrN27Vonp7lz55rKykqzePFis3jxYmdM\n9Zyys7Od9WlpaV45vfTSSz6fZWjdunVOPs8884wxxpiMjAyTkZHhjHnwwQedfHJyci64b0uzsUbN\nmWUlMzPTK6eKigrnd6lqTPWcdu7c6ayv63fJ17MuGmPfa8/fX3fN4e81ag5yIidf8Pd8bPxb2xz+\nXicb34s3h7/Xqan8PZ/mzHh4++23m7y8PPPVV1+ZuXPnmrCwMPP444+bxx9/3ISFhZmbbrrJ5OXl\nmby8PLNmzRoTExPj7Lty5UpTVFRkSktLTUFBgXn44Yd9Puuiv70XT09PN+np6V45NWeWw6peh9vt\nNrNnzzanT582CxYsMAsWLHDG3HvvvcbtdpuhQ4eaTz75xJw+fdp88cUXJi4uzsTFxZlBgwY5+/rD\nrIsuYyz7oi8uOX/+3vSFdOjQod5tbfXXwJ+/793SbKzRpbgmXmsICGg3JwNLapuvvfZ0bADQctri\n8U5qf8c8G9+Lw//580XiL6Tm1yWra+vvxasuRD979mxn25kzZ3wSU0sKDg6+6Pug0YUms/GPa1v9\nNWhPb+xsrFFb/+PaXrTF1157OjYAaDlt8Xgntb9jno3vxeH/aHT5jwu9F6fRdV77+rTiB44eParg\n4GB17969zlvVd18BAAAAAADQNO1m1kV/ERkZqS+++KLe7b17927FaAAAAAAAAOxBo6uVdejQQW63\n29dhAAAAAAAAWIevLgIAAAAAAMAKNLoAAAAAAABgBRpdAAAAAAAAbYjH45HH4/F1GH6JRhcAAAAA\nAACsQKMLAAAAAAAAVqDRBQAAAAAAACvQ6AIAAAAAAIAVaHQBAAAAAADACi5jjPF1EGhbKioqfB1C\ns3To0KHebW3118Dlcvk6hFZjY40qKytbMZKWExDQvv5H0hZfe+3p2ACg5bTF453U/o55Nr4Xh/8L\nDw/3dQjNUlRUVO82G9+LnzlzphUjuTSCg4Mv+j7a16cVAAAAAAAAWItGFwAAAAAAAKxAowsAAAAA\nAABWoNEFAAAAAAAAK3AxegAAAAAAAFiBM7oAAAAAAADaEI/HI4/H4+sw/BKNLgAAAAAAAFiBRhcA\nAAAAAACsQKMLAAAAAAAAVqDRBQAAAAAAACvQ6AIAAAAAAIAVXMYY4+sgAKA9Ki4u9nUIzRIWFubr\nEFpVW/wz6XK5fB1Cq6qsrPR1CM0SENC+/t9InYCWcfbsWV+H0CzdunXzdQitpqSkxNchNEtQUFC9\n28rKyloxkpbTuXPnereNHj26FSNpOZs3b653W3l5eStGcmkEBgZe9H3wlxsAAAAAAABWoNEFAAAA\nAAAAK9DoAgAAAAAAgBVodAEAAAAAAMAKNLoAAAAAAABgBRpdAAAAAAAAbYjH45HH4/F1GH6JRhcA\nAAAAAACsQKMLAAAAAAAAVqDRBQAAAAAAACvQ6AIAAAAAAIAVaHQBAAAAAADACh19HQAAAAAAAAAa\nb/bs2b4OwW9xRhcAAAAAAACsQKMLAAAAAAAAVqDRBQAAAAAAACu0eqMrNTVV99xzT2s/rFXS09MV\nExPj6zAAAAAAAAD8Sqs3ulwul1wuV2s/bJ2efvppXXnllb4Oo8kef/xxbd++3Vluq3kAAAAAAAC0\nJGZdbIOCgoIUFBR0Se773Llz6tSp0yW5bwAAAAAAcPE8Ho8kZl+syyU7o+uFF17Q4MGD1aVLF4WG\nhuqWW26RJBljvMZ98MEHSk1N1eWXX64ePXooNTVVO3fu9BqzdOlSDRo0SF27dtXll1+uUaNGqbCw\nUJL07bffavr06QoPD1eXLl3Ut29fPfroow3G94c//EFPPvmkjhw5ooCAAAUEBMjj8WjWrFkaOHBg\nrfH333+/UlJSnH07deqkLVu2KC4uTt26ddOYMWNUXFyszZs3KzExUcHBwbr++ut17Ngxr/t59dVX\nNXjwYHXu3Fl9+vTRr371K1VUVDjbq77aOWfOHIWHh+vyyy/XtGnTVFJS4oyp/tXFuvJ46qmnJEmn\nT5/Wfffdp969e6tLly5KTk7WBx984NzP4cOHFRAQoDfffFPjx49XcHCwnnzyyQafOwAAAAAAAH90\nSRpds2fP1syZM/XQQw9pz5492rRpk5KSkuocW1JSooceekjbtm3T1q1bFRMToxtvvFH/+Mc/JEk5\nOTm6//77NWvWLH355ZfKysrStGnTnP1/+ctf6vPPP9fq1at14MABrVixQoMHD24wxrS0ND3xxBOK\niopScXGxiouL9fjjj+uuu+7Sl19+qR07djhjy8rK9NZbb3k9bmVlpZ566im9/PLL+vTTT1VQUKDJ\nkycrPT1dS5YscdY98sgjzj5r167V3XffrWnTpmnv3r2aP3++XnjhBacTW+Wdd97RyZMnlZWVpT/+\n8Y/KzMzUvHnzGp3HY489JkmaMWOGPvjgA73xxhvavXu3rrnmGk2YMEH79+/3uo8nnnhCd9xxh/bu\n3av77ruvweeuOTZs2KCBAwcqJiam3lx++tOfKiYmRgkJCfr888+btK8v2JaTbflIdub00Ucf6dpr\nr9XVV1+thQsX1tqel5enCRMmqF+/fsrIyGjSvr5iW502bNigQYMGKTY29oL5xMbGKjEx0SufGTNm\nKCwsTPHx8a0VbqPYViPpfFyDBw/WgAED9N///d91jnn44Yc1YMAADRs2zCunu+++W+Hh4UpISGit\ncBuFOvl/nWytETn5f06bNm3SsGHDFB8fr/nz59c55rHHHlN8fLxGjhypXbt2eW2rqKjQVVdd5Zy8\n4A9sq9MHH3ygYcOGKSEhQb/97W/rHPPYY48pISFBP/jBD7R7926vbRUVFbr66qs1efLk1gi3UTZt\n2qT4+HgNGTJEzz77bJ1jHnnkEQ0ZMkTJycnO6660tFQpKSkaMWKEEhMT9ctf/rI1w76g5ORkvfrq\nq3rttdeUlpZWa/utt96qJUuWaMmSJXrppZf0pz/9yfk21vLly7V06VItWbJEixYtau3Q67Vx40bF\nxcVp8ODB9dbpZz/7mQYPHqykpCSvOl177bVKTk5WQkKCX9VJpoWdOXPGdOnSxcyfP7/O7ampqeae\ne+6pd/+KigrTs2dP88YbbxhjjFm5cqUJCQkx3377bZ3jb775ZnPXXXc1K9Y5c+aYfv361Vr/gx/8\nwDz44IPO8ttvv226du1qTp06ZYwx5pVXXjEul8vs3r3bGfOb3/zGuFwu89lnnznr/ud//sdcccUV\nzvK1115rpkyZ4vVYCxYsMF27djXnzp0zxhgzatQok5iY6DXm/vvvN1dddZWzPHv2bNO/f/8L5pGX\nl2dcLpdZv3691/rhw4ebGTNmGGOMOXTokHG5XObpp5+u6+lpMf/85z9NdHS0OXTokCkvLzcJCQkm\nNzfXa8zatWvNuHHjjDHGbNu2zYwcObLR+/qCbTnZlk9j4/J1TkVFRU26FRQUmH79+pkdO3aYo0eP\nmiFDhpisrCyvMX/961/N+vXrzcMPP2xmz57dpH0be2tJbaFOlZWVjb6dO3fOREdHm6+++sqUlZWZ\nhIQEs3fvXq8xmZmZZty4caaystJs3brVjBw50tmWlZVlcnJyzNChQ5v0uDVvLakt1KiioqJJt/Ly\nchMdHW0OHjxoSktLTUJCgtmzZ4/XmDVr1pgbb7zRVFRUmL/85S9m5MiRzrYtW7aY7OxsM3To0CY/\ndvVbS6JO/l+ntlCjpiIn3+RUUlLSpNu3335r3G63yc3NNSdPnjRxcXEmJyfHa8y7775rbrjhBlNS\nUmK2bNlikpOTvbb/+te/NrfeeqsZP358kx+/6taS/L1OZ86cadLt1KlTxu12m71795pvvvnGxMXF\nmezsbK8xVTU6c+aM2bx5s0lOTvbaXr1GTX38qtuFlJaWNulWUlJi3G63+dvf/mZOnz5t4uPjza5d\nu7zGvP/++2bs2LGmtLTUfPzxx2bEiBHOtn/84x+mtLTUnDlzxowYMcJ8+OGHTY6htLT0gjmlpqY2\n6TZmzBhTUFBgpkyZYv71X//V5OXlmTvvvLPe8TNnzjTZ2dnO8rFjx8zEiROb/Lg1b1XS09NNenq6\nV05lZWVNup09e9a43W6zf/9+c+bMGadO1cdU1amsrMx88sknZsSIEc62b775xpSVlZmSkhIzYsQI\n89FHHzU5hpq3ltDiZ3Tt3btXZWVluuGGGxo1/tChQ7rjjjsUExOjkJAQhYSE6NSpUzp69Kgk6YYb\nbpDb7daVV16p2267TS+++KJOnDjh7P/AAw/onXfeUVxcnP7zP/9TGzZsqPX1yKaaNm2aVqxY4Xyl\ncNmyZbr55pv1ve99zxnjcrkUFxfnLIeGhkqS13/hQ0NDdeLECSee3NxcXXfddV6Pdd1116m0tFQH\nDx501tX8z2N4eLj+/ve/NymH3Nxc5/5rPt7evXu91o0YMaJJ991UO3bsUP/+/dWvXz916tRJaWlp\nWrVqldeY1atXO2fMjRw5UidPnlRxcXGj9vUF23KyLR/Jzpw+//xz9evXT3369FGnTp108803a+PG\njV5jrrjiCiUmJta61l5j9vUF2+pUM6YpU6bUmc+dd94pyTsfSUpJSVHPnj1bPe4Lsa1G0vmcoqOj\nveq0evVqrzFr1qyhTj5mW51srRE5+X9O2dnZcrvd+v73v69OnTrplltuUWZmpteYdevW6Sc/+Ymk\n82esnDp1yvn8UVhYqI0bN+quu+666M9ZLcW2OtVVo7Vr13qNWbt2rW6//XZJ52t08uTJWjWaNm2a\n39Ro586dXsfwyZMna82aNV5jMjMzNXXqVEnnP5NWz6lbt26SpPLyclVUVOiyyy5r3QTqMHDgQBUW\nFurvf/+7Kioq9NFHH+maa66pd/wPf/hDffTRR17r/GVivio163TrrbfWOj5kZmbqjjvukNQ26iT5\nYNbFmiZMmKCCggItWrRI27dv165du9S7d2+Vl5dLOn/h9ezsbL333nuKjY1VRkaG+vfvr88++0zS\n+UbY0aNHNWvWLJWWlmrq1KkaM2aMKisrmx3TlClTdPr0aWVmZur48ePOQaO6gIAArxdp1c8dOnSo\nta4pBxuXy6XAwMBa6y4mn+rqiuVSXdi+SmFhofr06eMsR0VFOddYa2jMsWPHGtzXF2zLybZ8JDtz\nKi4uVkREhLMcHh7ufKC7lPteSrbVqbCwUFFRUc5yXTH5Y9wXYluNpNrxRkZGNjonf0WdzvOX2OvS\nHmpETv6Z07Fjx7z+NkVGRqqoqOiCYyIiIpxrDT/xxBOaO3euAgJ8/tHRYVud6qpRzWs9FxUV1VtH\nf6xRY3Kqa0xVLSoqKjRixAj17dtXo0aN0qBBg1on8Au44oor9L//+7/O8vHjx3XFFVfUObZz585K\nSkpSVlaWs84Yo2effVYZGRm66aabLnm8jVHz96Guv7UN1Sk5OVl9+vTxmzpJl6DRVXUB+sacKXDi\nxAnt27dPM2fO1PXXX6+BAweqc+fOXi8e6XxTKSUlRR6PRzk5OQoPD9ebb77pbO/Zs6fS0tKUkZGh\ntWvXKisrS/v27Wvw8QMDA70uBF/9/iZOnKjXXntNy5cv12WXXaaxY8c2IvsLGzJkiNcLXZKysrLU\nrVs3RUdHN/t+68pjyJAhzv1X9/HHH3udidYaGtu19pf/PjSGbTnZlo9kZ042sq1Ozc3H3/67V51t\nNZKoU1thW52oUdtATt7Wr1+vXr16KTEx0a9ytq1Ozc3HGOPUKCEhwa/yvdhjeIcOHbRjxw4dPHhQ\nf/7zn2t9rvV3V199tfbs2eM1qdx//Md/6N5779UTTzyhH/3oRxf9uXz27NkXPeNiS9Rp586d+uqr\nr/yqTh1b+g6Dg4P16KOPKj09XV27dtUPf/hDfffdd1q/fr1mzpwpY4zzJPXs2VO9evXSkiVL5Ha7\n9fXXX+vnP/+5unbt6tzfqlWrdOjQIaWkpKhXr17KyclRfn6+08iZNWuWkpKSNHjwYAUEBOj1119X\n9+7d1bdv3wZjdbvdKi4u1rZt29S/f38FBQU5j33nnXfqlltu0b59+zR16tQWedP0i1/8QhMnTtS8\nefP04x//WLt27ZLH49Gjjz6qjh3Pl6L689NYdeURHR2tyZMn64EHHtDvf/979e3bV4sXL1Zubq7+\n+Mc/XnQuTREZGan8/HxnOT8/36sjXNeYgoICRUVF6dy5cw3u6wu25WRbPpKdOYWHh3v9J+zYsWMK\nDw+/5PteSrbVKTIyUgUFBc5yXTFFRETUyicyMrLVYmwq22ok1R9vQ2OoU+uyrU7toUbk5J85RURE\neP1tKigo8DrLu64xVe8T3n//fa1du1YbN25UaWmpTp8+rX/7t3/T0qVLWy3+uthWp7pqVPNYFh4e\n7jWmsLBQERERWrVqldatW6dNmzY5Nbrnnnv04osvtlr8dWlMTjXHVOVUXUhIiG688UZ99tlnGjVq\n1KUNugHHjx9X7969neXevXvr+PHjdY4dPXq0PvzwQ691VRPunTp1Sp988okGDhyov/71r5cu4Eao\n631pXe9dG1OncePGKScnx+d1ki7RVxfnzJmjuXPn6rnnnlNcXJzGjh3rzHLhcrmcplFAQIDefvtt\nHTx4UPHx8ZoxY4Z+9rOfeX34uuyyy7RmzRqNGzdOAwYM0MyZM/WrX/1K06dPlyR17dpVTz75pJKS\nkpScnKw9e/Zo/fr16t69e4Nx/uhHP9LkyZN10003qXfv3vrNb37jbBs3bpx69Oihv/3tb861H6qr\nq/HV0Lpx48bp5Zdf1quvvqq4uDg98sgjevDBB726sNWfn/rW1VyuL4+lS5dq7Nixmjp1qhITE7V1\n61ZlZmYqNjb2gjG3tKSkJOXl5enw4cMqLy/XihUrNGnSJK8xkyZN0rJlyyRJ27ZtU48ePRQaGtqo\nfX3Btpxsy0eyM6eEhAQdOnRI+fn5Ki8v1+rVq+u9HmLNhnlT9m1NttWpZkxvvfVWnfm89tprkrzz\n8Ve21Ug6n9OBAwe86jRx4kSvMVVndkvUyVdsq5OtNSIn/89p+PDhOnjwoI4cOaLy8nK9++67tb42\nNX78eOcbMzt27FBISIjCwsLk8Xj05ZdfKjc3V6+++qpGjRrl8yaXZF+d6qrR+PHjvcbcdNNNWr58\nuaTzNarKJz09Xfv379fevXv1hz/8QaNGjfJ5k0uS/uVf/sXrGP7OO+9owoQJXmMmTJigN954Q5K0\nfft2J6evv/5aJ0+elCR99913+vDDD/1iBt39+/crMjJSoaGh6tixo0aPHq2//OUvtcYFBQUpPj5e\nn376qbOuc+fOzkk1Xbp0UXJysg4dOtRqsdenZp3efvvtWseHCRMm6PXXX5fUcJ0SExNbPYc6tcgl\n7YEGrFu3zsTGxpro6GjzzDPPGGOMycjIMBkZGc6YBx980ERHR5v4+HiTk5NzwX39gW052ZaPMf6f\nU3NmPHz99ddNdHS06devn/nFL35hioqKzLx588y8efNMUVGR2b17t4mIiDDdu3c3ISEhJiIiwhw4\ncKDefX0966Ix/l+nps54uHbtWiemuXPnmsrKSrN48WKzePFiZ8wDDzzg5JOdne2sT0tLM+Hh4SYw\nMNBERUWZl156yeezLhrj/zVqzkx6mZmZXnWqqKgwixYtMosWLXLGVK/Tzp07nfVTpkzxqtPSpUt9\nPuuiMdSpLdTJ32vUHOTU+jk1Z8bDlStXmpiYGON2u016eropKSkxzz33nHnuueecMffdd59xu91m\n6NCh5s9//nOt+9iwYYPfzLpojH/XqTkzHtas0ZkzZ8yCBQvMggULnDH33nuvV41q3sf69ev9ZtbF\n0tJSs2rVKienp556ypSWlprnn3/ePP/8886Yf//3fzdut9vExcWZrVu3mtLSUpOdnW0SExNNfHy8\nGTp0qHnmmWea9fgtPetiamqq+fnPf26OHDliCgoKzJIlS0xqaqqZP3++mT9/vjPm17/+tfnTn/7k\ntV9aWprJy8szeXl55quvvnL2vZhZF+vSnFkOq9dpzpw5pqyszCxcuNAsXLjQGVO9Ttu2bTNlZWUm\nJyenVp0udsbFlpp10WWMH32RFwDaEX+4GHxzhIWF+TqEVtUW/0z66zWKLpWWmrCltfnTRYNbA3UC\nWsbZs2d9HUKzVM3O1h5Uvy5TW3KhScrKyspaMZKW07lz53q3jR49uhUjaTmbN2+ud1vVpH5tWc3J\n+ZrD2r/cR48eVXBwsLp3717nreq0TwAAAAAAANihxS9G7y8iIyP1xRdf1Lu9+kXkAAAAAAAA2gqP\nxyNJFz3zoo2sbXR16NBBbrfb12EAAAAAAACglVj71UUAAAAAAAC0LzS6AAAAAAAAYAUaXQAAAAAA\nALACjS4AAAAAAABYwdqL0QMAAAAAANiI2RbrxxldAAAAAAAAsAKNLgAAAAAAAFiBRhcAAAAAAACs\nQKMLAAAAAAAAVqDRBQAAAAAAACvQ6AIAAAAAAGhDPB6PPB6Pr8PwSzS6AAAAAAAAYAUaXQAAAAAA\nALBCR18HAADtVVhYmK9DQCO4XC5fh4AGBATwf7u2gDoBLaNbt26+DgENCAoK8nUILa5z586+DqHF\nbd682dchtLjAwEBfh+AXeMcBAAAAAAAAK9DoAgAAAAAAgBVcxhjj6yAAAAAAAACAi8UZXQAAAAAA\nALACjS4AAAAAAABYgUYXAAAAAAAArECjCwAAAAAAAFag0QUAAAAAAAAr0OgCAAAAAACAFWh0AQAA\nAAAAwAodfR0A2h5jjE+XiYEYiKFtxEQMxEAMxEAMbS8mYiAGYiAGYmh7MdkSQ33rmoozugAAAAAA\nAGAFGl0AAAAAAACwAo0uAAAAAAAAWIFGFwAAAAAAAKxAowsAAAAAAABWoNEFAAAAAAAAK9DoAgAA\nAAAAgBVodAEAAAAAAMAKNLoAAAAAAABgBRpdAAAAAAAAsAKNLgAAAAAAAFiBRhcAAAAAAACsQKML\nAAAAAAAAVqDRBQAAAAAAACvQ6AIAAAAAAIAVaHQBAAAAAADACjS6AAAAAAAAYAUaXQAAAAAAALAC\njS4AAAAAAABYgUYXAAAAAAAArECjCwAAAAAAAFag0QUAAAAAAAAr0OgCAAAAAACAFWh0AQAAAAAA\nwAo0ugAAAAAAAGAFGl0AAAAAAACwAo0uAAAAAAAAWIFGFwAAAAAAAKxAowsAAAAAAABWoNEFAAAA\nAAAAK9DoAgAAAAAAgBVodAEAAAAAAMAKNLoAAAAAAABgBRpdAAAAAAAAsAKNLgAAAAAAAFiBRhcA\nAAAAAACsQKMLAAAAAAAAVqDRBQAAAAAAACvQ6AIAAAAAAIAVaHQBAAAAAADACjS6AAAAAAAAYAUa\nXQAAAAAAALACjS4AAAAAAABYgUYXAAAAAAAArECjCwAAAAAAAFag0YUGbdmyxdchAAAAAADQ4srL\ny30dAqppif4DjS40iEYXAAAAAMBGNLr8C40uAAAAAAAA4P/Q6AIAAAAAAIAVOvo6APi/1NRUr2WX\ny3X4YAkDAAADU0lEQVTBZQAAAAAA2oItW7bU+swL32mJry66jDHm4kMBAAAAAAAAfIuvLgIAAAAA\nAMAKNLoAAAAAAABgBRpd7diGDRs0cOBAxcTEaN68eXWO+elPf6qYmBglJCTo888/b9K+AAAAAAD4\nQkOfWb/55hv9+Mc/VkJCgkaOHKm9e/c622bMmKHQ0FDFxcW1ZsjWaszz2ZK9Bxpd7VRFRYUeeugh\nbdiwQbm5uVq+fLn27dvnNWbdunU6cOCA8vLytGTJEt1///2N3hcAAAAAAF9ozGfWZ555RsOHD9fu\n3bu1bNkyPfzww8626dOna8OGDa0dtrUaej5buvdAo6ud2rFjh/r3769+/fqpU6dOSktL06pVq7zG\nrF69WtOmTZMkjRw5UidPnlRxcXGj9gUAAAAAwBca85l13759Gj16tCRpwIABOnz4sI4fPy5JSklJ\nUc+ePVs9bls19Hy2dO+BRlc7VVhYqD59+jjLUVFRKiwsbNSYY8eONbgvAAAAAAC+0JjPuwkJCVq5\ncqWk842xI0eOqKCgoFXjxHkt3Xug0dVOuVyuRo0zxlziSAAAAAAAaDmN+bw7c+ZMnTx5UsOGDdPC\nhQs1bNgwdejQoRWiQ11asvfQscXuCW1KZGSk8vPzneX8/HxFRUVdcExBQYGioqJ07ty5BvcFAAAA\nAMAXGvN5t3v37nr55Zed5SuvvFJut7vVYsT/19K9B87oaqeSkpKUl5enw4cPq7y8XCtWrNCkSZO8\nxkyaNEnLli2TJG3btk09evRQaGhoo/YFAAAAAMAXGvOZ9dSpUyovL5ckvfjiixo1apSCg4N9EW67\n19K9B87oaqc6duyohQsXauzYsaqoqNDdd9+tQYMG6fe//70k6b777tP48eO1bt069e/fX0FBQXrl\nlVcuuC8AAAAAAL7WmM+7ubm5uuuuu+RyuTR06FC99NJLzv633XabsrKydOLECfXp00dPPfWUpk+f\n7qt02ryq5/Prr79Wnz595PF4dO7cOUmXpvfgMlyECQAAAAAAABbgq4sAAAAAAACwAo0uAAAAAAAA\nWIFGFwAAAAAAAKxAowsAAAAAAABWoNEFAAAAAAAAK9DoAgAAAAAAgBVodAEAAAAAAMAKNLoAAAAA\nAABghf8HSqJXNN6brgwAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x11b24c750>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEPCAYAAACk43iMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUVWX6B/DvwYPjhQIFRAX0gBCXTGHipqYYljhOOlZY\nWJQpGdqYMjWTq+mPNFc5VGsKh5kW2YwOlYQuC7Tw6IgCTgWo4WXGGxjHgIy4SKJyPZzfH5PnBx3g\ncOA9e3PO/n7WYq0252Xz+Cx6n73fZ19UBoPBACIiUiQHuQMgIiL5sAgQESkYiwARkYKxCBARKRiL\nABGRgrEIEBEpmFWLwMqVK+Hh4YG77rqr1zHr1q2Dv78/pk+fjtLSUmuGQ0REP2PVIrBixQpotdpe\nP8/NzUV5eTnKysrw3nvvYc2aNdYMh4iIfsaqRWD27NkYM2ZMr5/v3bsXy5cvBwBERkaisbERNTU1\n1gyJiIi6kLUnUF1dDW9vb+O2l5cXqqqqZIyIiEhZZG8M//ypFSqVSqZIiIiURy3nL/f09ERlZaVx\nu6qqCp6enibjfHx8oNPpJIyMiMj2TZkyBeXl5X2OkfVMYPHixcjIyAAAFBUVwcXFBR4eHibjdDod\nDAYDvwR9vfLKK7LHYC9fzCXzOZS/Ll26ZHYetuqZwLJly1BQUIC6ujp4e3tj06ZNaG9vBwAkJSVh\n4cKFyM3NhZ+fH0aPHo3t27dbMxz6SWNjo9wh2A3mUizmU3pWLQKZmZlmx6SlpVkzBCIi6oPsjWGS\n3pIlS+QOwW4wl2Ixn9JTGQyGIf9SGZVKBRsIk4hoSOnP3MkzAQXilVbiMJdiMZ/SYxEgIlIwLgcR\nEdmRp556ynhGVVBQYHbulPVmMSIiEkun06GgoKDf47kcpEBcdxWHuRSL+Rw4g8EAvV5v8c/xTICI\naIgxGAy4efMmDAYDnJycTD7/9NNPkZWVhbq6um5fr776qsW/iz0BIiIra25uRl1dHYYPH97jo3F2\n796N9PR01NfXGyd0ANi0aRNefPFFk/EnTpxAWVkZ3NzcjF+urq4YOXIk5s6d2205yNzcySJARGSB\nlpYW42Tt5OSEKVOmmIzJyspCSkoK6urqUF9fj46ODri7u2P9+vX4wx/+YDL+woULuHz5crdJfdSo\nUQOKj0WAzNLpdNBoNHKHYReYS7Gkzmdra6txQq+vr8eYMWMQEhJiMi4rKwsbNmxAXV0d2tvbjUfe\ny5cvxwsvvGAyvqqqCt9//71xQh89erRkj8m39OogFgEF4sQlDnM5eF0nLRcXF+ND5DQaDXbs2NHv\n/bS1tXVbTqmvr4e7uzuio6NNxu7atQuJiYlobW2Fq6urcbJ+8MEHsW7dOpPxDQ0N+PHHH+Hm5gYn\nJyebee9Jf+ZOFgEiktXPly9umTFjBrZt29at8Tl+/Hj85je/MRm7Z88exMfHw9XVtdukft999/X4\n7vKbN2+io6MDt912m81M6APRn7mTVwcRkaTa29tRWVkJnU7X5wR87NgxLF26tFvjc+bMmT2OXbJk\nCdra2vo9oQ90vd0esQgoEJcwxGEu++fs2bNYs2YNKioqUFNTgwkTJkCj0WDevHndxmk0GuPS0KxZ\ns5Cfn9+v/Q8bNkxwxMrBIkBEFmtubkZRURF0Ol23r1GjRmH//v0m4z09PbFp0yZoNBp4enrC0dHR\n+FleXp6UodPPsAgoEI9cxbHHXHZ0dKCqqgo6nQ51dXWIi4szGdPY2IiNGzdCo9FAo9Fg7ty50Gg0\n8PHx6XGfzs7OmDt3rtnfzTuGpcciQES4efMmFi5cCJ1OhytXrsDDwwMajQYBAQE9FoEJEyZY9Hya\nvvRWSO2xwA5FvDpIgbiOLc5QzmVBQYHJcs23336L8+fPd1uOAf53Q9GRI0eg0Wjg5eWF4cOHyxLz\nUM6nLeLVQUR2SK/Xo7q62jixP/LIIxgxYoTJuDfeeANjx46FRqPBPffcg4SEBGg0mh6bqCqVCjEx\nMVKET0MMzwSIbMRjjz2GoqIiVFdXw93d3bge/84778DNzU3u8GgI4s1iRFbQ9Q7Xriy9w/X48eM4\nd+6cyZLNnj17enx0wbFjxzBmzBh4e3vjF7/4xSD+BaQUXA6iHnHddXC6vrSj63Xtt+j1ely5csU4\nqc+ZMweTJk0y2c9HH32EH374ARqNBlFRUYiPjzce3fckPDxc9D9lyOHfpvRYBIgEqaiogJ+fHyor\nK+Hq6mqc0KdOndpjEXj77bdliJKoOxYBBeKRluVqa2tRXFyM4uJiXL161fj9rmcBHh4e+PDDDzFp\n0qQeG7VkHv82pcfXSxL1orCwEI899hh8fX3h7++PrVu3AoDJ5ZW3jBo1CnfccQcLANkUFgEF4l2Z\n/89gMODHH3/s8bORI0di/vz5+Pzzz9HQ0ICDBw9i8+bN3V73xyNXsfi3KT0uB5GiNDY2oqSkBMXF\nxSgqKkJJSQliYmKQlZVlMjY8PLzHZmzXid/FxQWTJ082+T6RreAloqQY586dQ0REBH75y18iKioK\nkZGRiIyMhKenp9yhEVkF7xMgxTAYDKiqqkJxcTHOnDmDTZs2mYzp7OxEZ2cn1GqeAJMy9GfuZE9A\ngexp3fWtt97Cgw8+CE9PT4SFhSEjIwPDhw9HR0eHyVgHBwfhBcCecjkUMJ/S4yERDXl6vR5Azy8O\n0ev1ePTRR/H2229j8uTJdv2qQCJr4HIQDTk1NTXGxm1xcTGOHz+Offv2Yc6cOXKHRmRT2BMgm/Ps\ns88iMzMTERERxuZtREQEH5BGNAAsAtQjuZ7PYjAYUFZWhuLiYkyaNAnR0dEmY65duwYnJyc4ONhG\nu4rPuhGL+RSLD5Aj2V28eBE7d+5EcXExSkpK4OTkhMjISKxYsaLH8bfffrvEERIpm1UPt7RaLQID\nA+Hv74+UlBSTz+vq6rBgwQKEhIRg6tSpFj2GlwbOGkdavR1tNDQ0oLW1FUlJSfjPf/6Dy5cvY9eu\nXfjVr34lPAY58KhVLOZTelZbDtLr9QgICMChQ4fg6emJ8PBwZGZmIigoyDhm48aNaG1txZYtW1BX\nV4eAgADU1NSYXMbH5aChxWAw4Ntvv+3WvFWr1cLeOUtEYsh6n0BJSQn8/Pyg0Wjg6OiI+Ph45OTk\ndBszYcIEXLt2DcD/1oJdXV15I48EBnMtdm1tLSZMmIDIyEjs3LkT7u7u2Lx5M/bt2ycuQBvC69rF\nYj6lZ7UZt7q6Gt7e3sZtLy8vFBcXdxuzatUqxMTEYOLEiWhqasKuXbusFY7idX0blouLCxobGwGY\nvg1Lr9fjv//9L44dO4YVK1aYNGjd3NyMjV1ek09k+6xWBPozQbz++usICQlBfn4+Ll26hPvvvx+n\nTp3CbbfdZjI2OTkZLi4uAIDAwEBERUUZ1w9vTW7c7n27sbGx29uwuo7LzMzEmTNn8NVXX+H48eMI\nCQlBcHAw4uLi4Ozs3G1/t04vL1++PKT+fXJta7q8WWwoxGPr28zn4Lbz8/ORnZ0NAMb50hyr9QSK\nioqwceNGaLVaAMCWLVvg4OCADRs2GMcsXLgQL7/8MmbNmgUAmDdvHlJSUhAWFtY9SBV7AoM1d+7c\nHtfso6OjER4ebrxqJyIiAmPHjpUhQiISTdZLRMPCwlBWVgadToeJEyciKysLmZmZ3cYEBgbi0KFD\nmDVrFmpqanDhwgX4+vpaKyTFamtrQ01NjXG769EWALz55psyRGUfdLyuXSjmU3pWKwJqtRppaWmI\njY2FXq9HYmIigoKCkJ6eDgBISkrCH//4R6xYsQLTp09HZ2cn3njjDR6FClRbW4v09HT87W9/Q3Nz\ns9zhENEQxDuG7VBtbS1eeukl7NmzB3FxcVi3bh2ee+65XpeD8vPzpQ+SiKyOdwwrlJOTE/z9/XHx\n4kW4u7sD6P0mHJ56EykbzwQUiOuu4jCXYjGfYvGlMnZMp9Ph97//Pe+tIKJBYRGwIQaDAf/+978R\nFxeHsLAwqFQqREVFWbwfHmmJw1yKxXxKjz0BG/Hdd99h8eLFaGpqwrp167Bjxw44OTnJHRYR2Tj2\nBGyEXq9HXl4e7rvvvkE/a5/rruIwl2Ixn2Lx6iAbZTAYTB67MWzYMMyfP1+miIjIXrEnMER0dnZi\n3759mDdvHrZu3WrV38UjLXGYS7GYT+nxTEBmTU1N2LFjB7Zu3QoXFxckJydj6dKlcodFRArBMwEZ\nVVdXQ6PR4OjRo9ixYwdKSkrw+OOPY/jw4Vb9vV2fG0SDw1yKxXxKj2cCMvL09MSZM2cwceJEuUMh\nIoXi1UESaG1tRUtLC5ydneUOhYgUhHcMy+yHH37A5s2b4ePjg507d8odDhGRCRYBKzh9+jQSExMR\nEBCAyspKHDx4EGvWrJE7LCOuu4rDXIrFfEqPPQHBvvvuOzzwwANYvXo1ysrK4ObmJndIRES9Yk/A\nCvR6PYYNGyZ3GESkcOwJWFFFRQW++eabHj9jASAiW8EiYAGDwYDCwkI89NBDCA8PR0lJidwhDQjX\nXcVhLsViPqXHnkA/tLa2IisrC++88w5u3LiB9evXIyMjg0/xJCKbx55AP9TX12P58uX47W9/i9jY\n2EE/xZOISAr9mTtZBIiI7BQbwxbQ6/XIycnBV199JXcoVsd1V3GYS7GYT+kpvghcu3YNqampuOOO\nO/Daa6+hpaVF7pCIiCSj2OWgq1ev4tVXX8U///lP3H///UhOTkZUVJTJy1yIiGwV3yzWhxEjRsDJ\nyQknT57EpEmT5A6HiEgWZs8E6uvr4erqKlU8PWJjWCy+x1Uc5lIs5lMsIY3hqKgoLF26FLm5uTY3\nEdfU1GDTpk3YvXu33KEQEQ1JZovAhQsXsGrVKmRkZMDPzw8vvfQSLl68KEVsA3by5EmsWLECgYGB\nuHLlCqZNmyZ3SEMKj7TEYS7FYj6lZ1Fj+PDhw0hISMCNGzcQEhKCLVu2YObMmdaMD0D/l4N++OEH\nPProoygrK8PatWuxatUq2ZeyiIjkIuRmsbq6Onz00UfIyMiAh4cHnn76aSxatAinTp1CXFycJNf1\n9rcIdHZ2Ijs7G4sWLYKjo6PV47JVXHcVh7kUi/kUS8jVQTNnzkRCQgJycnLg5eVl/H5YWBhWr149\n+CgHyGAwmFzO6eDggIceekimiIiIbI/ZM4GeJlupqVQqREdHw2AwYOTIkRg5ciRmz56N559/Xta4\niIiGMiFXB82fPx+NjY3G7YaGBsTGxg4+OgsVFBSgsLAQhYWFiI2NRVJSkuQxEBHZG7NFoLa2Fi4u\nLsbtsWPHoqamxqpB9SU8PByrV6/G6NGjZYvB1vH5LOIwl2Ixn9IzWwSGDRuGy5cvG7d1Op2sj1KW\ne2mKiMiemJ3NX3vtNcyePRsJCQlISEjAnDlz8Prrr/dr51qtFoGBgfD390dKSkqPY/Lz8xEaGoqp\nU6di7ty5FgVPA8OrL8RhLsViPqXXr/sEamtrUVRUBJVKhaioKLi5uZndsV6vR0BAAA4dOgRPT0+E\nh4cjMzMTQUFBxjGNjY2YNWsWDhw4AC8vL9TV1fW4765H/9HR0cjPz+/nP4+ISLmEvU9ArVZj3Lhx\nuO2223D27FkUFhaa/ZmSkhL4+flBo9HA0dER8fHxyMnJ6TZm586dePjhh42XnvZVXKKjoxEdHc0j\nBQG47ioOcykW8yk9s/cJbNu2DVu3bkVVVRVCQkJQVFSEGTNm4PDhw33+XHV1Nby9vY3bXl5eKC4u\n7jamrKwM7e3tuPfee9HU1IT169fjiSee6HF/PPonIhLP7JlAamoqSkpKMHnyZBw5cgSlpaVwdnY2\nu+P+NHDb29vx9ddfIzc3FwcOHMDmzZtRVlbWv8hpwHg2JQ5zKRbzKT2zZwIjRozAyJEjAQAtLS0I\nDAzEhQsXzO7Y09MTlZWVxu3KyspudxwDgLe3N9zc3Iw3gM2ZMwenTp2Cv7+/yf6Sk5ONl6oGBgYi\nKirK+Adz6xSS29zmNreVvJ2fn4/s7GwA6HZpf1/MNoaXLFmC7du3IzU1FXl5eRgzZgw6OjqQm5vb\n5447OjoQEBCAvLw8TJw4ERERESaN4fPnz2Pt2rU4cOAAWltbERkZiaysLAQHB3cPUsX3CYik4/NZ\nhGEuxWI+xRLy7KBbVWXjxo2YO3curl27hgULFpj95Wq1GmlpaYiNjYVer0diYiKCgoKQnp4OAEhK\nSkJgYCAWLFiAadOmwcHBAatWrTIpAEREZD19ngl0dHRg6tSpOH/+vJQxmeCZABGR5QZ9iaharUZA\nQEC3O4aJiMh+mF0OamhowJ133omIiAjj83pUKhX27t1r9eDIOrjuKg5zKRbzKT2zRWDz5s1SxEFE\nRDKw6PWScmFPgIjIckKuDnJycjLe+NXW1ob29nY4OTnh2rVrYqIkIiLZmL1j+Pr162hqakJTUxOa\nm5vxySef4Nlnn5UiNrKSWzeX0OAxl2Ixn9Kz6MUADg4OWLJkCbRarbXiISIiCZldDtqzZ4/xvzs7\nO3HixAnjYyTINvHqC3GYS7GYT+mZLQL79u0z9gTUajU0Go3JI6GJiMg28eogBeK12OIwl2Ixn2IJ\neanM8uXL0djYaNy+evUqVq5cOfjoiIhIdmbPBEJCQnDy5Emz37MmngkQEVlOyJmAwWBAQ0ODcbuh\noQF6vX7w0RERkezMNoZfeOEFzJgxA4888ggMBgN2796Nl19+WYrYyEq47ioOcykW8yk9s0XgySef\nxN13343Dhw9DpVLh008/5TP/iYjshNmeQFFREYKDg3H77bcDAK5du4Zz584hMjJSkgAB9gSIiAai\nP3NnvxrDpaWlxnsF9Ho9wsLCUFpaKi5SM1gEiIgsJ6QxfGtHtwwbNoyNYRvH57OIw1yKxXxKz2wR\n8PHxwdatW9He3o62tjakpqbC19dXitiIiMjKzC4H1dTUYN26dThy5AgAYN68eUhNTcW4ceMkCRDg\nchAR0UAI6Qn8XHNzMz777DMsXbp0UMFZgkWAiMhywnoCer0en3/+ORISEqDRaPDxxx8LCZDkwXVX\ncZhLsZhP6fV6n4DBYEBBQQEyMzORm5uLyMhIHD16FBUVFRg1apSUMRIRkZX0uhzk5eWF4OBgrFy5\nEosWLcLo0aPh4+ODiooKqWPkchAR0QAMajkoLi4O5eXlyMrKwr59+3Djxg3hARIRkbx6LQLvvPMO\nysvL8dxzzyEvLw8BAQGora1FVlYWrl+/LmWMJBjXXcVhLsViPqXXZ2PYwcEBMTEx2LZtG7755htk\nZmYiJycHkydPlio+IiKyogG9WezmzZuSNofZEyAispxV7hOQA4sAEZHlhN0nQPaF667iMJdiMZ/S\n67UInDp1qtcfevfdd60SDBERSavX5SBfX1/s2rULYWFh3b7/yiuvYO/evXyUNBHREDeo5aDdu3fj\nkUcewZdffgkA6OzsxOrVq1FQUICCggKxkRIRkSx6LQJ33303srOz8cQTT0Cr1WLp0qWora3FgQMH\njG8ZI9vEdVdxmEuxmE/p9VoEGhoa4OXlhR07duDxxx+Ho6Mj0tPTcePGDTQ0NEgZIxERWUmvPQGN\nRmN8o5jBYOj2djGVSoVvvvlGmgjBngAR0UAMqieg0+lQUVGBioqKbv9dUVHR7wKg1WoRGBgIf39/\npKSk9Dru2LFjUKvV+OSTT/q1XyIiEsOi+wQ2btzY77F6vR5r166FVqvF2bNnkZmZiXPnzvU4bsOG\nDViwYAGP9iXCdVdxmEuxmE/pWVQEcnJy+j22pKQEfn5+0Gg0cHR0RHx8fI8//5e//AVxcXFwd3e3\nJBQiIhLAoiJgyZF6dXU1vL29jdteXl6orq42GZOTk4M1a9YAQLe+A1mPRqOROwS7wVyKxXxKz6Ii\n8PXXX/d7bH8m9OTkZPzpT38yNi+4HEREJK1eXy95y6VLl5CcnIyvvvoKKpUKM2fOxNtvvw1fX98+\nf87T0xOVlZXG7crKSnh5eXUbc+LECcTHxwMA6urqsH//fjg6OmLx4sUm+0tOToaLiwsAIDAwEFFR\nUcajhlvriNzu33ZRURHGjx8/ZOKx5e2ua9hDIR5b32Y+B7edn5+P7OxsADDOl2YZzIiIiDBkZGQY\n2traDG1tbYYPPvjAEBERYe7HDO3t7QZfX19DRUWFobW11TB9+nTD2bNnex3/1FNPGfbs2dPjZ/0I\nkyxQUVEhdwh2g7kUi/kUqz9zp9nloObmZjzxxBNwdHSEo6MjEhIS0NLSYra4qNVqpKWlITY2FsHB\nwXj00UcRFBSE9PR0pKen969CkVXcOoKgwWMuxWI+pWf2fQIbNmyAi4sLli1bBgDIysrC1atX8eKL\nLwIAxo4da/0gVbxZjIjIUkJeKqPpcudwT79AijuHWQTE0ul0POIShLkUi/kUqz9zp9nGcNdGDRER\n2RezZwJtbW149913UVhYCJVKhejoaKxevRqOjo5SxcgzASKiARCyHJSYmIiOjg4sX74cBoMBH3zw\nAdRqNd5//32hwfaFRYCIyHKDKgIdHR1Qq9WYNm0aTp8+3e2znr5nTSwCYnHdVRzmUizmU6xBPUU0\nIiICADBs2DCUl5cbv3/p0iWo1WZbCUREZAN6nc1vVY+33noLMTEx8PX1hcFggE6nw/bt2yULkMTj\nkZY4zKVYzKf0el0O8vLywvPPPw+DwYCWlhbo9XoA/zszGDlyJJ5//nnpguRyEBGRxQa1HKTX69HU\n1ITr16+jo6PD+IC3jo4ONDU1CQ+WpMPLfsVhLsViPqXX63LQ+PHj8corr0gZCxERScyiR0mTfeC6\nqzjMpVjMp/R67QnU19fD1dVV6nh6xJ4AEZHlBtUTGCoFgMTjuqs4zKVYzKf0uBxERKRgZh8bMRRw\nOYiIyHKDWg4iIiL7xyKgQFx3FYe5FIv5lB6LABGRgrEnQERkp9gTICKiPrEIKBDXXcVhLsViPqXH\nIkBEpGDsCRAR2Sn2BIiIqE8sAgrEdVdxmEuxmE/psQgQESkYewJERHaKPQEiIuoTi4ACcd1VHOZS\nLOZTeiwCREQKxp4AEZGdYk+AiIj6xCKgQFx3FYe5FIv5lB6LABGRgrEnQERkp9gTICKiPlm9CGi1\nWgQGBsLf3x8pKSkmn3/00UeYPn06pk2bhlmzZuH06dPWDknxuO4qDnMpFvMpPbU1d67X67F27Voc\nOnQInp6eCA8Px+LFixEUFGQc4+vri8LCQjg7O0Or1eKZZ55BUVGRNcMiIqKfWPVMoKSkBH5+ftBo\nNHB0dER8fDxycnK6jZkxYwacnZ0BAJGRkaiqqrJmSARAo9HIHYLdYC7FYj6lZ9UiUF1dDW9vb+O2\nl5cXqqurex3/97//HQsXLrRmSERE1IVVl4NUKlW/xx45cgT/+Mc/8MUXX/T4eXJyMlxcXAAAgYGB\niIqKMh413FpH5Hb/touKijB+/PghE48tb3ddwx4K8dj6NvM5uO38/HxkZ2cDgHG+NMeql4gWFRVh\n48aN0Gq1AIAtW7bAwcEBGzZs6Dbu9OnTeOihh6DVauHn52capIqXiIqk0+mMf0A0OMylWMynWP2Z\nO61aBDo6OhAQEIC8vDxMnDgRERERyMzM7NYY/vbbbxETE4MPP/wQUVFRPQfJIkBEZLH+zJ1WXQ5S\nq9VIS0tDbGws9Ho9EhMTERQUhPT0dABAUlISXn31VVy9ehVr1qwBADg6OqKkpMSaYRER0U94x7AC\n8ZRbHOZSLOZTLN4xTEREfeKZABGRneKZABER9YlFQIG6XotNg8NcisV8So9FgIhIwdgTICKyU+wJ\nEBFRn1gEFIjrruIwl2Ixn9JjESAiUjD2BIiI7BR7AkRE1CcWAQXiuqs4zKVYzKf0WASIiBSMPQEi\nIjvFngAREfWJRUCBuO4qDnMpFvMpPRYBIiIFY0+AiMhOsSdARER9YhFQIK67isNcisV8So9FgIhI\nwdgTICKyU+wJEBFRn1gEFIjrruIwl2Ixn9JjESAiUjD2BIiI7BR7AkRE1CcWAQXiuqs4zKVYzKf0\nWASIiBSMPQEiIjvFngAREfWJRUCBuO4qDnMpFvMpPRYBIiIFY0+AiMhOsSdARER9smoR0Gq1CAwM\nhL+/P1JSUnocs27dOvj7+2P69OkoLS21Zjj0E667isNcisV8Ss9qRUCv12Pt2rXQarU4e/YsMjMz\nce7cuW5jcnNzUV5ejrKyMrz33ntYs2aNtcKhLoqKiuQOwW4wl2Ixn9KzWhEoKSmBn58fNBoNHB0d\nER8fj5ycnG5j9u7di+XLlwMAIiMj0djYiJqaGmuFRD85f/683CHYDeZSLOZTelYrAtXV1fD29jZu\ne3l5obq62uyYqqoqa4VEREQ/Y7UioFKp+jXu553r/v4cDVxjY6PcIdgN5lIs5lN6amvt2NPTE5WV\nlcbtyspKeHl59TmmqqoKnp6eJvuaMmUKi4NgqampcodgN5hLsZhPcaZMmWJ2jNWKQFhYGMrKyqDT\n6TBx4kRkZWUhMzOz25jFixcjLS0N8fHxKCoqgouLCzw8PEz2VV5ebq0wiYgUzWpFQK1WIy0tDbGx\nsdDr9UhMTERQUBDS09MBAElJSVi4cCFyc3Ph5+eH0aNHY/v27dYKh4iIemATdwwTEZF1DOk7hleu\nXAkPDw/cddddcodi8yorK3HvvffizjvvxNSpU7F161a5Q7JpLS0tiIyMREhICIKDg/HSSy/JHZLN\n0+v1CA0NxaJFi+QOxeZpNBpMmzYNoaGhiIiI6HPskD4TOHr0KJycnPDkk0/izJkzcodj077//nt8\n//33CAkJwfXr13H33XcjOzsbQUFBcodms27evIlRo0aho6MD99xzD9566y3cc889codls/785z/j\nxIkTaGpqwt69e+UOx6b5+PjgxIkTGDt2rNmxQ/pMYPbs2RgzZozcYdiF8ePHIyQkBADg5OSEoKAg\nfPfddzJHZdtGjRoFAGhra4Ner+/X/3DUs6qqKuTm5uLpp5/mwyIF6W8eh3QRIOvQ6XQoLS1FZGSk\n3KHYtM7OToSEhMDDwwP33nsvgoOD5Q7JZv3ud7/Dm2++CQcHTkkiqFQq3HfffQgLC8O2bdv6HMuM\nK8z169dL0UdUAAACe0lEQVQRFxeH1NRUODk5yR2OTXNwcMDJkydRVVWFwsJC5Ofnyx2STfrss88w\nbtw4hIaG8ixAkC+++AKlpaXYv38//vrXv+Lo0aO9jmURUJD29nY8/PDDSEhIwJIlS+QOx244Ozvj\n17/+NY4fPy53KDbpyy+/xN69e+Hj44Nly5bh8OHDePLJJ+UOy6ZNmDABAODu7o4HH3wQJSUlvY5l\nEVAIg8GAxMREBAcHIzk5We5wbF5dXZ3xEQfNzc3417/+hdDQUJmjsk2vv/46KisrUVFRgY8//hgx\nMTHIyMiQOyybdfPmTTQ1NQEAbty4gYMHD/Z5heWQLgLLli3DzJkzcfHiRXh7e/NmskH44osv8OGH\nH+LIkSMIDQ1FaGgotFqt3GHZrCtXriAmJgYhISGIjIzEokWLMG/ePLnDsgt8RMzg1NTUYPbs2ca/\nzQceeADz58/vdfyQvkSUiIisa0ifCRARkXWxCBARKRiLABGRgrEIEBEpGIsAEZGCsQgQESkYiwCR\nhbo+biM3NxcBAQHdXpNKZEus9mYxInt162amvLw8rF+/HgcPHoS3t7fMURENDIsA0QAUFhbimWee\nwf79++Hj4yN3OEQDxjuGiSzk6OiI22+/HQUFBZg6darc4RANCnsCRBYaPnw4Zs2ahffff1/uUIgG\njUWAyEIODg7YtWsXSkpKsGXLFrnDIRoU9gSIBmDEiBH4/PPPMXv2bHh4eGDlypVyh0Q0ICwCRBa6\ndXXQmDFjoNVqMWfOHIwbNw4PPPCAzJERWY6NYSIiBWNPgIhIwVgEiIgUjEWAiEjBWASIiBSMRYCI\nSMFYBIiIFIxFgIhIwVgEiIgU7P8APAp2Yq3wJ1sAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x1184ede50>" ] } ], "prompt_number": 52 }, { "cell_type": "code", "collapsed": false, "input": [ "full_mc_metrics['binary_metrics_df']" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>accuracy</th>\n", " <th>ap</th>\n", " <th>auc</th>\n", " <th>mcc</th>\n", " <th>pr_fig</th>\n", " <th>results_df</th>\n", " <th>roc_fig</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>class_aeroplane</th>\n", " <td> 0.8603713</td>\n", " <td> 0.8927225</td>\n", " <td> 0.9859671</td>\n", " <td> 0.51083</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_bicycle</th>\n", " <td> 0.6527666</td>\n", " <td> 0.6507277</td>\n", " <td> 0.9429867</td>\n", " <td> 0.279426</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_bird</th>\n", " <td> 0.687472</td>\n", " <td> 0.8353669</td>\n", " <td> 0.969846</td>\n", " <td> 0.3457068</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_boat</th>\n", " <td> 0.7936508</td>\n", " <td> 0.784394</td>\n", " <td> 0.9732621</td>\n", " <td> 0.3799048</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_bottle</th>\n", " <td> 0.3895615</td>\n", " <td> 0.4901989</td>\n", " <td> 0.9003062</td>\n", " <td> 0.1835326</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_bus</th>\n", " <td> 0.8294323</td>\n", " <td> 0.8513738</td>\n", " <td> 0.9843531</td>\n", " <td> 0.3963753</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_car</th>\n", " <td> 0.6191373</td>\n", " <td> 0.6574816</td>\n", " <td> 0.921111</td>\n", " <td> 0.3464022</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_cat</th>\n", " <td> 0.6938391</td>\n", " <td> 0.8213718</td>\n", " <td> 0.96655</td>\n", " <td> 0.395568</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_chair</th>\n", " <td> 0.5925029</td>\n", " <td> 0.6581116</td>\n", " <td> 0.9283187</td>\n", " <td> 0.343856</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_cow</th>\n", " <td> 0.7318626</td>\n", " <td> 0.3643397</td>\n", " <td> 0.9508406</td>\n", " <td> 0.2656333</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_diningtable</th>\n", " <td> 0.716438</td>\n", " <td> 0.6821692</td>\n", " <td> 0.9559175</td>\n", " <td> 0.3415181</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_dog</th>\n", " <td> 0.6804771</td>\n", " <td> 0.7822894</td>\n", " <td> 0.9506014</td>\n", " <td> 0.4072089</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_horse</th>\n", " <td> 0.6812842</td>\n", " <td> 0.6853829</td>\n", " <td> 0.9634471</td>\n", " <td> 0.2867896</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_motorbike</th>\n", " <td> 0.8576809</td>\n", " <td> 0.7757554</td>\n", " <td> 0.973002</td>\n", " <td> 0.4565035</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_pottedplant</th>\n", " <td> 0.4234598</td>\n", " <td> 0.5003621</td>\n", " <td> 0.9111148</td>\n", " <td> 0.1767972</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_sheep</th>\n", " <td> 0.77437</td>\n", " <td> 0.5758884</td>\n", " <td> 0.9637824</td>\n", " <td> 0.2984801</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_sofa</th>\n", " <td> 0.5528652</td>\n", " <td> 0.4769162</td>\n", " <td> 0.920226</td>\n", " <td> 0.2547741</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_train</th>\n", " <td> 0.6713299</td>\n", " <td> 0.7605917</td>\n", " <td> 0.9719644</td>\n", " <td> 0.2964198</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>class_tvmonitor</th>\n", " <td> 0.6513317</td>\n", " <td> 0.6938669</td>\n", " <td> 0.9572594</td>\n", " <td> 0.2933467</td>\n", " <td> None</td>\n", " <td> [precision, recall]</td>\n", " <td> None</td>\n", " </tr>\n", " <tr>\n", " <th>_mean</th>\n", " <td> 0.6768333</td>\n", " <td> 0.6810164</td>\n", " <td> 0.9521503</td>\n", " <td> 0.3294249</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " <td> NaN</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "metadata": {}, "output_type": "pyout", "prompt_number": 53, "text": [ " accuracy ap auc mcc pr_fig \\\n", "class_aeroplane 0.8603713 0.8927225 0.9859671 0.51083 None \n", "class_bicycle 0.6527666 0.6507277 0.9429867 0.279426 None \n", "class_bird 0.687472 0.8353669 0.969846 0.3457068 None \n", "class_boat 0.7936508 0.784394 0.9732621 0.3799048 None \n", "class_bottle 0.3895615 0.4901989 0.9003062 0.1835326 None \n", "class_bus 0.8294323 0.8513738 0.9843531 0.3963753 None \n", "class_car 0.6191373 0.6574816 0.921111 0.3464022 None \n", "class_cat 0.6938391 0.8213718 0.96655 0.395568 None \n", "class_chair 0.5925029 0.6581116 0.9283187 0.343856 None \n", "class_cow 0.7318626 0.3643397 0.9508406 0.2656333 None \n", "class_diningtable 0.716438 0.6821692 0.9559175 0.3415181 None \n", "class_dog 0.6804771 0.7822894 0.9506014 0.4072089 None \n", "class_horse 0.6812842 0.6853829 0.9634471 0.2867896 None \n", "class_motorbike 0.8576809 0.7757554 0.973002 0.4565035 None \n", "class_pottedplant 0.4234598 0.5003621 0.9111148 0.1767972 None \n", "class_sheep 0.77437 0.5758884 0.9637824 0.2984801 None \n", "class_sofa 0.5528652 0.4769162 0.920226 0.2547741 None \n", "class_train 0.6713299 0.7605917 0.9719644 0.2964198 None \n", "class_tvmonitor 0.6513317 0.6938669 0.9572594 0.2933467 None \n", "_mean 0.6768333 0.6810164 0.9521503 0.3294249 NaN \n", "\n", " results_df roc_fig \n", "class_aeroplane [precision, recall] None \n", "class_bicycle [precision, recall] None \n", "class_bird [precision, recall] None \n", "class_boat [precision, recall] None \n", "class_bottle [precision, recall] None \n", "class_bus [precision, recall] None \n", "class_car [precision, recall] None \n", "class_cat [precision, recall] None \n", "class_chair [precision, recall] None \n", "class_cow [precision, recall] None \n", "class_diningtable [precision, recall] None \n", "class_dog [precision, recall] None \n", "class_horse [precision, recall] None \n", "class_motorbike [precision, recall] None \n", "class_pottedplant [precision, recall] None \n", "class_sheep [precision, recall] None \n", "class_sofa [precision, recall] None \n", "class_train [precision, recall] None \n", "class_tvmonitor [precision, recall] None \n", "_mean NaN NaN " ] } ], "prompt_number": 53 }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Results for the 4 aggregate metaclasses" ] }, { "cell_type": "code", "collapsed": false, "input": [ "results_df, preds_panel = aphrodite.results.load_pred_results(\n", " 'pascal_mc_oct16', vislab.config['paths']['shared_data'] + '/results', force=True)\n", "preds_panel" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "Results in collection pascal_mc_oct16: 8\n" ] }, { "metadata": {}, "output_type": "pyout", "prompt_number": 60, "text": [ "<class 'pandas.core.panel.Panel'>\n", "Dimensions: 4 (items) x 17125 (major_axis) x 4 (minor_axis)\n", "Items axis: clf pascal_metaclass_animal to clf pascal_metaclass_vehicle\n", "Major_axis axis: 2007_000027 to 2012_004331\n", "Minor_axis axis: decaf_fc6 vw to split" ] } ], "prompt_number": 60 }, { "cell_type": "code", "collapsed": false, "input": [ "mc_pred_df = preds_panel.minor_xs('decaf_fc6 vw').join(label_df)\n", "pred_prefix = 'clf pascal'" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 61 }, { "cell_type": "code", "collapsed": false, "input": [ "full_mc_metrics = vislab.results.multiclass_metrics(\n", " mc_pred_df, pred_prefix, balanced=False,\n", " with_plot=True, with_print=True)" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "------------------------------------------------------------\n", "Classification metrics on the full dataset\n", "top_k_accuracies: [0.634, 0.925, 0.989, 1.0]\n", " precision recall f1-score support\n", "metaclass_animal 0.963374 0.529758 0.683603 4419\n", "metaclass_indoor 0.777259 0.179174 0.291217 2785\n", "metaclass_person 0.556489 0.969392 0.707075 7449\n", "metaclass_vehicle 0.740019 0.322411 0.449141 2472\n", "accuracy: 0.63404379562\n", "\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAEXCAYAAAAumCDdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlclOX+//HXAOOu4JYLoKOBQGlIiaLpNz2lqBWlbXRa\nrFA5lidNO2l5yiU7Lr/SNFuwxaWMOq1UetC07GSFWO4LpgaKmDuYOzDw+8MzkwSCKcPM5byfj0eP\nvJgb5jPy9p65rvu6rttSXFxcjIiIiIiIiIgL+Li7ABEREREREbl0qdMpIiIiIiIiLqNOp4iIiIiI\niLiMOp0iIiIiIiLiMup0ioiIiIiIiMuo0ykiIiIiIiIuU2Gn86GHHqJJkya0a9funMc8+uijhIaG\nEhkZyZo1ayq1QBERERERETFXhZ3OBx98kNTU1HM+vmjRIrZv3862bduYPXs2Q4YMqdQCRURERERE\nxFwVdjq7detG/fr1z/n4Z599xoABAwDo1KkTeXl57Nu3r/IqFBEREREREWNd9JrOnJwcgoODne2g\noCB27959sT9WRERERERELgGVspFQcXFxibbFYqmMHysiIiIiIiKG87vYHxAYGEh2drazvXv3bgID\nA0sdd8UVV7Bly5aLfToRERERERHxQJGRkaxdu7bU1y+60xkXF8esWbOIj48nLS2NgIAAmjRpUuq4\nLVu2lLoiKp5n+PDhvPjii+4uQ6RcyqmYQDkVEyinYgLl1BznmvFaYafz7rvv5ptvvuHgwYMEBwcz\nfvx4CgoKAEhMTKRv374sWrSIkJAQateuzZw5cyq3cqlSAQEB7i5BpELKqZhAORUTKKdiAuXUfBV2\nOpOTkyv8IbNmzaqUYkREREREROTSUikbCcmlIzw83N0liFRIORUTKKdiAuVUTKCcmk+dTikhJibG\n3SWIVEg5FRMop2IC5VRMoJyaz1JcRbv7WCwWbSQkIiIiIiLG2r17N/369WP16tUUFRW5u5wqZbFY\nuOyyy0hISOCZZ56hevXqZR5TVp9PVzpFRERERETOQ79+/ejfvz8nT56kuLjYq/7Lz8/n+++/Z9Om\nTdxyyy1/6u9NVzqlhKysLGw2m7vLECmXcmqOgoICrFaru8twi+3btxMSEuLuMkTKpfOpmMCTcurr\n68vJkyepVq2au0txm5MnT1KvXj3nHU3Odq4+30Xfp1NERORcrFbrOe/ZdanLzMx0dwkiIlLJioqK\nvLrDCVCzZk0KCwv/1PfoSqeIiLiUt3Y69Z4nInLpUZ/mjHP9PWhNp4iIiIiIiFQ5dTqlhKysLHeX\nIFIh5VRMoJyKCZRTMYEn57SsdY0m/fyqojWdIiIiIiIiF8DVexdcKlN5daVTSvCUncFEyqOcigmU\nUzGBciomUE7Pz+TJkwkJCaFevXpceeWVfPrppwDMnTuXa6+9lr///e8EBAQQERHBV199VaW1Vdjp\nTE1NJTw8nNDQUKZMmVLq8dzcXPr160dkZCSdOnVi06ZNLilUREREREREyhYSEsKKFSv47bffGDt2\nLPfeey979+4FID09nZCQEA4dOsT48ePp378/ubm5VVZbuZ1Ou93O0KFDSU1NZfPmzSQnJ7Nly5YS\nx/zrX//i6quvZt26dcyfP59hw4a5tGBxLU+eMy/ioJyKCZRTMYFyKiZQTs/P7bffTtOmTQG48847\nCQ0NJT09HYDLLruMYcOG4evry5133klYWBgLFy6sstrK7XQ6esQ2mw2r1Up8fDwpKSkljtmyZQs9\nevQAICwsjKysLA4cOOC6ikVERERERKSE+fPnExUVRf369alfvz4bN27k4MGDWCwWAgMDSxzbsmVL\n9uzZU2W1ldvpzMnJITg42NkOCgoiJyenxDGRkZF8/PHHwJlO6s6dO9m9e7cLSpWqoDnzYgLlVEyg\nnIoJlFMxgXJasZ07dzJ48GBefvllDh8+TG5uLm3btgXObEb0xz7czp07S3VEXancTuf57MQ0evRo\n8vLyiIqKYtasWURFReHr61tpBYqIiIiIiMi5HT9+HIvFQqNGjSgqKmLOnDls3LjR+fj+/fuZOXMm\nBQUFfPDBB2zdupW+fftWWX3l3jIlMDCQ7OxsZzs7O5ugoKASx9StW5e33nrL2W7VqhWtW7cu8+cN\nHz6cgIAAAMLDw4mJiXGOXDjmaqvt3rbja55Sj9pql9VOS0ujadOmHlOP2uW3PaUOd7RtOp+q7eFt\nnU/VNqHt+Jon1eNprrjiCkaOHEnnzp3x8fHh/vvvp2vXrsCZC4mdOnVi27ZtNG7cmKZNm/Lhhx9S\nv379i3rOrKws0tLSyMjIACAvL++cx1qKy7n5S2FhIWFhYSxbtozmzZvTsWNHkpOTiYiIcB5z5MgR\natasSbVq1Xj99df57rvvmDt3buknsliMuM9MQUEBVqvV3WW4zfbt2wkJCXF3GSLlyvrfh3kxgyvv\nX+bJMjMzlVPxeDqfigk8Kad/7NO4uu9QGT9/7ty5vPnmm3z77beVVNW5+3bn+nq5Vzr9/PyYNWsW\nsbGx2O12EhISiIiIICkpCYDExEQ2b97MAw88gMVioW3btrz55puV9FLcw9U3ePV0JgwMiHjKG49I\neZRTMYFyKibw5Jy6+mLVpXIxrNwrnZX6RIZc6QTvHZUHdTpFpPJ56zlV51MRkUuPSX0ah3nz5vHm\nm2/y3//+t9J+5p+90lnuRkLifTx5rrqIg3IqJlBOxQTKqZhAOb04AwYMqNQO54VQp1NERERERERc\nRtNry+CtU8FA08FEpPJ56zlV51MRkUuPSX0aV9L0WhEREREREfEY6nRKCZozLyZQTsUEyqmYQDkV\nEyin5lOnU0RERERERFxGazrL4K3rj0BrkESk8nnrOVXnUxGRS49JfRpX0ppOERERERGRqlBQYPbP\nryLqdEoJmjMvJlBOxQTKqZhAORUTeHROrVawWFz3n9Xq7ldYKdTpFBERERERMZjNZuP555/nqquu\nom7duiQkJLBv3z769OmDv78/PXv2JC8vD4AVK1bQpUsX6tevT4sWLZg3bx4AJ0+eZOTIkdhsNgIC\nAujWrRunTp2qlPq0prMM3rr+CLQGSUQqn7eeU3U+FRG59JTZp3Hl+9x5vpe0atWKZs2akZKSQkFB\nAVFRUQQGBjJnzhzCw8Pp27cv1113HQMGDKBdu3a8/vrr3H777Rw5coTs7GwiIyN55JFH2LJlCwsW\nLKBJkyakp6dz9dVXU61atVLP92fXdPr9+VcuIiIiIiIinuTvf/87jRs3BqBbt240adKEyMhIAPr1\n68eyZcuoVq0aPXv25K677gKgQYMGNGjQgKKiIubMmcPKlStp1qwZADExMZVWW4XTa1NTUwkPDyc0\nNJQpU6aUevzgwYP07t2b9u3b07ZtW+bOnVtpxUnV8+g58yL/o5yKCZRTMYFyao6CS2RDmQuxfft2\nd5dghCZNmjj/XLNmzRLtGjVqcOzYMbKzs2ndunWp7z148CCnTp3i8ssvd0lt5XY67XY7Q4cOJTU1\nlc2bN5OcnMyWLVtKHDNr1iyioqJYu3Yty5cvZ+TIkRQWFrqkWBERERERb2S1WrFYLF75n5+fJmde\niLKmuQYHB7Njx45SX2/UqBE1atRwWQe/3E5neno6ISEh2Gw2rFYr8fHxpKSklDimWbNm/PbbbwD8\n9ttvNGzYUMEwmM1mc3cJIhVSTsUEyqmYQDkVEyinleeee+5h6dKlfPDBBxQWFnLo0CHWrVuHj48P\nDz30ECNGjODXX3/Fbrfzww8/kJ+fXynPW26nMycnh+DgYGc7KCiInJycEscMGjSITZs20bx5cyIj\nI5kxY0alFCYiIiIiIiIX5uyN/BxXjYODg1m0aBEvvPACDRs2JCoqivXr1wPw/PPP065dO6Kjo2nY\nsCFPPvkkRUVFlVJLuZckz2fHwX/961+0b9+e5cuXs2PHDnr27Mm6deuoW7duqWOHDx9OQEAAAOHh\n4cTExDhHLhxrCjyl7Sl1uKNts9k8og611T5XOy0tjaZNm3pMPWqX3/aUOtzRtul8akS7sLCQkJAQ\nj6mnKtvfffcdgYGBHlOP2uW3PaUOd7RtHnQ+LaGg4Lx3mL0gBQXnda/OzMzMEu233367RDshIYGE\nhAQAunbtSlpaWqmfUaNGDaZPn8706dPPq7SsrCzS0tLIyMgAcN6SpSzl3jIlLS2NcePGkZqaCsCk\nSZPw8fFh1KhRzmP69u3LmDFjuPbaawG4/vrrmTJlCh06dCj5RBbdMsUEmZmZzn9YIp7K8eYjZvDW\nc6rOp2ZRTsUEyqn7mdSncaU/e8uUcqfXdujQgW3btpGVlUV+fj7vv/8+cXFxJY4JDw9n6dKlAOzb\nt4+tW7eWuSOSmMFT/kGLlEc5FRMop2IC5VRMoJyar9zptX5+fsyaNYvY2FjsdjsJCQlERESQlJQE\nQGJiIk899RQPPvggkZGRFBUVMXXqVBo0aFAlxYuIiIiIiIhnK3d6baU+kUGXor116gJ41vQFkXPR\n9FqzeOs5VedTsyinYgLl1P1M6tO4UqVOrxUREREREZEzfHx8Ku02IqY6efLkn75Fpq50lsFbR5Gg\n7JvIiohcDG89p+p8ahblVEygnLpfdHQ0/fr14/HHH6datWruLqdKFRYWsnPnTkaMGMHp06edm82e\nTVc6RURERERELsInn3zCJ598Qs2aNZ33vvSW/6pXr07Xrl1p27YtKSkpf+rvTVc6y+Cto0jgWXPm\nRc5FazrN4q3nVJ1PzaKcigmUU/F0utIpIiIiIiIiVU5XOsvgraNI4Flz5kXk0uCt51SdT82inIoJ\nlFPxdLrSKSIiIiIiIlVOnU4pISsry90liFRIORUTKKdiAuVUTKCcmk+dThEREREREXEZreksg7fO\nlwfNmReRyuet51SdT82inIoJlFPxdFrTKSIiIiIiIlWuwk5namoq4eHhhIaGMmXKlFKPP//880RF\nRREVFUW7du3w8/MjLy/PJcWK62nOvJhAORUTKKdiAuVUTKCcmq/cTqfdbmfo0KGkpqayefNmkpOT\n2bJlS4ljHn/8cdasWcOaNWuYNGkS3bt3JyAgwKVFi4iIiIiIiBnK7XSmp6cTEhKCzWbDarUSHx9P\nSkrKOY9/9913ufvuuyu9SKk6NpvN3SWIVEg5FRMop2IC5VRMoJyar9xOZ05ODsHBwc52UFAQOTk5\nZR574sQJFi9ezG233Va5FYqIiIiIiIix/Mp78M/skPX555/TtWvXcqfWDh8+3Pl4eHg4MTExzpEL\nx1xtT2l7Sh3uaNtsNo+oQ221z9VOS0ujadOmHlOP2uW3PaUOd7RtOp8a03Zwdx1V3db51Ky2p9Th\njrZN51OPbKelpZGRkQFQ7r4+5d4yJS0tjXHjxpGamgrApEmT8PHxYdSoUaWO7devH3fddRfx8fFl\nP5FFt0wxQWZmpjNIIp7K8eYjZvDWc6rOp2ZRTsUEyql4unP1+crtdBYWFhIWFsayZcto3rw5HTt2\nJDk5mYiIiBLHHTlyhNatW7N7925q1qz5pwrwRN76Dxp0HyQRqXzeek7V+dQsyqmYQDkVT3euPl+5\n02v9/PyYNWsWsbGx2O12EhISiIiIICkpCYDExEQAPv30U2JjY8/Z4RQRERERERHvVO6Vzkp9Il3p\nNELmtm3YQkLcXYb7FBSA1eruKqQCml5rFm89p2o6mFmUUzGBciqe7oKudIoX8vMDLz2hAWDIwIiI\niIiIiCl0pbMM3jqKBP+bM+/Fr1+dTpHK563nVFPe8+QM5VRMoJyKpztXn6/c+3SKiIiIiIiIXAx1\nOqUEx/13RDyZciomUE7FBMqpmEA5NZ86nSIiIiIiIuIyWtNZBm+dLw9a06k1nSKVz1vPqaa858kZ\nyqmYQDkVT6c1nSIiIiIiIlLl1OmUEjRnXkygnIoJlFMxgXIqJlBOzadOp4iIiIiIiLiM1nSWwVvn\ny4PWdJq0prOgoACr1eruMtzCm1+7ibz1nGrKe56coZyKCZRT8XTn6vP5uaEWEakEVqtVbz4iIiIi\n4vEqnF6bmppKeHg4oaGhTJkypcxjli9fTlRUFG3btqV79+6VXaNUIc2ZFxMop2IC5VRMoJyKCZRT\n85V7pdNutzN06FCWLl1KYGAg0dHRxMXFERER4TwmLy+PRx55hMWLFxMUFMTBgwddXrSIiIiIiIiY\nodwrnenp6YSEhGCz2bBarcTHx5OSklLimHfffZfbbruNoKAgABo1auS6asXlbDabu0sQqZByKiZQ\nTsUEyqmYQDk1X7mdzpycHIKDg53toKAgcnJyShyzbds2Dh8+TI8ePejQoQNvv/22ayoVERERERER\n45Q7vfZ8NikpKChg9erVLFu2jBMnTtC5c2diYmIIDQ0tdezw4cMJCAgAIDw8nJiYGOfIhWOutqe0\nPaUOd7RtQJbj7+F/j3tNmzM84fdwPm0Hd9dR1e20tDSaNm3q9jrUPr+2p9ThjrbNZvOIOtTW+fRc\nbZ1PzWp7Sh3uaNt0PvXIdlpaGhkZGcCZZZfnUu4tU9LS0hg3bhypqakATJo0CR8fH0aNGuU8ZsqU\nKZw8eZJx48YBMHDgQHr37s3tt99e8oksumWKCTIzM7G1auXuMtzHkIw6eGtWMzMznSc88XzKqZhA\nORUTKKfi6c7V5yt3em2HDh3Ytm0bWVlZ5Ofn8/777xMXF1fimFtuuYUVK1Zgt9s5ceIEK1eu5Ior\nrqjc6qXK6B+0mEA5FRMop2IC5VRMoJyar9zptX5+fsyaNYvY2FjsdjsJCQlERESQlJQEQGJiIuHh\n4fTu3ZurrroKHx8fBg0apE6niIiIiIiIABVMr63UJ9L0WiNoeq0ZGXXw1qxqmo1ZlFMxgXIqJlBO\nxdNd0PRaERERERERkYuhK51l8NZRJODM78iLX7+udJrBlHOJnKGcigmUUzGBciqeTlc6RURERERE\npMqp0yklOO6/I+LJlFMxgXIqJlBOxQTKqfnU6RQRERERERGX0ZrOMnjrfHnQmk6t6TSDKecSOUM5\nFRMop2IC5VQ8ndZ0ioiIiIiISJVTp1NK0Jx5MYFyKiZQTsUEyqmYQDk1nzqdIiIiIiIi4jJa01kG\nb50vD1rTqTWdZjDlXCJnKKdiAuVUTKCciqfTmk4RERERERGpchV2OlNTUwkPDyc0NJQpU6aUenz5\n8uX4+/sTFRVFVFQUEydOdEmhUjU0Z15MoJyKCZRTMYFyKiZQTs3nV96DdrudoUOHsnTpUgIDA4mO\njiYuLo6IiIgSx1133XV89tlnLi1UREREREREzFPulc709HRCQkKw2WxYrVbi4+NJSUkpdZzmWV86\nbDabu0sQqZByKiZQTsUEyqmYQDk1X7mdzpycHIKDg53toKAgcnJyShxjsVj4/vvviYyMpG/fvmze\nvNk1lYqIiIiIiIhxyu10ns8OWVdffTXZ2dmsW7eOv//979x6662VVpxUPc2ZFxMop2IC5VRMoJyK\nCZRT85W7pjMwMJDs7GxnOzs7m6CgoBLH1K1b1/nnPn368PDDD3P48GEaNGhQ6ucNHz6cgIAAAMLD\nw4mJiXFeLneEyVPanlJHVbcdshx/D/973GvanOHu38P5th3cXUdVt/fu3esRdah9fm1PqaOq2w7u\nrkPt82s7uLuOqm7v/d8MNnfX4bb29u3g5+c59eh8WmabwkKPqMNt7cBAsFo9p56z2mlpaWRkZACQ\nl5fHuZR7n87CwkLCwsJYtmwZzZs3p2PHjiQnJ5fYSGjfvn1cdtllWCwW0tPTufPOO50FlXgii+7T\naQLdp9OMjDp4a1ZNOZfIGcqpmMCrc+qlrx3Q+74hlFNzcnquPl+5Vzr9/PyYNWsWsbGx2O12EhIS\niIiIICkpCYDExEQ+/PBDXn31Vfz8/KhVqxbvvfeea16BiIiIiIiIGKfcK52V+kS60mmEzMxMbK1a\nubsM9zEkow7emtXMzMzfp9yIx1NOxQRenVO97xtDOfVSBuX0XH2+cjcSEhEREREREbkYutJZBm8d\nRQLNmTdpJAm8N6umnEvkDOVUTODVOfXS1w7ofd8Qyqk5OdWVThEREREREaly6nRKCWXtPCziaZRT\nMYFyKiZQTsUEyqn51OkUERERERERl9GazjJ463x50Jx5k+bMg/dm1ZRziZyhnIoJvDqnXvraAb3v\nG0I5NSenWtMpIiIiIiIiVU6dTilBc+bFBMqpmEA5FRMop2IC5dR86nSKiIiIiIiIy2hNZxm8db48\naM68SXPmwXuzasq5RM7w2pzm54PV6u4y3KegwKjX77U51fu+uyv4U5RTL2VQTs/V5/NzQy0iIiKX\nPqtVH5JEREQ4j+m1qamphIeHExoaypQpU8553KpVq/Dz8+Pjjz+u1AKlamnOvJhAORUTKKdiAuVU\nTKCcmq/cTqfdbmfo0KGkpqayefNmkpOT2bJlS5nHjRo1it69e2vam4iIiIiIiDiV2+lMT08nJCQE\nm82G1WolPj6elJSUUse99NJL3H777TRu3NhlhUrVsNls7i5BpELKqZhAORUTKKdiAuXUfOV2OnNy\ncggODna2g4KCyMnJKXVMSkoKQ4YMAbx3gbOIiIiIiIiUVm6n83w6kMOHD2fy5MnOnYo0vdZsmjMv\nJlBOxQTKqZhAORUTKKfmK3f32sDAQLKzs53t7OxsgoKCShzz008/ER8fD8DBgwf5z3/+g9VqJS4u\nrtTPGz58OAEBAQCEh4cTExPjvFzuCJOntD2ljqpuO2Q5/h7+97jXtDnD3b+H8207uLuOqm7v3bvX\nI+pQ+/zanlJHVbcdsjzl/KbzabltB3fXUdXtvXv3gs3m/ry4q+0hv4fzbXtKHVXddnB7XnQ+LdVO\nS0sjIyMDgLy8PM6l3Pt0FhYWEhYWxrJly2jevDkdO3YkOTmZiIiIMo9/8MEHufnmm+nfv3/pJ7Lo\nPp0m0H2QzMiog7dm1ZRziZzh1Tn10tcO6HxqCOVUOTWBcmpOTi/oPp1+fn7MmjWL2NhY7HY7CQkJ\nREREkJSUBEBiYqJrqhUREREREZFLQrlXOiv1iXSl0wiZmZnYWrVydxnuY0hGHbw1q5mZmaWm3Ijn\n8uqc6nxqDOXUSymnRlBOzcnpufp85W4kJCIiIiIiInIxdKWzDN46igSaM2/SSBJ4b1aL8/PBanV3\nGe5TUGDU6/fanOp86u4K/hTl1Espp0ZQTs3J6QWt6RQR8UhWq958RERERAyh6bVSgmMrZBFPppyK\nCZRTMYFyKiZQTs2nTqeIiIiIiIi4jNZ0lsFb58uD5sybNm3RW7OqnCqnJlBOlVMTKKfKqQmUU3Ny\nqt1rRUREREREpMqp0yklaM68mEA5FRMop2IC5VRMoJyaT51OERERERERcRmt6SyDt86XB82ZN2nO\nPHhvVpVT5dQEyqlyagLlVDk1gXJqTk61plNERERERESqXIWdztTUVMLDwwkNDWXKlCmlHk9JSSEy\nMpKoqCiuueYavvrqK5cUKlVDc+bFBMqpmEA5FRMop2IC5dR8fuU9aLfbGTp0KEuXLiUwMJDo6Gji\n4uKIiIhwHnPDDTdwyy23ALBhwwb69evH9u3bXVu1iIiIiIiIGKHcK53p6emEhIRgs9mwWq3Ex8eT\nkpJS4pjatWs7/3zs2DEaNWrkmkqlSthsNneXIFIh5VRMoJyKCZRTMYFyar5yO505OTkEBwc720FB\nQeTk5JQ67tNPPyUiIoI+ffowc+bMyq9SREREREREjFRup/N8d8i69dZb2bJlC59//jn33XdfpRQm\n7qE582IC5VRMoJyKCZRTMYFyar5y13QGBgaSnZ3tbGdnZxMUFHTO47t160ZhYSGHDh2iYcOGpR4f\nPnw4AQEBAISHhxMTE+O8XO4Ik6e0PaWOqm47ZDn+Hv73uNe0OcPdv4fzbTu4u46qbu/duxdsNvfn\nxV1tD/k9nG/bU+qo6raD2/Oi8+l5tR3cXUdVt3U+PfN/d/8ezrftKXVUddvB7XnR+bRUOy0tjYyM\nDADy8vI4l3Lv01lYWEhYWBjLli2jefPmdOzYkeTk5BIbCe3YsYPWrVtjsVhYvXo1d9xxBzt27Cj9\nRBbdp9MEug+SGRl18NasKqfKqQmUU+XUBMqpcmoC5dScnJ6rz1fulU4/Pz9mzZpFbGwsdrudhIQE\nIiIiSEpKAiAxMZGPPvqI+fPnY7VaqVOnDu+9955rXoGIiIiIiIgYp9wrnZX6RLrSaYTMzExsrVq5\nuwz3MSSjDt6aVeVUOTWBcqqcmkA5VU5NoJyak9Nz9fnK3UhIRERERERE5GLoSmcZvHUUCTRn3qSR\nJPDerCqnyqkJlFPl1ATKqXJqAuXUnJzqSqeIiIiIiIhUOXU6pQTHVsginkw5FRMop2IC5VRMoJya\nT51OERERERERcRmt6SyDt86XB82ZN2nOPHhvVpVT5dQEyqlyagLlVDk1gXJqTk61plNERERERESq\nnDqdUoLmzIsJlFMxgXIqJlBOxQTKqfnU6RQRERERERGX0ZrOMnjrfHnQnHmT5syD92ZVOVVOTaCc\nKqcmUE6VUxMop+bkVGs6RUREREREpMqdV6czNTWV8PBwQkNDmTJlSqnHFyxYQGRkJFdddRXXXnst\n69evr/RCpWpozryYQDkVEyinYgLlVEygnJrPr6ID7HY7Q4cOZenSpQQGBhIdHU1cXBwRERHOY1q3\nbs1///tf/P39SU1NZfDgwaSlpbm0cBEREREREfF8Fa7p/OGHHxg/fjypqakATJ48GYDRo0eXeXxu\nbi7t2rVj9+7dJZ9IazqNoDnzZmTUwVuzqpwqpyZQTpVTEyinyqkJlFNzcnrBazpzcnIIDg52toOC\ngsjJyTnn8W+++SZ9+/a9wDJFRERERETkUlLh9No/M6Ly9ddf89Zbb/Hdd99dVFHiPllZWdjcXYRI\nBZRTMYFyKiZQTsUEyqn5Kux0BgYGkp2d7WxnZ2cTFBRU6rj169czaNAgUlNTqV+/fpk/a/jw4QQE\nBAAQHh5OTEwMNpsN+H2BsKe0PaWOqm47ZDn+Hv73uNe0OcPdv4fzbTu4u46qbu/duxdsNvfnxV1t\nD/k9nG8xRRBdAAAgAElEQVTbU+qo6raD2/Oi8+l5tR3cXUdVt3U+PfN/d/8ezrftKXVUddvB7XnR\n+bRUOy0tjYyMDADy8vI4lwrXdBYWFhIWFsayZcto3rw5HTt2JDk5ucRGQrt27eIvf/kL77zzDjEx\nMWU/kUVrOk2gOfNmZNTBW7OqnCqnJlBOlVMTKKfKqQmUU3Nyeq4+X4VXOv38/Jg1axaxsbHY7XYS\nEhKIiIggKSkJgMTERCZMmEBubi5DhgwBwGq1kp6eXskvQURERERERExT4ZXOSnsiXek0QmZmJrZW\nrdxdhvsYklEHb82qcqqcmkA5VU5NoJwqpyZQTs3J6QXvXisiIiIiIiJyoXSlswzeOooEmjNv0kgS\neG9WlVPl1ATKqXJqAuVUOTWBcmpOTnWlU0RERERERKqcOp1SgmMrZBFPppyKCZRTMYFyKiZQTs2n\nTqeIiIiIiIi4jNZ0lsFb58uD5sybNGcevDeryqlyagLlVDk1gXKqnJpAOTUnp1rTKSIiIiIiIlVO\nnU4pQXPmxQTKqZhAORUTKKdiAuXUfOp0ioiIiIiIiMtoTWcZvHW+PGjOvElz5sF7s6qcKqcmUE6V\nUxMop8qpCZRTc3KqNZ0iIiIiIiJS5dTplBI0Z15MoJyKCZRTMYFyKiZQTs13Xp3O1NRUwsPDCQ0N\nZcqUKaUez8jIoHPnztSoUYMXXnih0osUERERERERM1W4ptNutxMWFsbSpUsJDAwkOjqa5ORkIiIi\nnMccOHCAnTt38umnn1K/fn1GjhxZ+om0ptMImjNvRkYdvDWryqlyagLlVDk1gXKqnJpAOTUnpxe8\npjM9PZ2QkBBsNhtWq5X4+HhSUlJKHNO4cWM6dOiA1WqtvIpFRERERETEeBV2OnNycggODna2g4KC\nyMnJcWlR4j6aMy8mUE7FBMqpmEA5FRMop+bzq+iAyryMP3z4cAICAgAIDw8nJiYGm80G/B4mT2l7\nSh1V3XbIcvw9/O9xr2lzhrt/D+fbdnB3HVXd3rt3L9hs7s+Lu9oe8ns437an1FHVbQe350Xn0/Nq\nO7i7jqpu63x65v/u/j2cb9tT6qjqtoPb86Lzaal2WloaGRkZAOTl5XEuFa7pTEtLY9y4caSmpgIw\nadIkfHx8GDVqVKljx48fT506dbSm02CaM29GRh28NavKqXJqAuVUOTWBcqqcmkA5NSenF7yms0OH\nDmzbto2srCzy8/N5//33iYuLK/NYUzqVIiIiIiIiUjUqnF7r5+fHrFmziI2NxW63k5CQQEREBElJ\nSQAkJiayd+9eoqOj+e233/Dx8WHGjBls3ryZOnXquPwFSOXKyspyXsIX8VTKqZhAORUTKKdiAuXU\nfBV2OgH69OlDnz59SnwtMTHR+eemTZuSnZ1duZWJiIiIiIiI8Spc01lpT6Q1nUbQnHkzMurgrVlV\nTpVTEyinyqkJlFPl1ATKqTk5veA1nSIiIiIiIiIXSp1OKcGxFbKIJ1NOxQTKqZhAORUTKKfmU6dT\nREREREREXEZrOsvgrfPlQXPmTZozD96bVeVUOTWBcqqcmkA5VU5NoJyak1Ot6RQREREREZEqp06n\nlKA582IC5VRMoJyKCZRTMYFyaj51OkVERERERMRltKazDN46Xx40Z96kOfPgvVlVTpVTEyinyqkJ\nlFPl1ATKqTk51ZpOERERERERqXLqdEoJmjMvJlBOxQTKqZhAORUTKKfmq7DTmZqaSnh4OKGhoUyZ\nMqXMYx599FFCQ0OJjIxkzZo1lV6kVJ20tDR3lyBSIeVUTKCcigmUUzGBcmq+cjuddrudoUOHkpqa\nyubNm0lOTmbLli0ljlm0aBHbt29n27ZtzJ49myFDhri0YHGtjIwMd5cgUiHlVEygnIoJlFMxgXJq\nvnI7nenp6YSEhGCz2bBarcTHx5OSklLimM8++4wBAwYA0KlTJ/Ly8ti3b5/rKhYRERERERFjlNvp\nzMnJITg42NkOCgoiJyenwmN2795dyWVKVcnLy3N3CSIVUk7FBMqpmEA5FRMop+bzK+/B892W+Y/b\n4pb1fZGRkV67zbNJZsyYwQx3F+FOyqgRlFPl1ATKqXJqAuVUOTWBcmpOTiMjI8v8ermdzsDAQLKz\ns53t7OxsgoKCyj1m9+7dBAYGlvpZa9eu/VMFi4iIiIiIiPnKnV7boUMHtm3bRlZWFvn5+bz//vvE\nxcWVOCYuLo758+cDZ3aWCggIoEmTJq6rWERERERERIxR7pVOPz8/Zs2aRWxsLHa7nYSEBCIiIkhK\nSgIgMTGRvn37smjRIkJCQqhduzZz5sypksJFRERERETE81mK/7ggU0RERERERKSSlDu9Vi5dX375\npbtLEBERERERL6BOpxc6fPgwiYmJfPbZZ+4uReSciouLS+2MLeJJiouLsdvt7i5DpFzKqIh4AnU6\nvUhRUREADRo04Omnn2batGlurkikbEVFRVgsFiwWC0ePHnV3OSKlODLq6+vL3r172bNnj7tLEiml\nqKgIX19fAGVUjPDFF1+wZs0ad5chLuA7bty4ce4uQlzLbrfj4+NT4j6pV155JR988AGHDh0iJibG\njdWJlGaxWCguLmbixIksXryYjh07UqNGDXeXJeLkyOjUqVNJSEhg9erV7Nmzhy5dujjPuSLucOTI\nEU6cOEHNmjWxWCzs3LmThx9+mH//+9+sXr2aZs2a0aRJE4qLi3X/dPEYGzZs4LHHHiMlJYWFCxfS\npEkTbDYbfn7l7nkqBtG7ohdwjHK+8cYbvPjii3z77bdUq1aNESNG8NZbb5GXl+fmCsXbFRUVlZhK\nu3LlSgYPHsyuXbv417/+RUBAgBurEymdUccHpO3bt5OVlcX48eMZP348hw4dwtfXV1PDxS127drF\nP//5Tz7++GPn18aOHcvNN9/MBx98wIoVK5yznNThFE+xatUq7rnnHqKjo0lLS+P+++9n6dKlrF69\n2t2lSSVSp/MS9Me1cNnZ2Vx//fV8+eWXhIWFcc8995CRkUGvXr2Iiopi7NixbqxWvN3ZV+Jzc3OB\nM1PAV65cSf369alWrZo+wItbFRUVOTN64MAB4ExGf/nlFwoKCiguLiYqKorbbruNIUOGuLla8UaO\ndZstWrSgdevWbN++nY0bN7J//34sFgu1atUiNjaWyMhILa0Rj7F//34A2rRpQ/Pmzdm4cSMAd999\nNwDp6ekcOnTIbfVJ5VKn8xJz9lq4s40aNYp58+axYsUKjhw5wsCBAwF48sknWbx4MatWrXJHuSL4\n+vqyf/9+EhMTufvuu5k2bRr169dn2LBh7N27l9zcXI3Ii1v5+Phw8OBBBg0aRP/+/Rk9ejQnTpxg\n6NCh+Pn5sWnTJgBeffVVFi1axPLly5VZqTJ2u905o+nUqVPEx8dz6tQpVqxYwWWXXca6det48skn\nmT9/PrNnz6ZBgwYsXrzYzVWLN1uwYAFt27ZlwoQJJCYm4u/vz+jRo9m3bx9r166lfv36xMbGkp6e\nzvfff+/ucqWSqNN5iXCMcjrWEY0dO5Zp06axZs0agoODiYqKon///sCZ9R6bN2/mww8/JCwsjDvv\nvJOff/7ZbbWLd3Fk1XH1sri4mOHDh9OoUSPGjRvHnj17SExM5KGHHmLfvn0sXbrUuQmWSFUoa7fP\np556irp167JgwQLq1KnDXXfdRa9evbBaraxYsYIDBw5Qo0YNnnnmGedovYir5OfnO//s2MwqMTGR\nwYMH06xZMzp06MCmTZvYuHEj48ePB6BJkybs3r2bAQMGkJyczMGDB91VvnixJUuW8O9//5vPP/+c\nhx56iDfeeIOPP/6Y7t27c8011zB79mwA+vbtS9euXWnfvr2bK5bKYinWvDWj/XGToCNHjvDJJ5+Q\nkpJC586dee211/j55585ePAgTzzxBC+99BL+/v507dqVn3/+mf3792szAakSjmnfjoGR3377jXr1\n6pGTk8Pdd9/N119/ja+vL0VFRfTq1YsxY8Zw/Phxpk2bxltvvYXNZnPvCxCvcPb58Msvv6ROnTpc\nffXV3HfffUydOtWZw+joaEaMGEFYWBgTJ05kyJAh9OzZ042Vi7f48ccfeeWVV3jrrbcA2LdvH/fe\ney9du3Zl2LBhBAQEcODAAaZPn06dOnV46qmnGDFiBIcPH2bdunXceOONTJgwQZtdSZX57bffOHbs\nGM2aNSM/Px+73c5LL71ESkoKHTt2ZN68eeTm5rJlyxYGDx7MU089RZ8+fdxdtlQynXEMdeLECeDM\nCKfFYiEzM5OePXty++238/XXX/Pxxx/zxBNPcMUVV/CPf/yDWrVqcfLkSaZOnUqfPn3o378/KSkp\nzp+neyKKqxw4cIDjx49jsVjw8fFh7dq13H777QwcOJCkpCSaN2+Oj48P8+bNA85cre/SpQvbtm3j\npptuon379litVje/CrnUOa5uWiwWsrKyuO6663jhhRcoKiqievXq7N69u8SUxISEBDZu3MjVV19N\n165dadOmDfD7FXxdnZfK5shWhw4dePnll9m3bx8A27Zt49SpU4wdO5aAgAAKCwtp3Lgx3bp149df\nf2XhwoVMmzaNV199lSVLljBx4kR8fHx0/06pEi+++CLR0dE8++yzPPbYY1SvXp39+/fz/fff8/nn\nn/Piiy/i4+PDyJEjiYiIYOrUqfTq1cv5/fpseulQp9NACxcuZObMmeTn51NcXMywYcN4/vnnGThw\nIHfeeSe//vorixYtAiApKYl58+Zx9OhRpk2bRlFREX369GHEiBF07tzZOapf1jpQkYu1fv16nn76\naf7zn/8AkJeXx7Bhw+jduzeDBw9mxYoVPPXUU0ybNo2JEyeyf/9+Tp06xY8//khgYCAA06ZNc/5Z\npLI5Ooe+vr789ttvbNu2jaSkJPr160dqairXXnstcOaD0/jx41m7di25ubksXryYtm3bAjBixAha\ntmwJ/L4jqK4iSWVxfOg++z1669athIeHk5ubS9OmTWnevDmbN28GcN5iomfPnvj7+/PLL79w6tQp\nqlevTuPGjbHb7SXu3yniKsuXL2fr1q1kZGTQu3dvXnnlFVavXs3WrVupV68eBw8eZOHChfTt25c9\ne/ZQVFRE586dS+wArs+mlw5NrzWIYwfFgoICrFYr2dnZBAcHc88995CWlsaOHTs4cuQIM2fOBOCh\nhx4iMDCQQYMGsWXLFlasWFHmzxOpbGdvbPHcc89ht9t56KGH+PXXXxk3bhwLFy4E4ODBg8TGxjpH\nO3/99VfS09Pp378/EyZMcF7hVFalsv1xWcGXX37JxIkTeeKJJ9i4cSNz584lLi6O06dPs3r1aubM\nmcNXX33FqlWr+P777+nTpw/PPfcc1apVK/PniVysoqIi3n//fXx8fLjrrrvIy8tj9erVxMTEUKtW\nLe644w7atGnDo48+yvTp06lRowbjxo3j5MmT/POf/2TAgAHYbDbq1avn7pciXmTPnj00aNCAGjVq\nsGDBArZt28b27dvZtWsXTz75JH369OHQoUPMmDGDZcuWcfLkSebPn+8cxJNLlzqdBiguLi41KvnJ\nJ58wdepUvvjiC2rVqsVll13GV199RXR0NEuXLmXhwoVERkbywAMPALBjxw4uv/xy588DjR6J6331\n1Ve8+eab5OXlMXjwYHr27MkVV1zB559/Trt27SgoKCAxMZEHHniArl27cvToUY4cOUKLFi0AfZCX\nyue4snn2IEZSUhJDhgzho48+ol+/fgBMnjyZK664giZNmvCf//yHn3/+mXfffZf8/HwOHDjgvPqu\nARFxlaNHj5KUlMSOHTuIiopi5syZBAQE0LRpUz788EOys7P5v//7PxYvXozdbufxxx+nZs2arF27\nljvuuEMDd1KliouLeeqpp5g3bx633nor9913H/n5+dx1111MnDjRedcEx67Kbdq0YfPmzVxxxRXO\nn3H2gLVcenQG8nB2ux2LxYKvry87duzgww8/BKBfv360aNGCefPmUbNmTZ555hkGDRoEwPXXX4+/\nvz8HDx7k2LFjFBUVcfnll5dYs6QP8lKZHAMjjj8XFxcze/ZsnnjiCe6++25Onz5NSkoKhw4dYsSI\nEfztb38DIDMzk8zMTAIDA/Hx8cHf358WLVpQVFTkvP2PSGXy8fHBx8eHX375hY8++oji4mISExNp\n0aIF2dnZwJkP6KNHjyYuLo4mTZrwyy+/cN1111FUVITVaiUwMNCZUX2Ql8rkyBVA3bp1ueGGG/D3\n9+f9999n6dKlrFixgqNHj/L6668THBzMvffey5gxY4iIiOC9995z3gZt0qRJWK1W5yCzciqulJKS\nQmpqKk2aNGHTpk107NiRUaNGcd111xEZGUleXh7r16/nrbfeci6tAZwdzsLCQgB1OC9xutJpgIKC\nAl577TXefPNNatSoQUxMDBMnTmTTpk2MHj2aV155hYiICC6//HIeffRRhg0bxv79+7nsssvcXbp4\ngbNHJs++Mvnggw/SpUsXBg0axKZNm5g/fz4tWrTgkUce4fbbb6d69er8+OOPDBs2jIcfflhXNaVK\nFBUVMWbMGFJTU+nWrRtFRUUMGzaMLVu2MGTIEHJycoAzm7W9+eabvPTSSyQkJDBq1Cg3Vy6XurMH\nMbKzs6lTpw7169fn3//+N2PGjOHdd98lOjqajz76iAULFjB16lRat27NZZddRnJycondkx0D1ups\niiv99NNPzJgxgx07dnDw4EF69+7NjBkzKC4upl+/fvTu3Ztbb72V119/nVWrVuHn58f48eNp166d\nu0sXN9DZyMPY7fYSO3UdOXKEUaNGsWDBAtauXcuiRYs4cuQIycnJdOrUiaioKN544w3gzEYXu3bt\nAqBx48aAdlAU1zp72vdLL73EI488wrvvvgtAREQEOTk5nDx5kiuvvJKaNWvy/vvvs3btWj788EOm\nTp3KqlWrePjhh935EuQSVlRUVGrnw61bt1JYWMiaNWuIjIwkNTWVjRs3EhcXR+vWrRk3bhwAtWrV\nIi4ujlWrVjk7nDqfiiucPeW7oKCA0aNHc+ONN/LYY4/x8ssv0717d+Lj450bst12220EBASQlJSE\nj48PK1asKHW7Hl9fX3U4xaU2bdrEDTfcQIcOHfjuu+8YOHAgvr6+ZGRkYLFYePLJJ5k2bRqnTp3i\n6aefdt6Ps127diWu6Iv30BnJgzg+wDu27C8qKsLf35+oqCiys7P59ddfadCgAT169GDNmjVs2rSJ\nkSNHsmTJElavXs3NN9/MCy+8AGgHRXGdw4cPM3r0aPbv3++cpjh69GhWrFjBtddey5AhQ1i3bh0h\nISEcP36czz77DICWLVtisVjYuHEjhYWFNG/enHr16jkHWnSVUyqT46qRxWJh3bp1rF+/3vn1r7/+\nmhtuuIFPPvmE9957z7mO89VXX2XChAkcPXoUOJNZf39/Z0Z1PhVXODtX77//PhaLhfXr19OyZUum\nTJlCfn4+MTEx7NmzhyVLlgAwePBgWrRogd1uJzw8HNCtJaRqXXnllfzf//0f3333HQD33HMPhw8f\n5ocffuDYsWN06tSJuLg4Nm7cCOCcfee4v7zOp97Hd5xjWFfczmKxsGvXLh5++GHmz5/Pt99+S4sW\nLejduze//PILmzZtokePHoSGhrJ06VK2b9/OrbfeSq9evbjyyiudP8fxD1rEFfLz84mMjKRx48b4\n+PgwadIkFi9ezGuvvUb37t2x2+2kpKQwePBgTp8+zeTJk1m4cCHffPMNU6ZM4aabbnJ2BoASfxap\nLBaLxbmGeObMmSxcuJDCwkJq167Nzp07CQ8PZ86cOTRv3py1a9fy3Xff0b17d2688UZatWpVYiBE\nGZXKdHa2iouL2bt3L5MmTXJeMbJYLDz//PPs3r2b119/nbCwMBo3bkxGRgbff/89sbGx2Gw2OnXq\nVOK9XhmVqta+fXteffVVunTpQmhoKMeOHWPRokW0atWK4OBgevbsSVhYWInv0edT76XfvAc5evQo\no0eP5i9/+QvffPMNu3btYsSIEQDEx8ezdu1aVq1aRa1atbj55pvp3LkzACEhIcDvo5xaiC2u5O/v\nT/Xq1bn11lv54YcfSExMJDw8nLS0NAD++c9/kpWVxdKlS4mPj+edd95h8ODBrFy5kq5duwKapiiu\nt2HDBoYOHcqxY8dYv349zz//PFlZWaSnp9OlSxc2bNjABx98wNixY7nrrrs4fvw4AB06dAD0AV5c\n5+xsWSwWGjduzLvvvktubi61a9dm9uzZDB48mEWLFhEVFcUXX3yBxWLh9ttv5+GHH6Z69erO93ud\nS8WdIiIiuPPOO5kwYQJw5mpndHS0824JFovFubmgiK50epBq1apx/fXXU7duXfr3788111zDf//7\nX2d77dq1LF68mNtuu42QkBDatGlT4vv1IUmqit1u5/DhwyxZsoQHH3yQnJwcsrKyCAwMpHHjxlSv\nXp3JkyfzwAMPEBgY6BzpLCws1FUjqRInT55k5cqV7Nq1y3m/wuzsbPbs2cOQIUPw9/dnzZo17Nmz\nh3feeYdrr73W3SWLF3n55ZfZvXs3jRs3pk6dOuzbt4/8/Hzi4uL45JNPuPLKK6lVqxavvfYa06ZN\n45prriE6OppmzZoBv7/f61wq7nbFFVfw3HPPcfnll9OmTRu6dOlCnTp1nI/rjgnioE5nFXLcVsLH\nx6fMNWwWi4WaNWsyY8YMIiMjefbZZzlx4gRjxoxhzJgxhIWF0bVrVxo2bOj8fq2FE1eoKKvVq1en\nUaNGLFmyBF9fX/r06cPy5cvJy8ujU6dOXHXVVVx//fXOD0iOn6mr8FJZKspoQEAAtWvXZs+ePfj4\n+NCmTRtq1qzJ9OnTSUhIIDIyku7du9OvXz/q1Knj3O1T51NxJUdWt2/fzrfffstXX33FjTfeyPLl\ny6lVqxZdu3YlKCiIzZs388Ybb5Cfn8/8+fO126d4LEdur7vuOufXdMszKYufuwvwFo7bSvj6+nLk\nyBH8/f3LPO7IkSPk5ubSqlUrcnJynJsErFu3jvbt2wMl14PoH7VUtvPNqs1m49Zbb+Wdd96hd+/e\nXHXVVezYsYMDBw7QqFEjwsLClFVxiYoy6shd+/btWbNmDf/85z9p2LAh8+bNIzw83HnPYscgyNm7\nMItUBsegiK+vb5mDIn/961/p06cP999/P9OnT6du3bp88sknDBo0iL59+9K3b18OHjxIo0aNgN/3\natB5VDyJY3r31Vdf7fyaNl2Tc1EqqojjA83kyZPp0qULq1atKvM4f39/OnTowI8//khUVBT+/v78\n9NNPzg4n6MO7uNb5ZrVatWp069aN6tWr8+qrrzJgwACeffZZGjdurI6muFRFGXXkrmHDhvTq1YuW\nLVsybtw4WrZsyezZs0tM/QJtbCGVy3HV3DEo8sc1nHDmg3n9+vV57bXXnGuNMzMz2bNnj/PYRo0a\nlei86nwqnqK4uLjELrSrV6/mwQcf5Pjx48qpnJOlWKt7XeLs+245PP744xw+fJinn36aVq1aOb/u\nGAU9+8bQeXl5nDhxgubNmwO/j+yLVLYLyerZ37tx40aaNm3q3A797ByLVIYLyajj/6dOneK9994j\nPT2dSZMm4e/vT0FBAVartcpfh3iXyZMn8/bbbzN37lyio6NLPe44Vx49epSXX36Z3NxcpkyZ4oZK\nRS5MXl4ezzzzDD///DMvvPBCiTspiPyROp0ucPYH84yMDDIyMrjlllvo3bs3o0aN4sSJE5w+fZrc\n3FwGDhxY6nvtdjt+fmdmPhcWFmqEU1zmYrL6x46AOpviChebUR8fH7Zu3cq0adPo2LEjCQkJ7ngZ\ncgm7mIE7EVN99NFHjB49mhkzZtC3b193lyMG0JpOF7BYLOTn5zNs2DC+//57Hn30USwWC3379mXG\njBm0atWKmjVrMnfuXJo0acLNN99MUVGRc6MVPz8/Tpw44dxYSMRVLjargLIqLlUZGQ0KCuLRRx/V\nKLxUurPXr509KLJhwwZGjRrFpk2bWL16tXNQ5OwO59lTZx1TFbUeTkwRExPDpk2bqFatmrtLEUOo\n01kJypr6umjRInJzc1m3bp3za8OGDWPYsGHO9tGjR9m7dy9w5oOV443mlVdeYe7cucybN4+IiIgq\neAXiLZRV8XSVndGXX36ZefPm8fbbb1dB9eJtLnZQxNfXlxMnTuDj40ONGjV0FVSMERgY6O4SxDDq\ndF6ks0fTf/zxR3x9fYmKiqJly5YsX76cxx57DKvVSkZGBtdccw1jx47ljTfe4J133qFevXqMGTMG\nOPPGtWjRIqZNm8Z1113Ht99+S/Xq1d350uQSo6yKp1NGxdNp4E5E5MJoTecF2Lt3Lxs2bKB79+5Y\nrVaysrIYOXIkubm5+Pv7079/f+677z7eeecd7HY7LVq0oKioiMGDB7N161ZmzJhBWFgYN910E3Bm\nPciKFSt4/fXX+X//7//RtGlTN79CuVQoq+LplFExxdnrMc8eFFmzZg19+vTh7rvvLndQJCkpyXnv\n4rMHRZ544gkNiojIJU+dzguQkpLC5MmTmT9/PqGhoUyYMAGbzcb999/Pbbfdxq5du3juuefo1asX\ncGaEMykpiQ0bNjBnzpwS6zUKCwvx8/MjPz9f8+Kl0imr4umUUfFkGhQREakcvuPGjRvn7iJM4LiZ\nuMViITw83HlPrR49ehATE0NAQAA33XQTrVq1IiQkhJ9//pnw8HB27NhBr169qFu3Ls8//zy1atUC\nfh8xdXxg0u1QpLIoq+LplFExxbJly3j22Wfp0aMHDRs2ZObMmcTExDBt2jQ++OADlixZgs1mo1+/\nfrRv355GjRrxxRdfUKNGDfr168e1115LmzZtgN93o2/WrBl33HFHqfvFiohcytTpPA+O3eQsFgs/\n/fQTp06dIiYmhlmzZhEREUHLli355JNP8PX15ZVXXqFGjRqMHTuW1q1b061bN+Li4njggQeoWbOm\nc7EJLGEAAAi4SURBVIc6bRYgrqCsiqdTRsXTaVBERKTyaV/u82CxWMjNzeWee+7h4Ycf5pdffqFN\nmzZ07dqVOXPmcPLkSRo1asSXX37Jli1b+OCDD4iNjaVTp07Uq1ePNm3aUFRU5NwaXcRVlFXxdMqo\neDLHZlY+Pj789NNP/PLLLzz++ON88803rFy5kurVq7N8+XI6dOhAUlISt9xyC8nJySxbtozQ0FC+\n+OILZs+eTYMGDUp0XkVEvJ06nWVwvFGc7d1336V27dqsXLmSG264AYCRI0fy888/s2zZMrp3784d\nd9zBfffdR4MGDZg/fz5t27Z1fr+Pj4/uvSWVTlkVT6eMikk0KCIi4hp61/6Ds98ofv31V+fXf/31\nV0JCQgA4ffo0hYWF1K9fn3vuuYeZM2dy6tQpJkyYwNdff82ECROAsj9siVQWZVU8nTIqnk6DIiIi\nVUP36aTkNug+Pj6sXLmSp59+moYNG2Kz2Rg3bpzzps3Hjx+ndu3aAGRmZpKQkMDWrVspKioCoG7d\nus51RhrllMqmrIqnU0bFFH8cFHHczuSPgyK+vr4lBkWio6OZMGEC//jHP6hbty5Q9v07RUTkd17f\n6czIyKC4uJiIiAhOnz7Njh07eOaZZ3jiiSdo0aIFt956K40aNeKhhx7ikUce4ciRI9x7771Mnz6d\n4uJipk2bxtSpU0v8TL3xiCsoq+LplFHxdBoUERFxD6++T+fp06f55ptvWLhwIQEBAdSoUYO77rqL\nRo0a8e233zJmzBiuv/56PvroI77++mtOnjzJggULWL16NeHh4UydOhWr1QqcGTHVdBpxFWVVPJ0y\nKp6urEGRxx57jH/84x/OQZGEhATuvvtuHnnkEa688spSgyK6zYmIyIXxuk6nY4TS8YHmvffeY8CA\nAbRr144lS5bQoEEDTpw4wcCBAxk0aBA9evSgZ8+eWCwWlixZApy5Obmm1IirKavi6ZRRMYUGRURE\n3Murptee/Uaxc+dOGjVqRK9evRgxYgTHjh3j9OnTAGzatImjR4/SqlUrNmzYQEREBFu3bmXfvn00\natSIunXrOj9s6QOSuIKyKp5OGRVPd/agSPXq1Tl8+DCvvfZaqUGRBQsWMH36dHr06MH69etJTExk\nyZIlPPfcc2UOiqjDKSLy53nFmfPsN55Tp04xcuRIbrnlFv72t7/x6aefMmLECOrVq8fs2bMBiI6O\nJjg4mFGjRnH99ddzww03sHjxYpo0aeL8UKTd6cQVlFXxdMqomMAxKOLj48POnTs5fvy4c1Ckc+fO\n5Q6KWCwW9u3bh91udw6K6BYoIiIX55KeXut4aWffmPmNN95g586dPPvsszz++OOkpKTwzTff8OOP\nP/L555/z17/+lerVq+Pj40Pjxo1p0qSJcw2Hpn6Jqyir4umUUTHB2VfgT506xZgxY1i2bBnt2rWj\nR48e3Hzzzbz44otUq1aNsWPHAvDwww9z6NAhvv76a9544w3i4uLc+RJERC5Jl+T02j+uM1q4cCFp\naWn07dsXu91OjRo16Nu3L76+vnz88cc0b96cbt26ceDAAQYOHEjbtm2ZPXs2TZo0AaCwsBBfX199\nQJJKp6yKp1NGxQSOQZGzr5i/88471KpVi7Vr1/L4448zadL/b+9+QqJawziOf+UszBRxMEJE+4No\ntEiI/igktZJaGIJKMEQtWoVJJhGYBg4II0VQiyFw5dJNTVBRy5pFrmTAgaAypnAhBaJU2iKc5i7u\nvVFc7l3ce8c5jd/P+nB4D/w4532e95z3THDixAna2tp4+PAhT58+pby8nLNnz9oUkaQCK7mVzh8f\nFGtra8zPzzM4OEh7ezvZbJZsNsuWLVu4evUqXV1dADx48IAjR45QW1vL69evaWlpKeYlaJMwqwo7\nM6qw+6emSCaTYWlpiefPnxMEAfF4nH379rGyskIymSQej/9tU+THFX1J0n9XckUn/D5RGh0dZXZ2\nloaGBi5cuMChQ4dIJpMMDQ1RV1fHpUuX2L9/P9PT09y7d487d+5w9OjRn85hl1OFZlYVdmZUYWVT\nRJJ+HSW3c0MqlaK3t5eqqiouXrzI3Nwc8/PzfP36la6uLo4fP05lZSWrq6v09/ezuLjIs2fPfpog\ngbsoqvDMqsLOjCrMgiAgl8sxPDxMd3c3t2/f5ubNm1y/fp1oNMrS0hLr6+t8/vyZly9fMjY2xsjI\nCC9evAD4XnDmcrliXoYkbQolt9KZTCbp6+vj3bt37Nixg3g8zqdPnzh37hwtLS2kUimi0Shv377l\ny5cvRCIRwE68Np5ZVdiZUYVZKpXi1q1bHDx4kNbWVsbGxrhy5Qp9fX0ADAwM8ObNG6LRKNPT0zQ1\nNTExMcG2bduKPHJJ2nyCWCwWK/Yg/k979+4lnU6TzWbp7Oxk165dPHr0iCAIaG5uprm5mY6ODnbu\n3ElFRQX5fJ58Pu8ESRvOrCrszKjCLJ1OMz4+ztTUFIcPH2Z5eZmFhQV2797N9u3bqa6uZnJykqmp\nKXp6ejh16hRbt24ll8v5ix5J2mAledcdHx/nyZMnvHr1isbGRg4cOMDMzAwfP34EoK2t7fuxZWVl\nPnxUNGZVYWdGFVY9PT2cPHmSRCIBwJkzZ/jw4QMzMzOsra1x7Ngx7t+/T3l5OZFIhHw+7/82JalI\nSu712j9du3aNdDrN48ePWV9fZ3V1lZqammIPS/oLs6qwM6MKq0wmw+nTp7l79y579uwhkUiQyWSI\nxWLU19cXe3iSpD+UbEt6YGCASCTCysoKZWVl1NTUfN9aXQoTs6qwM6MKq9bWVrq7uxkaGgLg/Pnz\n3Lhxw4JTkkKmZFc6JUlS6Xv//j2XL18mkUhQXV1NEAR8+/bNV70lKURKvuh0F0X9Ksyqws6MSpKk\nf6Pki05JklT6bIpIUnhZdEqSJEmSCsYPHiRJkiRJBWPRKUmSJEkqGItOSZIkSVLBWHRKkiRJkgrG\nolOSJEmSVDAWnZIkSZKkgvkNik/SfkMcfVsAAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x1185f4790>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAALbCAYAAAA/wIVgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XtYlHX+//HXAJ5AUksBBb8oKqKAoiaYlVpJ5qFsLcsj\n69kOVlpupqnDdJK1xNS2NmrVFQ+luV/LNaVcIDXXMFNMxDSzyANqJmAqB5n5/eHP+YqM5ZRy483z\ncV1el9xzM7yG3iGvue/7c1scDodDAAAAAGBCHkYHAAAAAIBrhcIDAAAAwLQoPAAAAABMi8IDAAAA\nwLQoPAAAAABMi8IDAAAAwLQoPAAAAABMi8IDAABggBMnTshutxsdAzA9Cg8AAEAFKS0t1fTp01Wv\nXj35+fnp+++/lyQ999xzevvtt40NB5gUhQcAAKCC/PWvf9U///lPzZkzRzVq1HBuj4qK0sKFC40L\nBpiYxeFwOIwOAQCAGeXl5Wnr1q06evRouVOX4uLiDEoFI4WGhmrOnDnq2bOnfH19lZmZqZCQEGVl\nZen222/Xzz//bHREwHS8jA4AVHaxsbGyWCy63HsDFx6zWCz65JNPKjgdgMpq3bp1evjhh3Xq1Cl5\nenqWe5zCUzX9+OOPat26dbntXl5eOnv2rAGJAPOj8AC/ITAw8FcLzwUWi6WCEqEysdvt2rdvnwID\nA1W7dm2j46ASeeaZZ/TAAw8oISFBfn5+RsdBJREcHKwdO3YoODi4zPb//Oc/CgsLMygVYG4UHuA3\ncE41fktERISys7PVvHlzo6OgEvn+++/10UcfUXZQxuOPP66nnnpKtWrVksPh0N69e7V27VpNmTJF\niYmJRscDTInCAwB/gIeHh5o1a6aTJ08aHQWVTIcOHbR//341a9bM6CioRJ544gmdOHFCf/rTn3T2\n7Fn16tVLNWvW1JQpUzRy5Eij4wGmxKIFgJvS09O1dOlS5eTkqKioqMw1PKmpqUbHgwGWL1+ut956\nS8nJyQoKCjI6DiqJ9evXa+LEiYqPj1dUVJSqV69e5vFGjRoZlAyVwZkzZ5SVlSW73a7w8HBOiQWu\nIQoP4IbFixdr+PDh6t27tz7++GP16tVL33zzjY4cOaIHH3xQ7777rtERYYAWLVro8OHDKiwslL+/\nv3x8fJyPWSwW7d2718B0MIqHx+Xv/GCxWFRaWlqBaQCg6uKUNsANM2fO1OzZszVu3Dj5+vpq1qxZ\natq0qcaMGaPGjRsbHQ8GGTx48GUfYzGLqosjvrhg9OjRv/mz4MKZAklJSRWUCqg6OMIDuMHHx0e7\ndu1S06ZNddNNNyk9PV2RkZHavXu3unfvrsOHDxsdEQBQyXTr1u2KC09aWloFpQKqDo7wAG6oW7eu\nfvnlF0lSw4YN9c033ygyMlKnT59WQUGBwelgtE2bNikrK0vS+ZXbbr31VoMTwWgnTpzQm2++qays\nLFksFkVEROjRRx/VjTfeaHQ0VKD09HSjIwBVGoUHcENMTIw2btyoyMhI9enTRxMmTNC2bdu0atUq\n3XbbbUbHg0GOHz+uBx98UBs3blSdOnUkSfn5+erSpYs++OAD1a9f3+CEMMK2bdsUGxurmjVrKiYm\nRg6HQ2+88YYSExP16aefqn379kZHBIAqgVPaADccOHBAp0+fVkREhM6cOaO//OUv2rhxo1q2bKnZ\ns2ezQlcVNXjwYO3atUvJyclq06aNJCkzM1NDhw5VmzZttHjxYoMTwgh33HGH/P39tWjRIucKbUVF\nRYqLi9OxY8c4damKevDBB3XzzTfrueeeK7M9ISFB27dv1/vvv29QMsC8KDwA8AfdeOONWr16dblT\n2DZt2qR7772Xe/RUUd7e3srIyFBERESZ7bt27VJ0dLTOnDljUDIYyd/fX5988onatm1bZntmZqZ6\n9Oih3Nxcg5IB5sUpbcDv5HA4dOn7Bb+2DC3Mq7CwUHXr1i23vV69eioqKjIgESqDGjVquLy2r6Cg\nQDVq1DAgESqD/Pz8MkvXX1CrVi3eHAGuEX47A9xw+PBhDRgwQA0aNJCnp6e8vLycf6pVq2Z0PBjk\n5ptv1owZM3Tu3DnntpKSEr3yyivq2LGjgclgpB49emjcuHHas2ePc1t2drYef/xx3XPPPQYmg5FC\nQkL0ySeflNu+fv16NW3a1IBEgPlxhAdww5///GcdPHhQzz//vPz9/bnHCiSdvz/T3XffrZCQEHXq\n1EkOh0NbtmxRQUGBy19sUDXMnj1b999/v1q3bq2bbrpJ0vlV26KjozV79myD08Eojz/+uCZNmqTC\nwkLdfffdkqSUlBTFx8fr5ZdfNjgdYE5cwwO4oXbt2vr888/LnXsN5Obm6m9/+1uZZanHjRsnPz8/\ng5PBSA6HQ6mpqc65CA8P11133WVwKhjNarVq5syZzlNea9asqWeeeUYvvviiwckAc6LwAG6IiopS\nUlKSoqOjjY4CALiOnT592lmEW7durdq1axucCDAvCg/ghrS0NMXHx+v1119XmzZt5OnpaXQkVBIX\nbjC5e/duSeIGk9DixYtVr1499e7dW5I0bdo0vfXWWwoPD9fSpUsVGBhocEIAqBooPIAbcnNz1b9/\nf33++eflHrNYLCotLTUgFYzm6gaTX3zxhYqLi7nBZBXWunVrJSYm6p577tH27dvVqVMn2Ww2rVu3\nTg0bNtSyZcuMjogKMmbMGCUmJqp27doaPXq0y+s/HQ6HLBaLkpKSDEgImBuLFgBuGDRokI4ePaqZ\nM2eyaAGcJk6cqLvvvtvlDSafeeYZbjBZReXk5CgsLEyS9NFHH+m+++7Tc889px49erBKWxWzd+9e\n5yqO+/bt+9XCA+Dqo/AAbtiyZYs+//xztWvXzugoqES++OILZWRkOMuOdP4eLNOmTeN6ryqsWrVq\nKiwslCSlp6froYcekiTVrVvX5f15YF7p6eku/w6gYnAfHsANzZo1K3OvFUDiBpNwLTo6Wi+99JL+\n+c9/atOmTc6jOt9//70aNmxocDoAqDq4hgdwQ3p6ul544QW9/vrrioyM5PQDSJIGDBigvXv3aunS\npc5TmLKzszVo0CCFhYVxrUYVlZWVpYEDByonJ0cTJ07U1KlTJZ2/D0teXp6WLFlicEIYJTU1VevX\nr9exY8dkt9sl/d8pbfPnzzc4HWA+FB7ADdWqVZPdbnf+w+Th8X8HSS0Wi4qLiw1MB6McOXJE999/\nv7Zu3VruBpOrVq1SQECAwQlR0ex2u/bt26fAwMByyw2fPn1aXl5eHP2rohISEjRlyhSFhYWpUaNG\nzjfOLvy78umnnxqcEDAfCg/ghoULF/7q48OGDauQHKh8uMEkLma321WjRg1lZ2erefPmRsdBJdK4\ncWNNnjxZjz32mNFRgCqDwgMAwDUQFham5ORkdezY0egoqERuuOEGZWZmqmnTpkZHAaoMCg8A/A4v\nv/zyFV/DNWXKlGucBpXR8uXL9dZbbyk5OVlBQUFGx0ElMXToUHXr1k0jR440OgpQZVB4gN9QrVo1\nHT58WA0aNFC1atUuux/X8FQtTZo0KVN4jh07prNnz6pOnTqSpPz8fNWqVUt+fn46cOCAUTFhoBYt\nWujw4cMqLCyUv7+/fHx8nI9ZLBbt3bvXwHSoSEuXLnX+PT8/XzabTQMGDFBUVFSZ5eyl8/d7A3B1\ncR8e4De888478vX1df4dkM4vLXzB8uXL9dprr2nBggUKDw+XdH6FrhEjRujpp582KCGMNnjw4Ms+\nxgqPVcuQIUPKbZs7d67LfSk8wNXHER4A+INCQ0O1aNEiderUqcz2LVu2aOjQodq3b59ByQAAADce\nBYA/KCcnp8zpShd4e3vrxx9/NCARKouioiJ9+OGHmjVrlvLy8iRJBw4ccP4dAHDtUXgANxw7dkxx\ncXFq1KiRPD095eHh4fzj6elpdDwYpH379po8ebLy8/Od2/Lz8/X888+rffv2BiaDkXJyctSmTRsN\nGjRIkyZN0s8//yxJmjNnjp577jmD08FI8+fPV7t27eTr6+u8xm/mzJlauXKlwckAc+IaHsANo0eP\n1tdff63x48erYcOGnIcPSdJbb72lXr16KSgoSK1bt5bD4VB2drZ8fX318ccfGx0PBpkwYYLatm2r\nnTt3qn79+s7tffv21ZgxYwxMBiMlJSVp0qRJmjBhgmbMmKELVxbUr19fb7zxhh544AGDEwLmwzU8\ngBvq1KmjlJSUctdqAGfPntWSJUu0e/duSedvPDpo0CDVqlXL4GQwip+fn9LS0hQeHi5fX19lZmYq\nJCREBw4cUHh4uM6cOWN0RBggIiJC06dP10MPPVRmLjIzM9W9e3cdP37c6IiA6XCEB3BD3bp1dcMN\nNxgdA5VQrVq1NGrUKKNjoBI5e/asy6Xsf/rpJ9WsWdOARKgM9u/fr5iYmHLbfXx8VFBQYEAiwPwo\nPIAbnn/+eb388stauHDhr96TB1VPXl6etm7dqqNHj8put5d5LC4uzqBUMNItt9yiZcuWyWq1ltk+\nZ84cdenSxaBUMFrDhg21b98+BQcHl9m+ZcsWhYSEGJQKMDcKD+CGFStWaOvWrWrcuLHCwsJUrVo1\nWSwWORwOWSwWffLJJ0ZHhAHWrVunhx9+WKdOnXK5eAWFp2qaMWOGunXrpj179qikpEQJCQnKzMxU\ndna2Nm/ebHQ8GCQuLk4TJ07U8uXLJUlnzpzRmjVr9Oyzz2rChAkGpwPMiWt4ADcMGzbsso9ZLBYt\nWLCg4sKg0ggPD1dMTIwSEhLk5+dndBxUIrt379bMmTO1detWORwO3XzzzZoyZYrCwsKMjgaDlJSU\naPTo0UpOTtbFv4KNGDFCSUlJ8vBgAV3gaqPwAMAf5OPjo507d6pZs2ZGRwFwnThw4IC+/PJL2e12\ndejQQc2bNzc6EmBanNIGAH9Qhw4dtH//fgoPyiksLNTSpUudq/e1bt1agwYNYtGCKiw1NVV33nmn\nmjZtqqZNmxodB6gSOMIDuGnhwoVaunSpcnJyVFRUVOYanu+++87oeDDA+vXrNXHiRMXHxysqKkrV\nq1cv83ijRo0MSgYjZWZmqnfv3srPz1erVq3kcDi0Z88e3XDDDVqzZo2ioqKMjggDeHl5KTAwUEOG\nDFFcXJxatmxpdCTA9Cg8gBsSExNltVo1YsQIvf322xo1apT27t2rjIwMPfnkk3rhhReMjggD/No5\n9xaLRaWlpRWYBpVFp06d1KBBAyUnJ6tu3bqSzq/mFxcXp2PHjmnLli0GJ4QRDh8+rMWLFys5OVlZ\nWVmKjo5WXFycBg4cqHr16hkdDzAlCg/ghrCwME2bNk2DBw8uc8O4qVOnKj8/X/PmzTM6IgyQnp7+\nq49369atQnKgcqlVq5YyMjIUGRlZZvvXX3+tjh07qrCw0KBkqCy++uorLVq0SMuWLVNBQYF69eql\nlStXGh0LMB2u4QHckJOTo9tuu02SVLNmTZ06dUrS+WVGO3fuTOGpoig0cCUkJER5eXnltufl5XG/\nFUiS2rdvr/bt22vYsGEaPny4/vd//9foSIApsfYh4IYGDRro5MmTkqTAwEBt375d0vlTFEpKSoyM\nhgp2+PBh55Kyhw8f/tU/qJrmzp2rCRMmKC0tTYWFhSosLFRaWpqeeeYZzZ071+h4MNjRo0c1e/Zs\ntWvXTu3bt5eHh4def/11o2MBpsQpbYAbhgwZosjISE2aNEkJCQlKSEhQz549lZaWpq5du+r99983\nOiIqiIeHh3Jzc+Xn58c1PHCpWrVqstvtuvSfWYvFUmZmLBaLiouLKzoeDLJs2TIlJyfr008/lZ+f\nnwYPHqy4uDhFREQYHQ0wLU5pA9zwxhtvqKioSJL07LPPytPTUxs2bNDQoUM1bdo0g9OhIqWmpjov\nME5NTTU4DSqjd95554r2s1gs1zgJKpORI0fqT3/6k/7973+re/fu8vT0NDoSYHoc4QGugYSEBI0d\nO5YVd1AGcwFXZsyYoUceeYS5qCIKCgp0ww03/OZ+/LwArh4KD3ANXLyCG3ABcwFXmAu4wlwAVw+L\nFgAAAAAwLQoPAAAAANOi8AAAAAAwLQoPAAAAANOi8AAAAAAwLQoPcA2w+CFcYS7gCnMBV5gL4Oph\nWWrgDzh16pQ2bNig0NBQtWjRwug4qCSYC7jCXMAV5gK49jjCA7hh4MCBmjt3riSppKREnTp10r33\n3qvw8HCtXr3a4HQwCnMBV5gLuMJcABWPwgO44bPPPlPnzp0lSatXr1ZBQYGOHDmi+Ph4vfTSSwan\ng1GYC7jCXMAV5gKoeBQewA0///yzAgICJEmffvqp+vXrJ39/fw0cOFC7d+82OB2MwlzAFeYCrjAX\nQMWj8ABuaNCggb777jtJ5/+huuOOOyRJZ86ckYcH/ztVVcwFXGEu4ApzAVQ8L6MDANeT/v37a/Dg\nwQoNDVVBQYFiY2MlSZmZmVxsWoUxF3CFuYArzAVQ8Sg8gBv++te/KigoSDk5OUpMTJSPj48k6dCh\nQxozZozB6WAU5gKuMBdwhbkAKh7LUgMAAAAwLU4WBdywY8cO7dq1y/nxmjVr9OCDD8pqtercuXMG\nJoORmAu4wlzAFeYCqHie8fHx8UaHAK4Xffv2VbNmzRQREaGDBw+qS5cuatSokdauXauffvrJeS42\nqhbmAq4wF3CFuQAqHkd4ADfs3btX7dq1kyT961//UseOHbV27VotWrRI77//vsHpYBTmAq4wF3CF\nuQAqHoUHcENxcbFq1qwpSUpPT9c999wjSWrRooVyc3ONjAYDMRdwhbmAK8wFUPEoPIAbQkNDtWLF\nCv3www/69NNP1b17d0lSbm6u6tWrZ3A6GIW5gCvMBVxhLoCKR+EB3BAfH68pU6aoadOmuu2229Sx\nY0dJUkpKitq3b29wOhiFuYArzAVcYS6Aisey1ICbcnNzdeTIEbVt29Z5V+zNmzerbt26at26tcHp\nYBTmAq4wF3CFuQAqFoUHAAAAgGl5GR0AuN7s27dPK1asUE5OjoqLi8s8Nn/+fINSwWjMBVxhLuAK\ncwFULAoP4IaUlBTdd999atWqlbKyshQVFaX9+/fLbrc7z8NG1cNcwBXmAq4wF0DFY9ECwA3Tpk3T\ns88+qx07dqhmzZp677339OOPP6pLly564IEHjI4HgzAXcIW5gCvMBVDxuIYHcIOvr6+2b9+u5s2b\nq169etq0aZPCw8O1Y8cO9evXT999953REWEA5gKuMBdwhbkAKh5HeAA3eHt7q6SkRJIUEBCgAwcO\nSJK8vLy4YVwVxlzAFeYCrjAXQMXjGh7ADe3bt9fWrVvVqlUr3XHHHXr++ed16NAhLV68WO3atTM6\nHgzCXMAV5gKuMBdAxfOMj4+PNzoEcL1o3bq1atWqpSZNmig6Olqpqal69913VbduXb377rvy8/Mz\nOiIMwFzAFeYCrjAXQMXjGh4AAAAApsU1PAAAAABMi2t4gN8QGxsri8Wi3zoYarFY9Mknn1RQKhiN\nuYArzAVcYS4AY1F4gN8QGBh4xf9QoepgLuAKcwFXmAvAWFzDAwAAAMC0uIYHcENeXp5OnDhRbvuJ\nEydUUFBgQCJUBswFXGEu4ApzAVQ8Cg/ghkGDBum9994rt33ZsmUaPHiwAYlQGTAXcIW5gCvMBVDx\nKDyAGzIyMtStW7dy2++44w7997//rfhAqBSYC7jCXMAV5gKoeBQewA2nT5+Wp6dnue0eHh765Zdf\nDEiEyoC5gCvMBVxhLoCKR+EB3NC6dWutXLmy3PaVK1cqLCzMgESoDJgLuMJcwBXmAqh4LEsNuOHZ\nZ5/V0KFDdfToUd19992SpJSUFL399ttauHChseFgGOYCrjAXcIW5ACoey1IDblqwYIGsVqsOHjwo\nSQoKCpLVatXIkSMNTgYjMRdwhbmAK8wFULEoPMDvdOzYMUmSn5+fwUlQmTAXcIW5gCvMBVAxKDwA\nAAAATItreAA3LVy4UEuXLlVOTo6KiopksVjkcDhksVj03XffGR0PBmEu4ApzAVeYC6BisUob4IbE\nxEQ98cQTatWqlb7//nv17t1bzZs318mTJzVkyBCj48EgzAVcYS7gCnMBVDxOaQPcEBYWpmnTpmnw\n4MHy9fVVZmamQkJCNHXqVOXn52vevHlGR4QBmAu4wlzAFeYCFysuLtaf//xnvfTSS2rWrJnRcUyL\nIzyAG3JycnTbbbdJkmrWrKlTp05JkuLi4rRs2TIjo8FAzAVcYS7gCnOBi1WvXl1r166Vhwe/kl9L\nfHcBNzRo0EAnT56UJAUGBmr79u2SpMOHD6ukpMTIaDAQcwFXmAu4wlzgUr169dLatWuNjmFqLFoA\nuOH2229XSkqKoqKiNGDAAI0fP14pKSlKS0vTPffcY3Q8GIS5gCvMBVxhLnCpW265RdOnT9f27dsV\nHR0tHx+fMo8PGjTIoGTmwTU8gBtOnjyp4uJi+fv7y263a9asWdqwYYPznOwbbrjB6IgwAHMBV5gL\nuMJc4FK/dTqb3W6voCTmReEBAAAAYFpcwwO4wdPT03ln7Iv99NNP8vT0NCARKgPmAq4wF3CFuQAq\nHoUHcMPlDogWFxfLy4tL4qoq5gKuMBdwhbmAK6mpqbrrrrsUEBCggIAAxcbGKi0tzehYpsH/WcAV\nWLRokfMfqffff1916tRxPlZaWqrU1FTWz6+CmAu4wlzAFeYCl7Ns2TINGTJEffv21XPPPSdJ+uyz\nz9S9e3ctWbJEAwYMMDjh9Y9reIAr4OXlJYvFotLS0nKnHFSvXl1NmzbVrFmz1KNHD4MSwgjMBVxh\nLuAKc4HLCQ8P15AhQzR58uQy21955RUtXbpUu3btMiiZeVB4ADc0adJEX375perXr290FFQizAVc\nYS7gCnOBS9WoUUNZWVlq3rx5me179+5VZGSkioqKDEpmHpzSBrjh+++/NzoCKiHmAq4wF3CFucCl\nGjRooMzMzHKFZ+fOnWrQoIFBqcyFRQsAN82fP1/t2rWTr6+vDhw4IEmaOXOmVq5caXAyGIm5gCvM\nBVxhLnCxIUOGaOzYsfr73/+u3bt3a/fu3Xrrrbf0yCOPaOjQoUbHMwUKD+CGpKQkPfPMM/rTn/6k\nc+fOOS9ArV+/vt544w2D08EozAVcYS7gCnOBS7344osaPny4xo8fr4iICEVEROjpp5/WyJEj9eKL\nLxodzxS4hgdwQ0REhKZPn66HHnpIvr6+yszMVEhIiDIzM9W9e3cdP37c6IgwAHMBV5gLuMJc4HLO\nnDmjb7/9VpLUvHlzeXt7G5zIPLiGB3DD/v37FRMTU267j4+PCgoKDEiEyoC5gCvMBVxhLnA53t7e\natOmjdExTInCA7ihYcOG2rdvn4KDg8ts37Jli0JCQgxKBaMxF3CFuYArzAUkacyYMUpMTFTt2rU1\nevRoWSyWcvs4HA5ZLBYlJSUZkNBcKDyAG+Li4jRx4kQtX75c0vnDz2vWrNGzzz6rCRMmGJwORmEu\n4ApzAVeYC0jnl5w+d+6cJGnfvn2/Wnjwx3END+CGkpISjR49WsnJybr4f50RI0YoKSlJHh6sA1IV\nMRdwhbmAK8wFUPEoPMDvcODAAW3btk12u10dOnRQs2bNjI6ESoC5gCvMBVxhLiBJxcXFatKkiT79\n9FOFh4cbHce0KDyAm9atW6fU1FQdPXpUdru9zOHmRYsWGZgMRmIu4ApzAVeYC1ysYcOGSktLU1hY\nmNFRTItreAA3TJ06Va+88oratGmjgIAA5z9SnGdbtTEXcIW5gCvMBS41atQozZ07V2+++abRUUyL\nIzyAG/z8/PTaa68pLi7O6CioRJgLuMJcwBXmApcaNWqUli9frkaNGqlDhw7y8fGRxCptVxNHeAA3\neHh4qHPnzkbHQCXDXMAV5gKuMBe41Lfffqv27dtLkg4fPixJzgUtOOp3dXCEB3CD1WpVUVGREhIS\njI6CSoS5gCvMBVxhLnA5Z86c0f79+yVJzZo1k7e3t8GJzIPCA7jB4XCoZ8+eOnLkiNq0aaNq1ao5\nt1ssFs2fP9/ghDACcwFXmAu4wlzgUkVFRZo8ebLeeustFRUVSZJq1qypsWPHKiEhQTVq1DA44fWP\nU9oAN1itVn3yySdq3bq1jhw5wsWmkMRcwDXmAq4wF7jUk08+qVWrVmnu3LnO0x03b96s6dOn6/Tp\n01zDcxVwhAdwQ7169ZSYmKjhw4cbHQWVCHMBV5gLuMJc4FJ16tTRkiVL1KdPnzLb16xZo4EDB6qg\noMCgZObB7XwBN1SrVk2333670TFQyTAXcIW5gCvMBS5VvXp1tWjRotz2Zs2aqXr16gYkMh/P+Pj4\neKNDANeL/Px8bdu2Td27dzc6CioR5gKuMBdwhbnApX7++WelpaWpT58+ztMa7Xa7pk+frk6dOik2\nNtbghNc/ruEB3JCbm6sPPvhAKSkpatu2bbmLTTnPtmpiLuAKcwFXmAtc6vjx4/rggw/06aefKjo6\nWg6HQ1u3btWJEyfUv39/jRkzhvn4g7iGB3BDt27dnH+/+OLSCz+I0tLSDEgFozEXcIW5gCvMBS51\n8Uxc6tJFLZiP34fCAwAAAMC0WLQAAAAAgGlReAAAAGAom80mm81mdAxUQidPnvzDz0HhAQAAAFAp\n1atX7w8/B4UHAAAAgGlReAAAAACYFvfhwR82efJkoyPAIDNmzLjsYyUlJRWYBJXJhfuKuPL6669X\nYBJUJuPHj7/sY3a7vQKToDLx8Lj8e++pqakVmASV1Z133vmHn4MjPAAAAABMiyM8AAAAMJTVajU6\nAkyMIzwAAAAATIvCAwAAAMC0KDwAAAAATIvCAwAAAMC0KDwAAAAATIvCAwAAAEPZbDbZbDajY8Ck\nKDwAAAAATIvCAwAAAMC0KDwAAAAATIvCAwAAAMC0KDwAAAAATMvL6AAAAACo2qxWq9ERYGIc4QEA\nAABgWhQeAAAAAKZF4QEAAABgWhQeAAAAAKZF4QEAAABgWhQeAAAAGMpms8lmsxkdAyZF4QEAAABg\nWhQeAAAAAKZF4QEAAABgWhQeAAAAAKZF4QEAAABgWl5GBwAAAEDVZrVajY4AE+MIDwAAAADTovAA\nAAAAMC3moT2kAAAgAElEQVQKDwAAAADTovAAAAAAMC0KDwAAAADTovAAAADAUDabTTabzegYMCkK\nDwAAAADTovAAAAAAMC0KDwAAAADTovAAAAAAMC0KDwAAAADT8jI6AAAAAKo2q9VqdASYGEd4AAAA\nAJgWhQcAAACAaVF4AAAAAJgWhQcAAACAaVF4AAAAAJgWhQcAAACGstlsstlsRseASVF4AAAAAJgW\nhQcAAACAaVF4AAAAAJgWhQcAAACAaVF4AAAAAJiWl9EBAAAAULVZrVajI8DEOMIDAAAAwLQoPAAA\nAABMi8IDAAAAwLQoPAAAAABMi8IDAAAAwLQoPAAAADCUzWaTzWYzOgZMisIDAAAAwLRMXXiGDRum\n2NhYo2NcVQsXLlS1atUq5GuZ8fsHAACAqqVSFB4vLy8tWrToqj+vxWKRxWK56s9rpAEDBujw4cMV\n8rXM+P0DAABA1eJldADp/C/WDofjqj+vw+G4Js9rpJo1a6pmzZoV8rXM+P0DAABA1eLWEZ5u3bpp\n1KhRmjp1qvz8/FSvXj1Nnz5dDodDVqtVAQEB8vPz09SpU52fU1JSovj4eIWEhKhWrVqKiIhQUlKS\n8/EmTZqotLRUw4cPl4eHhzw9PSVJJ0+e1JAhQxQcHCxvb2+FhYUpMTGxXKb3339fHTp0UK1atVS/\nfn316tVLeXl5LvN/9dVX6tmzp/z9/eXr66vo6GilpKSU2efDDz9Uu3bt5OPjo3r16ikmJkY7duxw\nvpann35ajRs3Vs2aNdWoUSMNHDjwir53eXl5v/l6LpxClpSUpODgYNWpU0d9+/bVsWPHnPtcekrb\nhY/T09MVGRkpb29v3XnnncrNzVVaWpqioqJUu3ZtxcbGljkydODAAfXr10+BgYHy8fFRmzZttHjx\n4it6LQAAAMD1wu0jPB988IEeffRRbd68WRs3btTIkSOVkZGhqKgobdq0SZs3b9awYcN022236Z57\n7tHo0aO1Y8cOJSUlqUWLFvriiy80duxYeXl5acSIEfryyy/VsGFDJSYm6uGHH3Z+neLiYkVGRmri\nxImqV6+eNm3apEceeUQ33nijhg0bJklasGCBxo4dK6vVqiVLlqi0tFTp6ekqLS11mf3UqVMaOHCg\nEhMTVa1aNf3zn//Ufffdp127dqlFixbKzc1V//799corr6h///4qLCzU9u3b5eV1/ts0b948rVix\nQkuWLFFISIhyc3O1efPmK/q+FRUV/ebrkaStW7fKz89Pa9euVUFBgQYNGqSJEyf+6il/drtdL7zw\ngubPny8vLy89/PDD6t+/vzw8PJSUlKQaNWpowIABevrpp/Xee+9Jkk6fPq3u3bvLZrOpdu3aWrNm\njYYPH66goCB169btil4TAADA1WC1Wo2OABNzu/CEhIRoxowZkqTmzZtr1qxZOnLkiNatW+fclpiY\nqNTUVLVs2VLJycnKzs5WaGioJCk4OFh79uzRvHnzNGLECNWvX1+SVKdOHfn5+Tm/jr+/vyZNmuT8\nODg4WBkZGVq6dKmzIFitVj3yyCN6/vnnnfuFh4dfNnvXrl3LfPziiy9q9erVWrFihaZMmaIjR47o\n3Llz6t+/v4KDgyVJLVu2dO6fk5Oj0NBQdenSRZIUFBSkm2+++Yq+b1fyeqTzp6xdfBTnkUce0euv\nv/6rz+1wOPT666+rTZs2kqQxY8bo2Wef1bZt29SuXTtJ0tixY/Xyyy87PyciIkIRERHOj8eNG6f1\n69dr6dKlFB4AAACYhluFx2KxqG3btmW2BQQEqGHDhuW2HT16VNu2bZPD4VCHDh3KPH7u3DnnUZPL\nsdvtmjlzpt577z0dOnRIhYWFKikpUZMmTSRJx44d08GDB3X33Xdfcf7jx4/LarUqLS1Nubm5Onfu\nnAoLC5WTkyNJatu2rXr06KGIiAjFxsaqW7du6tevn4KCgiRJw4cPV2xsrJo3b67Y2FjFxsbq3nvv\nvaJV037r9VwQFhZW5vkaNmyoo0eP/upzWywWRUZGOj/29/eXJGcBurDtxIkTcjgcslgsOnPmjF54\n4QX9+9//1pEjR1RcXKyioiLdeeedv/laAAAAgOuF26u0XfrLvcVicbnNbrfLbrdLkv773/8qMzPT\n+ScrK0s7d+781a8za9YsJSQkaPz48Vq/fr0yMzM1atQoFRUVuRvZadiwYfr888/16quvatOmTdqx\nY4eioqJUXFwsSfLw8NDatWuVmpqqjh07auXKlQoNDdWaNWsknS9EBw4c0Guvvabq1avrqaeeUlRU\nlE6dOvWbX/tKX4+r7+VvLRzg4eFRZjW1C3+/cD3UxdsuPNdf/vIXLVmyRPHx8UpPT9eOHTvUq1ev\nP/T9BQAAACqba7ZKm8VicR7Z+eGHH9S7d+/L7lu9evVy191s2LBBPXv2LHO61969e52/uPv5+Sko\nKEgpKSnq06fPFWXauHGjXn31Vef+p0+f1v79+8scHZGkjh07qmPHjpo8ebJ69uypBQsWOPP7+Pjo\n/vvv1/33368pU6aoYcOG2rBhw6++vit5PRdU1DLQGzdu1JAhQ/Tggw9KOn8E6ptvvil3tI5lqQEA\nAHA9c6vwuFqm+HLbJKlZs2YaMWKERo8erZkzZ6pTp046ffq0tm3bpp9++knPPvusJKlp06ZKTU1V\njx49VL16ddWvX19hYWFKTk5Wenq6GjVqpEWLFikjI0P16tVzfh2r1apHH31U/v7+euCBB2S325WW\nlqaBAwfqpptuKpe/ZcuWWrx4sW699VadO3dO06dPdx6FkqTNmzfrP//5j3r06KGAgADt27dPO3fu\n1KhRoyRJr776qgIDA9W2bVt5e3tr2bJl8vLycl6f9Guu5PVc/L271lq2bKlVq1apX79+8vHxUWJi\noo4cOaKAgABD8gAAAADXgluntLm6EeXltl2QlJSkCRMm6OWXX1Z4eLi6d++u5ORkNWvWzLnPrFmz\ntG3bNjVt2tR5/cm0adPUtWtX9e3bV507d1Z+fr6efPLJMs89cuRILVy4UB988IHatWunrl27KiUl\nxXla2KXZFixYILvdrujoaPXr10+9evVSx44dnY/XrVtXW7ZsUd++fRUaGqqRI0dqyJAhmjZtmqTz\nCyskJiaqc+fOatOmjT788EOtXLlSLVq0+M3v3ZW8nsvd6PO3jgJdyedcum327NkKDg7WHXfcoe7d\nu6tx48Z68MEHrygPAADA1WSz2WSz2YyOAZOyOHgLH3/Q5MmTjY5QTmhoqHr37i0PDw9t3bpVGzZs\nKPN406ZNFRcXp59//lmStGvXLqWlpcnLy0tjxoyRp6enPD09lZ2dXe5eTfg/F1ZsdKWkpKQCk1yZ\nlJQUPfPMM7Lb7Ro+fLj+8pe/lNtnwoQJSklJUa1atfTuu++qXbt2+vHHHzVixAgdO3ZMFotFo0aN\n0rhx4wx4BdeHX1vI5bdWnTRCdna2Vq1aJbvdrk6dOumuu+5yuV9OTo7mzJmjP//5z2UWhbHb7UpM\nTFSdOnU0evToiop93Rk/fvxlH7v4bIvKYt26dXr66adVWlqqkSNHOs9KudhTTz2ldevWydvbW/Pn\nz3eujDpy5Eh9/PHH8vPzU2ZmZkVHv654eJx/7/1C2bl4eerU1FRDMv2ajIwMvfnmm7Lb7erZs2e5\n+zGuX79e77//vhwOh7y9vfXUU0853+T/5Zdf9Nprr+mHH36QdP566tatW1f4a7jeXI0Fta7ZNTyA\nUSwWi+677z69++67Kigo0OOPP67s7GwdP368zH7fffedkpOTy2w7d+6c3nnnHZWUlMjDw0Njx45V\ncHCw84cTrl+lpaUaP3681q5dq8DAQN1yyy3q06ePWrVq5dxn7dq12r9/v3bv3q2MjAw98cQT2rRp\nk6pVq6ZXX31VUVFR+uWXXxQTE6O77rqrzOfi+mS32/Wvf/1Ljz76qPMofkREhPNsg4v3W716tcLC\nwsqd6rthwwb5+/uz6IuJlJaW6sknn9Qnn3yiwMBAxcTE6N577y3z//zHH3+sb7/9Vt98842++OIL\nPf7448578w0bNkzjxo0rc90urn+lpaWaN2+eXn31VdWvX1+PPfaYOnfu7LyViXR+dd3Zs2erdu3a\nysjI0OzZs/XGG29Ikt544w3FxMQoPj5epaWlOnv2rFEvpcpxe5U2uFa7dm35+vq6/JOQkGB0vCql\ncePGOnHihPLy8mS327Vz506X76Bc7nS9C0cmPD095eHhwQ8kk9i6dauaNWumJk2aqFq1anrooYe0\nevXqMvv8+9//1pAhQyRJ0dHRysvL09GjRxUQEKCoqChJ5/9fDwsL05EjRyr8NeDqy8nJUf369XXj\njTfK09NT7dq109dff11uv40bN6pt27aqXbt2me15eXnavXu3OnXqxDWPJpKRkVHm58XDDz+sjz76\nqMw+q1evVlxcnCQpJiZGeXl5ys3NlSTdfvvt5a7RxfVvz549CgwMVEBAgLy8vHTHHXeUuwF9eHi4\n8+dEq1atnG+2/vLLL9q1a5d69uwp6fzvGJf+PMG1wxGeq+TXltnmh17FuuGGG5SXl+f8OD8/X40b\nNy63X3BwsJ588kkVFBTo448/1rFjxySdL0Ljxo3TTTfdpC1btji34/p26NAh5z21JCkwMFBbt24t\nt8/FsxIUFKRDhw6Vebf/+++/V2ZmpqKjo699aFxzeXl5qlu3rvPjunXrljuim5eXp127dumxxx7T\ne++9V+bNklWrVum+++5TYWFhhWXGtXfpz4LAwEBlZGT86j4Xfl5cuvgPzOOnn35SgwYNnB/Xr19f\ne/bsuez+a9euVUxMjCQpNzdXderU0cyZM7V//36Fhobq8ccfV82aNa95blB4rpqQkBCjI+D/u5J3\nWQ8dOqSEhASVlJQoNDRUQ4cO1axZs5yfP2/ePNWoUUMjRoxQ06ZNdeDAgWsdG9fYlS7Acen8XPx5\nv/zyiwYMGKBZs2bxzpxJXMlcrFq1Sn369HHeF+3CjGRlZal27doKCgrSt99+e62jogJdjZ8XMB93\n/vtu375da9eu1dy5cyWdPx1u3759euKJJxQWFqa//e1vWrZsmYYPH36t4uIiFB6YTkFBQZl3bOvU\nqaP8/Pwy+1y42ax0/n5IHh4eqlWrVpnT14qKivTNN98oKCiIwmMCgYGBOnjwoPPjgwcPKjAwsNw+\nP/74Y5l9GjVqJOn8qY4PP/ywBg0apL59+1ZMaFxzderUKXNE+NIjPpL0448/atGiRZLO378tOztb\nHh4eysnJUVZWlrKzs1VSUqKioiItWbJEgwcPrtDXgKvP1c+Ci48QX26fS3+m4MpdvFhBZVW/fv0y\n1wMfP35c9evXL7ff/v37lZiYqISEBPn6+kqSGjRooAYNGigsLEyS1KVLFy1btqxigoNreGA+hw4d\n0k033aS6devK09NTbdq0UXZ2dpl9Ln53PigoSBaLRWfPnpW3t7fz8LKXl5eaN2+uw4cPV2h+XBsd\nOnTQt99+q++//17FxcVasWJFuZsW9+nTR0uWLJEkffHFF6pbt678/f3lcDg0ZswYtWrVSk8++aQR\n8XGNNG7cWMePH9fPP/+sc+fOafv27YqIiCizz7Rp05x/2rZtq/79+ysyMlK9e/eW1WrVtGnTFBcX\np+bNm1N2TOLmm28u8/Ni+fLluvfee8vsc++99zoXvtmyZYvz5wXMq2XLljp48KByc3NVUlKi9PR0\nde7cucw+R48eVXx8vCZPnlymAN94441q0KCBsyR/9dVXatKkSUXGr9I4wgPTsdvt+uijjzRixAjn\nstTHjx93XnORkZGhiIgIxcTEyG63q6SkxPkui6+vr/r37++8B9H27du1f/9+I18OrhIvLy+9/vrr\n6t27t+x2u4YNG6ZWrVrpnXfekSSNHj1aPXv21Lp169SqVSt5e3vr3XfflXT+psRLly5VZGSk895d\nL730knr06GHY68HV4enpqQceeEB///vf5XA4FBMTI39/f+eFyJf+MvNrOJ3JPLy8vDR37lz17NlT\npaWlGjFihFq1aqW3335bkjR27Fj16tVLa9euVWhoqHx8fPSPf/zD+fmDBg3Shg0bdOLECQUHBys+\nPp5Tl0zA09NTTzzxhCZNmuRcljo4ONi5AM6FEnzq1CnNmTPH+TlvvvmmJOmJJ57QjBkzVFJSokaN\nGrm8NQKuDe7Dgz+sMt6HBxXjersPDyrG9XYfHlSM6+0+PKgYF+7D40plvA8PKt7VuA8Pp7QBAAAA\nMC0KDwAAAADTovAAAADAUDabTTabzegYMCkKDwAAAADTovAAAAAAMC0KDwAAAADTovAAAAAAMC0K\nDwAAAADT8jI6AAAAAKo2q9VqdASYGEd4AAAAAJgWhQcAAACAaVF4AAAAAJgWhQcAAACAaVF4AAAA\nAJgWhQcAAACGstlsstlsRseASVF4AAAAAJgWhQcAAACAaVF4AAAAAJgWhQcAAACAaVF4AAAAAJiW\nl9EBAAAAULVZrVajI8DEOMIDAAAAwLQoPAAAAABMi8IDAAAAwLQoPAAAAABMi8IDAAAAwLQoPAAA\nADCUzWaTzWYzOgZMisIDAAAAwLQoPAAAAABMi8IDAAAAwLQoPAAAAABMi8IDAAAAwLS8jA4AAACA\nqs1qtRodASbGER4AAAAApkXhAQAAAGBaFB4AAAAApkXhAQAAAGBaFB4AAAAApkXhAQAAgKFsNpts\nNpvRMWBSFB4AAAAApkXhAQAAAGBaFB4AAAAApkXhAQAAAGBaFB4AAAAApuVldAAAAABUbVar1egI\nMDGO8AAAAAAwLQoPAAAAANOi8AAAAAAwLQoPAAAAANOyOBwOh9EhAAAAAOBa4AgPAAAADGWz2WSz\n2YyOAZOi8AAAAAAwLQoPAAAAANOi8AAAAAAwLQoPAAAAANOi8AAAAAAwLZalxh9mt9uNjgCDeHhc\n/j2Tr7/+ugKToDKJjIy87GPR0dEVmASVSUZGxmUfO3fuXAUmQWXi5eV12ceys7MrMAkqq1atWv3h\n5+AIDwAAAADTovAAAAAAMC0KDwAAAADTovAAAAAAMC0KDwAAAADTovAAAADAUDabTTabzegYMCkK\nDwAAAADTovAAAAAAMC0KDwAAAADTovAAAAAAMC0KDwAAAADT8jI6AAAAAKo2q9VqdASYGEd4AAAA\nAJgWhQcAAACAaVF4AAAAAJgWhQcAAACAaVF4AAAAAJgWhQcAAACGstlsstlsRseASVF4AAAAAJgW\nhQcAAACAaVF4AAAAAJgWhQcAAACAaVF4AAAAAJiWl9EBAAAAULVZrVajI8DEOMIDAAAAwLQoPAAA\nAABMi8IDAAAAwLQoPAAAAABMi8IDAAAAwLQoPAAAADCUzWaTzWYzOgZMisIDAAAAwLQoPAAAAABM\ni8IDAAAAwLQoPAAAAABMi8IDAAAAwLS8jA4AAACAqs1qtRodASbGER4AAAAApkXhAQAAAGBaFB4A\nAAAApkXhAQAAAGBaFB4AAAAApkXhAQAAgKFsNptsNpvRMWBSFB4AAAAApkXhAQAAAGBaFB4AAAAA\npkXhAQAAAGBaFB4AAAAApuVldAAAAABUbVar1egIMDGO8AAAAAAwLQoPAAAAANOi8AAAAAAwLQoP\nAAAAANOi8AAAAAAwLQoPAAAADGWz2WSz2YyOAZOi8AAAAAAwLQoPAAAAANOi8AAAAAAwLdMXnmHD\nhik2NtboGJKk9PR0eXh46PDhw3/4uZo0aaKXX375KqQCAAAAzKvSFB4vLy8tWrToqj+vxWKRxWK5\n6s/7e9x6663Kzc1Vw4YN//BzVabXBQAAAFRWXkYHuMBiscjhcFz153U4HNfkeX+PatWqyc/Pz+gY\nV8xut0uSPDwqTS8GAAAmZLVajY4AE3P7N9lu3bpp1KhRmjp1qvz8/FSvXj1Nnz5dDodDVqtVAQEB\n8vPz09SpU52fU1JSovj4eIWEhKhWrVqKiIhQUlKS8/EmTZqotLRUw4cPl4eHhzw9PSVJJ0+e1JAh\nQxQcHCxvb2+FhYUpMTGxXKb3339fHTp0UK1atVS/fn316tVLeXl5LvN/9dVX6tmzp/z9/eXr66vo\n6GilpKSU2efDDz9Uu3bt5OPjo3r16ikmJkY7duxwvpann35ajRs3Vs2aNdWoUSMNHDjwir53l57S\nduHj9evXq0uXLvLx8VF4eLjWrVtX5vMyMzPVuXNn1axZU6GhoVq+fHm55z5y5IgGDBigevXqydvb\nW3fccYe2bdtWZp8tW7aoS5cu8vb21o033qjBgwfr+PHjzsfj4+PVokULLV++XGFhYapRo4b27dt3\nRa8NAAAAqIx+11v3H3zwgUpLS7V582YlJibqpZdeUs+ePVVUVKRNmzbptdde0yuvvOL8xX306NFa\ntWqVkpKStGfPHk2fPl2TJk3S/PnzJUlffvmlPD09NWfOHOXm5urIkSOSpOLiYkVGRurDDz9Udna2\npk2bJqvVqoULFzqzLFiwQEOHDlW/fv20fft2ffbZZ+rdu7dKS0tdZj916pQGDhyo9PR0bd++XT16\n9NB9993n/MU+NzdX/fv31+DBg7V7925t2bJFEyZMkJfX+YNh8+bN04oVK7RkyRJ9++23+uijj3TL\nLbf8nm+j08SJEzV16lTt3LlTMTExevjhh52F7ezZs+rVq5duvPFGbd26VYsWLdJrr72mY8eOOT/f\n4XDo/vvv1969e7VmzRplZGTI399fsbGxOnHihPN13X333fqf//kfbd26VatXr9auXbv04IMPlsly\n+PBhvfXWW0pOTlZ2drYCAwP/0GsDAAAAjPS7TmkLCQnRjBkzJEnNmzfXrFmzdOTIEWfBad68uRIT\nE5WamqqWLVs6f3kODQ2VJAUHB2vPnj2aN2+eRowYofr160uS6tSpU+aUL39/f02aNMn5cXBwsDIy\nMrR06VINGzZM0vlDoI888oief/55537h4eGXzd61a9cyH7/44otavXq1VqxYoSlTpujIkSM6d+6c\n+vfvr+DgYElSy5Ytnfvn5OQoNDRUXbp0kSQFBQXp5ptvdu8beIn4+HjdfffdkqSEhAQtXLhQW7du\nVWxsrJYsWaKCggItWbJEderUkXS+5EVGRjo/PzU1VVu3btXu3bsVFhYmSVq0aJGaNGmiN998U9Om\nTdPf/vY31a1bVwsXLnSWt+TkZEVFRWnTpk267bbbJEmFhYVKTk5WUFDQH3pNAAAAQGXgduGxWCxq\n27ZtmW0BAQHlLsQPCAjQ0aNHtW3bNjkcDnXo0KHM4+fOnXP+4n05drtdM2fO1HvvvadDhw6psLBQ\nJSUlatKkiSTp2LFjOnjwoLMsXInjx4/LarUqLS1Nubm5OnfunAoLC5WTkyNJatu2rXr06KGIiAjF\nxsaqW7du6tevn7MADB8+XLGxsWrevLliY2MVGxure++9V9WqVbviDJeKiopy/t3Pz0+enp46evSo\nJGn37t1q3bq1s+xI5wvdxR9nZWXppptucpYdSapevbpiYmK0e/du5z6dOnUq8z1v06aN6tSpo6ys\nLGfh8ff3p+wAAADANH7XKW2X/nJvsVhcbrPb7c4L3//73/8qMzPT+ScrK0s7d+781a8za9YsJSQk\naPz48Vq/fr0yMzM1atQoFRUV/Z7Yks4vU/3555/r1Vdf1aZNm7Rjxw5FRUWpuLhY0vkL9NeuXavU\n1FR17NhRK1euVGhoqNasWSPpfCE6cOCAXnvtNVWvXl1PPfWUoqKidOrUqd+dqXr16uW2Xfi+Sfrd\niy5c+nlX8jw+Pj6/62sBAAAAldE1XX7LYrE4j+z88MMPCgkJKfOnadOmzn2rV69e7rqbDRs2qGfP\nnho2bJjatm2rkJAQ7d2717kcs5+fn4KCgsotOvBrNm7cqMcee0x9+vRReHi4AgICtH///nL7dezY\nUZMnT9Znn32mrl27asGCBc7HfHx8dP/992vOnDn68ssvlZ2drQ0bNrj1vblS4eHhys7OVn5+vnNb\nVlZWmY/Dw8N14sQJZWdnO7cVFRXpiy++UEREhCQpIiJCW7ZsUUlJiXOfzMxM5efnO/cBAAAwgs1m\nk81mMzoGTMrtwuNqmefLbZOkZs2aacSIERo9erQWL16sb7/9VpmZmZo/f75mzpzp3L9p06ZKTU3V\n4cOH9dNPP0mSwsLClJaWpvT0dO3du1dTp05VRkZGma9ltVr19ttv66WXXlJ2draysrL0xhtvOC/W\nv1TLli21ePFi7dq1Szt27NDAgQPLHE3ZvHmzXnzxRWVkZCgnJ0f/+c9/tHPnTud1Qa+++qqWLl2q\nrKwsHThwQP/4xz/k5eXlvD7pahs0aJB8fX01ZMgQ7dy5U1u2bNGIESNUq1Yt5z533XWXoqOjNWjQ\nIG3evFm7du1SXFyciouL9eijj0qSxo0bp4KCAg0bNkxZWVnatGmThg4dqi5duujWW2+9JtkBAAAA\no7ldeFzd8PJy2y5ISkrShAkT9PLLLys8PFzdu3dXcnKymjVr5txn1qxZ2rZtm5o2bSp/f39J0rRp\n09S1a1f17dtXnTt3Vn5+vp588skyzz1y5EgtXLhQH3zwgdq1a6euXbsqJSXFeYrdpdkWLFggu92u\n6Oho9evXT7169VLHjh2dj9etW1dbtmxR3759FRoaqpEjR/6/9u48Lqqy///4e2AwEU1QAxK5VcQF\n0dCvC9757c4yNPe01DT3JbW6c6nbym2czDJNv6ndLd65pGaLWS4pam65hZS5Ipq4g5JLYuktAsP8\n/vDnPBpBpRIGLl/Px4PHg5lznTOfMx6Z857rnOtSt27dNHr0aElXB1aYMmWK7r//ft13331asmSJ\nFi1apKpVq+b5/bvZ4+v5+vpqxYoVOnfunBo2bKju3btr2LBhOebzWbx4sWrUqKFWrVqpYcOGOn36\ntL755huVKVNG0tXesNWrVys5OVkNGjRQmzZtdN999+mLL75wq4XJTAEAAGASi7OwzMqJIuv3PWSF\nxeLwHF4AACAASURBVMqVKzVs2DA5HA717dtXw4cPz9Fm8ODBWrlypUqUKKFZs2apbt26kq6G6BUr\nVigwMFC7du0q6NKLlJtNSrtnz54CrCRvNm/erIkTJyo7O1sdOnRQnz593JYfOXJEo0eP1v79+/XP\nf/5TPXv2dC378MMPtXz5clksFlWtWlXjxo3L9f47yG0Uyes1bNiwACvJm0aNGmnYsGHy8vLS0qVL\nNXfuXLflTz31lB599FFJkre3typVqqRmzZrp4sWL6ty5s9q1ayeLxaLFixfrs88+88QuFAnx8fE3\nXJaVlVWAleTNqlWr9MILL8jhcKhPnz7617/+laPNkCFDtGrVKvn6+mrmzJmqW7euTpw4od69e+vM\nmTOyWCzq27ev/vnPf3pgD4qGa4MpXbuc7fcTkP7+Uv3CYtOmTZowYYIcDoeeeOIJ9evXz2354cOH\nNXLkSCUmJmrw4MHq3bu3a9mvv/6qMWPGKCkpSZI0fvz4HAOBIaeIiIi/vI18vYcH8ASHw6Hnn39e\nK1as0N69e/Xpp5/m+KO5YsUKJSUl6cCBA3r//ff17LPPupb16tVLK1asKOiykc8cDofeeOMNvffe\ne/rqq68UGxurw4cPu7UpXbq0XnnlFbegI0kpKSlatGiRPvvsM3355ZfKzs5WbGxsQZaPfOLl5aV/\n/etfGjx4sDp37qxmzZq5RgK95uOPP1b37t3VvXt3vfvuu/rxxx918eJFhYWFqV27durVq5eeeuop\n/e///i9zlxnC4XBo8ODB+vrrr7V79+5cP0diY2N16NAhJSYm6r333tNzzz0n6erATm+99ZZ27dql\nzZs36/333y+UJ+744xwOh1577TXNmDFDy5Yt0/Lly3PcB+7v76+RI0e6BZ1r3njjDT3wwAP6+uuv\ntXjxYoWFhRVU6Xc8As9tVLJkSZUqVSrXnwkTJni6vDtGfHy8qlSpokqVKsnHx0edO3fW0qVL3dos\nW7ZMPXr0kCRFR0crLS1NqampkqQHHnhAAQEBBV438tfevXsVGhqqkJAQ+fj46NFHH9X69evd2pQp\nU0aRkZE5hswvWbKkrFar0tPTlZWVpcuXL7suvUXRFhkZqeTkZJ06dUoOh0OrV692zbOWm+bNm2v1\n6tWSrt57mpCQoIyMDGVnZ2vHjh166KGHCqp05KPcPkeWLVvm1mbZsmXq3r27pKufIxcuXNDPP/+s\n4OBg13QTJUuWVI0aNVwTqqNo27NnjypWrOj6HGnZsqXWrVvn1qZMmTKqVatWjs+R3377Tdu3b9fj\njz8u6WrPVqlSpQqs9jvdn5p4FLm72TDbnEAXnJSUFIWGhroeh4SE5LiU4vo2FSpUUEpKioKDgwus\nThSsayci1wQFBeX5srvSpUurZ8+eatasme666y41btxYjRo1yq9SUYDuuece17xn0tX53W40cuVd\nd92lRo0a6c0335QkJSUlaeDAgbr77rt15coVNW7cWAkJCQVSN/LXyZMn3eaky+1zJLc2ycnJbl+G\nHD16VDt37iyUl3IWNr+/lK2wyu1z5FZTrFyTnJysgIAAjRgxQgcOHFBkZKReeeUVt0GokH/o4bmN\nrh92+/c/BJ6Ck9eBF66/fY0BG8z2V/59T5w4ofnz52vlypVau3at/vvf/7rm5kLR9kduY33ggQe0\nc+dOXbx4UdLV6Rbmzp2r6dOna+rUqTpw4MCfnjcNhcvt+By5do/XlClTVLJkydtaHzzjr3yOOBwO\nJSYmqkuXLlq0aJF8fX314Ycf3sbqcDMEHhgnJCREJ06ccD1OTk52+xbuRm249t5sgYGBrssWJSk1\nNTXPl6UlJCQoKipK/v7+slqtatq0qXbu3JlfpaIAnTlzxu04CAoK0unTp3Nt26xZM9flbNcsW7ZM\nPXv21MCBA/Xbb7/p2LFj+VovCkb58uWVnJzsepzb58j1bVJSUlyfI5mZmerUqZO6du2qdu3aFUzR\nyHdBQUE5PkfyemVIUFCQgoKCXIO6NGvWTPv27cuXOpETgQfGqV+/vpKSknT06FFlZGTo888/V5s2\nbdzatGnTRvPmzZMkxcXFyd/fn3syDBcZGanjx48rJSVFmZmZWrVqlZo0aZJr2+u/ta1cubJ2796t\n9PR0OZ1OxcXFuQ2rj6IrMTFRoaGhuvfee2W1WhUTE5PrRNJ+fn6qW7dujmXXeu+DgoLUpEmTPzQR\nNgqv3D5HWrdu7damTZs2mj9/vqSrnyOlS5dWUFCQnE6n+vfvr4iICA0ePNgT5SOfREZG6tixY0pJ\nSVFGRoZiY2NveN/e9Z8j99xzj4KDg3X06FFJ0nfffafw8PD8Lhn/H/fwwDhWq1XTpk1TixYtXMOJ\nRkRE6IMPPpAkDRgwQC1btlRsbKyqVasmPz8/zZw507V+165dtXHjRp07d04VK1bU2LFjcx1tBUWL\n1WrVK6+8ooEDByo7O1vt27dXWFiYFi5cKEnq2LGjzp49qy5duujSpUuyWCz6+OOPtXjxYlWvXl1t\n2rRRly5dZLFYFBER4brxFEWbw+HQpEmTNG3aNNew1EePHlX79u0lSV999ZUkqUmTJoqLi9OVK1fc\n1p8wYYJKly6trKwsTZw4UZcuXSrwfcDtZ7VaNXXqVLVq1UoOh0O9e/dWRESEZsyYIUl6+umn1aJF\nC8XGxqpGjRoqUaKE6/KkLVu2aMGCBapdu7bq168v6erww82bN/fY/uD2sFqtGjlypPr37y+Hw6HH\nH39cVapUcQ1H37lzZ505c0adO3fWxYsX5eXlpXnz5mnZsmXy8/PTyJEjNXz4cGVmZio0NFTjx4/3\n8B7dOZiHB39ZYZyHBwWjqM3Dg4JR1ObhQcEoavPwoGBcP5rZ7zGcNyTm4QEAAIAB7Ha7a/JR4HYj\n8AAAAAAwFoEHAAAAgLEIPAAAAACMReABAAAAYCwCDwAAAABjMQ8PAAAAPMpms3m6BBiMHh4AAAAA\nxiLwAAAAADAWgQcAAACAsQg8AAAAAIxF4AEAAABgLAIPAAAAPMput8tut3u6DBiKwAMAAADAWAQe\nAAAAAMYi8AAAAAAwFoEHAAAAgLEIPAAAAACMZfV0AQAAALiz2Ww2T5cAg9HDAwAAAMBYBB4AAAAA\nxiLwAAAAADAWgQcAAACAsQg8AAAAAIxF4AEAAIBH2e122e12T5cBQxF4AAAAABiLwAMAAADAWAQe\nAAAAAMYi8AAAAAAwFoEHAAAAgLGsni4AAAAAdzabzebpEmAwengAAAAAGIvAAwAAAMBYBB4AAAAA\nxiLwAAAAADAWgQcAAACAsQg8AAAA8Ci73S673e7pMmAoAg8AAAAAYxF4AAAAABiLwAMAAADAWAQe\nAAAAAMYi8AAAAAAwltXTBQAAAODOZrPZPF0CDEYPDwAAAABjEXgAAAAAGIvAAwAAAMBYBB4AAAAA\nxiLwAAAAADAWgQcAAAAeZbfbZbfbPV0GDMWw1PjLvLzIzcipdu3ani4BhVB8fLynS0AhZLVyOoKc\nIiIiPF0CDMGZKgAAAABjEXgAAAAAGIvAAwAAAMBYBB4AAAAAxrI4nU6np4sAAAAAgPxADw8AAAAA\nYzEOJACgwBQvXtzTJcBD0tPTb7gsIyOjACtBYVKsWLEbLps6dWoBVoLCavDgwX95G/TwAAAAADAW\ngQcAAACAsQg8AAAAAIxF4AEAAIBH2e122e12T5cBQxF4AAAAABiLwAMAAADAWAQeAAAAAMYi8AAA\nAAAwFoEHAAAAgLGsni4AAAAAdzabzebpEmAwengAAAAAGIvAAwAAAMBYBB4AAAAAxiLwAAAAADAW\ngQcAAACAsQg8AAAA8Ci73S673e7pMmAoAg8AAAAAYxF4AAAAABiLwAMAAADAWAQeAAAAAMYi8AAA\nAAAwltXTBQAAAODOZrPZPF0CDEYPDwAAAABjEXgAAAAAGIvAAwAAAMBYBB4AAAAAxiLwAAAAADAW\ngQcAAAAeZbfbZbfbPV0GDEXgAQAAAGAsAg8AAAAAYxF4AAAAABiLwAMAAADAWAQeAAAAAMayeroA\nAAAA3NlsNpunS4DB6OEBAAAAYCwCDwAAAABjEXgAAAAAGIvAAwAAAMBYBB4AAAAAxiLwAAAAwKPs\ndrvsdruny4ChCDwAAAAAjEXgAQAAAGAsAg8AAAAAYxF4AAAAABiLwAMAAADAWFZPFwAAAIA7m81m\n83QJMBg9PAAAAACMReABAAAAYCwCDwAAAABjEXgAAAAAGIvAAwAAAMBYBB4AAAB4lN1ul91u93QZ\nMBSBBwAAAICxCDwAAAAAjEXgAQAAAGAsAg8AAAAAYxF4AAAAABjL6ukC8kuvXr2UkpKib775xtOl\nAAAA4CZsNpunS4DBPN7DY7VaNXfu3Nu+XYvFIovFctu3CwAAAKDo8HjgsVgscjqdt327TqczX7Zb\nmGRnZys7O9vTZQAAAACFVp4DT5MmTdSvXz+NGjVKgYGBCggI0JgxY+R0OmWz2RQcHKzAwECNGjXK\ntU5mZqbGjh2rsLAw+fr6qlatWpoxY4ZreaVKleRwONS7d295eXnJ29tbknT+/Hl169ZNFStWVIkS\nJVSjRg1NmTIlR02fffaZ6tWrJ19fX5UrV04tW7ZUWlparvX/+OOPatGihYKCglSqVCk1bNhQq1at\ncmuzZMkS1a1bV35+fgoICFB0dLR27tzp2pdhw4YpNDRUxYsXV/ny5dWlS5c8vXdz5syRj4+P1q5d\nq8jISPn6+qpRo0batWuXW7vt27erWbNmKlWqlAIDA/X444/r+PHjruVjx45V1apV9fnnn6tGjRq6\n6667dPDgQSUkJKh58+YKCAhQyZIlVbNmTc2fP9+13qlTp/Tkk08qICBAJUqU0EMPPaTt27e7lm/Y\nsEFeXl5as2aN/vGPf8jPz0+RkZFauXJlnvYPAAAAKKz+UA/PF198IYfDoa1bt2rKlCl67bXX1KJF\nC125ckWbN2/WW2+9pddff911oty/f38tXrxYM2bM0P79+zVmzBi99NJLmjVrliTphx9+kLe3t6ZO\nnarU1FSdOnVKkpSRkaHatWtryZIlSkxM1OjRo2Wz2TRnzhxXLbNnz1b37t3VoUMH7dixQ99++61a\ntWolh8ORa+2//fabunTpog0bNmjHjh1q3ry52rZtq4MHD0qSUlNT1bFjRz311FPat2+f4uLiNHTo\nUFmtV29zmj59uhYuXKiPP/5YSUlJWrp0qf7+97/n+b3Lzs7WSy+9pPfff1/x8fG655571KpVK6Wn\np0uS9u3bpyZNmqhx48bavn271q9fL29vb8XExOjKlSuu7Zw8eVLvvfee5s2bp8TERIWEhKhLly66\n55579N1332nv3r2aMmWKAgICJF3t6Xrsscf0008/afny5YqPj1dQUJBiYmJ07tw5txpffPFFjRo1\nSrt371Z0dLQ6d+58wwAJAAAAFAUWZx6v+2rSpIl+/fVX/fjjj67natWqJW9vb7eeijp16qhZs2Ya\nNGiQwsPDlZiYqGrVqrmWv/rqq/rqq6+0Y8cOSZKPj49mzpypHj163PT1Bw8erMTERK1evVqS9Le/\n/U2PPfaYpk2blmv7vAxaUKdOHXXq1EkjRozQjh07VK9ePR05ckQVK1bM0XbIkCHas2eP1q5de9M6\nczNnzhz16dNHa9eu1UMPPSRJSktLU2hoqKZOnao+ffqoV69eunLlij755BPXeleuXFGZMmW0YMEC\ntWvXTmPHjtW4ceN07NgxVahQwdXO399fU6dOVc+ePXO89tq1axUTE6N9+/apRo0akq4GykqVKmnQ\noEEaPXq0NmzYoIcfflhffvmlHnvsMUnS6dOnFRwcrFWrVikmJuYP7zMA5KZ48eKeLgEecu0Lvtxk\nZGQUYCUoTIoVK3bDZVOnTi3ASlBYDR48+C9vI8+jtFksFkVFRbk9FxwcrHvvvTfHcz///LO2b98u\np9OpevXquS3Pyspy9ZrcSHZ2tiZOnKhPP/1UKSkpSk9PV2ZmpipVqiTp6sl4cnKymjVrltfydebM\nGdlsNq1fv16pqanKyspSenq665KxqKgoNW/eXLVq1VJMTIyaNGmiDh06uIJF7969FRMTo/DwcMXE\nxCgmJkZt2rSRj49Pnmv4fY+Qv7+/IiIitG/fPknS999/r0OHDqlUqVJu61y5ckVJSUmux0FBQW5h\nR7raM9OvXz/NmTNHTZo0Udu2bVW3bl1JUkJCgsqWLesKO9LVPy7R0dFKSEhw206dOnVcvwcGBsrb\n21s///xznvcPAADgz7Db7ZIYrQ354w9d0nb9yb3FYsn1ud/fTP/dd99p165drp+EhATt3r37pq8z\nefJkTZgwQUOGDNGaNWu0a9cu9evXz+3Srj+qV69e2rJliyZNmqTNmzdr586dqlOnjutbJS8vL8XG\nxmrdunVq0KCBFi1apGrVqmn58uWSrgaiI0eO6K233lKxYsU0ePBg1alTR7/99tufrun3nWtOp1M9\nevRwe6927dqln376SX379nW18/Pzy7GdUaNG6aefflKnTp20d+9eNWrUSKNHj77la18/il1u37Iw\nKAIAAACKsnwZpc1isbh6do4dO6awsDC3n8qVK7vaFitWLMd9Nxs3blSLFi3Uq1cvRUVFKSwsTD/9\n9JPrBD0wMFAVKlTIMejAzWzatEnPPPOMWrdurcjISAUHB+vQoUM52jVo0ECvvPKKvv32Wz344IOa\nPXu2a5mfn58ee+wxTZ06VT/88IMSExO1cePGPNfw3XffuX5PS0vT/v37VbNmTUlS/fr1tWvXrhzv\nVVhYmPz9/W+57cqVK2vQoEFauHCh7Ha73nvvPUlSZGSkzp07p8TERFfbK1euaNu2bapVq1aeawcA\nAACKojwHntyGeb7Rc5JUpUoV9enTR/3799f8+fOVlJSkXbt2adasWZo4caKrfeXKlbVu3TqdPHlS\nZ8+elSTVqFFD69ev14YNG/TTTz9p1KhRio+Pd3stm82mDz74QK+99poSExOVkJCgd955J8eN+NdU\nr15d8+fP1969e7Vz50516dLFrfdi69atGjdunOLj43X8+HGtXbtWu3fvVmRkpCRp0qRJWrBggRIS\nEnTkyBHNnDlTVqvV7f6km7FYLHrppZe0adMm7dmzRz169NDdd9+trl27SpJGjBihxMREdevWTd9/\n/72OHDmi9evXa8iQITpy5MgNt3vp0iU9++yzWr9+vY4cOaIdO3Zo5cqVrrqbNm2qhg0bqmvXrtq6\ndav27t2rHj16KCMjQ4MGDcpT7QAAAEBRlefAk9tEnjd67poZM2Zo6NChGj9+vCIjI/XII49o3rx5\nqlKliqvN5MmTtX37dlWuXFlBQUGSpNGjR+vBBx9Uu3btdP/99+vChQt6/vnn3bbdt29fzZkzR198\n8YXq1q2rBx98UKtWrXJdYnd9bbNnz1Z2drYaNmyoDh06qGXLlmrQoIFrub+/v+Li4tSuXTtVq1ZN\nffv2Vbdu3VyXhpUuXVpTpkzR/fffr/vuu09LlizRokWLVLVq1Ty9f15eXnr99dc1YMAANWjQQKdP\nn9by5ctdN/DWqFFDW7du1cWLF9W8eXNFRkbq6aefVnp6umvEtdzeb6vVqrS0NPXt21c1a9bUo48+\nqnvvvVcLFixwtVm8eLFq1KihVq1aqWHDhjp9+rS++eYblSlTJtd/NwAAAMAUeR6lDX/enDlz1L9/\nf2VmZnq6lDvGypUrNWTIEDkcDvXr108vvfRSjjbPP/+8YmNjVaJECc2ZM8c10ENe1kXRxHHheYVx\nlLaYmBi99dZb8vb21uzZszV58mS35f7+/vrggw9UuXJlpaena8CAAUpMTFTVqlU1b948V7vKlSvL\nbrfr3XffLehdKBKK2ihtq1at0osvviiHw6E+ffroxRdfzNFm6NChWrVqlUqUKKEPP/xQderUUXp6\nuh555BFduXJFGRkZatOmjV577TUP7EHRcO3+4dwGLSiMo7QlJibqq6++UnZ2tho1aqRHHnkk13bH\njx/X22+/rZ49eyoqKkqZmZmaPn26srKy5HA4VKtWLbVp06aAqy+aCnSUNqCocDgceu6557RmzRqF\nhISoQYMGatu2rSIiIlxtVqxYoaSkJB08eFDbtm3ToEGDFBcXl6d1UTRxXCA3Xl5eevvtt9WyZUul\npKRoy5Yt+vrrr3XgwAFXm+HDh2vnzp3q3LmzqlatqqlTp6ply5Y6ePCgGjVqJOlqL/nhw4e1dOlS\nT+0KbiOHw6EhQ4YoNjZWISEhuv/++9WqVSu3//OxsbE6dOiQ9u3bp/j4eP3zn//Upk2bVLx4ca1e\nvVolSpRQVlaWHnroIW3ZskWNGzf24B4VfkVhdLbs7GwtWrRIgwYNkr+/vyZPnqxatWopODg4R7tl\ny5a5jZDr4+Oj5557znXv+rRp03T48GGFhYUV9G7ckfJl0II7TcmSJVWqVKlcf954441cL0VD/omP\nj1d4eLgqVaokHx8fPfnkk1qyZIlbm6VLl7rmLYqOjlZaWppSU1PztC6KJo4L5KZBgwY6dOiQjh07\npqysLC1cuDDHt641atTQt99+K0k6ePCgKlasqHLlyrm1adq0qY4cOaLk5OQCqx355/vvv1eVKlVc\n/+c7deqkr7/+2q3N119/re7du0uSGjZsqLS0NNdUDiVKlJB0tefK4XC4XUKOouvYsWMqV66cypYt\nK29vb/3P//yP9u7dm6Pdxo0bFRUVpZIlS7o9f603y+FwKDs723WcIP/Rw3Mb3GyY7YCAAAUEBOQ6\nKSjyR0pKikJDQ12PK1SooG3btt2yTUpKik6ePHnLdVE0cVwgN+XLl3cLKSkpKW73d0rSnj171K5d\nO23dulX169fX3/72N4WEhLgG2pGkjh076tNPPy2wupG/rv8/HxISovj4+Bxtfj8vXkhIiFJSUhQU\nFCSHw6FGjRrp8OHDevrpp+kNNsSFCxfcRs719/fXsWPH3NqkpaVp7969evbZZ11zPV6TnZ2tt956\nS+fOnVPjxo1z9Awh/xB4bgO6IwuXvPamcfvanYXjArnJy7/3pEmTNHnyZMXFxSkhIUE7d+50m07B\nx8dHLVu21MiRI/OzVBSgP/v34tp63t7e+v7773XhwgW1bt3aNdUFira8HBdfffWVWrduLYvFkuP4\n8PLy0vDhw3X58mW9//77OnjwYJ4Hv8JfQ+CBcUJCQnTixAnX4xMnTrh9C5dbm+TkZFWoUEGZmZm3\nXBdFE8cFcnP9t/TXevV+7+LFixowYIDr8f79+92mC2jevLl27Njh1uODoq18+fK5/i24vs31vYPl\ny5d3a1O6dGm1aNFC27dvJ/AYoHTp0kpLS3M9Pn/+vEqXLu3WJjk5WXPnzpV0deqQxMREeXt7u819\n6Ovrq5o1a+rEiRMEngLCPTwwTv369XXw4EEdPXpUGRkZ+uyzz9S2bVu3Nm3btnX9QYqLi5O/v7+C\ngoLytC6KJo4L5Gb79u0KDw9XxYoV5ePjoyeeeCLHvRp33323a8qDPn36aNOmTbp06ZJreadOnfT5\n558XaN3IX/Xq1VNSUpLr//zChQvVqlUrtzatW7fW/PnzJUnbtm1z/b04e/as66T48uXLWrt2rerU\nqVPg+4DbLzQ0VGfOnNG5c+eUlZWlHTt25JjEffTo0RozZozGjBmjqKgodezYUbVq1dLFixf13//+\nV9LVe7sOHDjAF2cFiB4eGMdqteqdd95R8+bN5XA41LdvX0VEROiDDz6QJA0YMEAtW7bUihUrFB4e\nLj8/P82ePfum66Lo47hAbq6NxrVs2TJ5e3trzpw5OnDggPr16ydJ+vDDDxUREaH//Oc/cjqdSkhI\n0MCBA13rlyhRQg8//LCeeeYZT+0C8oHVatXbb7+t1q1by+FwqHfv3q7jQJL69++vFi1aaOXKlYqI\niJCfn59rWWpqqvr27avs7GxlZ2era9euevjhhz25O0VCbsNSFzbe3t56/PHH9f7778vpdCo6OlrB\nwcHasmWLJN10JL5ff/1VCxYsUHZ2tpxOpxo0aJDnyevx1zEPDwCgwBTGeXhQMIraPDwoGEVtHh4U\nvNsxDw+XtAEAAAAwFoEHAAAAgLEIPAAAAACMReABAAAAYCxGaQMAAIBHFebR2VD00cMDAAAAwFgE\nHgAAAADGIvAAAAAAMBaBBwAAAICxCDwAAAAAjEXgAQAAgEfZ7XbZ7XZPlwFDEXgAAAAAGIvAAwAA\nAMBYBB4AAAAAxiLwAAAAADAWgQcAAACAsayeLgAAAAB3NpvN5ukSYDB6eAAAAAAYi8ADAAAAwFgE\nHgAAAADGIvAAAAAAMBaBBwAAAICxCDwAAADwKLvdLrvd7ukyYCgCDwAAAABjEXgAAAAAGIvAAwAA\nAMBYBB4AAAAAxiLwAAAAADCW1dMFAAAA4M5ms9k8XQIMRg8PAAAAAGMReAAAAAAYi8ADAAAAwFgE\nHgAAAADGIvAAAAAAMBaBBwAAAB5lt9tlt9s9XQYMReABAAAAYCwCDwAAAABjEXgAAAAAGIvAAwAA\nAMBYBB4AAAAAxrJ6ugAAAADc2Ww2m6dLgMHo4QEAAABgLAIPAAAAAGMReAAAAAAYi8ADAAAAwFgE\nHgAAAADGIvAAAADAo+x2u+x2u6fLgKEIPAAAAACMReABAAAAYCwmHgUAFJj09HRPl4BCqFixYp4u\nAYXQ4MGDPV0CDEEPDwAAAABjEXgAAAAAGMvidDqdni4CAAAAAPIDPTwAAAAAjEXgAQAAAGAsAg8A\nAAAAYzEsNf4yh8Ph6RLgId7e3jdclp2dXYCVoDDx8rrxd2ldu3YtwEpQmCxYsOCGy7788ssCrASF\nSYcOHW64LCkpqQArQWEVHh7+l7dBDw8AAAAAYxF4AAAA4FF2u112u93TZcBQBB4AAAAAxiLwAAAA\nADAWgQcAAACAsQg8AAAAAIxF4AEAAABgLObhAQAAgEfZbDZPlwCD0cMDAAAAwFgEHgAAAADGf/Vv\nSwAAGTNJREFUIvAAAAAAMBaBBwAAAICxCDwAAAAAjEXgAQAAgEfZ7XbZ7XZPlwFDEXgAAAAAGIvA\nAwAAAMBYBB4AAAAAxiLwAAAAADAWgQcAAACAsayeLgAAAAB3NpvN5ukSYDB6eAAAAAAYi8ADAAAA\nwFgEHgAAAADGIvAAAAAAMBaBBwAAAICxCDwAAADwKLvdLrvd7ukyYCgCDwAAAABjEXgAAAAAGIvA\nAwAAAMBYBB4AAAAAxiLwAAAAADCW1dMFAAAA4M5ms9k8XQIMRg8PAAAAAGMReAAAAAAYi8ADAAAA\nwFgEHgAAAADGIvAAAAAAMBaBBwAAAB5lt9tlt9s9XQYMReABAAAAYCwCDwAAAABjEXgAAAAAGIvA\nAwAAAMBYBB4AAAAAxrJ6ugAAAADc2Ww2m6dLgMHo4QEAAABgLAIPAAAAAGMReAAAAAAYi8ADAAAA\nwFgEHgAAAADGIvAAAADAo+x2u+x2u6fLgKEIPAAAAACMReABAAAAYCwCDwAAAABjEXgAAAAAGIvA\nAwAAAMBYVk8XAAAAgDubzWbzdAkwGD08AAAAAIxlVODp1auXYmJiPF3GbeXl5aUFCxbctE2TJk30\n9NNP53mbTZo0Uf/+/f9qaQAAAECh55FL2qxWq2bNmqUePXrc1u1aLBZZLJbbus2iYPHixbJa8/5P\neae+TwAAALjzeCTwWCwWOZ3O275dp9OZL9st7Pz9/T1dAgAAAFAo3fSStiZNmqhfv34aNWqUAgMD\nFRAQoDFjxsjpdMpmsyk4OFiBgYEaNWqUa53MzEyNHTtWYWFh8vX1Va1atTRjxgzX8kqVKsnhcKh3\n797y8vKSt7e3JOn8+fPq1q2bKlasqBIlSqhGjRqaMmVKjpo+++wz1atXT76+vipXrpxatmyptLS0\nXOv/8ccf1aJFCwUFBalUqVJq2LChVq1a5dZmyZIlqlu3rvz8/BQQEKDo6Gjt3LnTtS/Dhg1TaGio\nihcvrvLly6tLly63fFN//fVXlShRQp988onb8ydPnpTVatW6devy9F5dc+HCBXXv3l133323QkND\nNWHCBLfluV2i9u9//1s1a9ZU8eLFFRQUpCeeeOKmNU+fPl01atSQr6+vqlWrptdff10Oh+OW+woA\nAAAUZrfs4fniiy80aNAgbd26VZs2bVLfvn0VHx+vOnXqaPPmzdq6dat69eql//3f/9Wjjz6q/v37\na+fOnZoxY4aqVq2qbdu2acCAAbJarerTp49++OEH3XvvvZoyZYo6d+7sep2MjAzVrl1bL774ogIC\nArR582YNHDhQZcqUUa9evSRJs2fP1oABA2Sz2fTxxx/L4XBow4YNNzwx/+2339SlSxdNmTJFPj4+\n+uijj9S2bVvt3btXVatWVWpqqjp27KjXX39dHTt2VHp6unbs2OG6PGz69OlauHChPv74Y4WFhSk1\nNVVbt2695Zt69913q3379po3b55bQJo/f75CQkL08MMPS9It36tr7Ha7xo8fr1dffVWxsbF67rnn\n1LBhQ9d2rr9EzWazacqUKXrzzTfVrFkzXbp0SbGxsTesd+zYsZozZ46mTp2qOnXqaN++fRo4cKDS\n09P16quv3nJ/AQAA/gq73S6J0dqQP24ZeMLCwvTGG29IksLDwzV58mSdOnVKK1eudD03ZcoUrVu3\nTtWrV9e8efOUmJioatWqSZIqVqyo/fv3a/r06erTp4/KlSsnSSpdurQCAwNdrxMUFKSXXnrJ9bhi\nxYqKj4/XggULXIHHZrNp4MCBGjlypKtdZGTkDWt/8MEH3R6PGzdOy5Yt08KFCzVixAidOnVKWVlZ\n6tixoypWrChJql69uqv98ePHVa1aNf3jH/+QJFWoUEH169e/1VsmSerRo4dat26tn3/+WUFBQZKk\nefPmqVu3bpKkI0eO3PK9uubJJ59U3759JUnPPPOM3nnnHa1Zs8YVeH7v0qVLmjhxosaPH69nnnnG\n9XxUVFSudf73v//VpEmT9NVXX6lZs2auOsaNG6fBgwcTeAAAAFCk3TTwWCyWHCfKwcHBuvfee3M8\n9/PPP2v79u1yOp2qV6+e2/KsrKxb3lSfnZ2tiRMn6tNPP1VKSorS09OVmZmpSpUqSZJOnz6t5ORk\n10l5Xpw5c0Y2m03r169XamqqsrKylJ6eruPHj0u6GgKaN2+uWrVqKSYmRk2aNFGHDh1UoUIFSVLv\n3r0VExOj8PBwxcTEKCYmRm3atJGPj88tX/uRRx5RYGCgFixYoKFDh+rHH39UQkKCvvjiC0nSDz/8\nkOf3qk6dOm6Py5cvr9OnT+f6ugkJCbpy5Uqe36eEhARdvnxZHTp0cOslcjgcunLlis6dO6eyZcvm\naVsAAABAYXPLHp7rT+4tFkuuz2VnZys7O1uS9N1336lEiRI52tzM5MmTNWHCBL399tuqW7euSpUq\npSlTpmj58uV52pHc9OrVS8nJyZo0aZIqV66s4sWL68knn1RGRoakq0M+x8bG6vvvv9eaNWu0aNEi\nvfzyy1q4cKFatWqlqKgoHTlyRN98843Wr1+vwYMHa/To0YqLi1OpUqVu+tre3t566qmnNHfuXA0d\nOlRz585Vw4YNXT1If+S9KlasWI7l19b/q65t54svvnD1NP1eQEDAbXkdAAAAwBNu2zw8FovF1Vtx\n7NgxhYWFuf1UrlzZ1bZYsWI57rvZuHGjWrRooV69eikqKkphYWH66aefXCf/gYGBqlChQo5BB25m\n06ZNeuaZZ9S6dWtFRkYqODhYhw4dytGuQYMGeuWVV/Ttt9/qwQcf1OzZs13L/Pz89Nhjj2nq1Kn6\n4YcflJiYqI0bN+bp9Xv06KFdu3Zp586d+uSTT9yG4c7re/VHXRuoIK/vU2RkpIoXL65Dhw7lqCMs\nLExeXkZN1QQAAIA7zE17eHIb5vlGz0lSlSpV1KdPH/Xv318TJ05Uo0aNdOnSJW3fvl1nz57V8OHD\nJUmVK1fWunXr1Lx5cxUrVkzlypVTjRo1NG/ePG3YsEHly5fX3LlzFR8f79bDYLPZNGjQIAUFBenx\nxx9Xdna21q9fry5duuR62VX16tU1f/58NW7cWFlZWRozZoxbz8jWrVu1du1aNW/eXMHBwTp48KB2\n796tfv36SZImTZqkkJAQRUVFuUZds1qtufaE5KZWrVqqW7euevfurV9//dVtAIPw8PA8vVd5+Xf5\n/eOSJUvqhRde0NixY+Xr66tHHnlEly9fVmxsrF5++eVc248YMUIjRoyQxWJR06ZNlZWVpT179mjn\nzp05RoQDAAAAipJb3sNz/eVVN3rumhkzZmjy5MkaP368Dh8+rLvvvlu1atXSc88952ozefJkDR06\nVJUrV1ZWVpYcDodGjx6t48ePq127dvLx8VGXLl30/PPPa/78+a71+vbtK19fX02cOFGvvfaaSpYs\nqb///e+unpPra7s2qlvDhg0VHBys4cOH6/Lly67l/v7+iouL07vvvqvz588rODhY3bp10+jRoyVd\nHVhhypQpOnjwoLKzs1WzZk0tWrRIVatWzfMb3LNnTw0ZMkTt27fPcXlYXt6r3Fy/n9c/HjdunO65\n5x5NmzZNQ4cOVUBAgNsADte3HzVqlO6991698847euGFF+Tr66vq1au7BosAAADIT4zOhvxkcd6J\nM3XitiqM8/WsXLlSL7zwghwOh/r06ZNrj9mQIUO0cuVKlShRQjNnzlTdunUlSf369dOKFSsUGBjo\nmpMJubs2j1Zubtd9ZrfTypUrNWzYMDkcDvXt2zfX42Lw4MGu42LWrFmu46Jv376u42LXrl0FXXqR\ncrNLYbt27VqAleTNfffdpx49esjLy0vr16/XsmXLcrSJiIhQ9+7d5e3trd9++02vvfaaJGnq1Km6\nfPmysrOzXV/eIXcLFiy44bIvv/yyACvJmx07dmjWrFnKzs7WI488ovbt27stj4+P16effiovLy9Z\nLBb16NFDtWvX1tmzZzVt2jRduHBBFotFMTExatWqlYf2ovDr0KHDDZclJSUVYCV5s3HjRo0fP14O\nh0MdO3bUgAED3JYfOnRIL7/8svbt26dhw4a5Rtm9xuFwqH379goODs517kXkFB4e/pe3cctBC4Ci\nxuFwaPDgwVq1apVCQkLUqFEjtWnTRhEREa42K1asUFJSkvbv369t27bp2Wefdc2x1LNnTz377LPq\n3bu3p3YB+cDhcOj555/X6tWrFRISoujo6BseFwcOHMhxXPTq1UvPPfccPZ+GsVgs6tWrl15//XWd\nP39e48aN0/bt23Xy5ElXmxIlSqh3796aMGGCfvnlF7dBa5xOp8aNG6dLly55onzkE4fDoQ8//FA2\nm01lypTRSy+9pAYNGrhGcZWuBuWGDRtKuno/7sSJE/Xvf/9b3t7e6t27typXrqzLly9r+PDhioqK\nclsXRZPD4ZDdbtdHH32koKAgdejQQU2bNnU7Iff399eYMWP0zTff5LqNjz76SOHh4fzNKGDckf4n\nlSxZUqVKlcr1h/tePCs+Pl5VqlRRpUqV5OPjo06dOmnp0qVubb7++mvXpZDR0dG6cOGCUlNTJUkP\nPPAAo9MZ6PrjonPnzjmOi2XLlrkdF2lpaRwXhgsPD9fPP/+ss2fPyuFw6LvvvssxXcD999+v+Ph4\n/fLLL5KuTmr9e7cahRRFT1JSkoKDgxUYGCir1arGjRsrPj7erU3x4sVdv6enp7uCcEBAgGvwIV9f\nX4WEhLiOHRRtu3fvVsWKFVWhQgX5+PiodevWWrt2rVubsmXLqnbt2rlOYXLq1Cl9++236tSpU477\n4ZG/6OH5k3bv3n3DZZwUedbJkycVGhrqelyhQoUcH1QpKSlu37aFhIQoJSVFwcHBBVYnClZKSorb\ncRESEpLrcXH9scNxYbaAgACdO3fO9fiXX37JcflEcHCwrFarRo4cKV9fX61cuVKbN292LR8xYoSy\ns7O1du1arV+/vsBqR/755ZdfXBOlS1dPYg8ePJij3bZt2/Txxx/r/PnzGjNmTI7lp0+f1pEjR/7Q\nvb8ovFJTU93mogwODv5Dlzi//vrrGj58uC5evJgf5eEmCDx/UlhYmKdLwA3k9dvW679d4Vtas3Fc\nIDd5+ZbVarWqUqVKGj9+vO666y7Z7XYlJSUpNTVVY8eOVVpamkqVKqVXXnlFJ0+e1IEDBwqgchQG\n0dHRio6O1r59+zRt2jRNnz7dtezy5ct666231KdPH/n6+nqwStwuf+XzYN26dSpbtqwiIyO1bdu2\n21gV8oJL2mCc8uXL68SJE67HJ06cUEhIiFubkJAQJScnux6npKTkaAOzhISEuB0XycnJOa6pz60N\nx4XZzp8/7zatQdmyZXNcfnTu3Dnt2bNHmZmZunjxovbv36+//e1vkqS0tDRJVy9z++GHH1SlSpWC\nKx75pmzZsjp79qzr8blz53Kd/uKamjVryuFwuC53zMrK0qRJk/SPf/xD0dHR+V6vCex2u+x2u6fL\nuKmgoCCdOnXK9fjUqVMKCgrK07o7duzQ2rVr9dBDD2no0KGKi4vTv/71r/wqFdch8MA49evXV1JS\nko4ePaqMjAwtXLhQbdq0cWvTunVrzZs3T5IUFxen0qVL5/mPFoqm64+Lzz//PMdx0aZNG7fjwt/f\nn+PCcIcPH1ZwcLDKlSsnb29vNWrUSNu3b3drs337dlWvXl0Wi0XFihVTlSpVlJKSomLFirnu47jr\nrrtUu3Ztt8CMoqtKlSo6deqUTp8+rczMTG3ZskUNGjRwa5OamurqITx8+LAkqVSpUnI6nXr33XcV\nGhqq1q1bF3jtyD+1a9fW0aNHlZycrIyMDC1fvlxNmzbNte31vccvvPCCNm3apPXr1+v//u//1KhR\nI02aNKkgyoa4pA0Gslqtmjp1qlq2bCmHw6HevXsrIiLCNfzj008/rZYtW2rlypWqXr26/Pz89OGH\nH7rWf+qpp7Rx40adO3dOlSpV0tixYxmZywBWq1XTpk1TixYtXMOVR0RE6IMPPpAkDRgwQC1btlRs\nbKyqVasmPz8/zZw507V+165dXcdFxYoVNXbsWEbyM0B2drbmzJmjl19+WV5eXtqwYYNOnjyphx9+\nWNLVy1BOnjypXbt26c0333RNeJ2SkqLAwEANGTJE0tUh2rds2aI9e/Z4cndwm3h7e6tfv34aN26c\nsrOz1bRpU1WoUEGrV6+WJDVr1kxxcXHasGGDrFarihcvrmHDhkmS9u/fr40bN6pixYp68cUXJV39\nXLk2xD2KLqvVKpvNpj59+riGpQ4PD9cnn3wiSerSpYvOnDmjDh066OLFi/Ly8tJHH32k2NhY+fn5\nuW2Ly6ULFvPw4C8rjPPwoGAUtXl4UDCK2jw8KBhFbR4eFIxr8/Bcu5zt9xOQFsZ5eFDwbsc8PFzS\nBgAAAMBYBB4AAAAAxuIeHgAAAHjU7y9lA243engAAAAAGIvAAwAAAMBYBB4AAAAAxiLwAAAAADAW\ngQcAAACAsQg8AAAA8Ci73e6afBS43Qg8AAAAAIxF4AEAAABgLAIPAAAAAGMReAAAAAAYi8ADAAAA\nwFhWTxcAAACAO5vNZvN0CTAYPTwAAAAAjEXgAQAAAGAsAg8AAAAAYxF4AAAAABiLwAMAAADAWAQe\nAAAAeJTdbpfdbvd0GTAUgQcAAACAsQg8AAAAAIxF4AEAAABgLAIPAAAAAGMReAAAAAAYy+rpAgAA\nAHBns9lsni4BBqOHBwAAAICxCDwAAAAAjEXgAQAAAGAsAg8AAAAAYxF4AAAAABiLwAMAAACPstvt\nstvtni4DhiLwAAAAADAWgQcAAACAsQg8AAAAAIxF4AEAAABgLAIPAAAAAGNZPV0AAAAA7mw2m83T\nJcBg9PAAAAAAMBaBBwAAAICxCDwAAAAAjEXgAQAAAGAsAg8AAAAAYxF4AAAA4FF2u112u93TZcBQ\nBB4AAAAAxiLwAAAAADAWgQcAAACAsQg8AAAAAIxl9XQBKPq8vb09XQIKIS8vvk9BTgsWLPB0CSiE\nOnTo4OkSUAiFh4d7ugQYwuJ0Op2eLgIAAAAA8gNfwQIAAAAwFoEHAAAAgLEIPAAAAACMReABAAAA\nYCwCDwAAAABjEXgAAAAAGIvAAwAAAMBYBB4AAAAAxrJ6ugAUXb+fs/ba77k9d6vlf2ad/NgmdVDH\nnbpv1EEd1EEd1EEdhbGO63//s+jhAQAAAGAsAg8AAAAAYxF4AAAAABiLwAMAAADAWAQeAAAAAMYi\n8AAAAAAwFoEHAAAAgLEIPAAAAACMReABAAAAYCwCDwAAAABjEXgAAAAAGIvAAwAAAMBYBB4AAAAA\nxiLwAAAAADAWgQcAAACAsQg8AAAAAIxF4AEAAABgLAIPAAAAAGMReAAAAAAYi8ADAAAAwFgEHgAA\nAADGIvAAAAAAMBaBB3/Yhg0bPF0CAAAACpns7Ozbvs3bcd5J4MEfRuABAADA9Qg8AAAAAFDACDwA\nAAAAjGX1dAEoepo0aSJJslgsrud+/zsAAADuPBs2bHCdJ97Obf5VFqfT6fzrpQAAAABA4cMlbQAA\nAACMReABAAAAYCwCDwAAAABjEXjgZuXKlapRo4aqVq2qN998M9c2zz//vKpWraqoqCjt2LHjD60L\nAACAoudW53nnz59X+/btFRUVpejoaCUkJEiSDhw4oLp167p+SpcurUaNGikoKEi1a9e+4evd1vNN\nJ/D/ZWVlOatUqeI8cuSIMyMjwxkVFeXct2+fW5vly5c7W7Ro4XQ6nc64uDhndHR0ntcFAABA0ZOX\n87wXX3zR+eqrrzqdTqdz//79zqZNm+bYjsPhcAYHBzsXLlzo/PHHH521atXK9fVu9/kmPTxwiY+P\nV3h4uCpVqiQfHx89+eSTWrJkiVubpUuXqmfPnpKk6OhopaWlKTU1NU/rAgAAoOjJy3leYmKiHnro\nIUlS9erVdfToUZ05c8atzZo1a1SlShU98cQTCggIuOHr3e7zTQIPXFJSUhQaGup6XKFCBaWkpOSp\nzcmTJ2+5LgAAAIqevJwjRkVF6csvv5R0NSAdO3ZMycnJbm0+/fRTde3a9U+/3p893yTwwCWvk4c6\nmboJAADgjpGXc8SXX35ZaWlpqlu3rt555x3VrVtX3t7eruUZGRlatmyZOnbsmKfXvJ3nm9bbtiUU\neSEhITpx4oTr8YkTJ1ShQoWbtklOTlaFChWUmZl5y3UBAABQ9OTlHLFUqVKaNWuW63HlypUVFhbm\nehwbG6t69erpnnvu+cOv91fPN+nhgUv9+vV18OBBHT16VBkZGfrss8/Utm1btzZt27bV3LlzJUlx\ncXHy9/dXUFBQntYFAABA0ZOX87wLFy4oIyNDkvSf//xHDz74oEqWLOla/sknn6hLly55er3bfb5J\nDw9crFar3nnnHTVv3lwOh0N9+/ZVRESEPvjgA0nSgAED1LJlS61YsULh4eHy8/PT7Nmzb7ouAAAA\nira8nCPu27dPvXr1ksViUa1atTRz5kzX+pcuXdKaNWv0n//8R5LUpUsXffvttzp79qxCQ0Nlt9uV\nmZnp2tbtPt+0OLkhAwAAAIChuKQNAAAAgLEIPAAAAACMReABAAAAYCwCDwAAAABjEXgAAAAAGIvA\nAwAAAMBYBB4AAAAAxvp/4Jrl1ZgoXO8AAAAASUVORK5CYII=\n", "text": [ "<matplotlib.figure.Figure at 0x118278450>" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEPCAYAAACk43iMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH7JJREFUeJzt3X1UVHX+B/D3wAyhUuITuDLzcwZBBjDFJ0A9PnIKctNj\nai6eMMNnT2ZTnZOnbE+Uu7pu23ExXBefj1tL2G4rVjSUKNBmI1moqVigMwXYmoisD6XDDPP7o2WO\nNMDMAHcu9877dU4nvvDlzofzqfnM/X6+916Fw+FwgIiI/FKA2AEQEZF4WASIiPwYiwARkR9jESAi\n8mMsAkREfoxFgIjIjwlaBJYsWYLw8HDcf//97c5Zu3YtoqOjMWrUKFRUVAgZDhER/YKgRSAzMxNG\no7HdnxcWFqK6uhpVVVXYsWMHVq9eLWQ4RET0C4IWgcmTJ6Nfv37t/vzQoUNYvHgxACApKQmNjY24\nfPmykCEREdFdRO0J1NXVQaPROMdqtRq1tbUiRkRE5F9Ebwz/8q4VCoVCpEiIiPyPUswXj4iIQE1N\njXNcW1uLiIgIl3k6nQ4Wi8WHkRERyYO728OJWgRmz56NnJwcpKenw2QyITQ0FOHh4S7zLBaL2z+E\neq6srCxkZWWJHQZ5aNq0aSgtLXX5vkajwa5du/Dggw+6/OzAgQN48803YbVaYbVa0dTUBKvViiee\neKLNDR+bN2/GK6+8AqvVCrvdjqCgIAQFBeGFF17Aiy++6DJ/586d2LNnD4KCgqBSqZzz09PTkZ6e\n7jK/uLgYJSUlLvOTkpIwfvx4l/kXL15ETU2Nc27Lv8PCwjBgwACX+Q6Ho8euWrSXv/YIWgQWLlyI\n0tJS1NfXQ6PR4JVXXkFTUxMAYOXKlZg5cyYKCwsRFRWFPn36YO/evUKGQyJpbGwUOwT6H4fDgR9+\n+AFmsxlmsxkRERGYMmVKu/P79u2L//73vwCAwMBABAcHtzlv5MiRWLZsmcubrlqtbnO+wWDAU089\nhaCgIAQGBrp9Q12+fDmWL1/u4V8JpKSkICUlxeP5kZGRiIyM9Hh+Ty0AnSFoEcjLy3M7JycnR8gQ\niAjA+++/j+effx4WiwW9e/eGTqeDTqfDvHnzPD7G0KFD2y0Yer0eer3e42Pdc889Hs8l72i1WufX\nnpwRiLocRP5hzpw5YocgOw0NDTh27JjzE33LP2PGjMGePXtc5o8fPx75+fnQarW49957PX6dlrMA\nko59+/Y5v/bkjIVFgAQ3bdo0sUOQlDt37uDbb7+FxWJBc3Mz0tLSXOZUV1fjL3/5C7RaLXQ6HSZO\nnAidTtfukkZ4eHib/ba23P1J0pPvk7QppPBkMYVCwcawhFksFr6BuFFdXY3MzEyYzWZcuXIFarUa\nWq0WkydPFrWpztxJmyfvnTwTIBKA1WrFiRMnnMs0FosFZrMZwM87V35p8ODB2LBhA3Q6HSIiIqBU\n8n9N8g2eCRB5yeFwoKGhAWazGd9//z1mzZrlMufatWtIS0tzNmBblm0iIyMRFRUlQtTkjzx572QR\nIPKA3W7HvHnzcPHiRVgsFgQEBECn0yEqKgoHDhyQ1ZZBkg8WAeoReuq68jfffOOyu8ZiseDIkSMI\nCQlxmf/ee+9BrVZDp9MhNDRUhIh9r6fmjjzDngD5LZvNhpqaGlgsFiQlJaF3794uc1asWIGgoCDn\nUs3cuXOh0+na3cPe1rIPkdTxTIBk46WXXnLunb906RIGDx4MrVaL/fv3Y+jQoWKHR+RzXA4i0Tzx\nxBNt3vRPq9W2upilIw0NDbhw4YLLDpuNGzdizJgxLvMLCwsRFBQEnU4HjUaDoKCgLv4VRNLG5SAS\njcVicV6yrtVq2ywI169fh9lsxpAhQzBo0CCXnxsMBpw5c8a5wyY+Ph4PP/wwdDpdm685c+bMbv0b\niD0Bf8AiQD519uxZjB07FmazGXfu3IFOp8Prr7+O1NRUl7n79+8XIUIi/8IiQIK7+yxg0KBB2L59\nO3Q6HQYOHMitlT0czwLkj0WAutWdO3favCK2RVhYGBITE30YERF1RPTHS5I8OBwOHDp0CPHx8di5\nc2erZhQ/TUoXn+gnfzwToC6rrKyEwWDAd999h23btiE1NRVPPPGEc6knNDTUuUWTBYGoZ+EWUeqS\nf/zjH1i9ejXWr1+PJ598EiqVSuyQiOh/eJ0ACa6hoQE2mw1hYWFih0JEv+DJeyd7AtQl/fv3d1sA\nuK4sXcyd/LEIkEdqa2tx7tw5scMgom7GIkAdun37Nn73u99h1KhROHbsWKeOwWawdDF38sciQG1y\nOBx49913ERcXh4qKCpw4cQLLli0TOywi6mbcIkptWrhwIc6cOYOdO3ciJSWlS8fi/Weki7mTPxYB\natNvf/tbxMTE8Fm3RDLHLaJERDLFLaLk1meffQa73S52GEQkEhYBP/Xtt99iwYIFSE9PF3wvOPea\nSxdzJ38sAn7mxx9/RFZWFsaMGYP4+HhUVlZi2LBhYodFRCJh18+PWCwWTJ06FcnJyaioqMD//d//\n+eR1ubtEupg7+WNj2I80NzfjxIkTvJ8/kZ9gY5haCQgIEKUAcF1Zupg7+WMRkCGbzYZTp06JHQYR\nSQCLgMwUFxcjISEBGzZsEDsUJ64rSxdzJ39sDMuE2WzGc889h5MnT+L111/HnDlzxA6JiCSAZwIy\nsHfvXowfPx5jx47FuXPn8Mgjjzgf7dgTcF1Zupg7+eOZgAxMmjQJJ0+ehFqtFjsUIpIYQc8EjEYj\n9Ho9oqOjsXnzZpef19fXIy0tDQkJCRgxYgT27dsnZDiyNXz48B5dALiuLF3MnfwJdp2A3W5HTEwM\nDh8+jIiICIwfPx55eXmIjY11zsnKysKdO3ewadMm1NfXIyYmBpcvX3a5cyWvE/jZDz/8AIVCgUGD\nBokdChFJgKjXCZSXlyMqKgparRYqlQrp6ekoKChoNedXv/oVrl+/DgC4fv06BgwYwFsXt6GpqQlb\ntmxBfHw8iouLxQ7Ha1xXli7mTv4Ee8etq6uDRqNxjtVqNY4fP95qzvLlyzFjxgwMGTIEN27cwIED\nB4QKR7KKiopgMBgwdOhQlJWVtTqTIiLqKsGKgCe7UzZu3IiEhASUlJTgwoULeOCBB3Dq1Cnce++9\nLnMNBgNCQ0MBAHq9HsnJyc71ypZPK3IaNzc347nnnsNXX32FV199FRMmTIBOp+sx8XkzbvleT4mH\nY8/HWq22R8XDccfjkpISHDx4EACc75fuCNYTMJlMyMrKgtFoBABs2rQJAQEBWLdunXPOzJkzsX79\nekyaNAkAkJKSgs2bN2PcuHGtg1T4Z0/g448/xpQpU3DPPfeIHQoRSZCoPYFx48ahqqoKFosFVqsV\n+fn5mD17dqs5er0ehw8fBgBcvnwZX3/9NSIjI4UKSXIeeOABWRSAlk8qJD3MnfwJthykVCqRk5OD\n1NRU2O12LF26FLGxscjNzQUArFy5Ei+++CIyMzMxatQoNDc3449//CP69+8vVEg91sWLF1n8iEgU\nvJW0iP7zn//ghRdewEcffYSvvvrKLwsgEQmHt5LuoaxWK1577TWMGDECYWFhqKysZAEgIlFwU76P\nnTlzBnPnzsXw4cNx7NgxDB8+XOyQBHf3ziCSFuZO/lgEfEyj0WDr1q1IS0sTOxQiIvYEiIjkij0B\nETU3N+PSpUtih0FE1CEWAQEcO3YMiYmJeOmll8QOpUfgXnPpYu7kj0WgG126dAmLFi3CggULYDAY\nsHv3brFDIiLqEItAN/nrX/+KkSNHQqPR4Pz588jIyOhRT/cSE3eXSBdzJ3/cHdRNYmJicPz4cQwb\nNkzsUIiIPMbdQSQ47jWXLuZO2rg7SACNjY2wWq1ih0FE1C1YBDxkt9uxY8cO6PV6lJaWih2OpPCT\npHQxd/LHnoAHPvnkEzz99NMICQmB0WhEQkKC2CEREXULngl04Mcff8TChQvx2GOPYd26dSgtLWUB\n6ATuNZcu5k7+eCbQgV69eiElJQW7d+9G7969xQ6HiKjbcXcQEZFMcXeQFxobG8UOgYjI5/y+CFy9\nehVPPvkkxo4di6amJrHDkSWuK0sXcyd/flsEbDYbtm3bhtjYWABAeXk5VCqVyFEREfmWX/YEvvji\nC2RmZmLAgAHIzs7GyJEju+3YREQ9hSfvnX5ZBCorK3H27FnMmzePN3kjItliEaAegfefkS7mTtr8\nfneQw+HArVu3xA6DiKjHkm0RqKiowNSpU/Hqq6+KHYrf4ydJ6WLu5E92RaC+vh6rVq3CQw89hIyM\nDGzcuFHskIiIeiy3ReDq1au+iKNbbN++HbGxsQgODkZlZSVWrFiBwMBAscPye9xrLl3Mnfy5vXdQ\ncnIyEhISkJmZiYceeqhH76YJDg5GSUkJ4uPjxQ6FiEgS3O4Oam5uxuHDh7Fnzx58/vnnWLBgATIz\nMzF8+HBfxcjdQUREndDtW0SPHDmCjIwM3Lp1CwkJCdi0aRMmTpzY5UDd+eUfcvv2bQQHBwv+ukRE\nUtYtRaC+vh5vvfUW9u/fj/DwcCxbtgyzZs3CqVOnMH/+fJ+sGSoUCkydOhUOhwPNzc0wm80wGo0Y\nMWKE4K9NXce95tLF3EmbJ0XAbU9g4sSJyMjIQEFBAdRqtfP748aNw6pVq7oepYdaHukYEhKCoqIi\nFgAiom7g9kzA4XCI3gy++/WnTJnCZ/wSEXmgW64YfvDBB1vda7+hoQGpqaldj66TxC5IRERy4rYI\nXLlyBaGhoc5x//79cfnyZUGDInnhXnPpYu7kz20RCAwMxLfffuscWywWBATI7kJjIiK/5LYx/Pvf\n/x6TJ0/GlClTAABlZWXYsWOHRwc3Go0wGAyw2+1YtmwZ1q1b5zKnpKQEzzzzDJqamjBw4ECUlJS0\neaypU6cC4L1MpIg5ky7mTv48uk7gypUrMJlMUCgUSE5OxsCBA90e2G63IyYmBocPH0ZERATGjx+P\nvLw855O8gJ+f6ztp0iQUFRVBrVajvr6+zWPzYjEiIu91262klUolwsLCcO+99+LcuXMoKytz+zvl\n5eWIioqCVquFSqVCeno6CgoKWs35+9//jnnz5jm3nnpSXEh6uK4sXcyd/LldDtq5cye2bt2K2tpa\nJCQkwGQyYcKECThy5EiHv1dXVweNRuMcq9VqHD9+vNWcqqoqNDU1Yfr06bhx4waefvppLFq0qJN/\nChERecvtmUB2djbKy8sxdOhQHD16FBUVFejbt6/bA3uylbOpqQlffvklCgsLUVRUhA0bNqCqqsqz\nyEkyuK4sXcyd/Lk9EwgODkavXr0A/HzPHr1ej6+//trtgSMiIlBTU+Mc19TUtLriGAA0Gg0GDhyI\nXr16oVevXpgyZQpOnTqF6Ohol+MZDAbnVlW9Xo/k5GTnf6Atp6wcc8wxx/48LikpwcGDBwGg1db+\njrhtDM+ZMwd79+5FdnY2iouL0a9fP9hsNhQWFnZ4YJvNhpiYGBQXF2PIkCFITEx0aQyfP38ea9as\nQVFREe7cuYOkpCTk5+cjLi6udZAKNoalzML7z0gWcydt3XLvoJaqkpWVhWnTpuH69etIS0tz++JK\npRI5OTlITU2F3W7H0qVLERsbi9zcXADAypUrodfrkZaWhpEjRyIgIADLly93KQBERCScDs8EbDYb\nRowYgfPnz/syJhc8EyAi8l6Xt4gqlUrExMS0umKYiIjkw+1yUENDA+Lj45GYmIg+ffoA+Lm6HDp0\nSPDgSB64rixdzJ38uS0CGzZs8EUcREQkAq8eLykW9gSIiLzXLbuDQkJCnBd+Wa1WNDU1ISQkBNev\nX++eKImISDRui8DNmzedXzc3N+PQoUMwmUyCBkXywnVl6WLu5M+rBwMEBARgzpw5MBqNQsVDREQ+\n5PZM4J///Kfz6+bmZnzxxRfO20gQeYKfJKWLuZM/t0Xgvffec/YElEoltFqtyy2hiYhImrg7iATH\ndWXpYu6krVseKrN48WI0NjY6x9euXcOSJUu6Hh0REYnObRE4depUq1uS9uvXD19++aWgQZG88JOk\ndDF38ue2CDgcDjQ0NDjHDQ0NsNvtggZFRES+4bYx/Nxzz2HChAlYsGABHA4H3nnnHaxfv94XsZFM\ncF1Zupg7+XNbBB5//HGMHTsWR44cgUKhwL/+9S/e85+ISCbc7g4ymUyIi4vDfffdBwC4fv06Kisr\nkZSU5JMAAe4OIiLqDE/eO90WgYSEBFRUVDivFbDb7Rg3bhwqKiq6L1I3WASIiLzXLVtEWw7UIjAw\nkI1h8krLg7BJepg7+XNbBHQ6HbZu3YqmpiZYrVZkZ2cjMjLSF7EREZHA3C4HXb58GWvXrsXRo0cB\nACkpKcjOzkZYWJhPAgS4HERE1Bnd0hP4pZ9++gnvv/8+Hn300S4F5w0WASIi73VbT8But+ODDz5A\nRkYGtFot3n777W4JkPwD15Wli7mTv3avE3A4HCgtLUVeXh4KCwuRlJSETz75BGazGb179/ZljERE\nJJB2l4PUajXi4uKwZMkSzJo1C3369IFOp4PZbPZ1jFwOIiLqhC4tB82fPx/V1dXIz8/He++9h1u3\nbnV7gEREJK52i8Cf//xnVFdX46mnnkJxcTFiYmJw5coV5Ofnt3ruMJE7XFeWLuZO/jzeHWS1WlFU\nVIS8vDwUFRXh6tWrQsfmxOUgaeNNyKSLuZM2QbaIAsCPP/7o0+YwiwARkfcEKwK+xiJAROS9brtO\ngKgruK4sXcyd/LVbBE6dOtXuL23fvl2QYIiIyLfaLQKPPPIITpw44fL9l19+GTt27BA0KJIXNhal\ni7mTv3aLwDvvvIMFCxbg2LFjAIDm5masWrUKpaWlKC0t9VmAREQknHaLwNixY3Hw4EEsWrQIRqMR\njz76KK5cuYKioiLnU8aIPMF1Zeli7uSv3SLQ0NAAtVqNffv24bHHHoNKpUJubi5u3bqFhoYGX8ZI\nREQCaXeLqFardT5RzOFwtHq6mEKhwMWLF30TIbhFlIioM7q0RdRiscBsNsNsNrf62mw2e1wAjEYj\n9Ho9oqOjsXnz5nbnff7551AqlXj33Xc9Oi4REXUPr64TyMrK8niu3W7HmjVrYDQace7cOeTl5aGy\nsrLNeevWrUNaWho/7csU15Wli7mTP6+KQEFBgcdzy8vLERUVBa1WC5VKhfT09DZ//4033sD8+fMx\naNAgb0IhIqJu4FUR8OaTel1dHTQajXOsVqtRV1fnMqegoACrV68GgFZ9B5IP7jWXLuZO/rwqAl9+\n+aXHcz15QzcYDPjDH/7gbF5wOYiIyLfafbxkiwsXLsBgMOCzzz6DQqHAxIkTsWXLFkRGRnb4exER\nEaipqXGOa2pqoFarW8354osvkJ6eDgCor6/Hhx9+CJVKhdmzZ7scz2AwIDQ0FACg1+uRnJzs/JTS\nsm7Jcc8cm0wmDB48uMfEw7Hn47t7Aj0hHo47HpeUlODgwYMA4Hy/dMftXUSTkpKwZs0a55t1fn4+\n3njjDRw/frzDA9tsNsTExKC4uBhDhgxBYmIi8vLyEBsb2+b8zMxMzJo1C3PnznUNUsEtolJm4T3p\nJYu5k7ZuuYvoTz/9hEWLFkGlUkGlUiEjIwO3b992++JKpRI5OTlITU1FXFwcfvOb3yA2Nha5ubnI\nzc31/K8gyeObiHQxd/Ln9kxg3bp1CA0NxcKFCwH8fCZw7do1PP/88wCA/v37Cx8kzwSIiLzWLQ+V\n0d515XBbL+CLK4dZBKSNSwrSxdxJmyfvnW4bw3c3hoiISF7cnglYrVZs374dZWVlUCgUmDp1Klat\nWgWVSuWrGHkmQETUCd2yHLR06VLYbDYsXrwYDocDf/vb36BUKrFr165uDbYjLAJERN7rUhGw2WxQ\nKpUYOXIkTp8+3epnbX1PSCwC0sZ1Zeli7qStS1tEExMTAQCBgYGorq52fv/ChQtQKt22EoiISALa\nfTdvqR5/+tOfMGPGDERGRsLhcMBisWDv3r0+C5Ckj58kpYu5k792l4PUajWeffZZOBwO3L59G3a7\nHcDPZwa9evXCs88+67sguRxEROS1Li0H2e123LhxAzdv3oTNZnPe4M1ms+HGjRvdHizJF7cZSxdz\nJ3/tLgcNHjwYL7/8si9jISIiH/PqVtJEncF1Zeli7uSv3Z7A1atXMWDAAF/H0yb2BIiIvNelnkBP\nKQAkfVxXli7mTv64HERE5Mfc3jaiJ+ByEBGR97rloTJERCRfLAIkOK4rSxdzJ38sAkREfow9ASIi\nmWJPgIiIOsQiQILjurJ0MXfyxyJAROTH2BMgIpIp9gSIiKhDLAIkOK4rSxdzJ38sAkREfow9ASIi\nmWJPgIiIOsQiQILjurJ0MXfyxyJAROTH2BMgIpIp9gSIiKhDLAIkOK4rSxdzJ38sAkREfow9ASIi\nmWJPgIiIOiR4ETAajdDr9YiOjsbmzZtdfv7WW29h1KhRGDlyJCZNmoTTp08LHRL5GNeVpYu5kz+l\nkAe32+1Ys2YNDh8+jIiICIwfPx6zZ89GbGysc05kZCTKysrQt29fGI1GrFixAiaTSciwiIjofwQ9\nEygvL0dUVBS0Wi1UKhXS09NRUFDQas6ECRPQt29fAEBSUhJqa2uFDIlEoNVqxQ6BOom5kz9Bi0Bd\nXR00Go1zrFarUVdX1+783bt3Y+bMmUKGREREdxF0OUihUHg89+jRo9izZw8+/fTTNn9uMBgQGhoK\nANDr9UhOTnZ+SmlZt+S4Z45NJhMGDx7cY+Lh2PPx3T2BnhAPxx2PS0pKcPDgQQBwvl+6I+gWUZPJ\nhKysLBiNRgDApk2bEBAQgHXr1rWad/r0acydOxdGoxFRUVGuQSq4RVTKLBaL8z9YkhbmTto8ee8U\ntAjYbDbExMSguLgYQ4YMQWJiIvLy8lo1hr/77jvMmDEDb775JpKTk9sOkkWAiMhrnrx3CrocpFQq\nkZOTg9TUVNjtdixduhSxsbHIzc0FAKxcuRKvvvoqrl27htWrVwMAVCoVysvLhQyLiIj+h1cMk+C4\npCBdzJ208YphIiLqEM8EiIhkimcCRETUIRYBEtzde81JWpg7+WMRICLyY+wJEBHJFHsCRETUIRYB\nEhzXlaWLuZM/FgEiIj/GngARkUyxJ0BERB1iESDBcV1Zupg7+WMRICLyY+wJEBHJFHsCRETUIRYB\nEhzXlaWLuZM/FgEiIj/GngARkUyxJ0BERB1iESDBcV1Zupg7+WMRICLyY+wJEBHJFHsCRETUIRYB\nEhzXlaWLuZM/FgEiIj/GngARkUyxJ0BERB1iESDBcV1Zupg7+WMRICLyY+wJEBHJFHsCRETUIRYB\nEhzXlaWLuZM/FgEiIj/GngARkUyxJ0BERB0StAgYjUbo9XpER0dj8+bNbc5Zu3YtoqOjMWrUKFRU\nVAgZDomE68rSxdzJn2BFwG63Y82aNTAajTh37hzy8vJQWVnZak5hYSGqq6tRVVWFHTt2YPXq1UKF\nQyIymUxih0CdxNzJn2BFoLy8HFFRUdBqtVCpVEhPT0dBQUGrOYcOHcLixYsBAElJSWhsbMTly5eF\nColEcv78ebFDoE5i7uRPsCJQV1cHjUbjHKvVatTV1bmdU1tbK1RIRET0C4IVAYVC4dG8X3auPf09\nko7GxkaxQ6BOYu7kTynUgSMiIlBTU+Mc19TUQK1WdzintrYWERERLscaNmwYi4PEZWdnix0CdRJz\nJ13Dhg1zO0ewIjBu3DhUVVXBYrFgyJAhyM/PR15eXqs5s2fPRk5ODtLT02EymRAaGorw8HCXY1VX\nVwsVJhGRXxOsCCiVSuTk5CA1NRV2ux1Lly5FbGwscnNzAQArV67EzJkzUVhYiKioKPTp0wd79+4V\nKhwiImqDJK4YJiIiYfToK4aXLFmC8PBw3H///WKHQl6qqanB9OnTER8fjxEjRmDr1q1ih0ReuH37\nNpKSkpCQkIC4uDi88MILYodEXrLb7Rg9ejRmzZrV4bweXQQyMzNhNBrFDoM6QaVSYcuWLTh79ixM\nJhO2bdvmcrEg9VzBwcE4evQoTp48idOnT+Po0aP497//LXZY5IXs7GzExcW53VTTo4vA5MmT0a9f\nP7HDoE4YPHgwEhISAAAhISGIjY3FpUuXRI6KvNG7d28AgNVqhd1uR//+/UWOiDxVW1uLwsJCLFu2\njDeQI/FZLBZUVFQgKSlJ7FDIC83NzUhISEB4eDimT5+OuLg4sUMiDz3zzDN47bXXEBDg/i2eRYAE\ndfPmTcyfPx/Z2dkICQkROxzyQkBAAE6ePIna2lqUlZWhpKRE7JDIA++//z7CwsIwevRoj27BzyJA\ngmlqasK8efOQkZGBOXPmiB0OdVLfvn3x61//GidOnBA7FPLAsWPHcOjQIeh0OixcuBBHjhzB448/\n3u58FgEShMPhwNKlSxEXFweDwSB2OOSl+vp65y0jfvrpJ3z88ccYPXq0yFGRJzZu3IiamhqYzWa8\n/fbbmDFjBvbv39/u/B5dBBYuXIiJEyfim2++gUaj4cVkEvLpp5/izTffxNGjRzF69GiMHj2aO70k\n5Pvvv8eMGTOQkJCApKQkzJo1CykpKWKHRZ3gbncQLxYjIvJjPfpMgIiIhMUiQETkx1gEiIj8GIsA\nEZEfYxEgIvJjLAJERH6MRYDIS3ff/qKwsBAxMTGtHpNKJCWCPVmMSK5aLr4pLi7G008/jY8++gga\njUbkqIg6h0WAqBPKysqwYsUKfPjhh9DpdGKHQ9RpvGKYyEsqlQr33XcfSktLMWLECLHDIeoS9gSI\nvBQUFIRJkyZh165dYodC1GUsAkReCggIwIEDB1BeXo5NmzaJHQ5Rl7AnQNQJwcHB+OCDDzB58mSE\nh4djyZIlYodE1CksAkReatkd1K9fPxiNRkyZMgVhYWF4+OGHRY6MyHtsDBMR+TH2BIiI/BiLABGR\nH2MRICLyYywCRER+jEWAiMiPsQgQEfkxFgEiIj/GIkBE5Mf+H7gqzRGSLWgxAAAAAElFTkSuQmCC\n", "text": [ "<matplotlib.figure.Figure at 0x11bf166d0>" ] } ], "prompt_number": 63 }, { "cell_type": "code", "collapsed": false, "input": [ "full_mc_metrics['binary_metrics_df']" ], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }
bsd-2-clause
GoogleCloudPlatform/asl-ml-immersion
notebooks/image_models/solutions/2_mnist_models.ipynb
1
20117
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# MNIST Image Classification with TensorFlow on Cloud AI Platform\n", "\n", "This notebook demonstrates how to implement different image models on MNIST using the [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras).\n", "\n", "## Learning Objectives\n", "1. Understand how to build a Dense Neural Network (DNN) for image classification\n", "2. Understand how to use dropout (DNN) for image classification\n", "3. Understand how to use Convolutional Neural Networks (CNN)\n", "4. Know how to deploy and use an image classifcation model using Google Cloud's [AI Platform](https://cloud.google.com/ai-platform/)\n", "\n", "First things first. Configure the parameters below to match your own Google Cloud project details." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "from datetime import datetime\n", "\n", "REGION = \"us-central1\"\n", "PROJECT = !(gcloud config get-value core/project)\n", "PROJECT = PROJECT[0]\n", "BUCKET = PROJECT\n", "MODEL_TYPE = \"cnn\" # \"linear\", \"dnn\", \"dnn_dropout\", or \"cnn\"\n", "\n", "# Do not change these\n", "os.environ[\"PROJECT\"] = PROJECT\n", "os.environ[\"BUCKET\"] = BUCKET\n", "os.environ[\"REGION\"] = REGION\n", "os.environ[\"MODEL_TYPE\"] = MODEL_TYPE\n", "os.environ[\"IMAGE_URI\"] = os.path.join(\"gcr.io\", PROJECT, \"mnist_models\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Building a dynamic model\n", "\n", "In the previous notebook, <a href=\"mnist_linear.ipynb\">mnist_linear.ipynb</a>, we ran our code directly from the notebook. In order to run it on the AI Platform, it needs to be packaged as a python module.\n", "\n", "The boilerplate structure for this module has already been set up in the folder `mnist_models`. The module lives in the sub-folder, `trainer`, and is designated as a python package with the empty `__init__.py` (`mnist_models/trainer/__init__.py`) file. It still needs the model and a trainer to run it, so let's make them.\n", "\n", "Let's start with the trainer file first. This file parses command line arguments to feed into the model." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%writefile mnist_models/trainer/task.py\n", "import argparse\n", "import json\n", "import os\n", "import sys\n", "\n", "from . import model\n", "\n", "\n", "def _parse_arguments(argv):\n", " \"\"\"Parses command-line arguments.\"\"\"\n", " parser = argparse.ArgumentParser()\n", " parser.add_argument(\n", " '--model_type',\n", " help='Which model type to use',\n", " type=str, default='linear')\n", " parser.add_argument(\n", " '--epochs',\n", " help='The number of epochs to train',\n", " type=int, default=10)\n", " parser.add_argument(\n", " '--steps_per_epoch',\n", " help='The number of steps per epoch to train',\n", " type=int, default=100)\n", " parser.add_argument(\n", " '--job-dir',\n", " help='Directory where to save the given model',\n", " type=str, default='mnist_models/')\n", " return parser.parse_known_args(argv)\n", "\n", "\n", "def main():\n", " \"\"\"Parses command line arguments and kicks off model training.\"\"\"\n", " args = _parse_arguments(sys.argv[1:])[0]\n", "\n", " # Configure path for hyperparameter tuning.\n", " trial_id = json.loads(\n", " os.environ.get('TF_CONFIG', '{}')).get('task', {}).get('trial', '')\n", " output_path = args.job_dir if not trial_id else args.job_dir + '/'\n", "\n", " model_layers = model.get_layers(args.model_type)\n", " image_model = model.build_model(model_layers, args.job_dir)\n", " model_history = model.train_and_evaluate(\n", " image_model, args.epochs, args.steps_per_epoch, args.job_dir)\n", "\n", "\n", "if __name__ == '__main__':\n", " main()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, let's group non-model functions into a util file to keep the model file simple. We'll copy over the `scale` and `load_dataset` functions from the previous lab." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%writefile mnist_models/trainer/util.py\n", "import tensorflow as tf\n", "\n", "\n", "def scale(image, label):\n", " \"\"\"Scales images from a 0-255 int range to a 0-1 float range\"\"\"\n", " image = tf.cast(image, tf.float32)\n", " image /= 255\n", " image = tf.expand_dims(image, -1)\n", " return image, label\n", "\n", "\n", "def load_dataset(\n", " data, training=True, buffer_size=5000, batch_size=100, nclasses=10):\n", " \"\"\"Loads MNIST dataset into a tf.data.Dataset\"\"\"\n", " (x_train, y_train), (x_test, y_test) = data\n", " x = x_train if training else x_test\n", " y = y_train if training else y_test\n", " # One-hot encode the classes\n", " y = tf.keras.utils.to_categorical(y, nclasses)\n", " dataset = tf.data.Dataset.from_tensor_slices((x, y))\n", " dataset = dataset.map(scale).batch(batch_size)\n", " if training:\n", " dataset = dataset.shuffle(buffer_size).repeat()\n", " return dataset\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, let's code the models! The [tf.keras API](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras) accepts an array of [layers](https://www.tensorflow.org/api_docs/python/tf/keras/layers) into a [model object](https://www.tensorflow.org/api_docs/python/tf/keras/Model), so we can create a dictionary of layers based on the different model types we want to use. The below file has two functions: `get_layers` and `create_and_train_model`. We will build the structure of our model in `get_layers`. Last but not least, we'll copy over the training code from the previous lab into `train_and_evaluate`.\n", "\n", "**TODO 1**: Define the Keras layers for a DNN model \n", "**TODO 2**: Define the Keras layers for a dropout model \n", "**TODO 3**: Define the Keras layers for a CNN model \n", "\n", "Hint: These models progressively build on each other. Look at the imported `tensorflow.keras.layers` modules and the default values for the variables defined in `get_layers` for guidance." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%writefile mnist_models/trainer/model.py\n", "import os\n", "import shutil\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import tensorflow as tf\n", "from tensorflow.keras import Sequential\n", "from tensorflow.keras.callbacks import TensorBoard\n", "from tensorflow.keras.layers import (\n", " Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Softmax)\n", "\n", "from . import util\n", "\n", "\n", "# Image Variables\n", "WIDTH = 28\n", "HEIGHT = 28\n", "\n", "\n", "def get_layers(\n", " model_type,\n", " nclasses=10,\n", " hidden_layer_1_neurons=400,\n", " hidden_layer_2_neurons=100,\n", " dropout_rate=0.25,\n", " num_filters_1=64,\n", " kernel_size_1=3,\n", " pooling_size_1=2,\n", " num_filters_2=32,\n", " kernel_size_2=3,\n", " pooling_size_2=2):\n", " \"\"\"Constructs layers for a keras model based on a dict of model types.\"\"\"\n", " model_layers = {\n", " 'linear': [\n", " Flatten(),\n", " Dense(nclasses),\n", " Softmax()\n", " ],\n", " 'dnn': [\n", " Flatten(),\n", " Dense(hidden_layer_1_neurons, activation='relu'),\n", " Dense(hidden_layer_2_neurons, activation='relu'),\n", " Dense(nclasses),\n", " Softmax()\n", " ],\n", " 'dnn_dropout': [\n", " Flatten(),\n", " Dense(hidden_layer_1_neurons, activation='relu'),\n", " Dense(hidden_layer_2_neurons, activation='relu'),\n", " Dropout(dropout_rate),\n", " Dense(nclasses),\n", " Softmax()\n", " ],\n", " 'cnn': [\n", " Conv2D(num_filters_1, kernel_size=kernel_size_1,\n", " activation='relu', input_shape=(WIDTH, HEIGHT, 1)),\n", " MaxPooling2D(pooling_size_1),\n", " Conv2D(num_filters_2, kernel_size=kernel_size_2,\n", " activation='relu'),\n", " MaxPooling2D(pooling_size_2),\n", " Flatten(),\n", " Dense(hidden_layer_1_neurons, activation='relu'),\n", " Dense(hidden_layer_2_neurons, activation='relu'),\n", " Dropout(dropout_rate),\n", " Dense(nclasses),\n", " Softmax()\n", " ]\n", " }\n", " return model_layers[model_type]\n", "\n", "\n", "def build_model(layers, output_dir):\n", " \"\"\"Compiles keras model for image classification.\"\"\"\n", " model = Sequential(layers)\n", " model.compile(optimizer='adam',\n", " loss='categorical_crossentropy',\n", " metrics=['accuracy'])\n", " return model\n", "\n", "\n", "def train_and_evaluate(model, num_epochs, steps_per_epoch, output_dir):\n", " \"\"\"Compiles keras model and loads data into it for training.\"\"\"\n", " mnist = tf.keras.datasets.mnist.load_data()\n", " train_data = util.load_dataset(mnist)\n", " validation_data = util.load_dataset(mnist, training=False)\n", "\n", " callbacks = []\n", " if output_dir:\n", " tensorboard_callback = TensorBoard(log_dir=output_dir)\n", " callbacks = [tensorboard_callback]\n", "\n", " history = model.fit(\n", " train_data,\n", " validation_data=validation_data,\n", " epochs=num_epochs,\n", " steps_per_epoch=steps_per_epoch,\n", " verbose=2,\n", " callbacks=callbacks)\n", "\n", " if output_dir:\n", " export_path = os.path.join(output_dir, 'keras_export')\n", " model.save(export_path, save_format='tf')\n", "\n", " return history\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Local Training\n", "\n", "With everything set up, let's run locally to test the code. Some of the previous tests have been copied over into a testing script `mnist_models/trainer/test.py` to make sure the model still passes our previous checks. On `line 13`, you can specify which model types you would like to check. `line 14` and `line 15` has the number of epochs and steps per epoch respectively.\n", "\n", "Moment of truth! Run the code below to check your models against the unit tests. If you see \"OK\" at the end when it's finished running, congrats! You've passed the tests!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!python3 -m mnist_models.trainer.test" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that we know that our models are working as expected, let's run it on the [Google Cloud AI Platform](https://cloud.google.com/ml-engine/docs/). We can run it as a python module locally first using the command line.\n", "\n", "The below cell transfers some of our variables to the command line as well as create a job directory including a timestamp." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "current_time = datetime.now().strftime(\"%Y%m%d_%H%M%S\")\n", "model_type = \"cnn\"\n", "\n", "os.environ[\"MODEL_TYPE\"] = model_type\n", "os.environ[\"JOB_DIR\"] = \"mnist_models/models/{}_{}/\".format(\n", " model_type, current_time\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The cell below runs the local version of the code. The epochs and steps_per_epoch flag can be changed to run for longer or shorther, as defined in our `mnist_models/trainer/task.py` file." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%bash\n", "python3 -m mnist_models.trainer.task \\\n", " --job-dir=$JOB_DIR \\\n", " --epochs=5 \\\n", " --steps_per_epoch=50 \\\n", " --model_type=$MODEL_TYPE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Training on the cloud\n", "\n", "We will use a [Deep Learning Container](https://cloud.google.com/ai-platform/deep-learning-containers/docs/overview) to train this model on AI Platform. Below is a simple [Dockerlife](https://docs.docker.com/engine/reference/builder/) which copies our code to be used in a TensorFlow 2.3 environment." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%writefile mnist_models/Dockerfile\n", "FROM gcr.io/deeplearning-platform-release/tf2-cpu.2-3\n", "COPY mnist_models/trainer /mnist_models/trainer\n", "ENTRYPOINT [\"python3\", \"-m\", \"mnist_models.trainer.task\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The below command builds the image and ships it off to Google Cloud so it can be used for AI Platform. When built, it will show up [here](http://console.cloud.google.com/gcr) with the name `mnist_models`. ([Click here](https://console.cloud.google.com/cloud-build) to enable Cloud Build)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!docker build -f mnist_models/Dockerfile -t $IMAGE_URI ./" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!docker push $IMAGE_URI" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we can kickoff the [AI Platform training job](https://cloud.google.com/sdk/gcloud/reference/ai-platform/jobs/submit/training). We can pass in our docker image using the `master-image-uri` flag." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "current_time = datetime.now().strftime(\"%Y%m%d_%H%M%S\")\n", "model_type = \"cnn\"\n", "\n", "os.environ[\"MODEL_TYPE\"] = model_type\n", "os.environ[\"JOB_DIR\"] = \"gs://{}/mnist_{}_{}/\".format(\n", " BUCKET, model_type, current_time\n", ")\n", "os.environ[\"JOB_NAME\"] = f\"mnist_{model_type}_{current_time}\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%bash\n", "echo $JOB_DIR $REGION $JOB_NAME\n", "gcloud ai-platform jobs submit training $JOB_NAME \\\n", " --staging-bucket=gs://$BUCKET \\\n", " --region=$REGION \\\n", " --master-image-uri=$IMAGE_URI \\\n", " --scale-tier=BASIC_GPU \\\n", " --job-dir=$JOB_DIR \\\n", " -- \\\n", " --model_type=$MODEL_TYPE" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Deploying and predicting with model\n", "\n", "Once you have a model you're proud of, let's deploy it! All we need to do is give AI Platform the location of the model. Below uses the keras export path of the previous job, but `${JOB_DIR}keras_export/` can always be changed to a different path." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "TIMESTAMP = datetime.now().strftime(\"%Y%m%d%H%M%S\")\n", "MODEL_NAME = f\"mnist_{TIMESTAMP}\"\n", "\n", "%env MODEL_NAME = $MODEL_NAME" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%bash\n", "MODEL_VERSION=${MODEL_TYPE}\n", "MODEL_LOCATION=${JOB_DIR}keras_export/\n", "echo \"Deploying $MODEL_NAME $MODEL_VERSION from $MODEL_LOCATION ... this will take a few minutes\"\n", "gcloud ai-platform models create ${MODEL_NAME} --region $REGION\n", "gcloud ai-platform versions create ${MODEL_VERSION} \\\n", " --model ${MODEL_NAME} \\\n", " --origin ${MODEL_LOCATION} \\\n", " --framework tensorflow \\\n", " --runtime-version=2.3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To predict with the model, let's take one of the example images.\n", "\n", "**TODO 4**: Write a `.json` file with image data to send to an AI Platform deployed model" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import codecs\n", "import json\n", "\n", "import matplotlib.pyplot as plt\n", "import tensorflow as tf\n", "\n", "HEIGHT = 28\n", "WIDTH = 28\n", "IMGNO = 12\n", "\n", "mnist = tf.keras.datasets.mnist.load_data()\n", "(x_train, y_train), (x_test, y_test) = mnist\n", "test_image = x_test[IMGNO]\n", "\n", "jsondata = test_image.reshape(HEIGHT, WIDTH, 1).tolist()\n", "json.dump(jsondata, codecs.open(\"test.json\", \"w\", encoding=\"utf-8\"))\n", "plt.imshow(test_image.reshape(HEIGHT, WIDTH));" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we can send it to the prediction service. The output will have a 1 in the index of the corresponding digit it is predicting. Congrats! You've completed the lab!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%bash\n", "gcloud ai-platform predict \\\n", " --model=${MODEL_NAME} \\\n", " --version=${MODEL_TYPE} \\\n", " --json-instances=./test.json" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Copyright 2021 Google Inc.\n", "Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at\n", "http://www.apache.org/licenses/LICENSE-2.0\n", "Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License." ] } ], "metadata": { "environment": { "kernel": "python3", "name": "tf2-gpu.2-6.m86", "type": "gcloud", "uri": "gcr.io/deeplearning-platform-release/tf2-gpu.2-6:m86" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" } }, "nbformat": 4, "nbformat_minor": 4 }
apache-2.0
FourthCohortAwesome/NightThree
ThreeSoln_jef.ipynb
1
1986
{ "cells": [ { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Enter the name of the file: alt2.csv\n" ] } ], "source": [ "import pandas as pd \n", "file = input(\"Enter the name of the file: \")\n", "row, col = (pd.read_csv(file).shape)\n", "\n", "for _ in file:\n", " if row == 7:\n", " df = pd.DataFrame([[\"a\",\"b\",\"c\",\"d\"]]*7,columns = ['One','Two','Three','Four'])\n", " df.to_csv('Dest_jef_alt1.tsv',index=False, sep = '\\t')\n", " \n", " elif row == 9:\n", " df = pd.read_csv(file, delimiter=':')\n", " df[\"TWO\"][df[\"ONE\"] == 1] = 3\n", " df[\"TWO\"][df[\"ONE\"] == 2] = 4\n", " df[\"TWO\"][df[\"ONE\"] == 3] = 6\n", "\n", " df[\"ONE\"][df[\"TWO\"] == 3] = 1\n", " df[\"ONE\"][df[\"TWO\"] == 4] = 2\n", " df[\"ONE\"][df[\"TWO\"] == 6] = 3\n", " df.to_csv('Dest_jef_alt2.tsv',index=False, sep = '\\t')\n", "\n", " elif row == 3:\n", " df = pd.DataFrame([[\"1\",\"2\",\"3\",\"4\",\"5\",\"6\",\"7\"]]*3,columns = ['One','Two','Three','Four', 'Five','Six','Seven'])\n", " df.to_csv('Dest_jef_alt3.tsv',index=False, sep = '\\t')" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3.0 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.1" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
Wx1ng/Python4DataScience.CH
Series_0_Python_Tutorials/S0EP2_Control_Flow_Data_Structure.ipynb
1
35928
{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "#1 美观并正确地书写Python语句\n", "\n", "###书写的美观性\n", "\n", "往往问题不仅是美观,还在于程序的可读性:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n", "True\n" ] } ], "source": [ "testnum = True\n", "print testnum\n", "testnum = True;print testnum" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###书写的正确性\n", "\n", "用四空格或一Tab表示缩进。\n", "\n", "错误缩进:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "ename": "IndentationError", "evalue": "unexpected indent (<ipython-input-1-ca4e5ad1bc31>, line 2)", "output_type": "error", "traceback": [ "\u001b[0;36m File \u001b[0;32m\"<ipython-input-1-ca4e5ad1bc31>\"\u001b[0;36m, line \u001b[0;32m2\u001b[0m\n\u001b[0;31m print \"Value is ,{0}\".format(i)\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mIndentationError\u001b[0m\u001b[0;31m:\u001b[0m unexpected indent\n" ] } ], "source": [ "i = 42\n", " print \"Value is ,{0}\".format(i)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "正确缩进:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 1 2 3\n" ] } ], "source": [ "for i in xrange(5):\n", " if i > 3:\n", " break\n", " else:\n", " print i,\n", "else:\n", " print \"Expectedly Finished\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#2 Python控制流语法(if/else/for/while等)\n", "\n", "\n", "###2.1 if和else\n", "\n", "在Python中,标准的if-else或者单if条件语句语法是这样的:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "do something\n" ] } ], "source": [ "expression = True\n", "\n", "if expression:\n", " print \"do something\"\n", "else:\n", " print \"do something_else\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "程序员笑话:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n" ] } ], "source": [ "hot = True\n", "watermelon = True\n", "cnt_steamdumpling = 12\n", "if hot & watermelon:\n", " cnt_steamdumpling = 1\n", "\n", "print cnt_steamdumpling" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "运算符有优先级:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Damn...\n" ] } ], "source": [ "yourage = 25\n", "had_a_girlfriend = False\n", "\n", "if yourage > 18 and not had_a_girlfriend:\n", " print \"Damn...\"\n", "else:\n", " print \"Ok.\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "多重if-else使用elif:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "( ̄﹏ ̄) ( ̄ˇ ̄)\n" ] } ], "source": [ "your_salary = 7000\n", "your_location = \"Beijing\"\n", "if your_salary > 100000:\n", " print \"( ̄︶ ̄)> []\"\n", "elif your_salary >= 25000:\n", " print \"<( ̄︶ ̄)/*\"\n", "else:\n", " print \"( ̄﹏ ̄) ( ̄ˇ ̄)\"" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "书写if else 语句时候也是另一个需要注意缩进的地方\n", "\n", "如果你在Ipython中书写if-else语句的话,Ipython将在“:”的下一行自动为你缩进,这点非常方便,但是不推荐以下风格的代码:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "do something\n" ] } ], "source": [ "if True: print \"do something\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.2 条件表达式(三元操作符)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "正常的if/else写法,有些臃肿" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "17\n" ] } ], "source": [ "x,y = 111,17\n", "if x < y:\n", " smaller = x\n", "else:\n", " smaller = y\n", "print smaller" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "简洁的三元表达式,Ruby风味" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10\n" ] } ], "source": [ "x , y = 25,10\n", "smaller = x if x < y else y\n", "print smaller" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "短路求值写法:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3\n", "3\n" ] } ], "source": [ "x , y = 3 , 5\n", "smaller = x < y and x or y # x = a?b:c None,'',0,False\n", "print smaller\n", "\n", "x , y = 5 , 3\n", "smaller = x < y and x or y\n", "print smaller" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "装X失败案例:x被判False" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n", "0\n" ] } ], "source": [ "x , y = None , 0\n", "\n", "print x < y\n", "\n", "smaller = x > y and x or y\n", "print smaller" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###2.3 For循环" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "先介绍range(start,end,step)函数:(生成可迭代序列,Iterable)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", "[1, 2, 3, 4]\n", "[5, 4, 3, 2]\n", "xrange(10)\n", "0 1 4 9 16 25 36 49 64 81\n" ] } ], "source": [ "print range(10)\n", "print range(1,5,1)\n", "print range(5,1,-1)\n", "print xrange(10)\n", "for i in xrange(10):\n", " print i ** 2,\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [], "source": [ "s = \"string\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "for循环可以方便的迭代字符串" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "s\n", "t\n", "r\n", "i\n", "n\n", "g\n" ] } ], "source": [ "for eachletter in s:\n", " print eachletter" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Python 默认会在每个打印出来的字母后加换行符。\n", "\n", "如果不需要这个特性,则在语句后加逗号“,”:" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "s t r i n g\n" ] } ], "source": [ "for eachletter in s:\n", " print eachletter," ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "####同步取循环索引\n", "\n", "回忆一下基础语法中介绍的len函数和字符串的切片访问方法,不推荐以下写法:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "13\n", "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]\n", "B 0\n", "e 1\n", " 2\n", "E 3\n", "n 4\n", "u 5\n", "m 6\n", "e 7\n", "r 8\n", "a 9\n", "t 10\n", "e 11\n", "d 12\n" ] } ], "source": [ "a = \"Be Enumerated\"\n", "lena = len(a)\n", "print lena\n", "print range(lena)\n", "for eachnum in range(lena):\n", " print \"{0} {1:>2}\".format(a[eachnum],eachnum)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "用enumerate方法来同步循环索引:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0 B\n", "1 e\n", "2 \n", "4 n\n", "6 m\n", "7 e\n", "8 r\n", "10 t\n", "11 e\n", "12 d\n" ] } ], "source": [ "for idx, element in enumerate(a):\n", " if idx%2==0 or element=='e':\n", " print idx, element " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2.4 while语法和奇特的else\n", "\n", "while语句的形式类似if语句。\n", "\n", "如果while后面的条件为真,冒号下的代码块就会不断循环执行,直到判断条件变为0或者False.\n", "\n", "while语句后可以写else语句,如果没被干涉,最终收尾的时候会执行代码。" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "looping 0\n", "1\n", "looping 1\n", "2\n", "looping 2\n", "3\n", "looping 3\n", "4\n", "Finite loop\n", "looping 0\n", "1\n", "looping 1\n", "2\n", "looping 2\n", "3\n", "looping 3\n", "4\n" ] } ], "source": [ "count = 0\n", "while count <= 3:\n", " print \"looping {0}\".format(count)\n", " count += 1\n", " print count\n", "else:\n", " print \"Finite loop\"\n", "\n", "count = 0\n", "while True:\n", " print \"looping {0}\".format(count)\n", " count += 1\n", " print count\n", " if count > 3:\n", " break\n", "else:\n", " print \"Broken loop\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "while-else的组合有些奇特,补充一个更奇特的组合:for-else。" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n", "1\n", "2\n", "Finished\n", "====================\n", "0\n", "1\n" ] } ], "source": [ "for i in xrange(3):\n", " print i\n", "else:\n", " print \"Finished\"\n", "\n", "print \"=\" * 20\n", "\n", "for i in xrange(3):\n", " if i > 1:\n", " break\n", " print i\n", "else:\n", " print \"Finished\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###2.5 干涉循环行为(break/continue/pass)\n", "\n", "* pass:不做任何事。\n", "* continue:告诉 Python 跳过当前循环块中的剩余语句,继续进行下一轮循环。\n", "* break:结束当前循环来跳转到下个语句。\n", "\n", "这三个语句有时和if语句一块搭配使用。" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.0\n", "0.5\n", "0.25\n" ] } ], "source": [ "def foo():\n", " pass\n", "\n", "a = [1, 0, 2, 4]\n", "for element in a:\n", " if element == 0:\n", " continue\n", " print 1. / element" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1+2j)\n", "(-2+4j)\n", "(-11-16j)\n", "(-134+352j)\n" ] } ], "source": [ "z = 1 + 1j\n", "while True:\n", " if abs(z) > 100:\n", " break\n", " z = z ** 2 + 1\n", " print z" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#3 Python基本数据结构详述" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Python中内置了四种数据结构—列表,元组,字典和集合,用三种不同的括号就可以表示他们。\n", "\n", "list(列表)是处理一组有序项目的数据结构,列表的元素需要以[](中括号)来包裹,元素的个数和值可以改变。\n", "\n", "tuple的元素以() 来包裹,元组可以看作只读的列表。\n", "\n", "列表和元组都使用切片方法来访问元素,数字索引从0开始计数。\n", "\n", "通过切片([]和[:]),列表和元组可以得到子集。列表的子集是列表,元组切片后结果还是元组(不可改变)。" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###3.1 List 列表(可变类型)\n", "\n", "列表的定义可以直接使用方括号扩住数据。\n", "\n", "熟悉的切片规则[start,end,step]:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n", "red white\n", "['green', 'black']\n", "['red', 'blue', 'green'] ['red', 'green', 'white']\n" ] } ], "source": [ "L = ['red','blue','green','black','white']\n", "print isinstance(L,list)\n", "print L[0],L[-1]\n", "print L[2:4]\n", "print L[:3],L[::2]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "作为可变类型中的一种,列表可以直接修改:" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4371170728 4371170728\n", "['red', 'blue', 'Ruby', 'sapphire', 'white', 42, False]\n" ] } ], "source": [ "M = ['red','blue','green','black','white',42,True] # 列表中可以包含不同类型的元素\n", "M[2:4] = ['Ruby','sapphire']\n", "N = M\n", "print id(M),id(N)\n", "M[-1] = False # 可以通过切片修改\n", "print N # 可变类型的特点,不直接操作N,N内容被改变" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0 1 2 3 4 5 6 7 8 9] <type 'numpy.ndarray'> int64\n" ] } ], "source": [ "import numpy as np\n", "a = np.array(range(10))\n", "print a,type(a),a.dtype\n", "import scipy as sp\n", "import statsmodels as smodel\n", "import pandas as pd" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "对于同一类型的数值数据,推荐使用运行效率更高的numpy来进行处理。\n", "\n", "对于列表,我们可以使用多种方法来进行操纵:" ] }, { "cell_type": "code", "execution_count": 42, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['red', 'blue', 'green', 'black', 'white']\n", "['red', 'blue', 'green', 'black', 'white', 'pink']\n", "['red', 'blue', 'green', 'black', 'white'] pink\n", "['blue', 'green', 'black', 'white'] red\n", "['blue', 'green', 'black', 'white', 'pink', 'purple', 'purple']\n", "['blue', 'green', 'black', 'white', 'pink', 'purple']\n", "pink\n" ] } ], "source": [ "LM = ['red','blue','green','black','white']\n", "print LM\n", "LM.append('pink')\n", "print LM # 列表尾部添加一个元素\n", "popped = LM.pop()# 删除并返回列表最后一个元素\n", "print LM,popped\n", "#试试LM.pop(0)\n", "popped2 = LM.pop(0)\n", "print LM,popped2\n", "LM.extend(['pink','purple','purple']) # 讲extend后的序列添加到列表中,extend后的内容应该是可迭代的\n", "print LM\n", "LM.remove('purple') # 删除指定值的一个元素\n", "print LM\n", "print popped" ] }, { "cell_type": "code", "execution_count": 44, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['blue', 'green', 'black', 'white', 'pink', 'purple']\n", "<built-in method reverse of list object at 0x1083ca320>\n", "['blue', 'green', 'black', 'white', 'pink', 'purple']\n", "['blue', 'green', 'black', 'white', 'pink', 'purple', 'blue', 'green', 'black', 'white', 'pink', 'purple']\n", "['blue', 'green', 'black', 'white', 'pink', 'purple', 'blue', 'green', 'black', 'white', 'pink', 'purple']\n" ] } ], "source": [ "print LM[::-1]\n", "LL = LM.reverse #此时已经调用完原地翻转列表方法\n", "LL()\n", "print LL\n", "print LM\n", "print LM*2 #也可以像字符串一样用*方法\n", "print LM+LM #也可以像字符串一样用+方法,但+方法不能直接增加元素。" ] }, { "cell_type": "code", "execution_count": 46, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['red', 'blue', 'Ruby', 'sapphire', 'white', 42, False]\n", "[False, 42, 'Ruby', 'blue', 'red', 'sapphire', 'white']\n", "['red', 'blue', 'Ruby', 'sapphire', 'white', 42, False]\n", "[False, 42, 'Ruby', 'blue', 'red', 'sapphire', 'white']\n" ] } ], "source": [ "#LL_law = M.sor\n", "#M.sort()\n", "#print M\n", "#print LL_law\n", "print M\n", "Mnew = sorted(M)\n", "print M\n", "M.sort()\n", "print M" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "判断某个元素是否在列表中,可以使用in 方法" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False\n", "Ok\n" ] } ], "source": [ "LL_law = ['red', 'blue', 'Ruby', 'sapphire', 'white', 42, False]\n", "my_precious = \"silmarils\"\n", "print my_precious in LL_law\n", "if \"Ruby\" in LL_law:\n", " print \"Ok\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "不爽字符串很久了?" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['M', 'u', 'k', 'a', 't', 's', 'u', 'k', 'u']\n", "Mukatsuku\n" ] } ], "source": [ "string = 'Mukatsuku'\n", "ls_str = list(string)\n", "print ls_str\n", "print ''.join(ls_str)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###3.2 Tuple 元组(不可变类型)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "元组的元素之间以逗号隔开,可以用小括号包裹(推荐):" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "<type 'tuple'> <type 'tuple'>\n" ] } ], "source": [ "war3 = ('Orc','Humans','Undead','Night Elves')\n", "heros = 'Blade Master','Farseer','Tauren Chieftain','Shadow Hunter'\n", "\n", "print type(war3),type(heros)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "如果需要明确地删除一个列表或者元组,使用del:" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "('Orc', 'Humans', 'Undead', 'Night Elves')\n" ] } ], "source": [ "war3copy = war3\n", "print war3copy" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Humans\n" ] }, { "ename": "TypeError", "evalue": "'tuple' object does not support item assignment", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-51-39c69d1512f2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mwar3copy\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mwar3copy\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"Trans_Humans\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" ] } ], "source": [ "print war3copy[1]\n", "war3copy[1]=\"Trans_Humans\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "和列表类似,元组同样支持+、*、和 in 方法。\n", "\n", "折衷方案使用“可变”元组:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(42, False, [False], (-203+1j))\n", "[42, False, [False], (-203+1j)]\n" ] } ], "source": [ "t = (42,False,[True],-203+1j)\n", "t[2][0] = False\n", "print t\n", "print list(t)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###3.3 Set 集合(可变类型)与Frozenset 冻结集合(不可变类型)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "用花括号来定义,用集合操作来进行运算,用set或者frozenset转化其他序列。" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n", "True\n", "True\n" ] } ], "source": [ "war3 = ('Orcs','Humans','Undead','Night Elves')\n", "Lord_of_ring = ('Ainur','Dragons','Dwarves','Elves','Ents','Hobbits','Humans','Orcs')\n", "test_set = set(war3)\n", "train = set(Lord_of_ring)\n", "ya_test_set = {'Orcs','Humans','Undead','Night Elves'}\n", "print 'Orcs' in test_set\n", "print 'Orcs' in train\n", "print 'Orcs' in ya_test_set" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "对于单个集合内的操作对set而言很方便:" ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "set(['Xmen', 'Undead', 'Humans', 'Orcs', 'Night Elves'])\n", "set(['Undead', 'No.17', 'No.16', 'No.18', 'Humans', 'Orcs', 'Night Elves', 'Xmen'])\n", "set(['Undead', 'Humans', 'Orcs', 'Night Elves'])\n" ] } ], "source": [ "test_set.add('Xmen')\n", "print test_set\n", "test_set.update(['No.16','No.17','No.18'])\n", "print test_set\n", "for item in ['Xmen','No.16','No.17','No.18']:\n", " test_set.remove(item)\n", "print test_set" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "不可变类型frozenset:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'test_set' is not defined", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-13-14a6fa50a9f5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mftest\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfrozenset\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtest_set\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0mftest\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mftest\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Xmen'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mNameError\u001b[0m: name 'test_set' is not defined" ] } ], "source": [ "ftest = frozenset(test_set)\n", "print ftest\n", "ftest.add('Xmen')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "集合之间的所有基本操作,对于set和frozenset都适用。\n", "\n", "我们来验证两个集合论公式:\n", "\n", "$A \\hat{} B = (A \\backslash B) \\cup (B \\backslash A)$\n", "\n", "$A \\hat{} B = (A \\cup B) \\backslash ( A \\cap B)$" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "False\n", "False\n", "False\n", "set(['Humans', 'Orcs'])\n", "set(['Undead', 'Hobbits', 'Dwarves', 'Humans', 'Orcs', 'Night Elves', 'Dragons', 'Ents', 'Ainur', 'Elves'])\n", "set(['Hobbits', 'Dwarves', 'Dragons', 'Ents', 'Ainur', 'Elves'])\n", "set(['Undead', 'Hobbits', 'Dwarves', 'Night Elves', 'Dragons', 'Ents', 'Ainur', 'Elves'])\n", "True\n", "True\n" ] } ], "source": [ "print test_set==train #判断是否相等\n", "print test_set<train #判断是否是子集\n", "print test_set>train #判断是否是超集\n", "print test_set&train #求交集\n", "print test_set|train #求并集\n", "print train-test_set #求差集\n", "print test_set^train #求异或\n", "\n", "print test_set^train == ((train-test_set) | (test_set-train))\n", "print test_set^train == (train | test_set) - (train & test_set)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "###3.4 Dict 字典(可变数据类型)\n", "\n", "花括号扩起来,形如{key1:value1,key2:value2,key3:value3}。\n", "\n", "key是非重复的,value和key一一对应,不需要非重复。" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Standard ML', 'C', 'Clojure', 'Scala']\n", "['Robin Milner', 'Dennis Ritchie', 'Richy Hickey', 'Martin Odersky']\n", "[('Standard ML', 'Robin Milner'), ('C', 'Dennis Ritchie'), ('Clojure', 'Richy Hickey'), ('Scala', 'Martin Odersky')]\n", "<dictionary-keyiterator object at 0x104891c58>\n", "<dictionary-valueiterator object at 0x104891c58>\n", "<dictionary-itemiterator object at 0x104891c58>\n" ] } ], "source": [ "language={\"Scala\":\"Martin Odersky\",\"Clojure\":\"Richy Hickey\",\\\n", " \"C\":\"Dennis Ritchie\",\"Standard ML\":\"Robin Milner\"}\n", "print language.keys() #取得键\n", "print language.values() #取得值\n", "print language.items() #取得键-值对\n", "print language.iterkeys() #取得上述内容的iterable\n", "print language.itervalues()\n", "print language.iteritems()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "取得某个键对应的值,或者增加一个键值对:" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Robin Milner\n", "Guido van Rossum\n" ] } ], "source": [ "print language['Standard ML'] \n", "language[\"Python\"]=\"Guido van Rossum\" \n", "print language['Python'] " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "试验一下迭代器:" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "key=Python,value=Guido van Rossum\n", "key=Standard ML,value=Robin Milner\n", "key=C,value=Dennis Ritchie\n", "key=Clojure,value=Richy Hickey\n", "key=Scala,value=Martin Odersky\n" ] } ], "source": [ "for key in language:\n", " print 'key={0},value={1}'.format(key,language[key])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "如果要访问某个键,而字典中又不存在这个键和对应的值,将会报错:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "ename": "KeyError", "evalue": "'Ruby'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-15-2c7ef4b9ad9c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mlanguage\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"Ruby\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mKeyError\u001b[0m: 'Ruby'" ] } ], "source": [ "print language[\"Ruby\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "所以使用键之前可以先判断其是否在字典中然后再取:" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "True\n", "False\n" ] } ], "source": [ "print language.has_key('Scala')\n", "print 'Ruby' in language" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "或者使用一个非常有用的方法:dict.get(key,default=None)" ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "They hardly understand IT\n", "Guido van Rossum\n" ] } ], "source": [ "print language.get(\"Haskell\",\"They hardly understand IT\")\n", "print language.get(\"Python\",None)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "如果需要删除字典中的某些键 使用del somedict[some_key];\n", "\n", "需要直接删除字典本身使用 del somedict即可。\n", "\n", "向字典中添加键值对,或者根据键更新值非常方便:" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Matz is a short form, renew it.\n", "Yukihiro Matsumoto is the full name of Ruby's Creator.\n" ] } ], "source": [ "language[\"Ruby\"] = \"Matz\"\n", "print language[\"Ruby\"] + \" is a short form, renew it.\"\n", "language[\"Ruby\"] = \"Yukihiro Matsumoto\"\n", "print language[\"Ruby\"] + \" is the full name of Ruby's Creator.\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" } }, "nbformat": 4, "nbformat_minor": 0 }
cc0-1.0
lalonica/PhD
vehicles/DataExploration.ipynb
1
166116
{ "cells": [ { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x48170fd0>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "import csv\n", "import matplotlib as plt\n", "\n", "\n", "c_names = ['vID', 'frID', 'tFr','Timestamp', 'localX', 'localY', 'globalX','globalY', 'vLenght', 'vWidth', 'vType', 'veloc','accel', 'line', 'pred', 'foll', 'spac', 'headway', 'dateTime']\n", "\n", "data = pd.read_table('D:\\\\zzzLola\\\\PhD\\\\DataSet\\\\US101\\\\test\\\\portion1Set2DT.txt', sep='\\t', header=None, names=c_names)\n", "\n", "# Stast description of the whole dataset.\n", "desc = data.describe()\n", "\n", "##++++++++++++Example\n", "# data.groupby(['col5', 'col2']).size().groupby(level=1).max()\n", "\n", "#Mean of values by vehicle Id and DataTime\n", "mean = data.groupby(['vID', 'dateTime']).mean()\n", "\n", "#Number of vehicles\n", "num_v = data.groupby(['vID']).size()\n", "\n", "#Number of registers by timestamp\n", "ts_match = data.groupby(['Timestamp']).size()\n", "ts_match_max = data.groupby(['Timestamp']).size().max()\n", "ts_match_min = data.groupby(['Timestamp']).size().min()\n", "ts_match_mean = data.groupby(['Timestamp']).size().mean()\n", "\n", "#number of register by dataTime\n", "dt_match = data.groupby(['dateTime']).size()\n", "dt_match_max = data.groupby(['dateTime']).size().max()\n", "dt_match_min = data.groupby(['dateTime']).size().min()\n", "dt_match_mean = data.groupby(['dateTime']).size().mean()\n", "\n", "#print (desc)\n", "#print (mean [:10])\n", "\n", "data.plot(kind='barh', stacked=True)\n", "\n", "#print(num_v)\n", "\n", "#print (ts_match_max, ts_match_min, ts_match_mean)\n", "#print (dt_match_max, dt_match_min, dt_match_mean)\n" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'ts' is not defined", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-6-03d51c611a78>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrandn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m4\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mts\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumns\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlist\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'ABCD'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mdf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcumsum\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m \u001b[0mdf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mNameError\u001b[0m: name 'ts' is not defined" ] } ], "source": [ "df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))\n", "df = df.cumsum()\n", "plt.figure(); df.plot();" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'ts' is not defined", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-7-c7c03188f057>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 6\u001b[1;33m \u001b[0mdf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mDataFrame\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrandn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m1000\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m4\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mindex\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mts\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcolumns\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mlist\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'ABCD'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 7\u001b[0m \u001b[0mdf\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcumsum\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 8\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m \u001b[0mdf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m;\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mNameError\u001b[0m: name 'ts' is not defined" ] } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "import csv\n", "import matplotlib as plt\n", "\n", "df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))\n", "df = df.cumsum()\n", "plt.figure(); df.plot();" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import csv\n", "import matplotlib as plt\n", "\n", "ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))\n", "\n", "ts = ts.cumsum()\n", "\n", "ts.plot()\n", "\n", "df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))\n", "df = df.cumsum()" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x48170fd0>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "import numpy as np\n", "import csv\n", "import matplotlib as plt\n", "\n", "ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))\n", "\n", "ts = ts.cumsum()\n", "\n", "ts.plot()" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x2319bf28>" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEMCAYAAADQ553CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYG9WV9t/b7d7V3ldsg8HGYFbjsGNCQ1jMQMAQIBCY\nQBIIWUiACWEJyWAzgUDYwkBIApMQQyCMmZCwhcUQ2mwfGGyMjfd9wXt3293qVi923++Po0NdlUpS\nSaqSStL5PY+eKlWVVFeqqrdOnXvuOUprDUEQBKF4KMt3AwRBEARvEWEXBEEoMkTYBUEQigwRdkEQ\nhCJDhF0QBKHIEGEXBEEoMrIWdqXUKKXUv5RSi5RSC5VSP44uH6CUel0ptUwp9ZpSql/2zRUEQRBS\nobKNY1dKDQcwXGs9XykVAjAXwLkAvgWgSWv9a6XUTQAGaK1vzrrFgiAIQlKytti11lu01vOj82EA\nSwCMAon7jOhmMwBMzXZfgiAIQmqytthjvkypMQAaARwCYIPWeoCxrllrPdCznQmCIAiOeNZ5GnXD\n/B+Aa6OWu/2OIbkLBEEQckAfL75EKdUHJOpPaq2fjy7eqpQaprXeGvXDb0vwWRF8QRCEDNBaK6fl\nXlnsfwKwWGv9oLHsBQBXROcvB/C8/UNG41y9brvtNk+2SXfbfG1XqvsO+naF0MZC+C1uty2m3+xl\nG5ORtcWulDoBwKUAFiqlPgG5XH4G4G4AM5VS3wawDsBF2e6roaHBk23S3TZf2xXbvvO130L4b4rp\nt6SDl9d0MR2/dLe142nnaUYNUErnuw1Cbpg2bRqmTZuW72YIPiPHOTcopaB9dsUIQkr8sPiE4CHH\nOf+IxS4IglCAiMUuCIJQRGzcmHy9CLsgCEKB8dxzydeLsAuCIBQYS5YkXy/CLgiCUGCsXZt8vQi7\nIAhCgdHRkXy9CLsgCEKB0dmZfL0IuyAIQoEhwi4UDDNmAK2t+W6FIAQfEXahYLjiitRhXIIgAJFI\n8vUi7EKgqK7OdwsEIfiIxS4UFDU1+W6BYPL1rwP33ZfvVgh2RNiFgmDPHppWVOS3HUIsM2cCjz6a\n71YIdkTYhYJg9Wqa7t6d33YI8aSKmRZyy549qa8TEXYhEFx1FU27uvLbjlQcfzxw4435bkVuSdVR\nJ+SWSCS1y1KEXcg5P/850NQUu+y442ja3Z379qTD//t/wKuv5rsVuSXVY7+QW8JhoL4++TYi7ELO\nueMO4KWXYpf19NA06MIOAJ9/nu8W5JbKyny3QDBpaxNhFwKGipYFaGmJXc5WYZCF/e23adrcbPUJ\nFDPsW5cO7WDR2irCLgSU5ubY952dQFUVcMMNwbWI77rLmu/tzV87csU779C0b9/8tkOIRSx2IbDs\n3Bn7vquLBCQcBp58Mj9tSsXgwdZ8kJ8svKKjA5gwwXrKEvKP1iLsQoCxh9B1dgL9+tH8li25b48b\nONYeKI0OxUgE6N8/+JFKpUJHB1BWBsyeLcIuBJT29tj3nZ3WI//27blvjxu6u63onVIQ9o4OEfYg\nwU+5770H1NUl39YTYVdK/VEptVUptcBYdptSaqNSal70NcWLfQmFi+mXDodj15nCHlTR7OoCrrsO\nGDiwNGK7IxFgwAAR9qDAxtCqVbmLY38cwBkOy+/XWk+Kvkos+lewYwrErl2x6zo7LR92UEWzu5tu\nPsccE9ybj5eIKyZYsDG0fXvqZHmeCLvW+l0ALQ6rpNtF+AJTDJ3CHYcOpXm7myYodHVRTHdNjQj7\no4+WRgdykGhvB2praT4nwp6Ea5RS85VS/6OU6ufzvoSAY1ridlGIRMjFAVC8eBCFs7ubQjKbmoCH\nH853a/wnErE66cyOYwC4+mrgk09y36ZSpr0dOPJIms+nsD8CYD+t9UQAWwDc7+O+hALAFGseacqE\nw7HhhPPn56ZN6cAW++zZQGNjvlvjPx0d9HRSVeVstZdCLH+QaG+nPg8gdQhqH78aobU2YxseA/Bi\nom2nTZv2xXxDQwMaGhr8apaQR8wOU3t2unAYGDGC5k88MZh+XbbYy8oSi1p3d/EMwedkUyzs7AZg\nRNhzy8cfN2LVqkYAwOuvJ9/WS2FXMHzqSqnhWmuOSD4fwGeJPmgKu1C8vPCCNe8k7GefTUm2fvGL\nYAp7VxeJ3Lx5wGWXxa/Xmtb/5S/ApZfmvn1eE4mQmFdWxh4PrWlqd89cey1wwAHAD36QuzaWEqNG\nNeCEExrw2Wdk/MyePT3htp4Iu1LqaQANAAYppdYDuA3AyUqpiQB6AawFcLUX+xIKl127gEsuAVau\nBNassZa3tJDQ19QAxx6b+NE/37A13tsb70oCgM2bafpZQhOmsLBb7Az/dns/yH//N03b2oCbbspN\nG0uJpiZg0CCadzr/TDwRdq31NxwWP+7FdwvFQ1cXhQr+9rfAfvtZy7nTlP2GQRV2tth7e50jQrgz\ncceO3LbLLxL52Hk+UVjqzTeLsPtBUxOw9940n0rYZeSpkDNYGPv0sU5M++M8EP/oHwTCYbJEQyFq\nn9OFNWcOsP/+wR05my7sikkk7FOnJv7shg3+tq0UaW4mi728HJg0Kfm2IuxCzmBhr6gg18ucOSTy\nAHDOOdZ2VVX+xEivXp15jPwHHwBHHEEDlCorndv31FPA975XPBZ7IleMm5vu9df7165SZccOEvbd\nu1P34YiwCznDbrGvWkXLa2tJFJmqKmD5cmDJEm/3P3Ys8NOfOq/72c+A115L/Nlw2HIZmcLe1ka+\n5kgE2LgROOOM4rLY3Qr7nj3kSps7l1xt7AsWvGPlylgXZjJE2IWcwcJeXk5+as7Jzo/8TFUV5T4/\n6CDv22Avycf86lfAAw84r/v0U+C886ynC1PY99uPXBJr1pD/c9iw4rDYZ88GFi60hN18QnESdr4J\nTJpE/8G2bblra7FxzDHAu+/GLuvqAtavB8aNc/cdIuxCzmBh507Sa66hqdYUG85UVVnzXo9ATRZ7\nnWjQB0fwtLXRlIV97lwS8SVLyEofPpwGkOzalbqKfNCZPZumTuGOXV3AyJHWYBkgtsDy0KHF89SS\nD+bMAZ5+OnbZrl00CtjtGAkRdiFn8MjNVJjCPmGCt23gGGwAWLcOeNEYNpdI2HlgFXeY9ulDws3D\nu5Wyih+Ul5PgJXoyKBS4HF6iztMBA2KjYkxhHzJELPZsWb8+9n1nZ+qMjiYi7ELOYIudufJK5+3M\nbdau9bYNr7xizX/rW7GdtqmEnd0RTtuZVW2GDCl8d8zmzcDdd1tpe6dOBe67j9Z1dVFRlK4u6wmo\nsZH6GACx2L3AntY6EkmdH8ZEhF0AQB0z9lS6XsND8pn996epWUsUiN2moiLWys6Wjg6ytn/yE+Ct\nt2gZX0SJhJ1dMMlih8NhCoUESNgLXdhaWshXDlhFvLnq1S9/SU9e1dWWq+zyy63P9u9P/4dkf8wc\n+3/X2SnCLmTA/vv7H6Jmt9grKsgdcuONsdtxibynnybXhr2MXiaYN4f2duD+aEq6/fazLO2yBFeD\n3RXjxPr11vcMHlz4Fnt7u3WjYvEuL6fprFlkCNTUWMfm0ENpVDFA/+PgwYV/c8snTsIurhghI7y0\njJ2wC3tlJUWS2C1lDiusrSVXgD13eyY0N1MM+ogRsY+5pgAnc8VMmUI5YJxQiqxYzkhZDBZ7OGyV\nX7viChJ5089eU0PHh4W9owO47TZrfd++1pOOkD52I0IsdiFtWNDNKAc/MN0VgNVBZ4fbUVPjnbCv\nXQvsuy/5ji+6yFre2mrN90mQYKOtjXzMZvjlf/5n/HYcu10M1qppsT/+OHDrrSQubElWVNDx4Q7U\nnTtjY9crKlIPexfi4T4LezSYCLuQNitW0PSBB/z1i7a2Wm4WIHGEDAu7lxb7qlXAmDE0//77ND3i\nCArbYziu3k44HF8V3rTu+cbIIWpDhpD1unBh1s3OG+3tsQWTOTKGn3Z6ey2LXWs6tuZ/JMKeGSzo\n9qcdccUIaWNWwrH3xntFb697i53zsk+YQG4ZL4T9nXeA44+33p98MqXfPeAAej92LLB4sfNn7e0G\nYv3x4TAJH9+ouGDIn/+cfbvzhemKAeKFfc8eEvZIhJaXlcW62TgkVEiPSISuC3sgw/btsf9vKkTY\nhZiTyC9h/9e/SNy5A+6SS0hcndhrLxKFQYOyt9hXrQJefpkGGZkx8SzoLMajRpH1uXNn/Hdw8i8T\nU9ibmmLXswXPv5VJ9EQQJDZuJOvbdMUAVgQM59rp7SUL8tNPaWq3zsViz4xIhAyDzs7Y/++qq4CZ\nM91/jwh7idLcbFnqu3ZZrgW/hP2002LfP/00CXgiWBSzFfbrrqMCHnZ3yj77xO6nvBwYPdqKxTZJ\n5YoBYt1Khx1GUzPh2CuvFEb+lNGjKXQxlSvm1FPJYl+0iN7bR/SKsGcGp9dw6nz+j/9w/z0i7CXK\nzTdTXo+uLgo3vOUWClnzS9jTeYw0CYWA55/PfL/s7mHXAvcnsL+dhb2sjKx2u7Dv2UMdr3aL/Tvf\nIV86Y/5vhx1GHY7mskIqvrFtW7ywV1fTudLSApxyCvC735GlzsVF7IiwZwaP4N25k6okMfX1VFnM\nLSLsJQoL2oIFNG1poUdAv4T9/POBG25I/3OTJll5SzKBI13YtdC/P723W+ws7PY84k89RSGRdot9\n+HDgwQet93brqq4u1mLfsgWBpacHeOyx2IiMysrYKKGqKlq+fTuNLAXIsty0iebtTzDiY88MMzUD\n9/l0dFBQgxl4kAoR9hKkqYnS4gJW5MaePSR8fgj7E08Azz0X23nplvPOoxPdFMnzzwc++sh5+/vu\nA046yXpvWuyhkGWF2oX95pudXTFcCMQpFPTii0nQn30WeOml2HV1dbH/pd+jerPhjTeA737XcnnZ\nO04ByxWzfbv1pGIKuz1UVCz2zDCFnWlpofMv0TgLJ0TYS4iPP6aT5OabqTMTIKvzuOOAX//aP2G/\n/HISBbs7ww1KkS8+FLIs91WrrBuTnSeftIbAA/HCXl1NYY7Dh9NyFvaTT3Z2xTQ304hcu9Bx20Ih\n4IILgLPOil0XClk3oyefBP74R5p3G4t84410U8sF3GHMU3vHKWB1nprCXldnJasSYfcGFvZIhM5N\nrWPzELlFhL2EOOoo6oBhi2DKFHLFHHEEPeb5JexMJsIOWLHmPLKzpcWyFO3YBwax4LAVqhSFOXJU\nixm54iTsO3ZY4YvpEApRTu2336YEWYzbkn8zZgD/+Ef6+80EPuamsDtZ7PPmAXfeaYWjslsLiI8A\nEmHPDBb26mr6Dzs6SNj79k3ve0TYSwwurwUA3/42TbnIhd0v7DXZCju3befOeGFva6OOUV7OoYUc\nrbJnj/OAqFTCvmmTlQwrHfhmcM456T1CM7ms+crCzq4YJ4u9qsoaZTp2LE1NK9JusYuPPTNMV0y/\nfhR6Kha7kJJwmCyBww+3hsizsPthsZv5ZzKxfAFL2DdtIrFoa4sX9meeic0wyDUhef+J8uBMmWLF\nt48aFZ8H+6OPgC99Kf02s7uiqoouzltvtdY5FfC2k0thN2+YAFnaTq4YhvsnzP/U7hcWiz0znITd\nPqrXDSLsJUY4TI93X/ua1SHIj91+CLuZmZH92ukycSKVBJs/nzILAvHC3tpKFY0YdtukqsD0jW9Y\n0Qf9+5MY/fOf1vo1a4Dx49NvM1+cXV3UNjN0zcxPkwivK0clw+6KAeJvhByuevrpVt1NjqL57LP4\nUm4i7JlhCnvfvnSufPBB+k8/ngi7UuqPSqmtSqkFxrIBSqnXlVLLlFKvKaXSCNYRvIYvwrY2Etu6\nOstH6qfFboYBZuKSAMj6vvNO4L33gH/7N3KfbN4cKxzt7bH53tkV09kJ/OEPiTtbTZSiTIbr1tH7\n3btpH+nk6LAzeDBFxJg+UnuEjNbO7UuUlMxr2ttJiM2qR3ZRZovdHFR2yikU6XTwwfFFlkXYM8MU\n9t5e4OijqeAJh5i6xSuL/XEAZ9iW3QzgDa31AQD+BeAWj/YlZMCiReRb37yZhL221jqBWGj8Evb9\n9kvc2ekW0zWwzz4UGcM+8507rZSxfAFwMrPOTlrGRT1SYRaP4FQCmd6Q3n2X9m1/lLYL+/z5lOLA\nbiWbnZN+Eg6TG2r1auv/S2Sxmze5ww+nm60T4mPPDFPYubziqFHA9OnpfY8nwq61fheAfeD3uQBm\nROdnAJjqxb6EzFiwgIaBt7XRq7aWBKt/f8sf7Iew83B8jqTIFDNKY9So2HVmFkXTsunuTj/dqZmK\nNpNOK5OxY6nQdXNzbPvtHdQsgGwx82AmtxXps6W9nf7TVausjnU3wp4MsdgzwxR2DtXdujX968dP\nH/tQrfVWANBabwGQ5sOE4CWRCIlLdTVZZuxfb2mhwSmAfxZ7NuLImBa7vTrR0qU0ramJzYne1JRf\nYR8+nCJqtmyJFUS7sLO7as0amrKl1t2dm/Jy4TDd3BsbneP1ARH2XOEk7H37uisCb5IjLx4AwOf6\nPEIyurpI4CIR6oz5ylfitwmysJuCY6bX7e21hHDqVIqMaWoid1NzMwl7Onlqamqszs2//z37tnO7\nzZuLXdh5fyzwbW30uYULqe1+V7YKh6kICZA4iojDQhOlWrbD55qQHqaw83/OfWDp4Kewb1VKDdNa\nb1VKDQewLdGG06ZN+2K+oaEBDQ0NPjarNDHL0h13nPPJEmRhNy3FN9+0bkxnnWVlUzziCOCMM+g1\neXLmFntnJ3Vm/uIXwIEHetNuN8JuCvyQIZR8DCCrPV2LLR3a22lMwyOPWGKS6Gbitr+hf3/rCURw\nj1NKAT72jY2NaDRHuyXBS2FX0RfzAoArANwN4HIACXP0mcIu+INpuSayAPwS9kwHJpnsvTe5Choa\nqNOOefVVyvFy662UopcZONCy2NMR9upqKtT88MP0PlGBa7fwf24+NSRyxZgCv/felrBv2ULv/cLM\nDVNWBtxzj3WztHPkke6+s1+/YOfHCSqmsPPNlc8du9E7PUmPqlfhjk8DeB/AeKXUeqXUtwDcBeA0\npdQyAF+JvhfyhGmxJ3qc9rPz1At4BKg9y11LC6UcNn8X57POxGJ/7TXgoYfofSKfs1v4xqAUhQUC\n8f8xj/g0XTFjxlCn2aRJ8YOmvMYcaVpWRlk4Tz89frtFi4Azz3T3nf37OxctEZKTzGJPB08sdq31\nNxKsOtWL7xfc88EHwLJlsaMwARJ2Dp/LpbB75YoBrBGb9vjurVvjsy/y4I5MhB0ALrsM+N73khcD\ncYPpuvjwQ3Lv2C32zz+nY2O6YurrKcLnuOPomE6enF07kmFa7PZ4dBOzmHcqRNgzgwttmGQi7DLy\ntMj44Q9pkI0dNxY7+5fdDHl3S3t7Zp0/Thx4oFUwevVqa/mmTc7CnonFzqNjp08HTjjB6lT0gro6\nitZZs4ZSGTAbNpBossXO4wwA2s7PZGBnnkkuk/p6ijZ69FFvvtfuilm1yv9O4GLAyRUjwi4kzDFi\n+tgTCXtZGZ1UZhqAbNm9230kRSrKy6lWKhAruImEPROL/ZhjyEq2x8pnir2zsbqa6oS+9hrw+9/T\nsk2b6Ka1dSulUTbbfPrptL1f/upXX6Vpnz4UKprNKFsTM2wUoJh8M1WD4IyTKyad85cRYS8yEoWY\nscV+wgnJ83xz5Xmv8FLYExGJxAt7fT2Jofmk4obycuD9972LQrH/lzU1Vmz6979P07Y2SnT2z39S\nB/CHH1ptrqykjkzOfVMocGEOEzc5ckqZ996j/hYWdq44lk7lJCaXceyChyxcSB2GdhIlj+I4dnuy\nJjt+WOy5yHliH37frx/lZq+oyD6yJRt+8hNKuMZUV8fmjO/tJXfViBHW8m3bYq20IUOyK+idjCOP\njHULeYWTsIsrJjncj8LC/q1vURhqJn1UIuwBp6kpvrr9smVkxTldKImE3e1Andpa6vRatcrKu50N\nuRJ2e6GHIUMot3omj7Fecu65se9Z2C+4gKpYNTdT5yV30tbV0ZOGeaz87IisrXUerJYtIuyZY3fF\npFtkAxBXTKD59FPnHObJcownsrbduiRqa4Grr/YuT4mfws7+66uuil83dChlacy3sNupqSErPRSi\nm8/WrZbFDlCK4tbW2Hb7KezpuqrcUlVFv2v3biuzKE+F5JjCPmJEZk9UIuwBJtHjN+fgiERIBIYM\noQvouuvIMrdbr4DliklFbS0wZ07mbbbjp7DzBXDKKfHrhg6lTsmgCTu3JxQiwd6yhfzofMyGDSOL\nPlcWe7qdy25hi/30062nSEkx4A5T2Ddtcj92wESEPcAkGr7NVnlrK8VA79hB0wcfpOX2jkQgPYs9\nUzhni0lPj3+dp9zWiy+OX8dPOkEV9vp6EvctW2g6aRIVCtmwgZ7EzHYPGOCfj93tDT9d+Ji/9ZZ1\nvvL0s8+ofqrgHFrsZJiliwh7gEnkk2TLZ7/9aBCNuQxw7mxx62N//fX02mgyeHBsgi7AX4s92U3I\naSh/EDAt9lCI8uNzke1Jk6yIGTMqx2+L3Y//yDRKWNDb2+mcPvTQzMoNFhvz59O1sWqV998twh5g\nEvnSWcQjEeDtt2nevPCdChyk60u1i+b++7uLlrGHtOVL2DkSJp8RMU7wY3YoRDfg9esprw3Dgmh2\nPBaiK8aEz4nHH6f4fYHgcQx+5N0P2GkvmLAv3Z6T28lXyW6QSy91HqTk9pGbE0/Z3TkrV1rl5px4\n+WWa2m9Cfgr79OnAz3+efJtMqx/5hVlfNhSiDl4z6omPuXmDLMTOU5PZsykL56pVlJlTIF54wZpX\nigyVJUu8+W4R9gDDAm0Xaidh5xjoiy5yDnl0ewHvsw8N1zfFmMU6mfV79tk0tUc++CnsF10E/Nd/\nJd8maMLO1jn72BMJu5nBsn9/f3zsWtO55Lewr19PMdqHHALce6+/+yok7GHMHR10/XmBCHuAYYG2\nC7WTS2TbNkr8deaZli/T/l1uL2B7DDI/MbgJV7O7gXIVx56IoAk7jyKsriZxTyTsRx1lLfOr83TV\nKvrubDNYutlPKBSfn/3ZZ/3db9BxqjDlVaCBCHuAcWOxs2jedBMlsKqoINGwZ2lM55G7qoqiNe68\nk8ScbyxuSp3Z25qLlALJCJqwc8RDTw+J3c6dsUPGnf5jv4T9k08oN45f/9Hz0QoMf/sb/VZ7mgbO\nU1Oq8LEeMwZ47DGa9yIiBhBhDzRuhH3iRGueE1c5FTlIJ6yNbwC33kqCwsLupuq8/emipye/FrtX\nF4rXVFRYOdDNG+611wI//nHstqEQ/Y9ex4Hv2BFb/NtrzjnHmg+F4s+fUve3s7B3dFhPTV7dZEXY\nA0wiV4x5gZsZ80aPpqlTZ1s6rhjTsgqH07PY7W3NtyvGq2yFXrJ4MXUmcliqeVxuuMEaj8AoZRXn\n9pKmJueRzV7CxkZdXXzMdqJMpKUCX087dniX2poRYQ8wfOLfcUesBW4K+5Ah1jxfpKawr1tHKW61\ndi+wpuvEFHY3FnskQoLBUR0i7PFMmEAd0Wyxu8kkOXhwbPIwL9ixI74Dz2u4+lNZWaywX321CHtP\nDz1R9vaKsJcULKjPPBObtjXRIzn7ajkXOQDMmkUhjOkkYOLHwZEjSdj5AnRrsU+aBBx/PL0XYU+M\nkysmERMm0HngJTt2+G+x87nU2UkJ0Th6auJEEfaeHhptvHhx7FgGL5DsjgGmqwuYNo1yt3B1nc5O\nqx6nHc4CZ6be5c+ly7JlNKq1vd26OBNZ7Ga0TCRC+2RLLd+dp0EWdnbFuLHYp0yh4fle8PrrVNhj\nwwbvCook4447qAg5Z7pUin6zCDsNTqqrI8PLqxh2QCz2QMORLKGQJdBOw48vvJCmLOxmsYxMhX38\neKsGaiofuzmAqrk5VqjybbEHeeh6Oq6Y+vrMjyWzaRMdyzPOAK68kvK1eBU3nYyf/Sy+WAS7ILws\nw1homHmUlKKbrVeIsAcY7vCsr7fCF3mQ0N13A0uXWvOAZQGaZcmyEYPeXhpQsmULvU9ksXd10Ql6\n8cXAb39LqWgBYObM/EbF9PQA11+fn327IR1XjBeFxkeOtFIcz5pF35cLi90JpZxztpcKWvv7NCvC\nHmA4RNG01liw6+qAAw6gebb4OLTPK2E/6yzgnXeA73yH3iey2Lu6yCK74ILYtAO33ELhkvbqRrmi\nT5/gxbGbpOOK8cJiB6iCFov5d76TvyRp5eW070SFYYqd3bvpP/Dr/BRhDzDsijEvavadm/HZI0fG\njurzStg5cyRbisks9qqq+JjoqirqxPW6Y6hY4NhlN8LuhcUOUEf6Mcdk/z3ZMHs2pYOorgbuucd6\n4iwl/ExnDeRA2JVSa5VSnyqlPlFKeVjCobjp6qJseNXVsRd1Rwew996WFc2MGWPNeyXsSlnZI4Hk\nFntlZWwbAGrz0KHBy7AYFNhF5cbPbN7c3303u+PKkTD5Knzx5S+TqFVVAXfdRSOcS42CF3YAvQAa\ntNZHaK2PzsH+ioKPPqKp3WKPRChBVLKTwuw83bYtuxOIa3ECqS32kSOtZV/+MsXPDxuW+b5LBXv2\nTicGDqTxAT09wIknAk88kfn+uJPdy6LlmcBuIC9q6xYaxSDsKkf7KSrMx3S7KybVYAbTYt+yxaqn\nmQnmZ5NZ7FVVZJk//jjt+8ILKZxOhD01boS9Xz8KjXv/fXpv3kTdYB679nbgF7+IT12Qa1jY8xk1\nlS+KQdg1gFlKqY+UUg5lh3PL7t3UKRh0ODa8uzszYe/ooJ73bIXd3Fcqix0ArriC3EeVlSLsbjFH\nDydjzBhg0SKa1zq9UMENG6z55mbg9tuBk092/3k/8DurZJApBmE/QWs9CcC/AfihUmpyDvaZkGXL\nKL9KOiMx8wFHC7S3x/rYZ89OLewcHtneTla0U6m8dGBxvuyyxG21JxirqqIbgQh7ctraqOCzGwYN\notq2AHVs7723+/2sWQOcdBLwyivk1w4Cfo96DTI7d1ouMT/w/SFIa705Ot2ulPo7gKMBvGtuM23a\ntC/mGxoa0NDQ4Ft7uCanX0V8vYLje/fay7LYN20CnnwSaGxM/lnO7hgO000hHQFwYvPm5B2gkUj8\nzYYjPUSyO7UkAAAgAElEQVTYk8Ox7G4YPBjYuJHmt21Lbz9bt1Ja5ylT0vucn7h9UilG1qyhmsXp\n0NjYiMZUF38UX4VdKVULoExrHVZK1QE4HcB0+3amsPsNJ9MqBGE/7TTg1FNpqHFbGwnovvuS5ZUM\nzhXT3k6Pu7/9LfCrX2XeFqUop/bPfua8XoQ9NwwaROMKMsHpGOUbttg/+ohuWPkaLJUPVq5MX9jt\nRu/06XFS+gV+u2KGAXhXKfUJgA8AvKi1ft3nfSaFOxWDPjCiq8vKc8KuFbfFMkxhD4XoBpZt3u1x\n4xLHWzv5/bmdw4dnt1/B4uSTrc7TdIlEgpc3x8ws+XpeVSH3fPihv+kufLXYtdZrAExMuaHHtLeT\nEDpZixziFfShzKaIh0LkWz344NhamIno25eeTNhi94LqautmuGMHiQR/t5NoiMXuPRMmZP7ZIFrs\nZt9Ptv1AQaa1Nd6fvnw5Xc9+UZRhiJdfnthSLBSL3SyMYfph3Vjs/fpR54xfwj5kCCWRam2l71+8\nOF40uMc/W/++YOF07Netc/fZjo7gWezmeR3k1A/Z0q9f7EA/gI5HOv0r6VKUwp7sZGdhLwSLnfsA\nzDhfNyFSfftSyoH1670Xdu674VzSHR3AU0/FiwbnjPGz57/UcIr3fu89d58NoivGFLb29vy1IxfY\nR/n6fTyKUtiThTKyKyboFnsif7qbYhecAnTuXO+FncMux461/ssdO6z868yRR1K2R8E/pk51n1og\niK4Yfpr7/ve9yYMTRHjwmd06dzMeJRtKTtgLyWJ3Ena37R4xAli92nth54FT5uhWgJJLmeyzD/DX\nv3qzb8GZcePc10ENoivmqKMo+2coVDwW++rVsR4DDku1D+4TYc+AYrDY161zHjbuVtjr66nD1Ss/\nXkUFnZzmjdEU9mxylwjp078/RTq5FfYgumIA+h11dcVjsY8bRzcshrOummkjenv9D7cuOmHfswdY\nsSJ2WSRC7gKgcKJiPvsMOPRQ6/1NN9HU7Q2ptxdYuNA7i10pOhG5lqpd2EsxkVM+GTSIBq+ZqQKS\nsXNnfBWjoFBbWzwWu9ax1+inn9LUdKFu307b+Zn1tOiEnS0YM+b69tspkuOxx2j9gAHBF/aNG2PL\nlvEwcLOQRTL495l527PFSdj339+77xfcM2gQFQ2fOzf1tv/6F/DyyzS4LYgUWyUlM8CBb7ymxc6F\n3v0k8MI+dSqN0nJLOEwnfXe35ZIZMICm3/0u3S1HjnTXCZlPnCrIV1RYwpoKvlC8/J3V1VZnHQv7\neecFP+9OMTJoEN34166Nz81v529/o2m6Ix1zRVWVuwyXhYIZvdTSQlPz961e7X8bAi/szz8PvPmm\n++3DYQqxq6iw/kzzj96+nR5hgyzsPT0koPaSchdfDBztMqN9qgLUmcAWeygEvPRSMDvkSoHaWhL2\nmhpyuf3pT4m37eykiKXrrgtuNsVis9jtwt6nT6yw77svcM01/rYh8MIOpDd4gRNfmSeL6fPatYtG\nQwZR2Bsb6bc2N1NhBbsPbsYMGorshoMOoqlfwr51K+X4CHK+nWLkL38B3ngD+MEPYq+Le+913v6m\nm+gmfNppuWlfJhSbsJuumOZmGixpXofl5f7nwi8IYU+HVMJeX0/rgijsM2bQdO1aYPTo+PXp3ODu\nu4+mZgWkbKmuth4tAfIfBi02uti59FLguOPoZfLTnzpvz31OQU6RW2zCzhZ7by9FxQwbFmuxm6PK\nfWuDv1+fe1IJe79+dEcNorBzStYPPgAOOyy77yovp4vay0iImhrguees94sWBVswBOvGG+TjVAzC\nrhTw8cc0z8K+aBFF+5x2Wqyw5yKzbEFY7G4s1T17SKxZ2AFgYjT9WGcn8OCDNB80YV+8mE6Apiaq\ndgSQP9SLHCsDB3obFeN0HLLNGin4iwh77njtNZqyKyYcJn96XV3uLfZACzuX/nITdfGjH9FoSx6I\n0dFBYtnRETs4I2jCfvDBNPx+8GCKXWf8TBCUKTyI5OyzrUgMEfZgw2G/Qc6eWCzCzk/c3EnNSfgq\nK2P1xm367WwItLCzC8XNoJyVK60q7jxKEqA/2yzdVl1Nj0qJ6nfmEr5hOUWWBFHYOdQyEqFcNIAI\ne9CJROhpNcjZE4tF2LmIj5Ows8WuNWlUSQs7j2x8/PHU27LA7N4dG160YUOssPfpExyL/YMPaOoU\nwxtEYd++nabhcGE84pcCiYqfMF6mbvaLQhd2NhLfjRb8VIoi3Fpb6ToJhWjkL0C/s6LC/xttYIR9\nxQrnVAAAMH9+6s9zNRa22Fm4t28PrrDzHd5pOHUQhZ1dMffcY/1/Tqlkhdxh9sWcfjowaxbNv/8+\ncNttZBSJsPsL6xRnOO3upmpXM2fSf3/AAcCyZbQuVyU5AyPs48fTy3S7cGciEJ/P2A4/2vT0kNiw\nm6Opie6c7GMsLw+OsG/dGr+MU90G0Se6YAG5tk48MfXxEHLDzJnAv/87zc+aBbz4Is2fcAKl0gDi\nB7oFjWIRdoa1ZdcuS9iXL6fcTe+9578bBgiIsC9caM1zzzJA0SJf+xrledm0Kfl38ONQWxsJN1vw\nzc30B3PYX5As9q1brYFEzFNP0TSIJ/qhh1oZJydPphuxkF+OOIIya5qx03aCXne2ttZKzleItLRY\nrsn/+A/LtfrOO8DSpfT/b9sGXHYZcNZZJWSxmzHb5qit118HvvIVynHhZN2asBA2N9NJfvrp9J4t\ndq7kw8L+0kvetT9TWlvjL7qyMkqhcOqp+WmTWyZPth4vhfzDhg37ck1E2P3j1VcpkGDECHo/bFis\n1+Gyy8io7Oy0Qo9zMagvEMJuYp6YCxfSI+WAAZY/OhGmsFdUAH/+M/DQQyTspsVeUUE+7eXL85+8\nqqfHOsjHHAOMGUPzp5ySm8c1ofhwetILegc3C3u+r8dM4OyNbDj27RubgXXKFOooHTrU6kMcOND/\ndgVG2CsqqESW+ad0dJCPqn9/Z0vExG6xV1aSULKwmxY7D4vPtzumu9sKdXzzzViXlCBkgl3Yf/Ob\n4Hdwl5eTIROJWLHghQJb4Xwd9+0b2zfIHddDh1rBByVlsff0kF/crAjD5aPSEXbOpgbQ923caAn9\ndddR6l6+eeTbj93dDZx0EqXorasLZiSMUDiEQtY5zYZMUHOw26mtpafo0aPjo+OCDCfqq60l42zq\n1Nj1LPjDhlmWei7GFPgu7EqpKUqppUqp5Uqpm5JtO2IEsHkzzW/ZQq/aWnKjpBJ29muxKwawhJ3/\n3AceAI491hLQXOaAHjw4thYi79/s6BWEbBg40Dqny8uBV16hUcKFQF2dde3br5Mgw6HKNTXkQrVb\n4yz8Q4dag/oKvvNUKVUG4GEAZwA4GMAlSqkD7dvdfz/1II8ebcWCTp5MUzfCvmsXhXlVVdFJYVrs\nLS3xf+Tdd9MfniuLvbOTnkSWLo1d3t2deoCJILjl4IOtc7qjg54G/Sy/5iV1dVbhZy7mUghwW1PV\nJWBh/8c/gOnT/W+X34f9aAArtNbrtNY9AJ4BcK59o2OPJSEfM4ZipTs7LT9VRQUd9GS95uy74pOY\nLfb+/emxx94RWV1NN5FcWews6Bs2UAfR3/5Gv2nRIhF2wRu2b6cBSeEwGUG5GgjjFbW1hS3sqfzm\nF15I+ZXOPZdKGvqN38I+EoBZbndjdFkM/KcccggJ3mefxYpuTU3yATFdXXRTOPZYes8CX15O4u50\ngldW5s5iX7SIplddBZxxBnDBBXSjmjtXhF3whsGD6TpauJCiyAYMCHZ+GDt1dVbKCj+FvbfX29BK\nDsRIZbEfdVRuap0ygXhQGzKEpkqRnz0cjo1YSRXn2t0dWzzD/OygQc7Cnss6i0uXWn59HvLNiLAL\nXmE+mZqF0AsB0xXzzDPA3//uz37uvdfbFAsciGFa7KEQGan5DN/0OxDqcwBmZvFR0WUx/OEP076w\nLrq6GtDW1oC997b87W4s9qoqqwPVtMQHDXL+g82Ma37T3AyMG+ec88YckCUI2VDIwl5ba1ns774L\nLFlChdK9ZtUqb79v82Zy65oW+/Ll/vRtNDY2orGx0dW2fgv7RwDGKaX2AbAZwMUALrFvNH36tC/m\nly0ji33wYKu6eiph507IG26gXCt2YWcfvEku81O0tQGjRjkLu1jsgleY51KhRVrV1VmGHGAN1vMa\nL6+3994D3n6bRrmblcp4FKrXNDQ0oKGh4Yv305P0wvrqitFa7wFwDYDXASwC8IzWekmyz9TXkxCa\no0XdWuxf/7r1nhk0yHkUZy5dMeEwCbsTIuyCV5jnedAzOtqpq6PxHBzr7dd14eUTMuvHww8D11zj\n3fd6ge8+dq31q1rrA7TW+2ut70q1fSgUL+xufOzmiWDmahg40NnH3thIqTVzQVsbMHas8zoRdsEr\nTHdAoQl7bS11RPKThpcpNbQGbr6ZOk55pKhTquxUPPMMDUJiurrIWt9//+BFIAWi89SELfadO9O3\n2AHKT232Piey2JlPP82+zaloa6OcN+xDNBFhF7yipobChYHCE/a6OjLmWNi9vC62bKGxK598YumI\nWZTdLZdcAlx6qfXeLLkZNAIn7AMHWmkAWJDd+tgBGqB05pnWukTCfsYZFIVzxBH++9rb2uiG5ZSM\nSTpPBS8ZN46mhSjsgOWK8TK/zZKo83fBAutaNHNSpYMZiinCngbDhlEHqtkZUV2dvO5psuKw558P\n/PSn8ctvv53CLLWOzU/jB3wyMePHWzH3hXYBCsGGhSaX6TK8gMMFuf1cyN4LuEj8nXdSZ+fo0alT\nlCTCdAmLsKfBsGEU7nT44dayVBEsyYbmDx8e+11MKGTFzeZa2Pv3B370I5oPYqUkofDJ1CLNF2zg\nsMB7dWNqbweuvZbmV64E1q7NXNh5LIpZ1F2E3SV77UXTb37TWpYq5jyZxZ4IM5Pijh3pfTYdtCZh\n5/2tXAk8+6x1AouwC34wMm58d7BhYT/+eODnP/dO2NlaN8lU2FnEZ8ygqVlLOWgETtjHjyfXCVdA\nAlJb7JFI+n+wKeynnAL87nfpfd4tXDmFnyjGjqUOXu6dl4Iagtd0dlpPhIUCGzrV1cBXv+qdsPOA\nJDOuf++9M3tKnzyZ3Lc8LkYs9jRQCvj1r600A4BlsScaortmTfoj7ey5z999F/jf/43PwJgt4bCz\nVc6lzATBa6qqCitPDGBZ7JWV3o4KZ7fJW29ZAwRPOgn44IP0h/zv3k1PQmxkirBnSVkZRY8kOtgr\nVlAsaTrYffLV1TRq9ZZbMmtjIuz+dUaEXRAsvBT27m7qY3j0UarKdsMNVIid3byHHEL5pDiBl1t6\nemKLmYiwe0Cyg93URPmOs4FdOV6XEVu61PngH344dRQLgmC5YqqqMhP29nbKoAiQkA8aBDz9NL1n\nw4rdMfX15BFwGleSDLuwd3aKsGdNMj97Jj52gMSVS4exBe11XPmbbwJGeocvGD8+tjaiIJQy2Vrs\nb7wBfPwxuVd40CFHBnGZwLIyWl9RQWNK0g2aYGHn0OsgW+wBL3NrkUzYM71zzp9Pd+077gA2baJl\nXlvs3d3AQQd5+52CUGwMH07TsrLMhH31app2dVnWPw9MYmE38cJiz9SgzAUFY7EnO9jZ3DmHDAG+\n8Q2rgC5Hq3hFV5ekDRCEVLAYb96cmbBv3UpTHqFeWWk9hTv1cQ0cmF6s/6pVNCJefOwe44crhjno\nICve1WuLPZMYe0EoRWbOBKZOzV7Ye3pi03c4Wex9+6ZXqWncOCptWV8vwu4pfrhimFCI3DGA9z52\nKVgtCO648EIS3GQRcIlgfzkLe//+1jonYa+vt0Ih00E6Tz0mWb4YL3xdX/0qTcViF4T8UlFB4pxO\nnLlpRe/eTTVfGSdXTLoWO1dEEleMxwwb5hxF0ttLJ0G24sn50v3oPBWLXRDcU1ZmFaKfO9fdZ9jC\n98ti56yT0nnqMWYNVJNIhIQz25F2lZXAffd5X4BWLHZBSJ89e0h4ObIlFV1ddENwEnYni53rPriF\nv6OyUsIdPWXUKOqVtnPHHd7lU/eyXN6sWXQSiLALQuY4XfNOdHeTmLsV9v7908sX09FBFdfGjrWq\nL4mP3QP696cKK3Y6OigVgBdk0mmTiLPOooFJ4ooRhMyZM8fddt3dVMPBHhWzfLmze/Xgg50zPyai\ns5OqLg0dagl7kC32ghH2RI9OGzcC553nzT4qK+mk8AIe3iwWuyBkzjvvuNvOFPbdu4GLLqLc64ly\nSI0ZQ3HsnKkxFZ2ddB3X1Ymwe0oiYd+0yUruky1eZpXjNm3ZIha7IGRCba3767GrK9Zir6tLnvFV\nKdreTQeq1tSOqirqPA2HKWiDlwWRghJ2p7trS4vVY50tXrpieATcli3BPfiCEGSqq90/QbOP/cMP\nyXfuZjxK377uhL2nh9w5ZWV0s4lE6BXk9MgFI+yhkLPFvnNnbEdJNmRjsX/ta5TPneHHNf5eQRDS\no7ra/fXIrphHH6V+N7fC7iYyxnSnlpVRu5qbg+uGAXwUdqXUbUqpjUqpedHXlGy+r76erPNnnwU+\n/9zK7dLSEjsYIRuy8bE/9xzw4IPW+/Z2S9DFYheE9KmsJJeHm8LWLOyMm/EoqWLZr7wSeOghy7/O\nhEI00jXIwu53uOP9Wuv7vfiiwYMpEc9FF5GF3qePFdfu1R+cqSuGwy0XL6YkRiNGkNUwbBjllxCL\nXRDSZ88eaxRqquR83d2xA5G8cMX88Y+U1vu882KFva4u+MLutyvGMw+UWSpv504qUdXU5J1/Hcjc\nFdPSQiI+dCidKN//PrBokVX8Qyx2QUgfNopSPUVrbXWeMm6F3SmE2qS9PT6yjYU9qKNOAf+F/Rql\n1Hyl1P8opfql3jw55sHq6aFQx1Gjsv1Wi0xdMc3NdIOprSVL/fe/p+WcpkCEXRDS47HHgOnT3Rlb\nu3eTRc/FOgB3wu6m2EYiYd++PdgWe1auGKXULABmgTcFQAO4FcAjAG7XWmul1C8B3A/gO07fM23a\ntC/mGxoa0OBUcgg0vHjcOJrfsoXu6KNHZ/MLYsnUFcPCrnVs5M7w4VbeC0EQ3HPllTT93e+cr0n2\nvVdUkA+8ujpWaMtcmKxuhZ2/nwmFSH+cRrT6SWNjIxobG11tm5Wwa61Pc7npYwBeTLTSFPZkjB1L\nHaUtLfQIxf5sr8jUFcPC3tkZW5UlFBJrXRCyIZGxdd11wBNPkFu2tZXcMCeckN53DxkC3Horzd94\nIzBvHnDqqdb6CRPImGxpibfYN292Ti7mJ3ajd/r06Qm39TMqZrjx9nwAaQzgTQwXgK6tpT/Xy7tm\nNq6YAQPogD/7LC3TmoRdOk4FIXMSXZPz51v+8dZWEtnx44Gvf939d3PagbvvpkLXp0XN1B07gBde\nsMR8zpxYEWdhz7XFng5++th/rZRaoJSaD+AkANd78aVvvEH5HwYMIB87l9Tygmwt9tpa4JlnrOVi\nsQtCdiS6Jk0f+q5dlvBefDFwySXuvrtfgl6/O+4Azj2XBiFNmAC8+qrlAgbous6HxZ4Ovgm71vqb\nWuvDtNYTtdZTtdZbvfjekSMp/8OAARTP7qWwZ+pj59GvZucNIBa7IGRLImE3ryu22AEqrff00+6+\nOxRyXs4hkJEIlc18+21gv/2s9f36AQsWlK7F7isjR1LceJAsdhb2efNoKha7IGRHImPLtNhNYU8H\nJ2FvbQXefJPmd+ywkoiZfXlnn03TNWvS32euKFhhP/JIKmBrt5KzIRMf+w9/CDzyCAk798offjhN\nRdgFITsSXZNssYfDlBYgkfWdDP4MG2IAcPPNwLp1NB+JAIceSvNmceyGBvLx33VX+vvMFQVTaMMO\nx4jnyhXT3U1+NXvGuEceoenAgdYwZrM+orhiBCFzEj1F83X/xhsUZ57JYCEW9n796Jrt7QUWLrTW\n77uvFU5tDpAELOMtqBSsxc6PRrlyxbz5JnD11Yk/O3BgfOzsIYcAP/qRd+0ThFIjkbHFJTHb2jKv\necDCXltLocpDhtDYGKa8HPjSl2h+0KD0vz+fFLywe9kz3acPDXro7Y1f19qa3P/uJOwDBgDf/rZ3\n7ROEUiORscW5mFpbMxd2fpqurKQbyPDhsaX4lCLRX7w4eW73IFKwwj52LHDFFcBxx3n3nUrRXfvz\nz+PXhcPJ/e9Dh7ob7SYIgnsS+dg7O0nYr7kGeOqpzPuy5syx8k3t3BmbSZJzrU+YkNl355OClaKa\nGuDxx70frn/00c51FsNhyklhYloS9fXBTbovCIWKabGb119Xl9WhuWBB5n1ZXMISoDQBAIU3AoV9\nPRessPvFMcdQFRY7dou9rQ14/nmaHx4dYysWuyB4C/vYN2+ODXHs7o7Nue5F9NnGjZQb5sQT6b0I\nexFxyCHA0qXxy9vbYy2G22+n3PDjxtFJBwBnngmcckpu2ikIpQBb7Nu20ftPPqGiNt3dNDqUBd0L\nER46NDYYQ4S9iKipce6ssVvsW6PjaM3qTRMnWoMbBEHIHvaxczGb736XylB2dwPHH0++dsC7WsUm\nIuxFRKJeeLuPvamJpl7VWxUEIR6+HrmGMHdudnfH+tW9FvbqakonUKgU7AAlv6isJOtg3jzg44/J\nQgDihb25maYi7ILgH+xj/8tf6D1b7l1d/gr79u3uinUEFRF2G2wh8MAEU9hNVwwX1BBhFwT/4Ovx\nT3+i9yzsdoudl3tFJikKgoS4YmzwaDbm/POtykimxS7CLgj+Y49jZ8u8uzs2Emb4cAgGYrHbqKqy\n3CwA8Pe/U1re9nZni93sPBUEwVsqKujaO/hgKhBvCjtb7E1NiXOrlypisduorCRhN4tk794db7Gz\nVS8WuyD4R2UlRb5EIvSeo9E6OixhHzhQ6grbEYvdRmUl9bz37UuVWP76VzqxwmEacvzss/SefXoi\n7ILgH5WVwAMPOK/rI+qVEPlrbLAVEApZOSRY2AEalGQiwi4I/pGsE7OQ48z9RlwxNkxh15rmIxFL\n2E3Ky8XHLgh+MnRovltQmIiw22BhHz7cEvadO51jWquqxGIXBD+xF7i4/nqa/vKXuW9LISHCboND\nqC680BL2HTucC9fW1VnuGkEQvMcsfblpE3DPPflrSyEhwm6De9cPOcSqmrJjR3xt1fnzgblz5VFR\nEPzk4IOBww6j+REjrOvTnkJbiEU6T20oBTz8MLDffsAvfgG89BIJu9mJM3588GseCkIxUFYGPPoo\nRaOZiLAnJyuLXSl1gVLqM6XUHqXUJNu6W5RSK5RSS5RSp2fXzNzywx/SCVVVBRx4IPDEE8CqVcCS\nJbTeyzqrgiAk55hjgHvvjV2WrJqZkL3FvhDAeQD+YC5USk0AcBGACQBGAXhDKbW/1uy1LhxqaoDl\ny2l+r71oKsIuCPll4sR8tyDYZCXsWutlAKBUXETpuQCe0VrvBrBWKbUCwNEAHGoTBRsuv3XddZTK\nEyi8iuWCUEwUnnmYe/zqPB0JYIPx/vPosoKDO0dPOcUKeTz33Py1RxAEIRUpLXal1CwAw8xFADSA\nW7XWL3rRiGnTpn0x39DQgIaGBi++1hM4jramxhrpNn58/tojCEJp0tjYiMbGRlfbKi/c3kqptwD8\nRGs9L/r+ZgBaa3139P2rAG7TWse5YpRSgXa9v/wycPbZwDvvAJMnU8jV0qWSTU4QhPyilILW2jGx\ngpeuGHMHLwC4WClVqZTaF8A4AHM83FfOYAFn//rmzSLqgiAEm2zDHacqpTYAOBbAS0qpVwBAa70Y\nwEwAiwH8E8APAm2WJ6FvX5qysAuCIAQdT1wxWTUg4K6YdeuAMWOAFSuAcePy3RpBEAQiV66YokQs\ndkEQCg0R9hRw8i+zvqIgCEKQEWFPAVdpkdGmgiAUCpIEzAUB7gIQBEGIQyx2QRCEIkOEXRAEocgQ\nYRcEQSgyRNgFQRCKDBF2QRCEIkOEXRAEocgQYRcEQSgyRNgFQRCKDBF2QRCEIkOEXRAEocgQYRcE\nQSgyRNgFQRCKDBF2QRCEIkOEXRAEocgQYRcEQSgyRNgFQRCKDBF2QRCEIkOEXRAEocjIStiVUhco\npT5TSu1RSk0ylu+jlOpQSs2Lvh7JvqmCIAiCG7K12BcCOA/AbId1K7XWk6KvH2S5H6EIaGxszHcT\nhBwgxzn/ZCXsWutlWusVAJTDaqdlQgkjF3xpIMc5//jpYx8TdcO8pZSa7MUXujlh0jmp3G6br+2K\nbd/52m8h/DfF9FvSwctrupiOX7rb2kkp7EqpWUqpBcZrYXT61SQf2wRgb631JAA/AfC0UiqUcSuj\niLAX9r7ztd9C+G+K6bekgwi7N9vaUVrrjD/8xZco9RaAn2it56W7XimVfQMEQRBKEK21o8u7j4f7\n+GIHSqnBAJq11r1Kqf0AjAOwOp2GCYIgCJmRbbjjVKXUBgDHAnhJKfVKdNWXASxQSs0DMBPA1Vrr\nndk1VRAEQXCDJ64YQRAEITjkbOSpUqotV/sKGql+ezRyaFKybQqJUj3WcpxLg0I4zrlMKVDKjwal\n9ttL7fcypfa7S+33MoH/3TnNFaOUqlVKvaGU+lgp9alS6pzo8n2UUouVUo9GUxS8qpSqymXbfEYp\npU5SSr1oLHhIKfXNfDbKT0r0WMtxluMcCHKdBKwTwFSt9ZEATgFwn7FuHICHtNaHANgF4Gs5bpvf\naBTAnd5DSvVYy3G2kOOcJ7wMd3SDAnCXUupEAL0A9lJKDY2uW6O1XhidnwtgTI7bJniLHOvSQI5z\nAMmlsCsAlwEYBOCIaIz7GgDV0fVdxrZ7jOXFwm4A5cb7Yvt9JqV8rOU4y3HOO7l2xfQFsC16ApwM\nYB9jXTEPVNIA1gE4SClVoZTqD+AreW6T35TisZbjLMc5EOTEYldKlYN8cU+BBjJ9CuBjAEuMzQLr\nr8qG6G/v0lp/rpSaCeAzAGsAmOkViua3l+qxluMsx9nYLO+/OycDlJRShwP4g9b6WN93FjBK7beX\n2u6qZ+0AAALRSURBVO9lSu13l9rvZQrld/vuilFKXQ26q9/q976CRqn99lL7vUyp/e5S+71MIf1u\nSSkgCIJQZEgxa0EQhCLDc2FXSo1SSv1LKbUoWpTjx9HlA5RSryullimlXlNK9TM+c4tSaoVSaolS\n6nRj+SRFRT2WK6V+43Vbhezw+Fj/Uim1XinVmo/fIiTGq+OslKpRSr0UXbZQKXVnvn5T0aO19vQF\nYDiAidH5EIBlAA4EcDeAG6PLbwJwV3T+IACfgCJ0xgBYCctF9CGAo6Lz/wRwhtftlVdgjvXRAIYB\naM3375KXP8cZQA2Ak6Lb9AHwtlzT/rw8t9i11lu01vOj82FQ+NMoAOcCmBHdbAaAqdH5cwA8o7Xe\nrbVeC2AFgKOVUsMB1GutP4pu94TxGSEAeHWso5+fo7XemsPmCy7x6jhrrSNa69nR79kNChEclbMf\nUkL46mNXSo0BMBHABwCG8YWrtd4CgIcdjwSwwfjY59FlIwFsNJZvjC4TAkiWx1ooELw6ztFBPV8F\n8Ka/LS5NfBN2RcWr/w/AtdG7vD38RsJxigQ51qWBV8c5OsjnaQC/iVr0gsf4IuxKqT6gE+BJrfXz\n0cVblVLDouuHA9gWXf45gNHGx0dFlyVaLgQIj461EHA8Ps6PAlimtX7I31aXLn5Z7H8CsFhr/aCx\n7AUAV0TnLwfwvLH8YqVUpVJqX1CqzznRR7tdSqmjlVIKwDeNzwjBIetjbfu+Ys0vUuh4cpyVUr8E\n0FdrfX1OWl2qeN0bC+AEUCa3+aCe8XkApgAYCOANUI/66wD6G5+5BdRzvgTA6cbyLwFYCOp8eTDf\nPc3y8vVY3w3yy+4GsB7Af+b798nL2+MM8rP3AlhkfM+38/37ivElI08FQRCKDBl5KgiCUGSIsAuC\nIBQZIuyCIAhFhgi7IAhCkSHCLgiCUGSIsAuCIBQZIuyCIAhFhgi7IAhCkfH/AbQb7ygFJxXWAAAA\nAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x23193748>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import csv\n", "import matplotlib as plt\n", "\n", "ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))\n", "\n", "ts = ts.cumsum()\n", "\n", "ts.plot()\n" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0xad826be0>" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEACAYAAACQx1DIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGmBJREFUeJzt3XuMbWdZx/Hfc057TttzTi8H2jmFllOQmxilVkVDkTkI\nIhctmGCCEOSSGEUShUSk4B+bSYii0Sh/qIRICyIC4RaKEiWVnCFEEQwciqVCTdMrzHDp6WVO23OZ\nefxj70n3zLxrz1573rXW+77r+0l2MrNm77XfdS77mfd5nvdd5u4CACCWXV0PAABQFgILACAqAgsA\nICoCCwAgKgILACAqAgsAIKpGA4uZPcbMVs1sbfS4bXT8htH3bmbv2PSa74yOr5nZ+0fH9pvZ98fO\nc8bM/rbJsQMAZtP0jOWpo/ew0eOJZrYg6Xmj7yXpXWb2LEkysy9KesrouEl6g5mZpDlJF4+dZ7ek\nZzc8dgDADLpIhb1Z0t6x703SF0dfXx14/rskPS1w/McjjwsAEEHTgeVg4Ng+SWdvOrYeaELj+Z2K\n43t2MC4AQEOaDiyvjXCOfQrPZAAACTqr4fNfGThWN5jtkXTNtE82MzY/A4AZuLtt/6ztNT1jOTfS\neS6NdJ6e27v9U4AGDQYDuXuWj5zHHnpcdNFFjf09Nx1YLmz4/KjlZNcDQCPy+YVhYWFBZrbl8c53\nvrProfXO6dOnGzt304HlnJrPD6WxXNIjEcYCFCr/XxiqAg6BJ09dtBtPqoGE8nsnJd3X0FgAZCCF\nwHPkyJHG36MU1uSNvszspLa2Ba8pENDc3SoK76ck3SvpUOg1gfekeA80bq9SnikNBgNmOds4ePCg\njh8/vuFYLsX7GIPcra3rXgB0Ju2gIj06wyG4VMu5xhIjsOzScMYCIAlpB5Vxm1NoBJp2NJ0KO6Ph\njGNc3VSYS7pD0hWh1wTek1QYgKnMzR3W0tLtXQ+jEzmnwtYinMMl7Y9wHgDASJ9SYaHZxqqGBXwA\niGJ9sWNfZytNyyEVdkLSQxpum7/lNYH3JBUGYCrz8/M6evRo18PoxIEDB7SysrLhWC6psLpCQcEU\nJ6UGILp8Vv2HLC4u9ra4f/bZzTXbNr0J5Zq2zljqOlc5taEAvbDecpzvf82+r3VpssbSdGCpO60K\nPd8lNfcnAGAGBBRUS614X3WOhyOcB0DPEVTakUO78apYeQ9kKu8aTMmarLHkMGM5I+m8COcB0Lp8\nU2al69M6lhC2dAGAjOTQbrxL0vltDwRALOmkw7bbfr9Prcclthsfk3Rl4HhohrNLW7feB5CFvRoM\nri3+QzpHJabCQkFl0jkeijAWAK07WWuW0IeZQh+kto4lxCOdB0Bizj57r06d4s7jpWl6xhJr367U\nakEAIjh9WrVmM7M8mAGF5dxuPDUze77CgWhNw7UsAIpT1Y4cr+DPzb7Cct7SpY6rVb2lC4Beibv+\nhRX37UppHcu5FcfXRFcYEEk6rb9tWp+1EFwelXMqLMaWLmepOugAqGV9JkCA6bsS243rnoN0GBBV\nv7daGa+7EGTiSymwVO1gbGJLFwANWVhYILhElkxXmKrTXS7pnDYHAqAvhinBPqbI+lRjCaW8XNKp\nCGMBWtbPOkZeNqYE+zR76UuN5S8qjp+W9GCEsQAt63cdI2WDwUDuHnz0JbA0qavAsmVm4u4/qnj+\nbsXpLgMKw4xoVnX3LytxgWWJuxtPCjibf2aSLo45KKAMfZoR7dVOr5dFkhvlvPK+brtx1bb5FO+B\nXpsuqBA80pBaYKk6B8V7oKcIFvlJaa+wKq7hfe+Bguw8tVOiubnDWlq6veth9EKf2o2rsLsxCkNQ\nQbd60W5sZs9R9bb5zYVWAJ3Z3PbLbKUMKdVYfrPi+dyPBcjCxvQetZG09T0VtivSeYCW9WudyWBw\nLQsNM9KnduOQ3SIVhiyVW0dhNoJJkqmxSHpows9O7HQgAOLZycr1ElexY6OU2o3Pqzju4kZfSEK/\nW4SZpZSlxC1dQv5D0hu1dZazKtaxIAlpBRXWfGAnetFu7O4fnvD85v4EgIZM2kE3xoOgglTlULw3\n9a29BtkgPYRc9SUVJoV3N94tAksmyqtBEDhQqj61G1c9v05wQmfyDCrz8/M6evRo18MAipFMjWUC\nl3RfhPMAQYuLixtaYA8duqLrIQFZazqwxEC7MQBE1qctXUKbUK5K2hNhLOhcHqWy5eU7WOCH4vWi\n3XjC80+LG30VIs8azCTjK9AJMsBQaoElZI/Y0gWJo3sMeFQOqbCzJB2IMBb0VvMpuFh7ZzH7QVua\nrLGYe+izPNLJzU5ra0vzmgIBzd3NzKpu9PWApAtDrwm8Z3MXBLSMVmg05cCBA1pZWdlwLPSZOosc\nUmGmyTsfA1mbtPULQQU5yqXdOI92IvTQzv9p1kmjkSJDLH1qN65CeguJOqk2f++hCw2xNNlunFqN\nZU3hbfO/J+my0GsC70kQQq9Rl8E0+lRjCT1/Tay8B6Y2vkUNsxp0oenAEmP2YIqXUgMakG4JkNQZ\nquRcY6lSFSiqAhHpLSSsvB0FUL6ct82PYZfy6F4DksAuAOhaDjWWWc4DdKSbtNj4WhiCCqaRcyqs\nKuVV531N3OgLyakKIO2lxQgm2Ik+7W4c4pIejHAeIKL26yqbV+gTTJCqXAILXWEAkInUiveurcHo\njKTzOhgL0IC9mna2QxEeTcq5xjI1M7tI4RnObkkXtTwcYAcmFfCnT6Gtr0EhuKAJOW/pUufk35X0\nuMDxM6qYWbGlC0rH9ixoSpNbuqQUWKoE9xaTCCxI3fRpr5C5ucNaWro92miAcQcPHtTx48c3HMtl\nr7A6qgICa1iQqZ11ji0vL5EKQ2P6svL+HgV2MNbwf+c5LY8FiIpCPPokpRnLpRXHH644TsoL2ahz\nMy9u7oXcpRJYTql6dX3VrKoq4AAJiLO1CzMdNKUP7ca/VnF8TdIDFT97b0NjAaYUp60Y6EJJ7car\nCsxMJtw90iXdLeny0GumfE+gGMxgEEvOd5CsI3RBLmopSEq3N/Vi0SRiKSkVVjdImKTzmxgIMJsU\nUlx7g80ABBvUkfPuxpvVnWa5pOauHsjS1uBGigwpSWkdSxUWSAIVCChIUUo1llCabE3DvcKAlnVb\nS5kGQQU70ZcaS1XxnnuxoCF5twtXLbok2GAafamxhILOasVxIIL0g8csdrLKP/aDINdPKdVYQkFn\nr6SVwHEgWaSokIMmU2FtL5AM3ltltECyqsbyA0lzoddM+Z7ADHa25T0mI/h2r8kFkm3PWOoO2mZ4\nDRABQSUmAkm/pJQKC93Qa0X8DwcaxYc+Ykup3Tg0lr1ixoIo0m8fbttgMJC7E1R6qskaS9szlkn1\nD9fWILIrcAwYM20tpN8T3/n5eR09erTrYSAhfWk3DtmttNJ1SE6/A8a0FhcXaQFGa1JKhVUtkExp\njED22MASUnkr7++c4TVoDbWIvlivsVBn6acmU2FdtBvX2fuL7VxaR2qpdNRb0LQu0kxPqvFcivdA\nRIPBgKCCxlG/QGFI5VVhvQrG9bndmPpKJ3LeziTXce8cgQN1FN9ubGZvrHj+WtVr0KT+fjjniqCC\nlKSSCnuCqtuNmbUAExBUkJqUbvQVskvSw00MBMi9HsOWLNiJktax1L3R1y6Rl0Fj+KeF/ippHUuV\nhxUOOmuSLmh5LECySHshB6nUWM6tOL5bUnPzNfRYnmmwhYUFHTp0RdfDQAFKSoXNUoinKwwNyDcN\ntvmuf8AsOms3NrPnmdmnzOzm0eMTZnZkB+9XFSSqCvQ+4WdAL5048SM2kETSKgOLmb1U0nWSPivp\nVZJeLelzkq4zs5dEHkdVKkyS7o38XkAx5uYOE1iQnEkzlrdKerm7X+/u33D3Y+5+naSXS3rbjO9X\nlQr7SsXP1iRdPON7AcVbXl4isGAmXdVYDrn7NzYfdPebJM3N+H6mQABx90+reoEkNRbUkGdRfnb5\n1orQra7ajU/M+LPt1AkUJrrCUEv5H7S0HCN1kwLLj5nZDYHjpnpb30+ranayu4H36rGcN5iENGw5\nlkRwwY40mQoz93DZw8zmJ73Q3Re3PbnZ5pOfUSCYubsFnisNayzLki4NvWbK9wQiSTcoM4tBXQcO\nHNjSul71uVpX5YxlmsAxg1kGneb/ZPRQt/8UCR7IxaQZyzcV7tQySe7uP7XtybfOHlYVSG1NmLGc\nkfSApIOh10z5nkCxCDaYVZMzlkmB5fDoy1dI+rKkuzcN4I5tTx4nsKxIujD0minfE6gh3XTXtAg2\nmMbBgwd1/PjxDcfaSIXdIUlmtl/S+zRcqPgxSR939+UYbz6F1dEDaEmOQWWvBoNrCSaopdM7SLr7\ngrv/hKQ3aVhEXzSzG2O+n5n9qsJptzOSHpzxvYBeIKggNXW2zf++pCVJP5J0SeRxvFjhwv4epbMD\nM3ohvVTY/Py8jh492vUwUJhOdzc2s98zs6OS/l3SYyT99jSF+0hM6dwzBsVLL6hI0uLiIhtOIrqu\nb/R1uaQ3u/uxxkZRjfuxoEXpBRUK8cjRNDWWt7cQVB6a8LMHGn5vIFnvfe8Huh4CUFsq9YvzKo67\nuDUxAERX0h0kJwl1hbmG27oACYq3k/JgMJC7b3ksLd0e7T2AcZ22G0cWDBLu/qaK55/UbLczBlow\nXU2mKmiMP6ijoCQpdVyF2o3PkXSPZr//C1BTnM4wWoSRupJSYZNmH1X7kqUU/FC8WYPKxrTY4uIi\nsxAkret245gm7UNT9bOqwj6QkEcDEi3C6LuUivdV+navWWRuYWGBxYzotdQDC5tQomHN/d5CgEHK\n+lxjOSVW3qNR6yksJsbolyZrLJX3Y4ly8p3fj+WUpPslXRx6zZTvCSSBTjGkpMkbfaWeCpNIhSEz\nVetWCCpISZ9TYbskHQ8cB1oQTo9tt+CRmgpyUNLK+7rtxrskPbahsQDb2LqmhVZiYHs5pMKomSAJ\nBBVgOqmvandNnuUAATvflmVu7jAbQKJofamxhNgMr0HvpXfDLiA1famxxHwNUNt4UZ7ZCjC7lGos\nVfdjYcaCVqyvlN/8oK4C1JNSKiw0M1kT61jQqb2VAYegg5yVVGOpm9ZySQ82MRBgOpPrNewHhlyV\nVGORqm81HJrN7BabOCED47Maggz6LqUaS4iJTSjRqp3/HjMpdTbrg2CF2EpKhdWtsUjpr7VB0uoG\nirRaldc71QgsiK2kVJjVfE8XqTDsSFqBoq7tZj8EHKQoh1TYqa4HAaSKHZORopRSYVVYIIkOtDtR\n3m7H5KoHgQWzarLGktKNvta0NYisSrpX3OgLndv5/mPT4GZgaEufb/RV1ZoMtKydWs3i4iJ1FGQv\npY6rqpX3QC/t2/cYraz8sOthoFB9aTcO2ZI2A5qRVvPh/Pw8QQWNKq3duErVynuK92hBWm3Jm1Ni\npMOQkyRqLGZ2n8IBpHJ3YzO7qtFBAR0b7xQjsCAnSQQWSRdUHN8l6f6Knx1qaCyoLa00UuqmbS0m\nmKBJfa6xSNJSxfGqYITWpZVGiqeZgLmwsKAjR440cm5gWn2psVS5pOL47+5kIMD2mguYobZiaiko\nRUrtxlWWJT01cPyZbQ+kH9pZCIghFkSiK31PhV1fcXzfTgaCKiUGlXRrQOszF2YqaFuTqbC2Zyzr\nm0ruqfGaWyacC5hCGsFyMBgQQNALTc9YNs9QfiDpZTXPsT/SWIDWhDq/CCroi0YDi7vvcncbe1zq\n7v+qelu1PKXiODMWRNBc5xf3UUHKmqyxdFW8r1NruSvCOdBL0zQiNJ8mIwWGFJXUbryOm3ehBd3U\nVjanwQgq6JuuAsv3pn2iu/9zxY9IhWFMd51fBBLkqKR243WP7eh9Uazx2UnzQYZ9vJC7ktqN19Hp\nhQbFS4FRHwHqy2HlPdA4AggQT/KBxcxe0/UYkLLptqBh6xRgoxJrLHVwe2JUmH5fM+4lD2zUZI3F\n3NtfDmJmq5oyqLm7mVlokGvuvuXWxRXPRc+R6gI2OnDggFZWVjYcc/co3bY5zFiAHQuthCfQoM/6\nvvIeiGZu7rCWlm7vehhA50pceX9v4BjBBtFtXrxIUAGa19WMZVHSKzYdcwVW05vZz7YyImSB7i4g\nfZ3MWNz9N7S1nefhiqdzb/uktbuVCjfGAuIort3YzJ6mrZ9IVWM5VHGcNuQknFQX+3Rtty09RXpg\nshLbjT8l6dc3Hb5P0oWbn0u7MTYjHQbsXIntxr8cOHZ+66NAlljsCKStq8ByTuAYa2owZvv0GjsM\nA7MrrsYCbG/7rVpY9AjMrsQay2lN3+r8WEk/DBynxoIN9u27QCsr93U9DCALJdZY6nhu1wNAHk6c\neIQZCzClElNhdVqFq9qN0WuhGszJYHrsyJEjbQ8OSF6JW7pMfYs/d/+7qh9FGguyNP1dIkNdZE0/\nmDmhz7oKLJ/v6H2BVtRZwElAQmm6Cixv6uh90Svt7wiwU+MBiSCDJjVZY+mqK+zFkj43zXMnrLxf\ndfctnWV0haFk7DqAWErsClsIHAsGBDP7w4pzRPkDAHIyqV7EDAep6Cqw7Knx3BONjQKZyS+11TR2\nH8CsSmw3PjXtEyd0hbG7cZEmBY/pO8H6YtomAYIONmuy3birG339ZIRzkAorEsEjpsFgQFBB61La\nhLJuoKBID2yD/dTQhRy2dKmS89gxM+osQAwl1limZmav6XoM/ZL6BzepsllQ5MdmJdZY6qgq0lO8\nbwQf3DmgdoKU5RBY7qg4nvxsC13Zq9ICJIEEsTWZCks+sLj7l8yCdX26wlBh1qCSRkAiiKANJd7o\na+o3ZUsXYCu2dsFOlbily7MDx+oGBAIIemt9a5dDh67oeijAFl0FlqrV9HVQYwGAGZVYY3nGtE+c\n0G5MjQW9MDd3WEtLt3c9DBSmxHbjOkFhf8VxUmGIgg9uIK7k00kTNqEEolheXmr91sXcWRJdK3Hl\nPbMNVOhi5X/3LcbboQMMsTWZCusqsIRSYQQbKIcP+aaMb7uy+UFgQU66CiwPBY7VDSyrMQYCAIir\nq+L9I5LO33QsvLze7NUV56ArrFfSWBUfA4sbkYISayxnAseqEn5fb3IgyMXmoJL6LsxA2kqssYTu\neR9Mbbn7tyrOkXxHG5qU5+xlMBgwW0Hxkt+EcgJSYegcG0YiVyWuvD8VOEYxHjvQXA2G4IESlbjy\nPpQK2x16opmFghCwyc6DCgEEiKOTOoW7Xxw4fE7F05ubrwEjBBUgnpRqLHVrJtRYUKE6LUYAAYZK\nbDcOocaSnFxbeqvTYgsLC+zBBajMduMQZiDJybOld1rMXoBmdHJrYil4C+FVVRTwJ3i6u397m/MC\nW+zbd4FWVu7rehhAZw4ePKjjx49vOJb7rYlDZgkI89FHgV44ceIRUmHotVJTYSc2ff+fkr5a8xxX\nRRoLemDj7sGPyN1bDSylr7jn+rCus8Di7vvd3cYez5V0Zc3TPLWJsaFMmwv3bRfwS/9g4vqwLqVU\nmCQt13z+XY2Mopdy7QDbatJ9TUIP0mHoo760G8vdL5f0LzVe8oKmxtI/uXWAVQfCqpkJt/8FHtVk\njaWzrrAqZnajpOePHZrULXbG3TeEXbrCAGA2sbrCUgwsZ7Q1kFQFl2Pu/tPNjwoAMK2kUmEjd0ta\nG329Kuk6SXdo643AXNKftDguAMAUkpuxAADyluKMZSZm9iIz+18z+46Zva3r8czCzC4zsy+Y2c1m\n9k0z+/3R8YvM7PNm9m0z+zczu2DsNW83s1vN7BYze2F3o5+Ome0ys6+Z2Q2j70u6tgvM7OOj8d5s\nZj9f2PW9xcz+x8xuMrMPm9menK/PzN5vZstmdtPYsdrXY2ZXjf5MvmNmf932dVSpuL4/H43/mJl9\n0szOH/tZvOur05aZ6kPDAPl/kg5ruM3+MQ23e+l8bDWv45CkK0df75f0bUlPl/Rnkv5odPxtkt49\n+voZkr6u4S7VV4z+DKzr69jmGt8i6R8l3TD6vqRr+4Ck14++PkvSBaVcn6THSbpN0p7R9x+T9Nqc\nr0/SczRcO3fT2LHa1yPpvyT93Ojrz0n6la6vbcL1vUDSrtHX75b0p01cXykzlmdJutXd73D305I+\nKullHY+pNndfcvdjo69XJN0i6TINr+WDo6d9UNLLR19fI+mj7n7G3W+XdKuGfxZJMrPLJL1E0t+P\nHS7l2s6X9Ivufr0kjcZ9vwq5vpHdkvaZ2VmSzpV0jzK+Pnf/kqTjmw7Xuh4zOyTpgLuv7xryD2Ov\n6VTo+tz9Rndfr2F/WcPPFyny9ZUSWB6vjYsl7x4dy5aZXaHhbxtfljTn7svSMPhIumT0tM3XfY/S\nvu6/kvRWbdwXrpRre6KkH5rZ9aNU3/vM7DwVcn3u/l1JfynpTg3Her+736hCrm/MJTWv5/Eaft6s\ny+mz5w0azkCkyNdXSmApipntl/QJSX8wmrls7rDIruPCzF4qaXk0I5vUK5/dtY2cpeHedX/j7ldp\nuBfetSrg706SzOxCDX+bP6xhWmyfmb1ahVzfBKVdjyTJzP5Y0ml3/0gT5y8lsNwj6Qlj3182Opad\nUZrhE5I+5O6fGR1eNrO50c8PSfr+6Pg9ki4fe3nK1321pGvM7DZJH5H0S2b2IUlLBVybNPxN7i53\n/+/R95/UMNCU8HcnDXPzt7n7ve6+KunTkp6tcq5vXd3rye46zex1GqakXzV2OOr1lRJYvirpyWZ2\n2Mz2SHqlpBs6HtOsrpP0LXd/z9ixGyS9bvT1ayV9Zuz4K0fdOU+U9GRJX2lroHW4+zvc/Qnu/iQN\n/36+4O6vkfRZZX5tkjRKn9xlZusboz5f0s0q4O9u5E5Jv2Bm55iZaXh931L+12faOIOudT2jdNn9\nZvas0Z/Lb429JgUbrs/MXqRhOvoadx/fxynu9XXduRCxA+JFGnZR3Srp2q7HM+M1XK3hotBjGnZo\nfG10XQcl3Ti6vs9LunDsNW/XsIPjFkkv7PoaprzOeT3aFVbMtUl6poa/5ByT9CkNu8JKur7BaKw3\naVjYPjvn65P0T5K+q+FGeXdKer2ki+pej6SfkfTN0WfPe7q+rm2u71YNF5x/bfT42yaujwWSAICo\nSkmFAQASQWABAERFYAEAREVgAQBERWABAERFYAEAREVgAQBERWABAET1/06gUfnbXgWbAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x53a50630>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import csv\n", "import matplotlib as plt\n", "from pandas.tools.plotting import andrews_curves\n", "\n", "\n", "c_names = ['vID', 'frID', 'tFr','Timestamp', 'localX', 'localY', 'globalX','globalY', 'vLenght', 'vWidth', 'vType', 'veloc','accel', 'line', 'pred', 'foll', 'spac', 'headway', 'dateTime']\n", "\n", "data = pd.read_table('D:\\\\zzzLola\\\\PhD\\\\DataSet\\\\US101\\\\test\\\\dataset1DT.txt', sep='\\t', header=None, names=c_names)\n", "\n", "# Stast description of the whole dataset.\n", "desc = data.describe()\n", "\n", "##++++++++++++Example\n", "# data.groupby(['col5', 'col2']).size().groupby(level=1).max()\n", "\n", "#Mean of values by vehicle Id and DataTime\n", "mean = data.groupby(['vID', 'dateTime']).mean()\n", "\n", "#Number of vehicles\n", "num_v = data.groupby(['vID']).size()\n", "\n", "#Number of registers by timestamp\n", "ts_match = data.groupby(['Timestamp']).size()\n", "ts_match_max = data.groupby(['Timestamp']).size().max()\n", "ts_match_min = data.groupby(['Timestamp']).size().min()\n", "ts_match_mean = data.groupby(['Timestamp']).size().mean()\n", "\n", "#number of register by dataTime\n", "dt_match = data.groupby(['dateTime']).size()\n", "dt_match_max = data.groupby(['dateTime']).size().max()\n", "dt_match_min = data.groupby(['dateTime']).size().min()\n", "dt_match_mean = data.groupby(['dateTime']).size().mean()\n", "\n", "#print (desc)\n", "#print (mean [:10])\n", "\n", "num_v.plot(kind='barh', stacked=True)\n", "\n", "#print(num_v)\n", "\n", "#print (ts_match_max, ts_match_min, ts_match_mean)\n", "#print (dt_match_max, dt_match_min, dt_match_mean)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " frID tFr Timestamp localX localY globalX globalY vLenght vWidth \\\n", "vID \n", "2 437 437 437 437 437 437 437 437 437 \n", "4 351 351 351 351 351 351 351 351 351 \n", "5 452 452 452 452 452 452 452 452 452 \n", "6 357 357 357 357 357 357 357 357 357 \n", "\n", " vType veloc accel line pred foll spac headway dateTime \n", "vID \n", "2 437 437 437 437 437 437 437 437 437 \n", "4 351 351 351 351 351 351 351 351 351 \n", "5 452 452 452 452 452 452 452 452 452 \n", "6 357 357 357 357 357 357 357 357 357 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD7CAYAAABjVUMJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADDJJREFUeJzt3V+sZWdZx/Hvrw6QDhWsSs8kDJwWuCAasXJRL8akR6NN\n05rWRI3E/yT2xgvqn2ABL6ZXRm8kxHhDag3WPxgasENCtMVmY7goVDtDxzKUmmaQ1p5BlKCVxIB9\nvNhrmJPTmTNn5uy91j7zfD/JylnnPWvOeveTPet39nr3++5UFZKkfq6augOSpGkYAJLUlAEgSU0Z\nAJLUlAEgSU0ZAJLU1IGpOwCQxPeiStIlqqrs5d+vzCuAqnKr4ujRo5P3YRU262AtrMXO2yKsTABI\nksZlAEhSUwbAitnY2Ji6CyvBOpxjLc6xFouVRd1L2lMnklqFfkjSfpGEulIGgSVJ4zIAJKkpA0CS\nmjIAJKkpA0CSmjIAJKkpA0CSmjIAJKmplVgNFOaTGiTtL2tr62xunp66G7pMKzMTGKbvh6RLlYWt\nTKlL40xgSdJlMwAkqSkDQJKaMgAkqSkDQJKaMgAkqSkDQJKaWnoAJHltko8kOZXkqSQ/vOxzSpIu\nboyZwB8APlFVP5vkAHBwhHNKki5iqTOBk7wGOF5Vb77Icc4ElvYlZwJPZT/MBL4B+GqSP03yRJIP\nJrl6yeeUJO3CsgPgAPB24I+r6u3AN4D3LPmckqRdWPYYwHPAl6vqH4fvHwTuOf+h927Z3xg2SRLA\nbDZjNpst9HcufTXQJJ8C7qqqLyY5Chysqnu2HeMYgLQvOQYwlUWMAYwRAD8I3Ae8AngWeGdVfX3b\nMQaAtC8ZAFPZFwGwq04YANI+ZQBMZT+8C0iStKIMAElqygCQpKYMAElqygCQpKYMAElqygCQpKYM\nAElqygCQpKbG+ECYXdrThDZJE1hbW5+6C9qDlQkAp5NL0ri8BSRJTRkAktSUASBJTRkAktSUASBJ\nTRkAktSUASBJTRkAktSUASBJTRkAktSUASBJTRkAktSUASBJTRkAktSUASBJTRkAktSUASBJTRkA\nktSUASBJTRkAktSUASBJTRkAktSUASBJTRkAktSUASBJTRkAktTUgak7cFaSqbsgSbu2trbO5ubp\nqbuxJ6mqqftAkoLp+yFJuxemvH4moar29Jezt4AkqSkDQJKaMgAkqSkDQJKaMgAkqSkDQJKaMgAk\nqSkDQJKaWvpM4CSnga8DLwHfrKqbln1OSdLFjbEUxEvARlV9bYRzSZJ2aYxbQBnpPJKkSzDGhbmA\nR5I8nuSuEc4nSdqFMW4BHamqF5K8jnkQnKqqT7/8sHu37G8MmyQJYDabMZvNFvo7R10NNMlR4L+r\n6g+3tbsaqKR9xtVAd5TkYJJrhv1XA7cA/7zMc0qSdmfZt4DWgI/N/8LnAPAXVfXwks8pSdoFPxBG\nki6Lt4AkSfuUASBJTRkAktSUASBJTRkAktSUASBJTRkAktSUASBJTRkAktTUGKuB7tKeJrRJ0qjW\n1tan7sKerUwArMKSFJLUibeAJKkpA0CSmjIAJKkpA0CSmjIAJKkpA0CSmjIAJKmpHQMgyY8m+WiS\np4btwSQbI/VNkrREFwyAJLcD9wMfB34e+AXgE8D9SW4bp3uSpGW54IfCJ5kBd1fV57a1vw34o6q6\neWGdSMqZwJK0e8v+UPhD2y/+AFX1JLC2l5NKkqa3UwD8z2X+TJK0D+y0GNybkxw7T3uANy2pP5Kk\nkew0BrDjPf6q+tTCOuEYgCRdkkWMAVwwAMZkAEjSpVlEAFzwFlCSk8D5rsoBqqretpcTS5KmtdMY\nwE8OX38GeAx4bvndkSSN5YIBUFVfAkhyDfBB4D+BvwY+UlVnxumeJGlZdj0GMEwA+zngp4HnqurH\nF9YJxwAk6ZIseyLYdl8BNoH/AK7by0klSdO7aAAk+fVhWYi/B74HuMsBYEna/3YaBD7rDcBvVNWJ\nZXdGkjQe5wFI0j409hiAJOkKYgBIUlMGgCQ1tZtB4FEke7qVJWkEa2vrbG6enrobWpCVGQQ+/7JD\nklZLWIVrhhwEliTtgQEgSU0ZAJLUlAEgSU0ZAJLUlAEgSU0ZAJLUlAEgSU2NEgBJrkryRJJjY5xP\nknRxY70CuBv4/EjnkiTtwtIDIMlh4DbgvmWfS5K0e2O8Ang/8G5c7EeSVspSVwNNcjtwpqpOJNkA\ndli46N4t+xvDJkkCmM1mzGazhf7Opa4GmuT3gF8EvgVcDXwn8NGq+uVtx7kaqLQvuBroqljEaqCj\nLQed5Gbgt6vqjvP8zACQ9gUDYFW4HLQk6bL5gTCSLoGvAFaFrwAkSZfNAJCkpgwASWrKAJCkpgwA\nSWrKAJCkpgwASWrKAJCkpgwASWpqqauBXpo9TWiTNIK1tfWpu6AFWpkAcHq5JI3LW0CS1JQBIElN\nGQCS1JQBIElNGQCS1JQBIElNGQCS1JQBIElNGQCS1JQBIElNGQCS1JQBIElNGQCS1JQBIElNGQCS\n1JQBIElNGQCS1JQBIElNGQCS1JQBIElNGQCS1JQBIElNGQCS1JQBIElNGQCS1JQBIElNHZi6A2cl\nmboLksTa2jqbm6en7sYoUlVT94EkBdP3Q5IgrMJ18WKSUFV7+svZW0CS1JQBIElNGQCS1JQBIElN\nGQCS1JQBIElNGQCS1NRSAyDJ4SSPJnkqyckk71rm+SRJu7fUiWBJDgGHqupEkmuAfwLurKovbDvO\niWCSVoQTwRaiqjar6sSw/yJwCnj9Ms8pSdqd0cYAklwP3Ah8ZqxzSpIubJQAGG7/PAjcPbwSkCRN\nbOmrgSY5wPzi/0BVPXThI+/dsr8xbJIkgNlsxmw2W+jvXPpqoEn+DPhqVf3WDsc4CCxpRfQZBF72\nu4COAP8AnGR+hS/gfVX1t9uOMwAkrQgDYFQGgKTV0ScAnAksSU0ZAJLUlAEgSU0ZAJLUlAEgSU0Z\nAJLUlAEgSU0ZAJLUlAEgSU0ZAJLU1NJXA929Pc1olqSFWFtbn7oLo1mZANgPa29I0pXEW0CS1JQB\nIElNGQCS1JQBIElNGQCS1JQBIElNGQCS1JQBIElNGQArZjabTd2FlWAdzrEW51iLxTIAVoxP8Dnr\ncI61OMdaLJYBIElNGQCS1FRWYRG2JNN3QpL2mara0zLKKxEAkqTxeQtIkpoyACSpqUkDIMmtSb6Q\n5ItJ7pmyL2NI8idJziR5ckvbtUkeTvJ0kr9L8totP3tvkmeSnEpyyzS9Xo4kh5M8muSpJCeTvGto\nb1ePJK9K8pkkx4daHB3a29UCIMlVSZ5Icmz4vmUdAJKcTvK54bnx2aFtcfWoqkk25uHzL8A68Arg\nBPDWqfoz0mP+EeBG4MktbX8A/M6wfw/w+8P+9wHHmX9q2/VDrTL1Y1hgLQ4BNw771wBPA29tXI+D\nw9fvAB4Dbmpci98E/hw4Nnzfsg7DY3wWuHZb28LqMeUrgJuAZ6rqS1X1TeDDwJ0T9mfpqurTwNe2\nNd8JfGjY/xDwU8P+HcCHq+pbVXUaeIZ5za4IVbVZVSeG/ReBU8Bh+tbjG8Puq5j/By4a1iLJYeA2\n4L4tze3qsEV4+Z2ahdVjygB4PfDlLd8/N7R1c11VnYH5RRG4bmjfXp/nuULrk+R65q+MHgPWOtZj\nuO1xHNgEHqmqx+lZi/cD72YegGd1rMNZBTyS5PEkvza0LaweK/Oh8Pq2Vu/LTXIN8CBwd1W9eJ45\nIS3qUVUvAT+U5DXAx5J8Py9/7Fd0LZLcDpypqhNJNnY49IquwzZHquqFJK8DHk7yNAt8Xkz5CuB5\n4I1bvj88tHVzJskaQJJDwFeG9ueBN2w57oqrT5IDzC/+D1TVQ0Nz23oAVNV/ATPgVvrV4ghwR5Jn\ngb8CfizJA8Bmszp8W1W9MHz9d+BvmN/SWdjzYsoAeBx4S5L1JK8E3gEcm7A/Y8mwnXUM+NVh/1eA\nh7a0vyPJK5PcALwF+OxYnRzJ/cDnq+oDW9ra1SPJ9559J0eSq4GfYD4m0qoWVfW+qnpjVb2J+fXg\n0ar6JeDjNKrDWUkODq+QSfJq4BbgJIt8Xkw8wn0r83d/PAO8Z+oR9xEe718C/wb8L/CvwDuBa4FP\nDnV4GPiuLce/l/lI/inglqn7v+BaHAH+j/m7v44DTwzPh+/uVg/gB4bHfwJ4Evjdob1dLbY8vps5\n9y6glnUAbtjy/+Pk2WvkIuvhUhCS1JQzgSWpKQNAkpoyACSpKQNAkpoyACSpKQNAkpoyACSpKQNA\nkpr6f+pvzeHWysFnAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x9277780>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import csv\n", "import matplotlib as plt\n", "from pandas.tools.plotting import andrews_curves\n", "\n", "\n", "c_names = ['vID', 'frID', 'tFr','Timestamp', 'localX', 'localY', 'globalX','globalY', 'vLenght', 'vWidth', 'vType', 'veloc','accel', 'line', 'pred', 'foll', 'spac', 'headway', 'dateTime']\n", "\n", "data = pd.read_table('D:\\\\zzzLola\\\\PhD\\\\DataSet\\\\US101\\\\test\\\\portion1Set2DT.txt', sep='\\t', header=None, names=c_names)\n", "\n", "# Stast description of the whole dataset.\n", "desc = data.describe()\n", "\n", "##++++++++++++Example\n", "# data.groupby(['col5', 'col2']).size().groupby(level=1).max()\n", "\n", "#Mean of values by vehicle Id and DataTime\n", "mean = data.groupby(['vID', 'dateTime']).mean()\n", "\n", "#Number of vehicles\n", "num_v = data.groupby(['vID']).size()\n", "\n", "\n", "#Number of registers by timestamp\n", "ts_match = data.groupby(['Timestamp']).size()\n", "ts_match_max = data.groupby(['Timestamp']).size().max()\n", "ts_match_min = data.groupby(['Timestamp']).size().min()\n", "ts_match_mean = data.groupby(['Timestamp']).size().mean()\n", "\n", "#number of register by dataTime\n", "dt_match = data.groupby(['dateTime']).size()\n", "dt_match_max = data.groupby(['dateTime']).size().max()\n", "dt_match_min = data.groupby(['dateTime']).size().min()\n", "dt_match_mean = data.groupby(['dateTime']).size().mean()\n", "\n", "#print (desc)\n", "#print (mean [:10])\n", "\n", "num_v.plot(kind='barh', stacked=True)\n", "print (data.groupby(['vID']).count())\n", "\n", "#ts_match.plot(kind='barh', stacked=True)\n", "\n", "#dt_match.plot(kind='barh', stacked=True)\n", "\n", "#print(num_v)\n", "\n", "#print (ts_match_max, ts_match_min, ts_match_mean)\n", "#print (dt_match_max, dt_match_min, dt_match_mean)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x933cb00>" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcsAAAEACAYAAADcLV0wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XvwHeV93/HPF13QBVsCCQHWD+uCUFy12OB4MGC3Ik4Z\nm7ixnUyU1kqc2L1Mkza2U0/TTJjMaOLpxJ3OpGDqejppaNKk46adjkOILGeSjg2xi3GUCsTNAn4C\nAbZlIXRBSELW5ff0j31Wv9X+nr2e2z6r92vmzPmd5+x59jlro+/Z3c8+a845AQCAYpdMegAAAHQd\nxRIAgAoUSwAAKlAsAQCoQLEEAKACxRIAgAojLZZmdp+ZHTCzxzNtP2NmT5rZOTN7Z6b9CjP7mpm9\nbmb35vr5qJk9bmaPmdkOM7vCt1/rP7PLv3dn7nNvMrOXs/2Z2V/55R81s++Z2Zcz791rZs/5vm70\nbVN+HU+Z2RNm9qnM8u8ws2/5vv7azN6Vee/tZvaw/667zWyhb3+n/y7Pmtk9meUXmtkf+/V/y8ze\nOtjWBwAMjXNuZA9JL0k6J2km03afpB9KcpLuyrRvknTMtx/MtM+TdFLSG/5xQtLd/r0v+9cnJZ2S\ndCS3/t+VNJPr76hf/qRf12Hffqek1ySd9n0959vf79tP+cfrkt7m33ss09cbkp727ev8ep/13/8R\nSebfm/b9nPb9vt+3f9r3fdr39Zej/N+GBw8ePHjUf4z6MOxKJXuvlmnbJGmB/3tzpn2VpCX+7ysy\n7QskLZZ0qX8skfQR/94d/r1FkhZKWp5+yMx+VNLP+nVn+7vML7/Iv36zf/4tSW/y61so6Tozu0rS\ndX6dC/3jssz6/44f0yL/vNG3f86v93r/fNg558zsaknrfT8L/Po+6z/zG349C3xfPy4AQCeMulie\nUrKHlfWapLP+76sz7aclnQmMKy2sptmie6V/XpJpO1+Qzcwk/ZGSYpTv77gfV7qudCw3+eczvs0k\n/V0le4anc+O72T/Py/Rt/rV8/y7T/gEzu0TJjwPz/ad9peu9KrP+Gf81skUeADAhoy6WZwJtxzN/\nL8/8HSqskjS/pG1OofT+hZK9ujJpEU6LZXY9aaG7Q0lxn8l95k26UH79t/q2bMH8Z76/bP/ZPrPt\n6frWFA8fADAuoUI0TkuqF9GNgbbs3uYFzGylpF9T7ruZ2W875+7KNtVY93WSvp5ZZ/qZVys+NxVo\n+7CSQ8ZNrJb0aL7RzJjQFwBacM7V+bd/jklfOnJpjWVuDrSVjfsKSdcE2rPnR4t+JOT3VBf650W5\ndZ7N/B0qXPMC712X6a9oj/iS3DPGYM2aNRMPD9R5bNu2beJj6MMYGefFM867775bmzdvPv8YxKj/\nUV6RrsPMXjKzTygJxZw/nGlmX/V/v1mZPU2//NskbWi4zssV/l7ppRiX6cJDn4tyyy3IvH9K0rs0\nt7i+JfN36FfKXv+cHcdO319+HVnm29Ni+3pgGQzZyy9/d9JDANBxoz4Mmy0kb5H0Xs0tEum1iadz\n7W9RcgnGiYbrPKLk0pT8d3vJPx+XtCzTflbFTiu8l5otlk5zC+ZVmmu3kh8P6JiZmVZHZQB03PT0\ntPbt2zeUvsZZLOcpCd3kD72mhetUrn2eknN/xzVaZcVyoeaGeaTZMR9Xsqea72u55tqi5DpSdMy8\neaGd/O65/fbbJz2ESjGMUWKcw9bVcW7YsEFr1649//rFF19s3deoD8Nm063nJD2nucXvtYLPnpP0\nXYUTsuOySNKBQHsa8Mmfr9xb0C4lhbdpwCdUqDFk731v6LR493T1H6SsGMYoMc5hi2Wcg4ghSNJm\njKPeVTjnn/PFLD3/GSrwTQslAKAjRl0sQ/1fFmiTZmfSyQud/ytTJ+CTlQ/4ZJ2StLTButPrIo8E\n3tuuuYeaqxDwGYOHH35k0kMA0HGjPmcZCr/8sGDZfMAnNemAT+iQamGBNbMNuf5TUyr+jpigM2ek\nZNInDOqqq9boBz/YN+lhAJII+AzbIAGfIqHDwBslHao7KIxT0e83NHXgwCuTHgJwHgGf8akK+BQJ\nFeAlIuCDnluwYNKTggGjQcCnnXMV7+8NtO0cxUCALrnttndWLwREKIZiOeyATxNNAzmp0OQDu1v0\nR8AHUSEshb4a9TGTYaRhmxaMqoBPkzTsaZWnYc/m1+Ocmy64tdZNIuCDnjtzJobf37hYxBTwyUoD\nPvNy7WlYJl9I0oDPySGPo0kaVgrvJaZtZ1R/G96g5BwsAGAMYg/45AM96ev8Ico04DNqVWnYlwLt\naWEvut4g1L5Ioz+XCkwUAR/0VQzHTCadhg05aWaLNXvLrbzQJSLbRRoWPUfAB30Vw8/ArqZh363A\n2MxsVcFn8oefgd556KGHmOBhiJYuXabjx49OehgQ091J7ae7u6WgfaOkKwPtd4g0LIAGTpwgE9gV\nTHfXfrq7ovOphws+M1+kYQFgbGJKw16s090dlHR1rm2npKJDtAAwB4GpwcSehu3LdHdlRTx00ma/\nCPgAaIDAVHfE8LOlkwEf59z9ZvaMknOU54ujc+7pgkkJrh/xmAD0DIGp7iDgM9j9LKdUfK1l3noR\n8AGAKI26WIaCLuMK+ORlAz5Zg9zPckmDcV0qAj4AEKVRF8u+B3yK9ir3B9q2ixl8ACBKBHzKVd3P\n8kzB50Iz+7wgAj4AEKUYprvrZMCnoD0tnqFLRLaOaCwAgBEj4DNYwCefJp4uWXa1CPgAQJQI+AwW\n8Mmfs0wPGR8MfGZaBHwAIEoEfIY7g89bSvraJQI+ABAlAj7lqgI++b3O9HVoUoJ1IuADAFEi4NNO\nGvDJH4a9vOQza0Y0FgDAiBHwGSzgk1c2m88KEfABgCgR8Bks4FMklIrdIQI+ABAlAj7VAZ9Qgau6\nRdc1gbY9IuADAFEi4FNukaRvB9qfqfhc6FDzVhHwAYAoEfBp51stPlN16BYA0FEEfKoDPnlnVX0e\nNXSec3FBf2UI+ABABxDwqQ745BVNnp51ONC2vaA/AEDHEfCpDvhcl2tbpOR7lAlNSrBeBHwAIEoE\nfMotkrQ313ZKyfdoakoEfAAgSgR8Kjjn/rMuvCXXQiV7iWVCBb7onCwAoOMI+NQL+DTdTvm9UUna\nKQI+ABAlAj71Aj6h71EmVOB3i4APAESJgE91wEcKf48yywNtW0TABwCiRMCnXHqINvQ9yoT2RBeK\ngA8ARImAz2iECnzTQgkA6AgCPqMJ+BwJtG0XAR8AiBIBn8ECPkXtobuSTImADwBEiYDPYAGfV3LL\nH/TPocPAGwvaAQAdR8CnXFXAZ2Vu+XRO2FABXiICPgAQJQI+g5mXe53OI1s0KQEAIEIxFMthB3ya\naBrImW9mKyStCLy3u0V/BHwAoANiSMM2LRhVAZ8madg0kNNkO12u8F1HbhIBHwCI0jj3LNNgTP7Q\nZRrwyReSNOBzcsjjaJKGDakzg0/IDS0+AwDogEkEfPKBnvR1/hBlGvAZtTpp2KYz+FigbZFIwwJA\nlGI4Z9mFNGxThwJt20UaFgCiFEOx7HIaNjQpQWj2Hmnu4WcAQCRiCPh0ebq7OelW59whSVcGlr0j\ntHwF0rAA0AFMdzfYdHdFYw4tP79keQBAhzHd3WDT3S0t+NzBQNtOEfABgCgx3V25wunuzOxyJXuL\nIaE07H4R8AGAKBHwae8joUYz26TwpARtrs0EAHQAAZ/2AZ+icYUKpSStFwEfAIgSAZ/2AZ+iCRMO\nF7RfKgI+ABAlAj7tAz5lhW9/oG27CPgAQJQI+JQru5/l0woX2lc1W2SzXhABHwCIEgGflpxzT0p6\nRblDtM65VyStCnxk66jHBAAYDQI+g83gc5XCl4mErBYBHwCIEgGfwWbwKdp+oUkJpkXABwCiRMBn\nsBl8mtglAj4AECUCPuXKAj6SdCa3fLoHGrrWcp0I+ABAlAj4DCY/tn0ly64Z4TgAACNEwGewgE9+\nbtiyIr1CBHwAIEoEfAYL+OSlh5SnA+/tEAEfAIgSAZ/hBnxW++erA+/tEQEfAIgSAZ9yVQGfvPSH\nQCiYs1UEfAAgSgR8hqusGJadGwUAdBgBn8ECPkVC5zgXi4APAESJgE+9gM+5TFudbRa6Tdd2EfAB\ngCgR8KkI+JjZJX4sKZP09oo+Q5MSrBcBHwCIEgGfcosk3aK5k6UvCyxbZUoEfAAgSgR8qn0s0DZV\n8ZlQgS86JwsA6LhahcjMFprZ283sBjML3di4Sf+xBXxuDbTnDyXn7Q207RQBHwCIUmWxNLMPKvnH\n/15JX5A0bWZ31uy/DwGf0I2cq+5hGSrwu0XABwCilJ/bNOR3JP2Yc25akszsOklfkfTVGp+NPuCj\ndtdHLg+0bZF0rEVfAIAJq3MY9vW0UHrPq/7hwT4EfOZVLjVXaI96oQj4AECU6uxZ/o2Z7ZD0v5QU\ngS2SdprZT0uSc+7LIxyfNPmATxmn8CHZUIFfrOaHlAEAHVCnEC2SdEDSZkm3Szqo5B/+n5T0D1r0\nH1vAp2zPtujc5ZFA23YR8AGAKFXuWTrnPjFA/6E9r3EFfPLfLRvwyV4nWRXwKXu/SOg6zCkR8AGA\nKFUWSzNbJ+mTktZml3fOfahG/30I+LQ5Zxk6DLxR0qEWfQEAJqzOOcv7Jd0n6c/UPGwzo9likwZ8\n8pdiVAV8rm24zmFqG/A5G/jcEkknG/ZDwAcAOqBOsTzlnLt35CMp1uWAT5G9kjbl2nZKWjeBsQAA\nBlSnWH7ezLZJ+gtlzjc653aNbFQXGnbAp4mqgE+RFYG23ZKuadgPAR8A6IA6xfIGJfOjvk+zhcP5\n11WGkYZtWjCqAj5N0rBVAZ9zCh+mDd115CYR8AGAKNUpllskrXfODfoPfRrwyReXNOCT7z8N+DQ9\nz1elSRq2yiFdeA72+yXL3qDkHCwAIDJ1zgc+qfD0bXWEZvDJB3rS1/k0bBrwGbVB0rBX5l6ne8Gh\n6y8XafLnUgEALdTZs1wuaY+Z7dSF5yzrXDoyDF2e7i5fFDf450Oae651u6SbG66fNCwAdECdYrlt\n5KMoF1Madp6ZhcI9UrtLUAAAHVBnBp+HBui/79PdhazT3MOzknSHys9phpCGBYAOqHM/y1vMbKeZ\nHTez02Z2zszq3mqqD/ezbBoAOqrw954v0rAAEKU6hzi/IOmjSsI5iyX9U0n/qWb/F+t0dwcDbTtF\nwAcAolTrfKC/n+U859w559zvS/pAzf4v1vtZhtKw+8X9LAEgSnUCPifNbKGkx8zs3yv5R79N6Kat\nLgd85kxK4JybNrPQpATXj2dIAIBhq1OIPuaX+xUl5w+vlfTTA/Tfp4DPKw3GtV7czxIAolSnWH7E\nOXfKOXfMOfdbzrnPqPqmz6m+B3wubzCuS0XABwCiVKdY/mKg7eM1++9twMfMFmvud0ntD7RtFwEf\nAIhS4TlLM/uopK2S1pnZA5m33izpcM3++3w/y5sUCPKY2SolRTbvBTGDDwBEqSzg87CSPaSVkn4n\n0/66pMdHOaicrgZ8fqSgfaXm/iCQkh8e50Y3HADAqBQWS+fci5JeNLO/L+kN59yMmW2U9DZJT9Ts\nv88Bn6JxhZKwkrRa0rMl6woh4AMAHVBnr+2vJC0ys9VKbgD9MUl/ULP/Pgd8iu6IcljhSQmmRcAH\nAKJUp1iac+6kkstFvuic2yLpb9fsv7cBHzUf1y4R8AGAKNUqlmZ2q6Sfk/QV31Z3VpvezuDjnLtf\n0jOB9qcVPhS7TszgAwBRqlMsf1XSb0j6E+fcU2a2XtLXRzusC3Q14CMl9/oMHWoOWTPKgQAARqfu\nLboeMrMl/vXzkj5Vs/8+B3ykJPUamgc2ZIWkvTWXTRHwAYAOqHOLrlvN7GlJe/zrd5jZF2v23+eA\nT5npQNsOEfABgCjVOcR5j6T3SzokSc653ZL+Xs3++xzwKXN1oG2PCPgAQJTq3qLr5VxT3Yvrexvw\n8fKFNt0uoWDOVhHwAYAo1SmWL5vZbZKcmS0ws38t6TsjHldWlwM++UJaNulA2blRAECH1SlEvyTp\nXyqZgeZ7km70r9v236eAT3496bKhc7WLxS26ACBKddKwryq5xrINp7lp0XEFfPLfLRvwWZZpH2bA\nJy2ehzW3yG+XtKlBXwCAjqgslma2TtInJa3NLu+c+1CN/i+2gM96/xyalGC9CPgAQJQqi6Wk+yXd\nJ+nP1Dxs0+dbdIWEbs2VmlLzS0cI+ABAB9Qplqecc/eOfCTFuhzwyUv3pEM/Kt4s6dUxjgUAMCR1\niuXnzWybkjuOnD/f6JzbVeOzfQ/4FNmruecnd0q6pmE/BHwAoAPqFMsblNyW6326MO35vhqf7VzA\nxzk338xmMuM6XNJX2xl8QgV+t5Ip7wAAkalTLLdIWu+cazNVW+cCPmb2e7lxPVWy+EI1n0hASiZY\nz9si6ViLvgAAE1bnfOCTCv/jX0cXZ/D5xdzrN0qWvVTtprsLXWfZpvAS8AGADqizZ7lc0h4z26kL\nz1nWuXRkGIYd8Ml/59BlHll1p/bLChX4xWp+SBkA0AF1iuW2AfrvYsAn7+aSvk4oOQe6tOEYjig8\nKcGNDfsh4AMAHVD3fpZtdS7gE1B2P8pjSi73mGo4hmWBtjbXWQIAOqDwEKeZfdM/v25mxzKP182s\nblClcwGfhtoGfEKHgTcWtAMAOq5sz3KpJDnnBgmZxD6DzxJJJ1t87qzmBoPa9EXABwA6oCw8E0p0\nTsK4ZvAJfV+n8rRskb2Btp0t+gEAdEDZnuUqM/tM0ZvOuf9Qo/8YAj5lTqh4XGVCkw/sFjP4AECU\nyorlPCWFrSwAUyWGgE8q9D3PKjl82tTKQNt7RMAHAKJUViz3O+c+O2D/F2vAJ3uuNrVWTKQOAFEq\nOx84yB5lqosz+DTRNuATOv+5WMzgAwBRKiuWPz62UZSLMeATOtf4jRb9AAA6oLAQOefK7sYxTpMO\n+FQJ7fmGbgK9THMPNVch4AMAHdBmr23Q/pumYZsWjDTgk1cV8Ampuj3Xa7rwO6bzyIZCQdeJgA8A\nRGnUxTIrDfjkgy9pwCdfSNKAT5tzhm0UnaMtS8PmD/c+75/r7m0CACIw6mIZCvjkAz3p6/whyjTg\nM0lVadh8IU0LYij1+riY7g4AojTOPcu2YkrDrvHPoe26X6RhASBKMRTLqNKwZrZB4XtkXt9iTACA\nDogh4NP1NGze8oL29SINCwBRGnWxDO2tjWu6u7xxTXd3tKD9UpGGBYAojbpYXqzT3e0PtG0XAR8A\niNIk0rB9mu4utOd8ROHLRF4QAR8AiBIBn1ltAj5zDvc65w5p7g2uJWlrizEBADqAgE+5qvOlTZKy\nq0XABwCiRMBnVpuAT9GsPAcDbdMi4AMAUSLgU64w4GNml0ta2qCvXSLgAwBRIuBTrizg88FQo5lt\nUnhSgnUi4AMAUSLgM6tpwKfpOtZULwIA6CICPuXKzpcWjSu0VylJK0TABwCiRMBnVtOAz/MF7YeV\nhHnydoiADwBEiYBPubIZfJ5W+ObQr0q6OtC+RwR8ACBKBHzKFQZ8nHNPSnol0P6KwsGcrSLgAwBR\nIuAzq80MPisa9L+o2XAAAF1BwKdc1fnSokkJQoV3sQj4AECUCPjMajODT+j7SUnIJ2+7CPgAQJTm\nj7j/Pgd8yoQuH1kvAj4AGliw4E06ffrYpIcRrXvuuUf333//+dcPPfRQ674I+JSrukVXfmyhOWFT\nUyLgA6CB225756SHAI+Az6w2AZ95udfp4d9QgS86JwsA6DgCPuWqzpfmz3Ome8l7A8vuFAEfAA08\n/PAjkx4CvFGfs3SaW1DGFfDJf7dRBXyyn0v3aEMFfreaXWoC4CJ35kwMB/+6a3p6Wvv27RtKXwR8\nylUFfPIFdr1/Xh5YdoskztQDqG3p0rLf6qiyYcMGrV279vzrF198sXVfoy6WM5o9r5cGfFbllqkK\n+Fw7mqHVUhXwyUu3Z+j8Z5tkLQEfRGXz5s168MEHJz0MYOhi2MfvcsCnSCjg0+YSFABABxDwKdf0\nfGnqSKBtuwj4oOcIpKCvCPjMKgr4FE1pV2ZZoG1KzOCDniOQgi4h4DM+C1Vc3MuEDgNvlHRosOEA\n3bZgwaj/SQHqG2bAhxl8yi2R9M0Wnwvd53KJCPig55hxBn0VwzGTSQd8nq25bFbRpAQAgAgR8Cl3\nQtKtgfaqvd3Q5AO7RcAHPUfAB31FwGdWUcDnXYH2/JyweSsDbe8RAR/0HAEfdAkBn/FZqPLp7opk\nJ2NIrZX06qADAgDUQ8BnfJYoHNapEjqnuVgEfNBzpGHRVzEcM5l0wKfN+kPnGr/Roh8gKqRh0Vcx\nFMtJB3yWtvhcaCKDZSLgg54j4IO+GvUxk2GkYZsWjLYBn5CzancYNnSe8zpJB1r0BUSDgA+6JKaA\nT1Ya8MkHX9KATz4pmgZ8mtz1YxChNKwknWnRVyjg02baPABAS7EHfPKBnvR1/hBlGvCZpLYFLpR6\nfVztzqUC0SDgg76K4ZhJjGnY0HbdL9Kw6DkCPuirGIpll9Ow5wr6uCKw7PUtxgREhYAP+iqGgE+X\n07Dfl3Rt5nXZBArr1TzgQxoWUSHggy6JKeDTh+nuyiZNX517XVYMLxXT3QHA2MQU8OnDdHdl10bm\nt99a/7w/sOx2EfBBzxHwQV8x3V25pgGf+Wa2QuEU7Qsi4IOeI+CDvorhBEOXAz4hl0taFWjf2nhE\nQGQI+KCvuJ9luTbT3S0vaF8tprtDzxHwQV8R8JnVJuATclTSQc0t8tMi4AMAYxNTGrbvAZ8mdkl6\nx5D6AjqJgA+6JKY0bN8DPnPG5pybVnhSgnUi4IOeI+CDvorhBEOXAz4HG/S/ptlwgPgQ8EFfEfAp\nVxXwWVbyXt4KEfBBzxHwQV8R8JnVKOBjZotVfFeSaUl/K9e2Q8mhWADAGBDwGZ+ygM9NCuzBmtkq\nSVcHlt8jaePwhgZ0DwEfdAkBn/EpC/isL2hfqXAwZ6sI+KDnCPigr2I4wdDVgE/TdSxquDwAoCMI\n+JQrC/gUjesKhQvvYhHwQc+RhkVfEfCZ1XQGnz0F7Yf9I19Mt0vaVDEGIGqkYdElBHzGpzDg45y7\n38yeURLasUz702YWmpRgvbhFF3qOgA+6hIDP+FTN4LNc4T3SkCkR8EHPEfBBX8VwzKSrAR9JurKg\nPVTgi87JAgA6joBPuaoZfIr2KvcG2naKgA96joAP+oqAz6w2t+iaUXJuNS9U4HcrmfIO6C0CPugS\nAj7jU3WLrvy/DOnh19ANoLdIOjaMQQFdRcAHXULAZ3yqAj75vc79Be1SUngJ+KDXCPigr2I4ZtLl\ngE/+0O1R/xwq8E0LJQCgIwj4lGsa8EnXeySw7HYR8EHPEfBBXxHwmdUm4JOXFvbQfS6nVPwdgV4g\n4IMuIeAzPlUBn7x05p7QYeCNkg4NPCKgwwj4oEsI+IxPVcCnSOgzS0TABz1HwAd9FcMxky4HfIoU\nTUoAAIgQAZ9yJxSeSKBqPtjQZ3aLgA96joAP+mrUJxjOau5e3gFJqwPLHizoY9IBnxOaOwdsVehn\nZaDtFhHwQc8R8EGXDDPgM+r/Z5/L/J0GfPJFMQ34vJBrTwM+k9y7Wijp+4H2qvOY5wJt14lbdKHn\n5oUmf+ygBx98cNJDqIVxDiYN+KSPQYy6WB7I/J0GfB7VhcXkNUlyzp3UhUUoDfi0Cdikmlz2Edrr\nm1fQnu13RtKZXFvocOtizc4je8Y/Qv1m3yPgg6hMTa2a9BBq6eo/7nmMszvGccykScFq21e+Pd2D\nC+3hFX3mbwLLfF+zxTpb3LIF/BK/vuxh3OnAur+hC3881BkT5yzHYM2aNXLOdf6xbdu2iY+h6vHx\nj3980v9zAiMRwwmGNOBzRsm5yHxBmfHtaTG7PLNM9rxlNuBzLvcZSdrh+3KaLXQPSHpGF6Ziz2n2\n0Gw6HqcLL3FZpqR4HvHtM0r2oL+WG3t2XaEfAk8E2jBkL7/83UkPAUDXjfJXpqR9mi1AZyXdJ+lz\nmp0ZZ0bSwczy6eHMdPk7Jf2yf31a0htKisspv/yMX+4N/75TEq75737dz/vlnaTf9p85nenrdLIJ\nnCT9pn/9Q/+YUZLcvVnJtaHpeI9J+rT/zB9LOuk/NyPphG//v5nl0++zVdLVmj3Umn5mj//MUT/W\n0/47zZRsV8eDBw8ePJo/2tazUadhV2r28GQa8Fmm2XN3pgunhsuOJw343C/pHiWHOucrKSj/wy/z\nlKRNmp0V6IRz7lVJP592YmbfkbTGOXeXb/p9Sf/Yf8ZJSqd0WO7X4ZQUqz91zh2X9Ndm9gVJv67k\nriL/R9IXM59Z5P8+I+nX/N//RNJjmXV8yTn3JT+el/33MiWF8Vf9Z/6tkh8S6RgeVgHnXNWlKwCA\nIRp1sXxA0u1Krjs8oKRQHZH0biWF9KiSopLapyTUstC/9w3n3H4z+6SSonJaSXH7jF/+ZyX9FyV7\ngDOaLVZZ/07Sj2Ze/xsll668Vck5wV/y7f9b0k/6fp5SUvBSn/Wv3+acy55H3CFpnZLi9mXn3Bcl\nyTm3x8zeL+lzzrnbcuP5KUl/oKTI7nDO/blv/49K9mJvUjIt3s8LANAJ5g/rAQCAAjEEfC5aZvYB\nM9tjZs+a2a8XLHOvmT1nZo+Z2Y3jHqMfQ+k4zWyzmR01s13+8ZsTGON9ZnbAzB4vWaYL27J0nB3Z\nllNm9jUze8rMnjCzTxUsN9HtWWecHdmel5rZt83sUT/ObQXLTXp7Vo6zC9vTj+MSv/4HCt5vvi0n\nHTXnURjiuUTJJShrlJzHfEzJYeDsMndK+or/+92SHunoODdLemDC2/O9km6U9HjB+xPfljXH2YVt\nebWkG/3flylJjHfx/5t1xjnx7enHscQ/z5P0iKSbu7Y9a46zK9vzXykJes4ZS9ttyZ5ld90s6Tnn\n3IvOuTNKkrcfzi3zYUl/KEnOuW9LWmZmTefSHVSdcUrV8+mOlHPumwrflDvVhW1ZZ5zS5LflD5xz\nj/m/j0v6juZOYTnx7VlznNKEt6ckuWRSFikJBc5XkoPImvj29OuuGqc04e1pZlOSfkLS7xUs0mpb\nUiy7a7V2FBYIAAACTklEQVSklzOvv6u5/6Hnl/leYJlRqzNOSbrVH/L4ipltGs/QGunCtqyrM9vS\nzNYq2RP+du6tTm3PknFKHdie/rDho5J+IOkvnXP5uxR1YnvWGKc0+e15t5KwZ1Egp9W2pFhiHP6f\npLc6526U9AUllwOhnc5sSzO7TEmK/NN+z62TKsbZie3pnJtxzt2k5LKyd0/6R1CRGuOc6PY0sw9K\nOuCPKJiGuJdLseyu7+nCWYemfFt+mWsrlhm1ynE6546nh2+cc1+VtMDMrhjfEGvpwras1JVtaWbz\nlRSgP3LO/WlgkU5sz6pxdmV7ZsZzTNLXJX0g91YntmeqaJwd2J7vkfQhM3teyfX4P2Zmf5hbptW2\npFh2105JG8xsjZktlPSPlFy3mvWApF+QJDO7RdJR51zV/LPDVjnO7PkAM7tZySVLh8c7zGT1Kv6l\n2YVtmSocZ4e25X+V9LRz7vMF73dle5aOswvb08xWmtky//diSXdI2pNbbOLbs844J709nXN3Oefe\n6pxbr+Tfoq85534ht1irbTnqSQnQknPunJn9iqS/UPKj5j7n3HfM7J8nb7vfdc7tMLOfMLNpJffd\n/EQXxynpZ8zsl5XMcvSGpH847nGa2ZfkJ8gws5ckbVMy+UVntmWdcaob2/I9kn5O0hP+/JWTdJeS\nRHRntmedcaoD21PSNZL+m5ldouS/of/pt1+n/luvM051Y3vOMYxtyaQEAABU4DAsAAAVKJYAAFSg\nWAIAUIFiCQBABYolAAAVKJYAAFSgWAIAUIFiCQBAhf8P+0FclmBE7IQAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x8558c88>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ts_match.plot(kind='barh', stacked=True)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0xc1891d0>" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAD+CAYAAADif9bKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXucHVWV778rCQnPDA8xII8Aw/slBIFBILS8FL0DPpAR\nBmUQGe5FlAHHEca5dlC8KFx5qChzQREEHAQVFAXCaBqEQSAmQECeYoIwJBEFQhIwMVn3j7Urp06d\nOt19Qp9Udef3/XzWJ3WqzqraZxOya6+19m+buyOEEEKIVcuoqhsghBBCrI5oABZCCCEqQAOwEEII\nUQEagIUQQogK0AAshBBCVIAGYCGEEKICujYAm9nmZvYLM3vUzGaZ2Sdz1zYws6lm9oSZ3W5mf5W7\ndraZPWVmj5nZ4bnz08zscTObaWYzzOxNbZ47ycweNrMnzeziwrVjcu25po3/gWb2azNbambvL1xb\nlp4908xuauN/tJk9kr47qeT6lmb2qpmd2ca/18yeS8+ZYWbvGqhvCv7np+sPmtkPzGx8Oj/GzL6T\n+uZRMzurzF8IIcSqoZsz4L8AZ7r7LsB+wMfNbMd07SzgP919B+AXwNkAZrYzcAywE3AE8A0zs9w9\nj3X3Pd19kru/2Oa53wROcvftge3N7J3p3tsCnwH2c/fdgH9q4z8HOAG4tuTaovTsPd39vW38ZwHv\nA+5sc/0rwM/aXMu4MD1nkrvfltq/E/33TcZUYBd33wN4itS3wAeBse6+O/A24BQz23KAdgghhOgS\nXRuA3X2uuz+YjhcCjwGbpctHAVel46uAbDA7EvgPd/+Lu88mBpB9BtteM9sEWM/dH0inrs7d+2Tg\nUndfkNpUOoC7+7Pu/ghQplBSNuAV/Z9w96fKvmtmRwHPAI8OcJuy5xxF/32TPf8/3X15+vgrYPPs\nErCOmY0G1gb+DCwY6PcIIYToDmNWxUPMbCtgD2JAAHizu8+DGKjN7M3p/GbAvTnX52kM2gDfMbOl\nwA/d/dySR20GPJf7/FzOf/vUlruJgfwcd7+9w58yzsymA0uAL7v7zYN1NLN1gH8BDgM+Xbh2OfBN\nd5+RTp1mZh8GpgOfcvdX6KdvSvwzPgr8Rzq+kRjEXwDWAs5w95dL2ilpNCGEWAncfcBJWp6uF2GZ\n2brEP/6nu/uiNl8bzD/6x6XQ8YHAgWZ2fIdNGQNsC0wGjgMuz/KjHTDR3d8G/D1wsZlt3YHvFOAi\nd1+cPq/4D+XuJ+cGz28A26QQ8lwiZN0vBf+4udlngaXufl06tQ+RFtgE2Ab45/RitNoyYcJE3L2r\n1tvb2/VnqJ31s+HQzuHQxuHUzpWhazNgM9sc+C6Rb3wVmJi7/Acz6wM2Bf4byMLBzwMfNrNziMFi\nIXB5unadmW0KvAZsAEw2s+uAXxMD+I+By4DtzOxhYE3gaSKnCzEbXk7kaJcDa6Tvvg94D+DuPsnM\nDgQuBvYE5gM/zLX7OTN7iBg8R6Xv/K7wu48mBttdgB2BbGDcF/iAmX0F2BJYZGavufs3Cl13KnCy\nmc0HxhLh4oH6Jv/884HjgfHAHWY23iPs3gvsQMyqjYgIvB+4sHiP+GpGT7K6MSXZyjNvXkcvq0II\nsYK+vj76+vre0D26GYLODxKfA35tZlPd/XHgJWCxu+9gZj8D/pR8Hk3f3QjYiyjQuj/lLccAxwKP\nANcB0z1ynXvmH5qqo6cQ+d95wD3p0v3ABcTsbywwE3jG3f8N+LfcLbIirB+Rm6Wa2fqkIqz0jHuA\n35T87qwI636aZ7mT031uIF5Iflsy+AKsSxRhXWhmZwB7p/OPlPVNif+fiP7djQh1n53s58Bz7n6S\nme0N3E0UbJVwTpvjuvHG2jZhwsSBvySEECX09PTQ09Oz4vM553T+71E3Q9B/DbwbOBj4JTCBRkHU\nhsC6ZvYEMcPbKJ3fhagenkUM3A8SodNxwFuJfOYMYjZbNvvbBPgD8M/Ak8TsOCtC2jF9vpcYjM50\n95dK2v1m4FZgK6JSeFY6vxNRxDQz+Z+XXiaK7EQMjuOJMPWtufZlRVjzC+2+PLdk6TAiPPwgcBBw\nRjq/a5u+KfqfRAzidxCVz9lSqkuB9czsEeCnwJ0exWYtVB3KGYxNmzbtDd9j7tzZZT9/SMn/D1pn\n1M6hZTi0czi0EYZPO1eGrs2A3f0eYDSsKMLqA76WLr/JY5kQ6Xo2A94M+K6nvKWZXQFs5u73mdmv\ngTcBS4E/ennQfTPgaXc/PPkfQBQ+QYRcHwTWIV48SiuA3X06sIWZXQn8xN1/mM7fa2bLgGVEGLxs\n8MbdbwJuMrNpRAHVjNSWYhHWq2X+xMz7H9Lxi8Dr/fVNyfO3y47N7MekIiyP/Psx6fzTtF+GRfnq\nJrEyTJgwcZUM9G+U4fKPnNo5dAyHNsLwaefK0O0c8NVEnncicK03irDMzKam87MLrkfm8pz5a2OJ\nvO1y4F/M7EV3v6zk0evlcsAP5s6PIWaU6xEvBj80s01TfjTf7v5ywKOJwfuviJz0ru4+2BzwFOAi\n4iXiX4HbSPlXdz85d4u1c7/zPcQMPhPjKO2bvH/KAf8tsH66x/G5a7sD1xAD9/fMbG93X0ILwyEH\nPDxQnlmIkclQ5IC7WRG2CZGrvI2Y8T0B7JiuvQh8Ph1/AXgxHV9IFBuNIULAi4B907VpwJ7p+ATg\nq8RgOJMY5KakZ74G7J2+NxO4JR1fSxRMjU+f70ztOze7Rzq/JRHufYpYapT/TQtyx1cC7y/53TsA\n2xEz5ONy5+8iws8LiWVMC4FTS/x7ifA4xAvKw+n4K+36puB/KHAikaO+APhSOj8aeIhYd30WUchm\nJf4uGzqbMGGiCyFGPkQhb0fjZDdD0HPTbOw37n6Bme1PzLweJ4qT8lOD4jRhFM0FUFkR1igzWwP4\nH8AdXijCSjlgj8OWOOoawPPuviAVUW1FSRGWuz+b7tXUrlSEZen4TcDbgS+X/O4nyvzdfXLKAb+d\nKKx61dsXYS1Mx+8niq/y92rqmxLGEDnwycSSrQ+k84cTA/AhQK+X57+ztvZzeyGEEENBN7Wg9yfW\nyx5sZo8S8onr5p67XyrC2jfXjjWIgq3fEHKNdxGDdlaEdTeRu30LJUVY6bsPAd8iirCeJsKw2b3H\nmtkiotL5u2WDkJm9zcx+T/sirMXJ/zYvKcIys/cm/6YirFwOuKVUzkLj+rj08TDgPDN7DTidqHzu\nr2+K/l+jUYT1HaL4DSIHPoHIgd9oZk1iIEIIIVYt3ZSivMfdRwMHEGHhY7yhHOXufqi77+BRMLU8\n5/pjd9/W3XciQq54iFfs4O5rETnUhcTgXsar7r6bRzHSJbnzY4DfEzngXYCPlAlxuPt0d9+CyJWe\n6CH+gbvfSxSErU2EqI8sE+Jw95uS/13AO939iHRpCg0hjjvT9cxnR28IZhwGjEu/9RoiXNy2b4r+\n7r6du08EfgD8PPVv9vu3JZZhHQi8z8zeUdaBZiaTDbltsslWZX/dhFhtkRDH6iPE8Trx3+Dn6atL\ngUlEbr2AirDE0KOCNDGSGA5FWD8hCqvWpbkI61fAz9Lxz4B70/HfAosJreIDiGIlIwqIfkkMeGsA\nNwD/2Oa5rxJFWkYMoJ9N508kBvrxxCz698AGJf75Iqzzc+fXJxVhJf8Vv6fgny/C+vuS6zcQed2b\n27T/AhpFWGcA16Xj/1HWNyX+ZxGCJhsBXyLWK0MIcywmXkzGECHqI0r8Ky9cko1MU0GaGMlAjYqw\naAhxzALeQUOI40uEEMcSixzwC5QLcSylITYxi4YQxxLgPxlYiOPfaC/EkW2V2E6I40fEC8QpZnaE\nRxg6L8Qxiv6FOL5GIwd8vKcwtDWEODbKO1jzZgqHAW82s48QS41OSV/LC3Hk++a+gv9JxMz5DmK5\n1F8IJawFxAvIdCIC8FN3XyESksdVhCWEEF1HQhyt7R6RQhyJDdI9XyHUsEoxU6hQ1JPhImwixGCQ\nEMfqI8Tx30R4fT1ib+afmNkWHns1F+jNHfegHLCoC8oji7owHHLAEuJonK9KiOO8wvUbgOvT75tU\n4l95rlAma2fKI4u6AjXKAbuEOJr8vWIhjtTmA4iXgLGEMMczZTdw5YCFEKLrSIijtd0jTYhjk9x9\nryUG3mOAG9395ZI+FEIIsSrodMrcqRGDwXTgqNy5PxW+88f059doDtteQQrzApumP9cBbgeOL3nW\nXsDU3OcDCPEKiCVRPyAG+62AZ0nh6DbtvpJCiDnXhq2JcPbW/fhPIxfiJcLBR3sjzPypNn4bk5YX\nEeHxKwbqmzb3+Szwg5V4fuVhRplM9sZN4fpVC9QoBC0hjtoJcRwCfNLMriWKyRa3eT4qwhJi+KOC\nte4yHIqwJMTRer0qIY41gVG5Z7yafS74V/7mLpPJ3rhpBrxqgRrNgJEQR62EONz99cYTGUP8T1pK\n/F0SQgjRTSTE0druESvEYWb7AN8mZvkf9qgib0FCHEII0Uw3RGAkxLGaCHGY2aFE9GEZkRc/z8xu\ndfclLT2oHLAQQjRRzKkPhxywhDga5ysV4iBC+Juk412ImbWEOGQymWwQNlBOHWqUA3YJcTT5e8VC\nHIT+8x/S8UKiP54ru0F5dF8IIcRQIiGO1naPVCGOA4CHzGwG8AtiZj2/pA+FEEKsArpZBT2HCPNm\nOeCr3f3m3PVsYMym+HmaPrv74jQQbgT8mdjb9hRi3W8Z+dBBxpj0zNlELvcMMzu/mAMmlvnMJwa3\ny9z9M6kN95qZEzP4ccDHzOziYg44PecVInd7elY0RXMOeH8iNJ/9vh1z/ren78wn+u7rNHLALX1T\n4v8jIge8KRGmzmbAPwM+SrzwLCXWBZeiIiwhhOg+XZsBE4VCnyYG4l5COCMbKJYBv3L3HYD7aQzG\nS4mw6U7EjHkykfeEyJse6+5vBT4B7Gxmo8xsppnNMLMp6bt7ACd5VFlvl/uNC4ilUPulAWs6IcRx\nbnaP9L05RI75tyW/aZG7T3L3XYDvkwt/55gFvA8oyjzuC5xPzGANOMTMTi3xXwxc6O6TgL8hZvvZ\n72/XN3mmpuc8A1xH7AUMkfO9hKi+nurus0t8E705m0YN0i8ymUxWM5tG87+VnaMc8OqTA16DCH9f\nP4A/zVHyloi5EEKIIaCby5CyHPCslAPelqgchuYc8BzKc8BLaeQ5MyGOu9P3ZjBwDjhbhjQud+8s\nBwxwUbscMP0LcSwmBvkr2uWAKRHiKKwDvqXg8zhRFX5dur6zmZ0LzCOqmvvrm6L/12gIcWwDPJD8\nTyPEUdYH1k5rpA9390wGdAUqwhJCiM5YqdRdp2XTnRrajCH7XOlmDLnzJwBf7cev6riOTCaTDUvr\ndHzUZgyrz2YMmNnZRGX1WDO7xd2nFv2D3txxDxLiEEKIIn3JMlYiXdfFma82Y6jXZgw7E4IjJxLL\nk55u41/5W6RMJpMNR6vNDBhtxlCrzRiAI4koxAU0ZD0/SFRzN5EGYiGEEINkZXLA2oyhtd0jbTOG\n7+X8Tyv4/6WsAVoHLIQQ3aebSlibm9kvzOwxonL3Di9sxmBmT5jZ7QXXI83sqeSXH2CyWdtoYjOG\n/9nm0euZ2cNm9iTwydz5bDOGDYgZ+A/NbHxJuw9Mg/0JRN42T3Ezhq1L/I82s0eIxGleIGMKzZsx\nHJRdcPeTs4Ga1s0Yrs/do7Rv8v7Z881sObCOu2cD8CjgH1PfzKShkFVC5ZEcmUwmG2bWORLiGHlC\nHLOI4rcFxECfsRkxIO8OHJ7uVeZPvCtk1lf+FSGEWK3po/nfys6REMfIE+LYGvgIjVxxxiJgYzMb\nm56xBvEiVIKEOIQQottIiKO13SNFiGNL4Fozm+bupxKva7slf4jBdwsiEtCEirCEEKIzJMQhIY7+\nnj+aWBI2g3jBuAU4ssSv6kSKTCaTDUvrdHyUEMfIE+Jo93wjis/GEBXh6xBbNpbQmzvuQUIcQghR\npA8JcbQ+d3UX4ih9PpEXvj4dv4d4kdlSM2CZTCYbGqvNDBgJcVQlxNHu+eOBd6d8/HxiRt1uLXTZ\naSGEEG2QEIeEONo+nwjP7w8cQszyz3D34lIp0r3bNE0IIcRQ0e0c8NVEnncicK0XhDjS+dkF1yNz\nec78tUyIYzkhxPGiu19W8uj1cjngB3PnMyGO9YgXgx+a2aaeNirItbu/HHBRiGNXd/9dwb9dDnYK\nzUIctxHhedz95NwtikIcmwPv6q9v8v79PP+zwDuT3xrA5Wb2nLvfRgu9ueMelAMWQogifbzRHLCE\nOEamEEfZ8zcGPpHueyzRH+uW+NO8uLyn/CtCCLFa04OEOCTEMajnE8uuDgauJQqylhD/LUpQCFoI\nIbqNhDha2z2shTjaPR+4FLjSQqd6O+Bid3+EElSEJYQQnSEhDglxtH1+7vw+wEP9+FVeyi+TyWTD\n0TodHyXEsfoIcWBmuwM3EaH8h4C93X1J8R4qwhJCiIHoQ0Icrc+VEEe5EMdoIjw/l4gAbNDGv/K3\nSJlMJhuOVpsZMBLiqJsQx+HE4LvI3WeXtHsFaSAWQggxSCTEISGOts9Pv38e4GY2nZClvKCsARLi\nEEKI7iMhjtVHiGNj4HgaOfAzzWy6u0+jhd7ccQ/KAQshRJE+JMQhIY7BPv8F4GV3f6u770ksS5pU\n4o+EOIQQYiB6kBCHhDgG9Xxi3fCaZrYm8XJ0EGkG3opC0EII0W0kxNHa7pEqxLGAGFlfIiIQP3L3\nW0v6UEVYQgjRIRLikBBHf89fg7Tsigg9PwusW+JXeSm/TCaTDUfrdHyUEMdqIsTh7kuBl8xsS2I5\n01yiMnpG8R4qwhJCiIHoQ0Icrc+VEEe5EMebiJeGG4gQ+EvA+poBy2Qy2dBYbWbASIijbkIck4ll\nUOOIHPCN7l6slAbIBmIhhBCDREIcEuJo+3wib/7cIJ4vIQ4hhFgFSIhj9RHiuIxYU3wPMbu/jbb0\n5o57UA5YCCGK9FH3HPBexD/0n6Y5B/wisWwG4AvAi+n4QqLYaAxRqbwI2NcbVb17puMTgK8Sg+FM\nYpCZkp75GrHLD+naLen4WqJganz6fGdq37nZPUpywF8u/KYFueMrKalCpjkHm69avosIPy8kwugL\ngVNL/Htp5IAnAg+n46+065tBPv+X6fnPECIdy4GPKwcsk8lkQ2O1yQG7hDia/L1iIQ53PzD3Wy4C\nTgK+2eYe7W4vhBCihJVJ3XVNijInxHFwEuI4ghhcsudmQhz7Ui7E8TMaYhPjaAhxLCBCqQMJcTxJ\nLEPKZC7zQhxziHxqqRCHmf2eGKBPMbNZ6VJeiGMOcFtZEZaZvTf5Z0VQt6bzWQ64JU5hZo+b2XHp\n42HAeWb2GnA68LkB+qbJv93z07V9zOwR4H8BN6QXGCGEEFXQrRB0LqQpIY74XKkQR0mY+j5grELQ\nMplMNjRWmxC0hDjqJcRhZocSS8DWIHLQo4lct4Q4hBCiY/qoexGWhDhar1clxHEE8JZ0fCgxiG+o\nGbBMJpMNjdVmBoyEOOomxLERMNXMlhARgMW0WQucBmIhhBCDREIcEuJo+3x3vwa4JvkeTUQQlpY1\nQEIcQgjRfSTEsZoIcZjZhsCNRC56KbBHseMa9OaOe1AOWAghivRR9xywhDga56sW4lgbOIrYBen7\n/fx3qzyPIpPJZMPRapMDdglxNPl7xUIc6fefA1zfn3+6R3+XhRBCFJAQh4Q4+hPiOI0ojDsK+JCZ\nzUgvEkIIIaqgWyHoXEhTQhzxuRZCHKTwvULQMplMNrRWmxC0hDjqJcSRrp1NzKrHmtkt7j616B/0\n5o57UBGWEEIU6aPuRVgS4mi9XpUQx05EsdmJwHeIl5My/8rfImUymWw4Wm1mwEiIo25CHEcRUYgL\naCzp+iDw/eIPSAOxEEKIQSIhDglxtH1++u5pBf+/lDVAQhxCCNF9JMQx8oQ4NiCWGu0LfD3N4F9J\n7f5HMzuLeIl4vqTvEr254x6UAxZCiCJ91D0HLCGOxvlVJcTxZWKmPQ24BPhSOn8T8EA63hh4pY1/\n5XkUmUwmG45WmxywS4ijyd9XkRAHkes9iFh3/VNiED6LGLA3NrOx6RlrEDPhFpQDFkKIzpAQh4Q4\nIELW04G/Aa4iiuEgYiULkv8dxOC7RWsXCiGEWBV0swp6DhHmzXLAV7v7zbnr2cCYTd/zNH1298Vp\nINwI+DOwG1EdXJYDzt8zf58x6ZmziVzuGWZ2fjEHTCzzmU8Mbpe5+2dSG+41Mydm8OOAj5nZxcUc\ncHrOK8RAeHpW9ERzDnh/IjSf/b4dc/63p+/MJ/ru6zRywC19U+K/FHiMRn5973T+KuCf0u9aSqyL\nLp0BqwhLCCG6T9dmwESh0KeJgbiXEM7IBoplwK/cfQfgfhqD8VLgQGK2eQQwmUax0BLgWHd/K/AJ\nYGczG2VmM5Os4pT03T2Ak1KV9Xa537iAWAq1XxqwphNCHOdm90jfm0PkmH9b8psWufskd9+FWL6z\nZ8l3ZgHvA14unN8XOJ+YgRpwiJmdWuK/GLjQ3ScRs9i35H5/u77J065vPwA85O5rpX7YmraV2L05\nm0YNUisymUxWM5tG87+VnaMc8MjLAbfr2zHA+NSXRxAD88zyW5zT5lgIIcRQ0c1lSFkOeFbKAW9L\nVA5Dcw54DuU54KU08pyZEMfd6XszGDgHnC1DGpe7d5YDBrioXQ6Y/oU4FhOD/BXtcsCUCGEU1gHf\nUvB5nKgKvy5d39nMzgXmAYcO0DdF/9GFvh2d/O8BLiVC+ABnu3txlg6gIiwhhOiQlUrdDXJJkQHH\nA5/LLdXZZ5C+2owhPq+SzRj66dv9CW3uUekZjwNblfhXHdeRyWSyYWmDGRPzNtgZ8DeIkOXBwOeJ\n3OEPaBT4tGDajKGSzRj66dvPEWuUp6f2b0+EuC9svUVv7rgHCXEIIUSRPlaJEAcNkYqZuXMPDeCj\nzRiq2Ywh37e35vr2X4BvpeO9iVD0rpoBy2Qy2dBYt2bAS1PxjgOY2cY0qmvboc0YqtmMoV3fXgpc\naWaPpN94p7tnBV5NpIFYCCHEIFmZHPBgB+CvEoPSm83si8DR5CqHy3BtxjCNCjZjADYu61sPHe5j\n0rmniTXBpWgdsBBCdJ9BDcDufm0aAA8hQrvvdffH+vMxbcZQyWYMqQ2lfWtmuwPXEAP398xsb3df\nQguaAQshRGd0V4pyHpGH/S9gLTObNMD3JcTRTKVCHCmF8F1i7e85RGXV0hJ/4l0hs77yrwghxGpN\nH83/VnbOoGbAZvYFIiz6WxrTIyeqoktxCXE0+Xv1QhyHE2ukDwF62+S/ExLiEEKIbjPYHPAxwF+X\nhyvLkRBHbYQ4sr7dnogArAPcaGbXu/sFJX2oIiwhhOiQbgpx/AB4c6cl1slXQhyN5UVVCnF8iohg\nbEAsZfov4B0l/pWX8stkMtlwtE7Hx8HOgM8DZqYlLJmUIe5+ZDsHCXHUTojjdeK/wc/T56XAJOJF\noUBv7rgHCXEIIUSRPlaVEMejwCeJ9bwHZTaAj4Q4qhfiyPftbsl/TSL1cAdwhGbAMplMNjTWrRnw\nYnf/6iC/myEhjnoJcSwgXkCmExGAn7r7rSXtVw5YCCE6pJtCHL80s/OIMG8+BD2jnYNLiGMaNRLi\nSGyQ7vkK8NM2z5cQhxBCrAIGOwBnS33+JnfO6WcZkoQ4aifE8QIRXl8PeAz4iZlt4e4LaUEzYCGE\n6IwuzYDd/R0d37khxPFF4NvAx8xsxxS2zcQiDk9rjPdKPpkQx0Ri4HmUxgrnTIhjppmdAOxlZqNo\nLcLaA5js7g+kcHEmVrGACOO+1WMt8J2UFGHREOL4UclvWpS+Q5ohtxRh0RDiuL9wfl/gA0SIe4UQ\nR0kRVibEcaGZTSTy6Nnvb9c3eUr71mMJ2RIz+3/EMqhJRFSgJIqRv20PKsISQogifbxRoaJ+B+CU\nv7zGzM4su+7uJVvZrbgmIY4aCXGkNh9A5KDHEsIcz5TfQkIcQgjRbQaaAWdLYNbr9MYS4qiNEMfo\n5H946rMniVn4je5elMsEVIQlhBCdMuRCHMBpnZZVl9xDQhyN5UVVCnEM9vmVl/LLZDLZcLROx8eB\nZsAfBb4+wHdKkRBH7YQ4DgE+aWbXErPixW2ej4Q4hBBiIProqhAHMOMNzHwlxFEvIY41gVG5Z7ya\nfdYMWCaTyd64DfUMeHczK1sva+lh4/vxlRBHjYQ43P31xhMZQ/yFKSUNxEIIIQZJN4Q4Zrl72Z63\nA+IS4phGzYQ4zGwfYknYlsCHParIW5AQhxBCdJ/BCnF0jIQ46iXEYWaHEtGHZURe/Dwzu9VLt5js\nzR33oBywEEIU6aPbOeB/fYM54L2IgebTNOeAXySWzQB8AXgxHV9IFBuNISqVFwH7pmvTgD3T8QnA\nV4nBcCYxyE1Jz3wN2Dt9byZwSzq+liiYGp8+35nad252j5Ic8JcLv2lB7vhKyquQ8zngfNXyXUT4\neSERRl8InFri30sjBzwReDgdf6Vd3xT82/XtW4FN0vEuxMx6Uom/g8tkMpmsI2Noc8Du/n8AzGx7\n4JvABHff1cx2B45093P78ZUQR42EOAj95z+k44VEfzzX/hZCCCG6yWBD0JcTs9h/B3D3h9MSoLYD\nsIQ4aiPEkfXtAcBZZraECKE/7O7zS/oQFWEJIURnDLkQRy4s+UAW0s2de3CQvhLiiM+VCnHkPu9C\nhNe3avN8l8lkMlnnNqQh6Bwvmtlfp4dkhUYv9OcgIY56CXGY2YbES8h+hAzl7BLfRG/uuAcVYQkh\nRJE+ulqElZsVbUOsvV1MDAR3AxMH8JEQR72EODYldKC/AXy1n/9ulb9FymQy2XC0bs2A3d0PTXnM\nUe7+qpltPYCPhDhqJMRByIpuSvw3WTutkT7c3bPowwrSQCyEEGKQdEOII+MHRD5zUe7cjTT28W3B\nJcQxjRoJcbj7F4EvWtpL2d0/2eb5EuIQQohVwED7Ae9IzEr/yszen7s0nsix9ucrIY4aCXGk82cD\npxPV4Le4+1RK6c0d96AcsBBCFOmj20IcRxHVwH9Mf2b2VeDtg8gBS4ijcb5qIY6d0+88MbX9acpz\nyJXnUWSKIRicAAAbUUlEQVQymWw42pDmgN39ZuBmM9vP3e/t77slvhLiqJcQx5FEDn15uv9TpBxy\nyW/o5/ZCCCGKdDMHPNPMPk6EVVeEnt39o/00RkIc9RLi2Az4u/R5bPqzdAAWQgixChjMNJlYOvMF\n4LdE+HcqcMkgfSXEEZ8rFeLowL/yMI5MJpMNRxvSEHSObd39g2Z2lLtflQQwftmfg4Q4Vk6Iw93/\nkO7zKaJY67F06QXgDDM7i6jEXkJ5FGCZmf03MJeIcCzq0B8VYQkhxED0saqEOO73RiHRrkQl7zMD\n+EiIY+WEODYhKp9vI4rfbkznP58+jyVm+q9TXkR1N43Cs88AX+rQv/K3SJlMJhuO1q0Z8P8zsw2I\nYqUfEwPq/x7AR0IcKyfEcT5RMDWXmMV/Nn1tQ+AOGjng3xAD6fSC/93A+3M54GMG8i/+gDQQCyGE\nGCRDXoRlZmfmPp6Y/rw0/blOf74uIY5prJwQx43E0qEzzex3NLYQfIgoyNqBmKXPALagdQB9jYgS\nvELkub1DfwlxCCHEKmCgGfB66c8diKUzP06f/xa4vz9HCXF0LsRhZmula4elHPBWRL77T0Rfnk7k\nxf9MzGCX5f0T7YQ8rgL+KfkvJfLty0r6D+WAhRBiIPpYVTngu4D1cp/XA+4aRA5YQhzNfdivEEd6\n7lwidJwtd3qWCIufCnwrfW/j5F+Wg+6lXMjjWBobO6xF5IDfoRywTCaTDY11Kwc8gRg0Mpakc21x\nCXE0+fsghDjc/RFgEzO7gSiamgEc5O7zzWw3Guug9yBmsesWn097IY8xwPjUl0cQM+SZJf7KAQsh\nRIesTOpu1MBfASL8eb+ZTTGzKYR4w3cGaEwmxHFwEuI4gsaAkRfi2JdyIY6f0RCbGEdDiGMB8BYG\nFuJ4kliGtDx370yIYw6Ray4V4jCz3xMD9ClmNitdygtxzAFuKyvCMrP3Jv+sCOvWdD7LAbfEKczs\ncTM7Lh0fCfze3bPnZv9VZwOXpL78XDq/RdGfyDGfZ2avESHr3nT+HmAyEb7+PtDr7i+X9KEQQohV\nwWCnysAk4h/000mh4EH6SYgjPg8oxEGEhn9FCvenZ2yUjkcTIfoZRJX2LcCRJfcoCnlkYeu3E+uy\nR6XvPA5spRC0TCaTDY11KwSNRzXvjAG/mJAQx0oJcfw18XLwkJn9FbF0aGaSx3yJWIuc5cfHELP8\nIqcCJ5vZfKJwbe10vpfIT09P7d+eCFFf2HqL3txxDyrCEkKIIn2skiKslTEkxLFSQhzpO5kQx1LS\nLJuIPHwnHR9N5JDLfC+gUYR1Bo3Cq3+hMRvemwhF76oZsEwmkw2NdW0GvBJIiGPlhDgglit9mpg9\nZzngScTypEeJSMGDZvY2dy8KcRwGvNnMPkLkjU9J/pcCV5rZI+k33ulR9NVCGoiFEEIMkiEX4ngj\nuIQ4prESQhz5Iiwzew7ICqXuJsLqx9G/kMaPgH9Ixy8Sy43wWIN9THrG08Sa4FIkxCGEEN2nawOw\nhDhqJ8SBme0OXEO8qHzPzPZ29/zyskRv7rgH5YCFEKJIH3XPAUuIo3G+aiGO0cQSrauAs4iBXZsx\nyGQy2RBZbXLALiGOJn+vXojjcGIAPoRYA1waQk/taHdJCCFECd0U4ugYCXHURojjc+n89kQh3DrA\njWb26ZL+E0IIsaroVgg6F9KUEEd8rlqI41PAb4nQ81rAfyEtaJlMJhsyq00IWkIctRPieJ34b/Dz\n9HkpsbRpWustenPHPagISwghivRR9yIsCXG0Xq9KiGO31LdrEoP3HcARmgHLZDLZ0FhtZsBIiKNu\nQhwLiBeQ6UQE4KfufmtJ+7OBWAghxCCREIeEOKBViOPPuWsbpHOvAD8te35qQ7tLQgghhggJcaw+\nQhwvEAP3esBjwE/MbAt3X0gLvbnjHpQDFkKIIn3UPQcsIY7G+UqFOAo56OvT75tU4l95HkUmk8mG\no9UmB+wS4mjy94qFOFKbDyBeAsYSwhzPlPgrByyEEB2yUqm7Ls6A9ydCpA8CjxJh06PStZeIQqon\ngKnAS+n814hCq6eJMOmtxCCyNpGzfS3ZPZTLKO5FFFnNImZ4N9BYB/wj4H5iVr0IOLdNu99GVEgv\nJXKls9L5/Yiw7uLkf0kb//cm/2VEQdit6fw6qd1rA78gVwVNvJQcl46PBC5Mx0uBbdLxZ1IfPEpU\nhL8MvK/E/0Fihv0aEcLfLp0/NrV7JhFluLxN+yt/i5TJZLLhaJ2Ok11TwiLCqHcSKlZbA1e7+825\n65lCVdb4PE2f3X0xMajOIda+7kajureMfKdkjEnPnE0MkGeY2fgS37WI3O9o4DKPCmjc/d50v8fT\nPT5mZluX+I8hBu5RwOmeKqBpzgHvX/h9O7r7dbkccG/KAY+hMYu+mAhHb5N+fz4HvKOnwjVCpGQ+\n8QIzjkbh27vTeVLb+ol+VP73WCaTyYaZdU43lyH9hcj9fhH4NjFg7eixdGcZ8Ct3P9zMvkDMXCFm\nfAcSucvNidnelHRtCXCsu880sxOAvcxsFK1CHHsAk939gbRk6Pnkv4DIsb41haHvpESIgxjkTyBm\nzEUWpe+QqqRbhDiIF4X3EbPtPPsCHyDyuQYcYmanerkQxyNEnhdgWhLiOBq4z913NbON03PLhDgW\nEzPoC81sIrEWm3RfJwrI1gJOMLPp7n5p6y2m5I57UBGWEEIU6aO5CKtzlANeTXLA7n5g7rdcBJwE\nfLPEn+ZqvpWo7BNCCDEg3VyGlG3GMCuJR2xLVA5D82YMcyjfjGEpjc0YMiGObACawcCbMWTLkMbl\n7p1txgBwkbfZjIH+hTiy6uQrvM1mDJQIcRTWAd9S8HmcqAq/rrAOGFo3Y/hnYllSthnD9Lx/uv/O\nZnYuMC99zp6zDxGN2JZYFpalAZpQEZYQQnRGrYqwckU92owhPle6GUPhOzsA9wFjS65VnUiRyWSy\nYWmdjo/ajGE12YzBzA4lZEDXIPLpo4mc+IzWW/TmjntQDlgIIYr0UXchDm3G0Hq9qs0YjgDeko4P\nJV5wNtQMWCaTyYbGajMDRpsx1G0zho2AqWa2hMZ65lI96jQQCyGEGCTajEGbMUDrZgyvp3ZdA1yT\nnnE0EUFY2qYNZaeFECOICRMmMnfu7KqbsVqjzRhWk80YzGxD4EYiF72UWMrUBs2AhRjpzJunF+2q\nkRDH6iPE8TpwCfDvwF3uPrvENzEld9yDirCEEKKZvr4++vr63tA9JMSxmghxEBGEc4idkAZ49ZUQ\nhxAjnQkTJlbdhGFNT08PPT09Kz6fc07n/1ZKiKO13SNNiOPQ5P9xYoa9PrB2yo8f7u7ZErAVqAhL\nCCFWAZ2WTXdqSIgjvzyociEO0l7K/bS78lJ+maxKmzBhogvRKVCjZUgS4qiXEEdq29lEIddYM7vF\n3aeW+CMhDrE6o+IkMRiGIgfczZmvhDjqJcSxE7EX8InAd4iXk7I9lSufgchkVZpmwGJlgBrNgJEQ\nR92EOI4iohAX0FjS9UHg+8UfEH+XhBBCdBMJcbS2e0QKcaS+Oa3Qt39p04ay00JUjsQjxEhCQhwj\nT4jjG8QSpjOB/0tUgX84tfsfzeys5Pc8benNHfegHLCoC8rPirowHHLAexEDzadpzgG/SCybAfgC\n8GI6vpAYGLJCo0XAvunaNGBPz1XyEoPKTGKQm5Ke+Rqwd/reTOCWdHwtUTA1Pn2+M7Xv3Owe3poD\n/nLhNy3IHV9JoUraW3PA+Yruu4jw80IijL4QOLXguyswlygcy5Y7PUuExU8lVTQTlc4LKclBe3MO\n+Vng0XTuJuCBnP8rWd8WfB1cJqupMVAqTohKSH836cQkxDHChDhSH2Q55D4ailyLgI3NbGzyW4M0\ng25FswxRTyQeIUYSEuJobfdwF+K4DtiNmIWvCXw2+fel879Jn5dRnkMmXuaEEEJ0k64XYZnZusQ/\n/se4+82Ny54pNGFmf8y5/tjdP5TOX5G+vNjMdnD3F9JA9kNicL+m5NGvuvt+yT9fhDWGWHr0N0SY\n+S4zO98LOWDvvwhrs9SGrYFfmNnFXsgBe5siLFIOOP2WO2nIReLuO6b2rsgBp0vPEaFiiHzuBCIh\n+yLxMrKsxH9tYBt3f9XMfkdjjfW3iZeIHuKlJ9PkbkFFWKKuqAhLjCQkxDGyhDj68/9T+jyGqAhf\np8Q/0Zs77kFFWKIuqAhL1IXhUIQlIY7W610V4ujH/yPA9en4PcSLzJYlvi6T1dUkkiHqCtSoCAsJ\ncVQlxNHOfzzw7uQ/P92j3VrostNCCCGGEAlxtLZ7WAtx9ON/GbA/cEjyP8PdX6YE5YBFXVEOWIwk\nJMQxgoQ42vivn/w/C7wz9ekawOVm9py739bahb254x6UAxZ1QTlgUReGQw5YQhyN810X4hjA/+uk\nnHT63iuk7REL93BwmaymxoC5OCGqIP3dpBPL1t8OOe4+l5ix/cbdLwAeI0LEMDRCHI+4+3J339Pd\nJ7n7lOzRdCjEkd0jtftZD0GMpna1EeL4DQXc/Ql3f6ro7+6Tid2JLiXCyT/3EiEOd9+EEM/Yl4gC\nHOTu84k1vP0KcQzg/yxwcPrqR4iXgLIcNo3/PDJZvUxCHGIkISGO1nYPayGOfvwvBa40s0eIGfrF\nuReNJuJlTgghRFfpdMrcqRGztOnAUblzfyp854/pz6/RHLa9ghTmBTZNf64D3A4cX/KsvYCpuc8H\nEMIeEEuifkAM9lsRM8Lx/bT7Sgoh5lwbtibC2Vv34z8NmJT7fAEp5EskWT9V4rMWsURrvfT5d8BG\n6Xg0EaKfQbwg3AIcOVj/3Hf2AR7qp90uk9XVtAxJ1BXoPAQtIY7VRIjDQ096d2JThlHpd+zt7kto\noTd33IOKsERdUBGWqAvDoQhLQhyt16sS4hhNhOfnEoP0BoCV+FY+y5HJ2plmwKKuQI1mwEiIo25C\nHIcTg+8id59d0u4VxN8lIYQQ3URCHK3tHqlCHNsD8wA3s+mELOUFbdpQdlqIypEQhxhJSIhj9RHi\n2Bg4nkYO/Ewzm+7u01q7sDd33INywKIuKAcs6sJwyAFLiKNxvmohjo+Tqz4nQvRlldiV5/lksnam\nHLCoK1CjHLC7zzWz80lCHGld8GaE+EO2sj6j+Fo7GCGOO9x9OTFTzb63CfE/akdCHMRglLX72XSv\npna1EeL4csnvfqLM390npxzw24G9iSKqFiEOYBMzuwH4PPFicZBHBfOghDj68b8LWNPM1iQJdJBm\n4CW/oey0EEKIIaRrSlg5IY6DU+HQETQGjLwQx76UC3H8jIYQxzgaQhwLgLcwsBDHk8QypOW5e2dC\nHHOIXHOpEIeZ/Z4YoE8xs1npUl6IYw5wm7cR4kj+WRHWrel8lgM+p8TncTM7Lh2vyOFml9Ofswkh\njkeBz9EQ4his/4J0/BKRF57r7reW9KEQQohVQadT5k4NCXFknysV4iBeQDZIx5PS71+3pA2Vhxll\nsnamELSoK1CjELSEOOonxAG8ZGZbEvnvuURl9Axa6M0d96AiLFEXVIQl6sJwKMKSEEfr9aqEON5E\nvDTcQMyeXwLWL/GtfJYjk7UzzYBFXYEazYCREEfdhDgmp/PjiOVLN7p7tka4ifi7JIQQoptIiKO1\n3SNViON2Igzf7/PTPdpdEqJSJMQhRhIS4lh9hDguI6rH7yFm97eV9F2iN3fcg3LAoi4oByzqwnDI\nAUuIo3G+aiGOX6bnP0PMipcDHy9pf+V5PpmsnSkHLOoK1CgH7BLiaPL3ioU4gANzv+Ui4CTgm8X2\np/uUnRZCCDGESIijtd0jVYgDM9vHzB4B/hdwQ3qBEUIIUQWdTpk7NSTEkX2uVIij8L0dgPuAsSXX\nKg8zymTtTCFoUVegRiFoCXHUS4gD2J1YArYGkYMeTeSMJcQhhg0qwhJ1YTgUYUmIo/V6VUIcRwBv\nSceHEi84G5b4Vj7LkcnamWbAoq5AjWbASIijbkIcGwFTzWwJEQFYTJu1wPF3SQghRDeREEdru0ek\nEIe7XwNck75zNBFBWNqmDWWnhagcCXGIkYSEOEa+EMcGwJ/MbEPgRiIXvZRYytSG3txxD8oBi7qg\nHLCoC8MhBywhjsb5qoU41gaOSte/389/t8rzfDJZO1MOWNQVqFEO2CXE0eTvFQtxpKroc4Drae3v\n4m/o77IQQoghQEIcre0eqUIcpxGFcUcBHzKzGelFQgghRAV0swp6DhHmzXLAV7v7zbnr2cCYhZfy\nNH1298VpINyIyH/uBpxCrPstIx+2yhiTnjmbyOWeYWbneyEHTCyBmk8M5pe5+2dSG+41Mydm8OOA\nj5nZxV7IAafnvEJUX5/uqaCM5hzw/uQ2Q3D3HaE0hzuGxgB6MfBhYhDdjOYc8ID+7v5FM1tO5JHH\nAGe5e7b+ugkVYYm6oiIsMZLo5gD8FyL3+0Xg28SAtWOaNS4DfuXuh5vZF4hcLERY9UBiwN4ceJQY\nuCDypse6+0wzOwHYy8xG0SrEsQcw2d0fSEuGnk/+C4gc6VtTGPpOSoQ4iBeHE4ilSEUWpe+QqqRb\nhDiIJVPvA+4vnN8X+ACRjzXgEDM71cuFOB4h8rwA05KQxtHAfe6+q5ltnJ7bToijzH8j4BjgbGJv\n4G+Y2XZeGm/uzR33oCIsURdUhCXqwlAUYSkHvPrkgD9KrKNeThRwPUWssb6v+Buao+QtEXMhKmPC\nhIlVN0EIAHp6eujp6Vnx+ZxzOv+3spvLkLIc8KyUt9yWqByG5hzwHMpzwEtp5IAzIY5sAJrBwDng\nbBnSuNy9sxwwwEXtcsD0L8SRVRdf0S4HTIkQR2Ed8C0Fn8eJqvDrCut4oTUH/M/EsqQsBzx9kP6b\nAX9H9PXY9GfpAKwiLCGEWAV0WjbdqaHNGLLPVW3GsOFAfVu4R+VLTWQj07SESIxkoEbLkEybMVS1\nGcOuwItp9rtGutdehOTnGWZ2FpGDX0J5FAHlgEU3UP5WjCSGgxCHNmNovd7VzRiAdXPHf6Qh3vH5\n9HksESl4HbAS/8pnSrKRaZoBi5EM1GgGjDZjqGQzBndfWGiPpz83BO6gkV//DTEQT6fo4F48JYQQ\nYojpmhCHu9/j7qPdfQ9iWc7LNG/GMNndd3D3HmJGCY3NGLZ1952Ah4nNGBYTg+cSBrcZw27uvh2x\nBGqzdC3bjOElQuKy7WYM7r4FsXHBiWnwxd3vJUK3y5J/280Ykv9dwDtzg29eiOPOZC0UhDSKmzH8\nktjX9xRilr5Fm3uca2bPEgP1Z9LpLHS+A/FitHU//l21TTbZquyxHfGGQz+rCLVzaFE7h47h0EYY\nPu1cGbo2AGeY2brEJgCne2MzhiKDmXIdlwbDA4EDzez4DpsyhqjEnkzsKHS5mY3v8B4T3f1tRHX3\nxWa2dQe+U4jK68Xpc36J0snuPiMnpNGb88u+921iQH2ACOvfQ24zhtzsGXf/N3ffktC//sRA/q10\nNxo5b94c3ijD5X9KtXNoUTuHjuHQRhg+7VwZuhmCxszGEIPvd71ZBWuemU1w93kpbDw/nX+e5lnZ\n5ukc7v5C+nNRKr7ap00RVqk/MZv8lcfa4dlm9iTlQhxtybXhd6mIrEyIox1ZEdb5RBHZsgGKsCy1\n/9dmto+7zwfOzL5oZvfQWoRV5Doixz7F3ZcN3n9K7rgHFWEJIUQztRbiSHybEOK4pHD+x8A/EEIW\nJwA3585fa2YXEaHjbYH7kxDH+u7+x/6EOADM7BUz24eY6X2E2DUJ4CbgWOCqJKSxHSVCHAWKQhyL\n3X1Jf0Ic7fzdfXLuXr30I8SR+97viKVML6XZsXnIch4GLC3LQZvZtu7+dPr4XuCxdH5Q/kF3hTgk\npiCEGO4MhRBHN6ug9ydCnA/S2DLwXenahkQh1RPAVGJwzfzOJpYPPQYcns6tTRQLPUgUZF1ESQVv\n+u5e6TtPAZcUrn2FkLd8CPhgG/+3ERXSrxIFXbPS+f2InPTM5P8Pbfzfm/xfIwrMbi35Ti9RBJZ9\nvpzcmuHc+WdorOOdSKiIPZr6bIsyfyLi8HDqq5tprF1u6194ZuXVsjKZTDYcrdNx0sprmYQQQgjR\nTbpehCWEEEKIVjQACyGEEBWgAViswMzeZWaPm9mTZvaZgT2qwcxmm9lDZjbTzIrbPlaGmX3LzOYl\nKdTs3AZmNtXMnjCz25PEaKW0aWevmT1nZjOSvaviNm5uZr8ws0fNbJaZfTKdr1V/lrTzE+l83fpz\nnJndl/6fmZUKQevYn+3aWav+TG0aldry4/S5475UDlgA8ZeJWJZ0CKHP/QDwofaV0tVhZs8Ae3m5\nklllmNkBhH751e6+ezr3ZUI45vz0UrOBu59Vw3b2EpX5F1bZtoy0PHETd38waQn8GjiKkJStTX/2\n086/o0b9CWBma6dVEKMJHYBPEnuU16Y/+2nnEdSvP88gin7Hu/uRK/P/umbAImMf4Cl3n+PuSwnZ\nz6MqblM7ss0waoW7302rQtpRwFXp+CqiSr5S2rQTWvflrgx3n+vuD6bjhcSqiM2pWX+2aWemvleb\n/gTwhgjQOGIJqlOz/oS27YQa9afFZkPvJnaVy+i4L2v3j5iojM2I5VMZz9H4h6RuOHCHmT1gZidX\n3ZgBeLO7z4P4x5rQGq8rp5nZg2Z2RdWhyDxmthWwB7GJy4S69meundke27XqzxQynQnMJXQUHqCG\n/dmmnVCv/sz0+vMh5I77UgOwGI7s76Fa9m7g4ymkOlyoa87nG8A2Htrtcwm50sqxZinbhbT2Xy36\ns6SdtetPd1/u7nsSkYR9zGwXatifJe3cmRr1p5m9B5iXIh/9zcoH7EsNwCLjeWIrxoy8jGet8IYk\n6B+Inav2qbZF/TLPzCbAinzh/AG+Xwnu/gdvFIRcDuxdZXugrZRt7fqzrJ117M8Md18A9AHvoob9\nmZFvZ836c3/gyFSL8j3gYDP7LjC3077UACwyHgC2NbOJZjYW+BAhDVorzGztNNvIdpg6nNhfuS4Y\nzW/FmewqNMuuVk1TO9M/GBnvpx59WiZlW8f+bGln3frTzN6UhW0tZGkPI/LVterPNu18vE796e7/\n6u5buvs2xL+Tv3D3DwM/ocO+VBW0WEEq7b+EeDH7lrt/qeImtWCxA9WPiPDOGODaurTTYnOQHmK/\n53mE5OhNwA3EJiFzgGPc/eV291gVtGnnO4j85XJgNnBKls+qAjPbn9jScxYNqb9/Be4Hvk9N+rOf\ndh5HvfpzN6IwaFSy6939i2a2IfXqz3btvJoa9WeGmR0EfCpVQXfclxqAhRBCiApQCFoIIYSoAA3A\nQgghRAVoABZCCCEqQAOwEEIIUQEagIUQQogK0AAshBBCVIAGYCGEEKICNAALIYQQFfD/ASdYRSGk\nFwepAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0xc11ccf8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt_match.plot(kind='barh', stacked=True)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import csv\n", "import matplotlib as plt\n", "from pandas.tools.plotting import andrews_curves\n", "\n", "\n", "c_names = ['vID', 'frID', 'tFr','Timestamp', 'localX', 'localY', 'globalX','globalY', 'vLenght', 'vWidth', 'vType', 'veloc','accel', 'line', 'pred', 'foll', 'spac', 'headway', 'dateTime']\n", "\n", "data = pd.read_table('D:\\\\zzzLola\\\\PhD\\\\DataSet\\\\US101\\\\test\\\\dataset1DT.txt', sep='\\t', header=None, names=c_names)\n", "\n", "# Stast description of the whole dataset.\n", "desc = data.describe()\n", "\n", "##++++++++++++Example\n", "# data.groupby(['col5', 'col2']).size().groupby(level=1).max()\n", "\n", "#Mean of values by vehicle Id and DataTime\n", "mean = data.groupby(['vID', 'dateTime']).mean()\n", "\n", "#Number of vehicles\n", "num_v = data.groupby(['vID']).size()\n", "\n", "\n", "#Number of registers by timestamp\n", "ts_match = data.groupby(['Timestamp', 'vID']).size()\n", "ts_match_max = data.groupby(['Timestamp']).size().max()\n", "ts_match_min = data.groupby(['Timestamp']).size().min()\n", "ts_match_mean = data.groupby(['Timestamp']).size().mean()\n", "\n", "#number of register by dataTime\n", "dt_match = data.groupby(['dateTime', 'vID']).size()\n", "dt_match_max = data.groupby(['dateTime']).size().max()\n", "dt_match_min = data.groupby(['dateTime']).size().min()\n", "dt_match_mean = data.groupby(['dateTime']).size().mean()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " frID tFr Timestamp localX localY globalX globalY vLenght vWidth \\\n", "vID \n", "2 437 437 437 437 437 437 437 437 437 \n", "4 351 351 351 351 351 351 351 351 351 \n", "5 452 452 452 452 452 452 452 452 452 \n", "6 357 357 357 357 357 357 357 357 357 \n", "8 448 448 448 448 448 448 448 448 448 \n", "9 409 409 409 409 409 409 409 409 409 \n", "10 436 436 436 436 436 436 436 436 436 \n", "12 443 443 443 443 443 443 443 443 443 \n", "13 432 432 432 432 432 432 432 432 432 \n", "14 515 515 515 515 515 515 515 515 515 \n", "18 291 291 291 291 291 291 291 291 291 \n", "20 414 414 414 414 414 414 414 414 414 \n", "21 439 439 439 439 439 439 439 439 439 \n", "22 441 441 441 441 441 441 441 441 441 \n", "23 438 438 438 438 438 438 438 438 438 \n", "25 436 436 436 436 436 436 436 436 436 \n", "26 438 438 438 438 438 438 438 438 438 \n", "27 432 432 432 432 432 432 432 432 432 \n", "31 465 465 465 465 465 465 465 465 465 \n", "32 438 438 438 438 438 438 438 438 438 \n", "33 383 383 383 383 383 383 383 383 383 \n", "34 451 451 451 451 451 451 451 451 451 \n", "35 280 280 280 280 280 280 280 280 280 \n", "37 408 408 408 408 408 408 408 408 408 \n", "39 450 450 450 450 450 450 450 450 450 \n", "40 391 391 391 391 391 391 391 391 391 \n", "42 389 389 389 389 389 389 389 389 389 \n", "43 458 458 458 458 458 458 458 458 458 \n", "44 379 379 379 379 379 379 379 379 379 \n", "47 428 428 428 428 428 428 428 428 428 \n", "... ... ... ... ... ... ... ... ... ... \n", "3004 725 725 725 725 725 725 725 725 725 \n", "3005 726 726 726 726 726 726 726 726 726 \n", "3006 741 741 741 741 741 741 741 741 741 \n", "3007 853 853 853 853 853 853 853 853 853 \n", "3008 724 724 724 724 724 724 724 724 724 \n", "3009 732 732 732 732 732 732 732 732 732 \n", "3011 842 842 842 842 842 842 842 842 842 \n", "3014 676 676 676 676 676 676 676 676 676 \n", "3015 578 578 578 578 578 578 578 578 578 \n", "3018 714 714 714 714 714 714 714 714 714 \n", "3019 704 704 704 704 704 704 704 704 704 \n", "3021 678 678 678 678 678 678 678 678 678 \n", "3022 641 641 641 641 641 641 641 641 641 \n", "3023 403 403 403 403 403 403 403 403 403 \n", "3024 834 834 834 834 834 834 834 834 834 \n", "3025 644 644 644 644 644 644 644 644 644 \n", "3026 326 326 326 326 326 326 326 326 326 \n", "3030 667 667 667 667 667 667 667 667 667 \n", "3032 820 820 820 820 820 820 820 820 820 \n", "3033 633 633 633 633 633 633 633 633 633 \n", "3034 567 567 567 567 567 567 567 567 567 \n", "3101 255 255 255 255 255 255 255 255 255 \n", "3102 443 443 443 443 443 443 443 443 443 \n", "3103 461 461 461 461 461 461 461 461 461 \n", "3104 474 474 474 474 474 474 474 474 474 \n", "3105 534 534 534 534 534 534 534 534 534 \n", "3106 515 515 515 515 515 515 515 515 515 \n", "3107 282 282 282 282 282 282 282 282 282 \n", "3108 359 359 359 359 359 359 359 359 359 \n", "3109 510 510 510 510 510 510 510 510 510 \n", "\n", " vType veloc accel line pred foll spac headway dateTime \n", "vID \n", "2 437 437 437 437 437 437 437 437 437 \n", "4 351 351 351 351 351 351 351 351 351 \n", "5 452 452 452 452 452 452 452 452 452 \n", "6 357 357 357 357 357 357 357 357 357 \n", "8 448 448 448 448 448 448 448 448 448 \n", "9 409 409 409 409 409 409 409 409 409 \n", "10 436 436 436 436 436 436 436 436 436 \n", "12 443 443 443 443 443 443 443 443 443 \n", "13 432 432 432 432 432 432 432 432 432 \n", "14 515 515 515 515 515 515 515 515 515 \n", "18 291 291 291 291 291 291 291 291 291 \n", "20 414 414 414 414 414 414 414 414 414 \n", "21 439 439 439 439 439 439 439 439 439 \n", "22 441 441 441 441 441 441 441 441 441 \n", "23 438 438 438 438 438 438 438 438 438 \n", "25 436 436 436 436 436 436 436 436 436 \n", "26 438 438 438 438 438 438 438 438 438 \n", "27 432 432 432 432 432 432 432 432 432 \n", "31 465 465 465 465 465 465 465 465 465 \n", "32 438 438 438 438 438 438 438 438 438 \n", "33 383 383 383 383 383 383 383 383 383 \n", "34 451 451 451 451 451 451 451 451 451 \n", "35 280 280 280 280 280 280 280 280 280 \n", "37 408 408 408 408 408 408 408 408 408 \n", "39 450 450 450 450 450 450 450 450 450 \n", "40 391 391 391 391 391 391 391 391 391 \n", "42 389 389 389 389 389 389 389 389 389 \n", "43 458 458 458 458 458 458 458 458 458 \n", "44 379 379 379 379 379 379 379 379 379 \n", "47 428 428 428 428 428 428 428 428 428 \n", "... ... ... ... ... ... ... ... ... ... \n", "3004 725 725 725 725 725 725 725 725 725 \n", "3005 726 726 726 726 726 726 726 726 726 \n", "3006 741 741 741 741 741 741 741 741 741 \n", "3007 853 853 853 853 853 853 853 853 853 \n", "3008 724 724 724 724 724 724 724 724 724 \n", "3009 732 732 732 732 732 732 732 732 732 \n", "3011 842 842 842 842 842 842 842 842 842 \n", "3014 676 676 676 676 676 676 676 676 676 \n", "3015 578 578 578 578 578 578 578 578 578 \n", "3018 714 714 714 714 714 714 714 714 714 \n", "3019 704 704 704 704 704 704 704 704 704 \n", "3021 678 678 678 678 678 678 678 678 678 \n", "3022 641 641 641 641 641 641 641 641 641 \n", "3023 403 403 403 403 403 403 403 403 403 \n", "3024 834 834 834 834 834 834 834 834 834 \n", "3025 644 644 644 644 644 644 644 644 644 \n", "3026 326 326 326 326 326 326 326 326 326 \n", "3030 667 667 667 667 667 667 667 667 667 \n", "3032 820 820 820 820 820 820 820 820 820 \n", "3033 633 633 633 633 633 633 633 633 633 \n", "3034 567 567 567 567 567 567 567 567 567 \n", "3101 255 255 255 255 255 255 255 255 255 \n", "3102 443 443 443 443 443 443 443 443 443 \n", "3103 461 461 461 461 461 461 461 461 461 \n", "3104 474 474 474 474 474 474 474 474 474 \n", "3105 534 534 534 534 534 534 534 534 534 \n", "3106 515 515 515 515 515 515 515 515 515 \n", "3107 282 282 282 282 282 282 282 282 282 \n", "3108 359 359 359 359 359 359 359 359 359 \n", "3109 510 510 510 510 510 510 510 510 510 \n", "\n", "[2169 rows x 18 columns]\n" ] } ], "source": [ "print (data.groupby(['vID']).count())" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0xead6470>" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEACAYAAACQx1DIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGmBJREFUeJzt3XuMbWdZx/Hfc057TttzTi8H2jmFllOQmxilVkVDkTkI\nIhctmGCCEOSSGEUShUSk4B+bSYii0Sh/qIRICyIC4RaKEiWVnCFEEQwciqVCTdMrzHDp6WVO23OZ\nefxj70n3zLxrz1573rXW+77r+0l2MrNm77XfdS77mfd5nvdd5u4CACCWXV0PAABQFgILACAqAgsA\nICoCCwAgKgILACAqAgsAIKpGA4uZPcbMVs1sbfS4bXT8htH3bmbv2PSa74yOr5nZ+0fH9pvZ98fO\nc8bM/rbJsQMAZtP0jOWpo/ew0eOJZrYg6Xmj7yXpXWb2LEkysy9KesrouEl6g5mZpDlJF4+dZ7ek\nZzc8dgDADLpIhb1Z0t6x703SF0dfXx14/rskPS1w/McjjwsAEEHTgeVg4Ng+SWdvOrYeaELj+Z2K\n43t2MC4AQEOaDiyvjXCOfQrPZAAACTqr4fNfGThWN5jtkXTNtE82MzY/A4AZuLtt/6ztNT1jOTfS\neS6NdJ6e27v9U4AGDQYDuXuWj5zHHnpcdNFFjf09Nx1YLmz4/KjlZNcDQCPy+YVhYWFBZrbl8c53\nvrProfXO6dOnGzt304HlnJrPD6WxXNIjEcYCFCr/XxiqAg6BJ09dtBtPqoGE8nsnJd3X0FgAZCCF\nwHPkyJHG36MU1uSNvszspLa2Ba8pENDc3SoK76ck3SvpUOg1gfekeA80bq9SnikNBgNmOds4ePCg\njh8/vuFYLsX7GIPcra3rXgB0Ju2gIj06wyG4VMu5xhIjsOzScMYCIAlpB5Vxm1NoBJp2NJ0KO6Ph\njGNc3VSYS7pD0hWh1wTek1QYgKnMzR3W0tLtXQ+jEzmnwtYinMMl7Y9wHgDASJ9SYaHZxqqGBXwA\niGJ9sWNfZytNyyEVdkLSQxpum7/lNYH3JBUGYCrz8/M6evRo18PoxIEDB7SysrLhWC6psLpCQcEU\nJ6UGILp8Vv2HLC4u9ra4f/bZzTXbNr0J5Zq2zljqOlc5taEAvbDecpzvf82+r3VpssbSdGCpO60K\nPd8lNfcnAGAGBBRUS614X3WOhyOcB0DPEVTakUO78apYeQ9kKu8aTMmarLHkMGM5I+m8COcB0Lp8\nU2al69M6lhC2dAGAjOTQbrxL0vltDwRALOmkw7bbfr9Prcclthsfk3Rl4HhohrNLW7feB5CFvRoM\nri3+QzpHJabCQkFl0jkeijAWAK07WWuW0IeZQh+kto4lxCOdB0Bizj57r06d4s7jpWl6xhJr367U\nakEAIjh9WrVmM7M8mAGF5dxuPDUze77CgWhNw7UsAIpT1Y4cr+DPzb7Cct7SpY6rVb2lC4Beibv+\nhRX37UppHcu5FcfXRFcYEEk6rb9tWp+1EFwelXMqLMaWLmepOugAqGV9JkCA6bsS243rnoN0GBBV\nv7daGa+7EGTiSymwVO1gbGJLFwANWVhYILhElkxXmKrTXS7pnDYHAqAvhinBPqbI+lRjCaW8XNKp\nCGMBWtbPOkZeNqYE+zR76UuN5S8qjp+W9GCEsQAt63cdI2WDwUDuHnz0JbA0qavAsmVm4u4/qnj+\nbsXpLgMKw4xoVnX3LytxgWWJuxtPCjibf2aSLo45KKAMfZoR7dVOr5dFkhvlvPK+brtx1bb5FO+B\nXpsuqBA80pBaYKk6B8V7oKcIFvlJaa+wKq7hfe+Bguw8tVOiubnDWlq6veth9EKf2o2rsLsxCkNQ\nQbd60W5sZs9R9bb5zYVWAJ3Z3PbLbKUMKdVYfrPi+dyPBcjCxvQetZG09T0VtivSeYCW9WudyWBw\nLQsNM9KnduOQ3SIVhiyVW0dhNoJJkqmxSHpows9O7HQgAOLZycr1ElexY6OU2o3Pqzju4kZfSEK/\nW4SZpZSlxC1dQv5D0hu1dZazKtaxIAlpBRXWfGAnetFu7O4fnvD85v4EgIZM2kE3xoOgglTlULw3\n9a29BtkgPYRc9SUVJoV3N94tAksmyqtBEDhQqj61G1c9v05wQmfyDCrz8/M6evRo18MAipFMjWUC\nl3RfhPMAQYuLixtaYA8duqLrIQFZazqwxEC7MQBE1qctXUKbUK5K2hNhLOhcHqWy5eU7WOCH4vWi\n3XjC80+LG30VIs8azCTjK9AJMsBQaoElZI/Y0gWJo3sMeFQOqbCzJB2IMBb0VvMpuFh7ZzH7QVua\nrLGYe+izPNLJzU5ra0vzmgIBzd3NzKpu9PWApAtDrwm8Z3MXBLSMVmg05cCBA1pZWdlwLPSZOosc\nUmGmyTsfA1mbtPULQQU5yqXdOI92IvTQzv9p1kmjkSJDLH1qN65CeguJOqk2f++hCw2xNNlunFqN\nZU3hbfO/J+my0GsC70kQQq9Rl8E0+lRjCT1/Tay8B6Y2vkUNsxp0oenAEmP2YIqXUgMakG4JkNQZ\nquRcY6lSFSiqAhHpLSSsvB0FUL6ct82PYZfy6F4DksAuAOhaDjWWWc4DdKSbtNj4WhiCCqaRcyqs\nKuVV531N3OgLyakKIO2lxQgm2Ik+7W4c4pIejHAeIKL26yqbV+gTTJCqXAILXWEAkInUiveurcHo\njKTzOhgL0IC9mna2QxEeTcq5xjI1M7tI4RnObkkXtTwcYAcmFfCnT6Gtr0EhuKAJOW/pUufk35X0\nuMDxM6qYWbGlC0rH9ixoSpNbuqQUWKoE9xaTCCxI3fRpr5C5ucNaWro92miAcQcPHtTx48c3HMtl\nr7A6qgICa1iQqZ11ji0vL5EKQ2P6svL+HgV2MNbwf+c5LY8FiIpCPPokpRnLpRXHH644TsoL2ahz\nMy9u7oXcpRJYTql6dX3VrKoq4AAJiLO1CzMdNKUP7ca/VnF8TdIDFT97b0NjAaYUp60Y6EJJ7car\nCsxMJtw90iXdLeny0GumfE+gGMxgEEvOd5CsI3RBLmopSEq3N/Vi0SRiKSkVVjdImKTzmxgIMJsU\nUlx7g80ABBvUkfPuxpvVnWa5pOauHsjS1uBGigwpSWkdSxUWSAIVCChIUUo1llCabE3DvcKAlnVb\nS5kGQQU70ZcaS1XxnnuxoCF5twtXLbok2GAafamxhILOasVxIIL0g8csdrLKP/aDINdPKdVYQkFn\nr6SVwHEgWaSokIMmU2FtL5AM3ltltECyqsbyA0lzoddM+Z7ADHa25T0mI/h2r8kFkm3PWOoO2mZ4\nDRABQSUmAkm/pJQKC93Qa0X8DwcaxYc+Ykup3Tg0lr1ixoIo0m8fbttgMJC7E1R6qskaS9szlkn1\nD9fWILIrcAwYM20tpN8T3/n5eR09erTrYSAhfWk3DtmttNJ1SE6/A8a0FhcXaQFGa1JKhVUtkExp\njED22MASUnkr7++c4TVoDbWIvlivsVBn6acmU2FdtBvX2fuL7VxaR2qpdNRb0LQu0kxPqvFcivdA\nRIPBgKCCxlG/QGFI5VVhvQrG9bndmPpKJ3LeziTXce8cgQN1FN9ubGZvrHj+WtVr0KT+fjjniqCC\nlKSSCnuCqtuNmbUAExBUkJqUbvQVskvSw00MBMi9HsOWLNiJktax1L3R1y6Rl0Fj+KeF/ippHUuV\nhxUOOmuSLmh5LECySHshB6nUWM6tOL5bUnPzNfRYnmmwhYUFHTp0RdfDQAFKSoXNUoinKwwNyDcN\ntvmuf8AsOms3NrPnmdmnzOzm0eMTZnZkB+9XFSSqCvQ+4WdAL5048SM2kETSKgOLmb1U0nWSPivp\nVZJeLelzkq4zs5dEHkdVKkyS7o38XkAx5uYOE1iQnEkzlrdKerm7X+/u33D3Y+5+naSXS3rbjO9X\nlQr7SsXP1iRdPON7AcVbXl4isGAmXdVYDrn7NzYfdPebJM3N+H6mQABx90+reoEkNRbUkGdRfnb5\n1orQra7ajU/M+LPt1AkUJrrCUEv5H7S0HCN1kwLLj5nZDYHjpnpb30+ranayu4H36rGcN5iENGw5\nlkRwwY40mQoz93DZw8zmJ73Q3Re3PbnZ5pOfUSCYubsFnisNayzLki4NvWbK9wQiSTcoM4tBXQcO\nHNjSul71uVpX5YxlmsAxg1kGneb/ZPRQt/8UCR7IxaQZyzcV7tQySe7uP7XtybfOHlYVSG1NmLGc\nkfSApIOh10z5nkCxCDaYVZMzlkmB5fDoy1dI+rKkuzcN4I5tTx4nsKxIujD0minfE6gh3XTXtAg2\nmMbBgwd1/PjxDcfaSIXdIUlmtl/S+zRcqPgxSR939+UYbz6F1dEDaEmOQWWvBoNrCSaopdM7SLr7\ngrv/hKQ3aVhEXzSzG2O+n5n9qsJptzOSHpzxvYBeIKggNXW2zf++pCVJP5J0SeRxvFjhwv4epbMD\nM3ohvVTY/Py8jh492vUwUJhOdzc2s98zs6OS/l3SYyT99jSF+0hM6dwzBsVLL6hI0uLiIhtOIrqu\nb/R1uaQ3u/uxxkZRjfuxoEXpBRUK8cjRNDWWt7cQVB6a8LMHGn5vIFnvfe8Huh4CUFsq9YvzKo67\nuDUxAERX0h0kJwl1hbmG27oACYq3k/JgMJC7b3ksLd0e7T2AcZ22G0cWDBLu/qaK55/UbLczBlow\nXU2mKmiMP6ijoCQpdVyF2o3PkXSPZr//C1BTnM4wWoSRupJSYZNmH1X7kqUU/FC8WYPKxrTY4uIi\nsxAkret245gm7UNT9bOqwj6QkEcDEi3C6LuUivdV+navWWRuYWGBxYzotdQDC5tQomHN/d5CgEHK\n+lxjOSVW3qNR6yksJsbolyZrLJX3Y4ly8p3fj+WUpPslXRx6zZTvCSSBTjGkpMkbfaWeCpNIhSEz\nVetWCCpISZ9TYbskHQ8cB1oQTo9tt+CRmgpyUNLK+7rtxrskPbahsQDb2LqmhVZiYHs5pMKomSAJ\nBBVgOqmvandNnuUAATvflmVu7jAbQKJofamxhNgMr0HvpXfDLiA1famxxHwNUNt4UZ7ZCjC7lGos\nVfdjYcaCVqyvlN/8oK4C1JNSKiw0M1kT61jQqb2VAYegg5yVVGOpm9ZySQ82MRBgOpPrNewHhlyV\nVGORqm81HJrN7BabOCED47Maggz6LqUaS4iJTSjRqp3/HjMpdTbrg2CF2EpKhdWtsUjpr7VB0uoG\nirRaldc71QgsiK2kVJjVfE8XqTDsSFqBoq7tZj8EHKQoh1TYqa4HAaSKHZORopRSYVVYIIkOtDtR\n3m7H5KoHgQWzarLGktKNvta0NYisSrpX3OgLndv5/mPT4GZgaEufb/RV1ZoMtKydWs3i4iJ1FGQv\npY6rqpX3QC/t2/cYraz8sOthoFB9aTcO2ZI2A5qRVvPh/Pw8QQWNKq3duErVynuK92hBWm3Jm1Ni\npMOQkyRqLGZ2n8IBpHJ3YzO7qtFBAR0b7xQjsCAnSQQWSRdUHN8l6f6Knx1qaCyoLa00UuqmbS0m\nmKBJfa6xSNJSxfGqYITWpZVGiqeZgLmwsKAjR440cm5gWn2psVS5pOL47+5kIMD2mguYobZiaiko\nRUrtxlWWJT01cPyZbQ+kH9pZCIghFkSiK31PhV1fcXzfTgaCKiUGlXRrQOszF2YqaFuTqbC2Zyzr\nm0ruqfGaWyacC5hCGsFyMBgQQNALTc9YNs9QfiDpZTXPsT/SWIDWhDq/CCroi0YDi7vvcncbe1zq\n7v+qelu1PKXiODMWRNBc5xf3UUHKmqyxdFW8r1NruSvCOdBL0zQiNJ8mIwWGFJXUbryOm3ehBd3U\nVjanwQgq6JuuAsv3pn2iu/9zxY9IhWFMd51fBBLkqKR243WP7eh9Uazx2UnzQYZ9vJC7ktqN19Hp\nhQbFS4FRHwHqy2HlPdA4AggQT/KBxcxe0/UYkLLptqBh6xRgoxJrLHVwe2JUmH5fM+4lD2zUZI3F\n3NtfDmJmq5oyqLm7mVlokGvuvuXWxRXPRc+R6gI2OnDggFZWVjYcc/co3bY5zFiAHQuthCfQoM/6\nvvIeiGZu7rCWlm7vehhA50pceX9v4BjBBtFtXrxIUAGa19WMZVHSKzYdcwVW05vZz7YyImSB7i4g\nfZ3MWNz9N7S1nefhiqdzb/uktbuVCjfGAuIort3YzJ6mrZ9IVWM5VHGcNuQknFQX+3Rtty09RXpg\nshLbjT8l6dc3Hb5P0oWbn0u7MTYjHQbsXIntxr8cOHZ+66NAlljsCKStq8ByTuAYa2owZvv0GjsM\nA7MrrsYCbG/7rVpY9AjMrsQay2lN3+r8WEk/DBynxoIN9u27QCsr93U9DCALJdZY6nhu1wNAHk6c\neIQZCzClElNhdVqFq9qN0WuhGszJYHrsyJEjbQ8OSF6JW7pMfYs/d/+7qh9FGguyNP1dIkNdZE0/\nmDmhz7oKLJ/v6H2BVtRZwElAQmm6Cixv6uh90Svt7wiwU+MBiSCDJjVZY+mqK+zFkj43zXMnrLxf\ndfctnWV0haFk7DqAWErsClsIHAsGBDP7w4pzRPkDAHIyqV7EDAep6Cqw7Knx3BONjQKZyS+11TR2\nH8CsSmw3PjXtEyd0hbG7cZEmBY/pO8H6YtomAYIONmuy3birG339ZIRzkAorEsEjpsFgQFBB61La\nhLJuoKBID2yD/dTQhRy2dKmS89gxM+osQAwl1limZmav6XoM/ZL6BzepsllQ5MdmJdZY6qgq0lO8\nbwQf3DmgdoKU5RBY7qg4nvxsC13Zq9ICJIEEsTWZCks+sLj7l8yCdX26wlBh1qCSRkAiiKANJd7o\na+o3ZUsXYCu2dsFOlbily7MDx+oGBAIIemt9a5dDh67oeijAFl0FlqrV9HVQYwGAGZVYY3nGtE+c\n0G5MjQW9MDd3WEtLt3c9DBSmxHbjOkFhf8VxUmGIgg9uIK7k00kTNqEEolheXmr91sXcWRJdK3Hl\nPbMNVOhi5X/3LcbboQMMsTWZCusqsIRSYQQbKIcP+aaMb7uy+UFgQU66CiwPBY7VDSyrMQYCAIir\nq+L9I5LO33QsvLze7NUV56ArrFfSWBUfA4sbkYISayxnAseqEn5fb3IgyMXmoJL6LsxA2kqssYTu\neR9Mbbn7tyrOkXxHG5qU5+xlMBgwW0Hxkt+EcgJSYegcG0YiVyWuvD8VOEYxHjvQXA2G4IESlbjy\nPpQK2x16opmFghCwyc6DCgEEiKOTOoW7Xxw4fE7F05ubrwEjBBUgnpRqLHVrJtRYUKE6LUYAAYZK\nbDcOocaSnFxbeqvTYgsLC+zBBajMduMQZiDJybOld1rMXoBmdHJrYil4C+FVVRTwJ3i6u397m/MC\nW+zbd4FWVu7rehhAZw4ePKjjx49vOJb7rYlDZgkI89FHgV44ceIRUmHotVJTYSc2ff+fkr5a8xxX\nRRoLemDj7sGPyN1bDSylr7jn+rCus8Di7vvd3cYez5V0Zc3TPLWJsaFMmwv3bRfwS/9g4vqwLqVU\nmCQt13z+XY2Mopdy7QDbatJ9TUIP0mHoo760G8vdL5f0LzVe8oKmxtI/uXWAVQfCqpkJt/8FHtVk\njaWzrrAqZnajpOePHZrULXbG3TeEXbrCAGA2sbrCUgwsZ7Q1kFQFl2Pu/tPNjwoAMK2kUmEjd0ta\nG329Kuk6SXdo643AXNKftDguAMAUkpuxAADyluKMZSZm9iIz+18z+46Zva3r8czCzC4zsy+Y2c1m\n9k0z+/3R8YvM7PNm9m0z+zczu2DsNW83s1vN7BYze2F3o5+Ome0ys6+Z2Q2j70u6tgvM7OOj8d5s\nZj9f2PW9xcz+x8xuMrMPm9menK/PzN5vZstmdtPYsdrXY2ZXjf5MvmNmf932dVSpuL4/H43/mJl9\n0szOH/tZvOur05aZ6kPDAPl/kg5ruM3+MQ23e+l8bDWv45CkK0df75f0bUlPl/Rnkv5odPxtkt49\n+voZkr6u4S7VV4z+DKzr69jmGt8i6R8l3TD6vqRr+4Ck14++PkvSBaVcn6THSbpN0p7R9x+T9Nqc\nr0/SczRcO3fT2LHa1yPpvyT93Ojrz0n6la6vbcL1vUDSrtHX75b0p01cXykzlmdJutXd73D305I+\nKullHY+pNndfcvdjo69XJN0i6TINr+WDo6d9UNLLR19fI+mj7n7G3W+XdKuGfxZJMrPLJL1E0t+P\nHS7l2s6X9Ivufr0kjcZ9vwq5vpHdkvaZ2VmSzpV0jzK+Pnf/kqTjmw7Xuh4zOyTpgLuv7xryD2Ov\n6VTo+tz9Rndfr2F/WcPPFyny9ZUSWB6vjYsl7x4dy5aZXaHhbxtfljTn7svSMPhIumT0tM3XfY/S\nvu6/kvRWbdwXrpRre6KkH5rZ9aNU3/vM7DwVcn3u/l1JfynpTg3Her+736hCrm/MJTWv5/Eaft6s\ny+mz5w0azkCkyNdXSmApipntl/QJSX8wmrls7rDIruPCzF4qaXk0I5vUK5/dtY2cpeHedX/j7ldp\nuBfetSrg706SzOxCDX+bP6xhWmyfmb1ahVzfBKVdjyTJzP5Y0ml3/0gT5y8lsNwj6Qlj3182Opad\nUZrhE5I+5O6fGR1eNrO50c8PSfr+6Pg9ki4fe3nK1321pGvM7DZJH5H0S2b2IUlLBVybNPxN7i53\n/+/R95/UMNCU8HcnDXPzt7n7ve6+KunTkp6tcq5vXd3rye46zex1GqakXzV2OOr1lRJYvirpyWZ2\n2Mz2SHqlpBs6HtOsrpP0LXd/z9ixGyS9bvT1ayV9Zuz4K0fdOU+U9GRJX2lroHW4+zvc/Qnu/iQN\n/36+4O6vkfRZZX5tkjRKn9xlZusboz5f0s0q4O9u5E5Jv2Bm55iZaXh931L+12faOIOudT2jdNn9\nZvas0Z/Lb429JgUbrs/MXqRhOvoadx/fxynu9XXduRCxA+JFGnZR3Srp2q7HM+M1XK3hotBjGnZo\nfG10XQcl3Ti6vs9LunDsNW/XsIPjFkkv7PoaprzOeT3aFVbMtUl6poa/5ByT9CkNu8JKur7BaKw3\naVjYPjvn65P0T5K+q+FGeXdKer2ki+pej6SfkfTN0WfPe7q+rm2u71YNF5x/bfT42yaujwWSAICo\nSkmFAQASQWABAERFYAEAREVgAQBERWABAERFYAEAREVgAQBERWABAET1/06gUfnbXgWbAAAAAElF\nTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0xeadc320>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "num_v.plot(kind='barh', stacked=True)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0xddcf550>" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAEACAYAAAA+8UZJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2QZFd53/Hfs7PaXqEVM5JsrSgEs8J2ggwGrFguXgwz\ngMEgBRAkvNoqSKLYOFIcXlwx6I/MLlTZshIh4zgqKEch4HIKQ0rISqLEQmXvCoWyEYVlBEi2bGom\nQtYuSLDLLmJ2d6af/NHdOzPd5/Tc7jn33nN7vp+qLu2efjnPXs3MM+fc85xj7i4AADDcjroDAACg\nCUiYAAAUQMIEAKAAEiYAAAWQMAEAKICECQBAAaUmTDPz3mNd2+q69u+ta/9Y6PXd59rrnzOzj3Xb\n/7yv/XTf+64P9O/9j277R/raH+22v6avvT3ks36h2/4Xgecu6z73vch1eVnf67+U5v8CACAFK7MO\nc31CcHfrtq1qLVGvuPtZ3fYnJJ0feP3TJX2r76Pd3Xf0J9b17xvSf/A9Q9qPS9rT99T33X16yHva\nkqzvqU+6+7sC7znt7rtC71n/bwEA1KsJU7JvGedN60ev4zKzT0vaGXjqnM3eGmibM7M7A+1nDXkP\nACATOSXM2FD3H4z6QWZmkma2Fo4k6Z8oHNc4ye1iSa8a5Q29qWcAQP1ySpixJNQ/HVrE6lYC6XM8\n0eeMc63fkahvAMAWhaYbc/O2QFt0hGdmfxB63sx8nHuC7r43cN9xnBFmsinX0L1TAMDmtrI2JKcR\nZiwJjPqPu2qrgWzovJOAQ+2vTdlPnWZnZ+Xu2/axsLBQewyT8uBacj1zeqRWWcLsL8no2rlutGSB\n1y9VE91Qbw60uaSPhF5sZveVG056S0tLMrMtPebn5+v+ZwBAqXIaYYY8bYz3pP614qxA2w5Jvxzs\n3P3yxP03wqFDh0ZOshddtK/usAGgsCbcwxxVVeUZNwU7NztUUf+Nd+TIYXUWNG9dq9XS8vLyWO9l\ndJwO1zItrmdechphNm0hy29G2n+10iga7WS6Tzp5cuzp5IMHDyaLY7vjB3xaXM+85JQwU40Mq0q8\nsZ/2V1fUPxI5cODAlu/hdh45fTsBSG0Sv8PHTbyjJtrgoh9JTx2zfzTerkSJl3u8QI5ySph1T8mG\nEq0pHtf7Qo3ufm2yiNAw6aaYpbV7vKM+ZmZSbHIFoF9Oi35y3Uu1LWkq0D4xZSXI1XgJ+NixY8kW\nU/WcdVZLp06Nt6gKmBQ5jTBTST1SDSVLSXpnsPNtWlaCyXb6tLY0vQxMgpxGmKkSXVXfnTcGOze7\nu6L+gQptZbq5taWkOTU1pZWVlS30D6SR0wizab+G3hZp319lEED+tnZvd3V1deyR7a5duxP9G4C8\nEmYqqadkQ5/nkh6OvP7KxP0DGNM4U8l79rBoCmE5Jcxcp2Rj52FSVgJkb/TR7Q9+sDxSgt2/f3/6\nsJElK2NH9zMfPngMlXcfGxK1u5uZPSHp/L7Xn+6+dmDhTfc9oeBPKHKGZuw9Qz5rtRtv6F7vFZLu\nHOGzvPt5A5815D3H3X0gAUdeCyAT09PTOnr0aN1hbHuhe+e+heO9clr0k0pVyYSyEgBBo5T2mJna\n7f6DnJCjnKZkU0k9JRsrPgsdbE1ZCYARtOTum077sqdsHnJKmLlOM94fab8h1GhmA9O0ABBW7B7r\nZsfncR+1GjklzFw3X39xpI9YIr0lcf8AMFSRAwT27dtXd5iNl1PCTCX1lGzoGpmkeyKvf0ni/gFg\nDK0Nf1taWmLv4S3KKWHmOiUbQ1kJgIwVme5tnVmgxOh0czklzKbt9MNpJQAartg91NjodLtt9pBT\nwkwl9Uj17yN9UFYCABrc7GFS5ZQwc93p58JI+xtDjZSVANh+1o9UW4V2SNq9u3n7/OaUMJv0a4lL\n+lDoCTO7veJYACAjxaZ5T5482bgRaU4JM5XUU7Kh/5sm6Vjk9Z9N3D8ATLBWY6Zzc0qYuU7JxhJm\n7Hiv5ybuHwAmWLHp3Bw2Z8gpYeb9q8UgykoAIKn4dO76zRnqSp6TeFrJcUnnhuIZ87QS64+3i9NK\nAKBCo+ar1KeV5DTCTKWqkSplJQBQmfqna3NKmE0bNb0i1EhZCQCUYXC6dmFhQe5eWcLM6TzMHDdf\nf1LSboV/sXh/6A1m9qmE/QMAAsq8nRiT0wgzlXETb+jqPznk9c+LtD8wZv8AgA02biDv7mcedcgp\nYeY4JesKLDjqujnSfnZJsQDANnNSvaTZarWGv7QCOSXMHMtKhsUUKyt5ZhmBAMB2tLDwAbm7lpeX\n6w4lq4SZSlUj1dhpJddU1D8ANMTG0WFvsU6RRw4bFvTktOgnx51+enWjIZSVAMA6Zmer3R629KPZ\nchph5jolG0uYLw41UlYCYLvpjRgnOVlKeY0wU6lqSvbdoUYz+3hF/QNAyVrq1T8uLCxkNT1ah5wS\nZq5TsqcUvk6vi7znsYT9A0BFOsmRxBiXU8LMdUr2foWnXz+swF6ykk6UGhEAjGFubk4HDx6sO4xG\nyylhppJ6SvaFkfZYWcnzE/cPAIXVVdS/HeS06CeV1CPV2DWKlZVcnbh/AAhYK9WYm5urdQec7SKn\nEWaO/6eHxURZCYAanSRBViynEWaOm68Pi+myYOeUlQAoQaioH9XKKWGmknpK9tuBNpf0jmDnZr+T\nuH8A29LalOvUVGxLa1Qpp4SZ469LLun8yHPXRdpPlxQLgAm2d+9s3why+cyfV1ZW6g4Pyith5lpW\nEnN9pP2bZQQCoNk22z/18OHFukPEJnJa9JNKVSPVWFnJfEX9A8hOS+71n6qBcuQ0wqx7p5/VQNv7\nFb5GpnhZyVvH7B9AdtbOYix2ugbJcpLllDDrnpIdmEp19z8c8nrKSoAJ1plCXc7mLEbUjynZNT8x\nUiful5rZQF/ufnmoHUDO1jYZn56e1tGjR+sNB1nKKWHWPSU70vvM7LWR9t8as38ApVhLhtQuYiuY\nkh3CzE4OeTq26OepZcQCYDxzcy+k0B9J5JQwU0n5XbFzyOcFF/1Iujth/wC26NChe+oOARNiEhNm\n6pFqO9IeG2Fek7h/AFuyS2YWfOzbt6/u4NAgOSXMXOdLYntSxcpKriwxFgAji99ZWVpaInmisJwW\n/eS4+fowlJUADTc7O6vFxcW6w0BD5JQwU6lk8RBlJUBTrK2SPdPSalFbiZExJbu5UFxOWQnQFL1k\nuXb6x6lTp+oJBY2WU8LMrqykK5QwTZSVAA2zNspst2Nr+YC4nBJmKlWNVGNlJbdV1D+AqLXRJAcv\nI5WcEmbdO/2MKjbC/I2K+gewwVqSXFj4AMkRyeWUMHOdkj0eaY+Vlby6xFgARJ08c+bk/v376w4G\nE8jK/A0ssFrUu48NidrdzcyekHR+3+tPd187UAvZfU8o+OOSzg3FE3vPkM9qS/q+pJnAcw9Jenag\n/cuSfibUvTpHiA2sTB72b3H3gXuirMIF4hhVosdscBzm7mMPznIaYeY6JRtKlnL3SyPtlyfuH0Bh\nrQ07+czMBL99gbHkVIeZ65RsEGUlQH44wBllymmEmUqtO/2IshKgNrE9Y9c/LrpoX91hoqEmMWFW\nNVKNlZV8oqL+AYzhyJHDZ5Ini4MwipwW/Twu6YK+14+z6OeEpD2heMZc9PO4pAsD/46/VnjRz0FJ\n86HuxaIfIEvsKTuZJnnRT66br/ev3O2JlZW8PHH/AEq2/tSS0IORKKS8RpipykpSjzDbGhwVtiX9\njSgrASbc4Mbt61HCkrdJHmHm+pUXurhGWQmwHcSTZX8JC4dTT76cEmauZSXBhElZCbDdDUum4Wne\nXbt2VxQbypBTwkyFshIAWTp9emPpy/z8fN0hYQQ5Jcxcd/qJiZWV3FxR/wAa7tChQyTNBmHRz/DP\n6h2aF/rFIraX7L2Sfi7UvVj0A2AEZsbZnVswyYt+Uhk3mcTeF2uPlZW8dMz+AWADd6fEJSM57SVb\n95RsW4Mj2dXufwdGuIrcwzSz+8bsHwAUKmVhpJmHnEaYda+SDV2L4wonS04rAVCSwdW3L3vZy2qI\nA/1yGmGmkvL+XvSzKCsBkNLU1JRWVlbqDgNDTGLCTDlSHfZZlJUASKDFsWQNkdOUbNNWfsbKSv5d\npVEAaLTpaTYzaIqcRpg5br7eK4MJiY0w/2fC/gFMKPahbZ5CI0wz22VmzzOznzKzXWUHtUWpp2Rj\nX9XXhRrd/UUJ+wcwMTp7z7o7ybKhNh1hmtmVkj4m6e/USSCXmNmvuPv/ThxL076Cbgo1mtkXqw4E\nQJ12y/2HdQeBChSZkr1J0svd/W8lycx+TNL/kpQ6YdZdVhJzSuHr9EuSHgi0XyXpSKkRASgFIz8M\nU2RK9ngvWXZ9U536xFylvod5Z+S5Z0Ta35uwfwCVYfENhisywvyymd0p6TPqJJA3S7rPzN4kSe5+\nW6JY6t7pJ/ZZbwq0uygrARosdDD0ssxMrVZLy8uUeWBQkRHmbnWmGOckzUv6jqSzJb1O0j9OGEuu\nU7Kha2SK7yV7bbnhANi6jclydnb2zGIckiViNh1huvs/qyKQhCrZ6UfsJQsA20qRVbKXSPrXkvat\nf727vz5xLLlOycb8sqR7+hvd/XKO3wLqFppyZVEPtqbIPczbJd0q6X9o7XzIMuQ6JXtE0t6+Nle8\nrORQ6REB2MRgsmy1WjXEgUlSJGEuu/vvlh5JOqmnZC+IPPebkj4XaP9VSV9PGAOALWBUiVSKJMyP\nmtmCpLu07tc2d/9KaVFtTRVTsq7Qr7AdVyfsH8AIzM5Wu/1k3WFgQhVZJftTkv6lpBvUmYa8SdJ/\nKCGWJv0aaKKsBMjKwsICyRKlss2mK8zsbyX9pLufGvnDBxe/9DYz35Co3d3M7AlJ5/e9/nT3tQOH\nOHffEwr+uKRzQ/HE3tNtb2twRPmEpPP64+26QoFNDYbE5ZJWFRjVD/u3uPtAAmZREbYzplhRlNng\nJKG7jz0LWWSE+TVJM+N2UINaz8OkrAQoU2cDczPTzEyTfixhEhRJmDOSHjKzPzGzO3qPEmJp2q+N\n7ww1uvvlVQcCbB+9pQMtHTt27EzyHPaYn5+vM2BMkCKLfhZKj6Ij17KSmBtDjWZ2d9WBANtPbM3d\noEOHqPRCGkV2+mnaV9u4I9VQwh72Wbeps11gv/2SXjlmDACS2LhxQehe1np7987q8OHFckNC4206\nJWtmLzSz+8zshJmdMrNVM/t+CbHkuNPPeYpv1vBwpP3KhP0DGEvxEagkHTlyODidy31SrFfkHubv\nSXq7OgnibEnXSPpPJcSS65RsLJFTVgJMjHCC7d0n3bdvX7XhIEtFEqa652FOufuqu39C0mvKDWtL\nUi8eGihp6eK0EmCbWFpaii4q2r9/f93hoSJFEuaTZrZL0v1mdqOZvbfg+0aV45TsMJSVANtaZ2/a\nG264oeY4UJUiie/q7uuuk/QDSc9Q+FDlrcp1SjbmjaFGykqA7WFqaoXzM7eZIgnzKndfdvfvu/sB\nd3+f0h4cnVrqKdnYrj0fCr3YzG5P3D+AjLRaLbm7VlZW6g4FFSuSMEMF+u9KHEdKqUeqoYRpko5F\nXv/ZxP0DqMXacWBmJndnRLnNReswzeztkt4h6ZK+nX2eKum7JcTStJ1+blNnxXC/51YdCID0zE6p\n3W7ajyWUadjGBV+U9JikH9HGw5KPS/pqCbGkGhmm/gpfUfg6UVYCTKDp6WkdPXq07jCQoeiUrLsv\nuftBST8v6QvdHX8ek3Sx8l6gkzq22NQrZSVA47UGWnq1l5SLoF+Re5j3SNptZk9X5xDpqyX91xJi\nyXXu40cj7ZSVABNiYWHhzD3K3oOEiX5FEqa5+5PqlJLc4u5vlvScEmLJddQau0ZXhBopKwGapLPD\nz8GDB+sNA41Q5LQSM7MXSfpFSf+i2xbb/SYHVY1Urw81mtkfVdQ/gEI2bsS+HvcrMYoiI8z3SPqg\npM+5+9fN7FmS/qyEWJq20895kfaDFfUPoJBQshy8dwlsZtOE6e6H3P31kv5j9+/fdPdfKyGWXKdk\nY6eV3Bppf2ZZgQBIpZNE2VwdoyhyvNeLzOwbkh7q/v35ZnZL6ZGNL/WU7PFIH5SVAA0SWtjTeywu\nLtYdHhrA3IfnFzP7C0n/VNId7v7T3bavufumBfpm1v/h3n1sSNTubmb2hKTz+15/uvvagXum3feE\ngj8haU8onth7hnxWu/vov9fr6px7eecIn+WSVgOfNew9x919IAFHXgug737l7OwsyXAbCx0c7u5j\nz2YWWfQjd3+kr+PVcTsc1k0Jn1mW6AiTshKgTie12SAAGFeRRT+PmNmLJbmZnWVmvy7pwRJiyXWn\nn1BcJukVwc4pKwFqtf6syvn5+brDwQQpkjDfLelaSU+X9KikF3T/nqvUi4diCfP9wRebfSpx/wAG\nhFe59t+npL4SKW16D3NLHz7aPczHJV3Q9/oc7mGqP96uz0t6VaD930q6MdS9uIcJVGJubo5kieT3\nMIuskr3EzD5iZreZ2R29x7gdDuuqhM8s082R9rMrjQLAgEOHDm2Yml3/YMs7jKvIKtm/Uqfm8AGt\nq0nsbsa+2XvrWCV7XNK5oXgSjzAfkvTsQPutWtsRaUM3YoQJ1CC+089wJvdYGTaaoPIRpqRld/9d\nd/+z7iYGh4okyzHkutNPLK7YaSWhMzIB1GacZClJu1g0hA2KJMyPmtlCdwODy3qPEmKpe0o29Kvk\n0Ui7RFkJMOFOnpnaZRoXUrEp2d9S50ivv9Na8nB3D5ZV9L23SVOybQ0m7SfU2TM29IvF+ZK+O0Jc\nTMkCWSs2dcuG7c1Rx8YFb5b0LHc/NW4nBeU4JTvss94dfIPZxxP2D6Ayw5LlWjLt7T8riU0Stpki\nU7JfkzRTdiCqf0p2VK+LtD9WaRQAKhBOpv0rcHfsKPIjFU1VZIQ5I+mh7r25M1813RNMcpTyV75h\nn/VhBfaSlXQkYf8AGoBp2u2hSMJcKD2KtFJPycaSZuy0kvmE/QOoTfieJslx+yp6HubAo4RYcr0Z\nMGpZyVtLjAVAZdaS5fot90iW21d0hGlm97r7z5nZcW1MGqbOKtnU5z7muPn6sM+irASYICzgwWaG\nTcmeI0nuHizRyFjqKdlTCl+nyyQ92d/o7pdT9gE0xdq068zMDKNHDDVsSrbqH/q5Jpl7I+3vCDWa\n2e+UGAuAhBYWPsBUKwobNsK80MyC9+kkyd1ji17GlWtZyc8H2lzSdZHXny4xFgCJMAWLUQ0bYU6p\nc0zWuZFHrlLfwwxdI5N0feQ9X03YP4BStDhoGiMbNsJ8zN0/VFkkzdvpJzbCflPC/gGUYO/ei3T4\n8GLdYaBhho0wq54izXVKNiZWVvLGqgMBsLn1pSEkS4xj2AjzlZVFkVbqKdnDki4KtFNWAmSrJffl\nuoPAhImOMN194CSOkuU6JfsjoSfc/dJI++UJ+wdQWEuSuqNIkiXSy2mn4CZNybqZvTb0RPc4NACV\n69RTrl/MwzmWSCmnhJlK6inZUCI3xRf9pN4BCcCYDhw4oN27d9cdBibEJCbM1FOysYQZq1G9O2H/\nAEbSGmhZWVmpIQ5MoiKnlVSlaVXEsRHmNZVGAWCdzrTs1NQUiRLJ5TTCbNrm67GykisT9g9gBL3S\nEZIlymBlbg8V2ITcFdg9x93NzJ6QdH7f6093XzvV/9nd94SCP6HODkUDYu/ptrc1mLS/q84B2qFf\nLB6S9OxA+5cl/Uyoe0mrCozqh/xbjodOhWFzdyBk8PxKRprbm9ngOMzdxx6c5TTCzDEJnIo9QVkJ\nkJvBw55XV1fZ/g7J5JQwsysrcfenqTMqHEBZCdAshw4dkplpx46cfuyhSSbxK2fckeqoCZuyEqAR\nOitn5+bm5O5qt9s1x4Omyilh5rjTjxS4f9oVKyu5LXH/ABLojTCZnsW4WPSzeftqf7xdsUU/n5f0\nqlD3YtEP0BjnnDOtEyc4VLrJJnnRTypVJZNYWcmrK+ofQIn27JmpOwRkJqeEmeuUbCguTisBGmNw\n95/e/cxhD44AQz+mZDdvP60RplGHxMWULJCZ2dlZLS4u1h0GSsKU7OYqSSaUlQDNt2/fvrpDQINM\nYsJMPSUb27yAshKgUQanZtevnGUFLTaTU8LMdZrxkUh7rKzkE2UFAmArBncCCuklUc7SRL+cTivJ\ncfN1SfqJSHtshPnvE/cPoEI7dkxpdZX9ZzEopxFmKqmnZGPXKFZW8vLE/QOo1ODULSDllTBznZKN\noawEmEDt9pMyM+3cmdMEHHKQU8LMbvP1YTitBJhMs7OznKmJoJwSZiqpR6qPh/qgrASYJGvTsEtL\nSzIz7d69u8Z4kKOcEmauO/2cG2mnrASYINPT0xt2+lleXq47JGQmp4SZ65TsqKeV3FxWIADKMTt7\nkY4eZaN1DDeJd7WrWDwU3UtW1GECmWopVItZ5vagmCw5jTBznZINXaMdipeVvDRx/wCSCG1c0Dqz\nw8/MDKeTYLicRpi5TsnGUFYCNBgjS4wqpxFmKpV8F1BWAjRD/2Ke3gMY1SQmzEpGqpSVADka3KXn\nPe95Tw1xYBLllDCb9isfZSVAdgbvUx44cGDDaSRsqo5xTeIB0scVqZ0c8wDplVD/kq6QdOcIcXGA\nNJAJpmS3Bw6Q3lzqKdl2pJ1FP0AjtRhlYiw5JczsfuUzs7sU37jgulAji36AXPXub57UwYMH6wwE\nDZVTwqy7rOR0oO0ZQ15/U6jRzL6YJhwAaa3d3+wdEr1nD7WXKC6nhJlKVSPVX4q0X1VR/wC2iISJ\nUeSUMHPd6Se2gCc2+nxv4v4BFDZYVtI7riv0OHx4sfoQ0Vjs9DNcW+GEaaKsBMhQZ9p1amqK8yyR\nXE4jzFRSTskOuz6xvWSvTdg/gMLWRperq6s1xoFJlVPCzHVKNoayEiArJyW12PoOpckpYeY6Jftk\n5Ll3hhopKwHK02q1ovcjOw8OfUZ5ckqYqaSekn0w8tyNoUYzuzth/wC0liiXl0mIqM8kJszUI9XQ\niNEl3RZ5/f7E/QMTanBFqxRe1UqiRA5ySpg53nRoK3yNTNLDkfdcWV44wCQJHegsLS0tsUk6spRT\nwkw1MqxqlSxlJUCJeqeMzM/P1x0KICmvhJlKVYuHKCsBkhmcnl1YWJC7s+8rspHTxgW5Tsk+osFd\nfVyUlQAJrZ+e3S33H9YWCRCT0wgzx7KSHZKeFnnubaFGykqArVpmKhZZyilhplLFSNUl3RB6wswG\nDpUGUNTa1GzvRJGpqZwmwrCd5ZQwc93pJ/R5Jun+yOtvSdw/sI0Mrpxtt3fKzKIPVtOiKjklzByn\nZNuKJ8x7Iu95SXnhANtRuPykp7ea1izHHyGYJDklzFTGHameFWi7cMjrKSsBarU2fcv+sahCTgkz\nxynZYafLUlYC1Ko38mzJzLRzJ/c6Ua6cEmbT5lMoKwGy0Emcq6ur2r17d82xYJLllDBTST0vE/u8\nNwZfTFkJUJuTJ09GFwex2hZbNYkJM/VItR1p/1Cwc7PbE/cPIIF2O7RMASgup4TZtDv2xyLtn600\nCgAFceIJtianhJnj5uuSNBVpjx3v9dzE/QNIJDZdy65CKGISJ/WrWjxEWQnQWC25M+LEaHIaYTZt\nSpayEqDBzEwzM8Mqx4CNckqYuZaVxBI5ZSVAY3VKUY4dO8b2eihsEqdkqyoruULSNwde7H65mTVt\ntAxsUxwlhuJyGmHmuNPPMNcHOzf7o4r6B7BF7D+LUeSUMHP9yj0VaT8v0n6wpDgAjKHVap3Za7b/\n0W4/WXd4aJCcEmYqqadD/2+k/dZI+48m7h9AIeHEuLzMalikkVPCzHVK9pWR9lhZyTMT9w8gqNX3\n95PUVaJUVuaROIHFL959bEjU7m5m9oSk8/tef7r72oHNA7rvCQV/QtKeUDyx9wz5rBXFF0ZdIenO\nET7LJa2GPm/Ie467+0BdJ4uKgOKmp6d19OjRusNADUL3qN197EFVTiPMVKpKJpSVAMA2MokJs6rF\nQ68INXJaCZCPvXtnGV0imZwSZq7TjN8OtLmk94debGafKjccADFzc3MbFvwcPrxYd0iYIDklzFw3\nX++/r9rzvEj7A4n7B1DQF75wb90hYILllDBTqWJK1iXdPOQ5ADVot3dGTyRh+ztsVU5b4zUp0Zji\nZSXPrzIQAB3nnHOBTpx4vO4wMMFyGmHmutNP6BqZ4qeVXF1uOMDkmJ2dje7CM+qDZImy5ZQwU9ls\npBqqDR0HZSXYxloDC2zGeSwuLtb9DwEKm8Qp2c1GqqlGsi+W9N3+Rk4rQXNwUgcwipwSZq5TsjHv\nDjWa2cerDgTbw9TUlFZWVuoOA9i2ckqYpxN9zqiju3ET9esi7Y+N+XmYOIzggEmS0z3Mryf6nNQj\n1VgC/nCk/Uji/lGBc865INnik7XH9kuWBw8erDuEicL1zEs2CdPdY6eC1C12HmasrGS+pDjQtbCw\nkDSxLSwssMIyEX7Ap8X1zEtOU7KppF5w03+GUM/7FD6t5K1m9pbEMTTG3Nwc3+QAJtIkJsxxp2RX\nFThGbIgqykoqPQ5+795Z9t4EgIhszsOMvH6c8zC/J+m8UDybnIe5EujnK5Je0B9vgc+KnYf5Q0lP\nGeWzQv8OylYAYDxbOQ+zCSPMU5LOLvpid9+wWbqZtdX5xWDki+Tu/6ibSAee2uytGhzpnnD3pwaS\nXXvIe2JxNa0EBwAaL5tFPzHu/hQNJqi/7/63vxSlrc0t9v09Vti22O1/Z6D/Xy/QT7/Phfpz996o\n9ta+18cWGwEAalDqlCwAAJMi+xEmNjKz15jZQ2b2N2b2G3XH0zRmtmhmf2Vmf2lmX+q2nWdmd5nZ\nX5vZn5jZdN1x5srMbjWzI2b21XVt0etnZh80s4fN7EEze3U9Uecrcj0XzOxbZvaV7uM1657jekaY\n2cVm9qdm9nUze8DMfq3bnuzrk4TZIGa2Q9LvSfoFSc+R9HYze3a9UTVOW9K8u/+0u/9st+0Dku52\n938o6U8lfbC26PL3CXW+/tYLXj8z+0lJb5F0qaTXSrrFzLj/vlHoekrSR9z9su7j/0iSmV0qrucw\nK5Le5+7q166sAAACYUlEQVTPkfQiSdd2fz4m+/okYTbLz0p62N2X3P20pE9LekPNMTWNafDr/g2S\nPtn98yclXVVpRA3i7veqsxJ9vdj1e72kT7v7irsvSnpYna9hdEWupxReAPgGcT2j3P2wu9/f/fMJ\nSQ9KulgJvz5JmM3ydEmPrPv7t7ptKM4lfd7M7jOza7pte939iNT5ppN0YW3RNdOFkevX//X6qPh6\nLeo6M7vfzP7zuilErmdBZrZPnZLAP1f8+3vk60nCxHbzEne/TNIV6kzZvFTpzkhFB9dva26R9Cx3\nf4Gkw5JuqjmeRjGzPZL+u6R/0x1pJvv+JmE2y6OSnrnu7xd321CQuz/W/e93JN2uzhTMETPbK0lm\ndpGkb9cXYSPFrt+jkp6x7nV8vRbg7t/xtfKF39faNCHXcxNmtlOdZPkH7v7H3eZkX58kzGa5T9KP\nm9msme2S9DZJd9QcU2OY2VO6v33KzM6R9GpJD6hzDd/Vfdk7Jf1x8APQY9p4jy12/e6Q9DYz22Vm\nl0j6cUlfqirIBtlwPbs/1HveJOlr3T9zPTf3XyR9w90/uq4t2ddnE3b6QZe7r5rZdZLuUueXnVvd\n/cGaw2qSvZI+191taaekP3T3u8zsy5I+Y2b/XNKSOivnEGBm/02dE3kuMLP/J2lB0g2SPtt//dz9\nG2b2GUnfUGeTkX+1buQERa/ny83sBeqs6F6U9CsS13MzZvYSSb8o6QEz+0t1pl6vl/TbCnx/j3M9\n2bgAAIACmJIFAKAAEiYAAAWQMAEAKICECQBAASRMAAAKIGECAFAACRMAgAJImAAAFPD/AYB3aJ3X\nmWgwAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0xeacc780>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ts_match.plot(kind='barh', stacked=True)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.axes._subplots.AxesSubplot at 0x18cfa6d8>" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAecAAAEACAYAAACJTL5uAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2QJWd13/HfAaSVdna1K61WswmClbAKK8RgIWNsMHjW\nxoCSgMHESRHjMhIVquwShhQmsUhhj8aOMSQQDMGUCmKMsEm5yqQCKuzEJjG7fiGxFCRZKJIxBK+w\nFWa00mqlnZH2RdKTP7p7t2/f02/3dt/uvvf7qeqamb736e7bsztP93P6nMdCCAIAAP3xtK4PAAAA\njKJzBgCgZ+icAQDoGTpnAAB6hs4ZAICeoXMGAKBnWuuczexFZnbUzE7Ey2dTr11mZg+a2an467NS\nr/23eP1JM7shtf7heN1j8fLcnP3+hJk9Hm/jjsxrH0odzzdz2l9vZltmFszs/ZnXQmr/385p/4F4\n+8HMfiK1/qWZ9nfntHfPTY32h+LP/5iZHTGz58frf8zMHjWzJ81sw8x+yGsPAOhem3fOr5S0W9K2\nePnHZvYP4td+T9JFks6Jv/6+JJnZayW9Ol5/rqT3mpnFbXbH686Pl8ty9vspSefF27jKzP51vO0f\nlvT21PE8K6f9j0naHn//k87ryf4vyWn/2nj7kvTm1PofzbS/Iqe9e25qtL9a0ec/X9IeSZ+P11+l\n6HM9LT72PzKzF+RsAwDQoTY752Vn3Tvir8/LrP+u+OuHMutN0nVVdxjfJZ6TWf3u+OtvqtrnvSD1\n/cVV952yPfX9lanvv7ti+7xzU7X9ttT3Jml//P0rJT1dUrrqzMmK2wQAzFCbnfMORZ1D2nNS31vm\nqyRd7mznHc46abQTTbwl5zgk6dmZ9U/P2e6O1PfPyHmPlH/uzk99vyf1ffazndm2mf1leghc1c5N\nXvvsOU+O8wrn9VcIANA7bXbOT2n0Lk2KhlsTIfM173jyhm/f7KyrE0c1M3ums/5UjQ283Fl9OvV9\n+i7+vMz7nm5myejC5ZJemnrNOzdV22/mHO4uZx1xZwDooaI7w2k91tD+tuWsf5WZPV3S8fjnW+UP\npRe51syukfQ9khRC2K4anbOkX5D0qsy6J1Lfl138/JSkf1djf1XabyqKz2d5IwVjcXMzo9g6AEwg\nhJAduZxY26lU2QN9fKKNmGXjyFJ0V/o0nX1A6ipFD4zV8RJJL0hto+gY9jur6zxQ5V2YvDT12t6G\n2t+p0Tvu5Hvvd31ZyT5rWV1dVQiBJbVwTjiffV04l9Mtr3/967Vr164zS9Pa7Jxf5KxL39F5cdU8\n3pPRTVyh7HTW/d3U908zsxPx9z/jvNe7q0/HmZ9hZkfi77272SS+bSo/N1XbvybT7imnnXesU1tb\nW5OZNbrs23dZk4cIAIMw66e1tzvrqvA6Jmm0EzpPxR2R53yNd7B5P3t3yd7dbHb4OOkAvbv/5HyY\npH05x1i0ryrt8x58k6Stkn12bmNjnQ4dQO8cOXJEJ06cOLM0rc3O+Qln3aR3u95xBo0O305ydh7X\neDrRkznv9TrXvPd6vM9eZ5jf29dEYYJhqZ/tNUmHnl1uvPHGRo7+wIEDjWwHEc5ncziX09m7d6/O\nO++8M0vT2k6lakrVWHLdz+NdQOSd5SVnnXennr1TLRq+T+8/b3SgaF912nsPetUdaRiI6dO3Jx2i\nz3bq/AFsFuezOZzLfmuzc/buZCd9Erj5MYOIN1R82lknScecdV6Hm73DTT5zWUfubb9s/3Xae8fK\nk9kNayPuzlA9sHiGMqztMY3HnOt2Nl7Muc5Q9bSpaHVi8F5MuSienOWde6+QC3qoiaH6JofrgUU3\n5Jizp07Hl1Y15ly38/diznnajjkXpnLJvxBIV1wra+9duJTdbaM3mqm02tRwPbDo5i3mXOdOL82L\nOTd5F55WJ+bsdXh1Ys7TDiuP/P7M7MKa7cvi1ICk9obrGbIHfEOPObeRSlUn5uzdzdaJOaeHtSd5\n8jp9wfC4pH/ivcnMspNpJHqfSoX5N+2QPZ07ujDkYW1SqUZNm0rlydbRvirnfc/JWQ/0wHRD9nU7\nd4bo0YQhD2uXxUDrmGUqVd5DXlVTqbLH0FQqVZndkh4peN071jlNpcJiqde5TzJET4eOWWuzc/aG\nhyd9IMy7K24i5ux1xHnbrZpKldVUKlWZYyGEd8uZlSqE8AX5v2s6Z6CCJmLuDL+jjlk/rd30/tqI\nOdfZhte512k/aTnThPfQXd7+vQuJ5qu1A3BVHX6nEx8GYs4RYs4+b+7mvNxl72G8omFwAI2qNvxe\n1IkzvN4fQ445U74zMsuYs6foAoIiJEDv5HfidYbX6ciHbeipVNMaUvnOMnnti3LLH55ynwB6qqwj\nZ/h8Ogxr51u08p0ebz7qPN6590YDACyAshg4d97Fhjys7aF85/j+E5OknqVjzpOU7+RpbWBhFf/p\nqzKETgfeHsp3jhtS+c5pnep4/wAGrKgD37GD6sDTGHrMedHLd6aHtcvak0oFYGa2tk7MdbybmHOE\nVCrpAWfdbTXak0oFYIbyh82r5nz3edh8yDFnyndGmkql+pqz7rF0ezOre85JpQLQgWqP+qSHzfvc\nUbeB8p3Vt9t1+c6rnXXpIfljkn7Ea2hml+Rsk1QqAINQJ8d7HobNKd85nPKd3rnLplK9KaftK0Uq\nFYAFsbGx3noHTcw5Qsy5Wvu/zmn7iJiVCsDCODkW1256WHzIMWfKd0aaijl7aWjpVKjdJbNSefsn\nlQrAnBq978obFu/rEPjQU6mmNaTynd6FhNeeWakAoKLkDrvunXXbw9rTlp8s0kX5Tm+WpiJDKt/p\nXdh4oxNFs1Jlzz+pVAAW1DZJJ7V//z4dPny4dutkWDtx8mTVYpPVUL5zOOU7vXOQTqXKa180WtFk\n6AEABiT603/ffff1Msea8p3j+lq+0zt3VS4Ois7TVo39A8BCWF1d7bxzbnNYu4vyncdrbret8p3p\njrTN8p3pC6BJyndmPzsALLSlpT2VOuYk5twWUqmGk0rlnYM6T1szKxUAnHH23mR1dVUhBIUQtLn5\nYKXWQ06lonxnpKlUKk/6Ln+S9qRSAVhQ0X1ZH4awPW0Oa1O+M9JUKpUnfT7L2pNKBQCxlZUVHTx4\nsOvDyNVm5+xpu3xnEzHnvpbv9Nxd472kUgGYW8vL+7W+fnhm+2s75jyUPOe2Y87pDrqvMeenNP7E\n9u+O7KD+rFSkUgEYjFl3wEWGnOdM+c5IUzFn70IqPSy9W9IPeg3jWam8B8JIpQLQK+mHs7JLXzrm\nWRh6KtW02irfWTWVqk7M2RuWTlcDOybpDTltX+y0lfI/KwC0bJtWV2/o5cNYVTCsnW/Rynd6snfp\neSMHeQ9+XTTl/gGgkj4NSTdhyMPaHsp3ju8/MUnqWXr/54cQ3irpaPZNIYTP5LR/dIJ9AoCk4iHo\nRR6SbkKbd86U74w0Vb7Ta7/TWZcXnyeVCsDE+p56NG+GHnNepPKdXsw5/XmT9nkP4pFKBaCWeRuK\nbhIx5wipVL4qIxHMSgWgsnPO2alTp4h4lRlyzJnynZE2y3em77zz2if79Y51kqpkAOZINm5Mx9wP\nbXbOlO+MNJVK5V1IpIe1y9p7d9lVL3oAzKG+1pUG5TuHVL7Tu7Cpk6fsxZwZ1gYWBPHjZhFzjhBz\n9k07qxTjV8AcoQOenSHHnCnfGWmzfGe6QlhZe1KpgAGrklNMxzw/hp5KNa0hle98QuN37+k730nK\nf5JKBfQAd7zD0/awdpt3zl2U76zb+Q+pfGdpLJtZqYA+iv7EMKHDfEmGtZOlaZTvHE75zm86656d\naV80KxWpVEAnTvJUNGqjfOe4vpbv/A+SPp5Z9/zMz0WzUpFKBbRg//79Onz4cNeHgTkz9JjzIpXv\n9J7MfjDTvmhWKlKpgAYtLe3R5uaD5W/EXCLmHGk7lSqtr6lUpWlTzEoFtO3stfy73vW2Do8DXRty\nzJlUqkhTqVTe+bzYac+sVEBrzl7Lr62tyczOLMSU0aQ2O+dFTqVKayqVqmxYO2lfNCtVFqlUQEOy\nnTWdNqYxlAphHi+VarPmNoaUSjVpNTBmpQJmjLzl+TfkmLOHVKrx/SfKUqnWS17Pa8+sVEBrRq/t\nV1ZWyFteEPMWcyaVqrx9nn3OuouddXlIpQIaN3ptf+DAgW4OA3OHVKrhpFK9z1n3rBrtSaUCWpX9\nU4J5xqxUEWalGu2IE25FsBpIpQImQEwZQ56Vqm6d5yKzTKXKu2CpmkqVPYamUqm89sxKBcxAEkum\nFjZmpc3O2RsenvSBMO+uuImYs9cR5223aipVVlOpVJ7076/KrFRZpFIBJZaX9+vgwYNdHwYWzKyf\n1m56f9mYc+nMTRlezLnONrzOvU77OqlUpSaYlar5RwyBObOxsS4z0759l3V9KOiRJOacLE2jfOdw\nyndWUTQrlXespFIBpaI/EUknTWERSO2nUs16VqpJUb6z3G5Jr8t57cXyf9eN3rkD82hlZYVhbcwc\n5TvH9bV8Z5ljkrYKXvfO/c4p9wnMvUOHDrllOdMLQ95o2lCGtT1e+c66nf+QyndWcbP8c3Brzvsf\na3j/wEJiyHvxDDnm7KF85/j+E9Omnp0fQrhbzhPYIYQHcvbPsDbQCH+2Kjrq+UX5zgjlO6vLi12T\nSgXMWN5MVQyJo8zQY85tpFI1Ub4zranynWXy2hedc1KpgI6lh8TpsIdjyMPapFJV23/bknNOKhXQ\nS+ORNa/DZqi8X4Y8rE35zkjSOXp3sE2nUhXxQgrEnIFeyn8UJjtUTmc9nyjfWX2705bv9NKcmk6l\nKuIdK6lUwMDRWc8nynfOrnynN4Q9yztX786dVCpgbkR/ytbW1rRjx7QDcShDzDkyDzHni511s3xa\nmlQqYK6d/VO2tXWi8AnxAwcOdHeYc2LIMWfKd0aSTtGbif3S1Pdll7plT7pP0p5UKmAuFZdvSKqe\nMQTeX23W1l7k8p3pDrroM19Ysv2yfaW3fWyCWana/P0D6Lm1tTVJopOeQDKs3ZY2/zh3Ub5zs+Y2\n5q18Z9msVNnjrVodDcCcWV7er/X1w10fxmAlw9qJkyeb/XNK+c7Zle/0pC8myu56y0YdzlfxrFRe\nKlXVcAGAgVpdXVUIYWyhY+43yneOa6t85ywUzUrlHUeTzwUAABpC+c7Zle/0pDvHsmphZTHnx1U8\nKxWpVMDC2Hbmjpl4cjvaTqUaSsy57VSqdAc9y/KddWPkWSPnM4Rwt5k9osyT2yGEB8yMVCpgARBL\nno0hx5wp3xmpekHSVCoVs1IBCyi5U6Zjng9t3jlTvjNSdSi/rfKdRUP93mgAgB5YXV1lSHqBzTrP\nte3yncdrtp9l+U5PnQeyJp0POjnnT2i8M24vSQ/AGQw1z5+285wp39ntlJGNxpxLeBcSpFIBrYoe\nzKJjnj+U74zMQ/nOMpPEnNPbLmvvHUfz/6IApJw8M2sUQ9Soo9Kwdvyk75skPSeE8Etm9mxJ+0II\ntxY0o3xnpKmY81Ma7/jTFwdl7YPGj7duGABARQxlz7e+DGt/TNJLJP2z+Ofjkn69pE0X5Tvrdv5d\nl++sM7ow7dPW3rm/qEZ7AECsL8Pa3xdCuF7xHWwI4WFNFq+kfOeoOuU7vepq6QugScp/lhU+AVCC\n8phoQ9XO+bSZPV3xH3gz26vyp5Ip3xlp6ji97Vww8ob6s1LVragGIIV0J7Sl6rDsRyT9F0mXmNmv\nSPpxSe8padNF+c4mUqmaKN9ZNeZcp3ynJ73/x1U8KxWpVEBDiCejF1NGhhA+Y2ZfkfQKRR3i60MI\n95Y0G1Iq1VDLd2Y7/qJZqUilAqZAh4y0PpXv3JD0J5K+LOl8M7u65P2U74w0lUrlSXfOu1V/VipS\nqYAcKysrxJDRmaqpVL8s6VpJ/1dnO4Qg6YcLmlG+MzLL8p03S/o5jR9XMisVqVSAY2lplzY3p/0v\nCDSnasz5n0r6jhDCqSn3R/nOUdMWahk5nyWzUnntL5xy/8Bc2No6ofT/EYawUaYvec53q/6w65Bi\nzmlDjjlL0q4a7YuGwYEFMvpnYGNjXWaWu/CENvqS5/yrku4wsz8ws1uSpaQN5Tsjs4w5e/srupNv\nKx0NGLjih3soyYm2VR3WvlnS+yV9VdWHbSnfGWkz5pw+/rz2RbNSTXvnDyywbVpbW9Pa2pr7KkPj\n860vw9qPhRA+EkL4UgjhULKUtKF8Z7kmRxfKeMc66ylDgTlSfHfN0Ph8a3tYu+of5z8xs1+VdItS\n/yJDCLfX3F9fy3dmO2hP1+U7PelRjLL23rnxPhOARpQPjUuik4ar6p3zCyV9v6T3SvpgvHygpA3l\nOyN9iet6x0oqFdChJHadXXbsmOQRFMyTqhXCfmiCbVO+M9Jm+c70tidpTyoV0EOPP573Zwh90Wn5\nTjP7yRDCb5vZO73XQwj/vqD5kFKphlC+0ysiUmfKSA+pVEAP7d27t+tDQImuy3duj7/uzFmKUL4z\n0lQqlTcq8OUa7T19GXIHoLPTT/KUN8qGtc+VpBCCnytQjPKdkaZSqR5VZopIjd45HzOzKwvak0oF\n9MzKyooOHjzY9WGgh8o657dI+miD+6N856g6qVRHJV2aWXck8/ONXkMze5NIpQJ6YWlpjzY3H+z6\nMDClvuQ5T2JIMee0vsacq/ibnPWPyD/3TBkJzMjy8n6FEOiY50TX5TtfYGaPOstxM3u0pC3lOyNN\nxZy91/dmXr9Z/jD6rTnry36HABry0z99bdeHgAEpG9b8agjhhRNum/KdkaZizsckPTuzLj2sfYxZ\nqYD+oHznfOs0lWpKXZTvrDtMPI/lO5mVCujcNrUw0oke6TqV6ncb3Vt/y3dW0cfynWlJ++w5mHS0\nAsCEVldv0OHDh7s+DAxYYeccQnivJJnZc83sf5jZ3fHPLzCz95Rsm/KdkaaOc93Z30MV2iX79+Lj\ndNxAC2666VNdHwIGruoDVJ+Q9G7F8dgQwl2S3ljSpovynXXSmKT2ynemNVW+8zUa/3y/UaO997ue\n9GIJQIHNzaYTMdA3Scw5WZpWtXPeHkK4NbPOiymXvU4q1ag6/4Pfo+k6U1KpgBYkKVLphXSp+dd1\nKlXiQTP7DsWdoZn9uKRvl7QhlSrSVCrVzzjr0hcMZe1JpQIakJTYTBaeyEYbqj5tfL2kj0u60szu\nl/TXkt5U0oZUqkhTqVR7nHVvkfRvKrb3kEoFVGYKoW7kDJhM1TvNEEL4EUVFL64MIbysQtsuUqnq\ndv5DSqXyzt3PTrl/UqmAipaWLur6ENAjfYk5/2dJCiFshRCS+tWfnWB/pFKNmjaVKv3XoslZwIAF\ndvZ6fWVlhTgyXG3HnMvmc75S0t+XtMvM3pB66QLlx2YTpFJF2pyWceSipWRWqqc0fmykUgFjzl6v\nHzp0SF51Pap/oW1lw7LfqSiFZ7ek16bWH5f01pK2XaRSNTErVROpVFVjznVSqco8ruJZqUilAhqy\nsbE+1mnTYS+WTst3hhA+L+nzZvaSEML/rLntIaVSpTvovqZSVcGsVMBMjEfDvA7bs7q6qhtvvLGF\nY8IstV2+s+oDTXeY2fWKhrjPHE0I4S0FbZqMgc4ylSrvnFRNpcoeQ1OpVFXa3yzp55x9JrNSZdeT\nSgU0ptof57W1NUmig0ahqp3Zb0naJ+nVkg5JulTlQ8je8PCkd5reXXETsVyvI87bbtVUqqymUqlK\n24cQ7pZzNx5CeCCnDalUQAfW1tbonFGoaud8RQjhFyRthRBulvSPJH1fi/urqo3ynXW24XXuddq3\nMStVnW2SSgXMzOifmrW1NZnZmYXOelj6kkqV3AUfM7PvUjQt4SUlbYYUc04bcsxZYlYqoKfyhr2j\nTjvprA8cODCzI8Lk+lK+8+NmdqGi+s63SLpH0vtL2lC+MzLLmLOnaFYqyh0BnRvttJP0rezCnfVi\nKctzfmfqx+vir78ef/U6qzTKd0ZmFnMueT1v9AFAT/Fk9+Iqe1p7Z/z1OyV9r6K7ZinKec7OUpXV\nRfnOusPEQyrfOS3v3F8ww/0DOGOb0nfMdMLD03We85okmdkfS7o6Kd1pZjdK+r0J9tfX8p3ZDtrT\nx/KdaWXtvVSqae/WAUxgZeX7dfDgwa4PA1NoO8+5aox2WdKp1M+n4nVFKN8ZabN857TD0tPGuQEU\nyE4vmSx0zChTtXP+tKRbzezG+K75zyV9qqRNF+U7m0ilaqJ8Z1pT5Tu9c5AOHUxS/pNUKqA127S2\ntsbT13Oq7VSqSjHTEMKvmNl/lfTyeNV1IYQ7SpoNKZVqCOU7H9H40PXGlPsH0ALqbM+/vgxrK4Rw\newjhw/FS1jFLlO9MNJVKtdNZd2+6vZldXtCeVCpgBlZXV+mYMbWmK3alUb4z0lQqlXfnno5vH5N0\ng9fQzF4j/3dN5ww0LCkmwtPXmMa0qUB1tV2+s4kpI4dUvnN75ue8EYZd8i8kdk25fwBiGHsRtZ1K\n1ead85Bizml9jTl75y77ENgH5d+pfzFn/SM19g8gZWlpz5mnr+mYF09fyndOgvKdkaZizt520se/\ne4JZqShCAtSUpEdtbj7Y9aFgjrU5rE35zkhTMeeyC4GkfZ2LoodrvBdYeFTyQqLTCmFTonxnuaZj\nzlL+rFTeuS+rjw5AUlJuk+IhSPQmlaohfS3fWUUfy3emY8557ZmVCpha9GciPWMUd9Bo06xjzpTv\nnJy3rzphAu84TjnrAFTAXTTa1GbnTPnOSFPlO73Xt5e8nkYqFVDb2T8P2TrZdM6LrRflOyc0pFSq\nIZTv9Ibf69TT9malIpUKKBT9t1ta2sMwNkYMOeZM+c5Im+U70/8aJplhilQqoIKtrYeINWOmKN9Z\nfbtdl+/0LnbSw+KTzM1MKhVQU1Kek44abZr109ptl+9sIubc1/Kd3oXAd0/ZnlQqYCLRnw066sVF\nzDlCzNk3EjOuMCtV9jySSgVMJIoonXPOTp069WjHx4IuDDnmTPnOSFMx5yrt/6X3QjwrFalUQMNO\nnz5+5s6Zu2c0aeipVNNqq3xnWlMx5yrtiy7dSKUCWpYe5vaWffsu6/oQ0ZC2h7WHMiuVxyvfWbfz\nH3r5zmz7Qznv+6aYlQoAGjPkWak8lO8cNW35zpH2IYTPSTqafVMI4Z6c9k2GHoCFly1Ukl2YWhJV\nUb5zXF/Ld1Z1YY33brV2FMACSoa1Gb7GtIY+ZWR2WPt4ze22Vb6z6pSRdcp3Vm1fZ1aq7GcHAFTQ\n9pSRQ4k5t51KlTakVKoq7ZmVCmjd6HXuxsZ9PMU954Ycc6Z8Z2SWqVRFSKUCWlP86Eoy3E0njara\nHNamfGekzVSq9P7L2pNKBXRkaWmXNjenzZbEIqF853DKd07bnlQqoCNbWye4a54z5DlHiDm3055U\nKmBGGNqeL23HnNsc1qZ8Z6SpmLM3H3P6gmSS9qRSATNxUsvL+8lzRmWU7xzX1/KdX3DW3V6jvXes\neZ8VQMM2Nta5a54jzEqVzyvfWXeYd0jlO5/nrLs0/UPJrFSei2q+H8AEuGueP0OelcpD+c5Rdcp3\nPtNZ91imfdGsVB7mugNaki7lSceMuijfOa6v5Tu9c5e9OGBWKqAnbrrpU10fAgZs6DHnNlKpmijf\nmdZU+U4vTLAz055ZqYCeIMY834g5R9pOpUp30H1NpfLO3UiHHkL4nJkdVSaWHEK4x8w99aRSAQ1b\nWtqjzc0Huz4MtGzIMWfKd0aaSqUqK7+ZtM+blco7VkoWATWVTQtJx4wmtNk5U74z0mb5zvTvL2mf\nPaakU/Zi1lUvegDEmBYSs0D5zuGU7/S2u9NZl5Wcc+8igWFtYEIbG+sjM0/RWS8WYs4RYs7+ne9j\nzro6SKUCJjYaYzx69GhHx4EuDDnmTPnOSFMx57JqZpPErEmlAhpy0UXU9EFz2rxzXuTynekOuqmY\ns7ed9N18lfbZ4yWVCmjI5ua089BgSJJh7bYMZVYqj1e+s27nP6Tynd5n8+7m29o/gDOyfzakra2H\nmHVqgbQ9KxXlO4dTvtP7bPfVaE8qFdCY0T8b6fQqOmc0YdZTRlK+c3Ledm6q0Z5UKqAhKysrOnjw\nYNeHgTlG+c7hlO/0tnN/un3JrFSkUgETO/tnYnV1lY4ZradSDSXm3HYqVVpfU6m8c/fCzM/MSgU0\nbpuSPxOrq6sMW0PSsGPOpFJF2izfuT3TnlmpgMbRMWP2hj6sPa22UqnS2kylOp5pz6xUQE1ltbJ5\n0AtdGEqFMI+XSlU30XBIqVSekbv0eFaqI5L2ZtYzKxXgWF7eT6eLiQw5z9lDKtWoOqlUnvT+k/Z7\nct5LKhUW0OiDXNm74fX1w90dGgZt3mLOpFJNztuON/FF9nfKrFRYYGevvZlNCkMy9PKd2WHt4znv\ny9NWKlXV8p11U6myHXT68+a1T89KlW3PsDYATGDIw9qkUpWrEyP39jXpSESCVCosiOgafGVlhaFs\nNGLIw9qTxFDzzDKVKm80oWoqVfYYmkql8qT/RTArFeCIYs0nFEKgeAgGo83O2RsenvRO07srbiKW\n63XEedutmkqV1VQqlXch8UCN9qRSYSElsWYz04EDB7o+HKCSWT+t3fT+2ijfWWcbXudep33XMd/m\nx2KA3tqmQ4cOnemoeTgM06B8Z4SY8/S8YyWVCgtkPGtyY2N9pLNOL+Q/o8iQY86U74w0FXP27tIv\nmLL9dmcdsEDyyxwkw+EMhaMLlO8c19fynQ+X7P/YBLNSeXnSAGLnnLONh8jQiaEMa3u88p11O/8h\nle/8F866KzM/152V6rEa+wcWzrnndv1YCPpqyDFnD+U7R01bvjPtfNWflYphbaDA1tZDxKDhmreY\nM+U7J+edz4szPzMrFdCSdEpWsuzYMUl5AqDc0GPObaRSNVG+M62p8p2nnHUPptuHED4n5zhDCPfk\nbJNUKmAKW1sn6KAX1JCHtUmlKlcnlcrrnD0X5KwnlQpo3EltbZ1gyHsBDXlYm/KdkTbLd6aHtZP2\n2f0nFzBeSIGYMzC1k+6QNx02ptHmrFSU74w0lUrlSQ9r57W3zNc0UqmAhi0t7dLmJoNSmA7lO4dT\nvvNojfdSA6nYAAAIR0lEQVR6vIsEUqmAhjHMvRjajjm3eec8pJhzuoPua8z5Xc66S2u0J5UKmJG1\ntTVJopOeY0nMOXHyZNWs3Goo3zmur+U7DzjrrqnRnlQqYCZOanV1lY4ZU2nzznmRy3emO+imYs7e\nsV5So33VbQKYwsrKCh3zAkiGtdsylGFtj1e+s+4sT0Mq3+nxhtrzPKnx4212HAZYEEtLe7S5+WD5\nGzG3hjys7aF856imy3cW8VKpqoYLgIW1urqqEMLIQseMtlG+c1xfy3eWKpmVyjsOqvoDJbwc5n37\nLuv6sDDnKN85nPKdZR5X8axUpFIBDdnYWCeuvOBIpYqQSlUNs1IBrdumpCqYRLrUohpyzJnynZE2\ny3dm2zMrFdCC0bjziTPf0zGjLW12zpTvjLRZvnOkfTwr1djdeMGsVHWe9gYW1gc+8GtdHwIWDOU7\nh1O+s6q8oWpvlKC9JD1gjmxtneAhMIxgysgIU0ZWl/c79S4kSKUCKjmpjY11ZpzCGW1PGdnmA2GU\n74zMMuZcxDuO5v9FAXOCEpzoEuU7x/W1fOe07YPGj/f4lPsEeoPOFLNE+c58lO+sxzv3F81w/0Cp\n5eX9Wl8/3PVhAKWGnErloXznqFmW7/Tu4KctfAK45S0nXeiYgcisY86U7yxgZk3mhldR9+l2zAmG\ngIF+a7Nz9oaY2y7fWTeG6g1rb0na5by3avnO06oec86W7/xB701mdom3PqPsLvgJjd/9k0o1EAz3\nAv3Sdsy5zWHt+511k3bOs0yluivnvVWHtb3PnSd7AfO6nPe9WP65q7pO8kctph2WR47l5f0KIehL\nX/oSw70NOnjwYNeHMDc4l9NpO5Wqzc7Z+8M/6WVGW/m43kNreZNBVE2lym6zqVSqsgub3Wb2dwr2\n562/sPSo5kiTsdGqnSl/AJvF+WwO57Lf2hzW9iY8vXuC7Typ6p36lqSLa2zb+/xHct5bNZXqaObn\nqqMF96s4Jv8tSZdl1qUvBO6XdL3X0MxepuhCIrv9vM/aC8RFASyqNjtnT9mT0V4u7kMF78/GnL8i\naX+N4zlX4zHnOqYdeUhizqck3a78u+ddkj4p6Zcy67+Vaf/snPZ552RPtcOcHLFSAPOo7Zhza8N6\nkj6js3HhZPli/Fp2fYjXH3Ve+2VJz3fWP6no4uKpeDks6YDzvtPxtk87r/2mog7uKUlPxe+7KefY\nvui0/7rzub+ceU+y3Sec9v87fu2kpI9Kert3biS9TNIvOuvfmmn/+vizZN/3PEmfddZ/1Dl+b/8s\nLCwsLCVLk31om3fO3vBycqd2RNLe1PpkePU9ijqZ9B3xL0p6obOt20IITyhz92pmT2XWfSb++tuS\nrs1s40MhhOsy6/bK591h/1tnXbawh0lSCOHMuTazJ+N1L4pXPUPS3hDC2yR9JPW+IOlnQwh/ambX\nZLb7ZAjhE5n2nzOz54YQvpFqf2sI4R4zu8I51huzK0IIbaWoAQAqavOBsOSp5/SVRbLu1TpbJvO0\npFdIUgjhY5K+kWr3yfi29QGN3hE+IOklOftN7jAl6UgI4dp429dJ2kht4wshBO/J7L/I/Jxs688y\nn+WPU51jWjau7pUDvU/Svamfjzv7TfxZ/PUrqX2fVnSX7LV/n5ndZWZ3xu99R7z+dRp9gO0h1YvP\nAwBmxOKhTAAA0BOzLt+JHjOza8zsL83sr8zs57s+niEws8Nm9hdmdoeZ3Rqvu9DM/tDMvmZmf2Bm\nu1Lvf7eZfd3M7jWzV3V35P1gZr9hZhtmdldqXe3zZ2ZXxyNGf2Vmvzbrz9EXOedz1cz+1sxuj5dr\nUq9xPnOY2aVm9kdm9n/M7Ktm9vZ4/Wz+fc4q75Ol34uiC7VvKHqy+xxJd0q6suvj6vsi6ZuSLsys\ne7+kfxV///OS3hd//zxJdyh6RuCy+Hxb15+h4/P3MklXSbprmvMn6c8lfW/8/e9LenXXn61H53NV\n0jud9/49zmfhudwn6ar4+x2Svibpyln9++TOGYkXK3r6/L4QwmlJv6P8imU4yzQ+AvU6STfH39+s\ns88H/Kik3wkhPBFCOCzp64rO+8IKIfyppIczq2udPzPbJ2lnCOG2+H2f1ugzGQsj53xKfk2G14nz\nmSuEsB5CuDP+flPRc0KXakb/PumckXimpL9J/fy38ToUC5K+aGa3mdk/j9cthxA2pOg/uKSkNnr2\nHN8vzrHnkprn75mK/r0m+Lc77m1mdqeZ/cfUMCznsyIzu0zRiMT/Uv3/3xOdTzpnYDo/EEK4WtI/\nlHS9mb1cZ5/wT/DU5XQ4f9P5mKTnhBCukrQu6YMdH8+gmNkORXUi3hHfQc/k/zedMxL3a7TC2KWq\nN4nHQgohfDv+ekTS5xQNU2+Y2bIkxUNaD8Rvv1/Ss1LNOce+uueP81oghHAkxMFOSZ/Q2VAK57OE\nmT1DUcf8WyGEz8erZ/Lvk84ZidskXWFm+83sXElvlHRLx8fUa2a2Pb6qlpktSXqVpK8qOm/Xxm97\ns6TkP/Utkt5oZuea2eWSrpB060wPup9MozHRWucvHlp8xMxebGYm6adSbRbRyPmMO5DEG3S2FgPn\ns9wnJd0TQvhwat1s/n12/UQcS38WSdcoeiLx65Ju6Pp4+r5IulzRU+13KOqUb4jXXyTpv8fn8g8l\n7U61ebeipzjvlfSqrj9D14uk/yTp/ykqQfstSdcpmi2t1vmT9D3x7+Drkj7c9efq2fn8tKICUHcq\nGt1Z5nxWOpc/oKhMdPJ//Pb4b2Tt/9+TnE+KkAAA0DMMawMA0DN0zgAA9AydMwAAPUPnDABAz9A5\nAwDQM3TOAAD0DJ0zAAA9Q+cMAEDP/H+kqpA2OzapGgAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x13ef8eb8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "dt_match.plot(kind='barh', stacked=True)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(194, 1, 123.89526707944171)\n", "(1926, 3, 1237.524109014675)\n" ] } ], "source": [ "print (ts_match_max, ts_match_min, ts_match_mean)\n", "print (dt_match_max, dt_match_min, dt_match_mean)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " frID tFr Timestamp localX localY \\\n", "vID dateTime \n", "2 2005-06-15 14:49:40 16.5 437 1.118847e+12 16.395125 49.380625 \n", " 2005-06-15 14:49:41 25.5 437 1.118847e+12 16.248700 85.049000 \n", " 2005-06-15 14:49:42 35.5 437 1.118847e+12 16.549500 122.327800 \n", " 2005-06-15 14:49:43 45.5 437 1.118847e+12 16.078200 158.535100 \n", " 2005-06-15 14:49:44 55.5 437 1.118847e+12 14.532900 197.567300 \n", " 2005-06-15 14:49:45 65.5 437 1.118847e+12 15.562200 237.208600 \n", " 2005-06-15 14:49:46 75.5 437 1.118847e+12 16.657900 278.598900 \n", " 2005-06-15 14:49:47 85.5 437 1.118847e+12 16.130900 322.998400 \n", " 2005-06-15 14:49:48 95.5 437 1.118847e+12 16.430600 367.761600 \n", " 2005-06-15 14:49:49 105.5 437 1.118847e+12 17.410300 413.588400 \n", "\n", " globalX globalY vLenght vWidth \\\n", "vID dateTime \n", "2 2005-06-15 14:49:40 6451147.05075 1873334.595875 14.5 4.9 \n", " 2005-06-15 14:49:41 6451171.07880 1873308.121600 14.5 4.9 \n", " 2005-06-15 14:49:42 6451196.26890 1873280.366000 14.5 4.9 \n", " 2005-06-15 14:49:43 6451221.32770 1873254.149300 14.5 4.9 \n", " 2005-06-15 14:49:44 6451249.44020 1873226.795300 14.5 4.9 \n", " 2005-06-15 14:49:45 6451276.55360 1873197.369400 14.5 4.9 \n", " 2005-06-15 14:49:46 6451305.62580 1873167.561400 14.5 4.9 \n", " 2005-06-15 14:49:47 6451337.91880 1873137.082800 14.5 4.9 \n", " 2005-06-15 14:49:48 6451370.43160 1873105.807000 14.5 4.9 \n", " 2005-06-15 14:49:49 6451403.48850 1873073.998600 14.5 4.9 \n", "\n", " vType veloc accel line pred foll spac \\\n", "vID dateTime \n", "2 2005-06-15 14:49:40 2 40.0025 0.03125 2 0 0.0 0 \n", " 2005-06-15 14:49:41 2 39.0260 -1.85300 2 0 11.7 0 \n", " 2005-06-15 14:49:42 2 35.4440 -2.79500 2 0 13.0 0 \n", " 2005-06-15 14:49:43 2 38.1130 4.21500 2 0 13.0 0 \n", " 2005-06-15 14:49:44 2 39.4610 0.59800 2 0 13.0 0 \n", " 2005-06-15 14:49:45 2 39.8820 0.20500 2 0 13.0 0 \n", " 2005-06-15 14:49:46 2 43.2380 3.94300 2 0 13.0 0 \n", " 2005-06-15 14:49:47 2 44.8580 -0.37600 2 0 13.0 0 \n", " 2005-06-15 14:49:48 2 45.4040 2.91600 2 0 13.0 0 \n", " 2005-06-15 14:49:49 2 45.2830 -1.97200 2 0 13.0 0 \n", "\n", " headway \n", "vID dateTime \n", "2 2005-06-15 14:49:40 0 \n", " 2005-06-15 14:49:41 0 \n", " 2005-06-15 14:49:42 0 \n", " 2005-06-15 14:49:43 0 \n", " 2005-06-15 14:49:44 0 \n", " 2005-06-15 14:49:45 0 \n", " 2005-06-15 14:49:46 0 \n", " 2005-06-15 14:49:47 0 \n", " 2005-06-15 14:49:48 0 \n", " 2005-06-15 14:49:49 0 \n" ] } ], "source": [ "print (mean [:10])" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " frID tFr Timestamp localX localY \\\n", "vID dateTime \n", "2 2005-06-15 14:49:40 16.5 437 1.118847e+12 16.395125 49.380625 \n", " 2005-06-15 14:49:41 25.5 437 1.118847e+12 16.248700 85.049000 \n", " 2005-06-15 14:49:42 35.5 437 1.118847e+12 16.549500 122.327800 \n", " 2005-06-15 14:49:43 45.5 437 1.118847e+12 16.078200 158.535100 \n", " 2005-06-15 14:49:44 55.5 437 1.118847e+12 14.532900 197.567300 \n", " 2005-06-15 14:49:45 65.5 437 1.118847e+12 15.562200 237.208600 \n", " 2005-06-15 14:49:46 75.5 437 1.118847e+12 16.657900 278.598900 \n", " 2005-06-15 14:49:47 85.5 437 1.118847e+12 16.130900 322.998400 \n", " 2005-06-15 14:49:48 95.5 437 1.118847e+12 16.430600 367.761600 \n", " 2005-06-15 14:49:49 105.5 437 1.118847e+12 17.410300 413.588400 \n", " 2005-06-15 14:49:50 115.5 437 1.118847e+12 18.355500 458.081900 \n", " 2005-06-15 14:49:51 125.5 437 1.118847e+12 17.591300 499.134600 \n", " 2005-06-15 14:49:52 135.5 437 1.118847e+12 17.668100 535.880900 \n", " 2005-06-15 14:49:53 145.5 437 1.118847e+12 18.431600 571.199700 \n", " 2005-06-15 14:49:54 155.5 437 1.118847e+12 18.072300 607.279700 \n", " 2005-06-15 14:49:55 165.5 437 1.118847e+12 17.601300 646.529900 \n", " 2005-06-15 14:49:56 175.5 437 1.118847e+12 17.327600 687.665400 \n", " 2005-06-15 14:49:57 185.5 437 1.118847e+12 17.056600 732.249800 \n", " 2005-06-15 14:49:58 195.5 437 1.118847e+12 16.456900 777.691900 \n", " 2005-06-15 14:49:59 205.5 437 1.118847e+12 12.999600 827.392800 \n", " 2005-06-15 14:50:00 215.5 437 1.118847e+12 11.227900 876.678400 \n", " 2005-06-15 14:50:01 225.5 437 1.118847e+12 11.653000 926.757400 \n", " 2005-06-15 14:50:02 235.5 437 1.118847e+12 11.286600 978.255700 \n", " 2005-06-15 14:50:03 245.5 437 1.118847e+12 10.747200 1034.549600 \n", " 2005-06-15 14:50:04 255.5 437 1.118847e+12 10.852600 1092.173700 \n", " 2005-06-15 14:50:05 265.5 437 1.118847e+12 10.917100 1147.714700 \n", " 2005-06-15 14:50:06 275.5 437 1.118847e+12 9.421900 1198.508000 \n", " 2005-06-15 14:50:07 285.5 437 1.118847e+12 7.389700 1246.675700 \n", " 2005-06-15 14:50:08 295.5 437 1.118847e+12 6.532700 1292.783100 \n", " 2005-06-15 14:50:09 305.5 437 1.118847e+12 7.086300 1334.235300 \n", " 2005-06-15 14:50:10 315.5 437 1.118847e+12 7.533600 1374.400900 \n", " 2005-06-15 14:50:11 325.5 437 1.118847e+12 7.642800 1415.181300 \n", " 2005-06-15 14:50:12 335.5 437 1.118847e+12 7.623300 1459.687400 \n", " 2005-06-15 14:50:13 345.5 437 1.118847e+12 7.526000 1505.457700 \n", " 2005-06-15 14:50:14 355.5 437 1.118847e+12 7.349300 1554.578300 \n", " 2005-06-15 14:50:15 365.5 437 1.118847e+12 8.097900 1605.381200 \n", " 2005-06-15 14:50:16 375.5 437 1.118847e+12 7.969900 1659.391200 \n", " 2005-06-15 14:50:17 385.5 437 1.118847e+12 7.225300 1715.205200 \n", " 2005-06-15 14:50:18 395.5 437 1.118847e+12 7.262800 1774.544200 \n", " 2005-06-15 14:50:19 405.5 437 1.118847e+12 7.155600 1836.173900 \n", " 2005-06-15 14:50:20 415.5 437 1.118847e+12 8.351200 1901.437700 \n", " 2005-06-15 14:50:21 425.5 437 1.118847e+12 8.829100 1967.929400 \n", " 2005-06-15 14:50:22 435.5 437 1.118847e+12 9.098000 2035.809700 \n", " 2005-06-15 14:50:23 445.0 437 1.118847e+12 8.816111 2102.117778 \n", "4 2005-06-15 14:49:51 129.0 351 1.118847e+12 66.250667 508.664667 \n", " 2005-06-15 14:49:52 135.5 351 1.118847e+12 65.464600 535.440900 \n", " 2005-06-15 14:49:53 145.5 351 1.118847e+12 62.737400 578.772400 \n", " 2005-06-15 14:49:54 155.5 351 1.118847e+12 61.667000 618.786200 \n", " 2005-06-15 14:49:55 165.5 351 1.118847e+12 61.184700 658.677800 \n", " 2005-06-15 14:49:56 175.5 351 1.118847e+12 58.948700 702.243200 \n", "\n", " globalX globalY vLenght vWidth \\\n", "vID dateTime \n", "2 2005-06-15 14:49:40 6451147.050750 1873334.595875 14.5 4.9 \n", " 2005-06-15 14:49:41 6451171.078800 1873308.121600 14.5 4.9 \n", " 2005-06-15 14:49:42 6451196.268900 1873280.366000 14.5 4.9 \n", " 2005-06-15 14:49:43 6451221.327700 1873254.149300 14.5 4.9 \n", " 2005-06-15 14:49:44 6451249.440200 1873226.795300 14.5 4.9 \n", " 2005-06-15 14:49:45 6451276.553600 1873197.369400 14.5 4.9 \n", " 2005-06-15 14:49:46 6451305.625800 1873167.561400 14.5 4.9 \n", " 2005-06-15 14:49:47 6451337.918800 1873137.082800 14.5 4.9 \n", " 2005-06-15 14:49:48 6451370.431600 1873105.807000 14.5 4.9 \n", " 2005-06-15 14:49:49 6451403.488500 1873073.998600 14.5 4.9 \n", " 2005-06-15 14:49:50 6451435.566900 1873043.150300 14.5 4.9 \n", " 2005-06-15 14:49:51 6451466.487100 1873015.865700 14.5 4.9 \n", " 2005-06-15 14:49:52 6451493.863000 1872991.230200 14.5 4.9 \n", " 2005-06-15 14:49:53 6451519.682800 1872967.114800 14.5 4.9 \n", " 2005-06-15 14:49:54 6451546.814900 1872943.332100 14.5 4.9 \n", " 2005-06-15 14:49:55 6451576.569800 1872917.526900 14.5 4.9 \n", " 2005-06-15 14:49:56 6451607.682900 1872890.569600 14.5 4.9 \n", " 2005-06-15 14:49:57 6451641.366700 1872861.358500 14.5 4.9 \n", " 2005-06-15 14:49:58 6451675.894900 1872831.836900 14.5 4.9 \n", " 2005-06-15 14:49:59 6451715.504000 1872801.608200 14.5 4.9 \n", " 2005-06-15 14:50:00 6451753.675600 1872770.389600 14.5 4.9 \n", " 2005-06-15 14:50:01 6451791.118300 1872737.034000 14.5 4.9 \n", " 2005-06-15 14:50:02 6451830.213800 1872703.530700 14.5 4.9 \n", " 2005-06-15 14:50:03 6451873.033300 1872666.971500 14.5 4.9 \n", " 2005-06-15 14:50:04 6451916.415900 1872629.039300 14.5 4.9 \n", " 2005-06-15 14:50:05 6451958.253000 1872592.503000 14.5 4.9 \n", " 2005-06-15 14:50:06 6451997.439200 1872560.216400 14.5 4.9 \n", " 2005-06-15 14:50:07 6452035.007800 1872529.999700 14.5 4.9 \n", " 2005-06-15 14:50:08 6452070.273700 1872500.239700 14.5 4.9 \n", " 2005-06-15 14:50:09 6452101.140700 1872472.575300 14.5 4.9 \n", " 2005-06-15 14:50:10 6452131.148500 1872445.871800 14.5 4.9 \n", " 2005-06-15 14:50:11 6452161.823100 1872419.020700 14.5 4.9 \n", " 2005-06-15 14:50:12 6452195.272300 1872389.700600 14.5 4.9 \n", " 2005-06-15 14:50:13 6452229.703700 1872359.548500 14.5 4.9 \n", " 2005-06-15 14:50:14 6452266.780300 1872327.273500 14.5 4.9 \n", " 2005-06-15 14:50:15 6452304.676400 1872293.402800 14.5 4.9 \n", " 2005-06-15 14:50:16 6452345.398100 1872258.038100 14.5 4.9 \n", " 2005-06-15 14:50:17 6452387.552500 1872221.462900 14.5 4.9 \n", " 2005-06-15 14:50:18 6452432.435400 1872182.497300 14.5 4.9 \n", " 2005-06-15 14:50:19 6452479.042300 1872142.246200 14.5 4.9 \n", " 2005-06-15 14:50:20 6452527.649900 1872098.558900 14.5 4.9 \n", " 2005-06-15 14:50:21 6452578.143000 1872055.148600 14.5 4.9 \n", " 2005-06-15 14:50:22 6452630.515200 1872011.771400 14.5 4.9 \n", " 2005-06-15 14:50:23 6452682.455667 1871970.417222 14.5 4.9 \n", "4 2005-06-15 14:49:51 6451441.192000 1872973.158000 16.0 4.9 \n", " 2005-06-15 14:49:52 6451461.662500 1872955.905300 16.0 4.9 \n", " 2005-06-15 14:49:53 6451495.791800 1872929.041600 16.0 4.9 \n", " 2005-06-15 14:49:54 6451526.375300 1872903.130900 16.0 4.9 \n", " 2005-06-15 14:49:55 6451556.954900 1872876.745300 16.0 4.9 \n", " 2005-06-15 14:49:56 6451591.181200 1872849.671900 16.0 4.9 \n", "\n", " vType veloc accel line pred foll spac \\\n", "vID dateTime \n", "2 2005-06-15 14:49:40 2 40.002500 0.031250 2.0 0 0.0 0 \n", " 2005-06-15 14:49:41 2 39.026000 -1.853000 2.0 0 11.7 0 \n", " 2005-06-15 14:49:42 2 35.444000 -2.795000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:43 2 38.113000 4.215000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:44 2 39.461000 0.598000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:45 2 39.882000 0.205000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:46 2 43.238000 3.943000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:47 2 44.858000 -0.376000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:48 2 45.404000 2.916000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:49 2 45.283000 -1.972000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:50 2 42.870000 -4.140000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:51 2 39.434000 -4.553000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:52 2 35.005000 0.267000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:53 2 35.510000 -0.446000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:54 2 37.734000 4.918000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:55 2 39.891000 0.670000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:56 2 43.209000 4.440000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:57 2 45.000000 0.000000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:58 2 47.360000 6.275000 2.0 0 13.0 0 \n", " 2005-06-15 14:49:59 2 49.574000 -4.008000 1.6 0 11.8 0 \n", " 2005-06-15 14:50:00 2 50.124000 1.663000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:01 2 50.024000 1.104000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:02 2 53.912000 6.474000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:03 2 57.466000 0.426000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:04 2 57.238000 -3.704000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:05 2 53.398000 -5.018000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:06 2 49.199000 -1.014000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:07 2 47.242000 -0.035000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:08 2 43.434000 -4.889000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:09 2 40.679000 -1.014000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:10 2 39.998000 -0.026000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:11 2 42.791000 4.827000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:12 2 45.042000 0.586000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:13 2 47.215000 4.277000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:14 2 50.521000 0.865000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:15 2 51.835000 4.163000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:16 2 55.129000 -0.070000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:17 2 57.605000 5.065000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:18 2 60.097000 0.877000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:19 2 63.904000 4.823000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:20 2 65.980000 0.967000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:21 2 66.890000 0.866000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:22 2 69.209000 2.350000 1.0 0 10.0 0 \n", " 2005-06-15 14:50:23 2 70.008889 0.112222 1.0 0 10.0 0 \n", "4 2005-06-15 14:49:51 2 40.710000 0.000000 7.0 0 0.0 0 \n", " 2005-06-15 14:49:52 2 42.905000 4.067000 7.0 0 0.0 0 \n", " 2005-06-15 14:49:53 2 41.500000 -5.282000 7.0 0 6.0 0 \n", " 2005-06-15 14:49:54 2 39.524000 -0.677000 6.4 0 2.4 0 \n", " 2005-06-15 14:49:55 2 41.218000 5.117000 6.0 0 1.8 0 \n", " 2005-06-15 14:49:56 2 44.814000 -1.848000 6.0 0 6.0 0 \n", "\n", " headway \n", "vID dateTime \n", "2 2005-06-15 14:49:40 0 \n", " 2005-06-15 14:49:41 0 \n", " 2005-06-15 14:49:42 0 \n", " 2005-06-15 14:49:43 0 \n", " 2005-06-15 14:49:44 0 \n", " 2005-06-15 14:49:45 0 \n", " 2005-06-15 14:49:46 0 \n", " 2005-06-15 14:49:47 0 \n", " 2005-06-15 14:49:48 0 \n", " 2005-06-15 14:49:49 0 \n", " 2005-06-15 14:49:50 0 \n", " 2005-06-15 14:49:51 0 \n", " 2005-06-15 14:49:52 0 \n", " 2005-06-15 14:49:53 0 \n", " 2005-06-15 14:49:54 0 \n", " 2005-06-15 14:49:55 0 \n", " 2005-06-15 14:49:56 0 \n", " 2005-06-15 14:49:57 0 \n", " 2005-06-15 14:49:58 0 \n", " 2005-06-15 14:49:59 0 \n", " 2005-06-15 14:50:00 0 \n", " 2005-06-15 14:50:01 0 \n", " 2005-06-15 14:50:02 0 \n", " 2005-06-15 14:50:03 0 \n", " 2005-06-15 14:50:04 0 \n", " 2005-06-15 14:50:05 0 \n", " 2005-06-15 14:50:06 0 \n", " 2005-06-15 14:50:07 0 \n", " 2005-06-15 14:50:08 0 \n", " 2005-06-15 14:50:09 0 \n", " 2005-06-15 14:50:10 0 \n", " 2005-06-15 14:50:11 0 \n", " 2005-06-15 14:50:12 0 \n", " 2005-06-15 14:50:13 0 \n", " 2005-06-15 14:50:14 0 \n", " 2005-06-15 14:50:15 0 \n", " 2005-06-15 14:50:16 0 \n", " 2005-06-15 14:50:17 0 \n", " 2005-06-15 14:50:18 0 \n", " 2005-06-15 14:50:19 0 \n", " 2005-06-15 14:50:20 0 \n", " 2005-06-15 14:50:21 0 \n", " 2005-06-15 14:50:22 0 \n", " 2005-06-15 14:50:23 0 \n", "4 2005-06-15 14:49:51 0 \n", " 2005-06-15 14:49:52 0 \n", " 2005-06-15 14:49:53 0 \n", " 2005-06-15 14:49:54 0 \n", " 2005-06-15 14:49:55 0 \n", " 2005-06-15 14:49:56 0 \n" ] } ], "source": [ "print (mean [:50])" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Number of registers by timestamp\n", "ts_match = data.groupby(['Timestamp', 'vID']).size()\n", "ts_match_max = ts_match.max()\n", "ts_match_min = ts_match.min()\n", "ts_match_mean = ts_match.mean()\n", "\n", "#number of register by dataTime\n", "dt_match = data.groupby(['dateTime', 'vID']).size()\n", "dt_match_max = dt_match.max()\n", "dt_match_min = dt_match.min()\n", "dt_match_mean = dt_match.mean()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Timestamp vID\n", "1118846979700 5 1\n", "1118846979800 5 1\n", "1118846979900 5 1\n", "1118846980000 5 1\n", "1118846980100 5 1\n", "1118846980200 2 1\n", " 5 1\n", "1118846980300 2 1\n", " 5 1\n", "1118846980400 2 1\n", " 5 1\n", "1118846980500 2 1\n", " 5 1\n", "1118846980600 2 1\n", " 5 1\n", "1118846980700 2 1\n", " 5 1\n", "1118846980800 2 1\n", " 5 1\n", "1118846980900 2 1\n", " 5 1\n", "1118846981000 2 1\n", " 5 1\n", "1118846981100 2 1\n", " 5 1\n", " 13 1\n", "1118846981200 2 1\n", " 5 1\n", " 13 1\n", "1118846981300 2 1\n", " 5 1\n", " 13 1\n", "1118846981400 2 1\n", " 5 1\n", " 13 1\n", "1118846981500 2 1\n", " 5 1\n", " 13 1\n", "1118846981600 2 1\n", " 5 1\n", " 13 1\n", "1118846981700 2 1\n", " 5 1\n", " 13 1\n", "1118846981800 2 1\n", " 5 1\n", " 8 1\n", " 13 1\n", "1118846981900 2 1\n", " 5 1\n", "dtype: int64\n" ] } ], "source": [ "print (ts_match [:50])" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1180598\n" ] } ], "source": [ "print (ts_match.count())" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "dateTime vID\n", "2005-06-15 14:49:39 5 3\n", "2005-06-15 14:49:40 2 8\n", " 5 10\n", "2005-06-15 14:49:41 2 10\n", " 5 10\n", " 8 2\n", " 13 9\n", "2005-06-15 14:49:42 2 10\n", " 5 10\n", " 8 10\n", " 10 2\n", " 13 10\n", " 14 9\n", " 22 4\n", "2005-06-15 14:49:43 2 10\n", " 5 10\n", " 8 10\n", " 9 6\n", " 10 10\n", " 13 10\n", " 14 10\n", " 18 5\n", " 22 10\n", "2005-06-15 14:49:44 2 10\n", " 5 10\n", " 8 10\n", " 9 10\n", " 10 10\n", " 12 10\n", " 13 10\n", " 14 10\n", " 18 10\n", " 21 9\n", " 22 10\n", " 26 9\n", "2005-06-15 14:49:45 2 10\n", " 5 10\n", " 8 10\n", " 9 10\n", " 10 10\n", " 12 10\n", " 13 10\n", " 14 10\n", " 18 10\n", " 20 1\n", " 21 10\n", " 22 10\n", " 23 6\n", " 26 10\n", " 31 8\n", "dtype: int64\n" ] } ], "source": [ "print (dt_match [:50])" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "120032\n" ] } ], "source": [ "print (dt_match.count())" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1\n" ] } ], "source": [ "print (ts_match_max)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'dt_match_max' is not defined", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-2-1f083de4b68f>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdt_match_max\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;31mNameError\u001b[0m: name 'dt_match_max' is not defined" ] } ], "source": [ "print(dt_match_max)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "ename": "NameError", "evalue": "name 'dt_match' is not defined", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m<ipython-input-1-c50c1b714d44>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdt_match\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;31mNameError\u001b[0m: name 'dt_match' is not defined" ] } ], "source": [ "dt_match " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.11" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0
midnighteuler/projecteuler
src/Prob38.ipynb
1
2878
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Take the number 192 and multiply it by each of 1, 2, and 3:\n", "\n", "192 × 1 = 192\n", "\n", "192 × 2 = 384\n", "\n", "192 × 3 = 576\n", "\n", "By concatenating each product we get the 1 to 9 pandigital, 192384576. We will call 192384576 the concatenated product of 192 and (1,2,3)\n", "\n", "The same can be achieved by starting with 9 and multiplying by 1, 2, 3, 4, and 5, giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).\n", "\n", "What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product of an integer with (1,2, ... , n) where n > 1?" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "is pan: 1 n: 9 123456789\n", "is pan: 9 n: 5 918273645\n", "is pan: 192 n: 3 192384576\n", "is pan: 219 n: 3 219438657\n", "is pan: 273 n: 3 273546819\n", "is pan: 327 n: 3 327654981\n", "is pan: 6729 n: 2 672913458\n", "is pan: 6792 n: 2 679213584\n", "is pan: 6927 n: 2 692713854\n", "is pan: 7269 n: 2 726914538\n", "is pan: 7293 n: 2 729314586\n", "is pan: 7329 n: 2 732914658\n", "is pan: 7692 n: 2 769215384\n", "is pan: 7923 n: 2 792315846\n", "is pan: 7932 n: 2 793215864\n", "is pan: 9267 n: 2 926718534\n", "is pan: 9273 n: 2 927318546\n", "is pan: 9327 n: 2 932718654\n", "Max: 932718654\n" ] } ], "source": [ "pans = []\n", "for p in range(1,10**4):\n", " digits = set([str(i) for i in range(1,10)])\n", " n = 1\n", " while len(digits) > 0:\n", " pn = str(p*n)\n", " d = set(pn)\n", " if not(d.issubset(digits) and len(d) == len(pn)):break\n", " n += 1\n", " digits = digits.difference(d)\n", " \n", " if len(digits) == 0:\n", " pans.append(int(''.join([str(p*i) for i in range(1,n)])))\n", " print \"is pan:\", p, \"n:\", n-1, pans[-1]\n", "print \"Max:\", max(pans)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 1 }
gpl-2.0
jeiros/Jupyter_notebooks
python/markov_analysis/PyEMMA-API.ipynb
1
141652
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Testing the pyEMMA API" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "'2.1'" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pyemma\n", "pyemma.__version__" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we import a few general packages that we need to start with. The following imports basic numerics and algebra routines (numpy) and plotting routines (matplotlib), and makes sure that all plots are shown inside the notebook rather than in a separate window (nicer that way)." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Populating the interactive namespace from numpy and matplotlib\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING: pylab import has clobbered these variables: ['plt']\n", "`%matplotlib` prevents importing * from pylab and numpy\n" ] } ], "source": [ "import matplotlib.pylab as plt\n", "import numpy as np\n", "%pylab inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we import the pyEMMA package that we will be using in the beginning: the coordinates package. This package contains functions and classes for reading and writing trajectory files, extracting order parameters from them (such as distances or angles), as well as various methods for dimensionality reduction and clustering.\n", "\n", "The shortcuts module is a bunch of functions specific to this workshop - they help us to visualize some of our results. Some of them might become part of the pyemma package once they are more mature." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pyemma.coordinates as coor\n", "import pyemma.msm as msm\n", "import pyemma.plots as mplt\n", "from pyemma import config" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# some helper funcs\n", "def average_by_state(dtraj, x, nstates):\n", " assert(len(dtraj) == len(x))\n", " N = len(dtraj)\n", " res = np.zeros((nstates))\n", " for i in range(nstates):\n", " I = np.argwhere(dtraj == i)[:,0]\n", " res[i] = np.mean(x[I])\n", " return res\n", "\n", "def avg_by_set(x, sets):\n", " # compute mean positions of sets. This is important because of some technical points the set order\n", " # in the coarse-grained TPT object can be different from the input order.\n", " avg = np.zeros(len(sets))\n", " for i in range(len(sets)):\n", " I = list(sets[i])\n", " avg[i] = np.mean(x[I])\n", " return avg\n", "\n", "shortcuts = {'average_by_state': average_by_state, 'avg_by_set': avg_by_set}" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "./bertha1-WT-ff14SB/05_Prod_0000-0050ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0050-0100ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0100-0150ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0150-0200ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0200-0250ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0250-0300ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0300-0350ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0350-0400ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0400-0450ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0450-0500ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0500-0550ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0550-0600ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0600-0650ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0650-0700ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0700-0750ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0750-0800ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0800-0850ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0850-0900ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0900-0950ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_0950-1000ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_1000-1050ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_1050-1100ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_1100-1150ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_1150-1200ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_1200-1250ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_1250-1300ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_1300-1350ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_1350-1400ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_1400-1450ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./bertha1-WT-ff14SB/05_Prod_1450-1500ns_WT-ff14SB_25Awatsalt_hmr.nc_stripped-autoimaged.nc\n", "\n", "./guanine1-WT-ff14SB/05_0000-0050ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0050-0100ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0100-0150ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0150-0200ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0200-0250ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0250-0300ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0300-0350ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0350-0400ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0400-0450ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0450-0500ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0500-0550ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0550-0600ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0600-0650ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0650-0700ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0700-0750ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0750-0800ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0800-0850ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0850-0900ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0900-0950ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_0950-1000ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_1000-1050ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_1050-1100ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_1100-1150ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_1150-1200ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_1200-1250ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_1250-1300ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_1300-1350ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_1350-1400ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_1400-1450ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./guanine1-WT-ff14SB/05_1450-1500ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0000-0050ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0050-0100ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0100-0150ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0150-0200ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0200-0250ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0250-0300ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0300-0350ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0350-0400ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0400-0450ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0450-0500ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0500-0550ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0550-0600ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0600-0650ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0650-0700ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0700-0750ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0750-0800ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0800-0850ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0850-0900ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0900-0950ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_0950-1000ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_1000-1050ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_1050-1100ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_1100-1150ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_1150-1200ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_1200-1250ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_1250-1300ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_1300-1350ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_1350-1400ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_1400-1450ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus1-WT-ff14SB/05_1450-1500ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0000-0050ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0050-0100ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0100-0150ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0150-0200ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0200-0250ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0250-0300ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0300-0350ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0350-0400ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0400-0450ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0450-0500ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0500-0550ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0550-0600ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0600-0650ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0650-0700ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0700-0750ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0750-0800ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0800-0850ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0850-0900ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0900-0950ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_0950-1000ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_1000-1050ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_1050-1100ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_1100-1150ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_1150-1200ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_1200-1250ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_1250-1300ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_1300-1350ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_1350-1400ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_1400-1450ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./parnassus2-WT-ff14SB/05_1450-1500ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./run1/05_Prod_WTff14SB_000-050ns_run1.nc\n", "\n", "./run1/05_Prod_WTff14SB_050-100ns_run1.nc\n", "\n", "./run1/05_Prod_WTff14SB_100-250ns_run1.nc\n", "\n", "./run10/05_Prod_WTff14SB_0000-0135ns_run10.nc\n", "\n", "./run10/05_Prod_WTff14SB_0135-0270ns_run10.nc\n", "\n", "./run10/05_Prod_WTff14SB_0270-0405ns_run10.nc\n", "\n", "./run10/05_Prod_WTff14SB_0405-0540ns_run10.nc\n", "\n", "./run10/05_Prod_WTff14SB_0540-0675ns_run10.nc\n", "\n", "./run10/05_Prod_WTff14SB_0675-0810ns_run10.nc\n", "\n", "./run10/05_Prod_WTff14SB_0810-0945ns_run10.nc\n", "\n", "./run10/05_Prod_WTff14SB_0945-1080ns_run10.nc\n", "\n", "./run10/05_Prod_WTff14SB_1080-1215ns_run10.nc\n", "\n", "./run10/05_Prod_WTff14SB_1215-1350ns_run10.nc\n", "\n", "./run11/05_Prod_WTff14SB_0000-0135ns_run11.nc\n", "\n", "./run11/05_Prod_WTff14SB_0135-0270ns_run11.nc\n", "\n", "./run11/05_Prod_WTff14SB_0270-0405ns_run11.nc\n", "\n", "./run11/05_Prod_WTff14SB_0405-0540ns_run11.nc\n", "\n", "./run11/05_Prod_WTff14SB_0540-0675ns_run11.nc\n", "\n", "./run11/05_Prod_WTff14SB_0675-0810ns_run11.nc\n", "\n", "./run11/05_Prod_WTff14SB_0810-0945ns_run11.nc\n", "\n", "./run11/05_Prod_WTff14SB_0945-1080ns_run11.nc\n", "\n", "./run11/05_Prod_WTff14SB_1080-1215ns_run11.nc\n", "\n", "./run11/05_Prod_WTff14SB_1215-1350ns_run11.nc\n", "\n", "./run2/05_Prod_WTff14SB_000-050ns_run2.nc\n", "\n", "./run2/05_Prod_WTff14SB_050-100ns_run2.nc\n", "\n", "./run2/05_Prod_WTff14SB_100-250ns_run2.nc\n", "\n", "./run2/05_Prod_WTff14SB_250-400ns_run2.nc\n", "\n", "./run2/05_Prod_WTff14SB_400-550ns_run2.nc\n", "\n", "./run2/05_Prod_WTff14SB_550-700ns_run2.nc\n", "\n", "./run2/05_Prod_WTff14SB_700-750ns_run2.nc\n", "\n", "./run2/05_Prod_WTff14SB_750-885ns_run2.nc\n", "\n", "./run3/05_Prod_WTff14SB_000-050ns_run3.nc\n", "\n", "./run3/05_Prod_WTff14SB_050-100ns_run3.nc\n", "\n", "./run3/05_Prod_WTff14SB_100-250ns_run3.nc\n", "\n", "./run3/05_Prod_WTff14SB_250-400ns_run3.nc\n", "\n", "./run4/05_Prod_WTff14SB_000-050ns_run4.nc\n", "\n", "./run4/05_Prod_WTff14SB_050-100ns_run4.nc\n", "\n", "./run4/05_Prod_WTff14SB_100-250ns_run4.nc\n", "\n", "./run4/05_Prod_WTff14SB_250-400ns_run4.nc\n", "\n", "./run5/05_Prod_WTff14SB_000-100ns_run5.nc\n", "\n", "./run5/05_Prod_WTff14SB_100-200ns_run5.nc\n", "\n", "./run6/05_Prod_WTff14SB_000-100ns_run6.nc\n", "\n", "./run6/05_Prod_WTff14SB_100-200ns_run6.nc\n", "\n", "./run7/05_Prod_WTff14SB_000-100ns_run7.nc\n", "\n", "./run7/05_Prod_WTff14SB_100-200ns_run7.nc\n", "\n", "./run8/05_Prod_WTff14SB_0000-0135ns_run8.nc\n", "\n", "./run8/05_Prod_WTff14SB_0135-0270ns_run8.nc\n", "\n", "./run8/05_Prod_WTff14SB_0270-0405ns_run8.nc\n", "\n", "./run8/05_Prod_WTff14SB_0405-0540ns_run8.nc\n", "\n", "./run8/05_Prod_WTff14SB_0540-0675ns_run8.nc\n", "\n", "./run8/05_Prod_WTff14SB_0675-0810ns_run8.nc\n", "\n", "./run8/05_Prod_WTff14SB_0810-0945ns_run8.nc\n", "\n", "./run8/05_Prod_WTff14SB_0945-1080ns_run8.nc\n", "\n", "./run8/05_Prod_WTff14SB_1080-1215ns_run8.nc\n", "\n", "./run8/05_Prod_WTff14SB_1215-1350ns_run8.nc\n", "\n", "./run9/05_Prod_WTff14SB_0000-0135ns_run9.nc\n", "\n", "./run9/05_Prod_WTff14SB_0135-0270ns_run9.nc\n", "\n", "./run9/05_Prod_WTff14SB_0270-0405ns_run9.nc\n", "\n", "./run9/05_Prod_WTff14SB_0405-0540ns_run9.nc\n", "\n", "./run9/05_Prod_WTff14SB_0540-0675ns_run9.nc\n", "\n", "./run9/05_Prod_WTff14SB_0675-0810ns_run9.nc\n", "\n", "./run9/05_Prod_WTff14SB_0810-0945ns_run9.nc\n", "\n", "./run9/05_Prod_WTff14SB_0945-1080ns_run9.nc\n", "\n", "./run9/05_Prod_WTff14SB_1080-1215ns_run9.nc\n", "\n", "./sod1-WT-ff14SB/05_0000-0050ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0050-0100ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0100-0150ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0150-0200ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0200-0250ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0250-0300ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0300-0350ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0350-0400ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0400-0450ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0450-0500ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0500-0550ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0550-0600ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0600-0650ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0650-0700ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0700-0750ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0750-0800ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0800-0850ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0850-0900ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0900-0950ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_0950-1000ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_1000-1050ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_1050-1100ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_1100-1150ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_1150-1200ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_1200-1250ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_1250-1300ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_1300-1350ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_1350-1400ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_1400-1450ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./sod1-WT-ff14SB/05_1450-1500ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0000-0050ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0050-0100ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0100-0150ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0150-0200ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0200-0250ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0250-0300ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0300-0350ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0350-0400ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0400-0450ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0450-0500ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0500-0550ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0550-0600ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0600-0650ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0650-0700ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0700-0750ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0750-0800ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0800-0850ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0850-0900ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0900-0950ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_0950-1000ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_1000-1050ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_1050-1100ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_1100-1150ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_1150-1200ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_1200-1250ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_1250-1300ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_1300-1350ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_1350-1400ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_1400-1450ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n", "./spinoza2-WT-ff14SB/05_1450-1500ns_WT-ff14SB_25Awatsalt_hmr_nowat.nc\n", "\n" ] } ], "source": [ "import glob\n", "trajfiles = sorted(glob.glob('./*/05*nc'))\n", "for file in trajfiles:\n", " print(\"%s\\n\" % file)\n", "topfile = \"./test.pdb\"" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "feat = coor.featurizer(topfile)\n", "feat.add_backbone_torsions(cossin=True)\n", "feat.add_chi1_torsions(cossin=True)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Obtaining file info: 100% (244/244) [##############################] eta 00:01 |" ] } ], "source": [ "inp = coor.source(trajfiles, feat)\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of trajectories: 244\n", "Aggregate simulation time: 16800.00 ns\n", "Number of dimensions: 2390\n" ] } ], "source": [ "print(\"Number of trajectories: %s\" % inp.number_of_trajectories())\n", "print(\"Aggregate simulation time: %.2f ns\" % (inp.n_frames_total() * 0.02))\n", "print(\"Number of dimensions: %s\" % inp.dimension())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## TICA and clustering\n", "So we would like to first reduce our dimension by throwing out the ‘uninteresting’ ones and only keeping the ‘relevant’ ones. But how do we do that?\n", "\n", "It turns out that a really good way to do that if you are interesting in the slow kinetics of the molecule - e.g. for constructing a Markov model, is to use the time-lagged independent component analysis (TICA) [2]. Amongst linear methods, TICA is optimal in its ability to approximate the relevant slow coordinates / reaction coordinates from MD simulation [3], and therefore it’s ideal to construct Markov models." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "calculate mean+cov: 100% (8176/8176) [#############################] eta 00:01 |" ] } ], "source": [ "tica_obj = coor.tica(inp, lag=100)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "getting output of TICA: 100% (244/244) [###########################] eta 00:01 |" ] }, { "ename": "TypeError", "evalue": "not all arguments converted during string formatting", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-11-91a3728df37e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mY\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtica_obj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_output\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Projected data shape: %s\"\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;31mTypeError\u001b[0m: not all arguments converted during string formatting" ] } ], "source": [ "Y = tica_obj.get_output()[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default, TICA will choose a number of output dimensions to cover 95% of the kinetic variance and scale the output to produce a kinetic map. In this case we retain **575** dimensions, which is a lot but note that they are scaled by eigenvalue, so it’s mostly the first dimensions that contribute." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Projected data shape: (2500,575)\n" ] }, { "data": { "text/plain": [ "array([ 4.78546917e-01, 1.15171218e+00, 1.33347392e+00, ...,\n", " 1.72825352e+04, 1.72826328e+04, 1.72827617e+04], dtype=float32)" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(\"Projected data shape: (%s,%s)\" % (Y.shape[0], Y.shape[1]))" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Retained dimensions: 575\n" ] }, { "data": { "text/plain": [ "<matplotlib.text.Text at 0x11206cf28>" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm0HGWd//H3JyGBAEkgRCHsMUESYCBEwqAwcMERAggR\nnWFTVEaW3xlAlDkjqL8ZM8PMYfvhwQFnBIwMKGNQQMmwL+aKgOzEgCQkgCIJSdhkSUK2e7+/P55q\nbnNzl0rSVd197+d1Tp+qrq6u+nal09/7LPU8igjMzMx6M6DeAZiZWXNwwjAzs1ycMMzMLBcnDDMz\ny8UJw8zMcnHCMDOzXApNGJKmSVoiaXYP+/yHpPmSZkmaUGQ8Zma2/oouYVwDHNbdi5IOB8ZExC7A\n6cAPCo7HzMzWU6EJIyIeAP7cwy5TgOuyfR8BhkvausiYzMxs/dS7DWM74OWq5wuzbWZm1mDqnTDM\nzKxJbFTn8y8Edqh6vn22bS2SPOiVmdl6iAjV4jhlJAxlj67MAM4AbpC0H/BWRCzp7kAeKDGZOnUq\nU6dO7XEfKV3yMq/ZsmWwYMHajyVL4PXXOx5vvAHt7bU661RgKgMHwpAhH3xsvDEMHpwegwZ1rFc/\nutreedugQbDRRukxcODa67XcNmBAx3LAAJDSI9eVyPG96C98LToo7xcoh0IThqT/AVqArST9CfgO\nMBiIiLgqIm6XdISk54FlwMlFxmMbbtUqeO659Jg374OPN97If5zhw2HkSNhySxg2rOMxdOja60OH\nwmabwaabrp0ULrsM/vVf04+6mRWr0IQRESfm2OfMImOw9bdyJTz5ZHo89VRaPvMMrF7d9f6DB8P2\n23c8dtghLbfZJiWHymPEiLRvLWy8sZOFWVnq3YZh66GlpaWQ4773Hjz4INx/P/zmN/Dww7Bixdr7\njR0L48fDRz/a8dhlF9h22/zVJ7VS1LVoRr4WHXwtiqFmaReQFM0SayPI24axYAHcdhvceivcd19K\nGtV23x0mTYKJE2HvvWGvvVIVkZk1B0lN1ehtDebVV+GGG+D66+GRRz742t57w8EHw4EHwgEHwFZb\n1SdGM2s8Thj9xJo1qRRx5ZVwzz3Q1pa2b7opHHoofPrTcMQRMGpUfeM0s8blhNHHvf46/PCH8F//\nBX/6U9q20UYpQXz+83D00SlpmJn1xm0YfVSlDWPIkHi/XWLsWPj7v4eTTkq9lcys76tlG0ZTJYx6\nx2Bm1oxqlTA8lpSZmeXSVG0YzVIaKtvtt8NZZ8GLL6bnhx8Od9xR/tAgZtZ4ajk0iEsYTez11+EL\nX4Ajj0zJYrfd4I47UgIxM6u1piphWIebb4bTT09JY8gQOP98OPvs1APKzKwI/nlpMitWwDnnpG6y\nkG6yu/pqGDOmvnGZWd/nhNFE5s2Dv/1bmD07Dd53ySWp7aLs8ZvMrH9ywmgS99yTksXbb6f7KW64\nIY3vZGZWFjd6N4Hvfz/1fHr7bfjMZ9Iw404WZlY2J4wGFpHaK848M4399K1vwU03ebRYM6sPV0k1\nqLa21Atq2rQ0QdC0aWlIDzOzenHCaECrVqXk8LOfpS6zN98MkyfXOyoz6++cMBrMmjVwwgkpSQwb\nloYk/6u/qndUZmZOGA2lvR1OOSUli+HD4d57YZ996h2VmVniRu8GEZHu1L722jQ/xe23O1mYWWNx\nwmgQF1wAV1yRbsi75Rb4xCfqHZGZ2Qc11XwYzRLruvr5z+HYY9Md2zfeCJ/97IYfszJCZV+9ZmaW\nTy0nUHIJo84eeQS++MW0fvHFtUkWZmZFcAmjjhYtgr33hiVL4NRT4corazculEsYZgb9eIrWZok1\njzVr4JBD4De/gZYWuPvudINerThhmBm4SqpP+Pa3U7IYNQp++tPaJgszsyK4hFEHM2bAlCkwcCD8\n6ldw4IG1P4dLGGYGLmE0tYUL4ctfTusXXFBMsjAzK4JLGCWKSMOU33VXWt52W3GTH7mEYWbgEkbT\nuvLKlCxGjEijz3qmPDNrJi5hlOSFF2CvvWDZMpg+HY47rtjzuYRhZuASRtOJgNNOS8niuOOKTxZm\nZkVwCaMEP/lJmt9iq61g7lwYObL4c7qEYWZQ2xJGr8ObS/oQcCqwc/X+EfF3tQigr3vzzTTNKsAl\nl5STLMzMipBnPoxbgN8A9wJtxYbT95x7Lrz2Wuo+W+lOa2bWjHqtkpI0KyImrPcJpMnAZaT2kmkR\ncVGn14cBPwF2BAYCl0bEf3dxnKarknroIdh//3QX9+zZMG5ceed2lZSZQfmN3rdKOmJ9Di5pAHAF\ncBiwO3CCpM4/m2cAv8+S0sHApZKafibA9nb4+tfT+j/+Y7nJwsysCHkSxtmkpLFC0rvZ452cx98X\nmB8RL0XEamA6MKXTPgEMzdaHAm9ExJqcx29Y06fDo4/CNtvAN79Z72jMzDZcr3/JR8TQ3vbpwXbA\ny1XPF5CSSLUrgBmSXgE2B5q+0+l778F556X1f/932Hzz+sZjZlYLuap+JB0NVEY9ao2IW2sYw2HA\nUxFxiKQxwD2S9oyIpZ13nDp16vvrLS0ttLS01DCM2vnud+Hll2HCBPjSl+odjZn1J62trbS2thZy\n7DyN3hcCk4Drs00nAI9HRK8VLZL2A6ZGxOTs+XlAVDd8S7oVuCAiHsye3wecGxGPdzpWUzR6v/EG\njB4N774L992X5ryoBzd6mxmUfB8GcAQwISLas5NfCzwF5KmZfwwYK2knYBFwPCnhVHsJ+GvgQUlb\nAx8FXswXfuO55JKULA47rH7JwsysCHl7I20BvJmtD8978Ihok3QmcDcd3WrnSDo9vRxXAf8G/Lek\n2dnbvhERb3ZzyIa2ZAlcfnlaP//8+sZiZlZreRLGBcBTkmYCIrVlnJf3BBFxJ7Brp21XVq0vIrVj\nNL0LL4Tly+Hoo2HSpHpHY2ZWW7nGkpI0itSOAfBoRCwuNKquY2joNowFC2DsWFi5EmbNSiPT1pPb\nMMwMSrpxr3KDnaSJwChSl9gFwLbZNqty0UUpWRx7bP2ThZlZEbotYUi6KiJOy6qiOouIKLVJt5FL\nGK++CjvtBCtWwNNPwx571DsilzDMLCmll1REnJatHh4RKzoFsEktTt5XXH55ShZHHdUYycLMrAh5\n7sN4MiIm9rataI1awnj3XdhxR3jrLXjggTTYYCNwCcPMoKQShqRtSEN7DJG0N6mHFMAwYNNanLwv\nuOqqlCwOOKBxkoWZWRF66lZ7GPBlYHvgUjoSxjvAt4oNqzmsXJmGAYGOsaPMzPqqPFVSn4uIm0qK\np6c4Gq5K6rrr0lhRe+yR5rtQTQp9teEqKTOD8ufD+JikLapOvqWkf6vFyZtZRMdd3V/7WmMlCzOz\nIuQpYTwVEXt32tbvG70ffhg+/nEYMSLdtDdkSL0j+iCXMMwMyi9hDJS0cdXJhwAb97B/v1ApXZx6\nauMlCzOzIuQpYZwLHAVck206GZgRERcXHFvnOBqmhLFoUepK294OL76YbtprNC5hmBmUPLx5RFyU\njST7yWzT+RFxVy1O3qyuvBLWrIFjjmnMZGFmVoRcgw82gkYpYaxenUoXixfDzJnQoJP+uYRhZkDJ\nbRiS9pP0mKSlklZJapP0Ti1O3oxuvz0li3Hj4KCD6h2NmVl58jR6X0GaJW8+MAQ4Bfh+kUE1smnT\n0vIrX3FXWjPrX/I0ej8eEftImh0Re2bb1upqW7RGqJJauDBVRw0YkNY//OG6htMjV0mZGZQ/p/dy\nSYOBWZIuJs3Nnadk0udce23qGXXMMY2dLMzMipDnh/+kbL8zgWXADsDnigyqEbW3w49+lNZPOaW+\nsZiZ1UOPVVKSBgLXRcTnywup21jqWiU1cyYccgjssAP84Q8wcGDdQsnFVVJmBiX2koqINmCnrEqq\nX6s0dp98cuMnCzOzIuRp9L4OGA/MIFVJARAR3y02tLXiqFsJY+lS2HprWL483dk9enRdwlgnLmGY\nGZTf6P1C9hgADK3FSZvNjBkpWXziE82RLMzMitDTjHs/joiTgLci4nslxtRwrr8+LU88sb5xmJnV\nU7dVUpKeBf4auANooWPGPQAi4s2ig+sUT12qpF57DUaNSuuLFsGHPlR6COvFVVJmBuVVSf0AuA/4\nCPAEH0wYkW3v8268Edra4PDDmydZmJkVodteUhHxHxExHvhRRHwkIkZXPfpFsgBXR5mZVXi02h78\n8Y+pkXvIEHj1Vdh881JPv0FcJWVmUP6Me/3W9OlpOWVKcyULM7MiOGH04MYb0/L44+sbh5lZI8hV\nJSVpJ2CXiLg3m9N7o4h4t/DoPhhDqVVSleqozTZLPaWabd5uV0mZGZQ/gdKpwI3Aldmm7YFf1uLk\njezmm9PyyCObL1mYmRUhT5XUGcD+wDsAETEf6PODe990U1p+rt+Ny2tm1rU8CWNlRKyqPJG0Eek+\njD7rlVfgoYdgk03giCPqHY2ZWWPIkzB+LelbwBBJnwJ+DvxvsWHV1y9+kZaHHebeUWZmFXkSxnnA\na8DTwOnA7cD/zXsCSZMlzZU0T9K53ezTIukpSc9Impn32EVxdZSZ2dryDG++GbAimxujMqnSxhGx\nvNeDSwOAecAngVeAx4DjI2Ju1T7DgYeAQyNioaSREfF6F8cqpZfUG2+k6VcHDkw3622xReGnLIR7\nSZkZlH/j3n1AdT+hIcC9OY+/LzA/Il6KiNXAdGBKp31OBG6KiIUAXSWLMt1xR5qO9aCDmjdZmJkV\nIU/C2CQillaeZOub5jz+dsDLVc8XZNuqfRQYIWmmpMcknZTz2IW49da0POqoekZhZtZ48kygtEzS\nxIh4EkDSx4D3ahzDROAQYDPgt5J+GxHP1/AcuaxeDXfemdaPPLLss5uZNbY8CeNrwM8lvUIa4nwb\n4Licx18I7Fj1fPtsW7UFwOsRsQJYIel+YC9grYQxderU99dbWlpoaWnJGUY+DzwAb78N48fDmDE1\nPbSZWSlaW1tpbW0t5Nh5hwYZBOyaPX0ua4/I876BwHOkRu9FwKPACRExp2qfccDlwGRgY+AR4LiI\neLbTsQpv9P6Hf4Dvfhe+8Q246KJCT1U4N3qbGZQ/pzfAJGDnbP+JWQDX9famiGiTdCZwN6m9ZFpE\nzJF0eno5roqIuZLuAmYDbcBVnZNFWSrtF5/+dD3ObmbW2PJ0q/0xMAaYRfpBh/Rj/9WCY+scR6El\njHnzYNddYcstU3fajfKm0gblEoaZQfkljH2A3eoyoXaJbrstLQ8/vPmThZlZEfJ0q32G1NDdp1Wq\no9w7ysysa3mqpGYCE0gN1isr2yPi6GJDWyuOwgo5y5bBiBGpW+1rr8FWWxVymlK5SsrMoPwqqam1\nOFEju/9+WLUKJk3qG8nCzKwIvSaMiPh1GYHU0913p+Whh9Y3DjOzRpZnxr39siE7lkpaJalN0jtl\nBFcWJwwzs97lafS+AjgBmE8aePAU4PtFBlWmBQvg2WfTvBf77VfvaMzMGleehEE2rtPAiGiLiGtI\nd2X3Cffck5aHHAKDB9c3FjOzRpan0Xu5pMHALEkXk4b4yJVomoGro8zM8snTrXYn4FVgEPB1YDjw\nn2WPJltEt9r29jRZ0htvpDu9d9mlpoevK3erNTOobbfaXIMPNoIiEsYTT8A++8DOO8OLL4Jqckkb\ngxOGmUFJ92FI+llEHCvpaWCtX52I2LMWAdRTpf3iU5/qW8nCzKwIPbVhnJ0t++zYrZUh4w85pK5h\nmJk1hR6rpLL5LO6NiIPLC6nbWGpaJbV6dRqZdtkyWLQItuljo2W5SsrMoLZVUj32doqINqBd0vBa\nnKyRPP54ShbjxvW9ZGFmVoQ83WqXAk9LugdYVtlY9nwYtVapjqrxLK9mZn1WnoRxc/boUyoJ4+C6\nV7aZmTWHftmtdtWq1H6xfDksXgxbb12TwzYUt2GYGZQ8vLmkXYALgN2ATSrbI+IjtQigHh5/PCWL\n8eP7ZrIwMytCniE+rgH+C1gDHAxcB/ykyKCK5uooM7N1lydhDImI+0jVVy9FxFSgqScynTkzLd3g\nbWaWX55G75WSBgDzJZ0JLAQ2Lzas4qxaBQ8+mNYPOqi+sZiZNZM8JYyzgU2BrwIfA74AfKnIoIr0\n+OPw3nuw225p4EEzM8snTwmjLSKWku7HOLngeAr3wANpeeCB9Y3DzKzZ5ClhXCppjqTzJe1ReEQF\nqySM/fevbxxmZs0m130YkrYBjgWOA4YBN0TEvxUcW+cYNvg+jAj40IfS/BcvvgijR9couAbk+zDM\nDOo4H4akvwC+ARwXEaVOaFqLhDF3brr3YtQoWLiwbw9p7oRhZlDi4IPZycZLmprNi3E58BCwfS1O\nXrZK76j99+/bycLMrAh5Gr1/BEwHDouIVwqOp1DVCcPMzNZNrwkjIj5eRiBlcMIwM1t//Wbwwdde\nS/ddbLopvPUWDBpUw+AakNswzAxKbsPoKyqli3337fvJwsysCP0uYbg6ysxs/eTpJXWPpC2qnm8p\n6a5iw6o9Jwwzsw2Tp4QxMiLeqjyJiD8DTTUK04oV8MQTqSvtx/tME76ZWbnyJIx2STtWnkjaCWiq\nltRZs9IotePHwxZb9L6/mZmtLU/C+DbwgKQfS/oJcD/wzbwnkDRZ0lxJ8ySd28N+kyStlvTZvMfO\n69FH0/Iv/7LWRzYz6z/y3Idxp6SJwH7Zpq9FxOt5Dp7No3EF8EngFeAxSbdExNwu9rsQKKRt5JFH\n0tIJw8xs/XVbwpA0LltOBHYk/eC/AuyYbctjX2B+NlPfatId41O62O8s4Ebg1XWIPbdKCWPffYs4\nuplZ/9BTCeMc4DTg0i5eC+CQHMffDni56vkCUhJ5n6Rtgc9ExMGSav6T/sYb8PzzMGQI7NH0g7Ob\nmdVPtwkjIk7LVg+PiBXVr0napIYxXAZUt23UdFjAxx5Ly4kTfcOemdmGyDP44ENA5yqorrZ1ZSGp\nOqti+2xbtX2A6UpjWYwEDpe0OiJmdD7Y1KlT319vaWmhpaWl1wDcfmFm/Ulrayutra2FHLvbsaSy\nSZO2A34CnEjHX/7DgB9ExLheDy4NBJ4jNXovAh4FToiIOd3sfw3wvxFxcxevrddYUkceCbffDtOn\nw3HHrfPbm5bHkjIzqO1YUj2VMA4DvkwqFXy3avs7wLfyHDwi2iSdCdxNamCfFhFzJJ2eXo6rOr8l\nb+D5zu8utWZmtdLraLWSPhcRN5UUT09xrHMJ48UXYcyYNC3rkiX9a9IklzDMDMofrfZBSdMk3ZGd\nfDdJX6nFyYtWXbroT8nCzKwIeRLGNaQb6rbNns8DvlZYRDVUafD2/RdmZhsu7+CDPwPaASJiDdBW\naFQ14vYLM7PayZMwlknaiqxBWtJ+wNuFRlUDq1fDk0+m9UmT6huLmVlfkOc+jHOAGcAYSQ8CHwL+\nptCoamDOnDSs+dixsOWW9Y7GzKz55Rl88ElJBwG7ku7FeC4bF6qhVUoXE/OOemVmZj3KU8KANP7T\nztn+E7NuWtcVFlUNPPFEWjphmJnVRq8JQ9KPgTHALDoauwNo6IThEoaZWW3luXFvDrDbeo3LUUPr\ncuNeWxsMGwbLl8Prr8NWWxUcXAPyjXtmBuXfuPcMsE0tTlaWefNSsthpp/6ZLMzMipCnDWMk8Kyk\nR4GVlY0RcXRhUW0gt1+YmdVenoQxteggas3tF2ZmtZenW+2vywiklioJ42Mfq28cZmZ9SU/zYTwQ\nEQdIepcPDjsu0tDkw8oIsCqeXI3e7e2wxRbw7ruweDFsvXUJwTUgN3qbGZQ0H0ZEHJAth9biRGV5\n4YWULLbdtv8mCzOzIvTaS6qrocwlXVhMOBvO7RdmZsXI0+j9OUkrIuJ6AEnfB4YUG9b6q/SQcvuF\nmVlt5UoYwAxJ7cBk4K2I+Ltiw1p/LmGYmRWjp0bvEVVPhwK/BB4E/hkgIt4sPLoPxtNro3dEulHv\nz3+Gl1+G7bcvKbgG5EZvM4PaNnr3lDD+QOodpaplRUTER2oRQF55EsZLL8HOO8PIkfDqq/17WlYn\nDDOD8npJja7FCcr0u9+l5YQJ/TtZmJkVIc9YUk1j9uy03Guv+sZhZtYX9amEUSlh7LlnfeMwM+uL\n+lTCqJQwnDDMzGqv1/kwGkVvjd7LlsHQoTBwICxdChtvXGJwDciN3mYG5c+H0VUAT9bi5LX0+9+n\nbrXjxjlZmJkVYb0SRkQ03G1xbvA2MytWnju9AZA0rHr/sm/c640bvM3MitVrwpB0OvAvwAo6hjkP\noNQb93rjBm8zs2L12ugtaT7w8Yh4vZyQuo2j20bvCNhyS3j7bXjlFRg1quTgGpAbvc0Mym/0fgFY\nXouTFeXll1OyGDkSttmm3tGYmfVNedowvgk8JOkRYGVlY0R8tbCo1lF1+4WHBDEzK0aehHEl8Cvg\naaC92HDWj3tImZkVL0/CGBQR5xQeyQZwg7eZWfHytGHcIek0SaMkjag8Co9sHVSqpFzCMDMrTp5e\nUn/oYnPDzIexfHkaEkRKQ4JsskmZUTUu95IyMyi5l1REjO7ikTtZSJosaa6keZLO7eL1EyX9Lns8\nIOkv1uUDPPsstLfDRz/qZGFmVqQ8N+59savtEXFdjvcOAK4APgm8Ajwm6ZaImFu124vAgRHxtqTJ\nwNXAfnmChzSGFMAee+R9h5mZrY88jd6TqtY3If34Pwn0mjCAfYH5EfESgKTpwBTg/YQREQ9X7f8w\nsF2O476vkjB2331d3mVmZuuq14QREWdVP5e0BTA95/G3A16uer6AlES6cwpwR85jA6lKCpwwzMyK\nlnvwwSrLgJrP9y3pYOBk4IDu9pk6der76y0tLbS0tLiEYWZWpbW1ldbW1kKOnaeX1P/SMejgAGA3\n4GcRcV6vB5f2A6ZGxOTs+XmkHlYXddpvT+AmYHJEvNDNsdbqJbV0aeohNWhQmkBp0KDeIuo/3EvK\nzKC2vaTylDD+X9X6GuCliFiQ8/iPAWMl7QQsAo4HTqjeQdKOpGRxUnfJojtz5qTlrrs6WZiZFa3b\nhCFpLLB1RPy60/b9JW2c58c9ItoknQncTSqdTIuIOdmQ6RERVwH/BIwA/lPpz+LVEdFTO8f7XB1l\nZlaenkoYl5EGHuzsney1o/KcICLuBHbttO3KqvVTgVPzHKszJwwzs/L0dOPe1hHxdOeN2badC4to\nHVQSxm671TcOM7P+oKeEsUUPrw2pdSDrw11qzczK01PCeFzSWlVFkk4BnigupHyWLoWXXoLBg2Hs\n2HpHY2bW9/XUhvE14BeSPk9HgtgHGAwcU3RgvamULnbdFTZan7tJzMxsnXT7UxsRS4BPZDfUVUZq\nui0iflVKZL1wg7eZWbnyDA0yE5hZQizrxAnDzKxceSZQakhOGGZm5WrahOEeUmZm5ep1LKlGUT2W\n1LvvwrBhsPHGqbeUG73X5rGkzAxKnnGvEbmHlJlZ+Zo6Ybg6ysysPE2ZMOZm8/WNH1/fOMzM+pOm\nThjjxtU3DjOz/sQJw8zMcmm6XlKrVsGmm0J7OyxfDptsUu/IGpN7SZkZ9PNeUi+8AG1tMHq0k4WZ\nWZmaLmG4OsrMrD6cMMzMLBcnDDMzy8UJw8zMcmmqhBHhhGFmVi9NlTAWL4Z33oERI2DkyHpHY2bW\nvzRVwqguXagmvYrNzCyvpk0YZmZWrqZKGM89l5ZOGGZm5WuqhFEpYey6a33jMDPrj5oyYbiEYWZW\nvqYafBCCQYNg2TIYNKjeETU2Dz5oZtDPBx8cO9bJwsysHpouYbg6ysysPpwwzMwsFycMMzPLxQnD\nzMxyabqE4XswzMzqo6kSxqhRMHx4vaMwM+ufCk8YkiZLmitpnqRzu9nnPyTNlzRL0oTujuXqKDOz\n+ik0YUgaAFwBHAbsDpwgaVynfQ4HxkTELsDpwA+6O54TRtLa2lrvEBqGr0UHX4sOvhbFKLqEsS8w\nPyJeiojVwHRgSqd9pgDXAUTEI8BwSVt3dTAnjMT/GTr4WnTwtejga1GMohPGdsDLVc8XZNt62mdh\nF/sAThhmZvXUVI3e7iFlZlY/hQ4+KGk/YGpETM6enwdERFxUtc8PgJkRcUP2fC5wUEQs6XQsj6Jn\nZrYeajX44Ea1OEgPHgPGStoJWAQcD5zQaZ8ZwBnADVmCeatzsoDafWAzM1s/hSaMiGiTdCZwN6n6\na1pEzJF0eno5roqI2yUdIel5YBlwcpExmZnZ+mma+TDMzKy+mqLRO8/Nf32JpD9K+p2kpyQ9mm3b\nUtLdkp6TdJek4VX7fzO78XGOpEPrF/mGkzRN0hJJs6u2rfNnlzRR0uzsO3NZ2Z+jFrq5Ft+RtEDS\nk9ljctVrfflabC/pV5J+L+lpSV/Ntve770YX1+KsbHvx342IaOgHKak9D+wEDAJmAePqHVfBn/lF\nYMtO2y4CvpGtnwtcmK3vBjxFql7cObtWqvdn2IDPfgAwAZi9IZ8deASYlK3fDhxW789Wo2vxHeCc\nLvYd38evxTbAhGx9c+A5YFx//G70cC0K/240Qwkjz81/fY1Yu/Q3Bbg2W78W+Ey2fjQwPSLWRMQf\ngfmka9aUIuIB4M+dNq/TZ5e0DTA0Ih7L9ruu6j1No5trAen70dkU+va1WBwRs7L1pcAcYHv64Xej\nm2tRuXet0O9GMySMPDf/9TUB3CPpMUmnZNu2jqz3WEQsBj6cbc9942MT+/A6fvbtSN+Tir72nTkz\nG3fth1VVMP3mWkjamVTyeph1/3/Rp65H1bV4JNtU6HejGRJGf7R/REwEjgDOkPRXpCRSrT/3VujP\nn/0/gY9ExARgMXBpneMplaTNgRuBs7O/rvvt/4surkXh341mSBgLgR2rnm+fbeuzImJRtnwN+CWp\nimlJZYytrCj5arb7QmCHqrf3xeuzrp+9z16TiHgtsgpn4Go6qh/7/LWQtBHpB/LHEXFLtrlffje6\nuhZlfDeaIWG8f/OfpMGkm/9m1DmmwkjaNPvLAUmbAYcCT5M+85ez3b4EVP7DzACOlzRY0mhgLPBo\nqUHXnvhgXew6ffasauJtSftKEvDFqvc0mw9ci+xHseKzwDPZen+4Fj8Cno2I71Vt66/fjbWuRSnf\njXq3+OfpsLtqAAAEwklEQVTsFTCZ1BNgPnBeveMp+LOOJvUEe4qUKM7Lto8A7s2uw93AFlXv+Sap\n58Mc4NB6f4YN/Pz/A7wCrAT+RLqRc8t1/ezAx7LrNx/4Xr0/Vw2vxXXA7Ow78ktSHX5/uBb7A21V\n/zeezH4X1vn/RbNfjx6uReHfDd+4Z2ZmuTRDlZSZmTUAJwwzM8vFCcPMzHJxwjAzs1ycMMzMLBcn\nDDMzy8UJw0ohqV3SJVXP/0HSP9fo2NdI+mwtjtXLef5G0rOS7ssbj6SrJY0rOrYuYjhd0hfKPq/1\nbUVP0WpWsRL4rKQLIuLNegdTIWlgRLTl3P0rwCkR8VDe40fEqesX2YaJiCvrcV7r21zCsLKsAa4C\nzun8QucSgqR3s+VBklol/VLS85IukHSipEeUJpgaXXWYT2Wj+86VdGT2/gGSLs72nyXp1Krj3i/p\nFuD3XcRzQjapzGxJF2Tb/ok0P8U0SRd18Z4rsslp7qZjxFQkzZQ0sfK5snieUZr0Z1L2+vOSPp0j\n5pmSfp6d58dV57gwO+YsSRdn274j6ZxsfYKk32av31QZxTQ73oXZueZK2j/bvlu27cnsPWN6/de1\nfsElDCtLAN8Hnu7qB7eLfSv2JE0O8xZpYqmrI+IvlWZcO4uOBLRTREySNBaYmf3IfQl4K9t/MPBg\n9oMOsDewe0T8qfrEkkYBF2avv0UaZv7oiDhf0iGkCWqe6vSeY4BdImJ89v5ngWldfK7NgHsj4huS\nbgbOBz4J7EGay+FWUimmu5gnkCYGWpxt/wQwF/hMRIzLYhnWxXmvBc6IiAck/QvZRDvZawOzcx0O\nTAU+Bfwf4LKI+KnSIHcDuzim9UMuYVhpIg3BfC1w9jq87bGIeDUiVgEvkMYLgjT+zc5V+/0sO8fz\n2X7jSAM3flHSU6T5AkYAu2T7P9o5WWQmATMj4s2IaAeuBw6ser2rCWoOBH6anX8R8KtuPsvKiKiO\n/9fZOZ4mzShJjpgXRRrPZ1b2+d8G3lOa/+AY4L3qE2YJZHikyZggXf/qz3NztnyiKobfAt+W9I/A\nzhGxspvPY/2ME4aV7Xukv6I3q9q2huy7mI2aObjqteofq/aq5+18sIRcXSpR9lzAWRGxd/YYExH3\nZvss6yHGrpJCLayuWn//s2QJoPJZeoq5+lq0ARtl7S/7koa6/jRwZxfn7enzVI7ZVokhIn4KHAWs\nAG6X1JLv41lf54RhZRFARPyZVBr4StVrfwT2ydankOZuX1d/q2QMacTf54C7gL/PqlWQtIukTXs5\nzqPAgZJGSBoInAC09vKe+4HjsvaHUcDB3ezX0w935bV1ijl7bYuIuJNUzbRn9esR8Q7wZqV9AjgJ\n+HVPMUgaHRF/iIjLScNd79nN/tbPuA3DylJdArgUOKNq29XALVk1zF10/9d/T0Mr/4n0Yz8UOD0i\nVkn6Iana5sms5PIqvcxZHBGLJZ1HR5K4NSJu7en8EfGLrH3j91kc1b2oopv1tQ6TLfPGXNl/GOna\nbZI9/3oX+34Z+IGkIaR2oJO7iafy/FhJJ5FKRIuAf+8hbutHPLy5mZnl4iopMzPLxQnDzMxyccIw\nM7NcnDDMzCwXJwwzM8vFCcPMzHJxwjAzs1ycMMzMLJf/D1Jo5UI5E4/0AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x111d69550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "print('Retained dimensions: %s' % tica_obj.dimension())\n", "plot(tica_obj.cumvar, linewidth=2)\n", "plot([tica_obj.dimension(), tica_obj.dimension()], [0, 1], color='black', linewidth=2)\n", "plot([0, Y.shape[0]], [0.95, 0.95], color='black', linewidth=2)\n", "xlabel('Number of dimensions'); ylabel('Cum. kinetic variance fraction')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The TICA object has a number of properties that we can extract and work with. We have already obtained the projected trajectory and wrote it in a variable Y that is a matrix of size (103125 x 2). The rows are the MD steps, the 2 columns are the independent component coordinates projected onto. So each columns is a trajectory. Let us plot them:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x1120efd30>" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEPCAYAAABP1MOPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXl4VeW59/+5I0QIGCRYQUmEKLEiRoLLoqfWau1z6lSc\neiqiqLt6Wvv72dNKi61va2sH7SStdrCnaqnbmlZi60jtkXbVOlRfUTcEI0YbNSJBhMOgEQMG5H7/\neNYOO8ke1p4yPp/rWhd7zc/ewLrXcw/fW1QVh8PhcAxfSvp7AA6Hw+HoX5whcDgcjmGOMwQOh8Mx\nzHGGwOFwOIY5zhA4HA7HMMcZAofD4RjmOEPgcDgcRUBEFovIBhF5Ls0xJ4rIShF5XkT+EWyrFJGH\nRWS1iDSJyBeLPlZXR+BwOByFR0Q+AmwDfqeqRybZPw54EviEqq4Tkf1UdZOITAImqWqjiIwFYsCZ\nqvpiscbqZgQOh8NRBFT1n8DWNIecD9ytquuC4zcFf76pqo3B521AMzC5mGN1hsDhcDj6h0OBChH5\nh4g8IyIX9jxARKYCdcDyYg6k6IZARE4RkRdF5F8i8rUk+/cVkXtEZJWIPCUihxd7TA6HwzEAGAEc\nBZwKnAJ8U0SmxXcGbqE/AV8KZgZFHUjREJES4JfAx4E3gGdE5P4evq6vAytV9RwR+SBwE2CSXMsF\nMxwOR2hUVfI5/8BJk3T9hg1hD9+gqpOyvEUbsElVdwA7ROQxYCbwsoiMwBqBO1T1/iyvmzVFNQTA\nbKBFVdcAiMgS4Ewg0RAcDvwAQFVfEpGpIvIBVf3fnhd71vfzHtDNt9/OZRdfnPd1CsVAGw8MvDG5\n8WRmoI2pv8dztOn1Lpk16zdsCP3MOdqYiSl2SbAk437gFyKyF7A3cAzw02Dfb4EXVPVn4UecO8V2\nDU0G1iast9E76LEKOAdARGYDBwGVRR6Xw+FwFBUR+QM2K+hQEXldRD4jIpeJyOcAAs/IMuA54Cng\nFlV9QUSOAy4ATgpSS1eIyCnFHGuxZwRh+CHwMxFZATQBK4H3kx148+23d332Zs7k6Lq6Phmgw+EY\n2Dzb2Ehs1arCX7ixMedTVfX8EMcsAhb12PYEsFfON86BYhuCddg3/DiVwbYuVPUd4JL4uoi0Aq8m\nu1ghpprezJl5X6OQDLTxwMAbkxtPZgbamPp6PEfX1XV7Mbz1jjv69P6DnWK7hp4BponIFBEpBc4D\nHkg8QETGicjI4PNngUeLGSEfaLOIgTYeGHhjcuPJzEAb00AbjyM9RZ0RqOr7IvIF4K9Yo7NYVZtF\n5DK7W28BpgO3i8huYDVwaTHH5HA4HKHJwzU0mCh6jEBVHwI+2GPbzQmfn+q531EkIhGIRvt7FA6H\nY4AxEILFjj6gyhj2fxCajKGzAGm4Dsew4JFH+nsEfYKTmBgmrPV9Wk7HGQGHw9ELZwiGEe3OCDgc\njiQ415DD4XCkoKStrb+H0Ce4GcEApzZDqbw3J/9SeofDMbxxhmAAU2IMpVeSOtMnEoFf2uMcDocj\nVwZNhzIR0UKIzjkcjqHP0cbkrT4qIpqyx2QPjiR/tdP+xM0IHA6HY5jjDMEAosYYaoyhPFdXjysW\nczgcOeAMwQDBW2DY+g5sfQcmrrdGISmRCN4y0yuI7G027LqtnjIXL3A4CsaIkMtgxxmCAUJs5nym\nXARTLoJRB0BLqnhINMrK66Gpx/7YBJ/qkdDh4igOhyNLXLDY4XAMOQoVLP5XyGMPxQWLHQ6Hw9ED\nEVksIhtEJG3ykYh8SER2isg5PbaXBN3JHkh1bqFwhmAQ4i0wgzIWUGGMrX1wOIYHtwEnpztAREqw\nXRqXJdn9JeCFIoyrF84QDEaiML22vweRPdWjoWKYlOw7hgb5BItV9Z/A1gy3+C/gT8DGxI0iUgmc\nBvwm17Fnw1AIeA87Ylt9uKH39tIBLjEdWzpwx+Zw9DUiciBwlqp+TERm99h9A3AlMK4vxuIMwVCg\nsRHviYUQgxbPOJVRh6PIPBUseXIj8LWeG0XkdGCDqjaKyIlA0YPQzhAMckqMYdZiuO4emL8NakZD\nLMR5VUGM4V1gizMcDkdSxqTY/vFgifPz3C5/NLBERATYDzhVRHYBxwJniMhpwGhgHxH5napelNtt\nMuNiBH1BNIp3kym4UmiZMcx6FK67xK5Pfh1at2c+z5tj2P4ObH8HJqQrXnM4HPkipHijV9WDg6Ua\nGyf4/1X1AVX9uqoepKoHA+cBDxfTCICbEfQNkQgrTT27Fy0KfUqFMewgfYFYh+/TeoLhG2fb9eZ7\nwxWUxT41H++iervyEMTcjMDhKDgi8gfgRGCCiLwOXAOUAqqqt/Q4vF8LulxB2QBk1HGG+0bBf70J\n5T+F2Pr5uaVdBrGDpntdi0rH8KJQBWVvhzx2HK6gzFFgPviq9feXvwH8ktxz7+vq6LwXahvIXcjO\n4XAMeZwh6E8aG7uCtomsWu+zZR+InVmZd8plk+/TOhdqGoofC6gyximgOoYUo0Iugx1nCPqRsoUL\n2f9soLGx177dvl+wh+q24M/ydN3O8sSbY9j/USivry/K9R0OR/FwweJ+pMP3M6Z6lpv86gLKjGF6\nAxDJXNDlzTHZz0CiUaZ/r56OF+Cl6sCAORyOQYWbEQxgao1hcitJ3UdhKDOG6Y/az80Z0kq9zQbp\nILsU12iUmuvr2TUKyh52RsAx9CgdHW4Z7DhDMEApMYbSR+GYqbB/Azm5dDp8n9gFlTAJalanbnLv\nLTN0zIZXJUsZiEiEltU+5Sug4yQXkHY4BivOEPQFjY14N/XuKpbIzAMMMw/Ys3+377NrP3g+7jvK\nNXMoGiX2zCI6y+B1DRRA40QieGsMnAfrqntXGJcYw0MfN0z10j/gY3v7bKuG6tW5z14cDkf/4QxB\nX1BXx8p7oSlNQVnTDGie0X3bqvU++hnbfSzf+ze/4nNmWY+HfTRK86XQUQE1D/Y+bbfv81mB12or\nM95ire/TMsP+6XAMGaaFXAY5rqBsiFBmDNNH56bwWW4Mndvh2lHwLXHtLh2Dn0IVlGlIuXdpcgVl\njn4mHhReszHLYG/ANqD6TViyNH0sweFwDE2cIegjyowZMA/YKmPwFiTEIyorKXsazpsDI56y6wOJ\nTIVw6WIvDkdeDBPXkDMEfUCVMUxphVmPUrwWk2/ClIsg9r3Mwnb7x2DzYz02boMjijOy3AmC2Vvf\nST3TKTWG0sVuFuNw5IMrKOsDRgG7RoHMgHdbYVu16R1UjVcX19VlvmAkgjc+oeVjA3TOtXISYYht\n9bs1LShpa4M6uPoV+EbIt5tid0MrM4bpD0LtabBkB3AK9jfq8ft0+j6xxkbwQ/xuDke2DIG3/TC4\nGUEf0FJZSflf4Pkx0DoJxvYsEotG8Z5YiLdhYcZ6gRJj8H7SxuqnYfXTsGsJbMzCCCRjBLD6cGyb\n7DfJOIZaY6h9sHizm3jMY/VJ1gjMeNpKbKc0kmGMp8PhSInLGupD4r7sNZBfO8nGRmoXLgTgFfLP\n8vE2G1afYbubhTYokUhvg5HkjT1XSowhnk27mjyrlqPR3OswHIOSgmUNXRny2OsHd9aQMwTDmUgE\n7ztt8CLE7qzMT5AuuNbGS7OrJagxhvLFELsmz/unoDSYvbScnqfxdQwqCmYIFoc89tLBbQica2g4\nExSUxU4ugNJpNEpLlkbAm2Mob4DmSymaKmqn79PqjICjHxCRxSKyQUSeS7H/fBFZFSz/FJEjE/aN\nE5E/ikiziKwWkWOKOVZnCPqIGmN6afGU9kjj7EUkgneTSSpTXSgKWTwW+mEbjeItM/BLWDm3+AVs\nPaUzHI4+4jbg5DT7XwU+qqozgWuBxPaVPwP+oqrTgZlAc9FGiTMEfcZmYFePbZ2VlXQ2pTnpxBPh\nIYZeMDQSsb2Sty4qjmJpY2NRjadjGDE25JIEVf0nsDXVpVX1KdWubphPAZMBRKQcOF5VbwuO26Wq\n7QX4NilJGSMQkVrg1mBw/wN8TVW3BvueVtXZxRxYkvG4GEFISo1hF8NQFjoSwZvXBofZ1WLFHRwD\nn4LFCBpCHjs3eYxARKYAS1X1yCSnJR63EDhUVT8nIjOxs4MXsLOBZ4EvqWoGMfncSVdH8N/At7GW\n6j+Bf4rIGar6CjCyWANy5M8HgdIGaMmzqc1gotQYahtg1xHQWWa3VV3axtr+HZZjiPLIanjkhcJc\nS0Q+BnwG+EiwaQRwFHC5qj4rIjcCVwHXFOaOvUlnCPZR1YeCz4tEJAY8JCIXAoMj1WgwkU1BWQaa\nfJ8qY6hpgI0mSfFakci1m1q+XdgqjKE6KKpbk7B9uBhBRxFJ4fY58Ri7xPnOn3K7fBAgvgU4Je5x\nAdqAtar6bLD+J+Brud0hHGljBCIyLv5ZVf8BfAq4A5gS9gYicoqIvCgi/xKRXl9GRMpF5AERaRSR\nJhGJhB/+ECEaxdsQrqAsLGt9n+a5sP+juQnRZUuVMXxLwXsvu3vNPMBwjuauF1RjDFWrgW3QVFlJ\nu+93LQ7HAECCpfcOkYOAu4ELA08LAKq6AVgrIocGmz6OdRMVjXSG4EfA9MQNqvpcMKh7wlxcREqA\nX2Ij5zOAeSJyWI/DLgdWq2od8DHgJyIyvKQvIhFiJ/s2jbNH4VM+Gjodvs/KE4AoRc8+Wuv7fF1s\nk5qwlBtDZxmcB5SenebAFOP2Ftj00xFHA2PB29yW9LisyNcQuyD10CKPYLGI/AF4EjhURF4Xkc+I\nyGUi8rngkG8CFcCvRGSliDydcPoXgd+LSCM2TvD9Qn+1RFIaAlX9g6o+lWT766r62ZDXnw20qOoa\nVd0JLAHO7HlJYJ/g8z7AZlXtmWAzLKk1JmlXsZoZBm9zOAOx2/eJrbVCdF7VwqKKs2WrPdReWUnZ\nw7DgNdh4b/JjKozpPe54+ukVEPtKJbGlPi1zsQZvmcn5YV5uDN6cekpz/I1KgrFWFPE3dgweVPV8\nVT1QVfdW1YNU9TZVvVlVbwn2f1ZVJ6jqUao6KzEBR1VXqeqHVLVOVc9JyC4qCkWtLBaRTwEnq+rn\ngvX5wGxV/WLCMWOBB7C5HmOBuar6P0muNSyzhrybDLHLu3/vKmNYO39+1rIJ3hwDUWiZCzuCbaOw\naa27yP5BXijKjElbS1BhTK9agJ7nVAQuogsPhzvvsvUJuWRNVeUZU0k2VkffU7CsoUdDHnvC4K4s\nHgiG4FPAh1X1KyJyCPA34EhV3dbjWoPaENQYwwb6P4BZZQz7NwDTYPPB8M99YdoO25im7MsQG9Pd\nwHhrDJ2X5idq1xdUGcP/bocj/gbMAV0BLV7//96O/qFghiCW+TgA8Qa3IcjoixeR41T1iUzbUrAO\nOChhvTLYlshngB8AqOorItKKnR082+M4br799q7P3syZHD2ICq120LugLC8yZRml2L/W99kcqHvu\nty+wFDgYnj8EZrwM3BDpfp0/75k9DGTW+j4Vow3Pb4fq14A3C/x7OwY0zzY2Elu1qr+HMWjJOCMQ\nkRWqelSmbSnO3Qt4CRtgXg88DcxT1eaEY24CNqrqd0RkItYAzFTVLT2uNahnBIWk3BhqAjGsZG/r\ncTfJiNeAqyB2Q+/frcQYZjXAdefC59+CfcYP/Lf+MMRjCbsrkxSTNTZSsXBhXq6bGmNoSXN+Lq6l\nuNLqUPj9BwpuRpAdKYPFIvJvIvIV4AMi8uWE5dvAXmEurqrvA18A/opVE16iqs09IufXAh8OhJn+\nBny1pxFwdKemFu6/BGovgZU7u2cEeXMMB2+HkTGQmewJoPaIJ+z2fbgWvnEXtA8RIwD2e+32k4vo\nlS9cSPWV5BxMLjE2SyllMDkSYf/F9NKUSkeFMXywFUpW4zKOBiC7RoVbBjvpJCZOAE4EPg/8OmHX\nO9iS6Zaij677eIbNjKDEmIyBTm+OQbYA74KuhpUn2Iegt8wglwGvwbuHwIZqqK4FrgYiCReYZrc1\nZyH6limoOxTI+B0L2Nug3Bgmt0LZrwIFWEfBKNSMYOfqcMeOnDFEZwSq+qiqfgc4VlW/k7D8tK+N\nwHCizBhmhSgCiy310dnAGODPezJkmq6H1ybC2zNs8HfLokU0BcJ27a/C8na7xFMvwz7YK4yhZvXQ\nbhRfYwzTYxne6AtkBKqMoXq1NdTOCDj6mzAxgkOBhcBUEoLLqnpSUUfWexzDZkbQrWHM+vRpoql8\n0t54Q0cFbKuG/c8GzrMSDHGycgU1NuI9sZDld8Ex9+SemjkYyNiLOVlnthwZDjOs/qJQM4J3W8Md\nO6Z6cM8IwhiCVVjXUAx4P75dQ4dRCsOwMgRgH763L4SroWlubjn+tcZQGgOWZDYoYa71zlaYcAnE\njluUvSZSYEza76VbsLXKGPa/Mv/x9QXxbmfNpxe/h4IjP5whyI4whiCmql4fjSfdOIaXIQgoVoFT\n2uyaIo2lzBg6FvU2IhlF56JRSuvrgf4reouTKWvIMTAolCF4e324Y8cdMPQNwbeBjcC9wHvx7X2d\n2TNcDUFagrfsnkVgmSg3hpr4fO5NaDq9+wO2zBgmw4B44JUZw+7tMGkHTHgVNnrZtcOMz6xiW7sb\nvLgMRDcjGYngjW9Lmm4bFm+B6XUvR9/jDEF2hOlQdjFwJVY8KRYsvYq9HH1MoFh6/z3gfaw+vSGI\nd+xqbKQmyFRhW7CMhemrgwdjNEqVMUxphfIG+1Dr75TGXcDYXTAyqGp7N9sLBLMP7ydtNu2zsZHa\nQLY6seCsxBi8n7SxfEWQjpvtgzxB/8jhGGxkrCxW1eq+GIgjA9EoZfX1WfumvZsMa35nP39gE/Ap\nWFdtbUCcQ4CJrTCRevieDTC/AtReCd74hXtE/r9gs5US6XIxFWD2UGoMnT1cVZ2+z6abG2lfuDBl\n17WpnuG1WOr7x27wqQka18BCaMg97pLMNRRvisO1QQZQNOmpBbmXo2/ZOQRqBMKQcUYgImUicrWI\n3BKs14jIJ4s/NEciNfX1TG+gl7LlmXelPqfUWCMw9Z7jmfo/NzImEPdonz+/q/Bqt+93aX78bapN\nZ1zr+3T6gSz2jbD6fFu8try9t5z1DGDW6MJ8x9rRUNuWREq6ro7OeKFYD7ybDPs9njndtsX3aZ0L\nPAuxpfNzMgKlxlD+YPeZUrkx1MZsRlY+LqWexIvXyoZwuq5j4BAmRtCAdQddpKpHiEgZ8GTQP6DP\ncDGCwLcfvHlyCnAYbLzUNp/pOAjWVCfJZmlsZOapCxkZFMa8+yFovjshYBuJ4N3cBpNgpZf8jbvG\nGFgPl00Kr+yZLDWyzBimNwBLoOXewgnCJU35zKLwKy63Me9cuGIXHHNub/G9xOt6n62n4yAo2wId\nFdZ45iJbkTF9tLExdHZWxrTXYUahYgSbUrae785+44d+jOAQVf0xsBNAVTtI0XHHUVzafZ+mudgq\n4YcgNsVnre8T2+lTtgXuUZvZ0426OtbOsAaAT0PZ4XQ9XEqNsUbgPyC2NfkbN0DL/PmU/xTuCNkj\nKV6YlTh7qTKGw9tAJkDtPTC5NclYc6TnA7Ak6CsQphlPvIBv+TnWCHj/ynCzSKTr9553lDUGuRiB\nqqBAL+1vENII1ASzkmykLRzh2DYi3DLYCTMjeBIrGveEqh4VSEXfmdhEoS9wM4IEUrztJn0rbGzE\nq1pIx+wUb64hCqRqjaG0AYjArmetmF3n6VaVdDPJH4TJxpLoS29pyjAjCATiwFZH51K3EPacEmO6\nu7ei1tUTd5ntIvlYvTWG2kug6S6ITcitV/PkVih72Br1XmQxq3Ezgu4Uakbw2jvhjp26T+8ZgYgs\nBj4JbFDVI1Pc4+fAqdg8iIiqNgbbFwCXAruBJuAzqtqZ41fJSBhD8O/Yd9DDseJxxwUDfqRYg0ox\njkFtCLwFhvamPk7JzKJCORXeAgNXQ+tc+8AvCUTSxkyF+4CPvAUTDuwdRC7EuNtPs6vlf4HYNfmn\nZFYYQ/WVELsz/bUqgqyi9o/a9RE7bAA9aQX3MkPtj2H5a9D8Su7GAKD5m3v+juLuqmy0oBx7GCCG\n4CPYvIzfJTMEInIq8AVVPV1EjgF+pqrHisiBwD+Bw1S1M3DPP6iqvwsx5jHAjkDwMzRhsob+JiIr\ngGOxLqEvqeqmbG7igKYmbEZMHpQY0/UXFurtLxqlNY+OWTXG0L7euj/i7PZ9ml+BnR3Gyly/CSu3\n53T51ATjrr7SrrZeD/jRvC+7xffBmIzXqq61f5b/dM+2sgbYf47pZfBiJ/s8IYYxbXDfxw2VF2Zn\ncNt9n/bjI9S0tYEfnBeNMmuxjVncORZWhhAhdBSHfNw+qvpPEZmS5pAzgd8Fxy4XkXGBFD9Yhecx\nIrIbKAPeSHaBoC/8ecAFwIewtV57i8gm4EHgZlV9OdNYQ3UoE5HJwBS6aw09lvHEAjLYZwSZSFrg\nlEBZ0Eym/VBo3g+qR2ZZWJVAuTGMI/P58SBx2RZYOyM3X/igIhLBm9cGh/WegZQYw6zFwJ+TB5JL\njeF8hed3wL9G5xkIj0SYuayNka/ApuNh4/jkswJvjmHl9qGr+5QPhZoRPB/yJeeI0cmDxYEhWJpi\nRrAU+IGqPhms+1gZ/hUi8kXgOqAD+KuqXphijI8CPnA/8Lyq7g62VwAfA84H7lXV+nTjD9Oh7EfA\nXGw/gd3BZgX61BA4LONeAR6/EbZfgc42WacsxltVbpyb+dgW36fqAMM6nHsCsB21U9Dp+0T/DqOO\nK0DANhpl1Q+iPHVbPRtHut++P0k1I4g9CitC9jPOFhHZFztbmAK8DfxJRM5X1T8kOdyo6s6eGwPl\nh7uBu0VkZMZ7hogRvITtIfxe2gOLzFCfEYShxBiOUuCPv4Zdjdw379ecKr2VRGuM4RcKZ+3YI83A\ny3RVEhfS71zIgrKBQjwuwjZgEnQcbrenDOoOUFJpOw0HCjUjeKrXIzY5x47MaUbwa+AfqtoQrL8I\nnAAcj+31/tlg+4XAMar6hSTXCNUtMhNh0kdfBTJaFEfx2e37rBDgpM/Dkb/mrHXQsr23FMTWd+Dq\nOz/PEUt/yH4PHI9sBzkDNp8DLME+HArErNEwa4gVPrXG+zecZru8jXkcmiqxvfYGC42NTD8bqoLM\nK0e/IaROt38AuAhARI4F3lLVDcDrwLEiMkpEBJu12ZziGgVJ5Q8TCukAGkXk73QXnftiIQbgyI7d\nvs+zjVAzwzDufbhvFMy4Arjmxi6f9qblPjrOUHsaPL8a2BfYDC9PhAnZ3jBDGmZsqU9VUCi2MVd1\n0iQprIkpnUn94AXsC5BIPGOoc65Nj9UYyKfh2A2w6Q3wDtxj8GITsshkSvI75tuPIG0nu7o6YnU+\nXJ7z5R3Am3kEi0XkD9gujxNE5HXgGqAUUFW9RVX/IiKnicjL2PTRz2B3Pi0ifwJWYuu3VgK3pLjN\nB0Tky6nGoKo/TbUvkTAzggeA79FddK5PexE4etNy5Xz0Z3BEiv2x5kU0nQPPH5L7PUqMwRu/MGNh\n1lrfp2WurXDOtoOZN8cWtSX2AS43hlmxPd3UZvUolooXwmWSlUhJJIK3zPTq5VxjDNWBpGLT/Pms\nXbQIPgL6MDAK9nt3z5iWt9Nr3EkJxOi88Qu73SteUNZTMiQsYTvZOfoPVT1fVQ9U1b1V9SBVvU1V\nb1bVWxKO+YKqTlPVmaq6ImH7d1R1uqoeqaoXJ4sDBOyFjV7tk2IJRdisoVLg0GD1pTSDKhouRtCD\naBTvgHru/zGc+dskefaB/PLqp+GIzXs2v70XcEAW9QxZSjXkFCtI8nZfagy1wYygaXuSdNkUM4Ia\nY9iBjbClytypMoaxQe5+z/qArhqCubZYrjou6fFD6yaKoxsgdmaSGUGPN/8KY6habaUoev7uhZgR\nzAokO3JqFjSEKVSM4L7Mj0cAzpL+kZjosxiBiJwItAA3Ab8C/iUiH833xo48iUTgIajbBvwZuCKJ\n/vE0GyxmFLACeDLKuHU2hhD6TTKLnPicA8ZJHuidvk9sqV2S1kwkOcdbZhin0LoTJq4P0l+T8DZQ\n9rpd3u6xb0sgTlfeEBiBCMQuXkTz6XDEZODvx3PfZIjdML/XGMqMYdTlC7vNinYAIzZBeZIs8HwD\n9rt9n9jS+QB4VQu7AveOwvF8yKUfKYjxCdWhDDhfVV8K1g/FSkz0adcyNyNITiqp4vib6IingLHQ\nMdsGPI95Doh7ecbaBvb93kQlGqUk6ECWV/ZRJML0x9soewF4Ezthvja5Kmi6bKeurCHsNVpOh5pa\nqH0OnngTWlanHqN3kyF2ee/ZS74V3pnw5hiI5pcRNpQywAo1I7g25Izg6v6bEVSo6hYRuVRVF/fY\n90NVvSrUdUIYgud6pj4l21ZsBqMhKDWGKWQvK1FrjC3ayPH7egsMHQ9A2a8CfXzo7uOvq+tSJe0s\ny109MyXRKN6q+lA1Dl3ujUl2veWEcMVYoX6jbB/Agbutq6DsiivwPraQjgo4Zio0nUPvh3xYgm5y\nnBdOvTWREmOYQe804Z4k1ohkG7T35hh4KFg5pbdkSL7/Jvua4WII4ojIX4Dfq+rvg/WbgFGqemmY\n88PExJ8Vkd8A8cq0C3AdykKRa8JB6WggH9mGaVZltNt/5p7+47o6RuyAzjIYAxS07+gjj8B4Qgm/\njQD75p6mWCvduWlVuKJRYoB3o4Gtj2Q2BMG4E5vLxLb6eC8b/l4NsXwegkEWT20gE5KtelhpiJ4P\n7wK7joBR66HmgCyb2kwj499BLuMe7PSz2ycbPgU8EEhSnIJNRQ1lBCDcjGBvbBLaR4JNjwO/6usC\ns8E4IygWZcbQMT97F4M3x+zJhT8MmNS7X3G/UCjX0ADAW2DYHNTcT/hoYZvVZCJdYDoMzjXUHRHR\n80LOCJb0o2soYXUfrBbkE8C3IHxv+WyyhqZjJSZeKqYcapoxOEMAXS6G9nuzy/zx3q1n+V3wnyPg\nN7vgmKP69iE1HPA2G8QDVvzQbjj4KvSV3CSqc6XWGEpr3d/tMDIErVjJH0n4M46q6sFhrhNGa+h0\n4NfYNrYCVIvIZar6P1mP2pE/6QqFUqRUltbXQ8wWRTEZZo3Mws2Ryr1TpIKuYtCVinoKNN+bfTA1\nVVpslTHvfeErAAAgAElEQVTsG7/H2SC3YtOEdr0GOy6DV2HNaVfBzeF7I+Q7rkxxBEd2DHTXUKF6\nyocpKPsJ8DFVPVFVT8Aq2t1QiJs7Ckeywqw4nb5vs2gmgB4Z/mGRqqCs1hi837cNClmJeE/h6zrs\ng/q7mjqtNNX5ryvMPKD7Od4cw/Z3YOVOu8y7B9gB902GI+b9GkbMAkYxZQVFMQLxgrJsC/gcQ4ug\n50G6/eUikqrudM9xIWIEz6jqhxLWBXg6cVtf4FxDmclU0FWRS2+CFAVlOReP9QNlxjC9FrgCmAbL\nPxz0JU6WAZRkBlRqDIe0WjnuVg/bJ+Ew4Ea47jm4Omhl9tRE63JjGvCfwFXFddEMpr+DvqZQriFC\nuoboP9fQDcAx2JyvGPC/2MqhadiX9inAV1T1mbTXCWEI/ju42F1YH9SnsaJIPoCq3pPPFwmLMwQD\nnCD1suX6AjSlD9I+Wy4tXIP7RGqNYeVOOOavENu7e6Xv9MWw8tI09QU/BLYFKaCLFuFVLUSOw862\nZmd48AfxndZ7h0Fvh35muBgC6AoYfwrbPfIAbM5hM7ar2T9DXSOEIbgtzW5V1UvCDTc/nCHIg/gb\nfZF9+hXGMLE1SepqNgQPy9V/gBkPQNPc4mQ1VRiTtBdxqgK9OPH+za1z4S2gdjWMHAfPT4Cq0ZkD\n+BXG5NaD2ZEVw8kQFIIwrSo/0xcDcRSH7oVCvVstFpItvg/V1hh4Wwyxrd3vVWUMG+j+YC8xhkPo\n417OpH4jzzSOJt/v0iMCkHH2z+o3bfuCXO8bFm+NsQVyJ+d2nf76vQctO/p7AH1DGK2hahH5qYjc\nIyIPxJe+GJyjAMQLhcYGn4vMFt/nleogl73HDGRfoLZhj+JmeVBVPCrxoLo6Ypf7zJht3S/9XuOQ\nhF3xD/ECrFEpDiww3k0GuQSkFrzxuQWJR9Bnw3UMIsK4hlYBi4Em9rSqRFWL1Kgt5TicaygJVSF6\nAMQziQbCQ7XrbTrolpaLHEI+eEka0HvLTOg37EQZhw3AIa0wZmRy15C32fSqIchHcbTGGHZuhf0e\nB96C+y6E01+AEc/n/zvmlEgwgCmYayhshX+KnsWDhTDpoztU9eeq+g9VfTS+FH1kjoyUGsP+D2bu\nDtbpp1Dw7Ae2+D5Nc4FJViCtr4xAiTFMP8SwekvgXgnwxhvkiOOJfNxk7C1QFvzeAOuAzkWLKHva\nqpJuGwHltXvutejjBnm7e9pplTFMaQ3un4PwXIvvM+FAeO1jcN6FcNZSGHkwLD8H9m8gc2+EFJQE\nxjnX3ghDmndDLikQkVNE5EUR+ZeIfC3J/n0Db8sqEXlKRA4Pe26P68RE5HIRGZ/DtwxlCH4mIteI\nyL+JyFHxJZebOQpLp+8Tu6xyQDY3T/dQ6utxlxpD7WorOz3jfOg4yWYAeQsMsjcw+gIAJma4Tkd8\n3LOhdDvUXLCQ2nOh6atwzD2wfAV4Iw0/Vljydzjis4H6a1CDsf9iGDMV5BjYr7kNb43Bu8kEyqHR\nUN8lttRn9D5wu4DeBloB00dCbOn8nI19XM56KM0IBgIiUgL8EjgZmAHME5HDehz2dWClqs4ELgZ+\nnsW5icwFDgSeEZElInJykOofbqwhXEM/AC7EVhbHXUOqqieFvUkhcK6hwUOVMewfgxavOOmf2VBu\nDDUx6PT2FNLFG9P8bSqctQ54DXQ0vYLbqfDm2JnFEevg+cmw46ZFcOON1DzTxnGT4PmgruD5Cdbw\nxJvGeJsNsuN4eP/nMPZROPAKOM6Kw5x5V/aqpEUlrpY6DWJ3DgCp8iwpmGtoU8iD9+vtGgr6EF+j\nqqcG61dhn50/Sjjmz8APVPWJYP1l4N+AQzKdm2LMJcAngf8G3gduA36WSXMojEDmp4GD+0NfyDE4\nWev7bPby675VKNp9n+YUYzlrHZw3Ge5cBrEp4cfauT1oEfrYSo44chZ6+0KYB8v3g5UvwEsHd+8K\nFyc2wec9Y9h70yx4Mdi4Ds4CNn3CvvY1JZ6QRXe4QlBhDGOwQf2S1dggyEPg/aSNJmMGjHuxT8kv\na2gysDZhvQ2Y3eOYVcA5wBMiMhs4CKgMeW43RORIbN/j04C7gd9jxUIfBtLmK4dxDT0PXZIqDkco\nBoIRiNNzLG9jq4R1A3xXsjMCYJ8N144Cxi6H51Yid8Ly79uq4lXrfXbUVKLLYOyu3uc2+T7P1lWi\nL8G1x+3ZPvotW5cQp8wYRt1aT1Vf+O0jEbw1hvKt8H8V1r9ju6rFTvaJ3eDTPrd7tlecKmPda468\n+CEwXkRWYBXEVmLf5LMiaCB2A/AMcKSqflFVl6vqT4BXM50fZkawL/CiiDwDdElPq+oZ2Q7W4Sgo\nORbKtfs+TV7umVSbgc+/BVeP+jwQhRWPc+whx++pPYr3Qfiw7XRWOndh7/uM3SNotvNtaJ3R3Y3W\n4ft4fzD59UAISzTKRmPYfxKcPhVGRLvXKbQEtRNb5s/vdtraykrebmor/vj6k1QzgqeA5RnPXod9\nw49TGWzrQlXfAbqKcgM10VeBskzn9uDTqpr0ga+q52QaaJgYwQkpLu7SR4cZ3hxD7FOFbbWYa4FT\njTGUx/8FfiG9tEOhxx2PO8jhwFKAG2HOFUklJmqMoTyoRI4HY0uC4PXIvW2MoWT0AJlBxYUFh0DV\nc8FiBC+HPHha0hjBXsBLwMeB9cDTwDxVbU44ZhzQoao7ReSzwHGqGglzbo97fTnJ5reBmKo2JtnX\njYyuoeCB/yK26cE+QLNLHx2GNDbavkePPFLQy44CykN03+pJ+WjYfCTIDLj/OVsL0GtmEI3i3WRY\n3g7enPqCNXe3cQfQh+Ht4+Gps5MbAbAGrnUuVDfsUT0dhe0M9/YY2FEzgLK+6uqGhBEYKKjq+9hW\nUH8FVgNLVLVZRC4Tkc8Fh00HnheRZmyG0JfSnZvmdkcDn8fGFiYDl2H/x94qIl/NNNYwM4JzgeuB\nR7D9CI4HrlTVP2W6eCFxM4LBRdIm7gUmMfvnzK8m6Uuc0JDn2BGgK3LLZCo1hs5k+kCRCGVtbYwg\n8zVLjaG2AXgWdkV6u1+KQcpxDwMKNiMI25DgiH7vWfwYcJqqbgvWxwIPYo1BTFUPT3d+mGDxN4AP\nqerFqnoRNnL9zfyG7RjKeHMM191T/AKltb7Pmmo48y8hDl4HchTULCY7F1E0Su2VULNwYdJ9Hb4f\nyrB0+j5EAiOwCZqvDz+EXKgIDE/ScTuGIvuTEMMFdgITVXV7j+1JCWMISlR1Y8L65pDnAaEq6xaK\nyEoRWSEiTSKyS0RcltJAoTGje7EXsaU+p0nhpJbTVU53+D4rTweOBu/d+t7jPc+25wTQ30Js66Le\nLqR0hiESIXayn5NIWzJX1LqDkhyYxflhqA0qhVvnZo691BpDrTGUu6riwc7vgeVB8e812L7FfxCR\nMcALmU4O80B/SESWiUhERCLY6UaoNpVhquNUdZGqzlLVo4D/Azyiqm/1vpqjz4lEbIeyHFIEC1UY\n5a0xnJuhq9hu3ye2dpE9vmrhngdoJAJLbIGXrgrSRJM0nfFubit4p6+aoINYrl3cyo1hVozu6aOR\nCFM9Q82M1BIV3gIrk905N4MhjkTwlhlatkPLdpi4PrvObcOGHSGXfkZVvwd8DpuF/BbweVX9rqq+\nq6oXZDo/bPP6c7CFCQCPq+q9YQYXprKux/G/Bx5W1cVJ9rkYQX8QNJzhMIhd0z8Vpt4yY/P0U3UV\nSyRJL+V0PQa8BYbVT8OMh6Hp9O7ppMnektvnZ84+8hYY1jxp9Ye6VRbPMazZCG+Ost+l5V6bvz2G\n5JpLSQXq4t8tyRgqjKFqdaD8ekCITKxoFG9VPQAbm/pW/K/YFCxG8GzYG/ZrY5q9gNWqmk6CIi2h\nZKiBv6jql1X1y9gZwtSQ109WHTc5xX2C9uLcHfLajgTKjenVW7ggBK4RbrQVptkKm1WZQEsnBLXG\nJH0rjZ3sM2skLL8LvPcyXCuJocr0QJy0A9iWIC+NHffkVnotabOPolG8ZYb7n4OpY4OCsofoNQs5\ndgNcd499Cy95B25N0hMZUqSURiKFS9+NRIjdYIvGhpIRGG4EGUYviUgWjsfuhHEN/ZEE+Wls1dsf\nc71hGuYA/3Ruodxonz+f1nspWoZIvMI02wKstZWV8MsU6Z09eAUobyCp4WjyfSpGwsbTs7p9WsqM\ngV/ChEsgtnZRN3fW2spKyh6Gsqe7L0TSuL0iEdqvt7pBeheM3id1p7bPvwXlj8GUx2DBazaddPoh\n4cXnHH3EIHENAeOB1SLy91z6xoRJH21U1boe21YFanmZzj0W+LaqnhKsp3QNicg9wF2quiTFtfSz\nF17Yte7NnMnRwzAtblASFzA7L4SwWtCvmBeTpIPmiDfHEPte9zTKWmPY1Wof7j17BiSOuxdh/s2l\nKMyKu4Ymvw5rZ2BbViYc771bD//Z20UVlqxdQ0OIZxsbia1a1bV+6x13FMY1FKrjL/CRfk8fzavw\nN4wh+BvwC1V9IFg/E/iiqn48xOBCVccF1XWvApVBulOya7kYwSCn1hjWECKPv7ER7/aFrGzKM+ic\nUEdwzD3djZB3k6Hjp1D2cPZaQ/ngzTE0b0/u9rFy1NAyN3fV1gpjmMDwMgLJKFiMIOzPaPq/MY2I\nTAFqVNUXkTJgr0DCIiNhtIY+D/xeRH4ZrLdhZakzoqrvi0i8Oq4EWByvrLO79Zbg0LOAZamMgGNo\n0BT24VRXR6yuuA+y2OU+NdWGjlbwvrzHFdV6b/i010yN7pPeN5mrKDB8RKEpz/acW3yftHrDjiFJ\nIE/xOaACK2E9Gfg19iU88/lhsoaCG40FiFeu9TVuRuDIhVJjqH0Q2JbELZXgstr8CbtpwpPhXDPe\nGsOac2HKh9PrHIWh1hhKryycK8wx/GYEItKILfZdrqqzgm1Nqlob5vwwMwKg/wyAw5FIPKtoB+HS\nHTt9n1gQd5h1JbQnZPyUjwaitt9vnFhlJfjRjNeNTfHx9jd0vAC11Sb8bCcJ+ZzrKDId/T2A0Lyn\nqp3xpmQiMgII95ZPFhXCDke/0tiIt8Cwdjus3Q57bSV8EVg0SvOlWFmu9XRdg6idJaz1/a4lm6yd\n2FKfEdWwq9XWDiQNLjc22naUIbKmHI48eFREvg6MFpF/x2Z2Lg17csYZgYjsrarvZdrmcBSNeCbR\nKTAjsUdTgw36tgTljeNIPUuYXgurz7Cdw54aERSnHbcI/Nwzz7wFhuU77bU4BbzxC4lFehTd1dUR\nY5E1Es7t4ygeVwGXYpvcXQb8BfhN2JPDZA2tCOQf0m4rNi5G0M9EInjz2mi6Pr9gZraUGcP0QLWz\npw+9xBhmNdjPmz8B/9wXzlzRo/dwYETuvyRoCfkWTDgwdX5/WLyRBpltm8vseCLIRAqyfprnZtdf\noMIYqkfnPybHHgoWI7gr5MHn9n/WUD6knBGIyCRs5Hm0iMzCSlADlGO75ziGE9Eo7X3ct7bUGKY/\nCvM+CncCpXPr6UzohzA24dhf7wtX3wEcDvqeIba33zXuTmM4c6x1mG6cS8auX/HK4VSpq95Iw3Uf\nhZ0v2NaUcWJLfWqMoSNeHxCSLZWV7Gob4p2+HEVFRI4Dvg1MwT7XBZuZeXCo81PNCETkYiCC9awm\nKm68A0RV9Z6cR50DbkYw8KkxhpbKwukRlRtDxVbY754qOH8t+gLwZrAzSF3YOBfWzp+P9249civw\nmu1F3GUI4oTpvhWNUnN9Pf+YZFfPPLJ3RpA3x7DrWdgyY2hp8ww1htuMQEReBBYAMRJ6Hqvq5jDn\np5wRqOrtwO0i8ilVdfo/joyU10JpUxudBbzmm6OAfS6HdVfRfiCUjbLbR2yC5hP2uGBiRHhvP0Pp\ng0mMAISqCC6vr6f5NjgrkAzQqxN2BuJ793dYCYl0zWMdQ4g85SNE5BTgRvbUUf2ox/6FwAXYCetI\nbMey/bAT3t8BE7ESP7eq6s/T3OptVQ2lCp2MMOmjfxaR84Gpicer6ndzvaljcFJhTNpiq0z59KXG\nUHu2/bzx3sxv1DuA2qeBOVehL0DLtD3/L3fR23WTbxpmu+8z4jNRXq23ipypXEi150LTWGhOpg6a\njEiE0ra2PnWrOfqfBBn+jwNvAM+IyP2q+mL8GFVdBCwKjv8kcIWqviUio4Avq2pjUMMVE5G/Jp7b\ng3+IyPXAPSQ0olHVFWHGGsYQ3E/QBJkQnW4cQ5NSY6h+EKoXmNwKqIJOX2u+ZVen/Ave9kxmKYVt\nNsuHa6G9L9ouRiJsSZbdE4nQbOo585NQdxSs+ShMXwyxJLLXPfHub6OjApq/GXWZQ4ON/GYEs4EW\nVV0DICJLgDOxPeCTMQ8bDkNV3yRwhKrqtqCn8eQ05x4T/Hl0wjYFTgoz0DCGoDIuGucYviQWZnnL\nTPZVsJEIMSJU7WMDsU1kyD6KRKhdDNedZjNz7vwksDW3sZcYwyFJtieThygxJmWQuMP3WXmC6dJR\njy1aBNHMhim21bdjj4QesmNokEyGf3ayAxNk+C9Psm8qUAcsT3UjVf1YHuMMZQieFJFaVW3K50aO\nIUA0SlPQC9cbW0+Tqc9eljrE8WXGMP1BqD0Nnn8FGAV3TgOeyX7IZUHm0Zokyc7eRaaraQzYHgT7\nPwrNJ6R2+ez2/W7/sx2OApFUhj9wC/0J+FI6dQcRmQh8HzhQVU8VkcOBf0vW5CsZYSqLP4L1T70k\nIs8FfYWfC3NxxxBlLKw+CWpDqZhkR0W8buA30HQOaMxmAXUcBFU5NGLv8H1aTrCuqKkjYOrbNgA9\n5SK73xu/kPKgb+9eW22q6vTFuCpgh2WvquRLywfgz+V7luSsAxKbxVSSOs/gPAK3UJxAJuJPwB2q\nen+GkUaBZcCBwfq/gCsynNNFmBnBqWEv5hh6eCMN3LinReQugG1B962XC3uvWmP77W6c22PmsBXK\nPUNNDPb1Uuv6pCrMavd9mj2DPgqrZ8OMo/YEtr05hpoGWH4OHPsSsDmYffyjsN9tQBNkRPV1seCg\n5rBRdonzQHuyo54BpgXy0OuxD/t5PQ8KZPhPwGYPJfJb4AVV/VmIEe2nqneJyP8BUNVdIvJ+ppPi\nZJwRBIGOKuCk4HNHmPMcQ4POE+iScICgUfzS+Wm7b+VCjTHsWA/3nwv7X9l7f7vv0+TZLmap2FJZ\nSWsGIfNtI4Bpe9ZjS302zg3aVb4JPAnth2Y//kFN0FmtM8tCOEd6ghaScRn+1cCSuAy/iHwu4dBe\nMvxBgdgFwEkislJEVgSpqKl4V0QmEAjNBU3B3g471jASE9dgI9EfVNVDReRA4I+qelzYmxQCV1BW\nOEqNYRS5Nz8pBjXGwHoYF7zDnDcZvi6Fe0MtN4aJ62HcJNDf9m5GU2UMX1JYcge8/e/QcuXglIQe\niH+3/UHBCspuPz7cwRc/3t8FZUcBvwCOwOZXfAD4D1UN5cYP82Z/NnAG8C6Aqr4B7JPTaB0DgonB\nMtAofww2jQGehCW3tnBkm31AF4J234cDrCxEbGvvN9+1vs93BTbNgZYPVQ5KIwC2CmlKfw/C0ecE\n9QInAB/Gis7NCGsEIFyMoFNVVUTiU44xOY3UMWDIRhqhxBhmBUVg7fcWrgVihTFUn52wocG2aBwB\nXKtw9R/vhr+uZOKmWby3X356/3FafN96alNkfLb7Pu0xbNhtkOI6lA1fVHUX1gWVNWEMwV0icjOw\nb9AO7RLg1lxu5hhkRKPMSigCm/w6VMxIX10chnJjqH4UrvuoXf/aCzDi6D3ujPPFgF7F1X+/Chrh\nerXb8r2vw5E1I2eEPPDxog6j2IQJFi/CpjDdDXwQ+Jaq/qLYA3MMACIRYif7jN8Hxu8DLTPC9/NN\nR7vvs/IE+MZd1pm57qDu+7f4PqcJ6DK7nCZZ3DdJc5iSArmX+prBOm7H4CNUq0pV/RvwtyKPxTFA\nSekOikaZ/j2ry9P8zeTBVW+OgS/07iWw2/eJNTZy5zkL4epep9n98ZWTw42z1hhKF9OtOUy8oKz1\nhIQZRbxXMXQrKMuJaBTv3Xp4Of/exYkkHbej7xkxtb9HEAqxPSovAA5W1e+KyEHAJFV9OtT5aWSo\n3yFNz0tVTVlFUQxc1tAAJRKhpK0tpSxD/Jh0BVq5NnRJda2OF2BXtVVD7XgAtlUniYvEx1OIoHAk\nAldcUXAdpHITQovJkZTCyVD/MNzB517V31lD/41VKT1JVaeLyHjgr6r6oVDnh0gf/R42xHYHttnB\nBcABqvqtvEaeJc4Q9B3lxlDTszCryEVHNcZQnqyYLAe8zYaOQNGl7Izwb+qlxlB7Ze/ZizfH0LJ9\n4KZkphr3cGYYGoIVqnqUiKxU1VnBtlWqOjPM+WHSR89Q1V+p6juq2q6q/41V0HMMUdqTFWZFInRm\nW3QUjWYl1bD5EzC2NYuU0Wg0+YNvCdwwFcaMJIsie/vdOq+n1zVbt3f1wRmQpBq3oxCMCrn0OztF\nZC/2FJR9ADtDCEWYGcGTwE3AkuAm84DLVfXDuY44F9yMYHDhLTBdvv+WuZnfpr0FhuueA7MLZo3M\n3FsgLhDXcRCUvQ6xnXuOrzWG9e9YXaEjJkPTkRC7uA8krAtAuTFsI3WbTEc4CjcjuDHcwede0d8z\ngguAuYCHTYD+D+BqVf1jmPPDzAjOB84FNgTLp4NtDkdSSow1AvPOBTkDJq4PKocz8DzwZoj0hVpj\n2L/BSkG0TrLKoqU9rj8+eIU/AuBqKMlBsK4/mALs29+DcAw6VPX3wFexCqTrgbPCGgEIkTWkqq/h\nXEGOVCQJuu72fWLRKHc+W88V37fbMk2eO5vgh9vsA/ytHvtqjKE8rnQ6DWiwgWWAUmDTokXg937b\nv28ynPnVwHfuR3rtD0u6HgWFphCFc45CMiDcPmHZD+hQ1dtE5AMiUq2qrWFOzGgIAl/TZ+ndqvKS\nHAfrGCo0NtrUSSDWWNfd9RKJ0Grq8SIwIgqx+fPTXqpp/ny8i2waZmK6apUxjGiFNfvZ9SkXQWxp\n+gd70/z5eD+t58xfFkAYLxJh1mLoNIWpbnY4ikGiJhxwG7b/cT0QShMubIzgcWyryi5Z075uaO9i\nBIOLKmMY2wplX94jYZ0r5cZ0aSMVSuIikVJj0mdCNTYOiviCYw+FixH8OtzB536+v2MEjcAsYEVC\n1tBzqnpkmPPDFJSVqerX8hijY5jhLTDMU1j8Gqy8lyTN97Kj3fdJqvZeAGqMYdzLoG8b21IyGc4I\nDGMGjWsoL024MMHiP4vIaTkNzTEsid3gc+dvoakSZp1tZwdVxlDRj5IJFcZQluT+Lb6Png21R8H0\nQ5ykg2PQ0lMTzicLTbgwrqF3gDFAZ7AIoK6y2JEJb45heTscuyvYMAq0LLXfvsYYdpC6oKwq0Nrv\n5h6KRPDmtRG7szJpzUKpMXxfbfbQf70J5Z9IXmBWZgy7t9sGNa/VJr+WY/BQONfQknAHn3tev7qG\nAETk34FPYJ/RywJpoFCEyRpyvQccyen5sOxR0BRb6rP/SMN9Cmfd+T8ASMepvCfJA68bgJoG2NcY\nmnoEl2vr6yltAMaCd5Nh5b1We78mhu2qvTTa63pEo9TGYMkTwFT4r72gvSn5V+nwffhslAnz6nnN\nGQFHgQi6it2I9b4sVtUf9dh/AnA/8Gqw6R5VvTZhfwnwLNCmqmekuMdegK+qHyNHTbgwWUNxWYlq\nVf2eiFRhJSZCiRk5hiCB3ARzgvWxwCTYfHB9r7fpLb7PQWK4Vk/l6ttWwitQmqLpfbvvs9IYZjWA\nR333nXNg5VzYXVnJ9Mfb+OBPg+1fzpAZtASu/TF8YwW0eBkK2yIRYkTSf3eHIyTBQ/yXwMeBN4Bn\nROR+VX2xx6GPpXrIA18CXgBSemBU9X0R2S0i41Q1dHvKRMLECH4F/Bt7isi2YSuNHcOQEmPw5tQz\n78cg5wbLSSAT4cR9YfrjbZT38MXv9n1O+bvPa5+eZWNv05JfG2D3/Pm2hh3omE2XZhDPBvuuuIKy\nhM4rnff2usQeIhFi6+fzja9CUyYj4HAkY9e4cEtyZgMtqrpGVXdi/2Unq8lK6lISkUrgNOA3IUa6\nDWgSkcUi8vP4EuI8IJwhOEZVLwd2AKjqVmwdj2Ow0tgYXpemx3EjAMbaKmDWBQuw822ICZT9Cia3\n0ssYAGxa7qMbQH4B3ntJArPxmcYnbcHYmmq7NM8FDgPvgHq8JxayaxSMqLapqbtaSR+EDnoq5CKU\n17Na2eHIksnA2oT1tmBbT/5NRBpF5EEROTxh+w3AlaRRgU7gHuCbwGPYVP/4Eoow6aN5iRk5Bh7e\n7QthHsRSibYFlBnD9AZgjulyv3T6Pu3G8MR62Bq8CE05P9D19+tsa8ujrTGYWG165f03e/D8dpC9\nQTcbYhPs/lJjqH0Q2GYVSHvKUccA70YDp8CqH+wpKKuoNlTHYILX+1754I03rHkHRu9j8lZDdQxB\nXnjOLvkTAw5S1Q4RORW4DzhURD4JbFDVRhE5kdSzhoNU9XVVvT2fQYTJGspLzKhQuKyhvqXCGKob\noH1u8iKuCmOYEHxO3F9iDLMehdqPQtNdQRVwoqTzGsPq82FGRXfffo0xsB7GTQJ9DJpPCN+boNQY\nahuAawvbHMZbY+g4CTZUF6Yzm6PvKFjW0O9CtqC86Phe9xORY4Fvq+opwfpV2IzLHyW7RHDMq9gK\n4YXAfGAXMBrYBxtIvqjH8StU9ajg892q+qmQX68bYVpVJooZvUGWYkaOAhON4i0z1BbRbVEbGIGW\nFEYA7IOxJVgSGYEVg3s+RvdYQDBugB01lUkDvCN22DRPmQE1q8PLUXf6PrGvVMIV2HsUSI45NsVn\nXTVUxyj67+0tMy5ldejxDDBNRKaISClwHvBA4gEiMjHh82ygRFW3qOrXVfUgVT04OO/hnkYgflrC\n54NzHWioVpVAGRB3D43O9WaOAhCJ0GTqi9IcJk6T72eWXUhD+RvAvkHBycfqYU49m98APgqxk307\nr6MaXtsAABaJSURBVEygzBjKY8CvoOkwuO4SGLkDNm2F2vGGV4LjRpAm4BuNdrmPvJ+00ZTH+BNp\n932avMJcKxXx3zsfYTzHwCPI5vkC8Ff2pI82i8hldrfeAvyHiPx/wE5gO9b7ktVtUnzOijCuoW9h\npafvxv7fPgv4Y2Kua1/gXEODgxJjmLXYPsyv/rvd9vxxUP0mNL/S+++vJhCVK9sCsX8sskJ2B9Sz\n/Ptw7AZ4aiJ4/4KOCvjHJDjzt/ZNPR21xlDaAK1znUtnuFIw19BvV4Y7+JJZ/VJQJiLvA+9in82j\ngY74LrIo/A2TNXQB8CFV/baqXgMcC1yY/ZAdQ4IMXcd2+z6xrYv4xjnw1AnAKOvuKftV72MrjGHn\nVhjzPmw+2PYMKK2vh6PhxmCueuwGGDkOxr0f9Ln5QuYhxusUqhvC9UFwOAYrqrqXqpar6j6qOiL4\nHF8Prf4QxhC8QXflpb3pShp0DEZKUujuZKLGGLx59Uz/Xn2Xvz8pdXXELveZNRI2zYDXdmHLanqw\nC5jwKjAZ9tsMrys8oCCTYckdCQdOBn0F7pEMxWORCN4am1kU+0olTXOhvCHoluZw5MKuseGWQU4Y\nQ/A2sFpEoiJyGzaF/K1sCxYcA4fJwCFZnuMtsM3lN38Y/jYV2r9MxuDmOuyDfuwu6OzZAxlrCNhG\nV9vXs9bB1auxxfZ6PLxpm8voVyF26/yMBWEVbW1wYzwOEe0WRHY1AQ5HasIEi+8NljiPFGcojr5i\nre93q3JJhjfH7Mn6uQI4xWYRARxJkE0UCXe/kTsyH7NpDOwz3rp11jwJUzc8zmsTYUoKkbpkXcO2\n+D5beh4YBJFxoQKHIyVhROduF5HR2KKHl7K9QSbRpeCYE7FVdCOB/w3Ekxz9hDfHsGYjbAv+dcyY\nHeTnn1zY+3T4Pp0nGLQh0BEKHuxl+xj0UWifBrEks4CSQI/IdQ1zFJ0dYZwmg5+M31JE5gCNwEPB\nep2IPJD+rK5z46JLJwMzgHkicliPY8ZhtYs+qapHYDOUHIUih9z02FKf0ftA1Wi7FLJIqydNvk9s\n6fxub/cdvk/sgsqUNQy7g3OcEXA4CkMY19C3seJJjwAEJc9hCxe6RJcARCQuupSovnc+cLeqrguu\nvynktR0ZiL85t5r6rNMow8oqxAOx6YxF+Ru2kUVKkhWAZTJgBSoaczgc4YLFO5NIm4bVGgojunQo\nUCEi/xCRZ0TEpaYWgsZGZtXC6jOg+sHiBUtjWyuJba3svSMapboBGwxeAqUN1jA5HIOKHSGXQU6Y\nGcFqETkf2EtEaoAvAk8WeAxHASdhO6H9XxH5v6r6cs8Db759j66SN3MmR7teskWnxhg2kL6itydl\nxjB5PXTsgJeqYfeiRXiRhcxqgBZjUl6rxhg244rAHNnzbGMjsVWr+nsYg5YwhuC/gG8A7wF3AsuA\n74W8/jrgoIT1SnrXILQBm1R1B7BDRB4DZgK9DMFlF18c8rYO6uqI1fnUjjbE5s/PSb7AW2CgAdZk\nWfTeMX8+I3bYxjIjgM7GRjjF7qtpgI0muaLnBoKUUocjS46uq+v2YnjrHXekOdrRkzCicx2q+g1V\n/ZCqHh18DjsZyii6hG3T9hER2UtEyoBjgOZsvoQjNU2+n9afXmGSiJ1FIrZg7ApbmNVLZ6exMb0g\nXCRC8ys+ZV+G6avBm1MP02xmUPNc2L8hSE/tQbvv91YcbWy0RWIOR3/QEXIZ5KScEYjIUtKIGKVp\nrZZ4TEbRJVV9UUSWAc8B7wO3qOoL2X4RRw40NlJdC9TXsyXBWFS0tcFDyQXi4lpCnA1rM/QzaL0X\nqq61XcZGBOmhHWDbUS4mlLBdzcKFbN4KJeN71w04HI7CkFJ0LmiqDHAO/L/27j3KqvK84/j3pzIK\nKHhrvY0CEsTLolrGWCO4sPWYYNJ4TVVQI3GtLBqtRlyxdUVXTRq7kiyTNs0qidpaSNSg8RpR42Us\natQYYGQQFbyCgjEaNBaNmBF5+sf7Htgzcy77zJx9LnOeD+us2Xuf9937Oe8w885+997Py56wZRLZ\nGYQJE+ZkH16veDzpXFqzZsFFF0GVr6FsmahmVplUD4QU0rs+C8P2gDN2gwWnQNf5iTrd3f3jK9Ox\nOJdW1ZLOXfpy+YIA3xlfl6Rz1VJ0aMjMHjGzR4ApZna6mS2Mr5nA0bUL0VViVC7HptXr2H3216p6\np9CoXI6DusLsYWk6gR1Xw9kHA91w04fwYt+5hQt0Ah173UDH3FzoJJxzNZPm9tGRyecGJI0j3N3j\nGtAYQm6f/HK1bOjsZFlHuucL1naGCV0WjAB7FZZ+uXyeoPzcwl3nd1b9TMY5V1qau4bmAA/HKdRE\n+P0yO9Oo3IC9DByyGHgfVgxwHxNyOUZdAl1v9J5mspIx+g2dnVtnzp5VomAF8vmPsnzS2bleWiTP\ncpq7hu4DJgBfJTxDMNHM7s86MDcwH3R2smwadC04a8Czar34ve+x4ioabry+69SzWDbQ3s25OpA0\nXdIqSS9I+qcC758gabmkZZIWS5qSeG+0pFskrZT0rKS/yizOcjOUxYCOAsaSOIMws59mFVSRGPxi\nsRuUtlyOScPLX+Nwza9qF4vPTnmx+Pr+F4tjrrUXgGMJ87osAc4ws1WJMiPM7IO4PAn4uZkdFNfn\nA4+Y2TxJ2wEjzGzDYD5TMWWHhiRdT0hf3024vRPCbaU17QicG6ye9nZ61q2rdxiumQzuv0vZXGv5\nTiDakZi+R9Io4GgzmxXLbQIy6QQg3cXiwwl3Dp1nZhfE14VZBeQawPz5jEp5x9GEXC71dJCjCjy8\n1pbL1e6BsfnzPWOpq6U0udaQdJKklcBC4Ny4eRywXtI8SU9JujZOB5CJNB3BM4TnCFwLaIvTUe6z\nOt18v9uthilGql/mEybBvjfc0GvbpDjRfaNdj3CupD88Cav/Y+trEMzszjgcdBJwZdycz8E218wm\nE55fvnRQByohzV1DuwPPSVpMyDcEpHuy2DWfHQD2hI07w04pyq98uZMVi3NMOhdWPJoLGaLuhpV3\n0C9dRKG7fbrGdDL9Ifo9wexcQyg6NHQkDDsysV5w1t40uda2MLPHJO0vadd45LVmtjS+fSvQ72Jz\ntaSdj8C1iA2dnTA1x27zYVnKOl27dfKQcswwuOkIuPJcuOwpeLGjeKZR51rAllxrwBuEXGszkgUk\njTezl+PyZKDNzN6J62slHWBm+QvOmaXeSTNV5SNZHdw1pq6FYfL3khlL+6SIWNvZydeVY8HJwH2w\nYiMDvn3VuYYxiIvFaXKtAadK+iJh7qaNwGmJXVwI3ChpGPAK8KWBR1NaqVxDj5nZVEnv0Tv5nAgf\nYlRWQRWJx28fbRC75nKMuw66rmgf0FSYzmWtarePDk95++jGoZtraGr8upOZjUq8dqp1J+AaR1su\nx7h74NmZ0LGL34rp3FCQ5hqBc0OCP1DmKrbx/XpHUBNpbh91bouezk66ZrczYXjz5fzpaW+nZ2O9\no3Cu8fgZgavc/PkDTmhXV80at3MZ847AOeeK8qEh18oKPOk7oooT3TjnGod3BK6fjjk5Or6/rtcM\nZ/kZytLmFXLONQ8fGnL9dP17/wfKNnR2sqKj/GTzzg0tPjTkWlmBoaGsO4GOOTkm+RmHczXnZwSu\nYSxbAZvb2+sdhnMJrXFG4B2Baxjl5kQelcsxmpDXyDlXPT405JrKH+sdgHNDkJ8RuJJG5HJ80N4Y\nyeU8pbWrtT3pSVXudxnHkTU/I3AlHTQJJvg8v84NaX5G4EpqtnxCzrnKeUfgnHNFjGVTqnI+NOSc\nc64gSdMlrZL0gqR+cw5LmijpCUkfSrq4z3tzJD0j6WlJN0pqyypO7wiccy4DkrYB/hP4DHAIMEPS\ngX2KvQ1cAFzVp+7ecftkM/sLwujNGVnF6kNDzjlXRNqhoScLbz4CeNHMXgWQdBNwIrAqX8DM1gPr\nJf1tgfrbAiMlbQZGAL+tIPSK+BmBc85lYx9gbWJ9XdxWlpn9Fvg+8BrwOvCumWV254afETjnXBGH\n8FHB7at5ntU8n9lxJe1MOHsYA/wfcKukmWb2syyO5x2Bc85VaBwTGcfELeuLuLtQsdeB/RLr7XFb\nGjngFTN7B0DS7cBRQCYdgQ8NOedcNpYAn5A0Jt7xcwZwV4nySiy/BhwpaQdJAo4FVmYVqJ8ROOdc\nEdukvFhciJl9LOkfgAcIf3RfZ2YrJc0Ob9u1kvYAlgI7AZslfRU42MwWS7oVWAZ8FL9eO8iPU5R3\nBM45lxEzuw8SY0hh2zWJ5TeBfYvU/SbwzUwDjHxoyDnnWpyfETjnXBGbBjE01Ez8jMA551qcdwTO\nOdfifGjIOeeK8KEh55xzLcE7Aueca3GZdwQp8nFPk/SupKfi6/KsY3LOuTQ2pfzX7DK9RpDIx30s\nIYXqEkm/MLNVfYo+amYnZBmLc865wrK+WFw2H3ekvhWdc67e3uH39Q6hJrIeGkqbj/tTkrol3SPp\n4Ixjcs45l9AIt492AfuZ2QeSjgfuBA4oVPCan/xky3LHoYdy+GGH1SZC51xDW9rdTdfy5fUOo2nJ\nzLLbuXQk8A0zmx7XLyVk3ftuiTqrgY58Hu7EdlvamdkEPc65IeTwXA4zG9SQsyT7az6Xquwi7hn0\n8eop66Ghsvm4YxrW/PIRhM7pHZxzztVEpkNDafJxA1+Q9BVCzu2NwOlZxuScc663zK8RpMjHPReY\nm3UczjlXqXWsGVR9SdOBH7D1D+F+w+KSfggcD/wRmGVm3WnrVkvLPVm8tLu73iH00mjxQOPF5PGU\n12gxNVo89ZB4juozwCHADEkH9ilzPDDezCYAs4Gr09atppbrCBrtzoJGiwcaLyaPp7xGi6nR4qmT\nLc9RmdlHQP45qqQTgZ8CmNlvgNHxummaulXTCLePOudcQxrk0FCh56iOSFFmn5R1q6blzgicc66B\n1eUW1EyfI6gmSc0RqHOuIVThOYI1wJiUxd80sz371C/7HJWkq4FFZnZzXF8FTAPGlatbTU0zNNTM\nD2s455qPmY0d5C62PEcFvEF4jmpGnzJ3AecDN8eO410ze1PS+hR1q6ZpOgLnnGsmaZ6jMrN7JX1W\n0kuE20e/VKpuVrE2zdCQc865bAyZi8UpJsA5QdJyScskLZY0JW3dOsW0JvleLeJJlPukpI8knVJp\n3RrGU/X2SRNTqYmU6tFGZeKpSxvFMsfE4z4jaVEldV0dmFnTvwgd2kuECzvDgG7gwD5lRiSWJwEr\n09atdUxx/RVgl1q2UaLcQ8DdwClZtdFg4smifSr4nk0D7hro56lVPHVuo9HAs8A+cX33rNrIX9V5\nDZUzgrIPX5jZB4nVHYHNaevWISYIt5FV8/uT9nNeANwKvDWAurWKB6rfPpXEVOjGhXq2UbEbKerV\nRjOB28zsdQAzW19BXVcHQ6UjSDUBjqSTJK0EFgLnVlK3xjEBGPCgpCWSvlyLeCTtDZxkZj+m9y+X\nLNpoMPFA9dsnVUxRoYmU6tJGJeKB+rXRAcCukhbFY59dQV1XBy1115CZ3QncKWkqcCVwXJ1DKhXT\nFDN7Q9KfEX6YV5rZYxmH8wOgkcZt+8aT7Azq0T5QwURKNVIqnnq10XbAZOBvgJHAryX9ugbHdQM0\nVM4IXgf2S6y3x20FxR+G/SXtWmndGsWEmb0Rv/4euIPBP16eJp7DgZsUJgf6AvAjSSekrFuLeObG\neLJon1Qxmdn7+SE9M/slMCzD/0eDiadubUT4S/9+M/vQzN4GHgUOTVnX1UO9L1JU4wVsy9aLUG2E\ni1AH9SkzPrE8GVibtm4dYhoB7BiXRwKPA5/OOp4+5eex9WJx1dtokPFUvX0q+J7tkVg+AlhTzzYq\nEU892+hA4MFYdgSwAjg4q581fw3+NSSGhizdBDinSvoi0EOYAOe0UnXrGROwB3CHQlqN7YAbzeyB\nGsTTq0q5uvWKhwzap4KYCk6kVMc2KjaxU93ayMxWSbofeBr4GLjWzJ4DyOJnzQ2eP1DmnHMtbqhc\nI3DOOTdA3hE451yL847AOedanHcEzjnX4rwjcM65FucdgXPOtTjvCJqYpIrSBcSUxQuziifF8d8b\nRN1zJO1ZvmTzi9+nTxV5b6KkJyR9KOniWsfmhibvCJqYmU0dSLWqB1KbY8+idRKUHQMcVeS9twkZ\nWa+qWTRuyPOOoInl/8KOf0EuknSLpJWSrk+UmR63LQWSE7uMkHSdpCcldUn6fNx+jqQ74/6el/TP\niTpnSvpNnADlx5KUj0PSlTED5hMxyRmSxsb15ZK+1Sf2rylMxtMt6Yq4bYyk5yRdGyc0uU/S9pJO\nJeQduiEee/s++xov6cG4r6WSxsXtV0laEY9/WqKtHo6f8SVJ35Y0M36u5Ym68+JnXKIwkcrn4vbt\nJf2PpKdjux2TaLfbJP0ytltygvLjYjsslXSzpBFx+2pJ34j7WS7pAIU5av8euCh+1inJz2pm682s\nC9hU4X8X54qrd44Lfw38BWyIX6cBfwD2ImTofILwF+X2wGvA/rHczcRJTIB/BWbG5dHA88Bw4BxC\nIrCdgR0IeWImE/LH3AVsG+vMBc6Ky5uBz8bl7wJfj8u/AM6My+cl4j0OuCYui5CCeyohB00PMCkR\nbz7GRcBfFmmHJ4ET4nJbjPsUQuIzgD8HXiWkXZgGvBO3tRESpF0Ry10I/FtcngfcG5c/QUif3AZc\nDPx33D4x7rcttttLhHkltgfWEM5gdgMeAYbHOv8IXB6XVwPnxeWvEFIxAFwBXFzme1+2jL/8lfY1\nJHINOQAWW8w2KakbGEuYDPsVM3sllrkByOel/zTweUmXxPU2tmaGfNDM3o37uo3wS/pjoANYEs8E\ndgB+F8v3mNm9cbkLyMXlKWw9C7ke+E7i2MdJeorQEYwEJhB+2a42sxWJfY1NfMZ+E7BI2hHY28zu\nAjCznrh9KrAgbntL0sPAJ4H3gCVm9lYs9zIh9w2ETu+YxO5/Huu/FMsdFNvih3H785LWsDXt80Nm\n9n7c77OEjm0XQsK1x2O7DSN01Hl3JD7ryX0/n3O14B3B0PGnxPLHbP3elpq96lQze7HXRulIeo/l\nK7E+38wuK7CvniLHtkTdZBwCvm1m/9Xn2GMKfI4disRfqeTxk8fYnFjfTO+fib7tkJxBLs1+t4vv\nP2BmZxaJK18n2W7O1ZRfI2huxX7J560CxuTHvYEZiffuJwyFhB1JhyXeO07SzpKGAycRUhj/LyHT\nZX78fxdJ+5aJ4/HEMZO/CO8HzpU0Mu5r7/x+S+zrPWBU343xL/B1kk6M+2qLcf8KOF3SNnHfRwOV\nTuD+dwrGA+MIw2e/yn8WSQcA+8btxTwJTIn7yF+bmVDmuAU/awHlvv/OpeIdQXMrdheOAZjZn4DZ\nwL3xYvGbiTLfIkxi8rSkZ4B/Sby3GLidkC/+FjN7ykK64MuBByQtJwyn7FUmjouA82P5fFnM7EHg\nZ4SZq54GbiGMrZfa13zg6kIXi4GzgQvjcR4n5Oi/gzDUsxzoBC7JDwf1UepOptcIbXEPMDsOO/0I\n2DbGvQA4x8L8uwX3a2G+3lnAghjfE4RrC6WOvRA4udDFYkl7SFoLzAEuk/RaHB5zbsA8DbXrRdI5\nQIeZXVi28BAmaR6w0Mxur3cszmXNzwicK8z/QnItw88InHOuxfkZgXPOtTjvCJxzrsV5R+Cccy3O\nOwLnnGtx3hE451yL847AOeda3P8DLb/+K+m/ti0AAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11202c400>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mplt.plot_free_energy(np.vstack(Y)[:, 0], np.vstack(Y)[:, 1])\n", "xlabel('independent component 1'); ylabel('independent component 2')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A particular thing about the IC’s is that they have zero mean and variance one. We can easily check that:" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean values: -0.0202599\n", "Variances: 0.405257\n" ] } ], "source": [ "print(\"Mean values: %s\" % np.mean(Y[0], axis = 0))\n", "print(\"Variances: %s\" % np.var(Y[0], axis = 0))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The small deviations from 0 and 1 come from statistical and numerical issues. That’s not a problem. Note that if we had set kinetic_map=True when doing TICA, then the variances would not be 1 but rather the square of the corresponding TICA eigenvalue.\n", "\n", "TICA is a special transformation because it will project the data such that the autocorrelation along the independent components is as slow as possible. The eigenvalues of the TICA transform are the values of these autocorrelations at the chosen lag time (here 100). We can even interpret them in terms of relaxation timescales:" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 58916.3390982 49176.41514982 34933.41607058 32727.40154084\n", " 29415.61528081]\n" ] } ], "source": [ "print(-100/np.log(tica_obj.eigenvalues[:5]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will see more timescales later when we estimate a Markov model, and there will be some differences. For now you should treat these numbers as a rough guess of your molecule’s timescales, and we will see later that this guess is actually a bit too fast. The timescales are relative to the 10 ns saving interval, so we have " ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.text.Text at 0x113290438>" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhQAAAFRCAYAAAAsBzSnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXe4HVW1wH/r3iQQQg+Y0Ak9FAWpQiBXBISAFEFAHiDF\nQhEECU14JCAQilKkGBFpPpAuIkiXgISa0JEmkRIIgdBL+l3vj302s8+cmTlz+rk36/d9851zpuzZ\nM2dm77XXXkVUFcMwDMMwjFroaHUFDMMwDMPo+ZhAYRiGYRhGzZhAYRiGYRhGzZhAYRiGYRhGzZhA\nYRiGYRhGzZhAYRiGYRhGzZhAYRiGYRhGzbREoBCRQ0RkkohMF5EJIjIsxzFHiMiLIjJDRN4WkdOD\nbcNFpDu2zBWR1Rp7JYZhGIZhAPRp9glFZA/gPOAgYDxwKHCHiAxV1ckpx5wDjABGAs8DiwBLxXZT\nYE3go2Dd+/WtvWEYhmEYSUizI2WKyKPA06p6ULDuFeAGVT0hYf/VgeeAtVX1lZQyhwP/BJZU1Q8b\nU3PDMAzDMNJo6pSHiPQF1gfuiW26G9g05bAdgdeAESLymoj8V0SuEJEl48UDE0TkHRG5V0S66ll3\nwzAMwzDSabYNxRJAJzA1tn4qMDjlmJWAFYE9gH2BvYE1gFuDfabgplB2BXYBXgbuE5HN6lVxwzAM\nwzDSaboNRRV0AP2AvVX1NQAR2Qd4WUQ2VNUnClMh4XTIYyKyInA0zk7DMAzDMIwG0myBYhowFxgU\nWz8IeDflmCnAHC9MAKjqqyIyF1geeCLluMdwWo0SRMRSrBqGYRjzHKoqjSq7qVMeqjobmAhsHdu0\nNemahPFAHxEZ4leIyMq4qZM3Mk63Hk4YSavLPL8suKAyYkTjyh81alTLr7G3L3aP7R73hsXucXOW\nRtOKKY9zgKtE5AmcsHAwzgV0LICIjAE2VNWtCvvfCzwJXCYiR+KML88FHlHVCYVjfgG8DryAmx7Z\nB2fM+f0mXVOP5PPP4aWXWl0LwzAMozfQdIFCVa8XkcWBE3CCxPPAdhrFoBgMDAn2VxHZAfgd8AAw\nHecVclRQbD/gLGDZwvYXgBGqeleDL6fH0wSh1TAMw5gHaIlRpqqOpaCRSNi2f8K6qaTYQxS2nw2c\nXbcKzkM0UqDo6upqXOEGYPe4Gdg9bjx2j3sHTQ9s1Q6IiM6L1x1HBFZYAV5/vdU1MQzDMBqNiKC9\nxSjTaD+6u1tdA8MwDKM3YAKFYRiGYRg1YwLFPE6jZ36eew5mzmzsOQzDMIzWYwLFPM5HH8HHHzeu\n/K9/HS64oHHlG4ZhGO1BSwQKETlERCaJyHQRmSAiw3Icc4SIvCgiM0TkbRE5PbZ9eKGs6SLyHxH5\nWeOuoPfwxRew/vqNP4dhGIbRu2m6QCEiewDnAacC6wIPA3eIyLIZx5yDS/51NC4x2AjgwWD7isDt\nwEOFMs8ALhCRXRpyEb2MRnt5pE2riMBDDzX23IZhGEZzaIWG4kjgMlW9TFVfVtXDcSGyD07aWURW\nB34O7Kiqt6nq66r6jKreGex2MPC2qh5RKPNS4EpgZIOvpVcgDXMicrz6avq2J59MXj92LJx5ZmPq\nYxiGYdSfpgoUItIXWB+4J7bpbmDTlMN2BF4DRojIayLyXxG5QkSWDPbZpFBGyF3ABiLSWYeq92o6\nGvwUXHNN+ra5c5PXH3MMHHdcY+pjGIZh1J9mayiWwCX1mhpbPxUXcjuJlYAVcZEy9wX2xk17/D3Y\nZ3BKmX0K5zQyqFZDcf31MHx4bee2OBiGYRi9g5aE3q6QDlyujr21kMJcRPYBXhaRDVU1LX25kZNq\nBYq//Q0efLB0/SefwCKL5CsjSUNx773w2WdR3SyoqWEYRvvTbIFiGjAXGBRbPwh4N+WYKcAcL0wA\nqOqrIjIXWB54onBsUplzCucsYfTo0V997+rqmqdjyWdNefzzny4r6T77wEknwVGFlGyPPBIJIgcf\nDL/5DQwY4H4vuih8+ikstFBymVdfDdts474naSi2jie3NwzDMCpm3LhxjBs3rmnna3ouDxF5FHha\nVQ8K1r0M3KCqJybsvzVwJ7CKqv63sG5l4FVcmvOJInIGsLOqrhEcdwmwlqpullCm5fIgEggGDHBC\nQxKLLRbFqdh880gjIeKmOx54wP2+6y545hk4+mi3bdo0GDgwOkd4u0Xg1FPhxBPd5wknRNtuvBF+\n8IPiOthfZRiGUTu9MZfHOcB+InKgiKwhIufj0piPBRCRMSJyb7D/vcCTwGUisq6IrAf8CXhEVScW\n9hkLLCMi5xbK/DHO3sIykOYg75SHn4bwhJqNG290hpS+808ztvT07es+4xqKuDABMNJ8dQzDMNqe\npgsUqno9cARwAvAUzrtjO1WdXNhlMDAk2F+BHYD3gAeAO4A3gZ2DfV7HxabYvFDm8cBhqnpLgy+n\nV1Cpl8ecOe6zTzBh5gUD/zl7dnYZ/thyggfAb39bWf0MwzCM5tMSo0xVHUtBI5Gwbf+EdVNxXh5Z\nZf4L2KAuFeyl3Hyz+/z+94vXV2qUecYZ7jMUKP70J/fphY1Zs7IDZnkNxaefwvTp0L9/ZXUwDMMw\n2oue4OVh1Ildd3Wf06fD/PNH6ztzRuoQcfYUb76Zvo8XKGbPhvffT9/PCxTnngsTJ0a2GIZhGEbP\npKYpDxH5RsHbwuhB9O8P//lP9DuvQDF5sjPS9NlDk4wlQw1FuH3ppZ3xpTc4fjfw6XnxxdxVNwzD\nMNqUethQNDhwc8+kuzvdc6Id+PDD6LsI3HRT+WN8kq9nn03fx9tEzJwJkyZF66dMgb//Hb79bff7\n5JMrq68x7zB3riWUM4yeSKZAISL/zFqAPwLm1JfAeeelx2FoN957D3bbLXlbUmrzp592n14bEXLF\nFe7zqqvgRz8q3pZmqNnd7YJkGQbAqFGw4IKtroVhGJVSzoZiGHAb8HbK9iVwuTmMGOHovB155JHK\nj/nyy+LfSUGpfOCrpKRfacafH3wAO+9s8SYMxyuvtLoGhmFUQzmB4kXgH4XsnSWIyLrA7pWeVEQO\nwWUCXQp4AThCVRMTWYvICsB/Y6sV52p6d2Gf4cD9CfsMVdWWNE/t1jm+G4tDesQR0feVVqpOAFp1\nVTd14jUWIR99VLqu3e6J0Z40OvutYRiNoZwNxZPANzO2z8TFhMiNiOwBnAecCqwLPAzcISLLZhym\nwDa4GBWDcYLIPxP2GRrbJyNxdmNpt85zqaWS12+3XXI0yzzMng0LLJC8LR4EC+Cllyor35j3+NnP\nstPdG4bRvpQTKA7CaRISUdUXVXVI2vYUjgQuU9XLVPVlVT0cl6/j4IxjBPhQVd8LloQZfN6P7VOX\nbn3zzeG66+pRUmtYe+30bX36RLYQZ5zhQmfnZdasdA+RLNdSo2eiWnt22AcegPUzJkkvuQSeeqq2\ncxiG0RoyBQpVnamqX2btUwki0hdnc3FPbNPduIiZWdwsIlNF5CER2TWpeGCCiLwjIveKSFftNXY8\n9FAUFCov7aSheOGF9G0dHZGx5K9+5ZJ85eX//i+/y2keLJV5e3PIIbDiirWVcd99yfY1kP2ctgoR\neO218vsZhtH80NtLAJ3A1Nj6qbhpiiQ+B47C2WpsB9wHXCciewX7TMFpU3YFdgFeBu4TkZLEYNVS\nLpR0nFoEigED4Lnnqj++EkTgnXeSt82aVf74SsN2ZzF7Niy5ZP3KM+rLgw/CW2/VVoYPaJbEN76R\nfezkyU6D0WxqvWbDmFdoRXKwilDVD1T1XFV9XFWfVNVRuLDdxwT7vKKql6jqU6r6mKoeistQWoEC\nPxs/LbDWWvms0GsRKL78Mn0Ul5cbbnDZQMuRJRDMN191x2+8cfnjkpgxIzu6ptEcvvjCJXqLk0fA\nLEe/ftH35593NjyetLwus2fDT34Cv/uds7FoNtOmOWHGMIxsmh16exowFxgUWz8IeLd091QeB0py\nfsR4jIz8H6NHj/7qe1dXF11dXYn7Pfyw+/Qain//Gx5/HFZbLfvktU557LdfaRyHSrj55ijVeBZJ\nUxannQbbbpvvPOHx/fu7sN7nnONGohttlK8Mz957V7a/0RgmToSzz4azzipeX6mWLolQoLjvPrjz\nTmdXkSX8TpsGl14K++5b+/mrwWfAbadpTMPIw7hx4xjnwxM3gaYKFKo6W0QmAlsDYWzGrYEbKihq\nPdw0R9X7hAJFGrNmwWaFSZOwMc0z19/qxicri2dnZ7Q9yUXvxBPze2SEGorp093nppuWuqnm4bbb\nKj/GaB711lB4DdiVV8LQoeWPveqq4t/+PUzTsn3yCSyySOV19Nx+e/XHNoIzzoDtt4d11ml1TYye\nQnywfHKDQxS3YsrjHGA/ETlQRNYQkfNxLp5jAURkjIjc63cWkX1F5IeFfVcTkZE4j5DfBfv8QkR2\nEpFVRGRNERkD7AhcUEtFJ06MvodRIVstLOQhS+gJhYi0xjjJ7TPEN2r/jUcIKVOu0XOpRqBQhVtu\niX6HNhReoFB1Grk4o0a5z7jQ640kN98cvvvdaP2cOcWC8KKLpied6+6GZ57JrvsJJ2RvbzbHHw8X\nXtjqWhhGOrUmB9tJRCpSRKrq9cARwAnAUzjvju1U1c9SDgbirqgnAk/gpjp2B/ZX1d8F2/sBZwHP\nAA8WyhyhqjUFdA6FiFBDsd9+LsnVhx+mCxetFjqyBIqwbmkdf7lQ2L/8pftMC4iV5v2x3HKlI80k\n8uxj1J899kiffvBarUqe7VmzYJddot/h8+YFiiuucPYzcU45pTQ6K8Aqq7jPhx9203pdXU5wuPTS\nUk3H1Lj5d4G774Z1182ue7MCbD33XH5j03p6VRlGval1HHkGcHmlB6nqWFVdSVX7q+qGqjo+2La/\nqq4c/L5KVddS1YVUdVFV3UhV/xIr72xVXV1VB6jqEqo6XFXvqunKKJ42iOetuPtuGDgQTj897Rpr\nPXttZAkU4XXFBYq8KmKvuk4LmJUmqGyzTbEh3uAU3x4fOyM+j280luuvj77PmlVsJOuf6YcSY9om\n44/xn2Enncfod8AA+OMfs8t/4AG4667kZHxpU39xbcv118PFFxfXr1kCxckn5zc27dNsqzfDqIBa\nBYrvACvVoyLtSKiVmD0b/vGP6LcXME48MfnY119vWLUSz3XmmcXr7qpSnMobC8ILFAstVNwJebJG\nUqGw8dvfus+VVy7ex3dAQ4fC176Wr05GfTn22OR7n6Q1SMN36Ekde9hh3x8PnB+QNe3r39H55ovK\ne/1150EC6c9zXODdYw849NDidY0eFLz8sqtzJYKLCRRGO1OTQKGq76jqG/WqTCt4/vl0A8JQK/HU\nU84gynP22dnl/jMeGLzOTJoEw4a57yeeCMcdB59+Gm1PUiEn0b9/8e+8KdfDufCkrKNZNhS+od53\n36jDigcP8vssuGC2ganRON4upASMCxCV/B+33uo+fcdejQYgz/nmnz8q79vfjmx8/HlnzYIxY6L9\nw+czTXBIylFTLUkeMr7dufHG/OWYQGG0M7kFChGZX0QOEJHfFJYDRKR/+SPbm3XWgd1T0pvFG7JF\nF218ffLy8MMwvjBRVItqdoUVin8nlZUkMITW+isl6KiyBAp/7NChsNVWySnSPUst1Z4Cxeeflzfq\n6+n4/zA+yq/k/9hrr8qPqYZFF42e3Zkzo/W+7v/+t4sE6wmfz512Ki7r2Wdhhx1KzxEK7JUwc2bx\n++JJEmS6u7OF+gceKL4+w2gncgkUIvJN4DXgt8BGheU3wKTCth5N2gvazqGgw44/afQH+QSgeKOW\ndM1J0xdes6HqAlnFywmPefxxWHjh6PdCC7lG89hj3e8kuw1Vt7SrQDFqVHmjvp5O/Fnwz9f771cu\nxMbdlOudG2fWrOQ6+fPGbSZCgeK++4q3HX54sstotSG4vTt1OWbMcJrPhRaKzvfss8X7PP44/PnP\n1dXDMBpNXg3FJcB4YFlV3UJVtwCWw3lUtCAYbnOIN1DVzKnWO/LjlVe6SJ1h3cJ56hVWgCmF6Btp\n9Q1DcFQ7T+wFigEDkreHDfaGG0Yhtf35BgzI7pS8QNLZmawhaTXVjBJ/9avy3jOt4PbbXcyGOHH7\nB//f+efr8svdkoe4QLHnnvW1UTj/fDjyyOL6QfGUR0j4fMafwzTtWrUDDD/9WO56Z8xwdhWebbaJ\nwpEnDSB6MiLtOVAwaiOvQLEWMFpVv/ArCt9PKWyrCBE5REQmich0EZkgIsMy9l1BRLpjy1wR2Sa2\n3/BCWdNF5D8ikjtIb97RVlqDcPHFxb/DzqYWg0I/hx2y334uiuX//I/7/cUXxQ3/m29Gc7Np9Q2n\nKPw+X/96ZXXzAsWIEcnb41qNJBVyGo89Fo3+wyBc7UQ17ntjxpQaz7YDO+wA551X2lH5hHjd3c4m\nyAsd/pk54AC35MGXPWFCtO7DD6uvczwUdpr2wJ93882L14dCwxdfFG9Law+q7ci9hqLcc7zGGsUC\nmreXCIWMrPr1FPzz047vtVEbeQWKl4ClE9YvBeTIbBEhInsA5wGnAusCDwN3iMiyGYcpsA0uRsXg\nwnm/MnsUkRWB24GHCmWeAVwgIrvEC0quU/L6eAOSNocatw6ff/48Zy1PWiccBpNab73oxfQjef+Z\nFSMjntkx3mh5Nk3JAeuvMc3LpaPDNY7XXON+n3de8n5JbLRR9J+0q0DR2wJ3jR4N3/te8rZZs+A7\n34l+/+//Vl6+D1x10UXRup/8pPJyPDvvnG+/+Dv8wQfuecr6/+opUKi60OHx42fPdsajIfGYGV5o\nX2ON0jJ7Mt5AtTdoWoxi8jaLJwK/E5E9RWTFwrInTjA4QUQW90uOso4ELlPVy1T1ZVU9HBci++CM\nYwT4UFXfC5ZQEX4w8LaqHlEo81LgSmBkzusrQtU99K1+ccPz33+/0z7EefXV6MX0qlWfQ+Ozz5Kt\nwlVhzTWj7+PGJWsallkmMvwMY0dAJFBkjdT32w9++MPidZUKB+0qUFQbYKjVz1QWjz+evL4eU07e\n2yOLSnLXhFFss+juLu64lljCvR/VCIRpQncWY8dG7+NLL8G//uW+l4s6+vnnpR5YvQUTKHoveV+r\nvwNrANfgjDNfK3xfE/gb8D4u8VemxYCI9AXWB+6JbbobF90yi5tFZKqIPCQiu8a2bVIoI+QuYAMR\nKdv0f/hhcad17bXOKrsVD/zIQASaf3549FE3P7zllnBwisjl654UHCepM/bXdeihUWTEri5YffXi\n/cJO86KL4Ne/jrQxSVbrechroObp6HAjxnZrfHqjQOFH0nHKCRRJieRuvTU9imoaI0fCqadWdgxE\nUVuTOPJIGBKLu/vkk5E2Jun/SPOy+NGPXOK8SvjPf6Lv3/8+bLGFE87LZSyeNi39HWvnZygPXqBo\nx4GCURt5BYpvB8uWhSXp95ZlylkC6ATiAXGn4qYykvgcOAoXcns74D7gOhHZK9hncEqZfQrnzOSV\nV4rjSviXvZJObOmlq3crC/GBnsAJFN/6FhxxhPud1sD40U7eYFa+QbrwwkidevjhbgS1dDCxFXaa\nQ4a46Y0LCtlRwjgUlZAWFOnGG9OnilThjTaLdtLbpjyy8EGi0vBRKsMpup12Kg1WVo7FFoumQdKM\nfZPIGsnPmpWs2fPvapKwlJXHJm2KL42wDfHv3Z13FgfJS2LOnPSpl4MOqqwO7YZpKHovucKkqGpK\nip3Go6ofAOcGq54UkYHAMTgtSVUUZxvt4u23u7765V/kSh74KVNcw+VDRteDeGKjNIFitdVcKPC8\nZI1whg2LIl8mjcJFouPTEi9lkTb623VXpx6+997k7f/9b+lIs5Uk3ZsnnnBeNlmGuKquMznvvMr+\ns1aSx6D2+edrz87Zr5/zBnr8cTeajxtLplHL1EDSOx6fJjzxxMo1JyLuPQoTo4XvXbnke7Nn93zj\nyzRMoGgebZu+XET6AWsDXyOm2VDVMvL2V0wD5gKDYusHAZUkvH4c2D/4/W5KmXMK5yzBCxRZYX27\nu51tQbnRhCePK+GKK7pkQN7XvBLSBIoFFqisnKwX+eqrI4Gi3Ch8iy0qOy8Uu/TFSTvfsGHtFyEw\nqa4bbQQ77ljeNfTSS+GewqTf7NnOm2fFFetTr5dfhj/9KV8OlDFj4LLL6nPeDz4ov88SZXSFXkjb\ncMPKzl1vgSKufRsxojKBwgva8YB54bnKCRQzZ/ZegcJrhWzKo/G0ZfpyEdkaeBOYAPwDuC1Y/p73\nZKo6G5gIbB3btDUuzkVe1sMZcnoeSShzG2CCqlb92HZ3V9aR5cnf8cYb6aG+y5EmUOTNreBd67I0\nFOH1VmonEE7XJPHoo3DTTenb0wSKvn2TQxe3ijlz0u9NOWO70OofnH1MPTUvf/5zdlj4sCO7//7i\nOf5ayBNvpZzQUa3QWItAkaR9iQsUlU5vBe13EZWExq/U1qgnYRqK3kveV+UinPAwBFgA6B8sFY6P\nOQfYT0QOFJE1ROR8nBvoWAARGSMiXym+RWRfEflhYd/VRGQkzqsjTF8+FlhGRM4t7PdjYF+gTMaN\nbFRL5/WzsgLuthtssEHytlVWSTd6y0uaZXtegcLHnyhn1PXoo+6z3hH5Nt4Y1sqIWpIlULRLcKt3\n3nH1SdO0lBt1eQ8iT63PRJxynd/CC8N777nv9dT6+DJrodr61PJsJOXcCcvr169+moJQmCsnIGfZ\nUIT79ERMoOi95BUolgJOV9U3VHWGqs4Ml0pOqKrXA0cAJwBP4bw7tlNVH6pmME5wCTkReAI31bE7\nsL+qfiVQqOrrwAhg80KZxwOHqeot1MAnn5RqBU45JXIDSyKt03/ttfIagk02ya5PWu6IPAJF6PZZ\n7kX2QpSP0peXWhvetOP79GkfDcVHH7nPP/wheXs5gWLChOJ4A/VuVPNolfzot1pPlSSefLL2MsL6\nLF5wQM/zTA2KT3bWSKhlGjq0Pga4/fsXv/flvDy6u7OvfeRIJ9jecEPptilTnCt4u/LOO+7Tpjx6\nH3lfldso79aZG1Udq6orqWp/Vd1QVccH2/ZX1ZWD31ep6lqqupCqLqqqG6nqXxLK/JeqblAoc2VV\n/WMldfI+5rvsArfd5r4femhxY7LBBtVFvvQNiW8gPvvMfb/22uL9Hnus8rIhn0Dhox6G9UnDN+yV\njhhrFSgqmfL4+OPqp45qoZwAkEdACAOT+f2XWspd4x57VF83yCckhEHD6kWWbUwaw4e7Tx+jInze\nvI1JHvugeudUidtC5Xmut9nGGRan0a9f8XtX7l3v7o5yjNx2W6lmz08vvvhi6bGHHVYaNKud8AK1\naSiymTULDjyw1bWojLwCxUHAnoUphQML0xBfLY2sYLPwDdgttzhrfU89RideNelHtz64ze9+l7x/\npeQRKPKka/asvXZ1uSqGDavNuDCtg0ua8hgxwnXCzSZ+737/e6fu9/9BpaMuX96777pgY94gtloq\neV7rOeXhtR4ixe9PFt5jyAdZC+vuBXdvz5BlJxFOSy6ySH736TTCAFaq+QSKe+6BO+5I3963b2Ud\naLjvfPOlT28k2ey0u0uzTXnkY8qUZKPpJ55Izr3TDuR99L4LfAf4BXA+zqbCLxc2pmrtQUdHqYFU\nUnbMLPwL5AMA+Rep2uBQcZIMuOJeJJUIFFBd3TbYoHj0XSmVTHl4tWk9qEQIiDeCF17oVO4+tPTD\nD7vopSGqLvZAufLqYSCZpXXwkSh9h1uphmLcuHS7mvAZjE8Jpr0v/v+Oa/CS9snSVIQCRd++MDgt\nok2V1MOGotL3KRwk9OsXPf/f+lbxfn79hx9GNhrtLlCYl0dtbLQRnHRSq2uRTN5H7zc4wWEhVV2w\nMP3gl4XLHdyTESk1zIxPVZQjrrbynUjfvi52RS0N1tJLJ9sXrLxyseDgG5llly1vq9EqWuHl8ckn\nlY3U4wKF75R9Ire5c0tzYrz3Xmnock+9G9XwHk6bFsX92G03uOoq991n5axUoBg+PD3gVFbwq11S\nMur4umaNVDs63HOcJVDMN1/0vU+f+neoed/PrP0qDQT3059G3/v1i6KOxjU1XkOx/PLRgKWnCBSm\noaicdk+slvfRWxQYG2Yb7Y0kNQhJaY69wdiOO+YrNy6A+BepT5/kKH7g0jvnYejQ0s520qRSta+/\njrfeSvdEaTV5BYrf/z55mmfOnCiSZ5wf/zjZ5iJP/ISQ+Iuc1Cn7l17VaWzSGs633spuVA86KLLn\nKccGG7hop+E9HDw46sxDd13foJcTpOo1D9/RUfzM+WiscQ1FEv7+ZjWgoUDRt6/zqMqi0rgt9RAo\nKo30Gj6r4fXF8e/FF19EbuvhM3DzzfVzDa4XvU2guP/++kRJjpP0XngPvHffzR/4rZnkFShuArZq\nZEXalaypggUXrK5MX07WyDtMMZ7Gsce6Bjc+jzpkSLHx6K9+VV09m02aQNHRUdz4HHJIctyD115z\nnWoSf/qTe/FDllsOnnqqsjrG/y/f4T38cOm+f/+7+x/TOsztt082zvP7/+EPcMkl2fX56CPnMTBx\nohMiQwFn7lwXTj2Ob9DLjWQPOqh0uiLsNNdZJ/v48Jgws6j3VioXkfakk1wWVMgWKOafPxIkN9gg\nOYR7mG+kKEhuGfLaUIT710JSwLtwuiRefpINRfgM7LprcX6gdqC35fLYcsvkQHK33ZYvNlEeRo92\ntkZ+Wuumm9ozBHtegWIScJqIXC0ix4rIL8Ol0pOKyCEiMklEpovIBBEZlvO4VUXkMxH5NLZ+uIh0\nx5a5IrJapXWLU4v6MG0E6BuFfv2iBsEbbHryeDCsvrqrX7npgJ6STOiUU5Ln6Ds7841m0hp+b+gY\nbt95Z5g8GR56KF/dnnnGGarGG/AkN2HfCfn/NO3+T5/u3EjjhA1tuefvwAOjpG6qpRqTJPsaX37a\n/fJaM5Fs46+8cRA6OoqvydfRX1va/Tn55Cghnj/XmWcm7+s9Rq5JCMa/4YYu2u2WWxafNy+L58mh\njBsx1jrdMGlSaaRQr6FYZpnS/cPn8dNP3TPn/1d/z9stXkVvNMpMeoa/9z04+uj6lH/33c6jJ3y+\nPv64PmUbDWbQAAAgAElEQVTXk7yP/wHAZzjX0YOAw4Ll55WcUET2wKU9PxVYF3gYuENEli1zXF/g\nL8C4lF0UGIqLYzEYFzvj1ZR9c5M05RGy887px6bNm/oXPdRQxEcRedzwOjtdI+LjW6TRU17c1VaD\nvfcuXR/XUKSR1kH+8Y/R9vXWc/fWh8fOO0pad12XbTWPLYdvXHzHmdZhpqmiwzqVGx2HqlbV0g4t\nK+JiWueXNyx83nuXJlD4a8tjROmPP+aYaN0CC8D++xfvlzQ94AW8coL1//5v8vplM1umbLzm5Ac/\nyLf/EkuUei/5diRpeu3KK6Pvn3/u3Eu93Yx3z2w3gcJ3sj2lXXrgAffsbLyxS5tQCfUKiubvVdz7\np93IJVCo6pCMJYdyvogjgctU9TJVfVlVD8eF0U5Jzv0VZwHPADdm7PO+qr4XLA0bm19/vetg/pgR\n7SLN6M03jn36RCF44y99npqLOFV7uYa9p7y4aVQqUKi6kf8jjzgXXb9eBJ5+Gp59NjrG3+c0WxaI\nRgKnnRbNYebBz9VX+hSW01DceWfynG2SQDF7drobZZpAEe/w08jbUcXTz/vzhjZJ5e5R0jO+5pqR\nW12S1sUbH/uyzzrLTX2lnWvhDPPy4493n9/8ZnY9a8Eni4v/L37Ko6Oj/D2fMiWa8mlXgcLTU6Y8\nurrcfX388XQvp3oJDjNmwL//nb49vGc9VqAIEZEFRaSC5MJFx/YF1gfuiW26m4zAWSKyPS4S5mFZ\nxQMTROQdEblXRLqqqWOctMbnBz9w8+NZKs60h8zHeOjoiDqGuIFNPUWhnjLlkUZ8hJvEz34WzSnO\nnevUxptumpzALOzcLiw4PftYCEmEL3ieENO+rl47UGlY6u7uyPU06fnabrsohkn433Z3lwqxIsX2\nA57FF3dJypIIy4h3oKF9Qrn/xGsT4v9fXKDIQ9K5wv8xaXs88+8GG8ABB6SfI+k98eu8vciTT5ba\n4uTBG6Km0b8/bF3IRhT+5y+/HGksOjqS1dzxqJg+0JdvZ9pVoGjHgc4bbyRHJPbTTUmBxKB+beyY\nMcnpCZK8O3q0QCEih4rIm8AnwKci8oaIHFLh+ZYAOoGpsfVTcdMUSeddGrgE+B9VTQvhNAU3FbMr\nsAvwMnCfiGxWYf1KKNdoVjNn6rUS/fo5/3EoTZrlH6BDct7hESPSR089XaDIY0NxySVRZMH4tIRP\nie47sBEjSo9Ps5jef38YNSr6fWGOqCs+Foefvqk0AurcuW76B9I73b8UYsWGuSiSNBRpycriNjsh\nYRneNsGzzTaRC6zvqE44IXJrTCsvNCwMNUZ5SXoPw3Xx7aqw777R9zyE+y23XPq2xx/PV154XLkk\nj0ku3lBsFNvZmfyO//jHxb/fest9euGjXcLWx2lHgeIb3yiN9RGS1+uqGp54wtmRJeHvVficV+qK\n3AxyeeCLyK9w+TF+A3gzts2BM0RkYVU9o0H1A/gzcLGqevO1kmZIVV8Bwuj4j4nIisDRpGQxHV1k\n6t1VWEoJH/pybqVprL12sZ++Fyjmn9+p4JPwDUyWGjZk113d/OtOO6WX1VO54QYX5+GXv8xnRBlv\nQP31//Wv5Y895RQXunixxdzvK66oqKqJeKExL3mMMpPUoqFA4efRq8FrKKZPT868ecMNzqV0t92c\np9GAAcUZU0eNKu5AOzqcl8dmm7nn05fZSIEipJrnf+LE9DD7vrw5c9y1JJW/8MLu+lZd1f1Oi9+R\nRPifh9qijg64/PJiu4lFFy21efHaKy/4tatA0Yopj4svdoa+ac/eJ5+Ufy5PPrl4kAHZx3z4YT7D\n3tDjTCQ5SGAlBtsA48aNY1wTE7tUEnr7p6p6sqreV1hG4+weytk+hEwD5gLxdD6DgDS/hm8Do0Rk\ntojMBi4FFhSRWYWsomk8BqyatnH06NEFoWI0acIE1CZQePVwfLQzY4Yra9YsuPrq0uPeeSdqpPba\nq9TwLInOTmdVnPQQ9nSBwgeNAthnn+R9wv8mrQFN8qiIM2pUcgbKWqhU5Rw+c9ddl7+syZOj5zGv\nYWUSvhP7/HMXXTMuVAwY4Ebpfkoj/nzHvZtEnIZi3XWdSrlPHzjiCCe45SXputdbL/qe1DmF8UCS\n1qftD7Dkku5ziSVKtx1/vDMs9HVKKu+TT5yGwHtsVBJELE2gEIkWH+JepH0FhnK0QkNx6KHlU8er\nZg8kktyOTzsted8PPoCBA/PVLZ7JOnx+k6Y88ggUXV1dX/V1oyvxl66SvALF13DZPuM8TqlwkIqq\nzgYmAlvHNm1NiiYBWBvnDfKNwnIS8GXhe0Kuva9YDzcVUhO+o5owITmzX1JDsdpqziDQN+pxQWTG\nDGewl2aBH6r411knOZ57vNzOzuKGJqQdVYvVkmY8Gb5caWr+vAF+/NzkLTXlqo2otMHPGrmdEegC\n45qPuXPrYxwWRrBcc00477z0fT/7DP7nf4rXxQWKpIbv3HPd9Em1XHmlG617kjQAPgR4pVMeQ4e6\nz8mTI61WvIwLL8wXtXDgwPKxLOabLzonpAsU/rns7o7u+UcfwQsvpJedVPd2oVkaiu5ut4SapXIc\nemh9zu3PWU0bHHp2JMXuaMeIqHmr9AqwV8L6vXD2CpVwDrBfIcnYGiJyPs7FcyyAiIwRkXv9zqr6\n73AB3ga6VfVFVf2kcMwvRGQnEVlFRNYUkTHAjkBK3MT8eEv99dcvHYlB8p86eLCzMI9HBPSRNf/6\nV1dumqScJKRcfLH7TKpD2jHgGrRN65YntvWkNULxkNNJ5G1YfWbIagMC5bVjSCMceccJDTyTRj7V\nCo9xA8ZnnomCUWV1hgsuWLz9rrtKn9F6NXyhoDLffMXP/HrrRbYDnqQAV5AeSdM/H7/4hftcZhk3\npRBu84SeK7VqCCZPjhIGQvH98t+ffbZ4/n7llclN1nPf6MFGVpLBZg10ttvOGWf7+5Dn/0py06wG\nf86JE90AM65xzHPs5MmRZ1olLuWtIO+rPho4qeA9cXJhuRc4ERiVfWgxqno9cARwAvAUzrtjO1Wd\nXNhlMDAk5fA0+hG5lT5YKHOEqv6twnJKKDf3mdRY+ofw5ptdpEL/x3v/6+nT3ZKk8QDXcMYbAW+5\nnSYcpDXa06bB7run17+n07+/s08JX65KXDuTmG8+ZyNQLr5HGvGOrNIOJx6D5MsvI21WOUOsahrA\n++4r9a//+tcjQ8pKGq7FF3fTdB98EB1Xj+fviiuK1dBJdUqLFxF/l3bZpVjIu+YaOO64KNx9XmM3\nf6/nzEkX9Mtxww1uWiVsZ5I0FOusU3x9lSRA6+520VSTvAKSIu3Wk/nnL9agxL2SmsH998P48ZUJ\ngHkFinBQ2N1d6lbqjz/3XDeFWEmgK39sOIjoFQKFqt4MbIyzc9ihsLwLbKSqFSuGVXWsqq6kqv1V\ndUNVHR9s219VU+VvVb0ynpBMVc9W1dVVdYCqLqGqw1U1M4nxlCnZKjdvkFUu7n+WQLHkklE0Syh+\nALICDuWNDBmeu11dw+pB1oszY4Zz5Qv/y2oFAf+fdHa6YDbVEtc8nX9+9WWBm3bwgmS5zi5u8Z8H\n/xx5z5G07Xnwc/yhEVo8+2g1/OhHxVMr3sYhD0kj9Ph9HDPGGZY+9FBycLWkMsIOqp6dY5KGIk4l\nCe1UnUCRJjjUu+14550obge4KKUen6AOmm+UWYlAMXeumyL9W5khaZis7c03I8+isBxIvvdTA1/H\nJBuMpCy84T3L6kPA/edvvhlNhzeD3E2Fqk5U1b1Vdf3CsreqVpgJoX1YemmXZCoNPzKoRkMRf1GS\n3OTiWQPj505SscbPF9atHaXVelGu8Zw9u/ieV6uC9kJEuYauXOTEeo+83njDeQPdd19jEz19/evJ\n69vt2frww8oSl6Wp/L1WIfy/NtssX6rx6dOLw4JX+58nTVv5d3zcuPRYA5VmyE1qb9KMVmtlmWWK\nbX3C6KZhJ9osDUXcjiGPRqa728Us2W239O1p50naL77/5587LZNPcnjiienHhqHYwymkrKCK4Aaz\n++8fldMMW5pcAoWI/EBESnJrFuwWUm55+5OVaTKvQBFvbJdbDs4+u3hdktCR5daXJFD43wcdFCXA\nCuvWjkFO6kW5xjNuqHnOOdWdx8cCKSdQJL38zWCrrUrjldSDcg1OJQJFM3zjvUtvrVTSoSbt4zU6\n1Woojj02WTDy7UVWVM5KBIpnn03WuLUiFXb4LDXbWLwSDYVqtrFrUt2T1j3ySOm2LbZwiQMhO2dT\n0jMXnw6N26iIFNvahBF1m/E/V2JDkRRU6ovCth5JVkPpX+qsCIpJvPkmbL558nmyzheqc5NsKDxb\nbBGp0MPRTZbGo6dTrvFMU9VXio8cWU4FvO22xXEXaiFNK9BMyjXseQWKRx/Nn4G0mWRle4XaO7Zq\nNRTe4DOOb3uyhLNKBAqIhO7wXjRKoMj7DMTPO3VqbaPo667LDgQY11D85CfZHkxZ8WOS/m9/PVna\nC1VngHvnne53VoKvpHLi9Q2T93lth89IGqcZ0+J5BYqVSE609Z/Cth6JjxZ4+uml23wyoWG58qBm\nk6dBXmWVaGTd0ZE+5eGZNKnYG+C7362tju1MmrW+59WkJ7MGyjWwffq4kUeSarxcWGbfiXn+9KfS\nfbbaKruMeuMbrrQgank7iI03br/pEYhiScQZO9Z9Vquh8FSroUh7zrx2NEugCLWeebST3hYsHJ2H\n0RePOqp+8VfyapDi92zw4FJX7Zkz05O2xTn//OxpbH+/vZHjpZemx48oR9L/nRXq/NZbk8vJeq6S\ntn36qUv54AmfIS8ADRwYBT/LE5+nnuQVKD4CklKBr4bLQloR9U5fXtg2vFDWdBH5j4j8LKmMEC/t\n7ZXgEFtJwzhmTPb2PBoKkWL1Z7lGLhwhr7xyZYFzehph+OFKyZMGPk45Sb5PHxg0CNZYo3RbOZV/\nOUExqYx6uV0mGRtC1Dgut1xyCPKNNqpu5NgOwsXbb5ePJ5JHGKhEoFgtqaVMIE2gyMoumlSfPNqK\nMJW5nzYLBYpzzoGLLipfTpzZs93/fOKJyVqQLJLuezzvzfzzw6mnZpcj4uyM0t7buCYmdC8uN1jx\nrBoLkeijkIZ4Y/A5c1x9suoS2nWk3a/4/enocO3+r38drXvssSgUfKgh2W+/0vLaSaD4G3CuiHz1\nqojI6riYEhV5eTQifXkhzPbtuLDg6wJnABeIyC556pQ00qykMTzuuOz4775DCEeA8RwJ3/xmcQNS\nSQNeiQtZT6QWNeiCC7rPcGohLWOgZ8cSa6FifAOeNDIs1/nHryXeCL7/fmkHkafDK5d8KqxbPJdJ\nWH45r6aextJLp08teGrVUPjASeCi1b6cMzJPWgeYxw4lKXtrEjff7D69K/Vnn0WGhr6MP/zBfVYj\nAHqPptNOc66RX3yRHK3X4+/jiBHJAlW1avm33io9Nm4b5N300573V8LkDTHi9zgpmvXPf+4+Z8+G\n229PLscL7KFgEd6Ha66JvsefuYUWclr1cKp7l12cZhCi6w+vLyyjnaY8jsUlBfu3iLwlIm8BLwCf\n4vJlVEIj0pcfDLytqkcUyrwUuBLIFZoofKh851xpw5rV4PgXNbTHCFXfqq4hCh/avJ3olCmNTVjT\nDlQiUMQbxc5Ol8UxNNSsdc7YC35J9crbKF9QCLkWvuQrrujU86FAkXf6I08n5J8vH7jJ0yjjOC/M\ntTv1FCgqeVZreQ7TOo04/lnygZG8/UBY5//7P/cp4qYPK7mGsB7nnef+88mFiEJT4ykgid6d+efP\ntkOAYhfTPMTvZ2dn8ajcayaShLEZM5xXRBp5tIR+ymP27PR76G0mQu8P/71fv2KPjniAuyFDnDF/\nPKy+v6dJNhxhe+TtNhpJ3jgUn6rqZsB2wO8Ky7bAZqpaMv2QRgPTl29SKCPkLmADESk7GeA1FC+/\n7B66m2+OXrK8ZL2ESQ/jyJHO8vrJJ5P3y6MaBycAlRuB9XTyjL49cePUzk64+274zneidbWq/qpJ\nWe+JR+sL6+LVqKFwECaVy6KcK2tYt3hD3iiBYuTI5CRm7Uae5yHrHZs7N79A0bdvNL+dJlC8/nr5\n+pRL3e6Ja7t8pxfW2X+KuOmaPDlvPFn3JUlzOmiQsxdTTXbfDK/Fa1cg2yPP44XzV19NdhH171V4\n7156yWmYy7X3Se/83bEex0fonTOnvLAYair8tc2ale2y3Nnpyo5rRv11lRMoKhXQqqGi2VlVvacQ\nROpsVb1XtWJldKPSlw9OKbNP4ZyZeAlvxRXdC7jLLlFkyrwMH15sLBMSHz2utpr7o7fYolgKDefz\nfvrT4nmwVVap3OOkt5BXA7PyyqV2AvF56EUWSVb9pf13SWTNWecVKHwAnLAuviEIn5e8NiBphoch\nvlH0dfANYKMEiniOinalXLIogO9/H+64I3lbJRqKNdZw//2ddxbHZwhZe+3yhrCrrOKCe8VzmsSJ\nd4Q+9POYMaWGgn5KoJGRM+fMcUHa/vrXZNu1sCMOn8sllihNnhUybVokvN5zT/RezZoV/Sc+N1b8\neT/zzCjMfBpJ7/WkScn7/uUvpVrAOD5gVnd38YBp+eXTjwm9f9ZaK1ofFyjCjNPh81hLwsC8tGF6\nkRLKpi+vFd9B1GLYeOaZ6REawz/yu991qcaTGDIkGpEecEBxQzFwYPkkQL2VuFGmF7QOOKB4/cEH\nl2oz4g3q9tsnj0hPOsl9HnFE+fr46bDwZfXq1CyB4uKLo2MGDnQN+PDhkbuXb+jyGNk9+mjxqC3P\nMXENhZ+L7U3J46ohj0Ahku4qPHNm5VMe3/1uekrr0aOjKYo0ll7aGTDuuy/ssUe0/qijso875RT3\nOWpU9D1e50YaeM+dm/2sJgnYnksuST8uFLw/+SR6x0OBIq3cPNyYMNH+zDPJ+z70UP5yK6mLb8v6\n9CkW+rxWI2mgFF77DjvkP1e1VOjNXDPVpi/fXERGF34L0CEis4BDCvYS76aUOadwzgRGf/XtwQe7\n2HPProZlbwvDBJebxwolTyPi/PMjqd+/hPHpjenTo8Zqp51Kw+bOnOleyt/9rrT8+Oi9UryQkfUM\nLb98cfneOC4+wvC/s7JUekMsT9gwLbNMccp3j69bXB07rwsU5UIYe9L+i003Lf7PsmhUtMJLLnFa\nzXiY83idw47ID3TiI+287aC3lcjDAw844fmaa7KD+qVpKMoRCkFz5xYLFHG6u9NjNaSRZF/h3Y7j\nVGIbs8UW+fcNNRThoMg/e18m6O8/+mgc3o+hGbZ2TdVQNDB9+SMJZW4DTFDVlL939FdLV1cXf/lL\n49zcjjkmcu0xqsNHBw2JdwQzZ0YvV5IHRr9+TuBIkuT9y1ptoCk/Spg7tzib5U47JaeUT8I3RJUG\nLYKo8b311mQNWEdHFGo6dHf9+9/Le7X0dvIaYGe1D3ntcho1aEnTnmTVOU0TEa6fPTsKMR6nkoRo\n117rPidMKPUyCgmj0OYRKPw0cHhf584tnvKIc/jh5XN0JJHXHbhR3hRhfJIkDcVmm5Ue89prXfh+\nbscdRzemYgGtmPKoe/rywrHLiMi5hTJ/DOwLxIJgt4b+/Yutd43a8KM8H77WM2NG1BmnBWmC0hd+\n8OCo4e3srG7e33s0zJrlUt17brqpuFE/4IDkuWOobMojjhdaVl01EqqOPTbaPneuMz57/33XMPp7\nuMMO+XJX9FYmTYIjj8y3b54BR5YG4qmnSp/ZeuG9gSoZFMVD1nu23x523tl9f/fd9JF4JfgOf401\nXKTZM89MthPxwu7MmcVho5MQgRdfdN/DpHijR0fTob/6VelxqrDPPhVVH3BG+08/XX6/RoW4Dqc8\nwoSD/frlM6Rthiay6QJFI9KXq+rrOC+QzQtlHg8cVk0mVKN98Y2lb7STLNh9Z9qnT/rceHw0+c47\nUdKtjo7kUeSqq0bprT1JncfMmc6oztPZWZxtds894eqrk+uVZJRZjhdecK7DZ5/t6rPGGtH54rYn\nffrkM96clxgyJL9AVatAse662UZ39UAkvzV/msHv1KnpI/hPP63MRsATBtHq6HCj6SS3Yu8auc8+\nUR6MavCC2/XXV18GuKmO0OvmG98of0y8464kkR2Upm7whFMeYdKyvn3LB1dMqlcjqEmgEJErReS+\nSo+rd/rywvp/qeoGhTJXVtUyudiMnoZ/odJG8qGGYuml00MSb755lJ5+4EDXCPtOJS5QrLCC+1x1\nVbjiitLkPHFmzSodFSWlr0+iGoFizTWdhiU8xrsG1iNtuBGRZ7qiGRkdy7HPPrDUUu57vadxr7oq\nvcPLIoxW2dnpEhsmRWWdM8fZdniPkzQaHczPu8O+9FLUBuQlblBb6TTXgw8mr0/L8SJS7GKbRjsl\nB0tD6lCGYeQiHlDKCw9nnuk+V189etlOOCG9nC23jEYdXujwx4kUzyGHDfN885VvyLzhZ0ie0OsQ\nvfDf+140H5pHxRrHq4rD2BtG7dSqoWg0Z54J22xTvK5WgSIe/yFJCMjD7NlOiH/6afd+LbBAukCR\nh6SgWZWS1tGr1pa9Oa75iT8T8f8oL75dig+k8goKba+hUNV9VbVChY5hVIdvAHzMCP+CHXSQa7B+\n+Uvn4RDum4Y/1lu6+5d+1iwXK//00+Ef/4i2h4aWHq9mDBttL4BANPWRt1H3L/ywYZFa2atY770X\ndt89XznxueeeEAuiJ5DHtqWVAsUxx5TaDtUiUEyb5mLyQPRsVmtw+Nlnzn4H3Lu54ILJ3h7NyDfh\naZZ3UzzpWrXxhPy9iU8V5f1PeoKGosezS65sH0Y74IWE0aOdr7lv4Ds63HcRF20yK+1wvKxtt3Wf\n/mWbNcsZKh5/vCtrzz2dtuA3vyktIz7S6O4uduf86U/dZ14NRbkGzmtiyuGnPMAZ3oXRWI3qqWQq\nql2oxsDX8+abkYZi222d7Y/3wsijYg8JpzA6O92UwscfRwKYF4J7ozdc3OU07u6exm9/W/zbB6KL\nD5byChTNEKBSHzcROSlvIap6Sn2q03xCNyWjvVluOWdA2aePG4mFAkVInvTJnZ0uIZt/aUOBIuSA\nA0oDaKURFxj877w2FOVGEL5DSwuok0Qlrn1GNqFAcdBByd4P7WBDETJsGFx2Wf5nOCTMSXHPPW7x\npAXny4Of8hBxrt8LLACHFZIqlIvSueeeyZk+8zJ0aOQZUi0ffpgelCzOwIFu+tVHxoX8gmk8nH78\n3pxzjtPKpmU2jdNqDcUPYstIXAyIHxeWkwrrdksroCfQE0cd8yrjx0feGJAuUORBBCZOjKY+kmL/\n14u8auesF141ut5KjcSM+hC2FVnz7+3AkCGuo+7oKM1snJc5cxpzPf6dmzEjytqZN9DUddclp+b2\nZLmLQ3KmUR+HZdtt88WnCAcs49OiJ+HCok+bVvr+5+1zRIpz+SQlP6uEliYHU9V1/IKLHTERWElV\nl1fV5YGVgCdwqcgrQkQOEZFJIjJdRCaIyLCMfYeKyD9F5N3C/q+JyGmFRGN+n+Ei0h1b5obp1tOY\nl33wexoDB0beGRB1sPWwZPcvazhdkJdy589Tv3/9K0ojnUboEptFu3RqvY2wI4j/p5sWUhu2y72/\n884oHHy10x6zZ5eqyb/5zdrqBcXCmM+6XC9vlO9/v3TduutGofXDTtm3JT5uzEYbVR7kzf/vSfhg\nY/7aLrzQfeYVBERc5GRvFxaPG1KpC3ioYWoUecd2JwFHqOpXl1T4fhQwqpITisgeOCHkVFwEzIeB\nO0QkLV/iLOAKXCTM1YBfAAcCv47tp8BQXByLwbhgWa+Wq49pKHouPu9GPaIPpk151ANfv299K32f\nYcPKZ1U1gaK1ZAkUfqTaLvd+oYUitfygeFKCnLz3Xmk02npEgUzqUOslUCSV/cADyZl2L7rIfSb1\nAbXW5957I/fauA1VXgEvHncnbrC6557FwevagbxN8SAgyZRkfnJk84xxJHCZql6mqi+r6uHAFCAx\nwKuqvqaqV6nqc6r6lqreBlyNC2IV531VfS9Yyr7epqHoufhofvUQKPLO4VaDr18t2f7CKY9aDO2M\n6gk7q7QOp10EipD55nOp5CvlscdK15VLWpaHRgoUSeWEsWW8QLHiilH04vi0J1T+P8Y9L7Le0ayU\n7yFxgcJrKjwdHaV2Fq0mb1N8D/BHEdlERDpFpENENgH+UNiWi8I0xfoJx9yNi5iZp4xVgG3xGU+C\nTcAEEXlHRO4Vka485ZmGoudSiw1FHJ/ArZU2FOXwz2q5623HTq030xNyoYwZk5yJ9Ic/TD/GT5lU\nwtprFxsgJtHIbKZJdHRE76DXRP7sZ6XtRy1eEPF+JNQm+PJ9bItdd60sOZmvV9L0Sprd1VFHuRTx\nzSbvWOfHwJW46Ql/CR3AXUCZTPJFLAF0AvGwJFOBzDA8IjIe+CbQD/ijqoahi6YAB+FsOvrh8njc\nJyJbhFE4kzANRc/FN0z16rDPPDPSetSTkSOdAWgtDBjgGsCnnip/vSZQNB4fUwGiDuOOO9KTdLWa\nPn3cMxTyk58kh7/2TEvJ0xxyzTXFuWmee859huG/R450Hd+557rfSW6PjUrM6M8Xn/I47rgoDoY3\nztxkk+iYPPUJQ+zHBYpQYPBl7buvy1+S5iESD8nvj1t+eVfXJEEsTaBYeeXWRMrNNbZT1fdVdQSw\nBrBrYRmqqiNU9f3so+vG7sB6wF7A9iJyXFC/V1T1ElV9SlUfU9VDgTuBo9MK27qQm9Q0FD2Xzs7I\njqIeHHNM/oyCefANwl57lfqUV8KkSZH9xbrrlt/fBIrG8cIL7tPHEhg/Hn7/e/d9222T01y3C/Hn\n4pJLsjvOPAJFnvTbZ5/tXBzjeFfWvn3Lh9rOw5/+lPzsi0TXGQ4gvYZinXXc//q970Xb8rxD4b2b\nf/7ibaHQ5Pfr2ze7k09LGnjvvc41tBKBoqOjeP9GDJQSz1vJzoWO+9bC8koV55uG03DEzYQGASmp\napfcVrQAACAASURBVL4699uq+pKqXgccB4wSkaz6Pwasmrbxv/8dDYzmzDNHM877Lhk9CpFo1NPq\nejSSIUMqO4cJFI1jzTVdR+tHp5tu2vi8EvWi0ufi/RxDxWqefV+PvCPoX8fN71OIh5r3moBQQzFu\nXBSHIjRyriZ6pS/z2Wcj91dPOA1WbRhvX/7CCzsPtyTbi7hA4RMCRgLFOGA0Sy89mlGjRldXkQrI\nbd5V8M74DvA1YoKIquaaRVTV2SIyEeexcVOwaWugEhm1M1jSZr7Ww02FJLLmmqP5z3/glFMa3yEY\nhtF7GDiwMbY2jSZt9O5ZZZXiOC8+J0VXV2mH6cmy59l+e/hjkKJx/HgXddbXw081lCNv+xxGoBw6\n1Llpfuc7ro6HHeZcXsNsr3kDzpWrV1Ia9rDMHXYoHwE0jLDr8XZdnjPOgEMOKV4XFyjeeMMJHpER\ndxfQxbHHums/+eSTsytSI7kEChE5G5dy/H7gHZyLZrWcA1wlIk8A43HeHUsBYwvnGgNsqKpbFX7v\nDcwAnsO5kG4InA7coKqzC/v8AngdeAFnQ7EPsCOQ4JUcv7YarsQwsGdoXqSZOScaSfjspnkhxV1F\nBw+OhA3fKe+zT7FNAbgRcpjbZtNN4ayzovgP662Xr47+HIMGJScFO/dcOPLIYk1AmORPxF2bD7Mf\n7lMtxxyTnMp8xRUh3md3dkYeJWnEhYePPirVSCy4YKkmJRQo7r470lCoRtf/5pvNi5ibV0OxL/BD\nVb2x1hOq6vUisjhwAk6QeB7YTlUnF3YZDISmTXOA44FVcJ4cbwAXUBxQqx9wFrAsMB0nWIxQ1bvS\n6tGMMKRG72f11UvnT1uNTXk0np6soQifD9+pTp+eHiclLjwluc/utFNpOO4k7cXRgVVblkFoiD9H\nKEyMHBnl1znoICdQxHNk5M2hU05zk0RSXp2pU53WJe91ZZHXtTTsx7xdIBQLFHnDhNeDvAJFB1BF\nIuVkVHUsBY1Ewrb9Y7+vBa4tU97ZwNmV1KGaiIiGEWfixPTGp1WaCxMoGs+KK7a6BpWT9Fwcf7zr\niLKE4riGIhQUsqY8yoWIj3udLLKIS/oXJ+k9WmMN2Htv+L//c3WfPbs49kNoiFmNQFHNOxRG8c3D\nEktEhq/VthVpA+Pu7kigqIdbfV7ynuoSYO9GVqTZmEBh1IMBA/LPBRu9hwMOKI0i2e4kdZKLLRaN\nbP325593GX09cbV6kgdDvEP84AM3vZFF/L1Jy8Ox8calUwLxcyYFksrbSbdKAH//fRchF2oXKOIu\np6GGoh0FikWBX4jIeBH5vYj8LlwaWcFGMWNGq2tgGI0hPvIz6o9I+011lSNvx7nWWlECrj594PLL\no22DBpVqKE48EbbcsriMxRcvH+NnwAA4L5i4Thttf/ObLgx4PDR9UiecNJ1TjmqmPOpNrQJF3OW0\n3TUUa+KmPGbhYlGsEyxrZxzXtuy5p/PDNozexuWX156i2eh9VDIS99MVO+zgYp/4OBGdnaUCxa9/\nnX/OP06YbCys3y67RN99Z/vSS8X1y+qEwymPcrTSqDrvtEwaablVOjujMpsZmTSXDYWqfrvRFWk2\nAwfCj37U6loYRv1ZfPHmGmIZvR/vJRB2VFDfznihhWDKlNJy/ffQC2WrrUrV/HHy1O2ee7KT9jUa\nr+Wq9j6mhQv300nNns5pojKkvTBXP8Mw5iWOPhr+9rf07Vmdjx/lJmko6kVoxBm2z+E5QiFipZWy\ny8vTxm+1VfI1HHkk/Pzn5Y+vFX899TbKbJVdV+rjICK3isjCwffUpdKTisghIjJJRKaLyAQRGZax\n71AR+aeIvFvY/zUROa2QaCzcb3ihrOki8h8R+VlWHbbfvtJaG4Zh9FyWWCI7kVmWLYE3eowLFLUO\nzPw5//EPOO205HLD79/7ngtYBfCrX8HHHyeXW2u9jjkGLrigtjLy4I1N6znlscAC+WN81JusKY8P\niAJYfVCvExYibp6HS+Y1HjgUuENEhgaxKEJmAVcATwEfA98ALsVFyTyuUOaKwO2F9f+DS21+sYi8\np6qJOdcGDqzXFRmGYfRuGq2h2G679NTo8eBbhx4a1cUHckratydpoeupofjii9rqUgupAkUYDyIe\nG6JGjgQuU9XLCr8PF5FtcREzT4jvrKqvAa8Fq94SkatxQoPnYOBtVfWpol4WkY2BkUALkrgaRvUx\n/A2jFeTVUOywg4u++Pnn9dNQxBkUZHuqNo9NTxIoqp2iaLcAjU21oShMU6wP3BPbdDeQkO09sYxV\ngG1xWU88mxTKCLkL2EBEmmjjahiOJ55w6YoNoyfjO2gvUHR0uCiRPmplIzwI5psvioIJtefaaHee\new7OP7+6Y3/wg+Isqa2m2UaZS+CmKuIR2afiQm6nUoiBMR14GfiXqobajMEpZfYpnNMwmsoGG0TZ\nDA2jJ5AV2dILDv6ZXmABp1pPCihVCUkaikGDimN8VCIYrLZadExPESjWXrt6t9ttt4VbK7ZibBw9\nyctjd1wG0b2A7UXkuBbXxzAMo9dw3XVRKGiAyy6LUod7gSK0WWiUJ0EoZOy2W2WCuc8V0pMEit5E\njfJlxUwD5gKDYusHAe9mHaiqbxe+viQifYBLReQsVe0uHJtU5pzCOUsYHcSW7erqoqurK98VGIZh\n9EIGDCiOsrp/YDnnUxWUi35ZKaHw4L97LQM4z5RKaGZUyJ7AuHHjGJeWe74BNFWgUNXZIjIR2Bq4\nKdi0NXBDBUV1Bks38Aiwc2yfbYAJqppothIKFIZhGEY6Sy5Zeeeeh1CLsPbaLnrx3kHWqFoCM5mG\nonSwfHI8t3qdabaGAuAc4CoReQLnNnowLo35WAARGQNsqKpbFX7vDcwAnsO5kG4InA7coKo+se5Y\n4FARORf4AzAMl3J9z2ZdlGEYRm9lscVcMqt6s/nmcNtt7ntnJ/zkJ/Upd6WVYOjQyMXUaA5NFyhU\n9XoRWRznIroU8DywXRCDYjAwJDhkDnA8sAogwBvABbhYFr7M10VkBHAuLr7FO8BhqnpLgy/HMAzD\nqJLOzvoHGfzoI+cp0r9/FATLaA6ircrd2kJEROfF6zYMw+gpiMDPfgZjx7a6Jr0HEUFVGzYZZCYs\nhmEYRlti476ehQkUhmEYhmHUjAkUhmEYRltSa+Aso7nY32UYhmG0HY8/Dquu2upaGJVgRpmGYRiG\nMQ/QK40yReQQEZkkItNFZIKIDMvYd7iI3CIi74jIFyLyjIjsn7BPd2yZKyKrpZVrGIZhGEb9aLpA\nISJ74GJInAqsCzwM3CEiy6YcsinwLLArsBbwe+ASEYkHrVJgKC6OxWBcjItX634BhmEYhmGU0AoN\nxZHAZap6maq+rKqHA1NwETNLUNUxqnqSqj6iqq+r6ljgZpyAEed9VX0vWGxeo4U0M4b8vIrd48Zj\n97jx2D3uHTRVoBCRvsD6wD2xTXfjNBF5WRj4KF48MKEwNXKviHRVXVGjLlgj0XjsHjceu8eNx+5x\n76DZGoolcAm9psbWT8VNU5RFRHYAtsTl7PBMwYXc3hXYBXgZuE9ENqu1woZhGIZhlKdHuY0WBISr\ncXk6Jvr1qvoK8Eqw62MisiJwNC4BmWEYhmEYDaSpbqOFKY8vgT1V9aZg/YXAWqr67YxjhwG3Ayeq\n6gU5znUSsIeqrpWwzWwrDMMwjHmORrqNNlVDoaqzRWQisDVwU7Bpa+CGtONEZAvgNuB/8wgTBdbD\nTYUk1aNhN9QwDMMw5kVaMeVxDnCViDyBm444GOfiORZARMYAG6rqVoXfXThh4iLgWhEZVChnrqpO\nK+zzC+B14AWgH7APsCPw/eZckmEYhmHM2zRdoFDV60VkceAEnCDxPLCdqk4u7DIYGBIc8iOgPzCy\nsHjeAFYqfO8HnAUsC0zHCRYjVPWuRl2HYRiGYRgR82TobcMwDMMw6ss8l220krDfRoSIjEoIb/5O\nbJ/RIvK2iHwpIveLyJqx7f1E5AIReV9EPheRv4nIMs29kvZCRDYv3IfJhXu6b8I+Nd9XEVlURP4s\nIh8XlqtEZJFGX187UO4ei8jlCc/2w7F97B5nICLHi8jjIvKJiLwnIreKSJJBvD3LVZLnHrf6WZ6n\nBAqpPOy3UcxLwCCi8Obr+A0iciwuCuqhwAbAe8A9IjIgOP58XJyQPYBhuABlt4nIvGwkuyDwHHA4\nzgOqiDre17/gnvltgO8C3wSuqvfFtCmZ97jAPRQ/2yNi2+0eZ7MFcCHwLeDbwBzgXhFZ1O9gz3LN\nlL3HBVr3LKvqPLMAjwJjY+teAU5rdd3afQFGAc9mbH8HOC74PT/wKfCTwu+FgZk4l2G/z7LAXGDr\nVl9fOyzAZ8C+9b6vuBw33cAmwT6bFdat2urrboN7fDlwa8Yxdo8rv88DcB3e9sE6e5Ybf49b+izP\nMxoKqV/Y73mZlQrqykki8hcRGQJQ+BxMcG9VdQbwING93QBnBBzuMxl4Ebv/idTxvm4CfKaqjwb7\njAe+wO69Z5iITBWRl0XkEhFZMti2PnaPK2VhnAb8I7BnuUEU3eOAlj3L84xAQR3Cfs/jPArsh1N/\n/Rh3z8aLyGKF70r2vR2Ec/X9IGMfo5h63dfBwPsJ5b+H3XuAO4B9cSH9fwlsBPyzMAgBd4/sHlfG\n+cCTwCOF3/Ys15/4PYYWP8s9KvS20To05oIrIo8C/8W59T7WkkoZRh1Q1euDny+IyJM4t/TtgVta\nU6uei4icgxvJbqYFfblRX9Lucauf5XlJQzENN080KLZ+EPBu86vTs1HVL3HxPlbF3T8h+96+C3SK\nyMCMfYxi6nVf3wWWpJSvYfe+BFWdAkzGPdtg9zg3InIuztjv26r6RrDJnuU6kXGPS2j2szzPCBSq\nOhvwYb9DtsYSiFWMiMwPrAG8o6r/xT1oW8e2b050byfiDIjCfZbFGQDZ/U+gjvf1EWBBEdkk2GdT\nYAGcp5MRUJhzXoYodL/d4xyIyPlEHd2r4TZ7lutD1j1O2b+5z3KrLVWbbBW7OzADOBDXGZ6PszJe\nrtV1a/cFOBvntrQisDEuHPrH/t4Bx+CMg3YB1gauxUnGA4IyLgbeBL6Dy7Xyz8IDLq2+vhbe1wHA\nN3AuWl8AJxZ+1/W+Av8AnsEZXH0LeBa4pdXX3+p7XNh2duG+rAB0FRrNN+weV3SPLwI+Kdy/QcES\n3kN7lht4j9vhWW75TWrBn3IQMAkXovsJ3BxUy+vV7gvOL3kyTiB7C5fMbY3YPicBb+N8/e8H1oxt\n74sT4t4HPsfN6S3T6mtr8X0djnPHmhtbLqvnfQUWwfmRf1xYrgQWbvX1t/oe41wX78SNnmfg7IL+\nlHD/7B5n3+Ok+zsXOCm2nz3LDbrH7fAsW+htwzAMwzBqZp6xoTAMwzAMo3GYQGEYhmEYRs2YQGEY\nhmEYRs20pUAhOTIwJhyztoiMK2Sxe0tE/rcZdTUMwzAMo00FCvJlB/wKEVkIF5t8Ci5W+S+Ao0Xk\nyEZW0jAMwzAMR9t7eYjIZ8ChqpqaOlVEDgbGAF9T1VmFdScAB6nqcs2pqWEYhmHMu7SrhqJSNgH+\n5YWJAncBS4vICi2qk2EYhmHMM/QWgWIwyVnshHkvA51hGIZhNJ3eIlAYhmEYhtFCekv68ndJzmKn\nJGRHE5H2NhwxDMMwjAagqtKosnuLhuIRYHMR6Res2waXCTMxvWur47LPC8uoUaNaXofevtg9tnvc\nGxa7x81ZGk1bChQiMkBEviEi6+LquHzh93KF7WNE5N7gkGtw7qVXiMhaIvJ94Fjgt02vvGEYhmHM\ng7SlQAFsADyFS6k6P3Ay8GThE5yh5RC/s6p+isvvvjQug+gFwNmqel4T62wYhmEY8yxtaUOhqg+Q\nIeyo6v4J617A5X832oSurq5WV6HXY/e48dg9bjx2j3sHbR/YqhGIiM6L120YhmHMu4gIakaZhmEY\nhmG0MyZQGIZhGIZRMyZQGIZhGIZRMyZQGIZhGIZRMyZQGIZhGIZRMyZQGIZhGIZRMyZQGIZhGIZR\nMyZQGIZhGIZRMyZQGIZhGIZRMyZQGIZhGIZRM20rUIjIISIySUSmi8gEERlWZv/dReQpEflCRP4r\nIiObVVfDMAzDmNdpS4FCRPYAzgNOBdYFHgbuEJFlU/bfDrgaGAusBRwCHCkihzSnxoZhGIYxb9OW\nycFE5FHgaVU9KFj3CnCDqp6QsP/VwPyqumuw7ufA0aq6QsL+lhzMMAyjgXz4ISy+eKtrYYTMc8nB\nRKQvsD5wT2zT3cCmKYfNB8yIrZsBLCsiy9e3hoZhGEY5Bg6EDz6orYy//hVE4B//qE+djMbSdgIF\nsATQCUyNrZ8KDE455i5gJxHZWhyrAb8sbFuqMdU0DMMwspg9u7bj33jDfe6wQ+11MRpPn1ZXoB6o\n6h9FZCXgFqAf8AlwPjAa6E46ZvTo0V997+rqoqurq9HVNAzDaGuuuw7mmw923rl4/YsvwuqrQ0fO\nIWi9ZpSXWy4q79//hjXXrE+58wrjxo1j3LhxTTtfXWwoRGRPYFfgI+APqjox2LYE8LiqrpSzrL7A\nl8CeqnpTsP5CYC1V/XbGsYLTYrwPbAXcDnxNVT+I7Wc2FIZhGDFEoH9/+PJLOOEEGDkSFlvMrb/m\nGidoTJkCK5VpzZ9+GtZbDyZPhmWWqb4+114LP/xh9PvLL139jOpoexsKEdkf+DNOE7Ac8LCI/DTY\npRMoMYxMQ1VnAxOBrWObtgbGlzlWVXWKqs4B9gIeiQsThmEYRsQnn8DllzshAJzwAHD66fDAA/DZ\nZ+63FzJWXrl8mWed5T7nzKm8PjNnwoyCRdysWcXbLrqo8vKM5lEPG4ojgMNUdQ9V3Q6nqThbRA6r\nocxzgP1E5EARWUNEzsfZQowFEJExInKv31lEBorIQYV9v1HYf1fgFzXUwTAMo9dz7bVwwAFOowBu\nWuNf/4q+r7OO+y4CUwuWbR98AIcdBq+84n7fcgt8/HFp2dXYUOy5J6ywgpvmmDkTNtkk2nb00ZWX\nZzSPeggUqwB3+h+qehswAjhVRKrq0FX1epygcgLwFM67YztVnVzYZTAwJHbYvsDjwEPAUGB4OPVi\nGIYxr/HJJzCxTCsY7/RVYYst3PeOjsgwUjXSGFx3HVx4obOr+PJL2GUXNzUCbp8HH3Tfq9FQvPkm\nvPeeO/esWbDQQpWXYbSGeggUnxDzpFDV8cD2wK+JvC0qQlXHqupKqtpfVTcslOm37a+qKwe/P1DV\nTVV1YVVdSFW3UdUJ1V2OYRhGOlOmtLfXwTbbRG6WJ5wAG2yQvX+80w9/f+97xds+/dR9HnpotO61\n16LvTz4JV10Fb7/tfr/3Hsydm7/uAJ2d0XcTKHoW9RAoHge2i69U1YeAHYBDS44wDMPooYwfD7ff\n3upapHPPPXD99a4jnzkzWr/AApG24ssvI81EXEMRHhMiAnffXbo+9PxYf334/PPo9/DhcNRR7vsB\nB+S7b2F5v/xlewkUIqVClhFRD4HiXGB60gZVfRAnVFxVh/MYhmG0nFpjKzSDK6+E5ZeP3DffeAOm\nT4dnn3W/Bw+G/fd33/Nez6RJyesfe6z4d1wgOf9893n55bDPPs4FNYu4a+rCCxf/rlTjUW9uu621\n54/z6aeRIW2rqVmgUNUHVHVMxvZxqrp/recxDMNoB/yUwKmnwpC4JVcdeeutyuM5TJsWfX/nHXjp\nJff9uefc55NPungOn30GL7wAm23mPvNw2mnJ6w88sPh33DMDnEYE4KOPYPfd3fd//9t97rxzcR3i\nAkVcQ1GNXUY9iAtO7cKHH7a6BhHtGCnTMAyjLVGFG29038ePh9dfhx13jLbVk+X/v70zD5OquPr/\n98wwLAKCqDAIiKAIiFEiQVwQQVEDJq4xKC9BjDuuxH2JonHBqKh51R8hCeJKosF9XwB9gxpFEFdQ\nFkVEUARFNoGZ8/vjdHnrVt+tu2/P9Mycz/P0c/vudatvV506dZYdxQMjF7bf3r9eUSFLE7vhzjuB\ngw+W7+XlwOuvS3yJNAmaMhltpWncsgWYNQvo1QuYPx944gmx+TD1Z9tQAECLFv71OXPSLW9S3GBf\npUIphVRSgUJRFCUhS5YATz4p300n/dRTsiwr876nhTFuzJdGmVjIdjAoo0FIGvUyV4I0GfYouqoK\n6NtXvtvCR1mZqO6Nh4jBDWTVv3865cwVu+OeNKl2ylDqqEChKIqSEFudHxSxcdq0dO+3bl1h57+c\nidZjj/pNJ/7224VdOw6jCQH8mpONVhrHc8+V5cUXh1/nq6/868U00nzllewR/w8/iKBjb3eneWqT\npBqKmZFhIdNBBQpFUZSELFnifQ+aKijUOO6qq8SzwWBsD6LYYw9g3LjoY2y7g0KFlKS0zwQTaN7c\nH13TRN4EJBJnHI8+6l93p0DSZPBgYPly/7ZvvpGl23GvXSsaqW23LV55kpBUoDjEjT1dBFSgUBRF\nSYhxgQwjSqCYOzd+SuTmm4HbbvPWkxggvv9+sDunTW0YMhrBYd06cWM12G6lSTAxL8z0TfPmhZct\nivnzgaFDgepq6ayrA9NLAsOGideMmc4h8uJ0lCI14Z1UdIGCiI4kopHFvo+iKEohzJjhdR4LFvhH\n0ob/+Z/gc02HHSVQnHqqZ8AZhmvXkFQQ+PHH6A4jX1fLQw8FmjbN3n7DDfHn2vU3dy5w9dXyPVfh\nZkgmypFJEG1ChBeLQYOA556T8peVee+EqwlYsMCLDmoIemeKjTFSff55/3SSDXPNCJU1oaEYB+Ce\nGriPoihK3gwaBPznP/K9WzfJVWHz44/hjfKbb8oySqBo1Sq+DOb8HXeUZdJO4PXXvY43iM8+S3Yd\nl7IyGa279OkjnVTr1uHnuoJIvkagRjOxcSNw993J6jGM22/38pS4uAKDsTUxwliQbYWxTTEBu2oj\nRsZxx8lyyBBg6tTgY6qqimeEa1MTAsXBABKlLrchotFEtIiINhDRLCKKtO0losOI6HUiWkNE3xDR\n40TULe9SK4pSMph8EkmYNg3o3Tv58bNnA5dfnr3dVl9v2SIdZNBxAPDpp7KMEiiijAk3bZLAU6bR\n/+ILWYZ1UCtWZBsrzp0bfv0kRoRTp2aHFC8ry+5IjzlGNBeA16Fec43/mF69gPvvl9/tzDNl2+67\nx5fBcOGF3vdGjbwEZo0bF6a6HzPG03S4uFMb06fL0hjiuvXA7P3ept5qO+hZ48bB2zdv9lyIi0nR\nBQpmXsbMOTQHABENA3A7gOsA9AbwOoDniKhjyPE7AXgcwKuZ4w8G0BRACQfIVRQlCatWATvtlPz4\nF16I7lwNmzaJ2vruu4EbM6H5zGgY8AsHcZoCYxdgBIKDD85WP0c16EcdBey6a7ZAEiZQDBokGTlt\nbNuCfDqPo48WGw/b7bO8PNrozwgUV13l93C59VagTRvRtNx/v2yL0qDY9OghZTDP0KiR2Ct06SLb\nitVpu3V9/PGyNL+jK3Bs3iwRSW3CwpbXFEHTU0AdFSiIqCkR/Z6Ibsl8fk9EAc5VsYwBMImZJzHz\nfGY+F8BXAM4MOb4PgEYALmfmRcz8HmSqZWciapPXwyiKUussXOipk5Nas5sIjHGMHy9TG3ZHcvnl\nwKWXyvdcBIqlmTzIN90ky2nTxDvg8ce9KJC26+acOX6B49135RquUV/YfbdskU7Cflbb+yFpHdiY\n57W1MGVlImj07x/cWdod2KBB3vettvK+G2GrSZNk5WjVSkbaxtjRFvIaNy5epx0mvBlPG3f/xo0y\n1eRui+OTTyRpWk2yZYu/HotFagIFEe0FYCGAWwHsnfncAmBRZl/S61RABISXnF0vQtKYB/E2gM0A\nTiGiMiJqCWAUgLeYuYQCkyqKkgujRgEjMybdSRprwMu1MGNG9HHffy/LyZO9ba++6gkF69d78Qfs\nzmTffbOv9ec/e9/32cf7fvTRwNlny3e7Qd9rL38cizBhyb7vV195QZ+M7UKvXt5+O3y1G20yDhOa\n26VzZ6n///u/YHV6mA2FLTzcfrssk87hGw2EeQa73tq2lemeYhAmvBkBy3XhDXK/XbAg/j7du8t7\nUQw2BGbVqpsaiokAZgLoyMwDmHkAgE4AXsvsS8p2AMoBuK/NCgCVQScw8xIAhwK4FsCPAL4D0AuA\n5oUrQd57z+/PryiGjRv9DbutJdiwQRrxRx5Jdi3bI+OJJ8QK3iYudoMZCa9e7Y+FsMce0eeZnA/m\nOUzHaFT/QSPsMNfEt97yBI/TT5fsnUD4XLmhaVMv+VcYJk4EEGzfcOml4sYaxe9+BwwYkL3dFmgO\nOCD6Gi5GoDCChCtQFGt0H6ahMAa3SQwuhw0Dvv02/rhitX8bN0oOl3bt/Nu3bKl7AkUvAGOZ+Se5\nLfP92sy+okFE7QD8A8C9AH4B4EAAPwAIbXrGjh3702dG3FBGSZU99wROOKG2S6GUIh07Aiee6K3b\nHdOGDcCUKV5yqTjsjuioo/xz+Ek6B2NoOWOGGAQa+vTxH2fcIV2MMd+sWf7ttq2B+R+EjY7nz/c0\nM/boM06gaNHCswsJwwgCYYGiWreOv8+FF/qDU40aJUtXCDAYIa5rhJl+lIaiSZPg5GOff+5pedat\nCw42ZZcjiKQeNSZseBhHHCEaqyOPlN/su+9kasS2/Vi6NJmdz8aNnmbkpZeyhWKXhx4SgcIIXTNm\nzMDYsWNx881jsXbt2PgbFgozp/IBMAfA4IDtgwHMzeE6FZDpi2Od7XcCmB5yzrUA3nG2dQBQDWC/\ngONZqT0A5qFDa7sUSikCMPfq5a0fdJBsA5gXLGCeOFG+2yxeLNvmzvWuATB37eq/rn3e99972+I+\nF1zgX1+3zvv++OPM110XfN7cud73bt3Cr//aa/FlYGbu31++T57MfPDB0cdv2cL8zTf+bf/5j3/9\nuOOy69Kur+uvD95+zDHhv98ll8gxmzeHHwMwn3hieNl33tl/7Pr13vpnnzF36hR8zYcflu/Tw8PT\nSwAAIABJREFUpgU/l7n+oEHMn38u2xYvZt5zT/m+fHmy92HJkuTvzhFHMBPJ97vvZr79dm/f1lvL\nfTdtYn7iifC6Ms/ivsPMzE89lX3PDz6Q5Q8/eMd98onUa6bvC+1/C/2kqaG4EsBfiOh4Itop8zke\n4q1xBRG1MZ8YAWczgHcAuIFCD4FMqQSxFQB3zGGUiBoNNGUWLszP6MsmzBpZUey5dltDEaZVeO45\nWT70kD9p05Yt2fPenBnF5hLL4NZb/eumTGefLe6CYapke2rDaDuCCJoyCMJoKkaNEs1FEGaap7w8\n2whvn33EIBCQrKOmLsLIJ6aCmbqJMwCMsqewNQU//7lfS2LcRok8t9n77pPl6tWyNFlBw55v+nTP\nQ2bWLE9TMGVKdJntMiRl4UKvHKNHA+ef7+0zBrjTp4s2w+Zf//K7Pps6cQ1bg5Tr5nez3WNrasoj\nTbtPE1T2IQDmpzQzoE9Y6wyxkYhiPID7iOhtiBBxJoD2ACYAABHdCKAvMw/OHP8MgPOJ6I8ApgDY\nGsANAJZAhBMlRfbdVyzYoxqkTz4RocEE6DEYQ6aasDhW6iZRAkXQO2caW2NMaViyBNhhB1E5G373\nu2T5MZKUb8QIKV9YQx2kms8VYxT66qv+Dt54lbg88IDnpeIaZpaXe0m6Tj45PpFZPgLFmDHJIlkG\nCRSffgq88YZ/amL2bP8xFRVeva5aJXYgjz0m60aYad5cOutNm+I9S0w5Nm2SsiehTQ5+g0lyu9hu\nqe++Kwa7U6f6p0TMdIk7EHMjdQIypQwAH38sy08+kSmhmmhz07zFoPhDksHMD2c0GVdABIkPAAxh\nZvM3qgTQxTp+OhENB3AxgIsArAfwJoBfMnOI3auSlOnTgXnzvAA1SRrK7t1lPtwE6DGY+VoVKJQw\n7EbenjOuqhLDRJcobZfx5DA8+GB65TPGkkk0FPliBKiBA6OP69IFWLxYvhsDS1POvfcW407Ab5dQ\nDA1F+/bJ7KOCBIpddpFPFFGBrUx5R44U4bJpUxE2y8uDO/Z587ztYd4RQeQy0o/zbPnuOy+/y4sv\nenY++zn+jMYN132OqN/Q1GX37rIsdshyIEWBgpkT5I3L6XoTkNFIBOzLsl9m5ocBPBxwuFIA558P\n3HGHfDcCRVxD9P/+nyzdkaDtY68CRWnCLCM14+pXG5hG2LWWD+vg4jq+V17J3ta6tV9zkQumfKaR\nDzMwrMlYA3/7G7BypX+b6XzsTsgIFOXl0sE88QRCKVYY6VdeAX72MylzrlRUZOfLePxxWRoNhe1e\nPG+e37XWpmdP4Be/kO8mo2hSpkzxBKd//lOCYO2+O/DBB/7j4jQUHTp47aStTXENeQ2uN1BUW/zR\nR37X1rrm5QEiakxEexHRL4loqP1J8z41zdq18mLWR1asCI7VD8gcpREmbNyXmMgfGtmE4V3lRACx\n561ddeyiRcnKqxSXLVvkN08a86EQfvzRHwzJYBph9/0J6+Di5r4HD87eFidMDB4MHH548D5TPqMZ\n6djRvzSccELu8SDyZb/9xGXRplkzqRv7/2oLGVdeGR11MqwjLpSDDvKmXjp0SG67APjtF9zO2mhD\n7U50992jf2vTcXcLSdIwZEi0V9GJJ3phyIO0EXGeHPagy44FEqYFXrPGL1CFuRsDwMsvi62MwWip\nikmaga0OgdgszALwLICnrU9M0t7SZuhQkWZdLrwwW6Vfl1i6VHzmjVEbADz7rJdJ0H3mbt0kwp9p\noOw/9LvvyvKBB7IDzwQFonE1FDvvrEJFKWA67XxH77mwbFmwUZlpmF01dJhbnwn2lCbbbAN06pS9\n3U7DbUaUZhk0HVPIKN+NwhhGy5bBtgJEMnK2BYqmTT2bA6JwlTxzeGbVtBg+XNxxjz8+eTht16bG\nfidMzAw34NS55+ZXvqZNpT3817+y95k6rajw2rJCNVLnnZfsuAmW3j5OW2zsaWqKNDUUd0GEhy4Q\nr4tm1meriPNKHpOd7s9/9qykAbH+Nuq2ukinTtkBVv70J+CKK+S7O/+8YIEXtMflqKOA5cu9+UCb\nysrs84Ii7OWqdlTSx3SAxf4tNm3yPB/MKOvJJ2VpBFW3My52JkeTuwEQwz47N4bBZHYEPA2F6cyv\nvDLd8gRF5LQxCakeeyx6rt7VUBgviNrmwQeBa6+V7/lMgc6c6R/0GPssd6rVBBTLlSgtnRGAzjnH\nE3KWL8/vPrli/55xAkVNk6ZA0R7ADcz8OTNvZOYf7U+K96lRbNXTJZcAf/+7f3+xUsJWV0tn/8AD\n4dnx0sBN0Wwax7DRYEVF+Avdvbt/BGfjGpUFqepcAUapeUynXahbcBQXXQRstx1w2GGyvlcmML9x\nnTP/KVMW04nb7+SyZVLGNBrUvfaSUZ+tet9qq2CBwvDf/3rZQysrvWiQjRpluwAWC1O+uLnxUut0\n0uLMM/2hrteuFSEsyi4kDjM9duSR0RlrzbTDHnv4Q6jXBKbt/PhjTyArFdI0jXsakmujXimu3bks\nt5FJ4haUDw89JC5uhmIKFYYlS7xG3E4fbHPKKf51WzBwExsB3rydK+0HCSy1nalP8X7/Qlwef/hB\n1M6VgYHygVtu8a+788xGoDDv1tChEm7bjtfQoYMsZ4ZFpknA1lvLO/tOgGP54YdnxxuwNQZ77+19\nb9rUm3YxI9d824UnnpDObOrU+GOT2mfUV4EiCBMmO1/69BHbg6lT/fXWs6dE3zS/s133xeoDwvjy\nS+kbDrEiNU2fDvTr50/KVhukOb4+A8DxRHQbEZ1MRCPtT4r3qREee0xeLHckbYyJDMV6mYo5h73V\nVsHuc507A//5j3wPMsYMIm7u0xgsuQSpr5OGvlWKh/kNRo70skTmyvDh/jwRSbA9MWbOFE8T845E\n/ceivFE+/jjYT99w773ZngbPPisq86FDs405g5JBhbF+vef9YYfqdoNkuZgOweTsiCKpoNCQBIow\nTjvNmx4xXmhBVFZK2+sGBps9W/oD8y6efHK2of6wYeE5Om67za+9DTJGTsqMGaK5tkPUV1TEa0pq\nYqorTYHiMAAHAzgPwB0QmwrzuTPivJLj178GjjlGAte4HZ/bUBZLoMjHOpxZXJiiuPxyMXZ74w3/\n9lfzdPqNEwLCpjFUoChN7N+lZctkiY5cbOM0IpmeiMPtvCdOTCZQhCUK698f6NHDi54YxFFHZWvc\nhgwJb5hzEbCaNZP06Mce658W/cMfos8z0yi5RPKMExhUoBANqdFqRRmbEgXXfdOmfsPXigovvgMg\nnfuJJ2Z7+gDiLXP++X6Ngm2vkyuuayqQ/c7a2m1DXCyTNEhToLgFIji0ZOYWzNzS+myd4n2Kjkl/\nvNVW2V4crsailASK6mpxVYtyJTIJg9xGJt+XLal1tkuQ8KACRe2ybFm2wGxCFOeCO6c/ZownWCb9\nv1RUJBMowgibssuXK64ITwIWxpFHAv/+d27/5W7dpK7M6Pj990VbZEdx/N//lWVtaCief15G26WO\n2+muXu0JdlG/R77t+eTJIowGnW+EyLAIsGHcf3/yKT07uFv79l44cpuaiP2TpkDRGsAEtrKN1nUW\nL/bCmBrczjpto8yXXgIuuyx3A0Uiz4YhrGOOEjTyxfV9T4ptL2HcvfK14r/wwuhcCUoygrQRuaj5\nDa7twcMPizfUM88kv4YtUOTyHzPCS9qGkZddJh17PuTSSTVuLLYdht13l6mZ8eNl/ZRTJIeITVz9\npClQHHZYdjj9mibIPddlt93860ReJx5lxJrGANEdhJpMtea+ffsm09qNGJEdMTMMW3sSFjm2rgkU\nUyGZRes1S5f6X7q0NRRHHCEpfi++ONnxW7Z47mMmEJArUGzaJLYRtjbh7rsLLysgAlA+bNgg8S5G\njvSeNUhNd+GF8f74t96aW3AcJZi0BM6gBnvRIu89TXoNE4Y4l/9Ymzb+DrlQTCNcSDK7qA7f9SSI\nSzxld+bMMp++//55F61OMmGCF148DPedsWNuRAkUaXS6HTsG28A1aybTZm+9FW5rAYjRcq5CoBEo\n3nsvPEdLTQRZS1OgWATgeiJ6kIguIaI/2J9cL0ZEo4loERFtIKJZRNQ/4tiriaiaiKoyy2prfbuC\nnsrhs8/869dcEzynVVUlFttJjRsNuUYo/P57b+RntBq//a3f6PKmm8StzSSLKQU2bBDVbZyP+K23\nRhtRGXL9A26/fc2GRq4LpDWSNQ223WguXJjbNUwmSUA6gyReD0B4dEt7KicX4WD+fNFUFtIYm47s\njDOy911/vX89qrNbvVo0JTYHHlizGopSIWnHbwZORBKhM8jGIZ/rxtGqVXDHbrwEo1yS3TKY8OBh\nNG7svd8/+xmw007evmnTJGhg0HWLQZoCxe8B/ABxHT0DwDnW5+yI87IgomGQtOfXAegN4HUAzxFR\n2OtwMyRhWPvMshLAqwCmM/PKkHPywqhhjcpq6VLgr3/1H9Oxo3TyRx0lxjj//nfh902SvObFF2X5\nzDOiLjOR14ygYYfHToKxTs9nHh0A7rkHaNcueN+GDcHPdNpp/hTUgNcgfvFFfir4IFau9Acpa8gs\nWSKuk0k0FF9/nW3Q62JG2SY2AxCeHTMJtroaEKPpMIISIPXs6T9/9Ojk9+7a1d9A54Pp8I1gfPHF\n3ojSDXsfpY1p3drfKTRkL4+knaOpeyKxZbCnI4I8kdLsdPfcMzxs97hx4ee5ZXj77ej7XHRRuMBr\na2bqlIaCmbtEfELS54QyBsAkZp7EzPOZ+VwAX0HSmAfdez0zf20+AJoAOABAHulnojEChbEYDuLL\nL4EPP/TWjzsu/qWI47rrgrfbnYA7evnLX2RpGhSTjTAppnHbY4/4P5odTOaPf5TlqFGe9b6bgXDD\nhmA7kb/9LfvPZp5xxx2BU08Nvn8+jWahwglRzYSoLjZHHy2joCQCxTnnRM/rDh3qhXa2G7C4lOFR\nLm9lZf7ft3dvz3bHpLo+6KBgY8F77gHuusu/LW5aIW0mThR3VMNNNwWH9c6VpO/8Aw/kZr9SF3Db\noz32CD4uSnuz337iCrrttuHXLYQ2bYLDdgPRWrKwMlx1lT/fhyEqfo8tUNQ1DcVPEFELIopQ6kSe\nWwGgDwB3dv5FiPYjCScDWAXg0bgDg/JMRBFkOEiUPSc2ebJ/vdDELHZCmBdf9CIZJvGyMEGK4kaW\nLkagqK6O72x69PC+2w2dGd0ZtZtR30VpXNygSvb15s+PLkcuxHVySXATWNVFzG/bt2/8sXHBx+y8\nMLkIFFGROdu29b8DmzZ5UwVGdbzbbqINdBk1Ktvnv6YFil139exBDDWVNAyQkXJYAsC6ip3h9YIL\nwvN1GBuVMM3PwQdL22Teo5r8XQBJVeD2QWEdf2VlcMqCqEENkRdNs05pKACAiM4ioiUAvgewhog+\nJ6IcFIwAgO0AlANwu/oVkKmMuDKUATgJwH3MHNvdVlYmty1o2TLcE6FzZxEqzI/rqtPvuCO4MW7Z\nMlk+ENOgrlsnltbG4jzO1fKTT6RBA8LDYodBJFMQp50WPxqyrYxPOUXyngCi3n30Ue/86dPFFSpK\noGja1LOMBvzCTJj3Sz4aiiRuqtXVUg9VVV7StELvW2rkYvSYi+GmPc1ha+wA/6gQkFDcYQwc6A8O\nddFFXt4GI2jn8gxduiQ/tli4jXuTJtkRROOoD+9evtgpEG65JThoE7MnJIelmAdkgGZs42piFG9Y\nsUJsfoyWDZDnCoqTsWqVeLd07Jhts2fHt3Ah8oRZ858pJmlmG70cwDgA/wBwaOZzD4BxRFSTOc+G\nAOiImOmOsWPHYuzYsQDG4tBDZ8Re9PvvZeoiqhP68UdvmsHl00+DDdPWrk2mOTBCj/FHN5qJOA1F\n9+7SWB17bPw9AL9qtKxM7EOOOEJU0kSiQjbYVvu2Cq9zZ2n0AbG4P/pob1+LFiLERQkU220n9zGd\nF7MnyIUJdKZxZfbuHYZRNyfR7phjvvvOS5pmUwxX3FLDRAS89NJo40rXXS7KwNgkAgPk/TIC6UEH\niRraZccdvXd/223FNqdNGy8Edi6upSeeGB3wqiawBYqnnpL6uOCC2itPXaNZMwkYZaZxbQHVjUGy\nenXwYMBoTVu18gTauLwoadK2rScI77efvPsnnxw8HbLNNt477qaVj0qvvnjxDIwbNxbAWDzyyNgU\nSh1NmvLYGQBOY2bbge8VIvoUwA0QYSMJKwFUAXDN+doBSJLP7VQArzNzpHJ8bCY5xjXXyJ/7ggtE\n0g0TGLbeWo4L0jKYl+LXvw52fTS4alujek3SKb3yinSmxhjUTAskGWWffrok0gljzz29fAr9+sny\nzTf9Rkvvvy/PaU85TJjgWU3nYjnfrFm0CtxEqttlF1lWV3vPGfe8VVXyO5rYFkGYkXMSQ1dTz+Y3\n3ry5ZhudUqBnTwn2dtNN3rbvvpOorMZzYe3a3OITEMm7s3SpvGemTps3FzV02Dk2X3/tGWwmFSje\neUfOCVId1yS2QJGLO61NQ9ZQAMHedW3aZP/3g37rNWuy7Xbuvx/45S/TK18u5JqTprIyPrvpjz8C\njRsPBPNA3HCDTP9NnnxN3mVMQppTHm0BBJkevoVs4SCUzDTFOwBcRc4hACKrnYjaAzgcwMSk9wOk\nkxg/Xjoj21bBpazMn93Ou68s588X74EwTAc2d65/iiDpKHfDBs+Q0Kj+k0aXDGp8xo+X7UHqwn79\n/B1E166iKrZVgvb3OIHC7gyaNYuu5zlzZGlGH7aGIux5bQ2FvYwiiUBhNBTGBsY15Gwojbrb6T3w\ngF9IzdU4tazM02gkff9dgcIWJOIECvN+msymtU1Nz9U3FJJm/mzZMnt6Y8SIms8cmi9xrqSAN2Al\nEu1iVPbUtEhToPgEwPCA7cMB5GpKNx7AqEySsR5EdAfEJXQCABDRjUQUoBjFyQDWAgiJ8O+xaZOX\n6Mt0LJs3ZwdRspMPLV0qaYujiEpWtGqVSJXuD5u0U9qwweuIzdJV248aFXxukGbFnbcuL49v6MIE\nCvPyusnTDGed5bmDNmsWrQ63YxAAogIPe16DqUPTOYV1UnZdhwkU22zjueCa+5l5SFezks+Ux8aN\nwYJpGHvvLdlni0U+wdnstPdVVblPIdj3LHTa6KqrsnNyuEybVlpxWNIQKBqKMJuUd9/NPydRXePR\nWHcDPzfemFt+mHxJU6AYC+AqInqZiK7JfF4GcCWAnKLgM/PDAM4HcAWAORDvjiHMbMy8KgEEmVb9\nHsADzBwbHmrdOk+bYEad//1vto/7b34DXHKJfM/HU6NXLzGiBGRpu5uaBmHiRGmQv/km+/wddvC+\nr1/vBWMyAoI7YnezJxqSpKM2quBZs8KPsdX9RqB4+mmvgwhzj62sBE46Sb4b4aOiIpmXxJo1XuyA\nb7+N9jQwdfrQQ8D//V/2ftsGw9TdypX+3/a777xzXQHGFShMBsNcuPpqydmQhOpqqdOg7LCGzZvj\n1Z/F4tZbxU04zG0PCJ5uM+/LM88Af/pT9vYgwvZdc43fyyiITp3ij6lJ0hAo0nA9rU/suadnF1Hf\nKdVp1zTjUDwKoB/EzuFXmc9yAHszcwI/hqzrTWDmrszcjJn7MvNMa99JzJz16mSOP8fdHoTdOJnO\nNiilbIcOXlyEqOhmYfTt67fitUdjJvrfunXS2drHAaJW/uILb556/XpPtbx5s3S07txbmJVylO2H\nu25b1LvYHay5lx1MyKRfjsK2R7CnfqICCNkSedRo2NTvyJHBMStsgcJ8P+88z3bEYN4JVxAz9VjI\nqDpqWszFGMEGCZuGm24KTxf+6aciwOVyzzijVpsLL5SRYRQZcyUf5h0YOtQr+5/+lNu96zKFChQr\nV3qeVErD5fLLa7sEflJ1G2Xmd5h5BDP3yXxGMPOcNO+RFvmoecMEiqjw2s2bh/u9H3ec990ODGUY\nPlzmhs388Bdf+Du4m28O9r0PIqgDdOsgiWGbsd1g9gQK0zhWVYVPeYRh101QlMMggqYqXnpJNCW2\nbUbQbxwkUNiaCsOmTWLA5+YqMTkEChEocsmqasoUFSY8KsX4Rx+J4Lb99skjgwbZ1EQRlNbbFgyC\nOs+gd+3KKyXteNhxxcrsWxvsv3+262wubLttzcfTUEqLp54qPc+gNN1GjyOiIwK2H0lEv0nrPjXJ\nvvv61+3RdFKaN89PPXXAAV4DahrVL7/0d0ZJtAEG0wGWlWX7I5tpgiQNtj0SNgKFWeaTebVRI+Af\n/8jt/CD7i7fekumqBx7wts2bJ3VmEyRQmOcfblkAbdokhk9B+ReAbIFiyRLgmGOSlT9IoJg9O9h9\n2Nwnamoo6r2059lNNto4cv0dgwQK27LeFSimTMnO4huG3WnWJ4Fi3LjctEaK4vKrX4lXSymRtg1F\nkDPgusy+kiKJ25hroOkaQSWxtO3YMXeB4tFHgRde8NZNA3/yyf4O0Y0JYGtQ3CQ4tveDOc8N9pKk\nI9l7b+9aSS3s4+jeXZZJ1cC77SYuq0GYqHAGN6BSkA2FwdZ8xHmAuALF9OleyOk4ggSKAQOCQ1on\nSemeVNAN06rko6mymROgg7SFVvd6xx8f/1ubIGyFZPlUFKVmSVOg6Arg04DtCzL76jxugxwVfQ0Q\nq/LRo3MXKI4+2u++ZBp8V6AxI3uDLVC0by8j+fHj/ecye6GMjQbGNO65jgDTGjHuvTdw330SPjcq\n6pvNO+8Eb3dH4W6dBWkoDPbz2AG8gnDPjXKDdbHtUMwUlnm3/vlP/7F2cK8wXNX3xInBieCSCCdA\n4QIi4JX37bf9wkNSK3zj3lmqxmeKomSTpkCxGsCuAdt3hWQhrVO89lr8MWGhTCszAcJ79JDGtNBG\nMc5Dw0QWNOVZskRyKjRp4kUXrK4WIcP2GjH8IZNcPt+OJB/fbdsNsqJCAoLtv3/ydO9J549zFSjc\nnCxhuMLlOYlMgQVb+9GkiXSy5nrGgJFZ6iOJvYU72j/99GD35aR2H2m4lxnNwi9+4S/fgAHJzje/\nTX21oVCU+kiaAsUTAG4jop+ECiLqDokpkbOXR21jp142uJ1YWAN92GF+98JCjads480gTAdgNBSd\nOmUbfDFLQK0gi3wjiOTTYDPnp5YOU3knde1LquaPEii2bJFwt7a2I0mCLCA/o8wZM8Sj5/nn/dcY\nODA7jsaWLTLlZhIHrV0bbpgZZ3xqcKeDgs5fvTrepTVJOnvbvicfQdXUg62FS0NzoihK8UjzL3oJ\nJCnYR0T0BRF9AeBDAGsA1AtnMFswaNlSpjOCwg03buwftV94oT93Qa4MGuTvwFyf//JyyTNxdUi0\nj513lmtsv320F0ZNjgDDBIqkZWjcWFIDx6nx4zQU06cDixbJellZtDcFIB3l1KnhNhYLFgTHvwDk\nN/jrX711W/PkTm2YEMB2kK8RI8Rw0w5etnBhcoHCBOsi8p7ZJYltURIB2TYWy8dF0tTD4Yd72y65\nJDjPh6IopUFquTyYeQ2A/YnoEAAmFuQcAK8w14+YbnZD+uabYhy4aFF27Ad39Lz11v7Qxb17x/vu\nu9idxhVXAMOGeevl5cB114WfmyQqY+vWyUaeaRGX1a91a384Z5P3obxcOssmTcS4b9Ys0casWpUs\ncqCda8XtdONScwNi//CbCJ+lE06QMrllMeu2m5d9Pzdk+LRpsrSFjs2bgUceAe69F5g8Wbbtsosk\nuwJEuDCGxNXV8p6FuZS+/75M7wwcGP4su+7qdzXt3FlsM+Lq+ZJLJL6EyQ+Tj2YhyKWyVavwPB+K\notQ+qSdrZeaXALwUe2AdZOBAGdECnmo+aPQVNIKzBYKePT2BokULMUR87DHJlXHrreH379ZNAhW5\ndhBpRN1bsKBmU/dus030frcT2nNPEShatJBYGLNne8dVV4d3cps2SZ0ZNf6MGd4+V6BIkvU1zqbB\nRBldudILbT5/vj+Vt8FOtBYWMtwWKCoqRDh1MQahJpkaIM9mOvQg7rorO8aGi23789RToi057bR4\nrZAJBGc0aflovozhsKIodQedlcyBq66SZadO0aOuuPl922COyGtwBw3yp/p2MZ2JO5JOQ6DYdtua\nifVuOOCAYE+EIKZPl1wg/fp52oHnnpOlESjCGDdORtpBTMwphZyQtJOzg3T16OHP1Gmwp1fCkprZ\nAkWjRsGGwEGalbAQ7CYuR5BgYjNnDvDss956z54i8ALB7tInnyz2F66rtaIoDYeSFSiIaDQRLSKi\nDUQ0i4j6JzjnfCL6mIg2EtGXRHRDMcoWF1Aqbo65bVt/Tg+TS+S226LPM94YbnKxupi5kCg63bUR\nsk45RTRDQ4bINJOpWzNK7t3bi94ZRJitQJoE5dlwNRJBwZ/cvDFAtkBhB/GqqAge7SeZqjGY+CQm\n7HsYvXv7f58WLYDBg6V8U6Z4RstGsG7USKap3GBwNk89lbyciqLUPUpSoCCiYQBuB3AdxB7jdQDP\nEVHHiHPGAzgDYgDaA8BQAAmcP3PHDRFdVSUdiBkpJ/FAsDsGM1qMGzUOHy4N+rbbSphpQ322fjdC\nlCFXF1wTYbLQjJZRjBgRf0xSzYZ7nO0t9OSTEp7axU1Ylib33y9LW2gtL/cSvZnEd0liXEQlEFMU\npe5Tql3RGACTmHkSM89n5nMBfAUgIG/hT+6pZwM4gpmfZubPmHkuMz8fd6OzzsreduCB4ccvW5Yd\nUKqsTDQORkjIxU2USK63bFnycwC/9Xt9Y8YMz7XSFZbC7DwOPdS/3q6dLE1HV15eO+mr77ore1uY\nNw4gNhq2UOHGxTAaCzvhltFwFQMTYMrVghmBwpDEdVhtIhSlflNyAgURVQDog2zDzhchacyDOALA\nQgBDiWghES0moslEFJuqKqghNBb2QbRvHz3lceihop4Pw4RXtjUULVuGZ4uMwg0rXV848EBvnt4V\nKMKEtSeflDTWhqBR+267pVO+XLjsMlna0TGPsDLeuHYcy5Z5LqNAuLBgP2uU8WVS3nv9Q0LPAAAV\nH0lEQVQvuMOPC69OBHzwAXBDzORiu3aekaqiKPWTogsURHQvEb2SwynbASgHsMLZvgJAZcg5XQHs\nBGAYgJEARkCmPWKjPxiBwg4eVcgUwgsvRHdcxkDQCBSFxH6ojQ6ypnGNEMOmPFzjzFxCYRcT00nb\nthBR0ToBL15ELhQaQyTMINdcN8pOp1cvEYqjWL48PFuvoij1g5rQUFAN3KcMQGMAI5h5JjPPBPA7\nAP2IKDL2oRnxxuXlSAszUtUwwvGsWpWtuQkT9srKcovYabtsJuGgg8T9NFeMQGEHwopKUJYL77/v\nfU+SqC6KsIBWpr4LDUSmKEr9p+iRB5h5ZI6nrARQBaCds70dgOUh53wFYAsz/5R/k5k/JaIqADsC\neDv7lLEATM6OgfjjHwfi+OOzPSjSxrgBptkQl1oK27QIilURJVCcf76MhJPkA8k1XPg22/jjPOSK\n7W3Stq33vZBgYraR43nnJTMODSMsL00SDYWiKKXJjBkzMMMOvlNkajCUUTKYeTMRvQPgEAC2c9sh\nAB4JOW0mgEZE1IWZFwMAEe0MmToJiXYwFoDYO7zyiqhjiy1MAP65dKBwwaKhGbpFzeU3bZr8N8zV\nWyQfL5Evvgi2gejaVbZfc02y7KotW8ZP4UTFL0lClKAGqEChKHWRgQMHYqAVDvca2/iqCBQkUBDR\nVUmPZeaQ1ESBjAdwHxG9DREWzgTQHsCEzH1vBNCXmQdnjn8ZwGwAk4hoDGSa5TYAbzDzrKgb7bln\nDqVKEVUV50dcx2ZU9+PHi7dIWA6VMG+Ra6/1ApjZ5CNQRHnubLVVcLCrIK67TjQQUTRpIgKK8SDp\n0QOYN89/zIABybLo2pj3NEqQUxRFAQrXULh5MDsD2AqAaUp3ALAewGcAEgsUzPwwEbUBcAVEkPgA\nwBBmNuGCKgF0sY5nIvoVgL8AeBXABohXyAWIYaedkpaqcObM8Qe0UnLHdGxurg/DkUfKcvvtow0F\nbQ1Fly7A4sXyPcyDJ06g+Pzz7OmLQuwjbJJ02uXl/pDstkdF48YSCry8PHfDSKMBU8FBUZQ4CjKW\nZOafmQ9Eq/AOgK7MvCMz7wjxvngbEqQq12tPYOauzNyMmftmDC3NvpOYeWfn+BXMPIyZWzFzJTOP\nZOZvCnm+tOnd28v2mYaXR0MkiRsjILk7otxqbQ1FRytcWtAUUp8+kuwqjL32kqiSbuKqsKyjUdjp\n042dR9J3xBaG3HNatoyP8BpEnCCl76+iKIY0vS+uAnA+M/8Uiifz/QIAEaF8GiamIS7ylFa9I06g\nAEQo6Ncv2HPBeI0YgeLGG/3TIna6cMOsWcAZZ8h31wbGvqabWtuEBD/qqPCy2vTrB1x+ubdukpXt\nv3/0eTMzonaXLt42u34KsbOJO1cFCkVRDGkKFO0ANAvY3hQSW6IkadcuWajstBk3Dvjzn4Fzzqn5\ne9dlTjoJmDQpWayQG2/0p40HgGaZN9RMebRrJ4KHETDOOgu4887wazZqJJ3s2WfL+mWX+YUAm28y\n+jFj99G5sxfBM4gxY/zeJ8aluVOn6MBRJljavvt6WhI7jHuxBIp77wWuvz7/ayuKUr9IU6B4CcDf\niGgfIionojIi2gfAX1HC6cxbtvQHHaopfvMb4KKLav6+dZ02bUSoSCJQ7LOPP7Mr4AkU5eXA448D\nxx4r67/9rSy7dg0Oxx7GDTd4HTrgD0plQrSb9+vRR4GFCxGJHULcPGOrVslyZQCe3cYZZ2SHIwei\nhaUgogSKkSOB3XfP7XqKotRf0hQoTgHwBSSR10YAP0I8NL4EcGqK91GUnzrbOKNa1yvEtiM48khv\nJD95smiMXPr1y61cQW6gJhtoq1bBRpEmnkTv3vJcJuusMSqtqAg38HTL16KFXGPoUIna6pKLsAQU\nN6maoij1i9TiUGQMIIcS0a6QsNcAMI+ZP0nrHopiMALFpZd69g1BuHP8t9wCPPZY9nEVFcEaozAb\ngVymEYwwsPPOwftnz5b7mGcanHGG7tDBu09SDcU//xls5xFGixbBqdUNDS3OiaIo+ZN6YKuMAKFC\nhFJUkhhn2pSXS6c8YIB8khIWfTKXjna33SQmRlTZ4jjmGIm2+dBD/u2uwONGvLz99vCYG4BoQ6KC\nZnXs6OWfURRFiSJVgYKIhgE4GEBbONMpzHxE4EmKkgfHHSe5LOIECqOyX7IEeP313O4xcSJwaoGT\nddtsA/Tsmds5QVqRn/8cePDBbIEijriAWKecEr1/661zz3uiKErDJDWBgohuBnA+gOmQwFYlrSzt\n2BFYujT+OKU0ueUWWU6ZEn2cmSrYYQcxhE3KV19F50iJ0lDMmycZOKuqROAp1WmDZ56p7RIoilKf\nSFNDMRLACcz87xSvWTTGjAEuiI2jqZQ6224bvT9fo8LKyvzOA4Du3WVkv3q1TDmsWpX/tYJo2xb4\n+uvCr2MnF1MURSmUNL08ygC8m+L1isqRRwInnFDbpVAKZd99gdGjw/fbmT1rEhPnYsSI3DUUccGi\n7GiahZDU/kRRFCUJaTYpEwEUkEDZDxGNJqJFRLSBiGYRUf+IYzsTUbXzqSKiAE98Yeedc5+PVkqP\nli2Bu+4K39+6dXGmHOKumWs201ywBY5CIlWqQKEoSpqkOeXRGsBwIjoEwHsAfM5rzHxu0gtljDtv\nB3AGJJbFWQCeI6KeVoIwFwZwWObehpSVzYoiXHJJdIyKAQOAd96R72kLNLYQEWXnEYcKFIqipEma\nAsVu8KY8ejj7cm1SxwCYxMyTMuvnEtEvIWnMrwg5hwCsYuYUZpcVJZqddgJGjQrf/8ADniBRLKPM\n00+XEO75ogKFoihpkmZgq0FpXIeIKgD0AXCzs+tFAPtln+HjUSJqBuBTALcx89Q0yqQouWJ31sWI\nNrlhg+T6KEQoUIFCUZQ0KcUmZTsA5QBWONtXAAizvV8LyWr6WwBDALwC4F9ENLxYhVSUpGyXY2q8\nOA+TnXeWJGL5CgRmKkYFCkVR0oS4AH0sET0JYAQzr8l8DyVpYCsiag/J/zGAmf9jbf8jgOHMnChM\nEBHdCaA/M/cO2MeFPLei5EJ1tcS16NCh8GutWSMJzgox+mQWYeL77/1ZSRVFqd8QEZi5AFPuaAqd\n8vgWnn3EtwVey7ASQBUkHbpNOwDLc7jOWwBOCts5duzYn74PHDgQAwcOzOHSipKcsrJ0hAkgHQHA\nGHUW4iGiKErpM2PGDMyIivufMgVpKIoFEb0J4F1mPsPaNh/AI8x8ZcJr3Abg18y8S8A+1VAoDRoi\n0XaYjKaKotR/Sl1DUSzGA7iPiN6GuI2eCaA9gAkAQEQ3AujLzIMz6yMhbqpzAFQDOCJzzsU1X3RF\nqRuoTK0oSpqUpEDBzA8TURuIi2h7AB8AGGLFoKgE0MU57UoAO0KmSz4BcBIzx2R6UJSGS+PGtV0C\nRVHqEyU55VFsdMpDURRFaWgUe8pDHccURVEURSkYFSgURVEURSkYFSgURVEURSkYFSgURVEURSkY\nFSgURVEURSkYFSgURVEURSkYFSgURVEURSkYFSgURVEURSkYFSgURVEURSkYFSgURVEURSmYkhUo\niGg0ES0iog1ENIuI+ic8rxsR/UBEa4pdRkVRFEVRhJIUKIhoGIDbAVwHoDeA1wE8R0QdY86rADAF\nwIxil1FRFEVRFI+SFCgAjAEwiZknMfN8Zj4XwFeQlORR/BnAXAD/LnYBlXhmzJhR20Wo92gdFx+t\n4+KjdVw/KDmBIqNl6APgJWfXiwD2izjvcABDAZxTvNIpuaCNRPHROi4+WsfFR+u4flByAgWA7QCU\nA1jhbF8BoDLoBCLaAcBEAP/DzOuLWzxFURRFUVxKUaDIh/sB3M3MszLrRcv3riiKoihKNsTMtV0G\nH5kpj/UAjmfmqdb2OwH0YuZBAedUA9gCT5AgiLC0BcBoZv67c3xpPbSiKIqi1ADMXLQBd6NiXThf\nmHkzEb0D4BAAU61dhwB4JOS03Z31owBcDqAvgGUB91ANhqIoiqKkSMkJFBnGA7iPiN4GMBPi3dEe\nwAQAIKIbAfRl5sEAwMwf2ScTUV8A1cz8cY2WWlEURVEaKCUpUDDzw0TUBsAVEEHiAwBDmHlp5pBK\nAF1qq3yKoiiKovgpORsKRVEURVHqHvXFyyMx+Yb0bugQ0dVEVO18ljnHjCWiL4loPRFNJ6LdnP2N\nieh/iegbIlpLRE8QUYeafZLSgogOyNTD0kydjgw4puB6JaLWRHQ/EX2X+dxHRK2K/XylQFwdE9E9\nAe/2684xWscRENFlRPQWEX1PRF8T0ZNE1CvgOH2X8yRJHdf2u9ygBArKM6S38hPzALSDTDlVAviZ\n2UFEl0AinJ4F4BcAvgbwEhE1t86/A8DRAIYB6A9gawBPE1FDNpJtAeB9AOdCvJt8pFivUyDv/KEA\nDgOwF4D70n6YEiWyjjO8BP+7PdTZr3UczQAAdwLYF8AgiIfdy0TU2hyg73LBxNZxhtp7l5m5wXwA\nvAlggrPtEwDX13bZSv0D4GoA70XsXwbgUmu9KYA1AE7NrG8N4EeIO7A5piOAKgCH1PbzlcIHwA8A\nRqZdrwB6AqgGsI91zP6Zbd1q+7lLoI7vAfBkxDlax7nXc3NIh3e4tU3f5eLXca2+yw1GQ0F5hvRW\nfHTNqCsXEdEUIuoCAJllJay6ZeaNAF6DV7e/gBgB28csBfAxtP4DSbFe9wHwAzO/aR0zE8A6aN0b\n+hPRCiKaT0QTiWh7a18faB3nytYQDfhqQN/lIuGrY4tae5cbjECBPEJ6Kz7eBDAKov46BVJnM4lo\nm8x3RnTdtgNQxczfRhyj+EmrXisBfBNw/a+hdQ8AzwEYCeAgAH8AsDeAaZlBCCB1pHWcG3cAmA3g\njcy6vsvp49YxUMvvckm6jSqlBzO/YK8T0ZsAFgM4EcB/a6VQipICzPywtfohEc0G8DmAwwE8Xjul\nqrsQ0XjISHZ/zujLlXQJq+PafpcbkoZiJWSeqJ2zvR2A5TVfnLoNSxK2DwF0g9QfIbpulwMoJ6Jt\nI45R/KRVr8sBbI9s2kLrPgtm/grAUsi7DWgdJ4aIboMY+w1i5s+tXfoup0REHWdR0+9ygxEomHkz\nABPS2+YQSDROJQeIqCmAHgCWMfNiyIt2iLP/AHh1+w7EgMg+piPEAEjrP4AU6/UNAC2IaB/rmP0A\nbAXxdFIsMnPOHQB8ldmkdZwAIroDXkf3qb1P3+V0iKrjkONr9l2ubUvVGraK/S2AjQBOhnSGd0Cs\njDvVdtlK/QPgZojb0k4A+gF4GsB3pu4AXAwxDjoaklvlnxDJuLl1jbsBLAFwMICfA5iWecGptp+v\nFuu1OYA9IS5a6wBcmVlPtV4BPAtgLsTgal8A7wF4vLafv7brOLPv5ky9dAYwMNNofq51nFMd3wXg\n+0z9tbM+dh3qu1zEOi6Fd7nWK6kWfpQzACwCsAHA25A5qFovV6l/IH7JSyEC2ReQRG09nGOuAvAl\nxNd/OoDdnP0VECHuGwBrIXN6HWr72Wq5Xg+EuGNVOZ9JadYrgFYQP/LvMp97AWxd289f23UMcV18\nHjJ63gixC/pHQP1pHUfXcVD9VgG4yjlO3+Ui1XEpvMsaeltRFEVRlIJpMDYUiqIoiqIUDxUoFEVR\nFEUpGBUoFEVRFEUpGBUoFEVRFEUpGBUoFEVRFEUpGBUoFEVRFEUpGBUoFEVRFEUpGBUoFEVRFEUp\nGBUoFKUeQ0SdiaiaiPaqxTJMI6IRtXX/pBDRaCJ6srbLoSh1FRUoFKWeQETTiegvzuYlACoBvFsL\nRQIRHQ6gI4AHrW2nZoSM1RlhZ8eA81oT0f1E9F3mcx8RtSpycf8OoA8R7V/k+yhKvUQFCkWpx7Dw\nNTNX11IRzgUwmf0x/rcC8AKAqwGExf6fAknmdSiAwwDsBcktUDSYeROAhwCcV8z7KEp9RQUKRakH\nENE9kCRYZ2VG/VVEtKM75UFEB2bWf0lEs4hoPRG9RkQdMvveJaIfiOgpItrGucdJRPQhEW0gonlE\ndH5MmbYDMBjAU/Z2Zr6DmW9CSNp6IuoBESJOZea3mPm/AE4H8Gsi6hZxv+lEdBcRXU9E3xDRCiK6\n2TnmGCKam3nubzPnbG8d8mTmPk2jnk1RlGxUoFCU+sF5AN4AcA8kpXF7SFZYIFgLMBaiPdgbwDYA\n/gVJ630KRDDplTkGgExTALguc0wPABcAuJiIRkeUqT8k6+EHOT7LvgB+YOY3zQZmnglJPb5fzLnD\nAWzOXOMsAOcT0bDMM7SDaD7uyTzDAQDud86fBcnGuG+OZVaUBk+j2i6AoiiFw8xriGgTgPXM/I3Z\nTkQAQAGnXMnMr2eOmQDgLwD2Yua5mW33AjjWPh7Axcz8WGb9cyK6CdJp3x1SrM4AvubcUxpXQlIr\nu3yd2RfFR8w8NvN9ARGdBuBgiMC0A6TNm8rMRtj6yD6ZmTcQ0fcAdsqxzIrS4FGBQlEaHgzgfWt9\nRWb5gbOtLfDT1EUnAH/NCB+GRgi3gQCAZhANRU3ynrO+DJnnADAXwCsAPiSiFwG8DODfzLzSOWcD\npOyKouSAChSK0jDZbH1nAGDmKmebmRI1y9Mh0ypJWQmZTsmV5QC2D9jeNrMvis3O+k/PkTFMPZSI\n+kGMPU8GcCMRDWBmW8Bqg2ANiaIoEagNhaLUHzYBKE/7osz8NWSkvwszL3I/EafOAbA9EbXJ8ZZv\nAGhBRPuYDUS0H8Q75PVcy+/CzP9l5j8xc1/Icw2z7tMVQBMAswu9j6I0NFRDoSj1h88A7E1EnQGs\nZeZvQ44LsqmI42oAf8nYFzwLMVzcC0AHZh4Xcs4ciN1Df4j3hNxcjCMrAXTPlKVXxqNkCTOvZuZ5\nRPQCZIrl9MwxEwA8xcyf5lF2c99+EK+TFyBTOntBYmR8aB12AIBFzLww3/soSkNFNRSKUn+4BaKl\n+AjA11bAKNfOIVcjSTDzPwD8HsAISJCs1wCcCiBUQ5GZYrgnc47NGRBh4/5MWZ6GaAR+bR1zAsTm\n4XkAz2WOHxlXzJj93wPYH+LG+gmAmwFcy8xTnPtOjLmOoigBUO4G2IqiKMnIxHj4EEBfZv68tssT\nBRH1ghhq7srMP9R2eRSlrqEaCkVRikbGhfX3ALLCa5cgOwAYqcKEouSHaigURVEURSkY1VAoiqIo\nilIwKlAoiqIoilIwKlAoiqIoilIwKlAoiqIoilIwKlAoiqIoilIwKlAoiqIoilIw/x/WXAvX4lUj\n5AAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11350a8d0>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "subplot2grid((2,1),(0,0))\n", "plot(Y[:,0])\n", "ylabel('ind. comp. 1')\n", "subplot2grid((2,1),(1,0))\n", "plot(Y[:,1])\n", "ylabel('ind. comp. 2')\n", "xlabel('time (10 ns)')" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1000" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tica_obj.chunksize" ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": false }, "outputs": [ { "ename": "AttributeError", "evalue": "'TICA' object has no attribute 'lagtimes'", "output_type": "error", "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", "\u001b[0;32m<ipython-input-56-95e8b3752413>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mmplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot_implied_timescales\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtica_obj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[0;32m/Users/je714/anaconda/lib/python3.4/site-packages/pyEMMA-2.1-py3.4-macosx-10.5-x86_64.egg/pyemma/plots/timescales.py\u001b[0m in \u001b[0;36mplot_implied_timescales\u001b[0;34m(ITS, ax, outfile, show_mle, show_mean, xlog, ylog, confidence, refs, nits, process, units, dt, **kwargs)\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_plt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgca\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 85\u001b[0m \u001b[0mcolors\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'blue'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'red'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'green'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'cyan'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'purple'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'orange'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m'violet'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 86\u001b[0;31m \u001b[0mlags\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mITS\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlagtimes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 87\u001b[0m \u001b[0mxmax\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_np\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlags\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", "\u001b[0;31mAttributeError\u001b[0m: 'TICA' object has no attribute 'lagtimes'" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAE+CAYAAAB2u5IfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEydJREFUeJzt3Xus5GV9x/H3h1u1Kk0IdBeCCiiVdkmkAq3hIoO6WvCS\nRlIhFRGifywQVFqptguyNVRqbBHqjRIviPHGhgZNKRVoPKiL1F1aVFoCDVhkQTYStYC7ygLf/jGz\nOI7n7JmdOXPOefa8X8kvnHnmeX7znYfd+Zzf7/fMb1NVSJKkNu2y0AVIkqTRGeSSJDXMIJckqWEG\nuSRJDTPIJUlqmEEuSVLDDHJJkho2VJAnOTbJl5NsTPJUktOGGHNokqkkm5Pcn+SC8cuVJEn9hj0i\nfzbwPeDtwObZOid5DnAj8EPgcOAdwHlJzh2xTkmSNI3s6J3dkjwKnF1VV22nz5nAxcBvV9XjvbbV\nwKqqeu4Y9UqSpD6Tukb+UuAb20K856vAfkmeP6HXlCRpyZlUkC8HNg20bQLSe06SJM0BV61LktSw\n3Sa034eAZQNty4DqPfcrkvhPsEmSlpyqyrj7mNQR+beAY5Ps0df2KuDBqrpvugFV5Tbh7cILL1zw\nGnb2zTl2jneWzXme/DZXhv0e+bOSvDjJYb0xz+s9fm7v+YuT3NQ35PN0v6Z2ZZIVSd4AvBv4+zmr\nXJIkDX1EfgTwn8BtwDOAvwb+o/df6C5gO3Bb56p6BFgJ7AesBz4MfLCqLp2bsiVJEgx5jbyqbmY7\noV9VZ0zT9l9AZ+TKNOc6nc5Cl7DTc44nzzmeH85zO3b4hjATKSKpxVCHJEnzJQm1iBe7SZKkeWCQ\nS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1\nzCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8gl\nSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpm\nkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIk\nNWzoIE9yVpJ7k2xJsiHJMbP0f3WSW5I8kuRHSa5NcvD4JUuSpG2GCvIkJwOXAhcBhwG3ANcn2X+G\n/gcA1wI39/q/AngGcN3YFUuSpKelqmbvlNwK3F5Vq/ra7gbWVtXqafqfBHwR2KN6L5CkA/wbsE9V\n/Xigfw1ThyRJO4skVFXG3c+sR+RJdgcOB24ceOoG4KgZhq0HtgJvS7JLkucApwPfHgxxSZI0umFO\nre8N7ApsGmjfBCyfbkBV/QB4FfA+4BfAT4EVwOtGrlSSJP2aiaxaT7IM+CTwGeAI4DjgUWDtJF5P\nkqSlarch+jwMPAksG2hfBjw0w5izgceq6j3bGpK8Gbg/yVFVdcvggDVr1jz9c6fTodPpDFGaJElt\nmJqaYmpqas73O85it7voLnY7f5r+fwe8rKr+oK9tX+CBXvs3B/q72E2StKTM22K3nkuA05O8Nckh\nSS4D9gUu7xVzcZKb+vpfB7wkyQVJXpjkJcCngR8At41btCRJ6hrm1DpVdXWSvYDVdAP8DuCEqtrY\n67IcOLCv/9eS/CnwF8B5wGbgVuCPqmrLHNYvSdKSNtSp9YkX4al1SdISM9+n1iVJ0iJkkEuS1DCD\nXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySp\nYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEu\nSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQw\ng1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJck\nqWFDB3mSs5Lcm2RLkg1JjhlizDuT3Jnk50keSPL+8cqVJEn9dhumU5KTgUuBVcA64Gzg+iS/W1Ub\nZxhzCXAi8C7gDuC3gH3nomhJktSVqpq9U3IrcHtVrepruxtYW1Wrp+n/IuB7wKFVdfcQ+69h6pAk\naWeRhKrKuPuZ9dR6kt2Bw4EbB566AThqhmGvB+4BTkxyT5LvJ7kyyT5jVStJkn7FMNfI9wZ2BTYN\ntG8Cls8w5iDgAOBk4DTgVOAQ4CsjVSlJkqY11DXyEewC7AGcWlX3ACR5M3BXkiOrav3ggDVr1jz9\nc6fTodPpTKg0SZLm39TUFFNTU3O+31mvkfdOrW8GTqmqa/raPwKsqKrjpxmzBvjLqvqNgfatg/vp\ntXuNXJK0pMzbNfKq2grcBqwceGol3RXs01kH7JbkwG0NSV5A9xT9faOVKkmSBg27av2NwFV0v3a2\nDjgTOAP4varamORi4MiqemWvf4BvA48B5wIBPgTsXlVHT7N/j8glSUvKXB2RD3WNvKquTrIXsJru\nd8HvAE7o+w75cuDAvv6V5LXAPwA3A1vornL/83ELliRJvzTUEfnEi/CIXJK0xMzbNXJJkrR4GeSS\nJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0z\nyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmS\nGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnk\nkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkN\nM8glSWrY0EGe5Kwk9ybZkmRDkmOGHHdwkkeTPDJ6mZIkaTpDBXmSk4FLgYuAw4BbgOuT7D/LuN2B\nLwBT45UpSZKmk6qavVNyK3B7Va3qa7sbWFtVq7cz7kPAnsDXgQ9X1Z4z9Kth6pAkaWeRhKrKuPuZ\n9Yi8d1R9OHDjwFM3AEdtZ9xrgBOBc8YpUJIkzWyYU+t7A7sCmwbaNwHLpxuQZD/gCuBNVbV5rAol\nSdKMdpvQfj8LfKyqNvQez3rqYM2aNU//3Ol06HQ6EylMkqSFMDU1xdTU1Jzvd9Zr5L1T65uBU6rq\nmr72jwArqur4acY8BTzBLwM8dI/+nwDOqqpPDPT3GrkkaUmZq2vksx6RV9XWJLcBK4Fr+p5aCayd\nYdihA4//GPgr4EjgwRHqlCRJ0xj21PolwFVJ1gPrgDOBfYHLAZJcDBxZVa8EqKr/7h+c5Ejgqaq6\nc64KlyRJQwZ5VV2dZC9gNd0AvwM4oao29rosBw6cTImSJGkmQ32PfOJFeI1ckrTEzNv3yCVJ0uJl\nkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIk\nNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPI\nJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIa\nZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQS5LUMINckqSGGeSS\nJDVs6CBPclaSe5NsSbIhyTHb6XtckmuTPJjkZ0m+k+SMuSlZkiRtM1SQJzkZuBS4CDgMuAW4Psn+\nMww5CvgucBKwAvg4cEWSU8auWJIkPS1VNXun5Fbg9qpa1dd2N7C2qlYP9ULJl4BdqupPpnmuhqlD\nkqSdRRKqKuPuZ9Yj8iS7A4cDNw48dQPdI+9h7Qn8ZAf6S5KkWew2RJ+9gV2BTQPtm4BXDPMiSV4L\nvJwdC35JkjSLia9aT3I08DngnKq6bdKvJ0nSUjLMEfnDwJPAsoH2ZcBD2xvYW9l+HXB+VV2xvb5r\n1qx5+udOp0On0xmiNEmS2jA1NcXU1NSc73ecxW530V3sdv4MY14G/DNwQVVdNsv+XewmSVpS5mqx\n2zBH5ACXAFclWQ+sA84E9gUu7xVzMXBkVb2y97hDN8Q/Cnwxybaj+Ser6uFxi5YkSV1DBXlVXZ1k\nL2A13QC/Azihqjb2uiwHDuwb8hbgmcC7ets29wEHjVu0JEnqGurU+sSL8NS6JGmJmbfvkUuSpMXL\nIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1zCCXJKlhBrkkSQ0zyCVJ\naphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8glSWqYQS5JUsMMckmSGmaQ\nS5LUMINckqSGGeSSJDXMIJckqWEGuSRJDTPIJUlqmEEuSVLDDHJJkhpmkEuS1DCDXJKkhhnkkiQ1\nzCCXJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQwg1ySpIYZ5JIkNcwglySpYQa5JEkNM8gl\nSWqYQS5JUsOGDvIkZyW5N8mWJBuSHDNL/0OTTCXZnOT+JBeMX64kSeo3VJAnORm4FLgIOAy4Bbg+\nyf4z9H8OcCPwQ+Bw4B3AeUnOnYuiJUlS17BH5OcCn6qqT1XVXVX1drohfeYM/U8Fngm8parurKp/\nAj4A/NnYFWtkU1NTC13CTs85njzneH44z+2YNciT7E73qPrGgaduAI6aYdhLgW9U1eN9bV8F9kvy\n/FEK1fj8izl5zvHkOcfzw3luxzBH5HsDuwKbBto3ActnGLN8hv7ZzhhJkrSDXLUuSVLDUlXb79A9\ntb4ZOKWqrulr/wiwoqqOn2bMZ4C9qup1fW1HAP8OHFRV9w30334RkiTthKoq4+5jtyFeZGuS24CV\nwDV9T60E1s4w7FvA3ybZo+86+auABwdDvPcaY78RSZKWomFPrV8CnJ7krUkOSXIZsC9wOUCSi5Pc\n1Nf/83SP4q9MsiLJG4B3A38/h7VLkrTkzXpEDlBVVyfZC1hNN8DvAE6oqo29LsuBA/v6P5JkJfBR\nYD3wE+CDVXXpXBYvSdJSN+s1ckmStHjNy6p1b+86eTsyx0mOS3JtkgeT/CzJd5KcMZ/1tmpH/yz3\njTs4yaNJHpl0ja0bZY6TvDPJnUl+nuSBJO+fj1pbNcJn8quT3JLkkSQ/6n1+HDxf9bYmybFJvpxk\nY5Knkpw2xJiRc2/iQe7tXSdvR+eY7o18vgucBKwAPg5ckeSUeSi3WSPM87ZxuwNfAKYmXWPrRpnj\nJJcAq4DzgEOAE4GvT77aNo3wmXwAcC1wc6//K4BnANfNQ7mtejbwPeDtdNeLbdfYuVdVE92AW4HL\nB9ruBv5mhv5nAj8F9uhrWw3cP+laW912dI5n2MeXgLUL/V4W8zbqPAMfAj4JvAV4ZKHfx2LeRvi8\neBHwOPA7C117K9sIc3wSsJXepdheWwd4ku7XjBf8PS3mDXgUOG2WPmPl3kSPyL296+SNOMfT2ZPu\nokRNY9R5TvIaukeI50yuup3DiHP8euAe4MQk9yT5fpIrk+wzwVKbNeIcr6cb5G9Lskvv6PF04NtV\n9eNJ1brEjJV7kz617u1dJ2+UOf4VSV4LvBz4x7ktbaeyw/OcZD/gCuBNVTXr6TWN9Gf5IOAA4GTg\nNLr/YNMhwFcmU2LzdniOq+oHdO8D8j7gF3SPHFcAr5uuv0YyVu55i9YlLsnRwOeAc6rqtoWuZyfz\nWeBjVbWh99gbH829XYA9gFOral1VrQPeDPxhkiMXtrSdQ5JldC8NfQY4AjiO7unimW4Ipnk26SB/\nmO51lGUD7cuAh2YY89AM/Ws7Y5ayUeYYgN5K1X8Bzq+qKyZT3k5jlHk+HrgwydYkW4FPAM9O8niS\nt02u1GaNMsc/BJ6oqnu2NVTV//T287xJFNm4Ueb4bOCxqnpPVX2nqr5J95el45LsyOU7zWys3Jto\nkFfVVmDb7V37rQTWzTDsW8CxSfboa5vx9q5L3YhzTJKX0Q3x91bVhydX4c5hxHk+lO4q3xf3tvfS\nXcH6Yjya+TUjzvE6YLckT9+QKskL6J4+9vNiwIhz/Jt0w7/fU73/elZ3boyXe/OwYu+NwM+Bt9K9\ndnUZ8Aiwf+/5i4Gb+vrvCTxI9zavK4A3AP8HvHOhVx8u1m2EOe4AjwEfoPtb37Zt74V+L4t529F5\nnma8q9bneI7pXq5YD3yN7i9Nv0/3a37rFvq9LNZthDk+HngCuAB4IfAS4F+B/wWeudDvZzFuwLPo\n/sJ+GPAz4Pze4+fOMMdj5d58valVwL3Alt5fuqP7nvs0cM9A/xW9v4ybgQfonvpd8P85i3nbkTnu\nPX5ymu3ehX4fi33b0T/LA2MN8gnMMd1fQr/U++B7CLgK2Geh38di3kaY4zcCG3qB/xDd75UfstDv\nY7FudNcRPDXNZ+yntjPHI+eet2iVJKlhXt+QJKlhBrkkSQ0zyCVJaphBLklSwwxySZIaZpBLktQw\ng1ySpIYZ5JIkNcwglySpYf8Pg8vXKZ/CFPIAAAAASUVORK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x11409f828>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "mplt.plot_implied_timescales(tica_obj)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.4" } }, "nbformat": 4, "nbformat_minor": 0 }
mit
mdiaz236/DeepLearningFoundations
gan_mnist/Intro_to_GANs_Solution.ipynb
1
179274
{ "cells": [ { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "# Generative Adversarial Network\n", "\n", "In this notebook, we'll be building a generative adversarial network (GAN) trained on the MNIST dataset. From this, we'll be able to generate new handwritten digits!\n", "\n", "GANs were [first reported on](https://arxiv.org/abs/1406.2661) in 2014 from Ian Goodfellow and others in Yoshua Bengio's lab. Since then, GANs have exploded in popularity. Here are a few examples to check out:\n", "\n", "* [Pix2Pix](https://affinelayer.com/pixsrv/) \n", "* [CycleGAN](https://github.com/junyanz/CycleGAN)\n", "* [A whole list](https://github.com/wiseodd/generative-models)\n", "\n", "The idea behind GANs is that you have two networks, a generator $G$ and a discriminator $D$, competing against each other. The generator makes fake data to pass to the discriminator. The discriminator also sees real data and predicts if the data it's received is real or fake. The generator is trained to fool the discriminator, it wants to output data that looks _as close as possible_ to real data. And the discriminator is trained to figure out which data is real and which is fake. What ends up happening is that the generator learns to make data that is indistiguishable from real data to the discriminator.\n", "\n", "![GAN diagram](assets/gan_diagram.png)\n", "\n", "The general structure of a GAN is shown in the diagram above, using MNIST images as data. The latent sample is a random vector the generator uses to contruct it's fake images. As the generator learns through training, it figures out how to map these random vectors to recognizable images that can foold the discriminator.\n", "\n", "The output of the discriminator is a sigmoid function, where 0 indicates a fake image and 1 indicates an real image. If you're interested only in generating new images, you can throw out the discriminator after training. Now, let's see how we build this thing in TensorFlow." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import pickle as pkl\n", "import numpy as np\n", "import tensorflow as tf\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Extracting MNIST_data/train-images-idx3-ubyte.gz\n", "Extracting MNIST_data/train-labels-idx1-ubyte.gz\n", "Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n", "Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n" ] } ], "source": [ "from tensorflow.examples.tutorials.mnist import input_data\n", "mnist = input_data.read_data_sets('MNIST_data')" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Model Inputs\n", "\n", "First we need to create the inputs for our graph. We need two inputs, one for the discriminator and one for the generator. Here we'll call the discriminator input `inputs_real` and the generator input `inputs_z`. We'll assign them the appropriate sizes for each of the networks." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def model_inputs(real_dim, z_dim):\n", " inputs_real = tf.placeholder(tf.float32, (None, real_dim), name='input_real') \n", " inputs_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')\n", " \n", " return inputs_real, inputs_z" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Generator network\n", "\n", "![GAN Network](assets/gan_network.png)\n", "\n", "Here we'll build the generator network. To make this network a universal function approximator, we'll need at least one hidden layer. We should use a leaky ReLU to allow gradients to flow backwards through the layer unimpeded. A leaky ReLU is like a normal ReLU, except that there is a small non-zero output for negative input values.\n", "\n", "#### Variable Scope\n", "Here we need to use `tf.variable_scope` for two reasons. Firstly, we're going to make sure all the variable names start with `generator`. Similarly, we'll prepend `discriminator` to the discriminator variables. This will help out later when we're training the separate networks.\n", "\n", "We could just use `tf.name_scope` to set the names, but we also want to reuse these networks with different inputs. For the generator, we're going to train it, but also _sample from it_ as we're training and after training. The discriminator will need to share variables between the fake and real input images. So, we can use the `reuse` keyword for `tf.variable_scope` to tell TensorFlow to reuse the variables instead of creating new ones if we build the graph again.\n", "\n", "To use `tf.variable_scope`, you use a `with` statement:\n", "```python\n", "with tf.variable_scope('scope_name', reuse=False):\n", " # code here\n", "```\n", "\n", "Here's more from [the TensorFlow documentation](https://www.tensorflow.org/programmers_guide/variable_scope#the_problem) to get another look at using `tf.variable_scope`.\n", "\n", "#### Leaky ReLU\n", "TensorFlow doesn't provide an operation for leaky ReLUs, so we'll need to make one . For this you can use take the outputs from a linear fully connected layer and pass them to `tf.maximum`. Typically, a parameter `alpha` sets the magnitude of the output for negative values. So, the output for negative input (`x`) values is `alpha*x`, and the output for positive `x` is `x`:\n", "$$\n", "f(x) = max(\\alpha * x, x)\n", "$$\n", "\n", "#### Tanh Output\n", "The generator has been found to perform the best with $tanh$ for the generator output. This means that we'll have to rescale the MNIST images to be between -1 and 1, instead of 0 and 1." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def generator(z, out_dim, n_units=128, reuse=False, alpha=0.01):\n", " with tf.variable_scope('generator', reuse=reuse):\n", " # Hidden layer\n", " h1 = tf.layers.dense(z, n_units, activation=None)\n", " # Leaky ReLU\n", " h1 = tf.maximum(alpha * h1, h1)\n", " \n", " # Logits and tanh output\n", " logits = tf.layers.dense(h1, out_dim, activation=None)\n", " out = tf.tanh(logits)\n", " \n", " return out" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Discriminator\n", "\n", "The discriminator network is almost exactly the same as the generator network, except that we're using a sigmoid output layer." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def discriminator(x, n_units=128, reuse=False, alpha=0.01):\n", " with tf.variable_scope('discriminator', reuse=reuse):\n", " # Hidden layer\n", " h1 = tf.layers.dense(x, n_units, activation=None)\n", " # Leaky ReLU\n", " h1 = tf.maximum(alpha * h1, h1)\n", " \n", " logits = tf.layers.dense(h1, 1, activation=None)\n", " out = tf.sigmoid(logits)\n", " \n", " return out, logits" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Hyperparameters" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Size of input image to discriminator\n", "input_size = 784\n", "# Size of latent vector to generator\n", "z_size = 100\n", "# Sizes of hidden layers in generator and discriminator\n", "g_hidden_size = 128\n", "d_hidden_size = 128\n", "# Leak factor for leaky ReLU\n", "alpha = 0.01\n", "# Smoothing \n", "smooth = 0.1" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Build network\n", "\n", "Now we're building the network from the functions defined above.\n", "\n", "First is to get our inputs, `input_real, input_z` from `model_inputs` using the sizes of the input and z.\n", "\n", "Then, we'll create the generator, `generator(input_z, input_size)`. This builds the generator with the appropriate input and output sizes.\n", "\n", "Then the discriminators. We'll build two of them, one for real data and one for fake data. Since we want the weights to be the same for both real and fake data, we need to reuse the variables. For the fake data, we're getting it from the generator as `g_model`. So the real data discriminator is `discriminator(input_real)` while the fake discriminator is `discriminator(g_model, reuse=True)`." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "tf.reset_default_graph()\n", "# Create our input placeholders\n", "input_real, input_z = model_inputs(input_size, z_size)\n", "\n", "# Build the model\n", "g_model = generator(input_z, input_size)\n", "# g_model is the generator output\n", "\n", "d_model_real, d_logits_real = discriminator(input_real)\n", "d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Discriminator and Generator Losses\n", "\n", "Now we need to calculate the losses, which is a little tricky. For the discriminator, the total loss is the sum of the losses for real and fake images, `d_loss = d_loss_real + d_loss_fake`. The losses will by sigmoid cross-entropys, which we can get with `tf.nn.sigmoid_cross_entropy_with_logits`. We'll also wrap that in `tf.reduce_mean` to get the mean for all the images in the batch. So the losses will look something like \n", "\n", "```python\n", "tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=labels))\n", "```\n", "\n", "For the real image logits, we'll use `d_logits_real` which we got from the discriminator in the cell above. For the labels, we want them to be all ones, since these are all real images. To help the discriminator generalize better, the labels are reduced a bit from 1.0 to 0.9, for example, using the parameter `smooth`. This is known as label smoothing, typically used with classifiers to improve performance. In TensorFlow, it looks something like `labels = tf.ones_like(tensor) * (1 - smooth)`\n", "\n", "The discriminator loss for the fake data is similar. The logits are `d_logits_fake`, which we got from passing the generator output to the discriminator. These fake logits are used with labels of all zeros. Remember that we want the discriminator to output 1 for real images and 0 for fake images, so we need to set up the losses to reflect that.\n", "\n", "Finally, the generator losses are using `d_logits_fake`, the fake image logits. But, now the labels are all ones. The generator is trying to fool the discriminator, so it wants to discriminator to output ones for fake images." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Calculate losses\n", "d_loss_real = tf.reduce_mean(\n", " tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, \n", " labels=tf.ones_like(d_logits_real) * (1 - smooth)))\n", "d_loss_fake = tf.reduce_mean(\n", " tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, \n", " labels=tf.zeros_like(d_logits_real)))\n", "d_loss = d_loss_real + d_loss_fake\n", "\n", "g_loss = tf.reduce_mean(\n", " tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake,\n", " labels=tf.ones_like(d_logits_fake)))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Optimizers\n", "\n", "We want to update the generator and discriminator variables separately. So we need to get the variables for each part build optimizers for the two parts. To get all the trainable variables, we use `tf.trainable_variables()`. This creates a list of all the variables we've defined in our graph.\n", "\n", "For the generator optimizer, we only want to generator variables. Our past selves were nice and used a variable scope to start all of our generator variable names with `generator`. So, we just need to iterate through the list from `tf.trainable_variables()` and keep variables to start with `generator`. Each variable object has an attribute `name` which holds the name of the variable as a string (`var.name == 'weights_0'` for instance). \n", "\n", "We can do something similar with the discriminator. All the variables in the discriminator start with `discriminator`.\n", "\n", "Then, in the optimizer we pass the variable lists to `var_list` in the `minimize` method. This tells the optimizer to only update the listed variables. Something like `tf.train.AdamOptimizer().minimize(loss, var_list=var_list)` will only train the variables in `var_list`." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true, "deletable": true, "editable": true, "scrolled": true }, "outputs": [], "source": [ "# Optimizers\n", "learning_rate = 0.002\n", "\n", "# Get the trainable_variables, split into G and D parts\n", "t_vars = tf.trainable_variables()\n", "g_vars = [var for var in t_vars if var.name.startswith('generator')]\n", "d_vars = [var for var in t_vars if var.name.startswith('discriminator')]\n", "\n", "d_train_opt = tf.train.AdamOptimizer(learning_rate).minimize(d_loss, var_list=d_vars)\n", "g_train_opt = tf.train.AdamOptimizer(learning_rate).minimize(g_loss, var_list=g_vars)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Training" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mkdir: cannot create directory ‘checkpoints’: File exists\r\n" ] } ], "source": [ "!mkdir checkpoints" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "deletable": true, "editable": true, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/100... Discriminator Loss: 0.3842... Generator Loss: 3.6655\n", "Epoch 2/100... Discriminator Loss: 0.3964... Generator Loss: 3.1699\n", "Epoch 3/100... Discriminator Loss: 0.4226... Generator Loss: 3.3010\n", "Epoch 4/100... Discriminator Loss: 0.5049... Generator Loss: 5.1167\n", "Epoch 5/100... Discriminator Loss: 0.6197... Generator Loss: 7.5422\n", "Epoch 6/100... Discriminator Loss: 0.6663... Generator Loss: 3.4146\n", "Epoch 7/100... Discriminator Loss: 0.6822... Generator Loss: 3.5781\n", "Epoch 8/100... Discriminator Loss: 1.4410... Generator Loss: 3.1040\n", "Epoch 9/100... Discriminator Loss: 0.9926... Generator Loss: 2.1928\n", "Epoch 10/100... Discriminator Loss: 0.8677... Generator Loss: 3.6301\n", "Epoch 11/100... Discriminator Loss: 1.0338... Generator Loss: 1.7675\n", "Epoch 12/100... Discriminator Loss: 0.7970... Generator Loss: 2.2884\n", "Epoch 13/100... Discriminator Loss: 1.1056... Generator Loss: 2.9634\n", "Epoch 14/100... Discriminator Loss: 1.0781... Generator Loss: 2.0506\n", "Epoch 15/100... Discriminator Loss: 0.9444... Generator Loss: 2.0144\n", "Epoch 16/100... Discriminator Loss: 1.2183... Generator Loss: 1.9047\n", "Epoch 17/100... Discriminator Loss: 1.0420... Generator Loss: 2.7613\n", "Epoch 18/100... Discriminator Loss: 1.4393... Generator Loss: 1.9514\n", "Epoch 19/100... Discriminator Loss: 1.5217... Generator Loss: 2.0713\n", "Epoch 20/100... Discriminator Loss: 0.8593... Generator Loss: 2.2685\n", "Epoch 21/100... Discriminator Loss: 1.2896... Generator Loss: 1.6226\n", "Epoch 22/100... Discriminator Loss: 0.6998... Generator Loss: 2.4725\n", "Epoch 23/100... Discriminator Loss: 0.8220... Generator Loss: 2.4169\n", "Epoch 24/100... Discriminator Loss: 0.8358... Generator Loss: 1.8199\n", "Epoch 25/100... Discriminator Loss: 0.9829... Generator Loss: 2.0847\n", "Epoch 26/100... Discriminator Loss: 0.8602... Generator Loss: 1.7121\n", "Epoch 27/100... Discriminator Loss: 0.9274... Generator Loss: 1.9062\n", "Epoch 28/100... Discriminator Loss: 0.8498... Generator Loss: 3.0855\n", "Epoch 29/100... Discriminator Loss: 0.7240... Generator Loss: 2.6028\n", "Epoch 30/100... Discriminator Loss: 0.8622... Generator Loss: 2.1538\n", "Epoch 31/100... Discriminator Loss: 0.9209... Generator Loss: 1.8890\n", "Epoch 32/100... Discriminator Loss: 0.9319... Generator Loss: 2.5738\n", "Epoch 33/100... Discriminator Loss: 0.9176... Generator Loss: 2.8202\n", "Epoch 34/100... Discriminator Loss: 0.8680... Generator Loss: 2.3803\n", "Epoch 35/100... Discriminator Loss: 0.8950... Generator Loss: 2.1691\n", "Epoch 36/100... Discriminator Loss: 0.9739... Generator Loss: 2.1528\n", "Epoch 37/100... Discriminator Loss: 0.9179... Generator Loss: 1.9091\n", "Epoch 38/100... Discriminator Loss: 0.9683... Generator Loss: 1.6559\n", "Epoch 39/100... Discriminator Loss: 1.0320... Generator Loss: 1.6031\n", "Epoch 40/100... Discriminator Loss: 1.1264... Generator Loss: 1.8091\n", "Epoch 41/100... Discriminator Loss: 1.0980... Generator Loss: 1.6661\n", "Epoch 42/100... Discriminator Loss: 0.9794... Generator Loss: 2.0973\n", "Epoch 43/100... Discriminator Loss: 0.8620... Generator Loss: 2.3119\n", "Epoch 44/100... Discriminator Loss: 0.9756... Generator Loss: 1.9464\n", "Epoch 45/100... Discriminator Loss: 1.0872... Generator Loss: 1.6003\n", "Epoch 46/100... Discriminator Loss: 1.0760... Generator Loss: 1.6861\n", "Epoch 47/100... Discriminator Loss: 1.1995... Generator Loss: 1.5049\n", "Epoch 48/100... Discriminator Loss: 1.1637... Generator Loss: 1.5352\n", "Epoch 49/100... Discriminator Loss: 0.9836... Generator Loss: 2.0852\n", "Epoch 50/100... Discriminator Loss: 1.0149... Generator Loss: 1.3999\n", "Epoch 51/100... Discriminator Loss: 1.0147... Generator Loss: 1.8894\n", "Epoch 52/100... Discriminator Loss: 1.2534... Generator Loss: 1.7711\n", "Epoch 53/100... Discriminator Loss: 0.9352... Generator Loss: 1.8878\n", "Epoch 54/100... Discriminator Loss: 1.1472... Generator Loss: 1.4543\n", "Epoch 55/100... Discriminator Loss: 1.3635... Generator Loss: 1.2173\n", "Epoch 56/100... Discriminator Loss: 1.2202... Generator Loss: 1.4520\n", "Epoch 57/100... Discriminator Loss: 0.9861... Generator Loss: 1.9276\n", "Epoch 58/100... Discriminator Loss: 1.1032... Generator Loss: 1.8915\n", "Epoch 59/100... Discriminator Loss: 0.9440... Generator Loss: 2.5136\n", "Epoch 60/100... Discriminator Loss: 0.9744... Generator Loss: 1.8370\n", "Epoch 61/100... Discriminator Loss: 0.8224... Generator Loss: 1.8648\n", "Epoch 62/100... Discriminator Loss: 1.1327... Generator Loss: 1.8926\n", "Epoch 63/100... Discriminator Loss: 1.1150... Generator Loss: 1.8950\n", "Epoch 64/100... Discriminator Loss: 0.8441... Generator Loss: 1.9946\n", "Epoch 65/100... Discriminator Loss: 0.9912... Generator Loss: 1.9305\n", "Epoch 66/100... Discriminator Loss: 0.9527... Generator Loss: 1.6693\n", "Epoch 67/100... Discriminator Loss: 0.9894... Generator Loss: 2.0002\n", "Epoch 68/100... Discriminator Loss: 0.8654... Generator Loss: 2.0725\n", "Epoch 69/100... Discriminator Loss: 0.9363... Generator Loss: 1.6939\n", "Epoch 70/100... Discriminator Loss: 1.0576... Generator Loss: 1.5916\n", "Epoch 71/100... Discriminator Loss: 0.9556... Generator Loss: 1.8366\n", "Epoch 72/100... Discriminator Loss: 0.9269... Generator Loss: 1.7562\n", "Epoch 73/100... Discriminator Loss: 0.9154... Generator Loss: 1.9768\n", "Epoch 74/100... Discriminator Loss: 0.8379... Generator Loss: 1.6849\n", "Epoch 75/100... Discriminator Loss: 0.9979... Generator Loss: 1.8343\n", "Epoch 76/100... Discriminator Loss: 0.9905... Generator Loss: 1.8342\n", "Epoch 77/100... Discriminator Loss: 0.9491... Generator Loss: 2.0298\n", "Epoch 78/100... Discriminator Loss: 1.3740... Generator Loss: 1.4449\n", "Epoch 79/100... Discriminator Loss: 1.1491... Generator Loss: 1.4414\n", "Epoch 80/100... Discriminator Loss: 1.0098... Generator Loss: 1.8602\n", "Epoch 81/100... Discriminator Loss: 1.0153... Generator Loss: 2.1780\n", "Epoch 82/100... Discriminator Loss: 1.0034... Generator Loss: 1.7471\n", "Epoch 83/100... Discriminator Loss: 0.8928... Generator Loss: 1.9146\n", "Epoch 84/100... Discriminator Loss: 0.7530... Generator Loss: 2.0924\n", "Epoch 85/100... Discriminator Loss: 0.8109... Generator Loss: 2.1248\n", "Epoch 86/100... Discriminator Loss: 0.7669... Generator Loss: 2.5912\n", "Epoch 87/100... Discriminator Loss: 0.7951... Generator Loss: 2.8426\n", "Epoch 88/100... Discriminator Loss: 0.8098... Generator Loss: 2.0355\n", "Epoch 89/100... Discriminator Loss: 0.8654... Generator Loss: 2.3322\n", "Epoch 90/100... Discriminator Loss: 0.9150... Generator Loss: 2.5682\n", "Epoch 91/100... Discriminator Loss: 0.8865... Generator Loss: 1.7872\n", "Epoch 92/100... Discriminator Loss: 0.8151... Generator Loss: 2.3254\n", "Epoch 93/100... Discriminator Loss: 0.7518... Generator Loss: 2.2741\n", "Epoch 94/100... Discriminator Loss: 0.8679... Generator Loss: 1.7687\n", "Epoch 95/100... Discriminator Loss: 0.9860... Generator Loss: 2.2423\n", "Epoch 96/100... Discriminator Loss: 0.9436... Generator Loss: 1.7666\n", "Epoch 97/100... Discriminator Loss: 1.0442... Generator Loss: 1.8173\n", "Epoch 98/100... Discriminator Loss: 0.8048... Generator Loss: 2.3917\n", "Epoch 99/100... Discriminator Loss: 0.9749... Generator Loss: 1.7262\n", "Epoch 100/100... Discriminator Loss: 0.8384... Generator Loss: 2.4169\n" ] } ], "source": [ "batch_size = 100\n", "epochs = 100\n", "samples = []\n", "losses = []\n", "# Only save generator variables\n", "saver = tf.train.Saver(var_list=g_vars)\n", "with tf.Session() as sess:\n", " sess.run(tf.global_variables_initializer())\n", " for e in range(epochs):\n", " for ii in range(mnist.train.num_examples//batch_size):\n", " batch = mnist.train.next_batch(batch_size)\n", " \n", " # Get images, reshape and rescale to pass to D\n", " batch_images = batch[0].reshape((batch_size, 784))\n", " batch_images = batch_images*2 - 1\n", " \n", " # Sample random noise for G\n", " batch_z = np.random.uniform(-1, 1, size=(batch_size, z_size))\n", " \n", " # Run optimizers\n", " _ = sess.run(d_train_opt, feed_dict={input_real: batch_images, input_z: batch_z})\n", " _ = sess.run(g_train_opt, feed_dict={input_z: batch_z})\n", " \n", " # At the end of each epoch, get the losses and print them out\n", " train_loss_d = sess.run(d_loss, {input_z: batch_z, input_real: batch_images})\n", " train_loss_g = g_loss.eval({input_z: batch_z})\n", " \n", " print(\"Epoch {}/{}...\".format(e+1, epochs),\n", " \"Discriminator Loss: {:.4f}...\".format(train_loss_d),\n", " \"Generator Loss: {:.4f}\".format(train_loss_g)) \n", " # Save losses to view after training\n", " losses.append((train_loss_d, train_loss_g))\n", " \n", " # Sample from generator as we're training for viewing afterwards\n", " sample_z = np.random.uniform(-1, 1, size=(16, z_size))\n", " gen_samples = sess.run(\n", " generator(input_z, input_size, reuse=True),\n", " feed_dict={input_z: sample_z})\n", " samples.append(gen_samples)\n", " saver.save(sess, './checkpoints/generator.ckpt')\n", "\n", "# Save training generator samples\n", "with open('train_samples.pkl', 'wb') as f:\n", " pkl.dump(samples, f)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Training loss\n", "\n", "Here we'll check out the training losses for the generator and discriminator." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "text/plain": [ "<matplotlib.legend.Legend at 0x7fab69cbeac8>" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEICAYAAAB/Dx7IAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8VFX6/98nPQGSkAaEEJLQSyBAIHRQREQBxcWGBbso\ndtey67q67n71t669rIpiR0FBcO0K0nvoPXQSSirpPTm/P87czCSZSSYhk2SY83698prMnXvvnEzm\nfu5zPuc5zxFSSjQajUbjPLi1dAM0Go1G0zC0cGs0Go2ToYVbo9FonAwt3BqNRuNkaOHWaDQaJ0ML\nt0aj0TgZWrg1LY4Qwl0IkS+EiGzKfTWaCxWh87g1DUUIkW/x1A8oASpMz++RUs5v/ladP0KIfwER\nUspbW7otGk1deLR0AzTOh5SyrfG7EOI4cKeUcpmt/YUQHlLK8uZom0bjCmirRNPkCCH+JYRYKIT4\nSgiRB9wkhBghhNgohMgWQpwRQrwphPA07e8hhJBCiCjT8y9Mr/8shMgTQmwQQkQ3dF/T65OFEElC\niBwhxFtCiHVCiFsb8Tf1E0KsMrV/txDiCovXpggh9pveP0UI8Yhpe5gQ4ifTMVlCiNUWx0QIIZYI\nIdKFEMeEEHMsXhsuhNgmhMgVQqQKIf7T0PZqLmy0cGscxXTgSyAAWAiUAw8BIcAo4DLgnjqOnwk8\nAwQBJ4F/NnRfIUQY8DXwuOl9jwHDGvqHCCG8gB+AH4FQ4BFgoRCiu2mXj4E7pJTtgAHAKtP2x4Gj\npmM6mtqIEMLddL4tQGdgIvC4EGKC6bi3gP9IKf2B7sCihrZZc2GjhVvjKNZKKb+XUlZKKYuklFuk\nlJuklOVSyqPAXGBcHccvklImSinLgPlAXCP2nQLskFJ+Z3rtNSCjEX/LKMALJaZlJlvoZ+B60+tl\nQF8hRDspZZaUcpvF9nAgUkpZKqU0BH044C+lfMG0/TAwr8b5egghgqWUeVLKTY1os+YCRgu3xlEk\nWz4RQvQWQvwohDgrhMgFnkdFwbY4a/F7IdDW1o517Btu2Q6pRuJT7Gh7TcKBk7L6SP4JVLQMqncx\nDTgphFgphEgwbf9/pv2WCyGOCCEeN23vCkSaLJRsIUQ28AQqKge4DegLHBRCbBZCXN6INmsuYLRw\naxxFzXSl94E9QHeTBfB3QDi4DWeACOOJEEJgFtuGcBroYjreIBI4BWDqSUwDwlAWyALT9lwp5SNS\nyijgKuBJIcQ41M3kkJQy0OKnnZRyqum4g1LK603newVYLITwaUS7NRcoWrg1zUU7IAcoEEL0oW5/\nu6n4ARgshJgqhPBAeeyh9RzjLoTwsfjxBtajPPrHhBCeQoiLgcuBr4UQvkKImUIIf5Mdk4cpNdL0\nvt1Mgp9j2l4BbABKhRCPmd7DXQgRK4QYYjruZiFEiJSy0nScBCqb+LPRODFauDXNxWPALJSwvY8a\nsHQoUspU4DrgVSAT6AZsR+Wd2+ImoMji56CUsgSYClyJ8sjfBGZKKZNMx8wCTpgsoDuAm03bewF/\nAPnAOuANKeVaU2rk5aiB0uOmc74P+JuOuxzYb8rIeRm4TkpZ2vhPQnOhoSfgaFwGUzbHaWCGlHJN\nS7dHo2ksOuLWXNAIIS4TQgSYLI9nUJbH5hZulkZzXmjh1lzojEblUmegcsevMlkfGo3Toq0SjUaj\ncTJ0xK3RaDROhkOKTIWEhMioqChHnFqj0WguSLZu3ZohpawvXRVwkHBHRUWRmJjoiFNrNBrNBYkQ\n4oS9+2qrRKPRaJwMLdwajUbjZGjh1mg0GidDr4Cj0VyglJWVkZKSQnFxcUs3RWOBj48PEREReHp6\nNvocWrg1mguUlJQU2rVrR1RUFNULG2paCiklmZmZpKSkEB0dXf8BNtBWiUZzgVJcXExwcLAW7VaE\nEILg4ODz7gVp4dZoLmC0aLc+muJ/4tzCnbYfjq9r6VZoNBpNs+Lcwr3y/8EPj7R0KzQajQ3c3d2J\ni4ujX79+DBw4kFdffZXKSrUmRGJiIg8++OB5v8d7773HZ5991qBjRo4c2ej3++STTzh9+nSjj28K\nnHtwsiQXyopauhUajcYGvr6+7NixA4C0tDRmzpxJTk4O//jHP4iPjyc+Pv68zl9eXs7s2bMbfNz6\n9esb/Z6ffPIJ/fv3Jzw83O5jKioqcHd3b/R71sS5I+7SAqjQFTo1GmcgLCyMuXPn8vbbbyOlZOXK\nlUyZMgWAVatWERcXR1xcHIMGDSIvLw+Al156idjYWAYOHMhTTz0FwPjx4/nrX//KuHHjeOONN3ju\nued4+eWXq1575JFHGDt2LH369GHLli1cffXV9OjRg7/97W9VbWnbVq0nvXLlSsaPH8+MGTPo3bs3\nN954I0bF1Oeff56hQ4fSv39/7r77bqSULFq0iMTERG688Ubi4uIoKipi+fLlDBo0iNjYWG6//XZK\nSpQmRUVF8fzzzzN69Gi++eabJv0snTviLi2Eci3cGk19/OP7vew7nduk5+wb7s+zU/s16JiYmBgq\nKytJS0urtv3ll1/mnXfeYdSoUeTn5+Pj48PPP//M0qVL2bRpE35+fmRlZVXtn52dzapVqwB47rnn\nqp3Ly8uL1atX88Ybb3DllVeydetWgoKC6NatG4888gjBwcHV9t++fTt79+4lPDycUaNGsW7dOkaP\nHs3999/P3//+dwBuvvlmfvjhB2bMmMHbb7/Nyy+/THx8PMXFxdx6660sX76cnj17csstt/Duu+/y\n8MMPAypne+3atQ36jOzBySPufKgoa+lWaDSaBmBtDYBRo0bx6KOP8uabb5KdnY2HhwfLli3jtttu\nw8/PD4CgoKCq/a+77jqb5582bRoAsbGx9OvXj06dOuHt7U1MTAzJycm19h82bBgRERG4ubkRFxfH\n8ePHAVixYgUJCQnExsbyxx9/sHfv3lrHHjx4kOjoaHr27AnArFmzWL16tV3tPB+cPOLWVolGYw8N\njYwdxdGjR3F3dycsLIz9+/dXbX/qqae44oor+Omnnxg+fDjLli1DSmkzda5NmzY238Pb2xsANze3\nqt+N5+Xl5Tb3BzWYWl5eTnFxMffddx+JiYl06dKF5557zmrudX0L0dTVzvPBySPuAqgsB9MotUaj\nab2kp6cze/Zs7r///lqCfOTIEWJjY3nyySeJj4/nwIEDXHrppXz00UcUFhYCVLNKHI0h0iEhIeTn\n57No0aKq19q1a1flwffu3Zvjx49z+PBhAD7//HPGjRvn8PY5b8RdWQll6h9KRQm4+bZsezQaTS2K\nioqIi4ujrKwMDw8Pbr75Zh599NFa+73++uusWLECd3d3+vbty+TJk/H29mbHjh3Ex8fj5eXF5Zdf\nzgsvvNAs7Q4MDOSuu+4iNjaWqKgohg4dWvXarbfeyuzZs/H19WXDhg18/PHHXHPNNZSXlzN06NBG\nZbk0FIesORkfHy8dvpBCaQG8YErHefIE+AY69v00Gidj//799OnTp6WbobGCtf+NEGKrlNKu/Ejn\ntUpKC8y/V5S2XDs0Go2mmXFi4c43/65TAjUajQvhxMJdaP5dR9wajcaFqFe4hRC9hBA7LH5yhRAP\nN0fj6sTSKtERt0ajcSHqzSqRUh4E4gCEEO7AKWCJg9tVP5ZWic7l1mg0LkRDrZIJwBEppd3LyDuM\nahG3tko0Go3r0FDhvh74ytoLQoi7hRCJQojE9PT0829ZfZRpj1ujcQZSU1OZOXMmMTExDBkyhBEj\nRrBkSct02leuXHlelQFbC3YLtxDCC5gGWC1zJaWcK6WMl1LGh4aGNlX7bKOtEo2m1SOl5KqrrmLs\n2LEcPXqUrVu3smDBAlJSUhz2ntamtRs0RrjrOl9L0ZCIezKwTUqZ6qjGNAhtlWg0rZ4//vgDLy+v\narMJu3btygMPPEBFRQWPP/44Q4cOZcCAAbz//vtA3aVWt27dyrhx4xgyZAiTJk3izJkzQO1Sr99/\n/z0JCQkMGjSISy65hNTUVI4fP857773Ha6+9RlxcHGvWrOHEiRNMmDCBAQMGMGHCBE6ePAmo2ZGP\nPvooF110EU8++WQzf2r105Ap7zdgwyZpEapNwNERt0ZTJz8/BWd3N+05O8bC5P9X5y579+5l8ODB\nVl+bN28eAQEBbNmyhZKSEkaNGsWll14KWC+1mpCQwAMPPMB3331HaGgoCxcu5Omnn+ajjz4Cqpd6\nPXfuHBs3bkQIwYcffshLL73EK6+8wuzZs2nbti1//vOfAZg6dSq33HILs2bN4qOPPuLBBx9k6dKl\nACQlJbFs2bImXQChqbBLuIUQfsBE4B7HNqcB6Ihbo3E65syZw9q1a/Hy8qJr167s2rWrqoBTTk4O\nhw4dwsvLq6rUKlBVajUwMJA9e/YwceJEQK0q06lTp6pzW5ZQTUlJ4brrruPMmTOUlpYSHR1ttT0b\nNmzg22+/BVTN7SeeeKLqtWuuuaZVijbYKdxSykIguN4dmxMdcWs09lNPZOwo+vXrx+LFi6uev/PO\nO2RkZBAfH09kZCRvvfUWkyZNqnbMypUrrZZalVLSr18/NmzYYPW9LEuoPvDAAzz66KNMmzaNlStX\n1lpswRaWVQsdVZK1KXDimZMF4Gn6YPUEHI2mVXLxxRdTXFzMu+++W7XNKNM6adIk3n33XcrK1GIo\nSUlJFBQUWD0PQK9evUhPT68S7rKyMquLG4CK3jt37gzAp59+WrXdsiQrqEWDFyxYAMD8+fMZPXp0\nY/7MZse5hdu3vfpdpwNqNK0SIQRLly5l1apVREdHM2zYMGbNmsW///1v7rzzTvr27cvgwYPp378/\n99xzT50ZHF5eXixatIgnn3ySgQMHEhcXZzND5LnnnuOaa65hzJgxhISEVG2fOnUqS5YsqRqcfPPN\nN/n4448ZMGAAn3/+OW+88UaTfwaOwHnLun52JRRmqgGXCc/CmNo1fjUaV0aXdW29uHZZVx1xazQa\nF8S5hdvbH4S7Fm6NRuNSOLFw54NXW/Dw1oOTGo0NHGGFas6PpvifOLFwF4JXG3D30hG3RmMFHx8f\nMjMztXi3IqSUZGZm4uPjc17ncd7FgksLwMtPR9wajQ0iIiJISUmhWYq+aezGx8enanJRY3FO4a6s\ngPIiZZW4e+uIW6Oxgqenp80ZgxrnxjmtEmPWpFcb8PDSEbdGo3EpnFO4jVrcnn464tZoNC6Hcwp3\nVcTdVkfcGo3G5XBS4TYtolCVVaKFW6PRuA5OKtwWHre7ly7rqtFoXAonFW6Tx+3VRqUD6ohbo9G4\nEE4q3JZWiTdUlLVsezQajaYZcVLh1umAGo3GdXFy4TYm4Gjh1mg0roNzCneZSbg9/UwRtx6c1Gg0\nroNdwi2ECBRCLBJCHBBC7BdCjHB0w+qktAAQ4OmrI26NRuNy2Fur5A3gFynlDCGEF+DnwDbVT2mB\nskmEMBWZ0hG3RqNxHeoVbiGEPzAWuBVASlkKtKxSluargUnQE3A0Go3LYY9VEgOkAx8LIbYLIT4U\nQtRat14IcbcQIlEIkejwMpKlhaqkKyjhriyHykrHvqdGo9G0EuwRbg9gMPCulHIQUAA8VXMnKeVc\nKWW8lDI+NDS0iZtZg9ICc8Tt4aUeddSt0WhcBHuEOwVIkVJuMj1fhBLylsNYtgzU4CToXG6NRuMy\n1CvcUsqzQLIQopdp0wRgn0NbVR/VIm6TcOvZkxqNxkWwN6vkAWC+KaPkKHCb45pkB2WF4Gla+sdd\nWyUajca1sEu4pZQ7gHgHt8V+jHRAMEfc2irRaDQugnPOnKyZDgh6FRyNRuMyOKlwW/G4dcSt0Whc\nBOcT7ooyFV1XRdzG4KSOuDUajWvgfMJtWdIVzHncOuLWaDQugvMLd1XErYVbo9G4Bs4r3J6GcHuq\nR11oSqPRuAjOJ9xlNa0SHXFrNBrXwvmE25ZVoiNujUbjIjixcBsTcHQet0ajcS2cULiNFd6Nsq7a\nKtFoNK6FEwp3oXqslQ6oI26NRuMaOKFw17BKdMSt0WhcDCcUbsMqqTnlXUfcGo3GNXBC4S4A4W4u\nLuXmrp7riFuj0bgIzifcZYXmFd4NPLz1lHeNRuMyOJ9wW5Z0NXD30umAGo3GZXBC4S6wLtw64tZo\nNC6Ckwq3X/VtHt464tZoNC6DXUuXCSGOA3lABVAupWy5ZcxK8sGrXfVt2irRaDQuhL2LBQNcJKXM\ncFhL7KUkFwK7Vt+mByc1Go0L4XxWSXEO+PhX36Yjbo1G40LYK9wS+E0IsVUIcbe1HYQQdwshEoUQ\nienp6U3XwpoU54BPQPVtOuLWaDQuhL3CPUpKORiYDMwRQoytuYOUcq6UMl5KGR8aGtqkjayishJK\n8moLt464NRqNC2GXcEspT5se04AlwDBHNsomJbmABO8aVomOuDUajQtRr3ALIdoIIdoZvwOXAnsc\n3TCrFOeox1oRt04H1Gg0roM9WSUdgCVCTTH3AL6UUv7i0FbZoiRXPdbyuPUEHI1G4zrUK9xSyqPA\nwGZoS/3YjLi9dJEpjUbjMjhXOmCVcFtJB9RlXTUajYvgpMJtJR1QR9wajcZFcDLhNjzuwOrb3b2h\noqz526PRaDQtgJMJtyni9q5Rq0QPTmo0GhfC+YTbsw24e1bf7u4NlWVqgo5Go9Fc4DiXcJdYme4O\n5pXedS63RqNxAZxLuK0VmAK90rtGo3EpnFC4rUXceqV3jUbjOjiZcOdaF25jxXcdcWs0GhfAyYS7\nvohbC7dGo7nwcT7hrlkZEMxZJnpwUqPRuADOI9xS2o643XXErdFoXAfnEe6yQpAVdVslevakRqNx\nAZxHuG0VmAI9OKnRaFwKJxRuPTip0WhcGycSbhuLKIBFxK0HJzUazYWPEwm3UWBKR9wajca1cT7h\nriurREfcGo3GBXAe4S6py+M2WSU64tZoNC6A3cIthHAXQmwXQvzgyAbZpM6sEl1kSqPRuA4Nibgf\nAvY7qiH1UpyjBiE9fGq/Zsyc1EWmNBqNC2CXcAshIoArgA8d25w6MApMCVH7NQ8dcWs0GtfB3oj7\ndeAJwOYSM0KIu4UQiUKIxPT09CZpXDVsTXcHiynvOuLWaDQXPvUKtxBiCpAmpdxa135SyrlSyngp\nZXxoaGiTNbAKWwWmANw9QLjprBKNRuMS2BNxjwKmCSGOAwuAi4UQXzi0VdaoK+IG00rv2irRaDQX\nPvUKt5TyL1LKCCllFHA98IeU8iaHt6wmJTYWUTDw8NJWiUajcQmcJ4/b1nqTBjri1mg0LoJHQ3aW\nUq4EVjqkJfVRn1Xi4a0jbo1G4xI4R8RdXgLlxfV43F464tZoNC6Bcwi3URnQWoEpAw9vPeVdo9G4\nBK1HuMtLYcs8OL6u9mt1FZgycPfS6YAajcYlaD3C7eYBy5+HXQtqv1ZXgSkDd6+GRdwVZbB7kVrL\nUqPRaJyIViTcbtBlGCRvqf1aXQWmDDy8q0fc9Qny4eWw+A44ta3hbdVoNJoWpPUIN0DEMEjfD0XZ\n1bc31CpZ9RK8GQcV5bb3L0hTj0VZjW+vRqPRtACtS7i7DFOPpxKrb69r2TIDIx0weTOsfBHOHYe0\nvbb3L8w0nTun0c3VaDSalqB1CXfnIarmSPLm6tvtjbiLc2DJbPALUdtObrS9vxZujUbjpLQu4fZu\nCx36WRdu4QZebW0f6+ENOSch6wjMmAcBXeDkBtv7F55TjyW5599ujUajaUZal3CD8rlTEqGywrzN\nqAxorRa3gbHSe8JsiB4LkcNVxG1rkLIq4tbCrdFonIvWJ9xdEqA0D9IPmLfVV2AKoNNAiBgKE55V\nzyOHQ94ZyD5hfX9tlWg0GielFQr3UPWYvMm8rb4CUwDD7oI7l4GXn3oeOUI9nrBhlxjCra0SjUbj\nZLQ+4W4fDW1Cq/vcxTngE9iw84T2UVPkbfnc2irRaDROSusTbiGUz20I9+ntcHqHGmxsCG5uEJlg\nPbOkotxskWirRKPROBmtT7hB5XNnHYEzO+HL61UEPvEfDT9P5AjIOAgFmdW3F2cDpkFLbZVoNBon\no/UKN8CnU6G0AGYuhLZhDT+P4XNb+uVgtkk8fLVVotFonI7WKdzhg1TRqZJ8uPYT6NC38edx96rt\ncxvCHRStrRKNRuN0NGgFnGbD0xfGPg5BMdD9kvM4jw+ED67tcxvC3T4a0vapnHE398a/j0aj0TQj\nrTPiBhj/FAy49vzPEzlcDXCWFZu3VQl3lHosyTv/92ltnFgPeakt3QqNRuMA6hVuIYSPEGKzEGKn\nEGKvEKIRo4QtSFhfqCyDnGTztkJTRcCgaPV4odklUsIXM2DFv1q6JRqNxgHYE3GXABdLKQcCccBl\nQojhjm1WExJoSiO0nEFZmAmeftC2g3p+oWWWFGdDWYHtyUcajcapqVe4pSLf9NTT9OM8y8YY+d/Z\nNSJuv2DzbMwLLbMk31RrPPNQ7VRIjUbj9NjlcQsh3IUQO4A04Hcp5SYr+9wthEgUQiSmp6c3dTsb\nT7tOKkOlmlWSCX5BqnAV2I64Swvg5V6w/3vHt7MpybfwtmumQmo0GqfHLuGWUlZIKeOACGCYEKK/\nlX3mSinjpZTxoaGhTd3OxuPuAf7hkH3SvK0wE3yDzIWrbHncaQcg/2ztMrOtHSPiBkiuoya5RqNx\nShqUVSKlzAZWApc5pDWOIiCyulVSZFglhnDbiLiNCoWW0bozYETcIT3hpI64NZoLDXuySkKFEIGm\n332BS4ADdR/VygjsYsUqCbawSmxE3IZwZzuZcOedBXdv6HGpSoUsL2nY8ZWVahk4jaY1cWQFrHih\npVvRKrAn4u4ErBBC7AK2oDzuHxzbrCYmMFLV5i4vhYoyZY34BYOHF3j42LZKqoT7pPXXWyv5aSpj\nJnI4VJSoIl0N4fdn4L8Jtheh0Giam8pK+PkJWP0fHVRgx8xJKeUuYFAztMVxBHQBWQm5p8Crjdrm\nF6QefQLqt0oK0tQEHk+f+t/r1DY1GNppwPm3u7Hkp6raLl0S1PPkjapSoj0UZMCWD6G8GNIPQlhv\nx7VTo7GXI8shI0n9nn0SQrq3bHtamNY7c7IpMXK5c5LNsyYN4fb2t55VUlqgviDBpi9ITop97/XD\nw/DT4+fX3vPFiLjbhqmyAQ3xubfMU6INcHyNY9qn0TSUDW+rgAgg62jLtqUV4CLCHakesy2FO1g9\n+vhbt0qMu3v3ieoxx067JOu4KknbkhgRN0CX4Sol0B7bo6wINs9V3rh/BBxb7dh2ajT2kLoXjq6E\nYXer5+eOtWhzWgOuIdz+EYBQEbQx3b1KuG1YJekH1WMPU5Ere3zuonNqoLMgveXqn1SUqZtTu47q\neWQCFGZAph03k50L1L4jH4DoMXBinfIWNZqWZON/1UznsY+DZxvI0sLtGsLt4aWELMdKxG3LKknb\nD26e0HU0CHf7MkvOHbf+e3NSkA7I6hE32F7CzaCyEja8oxZdjhqjfgozIX2/Q5ur0dRJfhrs+hoG\n3qDszaBobZXgKsINaoAy+6RZuH2NwUl/2xF3SA81IOkfbl8u9zmLeigtFRUYOdxGHZaQnuDb3voS\nbpYc+lVNkR/5oFo+Lmq02n5M+9yaFiTxY6goheH3qedB0fVbJRdaCQsruI5wB0aarRKvtuYMEZ8A\n6x53+gEI7WVxrB3CbVnIqqWiAmPWpCHcbm5qJaAT6+o+bucCaNsR+l6pnrfvqv5uPUCpaUkO/ap6\njUYWSftoFSDZsvB2L4KXop1v7kUDcSHh7qLSAQvSzdE2qJXgy4uUN2xQVqSsjlBTKlxAF/sjbp9A\ndf6WGkCpirgtlnqLGq3ak3PK9nHpB6DzEHD3tDhuLBxfq33uhnJ8rboRas6P0gK17mzUKPO2oGg1\nNyHvdO39Kyth1UtQWa4GNC9gXEe4A7qof2jaPnMqIFivEJhxCJAWEbdJ9C3F3RrnjqtINSi6cVZJ\ncY7qGhoDqI3BEO42FsLd1fTFtxV1V5RB5mHz32sQPUaViE3d0/j2uCKrX4afn9QTmM6XlC3qmo0c\nad7W3lRD31qP9uCPanFwaPnMLgfjOsId2FU9pu03D0yCedp7cbZ5mzHxJrSPeqyawGPlLm9J9gm1\nqk5QTOMi7h1fqTzw12Nh2T8aV5I1P01F/ZaThTrGqp7F8bXWj8k6qi6QmsJt+NzaLmkYqXvV98my\n2Jem4ZzYAMLNvHg4qGsLagdGUsLa19T15x3QMlZleWmz3axdSLhNk3BkRXXhNgpNWWaWpB9Qyf7G\nl8TIA6/LLqmsVB56YFcVFeSkNHxq7rljKt2px6XqS/jW4IZf/Hlnzf62gZs7dB1hW7iN1Meawh0Q\nof4WPUBpP/lpaqYtmAMATeM4sQ469Df3ikF9J908awdGx1bDqa0w6iEIjrEv/bWxFGSon5r8/ncV\ndDWDeLuOcAdEmH+vJtxWrJL0gxDUTaURQvUJPLbIP6tGvw2rRFY2vMbJuePqZnHNx3DTYhW11ZfG\nV6sdadX9bYOo0ar7mHum9muGcIf0rP2akc9dWtCwdrgqlt6q8blqGk55KaQkQteR1be7uavrsWZE\nvfZVFbAMnKmuXUdG3IvvgEW3196ecVDZsEI47r1NuI5we7UBvxD1u1WrxCKzxDKjBMC/s3qsK+I2\n8rYDo8w+XEPtknMnlPCD8qWFO5zd3bBz5KfWjriN84F1nzv9gCp9a9RxsSTuJtUb2fR+w9rRWCor\nndsbNoTbw0fnwJ8PZ3aqpIGawg0quLG0Sk5vVzMrh9+nLMKgGHWtWvZ4pYS9S+oeoLeHykp1Qzm9\no/b3ND3JnNDgYFxHuMFsl/i1N2+raZWUl6i7teU/wNNHiaFlul9NjBxuw+OGhg1QSmn2yI33DOnZ\nCOFOsy7cHQeom5Q1uyTjYG2bxCAyAXpMgnWvq5mhjqSyAj68GH581LHv40jS9qmB4U5xOuI+H06u\nV4+RI2q/FhStAiVDOBM/UhZjvCkKDu5m6vFaXK8nN8A3t8IbA2DJvZC6r3HtyjoKpflqhnSeRe+1\nJA9yU6z3Wh2Aawm3sf5kXVZJ2n71Tw/rU/3Y+nK5s08AQt0c2oapL5KtiHvnAvh6VvVtBelQVmge\nRAU1qNgQbdO1AAAgAElEQVQQ4S7JV4sEt7Mi3O4eqsxrTeGurFBZNLaEG2DCM6pHsu5N+9vSGHYv\nUtHTnsX1Z/C0VlL3QId+6vPUHnfjObFBFXizZvu1j1aBVmEmlBbCniXQ7yrztWwETpY+d0qiehx0\nE+xbCu+OUPW9a1JaoK4JW5yxKJGcZtGjMmob1XUdNSGuJdyGV12XVXJqq3rsPKT6sfXlcp87oda3\n9PBWHlf7KOsRd2GWqiu8b2n1tD/DajEiboCO/VUaor3pgTVnTdYkarSaHZlnsSZl9glVDbCuL1zH\nWOg/Aza9V/3YpqSiDFa+qG54xTkN9/ZbAxXlarm7Dv1Uj60w0/oglqZuKivV/99atA0q4gZ1fe3/\nHkrzIG6mxevdTK9b+Nyntyk7cOob8Mhe9T07+FP181aUw5uDlV9uizM7lYUJ1W/M6SbhDtHC3fRY\nE243d/BqZ7ZKTm1VXrixb9WxXVSmiK3JKOeOVxddWzUVVv4/800izaK7VmW11Ii4wf6o29rkG0uM\n9L4TFlG38YWrz5u76K9q8HXVvx0zIWfHfNVDmfamWr3n4M9N/x6OJuuImhzSob/5RqijbhXt2lqs\nxBrpB9TAvDV/G8wR9blj6nsT2LV6rrdfkCkl0CLiPrUNOg8yv955sMoTtyR1t0oyOLTMdtvO7lLX\npV9wjYj7oMp2MW4qDsa1hLv3FRB/R20fyrJeSUoiRMTXHhkO6KKEK99GxJl9orroto9SYm4pculJ\napGCXper55b/+KrBTYsbRofGCreNiLvjQHWTsrRLDGGpz5sL7gaDbobEefBCOLw7Cr5/SM0yPV/K\nitWMt87x0P9PEDMODvzofIOUxkQlI+IGLdw5p2DeRDUpyV7q8rfBZCcKOLZKpQHGzVSlHQyEUCmB\nRuBUkKmuz/DB5n0ihqrryvL7a9TzOb1NfSdrIqWKuDsNVHM8akbcwd2qzzx2IK4l3AERMOXV2h+u\nt78abCjOUV5V5/jax9aVy11eoibnWPrTQTGmqbkWAxi/P6MyN6a+qQZFq0Xcx1WtEE9f87a2ocp+\nsXfmYs06JTVx94DuF8PepeYvbEaSel/fwPrPf9mLMOV1NQjUriNs/QS2f2Ff2+pi68fKEprwjLro\nek1WF5qziV7qPtWNDu2lCpN5tdMDlHu/VWNGR1fWvV9lpcrUWPWSGktp16l6D9YSo/Dbjq8ACQOv\nr71PkEUu9+nt6rFzDeGuLK++rJ9hz1WUmo+xJCdZDdB3GqBWhko/aA4u0g8028Ak2LdYcBchxAoh\nxH4hxF4hxEPN0bBmxVhM4fR2QFb/BxtU5XJbyc3OSVHHWUbcQTVSAo+sgKRfYOyflSCH9a0ecVtm\nlFjSoX/1iLswC76aaX2CQX6qmjhkWYulJvF3qFXu93yrnqcfgFA7v3CevhB/G1z2Aty4SN3gNrxT\n92BOfUipLtSoMRAzXm3reZl6rOlBNoTUfbDwZuuRk6NI3asuXmOcozkGKCsrlc+bd9ax79NYdi9S\nj2d32x6rqayE+X+CuePUYsBtQuCKV+vOh24frSbTRY2xft0EdTOnBJ7eBgiV6WMQMVQ9GnaJlCri\n7jZBPU+2Uk3zzC712ClO9ahKclXAVl6irvNmGpgE+yLucuAxKWUfYDgwRwjR17HNamaMxRSMkeea\nA5NgzkjZ8qGKWC0npBjibPkFam8xgJJxGL69S20bdo/aHtZHRdzGHduoc1KTjrHq4jdWat/6iarJ\nYC3SzU9VqWhudfxbo8eqAZTNc9V7Nzb3VAgY9aD62/d/3/DjDdIPqoJBA641b/MPh/BB5+dz71kM\n+//XvHVWUvcqm8QgtLdjI+70g/DxZbDwJlj+vOPexxIp7U+lyzissjD6TAOk7dIJ2z+DI3/A+L/A\nnw/BXX9A78vrPrcRGMXdaOP1GHNK4KltqkSz5QzMtqHqek3ZrJ5nHVXXT58p6uZrrQzymZ1qCn5Y\nX3PWWfp+FUTJymYbmAQ7hFtKeUZKuc30ex6wH+js6IY1K8ZiCqe2QnAP67aBd1sY9bCyFr6ZBS91\nU76dlOaBRUurJKCLin6Pr4XPr1L73bjIXEMkrK+K8o3V53NPWY8cOsaqLl36QRXZJn6ktif9Wntf\nW7MmLRECht2lLqj9/1Mj8o2NFHpPURfI+jcb70cby6NFj6u+vdfl6kba2CwWo6vbXHZLcY5a3q6D\nRUwT2kuJQUOKhlVWqDVCK8rr3m/9W/DeaPV97NAfDv3WPFUcN72nUunO7Kx/3z2LAAGX/kuVUra2\nFF5+mpoqHjUGxj2pBNUeIodDu3DoM9X668GmzJLMIyriDrfSi44YBslbzNE2KF89crh6XvPzPLNT\nibOXn7mOUdoBc2GrVhZxVyGEiEKt+F5r9VkhxN1CiEQhRGJ6enrTtK65MKwSY2DSFhP/AY8lwazv\nofsE+OOfsOL/1F3d3Uv5cgbuHkq8dy1Q575pcfWVqcNMF3jaPtWlk5XVhd/AMrMk6Re1b+RISNtb\n27axVqfEGgOvV/7rr39TzxsbKbi5w4g56oZ3Yn3jznFslam+S42/vddkQKp6zA1FSgvhbiaP2YhC\nO/Q3b6uKyuxsQ1kRfH0LfHQpvD/Gti+cfhB++5vq1s/ZrBa/KEiHM1Z82frY8RX8+Gf79i3MUimb\nYO6d2kJK2P2NymRq31VliFgT7l/+ov7uKa81bKr4oJvg0X0qoLKGkXlyYq26eVqzPyOGqiyS3FPK\n3/YJVNdC5AiV1ZJR4/92dpfytwHaBEObUBVxpycBQkX1zYTdwi2EaAssBh6WUtZaYkJKOVdKGS+l\njA8NtfOu2VrwCTDl3KZZt0kscfdQdsO1n8PgW2D1fyDxE1OEXePjDOmhpj7fsADC46q/ZlzUqfvM\nM7ysenUxar29s7uVveHfWX3JoXbUbU/EDeDdDuJuMC+AfD7TdONuVKlR6xsxOaeyQvVIosfWfq1D\nf5V3e6ARPnf2SeXjg2OF+9RW2P+DmgSSZprqXs0qaUBKYGEWfHaVyqZJmK1m5312JSy4sXYq3d4l\ngFA5yW3DoPsl6nnSbw1rf3Eu/PoX2PJB9fEWW6x8Uc0Q9PCtP9PpzA5VKjh2hnoePVb1Dixr5Rxe\npqLyMY81TvTqEnq/YJUSaIzlWI24TUFa8mYVYUcONy08YmW5v7xU1TvuNNC8LbS3irjTD6gxMMvE\nAgdjl3ALITxRoj1fSvmtY5vUAnhbeF/1CbeBmxtMeUNlWJTkWBfdyS/BncuqF4I38AtS2Rxp+61P\nvql6H3clBgd/UhFY/G1qRDuoW3UPuLRQRV32RNwAQ+9Uj75BajCosXj6qtW3k35RX+KGcHaXimxq\n2iSgLsreVyjvsyS/Yec1ou320bWjJinV52iMGVhuT0ls2IzNRXfAwhvhP91gzasqAPC3cBH9I9RE\nj5o3j8IsJdCrXoLl/4TfnoGPJqku/YyPYPK/Yc4WuPgZOPBD7Toxe5eoSNaYIdsmWJU+TfrF/raD\nOm/ROZUJU192UNoB2DJPfd8j4tX/ri52L1J5zX2mqefGzdmIukvy4YdH1ezI0Y80rN32IITywXNP\nKcuyY//a+3SMVYFV0i9qYpoh2O2j1ViRpc9t/L0dB5i3GWMY6XWUjHAQ9mSVCGAesF9KWceUIifG\nGLRw967e1a0PNzc1+j3hWUi4p/brQdFmq8MaxgDlOStWiyUd+pvtmMG3qm29JqvBHkPU1r+lRtm7\nX2Jf20N7Qc/J0CXh/KuZDb1TXQCb3m3YcVX+9hjrr/eZqlIqD//esPOe2aFEo9909dla5uoeXq4i\n2cV3VPeR17wMH05QHq495J5RA7ODblZ5xJUVyrqw/Czd3FTGzpkdSqh/+YvypV+KgQUzlc229jXV\nkyorgpu+hf5Xq2M9fVQGUrcJSjCNgkmp+1SE1++q6u3pcal6H3uzS4pzYMNb6jvQ+3LYtbDum9Zv\nf1M+9fi/KvFK3Wvbh6+sVJFuj4nmRUs6xCorwvifL/+H6hlNe0tl4TgCw+cO62M9Gnb3VIPgexar\n58YkHiFMPrdFxG14+pbXc1hvNUaUtq/1CTcwCrgZuFgIscP0U8+Qr5PhYxqM7DTAXMrVXoSAMY9C\nz0kNf9+wvupunXVEdbVsZYMYX5a+V5kHb3pOUvmmR1eoSQ7rXlfrRXa1MWnBGtd9AdfPb3i7a9Im\nRGWF7FxQ90Bc0bnqg5jHVitPsV1H6/tHDlezWPf9r2HtOb1d9VI6xgLStKKRCWNyx/7v4fsHTavb\n/xf++Jfabq1+hTWMdLEht8EVr8BjB1Q53pqE9lYCsGCmGlj2ba9mod72MzydCs9mwd9S4ZE91m9g\nCfcoH3a/6TPYu0RlNhiRrIHx/Ttk4yb342Mw/xpzdbyN7ynxHv+UqgBZkK4GOA32LoU34uC1/vBq\nP3XzHPeEiu47DVBlEjIPWX+vsztVplBfi5uLm5v6+46tUvbY5rnKErI1O7IpMHxuazaJQUS8Gvx3\n965uZ0aOUDeWnFPqO5K8WfWILRMXjAFKZLNmlAB41LeDlHIt4PgCsy2JYZVYm3jjSML6qNKVx9fW\n/eWKHqsGQkbMMW+LHKE8vKRflLBVVsDEfzbs/d3r/ffbT8K9sO0zJU5jrQx2ZR5Rsy3jZqpJUOWl\nqpCQZY2Jmri5K7tkz2KVj225qo8tjIHJftMtZi8eNA8qndykPuuek5Rnm31S9Vz6TFM3oJ0LVdvq\nu4Gf3Ki8XuO8tnotox5W0ViXBGXDNTS67D5Rdd03z1WzSg2bpOZYRof+yqY59CsMvrn6axmHVNSO\nhPdGwaQXVf597ylKrCrKlcW2/Qv1eacnwdJ7lVCFm6aJ+3dWlhiY7YKzu2sXYwPzoGq3i6pvjx6n\nbpiLbld/04RnGvZZNBSjZom1gUmDCNPqOjX/N4ZtsuIFOJWoejlG9UEDy7+9FUbcFz5Gd66ujBJH\nYKSOFZ2zPUsM1MDN44erRwTuniqzZc8S2P01jLzfeh54c9GhL8RcBJs/sL7yz/J/qJtU4jzY8aVp\nWnGB9YFJS/pOUwN19c28Mzh3TEWS4YNUV1m4mwcHK8rUgGKXBJV6NnyOEu3uE+FP81T7ywpMEzbq\n4eQG9X2pb4pzWG/l4XYd2ThLwM1NCWbyJlWXI/OQuinVRAhllxxZUdu/3/C2stlu/1Vl8CydrcZl\nxj+lXnf3UJlGSb8qa+mbW5W1cNO3cNV/1c/FT5tvZiE9VIRqKyXw6EoI61f75mKMZeSnwpXvWK//\n3pR0Hal6XcakGmsYE3Fq9lQ7DlDjEzu+UB759PfVmJUlfkHmtV2bcdYkaOFWhA9WF27fK5v3fS2z\nORojur0mK6Fp2xFGt4Ia1iPmqG79vqXVt6ckwr7vYMyfVb7uD4/AxncBYS58ZYuosapnsd9Ou8QY\nmAwfpIQyyGKA8uxudfOINPn6k/5PpXZe94USpajRqk3W0tYsKclT57JVS6OpGXSjEpEfH7Nukxj0\nnKRucpapmfnpKuUv7gYVRd7xu7ppjf9Ldb827iY1RvLxZJUhM30u+NsYc3H3VDdqawOUZUWqJxUz\nvvZrIT2U1z3qYesD9k1N+64we625Dr81/DupG9TIB6pvd/dQNuLNS9U5Bl5v/SYd1lv1VuwpGdGE\naOEGFdXEzmi2AjFVeLUxR9p1Rdy26DFReeOXvWg7n7U56TZBTWDa8I7Zy5YSfn9WedWjH4YZH6tM\nln1LTVXW6pieD0pQe12msmoqypTfuOZV26uon96uokHDf7ScvZhsmiVndI+FUBG/YcH4Bak21Sfc\nKYkq797oTjsanwAlHOXFJtvMRhZQ9Dg1SLzhHXPUveUDNcA74n713MNLeexGtG0Q2lP1RHJPqR5C\nj3oGuTsOUDevmv+D5E3q/WLG1z5GCJi9Rs2HaE10n6DGHmrS7SL1U9fg/fi/wuUNKKDVRGjhbmmM\niTjWJt/Uh297eHi3OROhpXFzg+H3quyGHx5W3e5Dv6tJEOOeVPnjbUPh2k9V1kf3OrqwlvSZpuyk\n/f+D+TOU7bLpPXMdDEtO71CpX0a3PrSXms5cXqpEJaALBNQx8Td6rNqvrqqHJzeqyNfoZjcHCfeo\nz2zgDbb38fJT4xyHf1cDkfnpyrrqdbl9edITn1fLf130t/r37TRA/U9yUqpvP7pSWQu2Bh2bYT3G\nZqXrCGXnNTNNODqlaRQd+ql87MZE3K2RQTepSGz7F7DtcxUtto+GIbea9+kyDO7fYn/OebeL1SSk\nRbcrr/aKV2D7fPj1r6rXYXRTKyuV7xp7jfnYkF4qayDrqIq4IxPqfq/oscoTTt6systa4+SG2quP\nO5rQXipzxbKWvDUS7lY3yO/mwDvD1ESkkQ/a9x6Rw+3vRVQNUO6qbkUcXal6NK2hB3gBoyPulibh\nXpi5sNk9Mofh4Q1TX4eHdqp0L1Becs0sjaBoFSHag5efsrLaR6kBtqF3qsyUwgxzGh8ocS7JNWdC\ngHm0/8hytSZgl3qEO3KEGtC0ZZdUlCmrpLn8bUvahNgXscbdoPzZskLVK3CEpdOhHyDMFfNApYKe\n3mHdJtE0KTribiYKSsopKqsgpG2NzII2wY3LAW/tBHRW5V8ve6FpzjflDSVahnCFD4Khd6k0ubiZ\nKiLf8qH5NQPDItj2uXqsT7h9/FX6mC3hPrtbDQg3l7/dWHpNhjmb1KQZR9gTXm3UZ2s59f3YakBq\n4W4GtHA3A5uPZfHQgu34errzx5/Ht3RznBNrk5MufloNcs6bqOwQUBlCltk6Xm3UAG76fiXu9syM\njR4La19X2SPe7aq/VlVFrpULNzjefus4QI0HGBxdqYqX1ZU3rWkStFXiQCoqJW8tP8T1czeQnlfC\n0YwCcoqcdPXy1ohPAEx/D/pdrQouPbQL7l5Re2KRIeSdh9g36ShqjEqNO2FlweKTG9SNwD/8/Nvv\n7HSMVdUqMw6pgcqjK1VKZXNnZ7kgF7xw/74vlXH/WUFBST31jR3AP3/Yxyu/JzF1YDivXKuqih1O\ny2v2dlzQdLsY/vSBGvy0lQtvTI6ozyYx6JKgonOjhoVBSR4cXQVd68k9dxUMS+rtePh3lJr8FDO+\nBRvkOlzwVsn6IxmcyCwk8cQ5xvVsvnKzFZWS73ac4orYTrx+XRwp51R6WVJqPkO61pO7rGlajIjb\nXuH28oPBs1QO9MVPm5etS/xIzTgcdqdj2ulsRI0hf9qHtK3INeWNSzVZSONwLviI+3iGWmJs49HM\nZn3fPadyOFdYxsS+HRBC0DnQF19Pd5JSdcTd7PSZqmYKxoy3/xhTXZjK9W8zZ/425q9LUhNbYsbb\nX/r3AmfX6Vxiv/FjWZspMOI+9ZnVHBPQOIQLPuI+ZhLuTc0s3KuT0lXhwB5qlpubm6BHh7YcSm1g\nbWnN+eMbWHumYH0EdoHYa6nc+inrCwbRft9m8EyFqz9wTBudkD8OpCElvPp7EhP6hCEutMk1rZgL\nOuIuq6gk+VwRXu5u7ErJobC0+XzuVUnpxHYOINgi/a9HWLtaEff6IxncN38rFZWNXLNR4zDKRjyA\nR0UxTwQsZ47Xj+ymB2eCmnG2ZCtn3eEMvDzc2Hcml2X701q6OS7FBS3cyVmFVFRKLuvfkfJKydYT\n55rlfXMKy9h2sran3rNDW9LySsguNFfPW7A5mZ92n63qGWiaj8z8Em76cJNN++rb5Lb8VjGE60sW\n0Umm8n7lldz35XZKy5thUd5WTkFJOdtPZjNrRFe6BvvxxvIkZGMXjNY0mAtauI9nKjGcMSQCdzfh\nMJ/7r0t2886Kw1XP1x3JoFLC2FrCrfy/JJNdIqVk/RHVpn1nai3jqbGDrIJS1h7KoLisosHHfrTu\nGGsPZ/DZhuO1Xispr+DN5Yf5PfhGBBJC+3D5jNvZfjKbV39POv+GOzmbj2dRXikZ2zOUORd1Z8+p\nXP44oKPu5uKCFu6j6Uq4+3cOILZzAJuO1rE6SyM5nJbHl5tO8spvB9mdohZ1XXUwnXY+HgzqUn0a\ne48Oqn6DEeEdTssnI19Vcdt3Wgt3Q8kpLOP6uRu4ad4m4v+1jAe+2s7Kg/aJR15xGZ9vUIs0/7T7\nLGUV1aPohVuSOZVdxLQrpsElz8GU17h8QGemD+rMp+uPk1Vgpea4C7H+cAZe7m7Edw1i+qDOdAny\n5c3lh3TU3Uxc0MJ9PLOAAF9P2vt5khATxM6UbIpKGx6Z1cX8TSfxdBcEtfHmqW93UV5RyepD6Yzu\nHoKHe/WPt3OgL2283DlkEu51hzMACGnrzd7TObXOfaGxMzmbI+n5TXJxF5dVcNdniRzLKOC5qX2Z\nOrAT6w9ncOvHW+waiP5q80lyi8t58OLuKmo3/S8AikorePuPwwyLCmJ09xDTQgiqNsl947tRVFbB\nJ+uOnVf70/NKeH/VEX7cdYaDZ/MoKW/a76WjWXc4k8FdA/H1csfT3Y0547uzMyWH73edqf9gzXlz\nQQv3sYwCokLaIIRgeEwwZRWSbSft97nLKip59OsdPLN0Dz/sOk16XvWVRYpKK1i8NYXL+nfi+Sv7\nsfd0Ln9dspszOcW1bBIAIQTdO7SrskrWH8mkS5AvF/UKZd/p3As2WqmolDz//T6ufGcdE15ZRcIL\ny3l4wXYOnLW/l5FXXMaulGzO5BRRXFbBQwu2s+VEFq9eG8eto6J58eoBrH3yYiLa+/L00j11+tAl\n5RXMW3uMETHB3H9xDwJ8PfnfjtNVr3+24ThpeSU8dmnPWpkSPTq0Y1K/Dnyy/jh5xeZZsAu3nOSL\njSfs/nveXXmEF38+wJwvtzHp9dWMfPEPUs4V2n18S5JVUMq+M7mM6mauC/6nIREMigzkqcW7OHhW\np7w6GntWef9ICJEmhNjTHA1qSo6lFxATopZHiu/avsE+9+qkdL7ddoqFW5K5/8vtDP2/Zbxm4W/+\nsOs0ucXl3JgQyeT+HbmkTxhfJ6r6xNaEG6BnWFsOpeVRUSnZeDSTkTEh9A33J7OgtNaN4UIgv6Sc\nuz9L5KN1x5g1oisvTI8lISaYFQfTmfnBJrtmkiZnFTL5jTVMe3sdI178g97P/MKve1P5+5S+TB1o\nnnru6+XOP6/sz+G0fD5Yc9Tm+b7bfprU3BLuHd8NLw83JvfvyG97z1JUWkFucRnvrjrCuJ6hJMRY\nL6F63/ju5BaXM3/TSQA+WXeMJxfv5m9L97D2UIbVYywpr6jkfztPc0mfMH54YDQvXzOQ7KKyqvM1\nFVtPnHPIvIENpnGZkd3Nwu3p7sZ7Nw2hjbcHd3+eSE7hhVXaQUpJZSvK/LIn4v4EuMzB7Whyissq\nOJ1TTFSwEu52Pp70D/e36nOfzSnm0YU7akU8S7afor2fJzufvZQl941k6sBw3lh+iCXblTjP33SS\nbqFtSIgOQgjB81f2p42XO93D2tI50Ndqu3p2aEdGvuqa5xaXM7J7MP3CAwDYe4ENUO5MzmbGu+tZ\nmZTOP6/sxz+u7M/MhEjeumEQ380ZhZsQ3PThZpKzbEeaKecKueGDjeQWlfHKNQN5YXosD03owWvX\nDeS2UdG19r+odxiT+3fkzeWHOJmpzltQUs6W41lsOJLJhiOZvLf6CP3C/aty7KfFhVNQWsHyA6l8\nuPoo2YVlPD7J9uKvA7sEMqZHCB+uOcbnG0/w3Pf7mNi3A91C2/Dnb3ZWyxqyxrojmWTklzBjSBf6\ndw5gxpAIJvQOY+GW5CazTFYcTOO69zdw5dvr7Pb97WXdkQzaenswMCKg2vYO/j68e+NgTmcX8dDC\n7RxOy2dncjYbjmSy93QOmfklTtmrTM4qZNLrq3lysZWl2loIe1Z5Xy2EiHJ8U5oWI6MkOtS8IOnw\nmGA+Xqe6uO18VCEcKSVPLN7F6qR0PN3d+PcMVSA+t7iM3/elct3QLvh6uTMosj2vdg4gPa+YJxft\nJr+kgh3J2fx9St+q7nR4oC8f3ToULw/b90NjgPLT9ccBGBETjI+XO6AGKC/qFWbr0Kr2bjyaxeCu\ngXh7uDfik2k6LD9HS1Jzi/n3Lwf4dtspQtp689GtQ2ulRkaFtOGLO4dx3fsbuWneJr65ZwRh/tVX\ncU85V8j1c5Voz79zOLE1hMIWf5/al9VJ6cz5chvtfDzYcjyLsorqgvH2zEFV/7eE6GDC2nnz2foT\n7D2dwxWxnejfue73und8N2Z+sIlnlu5hTI8Q3p45iKSz+Uz/7zqe+W4vb92g6niUlldSWlFJW2/z\npbZ0+yn8fTy4qLf5M7lpeFd+25fKL3vOcmWcWqEnv6Sc91YeITYigHE9Q/HxdEdKyd7TuaxKSueK\n2E5EhdRecHfriXPc+8XWqiymOz9N5JVrB1ad1x42Hs3kzeWH8PF0x9/Hgw7+PkyO7cTAiADWHc4g\nITqo1hgOQHxUEM9O7cfflu5h5cFVtV738nDjtlFRPHVZ71Y5Yee3vWcJ9PNiaFR7hBDsO53LrI83\nk55XwqG0fO4d342YUPMiEeUVlZRXSnw8m/dabLKZk0KIu4G7ASIjI5vqtI3GmOoeY/HFnhzbiQ/X\nHmPOl9uZNyseT3c3Fm5JZnVSOlHBfny7PYWHJ/agU4Avv+w5S0l5JdMHmb/snu5uvHvjEK767zqe\nWboHbw83/jQ4otr72upeGxgX04qDafQIa1slVpFBfnZllnyw5igv/HSAS/t24L83DrZ68TianMIy\nnl66mx93n+GK2E48NKEHPTq0IzmrkHlrj7FwSzIVlZLZ47ox56JuVsUdoHdHfz6+bSg3fbiJm+dt\nZsHdw2nfRi24cDq7qCrS/uLOBLtFG6BTgC9PTu7N37/bS++O7bh9VDQJMUH4eqqvu7enW7WMH3c3\nwdSB4cxbewx3N8Gjl9a/YveImGDG9QylUkrm3hyPt4c7sREBPHxJD17+LYn2fp6knCti49FM/Lzc\n+eGBMXQM8KGgpJxf9pzlqkGdq914R3cPoWuwH19sPMGVcZ2RUvKXb3fz/U7lvbfz9mBMzxD2nMrl\npPmYLsUAABClSURBVKmH8uWmk3x730g6WNzwklLzuP2TLXT09+HT24fh7enGXZ8m8vDCHexKyWFC\nnzAGR7avU2gy80u4/8vtuAkI8/fmUFoZqTklvL/6KDEhbTiRWcgtI6JsHn9jQiSRQX6cKyyljZcH\nvl7u5BaVcTa3mMQT53h/1VFKyip5dmrfViXeH645yr9+3A9AdEgbJvXryPyNJ2jr48GXdyVw68db\n+GDNUV68WgV3lZWS2z7ZwrGMApbOGVW71r4DaTLhllLOBeYCxMfHt3h/6KhJuC0jkrgugbwwvT9P\nLt7Nk4t38ejEnvzrx/2MiAnm338awEWvrGTemmP8bUpflm4/RVSwH3E1Uvrat/Fi3qx4pv93PVMH\nhhPg17ASlp0CfGjn7UFeSTkju5lFvm8n/3pzuROPZ/HvXw7SPawtv+1L5Znv9vDC9FiEEGw9kcWr\nvycxtkcod46Jwd2t7guioKScTzccZ/OxLNJyS0jLU93YiPa+RAT50S/cn+viu1Sb+QnK33zs6x2k\n5ZUwZUA4y/en8uPuMwzqEsiO5GzchGBaXDgPT+hJZHD9K9wMjmzPh7fEc+snW5j18Wbm35lAQUkF\nN3ywkewCJdoDIhq+OtAtI6KYPqizzZtGTa6MU8I9Y3AE3ULrX3ZLCMEntw2tJTyzx3Vj5cF0Pttw\nguiQNlw1qDNLt5/i4YXbmX/ncH7fl0pRWUW1gABUSYQbEyJ54acDHDiby5bj5/h+52kendiTuC6B\n/G/naVYlpdOnkz9zLupGRHs/7v4skVkfbWbhPSPw9/FgyfZT/POHfXh7uPH5HQmEtlP/u09vH8aT\ni3fx8bpjzFt7DC8PN/p0bEfHAB86+PswMCKQ6YM64+Ymqm4YuUVl/O+BUfTuqJZnyy0u48ddZ1i8\nNYVT2UVM6G27ZyiEsDnGc+vIKDr6+zBv7TEqpeQf0/o1qXgfSs1jzaEM+oX7Exdpf6904ZaT/OvH\n/Uzu35EJfTrwTWIy7606Qo+wtnx6+zDCA325ZkgE3ySm8MglPQnz9+HLzSdZcygDNwH3frGV+XcO\nr7O33ZQIezwnk1Xyg5TSjir0SrgTExPPr2XnyROLdrLiYDpbnq69WvUbyw7x2rIkQtp6UVhawa8P\nj6VLkB+PLNzBr3vPsvjekVz+5hoemtCDhy+xHn3lFpfh5+neqIh3+n/Xsf1kNu/dNITL+ncE4K3l\nh3h1WRK7n5tUrVttkJlfwhVvrsXb043vHxjN3FVHeXvFYe4aE012YRnfbE2hrbcH+SXlDIsK4pVr\nB9IlqLZwlpRX8NWmk7y94jAZ+aX07tiO8EBfwtp5IwSknCsiOauQ45mFeHu4cfXgzozrGcaulGw2\nH8ti68lzRAW34Y3r4xgQEUhWQSkfrDnKr3vPMrFvB24dGUWnAOv+fl0s25fK7C+2MigykMz8UtLy\nSvjsjmEMjrSy+raD+Hn3GUZ2DyHA9/zqSReWlpNdWEa4aZxj0dYU/vzNTh6d2JNtJ89xKDWfNU9c\nhFuNm+u5glISXlzO0Kj2bDl2jpHdg/lo1tBa+xmsOZTObR9vYXDX9nh7uLHmUAaDIwN5+ZqB1brz\nBrnFZWw5lsW6w5kcSssjNbeYMznF5BWXM6ZHCP+ZMZDVh9J5YtEunr68D3eNjbH6vlLK8xJbKSUv\n/LSfD9Yc464x0Tx9Rd9Gn8s437rDmXy49igrD6ZXbffxdGNYdDCPTezJwC62b/4/7DrNA19tZ2yP\nUD64Jb5KfE9lF9HezxM/L3U9nsgs4KKXV3LX2BhmjYji0tdWM7BLANfGd+GhBTu4YVgkL0zv3+jP\nRgixVUoZb8++F2yRqWMZBUQH1/b/AB6c0J2zuUV8tTmZf17Vv0rg7hkXw5Ltp7jrs0SkpFZUZIm/\nnZGcNXp1aMeO5GyGx5jLu/YN90dKOHAml/gotV1KSW5ROcnnCvn3LwfIKizl23tH4u/jyWOX9iQ9\nr4QP1hzDw00we1w3Hri4O7/sOcuz/9vL5DfW8Pp1cVzS17wgb1FpBdfN3cCulByGxwTx/s29GdLV\nujAeTsvno3XHWLw1ha82J+PhJujfOYAHLurO7PHdqr7MQW28ePKy3jx5WW+r57GXS/p24NXr4qpW\nCvrs9uYVbVBWWlPg5+VR9fkA/GlwZ9YdzuD1ZSojafa4blbFuH0bL6YM6MS3207RKcCHV6+Nsyna\nAGN6hPLyNQN5eOEO2np78M8r+3FjQlebx/j7eDKhTwcm9DF/J6SUzN90kv/7cT+TXl9NeUUlw2OC\nuGN07YFfg/ONkIUQ/PXyPhSXVfLBmmP0Cw/gqjquNVtIKVlxMI3Xlx1iV0oOIW29eWxiT6bFhXPg\nbB4bjmTy0+4zTP/vOm4bFc1jl/as9n8BWL4/lYcX7GBo1yDeu2lItYi5ZoJB1+A2TI7txJcbT7I7\nJYeKSsn/u3oAXYL8OHA2j3dXHqFvuD83D7dRF74JqTfiFkJ8BYwHQoBU4Fkp5by6jmkNEXf8v5Yx\noXdY1WBjTSoqJfvP5NIv3L/aF/GOT7aw/EAagyMD+fa+UQ5p27GMAvaezmHKAHMq25mcIka8+AfP\nX9mPW0ZEsWxfKk8s3lVtht4L02OZmWAePyivqOSrzScZ0S2Y7mHmcprJWYXM+XIbB8/mMf/OBOKj\ngpBS8tCCHXy/6zRvXj+IKQM62XUBZhWUcjgtn37h/rSx0hNoatYdzqC9nxd9w5txBfVmIL+knClv\nruF4ZiG/PzKWHh2slz/dfyaXhxfs4IWrY23eVGuSeDyLiPZ+dAzwqX9nGxxNz+eRr3dyIrOAHx4Y\nTUR7OxdyPg/KKiq58cNN7ErJZvG9I+kXHkBxWQXfJCaTW1zO9EGdq3otoD7DA2eUx5+cVcTyA6ns\nSsmhS5Avc8Z3Z/rgzrWskdziMl765QBfbDxJRHtfnpnSl0tNpZbXHsrg9k+20KdTO764M8EuW23P\nqRymvLUWgGen9q3KbKqolNz9WSI7U3JY9fj4Rl0rDYm47bJKGkpLC3ducRkDnvuNpyb3Zva4bg06\nduuJc/zp3fX83/T+3Jjg+DungZSSwf/8nUn9OnL14AhunreJ7mFtmT6oMxHtfekW2tbmxW6NrIJS\n/vTues4VlrL43pEs35/KCz8d4PFJvZhzUXcH/iUaWxxOy2fD0cxmicgaQ2WlpLi8olZU6kjS80qY\n+tZaPNwFd42J4b1VRziTUwyAm4BxPUPp2bEdm45msftUTlUVTSFU4sE9Y7sxfXBnPOuxLDcfy+Lp\nJbs5lJbP8Jggrh4cwbPf7aVrsB8L7h5OoJ+X3W2+/8tt5JeU17Kx8orLOFdQZtfYjjVcXrh3pWQz\n7e111TzkhnA4LY+YkLZ1dlMdwU0fbuJYRgG5xWWEtvNm0eyRBLWx/wtVk5OZhVz97jrchCAjv4TL\n+nfknZmDW9VIvkazIzmba9/bQGlFJYMjA/nzpF50ae/H14nJfJ2YTGZ+KQO7BDIiJpghXdvTNdiP\nzu19G5wOa/RQX/09iXOFZXQLbcPCe0Y0OBvE0Mymvo5c3uM2SqTGhFr3uOvD0nZoTvqG+7P2cAYd\n/X34/I6E8xJtgMhgPz66dSjXvb+Rnh3a8Z8ZA7Voa1odcV0C+eyOYRSXVTCuZ2jVd/SxS3vx8CU9\nKauobJI8aQ93N24eEcW0OJXpM7l/x0al8LWGa+iCEO78knKWbD/FmqR0TmQWcjyzAHc3QaSVrIrW\nzPheoSzfn8q7Nw2xOfOyoQyICGTZY+Pw9/FoFo9ao2kMw23Mf3B3E7i7Ne3klgBfT2aNjGrSczY3\nTn0lp5wrZO7qo3y77RT5JeVEBfvRPez/t3evIVLVYRzHv78sK81Ss4upmNVSiZRaeemGaC/sQkZE\nV7qA1JtAiyCKXtW7ILIMkUorK6nIpMQXQWxBEGnZBbOstKuapmZuoZW6+/Ti/Fc22TUvezyX+X1g\nmDnHo/M8PLM/Z/47c6YPlzQNYMyw/of800wH68LTB9B834Ru/3e76z8BMyuHygb3D5u3cf3TH9Ky\nfSdXnTOQW8cPZeSQvqV4GWNmlqdKBveaLdu5+dkltLYFi6ddvPtj5GZmjaBy5+Nel85hsX1HKy9P\nHevQNrOGU6ln3Eu+/43pr37G9n9amX/n2Np9SMPMbF9UIrhb24Kn3l3FzOZVDD2+N8/dccHuc1ib\nmTWaUgb33ztb2dDyN8vXtbDsxy18sHoz323axrWjBvHINSM6PQmTmVmjKE0CtrUFU2Z9wLqtf/3n\n/By9evbgvKH9mDapab9OBG9mVlelCe7DDhNnnHgM5ww+joHpPMFnntyH4QOPLeTLAszMyqo0wQ0w\n44aRRZdgZlZ6fiprZlYxDm4zs4pxcJuZVYyD28ysYhzcZmYV4+A2M6sYB7eZWcU4uM3MKiaXLwuW\ntAn46QD/+gBgczeWUwWN2DM0Zt+N2DM0Zt/72/PQiDhhXw7MJbgPhqRl+/pNx3XRiD1DY/bdiD1D\nY/adZ89eKjEzqxgHt5lZxZQxuJ8puoACNGLP0Jh9N2LP0Jh959Zz6da4zcxs78r4jNvMzPbCwW1m\nVjGlCW5JkyV9I2m1pAeKricvkoZIek/SSklfSpqe9veX9I6kVem6X9G1djdJPSR9Jmlx2h4maWnq\n+TVJPYuusbtJ6itpgaSv08zH133Wku5Nj+0Vkl6RdFQdZy3pOUkbJa3osK/T2SozM+XbckmjD+a+\nSxHcknoAs4DLgeHATZKGF1tVbnYB90XE2cA44O7U6wNAc0Q0Ac1pu26mAys7bD8KzEg9/w5MLaSq\nfD0JvB0RZwHnkvVf21lLGgRMA86PiBFAD+BG6jnrF4DJe+zraraXA03pchcw+2DuuBTBDYwBVkfE\n9xGxA3gVmFJwTbmIiPUR8Wm6/SfZD/Igsn7npcPmAdcUU2E+JA0GrgTmpG0BE4EF6ZA69nwscCkw\nFyAidkTEVmo+a7KvRDxa0uFAL2A9NZx1RLwPbNljd1eznQK8GJklQF9JAw/0vssS3IOANR2216Z9\ntSbpVGAUsBQ4KSLWQxbuwInFVZaLJ4D7gba0fTywNSJ2pe06zvw0YBPwfFoimiOpNzWedUSsAx4D\nfiYL7BbgE+o/63ZdzbZbM64swa1O9tX6fYqSjgHeAO6JiD+KridPkq4CNkbEJx13d3Jo3WZ+ODAa\nmB0Ro4Bt1GhZpDNpTXcKMAw4BehNtkywp7rN+v906+O9LMG9FhjSYXsw8EtBteRO0hFkoT0/Iham\n3b+2v3RK1xuLqi8HFwFXS/qRbBlsItkz8L7p5TTUc+ZrgbURsTRtLyAL8jrP+jLgh4jYFBE7gYXA\nhdR/1u26mm23ZlxZgvtjoCn95rkn2S8zFhVcUy7S2u5cYGVEPN7hjxYBt6fbtwNvHera8hIRD0bE\n4Ig4lWy270bELcB7wHXpsFr1DBARG4A1ks5MuyYBX1HjWZMtkYyT1Cs91tt7rvWsO+hqtouA29K7\nS8YBLe1LKgckIkpxAa4AvgW+Ax4qup4c+7yY7CXScuDzdLmCbM23GViVrvsXXWtO/U8AFqfbpwEf\nAauB14Eji64vh35HAsvSvN8E+tV91sDDwNfACuAl4Mg6zhp4hWwdfyfZM+qpXc2WbKlkVsq3L8je\ndXPA9+2PvJuZVUxZlkrMzGwfObjNzCrGwW1mVjEObjOzinFwm5lVjIPbzKxiHNxmZhXzLxJfvn/e\nbtvgAAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fab6dc48dd8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "losses = np.array(losses)\n", "plt.plot(losses.T[0], label='Discriminator')\n", "plt.plot(losses.T[1], label='Generator')\n", "plt.title(\"Training Losses\")\n", "plt.legend()" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Generator samples from training\n", "\n", "Here we can view samples of images from the generator. First we'll look at images taken while training." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def view_samples(epoch, samples):\n", " fig, axes = plt.subplots(figsize=(7,7), nrows=4, ncols=4, sharey=True, sharex=True)\n", " for ax, img in zip(axes.flatten(), samples[epoch]):\n", " ax.xaxis.set_visible(False)\n", " ax.yaxis.set_visible(False)\n", " im = ax.imshow(img.reshape((28,28)), cmap='Greys_r')\n", " \n", " return fig, axes" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "# Load samples from generator taken while training\n", "with open('train_samples.pkl', 'rb') as f:\n", " samples = pkl.load(f)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "These are samples from the final training epoch. You can see the generator is able to reproduce numbers like 1, 7, 3, 2. Since this is just a sample, it isn't representative of the full range of images this generator can make." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAGRCAYAAABR3wXnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXeUFNX6tc+Aiok4IgoIAyqIAoIYrgkxiyJGgog5K6LX\neM2gXkV/elEQM0bMXL0GFANBEEVExYyAIEGiICrmwPfPV6/PSB2marr7dPewn7V6rb2K7uqqOlV9\nOHveULJy5UonhBBC5Jpq+T4AIYQQawaacIQQQgRBE44QQoggaMIRQggRBE04QgghgqAJRwghRBA0\n4QghhAiCJhwhhBBB0IQjhBAiDCtXrkz8Ki0tXemc0ytLrw4dOqx0zi1JMwYal+IYl9LS0mg/BfWq\nU6eOvUJ9Z0lJib0y3JeelQJ7pX1W1nIpKCsrc0uXLk3zEbEaJk+e7EpKSmZnup/KjEtJSYnpql7e\nqFq1vxbyf/75p+m11vrr9v/9999NZ2NcysrKov1kspuss/fee5v+73//G+Q71157bdO//vprJrvS\nsxIQPjeEz1DaZ0WWmhBCiCCkWuEUCtWrVzf9xx9/VGofvv/1rimsSf9T840vVzVrCqFWNSTDVU3e\nyfezkq/fqlx8l1Y4QgghgqAJRwghRBCK0lLLxlJvTbTR2rdvb/r999/P45FkRlX7I+71119v+pJL\nLsnjkWSPqjZGuSTuWm2wwQa27Ycffoj9XM2aNU3THv75559Nb7LJJqYXLFiQ+cFmiFY4QgghgqAJ\nRwghRBBybqmlXVonicgohiX6uuuua5pL3HxSzDYaSTv+vAep82mr8j7Pt422zjrrmM5WRFnaMaqq\nUaMbbrihaVpjvD7UkZX27rvv2raOHTuaXrJkiWlG6LZt29b0hx9+aHrRokWm0/4W58IW1QpHCCFE\nEDThCCGECELOLbW0SzEup7nM3nXXXU2PHz/e9FFHHWV60KBBzjnn6tevn/o4s02h2Gi5gEvtZs2a\nmZ45c2bse3baaSfnnHNTpkyxbe+8847p3Xff3XTLli1Nv/3221k5Xp99ERraKytWrMjLMfCZikq8\nsPRMly5dTI8dOzbYcfG5r0oRbhznnj17mn788cdj3//jjz8655zbaqutbBvHrEGDBqY//vhj023a\ntDHN355NN93UtC9KzZdIn4trrxWOEEKIIGjCEUIIEYSCSPyk1fDTTz+ZLi0tNf3NN9+YZiRNZKPx\n/T4L5a677jL94IMPmp44caLpXETshCbX1g2v6Zdffmnad+3ee+8955xzs2f/VVS2Tp06pseNG2e6\ndevWpmmvkenTp6c6XlpGv/32W6rPZhPfWKSN0EobAXniiSeabtGihekoIorXhxW080Wx22g+fDYa\niTt32mitWrUyTUtt0qRJpnk/3XfffabXW28907Qt+/XrZ/r777+v8BgzQSscIYQQQdCEI4QQIgg5\nXz/T3tl2221NMznpl19+Mf3KK6+Y/uyzz0z36tXLNJf9559//mq/n0vH008/PVazDtGxxx5r+rHH\nHlvtvguVJDYaaywtXLgw1f59FtCMGTNM77DDDqbnzp3rnCs/FtwHI2zI559/brpPnz6maaklsaNo\no9WuXdv0t99+G/v+0KRNdEwbAdm0aVPThx56qOnISqP92bx5c9Onnnqq6bvvvjvVd4rV07lzZ9Mj\nR440ffDBBzvnyl9v/mmBEWW0s2nXDRkyxDR/W6dOnWqav8uMZDvmmGNMV7b1y+rQCkcIIUQQNOEI\nIYQIQs4tNdo7rOXFaDRG3TzxxBOmL7jgAtO0QvhZRl5EpO0jT4uOkWzFaqklIa2NRmgBjRkzxjSt\nHiaZpR2PCPaeZyLchRdeaJrJoW+99ZZpXzRaPm20kAmNjDy75pprTPfu3dt0ZCXzuPbcc0/TVfn+\nzweM4uSfFJg8HUXdbrzxxrbNd9/QauOzt3jxYtOPPPKI6bjfSuec22effUz7bLRs1brTCkcIIUQQ\nNOEIIYQIQk4sNdY9mzBhgumoTtDf4XLwhRdeMP3www+bLisrM718+XLTTAjdZZddnHPlE6WGDh1q\n2rek5BLx+OOPj31PtujUqVNO9x8CWpA77rijaVqmtAmiyBpGQ9EmoP3jq+VEK4i2D6NzDjnkENPT\npk1LcioGo3ZyRciERlqKtEP22msv06x9F9GhQwfTF198selCSZ7NJbm2PPnc7LvvvqaZnBnByFn+\nPvEZY9L7smXLTDMqkUm/jADefvvtTW+00UamfXXVstUyQiscIYQQQdCEI4QQIgg5sdSi2llJ4fJ1\n/vz5prnEZbKfr5R5FKXEKDZGvfG4mITK/R144IGmP/jgA9NcstLGS0vIku9/J1uRJoyOYSJh1IbA\nOed69OhhmhZoBMeoXr16pllvjTXuOC6MTGMCb1objfdOiHYBPrvCtz1bcKybNGliOrLGatSoYds4\ntvvtt5/pKCHRufLWZVUi1zYabVtGDtI+GzhwoHPOuQEDBtg2PitM5OTzXKtWLdOXXXZZ7PYRI0aY\n5u8fn09GDLNDabbQCkcIIUQQNOEIIYQIQkaWGiORZs2aZZpLwEzwRY1ss802pv/xj3+Yvvfee1fZ\nB+2EYcOGmd5iiy1MMwKHtYSOO+440w888IDpU045JdHxh4RJZYwi4nXLVqQJkydfffXVWF0RvOY3\n3HCDaS7pDzroINO8FxjVyA6VHKMkhC6D77PLcmGj+fjiiy9MR9eU16Fu3bqm77zzTtNVNTItFzBJ\nnXbZGWecYZq1DBk9y/dXBO8bRpp9+umnpq+99lrTtEtZp5KRxGwbIktNCCFE0aIJRwghRBAystRo\no+UCWkCM8GD00ldffWX6nnvuWe3+nnnmGdOM3rj88stNc0lLG4cJqYVI2u6kmUSspS2PHwdtnBNO\nOMG0r+4ao3OuuOIK04MHD874WFb3vVWNrbfeepVtHAveF4yei0sSFX/B68bWHIy6PPfcc03T/s2G\n1c1WBazDxtYfrG/IzqG04Ph7mgu0whFCCBEETThCCCGCkJPEzw022MA066cxCSpJ1AuXqbRxGNV0\n4403Jj4u2gJt27Y1zWgPfie3jxo1KvH35BtfdB8jUOKSMUMyZcoU00nsrEaNGplm24JsETpiLV+w\nnURkw2y55ZYVfi7OiqvKJEnG3WyzzUzzeWKC+VlnnWX6zTffNP3GG2+Yruy9x9/T1q1bm543b57p\nqNuuc+XPg1GiTBTNVnK4D61whBBCBEETjhBCiCDkxFLzJQylTR7jUpP6ySefNM2IjDlz5qx2f4x0\nYwIcO+SxtUHDhg1Nh6i1lS18S/R82WjR8p2JZ1zSE1/0Wi5stDURJghGzw4tTUY70l5Jk5CYTWrW\nrGn6+++/D/a9PhuN18r3JwJGg40fP970Rx99ZJrPQhpLjQneHB8mcvqSpNll9KabbjLNiLVcRyNq\nhSOEECIIOVnh5AL+L2Dq1KmJP8fquJ988onpK6+80jRzbJ577jnTrArN6qqsIi3+gv/jYxOoc845\nxznn3C233GLbfH+oZr7NQw89lO1DXONhQE+0al9//fVtG1eeLGGU6+ZkPkKuanzw3JlLw6aQXEkw\nUIrHzz/gX3rppaZvv/1201FpJ36O5bv69+9vumfPnqb5W8XyRFyZMhCCY8tghlyjFY4QQoggaMIR\nQggRhIKz1BjbTttr5MiRpp999lnTXDJGlg6DB7i85B/ZvvvuO9NcArNyKuPQZaNVzMsvv2y6U6dO\npqMx6tOnT+zneP1ZgTxfNk6uKITzYeBINF4nnXRS7Hs5LlXh+mcDlq3p27evaQZK9e7d2/SOO+5o\nmjYyg5P42Sg/57zzzrNtrCbNP+pzLFu2bGl66NChpmnNcTv/vBASrXCEEEIEQROOEEKIIBScpTZu\n3DjTjDDzVT1lGYm7777bOVd+uUobjdWk2QyJuQnM1Tn11FNNJ7EUCsEyCQGjXRjhRBuN1yKKfPKV\nsKEtSsuCY/v111+bPvjgg00//fTTFR5vrst1JKUQ7glGMzHKKQ7mijACMV85OfmC43bHHXeYnj9/\nvumdd97ZNH+r2CzyuuuuM81ngXqXXXZxzjn3n//8Z5VtzpUfv4svvtg0Sw91797dNJ+Pfffd1/RT\nTz1lOm0DwEwqq2uFI4QQIgiacIQQQgSh4Cw1lm5gZFrnzp1Ns0kQS87QOom4+eabTd92222mGXXG\nch4DBgwwndYCKQTLJFccc8wxpl999VXTzz//vGlWwKUNEC3BacURLumZYMvIG9qhtAmSVPXNp41W\naPAenTx5snPOuT322CP2vXwWmRCaC0stSnh0LjsN/nIF7yVGoDGRkttp0ftKBTHZOTp3Jnvycxy/\nd9991zRLfL344oumd99991X2/XeS/CkgW38u0ApHCCFEEDThCCGECEJBWGpcru2///6mWd2Udsms\nWbNiPxvBJd/mm29umhEerCnFZe/JJ59s+pJLLkl2Av8f2g7UTKALTSZL4aOPPtr09OnTTb///vux\nmmPHPulRXTVW/uWx8L2MvKF9Qbtu0qRJpn02GpPlfvrpp9j35BPaVbR0cx3pyP0PGzbMOee31Ajr\nhrEycbYoBBstia3HWmpMpBw+fLhpX1Xo008/3TQjMI844gjTUQQmK6XTUuMzVL9+fdO8Vw4//HDT\njFjzkeQ+y9a9qBWOEEKIIGjCEUIIEYSCsNQIl5e0VHzNjuL6dO+33362jfYbk7Mefvhh04y64tI4\nLTyutM3mcoVvKUwbkcmby5YtM/3AAw+Y5vnccMMNpi+88ELTHIvmzZubjiwBHgvHli0hxowZY7pL\nly6maUHQLuN9wbpRhWijEdpoJNeRjr5S+3FwzNO0BClWaKP5EjN5HRgtWaNGDdOsB8gINFrBjK58\n/PHHTUf1I4888kjbxjYd/B4eL7c/88wzsd+TNsEzF2iFI4QQIgiacIQQQgShICw12ggdO3Y0TdvF\nl/zE5W70/g4dOti2119/3fSjjz5qmrWH/ve//5n2WR0kk7pS/Gxo6tSpY5qJaqxZN3v27NjP0sa6\n6KKLTPui8WrVqmU6Kr/OZT+7rNICrV27tulXXnkl9nsK3S5LQr7qu3EMmFgbBztUMiJq8eLF2T+w\nAoO/MdRt27Y1zVYB/D3hbxKfG9/vFiPPzj//fOdc+ecwri6hc+XtMnYCvfrqq+NPqgDQCkcIIUQQ\nNOEIIYQIQkFYauTss882/eabb5rmspPLSkZVRSXsmXjFZS/rDbHjJ6NNGJnjWw6feeaZpgcNGmSa\nbQ5YTp+ELu1O64YdAsl2221nmpZLnF3pnHNTpkwx3b59e9O8XryO0dKfVtiMGTNMf/zxx6ZbtWoV\ne1xJSqIXShuCJGRyfLzOu+22m2lGWxImmdJGi8bIZ/Oy+y6v/5rcquCwww4zPX78eNO8h5kky26e\nvIb16tUzzd+WqEMx67FxHBiBRlu6kG00ohWOEEKIIGjCEUIIEYSCsNRY14xl7Rnp5EuIY9Jiw4YN\nnXPlkzdZH4mWC+01wugtfic/O3DgQNO01GhZhbZ3fDW4knz3kiVLYvfjgwm0vXr1Ms0IQ74nagVB\nC4AJdBzzfv36mWbiZ5JaW0nOtUWLFqanTZtW4ftDkPZeoTVJG83XQoA2Ka2fdu3aOefK17Jj5BMj\nNtkGhDbe2LFjTTOZmO8nvvuU1+Dyyy83HdIq4m8JIy59bTX69OljmjZzkuRd/v6w9lnUtZj3wdKl\nS02zgygTnYsFrXCEEEIEQROOEEKIIBSEpcZIjgULFphmlFLUndC58lFojGqK7DOfLeSzmrhk9n2W\n76fVR5JE7NA+zCaZ1OCiLdOgQQPTjI6htTFv3jzTHCNG3tAae/nll1f590WLFpmmjUm76Kmnnkp+\nEgkpRBvtuuuuM/2vf/2r0vv01e/zWS/RteC/M6KNVg4tJtpoxGejEd99yucrXxFXvjYirEHG5Gn+\nDqV9/njNR40aZTrOUuW2Yk961gpHCCFEEDThCCGECEJBWGpkxIgRpplgxqU+o0mYYBktN5lUuO22\n26b6/iRLY1qAacnks7mC58w6WbRIDjrooIy/Z/78+bHbWbOLFFpp9cqQJHowExstG0TJhknJVlfS\nXHc3zQW+KFYfvnOkNcZuunHwc8WeaKsVjhBCiCBowhFCCBGEjCy1XC+JuXxk9BQjnJjYKSqHb+x8\nUTuhyIWNFjoht1isojRk65yK8dqkPWa+nxGqhWith0ArHCGEEEHQhCOEECIIGVlqSeqbZcuWoY0m\nKgftR9Ymy3dZf581u+mmm5pmQnAm+y/0tgU+GKWZpCttLmESNmvm+RJPSbdu3UznIrE3W/ieFZ+1\nn4Q11UYjWuEIIYQIgiYcIYQQQchJ4qfPRkvbKbAYE8MKGV+J/yQ2U9qxiKtJ5/ucb3sSGy3JPVUV\n7h2fjeYbl1w+O9tvv32F7/FZgIVsoxHfs5LWRiuk37B9993XtK87bK7RCkcIIUQQNOEIIYQIQkma\nZV5JSckS59zs3B3OGknTlStX1s9kBxqXnJDRuGhMcoKelcIk8bikmnCEEEKIyiJLTQghRBA04Qgh\nhAiCJhwhhBBB0IQjhBAiCJpwhBBCBEETjhBCiCBowhFCCBEETThCCCGCoAlHCCFEEDThCCGECIIm\nHCGEEEHQhCOEECIImnCEEEIEQROOEEKIMKxcuTLxq7S0dKVzTq8svTp06LDSObckzRikHZeSkhJ7\nhTy36tWr2ysb+6tWrZq9imFcSktLo/3olb1XTp8VvdK/0j4rqVY4ZWVlad4uKmDy5MnOZaEZ1OrG\nZa211rIXKSkpsVdaqlevbi8fderUsRe/q7LfucEGG9jLh+9cSdyx/P14sjEuZWVl0X5iSXINc0Em\nY1AA5PRZEelJ+6zIUhNCCBEE/38FRZXgt99+i92ettNrtWp//d/kjz/+qPD9S5cuXWUb/1e94YYb\nml6xYkXsPtZdd13TP/zwQ+x7uEL4/fffTTdv3tz0zJkzTfO8uRJKck7ZJPT3RcSNO68hj4vjxc9x\nO8fop59+Ms375c8//8zgiEVVQiscIYQQQdCEI4QQIgiy1NYg1l57bdM+q80HbRGf1VIRfO+PP/4Y\nuz/qX375JXY/rVu3Nr1kyZJYTRuNcP+04NYU+EfzL7/80jnnt8h4j/gsQNpoJImNJtstMzp27Gh6\nwoQJpn1jRQs5X/e+VjhCCCGCoAlHCCFEEGSpVRGYn8IlNSOQaGPROvn5559N+/IzfNaZL4+EFkmN\nGjWcc8717NnTtr3wwgummzZtavr999+P3TfPadasWaZ5Hr5j5DltueWWpqdNmxb7nmziO4e00H6i\nNfLrr7+m2k9ko5E2bdqYbtCggemRI0fG7iOJjeqzb3mdeY/wnLg911YbnxtfJGShMm/ePNMDBgww\nfcstt5jefvvtTderV8/0ww8/bDqkvaYVjhBCiCBowhFCCBGENcpSq1mzpmku1bmULtbIGZ4DLarZ\ns/+qOsFzo43mI4lF5bOi6tata/rQQw91zjl33HHH2bbu3bubvu+++2KPlxFQ1Dx2Wkq1atWK3c5o\nN9poPMZvvvkm9jwyJUkipQ+f/ZTWRvMR3Se8thyLCy64wPTYsWNNMxqQdgzPKUnCcSFEDBaDjbbe\neuuZvv3220337t079v3HHnusaY7VPvvsY7p+/fqmFyxYkJXjTIJWOEIIIYKgCUcIIUQQ1ihLjRFD\nc+fONb3JJpvEvj+J7VQo8BxoSyWxcZLYiOuss45p2kSMEtt9991N047p1q2bc865Vq1a2bbDDz/c\ndOfOnU1/+OGHpmfMmBF7jD5L7/vvvzedxLLKlY1GfMea5PjS1rvzwQiwLbbYwnSXLl2cc84dddRR\nts0XycRjZ+27fv36mabdQxvTdx7ZOr+qzvrrr2+aNQL5e8Zryci7YcOGmV64cKFpPk8h0QpHCCFE\nEDThCCGECELOLbXK1t3KFlxe3nvvvaZp6TRs2NC0rwZXocPlMvFFOiVJSORnGRlFe40Jftw/E9H2\n3Xdf51z568zIGF/NtCT3DtscMOLIF8lFK8EXMZVN+B1J7v8kCbm+6+KzHTlGtMwi65XPRa9evUy3\nb9/eNMec1/ziiy82/fXXX5t+6KGHnKg8fD4bN25smhGovD9430SJ1s4599JLL5kuLS01zTGkBZ9r\ntMIRQggRBE04QgghgpBzSy0fNhrrZX3yySemaR0deOCBpg877DDTxWqpEV+3S5JJlBSX7C1btjQ9\ndepU00zki+yBL774wrYxcmr58uWmWevLFzHH4/ruu+9M+ywlvt/XZiF0kq8vMjBth1ZGMNGy5LWm\nHbbrrruajiICx40bZ9ueeOIJ07vssovpO+64w3SjRo1M09aJq9Mm0hFZmkOGDLFtvoRm/p7deeed\nprfbbjvTrDu4bNky099++22WjjgdWuEIIYQIgiYcIYQQQciJpZbvemSMtKF14yuZvummm4Y5sEAk\nsTYysTo5vqxN5qtfFllXTLRkAiItOh++46Wt4LvXfPYaIxjZuiEEvmPl+fA6J4muY7l61t/abbfd\nTE+cONH022+/7Zzz23jsIsnniN/JZycX0U4h6t3lG55jFDHI6004Vueff75p1ky75JJLTPOZ5J8O\nOLb8LKPj0nYFToJWOEIIIYKgCUcIIUQQcmKppbXRspUcGtkO7dq1s21cUnK5SP3xxx9X+juLlbTX\nmYlljEBj/TJCSyCyiTp27Gjb+vfvb/qEE04wzWW87xh9yZG+98TZe3/fzkiuXJHkPvdFzlGzzQZb\nC/iScN977z3TtE+i7+KzwM8xepDRjuwKymTPXESk5iuaKtdwnL/66ivTkRXKa8kx3mabbWI/50v0\npUX77LPPmvZFbia5LzP6ja70J4UQQogUaMIRQggRhIJoT5CtpXi0NKTlMGLECNNdu3Y1TTuFyVFV\nAS5/aW35uir6lss+q4X78SVSMqoqigY77bTTbBsTRtNGiHHsysrKTDNKi1Yqj5FRVaznFqLjJK0o\nX+27JM8CEy+ZbMux5tjRXoyzUnwWOMeQ15mwnQRbfmSLqtrCgL9FjCiMoLXM5HXe475oYJ+FzHvC\nd7/nupWEVjhCCCGCoAlHCCFEEArCUssW0RJz4MCBtu3JJ580zWUql6NVLRImSdQJSZJU6ds/YQIn\nr29Uk6tTp06x38lIs7THO2fOnNjtPnuPdkNcJF0u8dloaaGNRnhutO9odcW1qPC1UGjSpIlplran\nXXnllVfGfjZbVCVLjffk8OHDY98TnS/H+IgjjjDNZOWdd97Z9OTJk00zctRnf+cLrXCEEEIEQROO\nEEKIIOTcUmOHurS1lhi9weQnH9Fyk8t8lm/nkvKDDz4wzSieFStWpDrGQoTRKITnTzvJ1x2TJLGc\naOlssskmq2zneI4ZM8b0/PnzK9y3D59NwI6GtBhYop33hq/raDbxRRVxvHwJeUmgZRN1WXXOuaef\nfjp2n5HF7Ov+yvYEfA+fxRkzZqQ6Rh877bST6XfeeSf2eIsd2pK+ZzQaQ7bdOOSQQ0zTXttss81M\nM9L2yCOPNF1ofy7QCkcIIUQQNOEIIYQIQs4ttUxKlvtqRlX0/h133DH232lp9OnTx7SvHpfvs4W+\nzPfV4CJJbLS0sIZT9+7dTUc11GjjXXjhhaZ5bdNGi/mSVn013nzWEPeTK5K0JMgEnhvbP5xzzjmm\n2Z5g//33d845N3LkSNvGSLrrrrsu9hgvuOAC077rnBYmkPI+SVJbr1hgsmdF91uHDh1M8z5lqwlu\np4VM61qWmhBCiDWSgsvDSVJ+wcfmm2++2n9/7bXXTE+aNMm073+Y/J+3r8xLIZLvat3Olf8fWtu2\nbZ1z5f8wz0q3/E7uo0WLFqbZ6C1tnhEJkW+TLxj8wjwOPkesih39oZ7/a77vvvtMT58+3TTvf66I\nstWkK4mDUezwvmXwCsckeg9zp/baay/TfD64EmTTxSSOTb7QCkcIIUQQNOEIIYQIQsFZarQ8uOz0\nwSXmtddeu9r9MT49iV2X5I/vhQJtsdq1a5vmH3V9VlTDhg1N0+pK8l0MFGAl5q222sp0lNvEHCd+\nP60BVkLm2Gbrj/rFFPyRBJ7P1ltvbZo5RgzcoXUVadqfN998s2k2V7vqqqtML168ONPDXoUtt9zS\nNK28YqROnTqmaW+9/vrrpll+KwrecM658ePHO+ecO++882wbnxXa0i+//LJp5vjw2WOQSCGgFY4Q\nQoggaMIRQggRhIKw1GjppC1zQjsmqp5KG43Lc5aLqGrQcmIv+iTQRktiOXGJzwgb2mus0h3lgSxa\ntMi2MQ+I+Vb77LOPadqBLKGSSaRZknMqdBgxxutPa4a2l6/8TL169Zxz5XM16tata5rWEKOgcpHD\nxec0SdPAQoNRlP/85z9NM8KMOU7MQ5syZYrpqEkhx6RWrVqmP//8c9O061544QXT7733XvoTCIRW\nOEIIIYKgCUcIIUQQglpqvgTDJDYak9q4lOTSNLJ0fvzxR9sWJR3+/TtDkq3EytWRJOKKVgU1SdKw\niedDe4WWJaPNIpvmxRdftG0sv0HrhlW8aSVkq9wJG5PRdiomS43Xv2XLlqZbtWplmudDy5JN8Bo3\nbuycc27jjTe2bby2HKNMSlSlpZBtNNqZvJd47x9++OGmOT6tW7c2fdddd5nu1q2b6chGZqM1Wsj8\nTkZ9jh492nQuLM9soRWOEEKIIGjCEUIIEYSgllq26nSxuVe/fv1WeS+tgGzVesqEEHZNEtvOZ5dF\n0UrOlb/OTLzlZ7l/Lve5z7haabRuaJHxe2j/MMnNVx8qyXnTBglto2WSaMrjZiLn9ttvb5oRnrSP\nX331VdMcIyZYRteUx8jnhbYP7Traa1UheTYNG220kWnaaNtss02s5v3JZ4J22IgRI0xHVdaZyMln\nj88EI9buueeeFGeRP7TCEUIIEQRNOEIIIYJQEImfSaClwkQpLk0jO+ayyy4Ld2AFgq/EP20Z2iXc\nvueee5pm7aXjjjvO9KOPPmqa9bj4vRwLWjBRFOKAAQNsG+2IGjVqmGZkWpMmTUzTxlmyZEnssRCf\nlcXz9iWIFb0gAAAgAElEQVSwZpO0lhPr0TH5j5ZaWVmZ6TvvvNM0rcl3333XNK8d74EoOZc2G+3o\nIUOGmObzxwgq373GOmyZwGTifNnjPK+TTz7ZdOfOnU3zHo6rV+dceev67bffNs3E3Pbt2zvnyltq\nvuZ3//3vf1OcRWGgFY4QQoggaMIRQggRhKKx1GhNvPPOO6YPOuigVd47fPjwIMdUSPiitXw2BCNf\nnnrqKdNRlIxzzr3yyiumkySTcYxon/Xp08c5V77WFyNsaBExko1JimPHjjXta1WQJCKM580+8D/8\n8EPs+3OFb7wWLFgQ+/4oSdM551566SXTtD15zTnutMAGDx68yjEwwuniiy82zeRdalqaTERk/bxM\n8CX55gtGTv773/82/cUXX5hmnbTDDjvMNC1K2mvsrEq7NNK8P3gvv/XWW6aLKVk5QiscIYQQQdCE\nI4QQIghFY6m1a9fOdI8ePUwzEWrMmDHOufJL3TUFLq+5HE9S6p22yGuvvWaa0WtMTuN3+ew7WkBR\nwhsjeXr27GmalkHz5s1NM7qKllf9+vVNz5kzJ3Y/PnhtGFWXrY6iSaH9l6TdAqO+2A3ylltuMd23\nb1/TvHbcP+2h6Jo+9NBDto2JsUwknTlzpmkmPzJSiuPLqDaeK+F48T2FVkvN1+6DEZ0PPvig6UmT\nJplmBCCvPaPQGAUXjRXv98mTJ5tO276l0NAKRwghRBA04QghhAhCQVtqTPrafPPNTdNeYBQILZI1\nGdpctC14PWlbsBMnl/e+xDLuh3YNP0uL6ptvvnHOlU/qZMQO2xPstNNOpnv37m166dKlsdpnTTGR\nk1afzzoLHfGTxEbjudGOuf32202zFcdnn30W+35aQqznFcFx5vWZOnWq6TZt2pim7cbzOProo03T\nYuI9eOihh5qmTcv7MUQ7jzR06NDBNLtp0rZkp1peb7bb8NUDZBJ0dO6zZs2K3Xe+rofveUqLVjhC\nCCGCoAlHCCFEEAraUuMy+/nnnzd9/fXXm/74449N9+rVK8yBFSA+G4J2hi+6jJE0SSL8uKRmJ1Za\nQKwJFo0LI52mTZtmmjbFww8/bJp2De041hjje3ydSH1JdNxOmzA0SaK4aN/QRqZN8+WXX5rms8P9\nM5IsSnxlUifrFEbdJ50rn+zJmmAcf46dj//9738VvqfQYF06H2+++aZpWssDBw40/fTTT5tmAiff\nH0UA0uYuhBYQ2eoiqhWOEEKIIGjCEUIIEYSCsNSaNWtmmtEZXLqz3haT3erWrWvaV6p+TSBJ9Iov\nOZQ2mi+qjTaar0Mk7ZXRo0ebHjVqlHOufDIbx5YWESN8mjZtapqWEo+ddgRtJCa88v2+CJvQNbt8\n58ZoTJ+96bvPfedA25Gfjew4Rp0RWmpMZmRtNiZeM0pt2LBhpnnfde3a1fRzzz0X+73FCJ8bXu/z\nzz8/1Wd9tfSqClrhCCGECIImHCGEEEEoCEuNNhphgh+7GTKShkT2SpKkujURWku0RXw1xXzX0Rfp\nRcuM0VNx+0mSpEuryde5lPumjUZN24e2HyNvQifU8dyI71lIiy9q0afjoP3G68lERd4Lvig1tlB4\n7LHHVvudxUohJKiGgvdCWrTCEUIIEQRNOEIIIYJQEJZaErhklWW2enx1jxhdRkuL7Ql8EUuEdboY\nyUQqGiNfMibxJbD6OnsySs1X4t5Xz4pWW67wtYrgd/P4jjnmGNNJkip9bSl80WsXXXSRc865G2+8\nscJ9Z9IygHXVQreBENknk3tBKxwhhBBB0IQjhBAiCEVjqYnVQwuFdpbPliKs20R8iaKsx8XoMSZt\n0iaKLB3fcREm8kZtDf6O7zySlLX3lfwPkTSc1uZLYqP5SJLImsRKi8hWy4A1KZpLrIpWOEIIIYKg\nCUcIIUQQStIscUtKSpY45+Iz1kRlabpy5cr6mexA45ITMhoXjUlO0LNSmCQel1QTjhBCCFFZZKkJ\nIYQIgiYcIYQQQdCEI4QQIgiacIQQQgRBE44QQoggaMIRQggRBE04QgghgqAJRwghRBA04QghhAiC\nJhwhhBBB0IQjhBAiCJpwhBBCBEETjhBCiCBowhFCCBGGlStXJn6VlpaudM7plaVXhw4dVjrnlqQZ\ng2IZl+rVq9sr38fCV0lJib1yOS6lpaXRflIdU7Vq1eyVybnx+ic550Idi7+9quSzUsyvtM/KWi4F\nZWVlbunSpWk+IlbD5MmTXUlJScbNoHI1LuxjT/3nn39W+NkNN9zQ9LfffpvVY0nSw4nvJ2uvvbbp\nX3/9Nfb92RiXsrIyN3nyZFet2l8mQvXq1U3zGnL7uuuua/r777+P3bfvWvCz6623Xux+fvvtt1X2\nk0lPrLXW+usnhOeU5B7h8f7000+meT3++OMPfqRgn5U1lbTPiiw1IYQQQUi1whGFi+9/veuss45p\n/o8+Cfzf+d/+p1kh2VjVkLT/C+cKi//D912DXHW+5X5///332PdwNeC7zhxfriq4Yvn5559N8zx9\n+4yOjfvj93DfpE6dOqZ5bXke3KdPr1ixInb/PF6+33f9RPGgFY4QQoggaMIRQggRBFlqVQSfJURb\npGbNmqZ9f5AmaW20NPgswGuvvdb05ZdfHvvZ9ddf3/SPP/4Y+x7+ETqf0Jb0/SGdthGvue8a0Vpq\n1aqV6c8++yz2s+Skk04y/eyzzzrnnFu2bFmFx8j90S4dNGiQ6SuuuML08uXLTR9++OGmn3zySdMM\nGvjll19ivzdfllraIBWRDK1whBBCBEETjhBCiCDIUquCJMlByTc+m4KWGu0o6lq1apmmTbho0SLT\nhRLRRIvKZ9P4cmZ88LMnn3yy6csuu8w0rSjajvfff3+Sw17td5Kzzz47djujIz/99FPTvnwu7v+U\nU04xfe+996Y/2CwgGy03aIUjhBAiCJpwhBBCBKFoLLVDDjnE9EsvvWSay/LGjRs755z78ssvgx1X\nocByILTOmAzIaCQfSaJzkiQhVoQveovHSzbeeGPTixcvNl2vXj3TtWvXNs2oJ36XL6otV/Ba+RJp\nk9hoPs4//3zTtOZ4PzRt2tT0kiVLTHfp0sU559wTTzwRe4w89rQRi0w8ZfQc7yneLzze++67L/b9\nwrn27dubnjBhgukGDRqY5r2fNtk712iFI4QQIgiacIQQQgShICw1RhrRFqBdM3PmTNNM6qMFEFcb\nKknV2qoALY9MEjZpYfjsNdoflY0GS5JgyO+kFcT3fP3116ZpJfIa5NOWqVGjhmnahTxWWku8nxnp\nxc/y+vP9PXv2NL3RRhuZPuuss0w/8MADpq+++mrnnHObbLKJbWvUqJHpH374IVbPmTPHpcE31hwX\nn1YCZvnxnjx5smmO/eDBg02feeaZpnlvFcL10wpHCCFEEDThCCGECEJQS43LYybvtWzZ0vSLL74Y\n+1laCr7ksWh7586dbRuXo88991yFx0h7gVFdhRbtkSlJ2hlssMEGphlpRNulbt26plk/q7JWJo+F\nthO30y7j+PqsqXxaCUnuW+KL2PNFjHG8aE3zWvDenTJliumbb77ZOfdXtJpzzjVv3tw0r9sxxxxj\nevvttzf99NNPx54HSdLmIonFuibBPwvwPuC1JMcee6zpW265xTTHm88KI9n4XblGKxwhhBBB0IQj\nhBAiCKnXUr7omrQwAW/evHmmb7jhBtMsd85kzrlz55ru0KGD6U8++cQ5Vz6Sg0mCSVi4cKFpX8Jc\n6OTBXOCLBKJFU1ZWZnqnnXYyzWU9S9VXZKNx3z7dqVMn0y+88IJpRsP57DWSxNKjxZDLVgwRtCjZ\n7bJZs2amZ82aZZpWhy8Cr0WLFqa32WYb07RYrrnmGtP77bef6TfeeMM559wBBxxg23z24znnnGP6\nqKOOMs17gZbed999V+E+k5BJ19liJEpwZl3AJJx44ommP/jgg9j38PqxI27I50ArHCGEEEHQhCOE\nECIIqS21TGw0Lq1peSxYsMB01IXQOeeeeuop07QgWDOLCW6R7ZV2Oepj9uzZsd9TFSw14lteRxal\nc5klkEWRbIyW6tq1q2neC59//rnptJGBaa2BEBYNj4n3MKGN5otGo01Ce5OW2lZbbWWa92jHjh1N\nH3nkkaYj+4aJoTvuuKPpHj16mB44cKDpG2+80fRdd91lety4caZpAXIc0yZyrimJ2xFJImkjeE+w\nk2qS6+qrWZhrtMIRQggRBE04QgghgpC3WmpcKrPeFGs2MWKMS3EuB5cuXWo6kzLvcdBGY82uqgCv\nJ+2Xdddd13QmNlqrVq1MR5Fs3bp1s20ct/fee880IxDTQgsqiXXDKLBcdQhNYtslOdbWrVubpi32\nyCOPxL7/rbfeMs2umRzryDLm93NcOBa8PuzI6eu++s0338QeV5L7iMnXrK1I67EqcdJJJ5mmXRoH\n60i2a9eu0t9Jq5coSk0IIUSVQBOOEEKIIAS11NZff33TtGtokX311Vexn2UCGG03JtM1bNjQOZeZ\nLcOILXaTLCZLLUm0Fq0N2mi0MHidk8D9sJ5d9+7dnXPO3Xbbbbbt9NNPN33dddeZZmRgJiSxbnJl\no5Ftt93W9EcffWSalrIvCZfjyM6eUQ0058pbLLS0GFX2/PPPxx5bFKVWp04d27b11lubZlIv6+TV\nr1/fNBOrea/5Orr64HnTSg9Z5ytf0PKsCEboZkK+kmi1whFCCBEETThCCCGCkPP1KpfKjRs3Nk3b\ny1dWPkmnQCaVRWXzM7HUWG5/xowZld5PPkm7XKZ1ljapleP1xBNPmGZU1fDhw1fZ98iRI03TimPU\nE22cXBOiDH5cKw3nyt/Pkc3lXPkE5jFjxph+6KGHTNNSZv2yCy64wPTEiRNN83mJag5y37T9GA1H\nq7V///6maan5Elt9+K5BgwYNTGcribvQYP26iqC1WQhdOzNBKxwhhBBB0IQjhBAiCDmx1HxL5WnT\nppnmEp02FhPGmADGpTUjycjMmTOdc+WjdXzJoD4LhdFoxbp89Z0bo558EVppz3m33XYzve+++5pm\ntOHo0aOdc85NmDDBtm2xxRamd911V9O06EaNGmWatmu2ImzS1vWqDL5S8b4oQdqOHK9JkyaZ5nXh\nfo444gjTbPnADpCsVRclNtPe6dWrl2kmgdJ2HTx4sOkddtjBpcF3zX3JnlUVX8JuHPw9a9Omjen3\n338/q8cUAq1whBBCBEETjhBCiCDkxFLzJbI99thjptk1kO9nciC7DDLh6Zdffon9bNShMrLWnHNu\nzz33NE275pVXXjHNqBhq2iFMsCt0fPaQz0ZLEhXEcWQyI1tI0Bpq3ry56ShRkd0mWT/v8ssvN/3x\nxx+bptV26623mqbtmkm9N+KrLZVNaHP5Ep95bzPpkTYiowHvuece07wu2223nWmf7RVdLyZ+8lg4\nnrSxeS+w0+TQoUNNb7bZZqaZzOt7jtlRl4TuyhqKNAmcvFfefPNN08VoPWqFI4QQIgg5z8Ph/zpP\nOOEE0/xfEnMD+vTpY5orEuYnMPiARP87ZpXnq6++2jT/10X4vyi+p5hWNZmQZFXD/22ztEppaWns\n+0kUIHDeeefZNq52+L9nrp7+8Y9/mOaKeP/99ze99957m77jjjtiv98H780Q/3vmCtP3x/Mkx8SV\nQVTOyTnnbrrpJtOHHnqoaf5PmLlAUUDNa6+9ZtvYgI1/rObKh4E4XJm88MILprnauvTSS01zteO7\nv/g/ev6RnDlCxQ5dhQ8//ND0pptu6pwrf224MmZuYJMmTUwvW7bMdNp8qJBohSOEECIImnCEEEIE\nIWgp1iQWle8Pq7TRuNxk7/TIjmBVai7h27ZtG7sPWhd33323ado4VYG0eSd8P20XNlfz/bE9zl47\n88wzTbMMCwM4Nt98c9PNmjUzTauT1aVp0xFfiaStttrK9NSpU1d7vNmG38Fj8h1rksZxfM8ll1xi\n+txzzzXNP1CzCd5zzz3nnHNuzpw5to2WWt++fU3TDnzxxRdN0/ZksA4bwHH/vAbUrC4eHZdzVctG\nI8xxYnDMp59+6pwrb4Py2jPwite1WNAKRwghRBA04QghhAhC3rob+WwERqz53k9ohzVt2tQ5V345\nylIdY8eONd2hQ4fYfbOiddomUoVO2jwVWpPMt2A02B577GGaVg8r3H722WfOOefGjx9v21gqhSVv\nmJ/zwAMPxB7LPvvsY5q2D8vsHHjggaZZmZoWUOjxTdIMj/jycGhNU/ssU5ZrGjBggOno/Pk5Phcs\ns8MyKu+8845pljBi5KEvwpTVwL/44gvTtNF8tlshP4O0LXnv++B5MQ8qLreG503LvxjRCkcIIUQQ\nNOEIIYQIQtBq0STt8thXLocRHlEk2/Tp02P30bFjR9OMkqJ1wcZhrGjMhKtCXtonJckYMWKQ0V3D\nhg0zXa9ePdPHH3+8aVYljhI7af8wwZPjxXHh/lhdl5WTd999d9OdOnUyfcopp5hm5BXH2lfqJwQ8\nDjZRY1Jl/fr1TfNeHDduXOw+k1imtLqi0jW0sRcsWGCa15Zjx5JTtDRplzFijRYTrVQ+R7wePEaf\nxZ4vfKV2kthofFY4zu++++5qP8dnotiT0bXCEUIIEQRNOEIIIYKQ8yi1bEUC0S5g/SxWT02z3OTS\nnpYG+7+zxhgT5litt1hJYr+wJhOvEatod+nSxTRtBdpVUeQfIwDnzZtnmnW3eFxMCD322GNNMxmQ\n++H95aurlk8bjTBhmdeN0U6LFy82PX/+fNOsSchIPt+YMgpq+fLlq7yfEX2sMr3zzjvHfu7555+P\n/U7eCw8++KBp2mJHHnmkaVqzhTIuFZFJzT1GYDJ51heBG0G7kc9KMaIVjhBCiCBowhFCCBGEnDdg\na9mypWlGLmXSLOuTTz6p1OcYmUXrbK+99jLNOmGMJClWG43nzFYCTAb0ccghh5hm8h7L0NOuYV96\n2kGRZfD666/bNl8TPd+xT5482TRLsfuihnzWR9p6cpnC76N1wu/mdtprTHZlxNr999+f6hi4z0aN\nGpmO2jyMGjXKttE643i2b9/eNC1N2qRM3mS0G61O2miE48h2FUmiv4qFhQsXmu7Xr59p2mtxNf1o\nbYe4Z3OJVjhCCCGCoAlHCCFEEHIepcYS8NmCy/U0sAviLrvsYpptEJgwyI6Hhb60Z+dHRjT5amol\nYfjw4aZp+9D+oL3FLoa04KL3RImGzpXvIEkYkcOonjvvvNM0WxKUlZWZHj16tGlfRGRoS8JnKR98\n8MGmfRFLtFJoQRKfTUdYn4vWWJQI3b9/f9vG1g89evQwzet59tlnm+7atatpPuvsYumLkvNFsLKG\nG1uEsDR/McLxufDCC01X1Bpjhx12yNkxhUYrHCGEEEHQhCOEECIIQdsT0K4aOnSo6VzWJmPEy8UX\nXxz7Hi51actsueWWpgvdUqONli2YhEhLhxYkNTsQ0hqLe68PRpfRWmHCIKOhhgwZYppWH20kJgRn\nkrhXGWgz0VqiXcn7j5YXa8ydddZZpm+66abYz1JvtNFGpmkN046OkmOvvvpq23bvvfea5vUnrLHH\nVgW33Xab6VmzZplmtB3x1bWjfvLJJ2M/W4xwbFn3j0RjyChaJl0XO1rhCCGECIImHCGEEEEI2p4g\n7fKYFgTtGNo7tEgiG4WRS7RcuJ0WVIsWLWL354uw8yUbFkrpe5JJoiMjikjz5s1Nf/nll7HfFWdd\nJamr52tDwe2s/UWaNWtmmpaOjxBJoDxnJt4S1hqbMmWKad5nt956q2leW9pb3D8TbzmOtJijTqw8\nxk8//dQ0ow4ZBUmr9corr4w9Jz4LjEjkNT/ttNNMDx48OHY/xd4KpE2bNqbZEdUXmRZtZ9ItWz0U\nAhVF1a0OrXCEEEIEQROOEEKIIOS8lhrxRXpxiUbr4OabbzbNmk1vv/226YrqLjGpjeXTGfUzaNCg\n2OPy4Yt0yqeNFrJGGO3IJJZHZA0liRDzlWrnOLPGHa2bJDYaCZEEyu/44osvTPtqrPF8aKnxOjMC\n7fTTTzfNxNIRI0aY5rVjy43ofmWnzqVLl5pm0irrF7I9BSOo2JnSF5HI805SVy10VGG2YafgK664\nwjRtTv7pILo+7A5aaGTy3GiFI4QQIgiacIQQQgQhaOKnD9oIffv2jX3P7NmzY9/Pmk2RRdC7d2/b\nxpL4F110kemrrroq9nt8CYOFjm+ZmwvbyFcHzUcaW8Rn0fnsWEZ4FSJJWi/w+nTo0ME0I8Z4L9K6\nYrKlr04ZI9lo+0YtD9j9tlevXqYfeeQR07vttptpdr897rjjTNMKIz770Ne9kvcAk0Z9iaiFAFs2\nMDKNNhp/l1577TXT/D2LImZpbWara3IhoBWOEEKIIGjCEUIIEYSCsNTSLhNpCzDZryJ8Nhrx2Wi+\nEutVgdBdMDOFnUifffZZ05mcB22nbOKzk3jP+zqb+p4LWnA+S5Hnz/uV3xW1P2DbiAMOOMA0o/6i\numvOlY/8pI3mi9LkdzKZlO0y+Fmet68tQ6FBG41ceumlqfYzadKkbBxOwaIVjhBCiCBowhFCCBGE\ngrDUiiG5qyrYaD7LKaNErkARNDx22mgkyXn4rkGIaDdeK97zvkisJDX7CK8/9dprr22aCZnRtaBt\nNXfuXNPsuMoEUx7X7rvvbvqNN96I/X4eO6MNfcdLaPcxmk4UJ1rhCCGECIImHCGEEEEoCEtN5I5c\nt0wIlYiWxC5L2/4gBLSffN/tS2hMUrPPZxEygdmXqBt3PD5r0WfvjRkzpsJj2XHHHU37ovB4n7LN\nAmu/ieJHKxwhhBBB0IQjhBAiCCVpLIaSkpIlzrnZFb5RpKHpypUr62eyA41LTshoXDQmOUHPSmGS\neFxSTThCCCFEZZGlJoQQIgiacIQQQgRBE44QQoggaMIRQggRBE04QgghgqAJRwghRBA04QghhAiC\nJhwhhBBB0IQjhBAiCJpwhBBCBEETjhBCiCBowhFCCBEETThCCCGCoAlHCCFEEDThCCGECMPKlSsT\nv0pLS1c65/TK0qtDhw4rnXNL0oyBxqU4xqW0tDTaj17ZexXds1KtWjV7FcD1y/or7bOSaoVTVlaW\n5u2iAiZPnuxcFroPalyySzbGpaysLNqPANWqVbNXJcj6s1K9enV75YJ1113XXj7WWmste+WSkpIS\ne2WLtM9Kbs+wAOjRo4fpJ554Io9HIkRuadKkiek5c+ZkvD/+MGWrM/Cff/6Zlf1kiz/++COn+//x\nxx9N+67n77//vtp9cCKq6L2roxC6O+tvOEIIIYKgCUcIIUQQcmKpNWrUyPRXX32Vi69IjGy0qkG2\n7J1c2ESZ0qBBA9OLFi2q9H6yYaORJNdngw02MP3DDz9k9fvzyTrrrGP6119/rfR+fPcbt1PXrl3b\nOefcN998Y9vS2mhJ7nH+zSrXtiLRCkcIIUQQNOEIIYQIQk4stXzbaKLq4bMG1l9/fdO//PKLaZ9N\nkE8bjaHAjNbKxEZLQi5txKpko/E6JbHRfNe1Zs2apr///nvTHP9NN93U9Pz5803TSqssScY4pI1G\ntMIRQggRBE04QgghglClEj9HjhzpnHNum222sW2bbbZZvg5HZMiWW25pevr06bHvYWJdoZOv6Drf\n+6N9Fkq0Xj6oU6eO6eXLl6f6rO+60UZjhYHvvvvO9Ntvv216hx12MB3ZbjVq1Ej1ncWCVjhCCCGC\noAlHCCFEEArCUlt77bVN161b1/TixYsr/GyxLzFFeVg3qn///qa7detmmklrjPz5+eefTa+uWGK+\nyORezeSzfKYYBbWmPju8Z2ij+WxL3pOM7uJ7Pv/8c9Pdu3c3PXHiRNODBw82fd5558UeW7RPRv9t\nu+22pn3WcrGgFY4QQoggaMIRQggRhIKw1H777TfTSWy0NJFJTLCrZA+OKgmTzRo2bJjqs5Wtw8S6\nWwsWLDDNRLm0+MaXiXusi1XVoF1Ge4jbWWNtr732Mj1lyhTnXGa1wpJAq2rDDTc0zWiukPCeSRL9\n9/DDD5vu3bt37Pv79u1r+vXXXzdNK/iee+4xzd8w2r/R8fCepV1H2rZta/qTTz6p8Dx8hKyrpl9g\nIYQQQdCEI4QQIggFYamlhfWzKlo+ZrOdalWCNhqjcHg9fcvrtMvuKLJmiy22SPW5JLB+GqnKNhrH\ni3bYySefbHrIkCGmOaavvPKK6ebNmzvnyts7rPF1wAEHmO7Tp49pWjlJ7gV+f75sNEILicdGzfvn\nqKOOMl2vXj3TrVu3Nj169GjTvIa1atUyzXO/6667TJ900kmmI3vZZzPz94yfu+yyy0wn6TJK1J5A\nCCFElUMTjhBCiCDkxFIL2VVxzJgxpvfcc8+cfldV5fTTTzd92223ZWWfTOZt3Ljxat/LjoZnnHGG\n6fXWW8/0rbfeapr3F62PJLXXChFf2wLfc8TrxVpgvXr1Mu1Ljn3sscdMR3UGP/roI9v2008/mb76\n6qtNM5Lq+uuvN33RRRfFn1QBk8RC8kXucUzee+8904y0pWYycqtWrUxzTO68807Txx57rHOufMQh\n90e7jomkfA5Yh4378d1nIdEKRwghRBA04QghhAhCRpYal5dM6luxYkUmu02FbLTMyZaNRhgFt88+\n+zjnnHvzzTdtW1qrddCgQbHbaX3QaiomfPYGr5HPXuNnn3/+edN77LFH7D5HjRplOrLSGPVGK/TC\nCy80fcUVV5g+4ogjTNNey0a3yr8fA+2kXMNrTM1rvHTp0go/69tOK4+aye7Rfc572Xdf8zeXkWkt\nWrQwzci4Qng+tMIRQggRBE04QgghgpCRpcalfUgbrbKErBlUrKS9Rj4rgTWkIpsgrY12+OGHV/ge\nX0fFqobv2i1btsx0v379TPusnOeee850ZBXRauG4XXzxxabnzZtn+vHHHzf97bffJjr+OJhEyfMI\naaMRXxIoqV27tmmeO9/vSyz12aKsw9a1a1fnnHN777137OcYldiuXTvT77zzjmlanrTL03Y0zQVa\n4W1j+PwAAApbSURBVAghhAiCJhwhhBBByMhSY00zX8sAdq5jVEU+oO3HpMI1ESaKcXnvszNoEzCx\njFYIl/681jfddFPi4zrxxBNNDx06tML3877zRRCtKUyaNMk0LRkmc8bZjqxxd/nll5vm8+pLJsyk\nViHvnXyRJEmdCZNJLETf7yKvJ5Otr7nmmlWOgcfC76ddtvHGG5u+4447TB944IGmc2GjZTLmWuEI\nIYQIgiYcIYQQQcjIUkvSeTPXNhprFTFiKY413UbbZJNNTC9cuNA0rwstteOPP940I6CY1Emrja0C\nSktLEx8XE/2S2Gikfv36qd5flVmyZEnsdl+5+ihK7MMPP7RtHAtGt3399demoxpszuWmJhfvL3aG\nzUVdRp91xfNKco5MnuVvEuv7denSxfS///1v07Q8/+///m+VY6ElzeeN7Sj4nYwozAWZjINWOEII\nIYKgCUcIIUQQirLjJ2H0TD4I2YohU2ijES7pu3fvbppJYz5rdOzYsab32muvSh3XokWLUr1/woQJ\npn0dP9cUaCPPnTvXNO9F2o60TGnbRLA2He0blsXnPXLVVVfFvj+TxOr58+dX+rOZkIk9yOTZbbfd\n1vRBBx1kmom0tC6pe/bs6Zwrb7+xw6ovQuyNN94wTTublmS2UJSaEEKIgqfoVzjDhg0zfcwxxwT5\nznxVsw0BG3TF/Q/475xwwgmmK1rh8X9G0R9HnXOubt26FX4P//cZVZ92rvwfs5Psp6rBPxZfeuml\nps8991zTXHnE/e/UV36F48/AkgYNGpjm/+anTJkS+9l8NfvKFx988IFpNrfjvTpw4EDTDDioVauW\nc678uPpK7jDYgw0H6WT4yuJkq7J3WrTCEUIIEQRNOEIIIYIQ1FKrWbOmaTYGyoQkFYUjdtppJ9Nv\nv/12pb+zqtlotDyS/EHQ17M9zeeS2HXbbbed6c8//zz2O9dEG80H7ZbImnHOucsuu8w0befZs2c7\n58rbK23atDHNslTNmzc3/emnn5o+8sgjTdNSS2uj0VYqhEZh2YLX4e677zY9fPhw0/wjf5Qbxfv6\n/vvvj33vxx9/bLp///6maX8yByttNfXRo0ebZkCQ8nCEEEIUPJpwhBBCBCGopZYtG41suOGGpita\n6s2YMSMr31lMuTdJoL2V5HzY357lVHx5GFEODyMKjzvuuAq/h9ZZkjJKazq85tQcL+o4TjnlFNNs\n1taxY0fTrEzMiDVWmk5LIdhoIRs0slI2dfQs7rfffrHHxTwp2m4tW7Y0zdwb2tg+S9tnf1Y2r251\naIUjhBAiCJpwhBBCBCGopeZLMAtFtpoRVQUbzYev+ja3M2mT0UVc7pNTTz3VOZeshA3L7Hz22WcJ\njlhkE0ZE0XZ55plnTA8ZMsQ0o62KnVzbaEmIogv55weW+rnuuutM/+c//zG9//77m+bzyWZwhI3k\n0kYI0uJLi1Y4QgghgqAJRwghRBCyZqn57Bdy1llnZevrKgWjN9gPXPyFr0mdL6qFkS+MGFyxYoXp\nqJ4ULQAybtw407QGRHbwRSFGtjafhcWLF6/2vc45N3PmTNOsD1bs+BLTfdcvE2ud15M6ssAmTpxo\n25iYe95555mmFda+fXvT/J1t166dadZ147OYNkk3E+tRKxwhhBBB0IQjhBAiCFmz1JLU1Lr55ptN\n33777dn66sRstNFGwb+zkGCzsrSN63zLbtoBTM5kC4dXX311tftmKf00tdmEP8LIV5aeVlFkjfC+\n4DPCpF7eL1tuuaVpJvOGTJzMBbw2PBfe+7SNGVGZNnGV+2FjtiZNmjjnnDvxxBNtG/8UwCTRSy65\nxDST2mlnc/sNN9xgOomNlovx1ApHCCFEEDThCCGECELOEz99XQPzQT6STQvpGFhi3kfaTo18D+tq\nsetgBKN63nnnHdNVOcGTJf59df943ZIkxxJaOdwPE/uaNWtm+t133zUd3Yu77rqrbRs5cqRpPq9s\nA8Lkw7hxLiZoGzHSlhYSbV7WLGPdudNOO63C74paDzjn3I033mi6e/fupqNrzqizu+66y/RJJ51k\nesSIEaYZYffUU0+ZHjp0aOx7kuCz0Xgfp0UrHCGEEEHQhCOEECIIObfUaLkwcilbXTOTdI6MKIQa\naPk8hq+++ip2O2s1RVEyzvk7gbIseu3atU0PHDgwdv+RJcEl+s477xz7PVWNqDXD6khroxFfd0dG\nprETJ4nGjlYr7c1GjRqZ/te//mXaN87FCO9J2p+Ev1sPPvig6alTp5p+7bXXTA8YMMD0e++9Z/rQ\nQw81TWvuscceMx39Lk6bNs22cRwIu7Oym+jRRx9tmomi7HL8z3/+03Ta8WQUXFq0whFCCBEETThC\nCCGCkBNLzZcwlC0bjdCOicrjr7POOrHv9UVd0JZgMteaQsOGDU3TLmOy3/vvv2+a15wRUF27do3d\nP6N/4vYhKg/vV9qetD18Nu52223nnHOuR48eto322nfffWd60KBBqY6Lz6CvbQWj4yZMmGC6EBJI\nec/yOejcubPpM844wzSvD+21Aw44wPRLL71kmlGEcc9c7969bRstNda6a9y4cex7WJtw/PjxLg7a\naEwe5r3Ca5+tLsda4QghhAiCJhwhhBBByImllq9lsM9Ki/BFtK2JNpoPlkInjEZj90ffkp0JidGS\nvRCiBKsySa7vZpttZvrSSy91zpWPGOQ+GCmVFtpoPjuGNhoptDpsrLFGKyy6fs6VT+qkRc0osaib\np3PO9evXzzSjRM855xznnHOtW7e2bfPmzTN93333xX4/W0z4rrcvqTtJHbhsPbta4QghhAiCJhwh\nhBBBSG2pXXXVVab79++f1YPJlGgpWQhRLlWNqBPh36EFxzL33bp1Mx0ly5WWlubo6IqPbEX9pIW2\nSpSUyHFhQiLHMwljx4413alTJ9PFaKWyftr2229vevLkyaZpoy1dujR2e9pzj6LQOCaMIqNVyRYv\njz76qOlevXql+k4fubhHtcIRQggRBE04QgghgpDaUis0Gy0O2WjhYCIcazVxCS4rbVUySp6DLbb5\n5pubnj59eoWfnTt3rumDDjpolX2wJlffvn1NJ7FXaKMVC0nqO9JGI4xYy5b9xA6qEb7EWZLERkub\nbJ0LK1QrHCGEEEHQhCOEECIIOW9PUAysKbXUchF1MnHixKzsZ03Ad/19UZXt2rUzzRYDtEaS2GiE\nn+3QoYNzrnxEVosWLWI/l637hQnEtKRCwnHw2WhJnhVfwmQ+IhBps7I2HlsfJLn/uN1nwWXStVgr\nHCGEEEHQhCOEECIIstRc1bbRSDEm4FUlfNffF1Xp69SZLWilRWRSPy0J+bLRSJLnIJNnJUn9MrLJ\nJpuYXrhwoXPO397Btz9q2mhJ8N1/7Bq7fPly02pPIIQQouDRhCOEECIIJWmWRyUlJUucc7Nzdzhr\nJE1XrlxZP5MdaFxyQkbjojHJCXpWCpPE45JqwhFCCCEqiyw1IYQQQdCEI4QQIgiacIQQQgRBE44Q\nQoggaMIRQggRBE04QgghgqAJRwghRBA04QghhAiCJhwhhBBB+H8aZmyTKfgLaQAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fab69d33160>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "_ = view_samples(-1, samples)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "Below I'm showing the generated images as the network was training, every 10 epochs. With bonus optical illusion!" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAKhCAYAAABkTRjXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeUZFXVvp/pYWBAJQdFRXISJAmoZJQsIEGRjKAgSBAQ\nRfHzQwX1UySoGBEBAyCgmJEgIoJkSSpBkqiAMyCCCZihf38MT5+q3X2n6lZXVRf89rvWrFld4da9\n+55zz/vudCYNDw+TSCQSiUSvMTTRJ5BIJBKJ/z+QC04ikUgk+oJccBKJRCLRF+SCk0gkEom+IBec\nRCKRSPQFueAkEolEoi/IBSeRSCQSfUEuOIlEIpHoC3LBSSQSiURfMEedD0+dOnX4RS96EZMnTwbg\n6aefBmDuuecG4D//+Q8Ac801FwBPPfWU3wNgypQpTd/z7/j+3//+dwD++c9/zjrJOeZoev9FL3oR\nwMh5/Pe//wXg2WefBeCJJ54AYN555206r/nnn7/p8y9+8YsBsNvCvffeO314eHiR8djCa/E32rWF\n16gtJ9IW06ZN44knnpjUjh1mZ4sXwrjoli3qjotnnnmm6Rr7ZYsFFlig6W9t8eyzzzJt2jSefPLJ\nHBc5Rzq2Ra0FZ/LkySy99NJsueWWANxxxx0AzDnnnAC8/e1vB+Duu+8G4JprrgFgpZVWAuDOO+8E\n4K1vfWvTRVx88cUA/PWvfwVg5syZAHzoQx8CYI899gDgoIMOAuCcc84B4NxzzwXg/PPPb/r+S17y\nEgAWXXRRAI499lgADj74YKDcpKWXXhqAT3ziEwDce++9D4zXFt7YXXfdtckWv/nNb5pscdddd83W\nFn/5y1+AMhBa2cL/tcVDDz3Uli0c4EsttRQAn/rUp3jkkUfaNUOTLbbaaisA/vCHPwBlXOyyyy4A\n/PGPfxzTFtpo5513bssWH/zgBwHYc88927LFww8/DJRJ0mpcLLnkkuO2heNCW2jnTufIJZdcAsCf\n//znJlscc8wxQBlvXkunc0Rbaotll10WgOOPP56//e1v47JFnCPawnGhLVZccUWg/hypOy4mYo5U\nPTtbzZFWtnBcSJ7rPi/anSPjtUW61BKJRCLRF9RSOIsuuiiHHHLIiOwS//jHP4CyWk+bNg2A4447\nDoDf//73QGF7v/71rwFGVkZlonJv1VVXBeDWW28F4JBDDgFgscUWA+BVr3oVAFtvvTVQ2IEy9Ec/\n+hEAb3zjG4GySv/2t78FYL755gPg7LPPBmCJJZaoYwZgli0OPvhgnnzySaAwC/+Otjj++OObbCHD\naWWL17zmNQDccsstQGEa0RbbbLMNAG9729uAIn2rbHHTTTcBxYUi41liiSVGzrFTW0R5Litq1xYy\nae9ntEUcF7IxbbHtttsChQ3qFvjhD38IwJve9KYmWzguZI2N42K8thBVc0Rb3HbbbUD7cySOi8MO\nOwzo3hzRFt0YF1XPC8eF9zs+L+rOEcdFt+ZIL2xRNS50rWmLTp8Xr371q4EyLqrmSLRFnCO9skUq\nnEQikUj0BbUUzowZM5g2bdoIC3vpS18KFH/en/70JwBe9rKXAWWVXm211YDCaPS97rvvvgCceOKJ\nACy++OJAYX/3338/UPzI0f/82te+FiiBMn3vb3nLW4AS+NI/+eijjwKFZS6yyKz8gHXWWQcoq3a7\ntpg+ffooW8ggqmwhG4u2eMc73gHASSed1GQLGU+0hf5nr1FbPPbYY2PaQpv5PT+nLRZeeGEA1l13\n3REWNV5bxHHhNdW1hTassoXjQlusvvrqQLnf7Y4LYwuOi17awmuS1beaIyeffDIw/jni+KyyRdW4\nWGeddTq2hQzYa/Z+9HpcxBhNu3Okl+Oiyhae+3htUXdctPu86JYtUuEkEolEoi+opXCeeOIJLrvs\nMnbffXcAbr75ZgDuu+8+oMQFjjjiCAAuv/xyoPiNF1poIQCWX355AK6++mqgZGLoZzaGc8UVVwBl\ndXYVln3pG37FK14BlEwOP2+mjZk/v/rVrwDYf//9m75/yimn1DEDMCtWc/nll49kB0Vb6POMttBv\nvOCCCzbZImal6FuV4fzyl78ECsOJttAX/MpXvnJMW5iR5+se74ADDhi5HpjFpOtmI1XZ4t577wXK\nuDjyyCMB+MUvfjFbW8TMrWgLx4WZOXVtEceFtnj3u98NlHFx0kkn1bZF3TmiLfShxzniuFhhhRWA\n0XPkyiuvnK0t6s4RbesccVyccsopXRsXgz5H4rhwjvj9bs6RTm3Rao5U2UKF4rjQFmZNtvu88Pt1\nbZEKJ5FIJBJ9waQ6W0wvscQSw+9///s57bTTgJIZ8fKXvxwofr0tttgCKKvxxz72MaBkjcgk/W1X\nVX2nFiWZcWGGxY033ggUNrj++usDRSn5un5Sj2cm1nbbbQfA6aefDsBaa60FFLZx2mmn3Tg8PPza\ndm1x1FFH8fWvf73JFvpgPefNN9+8yRYf//jHa9liaGgWJ1hllVWAYuNoiw022KDJFv/+97/HtIVM\nSVt4/muvvTYwi2ldeOGFTJs2re2itjguzOXXr+w5W4Ow3HLLdWSLOC48rqqhalxEW5jhE8dFt2wx\n1rhwjjguNttsM6AoF23hNVk3YcZf3TniNW+44YYAXHXVVU02qpojZvh94xvfAJrnSLdsEeeIz4tO\nx0WrOaJKaDUuej1HZmeLqmfnC80WqXASiUQi0RfUiuHMN998bLHFFiMZCzvssAMA3/3ud4Hi9/vW\nt74FwCabbALAxhtvDJTV1FVWuMob6zHLyMwaWZ6ZFf/617+AwtZkC/pB11tvPaDUNOhvvPTSS5u+\nf8899wAlU6MO5p13XrbYYouR75rdYeWuPtNvf/vbQLUtvAahLbTRGmusARRbyGxkGLawkKFEW8hk\ntIV+aG3h96xwfuyxx5gxY0YtW8RxUWWLqnGhb77KFlXjItrCeEPVuOiXLbbccsuRcVE1R77zne8A\nsNFGGzX93+m4cI7UHRcyWufIZZddBow9R8ZrC8fFeeedB5TMPceF46HdOdLqeaEtWj0v2h0XxjnG\nYwvPcfvttx/TFlXPi1ZzpO64iK2LqmwRn53jtUUqnEQikUj0BbUUztNPP82f/vSnkVxvmcuaa64J\nFL/vG97wBqD4mc2Qeec739n0ugwl+t6tqrU2QYbiqj3PPPMAJQvqda97HVD8njJU2Ztswrz/z372\nswAceuihQFFO3/ve99q2xTPPPMODDz44kqGhLWRbZ5xxRtO5ec0ykv322w8ozfVkKF5jlS1kGFW2\nWHfddce0xe9+9zug+GLNahrLFtdee23bdoAyLlrZompcWGuiLRwXXqOKtdu2cFw8+OCDXbXFgw8+\nWDlHzjzzTKCMC7OGjPFUzRGv1Vhdp3PEmJEMtWqOnHDCCQC8973vHZctxhoXsvA4R7z/7c6RqnGh\nLR5//PEmW6jW6o4LbWE3h/HYwvhhlS3anSPdel5Yg2j8LD47fV50yxapcBKJRCLRF9RSOA899BCf\n+tSnRmoAXA1d4fbaay+gdDDVV6qCeeCBWc2YzYiRodx+++1A6RIdawhk4/Y80w/pKu7xZW2u6rID\nWaLVtyoxV22zZbphi+uuu25MW1i567l4zfYmkqFU2cL4RLSFr5t/L/Mxf17bmG9v23ttYcaex114\n4YVHWHentpBJ1h0XvbKF4yLawj5U0RaOi8UWW2zkN+vY4vjjjx8Zm/6248JOxj//+c+bbOG5qjC0\nhYxX9l1lC8/ZTgK+7nlEW6gCqmwh49bGiyyySEe2aOd5oS16PUeiLZwj/l1li/i8WGSRRcY9R1o9\nL+rOEWM13ZojPjvj82K8tkiFk0gkEom+oJbCWWihhdhrr71Gso/0her/M1dcv2TMgLBDqd2azWqy\nVsVV1upnawdUIK7Wvi9TsjrbDCCraz0/e6S5eutTtn7D6tnx2CL6QrWFcQzZm7awi6+MpcoWdpGN\ntpBh+L62sPeVtjBPv8oW+pQbbSFz7NQW0Ufealz02hZmAHVii7rZSAsvvDD77rvvSPZRHBeec7SF\nvxnniL7+qjliHyttrC2q5oi2cI54fu6bo3dAW3iPOrXFPvvsM5KhVzUujG+1ssXzeY60a4tezZGq\nZ2c35kgdW6TCSSQSiURfUKvTwEorrTR81llnjax2X/nKV4Di87TeQl+ofkX3H5Hln3XWWU2vmxEh\nCzRjR3/k97//fWB0po6V7DFDRz9ozAQyx13/6KRJs4pjra7eeuut2+40oC08p2gLGYPXop2tMJfB\nfPOb3xzTFnZ59ft2i73ggguA4nuNtjC+pS3cKTJmAlkHMpYtDj30UO6+++62q6hXWmml4TPPPHPU\nuND/G8eFjKhbttDnr187jgtVQrRFq3Hx5je/mcMOO6yWLVZeeeXZjgttEceFTFVbdHuOOC7M3Go1\nR2TKVq5vv/32HHroodx11121xkU354h7tFgj0u85IrbbbruO5kg7tmh3jnTLFq3mSLefF6lwEolE\nItEX1FI4CyywwPAb3/jGUf16XDWtUtYn6056ZkS4ilv3YsaE7ErmoZ/Qvc3NajNrzdVVv7THcbUX\n+nBd9WUHdlb94he/CJS+Qdddd13bCifawp5W2sIuwPpkf/zjH7dlCxmFzMNzsytst23hrphf+tKX\nRn7v9ttv51//+lfb7K2VLex8azyrXVuMd1z4vbgjYbSFle4777xzky0eeeQRbr/9dv75z392bIt2\n54gZVCogbeE1aAttUzUufF9b2Asr2sL3oy1UVmPNkW6Pi7pzxPusLTqdI9rCzD/fNxPMDC3VXj/H\nRb+fF1W2cFxYE9UtW6TCSSQSiURfUCtLberUqSy77LIjjNBMBvPo9StazyA7cp9sq5z1T8qqzMRw\ndznZn3sw6I+UIZupYSaGGR76ZK1lcLV2r3Ora81d/8AHPgCU3HJz4uvYQqWgLfSNj9cWZovYrVeV\noG9dRhxtYVZKlS3c61xbyGy0xemnnz7yXl1bxHGhP3jTTTftii1kd44LM27Gawvrhsayhe/VtUUc\nF+3OEdWbtpBhxjniuKiyhcy23TmiLdyfZaw50u9xYQaXtlB5dGuOGM+KtrjtttuA3oyLaAufFxM9\nR6ps0e05kgonkUgkEn1BLYUzPDzMjBkzRvZk0CdrLcCXv/xloDAT/ZLCPj5mL7kDp9XRKpnow7fL\nrH5F/ZbWEMjKPH5ktrIJlY71BGZeyBrrYHh4mGeeeYYDDzwQgJVXXhkozEGGImOtsoVZKtrCiuBY\nMezfsc+TPZda2cIsFCvXq2zx8MMPj9yfurZwXHTLFnFcRB9+XVu89KUvBWD69OlAycSR0coetcUj\njzzSkS1mzJhROS6cI1W2kJ23miPdsoX1HK9//euB2c+R8Y6L+LxoNS7MiKoaF72eI44LbWEcoxdz\npN1np7bQhqq+bo2LaItWc6SuLVLhJBKJRKIvqKVwZsyYwbRp00YyLaxWdlU1o0K/oQrDzBs76JpJ\nIeNxhXR3Ov2E7gnhceJxb7jhBqDUX8w777xNx9PnbBWuOe5m6sigzGGva4vp06ePMIZoC32m8ZxV\nMK1sIdOItpB5eFx9r+7oZ386a55kZ9rC/lGzs8X1119fyxbPPPMM06ZNG7GF/mSZp7E3WViVLewA\nUTUuPNe6tqgaF9pClqittcUyyyxTK64Ho+eItuh0jpjNJLOtskXVHGnXFq3myHLLLVd7XMQ5YrV7\n7G3Wao60GhftzpH4vGg1RxwX0RbLLLPMuOeIzwttYY+1dm1hFlp8XnQ6R9q1RZwjdZ8XqXASiUQi\n0RfUUjhPPfUU999//whbczXUv3fkkUcCpROqFeAyW/2E5p7rk5VVmRljbZCrqMeXHeqfdO8HYzr6\no63XuOiiiwDYfffdAdhll12A4j89/vjjAWqzlbFsIdOItpA5Wumrj97/tcUVV1wBFEYTbaHtPL7s\nsJUtZMpmSUVbyBo/8YlPALMy9ewQ0S6efvppHnjggRG2pi2MB0RbOC6iLWRbrWzR6biItthjjz2a\nbCHLPO644zq2xXjniNcW50i7tnBceO2t5sjPfvazMW0x1hzpxBb33XffyA6arcZF1Rxpd1xUzZFW\nthjEOTJeW1TNkYm2RSqcRCKRSPQFtRTO3HPPzSqrrDLSWVYfqtXMVg7rj9Z3b5Ws1e/meLvHgnn0\nHkfWpz9SP7bHt5bBWoObb74ZKKzRDAyrae1f9JnPfAaAHXfcESjKyhqF0047rWNb2HXVPPdoCyuI\n/VuGEW1hHr3Xpi20nSzc45u/7+fNyzc3Xlto2ypb6KNddNFFR+oZxmuLOC4cB44LbXHnnXd2ZIs4\nLqItqsaF52V1di9sYVfgTueIiHMk2iLOEbObnCOOxypbeK9ajYvFFlusI1usuuqqo54XreaIWWid\njosXwhyJz4u6tqh6dnZqC3f6tNNAp7ZIhZNIJBKJvqCWwpk0aRKTJ08eyR2/9NJLgVKNqt/auhdX\ncauuXR1lWeZ466eW7enfdDXX32zmhWxNZeIq7qrt6qzf08wOc9H17Z599tlNx+nEFubDawt9stEW\nqi0rjXfaaSegMIsqW5idVGULbe816GPVFv6vf7uVLRZddNGR/kqd2kKWHcdFVJ5VtrAmpGpcCK9l\nkG0R54g+/FZzpF1bmA3nuJDB+nt2BfZ36s4RGXk3bdFqjsS+Xa2eF92aI8Y9XghzpMoW2r6uLexA\nMF5bpMJJJBKJRF9QS+FMmTKFV77ylZx44olAyfF2ldRH6w599gHSJ+tqK7syo0J/oNks+mLdC8Tc\ncX/PvSGslj7zzDOB4s8042KZZZYB4Hvf+x5QMjX0r5sZZCeDOphzzjlZYoklOOmkk5rOzewe8+Kt\ne4i2kDnIKES0hXnv7ouhLbzGVrYwn1/f8IUXXggUP/dYtvAzvbaFGTb9soXnFceFtnCXTivWO7FF\nqzmiLeIc0VfvHNEWZgDZO6vVHLGLggxVJmsXaGNB0Rbup1M1R7bffvuRz7SLVuPC54U1IHFcmDE1\n3nGhLVrNEe9BqznSC1u0el7EcdHKFu6v5LXVtYW7oXZ7jqTCSSQSiURfUGs/nEmTJg0DHH300UBZ\nVfXh6Z+2f491ETIHO5iaQaP/2H0oZFuu5jIKGY+vx9x0/djWFFjDYBdomZS57VdeeWXT92R1J554\nYtv74fTaFjIM2b+2MLPO1/2elcRWMlfZQl++2SzaQqy22mp8+9vf5pFHHml7r49oC/3R2iDawnP0\nGrWFbN1raWWLqnHRyhZnnHEGUPzk0RaOi1VXXXXctnBcaAPHRxwXKlDrK/S5150jVeOi1RxpNS5W\nX311vv3tb/Pwww93bVz4tx6GqnGRc+SFY4tUOIlEIpHoC2rFcBZbbDH23HPPkerpjTbaCCidQ+2Q\n6251ruauijFnXHicGOMx8yJWW8sKXbXNYnHPiKuvvhooPuADDjgAKF2hXbXNbXdPijqItthwww2B\nkr2hLdzR8YMf/CAw2hbWJAiP47VV2ULmEm1hFku0hdcebSHL1xaXXHLJCPuqaws7ycqSqmzhuDBj\nR1sY1zDDpt1xoS30K/v5aIvf/OY3Tde+//77N/0dx8V4bBHniLawW3DVuLD+wnERbdFqXIx3jtj7\nzXFhL62LL754RK3VtcV4x0XVHGn3eWE1fZwjdmYexDnS7vPCceF9bPd5YW82x0W0RdWzc7y2SIWT\nSCQSib6gVgxn/vnnH95ggw1G4hDmqcvKzJDZYostgKIcDj74YKDkcrvKWg8RawjcEdBMC6tm/bxM\nS7+izNjj+v4PfvADoDAmM0LcUdTXzQQ655xz2o7hzD///MPrr7/+iO/dazMLSAbhNWiLQw45ZLa2\nkFnoq9UWZuCYnaQv1mu1FqGuLbx31lbNnDmTiy++mMcee6xt/3QcF9EWMsstt9wSKH2axmsLuzVo\nC7OT6trCzruOi27awjnisR0X7c4Rs4q0hXPE73mcOEc6tUXVHOnUFuuvv/4oW9SdIyoUbSHbNubX\n7hzxeaFKmMg5UjUuevW8iONiomyRCieRSCQSfUGtGM7UqVNZaaWVRnK1ZU9W/rvPxKmnngrAVltt\nBZQKY+Fq7P4YZuREn7urqDUMZpnpH/d9axT0P/q37M/VXXZhbvnhhx8OMJIbXwdTp05l5ZVXHmEM\nVvjam8iuru5qWGULGav7Y/h3lc9dpqEt9AnLiBZffHGgxCv8u44t6nbCdVy0soXjwnOx2lqVXWWL\nqrhUtIV1ONrCcRDHSZUtzj//fACOOOIIAE4++eSObLHyyiuP1Fk4R2666Sag+O61xdZbbz2mLWTv\nMuE4R9wlM84RmatzJNqi0zkyHlvE58V454jPj1ZzRFs4R3zfOdHKFtbAXHDBBcD4x8VYz85WtujV\nHInXHm3Taly8973v7cgWqXASiUQi0RfUUjj//ve/ueGGG0b8jO61YHWsfmLZl6uibNt6F2M25pDr\no7Xvk6usx7c2wVxzc8TtoWbGhL2WzLRRebmKy4j02ev39rid2EJfqT2RtIG+UX+ryhbGN6ps4f/a\nwqyTKluYVRRtIZOqsoUVyksvvTTXXHNNV2xRNS6Me/k73baFVdGOC/eolxU6LqzS1haqBP3e3bBF\nnCNxXMii47jQN9/uHNEW2rbTOeJ+LHGOLLXUUiPn2Kkt7OMV50h8Xlx77bVN596rOWI/sjhHHBeq\nBlVC4/NivOOiyhbxedFrW1SNi2gL54j3qtM5kgonkUgkEn1BLYUzzzzzsMYaa4z46Lfddlug+Eqt\n4D7mmGOAwppdla2mtW+Qq6u71dmfyNXW3HMzJqzfsV7CVdq+VfobrV1w5TUDwypvq671a8YuxJ3Y\nYrvttms6ZitbmA1ivny0hf2J7B679tprj2kL8+K1hftWxC4MMqV2bFEnc3F2tnBc2AnZ2oJWtpCB\ndmoLlUq0hVXVVbZw3IzXFquvvvqILawcd18RGWYcF6r+qjni51rNEesw4rhoNUdkyu4RFMfFjBkz\nuj4unCMf+tCHgKIgVHfWjnQ6LlQN7c6R6667rskWcY543r2YI/a6c4702hZ6Adzzp+7zolNbpMJJ\nJBKJRF9QS+HMOeecLLnkkiP+PFdfVz39fTJOc8v1+y277LIA/OQnPwFKPr0MVzZn91izQ2QF5pjH\nvHz7S8nOzLhQgbmnhL58c9plk/orO7GFPm8ZqrbQJy6z0BZmkSy33HIA/PSnP52tLcwqMTvE7BZt\n4e/5OW0so66yhf5rs6AabVF3r48555yTpZZaaoR1RVvoV9YW1ms5LrSF48Jx1a4trOtxXPg5j1vX\nFlZO33zzzR3ZonGOeF9VV63mSLSFPnXPKdqi1RxxLsU5YnabTDvawgzS8Y6LduaItnBcdGuOxHHh\n8yLOkWgL1YaZY90aF3XmSBwXdgLo9hzp9HnRqS1S4SQSiUSiL6ilcIaHh3nmmWdGOpG6Krtqus/2\n6aefDhS/oKumr9sd1uO4s58rpVlOZuLoR5b56Pv3d31fX6J+bF+XHcgCzAzRL65fuxNb2HW1yhb6\n7P2ctvB1baGv1J39tIXZLNriP//5T5MtZELRFqLKFjItGZW+4LnnnnuEddWxxdNPP13bFt4Px0Xs\noNzKFnFcyBqrxoVM2tdl0NEWjeOiE1s0zhHP1WtqNUe00Y477ggUW5kZWneOxFiMtjAOGseFykxl\n1A1beA3uwdLKFnaQ6HSOxGtyjvj9VnNEG1aNi17OkWiLOEc6fV6olOKz01iMSqnd50VjZ4s6tkiF\nk0gkEom+oJbCeeKJJ7jkkktGqlCvv/56oPiP3VVOxeLucLvvvjtQ9lwwh9xqaHPErYq2NsAaBbNL\nZGX6tf09/3f1lUnpZ9RvvvHGGwOleneHHXZo+t1+2GKPPfaYrS30qXpOxpfMy4+20JcbbSGbl0nJ\nYLSFletWdWuLSy65pDZ7e+KJJ7j44otHbHHDDTeMaQvZmBX9cVwYW6trCzNv9PH7e8YEtIWsz3Fh\n5o/V2tpCdXHxxRd3ZItLLrlkpFLcbB+vyXOKtojj4r777mv6njEYffFVc8S9n5wjcfdL54g7gbY7\nLjq1RSfjot05Em3Rao5o+2iLdsfFIMyR8dqi1RzxeRGfnd0aF6lwEolEItEX1N3xcxrwQO9OZ8Lx\nquHh4UXa+eAL3BZt2wHSFo1IWxSkLQrSFrNQa8FJJBKJRKJTpEstkUgkEn1BLjiJRCKR6AtywUkk\nEolEX5ALTiKRSCT6glxwEolEItEX5IKTSCQSib4gF5xEIpFI9AW54CQSiUSiL8gFJ5FIJBJ9Qa3m\nnZMmTWpqS2CL65kzZwKM2mrUbWzbfX2M32v6XN3jtfodm849++yzvjS9RmubF3SLhuHh4UntfjZt\nURBt0WoMVo3xht+ucabdQ9V593NcpC0mDnXHbbu2qLXg+EPuXmi3VTvOuvB4Mj7QG04KmLX7HZQ9\nF+LnRk7uuQXNzqj+rn/7vbhweB7uPWFHVt/3877fsGPdC7XX0UCg7iAe7/EmCkNDQyPn5Bh2DDqG\nGz8LZUz7eT/nHKl6+MbXY+feOOb9O37f3/N9//ZzM2fO7MjOjbZotbhW2ULE54DnGq9RtBof8bnk\n5+P3PI/x2mKOOeYYeTbFceC1xXOI983XG0jybD8Xr63KVsL3fTbGvYM878b9dOrYovaC04i///3v\nTSfnRbldqcYVvh8XpjjwvGgXJj/v/24+JOICpFH8vMfxuG676na7Hs+HQqI36PbC0K3jdfP+S8ji\nwzCO5fjAiA8Er80xHedKfEBVLRgizokIbeDnnMOND11/sw4aFxz/97eiLaoejtEW8aFd9RCtWkii\nDaON43PETcoabd2JLWbMmDFqYfBvx4fPprj4xmdkRLRxJOtVi3xcmPxdr1kbRJv5/5QpU2rZImM4\niUQikegLaiucyZMnjzAUV+PoGouMIbKuKJn921Xev/2e2/VG1hhfj9+PxxFV0vn5jOfDtYwRM2tC\n3XOvuuYqxVL1+91Utm6rHFW4cyW+HudSZPGR6UbG6ZiPLNzvuyFb3FrYz3ntfj7OZX9vypQplepo\ndpg5c+YN0JhiAAAgAElEQVTIMTxXtz32XOJvVbmPxoihNH3P43hNUfFEFeHzw7+j6tCmYymgVopj\nLEyePHnU96LKq3KFVY2L+CyrUrZRAVU9ixvdho3/i7Fcs3XmbSqcRCKRSPQFdbPUmGOOOUZWQ5lB\nXEWFq+Pcc88NFOYh05BhyHiiUnEb3GnTpgFlO123Io6xIOFxYsA2JhE8H1RBu3g+XEOVsqmC48Zt\ndG+77TZgNMtadNFFgTJOqhRL3d/vFJMnTx41R+I5eL/iHIpM1zH+kpe8BCjX/uSTTzb97Vyad955\nAXjssccAeOSRR5re9/POuah0XvziFwNNiTQj59mJ/SZPnjzymzEBItoiztuqZIOoEiN791r933hU\nVCxV8Q1f1xbGehvPuxM1PjQ0NCoZJD6T4jX5foypRLUW4Tjw2t02+9577206foztRbWpLZyLUUnX\nRSqcRCKRSPQFdbeYHm6M4cSYSmRnrpautq6OCy64IFBW31VWWQWA6dOnA/Dyl78cgBVXXBGAiy++\nGCisbb755gNgqaWWAuDhhx8G4IEHZmU1R8bi78oiYv1QQzr1jcPDw69t1xbtfK5TyGxkGH/4wx8A\nOOeccwC4/vrrAXj7298OwHve856mz8uAO0UnNQatYjQ1juc5APDSl7606bg///nPAXj9618PlGve\ncccdAdh5550B2HvvvYHC5k3jf/zxx2udT11bDA0Njco+cgzGDKuYoi/zVdE4R2SYzp2FFloIgGOP\nPRaA0047DYBrr70WgN133x2AX/7ylwA8+uijQPEOOCctaYhzRnXgnJkxY4bMvpYtZPaNiLGWGHeY\nZ555gNGxHtl89JB4/50Lv/jFL5q+/4pXvAKAhx56qOl3nSMeX9tXKa7GesNObeGxojenqkREW3iN\nUfF4H5944gmgeIVe/epXA+X++7v+r+38Xowh+ru+H1WkMIbTri1S4SQSiUSiL6itcBrZiswksjNX\nz8gUlllmGaCsyjvssANQVuubb74ZgL322guAc889FyhKZ7PNNgPghhtuAOC73/0uUFZnmfDvf/97\noPgrPWeVmaxxjEyicSsc1ZfMsV1EGxqXkJXJxl70ohcBhaVpa1+XxRvP+N3vfgcUG7aLblRRe076\nwEXMIot/v/vd7wbgm9/8JlDu19lnnw3AbrvtBpT7aj2YqsDflc2vvPLKQGFrskV/r+o8RSdMVkSV\nr7py7sTx4rk4Hg455BAAzjvvPABWW201AD784Q8D8Ne//hUo6t455Vz64Ac/CMDb3vY2AC644AKg\nMOALL7wQKOMlZjs1qoqnnnqKZ599tmNbCNWZqksbqeKcAzGj7mUve1nTuRqX8Jr1dHjOPkfuuOMO\noNjQOeJ4UDVedNFFwGg2H7NdrcMZjy2iklCNRWUZbaMi2mqrrYCiYPy8Y/2mm24CYNVVVwWK98hn\n8K9//WtgdAzpNa95DQCXXnqp5z1yzY22iDVJqXASiUQiMVAYVwzHVS5mSrgqL7HEEk2vv/WtbwUK\ny5MxuGquvfbaAKyzzjpAYawqFX32/u3qfNxxxwGw4YYbAmV1vuSSS5p+X0bj+TW2ZwAYHh6e8BiO\n57bwwgsDcMIJJwCwxx57NH3O++Y1qv5ka1tssQUAd955J1CUTmOFMFRXvveiT5RsXqYq8zQW95e/\n/KXp87I6/dJ//OMfm/6W0cp4vf+ye8eBbPCHP/whADvttFPT8WO8q9M+Uc99t4nJxuyzGA/wnH/7\n298C8OY3vxkoDNU5YJxTdeAc2XzzzYFiu+WXXx6Au+66CyiM9utf/zoAb3nLWwA46qijALj66quB\nwpzvvvtuoDDtGHvqJJ4Va0Wq2u04PlQ43mfn7QILLACUuaEi3WSTTYCidMywcw5cd911AKy++uoA\nnHjiiUB53px11llAiYv6/ajAGhVPnbiFtpg8efKoiv6qmiMz5JynxrVV+94flbH32XFi/ZXj4iMf\n+UjTtTsu9SKsscYaQLn/KmfPJyqumNGXCieRSCQSA4VaCmdoaGh4ypQpo2Iz0Q8oy/Z9mYpMUkZy\n6KGHAsW/GGMtp59+OgDbbLMNUFb9tdZaCyhZa+9973uBoqhcpX3f4y+55JIA3H777UBhSA1Zdn1T\nOFU9jGQwMUtNxF5X66+/PgAPPvggUNiZcQ7jHlU1EFXohcKJmTKx04SszXob1dsxxxwDlGuQ1RmH\nMM7hfT3llFOAwu4uv/xyoGQxGU+JvfZi/zBRxxZDQ0PDc8wxx6iK7ZiJ5bVqg5iFpk0OOOAAADbe\neGMAfvOb3wDlvl955ZUAvOMd7wDKfb3nnnuAEq+46qqrgBL3UEHJeFUynpexw0YmW5fVDw0NDU+d\nOnXk2CKqPlWctvLaPXe/X6XqtMWNN94IlOeBNjU+4t9eu88ZY8G33norUJSO1+5zqzG204kt5phj\njpbzLmbeGePxWWWcWm+RsV69PptuuikAX/ziF4ESu9XG2223HVDG0fe+9z2gPCNjbZLq0vPWlo22\nqJOxlwonkUgkEn1B7RjOWOxNdu4qKjORbbs6rrvuukDJKjrwwAOBkmGjn1I/tBk1rqrWWQh9ufaJ\nMiZgdps+X5myqsHzVpHJfP75z39OmMKJkH199atfBWCfffYByjnrXzb+YRytKl9e364qoI3W7V3f\nA8ZOEfqHY3W1GTZrrrkmUGqLVMQrrLACULLPZH/GuV772lm3Tn92ZJPef8frYYcdBsBnPvOZ2V5f\nXVs0Mtnoo49be8hctZX30+yiuKWHTFRldOSRRwJF6Th3VDL+3p///GegzBWvWZUo43WuxTlSNxtJ\nW0yePLmya7znJqv3dZWscQjvu/B1YSxGNh/jYd4D63FULCqn973vfUCZQ8Z8tLH3qPF599wWBbXj\nWaJqbMZ4l/ZfbrnlgBK3/MAHPgCUGK0ejk984hPAaC/PfvvtBxQ1Z9zT76vufT5oG9+vivlmlloi\nkUgkBhIdZalV7angKuhqLVQaZsjIHMw68/tmF6lU7rvvPqAwVrPb9E/qc9Wn7+pstbWruKuxmTux\n2rchW67nCidWcscNjiL7O+iggwA4+eSTgXJt+uzN3Krak6LVPihV6EUMp+HzQDk3r8k4hdlGsjFr\nT/Sty/bNapKFadO4t4tj/KMf/ShQ6rS0oX7tKhuOh9VX7bUSNwk0rqSyMR6h6pdlG8cwDuHc0nug\ncnKMq4SXXnppoCgZbWL2ol4He6/FGpgG331ttVe1d0989vi6nhIz8mT5KljjFqp2M62sIbFOb5dd\ndgHgTW96E1BYuwrJLEbjW6pAFZLXHM/f8+lE4VR1gRYxe82Mzn333ReAH//4x0CZK/5vPVXsueZ9\nN6b3ta99DSjxca/ZZ+Nll13W9PveC+NlY2RwZqeBRCKRSAweOtpieuTLQSnIrvQbyiT828wXmYrZ\na37f1frMM89s+r7f23XXXYGyyvu+/kcVkJk+999/P8CoLJnYZbqTfT46hcwgKhshO5exHn300UA5\nV2sJZPWtFGq8NmtQjI+JXnTOjseMassMKceDLEtFY1ai40IlJAuUjfu5qLwb+4BB8XN///vfB0q1\ndVQ23bBF3OEzxmJ83bGrWlPFGW9Q2WywwQZAiVupbN71rncBcMUVVwDFa6BCMj5pLz5/3+wj59bW\nW28NwLe//e2m6xjPXkGTJk0a6TDfiFiTFLeGj/29ZOm+b6aW7NxxpUpzPPg9r91YoNfs80dlrM1W\nWmkloMRyYobhpEmTOhobjWqmKtM39v1ToVovZYxO2zmmN9poI6DEdoyDeo3G9IzdaQuP631W0Rhn\njTWWUZnV3fk0FU4ikUgk+oKuxHCEq67ZIjIJM2/s66SP1N9WmchsZPmyPWM/+hG33XZboDAcff2y\nBF/XL64aiFlzsWttN7pFd8qOo+827psR1YFq7/zzz6/1O+2eXycxnFbHlsXHjg8xY8fxIzMVsi+z\njPbcc0+gZKnp84+7Y5rlZIaPNm23q3UncQvngufQ0M0CGL3viLZzzPp9ffiOXeeUGZ6+79iX2X7r\nW98CSozPzD6z1GKNinMgdgdu/FwnmVmN1fWtdvSN+2WZ1SjLNhvNazAu4eteo90bzFKLHZKN+aho\nvAfG9rRJ9Iw0svpOu0VHhRDnimPYc/BzdgM39uJcMganIlIZX3PNNQAcfvjhANxyyy1AiVv+6Ec/\nAkrndW2kbf1dn81Vz87nxkTGcBKJRCIxWOgohuMqF7u7yr6Nneg3dG+On/zkJ0DxP+uPNLvEbBH9\nlvpiZTpmL/n7xnBchfVvn3rqqcDoDryyN+FxYo75eNCp399zsRZFW0UGLLNwz48qVKmNXu4MWrVD\no/B++L5ZhT/4wQ8A+J//+R+gMNfYSddx5rjQf+04kOE6XhwXsvwYM+gVZsyYMWqv+Di2Yn2ONWZW\njHvOXqt1GFbZy+JlxNogds/Qh6+t7S9m5+SooCPqqsGImTNnjsruiixZJeHzxMy8uBOwNrWjiKxe\ntm+VvX0FVT4+T4xLqKBUvt/5zneazi/WwsSu0Z3C+p3GY8d4lupdW9hD0diL16raX2+99YAyZ4zl\nGZNzTlivZc2jdX3a2HiVv69iVl1W9XyzDqdtG7T9yUQikUgkxoFaCqfRBwmjd+STkcpcVBZ2qlXp\n2JnUVVXGop9QpvLxj38cKFlFsjn3gLBuRyUl61c5yc5kNnGv9Liv/CBA5qrv1WyyqHBkMtZtRPRS\nyYyFoaGhUXvUR8TeaWYDLb744sDoPe4j45R1WZMQY392nlApm+3m93qtbGAW45t//vlHzileQ6yq\n1xYqDm0R94xxTKtE/NsaNeeODNqMPr0N9hG0d5aQMTsHYh3HeFj9pEmTmGuuuSpZskrD++3zxFit\nzwXrbayre93rXgeU7grue2NmZ+xD9rOf/QwotSpCL4JzKvYxqxrP4/FiVPVQrOqCovqyVszxoRJR\n4RiLseboQx/6EFDi28bRjXc6LlTQUf3FOjFtErMu686pVDiJRCKR6AvGVYcjoi/WVdhV0G6+snKr\npc1CsturWSWu3kcccQRQstJkY7Fzgf5u+wW9//3vB8pqLVu0HsjaBxG7104k3JtDVhcrkYVxr0FB\no+2qYjiyI+9jjAFG/7CxNbOH9M2fc845QIl3yEytyzFDZ++99wZGs3SZs/7tqmy5TjBz5kweffTR\nUVX1wnPxNx2j/q9Sif2+nFPuY2Ocw0xOvQZmI6kWPA8Vl7ZXHRoL0Haeb2MPNZh1LzvoVsFTTz01\nKiYiopqKXaO1hZ4Qv28HEtm91+7zxLkR409eo7G/WEvieIx7v8S4i9dWF43fj2Pca40793ptenWM\nc5qt5rPNuWEsz2egalClsv/++wMlk/eTn/wkUBSzXRpiVmx8RlZlKrdCKpxEIpFI9AW1FM7Q0BBz\nzz33yGrs6hx7DQn9xscffzwAO++8M1BWS/cn+b//+z+grMrmgtvJ1joaGa0Mx4wbV+EzzjgDKNX0\n5tvr5/a4kVHLLsdTVT1eyK68BrNOqtDvGE0rTJ48uWUMx9ftA2bmlffX/ZFk78b+ZPfayNoDj6dS\nMdPLTBwrzyP8fFUG2XgwNDTE1KlTR8UBhL+lKjOOZW2anSSsGTJGp+LR565K9/uye7snOEf0BhgX\nUflE372M2vdj9/FOGO2kSZOYMmXKqHER/4/7I5lppxI1u9H6LI+nrfzbz3uuXvOXv/xloNjc1+Pe\nU9q4ql6oSqm1i8YOBVXqyfdVf/Z7e9vb3gYU9falL30JKM9QX9db5P/Gt1XCseuCHQp8PcYOzXJ0\nPEWFXtcWqXASiUQi0RfU3vGzcT+c2FFW/6MKxtXS2hLz3mWo+hv13apAYhdnmaodk4W+XZWUWSt2\nxLVq235BsXt0Q9dXX+/bfjhVMMNK26gCxvj9Xvz8CLrZLVrGKGs2e0j7m5UoCzPTxp07/b7KRaYq\nG1922WWBwvrM0PG+qnzM0Ir+6G53XWjsxuGx9QaoLGSQvi5jdMzG7CX37rGPmP3lZOXOhS984QtA\nsVXs3qFK9HVtq+r3/7iL76RJk6yw77hDcswS9Zxk87E7g+rMOIb3S1buuNEmjis/p40/9rGPAfDD\nH/6w6fyioooKJo6Pxvc7sUVj52yvUftHxeP8d7yYganyVdGocFW2W221VZNNzFY049c4lvvmqGwd\nP7Gjvvc/7tvUiDodKFLhJBKJRKIvqBXDMVPFVTkyAmM79nNS8fh5V1uZiKu8LE0frPvcyLaM1ejT\nN8vN1V424CptBoaZOP4fawuqGE0/IYtTxWk7M/qiwqnqMj3IkCXJpoypqUytp1prrbWAooyNL/g5\nlYyKWMV08MEHA2WvD+F9jbUnMWZTlaW24IILjsQP6mDmzJkjx4zM1bGokpHlO0dk+84dx7Zzy71g\nVOvaxrEdd1NVDZqdZvwixi21peMxduXoFMPDw6PmWazHUk35XNA2xliMH/h8cDdL54I1KsZ8vY9m\nx8b+cPG5EzMJvVfxnjQ+PzqJoc6cOXNUt4vYfcG54bV7/41zahvraOyt55yIu+Ga1eaupj47VX/O\ntRi/iuMi1t10us9WKpxEIpFI9AW1Ow1Mnjx5FHuSAdip1LoJV2fft7+PykTG62rubnPGfC6//HKg\n+Ctlea7S+jety/D3XbUvuugiYHTOu/7Iqv5R/YR79+hf9hytko+w60K3ulL3A2aZxV5qVkerXKw9\nMhbnzq7G5NzrRahoVTaxvqZVbzfvv6wxZrU9/vjjHdmpMRvJ/2N2WmT7snDvu0zXOWR3BTMvDzjg\nAKAoFrtsOEfsJycD1iaxBsq5qA3invWNqqDTzMhoA5WNtojKwzhDzELVFmZmaUM7Zqv6fP7I1n3d\nse/892/nnDHBeF6xl1pjV406aKypizVAcR8anwuqObPUzFqzI4neHGsRjWtZT6Ni1UbefzsP/PSn\nPwXKM9qsNhWViHHTTjM7U+EkEolEoi+ovR+OufUwmiWrWGQi9k5zFY09kvQzuir7vkwz7gRo7rh+\ncNmgq7u55PZOkt1FVh99suKZZ57peZaa1dGydn31+mS9FmsMZGmeuxlYcc+PbtfldDNLzVx+WbzV\nzr5uFpEsSuWjwvn0pz8NlPiFbM8u05GVj3F+TX/HWohWbLWTvesbK/Qbf0vG6TmrZMxCsh7H+hu7\nJXgcYzbGK+wibHxUBiruuOMOoDBXs5BUOFF1Ot6iChgaGjJ2UXsPmJgV6N+ybT0m2iDWFjkXjGd6\nTs4ld4zVRl/5yleAot7MinX/G59fMYYTuytU7Wo5adKkjvYGajx2VN+OfeEOr97XmNXms1bl4njw\n2WYdzm233QaU54TZada6qWRUVmYKN+wR1nSe/t1Yh1NnXKTCSSQSiURf0JHCcbXV/+yqakxF5eJq\nbN8f/ZJmocloZPux8le2d8wxxwCFHfo71hrIaPRn+rrsLWZaVHWDHR4e7rnC0b9sTZLMwXP96le/\nCpSeWZGdayOVUaexnFbohsKJ5xY7XtvTynFgvyjvv5k1Khnvv+PIuINMVptYkS6jjYhZUq3QiS2q\neuAJGa1KwziUcSpZuQzWOKX74agO7ICszdzpUy+CY9xatLiLpYg++fj3c7s6dqRwRKxOd1xoC+f1\n0UcfDZQeimeeeSYwumOIStfnjK8b2/v85z8PlPnv+6q3yN7j+IydkTvd5VJbNB4jqievXThGzcC0\n9sjuz7HPoJ2yrWGzLkeFbAcTY0XWvKmgfP5E5RvnSFW36FQ4iUQikRgo1FY4Y2V2xSwTmaY1JbIq\nV1f90LI0s9dkZeeffz5QYkHmjMt4ZGuyQZmOvl8VlMzXVTn6pV2dZUj//ve/u65w9LXawdgMPGMw\nxiXMPoq1JxF20HafHLOPuq10uhnD8dy0hYpUJutOrp/73OeAsjulPfZUdWaxGfORuaqQpk+fDpTK\ndBVyVQynSoGNsf9J7Yryqh0SzaC05kilK/s21mKl+G677QaUmhPVnSr+V7/6FVCyl2S6qkLVXtxv\nx/iFWW0NcwAoPnyZ9NNPP82zzz7bkS2q+oWpbJZeemmgxGLMsHLHTq/JHok+T7zvdoF3Ttitwxiu\ncSvZuuzd31cd+nyQ5cc9hmKngU7UXtVYFD6bdt11V6BkHxqb8xlr9wzn1DbbbAMUNaiycU5pO7tx\naFs/rzIys9e55flGZdy4U2mdrgupcBKJRCLRF3QUw9G/KPuJOdqufrIps0nMTjLbxNVZRmF2mezO\n7tD67l2NZXkqKfeQkek0sjIYvW973GO9gYX2PIbjuanmZOPf+MY3ADj33HOBsq+JDMU6nQ984ANA\nyS7pVdfo8SicmIkjzIyRbZuZZ5aijFJ/tseRvcmyVC5ViArW8RX3iGnXduPJzPI3VPdxfxszLe2N\nZiZm7A+mIolZQscdd1zTNZnhF7v9miHoHHHOyuqjooms3vq7uv3DGhl9VUaW12hmlvV073nPe5q+\nZ22RdTWOE98/6KCDgNFd5cfKuINiU89HG8R+Z2PFIDvppdb42yL+hv97bX7evb9831okbaJy2Wef\nfYDSe0/vj/veqGT1rJjFVtUpf6ysNGjO7KyjfFPhJBKJRKIvqK1whoaGRhRO1Z4Orn7GYGRZ+qll\nMNZZqFysKZClyfLsiWR1rL5ZmY6s0fqc2AXa92O9RewbNGPGjJ4pnJgZZfzKc/N1z9l92s2bV6Xp\n7273vnlPzOhqtzdYN2M48Vxk0e6Lo8Ixs8bx4f3Wv6wCMqtRxSJTFSpgbeXvqKhl+VWIfaLGk5nl\nfY8wbiBDNZbjnFL5vuENbwDKfbO+whiO48JOBMZgnBva0PiWc0TVFzsOxPNtzOTsNEutih3H54iq\nP94/41p77LEHUJSL9Tlm9Pn6scceC4xWhbG7veNHG/h63BE4Yjy2qNqDqUqVq4wdsyofM3ftDm4s\n7/DDDwdKjMbnh14ix4vPm6o4VewWHRVQ3P00FU4ikUgkBgodZalV9aTydRmKfuOoeIy9uMpaW2BO\nuOzNLDfZmcc1vuFqLWOOXavjKi078P2YX9/LTgNxV0PPXQajjWI3aJmHWWt2Y+jV7qSTJ0/uuIq6\nxudHfgvKfTEzR/+ymVfWlpjhp1JR6VZ1rh1v37i5556b//73v7V99Y27n1ZlJTlmY82acUf3mI+s\n37li9wXHhZlZsnPHeKzuj33D4u+qvCLL76YtYgwtZrf6XDDOpUrzfWPC1t1Zv+XzJtaQqHQie/d3\n4w7AMXtVL0RjfOXf//43M2fO7NgWjs0Yu9H+/h07rfu657zZZpsB5f5rA+eUcTFjNXZx8f5HRRvj\nnFXdoRufnbkfTiKRSCQGDh3t+Okq7GonA4gMIrKl6J/0+7K4e+65ByixG/3Qfl4WFntnqRL0T8ff\njX7TyLAbYj49z1KLanAi9uBpB+NROFUV2yJm6sQsR8eDfmuVjzEee2y1Qqd7dkTUscXQ0NDwlClT\nRrF3GWmMW8SdPR3j/i9TNeZnJ2Vfl7HG3TPj78f3o9poOH9g7P5hndThTJ48eVQvtZj55Ln5m9rI\nceHnvWazXK2y93vaTMSss7jjaFQbjdfa+P5YmVl1Yzg+O2OmbNX9iuo8KqKYCazaV5XFmHDVfjZC\nW6m4o6clZuqJ7DSQSCQSiYFERwonrppVO+PFrCTh53zd1VUWpzKR2ei7lQHLZOJqHhVWVELxc9Gf\n3o9u0XXRq15prdDLGE5EVaxlNvcJGH2fB6UmqbHTQGSGkS2r3hv3Wml8P2Z0ea1R1XucqniEiMev\nYq5jxWnHW10fWXz8raiEos3iTpzRU+FzI157jNXG3616v8r70KkthoaGRqn+OKbjfagaN1G9R7Xo\nMzbWGPn5OF7GON+m36vqsO7eQKlwEolEIjFQqL3j51xzzTWKSUSGGSv94+ejbzZW/sbXo282Kpkq\n5RJ99/qAPZ8YGxpE9FvZdIIpU6aw8MILj/iR66KKScZrj5l57XZ77ieGhoaYOnXqSJZYFUONccbI\n1iPTjb2tjN04B+JulTFWUxULiPG2GO8QnYxD607ifYr3O8ZS4+tRicTPVV1btEX8fLR5VWah8Hid\njDu7T8TYStU1V+3xFO9THC8qltnF4ho/F+9rVfzKa/d7sYaxXaTCSSQSiURfULcOZxrwQO9OZ8Lx\nquHh4UXa+eAL3BZt2wHSFo1IWxSkLQrSFrNQa8FJJBKJRKJTpEstkUgkEn1BLjiJRCKR6AtywUkk\nEolEX5ALTiKRSCT6glxwEolEItEX5IKTSCQSib4gF5xEIpFI9AW54CQSiUSiL8gFJ5FIJBJ9Qd3m\nnS/0tgTTa7S2eUHbop/bEww60hYFaYuCtEVBu7aoteD8f4C+9Tpqtf9Iu99r9/uxk3bVjo+DugNp\nYvbo1u6miUQvkS61RCKRSPQFqXC6hLgXR1QSVQok7skR97mI+6e4H0XVvidVv1ulqMbaDyMbuj7/\nkMrm+Y1+K9SFFloIgEcffbQvvydS4SQSiUSiL5hQhdOK/beLuPNnvzBWPKVqh8eIVkrEXVO9JnfW\ni7sjxp0ZVT7uABl3Y63am7wqNpQYHxZYYAGg7NA56MhY0MSgXXvH50X0fLSLdpXNJptsAsDll19e\n6/hVSIWTSCQSib6g7o6f45IicXWeZ555gLKve1UcRBY/33zzAfCvf/0LKPGLeeedFygswfdFjWu8\ncXh4+LVtXstwnXiH1z733HMDRaG4N/iLX/xioDDhF73oRUBRICqdl7zkJU3f83P//Oc/m37P7/m6\nNolMqur8+5Hy2S2F22t00xZ1r9lx4f1T+T799NMdHW+8mIhU4Fe96lVAGdMrr7wyANdffz0An/vc\n5wDYdNNNAfjHP/4BwEc+8hEAzj//fKD7NuqHLXxGqmC8hne84x0AnH766e3+ftP3W8FnrbZshXZt\nkQonkUgkEn1BXxVOKyyzzDIAPPbYY8Bo1u5qv/322wPwxS9+EYDNN98cKHGL22+/HShsvkZtSS2F\n84fo4H0AACAASURBVNz/wNjZXo1QhXlNKhUViu+//OUvBwrD8H1V4OKLLw4UW7z5zW9u+r1zzjkH\ngDvuuGPWBd14I1AYkjaaXVbbc/+yqO059NIW8T6oYF760pcCsOGGGwLw6le/GijsfrHFFgNgwQUX\nBODAAw8Eiq89egdUyDF2Vxf9HBeqeG3yrW99CyjzetFFFwVgrbXWAsqcEM6ZVVZZBYBDDz0UgMMP\nP3w8pzWCftjC++X/7cap282O7ZbqS4WTSCQSiYFCX7LUFl54YaA6M8JV9pFHHgEKM4kZWXvssQdQ\nWJzs7Qtf+AIA73rXuwA466yzADj44IOBEhfpRRV9VeV+fF1lscQSSwAl/mQW03777df0utf+8MMP\nNx1PHHXUUUDx7S+yyKyOPNpOduj7qsY///nPTZ8Tz4cOAzJd1Z9qcaeddgLgggsuAOpn7EwElltu\nOQD++te/AiXbyDlw5JFHAnDcccc1vR/Hl/9fdNFFY37P+66v/+tf/3rT74pBiqd5n4Xz//Of/zwA\nZ5xxBlBUnmNdOJZVPFdffTUAO+ywA1DiqM7JfqKunWN9XlUc3OeGz4FTTz0VgF133RUoNqyqv2uF\nbmUCp8JJJBKJRF/QF4Uzffr0pr9lJioeGUlk3daU6LO98847gRKXcNU2Y+eqq64CYP/992963diQ\nSieeT6dozFKrYi76XoW/vfrqqwMlBmPs5rrrrgNGq7xXvOIVQGG62k5GI6ufNm0aAFtttRVQWJzH\nNVYkU4mdCoaGhgauBkN2pW29VtWA13TyyScDJd7xt7/9ra/nWQcqDK9t/fXXB8p48VqqYoPaQDXg\n6yeeeGLT97SN4845ZAxRDIKyEc5r45f+vdRSSwHw8Y9/HCjxLBWuat44p9foOLn11luBiVXAVXau\nUl1eexV8TuhF8lqd1/5e7ExSN7bTrRrHVDiJRCKR6Av6kqUWV0198NHv6Coa4xZLL700AH/605+A\nwnD23ntvoKzeMhrZvPn3X/3qV4HCBvRrnn322fFUa2epVUGmGq/dmI1+52222QYotQaqMpnKvffe\nC8B9990HwBprrAHAG97wBgC23nproOTLy4i04W9+85tZF/acKrz55puBYotY/9Pg4x2YLDVtaFbS\nPffcAxQGLGPVpmuuuSYAt9xyS1d+vxu2iD3z3vve9wJl7Hr/DjnkEACWX375pu/HHnvGZo4//nig\njBux8847A/C6172u6fcdlyrlKp9+VTbbRI4Lr90xa4beOuusA5TnwhFHHAHATTfdBJTnjZmb/c7M\ngv5lcqqYn3zySaCML3un+XyIGcDjRWapJRKJRGKg0NMYjqxKxinL3muvvYCiQGTbVf7FBx98EICN\nN94YgD333BMoDNdMDb/3i1/8AiiZGsYkPJ8xlE3HaFXXEJntsssuC5Rr8v0nnngCKDbSp3vbbbcB\nhbnI0qwtkPlat+Hf+ur93+Noa48flc0gIirjaGvZutemr36QEO170kknAbDjjjsCJXvM+xLH7O9+\n9zugxOhUMNagmH3ouHBOqHxU/9Zpter1N4hZi9pENej/999/P1CeJ8ZyfvnLXwLwvve9r49nObGI\n8fAY891ggw2AEu/uN1LhJBKJRKIv6InCiVX2snJZuhk6svpPf/rTAHz5y18GChtXFcgO/fvcc88F\nSnW1iBlhhx12GAAnnHDCuK5ndqjyfVftQ6OyWXLJJYHCPGSw6623HlBiMCoW2b3ZKNrO78uMf/vb\n3wIlrqHCUQ3K/vz+8wFmYll/pQ8/4mc/+xkw2GpNlq4S+ctf/gKU+y7zVKGo1uyuEe+3cYroHTCj\nK9aoeP/9nO/HGNDzAdrAObHLLrsAJU4pfP78/wDHzfzzzw+U+6zy6VTZeLzHH38cKFm1jt92kQon\nkUgkEn1BTxROrI51lfXv73//+wB84xvfAIpS2WeffYCicITs/sorrwTglFNOAQpblOnI6j/0oQ8B\npf6mH1XUUV35m7JxGagMU5+7MZTdd98dgD/+8Y9AqSWxI64ZWi972csAeOUrXwkUpfTAAw80/d7X\nvvY1AF7zmtcAJTZUVbE8yDCzxkybqt1LY/X8IME54bmrVMxOtGfaFVdcAcBXvvIVoGQTySQd844n\na06M7ViD5jjQh2/m5rbbbgvAN7/5TQB+9atfjXm+4+251k/oHYi1RdrkTW96E1C6MUwUhoaGem5P\nn5XxeeSzsFOobERdZSNS4SQSiUSiL+hpHY6szv/XXXddAFZYYQUAzjvvPKBU2xubkQVGBaNfWkV0\n0EEHNX3uxz/+MQC///3vgRIb8n1z02eD2vvhVPUYinU4KhRjKfpAVSgyUutr/JxMQnamL99sN2sR\nrFFSIV188cUA3HXXXUCxgeepwmq4HmAWox3UbtHGGWKvLa8pvt4tdGKLGBuJqkyfuP+rWIw3/Pzn\nPwfg7W9/u+cAwHe/+10APvOZzwBlrLs/itlvkeF6fOeQtWjOTY/XCoMwLrw2Y3pmXkUbO+ZVed3e\nEbgTW/RaOV5yySVAUXXC51S3u4jYbSXrcBKJRCIxUOhpHY6ruKu6Ve/GYtyfwniDq69sP+aUG+94\n5zvf2fT52AnV/lEqml72Bou9jmJ9gwzSc/HcrJbXN+rePn7+D3/4A1BUoUpGRmuWkzEd41d2JhDW\nKhg78nPeE20zyLEcFe53vvMdoHSYEN2umu4GYtZXtK9jWZb+f//3f0Bh644L75MxPTtQXHrppUCJ\nVx5zzDFjnof323ipGV12WG/Vq2uQEDNAHftR2USoNrutcDpBr2M4PmNVOGbs9eoZWPe5kQonkUgk\nEn1BTxSOjFS2bmcB4xBmTMi6op9bNWCPJFdpGY4sz+p6a02M7cSMil6hcXWv2qdCqGzMtDJGY5dg\nGatZZX7fPV583e9bR2Odht2AH3roIWB0Vb7/68+2K21VvdAgwQ4Tu+22W9Prnrus/fkEfep2Dfe+\net8dH8b4VlppJaDEdr70pS8BZZ8bM7SicvW+f/KTnwTKOHk+KNsIr8WxavwrwmvzuRO70L+QYZd4\nYUbvoCAVTiKRSCT6gq4qHNlV3NPB7DNfj1X0sqyYwXH77bcDJfPmtNNOA0revXGP733ve0Bhuta0\nVGXsdMuP2rgfTlXHAdVb3JtF9aciMUZjbEe/s12BL7vsMmD0Xh+yN9We/1t3YQW7/eW8dr9vjGeQ\n63KMPxmrseO2yvb5UCsS4diPcQnHgyzdceI1q1CtOXJ32//93/8FyrgxdmPcy/oba1MuvPDCpt8R\ngzwOhOdmRp9q0CxF41o+d/5/gPfb7tDiYx/7GFB2SZ1opMJJJBKJRF/Qkzqcgw8+GCjZaLJu/dUy\nUzvdfuQjH2n6vqzPWpWogIwRGceQpcfqa1mgDMjPzQYd74cTVZQwXqXS8dzNxHN/m0033RQo2UPW\nVZx55plAUYfGgqynsE5DW6vy3MfdbDevXTWgyqzqoTUI9RbCTD3jEFblx47IvUIvbKFSkZkuscQS\nQKmnUqk4rvycCkQ2706wegMcXyplM/oOOOAAoMQ1YszO47Wy5SCNC+e1zw+vzfnfa5U2SLbwWWfm\nXsPv9vJnR5B1OIlEIpEYKHRV4ehvNrPGnTqtMTj22GOBwsZVKLKyjTbaCCirtX5Hd0e0s4BV0tYm\nyOJlPLJD/dVVcZYxMG6F42+YhSQLt/eZCmO11VZrOlfjUq9//euBkqnnNfg9ma7KyN8z283juEeI\nWUnXXHMNUGIH2t7jNtpm0DoNqNbcvdJzdlyoCnuFftpCpRHrYxxP3id7phmjM4NPlW9HAtm/Xcq1\nXVWX6FYxnEEYF8419wQytmtnEcdDr7NVu2mLTmNnjhfvu8fxvvr86VYdTtV5psJJJBKJxEChJzEc\n4xPWglhD8Otf/xooPc/cu8VMG2tRZGeycv9WQZmJsfbaawMlJmQ2k1XcseakDXSscKKvVBZmTMWY\ny6qrrgoUBuKOj2ZgeS12EXYXQ21ntpLM1v9VkyoiVaTZbZ6fyid2ROiUsTx3rJ4wWc/RfW68RjP3\nNtlkE6DW/e0I/bBF7MlX1aNPqObtieff1qjZg+/II48E4KijjgJKPHWHHXYASvZk3GF0EBXOYost\nBpRzVeFYj+NcM9ZnR+52d+Wtqy4GaY64i7Fqz67j4+0kEWONVUiFk0gkEomBQk86DdgPSnZ99913\nA7DnnnsChWnY0di9x2VbMtZYSexqrb/y2muvBUq8Q4ajX9Pj9Kq2oFHVxNiN/5s1YndnOwZ4bnH/\nCj8n9L3HuhtteMsttwAlRqQaUGX6++6Xo0JSBUb0Y8+OKsT75DXst99+QLlWlU4r1vV8gtfu/1XK\nxve9duOfKpoYx3RcaUPVgd9vV9lMBJxDejTMtFSlb7PNNgD85Cc/Acp4+cEPfgCUvoPWuBnP0Jtg\nJt8gXXNdeN/MVtUL5LNQxdvucaItfNZ2C6lwEolEItEX9ETh2DNNf7F9osROO+0ElF0H9bWqaGI+\nfWTcMh9X39g3rFWn3l4gMgT/VllYj7PIIosAJdbiucvOtN1rXzsrlLTiiisCpauwbE/bvvGNbwSK\nAvLzKpmf/vSnQFE0sW9dVZeHiUDsQxc7bDs+fH8QWXmniL72d73rXUDxyXuNMlj3PfJ+WsejcjEj\n1Lly9NFHA6VeRyXkOLRbRy87q7cLx6LxA8ekbN06LPeGks0bDz3uuOMAWH755YHRKiDuKKxN9Yz0\nUzl7btEz0m5cMs7XaKt24fhyXGgDbRP3ouo0NpQKJ5FIJBJ9QU/3w7EGxCpn4wsykbgbpvUWMYMq\nIvq3Zf3WlvQLYzHrWPPjtcgI3IHTnT2N2cho7APlvhaxd5pKSB+9NUjGcO677z6g7PynupTxRFUQ\n/5/IGI4wTiW7km15Xvvuuy9Q4lP2EXshwPvj/TX+4OvOHeeMKkBlojqwhs1+Yx/4wAeAku1o1pr9\nCOPvT4RqjLtSOg68VlW/MZrYN8xMLV/3+/vssw9Qrj1mr8bP9xPa2eeD/3fqcajrsYj3+/3vfz9Q\nFHLs5jHerLdUOIlEIpHoC7qqcGItir3QTj31VKB0qD3hhBOAsuOnbG6FFVYARvcDagUZ8CD48uM5\nyNaMoRh3cmfONddcEyixHXuc6ae+6qqrgMLy/L7qUQbi3kJmK/m/PlfPKzJh0UpVTgQ233xzoNQw\nyUSNi9kJ19hOv/ZBGg8i84zZafrQvXZZuJ3PVbjxe6pBx4dzTmXrOHPcOAcjJmIOxcw8beTY/vzn\nPw+M7nhtHPOGG24ASs+9qjiqx1fh+LlB3C8nzsN262GEnhMzhO3KonfgiCOOAEbf749+9KNNfxtH\n7RZS4SQSiUSiL+hJp4EI8+dl9fZak82ZmeUuhv49AWyrdqeBquw0/5eZyECNZ6lgtIExGj9n12Az\n+X71q18BRQ3GWI5s0E4FMl1ZXYwltcIgVFFbY2JGlnVaVtfrs3fPl16hn50GYtdoYzDG8hxP0Zug\nclUR6YuX0b71rW8FivIVdX3y/bBFnEPOLWvY9ID86Ec/AkpdjZ/XK2A2bK+yzvphC7NbrRmqgp4M\n57txK7Md3Tn4s5/9bNP3VlllFaBkL+6yyy5A2UsojrPxdqBIhZNIJBKJvqCnCifu3SEzsSZAX601\nJrfeeitQKoQnAOPuFq3vNcZIZLD2gzLusMUWWwAly0yGIhM17mVsR+Wison1GTLWmMnnvWhVZ+Eu\nphOpcKr6iH34wx8GSjfx008/vZs/W4mJ6KUWoapT6Qhjgypl4xoqI70JdiF3rjWcLzCauTqe4ngZ\nBOUb4VzQdv2KQ/bCFuPNEnT/rAMPPBDoPD7VStnE8ZoKJ5FIJBIDhb7EcPQ7y87t8mrmlRk1A4Cu\n7Yfj/7IvmWJkY7FLgv7oyHTjfZKB+Lux+0IVYqxprONOtMIZNPSTyVYp5fPOOw8oWUcqX2N/Zjme\nc845QOmdpgp0/Bn7c5zVRY6Lgm7YompfoucbUuEkEolEYqDQF4XzPELHCmc2nwOKT7yq91GVQqo6\nXmTCrZRL1XEGcd+TQcMg2SJmcEXYh1BffqexgOdTDGeiMB5bvFCUTV2PSCqcRCKRSPQFLwiF08X+\nT+NWOFWV5KKVcqn6XLvHrVJSVccdq2v0s88+m0y2Ac8nW9SdC3Ur2J9Ptug1OrGF2YTuTvxCQSqc\nRCKRSAwU6vZSmw480IsTGQ+62JHgVTU+O6YtorJo99xafa7d49bdzyQe57nfqWMHGNBx0SU8r2xR\ndy7UrMJ/Xtmix+jIFi80ZfMc2rZFLZdaIpFIJBKdIl1qiUQikegLcsFJJBKJRF+QC04ikUgk+oJc\ncBKJRCLRF+SCk0gkEom+IBecRCKRSPQFueAkEolEoi/IBSeRSCQSfUEuOIlEIpHoC2q1tnmhN+MD\npg8PDy/Szge7bYt55pkHgP/85z9A/RYlbsA1bdq0ptfd1vuhhx5q6zjLLrssf/vb3/jHP/6RTRqf\nw/OhYWXVdgLdxvPBFv1C2qKgXVu8ILpFdxG1u0WvtNJKADz88MNA2WPerr1zzz03UPYW33LLLQG4\n6KKLxjzu73//ewBWXnnlWiduN2kRe69NmTIFgKOPPhqAj3/842MeZ/755+fJJ59kxowZOZmeQz5Y\nCtIWBS8EW3SLqGS36EQikUgMFFLhNKO2wnF/CxVMtKfKwteXX355oCiZFVdcEYA77rjD4455nCos\nsMACQFFWsznfMY9btcf9C4G9RcwxxywP8owZM2p974Voi06RtijopS3Gu8dX3D8rokrZdPq7qXAS\niUQiMVBIhdOMjnf8bJc9yyxkIM8888xsP7/gggsC8Nhjj7V13HZ9sZEBGWtqSFpIJvscBtEWf/3r\nXwFYfPHFm16ff/75AXj88cd78ruDZIsu7vTbEQbJFhE+j/z/6aefBkYrnm7ZMBVOIpFIJAYKqXCa\n0bbCmXPOOYcXXXRR/vKXvzS9rnKQWag8VA5VOOWUUwB497vfDcBLXvISAB599FEAfvGLXwCw0UYb\nATDffPM1/Z7/ez+rfLftYpDZW78xkbb41re+BcB3v/tdAH74wx928/C1MZG2iGPdlH/jj1VxTOOo\nlg44J50jlgzUnTO9sEWr2EvD8TwHoMRi9Yh4Tb/73e8A2GOPPYAyjl73utcB8I9//AMoz6dOs9ZS\n4SQSiURioDDQCmfq1KlAiXO4ij/xxBNAT3y3HcdwIqpiL5deeikAm222GVAYzStf+UoAFlpoIQD2\n339/APbee28A5pxzTn+36fXtttsOgJ133rmd0248f6DahoOocNqNk3ltr371qwG4/fbbAVh11VUB\nuO2224DCfFvF0fphC8f6f//731rf65SRxpidaMWw+zkuPBfv4x/+8AcAllhiCaCofO9v1X00k3T3\n3XcH4LjjjgNgvfXWA+C+++4DSvxr+vTpbZ3fIMwRx80222wDwFvf+lYA3va2t8XfB+DPf/4zAD/7\n2c8AuPXWW4GinLW177eLVDiJRCKRGChMqMJZffXVgVL1rip47WtniQwzK2666SYA7r//fgA+9rGP\nAfDAAw8AMNdccwHw1FNPAYWddRDHqK1wrKu56667gKJQjL3YicBzl1HKOPRDyyjWXnttADbddFMA\nfvSjHwGF3ccYjSxQpmtdTqusNrHKKqsAhSWKiWBvkV3Hc9NmDec45vdXW201ABZeeGEArrjiCmBW\n2x4oTNnjtRong8Bkq9BpbVGn6IctvI/en8MPPxwoysZYzHve8x6gxCH0AvgccHzss88+QJl7V111\nFQDnnnsuAN///vcBOOGEE5q+N4heABWN16iS+cQnPgHAy1/+cqA8Ez13n6WO/Q9+8INN/y+33HIA\nHHjggQD85Cc/Adp/lqbCSSQSicRAoS8KR1+5LOwNb3gDAO9///uB4n+Upcdz8m9Z+7rrrguMZjzX\nX389AH/729+A4g+vqjUZA20rnIUXXnh422235YwzzgBGsyF/q+HzADz44IMArLPOOkDpUGDnAc/V\nv2UkO+ywA1CYSmQw9nL79Kc/DcDJJ5/czmVUoh/sbYMNNgDgyiuvBGDRRRcFSjzikUceAcp9fPOb\n3wzAPffcAxRbyvrEk08+6XkBhfXttttuAHzuc59r+p1WmIi4RVR7/v/b3/4WgDXWWAMo8Yelllqq\n6X+zlIxrtFv31Qr9zMzyeeC12o3Dv53vjo+YffbGN74RgPPPPx8oc2TppZcG4MILLwTgwx/+MFC8\nEM6xQVQ4wmt9zWteA8DPf/5zoHg4tKnXcuqppwLl+WCc6hvf+AbAyHPM54q20IvUKss2FU4ikUgk\nBgq1tifoFDKOV7ziFQB85zvfAUpmVvTNC/2UsrKvfe1rQFlt9VvK6vz761//OlBWaz/fapWug0cf\nfXSEFUBhFNbPWOmtmvN1Wbt+aRmIWWfCmoItttgCKDbwmoS2W2yxxYDCdOqin1Xb+tpvvPFGoCgQ\nbfinP/0JKAoknpOZNrI842Z+Xt/+l7/8ZaAo4m9+85tNnxtEOFesk7j66quBkrXotXq/HPuO7aj2\n3K5C9TiIMA7lGPd+Ox70YFhvc8MNNwDl+SC8rx7vf/7nf4CicIwNaysV85133tn0eTFRHQzagfdf\nr9Ef//hHoMTFVYPWCX70ox8Fivo34/eCCy4AivdI5fOvf/0L6O4zE1LhJBKJRKJP6GkMJ8ZkzEKT\noUa27udkd2Z6yVw23HBDoGStqZRUDzIeNzPTV1sjg6ftGM7Q0NDwXHPNNcLKPEf3m/nUpz7V9Nuy\nLhmon5fd6zNda621gOKr9/vGfK677jqgOmPLGpM111yz6XdaISqcfnbC1Tbe73nnnbfpfdmWMTtV\nofEvmbAqT1/9D37wA6BkqRm72XzzzQH48Y9/3Nb5dsMWqjavoapLt3AsG4/UO+DcsX7C+GfVPNZG\n1qK0cf6zPV4/4hbGIeyqoTfAjCpVXyt85StfAUptitlszrnLLrsMKN0cjIe1e/y6tpg0adIoNdcp\n7KHnXHB8+cy1w4BzyYxP413a2HiYtUlvectbgKJ42n12ZgwnkUgkEgOFriqcVuxIdmaFsCzPz5tB\nIZOJNQZmu8lkZbBWx+pvPPbYY4HCcGr4IbvWaaBdVFWKf/GLXwRKDyTVoPGPqJz0/XscP9cKMUNo\n8uTJzJw5s68ZOMa7vMZLLrkEKFlsBxxwAFD6QDkOYozHmKB+apnqm970JqCoiVi3IUusQjdtUZWR\nZZzJzCvvq+rOcRKP4zixfiJCJmt3jnZr05xD/i/6MS681osvvhiAM888EygejSrWHZ8/jp+f/vSn\nTa/7vzaT5R911FFNv9/KO9CJLboVK3UOmI1obM/765i+9tprAXj7298OlBiNtWrCz/uMdty1mhsi\nFU4ikUgkBgo9ieHEVTxmE5mpJVP59a9/DZTq+nhOHs9qWP2QxjM8rnuEyGj1f8to20DHCsdrvPfe\newF41ateBbTf/TVCn6z+ZtmWzCZ2Goi27tf+FtC58vXafvnLXwJF+dq9QUVSxWjtUGG2kfGM7bff\nHhhdW2BG18033zzm+VRhIuotvI/6+g877DCgKBrvvwr4rLPOqjqfbpzOCPphi3333Rcoc8k6rSrF\nEWuXfE7oKdl2222BksHp/8bBjB1aczJGPHPM353IOpwll1wSKDaKWWv+f8sttwClj5y1a8bTY7cN\nsxqFr3crtpcKJ5FIJBJ9QU/qcGIevaukvlL/lsGadValbMzs0l+5zDLLNH3O45nN0oGyqY1JkyYx\n11xzjeruq7KJ51aFqi7BHueggw4C4Atf+AIwOnbTeD5Q2HzdrsONx+l2/UHsTaWv/Etf+hJQlIf+\nYjP2rBQ348b3d91116bvv+997wOKUlYdmI1mlwaV9SDVV0Tm6N8xe81aEseTn1fZ+PkYFx1keJ/M\nMv3sZz8LlPt55JFHAqVOxvkvIku3/s69pfQG/O///i9Q4hc+J/bcc8+m8xCR1Q8irLup8ib5v5mY\nMRZoXNv4t96iKlVX9WyuO85S4SQSiUSiL+hpp4HYw0zFcfbZZwPFH61PXXYm44n1FiussAIAxxxz\nDFB8/rI7s1hitXUvsNhii7HPPvuMdHvWx95u5pOoUiLmz1tPI6KyESofj9dpF+E55pija52Hq3zh\nduW1ZsjsRP3MZplZj+UeQt5vGbD+aGGWWtx19eCDDwaKShwEVDFEX7duxh5Ykd17beeddx5QOmGv\nuOKKTa93GkPsB4zJmKW43377AYWFWx0fa1a0kcrX7s9ClW+M0A4lzg178dnhXVvttNNOQBl311xz\nzXguryfwfjpHtZU20VbW0diFPnbfUPH4nLFztjYQVeO0UwWdCieRSCQSfUFfukW7Sroam1njXi9C\npqPvVSWz5ZZbAnDiiScCpb+YWUlW0Rq7ER2swrWy1IaGhka6H1jNPl7feeyRZSZNVaV47M6gL7Zd\neFwZT8Nxe5aBs8kmmwDlPspsY58wGbAK1w4SDefY9DlrDtxTyP5jxgJ23HFHoFSUt4uJ3PdEtaeX\nwL5ijvUjjjgCKDVK7mPi7qY9iMd13RYq01gv16qfl7HcmOVotbz1esa/7KysRyXGiPWU+JxyB1Cz\n2CImYlz4bLRXmufotdtl/pxzzgFKLZpKxg4mzkGVknsCddo7LbPUEolEIjFQ6KvCMUYjY41M1nMx\nLmIvJbNXfF3IZKxI7jQzqwFd6zQgE6nbMyl+z1oT9+yogplbMpvxohfsLcaVZKDed7sAq2S0hVlF\n+uL1wW+33XZAsZXM1e/py7d63350VedThYlgss4Jla41Zp6rjNZxYTzD/U1i52SZq0y3015evbSF\nysK9o1RxVXEuq+VVMCpm+4zpHfBa4/5YMT5RpfarMBHjwnO21swO2Outtx5Q1JiK1/Hi3Nprr72A\nss+WOxLrobHmqS5S4SQSiURioNAXhSPazZgx08aOy9ZT6Mf2nPVXynRkdePoV1SrW/TUqVNrwtiW\nqQAAIABJREFU+zzbtYHV9rIua5UirKbWVp2in92i42+afWgfJ7v4upeQSsUOyt5nbSNz9XX/tnP3\n3XffDZT6n4033rjWefbDFlXjwkwr9zXxffuEWXsU63DM9KzqRt0pumELFazq/ZOf/CRQ1JixXOF9\nj3Ux7n+lstlss82AYiPZuxl+du+Q9VfV2ai0BlH5CrNhnQP24nNsq2RVwKrG448/Hii2shOB8fBW\n42U2WWupcBKJRCIxOOjLjp+i3ar7Qw89FCixHv3XZqXIYF2Nu5UjXgdTpkzhZS972Ugvo3Zh917z\n5OO5yvKsEWgVlxqvspFZWyN13HHHjXTn7TW8divJ/Xv99dcHRmepxZqDqk7KsnvjWiomuwYPIqri\nCioblYv3a5999mn6fuww0G4cohV6sROs99PsQeNRKhu9BrvtthtQaklURo5P77ueDnfJ1ZbWa7mz\nrJ0pzPyzVi72I+xWHVonqOo8oXfHOKRzxJiNcUuzE30uGc8yu9EdPrfaaiugdNx3R9hWCme84yAV\nTiKRSCT6gr4qnFaQsdhLSx++uyS6usrGZcYTUUX99NNPc++9945iJMaT9I1GREYSs4VkV8ax4q6o\nwt8z08s+Ya0Q2Zy2i7ts9hIxvhB/syqDynM1e9H9293JU6iMrM+S1T0f+otVnWNknu94xzvG/FxU\nf7F2qVvn0w14rqp6WblsfOuttwZKN3B7pTl3fF7EXXSFmVfGMU466SSgWk06B3rdg7HxN+PrMa60\n9957A8XjYY9FMzdjxwDVvDEebWJGp530nWP/j73zDLSjKv/uSggSBQRDFwQpAtIJXRGQJihVmiCg\nIL0pIkWlCdhASqQoIr0XaVKkS0dCVVB6s1IFBBRf9b4f+C927r6ZnDYzZ2541pfknHvOnJk9e2ae\n39O295kqj3lCQuEEQRAEtdAohWNHAS0b16bPs4+slrV/Wb/6RY0cOXLIb+bKpmjf8lUF/bvrr9vb\nqAhXcMzjF3ndhdZgvh/6cO06ayZXHehD7xStv1NOOQVI/mnrNYzRaPWZwdfEPmK9YpffIozpNBnV\nu1mKZpXZ1dlYjwpGz4drwWitq5iNi4or/rqdjTfeGICzzz4bSPPJGJIxoCrJYzN5n0GvVz0ddhQ4\n4IADgFSXpXI1A++mm24C0v1D75D1OnYi8X5hH0PjZnpeqr6XhsIJgiAIaqGvCkfLRQtD3/xCCy0E\nJIvmxhtvBODiiy8GhnZG7ZcFO7HfvfTSS4HUBcHPuPqkqsx8ebPMtNq0cFqtxaGlku+DlpHb0dLV\n6teiMVsu/50q1sPpFfvVuVKjlrH7qRo0k8djrsNi7Rf2nStiOKg656j9vlQgs846KwA77rgjANtt\ntx2Qakm07u0H5vdzVPl2oDD79cwzzwRSpldeXd9px/duKLrGvKfZ788OAs55YzSOiTEYu4U7pnZn\nybPWHDvrcezELlXPm1A4QRAEQS3UqnC0pvW92iU27wukT9ZYjuuY6KdUHeib7Qdjx47ljjvuGLL2\njv2+crTCd9ppJyBVV9sp2WMzGyWPzeRYe5B3yM7Js5vsLqt/2xVFi1YebYcRI0YwatSotvtz5f7r\nVn5jM/G08vy+6+GojG+55Rag/Or6JlLUQbvbbr/9wFie9XXGHX71q18BsO+++wKpmj5fC0orvqhu\nxu+ZwWWMx5oTu0fbxcN5U6Wyycmz07w+9Yjo3fH6dK4XbcdrygxOa4/M/LO/nMpIr0EeU66KUDhB\nEARBLdTaS82nsJaqT3GVjO/rh9TatrL48ssvB1L3X7NZSqS0btF5h+KicdZfLK7ZctZZZwHJ8vD7\nxny07orW6ihCFWnMyE67suqqqzJ+/Hhef/312vtEqXT8VwvVSnMzbbTCHLuqY0797JlVRNExr7ba\nakCyjCv43crGQiVrfFGlYeansTmVkbGeIk+HMZ98nS1XgHU1VX8n71rfijLHQtXl9WyMzqw07wdz\nzDEHMDSOab853/eY7CJ+5513ArD77ru3u8sdEb3UgiAIgkZRi8LJ15nI+3fpm82r6s0use7C9bg7\ntUQ6oG2Fs/TSSw+MHz/+3WPRejI+pVWe02qdHLfnOutmu9npVoun3UyaPFstz9zaZ599ADjiiCOA\nd1TknnvuyeOPP16ZJev5dn2jvBOycQlXr7Q+QyvQMTB+VXXcokkKRy9BHu/SG2CmXlVUORYe21JL\nLQWkOW/NmTEWVbqdRorOv4rJGLHKyHqtvLre2HG7dWJ1jIVjsNFGGwGpe4Kqb8kllwSGzgcVj2qx\n03tlu2tFSSicIAiCoFHUGsOxMlyls9VWWwHwne98B0j1OFrtWhxmmdRQV9G2wplyyikHpp9++nfj\nSFrl7WbOtZsVZgxH5aPl4utu8fv2qbPmSbqx3rrtLOz37InmOjbbbrvtoPe1cJ0nddWaNEnhSNEY\nt6rfKuF3a1snyWr4ZZZZBkh1OePGjXNf2tpekbXeayfsOsbC699/7aVmxl2u0vrV6ToUThAEQdAo\nalU4onLZbLPNgGRhnHHGGUCySLT+a6x87zlLLa8pccVG4xB5ZW8R1hqpAg877DAg9T67++67AVhh\nhRXa2p7V+taq5Jj/f/PNN7P55pvz8MMPV+6fLuqYK/aFMp4ldXdCaJLCaXXsVuvbIbuC3698LIw7\n5rFa52i7no48Xlr22j6djsXEei9OLoTCCYIgCBpFXxROkZ+5AT28OlY4ZgWZKVN352oz+aws7hZr\nGuzQ3SSrXpVoNlvdNGEsVLZ6AYx75r3zWmVB9koTxqIpdDMW/epsXzWhcIIgCIJG0ReF02DaVjhT\nTTXVwKyzzvpunrxY3bzDDjsAqb5FS9TaAJWE6K82G8VeR08++SSQLNa855EKy7+3m6VidtqYMWOA\npJSuu+46dtllFx577LHGWbJVW+9F9NOq9zzl86zseES7TA4Kp6yxG45jUdW8CYUTBEEQNIpOFc6L\nwLPV7U7fmWtgYGCmdj44mY9F2+MAMRYTEmORiLFIxFi8Q0cPnCAIgiDolnCpBUEQBLUQD5wgCIKg\nFuKBEwRBENRCPHCCIAiCWogHThAEQVAL8cAJgiAIaiEeOEEQBEEtxAMnCIIgqIV44ARBEAS1MKqT\nDzelAZ3kSwOUwEsdtLZp1FiUTRMbE0bDyv7zXhiLVgsE+v57YSzaZVg37xwxYkRba7PPP//8zD//\n/GX+dOW9jkaNGvXuiqZVfL5b2h3zfjLllFO+2zE6CMpiiimmeLcLOxTPs6mmmoqpppqqzl2b7BiW\nyxPkLfpLpOclpuum3+3G/28fYizSPjRiLKqiCWPR6jzni5zFvEhovLa7jEm7DGuFEwRBEEx+VO+r\nqYAKlE1p1L2EbHT7TsRYJCr0AvSdVuc5v/Zcfv3++++vbJ+6pe64ZNnKplNC4QRBEAS1MCxjOBUy\n7GI4VTEc/dNVEWORaOJY9KrmulUZZY5F3Z6RsokYThAEQdAohmUMJwiCyYde4xgqmxlnnBGAP//5\nzwCccMIJAOy6665AUhGzzDILAHPOOScAxxxzDAArr7xypfs5KVQ2FdQWNopQOEEQBEEtNCqGoy/2\nT3/6E5Ce+mZWHHnkkQAce+yxQLI0zC3Xotlhhx263YXGxXDe9773ATDrrLMCsMUWWwDwmc98BoCl\nl35nd//9738DMN100wFw4YUXAvClL30JgGmnnRaAl19+eaK/M5yrqB0ji/LefPNNAM455xwgZSf9\n8Ic/7Gr7w2ksPI9a83lcY/bZZwfgL3/5C9DfuEVZeKzeJ4oKmL2f+PlXX30VSNfI0UcfDcC88847\naDtFY9TEsegXEcMJgiAIGkVfFI5KRovj+OOPB2DnnXcGinsYacXbduL1118HkvX/r3/9a9DnZcMN\nNwTg5JNPBpKvdyJZLX1XOFqgRxxxBACbbbYZkKwymUCJuD+D/n7IIYcA8PzzzwNw4oknAsmau/LK\nK4Fk5Tm2E2y/Mdabxz7TTO+0udt4440BuOOOOwC48847gaR0RD/4UUcdBcCLL74IpDG54oorgKSI\nijKFmjQW8qEPfQiAl156CUjzQGV70UUXAXDJJZcAsMYaawBwzTXXTHR7o0ePBuDtt98etL2cJo2F\n5+sb3/gGAAcffDCQPB6t2iDdddddAGy66aZA8qy89dZbAEw99dRAceZYmWOhB+If//hH0ff9zVa/\nk+/joPeXWmopABZccEEAzjrrrElur11C4QRBEASNoieF027u+DzzzAPAU0895Xba+l6OnzcOsc46\n6wDw5JNPAimucdJJJwFJ8Xz7298G4Kc//SmQLGGtRC1eSlQ4ndYGqNLOP/98AD71qU/5O4M+5/nS\netdq/8hHPjLo837u73//O5DUwXe/+10AvvWtbwFDlZNj3ARL1oydxx9/HEhjVDTvfN8xcOwdi332\n2QdI8+D//b//ByTf/8c//nEA/vCHPwzabplj0Wum03e+8x0ADjjggIluz2P54Ac/CKRroCyaMC9y\n5p57biApXufFmDFjgBTbcz6ogPJzYPzzBz/4AQC77747MDQeVmWcc9FFFwXgd7/7HZC6JDz44IMA\njB07FoA//vGPQFLnqrVFFllk0PbyuFXO+uuvDyS13+k9ecSIEQwMDITCCYIgCJpFX2I4+iuNweSM\nHz8egL322guAn//85wCceuqpQLJQjT/Ia6+9BsBvfvMbABZaaCEgWa4e6xtvvFG0a7XHcLRQtVRU\nXxO2S4dkuW600UZAski0XFQ8vvYYzby55ZZbALjxxhvb2q9+WLK5Jem/joXH9MorrwBw6aWXAska\ndF74eRWMivj3v/89AKuttlpH+9UEq36GGWYAhsZsnD/Oj+WXXx6Ae++9t4rdaMRY5Gy99dZAylI1\n7umYrLrqqgDsvffeQBo74yV+zrocYzg500wzDZDmYZljYQztzDPPBODmm28G4GMf+xgAiy22GACr\nrLLKoO+5790uYeIYeI+0hqlTQuEEQRAEjaLjx+LIkSNZccUVgWQ1d/JdKH6K6m/+whe+AKSsETMq\n1lprLWCostHPqZX//e9/H4DTTz8dSBavCqhMevXJW/V87rnnArDNNtsA6VhUPB/4wAeAZLWLmTS5\nxXvggQcCyedvDVOV1dK99rTadtttJ7o9z/ehhx4KwDPPPAPAxRdfDKQxmHnmmYEUnzJLac899wRS\n5tZw7KT86U9/etBrz6PzwfnR727AVeIxq/ZUA3YI8NivvfZaAL7+9a8DsNNOOw3ajvchPS2+fuSR\nRwD46Ec/CgyNZ0zCM9Ix1voYp3zggQcG7Yv3ujxTzutWFeYc99jNMvR7rXAMJohjV0oonCAIgqAW\naonhaFGabaQFkVvbPm2tCdF683M+tbU03K5WwY9+9CMA9thjj3y/293V2mM4+l6vvvpqIB37vvvu\nCyQrPl9K22O284CZeVdddRWQ4lif+MQnAHjuueeAoWNTRB2+es/Lo48+CqRMuumnn37Q51TSWn1F\nfabmmmsuIFmqKuXbbrsNSFag1mGuFovoZ9zCeqyvfe1rQFJl1lFZV+U8ytV/2fRzLFSwf/vb39yX\nQX/Xc2JWrH8389P4p+c9z1bzmrJOT4q6c5QxFt7D7Bhy0003ASm79MMf/vCgz3ttmElnvZ2ZesYz\nVX3Gev/6178CKdNTHKunn3663UOZKBHDCYIgCBpFpd2iP//5zwNw+eWXA6nuJVccPnXN1Mr/ruVh\nrclDDz0EJMvVmJJPd+t9zLxYbrnlALj77ruBZq0MqcVyzz33ACn2ojV23XXXAUP7xa200kpAslC0\n2mabbTYgVRAvvPDCQPvKpk7mmGMOAOabbz5g6Hk368wOFK3QV289hjEbs4+KLNUm88tf/hJIx2LN\nmVa42U1eQ1UrnE4YMWIEo0eP7rnzsde/9VF5Pc2zzz4LpK7PZrXaO88uC2LcI78PfPOb3wTqnScL\nLLAAkLIKjT+tvvrqQIrdeE/bcccdAdhtt92ANBYqGOPWKl/Js9g89ssuuwxIWXBVEwonCIIgqIVa\nYjjWz2y11VbA0O6uP/7xj4HUE6kIc9K33HJLINXZmIl1++23A6lWwViRVdf67idxzH2rw7FGZPPN\nNwdSHMLK4XHjxgEpq82ea2Lsxr5Q6667LpBUnZZvUY1BThn+aTOnin7TKmfraXKM1Rnba4VWnZl+\nec2C8y7vQ6ef3A7KOf2MW3iNuK/GMfNrRwWbH1vZ9GMszFLVg2Hcw6zW7bbbDoBTTjll0PsqHjtM\nOGZmhsljjz0GpGvtK1/5CpCUUhFljEVea+b1rcoyvrnMMssAKdO22wxLlZLehbz/YLdEDCcIgiBo\nFJXGcLQwt99+eyA9XbU49Bva6yhHa86OBGa5mY1kBoa+XeMXVqL7dxWW1n+TMItMC8ceSao2awn8\ne57Zp3/cPH7jXFqD+nYl/36VNSlFysbfbKW2zMTKs4ncV5WPcTAVTL7uTatjVNnkPf/6iefJGqKz\nzz4bSN2f77vvPiB1//XYjId5DN0qHa8x4yP9wDE444wzgHQfMDZrxwir5Y1vGRdxLMxytNeicRGz\n2uzJ6O/pORGz41544YWSjiyRdxQxjq2XxrntvjlHPVbx714rxnTzHmqOYbedCYq607dLKJwgCIKg\nFipROD61N9lkEyDFJRZffHEgWe1Wt5pxY/aI3zdDK+8XZh6+2xdrWOx5ZMaHsYIm4TFqqZx33nlA\nUmd2qpVcmWipuP7J9773vUF/t/NtKwu3H9X2/qb7XoQxIM/zJz/5SQDWXHNNIPWJu/XWW4GkcFW0\n+e8Vdd6WJigbyRWodRmuBaQv32tGq91VTo3tqIw6pQnKRlR5dqJQaZi5pzWvR0OFYmxGlWCs0PuQ\nWWluz3WzvD9JFcomx/iRGbh5LZrxTMfAujr7xLnOkXEqY7yqOLtQ+zvtxkVzulU2EgonCIIgqIVK\nstTyqmctz4cffhhIPtg8n961Xayq9yku7qtrQhi30MdqjMesI2MEWolt9JmqLEtNi0KV5jHn67Bb\nV6FV5WuxV5Jqzgpjj9Ex7HbNIakiG8l9MhPniSeeAFLWUL7PVktrtZuFaCxOq89MG7OS9t9//0Hb\n6ZV+ZGYV9by7/vrrgbReksfuvHBe5fOtLKqcFx6rNWZev2ZwGutV7bW7HpfbV/EsueSSQFILehc6\nVTKdjsXIkSN7npPe22644QYg1dnZpUOvkcrXe6z3Gf91PSV7LPbagy+y1IIgCIJGUUkMx6elmVZm\nkfja7BH9lSoWrflc2YiWisomt+q1nPVzW23fhA66Wprui5aO+fUqFiuOc1+pn/d9Yz1ae3m2S1nW\nfZnkNSJ2itDfrNLRh66CsZ+Y7++yyy5A6kTg9nbddVcADjroIGDoGFTZKbtsivbRjC29BHYY8Nj8\nt+yVPqvE824sxi7x9gm0ut7zmq9j0+q8+r71e84rlU0e46tqfpRxTZpR6flX0arO8tVu7e6Se5Py\nLtN1EQonCIIgqIWuYjgqkXatqNxy+OpXvwqkp+thhx0GpMwMt+vv+Dkzc8y8sTOBWWt2IjCDq4un\nd8cxnFaZTzn6nbXqrVU69thjgaFrdHgMrgFjHr5j9MUvfhFIXWb3228/IGXgdEudcQutMC1XLUH/\ntYreYzz88MOB1EPPrEQ//9nPfhZImTu90qRVLlUDzhMtXueJtUtm9pWtdMsYC61r17U56qijgNTd\nW9VuzCZf68e4pbEYs9OK6rXEvmFmvfWaldikeZGTx7fs8mIGp5me7a4A3IqI4QRBEASNoqsYTqf+\n4bxK1hoBfe7+3boKLVrjHuaQG+fQqtOCsbLYnPO8V1KVdOrv1eLQ2vIYtdLzTC0za6yryX20qjn/\n/cUvfgEMr1UtW/mTnS9abcbotFAdO/9+1113Vbezfcb5Yk1SHhfrtcNAHRirsfLf8+8aUK7Y6xw2\nA881nrw2rLNTAXne9957byDdR1wB1vmhR2RyJle2p512GpDuH2Upm04JhRMEQRDUQqW91MSnrX7D\nBx98EEiWqf2htGR8326trqtjtpJYg2BsR2XTbn5+P7HHmdaZx26NybLLLgukzD6rpM1Ksl/YzTff\nDCSL1iy3Jlu4OfreraeyU26uzjyfjpUdtf2e+PfJmdxCNd5pDG84nH8zq8y4UrnmGMsxZmccwo7o\nHrsxXFfPtS/ZiSeeCKS+hZ2OzXC4n7RCZaOXqFOKxmDEiBEdjWconCAIgqAWalkPR1QkPiVdp0YF\nY52FT2NXvVPB+D392BdccAGQVIGWUA81CJV1GvCYzMRzzQ1jL3a0df0Lz4vWmzVGd955J5B6Ijkm\ndnUoq5agyRk4HqNZbXYVdyzMfipr9csmjoX9wOwarQWqYi67w4CUMRbuq3NbRev1W9Svyxifx27V\nvVlq3l/y73vtlN0TrYnzIkdPiB3683WVyponkaUWBEEQNIquYjj2RLOPT7voP9xggw2AtGaLPbC0\nUP27VrzZKPr6fSrnfcaaXF2tmtNPrcVxxx13AMkaV+GI8QjHxC4MrldiHEOGg+++CC1f63KcLyoZ\nz79Zi55vrTW/70qvdqSYHFlhhRWAdMzOn6qUTZl4ndsrzRozO5AUrdXi+95/7GhdtJ6WfcXaVTZF\n/Q2ruKaqziL13rjDDjsMet9jMh5mR/4cMwjLqmWTUDhBEARBLdQaw1l77bWBZJH88pe/BFJe/gS/\nM+i1VrwZW8Zu9tprL2Bo9loP1kPpMZy8x1nur3b8tfr0T2u5rrXWWkDq7nrccccBKSPPMVEJFZ3P\nTq21JvinVS766l0h1vOfr2ZofYW1KNaq9EqdY9HqPBkDNMtRS/biiy8GkoKuSumWORb5tWF3jEMP\nPbSbXXv3mF1/6/zzz+9qOx38Xt+vEfFa0OtkJnB+L9VroPqbc845J7nddu+lEcMJgiAIGkWtCsen\nqbUk9sYysyZHq9/VL60cdkW/MWPGAGn97xyf+kUrPk6EyrLURJ+q/aOOP/54IFVHu6+u7WOsxroL\ne2X97Gc/A4b2XGuFPbiMixTRT+vNYzrzzDOB5IPfaaedgKQO7cJg1+nLL78cSLEB147plTrGIldr\n+dwV4wxaqipbV821E3JV1DEWqjbraPJO2OLY2C1+3nnnBdL5r4qFFlqIp556in/+8599VzgqWue6\nfeha4bVibNhaKNce6pRQOEEQBEGjqFTh5P5o/YGuU+PTOc9KsWeS2Uj68lVGFfZCqlzh2BPNrDXj\nEfaZ01J9d4f+r3OAY+YaMN1WDLdLExSO88VeW66Dc/fddwOw9dZbAylmYw+usuMX/RwLx8BjMqPL\nvoP2mctjgVXRj7FQ2Tr3+0V+P+vnvFAFGtPzPuJKsEWohPQe6B0wpqOq7JRQOEEQBEGjqCWGY6zF\nVSon2N6gf8u2zrrIo69c4ZhxZcfrsnkvdBoQVaF+6JNPPhlInSnKooljodJxbZi66q+6GYvh1Lm8\nE5o4L/T+2F+wKEttvfXWA+pfMyoUThAEQVALHSmc0aNHD8w111zvZgd1/aPNXVu+coXT4GMfRBOt\nt34RY5GoYyyM2eX1eU2jjLGw/1vZMdlx48YBaXXke+65B0ixYLNk9bT06nEJhRMEQRA0ilJjOO1a\n7w1eX6JyhTNcCKs+EWORiLFINGEsiu6lm2yyCQAXXnhhFT87hFA4QRAEQaPoVOG8CDxb3e70nbkG\nBgZmaueDk/lYtD0OEGMxITEWiRiLRIzFO3T0wAmCIAiCbgmXWhAEQVAL8cAJgiAIaiEeOEEQBEEt\nxAMnCIIgqIV44ARBEAS1EA+cIAiCoBbigRMEQRDUQjxwgiAIglqIB04QBEFQC6NafyQxuTfjA17q\noLXNZD0WTWhM2MbvAtUv9dCEsaiqjX2ndDMWZTfrbcoSH02YF02h3bHo6IHzHqBvvY68KPOLqN2L\nqugibMrFOSFl3YCadEztMmrUO5fcf/7zn0HvuwaMY5KvjumqmcORsrvCD8fzHrxDuNSCIAiCWgiF\n0wMjRowozdpyO51uL1+zPH+/1fb6oYA6tXjzffS1/7q9tdZaC4C///3vAPzmN7/pfWdLJlc2UrS6\npcf4z3/+s7J9Anj/+98/0d8pc3584AMfAOCtt97qeVvB8CQUThAEQVALpa74ORnQ+BU/i+If+fvd\nWqaqtuEQEB0zZgyQjlFlI6NHjwbgX//6V0+/U+VYNDHGNin6OS+McxWpwboZDtdIXcSKn0EQBEGj\neE/EcJpkRXarRPzc2LFjAVh33XUBOOGEE4CULvvqq69O9Ht5vKOIJoxRu7z++usA/OEPfwBgoYUW\nAlImmPGIJZZYAoAHHngASGPhucgzwqpg6qmnBuDNN98c9P5UU00F9K7C3gs0Rdk0maL7yXTTTQfA\na6+9Vvs+TUgonCAIgqAWhoXC8an95S9/GUi++jXWWAOA5ZZbDkjW/9NPPw3Axz72MaD8OoBeyPel\nlaKw/mLllVcGYNZZZwVghhlmAFLmj+jnzrevddip4mkS7vPOO+8MpPM8btw4oLiG5dln3ymvUtGI\nn6tDAefKRupWNmUXYQ5HPN8bbrghABdffHE/d6cUPCbvF6utthoAd999N5AKh52HzoO6C4lD4QRB\nEAS10MgsNZ/SuVXeCn32ZidZ87D11lsDcN555wFw4oknArDjjjvmm+goS21idTi9WsvGH/x34YUX\nBmDGGWcE4HOf+xwASy65JACnn346APfccw8ATz75JJAsZ2MHxjtyy1bF9Le//W3Q+2Vm4PRqVXs+\nVayiQjnllFMAWGeddQCYf/75Abj//vsH/f4tt9wCwF577QXA73//ewBeeOEFAHbddVcAjj/++EG/\nU2c2Uq/zJ79WclXndrs9F03MzPKYzVp8++23AXj55ZcB2GabbQDYfvvtAfj0pz9dyu/2YyzyFkc7\n7LADAPPMMw8Am2yyCQCXX345AHPOOSeQ7hef+tSngHQ/+Mc//lHGbkWWWhAEQdAsGqWFVTIFAAAg\nAElEQVRw3njjDSBZ5a0osta0eLSMv/CFLwBw5plnttpk13U4vfYy0xKddtppAZh99tmBZJVpufi+\n2WgqmS222AJI1fWqRFWeY6Fl0yozq5+WrGP2oQ99CICddtoJgM9//vMAPPjgg0CK2X3rW98C4K9/\n/SsAv/3tb4EU97rkkkuAVE3v9jfffHMArr/+eqA4g6fMsSjKVhNjcp5Xla1osToW2223HZCOzfM/\nxxxzALD00u9M5/nmmw9I5/3hhx8GOs+WbJLC8ZrRSncMWvUj1ONxzjnn9PT7dYxF0Xk57LDDANhl\nl12AdF17DRx11FEA3HbbbQB85CMfAVL8+/HHH5/o73SbNRkKJwiCIGgUjchSa2VVaYXpt/zpT38K\nwB133AGk+MXqq68OwKmnngrAggsuCBRbk2XQKj5RdGy5r13rTD/0UkstBcDcc88NDLU8jPEYe3F7\n00wzDZCOWX923qutaVXbE5IrGxWMKu2jH/0oAAsssACQxsiYjGN11113AXDnnXcC8KUvfQlIsZxf\n/epXQPJ//+53v6vicAZhnOjwww8HUualKvyll14CUp3VFVdcAaTY3Z/+9Cdg6LyQVVddFUjzQdV2\n5ZVXAul8zzXXXECKf+2zzz5AyvzMLeB+klv5KljrrrwG/ZxW/vjx44EU2/Nzw6nzdn7/MIazwQYb\nAPDHP/4RSArH86nS9f7gPPD7eV2OY1d11mQonCAIgqAW+hLD0Zov6hrrPvkUbpVJcfbZZwOw5ZZb\nDvq+lkwHleQdxXBGjhzZcz2DY6HvfvrppwdSnc2ee+4JJF+875uRpy/XuMajjz4KJF+tFrA+XGtX\njO0Unf9++Oo99qeeegqAD37wg24fgFdeeQVIY/Hcc88N+n7eTdq4hdbg+uuvP2j7qg3V4CRUas9j\n4XlWnb344otAUqBams7VfH0k58F6660HwLzzzguka0jFknd9VvG6XTtTnHTSSUCKc5122mlAGttf\n//rXg/YD3hmffsyLv/zlL0BSvs7pAw44AIDjjjsOGBqD8/q/5pprgFSbonozm7Fb+hHD+frXvw7A\nD37wAyBl4u29994AXHTRRcBQpaJHRPT+eC34+aqzF0PhBEEQBLXQlxjOZpttNtH3fYpvuummQPs5\n4j6dc0VTdY+sXtRN7nd2W1qYzzzzDJAsGF9r3Wmp6svXIlW55JbRn//850Gvm0Te20y15/l0n9de\ne20gdQ4o2o7/Wk/j57XytBLLqkGYFO6Lc9G+b6qrH//4x0A6b+7jQw89BMDzzz8PwIUXXggkn70x\nGWuTtNqdRz/84Q8B+NrXvjbo79tuuy0AV111FZDUgfvpPJJ+diQwRuMx/uQnPwFSLK6NjDogKRvx\nmmkSRWs++doxyGOys8wyC5Dmk94e8Vryez/72c8AOOaYY4B0L7aer2pC4QRBEAS1UGsMx0wKa01E\nP/TMM88MtJ9V5tNbq++QQw4B0lNcNWDNyvLLLw+k7KWJUPl6OLk1r8/degvrbMwis/7GDCqtc49B\nn62Ws9Z83kMtV395jGAitQuV+6edB7/4xS8AeOSRR4CUneY+G6+w64LWvWNk9ppW3KKLLgoky9YM\nLC1bFXG7GXpljEXeQcIYjufBueoxmJGZr/nTqtO1fzceZtabMT2vNeMau+++O5DGpI2sy9piOGaf\nWh3f6aqnq6yyCgA33XTToPcdy7wLQ6dUORbLLrsskJTp7bffDqTzYp1VXrNmnZfqfeONNwbStWIW\no/cN59l9990HdN9NOmI4QRAEQaOoNYZT1EFAhdJK2agGtOatuj722GOBlGmT5+P7PTun9hOtqzzO\n9MUvfhFIlomxG1XZV77yFSCpRDN3ZpppJiBZa2ad5Iolt4T76Zv3/His9rbTD60K8FhVItZVmHWm\nlW638H333RdImVdm5BkX07ov6jdW5Zi4bdWYFqp1Ev5dpeP5LqqaL4pPasnagcBjvfTSSwH4zGc+\nA6QK9VzlNamLtDG4bmtDPOac4bD2kOpOpXrooYcCKWZjlpprPOX9J4357rHHHgAceeSRQJoPW221\nFZD6S+YqsCpC4QRBEAS1UIvCsRYgt57sDKAlq1/RmgMzd/Rrq2SMc2ixGrvR/7j//vsDSdlIu12n\n26WMOhyta320WufGG4w/ue+OyeKLLz7ofbNOcl9/q+yXfpCfByv+9TerTFRr1ksYn3JMrEGyF5rW\nn5lWN998MwDLLLMMkGJ+KmSpw6r3N5zrF1xwAZDiUdbRGKfodo0WOyFrATtftGhVhXYPboLqz/G6\nNRZr55BWGBNUOedrRYlegSaTewH0Dqny7Shw6623AqnruzE/Yz/Gxa1ZUjV6DXhvVUl5D63q/hAK\nJwiCIKiFWrLUcuvcflDGbMykWWGFFYDkj/Tpq987x6p6s5dyv7ZPbS3iNqg8S22C7wOpmt6+YP6r\nBWofKK03q+3Ncvr+978PpAwvq+97Xaenjmwk+zqdddZZQOofZkbexz/+cSBl0mj9W1Pk3z02Yz/2\nVLMbtErJ+aeq9F/fL6LTsZjYOklFcSLra8yo8hjsSOA10mofVXvGwezS4di4nW9/+9tAipvl8YxW\n86SOeaE1b/d445grrrgikOIRejrMsHriiSeAdB8p8miU5emos9OAnUJUKOeffz6Q6rVUsPbcUxWq\ncNZaay0gxQ5VkXajP/fcc4HuVwCNLLUgCIKgUVSqcMyY0fLwaXvdddcByY9oLYBKJrdAtHTyWJAZ\nGUUKqAtqq8MRfa5HH300kNSfVdZ2jVal+Xd9tq5maKafCqjVeW3VZ65K6815sdFGGwGpD9xll10G\npOxDrf28K4MYu9NqN3vN+EieqZVXYbdLN2NRpGis7HYfVbSef4995513BpKPPq+/EZWvcS7XP/F3\nHWuznFwnxe1Yn2MfQtVmEVXOC+ekK7BaW1IUf8xrybwfmOH1iU98omi/OtmtQqoci1y1e5163Ttv\nFltsMSDVrvm+itZ4lfFPO6fbk89YkNludp7olFA4QRAEQaOoVOFosfr01Q9pZozV9a7d4LokZp/Z\nR0q/Y76OhVX43Wb0TISeFU5uPbVaD0cL1Eyq2WabDUjZRo6ZfmwtF1ctNNZjb7UiX39ucedZbBO+\nPzAwUKt/2jHwGO3rZOZW3g0ht871Q2udW1NgvzA7GVjz0mndTRljkf9mfgzG5DyfZicVxVTy7Xnt\nGMvTMnYtIdWd8VLjYUXbzxVwmfOiaPzNSvN8eiwemzE/yWuXtNbNdsyzVH1dVh1OPzpnO3bGuayn\n0stjfNNrQM+I9w3/zWvSPvnJTwLJ29ApoXCCIAiCRlFpHc5uu+0GpIp/ratFFlkEgCeffBJIT2Wr\nY81G0bpy7XG7xPr+DTfcUOXut2Ri2UgT+8zE0CrLM6tUfWYtma3k508++WQgWSSua9Kqzia3rH3d\nav33KsjXbPG1q2CqaHNlk8fu7AtlTNCVIM1etPOE3+tifaSuyc9Dbs2bQWmmldmKqj2t+TxryO06\nZrnlqo/eMfz5z38OpGsvp+h852NU5rzIx8Jj8nq264bKxjE58MADgXS+9ZQ4hsbs7DNoRpf77how\nxiuGIyobY3bGeA866CAgxcvzDhKu5Oo91+7Tdit3nlXddSMUThAEQVALtXaLNvNKa94aEy0b/ZBW\nSbt2hyrAfTV+0SqjpgtKy1LLs4ny2g+PyZiLVdH2BTv44IOBlLVkdor9woxbqR5FSyWP1RRZlVXU\nW3RqJTkWWv3GcLTGrM9xnuijP+OMMwC49tprgTRmdppwPhX11GqXKnz1ufLNs5HaHTu3Yz2WWXB5\nPU8rVdfuOasybqG6t8bE82q2ma9VLjnG/PSUiPEKs1zLUmv9iOGI59c57vkt6qjtSsGOjfcJv9/r\n2EQMJwiCIGgUlcZwcitaZaP/+Yorrhj0ebNHfvSjHwGwww47DPq7T3Gzj5pI0Toz+uT1uWq9Wzej\nD9+KYK1937cHl8rG7BNrFczo09+tBaQlk8cCJpU916sF2Kn/1/NqHELlqy//y1/+MgDrr78+kOo0\n7L1nlbWdB5ZYYgkgKeUmYjxJheu/3Y6980uL1XiYlmurdU7q7BKdx/DEONMRRxwBpB577WIMx/lk\nBwLjWI5Np+vq5Mw444yddC+pBOeLNYqtahGtszIG5P1hvvnmA+rrrRgKJwiCIKiFWmI4Wl9a363W\nvTHDwqewaJkUdZ8ugdI7DeTxJzsaq2yMzfh3YzjWJBij0Yq3o4DWoGPrmKmwckVT5KMviuWU6Z/O\na37EuJU+9rw6Xp++StfYjDUGft7MrE033RRI9Tb5Wvbd0k9ffbt4/h1LM7JUvkUru+axxCat+Nkp\nVtObtWbWoh0o7DPYLtZI6UXIafJYeK15f/EacWxU2L7OY8GdEjGcIAiCoFHUsh6O1narjrc+dfOO\nAsZ2rD1pyqqEk4p35MpBH2vuSzc2ozXuejj6oV3bxTHQZ2uPpLx3WlE20iQs1okfXIn4G/Zv0up2\nzY58hc8Pf/jDQFK09gvTgr333nuBNDbf/e53gdSXzv5S7wWsrxAV79ixYwG4+uqrgaExI8lVZ1Ou\nrW4wE6uoI0GnFCmbKum0q3tRjz3rdPQKmMEndlDXG1AXoXCCIAiCWqhU4RhrMWbT6qmttZ5bXa7c\neP/995e9iz0xqePRotR611q3Y4BKxHVLHn74YSBZ635f36rWf9Hv1FE93yv21lOJqNpUf65f4yqY\ndoE2Y09r/ZJLLgFS1qNV1sZ2hsNYlIXr33jNmJ1mFlVRxwLJK9KHI95n8tVyzQQdTrTbucTPeX/x\nfdW92a6OicrWa65fXoBQOEEQBEEtVKpwjDcU4VNZC8UVPnM++9nPlrtjJVKkMIp85b6fr/1hVpGf\ncx0U/7Uztr3U/L7dpM3AabWCY6c+4iowC+0b3/gGkPzJnn9Vn8rWmI2xH2M6Kmc/VzR/JkccQ6vw\n9eFb46LP3uykPI6Rx0u7XemxCdiNw96NrhE1OdKqR6Jx0f322w+Ap59+Gkjz5cYbbwRSzdK4ceMG\nbS96qQVBEASTBbX2Ustx3QtXmcvrbrS6rLavwd/cdR1OK+WQdyDwtZk1Yv846ylcH+fYY48FUqWw\nysjYTlHPtEns/yS/10uNgZ1otbZyPAYViuslHXDAAQCstNJKQOoccMcddwBJwTgPVIud9onrlCbU\nW+RK2nmhOjQ26IqfdlZ2LF3xMx8TLd92r60mjMUE2x/0um7V3qSxmOB3gKFK13VzXB/J+eR9pleF\nG3U4QRAEQaPoq8KRZZddFkj+ZjuauiaM1fU1UHqnAS2Jou7NKh0/l69lnvd98v3cIh1OVr0xmDxz\nb/XVVwfS6pfjx48Hiq3vIgt3OI1Ftxx99NFA6jNnB2VVonENY3vt1ou1oolj0Yqi/oa9MhzGIvdk\nqIxffvlloP7VT0PhBEEQBLXQlcKpOtOpj5lUpSmcTv3L+XooRZXh+fZbrXXfLvn26rDeio7BHmpF\nq1RKqxqTsuhmLPJjy89Lu3O81efM6FPRPPLII4N+p+wstDLmRdWZUDl5l2hjiMYvumU4KJy6CIUT\nBEEQNIpGxHAaROkxnKqpSg2G9ZaIsUgMp7FQ/bVaC6hbhtNYVE0onCAIgqBRdNpp4CXg2Sp2pCHM\n1foj79KIsagoztXJOEBDxqIiYiwSw2osqlI2/8ewGouKaXssOnKpBUEQBEG3hEstCIIgqIV44ARB\nEAS1EA+cIAiCoBbigRMEQRDUQjxwgiAIglqIB04QBEFQC/HACYIgCGohHjhBEARBLcQDJwiCIKiF\njlrbTK4N6CZYvvelgYGBmdr5zuQ6FhKNCRNVjMVHPvIRoNbFBUsh5kUixiLR7lh02kutr1S1hrlr\n0DD59jp6TzDLLLMA8Pzzz/d5T1oz3B40Qe+MGDGitjW+8i7yfVxjbBDhUguCIAhqoZEKxzXsp5xy\nykHv9/vp3A+02l944QVgeI9Br1ZWbq3lDAdlE5SPq+Xmq+O6suiYMWOA1ivINhlXLf3Xv/4FFF9L\nRddG2feNbq/lUDhBEARBLTRS4eTKZnJGK2zXXXcF4JxzzgHgy1/+MgA//elPAfja174GwCmnnAKk\nRIfnnnsOgNlnnx2ofA2Qnsitoe985zsAzDjjjEAagyKKrLfgvY3Kxmvpf//7HwAvv/wyAOPHjwdg\n9dVXB9L9ZYLYbS0MDAx0rQyKlM373vc+AKaddloAXnnlFSCpPr1FZdOtYgqFEwRBENRCRwuwdZra\n16vPvuj788wzD5Csey0VP6fF3IXP9t6BgYGl29y3Upyiq6yyCgAbbbQRAHvvvTcAb7/9NgDTTz89\nkCwcYzp//vOfAVhyySXf2fF77wVgm222AeDnP/95T/v1Xkr53GKLLYCkLnOaPBYnnngiADvvvDOQ\nroH8mimKc3RKP8fCa+HVV1/t6Hut7kPTTDMNAB/84AeBFAvMFZDKSNVQx1jkqn6xxRYD4NFHHx30\nvqpuueWWA5K6W3jhhQG49NJLgdaKp9t7drtjEQonCIIgqIVKFU7ZaGH41P7Nb34DpKf7euutB8DN\nN98MwL///e9Of6IyhZNbDhb+aUU988wzALz11ltAyqy59tprAZh77rkBuOqqqwA48sgjAbj77ruB\nFMPRgvH3zG6baaZ36llnnXVWAP72t79Ncn/rsN5yn7t87nOfA+Dqq6+e6N9bMUEhbze7NYQmK5yz\nzz4bgC984QtAUjD69Lu4BiZJE8fC+4IxQL0GG2ywAQDvf//7AfjnP/850e8vuOCCADzyyCODttdK\nDdQ5Fl7PHsvHPvYxIHlGnn32nRLCT3/600CK9Xrd/+pXvwLSGBTNC4/deeTver/Sq5Q/N0LhBEEQ\nBI2iLwrHp6a+U616Ldtf/vKXAMw333wAvPnmm0CyQPLveww77rgjACeddFK3u1aZwrn//vsBGDt2\nLJBiNFrjHuvFF18MwLe+9S0AHn74YSApEj+vP/uyyy4DYN999wWS4tGS8fOdZqt0Y70V+X+LlIzv\nm4m3/fbbd7SPOf6u8S6tQONdPWy3cktWBfv000+39Xkt3b/85S9Amg9aph/4wAeA8rOUmqhwFl98\ncSCp/w996ENAGpMPf/jDQPIilNWxpMqx8LqVqaaaCkjXyO9+9zsgXf9f+tKXgBS3vuOOO9xHYOi1\nV3TMU089NZDuua28BVNMMQX//e9/Q+EEQRAEzaJWhaN/UB+r1piK5vHHHweStZfnnptF9JWvfAVI\nfmrRYu6hqrZ0hWPMZIkllgDgkksuAZIS+cQnPgHAUUcdBaTaFFWfWWgqpDxTRwtEhbPaaqsBqW5H\nS6hTqrDepptuOiCpuxVWWAGAG264we0AxZ0mJrGvg77va2NAKuduKXMsyoovOU9UOmY3ul2z0sqm\niQpH693zrpVvRmdOUbZbpxlaZY6Fv21HAa8BXy+wwAJAytA99dRTAbj11lsB2HbbbYF077znnnuA\n5AWyPifHe6a/rzp0DP7+978DaYyL1GEonCAIgqBR1KJwtFR/8IMfAMn69mlpxsTrr78OpMwL/ZBL\nL/2O6FhxxRWBpHD00fuUzv2eXVCawtHCvP7664GkVM4//3wA1lprLSBlf3zzm98EkuL56le/CqT4\ng2OUx6/+8Y9/ADDDDDMAqdOA3//9738PJGu/Xaqw3j7/+c8D8Itf/AJItQGqt4MPPnjQ91R5xq+M\nc3nszhNjdo65c9p42QMPPNDuoUyUJlr1Wr5eM7karKorQxPGQlWn98CaFK8RVYDWuWrB+4RWvErb\neEVVtSfQ/lh43tzXmWeeGUjensceewxI3iGv//333x9IdTqnn346AJtssgkAn/zkJwe99tjzrDT/\nfvvttwPpGlQhFWWMhsIJgiAIGkUtCsen9bLLLgvApz71KQAOPfRQINWQWB1bxFxzzQUki9WYgH7M\nlVdeuZvdm5DKstS0EKxm1pLJLdGTTz4ZgAMPPBBI/mjVnIolx0ydP/zhDwCMGzcOSBXonVKlJZsr\n0ieeeAJI1prV88cffzxQbFUZw3vyySeBVHPgnDZTS+uwW6oci24ru/1ePjZmrXlNlU0/FY7zxX+d\n694XfH+OOeYAkndA5atX4corrxz0flEmX6tzU0Vsz/OpCjMmY4xX1e7nrL+5/PLLgRQPv+mmm4AU\nH/X7X//61wF46qmngFSv88UvfhFI91azZb3Heg2pqKMOJwiCIGg0tXSL9mms73WzzTYDUn68vtZW\n7LHHHkDKMhHjI2X1iyoT98VjtU9TXjOiRWLsRYvDbBSVTVFNiytIfvvb3wZSvKzdzgJ1YLzKWoLv\nf//7QIrNqXCMQ3msOb4/77zzAql3nmiZ/ulPfwKSstaqaxLdZlQa38wxW2lyxLH64Q9/CAzNZlXR\n/vrXvwbgxz/+MQCbb745kK4h63Xa6CRQ1q4X4lw2u9B7pBl0t9xyC5CuX1WbdXazzTYbkLqv2JnE\nupxjjjkGSDGd6667DkiZm5/97GeB5GXYdNNNgRQLMhvSmE+vhMIJgiAIaqEWhWNGjdkk9vsxc8I+\nP0WoYFwjJkeroMgi7idWCF900UVAsmT02eor9dhUREXdEnJlY5aJFpAK6sUXXwSS8tHH288VQ90X\nOwtopZklpFVnp+tddtkFGFpn4byxB1ZRRpaZe3fddReQMn4mB8zczCnrGHvt9D4pilR6q30x49P7\nh/PnwgsvHPQ5rXbjpSobrfr8d8vuvdcJxtpU4x6TmZi+/9GPfhRImXh5BxLrbnw9//zzA3DQQQcB\nqY7H+Ja/633CeXPAAQcAKRvOc+V9rKgfXbs07w4dBEEQTJbUonD0sf7oRz8CYM899wSSb71I4Wi9\nm4ViB+UcLeOyO+OWgbUndq7VOjfPXR9tp3Enx1A/tTUsVpwfffTRQMpO0fKxw3ad5NaymVRiBp++\ndVdm1H+sMhIza/bbb79BfzdGlGMX8ckJFfFZZ5016P1O662KqFIJFykbO5AYgxHjClrp+Qqfxivy\nrDPru5wXdpHPsxdVNsa/jPmsscYanR9chzh3vUZUWyqMOeecExjaG9HYjTFet+PnzOD0/uL9we7i\nep0cMz0jyy+/PAB//etfgaR4/LdXQuEEQRAEtVBLHc7HP/5xAE477TQAlllmGSBZUXn9hH5Gs1HM\nny/y1fv9Llb4zCmtDievNTHeoKXgmJx33nkAfPe7321rBx0DM7zWXXddIOXHqyK1ZLTm8grmJqz1\n4XrsZq0dd9xx/jaQqpz1H9sXzviWmXhazHn2Yo5/NwuuXZpQXS9mO5px59g4Br7uNVNTC9nMQamy\nur6oy7jWu2s72XHCa0pr3Mwqj/0zn/kMkK4xP5f3Bct/V4+LMZ+i2E4vY1H023kvNbNMvcdZm2Zn\nEsfIPpR5DEjvgQrHMTGz02vP7Xpv9rzvvvvuQOrUrxfC39WrFHU4QRAEQaOoReGYRaYVXtTJNt8X\nFYtP91bbN1e8n92ic8vFWI2dkd944w0gWaJrr702ADfeeGNbO+g6OYcccggw1KLRendMVFiuFWQn\ng1bUuV67vnQVzyT2CUiZOyrhdvuG2T1YS7ldmqRwxD5066+/PpDGpupMzSrHwhoy1X6RilOx6C1w\n/riWi1a4NSl6A5xfbkdr3tiOGVvGR1STecxRyhgLPRBex94bVW/W43kdW4dzxhlnAElhqEiN1ToP\njH+vuuqqQDpW+1nakcTYsvNpoYUWGvSv58CM0pxQOEEQBEGjKFXh5Na9T9mtt94aSD56LZEi8vVN\nWn3Oegs7FvRQQ1B6LzXz4e+8804g1QboZ9ZnO378eCDlxz/44INAykYyG8WOBEccccREf0+VZ7zC\n7S666KL5/gP19Ikqwn1UcbS7/o0WrfuummuFY+raRO3SRIWTn7d7770XKK7PKfF3Sx8LrxHr9PJO\nxsZQXLHz2GOPBVLGpVX21nep9s3gtEOJY6Y3wXod63TMCGuXKsbCY/aeZv2NCsZ9tceZY+Yxq97y\nGItxKe8nvu/nzVLzXm32o7+rwlKRPffcc4P2OxROEARB0CgqjeH4FDbjQZ+qq1Lmv238Qavff4uw\ngtztmdXUBIWTqzM7WhvLcd+0HHJVp5WnBeLncj90XrXtdsxyMUb09NNPA8lX67o8VWTgtEKrTYtV\nP/WZZ57p9oA0BqpCfepm5HisrZSRikhVma8U24omKhznuurOMVEtVEWZY+G+ai17TBN8f9Br52re\nf8y4h5lU1uUZrzB+6TVo9pnzx9iycVHrb6zfqjNLTYzhOCbGlewOrVfAsfDa8F6rkrHrvArmhBNO\nAFItm2NnF2pjzN4njAkZN+vVIxIKJwiCIKiFSjsNWBns09rK8N/+9rdAsiis8M39k67t4Gp2ucWj\nVW8fIC3mfvYLk3wfXAPIY7vkkkuAZKGstNJKgz6vktG60lerb/fII48EUl8p/dH+rmrxtttuA1L1\ntoqnH32jxPOkgrVmSCvKWJzdFDy2c889F0hj5mv7SJmNZEaN88Vj7VTZNBHjn+3GrZqM1fTf+973\ngBTntANJ3jkgV7J5tqtWfh73MBPLvmLi/cNsN2tWcmVjzZzr73TLqFGj2q6Pco0na478nqrfa8Ax\n2XDDDQG47777gNStw8953zF+5THbRVp1qNKxE7sxG+8rjrlj124/PAmFEwRBENRCRzGcUaNGDUw7\n7bTv+khbkXdh1Wo3QyJ/nX9ev7RPeTFn3Ywcc8P1b/ZAaTEcaz70nZpF4jGajWae/GWXXTbo71qy\n+nC1bLRE7D695pprAskSsbO2NQX5yo/tWiSd+qdHjhzZsbUjKlT90q5S6jE5htZXaImK1li+tpCr\npOrXNhZURFHX4CbFcJwX+trFLMSHHnqolN9RQeXdgcscCxWJMZw8Dum/3ieKPBxa8X7eWI2rW/ra\nY8q377yyqt/6nFZdravsuuBcNT7tPfCKK64AUs8zaxX1GtlFWpXvMVi7pjfJ+prnR7MAACAASURB\nVBrj4L42rua1aGax3oh83knEcIIgCIJGUUmWWp6B4VMzzy5qhbnj9v8RFZHrfufZLT1Qeh1OG9sB\nkgIym8xeSVoWxnhWXnllIGWRaPEa59KXa0Wy5DUGWv+ek5wmWPVWR7uPeddoybv/5v5tYwTGhDql\nl7HodO2XVpg1pIKWb3zjG0CK7VVFlfPC2g/nuMpH69u5XpSVqKfDziSqM79nbNBzYjzU+IjfL1o5\nOH+/zLHwOncOe19wbjt37Qa+0UYbAalTtvEv74XeH/RwXHDBBUCKb2211VZAug/Y1cG4+pZbbgnA\nJptsAiQPTFFH/lA4QRAEQaMoVeHkMZleWWSRRYDUJVh8Guu7L5HaFY7oz9Ynu9tuuwFw2GGHAWls\nzV4x82bfffcFktrTT61Fbf6+WWu+r+Ipinv1Q+EYzzKTRv+1WW2t0PLVatNC1lo0luPrPM7Wz64L\n7WK2oSpAtL6rzj6sciyMoan2zew0xpKvX2Pdlh2PzeQ0K1a22WYbIMU5vFa8huxUkLP44osDqUNF\nTp0d1VU6vladiRnB9lrMr2/H1u+piO0sYNcGu0Ybq/FaaZWVFgonCIIgaBRdKZw8RpNnGbWxnUHf\nL2K55ZYDUiaF6JPVR1ti3U3fFI7Wuf5q8+lffvllIK1zY2zH+JZZJNddd92g75nFcvHFFwOp8rjd\neFc31lsPHR6AdJ6dT8ZsrDXK1zGxPsd1k8xaVC1q9Tk2+t7t4dZutmWTFE5ebS8es2u+VEU/x8Lr\n3mPX8+GaULknRPIuHSol4xnGTa3narcfXR1jka9n5bWg+jIjc5999gGSB8Tr3ro754W1T95bVTQq\nZ+8brpeTx01zJT1Bxl8onCAIgqA5lKJwOv7RNr9vBfoWW2wx6H1rTfStTg4KR7TejC9YMew662af\nrbjiikDKADQbRRVgzzY/r/XWLnVasqo71/hYZ511gKRE8riEtQaqQTF2qPLVVy95D65252ETFI6W\nruvg2O9L8lqUquhmLPIMrLrxPOedC3rNIOxmLIrqm4rIFYXXhGpdlZZn3nlfyLvSe42Y+WkfOePi\nxm4myMRrdVwMDAyEwgmCIAiaRS0rfnbLXnvtBaT4hVbBmDFjgKFrOpRA3xWOzD333EDKMjHDylUR\ntdqsorbCvFMrssjK74dV38oSzrtIF9VjaJ2ZqWMczPmSW5lNWBuoXcwqcj0ka07yuGZVNGks2qWo\ng0Sv1DEW+b57no1Heb4vv/xyINXn2JFkhx12AFIfOGuRjAHZUVvaUTQT+1wonCAIgqBRVKpwzKcv\n6r/Txu8ByeI108ouwTlF2Ucd+Gobo3C04u2JZLfXPE4xwf4AyfIwe8Wslk5poiXrMVpvYX+pvFYg\nX+PeMfNz7a4sKk0ai6JuvZ3GBrqlSWPRKblaMGOr2zWE+jkWZnJat2eM1vindXdmftpZwEw+Y4J6\nToyHGx/P75VleQFC4QRBEAS10OgYjhXD+iNzWvlmx48fD6T1Ndo41sYonJyi/k5V0Yv1VrW1rRV2\n//33T/TvZuoYu8mts059+nVYsvk+V02ra6uI4axwyqaKseg1c06vkurf86zXx/o946Vm7OWdutvF\nLvGhcIIgCIJG0WiF0ytd1As1VuHUTRnWW6/1WmXRqzoMqz4RY5Eocyw6naP52kDGJfNMTOOZTanP\nCoUTBEEQ1MKo1h9pHu1aA02xsN+rNGXc64p7BUG3dDpHvba8x+Ud+ltlsfaLUDhBEARBLXSqcF4C\nJr6ASo20aw10kekxVwefbcRYVEQn4wAxFhMSY5GIsUhUMhbtKpaKlU3bY9FR0kAQBEEQdEu41IIg\nCIJaiAdOEARBUAvxwAmCIAhqIR44QRAEQS3EAycIgiCohXjgBEEQBLUQD5wgCIKgFuKBEwRBENRC\nPHCCIAiCWuiotc3k3m4ceGlgYGCmdj5YNBYu3frWW2/1tCN5g9JeF2bqlDJar5e1z/l26m5EODm2\n5F988cWBtLRwTtEYT45j0S0xFol2x2JYdouukJ57HX384x8H4N577x30fqerTk4//fRAWrN86qmn\nBtIa5K2o+6Y8xRRTDDmWon3Oj90Hivua77Nre7z55psATDXVVEBa66NXih6MEzumflPWeb3hhhsA\nmHHGGSf693x9lTJpdQxlz92mdEoeDlQ9Vo1YgM3J7XKnfaSjBdhGjBjR9omp6iIrulm2u733ve99\nwNAbS6fW26hRo9puqtrqfHe6BHS7223FmDFjAHjllVcGvR+WbCLGIvFeGotW95NYgC0IgiBoFI1w\nqTVA2XTMiBEjmNCqb6Uk/HuuSGaffXYAnn/+eaDzhZiK4iOt9qdo4aZOVFu+H+0ujOf5Hj16NJBc\nY0sttRQADzzwwES/1yom1OnYOQa67HJlM/XUUw9ZyKrfdKv+gqAXynKxhcIJgiAIaqERMZwcLU4t\n36J9rMDa6yiG08mGtaZVAUWqzmM3MP6Tn/wEgC222AIYurSsY7DwwgsDrbOO/LdIJahwqvRPmxDh\nsbz++usT/dwSSywBwBtvvAHAcsstB8DFF18MpExAx2yfffYB4JxzzgHgT3/6E5DG2mP2HCy55JIA\n/OY3v5no76tg6/TVV52N2GtQeDjGLZxvr732GpCOvV1FXsRwHIuqiBhOEARB0CgaoXC06rS+rGWZ\naaZ3SmK0gN3Xb33rWwBcccUVANx2221AKbGgnhVOp5lSc845J5CsL4912WWXBeCzn/0sABtssAEA\nCy64IABPP/00kKwzx2rWWWcFkkKaZ555APj9738/6HdNhzXtWkaOHMn//ve/Uqy3tddeG4Crr756\not8zfvXnP/8ZgFVWWQWAP/7xjwA899xzQFJ3Ktm7774bgIceeghISsexz8fEMXj22WcH/d1/Td9W\nSeU02ZJVCal0vUZ++ctfAjDXXO+s/vvd734XgPPPP3+S25tmmmmA8sai25hgN3gfkTXXXBOAk046\nCUgKWW/Adddd19PvNXleFJHHTctKgw6FEwRBEDSKShWOT0/J4w8+bfW5jx07FoC///3vQLLCzeD6\n8Y9/DMDxxx8PJCX017/+FYAvfvGLAPz617/uZDcn9Jt3rXCKLAXrXFQ87uNZZ50FwCyzzALAyiuv\nPOh9t+P3tWS1TLRYv/3tbwPwt7/9DYAZZpgBgGWWWQaAJ598EoDpppsOSMrnxRdfHLTdCbPoulE4\n7ViyH/3oR4GkXM477zwANt1000HHqgV60UUXAcnX7nzwWJ0X5557LgB77bXXoL9bhDvvvPMCSc0Z\n6zn66KOBdG7yc1hHPKtstt12WwBOPvlkIKlCx7BXOhmLkSNHDowePbr2TD+vqa997WsALL30O5f0\n7rvvDsAjjzxSyu8Mh3nhvc17pXFN7wcWZXtt5pmarej0GgmFEwRBENRCqXU4uaLRr6xfWOvcp6vZ\nRlq0Kh4tFOMZ+uq/8Y1vAMnHbzxD601Lyu0bF2nlpywjIyjftvvk+9/85jcB+NnPfjbo71a3f+5z\nnwOSVb/hhhsO+r7HdumllwKw//77A0n1rbDCCkAa07/85S8ArLjiigB85CMfAVLcy/iGVr/xjG7H\nYmBgoDDDyvc9HypUrXH/rsLx33HjxgHwne98B0jzw2MxXqWau+CCCwCYeeaZgVTP8/bbbwNJ6djW\nRWVTFHcbjq1QHDvxGuwHAwMDpaqbaaedFhjaKsnr2xjgL37xCyDdB1TUjz76aGn7UjX5eStqG+X4\nfvCDHwRS7M1j9di9Zox/rrHGGkAaU+83p5122kR/r4iOO6N09OkgCIIg6JJKYzharv6rxbHnnnsC\nya+4zTbbAPDb3/4WgJtvvhmAE088EUiW8SKLLAIky9c6Dbd/xx13APCZz3wG6Kq5Y2l1OLnKWn75\n5Qftq9lpu+66KwC/+tWvADjooIOANCY77bQTAD/4wQ+AFLcwM+v0008H4IwzzgBSnMNYjRbNJZdc\nAgxtHpo3zBwxYkRpWWoy22yzAfDyyy8DKY5l/Yyqbd999wXgyCOPBFJNkVmJP/rRjwZt11jf2Wef\nDaSxVLWZvfjYY48BSRmfeuqp+f4Pej2hdVl3HU6v5A1RVW258umWKmJ7RfV0egGcP6J69/POI1W7\nccvc86EqKEu5ljkvrBX63e9+B6T7w6GHHgqka0IPhZ4L73n+3TjVAgssAMBuu+0GpDjpRhttBAzN\n6PNe6T250zGKGE4QBEHQKEpVOPrYtaq0OMS6C9fi8Gl81113AemprKX6+OOPAykmkMd4rr/+eiBZ\n8wcccACQsp9y/3EbVdwdK5yiamV9plrVojW31VZbAcna12ozu2j11VcHkoXj9j1WM7CMc6211loA\nbLfddgBsvPHGg17bscAMLq09VUJOnVa951VL1v5ujqHqzfiXWUb6n7UGrVVSCWsBqy5VzlqHL7zw\nApDmg7EBz9GIESOGjcLxmivKRstVXLfUMRb5dWrmpef7mWeeAdK8+dCHPgSk+4f1NZ5HVcBKK600\naLu9UuVYeD/QW+Mxu0SH90avEeOQ4jXkMev5uPzyy4GhCsd7pTVr3ifaJRROEARB0ChKzVIzG0jL\nQl+61pV+ZJ/K3//+94H0tDWTy+341Pb7WrD6aA888EAA5p57bgAuvPBCICkgrQIpuz+VFjAMVToq\nhzyWo7X2yU9+EoBjjjkGSJaF3/fYPBbfN3ZjBbkWi3EM8+lfffVVYOg50fLRWsx7snXbV2rCxcpy\nn7xxqR/+8IfA0CpnUQ2qvozdqN7MOjv44IOBpAZVRmbsWVHu3+ebbz4gZezMP//8QLIStZRzuh2L\nflCkbLzGhhP5yq6f/vSngVRD4jXg/UVr3Dq+HBdDLOv6t1atTPIYit4g8ZrwWO2a4X0jx2w16/Ts\nWJIrG9l7772BobVuZRMKJwiCIKiFUmM4+VLBWuH2ytLXbkaGT10zrfyclrEKx3oLrTV7c914441A\nslzMIT/iiCMAuPXWW4HiSvKJ0HOWWq5oHBP7galENttsMyDFE4xjmU2mT1XL1ZjMTTfdBMAhhxwC\nJNWodb/JJpsA6Zh//vOfA8nicb/8ntZirkrK8E8Xxbc+/OEPA8lP7W+ruvTFr7/++kBSMFaMaw1a\nS2ANgUrK+h7jXNZ5aTVqvZkt6fbyvmRljkVV2K/uqquuKtqfUn+vzhiOnoudd94ZSNe/czjPalMB\nOb+8zq3LyvsG9kqZY2GGpter3VOM2VpzaNaptY05t99+OwDbb789kOr7vCdOsO9A8nio/h2rXXbZ\nBUhdYFoRMZwgCIKgUZSqcHyaXnPNNUDKUtPq19padNFFgaRA8mp30UJebbXVgPQ0zqtpVUxW7WvZ\n2hk3X21zEr75rhVOnllz//33A8naNqZjLcq66647aN/NrNF602drTMaaEsfE2gNjNL5vBqBjteWW\nWwJw+OGHD9pPYzz+m+9/L/UWuZI0pqKaMganslDZuD6NStheWFp37pvzSYzBeMz+rrFCY0GqTOu9\n/D2Vkx0tcrqxZM1489iqouj6zdeAKfH3Oh6Ldtf4yVdg9TrWU2IH7Ly+xriH15bzwQzOfP2lsihT\n4ahUrce79tprgRSrMVtNle5Y5SrPsdDD4flXEfk9e6apHvWMeK81dux2yuoiHgonCIIgqIWestRy\nS1Y/sq+1OLQwXZNFi1IrXiWS+8592uqb9/tmcGkxa0FZVat1qV/U+EbR07kMcuttjz32AJLScayM\nW9jt2SwT41X6YPVHuxrl17/+dSDVHKgSHDNf223aKn0zuuwObV6+KjRfAbSX9UuKLNm864Hb1ydv\n3ZRKyLiW/mzX/jHbSIs1XxFWy9aYn/NFdWns76c//SmQVJ+fy3uqTZh51ylVK5si3N+ylU0vtJvR\nlXsgnnjiCSBdQ1rv1qKI5zuPV+k5GQ498VQ27qvHaIZermzEa0E8/3o2nIduN+/Er5IxAzi/tlop\nm04JhRMEQRDUQk8KJ7ccjKH4FPVpq5VuVpE+eX3pVtVrCalcXLfELr/2GdICmmOOOYBUp5H36NIH\nrG/fzCxfl0mu9oxPid1c11lnHSBZMHYSUHFo3ZslYteFr3zlK0DyvVo1n1s4ZvwZ+7Ebg5aKGTx+\n33V4pIe17t/9f57rf8sttwBpjIydWJdjHMrMGjth64P32O3yrKXr9rTGzLAxC00L2RiA2Wxf/epX\ngTQf7EatGpReai08L8bIysJjNqsop6x1b/qB9wv/9Tr1mL0v6D0wS1XVnh+7irXdGFI/Uf3b6do5\n6/WaKxvHKM+w9HN538G8+4vXq0pn8803H/R5r8my1WEonCAIgqAWOjaHJuXjN2ajRWEdhR2OVTYL\nLbQQkCzdHXbYAUhdfa3G9+/65l3vwqe+T2drUvxdLRuznfTl5v2GemXCsWhlCbgGjJk2qj4tYFWZ\nMRoViZaKikjr3riH8S/z9o2DHHXUUUDyDRtf08pXNZS1pvmE2yjalu+70qb7+NRTTwFJCTkP3Dd7\nnnn+VD7Gr77whS8AKUajitQ/bTaj88jfc4ytccrjNb2MiedVpWqHaiu/VXGdYtxTdS/Daa2XTsnP\nwymnnAKkei1jtaI1r8el7FqkKnA9qxNOOAFI2abGcs24FI/JXomqf++ReWaeGX3Ocb+v1yjH+0rZ\nqjAUThAEQVALXdXhFFnF+sR9iuovNCPL2I4WrPEILVf7+XzsYx8DUmaEVr2dCFw/RcvWDA792vbI\n+vWvfw0MXbt+EnRch5P7h7WazcwyY86xcZ/NszdLzXiW39ciNhZjvENrzmNV5RkL0p995513AimO\n4Ri5IqjWvhazFnmZ1fUesyty2tvOeaDKM05lnEtV5tgao7NWSWvNY/d3VMae52OPPRaAZZddFkiZ\ne/q911xzTSCNndmPnrsJsuBKq7fI+82JSkgLt4jcVy/WthXVEpVFN2NRpoqeEK3+++67D0hz2TFw\nPhgDLpsy54X3NDNqjUda6V+k0oy1eA14z3R7xmZUxHqbjI8VeX30CnkPL1oVV6IOJwiCIGgUXaW0\nFFkqPjXz3ljWiGiVX3nllUCyaM1SO+644wDYb7/9gPS0drVL15AxA8ysFNfV8fP+ayfmpZZaCkiZ\nIGX6JfNtaX1rHZtRl6+D4/sqHPuFmT+vVX/YYYcByeevCrQ3krEc4xd+XmvdWI31OfansrYlr84v\nE4/R82/2mJ0CjOVpffnv+PHjgaSMjHtpwX7pS18CUqdsrUG7Ql922WVA8oNbz2MM0ewm/dyuo5TX\nJE055ZRdd4xWpau2JVc20krZGOfMLV3nmxXpTaTdudVuNpmfM25pTE+r3PWT9BpUmZ1aFq7Iae1h\nvpaXa0AZ6zU+5WuPzZpF1f3WW289aDu5UilSON6P8pVjeyUUThAEQVALHcdwOlkLIu+FpsLQ+s+r\nWbXG7etjpoQWi3EHn+7GJVxbxt5bqgN9t6qAPAtpIr7ltmM400477cDYsWPfzazKMXvE37aGwGM2\n+8Tv77XXXkCy4s020UerpWEcy1iM1r0WiWNiJp9roNuLzTiGSsj9yOdBJ/7pKaeccmCGGWZ41z+c\nY/aimXZmF/naWI6dsrX2VRe5KjP7UIXkGBvrUwEZP/NzxmpUwNYoWZdjF4jcEm5Ct2hjcq5eKqpB\n41St6LQmxbHyGm3CWIgZncYpzWq1y4Id2F0XKa9N6ZUqx8J7nepcz0eOc964lfe8ovu6280VlOhN\n2GabbYB07bYiYjhBEARBo+g4htOOZaRy0EI111trPV/dTh9rvnZMvmplnm2idadffL311hu0HbOd\njGdYUT5BR+SWx1LEG2+8UahuIFkmxmj0N2uJakmoQFQuDz/8MJAyuswyURVYW+LnjUNoieq31pIx\n4+oTn/jEoNe5hZP3seuE//znPxNVNypcs4XMTjSW4/kztuKKn2axqXSM2fkbjp3+a+ePY2VmjSrQ\nzEDnpbHFPOPL+VC0jk8vdPsbRVlp4nkt+p2i7bVL0borTcDr3LFU0aoCfd/sxlZjXlU2XTd4jyxS\nNqLnZJFFFgFSXDzvpafHxHq8PFvSMfEeqlfB7Th27le3hMIJgiAIaqGSFT/zlRO1OH2K6hfUorCe\nws6oZh/l61qY3aSVb2aOPneznFxrxorkvLvsJGg7hjPFFFMMfOADHxjSRdUYjHURWvFa4VpbZs5Z\nj+NKnvqlrV1yTM3Askre97XWzdAx40+f7h/+8AcgKSs7I7eiE//0FFNMMTB69Oh3rS3Pq8diJwgV\na56RZ6aM1pPnyw7X9pdzO1/+8peBpHzFLEiVrJliF1xwAZC6DhsD8ncmssLnoO32M25RdH3m10Sn\nLLHEEgA88MADg95XPXoNTWR/GhPD8bpXyRoDzrvIe0wbbbQRUBy/6JQyx6JbdWXnCuOQ1jbaEX3c\nuHFAitV67XmP9v7hvdP5dM8993S0HxHDCYIgCBpFqQpH9Pf5FLUjsRarVrbKxi7BWu+uCWPHVJ/O\nvnZdFBWTlqnZa27XWIDxjjb85l2v+FlkoWhRaN1rhXuMjsWee+4JwGabbQakNT5OO+00IGWdOZaO\ngcemVa+FYgzIymWtefPpzQRUWeUxmDIqyn2tpWnsZrHFFgPSefU85V0aVDyqQ9WicTHjV1r7dmNQ\nOVnv9ZOf/ARIY6j15n6akXPmmWcC1WSpGcNzPkzi+8DgNXkmhpmbZuTVRRMUjj34VLpe795vnG96\nSLxW7FdWVgfvfo6F17nXTh7jy+PUzqM8JuN2vId2G78MhRMEQRA0ilIVjllDWqb65q2S1hIxa81q\neatozVLK1+E2FmAdj1a56kALWEvVvHzjJHYqKPLRT0DHCsdj1iLVMsgtDq1qK8/1tWqluR0z3372\ns58BySp3LI1LnHTSSUDKTlGhWGFs12jrN4x7+Tut6MZ6M36ljzzPiNLyVJE4Zlqi/jvBPgDJJ28d\njt2jHQuzEBdeeGEgKSFXmrU+w4wu1xzJV4qcRJfr2izZvNtBq8/VTRMUjvNBde+6V17fZmS5xpTz\nzDiF86/XbNV+zAv31Xtl3jW8Fd6bVdrea3vNzAuFEwRBEDSKUpcHzLM/VCZmTNn51Op4feVarPrc\nrcPJV4g0BmQWm33F/J61L/PPPz+QKsnbUDZdU5TxkvtOrXL38+5rHodyLFRprmJqrYpWuf3CrNJX\n/VktL2PHjgWSVZdbSioff7eXMWqVDajCWXXVVYGUeWf/JztLqPr0vauERSWkhWrtkfPLsfbY9Usb\nN1M1isecd7LIx7IX2s1C8u/WU3jepCh77L2AY5ivDZX3K/T8+9pefl5zzi+VUje1Z2XRqs+b14z/\nOtfNLmsXt2/s1jGru+YoFE4QBEFQC5VkqWmJaCnqazWjQqvaz1khrPVvnMGnsN9beumlB73vv/po\nra8wE8xja2XBTGB9th3DGTly5MCoUaOGdFHVSs6Vi+gz3WmnnYDUEdm6HWM1WrhacR6b+2ptiiuJ\narkYGzJ76dxzzwWSpdwq+8RVTDv1T48aNWrItt0nrSuVqGOitaaCzX3qWnW+zqvuHWv90n4+H3Pf\nz+MjKh/pda2P//uNUkzGVvGwftHPGE6efbbGGmsAyePh+XTMPN/2DdTjYkZor8qmzLEwk3KPPfYA\n0lx0bltnp3eo1erF1geaebnbbrsB1c2jiOEEQRAEjaIShSNmmWlxWOmr39KsI7OHtOovuugiAE4/\n/XQgdSDQYrY2xc/bucCeXSqiLiyYjrPUOu1BpmWiGtBq08p3361ZcQy10lzx0xUijUuYdWIcwzHe\neOONgaR0pI1YQtvW28iRIwemnHLKd8digpUygeL4hX5oFW63tLveiWP86KOPAsmHn5PvbxMys6rG\nWKDZjTn/+c9/WG655bjnnnsaOxaHH344kDqvq6DtkG7XcLtuqHi85jqlinmRq/q8/58ZmF73G2yw\nAZA8ISog6+/0dLjqsequjf0dtB+T2t///e9/oXCCIAiCZlGpwqmaCrq7dt1pYCJ/B3rft3YVVF4h\nnNdpdLofVVpv+T61W3tSN51ab9C8ayTHOq+VVloJ6Hx9nOE0Flr9O+64I5Cs/LKoYyy8/j0/Zt66\naq1Kx874eS1bEfnKn70SCicIgiBoFLUonCatM9GCjhTOFFNMMUR5GE/QcsiPuVflkdPLOjYT0kvc\nIu8WLXkWWB63muC3StnnKtax+b/t99xXrl1ctfaYY47p6HtlUzSWw1HhGEMu+/5Tx1iYsVtU71f2\nvbXdeGhOKJwgCIKgUQzrGE4FNC6GI5362kUFlK/CmpNn7JRpvZXtL25l9RXhGGr55msZiSuHnnfe\neV3VJHW0U32mU1U4OY1Ft9eUTE5j0SuhcIIgCIJG0anCeRF4trrd6TtzDQwMzNTOByfzsWh7HCDG\nYkJiLBIxFokYi3fo6IETBEEQBN0SLrUgCIKgFuKBEwRBENRCPHCCIAiCWogHThAEQVAL8cAJgiAI\naiEeOEEQBEEtxAMnCIIgqIV44ARBEAS1EA+cIAiCoBZGtf5IYnJvQAe81EFrm8l6LDptTDhixIjG\nLT9R1nIF0aQx0elYuIjd5MjkcI2URbtj0dEDp1vmnHNOAJ577rlB7/faUdkuxK4F48RutwvsRH6/\n9F5H+W90u35Nq+91u45FWUzqYio6H1tuuSUAZ5111pBtQfvzIj/2ogeN7zuGTbr4x4wZA8Arr7zS\n5z0ZTK/XaDcPm2mnnRaAf/zjH139ZlOZ1BgWXd/9vq7LJlxqQRAEQS10vB7O5CwLKXE9nH7RDzfS\nqFGjBqaffnpefvnltj5fpHj6vTJskTU5HFwnqv25554bSN6EfA2ibleG9ZjCvZiocyx6va5nnnlm\nABZaaCEAbrrpJiCtLeU86XR+dDovQuEEQRAEtdBxDGdSllu7Fmr+uaLv+f5UU00FJCvuX//616DP\ntVpJMvcJzz///AA89thjk/zecCAfu04toG5jShPy3//+d6LqJt+33ErLkEMqYgAAIABJREFU/96r\nKlChrLvuugBcf/31QJofb7311iT3T2Uz9dRTA/Dmm292tR91qptpppkGSMe82267ATB69GgANt54\nYwCefvrpnn5nMvZqNIoi9V90zbRiuummA+CFF14A4PDDDwfg7bffBuDVV18F0ny56667AFh++eXb\n2n6n8yIUThAEQVALHcdwJvZ+biUXWbK+30qR+PlVVlkFgNNPPx1IT+PLL78cgIMOOmjQ57UO3H6R\nZZ3/zgRj0HMMp+w4hMfkvzPOOCMAzz//fKm/k1OFf7qssXE7J5xwAgCLLrooAHfffTcAa621FgAz\nzfROhvvss88OJGX7xBNPAEkpuz3J96/JcQuz2w455BAArrvuOgCuueYaIHkHXnvttUHfa3Uuyopn\ntfvZfvLQQw8BsM466wDwzDPPtPW9OsdittlmA2CJJZYA4Oqr/397Zx6u21j//9fZzjFEOkgUUoZk\nLiJjJEOGKIqoLlEy0zGUKV+VZpllyJShzHMZopK5yDwlrpTCRcOFLrlw9u8Pvc69n8/eaz/z2g+/\nz/uf59r7Wc9a97rXvdZ6vz/jlWNu53XThzf//PMDMHXqVABeeOEFAD7wgdcec/fccw9Q1H8zhfOm\nN72pYXuRPpxEIpFIDBR6onCEkRDPPfccMNrX0irD1S6tz2b11VcH4Mgjj2w4zv333w8U5vrVr34V\nKIpogw02AODnP/95w/7HOX7PotQiQ+yU3TsH/l41GW292mT9Xqj2Ws1NEp2wt35Hmbn/xRdfHCjX\n1eOZ7xVVobktJ554IlCU0ZNPPtmwnWrgxRdfbDjuILJ618Xmm28OwAc/+EEA/vWvfwHlXtEP5Rzt\nu+++QFGD2vb/+te/AoW5uk5eT2ovQt+tbH/BBRcEypx4j+6yyy5AmbNWUcdc6JNzzTa7fz3nT3zi\nE0B5Fm611VYA/OIXvwCK0ukVUuEkEolEYqDQ00oDsiURWXUz5qt/YssttwTg9ttvB+Dwww8Hii/m\n73//OwBnnHEGAJ/73OeAElsu+7viiiuA0epAX9Oqq64KwC233NLS+NrBGLbvhr+dmxip5zm+613v\nahjjI488AsBjjz0GlHNcZpllgMJsZar6eNyuVb9ZN3PQb2Xzla98BYDtt98eKL4Zv5e5GnHj59/+\n9jeg+ACfeeaZhv27Pt2PuQmvvvpq03mbKLg+1lxzTQDWX399AB5//LViGdrmvf577rknMJrVy4Rj\n1Q7RiyjGfuM73/kOUJTM9773PaCwfdelfizPyXvUOWlX4dSBY489tq3tjcRddNFFAZhzzjmB0T4X\n5yBG/vpcipUvorJq12Iy43dtbZ1IJBKJRIfoyIcTWU+39X5klkYXrbjiigBsuOGGQGEmRpkZKeFb\n9qCDDmr4/s477wRGs/roDxljvH2rNBAZgXPmXHquSy+9NFDyJzwXI6suuugioESrbLfddgCsvPLK\nQFF93/3ud4HC7ttFN/Zp59fPTos36stTxe21114AbLTRRkDxFep7ueSSSwBYZJFFAGbkBhl9JGtz\nHfj7ZvfAIPktjDbaddddgaJsVLayfK0NWgu8Z+6++24AHn74YQCOOOIIYLTfqgq9mAvXelWkVRX2\n2GMPoCiRGF3YKqJVIcLniRaXadOmAWNabAZmXQj93TfeeCNQrvezzz4LlPUQoxYXXnhhoORrXXPN\nNUBZX81yJtOHk0gkEomBQkc+nGjPVSlUVYVuBm3msiyZrW9TfTN+b7TJ6aefDsDJJ58MFFtuVcWC\nmIejupAhRztnK2g1x0d7stvLrueaay6gsG5t8sbdu90f/vCHhv0vscQSALz3ve9tOM7GG28MwCmn\nnAIUf1cVi4/jnDJlSi/qsI17zGbwumy77bZAidRxffm96k1GKst3+2222QaAk046CSjM+vLLL284\nXvTddLIOInoVsacS/tKXvgTAD37wg4bvZds33HADUJSt6+2JJ54ACrN13ZjD5r3cavWPXkBl06of\n4NFHHwWKcu0WzZSRvl/VgRjkNgvRDymsnWYE7zrrrAPABRdc0LC9z0Aje1dbbTWg5PEY0dntekiF\nk0gkEola0NMotXaVjdBG79tVNqZy0Y/xwAMPAPDFL34RKPk4MiAzho1OMta8SvHI7rphtFVqIB5T\nm6l1umQkMY9GFq8N/oQTTgBKBrmRWPpytLluttlmADz00ENAmasW/BMNf09EVJbXQ/+E6s4IPVm+\nCkRlo+ozgs9IPSNu9FOYc3LdddcBRZGrpJ3TXigb0S0TVMVpSzfPxv8bPWRPod/+9rdAOTfXvnkX\na621FlDWlZ/j5Ns0/N2PCthRMRh5Z6a/17tXyib2y2o2Hp8PMbetl7DWWfSpNIP3jPUgq1SbYzfi\nVyUc8dRTTwHlOeKz3HXUaVRaRCqcRCKRSNSCWjp+VsGooQMOOAAoCkfIbHwrW//Ht6+MWGaqjV6b\nfXwry5hiBYRu0GqeQoz9ly06Fs9dVq5SkZ3LaPX1GM0233zzAcVW/5vf/AYYzeJ61Xm0CpMnT65U\ne82iGI2gcruvf/3rQMmzcYyqwHPPPRco51pVTUFfQfTRue7My1lsscWAopTErLPOOuOYdcHrpK1d\nlef/r7/+eqDkmvzqV78Cqpnnhz70IaBUJDj++OOBMtfOvVFM2uxlvHX2KIo1zByrLFtF6jpzDVfV\nwvNTta//Kt4Dd911FwBLLrkkUNZpP5WNaFfZCC0bRpdFuB5+//vfAyVqLcK5ePDBBwFYb731APjm\nN78JlGouPotT4SQSiUTidYEJUTj6Maxtpd1QpurbW4ajnVKmq7IxIsvoNbNsjQSLjNrtYp5IN+yt\nVYVQxQyMUpNJLL/88kCJlJHNye5kXZ67rN7IveOOO65h/+PEzbe0XasYbx6qlE2sEGAukfk05l3o\nkzN73lpqVh6QrVvhdp555gGKenT9uJ2+Hs/VHCfh+umlEm4Vzon+S9esFQRU7zfffDNQfR3f8Y53\nACVa0XWz0korAUXVOaeeszlLHn8i+uCo4o2kcm2r9n1+7LzzzkC5d8xN8zrLyt///vcD8NOf/hQo\nc2l3VK0F/q4fmDRpEpMnT+6Zj9TIzDPPPLPh/z4vvB+tuF8FFa3PHf3hVlq/8MILgVKh3xy4TpEK\nJ5FIJBK1oFaFI/sy4sqKArL/Sy+9FCg5AvozYt0f2Zv7MfpIJtNuZFYd8JgyD23n6667LlDyaWQU\n2lz1P8jqZLiyeP0R5gzo64mqIioY57xXvpxO5tTfyCy93jJVKwVoW/ccjGL0emt/FkZmub5uu+02\noJyjc6qCiWMf2cep7rWimtPfqLI150zWH310KhTVwFlnnQUUH5/rwqhHa/J5rp6nlSrq9N1EqAJU\n+XfccQdQ2Lp14Txn2bm+HhWMNfdOO+00oJyLysbr71z3E8PDwz1RNz4DrQId4TmZh+X2nrv3kv5w\n15XPD6Pm/L3WJue8W6TCSSQSiUQtqFXhLLTQQgCssMIKQGHXMpMddtgBKNFDInYS1e7sW9joEyNy\nVAdWTO4XumHAMlRtpUZQyVBlps6VzEPGYQ8g/RM33XQTUCK5YgWEKh/SIGRPe32tbCtjVcXF6s7m\nKplbYI6KLE1WZ5SaDFZfUVQ4IlbwrpPdx4rmjs1PM8ZVQFYDdl34O2ujuQ68B+69916g+D2cU+8l\nFXHs3zQR0Jenz8Ysd6MIrXEWqyKolFU4sVab27kfrQuvJ/i8iArXDq+xC67WgqOPPhpgVNSl1qGP\nfOQjQIkQta6lSsh11y1S4SQSiUSiFvSk42cze6/fG31kJIx1wmQ0svdmtbxk79q3zeOR8erbMRqp\nDXRdLbpV27eMYeutt274nYzWOZCVm49hRE1k//a0N5fBuRWOpypjOPpy6qyEqx9Ktq5vRj+Xtnhr\n6pmL4lw5ZnNJZMQqG6MXY6Z5VYdP/WUjumXWNheqdmvgOfaf/exnQKmyYOdO15HX2yhF83MOPPBA\noESnGdknI44Re6+HytkqYOvGeU9oQamC6yT6NTpFnXPh88HeX/pehOemsrF2mvUIo89WmL9nJXa7\n6GpxiXUuq5DVohOJRCIxUOiJD6dVNu922omt/6TNtZmy8S1vfL25KFYFtraWrHAi0CprUqXJJPRb\nGYGncvFv50wfj5/aYJ1DmYjsXZtts1pIE9nR0XOTpRtBtcUWWwBw7bXXAoWZ2q3SXBRzEeJ1jx0e\n/XQOqvJsJiL/RniOrgev24477ggUP0Xs5KpfQr+FlbPNUbH6r0rZnJRWFfnQ0NBA+Pug+OpcHzvt\ntBMAhx12GFDtfxqh3js6roq7lzX3miHmDP7whz9s+Fu4to3YrLJgRPgcOe+884ByjnF9xSotnfa6\nSoWTSCQSiVpQS5SaMePW/TEnQDtjM3Yty/P32nD13ejLscbWROQOtAuViCpP5mrWu+cswzA6xXOV\ncUQ/lT4Ac1hEq/1w6oRsSmVrlJqK2IrYVpbQb2U0o/+377tz5nqKf3uuqktVoFGSok61F6ONVGn6\nYKypFrdzzoxSNO9Gm7x+Mf0azp3rrln+Vfx+UNTNSKg09Gc1i6zzulvdo10fb7fKppOoVq+DVhyv\nY4TPDSP4vDdahdfXDp+uL306UR12HJ3b0a8SiUQikWgTHSmcKlYc/y8rsxPnPvvsAxSbqxFVzeyN\nMt/99tsPKL4b3+ZVtboGGc6NSkSFE/0LqkHzLuwZIrM1i97tjbBqFb1SNuOxNxWLY/TcZVGf/OQn\ngcJAPVdzCvRn2PVSFacPJ/YWEo7H46sW42edcOwxcs5zN1LPCulWoHCtR/Xm9deKYGSdXU+d21id\nvJmKm0ifnoh+R3v/mG93/vnnA61Xdfbe6SB6tSfo5F5ThXsvVMH6glX3QIxSizlMKmOrvfRi7GMh\nFU4ikUgkakHbCmc8Jlv1f7OcrRNmlIkRVLE/RbQ/qmiMQXd78y3MMZgIP0SntchG1usauZ9Y28q/\nZbJmjh911FFAqe4qW4++m7ow3tzHyBah8rVywOqrrw4UVafN3Eg814sdYK+66iqgeQTeREadRahs\nnAujgfyUve+///5AyY8wv8YK6s6Ftc/cr1U3rFDhflU+MX9jEOH11J9g3yP9WubtmW+nKmyGWLFi\nIqCvTbXWzIdqPlaMVouIKt+OrnbPjb+Lf1thIH6vD7Cqm/NMM83U1rMvFU4ikUgkakHbCmc8Jlv1\ntrbWlUxVyGRiNJGs/stf/jJQfDdCBmzFArOv68akSZM6tnVHG6oKRYbi/92/NbCcG3OOtEcPgs29\nGTwn/UzWf4sZ4PqzrDzhZ6yIba5JVU7CIM5JlaKNnTetiO1cmUFudOJyyy0HlAg7/29ehd/b8VFl\nY47TIMO5sBqCkO3bJ8l10qyPjerOqNjI5uuEykZUPU9VQj47jcS05llEfJaavxePEy0nRjNGP7jb\nVSkb0e49lgonkUgkErWgp3k4kbX7KTOVdVkF1u+NLbdj45FHHgmU3BPfxr69rYAq0+0WsbJyq+iF\nzygy3ciA7eynn8qaWjKSbvMj+qkG3Lc2diNurABg3xrrydm/xpp4rhfPdauttgJKnxS7FaryZLrm\nad16661tjddIMP1g/fAJunbvu+8+oCgTKxebLa/fwnPwU7buPWQEnv4uI/yMWrMKgyqxVdSxLswJ\n0ofn317vWNnaOZN1x/wpEZ9D9oAxEmsQEK1B5tlYAcJzd718+MMfbmv/cQ6Evr9p06YBDfUCOxp3\nu0iFk0gkEola0JNq0SqUGCGlcjj88MOBwtLsuGdVYCMh/DtWTpb5HHrooUCJSW9XkVRhRJRTbdWi\nhfbq6LPZbLPNgOK/Uh0YfSLb71fPn3Yr4Y4Xvei5Oc+ytbXWWgsoLMtzWmaZZYDRKs5Pz/mUU04B\nih1a9XfXXXe1OvQxUUflbP1VzoH9j/RLqVC++c1vAqWKRvR36vtzzFaicP9GcvYKvZgL73fPVfi8\n8H5X+V522WXA6F4u44wRKCpQy0m3MI/H/MFO5iI+H2Jfqyqovq15Zm08nwvCdWH/G61F+oKs2N9q\nDlqrSjerRScSiURioNCVD0f7cezQKXyb2zVOdm7GuBE4vqVlOL5NzbM49dRTgdIHpVfKRnTqBxmL\n1TdTNlU2VTPQ9UvYx8ToJO3W9rTvlf8qjqtT2+zw8HBlx0z/7zGMpFKZGHmj8lXBqHwWWGABoFSc\ncH0ccsghAFx++eVAmcNuMbJvTr9qiHkOTz31FFAip2655RagXF8/9WfGHLRYgb2f/qdOMPIesWrC\nQw891LCNlgtzjzyXqOqaweMY3bbhhht2M/RRUNl0ipE5K679ZspGGL1obb0IcxernsXNos2q0Gsf\nXiqcRCKRSNSCnvhwImQkKhbtyUYrWeXZt7zVW/XZWCXYWkm9yhSPPR7ieHvhwxljO6C67pzH1laq\nf8Mx7rnnnkDxS5x88slAYTzNOvG1O65VVlmFe++9lxdeeKFrH06V4lEZn3jiiUDpa6Ld2Ygq1cXe\ne+8NFP+EcxEVr9n4nSrgsbKxp0+f3ratvpXsa3s6ufbtBWR0kizfe8F754477gBKpF/duUb97HKp\n2o/9i1oYE1CiFHttARnnuBPe/XRQkD6cRCKRSAwU+qJwYn6NbFzErnLWgZLR9KuKb4wyGQN9Uzgi\n+jX81AYr49Wv8fnPfx6AY445Big2Wu3UsVJB7GpZdX3f9ra3AcWvFtFNlFqVeooRL83qO7lO9M04\n1ti73koTna4bmbG/H8Mv1zGTrZoLq/vaqdMoNZWL0WtWCjDPRvau9cAxR6UTc+F65YvqJ6u3QvYa\na6zR0vZnn302MDp7vy50MxfmS1kL8fWOVDiJRCKRGCh0pHCaVeeNcHsrlxp9JJuT1Zs53Kv+NpFd\nVjHsEXPQc4VTNSbVnWMxq/7aa68Fip9DdbjpppsCpRaWcxhrrx188MFA83pRzaLSumFv7WapV23v\nulGBVPny2l2PzTBSaQ0PD9diq9efqS8nVp6IfgrzKTbffPOG7V037WaQVyHObR1z4ZirKoC4DqzS\nMFH4/9mH0+m6SIWTSCQSiVrQFx9OM8RoEpmKrKxX6CC3pDaFE6PTZPfa9lV/5ihpw/dTNdhrdi/6\n4bdohioFqi/H9VHlF4vHj/6Lqqi5CNenSrufTLbV7rmDgjpYfae1DevGG1nh+ExuNQo2FU4ikUgk\nBgptK5zxamZVwd4MRhk1Yy5VrL3VCKwu0LLCGRoaGp48eXLTyKhu2dpEMeB+5J6M8TuPNeb3Sy21\nFAAPPPBAS/uJdcZaPX6zSK43MpNtF4MwF1akaLcCdq9R51z0y5LRK6TCSSQSicRAoV2F8wzweP+G\nM+FYeHh4eN5WNnyDz0XL8wA5FyORc1GQc1GQc/Ea2nrhJBKJRCLRKdKklkgkEolakC+cRCKRSNSC\nfOEkEolEohbkCyeRSCQStSBfOIlEIpGoBfnCSSQSiUQtyBdOIpFIJGpBvnASiUQiUQvyhZNIJBKJ\nWjC5nY3f6IUJgWfbKG1Ty1xY+PTvf/97HYebgUEo0jgoqHMuWm1e95a3vAUobSxahY3/LDpr+4sR\nrRjG/X0v5qJZsdVWC9M69pdeeqml38XvY0HMdgvlDuK6mCi0OhdtvXB6hWYX1s+VV14ZgFtvvXXM\n/fShb8bA1TpaffXVATj//PN7ut9B7bcyFuxiWdXxM6LTc4sP437Ch50Pzdh3xHP2ReBD0QePaPVc\nPZ7n5r3jwzoet9W5boahoaEZY4/3qw9P//+2t70NKOTKsfhytdq85xqfF3bFveKKK4DRVeU/8pGP\nAKX6uMdp9uKxOvUxxxwDwCabbFL7fTOoL5p2kSa1RCKRSNSCrjp+tithu0XscS87k5nKBrtAzzp+\nDroEboY6+uG8XtCJ6cS1P++8r1loZeeLLLIIMLqXy1prrQXAb37zG2A0637zm98MwPPPP9/wu7e+\n9a0APPvss60OsQHzzz8/AE899VQ8D6A7M9LQ0NDwlClTZtyXdm5VZal0oonLY8f1FDu2qozc3+yz\nzw7ACiusAMDvf/97oKi1d77znQA88cQTQJnbOeaYAyjddL13o+VkpLIaHh5uey5mmWWWninHQUP2\nw0kkEonEQKErhRPRbVe6yGDmnHPOcfcvI9HG+8ILLwBF+XSgrHqmcAYVW2yxBQAXXnjhuNtl0MBr\njPnFF1/k1Vdf7flcTJ06FYB///vf8fdA/3xrcf+y+QMPPBCAb3zjG+P+vp11MfPMMw/PO++8M9RT\nDBKIVoDYedW/Rxy74e/oE1pmmWUa9vfkk08CJbAi/n6hhRYC4JlnngGq/VYxyGHKlCm89NJLTJ8+\nva11MXny5F76mwcCM888My+//HLLc5EKJ5FIJBK1oKcKJ6Iq+iNi8cUXB4pv5nOf+xxQbL4PP/ww\nAGuvvTZQbLMyJ+3e7v/xx18LNovRLFXhkCPwulE4ssMPfOC14b73ve8F4JFHHgHg5ptv7mr/g6hw\nesX+21XivZiL+eabD4Cnn37a7dx3q7seF57TbLPNBsBZZ50FwFxzzQXAxhtv3HBcrQMeP45jtdVW\nA0avo17MRVQmcew+B1R/jk1/0z/+8Q+g+G5VNo899ljD7/Ud/etf/wLgM5/5DABnnnkmUCwobmek\nYFwf8drprxzEe6TXUYatIn04iUQikRgotK1wjNBost2Y/5ehGLFj5I3723333YHCYGQu66+/PlAi\nfmRC7ufqq68G4Pbbbwfg9NNPB0ZHrVVFv4zAhCucVpmvPgBzCfbbbz8A7rnnHqCc4w033NDROAaJ\nve25554AHHfcccDo69fqeqxSvM3Qi7lQkXrMTv2c8d6aZ555gBKpdfTRRwOwzTbbAMWPseqqqwLl\nHvzDH/7QMB6h+vA4MZKs3cisWWeddVSOkQpCaMnwGP/5z3+Acp/rkzVnye3XW289APbaay8A9tln\nHwDuvffehv3E46j69N3o+43KK/pujGYb4RMamHtEVRcjdpdeemkAHn30UaCca699hKlwEolEIjFQ\n6IsPR2YgY/BThmK8vFEim2yyCQCLLrooUJjEEkssARQlpM1VBqKN94wzzgDgr3/9KwBXXnllw/cx\ndyGOc8QcTLjCaRXa6LfcckugMGZtuN2iTvYmg3zPe94DlOsmk5SRylife+45x9jNYVtGu3MxNDQ0\nIz9GFd4t5p57bgD++c9/ehzHBhQ14NzJdF0X+vZUPnfeeeeYx/HedK6jT6CTdRFzhap8aAsvvDAA\nf/nLXxr+/53vfAeAAw44AIAFF1wQgLvvvhuAr33ta0Dx9erDlc3rw4k+G4/vOquKmovPs5dffrnt\nPJx+Py8cowrWe8ZKJa4f1+NPfvIToHOlHZEKJ5FIJBIDhY4UTlV8fLTNRuy8885AYVcbbrghUHw3\n2pu1tZoRfNJJJwElIsu3+AILLADAZZddBhTbrfZpo0raeIt3rXDqqscVI/9koDLdbtFL9tbMZ+L1\nVrlasHTdddcFYM011wTgkEMOAUZn6Ucmal6WzDbmd8VxRFYf0Yu5qMrob2O/jmXM/6vqnTPZuutE\nZXPppZcCsNFGGwFw8cUXj7nfiG4is/Q3RmUajxmvk8+L8847Dyg+XC0aXi9rp51yyikALLnkkkC5\nrvfffz9QLCoqIBWVzyPv2aq5cHwzzTQTr7zyStt5OE2+bzi2ytJ74pprrgGKNUi/1korrdSwnepv\n2223BYrCif5y1abVF7pFKpxEIpFIDBS6Ujjxt7GS7cc//nGgKI/ll18eKIzH7d/+9rc3bG+U2UUX\nXQSMjim37pR26U984hNAiTq54IILgGKvrIpKG6PadNcKp8o+rZr79a9/DXQeJ2/ET/TVyKBVdd2i\nn/Zp149qbMUVVwTKnJkvYeSN31ut9xe/+AVQ5sJopcUWWwwoPsAjjjgCKH6PGKUWKzK7TuI17KaW\nmizbtX/TTTc1jKHdUvkR73rXu4DCgJ0Df+89IROW3UcF1EqkX6d+i/hc2H///QE49NBDgfI8iL4U\n70+Viexd3+5uu+0GwEEHHQQUX5GV1c1NM5LTufLz3HPPbThejKaLUCW88MILHc3FyMrZEa51z1mV\n7tpcbrnlgLKWXVfmJq6xxhpAqdWnP9xzi1GHfqoa9Xd1ilQ4iUQikRgo9DRKrSrfQfa99dZbAyVq\nzBwCGao21OOPPx4oTFa/iAzDt7b9M9ZZZ52G///0pz8FSj5PbC41zjkPbJSa7E3GGhHt3xHNGHP0\nMfRT4Xid3v/+9wPwsY99DIDNNtsMKD4c2Zes0LH9+Mc/BuCuu+4CSv6FkTnapVXOZtU7RzHPQlTl\n6fSSyY7zO6A6F6Rqf1/+8pcB+Na3vgUUf5hqzcgtc9o8JxmyrL5q//7uvvvu8/dtrwuVpPd3s6ri\nKl+VjPev/Wx8XngvWP/N7VREO+ywAwDXX389UKpIn3POOUCxgOhbUmE5Pp87sSKC39dhBXA9WPHB\nqio+46yCYL6dz4lrr70WKHPhPRcrctvrR+XbLtpVvqlwEolEIlELetrxM8b++7bVrujbWAbj9jJX\n4+9lJL7d7fzp72SyvpW1Vxq5of1TZiITqmL3dXZ67BTa5qvQTKk2+77T6Kl24Dx7/YxCMjrR/2vT\ndx15XVWssjVr6tnBUSbtp1FMMbu/mdrrNr+nk9yGaGOv6skivDduvPFGYHR0or973/veN+b+mikb\nfQrO7Vve8pa27fyTJk1i8uTJM66fY44Kx3Whn8u1bkTdddddB8Cpp57asL1jcw705X70ox8FYLvt\ntmvYXtavj8/nhxYXVb4+nzj3qoPdd999hsLoF1yDPpN8Bqo4PfcYGewzVDWnwvHczcdxTqJ/rdNx\ntopUOIlEIpGoBX2tFi1TNYPcPBrr+xhFYuSOSsSoNvNsdtllF6C8vWW62jO1xS677LJAYW+33nor\nUCK3/N04eRlt+XDq7HIZI6hGjKMvx+unfVplYw2sqHz0QxjJZ9QPUK8UAAAO5klEQVRijMCyh4u+\nGnNNbrvtNgCOOuqocccRqwpXoZ25mDJlyvDcc889qsJAM1WlStcq8Lvf/W7c7c01+dGPfgSUXCWP\nY+0sc9gOO+ywMffTrOdMzL7vZl1EhVN1LPNm9OGqRA4//HCgXK9PfepTQHnO7LrrrkCpqWhOks+D\nSy65BICzzz4bKMpaFWj+3ve//32g1PCLlpsR9eVqrzTgmhXN1q5qX7/oQw89BJRr4D3XbXXp9OEk\nEolEYqDQUx+OkDVZu0gmKmQMvlW11fo7FdC0adOAEq2kPdKIDW2u1lDTlmvOgWrAcVhnKtZK6hR1\nqRsYrWxkZ69HyFzNdje/4sEHHwRK9JnXTVamz0Ybu4rH6EXnRIbbDM3YYSd45ZVXZuRKjEQVm5c1\nWz1BNd7M8qBa8F5xfXhO5n3FsRjZucoqqwClSkcVRuZMdcqCo38q3nf+7XXUErLBBhsAJQpN1aYf\nwvXx9a9/HSiVsu2ndeyxx84YOxQF5Drx/tU3pZJyf9H3p7qYY445Kusz9hvRr+SYPJf4THJu9eHE\naLW6/dapcBKJRCJRC/qicIxGk4loOzWz2M581kSSrRkpJePVlu9+zKb27WzcvEzH3AJ9N8bXy8xU\nVqKFvJwJx/bbbz/m//VXvZ4g29IXZxSRNa1UoCoYr5u/k5V7fT/0oQ8BxU6tLV6W73ZVSrTT7P5m\nGMlCW42I87OqN4twrvSDyVA9B9e8KuGqq64CCrPVj1mlbOJ4vWeaZeGPhaGhIWabbbYZeVBVWe8+\nL7yf9fl6X3tOnktUwFYk8W8rCKiA9W/pK/Zvc1d8rnz6058GyvMqrg/Pw89u0G7X2QjXvL68O+64\nY8ztVHvmpjn3Xs9OrTSd3iupcBKJRCJRC/qicKxEqu/Fni0yWG3xInb8M3JCpqvPxkgb2Z9M1nwL\n37p2CNU3tPjiiwOFGUXmPIiQAVkBV2jPlqn2GrPOOuuMvIleI2byW83Zc2mmAlwHQkYce85r+/+/\n//s/oJrFRXbpcVqNXmsFVft0TCoW/QeR/Qv9G6utthpQFIz/v+WWW4Cy9qsUiSpDq4G+iFgp2XG4\nFtZee+2WfWNi+vTpDRW4q3ynRqdaQcD71LH6vVUTVED6Jdyv13PzzTcHyvX3fo9+i9hnyeg412Os\n8uBc98J/06myibXvqpSN0OoTKwzEnkPtolMrQCqcRCKRSNSCniic2Pvbv2USf/vb34ASZWL+jbkK\nZs0atSSDkXlcffXVAPz5z38GRteD0j6pjX+rrbZ67eT+p4TspxGVzSD7bqp6s+j36he6jcdvBc57\nt1F++jt23HFHoNi1v/3tbwOFkcZq0aIqB6Uf0WtV+4w1rKrWpPeEFbBVdc6huSiec5XCcXu/r4pS\n8p6SCZvz1i6stTUeZO3milhpxFqLKmEVrD4Xc5aMUv3BD37Q8DvnyLk3J8lKJNbycz/m/wkrpOhz\nnqjItJGI/a+q4Dqwh1RUzlW+4X4jFU4ikUgkakFPFE6MtJFB6MP55S9/CZTe4zJTv7efRezQZ99t\nfT7uX9uuf8uAtMlqa9bGKxuIdtNBVDra5mO/G23pqsRuYU6T7PD1CPsiycZjr3qjm6pQx3VvdY1Z\n2dhK2KpzfS177703UPJo3J8RU2eeeSbQ/JxFZMhR7am89K/2IjLLfUX15bmedtppQIkii/l51hEz\nmtXtVCpG3unD07Lh9/ZZMnpRi4mK2M7Dqj77bcVxLrTQQjOsNnVB69Ess8wCMMrP6hx5X//pT38C\nRtdKU+FajaNupMJJJBKJRC3oSOFU9b3xb5mAfUrsGa7/4Y9//CMAG2+8MVDi5/Xp/PznPweKsnH/\nUdkstdRSwOgud7IzbffadPWLmFvQD1t9t7BaQkSveo+LqGx6ofa63UdVXoxwnVgN2D46Rj+qBqxA\noYI22rFOGH2mDd2coyqobGLdLuvEWTdMODfWXPNeMgel1f4m3qvOrfeMbN9abZ1gpplmYurUqTN8\nq/qB4nNDRfGlL30JKM8Bayj6PFh11VWBYgHRT2GnYK0CnovH04Ki/+LEE08ESvSqNf1Uff5flRD9\nH1aF6ASd3iNajRyj5+j+jNh07FX+Sf1QE2XVSYWTSCQSiVrQl2rRMkwZx7bbbguUOHoZjYrDHAXz\nLGSssjxtv8Kokg9+8IMAnHDCCQ373XfffYHCSOxxXlVvaAQ67vjZra1bdSarEr/61a+A0u2wU9jH\nPUb6VeUi1dHNMI5Btu3/VXXa7GX/svljjjmm4f+yetedc6aa65TVdTMXO+20E1DWaKvwntAqYC6b\ncG17D8iAjfASVVYI/1Z56S81d+Xggw+O59VWZ8f//aah46fXKUZ7OZZNN90UKL5X73OVr+xei4UW\nCtfD2muv3bAfo1V9jjhHHu+KK64ASt5gzHERcc4mTZrE9OnTa60W7fMl+imFUYo+f6ysbQSnY9dq\ntPrqqwPV/ZbaRVaLTiQSicRAoaeVBmQkMhEZhzZ37c12o7NqcIxysyOfNlrf2kaxGbGz2WabAcW3\nI0M2z8e4fNmAER5RhXRb12isfbaLGBHjXJhl3S5kQjJllY3otU+oHUTGuNxyywGjI/G0lcfoxC22\n2AIo1/viiy8GYJ111gFK1eBulU038NxipYhmNnzPSQbqPRRrrclMtd2r7mT/sRKFNv/vfve7QOmi\nqbJx//qSIrqZwyrLglWcPWdrnXmfunb11alo4/6cI1W8figrDjhH+tPM94kVTiKqlM5EoqqXkOfs\n+tJPZRdUI3i97t0867pBKpxEIpFI1IKeKhxzAIxKkblccMEFAHzhC18ASp6MNl3zaD784Q8DpS6U\nETr6N6wTZVSKdkuj4LTFaqc03l8FU6VCJuptD4124bH+bxfLdhE7A0YMQv6NLM0M73E6sQIl6kwm\nax0plZGK2ai0Thmp67LTXiFDQ0PstttuQFnr+iebjUnlYna7VoPoz9xvv/2A0SrQOdQaoCLSb2JE\nllYAGbPq8YknngBG136bf/75Z9xf7WDkuo61Er3v3UZ/1c9+9jOgVIG2enOMQvV54Fh9HphFr7LR\noqKSluVbXdx7oep6u38/55133trycLye0dcSnxsxstPrbm7THnvsAZSI3tiPqS6kwkkkEolELeip\nwpEB3H333UDpa2NOwnHHHQcU34y2eO3O+hXs9aFCsueDrE0mIlNZYoklANhkk02AwpxkvpH9DVIf\nnKq+JHYl7BUD0S8m8xkkeI5GM8VMdMcuW9MG73qwRpY+AXvWd5rz0G0XxOnTp8/wI7ULz8FzjczV\nqh333HPPmL9z7qKfzLn1XtMqIKJ/xTnw3rMba7uYNGnSDHYeK4P4vPB7I/G871WaWia0oDhWnzOO\n0f1pAVE5e67+bdRslX8trhufG0bV1nkPef1VmlXVGoRzpxpdd911gZL76GfdnT5FKpxEIpFI1IKe\nKBzfqtpItRdrg5WtW+PIOHvtyHZuNJIm9gyR4WgPv/zyy4HiKzKXwHyNZgpmEJSNsIaWcySmTZvW\n0+MMorIRKhWvc4xK++pXvwrAGmusAZRzMV9r6623Bkqel/XGOo3w6wZTpkxh/vnnn3E9XcPeI1XM\nUjav31Ifjuxdxiorr8q3ESoeWbmRX3GdWa1DP0bMRO8mq74K5sOYK2JVA6//iiuuCBTLiNUTnEMt\nJNHyoe/XdWP04v777w+U9eHcxJ5AIvo3YkWSmWeeecIUgnPkOTi22OvHZ6PRaj4zPWfPsduK7e0i\nFU4ikUgkakFfKg3IOLQbxwgsGY62Vu2S2la1xWpvlMnK+r71rW817E+G0q6/I9pDh4eHO6400CmM\n2JF52u3w0EMPBUo2dL8xRkZ6bVnUQtal0pXhXnjhhUBh6eaSGI342c9+FoAjjzwSKKy8V/6vXsxF\nq/4k75kDDzwQKJGbzoH1Cd/97ncDhdnGLrjCOWg3o9zxWnHZWm79mIuqGnqxNqNsXBWoxcSoNKPb\nll9+eWB01Xn37/OiGcuP0YojlU+nVRfG+R7o3Pri7x2zEXxWxl5ppZWA4lf3GX3ssccC3VccyEoD\niUQikRgo9EThVL2do7KRqfh2NZ/CzHL/L0Mxg9jsZ6vIapdudewxgmccdK1wtJGa+dsqnCsr4tqv\nom4bq+iEvfXKLuw60Aav6ltggQUAOOyww4ASqdXp8Vodb7tzMWnSpBlZ7ioT/Q5VdcQim1fZmH0v\nq/desLeUc2N1D/fTr/yKTtaF3Uq1WKjiVGOO2ftUP0V8fsRq8fZDuvLKK4ESrep2sXdUjFJ1/85t\nrCoeny9aZszvmQgrQAvHafh0HXhPLbvsskBRPr1CKpxEIpFIDBQ6UjjN+uG0C5lNZGljHL+r47Sw\nn9p9OIOKiWBvqgAVrJWyrZEmU47Kt1esXuYdu2F2MhfR/m8FY6OFqqwBra5t2brw3FVIVTb5TlXo\n7LPPzosvvsirr77a9Vzoo11sscUAeOCBB9oai7/3HKy6cM455wDw9NNPA2UO4vWMaDYn5n1pYZky\nZQr//e9/mT59+sAonKp6kP7fqDWjEZtVGml1PU6dOpXnn3+eV155JRVOIpFIJAYHfYlSa2N/QPuK\npZnPqAsFlArnf5hI+3SMSpKB2t9G23/sINnCONvaXnTiwxnx24bvY47HROWEVVkpVB3mMOlzGlGl\nuOW5GBoaGp48eXJlzkobvlX3B4yOZtO3YlSjvr1mUXDx03P07+iPHakeex2l1i6q1rJqzKhXc5rM\nYYw18nqF9OEkEolEYqDQkcJpFjffax9Pq+hBlNQbRuFYOdccpnZRZ8fPXm/f6/31Yi6s+hz72Bgh\nJduvyiGq8i8JWb71xrq996xr+Je//KXh/53Mhblmjs1KEEKfi3lWRqkaSRUj/KytJ1RIURFXodnz\nIea0uD+PM3nyZFVO3+8RMUjVUcZCKpxEIpFIDBTaVTjPAI/3bzgTjoWHh4fnbWXDN/hctDwPkHMx\nEjkXBTkXBTkXr6GtF04ikUgkEp0iTWqJRCKRqAX5wkkkEolELcgXTiKRSCRqQb5wEolEIlEL8oWT\nSCQSiVqQL5xEIpFI1IJ84SQSiUSiFuQLJ5FIJBK1IF84iUQikagF/w/4XPUvkGMMOQAAAABJRU5E\nrkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fab5baf3550>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rows, cols = 10, 6\n", "fig, axes = plt.subplots(figsize=(7,12), nrows=rows, ncols=cols, sharex=True, sharey=True)\n", "\n", "for sample, ax_row in zip(samples[::int(len(samples)/rows)], axes):\n", " for img, ax in zip(sample[::int(len(sample)/cols)], ax_row):\n", " ax.imshow(img.reshape((28,28)), cmap='Greys_r')\n", " ax.xaxis.set_visible(False)\n", " ax.yaxis.set_visible(False)" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "It starts out as all noise. Then it learns to make only the center white and the rest black. You can start to see some number like structures appear out of the noise like 1s and 9s." ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "## Sampling from the generator\n", "\n", "We can also get completely new images from the generator by using the checkpoint we saved after training. We just need to pass in a new latent vector $z$ and we'll get new samples!" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZwAAAGRCAYAAABR3wXnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFpZJREFUeJzt3b+OHEkdB/CetR1w/DtpdckltylkyAGPQEQOEQ9Adg9y\n2T0AyUFOgngCkCwRIeJLSJycQXLA2TsEaHfHx/ZOVVfVr3/d8/lII42Wnp72fq/886+orj4cj8cJ\nAEa7WvsCALgMCg4AIRQcAEIoOACEUHAACKHgABBCwQEghIIDQAgFB4AYx+Ox+HV9fX2cpsmr0+vl\ny5fHaZpe12Qgl23kcn19fXcer34vYyXZq3asVHU4Nzc3NYdzxqtXr6Zpmr5uPY9c+uqRy83Nzd15\n6MdYSaZ2rJhSAyDE87Uv4CmnG4seDoeun6s999Jr2SO55CSXfGTyIR0OACEUHABCpJ5Si1LSap7+\nfO4ZQpc8dTCCXHKSSz5byUSHA0AIBQeAELucUqttC0tWgdBOLjnJJZ+9ZqLDASCEggNAiNRTar1X\nTNTeTFXiElfayCUnueQz8s+7xUx0OACEUHAACJFiSi1qj59eexLtzfPnD/8ZvHv37v793O+l9+9L\nLo+7unr49+Dt7e39e7msp/Z3H/W72komOhwAQig4AIQYPqVWu8dPlLmVHC0rczLsVVSqJZeoqYG5\nn8tFLpFkMn9MLR0OACEUHABCdJtSm2vjMrTEd1pWcvRqU6PJRS5LXVouMhmfiQ4HgBAKDgAhhqxS\nq237et+0VNIa17aXLduFZ7kpay+5nJJLnlz2NF72ksmpDJnocAAIoeAAEKLblNpc+7VGe9zr5qVM\nq1OWyprLv//97/v3P/jBD8KvZW1Zc7nk8bLHTLLR4QAQQsEBIESKxxO0eKzdzbDK5VSGa4gml5zk\nks8lZaLDASCEggNAiOFTar1uEqu58az2fKda9iea+3mGlvi7WnKp/d0tzaXl9yaX8nMaL0/bQiZb\nGSs6HABCKDgAhFhtlVpLy1jy8x7fX3uemu/PasR+S3JpJ5d8ZFJPhwNACAUHgBChU2ojttNe2gKO\nWIGRbXVNKbnk1JJLycqjkddSYou5GCttdDgAhOjW4ZRU2xHV89w5S/71sKfdWL9ry7nMHS+X85Y+\nPOuSx0vkWKk5z57Gig4HgBAKDgAhhjyAbU7LdjYtx5yzxjPLo4zOpXZLj6V6bZGUxZZz2et4icxk\n5P0umceKDgeAEAoOACHSrVKrbUFrVt20tJpbmRb4rtG51Jxn6c65Ld+ZlfGSj0zG0+EAEELBASDE\nkK1tand5LjnPqZpz1rage72pbZrWz2XEDuF7EJnL559/fv/+iy++ePLY2mssOc9WRGZy7vfZkkm2\nHHQ4AIRQcAAIMXy36Jb2bq5NPNdKbmXn1DVlymXrD+LqKVMutfY6XjJlsvWxosMBIISCA0CI4VNq\nIx5AVLMn0VzrGrWvUVZZc2n5/j3Imsslj5esmbR8/1p0OACEUHAACDF8Sq2XkhubalrTuXNTZ2Qu\nLGe85DMykzdv3ty///jjj5de4nA6HABCKDgAhBjyxM9eKzaWPvGz5HOXMi0wIpf//Oc/9+9fvHjx\n6Gfl8rQtjJdLyeLOFjKZ+85an3766f37f/7zn4vPU0uHA0AIBQeAEENWqbVsld1yY9PdZzNvz72m\n0bn0eHJhrT1kXbt6ae6GzFPGS5s9jpVTkdNop3Q4AIRQcAAIEbqXWq9tvnse+5Q9r97ZYy57sMdc\ntj5eZNKPDgeAEAoOACFW20tt6V5CLUY/rW8PMuVSu1W+XPoyXp4mk3o6HABCKDgAhEj3eIJeK0Jq\n9Lqxa8965DI6T7ks+/3e3t7ev7+6Ov9vUOPlaWuMla1kosMBIISCA0CI0Cm1qJUcLVuLtxyzVVG5\nnOq1/bpc4r/nknPJOlZKZMhEhwNACAUHgBCrrVIb2ZbXrurggVxykks+mTLJMF1WQocDQAgFB4AQ\nh5pW+XA4vJ6m6etxl3ORPjsej5+0nEAuQzTlIpMhjJWcinOpKjgAsJQpNQBCKDgAhFBwAAih4AAQ\nQsEBIISCA0AIBQeAEAoOACEUHABCKDgAhFBwAAih4AAQQsEBIISCA0CM4/FY/Lq+vj5O0+TV6fXy\n5cvjNE2vazKQyzZyub6+vjuPV7+XsZLsVTtWqjqcm5ubmsM549WrV9PU4WFQcumrRy43Nzd356Ef\nYyWZ2rFiSg2AEM/XvoCnnD6N9HA4dP1c7bmXXsseySUnueQjkw/pcAAIoeAAECL1lFqUklbz9Oen\nx88dQzu55CSXfLaSiQ4HgBAKDgAhdjmlVtsWlqwCoZ1ccpJLPnvNRIcDQAgFB4AQqafURq6Y6NWC\nXuJKmx5/5rlVNXJZrvefufbmwxKXlotMPqTDASCEggNAiNAptbl2cO09ftb+/rXV5tLj97WVvZ8y\nihpHvfbwugRRv5OtZ6LDASCEggNAiOFTarV7/ESZW8nRsgokw15FpVpy+f73vz/kmqZJLi25jPwz\nXHIu/g6bP6aWDgeAEAoOACG6TanV3si3hpaVHL3a1Ggjcnn79m3TNX2XXLY1Xno9jTJbLlvOpNdn\nR2eiwwEghIIDQIghq9Rq277eNy2VtMa139myXXiWm7LkIpel57u0XLJmUvt7+sc//rH4ukZkosMB\nIISCA0CIblNqc+3XGu3x6ffc3t4++vNMK09GyprLqQxTKNG2kEvtMVuXNZOW1XM/+clP+l5YIx0O\nACEUHABCpH7iZ4nH2s1sUzQZriHaYxn89re/vf/Zl19++X//ezS5PD1e5BLjkv4O0+EAEELBASDE\n8Cm1yL2W7o6PvFGrZYvwNW0hl5Jz155HLv9/vPHytF6rK2sy3GsmOhwAQig4AIRYbZXaiH195lrD\nHt9fe11bJZc8WqY05DJey7TXpWaiwwEghIIDQIjQKbURW5wvbQFHPNku2+qaUi25lKxwGXktJbaa\nS62o8XLJuWT9O2wrmehwAAjRrcMpqbYjqmfNOUu6msz3AywxOpelny35V122Z973FDleeoyRkuO3\nnkvWv8P2NFZ0OACEUHAACDHkAWxzRm4F0cveHhIWmcu5tv6Pf/zj2XM/9rkl15Jdhlx62NN42fLf\nYVsZKzocAEIoOACESLdKrcd5lu6a2/KdWY3OpeZ3/ctf/rLquuTSf5qkZuxcWi4yGU+HA0AIBQeA\nEEO2tqndIbXkPKfOnXPELq57EJnLOXPH/vnPf370GLmsm8uljZcRf96l52zJpOQ8kXQ4AIRQcAAI\nMXy36BEPkTrXSkbdJLpla+fSksVep3Gmaf1c5q7lko347y3qv+Fs40OHA0AIBQeAEMOn1J49e3b2\nmF7TK+f+95Iph0sx4sFQS9v32lyyTRP0NPKBXSWfXWP/wuxGj5XHPluyii1qv7yedDgAhFBwAAgx\nfErt9va2y3lKWsya6QL66HFTXMnU2a9+9asFV3e5osbLnqc3exuZyVZy0OEAEELBASDEkCd+9lqx\nUXKex44xFfBgC7mUZPGHP/yh6juz5zsil1M1Px89XraSy4hVX2uMlcx0OACEUHAACDFklVrLyqWW\nJ9ot/c4SW5kWeErtKpm5m8xO1ZxHLo8bMV5qjpHL/6vNpPeTQLf++5ujwwEghIIDQIjhN372elpe\nj6cW1trzjaKjc6l5cmEtudSdJ+o795rL2pm0yLbaTYcDQAgFB4AQw6fU5izdS6jF6Cco7kGmXH79\n61/fv//9739/9rrksu61XFoumcZKyfEZMtHhABBCwQEgxGpTanN6b3ff+4as2mvZizVy+eqrr+7f\nn06pzZFLTC61Li2XHpm8f//+/n3tU5Mz/x2mwwEghIIDQIjQKbU1Vtf02np9z9MCWXMpIZe+5PK0\nqEyurh56gT39HabDASCEggNAiNVWqY1sAWtXpvEgUy4ZpgCykEs+mTLZCh0OACEUHABCHGrassPh\n8Hqapq/HXc5F+ux4PH7ScgK5DNGUi0yGMFZyKs6lquAAwFKm1AAIoeAAEELBASCEggNACAUHgBAK\nDgAhFBwAQig4AIRQcAAIoeAAEELBASCEggNACAUHgBAKDgAxjsdj8ev6+vo4TZNXp9fLly+P0zS9\nrslALtvI5fr6+u48Xv1exkqyV+1Yqepwbm5uag7njFevXk1Th4dByaWvHrnc3NzcnYd+jJVkaseK\nKTUAQjxf+wKecvo00sPh0PVztedeei17JJec5JKPTD6kwwEghIIDQIjUU2pRSlrN05+fHj93DO3k\nkpNc8tlKJjocAEIoOACE2OWUWm1bWLIKhHZyyUku+ew1Ex0OACEUHABCpJ5S671i4vnzhz9urxb0\nElfa9P4z197kVkIu7eTSTiYf0uEAEELBASBEiim1qD1+3r17t+r3b03U76XXXlGXQi7rmfuz1/58\nqa1nosMBIISCA0CI4VNqtXv8RJlbydGyCiTDXkWl5DJ/zJrkMn/MWloyGXn9W8xEhwNACAUHgBDd\nptTm2rgMLfGdlpUcvdrUaHKRy1KXlotMxmeiwwEghIIDQIghq9Rq277eNy2VtMa139myXXiWm7Lk\nIpea811yLnvJpOW6RmSiwwEghIIDQIhuU2pz7dcaN7Kdnu9Pf/rT/ftf/OIXw74zq5Zcoq5l7pg9\nk0s+e8wkW246HABCKDgAhNj84wke+2yGVS6nMlxDNLnkJJd8LikTHQ4AIRQcAEIMn1LrdUNSzU1O\nkTdqtWwRvqaWXN6/f3///urq4d8scmlnvOTLpSWT2hVmSzMpOXfteUZkosMBIISCA0CI1VaptbTx\nJT/v8f2156n5/qxKfi9z02hyGcd4yWfE3mR7z0SHA0AIBQeAEKFTaiO2OF/aAo5YgZFtdU0pueQk\nl3xaMvn222/PnnPktZQYnYkOB4AQ3TqcNXaFLjnnD3/4w/v3//rXv86eL/P9AEtkzaXkX3V73rlY\nLvmMzuTFixdV3/XYsbXHZMtEhwNACAUHgBBDHsA2Z+T2HL2MeDb4mracyxrPko8il3xkMp4OB4AQ\nCg4AIdKtUutxnqU7tLZ8Z1aRuZw7p1weyCWf0ZksXUlWOy2XORMdDgAhFBwAQgzZ2qZ219qS85w6\nd84RO+vuwV5ymfvOrZJLPmtnMnds7TWWnCeSDgeAEAoOACGG7xbdMkU11yaeayWjbhLdsi3nkmFq\nYBS55COTfnQ4AIRQcAAIMXxKbcRDoUpWZDz2v5tqeyCXnOSSj0z60eEAEELBASDE8Cm1XkpulKpp\nTeljZC6n53j79u3SS7xIUbnc3t4uvcSLE5VJZjocAEIoOACEGPLEz14rNkrO89gxW287e2rJZU7v\nXE7NZfTRRx+dv7ANacnl448/vn//zTffVJ2ndy5XV/v5N6u/w8bbz38tAKSm4AAQYsgqtZbtvFue\naLf0O0t8/vnn9++/+OKLLueMVptL7ydO7vnRDy1qc3nz5s3ZY+TSpnZF2enPW27OvPvsXjPR4QAQ\nQsEBIEToXmq9tvnueexT5lrgrU6pndpjLnuYepBLPjLpR4cDQAgFB4AQq+2ltnQvoRajn9a3B3LJ\nSS75yKSeDgeAEAoOACHSPZ6gx4qQ2s/1ujl1z3rkUjvtIJfzeq2gqiGXp8lkng4HgBAKDgAhQqfU\nolZynGrZer32mK2KyqX26ZByicmlZSv+lmO2SCZtdDgAhFBwAAix2iq1kS1g7co0HsglJ7nkI5N6\nOhwAQig4AIQ41LRlh8Ph9TRNX4+7nIv02fF4/KTlBHIZoikXmQxhrORUnEtVwQGApUypARBCwQEg\nhIIDQAgFB4AQCg4AIRQcAEIoOACEUHAACKHgABBCwQEghIIDQAgFB4AQCg4AIRQcAEIoOADEOB6P\nxa/r6+vjNE1enV4vX748TtP0uiYDuWwjl+vr67vzePV7GSvJXrVjparDubm5qTmcM169ejVNHZ4+\nKJe+euRyc3Nzdx76MVaSqR0rz8ddSrvTp5EeDoeun6s999Jr2SO55CSXfGTyIf8fDgAhFBwAQqSe\nUotS0mqe/vz0+LljaCeXnOSSz1Yy0eEAEELBASDELqfUatvCklUgtJNLTnLJZ6+Z6HAACKHgABAi\n9ZTayBUTvVrQS1xp0/vPXHuTWwm5tJNLO5l8SIcDQAgFB4AQoVNqV1cP9e329vb+/VybGLX3T4Y9\nhjKKyqXXXlGXQi7reffu3f37588f/vqUSRkdDgAhFBwAQgyfUqvd46fk5z3MreRoWQWSYa+iUnKZ\nP2ZNcpk/Zi0ymT+mlg4HgBAKDgAhuk2pzbVxGVriO3PXeLra5HQVSsln5445tebvYMu59PqsXJa5\ntFxkMj4THQ4AIRQcAEIMWaVW2/b1vmmppDWu/c6W7cKz3JQlF7nUnO/FixeLv3PruWTNpPb31HJd\nIzLR4QAQQsEBIES3KbW59muN9njr+w31lDWXbCuUomXN5dS3334bfi1ryppJy1jJlpsOB4AQCg4A\nIVI/8bPEY+1uthu4srW1EWpyWUuGa4hmvORzSWNFhwNACAUHgBDDp9RaVozVrs64Oz7yRq2WLcLX\nJJf95VJ7vFzKbGGslJy79jwjMtHhABBCwQEgxGqr1Ebs6zPXGvb4/trr2iq55NQy7SWXMYyVejoc\nAEIoOACECJ1SG7HF+dIWcMQKjGyra0rJJadMufztb3+7f/+zn/1s0Tm+a4u5tGRye3t79pwjr6XE\n6Ex0OACE6NbhlFTbNapw7b8eMt8PsMSIXD766KP792/fvl10zpJcrq4e/j30/v374nNvQeR4qTnn\nJY+X0Zmc/vdc83sryeTNmzf373/0ox8VnzuaDgeAEAoOACGGPIBtTq/tOUauFd/bw9tG5DI3jTZ3\nzqVO/09WuZw//nTa8dmzZ2fP2cOecon8O2zumKV+/OMfd7mW0XQ4AIRQcAAIkW6VWo/znLaX33zz\nzdnPrbViKEJkLjXnrJ1qkMvy85w759IdjZ86Zou5jM5k6e7OexorOhwAQig4AIQYsrVN7a61Jec5\nde6zpzdB1bagGVZyjLJ2LiXHyiU+lxE7UW9dZCbnpt1axkrJeSLpcAAIoeAAEGL4btEtLfdcm3iu\nlRx5g9VeZMqFB5lyMV7+J1Mmpzf31n5/BjocAEIoOACEGD6lNvKhUCWfnWtdv/e973X5/q0akUvN\nfndzuUQ+Xz2jrLm0fP/WyaQfHQ4AIRQcAEIMn1LrpeTmq5rWlD5G5pJthc2WRI0XGZUzVnQ4AARR\ncAAIMeSJn71WbPz973+/f//Tn/700c8+9l2jpwJ+85vf3L//3e9+t/g8EUbkcqrm56ZoHsglnxGZ\nlJznkjLR4QAQQsEBIMSQVWot23m3PNFu6XeW2MM27CNyqTlmD7/DEfaYy+meX8+ePetyzkij/w47\n/Z2c/q7uPrvXsaLDASCEggNAiNC91Hpt811zbEtrv+cbRdfOpcXWb357yh5z2brRmTz2872OFR0O\nACEUHABCrLaX2tK9hCKvpfZpfXuwRi6jn6K4B5lyMV7+J1MmJcdnyESHA0AIBQeAEOkeT9BjRcjo\ndnFP0wKl1shlxE2Qe2O85NMjk5///Of37//617+ePX4rY0WHA0AIBQeAEKFTamusRiv5nnfv3p09\nZs/TAllzyTw1EEEu+URl8pe//KXq+Nvb27PHZMhEhwNACAUHgBCrrVIb2ZbXroB68eLFou/Zo0y5\n8EAu+WTKZCuPgNDhABBCwQEgxKGmVT4cDq+nafp63OVcpM+Ox+MnLSeQyxBNuchkCGMlp+JcqgoO\nACxlSg2AEAoOACEUHABCKDgAhFBwAAih4AAQQsEBIISCA0AIBQeAEP8FVIj1XKyqgncAAAAASUVO\nRK5CYII=\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fab5b22d6d8>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "saver = tf.train.Saver(var_list=g_vars)\n", "with tf.Session() as sess:\n", " saver.restore(sess, tf.train.latest_checkpoint('checkpoints'))\n", " sample_z = np.random.uniform(-1, 1, size=(16, z_size))\n", " gen_samples = sess.run(\n", " generator(input_z, input_size, reuse=True),\n", " feed_dict={input_z: sample_z})\n", "_ = view_samples(0, [gen_samples])" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "widgets": { "state": {}, "version": "1.1.2" } }, "nbformat": 4, "nbformat_minor": 2 }
mit
ad960009/dist-keras
examples/example_1_analysis.ipynb
3
49727
{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Model Development and Evaluation\n", "\n", "**Joeri Hermans** (Technical Student, IT-DB-SAS, CERN) \n", "*Departement of Knowledge Engineering* \n", "*Maastricht University, The Netherlands*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook is dedicated to the development and evaluation of a Keras model based on a large [preprocessed dataset](https://github.com/JoeriHermans/dist-keras/blob/master/examples/data_preprocessing.ipynb)." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%matplotlib inline \n", "\n", "import numpy as np\n", "\n", "import matplotlib.pyplot as plt\n", "\n", "from keras.models import Sequential\n", "from keras.layers.core import Dense, Dropout, Activation\n", "\n", "from pyspark import SparkContext\n", "from pyspark import SparkConf\n", "\n", "from pyspark.ml.feature import StandardScaler\n", "from pyspark.ml.feature import VectorAssembler\n", "from pyspark.ml.feature import StringIndexer\n", "from pyspark.ml.evaluation import MulticlassClassificationEvaluator\n", "\n", "from distkeras.transformers import LabelIndexTransformer\n", "from distkeras.predictors import ModelPredictor\n", "from distkeras.trainers import SingleTrainer\n", "from distkeras.trainers import AEASGD\n", "from distkeras.trainers import DOWNPOUR" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Spark Configuration and Preparation\n", "\n", "Edit the variables in the cell below. If you are running Spark in local mode, please set the `local` flag to true and adjust the resources you wish to use on your local machine. The same goes for the case when you are running Spark 2.0 and higher." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Modify these variables according to your needs.\n", "application_name = \"Distributed Deep Learning: Analysis\"\n", "using_spark_2 = False\n", "local = False\n", "if local:\n", " # Tell master to use local resources.\n", " master = \"local[*]\"\n", " num_cores = 3\n", " num_executors = 1\n", "else:\n", " # Tell master to use YARN.\n", " master = \"yarn-client\"\n", " num_executors = 8\n", " num_cores = 2" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of desired executors: 8\n", "Number of desired cores / executor: 2\n", "Total number of workers: 16\n" ] } ], "source": [ "# This variable is derived from the number of cores and executors, and will be used to assign the number of model trainers.\n", "num_workers = num_executors * num_cores\n", "\n", "print(\"Number of desired executors: \" + `num_executors`)\n", "print(\"Number of desired cores / executor: \" + `num_cores`)\n", "print(\"Total number of workers: \" + `num_workers`)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "conf = SparkConf()\n", "conf.set(\"spark.app.name\", application_name)\n", "conf.set(\"spark.master\", master)\n", "conf.set(\"spark.executor.cores\", `num_cores`)\n", "conf.set(\"spark.executor.instances\", `num_executors`)\n", "conf.set(\"spark.executor.memory\",\"2g\")\n", "conf.set(\"spark.serializer\", \"org.apache.spark.serializer.KryoSerializer\");\n", "\n", "# Check if the user is running Spark 2.0 +\n", "if using_spark_2:\n", " sc = SparkSession.builder.config(conf=conf) \\\n", " .appName(application_name) \\\n", " .getOrCreate()\n", "else:\n", " # Create the Spark context.\n", " sc = SparkContext(conf=conf)\n", " # Add the missing imports\n", " from pyspark import SQLContext\n", " sqlContext = SQLContext(sc)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Data Preparation\n", "\n", "After the Spark Context (or Spark Session if you are using Spark 2.0) has been set up, we can start reading the preprocessed dataset from storage." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [], "source": [ "# Check if we are using Spark 2.0\n", "if using_spark_2:\n", " reader = sc\n", "else:\n", " reader = sqlContext\n", "# Read the dataset.\n", "raw_dataset = reader.read.parquet(\"data/processed.parquet\")" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "root\n", " |-- features_normalized: vector (nullable = true)\n", " |-- label_index: double (nullable = true)\n", " |-- label: vector (nullable = true)\n", "\n" ] } ], "source": [ "# Check the schema.\n", "raw_dataset.printSchema()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After reading the dataset from storage, we will extract several metrics such as `nb_features`, which basically is the number of input neurons, and `nb_classes`, which is the number of classes (signal and background)." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of features: 30\n", "Number of classes: 2\n" ] } ], "source": [ "nb_features = len(raw_dataset.select(\"features_normalized\").take(1)[0][\"features_normalized\"])\n", "nb_classes = len(raw_dataset.select(\"label\").take(1)[0][\"label\"])\n", "\n", "print(\"Number of features: \" + str(nb_features))\n", "print(\"Number of classes: \" + str(nb_classes))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we split up the dataset for training and testing purposes, and fetch some additional statistics on the number of training and testing instances." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "DataFrame[features_normalized: vector, label_index: double, label: vector]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Finally, we create a trainingset and a testset.\n", "(training_set, test_set) = raw_dataset.randomSplit([0.7, 0.3])\n", "training_set.cache()\n", "test_set.cache()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of testset instances: 6377863\n", "Number of trainingset instances: 14872137\n", "Total number of instances: 21250000\n" ] } ], "source": [ "# Distribute the training and test set to the workers.\n", "test_set = test_set.repartition(num_workers)\n", "training_set = training_set.repartition(num_workers)\n", "\n", "num_test_set = test_set.count()\n", "num_training_set = training_set.count()\n", "\n", "print(\"Number of testset instances: \" + str(num_test_set))\n", "print(\"Number of trainingset instances: \" + str(num_training_set))\n", "print(\"Total number of instances: \" + str(num_test_set + num_training_set))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model construction" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "model = Sequential()\n", "model.add(Dense(500, input_shape=(nb_features,)))\n", "model.add(Activation('relu'))\n", "model.add(Dropout(0.4))\n", "model.add(Dense(500))\n", "model.add(Activation('relu'))\n", "model.add(Dropout(0.6))\n", "model.add(Dense(500))\n", "model.add(Activation('relu'))\n", "model.add(Dense(nb_classes))\n", "model.add(Activation('softmax'))" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "____________________________________________________________________________________________________\n", "Layer (type) Output Shape Param # Connected to \n", "====================================================================================================\n", "dense_1 (Dense) (None, 500) 15500 dense_input_1[0][0] \n", "____________________________________________________________________________________________________\n", "activation_1 (Activation) (None, 500) 0 dense_1[0][0] \n", "____________________________________________________________________________________________________\n", "dropout_1 (Dropout) (None, 500) 0 activation_1[0][0] \n", "____________________________________________________________________________________________________\n", "dense_2 (Dense) (None, 500) 250500 dropout_1[0][0] \n", "____________________________________________________________________________________________________\n", "activation_2 (Activation) (None, 500) 0 dense_2[0][0] \n", "____________________________________________________________________________________________________\n", "dropout_2 (Dropout) (None, 500) 0 activation_2[0][0] \n", "____________________________________________________________________________________________________\n", "dense_3 (Dense) (None, 500) 250500 dropout_2[0][0] \n", "____________________________________________________________________________________________________\n", "activation_3 (Activation) (None, 500) 0 dense_3[0][0] \n", "____________________________________________________________________________________________________\n", "dense_4 (Dense) (None, 2) 1002 activation_3[0][0] \n", "____________________________________________________________________________________________________\n", "activation_4 (Activation) (None, 2) 0 dense_4[0][0] \n", "====================================================================================================\n", "Total params: 517502\n", "____________________________________________________________________________________________________\n" ] } ], "source": [ "# Summarize the model.\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "optimizer = 'adagrad'\n", "loss = 'categorical_crossentropy'" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model evaluation" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def evaluate(model):\n", " global test_set\n", "\n", " metric_name = \"f1\"\n", " evaluator = MulticlassClassificationEvaluator(metricName=metric_name, predictionCol=\"prediction_index\", labelCol=\"label_index\")\n", " # Clear the prediction column from the testset.\n", " test_set = test_set.select(\"features_normalized\", \"label\", \"label_index\")\n", " # Apply a prediction from a trained model.\n", " predictor = ModelPredictor(keras_model=trained_model, features_col=\"features_normalized\")\n", " test_set = predictor.predict(test_set)\n", " # Transform the prediction vector to an indexed label.\n", " index_transformer = LabelIndexTransformer(output_dim=nb_classes)\n", " test_set = index_transformer.transform(test_set)\n", " # Store the F1 score of the SingleTrainer.\n", " score = evaluator.evaluate(test_set)\n", " \n", " return score" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "results = {}\n", "time_spent = {}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model training and evaluation\n", "\n", "In the next sections we train and evaluate the models trained by different (distributed) optimizers.\n", "\n", "### Single Trainer" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "trainer = SingleTrainer(keras_model=model, loss=loss, worker_optimizer=optimizer, \n", " features_col=\"features_normalized\", num_epoch=1, batch_size=64)\n", "trained_model = trainer.train(training_set)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Time spent (SingleTrainer): 5927.329083919525 seconds.\n", "F1 (SingleTrainer): 0.839630118149035\n" ] } ], "source": [ "# Fetch the training time.\n", "dt = trainer.get_training_time()\n", "print(\"Time spent (SingleTrainer): \" + `dt` + \" seconds.\")\n", "\n", "# Evaluate the model.\n", "score = evaluate(trained_model)\n", "print(\"F1 (SingleTrainer): \" + `score`)\n", "\n", "# Store the training metrics.\n", "results['single'] = score\n", "time_spent['single'] = dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Asynchronous EASGD" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [], "source": [ "trainer = AEASGD(keras_model=model, worker_optimizer=optimizer, loss=loss, num_workers=num_workers, batch_size=64,\n", " features_col=\"features_normalized\", num_epoch=1, communication_window=32, \n", " rho=5.0, learning_rate=0.1)\n", "trainer.set_parallelism_factor(1)\n", "trained_model = trainer.train(training_set)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Time spent (AEASGD): 903.8733949661255 seconds.\n", "F1 (AEASGD): 0.8326362659335457\n" ] } ], "source": [ "# Fetch the training time.\n", "dt = trainer.get_training_time()\n", "print(\"Time spent (AEASGD): \" + `dt` + \" seconds.\")\n", "\n", "# Evaluate the model.\n", "score = evaluate(trained_model)\n", "print(\"F1 (AEASGD): \" + `score`)\n", "\n", "# Store the training metrics.\n", "results['aeasgd'] = score\n", "time_spent['aeasgd'] = dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### DOWNPOUR" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "trainer = DOWNPOUR(keras_model=model, worker_optimizer=optimizer, loss=loss, num_workers=num_workers,\n", " batch_size=64, communication_window=5, learning_rate=0.1, num_epoch=1,\n", " features_col=\"features_normalized\")\n", "trainer.set_parallelism_factor(1)\n", "trained_model = trainer.train(training_set)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Time spent (DOWNPOUR): 774.4893491268158 seconds.\n", "F1 (DOWNPOUR): 0.8345395134754954\n" ] } ], "source": [ "# Fetch the training time.\n", "dt = trainer.get_training_time()\n", "print(\"Time spent (DOWNPOUR): \" + `dt` + \" seconds.\")\n", "\n", "# Evaluate the model.\n", "score = evaluate(trained_model)\n", "print(\"F1 (DOWNPOUR): \" + `score`)\n", "\n", "# Store the training metrics.\n", "results['downpour'] = score\n", "time_spent['downpour'] = dt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Results" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can see from the plots below, the distributed optimizers finish a single epoch ~7 times however. However, for this, the distributed optimizers use 16 times the amount of resources. However, a not very descriptive measure since some of jobs are scheduled on the same machines, some machines have a higher load etc. Nevertheless, the statistical performance of the optimizers is within 1% error. Which means that the classifiers would have near-identical performance. Furthermore, it is our guess that the statistical performance of the distributed optimizers can be improved by adding adaptive learning rates." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGSCAYAAAAxVMH8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X2YH2V97/H3RzAgKAmIJKWCoijG+lASDOADtMaCD9Wi\neFqWUh+o5WgBMZWq7bFKwdMqVoIoniJaHyqsUtRiBYlAFQEjqQRFa6BFoQExwUgIEeQx3/PHzOov\nPzfJ7mY3s2Tfr+vai/3d852Ze5LJ8tl77plJVSFJktSVR3TdAUmSNLUZRiRJUqcMI5IkqVOGEUmS\n1CnDiCRJ6pRhRJIkdcowIkmSOmUYkSRJnTKMSJKkThlGJP1Skp90uO/fSPLJEda+Nsnfj2Lbz04y\nv+fzHyR50hi6KWkCGEYk9dpi74dIst7Pn6r6SVW9bhSbGE1ffxt4Uc/nw4CnjGJ9kmQ09ZJGzjAi\naaOSPCfJfyT5bpIz03ju0ChGkgVJvtN+/ztJzmq/f2mSxUmWJvlI2/aEJNcm+Rzwn337eUKSxe33\nv5vkunbdKzbQtb2TXJHk+iTH9Gznr5MsSfKdJH/ahp6Tgde123sb8Argw+3nHdtj/EaSbyf5XJLt\n222tSPKRJNcBjx+/P1VJvQwjkjbln4A/q6pnA48FBoBvA3Pa5c8F7kvyaOB5wJVJHgu8BTi4quYA\n65K8qq1/OvDuqpo9zL6GRjsWAMe36750A/3aD3gx8BzgrUlmJTkUeFxVzWvb/wx4HPAu4BNVNaeq\nTgUuAI5tt38/8H7g5VW1H/AfwJ+3+9gN+EJVPauqbhnxn5ikUdm26w5ImrySTAdSVd9pm84BXlxV\n5yZZk2Q3mv9hXwAcSBNGPtt+/yzgW+3lje2Bm4FrgGVVdf0mdv1N4P1JPgWcB6wdpuaiqrq77ecl\nwP7AC4DfT3IwEGAn4MnDHVrP9/u0ff1a29dHApe2y+6qqkv7V5Y0vgwjkjZlQ3MlFgN/AtwIXEkz\nJ+NJVfXDJE8H/rWq3rjehpInAPdsaodV9d4kF9FcTrk6ydyqWt1f1vd5Xfvfv6mqz/btd2PzQwIs\nqaoXD7Nsk32VtPm8TCOp13rBo6rWAA8meWbbNEATPACuorkUcxXNpY2j+NU8kG8B85P8JkCSXYa+\n79/HsJ1I9qqq66rqPcBNwB7DlL2kne/xGOCFbR8uA96QZLt2O09tv19LM0oypPfz9cBeSZ7RrrND\nkqHRFCetSluAYURSr12TLE9yS/vfFwNHA/+U5LvAnTSXYaC5lLI7cGVV/QK4vW2jqn4KHAtc0K63\niGbuBozsLpi/SPL9dmLs9VV13TA11wAX04SQ06pqRVV9ZaitnXT6EZqfc18D5iW5pr2E81ngb5Ms\nBaYBRwL/2O7vm/zq0s56fU1yYZJZI+i/pFFI1Ra7k0+SJOnXODIiSZI6ZRiRJEmdMoxIkqROGUYk\nSVKnDCOSJKlThhFJktQpw4gkSeqUYUSSJHXKMCJJkjplGJEkSZ0yjEiSpE4ZRiRJUqcMI5IkqVOG\nEUmS1CnDiCRJ6pRhRJIkdcowIkmSOtV5GElyU5J1w3x9qKfm5CS3JbknySVJ9u7bxnZJzkyyKsna\nJOcn2a2vZuck5yRZk2R1ko8l2XFLHackSRpe52EE2A+Y1fP1e0AB5wEkeTtwHHAMMA+4G1iUZFrP\nNk4HXgYcDhwE7A58vm8/5wKzgflt7UHAWRNyRJIkacRSVV33YT1JTgdeWlVPbT/fBry/qha2n3cC\nVgKvrarz2s8/BY6oqi+2NfsAy4ADqmpJktnAfwJzq+ratuZQ4ELg8VW1YssepSRJGjIZRkZ+Kckj\ngT8GPt5+3otmtOSyoZqqugu4GjiwbdoP2Lav5gZgeU/NAcDqoSDSupRmBGb/iTgWSZI0MpMqjACv\nBKYDn2o/z6IJDCv76la2ywBmAve3IWVDNbOA23sXVtVDwB09NZIkqQPbdt2BPkcDX5ksl02SPBY4\nFLgZuLfb3kiS9LCyPfBEYFFV/WxjhZMmjCTZE3gRcFhP8wogNKMfvaMjM4Fre2qmJdmpb3RkZrts\nqKb/7pptgF16aoZzKHDO6I5EkiT1+GOam0g2aNKEEZpRkZXARUMNVXVTkhU0d8BcB7+cwLo/cGZb\ndg3wYFvTO4F1T2BxW7MYmJFk3555I/Npgs7VG+nTzQCf+cxnmD179mYe3tSyYMECFi5c2HU3NAV4\nrmlL8VwbnWXLlnHUUUdB+//SjZkUYSRJgNcBn6yqdX2LTwfemeRGmgM6BbgVuACaCa1JPg6clmQ1\nsBY4A7iqqpa0NdcnWQScneRNwDTgQ8DgJi4J3Qswe/Zs5syZMy7HOlVMnz7dPzNtEZ5r2lI818Zs\nk9McJkUYobk8swfwif4FVXVqkh1ongkyA7gCeElV3d9TtgB4CDgf2A64GDi2b1NHAh+muYtmXVt7\nwvgehiRJGq1JEUaq6hJgm40sPwk4aSPL7wOOb782VHMncNSYOylJkibEZLu1V5IkTTGGEU2IgYGB\nrrugKcJzTVuK59rEMYxoQviPVluK55q2FM+1iWMYkSRJnTKMSJKkThlGJElSpwwjkiSpU4YRSZLU\nKcOIJEnqlGFEkiR1yjAiSZI6ZRiRJEmdMoxIkqROGUYkSVKnDCOSJKlThhFJktQpw4gkSeqUYUSS\nJHXKMCJJkjplGJEkSZ0yjEiSpE4ZRiRJUqcMI5IkqVOGEUmS1CnDiCRJ6pRhRJIkdcowIkmSOmUY\nkSRJnTKMSJKkThlGJElSpwwjkiSpU4YRSZLUKcOIJEnq1KQII0l2T/LPSVYluSfJd5PM6as5Oclt\n7fJLkuzdt3y7JGe221ib5Pwku/XV7JzknCRrkqxO8rEkO26JY5QkScPrPIwkmQFcBdwHHArMBt4K\nrO6peTtwHHAMMA+4G1iUZFrPpk4HXgYcDhwE7A58vm9357bbn9/WHgScNe4HJUmSRmzbrjsAvANY\nXlVv6Gn7n76aE4BTqurLAEleA6wEDgPOS7ITcDRwRFVd3ta8HliWZF5VLUkymybszK2qa9ua44EL\nk5xYVSsm8BglSdIGdD4yArwc+HaS85KsTLI0yS+DSZK9gFnAZUNtVXUXcDVwYNu0H02w6q25AVje\nU3MAsHooiLQuBQrYf9yPSpIkjchkCCNPAt4E3AAcAvw/4Iwkf9Iun0UTGFb2rbeyXQYwE7i/DSkb\nqpkF3N67sKoeAu7oqZEkSVvYZLhM8whgSVX9Tfv5u0meAbwR+OfuuiVJkraEyRBGfgIs62tbBryq\n/X4FEJrRj97RkZnAtT0105Ls1Dc6MrNdNlTTf3fNNsAuPTXDWrBgAdOnT1+vbWBggIGBgY2tJknS\nlDA4OMjg4OB6bWvWrBnx+pMhjFwF7NPXtg/tJNaquinJCpo7YK4DaCes7g+c2dZfAzzY1nyxrdkH\n2BNY3NYsBmYk2bdn3sh8mqBz9cY6uHDhQubMmbOxEkmSpqzhfkFfunQpc+fOHdH6kyGMLASuSvJX\nwHk0IeMNwJ/11JwOvDPJjcDNwCnArcAF0ExoTfJx4LQkq4G1wBnAVVW1pK25Pski4OwkbwKmAR8C\nBr2TRluD5cuXs2rVqq67oS1k1113Zc899+y6G9K46DyMVNW3k7wSeC/wN8BNwAlV9dmemlOT7EDz\nTJAZwBXAS6rq/p5NLQAeAs4HtgMuBo7t292RwIdp7qJZ19aeMBHHJW1Jy5cvZ599ZnPvvfd03RVt\nIdtvvwM33LDMQKKtQudhBKCqLgIu2kTNScBJG1l+H3B8+7WhmjuBo8bUSWkSW7VqVRtEPkPzXD9t\n3ZZx771HsWrVKsOItgqTIoxIGi+zAec3SXp4mQzPGZEkSVOYYUSSJHXKMCJJkjplGJEkSZ0yjEiS\npE4ZRiRJUqcMI5IkqVOGEUmS1CnDiCRJ6pRhRJIkdcowIkmSOmUYkSRJnTKMSJKkThlGJElSpwwj\nkiSpU4YRSZLUKcOIJEnqlGFEkiR1yjAiSZI6ZRiRJEmdMoxIkqROGUYkSVKnDCOSJKlThhFJktQp\nw4gkSeqUYUSSJHXKMCJJkjplGJEkSZ0yjEiSpE4ZRiRJUqcMI5IkqVOGEUmS1CnDiCRJ6lTnYSTJ\nu5Os6/v6QV/NyUluS3JPkkuS7N23fLskZyZZlWRtkvOT7NZXs3OSc5KsSbI6yceS7LgljlGSJG1Y\n52Gk9X1gJjCr/Xr+0IIkbweOA44B5gF3A4uSTOtZ/3TgZcDhwEHA7sDn+/ZxLjAbmN/WHgScNQHH\nIkmSRmHbrjvQerCqfrqBZScAp1TVlwGSvAZYCRwGnJdkJ+Bo4IiquryteT2wLMm8qlqSZDZwKDC3\nqq5ta44HLkxyYlWtmNCjkyRJGzRZRkaekuTHSX6Y5DNJ9gBIshfNSMllQ4VVdRdwNXBg27QfTajq\nrbkBWN5TcwCweiiItC4FCth/Yg5JkiSNxGQII98CXkczcvFGYC/gG+18jlk0gWFl3zor22XQXN65\nvw0pG6qZBdzeu7CqHgLu6KmRJEkd6PwyTVUt6vn4/SRLgP8B/hC4vpterW/BggVMnz59vbaBgQEG\nBgY66pEkSZPH4OAgg4OD67WtWbNmxOt3Hkb6VdWaJP8F7A18HQjN6Efv6MhMYOiSywpgWpKd+kZH\nZrbLhmr6767ZBtilp2aDFi5cyJw5c0Z/MJIkTQHD/YK+dOlS5s6dO6L1J8NlmvUkeTRNELmtqm6i\nCQvze5bvRDPP45tt0zXAg301+wB7AovbpsXAjCT79uxqPk3QuXpijkSSJI1E5yMjSd4P/BvNpZnf\nBP4WeAD4bFtyOvDOJDcCNwOnALcCF0AzoTXJx4HTkqwG1gJnAFdV1ZK25voki4Czk7wJmAZ8CBj0\nThpJkrrVeRgBHk/zDJDHAj8FrgQOqKqfAVTVqUl2oHkmyAzgCuAlVXV/zzYWAA8B5wPbARcDx/bt\n50jgwzR30axra0+YoGOSJEkj1HkYqapNzgKtqpOAkzay/D7g+PZrQzV3AkeNvoeSJGkiTbo5I5Ik\naWoxjEiSpE4ZRiRJUqcMI5IkqVOGEUmS1CnDiCRJ6pRhRJIkdcowIkmSOmUYkSRJnTKMSJKkThlG\nJElSpwwjkiSpU4YRSZLUKcOIJEnqlGFEkiR1yjAiSZI6ZRiRJEmdMoxIkqROGUYkSVKnDCOSJKlT\nhhFJktQpw4gkSeqUYUSSJHXKMCJJkjplGJEkSZ0yjEiSpE4ZRiRJUqcMI5IkqVOGEUmS1CnDiCRJ\n6pRhRJIkdcowIkmSOmUYkSRJnZp0YSTJO5KsS3JaX/vJSW5Lck+SS5Ls3bd8uyRnJlmVZG2S85Ps\n1lezc5JzkqxJsjrJx5LsuCWOS5IkDW9MYSTJo5Ls0PP5CUnekuSQzelMkucAxwDf7Wt/O3Bcu2we\ncDewKMm0nrLTgZcBhwMHAbsDn+/bxbnAbGB+W3sQcNbm9FmSJG2esY6MXAC8BiDJDOBq4K3ABUne\nNJYNJnk08BngDcCdfYtPAE6pqi9X1ffbfe8OHNauuxNwNLCgqi6vqmuB1wPPSzKvrZkNHAr8aVV9\nu6q+CRwPHJFk1lj6LEmSNt9Yw8gc4Ir2+1cDK4En0ISEN49xm2cC/1ZV/97bmGQvYBZw2VBbVd1F\nE4AObJv2A7btq7kBWN5TcwCwug0qQy4FCth/jH2WJEmbadsxrrcDsLb9/hDgC1W1Lsm3aELJqCQ5\nAvhtmlDRbxZNYFjZ176yXQYwE7i/DSkbqpkF3N67sKoeSnJHT40kSdrCxhpGbgQOS/JFmksfC9v2\n3YD+QLBRSR5PM9/jRVX1wBj7M6EWLFjA9OnT12sbGBhgYGCgox5JkjR5DA4OMjg4uF7bmjVrRrz+\nWMPIyTSTQRcCl1XV4rb9EODaDa41vLnA44ClSdK2bQMclOQ44GlAaEY/ekdHZvbsawUwLclOfaMj\nM9tlQzX9d9dsA+zSUzOshQsXMmfOnFEeliRJU8Nwv6AvXbqUuXPnjmj9Mc0ZqarzgT1pLqu8uGfR\nZcCCUW7uUuCZNJdpnt1+fZtmMuuzq+pHNGFh/tAK7YTV/YFvtk3XAA/21ezT9nEoKC0GZiTZt2ff\n82mCztWj7LMkSRonYx0ZoapW0DeiUFVLxrCdu4Ef9LYluRv4WVUta5tOB96Z5EbgZuAU4Faau3qo\nqruSfBw4LclqmvksZwBXDfWpqq5Psgg4u73jZxrwIWCwPRZJktSBEYeRJF8YaW1VvWps3fnVJvq2\nd2r7XJOzgBk0d/K8pKru7ylbADwEnA9sB1wMHNu33SOBD9OMxqxra0/YzL5KkqTNMJqRkd6ZKAFe\n2bZ9u22bSxMURhxaNqSqXjhM20nASRtZ5z6a54Ycv5GaO4GjNrd/kiRp/Iw4jFTV64e+T/I+4Dzg\njVX1UNu2DfARRnk3jSRJmtrG+tCzo4F/GAoi0DyzAzitXSZJkjQiYw0j29LcctvvaZuxTUmSNAWN\n9W6aTwAfT/JkYOgOmv2Bd7TLJEmSRmSsYeREmtt63wr8Rtv2E+D9wAfGoV+SJGmKGFMYqap1wKnA\nqe0DyBjmvTCSJEmbNOaHng0xhEiSpM0xpsmmSWYm+ecktyV5MMlDvV/j3UlJkrT1GuvIyCdp3vty\nCs1ckdpotSRJ0gaMNYw8H3hBVX1nPDsjSZKmnrE+E+QWmkfCS5IkbZaxhpG3AO9N8sTx64okSZqK\nxnqZ5nPADsAPk9wDPNC7sKp22dyOSZKkqWGsYeQt49oLSZI0ZY31oWefGu+OSJKkqWnMDz1Lsg1w\nGDC7bfpP4Eu9b/KVJEnalDGFkSR7AxcBvwnc0Db/FXBLkpdV1Q/HqX+SJGkrN9a7ac4AfgjsUVVz\nqmoOzUPQbmqXSZIkjchYL9McDBxQVXcMNVTVz5K8A7hqXHomSZKmhLGOjNwHPGaY9kcD94+9O5Ik\naaoZaxj5MvDRJPvnVw4A/hH40vh1T5Ikbe3GGkbeTDNnZDFwb/t1FXAjcML4dE2SJE0FY33OyJ3A\nH7R31Qzd2rusqm4ct55JkqQpYczPGQFow4cBRJIkjdmYLtMk+XySvxym/W1J/mXzuyVJkqaKsc4Z\nOYjmoWf9vtIukyRJGpGxhpFHAw8O0/4AsNPYuyNJkqaasYaR7wF/NEz7EcAPxt4dSZI01Yx1Ausp\nwBeSPBn497ZtPjAA/K/x6JgkSZoaxnpr778lOQz4a+DVwC+A64AXVdXl49g/SZK0lRvzrb1VdSFw\n4Tj2RZIkTUFjnTNCkhlJ3pDk75Ls0rbNSfKb49c9SZK0tRvTyEiSZwGXAmuAJwIfA+4AXgXsCbxm\nnPonSZK2cmMdGTkN+GRVPYXmvTRDLmKUzxlJ8sYk302ypv36ZpIX99WcnOS2JPckuaR9DH3v8u2S\nnJlkVZK1Sc5Psltfzc5Jzmn3sTrJx5LsOLrDliRJ422sYeQ5wFnDtP8YmDXKbd0CvB2YA8yluTvn\ngiSzAZK8HTgOOAaYB9wNLEoyrWcbpwMvAw6nCUO7A5/v28+5NO/Rmd/WHrSBY5AkSVvQWCew3sfw\nDzd7KvDT0WyonQjb651J3gQcACyjeQvwKVX1ZYAkrwFWAocB5yXZCTgaOGLoTp4krweWJZlXVUva\nYHMoMLeqrm1rjgcuTHJiVa0YTZ8lSdL4GevIyJeAdyV5ZPu5kuwJvI9fH5EYsSSPSHIEsAPwzSR7\n0Yy0XDZUU1V3AVcDB7ZN+9GEqt6aG4DlPTUHAKuHgkjrUqCA/cfaX0mStPnGGkbeSvNI+NuBRwGX\nAz8Efg78n9FuLMkzkqylGXH5CPDKNlDMogkMK/tWWcmvLgfNBO5vQ8qGama1ff2lqnqIZtLtaC8r\nSZKkcTTWh56tAX4vyfOBZ9EEk2uq6rKNr7lB1wPPBqbTPETt00l84Z4kSVPAqMJIkgOBxw7N36iq\nK9tHwr8N2CHJvwLHV9V9o9luVT0I/Kj9eG2SeTRzRU4FQjP60Ts6MhMYuuSyApiWZKe+0ZGZ7bKh\nmv67a7YBdump2aAFCxYwffr09doGBgYYGBjY9MFJkrSVGxwcZHBwcL22NWvWjHj90Y6MvAv4OjA0\nmfSZwNnAp2gmm/4lcBtw0ii32+8RwHZVdVOSFTR3wFzX7nMnmnkeZ7a119C8QXg+8MW2Zh+a550s\nbmsWAzOS7Nszb2Q+TdC5elOdWbhwIXPmzNnMQ5Ikaes03C/oS5cuZe7cuSNaf7Rh5LeBv+n5fASw\npKr+DCDJLcDfMoowkuTvgK/QTDh9DPDHwMHAIW3J6TR32NwI3Ezzkr5bgQugmdCa5OPAaUlWA2uB\nM4CrqmpJW3N9kkXA2e2dOtOADwGD3kkjSVK3RhtGdmb9yyUH0wSJIf8B7DHKbe5GM7LyGzRPdL0O\nOKSq/h2gqk5NsgPNM0FmAFcAL6mq+3u2sQB4CDgf2A64GDi2bz9HAh+muYtmXVt7wij7KkmSxtlo\nw8hKYC/glvahY3OAd/csfwzwwGg2WFVvGEHNSWxktKWdo3J8+7WhmjuBo0bTN0mSNPFGe2vvRcB7\nk7wA+HvgHpqRiiHPornFV5IkaURGOzLyN8AXaJ4r8nPgtX2XS44GvjpOfZMkSVPAqMJIVa0CDkoy\nHfh5++CwXv+LJqRIkiSNyOY89Gy49js2rzuSJGmqGevj4CVJksaFYUSSJHXKMCJJkjplGJEkSZ0y\njEiSpE4ZRiRJUqcMI5IkqVOGEUmS1CnDiCRJ6pRhRJIkdcowIkmSOmUYkSRJnTKMSJKkThlGJElS\npwwjkiSpU4YRSZLUKcOIJEnqlGFEkiR1yjAiSZI6ZRiRJEmdMoxIkqROGUYkSVKnDCOSJKlThhFJ\nktQpw4gkSeqUYUSSJHXKMCJJkjplGJEkSZ0yjEiSpE51HkaS/FWSJUnuSrIyyReTPHWYupOT3Jbk\nniSXJNm7b/l2Sc5MsirJ2iTnJ9mtr2bnJOckWZNkdZKPJdlxoo9RkiRtWOdhBHgB8CFgf+BFwCOB\nryZ51FBBkrcDxwHHAPOAu4FFSab1bOd04GXA4cBBwO7A5/v2dS4wG5jf1h4EnDX+hyRJkkZq2647\nUFUv7f2c5HXA7cBc4Mq2+QTglKr6clvzGmAlcBhwXpKdgKOBI6rq8rbm9cCyJPOqakmS2cChwNyq\nuratOR64MMmJVbVigg9VkiQNYzKMjPSbARRwB0CSvYBZwGVDBVV1F3A1cGDbtB9NsOqtuQFY3lNz\nALB6KIi0Lm33tf9EHIgkSdq0SRVGkoTmcsuVVfWDtnkWTWBY2Ve+sl0GMBO4vw0pG6qZRTPi8ktV\n9RBN6JmFJEnqROeXafp8BHg68LyuOyJJkraMSRNGknwYeCnwgqr6Sc+iFUBoRj96R0dmAtf21ExL\nslPf6MjMdtlQTf/dNdsAu/TUDGvBggVMnz59vbaBgQEGBgZGcGSSJG3dBgcHGRwcXK9tzZo1I15/\nUoSRNoj8AXBwVS3vXVZVNyVZQXMHzHVt/U408zzObMuuAR5sa77Y1uwD7AksbmsWAzOS7Nszb2Q+\nTdC5emP9W7hwIXPmzNmsY5QkaWs13C/oS5cuZe7cuSNav/MwkuQjwADwCuDuJDPbRWuq6t72+9OB\ndya5EbgZOAW4FbgAmgmtST4OnJZkNbAWOAO4qqqWtDXXJ1kEnJ3kTcA0mluKB72TRpKk7nQeRoA3\n0kxQ/Xpf++uBTwNU1alJdqB5JsgM4ArgJVV1f0/9AuAh4HxgO+Bi4Ni+bR4JfJjmLpp1be0J43gs\nkiRplDoPI1U1ojt6quok4KSNLL8POL792lDNncBRo+uhJEmaSJPq1l5JkjT1GEYkSVKnDCOSJKlT\nhhFJktQpw4gkSeqUYUSSJHXKMCJJkjplGJEkSZ0yjEiSpE4ZRiRJUqcMI5IkqVOGEUmS1CnDiCRJ\n6pRhRJIkdcowIkmSOmUYkSRJnTKMSJKkThlGJElSpwwjkiSpU4YRSZLUKcOIJEnqlGFEkiR1yjAi\nSZI6ZRiRJEmdMoxIkqROGUYkSVKnDCOSJKlThhFJktQpw4gkSeqUYUSSJHXKMCJJkjplGJEkSZ0y\njEiSpE4ZRiRJUqcmRRhJ8oIkX0ry4yTrkrximJqTk9yW5J4klyTZu2/5dknOTLIqydok5yfZra9m\n5yTnJFmTZHWSjyXZcaKPT5IkbdikCCPAjsB3gD8Hqn9hkrcDxwHHAPOAu4FFSab1lJ0OvAw4HDgI\n2B34fN+mzgVmA/Pb2oOAs8bzQCRJ0uhs23UHAKrqYuBigCQZpuQE4JSq+nJb8xpgJXAYcF6SnYCj\ngSOq6vK25vXAsiTzqmpJktnAocDcqrq2rTkeuDDJiVW1YmKPUpIkDWeyjIxsUJK9gFnAZUNtVXUX\ncDVwYNu0H02w6q25AVjeU3MAsHooiLQupRmJ2X+i+i9JkjZu0ocRmiBSNCMhvVa2ywBmAve3IWVD\nNbOA23sXVtVDwB09NZIkaQubFJdpJrsFCxYwffr09doGBgYYGBjoqEeSJE0eg4ODDA4Orte2Zs2a\nEa//cAgjK4DQjH70jo7MBK7tqZmWZKe+0ZGZ7bKhmv67a7YBdumpGdbChQuZM2fOmA9AkqSt2XC/\noC9dupS5c+eOaP1Jf5mmqm6iCQvzh9raCav7A99sm64BHuyr2QfYE1jcNi0GZiTZt2fz82mCztUT\n1X9JkrRxk2JkpH3Wx940wQDgSUmeDdxRVbfQ3Lb7ziQ3AjcDpwC3AhdAM6E1yceB05KsBtYCZwBX\nVdWStub6JIuAs5O8CZgGfAgYnMg7aZYvX86qVasmavOaZHbddVf23HPPrrshSQ8rkyKM0NwN8zWa\niaoFfKBt/xRwdFWdmmQHmmeCzACuAF5SVff3bGMB8BBwPrAdza3Cx/bt50jgwzR30axra0+YiAOC\nJojss89s7r33nonahSaZ7bffgRtuWGYgkaRRmBRhpH02yEYvGVXVScBJG1l+H3B8+7WhmjuBo8bU\nyTFYtWpVG0Q+Q/OsNW3dlnHvvUexatUqw4gkjcKkCCNbv9mAE2AlSRrOpJ/AKkmStm6GEUmS1Ckv\n00iSRsXBSn9iAAAO5UlEQVS7BKeWLXGXoGFEkjRi3iU49WyJuwQNI5KkEfMuwalmy9wlaBiRJI2B\ndwlq/DiBVZIkdcowIkmSOmUYkSRJnTKMSJKkThlGJElSpwwjkiSpU4YRSZLUKcOIJEnqlGFEkiR1\nyjAiSZI6ZRiRJEmdMoxIkqROGUYkSVKnDCOSJKlThhFJktQpw4gkSeqUYUSSJHXKMCJJkjplGJEk\nSZ0yjEiSpE4ZRiRJUqcMI5IkqVOGEUmS1CnDiCRJ6pRhRJIkdcowIkmSOjXlwkiSY5PclOQXSb6V\n5Dld92nrNNh1BzRleK5pS/FcmyhTKowk+SPgA8C7gX2B7wKLkuzaace2Sv6j1ZbiuaYtxXNtokyp\nMAIsAM6qqk9X1fXAG4F7gKO77ZYkSVPXlAkjSR4JzAUuG2qrqgIuBQ7sql+SJE11UyaMALsC2wAr\n+9pXArO2fHckSRLAtl13YJLbHmDZsmVjWvlX610EjG0bD1+3Aud03Ykt7CZg7OfL5vBc81zbUjzX\nPNdGqmed7TdVm+ZKxdavvUxzD3B4VX2pp/2TwPSqeuUw6xzJ1DvzJEkaT39cVedurGDKjIxU1QNJ\nrgHmA18CSJL28xkbWG0R8MfAzcC9W6CbkiRtLbYHnkjz/9KNmjIjIwBJ/hD4JM1dNEto7q55NfC0\nqvpph12TJGnKmjIjIwBVdV77TJGTgZnAd4BDDSKSJHVnSo2MSJKkyWcq3dorSZImIcOIHlaSrEvy\niq77oYmR5BNJvjDO23xCe948azy3q+4l+VqS07ruhzbflJozImnSezOQCdiu16OlScwwImnSqKq1\nE7TpiQg4UieSbFtVD3bdj/HkZZopKsmhSa5IsjrJqiT/luRJPcsfn+Rz7fKfJfnXJE/oWb5fkq8m\n+WmSO5N8Pcm+ffs4Kcn/JLk3ya1JTu9ZNivJhUnuSXJjkj9MclOSN/fU7J3kG0l+keT7SV400X8u\n2jKSvDrJde3f/6r2XHpU/2Wadhj+g0ne156HP0ny7r5t7ZPkyvY8+V6S39nU5bwkz0hyUZK1SVYk\n+XSSx07kMWvzJNmh/Xtam+THSf6ib/mMdvkdSe5u/3737ll+e5JX9Xz+TpIf93x+fvuzavv287ok\nf5rkC+32/ivJy3vqD25rXprku+35tzjJb/X16/D259e97c+4/n7/2rna/tx9Tfv90GXGP2x/zt4D\nHLlZf5iTkGFk6toR+AAwB3gh8BDwRWhSN81DatYAzwOeC6wFLm6XATyG5pktzwX2B/4LuCjJju02\nXg28BfgzYG/gMOB7Pfv/Z5p3Ah1E86yXNwGPG1rYPpDuizQPm3sOzbNh3ofD7Q97SWYB5wIfA54G\nHAx8gQ3/PHoN8HNgHvA24F1J5rfbegRwAc35+RzgfwPvZSPnSZLpNC/MvIbm/D8U2A343GYemibW\nPwAvAF4OHAL8Ds3f35BPtZ9/HziAZjTsoiTbtMu/0a5Dkhk0596jkjy1XX4QsKSqeh9w+S7gs8Az\naZ5/f067bq9TaZ5ZtR/wU+BLQ/tMMpfmvDoXeAbwbuCUoaAxSn8PLARmM4KHiD3sVJVffkHzIsF1\nwNNpnjr7g77l04C7gRdtYP1H0ISXl7afF9C8uGKbYWr3afe1b0/bk9u2N7efDwHuA2b21Bza1ryi\n6z8vvzbrXNuXJvzuMcyyTwBf6Pn8NeDyvpqrgb9rv39xe548rmf5/N7zBHhC+/lZ7ef/A3ylb5uP\nb2v27vrPx69hz5kdaX4xeVVP287tz6TTaH7hWQfs37N8l3b54e3n44Dr2u9fAXyTJgQf07Z9FTil\nZ/11wEk9n3do2w5pPx/cfn71MH16dfv5M8DFfcfyPuB7fft5RV/NauA17fdD5+9xXf89TOSXIyNT\nVHsJ5NwkP0yyhuZtSAXsCTwbeEo7HLo2yVrgZ8B2NKGBJLslObsduryTJojs2K4P8C80/3hvSvLR\nJIf1/IayD/BAVV071J+q+iHNP8AhTwNuqaretywvHt8/BXXkuzQjE99Pcl6SNwzz22av6/o+/4Rm\nJAPgqTTnSe+DC5dsYv/PBl7Yd34vozn/nzzio9CW9GTgkfT83VbVauCG9uNs4IG+5Xe0y2e3TZcD\nT28vxx0MfL39+p12xPe57edevxzNrap7gLv41bkHzTnzrWH6NLTP2cBVfdu8iubn62jnMV0zyvqH\nFSewTl1fpgkgbwBuA7YBvk8zAvJo4Ns01yX7/8EM/dD/NM1vAccDy2l+O/1Wuz5VdWs7/Pki4PeA\njwAnJjl44g5JDwdVtQ44JMmBNCNgxwPvSXLABlZ5oH8TbN4l5kfTvJ/qbfz6+f2TzdiuJrGq+l6S\nO2gu1RwM/DWwEngHzSW+bWlGS3qN97k3bNf49fPwkcPU3T3O+51UHBmZgpLsQvMb5Xuq6mtVdQPN\nkObQdfalwFOAn1bVj/q+hu52eC5wRlUtqqplNP9od+3dT1XdV1UXVtVbaH4APJfm2usNwLbpmfDa\nTjTbuWf1ZcAeSWb2tB2Ic0a2GlW1uKr+luayzQM084pG6waa8+RxPW3zNrHOUuC3gP8Z5vz+xRj6\noIn3Q+BBmvlpACTZmebnGDQ/Lx7Zt/yxNKOwP+jZzpXAH9Bcjr6SZtRtO5q5Rt8ew99/aOan9Pdp\naJ/LaObd9Xo+8F/VXoOh+QXvN3q28RSaUeVeW/3PPcPI1LSa5rLLMUmenOSFNJNZh5zTLr+gnWH+\nxPYOhQ8m2b2t+W/gT5I8Lcn+NNdG7xnaQJLXJjk6yW8l2Qv4k3b5/7Th5zLg7CTPaUPJWe3yoX90\nl7b7+HSSZyV5AfCeifnj0JaUZF6Sv0oyN8kewOE0QXbZGDZ3CfAjmvPkmUmeR3OeFBv+AX4mTfj+\nbJq7wp6U5u6yfxrD0Lm2gKq6G/g48P4kv5vkGTTzix5ql99IM5H57CTPS/Jsmp9Jt7TtQ74ODADf\nqap72kDwDZp5cpePsXvvSvLCtk+fpAkXQ/v8ADA/yTuTPCXJa4Fjgff3rP/vwHFJfjvJfsD/A+7v\n28dWf14aRqag9h/gHwFzaa6JfgA4sWf5L2hmrS8HPk+T8s+m+Q3irrbsaJqRjGtoZrF/ELi9Zzd3\n0txJcyXNHIEXAr/fXlOFJpysoPkB8Pl2+z+nmaQ21MfDaF5BfTXwUZphVT383UVz58KFNCMbJwN/\nUVXD3SGw0d8I20s+f0AzX2kJzXnyHpof3r13RVTPOj+h+W31ETR3JVxHMwlydc9vq5p8/hK4guYS\n21fb73vnUby+/fxvNPMy1gEvq6qHemoup/l7/1pP29fbtq/37W+4c6G/rWgu83wQ+A+aOwJfXu0z\nQNp5cX9I8/P2e8BJwDur6p97tvFWmtD0DZoA9X56frHbSF+2Kr4oT5NCksfThJ/5VfW1TdVLG9KO\njnyD5s6Ym7ruj7ZO7fy3fwd2rqq7NlWvjXMCqzqR5HdpJhJ+D9id5l79H9H8T0QasSSH0Yyq/TfN\nXKfTgSsNItoCtvrLJ1uKYURdeSTwd8BeNA+sugoY6BtSlUbiMTTPbtgDWEUzj+TEja4hjQ8vLYwT\nL9NIkqROOYFVkiR1yjAiSZI6ZRiRJEmdMoxIkqROGUYkSVKnDCOSJpUk706ydDO38YQk65I8a7z6\nJWniGEYkjVqSx7fvcvlxkvuS3Jzk9PYljKPZzrokr+hrfj8wfzO7uByYRfMmakmTnGFE0qi0Lz78\nNvBkmnduPJnmrafzgcVJZmzO9tsXmK3edOVGt1FVdXv77ppxl+QRvlRPGj+GEUmj9RHgPuD3qurK\nqrq1fcndi4DfBP4vQJKb2reVnpvk50luTfLnQxtJchPNEyz/tR0h+VHbflKSa3vqPpHki+2bflck\nWd1ud5skpyb5WZJbkryuZ531LtO021jXfj3U8/1B7fJpSf6h7ePPkyxu3z0ytL3Xtvt9eZL/pHkJ\n3x7t26yvbtdZneSK9k3EkkbBMCJpxJLsDBwCnFlV673mvKpWAufQjJYMORG4Fvht4L3AB5MMXYJ5\nDs27PV5Lc0nlOUOb4tcfs/1C4Ddo3ia9gOZNv18G7gDmAf8InJVk994u9Xz/5nYfs9rtfBBYCVzf\nLj8T2J/mDavPBP4F+EqSJ/dsYwfgbcCfAr8FrAa+SPMG2GcAB9C8NdjHWkuj5LtpJI3GU2gCxPUb\nWL4M2DnJru3nq6rq/e33H27fqLsAuKyqVrVXOtZU1e2b2O/PqurN7ff/neTtwKOq6r0ASf6e5lXu\nzwfOa+t+eRmlqtbSvAOJJK8CjqF5Q/Tt7UjG64A9qmpFu8ppSV5C81r6d7Zt2wJvqqrvt9vZGdgJ\nuLCqbm5rbtjEcUgahmFE0liMdL7E4mE+nzCG/f1n3+eVNG98BqCq1iX5GbDbxjaSZF/g08CxVfWt\ntvmZwDbAf/XNA5lG8+K9IfcPBZF2n6uTfAr4apJLgEuB83oCjaQR8jKNpNG4keYyxOwNLH86sLqq\nVm1g+Vg90Pe5NtC2wZ9pSWYBFwAfrapP9ix6NPAgMAd4ds/XbNYPTr/o32ZVHU1zeeYqmstTNySZ\nt+nDkdTLMCJpxKrqDuAS4M+TbNe7rP2f/ZHAZ3uaD+jbxAE0l3KGPEAzKjERfjl3o+3rvwI/AN7a\nV3dt24eZVfWjvq9NXT6iqr5bVe+rqufRjOAcOX6HIE0NhhFJo3UcsB2wKMkL2meOvBj4KnALv5pj\nAfC8JCcmeUqSY4FXA6f3LL8ZmJ9k5ubeEjyM3ksuHwUeTzPSsVu7v5lJHllV/w2cC3w6ySuTPDHJ\nvCTvaOeNDL/xpu7vkhyQZM8kh9DMqfnBOB+HtNUzjEgalaq6EdgP+BHwOZpLN/8IXAY8t6ru7Cn/\nQFt7LfDXwIKqurRn+VuB36MJMaN56upwd6z0t/V+PojmLpofALcBP2n/e2C7/HU0c0n+gWZy7hfa\nfi/fSB/uAZ4GnE8zcfUfgQ9V1UdHcRySgFR5F5qk8dc+R2RhVZ3RdV8kTW6OjEiSpE4ZRiRNFIdd\nJY2Il2kkSVKnHBmRJEmdMoxIkqROGUYkSVKnDCOSJKlThhFJktQpw4gkSeqUYUSSJHXKMCJJkjpl\nGJEkSZ36/9Lx/6FV7lc5AAAAAElFTkSuQmCC\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd9fc0a1410>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the time.\n", "fig = plt.figure()\n", "st = fig.suptitle(\"Lower is better.\", fontsize=\"x-small\")\n", "\n", "plt.bar(range(len(time_spent)), time_spent.values(), align='center')\n", "plt.xticks(range(len(time_spent)), time_spent.keys())\n", "plt.xlabel(\"Optimizers\")\n", "plt.ylabel(\"Seconds\")\n", "plt.ylim([0, 7000])\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAicAAAGSCAYAAAA4v2GGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3Xu4XVV97vHvy0VTQCkaBZHgBRGDIpoIolC1oqK2Wi9U\nG6VFLfVQUU/TejxUW1Fra1sUxFM4AsdyKRqxLVUQNYgXQAFRAiI14IVIvACyMSASImh+5485t65s\n9t7Jvo/A9/M868mac445x1h7z73yrjHGmjNVhSRJUiu2mOsGSJIkDTKcSJKkphhOJElSUwwnkiSp\nKYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKaYjiRJElNMZxI2qgkN4xYPiXJ8/rnn0qy1TTX97Akp25i\n2UOTvHcCx947yYEDy3+Q5NGTaKakGWI4kbQpxrzPRVX9flX9cioHT7LBe1FV3VBVr5nAISZyH44n\nAc8ZWH4JsPsE9idJJlJe0sQYTiRtijH/M06yKsn9+ufvSXJNkvP6xzP69S9MckmSFUlO6Nc9IskV\nSc4E/nvEMR+R5JL++e8muarf96IxmvGYJBf1db9+4DhvS3JZkiuT/Gkfgt4NvKY/3luBFwP/0i9v\nm2SfJBcm+XqSM5PM6491Y5ITklwF7DLJn6OkTTCtXbGS7rUenGRF/zzAAmBZv1wASfYBngXsCewI\nXNOvfzDwF8Azq+quJP+S5GXA5X3ZJVV1zSh1DveGLAXeVFUXJHnAGO17CrAX3Qeuryc5G9gbeEhV\n7Ztka+Ai4FPAO4A9quptffseB3ysqs7ryx0NvKiqbkvyFuANwDHAQ4GzquoNm/5jkzQZhhNJm2Ko\nqhYNLyQ5ZZQyTwf+q6rWAzckubBf/zTgicCl/XDIPOD7dOFk5RjBZNDFwNFJTgM+Dtw+SplPV9Ud\nfds+BzwV+B3g95M8ky5QPRDYbZR9B3uF9ujb+sW+rVsD5/fbflZV54/cWdL0M5xImi4jh34y8O8n\nqurwDTYmjwDWbuygVfWPST5NN/zy1SSLq2rNyGIjltf3//5tVX1sRL3jzS8JcFlVPX+UbRttq6Tp\n4ZwTSZtivAmgw9suBl6SZMskDwMO6NdfChyY5OEASR40/Hwjx6Uv/6iquqqq3gOsohtSGukF/XyR\nBwDPBr4GfB44LMn9++M8tn9+O10vyrDB5WuARyV5Qr/PNkmGe1ucBCvNEsOJpE0xsmeiRj6vqsuA\nC4CrgVOAK+mGQm4GjgA+meQbwHLgIWMcdzR/meTqJFcC11TVVaOUuRz4LF0oOaaqbqyqzwyv6yex\nnkD3nvdFYN8kl/dDPh8D3tXPqbkf8CrgQ319F/OboaAN2prk3CQ7bUL7JU1QqibyDTxJGluSbapq\nbT8J9mJg0fBcEEnaVM45kTSd/jXJHnTvLX9jMJE0GfacSJKkpjjnRJIkNcVwIkmSmmI4kSRJTTGc\nSJKkphhOJElSUwwnkiSpKYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKaYjiRJElNMZxIkqSmGE4kSVJT\nDCeSJKkphhNJktQUw4kkSWqK4USSJDXFcCJJkppiOJEkSU0xnEiSpKZsNdcN2JwkeTBwEPB9YN3c\ntkaSpM3KPOCRwPKqumW8goaTiTkI+MhcN0KSpM3Yq4GPjlfAcDIx3wc444wzWLhw4Rw3ZfOydOlS\njj322Lluhu4DPNc0WzzXJmblypUccsgh0P9fOh7DycSsA1i4cCGLFi2a67ZsVrbffnt/ZpoVnmua\nLZ5rk7bRaRFOiJUkSU0xnEiSpKYYTiRJUlMMJ5oVS5Ysmesm6D7Cc02zxXNt5hhONCv8I9Zs8VzT\nbPFcmzmGE0mS1BTDiSRJaorhRJIkNcVwIkmSmmI4kSRJTTGcSJKkphhOJElSUwwnkiSpKYYTSZLU\nFMOJJElqiuFEkiQ1xXAiSZKaYjiRJElNMZxIkqSmGE4kSVJTDCeSJKkphhNJktQUw4kkSWqK4USS\nJDXFcCJJkppiOJEkSU0xnEiSpKYYTiRJUlMMJ5IkqSmGE0mS1BTDiSRJaorhRJIkNcVwIkmSmmI4\nkSRJTTGcSJKkphhOJElSUwwnkiSpKYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKaYjiRJElNMZxIkqSm\nGE4kSVJTDCeSJKkphhNJktQUw4kkSWqK4USSJDXFcCJJkppiOJEkSU0xnEiSpKYYTiRJUlMMJ5Ik\nqSmGE0mS1BTDiSRJaorhRJIkNcVwIkmSmmI4kSRJTTGcSJKkphhOJElSUwwnkiSpKYYTSZLUFMOJ\nJElqiuFEkiQ1xXAiSZKaYjiRJElNMZxIkqSmGE4kSVJTmgknSY5IsirJnUkuTbLPRsq/OsmVSe5I\n8uMkH07yoDHK/lGS9UnOGrH+qH794ONb0/m6JEnSxDQRTpK8Eng/cBTwZOAbwPIk88covz9wGnAy\nsCdwMLAvcNIoZR8JHA1cOEb1VwM7Ajv1jwMm/0okSdJUNRFOgKXAiVV1elVdAxwOrAVeN0b5/YBV\nVXV8VV1fVRcDJ9IFlF9LsgVwBvAOYNUYx/plVd1cVT/pHz+djhckSZImZ87DSZKtgcXA54fXVVUB\n5wNPG2O3S4AFSV7QH2NH4A+Bc0eUOwq4qapOGacJuyf5UZLvJTkjyYJJvhRJkjQN5jycAPOBLYGb\nRqy/iW6Y5R76npJDgDOT3AXcAKwB3jhcJskBwGuBw8ap+1LgNcBBdL01jwIuTLLtZF6IJEmauhbC\nyYQl2RM4DngnsIguXDyKbmiHJNsBpwN/VlVrxjpOVS2vqv+sqqur6nPAC4EdgFfM7CuQJElj2Wqu\nGwAMAb+im5Q6aEfgxjH2ORL4SlUd0y9fneQNwEVJ3k7X4/II4Jwk6ctsAdD3tOxRVfeYg1JVtyX5\nNvCY8Rq8dOlStt9++w3WLVmyhCVLloy3myRJ9wnLli1j2bJlG6y77bbbNnn/OQ8nVXV3ksuBA4Gz\nAfpAcSDwwTF22wa4a8S69UABAa4B9hqx/e+B7YA3Az8Y7aB9j8tj6HpdxnTssceyaNGi8YpIknSf\nNdoH9hUrVrB48eJN2n/Ow0nvGODUPqRcRvftnW2AUwGSvBfYuaoO7cufA5yU5HBgObAzcCzw1aoa\n7m3Z4HolSW6lm2u7cmDd0f2xrgceDrwLuBvYMO5JkqRZ00Q4qaqP99c0eTfdcM6VwEFVdXNfZCdg\nwUD50/pejiOA9wG30n3b58gJVr0L8FHgwcDNwJeB/arqlim8HEmSNAVNhBOAqjoBOGGMba8dZd3x\nwPETOP5ox3CSiCRJjdksv60jSZLuvQwnkiSpKYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKaYjiRJElN\nMZxIkqSmGE4kSVJTDCeSJKkphhNJktQUw4kkSWqK4USSJDXFcCJJkppiOJEkSU0xnEiSpKYYTiRJ\nUlMMJ5IkqSmGE0mS1BTDiSRJaorhRJIkNcVwIkmSmmI4kSRJTTGcSJKkphhOJElSUwwnkiSpKYYT\nSZLUFMOJJElqiuFEkiQ1xXAiSZKaYjiRJElNMZxIkqSmGE4kSVJTDCeSJKkphhNJktQUw4kkSWqK\n4USSJDXFcCJJkppiOJEkSU0xnEiSpKYYTiRJUlMMJ5IkqSmGE0mS1BTDiSRJaorhRJIkNcVwIkmS\nmmI4kSRJTTGcSJKkphhOJElSUwwnkiSpKYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKaYjiRJElNMZxI\nkqSmGE4kSVJTDCeSJKkphhNJktQUw4kkSWqK4USSJDXFcCJJkppiOJEkSU0xnEiSpKYYTiRJUlMM\nJ5IkqSmGE0mS1JRmwkmSI5KsSnJnkkuT7LOR8q9OcmWSO5L8OMmHkzxojLJ/lGR9krOmWq8kSZpZ\n0xpOkixI8q+T2O+VwPuBo4AnA98AlieZP0b5/YHTgJOBPYGDgX2Bk0Yp+0jgaODCqdYrSZJm3nT3\nnDwIOHQS+y0FTqyq06vqGuBwYC3wujHK7wesqqrjq+r6qroYOJEuoPxaki2AM4B3AKumoV5JkjTD\ntppI4SQv3kiRR0+0AUm2BhYD/zC8rqoqyfnA08bY7RLg75O8oKo+k2RH4A+Bc0eUOwq4qapOSfKM\naahXkiTNsAmFE+ATQAEZp0xN8JjzgS2Bm0asvwnYY9QKqi5OcghwZpJ5dK/jbOCNw2WSHAC8Fth7\nuuqVJEkzb6Lh5AbgDVX1ydE2JnkScPmUW7URSfYEjgPeCZwHPAx4H93QzmFJtgNOB/6sqtZMd/1L\nly5l++2332DdkiVLWLJkyXRXJUnSZmfZsmUsW7Zsg3W33XbbJu+fqk3v6EhyNnBlVb1jjO17A1dU\n1SbPZemHV9YCL6+qswfWnwpsX1UvHWWf04F5VfWKgXX7AxfRBZWdgBXAr/hNL89wm35F1zPyw0nU\nuwi4/PLLL2fRokWb+hIlSbrPW7FiBYsXLwZYXFUrxis70QmxRwMXj7P9u8DvTuSAVXU3XW/LgcPr\nkqRfHquubYBfjli3nt8MOV0D7AU8iW5YZ2+6YZ8v9M9/MMl6JUnSDJvosM6PGP1bLwBU1R3ABZNo\nxzHAqUkuBy6j+xbNNsCpAEneC+xcVcPfBDoHOCnJ4cByYGfgWOCrVXVjX+ZbgxUkubVrYq3c1Hol\nSdLsm2g4+Q7dsMlPAJKcCby5qkZOKp2Qqvp4f22RdwM7AlcCB1XVzX2RnYAFA+VP6+eVHEE31+RW\n4PPAkdNcryRJmmUTnXOyHtipqobDye3A3lV13Qy1rynOOdHmZPXq1QwNDc11MzRL5s+fz6677jrX\nzZDGNJE5JxPtOZG0GVi9ejV77LGQdevWznVTNEvmzduGa69daUDRvcJEw0lxz+uYTPS6JpJm2NDQ\nUB9MzgAWznVzNONWsm7dIQwNDRlOdK8w0XASugmkv+iX5wEfSnLHYKGqetl0NE7SVC0EHIKUtHmZ\naDg5bcTyGdPVEEmSJJhgOKmq185UQyRJkmD670osSZI0JYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKa\nYjiRJElNMZxIkqSmGE4kSVJTDCeSJKkphhNJktQUw4kkSWqK4USSJDXFcCJJkppiOJEkSU0xnEiS\npKYYTiRJUlMMJ5IkqSmGE0mS1BTDiSRJaorhRJIkNcVwIkmSmmI4kSRJTTGcSJKkphhOJElSUwwn\nkiSpKYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKaYjiRJElNMZxIkqSmGE4kSVJTDCeSJKkphhNJktQU\nw4kkSWqK4USSJDXFcCJJkppiOJEkSU0xnEiSpKYYTiRJUlMMJ5IkqSmGE0mS1BTDiSRJaorhRJIk\nNcVwIkmSmmI4kSRJTTGcSJKkphhOJElSUwwnkiSpKYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKaYjiR\nJElNMZxIkqSmGE4kSVJTDCeSJKkphhNJktQUw4kkSWqK4USSJDXFcCJJkprSTDhJckSSVUnuTHJp\nkn02Uv7VSa5MckeSHyf5cJIHDWx/aZKvJVmT5OdJrkhyyIhjHJVk/YjHt2bqNUqSpI1rIpwkeSXw\nfuAo4MnAN4DlSeaPUX5/4DTgZGBP4GBgX+CkgWK3AO8B9gP2Ak4BTkny3BGHuxrYEdipfxwwPa9K\nkiRNRhPhBFgKnFhVp1fVNcDhwFrgdWOU3w9YVVXHV9X1VXUxcCJdQAGgqi6sqk9W1bVVtaqqPghc\nxT3Dxy+r6uaq+kn/+Om0vzpJkrTJ5jycJNkaWAx8fnhdVRVwPvC0MXa7BFiQ5AX9MXYE/hA4d5x6\nDgQeC1wwYtPuSX6U5HtJzkiyYNIvRpIkTdmchxNgPrAlcNOI9TfRDbPcQ99TcghwZpK7gBuANcAb\nB8sleWCS2/sy5wBvqqovDBS5FHgNcBBdb82jgAuTbDvVFyVJkianhXAyYUn2BI4D3gksogsXj6Ib\n2hl0O7A38BTg7cCxSZ4xvLGqllfVf1bV1VX1OeCFwA7AK2b8RUiSpFFtNdcNAIaAX9FNSh20I3Dj\nGPscCXylqo7pl69O8gbgoiRvr6qb4NfDQ9f1Za7qQ81fAxeOdtCqui3Jt4HHjNfgpUuXsv3222+w\nbsmSJSxZsmS83SRJuk9YtmwZy5Yt22Ddbbfdtsn7z3k4qaq7k1wOHAicDZAk/fIHx9htG+CuEevW\nAwVknOq2AO4/1sYk29EFk9PHa/Oxxx7LokWLxisiSdJ91mgf2FesWMHixYs3af85Dye9Y4BT+5By\nGd23d7YBTgVI8l5g56o6tC9/DnBSksOB5cDOwLHAV6vqxn6fI4GvA9+jCyS/RzdP5fDhSpMc3R/r\neuDhwLuAu4EN454kSZo1TYSTqvp4f02Td9MN51wJHFRVN/dFdgIWDJQ/re/lOAJ4H3Ar3bd9jhw4\n7LbA8cAuwJ3ANcCrq+o/BsrsAnwUeDBwM/BlYL+qumXaX6QkSdokTYQTgKo6AThhjG2vHWXd8XTh\nY6zj/S3wtxup00kikiQ1ZrP8to4kSbr3aqbnRJK0eVq9ejVDQ0Nz3QzNkvnz57PrrrvOaB2GE0nS\npK1evZo99ljIunVr57opmiXz5m3DtdeunNGAYjiRJE3a0NBQH0zOABbOdXM041aybt0hDA0NGU4k\nSa1bSHfBbmnqnBArSZKaYjiRJElNMZxIkqSmGE4kSVJTDCeSJKkphhNJktQUw4kkSWqK4USSJDXF\ncCJJkppiOJEkSU0xnEiSpKYYTiRJUlMMJ5IkqSmGE0mS1BTDiSRJaorhRJIkNcVwIkmSmmI4kSRJ\nTTGcSJKkphhOJElSUwwnkiSpKYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKaYjiRJElN2WquG3Bfs3r1\naoaGhua6GZol8+fPZ9ddd53rZkjSZsVwMotWr17NHnssZN26tXPdFM2SefO24dprVxpQJGkCDCez\naGhoqA8mZwAL57o5mnErWbfuEIaGhgwnkjQBhpM5sRBYNNeNkCSpSU6IlSRJTTGcSJKkphhOJElS\nUwwnkiSpKYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKaYjiRJElNMZxIkqSmGE4kSVJTDCeSJKkphhNJ\nktQUw4kkSWqK4USSJDXFcCJJkppiOJEkSU0xnEiSpKYYTiRJUlMMJ5IkqSmGE0mS1BTDiSRJaorh\nRJIkNcVwIkmSmmI4kSRJTTGcSJKkphhOJElSUwwnkiSpKYYTSZLUFMOJJElqiuFEkiQ1xXAiSZKa\n0kw4SXJEklVJ7kxyaZJ9NlL+1UmuTHJHkh8n+XCSBw1sf2mSryVZk+TnSa5IcshU69VkLZvrBug+\nw3NNs8VzbaY0EU6SvBJ4P3AU8GTgG8DyJPPHKL8/cBpwMrAncDCwL3DSQLFbgPcA+wF7AacApyR5\n7mTr1VT4R6zZ4rmm2eK5NlOaCCfAUuDEqjq9qq4BDgfWAq8bo/x+wKqqOr6qrq+qi4ET6QIKAFV1\nYVV9sqqurapVVfVB4CrggCnUK0mSZtich5MkWwOLgc8Pr6uqAs4HnjbGbpcAC5K8oD/GjsAfAueO\nU8+BwGOBC6ZQryRJmmFzHk6A+cCWwE0j1t8E7DTaDn1PySHAmUnuAm4A1gBvHCyX5IFJbu/LnAO8\nqaq+MNl6JUnSzNtqrhswGUn2BI4D3gmcBzwMeB/d0M5hA0VvB/YGtgMOBI5Ncl1VXTjJqucBHHbY\nYTzgAQ/YYMNBBx3E85///HF3Xrly5fCzSVa/ObsNWDHXjZhl3e/5N7/3WazZc22uGzHLPNfmhufa\nWD772c+yfPnyDdbdfvvtw0/nbayWdCMZc6cfXlkLvLyqzh5YfyqwfVW9dJR9TgfmVdUrBtbtD1wE\nPKyqRvaGDJc5Gdilql4wyXpfBXxkUi9UkiQBvLqqPjpegTnvOamqu5NcTtezcTZAkvTLHxxjt22A\nu0asWw8UkHGq2wK4/xTqXQ68Gvg+sG681yVJkjYwD3gk3f+l45rzcNI7Bji1DwuX0X2LZhvgVIAk\n7wV2rqpD+/LnACclOZzuRe4MHAt8tapu7Pc5Evg68D26QPJ7dPNUDt/UekeqqluAcdOeJEka08Wb\nUqiJcFJVH++vLfJuYEfgSuCgqrq5L7ITsGCg/GlJtgOOoJtrcivdt26OHDjstsDxwC7AncA1dF1J\n/zGBeiVJ0iyb8zknkiRJg1r4KrEkSdKvGU60WUuyPsmL57odmhlJTkly1jQf8xH9efPE6Tyu5l6S\nLyY5Zq7boalrYs6JJI3hzYz/DbzJcjxbapjhRFKzqur2jZealJkIPNKcSLJVVf1yrtsxnRzWEQBJ\nDkpyUZI1SYaSnJPk0QPbd0lyZr/9liSfSPKIge1PSXJekpuT3JrkS0mePKKOdya5Psm6JD9M8oGB\nbTslOTfJ2iTfTfKKJKuSvHmgzGOSXJjkziRXJ3nOTP9cNDuSHJzkqv73P9SfS781clin77Y/Lsk/\n9efhDUmOGnGsPZJ8uT9PvpnkWRsb/kvyhCSf7m93cWOS05M8eCZfs6YmyTb97+n2JD9K8pcjtv92\nv/2nSe7of7+PGdj+kyQvG1i+MsmPBpYP6N+r5vXL65P8aZKz+uN9O8mLBso/sy/zwiTf6M+/S5I8\nfkS7Xt6/f63r3+NGtvse52r/vvsn/fPhYclX9O+za4FXTemH2SDDiYZtC7wfWAQ8G/gV8F/QpXK6\n68ncBuwPPJ3u1gCf7bcBPIDu+jBPB54KfBv4dJJt+2McDPwF8GfAY4CXAN8cqP/f6L4y/gzgYODP\ngYcMb0ySvj3rgH3orlfzT9g9v9lLshPd9YP+H/A44JnAWYz9/vQnwM/p7kL+VuAd6W7sSZItgE/S\nnZ/7AP8D+EfGOU+SbE93KYLL6c7/g4CHAmdO8aVpZr0P+B3gRcDzgGfR/f6GndYv/z7dnexD9560\nZb/9wn4fkvw23bn3W0ke229/BnBZVQ1ecPMdwMeAvYBPAx/p9x30z3TXzHoKcDNw9nCdSRbTnVcf\nBZ4AHAX83XDwmKD30l3fayGbcFGzzU5V+fBxjwfdjRHXA3vSXRX3WyO23w+4A3jOGPtvQRdmXtgv\nL6W7KcOWo5Tdo6/ryQPrduvXvblffh7wC2DHgTIH9WVePNc/Lx9TOteeTBeGF4yy7RTgrIHlLwIX\njCjzVeAf+ufP78+ThwxsP3DwPAEe0S8/sV9+O/CZEcfcpS/zmLn++fgY9ZzZlu6DyssG1u3Qvycd\nQ/cBaD3w1IHtD+q3v7xffiNwVf/8xXQXBzsLeH2/7jzg7wb2Xw+8c2B5m37d8/rlZ/bLB4/SpoP7\n5TOAz454Lf8EfHNEPS8eUWYN8Cf98+Hz941z/XuYyYc9JwJ+PWTy0STfS3IbsIru0+audDdP3L3v\nPr09ye3ALXRX3t2t3/+hSU7uuzpvpQsm2/b7A/w73R/zqiQnJXnJwCeYPYC7q+qK4fZU1ffo/iCH\nPQ74QW1436RLpvenoDnyDbqei6uTfDzJYaN8Gh101YjlG+h6OgAeS3eeDF5I8bKN1L838OwR5/dK\nuvN/t01+FZpNuwFbM/C7rao1wLX94kLg7hHbf9pvX9ivugDYsx++eybwpf7xrL5H+On98qBf9/ZW\n1VrgZ/zm3IPunLl0lDYN17kQ+MqIY36F7v11ovOgLp9g+c2KE2I17FN0geQw4MfAlsDVdD0k29Hd\nCuBV3HMi4fB/AqfTfUp4E7Ca7tPrpf3+VNUP++7S5wDPBU4A3pLkmTP3krQ5qKr1wPOSPI2uh+xN\nwHuS7DfGLnePPARTG6Leju7+Wm/lnuf3DVM4rhpWVd9M8lO6oZ1nAm8DbqK70vg+dP8/jrzU+nSf\ne6M2jXueh1uPUu6Oaa63KfaciCQPovvE+Z6q+mJVXUvXBTo8Tr8C2B24uaquG/EY/jbF04EPVtXy\nqlpJ90c8f7CeqvpFVZ1bVX9B94bwdLqx22uBrTIwgbafuLbDwO4rgQVJdhxY9zScc3KvUVWXVNW7\n6IZ57qablzRR19KdJw8ZWLfvRvZZATweuH6U8/vOSbRBM+97wC/p5rcBkGQHuvcx6N4vth6x/cF0\nvbTfGjjOl4E/oBu+/jJdr9z96eYqfX0Sv//QzW8Z2abhOlfSzdsbdADw7erHbOg+8D1s4Bi70/U6\nD7rXv+8ZTgTd8MktwOuT7Jbk2XSTY4d9pN/+yX4G+yP7b0Acl2Tnvsx3gD9O8rgkT6UbW107fIAk\nhyZ5XZLHJ3kU8Mf99uv7MPR54OQk+/Qh5cR++/Af4fl9HacneWKS3wHeMzM/Ds2mJPsm+eski5Ms\nAF5OF2xXTuJwnwOuoztP9kqyP915Uoz9hn48XRj/WLpvnT063bfX/nUSXe2aBVV1B/Bh4Ogkv5vk\nCXTzk37Vb/8u3cTok5Psn2RvuvekH/Trh30JWAJcWVVr+4BwId08uwsm2bx3JHl236ZT6cLGcJ3v\nBw5M8jdJdk9yKN094o4e2P8LwBuTPCnJU4D/C9w1oo57/XlpOBH9H+QrgcV0Y6rvB94ysP1Oulnx\nq4H/pPsUcDLdJ4yf9cVeR9fTcTndLPnjgJ8MVHMr3Td1vkw3x+DZwO/3Y7LQhZUb6d4Q/rM//s/p\nJr0Nt/EldLfc/ipwEl03rDZ/P6P7ZsS5dD0f7wb+sqpG+wbCuJ8Y+yGiP6Cb73QZ3XnyHro388Fv\nXdTAPjfQfZrdgu5bD1fRTapcM/BpVu35X8BFdENy5/XPB+dhvLZfPoduXsd64Peq6lcDZS6g+71/\ncWDdl/p1XxpR32jnwsh1RTcsdBzwNbpvHL6o+muQ9PPqXkH3fvtN4J3A31TVvw0c46/oQtSFdIHq\naAY+6I3TlnsVb/ynJiXZhS4MHVhVX9xYeWksfe/JhXTfvFk11+3RvVM/f+4LwA5V9bONldf4nBCr\nJiT5XbqJid8Edqa7VsB1dP+pSJssyUvoet2+QzdX6gPAlw0mmgX3+uGW2WI4USu2Bv4BeBTdBbS+\nAiwZ0QUrbYoH0F07YgEwRDcP5S3j7iFND4ciponDOpIkqSlOiJUkSU0xnEiSpKYYTiRJUlMMJ5Ik\nqSmGE0ktcQgFAAAEYElEQVSS1BTDiaSmJTkqyYopHuMRSdYneeJ0tUvSzDGcSJqyJLv096L5UZJf\nJPl+kg/0N5WcyHHWJ3nxiNVHAwdOsYmrgZ3o7rQtqXGGE0lT0t/I8evAbnT3DNmN7q6uBwKXJPnt\nqRy/vyHbmo2XHPcYVVU/6e+9M+2SbOFNAqXpYziRNFUnAL8AnltVX66qH/Y37XsO8HDg7wGSrOrv\nxvrRJD9P8sMkbxg+SJJVdFfY/ETfg3Jdv/6dSa4YKHdKkv/q72R8Y5I1/XG3TPLPSW5J8oMkrxnY\nZ4Nhnf4Y6/vHrwaeP6Pffr8k7+vb+PMkl/T3Thk+3qF9vS9K8t90NxVc0N+t+6v9PmuSXNTfaVnS\nBBhOJE1akh2A5wHHV9UGt3WvqpuAj9D1pgx7C3AF8CTgH4HjkgwP2exDd2+SQ+mGYPYZPhT3vCz4\ns4GH0d0teyndnYw/BfwU2Bf4EHBikp0HmzTw/M19HTv1xzkOuAm4pt9+PPBUujvI7gX8O/CZJLsN\nHGMb4K3AnwKPB9YA/0V3h9snAPvR3RXZy3BLE+S9dSRNxe50geKaMbavBHZIMr9f/kpVHd0//5f+\njsFLgc9X1VA/MnJbVf1kI/XeUlVv7p9/J8n/Bn6rqv4RIMl76W5dfwDw8b7cr4ddqup2uns4keRl\nwOvp7oD9k76n4zXAgqq6sd/lmCQvAF4L/E2/bivgz6vq6v44OwAPBM6tqu/3Za7dyOuQNArDiaTp\nsKnzLS4ZZfl/TqK+/x6xfBPdHa0BqKr1SW4BHjreQZI8GTgdOKKqLu1X7wVsCXx7xDyS+9HdSHDY\nXcPBpK9zTZLTgPOSfA44H/j4QMCRtIkc1pE0Fd+lG7ZYOMb2PYE1VTU0xvbJunvEco2xbsz3uCQ7\nAZ8ETqqqUwc2bQf8ElgE7D3wWMiGQerOkcesqtfRDed8hW4469ok+2785UgaZDiRNGlV9VPgc8Ab\nktx/cFv/n/+rgI8NrN5vxCH2oxv6GXY3Xa/FTPj13I++rZ8AvgX81YhyV/Rt2LGqrhvx2NhwE1X1\njar6p6ran66H51XT9xKk+wbDiaSpeiNwf2B5kt/pr3nyfOA84Af8Zo4GwP5J3pJk9yRHAAcDHxjY\n/n3gwCQ7TvUryKMYHKI5CdiFrifkoX19OybZuqq+A3wUOD3JS5M8Msm+SY7s552MfvCu3D8k2S/J\nrkmeRzcn51vT/Dqkez3DiaQpqarvAk8BrgPOpBvq+RDweeDpVXXrQPH392WvAN4GLK2q8we2/xXw\nXLpQM5Grwo72jZiR6waXn0H3LZ1vAT8Gbuj/fVq//TV0c1HeRzfZ96y+3avHacNa4HHAf9BNhP0Q\n8H+q6qQJvA5JQKr8lpukmddfx+TYqvrgXLdFUtvsOZEkSU0xnEiaLXbTStokDutIkqSm2HMiSZKa\nYjiRJElNMZxIkqSmGE4kSVJTDCeSJKkphhNJktQUw4kkSWqK4USSJDXFcCJJkpry/wGmW9ItYQME\nSAAAAABJRU5ErkJggg==\n", "text/plain": [ "<matplotlib.figure.Figure at 0x7fd9d419ba50>" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot the statistical performanc of the optimizers.\n", "fig = plt.figure()\n", "st = fig.suptitle(\"Higer is better.\", fontsize=\"x-small\")\n", "\n", "plt.bar(range(len(results)), results.values(), align='center')\n", "plt.xticks(range(len(results)), results.keys())\n", "plt.xlabel(\"Optimizers\")\n", "plt.ylabel(\"F1\")\n", "plt.ylim([0.83,0.85])\n", "plt.show()" ] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda root]", "language": "python", "name": "conda-root-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }
gpl-3.0